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Introduction

1. Background and motivation

Let Ω ⊂ Rn be a domain. It is well known from classical results in convex analysis
that the following conditions are equivalent characterizations for convexity of the
set Ω (see, for example, [Kr15]):

(1) There exists a convex function ϕ : Ω→ R such that for every c ∈ R the set
ϕ−1((−∞, c]) is relatively compact in Ω.

(2) For every compact set K ⊂ Ω, the linearly convex hull

K̂L(Ω) :=
{
x ∈ Ω : |L(x)| ≤ max

K
|L| for every

affine linear function L : Ω→ R
}

is relatively compact in Ω.

For domains Ω ⊂ Cn, the solution of the so-called Levi problem (see [Ok53], [Br54]
and [No54]) shows that, in analogy to the case of convex domains, the following
assertions on Ω are equivalent:

(1′) There exists a plurisubharmonic function ϕ : Ω→ R such that for every c ∈ R
the set ϕ−1((−∞, c]) is relatively compact in Ω (i.e., Ω is pseudoconvex).

(2′) For every compact set K ⊂ Ω, the holomorphically convex hull

K̂O(Ω) :=
{
z ∈ Ω : |f(z)| ≤ max

K
|f | for every

holomorphic function f : Ω→ C
}

is relatively compact in Ω (i.e., Ω is holomorphically convex).

It is a fundamental observation in the theory of several complex variables that
the existence of holomorphic objects (functions, differential forms, sections in
vector bundles) on Ω ⊂ Cn is closely related to the convexity properties of Ω
which are described in (1′) and (2′). Indeed, a classical result due to Cartan and
Thullen shows that Ω is holomorphically convex if and only if it is the domain of
existence of a holomorphic function (see, for example, [Hö90]). Moreover, it follows
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from works of Morrey, Kohn and Hörmander (see [M59], [Ko63] and [Hö65]) that
pseudoconvexity of Ω is equivalent to the vanishing of all Dolbeault cohomology
groups Hp,q(Ω), q ≥ 1 (i.e., solvability of the equation ∂̄u = f for every ∂̄-closed
f ∈ Λp,q(Ω), q ≥ 1); solving inhomogeneous ∂̄-equations is one of the strongest
known techniques for constructing holomorphic objects.

For smoothly bounded domains, convexity and pseudoconvexity can also be
characterized by means of local defining functions: a domain Ω ⊂ Rn (resp.
Ω ⊂ Cn) with C2-smooth boundary is convex (resp. pseudoconvex) if and only
if for every p ∈ bΩ there exists a C2-smooth function ϕ : U → R on an open
neighbourhood U of p such that Ω ∩ U = {ϕ < 0}, dϕ 6= 0 on bΩ ∩ U and for
every q ∈ bΩ ∩ U one has

n∑
j,k=1

∂2ϕ

∂xj∂xk
(q)ξjξk ≥ 0 for every ξ ∈ Rn such that

n∑
j=1

∂ϕ

∂xj
(q)ξj = 0

(
resp.

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
(q)ξj ξ̄k ≥ 0 for every ξ ∈ Cn such that

n∑
j=1

∂ϕ

∂zj
(q)ξj = 0

)
.

The above results are of considerable practical use, since they provide local
characterizations of (pseudo-)convexity in terms of differential conditions on
functions. Moreover, they also make it possible to define in a natural way the
notions of strict (pseudo-)convexity, by requiring the involved inequalities to be
strict: a domain Ω ⊂ Rn (resp. Ω ⊂ Cn) with C2-smooth boundary is called strictly
convex (resp. strictly pseudoconvex) if for every p ∈ bΩ there exists a C2-smooth
function ϕ : U → R on an open neighbourhood U of p such that Ω∩U = {ϕ < 0},
dϕ 6= 0 on bΩ ∩ U and for every q ∈ bΩ ∩ U one has

n∑
j,k=1

∂2ϕ

∂xj∂xk
(q)ξjξk > 0

for every ξ ∈ Rn \ {0} such that
n∑
j=1

∂ϕ

∂xj
(q)ξj = 0

(
resp.

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
(q)ξj ξ̄k > 0

for every ξ ∈ Cn \ {0} such that
n∑
j=1

∂ϕ

∂zj
(q)ξj = 0

)
.

Strict pseudoconvexity turns out to be an important and extremely useful con-
cept. In fact, while general pseudoconvexity provides the most natural setting
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for developing function theory in higher dimensions, many important results
can only be established on strictly pseudoconvex domains. In some cases this
may be merely due to the fact that sufficiently strong techniques for extending
results to the general setting are missing, and maybe stronger statements can
still be obtained in the future (for example, it is still an open question whether
every biholomorphic map Φ: Ω1 → Ω2 between smoothly bounded pseudoconvex
domains Ω1,Ω2 ⊂⊂ Cn extends to a diffeomorphism Φ: Ω̄1 → Ω̄2; this is always
the case if the domains Ωj , j = 1, 2, are assumed to be strictly pseudoconvex, see
[Fe74]). However, many results which can be proved in the strictly pseudoconvex
case are known to fail for general pseudoconvex domains (for example, if Ω ⊂⊂ Cn
is strictly pseudoconvex with smooth boundary, then Ω admits a Stein neigh-
bourhood basis (see the proof of Proposition 3 in [Gr58]; see also [To83]), each
f ∈ O(Ω) ∩ C(Ω̄) can be approximated uniformly on Ω̄ by functions {fj} ⊂ O(Ω̄)
(see [He69], [Ke71] and [Li69]), and it is possible to prove subelliptic estimates
for the ∂̄-Neumann problem (see [Ca87]); none of these assertions hold true for
arbitrary pseudoconvex domains Ω ⊂⊂ Cn with smooth boundary, see [DF77b],
[Ca83] and [Ca87]).

As it is pointed out in [DF77a] (see also [Li07]), the main reasons why one observes
significant differences between the weakly and strictly pseudoconvex cases are the
following three elementary facts:

(i) Strict pseudoconvexity is stable under small C2-perturbations.

(ii) Strictly pseudoconvex domains are locally biholomorphically equivalent to
strictly convex domains.

(iii) If Ω ⊂⊂ Cn is strictly pseudoconvex with C2-smooth boundary, then there
exists an open neighbourhood U ⊂ Cn of Ω̄ and a C2-smooth strictly
plurisubharmonic function ϕ : U → R such that Ω = {ϕ < 0} and dϕ 6= 0
on bΩ.

The first two properties are of purely local nature. Thus they hold true for arbitrary
strictly pseudoconvex domains. However, the third statement is formulated only
for Ω ⊂⊂ Cn.

The main goal of this thesis is to investigate how the above result (iii) on existence
of global strictly plurisubharmonic defining functions can be generalized to the case
of unbounded strictly pseudoconvex domains.

It should be noted that complex analysis in several variables is studied so far
more extensively, and is generally better understood, on bounded domains than
on unbounded ones. This is to a large extent due to the fact that some techniques
which are typical for higher-dimensional complex analysis use boundedness of the
domains on which they are applied in various ways. For example, solution operators
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for ∂̄ with Lp-estimates, 1 ≤ p ≤ ∞, are constructed by using integral formulas (see
[He69], [Ke71], [Li69], [Øv71]; the case p = 2 does not depend on integral formulas,
see [Ko63]); if Ω̄ is not compact, the possibilities for applying integral formulas
are essentially limited to local problems. Also, boundary regularity properties
of biholomorphic mappings between bounded strictly pseudoconvex domains are
proved by means of the Bergman kernel and Bergman metric (see [Fe74], [BL80] and
[Be81]); on unbounded domains the Bergman space of L2-holomorphic functions
may be trivial. Moreover, Kobayashi hyperbolicity of bounded pseudoconvex
domains Ω ⊂ Cn and the closed range property of the ∂̄-operator on Ω can
be seen to ultimately depend on the existence of bounded (uniformly) strictly
plurisubharmonic functions on Ω (see [Si81] and [Hö65]; for more details on the
second assertion see also [HM14]); such functions do not exist in general on
unbounded domains.

Another reason for the distinguished role of bounded domains is the fact that in
higher-dimensional complex analysis there exist phenomena that can be observed
only on unbounded domains, but which do not occur in the bounded case (note
that, while every smoothly bounded domain Ω ( C is biholomorphically equivalent
to a bounded subset of C, the analoguous statement is not longer true for domains
Ω ( Cn, n ≥ 2). Examples with respect to bounded plurisubharmonic functions
and holomorphic extension of CR functions will be given below.

The second goal of this thesis is to explore some of these phenomena, especially
those which are related to the existence of global defining functions. In particular,
we will introduce and investigate core sets of unbounded domains.

2. Main Results

A. Global plurisubharmonic defining functions and the core

The main topic of this thesis is the problem of existence of defining functions
for strictly pseudoconvex domains Ω with smooth boundary bΩ in a complex
manifold M. More precisely, we are interested in the existence of global defining
functions, namely, defining functions that are defined in a neighbourhood of the
closure Ω̄ (we will also be concerned with the more general situations of strictly
q-pseudoconvex domains in complex manifolds and strictly hyper-q-pseudoconvex
domains in complex spaces). In what follows, a real-valued function ϕ will be
called a defining function for Ω if it has the following properties:
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(I) ϕ is a smooth function on an open neighbourhood U ⊂M of bΩ.

(II) ϕ is strictly plurisubharmonic in U.

(III) Ω ∩ U = {ϕ < 0} and dϕ 6= 0 on bΩ.

It is well known that defining functions always exist whenever Ω ⊂M is relatively
compact, and there are different proofs available for this fact, see, for example,
[FG02], [FSt87], [Gr62], [MR75]. In fact, a careful investigation of the corre-
sponding proof shows that the method presented in [Gr62] still works, with only
minor changes, even without assuming relative compactness of Ω. In particular,
every strictly pseudoconvex domain with smooth boundary in a complex manifold
admits a defining function.

If Ω is a relatively compact domain in a Stein manifold M, then in fact more
is known. In this case one can choose ϕ to be defined not only near bΩ but on
a neighbourhood of the whole of Ω̄ (see, for example, Lemma 1.3 in [MR75]).
For arbitrary domains and manifolds this is not longer true in general, as it is
illustrated by the following examples.

Example I. Let M be the blow-up of Cn+1 at the origin, i.e., M := {(z, x) ∈
Cn+1 × CPn : z ∈ l(x)}, where l(x) ⊂ Cn+1 denotes the complex line determined
by x ∈ CPn. Then

Ω :=
{

(z, x) ∈M : ‖z‖ < 1
}
⊂⊂M

is a strictly pseudoconvex domain with smooth boundary in M containing the
compact analytic set E := {0} × CPn. Let ϕ be a plurisubharmonic function
defined on a neighbourhood of Ω̄ such that Ω = {ϕ < 0}. Then ϕ is bounded from
above on E, hence it is a constant by the maximum principle. In particular, ϕ is
not strictly plurisubharmonic at the points of E.

Example II. Let f : C→ C be an entire function and

Ω :=
{

(z, w) ∈ C2 : log|w − f(z)|+ C1
(
|z|2 + |w|2

)
< C2

}
⊂ C2,

where C1 and C2 are constants and C1 > 0. For almost all constants C2, Ω is an
unbounded strictly pseudoconvex domain with smooth boundary in C2 containing
the complex line L := {(z, f(z)) ∈ C2 : z ∈ C}. Let ϕ be a plurisubharmonic
function defined on a neighbourhood of Ω̄ such that Ω = {ϕ < 0}. Then ϕ is
subharmonic and bounded from above on L, hence it is a constant by Liouville’s
theorem. In particular, ϕ is not strictly plurisubharmonic at the points of L.

As the above examples show, we cannot longer expect ϕ to be strictly plurisub-
harmonic on a neighbourhood of the whole of Ω̄ as soon asM fails to be Stein, or
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Ω fails to be relatively compact in M. Hence we will call a real-valued function ϕ
a global defining function for Ω if it has the following properties:

(I) ϕ is a smooth function on an open neighbourhood U ⊂M of Ω̄.

(II) ϕ is plurisubharmonic in U and strictly plurisubharmonic near bΩ.

(III) Ω = {ϕ < 0} and dϕ 6= 0 on bΩ.

Observe that instead of imposing (I) and (II), it is equivalent to claim that ϕ is a
smooth plurisubharmonic function on Ω̄ such that ϕ is strictly plurisubharmonic
near bΩ. Moreover, after possibly shrinking U and composing ϕ with a suitable
convex function, we can always assume that ϕ is bounded.

As the main result of this thesis we will prove that every strictly pseudoconvex
domain Ω with smooth boundary in a complex manifoldM admits a global defining
function. In view of this result and the examples above, it is then meaningful to
consider the set of all points in Ω where every global defining function for Ω fails
to be strictly plurisubharmonic. We will show that this set coincides with the core
of Ω, which we introduce in the following definition.

Definition. Let M be a complex manifold and let Ω ⊂M be a domain. Then
the set

c(Ω) :=
{
z ∈ Ω : every smooth plurisubharmonic function on Ω that is
bounded from above fails to be strictly plurisubharmonic in z

}
will be called the core of Ω.

Remark. Similar definitions in different settings have also been introduced in
[HaL12], [HaL13] and [SlT04].

It is easy to see that every domain Ω ⊂ M admits a smooth and bounded
plurisubharmonic function that is strictly plurisubharmonic precisely in Ω \ c(Ω).
In the special case of global defining functions we get the following version of our
main theorem:

Main Theorem. Every strictly pseudoconvex domain Ω with smooth boundary
in a complex manifold M admits a bounded global defining function that is strictly
plurisubharmonic outside c(Ω).

The problem of existence of global defining functions is thus reduced to the study
of the core. A major part of the present thesis is devoted to this topic.

The two questions, which will be investigated in most detail, are motivated by the
following observation: In all elementary examples of domains Ω with nonempty
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core which we are going to construct (see also Example I and Example II above),
every connected component Z of c(Ω) has the following two properties:

• Z satisfies a Liouville type theorem, i.e., every smooth and bounded from
above plurisubharmonic function on Ω is constant on Z.

• Z possesses an analytic structure, i.e., there exists a dense subset of Z that
is the union of nonconstant holomorphic discs contained in Z (in fact, in
the above examples Z is always a complex manifold).

Moreover, every set Z ⊂ Ω with the above two properties has to be contained
in c(Ω). We thus want to know whether it is true in general that, first, every
connected component of c(Ω) has a Liouville type property, and, second, c(Ω)
possesses an analytic structure. With respect to analytic structure of the core,
we obtain the following two results, which give a rather complete answer to the
second question (see Theorem 3.3.1 and Theorem 3.3.2):

Theorem I. For every n ≥ 2, there exists an unbounded strictly pseudoconvex
domain Ω ⊂ Cn with smooth boundary such that c(Ω) is nonempty and contains
no analytic variety of positive dimension.

Theorem II. Let M be a complex manifold and let Ω ⊂M be a domain. Then
c(Ω) is 1-pseudoconcave in Ω. In particular, c(Ω) is pseudoconcave in Ω if
dimCM = 2.

Regarding Liouville type properties of c(Ω), we will prove the following results
(for more details see Example 9, Example 10 and Theorem 3.4.2):

Theorem III. For every n ≥ 3, there exist an unbounded strictly pseudoconvex
domain Ω ⊂ Cn with smooth boundary and a smooth plurisubharmonic function
ϕ : Ω→ R which is bounded from above such that c(Ω) is nonempty and connected
but ϕ is not constant on c(Ω).

Theorem IV. Let M be a 2-dimensional complex manifold and let Ω ⊂M be a
domain. Assume that there exist a smooth plurisubharmonic function ϕ : Ω→ R
which is bounded from above and a connected component Z of c(Ω) such that
ϕ is not constant on Z. Then there exist uncountably many pairwise disjoint
connected immersed complex curves γα ⊂ Z, α ∈ A, such that for every α ∈ A
and every smooth plurisubharmonic function ψ : Ω → R which is bounded from
above it follows that ψ is constant on γα.

It should be noted that the failure of Liouville type properties for connected
components of c(Ω) can already be observed in very simple cases, if we do not
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require Ω to be strictly pseudoconvex (for example, if Ω := Ω′×Cw ⊂ C2 for some
domain Ω′ ⊂⊂ Cz, then c(Ω) = Ω is connected, but ϕ(z, w) := |z|2 is a smooth
and bounded from above plurisubharmonic function on Ω which is not constant on
c(Ω)). However, to construct a strictly pseudoconvex domain as in Theorem III is
much harder, and, in fact, we do not know if there exists such a domain in C2.

In turns out to be an interesting problem in general to understand how properties
of Ω are related to properties of c(Ω). A very precise result on this question in the
special situation where the core is assumed to have a certain product structure is
obtained in the following theorem (see Theorem 3.2.1):

Theorem V. The following assertions hold true for domains Ω ⊂ Cn, n ≥ 2:

(1) There exists a domain Ω ⊂ Cn such that c(Ω) = E ×Cn−1, where E ⊂ C is
the set E = [0, 1]× R.

(2) Let Ω ⊂ Cn be a pseudoconvex domain such that c(Ω) = E × Ck for some
k ∈ {1, 2, . . . , n − 1} and some set E ⊂ Cn−k. Then either E is locally
complete pluripolar or E is open. In the latter case Ω = E × Ck.

(3) Let k ∈ {1, 2, . . . , n− 1} be arbitrary but fixed. Then there exists a strictly
pseudoconvex domain Ω ⊂ Cn such that c(Ω) = E ×Ck for a set E ⊂ Cn−k
if and only if E is closed and complete pluripolar.

It is natural to also introduce a series of stronger notions of the core of a domain
Ω ⊂ M, by requiring not only failure of strict plurisubharmonicity of smooth
and bounded from above plurisubharmonic functions ϕ on Ω, but instead by
prescribing an upper bound k for the rank of the Levi form of ϕ, with k possibly
different from dimCM− 1.

Definition. Let M be a complex manifold of complex dimension n and let
Ω ⊂M be a domain. Then for every q = 1, 2, . . . , n the set

cq(Ω) :=
{
z ∈ Ω : rank Lev(ϕ)(z, · ) ≤ n− q for every smooth plurisub-
harmonic function ϕ : Ω→ R that is bounded from above

}
is called the core of order q of Ω.

The introduction of these higher order cores leads to a further slight improvement
of the Main Theorem (see Theorem 3.5.2). Moreover, in view of 1-pseudoconcavity
of the core c1(Ω) = c(Ω), pseudoconcavity properties of higher order cores are
a natural object of study. It will be shown, however, that in general the higher
order cores do not possess any such properties at all (see Theorem 3.5.1):
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Theorem VI. For every n ≥ 2 and every q = 1, 2, . . . , n, q′ = 0, 1, . . . , n − 1
such that (q, q′) 6= (1, 0), there exists a strictly pseudoconvex domain Ω ⊂ Cn with
smooth boundary such that cq(Ω) is q′-pseudoconcave but not (q′+1)-pseudoconcave.

B. Holomorphic extension of CR functions and the CR-core

One more situation, where new phenomena can be observed after generalizing
the setting from the case of bounded sets to unbounded ones, is related to the
extension problem of CR functions defined on the boundary bΩ of a domain Ω in
Cn, n ≥ 2. When Ω is bounded with a connected smooth boundary (no hypothesis
of pseudoconvexity) holomorphic extension of CR functions to the whole of Ω̄ is
granted by the classical result of Bochner (see, for example, Theorem 2.3.2′ in
[Hö90]). In particular, if Ω is a domain of holomorphy, the envelope of holomorphy
E(bΩ) of bΩ (i.e. the envelope of bΩ with respect to the algebra of continuous CR
functions on bΩ (for details see, for example, [J95], [MP06] and [St07])) coincides
with Ω̄. For unbounded domains such an extension result is not longer true in
general, even for strictly pseudoconvex domains, as it is shown by the following
example.

Example III. Let f be an entire function in C2 and

Ω :=
{
z ∈ C2 : log|f(z)|+ C1‖z‖2 < C2

}
where C1 and C2 are constants and C1 > 0. For almost all constants C2, Ω is an
unbounded strictly pseudoconvex open set with smooth boundary in C2 containing
the divisor {f = 0}. We are going to show that E(bΩ) is one-sheeted, contained
in Ω and

Ω̄ \ E(bΩ) =
{
z ∈ C2 : f(z) = 0

}
.

Fix an exhaustion V1 ⊂⊂ V2 ⊂⊂ · · · ⊂⊂ bΩ of bΩ by relatively compact subsets.
Intersecting Ω by balls B2(0, Rk) ⊂ C2 centered at the origin of radius Rk in such
a way that Vk ⊂⊂ bΩ∩B2(0, Rk) and then smoothing the edges as in [To], we can
find strictly pseudoconvex bounded open sets Ωk in C2 such that Vk ⊂ bΩk ∩ bΩ
for every k ∈ N. Let Γk := bΩk \ Vk. Then, in view of Theorem A from [J95], one
has

E(Vk) = E(bΩk \ Γk) = Ω̄k \ Γ̂k
A(Ωk)

⊂ C2,

where Γ̂k
A(Ωk)

is the A(Ωk)-hull of Γk, i.e., the hull of Γk with respect to the
algebra of holomorphic functions on Ωk which are continuous up to the boundary.
In particular, every continuous CR function on bΩ has a single-valued holomorphic
extension to ⋃∞k=1E(Vk) = Ω̄ \ ⋂∞k=1 Γ̂k

A(Ωk)
. By construction, there exists a
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sequence {ck} of positive constants such that Γ̂k
A(Ωk)

⊂ {|f | < ck} for every
k ∈ N and limk→∞ ck = 0. It follows that ⋃∞k=1E(Vk) = Ω̄ \ {f = 0}, and hence
that Ω̄ \ {f = 0} ⊂ E(bΩ). Since the CR function 1/f on bΩ does not extend to
{f = 0}, it follows that E(bΩ) = Ω̄ \ {f = 0}.

If Ω ⊂ Cn is strictly pseudoconvex, then each continuous CR function on bΩ
extends holomorphically to a one-sided neighbourhood U ⊂ Ω̄ of bΩ (see, for
example, [Bo91]). In view of the previous example, it is thus meaningful to
introduce the following definition.

Definition. Let Ω ⊂ Cn be a strictly pseudoconvex domain such that E(bΩ) is
one-sheeted. Then

cCR(Ω) := Ω̄ \ E(bΩ)

is called the CR-core of Ω.

If Ω is a domain as in Example III, then the above arguments show that cCR(Ω)
coincides with the divisor {f = 0}. In this context, we have to mention Trépreau’s
theorem [Tr86] stating that, given a point z in a smooth hypersurface M ⊂ Cn,
the homomorphism

Oz → lim−→
U3z
O(U \M)

is onto if and only if no germ of a complex hypersurface passing through z is
contained in M . Recall also Chirka’s generalization [Ch01] of Trépreau’s result
(in the case n = 1 this generalization can also be obtained from the earlier work
[Sh93]): Let Γ ⊂ Cn+1 be a continuous graph over a convex domain D ⊂ Cn × R
and z ∈ Γ be a point such that none of the connected components of (D × R)\Γ
is extendable holomorphically to z. Then, z is contained in an n-dimensional
holomorphic graph lying on and closed in Γ.

A natural question arises: Let Ω be an unbounded strictly pseudoconvex domain
in Cn, n ≥ 2, such that E(bΩ) is one-sheeted and Ω̄ \E(bΩ) 6= ∅; does Ω̄ \E(bΩ)
possess an analytic structure? We will show that this is not always the case, by
proving the following result (see Theorem 4.1.1):

Theorem VII. For each n ∈ N, n ≥ 2, there exist an unbounded strictly pseudo-
convex domain Ω ⊂ Cn and a smooth CR function f on bΩ such that:

(1) The envelope of holomorphy E(bΩ) of the set bΩ is one-sheeted.

(2) cCR(Ω) is nonempty and contains no analytic variety of positive dimension.

(3) f has a single-valued holomorphic extension exactly to Ω \ cCR(Ω).

10



However, observe that it follows immediately from the Kontinuitätssatz and the
definition of the CR-core, that cCR(Ω) is always pseudoconcave in Ω.

C. Unbounded Wermer type sets

In Theorem I and Theorem VII above we want to construct strictly pseudoconvex
domains Ω ⊂ Cn, n ≥ 2, with smooth boundary such that the core c(Ω) and the
CR-core cCR(Ω) do not possess any analytic structure, respectively. The main step
in the proof of these results is the following theorem on existence of unbounded
Wermer type sets in Cn (see Lemma 1.1.2, Lemma 1.2.2, Lemma 1.2.3, Lemma
1.3.6, Lemma 1.4.3 and Corollary 1.4.2):

Theorem VIII. For each n ∈ N, n ≥ 2, there exist a nonempty connected closed
set E ⊂ Cn and a plurisubharmonic function ϕ : Cn → [−∞,+∞) such that

(1) The set E contains no analytic variety of positive dimension;

(2) E = {z ∈ Cn : ϕ(z) = −∞};

(3) The function ϕ is pluriharmonic on Cn \ E;

(4) The domain Cn \ E is pseudoconvex;

(5) For every constant R > 0, one has that ¤�bBn(0, R) ∩ E = B̄n(0, R)∩E, where¤�bBn(0, R) ∩ E denotes the polynomial hull of the set bBn(0, R) ∩ E.

The set E is obtained as a limit in the Hausdorff metric of a sequence {Eν} of
algebraic hypersurfaces in Cn = Cn−1

z ×Cw such that the union of the correspond-
ing sets of ramification points with respect to the projection Cn → Cn−1

z is an
everywhere dense subset of Cn−1

z . For n = 2 this idea goes back to Wermer in
[We82], where an example of a compact set K in C2 with nontrivial polynomial
hull K̂ such that K̂ \K has no analytic structure is given. Wermer’s construction
was then further exploited and developed in a series of articles [Al96], [Du10],
[DS95], [EM08], [Le88], [Sl99]. Note also that, first, our construction of E is
slightly different from Wermer’s one (the main idea being the same) and, second,
that, in the general case n > 2, the situation is substantially more difficult from
the technical point of view than that considered by Wermer.

One more property of the Wermer type set E , which will be needed in the
construction of cores with no analytic structure, and which is also of independent
interest, is described in the following Liouville type result (see Theorem 1.5.1):

11



Introduction

Theorem IX. Let ϕ be a plurisubharmonic function defined on an open neigh-
bourhood U ⊂ Cn of E. If ϕ is bounded from above, then ϕ ≡ C on E for some
C ∈ R.

The existence of unbounded Wermer type sets will also play an important role in
the proof of Theorem VI on higher order cores with arbitrary pseudoconcavity
properties. However, for this purpose, a further generalization of our construction
of Wermer type sets is necessary. The corresponding results are summarized in
the following theorem (see the results in Chapter 2):

Theorem X. For each n ∈ N, n ≥ 2, and for every q = 1, 2, . . . , n − 1, there
exist a nonempty connected closed set E ⊂ Cn and a plurisubharmonic function
ϕ : Cn → [−∞,+∞) such that

(1) The set E contains no analytic variety of positive dimension;

(2) E = {z ∈ Cn : ϕ(z) = −∞};

(3) The set E is q-pseudoconcave but not (q + 1)-pseudoconcave;

(4) If ψ : U → R is a smooth plurisubharmonic function defined on an open
neighbourhood of E such that ψ is bounded from above on E, then the Levi
form of ψ vanishes identically at every point of E.

(5) For every constant R > 0, one has that ¤�bBn(0, R) ∩ E = B̄n(0, R)∩E, where¤�bBn(0, R) ∩ E denotes the polynomial hull of the set bBn(0, R) ∩ E.

The set E is obtained as a limit in the Hausdorff metric of a sequence {Eν}
of q-dimensional algebraic varieties in Cn = Cqz × Cn−qw such that for every
k = q + 1, q + 2, . . . , n the union of the corresponding sets of ramification points
with respect to the projection Cqz × Cwk → Cqz is an everywhere dense subset of
Cqz.

3. Organization of the content

The present thesis consists of two parts. In the first part, we describe the
construction of unbounded Wermer type sets E ⊂ Cn. Chapter 1 contains
the results on Wermer type sets which are limits of algebraic hypersurfaces in
Cn−1
z × Cw. Theorem VIII on the existence and general properties of E is proven

in Sections 1.1-1.4, the Theorem IX on Liouville type properties is contained
in Section 1.5. Chapter 2 is devoted to the construction of generalized Wermer
type sets which are limits of q-dimensional analytic varieties in Cqz × Cn−qw . The
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additional properties (3) and (4) of Theorem X on the order of pseudoconcavity
and degeneration of plurisubharmonic functions are contained in Section 2.3.

The second part of this thesis deals with core sets of unbounded domains and the
phenomena which are related to it. The focus lies on the construction of global
plurisubharmonic defining functions and the investigation of properties of the core
c(Ω). The corresponding results are contained in Chapter 3, which can also be
regarded as the main part of this thesis. Chapter 4 is devoted to the study of
holomorphic extension of CR functions and the CR-core cCR(Ω).

In Section 3.1 we prove the existence of global defining functions in a number
of different settings. We first consider in Section 3.1.1 the case of strictly q-
pseudoconvex domains in complex manifolds; in the special case q = 0 we obtain
the described above Main Theorem. Later on we deal in Section 3.1.2 with the
situation of strictly hyper-q-pseudoconvex domains in complex spaces. Section 3.2
contains several examples of unbounded domains Ω ⊂ Cn such that c(Ω) 6= ∅. We
also prove here Theorem V. The question of existence of analytic structure in c(Ω)
and the related to it Theorem I and Theorem II, are considered in Section 3.3.
Section 3.4 deals with Liouville type properties of the core and the corresponding
Theorems III and IV. The Theorem VI on pseudoconcavity properties of higher
order cores is proven in Section 3.5.

Section 4.1 contains an example of a CR-core with no analytic structure, as it
is described in Theorem VII. Finally, we show in Section 4.2 that in general
c(Ω) 6= cCR(Ω), even for strictly pseudoconvex domains Ω ⊂ C2.

Remark. Some of the results of the present dissertation were already obtained
in the author’s diploma thesis, and have been published earlier in [HST12]. In
particular, Theorem VII and Theorem VIII are already contained, with slightly
different formulations, in the above mentioned work. More precisely, the following
parts of the present thesis were taken from [HST12]: Section 1.1, Section 1.3,
Lemma 1.4.1, Lemma 1.4.2, Lemma 1.4.3, Corollary 1.4.2 and Theorem 4.1.1.
Furthermore, the largest part of Section 2.B as well as some parts of Section 2.C
from this Introduction also appear in [HST12].
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Part I

Unbounded Wermer type sets
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1 Construction of Wermer type sets in
codimension 1

We construct a class of unbounded Wermer type sets in Cn, which are limits in
the Hausdorff metric of sequences of algebraic varities of codimension 1.

In Section 1.1 we describe the general method of construction. We explicitly
choose a sequence {Pν} of holomorphic polynomials, such that each Pν does only
depend on finitely many positive constants ε1, . . . , εν . We then show that for {εl}
decreasing to zero fast enough, the algebraic varieties Eν = {Pν = 0} converge in
the Hausdorff metric to a closed unbounded set E ⊂ Cn. Section 1.2 contains some
elementary geometric properties of the set E , which will be occasionally needed
later on. In Section 1.3 we show that for {εl} decreasing to zero fast enough, the
set E contains no analytic variety of positive dimension. Moreover, in Section
1.4 we show that for {εl} decreasing to zero fast enough, the set E is complete
pluripolar. The last Section 1.5 contains a Liouville theorem for plurisubharmonic
functions on Wermer type sets.

1.1 The general construction

Let (z, w) = (z1, . . . , zn−1, w) denote the coordinates in Cn and for each ν ∈ N let
Nν := {1, 2, . . . , ν}. For each p ∈ Nn−1 fix an everywhere dense subset {apl }∞l=1 of
C such that apl 6= apl′ if l 6= l′. Further, fix a bijection Φ := ([ · ], φ) : N→ Nn−1×N
and define a sequence {al}∞l=1 in C by letting al := a

[l]
φ(l). Moreover, let {εl}∞l=1

be a decreasing sequence of positive numbers converging to zero that we consider
to be fixed, but that will be further specified later on. Then for every ν ∈ N we
define gν to be the algebraic function

gν(z) :=
ν∑
l=1

εl
√
z[l] − al

and let
Eν :=

{
(z, w) ∈ Cn : w = gν(z)

}
.
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1 Construction of Wermer type sets in codimension 1

By definition, gν is a multi-valued function that takes 2ν values at each point
z ∈ Cn−1 (counted with multiplicities). Therefore we can always choose single-
valued functions w(ν)

1 , . . . , w
(ν)
2ν on Cn−1 such that

gν(z) =
{
w

(ν)
j (z) : j = 1, . . . , 2ν

}
for all z ∈ Cn−1. Note that these functions are not continuous and that they are not
uniquely determined, even though the set gν(z) is well-defined for each z ∈ Cn−1.
Indeed we may freely change the numeration of the values w(ν)

1 (z), . . . , w(ν)
2ν (z) for

each z ∈ Cn−1.

Define for each ν ∈ N a function Pν : Cn → C as

Pν(z, w) :=
(
w − w(ν)

1 (z)
)
· · ·
(
w − w(ν)

2ν (z)
)
.

Lemma 1.1.1. The sequence {Pν}∞ν=1 consists of holomorphic polynomials on
Cn and has the following properties:

(1) Eν = {(z, w) ∈ Cn : Pν(z, w) = 0}.

(2) Pν+1 → P 2
ν uniformly on compact subsets of Cn as εν+1 → 0.

Proof. First note that if for each p ∈ Nn−1 we let Up be an open convex subset
of C not meeting Apν := {al : l ∈ Nν , [l] = p}, then after possibly renumbering
the values w(ν)

j (z) for z ∈ U := U1 × · · · × Un−1 we can always assume the
functions w(ν)

1 , . . . , w
(ν)
2ν to be holomorphic on U . Since the value Pν(z, w) is

independent of the numeration of the w(ν)
j (z), this shows that Pν is a holomorphic

function outside the set Aν := {(z, w) ∈ Cn : zp ∈ Apν for some p ∈ Nn−1}.
Observing that Pν is locally bounded near each point ofAν and applying Riemann’s
removable singularities theorem we conclude that Pν is actually holomorphic
in the whole of Cn. Then estimating |Pν | outside some ball Bn(0, R) ⊂ Cn

from above by a suitable scalar multiple of |w2ν | +∑n−1
p=1 |z2ν−1

p | one can easily
see that Pν is in fact a holomorphic polynomial. To prove the second part of
the lemma we observe that Pν+1(z, w) is in fact the product of the 2ν factors(
(w − w(ν)

j (z))2 − ε2
ν+1(z[ν+1] − aν+1)

)
, j ∈ N2ν , and hence equals

2ν∑
p=0

(−1)p
[(
ε2
ν+1(z[ν+1]−aν+1)

)2ν−p · ∑
1≤j1<···<jp≤2ν

(
w−w(ν)

j1
(z)
)2 · · · (w−w(ν)

jp
(z)
)2]

.

Note that for p = 2ν the inner sum equals P 2
ν (z, w). Since w(ν)

1 , . . . , w
(ν)
2ν are

independent of εν+1 and bounded on compact subsets of Cn−1, we conclude that
Pν+1 → P 2

ν uniformly on compact subsets as εν+1 → 0. �
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1.1 The general construction

Remark. A more careful consideration shows that one has the following explicit
formula for Pν ,

Pν(z, w) =
2ν−1∑
d=0

(−1)d
( ν∑
l=1

ε2
l (z[l] − al)

)d
w2ν−2d.

Lemma 1.1.2. Let {εl} be chosen in such a way that εl
»
|z[l] − al| < 1/2l on

Bn−1(0, l) ⊂ Cn−1
z for every l ∈ N. Then the following assertions hold true:

(1) For every R > 0 and ν, µ ∈ N, ν ≥ R, the Hausdorff distance between
Eν ∩ B̄n(0, R) and Eν+µ ∩ B̄n(0, R) is less than 1/2ν . In particular the
sequence {Eν ∩ B̄n(0, R)}∞ν=1 converges in the Hausdorff metric to a closed
set E(R) ⊂ B̄n(0, R).

(2) The union E := ⋃
R>0 E(R) of all E(R) is a nonempty closed unbounded

subset of Cn and a point (z, w) ∈ Cn lies in E if and only if there exists a
sequence of complex numbers wν converging to w such that (z, wν) ∈ Eν for
every ν ∈ N.

(3) For each z ∈ Cn−1, the set Ez := {w ∈ C : (z, w) ∈ E} has zero
2-dimensional Lebesgue measure.

Proof. Let ∆R := B̄n−1(0, R)× C. For every
(
z, w

(ν+µ)
j (z)

)
∈ Eν+µ ∩ ∆̄R there

exists
(
z, w

(ν)
k

)
∈ Eν ∩ ∆̄R such that for suitably chosen signs one has

w
(ν+µ)
j (z) = w

(ν)
k (z) +

ν+µ∑
l=ν+1

±εl
√
z[l] − al

(here, by some abuse of notation,
√
· denotes a single-valued branch of the multi-

valued function
√
·). By assumption, we have εl|

√
z[l] − al | = εl

»
|z[l] − al| < 1/2l

on B̄n−1(0, R) for each l > ν. Hence |w(ν+µ)
j (z)− w(ν)

k (z)| < 1/2ν and it follows
that the Hausdorff distance between Eν+µ∩ ∆̄R and Eν ∩ ∆̄R is less than 1/2ν . In
particular, {Eν ∩ B̄n(0, R)}∞ν=1 is a Cauchy sequence in the Hausdorff metric and
thus converges to a nonempty closed subset E(R) ⊂ Cn. Since E ∩ B̄n(0, R) = E(R)
for all R > 0, we conclude that E is closed. Obviously, it is also unbounded and
nonempty. The characterization of (z, w) ∈ E as a limit of points (z, wν) ∈ Eν
follows immediately from the facts that in each bounded neighbourhood of (z, w)
the set E is the limit of {Eν} in the Hausdorff metric and that Eν ∩

(
{z}×C

)
6= ∅

for all z ∈ Cn−1. Finally, by what we have already proven, we know that the
Hausdorff distance between Eν ∩ ∆̄R and E(R) is not greater than 1/2ν . Hence
if z ∈ Cn−1 is fixed, the set Ez is contained in ⋃ 2ν

j=1 ∆̄1(w(ν)
j (z), 1/2ν) for every
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1 Construction of Wermer type sets in codimension 1

ν ∈ N big enough (here ∆̄1(a, r) ⊂ C denotes the closed disc centered at the point
a of radius r). But the volume of the later set is not greater than π/2ν , thus Ez
has zero 2-dimensional Lebesgue measure. �

From now on we always assume that {εl} is decreasing to zero so fast that

εl
»
|z[l] − al| < 1/2l on Bn−1(0, l) for every l ∈ N.

By the previous lemma, the analytic sets Eν then determine a limit set E . We
want to use this set in the constructions of Part II below. In order to do so, we
need to have three specific properties of this set. Namely, we want to ensure that
E has no analytic structure, we need to guarantee that E is complete pluripolar,
and we have to prove a Liouville theorem for plurisubharmonic functions on E . In
the remaining parts of this chapter we will show that we indeed can assure E to
have these properties, provided that {εl} is converging to zero fast enough.

1.2 Some geometric properties

Recall that a map f : (X1, d1)→ (X2, d2) between metric spaces is called (M,α)-
Hölder continuous if d2(f(x), f(y)) ≤ Md1(x, y)α for every x, y ∈ X1. Here
M,α > 0 are positive constants. Moreover, observe that the Wermer type set E
defines a map E from the metric space Cn−1 of all (n−1)-tupels of complex numbers
with the standard euclidean metric d‖·‖ to the metric space F(C) of all nonempty
compact subsets of C with the Hausdorff metric dH , namely E : (Cn−1, d‖·‖) →
(F(C), dH), E(z) := Ez := {w ∈ C : (z, w) ∈ E}.

Lemma 1.2.1. There exists a constant M > 0 such that the map E : Cn−1 →
F(C) is (M, 1/2)-Hölder continuous.

Proof. We have to show that there exists M > 0 such that

dH
(
Ez1 , Ez2

)
≤M

»
‖z1 − z2‖ for all z1, z2 ∈ Cn−1. (1.1)

To prove (1.1), consider the set-valued functions el(z) := εl
√
z[l] − al, l ∈ N,

el : Cn−1 → F(C). Observe that E = ∑∞
l=1 el, by definition of E , where the sum

of the functions el is taken pointwise and the sum of two elements K1,K2 ∈ F(C)
is defined as K1 +K2 := {w ∈ C : w = k1 + k2 for some k1 ∈ K1, k2 ∈ K2}. For
each l ∈ N, choose e∗l : Cn−1 → C such that el(z) = {e∗l (z),−e∗l (z)} for every
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1.2 Some geometric properties

z ∈ Cn−1. Then for every z1, z2 ∈ Cn−1 we have

εl
»
|z1 − z2| ≥ εl

»
|z1,[l] − z2,[l]| =

»∣∣ε2
l (z1,[l] − al)− ε2

l (z2,[l] − al)
∣∣

=
»∣∣(± e∗l (z1)− e∗l (z2)

)(
± e∗l (z1) + e∗l (z2)

)∣∣
≥ sup
ζ1∈el(z1)

inf
ζ2∈el(z2)

|ζ1 − ζ2|

and similarly

εl
»
|z1 − z2| ≥ εl

»
|z1,[l] − z2,[l]| =

»∣∣ε2
l (z1,[l] − al)− ε2

l (z2,[l] − al)
∣∣

=
»∣∣(e∗l (z1)± e∗l (z2)

)(
− e∗l (z1)± e∗l (z2)

)∣∣
≥ sup
ζ2∈el(z2)

inf
ζ1∈el(z1)

|ζ1 − ζ2|.

This shows that dH
(
el(z1), el(z2)

)
≤ εl

√
|z1 − z2|, i.e., el is (εl, 1/2)-Hölder con-

tinuous. Observe now that for any two functions f, g : Cn−1 → F(C) we have
dH(f(z1) + g(z1), f(z2) + g(z2)) ≤ dH(f(z1), f(z2)) + dH(g(z1), g(z2)), hence if f
is (M1, 1/2)-Hölder continuous and g is (M2, 1/2)-Hölder continuous, then f + g
is (M1 + M2, 1/2)-Hölder continuous. Applying this to the sequence {el}, we
conclude that

dH

( ν∑
l=1

el(z1),
ν∑
l=1

el(z2)
)
≤

ν∑
l=1

εl
»
|z1 − z2|

for every ν ∈ N, and for ν →∞ this yields (1.1) with M := ∑∞l=1 εl. �

Lemma 1.2.2. The map E : Cn−1 → F(C) is an analytic multifunction.

Proof. Assume, to get a contradiction, that E is not pseudoconcave. Then there
exists a Hartogs figure H = {(ζ, η) ∈ ∆1 ×∆n−1 : |ζ|∞ > r1 or ‖η‖∞ < r2} and
an injective holomorphic mapping Φ: Ĥ → Cn such that Φ(H) ⊂ Cn \ E but
Φ(Ĥ) ∩ E 6= ∅; here ‖z‖∞ = max1≤j≤n|zj | and Ĥ := ∆n := {z ∈ Cn : ‖z‖∞ < 1}.
After possibly shrinking H, one can easily see that for ν ∈ N large enough the pure
(n− 1)-dimensional varieties Eν will also satisfy the conditions Φ(H̄) ⊂ Cn \ Eν
and Φ(Ĥ) ∩ Eν 6= ∅. Then V := Φ(Ĥ) is a relatively compact subset of Cn
such that the (n − 2)-plurisubharmonic function ϕ := − log‖η‖ ◦ Φ−1 satisfies
maxEν∩V ϕ > maxEν∩bV ϕ. This contradicts the local maximum property of
(n− 2)-plurisubharmonic functions on (n− 1)-dimensional analytic varieties, see
Corollary 5.3 in [Sl86]. �

Remark. The statement of Lemma 1.2.2 will also follow from formula (1.11) of
Lemma 1.4.2 below.
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1 Construction of Wermer type sets in codimension 1

Lemma 1.2.3. The set E is connected.

Proof. Recall that {εl} is chosen in such a way that εl
»
|z[l] − al| < 1/2l on

Bn−1(0, l) for every l ∈ N. Assume, to get a contradiction, that there exist two
open sets U1, U2 ⊂ Cn such that E ∩ U1 6= ∅, E ∩ U2 6= ∅, E ⊂ U1 ∪ U2 and
U1∩U2 = ∅. Then we conclude from continuity of E , see Lemma 1.2.1 above, that
πz(E ∩ U1) and πz(E ∩ U2) are open in Cn−1, where πz : Cn → Cn−1

z denotes the
canonical projection. Since πz(E ∩U1)∪πz(E ∩U2) = πz(E) = Cn−1, it follows that
D := πz(E ∩ U1) ∩ πz(E ∩ U2) is open and nonempty. Thus we can choose z0 ∈ D
such that z0,p /∈ {al}∞l=1 for every p ∈ Nn−1 and arg(al − z0,[l]) 6= arg(al′ − z0,[l′])
for every l, l′ ∈ N, [l] = [l′], l 6= l′. Set Uj(z0) := {w ∈ C : (z0, w) ∈ Uj}, j = 1, 2,
and choose δ > 0 so small that dist(Ez0 , b(U1(z0) ∪ U2(z0))) > δ. Fix ν0 ∈ N such
that ∑∞l=ν0+1 εl

»
|z0,[l] − al| < δ/2. Then Eν,z0 ∩U1(z0) 6= ∅, Eν,z0 ∩U2(z0) 6= ∅

and Eν,z0 ⊂ U1(z0) ∪ U2(z0), where Eν,z0 := {w ∈ C : (z0, w) ∈ Eν}. For every
l ∈ N, let σl := {z ∈ Cn−1 : arg(z[l] − z0,[l]) = arg(al − z0,[l]), |z[l] − z0,[l]| >
|al − z0,[l]|}, and let hl : Cn−1 \ σl → C be a continuous branch of εl

√
z[l] − al.

Fix p1 = (z0, w1) ∈ Eν0 ∩ U1 and p2 = (z0, w2) ∈ Eν0 ∩ U2. Then there exist
functions τ1, τ2 : Nν0 → {0, 1} such that wj = ∑ν0

l=1(−1)τj(l)hl(z0), j = 1, 2. Set
p̂j := (z0, wj+∑∞l=ν0+1 hl(z0)) and observe that, by the choice of δ and ν0, one has
p̂j ∈ E ∩ Uj , j = 1, 2. Now define a continuous curve γz : [0, ν0]→ Cn−1

z \
⋃∞
l=1 σl

as

γz(t) :=



(
z0,1, . . . , z0,[ν]−1, z0,[ν] + 2(t− ν + 1)(aν − z0,[ν]),

z0,[ν]+1, . . . , zn−1
)
, t ∈ [ν − 1, ν − 1/2](

z0,1, . . . , z0,[ν]−1, aν + 2(t− ν + 1/2)(z0,[ν] − aν),
z0,[ν]+1, . . . , zn−1

)
, t ∈ [ν − 1/2, ν]

(ν ∈ Nν0).

and let γ : [0, ν0]→ E be given as

γ(t) :=



(
γz(t),

∑ν−1
l=1 (−1)τ2(l)hl(γz(t)) +∑ν0

l=ν(−1)τ1(l)hl(γz(t))
+∑∞l=ν0+1 hl(γz(t))

)
, t ∈ [ν − 1, ν − 1/2](

γz(t),
∑ν
l=1 (−1)τ2(l)hl(γz(t)) +∑ν0

l=ν+1(−1)τ1(l)hl(γz(t))
+∑∞l=ν0+1 hl(γz(t))

)
, t ∈ [ν − 1/2, ν]

(ν ∈ Nν0).

Then it is easy to see that γ is a continuous curve in E such that γ(0) = p̂1 ∈ U1
and γ(1) = p̂2 ∈ U2. This is a contradiction. �

Remark. The connectedness of the set E will also follow from Theorem 1.5.1
below.
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1.3 Choice of the sequence {εl} - Part I. Absence of
analytic structure

In this section we want to show that, for {εl} decreasing fast enough, the set E
contains no analytic varieties of positive dimension. In order to do so, it obviously
suffices to show that E contains no analytic disc, i.e., there exists no (nonconstant)
holomorphic mapping f : D → Cn from the unit disc D ⊂ C to Cn with image
completely contained in E . For analytic discs with constant z-coordinates this
is immediately clear, since we know that Ez has zero two-dimensional Lebesgue
measure for every z ∈ Cn−1. The hard part is to show that there exists no
analytic disc f(D) ⊂ E such that the projection fz := πz ◦ f onto Cn−1

z is not
constant. The general idea is the following: Let f : D → Cn be an analytic
disc lying in the analytic hypersurface w = √zp − a, a ∈ C, and such that
fz : D → Cn−1

z is a biholomorphic embedding of D into Cn−1
z . Then fz(D) is

either completely contained in the slice Spa := {z ∈ Cn−1 : zp = a} or does not
intersect Spa at all. This is due to the fact that if Spa ∩ fz(U) = {z0}, U ⊂ D
open and small enough, then for the canonical parametrization g : fz(U)→ Cw
of f(U) and for ζ+, ζ− ∈ Cn−1 such that z0 + ζ+, z0 − ζ− ∈ fz(U), the slope
|g(z0 + ζ+)− g(z0 − ζ−)|/‖ζ+ + ζ−‖ becomes unbounded as ζ+, ζ− → 0, which
contradicts the holomorphicity of g. Since each set Eν is defined by a sum of
terms of the form √

z[l] − al, and since, moreover, the subsequence {apl }∞l=1 of
{al} is dense in C, this will enable us to show that for {εl} decreasing fast enough,
every analytic disc f(D) ⊂ E must have constant zp-coordinate. Due to the fact
that p ∈ Nn−1 here is arbitrary, our assertion will be proved.

There arise some technical difficulties, the most important of which is the following:
while for every above-described analytic disc in the analytic hypersurface w =√
zp − a the projection fz(D) cannot intersect Spa (at least if its zp-coordinate is

not already constant), this property might get spoiled when adding further terms√
z[l] − al, l ∈ N, and thus does not carry over necessarily to the limit set E . In

general this problem can be easily handled, except, however, at points z0 ∈ Spa
that are contained in S

[l]
al for more than one l ∈ N. In this situation there are

root branches originating from z0 in different directions p1, . . . , pT ∈ Nn−1, and
in general their slopes near the point z0 may cancel out each other. To deal
with this problem, we will show that we can at least guarantee the following:
for every z0 ∈ S

[l]
al ∩ Bn−1(0, l), l ∈ N, there does not exist any analytic disc

f(D) ⊂ E such that fz(D) ∩ S[l]
al = {z0} and such that fz(D) is contained in the

cone z0 +⋂Tt=1 Γpt(α); here

Γp(α) := {ζ ∈ Cn−1 : ζp 6= 0 and |ζq|
|ζp|

< α, for all q ∈ Nn−1, q 6= p},
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1 Construction of Wermer type sets in codimension 1

where α is a positive number that will depend on the choice of {εl} (note that
if ζ ∈ Γp(α), then also λζ ∈ Γp(α) for every λ ∈ C∗). In fact, the faster {εl}
decreases, the larger we will be able to choose α. It turns out that this weaker
assertion is sufficient for our purpose, since locally for every analytic disc f(D) ⊂ E
the projection fz(D) lies in ⋂Tt=1 Γp(α) for suitable p1, . . . , pT ∈ Nn−1 and α > 0
large enough.

The above complications, as well as most of the other technical difficulties for
choosing the sequence {εl}, do not occur in the case n = 2. In fact, in this case the
proof becomes relatively simple, and most of the work of this section is not needed.
Hence in what follows we will often implicitly assume that n ≥ 3, though this
will not have any influence on the course and correctness of our arguments (for
example, the set Γp(α) = C∗ is still well-defined for n = 2, though it is obviously
not needed in this case).

Remark. Many of the statements in this section involve the function
√
· : C→ C,

which is multivalued. In general, whenever such a statement is made, we will implic-
itly mean it to hold true for every choice of a single-valued branch (

√
· )b : C→ C

of
√
· (no assumptions on continuity). However, there will be cases when we will

have to deal with particular single-valued branches of
√
· . By some abuse of

notation, they will be denoted by the same symbol
√
· . We will always point out

when
√
· denotes a particular single-valued branch whenever such a situation first

occurs.
Lemma 1.3.1. There exists a constant 0 < C < 1 such that for all z, z′, ζ ∈ C,»

|ζ| ≤
∣∣√z + ζ −

√
z′ − ζ

∣∣ ≤ 2
»
|ζ| if |z|, |z′| ≤ C|ζ|.

Proof. This is immediately clear, since∣∣√z + ζ −
√
z′ − ζ

∣∣√
|ζ|

=
∣∣∣»(z/ζ) + 1−

»
(z′/ζ)− 1

∣∣∣ z/ζ, z′/ζ→ 0−−−−−−−−→
√

2 . �

Lemma 1.3.2. For every p ∈ Nn−1 and α > 0, one has

lim
ζ→0

∣∣√ζp −√−ζp∣∣
2‖ζ‖ = +∞ on Γp(α).

Proof. Indeed, with cα := max{1, α} we have

|
√
ζp −

√
−ζp |

2‖ζ‖ = 1√
2

√
|ζp|
‖ζ‖

= 1√
2

( n−1∑
q=1

|ζq|2

|ζp|

)−1/2
≥ 1√

2

( n−1∑
q=1

cα|ζq|
)−1/2

on Γp(α), and the last term tends to +∞ as ζ → 0. �
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1.3 Choice of the sequence {εl} - Part I. Absence of analytic structure

Lemma 1.3.3. Let P := {pt}Tt=1 ⊂ {1, . . . , n − 1}, pt 6= pt′ if t 6= t′, and
{et}Tt=1 ⊂ (0,∞), T ≥ 2. Define a constant α > 0 by α := min

{ 1
9 (em/em+1)2 :

1 ≤ m ≤ T − 1
}

. Then for every ν > 0, there exists a positive number δ > 0 such
that ∣∣∑T

m=1 em
(»

zpm + (ζpm + ζ ′pm)−
»
zpm − (ζpm + ζ ′′pm)

)∣∣
2‖ζ‖ > ν

for every ζ ∈
(⋂T

m=1 Γpm(α)
)
∩ Bn−1(0, δ) and ζ ′, ζ ′′, z ∈ ∆n−1(0, (C/2)|ζ|P

)
.

Here C is the constant from Lemma 1.3.1, |ζ|P ∈ [0,∞]n−1 is defined by (|ζ|P )p =
|ζp| if p ∈ P , (|ζ|P )p =∞ if p ∈ {P := Nn−1 \ P , and ∆n−1(0, (r1, . . . , rn−1)

)
:=

{z ∈ Cn−1 : |zp| < rp, if rp > 0, or zp = 0, if rp = 0, p ∈ Nn−1} for r ∈
[0,∞]n−1.

Remark. The statement of this lemma is interesting and will be used only in the
case when α > 1 (otherwise the intersection ⋂m Γpm(α) is empty).

Proof. For every m ∈ NT−1 we define αm := 1
9 (em/em+1)2, and for every m ∈ NT

we let Dm(ζ) := {z ∈ Cn−1 : |zpm | ≤ C|ζpm |}. We will show by induction that for
every t = 1, . . . , T , the inequality

∣∣∣ t∑
m=1

em
(»

z′pm + ζpm −
»
z′′pm − ζpm

)∣∣∣ ≥ et√|ζpt | (1.2)

holds true for ζ ∈ ⋂t−1
m=1 Γpm(αm) and z′, z′′ ∈

⋂t
m=1Dm(ζ). Indeed, the case

t = 1 is already proven by Lemma 1.3.1. For the step t→ t+ 1, let Ht+1 denote
the left term in (1.2) where the sum is taken up to t + 1. Using the induction
hypothesis and applying Lemma 1.3.1, we see that

Ht+1 ≥
∣∣∣ t∑
m=1

em
(√

z′pm + ζpm −
√
z′′pm − ζpm

)∣∣∣
− et+1

∣∣∣»z′pt+1
+ ζpt+1 −

»
z′′pt+1

− ζpt+1

∣∣∣
≥ et

√
|ζpt | − 2et+1

√
|ζpt+1 |

for ζ ∈ ⋂t−1
m=1 Γpm(αm) and z′, z′′ ∈

⋂t+1
m=1Dm(ζ). Observe that there is nothing

to show in the case ζpt+1 = 0. Hence we can assume ζpt+1 6= 0 and write

et
√
|ζpt | − 2et+1

√
|ζpt+1 | = 2et+1

√
|ζpt+1 |

( et
2et+1

√
|ζpt |√
|ζpt+1 |

− 1
)
.

One immediately checks that the term between the brackets is not less than 1/2
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1 Construction of Wermer type sets in codimension 1

precisely if |ζpt+1 |/|ζpt | ≤ αt; hence

et
√
|ζpt | − 2et+1

√
|ζpt+1 | ≥ et+1

√
|ζpt+1 | for ζ ∈ Γpt(αt).

This completes the induction and proves (1.2). But from Lemma 1.3.2 we know
that

lim
ζ→0

|
√
ζpT −

√
−ζpT |

2‖ζ‖ = +∞ on ΓpT (αT ),

where αT := α. Combining this with the estimate (1.2) in the case t = T , we
conclude that for every ν > 0 there exists δ > 0 such that∣∣∑T

m=1 em
(√

z′pm + ζpm −
√
z′′pm − ζpm

)∣∣
2‖ζ‖ > ν

for ζ ∈ ⋂Tm=1 Γpm(αm) ∩Bn−1(0, δ) and z′, z′′ ∈
⋂T
m=1Dm(ζ) = ∆n−1(0, C|ζ|P ).

Since α ≤ αm for all m ∈ NT and Γp(α) ⊂ Γp(α′) for α ≤ α′, this concludes
the proof. Indeed, for ζ ′, ζ ′′, z ∈ ∆n−1(0, (C/2)|ζ|P

)
, the points z′ := z + ζ ′ and

z′′ := z − ζ ′′ always satisfy z′, z′′ ∈ ∆n−1(0, C|ζ|P ). �

We want to estimate the slope between two points of the set Eν when their projec-
tion to Cn−1

z lies near the zero set of one of the functions √z[l] − al, l = 1, . . . , ν.
For this we need some notations: For every ν ∈ N and p ∈ Nn−1 we define

Sν := {ζ ∈ Cn−1 : ζ[ν] = aν}, Sp := {ζ ∈ Cn−1 : ζp = 0},

and
Lpν := {l ∈ N : 1 ≤ l ≤ ν, [l] = p}, Apν := {al ∈ C : l ∈ Lpν}.

Obviously, ⋃n−1
p=1 L

p
ν = Nν . Moreover, if z ∈ Cn−1, we define

Lpν(z) := {l ∈ Lpν : zp = al}.

Note that Lpν(z) consists of at most one element. Further, for P ⊂ Nn−1 such that
[ν] ∈ P and z ∈ Sν we let

L P
ν (z) :=

⋃
p∈P

Lpν(z).

Observe that under the assumptions on P and z, we always have ν ∈ L P
ν (z).

As mentioned before, the case |L P
ν (z)| > 1 is of special interest and leads us to

consider the sets ⋂p Γp(α) for α > 1. Here α was claimed to depend on {εl},
and we now clarify this dependence by the following definition: for every ν ∈ N,
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1.3 Choice of the sequence {εl} - Part I. Absence of analytic structure

P ⊂ Nn−1 such that [ν] ∈ P and every z ∈ Sν , let αPν (z) be the positive number

αPν (z) :=
®

ν + 1 if L P
ν (z) = {ν}

min
{ 1

9 (εl/εl′)2 : l, l′ ∈ L P
ν (z), l′ > l

}
if L P

ν (z) ) {ν}.

Observe that, since the sequence {εl} is still in our hands, we can always assume
that αPν (z) > 1. Finally, for each P ⊂ Nn−1 and α > 0 we let

γ(P, α) :=
( ⋂
p∈P

Γp(α)
)
∩
( ⋂
p∈{P

Sp
)
.

Lemma 1.3.4. Suppose ε1, . . . , εν have already been chosen. Let δ > 0. Then
for every z0 ∈ Sν and P ⊂ Nn−1 such that [ν] ∈ P , there exist rP (z0) > 0 and
δP (z0) ∈ (0, δ) such that for every j, k ∈ N2ν the inequality∣∣w(ν)

j

(
z + (ζ + ζ ′)

)
− w(ν)

k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖ > ν (1.3)

holds for every z ∈ Bn−1(z0, r
P (z0)

)
, ζ ∈ γ

(
P, αPν (z0)

)
∩ bBn−1(0, δP (z0)

)
and

ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|
)
; here |ζ| = (|ζ1|, . . . , |ζn−1|).

Proof. Fix z0 ∈ Sν and P ⊂ Nn−1 such that [ν] ∈ P . For each p ∈ Nn−1, let
Up ⊂ C be an open convex neighbourhood of z0,p such that

Up ∩Apν =
ß

∅ if Lpν(z0) = ∅
{z0,p} if Lpν(z0) 6= ∅

and let U := U1 × · · · × Un−1. Choose r > 0 so small that Bn−1(z0, 2r) ⊂ U . For
each l ∈ Nν , consider a single-valued branch of the multi-valued function√z[l] − al
which will also be denoted here by √z[l] − al. Since for every l ∈ Nν \

⋃n−1
p=1 L

p
ν(z0)

we have al /∈ U[l], we can assume that √z[l] − al is holomorphic on U for these
l. After possibly changing the numeration of the roots of Pν(z, · ) for z ∈ U ,
we may further assume for every h ∈ N2ν that w(ν)

h (z) = ∑ν
l=1±εl

√
z[l] − al on

Bn−1(z0, 2r) for suitably chosen signs depending only on l and h. Now define
w̃h : Bn−1(z0, 2r)→ C as

w̃h(z) :=
∑
p∈P

∑
l∈Lpν\Lpν(z0)

±εl
√
z[l] − al +

∑
p∈{P

∑
l∈Lpν

±εl
√
z[l] − al . (1.4)

Since Nν = ⋃n−1
p=1 L

p
ν , we have w

(ν)
h (z) = w̃h(z) + ∑

l∈LP
ν (z0)±εl

√
z[l] − al on

Bn−1(z0, 2r). Let N2
2ν := N2ν × N2ν and N2

2ν (z0) := {(j, k) ∈ N2
2ν : w̃j(z0) =

w̃k(z0)}.
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1 Construction of Wermer type sets in codimension 1

Step 1: We show that there exist r′ > 0 and δ′ ∈ (0, δ) such that (1.3) holds
for every ζ ∈ Bn−1(0, δ′), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
, z ∈ Bn−1(z0, r

′) and
(j, k) ∈ N2

2ν \ N2
2ν (z0).

Proof. For l ∈ Lpν(z0), we have z0,[l] = al and
√
· is continuous at the origin; hence

we conclude from (1.4) and the holomorphicity of √z[l] − al for l ∈ Lpν \ Lpν(z0)
that w̃h is continuous at z0 for every h ∈ N2ν . Thus there exist M > 0 and r1 > 0
such that |w̃j(z + (ζ + ζ ′)) − w̃k(z − (ζ + ζ ′′))| > M for every ζ ∈ Bn−1(0, r1),
ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
, z ∈ Bn−1(z0, r1) and (j, k) ∈ N2

2ν \N2
2ν (z0). Moreover,

since again z0,[l] = al for l ∈ L P
ν (z0) and

√
· is continuous at the origin, there exists

r2 > 0 such that
»
|(z[l] ± (ζ[l] + ζ̃[l]))− al| < M/

(
4(n− 1)εl

)
, where ζ̃ ∈ {ζ ′, ζ ′′},

for every ζ ∈ Bn−1(0, r2), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|
)
, z ∈ Bn−1(z0, r2) and

l ∈ L P
ν (z0). Let r′ := min{r, r1, r2} and δ′ := min{δ, r, r1, r2,M/4ν}. Then the

following estimate holds true for every ζ ∈ Bn−1(0, δ′), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|
)
,

z ∈ Bn−1(z0, r
′) and (j, k) ∈ N2

2ν \ N2
2ν (z0):∣∣w(ν)

j

(
z + (ζ + ζ ′)

)
− w(ν)

k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖

≥
∣∣w̃j(z + (ζ + ζ ′)

)
− w̃k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖

−
∑
l∈LP

ν (z0) εl
(»∣∣(z[l] + (ζ[l] + ζ ′[l])

)
− al

∣∣+
»∣∣(z[l] − (ζ[l] + ζ ′′[l])

)
− al

∣∣ )
2‖ζ‖

>
M −

∑
l∈LP

ν (z0) 2εlM/
(
4(n− 1)εl

)
2‖ζ‖ ≥ M −M/2

2‖ζ‖ > ν.

Step 2: We show that there exist r′′ ∈ (0, r′) and δ′′ ∈ (0, δ′) such that (1.3)
holds for every ζ ∈ γ

(
P, αPν (z0)

)
∩ Kn−1(δ′′/2, δ′′), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
,

z ∈ ∆n−1(z0, (C/2)|ζ|P
)
∩Bn−1(z0, r

′′) and (j, k) ∈ N2
2ν (z0), where for R1, R2 ≥ 0

we put Kn−1(R1, R2) := {z ∈ Cn−1 : R1 < ‖z‖ < R2}.

Proof. Observe that the first term in (1.4) is holomorphic in Bn−1(z0, 2r) and
the second term is constant on the set z0 + ⋂

p∈{P S
p. Therefore we can find

M > 0 and r̃ > 0 such that∣∣w̃j(z0 + (ζ + ζ ′)
)
− w̃k

(
z0 − (ζ + ζ ′′)

)∣∣
2‖ζ‖ < M

for all ζ ∈
(⋂

p∈{P S
p
)
∩ Bn−1(0, r̃), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
and (j, k) ∈

N2
2ν (z0). Moreover, since, by definition, z0,[l] = al for every l ∈ L P

ν (z0), we
have

»(
z[l] ± (ζ[l] + ζ̃[l])

)
− al =

»
(z[l] − z0,[l])± (ζ[l] + ζ̃[l]), where ζ̃ ∈ {ζ ′, ζ ′′}.
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Hence, using Lemma 1.3.1 and 1.3.2 if L P
ν (z0) = {ν} and Lemma 1.3.3 if

L P
ν (z0) ) {ν}, there exists δ̃ > 0 such that∣∣∑
l∈LP

ν (z0) εl

(»(
z[l] + (ζ[l] + ζ ′[l])

)
− al −

»(
z[l] − (ζ[l] + ζ ′′[l])

)
− al

)∣∣
2‖ζ‖ > ν +M

for all ζ ∈
[⋂

p∈P Γp
(
αPν (z0)

)]
∩ Bn−1(0, δ̃), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|P

)
and

z ∈ ∆n−1(z0, (C/2)|ζ|P
)

(recall the definition of αPν (z0)). Now choose δ′′ such
that 0 < δ′′ < min{r̃, δ̃, δ′}. Observe that w̃h is continuous in z0 +

[(⋂
p∈{P S

p
)
∩

Bn−1(0, 2r)
]

for every h ∈ N2ν . Hence there exists some r′′ ∈ (0, r′) such that
the following estimate holds true for every ζ ∈

(⋂
p∈{P S

p
)
∩ Kn−1(δ′′/2, δ′′),

ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|
)
, z ∈ Bn−1(z0, r

′′) and (j, k) ∈ N2
2ν (z0):∣∣w̃j(z + (ζ + ζ ′)

)
− w̃k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖ < M.

Thus for every ζ ∈ γ
(
P, αPν (z0)

)
∩ Kn−1(δ′′/2, δ′′), ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
,

z ∈ ∆n−1(z0, (C/2)|ζ|P
)
∩Bn−1(z0, r

′′) and (j, k) ∈ N2
2ν (z0) we get

|w(ν)
j

(
z+(ζ + ζ ′)

)
− w(ν)

k

(
z−(ζ + ζ ′′)

)
|

2‖ζ‖

≥

∣∣∣∑l∈LP
ν (z0) εl

(»(
z[l] + (ζ[l] + ζ ′[l])

)
− al −

»(
z[l] − (ζ[l] + ζ ′′[l])

)
− al

)∣∣∣
2‖ζ‖ −

−
∣∣w̃j(z + (ζ + ζ ′)

)
− w̃k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖ > ν.

Step 3: We show that there exist rP (z0) > 0 and δP (z0) ∈ (0, δ) such that (1.3)
holds for every ζ ∈ γ

(
P, αPν (z0)

)
∩ bBn−1(0, δP (z0)

)
, ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
,

z ∈ Bn−1(z0, r
P (z0)

)
and j, k ∈ N2ν .

Proof. We know that (1.3) holds for every ζ ∈ γ
(
P, αPν (z0)

)
∩Kn−1(δ′′/2, δ′′),

ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|
)
, z ∈ ∆n−1(z0, (C/2)|ζ|P

)
∩Bn−1(z0, r

′′) and j, k ∈ N2ν .
It only remains to make proper choices for the constants rP (z0) and δP (z0). First,
choose any δP (z0) such that δ′′ > δP (z0) > δ′′/2. Then there exists K > 0 such
that

|ζp| > K for all ζ ∈ γ
(
P, αPν (z0)

)
∩ bBn−1(0, δP (z0)

)
, p ∈ P.

Indeed, let p ∈ P . Then for ζ ∈ γ
(
P, αPν (z0)

)
we have in particular ζ ∈ Γp

(
αPν (z0)

)
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1 Construction of Wermer type sets in codimension 1

and hence |ζq|/|ζp| < αPν (z0) for every q ∈ Nn−1 (assuming that αPν (z0) > 1,
which is the only interesting case). Thus ‖ζ‖ < αPν (z0)

√
n− 1 |ζp|. Since also ζ ∈

bBn−1(0, δP (z0)
)
, we conclude that |ζp| > δP (z0)/

(
αPν (z0)

√
n− 1

)
=: K. Now

choose ρ > 0 such that |zp−z0,p| < (CK)/2 for all z ∈ Bn−1(z0, ρ) and p ∈ P , i.e.,
Bn−1(z0, ρ) ⊂ ∆n−1(z0, (C/2)|ζ|P

)
for all ζ ∈ γ

(
P, αPν (z0)

)
∩ bBn−1(0, δP (z0)

)
.

Then rP (z0) := min{r′′, ρ} is a desired constant. �

Fix ν ∈ N. By the previous lemma, we have assigned positive numbers rP (z0),
δP (z0) to every z0 ∈ Sν . As we shall see in the proof of Lemma 1.3.5, the choice
of εν+1 will depend on the numbers δP (z0), z0 ∈ Sν ; in fact, we will need a
positive lower bound for the set {δP (z0) : z0 ∈ Sν}. However, such a bound does
not always exist. Hence from now on we restrict our attention to the compact
subset Sν ∩ B̄n−1(0, ν) of Sν . This set can be covered by finitely many balls
Bn−1(z0, r

P (z0)
)
, z0 ∈ Sν , and thus leads to a finite set {δP (z1), . . . , δP (zm)} ⊂

(0,∞) (which of course has a positive minimum). On the way, we have to choose
the numbers rP (z0) in the covering

{
Bn−1(z0, r

P (z0)
)}
z0∈Sν

small enough in
order to limit the influence of points z0 ∈ Sν with small value αPν (z0). For this
purpose, we need some further notations: Fix a decreasing sequence {ρν} of
positive numbers converging to zero, such that

max
1≤p≤n−1

vol
( ⋃
l∈Lpν

∆1(al, ρν)
)
→ 0 for ν →∞.

Then for every ν ∈ N, p ∈ Nn−1 and z ∈ Cn−1 we let

L̃pν(z) := {l ∈ Lpν : |zp − al| ≤ ρν}.

Moreover, if z ∈ Sν and P ⊂ Nn−1 such that [ν] ∈ P we let

L̃ P
ν (z) :=

⋃
p∈P

L̃pν(z).

Note that under the assumptions on P and z we always have ν ∈ L̃ P
ν (z). Hence

α̃Pν (z) :=
®

ν + 1 if L̃ P
ν (z) = {ν}

min
{
ν + 1,min{ 1

9 (εl/εl′)2 : l, l′ ∈ L̃ P
ν (z), l′ > l}

}
if L̃ P

ν (z) ) {ν}

is a well-defined positive number.

Corollary 1.3.1. Suppose ε1, . . . , εν have already been chosen. Let δ > 0. Then
there exists a finite subset Dν := {δ1

ν , . . . , δ
dν
ν } ⊂ (0, δ) such that for every z ∈

Sν∩Bn−1(0, ν) and P ⊂ Nn−1 such that [ν] ∈ P , there exists some σ ∈ {1, . . . , dν}
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1.3 Choice of the sequence {εl} - Part I. Absence of analytic structure

such that for every j, k ∈ N2ν the inequality∣∣w(ν)
j

(
z + (ζ + ζ ′)

)
− w(ν)

k

(
z − (ζ + ζ ′′)

)∣∣
2‖ζ‖ > ν (1.5)

holds true for all ζ ∈ γ
(
P, α̃Pν (z)

)
∩ bBn−1(0, δσν ) and ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
.

Proof. By the previous lemma, for every z0 ∈ Sν and P ⊂ Nn−1, [ν] ∈ P , there
exist positive numbers rP (z0) ∈ (0, ρν) and δP (z0) ∈ (0, δ) such that (1.5) holds
for every j, k ∈ N2ν , z ∈ Bn−1(z0, r

P (z0)
)
, ζ ∈ γ

(
P, αPν (z0)

)
∩ bBn−1(0, δP (z0)

)
and ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
. Let

r(z0) := min
{
rP (z0) : P ⊂ Nn−1 such that [ν] ∈ P

}
.

By compactness of Sν∩B̄n−1(0, ν), there exist finitely many points z1, . . . , zM ∈ Sν
such that Sν ∩ B̄n−1(0, ν) ⊂ ⋃Mm=1B

n−1(zm, r(zm)
)
. Let

Dν :=
{
δP (zm) : P ⊂ Nn−1 such that [ν] ∈ P, m = 1, . . . ,M

}
.

Then for every z ∈ Sν ∩ Bn−1(0, ν) and P ⊂ Nn−1, [ν] ∈ P , there exist σ ∈
{1, . . . , dν} and m ∈ NM such that |z − zm| ≤ ρν and such that (1.5) holds for
every j, k ∈ N2ν , ζ ∈ γ

(
P, αPν (zm)

)
∩ bBn−1(0, δσν ) and ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
.

It remains to observe that we herein can replace αPν (zm) by α̃Pν (z). Indeed, since
|z − zm| ≤ ρν , we have Lpν(zm) ⊂ L̃pν(z) for all p ∈ Nn−1 and thus L P

ν (zm) ⊂
L̃ P
ν (z). Recalling the definitions of αPν (zm) and α̃Pν (z), we conclude that α̃Pν (z) ≤

αPν (zm). In particular, we get γ
(
P, α̃Pν (z)

)
⊂ γ

(
P, αPν (zm)

)
. �

We are now able to specify the choice of the sequence {εl}:

Lemma 1.3.5. If {εl} is decreasing fast enough, then for every fixed ν ∈ N and
for every z ∈ Sν ∩ Bn−1(0, ν) and P ⊂ Nn−1 such that [ν] ∈ P , there exists
δ ∈ (0, 1/ν) such that

w′ − w′′

‖ζ ′ + 2ζ + ζ ′′‖
≥ ν − 1

1 + (C/2) for all w′ ∈ Ez+(ζ+ζ′), w
′′ ∈ Ez−(ζ+ζ′′) (1.6)

and all choices of ζ ∈ γ
(
P, α̃Pν (z)

)
∩ bBn−1(0, δ) and ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
.

Moreover, 1
9 (εl/εl+1)2 > l and εl

»
|z[l] − al| < 1

2l on Bn−1(0, l).

Proof. We proceed by induction on l and simultaneously choose a sequence
(Dl) of finite subsets Dl = {δ1

l , . . . , δ
dl
l } ⊂ (0, 1/l) such that εl

»
|z[l] − al| <

1
2l min{δ′ ∈ Dν : 1 ≤ ν ≤ l − 1} for every z ∈ Bn−1(0, l + 1). First let ε1 := 1
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1 Construction of Wermer type sets in codimension 1

and let D1 ⊂ (0, 1) be the set provided by Corollary 1.3.1 in the case ν, δ = 1. If
ε1, . . . , εl and D1, . . . , Dl have already been chosen, we choose εl+1 > 0 so small
that 1

9 (εl/εl+1)2 > l and εl+1
»
|z[l+1] − al+1| < 1

2l+1 min{δ′ ∈ Dν : 1 ≤ ν ≤ l} for
z ∈ Bn−1(0, l + 2). Observe that every ε′l+1 ∈ (0, εl+1) would also be a proper
choice for εl+1. We then take for Dl+1 the set provided by Corollary 1.3.1 in the
case ν = l + 1 and δ = 1/(l + 1).

Fix ν ∈ N, z ∈ Sν ∩Bn−1(0, ν) and P ⊂ Nn−1 such that [ν] ∈ P . Then by choice
of Dν , there exists δ ∈ Dν such that estimate (1.5) holds true for all j, k ∈ N2ν

and all considered ζ, ζ ′, ζ ′′. By choice of the sequence (εl), if for abbrevation we
write z+ := z+ (ζ + ζ ′) and z− := z− (ζ + ζ ′′), we thus get the following estimate
for all µ > ν and j′, k′ ∈ N2µ (for suitable j, k ∈ N2ν depending on j′, k′):∣∣w(µ)

j′

(
z + (ζ + ζ ′)

)
− w(µ)

k′

(
z − (ζ + ζ ′′)

)∣∣
‖ζ ′ + 2ζ + ζ ′′‖

≥
∣∣w(µ)
j′ (z+)− w(µ)

k′ (z−)
∣∣

(2 + C)‖ζ‖

≥
∣∣w(ν)
j (z+)− w(ν)

k (z−)
∣∣

(2 + C)‖ζ‖ − 1
(2 + C)‖ζ‖

µ∑
l=ν+1

εl

(»∣∣z+
[l] − al

∣∣+
»∣∣z−[l] − al∣∣ )

≥ ν

1 + (C/2) −
1

(2 + C) δ

µ∑
l=ν+1

δ

2l−1 ≥
ν − 1

1 + (C/2) .

Since by Lemma 1.1.2 each (z, w) ∈ E is a limit of points
(
z, w

(µ)
jµ

)
, this proves

(1.6). �

Lemma 1.3.6. If {εl} is decreasing fast enough, then E contains no analytic
variety of positive dimension.

Proof. Let {εl} be decreasing so fast that the assertions of Lemma 1.3.5 hold
true. To get a contradiction, assume that E contains an analytic variety of positive
dimension. Then in particular E contains a nonconstant analytic disc, i.e., there
exists a nonconstant holomorphic mapping f = (f1, f2, . . . , fn) : Dr(0)→ Cn such
that f

(
Dr(0)

)
⊂ E , where Dr(ξ0) = {ξ ∈ C : |ξ − ξ0| < r}. Let P ⊂ Nn−1 be the

set of all coordinate directions in Cn−1 such that fp is not constant. Since by
the choice of {εl} and Lemma 1.1.2 the set Ez has zero 2-dimensional Lebesgue
measure for every z ∈ Cn−1, we see that P 6= ∅. Without loss of generality, we
can assume that P = {1, . . . , T} for some T ≤ n − 1. After possibly passing to
a subset Dr′(ξ0) ⊂ Dr(0), we can assume by the implicit function theorem that
there exist an open subset U ⊂ C and some

φ : U → Cn holomorphic, φ(U) = f
(
Dr′(ξ0)

)
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such that φ(ξ)=
(
ξ, φ2(ξ), . . . , φT (ξ), qT+1, . . . , qn−1, φn(ξ)

)
=:
(
φ∗(ξ), φn(ξ)

)
with

suitable constants qT+1, . . . , qn−1 ∈ C. After a possible shrinking of U , we can
assume that there exist positive numbers σ, θ > 0 such that on U

θ < |φ′p| for all p ∈ P, |φ′p| < σ for all p ∈ Nn. (1.7)

Indeed, θ exists since the zero set of each |φ′p| is discret, and we use Cauchy’s
estimates to find σ. Thus, after possibly shrinking U again, we can assume
that for z, z′ ∈ φ∗(U) and 1 ≤ s, t ≤ T we have θ < |z′t − zt|/|z′1 − z1| and
|z′s − zs|/|z′1 − z1| < σ, i.e., |z′s − zs|/|z′t − zt| < σ/θ. In particular, we see that
there exists α := σ/θ > 1 such that

Dφ∗(z1)(C) ⊂ γ(P, α) for all z1 ∈ U.

Moreover (after possibly further shrinking U), we can assume that for every p ∈ Nn∣∣φp(a+ ξ)− φp(a)− φ′p(a)ξ
∣∣

|ξ|
< (C/2) θ for all a ∈ U , ξ ∈ C

such that a+ ξ ∈ U . (1.8)

Since we can assume f
(
Dr(0)

)
to be bounded, and since 1

9 (εl/εl+1)2 > l, we can
choose ν0 ∈ N so large that φ∗(U) ⊂ Bn−1(0, ν0),

ν0 + 1 > α and 1
9 (εl/εl+1)2 > α for all l ≥ ν0. (1.9)

Further, since max1≤p≤n−1 vol
(⋃

l∈Lpν ∆1(al, ρν)
)
→ 0 for ν → ∞ and {ρν} is

decreasing, we can assume (after possibly enlarging ν0 and then shrinking of
U) that φp(U) ∩ ⋃l∈Lpν0

∆1(al, ρν) = ∅ for all p ∈ P and ν ≥ ν0. But then
L̃ P
ν (z) ∩ Nν0 = ∅ for all ν ≥ ν0, z ∈ Sν ∩ φ∗(U), [ν] ∈ P . By definition of α̃Pν (z)

and from (1.9), we therefore get

α̃Pν (z) > α for all ν ≥ ν0, z ∈ Sν ∩ φ∗(U), [ν] ∈ P.

After these preparations, we now choose a strictly increasing sequence {νk} of
natural numbers such that for each ν from this sequence we have

ν ≥ ν0, [ν] = 1, Bn−1(φ∗(aν), 1/ν
)
⊂ U × Cn−2.

Let ν be an arbitrary fixed member of this sequence. Since φ∗(U) ⊂ Bn−1(0, ν0),
we see that z := φ∗(aν) ∈ Sν ∩Bn−1(0, ν). Hence we can use Lemma 1.3.5 to find
a δ ∈ (0, 1/ν) such that

w′ − w′′

‖ζ ′ + 2ζ + ζ ′′‖
≥ ν − 1

1 + (C/2) for all w′ ∈ Ez+(ζ+ζ′), w
′′ ∈ Ez−(ζ+ζ′′)
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1 Construction of Wermer type sets in codimension 1

and all choices of

ζ ∈ γ
(
P, α̃Pν (z)

)
∩ bBn−1(0, δ) and ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
. (1.10)

By the choice of U and ν0, we have Dφ∗(aν)(ξ− aν) ∈ γ(P, α) for all ξ ∈ U \ {aν}
and α̃Pν (z) > α; hence Dφ∗(aν)(ξ − aν) ∈ γ

(
P, α̃Pν (z)

)
. Moreover, Bn−1(z, δ) ⊂

U × Cn−2. Thus

Σ :=
[
z + γ

(
P, α̃Pν (z)

)]
∩
[
z + {Dφ∗(aν)(ξ − aν) : ξ ∈ C \ {0} such that aν + ξ ∈ U}

]
∩ bBn−1(z, δ)

is nonempty. Therefore we can choose ζ ∈ γ
(
P, α̃Pν (z)

)
such that z ± ζ ∈ Σ, and

ξ ∈ C such that aν ± ξ ∈ U and Dφ∗(aν)(±ξ) = ±ζ. Now applying (1.8) in the
case a = aν and using (1.7) yields∣∣φp(aν + ξ)− zp − ζp

∣∣ < (C/2) θ|ξ| < (C/2)|φ′p(aν)ξ| = (C/2)|ζp|

for every p ∈ P . Since also φp(aν + ξ) = zp + ζp for p ∈ Nn−1 \P and φ1(z1) = z1,
this shows that there exist uniquely determined ζ ′, ζ ′′ ∈ ∆n−1(0, (C/2)|ζ|

)
such

that z + (ζ + ζ ′) = φ∗(aν + ξ), z − (ζ + ζ ′′) = φ∗(aν − ξ) and ζ ′1, ζ
′′
1 = 0. In

particular, we see from φ(U) ⊂ f
(
Dr′(ξ0)

)
⊂ f

(
Dr(0)

)
⊂ E that

w := φn(aν + ξ) ∈ Ez+(ζ+ζ′), w′ := φn(aν − ξ) ∈ Ez−(ζ+ζ′′).

Observe that ζ, ζ ′ζ ′′ satisfy the conditions in (1.10). Since aν ∈ U and φ′1 ≡ 1 on
U , we get ‖ζ ′ + 2ζ + ζ ′′‖ ≥ (2− C)‖ζ‖ = (2− C)‖Dφ∗(aν)(ξ)‖ ≥ (2− C)|ξ| and
thus, in view of Lemma 1.3.5, can finally make the following estimate:∣∣φn(aν + ξ)− φn(aν − ξ)

∣∣
2|ξ| ≥ (1− C/2) · |w − w′|

‖ζ ′ + 2ζ + ζ ′′‖
≥ 1− C/2

1 + C/2 · (ν − 1) .

This holds true for every member ν of the strictly increasing sequence (νk), and
the right term becomes unbounded as ν → +∞. Since for each fixed ν the number
ξ was chosen such that aν±ξ ∈ U , this contradicts the fact that φn has a bounded
derivate on U . �

1.4 Choice of the sequence {εl} - Part II. Complete
pluripolarity

Recall that Eν = {Pν = 0}, ν ∈ N. We show that for {εl} decreasing fast
enough we can guarantee nice convergence properties of the sequence {Pν} as
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well as certain relations between the limit set E of {Eν} and the sublevel sets of
the defining polynomials Pν . These results will then be seen to imply complete
pluripolarity of E .
Lemma 1.4.1. The sequence {|Pν |1/2

ν} converges uniformly on compact subsets
of Cn \ E, and limν→∞|Pν |1/2

ν

> 0 on Cn \ E.

Proof. Recall that {εl} is chosen in such a way that εl
»
|z[l] − al| < 1/2l on

Bn−1(0, l) for every l ∈ N. Fix (z0, w0) ∈ Cn \ E and choose R > 0 such that
(z0, w0) ∈ ∆R := Bn−1(0, R) × C. Since E is closed and Eν ∩ ∆̄R → E ∩ ∆̄R

in the Hausdorff metric, there exist a ball B := Bn
(
(z0, w0), δ

)
⊂ ∆R and

positive numbers r > 0, Nr > 0 such that dist(B,Eν) > r for all ν ≥ Nr.
Now for every ν, µ ∈ N, j ∈ N2ν and z ∈ Cn−1 we denote the 2µ values of
w

(ν)
j (z) +∑ν+µ

l=ν+1 εl
√
z[l] − al by w(µ)

1 (ν, j; z), . . . , w(µ)
2µ (ν, j; z). Observe that with

this notation we have

|Pν+µ(z, w)|1/2
ν+µ

=
2ν+µ∏
l=1
|w − w(ν+µ)

l (z)|1/2
ν+µ

=
2ν∏
j=1

2µ∏
k=1
|w − w(µ)

k (ν, j; z)|1/2
ν+µ

;

thus passing from |Pν(z, w)|1/2ν to |Pν+µ(z, w)|1/2ν+µ amounts to replace each
term |w−w(ν)

j (z)| occuring in the product expansion of |Pν(z, w)|1/2ν by the mean
value∏2µ

k=1|w−w
(µ)
k (ν, j; z)|1/2µ . Since for ν ≥ R one has |w(ν)

j (z)−w(µ)
k (ν, j; z)| ≤∑ν+µ

l=ν+1 εl
»
|z[l] − al| < 1/2ν for all z ∈ Bn−1(0, R), we can estimate the resulting

error, by means of

2µ∏
k=1
|w−w(µ)

k (ν, j; z)|1/2
µ

>
2µ∏
k=1

(
|w−w(ν)

j (z)| − 1/2ν
)1/2µ

= |w−w(ν)
j (z)| − 1/2ν ,

2µ∏
k=1
|w−w(µ)

k (ν, j; z)|1/2
µ

<
2µ∏
k=1

(
|w−w(ν)

j (z)|+ 1/2ν
)1/2µ

= |w−w(ν)
j (z)|+ 1/2ν ,

to be less than 1/2ν for all (z, w) ∈ B ⊂ Bn−1(0, R) × C (obviously the first
inequality is trivial if |w−w(ν)

j (z)| < 1/2ν). In particular, whenever |w−w(ν)
j (z)| ≥

1/2ν on B and ν ≥ R, we get

2ν∏
j=1

(
|w−w(ν)

j (z)|−1/2ν
)1/2ν

≤ |Pν+µ(z, w)|1/2
ν+µ
≤

2ν∏
j=1

(
|w−w(ν)

j (z)|+1/2ν
)1/2ν

on B. But |w − w(ν)
j (z)| > r on B for all ν ≥ Nr, where r does not depend on

ν. Since |Pν(z, w)| = ∏2ν
j=1|w − w

(ν)
j (z)|, this shows that

{
|Pν(z, w)|1/2ν

}
ν≥1 is a
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Cauchy sequence for every (z, w) ∈ B and in fact that
{
|Pν |1/2

ν}
ν≥1 converges

uniformly on B. Moreover, limν→∞|Pν |1/2
ν

> 0 on B, since the above estimates
hold true for all µ ∈ N. �

Lemma 1.4.2. If {εl} is decreasing fast enough, then

E =
⋂
ν∈N

⋃
µ≥ν

{
|Pµ| < ( 1

µ )2µ}. (1.11)

Moreover, the following relations hold true for every µ ≥ ν ≥ R:

(1) {|Pµ| < ( 1
ν+1 )2µ} ∩ B̄n(0, R) ⊂⊂ {|Pν | < ( 1

ν )2ν}.

(2) {|Pν | < ( 1
ν )2ν} ∩ B̄n(0, R) ⊂⊂ {|Pµ| < ( 1

ν−1 )2µ}.

Proof. For M ⊂ Cn and R, δ > 0 we let M(R) := M ∩ B̄n(0, R) and

M 〈δ〉 := M ∪
⋃

x∈bM

Bn(x, δ) and M 〈−δ〉 := M \
⋃

x∈bM

Bn(x, δ).

One easily verifies the following relations for all M,N ⊂ Cn and R, δ, δ1, δ2 > 0:

(A) M ⊂ N ⇒M 〈δ〉 ⊂ N 〈δ〉 and M ⊂ N ⇒M 〈−δ〉 ⊂ N 〈−δ〉.

(B) M(R) ⊂ N ⇒M(R) ⊂⊂ N 〈δ〉 and M(R) ⊂ N ⇒ [M 〈−δ〉](R) ⊂⊂ N .

(C) [M 〈δ1〉]〈δ2〉 = M 〈δ1+δ2〉 and [M 〈−δ1〉]〈−δ2〉 = M 〈−(δ1+δ2)〉.

(D) [M 〈δ〉](R−δ) ⊂ [M(R)]〈δ〉 and [M 〈−δ〉](R−δ) ⊂ [M(R)]〈−δ〉.

Moreover, M 〈±δ〉(R) will denote the set M 〈±δ〉 ∩ B̄n(0, R). We can choose sequences
{εl}, {δl} of positive numbers converging to zero such that for all ν ∈ N the
following relations hold true:

(1ν) εν
»
|z[ν] − aν | < 1

2ν on Bn−1(0, ν).

(2ν)
[{
|Pν | < ( 1

ν+1 )2ν}
(ν+1) ∪

{
|Pν | > ( 1

ν−1 )2ν}
(ν+1)

]
∩
{
|Pν | = ( 1

ν )2ν}〈δν〉 = ∅.

(3ν+1)
{
|Pν+1| < ( 1

λ )2ν+1}
(ν+1) ⊂

{
|Pν | < ( 1

λ )2ν}〈δν/2ν〉 for λ = 1, . . . , ν + 1.

(3′ν+1)
{
|Pν | < ( 1

λ )2ν}〈−δν/2ν〉
(ν+1) ⊂

{
|Pν+1| < ( 1

λ )2ν+1} for λ = 1, . . . , ν − 1.

Indeed, we can choose ε1 to satisfy (11). After fixing such ε1, the polynomial
P1 is fixed, and we can choose δ1 < 1/2 to satisfy (21). Suppose now that εl, δl
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are already chosen for l = 1, 2, . . . , ν such that (1ν)-(3′ν) hold true. By Lemma
1.1.1, we know that Pν+1 → P 2

ν uniformly on compact subsets as εν+1 → 0; hence
we can find ε > 0 such that for εν+1 < ε the polynomial Pν+1 satisfies (3ν+1)
and (3′ν+1). Moreover, we can find ε′ > 0 such that for εν+1 < ε′ the inequality
(1ν+1) holds true. We choose εν+1 < min{ε, ε′}, and we point out that every
ε′ν+1 ∈ (0, εν+1) would also be a proper choice for εν+1. For Pν+1 now being fixed,
we can find δν+1 < δν/2 satisfying (2ν+1).

(i) We now prove statement (1) of the lemma. In order to do this, we need the
following

Claim 1. For µ > ν ≥ R, one has{
|Pµ| < ( 1

ν+1 )2µ}
(R) ⊂

{
|Pν | < ( 1

ν+1 )2ν}〈∑µ−1
l=ν δl/2

l〉
.

Proof. Let µ > ν ≥ R be fixed. For proving the statement of the claim, we use
reverse induction on ρ to show that{
|Pµ| < ( 1

ν+1 )2µ}
(R) ⊂

{
|Pρ| < ( 1

ν+1 )2ρ}〈∑µ−1
l=ρ δl/2

l〉 for ρ = µ− 1, . . . , ν.
(1.12)

The case ρ = µ− 1 follows immediately from (3µ) with λ = ν + 1. Suppose that
property (1.12) holds for some ρ ∈ N such that µ > ρ > ν ≥ R. Then one also has

{
|Pµ| < ( 1

ν+1 )2µ}
(R) ⊂

{
|Pρ| < ( 1

ν+1 )2ρ}〈∑µ−1
l=ρ δl/2

l〉
(R) . (1.13)

Hence applying (3ρ) with λ = ν + 1, we can conclude that{
|Pρ| < ( 1

ν+1 )2ρ}
(ρ) ⊂

{
|Pρ−1| < ( 1

ν+1 )2ρ−1}〈δρ−1/2ρ−1〉

⇒
[{
|Pρ| < ( 1

ν+1 )2ρ}
(ρ)
]〈∑µ−1

l=ρ δl/2
l〉

⊂
[{
|Pρ−1| < ( 1

ν+1 )2ρ−1}〈δρ−1/2ρ−1〉]〈∑µ−1
l=ρ δl/2

l〉

⇒
[{
|Pρ| < ( 1

ν+1 )2ρ}〈∑µ−1
l=ρ δl/2

l〉]
(ρ−
∑µ−1

l=ρ δl/2
l)

⊂
{
|Pρ−1| < ( 1

ν+1 )2ρ−1}〈∑µ−1
l=ρ−1 δl/2

l〉

⇒
[{
|Pρ| < ( 1

ν+1 )2ρ}〈∑µ−1
l=ρ δl/2

l〉]
(R)

⊂
{
|Pρ−1| < ( 1

ν+1 )2ρ−1}〈∑µ−1
l=ρ−1 δl/2

l〉
.

This and (1.13) completes our argument by induction and proves Claim 1.
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Observe that, since {δl} is monotonically decreasing, we get from Claim 1 and
(B) the following property:{

|Pµ| < ( 1
ν+1 )2µ}

(R) ⊂⊂
{
|Pν | < ( 1

ν+1 )2ν}〈δν〉. (1.14)

Fix now some ν ≥ R. We are going to show that{
|Pν | < ( 1

ν+1 )2ν}〈δν〉
(R) ⊂

{
|Pν | < ( 1

ν )2ν}. (1.15)

Note that (1.14) and (1.15) together prove (1). By definition, we have{
|Pν | < ( 1

ν+1 )2ν}〈δν〉
(R) =

{
|Pν | < ( 1

ν+1 )2ν}
(R) ∪

⋃
x∈b{|Pν |<( 1

ν+1 )2ν }

Bn(x, δν)(R)

Obviously, {
|Pν | < ( 1

ν+1 )2ν}
(R) ⊂

{
|Pν | < ( 1

ν )2ν}.
Let ζ ∈ Bn(x, δν)(R) for some x ∈ b{|Pν | < ( 1

ν+1 )2ν}. Then in particular x ∈
{|Pν | = ( 1

ν+1 )2ν}(ν+1). Assume, to get a contradiction, that ζ ∈ {|Pν | ≥ ( 1
ν )2ν}.

Since x ∈ {|Pν | < ( 1
ν )2ν}(ν+1), we then can find t ∈ (0, 1] such that x̃ :=

(1 − t)x + tζ ∈ {|Pν | = ( 1
ν )2ν}. Now obviously ‖x̃ − x‖ < δν , which shows that

x ∈ {|Pν | = ( 1
ν+1 )2ν}(ν+1) ∩ {|Pν | = ( 1

ν )2ν}〈δν〉. In particular, we conclude that
{|Pν | < ( 1

ν+1 )2ν}(ν+1) ∩ {|Pν | = ( 1
ν )2ν}〈δν〉 6= ∅, which contradicts (2ν). This

proves that ⋃
x∈b{|Pν |<( 1

ν+1 )2ν }

Bn(x, δν)(R) ⊂
{
|Pν | < ( 1

ν )2ν},
and hence (1.15). The proof of statement (1) of the lemma is now complete.

(ii) We now prove statement (2) of the lemma. For being able to do this, we need
the following

Claim 2. For µ > ν ≥ R, one has{
|Pν | < ( 1

ν−1 )2ν}〈−∑µ−1
l=ν δl/2

l〉
(R) ⊂

{
|Pµ| < ( 1

ν−1 )2µ}.
Proof. Let µ > ν ≥ R be fixed. For proving the statement of the claim, we use
induction on ρ to show that{
|Pν | < ( 1

ν−1 )2ν}〈−∑ρ−1
l=ν δl/2

l〉

(ν+1−
∑ρ−1

l=ν δl/2
l)
⊂
{
|Pρ| < ( 1

ν−1 )2ρ}, for ρ = ν + 1, . . . , µ.
(1.16)
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The case ρ = ν + 1 follows immediately from (3′ν+1) with λ = ν − 1. Suppose that
property (1.16) holds for some ρ ∈ N such that µ > ρ > ν ≥ R. Then we also have[{

|Pν | < ( 1
ν−1 )2ν}〈−∑ρ−1

l=ν δl/2
l〉]

(ν+1−
∑ρ−1

l=ν δl/2
l) ⊂

{
|Pρ| < ( 1

ν−1 )2ρ}
⇒
[[{
|Pν | < ( 1

ν−1 )2ν}〈−∑ρ−1
l=ν δl/2

l〉]
(ν+1−

∑ρ−1
l=ν δl/2

l)

]〈−δρ/2ρ〉
⊂
{
|Pρ| < ( 1

ν−1 )2ρ}〈−δρ/2ρ〉
⇒
[{
|Pν | < ( 1

ν−1 )2ν}〈−∑ρ

l=ν δl/2
l〉]

(ν+1−
∑ρ

l=ν δl/2
l)

⊂
{
|Pρ| < ( 1

ν−1 )2ρ}〈−δρ/2ρ〉
⇒
[{
|Pν | < ( 1

ν−1 )2ν}〈−∑ρ

l=ν δl/2
l〉]

(ν+1−
∑ρ

l=ν δl/2
l)

⊂
{
|Pρ| < ( 1

ν−1 )2ρ}〈−δρ/2ρ〉
(ν+1)

while from (3′ρ+1) with λ = ν − 1, we get{
|Pρ| < ( 1

ν−1 )2ρ}〈−δρ/2ρ〉
(ν+1) ⊂

{
|Pρ+1| < ( 1

ν−1 )2ρ+1}
.

This completes our argument by induction and, since ν + 1 −∑µ−1
l=ν δl/2l > R,

proves Claim 2.

Observe that, since {δl} is monotonically decreasing, we get from Claim 2 and
(B) the following property:{

|Pν | < ( 1
ν−1 )2ν}〈−δν〉

(R) ⊂⊂
{
|Pµ| < ( 1

ν−1 )2µ}. (1.17)

Fix now some ν ≥ R. We are going to show that{
|Pν | < ( 1

ν )2ν}
(R) ⊂

{
|Pν | < ( 1

ν−1 )2ν}〈−δν〉
(R) . (1.18)

Note that (1.17) and (1.18) together prove (2). By definition, we have{
|Pν | < ( 1

ν−1 )2ν}〈−δν〉
(R) =

{
|Pν | < ( 1

ν−1 )2ν}
(R) \

⋃
x∈b{|Pν |<( 1

ν−1 )2ν }

Bn(x, δν)(R).

Obviously, {
|Pν | < ( 1

ν )2ν}
(R) ⊂

{
|Pν | < ( 1

ν−1 )2ν}
(R).

Let ζ ∈ Bn(x, δν)(R) for some x ∈ b{|Pν | < ( 1
ν−1 )2ν}. Then, in particular,
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x ∈ {|Pν | = ( 1
ν−1 )2ν}(ν+1). In order to get a contradiction, assume that ζ ∈

{|Pν | < ( 1
ν )2ν}(R). Since x ∈ {|Pν | > ( 1

ν )2ν}, we then can find t ∈ (0, 1) such that
x̃ := (1 − t)x + tζ ∈ {|Pν | = ( 1

ν )2ν}. Now obviously ‖x̃ − x‖ < δν , which shows
that x ∈ {|Pν | = ( 1

ν−1 )2ν}(ν+1) ∩ {|Pν | = ( 1
ν )2ν}〈δν〉. In particular, we conclude

that {|Pν | > ( 1
ν−1 )2ν}(ν+1)∩{|Pν | = ( 1

ν )2ν}〈δν〉 6= ∅, which contradicts (2ν). This
proves that {

|Pν | < ( 1
ν )2ν}

(R) ∩
⋃

x∈b{|Pν |<( 1
ν−1 )2ν }

Bn(x, δν)(R) = ∅,

and hence (1.18). The proof of statement (2) of the lemma is now complete.

(iii) Finally, we show that the representation (1.11) holds true.

Let (z, w) ∈ Cn and choose R > 0 such that (z, w) ∈ Bn(0, R). Assume that
(z, w) ∈ E . Let µ ≥ R. Applying (1), we get

(Eµ+l)(R) ⊂
{
|Pµ+l| < ( 1

µ+l )2µ+l}
(R) ⊂⊂

{
|Pµ| < ( 1

µ )2µ}
for all l ∈ N. But since (1ρ) holds true for all ρ ∈ N, we can apply Lemma
1.1.2 to see that E(R) = liml→∞(Eµ+l)(R) in the Hausdorff metric. Hence E(R) ⊂
{|Pµ+1| ≤ ( 1

µ+1 )2µ+1}(R) ⊂ {|Pµ| < ( 1
µ )2µ}. Since this holds true for all µ ≥ R, it

follows (z, w) ∈ ⋂ν∈N⋃µ≥ν{|Pµ| < ( 1
µ )2µ}. Conversely, assume that (z, w) /∈ E .

Then by Lemma 1.4.1, the sequence {|Pν(z, w)|1/2ν} is converging to a positive
real number; hence there exist δ > 0 and µ0 ∈ N such that |Pµ(z, w)|1/2µ > δ for
all µ ≥ µ0. In particular, (z, w) /∈ {|Pµ| < ( 1

µ )2µ} for µ ≥ max{µ0, 1/δ}, which
shows that (z, w) /∈ ⋂ν∈N⋃µ≥ν{|Pµ| < ( 1

µ )2µ}. �

For each ν ∈ N, define a function ϕν : Cn → [−∞,+∞) as

ϕν(z, w) := 1
2ν log|Pν(z, w)|.

Then ϕν is a plurisubharmonic function on Cn, pluriharmonic on Cn \ Eν , and
ϕν(z, w) = −∞ if and only if (z, w) ∈ Eν .

Lemma 1.4.3. If {εl} is decreasing fast enough, then the sequence {ϕν} converges
uniformly on compact subsets of Cn \E to a pluriharmonic function ϕ : Cn \E → R,
and lim(z,w)→(z0,w0) ϕ(z, w) = −∞ for every (z0, w0) ∈ E. In particular, ϕ has a
unique extension to a plurisubharmonic function on Cn and the set E is complete
pluripolar.
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Proof. Let {εl} to be converging to zero so fast that the conclusions of Lemma
1.4.2 hold true. Then, applying Lemma 1.4.1, we immediately see that {ϕν}
converges uniformly on compact subsets of Cn\E . In particular, ϕ is pluriharmonic
in Cn \E . Let (z0, w0) ∈ E and let {(zj , wj)}j≥1 be an arbitrary sequence of points
converging to (z0, w0). Let R ∈ N be such that (z0, w0) ∈ Bn(0, R). From part
(1) of Lemma 1.4.2 we know that

{|Pµ+1| < ( 1
µ+1 )2µ+1

} ∩ B̄n(0, R) ⊂ {|Pµ| < ( 1
µ )2µ}

for every µ ≥ R; thus it follows from

E =
⋂
ν∈N

⋃
µ≥ν

{
|Pµ| < ( 1

µ )2µ}
that E ∩ B̄n(0, R) ⊂ {|Pν | < ( 1

ν )2ν} for all ν ≥ R. Hence for every ν ≥ R there
exists j(ν) ∈ N such that (zj , wj) ∈ {|Pν | < ( 1

ν )2ν} ∩ Bn(0, R) for all j ≥ j(ν).
But whenever (zj , wj) ∈ {|Pν | < ( 1

ν )2ν} ∩ B̄n(0, R) we know from part (2) of
Lemma 1.4.2 that also (zj , wj) ∈ {|Pµ| < ( 1

ν−1 )2µ} for each µ ≥ ν. This means
that ϕµ(zj , wj) < − log(ν − 1) for each µ ≥ ν. Hence ϕ(zj , wj) ≤ − log(ν − 1) for
each j ≥ j(ν). This shows that limj→∞ ϕ(zj , wj) = −∞. �

Complete pluripolarity of the set E will play an important role when we are going
to apply the existence of Wermer type sets to the study of global plurisubharmonic
defining functions in Part II below. In fact, the precise property of E that will be
needed is the existence of a smooth plurisubharmonic function Φ: Cn → [0,∞)
such that E = {Φ = 0} and such that Φ is strictly plurisubharmonic outside E .
The next corollary shows that we can easily construct a function Φ as desired, by
smoothing up ϕ + ‖ · ‖2 along the set E = {ϕ = −∞}, where ϕ is the function
from the previous lemma.

Corollary 1.4.1. If {εl} is decreasing fast enough, then there exists a smooth
plurisubharmonic function Φ: Cn → [0,∞) such that E = {Φ = 0} and such that
Φ is strictly plurisubharmonic outside E.

Proof. For every j ∈ N, let χj : R→ R be a smooth convex increasing function
such that χ|(−∞,−j) ≡ −j. Let {ηj}∞j=1 be a sequence of positive numbers that
converges to zero fast enough. Then Φ := ∑∞

j=1 ηjχj(ϕ+ ‖ · ‖2) is a function as
desired. �

Recall that a compact set K ⊂ Cn is polynomially convex if and only if there exists
a smooth plurisubharmonic function Φ: Cn → [0,∞) such that K = {Φ = 0} and
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such that Φ is strictly plurisubharmonic outside K (see, for example, Theorem
1.3.8 in [St07]). In this context, observe that we also have the following additional
property of the Wermer type set E .

Corollary 1.4.2. If {εl} is decreasing fast enough, then for every R > 0 one has¤�bBn(0, R) ∩ E = B̄n(0, R) ∩ E, where ¤�bBn(0, R) ∩ E denotes the polynomial hull
of the set bBn(0, R) ∩ E.

Proof. Using (1.11) and part (1) of Lemma 1.4.2, we see that, for every (z, w) ∈
Cn\E , there exists ν ∈ N such that B̄n(0, R)∩E ⊂ {|Pν | < ( 1

ν )2ν} but |Pν(z, w)| ≥
( 1
ν )2ν , i.e., (z, w) /∈ ¤�bBn(0, R) ∩ E . In particular, since clearly ¤�bBn(0, R) ∩ E ⊂
B̄n(0, R), this shows that ¤�bBn(0, R) ∩ E ⊂ B̄n(0, R) ∩ E . Concerning the other
direction, note that ¤�bBn(0, R) ∩ Eν = B̄n(0, R) ∩ Eν for every ν ∈ N by the
maximum modulus principle and the fact that Eν is the zero set of the polynomial
Pν . Since on bounded subsets of Cn the sequence {Eν} converges to E in the
Hausdorff metric, we thus conclude that B̄n(0, R) ∩ E = limν→∞ B̄n(0, R) ∩Eν =
limν→∞ ¤�bBn(0, R) ∩ Eν ⊂ ¤�bBn(0, R) ∩ E . �

At the end of this section, we want to use Hölder continuity of E to give an explicit
form for the function Φ from Corollary 1.4.1: Let ϕ be the plurisubharmonic
function defined in Lemma 1.4.3 such that E = {ϕ = −∞}, and let φ := ϕ+ ‖ · ‖2.
We then want to make an explicit choice of a function Λ: [−∞,∞)→ [0,∞) such
that Φ := Λ◦φ is smooth and plurisubharmonic on Ω and strictly plurisubharmonic
outside E . In order to do so, consider first the function eφ : Cn → [0,∞). Observe
that eφ is a continuous plurisubharmonic function on Cn that is smooth and
strictly plurisubharmonic in the complement of E . Thus this function has all
the properties we seek except, possibly, for smoothness in points of E . Now the
general idea to obtain Λ and Φ as desired is to compose eφ with a smooth, strictly
increasing and strictly convex function that vanishes at 0 of infinite order. In
fact, we will take Λ: [−∞,∞)→ [0,∞) such that Λ(x) = e−1/ex for small values
of x. To actually prove smoothness of Φ, we proceed as follows: We show that
for each point (z, w) ∈ Cn \ E there exists a polycylinder around (z, w) that does
not intersect E , the size of which depends uniformly on the vertical distance
d(w, Ez) := infw′∈Ez |w − w′| of (z, w) to E . Moreover, we estimate the value of
eϕ by means of the vertical distance d(w, Ez) to the set E . We then use the
Poisson integral formula and pluriharmonicity of ϕ outside E to derive Cauchy
type estimates for the derivatives of φ, and apply the above results to conclude
that each DαΦ(z, w) tends to zero when (z, w) approaches E .

We first prove the existence of uniformly large polycylinders in the complement of
E , which follows easily from Hölder continuity of the map E .
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Lemma 1.4.4. There exists a constant C > 0 such that

∆̄n
E(z, w) := ∆̄n−1

(
z, C

(d(w, Ez)
2

)2)
× ∆̄1

(
w,

d(w, Ez)
2

)
⊂ Cn \ E (1.19)

for every (z, w) ∈ Cn \ E.

Proof. Fix (z, w) ∈ Cn\E . Then, in view of Lemma 1.2.1, for any given (z′, w′) ∈
E ∩

[
∆̄n−1(z, (1/(√nM2))(d(w, Ez)/2)2)× Cw

]
we can find (z, w̃) ∈ Ez such that

‖(z, w̃) − (z′, w′)‖ ≤ M
√
‖z − z′‖ < d(w, Ez)/2. Hence |w − w′| ≥ |w − w̃| −

|w̃ − w′| > d(w, Ez) − d(w, Ez)/2 > d(w, Ez)/2, which proves (1.19) for C :=
1/(
√
nM2). �

We now want to estimate the growth of eϕ(z,w) in terms of the vertical distance
d(w, Ez) to E . For every ν, µ ∈ N, j ∈ N2ν and z ∈ Cn−1, we denote the 2µ values
of w(ν)

j (z) +∑ν+µ
l=ν+1 εl

√
z[l] − al by w

(µ)
1 (ν, j; z), . . . , w(µ)

2µ (ν, j; z). Moreover, for
every set K ⊂ Cn and every positive number δ > 0 we let K(δ) := ⋃ζ∈K Bn(ζ, δ).

Lemma 1.4.5. If {εl} is decreasing fast enough, then there exists an increasing
sequence {LN}∞N=1 of positive numbers such that for every N ∈ N, ν ≥ N and
j ∈ N2ν

|Pν+µ(z, w)|1/2
ν+µ
≤ LN ·

2µ∏
k=1
|w − w(µ)

k (j, ν; z)|1/2
ν+µ

on ∆N ∩ E(1) (1.20)

for every µ ∈ N, where ∆N := Bn−1(0, N)× C.

Proof. Fix N ∈ N, ν ≥ N and j ∈ N2ν . Recall that the sequence {εl} is
chosen in such a way that εl

»
|z[l] − al| < 1/2l on Bn−1(0, l) for every l ∈ N.

Thus |w(ν)
j′ (z)− w(µ)

k (j′, ν; z)| ≤∑ν+µ
l=ν+1 εl

»
|z[l] − al| < 1/2ν on Bn−1(0, N) for

every j′ ∈ N2ν and µ ∈ N, k ∈ N2µ . Hence dH(Eν,z, Ez) ≤ 1/2ν for every
z ∈ Bn−1(0, N), where Eν,z := {w ∈ C : (z, w) ∈ Eν}, and

2µ∏
k=1
|w − w(µ)

k (j′, ν; z)|1/2
µ

< |w − w(ν)
j′ (z)|+ 1/2ν (1.21)

for every (z, w) ∈ ∆N , j′ ∈ N2ν and µ ∈ N. Let {εl} be decreasing so fast that∑∞
l=1 εl

√
|al| < 1/2 and εl < 1/2l+1 for every l ∈ N. Since

∣∣»|z[l] − al|−
»
|z[l]|

∣∣ ≤»∣∣|z[l] − al| − |z[l]|
∣∣ ≤ √|al|, we have

»
|z[l] − al| ≤

»
|z[l]| +

√
|al| ≤

√
‖z‖ +
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√
|al|. Thus, by definition of the sets Eν , it follows that |w| ≤∑ν

l=1 εl
»
|z[l] − al| ≤∑ν

l=1 εl(
√
‖z‖ +

√
|al|) < (1/2)(

√
‖z‖ + 1) for every (z, w) ∈ Eν . Taking the

limit ν → ∞ we get that E ⊂ {(z, w) ∈ Cn : |w| ≤ (1/2)(
√
‖z‖+ 1)}. For fixed

(z, w) ∈ ∆N ∩ E(1) and j′ ∈ N2ν choose w̃1, w̃2 ∈ Ez such that |w − w̃1| = d(w, Ez)
and |w̃2 − w(ν)

j′ (z)| = dH(Eν,z, Ez). Then |w − w(ν)
j′ (z)| ≤ |w − w̃1|+ |w̃1 − w̃2|+

|w̃2 −w(ν)
j′ (z)| ≤ 1 + (1 +

√
N) + 1/2N , hence there exists a constant LN > 1 such

that
|w − w(ν)

j′ (z)|+ 1/2ν ≤ LN on ∆N ∩ E(1). (1.22)

We conclude that for every (z, w) ∈ ∆N ∩ E(1) and µ ∈ N we have

|Pν+µ(z, w)|1/2
ν+µ

=
2ν+µ∏
l=1
|w − w(ν+µ)

l (z)|1/2
ν+µ

=
2ν∏
j′=1

2µ∏
k=1
|w − w(µ)

k (j′, ν; z)|1/2
ν+µ

=
∏

1≤j′≤2ν
j′ 6=j

( 2µ∏
k=1
|w − w(µ)

k (j′, ν; z)|1/2
µ
)1/2ν

·
2µ∏
k=1
|w − w(µ)

k (j, ν; z)|1/2
ν+µ

≤ LN ·
2µ∏
k=1
|w − w(µ)

k (j, ν; z)|1/2
ν+µ

,

where the last inequality follows from (1.21) and (1.22). �

Lemma 1.4.6. The following assertions hold true:

(1) If {εl} is decreasing fast enough, then

d(w, Ez) ≤ eϕ(z,w) ≤ d(w, Ez) + (1 +
»
‖z‖) on Cn.

(2) Let {δl}∞l=1 be a decreasing sequence of positive numbers converging to 0. If
{εl} is decreasing fast enough, then for every N ∈ N and ν ≥ N we have

d(w, Ez) ≤ eϕ(z, w) ≤ (LN + 1)d(w, Ez)1/2ν on Bn(0, N) ∩
(
E(1) \ E(δν)),

where LN are the constants from Lemma 1.4.5.

Proof. 1) Observe that eϕ = limν→∞ eϕν = limν→∞|Pν |1/2
ν . Hence the first

inequaltiy follows from |Pν(z, w)|1/2ν = ∏2ν
j=1|w − w

(ν)
j (z)|1/2ν ≥ d(w,Eν,z) and

the fact that Eν,z → Ez in the Hausdorff metric for ν →∞.

Let {εl} be decreasing so fast that ∑∞l=1 εl
√
|al| < 1/2 and εl < 1/2l+1 for every

l ∈ N. As in the proof of Lemma 1.4.5 we conclude that Eν ⊂ {(z, w) ∈ Cn :
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|w| < (1/2)(
√
‖z‖ + 1)} for every ν ∈ N. Now for arbitrary fixed ν ∈ N and

(z, w) ∈ Cn choose w̃ ∈ Eν,z such that |w− w̃| = d(w,Eν,z). Then |w−w(ν)
j (z)| ≤

|w − w̃| + |w̃ − w
(ν)
j (z)| < d(w,Eν,z) + (

√
‖z‖ + 1) for every j ∈ N2ν , hence

|Pν(z, w)|1/2ν = ∏2ν
j=1|w−w

(ν)
j (z)|1/2ν < d(w,Eν,z) + (

√
‖z‖+ 1) and the second

inequality follows for ν →∞.

2) We only need to show the second inequality. Let {εl} be decreasing so fast that
the assertion of Lemma 1.4.5 holds, and observe that (1.20) remains true with
the same constants {LN} if later on we choose {εl} to be converging to zero even
faster. For every N ∈ N, let γN be a positive constant such that

γNLN ≤ d(w, Ez)1/2N on Bn(0, N) \ E(δN ). (1.23)

Let {εl} be decreasing so fast that ∑∞l=ν+1 εl
»
|z[l] − al| ≤ rν := 2ν−1γνδ

(2ν−1)/2ν
ν

on Bn−1(0, ν) for every ν ∈ N. Fix N ∈ N and let ν ≥ N be arbitrary. Let
(z, w) ∈ Bn(0, N) ∩ (E(1) \ E(δν)). Choose w̃ ∈ Ez such that |w − w̃| = d(w, Ez)
and choose j ∈ N2ν such that |w̃ − w

(ν)
j (z)| ≤ dH(Ez, Eν,z). Then for every

µ ∈ N and k ∈ N2µ we get |w − w
(µ)
k (j, ν; z)| ≤ |w − w̃| + |w̃ − w

(ν)
j (z)| +

|w(ν)
j − w

(µ)
k (j, ν; z)| ≤ d(w, Ez) + rν + rν . Hence, by the choice of rν , and since

δν ≤ d(w, Ez), it follows that∏2µ
k=1|w−w

(µ)
k (j, ν; z)|1/2ν+µ ≤ (d(w, Ez)+2rν)1/2ν ≤

(d(w, Ez)2ν/2ν + 2νd(w, Ez)(2ν−1)/2νγν)1/2ν ≤ d(w, Ez)1/2ν + γν . Applying Lemma
1.4.5, monotonicity of {LN} and (1.23), we conclude that

|Pν+µ(z, w)|1/2
ν+µ
≤ LN

(
d(w, Ez)1/2ν + γν

)
≤ (LN + 1)d(w, Ez)1/2ν .

Since here µ ∈ N and (z, w) ∈ Bn(0, N) ∩ (E(1) \ E(δν)) are arbitrary, the claim
follows from the fact that eϕ(z,w) = limµ→∞|Pν+µ(z, w)|1/2ν+µ . �

Finally, we prove Cauchy type estimates for the derivatives of eϕ. Let N0 := N∪{0}.
For multiindices α = (α1, α2, . . . , α2n) ∈ N2n

0 and β = (β1, β2, . . . , β2n) ∈ N2n
0 we

write α ≤ β if and only if αν ≤ βν for every ν = 1, 2, . . . , 2n. Moreover, for every
α ∈ N2n

0 and r = (r1, r2, . . . , r2n) ∈ [0,∞)2n we let rα := rα1
1 rα2

2 · · · r
α2n
2n .

Lemma 1.4.7. Let ∆n(a, r) ⊂⊂ Cn be a polycylinder with polyradius r ∈ [0,∞)n,
let u : ∆̄n(a, r) → R be a continuous function such that u is pluriharmonic on
∆n(a, r) and let α ∈ N2n

0 . Then

∣∣Dαu(ζ)
∣∣ ≤ C|α| · supξ∈b∆n(a,r)|u(ξ)|

r̂α
(1.24)
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1 Construction of Wermer type sets in codimension 1

for ζ ∈ ∆n(a, r/2), where r̂ := (r1, r1, r2, r2, . . . , rn, rn) and C|α| > 0 is a constant
that depends only on |α|.

Proof. The proof of Lemma 1.4.7 will be divided in two steps.

Step 1. Let v : B̄2(a, ρ)→ R be a continuous function such that v is harmonic
on B2(a, ρ). Then for arbitrary fixed θ ∈ (0, 1) the inequality∣∣∣ ∂v

∂xj
(x)
∣∣∣ ≤ C supy∈bB2(a,ρ)|v(y)|

ρ
(1.25)

holds true for every x ∈ B̄2(a, θρ) and j = 1, 2. Here C = Cθ is a positive
constant.

Proof. Without loss of generality we can assume that a = 0. Applying the
Poisson integral formula to the function v, we see that

v(x) = 1
2πρ

∫
y∈bB2(0,ρ)

ρ2 − ‖x‖2

‖y − x‖2
v(y)dσ(y).

Since for x ∈ B̄2(0, θρ) and y ∈ bB2(0, ρ) we have∣∣∣ ∂
∂xj

(ρ2 − ‖x‖2

‖y − x‖2
)∣∣∣ =

∣∣∣−2xj‖y − x‖2 + 2(ρ2 − ‖x‖2)(yj − xj)
‖y − x‖4

∣∣∣
≤ 8ρ3 + 4ρ3

((1− θ)ρ)4 =: Cθ
ρ
,

it follows that∣∣∣ ∂v
∂xj

(x)
∣∣∣ ≤ Cθ

ρ
· 1

2πρ

∫
y∈bB2(0,ρ)

|v(y)|dσ(y) ≤ Cθ
supy∈bB2(0,ρ)|v(y)|

ρ
.

Step 2. Let ∆1 ⊃⊃ ∆2 ⊃⊃ · · · be defined as ∆m := ∆n(a, (1−∑m
j=1 1/2j+1)r),

m ∈ N. We show that (1.24) holds true for every ζ ∈ ∆̄|α|. Since ∆n(a, r/2) ⊂ ∆m

for every m ∈ N, this proves the claim of the lemma.

Proof. We proceed by induction on k := |α|. Since u is pluriharmonic, the case
k = 1 is an immediate consequence of (1.25) with θ = 3/4. For the step k → k+ 1,
write α = α̃+ eν for some ν ∈ N, where eν = (0, . . . , 1, . . . , 0) is the ν-th canonical
unit vector and α̃ ∈ N2n

0 satisfies |α̃| = k. Without loss of generality we can assume
that ν = 1. Applying (1.25) to v := Dα̃u, ρ :=

(
1−∑k

j=1 1/2j+1)r1 > r1/2 and
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θ =
(
1−∑k+1

j=1 1/2j+1)/(1−∑k
j=1 1/2j+1) yields

∣∣Dαu(ζ)
∣∣ =

∣∣∣ ∂v
∂ζ1

(ζ)
∣∣∣ ≤ C supy∈bB2((a1,a2),ρ)×{ζ3,...,ζ2n}|v(y)|

ρ

< 2C
supy∈b∆k

|v(y)|
r1

for ζ ∈ ∆k+1. But, by induction hypothesis, |v(ζ)| ≤ Ck supξ∈b∆n(a,r)|u(ξ)|/r̂α̃

for ζ ∈ ∆̄k. Thus we get

∣∣Dαu(ζ)
∣∣ ≤ 2CCk

supξ∈b∆n(a,r)|u(ξ)|
r̂α̃r1

= C|α|
supξ∈b∆n(a,r)|u(ξ)|

r̂α

with C|α| = Ck+1 := 2CCk as desired. This proves Lemma 1.4.7. �

Now fix a smooth strictly increasing and strictly convex function Λ: [−∞,∞)→
[0,∞) such that Λ(x) = e−1/ex for small values of x. Observe that the function
φ = ϕ + ‖ · ‖2 : Cn → [−∞,∞) is plurisubharmonic on Cn, smooth and strictly
plurisubharmonic on Cn \ {ϕ = −∞}. Further, the function Λ is smooth strictly
increasing and strictly convex. Hence the function Φ := Λ ◦ φ is plurisubharmonic
on Cn, smooth and strictly plurisubharmonic on Cn\{ϕ = −∞}. In the remaining
part of this section we will show that Φ is also smooth at the points of E = {ϕ =
−∞}.

Step 1. For every α ∈ N2n
0 and N ∈ N, there exist constants ρN , Cα,N > 0 and

mα ∈ N such that

∣∣Dαφ(z, w)
∣∣ ≤ Cα,N log

(
1/d(w, Ez)

)
d(w, Ez)mα

for (z, w) ∈ Bn(0, N) ∩
(
E(ρN ) \ E

)
.

Proof. We know from Lemma 1.4.6 that d(w, Ez) ≤ eϕ ≤ d(w, Ez) + (1 +
√
‖z‖),

hence |ϕ(z, w)| ≤ max{|log d(w, Ez)|, |log(d(w, Ez)+(1+
√
‖z‖))|}. Choose ρN > 0

so small that − log d(w, Ez) > 1 + |log(d(w, Ez) + (1 +
√
‖z‖))| on ∆̄n

E(z, w) for
every (z, w) ∈ Bn(0, N) ∩ (E(ρN ) \ E), see Lemma 1.4.4. Then

|ϕ(z, w)| ≤ log
(
1/d(w, Ez)

)
on ∆̄n

E(z, w) ⊂ Cn \ E (1.26)

for (z, w) ∈ Bn(0, N) ∩ (E(ρN ) \ E). Since ϕ is pluriharmonic in Cn \ E , and in
view of Lemma 1.4.4, we conclude from Lemma 1.4.7 that

∣∣Dαϕ(z, w)
∣∣ ≤ C|α| supξ∈b∆n

E (z,w)|ϕ(ξ)|
r̂E(z, w)α ≤ C ′|α|

supξ∈b∆n
E (z,w)|ϕ(ξ)|

d(w, Ez)mα
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on Cn \ E for suitable constants C ′|α| > 0 and mα ∈ N, where rE(z, w) ∈ (0,∞)n

is defined as rE(z, w) :=
(
C(d(w, Ez)/2)2, . . . , C(d(w, Ez)/2)2, d(w, Ez)/2

)
. Using

(1.26), we get ∣∣Dαϕ(z, w)
∣∣ ≤ C ′|α| log

(
1/d(w, Ez)

)
d(w, Ez)mα

(1.27)

for (z, w) ∈ Bn(0, N) ∩ (E(ρN ) \ E). Moreover, for every N ∈ N, there exists a
constant C ′′N > 0 such that |Dα‖ · ‖2| ≤ C ′′N on Bn(0, N) for every α ∈ N2n

0 . Since,
by the choice of ρN , we have log(1/d(w, Ez)) > 1 on Bn(0, N) ∩ (E(ρN ) \ E), it
follows together with (1.27) that

∣∣Dαφ(z, w)
∣∣ ≤ ∣∣Dαϕ(z, w)

∣∣+
∣∣Dα‖ · ‖2(z, w)

∣∣ ≤ Cα,N log
(
1/d(w, Ez)

)
d(w, Ez)mα

for (z, w) ∈ Bn(0, N) ∩ (E(ρN ) \ E) and Cα,N := C ′|α| + C ′′N .

Step 2. For every α ∈ N2n
0 and N ∈ N, there exists a polynomial Pα,N ∈ R[x]

with nonnegative coefficients such that∣∣DαΦ(z, w)
∣∣ ≤ Pα,N(1/d(w, Ez)

)
e−1/eφ(z,w)

for (z, w) ∈ Bn(0, N)∩
(
E(ρN )\E

)
.

Proof. Recall that Φ = e−1/eφ (since the smoothness of Φ in E depends only
on the values Λ(x) for 0 < x << 1, we can assume here for simplicity that
Λ(x) ≡ e−1/ex). Let β2, β3, . . . , β〈α〉 ∈ N2n

0 be pairwise distinct multiindices
such that {β ∈ N2n

0 : 0 ≤ β ≤ α, β 6= 0} = {β2, β3, . . . , β〈α〉}. Then an easy
induction on |α| shows that there exists a polynomial Qα ∈ R[x1, . . . , x〈α〉],
Qα(x) = ∑

γ∈N〈α〉0
aγx

γ , such that DαΦ = Qα(1/eφ, Dβ2φ, . . . ,Dβ〈α〉φ)e−1/eφ .
Define Q̃α ∈ R[x1, . . . , x〈α〉] as Q̃α(x) = ∑

γ∈N〈α〉0
|aγ |xγ . Then

∣∣DαΦ(z, w)
∣∣ ≤ Q̃α(1/eφ, ∣∣Dβ2φ

∣∣, . . . , ∣∣Dβ〈α〉φ
∣∣)(z, w) · e−1/eφ(z,w)

.

From Lemma 1.4.6 we know that 1/eφ(z,w) = 1/(e‖(z,w)‖2
eϕ(z,w)) ≤ 1/d(w, Ez) for

every (z, w) ∈ Cn. Applying this and Step 1 to the above formula, we get∣∣Dαϕ∗(z, w)
∣∣

≤ Q̃α
Å 1
d(w, Ez)

, Cβ2,N

log
(
1/d(w, Ez)

)
d(w, Ez)mβ2

, . . . , Cβ〈α〉,N
log
(
1/d(w, Ez)

)
d(w, Ez)mβ〈α〉

ã
e−1/eφ(z,w)

= P̃α,N

Å 1
d(w, Ez)

, log
( 1
d(w, Ez)

)ã
e−1/eφ(z,w)

≤ Pα,N
(
1/d(w, Ez)

)
e−1/eφ(z,w)
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onBn(0, N)∩
(
E(ρN )\E

)
for suitable polynomials P̃α,N ∈ R[x1, x2] and Pα,N ∈ R[x]

with nonnegative coefficients.

Step 3. For every (z0, w0) ∈ E and α ∈ N2n
0 , one has lim(z,w)→(z0,w0)D

αΦ(z, w)=
0.

Proof. By a standard application of l’Hospital’s rule, limx→∞ P (x)e−cx1/m = 0
for every polynomial P ∈ R[x], c > 0 and m ∈ N. Hence for every ν ∈ N there
exists a constant δν > 0 such that

Pα,N
(
1/d(w, Ez)

)
e−1/[eN

2
(LN+1)d(w,Ez)1/2ν ] < 1/ν for (z, w) ∈ E(δν) (1.28)

for every N ∈ N and α ∈ N2n
0 such that N, |α| ≤ ν, where {LN} are the constants

from Lemma 1.4.5. Clearly, we can assume that δν < min{ρν , 1} and δν+1 < δν
for every ν ∈ N and that limν→∞ δν = 0. Let {εl} be decreasing so fast that

eϕ(z,w) ≤ (LN + 1)d(w, Ez)1/2ν for (z, w) ∈ Bn(0, N)∩
(
E(1) \ E(δν+1)) (1.29)

for every N ∈ N and ν ≥ N. This is always possible as is shown in the second
part of Lemma 1.4.6. Now fix N ∈ N and α ∈ N2n

0 . Then, since φ = ϕ+ ‖ · ‖2, we
conclude from (1.28), (1.29) and Step 2 that∣∣DαΦ(z, w)

∣∣ ≤ Pα,N(1/d(w, Ez)
)
e−1/eφ(z,w)

≤ Pα,N
(
1/d(w, Ez)

)
e−1/[eN

2
(LN+1)d(w,Ez)1/2ν ] < 1/ν

for every (z, w) ∈ Bn(0, N)∩ (E(δν) \E(δν+1)). Thus it follows from limν→∞ δν = 0
that lim(z,w)→(z0,w0)D

αΦ(z, w) = 0 for every (z0, w0) ∈ Bn(0, N) ∩ E . Since this
holds true for every N ∈ N and α ∈ N2n

0 , the proof is complete.

1.5 A Liouville theorem for Wermer type sets

In this section we prove a Liouville type theorem for plurisubharmonic functions
on E . We start by recalling some facts from potential theory, which will be needed
in the course of the proof, mainly to fix our notation: Let M be a Riemann
surface and let D ⊂⊂M , D 6= M , be a relatively compact open subset. For every
f : bD → R, the associated Perron function

HDf := sup{u : D → [−∞,∞) : u subharmonic
and lim sup

z→ζ
u(z) ≤ f(ζ) for every ζ ∈ bD}
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is harmonic in D. If z ∈ D is fixed, then the assignment z 7→ (HDf)(z) is a
positive linear functional on C0(bD). Hence there exists a unique Radon measure
ωD(z, ·) on the Borel σ-algebra of bD, called the harmonic measure with respect
to D and z, such that

(HDf)(z) =
∫
bD

f(ζ) dωD(z, ζ) (1.30)

for every f ∈ C0(bD). It turns out that (1.30) remains true for arbitrary bounded
Borel measurable functions on bD. In particular, it holds for characteristic
functions χE : bD → {0, 1} of Borel sets E ⊂ bD. Thus

ωD(z, E) = (HDχE)(z)

for every Borel set E ⊂ bD and z ∈ D, and ωD( · , E) : D → R is harmonic. If D
is regular with respect to the Dirichlet problem (this is always satisfied if bD is
smooth), and if f is continuous at ζ ∈ bD, then

lim
z→ζ

(HDf)(z) = f(ζ).

Theorem 1.5.1. Let ϕ be a plurisubharmonic function defined on an open neigh-
bourhood U ⊂ Cn of E. If ϕ is bounded from above, then ϕ ≡ C on E for some
C ∈ R.

Remark. Observe that the above theorem implies, in particular, that the set E
is connected. A more geometric proof of this fact was already given in Lemma
1.2.3.

Proof. We proceed in two steps.

Step 1. The theorem holds true in the case n = 2.

Proof. Since C2 \E is pseudoconvex, the function φ(z) := supw∈Ez ϕ(z, w), where
for every z ∈ C the set Ez := {w ∈ C : (z, w) ∈ E} denotes the fiber of E over
z, is subharmonic on C (see [Sl81], Theorem II). Moreover, by assumption on ϕ,
this function is bounded from above. Hence, by the classical Liouville theorem,
it is constant, i.e., there exists C ∈ [−∞,∞) such that φ ≡ C on C. Observe
that for C = −∞ this already proves our claim, hence without loss of generality
we can assume that C ∈ R. We want to show that ϕ ≡ C on E , so, in order to
get a contradiction, assume that ϕ 6≡ C on E . Clearly, in this case there exists
a point p̃ = (z̃, w̃) ∈ E such that ϕ(p̃) < C. By continuity of E , and by upper
semicontinuity of ϕ, we can assume that z̃ /∈ {al}∞l=1 and that for some positive
numbers δ, ρ > 0 we have ϕ < C − δ on the ball B2(p̃, ρ). Fix ν0 ∈ N such that
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∑∞
l=ν0+1 εl

√
|z − al| < ρ/3 for z ∈ ∆(z̃, ρ). Further, choose p0 = (z0, w0) ∈ E

such that ϕ(p0) = C, and a bounded smoothly bounded domain U ⊂ Cz such that
a1, a2, . . . , aν0 , z0 ∈ U , z̃ ∈ bU and bU ⊂ C \ {al}∞l=1. Now the general idea of the
proof is to show that the harmonic measure of E∩b(U×Cw)∩B2(p̃, ρ) with respect
to the set E ∩ (U × Cw) and the point p0 ∈ E ∩ (U × Cw) is positive, and hence,
since ϕ ≤ C on E and ϕ < C on B2(p̃, ρ), that ϕ(p0) < C. However, in order to
have a decent notion of harmonic measure available, we need to approximate E
by the analytic varieties Eν and, by performing desingularizations πν : Fν → Eν ,
translate the situation into a problem on Riemann surfaces Fν . The setup is as
follows:

For every ν ∈ N, let fν : Cν+1 → Cν be the holomorphic mapping

fν(z, w′1, . . . , w′ν) :=
(
w′21 − ε2

1(z − a1), . . . , w′2ν − ε2
ν(z − aν)

)
.

Then, using the fact that al 6= al′ for l 6= l′, one immediately sees that Fν :=
{fν = 0} is a one-dimensional complex submanifold of Cν+1. For every ν ≥ ν0,
define holomorphic projections

πν : Fν → Eν , πν(z, w′1, . . . , w′ν) :=
(
z,
∑ν

l=1
w′l
)

Pν : Fν → Fν0 , Pν(z, w′1, . . . , w′ν) := (z, w′1, . . . , w′ν0
).

Since (z, w) ∈ Eν if and only if w = ∑ν
l=1 εl

√
z − al, and since (z, w′1, . . . , w′ν) ∈ Fν

if and only if w′l = εl
√
z − al for every l ∈ Nν (with the obvious abuse of

notation), these maps are indeed well defined. Let Vν := Eν ∩ (U × Cw) and
Wν := Fν ∩ (U × Cνw′), ν ∈ N. Then Vν is an analytic subvariety of Eν with
boundary bVν = Eν ∩ b(U × Cw), and Wν is a relatively compact open subset
of Fν with boundary bWν = Fν ∩ b(U × Cνw′). Since bU ⊂ C \ {al}∞l=1, it is easy
to see that for every ν ∈ N the Riemann surface Fν intersects the corresponding
set b(U × Cνw′) transversally. In particular, the boundary of Wν is smooth and
hence Wν is regular with respect to the Dirichlet problem. Finally, for ν ≥ ν0
choose points qν = (z0, w

′(ν)) ∈Wν such that Pν(qν) = qν0 for every ν ≥ ν0 and
limν→∞ πν(qν) = p0.

We consider now the sets

X := π−1
ν0

(
bVν0 ∩B2(p̃, ρ/3)

)
and Xν := π−1

ν

(
bVν ∩B2(p̃, 2ρ/3)

)
, ν > ν0.

Since the complex curve Fν intersects b(U × Cνw′) transversally, and since Wν is
relatively compact in Fν , it follows that bWν is a compact smooth manifold of
real dimension 1 for every ν ≥ ν0. The mappings πν : Fν → Eν are continuous
and satisfy πν(bWν) = bVν , thus X is open in bWν0 and Xν is open in bWν for
every ν > ν0. Moreover, applying Sard’s theorem simultaneously to the smooth
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functions rν : bWν → R, rν := ‖πν( · ) − p̃‖2, ν ≥ ν0, we see that, after a slight
perturbation of ρ, we can assume that the relative boundary bbWν0

X of X in
bWν0 , and the relative boundaries bbWνXν of Xν in bWν , ν > ν0, consist of at
most finitely many points. Since one sees easily that the map Pν is finite, it then
follows that P−1

ν (bbWν0
X) ∪ bbWν

Xν ⊂ bWν is a finite set for every ν > ν0.
We come to the main point of the proof. We claim that P−1

ν (X) ⊂ Xν for every
ν > ν0. Indeed, let q = (z, w′1, . . . , w′ν) ∈ P−1

ν (X). Then (πν0 ◦ Pν)(q) ∈ bVν0 ⊂
b(U × Cw). In particular, z ∈ bU , i.e., πν(q) ∈ Eν ∩ b(U × Cw) = bVν . Moreover,
since

(
z,
∑ν0
l=1 w

′
l

)
= (πν0 ◦ Pν)(q) ∈ B2(p̃, ρ/3), and since |w′l| = εl

√
|z − al| for

every l ∈ N and ∑∞l=ν0+1 εl
√
|z − al| < ρ/3, we also have πν(q) =

(
z,
∑ν
l=1 w

′
l

)
∈

B2(p̃, 2ρ/3). This shows that P−1
ν (X) ⊂ Xν and, therefore, also that χXν ≥

χX ◦ Pν . It follows now from regularity of Wν and Wν0 with respect to the
Dirichlet problem, and from continuity of the functions χXν : bWν → {0, 1} and
χX : bWν0 → {0, 1} outside the finite sets bbWν

Xν and bbWν0
X, respectively, that

HWν
χXν ≥ (HWν0

χX) ◦ Pν . Evaluating this inequality at the point qν ∈Wν and
using Pν(qν) = qν0 , we see that

ωWν (qν , Xν) ≥ ωWν0
(qν0 , X) for ν > ν0. (1.31)

Since the condition a1, a2, . . . , aν0 ∈ U implies that Wν0 is connected, we obviously
have that

ωWν0
(qν0 , X) > 0.

Moreover, since for ν ∈ N large enough the function ϕ ◦ πν is well defined and
subharmonic near Wν ⊂ Fν , we also have that

ϕ(πν(qν)) ≤ HWν
(ϕ ◦ πν |bWν

)(qν) =
∫
bWν

(ϕ ◦ πν)(ζ) dωWν
(qν , ζ)

=
∫
Xν

(ϕ ◦ πν)(ζ) dωWν (qν , ζ) +
∫
bWν\Xν

(ϕ ◦ πν)(ζ) dωWν (qν , ζ).

Observe now that, since ϕ is upper semicontinuous, ϕ ≤ C on E and limν→∞ Vν =
E ∩ (U × Cw) in the Hausdorff metric, there exists a sequence {δν} of positive
numbers such that ϕ < C + δν on Vν and limν→∞ δν = 0. Moreover, ϕ < C − δ
on B2(p̃, ρ). Hence we get from the above estimate that

ϕ(πν(qν)) ≤ (C − δ)ωWν (qν , Xν) + (C + δν)
(
1− ωWν (qν , Xν)

)
,

and then, in view of (1.31), we conclude that for ν ≥ ν0

ϕ(πν(qν)) ≤ (C − δ)ωWν0
(qν0 , X) + (C + δν)

(
1− ωWν0

(qν0 , Xν0)
)
.

Since ωWν0
(qν0 , X) > 0, and since limν→∞ δν = 0, this implies that ϕ(πν(qν)) < C
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1.5 A Liouville theorem for Wermer type sets

for every ν ≥ ν′0 if ν′0 ≥ ν0 is large enough. Finally, there exists µ ≥ ν′0 such
that ‖p0 − πµ(qµ)‖ < ρ/3, hence applying the same reasoning as above to the
translated variety V ′µ := Vµ + (p0 − πµ(qµ)) for large enough µ we see that also
ϕ(p0) < C (here we use that Xµ + (p0 − πµ(qµ)) ∈ B2(p̃, ρ)). This contradicts the
fact that ϕ(p0) = C and completes the proof of Step 1.

Step 2. The theorem holds true in the case n > 2.

Proof. We first show that ϕ(z0, w) = ϕ(z0, w
′) for every z0 ∈ Cn−1 and every

w,w′ ∈ Ez0 . To do so, fix z0 ∈ Cn−1 and consider for every p ∈ Nn−1 the set

Ẽp :=
{

(z, w) ∈ Cn−1 × C : zj = z0,j for j ∈ Nn−1 \ {p}, w =
∞∑

l=1,[l]=p

εl
√
zp − al

}
.

Observe that for Ẽp(z0) := {w ∈ C : (z0, w) ∈ Ẽp} we have

Ez0 = Ẽ1(z0) + · · ·+ Ẽn−1(z0).

Thus for arbitrary fixed w,w′ ∈ Ez0 we can write

w=w[1] + · · ·+ w[n− 1]
w′=w′[1] + · · ·+ w′[n− 1]

, where w[p], w′[p] ∈ Ẽp(z0).

Define

wp := w′[1] + · · ·+ w′[p− 1] + w[p] + · · ·+ w[n− 1], p ∈ Nn,
w̃p := w′[1] + · · ·+ w′[p− 1] + w[p+ 1] + · · ·+ w[n− 1], p ∈ Nn−1,

and observe that

(z0, wp), (z0, wp+1) ∈ Ẽp + (0, w̃p) ⊂ E for every p ∈ Nn−1.

Since, up to a suitable embedding iz0,w̃p : C2
zp,w ↪→ Cn, the set Ẽp + (0, w̃p) is a

Wermer type set in C2, it follows from Step 1 that ϕ is constant on Ẽp + (0, w̃p),
and hence ϕ(z0, wp) = ϕ(z0, wp+1) for each p ∈ Nn−1. But w1 = w and wn = w′.
Thus ϕ(z0, w) = ϕ(z0, w

′), as claimed.

Now for every choice of p ∈ Nn−1 and ξ = (ξ′, ξ′′) ∈ Cp−1 × Cn−p−1 consider the
set

Ep,ξ := E ∩
[
({ξ′} × Czp × {ξ′′})× Cw

]
.

Observe that, up to embedding of C2
zp,w into Cn, each set Ep,ξ is of the form

Ep,ξ = ⋃
w∈W [Ep + (0, w)] for a Wermer type set Ep ⊂ C2

zp,w and a suitable set
W = W (p, ξ) ⊂ Cw. Since, by Step 1, the function ϕ is constant on Ep + (0, w)
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1 Construction of Wermer type sets in codimension 1

for every w ∈ W , and since we have already shown that the values of ϕ on
E depend only on the z-coordinate, it follows that ϕ ≡ Cp,ξ on Ep,ξ for some
constant Cp,ξ ∈ [−∞,∞). Now if (z, w) and (z′, w′) are arbitrary points of E , let
ξp := (z′1, . . . , z′p−1, zp+1, . . . , zn−1) for every p ∈ Nn−1 and observe that in the
sequence

(z, w) ∈ E1,ξ1 , E2,ξ2 , . . . , En−2,ξn−2 , En−1,ξn−1 3 (z′, w′)

we have Ej,ξj ∩ Ej+1,ξj+1 6= ∅ for every j ∈ Nn−2. It follows that Cp,ξp = Cp′,ξp′
for every p, p′ ∈ Nn−1, and thus ϕ(z, w) = ϕ(z′, w′). Since (z, w), (z′, w′) ∈ E were
arbitrary, the proof is complete. �
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2 Construction of Wermer type sets in
codimension k

We construct a class of unbounded Wermer type sets in Cn, which are limits in
the Hausdorff metric of sequences of algebraic varities of codimension k. This
generalizes the constructions from Chapter 1.

Section 2.1 describes the general method of construction, and in Section 2.2 we
extend the results from Chapter 1 to the new setting of codimension k. Section 2.3
contains the main results of this chapter. Namely, we investigate pseudoconcavity
properties of the generalized Wermer type sets E ⊂ Cn and we prove a lemma on
degeneration of plurisubharmonic functions along E .

2.1 The general construction

Let (z, w) = (z1, . . . , zn−k, w1, . . . , wk) denote the coordinates in Cn and for each
ν ∈ N let Nν := {1, 2, . . . , ν}. For each (p, q) ∈ Nn−k × Nk, fix an everywhere
dense subset {ap,ql }∞l=1 of C such that ap,ql 6= ap,q

′

l′ if (q, l) 6= (q′, l′). Further, fix a
bijection Φ := ([ · ], 〈 · 〉, φ) : N→ Nn−k×Nk×N and define a sequence {al}∞l=1 in C
by letting al := a

[l],〈l〉
φ(l) . Moreover, let {εl}∞l=1 be a decreasing sequence of positive

numbers converging to zero that we consider to be fixed, but that will be further
specified later on. For every ν ∈ N and q ∈ Nk, we define sets Eν,q, Eν ⊂ Cn as

Eν,q :=
{

(z, w) ∈ Cn : wq =
∑
l∈L∗,qν

εl
√
z[l] − al

}
,

Eν :=
{

(z, w) ∈ Cn : w =
( ∑
l∈L∗,1ν

εl
√
z[l] − al , . . . ,

∑
l∈L∗,kν

εl
√
z[l] − al

)}
,

where L∗,qν := {l ∈ Nν : 〈l〉 = q}. Observe that Eν = ⋂k
q=1Eν,q = {(z, w) ∈

Cn : w = ∑ν
l=1 εle〈l〉

√
z[l] − al}, where for every q ∈ Nk we denote by eq :=

(0, . . . , 1, . . . , 0) the q-th unit vector in Ck. Note further that ∑ν
l=1 εle〈l〉

√
z[l] − al

takes 2ν values at each z ∈ Cn−k (counted with multiplicities). Thus there exist
single-valued maps w(ν)

1 , . . . , w
(ν)
2ν : Cn−kz → Ckw such that ∑ν

l=1 εle〈l〉
√
z[l] − al =
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2 Construction of Wermer type sets in codimension k

{
w

(ν)
j (z) : j = 1, . . . , 2ν

}
for every z ∈ Cn−k. For every ν ∈ N and q ∈ Nk, define

maps Pν,q : Cn → C, Pν : Cn → Ck as

Pν,q(z, w) :=
(
wq − w(ν)

1 (z)q
)
· · ·
(
wq − w(ν)

2ν (z)q
)
,

Pν(z, w) :=
(
Pν,1(z, w), . . . , Pν,k(z, w)

)
,

where for every j ∈ N2ν we denote by w(ν)
j (z)q the q-th coordinate of w(ν)

j (z) ∈ Ck.
Observe that Eν,q = {Pν,q = 0} and Eν = {Pν = 0}. As in Lemma 1.1.1, we
see that each Pν,q is a holomorphic polynomial. Moreover, one easily proves the
following lemma.

Lemma 2.1.1. If {εl} is decreasing fast enough, then for every R > 0 the se-
quences {Eν,q ∩ B̄n(0, R)}∞ν=1 and {Eν ∩ B̄n(0, R)}∞ν=1 converge in the Haus-
dorff metric to closed sets E(R),q and E(R), q ∈ Nk, respectively. The sets
Eq := ⋃

R>0 E(R),q and E := ⋃
R>0 E(R) are unbounded closed subsets of Cn and

E = ⋂k
q=1 Eq. Moreover, Ez := {w ∈ Ck : (z, w) ∈ E} is compact for every

z ∈ Cn−k.

Proof. This follows immediately from Lemma 1.1.2 and the equality Eν =⋂k
q=1Eν,q. �

2.2 Generalization of results to the case of
codimension k

Lemma 2.2.1. If {εl} is decreasing fast enough, then E contains no analytic
variety of positive dimension.

Proof. By Lemma 1.3.6, we can choose {εl} such that πq(E) = Eq ∩ (Cn−kz ×Cwq )
contains no analytic variety of positive dimension for every q ∈ Nk, where πq : Cn →
Cn−kz × Cwq is the canonical projection. Thus for every analytic set A ⊂ E all
projections πq(A), q = 1, . . . , k, consist of only one point, i.e., A = {P} for some
P ∈ E . �

Lemma 2.2.2. If {εl} is decreasing fast enough, then for every q ∈ Nk the
sequence { 1

2ν log|Pν,q|}∞ν=1 converges uniformly on compact subsets of Cn \ Eq to a
pluriharmonic function ϕq : Cn \ Eq → R and lim(z,w)→(z0,w0) ϕq(z, w) = −∞ for
every (z0, w0) ∈ Eq. In particular, ϕq has a unique extension to a plurisubharmonic
function on Cn and the set Eq is complete pluripolar.

Proof. See Lemma 1.4.3. �
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2.2 Generalization of results to the case of codimension k

Since E = ⋂k
q=1 Eq, we conclude from Lemma 2.2.2 that the set E is complete

pluripolar. Moreover, it follows from the results in Section 1.4 that

Φ(z, w) := Λ(ϕ1(z, w) + ‖z‖2 + |w1|2) + · · ·+ Λ(ϕk(z, w) + ‖z‖2 + |wk|2)

is a smooth plurisubharmonic function Φ: Cn → [0,∞) such that Φ is strictly
plurisubharmonic outside E = {Φ = 0}; here Λ: [−∞,∞)→ [0,∞) is any smooth,
strictly increasing and strictly convex function such that Λ(x) = e−1/ex for small
values of x. Also, since it is easy to see that Lemma 1.4.2 remains true in the more
general setting where k ≥ 1, the same arguments as in the proof of Corollary 1.4.2
show that ¤�bBn(0, R) ∩ E = B̄n(0, R) ∩ E for every R > 0, where ¤�bBn(0, R) ∩ E
denotes the polynomial hull of bBn(0, R) ∩ E . (The last assertion can also be
seen to follow from complete pluripolarity and 1-pseudoconcavity of the set E
(for 1-pseudoconcavity of E , see Lemma 2.3.1 below). We do not give the details
here.)

As before, the set E defines a map E from the metric space Cn−k of all (n− k)-
tupels of complex numbers with the standard euclidean metric d‖·‖ to the metric
space F(Ck) of all nonempty compact subsets of Ck with the Hausdorff metric dH ,
namely E : (Cn−1, d‖·‖)→ (F(C), dH), E(z) := Ez := {w ∈ Ck : (z, w) ∈ E}.

Lemma 2.2.3. There exists a constant M > 0 such that the map E is (M, 1/2)-
Hölder continuous.

Proof. The proof is essentially the same as in Lemma 1.2.1. �

Lemma 2.2.4. The set E is connected.

Proof. The proof is essentially the same as in Lemma 1.2.3. �

Theorem 2.2.1. Let ϕ be a continuous plurisubharmonic function defined on an
open neighbourhood U ⊂ Cn of E. If ϕ is bounded from above, then ϕ ≡ C on E
for some C ∈ R.

Proof. Using the same argument as in Step 2 of the proof of Theorem 1.5.1, we can
restrict ourselves to the case k = n− 1. Choose an increasing sequence {Bν}∞ν=ν0
of open sets Bν ⊂ C such that ⋃∞ν=ν0

Bν = C and such that Eν ∩(Bν×Cn−1) ⊂ U
for every ν ≥ ν0. Moreover, define functions φν : Bν → R, ν ≥ ν0, as φν(z) :=
max1≤j≤2ν ϕ(z, w(ν)

j (z)) and let φ(z) := supw∈E(z) ϕ(z, w). Since on compact
subsets of Cn the sequence {Eν} converges in the Hausdorff metric to E , and since
ϕ is continuous, one easily sees that limν→∞ φν = φ uniformly on compact subsets
of C. Moreover, every function ϕν is subharmonic, since on each convex set in
the complement of the polar set {a1, . . . , aν} the functions w(ν)

1 , . . . , w
(ν)
2ν can be
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2 Construction of Wermer type sets in codimension k

chosen to be holomorphic. In particular, φ is a subharmonic function on C that is
bounded from above, hence, in view of Liouville’s theorem, φ ≡ C for some C ∈ R.
The proof can now be completed in the same way as in Step 1 of Theorem 1.5.1.�

Remark. In the two-dimensional situation, which is considered in Step 1 of the
proof of Theorem 1.5.1, the subharmonicity of the function φ was obtained by
using Theorem II from [Sl81]. A more general version of this result, which also
works for the case n > 2, was claimed in Theorem 2.3 of [Sl83], but since it does
not have a proof, and since we were not able to find a reference with the proof,
we have included the above argument. Observe that if we replace our argument
by the result from [Sl83], then we can drop the assumption on continuity of the
function ϕ.

2.3 Pseudoconcavity and degeneration of
plurisubharmonic functions

We briefly recall the notion of q-pseudoconcavity: Let ∆n := {z ∈ Cn : ‖z‖∞ < 1},
where ‖z‖∞ = max1≤j≤n|zj |. An (n− q, q) Hartogs figure H is a set of the form

H =
{

(ζ, η) ∈ ∆n−q ×∆q : ‖ζ‖∞ > r1 or ‖η‖∞ < r2
}

where 0 < r1, r2 < 1, and we write Ĥ := ∆n. A domain Ω in a complex manifold
M, dimCM =: n, is called q-pseudoconvex inM, q = 1, . . . , n−1, if it satisfies the
Kontinuitätssatz with respect to (n− q) polydiscs inM, i.e., if for every (n− q, q)
Hartogs figure and every injective holomorphic mapping Φ: Ĥ →M such that
Φ(H) ⊂ Ω we have Φ(Ĥ) ⊂ Ω (for details see [Rot55]; a good presentation of
this topic can also be found in [Rie67]). In particular, (n− 1)-pseudoconvexity
is usual pseudoconvexity, and every q-pseudoconvex domain is q′-pseudoconvex
for every q′ < q. A closed set A ⊂M is called q-pseudoconcave in M if M\ A
is q-pseudoconvex in M. For technical reasons, the last definition is extended to
the cases q ∈ {0, n}, by insisting that every closed set A is 0-pseudoconcave in
M and that A is n-pseudoconcave in M if and only if A is a union of connected
components ofM. (The above definition of q-pseudoconvexity is due to Rothstein,
see [Rot55]. Observe that the definition of strict q-pseudoconvexity that was
introduced in the smooth case by Andreotti-Grauert in [AG62] and that we will
use in Section 3.1 below is indexed differently with respect to q when compared to
the definition of Rothstein. Throughout this thesis q-pseudoconcavity will always
be understood in the sense of Rothstein.)
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2.3 Pseudoconcavity and degeneration of plurisubharmonic functions

Before we formulate the statements of this section, we want to point out a series
of results, which indicate that it is reasonable to interpret q-pseudoconcavity as a
generalization of q-dimensional analytic structure: Let U ⊂ Cn be open.

Result 1. Every q-dimensional analytic variety A ⊂ U is q-pseudoconcave in
U .

This follows from Theorem 4.2, Theorem 4.3 and Proposition 5.2 in [Sl86]. (If
A is a complete intersection, then an easy way to avoid the reference to [Sl86]
is the following: Assume, to get a contradiction, that A is not q-pseudoconcave.
Then there exists an (n − q, q) Hartogs figure H = {(ζ, η) ∈ ∆n−q × ∆q :
‖ζ‖∞ > r1 or ‖η‖∞ < r2} and an injective holomorphic mapping Φ: Ĥ → U

such that Φ(H) ⊂ U \A but Φ(Ĥ)∩A 6= ∅. Let P : U → Cn−q be holomorphic
sucht that A = {P = 0}. Then for a fixed regular value c ∈ Cn−q of P close
enough to zero, and after possibly shrinking H, the complex q-dimensional
manifold N := {P = c} satisfies Φ(H̄) ⊂ U \N and Φ(Ĥ)∩N 6= ∅. Thus, for
ε > 0 small enough, the function ϕ := (− log‖η‖+ε(‖ζ‖2 +‖η‖2))◦Φ−1 attains
a maximum along N ∩ Φ(Ĥ) which contradicts the fact that the Levi form of
ϕ|N∩Φ(Ĥ) has at least one positive eigenvalue at every point of N ∩ Φ(Ĥ).)

Moreover, let {Aν} be a sequence of relatively closed subsets Aν ⊂ U that
converges in the Hausdorff metric to a relatively closed subset A ⊂ U (i.e.,
limν→∞Aν ∩K = A∩K in the Hausdorff metric for every compact set K ⊂ U).

Result 2. Assume that each set Aν is a q-dimensional analytic variety. Then
in general A is not an analytic variety.

A counterexample is provided by the existence of Wermer type sets. However,
if the 2q-dimensional Hausdorff measure of the sets Aν , ν ∈ N, is locally
uniformly bounded, then A is a q-dimensional analytic variety, see Theorem 1
in [Bi64].

Result 3. Assume that each set Aν is q-pseudoconcave. Then A is q-
pseudoconcave.

This can be seen, for example, as in the proof of Lemma 2.3.1 below.

We will further stress the viewpoint that q-pseudoconcave sets generalize q-
dimensional analytic varieties in Section 3.3 below. For the moment, we only
mention that Theorem 1.3 in [Sl89] also states a partial result on approximation in
the Hausdorff metric of q-pseudoconcave sets by q-dimensional analytic varieties.

We now formulate the results of this section: For every closed set A ⊂ Cn, the
set of all smooth plurisubharmonic functions which are defined near A and which
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2 Construction of Wermer type sets in codimension k

are constant on A will be denoted by T (A). If Aq ⊂ Cn is an analytic variety of
dimension q, then clearly

max
{

0 ≤ p ≤ n : rank Lev(Φ) ≤ n− p along Aq for every Φ ∈ T (Aq)
}

= q.

We will show that for every q = 1, . . . , n− 1 there exists a q-pseudoconcave set
Aq ⊂ Cn such that

max
{

0 ≤ p ≤ n : rank Lev(Φ) ≤ n− p along Aq for every Φ ∈ T (Aq)
}

= n.

The general idea of our construction is as follows: The set E ⊂ Cn−kz × Ckw is
(n− k)-pseudoconcave but not (n− k+ 1)-pseudoconcave, since it is essentially an
(n− k)-dimensional object. On the other hand, despite possibly large codimension
of E in Cn, for every (p, q) ∈ Nn−k × Nk, there is an everywhere dense sequence
of root branches along the zp-axis originating in wq-direction. This geometric
property will enforce the Levi form of every Φ ∈ T (E) to vanish along all coordinate
directions at every point of E . Letting k vary between 1 and n− 1, this proves our
claim. The above considerations are made precise by the following two lemmas.

Lemma 2.3.1. If {εl} is decreasing fast enough, then E ⊂ Cn−kz ×Ckw is (n− k)-
pseudoconcave but not (n− k + 1)-pseudoconcave.

Proof. Assume, to get a contradiction, that E is not (n − k)-pseudoconcave.
Then there exists an (k, n− k) Hartogs figure H = {(ζ, η) ∈ ∆k ×∆n−k : ‖ζ‖∞ >

r1 or ‖η‖∞ < r2} and an injective holomorphic mapping Φ: Ĥ → Cn such that
Φ(H) ⊂ Cn \ E but Φ(Ĥ) ∩ E 6= ∅. After possibly shrinking H, one can easily
see that for ν ∈ N large enough the pure (n − k)-dimensional varieties Eν will
satisfy the conditions Φ(H̄) ⊂ Cn \Eν and Φ(Ĥ)∩Eν 6= ∅. Then V := Φ(Ĥ) is a
relatively compact subset of Cn such that the (n−k−1)-plurisubharmonic function
ϕ := − log‖η‖◦Φ−1 satisfies maxEν∩V ϕ > maxEν∩bV ϕ. This contradicts the local
maximum property of (n−k−1)-plurisubharmonic functions on (n−k)-dimensional
analytic varieties, see Corollary 5.3 in [Sl86].

To see that E is not (n − k + 1)-pseudoconcave, let z0 ∈ Cn−k be an arbitrary
fixed point and let co Ez0 denote the convex hull of Ez0 . We claim that the set
X := b(co Ez0)∩Ez0 is nonempty. Indeed, by compactness of Ez0 , we conclude that
co Ez0 is compact too, and thus it follows easily from Minkowski’s theorem that
X contains the nonempty set of extreme points of co Ez0 . Hence we can find a
supporting real hyperplane L ⊂ Ckw for Ez0 that contains at least one point w0 ∈ Ez0 .
Since L contains a (k − 1)-dimensional complex subspace, one now constructs
easily an (k − 1, n − (k − 1)) Hartogs figure H = {(ζ, η) ∈ ∆k−1 × ∆n−(k−1) :
‖ζ‖∞ > r1 or ‖η‖∞ < r2} and an injective holomorphic mapping Φ: Ĥ → Cn
such that Φ(H) ⊂ Cn \ E but Φ(Ĥ) ∩ E 6= ∅. �
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2.3 Pseudoconcavity and degeneration of plurisubharmonic functions

Lemma 2.3.2. If {εl} is decreasing fast enough, then Lev(Φ) ≡ 0 on E for every
Φ ∈ T (E).

Proof. First we observe that it suffices to prove the claim in the case k = n− 1.
Indeed, for every p ∈ Nn−k and every ξ = (ξ′, ξ′′) ∈ Cp−1 × Cn−k−p, the set

Ep,ξ := E ∩
[
({ξ′} × Czp × {ξ′′})× Ckw

]
is, up to inclusion of Czp ×Ckw into Cn, of the form Ep,ξ = ⋃w∈W [Fp + (0, w)] for
a Wermer type set Fp ⊂ Czp ×Ckw and a suitable set W = W (p, ξ) ⊂ Ck. Thus it
is enough to choose {εl} in such a way that the assertion of the lemma holds true
simultaneously for all sets F1, . . . ,Fn−k.

Let k = n− 1 and fix Φ ∈ T (E). By assumption, there exists a constant C ∈ R
such that Φ ≡ C on E . Now let {Bν}∞ν=ν0

be an exhaustion of C by open sets
Bν ⊂ C such that Eν ∩ (Bν × Cn−1) ⊂ Ω for every ν ≥ ν0, and consider the
following sequence of functions ϕν : Bν → R,

ϕν(z) := 1
2ν

2ν∑
j=1

Φ
(
z, w

(ν)
j (z)

)
.

Since on compact subsets of Cn the sequence {Eν} converges in the Hausdorff
metric to E , one can easily see that {ϕν} converges locally uniformly to the
function ϕ ≡ C. Now recall that for fixed z0 ∈ C and for ν ≥ ν0 large enough the
Poisson-Jensen formula for ϕν on ∆(z0, 1) states that

1
2π

∫ 2π

0
ϕν(z0 + eiθ) dθ − ϕν(z0) = − 1

2π

∫
∆(z0,1)

log|z − z0|∆ϕν(z) dµ.

Assume, to get a contradiction, that we can find ν0 ∈ N, a positive constant L > 0
and a subset M ⊂ ∆(z0, 1) of positive Lebesgue measure such that ∆ϕν > L on M
for every ν ≥ ν0. Then from the above formula and locally uniform convergence
of {ϕν} we get that

0 = C − C = 1
2π

∫ 2π

0
ϕ(z0 + eiθ) dθ − ϕ(z0)

= lim
ν→∞

− 1
2π

∫
∆(z0,1)

log|z − z0|∆ϕν(z) dµ > 0,
(2.1)

which is a contradiction. We will use this observation to show that for a suitable
choice of {εl} the Levi form of every Φ ∈ T (E) has to vanish identically on E .

We first specify the choice of the sequence {εl}. For every ν ∈ N, let RegEν ⊂
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2 Construction of Wermer type sets in codimension k

{(z, w) ∈ Eν : z 6= al for every l ∈ Nν} denote the regular part of Eν and for every
(z, w) ∈ RegEν let λν(z, w) ⊂ Cn be the complex 1-dimensional subspace that is
tangent to Eν at (z, w). Further, for every q ∈ Nn−1 and every α ≥ 1, let Γq(α) ⊂
Cn denote the closed cone Γq(α) := {(z, w) ∈ Cn : |wq| ≥ (1 − 1/α)‖(z, w)‖}.
Since λν(z, w) converges in CPn−1 to the w〈l〉-axis for z → al (here we use the
fact that al 6= al′ for l 6= l′), it is then easy to see that we can choose inductively
the sequence {εl}∞l=1 and a second sequence {δl}∞l=1 of positive numbers both
converging to zero so fast that the following assertion is satisfied for every ν ∈ N:

for each l ∈ Nν one has that λν(z, w) ⊂ Γ〈l〉
(
l + 1−∑ν

l′=l+1 1/2l′
)

for (z, w) ∈
[(

∆(al, δl) \
⋃ν
l′=l+1 ∆(al′ , δl/2l

′+1)
)
× Cn−1] ∩ RegEν .

(Iν)

Indeed, for the case ν = 1 fix arbitrary ε1 > 0 and then choose δ1 > 0 so
small that λ1(z, w) ⊂ Γ〈1〉(2) for every (z, w) ∈ [∆(a1, δ1) × Cn−1] ∩ RegE1.
Assume now that ε1, . . . , εν and δ1, . . . , δν are already chosen in such a way that
(Iν) holds true. Since Eν and Eν+1, viewed as set-valued functions over Cz,
differ only by the term εν+1eν+1

√
z − aν+1, we can now choose εν+1 > 0 so

small that λν+1(z, w) ⊂ Γ〈l〉
(
l + 1−∑ν+1

l′=l+1 1/2l′
)

for every l ∈ Nν and (z, w) ∈[(
∆(al, δl)\

⋃ν+1
l′=l+1 ∆(al′ , δl/2l

′+1)
)
×Cn−1]∩RegEν+1 (observe that RegEν+1 ⊂

{(z, w) ∈ C×Cn−1 : ∃(z, w′) ∈ RegEν such that w = w′+ εν+1eν+1
√
z − aν+1}).

With εν+1 now being fixed we can then choose δν+1 > 0 so small that λν+1(z, w) ⊂
Γ〈ν+1〉(ν + 2) for every (z, w) ∈ [∆(aν+1, δν+1) × Cn−1] ∩ RegEν+1. But then
(Iν+1) is satisfied which completes our induction on ν. Hence for M ′l := ∆(al, δl) \⋃∞
l′=l+1 ∆(al′ , δl/2l

′+1) we now have

λν+µ(z, w) ⊂ Γ〈ν〉(ν) for every µ, ν ≥ 1 and (z, w) ∈ (M ′ν × Cn−1) ∩ RegEν+µ,
(2.2)

and M ′ν ⊂ C has positive Lebesgue measure. Moreover, as above, we choose {εl}
in such a way that εl

√
|z − al| < 1/2l on ∆(0, l) for every l ∈ N.

We now want to show that with the above choice of the sequence {εl} the Levi form
Lev(Φ)((z0, w0), · ) vanishes on Cwq for every Φ ∈ T (E), (z0, w0) ∈ E and q ∈ Nn−1.
Indeed, assume, to get a contradiction, that Lev(Φ)((z0, w0), · ) > 0 on Cwq for
some fixed data Φ ∈ T (E), (z0, w0) ∈ E and q ∈ Nn−1. By smoothness of Φ, we can
then find positive constants r, α, L̃ > 0 such that Lev(Φ)((z, w), ξ) ≥ L̃ · ‖ξ‖2 for
every (z, w) ∈ Bn((z0, w0), r) and every ξ ∈ Γq(α). For every ν, µ ∈ N, j ∈ N2ν and
z ∈ C let {w(µ)

1 (ν, j; z), . . . , w(µ)
2µ (ν, j; z)} = (z, w(ν)

j (z)) + ∑ν+µ
l=ν+1 εle〈l〉

√
z − al.

Since {εl} is converging to zero so fast that (2.2) holds true, it is easy to see
that we can find ν ∈ N, 〈ν〉 = q, and j0 ∈ N2ν such that the graphs of the
functions w(µ)

1 (ν, j0; · ), . . . , w(µ)
2µ (ν, j0; · ) over M ′ν are contained in Bn((z0, w0), r)

and such that λν+µ(z, w(µ)
k (ν, j0; z)) ⊂ Γq(α) for every µ ∈ N, k ∈ N2µ and

z ∈M ′ν \ π(SingEν+µ), where π : Cn → Cz is the canonical projection. Now if we
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2.3 Pseudoconcavity and degeneration of plurisubharmonic functions

define the functions ϕν as before, then we get

∆ϕν+µ(z) = 1
2ν+µ

2ν∑
j=1

2µ∑
k=1

∆z

[
Φ(z, w(µ)

k (ν, j; z))
]

≥ 1
2ν+µ

2µ∑
k=1

∆z

[
Φ(z, w(µ)

k (ν, j0; z))
]
≥ L̃

2ν =: L

(2.3)

for every µ ∈ N and z ∈ M ′ν \ π(SingEν+µ), since on every convex subset of
C \ π(SingEν+µ) we can assume the functions w(µ)

k (ν, j0; · ) to be holomorphic.
But it is clear from the construction of the sequence {Eν+µ} that each of the sets
π(SingEν+µ) ⊂ C has Lebesgue measure zero. Hence the Lebesgue measure of
Mν := M ′ν \

⋃∞
µ=1 π(SingEν+µ) is positive, and we have already seen in (2.1) that

this leads to a contradiction.

We already know that for every Φ ∈ T (E) and (z0, w0) ∈ E the Levi form
Lev(Φ)((z0, w0), · ) vanishes on Cn−1

w . Assume, to get a contradiction, that there
exist Φ ∈ T (E) and (z0, w0) ∈ E such that the Levi form Lev(Φ)((z0, w0), · )
is not identically zero. Then Lev(Φ)((z0, w0), ξ) = c̃ · |ξz|2 for some constant
c̃, where ξ = (ξz, ξw) ∈ Cz × Cn−1

w . Hence, by smoothness of Φ, we can find
r, c > 0 such that Lev(Φ)((z, w), ξ) ≥ c · |ξz|2 for every (z, w) ∈ Bn((z0, w0), r).
Thus whenever f is a holomorphic mapping from an open subset of ∆(z0, r) to
Cn−1
w such that its graph is completely contained in Bn((z0, w0), r), we have

∆z[Φ(z, f(z))] ≥ c. Then we can argue as in (2.3) to conclude that there exists
ν ∈ N such that ∆ϕν+µ(z) ≥ c/2ν =: L for every µ ∈ N and z ∈ Mν , where
ϕν+µ(z) := 1

2ν+µ
∑2ν+µ

j=1 Φ(z, w(ν+µ)
j (z)) as before. In view of (2.1), this again

leads to a contradiction. �
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Core sets of unbounded domains
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3 Global plurisubharmonic defining
functions and the core

We prove the existence of global defining functions for unbounded strictly pseudo-
convex domains and we investigate properties of the core.

In Section 3.1 we prove the Main Theorem on existence of global plurisubharmonic
defining functions for strictly pseudoconvex domains Ω with smooth boundary
in arbitrary complex manifolds. In the same context we also prove a theorem
that guarantees the existence of smooth plurisubharmonic functions defined in
a neighbourhood of Ω̄ which are strictly plurisubharmonic near bΩ and have
arbitrary bounded from below and smooth boundary data. Analogous results
are shown for strictly q-pseudoconvex domains in complex manifolds and strictly
hyper-q-pseudoconvex domains in complex spaces. Moreover, we show that every
strictly pseudoconvex domain in a complex manifold (not necessarily relatively
compact or with smooth boundary) admits a neighbourhood basis consisting
of strictly pseudoconvex domains with smooth boundary. In Section 3.2 we
construct examples of unbounded domains Ω ⊂ Cn such that the core c(Ω) is
nonempty, and we investigate for which domains the core can have the special
product structure c(Ω) = E × Ck. In Section 3.3 we show that c(Ω) is always
1-pseudoconcave in Ω, and we construct an example of a strictly pseudoconvex
domain Ω ⊂ Cn such that c(Ω) is nonempty and contains no analytic variety of
positive dimension. Section 3.4 is devoted to the study of Liouville type properties
of the core. Finally, we construct examples of higher order cores with arbitrarily
prescribed pseudoconcavity properties in Section 3.5.

3.1 Existence of global plurisubharmonic defining
functions

3.1.1 Existence results in complex manifolds

In this section we prove the existence of global defining functions in the setting
of complex manifolds. Our focus will lie on strictly pseudoconvex domains, but
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3 Global plurisubharmonic defining functions and the core

when it is possible we formulate the results in the more general context of strictly
q-pseudoconvex domains. We also discuss to which extent smoothness of bΩ is
needed in our results. We start by recalling some definitions and by fixing our
notation.

Let M be a complex manifold of complex dimension n := dimCM. The holomor-
phic tangent space to M at z ∈ M is denoted by Tz(M), and we write T (M)
for the holomorphic tangent bundle of M. If ϕ : M→ R is a smooth function,
then we define (∂ϕ)z, (∂̄ϕ)z : Tz(M)→ C and Lev(ϕ)(z, · ) : Tz(M)→ R in local
holomorphic coordinates h = (z1, . . . , zn) by

(∂ϕ)z(ξ) :=
n∑
j=1

∂(ϕ ◦ h−1)
∂zj

(h(z))ξj , (∂̄ϕ)z(ξ) :=
n∑
j=1

∂(ϕ ◦ h−1)
∂z̄j

(h(z))ξ̄j ,

Lev(ϕ)(z, ξ) :=
n∑

j,k=1

∂2(ϕ ◦ h−1)
∂zj∂z̄k

(h(z))ξj ξ̄k,

where ξ = ∑n
j=1 ξj (∂/∂zj). Moreover, (dϕ)z(ξ) := (∂ϕ)z(ξ)+(∂̄ϕ)z(ξ) : Tz(M)→

R denotes the real differential of ϕ in z. Further, we write Hz(ϕ) for the complex
subspace of Tz(M) defined by Hz(ϕ) := {ξ ∈ Tz(M) : (∂ϕ)z(ξ) = 0}. If h is a
hermitian metric on M, then for every z ∈ M we denote by ‖ · ‖hz and ‖ · ‖h∗z
the induced norms on Tz(M) and on the dual space T ∗z (M), respectively. If the
context is clear, then we sometimes omit the index z and simply write ‖ · ‖h and
‖ · ‖h∗ . (Throughout this article the term “smooth” always means “C∞-smooth”.
Of course, the above definitions of the various differentials and of the Levi form
are possible for C1-smooth and C2-smooth functions, respectively.)

An upper semicontinuous function ϕ : M→ [−∞,∞) is called plurisubharmonic
if for every holomorphic mapping f : G→M of an open set G ⊂ C into M the
composition ϕ ◦ f is subharmonic on G. It is called strictly plurisubharmonic if for
every compactly supported smooth function θ : M→ R there exists some number
ε0 > 0 such that ϕ + εθ is plurisubharmonic whenever |ε| ≤ ε0. If the function
ϕ is C2-smooth, then it is (strictly) plurisubharmonic if and only if Lev(ϕ)(z, · )
has precisely n (positive) nonnegative eigenvalues for every z ∈ M. An open
set Ω ⊂ M is called strictly pseudoconvex at z ∈ bΩ if there exist an open
neighbourhood Uz ⊂M of z and a continuous strictly plurisubharmonic function
ϕz : Uz → R such that Ω∩Uz = {ϕz < 0}. It is called Cs-smooth at z ∈ bΩ, s ≥ 1,
if there exist an open neighbourhood Uz ⊂ M of z and a Cs-smooth function
ϕ̃z : Uz → R such that Ω ∩ Uz = {ϕ̃z < 0} and dϕ̃z 6= 0 on bΩ ∩ Uz. The open set
Ω is called strictly pseudoconvex or Cs-smooth if it is strictly pseudoconvex or
Cs-smooth at each boundary point, respectively.

Let q ∈ N0 := {0} ∪ N. An upper semicontinuous function ϕ : M→ [−∞,∞) is
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3.1 Existence of global plurisubharmonic defining functions

called q-plurisubharmonic if for every holomorphic mapping f : G→M of an open
set G ⊂ Cq+1 intoM the composition ϕ ◦ f is subpluriharmonic on G. It is called
strictly q-plurisubharmonic if for every compactly supported smooth function
θ : M→ R there exists some number ε0 > 0 such that ϕ+εθ is q-plurisubharmonic
whenever |ε| ≤ ε0. Observe that q-plurisubharmonic functions are also (q + 1)-
plurisubharmonic for every q ∈ N0. Moreover, the 0-plurisubharmonic functions
are precisely the plurisubharmonic ones, and a function is q-plurisubharmonic for
q ≥ n if and only if it is upper semicontinuous. If the function ϕ is C2-smooth,
then it is (strictly) q-plurisubharmonic if and only if Lev(ϕ)(z, · ) has at least n−q
(positive) nonnegative eigenvalues for every z ∈M. An open set Ω ⊂M is called
strictly q-pseudoconvex at z ∈ bΩ, q ≥ 1, if there exist an open neighbourhood
Uz ⊂M of z and a C2-smooth strictly q-plurisubharmonic function ϕz : Uz → R
such that Ω ∩ Uz = {ϕz < 0}. It is called strictly 0-pseudoconvex at z ∈ bΩ, if it
is strictly pseudoconvex at z. Observe that Ω is strictly q-pseudoconvex at z ∈ bΩ
for every q ≥ n− 1, provided that Ω is C2-smooth at z. The open set Ω is called
strictly q-pseudoconvex if it is strictly q-pseudoconvex at each boundary point.

Before we start our studies on global defining functions, we want to mention that it
is not completely trivial to see that a strictly pseudoconvex domain with C2-smooth
boundary can locally near each boundary point be defined by a C2-smooth strictly
plurisubharmonic function. Since we were not able to find a proof of this fact in
the literature, we state here the following proposition.

Proposition 3.1.1. LetM be a complex manifold, let Ω ⊂M be open and let bΩ
be Cs-smooth at z0 ∈ bΩ, s ≥ 2. Assume that there exist an open neighbourhood U ⊂
M of z0 and a continuous strictly plurisubharmonic function ψ : U → [−∞,∞)
such that Ω ∩ U = {ψ < 0}. Then, after possibly shrinking U , there exists a Cs-
smooth strictly plurisubharmonic function ϕ : U → R such that Ω ∩ U = {ϕ < 0}
and dϕ 6= 0 on bΩ ∩ U .

Proof. Observe that the statement is trivial in the case dimCM = 1. Thus
we may assume that n := dimCM ≥ 2. By assumption, we can find an open
neighbourhood U ⊂ M of z0, a strictly plurisubharmonic function ψ : U →
[−∞,∞) such that Ω ∩ U = {ψ < 0} and a Cs-smooth function ϕ̃ : U → R such
that Ω ∩ U = {ϕ̃ < 0} and dϕ̃ 6= 0 on bΩ ∩ U . After possibly shrinking U , and
after introducing suitable holomorphic coordinates around z0, we can assume that
U ⊂⊂ Cn, z0 = 0, ψ and ϕ̃ are defined in a neighbourhood of Ū and the Taylor
expansion of ϕ̃ around 0 has the form

ϕ̃(ξ) = Re ξ1 + Lev(ϕ̃)(0, ξ) + o(‖ξ‖2). (3.1)

For every z ∈ U , let dist(z, bΩ) := infz′∈bΩ∩U‖z−z′‖ and for ζ ∈ bΩ∩U let NΩ(ζ)
be the outward unit normal vector to bΩ at ζ.
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3 Global plurisubharmonic defining functions and the core

We claim that ψ ≡ 0 on bΩ ∩ U . Indeed, for every plurisubharmonic function
u defined near some point ζ ∈ Cn and for every w ∈ Cn it holds true that
u(ζ) = lim supt→0+ u(ζ + tw), see, for example, Proposition 7.4 in [FSt87]. In
particular, ψ(ζ) = lim supt→0+ ψ(ζ − tNΩ(ζ)) ≤ 0 for every ζ ∈ bΩ ∩ U . The fact
that ψ ≥ 0 on bΩ ∩ U is clear by the choice of ψ.

As the next step we claim that, after possibly shrinking U , there exist numbers
l, L > 0 such that ϕ̃(z) ≥ l dist(z, bΩ) and ψ(z) ≤ Ldist(z, bΩ) for every z ∈ U \Ω.
Clearly, we only need to show the assertion on ψ, since the inequality for ϕ̃ follows
immediately from the fact that dϕ̃ 6= 0 on bΩ ∩ U . The proof is similar to that
of the Hopf Lemma: First we can assume, after possibly shrinking U , that the
orthogonal projection π : U → bΩ ∩ U along the normal vectors NΩ(ζ) is well
defined. In particular, z = π(z) + dist(z, bΩ)NΩ(π(z)) for every z ∈ U \ Ω. For
every ζ ∈ bΩ ∩ U and every r > 0, let ζr := ζ − rNΩ(ζ). By C2-smoothness of
bΩ∩U , we can then choose r > 0 so small that for every ζ ∈ bΩ∩Bn(0, r) one has

(i) Bn(ζ, 4r) ⊂ U and bΩ∩Bn(ζ, 4r) is the graph of a C2-smooth function over
some open subset of ζ + TR

ζ (bΩ),

(ii) Bn(ζ2r, 2r) ⊂ Ω ∩ U and B̄n(ζ2r, 2r) ∩ bΩ = {ζ},

where Bn(a, r) := {z ∈ Cn : ‖z − a‖ < r} and TR
ζ (bΩ) denotes the real tangent

space to bΩ at ζ. For every ζ ∈ bΩ ∩ Bn(0, r) let Gζ := Bn(ζ, r) \ Ω̄ and let
hζ : Ḡζ → R be the function

hζ(z) := 1
r2n−2 −

1
‖z − ζr‖2n−2 .

Observe that hζ is harmonic on Gζ and continuous on Ḡζ , hζ(ζ) = 0, hζ > 0 on
bGζ \ {ζ} and there exists a constant c > 0 such that hζ > c on bGζ \ bΩ for every
ζ ∈ bΩ ∩ Bn(0, r). Choose C > 0 so large that ψ ≤ C on U and set M := C/c.
Then, since ψ ≡ 0 on bΩ∩U , we have ψ ≤Mhζ on bGζ for every ζ ∈ bΩ∩Bn(0, r).
By subharmonicity of ψ, it follows that ψ ≤Mhζ on Ḡζ . In particular,

ψ(ζ + tNΩ(ζ)) ≤Mhζ(ζ + tNΩ(ζ)) = M
( 1
r2n−2 −

1
(r + t)2n−2

)
≤M(2n− 2) 1

r2n−1 t =: Lt

for every t ∈ (0, r) and ζ ∈ bΩ ∩ Bn(0, r). This shows that ψ(z) ≤ Ldist(z, bΩ)
for every z ∈ {ζ + tNΩ(ζ) ∈ Cn : ζ ∈ bΩ ∩Bn(0, r), t ∈ [0, r)}.

Now assume, to get a contradiction, that there exists ξ0 ∈ H0(ϕ̃) such that
Lev(ϕ̃)(0, ξ0) ≤ 0 and ‖ξ0‖ = 1. Choose ε > 0 such that ψ̃ := ψ − ε‖ · ‖2 is still
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3.1 Existence of global plurisubharmonic defining functions

plurisubharmonic on U . We claim that ψ̃ < 0 on the punctured complex disc
∆ξ0(0, δ) \ {0} := {λξ0 : λ ∈ C, 0 < |λ| < δ}, provided δ > 0 is chosen small
enough. Since ψ̃ is subharmonic on ∆ξ0(0, δ), and since ψ̃(0) = 0, this will be a
contradiction to the maximum principle. Indeed, if λ ∈ C \ {0} is chosen in such
a way that λξ0 ∈ Ω̄, then the statement is trivial. But otherwise we can use (3.1)
and the estimates on ψ and ϕ̃ which where given above to see that

ψ̃(λξ0) =
(ψ
ϕ̃
ϕ̃− ε‖ · ‖2

)
(λξ0) ≤ L

l
o(|λ|2)− ε|λ|2,

which is negative if 0 < |λ| << 1. This shows that Lev(ϕ̃)(0, · ) is positive definit
on H0(ϕ̃).

To conclude the proof of the proposition, choose a smooth function χ : R→ R such
that χ(0) = 0, χ′(0) = 1 and χ′′(0) = k. It follows then by a standard argument
that for k > 0 large enough the function ϕ := χ ◦ ϕ̃ is strictly plurisubharmonic
near 0 as desired (for a version of this argument see, for example, the proof of
Lemma 3.1.1 below). �

Remarks. 1) The above definition of strictly pseudoconvex open sets in complex
manifolds is the same as the one given in [Na62]. In particular, the strictly
plurisubharmonic functions ϕz that define Ω near a given point z ∈ bΩ are
assumed to be continuous. Observe that by dropping the assumption on continuity
of the local defining functions ϕz one obtains a class of sets that is strictly
larger than the class of strictly pseudoconvex sets. Indeed, the function u(z) :=∑∞
j=1 2−j log|z− 1/j| is well defined and subharmonic on C such that u(0) 6= −∞,

and thus ψ(z, w) := u(z) + (|z|2 + |w|2) − u(0) is a strictly plurisubharmonic
function on C2. Consider the open set Ω := {ψ < 0}. Then L := {0} × C ⊂ bΩ,
since {1/j} × C ⊂ Ω for every j ∈ N. In particular, since ψ(z, w) = |w|2 6≡ 0
on L, there exists no neighbourhood of bΩ on which ψ is continuous. Assume,
to get a contradiction, that there exist an open neighbourhood U ⊂⊂ C2 of
0 ∈ bΩ and a continuous strictly plurisubharmonic function ϕ : U → R such
that Ω ∩ U = {ϕ < 0}. Let then U ′ ⊂⊂ U be open such that 0 ∈ U ′ and let
λ : C2 → (−∞, 0] be smooth such that Ū ′ = {λ = 0}. After possibly shrinking U ,
we can find ε > 0 such that ϕ′ := ϕ + ελ is still plurisubharmonic on U . Since
ϕ is continuous, we have ϕ ≡ 0 on L ⊂ bΩ, and thus there exists c > 0 such
that ϕ′ < −c near L ∩ bU . It follows that ϕ′|L∩U is a nonconstant subharmonic
function that attains a maximum at 0 ∈ L ∩U , which is a contradiction. Observe,
in particular, that the boundary of a sublevel set of a not necessarily continuous
strictly plurisubharmonic function may contain non trivial analytic sets.

2) The described above problem cannot happen if bΩ satisfies some mild regularity
assumptions. Namely, the following analogue of Proposition 3.1.1 holds true in
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3 Global plurisubharmonic defining functions and the core

the C0-smooth category:

Let M be a complex manifold, let Ω ⊂ M be open and let bΩ be C0-smooth
at z0 ∈ bΩ. Assume that there exist an open neighbourhood U ⊂ M of z0
and a strictly plurisubharmonic function ψ : U → [−∞,∞) such that Ω ∩ U =
{ψ < 0}. Then, after possibly shrinking U , there exists a continuous strictly
plurisubharmonic function ϕ : U → R such that Ω ∩ U = {ϕ < 0}.

Indeed, after possibly shrinking U , we can assume that U ⊂ Cn. By continuity
of bΩ at z0, there exists w ∈ Cn \ {0} such that, after possibly further shrinking
U , z + tw ∈ Ω for every z ∈ bΩ ∩ U and t ∈ (0, 1). Then, by the same argument
as above, it follows that ψ(z) = lim supt→0+ ψ(z + tw) ≤ 0 for every z ∈ bΩ ∩ U .
Thus ψ ≡ 0 on bΩ∩U . The existence of the function ϕ now follows from Theorem
2.5 in [Ric68].

Now we begin to prove the existence of global defining functions. We will formulate
our results in the general context of strictly q-pseudoconvex domains, since the
essential part of our proof will be the same in both cases q = 0 and q > 0. However,
at a certain point of our construction a technical problem will occur in the case
q > 0, which is not present if q = 0. This problem is related to the fact that the sum
of two q-plurisubharmonic functions ϕ1, ϕ2 : U → R on an open set U ⊂M will in
general be again q-plurisubharmonic only if both Lev(ϕ1)(z, · ) and Lev(ϕ2)(z, · )
are positive definit on the same (n− q)-dimensional subspaces of Tz(M) for every
z ∈ U . Thus in the case q > 0 we need to keep track of the directions of positivity
of the Levi forms of the q-plurisubharmonic functions involved in our construction.
That is why before stating our theorems on global defining functions we first prove
the following lemma which deals with this particular problem of the case q > 0.
Lemma 3.1.1. Let M be a complex manifold of dimension n equipped with a
hermitian metric h and let Ω ⊂M be a strictly q-pseudoconvex domain with smooth
boundary for some q ∈ {0, 1, . . . , n−2}. Then for every smooth function ϕ : V → R
defined on an open neighbourhood V ⊂M of bΩ such that Ω ∩ V = {ϕ < 0} and
dϕ 6= 0 on bΩ, there exist a neighbourhood V ′ ⊂ V of bΩ and for each z ∈ V ′
an (n − q)-dimensional complex subspace Lz ⊂ Tz(M) such that the following
assertion holds true: for every open set U ⊂⊂M there exist a strictly increasing
and strictly convex smooth function µ : R→ R satisfying µ(0) = 0 and a constant
c > 0 such that Lev(µ ◦ ϕ)(z, ξ) ≥ c‖ξ‖hz for every z ∈ V ′ ∩ U and ξ ∈ Lz.

Proof. Let ϕ : V → R be a smooth function defined on an open neighbourhood
V ⊂ M of bΩ such that Ω ∩ V = {ϕ < 0} and dϕ 6= 0 on bΩ. After possibly
shrinking V , we can assume that dϕ 6= 0 on V , and then for every z ∈ V we write
Nz for the orthogonal complement of Hz(ϕ) in Tz(M) with respect to hz.

For every l = 1, 2, . . . , n, denote by Gl(M) the Grassmann bundle of dimension
l over M, i.e., for every z ∈ M the fiber Gl(M)z = {L ⊂ Tz(M) : (z, L) ∈
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3.1 Existence of global plurisubharmonic defining functions

Gl(M)} consists of all complex l-dimensional subspaces of Tz(M). Write π =
πl : Gl(M)→M for the canonical projection of Gl(M) ontoM. Since Ω is strictly
q-pseudoconvex with smooth boundary, there exists a closed in M neighbourhood
V ′ ⊂ V of bΩ and a closed subset L̃ ⊂ Gn−1−q(M) such that π(L̃) = V ′ with the
following properties: for every z ∈ V ′ and every L̃ ∈ L̃z := {L̃ ⊂ Tz(M) : (z, L̃) ∈
L̃} we have (∂ϕ)z( · ) ≡ 0 on L̃ and Lev(ϕ)(z, · ) > 0 on L̃ \ {0}. Set

L :=
{

(z, L) ∈ Gn−q(M)|V ′ : L = L̃⊕Nz for some L̃ ∈ L̃z
}
.

We claim that V ′ and any choice of {Lz}z∈V ′ such that Lz ∈ Lz for every z ∈ V ′
are a neighbourhood of bΩ and a family of complex subspaces as desired.

Indeed, let U ⊂⊂ M be open. Define a map τ = τl : Gl(M) → P(T (M)) from
Gl(M) to the set of subsets of T (M) by τ((z, L)) := ⋃

ξ∈L,‖ξ‖hz=1(z, ξ). Let
S̃ := τ(L̃), S := τ(L) and S0 := {(z, ξ) ∈ S : Lev(ϕ)(z, ξ) ≤ 0}. Observe that, by
construction, S̃ = {(z, ξ) ∈ S : (∂ϕ)z(ξ) = 0} ⊂ S \ S0, and S0 is closed in T (M).
In particular, for every z ∈ V ′ we have that δ0(z) := minξ∈S0,z |(∂ϕ)z(ξ)| > 0,
where S0,z := {ξ ∈ Tz(M) : (z, ξ) ∈ S0}. Moreover, since S \ S0 is an open
neighbourhood of S̃ in S, one sees easily that it is possible to choose a continuous
function δ : V ′ → (0,∞) such that δ(z) < δ0(z) for every z ∈ V ′. Let C : V ′ → R
be a continuous function such that Lev(ϕ)(z, ξ) > C(z) for every (z, ξ) ∈ S. Now
choose k > 0 so large that C(z) + 2kδ2(z) > 0 on V ′ ∩ Ū and define µ : R→ R as
µ(t) := tekt. Then Lev(µ ◦ ϕ)(z, ξ) = Lev(ϕ)(z, ξ) + 2k|(∂ϕ)z(ξ)|2 > 0 for every
z ∈ V ′ ∩ Ū and ξ ∈ S0,z, and clearly Lev(µ ◦ ϕ)(z, ξ) > 0 for every z ∈ V ′ ∩ Ū
and ξ ∈ S \ S0. Since S is closed in T (M), and since S = τ(L), it follows that
there exists a constant c > 0 such that Lev(µ ◦ ϕ)(z, · ) ≥ c‖ · ‖2 on L for every
z ∈ V ′ ∩ Ū and L ∈ Lz. �

After these preparations we can now prove the first two theorems of this section.

Theorem 3.1.1. Let M be a complex manifold of dimension n, let Ω ⊂M be a
strictly q-pseudoconvex domain with smooth boundary for some q ∈ {0, 1, . . . , n−2}
and let f : bΩ→ R be a smooth function that is bounded from below. Then there
exists a smooth q-plurisubharmonic function F defined on an open neighbourhood
of Ω̄ such that F |bΩ = f and F is strictly q-plurisubharmonic near bΩ.

Proof. Since f is bounded from below, we can assume without loss of generality
that f > 0. Let F̃ : M→ (0,∞) be a smooth extension of f . Choose open sets
U ′j ⊂⊂ Uj ⊂⊂M such that {U ′j}∞j=1 covers bΩ and {Uj}∞j=1 is locally finite.

Let β : (0,∞) → (0,∞) be a strictly increasing and strictly convex smooth
function such that β(t) := e−1/t for small values of t, and let β̃ : R → [0,∞)
be the smooth extension of β such that β̃|(−∞,0] ≡ 0. We will construct a
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family {χj}∞j=1 of smooth functions χj : M → [0, 1] such that {χj > 0} = U ′j ,∑∞
j=1 χj ≤ 1 on M, ∑∞j=1 χj ≡ 1 near bΩ and such that the trivial extension

gj : M → [0,∞) of the function β−1 ◦ (F̃χj) : U ′j → R by 0 is smooth on M.
For this purpose let δj : M → R be smooth such that U ′j = {δj > 0} and
M\ Ū ′j = {δj < 0} and let ψj := β̃ ◦ β̃ ◦ δj . Further, let θ : M→ [0,∞) be smooth
such that θ > 0 on M\⋃∞j=1 U

′
j and such that θ ≡ 0 near bΩ. Then choosing

χj := ψj/
(
θ+∑∞k=1 ψk

)
and writing σ := F̃ /

(
θ+∑∞k=1 ψk

)
we get for points in U ′j

close to bU ′j that β−1 ◦ (F̃χj) = β−1(σ · (β ◦β ◦ δj)) =
[
− log

(
σ · (β ◦β ◦ δj)

)]−1 =[
− log σ− log(β ◦β ◦ δj)

]−1 =
[
1/(β ◦ δj)− log σ

]−1 = (β ◦ δj)/
(
1− (β ◦ δj) log σ

)
.

Hence β−1 ◦ (F̃χj) extends smoothly to M by 0, since β extends smoothly to β̃.
The other properties are clear from the construction.

Fix a hermitian metric h onM. Let ϕ : V → R be a smooth function defined on an
open neighbourhood V ⊂M of bΩ such that Ω ∩ V = {ϕ < 0} and dϕ 6= 0 on bΩ.
By Lemma 3.1.1, there exist an open neighbourhood V ′ ⊂ V of bΩ and for every
z ∈ V ′ an (n− q)-dimensional complex subspace Lz ⊂ Tz(M) with the following
properties: for each j ∈ N there exist a number cj > 0 and a strictly increasing
strictly convex smooth function µj : R → R satisfying µj(0) = 0 such that the
function ϕj := µj ◦ ϕ satisfies Lev(ϕj)(z, ξ) ≥ cj‖ξ‖hz for every z ∈ V ′ ∩ Uj and
ξ ∈ Lz. Moreover, without loss of generality, we can assume that Uj ⊂⊂ V ′ for
every j ∈ N.

Fix j ∈ N. Let λj : M → (−∞, 0] be smooth such that Ū ′j = {λj = 0}. Then
choose εj > 0 so small and Cj > 0 so large that Lev

(
gj + Cj(ϕj + εjλj)

)
(z, · ) is

positive definit on Lz for every z ∈ Uj . Observe that, by construction, gj+Cj(ϕj+
εjλj) < 0 on bUj ∩ Ω̄, hence the function β̃ ◦ (gj + Cj(ϕj + εjλj))|Uj vanishes
near this set and thus its trivial extension by 0 to the open neighbourhood
Uj := M \ {z ∈ bUj : (gj + Cj(ϕj + εjλj))(z) ≥ 0} of Ω̄ defines a smooth q-
plurisubharmonic function Fj : Uj → [0,∞) such that Fj |bΩ = fχj and Fj ≡ 0
outside Uj . Moreover, Wj := {Fj > 0} ⊂ Uj is an open neighbourhood of bΩ∩U ′j
such that Fj is strictly q-plurisubharmonic on Wj . In particular, Lev(Fj)(z, · ) > 0
on Lz \ {0} for every z ∈Wj and Lev(Fj)(z, · ) ≡ 0 if z /∈Wj .

Set F := ∑∞
j=1 Fj . Then F is a well defined smooth function on the open

neighbourhood U := ⋂∞
j=1 Uj ⊂ M of Ω̄. By construction, F |bΩ = f . More-

over, Lev(F )(z, · ) > 0 on Lz \ {0} for every z ∈ W := ⋃∞
j=1Wj ⊃ bΩ and

Lev(F )(z, · ) ≡ 0 if z /∈W . Hence F is a function as desired. �

Theorem 3.1.2. LetM be a complex manifold of dimension n and let Ω ⊂M be
a strictly q-pseudoconvex domain with smooth boundary for some q ∈ {0, 1, . . . , n−
2}. Then there exists a smooth q-plurisubharmonic function ϕ defined on an
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3.1 Existence of global plurisubharmonic defining functions

open neighbourhood of Ω̄ such that Ω = {ϕ < 0}, dϕ 6= 0 on bΩ and ϕ is strictly
q-plurisubharmonic near bΩ.

Proof. Let ϕ := F −1, where F is the function from Theorem 3.1.1 corresponding
to the boundary values f ≡ 1. Then ϕ is a smooth q-plurisubharmonic function
on an open neighbourhood of Ω̄ that vanishes identically on bΩ and that is
strictly q-plurisubharmonic near bΩ. Observe that in the construction of F we
can choose F̃ such that Ω = {F̃ < 1} and M\ Ω̄ = {F̃ > 1}. Moreover, after
possibly shrinking U , we can assume that ∑∞j=1 χj ≡ 1 on U \ Ω̄. For z ∈M let
I(z) := {j ∈ N : z ∈Wj} and J(z) := {j ∈ N : z ∈ U ′j}. Then

F (z) =
∑
j∈I(z)

Fj(z) =
∑
j∈I(z)

(β̃ ◦ (gj + Cj(ϕj + εjλj)))(z) ≤
∑
j∈I(z)

(β̃ ◦ gj)(z)

=
∑
j∈I(z)

(F̃χj)(z) ≤ F̃ (z) < 1 for z ∈ Ω

(here the sum over the empty index set is understood to be zero), and

F (z) ≥
∑
j∈J(z)

Fj(z) =
∑
j∈J(z)

(β̃ ◦ (gj + Cj(ϕj + εjλj)))(z) ≥
∑
j∈J(z)

(β̃ ◦ gj)(z)

=
∑
j∈J(z)

(F̃χj)(z) = F̃ (z) > 1 for z ∈ U \ Ω̄.

This shows that Ω = {F < 1}, i.e., Ω = {ϕ < 0}. Finally, we have dϕ 6= 0 on bΩ,
provided that the numbers Cj which appear in the construction of F are chosen
large enough (in fact, since bΩ is smooth, the non-vanishing of dϕ along bΩ is
automatically satisfied, see, for example, the proof of Proposition 1.5.16 in [HeL84],
which can be adapted easily to the case of q-plurisubharmonic functions). �

Remarks. 1) The assumption in Theorem 3.1.1 that f is bounded from below
is crucial. In fact, it was shown in Example 8.2 of [ShT99] that there exist an
unbounded strictly pseudoconvex domain Ω ⊂ C2 with smooth boundary and a
smooth function f : bΩ→ R that is not bounded from below such that the only
plurisubharmonic function F : Ω→ [−∞,∞) satisfying lim supz→z0 F (z) ≤ f(z0)
for every z0 ∈ bΩ is the function F ≡ −∞.

2) The function F from Theorem 3.1.1 is strictly q-plurisubharmonic on the open
neighbourhood W of bΩ and F is a constant on Ω \ W . It is clear from the
construction that for every open set ω ⊂ Ω such that ω̄ ⊂ Ω we can choose F in
such a way that F is constant on ω.
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3 Global plurisubharmonic defining functions and the core

3) Let h be a hermitian metric on M and let ν, µ : bΩ → (0,∞) be positive
continuous functions. Then F can be chosen in such a way that ‖(dF )z‖h∗z ≥ ν(z)
for every z ∈ bΩ and Lev(F )(z, · ) ≥ µ(z)‖ · ‖2hz on Lz for every z ∈ bΩ. Indeed,
for every j ∈ N let U ′′j ⊂⊂ U ′j be an open set such that {U ′′j }∞j=1 still covers
bΩ. Now in the construction of F we can choose for every j ∈ N the numbers
εj > 0 so small and Cj > 0 so large that (dFj)z(NΩ(z)) ≥ 0 for every z ∈ bΩ,
(dFj)z(NΩ(z)) ≥ ν(z) for every z ∈ bΩ ∩ U ′′j and Lev(Fj)(z, · ) ≥ µ(z)‖ · ‖2hz on
Lz for every z ∈ bΩ ∩ U ′′j , where NΩ(z) denotes the outward unit normal to bΩ at
z with respect to h. Then F is a function as desired.

4) The statements of Theorems 3.1.1 and 3.1.2 as well as the above remarks remain
true if C∞-smoothness is replaced by Cs-smoothness for s ≥ 2. If q = 0 and if
for each point z ∈ bΩ there exists an open neighbourhood U ⊂M of z and a C1-
smooth strictly plurisubharmonic function ϕ : U → R such that Ω ∩ U = {ϕ < 0}
and dϕ 6= 0 on bΩ∩U (note that this is a stronger assumption than Ω being strictly
pseudoconvex with C1-smooth boundary), and if f : bΩ→ R is C2-smooth (i.e., for
every z ∈ bΩ there exists an open neighbourhood Uz ⊂M of z and a C2-smooth
function Fz : Uz → R such that Fz coincides with f on bΩ∩Uz), then a statement
analoguous to Theorem 3.1.1 holds true with C1-smooth F . Further, if Ω is just
strictly pseudoconvex (with no smoothness assumptions on bΩ) and if f : bΩ→ R
is C2-smooth, then there always exists a continuous plurisubharmonic function
F as in Theorem 3.1.1. Analoguous generalizations are possible for Theorem
3.1.2 (but of course no assertion on the differential of ϕ is imposed if s = 0).
Moreover, when considering the case of possibly nonsmooth boundaries, it is also
worth mentioning that we do not need connectedness of the set Ω in the proofs
of Theorem 3.1.1 and Theorem 3.1.2. In particular, every strictly pseudoconvex
open set in a complex manifold admits a continuous global defining function.

5) Finally, we want to mention without giving the details of the proof that it is
possible to weaken the assumptions on smoothness of bΩ even further. Indeed, in
Theorem 3.1.1 it suffices to assume that Ω can be represented locally near each
boundary point as the sublevel set of a C∞-smooth strictly q-plurisubharmonic
function with possibly vanishing differential along bΩ (or, more general, as the
sublevel set of a Cs-smooth strictly q-plurisubharmonic function for some s ≥ 2 or
(q, s) = (0, 1), but then the function F from Theorem 3.1.1 will only be Cs-smooth
in general). Domains of this type were considered, for example, in [HeL84] and
[HeL88]. If q = 0, this is clear. In the case q > 0 this is a consequence of the
following fact: If Ω ⊂M is open, z ∈ bΩ, U ⊂M is an open neighbourhood of z
and ϕ1, ϕ2 : U → R are C2-smooth functions such that Ω∩U = {ϕ1 < 0} = {ϕ2 <
0}, then for every ξ ∈ Hz(ϕ1) = Hz(ϕ2) (see again Proposition 1.5.16 in [HeL84]
for the fact that (dϕ1)z = 0 if and only if (dϕ2)z = 0) we have Lev(ϕ1)(z, ξ) ≥ 0
if and only if Lev(ϕ2)(z, ξ) ≥ 0 (see, for example, the proof of Proposition 15 in
[AG62]). In particular, the sum ϕ1 + ϕ2 is strictly q-plurisubharmonic near z if
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3.1 Existence of global plurisubharmonic defining functions

both ϕ1 and ϕ2 are strictly q-plurisubharmonic near z and (dϕ1)z = (dϕ2)z = 0.
Thus, if Σ(bΩ) denotes the set of points z ∈ bΩ such that bΩ is smooth in z, then
the function F = ∑∞

j=1 Fj that appears in the proof of Theorem 3.1.1 will be
automatically strictly q-plurisubharmonic in a neighbourhood of bΩ \ Σ(bΩ), and
strict q-plurisubharmonicity near the remaining part of bΩ can be achieved as
before. The same weakening of assumptions is possible in Theorem 3.1.2, but then
the constructed function ϕ can be guaranteed to have nonvanishing differential
only along Σ(bΩ).

Our next goal is to show that the core is the only obstruction for strict plurisubhar-
monicity of global defining functions, i.e., we want to construct a global defining
function that is strictly plurisubharmonic precisely in the complement of c(Ω) (in
particular, we now work in the case q = 0). This will give a stronger version of
the statement of Theorem 3.1.2, namely, the Main Theorem. For the proof we
will use the following notion of smooth maximum: Let δ > 0 and let χδ : R→ R
be a smooth function such that χ is strictly convex for |t| < δ/2 and χδ(t) = |t|
for |t| ≥ δ/2. Then we define a smooth maximum byfimaxδ(x, y) := x+ y + χδ(x− y)

2 .

Observe that the smooth maximum of two smooth (strictly) plurisubharmonic
functions is again a smooth (strictly) plurisubharmonic function (see, for example,
Corollary 4.14 in [HeL88]). Moreover, fimaxδ(x, y) = max(x, y) if |x− y| ≥ δ.

Main Theorem. Every strictly pseudoconvex domain Ω with smooth boundary
in a complex manifoldM admits a bounded global defining function that is strictly
plurisubharmonic outside c(Ω).

Proof. For every p ∈ Ω \ c(Ω), there exists a smooth global defining function ψp
for Ω that is strictly plurisubharmonic on an open neighbourhood Vp ⊂⊂ Ω \ c(Ω)
of p. Indeed, let ϕ1 : Ω→ R be smooth plurisubharmonic and bounded from above
such that ϕ1 is strictly plurisubharmonic at p, and let ϕ2 : Ω̄→ R be a smooth
global defining function for Ω. Then we can choose ϕp := fimax1(ϕ1 − C1, C2ϕ2),
where C1, C2 > 0 are constants such that ϕ1 − C1 < C2ϕ2 − 1 near bΩ and
C2ϕ2(p) < ϕ1(p)− C1 − 1.

Let {pj}∞j=1 be a sequence of points pj ∈ Ω such that ⋃∞j=1 Vpj = Ω \ c(Ω).
Without loss of generality we can assume that each set Vpj is contained in some
coordinate patch ofM. Choose a sequence {δj}∞j=1 of positive numbers δj such that
δjψpj > −1/2 on Vpj for every j ∈ N. Moreover, let {εj}∞j=1 be a second sequence
of suitably chosen positive numbers εj and define φ1 := ∑∞j=1 εjfimax1/2(δjψpj ,−1).
If {εj}∞j=1 converges to zero fast enough, then φ1 is a smooth plurisubharmonic
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function on Ω̄ such that φ1 is strictly plurisubharmonic outside c(Ω), bΩ = {φ1 = 0}
and 0 ≥ φ1 > −1. By construction, φ1 has nonvanishing differential along bΩ,
hence a smooth extension ϕ of φ1 to a small enough open neighbourhood U ⊂M
of Ω̄ will be a global defining function as desired. �

Remarks. 1) In the same way as described in the remarks after Theorem 3.1.2,
we can prescribe along bΩ the size of the differential and the Levi form of the
global defining function constructed in the Main Theorem.

2) As for the case of C∞-smooth functions, we can define the sets

cs(Ω) :=
{
z ∈ Ω : every Cs-smooth plurisubharmonic function on Ω that is
bounded from above fails to be strictly plurisubharmonic in z

}
for every s ∈ N∞0 := {0} ∪ N ∪ {∞}. Then a statement analoguous to the Main
Theorem holds for every s ∈ N∞0 . Observe, however, that it is not clear whether
in general cs1(Ω) = cs2(Ω) for s1 6= s2.

3) One can also define yet another version of the core as

c̃(Ω) :=
{
z ∈ Ω : every plurisubharmonic function on Ω that is bounded
from above and not identically −∞ on any connected compo-
nent of Ω fails to be strictly plurisubharmonic in z

}
.

Observe that this definition leads to a weaker notion, i.e., in general we have
c̃(Ω) ( c(Ω). For example, the function ϕ(z, w) := log|w−f(z)|+C1(|z|2 + |w|2) is
strictly plurisubharmonic and bounded from above on the domain Ω from Example
II. Hence in this case we have c̃(Ω) = ∅, but c(Ω) 6= ∅. We do not know if there
exists a complex manifold M and a strictly pseudoconvex domain Ω ⊂M such
that c̃(Ω) 6= ∅.

4) A result analoguous to the Main Theorem holds also true if bΩ is only smooth
in the weaker sense as it is described in Remark 5 after Theorem 3.1.2. Indeed, to
extend φ1 from Ω̄ to an open neighbourhood of Ω̄ let then φ2 be a global defining
function for Ω as constructed in Theorem 3.1.2. In particular, φ2 is defined on
an open neighbourhood U of Ω̄, φ2 ≥ −1 and φ2 is strictly plurisubharmonic on
{φ2 > −1}. Then

ϕ(z) :=


2φ2(z) , z ∈ U \ Ω̄fimax1/4(φ1(z)− 1/2, 2φ2(z)) , z ∈ Ω̄ ∩ {φ2 > −1}

φ1(z)− 1/2 , z ∈ Ω̄ ∩ {φ2 = −1}

is a function as desired.
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Following [SlT04], we introduce the following notion of minimal functions for a
domain Ω ⊂M.

Definition. Let M be a complex manifold and let Ω ⊂ M be a domain. A
smooth and bounded from above plurisubharmonic function ϕ : Ω → R will be
called minimal if ϕ is strictly plurisubharmonic outside c(Ω).

Our Main Theorem can then be rephrased as follows: every strictly pseudoconvex
domain with smooth boundary in a complex manifold admits a bounded minimal
global defining function. Moreover, by using similar arguments as in the proof
of the Main Theorem, it also follows that every domain in a complex manifold
admits a bounded minimal function.

As in the case of plurisubharmonic functions, it now would also be possible to
introduce for every domain Ω in a complex manifold M the core c(Ω, q) with
respect to the class of q-plurisubharmonic functions, namely,

c(Ω, q) :=
{
z ∈ Ω : every smooth q-plurisubharmonic function on Ω that is
bounded from above fails to be strictly q-plurisubharmonic in z

}
.

However, we do not know whether this definition is meaningful, in the sense that
we do not have any examples of domains Ω ⊂M such that c(Ω, q) 6= ∅ for q > 0.
Indeed, for domains in Stein manifolds the set c(Ω, q) is always empty for every
q > 0 as it is shown in the following proposition.

Proposition 3.1.2. Every Stein manifold M admits a smooth and bounded
1-plurisubharmonic function. In particular, c(Ω, q) = ∅ for every Ω ⊂ M and
every q > 0.

Proof. Let ψ : M→ R be a smooth strictly plurisubharmonic function. After
replacing ψ by eψ if necessary, we can assume without loss of generality that
ψ ≥ 0. Define χ : (−1,∞)→ R as χ(t) := −1/(1 + t) and consider the bounded
smooth function ϕ := χ ◦ ψ. Then

Lev(ϕ)(z, ξ) = χ′′(ψ(z))|(∂ψ)z(ξ)|2 + χ′(ψ(z))Lev(ψ)(z, ξ)

for every z ∈M and ξ ∈ Tz(M). In particular, Lev(ϕ)(z, · ) > 0 on the at least
(dimCM− 1)-dimensional subspace Hz(ψ) = {ξ ∈ Cn : (∂ψ)z(ξ) = 0}. �

One might expect that at least compact analytic subsets A ⊂ Ω of pure dimension
q + 1 are always contained in c(Ω, q). However, this is not necessarily the case as
it is shown by the following example.
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Example 1. As in Example I, let M := {(z, x) ∈ C3 × CP2 : zixj = zjxi, i, j =
0, 1, 2} be the blow-up of C3 at the origin. For every j = 0, 1, 2, define mappings
hj : Uj → C3 on the dense open subsets Uj := {(z, x) ∈M : xj 6= 0} as

hj(z, x) :=
(x0

xj
, . . . ,

xj−1

xj
, zj ,

xj+1

xj
, . . . ,

x2

xj

)
.

Each map hj is a homeomorphism with inverse

h−1
j (w0, w1, w2) :=

(
(wjw0, . . . , wjwj−1, wj ,wjwj+1, . . . , wjw2),

[w0 : . . . : wj−1 : 1 : wj+1 : . . . : w2]
)

and the tupel {(Uj , hj) : j = 0, 1, 2} defines a complex structure onM. For every
j = 0, 1, 2, define a smooth function ϕj : M→ R as

ϕj(z, x) := − |xj |2

|zj |2|xj |2 + |x0|2 + |x1|2 + |x2|2
.

Then
(ϕj ◦ h−1

j )(w0, w1, w2) = − 1
1 + |w0|2 + |w1|2 + |w2|2

,

and as in the proof of Proposition 3.1.2 we see that this function is strictly
1-plurisubharmonic on C3. Hence ϕj is 1-plurisubharmonic on M and strictly
1-plurisubharmonic on Uj . Now let Ω ⊂⊂M be the strictly pseudoconvex domain
with smooth boundary defined by

Ω :=
{

(z, x) ∈M : ‖z‖ < 1
}
.

Then the above computations show that for every (z, x) ∈ Ω there exists a
smooth 1-plurisubharmonic function on Ω that is bounded from above and that is
strictly 1-plurisubharmonic near (z, x), i.e., c(Ω, 1) = ∅. In particular, the pure
2-dimensional compact analytic set {0} × CP2 ⊂ Ω is not contained in c(Ω, 1).

Observe also that in general no analogue of the Main Theorem holds true in
the case of strictly q-pseudoconvex domains Ω if q > 0, i.e., in general it is not
possible to have a global defining function for Ω as in Theorem 3.1.2 that is strictly
q-plurisubharmonic outside c(Ω, q). Indeed, the domain Ω from the last example
satisfies c(Ω, 1) = ∅, but there exists no smooth strictly 1-plurisubharmonic
function on Ω, since there exists no such function on CP2.

We now want to give an application of our construction of global defining func-
tions.
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Theorem 3.1.3. Let M be a complex manifold and let Ω ⊂ M be a strictly
pseudoconvex open set (not necessarily relatively compact or with smooth boundary).
Let U ⊂ M be an arbitrary open neighbourhood of bΩ. Then the following
assertions hold true:

(1) There exists a strictly pseudoconvex open set Ω′ ⊂M with smooth boundary
such that Ω \ U ⊂ Ω′, Ω̄′ ⊂ Ω and c(Ω′) = c(Ω).

(2) There exists a strictly pseudoconvex open set Ω′′ ⊂M with smooth boundary
such that Ω̄ ⊂ Ω′′, Ω̄′′ ⊂ Ω ∪ U and c(Ω′′) = c(Ω).

In particular, Ω̄ admits a neighbourhood basis consisting of strictly pseudoconvex
open sets with smooth boundary. Moreover, if Ω is a domain, then one can also
choose Ω′ and Ω′′ to be domains.

Proof. Fix an open neighbourhood U ⊂M of bΩ.

(1) We first show the existence of the strictly pseudoconvex set Ω′. Let ω ⊂ Ω
be an arbitrary but fixed open set such that Ω \ U ⊂ ω and ω̄ ⊂ Ω. By Theorem
3.1.2 and the related Remarks 2 and 4, there exists a continuous plurisubharmonic
function ϕ defined near Ω̄ such that Ω = {ϕ < 0}, ϕ ≥ −1, ϕ ≡ −1 on ω and
ϕ is strictly plurisubharmonic on {ϕ > −1}. Applying Richberg’s smoothing
procedure (see, for example, Theorem I.5.21 in [De12]), we can then find a
continuous plurisubharmonic function ϕ̃ defined near Ω̄ such that ϕ̃ ≥ ϕ, ϕ̃ ≡ −1
on ω, ϕ̃ is smooth and strictly plurisubharmonic on {ϕ̃ > −1}, and |ϕ̃− ϕ| < 1/2.
Let c ∈ (−1,−1/2) be a regular value of ϕ̃ and set Ω′ := {ϕ̃ < c}. Then Ω′ is a
strictly pseudoconvex open set such that Ω \ U ⊂ Ω′ and Ω̄′ ⊂ Ω.
It remains to show that c(Ω′) = c(Ω). Since Ω′ ⊂ Ω, it follows immediately
that c(Ω′) ⊂ c(Ω). On the other hand, observe that for small enough δ > 0 the
function ϕ2 := fimaxδ(ϕ̃− c,−(c+ 1)/2) is smooth plurisubharmonic and bounded
from above on Ω, strictly plurisubharmonic near Ω \ Ω′ and Ω′ = {ϕ2 < 0}. In
particular, this shows that c(Ω) ⊂ Ω′. By repeating the same arguments as in the
proof of the Main Theorem, it now follows easily that c(Ω) ⊂ c(Ω′).
(2) We now show the existence of the strictly pseudoconvex set Ω′′. After possi-
bly shrinking U , let ϕ be a continuous plurisubharmonic function defined on a
neighbourhood of Ω ∪ U such that Ω = {ϕ < 0}, ϕ ≥ −1, ϕ > −1/2 on U and
ϕ is strictly plurisubharmonic on {ϕ > −1}. Without loss of generality we can
assume that ϕ > 0 outside Ω̄ (in fact, the function ϕ from Theorem 3.1.2 has this
property by construction).
We claim that there exists a strictly pseudoconvex open set Ω̃′′ ⊂M (not neces-
sarily with smooth boundary) such that Ω̄ ⊂ Ω̃′′ ⊂ Ω∪U . The proof is essentially
the same as in Lemma 2 of [To83]: Choose a locally finite open covering {Uj}∞j=1
of bΩ by open sets Uj ⊂⊂ U . For every j ∈ N, let ηj : M→ (−∞, 0] be a smooth
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function such that {ηj < 0} = Uj . Set φ := ϕ+∑∞j=1 εjηj with positive constants
εj , j ∈ N. Clearly, φ > 0 on b(Ω∪U), φ < 0 on Ω̄ and if the numbers εj are chosen
small enough, then φ is still strictly plurisubharmonic on U . Set Ω̃′′ := {φ < 0}.

Note that, by a suitable choice of the numbers εj , we can also guarantee that
c(Ω̃′′) = c(Ω). Indeed, since Ω ⊂ Ω̃′′, it is immediately clear that c(Ω) ⊂ c(Ω̃′′).
Further, observe that in the construction of φ we can choose the numbers εj so
small that φ > −1/2 on U . Thus we can use the same smoothing procedure as
in the proof of part (1) (choosing c = −1/2) to obtain a smooth and bounded
from above plurisubharmonic function φ2 : Ω̃′′ → [−1/4,∞) such that φ2 > 0 on
U and φ2 is strictly plurisubharmonic on {φ2 > −1/4}. Then, as before, the same
argument as in the proof of the Main Theorem shows that c(Ω̃′′) ⊂ c(Ω).

Now we can apply part (1) of the theorem to the strictly pseudoconvex set Ω̃′′
and an open neighbourhood of bΩ̃′′ that does not intersect Ω to obtain a set Ω′′
as desired. This completes the proof of (2).

The last two properties claimed in the theorem are obvious by the construction.�

At the end of this section we want to prove again, but in a different way, the
existence of global defining functions for strictly pseudoconvex domains Ω with
C∞-smooth boundary. We first prove the existence of defining functions for Ω
that have prescribed differentials along the boundary of Ω. In a next step we use
this result to construct a global defining function for Ω.
Lemma 3.1.2. Let Ω be a strictly pseudoconvex domain with smooth boundary in
a complex manifold M. Let h be a hermitian metric on M and let f : bΩ→ (0,∞)
be a smooth positive function. Then there exists an open neighbourhood V ⊂M
of bΩ and a smooth strictly plurisubharmonic function ψ : V → R such that
Ω ∩ V = {ψ < 0} and ‖dψ‖h∗ = f on bΩ.

Proof. Let ρ : V → R be a smooth function on an open neighbourhood V ⊂M of
bΩ such that Ω∩V = {ρ < 0} and dρ 6= 0 on bΩ. Let q : bΩ→ (0,∞) be a positive
smooth function that we consider to be fixed, but that will be further specified
later on. Choose smooth extensions F : V → (0,∞) of f/‖dρ‖h∗ : bΩ → (0,∞)
and Q : V → (0,∞) of q : bΩ→ (0,∞), respectively, and define ψ : V → R as

ψ(z) := F (z)ρ(z) +Q(z)ρ(z)2.

Then ψ is smooth, ‖dψ(z)‖h∗ = f(z) for every z ∈ bΩ and, after possibly shrinking
V , Ω ∩ V = {ψ < 0}. By smoothness of ψ, it only remains to show that ψ is
strictly plurisubharmonic at every point z ∈ bΩ. We claim that this is always the
case, provided that the function q is chosen large enough (observe that the Levi
form of F · ρ in z ∈ bΩ is automatically positive definit on the complex tangent
space TC

z (bΩ) of bΩ in z, since Ω is strictly pseudoconvex).
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3.1 Existence of global plurisubharmonic defining functions

Indeed, a straightforward calculation shows that for every z ∈ bΩ and ξ ∈ Tz(M)

Lev(ψ)(z, ξ) = F (z)Lev(ρ)(z, ξ) + 2Re [(∂ρ)z(ξ) · (∂̄F )z(ξ)] + 2q(z)|(∂ρ)z(ξ)|2.
(3.2)

Since TC
z (bΩ) = Hz(ρ), we have Lev(ψ)(z, · ) = F (z)Lev(ρ)(z, · ) on TC

z (bΩ), and
by strict pseudoconvexity of Ω we know that Lev(ρ)(z, · ) is positive definit on
TC
z (bΩ) for every z ∈ bΩ. Let K := {(z, ξ) ∈ T (M)|bΩ : ‖ξ‖hz = 1} and define
K0 ⊂ K to be the subset K0 := {(z, ξ) ∈ K : F (z)Lev(ρ)(z, ξ) + 2Re [(∂ρ)z(ξ) ·
(∂̄F )z(ξ)] ≤ 0}. Since ρ and F are smooth, we can choose a smooth function
C : bΩ → R such that F (z)Lev(ρ)(z, ξ) + 2Re [(∂ρ)z(ξ) · (∂̄F )z(ξ)] > C(z) for
every (z, ξ) ∈ K. Moreover, observe that, by construction, (∂ρ)z(ξ) 6= 0 for
every (z, ξ) ∈ K0. Hence we can further choose a positive smooth function
ε : bΩ → (0,∞) such that |(∂ρ)z(ξ)|2 > ε(z) for every (z, ξ) ∈ K0. Now assume
that q : bΩ→ (0,∞) is chosen so large that C + 2qε > 0 on bΩ. Then we conclude
from (3.2) and the choice of C that Lev(ψ)(z, ξ) > 0 on K0. But it is clear from the
choice of K0 that Lev(ψ)(z, ξ) > 0 on K \K0. Thus ψ is strictly plurisubharmonic
at every point z ∈ bΩ as claimed. �

Theorem 3.1.2′. Let M be a complex manifold and let Ω ⊂ M be a strictly
pseudoconvex domain with smooth boundary. Then there exists a smooth plurisub-
harmonic function ϕ defined on an open neighbourhood of Ω̄ such that Ω = {ϕ < 0},
dϕ 6= 0 on bΩ and ϕ is strictly plurisubharmonic near bΩ.

Proof. As in Theorem 5 of [SiT08] we can choose a countable locally finite covering
{Uj}∞j=1 of bΩ by open subsets Uj ⊂⊂M such that there exist biholomorphisms
φj : Uj → U ′j onto open subsets U ′j ⊂ Cn, strictly convex bounded domains
G′j ⊂⊂ U ′j with smooth boundaries and a smooth partition of unity {θj}∞j=1 on
bΩ subordinated to {bΩ ∩ Uj}∞j=1 such that G′j ⊂ φj(Ω ∩ Uj) and supp θ′j ⊂⊂
bG′j ∩ φj(bΩ ∩ Uj), where θ′j := θj ◦ φ−1

j on φj(bΩ ∩ Uj). Moreover, by strict
pseudoconvexity of bΩ, we can assume that Ω̄∩⋃∞j=1 Uj is contained in a one-sided
neighbourhood U ⊂M of bΩ that is filled with analytic discs attached to bΩ. For
every j ∈ N, let g′j : bG′j → [0, 1] be the smooth extension of θ′j : bG′j∩φj(bΩ∩Uj)→
[0, 1] by 0, let S′j := supp θ′j = supp g′j ⊂ bG′j and let Z ′j := bG′j \ S′j . Let
f ′j : Ḡ′j → (−∞, 1] be the strictly plurisubharmonic solution of the following
Dirichlet problem for the complex Monge-Ampère equation,®

f ′j |bG′j = g′j
MA[f ′j ] ≡ 1 .

The existence and uniqueness as well as smoothness of f ′j is guaranteed by Theorem
1.1 in [CKNS85]. Observe that, by strict convexity of bG′j , the set D′j := {z′ ∈
Ḡ′j : there exists a complex line Lz′ 3 z′ such that Lz′ ∩ S′j = ∅} is an open
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neighbourhood of Z ′j in Ḡ′j . By the maximum principle, we have f ′j ≤ 0 on
D′j . Hence the function f̃ ′j := max(0, f ′j) satisfies f̃ ′j ≡ 0 on D′j . For every
j ∈ N, let Xj ⊂ bΩ be an open set such that Xj ⊂⊂ {θj > 0} and such
that {Xj}∞j=1 covers bΩ. Further, let W ′j , j ∈ N, be an open neighbourhood of
X ′j := φj(Xj) ⊂⊂ {θ′j > 0} in Ḡ′j such that f ′j > cj > 0 on W ′j for some cj > 0.
Then f̃ ′j is strictly plurisubharmonic on a relatively open neighbourhood of W̄ ′j in
Ḡ′j .

Fix j ∈ N. Without loss of generality we can assume that 0 ∈ G′j . In particular,
there exists εj,1 > 0 such that G′j,εj := (1+εj)G

′(−ε2
j )

j satisfies G′j ⊂⊂ G′j,εj ⊂⊂ U
′
j

for every positive εj ≤ εj,1, where G′(−ε
2
j )

j := G′j \
⋃
z′∈bG′

j
Bn(z′, ε2

j). Define
a smooth plurisubharmonic function f̃ ′j,εj : G′j,εj → [0, 1] by f̃ ′j,εj (z

′) :=
(
f̃ ′j ∗

δε2
j

)
(z′/(1 + εj)), where for γ > 0 we denote by δγ some fixed smooth nonnegative

function depending only on ‖z‖ such that supp δγ = B̄n(0, γ) and
∫
Cn δγ = 1. It

follows from the constructions of G′j,εj and f̃ ′j,εj that there exists εj,2 > 0 such

that for every positive εj ≤ εj,2 the set D′j,εj := (1 + εj)D
′(−ε2

j )
j ⊂ Cn is an open

neighbourhood of bG′j \ φj(bΩ ∩ Uj) and f̃ ′j,εj ≡ 0 on D′j,εj . In particular, the
trivial extension of f̃ ′j,εj ◦ φj : Ḡj → [0, 1] by 0 defines a smooth plurisubharmonic
function Fj,εj : Ω̄→ [0, 1], where Gj := φ−1

j (G′j). Moreover, there exists εj,3 > 0
such that for every εj ≤ εj,3 the function f̃ ′j,εj is strictly plurisubharmonic on
W ′j , and hence the function Fj,εj is strictly plurisubharmonic on Wj := φ−1

j (W ′j).
Finally, for εj → 0 the function f̃ ′j,εj |bG′j converges uniformly to g′j , i.e., Fj,εj |bΩ
converges uniformly to θj .

For every j ∈ N, let εj,0 := min{εj,1, εj,2, εj,3}. Consider the sets e and d of
sequences of nonnegative numbers defined by e :=

{
ε = {εj}∞j=1 : 0 < εj ≤ εj,0

}
and d :=

{
δ = {δj}∞j=1 : 0 < δj ≤ 1/2

}
. For every (ε, δ) ∈ e× d, define a function

Fε,δ : Ω̄ → [0, 1] as Fε,δ := ∑∞
j=1 Fj,εj (1 − δj). Since suppFj,εj ⊂⊂ Uj for every

j ∈ N, and since {Uj}∞j=1 is locally finite, each of the functions Fε,δ is a well
defined smooth and plurisubharmonic function such that suppFε,δ ⊂ U . Moreover,
Fε,δ is strictly plurisubharmonic on W := ⋃∞j=1Wj . By construction, each set Wj

is an open neighbourhood of Xj in Ω̄, and since {Xj}∞j=1 covers bΩ, it follows that
W is an open neighbourhood of bΩ in Ω̄. Moreover, we claim that the following
assertion holds true: for every continuous function k : bΩ→ (0,∞) we can chose
(ε, δ) ∈ e× d such that

1− k < Fε,δ < 1 on bΩ. (3.3)

Indeed, for every δ ∈ d define functions δmin, δmax : bΩ→ (0, 1/2] as δmin(z) :=
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min{δj : z ∈ Uj} and δmax := max{δj : z ∈ Uj}, respectively, and for every ε ∈ e
let Fε := ∑∞j=1 Fj,εj . Since {Uj}∞j=1 is locally finite, and since k is continuous, we
can choose δ ∈ d so small that 1 − k/2 < 1 − δmax. Then, since for εj → 0 the
function Fj,εj |bΩ∩Uj converges uniformly to θj |bΩ∩Uj for every j ∈ N, and since
Fj,εj |bΩ\Uj = θj |bΩ\Uj ≡ 0 for every j ∈ N and εj > 0, we can choose ε ∈ e so
small that (1− k)/(1− k/2) < Fε < 1/(1− δmin) on bΩ. Now observe that, by
definition of Fε,δ, we have (1 − δmax)Fε ≤ Fε,δ ≤ (1 − δmin)Fε, hence it follows
that 1− k < Fε,δ < 1 on bΩ as claimed. Finally, note that the inequality Fε,δ < 1
on bΩ implies that Fε,δ < 1 on Ω, since suppFε,δ ⊂ U , U is filled by analytic discs
attached to bΩ, and Fε,δ is smooth and plurisubharmonic on Ω̄.

Now define a continuous function ν : Ω̄ → (0,∞) as ν := sup(ε,δ)∈e×d‖dFε,δ‖h∗
and observe that indeed ν(z) <∞ for every z ∈ Ω̄. Let ψ : V → R be a smooth
strictly plurisubharmonic function on an open neighbourhood V ⊂M of bΩ such
that Ω ∩ V = {ψ < 0} and ‖dψ‖h∗ > 1 + ν. The existence of such a function
ψ follows immediately from Lemma 3.1.2. Let k : bΩ → (0,∞) be a sufficiently
small continuous function and let (ε, δ) ∈ e× d be chosen in such a way that (3.3)
holds true. Since ‖dψ‖h∗ > 1 + ‖dFε,δ‖h∗ on bΩ, it is easy to see that we have
ψ < Fε,δ − 1 on b(V ∩W )∩Ω, provided that k is chosen small enough. Hence the
function ϕ̃ : Ω̄ ∪ V → R defined by

ϕ̃(z) :=

 ψ(z) , z ∈ V \ Ω
max(ψ(z), Fε,δ(z)− 1) , z ∈ (V ∩W ) ∩ Ω

Fε,δ(z)− 1 , z ∈ Ω \ (V ∩W )

is a continuous plurisubharmonic function such that ϕ̃ = ψ near bΩ and Ω =
{ϕ̃ < 0}. That is why ϕ̃ has all the properties that we seek, except, possibly, for
smoothness in points of the set A := {z ∈ V ∩W ∩Ω : ψ(z) = Fε,δ(z)}. But both
ψ and Fε,δ are strictly plurisubharmonic on V ∩W ∩Ω. Hence, if ω is an arbitrary
fixed neighbourhood of A such that ω̄ ⊂ Ω, we can apply Richberg’s smoothing
method to obtain from ϕ̃ a smooth plurisubharmonic function ϕ : V ∪ Ω̄ such that
ϕ = ϕ̃ outside ω and such that still Ω = {ϕ < 0} (see, for example, Theorem I.5.21
in [De12] for a version of Richberg’s smoothing procedure that is strong enough
for our purpose). Then ϕ is a function as desired. �

3.1.2 Existence results in complex spaces

In this section we extend the above results to the setting of complex spaces.
However, at least at the following two points our results are weaker when compared
to the case of complex manifolds. First, we are not able to establish a general
existence theorem for global defining functions of smoothly strictly q-pseudoconvex
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domains if q > 0. Instead, we have to restrict ourselves to the case of strictly hyper-
q-pseudoconvex domains. And second, if Ω is a smoothly strictly pseudoconvex
domain (i.e., q = 0) in an arbitrary complex space, a subtle technical problem
concerning the regularity of the desired function arises, when one tries to construct
a smoothly global defining function that is smoothly strictly plurisubharmonic
outside c(Ω). We start by gathering the necessary definitions and results.

Let X = (X,OX) be a complex space (all complex spaces are assumed to be
reduced and paracompact). A holomorphic chart for X is a tupel (U, τ,A,G)
where U ⊂ X is open, A is an analytic subset of a domain G ⊂ Cn and τ : U ∼−→ A
is biholomorphic. For every x ∈ X, let Tx(X) denote the Zariski tangent space of
X at x, i.e., Tx(X) := (mx/m2

x)∗ where mx ⊂ Ox is the maximal ideal of germs
of holomorphic functions that vanish in x. If f : X → Y is a holomorphic map
between complex spaces X and Y , then we write f∗ = f∗,x : Tx(X)→ Tf(x)(Y ) for
the induced differential map. Let ϕ : X → R be a smooth function, let (U, τ,A,G)
be a holomorphic chart for X around x and let ϕ̂ : G→ R be a smooth function
such that ϕ = ϕ̂ ◦ τ on U (see below for the definition of smooth functions
on complex spaces). Then we can define functionals (dϕ)x : Tx(X) → R and
(∂ϕ)x, (∂̄ϕ)x : Tx(X)→ C by setting

(∂ϕ)x(ξ) := (∂ϕ̂)τ(x)(τ∗ξ), (∂̄ϕ)x(ξ) := (∂̄ϕ̂)τ(x)(τ∗ξ),
(dϕ)x(ξ) := (∂ϕ)x(ξ) + (∂̄ϕ)x(ξ)

for every ξ ∈ Tx(X). Indeed, by part 1 of the Proposition in [V93], this definition
is independent of the smooth extension ϕ̂, and by assertion (1) in Section 1 of
[Gr62] it is also independent of the holomorphic chart (U, τ,A,G). In particular,
Hx(ϕ) := {ξ ∈ Tx(X) : (∂ϕ)x(ξ) = 0} is a well defined subspace of Tx(X). In the
same way we want to define Lev(ϕ)(x, · ) : Tx(X)→ R as

Lev(ϕ)(x, ξ) := Lev(ϕ̂)
(
τ(x), τ∗ξ

)
. (3.4)

However, as it is shown by Example 1 in [V93], the number Lev(ϕ)(x, ξ) defined in
this way will in general depend on the choice of the smooth extension ϕ̂. In fact, in
order for (3.4) to be well defined, we need to require that X is locally irreducible
at x, see part 2 of the Proposition in [V93]. (We do not know if the functionals
(∂ϕ)x, (∂̄ϕ)x and (dϕ)x can be well defined in general if ϕ is only assumed to be
C1-smooth. We also do not know whether on locally irreducible complex spaces
the Levi form Lev(ϕ)(x, · ) can be well defined for arbitrary C2-smooth functions
ϕ.)

A function ϕ : X → R is called smooth or (strictly) plurisubharmonic, if for every
x ∈ X there exist a holomorphic chart (U, τ,A,G) around x and a smooth or
(strictly) plurisubharmonic function ϕ̂ : G→ R such that ϕ|U = ϕ̂ ◦ τ , respectively.
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Observe that it is not clear from the definition whether a smooth and (strictly)
plurisubharmonic function ϕ : X → R does admit local extensions ϕ̂ as above that
are both smooth and (strictly) plurisubharmonic at the same time. In fact, this
is not true in general, see, for example, Warning 1.5 in [Sm86] and Example 2
in [V93]. If around each point x ∈ X the function ϕ admits holomorphic charts
and local extensions ϕ̂ that are smooth and (strictly) plurisubharmonic, then ϕ
will be called smoothly (strictly) plurisubharmonic. A domain Ω ⊂ X is called
strictly pseudoconvex if for every x ∈ bΩ there exist an open neighbourhood
Ux ⊂ X of x and a continuous strictly plurisubharmonic function ϕx : Ux → R
such that Ω ∩ Ux = {ϕx < 0}. The domain Ω will be called smoothly strictly
pseudoconvex if for every x ∈ bΩ the function ϕx : Ux → R can be chosen to be
smoothly strictly plurisubharmonic. (In the same way we can define the notions
of Cs-smoothly (strictly) plurisubharmonic functions and Cs-smoothly strictly
pseudoconvex domains for every s ∈ N∞0 . Note that a function ϕ : X → R is
C0-smooth and (strictly) plurisubharmonic if and only if it is C0-smoothly (strictly)
plurisubharmonic, see Theorem 2.4 in [Ric68].)

Let q ∈ N0. A function ϕ : X → R is called (strictly) q-plurisubharmonic, if for
every x ∈ X there exist a holomorphic chart (U, τ,A,G) around x and a (strictly)
q-plurisubharmonic function ϕ̂ : G → R such that ϕ|U = ϕ̂ ◦ τ . It is called
smoothly (strictly) plurisubharmonic if around each point x ∈ X the function ϕ
admits holomorphic charts and local extensions ϕ̂ that are smooth and (strictly) q-
plurisubharmonic. A domain Ω ⊂ X is called (smoothly) strictly q-pseudoconvex if
for every x ∈ bΩ there exist an open neighbourhood Ux ⊂ X of x and a (smoothly)
strictly q-plurisubharmonic function ϕx : Ux → R such that Ω ∩ Ux = {ϕx < 0}.
(Analoguous definitions are possible for Cs-smoothly (strictly) q-plurisubharmonic
functions, s ∈ N∞0 , and Cs-smoothly strictly q-pseudoconvex domains, s ≥ 2; in
the latter case, the restriction to s ≥ 2 is a matter of convention.)

Finally, we will say that the boundary bΩ is smooth in x ∈ bΩ, if there exists a
smooth function ϕ : U → R defined on an open neighbourhood U ⊂ X of x such
that Ω ∩ U = {ϕ < 0} and (dϕ)x 6= 0. Observe that bΩ is smooth in x ∈ bΩ
if and only if in every small enough minimal holomorphic chart around x (i.e.,
every small enough chart (U, τ,A,G) around x such that G ⊂ CebdimxX , where
ebdimxX = dimC Tx(X) denotes the embedding dimension of X at x) Ω is the
intersection of X with a smoothly bounded subdomain of the ambient Cn. A
function f : bΩ → R will be called smooth if f is the restriction of a smooth
function defined on an open neighbourhood U ⊂ X of bΩ. In the case when X is
a manifold and bΩ is smooth this definition coincides with the usual one. (Again,
analoguous definitions of Cs-smooth boundaries and Cs-smooth functions can be
given for every s ∈ N∞0 .)

Now we can formulate the main results of this section which generalize Theorem
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3.1.1 and Theorem 3.1.2 to the case of smoothly strictly pseudoconvex domains in
complex spaces.

Theorem 3.1.4. Let X be a complex space, let Ω ⊂ X be a smoothly strictly
pseudoconvex domain and let f : bΩ → R be a smooth function that is bounded
from below. Then there exists a smoothly plurisubharmonic function F defined
on an open neighbourhood of Ω̄ such that F |bΩ = f and F is smoothly strictly
plurisubharmonic near bΩ.

Theorem 3.1.5. Let X be a complex space and let Ω ⊂ X be a smoothly strictly
pseudoconvex domain. Then there exists a smoothly plurisubharmonic function ϕ
defined on an open neighbourhood of Ω̄ such that Ω = {ϕ < 0} and ϕ is smoothly
strictly plurisubharmonic near bΩ.

We would also like to prove results analoguous to Theorem 3.1.1 and Theorem
3.1.2 for the case of smoothly strictly q-pseudoconvex domains in complex spaces.
However, we do not know whether this is possible in general if q > 0. The problem
is essentially the following: If Ω is a domain in a complex manifold M, z ∈ bΩ,
U ⊂M is an open neighbourhood of z and ϕ1, ϕ2 : U → R are smooth functions
such that Ω ∩ U = {ϕ1 < 0} = {ϕ2 < 0}, then for every ξ ∈ Hz(ϕ1) we have
Lev(ϕ1)(z, ξ) ≥ 0 if and only if Lev(ϕ2)(z, ξ) ≥ 0 (see Remark 5 after Theorem
3.1.2). Thus when adding ϕ2 to ϕ1 we do not loose positivity of the Levi form
on Hz(ϕ1), and if Hz(ϕ1) 6= Tz(M), then a possible loss of positivity in the
direction normal to Hz(ϕ1) (with respect to some hermitian metric h on M) can
be reacquired by composing the sum ϕ1 + ϕ2 with a smooth strictly increasing
and strictly convex function χ : R→ R. However, this is not longer true in general
in the setting of complex spaces as it is shown by the following example.

Example 2. Let X := {(z, w) ∈ C2 : z3 = w2} and let Ω := X \ {0}. Consider
the smoothly 1-plurisubharmonic functions ϕ1, ϕ2 : X → R which are defined
as the restrictions to X of the functions ϕ̂1(z, w) := |z + w|2 − 2|z − w|2 and
ϕ̂2(z, w) := |z − w|2 − 2|z + w|2 on C2, respectively. One easily verifies that
in a small open neighbourhood U ⊂ X of 0 ∈ X it holds true that Ω ∩ U =
{x ∈ U : ϕ1(x) < 0} = {x ∈ U : ϕ2(x) < 0} and hence Ω is a smoothly strictly
1-pseudoconvex domain. Since T0(X) ' C2, and since X is locally irreducible,
the Levi form at the origin of every smooth extension of ϕ1 + ϕ2 to an open
neighbourhood of 0 ∈ C2 coincides with the Levi form of ϕ̂1 + ϕ̂2 in 0. However,
Lev(ϕ̂1 + ϕ̂2)(0, · ) is negative definit on C2 ' H0(ϕ1).

One might argue that the above example is of a rather pathological nature. On
the other hand, observe that typically no assumptions about the smoothness of
bΩ are made in the definition of smoothly strictly q-pseudoconvex domains in
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complex spaces (see, for example, [AG62]). Anyway, even if bΩ is assumed to
be smooth at x ∈ bΩ we do not know whether the Levi forms at x of two local
defining functions for Ω around x can be compared as it is done in the manifold
case.

As a consequence of the described above problem, in the case q > 0 we prove
generalizations of Theorem 3.1.1 and Theorem 3.1.2 only for hyper-q-pseudoconvex
domains instead of smoothly strictly q-pseudoconvex domains. Before stating the
precise results we collect all necessary definitions.

First we remind the definition of hermitian metrics on complex spaces. Let
π : T (X)→ X be the Zariski tangent linear space, i.e., the underlying set of T (X)
is simply the disjoint union ⋃x∈X Tx(X) (see, for example, [Fi76] for more details).
A hermitian metric h on X is a smooth mapping h : T (X) ×π T (X) → C such
that h|Tx(X)×Tx(X) is a hermitian metric on Tx(X) for every x ∈ X. If h is a
hermitian metric on X, then for every x ∈ X we denote by ‖ · ‖hx and ‖ · ‖h∗x the
induced norms on Tx(X) and T ∗x (X), respectively. If the context is clear, then we
sometimes omit the index x and simply write ‖ · ‖h or ‖ · ‖h∗ .

Let X be a complex space endowed with a hermitian metric h. A smooth function
ϕ : X → R is called hyper-q-plurisubharmonic (respectively strictly hyper-q-plu-
risubharmonic) if for every complex subspace Y ⊂ X and every y ∈ Y , every
holomorphic chart (U, τ,A,G) for Y around y and every hermitian metric ĥ on
G ⊂ Cn which satisfies h|U = τ∗ĥ there exist an open neighbourhood G′ ⊂ G of
τ(y) and a smooth function ϕ̂ : G′ → R such that ϕ = ϕ̂◦ τ on U ′ := τ−1(G′) ⊂ U
with the following property: for every z ∈ G′ the trace with respect to ĥ of the
restriction of the Levi form Lev(ϕ̂)(z, · ) to any (q + 1)-dimensional subspace of
Cn is nonnegative (respectively positive), i.e., for every ĥ-orthonormal collection
of vectors e1, e2, . . . , eq+1 ⊂ Cn we have that ∑q+1

j=1 Lev(ϕ̂)(z, ej) ≥ 0 (respectively
> 0). Observe that these definitions depend on the given hermitian metric h and
that in general the Levi form of ϕ̂ is not uniquely determined by ϕ (it is if X is
locally irreducible). Moreover, it is clear from the definition that every (strictly)
hyper-q-plurisubharmonic function is (strictly) q-plurisubharmonic. The main
advantage of the set of (strictly) hyper-q-plurisubharmonic functions over the set of
all (strictly) q-plurisubharmonic functions is that the former set is closed under ad-
dition. (In the case of not necessarily strictly hyper-q-plurisubharmonic functions
we need here that ϕ has an extension ϕ̂ as described above with respect to every ex-
tension ĥ of h. Then the additional assumption on the complex subspaces Y ⊂ X
is imposed in order to guarantee that restrictions of hyper-q-plurisubharmonic
functions to complex subspaces are again hyper-q-plurisubharmonic; we will not
need this property in our constructions. Moreover, for not necessarily strictly
hyper-q-plurisubharmonic functions it is also not clear if requiring the existence of
the extension ϕ̂ only with respect to one fixed chart of Y , instead of requiring it
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with respect to every chart of Y , yields an equivalent definition. All these com-
plications do not arise in the case of strictly hyper-q-plurisubharmonic functions,
and thus there is a less technical but equivalent definition in this situation, see, for
example, Proposition 2.2 in [FrN10]. In particular, it follows easily from the above
remarks that for every strictly hyper-q-plurisubharmonic function ϕ : X → R and
every compactly supported smooth function θ : X → R there exists ε0 > 0 such
that ϕ+ εθ is strictly hyper-q-plurisubharmonic for every |ε| ≤ ε0.) Finally, note
that (strictly) hyper-0-plurisubharmonic just means smoothly (strictly) plurisub-
harmonic. The notion of hyper-q-plurisubharmonicity was first introduced in the
context of complex manifolds by Grauert and Riemenschneider in [GR70], the
above definition for complex spaces is taken from [FrN10] (actually Grauert and
Riemenschneider use the term hyper-(q + 1)-convex functions instead of strictly
hyper-q-plurisubharmonic functions, but since we prefered the term of strict
q-plurisubharmonicity over (q+ 1)-convexity before, we stick to this convention).

A domain Ω ⊂ X = (X,h) will be called strictly hyper-q-pseudoconvex if for
every x ∈ bΩ there exist an open neighbourhood Ux ⊂ X of x and a strictly
hyper-q-plurisubharmonic function ϕx : Ux → R such that Ω ∩ Ux = {ϕx < 0}.
Observe that Ω is strictly hyper-0-pseudoconvex if and only if it is smoothly
strictly pseudoconvex. (Analoguous definitions would be possible in the Cs-smooth
categories for every s ≥ 2.)

Now we turn to the generalizations of Theorem 3.1.1 and Theorem 3.1.2 to hyper-
q-pseudoconvex domains in complex spaces. Note that for q = 0 this will include
the case of smoothly strictly pseudoconvex domains. Hence Theorems 3.1.4 and
3.1.5 are special cases of the next two theorems, and thus it suffices to prove only
these more general results.

Theorem 3.1.4′. Let X be a complex space, let Ω ⊂ X be a strictly hyper-q-
pseudoconvex domain and let f : bΩ→ R be a smooth function that is bounded from
below. Then there exists a hyper-q-plurisubharmonic function F defined on an open
neighbourhood of Ω̄ such that F |bΩ = f and F is strictly hyper-q-plurisubharmonic
near bΩ.

Proof. Since f is bounded from below, we can assume without loss of generality
that f > 0. Let F̃ : X → (0,∞) be a smooth extension of f . Let {U ′′j }∞j=1 be a
locally finite covering of bΩ by open sets U ′′j ⊂⊂ X such that for every j ∈ N
there exists a strictly hyper-q-plurisubharmonic function ϕj : U ′′j → R such that
Ω ∩ U ′′j = {ϕj < 0}. Moreover, let U ′j ⊂⊂ Uj ⊂⊂ U ′′j be open sets such that
{U ′j}∞j=1 still covers bΩ.

Let {χj}∞j=1 be a family of smooth functions χj : X → [0,∞) such that {χj >
0} = U ′j for every j ∈ N, ∑∞j=1 χj ≤ 1 on X and ∑∞j=1 χj ≡ 1 near bΩ. Let
β : (0,∞)→ (0,∞) be a strictly increasing and strictly convex smooth function
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such that β(t) = e−1/t for small values of t, and let β̃ : R→ [0,∞) be the smooth
extension of β such that β̃|(−∞,0] ≡ 0. As in the proof of Theorem 3.1.1, by
a proper choice of {χj}∞j=1, we can guarantee that for every j ∈ N the trivial
extension gj : X → [0,∞) of the function β−1 ◦(F̃χj) : U ′j → (0,∞) by 0 is smooth
on X.

Let λj : X → (−∞, 0] be smooth such that Ū ′j = {λj = 0}. Then choose εj > 0
so small and Cj > 0 so large that gj + Cj(ϕj + εjλj) is still strictly hyper-q-
plurisubharmonic on Uj . Observe that, by construction, gj + Cj(ϕj + εjλj) < 0
on bUj ∩ Ω̄, hence the function β̃ ◦ (gj + Cj(ϕj + εjλj))|Uj vanishes near this set
and thus its trivial extension by 0 to the open neighbourhood Uj := X \ {x ∈
bUj : (gj + Cj(ϕj + εjλj))(x) ≥ 0} of Ω̄ defines a hyper-q-plurisubharmonic
function Fj : Uj → [0,∞) such that Fj |bΩ = fχj and Fj ≡ 0 outside Uj . Moreover,
Wj := {Fj > 0} ⊂ Uj is an open neighbourhood of bΩ ∩ U ′j such that Fj
is strictly hyper-q-plurisubharmonic on Wj . Hence F := ∑∞

j=1 Fj is hyper-q-
plurisubharmonic on the open neighbourhood U := ⋂∞j=1 Uj ⊂ X of Ω̄ such that
F |bΩ = f and F is strictly hyper-q-plurisubharmonic on W := ⋃∞j=1Wj ⊃ bΩ. �

Theorem 3.1.5′. Let X be a complex space and let Ω ⊂ X be a strictly hyper-q-
pseudoconvex domain. Then there exists a hyper-q-plurisubharmonic function ϕ
defined on an open neighbourhood of Ω̄ such that Ω = {ϕ < 0} and ϕ is strictly
hyper-q-plurisubharmonic near bΩ.

Proof. Let ϕ := F−1 where F is the function from Theorem 3.1.4 ′ corresponding
to the boundary values f ≡ 1. Then ϕ is a hyper-q-plurisubharmonic function on
an open neighbourhood of Ω̄ that vanishes identically on bΩ and that is strictly
hyper-q-plurisubharmonic near bΩ. As before, in the construction of F we can
choose F̃ such that Ω = {F̃ < 1}, and this choice implies that Ω = {F < 1}, i.e.,
Ω = {ϕ < 0}; see the proof of Theorem 3.1.2 for more details. �

Remarks. 1) In the last two theorems strict hyper-q-convexity is understood
with respect to an arbitrary but fixed hermitian metric on X.

2) Similar to what we had above, the function F from Theorem 3.1.4 ′ is strictly
hyper-q-plurisubharmonic on the open neighbourhood W of bΩ and it is constant
on Ω \W . One sees immediately from our construction that for every open set
ω ⊂ Ω such that ω̄ ⊂ Ω we can choose F in such a way that it will be constant on
ω.

3) The statements of Theorems 3.1.4 ′ and 3.1.5 ′ remain true if C∞-smoothness is
replaced by Cs-smoothness for any s ≥ 2. Also for Cs-smoothly strictly pseudo-
convex domains with s ∈ {0, 1} the proofs still work, but in Theorem 3.1.4 ′ we
have to assume that the function f : bΩ→ R is at least C2-smooth. In particular,
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every strictly pseudoconvex domain in a complex space admits a continuous global
defining function.

It is also possible to generalize Theorem 3.1.3 to the case of complex spaces. The
precise statement is contained in the following theorem.

Theorem 3.1.6. Let X be a complex space and let Ω ⊂ X be a strictly pseudo-
convex domain. Let U ⊂ X be an arbitrary open neighbourhood of bΩ. Then the
following assertions hold true:

(1) There exists a smoothly strictly pseudoconvex domain Ω′ ⊂ X such that
Ω \ U ⊂ Ω′ and Ω̄′ ⊂ Ω.

(2) There exists a smoothly strictly pseudoconvex domain Ω′′ ⊂ X such that
Ω̄ ⊂ Ω′′ and Ω̄′′ ⊂ Ω ∪ U .

In particular, Ω̄ admits a neighbourhood basis consisting of smoothly strictly
pseudoconvex domains.

Proof. In view of Theorem 2.4 in [Ric68], it is easy to see that the version of
Richberg’s smoothing procedure which is formulated in Theorem I.5.21 in [De12],
remains true in the setting of complex spaces. Thus the theorem can be proved in
the same way as Theorem 3.1.3 above. �

As in the case of manifolds, we can now introduce the notion of the core of a
smoothly strictly pseudoconvex domain in an arbitrary complex space.

Definition. Let X be a complex space and let Ω ⊂ X be a domain. Then the set

c(Ω) :=
{
z ∈ Ω : every smoothly plurisubharmonic function on Ω that is boun-
ded from above fails to be smoothly strictly plurisubharmonic in z

}
will be called the core of Ω.

However, observe that a subtle technical problem concerning the regularity of
the global defining function occurs if one tries to extend the Main Theorem to
the setting of complex spaces. In fact, in the proof of the Main Theorem we
construct the smooth plurisubharmonic function φ1 as a limit of a series of smooth
plurisubharmonic functions. Correspondingly, in the case of complex spaces the
function φ1 would be a limit of a series of smoothly plurisubharmonic functions.
Observe though that when taking limits in the class of smoothly plurisubharmonic
functions defined on a complex space, it is not clear in general in which cases
the limit function will again be smoothly plurisubharmonic. Indeed, if we try to
repeat the proof of the Main Theorem for complex spaces, then one can easily
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choose the sequence {εj}∞j=1 in such a way that the function φ1 is smooth and
plurisubharmonic (here we need the equivalence of weakly plurisubharmonic and
plurisubharmonic functions on complex spaces, see Theorem 5.3.1 in [FoN80]), but
it is not clear whether φ1 will also be smoothly plurisubharmonic. The problem
is that given a point x ∈ X and a sequence {Ψj} of smoothly plurisubharmonic
functions on X, then after a local embedding of X into some Cn each Ψj extends
as a smooth plurisubharmonic function onto some neighbourhood Ûj ⊂ Cn of
x, but it is not clear whether one can guarantee that also ⋂∞j=1 Ûj will contain
some neighbourhood of x. For the function φ1, we only know how to avoid this
problem away from c(Ω), namely, we can at least show that φ1 is smoothly strictly
plurisubharmonic outside c(Ω). We sketch briefly the corresponding argument: By
construction, φ1 = ∑∞j=1 εjΨj for some smoothly plurisubharmonic functions Ψj

on Ω. Fix arbitrary x ∈ Ω \ c(Ω). After a local embedding of the complex space
X, we can find smooth extensions Ψ̂j of the functions Ψj to a uniformly large
neighbourhood of x in the ambient Cn such that each function Ψ̂j has nonnegative
Levi form in x. Moreover, since x /∈ c(Ω), and by the choice of the functions Ψj ,
at least one of the functions Ψ̂j has positive Levi form in x. Thus if {εj} is chosen
suitably, then the function φ̂1 := ∑∞

j=1 εjΨ̂j is a smooth extension of φ1 which
has a positive Levi form in x, i.e., φ1 is smoothly strictly plurisubharmonic in x.
(Analoguous results hold in the Cs-smooth categories for every s ≥ 2. Moreover, in
view of Theorem 2.4 from [Ric68], a full analogue of the Main Theorem holds true
for strictly pseudoconvex domains in complex spaces in the C0-smooth category.)

Finally, an analogue of Proposition 3.1.2 holds true for arbitrary Stein spaces (for
the existence of a smoothly strictly plurisubharmonic function on a Stein space
see, for example, the Lemma in Section 3 of [Na61]).

3.2 Examples of unbounded domains with nonempty
core

Let Ω be a domain in a complex manifold M. It follows immediately from the
definition of the core, that c(Ω) is always relatively closed in Ω. If Ω is strictly
pseudoconvex with smooth boundary, then Theorem 3.1.2 ′ implies that c(Ω) is
also closed in M. Moreover, c(Ω) = ∅ if M is Stein and Ω is relatively compact
in M. As remarked above, every domain Ω ⊂M admits a smooth and bounded
plurisubharmonic function ϕ : Ω→ R that is strictly plurisubharmonic precisely
in Ω \ c(Ω) (see the remarks following the definition of minimal functions on page
79).
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In order to get a better understanding of properties of the core, we construct in
this section several examples of unbounded domains Ω ⊂ Cn such that c(Ω) 6= ∅.
Before we start with these constructions, we want to make the following observation:
If Ω ⊂M is a domain, and ω ⊂ Ω is a subdomain such that c(Ω) ⊂ ω, then clearly
c(ω) ⊂ c(Ω). We do not know, however, whether the reverse inclusion holds also
true here, i.e., we do not know if in general c(ω) = c(Ω). In fact, in all examples
of domains Ω ⊂ M with nonempty core that we will construct here (and also
in the Examples I and II that have already been given in the Introduction), the
above equality does indeed hold true for every subdomain ω ⊂ Ω that contains
c(Ω). Thus, loosely speaking, in all examples that we are able to construct, the
presence of the core c(Ω) ⊂ Ω is only related to intrinsic properties of c(Ω), but
not to properties of Ω.

These observations will lead us in Section 3.4 to define the notion of sets of core
type. For the moment, we just want to point out, that in view of a possible
dependence of c(Ω) on Ω, it is desirable to construct not only examples of arbitrary
domains with nonempty core, but also of domains with additional properties, like,
for example, pseudoconvexity. This concern is further illustrated by the following
theorem.

Theorem 3.2.1. The following assertions hold true for domains Ω ⊂ Cn, n ≥ 2:

(1) There exists a domain Ω ⊂ Cn such that c(Ω) = E ×Cn−1, where E ⊂ C is
the set E = [0, 1]× R.

(2) Let Ω ⊂ Cn be a pseudoconvex domain such that c(Ω) = E × Ck for some
k ∈ Nn−1 and some set E ⊂ Cn−k. Then either E is locally complete
pluripolar or E is open. In the latter case Ω = E × Ck.

(3) Let k ∈ Nn−1 be arbitrary but fixed. Then there exists a strictly pseudoconvex
domain Ω ⊂ Cn such that c(Ω) = E ×Ck for a set E ⊂ Cn−k if and only if
E is closed and complete pluripolar.

Remarks. 1) Statement (1) shows that the core of an arbitrary domain Ω ⊂ Cn
may divide Ω into several connected components, and, moreover, c(Ω) may have
nonemtpy interior. However, it is not clear to us at the moment, whether a
pseudoconvex domain Ω ⊂ Cn can have nonempty and disconnected complement
Ω \ c(Ω), or if the core of a strictly pseudoconvex domain Ω ⊂ Cn can have
nonempty interior.

2) Statement (3) shows that if the core of a strictly pseudoconvex domain is
assumed to have a product structure as described above, then it is always complete
pluripolar. In view of this result, and also of the examples that will be given
below, one can raise the following question: Is it always true that the core of a
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strictly pseudoconvex domain is complete pluripolar? At the moment we are not
able to give an answer to this question.

3) Some part of the arguments which we will use to prove the statements (2) and
(3) of the theorem are similar to the ones which appear in the proof of Theorem
1.11 in [Au83]. In fact, to some extent, the corresponding statements are already
implicitly contained in the above mentioned result of Aupetit. Another partial
result, which is slightly different from the one proven by Aupetit, can also be
found in Theorem 1 in [Kaz83].

Proof. (i) We start with proving statement (1) of the theorem. Let (z1, z2, . . . , zn),
zj = xj + iyj , denote the coordinates in Cn. For every j ∈ N, let ψj : Bn(0, j)→ R
be the smooth and strictly plurisubharmonic function defined by

ψj(z1, . . . , zn) := x1 −
1

2j−2 + 1
j22j−1

(
y2

1 + |z2|2 + · · ·+ |zn|2
)
.

Choose a smooth function χj : R → [0,∞) such that χj ≡ 0 on (−∞,−1/2j ]
and such that χj is strictly increasing and strictly convex on (−1/2j ,∞). Set
ϕ̃j := χj ◦ ψj . Then ϕ̃j is a smooth plurisubharmonic function on Bn(0, j) such
that ϕ̃j ≡ 0 on {ψj ≤ −1/2j} ⊃ Bn(0, j) ∩ {x1 ≤ 1/2j} and such that ϕ̃j is
strictly plurisubharmonic and positive on {ψj > −1/2j} ⊃ Bn(0, j)∩{x1 > 3/2j}.
Thus

ϕj(z) :=
ß
ϕ̃j(z) , z ∈ Bn(0, j) ∩ {x1 ≥ 1/2j}

0 , z ∈ {x1 < 1/2j}

is a smooth plurisubharmonic function on Wj := Bn(0, j)∪{x1 < 1/2j} such that
ϕj is strictly plurisubharmonic and positive on Bn(0, j) ∩ {x1 > 3/2j}. Observe
that W := ⋂∞

j=1Wj is a connected open neighbourhood of {x1 ≤ 0}. Then one
easily sees that for a sequence {εj}∞j=1 of positive numbers that converges to zero
fast enough, the function ϕ := ∑∞j=1 εjϕj is smooth and plurisubharmonic on W
such that ϕ ≡ 0 on {x1 ≤ 0} and such that ϕ is strictly plurisubharmonic and
positive on W ∩ {x1 > 0}.

Now define a domain Ω ⊂ Cn as

Ω := [W+(1, 0, . . . , 0)]∩[−W ] =
{
z ∈ Cn : (z1−1, z2, . . . , zn) ∈W and −z ∈W

}
.

Then E×Cn−1 ⊂ Ω, where E := [0, 1]×Ry1 ⊂ C. By the Liouville theorem, every
plurisubharmonic function u on Ω that is bounded from above has to be constant
on {z} × Cn−1 for every z ∈ E. Hence u fails to be strictly plurisubharmonic
at every point of E × Cn−1, i.e., E × Cn−1 ⊂ c(Ω). On the other hand, Φ(z) :=
ϕ(z1 − 1, z2, . . . , zn) + ϕ(−z) is a smooth plurisubharmonic function on Ω such
that Φ is strictly plurisubharmonic on Ω \ (E × Cn−1), i.e., c(Ω) ⊂ E × Cn−1.
Thus c(Ω) = E × Cn−1, which completes the proof of part 1 of the theorem.
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(ii) We now prove the statements (2) and (3) of the theorem. At first, let Ω ⊂ Cn
be an arbitrary domain such that c(Ω) = E × Ck for some set E ⊂ Cn−k.
Then, in view of Liouville’s theorem, one can easily see that E = {z′ ∈ Cn−k :
{z′} × Ck ⊂ Ω}. For every z′′ ∈ Ck let Vz′′ := {z′ ∈ Cn−k : (z′, z′′) ∈ Ω} and
define ψz′′ : Vz′′ → [−∞,∞) as ψz′′(z′) := − logR(z′, z′′), where R(z) := sup{r >
0 : {z′} ×Bk(z′′, r) ⊂ Ω}, z = (z′, z′′) ∈ Cn−k × Ck. By definition, ψ0(z′) = −∞
if and only if {z′} × Ck ⊂ Ω. Thus E = {ψ0 = −∞}.

Assume now that Ω is pseudoconvex. Then ψ0 is plurisubharmonic on V0, since
ψ0(z′) = supw′′∈Ck,‖w′′‖=1[− logR(0,w′′)(z′, 0)], where for every w ∈ Cn the func-
tion Rw(z) := sup{r > 0 : z + ζw ∈ Ω for every ζ ∈ ∆(0, r)} denotes the Hartogs
radius of Ω in the w-direction; here ∆(a, r) := {z ∈ C : |z − a| < r}. Thus E is
locally complete pluripolar if ψ0 6≡ −∞ on every connected component of V0. On
the other hand, suppose that ψ0 ≡ −∞ on some connected component U of V0,
i.e. U × Ck ⊂ Ω. Assume, to get a contradiction, that Ω 6= U × Ck. Then there
exists z′′ ∈ Ck such that U is a proper subset of the connected component V ′z′′ of
Vz′′ containing U . Since ψz′′ ≡ −∞ on the open set U , it follows that ψz′′ ≡ −∞
on V ′z′′ . Thus V ′z′′ × C ⊂ Ω and hence, by definition of U , we have V ′z′′ ⊂ U . This
contradicts the fact that U ( V ′z′′ and thus proves that Ω = U × Ck. Another
application of Liouville’s theorem then shows that E = U , which completes the
proof of statement (2).

Now assume that Ω is even strictly pseudoconvex. Then, by what we have
already proven, it follows that E is locally complete pluripolar. Assume, to get
a contradiction, that E is not closed. Then there exist p ∈ Cn−k \ E and a
sequence {pj}∞j=1 ⊂ E such that limj→∞ pj = p. Since E × Ck ⊂ Ω, it follows
that L := {p}×Ck ⊂ Ω̄. By Theorem 3.1.2 and the related Remark 4, there exists
a continuous plurisubharmonic function ϕ on an open neighbourhood of Ω̄ such
that Ω = {ϕ < 0}. In particular, ϕ ≤ 0 on Ω̄. Thus, by Liouville’s theorem, ϕ ≡ c
on L for some constant c ≤ 0. If c < 0, then L ⊂ Ω and hence also L ⊂ c(Ω).
This implies that p ∈ E, which contradicts the assumption on p. On the other
hand, if c = 0, then L ⊂ bΩ, which is not possible by strict pseudoconvexity of bΩ.
This shows that E is closed in Cn−k. By Corollary 1 in [Co90], it follows that E
is complete pluripolar.

Finally, let E ⊂ Cn−k be a closed complete pluripolar set. Then, by Corollary
1 in [Co90], there exists a plurisubharmonic function u on Cn−k such that u is
smooth on Cn−k \ E and E = {u = −∞}. Define

Ω′ :=
{

(z′, z′′) ∈ Cn : u(z′) + ‖z‖2 < C
}
.

Then for generic C ∈ R, Ω′ is a strictly pseudoconvex open set with smooth
boundary such that E × Ck ⊂ Ω′. By Liouville’s theorem, E × Ck ⊂ c(Ω′).
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3.2 Examples of unbounded domains with nonempty core

Moreover, let v : Cn → [−∞,∞) be defined as v(z) = u(z′) + ‖z‖2. It is easy to
see that if {ηj}∞j=1 is a sequence of positive numbers that converges to zero fast
enough, then ṽ := ∑∞j=1 ηj fimax1(v − C,−j) is a smooth global defining function
for Ω′ which is strictly plurisubharmonic outside E × Ck. Thus we also have that
c(Ω′) ⊂ E × Ck. This shows that c(Ω′) = E × Ck. The assertion of statement (3)
then follows from the following lemma. �

Lemma 3.2.1. Let M be a connected complex manifold and let Ω′ ⊂ M be a
strictly pseudoconvex open set (not necessarily connected or with smooth boundary).
Then there exists a strictly pseudoconvex domain Ω ⊂M with smooth boundary
such that Ω̄′ ⊂ Ω and c(Ω) = c(Ω′).

Proof. We proceed in three steps.

Step 1. Let G0, G1 ⊂ Cn be two strictly pseudoconvex domains with smooth
boundary such that Ḡ0 ∩ Ḡ1 = ∅. Let γ : [0, 1] → Cn be a smooth embedding
such that z0 := γ(0) ∈ bG0, z1 := γ(1) ∈ bG1 and γ(t) ∈ Cn \ (Ḡ0 ∪ Ḡ1) for
t ∈ (0, 1). Let ψ be a smooth plurisubharmonic function on an open neighbourhood
V ⊂ Cn of Ḡ0 ∪ Ḡ1 such that for j = 0, 1 we have ψ(zj) ≤ 0 and ψ is strictly
plurisubharmonic near zj. Then for every open neighbourhood Γ ⊂ Cn of γ([0, 1])
there exist a strictly pseudoconvex domain Ω ⊂ Cn with smooth boundary and a
smooth plurisubharmonic function ϕ on an open neighbourhood U ⊂ Cn of Ω̄ such
that the following assertions hold true:

(i) U = V ′ ∪ Γ′ for some open neighbourhood V ′ ⊂ V of Ḡ0 ∪ Ḡ1 and some
open neighbourhood Γ′ ⊂ Γ of γ([0, 1]),

(ii) Ω \ Γ = (G0 ∪G1) \ Γ,

(iii) ϕ = ψ on V ′, while ϕ is strictly plurisubharmonic and less than 1 on Γ′.

Proof. Fix constants ε0, δ0 > 0 such that B̄n(z0, ε0)∩B̄n(z1, ε0) = ∅, ψ is strictly
plurisubharmonic and less than 1/2 on Bn(z0, ε0) ∪Bn(z1, ε0) ⊂ V ∩ Γ and such
that γ([0, 1])(δ0) ⊂ Γ, where for K ⊂ Cn and d > 0 we let K(d) := ⋃z∈K Bn(z, d).

Choose s > 0 so small that γ([0, s]) and γ([1− s, 1]) are contained in Bn(z0, ε0) ∪
Bn(z1, ε0). Let f : γ([0, 1])→ (−∞, 1/2) be a smooth function such that for some
constant c ∈ (0, 1) one has f + c < ψ in γ(0) and γ(1), and f > ψ + c in γ(s)
and γ(1 − s). Let F : Cn → R be a smooth extension of f . Since one can see
easily that γ([0, 1]) is contained in a closed embedded smooth real 1-dimensional
submanifold M ⊂ Cn, it follows from Lemma 1 in [Ch69] that there exists a
smooth strictly plurisubharmonic function θ : W → R on an open neighbourhood
W ⊂ Cn of γ([0, 1]) such that θ ≡ 0 on γ([0, 1]). Thus for C > 0 large enough,
and after possibly shrinking W , the function ρ := F + Cθ is smooth and strictly
plurisubharmonic on W such that ρ < 1/2 and ρ|γ([0,1]) = f .
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3 Global plurisubharmonic defining functions and the core

Choose ε ∈ (0, ε0) so small that

• Bn(z0, ε) ∪Bn(z1, ε) ⊂W ,

• γ([s, 1− s]) ∩ (B̄n(z0, ε) ∪ B̄n(z1, ε)) = ∅, and

• ρ+ c < ψ on Bn(z0, ε) ∪Bn(z1, ε).

Moreover, let δ ∈ (0,min(δ0, ε)/2) be so small that

• γ([0, 1])(2δ) ⊂W ,

• γ([0, 1])(2δ) ∩ (G0 ∪G1)(δ) ⊂ Bn(z0, ε) ∪Bn(z1, ε),

• the orthogonal projection π : γ([0, 1])(2δ) →M along the normal directions
of the manifold M is well defined, and

• there exists a constant a ∈ (0, s) such that π−1(γ([0, s+a)∪(1−s−a, 1])) ⊂
Bn(z0, ε0)∪Bn(z1, ε0), π−1(γ((s−a, 1−s+a)))∩(Bn(z0, ε)∪Bn(z1, ε)) = ∅
and ρ > ψ + c on π−1(γ((s− a, s+ a) ∪ (1− s− a, 1− s+ a))).

Let V ′ := V ∩ (G0 ∪G1)(δ), let Γ′ := Bn(z0, ε) ∪ γ([0, 1])(2δ) ∪Bn(z1, ε) and set
U := V ′ ∪ Γ′. Then ϕ : U → R defined as

ϕ :=

 ψ on V ∩ (G0 ∪G1)(δ)fimaxc(ψ, ρ) on Bn(z0, ε) ∪ π−1(γ([0, s+ a) ∪ (1− s− a, 1])) ∪Bn(z1, ε)
ρ on π−1(γ((s− a, 1− s+ a)))

is a smooth plurisubharmonic function on U such that ϕ = ψ on V ′, ϕ < 1 on Γ′
and ϕ is strictly plurisubharmonic on Γ′.

It only remains to construct a strictly pseudoconvex domain Ω ⊂ Cn with smooth
boundary such that Ω \ Γ = (G0 ∪ G1) \ Γ and Ω̄ ⊂ U . To do so, fix ε̃ > 0
so small that B̄n(z0, ε̃) ∪ B̄n(z1, ε̃) ⊂ U ∩ Γ. Then for j = 0, 1 choose strictly
pseudoconvex domains G̃j ⊂ Cn with smooth boundary such that G̃j ⊂ Gj ,
G̃j \Bn(zj , ε̃) = Gj \Bn(zj , ε̃) and such that near zj the domain G̃j looks like a
ball with zj as a boundary point. (The existence of the domains G̃j is essentially
an observation by H. Boas, which is based on a result due to Y. Eliashberg. A
detailed proof of this fact, together with references to the results of Boas and
Eliashberg, can be found, for example, in Corollary 4.1.46 of [JP00]. Observe that
our assertions on the domains G̃j are slightly stronger than the ones formulated
in the statement of the mentioned above corollary. However, the fact that G̃j
can be assumed to be strictly pseudoconvex with smooth boundary follows, for
example, from the remark after Corollary 4.1.46 in [JP00], or from the construction
of smooth maximum as described in Section 3.1.1 of this article.) Moreover,
let γ̃ : [0, 1] → Cn be a smooth embedding such that γ̃(0) = z0, γ̃(1) = z1,
γ̃([0, 1]) \ (Bn(z0, ε̃/2)∪Bn(z1, ε̃/2)) = γ([0, 1]) \ (Bn(z0, ε̃/2)∪Bn(z1, ε̃/2)), and
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3.2 Examples of unbounded domains with nonempty core

such that for some r > 0 the curves γ̃([0, r]) and γ̃([1 − r, 1]) are segments of
lines orthogonal to bG̃0 and bG̃1, respectively. Finally, choose δ̃ ∈ (0,min(ε̃/2, δ)).
Then, by the corollary in Section 1 of [Sh83], and after possibly further shrinking
δ̃, there exists a strictly pseudoconvex domain Ω ⊂ Cn with smooth boundary
such that

Ω\(Bn(z0, ε̃/2)∪Bn(z1, ε̃/2)) = (G̃0∪γ̃([0, 1])(δ̃)∪G̃1)\(Bn(z0, ε̃/2)∪Bn(z1, ε̃/2)).

(The corollary quoted above is only formulated for domains in C2, but the statement
and the proof remain true also in the case of Cn.) In particular,

Ω \ (Bn(z0, ε̃) ∪Bn(z1, ε̃)) = (G0 ∪ γ([0, 1])(δ̃) ∪G1) \ (Bn(z0, ε̃) ∪Bn(z1, ε̃)).

It now follows easily from the constructions that Ω is a domain as desired. This
completes the proof of Step 1.

Step 2. The statement of Step 1 remains true if Cn is replaced by an arbitrary
complex manifold M.

Proof. Let D1, . . . , DN ⊂M be open coordinate patches such that γ([0, 1]) ⊂⋃N
j=1Dj , z0 ∈ D1, z1 ∈ DN , Dj ∩ γ([0, 1]) is connected, 1 ≤ j ≤ N , Dj ∩Dj+1 ∩

γ([0, 1]) 6= ∅, 1 ≤ j ≤ N − 1, and Dj ∩ Dk = ∅ if |j − k| > 1. For every
j = 1, . . . , N − 1, let G̃j ⊂⊂ Γ ∩ (Dj ∩Dj+1) be a strictly pseudoconvex domain
with smooth boundary such that the sets G0 =: G̃0, G̃1, . . . , G̃N−1, G̃N := G1 have
pairwise disjoint closures and there exists numbers 0 =: t10 < t11 < t20 < t21 < · · · <
tN0 < tN1 := 1 such that ⋃Nj=1 γ((tj0, t

j
1)) ⊂ M \⋃Nj=0

¯̃Gj and γ((tj1, t
j+1
0 )) ⊂ G̃j ,

1 ≤ j ≤ N − 1. Define γ̃j : [0, 1]→M as γ̃j(t) := γ(tj0 + t(tj1 − t
j
0)). Choose open

neighbourhoods Ṽj ⊂M of ¯̃Gj and smooth functions ψ̃j : Ṽj → R, 0 ≤ j ≤ N , such
that the sets Ṽ0, . . . , ṼN are pairwise disjoint, Ṽj ⊂ V and ψ̃j ≡ ψ if j ∈ {0, N},
and ψ̃j is a strictly plurisubharmonic global defining function for G̃j such that
ψ̃j < 1 on Ṽj if j ∈ {1, . . . , N − 1}. Finally, let Γ̃j ⊂ Γ, 1 ≤ j ≤ N , be open
neighbourhoods of γ̃j([0, 1]) with pairwise disjoint closures. Then application of
Step 1 to the tupel (G̃j−1, G̃j , Ṽj−1, Ṽj , γ̃j , Γ̃j , ψ̃j−1, ψ̃j) for every j = 1, . . . , N
gives the desired result.

Step 3. The assertion of the lemma holds true.

Proof. By Theorem 3.1.3, there exists a strictly pseudoconvex open set G ⊂M
with smooth boundary such that Ω̄′ ⊂ G and c(G) = c(Ω′). Let {Gj}Nj=1 be
the different connected components of G, N ∈ N ∪ {∞}. Fix an arbitrary
increasing sequence {DR}∞R=1 of relatively compact domains DR ⊂M such that⋃∞
R=1DR = M. Since bG is smooth, it is easy to see that there exist a family
{γj}N−1

j=1 of smooth embeddings γj : [0, 1]→M and natural numbers ν(j), µ(j),
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3 Global plurisubharmonic defining functions and the core

1 ≤ j < N , such that γj(0) ∈ bGν(j), γj(1) ∈ bGµ(j), γj(t) ∈M \ Ḡ for t ∈ (0, 1),
γj([0, 1]) ∩ γk([0, 1]) = ∅ if j 6= k, #{1 ≤ j < N : DR ∩ γj([0, 1]) 6= ∅} is finite
for every R > 0, and G ∪⋃N−1

j=1 γj([0, 1]) is connected. Let ψ be a minimal global
defining function for G.

Choose open neighbourhoods Γj ⊂⊂M of γj([0, 1]), 1 ≤ j < N , such that

• Γ̄j ∩ Γ̄k = ∅ if j 6= k,

• Γ̄j ∩ Ḡ ⊂ Ḡν(j) ∪ Ḡµ(j), and

• Γj ∩ Ω′ = ∅.

Then for every 1 ≤ j < N we can apply Step 2 to obtain a strictly pseudoconvex
domain Ωj ⊂ M with smooth boundary, an open set Γ′j ⊂ Γj and a smooth
plurisubharmonic function ϕj on Ωj such that

• Ωj \ Γ′j = (Gν(j) ∪Gµ(j)) \ Γ′j ,

• ϕj = ψ on Ωj \ Γ′j , while ϕj is strictly plurisubharmonic and less than 1 on
Ωj ∩ Γ′j .

Then define a strictly pseudoconvex domain Ω ⊂ Cn with smooth boundary as

Ω :=
[
G \

N−1⋃
j=1

Γ′j
]
∪
N−1⋃
j=1

[
Ωj ∩ Γ′j

]
and a smooth plurisubharmonic function ϕ : Ω→ R as

ϕ :=
®

ψ on Ω \⋃N−1
j=1 Γ′j

ϕj on Ω ∩ Γ′j
.

By construction, ϕ < 1 on Ω and ϕ is strictly plurisubharmonic outside c(G) =
c(Ω′). Thus c(Ω) ⊂ c(Ω′). Moreover, observe that, by construction of Ω, one has
Ω̄′ ⊂ Ω, hence c(Ω′) ⊂ c(Ω). It follows that c(Ω) = c(Ω′), which completes the
proof the lemma. �

In order to get a better understanding of properties of the core we now consider
some examples.

Example 3. Fix n ≥ 2 and let 1 ≤ q ≤ n− 1. Then for generic C ∈ R

Ω :=
{

(z, w) ∈ Cn−q × Cq : log‖z‖+
(
‖z‖2 + ‖w‖2

)
< C

}
is an unbounded strictly pseudoconvex domain with smooth boundary. By the
Liouville theorem, every plurisubharmonic function ϕ on Ω that is bounded from
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above has to be constant on {0}×Cq. Hence ϕ fails to be strictly plurisubharmonic
at every point of {0} × Cq, i.e., {0} × Cq ⊂ c(Ω). On the other hand, let
ψ : Cn → R be defined as ψ(z, w) = log‖z‖ + (‖z‖2 + ‖w‖2). As before, if
{ηj}∞j=1 is a sequence of positive numbers that converges to zero fast enough, then
ϕ := ∑∞j=1 ηj fimax1(ψ − C,−j) is a smooth global defining function for Ω that is
strictly plurisubharmonic outside {0}×Cq. This shows that c(Ω) ⊂ {0}×Cq, and
hence c(Ω) = {0} × Cq. In particular, c(Ω) is q-pseudoconcave.

Example 4. Fix n ≥ 2 and let 1 ≤ q ≤ n − 1. Further, fix pairwise distinct
points a1, a2, . . . , aN ∈ Cn−q, N ≥ 2. Then for generic and large enough C ∈ R

Ω :=
{

(z, w) ∈ Cn−q × Cq :
N∑
j=1

log‖z − aj‖+
(
‖z‖2 + ‖w‖2

)
< C

}
is an unbounded strictly pseudoconvex domain with smooth boundary. Using
the same argument as before, it can be shown that c(Ω) = ⋃N

j=1{aj} × Cq. In
particular, the core c(Ω) is not connected.

Example 5. Let Ω′ ⊂ C2
z,w be a Fatou-Bieberbach domain such that ∅ 6=

Ω̄′ ∩ {w = 0} ⊂ ∆(0, 1) × {0} and Ω′ ∩ {w = 0} = Ω̄′ ∩ {w = 0} (the existence
of such a domain is guaranteed by Corollary 1.1 in [Gl98]). Let ε > 0 and let
ψ : ∆̄(0, 1 + ε)→ (−∞,−C) be a smooth superharmonic function, where C > 0
is chosen so large that {(z, w) ∈ C2 : |z| = 1 + ε, |w| ≤ eψ(z)} ⊂ C2 \ Ω̄′. Let
Φ: C2 → Ω′ be a biholomorphism and define Ω ⊂ C2 as

Ω := Φ−1(Ω′ ∩ {(z, w) ∈ C2 : |z| < 1 + ε, |w| < eψ(z)}).
After possibly replacing Ω by one of its connected components, Ω is an unbounded
strictly pseudoconvex domain with smooth boundary. Since ϕ := ‖ · ‖2 ◦Φ: Ω→ R
is a smooth strictly plurisubharmonic function on Ω that is bounded from above,
we see that c(Ω) = ∅.

Example 6. Let Ω ⊂ Cn be a Fatou-Bieberbach domain or a domain of the form
Ω = D × Ck for some domain D ⊂ Cn−k. Then c(Ω) = Ω. It follows easily from
our construction of global defining functions that the situation c(Ω) = Ω cannot
happen if bΩ has points of strict pseudoconvexity.

Example 7. Let X be a compact Riemann surface and let E ⊂ X be a polar
subset. Then X \E is a Stein manifold of dimension 1, hence there exists a proper
holomorphic embedding F : X \ E → C3. Let g1, g2 : C3 → C be holomorphic
functions such that F (X \E) = {z ∈ C3 : g1(z) = g2(z) = 0} (see [FR68]). Define

Ω :=
{
z ∈ C3 : log

(
|g1(z)|2 + |g2(z)|2

)
+ ‖z‖2 < C

}
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for generic C ∈ R. Then, after possibly replacing Ω by a suitable connected
component, Ω is a strictly pseudoconvex domain with smooth boundary such that
F (X \E) ⊂ Ω. We claim that c(Ω) = F (X \E). Indeed, if {ηj}∞j=1 is a sequence of
positive numbers that converges to zero fast enough, then the function ϕ : C3 → R
defined by ϕ(z) := ∑∞

j=1 ηjfimax1(log(|g1(z)|2 + |g2(z)|2) + ‖z‖2,−j) is a smooth
plurisubharmonic function that is strictly plurisubharmonic in the complement
of F (X \ E) and that is bounded from above on Ω, hence c(Ω) ⊂ F (X \ E). On
the other hand, if ϕ : Ω→ R is a plurisubharmonic function that is bounded from
above, then ψ := ϕ ◦ F |X\E extends to a bounded subharmonic function ψ̂ on X,
and since X is compact we conclude that ψ̂ is constant. This means that ϕ is
constant on F (X \E), hence ϕ cannnot be strictly plurisubharmonic at any point
of F (X \ E). This proves that F (X \ E) ⊂ c(Ω), and hence c(Ω) = F (X \ E) as
claimed.

Example 8. Let H be a complex hypersurface in the complex projective space
CPn. Then CPn \ H is a Stein manifold (see, for example, Corollary V.3.4 in
[FG02]), hence there exists a proper holomorphic embedding F : CPn \H → CN
for some N ∈ N. Let g1, g2, . . . , gk : CN → C be holomorphic functions such that
F (CPn \H) = {z ∈ CN : g1(z) = g2(z) = · · · = gk(z) = 0}. Define

Ω :=
{
z ∈ CN : log

(
|g1(z)|2 + · · ·+ |gk(z)|2

)
+ ‖z‖2 < C

}
for generic C ∈ R. Then, after possibly replacing Ω by a suitable connected
component, Ω is a strictly pseudoconvex domain with smooth boundary such that
F (CPn \H) ⊂ Ω. As before we see that c(Ω) = F (CPn \H).

3.3 1-pseudoconcavity of the core

Observe that in each example of a domain Ω ⊂ Cn such that c(Ω) 6= ∅ that we
have constructed so far, the core c(Ω) is a (possibly infinite) union of nontrivial
analytic subsets of Ω. In this section we investigate the question whether this is a
general phenomenon, i.e., whether c(Ω) always carries an analytic structure. We
first show that this is not the case by proving the following theorem.

Theorem 3.3.1. For every n ≥ 2, there exists an unbounded strictly pseudoconvex
domain Ω ⊂ Cn with smooth boundary such that c(Ω) is nonempty and contains
no analytic variety of positive dimension.

Proof. Let E be the Wermer type set constructed in Chapter 1 and let Φ: Cn →
[0,∞) be the smooth plurisubharmonic function from Corollary 1.4.1. In particular,
E = {Φ = 0} and Φ is strictly plurisubharmonic outside E . For generic C > 0,
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define Ω :=
{
z ∈ Cn : Φ(z) < C

}
. Then, after possibly replacing Ω by one of its

connected components, Ω is an unbounded strictly pseudoconvex domain with
smooth boundary such that E ⊂ Ω. We will show that c(Ω) = E . In view of
Lemma 1.3.6, this completes the proof.

Indeed, from the properties of Φ we immediately see that c(Ω) ⊂ E . On the other
hand, let ϕ : Ω → R be a smooth plurisubharmonic function which is bounded
from above. By Theorem 1.5.1, there exists a constant C ∈ R such that ϕ ≡ C
on E . Moreover, since, in view of Lemma 1.2.2, the set E is pseudoconcave, it
follows from Lemma 3.3.2 below that ϕ fails to be strictly plurisubharmonic at
every point of E . This shows that E ⊂ c(Ω). �

However, we will now prove that the core c(Ω) is always 1-pseudoconcave in Ω, and
we will explain that 1-pseudoconcavity can be interpreted as a generalized notion
of analytic structure. The main step of this proof is contained in the following
lemma.

Lemma 3.3.1. Let M be a complex manifold and let Ω be a domain in M.
Then it is not possible “to touch” c(Ω) by a strictly pseudoconvex hypersurface
contained in Ω. More precisely, one cannot find a domain U ⊂ Ω and a smooth
real hypersurface M ⊂ U such that U \M consists of two connected components
U1 and U2, M ∩ c(Ω) 6= ∅, U ∩ c(Ω) ⊂ Ū1 and U1 is strictly pseudoconvex at every
point p ∈M .

Proof. Assume, to get a contradiction, that there exist U and M as above. Fix
p ∈M ∩ c(Ω). After possibly shrinking U and performing a local biholomorphic
change of variables, we can assume that U ⊂ Cn and that U1 is strictly convex
at every point of M . By slightly enlarging U1, we can choose a smooth real
hypersurface M ′ ⊂ U such that U \M ′ consists of two connected components
U ′1 and U ′2, U1 ⊂ U ′1, M ′ ∩M = {p} and U ′1 is strictly convex at every point of
M ′. Moreover, we may assume without loss of generality that p = 0 and that the
outward unit normal vector to U ′1 at 0 equals eyn := (0, . . . , 0, i) ∈ Cn, zj = xj+iyj ,
j = 1, 2, . . . , n. Let G̃ ⊂ U be the domain bounded by M ′′ := M ′ + ε1eyn and{
yn = ε2(|z1|2 + · · · + |zn−1|2 + x2

n) − ε3
}

, where ε1, ε2, ε3 are small positive
constants, and let G ⊂ G̃ be a domain obtained by smoothing the wedge of
G̃. Then for suitably choosen ε1, ε2, ε3 and a good enough smoothing of G̃
the domain G is a strictly convex smoothly bounded domain in U such that
bG ∩ {yn > − ε3

2 } ⊂ M ′′ ⊂ U \ c(Ω). (A suitable smoothing of G̃ is obtained as
follows: Since the outward unit normal to U ′1 is eyn , there exists a smooth strictly
concave function f : Cn−1

z1,...,zn−1
× Rxn → Ryn such that M ′′ is contained in the

graph of f . Then for δ > 0 small enough let u := fimaxδ
(
yn − f(z1, . . . , zn−1, xn),

ε2(|z1|2 + · · ·+ |zn−1|2 + x2
n)− ε3 − yn

)
and set G := {u < 0}.)
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Now let ϕ be a smooth and bounded from above plurisubharmonic function on
Ω that is strictly plurisubharmonic on Ω \ c(Ω) (see the definition of minimal
functions, which was stated after the Main Theorem, and the related remarks).
Let ϕ̃ : Ḡ → R be the maximal plurisubharmonic function such that ϕ̃|bG = ϕ.
Since M ′′ ∩ c(Ω) = ∅, ϕ is strictly plurisubharmonic near M ′′ and hence ϕ < ϕ̃
in a one-sided neighbourhood W ⊂ G of M ′′ ∩ bG (indeed, for z0 ∈ G \ c(Ω) the
function ψ(z) := ϕ(z) + max(δ1 − δ2‖z − z0‖2, 0) with 0 < δ1 << δ2 << 1 is
plurisubharmonic onG with ψ|bG = ϕ, hence ϕ(z0) < ψ(z0) ≤ ϕ̃(z0) by maximality
of ϕ̃). We want to show that ϕ < ϕ̃ holds not only on W , but in fact on the whole
set G ∩ {yn > − ε3

3 } 3 0. If we have done so, then ψ := δγ2 ∗ (ϕ̃− γ1) + γ3‖ · ‖2,
where γ1 := (ϕ̃(0) − ϕ(0))/2, γ2 and γ3 are small enough positive constants
and δγ2 is a smooth nonnegative function depending only on ‖z‖ such that
supp δγ2 = B̄n(0, γ2) and

∫
Cn δγ2 = 1, is a smooth strictly plurisubharmonic

function on Ḡγ2 := {z ∈ G : dist(z, bG) ≥ γ2} such that ψ + δ < ϕ on bGγ2 and
ψ(0) > ϕ(0)+δ for some δ > 0. In particular, fimaxδ(ϕ,ψ) is a smooth and bounded
from above plurisubharmonic function on Ω that is strictly plurisubharmonic in 0.
This contradicts the fact that 0 ∈ c(Ω).

In order to show that ϕ < ϕ̃ on G ∩ {yn > − ε3
3 } let G′ ⊂⊂ G be a smoothly

bounded strictly convex domain such that bG′ ∩ {yn ≥ − ε3
3 } ⊂W and G ∩ {yn ≥

− ε3
3 } \W ⊂ G′. Since ϕ < ϕ̃ on W , the function h : [− ε3

3 , ε] → R defined by
h(t) := minbG′∩{yn=t}(ϕ̃ − ϕ) is strictly positive, where ε := supG′ yn > 0. In
particular, we can choose a smooth function χ : (−∞, ε]→ R such that χ|(−ε3/3,ε]
is strictly convex, χ(t) = 0 for −∞ < t ≤ − ε3

3 and 0 < χ(t) < h(t) for − ε3
3 < t ≤ ε.

Let ρ : Ḡ′ → R be defined as ρ(z) := χ(yn) and observe that ρ is plurisubharmonic.
Then, by construction of ρ, one has ϕ+ ρ ≤ ϕ̃ on b

(
G′ ∩ {yn > − ε3

3 }
)
, and hence

ϕ+ ρ ≤ ϕ̃ on G′ ∩ {yn > − ε3
3 } by maximality of ϕ̃. Since ρ > 0 on {yn > − ε3

3 },
this proves our claim. �

As the first consequence of Lemma 3.3.1, we obtain the following property of the
core.

Proposition 3.3.1. LetM be a Stein manifold and let Ω ⊂M be a domain such
that c(Ω) 6= ∅. Then c(Ω) cannot be relatively compact in Ω.

Proof. Assume, to get a contradiction, that c(Ω) is relatively compact in Ω. Let ϕ
be a smooth strictly plurisubharmonic exhaustion function forM and let C ∈ R be
the minimal value such that c(Ω) ⊂ {ϕ ≤ C}. It may happen that C is not a regular
value of ϕ. In this case choose p ∈ c(Ω) ∩ {ϕ = C} and let U ⊂ M be an open
coordinate patch around p with corresponding chart h : U → Cn. Choose δ > 0 so
small that h(U)δ := {z ∈ h(U) : dist(z, b(h(U))) > δ} still contains h(p), and let
U ′ := h−1(h(U)δ). For each v ∈ Cn, let τv : Cn → Cn be the translation τv(z) :=
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3.3 1-pseudoconcavity of the core

z−v and define a map g : Bn(0, δ)→ R by g(v) := maxz∈c(Ω)∩U ′(ϕ◦h−1◦τv◦h)(z).
Then the image of g contains an open intervall I ⊂ R and, by Sard’s theorem, there
exists a regular value C ′ ∈ I of ϕ. Let v′ ∈ Bn(0, δ) such that g(v′) = C ′. Then
ϕ′ : U ′ → R defined by ϕ′ := ϕ◦h−1 ◦ τv′ ◦h is a smooth strictly plurisubharmonic
function and maxc(Ω)∩U ′ ϕ

′ = C ′. In particular, {ϕ′ = C ′} is a smooth strictly
pseudoconvex hypersurface that touches c(Ω) as described in Lemma 3.3.1. �

Remark. As Example I from the Introduction shows, the core c(Ω) can be
relatively compact in Ω if M is not Stein.

Now we use Lemma 3.3.1 to prove that c(Ω) is always 1-pseudoconcave in Ω.

Theorem 3.3.2. Let M be a complex manifold and let Ω ⊂ M be a domain.
Then c(Ω) is 1-pseudoconcave in Ω. In particular, c(Ω) is pseudoconcave in Ω if
dimCM = 2.

Proof. Assume, to get a contradiction, that c(Ω) is not 1-pseudoconcave in Ω.
Then there exists an (n− 1, 1) Hartogs figure H =

{
(z, w) ∈ ∆n−1 ×∆ : ‖z‖∞ >

r1 or |w| < r2
}

and an injective holomorphic mapping Φ: Ĥ → Ω such that
Φ(H) ⊂ Ω \ c(Ω) but Φ(Ĥ) ∩ c(Ω) 6= ∅. For small ε > 0 let ϕ : Cn−1

z × C∗w → R
be the smooth strictly plurisubharmonic function defined by ϕ(z, w) := − log|w|+
ε
(
‖z‖2 + |w|2

)
, and for each C ∈ R let GC denote the domain GC :=

{
p ∈ Φ(Ĥ) :

(ϕ ◦ Φ−1)(p) < C
}

. Since for C large enough the set Ĥ ∩ {(z, w) ∈ Cn : ϕ < C}
contains Ĥ \H, and since Φ(Ĥ) ∩ c(Ω) ⊂ Φ(Ĥ \H), we know that for C large
enough Φ(Ĥ) ∩ c(Ω) ⊂ GC . Let C0 := inf{C ∈ R : Φ(Ĥ) ∩ c(Ω) ⊂ GC}. Then
M := bGC0 ∩ Φ(Ĥ) is a strictly pseudoconvex hypersurface that touches c(Ω) as
described in Lemma 3.3.1 (observe that {ϕ = C0} ∩ bĤ ⊂ b∆n−1

z ×∆w if ε << 1).
Since the lemma states that such hypersurfaces cannot exist, we arrived at a
contradiction. �

Remarks. 1) Observe that it follows from Example 3 above that in general c(Ω)
is not q-pseudoconcave in Ω for any q > 1.

2) A different proof of Theorem 3.3.2 can also be obtained by modifying the
arguments of the proof of Theorem 3.6 in [SlT04] and adapting them to our
setting.

Recall that, by Theorems 4.2 and 5.1 in [Sl86], a nonempty relatively closed
subset A of an open set U ⊂ Cn is (q + 1)-pseudoconcave in U if and only if q-
plurisubharmonic functions have the local maximum property on A. In particular,
A is 1-pseudoconcave if and only if plurisubharmonic functions have the local
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3 Global plurisubharmonic defining functions and the core

maximum property on A. An analoguous statement is also true in the setting of
complex manifolds. Since we were not able to find this statement in the literature,
and since in the more general setting the precise formulation of the local maximum
property needs a little bit of caution, we state here the following proposition for
the convenience of reading.

Proposition 3.3.2. Let M be a complex manifold of dimension n, let A ⊂ M
be a closed set and let q ∈ {0, 1, . . . , n − 2}. Then the following assertions are
equivalent:

(1) For every p ∈ A, there exists an open neighbourhood U ⊂M of p such that
A ∩ U is (q + 1)-pseudoconcave in U .

(1′) A is (q + 1)-pseudoconcave in M.

(2) For every p ∈ A, there exists an open neighbourhood U ⊂ M of p such
that for every compact set K ⊂ U and every q-plurisubharmonic function ϕ
defined in a neighbourhood of K one has maxA∩K ϕ ≤ maxA∩bK ϕ.

If M is Stein, then the above statements are also equivalent to the following one:

(2′) For every compact set K ⊂ M and every q-plurisubharmonic function ϕ
defined in a neighbourhood of K, one has maxA∩K ϕ ≤ maxA∩bK ϕ.

Here maxA∩bK ϕ is meant to be −∞ if A ∩ bK = ∅.

Remark. If M is not Stein, then in general the assertion (2′) does not follow
from (2), as it is shown by the following simple examples:

i) M = CP1
z × Cn−1

w , A = CP1
z × {0}, K = CP1

z × B̄n−1(0, 1) and ϕ(z, w) =
‖w‖2.

ii) Mq = CPn−qz × Cqw, Aq = CPn−qz × B̄q(0, 1), Kq = Aq and ϕq(z, w) =
−‖w‖2, where q ∈ {1, 2, . . . , n− 1}.

Proof. The implication (1′)⇒ (1) is clear and the implication (1)⇒ (2) follows
from Theorems 4.2 and 5.1 of [Sl86]. We will show that also (2)⇒ (1′). Indeed,
let A have the properties from (2) and assume, to get a contradiction, that A
is not (q + 1)-pseudoconcave in M. Then, by the same kind of arguments as
in the proof of Theorem 3.3.2, we can find an open set V ⊂ M and a smooth
real hypersurface M ⊂ V such that V \M consists of two connected components
V1 and V2, M ∩ A 6= ∅, V ∩ A ⊂ V̄1 and V1 is strictly q-pseudoconvex at every
point of M . After possibly shrinking V and perturbing M , we can assume that
M ∩ A = {p} for some p ∈ V . Let U ⊂ V be an arbitrary neighbourhood of p.
Let W ⊂⊂ U be another open neighbourhood of p and let ϕ be a smooth strictly
q-plurisubharmonic function defined near W̄ such that V1∩W = {ϕ|W < 0}. Then

106



3.3 1-pseudoconcavity of the core

for K := W̄ we have maxA∩K ϕ > maxA∩bK ϕ. This contradicts the assumptions
in (1).

It remains to consider statement (2′). Clearly, one always has that (2′) ⇒ (2).
Now let M be Stein and let A satisfy the properties from (2). Assume, to get a
contradiction, that there exists a compact set K ⊂M and a q-plurisubharmonic
function ϕ defined in a neighbourhood of K such that maxA∩K ϕ > maxA∩bK ϕ.
Let m := maxA∩K ϕ and consider the set L := {z ∈ A ∩K : ϕ(z) = m}. Since
M is Stein, we can use the same arguments as in Proposition 3.3.1 to obtain
an open set V ⊂ M and a smooth real hypersurface M ⊂ V such that V \M
consists of two connected components V1 and V2, M ∩ L 6= ∅, V ∩ L ⊂ V̄1, and
V1 is strictly pseudoconvex at every point of M . After possibly shrinking V , and
after introducing suitable holomorphic coordinates, we can assume that V ⊂ Cn
and that V1 is strictly convex at every point of M . Fix arbitrary p ∈ L ∩M
and let U ⊂⊂ V be an open neighbourhood of p as described in (2). Without
loss of generality we can assume that p = 0. By strict convexity of M , we can
then choose an R-linear functional λ : V → R such that λ ≤ 0 on V ∩ L and
{λ = 0} ∩ L = {p}. Let W ⊂⊂ U be another open neighbourhood of p. Then one
sees easily that for K̃ := W̄ and for ε > 0 small enough the q-plurisubharmonic
function ϕ̃ := ϕ + ελ : V → R satisfies maxA∩K̃ ϕ̃ > maxA∩bK̃ ϕ̃. But this
contradicts the choice of U . �

We conclude this section by a brief discussion on the role of 1-pseudoconcavity
of c(Ω). Namely, we want to point out that for our purpose it is reasonable to
interpret 1-pseudoconcavity as a generalized notion of analytic structure (see also
the discussion at the beginning of Section 2.3). This viewpoint is motivated by
the following simple lemma, which was already used in the proof of Theorem 3.3.1,
and which is an easy consequence of the above mentioned results of S lodkowski.

Lemma 3.3.2. Let M be a complex manifold and let A ⊂ M be closed and
1-pseudoconcave in M. Then every plurisubharmonic function ϕ which is defined
on an open neighbourhood of A and which is constant on A fails to be strictly
plurisubharmonic at every point of A.

Proof. Let ϕ be a plurisubharmonic function defined on an open neighbourhood
of A such that ϕ is constant on A. Assume, to get a contradiction, that there
exists z ∈ A such that ϕ is strictly plurisubharmonic on a small open coordinate
neighbourhood U ⊂ M of z. Let θ : M → [0,∞) be a smooth function with
compact support in U such that θ|A is not constant, and choose ε > 0 so small
that ψ := ϕ + εθ is still plurisubharmonic. Then ψ attains a local maximum
along the 1-pseudoconcave set A. But this is not possible, since plurisubharmonic
functions have the local maximum property on A, see [Sl86]. �
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3 Global plurisubharmonic defining functions and the core

To further support our interpretation of 1-pseudoconcavity, we also want to formu-
late the following version of Rossi’s local maximum modulus principle. It is easily
achieved from Rossi’s original result by applying S lodkowski’s characterization of
1-pseudoconcave sets as local maximum sets for absolute values of holomorphic
functions (the original theorem of Rossi is contained in [Ros60]; a formulation
of this result which is better suited for our purpose can be found, for example,
in Theorem 2.1.8 of [St07]). This version most likely was known to some people
before, therefore we do not claim any originality for its proof.

Proposition 3.3.3. Let K ⊂ Cn be a compact set and let z0 in Cn. Let K̂ denote
the polynomial hull of K. Then the following assertions are equivalent:

(1) z0 ∈ K̂ \K.

(2) There exists a connected bounded locally closed set λ ⊂ Cn \ K with the
following properties:

(i) λ is 1-pseudoconcave in Cn \K.

(ii) λ̄ \ λ 6= ∅ and λ̄ \ λ ⊂ K.

(iii) z0 ∈ λ.

Proof. Let first z0 ∈ K̂ \K be an arbitrary fixed point. Define λ ⊂ Cn to be the
connected component of K̂ \K that contains z0. Then, by definition, λ is closed in
Cn \K, but, by the Shilov idempotent theorem (see, for example, Corollary 6.5 in
[Ga69]), λ is not closed in Cn. Thus λ̄ \ λ 6= ∅ and λ̄ \ λ ⊂ K. Moreover, Rossi’s
local maximum modulus principle states that absolute values of holomorphic
polynomials have the local maximum property on λ, i.e., λ is 1-pseudoconcave in
Cn \K, see [Sl86].

For the other direction, fix a set λ ⊂ Cn such that λ satisfies all the properties
(i)-(iii) above. Assume, to get a contradiction, that z0 /∈ K̂. Then there exists
a holomorphic polynomial p on Cn such that |p(z0)| > maxz∈K |p(z)|. Hence,
slightly shrinking λ, one will find a compact set L ⊂ λ ⊂ K̂ \K such that z0 ∈ L
and |p(z0)| > maxz∈bλL|p(z)|, where bλL denotes the relative boundary of L in λ.
But, in view of the results from see [Sl86], this contradicts 1-pseudoconcavity of
λ. �

Finally, we want to mention the following result due to Fornaess-Sibony (see
Corollary 2.6 in [FSi95]): Let T be a positive closed current of bidimension (p, p)
on Cn, 1 ≤ p ≤ n− 1. Then the support of T is p-pseudoconcave in Cn (hence, in
particular, it is 1-pseudoconcave in Cn).
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3.4 Liouville type properties of the core

In all examples of strictly pseudoconvex domains Ω ⊂ Cn such that c(Ω) 6= ∅,
which we have constructed so far, the core has the following Liouville type property:
if ϕ is a smooth and bounded from above plurisubharmonic function on Ω, then
ϕ is constant on every connected component of c(Ω). Thus it is natural to ask
whether this is a general property of the core, i.e., we want to investigate whether
every connected component of the core of a strictly pseudoconvex domain Ω ⊂ Cn
satisfies a Liouville type theorem.

Further interest to this question is derived from 1-pseudoconcavity of c(Ω), see
Theorem 3.3.2 above, and the fact that the following easy lemma holds true.

Lemma 3.4.1. Let M be a complex manifold and let L ⊂ M be a closed set
consisting of more than one point such that every smooth and bounded from
above plurisubharmonic function defined near L is constant on L. Then L is
1-pseudoconcave in M.

Proof. Assume, to get a contradiction, that L is not 1-pseudoconcave in M.
Then, using the same argument as in the proof of Theorem 3.3.2, we can find
an open set U ⊂ M and a smooth real hypersurface M ⊂ U such that U \M
consists of two connected components U1 and U2, M ∩ L 6= ∅, U ∩ L ⊂ Ū1 and
U1 is strictly pseudoconvex at every point of M . After possibly shrinking U and
perturbing M , we can assume that M ∩ L = {p} for some p ∈ U and that there
exists a smooth strictly plurisubharmonic function ϕ̃ : U → (−∞, 1] defined on
an open neighbourhood of Ū such that U1 = {ϕ̃|U < 0}. Let c̃ := maxL∩bU ϕ̃
and set c := max(c̃,−1). Then for δ > 0 small enough the trivial extension
of fimaxδ(ϕ̃, c/2) : U → R by c/2 defines a smooth and bounded from above
plurisubharmonic function ϕ on a suitable neighbourhood of L such that ϕ is not
constant on L. This is a contradiction. �

We will prove in this section that a Liouville type theorem holds true for the core
of highest order, i.e., for the set cn(Ω) ⊂ c(Ω) of all points z ∈ Ω where every
smooth and bounded from above plurisubharmonic function ϕ : Ω→ R satisfies
Lev(ϕ)(z, · ) ≡ 0 (for the general definition of cores of higher order see Section
3.5). More precisely, we will prove the following theorem.

Theorem 3.4.1. Let M be a complex manifold of complex dimension n and let
Ω ⊂M be a domain. Then every smooth and bounded from above plurisubharmonic
function on Ω is constant on each connected component of cn(Ω).

However, we will show that in general no analogue of Theorem 3.4.1 holds true for
c(Ω), even if Ω is strictly pseudoconvex. In particular, we will construct strictly
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pseudoconvex domains Ω ⊂ C2
z × Cn−2

w that are bounded in the z-directions such
that the core has the form c(Ω) = A × L for some connected set A ⊂ C2 that
consists of more than one point and some connected set L ⊂ Cn−2 with the
property that every smooth and bounded from above plurisubharmonic function
defined near L is constant on L. Then for z0 ∈ C2 the function ϕ(z, w) := ‖z−z0‖2
is a smooth and bounded from above plurisubharmonic function on Ω, but for
almost every choice of z0 the function ϕ is not constant on c(Ω).

These examples show that the connected components of c(Ω) in general do not
satisfy a Liouville type theorem. However, observe that here c(Ω) = ⋃· α∈A{α}×L,
where each set Lα := {α} × L has the property that smooth and bounded from
above plurisubharmonic functions are constant on Lα (here the symbol ⋃· is used
in order to indicate that the union is disjoint). Thus the question arises whether
one can still formulate a Liouville type theorem for suitably defined “irreducible
components” of c(Ω) instead of connected components. At the moment we do
not know whether this is possible or not. However, at least in the 2-dimensional
case we are able to give a partial answer. It is contained in the Theorem 3.4.2
and the subsequent remarks below. (Note that a local version of Theorem 3.4.2
in the different setting of exhaustion functions was given earlier in Lemma 4.1 of
[SlT04].)

Before stating the result, we recall some definitions: Let M be a smooth manifold.
An immersed submanifold of M is a subset S ⊂ M endowed with a topology
with respect to which it is a topological manifold, and a smooth structure with
respect to which the inclusion map i : S ↪→ M is a smooth immersion. An
immersed submanifold S ⊂M is called weakly embedded in M if every smooth
map f : N → M from a smooth manifold N to M that satisfies f(N) ⊂ S is
smooth as a map from N to S. An immersed submanifold S ⊂ M is called
complete if for every complete Riemannian metric g on M the induced metric i∗g
on S is complete (a Riemannian metric g on M is called complete if the metric
on M that is induced by g turns M into a complete metric space). Now let M
be a complex manifold. An immersed complex submanifold of M is a subset
S ⊂M endowed with a topology with respect to which it is a topological manifold,
and a complex structure with respect to which the inclusion map i : S ↪→M is
a holomorphic immersion. An immersed complex submanifold S ⊂ M will be
called weakly embedded or complete if the underlying smooth manifold is weakly
embedded or complete, respectively. By a complex curve γ ⊂M we will mean a
1-dimensional immersed complex submanifold of M.

Theorem 3.4.2. Let M be a 2-dimensional complex manifold and let Ω ⊂M be
a domain. Then the following assertions hold true:

(1) Let ϕ : Ω→ R be a minimal function for Ω. Then for every regular value
t ∈ R of ϕ there exists a family {γα}α∈A (possibly empty) of weakly embedded
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complete connected complex curves γα ⊂M such that

ct := c(Ω) ∩ {ϕ = t} =
⋃
·

α∈A
γα.

Moreover, there is a decomposition A = A′ ∪· A′′ such that

c̊t =
⋃
·

α∈A′
γα and bct =

⋃
·

α∈A′′
γα,

where c̊t and bct denote the interior and the boundary of ct in the relative
topology of {ϕ = t}, respectively.

(2) Let ϕ : Ω → R be a smooth and bounded from above plurisubharmonic
function, let t ∈ R be a regular value of ϕ and let γ ⊂ c(Ω) ∩ {ϕ = t} be
a connected complex curve. Then every smooth and bounded from above
plurisubharmonic function ϕ̃ : Ω→ R is constant on γ.

Remark. We do not have an example of a domain Ω in 2-dimensional complex
manifold such that for some minimal function ϕ : Ω→ R and some regular value t
of ϕ the set c(Ω) ∩ {ϕ = t} has nonempty interior in {ϕ = t}. Moreover, we do
not know if it can happen that the sets γα from part (1) of the theorem are only
immersed but not embedded submanifolds of Ω.

We discuss briefly some consequences of the results in Theorem 3.4.2. Let Ω be a
domain in a 2-dimensional complex manifold and consider the set

creg(Ω) := {z ∈ c(Ω) : there exists a minimal function ϕ : Ω→ R
such that ϕ(z) is a regular value of ϕ}.

It follows from part (1) of Theorem 3.4.2 that for every z ∈ creg(Ω) there exists
a minimal function ϕz : Ω→ R and a weakly embedded complete complex curve
γz ⊂ creg(Ω) ∩Hz, where Hz := {ζ ∈ Ω : ϕz(ζ) = ϕz(z)}, such that z ∈ γz. Fix
arbitrary z ∈ creg(Ω) and assume that γz ∩ γz′ 6= ∅ for some z′ ∈ creg(Ω). Then,
by part (2) of Theorem 3.4.2, we conclude that γ′z ⊂ Hz. Since for every p ∈ Hz

there exists at most one germ of a complex curve γ ⊂ Hz through p, it will follow
from Step 2 in the proof of part (1) below and, in particular, from maximality of
the curves γz, γz′ that γz = γz′ . This shows that creg(Ω) = ⋃· α∈A γα for a suitable
set A ⊂ creg(Ω). In view of part (2) of the theorem, every smooth and bounded
from above plurisubharmonic function on Ω is constant on each curve γα, α ∈ A.
Now consider the set

csing(Ω) := c(Ω) \ creg(Ω)
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and let csing(Ω) = ⋃
· β∈B σβ be the decomposition of csing(Ω) into its connected

components σβ , β ∈ B. We claim that every smooth and bounded from above
plurisubharmonic function ϕ : Ω→ R is constant on each set σβ , β ∈ B. Indeed,
assume, to get a contradiction, that there exist ϕ and σβ as above such that ϕ is
not constant on σβ . Then let ψ be a minimal function for Ω and observe that for
ε > 0 small enough ϕ̃ := ϕ+ εψ is a minimal function for Ω which is not constant
on σβ . Hence there exist points p, q ∈ σβ such that ϕ̃(p) < ϕ̃(q). By connectedness
of σβ , every hypersurface {ϕ̃ = t} for ϕ̃(p) < t < ϕ̃(q) has nonempty intersection
with σβ , which, in view of Sard’s theorem, contradicts the definition of csing(Ω).
Thus we have shown that in the 2-dimensional case there exists a decomposition

c(Ω) = creg(Ω) ∪· csing(Ω) =
( ⋃
·

α∈A
γα

)
∪·
( ⋃
·

β∈B

σβ

)
such that each of the sets γα, α ∈ A, and σβ , β ∈ B, is connected and satisfies
a Liouville type theorem for smooth plurisubharmonic functions on Ω. Observe,
however, that the described above decomposition of c(Ω) is not completely satis-
factory, since we do not have much information on the sets σβ so far. In particular,
we do not know if it can happen that some of the sets σβ consist of only one
point.

We conclude the discussion of Theorem 3.4.2 by introducing the following two
definitions.

Definition. Let Ω be a domain in a complex manifoldM. Let L be the family of
all subsets λ ⊂ c(Ω) with the property that every smooth and bounded from above
plurisubharmonic function on Ω is constant on λ, and define a partial ordering
on L by setting λ ≤ λ′ if and only if λ ⊂ λ′. Then λ ⊂ c(Ω) is called a maximal
component of c(Ω) if λ is a maximal element in L.

One might expect that the curves γα from Theorem 3.4.2 or the sets σβ from
the above remarks are maximal components of c(Ω) according to the previous
definition. However, at the moment we do not know whether this is true or not.
We also do not know if it can happen that a maximal component of c(Ω) consists
of only one point.

Definition. Let M be a complex manifold and let E ⊂M be a closed set. We
say that E is of core type in M if for every open set Ω ⊂M such that E ⊂ Ω one
has E ⊂ c(Ω).

Observe that in all examples of domains Ω ⊂M such that c(Ω) 6= ∅, which we
have constructed so far, the set c(Ω) was always of core type in M. We do not
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know whether this holds true in general (see also the remarks at the beginning
of Section 3.2). In particular, we do not know if the assertions of Theorem 3.4.2
hold true for functions which are not defined on Ω but only in a neighbourhood of
c(Ω). Moreover, it is not clear if the curves γα from Theorem 3.4.2 or the sets σβ
from the above remarks are of core type in Ω. Note, however, that in the special
case of an irreducible closed subvariety E ⊂ Cn of pure dimension, some sufficient
conditions for E to be of core type in Cn are given, for example, by Corollary 1
in [Ta93] and Theorem 4 in [Kan96]. Note also that if E ⊂M is of core type in
M, then E is 1-pseudoconcave in M. (Indeed, assume, to get a contradiction,
that E is not 1-pseudoconcave in M. Then, by the same kind of arguments as
in Proposition 3.3.2, we can find p ∈ E, an open neighbourhood W ⊂⊂ M of
p and a smooth strictly plurisubharmonic function ϕ defined near W̄ such that
ϕ(p) = 0 and ϕ < 0 on (E ∩ W̄ ) \ {p}. Let C := maxbW∩E ϕ < 0 if bW ∩ E 6= ∅,
and let C := −1 otherwise. Then for δ > 0 small enough the trivial extension offimaxδ(ϕ,C/2) : W → R to a suitable open neighbourhood Ω ⊂M of E defines a
smooth and bounded from above plurisubharmonic function on Ω which is strictly
plurisubharmonic near p. This contradicts the fact that E is of core type inM.)

We now begin to prove the statements of this section. We start by showing that
for every n ≥ 3 there exists an unbounded strictly pseudoconvex domain Ω ⊂ Cn
with smooth boundary and a smooth plurisubharmonic function ϕ : Cn → R which
is bounded from above on Ω such that c(Ω) is nonempty and connected but ϕ is
not constant on c(Ω). For this we first mention two results on complete pluripolar
subsets of C2.

Result 1. There exist compact connected complete pluripolar subsets A ⊂ C2

that consist of more than one point.

The first construction of a bounded connected complete pluripolar set A ⊂ C2

that consists of more than one point is contained in Example 2.4 in [Sa79];
the fact that this set is complete pluripolar follows from Proposition 2.4 in
[LMP92]. Here A is the graph of a certain holomorphic function f ∈ O(∆) on
the unit disc ∆ ⊂ C, which is not analytically continuable across any point
of b∆. By slightly improving the construction from [Sa79], it is possible to
choose A as the graph of a function f ∈ O(∆)∩ C∞(∆̄), see Example 2.17 and
Proposition 2.15 in [LMP92], or as the graph of a function f ∈ C∞(b∆), see
Theorem 1 in [Ed04]. In particular, the last two examples show that A can be
assumed to be compact. More examples of compact complete pluripolar sets
in C2 can be found, for example, in [Ed04] and [El].

Result 2. If A ⊂ Cn is a closed complete pluripolar set, then there exists
a strictly plurisubharmonic function ψ : Cn → [−∞,∞) such that A = {ψ =
−∞} and ψ is smooth on Cn \A.
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The existence of such a function follows from Corollary 1 in [Co90]. It is
also a consequence of the earlier Proposition II.2 in [El] and the smoothing
procedure of Richberg as formulated, for example, in Theorem I.5.21 from
[De12].

Example 9. Let n ≥ 3. Let A be a compact connected complete pluripolar
subset of C2 that consists of more than one point, and let L be a connected
complete pluripolar subset of Cn−2 such that every smooth and bounded from
above plurisubharmonic function defined near L is constant on L. (Possible
choices for A are described in Result 1 above. If n = 3, then for L we can take,
for example, L = C; if n ≥ 3 is large enough, then for L we can also take, for
example, unions of positive-dimensional complex subspaces of Cn−2, the Wermer
type sets E from Part I or any of the sets from Examples 7 and 8.) Moreover,
let ψ1 : C2 → [−∞,∞) and ψ2 : Cn−2 → [−∞,∞) be strictly plurisubharmonic
functions such that ψ1 is smooth on C2 \ A and A = {ψ1 = −∞} and such
that ψ2 is smooth on Cn−2 \ L and L = {ψ2 = −∞}. Then the function
ψ̃(z, w) := max(ψ1(z), ψ2(w)) is strictly plurisubharmonic and continuous outside
A× L = {ψ̃ = −∞}. Hence, by Richberg, we can smooth it up to get a strictly
plurisubharmonic function ψ : C2 × Cn−2 → [−∞,∞) such that ψ is smooth on
C2×Cn−2\A×L, |ψ−ψ̃| < 1 on C2×Cn−2\A×L and A×L = {ψ = −∞}. Choose
a strictly increasing and strictly convex smooth function χ : R → R such that
limz→∞

[
ψ1(z) +χ(‖z‖2)

]
=∞ (if for each N ∈ N such that A ⊂ B2(0, N) we set

CN := max{|ψ1(z)| : z ∈ B̄2(0, N + 1) \B2(0, N)}, then every strictly increasing
and strictly convex smooth function χ : R→ R satisfying χ(N2) > CN +N has
the required property). Then for generic C ∈ R, define an unbounded strictly
pseudoconvex open set with smooth boundary Ω̃ ⊂ Cn as

Ω̃ :=
{

(z, w) ∈ C2 × Cn−2 : ψ(z, w) + χ(‖z‖2) + ‖w‖2 < C
}

and denote by Ω the connected component of Ω̃ that contains the set A × L.
Observe that, by the choice of L, and by Lemmas 3.3.2 and 3.4.1 above, every
smooth and bounded from above plurisubharmonic function on Ω fails to be strictly
plurisubharmonic on A×L. On the other hand, for small enough constants ηj > 0,
j ∈ N, the function Ψ(z, w) := ∑∞

j=1 ηjfimax1(ψ(z, w) + χ(‖z‖2) + ‖w‖2 − C,−j)
is a smooth global defining function for Ω that is strictly plurisubharmonic outside
A× L. This shows that c(Ω) = A× L and, in particular, that c(Ω) is connected.
Observe now that, by the choice of the functions ψ and χ, the domain Ω is bounded
in the z-directions. Hence for every z0 ∈ C2 the smooth plurisubharmonic function
ϕ(z, w) := ‖z − z0‖2 is bounded from above on Ω. But for almost every choice of
z0 it is not constant on c(Ω).

This gives us, for every n ≥ 3, an example of a strictly pseudoconvex domain
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with smooth boundary Ω ⊂ Cn and a connected component of c(Ω) (actually
here it is the whole of c(Ω)) without Liouville type property for plurisubharmonic
functions. By slightly changing the above constructions, we can also show that
for every n ≥ 4, we can additionally assume that c(Ω) contains no analytic variety
of positive dimension.

Example 10. Let n ≥ 4. Let A be a compact and connected complete pluripolar
subset of C2 that consists of more than one point such that the projections πz1(A)
and πz2(A) of A onto the coordinate axes C× {0} and {0} ×C, respectively, have
no interior points (for example, take A to be the graph of a suitable smooth
function f : b∆ → C, see [Ed04]). Moreover, let L := E ⊂ Cn−2 be the Wermer
type set as in Theorem 1.1 of [HST12]. Then repeat the construction of the
previous example to obtain an unbounded strictly pseudoconvex domain with
smooth boundary Ω ⊂ Cn such that c(Ω) = A×E . In particular, c(Ω) is connected
and contains no analytic variety of positive dimension. For the last assertion
observe that every holomorphic function f = (fz, fw) : ∆ → C2

z × Cn−2
w has

to have constant fz component, since, by choice of A, the holomorphic images
(πz1 ◦ fz)(A), (πz2 ◦ fz)(A) ⊂ C have no interior points, and also constant fw
component, since E contains no analytic variety of positive dimension, which
implies that f is constant. Finally, observe that, as before, for almost every choice
of z0 ∈ C2 the function ϕ : C2 × Cn−2 → R defined as ϕ(z, w) := ‖z − z0‖2 is a
smooth and bounded from above plurisubharmonic function on Ω which is not
constant on c(Ω).

We now begin to prove the theorems of this section. First we prove the Liouville
type property of the highest order core, as formulated in Theorem 3.4.1.

Proof of Theorem 3.4.1. Let Z be a connected component of cn(Ω) and let
ϕ : Ω→ R be a smooth plurisubharmonic function which is bounded from above.
Assume, to get a contradiction, that there exist points z1, z2 ∈ Z such that
ϕ(z1) 6= ϕ(z2). Then, by Sard’s theorem and by connectedness of Z, there exists
a regular value t ∈ R of ϕ such that {ϕ = t} ∩ cn(Ω) 6= ∅. Choose a strictly
increasing and strictly convex smooth function χ : R→ R such that χ ◦ ϕ is still
bounded from above on M. Then χ ◦ ϕ is a smooth plurisubharmonic function
on Ω that is bounded from above, but Lev(χ ◦ ϕ)(z, · ) = χ′′(ϕ(z))|(∂ϕ)z( · )|2 +
χ′(ϕ(z))Lev(ϕ)(z, · ) 6≡ 0 for every z ∈ {ϕ = t}, which contradicts the fact that
{ϕ = t} ∩ cn(Ω) 6= ∅. �

We now turn to the proof of Theorem 3.4.2. For a domain Ω ⊂ Cn denote by
A(Ω) := O(Ω) ∩ C(Ω̄) the algebra of functions holomorphic on Ω and continuous
on Ω̄ and write P(Ω) := PSH(Ω) ∩ USC(Ω̄) for the functions plurisubharmonic
on Ω and upper semicontinuous on Ω̄. Recall that a plurisubharmonic function
ϕ : Ω→ [−∞,∞) is called maximal if for every relatively compact open set G ⊂ Ω
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and for each ψ ∈ P(G) such that ψ ≤ ϕ on bG we have ψ ≤ ϕ on G. If Ω is
a bounded strictly pseudoconvex domain in Cn and f : bΩ→ R is a continuous
function, then by Theorem 4.1 in [Br59] and Theorem 1 in [Wa68] there exists a
unique continuous function F : Ω̄→ R such that F is maximal plurisubharmonic
on Ω and F |bΩ = f (note that both mentioned above theorems are stated for C2-
smooth strictly pseudoconvex domains, but actually no assumption on smoothness
of bΩ is needed in the proof of Theorem 4.1 in [Br59] and, hence, also in the proof
of Theorem 1 in [Wa68]). Moreover,

F (z) = sup
{
ϕ(z) : ϕ ∈ U(Ω, f)

}
, (3.5)

where U(Ω, f) denotes the family of all ϕ ∈ P(Ω) such that ϕ ≤ f on bΩ. If
f ≥ 0, then one can easily see that {F = 0} = ◊�{f = 0}P(Ω), where ◊�{f = 0}P(Ω) :=
{z ∈ Ω̄ : ϕ(z) ≤ supw∈{f=0} ϕ(w) for every ϕ ∈ P(Ω)}. In fact, more is true as it
is shown in the following lemma (the statement of the lemma seems to be well
known, but since we were not able to find a reference in the literature, we include
here its proof for the convenience of reading).

Lemma 3.4.2. Let Ω ⊂ Cn be a bounded strictly pseudoconvex domain (not
necessarily with smooth boundary). Let f : bΩ→ [0,∞) be a continuous function
and let F : Ω̄→ [0,∞) be the maximal plurisubharmonic function on Ω such that
F |bΩ = f . Then {F = 0} = ◊�{f = 0}A(Ω). If Ω̄ is polynomially convex, then
{F = 0} = ◊�{f = 0}, where ◊�{f = 0} denotes the polynomially hull of {f = 0}.

Proof. Set K := {f = 0}. Let first z0 ∈ Ω̄ \ K̂A(Ω), i.e., there exists h ∈ A(Ω)
such that |h(z0)| > maxz∈K |h(z)|. Then for suitably chosen constants C, ε > 0
the function ϕ := ε(|h| − C) ∈ P(Ω) satisfies ϕ|bΩ ≤ f and ϕ(z0) > 0. By (3.5),
this implies that F (z0) > 0, i.e., z0 ∈ Ω̄ \ {F = 0}. On the other hand, let now
z0 ∈ Ω̄ \ {F = 0}, i.e., there exists ϕ ∈ P(Ω) such that ϕ|bΩ ≤ f but ϕ(z0) > 0.
Let g : Cn → R be a smooth function such that g|bΩ > ϕ|bΩ and g|K < ϕ(z0) <
g(z0), and let ψ : U → R be a strictly plurisubharmonic function on an open
neighbourhood U ⊂ Cn of Ω̄ such that Ω = {ψ < 0}. Moreover, choose C > 0 so
large that, after possibly shrinking U , the function Cψ + g is plurisubharmonic
on U , and, in the case when z0 ∈ Ω, one also has (Cψ + g)(z0) < ϕ(z0). Then
φ := max(ϕ,Cψ + g) : U → [−∞,∞) is a plurisubharmonic function such that
φ(z0) > maxz∈K φ(z). Since Ω has a Stein neighbourhood basis, we can assume
that U is pseudoconvex. By the equality of holomorphic and plurisubharmonic
convex hulls of compact sets in pseudoconvex domains (see, for example, Theorem
4.3.4 in [Hö90]), we then can find a holomorphic function h ∈ O(U) ⊂ A(Ω) such
that |h(z0)| > maxz∈K |h(z)|, i.e., z0 ∈ Ω̄ \ K̂A(Ω). If Ω̄ is polynomially convex,
then, by the Oka-Weil theorem, h can be chosen to be a holomorphic polynomial.�
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Proof of Theorem 3.4.2. (1) We start with proving the first part of the theorem.
In order to do so, we proceed in three steps.

Step 1. For every p ∈ ct, there exist local holomorphic coordinates on an open
neighbourhood U ⊂ M of p and numbers ε, δ, c > 0 such that p is the origin in
C2
z,w and the following assertions hold true:

(i) U = U ′ × (−c, c) ⊂ C2 for some domain U ′ ⊂ Cz × Ru, where w = u+ iv,

(ii) there exist a smooth function Φ: U ′ → (−c, c) and a continuous function
Ψ: U ′ → (−c, c), Ψ ≤ Φ, such that ΓΦ = U ∩ {ϕ = t}, ΓΨ is a Levi-flat
hypersurface and ct ∩ U = ΓΦ ∩ ΓΨ, where ΓΦ and ΓΨ denote the graphs of
Φ and Ψ, respectively,

(iii) there exists a continuous one-parameter family {fu}−δ<u<δ of holomorphic
functions fu : ∆ε → Cw satisfying Re fu(0) = u for every u ∈ (−δ, δ) such
that U ′ = ⋃

· −δ<u<δ{(z,Re fu(z)) ∈ C × R : z ∈ ∆ε} =: ⋃· −δ<u<δD′u
and ΓΨ = ⋃

· −δ<u<δ{(z, fu(z)) ∈ C2 : z ∈ ∆ε} =: ⋃· −δ<u<δDu, where
∆ε := {z ∈ C : |z| < ε},

(iv) there exists a subset d ⊂ (−δ, δ) such that ct ∩ U = ⋃· u∈dDu.

Proof. Without loss of generality we can assume that t = 0. Moreover, by
introducing suitable local coordinates around p, we can also assume that p is the
origin in C2

z,w and that Tp({ϕ = 0}) = Cz×Ru, where w = u+iv. Choose constants
r,R > 0 such that for the convex domain G := {|z|2 + u2 < r} ∩ {|z|2 + |w|2 <
R} ⊂ C2 there exists a smooth function

Φ: {(z, u) ∈ C× R : |z|2 + u2 ≤ r} → Rv such that ΓΦ = {ϕ = 0} ∩ Ḡ,

and such that int ΓΦ := ΓΦ∩{(z, w) ∈ C2 : |z|2 +u2 < r} satisfies int ΓΦ = ΓΦ∩G.
After smoothing the wedges of G, we can assume without loss of generality
that bG is smooth. Since {ϕ = 0} ∩ bG is the graph of a smooth function over
{(z, u) ∈ C× R : |z|2 + u2 = r}, it follows from Theorem 3 in [BK91] that there
exists a continuous function

Ψ: {(z, u) ∈ C× R : |z|2 + u2 ≤ r} → Rv such that ΓΨ = ¤�{ϕ = 0} ∩ bG,

and int ΓΨ is a Levi-flat hypersurface. Let f := max(ϕ, 0)|bG and let F : Ḡ→ R
be the continuous function such that F is maximal plurisubharmonic on G and
F |bG = f . Finally, set K := {f = 0} ⊂ bG and observe that K̂ = {F = 0} ⊂ Ḡ
by Lemma 3.4.2.

We claim that Φ ≥ Ψ and that K̂ = {(z, w) ∈ Ḡ : v ≤ Ψ(z, u)} =: Γ−Ψ. Indeed,
by the choice of f , we have ΓΨ ⊂ K̂ and hence K̂ = ◊�K ∪ ΓΨ ⊃ Γ−Ψ, since
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K ∪ ΓΨ = bΓ−Ψ. For the other direction, note first that, by strict pseudoconvexity
of bG, for every a ∈ K̂ ∩ bG, there exists a holomorphic polynomial P such that
|P | attains a strict local maximum at a along K̂. (Indeed, we can choose for P a
finite part of the Taylor expansion of 1/LG(a, z−εNG(a)), where LG(a, · ) denotes
the Levi polynomial at a of a strictly plurisubharmonic defining function for G,
NG(a) is the outward unit normal vector to G at a and ε > 0 is small enough.)
Thus, by Rossi’s local maximum modulus principle, it follows that K̂ ∩ bG = K.
In particular, K̂ ∩ bΓ+

Ψ = K̂ ∩ ΓΨ, where Γ+
Ψ := {(z, w) ∈ G : v ≥ Ψ(z, u)}.

Another application of Rossi’s local maximum modulus principle now shows that
K̂ ∩ Γ+

Ψ = ÿ�K̂ ∩ bΓ+
Ψ, and, in view of polynomial convexity of ΓΨ, we get that◊�K̂ ∩ ΓΨ ⊂ ΓΨ. Hence K̂ ∩ Γ+

Ψ ⊂ ΓΨ, i.e., K̂ ⊂ Γ−Ψ. The proof of the second claim
is now complete. For the first claim observe that ϕ ∈ U(G, f), i.e., ϕ ≤ F in view
of (3.5) and hence {F = 0} ⊂ {ϕ ≤ 0}. In particular, ΓΨ ⊂ {ϕ ≤ 0} and thus
Φ ≥ Ψ.

Next we want to show that c(Ω) ∩ ΓΦ ⊂ ΓΨ. Indeed, in view of the assertions
that we have just proven, it suffices to show that c(Ω) ∩ ΓΦ ⊂ K̂. Thus let
q ∈ c(Ω) ∩ Ḡ such that ϕ(q) = 0 and assume, to get a contradiction, that
q /∈ K̂ and hence, in view of Lemma 3.4.2, that F (q) > 0. Since ΓΦ ∩ bG ⊂
K, it follows that q ∈ G. Then for γ1 := F (q)/2 > 0 define ϕ∗ : Ω → R
as ϕ∗ := fimaxγ1(ϕ, 0) and observe that max(ϕ, 0) ≤ ϕ∗ ≤ max(ϕ, 0) + γ1/2
by definition of the smooth maximum. Hence ϕ∗(q) ≤ max(ϕ(q), 0) + γ1/2 =
γ1/2 < F (q) − γ1 while on bG we have ϕ∗ ≥ max(ϕ, 0) = F > F − γ1. Then
F ∗ := δγ2 ∗ (F −γ1)+γ3‖ · ‖2, where γ2 and γ3 are small enough positive constants
and δγ2 is a smooth nonnegative function depending only on ‖(z, w)‖ such that
supp δγ2 ⊂ B̄2(0, γ2) and

∫
C2 δγ2 = 1, is a smooth strictly plurisubharmonic

function on Ḡγ2 := {(z, w) ∈ G : dist((z, w), bG) ≥ γ2} such that ϕ∗(q) < F ∗(q)
and ϕ∗ > F ∗ on bGγ2 . In particular, for δ > 0 small enough fimaxδ(ϕ∗, F ∗) is a
smooth and bounded from above plurisubharmonic function on Ω that is strictly
plurisubharmonic in q. This contradicts the fact that q ∈ c(Ω).

From the Main Theorem in [Sh93] we know that ΓΨ is the disjoint union of a
family of complex discs. Moreover, it follows from the Main Lemma in [Sh93]
that there exist positive constants ε, δ > 0 and a continuous one-parameter family
{fu}−δ<u<δ of holomorphic functions fu : ∆ε → Cw satisfying Re fu(0) = u for
every u ∈ (−δ, δ) such that U ′ := ⋃· −δ<u<δ{(z,Re fu(z)) ∈ C× R : z ∈ ∆ε} is an
open neighbourhood of p in C× R contained in {(z, u) ∈ C× R : |z|2 + u2 < r}
and ΓΨ ∩ (U ′ × Rv) = ⋃

· −δ<u<δ{(z, fu(z)) ∈ C2 : z ∈ ∆ε}. Choose c > 0 such
that Ψ(U ′) ⊂ (−c, c).

Now fix some u ∈ (−δ, δ) and assume that Du ∩ ΓΦ 6= ∅, i.e, there exists
p ∈ Du such that ϕ(p) = 0. Since ΓΨ ⊂ K̂ ⊂ {ϕ ≤ 0}, it follows that ϕ|Du is a
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subharmonic function that attains a maximum at p. HenceDu ⊂ {ϕ = 0}∩U = ΓΦ.
This shows that there exists d ⊂ (−δ, δ) such that ΓΦ ∩ ΓΨ = ⋃

· u∈dDu. In
particular, for every p ∈ ΓΦ ∩ ΓΨ there exists u ∈ d such that p ∈ Du ⊂ ΓΦ ∩ ΓΨ.
But then ϕ is constant on Du and hence not strictly plurisubharmonic at p, which
implies p ∈ c(Ω) by minimality of ϕ. This shows that ΓΦ ∩ ΓΨ ⊂ c0 ∩ U . On
the other hand, we already know that c0 ∩ U = c(Ω) ∩ ΓΦ ⊂ ΓΦ ∩ ΓΨ. Hence
ΓΦ ∩ ΓΨ = c0 ∩ U . The proof of Step 1 is now complete.

Step 2. Let H ⊂M be a smooth real hypersurface in the 2-dimensional complex
manifold M. For every p ∈ H, let {γp,j}j∈Jp be the family of all connected
complex curves γp,j ⊂ H such that p ∈ γp,j . Then γp := ⋃j∈Jp γp,j is a connected
complex curve in H and each γp,j is an open complex submanifold of γp.

Proof. This statement surely is well known, but for the convenience of reading
we sketch its proof (observe that Jp here might be empty).

First we note that for every p ∈ H there exists at most one germ δp of an
embedded 1-dimensional complex submanifold δ ⊂ H of M. Indeed, assume,
to get a contradiction, that there exist two submanifolds δ1, δ2 ⊂ H such that
δ1,p 6= δ2,p. After possibly shrinking δ1 and δ2 we can assume that δ1 ∩ δ2 = {p}.
Choose an open coordinate neighbourhood U ⊂ M of p and local holomorphic
coordinates on U such that there exist U ′ = ∆ε× (−a, a) ⊂ Cz×Ru and a smooth
function h : U ′ → Rv satisfying U ∩H = Γh, and, moreover, holomorphic functions
f1, f2 : ∆ε → Cw such that Γf1 = δ1 ∩ U and Γf2 = δ2 ∩ U . It follows then from
Rouché’s Theorem that for δ > 0 small enough the two functions g0, gδ : ∆ε → C,
g0 = f1 − f2 and gδ := f1 − (f2 + iδ) have the same number of zeros, which
contradicts the facts that Γf1 ∩ Γf2 6= ∅ but Γf1 ∩ Γf2+iδ ⊂ Γh ∩ Γh+δ = ∅.

Define V ⊂ γp to be open in γp if V ∩ γp,j is open in γp,j for every j ∈ Jp. By
the unicity of germs of complex manifolds in H described above, we conclude
that γp,j1 ∩ γp,j2 is open in γp,j1 and γp,j2 . Thus the open sets in γp define a
topology on γp and each γp,j is open in γp. Since each γp,j is locally an embedded
submanifold of M, and since each γp,j is open in γp, it follows that there exists a
unique complex structure on γp such that the inclusion γp ↪→M is a holomorphic
immersion (and with respect to this complex structure the inclusions γp,j ↪→ γp are
holomorphic for every j ∈ Jp). From the continuity of the inclusion we conclude
that the topology on γp is Hausdorff. Then Radó’s Theorem on second countability
of Riemann surfaces shows that the topology of γp has a countable basis.

Step 3. The set ct is the disjoint union of a family of weakly embedded complete
connected complex curves. Moreover, the sets c̊t and bct have the structure as
described above.

Proof. It follows immediately from Step 1 that for every p ∈ ct there exists a
complex disc δp ⊂ M such that p ∈ δp ⊂ ct. Applying Step 2 in the case H :=
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{ϕ = t}, we conclude that each complex disc δp extends to a maximal connected
complex curve γp in H, and that there exists A ⊂ ct such that ct = ⋃· α∈A γα.

We claim that each γα is weakly embedded in M. Indeed, let N be a smooth
manifold and let f : N →M be a smooth map such that f(N) ⊂ γα, where α ∈ A
is fixed. Choose arbitrary q ∈ N and local holomorphic coordinates on U ⊂M
around f(q) ∈ γα ∩ U ⊂ ct ∩ U = ⋃

· u∈dDu as described in Step 1. Since γα ∩ U
is open in γα, it has at most countably many connected components {γkα}k∈Kα .
Moreover, by the unicity of germs of complex curves in H (see the proof of Step 2),
and by the identity theorem applied to the function gu := w − fu(z), we see that
γkα ⊂ Du whenever γkα ∩Du 6= ∅. In fact, we even get that γkα = Du, since γα is
maximal. This shows that there exists an at most countable set dα ⊂ d such that
γα∩U = ⋃· u∈dα Du. Now let W ⊂ N be a connected neighbourhood of q such that
f(W ) ⊂ U . Observe that the function e : ⋃· u∈dDu → R defined as e(z, w) = u if
and only if fu(z) = w is continuous. Hence e ◦ f : W → R is a continuous function
that takes at most countably many values. By connectedness of W , we conclude
that f(W ) ⊂ DuW for some uW ∈ dα. Since DuW is an embedded submanifold of
M, it follows that f : W → DuW is smooth. Moreover, DuW is open in γα, hence
the inclusion DuW ↪→ γα is smooth too. This shows that f : W → γα is a smooth
map, and thus that γα is weakly embedded.

Next we want to show that each γα ⊂ M is complete. Indeed, fix α ∈ A and
let g be a complete Riemannian metric on M. Let {pj}∞j=1 ⊂ γα be a Cauchy
sequence with respect to i∗g and let p := limj→∞ pj ∈ M. Since γα ⊂ ct,
and since ct is closed in M, it follows that p ∈ ct. Choose local holomorphic
coordinates on U ⊂M around p ∈ ct∩U = ⋃· u∈dDu as described in Step 1. Then
p ∈ Dup for some up ∈ d. Observe that, after possibly shrinking U , there exists a
constant C > 0 such that for every u1, u2 ∈ d, u1 6= u2, and every q1 ∈ γα ∩Du1 ,
q2 ∈ γα ∩ Du2 one has disti∗g(q1, q2) > C, where disti∗g denotes the metric on
γα induced by i∗g. Since {pj}∞j=1 is a Cauchy sequence with respect to disti∗g,
it follows that there exists j0 ∈ N such that pj ∈ Dup for every j ≥ j0. Hence
Dup ∩ γα 6= ∅. By Step 2 and by maximality of the set γα, we conclude that
Dup ⊂ γα, i.e., p ∈ γα.

Finally, observe that from property (iv) of the local holomorphic coordinates in
Step 1 it follows immediately that A has a decomposition A = A′ ∪· A′′ such that
c̊t = ⋃· α∈A′ γα and bct = ⋃· α∈A′′ γα. This concludes the proof of Step 3 and hence
also of part (1) of the theorem.

(2) We now prove the second part of the theorem. Assume, to get a contradiction,
that there exists a function ϕ̃ as above that is not constant on γ. After possibly
replacing ϕ̃ by ϕ̃+ εψ, where ψ : Ω → R is a minimal function for Ω and ε > 0
is small enough, we can assume without loss of generality that ϕ̃ is minimal.
Applying Sard’s theorem to the functions ϕ̃ and ϕ̃|γ simultaneously, we see that
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3.5 Pseudoconcavity of higher order cores

we can choose a regular value t̃ ∈ R for ϕ̃ such that γ and {ϕ̃ = t̃} intersect
transversally. Let p ∈ γ ∩ {ϕ̃ = t̃}. From part (1) we know that there exists a
complex curve γ̃ ⊂ {ϕ̃ = t̃} such that p ∈ γ̃. Observe that, by transversality of γ
and {ϕ̃ = t̃} at p, we have Tpγ∩Tpγ̃ = {0}. Now let χ : R→ R be a smooth strictly
increasing and strictly convex function such that the smooth plurisubharmonic
function Φ := χ ◦ ϕ+ χ ◦ ϕ̃ is still bounded from above on Ω. We claim that Φ is
strictly plurisubharmonic in p which contradicts the fact that p ∈ c(Ω). Indeed,
observe that Lev(χ ◦ ϕ)(p, ξ) = χ′′(ϕ(p))|(∂ϕ)p(ξ)|2 + χ′(ϕ(p))Lev(ϕ)(p, ξ) > 0
for every ξ ∈ TpM\Ker[(∂ϕ)p] = TpM\ Tpγ. In the same way we conclude that
Lev(χ ◦ ϕ̃)(p, ξ) > 0 for every ξ ∈ TpM\ Tpγ̃. Since Tpγ ∩ Tpγ̃ = {0}, this proves
our claim. �

3.5 Pseudoconcavity of higher order cores

Recall the following definition, which was already given before in the Introduc-
tion.

Definition. Let M be a complex manifold of complex dimension n and let
Ω ⊂M be a domain. For every q = 1, . . . , n, we call the set

cq(Ω) :=
{
z ∈ Ω : rank Lev(ϕ)(z, · ) ≤ n− q for every smooth plurisub-
harmonic function ϕ : Ω→ R that is bounded from above

}
the core of order q of Ω.

It follows immediately from the definition that c1(Ω) ⊃ c2(Ω) ⊃ · · · ⊃ cn(Ω) and
that c(Ω) = c1(Ω). Let us now illustrate this notion with the following example.

Example 11. For generic C ∈ R, let

Ω :=
{

(z1, z2, z3) ∈ C3 : log|z1|+ log(|z2|+ |z3|) +
(
|z1|2 + |z2|2 + |z3|2

)
< C

}
.

Then Ω is strictly pseudoconvex with smooth boundary and, in view of Liouville’s
theorem, c(Ω) = l ∪Π, where l = {(z1, 0, 0) ∈ C3 : z1 ∈ C} and Π = {(0, z2, z3) ∈
C3 : z2, z3 ∈ C}.

In the above example one can easily see that c1(Ω) = l ∪ Π is 1-pseudoconcave
and c2(Ω) = Π is 2-pseudoconcave. We know from Theorem 3.3.2 that c1(Ω) is
always 1-pseudoconcave in Ω for every domain Ω ⊂M. Moreover, in view of the
discussion on Liouville type properties of the core in Section 3.4, observe that the
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3 Global plurisubharmonic defining functions and the core

following generalization of Lemma 3.3.2 holds true for every q = 1, . . . , n: every
smooth plurisubharmonic function ϕ which is defined on an open neighbourhood
of a closed q-pseudoconcave set A ⊂ M and which is constant on A satisfies
rank Lev(ϕ)(z, · ) ≤ n − q for every z ∈ A (by the results from [Sl86], (q − 1)-
plurisubharmonic functions have the local maximum property on q-pseudoconcave
sets for every q = 1, . . . , n; thus the statement follows by the same argument as in
the proof of Lemma 3.3.2). These observations lead us to the following question:
Is it always true that cq(Ω) is q-pseudoconcave in Ω for q > 1?

We will show that in general the answer to the raised above question is negative,
by proving the following theorem.

Theorem 3.5.1. For every n ≥ 2 and every q = 1, . . . , n, q′ = 0, . . . , n − 1
such that (q, q′) 6= (1, 0), there exists a strictly pseudoconvex domain Ω ⊂ Cn with
smooth boundary such that cq(Ω) is q′-pseudoconcave but not (q′+1)-pseudoconcave.

Proof. Consider first the case q′ = 0 (recall that a set A ⊂ Cn is 0-pseudoconcave
if and only if it is closed). Indeed, fix arbitrary q ∈ {2, . . . , n} and for generic
C ∈ R consider the set

Ω :=
{
z ∈ Cn : ‖z‖2 +

q∑
j=1

log(‖z‖2 − |zj |2) < C
}
.

After possibly passing to a suitable connected component, Ω is a strictly pseu-
doconvex domain with smooth boundary such that L := ⋃q

j=1{z ∈ Cn : zk =
0 for every k 6= j} ⊂ Ω. By Liouville’s theorem, every smooth and bounded from
above plurisubharmonic function on Ω has to be constant on L. In particular,
L ⊂ c(Ω) and 0 ∈ cq(Ω). Moreover, a straightforward computation shows that
ϕ(z) := exp(‖z‖2 +∑q

j=1 log(‖z‖2 − |zj |2)) is a smooth and bounded from above
plurisubharmonic function on Ω such that ϕ is strictly plurisubharmonic on Ω \ L
and such that rank Lev(ϕ)(z, · ) = n− 1 for every z ∈ L \ {0}. Hence c(Ω) ⊂ L
and cq(Ω) ⊂ {0}. It follows that c(Ω) = L and cq(Ω) = {0}. In particular, cq(Ω)
is not 1-pseudoconcave.

Now fix q′ ∈ {1, 2, . . . , n − 1}. Let E ⊂ Cq′z × Cn−q′w be the Wermer type set
which was constructed in Chapter 2. Observe that, by Lemma 2.3.1, the set E is
q′-pseudoconcave but not (q′ + 1)-pseudoconcave. Now let Φ: Cn → [0,∞) be the
smooth plurisubharmonic function from Section 2.2. In particular, E = {Φ = 0}
and Φ is strictly plurisubharmonic outside E . For generic C > 0, define

Ω :=
{
z ∈ Cn : Φ(z) < C

}
.

Then, after possibly replacing Ω by one of its connected components, Ω is an
unbounded strictly pseudoconvex domain with smooth boundary such that E ⊂ Ω.
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3.5 Pseudoconcavity of higher order cores

We will show that c1(Ω) = c2(Ω) = · · · = cn(Ω) = E . Note that this completes
the proof of the theorem. Indeed, from the properties of Φ we immediately see
that c1(Ω) ⊂ E . On the other hand, let ϕ : Ω→ R be a smooth plurisubharmonic
function which is bounded from above. By Theorem 2.2.1, there exists a constant
C ∈ R such that ϕ ≡ C on E . Thus, in view of Lemma 2.3.2, it follows that
Lev(ϕ) ≡ 0 along E . This shows that E ⊂ cn(Ω). The claim now follows from the
fact that cn(Ω) ⊂ cn−1(Ω) ⊂ · · · ⊂ c1(Ω). �

At the end of this section, we also state the following generalization of the Main
Theorem.

Theorem 3.5.2. Let Ω be a strictly pseudoconvex domain with smooth boundary
in a complex manifold M. Then there exists a bounded global defining function
ϕ for Ω such that ϕ is strictly plurisubharmonic in the complement of c1(Ω) and
rank Lev(ϕ)(z, · ) = n− q for every z ∈ cq(Ω) \ cq+1(Ω) and q = 1, 2, . . . , n.

Proof. We know from the Main Theorem in Section 3.1.1 that there exists a
smooth global defining function ϕ1 for Ω such that rank Lev(ϕ1)(z, · ) = n for
every z /∈ c1(Ω). Observe that by repeating the same arguments as in the proof
of the Main Theorem we can also construct for each q = 2, 3, . . . , n a smooth
global defining function ϕq for Ω such that rank Lev(ϕq)(z, · ) ≥ n − q + 1 for
every z /∈ cq(Ω). Then ϕ := ∑n

q=1 ϕq is a function as desired. �

We would like to point out here that the most essential achievement of the
Main Theorem and Theorem 3.5.2 is the proof of existence of global defining
functions (the construction of these functions is carried out in Theorem 3.1.2).
The proof of the additional properties of these functions, namely, of being strictly
plurisubharmonic outside the core c(Ω) or having the corresponding rank of the
Levi form outside the core cq(Ω) of order q for every q = 1, 2, . . . , n, is simple
and rather standard. Note also that a version of the last argument as well as the
definition of a notion similar to our notion of the core cq(Ω), q = 1, 2, . . . , n, in
the different setting of exhaustion functions was given earlier in Lemma 3.1 of
[SlT04].
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4 Holomorphic extension of CR functions
and the CR-core

We study the CR-core of unbounded strictly pseudoconvex domains Ω ⊂ Cn.

In Section 4.1 we construct an example of a strictly pseudoconvex domain Ω ⊂ Cn
such that cCR(Ω) is nonempty and contains no analytic variety of positive dimension.
Moreover, we show in Section 4.2 that in general c(Ω) 6= cCR(Ω), even for strictly
pseudoconvex domains Ω ⊂ C2.

4.1 A CR-core with no analytic structure

In this section we study the problem of holomorphic extension of CR functions
defined on the boundary of an unbounded strictly pseudoconvex domain Ω ⊂ Cn.
In particular, we are interested in the question whether the CR-core cCR(Ω) of Ω
always carries an analytic structure. We will show that this is not the case, by
proving the following theorem.

Theorem 4.1.1. For each n ∈ N, n ≥ 2, there exist an unbounded strictly
pseudoconvex domain Ω ⊂ Cn and a smooth CR function f on bΩ such that:

(1) The envelope of holomorphy E(bΩ) of the set bΩ is one-sheeted.

(2) cCR(Ω) is nonempty and contains no analytic variety of positive dimension.

(3) f has a single-valued holomorphic extension exactly to Ω \ cCR(Ω).

Proof. Let E be the Wermer type set constructed in Chapter 1 and let ϕ : Cn →
[−∞,∞) be the plurisubharmonic function from Lemma 1.4.3 such that E = {ϕ =
0}. For generic C > 0, define

Ω :=
{
z ∈ Cn : ϕ(z) + ‖z‖2 < C

}
.

Then, after possibly replacing Ω by one of its connected components, Ω is an
unbounded strictly pseudoconvex domain with smooth boundary such that E ⊂ Ω.
By Lemma 1.3.6, the set E contains no analytic variety of positive dimension.
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4 Holomorphic extension of CR functions and the CR-core

Moreover, we know from Lemma 1.2.2 that Ω \ E is pseudoconvex and hence
the projection πn(E(bΩ)) of the envelope of holomorphy E(bΩ) of bΩ onto Cn is
contained in Ω̄ \ E . Thus, in order to show (1) and (2), it only remains to show
that E(bΩ) is one-sheeted and coincides with Ω̄ \ E .

Recall first that, by Lemma 1.4.3, there exists a sequence {ϕν} of plurisubharmonic
functions ϕν : Cn → [−∞,∞) such that every function ϕν is of the form ϕν =
(1/2ν) log|Pν | for some holomorphic polynomial Pν and such that {ϕν} converges
uniformly on compact subsets of Cn \ E to ϕ. Observe then that for every a ∈ R
the set Ω̄ ∩ {ϕ ≥ a} is compact and hence, since ϕν → ϕ uniformly on compact
subsets of Cn \ E , for each a ∈ R we can choose a natural number N(a) ∈ N such
that

Ω∩{ϕ > a} ⊂ Ω∩{ϕN(a) > a−1} = Ω∩
{
|PN(a)| > e2N(a)(a−1)} ⊂ Ω∩{ϕ > a−2}.

Fix some a ∈ R and let N := N(a). Observe that PN , being a polynomial, has
only finitely many singular values c1, c2, . . . , ck and let SN := ⋃k

j=1{PN = cj}
(indeed, using the explicit formula for PN stated after Lemma 1.1.1, one can even
see that k = 1 and c1 = 0). Let now f ∈ CR(bΩ). Since Ω is strictly pseudoconvex,
f extends to a holomorphic function on some one-sided neighbourhood U ⊂ Ω̄ of
bΩ, which will be denoted by f as well.

Let H ⊂ Cn denote a complex two-dimensional affine subspace of Cn which is
obtained by fixing n− 2 of the coordinates z1, z2, . . . , zn−1, w (for n = 2 the only
possible choice is H = C2). Then Ω ∩H = ⋃α Γα is the disjoint union of a family
{Γα} of strictly pseudoconvex domains Γα ⊂ H ∼= C2, and bHΓα ⊂ bΩ ∩H for
each α, where bHΓα denotes the boundary of Γα with respect to the relative
topology on H. In particular we can view each Γα as a strictly pseudoconvex
domain in C2 and for each α the restriction of f to U ∩H defines a holomorphic
function in a one-sided neighbourhood of bHΓα. With the situation reduced to a
two-dimensional case we can now argue as in the example from introduction and
conclude from Theorem A in [J95] that E(bHΓα) is single-sheeted (of course here
E(bHΓα) denotes the envelope of holomorphy of bHΓα with respect to functions
holomorphic in H ∼= C2). On the other hand, since for each ν ∈ N the restriction
Pν |H is again a polynomial and we can assume it to be nonconstant (for ν ≥ ν0
big enough this clearly is satisfied), for each a′ ∈ R the sets {PN(a′) = c} with
c ∈ C, |c| > e2N(a′)(a′−1), constitute a continuous family of analytic curves in
H ∼= C2 that fills (Ω∩H)∩{ϕ > a′}. Using the Kontinuitätssatz we thus conclude
that E(bHΓα) = Γ̄α ∩ {ϕ > −∞} = Γ̄α \ E for each α. Hence, since the domains
Γα are disjoint and pseudoconvex, we get that E(⋃α bHΓα) is single-sheeted and
(Ω∩H)\E ⊂ E(⋃α bHΓα). In particular f |U∩H extends to a holomorphic function

fH : (Ω \ E) ∩H → C, fH = f near bΩ.
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4.1 A CR-core with no analytic structure

Observe that this already proves our claim in the case n = 2.

Assume now that n ≥ 3. For each c ∈ C \ {c1, c2, . . . , ck} the hypersurface
{PN = c} is a Stein manifold of dimension at least 2, and if |c| > e2N (a−1),
then each connected component of Ωc := Ω ∩ {PN = c} is a bounded strictly
pseudoconvex domain in {PN = c}. Further, f restricts to a holomorphic function
on Ωc \ K, where K ⊂ Ωc is a compact set of the form K = Ωc \ Ũ for some
one-sided neighbourhood Ũ ⊂ U of bΩ. Since each connected component Γ of Ωc
is bounded and strictly pseudoconvex, the boundary of Γ in {PN = c} is connected
and hence we can assume Γ \K = Γ ∩ Ũ to be connected. Thus we can apply
Hartogs theorem on removability of compact singularities to extend f |Ωc\K to a
holomorphic function f̃c on Ωc (for a version of the classical Hartogs theorem in
the setting of Stein manifolds see [AH72]). In this way we can define a function

fa :
[
Ω ∩ {PN > e2N (a−1)}

]
\ S → C, fa = f near bΩ,

by letting fa(z, w) = f̃c(z, w) if PN (z, w) = c. We claim that for every two-
dimensional subspace H ⊂ Cn described above the functions fa and fH coincide on
their common domain of definition, namely on the set

[
Ω∩H∩{PN > e2N (a−1)}

]
\S.

Indeed, let c ∈ C \ {c1, c2, . . . , ck}, |c| > e2N (a−1). Since the restriction PN |H is
again a (nonconstant) polynomial, the set γc := Ω ∩H ∩ {PN = c} is an analytic
curve in Ω ∩H ∩ {PN > e2N (a−1)}. Observe that the boundary of γc is contained
in bΩ and recall that fa and fH are holomorphic on γc and coincide near bΩ.
Thus it follows from the uniqueness theorem that fa = fH on γc. Hence, since
c ∈ C \ {c1, c2, . . . , ck} with |c| > e2N (a−1) was arbitrary, we conclude that

fa = fH on
[
Ω ∩H ∩ {PN > e2N (a−1)}

]
\ S. (4.1)

In particular this shows that fa is holomorphic in each variable separately (recall
the definition of H). Thus by Hartogs separate analyticity theorem fa is a
holomorphic function on

[
Ω ∩ {PN > e2N (a−1)}

]
\ S. Moreover we see from (4.1)

and the holomorphicity of fH on (Ω∩H) \ E ⊃ Ω∩H ∩ {PN > e2N (a−1)} that fa
remains bounded near S. It follows then from Riemann’s removable singularities
theorem that fa extends to a holomorphic function f̃a on Ω ∩ {PN > e2N (a−1)} ⊃
Ω ∩ {ϕ > a}. Since a ∈ R was arbitrary, and since Ω \ E = ⋃a∈R Ω ∩ {ϕ > a}, we
conclude that f has a single-valued holomorphic extension to Ω̄ \ E . Hence E(bΩ)
is single-sheeted and E(bΩ) = Ω̄ \ E .

It only remains to construct a CR function f on bΩ which extends exactly to
Ω̄ \ E . In order to do so, let

Ω̃ :=
{

(z, w) ∈ Cn : ϕ(z, w) +
(
‖z‖2 + |w|2

)
< C2

}
,
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4 Holomorphic extension of CR functions and the CR-core

where the constant C2 > C1. Then the domain Ω̃ is also pseudoconvex and Ω̄ ⊂ Ω̃.
As before we see that Ω̃ \ E is pseudoconvex, hence there exists a holomorphic
function f ∈ O(Ω̃ \ E) which does not extend to E . Then f |bΩ is a function as
required. �

Although the previous theorem shows that in general cCR(Ω) does not possess any
analytic structure, observe that it follows immediately from the Kontinuitätssatz
and the definition of the CR-core, that cCR(Ω) is always pseudoconcave in Ω. Note
also that, in view of the discussions at the beginning of Section 2.3 and at the
end of Section 3.3, for our purpose it is reasonable to interpret pseudoconcavity of
cCR(Ω) as a generalized notion of (n− 1)-dimensional analytic structure.

4.2 Comparison of the core and the CR-core

Let Ω ⊂ Cn be a strictly pseudoconvex domain with smooth boundary such that
the envelope of holomorphy E(bΩ) of bΩ is single-sheeted. In some simple cases
(for example the domain Ω from Example II in the Introduction) one can observe
that cCR(Ω) = c(Ω). The same equality holds true for the strictly pseudoconvex
neighbourhoods of Wermer type sets E ⊂ Cn, which were constructed in Theorem
3.3.1 and Theorem 4.1.1 above. This is why one can be tempted to think that
the equality cCR(Ω) = c(Ω) holds true for every domain Ω as above. However, we
claim that this is false and, moreover, in general the sets cCR(Ω) and c(Ω) are not
related at all.

Proposition 4.2.1. (1) There exists an unbounded strictly pseudoconvex do-
main Ω ⊂ C3 with smooth boundary such that c(Ω) 6= ∅ but cCR(Ω) = ∅.

(2) There exists an unbounded strictly pseudoconvex domain Ω ⊂ C2 with smooth
boundary such that c(Ω) = ∅ but cCR(Ω) 6= ∅.

Proof. Let first Ω ⊂ C3 be the domain from Example 3 such that c(Ω) =
{0} × C 6= ∅. We claim that cCR(Ω) = ∅. Indeed, by strict pseudoconvexity
of bΩ, every CR function f on bΩ extends to a holomorphic function f̃ on a
one-sided neighbourhood U ⊂ Ω of bΩ. Further, every slice Sc := Ω ∩ {w = c} is
a ball in C2

z, hence by Hartogs theorem on removability of compact singularities
each function f̃ |Sc∩U extends to a holomorphic function Fc : Sc → C. An easy
investigation of the proof of Hartogs theorem shows that the function F : Ω→ R
defined by F (z, w) := Fw(z) is holomorphic in the w-variable. But it is clear
from the construction that F is also holomorphic in the z-variables. By Hartogs
theorem on separate analyticity, it follows that F is a holomorphic extension of f̃ .
Since here f was arbitrary, it follows that cCR(Ω) = ∅.
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On the other hand, let now Ω be the domain from Example 5. We have already
seen that c(Ω) = ∅, and we claim that cCR(Ω) 6= ∅. Indeed, let Ω∗ ⊂ C2 be
a strictly pseudoconvex domain with smooth boundary such that Ω̄ ⊂ Ω∗ (the
existence of such a domain Ω∗ follows, for example, from Theorem 3.1.3; the other
direct way to see this is by repeating the construction of Ω with ψ replaced by
ψ + δ for a some small enough constant δ > 0). Moreover, let h : ∆(0, 1 + ε)→ R
be a harmonic function such that h < ψ. Then V := Φ−1(Ω′ ∩{(z, w) ∈ C2 : |z| <
1 + ε, |w| < eh(z)}) is an unbounded open set with smooth Levi-flat boundary such
that, after possibly replacing V by a suitable connected component, V̄ ⊂ Ω. In
particular, Ω∗ \ V is a pseudoconvex open set, hence there exists a holomorphic
function F : (Ω∗ \ V ) → C that does not extend holomorphically to any larger
domain. But, by construction, bΩ ⊂ Ω∗ \ V , hence F |bΩ is a CR function on bΩ
that does not extend holomorphically to any point of V . Thus V ⊂ cCR(Ω). �
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Open Questions

We conclude the present thesis by stating some open questions related to the
content of this work.

1. Existence of global defining functions

Question 1. Let X be a complex space and let Ω ⊂ X be a smoothly strictly
pseudoconvex domain. Does there exist a minimal global defining function for Ω,
i.e., does there exist a smoothly plurisubharmonic function ϕ : U → R defined on
an open neighbourhood U ⊂ X of Ω̄ such that Ω = {ϕ < 0} and such that ϕ is
strictly smoothly plurisubharmonic outside c(Ω)? (For the definition of c(Ω) in
the setting of complex spaces see p. 92.)

Question 2. Let X be a complex space and let Ω ⊂ X be a smoothly strictly
q-pseudoconvex domain. Does there exist a smoothly q-plurisubharmonic function
ϕ : U → R defined on an open neighbourhood U ⊂ X of Ω̄ such that Ω = {ϕ < 0}
and such that ϕ is smoothly strictly q-plurisubharmonic near bΩ?

2. The core of a domain

Question 3. Let Ω ⊂ Cn be a domain and let ω ⊂ Ω be a domain such that
c(Ω) ⊂ ω. Does it follow that c(ω) = c(Ω)?

Question 4. Let M be a complex manifold. Is it possible to characterize the
core type subsets E ⊂M? (For the definition of core type sets see p. 112.)

Question 5. Let Ω ⊂ Cn be a strictly pseudoconvex domain with smooth bound-
ary. Can it happen that the set c(Ω) is not pluripolar? Or, even more, can it
happen that c(Ω) has a nonempty interior? And finally the strongest version of
this question: Does there exist a strictly pseudoconvex domain Ω ⊂ Cn containing
a Fatou-Bieberbach domain?
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Open Questions

Question 6. Let Ω ⊂ Cn be a domain. Is it true that ¤�bBn(0, R) ∩ c(Ω) =
B̄n(0, R) ∩ c(Ω) for every R > 0? Here ¤�bBn(0, R) ∩ c(Ω) denotes the polynomial
hull of the set bBn(0, R) ∩ c(Ω).

Question 7. Is it true that cs1(Ω) = cs2(Ω) for every domain Ω ⊂ Cn and every
s1, s2 such that the corresponding cores cs1(Ω) and cs2(Ω) are defined? (For the
definition of cs(Ω) see p. 78.)

Question 8. Let Ω ⊂ C2 be a strictly pseudoconvex domain with smooth bound-
ary. Is it true that every smooth and bounded from above plurisubharmonic
function on Ω is constant on each connected component of c(Ω)?

Question 9. Let M be a complex manifold and let Ω ⊂M be a domain. Can it
happen that a maximal component of c(Ω) consists of only one point? Moreover,
in the case when M is Stein, is it true that no maximal component of c(Ω) is
relatively compact in M? (For the definition of maximal components of c(Ω) see
p. 112.)

Question 10. Let Ω ⊂ Cn be a strictly pseudoconvex domain with smooth
boundary. Is it always true that Ω \ c(Ω) is connected?
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