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Abstract

This thesis1 considers the task of computing solutions of families of large sparse
linear systems that differ by a shift with the identity matrix and have several different
right-hand sides at the same time. We explore the applicability of existing Krylov
subspace methods for solving shifted systems and methods for solving systems with
multiple right-hand sides. Moreover, we develop methods that, based on deflated
block Lanczos-type processes, exploit both features—shifts and multiple right-hand
sides—at once and tackle well-known problems that multiple right-hand sides can
bring along. We present numerical evidence that our methods can be superior as
compared to applying other iterative methods, in typical situations.

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Lösen großer dünnbesetzter linearer Glei-
chungssysteme, deren Systemmatrizen um Vielfache der Einheitsmatrix verschoben
sind und die gleichzeitig mehrere rechte Seiten umfassen. Wir untersuchen, wie
gut sich eine Reihe von bestehenden Krylov-Unterraumverfahren zum Lösen dieser
Gleichungssysteme eignet. Weiterhin entwickeln wir Verfahren, die beide Eigen-
schaften—sowohl das Verschieben um Vielfache der Einheitsmatrix als auch mehrere
rechte Seiten—ausnutzen können und die auf deflationierten Block-Lanczos-Prozes-
sen beruhen, die mit bekannten Problemen beim Lösen von Gleichungssystemen mit
mehreren rechten Seiten umgehen können. Wir führen numerische Tests durch, die
zeigen, dass unsere Verfahren in einigen Anwendungsfällen bestehenden Verfahren
überlegen sind.

1This work was supported by Deutsche Forschungsgemeinschaft through the Collaborative
Research Centre SFB-TRR 55 ”Hadron Physics from Lattice QCD”
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1 Introduction
This thesis focuses on the solution of families of shifted linear systems with
multiple right-hand sides

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗, 𝑖 = 1, … , 𝑠, 𝑗 = 1, … , 𝑚 (1.1)

where (𝐴 + 𝜎𝑖𝐼) ∈ ℂ𝑛×𝑛 is a large sparse Hermitian positive definite matrix
for every 𝜎𝑖. This class of systems arises naturally for instance in lattice QCD.
There, the action of a matrix on multiple vectors needs to be computed and the
matrix itself stems from a matrix function evaluated for a large sparse matrix
𝐴. In other words, we are interested in computing 𝑓(𝐴)𝑏𝑗 for 𝑏 = 1, … , 𝑚.
The matrix function 𝑓(𝐴) can be approximated via a partial fraction expansion
which leads to multiple shifted systems. Another application in which families
of shifted systems like (1.1) arise is image processing. Working on more than
one image in parallel or separating the colour channels even of a single image
results in multiple right-hand sides. Here, the shifts stem from a regularisation
and, based on some criterion, one is interested in finding optimal shifts and
the corresponding solutions 𝑥𝑖,𝑗.

Krylov subspace methods are a class of methods that provide means to solve
large sparse systems by implicitly or explicitly transforming these systems
into smaller dense systems that can be tackled with well-known techniques for
dense matrices. For solving 𝐴𝑥 = 𝑏 and for (1.1) in the special cases of shifted
systems where 𝑚 = 1 and systems with multiple right-hand sides where 𝑠 = 1
a variety of Krylov subspace methods exists. These can be applied to the
systems in (1.1) one by one—either one shift after the other, one right-hand
side after the other, or both.

This work explores which of the existing Krylov subspace methods are well-
suited for solving (1.1). Further, novel Krylov subspace methods are developed
that are targeted especially at multiple shifts and multiple right-hand sides
and by this solve (1.1) for all shifts and right-hand sides at the same time.
Unlike most of the literature we will not only count the number of matrix-
vector multiplications performed by the methods as a measure for comparing
different methods since this can be quite deceptive especially in the case of
block methods. Instead, we implemented all presented methods and compare
actual runtime measurements of the algorithms. Since time measurements

1



2 1. Introduction

alone bring along other issues we additionally analysed the algorithms using a
detailed cost model to have a theoretical background for our findings.

We demonstrate numerically that our novel Krylov subspace methods for
solving families of linear systems as in (1.1) do not only reduce the number of
matrix-vector multiplications significantly but also yield lower computational
time than a variety of existing Krylov subspace methods in certain situations.
Moreover, we present results that our cost model can be used as support for
deciding whether one Krylov subspace method should be preferred over an-
other.

1.1 Outline

This thesis is organised as follows.
The remainder of Chapter 1 is dedicated to introduce the notation and basic

definitions used throughout this thesis. Especially, when dealing with iterative
methods that involve more than just vectors—for example vectors grouped
together in matrices, slices of matrices, and mixtures thereof—a distinct and
consistent notation is vital for a good understanding. For this, Section 1.2
introduces the notation used in this work and gives examples where needed.
Some definitions that are used at multiple places are collected in Section 1.3.

In order to have this thesis self-contained the chapters 2 and 3 are dedicated
to introduce some basics. Chapter 2 explains the concept of iterative methods
for solving linear systems in general. Krylov subspace methods as a particular
incarnation of iterative methods are described in Section 2.2. There, we state
some well known Krylov subspace methods which later algorithms are based
upon. In Chapter 3 functions of matrices are defined. Proficient readers might
skip these two chapters since they mostly contain basic concepts. However, we
have to include their contents to some extent since in later chapters we expand
on some of the methods and concepts introduced there and need to have some
details as a back-reference.

In Chapter 4 we introduce two categories of applications in which solving
(1.1) is needed. The first in Section 4.1 stems from lattice QCD and the second
in Section 4.2 from inverse problems in image deconvolution. We define the
two terms there and describe in detail how systems like (1.1) arise in these
particular applications. Later, we will use these applications for our numerical
tests.

In Chapters 5, 6, and 7 we introduce different approaches that can be used
to solve systems like (1.1). First, we focus on shifted methods in Chapter 5
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which can be applied to each right-hand side separately. In Section 5.1 we
describe shifted CG followed by the formulation of restarted shifted CG in
Section 5.2. Second, in Chapter 6 we present methods for solving families
of linear systems with multiple right-hand sides and most prominently block
methods. Section 6.1 introduces seed methods like the Single Seed Method and
Seed-CG. With incremental eigCG a sophisticated representative of deflation
methods is described in Section 6.2. A whole range of block methods—all
related to BlockCG—will be featured in Section 6.3. Lastly, Chapter 7 is
devoted to developing methods aiming exactly at (1.1) by handling shifts and
multiple right-hand sides at the same time. In Section 7.1 we display Lanczos-
type processes that we use to base block Krylov subspace methods on. Two
deflated block Krylov subspace methods that go by the names DSBlockCG
and BFDSCG are developed in the Sections 7.2 and 7.3, respectively. Finally,
another method called SBCGrQ for solving (1.1) is described in Section 7.4.

Since one of our goals is to compare different approaches for solving (1.1)
we decided to gather all of our numerical tests and results in one place. This
is done in Chapter 8. We describe our implementations and test settings in
Section 8.1 and give numerical results for the tests involving all the methods
presented in previous chapters in the Sections 8.2, 8.3, and 8.4.

Finally, Chapter 9 is used to draw conclusions and discuss potential future
work.

Parts of Chapter 2, 3 and 4 are based on or taken in part from the authors
Diploma thesis [Bir08]. Some parts of Chapter 7 related to the DSBlockCG
algorithm are meanwhile published in [BF14].
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1.2 Notation and Abbreviations
In the following tables the abbreviations, symbols, and notations used through-
out this thesis are explained.

Table 1.1: Abbreviations

rhs(s) right-hand side(s)
mvm(s) matrix-vector multiplication(s)
mvp(s) matrix-vector product(s)1

mbvm(s) matrix-block-vector multiplication(s)
hpd Hermitian positive definite
nnz number of non-zeros
ev eigenvector
ew eigenvalue (see [TB97])
smallest ev eigenvector belonging to the eigenvalue of smallest magnitude

Table 1.2: Miscellaneous notation

𝕂 Either of the fields of real or complex numbers, i.e. 𝕂 ∈ {ℂ,ℝ}.
ℝ+ Set of positive real numbers ℝ+ ∶= {𝑥 ∈ ℝ ∶ 𝑥 > 0}.
Π𝑘 Set of polynomials of degree ≤ 𝑘.
Π𝑘 Set of normalised polynomials of degree ≤ 𝑘, i.e. 𝑝 ∈ Π𝑘 and 𝑝(0) = 1.
ℛ𝑙/𝑚 Set of rational functions; numerator degree 𝑙 and denominator degree 𝑚.

𝛿𝑖𝑗 Kronecker delta 𝛿𝑖𝑗 ∶= {1, if 𝑖 = 𝑗 and
0, if 𝑖 ≠ 𝑗.

𝐴 ⊗ 𝐵 Kronecker product of 𝐴 = (𝑎𝑖,𝑗) ∈ ℂ𝑚×𝑛 and 𝐵 ∈ ℂ𝑝×𝑞 defined as

𝐴 ⊗ 𝐵 = [
𝑎1,1𝐵 ⋯ 𝑎1,𝑛𝐵

⋮ ⋮
𝑎𝑚,1𝐵 ⋯ 𝑎𝑚,𝑛𝐵

] .

𝑊 ⟂ The orthogonal complement of 𝑊 , 𝑊 being a subspace of 𝕂𝑛.
= In algorithms = will be used as an assignment operator.
𝜀mach Machine precision.

1We use mvm and mvp synonymously.
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Table 1.3: Notation related to matrices, vectors, and indices

𝐴 = [𝑎𝑖,𝑗] The matrix 𝐴 consists of the elements 𝑎𝑖,𝑗.
𝐴 = [𝑎1| … |𝑎𝑛] The matrix 𝐴 consists of the vectors 𝑎1, … , 𝑎𝑛 as columns.
𝘼 Matrices that are composed of elements that bear a matrix-

structure themselves, e.g. a block diagonal matrix would be writ-
ten as 𝘼 = diag (𝐴1, 𝐴2) where 𝐴1 and 𝐴2 are matrices.

𝐼 Identity matrix with (𝐼)𝑖𝑗 = 𝛿𝑖𝑗. If its dimension is not clear by
context we use an index 𝐼𝑛 ∈ ℂ𝑛×𝑛.

𝑆𝑈(3) Special unitary group {𝑈 ∈ ℂ3×3 ∶ 𝑈𝐻𝑈 = 𝐼3, det(𝑈) = 1}.
𝐴−𝐻 Short-hand notation 𝐴−𝐻 = (𝐴−1)𝐻 = (𝐴𝐻)−1.
𝐴2,∶ We use a colon to refer to slices of matrices, i.e. complete columns

or rows, here: the second row of matrix 𝐴.
vec(𝐴) The matrix 𝐴 = [𝑎1| … |𝑎𝑛] reshaped as a vector, i.e. vec(𝐴) =

[𝑎𝑇
1 | … |𝑎𝑇

𝑛 ]𝑇 .
𝑥(𝑖) Upper indices on vectors, matrices or scalars in round brackets

are iteration indices.
𝑒𝑖 The 𝑖-th unit vector with dimension given by context.
𝑝𝑖 For polynomials lower indices indicate iteration indices to pre-

vent confusion with the derivative.
𝑥𝑖,𝑗 Lower indices on vectors, matrices and scalars indicate entities

belonging to a right-hand side, a shift or elements of a matrix
or vector depending on context.

⟨𝑎, 𝑏⟩ Inner product on 𝕂𝑛 defined as ⟨𝑎, 𝑏⟩ ∶= 𝑏𝐻𝑎.
‖𝑥‖𝐴 𝐴-norm of the vector 𝑥, ‖𝑥‖𝐴 ∶= √⟨𝐴𝑥, 𝑥⟩.
‖𝐴‖ Operator norm of 𝐴, ‖𝐴‖ ∶= sup‖𝑥‖=1 ‖𝐴𝑥‖.
𝜅(𝐴) Condition number of 𝐴, 𝜅(𝐴) ∶= ‖𝐴‖‖𝐴−1‖. If 𝜅(𝐴) is large, 𝐴

is called ill-conditioned.
spec (𝐴) Spectrum of matrix 𝐴.
𝜌 (𝐴) Spectral radius of matrix 𝐴.
span {…} Space of the linear combinations of the vectors or matrices inside

the curly brackets.
colspan {…} Space of the linear combinations of the columns of the ma-

trix/matrices inside the curly brackets.
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1.3 Basic Definitions
Landau notation

As a measure for the approximation quality of a function as well as the time
complexity and memory requirements of algorithms we use the Landau nota-
tion which we define next.

Definition 1.1. Let 𝑅 ⊆ ℝ, 𝑎 ∈ ℝ with ∀𝜀 ∶ ∃𝑟 ∈ 𝑅 ∶ |𝑟 − 𝑎| < 𝜀, and
𝑓, 𝑔 ∶ 𝑅 → ℝ. We say 𝑓(𝑥) = 𝒪(𝑔(𝑥)) as 𝑥 → 𝑎, if and only if

∃𝑐, 𝜀 ∶ ∀𝑥 ∶ |𝑥 − 𝑎| < 𝜀 ⇒ |𝑓(𝑥)| ≤ 𝑐|𝑔(𝑥)|

and for 𝑓, 𝑔 ∶ 𝑅 → ℝ+ we say 𝑓(𝑥) = 𝒪(𝑔(𝑥)), if and only if

∃𝑐, 𝑥0 ∶ ∀𝑥 ≥ 𝑥0 ∶ 𝑓(𝑥) ≤ 𝑐𝑔(𝑥).

As a short-hand notation we often use 𝑓 = 𝒪(𝑔).

Block vectors

Solving systems like (1.1) for a matrix 𝐴 ∈ ℂ𝑛×𝑛 in an iterative manner in-
volves vectors 𝑣 ∈ ℂ𝑛. Some methods presented in Chapter 6 and Chapter 7,
however, group 𝑚 ≪ 𝑛 vectors as columns of a matrix 𝑉 ∈ ℂ𝑛×𝑚 and perform
operations with these. We call such a tall and skinny compound matrix 𝑉 a
block-vector.

Cost model for algorithm analysis

In the chapters 5, 6 and 7 we will analyse the computational cost of the al-
gorithms that are presented there. For this we will use a cost model that we
introduce here.

The methods presented perform different kinds of operations for solving
(1.1), for instance, matrix-vector multiplications (mvms) with the matrix 𝐴 or
vector additions. A common way to compare algorithms is to count the num-
ber of mvsm. In some cases, however, this can be quite a deceptive measure,
since the cost of other operations might not be negligible. Thus, we will com-
pare the algorithms not only using the number of mvms but also by measuring
their runtime. One of our goals will be to find some theoretical background to
explain the measured runtime differences of the methods.

We want to base our comparisons on counting the different kinds of opera-
tions and get a number—depending on some parameters—that is characteristic
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for the particular algorithm. The following two definitions introduce the foun-
dation of our cost model.

Definition 1.2. Let 𝑥, 𝑦 ∈ ℂ𝑛 and 𝛼 ∈ ℂ. We will call the following types of
operations vector operations (of size 𝑛):

𝑦 ← 𝛼𝑥 + 𝑦 (axpy)
𝑦 ← 𝛼𝑦 (scaling)
𝑦 ← 𝑥 (assigning)
𝑦 ↔ 𝑥 (swapping)
𝛼 ← 𝑦𝐻𝑥 (dot-product)

We treat all the vector operations appearing in Definition 1.2 as having the
same computational cost of 𝑛 floating point operations. This is reasonable
to assume—especially on modern hardware that supports fused multiply-add
floating point operations. When we discuss counting operations in methods
that involve a matrix 𝐴 ∈ ℂ𝑛×𝑛 we will implicitly only count vector operations
of size 𝑛.

Definition 1.3. Let 𝐴 ∈ 𝕂𝑛×𝑛, 𝑣 ∈ 𝕂𝑛, and 𝑉 ∈ 𝕂𝑛×𝑚. We define 𝒸𝐴
to be the cost of computing the matrix-vector product 𝐴𝑣 in terms of vector
operations. Further, 𝒸□

𝐴(𝑚) is the cost of computing the matrix-block-vector
product 𝐴𝑉 in terms of vector operations divided by 𝑚.

This means that computing 𝐴𝑣 has the computational cost of 𝑛𝒸𝐴 floating
point operations.

For block-vectors we assume in some cases that the cost of matrix-block-
vector products is about 𝑚𝑛𝒸𝐴 floating point operations, although we might
anticipate lower costs than that. Lower costs, i.e. 𝒸□

𝐴(𝑚) < 𝒸𝐴 and thus
𝑚𝑛𝒸□

𝐴(𝑚) < 𝑚𝑛𝒸𝐴, might be achieved since operations on block-vectors can
result in more cache-friendly memory access patterns and vectorisation de-
pending on the used hardware. We elaborate on this in more detail in the
discussion for those methods where block-vectors are relevant. Likewise, for
block-vector operations we will discuss the estimated computational cost in
the appropriate chapters.

The introduction of 𝒸𝐴 and 𝒸□
𝐴 allows us to sum the computational costs of

vector operations and matrix-vector products.

Definition 1.4. With ℴname we denote the cost of all vector operations and
matrix-vector products in units of vector operations to solve a linear system
using the particular method “name”. We call ℴname the number of vector(-
equivalent) operations or the number of operations for short.
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When discussing the presented algorithms in later chapters we will state
the number of operations depending on some parameters according to some
assumptions on the algorithm. We will assume that 𝑛 is much larger than any
other parameter for the algorithms. Hence, every operation that depends only
on such parameters much smaller than 𝑛 will be neglected. In a few places one
might need to break with this rule to obtain a more suitable cost model, e.g.
when 𝒪(𝑚3) operations are involved. We will point this out and discuss the
implications where it is needed. Lastly, we only count the operations in the
main loops of the algorithms and assume that the number of iteration steps is
large enough so that we can neglect the costs for initialisations.

Cost model example: Householder QR

As an example for the just introduced cost model and for later use we apply
our cost model to Algorithm 1.1. This algorithm computes the Householder
QR decomposition for tall skinny matrices and is a high-level description of
[GL96, Algorithm 5.2.1] and [GL96, Section 5.1.6].

Algorithm 1.1: Householder QR
Input : 𝐴 ∈ ℂ𝑛×𝑚 matrix with 𝑚 < 𝑛, modified during the algorithm

Output: QR decomposition 𝑄𝑅 = 𝐴 with unitary 𝑄 ∈ ℂ𝑛×𝑚 and upper triangu-
lar 𝑅 ∈ ℂ𝑚×𝑚

// compute factored form of the decomposition [GL96, Algorithm 5.2.1]
1 for 𝑘 = 1, 2, … , 𝑚 do
2 compute Householder vector 𝑣 and scalar 𝛽𝑘 from 𝐴𝑘∶𝑛,𝑘 // [GL96, Algorithm 5.1.1]
3 apply Householder reflection 𝐼 − 𝛽𝑘𝑣𝑣𝐻 to 𝐴𝑘∶𝑛,𝑘∶𝑚
4 if 𝑘 < 𝑛 then store 𝑣2∶𝑚−𝑘+1 in 𝐴𝑘+1∶𝑚,𝑘

// build the matrix 𝑄 [GL96, Section 5.1.6]
5 𝑄 = (𝐼𝑛)∶,1∶𝑚
6 for 𝑘 = 𝑚, 𝑚 − 1, … , 1 do // [GL96, Section 5.1.6]
7 get Householder vector 𝑣 from 𝐴𝑘+1∶𝑛,𝑘
8 apply Householder reflection 𝐼 − 𝛽𝑘𝑣𝑣𝐻 to 𝑄𝑘∶𝑛,𝑘∶𝑚

// obtain 𝑅
9 𝑅 can be obtained as the upper triangular part of 𝐴

The exact definition of the vector 𝑣 and the scalar 𝛽𝑘 in the lines 2 and 7 is
not relevant for our intended analysis and we refer to [GL96, Algorithm 5.1.1]
for details. The only thing we need to know here about [GL96, Algorithm
5.1.1] is that it involves two vector operations—an inner product and a scaling
of the resulting vector 𝑣. The following proposition states the number of vector
operations in Algorithm 1.1. Note that we assume 𝑚 ≪ 𝑛 such that we can
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assume vector operations of length 𝑛 to cost the same as vector operations of
length 𝑛 − 𝑚.

Proposition 1.5. Let 𝐴 ∈ ℂ𝑛×𝑚. The total number of vector operations for
computing the Householder QR decomposition 𝑄𝑅 = 𝐴 with Algorithm 1.1 is

ℴhhqr = 2𝑚2 + 4𝑚. (1.2)

Proof. The cost for the loop in line 1 is
𝑚

∑
𝑘=1

(2 + 2(𝑚 − 𝑘) + 1) = 𝑚2 + 2𝑚

which consists of
• 2 vector operations for line 2,
• computing 𝑣𝐻𝑥 and an axpy afterwards for 𝑚 − 𝑘 vectors in line 3 and
• storing 𝑣 in 𝐴 in line 4.

Afterwards, the loop in line 6 computes the matrix 𝑄 in a backwards loop as
explained in [GL96, Section 5.1.6] and contributes

𝑚
∑
𝑖=𝑘

(1 + 2𝑘) = 𝑚2 + 2𝑚

vector operations. This is achieved by exploiting that 𝐼 − 𝛽𝑘𝑣𝑣𝐻 in step 𝑘 has
a block structure [ 𝐼𝑘−1,𝑘−1 0

0 �̃�] where �̃� is a full 𝑛 − 𝑘 + 1 × 𝑚 − 𝑘 + 1 matrix.
Therefore, the loop consists of

• building the vector 𝑣,
• 𝑘 dot-products and 𝑘 axpy.

Overall we end up with (1.2).

In the subsections 7.1.4 and 7.3.5 we use the column-pivoting Householder
QR decomposition from [GL96, Algorithm 5.4.1] which yields a factorisation
𝑄𝑅 = 𝐴𝑃 . We do not want to go into too much detail by stating the algorithm
here and only describe the additions it makes to Algorithm 1.1 and summarise
its number of vector operations using our cost model. The idea of the column-
pivoting Householder QR decomposition is to permute the remaining columns
of 𝐴 so that the column of largest norm is the next one to compute the House-
holder vector from. The naïve approach would require to compute the norms
of all remaining columns in every step of the loop in line 1. But in [GL96,
Section 5.4.1] an update method for the norms is presented which lowers the
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additional costs of the column-pivoting. So the two additions that are relevant
to the number of vector operations are a computation of all column-norms of
𝐴 before the loop in line 1 and swapping two columns of 𝐴 in every step of
the loop. This yields the following proposition.

Proposition 1.6. Let 𝐴 ∈ ℂ𝑛×𝑚. The total number of vector operations for
computing the column pivoting Householder QR decomposition with [GL96,
Algorithm 5.4.1] is

ℴhhcpqr = 2𝑚2 + 6𝑚.



2 Iterative Methods
This section deals with the problem of solving linear systems of the kind

𝐴𝑥 = 𝑏, 𝐴 ∈ ℂ𝑛×𝑛, 𝑥, 𝑏 ∈ ℂ𝑛, (2.1)

where 𝐴 is non-singular. We will introduce the concept of iterative methods
briefly. In Section 2.1 we describe basic iterative methods relying on a matrix
splitting and resulting in so-called splitting methods. Krylov subspace methods
will be covered in Section 2.2 in more detail.

For small 𝑛 a wide range of methods for solving (2.1) exists. Most of them
boil down to computing a matrix decomposition of 𝐴 into easily invertible
factors. Methods of this kind are called direct methods. Computing the 𝐿𝑈 -
decomposition of 𝐴 for example allows to solve 𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏 in two steps,
namely 𝐿𝑦 = 𝑏 and 𝑈𝑥 = 𝑦. Since 𝐿 is lower triangular and 𝑈 is upper
triangular, solving these two systems is straightforward. More details and
methods can be found in [GL96], [Saa03] and [Gre97].

In case of considerably large 𝑛 on the other hand two problems arise. First,
computing dense matrix decompositions has a computational complexity of
order 𝒪(𝑛3) except for special cases. This prevents the naïve matrix decompo-
sition approach from being feasible in this case. Second, in many applications
the arising matrices have the special property of being sparse. This means
that most entries are plain zeros and the number of non-zeros (nnz) is small in
relation to all 𝑛2 entries. A decomposition of such a sparse matrix is not guar-
anteed to be sparse. On the contrary, special care is required to prevent losing
sparseness completely or create too many non-zeros, which would result in a
huge increase in storage requirements and computational time. Sparse direct
solvers include methods involving a sparse 𝐿𝑈 -decomposition, hence eluding
some of the drawbacks. In these solvers some effort has to be put into comput-
ing a reordering resulting in a favourable sparsity pattern of the factors 𝐿 and
𝑈 . An overview of methods can be found in [Duf98] and software capable of
solving large sparse systems involves UMFPACK [DD95], MUMPS [Ame+99]
and SuperLU [Dem+99]. As an alternative iterative methods come into play.

In general, iterative methods build a sequence 𝑥(0), 𝑥(1), … , 𝑥(𝑘) ∈ ℂ𝑛 of
vectors approximating the solution 𝑥⋆ = 𝐴−1𝑏 of equation (2.1). The starting

11
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vector 𝑥(0) is an initial guess that can be chosen arbitrarily, be given by context
or simply set to zero. Two values that are of interest in the iteration processes
are the error 𝑒(𝑘) and the residual 𝑟(𝑘) defined by

𝑟(𝑘) ∶= 𝑏 − 𝐴𝑥(𝑘)

𝑒(𝑘) ∶= 𝑥⋆ − 𝑥(𝑘)

for which
𝑟(𝑘) = 𝐴𝑒(𝑘) (2.2)

holds.
The aim of iterative methods is to reduce the error as the iteration proceeds.

In some methods the error converges to zero whilst in other methods at least
in theory with exact arithmetic at some iteration step the error could be ex-
actly zero. But because of round off errors even for the latter methods finding
the exact solution 𝑥⋆ is next to impossible or at least impractical in practical
computations. Note that round off errors are not unique to iterative methods
and direct methods are also affected, albeit in different ways. In many applica-
tions, however, a certain accuracy is sufficient, and reducing the error further
in iterative methods is a waste of effort. Therefore, at some point of the itera-
tion we want to stop with an approximate solution vector 𝑥(𝑘) approximating
𝑥⋆ well enough for our application. The error 𝑒(𝑘), however, is unknown.

One cheap way to remedy the unknown error 𝑒(𝑘) is to monitor the residuals
𝑟(𝑘). The relation (2.2) then gives a hint that ‖𝑒(𝑘)‖ ≤ ‖𝐴−1‖‖𝑟(𝑘)‖. Thus, for
reasonably well conditioned matrices 𝐴 the error cannot be too far off and the
residuals can be used to stop the iteration. Typically, the iteration is stopped
as soon as

𝜔1 ∶= ‖𝑏 − 𝐴𝑥(𝑘)‖
‖𝑏‖ < 𝛿 (2.3)

for some given 𝛿, and we call ̂𝑥 = 𝑥(𝑘) the approximate solution of (2.1). In
some circumstances the criterion

𝜔2 ∶= ‖𝑏 − 𝐴𝑥(𝑘)‖
‖𝐴‖‖𝑥(𝑘)‖ + ‖𝑏‖ < 𝛿

can be a better choice, since in [ADR92] and [ST05] it is pointed out that the
criterion of equation (2.3) can be interpreted as assuming all backward error
only resides in the right-hand sides. The second criterion takes perturbations
in 𝐴 into account, which in (2.3) could lead to rejecting good approximations
𝑥(𝑘) that have a large residual 𝑟(𝑘). We note that 𝜔2 ≤ 𝜔1.

Alternatively, there are error estimation methods that can compute bounds
for the error [GM97; ST05]. These methods need some additional computa-
tion, which means that whilst having the benefit of better stopping criteria
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the algorithm gets more complicated and takes more time than without error
estimation. The latter can partly be remedied by either computing error esti-
mates only in a subset of the iteration steps or to settle for a lower accuracy
on the error bounds if the estimation method allows for this kind of tuning
[Fro+13b].

2.1 Splitting Methods
An important class of methods are the so-called splitting methods. Methods of
this kind rely on the matrix splitting

𝐴 = 𝑀 − 𝑁
and define the iterative scheme as

𝑥(𝑘+1) = 𝑀−1𝑁𝑥(𝑘) + 𝑀−1𝑏. (2.4)

In order for such a method to be feasible, the systems 𝑀𝑦 = 𝑧 have to be easy
to solve. For defining different kinds of splittings it is useful to write the matrix
𝐴 as 𝐴 = 𝐿 + 𝐷 + 𝑈 . Here, 𝐷 is the diagonal of 𝐴, 𝐿 is the lower triangular
part of 𝐴 and 𝑈 the upper triangular part. The most common methods based
on this splitting scheme are displayed in Table 2.1.

Table 2.1: Common splitting methods

splitting name of the resulting method

𝑀 = 𝐷 Jacobi iteration
𝑀 = 𝐷 + 𝐿 Gauss-Seidel iteration
𝑀 = 1𝜔𝐷 + 𝐿 Successive Over-Relaxation (SOR)
𝑀 = 𝐼 Richardson iteration

Now that we have the iterative scheme (2.4) the next question arises natu-
rally: Will an iteration based on (2.4) find the solution 𝑥⋆ eventually? The
following theorem answers this question concerning the convergence of splitting
methods.
Theorem 2.1. [GL96, Theorem 10.1.1] Let 𝑏 ∈ ℂ𝑛 and 𝐴 = 𝑀 − 𝑁 ∈ ℂ𝑛×𝑛

non-singular. If 𝑀 is non-singular and 𝜌 (𝑀−1𝑁) satisfies the inequality
𝜌 (𝑀−1𝑁) < 1, then the iterates of (2.4) converge to 𝑥⋆ = 𝐴−1𝑏 for any
starting vector 𝑥(0).
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Proof. The error 𝑒(𝑘+1) = 𝑥(𝑘+1) − 𝑥⋆ in step 𝑘 + 1 satisfies

𝑀𝑒(𝑘+1) = 𝑁𝑒(𝑘) ⇔ 𝑒(𝑘+1) = 𝑀−1𝑁𝑒(𝑘)

⇔ 𝑒(𝑘+1) = (𝑀−1𝑁)𝑘+1𝑒(0).

Then

lim
𝑘→∞

𝑥(𝑘) = 𝑥⋆ for every vector 𝑥(0) ⇔ lim
𝑘→∞

(𝑀−1𝑁)𝑘 = 0
⇔ 𝜌 (𝑀−1𝑁) < 1.

Herein, the equivalence lim𝑘→∞ 𝐴𝑘 = 0 ⇔ 𝜌 (𝐴) < 1 holds for any matrix
𝐴 ∈ ℂ𝑛×𝑛 and can be proven in the following way.

⇒ Suppose lim𝑘→∞(𝐴)𝑘 = 0. For an arbitrary eigenvalue 𝜆 of 𝐴 with an
associated eigenvector 𝑣 we have 𝜆𝑘𝑣 = 𝐴𝑘𝑣 → 0 for 𝑘 → 0, thus |𝜆| < 1.

⇐ Now suppose 𝜌 (𝐴) < 1. Since for any 𝜀 > 0 a matrix norm ‖⋅‖ with the
property

𝜌 (𝐴) ≤ ‖𝐴‖ ≤ 𝜌 (𝐴) + 𝜀
exists [Gre97, Theorem 1.3.3], there is a matrix norm ‖⋅‖ with ‖𝐴‖ < 1.
Now we have ∥𝐴𝑘∥ ≤ ‖𝐴‖𝑘 → 0 for 𝑘 → 0 yielding lim𝑘→∞ 𝐴𝑘 = 0.

More detailed information on iterative methods and splitting methods in par-
ticular can be found in [GL96, §10.1.2ff.].

2.2 Krylov Subspace Methods
As seen in the beginning of this chapter, iterative methods are distinctive in the
way they select the next iterate 𝑥𝑘. Krylov subspace methods in particular pick
the next vector out of a special subspace. The next definition and theorems
provide the needed terminology.

Definition 2.2. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝑟 ∈ ℂ𝑛. The Krylov subspace of dimension
𝑘 generated by the matrix 𝐴 and vector 𝑟 is defined as

𝒦𝑘(𝐴, 𝑟) ∶= span {𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑘−1𝑟}
= {𝑥 ∈ ℂ𝑛 ∶ 𝑥 = 𝑝𝑘−1(𝐴)𝑟, 𝑝𝑘−1 ∈ Π𝑘−1} . (2.5)

An immediate consequence of this definition is that the sequence of Krylov
subspaces 𝒦1(𝐴, 𝑟), … , 𝒦𝑘(𝐴, 𝑟) is nested and cannot grow arbitrarily. The
next lemma substantiates this [Saa03].
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Lemma 2.3. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝑟 ∈ ℂ𝑛. There exists ℊ ≤ 𝑛 such that
1. dim(𝒦𝑚(𝐴, 𝑟)) = 𝑚 for 𝑚 = 1, 2, … , ℊ
2. 𝒦ℊ(𝐴, 𝑟) = 𝒦ℊ+1(𝐴, 𝑟) = ⋯ = 𝒦𝑘(𝐴, 𝑟) for every 𝑘 ≥ ℊ

The number ℊ ∶= ℊ(𝐴, 𝑟) is called the grade of 𝐴 with respect to 𝑟.

Proof. Definition 2.2 directly implies 𝒦𝑚(𝐴, 𝑟) ⊆ 𝒦𝑚+1(𝐴, 𝑟) and

dim(𝒦𝑚+1(𝐴, 𝑟))
⎧{
⎨{⎩

≤ dim(𝒦𝑚(𝐴, 𝑟)) + 1,
≥ dim(𝒦𝑚(𝐴, 𝑟)),
≤ 𝑛.

Thus, there is a smallest ℊ ≤ 𝑛 with the property

𝒦ℊ(𝐴, 𝑟) = 𝒦ℊ+1(𝐴, 𝑟).

The immediate result is that 𝐴ℊ𝑟 is already contained in 𝒦ℊ(𝐴, 𝑟). Therefore,
scalars 𝛼𝑖 ∈ ℂ exist with

0 = 𝐴ℊ𝑟 −
ℊ−1

∑
𝑖=0

𝛼𝑖𝐴𝑖𝑟 = 𝑝(𝐴)𝑟

where 𝑝(𝑡) = 𝑡ℊ − ∑ℊ−1
𝑖=0 𝛼𝑖𝑡𝑖. For arbitrary 𝑘 ≥ ℊ , let 𝑡𝑘 = 𝑝1(𝑡)𝑝(𝑡) + 𝑝2(𝑡)

and deg(𝑝2(𝑡)) < ℊ , then

𝐴𝑘𝑟 = 𝑝1(𝐴) 𝑝(𝐴)𝑟⏟
=0

+ 𝑝2(𝐴)𝑟⏟
∈𝒦ℊ (𝐴,𝑟)

.

Hence, 𝒦𝑘(𝐴, 𝑟) = 𝒦𝑘−1(𝐴, 𝑟) which proves the second property.

The following theorem provides the theoretical background why using Krylov
subspaces for solving the system (2.1) is justified. It states that in exact com-
putation the solution of (2.1) is contained in a Krylov subspace of dimension
less than 𝑛. Afterwards we can define what we will refer to as a Krylov sub-
space method.

Theorem 2.4. Let 𝐴 ∈ ℂ𝑛×𝑛, 𝑥(0) ∈ ℂ𝑛, 𝑟 = 𝑏 − 𝐴𝑥(0) and ℊ be as in
Lemma 2.3. If 𝐴 is non-singular then

𝑥⋆ ∈ 𝑥(0) + 𝒦ℊ(𝐴, 𝑟) and (2.6)
𝑥⋆ ∉ 𝑥(0) + 𝒦ℊ−1(𝐴, 𝑟), (2.7)

where 𝑥⋆ = 𝐴−1𝑏 denotes the solution to 𝐴𝑥 = 𝑏.
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Proof. Let 𝑝(𝑡) = ∑ℊ
𝑖=0 𝛼𝑖𝑡𝑖 be a polynomial of smallest degree for which

𝑝(𝐴)𝑟 = 0 holds, i.e.

0 =
ℊ

∑
𝑖=0

𝛼𝑖𝐴𝑖𝑟. (2.8)

Its existence is implied by the proof of Lemma 2.3. First we show that 𝛼0 ≠ 0.
Since 𝐴 is non-singular, assuming 𝛼0 = 0 in (2.8) implies

0 = 𝑞(𝐴)𝑟 =
ℊ−1

∑
𝑖=0

𝛼𝑖+1𝐴𝑖𝑟

which contradicts the minimality of ℊ . Now we can use equation (2.8) to obtain

𝐴−1𝑟 = − 1
𝛼0

(
ℊ

∑
𝑖=1

𝛼𝑖𝐴𝑖−1𝑟) ∈ 𝒦ℊ(𝐴, 𝑟).

This results in

𝑥⋆ = 𝑥(0) + (𝑥⋆ − 𝑥(0))
= 𝑥(0) + 𝐴−1𝑟
∈ 𝑥(0) + 𝒦ℊ(𝐴, 𝑟)

and proves property (2.6) as well as (2.7) considering the minimality of ℊ .

Definition 2.5. A Krylov subspace method for solving 𝐴𝑥 = 𝑏 is an iterative
method that generates iterates 𝑥(𝑘) which fulfil

𝑥(𝑘) ∈ 𝑥(0) + 𝒦𝑘(𝐴, 𝑟(0)),

where 𝑟(0) = 𝑏 − 𝐴𝑥(0); and 𝑥(0) is the starting vector.

Therefore, every Krylov subspace method builds up polynomials 𝑝𝑘−1(𝑡) ∈
Π𝑘−1 and 𝑞𝑘(𝑡) = 1 − 𝑡𝑝(𝑡) ∈ Π𝑘 as the iteration proceeds. These polynomials
satisfy

𝑥(𝑘) = 𝑥(0) + 𝑝𝑘−1(𝐴)𝑟(0) and
𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘)

= 𝑏 − 𝐴𝑥(0) − 𝐴𝑝𝑘−1(𝐴)𝑟(0)

= (𝐼 − 𝐴𝑝𝑘−1(𝐴))𝑟(0)

= 𝑞𝑘(𝐴)𝑟(0).
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Furthermore, every sequence 𝑞𝑘 ∈ Π𝑘, deg(𝑞𝑘) = 𝑘, defines a Krylov subspace
method as does each 𝑝𝑘−1 ∈ Π𝑘−1, deg(𝑝𝑘−1) = 𝑘 − 1, according to 𝑞𝑘(𝑡) =
1 − 𝑡𝑝𝑘−1(𝑡). Note that the polynomials 𝑝𝑘−1 and 𝑞𝑘 depend on the matrix
𝐴 and the initial residual 𝑟(0) = 𝑏 − 𝐴𝑥(0). From the vast number of possible
Krylov subspace methods some inhere desirable properties. For example, some
methods minimise the error or residual in some norm or have short recurrences.
Before we describe a few Krylov subspace methods in detail we introduce three
procedures to generate bases for Krylov subspaces.

2.2.1 The Arnoldi Process

It is possible, albeit not advisable, to base Krylov subspace methods on the
basis {𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑘−1𝑟}. This basis has some disadvantages. For instance
do the vectors 𝐴𝑘𝑟 for 𝑘 → ∞ tend to point in the direction of the eigenvector
belonging to the largest eigenvalue in modulus. Moreover, depending on the
operator 𝐴 the vectors in this basis vary in norm significantly. Consequently,
while spanning the space (2.5) an alternative set of basis vectors is computed
alongside a matrix describing the change of basis.

The Arnoldi process presented in Algorithm 2.1 builds an orthonormal basis
for the Krylov subspace 𝒦𝑚(𝐴, 𝑣(1)) by applying the modified Gram-Schmidt
process [GL96].

Algorithm 2.1: Arnoldi Process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑣(1) ∈ ℂ𝑛 starting vector
𝑚 number of basis vectors to build

Output: {𝑣(1), 𝑣(2), … , 𝑣(𝑚)} orthonormal basis of 𝒦𝑚(𝐴, 𝑣(1))

1 𝛽 = ∥𝑣(1)∥2
2 𝑣(1) = 𝑣(1)/𝛽
3 for 𝑘 = 1, 2, … , 𝑚 do
4 𝑣 = 𝐴𝑣(𝑘)

5 for 𝑖 = 1, 2, … , 𝑘 do // modified Gram-Schmidt
6 ℎ𝑖,𝑘 = ⟨𝑣, 𝑣(𝑖)⟩
7 𝑣 = 𝑣 − ℎ𝑖,𝑘𝑣(𝑖)

8 ℎ𝑘+1,𝑘 = ‖𝑣‖2
9 𝑣(𝑘+1) = 𝑣/ℎ𝑘+1,𝑘

The vectors 𝑣(1), … , 𝑣(𝑘) generated by Algorithm 2.1 form an 𝑛-by-𝑘 matrix
𝑉 (𝑘) = [𝑣(1)| … |𝑣(𝑘)] with orthonormal columns and the scalars ℎ𝑖𝑗 form a
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𝑘-by-𝑘 upper Hessenberg matrix

𝐻 (𝑘) = [
ℎ1,1 ℎ1,2 ⋯ ℎ1,𝑘
ℎ2,1 ℎ2,2 ⋱ ℎ2,𝑘

⋱ ⋱ ⋮
ℎ𝑘,𝑘−1 ℎ𝑘,𝑘

] .

The resulting matrices of the Arnoldi process satisfy the Arnoldi relation
𝐴𝑉 (𝑘) = 𝑉 (𝑘)𝐻(𝑘) + ℎ𝑘+1,𝑘𝑣(𝑘+1)𝑒𝐻

𝑘 = 𝑉 (𝑘+1)𝐻 (𝑘+1,𝑘). (2.9)

The vector 𝑒𝑘 is the 𝑘-th unit 𝑘-vector and 𝐻 (𝑘+1,𝑘) denotes the matrix whose
top 𝑘 rows are those of the matrix 𝐻(𝑘) and the last row consists of zeros
except for the last entry, which is ℎ𝑘+1,𝑘, i.e.

𝐻(𝑘+1,𝑘) = ⎡⎢
⎣

ℎ1,1 ℎ1,2 ⋯ ℎ1,𝑘
ℎ2,1 ℎ2,2 ⋱ ℎ2,𝑘

⋱ ⋱ ⋮
ℎ𝑘,𝑘−1 ℎ𝑘,𝑘

ℎ𝑘+1,𝑘

⎤⎥
⎦

.

A discussion of a potential breakdown that happens when the vector 𝑣(𝑘)

vanishes at a step 𝑘 < 𝑚 ≤ 𝑛 can be found in [Saa03, Chapter 6].
We will need the following definition on several occasions.

Definition 2.6. Let 𝑉 (𝑘) and 𝐻 (𝑘) be the matrices generated by the Arnoldi
process for the matrix 𝐴 after 𝑘 steps. Further, let 𝛾 be an eigenvalue of 𝐻 (𝑘)

and 𝑦 an eigenvector belonging to 𝛾. Then 𝛾 is called a Ritz-value, 𝑉 (𝑘)𝑦 is
called a Ritz-vector and we call (𝛾, 𝑉 (𝑘)𝑦) a Ritz-pair of 𝐴 w.r.t. 𝑉 (𝑘).

2.2.2 The Lanczos Process

The following theorem reveals that if the matrix 𝐴 is Hermitian then this prop-
erty carries over to 𝐻 (𝑘). Making use of this property allows for a simplification
of the Arnoldi process of Algorithm 2.1.
Theorem 2.7. [Saa03, Theorem 6.2] Assume that the Arnoldi process of Al-
gorithm 2.1 is applied to a Hermitian matrix 𝐴. Then the coefficients ℎ𝑖,𝑗
generated by the algorithm are such that

ℎ𝑖,𝑗 = 0, for |𝑖 − 𝑗| > 1,
ℎ𝑗,𝑗+1 = ℎ𝑗+1,𝑗, for 𝑗 = 1, 2, … , 𝑛. (2.10)

Proof. From equation (2.9)
(𝑉 (𝑘))𝐻𝐴𝑉 (𝑘) = (𝑉 (𝑘))𝐻𝑉 (𝑘+1)𝐻 (𝑘+1,𝑘)

= [ 0
𝐼𝑘 ⋮

0
] 𝐻 (𝑘+1,𝑘)

= 𝐻 (𝑘)
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can be obtained. Thus, if 𝐴 is Hermitian so is 𝐻(𝑘). Combining 𝐻 (𝑘) = (𝐻 (𝑘))𝐻

with the fact that 𝐻 (𝑘) is upper Hessenberg thus implies that 𝐻 (𝑘) is tridiagonal
and therefore (2.10) holds.

The Arnoldi process for Hermitian 𝐴 goes under the name Lanczos process
and is given in Algorithm 2.2.

Algorithm 2.2: Lanczos Process
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑣(1) ∈ ℂ𝑛 starting vector
𝑚 number of basis vectors to build

Output: {𝑣(1), 𝑣(2), … , 𝑣(𝑚)} orthonormal basis of 𝒦𝑚(𝐴, 𝑣(1))

1 𝛽(0) = ∥𝑣(1)∥2
2 𝑣(1) = 𝑣(1)/𝛽(0)

3 𝑣(0) = 0
4 for 𝑘 = 1, 2, … , 𝑚 do
5 𝑣 = 𝐴𝑣(𝑘) − 𝛽(𝑘−1)𝑣(𝑘−1)

6 𝛼(𝑘) = ⟨𝑣, 𝑣(𝑘)⟩
7 𝑣 = 𝑣 − 𝛼(𝑘)𝑣(𝑘)

8 𝛽(𝑘) = ‖𝑣‖2
9 𝑣(𝑘+1) = 𝑣/𝛽(𝑘)

Algorithm 2.2 does not need all previous vectors 𝑣(1), … , 𝑣(𝑘−1) to compute
𝑣(𝑘). This is a substantial improvement over the Arnoldi process—both in
computational time and in storage requirements. The matrices of the Lanczos
process in Algorithm 2.2 fulfil the Lanczos relation

𝐴𝑉 (𝑘) = 𝑉 (𝑘)𝑇 (𝑘) + 𝛽(𝑘)𝑣(𝑘+1)(𝑒𝑘)𝐻 = 𝑉 (𝑘+1)𝑇 (𝑘+1,𝑘) (2.11)

where

𝑇 (𝑘) = ⎡
⎢
⎣

𝛼(1) 𝛽(1)

𝛽(1) 𝛼(2) 𝛽(2)

𝛽(2) ⋱ ⋱
⋱ ⋱ 𝛽(𝑘−1)

𝛽(𝑘−1) 𝛼(𝑘)

⎤
⎥
⎦

and 𝑇 (𝑘+1,𝑘) = [ 𝑇 (𝑘)
0⋯0 𝛽(𝑘) ] .

As for the Arnoldi process we refer to [Saa03] for a discussion of potential
breakdowns.
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2.2.3 The Two-Sided Lanczos Process

It is possible to transport the idea of having short recurrences like in the
Lanczos process back to the non-Hermitian case. This comes at the expense
of building two bi-orthogonal bases instead of one orthogonal basis, though.
The resulting process using bi-orthogonalisation is called the two-sided Lanczos
process and is displayed in Algorithm 2.3.

Algorithm 2.3: Two-Sided Lanczos Process
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑣(1) ∈ ℂ𝑛, 𝑤(1) ∈ ℂ𝑛 starting vectors
𝑚 number of basis vectors to build

Output: 𝑣(𝑖), 𝑤(𝑖) for 1 ≤ 𝑖 ≤ 𝑚 bi-orthogonal bases of the Krylov subspaces
𝒦𝑚(𝐴, 𝑣(1)) and 𝒦𝑚(𝐴𝐻, 𝑤(1))

1 𝑣(0) = 𝑤(0) = 0, 𝛽(0) = 𝛾(0) = 0
2 𝑣(1) = 𝑣(1)/ ∥𝑣(1)∥, 𝑤(1) = 𝑤(1)/ ∥𝑤(1)∥
3 for 𝑘 = 1, 2, … , 𝑚 do
4 𝑣 = 𝐴𝑣(𝑘)

5 𝑤 = 𝐴𝐻𝑤(𝑘)

6 𝛼(𝑘) = ⟨𝑣, 𝑤(𝑘)⟩
7 𝑣 = 𝑣 − 𝛼(𝑘)𝑣(𝑘) − 𝛽(𝑘−1)𝑣(𝑘−1)

8 𝑤 = 𝑤 − ̄𝛼(𝑘)𝑤(𝑘) − 𝛾(𝑘−1)𝑤(𝑘−1)

9 𝛾(𝑘) = ‖𝑣‖2
10 𝑣(𝑘+1) = 𝑣/𝛾(𝑘)

11 𝛽(𝑘) = ⟨𝑣(𝑘+1), 𝑤⟩
12 𝑤(𝑘+1) = 𝑤/ ̄𝛽(𝑘)

In Algorithm 2.3 we chose to normalise the vector 𝑣(𝑖) and to scale 𝑤(𝑖), since
we need to guarantee

⟨𝑣(𝑖), 𝑤(𝑖)⟩ = 1. (2.12)

Other scalings of 𝑣(𝑖) and 𝑤(𝑖) in the algorithm are possible as long as (2.12)
holds. The vectors and scalars computed by the two-sided Lanczos process
satisfy a similar relation as in the Hermitian case. Written in matrix form the
relations

𝐴𝑉 (𝑘) = 𝑉 (𝑘)𝑇 (𝑘) + 𝛾(𝑘)𝑣(𝑘+1)(𝑒𝑘)𝐻 = 𝑉 (𝑘+1)𝑇 (𝑘+1,𝑘)

𝐴𝐻𝑊 (𝑘) = 𝑊 (𝑘)(𝑇 (𝑘))𝐻 + ̄𝛽(𝑘)𝑤(𝑘+1)(𝑒𝑘)𝐻 = 𝑊 (𝑘+1) ̂𝑇 (𝑘+1,𝑘) (2.13)
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hold with

𝑉 (𝑘) = [𝑣(1)| … |𝑣(𝑘)], 𝑊 (𝑘) = [𝑤(1)| … |𝑤(𝑘)],

𝑇 (𝑘) = ⎡
⎢
⎣

𝛼(1) 𝛽(1)

𝛾(1) 𝛼(2) 𝛽(2)

𝛾(2) ⋱ ⋱
⋱ ⋱ 𝛽(𝑘−1)

𝛾(𝑘−1) 𝛼(𝑘)

⎤
⎥
⎦

,

𝑇 (𝑘+1,𝑘) = [ 𝑇 (𝑘)
0⋯0 𝛾(𝑘) ] and ̂𝑇 (𝑘+1,𝑘) = [ (𝑇 (𝑘))𝐻

0⋯0 ̄𝛽(𝑘) ] .

A discussion of potential breakdowns can be found in [Saa03, Chapter 7].

2.2.4 Conjugate Gradients

The Arnoldi and Lanczos processes pave the way for introducing several Krylov
subspace methods. The generated iterates of Krylov subspace methods are
vectors from the affine subspace 𝑥(0) + 𝒦𝑘(𝐴, 𝑟(0)). Using the basis vectors
𝑉 (𝑘) = [𝑣(1)| … |𝑣(𝑘)] created by the Arnoldi or Lanczos process we can write
the iterates as

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)𝑦(𝑘) (2.14)
with 𝑦(𝑘) ∈ ℂ𝑘. This implicitly builds the polynomials mentioned above and
therefore the choice of 𝑦(𝑘) defines the Krylov subspace method. In this and the
following two subsections, three Krylov subspace methods—namely Conjugate
Gradients, GMRES and QMR—in their basic version are introduced and some
of their properties are discussed. More details and other Krylov subspace
method can be found in [Gre97] and [Saa03]. The remainder of this chapter is
mostly based on these two books.

Let 𝑏 ∈ ℂ𝑛 and 𝐴 ∈ ℂ𝑛×𝑛 Hermitian positive definite. The method of
Conjugate Gradients (CG) proposed in [HS52] can solve 𝐴𝑥 = 𝑏 having the
handy property of short recurrences. The CG method can be derived as a
Krylov subspace method by imposing the Ritz-Galerkin condition

𝑟(𝑘) ⟂ 𝒦𝑘(𝐴, 𝑟(0)), (2.15)

i.e. (𝑉 (𝑘))𝐻𝐴𝑒(𝑘) = (𝑉 (𝑘))𝐻𝑟(𝑘) = 0, which implies a minimisation of the 𝐴-
norm of the error 𝑒(𝑘) = 𝑒(0)−𝑉 (𝑘)𝑦(𝑘) (cf. [SW93, Theorem 14.2.4]). Therefore,
𝑦(𝑘) satisfies

(𝑉 (𝑘))𝐻(𝑟(0) − 𝐴𝑉 (𝑘)𝑦(𝑘)) = ∥𝑟(0)∥
2

𝑒1 − 𝑇 (𝑘)𝑦(𝑘) = 0,

where 𝑒1 is the first unit 𝑘-vector and 𝑇 (𝑘) ∈ ℝ𝑘×𝑘 is defined in equation (2.11).
The task now is to find a 𝑦(𝑘) that solves this equation in an efficient way. We



22 2. Iterative Methods

will present most of the technical details of the derivation of the CG method,
because some of the methods in the chapters 5, 6 and 7 are based on CG and
expand the algorithm in some way.

Since 𝑇 (𝑘) = (𝑉 (𝑘))𝐻𝐴𝑉 (𝑘), the matrix 𝑇 (𝑘) is positive definite and the root-
free Cholesky decomposition of 𝑇 (𝑘) exists. Then 𝑇 (𝑘) can be written as a
product

𝑇 (𝑘) = 𝐿(𝑘)𝐷(𝑘)(𝐿(𝑘))𝐻,
where 𝐿(𝑘) is lower bidiagonal and 𝐷(𝑘) = diag (𝑑(1), … , 𝑑(𝑘)). In order to com-
pute iterates 𝑥(𝑘) without having to save the whole matrix 𝑉 (𝑘), an auxiliary
matrix

𝑃 (𝑘) ∶= 𝑉 (𝑘)(𝐿(𝑘))−𝐻

is needed. The search direction vectors building up 𝑃 (𝑘) = [𝑝(0)|𝑝(1)| … |𝑝(𝑘−1)]
are 𝐴-orthogonal and can be updated by

𝑝(𝑘) = 𝑣(𝑘) − ̄̃𝜈(𝑘−1)𝑝(𝑘−1)

where ̃𝜈(𝑘−1) = (𝐿(𝑘))𝑘,𝑘−1 denotes the entry of 𝐿(𝑘) at the position (𝑘, 𝑘 − 1).
Now, the iterate 𝑥(𝑘) can be represented as an update of 𝑥(𝑘−1) using

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥
2

𝑒1

= 𝑥(0) + 𝑃 (𝑘)(𝐷(𝑘))−1(𝐿(𝑘))−1 ∥𝑟(0)∥
2

𝑒1

= 𝑥(0) + 𝑃 (𝑘−1)(𝐷(𝑘−1))−1(𝐿(𝑘−1))−1 ∥𝑟(0)∥
2

𝑒1 + ̃𝜇(𝑘−1)𝑝(𝑘−1)

= 𝑥(𝑘−1) + ̃𝜇(𝑘−1)𝑝(𝑘−1),

where ̃𝜇(𝑘−1) = (𝑑(𝑘))−1 ∥𝑟(0)∥
2

((𝐿(𝑘))−1)𝑘,1. Having the update formulation for
𝑥(𝑘), the according one for 𝑟(𝑘) is easily obtained as

𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘)

= 𝑏 − 𝐴𝑥(𝑘−1) − ̃𝜇(𝑘−1)𝐴𝑝(𝑘−1)

= 𝑟(𝑘−1) − ̃𝜇(𝑘−1)𝐴𝑝(𝑘−1).

We still need to eliminate the explicit dependence on the Lanczos vector 𝑣(𝑘)

in the recurrence for 𝑝(𝑘). Since we know from (2.15) that 𝑣(𝑘) and 𝑟(𝑘) are
collinear we can use the recurrence for 𝑟(𝑘) instead of computing 𝑣(𝑘). This
finally leads to the widely known coupled two-term recurrence version of the
Conjugate Gradient algorithm displayed in Algorithm 2.4. The scalars 𝜇(𝑘−1)

and 𝜈(𝑘−1) in the algorithm can be computed without the explicit dependency
on the Cholesky decomposition (cf. [Dem97, Chapter 6.6.3]). A comparison
with three-term formulations can be found in [GS00]. There, the authors show
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Algorithm 2.4: Conjugate Gradients
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑏 ∈ ℂ𝑛, 𝑥(0) ∈ ℂ𝑛 right-hand side and initial guess

Output: approximate solution 𝑥(𝑘) to 𝐴𝑥 = 𝑏

1 𝑟(0) = 𝑏 − 𝐴𝑥(0)

2 𝑝(0) = 𝑟(0)

3 for 𝑘 = 1, 2, … until convergence do
4 𝑧(𝑘−1) = 𝐴𝑝(𝑘−1)

5 𝜇(𝑘−1) = ⟨𝑟(𝑘−1),𝑟(𝑘−1)⟩
⟨𝑝(𝑘−1),𝑧(𝑘−1)⟩

6 𝑥(𝑘) = 𝑥(𝑘−1) + 𝜇(𝑘−1)𝑝(𝑘−1)

7 𝑟(𝑘) = 𝑟(𝑘−1) − 𝜇(𝑘−1)𝑧(𝑘−1)

8 𝜈(𝑘−1) = ⟨𝑟(𝑘),𝑟(𝑘)⟩
⟨𝑟(𝑘−1),𝑟(𝑘−1)⟩

9 𝑝(𝑘) = 𝑟(𝑘) + 𝜈(𝑘−1)𝑝(𝑘−1)

that coupled two-term recurrence formulations of a specific form show superior
numerical stability.

In later chapters we need to compare the computational cost of Algorithm 2.4
to other methods. For this we need the following result.

Proposition 2.8. Let 𝑘𝑠 be the number of iteration steps of Algorithm 2.4 to
solve 𝐴𝑥 = 𝑏. Then the number of operations of Algorithm 2.4 according to
the cost model from Definition 1.4 is

ℴcg = 𝑘𝑠(𝒸𝐴 + 5). (2.16)

Proof. Besides the matrix-vector product in line 4 we have three axpy oper-
ations for computing 𝑥(𝑘), 𝑟(𝑘) and 𝑝(𝑘), one inner product ⟨𝑝(𝑘−1), 𝑧(𝑘−1)⟩ and
one inner product ⟨𝑟(𝑘), 𝑟(𝑘)⟩. The latter can be computed once and be reused
in two more locations. This sums up to 𝒸𝐴 + 5 vector operations.

We will finish the discussion of the CG algorithm with an analysis of its
convergence behaviour. The 𝐴-norm of the error 𝑒(𝑘) in step 𝑘 > 0 of the CG
algorithm is minimised over the whole space [Gre97, Theorem 2.3.2]

𝑒(0) + span {𝐴𝑒(0), 𝐴2𝑒(0), … , 𝐴𝑘𝑒(0)} = 𝑒(0) + span {𝑝(0), … , 𝑝(𝑘−1)} , (2.17)

therefore the representation

𝑒(𝑘) = ̃𝑝𝑘(𝐴)𝑒(0), ̃𝑝𝑘 ∈ Π𝑘,
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holds for ̃𝑝𝑘 defined by

∥𝑒(𝑘)∥
𝐴

= ∥ ̃𝑝𝑘(𝐴)𝑒(0)∥
𝐴

= min
𝑝𝑘∈Π𝑘

∥𝑝𝑘(𝐴)𝑒(0)∥
𝐴

. (2.18)

Writing the positive definite matrix 𝐴 as 𝐴 = 𝑈Λ𝑈𝐻, where 𝑈 is a unitary
matrix and Λ = diag (𝜆1, … , 𝜆𝑛), 𝐴1/2 can be defined by 𝐴1/2 = 𝑈Λ1/2𝑈𝐻,
see Theorem 3.5. Then ‖𝑣‖𝐴 = ∥𝐴1/2𝑣∥

2
and equation (2.18) implies

∥𝑒(𝑘)∥
𝐴

= min
𝑝𝑘∈Π𝑘

∥𝐴1/2𝑝𝑘(𝐴)𝑒(0)∥
2

= min
𝑝𝑘∈Π𝑘

∥𝑈𝑝𝑘(Λ)𝑈𝐻𝐴1/2𝑒(0)∥
2

≤ min
𝑝𝑘∈Π𝑘

∥𝑈𝑝𝑘(Λ)𝑈𝐻∥
2

∥𝑒(0)∥
𝐴

= min
𝑝𝑘∈Π𝑘

‖𝑝𝑘(Λ)‖2 ∥𝑒(0)∥
𝐴

.

(2.19)

Since 𝑝𝑘(Λ) = diag (𝑝𝑘(𝜆1), … , 𝑝𝑘(𝜆𝑛)), relation (2.19) can be written as

∥𝑒(𝑘)∥
𝐴

‖𝑒(0)‖𝐴
≤ min

𝑝𝑘∈Π𝑘
max
1≤𝑖≤𝑛

|𝑝𝑘(𝜆𝑖)| (2.20)

which leads to the next theorem. But first we need to define the Chebyshev
polynomials which we will need to retrieve a more convenient bound for (2.20).

Definition 2.9. The Chebyshev polynomials 𝑇𝑘(𝑧) on the interval [−1, 1] are
defined recursively by

𝑇0(𝑧) = 1,
𝑇1(𝑧) = 𝑧,

𝑇𝑘+1(𝑧) = 2𝑧𝑇𝑘(𝑧) − 𝑇𝑘−1(𝑧), 𝑘 = 1, 2, …

Theorem 2.10. [Gre97, Theorem 3.1.1] Let 𝑒(𝑘) be the error at step 𝑘 of the
CG algorithm applied to the Hermitian positive definite linear system 𝐴𝑥 = 𝑏.
Then

∥𝑒(𝑘)∥
𝐴

‖𝑒(0)‖𝐴
≤ 2

𝛾𝑘 + 𝛾−𝑘 ≤ 2𝛾𝑘, (2.21)

where
𝛾 = (

√𝜅 − 1√𝜅 + 1)

and 𝜅 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 is the condition number of 𝐴.
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Proof. The transformation

𝑧 → 2𝑧 − 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

maps the interval [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] onto [−1, 1]. The shifted and scaled Chebyshev
polynomial for the interval [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] is given by

̃𝑝𝑘(𝑧) =
𝑇𝑘 (2𝑧−𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
)

𝑇𝑘 (−𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

)
, (2.22)

which is defined since 0 ≠ 𝑇𝑘 (−𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

), and it fulfils ̃𝑝𝑘(0) = 1. The
Chebyshev polynomial ̃𝑝𝑘 can now be used to bound

min
𝑝𝑘∈Π𝑘

max
1≤𝑖≤𝑛

|𝑝𝑘(𝜆𝑖)| ≤ max
𝑡∈[𝜆𝑚𝑖𝑛,𝜆𝑚𝑎𝑥]

| ̃𝑝𝑘(𝑡)| .

Since 𝑇𝑘(𝑧) can be represented as (cf. [SW93])

𝑇𝑘(𝑧) = {cos(𝑘 cos−1(𝑧)) 𝑧 ∈ [−1, 1]
cosh(𝑘 cosh−1(𝑧)) 𝑧 ∉ [−1, 1],

the numerator in (2.22) is bounded by 1 for 𝑧 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]. If 𝑧 < −1,
which is true for the parameter −𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
in the denominator of (2.22), then

𝑧 can be written in the form 𝑧 = − cosh(ln(𝑦)) = −1
2(𝑦 + 𝑦−1). This yields

the relation 𝑇𝑘(𝑧) = 1
2(𝑦𝑘 + 𝑦−𝑘). Now 𝑦 in 𝑧 = −1

2(𝑦 + 𝑦−1) can be computed
for 𝑧 = −𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
in the following way

1
2(𝑦 + 𝑦−1) = 𝜅 + 1

𝜅 − 1 = 𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

⇔ 1
2𝑦2 − 𝜅 + 1

𝜅 − 1𝑦 + 1
2 = 0.

The latter equation has solutions

𝑦1,2 = 𝜅 + 1
𝜅 − 1 ± √(𝜅 + 1)2 − (𝜅 − 1)2

(𝜅 − 1)2

= 𝜅 + 1
𝜅 − 1 ± 2√𝜅

𝜅 − 1
that can be transformed to

𝑦1 = −
√𝜅 + 1√𝜅 − 1 and 𝑦2 = −

√𝜅 − 1√𝜅 + 1.
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Both solutions imply

1
2(𝑦𝑘 + 𝑦−𝑘) = 1

2 ((
√𝜅 + 1√𝜅 − 1)

𝑘
+ (

√𝜅 − 1√𝜅 + 1)
𝑘
)

which proves the first inequality in (2.21). The second inequality follows im-
mediately from

((
√𝜅 + 1√𝜅 − 1)

𝑘
+ (

√𝜅 − 1√𝜅 + 1)
𝑘
)

−1

≤ ((
√𝜅 + 1√𝜅 − 1)

𝑘
)

−1

.

2.2.5 GMRES

The CG method relied on 𝐴 being Hermitian positive definite. In the case
of arbitrary non-singular 𝐴 different methods have to be applied. One such
method is the Generalized Minimal Residual method (GMRES) proposed in
[SS86]. It is based on the Arnoldi process of Algorithm 2.1. According to
(2.14) the iterates can be written as

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)𝑦(𝑘).

The vectors 𝑦(𝑘) in GMRES are computed to minimise the 2-norm of the resid-
ual 𝑟(𝑘) over the space

𝑟(0) + 𝐴𝒦𝑘(𝐴, 𝑟(0)).
Using equation (2.9) and 𝛽 = ∥𝑟(0)∥

2
we can represent the residual as

𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘) = 𝑏 − 𝐴(𝑥(0) + 𝑉 (𝑘)𝑦(𝑘))
= 𝑟(0) − 𝐴𝑉 (𝑘)𝑦(𝑘)

= 𝛽𝑣(1) − 𝑉 (𝑘+1)𝐻 (𝑘+1,𝑘)𝑦(𝑘)

= 𝑉 (𝑘+1)(𝛽𝑒1 − 𝐻 (𝑘+1,𝑘)𝑦(𝑘)).

Since 𝑉 (𝑘+1) has orthonormal columns, the residual norm is

∥𝑟(𝑘)∥
2

= ∥𝛽𝑒1 − 𝐻 (𝑘+1,𝑘)𝑦(𝑘)∥
2

.

For minimising ∥𝑟(𝑘)∥
2

the GMRES method therefore solves the least squares
problem

𝑦(𝑘) = argmin
𝑦

∥𝛽𝑒1 − 𝐻 (𝑘+1,𝑘)𝑦∥
2

. (2.23)

This is done by computing a QR decomposition of 𝐻 (𝑘+1,𝑘). The upper Hessen-
berg structure of 𝐻 (𝑘+1,𝑘) can be exploited for computing this decomposition
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efficiently. Using Givens rotations the non-zero entries below the diagonal in
𝐻 (𝑘+1,𝑘) can be eliminated one by one. With a sequence 𝐺(1), … , 𝐺(𝑘) of Givens
rotations we obtain an upper triangular (𝑘 + 1 × 𝑘)-matrix 𝑅(𝑘) as

𝑅(𝑘) = 𝐺(𝑘)𝐺(𝑘−1) ⋯ 𝐺(1)𝐻 (𝑘+1,𝑘).

Herein, 𝐺(𝑖) denotes the (𝑘 + 1 × 𝑘 + 1)-matrix defining the Givens rotation
that eliminates the (𝑖 + 1, 𝑖)-entry in 𝐺(𝑖−1)𝐺(𝑖−2) ⋯ 𝐺(1)𝐻(𝑘+1,𝑘), i.e.

𝐺(𝑖) ∶= [
𝐼

𝑐(𝑖) 𝑠(𝑖)

− ̄𝑠(𝑖) 𝑐(𝑖)
𝐼
] ←

← 𝑖-th row
(𝑖+1)-st row

with

𝑐(𝑖) = {
0 , if 𝜂 = 0

|𝜂|
√|𝜂|2+|𝜃|2 , else , 𝑠(𝑖) = {

1 , if 𝜂 = 0
𝜂
|𝜂| ⋅ ̄𝜃

√|𝜂|2+|𝜃|2 , else

and

𝜂 = 𝑒𝑇
𝑖 [𝐺(𝑖−1)𝐺(𝑖−2) ⋯ 𝐺(1)𝐻(𝑘+1,𝑘)] 𝑒𝑖,

𝜃 = 𝑒𝑇
𝑖+1 [𝐺(𝑖−1)𝐺(𝑖−2) ⋯ 𝐺(1)𝐻 (𝑘+1,𝑘)] 𝑒𝑖.

Therefore, with
𝑄(𝑘) ∶= (𝐺(1))𝐻(𝐺(2))𝐻 ⋯ (𝐺(𝑘))𝐻

we get
𝑄(𝑘)𝑅(𝑘) = 𝐻 (𝑘+1,𝑘).

Now (2.23) can be solved using

(𝛽𝑄(𝑘)𝑒1)1∶𝑘 = (𝑅(𝑘)𝑦(𝑘))1∶𝑘

which yields 𝑦(𝑘) and consequently the next iterate 𝑥(𝑘). Moreover, only the
(𝑘 + 1)-entry in the vector 𝛽𝑄(𝑘)𝑒1 − 𝑅(𝑘)𝑦(𝑘) is non-zero and represents the
norm of the residual since

∥𝑟(𝑘)∥ = ∥𝛽𝑄(𝑘)𝑒1 − 𝑅(𝑘)𝑦(𝑘)∥
= |(𝑠(𝑘))𝑘+1|,

where 𝑠(𝑘) ∶= 𝛽𝑄(𝑘)𝑒1. Finally, we obtain the GMRES method as Algo-
rithm 2.5.

Since the whole matrix 𝑉 (𝑘) has to be stored for building 𝑥(𝑘), the memory
footprint and computational cost for orthogonalisation might grow too large
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Algorithm 2.5: GMRES
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥(0) ∈ ℂ𝑛 right-hand side and initial guess

Output: approximate solution 𝑥(𝑘) to 𝐴𝑥 = 𝑏

1 𝑟(0) = 𝑏 − 𝐴𝑥(0)

2 𝛽(0) = ∥𝑟(0)∥2
3 𝑣(1) = 𝑟(0)/𝛽(0)

4 𝑠(0) = 𝛽(0)𝑒1
5 for 𝑘 = 1, 2, … until convergence do
6 compute 𝑣(𝑘+1) and 𝐻(𝑘+1,𝑘) // Arnoldi process (Alg. 2.1)
7 apply 𝐺(𝑘−1) ⋯ 𝐺(1) to the last column of 𝐻(𝑘+1,𝑘) yielding 𝑅(𝑘)

8 compute the Givens rotation 𝐺(𝑘) using 𝑅(𝑘)

9 apply 𝐺(𝑘) to the result 𝑅(𝑘) of line 7 yielding 𝑅(𝑘)

10 apply 𝐺(𝑘) to the 𝑘-th and (𝑘 + 1)-st entry of 𝑠(𝑘−1) yielding 𝑠(𝑘)

11 𝛽(𝑘) = |(𝑠(𝑘))𝑘+1|
12 solve (𝑠(𝑘))1∶𝑘 = (𝑅(𝑘)𝑦(𝑘))1∶𝑘 for 𝑦(𝑘)

13 set 𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)𝑦(𝑘)

for a high number of iteration steps. To prevent these problems, GMRES can
be restarted after 𝑚 steps, which is denoted as GMRES(𝑚). The idea then is
to solve the system 𝐴𝑑 = 𝑟(𝑚) = 𝑏 − 𝐴𝑥(𝑚) and update the solution 𝑥(𝑚) to
𝑥(𝑚) + 𝑑 afterwards. In [Saa03] the GMRES method and its restarted modifi-
cations are discussed in detail. Furthermore, a GMRES variant can be based
on an incomplete orthogonalisation by truncating the orthogonalisation in the
Arnoldi process. The resulting algorithm is called Quasi-GMRES (QGMRES)
[Saa03].

Similarly to the Conjugate Gradients method where we obtained a bound
on the 𝐴-norm of the error, the convergence behaviour of GMRES can be
described by a bound on the 2-norm of the residuals which is the 𝐴𝐻𝐴-norm
of the error since ⟨𝑟, 𝑟⟩ = ⟨𝐴𝐻𝐴𝑒, 𝑒⟩. Assume that 𝐴 is diagonalisable and
𝐴 = 𝑉 Λ𝑉 −1 is an eigendecomposition of 𝐴 with Λ = diag (𝜆1, … , 𝜆𝑛). Then
with

∥𝑟(𝑘)∥ = min
𝑝𝑘∈Π𝑘

∥𝑉 𝑝𝑘(Λ)𝑉 −1𝑟(0)∥

≤ ‖𝑉 ‖ ⋅ ‖𝑉 −1‖ ⋅ ∥𝑟(0)∥ min
𝑝𝑘∈Π𝑘

‖𝑝𝑘(Λ)‖

the residuals of GMRES satisfy the equation
∥𝑟(𝑘)∥
‖𝑟(0)‖ ≤ ‖𝑉 ‖ ⋅ ‖𝑉 −1‖ min

𝑝𝑘∈Π𝑘
max

𝑖=1,…,𝑛
|𝑝𝑘(𝜆𝑖)|.
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However, as discussed in [Gre97] and shown in [GPS96] any non-increasing
convergence curve is possible as a plot of the residual norm against the iteration
number—regardless of the eigenvalue distribution.

2.2.6 QMR

As the Generalized Minimal Residual method was based on the Arnoldi process
it inherited long recurrences and the need for storing the whole matrix 𝑉 (𝑘).
With the Quasi-Minimal Residual method we now introduce a method pro-
posed in [FN91] for non-Hermitian 𝐴 that uses the two-sided Lanczos process to
achieve short recurrences. Again, we write the iterates as 𝑥(𝑘) = 𝑥(0) +𝑉 (𝑘)𝑦(𝑘).
This implies that the residuals fulfil

𝑟(𝑘) = 𝑉 (𝑘+1)(𝛽𝑒1 − 𝑇 (𝑘+1,𝑘)𝑦(𝑘)).

But the two-sided Lanczos process does not build an orthonormal basis 𝑉 (𝑘).
Thus, we cannot minimise the norm of the residual just using 𝑇 (𝑘+1,𝑘). But we
can still go ahead and minimise the right-hand side of the inequality

∥𝑟(𝑘)∥ ≤ ∥𝑉 (𝑘+1)∥ ⋅ ∥𝛽𝑒1 − 𝑇 (𝑘+1,𝑘)𝑦(𝑘)∥ (2.24)

by minimising only the second factor. This is exactly what the Quasi-Minimal
Residual method (QMR) does. Similarly to the GMRES method, in the QMR
method a QR decomposition using Givens rotations is computed to transform
𝑇 (𝑘+1,𝑘) to upper triangular form with

𝑇 (𝑘+1,𝑘) = 𝑄(𝑘)𝑅(𝑘)

= (𝐺(1))𝐻 ⋯ (𝐺(𝑘))𝐻𝑅(𝑘).

Moreover, we obtain the (𝑘 + 1) × 𝑘 upper triangular matrix 𝑅(𝑘) to have
non-zeros only on the main diagonal and the first and second diagonal above
the main diagonal. Solving

𝑠(𝑘)
1∶𝑘 = (𝑅(𝑘)𝑦(𝑘))1∶𝑘

with 𝑠(𝑘) ∶= 𝛽(𝑄(𝑘)𝑒1) yields 𝑦(𝑘) for minimising (2.24). Unlike in the GMRES
method we can formulate updates for the iterates 𝑥(𝑘) that do not require
storing the whole matrix 𝑉 (𝑘). This is done by introducing the matrix 𝑃 (𝑘) =
[𝑝(1)| … |𝑝(𝑘)] as

𝑃 (𝑘) ∶= 𝑉 (𝑘)(𝑅(𝑘)
1∶𝑘,1∶𝑘)−1. (2.25)
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Now we can write (2.14) as

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)𝑦(𝑘)

= 𝑥(0) + 𝑃 (𝑘)𝑠(𝑘)
1∶𝑘

= 𝑥(𝑘−1) + 𝑠(𝑘)
𝑘 𝑝(𝑘).

From (2.25) we see that 𝑝(𝑘) can be computed using only the previous two
vectors 𝑝(𝑘−1) and 𝑝(𝑘−2) as well as 𝑣(𝑘), i.e.

𝑝(𝑘) = 1
𝑅(𝑘)

𝑘,𝑘
(𝑣(𝑘) − 𝑅(𝑘)

𝑘−1,𝑘𝑝(𝑘−1) − 𝑅(𝑘)
𝑘−2,𝑘𝑝(𝑘−2)) .

In Algorithm 2.6 we state the resulting QMR algorithm. We did not discuss
how to find a proper criterion for stopping the iteration and use the norm of 𝑟(𝑘)

instead. In actual computation we would not want to compute 𝑟(𝑘) = 𝑏−𝐴𝑥(𝑘)

in every step. For more information we refer to [Saa03, Section 7.3.2]. There it
is discussed that |𝑠(𝑘)| decreases monotonically and can be used as a stopping
criterion. Moreover, we chose 𝑤(1) = 𝑣(1) but any 𝑤 with ⟨𝑤, 𝑣(1)⟩ ≠ 0 would
do.

Algorithm 2.6: QMR
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥(0) ∈ ℂ𝑛 right-hand side and initial guess

Output: approximate solution 𝑥(𝑘) to 𝐴𝑥 = 𝑏

1 𝑟(0) = 𝑏 − 𝐴𝑥(0)

2 𝛽(0) = ∥𝑟(0)∥2
3 𝑤(1) = 𝑣(1) = 𝑟(0)/𝛽(0)

4 𝑝(0) = 𝑝(−1) = 0
5 𝑠(0) = 𝛽(0)𝑒1
6 for 𝑘 = 1, 2, … until convergence do
7 compute 𝑣(𝑘+1),𝑤(𝑘+1), 𝑇 (𝑘+1,𝑘) // two-sided Lanczos process (Alg. 2.3)
8 apply 𝐺(𝑘−1)𝐺(𝑘−2) to the last column of 𝑇 (𝑘+1,𝑘) yielding 𝑅(𝑘)

9 compute the Givens rotation 𝐺(𝑘) using 𝑅(𝑘)

10 apply 𝐺(𝑘) to the result 𝑅(𝑘) of line 8 yielding 𝑅(𝑘)

11 apply 𝐺(𝑘) to the 𝑘-th and (𝑘 + 1)-st entry of 𝑠(𝑘−1) yielding 𝑠(𝑘)

12 𝑝(𝑘) = 1
𝑅(𝑘)

𝑘,𝑘
(𝑣(𝑘) − 𝑅(𝑘)

𝑘−1,𝑘𝑝(𝑘−1) − 𝑅(𝑘)
𝑘−2,𝑘𝑝(𝑘−2))

13 𝑥(𝑘) = 𝑥(𝑘−1) + 𝑠(𝑘)
𝑘 𝑝(𝑘)



3 Matrix Functions
In this section we discuss how a function of a matrix can be defined and what
properties can be derived from the given definitions. As an example we will
introduce the matrix sign function. Afterwards we will describe how 𝑓(𝐴)
and—more importantly for our purposes—𝑓(𝐴)𝑏 can be approximated.

It turns out that by defining a matrix function as specified below, some prop-
erties arise as expected if we assume matrix functions to be a generalisation of
scalar functions. For the definitions, properties and methods in this section we
mainly follow [Hig08] and [FS08]. A comprehensive overview can be found in
the former. Before giving a formal definition consider the following example.
If 𝑓 is given as a polynomial 𝑝 of degree 𝑑,

𝑓(𝑧) = 𝑝(𝑧) =
𝑑

∑
𝑖=0

𝑎𝑖𝑧𝑖,

then it is natural to extend this function to 𝑝 ∶ ℂ𝑛×𝑛 → ℂ𝑛×𝑛 as

𝑝(𝐴) =
𝑑

∑
𝑖=0

𝑎𝑖𝐴𝑖.

This canonical way of building a matrix function from a scalar polynomial
covers only a subset of all scalar functions, albeit an important one. The
expansion of scalar functions to matrix arguments is therefore motivated by
the Weierstraß approximation theorem [CC04, Theorem 1.2.2]. However, a
more flexible and precise definition than “substitute 𝐴 for 𝑧” is needed.

3.1 Definition and Properties

3.1.1 Jordan Canonical Form Definition

The first definition makes use of the Jordan canonical form (see [HJ91]), which
exists for every square matrix 𝐴 ∈ ℂ𝑛×𝑛 and expresses 𝐴 in the form

𝐴 = 𝑍𝐽𝑍−1 = 𝑍 diag (𝐽1, 𝐽2, … , 𝐽𝑝) 𝑍−1, (3.1)

31
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where the Jordan blocks 𝐽𝑘 have the form

𝐽𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆𝑘 1 0 ⋯ 0
0 𝜆𝑘 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1
0 ⋯ ⋯ 0 𝜆𝑘

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℂ𝑚𝑘×𝑚𝑘,

the matrix 𝑍 is non-singular and 𝑚1 +𝑚2 +⋯+𝑚𝑝 = 𝑛. The following defini-
tion introduces a terminology that is needed to express the required properties
of 𝑓 for extending 𝑓 to matrices.

Definition 3.1. [Hig08, Definition 1.1] Let 𝜆1, 𝜆2, … , 𝜆𝑠, 𝑠 ≤ 𝑝, denote the
distinct eigenvalues of 𝐴, let 𝑝 be the number of Jordan blocks of 𝐴 and let 𝑛𝑖
be the order of the largest Jordan block in which 𝜆𝑖 appears. The function 𝑓 is
then said to be defined on the spectrum of 𝐴, if the values

𝑓 (𝑗)(𝜆𝑖), 𝑗 = 0, 1, … , 𝑛𝑖 − 1, 𝑖 = 1, 2, … , 𝑠

exist.

Now the function 𝑓 can be defined on ℂ𝑛×𝑛.

Definition 3.2. [Hig08, Definition 1.2] Let 𝑓 be defined on the spectrum of
𝐴 ∈ ℂ𝑛×𝑛 and let 𝐴 have the Jordan canonical form (3.1). Then

𝑓(𝐴) ∶= 𝑍𝑓(𝐽)𝑍−1 = 𝑍 diag (𝑓(𝐽1), 𝑓(𝐽2), … , 𝑓(𝐽𝑝)) 𝑍−1,

where

𝑓(𝐽𝑘) ∶=

⎡
⎢⎢⎢⎢⎢
⎣

𝑓(𝜆𝑘) 𝑓 ′(𝜆𝑘) ⋯ ⋯ 𝑓(𝑚𝑘−1)(𝜆𝑘)
(𝑚𝑘−1)!

0 𝑓(𝜆𝑘) ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑓 ′(𝜆𝑘)
0 ⋯ ⋯ 0 𝑓(𝜆𝑘)

⎤
⎥⎥⎥⎥⎥
⎦

(3.2)

Since this definition relies on the Jordan canonical form, in which 𝑍 and 𝐽
are not unique, it is not immediately clear that the definition does not depend
on the choice of 𝑍 and 𝐽 . The proof that this is the case is not obvious and
can be found in [HJ91, Section 6.2].

Another remark is that the numerical computation of a matrix function by
explicitly using the above definition would suffer from stability problems when
computing the Jordan canonical form (cf. [GL96, Example 11.1.1]).
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3.1.2 Polynomial Interpolation Definition

A second approach for defining a matrix function is via polynomial interpola-
tion. Following the notation of Definition 3.1, the minimal polynomial 𝜓 of 𝐴
can be written as

𝜓(𝑧) =
𝑠

∏
𝑖=1

(𝑧 − 𝜆𝑖)𝑛𝑖.

As is known from linear algebra, the minimal polynomial divides any other
polynomial 𝑝 that fulfils 𝑝(𝐴) = 0. For every matrix 𝐴 ∈ ℂ𝑛×𝑛 and any
polynomial 𝑝(𝑧), 𝑝(𝐴) is defined. Moreover, 𝑝 is defined on the whole complex
plane and particularly on the spectrum of 𝐴. The needed property for the
next definition is, that for polynomials the values of 𝑝 on the spectrum of 𝐴
determine 𝑝(𝐴). Definition 3.3 generalises the above to arbitrary functions 𝑓 .

Definition 3.3. [Hig08, Definition 1.4] Let 𝑓 be defined on the spectrum of
𝐴 ∈ ℂ𝑛×𝑛 and let 𝜓 denote the minimal polynomial of 𝐴. Then 𝑓(𝐴) ∶= 𝑟(𝐴),
where 𝑟 is the unique Hermite interpolating polynomial of degree less than

𝑠
∑
𝑖=1

𝑛𝑖 = deg 𝜓

that satisfies the interpolation conditions

𝑟(𝑗)(𝜆𝑖) = 𝑓 (𝑗)(𝜆𝑖), 𝑗 = 0, 1, … , 𝑛𝑖 − 1, 𝑖 = 1, 2, … , 𝑠. (3.3)

Note that 𝑓(𝐴) is therefore defined explicitly as a polynomial in 𝐴 that
depends on the values of 𝑓 on the spectrum of 𝐴. This definition turns out to
be most useful in computing approximations to matrix functions and its effect
on a vector as is illustrated in Section 3.2 and Section 3.3. The point is that
for finding a good approximation to the function of a matrix, one can focus
on the approximation properties on the eigenvalues of the matrix or on a set
containing the eigenvalues.

Since the definition using the Jordan canonical form only depends on the
values 𝑓 (𝑚)(𝜆𝑘) as seen in equation (3.2), the interpolation conditions (3.3)
show that both definitions are equivalent.

3.1.3 Cauchy Integral Definition

Finally, 𝑓 can be expanded onto matrices by using the Cauchy integral theo-
rem.
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Definition 3.4. [Hig08, Definition 1.11] Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝑓(𝑧) be analytic in-
side and on a simple closed rectifiable curve Γ, which strictly encloses spec (𝐴).
Then 𝑓(𝐴) is defined to be

𝑓(𝐴) ∶= 1
2𝜋𝑖 ∮

Γ
𝑓(𝑧)(𝑧𝐼 − 𝐴)−1𝑑𝑧.

In this definition (𝑧𝐼 − 𝐴) is always invertible since Γ strictly encloses
spec (𝐴). Note that in the two previous definitions the function 𝑓 was not
needed to be analytic. This definition of a matrix function is equivalent to
the other two definitions modulo the requirement on 𝑓 to be analytic, which
is proven in [HJ91, Theorem 6.2.28].

3.1.4 Properties

The next few theorems taken from [Hig08] illustrate some fundamental prop-
erties of matrix functions.

Theorem 3.5. [Hig08, Theorem 1.13] Let 𝐴, 𝑋 ∈ ℂ𝑛×𝑛 and let 𝑓 be defined
on the spectrum of 𝐴. Then

1. 𝑓(𝐴) commutes with 𝐴.
2. 𝑓(𝐴𝑇 ) = 𝑓(𝐴)𝑇 .
3. 𝑓(𝑋𝐴𝑋−1) = 𝑋𝑓(𝐴)𝑋−1 for non-singular 𝑋.
4. If 𝑋 commutes with 𝐴 then 𝑋 commutes with 𝑓(𝐴).
5. If 𝐴 = (𝐴𝑖𝑗) is block triangular then 𝐹 = 𝑓(𝐴) is block triangular with

the same block structure as 𝐴 and 𝐹𝑖𝑖 = 𝑓(𝐴𝑖𝑖).
6. If 𝐴 = diag (𝐴11, 𝐴22, … , 𝐴𝑚𝑚) is block diagonal then

𝑓(𝐴) = diag (𝑓(𝐴11), 𝑓(𝐴22), … , 𝑓(𝐴𝑚𝑚)) .

Proof. See [Hig08].

Theorem 3.6. [Hig08, Theorem 1.14] With the previous notation, 𝑓(𝐴) =
𝑔(𝐴) if and only if

𝑓 (𝑗)(𝜆𝑖) = 𝑔(𝑗)(𝜆𝑖), 𝑗 = 0, 1, … , 𝑛𝑖 − 1, 𝑖 = 1, 2, … , 𝑠.

Equivalently, 𝑓(𝐴) = 0 if and only if

𝑓 (𝑗)(𝜆𝑖) = 0, 𝑗 = 0, 1, … , 𝑛𝑖 − 1, 𝑖 = 1, 2, … , 𝑠.
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Proof. This results from Definition 3.2 and Definition 3.3.

Theorem 3.7. [Hig08, Theorem 1.15] Let 𝑓 and 𝑔 be functions defined on the
spectrum of 𝐴.

1. If ℎ(𝑧) = 𝑓(𝑧) + 𝑔(𝑧) then ℎ(𝐴) = 𝑓(𝐴) + 𝑔(𝐴).
2. If ℎ(𝑧) = 𝑓(𝑧)𝑔(𝑧) then ℎ(𝐴) = 𝑓(𝐴)𝑔(𝐴).

Proof. See [Hig08].

3.1.5 The Matrix Sign Function

Before we move on to describe how to actually compute a matrix function we
introduce the matrix sign function to have an example at hand. In the scalar
case the sign function is defined by

sign(𝑧) = {+1 , Re (𝑧) > 0,
−1 , Re (𝑧) < 0.

where 𝑧 ∈ ℂ, Re (𝑧) ≠ 0. All derivatives sign(𝑘) (𝑧) of the sign function are zero
for 𝑘 ≥ 1. Thus, the definition using the Jordan canonical form (Definition 3.2)
adjusted for the matrix sign function becomes the following.

Definition 3.8. Let 𝐴 ∈ ℂ𝑛×𝑛 have no eigenvalues lying on the imaginary
axis and be represented by the Jordan canonical decomposition 𝐴 = 𝑍𝐽𝑍−1,

𝐽 = [𝐽+ 0
0 𝐽−

] ,

where the eigenvalues of 𝐽+ ∈ ℂ𝑝×𝑝 lie in the open right half-plane and those
of 𝐽− ∈ ℂ𝑞×𝑞 in the open left half-plane. Then

sign(𝐴) = 𝑍 [𝐼𝑝 0
0 −𝐼𝑞

] 𝑍−1.

The matrix sign function is not defined if 𝐴 has purely imaginary eigenvalues.

Another representation can be derived by generalising the scalar identity
sign(𝑧) = 𝑧(𝑧2)−1/2 which yields

sign(𝐴) = 𝐴(𝐴2)−1/2 (3.4)
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via Theorem 3.7. The requirement on 𝐴 having no purely imaginary eigenval-
ues in the previous definition translates to 𝐴2 having no eigenvalues on ℝ− in
this case which guarantees the existence of a principal square root (cf. [Hig08,
Chapter 1.7] for information on the principal square root).

The next theorem shows some properties of sign(𝐴) and finishes our intro-
duction of the matrix sign function.

Theorem 3.9. [Hig08, Theorem 5.1] Let 𝐴 ∈ ℂ𝑛×𝑛 have no purely imaginary
eigenvalues. Then

1. sign(𝐴)2 = 𝐼.
2. sign(𝐴) is diagonalisable with eigenvalues +1 and −1.
3. sign(𝐴) 𝐴 = 𝐴 sign(𝐴).

Proof. The first two properties are directly implied by the definition of the
matrix sign function. The third property holds for every matrix function, see
Theorem 3.5.

3.2 Approximating 𝑓(𝐴)
The matrix 𝑓(𝐴) can be computed in multiple ways. Some methods are tai-
lored for a particular matrix function and others can be used for general matrix
functions. Our main interest will be in the approximation of the vector 𝑓(𝐴)𝑥.
We will postpone the discussion of solutions for this problem until Section 3.3.
For completeness, we describe a few ways to compute the whole matrix 𝑓(𝐴)
in the following. Moreover, some of the following methods can be adapted to
approximate 𝑓(𝐴)𝑥.

3.2.1 Matrix Iterations

Some matrix functions can be computed by iterations that converge to 𝑓(𝐴).
Using our example—the matrix sign function—we can obtain sign(𝐴) by gen-
eralising the scalar Newton iteration for 𝑧2−1 = 0. This results in the iteration

𝑋(𝑘+1) = 1
2 (𝑋(𝑘) + (𝑋(𝑘))−1) , 𝑋(0) = 𝐴. (3.5)

The convergence of iteration (3.5) is global and asymptotically quadratic. Fig-
ure 3.1 displays the relative error after applying a couple of steps of the Newton
iteration for the sign function to a rectangular region in ℂ.
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Figure 3.1: Error |𝑥(𝑘)−sign(𝑥(0)) | for 𝑥(0) ∈ ℂ after 8 steps of the Newton
iteration for the sign function.

Figure 3.1 suggests, and in [Hig08, Theorem 5.6] it is shown, that the con-
vergence speed suffers if 𝜌(𝐴) ≫ 1 or if 𝐴 has an eigenvalue of small real part.
To speed up the initial convergence rate, iteration (3.5) can be scaled to

𝑋(𝑘+1) = 1
2(𝜇(𝑘)𝑋(𝑘) + (𝜇(𝑘))−1(𝑋(𝑘))−1), 𝑋(0) = 𝐴,

using a parameter 𝜇(𝑘). Several strategies for selecting the scaling parameter
𝜇(𝑘) have been proposed [Hig08; Hig+04], see Table 3.1. All three scaling factors

Table 3.1: Strategies for scaling the Newton iteration for sign(𝐴)

scaling factor name of the strategy

𝜇(𝑘) = | det(𝑋(𝑘))|−1/𝑛 determinantal scaling
𝜇(𝑘) = √𝜌((𝑋(𝑘))−1)/𝜌(𝑋(𝑘)) spectral scaling
𝜇(𝑘) = √‖(𝑋(𝑘))−1‖ / ‖𝑋(𝑘)‖ norm scaling

of Table 3.1 can be cheaply computed or estimated. The determinantal scaling
can be obtained from the 𝐿𝑈 factorisation that is used to compute (𝑋(𝑘))−1.
The factor 𝜇𝑘 in the spectral scaling variant can be estimated via a power
method for 𝑋(𝑘) and (𝑋(𝑘))−1. Taking the Frobenius norm yields an easy way
to calculate the third scaling parameter. The iteration can be continued using
(3.5) after an initial phase of scaling, since all three scaling factors converge to
1 as 𝑋(𝑘) → sign(𝐴). Stopping criteria for the (scaled) Newton iteration are
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discussed in [Hig08] and comprise, for example,

∥𝑋(𝑘+1) − 𝑋(𝑘)∥
‖𝑋(𝑘+1)‖ ≤ ∥𝑋(𝑘+1)∥𝑝 𝜂

for 𝑝 ∈ {0, 1, 2} and a convergence tolerance 𝜂.

3.2.2 Padé Approximations

Using rational approximations for a function 𝑓 instead of polynomial approx-
imations usually results in reaching the same approximation quality with less
degrees of freedom [Che82, Chapter 5]. A class of rational approximations are
the so-called Padé approximations which we define next.

Definition 3.10. Let 𝑓(𝑧) be a scalar function. The rational function

𝑟𝑙/𝑚(𝑧) = 𝑝𝑙(𝑧)
𝑞𝑚(𝑧)

is an [𝑙/𝑚]-type Padé approximant of 𝑓 if 𝑟𝑙/𝑚 ∈ ℛ𝑙/𝑚, 𝑞𝑚 ∈ Π𝑚 and

𝑓(𝑧) − 𝑟𝑙/𝑚(𝑧) = 𝒪(𝑧𝑙+𝑚+1) (3.6)

for 𝑧 → 0.

In order to be able to efficiently apply 𝑟𝑙/𝑚 to a matrix 𝐴 we need to write the
rational function as a partial fraction expansion. Since every rational function
𝑟𝑙/𝑚 can be expressed as a partial fraction expansion we can write

𝑟𝑙/𝑚(𝑧) = 𝑝𝑙(𝑧)
𝑞𝑚(𝑧) = 𝜋(𝑧) +

𝑛
∑
𝑗=1

𝑚𝑗

∑
𝑖=1

𝜔𝑗,𝑖
(𝑧 − 𝜎𝑗)𝑖

where 𝑚𝑗 is the multiplicity of pole 𝜎𝑗 ∈ ℂ, ∑𝑛
𝑗 𝑚𝑗 = 𝑚, 𝜋(𝑧) ∈ Π𝑙−𝑚 if 𝑙 ≥ 𝑚

and 𝜋 ≡ 0 otherwise. From here on we assume a multiplicity of 1 for every
pole, and applying this to a matrix we get

𝑟𝑙/𝑚(𝐴) = 𝜋(𝐴) +
𝑛

∑
𝑗=1

𝜔𝑗(𝐴 − 𝜎𝑗𝐼)−1. (3.7)

Inverting multiple matrices (𝐴 − 𝜎𝑗𝐼) seems expensive at first sight. But
in Chapter 5 we will introduce methods that can efficiently solve families of
shifted systems of the kind (𝐴 − 𝜎𝑗𝐼)𝑥 = 𝑏.
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There are two classes of algorithms for rational approximations. The first one
solves the value problem, i.e. the algorithm evaluates 𝑟𝑙/𝑚(𝑧) for some specific
value of 𝑧. The second class of algorithms solves the coefficient problem which
means that the coefficients defining 𝑝𝑙 and 𝑞𝑚 are computed. Since we want
to evaluate the rational function 𝑟𝑙/𝑚(𝑧) on a matrix, we are interested in a
representation for 𝑟𝑙/𝑚 and consequently have to solve the coefficient problem.
This can be done in the following way, see for instance [BG96]. Let

𝑝𝑙(𝑧) = 𝜂0 + 𝜂1𝑧 + 𝜂2𝑧2 + 𝜂𝑙𝑧𝑙 and
𝑞𝑚(𝑧) = 1 + 𝜃1𝑧 + 𝜃2𝑧2 + 𝜃𝑚𝑧𝑚.

With (3.6) we see that 𝑝𝑙 and 𝑞𝑚 need to fulfil

𝑓 (𝑖)(0) = 𝑟(𝑖)
𝑙/𝑚(0) for 𝑖 = 0, 1, … , 𝑙 + 𝑚.

Since 𝑞𝑚(𝑧) is normalised to 𝜃0 = 1, the approximation 𝑟𝑙/𝑚(𝑧) has 𝑙 + 𝑚 + 1
unknown coefficients. Let

𝑓(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑙+𝑚𝑧𝑙+𝑚 + 𝒪(𝑧𝑙+𝑚+1)

be the Taylor expansion of 𝑓 at 𝑧0 = 0. Because of (3.6) we obtain

(
𝑙+𝑚
∑
𝑖=0

𝑎𝑖𝑧𝑖) (
𝑚

∑
𝑖=0

𝜃𝑖𝑧𝑖) − (
𝑙

∑
𝑖=0

𝜂𝑖𝑧𝑖) = 0

which means we have to solve

𝜃𝑚𝑎𝑙−𝑚+1 + 𝜃𝑚−1𝑎𝑙−𝑚+2 + … + 𝜃1𝑎𝑙 + 𝑎𝑙+1 = 0
𝜃𝑚𝑎𝑙−𝑚+2 + 𝜃𝑚−1𝑎𝑙−𝑚+3 + … + 𝜃1𝑎𝑙+1 + 𝑎𝑙+2 = 0

⋮
𝜃𝑚𝑎𝑙 + 𝜃𝑚−1𝑎𝑙+1 + … + 𝜃1𝑎𝑙+𝑚−1 + 𝑎𝑙+𝑚 = 0

(3.8)

for 𝜃1, … , 𝜃𝑚 and

𝑎0 − 𝜂0 = 0
𝜃1𝑎0 + 𝑎1 − 𝜂1 = 0

⋮
𝜃𝑚𝑎𝑙−𝑚 + 𝜃𝑚−1𝑎𝑙−𝑚+1 + ⋯ + 𝑎𝑙 − 𝜂𝑙 = 0

(3.9)

for 𝜂0, … , 𝜂𝑙 afterwards. Thus, we obtain all the coefficients for the polynomi-
als 𝑝𝑙(𝑧) and 𝑞𝑚(𝑧) and can form the rational approximation 𝑟𝑙/𝑚(𝑧) fulfilling
(3.6). One problem that arises while computing the coefficients 𝜃1, … , 𝜃𝑚 and
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𝜂0, … , 𝜂𝑙 is that the Taylor coefficients 𝑎0, … , 𝑎𝑙+𝑚 may vary significantly in
magnitude. This results in very ill-conditioned systems (3.8) and (3.9). Even
for relatively small degrees 𝑙 and 𝑚 this can result in failing to be able to
compute sufficiently good coefficients in IEEE-754 double [IEE08] representa-
tion and arithmetic. This can be remedied by computing in higher precision.
Figure 3.2 and Figure 3.3 display an example for a Padé approximation of
𝑓(𝑧) = 𝑧−1/2 and 𝑓(𝑧) = sign(𝑧) respectively.

Figure 3.2: Relative error |𝑟𝑙/𝑚(𝑧) − 𝑓(𝑧)|/|𝑓(𝑧)| for 𝑧 ∈ ℂ where 𝑟𝑙/𝑚 is
an Padé approximant to 𝑓(𝑧) = 𝑧−1/2 centred at 2.8 with 𝑙 = 8 and 𝑚 = 8.

Figure 3.3: Error |𝑧𝑟𝑙/𝑚(𝑧2) − sign(𝑧) | for 𝑧 ∈ ℂ where 𝑟𝑙/𝑚 is the same
Padé approximant to 𝑧−1/2 as in Figure 3.2.

3.2.3 𝑛-Point Padé Approximations

In many applications a function 𝑓 has to be approximated in a specific region
𝑆 ⊂ ℂ. If we want to apply the approximation to a matrix 𝐴 then we want
it to be precise on the spectrum of 𝐴 as it is suggested by Definition 3.1.
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Moreover, if 𝐴 is Hermitian then 𝑆 becomes a real interval [𝑥, 𝑥]. The Padé
approximation defined in Definition 3.10, however, is not well suited for such
a situation as can be seen in Figure 3.2 and Figure 3.3. A generalisation of
the Padé approximation defined below can remedy this.

Definition 3.11. Let 𝑓(𝑧) be a scalar function. The rational function

𝑟𝑙/𝑚(𝑧) = 𝑝𝑙(𝑧)
𝑞𝑚(𝑧)

is a [𝑙/𝑚]-type 𝑛-point Padé approximant of 𝑓 w.r.t. the 𝑛-tuple (𝑧1, … , 𝑧𝑛) of
points if 𝑟𝑙/𝑚 ∈ ℛ𝑙/𝑚, 𝑞𝑚 ∈ Π𝑚 and 𝑙 + 𝑚 + 1 = 𝑛 as well as

𝑓(𝑧) − 𝑟𝑙/𝑚(𝑧) = 𝒪((𝑧 − 𝑧𝑖)𝑐𝑖)

for all 𝑖 and 𝑧 → 𝑧𝑖. Here, 𝑐𝑖 denotes the cardinality of the set

𝐽𝑖 ∶= {𝑗 ∶ 𝑧𝑗 = 𝑧𝑖}.

In the case of 𝑧1 = ⋯ = 𝑧𝑛 the 𝑛-point Padé approximant reduces to the
Padé approximant at point 𝑧 = 𝑧1.

Solving the coefficient problem for the 𝑛-point Padé approximant can be
done using Kronecker’s algorithm [BG96] which dates back to [Kro81]. Before
we introduce the algorithm we want to recall polynomial interpolation, where
we are interested in finding a polynomial 𝑝(𝑧) = ∏𝑛−1

𝑖=0 𝑎𝑖𝑧𝑖 that interpolates
a scalar function 𝑓(𝑧) on the 𝑛-tuple of points (𝑧1, … , 𝑧𝑛), i.e. 𝑝(𝑧𝑖) = 𝑓(𝑧𝑖)
for all 𝑖 ∈ {1, 2, … , 𝑛}. In the case of confluent points 𝑧𝑖 = 𝑧𝑖+1 = ⋯ = 𝑧𝑘
we want to interpolate the derivatives like in Definition 3.11. One method to
find such an interpolating polynomial is the Newton polynomial interpolation
which involves divided differences that are defined below.

Definition 3.12. Let 𝑓(𝑧) be a sufficiently often differentiable scalar function.
The divided differences on the 𝑛-tuple of points (𝑧1, 𝑧2, … , 𝑧𝑛) are defined re-
cursively by

𝑓[𝑧𝑖] ∶= 𝑓(𝑧𝑖),

𝑓[𝑧𝑖, … , 𝑧𝑖+𝑗] ∶= 𝑓[𝑧𝑖+1, … , 𝑧𝑖+𝑗] − 𝑓[𝑧𝑖, … , 𝑧𝑖+𝑗−1]
𝑧𝑖+𝑗 − 𝑧𝑖

.

For confluent points 𝑧𝑖 = 𝑧𝑖+1 = ⋯ = 𝑧𝑘 we define

𝑓[𝑧𝑖, … , 𝑧𝑘] ∶= 𝑓 (𝑘−1)(𝑧𝑖)
(𝑘 − 1)! .
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The Newton representation of the polynomial interpolating 𝑓(𝑧) on the
points (𝑧1, 𝑧2, … , 𝑧𝑛) is then defined as

𝑝(𝑧) ∶=
𝑛

∑
𝑖=1

𝑓[𝑧1, 𝑧2, … , 𝑧𝑖]
𝑖−1
∏
𝑗=0

(𝑧 − 𝑧𝑗).

The idea of Kronecker’s algorithm is to start with the [𝑙 + 𝑚/0]-type 𝑛-point
Padé approximant obtained from a polynomial interpolation. Thereafter, the
algorithm successively builds the [𝑠/𝑡]-type approximant using the previous
two [𝑠 + 2/𝑡 − 2] and [𝑠 + 1/𝑡 − 1] 𝑛-point Padé approximants. The algorithm
stops as soon as the [𝑙/𝑚]-type 𝑛-point Padé approximant is reached. In
Algorithm 3.1 we present Kronecker’s algorithm in a basic form.

Algorithm 3.1: Kronecker’s Algorithm
Input : (𝑧1, … , 𝑧𝑛) 𝑛-tuple of interpolation points

allowing confluent points
(𝑓(𝑧1), … , 𝑓(𝑧𝑛)) function values of 𝑓 at the interpolation points
𝑙, 𝑚 [𝑙/𝑚]-type of the 𝑛-point Padé approximant

𝑙 + 𝑚 + 1 = 𝑛

Output: 𝑝𝑙, 𝑞𝑚 coefficients defining the polynomials 𝑝𝑙 and 𝑞𝑚 and thus the
𝑛-point Padé approximant 𝑟𝑙/𝑚

1 set 𝑝𝑚+𝑙(𝑧) = ∑𝑛
𝑖=1 𝑓[𝑧1, … , 𝑧𝑖] ∏𝑖−1

𝑗=1(𝑧 − 𝑧𝑗)
2 set 𝑞0(𝑧) = 1
3 set 𝑝𝑚+𝑙+1(𝑧) = ∏𝑛

𝑗=1(𝑧 − 𝑧𝑗)
4 set 𝑞−1(𝑧) = 0
5 for 𝑠 = 1, 2, … , 𝑚 do
6 determine 𝛼𝑠 and 𝛽𝑠, s.t. the degree of

(𝛼𝑠𝑧 + 𝛽𝑠)𝑝𝑚+𝑙−𝑠+1(𝑧) − 𝑝𝑚+𝑙−𝑠+2(𝑧)

is at most 𝑚 + 𝑙 − 𝑠
7 set 𝑝𝑚+𝑙−𝑠(𝑧) = (𝛼𝑠𝑧 + 𝛽𝑠)𝑝𝑚+𝑙−𝑠+1(𝑧) − 𝑝𝑚+𝑙−𝑠+2(𝑧)
8 set 𝑞𝑠(𝑧) = (𝛼𝑠𝑧 + 𝛽𝑠)𝑞𝑠−1(𝑧) − 𝑞𝑠−2(𝑧)

We note that in line 6 of Algorithm 3.1 the values 𝛼𝑠 and 𝛽𝑠 might be deter-
mined, so that the resulting polynomial has a degree less than 𝑚 + 𝑙 − 𝑠. Such
a polynomial is called degenerate and implies that the according interpolant
does not exist. It is a well known fact that some interpolants might not ex-
ist [BG96]. In this case the algorithm can be modified to skip the respective
approximants and only compute the non-degenerate approximants.
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For the Padé approximation we have already discussed that the computa-
tion can suffer from intermediate values not being accurately representable as
double values. Thus, we implemented Algorithm 3.1 in Maple allowing compu-
tations in arbitrary precision. Only the resulting coefficients of the numerator
and denominator polynomial are then converted to double. The crucial part
here is the choice of the interpolation nodes the approximation is based upon.
In Figure 3.4 and Figure 3.5 an 𝑛-point Padé approximation of 𝑓(𝑧) = 𝑧−1/2

and of 𝑓(𝑧) = sign(𝑧) respectively is depicted. We computed the interpolation
nodes using

𝑧𝑖 = ((1 − cos ( 𝑖𝜋
2𝑛))

4
− 1

2) (𝑏 − 𝑎) + 𝑎 + 𝑏
2 (3.10)

for 𝑖 = 0, … , 𝑛 with 𝑎 = 0.1 and 𝑏 = 40. This results in denser interpola-
tion nodes at the left end of [𝑎, 𝑏] improving the otherwise low approximation
quality close to 𝑎.
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Figure 3.4: Relative error |𝑟𝑙/𝑚(𝑧) − 𝑓(𝑧)|/|𝑓(𝑧)| for 𝑧 ∈ ℂ where 𝑟𝑙/𝑚 is
an 𝑛-point Padé approximant to 𝑓(𝑧) = 𝑧−1/2 with 𝑙 = 8 and 𝑚 = 8.

An other way to compute a rational approximation would be to apply the Re-
mez algorithm [Che82, Chapter 3.8]. But the one implementation for rational
approximations that we found in Maple did not converge for our examples.

3.2.4 Optimal Approximations

For some functions 𝑓 and subsets 𝑆 ⊂ ℂ there exist directly computable op-
timal rational approximations 𝑟𝑙/𝑚. Here, we use “optimal” in the sense that
𝑟𝑙/𝑚 ∈ ℛ𝑙/𝑚 is minimising sup𝑧∈𝑆 |𝑓(𝑧) − 𝑟(𝑧)| among all 𝑟 ∈ ℛ𝑙/𝑚.

For the sign function and 𝑆 = [−𝑏, −𝑎] ∪ [𝑎, 𝑏] with 0 < 𝑎 ≤ 𝑏 such an
approximation can be stated explicitly. It is again based on an approximation
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Figure 3.5: Error |𝑧𝑟𝑙/𝑚(𝑧2) − sign(𝑧) | for 𝑧 ∈ ℂ where 𝑟𝑙/𝑚 is the same
Padé approximant to 𝑓(𝑧) = 𝑧−1/2 as in Figure 3.4.

of the inverse square root for a positive real interval. In [PP87, Theorem 4.6]
it is shown that these two problems—finding a best rational approximation
for the sign function and the inverse square root—are equivalent. These best
rational approximations were derived by Zolotarev [PP87, Theorem 4.8]. From
here on we will call optimal rational approximations of this kind Zolotarev
approximations, and it will be stated or clear by context if we refer to the
approximation of the sign function or the inverse square root.

We now introduce the Zolotarev approximation of the sign function briefly.
The following theorem makes use of the Jacobi elliptic function sn(𝑤, 𝜅) = 𝑥
that is defined implicitly by the elliptic integral

𝑤 = ∫
𝑥

0

1
√(1 − 𝑡2)(1 − 𝜅2𝑡2)

𝑑𝑡

and the complete elliptic integral of the first kind for the modulus 𝜅 is defined
by

𝐾(𝜅) = ∫
1

0

1
√(1 − 𝑡2)(1 − 𝜅2𝑡2)

𝑑𝑡.

The following Theorem 3.13 summarises section 4.3 from [PP87] and its main
result [PP87, Theorem 4.8] dates back to Zolotarev [Zol77].

Theorem 3.13. [FS08, Proposition 4] Let 𝑟2𝑡−1/2𝑡(𝑧) = 𝑝2𝑡−1(𝑧)/𝑞2𝑡(𝑧) be the
Chebyshev best approximation to sign(𝑧) on the set [−𝑏, −𝑎] ∪ [𝑎, 𝑏], i.e. the
function that minimises

max
𝑎<|𝑧|<𝑏

∣sign(𝑧) − ̃𝑟2𝑡−1/2𝑡(𝑧)∣

over all rational functions ̃𝑟2𝑡−1/2𝑡(𝑧) = ̃𝑝2𝑡−1(𝑧)/ ̃𝑞2𝑡(𝑧). Then the factored
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form of 𝑟2𝑡−1/2𝑡 is given by

𝑟2𝑡−1/2𝑡(𝑧) = 𝑎𝑧 ⋅ 𝑠𝑡−1/𝑡((𝑎𝑧)2) with

𝑠𝑡−1/𝑡(𝑧) = 𝐷
∏𝑡−1

𝑗=1(𝑧 + 𝑐2𝑗)
∏𝑡

𝑗=1(𝑧 + 𝑐2𝑗−1)
,

where
𝑐𝑗 = sn2 (𝑗𝐾(𝜅′)/(2𝑡); 𝜅′)

1 − sn2 (𝑗𝐾(𝜅′)/(2𝑡); 𝜅′)
for 𝜅′ ∶= √1 − (𝑎/𝑏)2 and 𝐷 is uniquely determined by the condition

max
𝑧∈[1,(𝑏/𝑎)2]

(1 − √𝑧𝑠𝑡−1/𝑡(𝑧)) = − min
𝑧∈[1,(𝑏/𝑎)2]

(1 − √𝑧𝑠𝑡−1/𝑡(𝑧)) .

The scaling coefficient 𝐷 can be explicitly computed in the following way.
According to [PP87] the rational approximation takes its maximum and min-
imum value on the interval [1, (𝑏/𝑎)2] exactly 2𝑡 + 1 times. Let the Jacobi
elliptic functions cn(𝑤, 𝜅) and dn(𝑤, 𝜅) be defined by

cn2(𝑤, 𝜅) ∶= 1 − sn2(𝑤, 𝜅) and
dn2(𝑤, 𝜅) ∶= 1 − 𝜅2sn2(𝑤, 𝜅).

The complementary modulus for 𝜅 is defined by 𝜅′2 +𝜅2 = 1 and 𝐾′ ∶= 𝐾(𝜅′)
denotes the complete elliptic integral of the first kind for the complementary
modulus 𝜅′. In [Ken05] it is shown that evaluating the unscaled approximation
at points 𝜉2

𝑗 for 𝑗 = 0, 1, … , 2𝑡 gives the alternating maximum and minimum
values. Denoting 𝐾 ∶= 𝐾(𝜅), the points 𝜉2

𝑗 are known to be

𝜉𝑗 = sn (𝐾 + 𝑖𝑗𝐾′

2𝑡 , 𝜅)

= cn ( 𝑖𝑗𝐾′
2𝑡 , 𝜅)

dn ( 𝑖𝑗𝐾′
2𝑡 , 𝜅),

where the second equality can be derived using addition formulas for Jacobi
elliptic functions. By using Jacobi’s imaginary transformations

cn (𝑖𝑗𝐾′

2𝑡 , 𝜅) = 1
cn ( 𝑗𝐾′

2𝑡 , 𝜅′) and

dn (𝑖𝑗𝐾′

2𝑡 , 𝜅) = dn ( 𝑗𝐾′
2𝑡 , 𝜅′)

cn ( 𝑗𝐾′
2𝑡 , 𝜅′)
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the result is
𝜉𝑗 = 1

dn ( 𝑗𝐾′
2𝑡 , 𝜅′).

Since the approximation alternates between its extremal values, it is sufficient
to evaluate, e.g. at 𝜉0 = 1 and 𝜉1. Thus, the scaling factor 𝐷 is given by

𝐷 = 2
̂𝑟2𝑡−1/2𝑡(𝜉0) + ̂𝑟2𝑡−1/2𝑡(𝜉1) ,

where

̂𝑟2𝑡−1/2𝑡(𝑧) = 𝑧 ⋅
∏𝑡−1

𝑗=1(𝑧2 + 𝑐2𝑗)
∏𝑡

𝑗=1(𝑧2 + 𝑐2𝑗−1)
.

Like for the Padé approximants this rational function can be rewritten as a
partial fraction expansion. In [Esh+02] the Zolotarev approximants were com-
pared to Padé approximants stemming from a Remez algorithm. The Zolotarev
approximation appeared to need less poles for achieving the same accuracy.

Figure 3.6 and Figure 3.7 depict Zolotarev approximations to 𝑓(𝑧) = 𝑧−1/2

and 𝑓(𝑧) = sign(𝑧) respectively. The sign function was approximated on the
interval [𝑎, 𝑏] with endpoints 𝑎 = 0.1 and 𝑏 = 40.

Figure 3.6: Relative error |𝑠𝑡−1/𝑡(𝑧) − 𝑓(𝑧)|/|𝑓(𝑧)| for 𝑧 ∈ ℂ where 𝑠𝑡−1/𝑡
is the Zolotarev approximant to 𝑓(𝑧) = 𝑧−1/2 with 𝑡 = 6.
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Figure 3.7: Error |𝑟2𝑡−1/2𝑡(𝑧) − sign(𝑧) | for 𝑧 ∈ ℂ where 𝑟2𝑡−1/2𝑡 is the
Zolotarev approximant to 𝑓(𝑧) = sign(𝑧) with 𝑡 = 6, 𝑎 = 0.1 and 𝑏 = 10.

3.3 Approximating 𝑓(𝐴)𝑏
We have only described how the complete matrix 𝑓(𝐴) can be computed or
approximated up till now. The remaining part of this chapter deals with
the computational aspects to obtain the action of 𝑓(𝐴) on a vector 𝑏 namely
𝑓(𝐴)𝑏. As mentioned before, if 𝐴 is a large sparse matrix then computing
the whole matrix 𝑓(𝐴) just for obtaining 𝑓(𝐴)𝑏 is usually far too expensive
or even impossible. This is because 𝑓(𝐴) is not guaranteed to be sparse and
usually will not be. However, the matrix-vector product 𝑓(𝐴)𝑏 can still be
computable at affordable speed and memory usage. Some of the methods
presented in Section 3.2 can be adapted for that purpose.

3.3.1 Krylov Subspace Approximation for 𝑓(𝐴)𝑏
From the Arnoldi process and its matrix representation (2.9) an approxima-
tion for 𝑓(𝐴)𝑏 can be obtained. The idea is to project the problem onto the
subspace 𝒦𝑘(𝐴, 𝑏) = span {𝑏, 𝐴𝑏, … , 𝐴𝑘−1𝑏} of smaller dimension 𝑘 < 𝑛. Us-
ing the matrices 𝑉 (𝑘) and 𝐻 (𝑘) of the Arnoldi process one can formulate the
approximation

𝑓(𝐴)𝑏 ≈ 𝑓(𝑉 (𝑘)𝐻 (𝑘)(𝑉 (𝑘))𝐻)𝑏
= 𝑉 (𝑘)𝑓(𝐻 (𝑘))(𝑉 (𝑘))𝐻𝑏
= 𝑉 (𝑘)𝑓(𝐻 (𝑘))𝑒1 ‖𝑏‖ ,

(3.11)

where the equality in the second line holds because of the polynomial definition
of a matrix function in Definition 3.3 and 𝑒1 is the first unit 𝑘-vector. This
reduces the approximation of 𝑓(𝐴)𝑏 to a computation of a smaller matrix
function 𝑓(𝐻 (𝑘)) and can yield good approximations even for 𝑘 ≪ 𝑛. If 𝐴 is
Hermitian then the Lanczos process (2.11) is applied and the equation reads
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𝑓(𝐴)𝑏 ≈ 𝑉 (𝑘)𝑓(𝑇 (𝑘))𝑒1 ‖𝑏‖. The approximation (3.11) can be interpreted as a
polynomial approximation. The following proposition from [FS08, Proposition
2] is a generalisation of [Saa92, Theorem 3.3].

Proposition 3.14. Let the columns of 𝑉 (𝑘) form an orthonormal basis of
𝒦𝑘(𝐴, 𝑏) and 𝐻 (𝑘) = (𝑉 (𝑘))𝐻𝐴𝑉 (𝑘). Then the approximation 𝑉 (𝑘)𝑓(𝐻 (𝑘))𝑒1 ‖𝑏‖
represents a polynomial approximation 𝑝(𝐴)𝑏 to 𝑓(𝐴)𝑏 in which the polynomial
𝑝 of degree 𝑘 − 1 interpolates 𝑓 in the Hermite sense on the set of eigenvalues
of 𝐻(𝑘).

Proof. With the polynomial definition of a matrix function in Section 3.1.2,
𝑝(𝐻 (𝑘))𝑏 = 𝑓(𝐻 (𝑘))𝑏 for the polynomial 𝑝 ∈ Π𝑘−1 that interpolates 𝑓 on the
eigenvalues of 𝐻 (𝑘) in the Hermite sense. Considering that

𝑝(𝐴)𝑏 = 𝑉 (𝑘)𝑝(𝐻 (𝑘))𝑒1 ‖𝑏‖

for all polynomials of degree ≤ 𝑘 − 1 finishes the proof.

If 𝑓 is sufficiently smooth and the matrix 𝐴 is Hermitian then a bound on
the error of the approximation can be obtained. Consider the implicitly built
polynomial 𝑝 ∈ Π𝑘−1 of the Lanczos process that approximates the function
𝑓 in such a way that ‖𝑓(𝐴)𝑏 − 𝑝(𝐴)𝑏‖2 is small. By Proposition 3.14 the
polynomial 𝑝 interpolates 𝑓 in the Ritz values. The next proposition assumes
a general polynomial interpolating 𝑓 .

Proposition 3.15. [Esh+02, Lemma 2] For any set of distinct interpolation
points 𝜇𝑖, 𝑖 = 1, … , 𝑘 and for any function 𝑓 ∶ ℝ → ℂ𝑘, let 𝑝 ∈ Π𝑘−1 satisfy
𝑝(𝜇𝑖) = 𝑓(𝜇𝑖) for 𝑖 = 1, … , 𝑘 and 𝑞(𝑧) = ∏𝑘

𝑗=1(𝑧 − 𝜇𝑗). If all 𝜇𝑖 and all
eigenvalues 𝜆𝑖 of the Hermitian matrix 𝐴 are contained in the interval [𝛼, 𝛽]
then the following estimate holds

‖𝑞(𝐴)𝑏‖2 inf
𝑡∈[𝑎,𝑏]

∣𝑓
(𝑘)(𝑡)
𝑘! ∣ ≤ ‖𝑓(𝐴)𝑏 − 𝑝(𝐴)𝑏‖2 ≤ ‖𝑞(𝐴)𝑏‖2 sup

𝑡∈[𝑎,𝑏]
∣𝑓

(𝑘)(𝑡)
𝑘! ∣ .

Proof. For interpolating polynomials there exist values 𝜁𝑖 ∈ [𝛼, 𝛽] (cf. [SB93,
Theorem 2.1.4.1]) such that

𝑓(𝜆𝑖) − 𝑝(𝜆𝑖) = 𝑞(𝜆𝑖)
𝑓 (𝑘)(𝜁𝑖)

𝑘! .
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By expressing 𝑏 as 𝑏 = ∑𝑛
𝑖=1 𝛾𝑖𝑤𝑖, where the 𝑤𝑖 are orthogonal eigenvectors of

𝐴 for the eigenvalue 𝜆𝑖, the equation

‖𝑓(𝐴)𝑏 − 𝑝(𝐴)𝑏‖2
2 =

𝑛
∑
𝑖=1

𝛾2
𝑖 (𝑓(𝜆𝑖) − 𝑝(𝜆𝑖))2

=
𝑛

∑
𝑖=1

𝛾2
𝑖 𝑞(𝜆𝑖)2 (𝑓 (𝑘)(𝜁𝑖)

𝑘! )
2

holds. Bounding this proves the proposed inequality.

In this Krylov subspace approximation method, memory consumption grows
with 𝑘, since the whole matrix 𝑉 (𝑘) has to be stored. Thus, if 𝑘 becomes
large then it is likely to run out of memory. Even in the Hermitian case this
holds true, but a two-pass method can circumvent the memory problems. In
the first run, the Krylov subspace is built using the Lanczos process, which
allows to discard all but the last two columns of 𝑉 (𝑘). After this run 𝑇 (𝑘)

is available and 𝑓(𝑇 (𝑘))𝑒1 ‖𝑏‖ = 𝑦 can be computed. In the second run the
Lanczos process is used again to rebuild the columns of 𝑉 (𝑘) and the product
𝑉 (𝑘)𝑦 = 𝑉 (𝑘)𝑓(𝑇 (𝑘))𝑒1 ‖𝑏‖ is obtained step by step.

3.3.2 Rational Approximation for 𝑓(𝐴)𝑏
Another way for computing 𝑓(𝐴)𝑏 opens up if the function 𝑓 is given as or
approximated by a rational approximation that is written as a partial fraction
expansion

𝑓(𝐴)𝑏 ≈ 𝜋(𝐴)𝑏 +
𝑛

∑
𝑗=1

𝜔𝑗(𝐴 − 𝜎𝑗𝐼)−1𝑏

assuming a multiplicity of 1 for every pole. The expression 𝜋(𝐴)𝑣, 𝜋 a poly-
nomial, is evaluated straightforwardly, whereas the second term needs more
effort. For each 𝑗 a system (𝐴 − 𝜎𝑗𝐼)−1𝑏 has to be solved. At first sight, this
looks far too expensive, but a property of Krylov subspaces comes in handy
at this point. If solved separately, a solver for system 𝑗 builds up the Krylov
subspace 𝒦𝑘(𝐴 − 𝜎𝑗𝐼, 𝑏) in step 𝑘 of the iteration. But 𝒦𝑘(𝐴 − 𝜎𝑗𝐼, 𝑏) is
identical to 𝒦𝑘(𝐴, 𝑏) as we explain in Chapter 5. Therefore, in principle the
iterates of all systems can be updated by performing just one multiplication
with 𝐴 using a Krylov subspace method, e.g. CG. Whether this approach is
feasible still depends on the algorithmic formulation of the method. We will
elaborate on this in Chapter 5.
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In the following, 𝜋 is neglected. The 𝑘-th iterate 𝑥(𝑘) for 𝑓(𝐴)𝑏 is obtained
as

𝑥(𝑘) =
𝑚

∑
𝑗=1

𝜔𝑗𝑥(𝑘)
𝑗 ∈ 𝒦𝑘(𝐴, 𝑏),

where 𝑥(𝑘)
𝑗 denotes the 𝑘-th iterate of system 𝑗. This linear combination gives

an approximation to the rational approximation for 𝑓(𝐴)𝑏.
In general, the above gives a different approximation to 𝑓(𝐴)𝑏 than the one

obtained by (3.11). But if 𝑓 itself is a rational function given by

𝑓(𝑧) =
𝑚

∑
𝑗=1

𝜔𝑗
𝑧 − 𝜎𝑗

and a Krylov subspace method, which imposes a Galerkin condition, is used
to obtain the 𝑥(𝑘)

𝑗 then the following holds

𝑓(𝐴)𝑏 =
𝑚

∑
𝑗=1

𝜔𝑗(𝐴 − 𝜎𝑗𝐼)−1𝑏

≈
𝑚

∑
𝑗=1

𝜔𝑗𝑉 (𝑘)(𝐻 (𝑘) − 𝜎𝑗𝐼)−1𝑒1 ‖𝑏‖2

= 𝑉 (𝑘)𝑓(𝐻 (𝑘))𝑒1 ‖𝑏‖2 .

This shows that evaluating the partial fraction expansion in a multi-shift
method may coincide with the Krylov subspace approximation (3.11).



4 Applications
In the following we will introduce two categories of applications in which fami-
lies of shifted systems with multiple right-hand sides (1.1) that we repeat here
for convenience

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗, 𝑖 = 1, … , 𝑠, 𝑗 = 1, … , 𝑚. (1.1)
have to be solved. The first one is the simulation of subatomic particles in
lattice QCD. We describe only the basics that are needed to understand the
nature of the operator for which (1.1) has to be solved. An introduction to
lattice QCD can be found in [GL10] or see [Fro+13a; Kah09] for a summary
using a notation more familiar for readers with a mathematical background.
The second application is the solution of ill-posed inverse problems that arise
in a plethora of applications. Roughly speaking, they describe problems in
which, based on a physical model and some measurements, an entity or object
is to be (re-)constructed. We introduce image deconvolution as an example
in image restoration [PO02] and describe the involved linear systems. More
details on inverse problems can be found in [Tar04] and [Isa98].

4.1 Lattice Quantum Chromodynamics
Quantum Chromodynamics (QCD) is a theory that is part of the standard
model of particle physics. It is a quantum field theory in four-dimensional
space-time and describes the strong force, i.e. the interaction of quarks and
gluons. The particles that these can form are called hadrons and two commonly
known representatives are neutrons and protons. In this theory massless gluons
bearing a colour charge mediate the strong interactions between quarks. This
colour charge describes a property of quarks and can take one of the arbitrarily
labelled colours red, green and blue. Besides the colour charge, quarks have
an electrical charge, a spin and a mass and come in the six flavours up, down,
charm, strange, top and bottom. Since gluons carry a colour charge, they
do not only mediate the strong interaction but also take part in it. In the
numerical simulations the quarks can be represented by a fermionic field, the
Dirac field, whereas the gluons are represented as a vector field, the gauge
field.
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4.1.1 The Wilson-Dirac Operator

When it comes to simulations, a discretisation onto lattice sites in a finite
space is needed. In lattice QCD such a discretisation onto a four-dimensional
euclidean space-time lattice with periodic boundary conditions is used. The
lattice has the size 𝑛𝑡 × 𝑛3

𝑠 where 𝑛𝑡 is the number of lattice points in the
dimension of time and 𝑛𝑠 is the number of lattice points in each dimension of
space. Thus, the lattice sites can be indexed by a four-tuple 𝑥 with

𝑥 = (𝑖, 𝑗, 𝑘, 𝑙) ∈ ℒ ∶= (ℤ/𝑛𝑡ℤ) × (ℤ/𝑛𝑠ℤ)3.

The Dirac field describing the quarks lives on the lattice sites and is usually
written 𝜓(𝑥). At each lattice site the field 𝜓 consists of a combination of 4 spin
and 3 colour components resulting in 12 independent complex variables. Thus,
𝜓 is a function 𝜓 ∶ ℒ → ℂ12 with 𝑥 ↦ 𝜓(𝑥). Moreover, we define 𝜓𝜎(𝑥) ∈ ℂ3

to contain only the three colour components at the lattice site 𝑥 for spin index
𝜎 ∈ {0, 1, 2, 3}.

The gluons on the other hand live on the links between neighbouring lattice
sites. To describe the coupling between the lattice sites we need a few more
definitions.

First, we define directions 𝜇𝑖 ∈ ℒ for 𝑖 = 0, … , 3 on the lattice as

𝜇0 = (1, 0, 0, 0), 𝜇1 = (0, 1, 0, 0),
𝜇2 = (0, 0, 1, 0) and 𝜇3 = (0, 0, 0, 1).

Therefore, the 8 neighbours of 𝑥 ∈ ℒ are the distinct points 𝑥 ± 𝜇𝑖 with
𝑖 = 0, … , 3.

Second, the continuum gauge fields from QCD can be represented on the lat-
tice by matrices 𝑈𝑥

𝜇 ∈ 𝑆𝑈(3), the so-called gauge links or link variables. Here,
𝑆𝑈(3) denotes the set of all unitary complex 3 × 3-matrices with determinant
1. Each 𝑈𝑥

𝜇 links the lattice site 𝑥 with 𝑥 + 𝜇 and (𝑈𝑥
𝜇)−1 = (𝑈𝑥

𝜇)𝐻 links 𝑥 + 𝜇
with 𝑥 vice versa. The set

𝒰 = {𝑈𝑥
𝜇 ∶ 𝑥 ∈ ℒ, 𝜇 ∈ {𝜇0, 𝜇1, 𝜇2, 𝜇3}} (4.1)

containing all gauge links 𝑈𝑥
𝜇 is called a configuration. In Figure 4.1 a two-

dimensional slice of a lattice with the gauge links from the configuration 𝒰 is
shown to clarify the notation.

Third, the theory has to respect certain spin symmetries. These are modelled
using the basis 𝛾0, 𝛾1, 𝛾2, and 𝛾3 of a vector space that forms a Clifford algebra,
i.e.

𝛾𝑖𝛾𝑗 + 𝛾𝑗𝛾𝑖 = 𝛿𝑖𝑗.
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Figure 4.1: Depiction of a two-dimensional slice of a configuration 𝒰 =
{𝑈𝑥

𝜇} with 𝑥 ∈ ℒ and 𝜇, 𝜈 ∈ {𝜇0, 𝜇1, 𝜇2, 𝜇3} used in lattice QCD.

The elements of this Clifford algebra can be represented as matrices 𝛾𝑖 ∈ ℂ4×4

with

𝛾0 ∶= [
+𝑖

+𝑖
-𝑖

-𝑖
] , 𝛾1 ∶= [

-1
+1

+1
-1

] , 𝛾2 ∶= [
+𝑖

-𝑖
-𝑖

+𝑖
] , 𝛾3 ∶= [

+1
+1

+1
+1

]

and we additionally define

𝛾5 ∶= 𝛾0𝛾1𝛾2𝛾3 = [
+1

+1
-1

-1
] .

Fourth, the continuum theory involves derivatives that can be discretised by
finite differences. To this purpose we define the forward finite differences

(Δ𝜇𝜓𝜎)(𝑥) = 𝑈𝑥
𝜇𝜓𝜎(𝑥 + 𝜇) − 𝜓𝜎(𝑥)

𝑎

and the backward finite differences

(Δ𝜇𝜓𝜎)(𝑥) = 𝜓𝜎(𝑥) − (𝑈𝑥−𝜇
𝜇 )𝐻𝜓𝜎(𝑥 − 𝜇)

𝑎 .

Herein, 𝑎 denotes the lattice spacing, i.e. the physical distance between neigh-
bouring lattice sites.
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Finally, we can define the nearest neighbour coupling on the lattice. For this
we use the Wilson-Dirac operator which is a discretisation of the continuum
Dirac operator and is given by

�̃�𝑊 ∶= 𝑚0
𝑎 𝐼12 + 1

2
3

∑
𝑖=0

(𝛾𝑖 ⊗ (Δ𝜇𝑖
+ Δ𝜇𝑖) − 𝑎𝐼4 ⊗ Δ𝜇𝑖

Δ𝜇𝑖) . (4.2)

Again, 𝑎 is the lattice spacing and 𝑚0 is a mass parameter which can be ad-
justed to tune the physical mass of the simulated quark flavour. This version
of the Wilson-Dirac operator is not the only way to represent the continuum
QCD theory on a lattice. For instance, the Wilson-Dirac operator can be im-
proved to reduce the discretisation error from 𝒪(𝑎) to 𝒪(𝑎2). Furthermore,
there are some more continuum QCD properties that could be represented on
the lattice. These may have advantages from the point of view of modelling in
physics or numerical simulation, but describing them is out of scope of this the-
sis. Thus, here we only use the Wilson-Dirac operator �̃�𝑊 from equation (4.2)
and just note that in Section 4.1.2 and Section 4.1.4 other lattice operators
could be used.

For practical purposes, the Wilson-Dirac operator �̃�𝑊 can be represented
by a matrix which takes the form 𝐷𝑊 ∈ ℂ𝑛×𝑛 with 𝑛 = 12𝑛𝑡𝑛3

𝑠, see [Fro+13a].
In Figure 4.2a the spectrum of a Wilson-Dirac operator with 𝑛𝑡 = 𝑛𝑠 = 4 is
displayed and the sparsity pattern of the associated matrix 𝐷𝑊 can be found
in Figure 4.2b. Note that for relevant quark masses 𝑚0 all the eigenvalues of
the Wilson-Dirac operator 𝐷𝑊 have positive real part.

(a) Spectrum of 𝐷𝑊 plotted in ℂ (b) Sparsity pattern of 𝐷𝑊

Figure 4.2: Example of a Wilson-Dirac operator 𝐷𝑊 with 𝑚0 = 0 and
𝑛𝑡 = 𝑛𝑠 = 4.

One important property of the Wilson-Dirac operator worth mentioning and
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used later is the so-called 𝛾5-symmetry. For �̃�𝑊 it can be stated as

(𝛾5�̃�𝑊 )𝐻 = 𝛾5�̃�𝑊 .
For the associated matrix 𝐷𝑊 with Γ5 ∶= 𝐼𝑛𝑡𝑛3𝑠

⊗ 𝛾5 ⊗ 𝐼3 the symmetry

(𝐷𝑊 Γ5)𝐻 = 𝐷𝑊 Γ5 (4.3)

holds.
In the following we present three applications in lattice QCD that need to

solve systems with multiple right-hand sides, multiple shifts or both.

4.1.2 Hadron Spectroscopy

One of Lattice QCD’s purposes is to compute observables in order to use the
theory for predictions. Amongst these observables are the masses of hadrons
like the mass of the neutron. Estimating these masses in lattice QCD com-
putations goes under the name hadron spectroscopy. In computations of this
kind so-called quark propagators have to be computed. Basically, these are
the 12 columns of the inverse of the Wilson-Dirac operator 𝐷−1

𝑊 belonging to
a single lattice site 𝑚. Therefore, the task is to solve the block system

𝐷𝑊 𝜓12 = 𝜙12

where 𝜙12 = 𝑒𝑚 ⊗ 𝐼12 and 𝑒𝑚 is the 𝑚-th unit 𝑛𝑡𝑛3
𝑠-vector. The 𝑛 × 12-matrix

𝜙12 is called a point source.
Other computations of observables involve multiple random sources at ran-

dom lattice sites, hence the system

𝐷𝑊 𝜓𝑘 = 𝜙𝑘

with 𝜓𝑘, 𝜙𝑘 ∈ ℂ𝑛×𝑘 needs to be solved.

4.1.3 The Overlap Operator

Another important property of the continuum QCD theory is the so-called
chiral symmetry for the massless operator 𝐷 that can be expressed as

𝐷𝛾5 + 𝛾5𝐷 = 0. (4.4)

The Wilson-Dirac operator, however, does not fulfil this relation. Ginsparg
and Wilson suggested [GW82] to relax the requirement (4.4) for an operator
𝐷𝐿 on the lattice to

𝐷𝐿𝛾5 + 𝛾5𝐷𝐿 = 𝑎𝐷𝐿𝛾5𝐷𝐿 (4.5)
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which is called the Ginsparg-Wilson equation. For 𝑎 → 0 the right-hand side
vanishes. In [Lüs98] Lüscher showed that (4.5) implies a symmetry which can
be interpreted as a chiral symmetry on the lattice even for 𝑎 > 0. An operator

𝐷𝑜𝑣 = 1
𝑎(𝐼 + Γ5sign(Γ5𝐷𝑊 ))

satisfying (4.5) was presented by Neuberger [Neu98; Neu00] and is called the
overlap operator. Using the 𝛾5-symmetry (4.3) and the inverse square root
relation of the sign function of equation (3.4) from Section 3.1.5 we get

𝐷𝑜𝑣 = 1
𝑎 (𝐼 + Γ5Γ5𝐷𝑊 ((Γ5𝐷𝑊 )2)−1/2)

= 1
𝑎 (𝐼 + 𝐷𝑊 (Γ5𝐷𝑊 Γ5𝐷𝑊 )−1/2)

= 1
𝑎 (𝐼 + 𝐷𝑊 (𝐷𝐻

𝑊 𝐷𝑊 )−1/2) .

Since spec (𝐷𝐻
𝑊 𝐷𝑊 ) ∈ ℝ+, the square root is well defined on the spectrum

of 𝐷𝐻
𝑊 𝐷𝑊 and could be computed with the methods presented in Chapter 3.

Despite 𝐷𝑊 being sparse, the matrix sign(𝛾5𝐷𝑊 ) in general is not. Thus,
explicitly computing the matrix 𝐷𝑜𝑣 is impractical. The task in simulations
though, is to solve systems

𝐷𝑜𝑣𝜓 = 𝜙. (4.6)
This can be achieved using an inner-outer scheme, thereby avoiding the need
to compute 𝐷𝑜𝑣 explicitly. An outer iterative method building the Krylov
subspace 𝒦𝑘(𝐷𝑜𝑣, 𝜙) is applied to solve (4.6). Whenever the outer method
needs to perform a multiplication with the overlap operator, an inner iterative
method is used to approximate the matrix-vector product

𝐷𝑊 (𝐷𝐻
𝑊 𝐷𝑊 )−1/2𝜒 = 𝜏. (4.7)

In Figure 4.3 we display the spectrum and sparsity pattern of 𝐷𝐻
𝑊 𝐷𝑊 for the

same Wilson-Dirac operator as in Figure 4.2. Note that in actual computations
𝐷𝐻

𝑊 𝐷𝑊 is not computed explicitly. The matrix-vector product 𝐷𝐻
𝑊 𝐷𝑊 𝜓 is

computed via two successive matrix-vector products 𝐷𝐻
𝑊 (𝐷𝑊 𝜓) instead. Ad-

ditionally, the identity 𝐷𝐻
𝑊 𝜑 = Γ5𝐷𝑊 Γ5𝜑 can be used.

4.1.4 The Rational Hybrid Monte Carlo Algorithm

When it comes to dynamical simulations QCD shows its numerical complexity.
Besides computing observables like in Section 4.1.2 the most time consuming
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Figure 4.3: Example of 𝐷𝐻
𝑊 𝐷𝑊 for a Wilson-Dirac operator 𝐷𝑊 with

𝑚0 = 0 and 𝑛𝑡 = 𝑛𝑠 = 4.

computation in lattice QCD is the generation of gauge configurations. This is
done using the Hybrid Monte Carlo (HMC) algorithm. In this algorithm the
system

(𝐷𝐻
𝑊 𝐷𝑊 )𝜓 = 𝜙 (4.8)

for multiple random vectors 𝜙 has to be solved. If quarks of different mass
are simulated then HMC cannot be applied [Cla06]. The Rational Hybrid
Monte Carlo (RHMC) algorithm can be regarded as a generalisation of the
HMC algorithm that is able to simulate multiple quark masses. In the RHMC
algorithm the equation (4.8) is generalised to

(𝐷𝐻
𝑊 𝐷𝑊 )𝛼𝜓 = 𝜙 (4.9)

with −1 ≤ 𝛼 ≤ 1. Thus, we end up with a family of shifted systems with mul-
tiple random right-hand sides when for approximating (𝐷𝐻

𝑊 𝐷𝑊 )𝛼 a rational
function is used, hence the name. More details of the RHMC algorithm can
be found in [GL10; Ken06] and [Cla06].

4.2 Inverse Problems
The term inverse problem refers to mathematical problems that fall into two
tightly linked categories. In the problems in the first category one tries to
construct an object or its properties based on the desired outcome of measure-
ments of the object. One example falling into this category is the computation
of an aerodynamic shape like a wing meeting some specifications. While re-
taining constraints on the structure a solution maximising lift or minimising
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drag is sought [Dul+12]. The second category consists of problems where an
existing object or its properties have to be reconstructed from observed mea-
surements. The following examples are just a small selection from the vast
amount of applications this category comprises:

• Measuring seismic waves in geophysical exploration, for example for de-
termining the inner structure of a volcano [Isa98], called the inverse seis-
mic problem.

• Using the information gathered in a couple of two-dimensional x-ray
images to compute a three-dimensional model of the body in computed
tomography [BP06].

• Finding obstacles by measuring the reflections of acoustic or electromag-
netic waves in the inverse scattering problem [Isa98].

In general for inverse problems the equation

𝐴(𝑥) = 𝑏 (4.10)

is considered. Here, 𝐴 represents a physical model like in the examples above,
the right-hand side 𝑏 ∈ 𝐵 is given for example by measurements and 𝑥 ∈ 𝑋 is
to be computed. The operator 𝐴 is a continuous mapping from 𝑋 to 𝐵 which
both are subsets of Banach spaces. But the important property of 𝐴, which
renders solving system (4.10) difficult, is that 𝐴 is not continuously invertible.

In many applications 𝐴 can be linearised and discretised or is already given
that form. Thus, from now on we assume the operator to be a linear map
from 𝕂𝑛 to 𝕂𝑚, i.e. equation (4.10) becomes 𝐴𝑥 = 𝑏 with 𝐴 ∈ 𝕂𝑚×𝑛, 𝑥 ∈
𝕂𝑛 and 𝑏 ∈ 𝕂𝑚. Usually, the system 𝐴𝑥 = 𝑏 is overdetermined or (close
to) singular because of the lack of continuous invertibility of the underlying
infinite-dimensional operator. Hence, an inverse operator 𝐴−1 does not exist or
𝐴 is ill-conditioned. In the following we define well- and ill-posed problems and
present one method to compute solutions to (4.10). For more details we refer
to [Isa98]. Afterwards we finish this section with a deconvolution technique as
an example application in image restoration.

4.2.1 Ill-Posed Inverse Problems

The next definition allows a classification of inverse problems.

Definition 4.1. An inverse problem (4.10) is called well-posed if
• for all 𝑏 ∈ 𝐵 a solution 𝑥 ∈ 𝑋 exists,
• for any 𝑏 ∈ 𝐵 this solution is unique and
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• ‖𝑏 − ̃𝑏‖ → 0 implies ‖𝑥 − ̃𝑥‖ → 0 for any 𝑥 ∈ 𝑋 and 𝑏 ∈ 𝐵.
If any one of these conditions is not fulfilled then the problem is called ill-posed.

In applications with data stemming from physical measurements it is the
violation of the third condition that usually renders finding a solution for an
ill-posed inverse problem non-trivial. The right-hand side 𝑏 from measurements
can be regarded as exact data 𝑏⋆ being perturbed by some error 𝑒, s.t. 𝑏 = 𝑏⋆+𝑒
holds. Disregarding this and using methods unaware of the nature of the
problem might result in computing an approximate solution ̂𝑥 that is far off
the exact solution 𝑥⋆ for 𝐴𝑥⋆ = 𝑏⋆. The cause of this is the amplification
of the perturbation error during computations, which originates from the ill-
conditioned nature of 𝐴. That said, special methods are needed that can find
suitable approximate solutions to (4.10).

The idea for solving ill-posed inverse problems is to use regularisation, i.e.
instead of solving 𝐴𝑥 = 𝑏 we solve a modified equation. One commonly used
method is the so-called Tikhonov regularisation in which the minimisation
problem

𝑥𝜆 = argmin
𝑥

(‖𝑏 − 𝐴𝑥‖2
2 + 𝜆2 ‖𝑥‖2

2) (4.11)

has to be solved for some parameter 𝜆. Therefore, we have to solve

(𝐴𝐻𝐴 + 𝜆2𝐼)𝑥𝜆 = 𝐴𝐻𝑏 (4.12)

for 𝑥𝜆 with 𝜆 ∈ ℝ. It can be shown that 𝑥𝜆 converges to a solution 𝑥 of (4.10)
for 𝜆 → 0 [Isa98, Lemma 2.3.2]. Solving (4.12) with an appropriate parameter
𝜆 amounts to a trade-off between having a small residual norm for (4.10) but an
amplified perturbation error or having a larger residual norm whilst damping
the perturbation error. In Figure 4.5 on page 64 at the end of this section
we show the effect of a too small and too large regularisation parameter in an
example of image reconstruction. A large residual norm can be regarded as an
error introduced by the regularisation, hence called regularisation error.

The L-curve is a well-established criterion for choosing the regularisation
parameter 𝜆 balancing both norms in (4.11) [Han00]. The origin of its name
lies in the shape of the curve

𝜙 ∶ ℝ → ℝ2,
𝜆 ↦ 𝜙(𝜆) = (𝜙1(𝜆), 𝜙2(𝜆))

with 𝜙1(𝜆) = ‖𝑏 − 𝐴𝑥𝜆‖2 and 𝜙2(𝜆) = ‖𝑥𝜆‖2 in a log-log plot looking similar
to the letter L. As we can see in Figure 4.4 the L-curve has a distinct convex
corner for a parameter 𝜆𝐿𝐶. The analysis of the L-curve in [Han00] using the
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Figure 4.4: Example plot of residual norms plotted against solution norms
for solutions 𝑥𝜆 for different regularisation parameters 𝜆 resulting in an

L-curve.

singular value decomposition of 𝐴 reveals that solutions belonging to smaller
parameters 𝜆 < 𝜆𝐿𝐶 (vertical part of the L-curve) are dominated by pertur-
bation errors. On the other hand, parameters 𝜆 > 𝜆𝐿𝐶 (horizontal part of the
L-curve) correspond to solutions that are dominated by regularisation errors.
Thus, for solving (4.10) we compute the solutions 𝑥𝜆𝑖

for the family of shifted
systems (4.12) for multiple 𝜆𝑖, e.g. 𝜆𝑖 ∈ [10−6, 10]. Afterwards, the curve 𝜙
is approximated for example by spline interpolation using the points 𝜙(𝜆𝑖).
Then, e.g. the curvature of 𝜙 can be used to compute

𝜆𝐿𝐶 = argmax
𝜆

(𝜙′
𝑥(𝜆)𝜙″

𝑦(𝜆) − 𝜙′
𝑦(𝜆)𝜙″

𝑥(𝜆)
(𝜙′

𝑥(𝜆)2 + 𝜙′
𝑦(𝜆)2)3/2 ) . (4.13)

Finally, equation (4.12) can be solved with 𝜆 = 𝜆𝐿𝐶 giving the solution 𝑥𝐿𝐶.

4.2.2 Image Deconvolution

The method described up to here, i.e. Tikhonov regularisation using the L-
curve criterion for determining an appropriate regularisation parameter, can
be applied to an important image restoration technique called deconvolution.
We will introduce briefly how digital images can be stored and describe how
deconvolution can restore blurred images. Afterwards, we describe how the
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Tikhonov regularisation can be applied to deconvolution and demonstrate it
on a few examples.

The retina in the human eye consists of three types of cone cells. These
contain distinct photoreceptor proteins resulting in maximum respondence to
specific wavelengths of light. Thus, by a combination of three colours in differ-
ent intensities it is possible to simulate almost all the colours the human eye
can perceive. A convenient choice are the distinctive colours red, green and
blue. So, a colour image of dimension 𝑚 × 𝑛 can be regarded as a map

𝑃 ∶ 𝑀 × 𝑁 × 𝐶 → ℝ,
(𝑥, 𝑦, 𝑐) ↦ 𝑃𝑐(𝑥, 𝑦) (4.14)

with 𝑀 ∶= {0, 1, … , 𝑚 − 1}, 𝑁 ∶= {0, 1, … , 𝑛 − 1} and 𝐶 ∶= {𝑟, 𝑔, 𝑏}. We
call 𝑃(𝑥, 𝑦) ∶= (𝑃𝑟(𝑥, 𝑦), 𝑃𝑔(𝑥, 𝑦), 𝑃𝑏(𝑥, 𝑦)) a pixel at position (𝑥, 𝑦). The
three colour components of a pixel can take an intensity in the interval [0, 1]
each, so 𝑃𝑐(𝑥, 𝑦) ≤ 0 is interpreted ad the colour component 𝑐 taking the
lowest intensity whereas a value of ≥ 1 corresponds to maximum intensity.
For example 𝑃(𝑥, 𝑦) = (0, 0, 0) corresponds to black, 𝑃(𝑥, 𝑦) = (1, 1, 1) to
white and 𝑃(𝑥, 𝑦) = (1, 0, 0) to red. According to (4.14) we can represent 𝑃𝑐
for a fixed colour 𝑐 by a matrix

𝑃𝑐 ∈ ℝ𝑚×𝑛

with 𝑥 ∈ {1, 2, … , 𝑛} and 𝑦 ∈ {1, 2, … , 𝑚}. If we have no colour information,
i.e. just a greyscale image, we simply write 𝑃 .

Images can be corrupted in many ways and even blur in an image can have
multiple causes. One reason can be that the camera was moved during expo-
sure of the picture which leaves distinctive artefacts and is called motion blur.
Another cause for blur is optical aberration, i.e. in the optical system produc-
ing the image the light from one point of the object was not focussed on one
single point of the imaging device. In a digital camera this might be caused
by defocus. Regardless the cause, having a blurred image raises the question if
the image can be enhanced or even more if the blurring can be reversed and a
non-blurred image could be computed. Computationally cheap techniques like
unsharp masking can be used to increase the apparent sharpness of a blurred
image without trying to reconstruct the non-blurred original. In some appli-
cations, however, it is desirable to compute an approximation that is as close
as possible to the non-blurred original even though it is computationally chal-
lenging. One use case was the distortion of early images of the Hubble Space
Telescope that were less sharp than expected. The blurring was caused by a
flawed mirror but could be partly compensated for by deconvolution methods
until the repair of the mirror.
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Some image corruption like blurring can be regarded as the result of a discrete
convolution of the original uncorrupted image with a shift invariant kernel.
In the case of blurring the kernel is called a point spread function (PSF).
The PSF 𝐾 is given as a matrix 𝐾 ∈ ℝ𝑚𝑘×𝑛𝑘 and a centre (𝑚𝑐, 𝑛𝑐) with
𝑚𝑐 ∈ {1, … , 𝑚𝑘} and 𝑛𝑐 ∈ {1, … , 𝑛𝑘}. A common choice is Gaussian blur
where 𝐾 is given by

𝐾 = (𝑘𝑔,ℎ) with 𝑘𝑔,ℎ = 1
2𝜋𝜎2 𝑒− (𝑔−𝑚𝑐)2+(ℎ−𝑛𝑐)2

2𝜎2 (4.15)

and 𝜎 is the standard deviation of the Gaussian distribution. As an example
with 𝑚𝑘 = 𝑛𝑘 = 5, 𝑛𝑐 = 𝑚𝑐 = 3 and 𝜎 = 1 we get

𝐾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0029 0.0131 0.0215 0.0131 0.0029
0.0131 0.0585 0.0965 0.0585 0.0131
0.0215 0.0965 0.1592 0.0965 0.0215
0.0131 0.0585 0.0965 0.0585 0.0131
0.0029 0.0131 0.0215 0.0131 0.0029

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For colour images the kernel 𝐾 is applied to all colour channels 𝑃𝑐. Now, we
can define the discrete convolution of a greyscale image 𝑃 = (𝑝𝑖,𝑗) ∈ ℝ𝑚×𝑛

with the point spread function 𝐾 = (𝑘𝑖,𝑗) as

(𝑃 ∗ 𝐾) = 𝐵 = (𝑏𝑖,𝑗) with 𝑏𝑖,𝑗 = ∑
𝑔=1,…,𝑛𝑘
ℎ=1,…,𝑚𝑘

𝑘𝑔,ℎ ⋅ 𝑝𝑖+𝑔−𝑚𝑐,𝑗+ℎ−𝑛𝑐
. (4.16)

For deblurring purposes it turns out to be favourable to use reflective boundary
conditions: We map those indices 𝑖 + 𝑔 − 𝑚𝑐 ∉ {1, 2, … , 𝑚} and 𝑗 + ℎ − 𝑛𝑐 ∉
{1, 2, … , 𝑛} respectively to the according ’reflected’ pixel in the image. Thus,
if 𝑖 + 𝑔 − 𝑚𝑐 < 1 then we use 2 − (𝑖 + 𝑔 − 𝑚𝑐) as index and if 𝑖 + 𝑔 − 𝑚𝑐 > 𝑚
we use 2𝑚 − (𝑖 + 𝑔 − 𝑚𝑐). The index 𝑗 + ℎ − 𝑛𝑐 is mapped in the same way.

If we reshape the image 𝑃 ∈ ℝ𝑚×𝑛 to a vector 𝑥 = vec(𝑃 ) ∈ ℝ𝑚𝑛 then the
convolution in equation (4.16) represents a matrix-vector product and we refer
to the convolution operator as a matrix 𝐴 which in general is ill-conditioned.
Hence, the convolution can be written as 𝐴𝑥 = 𝑏 and deconvolution is the
process of solving this system for a given reshaped blurred image 𝑏 = vec(𝐵).
The advantage of this approach over an FFT-based approach is that the kernel
𝐾 as we introduced it not necessarily has to be uniform across the whole image
so that a wider class of problems can be addressed.

Now, imagine that we start with a blurred colour image 𝐵 = [𝑏𝑟|𝑏𝑔|𝑏𝑏] and we
want to reverse the process that led to the blurred image. Note that we assume
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that the colour channels are already reshaped as vectors. In the best case the
PSF of the blurring is known, e.g. from knowledge of the optical apparatus
producing the image like for the Hubble Space Telescope. Otherwise, it might
be estimated by analysing the blurred image(s) especially if motion blur caused
the image corruption [ZŠM12], or it might simply be guessed. Anyhow, we end
up with a matrix 𝐴 representing the blurring operation if we assume that all
colour channels are blurred in the same way. For simplicity, we assume this
now, although it is not necessarily true, for example for chromatic aberration.
So, to solve the deconvolution problem we need to solve the block system
𝐴𝑋 = 𝐵 where 𝑋 = [𝑥𝑟|𝑥𝑔|𝑥𝑏] is the original non-blurred image. Since this
is an ill-posed inverse problem we actually have to solve the family of shifted
systems with multiple right-hand sides

(𝐴𝐻𝐴 + 𝜆2𝐼)𝑋𝜆 = 𝐴𝐻𝐵 (4.17)
for a couple of parameters 𝜆. Moreover, if we have multiple images of the
same dimensions and which the same convolution operator 𝐴 acted upon then
the right-hand side in equation (4.17) consists of not just three columns. If
we have 𝑛 images we end up with 𝐵 having 3𝑛 columns allowing to compute
the optimal regularisation parameter for all images and colour channels at the
same time.

We finish this section with two examples for image deblurring. First, we
demonstrate the effect of a too small and too large regularisation parameter
in Figure 4.5. We applied a mild amount of Gaussian Blur (4.15) with 𝑚𝑘 =
𝑛𝑘 = 11 and 𝑚𝑐 = 𝑛𝑐 = 6 to the original image. As can be seen in the zoomed
in detailed images a good choice of 𝜆 is able to remove most of the blur and
reconstruct some details. If 𝜆 is chosen too small then the perturbation error
is amplified and dominates the image. Photos taken with a digital camera
always have a certain amount of noise resulting in some perturbation error.
The noise originates from the construction of the sensor. On the other hand,
if a too big 𝜆 is chosen then the computed image is too smooth and almost
indistinguishable from the blurred image.

In Figure 4.6 we demonstrate the ability of the deconvolution technique
described before to reconstruct an image in which the text was blurred beyond
recognition. As it is pointed out in [Han00], the L-curve criterion sometimes
chooses a regularisation parameter that is too small. Thus, the perturbation
error still dominates the image. They also point out that this is mostly caused
by too smooth right-hand sides. In our example we computed the optimal 𝜆
in the following way. First, we solved (4.17) for a range of 𝜆 from 10−6 to
101. For finding the corner in the L-curve we did not use (4.13). Instead,
we just computed the angle between two consecutive line segments in the L-
curve log-log plot. The largest of these angles was assumed to be the corner
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(a) Original (b) Blurred

(c) Original details (d) Blurred details

(e) 𝜆 too small (f) Optimal 𝜆 (g) 𝜆 too big

Figure 4.5: The effect of the regularisation parameter on the resulting
image.

of the L-curve. After finding this corner we successively check the computed
solutions 𝑥𝜆 for larger parameters 𝜆 for which the L-curve is still convex and
stop as soon as it turns concave. This amounts to following the L-curve from
the corner to the right into the horizontal part. In our experiments this turned
out to result in a sufficiently good choice of 𝜆.

A last aspect worth mentioning for deblurring is the problem of scaling the
computed image 𝑋 = [𝑥𝑟|𝑥𝑔|𝑥𝑏]. Since the vectors 𝑥𝑟, 𝑥𝑔 and 𝑥𝑏 can contain
outliers they should not be scaled s.t. the minimum maps to 0 and the maxi-
mum maps to 1. This would result in the relevant information to be squeezed
into a narrow band of mid-luminosity. It turned out that a decent scaling can
be achieved by computing the standard deviation and mean of the blurred
image and scale 𝑋 to have the same standard deviation and mean. The re-
maining values outside the interval [0, 1] are treated as outliers and set to 0
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and 1 respectively.
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(c) Corresponding L-curves (d) Reconstructed image

Figure 4.6: Deconvolution of an image containing text.





5 Krylov Subspace Methods for
Shifted Systems

In Chapter 4 we have seen a few applications in which solving families of shifted
linear systems with multiple right-hand sides is needed. One idea to solve this
family of systems (1.1) is to solve them for every right-hand side separately.
This leaves us with the task of solving the systems

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖 = 𝑏 (5.1)

where 𝐴 ∈ ℂ𝑛×𝑛, 𝑥, 𝑏 ∈ ℂ𝑛, the shifts 𝜎𝑖 ∈ ℂ and 𝑖 ∈ {1, 2, … , 𝑠}. In this
chapter we will present so-called multi-shift methods. The idea of these meth-
ods is to save computational work by using every matrix-vector multiplication
with the matrix 𝐴 for all 𝑠 systems instead of solving the systems individually.

For ease of notation throughout most of this chapter we only use the un-
shifted system 𝐴𝑥 = 𝑏 as well as one shift 𝜎 with the shifted system (𝐴+𝜎𝐼)𝑥 =
𝑏. Everything explained here can be trivially generalised to an arbitrary num-
ber of shifts. The algorithms in the following sections will use the 𝑠 shifts
𝜎1, … , 𝜎𝑠, though. This allows a discussion of their computational cost includ-
ing the dependence on the number of shifts.

Before introducing specific methods we give some theoretical background
on Krylov subspace methods for multi-shifted systems. For that matter, we
recall the discussion in Section 2.2 that Krylov subspace methods can be de-
fined by a sequence of polynomials and vice versa. In actual computations
the polynomials are usually not constructed explicitly but they provide some
insight into the multi-shifted methods. The polynomials 𝑝𝑘−1(𝑡) ∈ Π𝑘−1 and
𝑞𝑘(𝑡) = 1 − 𝑡𝑝𝑘−1(𝑡) ∈ Π𝑘 define a method via

𝑥(𝑘) = 𝑥(0) + 𝑝𝑘−1(𝐴)𝑟(0)

and

𝑟(𝑘) = 𝑞𝑘(𝐴)𝑟(0)

with 𝑟(0) = 𝑏 − 𝐴𝑥(0) and a starting vector 𝑥(0) ∈ ℂ𝑛.

67
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Suppose, now we want to solve the system

𝐴𝜎𝑥𝜎 = 𝑏

with 𝐴𝜎 = 𝐴 + 𝜎𝐼 . Again, we have a starting vector 𝑥(0)
𝜎 , an initial residual

𝑟(0)
𝜎 = 𝑏 − 𝐴𝜎𝑥(0)

𝜎 and thus iterates

𝑥(𝑘)
𝜎 = 𝑥(0)

𝜎 + 𝑝𝜎,𝑘−1(𝐴𝜎)𝑟(0)
𝜎

and residuals

𝑟(𝑘)
𝜎 = 𝑞𝜎,𝑘(𝐴𝜎)𝑟(0)

𝜎

defined by polynomials 𝑝𝜎,𝑘−1(𝑡) ∈ Π𝑘−1 and 𝑞𝜎,𝑘(𝑡) = 1 − 𝑡𝑝𝜎,𝑘−1(𝑡) ∈ Π𝑘.
The coefficients of the involved polynomials depend on the Krylov subspace

method, the matrix and the initial residual. Thus, we cannot expect the
polynomials 𝑝𝑘−1 and 𝑝𝜎,𝑘−1 or 𝑞𝑘 and 𝑞𝜎,𝑘 to be identical. However, if we
require having starting vectors such that the initial residuals 𝑟(0) and 𝑟(0)

𝜎 are
collinear with

𝑟(0)
𝜎 = 𝜌(0)

𝜎 𝑟(0) (5.2)
then an observation of utmost importance leading to the development of multi-
shift methods can be made. Namely, the Krylov subspaces 𝒦𝑘(𝐴, 𝑟(0)) and
𝒦𝑘(𝐴𝜎, 𝑟(0)

𝜎 ) are identical for all 𝑘 [PPV95], since

𝒦𝑘(𝐴𝜎, 𝑟(0)
𝜎 ) = {𝑥 ∈ ℂ𝑛 ∶ 𝑥 = 𝑝(𝐴𝜎)𝑟(0)

𝜎 , 𝑝 ∈ Π𝑘−1}
= {𝑥 ∈ ℂ𝑛 ∶ 𝑥 = 𝜌(0)

𝜎 𝑝(𝐴 + 𝜎𝐼)𝑟(0), 𝑝 ∈ Π𝑘−1}
= {𝑥 ∈ ℂ𝑛 ∶ 𝑥 = 𝑝(𝐴)𝑟(0), 𝑝 ∈ Π𝑘−1}
= 𝒦𝑘(𝐴, 𝑟(0)).

(5.3)

In other words, Krylov subspaces are shift-invariant. Equation (5.3) hints at
the important fact that the bases generated with the Lanczos or Arnoldi pro-
cess for 𝒦𝑘(𝐴, 𝑟(0)) and 𝒦𝑘(𝐴𝜎, 𝑟(0)

𝜎 ) are identical when equation (5.2) holds.
Thus, the initially mentioned idea of reusing the multiplications with the ma-
trix 𝐴 for all the shifted systems is backed by this.

We have seen that collinear initial residuals are vital for multi-shift meth-
ods exploiting the shift-invariant Krylov subspaces. Some methods even need
to maintain the collinearity for the 𝑘-th residual, e.g. the restarted shifted
GMRES method from [FG98]. What this means is that we have to have

𝑟(𝑘)
𝜎 = 𝜌(𝑘)

𝜎 𝑟(𝑘). (5.4)
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Therefore, the polynomial 𝑞𝜎,𝑘(𝑡) defining our shifted method needs to satisfy

𝜌(0)
𝜎 𝑞𝜎,𝑘(𝐴𝜎)𝑟(0) = 𝜌(𝑘)

𝜎 𝑞𝑘(𝐴)𝑟(0) (5.5)

and 𝑞𝜎,𝑘(0) = 1. In [Jeg96] a common framework based on these shifted poly-
nomials is investigated for some Krylov subspace methods like CG, BiCG and
BiCGStab. The polynomial 𝑞𝜎,𝑘 and scalar 𝜌(𝑘)

𝜎 exist if and only if 𝑞𝑘(−𝜎) ≠ 0
which was shown in [FG98, Lemma 2.1].

In Krylov subspace methods which impose the Ritz-Galerkin condition

𝑟(𝑘) = 𝑞(𝑘)(𝐴)𝑟(0) ⟂ 𝒦𝑘(𝐴, 𝑟(0))

we have

𝑟(𝑘)
𝜎 = 𝑞𝜎,𝑘(𝐴𝜎)𝜌(0)

𝜎 𝑟(0) ⟂ 𝒦𝑘(𝐴, 𝑟(0)) = 𝒦𝑘(𝐴𝜎, 𝑟(0)
𝜎 ).

Thus, equation (5.5) holds without further ado, since 𝑟(𝑘), 𝑟(𝑘)
𝜎 ∈ 𝒦𝑘+1(𝐴, 𝑟(0))∩

(𝒦𝑘(𝐴, 𝑟(0)))⟂. Moreover, since the shifted polynomials 𝑞𝜎,𝑘 naturally sat-
isfy the condition (5.5) we are essentially applying the same Krylov subspace
method to the shifted systems as we apply to the unshifted system. This,
for example, is the case in the methods we will present in Section 5.1 and
Section 5.2 which are both based on CG.

If, on the other hand, the Ritz-Galerkin condition does not hold true for the
Krylov subspace method on which one wants to base a multi-shifted method
then (5.5) will not hold in general. This is not a big deal as long as there is
no need to require (5.4). Having collinear initial residuals would still allow
for reusing the Krylov subspace 𝒦𝑘(𝐴, 𝑟(0)) for the shifted system. But if for
example the method needs to be restarted then it is essential that equation
(5.4) holds. A GMRES based method that needs restarts to limit the storage
requirements and cost of reorthogonalisation can be found, for instance, in
[FG98]. It resolves the issue of collinear residuals after 𝑘 steps by relaxing the
condition of applying the same Krylov subspace method to the shifted systems
and enforcing collinearity instead. This means that iterates are computed, such
that collinear residuals can be maintained but for the shifted system they differ
from those that would have been generated if the shifted system had solely been
solved with the Krylov subspace method used for solving the unshifted system.

In the following sections of this chapter we will cover two CG based multi-
shifted methods. There are a lot of other multi-shifted versions of methods
like IDR [GSZ11], COCR [SZ11], restarted FOM [Sim03], and BiCGStab(ℓ)
[Fro03] just to name a few.
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We conclude this introduction with a few words on stopping criteria for
multi-shift methods. The multi-shift methods presented in this chapter allow
for accessing the norms of the iterates and residuals for both the shifted and
unshifted systems which can be used as indicators when to stop the iteration.
So in general a stopping criterion like ‖𝑟(𝑘)

𝑖 ‖2 ≤ 𝜏‖𝑏‖2 for all shifts 𝜎𝑖 can be
used. But, depending on the origin of the shifted systems (5.1) we might be
interested in some special choice of 𝜏 . Especially, if the shifted systems stem
from a partial fraction expansion like in (3.7) then it might be important to
be able to use different stopping parameters 𝜏𝑖 for every shift. In this case we
need to control two errors in the approximation

𝑓(𝐴)𝑏 ≈ 𝑥⋆ =
𝑛

∑
𝑖=1

𝜔𝑖(𝐴 − 𝜎𝑖𝐼)−1𝑏 ≈
𝑛

∑
𝑖=1

𝜔𝑖𝑥(𝑘)
𝑖 = 𝑥(𝑘)

to bound the error ‖𝑓(𝐴)𝑏 − 𝑥(𝑘)‖2 ≤ 𝜖. First, we want to make sure that the
partial fraction expansion belonging to the rational approximation to 𝑓(𝐴)
satisfies

‖𝑓(𝐴)𝑏 − 𝑥⋆‖2 ≤ 𝜖
2.

Second, we want to have
∥𝑥⋆ − 𝑥(𝑘)∥

2
≤ 𝜖

2.

This can be broken down further to

∥𝑥⋆ − 𝑥(𝑘)∥
2

= ∥
𝑛

∑
𝑖=1

𝜔𝑖(𝑥⋆
𝑖 − 𝑥(𝑘𝑖)

𝑖 )∥
2

≤
𝑛

∑
𝑖=1

𝜔𝑖 ∥𝑥⋆
𝑖 − 𝑥(𝑘𝑖)

𝑖 ∥
2

≤
𝑛

∑
𝑖=1

𝜔𝑖𝜖𝑖 = 𝜖
2

where 𝑥⋆
𝑖 are the exact solutions to the individual shifted systems. So, for ex-

ample the choice 𝜖𝑖 ∶= 𝜖/(2𝑛𝜔𝑖) would guarantee this bound. Thus, altogether
we would have

∥𝑓(𝐴)𝑏 − 𝑥(𝑘)∥
2

≤ ‖𝑓(𝐴)𝑏 − 𝑥⋆‖2 + ∥𝑥⋆ − 𝑥(𝑘)∥
2

≤ 𝜖. (5.6)

Unfortunately, the error ∥𝑥⋆ − 𝑥(𝑘)∥
2

is not known. Therefore, one could go
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with the residuals and require

‖𝑟(𝑘)
𝑖 ‖2 ≤ ‖𝐴−1

𝜎𝑖
‖2 ⋅ ‖𝑒(𝑘)

𝑖 ‖2

≤ ∥𝐴−1
𝜎𝑖

∥
2

𝜖𝑖

=
𝜅(𝐴𝜎𝑖

)
∥𝐴𝜎𝑖

∥
2

𝜖𝑖 = 𝜏𝑖

for equation (5.6) to hold. This is only feasible if 𝜅(𝐴𝜎𝑖
) and ∥𝐴𝜎𝑖

∥
2

are ei-
ther known or good estimates are available. Otherwise, a common choice in
practical computations is to relax on the bound (5.6) and require

‖𝑟(𝑘)
𝑖 ‖2 ≤ 𝜖/(2𝑛𝜔𝑖) (5.7)

as a stopping criterion.

5.1 Shifted CG
In the following we will describe one version of a shifted CG algorithm for
solving the family of shifted systems (5.1) efficiently. The algorithm is based
on [FM99] and assumes that 𝐴 and 𝐴 + 𝜎𝐼 are hpd. It uses a three-term
recurrence for computing the Lanczos vectors unlike the CG Algorithm 2.4
formulated in Section 2.2.4 which uses a coupled two-term recurrence. This
simplifies the understanding of the incorporation of the shifted systems.

5.1.1 Recurrences for the Unshifted System

Our derivation of the shifted CG variant below is based on the derivation of
CG in Section 2.2.4 and closely related to the shifted CG in [FM99]. Here,
we will cover the derivation of the recurrence coefficients in more detail than
in Chapter 2. But first, we recall some notation introduced in Chapter 2,
because in the following we will make extensive use of the Lanczos process and
the entities

𝑇 (𝑘) = ⎡⎢
⎣

𝛼(1) 𝛽(1)

𝛽(1) ⋱ ⋱
⋱ ⋱ 𝛽(𝑘−1)

𝛽(𝑘−1) 𝛼(𝑘)

⎤⎥
⎦

, 𝑇 (𝑘+1,𝑘) = [ 𝑇 (𝑘)
0⋯0 𝛽(𝑘) ]

and 𝑉 (𝑘) = [𝑣(1)| … |𝑣(𝑘)] therein. Further, we note that the computation of the
CG iterates can be based on the Lanczos relation (2.11) resulting in

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥
2

𝑒1.
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Using the root-free Cholesky decomposition 𝑇 (𝑘) = 𝐿(𝑘)𝐷(𝑘)(𝐿(𝑘))𝐻 and the
definition 𝑃 (𝑘) ∶= 𝑉 (𝑘)(𝐿(𝑘))−𝐻 in Section 2.2.4 we came up with the recur-
rences for the vectors 𝑝(𝑘) and 𝑥(𝑘) for the unshifted system in the standard
formulation of CG. Differently than in the standard formulation we can ex-
plicitly state the required scalars for the recurrences in terms of entries of 𝑇 (𝑘)

by taking a closer look at the Cholesky decomposition. If we write

𝑇 (𝑘) = [𝑇 (𝑘−1) (𝑡(𝑘))𝐻

𝑡(𝑘) 𝛼(𝑘) ]

= 𝐿(𝑘)𝐷(𝑘)(𝐿(𝑘))𝐻

= [𝐿(𝑘−1)

ℓ(𝑘) 1] [𝐷(𝑘−1)

𝑑(𝑘)] [(𝐿(𝑘−1))𝐻 (ℓ(𝑘))𝐻

1 ]

= [𝐿(𝑘−1)𝐷(𝑘−1)(𝐿(𝑘−1))𝐻 𝐿(𝑘−1)𝐷(𝑘−1)(ℓ(𝑘))𝐻

ℓ(𝑘)𝐷(𝑘−1)(𝐿(𝑘−1))𝐻 ℓ(𝑘)𝐷(𝑘−1)(ℓ(𝑘))𝐻 + 𝑑(𝑘)]

with 𝑡(𝑘) = [0 ⋯ 0 𝛽(𝑘−1)] and ℓ(𝑘) = [0 ⋯ 0 𝑙(𝑘−1)] then we can deduce
that

𝑙(𝑘−1) = 𝛽(𝑘−1)

𝑑(𝑘−1)

and

𝑑(𝑘) = 𝛼(𝑘) − 𝑑(𝑘−1)𝑙(𝑘−1) ̄𝑙(𝑘−1)

with 𝑙(1) = 1 and 𝑑(1) = 𝛼(1). Thus, we have means to update the Cholesky
decomposition easily from step 𝑘 − 1 to 𝑘. Moreover, we see that

𝑥(𝑘) = 𝑥(0) + 𝑉 (𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥
2

𝑒1

= 𝑥(0) + 𝑉 (𝑘)(𝐿(𝑘))−𝐻(𝐷(𝑘))−1(𝐿(𝑘))−1 ∥𝑟(0)∥
2

𝑒1

= 𝑥(0) + [𝑃 (𝑘−1) 𝑝(𝑘)] (𝐷(𝑘))−1�̃�(𝑘)

= 𝑥(𝑘−1) + �̃�(𝑘)
𝑘

𝑑(𝑘) 𝑝(𝑘)

with

�̃�(𝑘) = (𝐿(𝑘))−1 ∥𝑟(0)∥
2

𝑒1

and we obtain

𝑝(𝑘) = 𝑣(𝑘) − ̄𝑙(𝑘−1)𝑝(𝑘−1).
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Note that we can update �̃�(𝑘−1) = [𝑢(1) 𝑢(2) ⋯ 𝑢(𝑘−1)]𝑇
to �̃�(𝑘) via

𝑢(𝑘) = −ℓ(𝑘)�̃�(𝑘−1)

= −𝑙(𝑘−1)𝑢(𝑘−1)

for 𝑘 > 1 and 𝑢(1) = ∥𝑟(0)∥
2
. We thus arrive at a non-standard formulation

of CG which is nonetheless useful when it is extended for families of shifted
systems.

5.1.2 Recurrences for the Shifted System

If the Lanczos process is applied to the shifted matrix 𝐴𝜎 = 𝐴 + 𝜎𝐼 then
because of the shift-invariance of Krylov subspaces it generates the same basis
vectors 𝑣(1), … , 𝑣(𝑘) for 𝒦𝑘(𝐴𝜎, 𝑏) as it would for 𝒦𝑘(𝐴, 𝑏) and we have

(𝑉 (𝑘))𝐻𝐴𝜎𝑉 (𝑘) = (𝑉 (𝑘))𝐻(𝐴 + 𝜎𝐼)𝑉 (𝑘)

= (𝑉 (𝑘))𝐻𝐴𝑉 (𝑘) + 𝜎(𝑉 (𝑘))𝐻𝑉 (𝑘)

= 𝑇 (𝑘) + 𝜎𝐼 =∶ 𝑇 (𝑘)
𝜎 .

Then the relation

𝐴𝜎𝑉 (𝑘) = 𝑉 (𝑘)(𝑇 (𝑘) + 𝜎𝐼) + 𝛽(𝑘)𝑣(𝑘+1)(𝑒𝑘)𝐻

= 𝑉 (𝑘+1)𝑇 (𝑘+1,𝑘)
𝜎

holds with

𝑇 (𝑘+1,𝑘)
𝜎 ∶= [ 𝑇 (𝑘)

𝜎

0 ⋯ 0 𝛽(𝑘)] .

Now the whole derivation of the iteration vectors and coefficients from above
can be repeated based on 𝑇 (𝑘)

𝜎 . The entries of the root-free Cholesky decom-
position 𝐿(𝑘)

𝜎 𝐷(𝑘)
𝜎 (𝐿(𝑘)

𝜎 )𝐻 of 𝑇 (𝑘)
𝜎 can be updated using

𝑙(𝑘−1)
𝜎 = 𝛽(𝑘−1)

𝑑(𝑘−1)
𝜎

,

𝑑(𝑘)
𝜎 = 𝛼(𝑘) + 𝜎 − 𝑑(𝑘−1)

𝜎 𝑙(𝑘−1)
𝜎 ̄𝑙(𝑘−1)

𝜎

and

𝑢(𝑘)
𝜎 = −𝑙(𝑘−1)

𝜎 𝑢(𝑘−1)
𝜎
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with 𝑙(1)
𝜎 = 1, 𝑑(1)

𝜎 = 𝛼(1) + 𝜎 and 𝑢(1)
𝜎 = ∥𝑟(0)

𝜎 ∥
2
. We end up with the vector

recurrences
𝑝(𝑘)

𝜎 = 𝑣(𝑘) − ̄𝑙(𝑘−1)
𝜎 𝑝(𝑘−1)

𝜎

and

𝑥(𝑘)
𝜎 = 𝑥(𝑘−1)

𝜎 + 𝑢(𝑘)
𝜎

𝑑(𝑘)
𝜎

𝑝(𝑘)
𝜎

for the shifted system.

5.1.3 A Feasible Stopping Criterion

Up till here the developed shifted CG-method is lacking a quantity that can be
used as a feasible stopping criterion, though. But we can obtain the residual
norm easily without actually computing the residual. For this we notice that
by construction 𝑟(𝑘) ∈ 𝑟(0) + 𝐴𝒦𝑘(𝐴, 𝑟(0)), 𝑟(𝑘) ⟂ 𝑣(𝑗) for 𝑗 ≤ 𝑘, and ∥𝑣(𝑗)∥ = 1.
Thus, on the one hand we see that the residuals 𝑟(𝑘) and 𝑟(𝑘)

𝜎 are collinear and
on the other hand we have

∥𝑟(𝑘)∥
2

= ∣(𝑣(𝑘+1))𝐻𝑟(𝑘)∣ (5.8)

with
(𝑣(𝑘+1))𝐻𝑟(𝑘) = (𝑣(𝑘+1))𝐻(𝑏 − 𝐴𝑥(𝑘))

= (𝑣(𝑘+1))𝐻(𝑏 − 𝐴(𝑥(0) + 𝑉 (𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥ 𝑒1))
= (𝑣(𝑘+1))𝐻(𝑟(0) − 𝐴𝑉 (𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥ 𝑒1)
= (𝑣(𝑘+1))𝐻𝑟(0)⏟⏟⏟⏟⏟

=0 for 𝑘>0
−(𝑣(𝑘+1))𝐻𝑉 (𝑘+1)𝑇 (𝑘+1,𝑘)(𝑇 (𝑘))−1 ∥𝑟(0)∥ 𝑒1

= − [0 | … | 0 | 𝛽(𝑘)] (𝑇 (𝑘))−1 ∥𝑟(0)∥ 𝑒1

= −𝛽(𝑘)𝑒𝐻
𝑘 (𝐿(𝑘))−𝐻(𝐷(𝑘))−1�̃�(𝑘)

= −𝛽(𝑘) 𝑢(𝑘)

𝑑(𝑘)

= −𝑙(𝑘)𝑢(𝑘)

= 𝑢(𝑘+1).
Therefore, we have

𝑟(𝑘) = 𝑢(𝑘+1)𝑣(𝑘+1)

and the same holds for the residuals of the shifted system,

𝑟(𝑘)
𝜎 = 𝑢(𝑘+1)

𝜎 𝑣(𝑘+1).
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5.1.4 The Shifted CG Algorithm

Before stating the final algorithm we have to note one more thing. All the
scalars 𝑙(𝑘), 𝑑(𝑘) and 𝑢(𝑘) are real as well as their counterparts in the shifted
case. This can easily be seen since the Lanczos quantities 𝛼(𝑘) and 𝛽(𝑘) are
real. Together with a real shift 𝜎 in the shifted case this implies that the
Cholesky decomposition is real. Therefore, we have ̄𝑙(𝑘−1)

𝜎 = 𝑙(𝑘−1)
𝜎 . This allows

for a reformulation of the computations of

𝑑(𝑘) = 𝛼(𝑘) − 𝛽(𝑘−1)𝑙(𝑘−1) and
𝑑(𝑘)

𝜎 = 𝛼(𝑘) + 𝜎 − 𝛽(𝑘−1)𝑙(𝑘−1)
𝜎 .

With these observations we formulate the shifted CG algorithm in Algo-
rithm 5.1. Note that we allow for an arbitrary number of shifts 𝜎1, … , 𝜎𝑠.
Despite computing the iteration coefficients differently the algorithm is in the
spirit of [FM99].

The memory consumed by Algorithm 5.1 consists of 3 + 2𝑠 vectors of length
𝑛 plus a couple of scalars. As for the computational complexity we have the
following result.

Proposition 5.1. Let 𝑘𝑖 denote the number of iteration steps of CG applied
to solve system 𝑖 in the family of shifted systems (5.1). Assume that in Algo-
rithm 5.1 we only execute the loop in line 11 for those systems that are not yet
converged. The total number of operations in Algorithm 5.1 for solving (5.1)
is

ℴscg = max
𝑖∈{1,…,𝑠}

{𝑘𝑖} ⋅ (𝒸𝐴 + 4) + 2
𝑠

∑
𝑖=1

𝑘𝑖. (5.9)

Proof. The outer loop in line 5 is executed as long as there is an unconverged
system, i.e. max𝑖∈{1,…,𝑠} {𝑘𝑖} times. In this loop we have one multiplication
with 𝐴, the orthogonalisation against 2 previous vectors, a dot product and
the normalisation for generating the next Lanczos vector resulting in (𝒸𝐴 + 4)
operations. The algorithm runs ∑𝑠

𝑖=1 𝑘𝑖 times through the inner loop starting
in line 11. In there, two vector updates of 𝑝 and 𝑥 are computed. All together,
this amounts to ℴscg vector operations.

Now, we can compare the shifted CG algorithm for solving (5.1) to solving
all 𝑠 shifted systems separately with CG.

Proposition 5.2. Let 𝑘𝑖 denote the number of iteration steps of CG applied
to solve system 𝑖 in the family of shifted systems (5.1). Let 𝑎𝑘 = ∑𝑠

𝑖=1 𝑘𝑖 be
the overall number and 𝑚𝑘 = max𝑖∈{1,…,𝑠} {𝑘𝑖} be the maximum number of
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Algorithm 5.1: Shifted CG
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛 right-hand side
𝜎1, … , 𝜎𝑠 shifts with 𝜎𝑖 ∈ ℝ, s.t. 𝐴 + 𝜎𝑖𝐼 is hpd
𝑥(0)

1 , … , 𝑥(0)
𝑠 ∈ ℂ𝑛 initial guesses yielding collinear residuals

Output: approximate solutions 𝑥(𝑘)
𝑖 to (𝐴 + 𝜎𝑖𝐼)𝑥𝑖 = 𝑏

1 𝑟(0)
𝑖 = 𝑏 − (𝐴 + 𝜎𝑖𝐼)𝑥(0)

𝑖 for 𝑖 = 1, 2, … , 𝑠
2 𝛽(0)

𝑖 = ∥𝑟(0)
𝑖 ∥

2
for 𝑖 = 1, 2, … , 𝑠

3 𝑣(0) = 0, 𝑣(1) = 𝑟(0)
1 /𝛽(0)

1
4 𝑑(0)

𝑖 = 𝑙(0)
𝑖 = 𝑢(0)

𝑖 = 0 for 𝑖 = 1, 2, … , 𝑠
5 for 𝑘 = 1, 2, … until convergence do

// Lanczos step
6 𝑣 = 𝐴𝑣(𝑘) − 𝛽(𝑘−1)𝑣(𝑘−1)

7 𝛼(𝑘) = ⟨𝑣, 𝑣(𝑘)⟩
8 𝑣 = 𝑣 − 𝛼(𝑘)𝑣(𝑘)

9 𝛽(𝑘) = ‖𝑣‖2
10 𝑣(𝑘+1) = 𝑣/𝛽(𝑘)

// CG iterates for all shifted systems
11 for 𝑖 = 1, 2, … , 𝑠 do
12 𝑑(𝑘)

𝑖 = (𝛼(𝑘) + 𝜎𝑖) − 𝛽(𝑘−1)𝑙(𝑘−1)
𝑖

13 𝑢(𝑘)
𝑖 = 𝛽(0)

𝑖 𝛿1𝑘 − 𝑙(𝑘−1)
𝑖 𝑢(𝑘−1)

𝑖 // using the Kronecker delta
14 𝑝(𝑘)

𝑖 = 𝑣(𝑘) − 𝑙(𝑘−1)
𝑖 𝑝(𝑘−1)

𝑖
15 𝑥(𝑘)

𝑖 = 𝑥(𝑘−1)
𝑖 + 𝑢(𝑘)

𝑖
𝑑(𝑘)

𝑖
𝑝(𝑘)

𝑖

16 𝑙(𝑘)
𝑖 = 𝛽(𝑘)

𝑑(𝑘)
𝑖

iteration steps. The number of vector operations in shifted CG is less than the
number of vector operations in CG, hinting at shifted CG being faster than CG
for solving all systems in (5.1), if

(𝑎𝑘 − 𝑚𝑘) (𝒸𝐴 + 3) ≥ 𝑚𝑘 (5.10)

holds.

Proof. Comparing the number of operations of shifted CG and CG yields

𝑎𝑘ℴcg ≥ ℴscg

⇔ 𝑎𝑘(𝒸𝐴 + 5) ≥ 𝑚𝑘 ⋅ (𝒸𝐴 + 4) + 2𝑎𝑘
⇔ 𝑎𝑘(𝒸𝐴 + 3) ≥ 𝑚𝑘 ⋅ (𝒸𝐴 + 4)
⇔ (𝑎𝑘 − 𝑚𝑘) (𝒸𝐴 + 3) ≥ 𝑚𝑘.



5.1 Shifted CG 77

The proposition suggests that shifted CG should be faster than CG in almost
any situation, especially for large 𝒸𝐴. The left-hand side of the inequality (5.10)
usually is much larger than the right-hand side. Thus, Proposition 5.2 backs
the commonly made claim that when solving one of the systems in (5.1) the
remaining ones come alongside almost for free by using shifted CG. Only if
one system converges very slowly whilst all others converge very rapidly (5.10)
will not hold. But this is seen rarely in applications.

There are numerous optimisations that can be applied to this basic version
of shifted CG and we give only three of them now.

First, an obvious improvement that was already mentioned is to only execute
the loop in the lines from 11 to 16 if the corresponding system is not yet con-
verged. For our analysis in the previous two propositions we already assumed
that this improvement is applied. We will see below that systems belonging
to different shifts in general converge at different iteration steps which makes
this a valuable improvement.

Second, coupled two-term recurrences for CG show superior numerical sta-
bility [GS00], as already mentioned in Chapter 2. This is where the shifted CG
algorithm from [ES04] improves upon compared to Algorithm 5.1. However,
the final algorithm (Algorithm 2) in that paper is a multi-shift CGLS variant
especially tailored for problems of the kind (𝐴𝐻𝐴 + 𝜎𝐼)𝑥𝜎 = 𝐴𝐻𝑏 like they
arise in ill-posed inverse problems (see Section 4.2.1) making use of a CGLS-
Lanczos variant. This is not immediately applicable to equation (5.1). Besides
that, we remark that in [ES04] the stationary qd transformation (dstqds) from
[DP03] is used to compute the iteration coefficients that turn out to be similar
to the ones we derived above.

Third, this algorithm can be used as a starting point to develop a restarted
shifted CG algorithm. This constitutes an optimisation in the sense that
shifted systems stemming from a partial fraction expansion where the indi-
vidual solutions 𝑥𝑖 are not of primary interest can be solved more efficiently.
We elaborate on this in more detail in Section 5.2.

5.1.5 Convergence of Shifted CG

Theorem 2.10 analysed the convergence behaviour of CG and stated that the
error fulfils equation (2.21) which essentially reads

∥𝑒(𝑘)∥
𝐴

‖𝑒(0)‖𝐴
≤ 2

𝛾𝑘 + 𝛾−𝑘 ,



78 5. Krylov Subspace Methods for Shifted Systems

where
𝛾 = (

√𝜅 − 1√𝜅 + 1)

and 𝜅 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 is the condition number of 𝐴. Since applying the shifted
CG algorithm is mathematically the same as applying CG to all systems indi-
vidually, i.e. computing identical iterates, the bound holds true for the shifted
system (𝐴 + 𝜎𝐼)𝑥𝜎 = 𝑏 with 𝜅𝜎 = 𝜆𝑚𝑎𝑥+𝜎

𝜆𝑚𝑖𝑛+𝜎 and the according errors 𝑒(𝑘)
𝜎 during

the iteration. Furthermore, we have

𝜅 > 𝜅𝜎

⇔ 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

> 𝜆𝑚𝑎𝑥 + 𝜎
𝜆𝑚𝑖𝑛 + 𝜎

⇔ 1 > 𝜆𝑚𝑎𝑥𝜆𝑚𝑖𝑛 + 𝜎𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥𝜆𝑚𝑖𝑛 + 𝜎𝜆𝑚𝑎𝑥

⇔ 𝜎 > 0

since 𝜆𝑚𝑖𝑛 < 𝜆𝑚𝑎𝑥. Thus, the condition number of the shifted system is smaller
than the one of the original system if 𝜎 > 0 and it is larger if 𝜎 ∈ (−𝜆𝑚𝑖𝑛, 0).
This has a profound impact on the speed of convergence as indicated by equa-
tion (2.21). Moreover, we can show in the next proposition that the 2-norm of
residuals belonging to a shifted system with shift 𝜎 > 0 drops faster than the
norm of the unshifted residuals.

Proposition 5.3. Let 𝑟(𝑘) and 𝑟(𝑘)
𝜎 denote the residuals computed by Algo-

rithm 5.1 for a hpd matrix 𝐴, zero initial guesses and two shifts, 0 and 𝜎 > 0.
Then

∥𝑟(𝑘)∥
2

> ∥𝑟(𝑘)
𝜎 ∥

2
(5.11)

holds for 𝑘 ≥ 1.

Proof. For the initial residuals we have ∥𝑟(0)∥
2

= ∥𝑟(0)
𝜎 ∥

2
= ‖𝑏‖2. From (5.8) we

know that

∥𝑟(𝑘)∥
2

= ∣𝑙(𝑘)𝑢(𝑘)∣ = ∣𝛽
(𝑘)𝑢(𝑘)

𝑑(𝑘) ∣ and ∥𝑟(𝑘)
𝜎 ∥

2
= ∣𝑙(𝑘)

𝜎 𝑢(𝑘)
𝜎 ∣ = ∣𝛽

(𝑘)𝑢(𝑘)
𝜎

𝑑(𝑘)
𝜎

∣ .

We will show via induction that

𝑢(𝑘) ≥ 𝑢(𝑘)
𝜎 > 0 and 0 < 𝑑(𝑘) < 𝑑(𝑘)

𝜎

for 𝑘 ≥ 1. But, first we note that since 𝐴 is hpd so is 𝑇 (𝑘) and this implies
that 𝛼(𝑖) > 0 and 𝑑(𝑖)

𝜎 > 0 for 𝑖 > 0.
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We start with 𝑘 = 1, and using lines 12 and 13 of the algorithm yields

𝑢(1) = 𝛽(0) = 𝑢(1)
𝜎 and

𝑑(1) = 𝛼(1) < 𝛼(1) + 𝜎 = 𝑑(1)
𝜎 .

Since 𝛽(0) > 0 and 𝛼(1) > 0 we have 𝑢(1) > 0 and 𝑑(1) > 0. Hence, ∥𝑟(1)∥
2

>
∥𝑟(1)

𝜎 ∥
2

holds.

Now, we assume that 𝑢(𝑘) ≥ 𝑢(𝑘)
𝜎 and 𝑑(𝑘) < 𝑑(𝑘)

𝜎 . Then we have

𝑢(𝑘+1) = 𝛽(𝑘)𝑢(𝑘)

𝑑(𝑘) > 𝛽(𝑘)𝑢(𝑘)
𝜎

𝑑(𝑘)
𝜎

= 𝑢(𝑘+1)
𝜎

as well as

𝑑(𝑘+1) = 𝛼(𝑘+1) − 𝛽(𝑘)𝑙(𝑘) < 𝛼(𝑘+1) + 𝜎 − 𝛽(𝑘)𝑙(𝑘)
𝜎 = 𝑑(𝑘+1)

𝜎

by noting that 𝑙(𝑘) = 𝛽(𝑘)

𝑑(𝑘) and 𝑙(𝑘)
𝜎 = 𝛽(𝑘)

𝑑(𝑘)
𝜎

. This shows that (5.11) holds.

With Proposition 5.3 we have a theoretical background for the advantage of
stopping the iteration individually for different shifts in Algorithm 5.1.

5.2 Restarted Shifted CG

Restarting CG does not look compelling at first. After all, CG has short recur-
rences in the first place and restarting is suspected to slow down convergence.
When using, for example, GMRES it is immediately clear that restarting is
needed to limit the recurrence length and amongst others the memory require-
ments. However, there is a good reason why one might come up with the idea
of a restarted shifted CG. Again, in this section we assume that 𝐴 and 𝐴 + 𝜎𝐼
are hpd.

The algorithm that we work out below is equivalent to Algorithm 2 in
[Afa+08] when applied to hpd matrices. The approach taken there does not
start with solving multiple shifted linear systems with Krylov subspace meth-
ods. Instead, the authors improve on a previously proposed Krylov subspace
algorithm for computing 𝑓(𝐴)𝑏, which required solving systems that grow with
the number of restarts. In [Afa+08] the relation to CG is pointed out and in
this section we will derive the algorithm that we call restarted shifted CG
starting from shifted CG.
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5.2.1 Idea of Restarted Shifted CG

We already got a glimpse of the idea in a remark to Algorithm 5.1. If the shifts
in equation (5.1) stem from a partial fraction expansion which approximates
a function 𝑓 then one is probably not interested in the individual solutions 𝑥𝑖
but rather the vector 𝑥 in

𝑓(𝐴)𝑏 ≈ 𝜋(𝐴)𝑏 +
𝑠

∑
𝑖=1

𝜔𝑗(𝐴 + 𝜎𝑖𝐼)−1𝑏

= 𝜋(𝐴)𝑏 +
𝑠

∑
𝑖=1

𝜔𝑖𝑥𝑖

= 𝑥.

(5.12)

In the following, for simplicity of notation, we will omit the 𝜋(𝐴)𝑏-term. To
see how 𝑥 might be approximated more efficiently we need to take one step
back and recall that we defined the CG iterates 𝑥(𝑘)

𝑖 for an individual shift 𝜎𝑖
as

𝑥(𝑘)
𝑖 = 𝑥(0)

𝑖 + 𝑉 (𝑘)(𝑇 (𝑘) + 𝜎𝑖𝐼)−1 ∥𝑟(0)
𝑖 ∥

2
𝑒1

= 𝑥(0)
𝑖 + 𝑉 (𝑘)(𝐿(𝑘)

𝑖 )−𝐻(𝐷(𝑘)
𝑖 )−1(𝐿(𝑘)

𝑖 )−1 ∥𝑟(0)
𝑖 ∥

2
𝑒1

= 𝑥(0)
𝑖 + 𝑉 (𝑘)𝑦(𝑘)

𝑖

with

𝑦(𝑘)
𝑖 = (𝐿(𝑘)

𝑖 )−𝐻(𝐷(𝑘)
𝑖 )−1(𝐿(𝑘)

𝑖 )−1 ∥𝑟(0)
𝑖 ∥

2
𝑒1.

The vectors 𝑦(𝑘)
𝑖 have length 𝑘 and can be obtained via a simple forward and

backward substitution intertwined with a scaling with the matrix (𝐷(𝑘)
𝑖 )−1. In

terms of computational cost this amounts more or less to three vector opera-
tions of size 𝑘 per shift. So we can compute an iterate 𝑥(𝑘) for 𝑓(𝐴)𝑏 as

𝑥(𝑘) =
𝑠

∑
𝑖=1

𝜔𝑖𝑥(𝑘)
𝑖

=
𝑠

∑
𝑖=1

𝜔𝑖(𝑥(0)
𝑖 + 𝑉 (𝑘)𝑦(𝑘)

𝑖 )

=
𝑠

∑
𝑖=1

𝜔𝑖𝑥(0)
𝑖 + 𝑉 (𝑘)

𝑠
∑
𝑖=1

𝜔𝑖𝑦(𝑘)
𝑖

= 𝑥(0) + 𝑉 (𝑘)
𝑠

∑
𝑖=1

𝜔𝑖𝑦(𝑘)
𝑖 .

(5.13)
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For this we need to keep the Lanczos vectors 𝑣1, … , 𝑣𝑘 as well as the matrices
𝐿(𝑘)

𝑖 and 𝐷(𝑘)
𝑖 for all 𝑠 shifts. The structure of the latter two allows to store

each as a vector of size not larger than 𝑘. Moreover, the recurrences from
Section 5.1 for 𝑙(𝑘), 𝑑(𝑘), 𝑢(𝑘) and their shifted equivalents can be used for cheap
updates. This means that at the expense of storing 𝑘 vectors of length 𝑛 and
2𝑠 vectors of length 𝑘 we obtain the iterate 𝑥(𝑘) at the cost of only 𝑠+𝑘 vector
operations of size 𝑛.

Note that we can monitor the residuals of the shifted systems in exactly the
same way as in the shifted CG algorithm even though we do not compute any
of the individual iterates or residuals. Thus, along with the other values we
compute 𝑢(𝑘) for every shift which gives us a means to stop the iteration.

The above would make a nice method if it were feasible to keep the whole
matrix 𝑉 (𝑘) until convergence. But at some point memory limits are reached
and restarting the method is inevitable. As explained in Subsection 5.1.3 we
have seen that shifted CG has the property of retaining collinear residuals.
This can be exploited to restart the method by starting the Lanczos process
anew with the vector ̃𝑣(1) = 𝑣(𝑘+1). Besides this, we need to take 𝑥(𝑘) from
equation (5.13) as the new starting vector ̃𝑥(0). Note that we do not need the
individual iterates 𝑥(𝑘)

𝑖 . The new initial residuals for the individual systems
are

𝑟(𝑘)
𝑖 = 𝑢(𝑘+1)

𝑖 𝑣(𝑘+1).
We actually can do without the residual vectors. Only their norms are needed
for the computation of the new ̃𝑦(𝑘)

𝑖 and �̃�(𝑘)
𝑖 .

5.2.2 The Restarted Shifted CG Algorithm

Summarising the above we formulate the restarted shifted CG algorithm in
Algorithm 5.2.

The memory consumed by Algorithm 5.2 consists of 𝑘 + 1 vectors of length
𝑛 (𝑉 and 𝑥) plus 3𝑠 vectors of length 𝑘 (𝑑, 𝑢 and 𝑦) and a couple of scalars.
The computational complexity is summarised in the next proposition.

Proposition 5.4. Let �̂� denote the number of iteration steps of Algorithm 5.2
applied to a family of shifted systems (5.1) for approximating (5.12). The total
number of operations in the algorithms is

ℴrscg = 𝑠 + �̂�(𝒸𝐴 + 5). (5.14)

Proof. As explained in Proposition 5.1 we have (𝒸𝐴 + 4) operations for gener-
ating the next Lanczos vector per step of the for-loop in line 7. Additionally,
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Algorithm 5.2: Restarted shifted CG (for matrix function evaluation)
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛 right-hand side
𝑘 Lanczos steps after which a restart is performed
𝜎1, … , 𝜎𝑠 shifts with 𝜎𝑖 ∈ ℝ, s.t. 𝐴 + 𝜎𝑖𝐼 is hpd
𝜔1, … , 𝜔𝑠 weights with 𝜔𝑖 ∈ ℝ
𝑥(0)

1 , … , 𝑥(0)
𝑠 ∈ ℂ𝑛 initial guesses implying collinear residuals

Output: approximation to 𝑓(𝐴)𝑏 ≈ ∑𝑛
𝑖=1 𝜔𝑖(𝐴 + 𝜎𝑖𝐼)−1𝑏

1 𝑟(0)
𝑖 = 𝑏 − (𝐴 + 𝜎𝑖𝐼)𝑥(0)

𝑖 for 𝑖 = 1, 2, … , 𝑠
2 𝛽(0)

𝑖 = ∥𝑟(0)
𝑖 ∥

2
for 𝑖 = 1, 2, … , 𝑠

3 𝑑(0)
𝑖 = 𝑙(0)

𝑖 = 𝑢(0)
𝑖 = 0 for 𝑖 = 1, 2, … , 𝑠

4 𝑣(0) = 0, 𝑣(1) = 𝑟(0)
1 /𝛽(0)

1
5 𝑥(0) = ∑𝑠

𝑖=1 𝜔𝑖𝑥(0)
𝑖

6 for 𝑐 = 1, 2, … until convergence do
7 for 𝑗 = 1, 2, … , 𝑘 do

// Lanczos steps
8 compute 𝑣(𝑗+1), 𝛼(𝑗) and 𝛽(𝑗) as in Algorithm 5.1

// iteration coefficients for all shifted systems
9 for 𝑖 = 1, 2, … , 𝑠 do

10 𝑑(𝑗)
𝑖 = (𝛼(𝑗) + 𝜎𝑖) − (𝑙(𝑗−1)

𝑖 )2𝑑(𝑗−1)
𝑖

11 𝑢(𝑗)
𝑖 = 𝛽(0)

𝑖 𝛿1𝑘 − 𝑙(𝑗−1)
𝑖 𝑢(𝑗−1)

𝑖 // using the Kronecker delta
12 𝑙(𝑗)

𝑖 = 𝛽(𝑗)

𝑑(𝑗)
𝑖

// compute iterate and prepare for restart
13 𝑦(𝑘)

𝑖 = (𝐿(𝑘)
𝑖 )−𝐻(𝐷(𝑘)

𝑖 )−1 [𝑢(1)
𝑖 … 𝑢(𝑘)

𝑖 ]𝑇

14 𝑥(𝑐) = 𝑥(𝑐−1) + 𝑉 (𝑘) ∑𝑠
𝑖=1 𝜔𝑖𝑦(𝑘)

𝑖
15 𝑣(1) = 𝑣(𝑘+1)

16 𝛽(0)
𝑖 = 𝑢(𝑘+1)

𝑖 = −𝑙(𝑘)
𝑖 𝑢(𝑘)

𝑖

in line 14 we have to compute the update for 𝑥 using the 𝑘 vectors 𝑣(1), … , 𝑣(𝑘).
All together this amounts to 𝑘(𝒸𝐴 + 4) + 𝑘 operations per restart or more con-
veniently 𝒸𝐴 + 5 operations per generated Lanczos vector in average. Further-
more, in line 5 the starting iterate 𝑥(0) is computed via 𝑠 vector operations.

Although (5.14) seems to be independent of the restart length 𝑘 it has a
profound impact on the number of iteration steps �̂�. Since some generated
subspace information is lost when a restart is performed, as a rule �̂� increases
as 𝑘 decreases. This higher iteration count results in more computed Lanczos
vectors of Algorithm 5.2 compared to Algorithm 5.1. Therefore, we need to
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compare the computational costs of Algorithm 5.1 with restarted shifted CG.

Proposition 5.5. Let �̃�𝑖 denote the number of iteration steps of CG applied
to solve system 𝑖 in the family of shifted systems (5.1). Furthermore, let �̃� =
max𝑖∈{1,…,𝑠} {�̃�𝑖} and �̂� denote the number of iteration steps of Algorithm 5.2.
The number of vector operations in restarted shifted CG is less than the number
of vector operations in shifted CG, hinting at restarted shifted CG being faster
than shifted CG for approximating (5.12), if

1 +
1 + 2 ∑𝑠

𝑖=2( �̃�𝑖
�̃�

)
𝒸𝐴 + 5 ≥ �̂�

�̃�
(5.15)

holds.

Proof. We start with a trivial comparison

max
𝑖∈{1,…,𝑠}

{�̃�𝑖} ⋅ (𝒸𝐴 + 4) + 2
𝑠

∑
𝑖=1

�̃�𝑖 + 𝑠 ≥ 𝑠 + �̂�(𝒸𝐴 + 5)

of ℴscg + 𝑠 from (5.9) and ℴrscg from (5.14) and note that we have 𝑠 additional
operations for shifted CG since we need to compute a weighted sum of the
individual solutions. Dividing by �̃�(𝒸𝐴 + 5) yields

𝒸𝐴 + 4 + 2 ∑𝑠
𝑖=1( �̃�𝑖

�̃�
)

𝒸𝐴 + 5 ≥ �̂�
�̃�

resulting in (5.15).

A large restart length 𝑘 decreases the iteration steps �̂� at the expense of
higher memory requirements and ultimately can influence whether restarted
shifted CG is faster than shifted CG according to (5.15). Thus, 𝑘 should
be chosen as large as the memory allows. Furthermore, we can see that as
compared to shifted CG the restarted shifted CG methods benefits from a
larger number of shifts and lower cost 𝒸𝐴.

In Algorithm 5.2 there is still room for some optimisations. Minor improve-
ments can be achieved if a system belonging to a particular shift 𝜎𝑖 converges
in step 𝑗 < 𝑘 between restarts. Then updating its scalars after 𝑑(𝑗)

𝑖 , 𝑢(𝑗)
𝑖 and 𝑙(𝑗)

𝑖
can be stopped and 𝑦(𝑗)

𝑖 can be computed immediately. A major issue of Al-
gorithm 5.2 is that restarting deteriorates convergence, see Section 5.2.3. The
runtime benefit comparing to shifted CG can vanish for short restart lengths
since overall there might be more iteration steps needed. On the other hand,
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restart lengths providing no substantial slowdown might need infeasible restart
lengths. In [EEG11] a remedy for this behaviour is proposed for methods based
on the Arnoldi process. It is based on deflated restarts or sometimes called
thick restarts. The idea there is to keep a few vectors carrying some eigenspace
information generated from the Krylov subspace built up before the restart.
It turns out that using those Ritz vectors belonging to Ritz values close to the
shifts can improve convergence significantly.

5.2.3 Convergence of Restarted Shifted CG

The convergence of restarted shifted CG can again be characterised by Theo-
rem 2.10, now applied to every restart cycle. If we perform a restart after 𝑘
steps and number our iteration steps with 𝑐 like in Algorithm 5.2 then we can
bound the error 𝑒(𝑐) belonging to iterate 𝑥(𝑐) by

∥𝑒(𝑐)∥
𝐴

≤ ( 2
𝛾𝑘 + 𝛾−𝑘 )

𝑐
∥𝑒(0)∥

𝐴
, (5.16)

where
𝛾 = (

√𝜅 − 1√𝜅 + 1)

and 𝜅 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 is the condition number of 𝐴. Furthermore, we can
compare the error bound (2.21) for shifted CG after 𝑐𝑘 steps with the bound
(5.16) for restarted shifted CG after 𝑐 restarts of 𝑘 steps each and can show
that

2
𝛾𝑐𝑘 + 𝛾−𝑐𝑘 ≤ ( 2

𝛾𝑘 + 𝛾−𝑘 )
𝑐
.

Hence, what we need to show here is
1

cosh(𝑐𝑘𝑦) ≤ 1
cosh(𝑘𝑦)𝑐 (5.17)

or equivalalently cosh(𝑘𝑦)𝑐 ≤ cosh(𝑐𝑘𝑦) where we used 𝑦 = cosh−1(𝑧) and
𝑧 = −𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
. We can prove this via induction. First, we note that equa-

tion (5.17) is trivially true for 𝑐 = 1. If we now assume that (5.17) holds for
𝑐 − 1 then we get

cosh(𝑘𝑦)𝑐 = cosh(𝑘𝑦) cosh(𝑘𝑦)𝑐−1

≤ cosh(𝑘𝑦) cosh((𝑐 − 1)𝑘𝑦)
≤ cosh(𝑘𝑦) cosh((𝑐 − 1)𝑘𝑦) + sinh(𝑘𝑦) sinh((𝑐 − 1)𝑘𝑦)
= cosh(𝑘𝑦 + (𝑐 − 1)𝑘𝑦)
= cosh(𝑐𝑘𝑦).
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The first inequality holds because of the induction hypothesis and the second
holds, since 𝑦 > 0. Moreover, for 𝑐 > 1 we even have cosh(𝑘𝑦)𝑐 < cosh(𝑐𝑘𝑦).
This suggests that in general restarted shifted CG can take more steps for
achieving convergence.





6 Krylov Subspace Methods for
Multiple Right-Hand Sides

Many applications not only need to solve a system 𝐴𝑥 = 𝑏 with a single
right-hand side 𝑏 but require solutions to multiple systems

𝐴𝑥𝑗 = 𝑏𝑗, 𝑗 = 1, … , 𝑚 (6.1)

for the same matrix 𝐴. For example, the systems (1.1) could be solved for
every right-hand side separately resulting in (6.1). Here, we focus on the case
that 𝐴 is hpd. In some types of applications the right-hand sides are known in
advance; in other applications the systems (6.1) can only be solved sequentially.

For small dense matrices in most cases it is advisable to compute a matrix
decomposition of 𝐴 once and use it for solving all systems in (6.1). This,
however, is not always feasible if 𝐴 is a large sparse matrix, since sparse matrix
decompositions cannot always be applied successfully.

The family of systems (6.1) could be solved one-by-one using iterative solvers
for every system 𝐴𝑥𝑗 = 𝑏𝑗 separately. This, however, often is not a good
choice, since information gathered while solving one system might be used to
accelerate solving the other systems. Therefore, some effort has been put into
the development of methods that are well-suited for (6.1).

In contrast to the shifted systems of Chapter 5 the family of systems (6.1) in
general cannot be solved by building a common Krylov subspace for all right-
hand sides. Hence, other techniques have to be applied for solving systems
with multiple right-hand sides efficiently. This chapter covers Krylov subspace
methods that can exploit the fact that we solve systems involving the same
matrix 𝐴. We present them grouped in three sections representing different
concepts.

First, Section 6.1 introduces seed methods. Seed methods solve the systems
(6.1) sequentially. During the iteration of the current system they generate
starting vectors for the remaining unsolved systems. Ideally, this creates good
initial guesses resulting in increased speed of convergence. We focus on CG
based seeding methods from [AMW08; CW97; SPM89].

Second, deflation methods introduced in Section 6.2 share the property of

87
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solving (6.1) for each system separately with seed methods. In contrast to
seed methods, deflation methods try to gather some eigenspace information
of the matrix 𝐴 and use this to speed up subsequent solves for the remaining
systems. Since the eigenspace information is independent from particular right-
hand sides, deflation methods do not require all right-hand sides to be known
in advance. As an example we introduce incremental eigCG [SO10].

Lastly, we describe block methods in Section 6.3. As opposed to the other
two methods, most of them do not work on single vectors but group multiple
vectors to blocks, hence the name. By doing so, block methods span a block
Krylov subspace. The idea behind this is to have an enriched subspace to
project onto. This can result in increased convergence speed for the individual
systems. Besides this, block methods might be able to make better use of
modern hardware by performing computations on matrices instead of vectors
[GG08; KLL98]. We present BlockCG [OLe80] and some variants thereof
[Dub01].

6.1 Seed Methods

As for all methods aimed at solving families of systems with multiple right-hand
sides (6.1) the basic idea is to somehow reuse information generated during
solving one of the systems for the remaining ones. Particularly, the rationale
behind seed methods is that if the right-hand sides stem from a discretisation
of a continuous problem and depend for example on a time step parameter,
i.e. 𝑏𝑗 ∶= 𝑏(𝑡𝑗), then it is reasonable to assume that for small Δ𝑡𝑗 ∶= 𝑡𝑗+1 − 𝑡𝑗
the vectors 𝑏𝑗+1 and 𝑏𝑗 and probably 𝑥𝑗+1 and 𝑥𝑗 are close too. As a first
idea one could simply solve the 𝑚 systems one at a time and use the solution
of system 𝑗 as an initial guess for system 𝑗 + 1. On the other hand, if there
is some theoretical background available on the underlying problem then one
could even extrapolate from the approximate solution of 𝐴𝑥 = 𝑏𝑗 to the initial
guess 𝑥(0)

𝑗+1, see, for instance, [Bro+97].
The seed methods that will be presented in this section pursue a slightly

different approach. They reuse the whole Krylov subspace generated while
solving one system of the family (6.1) to reduce the number of iterations for
solving the remaining systems. This is done by performing orthogonal projec-
tions of the initial residuals of the unsolved systems onto the Krylov subspace
that is spanned while solving the current system. The approximate solutions
of the unsolved systems can then be updated accordingly. This concept can
be applied recursively.

An immediate disadvantage of this approach is that we either need to know
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all right-hand sides (or, more precisely, at least the next right-hand side every
time) in advance or we need to save the vectors that are used for the pro-
jections. The consequence of the latter would be high memory requirements
for the storage. A more subtle disadvantage is how the projections affect the
remaining systems. Since each generated vector that is spanning the Krylov
subspace, is used for projecting the subsequent initial guesses and residuals, the
contribution of every single one of these vectors is small. Even more so when
the right-hand sides are not closely related. Then only minor improvements
can be expected. This observation leads to deflation based methods which we
will cover in Section 6.2.

In this section we will present two seed methods—the Single Seed Method
from [SPM89] and Seed-CG from [AMW08; AMW13]. For non-Hermitian
matrices there exist seed methods like the methods presented in [SG95; Smi87].

6.1.1 Single Seed Method

As a first seed method we present the Single Seed Method from [SPM89] which
was analysed more thoroughly in [CW97]. It extends the CG algorithm, such
that with every generated search direction 𝑝(𝑘)

𝑗 of the seed system 𝑗 the initial
guess 𝑥(0)

𝑖 and residual 𝑟(0)
𝑖 of the non-seed systems 𝑖 > 𝑗 are updated using

̃𝑥(0)
𝑖 = 𝑥(0)

𝑖 + 𝜂𝑖,𝑗𝑝(𝑘)
𝑗 and

̃𝑟(0)
𝑖 = 𝑟(0)

𝑖 − 𝜂𝑖,𝑗𝐴𝑝(𝑘)
𝑗 .

The scalar 𝜂𝑖,𝑗 is chosen such that the error 𝐴−1 ̃𝑟(0)
𝑖 is minimised in the 𝐴-norm

in the search direction 𝑝(𝑘)
𝑗 . This can be achieved by an orthogonal projection

of the residual onto the Krylov subspace of the seed system, i.e.

0 = ⟨𝑝(𝑘)
𝑗 , ̃𝑟(0)

𝑖 ⟩ = ⟨𝑝(𝑘)
𝑗 , 𝑟(0)

𝑖 ⟩ − ⟨𝑝(𝑘)
𝑗 , 𝜂𝑖,𝑗𝐴𝑝(𝑘)

𝑗 ⟩

⇔ 𝜂𝑖,𝑗 =
⟨𝑝(𝑘)

𝑗 , 𝑟(0)
𝑖 ⟩

⟨𝑝(𝑘)
𝑗 , 𝐴𝑝(𝑘)

𝑗 ⟩
.

The projections could also be based on the Lanczos vectors [PS90] or the
residuals [Vor87] instead of the search directions.

In Algorithm 6.1 we state the algorithm from [SPM89] and [CW97] using
our notation and the formulation of CG from Algorithm 2.4. In [SPM89] it is
suggested to monitor the quantity

log10 ∣
⟨𝐴𝑝(𝑘)

𝑗 , 𝐴𝑝(0)
𝑗 ⟩

∥𝐴𝑝(𝑘)
𝑗 ∥ ∥𝐴𝑝(0)

𝑗 ∥
∣ (6.2)
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that is related to losing orthogonality. If (6.2) is significantly larger than
machine precision then Algorithm 6.1 should be restarted by using the most
recent iterate as a new initial guess. Moreover, when a restart happens a
different system might be chosen as the new seed system. The authors in
[SPM89] suggest to choose the “system with the worst error” which probably
translates to largest residual norm. For simplicity of notation we did not
incorporate these restarts and the dynamically switching of seed systems.

Algorithm 6.1: Single Seed Method
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑏1, … , 𝑏𝑚 ∈ ℂ𝑛 𝑚 right-hand sides
𝑥(0)

1 , … , 𝑥(0)
𝑚 ∈ ℂ𝑛 𝑚 initial guesses

Output: approximate solutions 𝑥(𝑘)
𝑗 to 𝐴𝑥𝑗 = 𝑏𝑗 for 𝑗 = 1, … , 𝑚

1 𝑟(0)
𝑗 = 𝑏𝑗 − 𝐴𝑥(0)

𝑗 for 𝑗 = 1, 2, … , 𝑚
2 for 𝑗 = 1, … , 𝑚 do // loop over the right-hand sides

// w.l.o.g. choose 𝑗 as seed system
3 𝑝(0)

𝑗 = 𝑟(0)
𝑗

4 for 𝑘 = 1, 2, … until convergence of system 𝑗 do // CG loop
5 𝑧(𝑘−1)

𝑗 = 𝐴𝑝(𝑘−1)
𝑗

6 𝜇(𝑘−1)
𝑗 = ⟨𝑟(𝑘−1)

𝑗 ,𝑟(𝑘−1)
𝑗 ⟩

⟨𝑝(𝑘−1)
𝑗 ,𝑧(𝑘−1)

𝑗 ⟩

7 𝑥(𝑘)
𝑗 = 𝑥(𝑘−1)

𝑗 + 𝜇(𝑘−1)
𝑗 𝑝(𝑘−1)

𝑗
8 𝑟(𝑘)

𝑗 = 𝑟(𝑘−1)
𝑗 − 𝜇(𝑘−1)

𝑗 𝑧(𝑘−1)
𝑗

9 for 𝑖 = 𝑗 + 1, … , 𝑚 do // update the non-seed systems
10 𝜂 = ⟨𝑝(𝑘−1)

𝑗 ,𝑟(0)
𝑖 ⟩

⟨𝑝(𝑘−1)
𝑗 ,𝑧(𝑘−1)

𝑗 ⟩

11 𝑥(0)
𝑖 = 𝑥(0)

𝑖 + 𝜂𝑝(𝑘−1)
𝑗

12 𝑟(0)
𝑖 = 𝑟(0)

𝑖 − 𝜂𝑧(𝑘−1)
𝑗

13 𝜈(𝑘−1)
𝑗 = ⟨𝑟(𝑘)

𝑗 ,𝑟(𝑘)
𝑗 ⟩

⟨𝑟(𝑘−1)
𝑗 ,𝑟(𝑘−1)

𝑗 ⟩

14 𝑝(𝑘)
𝑗 = 𝑟(𝑘)

𝑗 + 𝜈(𝑘−1)
𝑗 𝑝(𝑘−1)

𝑗

Algorithm 6.1 needs to store 2𝑚 vectors of length 𝑛—namely the residuals
and iterates of all 𝑚 systems—as well as two additional vectors 𝑧 and 𝑝 for the
current seed system. For its computational complexity we have the following
result.

Proposition 6.1. Let 𝑘𝑗 denote the number of iteration steps needed to solve
system 𝑗 with the Single Seed Method. Then the total number of operations in
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Algorithm 6.1 for solving (6.1) is

ℴssm =
𝑚

∑
𝑗=1

𝑘𝑗(𝒸𝐴 + 5⏟
CG part

+ 4(𝑚 − 𝑗)⏟
seeding

). (6.3)

Proof. One iteration step of Algorithm 6.1 involves the 𝒸𝐴 +5 operations from
(2.16) and the operations for seeding in the loop starting in line 9. Inside the
loop two inner products and two axpy operations are computed.

For CG applied to multiple right-hand sides sequentially the number of op-
erations is

ℴcg-mrhs =
𝑚

∑
𝑗=1

�̃�𝑗(𝒸𝐴 + 5) (6.4)

where it takes �̃�𝑗 steps to solve the 𝑗-th system. Note that solving the first
system with Algorithm 6.1 takes exactly the same number of steps �̃�1 = 𝑘1 as
with ordinary CG.

In general, it is not possible to determine a priori how much computational
time can be saved using seeding since the number of iteration steps depends on
the right-hand sides. But we can analyse what influences the possible runtime
benefit of the Single Seed Method over CG. For this the comparison of ℴcg-mrhs
and ℴssm

ℴcg-mrhs ≥ ℴssm

⇔
𝑚

∑
𝑗=1

�̃�𝑗(𝒸𝐴 + 5) ≥
𝑚

∑
𝑗=1

𝑘𝑗(𝒸𝐴 + 5) + 4
𝑚

∑
𝑗=1

𝑘𝑗(𝑚 − 𝑗)

⇔ (𝒸𝐴 + 5)
𝑚

∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4
𝑚

∑
𝑗=1

𝑘𝑗(𝑚 − 𝑗)

⇔
𝑚

∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4
𝒸𝐴 + 5

𝑚
∑
𝑗=1

𝑘𝑗(𝑚 − 𝑗)

results in the following proposition.

Proposition 6.2. The number of vector operations in the Single Seed Method
is less than the number of vector operations in CG, hinting at the Single Seed
Method being faster than CG for solving all systems in (6.1), if

𝑚
∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4
𝒸𝐴 + 5

𝑚
∑
𝑗=1

𝑘𝑗(𝑚 − 𝑗) (6.5)

holds.
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Note that the proposition relates the number of vector operations to the
number of saved iteration steps ∑𝑚

𝑗=2(�̃�𝑗 − 𝑘𝑗). Based on the proposition,
we can deduce that, in order for the Single Seed Method to still be faster
than CG, the number of steps saved as compared to CG can be smaller if
the multiplications with 𝐴 are more expensive or fewer projections need to be
done.

The convergence of the current seed system in the Single Seed Method is
analysed in [CW97]. It is shown there that the convergence of the chosen seed
system is better if it starts with an initial guess that was generated during
the solve of previous seed systems than starting with a random vector. A
convergence behaviour as if the extreme ends of the spectrum of 𝐴 had been
removed—yielding an improved effective condition number—can be achieved
[CW97, Theorem 3.4].

Finally, we note that the name Single Seed Method originates from [CW97]
where the authors introduce the name to differentiate the method from an
additionally proposed Block Seed Method. The latter is a hybrid version of
Algorithm 6.1 and block conjugate gradient methods presented in Section 6.3.

6.1.2 Seed-CG

The major concern when using the Single Seed Method from the previous
section is that a lot of work is wasted if seeding only marginally improves the
initial guess of the remaining systems. And indeed, observations back this
claim at least for unrelated right-hand sides. Thus, it might be beneficial to
limit the amount of seeding. This is where the Seed-CG method from [AMW08;
AMW13] to be discussed now improves upon the Single Seed Method.

First, it is suggested in [AMW13] that seeding is done only for the first
system to limit the work spent on seeding. But, we do not want to lose
the benefit of seeding for related right-hand sides completely. One remedy
presented in [Lan03] for seed-GMRES is a sliding window for the seed. This
means that the initial guesses of only a fixed number of upcoming right-hand
sides are updated by the seeding. This is thought to carry more information
on related right-hand sides to later solved systems than just seeding with the
first one whilst maintaining a moderate amount of additional work spent on
seeding. In [AMW13], however, a different approach is pursued. In addition
to seeding from the first system it is suggested to use the CG corrections, i.e.
the difference of the computed solution and the initial guess, for projecting the
remaining systems. Like in the Single Seed Method an orthogonal projection
of the initial residuals of the subsequent systems onto the space spanned by
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the CG corrections is performed. In detail, after solving system 𝑗 we compute
new initial guesses ̃𝑥(0)

𝑖 and residuals ̃𝑟(0)
𝑖 for every system 𝑖 > 𝑗. We use the

CG correction

Δ𝑥(𝑘)
𝑗 = 𝑥(𝑘)

𝑗 − 𝑥(0)
𝑗

to update the initial guess 𝑥(0)
𝑖 which yields the new initial guess

̃𝑥(0)
𝑖 = 𝑥(0)

𝑖 + 𝜂𝑖,𝑗Δ𝑥(𝑘)
𝑗 (6.6)

for system 𝑖. The corresponding residual is given as

̃𝑟(0)
𝑖 = 𝑏𝑖 − 𝐴(𝑥(0)

𝑖 + 𝜂𝑖,𝑗Δ𝑥(𝑘)
𝑗 )

= 𝑟(0)
𝑖 − 𝜂𝑖,𝑗(𝑟(0)

𝑗 − 𝑟(𝑘)
𝑗 ).

(6.7)

In the CG algorithm the iterates are generated so that the 𝐴-norm of the error
is minimised which is done by enforcing orthogonal residuals. This idea can be
applied here and to obtain an orthogonal projection the parameter 𝜂𝑖,𝑗 needs
to be computed using

0 = ⟨Δ𝑥(𝑘)
𝑗 , ̃𝑟(0)

𝑖 ⟩ = ⟨Δ𝑥(𝑘)
𝑗 , 𝑟(0)

𝑖 ⟩ − 𝜂𝑖,𝑗 ⟨Δ𝑥(𝑘)
𝑗 , 𝑟(0)

𝑗 − 𝑟(𝑘)
𝑗 ⟩

⇔ 𝜂𝑖,𝑗 =
⟨Δ𝑥(𝑘)

𝑗 , 𝑟(0)
𝑖 ⟩

⟨Δ𝑥(𝑘)
𝑗 , 𝑟(0)

𝑗 − 𝑟(𝑘)
𝑗 ⟩

.

To avoid introducing yet another index here, we simply note that the vectors
𝑥(0)

𝑖 and 𝑟(0)
𝑖 might already have been updated during solves of preceding right-

hand sides. The updates can stem from seeding with the first system or updates
(6.6) and (6.7) of previously solved systems. Using Δ𝑥(𝑘)

𝑗 instead of 𝑥(𝑘)
𝑗 for

the projection was found to be a better choice since it does not increase the
influence of components belonging to small eigenvalues too much [AMW13].
Note that since 𝑟(𝑘)

𝑗 belongs to a converged system 𝑟(𝑘)
𝑗 = 0 is assumed in

[AMW08] which leads to some simplifications in the above formulae. In our
numerical tests, however, we could not confirm that it is safe to assume 𝑟(𝑘)

𝑗 ≈ 0
and used 𝑟(𝑘)

𝑗 in the computations.
Second, in [AMW13] the first seed system is solved past convergence. The

rationale behind this is to further reduce the influence of small eigenvalues in
the later solved systems.

Third, in some examples reorthogonalisation was found to reduce the number
of iteration steps for solving subsequent systems.
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Algorithm 6.2: Seed-CG
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑏1, … , 𝑏𝑚 ∈ ℂ𝑛 𝑚 right-hand sides
𝑥(0)

1 , … , 𝑥(0)
𝑚 ∈ ℂ𝑛 𝑚 initial guesses

𝑐 additional steps for the first system

Output: approximate solutions 𝑥(𝑘)
𝑗 to 𝐴𝑥𝑗 = 𝑏𝑗 for 𝑗 = 1, … , 𝑚

1 𝑟(0)
𝑗 = 𝑏𝑗 − 𝐴𝑥(0)

𝑗 for 𝑗 = 1, 2, … , 𝑚
2 for 𝑗 = 1, … , 𝑚 do // loop over the right-hand sides
3 𝑝(0)

𝑗 = 𝑟(0)
𝑗

4 for 𝑘 = 1, 2, … until convergence of system 𝑗 or 𝑐 further steps for system 1 do
5 𝑧(𝑘−1)

𝑗 = 𝐴𝑝(𝑘−1)
𝑗

6 𝜇(𝑘−1)
𝑗 = ⟨𝑟(𝑘−1)

𝑗 ,𝑟(𝑘−1)
𝑗 ⟩

⟨𝑝(𝑘−1)
𝑗 ,𝑧(𝑘−1)

𝑗 ⟩

7 𝑥(𝑘)
𝑗 = 𝑥(𝑘−1)

𝑗 + 𝜇(𝑘−1)
𝑗 𝑝(𝑘−1)

𝑗
8 𝑟(𝑘)

𝑗 = 𝑟(𝑘−1)
𝑗 − 𝜇(𝑘−1)

𝑗 𝑧(𝑘−1)
𝑗

9 if 𝑗 = 1 then // update the non-seed systems
10 for 𝑖 = 2, … , 𝑚 do
11 𝜂 = ⟨𝑝(𝑘−1)

𝑗 ,𝑟(0)
𝑖 ⟩

⟨𝑝(𝑘−1)
𝑗 ,𝑧(𝑘−1)

𝑗 ⟩

12 𝑥(0)
𝑖 = 𝑥(0)

𝑖 + 𝜂𝑝(𝑘−1)
𝑗

13 𝑟(0)
𝑖 = 𝑟(0)

𝑖 − 𝜂𝑧(𝑘−1)
𝑗

14 𝜈(𝑘−1)
𝑗 = ⟨𝑟(𝑘)

𝑗 ,𝑟(𝑘)
𝑗 ⟩

⟨𝑟(𝑘−1)
𝑗 ,𝑟(𝑘−1)

𝑗 ⟩

15 𝑝(𝑘)
𝑗 = 𝑟(𝑘)

𝑗 + 𝜈(𝑘−1)
𝑗 𝑝(𝑘−1)

𝑗

16 Δ𝑥(𝑘)
𝑗 = 𝑥(𝑘)

𝑗 − 𝑥(0)
𝑗

17 Δ𝑟(𝑘)
𝑗 = 𝑟(0)

𝑗 − 𝑟(𝑘)
𝑗

18 for 𝑖 = 𝑗 + 1, … , 𝑚 do // use solution to project remaining right-hand sides
19 𝜂 = ⟨∆𝑥(𝑘)

𝑗 ,𝑟(0)
𝑖 ⟩

⟨∆𝑥(𝑘)
𝑗 ,∆𝑟(𝑘)

𝑗 ⟩

20 𝑥(0)
𝑖 = 𝑥(0)

𝑖 + 𝜂Δ𝑥(𝑘)
𝑗

21 𝑟(0)
𝑖 = 𝑟(0)

𝑖 − 𝜂Δ𝑟(𝑘)
𝑗

In Algorithm 6.2 we display the Seed-CG algorithm from [AMW13] without
reorthogonalisation.

The computational cost for Algorithm 6.2 can be significantly lower than
the cost of Algorithm 6.1 as we will see below. Again, Algorithm 6.2 needs to
store 2𝑚 vectors of length 𝑛 the residuals and iterates of all 𝑚 systems as well
as two additional vectors 𝑧 and 𝑝 for the current seed system which both can
be reused for storing Δ𝑥(𝑘)

𝑗 and Δ𝑟(𝑘)
𝑗 after the convergence of system 𝑗. Its
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computational complexity is stated in the following proposition.

Proposition 6.3. Let 𝑘𝑗 denote the number of iteration steps needed to solve
system 𝑗 with the Seed-CG algorithm. Then the total number of operations in
Algorithm 6.2 for solving (6.1) is

ℴseedcg = 4𝑘1(𝑚 − 1) + 2𝑚2 + (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗. (6.8)

Proof. Every iteration step of Algorithm 6.2 consists of the 𝒸𝐴+5 operations of
the CG part. Computing the solution of the first system has the additional cost
for seeding to the 𝑚 − 1 remaining right-hand sides—with 4 vector operations
each in every iteration step. Moreover, after solving system 𝑗 the initial guesses
and residuals of the remaining 𝑚 − 𝑗 systems are updated which involves
2 + 4(𝑚 − 𝑗) vector operations. All in all, we end up with

ℴseedcg = 4𝑘1(𝑚 − 1)⏟⏟⏟⏟⏟
seeding

+
𝑚

∑
𝑗=1

(𝑘𝑗 (𝒸𝐴 + 5)⏟
CG part

+ 2 + 4(𝑚 − 𝑗)⏟⏟⏟⏟⏟
lines 16 to 21

)

= 4𝑘1(𝑚 − 1) + (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗 + 2𝑚 + 2𝑚(𝑚 − 1)

= 4𝑘1(𝑚 − 1) + 2𝑚2 + (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗.

Now, we can compare Seed-CG to CG with the same assumptions as for the
Single Seed Method in the previous section. For simplicity we assume that the
first system is not solved past convergence in Seed-CG. With

ℴcg-mrhs ≥ ℴseedcg

⇔ (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

�̃�𝑗 ≥ 4𝑘1(𝑚 − 1) + 2𝑚2 + (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗

⇔ (𝒸𝐴 + 5)
𝑚

∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4𝑘1(𝑚 − 1) + 2𝑚2

⇔
𝑚

∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4𝑘1(𝑚 − 1) + 2𝑚2

𝒸𝐴 + 5

we obtain the following proposition which relates the number of saved iteration
steps ∑𝑚

𝑗=2(�̃�𝑗 − 𝑘𝑗) to the number of vector operations.
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Proposition 6.4. If the inequality

𝑚
∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 4𝑘1(𝑚 − 1) + 2𝑚2

𝒸𝐴 + 5 (6.9)

holds then Seed-CG needs less vector operations than CG which suggests that
Seed-CG can be faster than CG.

Like the Single Seed Method the Seed-CG algorithm benefits from more
expensive multiplications with 𝐴. Moreover, we can now compare the inequal-
ities (6.5) for the Single Seed Method and (6.9) for Seed-CG. The largest term
in the numerator of the right-hand side of (6.9) is of order 𝒪(𝑘1𝑚) whereas in
(6.5) for the Single Seed Method it is of order 𝒪(𝑘𝑗𝑚2) because of the sum.
Thus, if Seed-CG is able to achieve almost the same drop in the number of
iteration steps as the Single Seed Method then it can be faster than CG in
some cases where the Single Seed Method is slower than CG. In other words,
Seed-CG needs a smaller drop in iteration steps as the Single Seed Method to
outperform CG.

6.2 Deflation Methods

The seed methods presented in the previous section have two major drawbacks.
First, they can only be applied if more than one right-hand side is available

at a time. The only way around this limitation would be to store the generated
vectors that span the Krylov subspace. Before the next system is solved we
could use these vectors for projecting the initial guess. This is possible, albeit
not advisable.

Second, every vector spanning the Krylov subspace of the current seed system
is contributing to the initial guess of the subsequent systems. This contribution
is expected to be small—even more so in the case of non-related right-hand
sides.

When solving systems with non-related right-hand sides the idea of deflation
methods we will describe below is more targeted than the idea for seed meth-
ods. In a nutshell, deflation consists of suitable projections involving acquired
eigenspace information applied either to the initial guess or during the itera-
tion [Saa+00]. These aim to alleviate the effect of extreme eigenvalues that
are assumed to slow down convergence. For example, for minimal residual
methods it is shown in [EES00] that deflating with a nearly 𝐴-invariant sub-
space removes the undesired components from the residual almost completely.
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Applying the projections, therefore, improves the effective condition number
of the involved system.

Deflation methods are closely related to augmentation methods [Gau+13].
There, the Krylov subspace is augmented by a space that enriches the approx-
imation space with information assumed to improve convergence. For example,
this can be some eigenspace information on the matrix 𝐴 obtained earlier. No-
tably, if Ritz vectors or harmonic Ritz vectors are used for augmentation then
the generated augmented space is a Krylov subspace with respect to 𝐴 and a
different starting vector [SS07].

The first idea one might come up with is to explicitly compute a couple
of eigenvectors 𝑤1, … , 𝑤𝑑 belonging to the 𝑑 smallest eigenvalues of the hpd
matrix 𝐴. If a system 𝐴𝑥 = 𝑏 with an initial guess 𝑥(0) is to be solved then
one way to use the eigenvectors 𝑤𝑖 is to apply an 𝐴-orthogonal projection and
compute a new initial guess

̃𝑥(0) = 𝑥(0) + 𝑈(𝑈𝐻𝐴𝑈)−1𝑈𝐻(𝑏 − 𝐴𝑥(0)) (6.10)

where 𝑈 = [𝑤1| … |𝑤𝑑]. If we now start a Krylov subspace method with the
initial guess ̃𝑥(0) instead of 𝑥(0) then we build a Krylov subspace with respect
to 𝐴 and ̃𝑟(0) = 𝑏 − 𝐴 ̃𝑥(0) which in exact arithmetic implies

colspan {𝑈} ⟂ 𝒦𝑘(𝐴, ̃𝑟(0)) (6.11)

for all 𝑘. Note that with Π𝐴 = 𝑈(𝑈𝐻𝐴𝑈)−1𝑈𝐻 we have

𝒦𝑘(𝐴, ̃𝑟(0)) = 𝒦𝑘(𝐴(𝐼 − 𝐴Π𝐴), 𝑟(0)),
since 𝐴Π𝐴 = Π𝐴𝐴 is an 𝐴-orthogonal projection with (𝐴Π𝐴)2 = 𝐴Π𝐴. In
numerical computations it might be better to perform the projection in every
step emphasised by building 𝒦𝑘(𝐴(𝐼 − 𝐴Π𝐴), 𝑟(0)) to prevent the projected
components to re-enter the Krylov subspace. A Krylov subspace method based
on this deflated subspace would behave as if the matrix had a condition number
𝜆𝑚𝑎𝑥
𝜆𝑑+1

instead of 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

.
Instead of using eigenvectors one could compute Ritz vectors 𝑢1, … , 𝑢𝑑 ap-

proximating the 𝑑 smallest eigenvalues of the hpd matrix 𝐴. If the initial guess
is again computed as in (6.10) as suggested in [EG00; Saa87] then (6.11) and
its implications do not hold anymore. However, even for approximated eigen-
vectors or in numerical computations, where the deflated vectors can reappear
in the spanned Krylov subspace due to round-off, this can improve the con-
vergence rate significantly.

A CG-based algorithm applying the above oblique projection technique for
the initial guesses to CG is called Init-CG [EG00]. Some problems arise with
this approach.
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On the one hand, additional time has to be dedicated solely for computing
the matrix 𝑈 before solving 𝐴𝑥 = 𝑏 can even be started. Thus, the break-even
point for the additional work is hard to estimate. Of course, this is expected
to be beneficial the more right-hand sides are considered. In this case we can
compute 𝑈 once and apply it to all systems in (6.1).

Furthermore, it is not immediately clear how accurately the eigenvector ap-
proximations in 𝑈 have to be computed. As an example, in [GRT06] the
convergence behaviour of Init-CG versus CG is compared when computing
the eigenvectors in 𝑈 to different accuracies 𝜖. The examples there suggest
that Init-CG converges more rapidly than CG until a backward error of 𝜖 is
reached. After this, it stagnates and returns to the convergence curve of plain
CG resulting in no actual gain in computational time.

Besides Init-CG, some other ideas exist for using 𝑈 for deflation. For ex-
ample, one could use 𝑈 to project the residual vector in every step of the CG
iteration or to construct a preconditioner. Each of these two ideas can be
found in the two versions of the AugCG algorithm in [EG00]. Compared to
Init-CG, these can show superior convergence behaviour but every step of the
iteration is more costly.

Until now we have considered 𝑈 to be static and computed in advance.
Deflation methods in general can accelerate solving a single system 𝐴𝑥 = 𝑏,
but they need to obtain 𝑈 first. In the case of multiple right-hand sides we are
in a favourable position, because we can gather information for 𝑈 while solving
the systems (6.1) one after the other. This is the ansatz from [SO10] which
we will describe in the following. There, the idea is to constantly improve 𝑈 .
For this, we will first present the eigCG algorithm followed by the incremental
eigCG algorithm. An overview of other deflation methods can be found in
[SS07] and an analysis of deflated CG is conducted in [KR12]. The most
prominent one is deflated block GMRES from [DMW08; Mor05].

6.2.1 eigCG

The method from [SO10] that we want to present in this section is called
eigCG. Its idea is to build up eigenvector approximations and collect them
in the columns of the matrix 𝑈 alongside an ordinary CG iteration without
interfering with CG. This means that the CG iteration part is completely
unaware of the additional computations. In fact, neither the search directions
nor the residuals of eigCG deviate from the according vectors of CG. After
the first system is solved 𝑈 can be used to deflate the next system. For this,
one could use the Init-CG approach described above to compute an initial
guess for the next system. This method can now be repeated recursively to
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improve the eigenvector approximations in 𝑈 and/or increase the number of
approximated eigenvectors while solving every subsequent system and is then
called incremental eigCG [SO10].

The main benefit of the eigCG approach is that the multiplications with the
matrix 𝐴 that CG has to perform anyhow can be reused by the eigensolver.
This is done by incorporating the eigenspace computations directly into CG.
Moreover, there is no need to decide how accurately the eigenvectors have to
be computed except for maybe stopping the growth of 𝑈 after solving a couple
of systems from equation (6.1).

In the following, we will describe the eigCG and incremental eigCG methods
in more detail and state the algorithms. As in [SO10] we incorporate the
eigensolver part into our formulation of CG (Algorithm 2.4).

First of all, for the eigenvalue approximation part of eigCG we need some
entities from the Lanczos process. Algorithm 2.4 is not using the vectors
𝑣(1), … , 𝑣(𝑘) that are constructed in the Lanczos process explicitly. However,
we can still retrieve them as the normalised residuals,

𝑣(𝑖) = 1
‖𝑟(𝑖)‖2

𝑟(𝑖).

Furthermore, the matrix 𝑇 (𝑘) from the Lanczos process can be obtained from
the CG scalars in Algorithm 2.4, see [Saa03, Chapter 6], as

𝑇 (𝑘) =
⎡
⎢⎢⎢⎢
⎣

1
𝜇(0)

√
𝜈(0)

𝜇(0)√
𝜈(0)

𝜇(0)
1

𝜇(1) + 𝜈(0)
𝜇(0) ⋱

⋱ ⋱
√

𝜈(𝑘−2)
𝜇(𝑘−2)√

𝜈(𝑘−2)
𝜇(𝑘−2)

1
𝜇(𝑘−1) + 𝜈(𝑘−2)

𝜇(𝑘−2)

⎤
⎥⎥⎥⎥
⎦

(6.12)

One way of approximating eigenvalues and eigenvectors of 𝐴 is the Rayleigh-
Ritz procedure. If the columns of 𝑉 (𝑘) = [𝑣(1)| … |𝑣(𝑘)] form an orthonormal
basis of 𝒦𝑘(𝐴, 𝑣(1)) then we can compute the Ritz-pairs of 𝐴 with respect
to 𝑉 (𝑘) using 𝑇 (𝑘) = (𝑉 (𝑘))𝐻𝐴𝑉 (𝑘). Those Ritz-pairs (𝛾𝑗, 𝑉 (𝑘)𝑦𝑗) with 𝑗 ∈
𝐽 ⊆ {1, 2, … , 𝑘} are selected whose Ritz-values are close to the eigenvalues we
are interested in. The Ritz-vectors 𝑉 𝑦𝑗 can then be used as approximations
to the eigenvectors of 𝐴 belonging to those eigenvalues. If the orthonormal
basis {𝑣(1), … , 𝑣(𝑘)} is generated by the Lanczos process then the described
procedure is called the Lanczos method.

If we are interested—and for eigCG we are—in eigenvectors belonging to
eigenvalues on either end of the spectrum of 𝐴 then the Rayleigh-Ritz pro-
cedure can be a good choice since this method usually converges faster for
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non-interior eigenvalues. There is a catch, though. For good approximations
the number of basis vectors 𝑘 has to be rather large. Thus, in many appli-
cations the Lanczos method is impractical. Especially, if we consider a CG
based method with short recurrences that normally does not need to store 𝑉 (𝑘)

completely. This, however, can be remedied by using restarting techniques for
the eigenvalue search space.

The choice of the restarting technique can have great influence on the con-
vergence behaviour of the eigenvalues we are after. In [SS98] a number of
restarting techniques has been compared and thick restarting was found to
be efficient. Thick restarting means that more Ritz vectors are kept during a
restart than we actually want to compute. This is backed by [MRD92] where
computing the eigenvector belonging to the smallest eigenvalue—called low-
est eigenvector from now on—was discussed. There, it is pointed out that if
the lowest eigenvector is sought then the lowest Ritz vector from the last and
the next to last step should be kept during a restart. This shows almost the
same speed of convergence towards the eigenvector as a non-restarted Lanczos
method. Restarting only with the last Ritz vector on the other hand can come
with a significant deterioration of the speed of convergence.

Details of eigCG

Algorithm 6.3 presents the eigCG algorithm from [SO10]. Because of the eigen-
solver restarts, we need an additional iteration counter that is independent
from the counter 𝑘 of the unrestarted CG part in eigCG. Therefore, we intro-
duce 𝑐 for counting the eigensolver steps in Algorithm 6.3, which is increased
in every iteration step but reset when a restart is performed.

Then, we select a restart length 𝑐rest and a number 𝑛ev of Ritz vectors to
keep during a restart with 𝑐rest > 2𝑛ev. In every step 𝑘 of the CG method we
compute the Lanczos vector 𝑣(𝑘) from 𝑟(𝑘). For the corresponding counter 𝑐
this is used to extend 𝑉 (𝑐) and the matrix 𝑇 (𝑐) = (𝑉 (𝑐))𝐻𝐴𝑉 (𝑐) using (6.12)
(lines 11, 12 and 22).

If 𝑐 reaches 𝑐rest we restart by applying the Rayleigh-Ritz procedure and
compute the 𝑛ev lowest eigenvectors of 𝑇 (𝑐) and 𝑇 (𝑐−1) (lines 14 and 15). The
eigenvectors are then used to form an 𝐴-orthonormal basis for the 2𝑛ev Ritz
vectors we want to use for the restart (lines from 16 to 20). Then we can reset
𝑐 to 2𝑛ev. Now, the only thing left to do for the restart is the computation of
the missing orthogonalisation coefficients in row 2𝑛ev + 1 of 𝑇 (2𝑛ev+1) for the
current residual 𝑟(𝑘) with respect to the new basis. In principle, this would
mean that we need to compute (𝑟(𝑘))𝐻𝐴𝑉 (𝑐). But we can manage without the
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multiplication with 𝐴 by noting that

𝐴𝑝(𝑘) = 𝐴𝑟(𝑘) + 𝜈(𝑘−1)𝐴𝑝(𝑘−1).

Therefore, we can compute the coefficients in row 2𝑛ev + 1 of the matrix
𝑇 (2𝑛ev+1) efficiently (line 21). Note that 𝐴𝑝(𝑘) = 𝑡(𝑘) can be reused in the
next iteration step and does not account for an additional multiplication with
the matrix 𝐴.

When CG has converged, the matrices 𝑉 (𝑐) and 𝑇 (𝑐) are used to compute 𝑛ev
Ritz pairs. These can be used for deflating all subsequent systems afterwards—
either by the Init-CG approach or some other deflation technique.

Discussion of the eigCG algorithm

In the algorithm we initialise the matrix 𝑇 as a 𝑐rest × 𝑐rest-matrix as we would
do in an actual implementation. We use 𝑇 (𝑐) as a short notation for 𝑇1∶𝑐,1∶𝑐 in
those places where we need to operate on a submatrix of 𝑇 .

Algorithm 6.3 needs to store the residual 𝑟(𝑘), the iterate 𝑥(𝑘), the search
direction 𝑝(𝑘) as well as two temporary vectors 𝑡(𝑘−1) and 𝑡(𝑘). Moreover, the
matrix 𝑉 with at most 𝑐rest columns resides in memory. This all amounts to
𝑐rest + 5 vectors of length 𝑛 and some storage of 𝒪(𝑐2

rest).
The computational complexity of Algorithm 6.3 is the sum of the computa-

tional complexity for the CG part and the eigensolver part. In the CG part we
have the same operations as in the CG algorithm, i.e. a multiplication with 𝐴,
three axpy operations for the vector updates and four inner products of which
we can reuse two. The eigCG additions perform 2𝑛ev(𝑐rest + 1) + 1 vector op-
erations in the lines 19 (2𝑛ev𝑐rest) and 21 (2𝑛ev + 1). These operations occur
the first time after 𝑐rest iterations and then every 𝑐rest − 2𝑛ev iterations. We
simplify this by assuming that restarts always happen after ̃𝑐rest iteration steps
with 𝑐rest − 2𝑛ev ≤ ̃𝑐rest ≤ 𝑐rest. If we assume further that eigCG performs 𝑘
steps then we have an computational cost of

(2𝑛ev(𝑐rest + 1) + 1)⌊𝑘/ ̃𝑐rest⌋ (6.13)

per iteration for the eigensolver part of eigCG. Based on (6.13), one could
compare the computational cost of eigCG and CG. But we postpone this dis-
cussion to the end of Section 6.2.2 after we will have introduced incremental
eigCG.

We end this subsection with a couple of remarks on eigCG. Algorithm 6.3 can
be rearranged such that reusing some calculated vectors like 𝐴𝑝(𝑘) in line 21
becomes easier. Reorthogonalisation could be implemented, e.g. during every
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Algorithm 6.3: eigCG
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛 right-hand side
𝑥(0) ∈ ℂ𝑛 initial guess
𝑛ev number of lowest eigenvectors to approximate
𝑐rest restart length of the Lanczos method

Output: approximate solution 𝑥(𝑘) to 𝐴𝑥 = 𝑏
approximations to the 𝑛ev lowest eigenpairs in 𝑉 and Λ

1 𝑝(0) = 𝑟(0) = 𝑏 − 𝐴𝑥(0)

2 𝑐 = 1, 𝜈(−1) = 0, 𝜇(−1) = 1
3 𝑉 = 0 ∈ ℂ𝑛×𝑐rest ,𝑇 = 0 ∈ ℂ𝑐rest×𝑐rest

4 for 𝑘 = 1, 2, … until convergence do
// CG iteration

5 𝑡(𝑘−1) = 𝐴𝑝(𝑘−1)

6 𝜇(𝑘−1) = ⟨𝑟(𝑘−1),𝑟(𝑘−1)⟩
⟨𝑝(𝑘−1),𝑡(𝑘−1)⟩

7 𝑥(𝑘) = 𝑥(𝑘−1) + 𝜇(𝑘−1)𝑝(𝑘−1)

8 𝑟(𝑘) = 𝑟(𝑘−1) − 𝜇(𝑘−1)𝑡(𝑘−1)

9 𝜈(𝑘−1) = ⟨𝑟(𝑘),𝑟(𝑘)⟩
⟨𝑟(𝑘−1),𝑟(𝑘−1)⟩

10 𝑝(𝑘) = 𝑟(𝑘) + 𝜈(𝑘−1)𝑝(𝑘−1)

// start of eigCG additions to CG
11 𝑇𝑐,𝑐 = 1

𝜇(𝑘−1) + 𝜈(𝑘−2)
𝜇(𝑘−2)

12 𝑉∶,𝑐 = 𝑟(𝑘−1)/ ∥𝑟(𝑘−1)∥2
13 if 𝑐 = 𝑐rest then // restart of eigensolver
14 compute the 𝑛ev lowest eigenvectors of 𝑇 (𝑐rest) as the columns of 𝑌
15 compute the 𝑛ev lowest eigenvectors of 𝑇 (𝑐rest−1) as the columns of ̃𝑌

16 orthogonalise [𝑌
̃𝑌

0 ⋯ 0] yielding 𝑄

17 𝐻 = 𝑄𝐻𝑇 (𝑐rest)𝑄
18 compute the eigenpairs (𝜆𝑖, 𝑧𝑖) of 𝐻 and set 𝑍 = [𝑧1| ⋯ |𝑧2𝑛ev

]
19 𝑉 = 𝑉 (𝑄𝑍), 𝑐 = 2𝑛ev
20 𝑇 (𝑐) = diag (𝜆1, … , 𝜆2𝑛ev

)
21 𝑇𝑐+1,1∶𝑐 = (𝑇1∶𝑐,𝑐+1)𝐻 = (𝐴𝑝(𝑘) − 𝜈(𝑘−1)𝑡(𝑘−1))𝐻𝑉 / ∥𝑟(𝑘)∥2
22 else 𝑇𝑐+1,𝑐 = 𝑇𝑐,𝑐+1 = −

√
𝜈(𝑘−1)/𝜇(𝑘−1)

23 𝑐 = 𝑐 + 1
24 compute the 𝑛ev lowest eigenpairs (𝜆𝑖, 𝑧𝑖) of 𝑇 (𝑐)

25 return 𝑥(𝑘),𝑉 = 𝑉∶,1∶𝑐 ⋅ [𝑧1| ⋯ |𝑧𝑛ev
] and Λ = diag (𝜆1, … , 𝜆𝑛ev

)
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restart of the eigensolver by orthogonalising the current residual 𝑟(𝑘) against
the columns of matrix 𝑉 from line 19. This can improve the convergence of
CG and resolve some issues with converged eigenvalues [SO10]. Instead of
using CG with the Init-CG deflation approach for the remaining systems we
can apply eigCG successively leading us to incremental eigCG which we will
present in the next subsection. More details on the eigCG algorithm can be
found in [SO10].

6.2.2 Incremental eigCG

As described before, the eigenvector approximations we obtained in the matrix
𝑉 by running Algorithm 6.3 can be used to accelerate the solves of subsequent
systems in (6.1). Of course, we are not bound to keep the space that we used for
deflation unmodified for all remaining systems. Instead we could incrementally
improve the space used for deflating the remaining systems. This can be useful
if the lowest eigenpairs do not converge during one CG iteration or if the
convergence is deteriorated by a larger number of small eigenvectors.

Essentially, the idea of the incremental eigCG algorithm proposed in [SO10,
Section 4] is to obtain more Ritz vectors and improved approximations for
the eigenvectors. This is thought to result in faster convergence than only
solving the first system with eigCG and use other deflation techniques for the
remaining systems. The algorithm solves 1 ≤ 𝑚eig ≤ 𝑚 of the systems in (6.1)
with eigCG and uses CG with the Init-CG deflation approach for the remaining
systems. This is meant to address the observation that the achievable reduction
in iteration steps after solving a couple of systems stagnates. Every system
is deflated with an accumulation of eigenvector approximations obtained from
solving previous systems. These are simply collected in a matrix 𝑈 that grows
after each call to eigCG. The projection 𝐻 = 𝑈𝐻𝐴𝑈 of the matrix 𝐴 is updated
for every 𝑛ev new columns in 𝑈 . Algorithm 6.4 states the incremental eigCG
algorithm from [SO10, Section 4] using our notation.

Before analysing the computational cost of Algorithm 6.4 we give a few
remarks. In experiments in [SO10] it was observed that non-converged Ritz
vectors after one iteration of eigCG can converge after solving more systems
with incremental eigCG. For the first system the computation of the initial
guess in line 3 in an actual implementation is replaced by either setting 𝑥(0)

1
to zero or to an actual initial guess that is passed to the algorithm.

Algorithm 6.4 needs to store the matrices 𝑊 and 𝑈 which amounts to 𝑛ev +
𝑚eig𝑛ev vectors of length 𝑛 plus the (𝑚eig𝑛ev)2 entries of matrix 𝐻 additionally
to the requirements of the eigCG and CG calls. As in the Seed-CG section we
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Algorithm 6.4: incremental eigCG
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑏1, … , 𝑏𝑚 ∈ ℂ𝑛 𝑚 right-hand sides
𝑛ev number of lowest eigenvalues to approximate
𝑐rest restart length of the Lanczos method
𝑚eig number of systems to solve with eigCG

Output: approximate solutions ̂𝑥𝑗 to 𝐴𝑥𝑗 = 𝑏𝑗 for 𝑗 = 1, … , 𝑚

1 𝑈0 = [ ], 𝐻0 = [ ]
2 for 𝑗 = 1, … , 𝑚 do // loop over the right-hand sides
3 𝑥(0)

𝑗 = 𝑈𝑗−1𝐻−1
𝑗−1𝑈𝐻

𝑗−1𝑏𝑗
4 if 𝑚 ≤ 𝑚eig then // solve the system and compute eigenvectors
5 call eigCG (Alg. 6.3) with 𝐴, 𝑏𝑗, 𝑥(0)

𝑗 , 𝑛ev and 𝑐rest
yielding 𝑉𝑗, 𝑀𝑗 and approximate solution ̂𝑥𝑗 to 𝐴𝑥𝑗 = 𝑏𝑗

6 orthonormalise 𝑉𝑗 against 𝑈𝑗−1 yielding ̃𝑉𝑗
7 𝑊𝑗 = 𝐴 ̃𝑉𝑗

8 𝐻𝑗 = [ 𝐻𝑗−1 𝑈𝐻
𝑗−1𝑊𝑗

𝑊 𝐻
𝑗 𝑈𝑗−1 ̃𝑉 𝐻

𝑗 𝑊𝑗
]

9 𝑈𝑗 = [𝑈𝑗−1 | ̃𝑉𝑗]
10 else // solve system without computing eigenvectors
11 call CG (Alg. 2.4) with 𝐴, 𝑏𝑗, 𝑥(0)

𝑗
yielding approximate solution to 𝐴𝑥𝑗 = 𝑏𝑗

12 𝑈𝑗 = 𝑈𝑗−1, 𝐻𝑗 = 𝐻𝑗−1

quantify the computational cost of Algorithm 6.4.

Proposition 6.5. Let 𝑘𝑗 denote the number of iteration steps needed to solve
system 𝑗 with the incremental eigCG algorithm. Then the total number of
operations in Algorithm 6.4 for solving (6.1) is

ℴeigcg = 𝑚eig𝑛ev (𝒸𝐴 + 2𝑚 − 𝑚eig − 1 + 𝑛ev
2 (3𝑚eig − 1))

+ (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗 + (2𝑛ev(𝑐rest + 1) + 1)
𝑚eig

∑
𝑗=1

⌊𝑘𝑗/ ̃𝑐rest⌋.
(6.14)

Proof. The first 𝑚eig systems are solved with eigCG from Algorithm 6.3 and
the remaining systems with CG. In both cases the initial guess is computed
using the Init-CG deflation approach in line 3 of Algorithm 6.4. For the number
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of operations we obtain

ℴeigcg =
𝑚eig

∑
𝑗=1

⎛⎜
⎝

2(𝑗 − 1)𝑛ev⏟⏟⏟⏟⏟
line 3

+ 2(𝑗 − 1)𝑛2
ev⏟⏟⏟⏟⏟

line 6
+ 𝒸𝐴𝑛ev⏟

line 7
+ (𝑗 − 1)𝑛2

ev + 𝑛2
ev⏟⏟⏟⏟⏟⏟⏟

line 8

⎞⎟
⎠

+
𝑚eig

∑
𝑗=1

(𝑘𝑗(𝒸𝐴 + 5) + (2𝑛ev(𝑐rest + 1) + 1) ⌊𝑘𝑗/ ̃𝑐rest⌋)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

line 5 using (6.4) and (6.13)

+
𝑚

∑
𝑗=𝑚eig+1

⎛⎜
⎝

𝑘𝑗(𝒸𝐴 + 5)⏟⏟⏟⏟⏟
line 11

+ 2𝑚eig𝑛ev⏟
line 3

⎞⎟
⎠

=
𝑚eig

∑
𝑗=1

((𝑗 − 1)(2𝑛ev + 3𝑛2
ev) + 𝒸𝐴𝑛ev + 𝑛2

ev) + (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗

+
𝑚eig

∑
𝑗=1

(2𝑛ev(𝑐rest + 1) + 1) ⌊𝑘𝑗/ ̃𝑐rest⌋ + (𝑚 − 𝑚eig)2𝑚eig𝑛ev

=𝑚eig (𝑛ev(𝒸𝐴 + 2(𝑚 − 𝑚eig)) + 𝑛2
ev + 1

2(2𝑛ev + 3𝑛2
ev)(𝑚eig − 1))

+ (𝒸𝐴 + 5)
𝑚

∑
𝑗=1

𝑘𝑗 + (2𝑛ev(𝑐rest + 1) + 1)
𝑚eig

∑
𝑗=1

⌊𝑘𝑗/ ̃𝑐rest⌋.

From Proposition 6.5 we can deduce that the computational cost mainly
depends on the number of eigenvectors that are approximated. Compared to
this the dependence on the restart length is negligible. Moreover, we see that
we can effectively limit the most costly 𝒪(𝑚2

eig𝑛2
ev) term by choosing 𝑚eig not

too large.
As we did for Seed-CG, we now compare incremental eigCG to solely running

CG for all systems.

Proposition 6.6. Let �̃�𝑗 be the number of steps that CG performs for solving
system 𝑗. The number of vector operations in incremental eigCG is less than
the number of vector operations in CG, hinting at incremental eigCG being
able to outperform CG for solving all systems in (6.1), if the inequality

𝑚
∑
𝑗=2

(�̃�𝑗 − 𝑘𝑗) ≥ 1
𝒸𝐴 + 5[𝑚eig (𝒸𝐴𝑛ev + 𝑛2

ev + (𝑛ev + 3
2𝑛2

ev)(𝑚eig − 1))

+ (2𝑛ev(𝑐rest + 1) + 1)
𝑚eig

∑
𝑗=1

⌊𝑘𝑗/ ̃𝑐rest⌋]
(6.15)
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holds.

Proof. We note that solving the first system with Algorithm 6.4 takes exactly
the same number of steps as with ordinary CG, since the eigenvalue compu-
tations do not interfere with the CG part in Algorithm 6.3. Then, simply
comparing ℴcg-mrhs ≥ ℴeigcg yields (6.15).

According to the proposition, we can expect a faster runtime of incremental
eigCG than CG if not too many eigenvectors are approximated, the matrix-
vector product is expensive enough and the number of saved iteration steps
∑𝑚

𝑗=2(�̃�𝑗 − 𝑘𝑗) is sufficiently large.

6.3 Block Methods

The methods for solving the family of systems (6.1) introduced in the previous
two sections had one idea in common. They aimed at carrying some kind of
information from solving one of the systems to subsequent ones thereby im-
proving the speed of convergence of these subsequently solved systems. This
section is dedicated to introduce so-called block methods. These methods gen-
erate iterates for all the systems in (6.1) at the same time by operating on
blocks of vectors, which gives them their name. This allows for sharing infor-
mation amongst the systems and somehow extends the idea of seed methods
to a kind of all-to-all seeding. The idea of using a block of vectors instead
of single vectors dates back to methods for computing eigenvalues and eigen-
vectors with the Lanczos method, see [CD74; GU77; PS79; Ruh79] amongst
others. For solving linear systems the block idea was adopted in [OLe80] where
block-versions of the BiCG and the CG method were developed.

Block methods, strictly speaking, do not build Krylov subspaces to compute
iterates 𝑥(𝑘)

𝑗 for solving (6.1). Instead, they augment the space in which 𝑥(𝑘)
𝑗 is

sought to include all the Krylov subspaces 𝒦𝑘(𝐴, 𝑏𝑖), 𝑖 = 1, … , 𝑚. Moreover,
many block methods are not bound to operate on a single vector. These
methods can work on a set of vectors simultaneously by combining them into
columns of matrices. This favourable property, however, comes at the price
of requiring that all right-hand sides are available at the same time. In some
cases this limits the applicability of block methods.

As mentioned before, block methods combine vectors into matrices. Thus,
we need a handy notation for working on a set of vectors. For this, we arrange
the 𝑚 right-hand sides and the corresponding solutions of the systems (6.1) as
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block-vectors

𝐵 = [𝑏1| ⋯ |𝑏𝑚] ∈ ℂ𝑛×𝑚 and 𝑋 = [𝑥1| ⋯ |𝑥𝑚] ∈ ℂ𝑛×𝑚.
Now we can rewrite the family of systems (6.1) as a block system

𝐴𝑋 = 𝐵. (6.16)

When using block methods there are two major observations which could
turn out as pitfalls if one is not aware of them.

The first one is the observation that block methods achieve gains in com-
putational time with a certain—sometimes small—number of right-hand sides
but tend to get more expensive as the number 𝑚 of right-hand sides increases.
This is caused by costs that are more or less proportional to the product of
the number of right-hand sides and the iteration steps. Hence, the costs are
increasing at least linearly with the number of right-hand sides. At the same
time, the number of iteration steps often decreases tremendously for the first
few right-hand sides but in general shows a saturation as the number of right-
hand sides increases further. This can even cross the break-even point when
comparing the runtime to non-block methods. Therefore, it is sometimes ad-
visable to partition the 𝑚 right-hand sides into a couple of block systems with
less right-hand sides. However, there is no known criterion to decide a priori
how many right-hand sides result in the most savings in computational time.

The second observation is that during the iteration some columns of the
involved block-vectors, for instance the block-vector of residuals, can become
(nearly) linearly dependent on the other columns. On the one hand, this is
considered a favourable property since it allows for reducing the amount of
work for solving equation (6.16). On the other hand, (nearly) linearly de-
pendent columns of block-vectors can result in ill-conditioned or even singular
intermediate matrices which—depending on the method—need to be inverted.
Obviously, this is a situation that has to be dealt with. We will come back to
the treatment of (almost) linearly dependent columns in Section 6.3.3.

Before introducing particular methods we will discuss some theoretical back-
ground for block methods. Afterwards, we will present some block methods
based on CG—namely the block conjugate gradient algorithm [OLe80] and
variants thereof [Dub01]—since our focus here lies on these CG based methods.
Other block methods include block BiCG [OLe80], block QMR [FM97], multi-
ple block GMRES variants [Mor05; SG96], Block BiCGStab [EJS03; TSK09]
and block MINRES [Soo14] as well as three methods—BlQMR, BlBiORes,
and BlBiOMin—in [Loh06]. Only a few of these methods address the poten-
tial problems with linearly dependent columns of the involved block-vectors.
An overview of block methods and some theory can be found in [Gut06].
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6.3.1 Block Krylov Subspaces

As already discussed, block methods do not compute the iterates for the in-
dividual systems using the Krylov subspaces from Definition 2.2. The next
definition introduces the spaces needed to describe block methods.

Definition 6.7. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝐵 ∈ ℂ𝑛×𝑚. The 𝑘-th block Krylov
subspace generated by the matrix 𝐴 and block-vector 𝐵 is defined as

𝒦□
𝑘 (𝐴, 𝐵) ∶= colspan {[ 𝐵 | 𝐴𝐵 | 𝐴2𝐵 | ⋯ | 𝐴𝑘−1𝐵 ]}

= span {𝑏1, … , 𝑏𝑚, 𝐴𝑏1, … , 𝐴𝑏𝑚, 𝐴2𝑏1, … , 𝐴𝑘−1𝑏𝑚} .

Clearly, the Krylov subspaces 𝒦𝑘(𝐴, 𝑏𝑗) = span {𝑏𝑗, 𝐴𝑏𝑗, … , 𝐴𝑘−1𝑏𝑗} are
contained in 𝒦□

𝑘 (𝐴, 𝐵). Unless we have reached an invariant subspace, the
dimension of each space 𝒦𝑘(𝐴, 𝑏𝑗) is 𝑘. The dimension of the block Krylov
subspace 𝒦□

𝑘 (𝐴, 𝐵), however, can be smaller than 𝑚𝑘. This is due to the fact
that some of the subspaces 𝒦𝑘(𝐴, 𝑏𝑗) can have non-trivial intersections even
when all the 𝑏𝑗 are linearly independent.

In the following we will introduce some theory on block Krylov subspaces and
their properties that can be found, e.g. in [GS08; GS09]. Note, however, that
we use a slightly different notation for the block Krylov subspace. In [GS09]
an analogue of the grade of a Krylov subspace from Lemma 2.3 is defined in
the following way.

Definition 6.8. [GS09] The block grade of 𝐴 with respect to 𝐵 is the positive
integer ℊ ∶= ℊ(𝐴, 𝐵) defined by

ℊ(𝐴, 𝐵) ∶= min {𝑘 ∶ dim(𝒦□
𝑘 (𝐴, 𝐵)) = dim(𝒦□

𝑘+1(𝐴, 𝐵))} .

We continue by stating some properties of block Krylov subspaces taken
from [GS09].

Lemma 6.9. Let 𝐴 ∈ ℂ𝑛×𝑛 be non-singular, 𝐵 ∈ ℂ𝑛×𝑚 and ℊ = ℊ(𝐴, 𝐵)
from Definition 6.8. Then the following properties hold.

1. If 𝑘 ≤ ℊ(𝐴, 𝐵) then 𝑘 ≤ dim(𝒦□
𝑘 (𝐴, 𝐵)) ≤ 𝑘𝑚.

2. ℊ(𝐴, 𝐵) ≤ max
𝑗=1,…,𝑚

{ℊ(𝐴, 𝑏𝑗)}.

3. 𝒦□
ℊ(𝐴,𝐵)(𝐴, 𝐵) = 𝒦ℊ(𝐴,𝑏1)(𝐴, 𝑏1) + ⋯ + 𝒦ℊ(𝐴,𝑏𝑚)(𝐴, 𝑏𝑚) and for all 𝑘 <

ℊ(𝐴, 𝐵) we have 𝒦□
ℊ(𝐴,𝐵)(𝐴, 𝐵) ≠ 𝒦□

𝑘 (𝐴, 𝐵).
4. 𝒦□

ℊ(𝐴,𝐵)(𝐴, 𝐵) is the smallest 𝐴-invariant subspace of ℂ𝑛 that contains
𝑏𝑗 for all 𝑗 ∈ {1, … , 𝑚}.
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5. ℊ(𝐴, 𝐵) = min {𝑘 ∶ 𝐴−1𝐵 ∈ 𝒦□
𝑘 (𝐴, 𝐵)}.

Proof. For the proofs of these properties we refer to [GS09].

The following theorem is a block Krylov subspace analogue of Theorem 2.4
for Krylov subspaces.

Theorem 6.10. [GS09, Theorem 9] Let 𝐴 ∈ ℂ𝑛×𝑛, 𝑋(0) = [𝑥(0)
1 | … |𝑥(0)

𝑚 ] ∈ ℂ𝑛,
𝑅(0) = 𝐵 − 𝐴𝑋(0) and let ℊ be as in Definition 6.8. If 𝐴 is non-singular then

𝑥⋆
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦□
ℊ (𝐴, 𝑅(0)) for all 𝑗 ∈ {1, … , 𝑚} and

𝑥⋆
𝑗 ∉ 𝑥(0)

𝑗 + 𝒦□
ℊ−1(𝐴, 𝑅(0)) for one 𝑗 ∈ {1, … , 𝑚} ,

where [𝑥⋆
1| … |𝑥⋆

𝑚] = 𝑋⋆ = 𝐴−1𝐵 denotes the exact solution to 𝐴𝑋 = 𝐵.

Proof. See [GS09, Theorem 9].

Theorem 6.10—not unlike its non-block analogue—states the rationale be-
hind using block Krylov subspaces for solving the block system (6.16). And
now we can define what we will be referring to as a block Krylov subspace
method. Again, this follows Definition 2.5.

Definition 6.11. A block Krylov subspace method for solving 𝐴𝑋 = 𝐵 is an
iterative method that generates iterates 𝑥(𝑘)

𝑗 which fulfil

𝑥(𝑘)
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦□
𝑘 (𝐴, 𝑅(0)),

where 𝑅(0) = 𝐵 − 𝐴𝑋(0), and 𝑋(0) = [𝑥(0)
1 | … |𝑥(0)

𝑚 ] is the starting block-vector.

For further use, let us introduce the notation 𝑋(𝑘) = [𝑥(𝑘)
1 | … |𝑥(𝑘)

𝑚 ] to describe
the block-vector of the 𝑘-th iterates.

6.3.2 Bases for Block Krylov Subspaces

Block Krylov subspace methods need to generate bases of block Krylov sub-
spaces in the same way that Krylov subspace methods rely on building bases
for Krylov subspaces. For example, we would like to build orthonormal basis
vectors because of the favourable properties they possess. There exist straight
forward generalisations of the Arnoldi process and the Lanczos process. These
run into problems as soon as dim(𝒦□

𝑘 (𝐴, 𝐵)) ≠ 𝑘𝑚. We present them here by
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assuming dim(𝒦□
𝑘 (𝐴, 𝐵)) = 𝑘𝑚 and will discuss the shortcomings in the case

of dim(𝒦□
𝑘 (𝐴, 𝐵)) < 𝑘𝑚 later in one place in Section 6.3.3.

In Algorithm 6.5 we display the block Arnoldi process as it is stated for
instance in [Saa03, Chapter 6]. It generates an orthonormal basis for 𝒦□

𝑘 (𝐴, 𝐵)
and is the block generalisation of Algorithm 2.1.

Algorithm 6.5: Block Arnoldi Process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑉 (1) ∈ ℂ𝑛×𝑚 unitary starting block-vector
𝑘 number of steps to perform

Output: {𝑉 (1), 𝑉 (2), … , 𝑉 (𝑘)} orthonormal basis of 𝒦□
𝑘 (𝐴, 𝐵)

1 for 𝑐 = 1, 2, … , 𝑘 do
2 𝑉 = 𝐴𝑉 (𝑐)

3 for 𝑖 = 1, 2, … , 𝑐 do // modified block Gram-Schmidt
4 𝐻𝑖,𝑐 = (𝑉 (𝑖))𝐻𝑉
5 𝑉 = 𝑉 − 𝑉 (𝑖)𝐻𝑖,𝑐

6 𝑉 (𝑐+1)𝐻𝑐+1,𝑐 = 𝑉 // QR decomposition of 𝑉

Like in the non-block case the matrices obtained by the block Arnoldi process
satisfy the block Arnoldi relation

𝐴𝙑 (𝑘) = 𝙑 (𝑘)𝙃(𝑘) + 𝑉 (𝑘+1)𝐻𝑘+1,𝑘𝙀𝐻
𝑘 = 𝙑 (𝑘+1)𝙃(𝑘+1,𝑘). (6.17)

Here, we used the 𝑛-by-𝑘𝑚 matrix 𝙑 (𝑘) = [𝑉 (1)| … |𝑉 (𝑘)], the (𝑘 + 1)𝑚-by-𝑘𝑚
upper block Hessenberg matrix

𝙃(𝑘+1,𝑘) = ⎡⎢
⎣

𝐻1,1 𝐻1,2 ⋯ 𝐻1,𝑘
𝐻2,1 𝐻2,2 ⋱ 𝐻2,𝑘

⋱ ⋱ ⋮
𝐻𝑘,𝑘−1 𝐻𝑘,𝑘

𝐻𝑘+1,𝑘

⎤⎥
⎦

,

the matrix 𝙃(𝑘) = (𝙃(𝑘+1,𝑘))1∶𝑘𝑚,∶ and 𝙀𝑘 = 𝑒𝑘 ⊗ 𝐼𝑚.
If the matrix 𝐴 is Hermitian, we can derive a block Lanczos process like

we did in Algorithm 2.2 for non-block systems. This block Lanczos process
is presented in Algorithm 6.6 and originates from [GU77]. Note that we still
assume dim(𝒦□

𝑘 (𝐴, 𝐵)) = 𝑘𝑚.
In the same way we obtained the block Arnoldi relation in equation (6.17),

we see that the block Lanczos relation

𝐴𝙑 (𝑘) = 𝙑 (𝑘)𝙏 (𝑘) + 𝑉 (𝑘+1)𝑇𝑘+1,𝑘𝙀𝐻
𝑘 = 𝙑 (𝑘+1)𝙏 (𝑘+1,𝑘),
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Algorithm 6.6: Block Lanczos Process
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝑉 (1) ∈ ℂ𝑛×𝑚 unitary starting block-vector
𝑘 number of steps to perform

Output: {𝑉 (1), 𝑉 (2), … , 𝑉 (𝑘)} orthonormal basis of 𝒦□
𝑘 (𝐴, 𝐵)

1 for 𝑐 = 1, 2, … , 𝑘 do
2 𝑉 = 𝐴𝑉 (𝑐) − 𝑉 (𝑐−1)𝑇𝑐−1,𝑐
3 𝑇𝑐,𝑐 = (𝑉 (𝑐))𝐻𝑉
4 𝑉 = 𝑉 − 𝑉 (𝑐)𝑇𝑐,𝑐
5 𝑉 (𝑐+1)𝑇𝑐+1,𝑐 = 𝑉 // QR decomposition of 𝑉
6 𝑇𝑐,𝑐+1 = (𝑇𝑐+1,𝑐)𝐻

for the matrices from Algorithm 6.6 holds. Additional to the matrices used for
the block Arnoldi relation we need to define the block tridiagonal matrix

𝙏 (𝑘+1,𝑘) = ⎡
⎢
⎣

𝑇1,1 𝑇1,2
𝑇2,1 𝑇2,2 ⋱

⋱ ⋱ 𝑇𝑘−1,𝑘
𝑇𝑘,𝑘−1 𝑇𝑘,𝑘

𝑇𝑘+1,𝑘

⎤
⎥
⎦

and the matrix 𝙏 (𝑘) = (𝙏 (𝑘+1,𝑘))1∶𝑘𝑚,∶.

We note that the matrices 𝑇 (𝑐+1,𝑐) and 𝐻 (𝑐+1,𝑐) are endowed with an upper
triangular structure. In the case of the block Lanczos relation this implies that
the matrices 𝑇 (𝑐,𝑐+1) are lower triangular. Unlike in the non-block Arnoldi and
Lanczos processes for 𝑚 > 1 the matrices 𝙏 (𝑘) and 𝙃(𝑘) can contain complex
values. Only the entries on the diagonal and the 𝑚-th lower diagonal are
guaranteed to be real values. Again, for 𝙏 (𝑘) the same is true for the 𝑚-th
upper diagonal.

In [Ruh79] an equivalent block Lanczos process is presented that constructs
𝙑 (𝑘) vector-by-vector. This means, that 𝙑 (𝑘) in contrast to Algorithm 6.6 is
extended by one vector at a time until 𝙑 (𝑘+1) is formed after 𝑚 steps. The
algorithm in [Ruh79] also features a technique to take care of (nearly) linearly
dependent vectors. We will come back to this vector-by-vector approach in
Chapter 7. But for the methods presented in this chapter we stick to extending
the block Krylov subspace block-wise.

There also exist two-sided block Lanczos processes for the non-Hermitian
case [Ali+00; Loh06]. The method from [Ali+00] will be explained in detail in
Chapter 7.
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6.3.3 The Need for Deflation

In the block Lanczos and block Arnoldi methods from Section 6.3.2 we assumed
that dim(𝒦□

𝑘 (𝐴, 𝐵)) = 𝑘𝑚. But we cannot guarantee this prerequisite for
every matrix 𝐴 and block right-hand side 𝐵. In the following we will sometimes
only refer to the block Lanczos process but everything said is true also for the
block Arnoldi process.

If dim(𝒦□
𝑘 (𝐴, 𝐵)) < 𝑘𝑚 then the block Lanczos process faces a matrix 𝑉

of rank less than 𝑚 in some step. The QR decomposition of 𝑉 prevents 𝑉 (𝑘)

from being rank-deficient by guaranteeing a unity 𝑛×𝑚 factor 𝑄 = 𝑉 (𝑘). This
means that we introduce a new Lanczos vector and do not generate bases of
the block Krylov subspaces but have 𝒦□

𝑘 (𝐴, 𝐵) ⊂ colspan {𝙑 (𝑘)} which is not
a problem by itself. However, this new Lanczos vector is not orthogonal to
𝑉 (𝑐) for 𝑐 < 𝑘 and we therefore lose the property (𝙑 (𝑘))𝐻𝙑 (𝑘) = 𝐼 . Moreover,
(𝙑 (𝑘))𝐻𝐴𝙑 (𝑘) = 𝙏 (𝑘) does not hold any longer and 𝙏 (𝑘) can even become
singular or ill-conditioned. An indicator for this is that the 𝑅 factor of the QR
decomposition, i.e. 𝑇𝑘+1,𝑘, is singular.

In numerical computations dim(𝒦□
𝑘 (𝐴, 𝐵)) < 𝑘𝑚 is rarely seen and we

face the similarly severe problem of ending up with an ill-conditioned matrix
𝑇𝑘+1,𝑘. This leads to the same problems as described before. In any case
Algorithm 6.6 would happily move along and build the matrices 𝙑 (𝑘) as well
as 𝙏 (𝑘+1,𝑘). This can raise problems for block Krylov subspace methods that
are based on the block Lanczos process or the block Arnoldi process either
explicitly or implicitly.

For example, consider using Definition 6.11 for computing iterates in the
following way

𝑥(𝑘)
𝑗 = 𝑥(0)

𝑗 + 𝙑 (𝑘)((𝙑 (𝑘))𝐻𝐴𝙑 (𝑘))−1(𝙑 (𝑘))𝐻𝑅(0)
∶,𝑗 . (6.18)

If (𝙑 (𝑘))𝐻𝐴𝙑 (𝑘) = 𝙏 (𝑘) does not hold, as described before, then (6.18) is
impractical to obtain iterates.

Besides that, computing iterates as in (6.18) hints at how block methods can
be more efficient than their non-block cousins. If during the QR decomposition
in the creation of 𝙑 (𝑘) some of the columns of 𝑉 in Algorithm 6.5 of 6.6 are
identified as linearly dependent then these columns do not contribute to the
iterate 𝑥(𝑘)

𝑗 . And if we have columns that are almost linearly dependent then
their contribution is negligible.

A common way to get rid of the numerical problems is to remove those
vectors that have been identified as (almost) linearly dependent in the block
Lanczos process or the block Arnoldi process. This approach stems from block
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Lanczos methods for computing eigenvalues and eigenvectors. There, it is
easier to remove undesired vectors than in block Krylov subspace methods
for linear systems, since in the latter we have to take care how we can still
compute approximations to the solution after removing a vector. In block
Krylov subspace methods where 𝙑 (𝑘) is not built explicitly the residual block-
vector 𝑅(𝑘) = 𝐵 − 𝐴𝑋(𝑘) can be monitored for (near) rank deficiency. In the
block method context this removal of vectors is called deflation. Note that
this is not to be confused with deflation methods from Section 6.2. Deflation,
however, needs a thorough examination how the removal of vectors impacts the
corresponding methods. We distinguish between exact deflation and inexact
deflation.

Exact deflation describes the situation when we end up with the zero vector
after orthogonalising against the previous basis vectors of the block Krylov
subspace. In the block Lanczos process this would result in a rank-deficient
matrix 𝑇𝑘+1,𝑘. In numerical computations this is unlikely to be seen. Therefore,
the condition for exact deflation should be relaxed. Instead of checking for the
zero vector one should regard ending up with a vector of very small norm, i.e.
close to machine precision, as exact deflation.

We use the term inexact deflation when a vector has small but not negligible
norm after orthogonalisation. This is indicated by an ill-conditioned matrix
𝑇𝑘+1,𝑘 in the block Lanczos process. This is a more delicate situation than exact
deflation since we cannot easily remove this vector and its removal introduces
a deflation error that limits the accuracy of the computed solution. Then
again, keeping such a vector can introduce numerical instability. Typically,
one chooses a tolerance for controlling when inexact deflation is applied, hence
limiting the deflation error. For computing eigenvalues and eigenvectors with
the block Lanczos method one can find inexact deflation for example in the
method presented in [Ruh79].

We will present some methods that implement deflation in Chapter 7 in
detail. Besides deflation there are more options to treat (almost) linearly
dependent columns in the involved matrices and we will briefly describe three
of them.

The first approach is to restart with a reduced number of right-hand sides
as soon as losing full rank is observed, e.g. suggested in [Gut06]. The removed
systems then have to be treated separately and cannot benefit any more from
the block method approach.

The second option to keep block methods from failing is to formulate the
algorithms in a robust way by changing how the methods compute needed in-
termediate matrices. Again, this idea stems from block Lanczos methods. For
example, in [GU77] a QR decomposition is used to guarantee linearly inde-
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pendent columns in the used block-vectors. For block Krylov subspace meth-
ods, the idea consists of incorporating matrix decompositions in crucial places
where the algorithm might rely on inverses of potentially ill-conditioned ma-
trices [Dub01]. Then the inversion is only performed using a well-conditioned
factor of the decomposition. We will introduce and discuss methods which
implement this approach in Section 6.3.5.

The third strategy consists of substituting the vector that would need to
be deflated by a random vector that is orthogonalised against all previous
Lanczos vectors [Soo14]. This approach has the advantage of maintaining the
block size and keeping the algorithm simple. Moreover, the unrelated random
vector might contribute to the solution in a block Krylov subspace method.
The downside is that we need to have a set of random vectors right from the
start which we have to keep orthogonal to all generated Lanczos vectors so
that we can use these as replacement when needed.

6.3.4 Block CG

In Chapter 2 we chose to derive the CG method via the basis generated by the
Lanczos process which underlines that it is a Krylov subspace method. There
is, however, a different approach to derive the CG method. The starting point
of this is the quadratic form

𝑓(𝑥) = 𝑥𝐻𝐴𝑥 − 2𝑏𝐻𝑥 (6.19)

which takes its minimum at 𝑥⋆ which is the solution of 𝐴𝑥 = 𝑏 for a hpd
matrix 𝐴.

One idea to find the minimum of 𝑓(𝑥) then is to do line searches and minimise
𝑓(𝑥) along one direction at a time. For instance, one can define an iterative
scheme

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼(𝑘)𝑟(𝑘)

where 𝑟(𝑘) is the residual in step 𝑘 and 𝛼(𝑘) is chosen s.t. the error 𝑒(𝑘+1) is
𝐴-orthogonal to 𝑟(𝑘). This minimises the 𝐴-norm of the error 𝑒(𝑘+1) along the
direction 𝑟(𝑘). The coefficient 𝛼(𝑘) can be explicitly stated as

𝛼(𝑘) = ⟨𝑟(𝑘), 𝑟(𝑘)⟩
⟨𝑟(𝑘), 𝐴𝑟(𝑘)⟩ .

The resulting method goes under the name steepest descent.
The CG method improves on this by introducing search directions 𝑝(𝑘) that

are different from 𝑟(𝑘) and along which the error is minimised. These are used
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to update the iterate via

𝑥(𝑘+1) = 𝑥(𝑘) + 𝜇(𝑘)𝑝(𝑘).

Furthermore, the error 𝑒(𝑘+1) corresponding to the next iterate not only can
be made 𝐴-orthogonal to 𝑝(𝑘) but also to 𝑝(𝑘−1). This is done by keeping the
search directions 𝐴-orthogonal and compute them as

𝑝(𝑘+1) = 𝑟(𝑘+1) + 𝜈(𝑘)𝑝(𝑘).

As stated in equation (2.17), cf. [Gre97, Theorem 2.3.2], this results in the
error being minimised over the whole space 𝑒(0) + span {𝑝(0), … , 𝑝(𝑘)},

The whole procedure was derived only by enforcing the orthogonality condi-
tions

(𝑟(𝑖))𝐻𝑟(𝑗) = 0, 𝑖 ≠ 𝑗,
(𝑝(𝑖))𝐻𝐴𝑝(𝑗) = 0, 𝑖 ≠ 𝑗, and

(𝑟(𝑖))𝐻𝑝(𝑗) = 0, 𝑖 ≠ 𝑗.
(6.20)

These orthogonality considerations result in the scalars

𝜇(𝑘) = ⟨𝑟(𝑘), 𝑟(𝑘)⟩
⟨𝑝(𝑘), 𝐴𝑝(𝑘)⟩ and

𝜈(𝑘) = ⟨𝑟(𝑘+1), 𝑟(𝑘+1)⟩
⟨𝑟(𝑘), 𝑟(𝑘)⟩ ,

exactly as in Chapter 2. Finally, we end up with the CG algorithm of Algo-
rithm 2.4. A more detailed description of this derivation approach of the CG
method can be found in [Gre97].

The above idea of imposing suitable orthogonality conditions on some search
directions can be ported to block methods. The first publication introducing
a block CG algorithm was [OLe80]. There, the starting point is a block bicon-
jugate gradient algorithm which is presented first. This is then used to derive
a block minimum residual and two block conjugate gradients algorithms—one
using a three-term formulation and the other a coupled two-term formulation.
We will present the latter one in the following and refer to it as BlockCG. We
follow the derivation of BlockCG from [OLe80] which is why we have intro-
duced the alternative derivation of CG above.

For multiple right-hand sides like in block systems of the kind (6.16) we can
state a minimisation problem—generalising (6.19)—as minimising

𝐹(𝑋) = tr (𝑋𝐻𝐴𝑋 − 2𝐵𝐻𝑋) (6.21)



116 6. Krylov Subspace Methods for Multiple RHS

which is equivalent to minimising 𝑓𝑗(𝑥𝑗) = 𝑥𝐻
𝑗 𝐴𝑥𝑗 − 2𝑏𝐻

𝑗 𝑥𝑗 for 𝑗 = 1, … , 𝑚.
Like before, the 𝑓𝑗(𝑥) take their minimum at the solutions 𝑥⋆

𝑗 of the systems
𝐴𝑥𝑗 = 𝑏𝑗. Thus, the solution 𝑋⋆ = [𝑥⋆

1| … |𝑥⋆
𝑚] of 𝐴𝑋 = 𝐵 minimises 𝐹(𝑋) in

equation (6.21).
We use the iterative scheme

𝑋(𝑘+1) = 𝑋(𝑘) + 𝑃 (𝑘)𝑀 (𝑘)

for updating the block-vector iterate and the block-vector of search directions
is updated via

𝑃 (𝑘+1) = 𝑅(𝑘+1) + 𝑃 (𝑘)𝑁 (𝑘).
Now we can impose the block equivalent of the conditions in (6.20), i.e.

(𝑅(𝑖))𝐻𝑅(𝑗) = 0, 𝑖 ≠ 𝑗,
(𝑃 (𝑖))𝐻𝐴𝑃 (𝑗) = 0, 𝑖 ≠ 𝑗, and

(𝑅(𝑖))𝐻𝑃 (𝑗) = 0, 𝑖 ≠ 𝑗,
(6.22)

on the block-vectors. Then we can compute the matrices 𝑀 (𝑘) and 𝑁 (𝑘) as

𝑀 (𝑘) = [(𝑃 (𝑘))𝐻𝐴𝑃 (𝑘)]−1(𝑅(𝑘))𝐻𝑅(𝑘) and
𝑁 (𝑘) = [(𝑅(𝑘))𝐻𝑅(𝑘)]−1(𝑅(𝑘+1))𝐻𝑅(𝑘+1).

With the above, the BlockCG method is a block Krylov subspace method.
It creates block iterates 𝑋(𝑘) = [𝑥(𝑘)

1 | … |𝑥(𝑘)
𝑚 ] with 𝑥(𝑘)

𝑗 ∈ 𝑥(0)
𝑗 + 𝒦□

𝑘 (𝐴, 𝑅(0))
and advances from 𝒦□

𝑘 (𝐴, 𝑅(0)) to 𝒦□
𝑘+1(𝐴, 𝑅(0)) in each step. The iterates

𝑋(𝑘) are obtained such that they satisfy the Galerkin condition

𝑋(𝑘) ∈ 𝑋(0) + 𝒦□
𝑘 (𝐴, 𝑅(0)) and

colspan {𝑅(𝑘)} = colspan {𝐵 − 𝐴𝑋(𝑘)} ⟂ 𝒦□
𝑘 (𝐴, 𝑅(0)),

which in the non-block case reduces to the CG iterates. If we denote with 𝙑 (𝑘)

a matrix whose columns form a basis of 𝒦□
𝑘 (𝐴, 𝐵) then the Galerkin condition

is equivalent to

𝑋(𝑘) = 𝑋(0) + 𝙑 (𝑘) ⋅ ((𝙑 (𝑘))𝐻𝐴𝙑 (𝑘))−1 ⋅ (𝙑 (𝑘))𝐻𝑅(0).

In Algorithm 6.7 we present the resulting BlockCG algorithm from [OLe80].
There, it is called B-CG and—additional to our version—features a QR decom-
position of the block-vectors 𝑃 (𝑘) for monitoring linear dependency. However,
it is suggested to perform a restart as soon as linearly dependent columns
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Algorithm 6.7: BlockCG
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝐵 = [𝑏1| … |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝑋(0) = [𝑥(0)

1 | … |𝑥(0)
𝑚 ] ∈ ℂ𝑛×𝑚 initial guess block-vector

Output: approximate solution 𝑋(𝑘) to 𝐴𝑋 = 𝐵

1 𝑅(0) = 𝐵 − 𝐴𝑋(0)

2 𝑃 (0) = 𝑅(0)

3 for 𝑘 = 1, 2, … until convergence do
4 𝑍(𝑘−1) = 𝐴𝑃 (𝑘−1)

5 𝑀 (𝑘−1) = [(𝑃 (𝑘−1))𝐻𝑍(𝑘−1)]−1(𝑅(𝑘−1))𝐻𝑅(𝑘−1)

6 𝑋(𝑘) = 𝑋(𝑘−1) + 𝑃 (𝑘−1)𝑀 (𝑘−1)

7 𝑅(𝑘) = 𝑅(𝑘−1) − 𝑍(𝑘−1)𝑀 (𝑘−1)

8 𝑁 (𝑘−1) = [(𝑅(𝑘−1))𝐻𝑅(𝑘−1)]−1(𝑅(𝑘))𝐻𝑅(𝑘)

9 𝑃 (𝑘) = 𝑅(𝑘) + 𝑃 (𝑘−1)𝑁 (𝑘−1)

in 𝑅(𝑘) + 𝑃 (𝑘−1)𝑁 (𝑘−1) are detected. No further details on this are given in
[OLe80].

The BlockCG algorithm (Algorithm 6.7) will break down due to a singular
matrix (𝑅(𝑘−1))𝐻𝑅(𝑘−1) in line 8 if the block Krylov subspace 𝒦□

𝑘−1(𝐴, 𝑅(0))
has dimension less than 𝑚(𝑘−1). To avoid these breakdowns one can monitor
the rank of the matrices 𝑃 (𝑘) and 𝑅(𝑘) as suggested in [OLe80]. If one of these
matrices loses full rank, the system belonging to the linearly dependent column
has to be removed and the iteration can continue on the remaining systems.
In [NY95] it is shown how the block size can be reduced dynamically.

Algorithm 6.7 has to store 4 block-vectors, each having 𝑚 columns, plus 2
𝑚 × 𝑚-matrices.

As for the seed and deflation methods for solving systems with multiple right-
hand sides we want to compare the computational complexity of BlockCG
with CG applied to all right-hand sides separately. We will assume that an
operation with an 𝑚-column block-vector of length 𝑛 is as expensive as 𝑚
vector operations as explained in Section 1.3. In actual computations often
times we can benefit from one 𝑚-column block-vector operation performing
faster than 𝑚 vector operations, though. This leads us to the computational
complexity of Algorithm 6.7 presented in the following result.
Proposition 6.12. Let 𝑘 denote the number of iteration steps needed to solve
the block system (6.16) with the BlockCG algorithm. The total number of
operations in Algorithm 6.7 is

ℴblockcg = 𝑘𝑚(𝒸□
𝐴(𝑚) + 5𝑚). (6.23)
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Proof. For Algorithm 6.7, we count
• one matrix-block-vector product,
• three block-vector updates of 𝑋(𝑘), 𝑅(𝑘) and 𝑃 (𝑘) and
• one computation of (𝑃 (𝑘−1))𝐻𝑍(𝑘−1) and (𝑅(𝑘))𝐻𝑅(𝑘)—the latter one can

be computed once and then reused in two more places.
We end up with (6.23) by adding everything.

Note that we assumed 𝑚 ≪ 𝑛 in Proposition 6.12 and thus neglect the
𝒪(𝑚3) operations—the two inversions of 𝑚 × 𝑚-matrices and the products of
𝑚 × 𝑚-matrices.

Now, we can compare BlockCG for solving (6.16) to solving all 𝑚 systems
in (6.1) with CG.

Proposition 6.13. We assume that solving (6.1) with the CG algorithm takes
an average of �̃� steps. The number of vector operations in BlockCG is less
than the number of vector operations in CG, hinting at BlockCG being able to
outperform CG for solving all systems in (5.1), if the inequality

𝒸𝐴 + 5
𝒸□

𝐴(𝑚) + 5𝑚 ≥ 𝑘
�̃�

(6.24)

holds.

Proof. With the above assumption and using the definition of ℴcg-mrhs in (6.4)
we get

ℴcg-mrhs ≥ ℴblockcg

⇔ (𝒸𝐴 + 5)𝑚�̃� ≥ 𝑘𝑚(𝒸□
𝐴(𝑚) + 5𝑚)

⇔ (𝒸𝐴 + 5)�̃� ≥ 𝑘(𝒸□
𝐴(𝑚) + 5𝑚)

⇔ �̃� 𝒸𝐴 + 5
𝒸□

𝐴(𝑚) + 5𝑚 ≥ 𝑘.

This suggests that BlockCG should perform at most 𝒸𝐴+5
𝒸□
𝐴(𝑚)+5𝑚 times the

number of steps that CG does in order to be faster. If, for example, BlockCG
manages to reduce the number of iteration steps to 𝑘

�̃� = 1
2 and 𝒸𝐴 = 𝒸□

𝐴(𝑚) then
𝒸𝐴 ≥ 5(𝑚 − 2) needs to hold for BlockCG to perform less vector operations
than CG. In reality, it is more complicated, since BlockCG gets more costly
when counting the 𝒪(𝑚3) operations.

The inequality (6.24) backs two observations often made with block methods.
First, as the number of right-hand sides is increased, the number 𝑘 of steps of
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BlockCG must drop accordingly for it to be faster than CG. Second, the first
observation is alleviated by a high cost 𝒸𝐴 of the matrix-vector product and
even more so if 𝒸□

𝐴(𝑚) is significantly smaller than 𝒸𝐴. This means, that if the
fraction in the left-hand side of (6.24) is dominated by a costly matrix-vector
product with the matrix 𝐴 then BlockCG can lead to savings in computational
time even for a small reduction in the number of iteration steps.

In [OLe80, Section 4] the convergence of the BlockCG algorithm was anal-
ysed. We state the result which is similar to that of Theorem 2.10 whilst
omitting the quite long and technical proof.

Theorem 6.14. [OLe80, Theorem 5] Let 𝑒(𝑘)
𝑗 be the error of system 𝑗 at step

𝑘 of the BlockCG algorithm applied to the Hermitian positive definite linear
block system 𝐴𝑋 = 𝐵 with 𝑋, 𝐵 ∈ ℂ𝑛×𝑚. Let 𝑈𝐻𝐴𝑈 = Λ = diag (𝜆1, … , 𝜆𝑛)
with 𝑈𝐻𝑈 = 𝐼𝑛 and 0 < 𝜆1 ≤ … ≤ 𝜆𝑛 and let 𝜅 = 𝜆𝑛/𝜆𝑚. Then the bound

∥𝑒(𝑘)
𝑗 ∥

𝐴
≤ 𝑐 (

√𝜅 − 1√𝜅 + 1)
𝑘

holds. The constant 𝑐 depends on 𝐴, the initial right-hand sides—i.e. on the
initial error as in Theorem 2.10—and on 𝑚 but not on 𝑘.

Proof. For the proof and the definition of the constant 𝑐 see [OLe80, Theorem
5].

Theorem 6.14 shows that the convergence rate of BlockCG depends on the
initial guess 𝑋(0) and more importantly on the eigenvalue distribution of 𝐴. If
the 𝑛 − 𝑚 + 1 largest eigenvalues are clustered then 𝜅 might be significantly
smaller than 𝜆𝑛/𝜆1. This can even contribute to alleviate the penalty from
more right-hand sides in (6.24).

We finish our discussion of BlockCG with noting that breakdowns of the
BlockCG method in case of indefinite 𝐴 have been investigated in [Bro97]. In
the following we give a couple of remarks on related methods.

A deflated version of BlockCG can be attributed to [NY95; NY03]. The
VBPCG (variable block preconditioned conjugate gradient) algorithm presented
there can dynamically reduce the block size of the involved matrices without
restarting the whole process. The method, however, is only capable of solving
a single right-hand side system 𝐴𝑥 = 𝑏 whilst accelerating the solution of this
system with the block method idea. This is done in the VBPCG method by
starting with a block system 𝐴[𝑥| … ] = [𝑏| … ] where only the solution of the
first system is of interest. The last 𝑚−1 columns in 𝐵 = [𝑏| … ], i.e. all but the
first column, are chosen randomly, s.t. 𝐵 has full rank. When computations
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in parallel are used this might result in solving 𝐴𝑥 = 𝑏 faster than with CG.
But, in [NY95; NY03] there is no explanation given how the deflated systems
could be solved and thus whether VBPCG can be used to solve 𝐴𝑋 = 𝐵.

In [CW97]—besides the Single Seed Method we presented in Section 6.1—a
hybrid of BlockCG and the Single Seed Method is presented. It is called the
Block Seed Method and the results there suggest that it can perform better
than the Single Seed Method if the right-hand sides are not closely related.

The BlockCG method can be used to accelerate row projection methods like
the Cimmino method. Instead of applying the Cimmino approach to single
rows of the matrix 𝐴, block slices are used which require solving systems with
multiple right-hand sides. The resulting block Cimmino method is examined
in, e.g. [Lew95; Rui92; Zen13].

6.3.5 Retooled Block CG

In [Dub01] another approach for curing the (nearly) rank deficiency problems
discussed in Section 6.3.3 whilst explicitly avoiding deflation in BlockCG is
presented. The key idea, common to all methods in [Dub01], is to use fac-
torisations, e.g. QR decompositions, of the search directions block-vector 𝑃 (𝑘)

and/or the residual block-vector 𝑅(𝑘). These are applied to enforce full rank
of the matrices that have to be inverted in the BlockCG algorithm thereby
successfully disguising the potential rank deficiency from the algorithm. The
resulting retooled methods have the advantage that there is no need for book
keeping of those vectors that became linearly dependent or to work on block-
vectors whose number of columns gets reduced during the iteration. Hence, the
algorithms in [Dub01] are much simpler and easy to implement than most other
methods. On the downside one always invests the equivalent of 𝑚 matrix-
vector multiplications with 𝐴 per step, even when this would not be necessary
due to rank deficiency. Therefore, the desirable side effect of reducing the
number of systems, which implies a reduction of the amount of work, that
deflation brings with it, cannot be exploited.

In the following we describe two retooled BlockCG variants. We chose to
present these two since each of them tries to extend one particular property of
the single right-hand side CG algorithm to the block-vectors of the BlockCG
algorithm. In [Dub01] more variants are derived and compared to BlockCG.

BlockCG with factorisation of the search direction block-vector

The first algorithm from [Dub01] we want to present is based on an alterna-
tive formulation of the BlockCG algorithm. We call this formulation BCGA
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and we describe the changes that have to be applied to BlockCG leading to
BCGA. This version differs from BlockCG in computing the matrices 𝑀 (𝑘−1)

and 𝑁 (𝑘−1) in an alternate, albeit mathematically equivalent, way. The matrix
𝑀 (𝑘−1) can be computed differently as

𝑀 (𝑘−1) = [(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑅(𝑘−1))𝐻𝑅(𝑘−1)

= [(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑃 (𝑘−1))𝐻𝑅(𝑘−1).

This holds, since 𝑃 (𝑘−1) = 𝑅(𝑘−1) +𝑃 (𝑘−2)𝑁 (𝑘−2) and (𝑃 (𝑘−2))𝐻𝑅(𝑘−1) = 0. As-
suming 𝑀 (𝑘−1) to be non-singular, the computation of 𝑁 (𝑘−1) can be rewritten
to

𝑁 (𝑘−1) = [(𝑅(𝑘−1))𝐻𝑅(𝑘−1)]−1(𝑅(𝑘))𝐻𝑅(𝑘)

= [(𝑅(𝑘) + 𝐴𝑃 (𝑘−1)𝑀 (𝑘−1))𝐻(𝑃 (𝑘−1) − 𝑃 (𝑘−2)𝑁 (𝑘−2))]−1

⋅ (𝑅(𝑘−1) − 𝐴𝑃 (𝑘−1)𝑀 (𝑘−1))𝐻𝑅(𝑘)

= −[(𝑀 (𝑘−1))𝐻(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑀 (𝑘−1))𝐻(𝑃 (𝑘−1))𝐻𝐴𝑅(𝑘)

= −[(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑃 (𝑘−1))𝐻𝐴𝑅(𝑘)

where we utilised the orthogonality conditions (6.22). This results in the al-
ternate BlockCG version that is displayed in Algorithm 6.8.

Algorithm 6.8: BCGA
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝐵 = [𝑏1| … |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝑋(0) = [𝑥(0)

1 | … |𝑥(0)
𝑚 ] ∈ ℂ𝑛×𝑚 initial guess block-vector

Output: approximate solution 𝑋(𝑘) to 𝐴𝑋 = 𝐵

1 𝑅(0) = 𝐵 − 𝐴𝑋(0)

2 𝑃 (0) = 𝑅(0)

3 for 𝑘 = 1, 2, … until convergence do
4 𝑍(𝑘−1) = 𝐴𝑃 (𝑘−1)

5 𝑀 (𝑘−1) = [(𝑃 (𝑘−1))𝐻𝑍(𝑘−1)]−1(𝑃 (𝑘−1))𝐻𝑅(𝑘−1)

6 𝑋(𝑘) = 𝑋(𝑘−1) + 𝑃 (𝑘−1)𝑀 (𝑘−1)

7 𝑅(𝑘) = 𝑅(𝑘−1) − 𝑍(𝑘−1)𝑀 (𝑘−1)

8 𝑁 (𝑘−1) = −[(𝑃 (𝑘−1))𝐻𝑍(𝑘−1)]−1(𝑍(𝑘−1))𝐻𝑅(𝑘)

9 𝑃 (𝑘) = 𝑅(𝑘) + 𝑃 (𝑘−1)𝑁 (𝑘−1)

The BCGA algorithm is endowed with a particular property that BlockCG
does not have and which we want to exploit. This property is that every
factorisation of the block-vector of search directions

𝐹 (𝑘)𝐶(𝑘) = 𝑃 (𝑘)
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with non-singular 𝐶(𝑘) ∈ ℂ𝑚×𝑚 results in an algorithm in which 𝐶(𝑘) does not
appear explicitly. In numerical computations, however, it is unlikely that 𝐶(𝑘)

is exactly singular.
Applying the above factorisation to the according lines from 4 to 9 of the

BCGA algorithm yields the following new computations. With �̃� (𝑘−1) we
denote the matrix 𝑀 (𝑘−1) of BCGA which we transform to

�̃� (𝑘−1) = [(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑃 (𝑘−1))𝐻𝑅(𝑘−1)

= [(𝐶(𝑘−1))𝐻(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)𝐶(𝑘−1)]−1(𝐹 (𝑘−1)𝐶(𝑘−1))𝐻𝑅(𝑘−1)

= (𝐶(𝑘−1))−1[(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1

⋅ (𝐶(𝑘−1))−𝐻(𝐶(𝑘−1))𝐻⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐼

(𝐹 (𝑘−1))𝐻𝑅(𝑘−1)

= (𝐶(𝑘−1))−1[(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1(𝐹 (𝑘−1))𝐻𝑅(𝑘−1).

Now, we define

𝑀 (𝑘−1) = [(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1(𝐹 (𝑘−1))𝐻𝑅(𝑘−1).

The updates for the iterate and residual block-vectors become

𝑋(𝑘) = 𝑋(𝑘−1) + 𝐹 (𝑘−1)𝐶(𝑘−1)�̃� (𝑘−1)

= 𝑋(𝑘−1) + 𝐹 (𝑘−1)𝑀 (𝑘−1)

and

𝑅(𝑘) = 𝑅(𝑘−1) − 𝐴𝐹 (𝑘−1)𝑀 (𝑘−1).

Again, we use ̃𝑁 (𝑘−1) to denote the matrix 𝑁 (𝑘−1) from BCGA and see that

̃𝑁 (𝑘−1) = −[(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝐴𝑃 (𝑘−1))𝐻𝑅(𝑘)

= −[(𝐹 (𝑘−1)𝐶(𝑘−1))𝐻𝐴𝐹 (𝑘−1)𝐶(𝑘−1)]−1(𝐴𝐹 (𝑘−1)𝐶(𝑘−1))𝐻𝑅(𝑘)

= −(𝐶(𝑘−1))−1[(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1

⋅ (𝐶(𝑘−1))−𝐻(𝐶(𝑘−1))𝐻⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐼

(𝐴𝐹 (𝑘−1))𝐻𝑅(𝑘)

= −(𝐶(𝑘−1))−1[(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1(𝐴𝐹 (𝑘−1))𝐻𝑅(𝑘)

holds. Then, we define

𝑁 (𝑘−1) = −[(𝐹 (𝑘−1))𝐻𝐴𝐹 (𝑘−1)]−1(𝐴𝐹 (𝑘−1))𝐻𝑅(𝑘).
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Algorithm 6.9: BCGAdF
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝐵 = [𝑏1| … |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝑋(0) = [𝑥(0)

1 | … |𝑥(0)
𝑚 ] ∈ ℂ𝑛×𝑚 initial guess block-vector

Output: approximate solution 𝑋(𝑘) to 𝐴𝑋 = 𝐵

1 𝑅(0) = 𝐵 − 𝐴𝑋(0)

2 𝐹 (0)𝐶(0) = 𝑃 (0) // factorisation of 𝑃 (0)

3 for 𝑘 = 1, 2, … until convergence do
4 𝑍(𝑘−1) = 𝐴𝐹 (𝑘−1)

5 𝑀 (𝑘−1) = [(𝐹 (𝑘−1))𝐻𝑍(𝑘−1)]−1(𝐹 (𝑘−1))𝐻𝑅(𝑘−1)

6 𝑋(𝑘) = 𝑋(𝑘−1) + 𝐹 (𝑘−1)𝑀 (𝑘−1)

7 𝑅(𝑘) = 𝑅(𝑘−1) − 𝑍(𝑘−1)𝑀 (𝑘−1)

8 𝑁 (𝑘−1) = −[(𝐹 (𝑘−1))𝐻𝑍(𝑘−1)]−1(𝑍(𝑘−1))𝐻𝑅(𝑘)

9 𝐹 (𝑘)𝐶(𝑘) = 𝑅(𝑘) + 𝐹 (𝑘−1)𝑁 (𝑘−1) // factorisation of 𝑃 (𝑘)

Finally, the factorisation of the search direction block-vector becomes

𝐹 (𝑘)𝐶(𝑘) = 𝑅(𝑘) + 𝐹 (𝑘−1)𝐶(𝑘−1) ̃𝑁 (𝑘−1)

= 𝑅(𝑘) + 𝐹 (𝑘−1)𝑁 (𝑘−1).
The resulting algorithm BCGAdF is displayed in Algorithm 6.9.

Algorithm 6.9 can be implemented, e.g. with a QR decomposition as factori-
sation in the lines 2 and 9 and is then referred to as BCGAdQ. In [Dub01]
another factorisation is proposed. If the search direction block-vector is fac-
torised to yield 𝐴-orthonormal columns of 𝐹 (𝑘) then the computation of 𝑀 (𝑘−1)

and 𝑁 (𝑘−1) simplifies, since the inversions vanish. Moreover, the property of
𝐴-orthogonal search directions is carried from CG to this version of BlockCG.
For computing such a factorisation, a modified Gram-Schmidt method which
computes the factor 𝐹 (𝑘) of 𝐹 (𝑘)𝐶(𝑘) = 𝑃 (𝑘) with (𝐹 (𝑘))𝐻𝐴𝐹 (𝑘) = 𝐼 is pre-
sented in [Dub01]. Furthermore, the computation of 𝐹 (𝑘) can be done in-situ
and requires no additional multiplications with 𝐴. This version of BCGAdF
using the 𝐴-orthonormalisation is called BCGAdA. However, in [Dub01] erratic
behaviour of BCGAdF with the 𝐴-orthogonalisation was observed. The pro-
posed solution involves computing a QR decomposition of the search direction
block-vector before applying the 𝐴-orthogonalisation. In [Dub01] BCGAdA
with this additinal decomposition was slower than all other variants which is
why we use the BCGAdQ variant from now on.

The computational complexity of Algorithm 6.9 in its BCGAdQ variant is
a bit higher than the computational complexity of BlockCG from Proposi-
tion 6.12 and we state it in the proposition below.
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Proposition 6.15. Let 𝑘 denote the number of iteration steps needed to solve
the block system (6.16) with the BCGAdQ algorithm. The number of operations
in Algorithm 6.9 including a QR decomposition of the search direction block-
vectors is

ℴbcgadq = 𝑘𝑚(𝒸□
𝐴(𝑚) + 8𝑚 + 4). (6.25)

Proof. There are two differences to the BlockCG case which we have to de-
scribe. First, the QR decomposition adds an equivalent of 2𝑚2 + 4𝑚 vector
operations per iteration step if we use the Householder QR decomposition from
Proposition 1.5. Second, since BCGAdQ is based on BCGA it uses a different
computation of the matrices 𝑀 (𝑘−1) and 𝑁 (𝑘−1). In BCGAdQ we can reuse the
matrix [(𝐹 (𝑘−1))𝐻𝑍(𝑘−1)]−1 only once whereas we could reuse (𝑅(𝑘))𝐻𝑅(𝑘) twice
in BlockCG. Therefore, we have 3𝑚2 + 4𝑚 additional operations as compared
to BlockCG leading to ℴbcgadq in (6.25).

We see that ℴbcgadq adds little work as compared to ℴblockcg only if the cost
𝒸□

𝐴(𝑚) for multiplying with the matrix 𝐴 in terms of vector operations is large
in comparison to 𝑚. If, however, 𝒸□

𝐴(𝑚) ≈ 𝑚 then the BCGAdQ algorithm
needs significantly more operations than BlockCG. But, one should keep in
mind that encountering (nearly) linear dependencies can result in BlockCG
taking much more iteration steps or it might not converge at all. This brings
us to the comparison of BCGAdQ for solving (6.16) to solving all 𝑚 systems
in (6.1) with CG.

Proposition 6.16. We assume that the systems in (6.1) take an average of
�̃� steps when solved with the CG algorithm. The number of vector operations
in BCGAdQ is less than the number of vector operations in CG, hinting at
BCGAdQ being faster than CG for solving all systems in (5.1), if the inequality

𝒸𝐴 + 5
𝒸□

𝐴(𝑚) + 8𝑚 + 4 ≥ 𝑘
�̃�

holds.

Proof. See Proposition 6.13.

BlockCG with factorisation of the residual block-vector

The second algorithm from [Dub01] that we want to describe in the remainder
of this section is called BCGrQ. It is a retooled version of BlockCG and shows
the best performance in flop count in the numerical experiments performed in
[Dub01]. It carries the property of orthogonal residual vectors from non-block
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CG to the block case by applying a QR decomposition to the block-vector of
residuals, hence the “rQ” suffix. In contrast to BCGAdF it is not based on
the alternate formulation of BlockCG. The potential ill-conditioned or rank
deficient matrices do not vanish completely in BCGrQ, but they only occur in
non-critical places.

To derive BCGrQ we can start from the BlockCG algorithm (Algorithm 6.7).
Therein, we apply a QR decomposition

𝑄(𝑘)𝐶(𝑘) = 𝑅(𝑘) with (𝑄(𝑘))𝐻𝑄(𝑘) = 𝐼𝑚

to the block-vector of residuals and we use a transformation

𝐷(𝑘)𝐶(𝑘) = 𝑃 (𝑘)

of the search direction block-vector. For the derivation we will assume that
𝐶(𝑘) can be close to singular but maintains full rank in exact arithmetic. Then,
we define the auxiliary matrix

𝑆(𝑘) = 𝐶(𝑘)(𝐶(𝑘−1))−1.

Now, we can start to substitute in the according lines from 4 to 9 of the
BlockCG algorithm. First, we have

�̃� (𝑘−1) = [(𝑃 (𝑘−1))𝐻𝐴𝑃 (𝑘−1)]−1(𝑅(𝑘−1))𝐻𝑅(𝑘−1)

= [(𝐷(𝑘−1)𝐶(𝑘−1))𝐻𝐴𝐷(𝑘−1)𝐶(𝑘−1)]−1(𝐶(𝑘−1))𝐻 (𝑄(𝑘−1))𝐻𝑄(𝑘−1)⏟⏟⏟⏟⏟⏟⏟
=𝐼

𝐶(𝑘−1)

= (𝐶(𝑘−1))−1[(𝐷(𝑘−1))𝐻𝐴𝐷(𝑘−1)]−1 (𝐶(𝑘−1))−𝐻(𝐶(𝑘−1))𝐻⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐼

𝐶(𝑘−1)

= (𝐶(𝑘−1))−1[(𝐷(𝑘−1))𝐻𝐴𝐷(𝑘−1)]−1𝐶(𝑘−1),

where �̃� (𝑘−1) stems from BlockCG and for BCGrQ we define

𝑀 (𝑘−1) = ((𝐷(𝑘−1))𝐻𝐴𝐷(𝑘−1))−1.
Now the iterate can be updated via

𝑋(𝑘) = 𝑋(𝑘−1) + 𝐷(𝑘−1)𝐶(𝑘−1)�̃� (𝑘−1)

= 𝑋(𝑘−1) + 𝐷(𝑘−1)𝑀 (𝑘−1)𝐶(𝑘−1).
The residual block-vector can be computed as a QR decomposition as in

𝑄(𝑘)𝐶(𝑘) = 𝑄(𝑘−1)𝐶(𝑘−1) + 𝐴𝐷(𝑘−1)𝐶(𝑘−1)�̃� (𝑘−1)

= 𝑄(𝑘−1)𝐶(𝑘−1) + 𝐴𝐷(𝑘−1)𝑀 (𝑘−1)𝐶(𝑘−1)

⇔ 𝑄(𝑘) 𝐶(𝑘)(𝐶(𝑘−1))−1⏟⏟⏟⏟⏟⏟⏟
=𝑆𝑘

= 𝑄(𝑘−1) + 𝐴𝐷(𝑘−1)𝑀 (𝑘−1).
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The search direction block-vector is updated via

𝐷(𝑘)𝐶(𝑘) = 𝑄(𝑘)𝐶(𝑘) + 𝑃 (𝑘−1)[(𝑃 (𝑘−1))𝐻𝑃 (𝑘−1)]−1(𝑃 (𝑘))𝐻𝑃 (𝑘)

= 𝑄(𝑘)𝐶(𝑘) + 𝐷(𝑘−1)(𝐶(𝑘−1))−𝐻(𝐶(𝑘))𝐻𝐶(𝑘)

⇔ 𝐷(𝑘) = 𝑄(𝑘) + 𝐷(𝑘−1)(𝑆(𝑘))𝐻.

And, finally, the matrix 𝐶(𝑘), which contains the information on the magnitude
of the residuals, can be updated stably as

𝐶(𝑘) = 𝑆(𝑘)𝐶(𝑘−1).

All this results in the BCGrQ algorithm from [Dub01], which we state in
our notation as Algorithm 6.10. Note that the only matrix we need to in-
vert is (𝐷(𝑘))𝐻𝑍(𝑘) which has full rank. This follows from 𝑄(𝑘) having full
rank stemming from a QR decomposition and the imposed orthogonality con-
ditions (6.22) which together yield

(𝑄(𝑘))𝐻𝐷(𝑘) = 𝐼𝑚.

All in all, this eliminates the need for deflation, because even if some of the
columns of the residual block-vector become linearly dependent then the rank
deficiency appears in 𝐶(𝑘) which is only used to scale the contribution of the
search direction block-vector to the solution.

Algorithm 6.10: BCGrQ
Input : 𝐴 ∈ ℂ𝑛×𝑛, hpd system matrix

𝐵 = [𝑏1| … |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝑋(0) = [𝑥(0)

1 | … |𝑥(0)
𝑚 ] ∈ ℂ𝑛×𝑚 initial guess block-vector

Output: approximate solution 𝑋(𝑘) to 𝐴𝑋 = 𝐵

1 𝑄(0)𝐶(0) = 𝑅(0) = 𝐵 − 𝐴𝑋(0), 𝐷(0) = 𝑄(0) // QR decomposition of 𝑅(0)

2 for 𝑘 = 1, 2, … until convergence do
3 𝑍(𝑘−1) = 𝐴𝐷(𝑘−1)

4 𝑀 (𝑘−1) = [(𝐷(𝑘−1))𝐻𝑍(𝑘−1)]−1

5 𝑋(𝑘) = 𝑋(𝑘−1) + 𝐷(𝑘−1)𝑀 (𝑘−1)𝐶(𝑘−1)

6 𝑄(𝑘)𝑆(𝑘) = 𝑄(𝑘−1) − 𝑍(𝑘−1)𝑀 (𝑘−1) // QR decomposition of 𝑅(𝑘)

7 𝐷(𝑘) = 𝑄(𝑘) + 𝐷(𝑘−1)(𝑆(𝑘))𝐻

8 𝐶(𝑘) = 𝑆(𝑘)𝐶(𝑘−1)

As for BCGAdQ, the computational complexity of BCGrQ in Algorithm 6.10
is almost similar to the computational complexity of BlockCG.
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Proposition 6.17. Let 𝑘 denote the number of iteration steps needed to solve
the block system (6.16) with the BCGrQ algorithm. The number of operations
in Algorithm 6.10 is

ℴbcgrq = 𝑘𝑚(𝒸□
𝐴(𝑚) + 6𝑚 + 4). (6.26)

Proof. There are two noticeable changes in the number of operations as com-
pared to BlockCG. First, we have 𝑚2 less operations than in BlockCG for only
building 𝑀 (𝑘−1) and not also 𝑁 (𝑘−1). Second, the QR decomposition in line 6
requires 2𝑚2 + 4𝑚 additional vector operations as stated in Proposition 1.5
when Algorithm 1.1 is applied. All in all, this results in (6.26).

This results in only slightly more work as compared to the BlockCG algo-
rithm and less work than BCGAdQ. As for the previous block methods the
following proposition states a comparison of BCGrQ with CG.

Proposition 6.18. We assume that the systems in (6.1) take an average of �̃�
steps when solved with the CG algorithm. The number of vector operations in
BCGrQ is less than the number of vector operations in CG, hinting at BCGrQ
being faster than CG for solving all systems in (5.1), if the inequality

𝒸𝐴 + 5
𝒸□

𝐴(𝑚) + 6𝑚 + 4 ≥ 𝑘
�̃�

holds.

Proof. See Proposition 6.13.





7 Krylov Subspace Methods for
Shifted Block Systems

The previous two chapters introduced methods that could either solve shifted
systems (5.1) or systems with multiple right-hand sides (6.1). In Chapter 4,
however, we presented applications which require the solution of a combination
of both. In fact, for these applications we need to solve families of shifted
linear systems with multiple right-hand sides (1.1) that we repeat here for
convenience

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗, 𝑖 = 1, … , 𝑠, 𝑗 = 1, … , 𝑚. (1.1)

In this chapter we will present methods that are capable of solving (1.1) ef-
ficiently. We will focus on the case where (𝐴 + 𝜎𝑖𝐼) ∈ ℂ𝑛×𝑛 is Hermitian
positive definite for every shift 𝜎𝑖 ∈ ℂ and 𝑥𝑖,𝑗, 𝑏𝑗 ∈ ℂ𝑛.

As we did for unshifted systems with multiple right-hand sides in Chapter 6
we can reformulate equation (1.1). By arranging the 𝑚 right-hand sides and
the corresponding 𝑚𝑠 solution vectors in the matrices

𝐵 = [𝑏1| ⋯ |𝑏𝑚] and
𝑋𝑗 = [𝑥1,𝑗| ⋯ |𝑥𝑚,𝑗]

we can rewrite (1.1) as a shifted block system

(𝐴 + 𝜎𝑗𝐼)𝑋𝑗 = 𝐵. (7.1)

One could apply either a shifted method from Chapter 5 to every shifted
system (5.1) belonging to right-hand side 𝑏𝑗 or one could treat every system
belonging to a single shift 𝜎𝑖 as a system (6.1) or a block system (6.16) and
apply a method from Chapter 6. Both choices are more or less practicable
and we will explore them numerically in Chapter 8. Nevertheless, a third
alternative is to apply methods that are specifically developed with the family
of systems (1.1) in mind.

Methods targeted at solving the systems (1.1) and (7.1) efficiently are rela-
tively rare. Until recently there were, to our knowledge, two methods especially
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meant for solving these systems. Both can solve (1.1) and (7.1), respectively,
for general (not necessarily Hermitian) matrices (𝐴 + 𝜎𝑖𝐼) ∈ ℂ𝑛×𝑛.

The first method is an extension of GMRES-DR called GMRES-Proj-Sh from
[DMW08]. It has to perform restarts in order to limit its memory footprint
and computational cost as it is based on GMRES—a method using long re-
currences. These restarts can deteriorate the convergence of the method. This
is tried to be alleviated by performing deflated restarts, which means that
eigenspace information is carried from every restart cycle to the next. The
eigenvalue computations involved in this process can make the restarts quite
costly. Hence, one has to find a tradeoff between the convergence speed and
the costs for restarting. Nonetheless, especially for shifted systems with re-
lated right-hand sides GMRES-Proj-Sh shows superior convergence behaviour
in [DMW08]. GMRES-Proj-Sh is a deflation method as those presented in
Section 6.2 extended for multiple shifts. It solves the shifted systems (1.1) for
every right-hand side one after the other. Thus, information from solving the
systems belonging to the right-hand side 𝑏𝑗 can only be shared to the systems
belonging to upcoming right-hand sides. A block method approach might be
able to improve on that. On the plus side, GMRES-Proj-Sh does not need to
check for linearly dependent vectors as a block method would.

The second method is a block-QMR method for multiple shifts from [FFF97]
which extends the unshifted block-QMR method from [FM97]. It is based on
a block Lanczos-type process that extends the two-sided Lanczos process to
multiple starting vectors and includes deflation in the block method sense. We
will describe this block Lanczos-type process in detail in Section 7.1.2. Being
a QMR method, though, the block-QMR algorithm not only inherits short
recurrences but also the need for a multiplication with 𝐴 and with 𝐴𝐻 per
step of the iteration. The multiplication with 𝐴𝐻 does not contribute to the
solution. It is only needed to span an additional space for bi-orthogonalisation.
Thus, methods tailored for a Hermitian positive definite matrix 𝐴 that only
need one multiplication with 𝐴 in every iteration step can be expected to
perform better.

Another method for solving (1.1) for Hermitian positive definite matrices
appeared recently in [Fut+13]. It is an extension of BCGrQ that we have pre-
sented in Section 6.3 to the multiple shifts case. Due to the recent publication
of the article in the proceedings of the High Performance Computing for Com-
putational Science conference 2012 we only present the algorithm briefly and
apply our cost model in order to compare it to the other methods.

This chapter is organised as follows. In Section 7.1 we first introduce deflated
block Krylov subspaces. Afterwards, we present three methods for computing
bases for these. In Section 7.2 we develop a CG method called DSBlockCG for
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multiple right-hand sides and multiple shifts for solving (1.1) that advances
the deflated block Krylov subspaces vector-wise. The method developed in
Section 7.3, BFDSCG, is a deflated shifted block Krylov subspace method
that advances the deflated block Krylov subspace block-wise. Both methods
are based on shifted CG from Section 5.1 and the Lanczos-type processes
from Section 7.1. Finally, we present the SBCGrQ algorithm from [Fut+13] in
Section 7.4.

7.1 Deflated Block Lanczos Processes
This section is dedicated to introduce the block Lanczos-type process and
variants thereof that most methods presented in this chapter are based upon.
It was presented by Boley [ABH94] and Freund [FF95; FF94] at the same
Oberwolfach workshop after being developed independently. The version of
the block Lanczos-type process that we present first and want to base deflated
block Krylov subspace methods on is explained in detail in [Ali+00]. It has
been used, for instance, in the Block-QMR method from [FM97].

7.1.1 Deflated Block Krylov Subspaces

Before we can describe the block Lanczos-type process we need to enhance our
Definition 6.7 of block Krylov subspaces. The block Lanczos-type process and
the methods based upon it advance the block Krylov subspace not in blocks
of 𝑚 vectors at every step. Instead, it constructs intermediate subspaces that
result from extending the block Krylov subspaces by a dimension of 1 using
one vector a time. This is sometimes called Ruhe’s approach, since this single
vector approach, that we described briefly in Section 6.3.2, was first introduced
in [Ruh79]. The following definition extends Definition 6.7 and includes the
mentioned intermediate subspaces.
Definition 7.1. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝐵 ∈ ℂ𝑛×𝑚. We define by
𝒦□

𝑘,𝑗(𝐴, 𝐵) = 𝒦□
𝑘 (𝐴, 𝐵) + span {𝐴𝑘𝑏1, … , 𝐴𝑘𝑏𝑗}

= span {𝑏1, … , 𝑏𝑚, 𝐴𝑏1, … , 𝐴𝑏𝑚, 𝐴2𝑏1, … , 𝐴𝑘−1𝑏𝑚, 𝐴𝑘𝑏1, … , 𝐴𝑘𝑏𝑗}
= colspan {𝙆𝑘,𝑗(𝐴, 𝐵)} (7.2)

the (𝑘, 𝑗)-th block Krylov subspace generated by the matrix 𝐴 and block-vector
𝐵. Here, we used

𝙆𝑘,𝑗(𝐴, 𝐵) = [𝐵|𝐴𝐵|𝐴2𝐵| ⋯ |𝐴𝑘−1𝐵|𝐴𝑘𝑏1| ⋯ |𝐴𝑘𝑏𝑗]
what we refer to as the block Krylov matrix.
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Note that 𝒦□
𝑘,0(𝐴, 𝐵) = 𝒦□

𝑘 (𝐴, 𝐵) and 𝒦□
𝑘,𝑚(𝐴, 𝐵) = 𝒦□

𝑘+1(𝐴, 𝐵). More-
over, for 0 < 𝑗 < 𝑚 the block Krylov subspaces 𝒦□

𝑘,𝑗(𝐴, 𝐵) “lie between”
𝒦□

𝑘 (𝐴, 𝐵) and 𝒦□
𝑘+1(𝐴, 𝐵), i.e.

𝒦□
𝑘 (𝐴, 𝐵) ⊆ 𝒦□

𝑘,1(𝐴, 𝐵) ⊆ ⋯ ⊆ 𝒦□
𝑘,𝑚−1(𝐴, 𝐵) ⊆ 𝒦□

𝑘+1(𝐴, 𝐵).

When it comes to computing bases for block Krylov subspaces, Definition 7.1
is useful as long as the block Krylov matrix from equation (7.2), whose columns
span the block Krylov subspace, does not contain nearly linearly dependent vec-
tors. By nearly linearly dependent vectors we refer to vectors that would yield
a vector of small norm after being orthogonalised against previous vectors. If it
contains exactly linearly dependent vectors then we could use Definition 7.1 for
defining deflated block Krylov subspace methods since we can simply span the
space 𝒦□

𝑘,𝑗(𝐴, 𝐵) with less than 𝑚𝑘 + 𝑗 vectors. If, however, the block Krylov
matrix 𝙆𝑘,𝑗(𝐴, 𝐵) contains nearly linearly dependent vectors then we want to
be able to remove them for numerical reasons as described in Section 6.3.3.
This implies that we are not spanning 𝒦□

𝑘,𝑗(𝐴, 𝐵) any more.
So, to arrive at a final definition for deflated block Krylov subspaces and the

resulting deflated block Krylov subspace methods we first have to be able to
express the matrix whose columns are a basis of the corresponding deflated
block Krylov subspace. We define it to be a submatrix of 𝙆𝑘,𝑗(𝐴, 𝐵) where
some of the columns are removed. Clearly, if we have a set of linearly dependent
vectors there are multiple choices for removing vectors to end up with a linearly
independent set of vectors. The same is true for nearly linearly dependent
vectors. But, in view of an implementation we scan the matrix 𝙆𝑘,𝑗(𝐴, 𝐵)
from left to right. Every time the current vector turns out to be nearly linearly
dependent on the previous vectors, we remove it. One important observation
for this procedure is that if 𝐴𝑝𝑥 is linearly dependent on previous vectors
then so is 𝐴𝑞𝑥 for 𝑞 > 𝑝. For nearly linearly dependent 𝐴𝑝𝑥 it is not that
straightforward. We still remove them but have to discuss the implications
later in the section. Hence, if we assume that amongst the starting vectors in
𝐵(0) = 𝐵 there are no (nearly) linearly dependent ones then we can define the
deflated block Krylov matrix as

𝙆defl
𝑘,𝑗 (𝐴, 𝐵) ∶= [𝐵(0)|𝐴𝐵(1)|𝐴2𝐵(2)| ⋯ |𝐴𝑘−1𝐵(𝑘−1)|𝐴𝑘𝐵(𝑘)

∶,1 | ⋯ |𝐴𝑘𝐵(𝑘)
∶,𝑗 ], (7.3)

where the matrices 𝐵(𝑐) are submatrices of 𝐵(𝑐−1). These submatrices consist
of the columns of the previous matrices except for those columns of 𝐴𝑐𝐵(𝑐−1)

that are identified as linearly dependent or nearly linearly dependent. In the
following we will refer to this process of removing vectors as exact or inexact
deflation and we will simply use deflation if we do not need to distinguish
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between the two. If 𝐴𝑐𝐵(𝑐−1)
∶,𝑗 is (nearly) linearly dependent then 𝐵(𝑐−1)

∶,𝑗 does
not appear in 𝐵(𝑐) any more and we refer to the vector 𝐴𝑐𝐵(𝑐−1)

∶,𝑗 as a deflated
vector. Note that if deflation occurred 𝒹 times until step (𝑘, 0) then the matrix
𝐵(𝑘−1) contains 𝑚 − 𝒹 columns.

All in all, this finally allows us to define deflated block Krylov subspaces
and deflated block Krylov subspace methods. We stress that in some cases
it is more convenient to define deflated block Krylov subspaces via their di-
mension and in other cases via their relation to the matrix 𝙆𝑘,𝑗(𝐴, 𝐵). Thus,
the following definitions contain two flavours of definitions for deflated block
Krylov subspaces and deflated block Krylov subspace methods. For counting
the dimension we introduce 𝜅 as indexing variable.

Definition 7.2. Let 𝐴 ∈ ℂ𝑛×𝑛, 𝐵 ∈ ℂ𝑛×𝑚 and 𝙆defl
𝑘,𝑗 (𝐴, 𝐵) as in (7.3). We

define the (𝑘, 𝑗)-th deflated block Krylov subspace generated by the matrix 𝐴
and block-vector 𝐵 as

𝒦defl
𝑘,𝑗 (𝐴, 𝐵) ∶= colspan {𝙆defl

𝑘,𝑗 (𝐴, 𝐵)}

and the deflated block Krylov subspace of dimension 𝜅 as

𝒦defl
𝜅 (𝐴, 𝐵) ∶= colspan {𝙆defl

𝜅 (𝐴, 𝐵)} .

The matrix 𝙆defl
𝜅 (𝐴, 𝐵) consists of the first 𝜅 columns of 𝙆defl

ℊ(𝐴,𝐵),0(𝐴, 𝐵) using
the grade ℊ(𝐴, 𝐵) from Definition 6.8.

Before continuing a couple of remarks are in order:
• For the deflated block Krylov subspaces the relation

𝒦defl
𝑘,𝑗 (𝐴, 𝐵) ⊂ 𝒦□

𝑘,𝑗(𝐴, 𝐵)

holds if and only if no inexact deflation occurred until step (𝑘, 𝑗).
• The inequality 𝜅 ≤ 𝑘𝑚+𝑗 holds and we have equality only if no deflation

occurred whilst generating the matrix 𝙆defl
𝑘,𝑗 (𝐴, 𝐵).

• We did not precisely state the process of inexact deflation. We will leave
this to be defined implicitly by the processes that generate bases for the
deflated block Krylov subspaces.

• The two definitions 𝒦defl
𝑘,𝑗 (𝐴, 𝐵) and 𝒦defl

𝜅 (𝐴, 𝐵) are, essentially, two dif-
ferent notations for the same spaces. In case of deflation we might have
𝒦defl

𝜅 (𝐴, 𝐵) = 𝒦defl
𝑘,𝑗 (𝐴, 𝐵) = 𝒦defl

𝑘,𝑗+1(𝐴, 𝐵). We can define a well-defined
mapping from the 𝜅-indices to the (𝑘, 𝑗)-indices by always mapping 𝜅
to the smallest (𝑘, 𝑗) assuming a lexicographical ordering. Hence, in the
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following we implicitly assume a well-defined mapping from the 𝜅- to the
(𝑘, 𝑗)-indices. In some places we use 𝜅(𝑘, 𝑗) instead of 𝜅 as index where
it is useful and makes referring to the deflated block Krylov subspace less
ambiguous. But we have to keep in mind that 𝜅(𝑘, 𝑗) is non-injective.

Now, we can use Definition 7.2 to define what we understand as a deflated
block Krylov subspace method.

Definition 7.3. Let 𝑋(0) = [𝑥(0)
1 | … |𝑥(0)

𝑚 ] and 𝑅(0) = 𝐵 − 𝐴𝑋(0). We call
iterative methods for solving 𝐴𝑋 = 𝐵 that generate iterates

𝑥(𝑘)
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦defl
𝑘,0 (𝐴, 𝑅(0)) (7.4)

or

𝑥(𝜅(𝑘,𝑗))
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦defl
𝜅(𝑘,𝑗)(𝐴, 𝑅(0)) (7.5)

deflated block Krylov subspace methods.

For future use we introduce the notation 𝑋(𝑘) = [𝑥(𝑘)
1 | … |𝑥(𝑘)

𝑚 ]. The first
variant in Definition 7.3 emphasises that some methods always advance block-
wise whereas the second variant is used for methods that advance by one
vector at a time. Both coincide in some steps and the second one allows for
intermediate iterates generated “between” the iterates 𝑋(𝑘) and 𝑋(𝑘+1).

7.1.2 Two-Sided Deflated Block Lanczos-Type Process

Having defined deflated block Krylov subspaces in Definition 7.2 we can now
go ahead and describe the Lanczos-type method from [Ali+00]. We will refer
to it as the two-sided deflated block Lanczos-type process to emphasise that
it is not restricted to Hermitian matrices as the deflated block Lanczos-type
process that we will introduce later. It can be regarded as a generalisation of
the two-sided Lanczos process from Algorithm 2.3 that is capable of handling
multiple starting vectors and includes proper deflation. We will not cover
every detail of the method from [Ali+00] since we are ultimately interested in
using a modification of the process for hpd matrices. Particularly, we omit
the look-ahead capability of the process and the cluster-wise bi-orthogonality
that comes along with it. This is only needed for non-Hermitian matrices to
prevent serious breakdowns and we refer to [Ali+00] for details thereon. Note
that in the following we will mostly use the terms bi-orthogonalisation and
orthogonalisation synonymously since from context it is clear which one is
meant.
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In a nutshell, the two-sided deflated block Lanczos-type process from [Ali+00]
computes bi-orthogonal bases of dimension 𝜅 = 𝜅(𝑘, 𝑗) = ̃𝜅(�̃�, ̃𝑗) for the sub-
spaces 𝒦defl

𝜅(𝑘,𝑗)(𝐴, 𝑅) and for 𝒦defl
�̃�(�̃�, ̃𝑗)(𝐴

𝐻, 𝐿). These fulfil a block Lanczos-type
relation as do the matrices generated from the two-sided Lanczos process (Al-
gorithm 2.3) fulfil (2.13), in the non-block case.

In detail, we want to generate right Lanczos vectors collected as columns of
the matrix

𝑉 (𝜅(𝑘,𝑗)) = [𝑣(1)| ⋯ |𝑣(𝜅(𝑘,𝑗))]
that span the subspace 𝒦defl

𝜅(𝑘,𝑗)(𝐴, 𝑅) and left Lanczos vectors

𝑊 (�̃�(�̃�, ̃𝑗)) = [𝑤(1)| ⋯ |𝑤(�̃�(�̃�, ̃𝑗))]

that span the subspace 𝒦defl
�̃�(�̃�, ̃𝑗)(𝐴

𝐻, 𝐿). The matrices 𝑅, 𝐿 ∈ ℂ𝑛×𝑚 are right
and left starting vectors. In principle, one could choose a different number
of left and right starting vectors as it is done in [Ali+00], but in view of a
Hermitian version of the process we restrict ourself to the same number 𝑚
for both. Additionally, we want the columns of 𝑉 (𝜅(𝑘,𝑗)) and 𝑊 (�̃�(�̃�, ̃𝑗)) to be
bi-orthogonal, i.e.

(𝑤(𝑖))𝐻𝑣(𝑗) = {𝛿𝑖 ≠ 0 for 𝑖 = 𝑗
0 for 𝑖 ≠ 𝑗.

Methods for preventing a breakdown caused by 𝛿𝑖 = 0 can be found in [Ali+00].
Depending on the scaling of 𝑤(𝑖) and 𝑣(𝑗) one could force 𝛿𝑖 = 1, but we choose
to normalise 𝑤(𝑖) and 𝑣(𝑗). In matrix notation we can express this as

(𝑊 (�̃�(�̃�, ̃𝑗)))𝐻𝑉 (𝜅(𝑘,𝑗)) = diag (𝛿1, … , 𝛿𝜅) =∶ Δ(𝜅). (7.6)

In the following we will first sketch the two-sided deflated block Lanczos-type
process without deflation, then we will discuss the implications of deflating
vectors, afterwards we state the algorithms, and finally we will discuss the
details that are easier to describe after having stated the algorithm.

Two-sided block Lanczos-type process without deflation

At first, we will describe the whole process for the non-deflated case. We
assume that we already have bi-orthogonal bases

𝑉 (𝜅(𝑘,𝑗)−1) = [𝑣(1)| ⋯ |𝑣(𝜅(𝑘,𝑗)−1)] for 𝒦□
𝜅(𝑘,𝑗)−1(𝐴, 𝑅) and

𝑊 (�̃�(�̃�, ̃𝑗)−1) = [𝑤(1)| ⋯ |𝑤(�̃�(�̃�, ̃𝑗)−1)] for 𝒦□
�̃�(�̃�, ̃𝑗)−1(𝐴𝐻, 𝐿).
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We will describe the procedure of creating these bases by explaining how we
expand the bases of step 𝜅 − 1 to step 𝜅. Since no deflation occurred we have
that 𝜅(𝑘, 𝑗) − 1 = 𝑚𝑘 + 𝑗 − 1 = 𝑚�̃� + ̃𝑗 − 1 = ̃𝜅(�̃�, ̃𝑗) − 1 and we simply use
𝜅, 𝑘 and 𝑗 for both subspaces.

In step 𝜅 the pair of vectors 𝑣(𝜅) and 𝑤(𝜅) is computed. For 𝑣(𝜅), we do so by
bi-orthogonalising 𝐴𝑣(𝜅(𝑘,𝑗)−𝑚) = 𝐴𝑣(𝑚(𝑘−1)+𝑗) against 𝑊 (𝜅−1) yielding 𝓿 . That
is, we compute

𝓿 = 𝐴𝑣(𝜅−𝑚) −
𝜅−1
∑

𝑖=𝜅−2𝑚
(𝑤(𝑖))𝐻𝐴𝑣(𝜅−𝑚)𝑣(𝑖). (7.7)

If 𝜅 ≤ 𝑚 then we bi-orthogonalise 𝑅∶,𝜅 instead of 𝐴𝑣(𝜅−𝑚) against 𝑊 (𝜅−1),
again yielding 𝓿 . Then we set 𝑣(𝜅) = 𝓿/ ‖𝓿‖. The bi-orthogonalisation of 𝑤(𝜅)

can be done in the same manner. Note that in equation (7.7) the sum does not
need to start at 𝑖 = 1, because for 𝑖 < 𝜅−2𝑚 the inner product (𝑤(𝑖))𝐻𝐴𝑣(𝜅−𝑚)

is zero. This can be seen by observing that for 𝑖 < 𝜅 − 2𝑚 we have

(𝑤(𝑖))𝐻𝐴𝑣(𝜅−𝑚) = (𝐴𝐻𝑤(𝑖))𝐻𝑣(𝜅−𝑚)

= (
𝑖+𝑚
∑
𝑐=1

⋆𝑤(𝑐))
𝐻

𝑣(𝜅−𝑚),
(7.8)

and every vector 𝑤(𝑐) in the sum is already orthogonal to 𝑣(𝜅−𝑚) by construction
(we used ⋆ as dummies for scalars whose values are not important for the
observation). This is a property of the bi-orthogonalisation that allows for
short recurrences.

We can formulate the bi-orthogonalisation procedure for 𝜅 > 𝑚 in matrix
form as a block Lanczos relation

𝐴𝑉 (𝜅−𝑚) = 𝑉 (𝜅) ̃𝑇 (𝜅,𝜅−𝑚)
𝑣 (7.9)

𝐴𝐻𝑊 (𝜅−𝑚) = 𝑊 (𝜅) ̃𝑇 (𝜅,𝜅−𝑚)
𝑤

where the matrices

̃𝑇 (𝜅,𝜅−𝑚)
𝑣 ∈ ℂ𝜅×𝜅−𝑚 and
̃𝑇 (𝜅,𝜅−𝑚)
𝑤 ∈ ℂ𝜅×𝜅−𝑚

collect the bi-orthogonalisation coefficients. These matrices are banded with
upper and lower bandwidth 𝑚. In other words, the matrices ̃𝑇 (𝜅,𝜅−𝑚)

𝑣 and
̃𝑇 (𝜅,𝜅−𝑚)
𝑤 are block tridiagonal with 𝑚 × 𝑚 blocks and triangular off-diagonal

blocks. Figure 7.1 displays the structure of ̃𝑇 (𝜅,𝜅−𝑚)
𝑣 , and ̃𝑇 (𝜅,𝜅−𝑚)

𝑤 has the
same structure.
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̃𝑇 (𝜅,𝜅−𝑚)
𝑣

...

𝑚

.
𝜅 − 𝑚

.

𝜅

Figure 7.1: Example for the sparsity pattern of the matrix ̃𝑇 (𝜅,𝜅−𝑚)
𝑣 in

case of no deflation for 4 left and right starting vectors.

Two-sided deflated block Lanczos-type process

Deflation makes the whole process more sophisticated since, amongst other
reasons, it can happen independently in the two spaces 𝒦defl

𝜅(𝑘,𝑗)(𝐴, 𝑅) and
𝒦defl

�̃�(�̃�, ̃𝑗)(𝐴
𝐻, 𝐿). Thus, we need to be able to express this deflation of the

left and the right Lanczos vectors. We will describe the process only for the
right Lanczos vectors, but for the left Lanczos vectors it can be stated in the
same way. Furthermore, we assume that the left and right starting vectors in
𝐿 and 𝑅 are free of (nearly) linearly dependent vectors.

Some of the variables in the upcoming algorithm and description have a
lower index 𝑣 or 𝑤 which indicates that the corresponding variable is used in
connection with the right deflated block Krylov subspace and right Lanczos
vectors (𝑣) or the left deflated block Krylov subspace and left Lanczos vec-
tors (𝑤). The following explanation mostly covers details related to the right
Lanczos vectors. But, unless stated otherwise this can be trivially transferred
to the left Lanczos vectors.

The indexing 𝜅(𝑘, 𝑗) and ̃𝜅(�̃�, ̃𝑗) is useful for relating the iteration steps to
the block Krylov subspaces. But for the upcoming description of the two-
sided deflated block Lanczos-type process it is a bit clunky. Hence, for the
moment we drop this notation and use the index 𝜇𝑣 for the Lanczos vector
where the next candidate vector originates from as an 𝐴-multiple. Moreover,
we use the index 𝑐 for the Lanczos vector we currently want to compute.
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The detailed description where the candidate Lanczos vectors are taken from
and how 𝑐 and 𝜇𝑣 are related is split in two parts. First, building upon the
previous descriptions we briefly describe their relation until deflation occurs
the first time in a paragraph using this new notation. Second, the deflated
case is described in more detail afterwards and we give an example later that
illustrates the deflation process even more. Since we finally want to build
𝒦defl

𝜅 (𝐴, 𝑅), we have 𝑐 ≤ 𝜅 and 𝜇𝑣 < 𝑐 during the process and stop when
𝑐 = 𝜅 or 𝜇𝑣 = 𝑐.

Before deflation. After an initial bi-orthogonalisation of the starting vectors
that yields 𝑣(1), … , 𝑣(𝑚) and 𝑤(1), … , 𝑤(𝑚) we proceed by extending the right
deflated block Krylov subspace by the 𝐴-multiple 𝐴𝑣(1). In general, having
already created 𝑐 − 1 left and right Lanczos vectors we use 𝐴𝑣(𝑐−𝑚) = 𝐴𝑣(𝜇𝑣)

to extend the deflated block Krylov subspace—as long as no deflation was
needed. Bi-orthogonalisation of 𝐴𝑣(𝜇𝑣) against the matrix 𝑊 (𝑐−1) leaves us
with a vector 𝓿 (𝜇𝑣). We call this vector 𝓿 (𝜇𝑣) a candidate Lanczos vector. This
emphasises that we might not use this vector to span 𝒦defl

𝑐 (𝐴, 𝑅) if it gets
deflated. Note that the index of the candidate Lanczos vector corresponds to
the index of the Lanczos vector it is created from and not the index of the
Lanczos vector it might end up in.

Deflation indicator. We detect deflation by monitoring the norm ∥𝓿 (𝜇𝑣)∥ of
the current candidate Lanczos vector. Deflation occurs for the first time when
the bi-orthogonalisation leaves us with 𝓿 (𝜇𝑣) as the zero vector (exact deflation)
or as a vector with very small, non-zero norm (inexact deflation). We use
the deflation tolerance toldefl as a threshold and apply inexact deflation if
𝜀mach < ∥𝓿 (𝜇𝑣)∥ < toldefl. As stated in Section 6.3.3 we treat a vector with
norm close to machine precision as a case of exact deflation. Thus, by setting
toldefl = 𝜀mach we only allow exact deflation.

Handling deflation. If 𝓿 (𝜇𝑣) is identified as (nearly) linearly dependent then
we do not set 𝑣(𝑐) = 𝓿 (𝜇𝑣)/ ∥𝓿 (𝜇𝑣)∥. Instead, we skip this 𝓿 (𝜇𝑣) and call 𝓿 (𝜇𝑣)

a deflated candidate vector and we call 𝑣(𝜇𝑣) a deflated Lanczos vector since
its 𝐴-multiple was removed. If it is clear by context we use the term deflated
vector in both cases. Then, we proceed with orthogonalising the next vec-
tor 𝐴𝑣(𝜇𝑣+1), and ideally we end up with a vector that does not need to be
deflated. Otherwise, we repeat the process until a vector is generated that
does not need to be deflated or the right deflated block Krylov subspace is
exhausted. The tricky part is, that every time we deflate a vector the recur-
rence length decreases with profound impact on indexing in successive steps.
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This means that we have to keep track which vector has to be multiplied next
by 𝐴 to expand the deflated block Krylov subspace further and which vectors
we need to orthogonalise against. We will discuss the details—especially the
bookkeeping of deflated vectors—after presenting the algorithm.

Algorithm of the two-sided deflated block Lanczos-type process. Algo-
rithm 7.1 displays the two-sided deflated block Lanczos-type process. It is a
stripped down version of the algorithm presented in [Ali+00]. We applied the
simplifications mentioned so far, i.e. 𝑚 left and right starting vectors and no
look-ahead implying no need for cluster-wise bi-orthogonality. Furthermore,
we assume that the starting vectors are not (nearly) linearly dependent start-
ing vectors. This is a weak assumption since the algorithm can be modified
easily to seamlessly handle a deflated bi-orthogonalisation of the starting vec-
tors. The implementation that we use for numerical experiments in Chapter 8
includes this modification. We omit this here to simplify the presentation of
the algorithm and not clutter it unnecessarily.

Since deflation may occur several times in the left and right spaces, we have
to be careful with the indexing to use. In Algorithm 7.1, the index 𝑐 is used
as the counting index for the vectors of the bi-orthogonal bases. This means
that after step 𝑐 of the outermost loop we have created bases for 𝒦defl

𝑐 (𝐴, 𝑅)
and 𝒦defl

𝑐 (𝐴𝐻, 𝐿). These bases are collected as columns of the matrix 𝑉 (𝑐) and
the matrix 𝑊 (𝑐), respectively. Hence, the left and right deflated block Krylov
subspaces always share the same dimension at the beginning and the end of
the outermost loop in line 3.

Besides the index 𝑐 we need another, already mentioned, index for the left
Lanczos vectors and one for the right Lanczos vectors to access specific Lanczos
vectors. The index 𝜇𝑣 counts the number of passes through the loop starting
in line 15. It is used to keep track of the vector from which we get the next can-
didate right Lanczos vector 𝓿 (𝜇𝑣) after the loop in line 7 by bi-orthogonalising
𝐴𝑣(𝜇𝑣).

The algorithm generates orthogonalisation coefficients 𝑡𝑗,𝜇𝑣
and ̃𝑡𝑗,𝜇𝑤

in the
lines 8 and 22, respectively. These can be collected together with the norms
from line 14 and line 28 in matrices

( ̃𝑇 (𝑐,𝜇𝑣)
𝑣 )𝑝,𝑞 =

⎧{
⎨{⎩

𝑡𝑝,𝑞 if 𝑝 ∈ 𝐽 (𝑞)
𝑣

𝑡𝑝,𝑞 if ℎ(𝑝)
𝑣 = 𝑞 and ∥𝓿 (𝑞)∥ ≥ toldefl

0 else



140 7. Krylov Subspace Methods for Shifted Block Systems

Algorithm 7.1: Two-sided deflated block Lanczos-type process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑅 ∈ ℂ𝑛×𝑚,𝐿 ∈ ℂ𝑛×𝑚 right and left starting block-vector
toldefl, 𝜅 deflation tolerance, number of steps

Output: 𝑉 (𝜅) = [𝑣(1)| … |𝑣(𝜅)] basis of 𝒦defl
𝜅 (𝐴, 𝑅), bi-orthogonal to 𝑊 (𝜅)

𝑊 (𝜅) = [𝑤(1)| … |𝑤(𝜅)] basis of 𝒦defl
𝜅 (𝐴𝐻, 𝐿), bi-orthogonal to 𝑉 (𝜅)

̃𝑇 (𝜅,ℎ(𝜅)
𝑣 )

𝑣 , ̃𝑇 (𝜅,ℎ(𝜅)
𝑣 )

𝑤 bi-orth. coefficients matrices, s.t. (7.11) holds

1 𝜇𝑣 = 𝜇𝑤 = 0, 𝐼𝑣 = 𝐼𝑤 = ∅, (ℎ(1)
𝑣 , … , ℎ(𝑚)

𝑣 ) = (ℎ(1)
𝑤 , … , ℎ(𝑚)

𝑤 ) = (1, … , 1)
2 bi-orthogonalise 𝑅 and 𝐿 yielding 𝑣(1), … , 𝑣(𝑚) and 𝑤(1), … , 𝑤(𝑚)

3 for 𝑐 = 𝑚 + 1, 𝑚 + 2, … do
4 repeat // build the next right Lanczos vector
5 𝜇𝑣 = 𝜇𝑣 + 1; if 𝜇𝑣 = 𝑐 then stop // right subspace depleted
6 𝓿 (𝜇𝑣) = 𝐴𝑣(𝜇𝑣)

7 for 𝑗 ∈ 𝐽 (𝜇𝑣)
𝑣 = {ℎ(𝜇𝑣)

𝑤 , … , 𝑐 − 1} ∪ 𝐼𝑣 do // orthogonalisation
8 𝑡𝑗,𝜇𝑣

= (𝑤(𝑗))𝐻𝑣/𝛿(𝑗)

9 𝓿 (𝜇𝑣) = 𝓿 (𝜇𝑣) − 𝑡𝑗,𝜇𝑣
𝑣(𝑗)

10 if ∥𝓿 (𝜇𝑣)∥ = 0 then discard vector 𝓿 (𝜇𝑣) // exact deflation
11 else if ∥𝓿 (𝜇𝑣)∥ < toldefl then // inexact deflation
12 keep 𝑣(𝜇𝑣) for later orthogonalisation and set 𝐼𝑤 = 𝐼𝑤 ∪ {𝜇𝑣}
13 else // new right Lanczos vector
14 𝑡𝑐,𝜇𝑣

= ∥𝓿 (𝜇𝑣)∥
15 𝑣(𝑐) = 𝓿 (𝜇𝑣)/𝑡𝑐,𝜇𝑣

16 ℎ(𝑐)
𝑣 = 𝜇𝑣

17 until non-deflated new vector 𝑣(𝑐) computed in line 15
18 repeat // build the next left Lanczos vector
19 𝜇𝑤 = 𝜇𝑤 + 1; if 𝜇𝑤 = 𝑐 then stop // left subspace depleted
20 𝔀 (𝜇𝑤) = 𝐴𝐻𝑤(𝜇𝑤)

21 for 𝑗 ∈ 𝐽 (𝜇𝑤)
𝑤 = {ℎ(𝜇𝑤)

𝑣 , … , 𝑐 − 1} ∪ 𝐼𝑤 do // orthogonalisation
22 ̃𝑡𝑗,𝜇𝑤

= (𝑣(𝑗))𝐻𝑤/𝛿(𝑗)

23 𝔀 (𝜇𝑤) = 𝔀 (𝜇𝑤) − ̃𝑡𝑗,𝜇𝑤
𝑤(𝑗)

24 if ∥𝔀 (𝜇𝑤)∥ = 0 then discard vector 𝔀 (𝜇𝑤) // exact deflation
25 else if ∥𝔀 (𝜇𝑤)∥ < toldefl then // inexact deflation
26 keep 𝑤(𝜇𝑤) for later orthogonalisation and set 𝐼𝑣 = 𝐼𝑣 ∪ {𝜇𝑤}
27 else // new left Lanczos vector
28 ̃𝑡𝑐,𝜇𝑤

= ∥𝔀 (𝜇𝑤)∥
29 𝑤(𝑐) = 𝔀 (𝜇𝑤)/ ̃𝑡𝑐,𝜇𝑤

30 ℎ(𝑐)
𝑤 = 𝜇𝑤

31 until non-deflated new vector 𝑤(𝑐) computed in line 29
32 𝛿(𝑐) = (𝑤(𝑐))𝐻𝑣(𝑐)

33 if 𝛿(𝑐) = 0 then stop // serious breakdown
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and

( ̃𝑇 (𝑐,𝜇𝑤)
𝑤 )𝑝,𝑞 =

⎧{
⎨{⎩

̃𝑡𝑝,𝑞 if 𝑝 ∈ 𝐽 (𝑞)
𝑤

̃𝑡𝑝,𝑞 if ℎ(𝑝)
𝑤 = 𝑞 and ∥𝔀 (𝑞)∥ ≥ toldefl

0 else.
We stress that even the coefficients of deflated candidate vectors are kept in
these matrices but not their norms as they are removed and not normalised.
After some further description of the algorithm we illustrate the sparsity pat-
terns of these matrices using an example.

Algorithm 7.1 can break down in three places. First, in line 33 the algorithm
can stop with 𝛿(𝑐) = 0 with 𝑤(𝑐) ≠ 0 ≠ 𝑣(𝑐). This is called a serious breakdown
and can be cured in most cases by using look-ahead techniques leading to
cluster-wise bi-orthogonality as described in [Ali+00]. Second, if the algorithm
stops in line 5 then the right deflated block Krylov subspace is depleted. This
indicates that we found a (nearly) 𝐴-invariant subspace. A deflated block
Krylov subspace method implemented on top of the two-sided deflated block
Lanczos-type process should be able to make use of this and have converged to
an approximate solution by then. Third, if the algorithm stops in line 19 then
the left deflated block Krylov subspace is exhausted and we found a (nearly)
𝐴𝐻-invariant subspace. If the goal is to solve 𝐴𝑋 = 𝐵 then one could restart
with a new set of left starting vectors spanning a different left deflated block
Krylov subspace.

Keeping deflated vectors. The deflated vectors 𝑣(𝜇𝑣) whose corresponding
candidate vectors 𝓿 (𝜇𝑣) ≠ 0 end up not being added to the basis of the deflated
block Krylov subspace have to be saved for later use. We need them for
preserving the bi-orthogonality of the bases for the left and right deflated
block Krylov subspaces. The indices of the inexactly deflated vectors that are
created while building the right deflated block Krylov subspace are kept in the
set 𝐼𝑣 and we define

𝐼 (𝜇)
𝑣 ∶= {𝑖 ∶ 𝑖 ∈ 𝐼𝑣 ∧ 𝑖 ≤ 𝜇} .

Although not explicitly built by the algorithm, we introduce the matrix
̃𝑉 (𝜇𝑣)
defl here. It will turn out to be useful for theoretical considerations later on.

The matrix ̃𝑉 (𝜇𝑣)
defl has the same dimensions as 𝑉 (𝜇𝑣) and collects those of the

candidate vectors 𝓿 (1), … , 𝓿 (𝜇𝑣) that are inexactly deflated. It can be defined
via its columns

( ̃𝑉 (𝜇𝑣)
defl )∶,𝜇 = {𝓿 (𝜇) if 𝜇 ∈ 𝐼 (𝜇𝑣)

𝑣

0 else.
(7.10)
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Hence, if 𝓿 (𝜇) is inexactly deflated then column 𝜇 of ̃𝑉 (𝜇𝑣)
defl is set to 𝓿 (𝜇). Note

that we do not normalise these deflated vectors, hence they have norm smaller
than the deflation tolerance toldefl. All other columns of ̃𝑉 (𝜇𝑣)

defl are zero.

History indices. The history index ℎ(𝑐)
𝑣 is set to the index 𝜇𝑣 belonging to the

last run through the loop in line 15 while generating the Lanczos vector 𝑣(𝑐). In
other words, ℎ(𝑐)

𝑣 denotes the index of the vector from which 𝑣(𝑐) was computed
by orthogonalising 𝐴𝑣(ℎ(𝑐)

𝑣 ) yielding 𝓿 (ℎ(𝑐)
𝑣 ) and normalising 𝑣(𝑐) = 𝓿 (ℎ(𝑐)

𝑣 )/‖𝓿 (ℎ(𝑐)
𝑣 )‖

thereafter. A useful property of the history indices is that two successive
history indices can tell the number of deflated vectors between the construction
of 𝑣(𝑐−1) and 𝑣(𝑐) as ℎ(𝑐)

𝑣 − ℎ(𝑐−1)
𝑣 − 1. Using the history indices and the index

𝑐 we can define the right reduced block size as

𝑚(𝑐)
𝑣 ∶= 𝑐 − ℎ(𝑐)

𝑣 ≤ 𝑚
and the number

𝒹 (𝑐)
𝑣 ∶= 𝑚 − 𝑚(𝑐)

𝑣

of deflated right candidate Lanczos vectors until step 𝑐.
The main purpose of the history index, however, is to record against which

vectors we still need to orthogonalise. For example, we initialise ℎ(1)
𝑣 = … =

ℎ(𝑚)
𝑣 = 1 indicating that initial orthogonalisation up to step 𝑚 has to start

with 𝑣(1). By the same argument as in (7.8) we see that in case of no deflation
or exact deflation we only need to bi-orthogonalise the candidate vector 𝐴𝑣(𝜇𝑣)

against 𝑤(ℎ(𝜇𝑣)
𝑤 ), … , 𝑤(𝑐−1). We illustrate this in the upcoming example. Unless

deflation happened we have 𝜇𝑣 = 𝜇𝑤 = 𝑐 − 𝑚 and ℎ(𝜇𝑣)
𝑣 = ℎ(𝜇𝑤)

𝑤 = 𝑐 −
2𝑚. Hence, we always have to orthogonalise against the last 2𝑚 vectors. If
deflation occurred then the right candidate Lanczos vector 𝓿 (𝜇𝑣) is explicitly
orthogonalised against the last

2𝑚 − 𝒹 (𝑐)
𝑣 − 𝒹 (𝜇𝑣)

𝑤 = 𝑚(𝑐)
𝑣 + 𝑚(𝜇𝑣)

𝑤

vectors and the left Lanczos vectors whose 𝐴-multiples were inexactly deflated.
We find these vectors using the set 𝐼 (𝜇𝑣)

𝑣 even they are not amongst the last
𝑚(𝑐)

𝑣 +𝑚(𝜇𝑣)
𝑤 vectors any more. Knowing that we have to orthogonalise against

the last 𝑚(𝑐)
𝑣 + 𝑚(𝜇𝑣)

𝑤 Lanczos vectors we can compute the index

𝑐 − (𝑚(𝑐)
𝑣 + 𝑚(𝜇𝑣)

𝑤 ) = ℎ(𝑐)
𝑣 − 𝑚(𝜇𝑣)

𝑤

= ℎ(𝑐)
𝑣 + 𝜇𝑣 − 𝜇𝑣 − 𝑚(𝜇𝑣)

𝑤

= ℎ(𝑐)
𝑣 − 𝜇𝑣⏟

=0
+ℎ(𝜇𝑣)

𝑤

= ℎ(𝜇𝑣)
𝑤
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of the Lanczos vector at which the orthogonalisation has to start in line 7 of
Algorithm 7.1.

An example. Since the explanation so far introduced a lot of notation but
is crucial for understanding the deflation process we want to elaborate on that
using an example. In our example we start with two left starting vectors 𝑙1, 𝑙2
and two right starting vectors 𝑟1, 𝑟2. Inexact deflation occurs while creating
the fourth right Lanczos vector by realising after orthogonalisation that 𝐴𝑣(2)

is nearly linearly dependent on the previous vectors 𝑣(1), 𝑣(2) and 𝑣(3). Addi-
tionally, we want exact deflation to occur while creating the fifth left Lanczos
vector. Here and later on we will use the abbreviations ̃𝑇 (𝑐)

𝑣 = ( ̃𝑇 (𝜇,𝑐)
𝑣 )1∶𝑐,1∶𝑐

and ̃𝑇 (𝑐)
𝑤 = ( ̃𝑇 (𝜇,𝑐)

𝑤 )1∶𝑐,1∶𝑐. In Figure 7.2 we portray the sparsity patterns of
̃𝑇 (7,6)
𝑣 collecting the orthogonalisation coefficients for the right Lanczos vectors

and ̃𝑇 (7,6)
𝑤 for the left Lanczos vectors, respectively.

...

̃𝑇 (7,6)
𝑣

.
̃𝑇 (6)
𝑣

...

̃𝑇 (7,6)
𝑤

.
̃𝑇 (6)
𝑤

Figure 7.2: Example for the sparsity patterns of the matrices ̃𝑇 (7,6)
𝑣 and

̃𝑇 (6)
𝑣 as well as ̃𝑇 (7,6)

𝑤 and ̃𝑇 (6)
𝑤 generated by Algorithm 7.1 in case of inexact

deflation in step 𝑐 = 4 in the right Lanczos vector sequence and exact
deflation in step 𝑐 = 5 in the left Lanczos vector sequence for 2 left and right
starting vectors. The circles .. represent non-zero entries. Empty circles ..
represent entries of small magnitude arising due to orthogonalisation against
inexactly deflated vectors. Empty dotted circles .. represent computed
values of small magnitude being the norm of inexactly deflated vectors and

are not actually included in the matrices.

Table 7.1 lists the indices, history indices and sets throughout every cycle
through the loops in line 17 and line 31 for our example. We display the process
until 7 left and right Lanczos vectors have been generated. The same outer
index can appear in multiple rows of the table for those steps in which deflation
occurs. To emphasise that deflation occurred we display dashes (−) for the
values that are only generated as soon as a new Lanczos vector is constructed.
We give an example on how to read the table using the second row. It can be
read as:
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• we want to generate the (𝑐 = 4)-th Lanczos vector,
• the candidate right Lanczos vector 𝓿 (2) is computed from 𝑣(𝜇𝑣) = 𝑣(2),
• we have to orthogonalise 𝐴𝑣(2) against the vectors from 𝑣(ℎ(𝜇𝑣)

𝑤 ) = 𝑣(1) to
𝑣(𝑐−1) = 𝑣(3),

• we realise that this candidate vector has to be deflated as indicated by
an unset value (−) of ℎ(𝑐)

𝑣 and
• the deflation is an inexact deflation, since 𝜇𝑣 is added to the set 𝐼𝑤.

In the third row the fourth right Lanczos vector is successfully generated,
because the row displays all the information gathered after leaving the loops
in line 17 and line 31. In the fourth row of the table the exact deflation in the
left Lanczos vector sequence can be found.

# 𝑐 𝜇𝑣 ℎ(𝜇𝑣)
𝑤 ℎ(𝑐)

𝑣 𝜇𝑤 ℎ(𝜇𝑤)
𝑣 ℎ(𝑐)

𝑤 𝐼(𝜇𝑤)
𝑣 𝐼(𝜇𝑣)

𝑤

1 3 1 1 1 1 1 1 ∅ ∅
2 4 2 1 − − − − ∅ {2}
3 4 3 1 3 2 1 2 ∅ {2}
4 5 − − − 3 1 − ∅ {2}
5 5 4 2 4 4 2 4 ∅ {2}
6 6 5 3 5 5 3 5 ∅ {2}
7 7 6 4 6 6 4 6 ∅ {2}

Table 7.1: Values taken by the index variables and sets of Algorithm 7.1 in
case of inexact deflation in step 𝑐 = 4 in the right Lanczos vector sequence
and exact deflation in step 𝑐 = 5 in the left Lanczos vector sequence for 2

left and right starting vectors.

We want to make use of the example one last time. Our paramount interest
is in keeping all the right Lanczos vectors bi-orthogonal to the left Lanczos vec-
tors. Not adding inexactly deflated vectors to the corresponding basis has the
potential to break the bi-orthogonality. We demonstrate how bi-orthogonality
is kept by describing a few of the vector relations that can be derived from
the matrices ̃𝑇 (7,6)

𝑣 and ̃𝑇 (7,6)
𝑤 in our example. In Figure 7.3 we stated all the

relations that are represented by these matrices. We use ⋆ as a placeholder
for those coefficients that are not important for our descriptions. Further-
more, for the relations describing the computation of 𝑣(𝑖) and 𝑤(𝑖) we note
that the previous Lanczos vectors 𝑣(1), … , 𝑣(𝑖−1) and 𝑤(1), … , 𝑤(𝑖−1) are already
bi-orthogonal. We want to describe two particular relations from Figure 7.3 in
more detail.
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⋆𝑣(3) = 𝐴𝑣(1) − ⋆𝑣(1) − ⋆𝑣(2) ⋆𝑤(3) = 𝐴𝐻𝑤(1) − ⋆𝑤(1) − ⋆𝑤(2)

𝓿 (2)⏟
≈0

= 𝐴𝑣(2) − ⋆𝑣(1) − ⋆𝑣(2) − ⋆𝑣(3)

⋆𝑣(4) = 𝐴𝑣(3) − ⋆𝑣(1) − ⋆𝑣(2) − ⋆𝑣(3) ⋆𝑤(4) = 𝐴𝐻𝑤(2) − ⋆𝑤(1) − ⋆𝑤(2) − ⋆𝑤(3)

𝔀 (3)⏟
=0

= 𝐴𝐻𝑤(3) − ⋆𝑤(1) − ⋆𝑤(2) − ⋆𝑤(3) − ⋆𝑤(4)

⋆𝑣(5) = 𝐴𝑣(4) − ⋆𝑣(2) − ⋆𝑣(3) − ⋆𝑣(4) ⋆𝑤(5) = 𝐴𝐻𝑤(4) − ⋆𝑤(2) − ⋆𝑤(3) − ⋆𝑤(4)

⋆𝑣(6) = 𝐴𝑣(5) − ⋆𝑣(4) − ⋆𝑣(5) ⋆𝑤(6) = 𝐴𝐻𝑤(5) − 𝛼𝑤(2) − ⋆𝑤(4) − ⋆𝑤(5)

⋆𝑣(7) = 𝐴𝑣(6) − ⋆𝑣(5) − ⋆𝑣(6) ⋆𝑤(7) = 𝐴𝐻𝑤(6) − ⋆𝑤(2) − ⋆𝑤(5) − ⋆𝑤(6)

Figure 7.3: Example of recurrence relations in the two-sided deflated block
Lanczos-type process for 2 left and right starting vectors. Inexact deflation
occurs in step 𝑐 = 4 in the right Lanczos vector sequence and exact deflation
in step 𝑐 = 5 in the left Lanczos vector sequence. We display the left Lanczos
vectors 𝑣(3), … , 𝑣(7) and the right Lanczos vectors 𝑤(3), … , 𝑤(7) including the
deflated candidate Lanczos vectors 𝓿(2) and 𝔀(3). We use ⋆ as placeholder

for scalars that we do not need to specify for this example.

The first relation we want to discuss is

⋆𝑣(6) = 𝐴𝑣(5) − ⋆𝑣(4) − ⋆𝑣(5).

We can check that 𝑣(6) is already orthogonal to 𝑤(3). Even if we would assume
that the orthogonalisation would involve the Lanczos vectors 𝑣(1), 𝑣(2) and 𝑣(3)

we see that

⋆(𝑤(3))𝐻𝑣(6) = (𝑤(3))𝐻(𝐴𝑣(5) − ⋆𝑣(1) − ⋆𝑣(2) − 𝛼𝑣(3) − ⋆𝑣(4) − ⋆𝑣(5))
= (𝑤(3))𝐻𝐴𝑣(5) − 𝛼(𝑤(3))𝐻𝑣(3)

= (𝐴𝐻𝑤(3))𝐻𝑣(5) − 𝛼(𝑤(3))𝐻𝑣(3)

= (⋆𝑤(1) + ⋆𝑤(2) + ⋆𝑤(3) + ⋆𝑤(4))𝐻𝑣(5) − 𝛼(𝑤(3))𝐻𝑣(3)

= −𝛼(𝑤(3))𝐻𝑣(3).

The next to last equality holds by using the relation for the candidate Lanczos
vector 𝔀 (3) as stated in Figure 7.3 and the knowledge that 𝔀 (3) was removed
due to exact deflation, which means that 𝔀 (3) = 0. Hence, 𝛼 = 0 ensures
orthogonality of 𝑤(3) and 𝑣(6) and explicit orthogonalisation against 𝑣(1), 𝑣(2)

and 𝑣(3) is not necessary.
The second relation we want to discuss is

⋆𝑤(6) = 𝐴𝐻𝑤(5) − 𝛼𝑤(2) − ⋆𝑤(4) − ⋆𝑤(5)
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as an example how inexact deflation in one Lanczos vector sequence influ-
ences the orthogonalisation process in the other sequence. We do not have
to orthogonalise against 𝑣(3) involving 𝑤(3) explicitly for the same reason as
before. But to keep orthogonality against those vectors whose 𝐴-multiple got
inexactly deflated, we can utilise the inexactly deflated candidate vectors to
obtain orthogonalisation coefficients. In our example this is the case for 𝑣(2)

and we have

⋆(𝑣(2))𝐻𝑤(6) = (𝑣(2))𝐻(𝐴𝐻𝑤(5) − 𝛼𝑤(2) − ⋆𝑤(4) − ⋆𝑤(5))
= (𝑣(2))𝐻𝐴𝐻𝑤(5) − 𝛼(𝑣(2))𝐻𝑤(2)

= (𝐴𝑣(2))𝐻𝑤(5) − 𝛼(𝑣(2))𝐻𝑤(2)

= (𝓿 (2) + ⋆𝑣(1) + ⋆𝑣(2) + ⋆𝑣(3))𝐻𝑤(5) − 𝛼(𝑣(2))𝐻𝑤(2)

= (𝓿 (2))𝐻𝑤(5) − 𝛼(𝑣(2))𝐻𝑤(2).

Hence, computing 𝛼 as

𝛼 = (𝑣(2))𝐻𝐴𝐻𝑤(5)

(𝑣(2))𝐻𝑤(2) = (𝓿 (2))𝐻𝑤(5)

(𝑣(2))𝐻𝑤(2) = (𝓿 (2))𝐻𝑤(5)

𝛿(2)

results in (𝑣(2))𝐻𝑤(6) = 0 thereby ensuring bi-orthogonality. This is the ratio-
nale behind keeping the deflated vectors like 𝑣(2) and their indices in the sets
𝐼𝑣 and 𝐼𝑤. Note that in the algorithm we compute 𝛼 using (𝑣(2))𝐻𝐴𝑤(5). For
theoretical considerations, however, the value (𝓿 (2))𝐻𝑤(5) is important since
its norm is bound by ∥(𝓿 (2))𝐻𝑤(5)∥ ≤ toldefl.

A deflated block Lanczos-type relation. Inexactly deflating candidate vec-
tors invalidates the relations (7.9). But we can state a deflated block Lanczos-
type relation that the matrices generated by Algorithm 7.1 fulfil

𝐴𝑉 (𝜇𝑣) = 𝑉 (𝑐) ̃𝑇 (𝑐,𝜇𝑣)
𝑣 + ̃𝑉 (𝜇𝑣)

defl (7.11)
𝐴𝑊 (𝜇𝑤) = 𝑊 (𝑐) ̃𝑇 (𝑐,𝜇𝑤)

𝑤 + �̃� (𝜇𝑤)
defl .

Here, we used the matrix ̃𝑉 (𝜇𝑣)
defl as it is defined in (7.10).

If we want to base deflated block Krylov subspace methods on the two-sided
deflated block Lanczos-type process then we need an equivalent formulation of
(7.11) in which we write the matrix ̃𝑇 (𝑐,𝜇𝑣)

𝑣 as the sum

̃𝑇 (𝑐,𝜇𝑣)
𝑣 = 𝑇 (𝑐,𝜇𝑣)

𝑣 + 𝑆(𝑐,𝜇𝑣)
𝑣 .

The matrix 𝑆(𝑐,𝜇𝑣)
𝑣 contains all the entries of 𝑇 (𝑐,𝜇𝑣)

𝑣 that arise while orthogo-
nalising against inexactly deflated vectors (empty solid circles .. in Figure 7.2)
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from the left Lanczos vector sequence. The matrix 𝑇 (𝑐,𝜇𝑣)
𝑣 , on the other hand,

contains the remaining entries (only the filled circles .. in Figure 7.2) of ̃𝑇 (𝑐,𝜇𝑣)
𝑣 .

Note that the empty dotted circles ( .. ) in Figure 7.2) are not actually present
entries in ̃𝑇 (𝑐,𝜇𝑣)

𝑣 but are there to indicate where deflation occurred. Now, we
can rewrite (7.11) as

𝐴𝑉 (𝜇𝑣) = 𝑉 (𝑐) ̃𝑇 (𝑐,𝜇𝑣)
𝑣 + ̃𝑉 (𝜇𝑣)

defl

= 𝑉 (𝑐)(𝑇 (𝑐,𝜇𝑣)
𝑣 + 𝑆(𝑐,𝜇𝑣)

𝑣 ) + ̃𝑉 (𝜇𝑣)
defl

= 𝑉 (𝑐)𝑇 (𝑐,𝜇𝑣)
𝑣 + 𝑉 (𝑐)𝑆(𝑐,𝜇𝑣)

𝑣 + ̃𝑉 (𝜇𝑣)
defl

= 𝑉 (𝑐)𝑇 (𝑐,𝜇𝑣)
𝑣 + 𝑉 (𝜇𝑣)

defl (7.12)

with 𝑉 (𝜇𝑣)
defl = 𝑉 (𝑐)𝑆(𝑐,𝜇𝑣)

𝑣 + ̃𝑉 (𝜇𝑣)
defl .

The following proposition quantifies how much of an error inexact deflation
introduces.

Proposition 7.4. Let all the matrices and indices be defined as before. Then
for the matrices ̃𝑉 (𝜇𝑣)

defl and 𝑉 (𝜇𝑣)
defl the following bounds hold

∥ ̃𝑉 (𝜇𝑣)
defl ∥

𝐹
≤ toldefl

√𝒹 (𝜇𝑣)
𝑣 (7.13)

∥𝑉 (𝜇𝑣)
defl ∥

𝐹
≤ toldefl√𝒹 (𝜇𝑣)

𝑣 + 𝜇𝑣

∣min𝑖∈{1,…,𝜇𝑣} {𝛿(𝑖)}∣2
𝒹 (𝜇𝑣)

𝑤 . (7.14)

Proof. We note that ̃𝑉 (𝜇𝑣)
defl consists of at most 𝒹 (𝜇𝑣)

𝑣 non-zero columns having
each norm less or equal to toldefl and this shows that (7.13) holds. In addition
to the bound (7.13) that can be found in [Ali+00] we added (7.14) which we
will prove next.

The matrix 𝑆(𝑐,𝜇𝑣)
𝑣 contains the orthogonalisation coefficients from orthogo-

nalising against inexactly deflated vectors in the left Lanczos vector sequence.
Therefore, at most 𝒹 (𝜇𝑣)

𝑤 rows in 𝑆(𝑐,𝜇𝑣)
𝑣 contain non-zero entries of magnitude

not larger than

∣ toldefl
min𝑖∈{1,…,𝜇𝑣} {𝛿(𝑖)}∣ .

Using ̃𝛿 = min𝑖∈{1,…,𝜇𝑣} {𝛿(𝑖)} we can show that the inequality (7.13) holds
since

∥𝑉 (𝜇𝑣)
defl ∥

𝐹
=

√√√
⎷

𝑛
∑
𝑖=1

𝜇𝑣

∑
𝑗=1

∣(𝑉 (𝑐)𝑆(𝑐,𝜇𝑣)
𝑣 + ̃𝑉 (𝜇𝑣)

defl )𝑖,𝑗∣
2
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≤
√√√
⎷

𝑛
∑
𝑖=1

𝜇𝑣

∑
𝑗=1

∣(𝑉 (𝑐)𝑆(𝑐,𝜇𝑣)
𝑣 )𝑖,𝑗∣

2 + 𝒹 (𝜇𝑣)
𝑣 tol2defl

=
√√√
⎷

∑
𝑖∈𝐼(𝜇𝑣)

𝑤

𝜇𝑣

∑
𝑗=1

‖𝑣(𝑖)‖2 ∣(𝑆(𝑐,𝜇𝑣)
𝑣 )𝑖,𝑗∣

2 + 𝒹 (𝜇𝑣)
𝑣 tol2defl

≤
√√√
⎷

𝒹 (𝜇𝑣)
𝑤 𝜇𝑣

tol2defl

∣ ̃𝛿∣2
+ 𝒹 (𝜇𝑣)

𝑣 tol2defl

= toldefl√𝒹 (𝜇𝑣)
𝑤

𝜇𝑣

∣ ̃𝛿∣2
+ 𝒹 (𝜇𝑣)

𝑣 .

In the light of Proposition 7.4 we see that small values 𝛿(𝑖) can result in a
large norm ∥𝑉 (𝜇𝑣)

defl ∥
𝐹

. We will see that the deflated block Lanczos-type process
for Hermitian matrices in Section 7.1.3 does not suffer from this but for the
two-sided version it is a reason to implement cluster-wise bi-orthogonality as
in [Ali+00].

With (7.12) we arrived at our final version of a deflated block Lanczos-type
relation. Ultimately, we are only interested in this relation for the right Lanczos
vectors, but could, of course, apply the same considerations to the left Lanczos
vectors resulting in

𝐴𝐻𝑊 (𝜇𝑤) = 𝑊 (𝑐)𝑇 (𝑐,𝜇𝑤)
𝑤 + 𝑊 (𝜇𝑤)

defl .

Finally, we remark that the following relations hold

(𝑊 (𝜇))𝐻𝐴𝑉 (𝜇) = Δ(𝜇)𝑇 (𝜇)
𝑣 + (𝑊 (𝜇))𝐻𝑉 (𝜇)

defl

(𝑉 (𝜇))𝐻𝐴𝐻𝑊 (𝜇) = Δ(𝜇)𝑇 (𝜇)
𝑤 + (𝑉 (𝜇))𝐻𝑊 (𝜇)

defl

with Δ(𝑖) = diag (𝛿(1), … , 𝛿(𝑖)) as in (7.6).

7.1.3 Deflated Block Lanczos-Type Process for Hermitian
Matrices

In this subsection we develop a deflated block Lanczos-type process for Hermi-
tian matrices stemming from the two-sided deflated block Lanczos-type process
that we have presented in Subsection 7.1.2 as a new contribution to deflated
block Lanczos-type processes. A less detailed description has been published
before in [BF14].
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Several simplifications apply if the two-sided deflated block Lanczos-type
process from Algorithm 7.1 is specialised for Hermitian matrices. Like before,
we will first roughly describe the process we want to develop, then we state the
algorithm and discuss the details of the process before ending the subsection
with an example.

The notation in this subsection can be simpler than that of the previous
subsection. For instance, we do not have to indicate to which subspace an index
or vector belongs since it is sufficient to span only one deflated block Krylov
subspace and still benefit from short recurrences. In the following we will
describe the process and introduce the nomenclature used in the Hermitian case
very briefly since most of it is directly descendant from the process introduced
in Section 7.1.2. We focus on the changes that are more than just a substitution
of 𝑤 by 𝑣 or the like. In a few places, however, we give a more formal definition
of the entities used in the resulting algorithm.

We adopt the indexing from the two-sided process introduced before. The
index 𝑐 is used for the new Lanczos vector which is to be computed in the
current iteration step. The index 𝜇 indicates the Lanczos vector of which the
next candidate Lanczos vector is an 𝐴-multiple.

Overview of the process. The deflated block Krylov subspace that we want
to compute is built from a block-vector 𝐵 consisting of the 𝑚 starting vectors
𝑏1, … , 𝑏𝑚. In contrast to the two-sided deflated block Lanczos-type process
we want to include the deflation and orthogonalisation of the starting vectors
seamlessly which we briefly mentioned for Algorithm 7.1. Thus, the orthonor-
malisation of the starting vectors, that we start the deflated block Lanczos-type
process for Hermitian matrices with, yields the first 𝑚0 ≤ 𝑚 Lanczos vectors
𝑣(1), … , 𝑣(𝑚0). From there we proceed by extending the deflated block Krylov
subspace by 𝐴𝑣(1). As before, in general we orthonormalise the vector 𝐴𝑣(𝜇),
which unless deflations happened in a previous step is the vector 𝐴𝑣(𝑐−𝑚),
against 𝑉 (𝑐−1) = [𝑣(1)| ⋯ |𝑣(𝑐−1)] to build the candidate Lanczos vector 𝓿 (𝜇).
We check the norm of 𝓿 (𝜇) to decide if deflation needs to be applied, and if we
decide that the candidate Lanczos vector has to be removed then we continue
with computing the next candidate Lanczos vector. From there on 𝜇 > 𝑐 − 𝑚
and we repeat this until we obtain a candidate Lanczos vector that does not
need to be deflated. We then normalise this vector, call it 𝑣(𝑐) and build the
matrix

𝑉 (𝑐) = [𝑣(1)| ⋯ |𝑣(𝑐)]. (7.15)

This whole process can be repeated until 𝜇 = 𝑐, and in this case we reached a
(nearly) 𝐴-invariant subspace 𝒦defl

𝑐 (𝐴, 𝐵).
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Algorithm 7.2: Deflated block Lanczos-type process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix, Hermitian

𝐵 = [𝑏1, … , 𝑏𝑚] ∈ ℂ𝑛×𝑚 starting block-vector
toldefl deflation tolerance
𝜅 number of steps to perform

Output: 𝑉 (𝜅) = [𝑣(1)| … |𝑣(𝜅)] orthonormal basis of 𝒦defl
𝜅 (𝐴, 𝐵)

̃𝑇 (𝜅,ℎ(𝜅)) matrix containing orthogonalisation coefficients
such that (7.19) holds

1 𝜇 = −𝑚, 𝐼 = ∅, (ℎ(−𝑚+1), … , ℎ(0)) = (1, … , 1)
2 for 𝑐 = 1, 2, … do
3 repeat // build the next Lanczos vector
4 𝜇 = 𝜇 + 1; if 𝜇 = 𝑐 then stop // block Krylov subspace depleted
5 if 𝜇 ≤ 0 then
6 𝓿 (𝜇) = 𝑏𝑚+𝜇
7 else
8 𝓿 (𝜇) = 𝐴𝑣(𝜇)

9 for 𝑗 ∈ 𝐽 (𝜇) = {ℎ(𝜇), … , 𝑐 − 1} ∪ 𝐼 do // orthogonalisation
10 𝑡𝑗,𝜇 = (𝑣(𝑗))𝐻𝑣
11 𝓿 (𝜇) = 𝓿 (𝜇) − 𝑡𝑗,𝜇𝑣(𝑗)

12 if ∥𝓿 (𝜇)∥ = 0 then discard vector 𝓿 (𝜇) // exact deflation
13 else if ∥𝓿 (𝜇)∥ < toldefl and 𝜇 > 0 then // inexact deflation
14 keep 𝑣(𝜇) for later orthogonalisation and set 𝐼 = 𝐼 ∪ {𝜇}
15 else // new Lanczos vector
16 𝑡𝑐,𝜇 = ∥𝓿 (𝜇)∥
17 𝑣(𝑐) = 𝓿 (𝜇)/𝑡𝑐,𝜇
18 ℎ(𝑐) = max {1, 𝜇}
19 until non-deflated new vector 𝑣(𝑐) computed in line 17

The algorithm. Algorithm 7.2 displays the deflated block Lanczos-type pro-
cess for Hermitian matrices. It can be regarded as a specialised version of
Algorithm 7.1 which originates from [Ali+00]. A notable difference to the two-
sided version of the algorithm is that we only have one index 𝜇 instead of 𝜇𝑣
and 𝜇𝑤. The index 𝜇 counts every generated candidate Lanczos vector which
allows us to use 𝜇 to unambiguously describe the progress of Algorithm 7.2.
Therefore, from now on we primarily use 𝜇 as the iteration index and 𝑐(𝜇) is
the corresponding index of the newly computed Lanczos vector in iteration
step 𝜇. The deflated orthogonalisation of the starting vectors is implemented
by starting with 𝜇 = −𝑚, 𝑐 = 1 and some minor special treatments for the
indices 𝜇 ≤ 0.
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History indices. The history index ℎ(𝑐(𝜇)) is set to contain the index 𝜇 belong-
ing to the last run through the loop in line 19 whilst generating the Lanczos
vector 𝑣(𝑐(𝜇)). More precisely, we set

ℎ(𝑐(𝜇)) ∶= max { ̃𝜇 ∶ 𝑐(�̃�) = 𝑐(𝜇)} ,

except for the special case of the starting vectors where we set ℎ(𝑐(𝜇)) = 1.
In the algorithm we initialise ℎ(−𝑚+1) = … = ℎ(0) = 1 indicating that initial
orthogonalisation has to start with 𝑣(1). The reduced block size is defined as

𝑚(𝑐(𝜇)) ∶= 𝑐(𝜇) − ℎ(𝑐(𝜇)) ≤ 𝑚

and
𝒹 (𝑐(𝜇)) ∶= 𝑚 − 𝑚(𝑐(𝜇))

is the number of deflated candidate Lanczos vectors up to step 𝑐(𝜇). As for the
two-sided algorithm we can obtain the index of the Lanczos vector at which
orthogonalisation has to start with in line 9 of Algorithm 7.2 as

𝑐 − (𝑚(𝑐(𝜇)) + 𝑚(𝜇)) = ℎ(𝑐(𝜇)) − 𝑚(𝜇)

= ℎ(𝑐(𝜇)) + 𝜇 − 𝜇 − 𝑚(𝜇)

= ℎ(𝑐(𝜇)) − 𝜇⏟⏟⏟⏟⏟
=0

+ℎ(𝜇)

= ℎ(𝜇).

A deflated block Lanczos-type relation. On our way towards a deflated
block Lanczos-type relation for the deflated block Lanczos-type process of Al-
gorithm 7.2 we need a few more definitions. We define the matrix ̃𝑉 (𝜇)

defl ∈ ℂ𝑛×𝜇

via its columns

( ̃𝑉 (𝜇)
defl )∶,𝑖 = {𝓿 (𝑖) if 𝑖 ∈ 𝐼 (𝜇)

0 else
(7.16)

where the set 𝐼 (𝜇) contains the indices of the inexactly deflated vectors up to
step 𝜇, i.e.

𝐼 (𝜇) ∶= {𝑖 ∶ 𝑖 ∈ 𝐼 ∧ 𝑖 ≤ 𝜇} .
In words, the matrix ̃𝑉 (𝜇)

defl collects all the inexactly deflated candidate Lanczos
vectors up to step 𝜇 and in column 𝑖 ∈ 𝐼 (𝜇) we find the candidate Lanczos
vector 𝓿 (𝑖).
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The orthogonalisation coefficients 𝑡𝑗,𝜇 that the algorithm generates in line 10
as well as the norms in line 16 are collected in the matrix ̃𝑇 (𝑐,𝜇) of recurrence
coefficients with

( ̃𝑇 (𝑐(𝜇),𝜇))𝑝,𝑞 =
⎧{
⎨{⎩

𝑡𝑝,𝑞 if 𝑝 ∈ 𝐽 (𝑞)

𝑡𝑝,𝑞 if ℎ(𝑝) = 𝑞 and 𝑞 ∉ 𝐼 (𝜇)

0 else.
(7.17)

Note that ̃𝑇 (𝑐,𝜇) does not contain the values 𝑡𝑝,𝑞 with 𝑞 ≤ 0.

Using the matrices 𝑉 (𝑐(𝜇)) from (7.15), ̃𝑉 (𝜇)
defl from (7.16), and ̃𝑇 (𝑐(𝜇),𝜇) from

(7.17) we can state a deflated block Lanczos-type relation as

𝐴𝑉 (𝜇) = 𝑉 (𝑐(𝜇)) ̃𝑇 (𝑐(𝜇),𝜇) + ̃𝑉 (𝜇)
defl . (7.18)

Relation (7.18), however, is not the final relation that we want to use as a foun-
dation for later developed deflated block Krylov subspace methods, because
the matrix ̃𝑇 (𝜇) = ( ̃𝑇 (𝑐,𝜇))1∶𝜇,1∶𝜇 lacks two useful properties. First, the matrix

̃𝑇 (𝜇) not necessarily has a small bandwidth. In the possible case of inexact
deflation in step 𝜇 = 1 the complete first row consists of non-zeros. Second,

̃𝑇 (𝜇) is not Hermitian. Orthogonalisation coefficients belonging to inexactly
deflated vectors only appear above the diagonal of ̃𝑇 (𝜇).

Like for the two-sided algorithm we can split the matrix
̃𝑇 (𝑐(𝜇),𝜇) = 𝑇 (𝑐(𝜇),𝜇) + 𝑆(𝑐(𝜇),𝜇)

where

(𝑇 (𝑐(𝜇),𝜇))𝑝,𝑞 =
⎧{
⎨{⎩

𝑡𝑝,𝑞 if 𝑝 ∈ {𝑗 ∈ 𝐽 (𝑞) ∶ 𝑗 ≥ ℎ(𝑞)}
𝑡𝑝,𝑞 if ℎ(𝑝) = 𝑞 and 𝑞 ∉ 𝐼 (𝜇)

0 else

and

(𝑆(𝑐(𝜇),𝜇))𝑝,𝑞 = {𝑡𝑝,𝑞 if 𝑝 ∈ {𝑗 ∈ 𝐽 (𝑞) ∶ 𝑗 < ℎ(𝑞)}
0 else.

In words, the matrix 𝑆(𝑐(𝜇),𝜇) contains those entries of ̃𝑇 (𝑐(𝜇),𝜇) that arise from
orthogonalisations against deflated Lanczos vectors that are not in the range
of the according history index anymore. Now, we can transform (7.18) to

𝐴𝑉 (𝜇) = 𝑉 (𝑐(𝜇)) ̃𝑇 (𝑐(𝜇),𝜇) + ̃𝑉 (𝜇)
defl

= 𝑉 (𝑐(𝜇))(𝑇 (𝑐(𝜇),𝜇) + 𝑆(𝑐(𝜇),𝜇)) + ̃𝑉 (𝜇)
defl

= 𝑉 (𝑐(𝜇))𝑇 (𝑐(𝜇),𝜇) + 𝑉 (𝑐(𝜇))𝑆(𝑐(𝜇),𝜇) + ̃𝑉 (𝜇)
defl⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝑉 (𝜇)
defl
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which yields the deflated block Lanczos-type relation

𝐴𝑉 (𝜇) = 𝑉 (𝑐(𝜇))𝑇 (𝑐(𝜇),𝜇) + 𝑉 (𝜇)
defl . (7.19)

The following proposition specialises Proposition 7.4 to the Hermitian case.

Proposition 7.5. Let all the matrices and indices be defined as before. Then
the norms of the matrices ̃𝑉 (𝜇)

defl and 𝑉 (𝜇)
defl from (7.18) and (7.19), respectively,

collecting orthogonalisation coefficients related to deflated candidate Lanczos
vectors can be bound by

∥ ̃𝑉 (𝜇)
defl ∥

𝐹
≤ toldefl

√𝒹 (𝜇) (7.20)

∥𝑉 (𝜇)
defl ∥

𝐹
≤ toldefl√𝒹 (𝜇)𝜇 (7.21)

Proof. We note that ̃𝑉 (𝜇)
defl consists of at most 𝒹 (𝜇) non-zero columns having

each norm less or equal to toldefl. This shows that (7.20) holds. The matrix
𝑆(𝑐(𝜇),𝜇) contains the orthogonalisation coefficients from orthogonalising against
inexactly deflated vectors. Therefore, at most 𝒹 (𝜇) rows in 𝑆(𝑐(𝜇),𝜇) contain non-
zero entries of magnitude not larger than toldefl. Moreover, the non-zeros in
𝑆(𝑐(𝜇),𝜇)

𝑣 are all located above the diagonal which makes them at most 𝜇 − 1
per row as a rough bound. Using this we can show that the inequality (7.20)
holds since

∥𝑉 (𝜇)
defl ∥

𝐹
=

√√√
⎷

𝑛
∑
𝑖=1

𝜇
∑
𝑗=1

∣(𝑉 (𝑐(𝜇))𝑆(𝑐(𝜇),𝜇) + ̃𝑉 (𝜇)
defl )𝑖,𝑗∣

2

≤
√√√
⎷

𝑛
∑
𝑖=1

𝜇
∑
𝑗=1

∣(𝑉 (𝑐(𝜇))𝑆(𝑐(𝜇),𝜇))𝑖,𝑗∣
2 + 𝒹 (𝜇)tol2defl

=
√√√
⎷

∑
𝑖∈𝐼(𝜇)

𝜇
∑
𝑗=1

‖𝑣(𝑖)‖2 ∣(𝑆(𝑐(𝜇),𝜇))𝑖,𝑗∣
2 + 𝒹 (𝜇)tol2defl

≤ √𝒹 (𝜇)(𝜇 − 1)tol2defl + 𝒹 (𝜇)tol2defl

= toldefl√𝒹 (𝜇)𝜇.

As compared to Proposition 7.4 the bound for ∥𝑉 (𝜇)
defl ∥

𝐹
in (7.21) can be much

better than (7.14) for ∥𝑉 (𝜇𝑣)
defl ∥

𝐹
, because (𝑣(𝑖))𝐻𝑣(𝑖) = 1. The bound in (7.21)

only depends on the deflation tolerance toldefl, the number of deflated vectors
𝒹 (𝜇) and the number of steps 𝜇 of the deflated block Lanczos-type process.
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A sharper bound could be formulated if the steps in which inexact deflation
occurs were taken into account. But for a moderate number of steps ∥𝑉 (𝜇)

defl ∥
𝐹

is quite small. The deflated block Lanczos-type relation (7.19) can be used to
obtain

(𝑉 (𝜇))𝐻𝐴𝑉 (𝜇) = 𝑇 (𝜇) + (𝑉 (𝜇))𝐻𝑉 (𝜇)
defl

= 𝑇 (𝜇) + 𝑆(𝜇) + (𝑉 (𝜇))𝐻 ̃𝑉 (𝜇)
defl

= 𝑇 (𝜇) + 𝑆(𝜇) + (𝑆(𝜇))𝐻⏟⏟⏟⏟⏟⏟⏟
=∶ ̃𝑆(𝜇)

(7.22)

and we see that 𝑇 (𝜇) is Hermitian. Like before we can bound the norm of ̃𝑆(𝜇)

in the following proposition.
Proposition 7.6. The inequality

∥ ̃𝑆(𝜇)∥
𝐹

≤ toldefl√2𝜇𝒹 (𝜇) (7.23)

holds using the definitions from before.

Proof. We have

∥ ̃𝑆(𝜇)∥
𝐹

= ∥𝑆(𝜇) + (𝑆(𝜇))𝐻∥
𝐹

=
√√√
⎷

𝜇
∑
𝑖=1

𝜇
∑
𝑗=1

∣(𝑆(𝜇) + (𝑆(𝜇))𝐻)𝑖,𝑗∣
2

≤ √2𝜇𝒹 (𝜇)tol2defl = toldefl√2𝜇𝒹 (𝜇).
The inequality holds since 𝑆(𝜇) consists of at most 𝒹 (𝜇) rows with entries of
magnitude not larger than toldefl. All remaining entries are zero.

Implementation details. Before proceeding to an example a couple of re-
marks on the deflated block Lanczos-type process and Algorithm 7.2 are in
order:

• In line 10 the scalar 𝑡𝑗,𝜇 has to be computed only for 𝑗 ≥ 𝜇 and for the
orthogonalisation against inexactly deflated vectors. The entries above
the diagonal of 𝑇 (𝜇) are already known due to symmetry as indicated by
(7.22).

• The check for ‖𝑣‖ = 0 in line 12 should be implemented by comparing
to some small threshold.

• The algorithm can be implemented efficiently with storing not more than
2𝑚 + 1 vectors at a time. When deflation occurs, the number of stored
vectors decreases by one since after some steps we need to orthogonalise
against 2 less last vectors but need to continue to orthogonalise against
the deflated one.
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An example. We finish the discussion of the deflated block Lanczos-type
process with an example that is depicted in Figure 7.4. We start with 4 starting
vectors 𝑏1, … , 𝑏4 and inexact deflation occurs twice—once while creating the
8-th Lanczos vector in step 𝜇 = 4 and the second time in step 𝜇 = 9. The table
in Figure 7.4a lists the indices, history indices and sets throughout every cycle
through the first 𝜇 = 10 steps of Algorithm 7.2 for our example. Until step
𝜇 = 10 there are 𝑐(𝜇) = 12 Lanczos vectors created including the orthogonalised
4 starting vectors. The graphical representation in Figure 7.4b shows the
sparsity pattern of the matrices ̃𝑇 (𝑐(𝜇),𝜇) and ̃𝑇 (𝜇). The sparsity pattern of 𝑇 (𝜇)

is represented by the entries marked with filled circles .. only. The reduced
block size 𝑚(𝜈) can be found in ̃𝑇 (𝑐(𝜇),𝜇) as the number of non-zeros above and
left of entry (𝜈, 𝜈) and the history index ℎ(𝜈) is the row-number of the first
non-zero entry in column 𝜈 of the matrix ̃𝑇 (𝑐(𝜇),𝜇) whilst ignoring entries of
small magnitude ( .. and .. ) in both cases.

Figure 7.4b finally closes the gap to our initial definition of the deflated
block Krylov subspaces in Definition 7.2 and the deflated block Krylov matrix
from (7.3). The rectangles grouping some of the entries in Figure 7.4b display
what would be computed in one step if the algorithm would proceed block-wise
instead of using Ruhe’s approach of generating a single vector per step. After
𝜈 = 𝜅(𝑘, 𝑗) steps of Algorithm 7.2 we have spanned the deflated block Krylov
subspace 𝒦defl

𝜅(𝑘,𝑗)(𝐴, 𝐵). The reduced block size 𝑚(𝜈) in step 𝜈 corresponds to
the number of columns of the matrix 𝐵(𝑘) in (7.3). In our example 𝐵(0) has
four columns, 𝐵(1) and 𝐵(2) have three, and the block-vectors starting from
𝐵(3) have two columns.

7.1.4 Block-Featured Deflated Lanczos-Type Process for
Hermitian Matrices

The two-sided deflated block Lanczos-type process and the deflated block
Lanczos-type process presented before whilst implementing proper deflation
pursue Ruhe’s approach of expanding the deflated block Krylov subspaces by
one vector at a time. But, working on block-vectors instead of single vectors
has the potential to speed up computations in an actual implementation. This
is caused by making use of BLAS level 3 functions which apply techniques like
blocking resulting in a higher performance.

In this section we develop a novel process as contribution to deflated block
Lanczos-type processes which we call the block-featured deflated Lanczos-type
process. We do so by adding proper deflation to the concept of expanding the
deflated block Krylov subspace block-wise.
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𝜇 𝑐(𝜇) ℎ(𝑐(𝜇)) ℎ(𝜇) 𝐼(𝜇)

1 5 1 1 ∅
2 6 2 1 ∅
3 7 3 1 ∅
4 8 − 1 {4}
5 8 5 1 {4}
6 9 6 2 {4}
7 10 7 3 {4}
8 11 8 5 {4}
9 12 − 6 {4, 9}
10 12 10 7 {4, 9}

(a) The relation of the iteration
counters 𝜇 and 𝑐(𝜇), the history
indices ℎ(𝑐(𝜇)) and ℎ(𝜇) as well as
the set of inexactly deflated can-
didate vector indices 𝐼(𝜇) for pos-

itive 𝜇.

...

̃𝑇 (𝑐(𝜇),𝜇)

.

̃𝑇 (𝜇)

.

𝑚

.

𝑚(𝜇)

.
𝜇

.

𝑐 (𝜇)

(b) Sparsity patterns of the two matrices
̃𝑇 (𝑐(𝜇),𝜇) and ̃𝑇 (𝜇) that are defined in (7.17).

The filled circles .. represent non-zero en-
tries. Empty circles .. represent entries of
small magnitude arising due to orthogonalisa-
tion against inexactly deflated vectors. Empty
dotted circles .. represent computed values of
small magnitude being the norm of inexactly
deflated vectors and are not actually included

in the matrices.

Figure 7.4: Example demonstrating the progression of Algorithm 7.2 in
case of deflation in steps 𝜇 = 4 and 𝜇 = 9 for 4 starting vectors.

Our starting point is the block Lanczos process from Algorithm 6.6. The
process performs a QR decomposition of the newly created block-vector. Its
purpose is to ensure that the block-vector consists of 𝑚 orthonormal Lanczos
vectors. This, however, works only as long as no (nearly) linearly dependent
vectors arise in the process. Here, we enhance the block Lanczos process
to mimic the behaviour of the deflated block Lanczos-type process in that
it removes columns of the generated block-vectors that are (nearly) linearly
dependent and maintains orthogonality of all the generated Lanczos vectors.

The lack of handling (nearly) linearly dependent vectors with the QR de-
composition is what we want to tackle for two reasons. First, we always have
a block size of 𝑚. If we were able to decrease the block size in case of (near)
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linear dependency we could generate a deflated block Krylov subspace of the
same dimension with less computational work. Second, using a QR decomposi-
tion can result in a rank-deficient or ill-conditioned factor 𝑅. In Algorithm 6.6
the 𝑅-factor enters the matrix 𝙏 (𝑐+1,𝑐) as 𝑇𝑐+1,𝑐 and might lead to numerical
instabilities when building a block Krylov subspace method on top of the block
Lanczos process.

As in the previous sections we first give an overview of the block-featured
deflated Lanczos-type process, then we state the algorithm and lastly discuss
some details of the process.

Overview of the process. Like before, we want to construct an orthonormal
basis of the deflated block Krylov subspace. This time, however, we want to
progress block-wise which means that we extend a basis of 𝒦defl

𝑘−1,0(𝐴, 𝐵) to
𝒦defl

𝑘,0 (𝐴, 𝐵) in step 𝑘. The deflated basis is kept in the columns of a matrix
𝙑 (𝜅(𝑘,0)). To include deflation we have to check all of the up to 𝑚 Lanczos
vectors created in the current step 𝑘 for (near) linear dependency. A QR
decomposition could be applied to spot (near) linear dependency in the block-
vector 𝑉 (𝑘) = 𝑄(𝑘)𝑅(𝑘) by monitoring the magnitude of the diagonal entries
in the matrix 𝑅(𝑘). This would be the exact analogue of the approach in the
two-sided deflated block Lanczos-type process and the deflated block Lanczos-
type process. However, in the case of (nearly) linearly dependent columns in
𝑉 (𝑘) it might not be possible to select a strict subset of the columns of 𝑄(𝑘)

whose span (approximately) equals range(𝑉 (𝑘)) [GL96, Section 5.4]. Hence,
an alternative to the QR decomposition has to be found.

In our algorithm we replace the QR decomposition by a rank-revealing QR
decomposition. The term rank-revealing QR decomposition was coined in
[Cha87]. The basic idea is to compute a factorisation

𝓥 (𝑘)Π(𝑘) = ̃𝑉 (𝑘)𝑅(𝑘)

for the column-permuted matrix 𝓥 (𝑘) ∈ ℂ𝑛×𝑚(𝑘−1) . Here, we used the reduced
block size 𝑚(𝑘−1) in step 𝑘 − 1 which together with the number of deflated
vectors 𝒹 (𝑘−1) until step 𝑘 − 1 satisfies 𝑚 = 𝑚(𝑘−1) + 𝒹 (𝑘−1). The matrix
Π(𝑘) ∈ ℝ𝑚(𝑘−1)×𝑚(𝑘−1) represents a permutation, ̃𝑉 (𝑘) ∈ ℂ𝑛×𝑚(𝑘−1) has orthonor-
mal columns and 𝑅(𝑘) ∈ ℂ𝑚(𝑘−1)×𝑚(𝑘−1) is upper triangular. The notation 𝓥
emphasises that we still might remove columns from the candidate Lanczos
block-vector 𝓥 to obtain the next block-vector of Lanczos vectors. Now, the
rank-revealing enters the stage by choosing the permutation Π(𝑘) in such a way
that if 𝑅(𝑘) is partitioned as

𝑅(𝑘) = [𝑅(𝑘)
11 𝑅(𝑘)

12
0 𝑅(𝑘)

22
]
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then the upper triangular block 𝑅(𝑘)
11 ∈ ℂ𝑚(𝑘)×𝑚(𝑘) is non-singular and the

norm ‖𝑅(𝑘)
22 ‖2 of 𝑅(𝑘)

22 ∈ ℂ(𝑚(𝑘−1)−𝑚(𝑘))×(𝑚(𝑘−1)−𝑚(𝑘)) is small. One can show that
𝜎𝑚(𝑘−1)+1(𝓥 (𝑘)) ≤ ‖𝑅(𝑘)

22 ‖2 [Cha87] where 𝜎𝑖 denotes the 𝑖-th singular value of
𝓥 (𝑘) with 𝜎1 ≥ … ≥ 𝜎𝑚(𝑘−1) . This implies that if ‖𝑅(𝑘)

22 ‖2 is small then 𝓥 (𝑘) is
nearly rank deficient and we could deflate 𝑚(𝑘−1) − 𝑚(𝑘) vectors. If we remove
these vectors from ̃𝑉 (𝑘) we end up with 𝑉 (𝑘) ∈ ℂ𝑛×𝑚(𝑘) containing linearly
independent columns.

Different rank-revealing QR decompositions differ in how they compute the
permutation Π(𝑘). The most prominent rank-revealing QR decomposition is
the column pivoting Householder QR method from [BG65]. It is presented in
[GL96, Algorithm 5.4.1] and we have described its additions to the Householder
QR decomposition in Section 1.3. Its key idea is to build the factorisation suc-
cessively and choose the permutation such that out of all remaining vectors
always the vector with largest norm after already orthogonalising against the
already computed columns of 𝑄 is selected for being orthogonalised next. This
implies that the diagonal entries of the 𝑅-factor are decreasing in magnitude
and that entries right of the diagonal are smaller in magnitude than the cor-
responding diagonal entry. However, it does not always guarantee a small
‖𝑅(𝑘)

22 ‖2 for (nearly) rank deficient matrices [Cha87]. Then again, in practise
it is rarely seen that the method fails to identify (near) rank deficiency. In
[Cha87] a rank-revealing QR decomposition method RRQR is presented that is
more costly than the column pivoting Householder-QR method but guarantees
a small norm of the 𝑅(𝑘)

22 -block for rank-1 deficient matrices. Some improve-
ments on the rank-revealing QR decomposition from [Cha87] can be found in
[CH94; GE96; HP92].

Besides the rank-revealing QR decomposition which allows us to decide if and
which columns of the block-vector can be deflated we have to keep the deflated
Lanczos vectors like in the two-sided deflated block Lanczos-type process and
the deflated block Lanczos-type process. That way we can ensure that 𝙑 (𝜅(𝑘,0))

still consists of orthonormal columns even after deflation occurred.

The algorithm. Algorithm 7.3 displays the block-featured deflated Lanczos-
type process for Hermitian matrices that incorporates the rank-revealing QR
decomposition described before. Up to line 6 of the algorithm the initialisa-
tion is completed and the starting block-vector 𝐵 is orthogonalised yielding
𝑉 (1). Some columns might have been deflated, thus the reduced block size 𝑚(1)

might be smaller than 𝑚. From line 8 to line 11 the orthogonalisation against
the last two blocks and the previously deflated vectors takes place. The rank-
revealing QR decompositions in line 2 and line 12 can be any rank-revealing
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Algorithm 7.3: Block-featured deflated Lanczos-type process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix, Hermitian

𝐵 ∈ ℂ𝑛×𝑚 starting block-vector
toldefl deflation tolerance
𝑘 number of steps to perform

Output: 𝙑 (𝑘+1) = [𝑉 (1)| ⋯ |𝑉 (𝑘+1)] the columns of 𝙑 (𝑘+1) form an orthonormal
basis of 𝒦defl

𝑘+1,0(𝐴, 𝐵)
𝙏 (𝑘+1,𝑘) matrix containing orthogonalisation coeffi-

cient blocks such that (7.24) holds

1 𝑉 (0) = 0
2 𝓥 (1)𝓣 (1,0) = 𝐵Π(1) // rank-revealing QR decomposition of 𝐵
3 check 𝓣 (1,0) for deflation yielding 𝑚(1)

4 𝑉 (1) = 𝓥 (1)
∶,1∶𝑚(1)

5 𝑉 (1)
keep = (𝐵Π(1))∶,𝑚(1)+1∶𝑚 // keep deflated vectors

6 𝑇1,0 = (𝓣 (1,0)(Π(1))−1)1∶𝑚(1),∶
7 for 𝑐 = 1, 2, … , 𝑘 do
8 ̃𝑉 = 𝐴𝑉 (𝑐) − 𝑉 (𝑐−1)𝑇𝑐,𝑐−1
9 𝑇𝑐,𝑐 = (𝑉 (𝑐))𝐻 ̃𝑉

10 ̃𝑉 = ̃𝑉 − 𝑉 (𝑐)𝑇𝑐,𝑐
11 ̃𝑉 = ̃𝑉 − 𝑉 (𝑐)

keep((𝑉 (𝑐)
keep)𝐻 ̃𝑉 ) // orthogonalisation against previously deflated vectors

12 𝓥 (𝑐+1)𝓣 (𝑐+1,𝑐) = ̃𝑉 Π(𝑐+1) // rank-revealing QR decomposition of ̃𝑉
13 check 𝓣 (𝑐+1,𝑐) for deflation yielding 𝑚(𝑐+1)

14 𝑉 (𝑐+1) = 𝓥 (𝑐+1)
∶,1∶𝑚(𝑐+1)

15 𝑉 (𝑐+1)
keep = [𝑉 (𝑐)

keep | (𝑉 (𝑐)Π(𝑐+1))∶,𝑚(𝑐+1)+1∶𝑚(𝑐) ] // keep deflated vectors
16 𝑇𝑐+1,𝑐 = (𝓣 (𝑐+1,𝑐)(Π(𝑐+1))−1)1∶𝑚(𝑐+1),∶
17 𝑇𝑐,𝑐+1 = (𝑇𝑐+1,𝑐)𝐻

QR decomposition. In our implementation we use the column-pivoting House-
holder QR decomposition from [BG65] since it is cheaper to compute than the
other mentioned rank-revealing QR decompositions. The check for need of
deflation in the lines 3 and 13 is done by searching for the smallest 𝜈 such that
the diagonal entry (𝓣 (𝑐+1,𝑐))𝜈,𝜈 is smaller than toldefl in magnitude. We then
set 𝑚(𝑐+1) = 𝜈.

The Lanczos vectors that the deflated vectors originate from are kept in the
matrix 𝑉 (𝑐+1)

keep in the case of inexact deflation. If (𝓣 (𝑐+1,𝑐))𝜇,𝜇 ≈ 0 for 𝜇 > 𝜈
then exact deflation is applied and there is no need to keep the corresponding
Lanczos vector. The inverse of the permutation that is computed during the
rank-revealing QR decomposition is applied to the matrix 𝓣 (𝑐+1,𝑐) in the lines 6
and 16 and the last 𝑚(𝑐+1) rows thereof form 𝑇𝑐+1,𝑐.
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We note that the block-featured deflated Lanczos-type process not neces-
sarily spans the same deflated block Krylov subspace as the deflated block
Lanczos-type process since the involved rank-revealing QR decompositions can
lead to a different selection of deflated vectors. In actual computations we can
see that deflation occurs in different steps of both processes which can be seen
in Figure 8.24 of Section 8.4.

A deflated block Lanczos-type relation. The matrices

𝙑 (𝑘+1) = [𝑉 (1)| ⋯ |𝑉 (𝑘+1)]

and

𝙏 (𝑘+1,𝑘) = ⎡
⎢
⎣

𝑇1,1 𝑇1,2
𝑇2,1 𝑇2,2 ⋱

⋱ ⋱ 𝑇𝑘−1,𝑘
𝑇𝑘,𝑘−1 𝑇𝑘,𝑘

𝑇𝑘+1,𝑘

⎤
⎥
⎦

are generated by the block-featured deflated Lanczos-type process in Algo-
rithm 7.3. Using these we can state a deflated block Lanczos-type relation

𝐴𝙑 (𝑘) = 𝙑 (𝑘+1)𝙏 (𝑘+1,𝑘) + 𝙑 (𝑘)
defl (7.24)

that the matrices 𝙑 (𝑘+1) and 𝙏 (𝑘+1,𝑘) fulfil. The matrix 𝙑 (𝑘)
defl amounts to the

deflated candidate Lanczos vectors 𝓥 (𝑐+1)
∶,(𝑚(𝑐+1)+1)∶𝑚(𝑐) in the columns of 𝓥 (𝑐+1) and

the orthogonalisation against vectors in 𝑉 (𝑐)
keep. We described how the matrix

𝙑 (𝑘)
defl is composed in detail in Section 7.1.3 and refer to the description of the

deflated block Lanczos-type process for all the details thereon.
Analogously to Proposition 7.5 and Proposition 7.6 that hold for the de-

flated block Lanczos-type process we can derive similar bounds in the following
proposition. But first, we note that equation (7.22) translates to

(𝙑 (𝑘))𝐻𝐴𝙑 (𝑘) = 𝙏 (𝑘) + (𝙑 (𝑘))𝐻𝙑 (𝑘)
defl. (7.25)

Proposition 7.7. Using the previous notation the following bounds hold

∥𝙑 (𝑘)
defl∥

𝐹
≤ toldefl√𝒹 (𝑘)𝜅(𝑘, 0) and

∥(𝙑 (𝑘))𝐻𝙑 (𝑘)
defl∥

𝐹
≤ toldefl

√2𝑚𝑘𝒹 (𝑘).
(7.26)

Proof. See Proposition 7.5 and Proposition 7.6.
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An example. We want to clarify the sparsity pattern of the matrix 𝙏 (𝑘+1,𝑘)

using an example. In Figure 7.5 we display a similar example as for the deflated
block Lanczos-type process. Initially, we have 4 starting vectors 𝑏1, … , 𝑏4 and
inexact deflation occurs twice—once while creating the 𝑉 (2) and the second
time while creating 𝑉 (4). The graphical representation shows the sparsity pat-
tern of the matrices 𝙏 (𝑘+1,𝑘) and 𝙏 (𝑘) denoted by filled circles .. . The reduced
block size 𝑚(𝑐+1) can be found as the number of rows in the block 𝑇𝑐+1,𝑐. The
dotted circles .. indicate entries of small magnitude in the matrix (𝙑 (𝑘))𝐻𝙑 (𝑘)

defl
that arise due to orthogonalisation against deflated Lanczos vectors but are
not included in 𝙏 (𝑘+1,𝑘). The most prominent difference to the structure of
𝑇 (𝜇) in Figure 7.4b is that the off-diagonal blocks are no necessarily triangu-
lar. This, however, is not required for Algorithm 7.3 since we only need the
block-tridiagonal structure of 𝙏 (𝑘+1,𝑘).

...

𝙏 (𝑘+1,𝑘)

.

𝙏 (𝑘)

.

𝑚
(1

)

. 𝜅(𝑘, 0).

𝑚
(𝑘)

Figure 7.5: Example showing the sparsity pattern of matrix 𝙏 (𝑘+1,𝑘) gen-
erated by Algorithm 7.3 in case of deflation in steps 𝑐 = 1 and 𝑐 = 3 for
4 starting vectors. The filled circles .. represent non-zero entries. Empty
circles .. represent entries of small magnitude arising due to orthogonalisa-
tion against inexactly deflated vectors that are actually kept in the blocks
of 𝙏 (𝑘+1,𝑘). Empty dotted circles .. represent values of small magnitude

that are not actually included in 𝙏 (𝑘+1,𝑘).
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7.2 DSBlockCG
In this section we want to develop a deflated shifted block Krylov subspace
method for solving (1.1) for a Hermitian positive definite matrix 𝐴 which
we call Deflated Shifted Block CG (DSBlockCG). It is based on shifted CG
and the deflated block Lanczos-type process from Algorithm 7.2 introduced in
Section 7.1.3. As it advances the basis of the current deflated block Krylov
subspace by one vector at every iteration step, the method we present here will
generate iterates for every shift after every newly computed Lanczos vector.
Hence, it generates iterates of the kind (7.5).

We split the derivation in two parts. First, we consider the unshifted block
system 𝐴𝑋 = 𝐵 and derive a block CG method in a similar manner as CG
can be derived from the Lanczos process. We used this kind of derivation
already for the shifted CG method in Section 5.1. As we base the method on
the deflated block Lanczos-type process we have to figure out how deflation
influences the computation of iterates. Second, we will discuss how the method
then can be extended to handle multiple shifts.

7.2.1 A Deflated Block CG Method

In the following we will use the indexing using 𝜇 that we introduced in Sec-
tion 7.1.3 and used especially for Algorithm 7.2. This emphasises that our
index counts single vector-wise and not block-wise. Our goal will be to gener-
ate iterates 𝑋(𝜇) for 𝜇 > 0 fulfilling the Galerkin condition

𝑋(𝜇) with 𝑥(𝜇)
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦defl
𝜇 (𝐴, 𝑅(0)) and

𝑅(𝜇) with 𝑟(𝜇)
𝑗 = 𝑟(0)

𝑗 − 𝐴𝑥(𝜇)
𝑗 ⟂ 𝒦defl

𝜇 (𝐴, 𝑅(0)).

Building upon this and using the orthogonal basis 𝑉 (𝜇) and the Hermitian
matrix 𝑇 (𝜇) created by the deflated block Lanczos-type process we want to
obtain iterates 𝑋(𝜇) as

𝑋(𝜇) ∶= 𝑋(0) + 𝑉 (𝜇)(𝑇 (𝜇))−1(𝑉 (𝜇))𝐻𝑅(0)

≈ 𝑋(0) + 𝑉 (𝜇)((𝑉 (𝜇))𝐻𝐴𝑉 (𝜇))−1(𝑉 (𝜇))𝐻𝑅(0). (7.27)

We assume here that according to (7.22) and (7.23) the entries of ̃𝑆(𝜇) be-
longing to (𝑉 (𝜇))𝐻𝐴𝑉 (𝜇) = 𝑇 (𝜇) + ̃𝑆(𝜇) that arise due to orthogonalisation
against deflated vectors have no substantial influence and using 𝑇 (𝜇) instead
is justified. Therefore, with deflation the constructed method will not have a
finite termination property even in exact arithmetic, and we must expect the
attainable accuracy of the iterates not to exceed the deflation tolerance toldefl.
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According to Algorithm 7.2 the index 𝜇 is increased every time a new can-
didate Lanczos vector has been created. This implies that the matrix ̃𝑇 (𝑐(𝜇),𝜇)

grows a column and if no deflation occurs it also grows a row. This means that
𝑇 (𝜇) always grows a column and row. Hence, we can generate a new iterate as
in (7.27) even though, occasionally, the candidate vector gets deflated and no
new Lanczos vector is obtained. In this sense, deflation has no effect on the
generation of the iterates.

What we still need to obtain is an update formulation for the iterates which
uses short recurrences. The band structure of 𝑇 (𝜇) can be exploited for this.
The following derivation is in most parts analogous to the derivation of shifted
CG in Section 5.1. Let

𝐿(𝜇)𝐷(𝜇)(𝐿(𝜇))𝐻 ∶= 𝑇 (𝜇)

be the root-free Cholesky decomposition of 𝑇 (𝜇) where 𝐿(𝜇) is a lower triangular
matrix of unit diagonal with the same sparsity pattern as the lower triangular
part of 𝑇 (𝜇) and 𝐷(𝜇) is a diagonal matrix 𝐷(𝜇) = diag (𝑑(1), 𝑑(2), … , 𝑑(𝜇)).

The only difference between 𝑇 (𝜇) and 𝑇 (𝜇−1) is the newly appended last
column and row. So, writing

𝑇 (𝜇) = [𝑇 (𝜇−1) (𝑡(𝜇))𝐻

𝑡(𝜇) 𝑡(𝜇,𝜇) ] , 𝐿(𝜇) = [𝐿(𝜇−1) 0
ℓ(𝜇) 1] and 𝐷(𝜇) = [𝐷(𝜇−1)

𝑑(𝜇)]

yields

𝑇 (𝜇) = [𝑇 (𝜇−1) (𝑡(𝜇))𝐻

𝑡(𝜇) 𝛼(𝜇) ]

= 𝐿(𝜇)𝐷(𝜇)(𝐿(𝜇))𝐻

= [𝐿(𝜇−1)

ℓ(𝜇) 1] [𝐷(𝜇−1)

𝑑(𝜇)] [(𝐿(𝜇−1))𝐻 (ℓ(𝜇))𝐻

1 ]

= [𝐿(𝜇−1)𝐷(𝜇−1)(𝐿(𝜇−1))𝐻 𝐿(𝜇−1)𝐷(𝜇−1)(ℓ(𝜇))𝐻

ℓ(𝜇)𝐷(𝜇−1)(𝐿(𝜇−1))𝐻 ℓ(𝜇)𝐷(𝜇−1)(ℓ(𝜇))𝐻 + 𝑑(𝜇)] .

We obtain updates for 𝐿(𝜇−1) to 𝐿(𝜇) and 𝐷(𝜇−1) to 𝐷(𝜇) by computing

ℓ(𝜇) = 𝑡(𝜇)(𝐿(𝜇−1))−𝐻(𝐷(𝜇−1))−1 and
𝑑(𝜇) = 𝑡(𝜇,𝜇) − ℓ(𝜇)𝐷(𝜇−1)(ℓ(𝜇))𝐻. (7.28)

Note that in our notation ℓ(𝜇) and 𝑡(𝜇) are row vectors and that they are of
length 𝜇 − 1. The sparsity pattern of 𝑇 (𝜇) implies that at most the last 𝑚
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entries in each of the vectors 𝑡(𝜇) as well as ℓ(𝜇) are non-zero. More precisely,
𝑡(𝜇)
ℎ(𝜇) , … , 𝑡(𝜇)

𝜇−1 are the only non-zeros in 𝑡(𝜇).
We can use the updates for 𝐿(𝜇) and 𝐷(𝜇) in (7.28) to formulate updates for

the iterates in (7.27) from 𝑋(𝜇−1) to 𝑋(𝜇). Using (7.27) we get

𝑋(𝜇) = 𝑋(0) + 𝑉 (𝜇)(𝐿(𝜇)𝐷(𝜇)(𝐿(𝜇))𝐻)−1(𝑉 (𝜇))𝐻𝑅(0)

= 𝑋(0) + [𝑉 (𝜇−1) 𝑣(𝜇)] (𝐿(𝜇))−𝐻(𝐷(𝜇))−1(𝐿(𝜇))−1 [𝑉 (𝜇−1) 𝑣(𝜇)]𝐻 𝑅(0)

= 𝑋(0) + [𝑃 (𝜇−1) 𝑝(𝜇)] (𝐷(𝜇))−1 [𝑈 (𝜇−1)

𝑢(𝜇) ]

= 𝑋(𝜇−1) + 1
𝑑(𝜇) 𝑝(𝜇)𝑢(𝜇). (7.29)

Here we used

𝑃 (𝜇) ∶= [𝑃 (𝜇−1) 𝑝(𝜇)] = [𝑉 (𝜇−1) 𝑣(𝜇)] [𝐿(𝜇−1) 0
ℓ(𝜇) 1]

−𝐻

and

𝑈 (𝜇) ∶= [𝑈 (𝜇−1)

𝑢(𝜇) ] = [𝐿(𝜇−1) 0
ℓ(𝜇) 1]

−1

[(𝑉 (𝜇−1))𝐻

(𝑣(𝜇))𝐻 ] 𝑅(0).

The advantage of introducing the matrices 𝑃 (𝜇) and 𝑈 (𝜇) is that for the cost
of having to store them we have the benefit of being able to do the inversion
of 𝐿(𝜇) implicitly and have simple updates for

𝑝(𝜇) = 𝑣(𝜇) − 𝑃 (𝜇−1)(ℓ(𝜇))𝐻 and
𝑢(𝜇) = (𝑣(𝜇))𝐻𝑅(0) − ℓ(𝜇)𝑈 (𝜇−1). (7.30)

One must expect that the vectors 𝑣(𝜇) tend to lose orthogonality rather quickly
in numerical computation. However, (𝑣(𝜇))𝐻𝑅(0) in (7.30) should always be
taken as zero for 𝜇 > 𝑚 even though it is not in actual computation since
it stabilises the computation of the new iterates. As described before, 𝐿(𝜇)

inherits the banded structure of 𝑇 (𝜇). This implies that the updates in (7.30)
need at most the last 𝑚 columns of 𝑃 (𝜇−1) and, accordingly, the last 𝑚 rows
of 𝑈 (𝜇−1).

7.2.2 Stopping Criterion for the Deflated Block CG Method

In order to be able to stop the iteration we should be able to compute the
norms of the residuals 𝑟(𝜇)

𝑗 , 1 ≤ 𝑗 ≤ 𝑚. Fortunately, although the residuals
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are not directly available, their norms can be computed at very low additional
cost. The iterates 𝑋(𝜇) are generated in such a way that the residuals 𝑅(𝜇)

are orthogonal to the Lanczos vectors 𝑣(𝑗) for 𝑗 ≤ 𝜇. Therefore, they may be
written as

𝑅(𝜇) = 𝑊 (𝜇)𝑆(𝜇)

where 𝑆(𝜇) = [𝑠(𝜇)
1 | ⋯ |𝑠(𝜇)

𝑚 ] ∈ ℂ𝑚(𝜇)×𝑚 and 𝑊 (𝜇) ∈ ℂ𝑛×𝑚(𝜇) consists of the last
𝑚(𝜇) columns of 𝑉 (𝑐(𝜇)), i.e. 𝑊 (𝜇) = [𝑣(𝜇+1)| … |𝑣(𝑐(𝜇))]. For 𝜈 > 𝑚 this can be
seen by using relation (7.19) which yields

(𝑣(𝜈))𝐻𝑅(𝜇) = (𝑣(𝜈))𝐻(𝐵 − 𝐴𝑋(𝜇))
= (𝑣(𝜈))𝐻(𝑅(0)⏟⏟⏟⏟⏟

=0
−𝐴𝑉 (𝜇)(𝑇 (𝜇))−1(𝑉 (𝜇))𝐻𝑅(0))

= (𝑣(𝜈))𝐻𝑉 (𝑐(𝜇))𝑇 (𝑐(𝜇),𝜇)(𝑇 (𝜇))−1(𝑉 (𝜇))𝐻𝑅(0).

Hence, the residuals 𝑅(𝜇) only depend on the last few Lanczos vectors. More-
over, by exploiting the property that 𝑉 (𝜇) and thus 𝑊 (𝜇) has orthonormal
columns, we get

∥𝑟(𝜇)
𝑗 ∥ = ∥𝑊 (𝜇)𝑠(𝜇)

𝑗 ∥ = ∥𝑠(𝜇)
𝑗 ∥ .

Therefore, if we are just interested in the norm of each of the residuals we only
have to compute the norm of the columns of 𝑆(𝜇) ∈ ℂ𝑚(𝜇)×𝑚. Computing 𝑆(𝜇)

is actually quite simple since

𝑆(𝜇) = (𝑊 (𝜇))𝐻𝑅(𝜇)

= (𝑊 (𝜇))𝐻(𝐵 − 𝐴𝑋(𝜇))
= (𝑊 (𝜇))𝐻(𝑅(0) − 𝐴𝑃 (𝜇)(𝐷(𝜇))−1𝑈 (𝜇))
= (𝑊 (𝜇))𝐻(𝑅(0) − 𝐴𝑉 (𝜇)(𝐿(𝜇))−𝐻(𝐷(𝜇))−1𝑈 (𝜇))
= (𝑊 (𝜇))𝐻(𝑅(0)⏟⏟⏟⏟⏟

=0 for 𝜇>𝑚
−𝑉 (𝑐(𝜇))𝑇 (𝑐(𝜇),𝜇) (𝐿(𝜇))−𝐻(𝐷(𝜇))−1𝑈 (𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶ ̃𝑆(𝜇)

)

= − [0 𝐼𝑚(𝜇)] 𝑇 (𝑐(𝜇),𝜇) ̃𝑆(𝜇). (7.31)

The computation of 𝑆(𝜇) thus essentially only involves one matrix-matrix prod-
uct of small matrices of dimension 𝑚(𝜇) and one inversion of the small trian-
gular matrix (𝐿(𝜇))𝐻. So obtaining 𝑆(𝜇) is computationally cheap.

7.2.3 The Deflated Shifted Block CG Method

The block method developed so far can be extended to handle shifted systems
and multiple right-hand sides at the same time. The only restriction is on the
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choice of the starting vectors, because we need to have collinear initial residuals
for all shifts of a given right-hand side as for shifted CG in Section 5.1. This
constraint can obviously be fulfilled by choosing 0 as the starting vector for
all shifts. For ease of notation we focus on a situation where we have just one
additional shift 𝜎 and use the notation 𝐴𝜎 ∶= 𝐴 + 𝜎𝐼 . Matrices and vectors
belonging to the shifted system will also be denoted by the index 𝜎.

Krylov subspaces are shift-invariant as discussed in Chapter 5. Moreover,
starting with the initial vector 𝑏, the Lanczos process produces exactly the
same vectors, whether we take 𝐴 or 𝐴𝜎 for computing a basis of 𝒦𝑘(𝐴, 𝑏) =
𝒦𝑘(𝐴𝜎, 𝑏) [PPV95]. This property immediately carries over to deflated block
Krylov subspaces and to the block Lanczos-type process as well as the de-
flated block Lanczos-type process. Moreover, the deflated block Lanczos-type
relation (7.19) turns into

𝐴𝜎𝑉 (𝜇) = 𝑉 (𝑐(𝜇))𝑇 (𝑐(𝜇),𝜇)
𝜎 + 𝑉 (𝜇)

defl

with

𝑇 (𝑐(𝜇),𝜇)
𝜎 = 𝑇 (𝑐(𝜇),𝜇) + 𝜎𝐼.

In particular, we have

(𝑉 (𝜇))𝐻(𝐴 + 𝜎𝐼)𝑉 (𝜇) = 𝑇 (𝜇) + 𝜎𝐼 =∶ 𝑇 (𝜇)
𝜎 ,

so that we can obtain the iterates for the shifted system in exactly the same
manner as described in Section 7.2.1, with 𝑇 (𝜇) replaced by 𝑇 (𝜇)

𝜎 . This saves us
the cost of creating 𝑉 (𝜇) and 𝑇 (𝜇) for each shifted system individually which is
expected to be the most expensive part since it involves multiplications with
the matrix 𝐴𝜎. However, for every shift, the Cholesky factorisation 𝐿(𝜇)

𝜎 and
𝐷(𝜇)

𝜎 and the matrices 𝑃 (𝜇)
𝜎 and 𝑈 (𝜇)

𝜎 needed for generating the iterates, have
to be computed and stored. We will give a detailed analysis of the memory
requirements in the next section.

7.2.4 The DSBlockCG Algorithm

Summarising the previous sections and using Algorithm 7.2 we now formulate
the DSBlockCG algorithm as Algorithm 7.4. We have previously published
this algorithm in [BF14]. The loop in line 22 means that if for a fixed shift 𝜎𝑖
all the iterates 𝑥𝑖,𝑗 with 1 ≤ 𝑗 ≤ 𝑚 are converged to the requested tolerance,
the matrices 𝐿(𝜇)

𝑖 , 𝐷(𝜇)
𝑖 , 𝑃 (𝜇)

𝑖 , 𝑈 (𝜇)
𝑖 and 𝑆(𝜇)

𝑖 do not have to be updated any more.
Additionally, only those columns of 𝑆(𝜇)

𝑖 have to be computed that belong to
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Algorithm 7.4: DSBlockCG
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝐵 = [𝑏1| ⋯ |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝜎1, … , 𝜎𝑠 shifts with 𝜎𝑖 ∈ ℝ, s.t. 𝐴 + 𝜎𝑖𝐼 is hpd
toldefl deflation tolerance

Output: approximate solutions 𝑥(𝑘)
𝑖,𝑗 to (𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗

1 𝜇 = −𝑚, 𝐼 = ∅, (ℎ(−𝑚+1), … , ℎ(0)) = (1, … , 1)
2 𝑋(0) = 0, 𝑃 (0) = 0, 𝑈 (0) = 0
3 for 𝑐 = 1, 2, … until convergence do
4 repeat // build the next Lanczos vector
5 𝜇 = 𝜇 + 1
6 if 𝜇 = 𝑐 then stop // block Krylov subspace depleted
7 if 𝜇 ≤ 0 then
8 𝓿 (𝜇) = 𝑏𝑚+𝜇
9 else

10 𝓿 (𝜇) = 𝐴𝑣(𝜇)

11 for 𝑗 ∈ 𝐽 (𝜇) = {ℎ(𝜇), … , 𝑐 − 1} ∪ 𝐼 do // orthogonalisation
12 𝑡𝑗,𝜇 = (𝑣(𝑗))𝐻𝑣
13 𝓿 (𝜇) = 𝓿 (𝜇) − 𝑡𝑗,𝜇𝑣(𝑗)

14 if ∥𝓿 (𝜇)∥ = 0 then discard vector 𝓿 (𝜇) // exact deflation
15 else if ∥𝓿 (𝜇)∥ < toldefl and 𝜇 > 0 then // inexact deflation
16 keep 𝑣(𝜇) for later orthogonalisation and set 𝐼 = 𝐼 ∪ {𝜇}
17 else // new Lanczos vector
18 𝑡𝑐,𝜇 = ∥𝓿 (𝜇)∥
19 𝑣(𝑐) = 𝓿 (𝜇)/𝑡𝑐,𝜇
20 ℎ(𝑐) = max {1, 𝜇}
21 if 𝜇 > 0 then // compute the iterates
22 forall the shifts 𝜎𝑖 with unconverged systems do

// update the Cholesky decomposition, cf. (7.28)
23 if 𝜇 = 1 then ℓ(𝜇)

𝑖 = 0
24 else ℓ(𝜇)

𝑖 = 𝑡(𝜇)(𝐿(𝜇−1)
𝑖 )−𝐻(𝐷(𝜇−1)

𝑖 )−1

25 𝑑(𝜇)
𝑖 = (𝑡(𝜇,𝜇) + 𝜎𝑖) − ℓ(𝜇)

𝑖 𝐷(𝜇−1)
𝑖 (ℓ(𝜇)

𝑖 )𝐻

// update the matrices 𝑃 and 𝑈 , cf. (7.30)
26 𝑝(𝜇)

𝑖 = 𝑣(𝜇) − 𝑃 (𝜇−1)
𝑖 (ℓ(𝜇)

𝑖 )𝐻

27 𝑢(𝜇)
𝑖 = (𝑣(𝜇))𝐻𝐵 − ℓ(𝜇)𝑈 (𝜇−1)

// update the non-converged columns of the iterate, cf. (7.29)
28 𝑋(𝜇)

𝑖 = 𝑋(𝜇−1)
𝑖 + 1

𝑑(𝜇)
𝑖

𝑝(𝜇)
𝑖 𝑢(𝜇)

𝑖

// check convergence, cf. (7.31)
29 𝑆(𝜇)

𝑖 = − [0 𝐼𝑚(𝜇)] 𝑇 (𝑐(𝜇),𝜇)(𝐿(𝜇))−𝐻(𝐷(𝜇))−1𝑈 (𝜇)

30 until non-deflated new vector 𝑣(𝑐) computed in line 19
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non-converged systems for shift 𝜎𝑖. Note that we allow for an arbitrary number
of shifts 𝜎1, … , 𝜎𝑠.

We state two remarks before we discuss the memory requirements and com-
putational complexity. First, in contrast to the version of the algorithm that
we presented in [BF14] we have included in Algorithm 7.4 the initial orthonor-
malisation of the vectors 𝑏𝑖. This is done by starting with a negative index 𝜇 as
we have described for the deflated block Lanczos-type process (Algorithm 7.2)
and has the beneficial side-effect that linear dependency in the vectors 𝑏𝑖 can be
recognised and treated with deflation. Second, as discussed for equation (7.30)
in an actual implementation (𝑣(𝜇))𝐻𝐵 in line 27 should not be computed for
𝜇 > 0 and should be assumed as being zero instead.

The following proposition summarises the memory requirements of Algo-
rithm 7.4.

Proposition 7.8. The DSBlockCG algorithm requires the storage of

(𝑠𝑚 + 2𝑚 + 1)𝑛 + 4𝑚2 + 2𝑠𝑚2 + 𝒪(𝑚) (7.32)

floating point numbers in addition to the storage for the matrix 𝐴, the right-
hand sides 𝐵 and the result vectors 𝑋𝑖.

Proof. The memory footprint of the DSBlockCG algorithm in a memory ef-
ficient implementation consists of 2𝑚 + 1 vectors of length 𝑛 for storing the
matrix 𝑉 , and a temporary vector 𝑣. Additionally, the search direction matrix
𝑃 (𝜇)

𝑖 has to be stored for every shift which amounts to additional 𝑠𝑚 vectors
of length 𝑛. The matrix 𝑇 (𝜇) can be stored using an economy version matrix

̂𝑇 (𝜇) ∈ ℂ(2𝑚+1)×(𝑚+1). We then only keep as much entries as needed in ̂𝑇 . The
entry (𝑇 (𝜇))𝑝,𝑞 can be found as ( ̂𝑇 (𝜇))1+�̃�,1+ ̃𝑞 where ̃𝑝 = 𝑝 mod (2𝑚 + 1) and

̃𝑞 = 𝑞 mod (𝑚 + 1). Since for every shifted system the shift only has to be
applied to the diagonal of 𝑇 (𝜇), there is no need for storing more than one
copy of this matrix. Also independent from the number of shifts is the storage
for 𝑆(𝜇)

𝑖 and a temporary matrix. However, for every shift we need to store
the matrices 𝑈 (𝜇)

𝑖 and 𝐿(𝜇)
𝑖 where the diagonal of 𝐿(𝜇)

𝑖 contains 𝐷(𝜇)
𝑖 . All these

matrices have a size of at most 𝑚 × 𝑚. Overall we end up with the number of
floating point numbers as stated in (7.32).

For the computational complexity we assume that 𝑛 ≫ 𝑚 and 𝑛 ≫ 𝑠 so that
𝒪(𝑚3) and 𝒪(𝑚𝑠) operations are negligible compared to the vector operations
of length 𝑛. For simplicity, we only analyse the non-deflation case summarised
in the following result.



7.2 DSBlockCG 169

Proposition 7.9. We assume that no deflation occurs and that all systems
from (7.1) belonging to the same shift 𝜎𝑖 are solved after 𝑘𝑖 steps. Let 𝑘 =
max𝑖=1,…,𝑠 {𝑘𝑖}. The total number of operations in Algorithm 7.4 for solving
(7.1) is

ℴdsblockcg = 𝑘(𝒸𝐴 + 3𝑚 + 1) + 2𝑚
𝑠

∑
𝑖=1

𝑘𝑖. (7.33)

Proof. The computational cost for one step in the DSBlockCG algorithm con-
sists of

• a multiplication with the matrix 𝐴,
• the orthogonalisation against 2𝑚 previous vectors,
• the normalisation of the new vector that extends the Krylov subspace,
• the update of the search direction matrices 𝑃 (𝜇)

𝑖 and the iterates 𝑋(𝜇)
𝑖 for

every system belonging to a non-converged shift 𝜎𝑖.
The orthogonalisation needs 2𝑚 vector additions but just 𝑚 inner products
by exploiting the symmetry of 𝑇 (𝜇). Normalising the resulting vector after or-
thogonalisation accounts for one vector operation. The updates of the search
directions and the iterates account for 2𝑚 vector operations but are only per-
formed for not yet converged systems. Overall we end up with a computational
complexity as stated in (7.33).

Concluding this section we discuss how DSBlockCG performs against shifted
CG and BCGrQ depending on the number of right-hand sides and shifts as pa-
rameters using our cost model from Section 1.3. First, we compare DSBlockCG
to shifted CG from Section 5.1 which is a more fine-grained version of the result
in [BF14, Section 5].

Proposition 7.10. We assume that no deflation occurs and that all sys-
tems from (1.1) belonging to the same shift 𝜎𝑖 are solved after step 𝑘𝑖 in the
DSBlockCG algorithm and after �̃�𝑖 steps of shifted CG when shifted CG is
applied to each right-hand side individually. Let

𝑘 = max
𝑖=1,…,𝑠

{𝑘𝑖} and �̃� = max
𝑖=1,…,𝑠

{�̃�𝑖} .

Further, assume that

2
𝑠

∑
𝑖=1

𝑘𝑖 = 𝜏𝑘 and 2
𝑠

∑
𝑖=1

�̃�𝑖 = 𝜏�̃�

for the same 𝜏 ≥ 2. The number of vector operations in DSBlockCG is less
than the number of vector operations in shifted CG, hinting at DSBlockCG
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being faster than shifted CG for solving all systems in (1.1), if

𝑚(𝒸𝐴 + 4 + 𝜏)
𝒸𝐴 + 3𝑚 + 1 + 𝑚𝜏 ≥ 𝑘

�̃�
(7.34)

holds.

Proof. Comparing the number of operations of DSBlockCG from Proposi-
tion 7.9 and shifted CG from Proposition 5.1 yields

𝑚ℴscg ≥ ℴdsblockcg

⇔ 𝑚 (�̃�(𝒸𝐴 + 4) + 2
𝑠

∑
𝑖=1

�̃�𝑖) ≥ 𝑘(𝒸𝐴 + 3𝑚 + 1) + 2𝑚
𝑠

∑
𝑖=1

𝑘𝑖

⇔ �̃�𝑚(𝒸𝐴 + 4 + 𝜏) ≥ 𝑘(𝒸𝐴 + 3𝑚 + 1 + 𝑚𝜏)

Proposition 7.10 shows that DSBlockCG as compared to shifted CG ben-
efits most if 𝒸𝐴 dominates the terms in the left-hand side of (7.34). Thus,
DSBlockCG can be expected to perform better if the matrix-vector multipli-
cation with 𝐴 is costly and 𝜏 is reasonably small. The latter is true for either
a small number of shifts or if the shifts are distributed so that only a few of
the shifted systems are hard to solve.

Estimating the number of steps of shifted CG and DSBlockCG a priori is
not possible in most practical situations. But there is some useful information
that we can retrieve from (7.34) instead of regarding Proposition 7.10 only
as a hint or an a posteriori explanation for time measurements. We know
that 𝑘 ∈ {�̃�, … , 𝑚�̃�} where the extreme cases are that all but one right-hand
side are deflated immediately on the �̃� end and that there is no benefit from
the block approach at all on the 𝑚�̃� end. If we assume that 𝑘 = 𝛼𝑚�̃� for
𝛼 ∈ [1/𝑚, 1] then we get

𝑚(𝒸𝐴 + 4 + 𝜏)
𝒸𝐴 + 3𝑚 + 1 + 𝑚𝜏 ≥ 𝑘

�̃�
⇔ (𝒸𝐴 + 4 + 𝜏)

𝒸𝐴 + 3𝑚 + 1 + 𝑚𝜏 ≥ 𝛼

⇔ 𝒸𝐴 + 4 + 𝜏 ≥ 𝛼(𝒸𝐴 + 3𝑚 + 1 + 𝑚𝜏)
⇔ (1 − 𝛼)𝒸𝐴 ≥ 𝛼(3𝑚 + 1 + 𝑚𝜏) − 4 − 𝜏.

Hence, for 𝛼 = 1 we can expect no gain in computational time when using
DSBlockCG instead of shifted CG applied to all right-hand sides separately.
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But, if we save some iteration steps with DSBlockCG compared to shifted CG
and 𝒸𝐴 is sufficiently large then we can expect some savings in computational
time. Especially when deflation occurs, the number of iteration steps can
decrease significantly, thus leading to 𝛼 ≪ 1.

In addition to the comparison of DSBlockCG and shifted CG that was al-
ready published in [BF14] we now want to compare DSBlockCG to BCGrQ
which is applied to every shift separately. We make the simplifying assumption
that all shifts are equally hard to solve, i.e. DSBlockCG computes iterates for
every system until the last step resulting in

ℴdsblockcg = 𝑘(𝒸𝐴 + 3𝑚 + 1) + 2𝑚
𝑠

∑
𝑖=1

𝑘𝑖 = 𝑘(𝒸𝐴 + 3𝑚 + 1 + 2𝑠𝑚).

Proposition 7.11. Assume that BCGrQ applied to any of the shifts in (1.1)
separately solves (𝐴 + 𝜎𝑖𝐼)𝑋 = 𝐵 in �̃� steps and let 𝑚𝑘 be the number of
steps that DSBlockCG needs to solve (1.1). The number of vector operations in
DSBlockCG is less than the number of vector operations in BCGrQ, hinting at
DSBlockCG being able to outperform BCGrQ for solving all systems in (1.1),
if

𝑠(𝒸□
𝐴(𝑚) + 6𝑚 + 4)

𝒸𝐴 + 3𝑚 + 1 + 2𝑠𝑚 ≥ 𝑘
�̃�

holds.

Proof. Comparing the number of operations of DSBlockCG from Proposi-
tion 7.9 and BCGrQ from Proposition 6.17 yields

𝑠ℴbcgrq ≥ ℴdsblockcg

⇔ 𝑠�̃�(𝑚𝒸□
𝐴(𝑚) + 6𝑚2 + 4𝑚) ≥ 𝑘(𝒸𝐴 + 3𝑚 + 1 + 2𝑠𝑚)

The iteration numbers 𝑘 and �̃� in Proposition 7.11 can be expected to be
almost the same. Hence, only for one shift or if the number of shifts is small
and 𝒸□

𝐴(𝑚) ≪ 𝒸𝐴 then BCGrQ might be faster than DSBlockCG. This is in line
with the comparison of shifted CG and CG in Proposition 5.2 and confirms
that shifted methods should be preferred since the solutions for the shifted
systems essentially come for free.

7.3 BFDSCG
In the following we develop a deflated shifted block Krylov subspace methods
for solving (1.1) for a Hermitian positive definite matrix 𝐴 which we will call
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Block-Featured Deflated Shifted CG (BFDSCG). It is closely related to the
DSBlockCG method of Section 7.2. In fact, the derivation follows the same
idea of merging shifted CG with a deflated block Krylov subspace but instead
of the deflated block Lanczos-type process we now base the algorithm on the
block-featured deflated Lanczos-type process. Hence, we do not progress in a
single vector manner but block-vector-wise and generate iterates of the kind
(7.4). Before we consider shifted systems, we develop a block CG method
for solving the unshifted block system 𝐴𝑋 = 𝐵. Since the following steps
of the derivation are analogous to the those in Section 7.2, we will keep the
description brief in most cases to reduce redundancy.

7.3.1 A Block-Featured Deflated CG Method

Since we base the deflated shifted block Krylov subspace method of this section
on the block-featured deflated Lanczos-type process of Algorithm 7.3, we will
adopt the indexing using the index 𝑘 from there. This emphasises that we
progress in a block-wise manner. Our goal will be to generate iterates 𝑋(𝑘)

fulfilling the Galerkin condition

𝑋(𝑘) with 𝑥(𝑘)
𝑗 ∈ 𝑥(0)

𝑗 + 𝒦defl
𝑘,0 (𝐴, 𝑅(0)) and

𝑅(𝑘) with 𝑟(𝑘)
𝑗 = 𝑟(0)

𝑗 − 𝐴𝑥(𝑘)
𝑗 ⟂ 𝒦defl

𝑘,0 (𝐴, 𝑅(0)).

In particular, we want to use the orthogonal basis 𝙑 (𝑘) and the Hermitian
matrix 𝙏 (𝑘) created by the block-featured deflated Lanczos-type process to
define iterates 𝑋(𝑘) as

𝑋(𝑘) ∶= 𝑋(0) + 𝙑 (𝑘)(𝙏 (𝑘))−1(𝙑 (𝑘))𝐻𝑅(0)

≈ 𝑋(0) + 𝙑 (𝑘)((𝙑 (𝑘))𝐻𝐴𝙑 (𝑘))−1(𝙑 (𝑘))𝐻𝑅(0). (7.35)

We assume here that according to (7.25) and (7.26) the entries of (𝙑 (𝑘))𝐻𝐴𝙑 (𝑘)

that arise due to orthogonalisation against deflated vectors and are not in-
cluded in 𝙏 (𝑘) have no substantial influence. In other words, we assume that

𝐴𝙑 (𝑘) ≈ 𝙑 (𝑘+1)𝙏 (𝑘+1,𝑘). (7.36)

In step 𝑘 of Algorithm 7.3 a block 𝑉 (𝑘+1) of 𝑚(𝑘+1) Lanczos vectors and can-
didate Lanczos vectors has been created. The matrix 𝙏 (𝑘+1,𝑘) as compared to
𝙏 (𝑘,𝑘−1) is extended by 𝑚(𝑘) columns and 𝑚(𝑘+1) rows or more specifically by
three blocks 𝑇𝑘−1,𝑘 ∈ ℂ𝑚(𝑘−1)×𝑚(𝑘) , 𝑇𝑘,𝑘 ∈ ℂ𝑚(𝑘)×𝑚(𝑘) , and 𝑇𝑘+1,𝑘 ∈ ℂ𝑚(𝑘+1)×𝑚(𝑘) .
This implies that 𝙏 (𝑘) grows by 𝑚(𝑘) columns and rows consisting of the blocks
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𝑇𝑘,𝑘−1, 𝑇𝑘−1,𝑘 = (𝑇𝑘,𝑘−1)𝐻, and 𝑇𝑘,𝑘 as compared to 𝙏 (𝑘−1). So, deflation hap-
pening in step 𝑘 results in 𝑚(𝑘+1) < 𝑚(𝑘) and thereby influences the computa-
tion of iterates (7.35) in steps after 𝑘. We come back to this in Section 7.3.3.

In order to achieve short recurrences we need to obtain an update formulation
of the iterates in (7.35) from step 𝑘 −1 to step 𝑘. For this we exploit the block
tri-diagonal structure of 𝙏 (𝑘) and the way 𝙏 (𝑘−1) is updated to 𝙏 (𝑘). Let

𝙇(𝑘)𝘿(𝑘)(𝙇(𝑘))𝐻 ∶= 𝙏 (𝑘)

be the root-free Cholesky decomposition of 𝙏 (𝑘). The matrix 𝙇(𝑘) is a lower
block-triangular matrix with lower triangular diagonal blocks that have a unit
diagonal and 𝙇(𝑘) has the same block structure as the lower block-triangular
part of 𝙏 (𝑘). The matrix 𝘿(𝑘) = diag (𝐷(1), 𝐷(2), … , 𝐷(𝑘)) is a diagonal matrix
where all the blocks are diagonal matrices themselves.

Now, we have all the notation at hand to retrieve an update for the root-free
Cholesky decomposition of 𝙏 (𝑘). We do so by writing

𝙏 (𝑘) = [ 𝙏 (𝑘−1) (𝑇 (𝑘))𝐻

𝑇 (𝑘) 𝑇 (𝑘,𝑘) ] , 𝙇(𝑘) = [ 𝙇(𝑘−1) 0
𝐿(𝑘) 𝐿(𝑘,𝑘) ] , and 𝘿(𝑘) = [ 𝘿(𝑘−1)

𝐷(𝑘) ] .

The matrix 𝑇 (𝑘) ∈ ℂ𝑚(𝑘)×𝜅(𝑘,0) consists of zeros except for the rightmost
𝑚(𝑘−1) columns which contain the matrix 𝑇𝑘,𝑘−1 of the block-featured deflated
Lanczos-type process. Moreover, we have 𝑇 (𝑘,𝑘) = 𝑇𝑘,𝑘. The matrix 𝐿(𝑘) has
the same block structure as 𝑇 (𝑘) in that all but the last 𝑚(𝑘−1) columns are
zeros and 𝐷(𝑘) is a diagonal matrix. This yields

𝙏 (𝑘) = [𝙇(𝑘−1)

𝐿(𝑘) 𝐿(𝑘,𝑘)] [𝘿(𝑘−1)

𝐷(𝑘)] [(𝙇(𝑘−1))𝐻 (𝐿(𝑘))𝐻

(𝐿(𝑘,𝑘))𝐻]

= [𝙇(𝑘−1)𝘿(𝑘−1)(𝙇(𝑘−1))𝐻 𝙇(𝑘−1)𝘿(𝑘−1)(𝐿(𝑘))𝐻

𝐿(𝑘)𝘿(𝑘−1)(𝙇(𝑘−1))𝐻 𝐿(𝑘)𝘿(𝑘−1)(𝐿(𝑘))𝐻 + 𝐿(𝑘,𝑘)𝐷(𝑘)(𝐿(𝑘,𝑘))𝐻] ,

from which we obtain updates for 𝙇(𝑘−1) to 𝙇(𝑘) by computing

𝐿(𝑘) = 𝑇 (𝑘)(𝙇(𝑘−1))−𝐻(𝘿(𝑘−1))−1. (7.37)

From the structure of 𝑇 (𝑘) we can deduce that 𝐿(𝑘) only has non-zeros in the
last 𝑚(𝑘−1) columns and we combine these to a block 𝐿(𝑘,𝑘−1). Then the update
from (7.37) reads

𝐿(𝑘,𝑘−1) = 𝑇 (𝑘,𝑘−1)(𝐿(𝑘−1,𝑘−1))−𝐻(𝐷(𝑘−1))−1. (7.38)

A notable difference to DSBlockCG is that we not only need to compute an
update for the new diagonal entry 𝐷(𝑘) but also for the new block-diagonal
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entry 𝐿(𝑘,𝑘) of 𝙇(𝑘). This is done via a root-free Cholesky decomposition of the
𝑚(𝑘) × 𝑚(𝑘)-matrix 𝑇 (𝑘,𝑘) − 𝐿(𝑘)𝘿(𝑘−1)(𝐿(𝑘))𝐻 yielding

𝐿(𝑘,𝑘)𝐷(𝑘)(𝐿(𝑘,𝑘))𝐻 ∶= 𝑇 (𝑘,𝑘) − 𝐿(𝑘)𝘿(𝑘−1)(𝐿(𝑘))𝐻

= 𝑇 (𝑘,𝑘) − 𝐿(𝑘,𝑘−1)𝐷(𝑘−1)(𝐿(𝑘,𝑘−1))𝐻. (7.39)

We can use the updates in (7.37), (7.38), and (7.39) for the blocks of the
Cholesky decomposition to formulate updates for the iterates in (7.35) from
𝑋(𝑘−1) to 𝑋(𝑘). Using (7.35) we get

𝑋(𝑘) = 𝑋(0) + 𝙑 (𝑘)(𝙇(𝑘)𝘿(𝑘)(𝙇(𝑘))𝐻)−1(𝙑 (𝑘))𝐻𝑅(0)

= 𝑋(0) + [𝙑 (𝑘−1) 𝑉 (𝑘)] (𝙇(𝑘))−𝐻(𝘿(𝑘))−1(𝙇(𝑘))−1 [𝙑 (𝑘−1) 𝑉 (𝑘)]𝐻 𝑅(0)

= 𝑋(0) + [𝙋(𝑘−1) 𝑃 (𝑘)] (𝘿(𝑘))−1 [𝙐(𝑘−1)

𝑈 (𝑘) ]

= 𝑋(𝑘−1) + 𝑃 (𝑘)(𝐷(𝑘))−1𝑈 (𝑘). (7.40)

Here we used

𝙋(𝑘) ∶= [𝙋(𝑘−1) 𝑃 (𝑘)] = [𝙑 (𝑘−1) 𝑉 (𝑘)] [𝙇(𝑘−1) 0
𝐿(𝑘) 𝐿(𝑘,𝑘)]

−𝐻

and

𝙐(𝑘) ∶= [𝙐(𝑘−1)

𝑈 (𝑘) ] = [𝙇(𝑘−1) 0
𝐿(𝑘) 𝐿(𝑘,𝑘)]

−1

[(𝙑 (𝑘−1))𝐻

(𝑉 (𝑘))𝐻 ] 𝑅(0).

Using the auxiliary matrices 𝙋(𝑘) and 𝙐(𝑘) allows us to obtain a simple
update for 𝑋(𝑘) based on the updates

𝑃 (𝑘) = (𝑉 (𝑘) − 𝙋(𝑘−1)(𝐿(𝑘))𝐻) (𝐿(𝑘,𝑘))−𝐻

= (𝑉 (𝑘) − 𝑃 (𝑘−1)(𝐿(𝑘,𝑘−1))𝐻) (𝐿(𝑘,𝑘))−𝐻 and
𝑈 (𝑘) = (𝐿(𝑘,𝑘))−1 ((𝑉 (𝑘))𝐻𝑅(0) − 𝐿(𝑘)𝙐(𝑘−1))

= (𝐿(𝑘,𝑘))−1 ((𝑉 (𝑘))𝐻𝑅(0) − 𝐿(𝑘,𝑘−1)𝑈 (𝑘−1)) .

(7.41)

Although the block-vectors 𝑉 (𝑘) tend to loose orthogonality rather quickly in
numerical computation, the block inner product (𝑉 (𝑘))𝐻𝑅(0) in (7.41) should
be taken as zero for 𝑘 > 1 even though it is not in actual computation since it
stabilises the computation of the new iterates.
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7.3.2 Stopping Criterion

As for the deflated block CG method we are interested in being able to compute
the norms of the residuals 𝑟(𝑘)

𝑗 , 1 ≤ 𝑗 ≤ 𝑚 for stopping the iteration. Since we
know that the residual 𝑅(𝑘) is orthogonal to 𝙑 (𝑘) it can be written as

𝑅(𝑘) = 𝑉 (𝑘+1)𝑆(𝑘)

where 𝑆(𝑘) = [𝑠(𝑘)
1 | ⋯ |𝑠(𝑘)

𝑚 ] ∈ ℂ𝑚(𝑘+1)×𝑚 and can be computed as

𝑆(𝑘) = (𝑉 (𝑘+1))𝐻𝑅(𝑘)

= (𝑉 (𝑘+1))𝐻(𝐵 − 𝐴𝑋(𝑘))
= (𝑉 (𝑘+1))𝐻(𝑅(0) − 𝐴𝙑 (𝑘)(𝙇(𝑘))−𝐻(𝘿(𝑘))−1𝙐(𝑘))
= (𝑉 (𝑘+1))𝐻(𝑅(0)⏟⏟⏟⏟⏟⏟⏟

=0
−𝙑 (𝑘+1)𝙏 (𝑘+1,𝑘)(𝙇(𝑘))−𝐻(𝘿(𝑘))−1𝙐(𝑘))

= − [0 𝐼𝑚(𝑘+1)] 𝙏 (𝑘+1,𝑘)(𝙇(𝑘))−𝐻(𝘿(𝑘))−1𝙐(𝑘)

= −𝑇 (𝑘+1,𝑘)(𝐿(𝑘,𝑘−1))−𝐻(𝐷(𝑘))−1𝑈 (𝑘) (7.42)

using (7.36). Computing 𝑆(𝑘) essentially involves only one matrix-matrix prod-
uct of matrices of dimension 𝑚(𝑘+1) and one inversion of the small triangular
matrix (𝐿(𝑘))𝐻 which makes obtaining 𝑆(𝑘) computationally cheap. For mon-
itoring the norm of individual columns of 𝑅(𝑘) it is sufficient to compute 𝑆(𝑘)

since we can exploit that 𝑉 (𝑘+1) has orthonormal columns yielding

∥𝑟(𝑘)
𝑗 ∥ = ∥𝑉 (𝑘+1)𝑠(𝑘)

𝑗 ∥ = ∥𝑠(𝑘)
𝑗 ∥ .

This makes for a feasible stopping criterion.

7.3.3 Deflation in the Block-Featured Deflated CG Method

Until now we have not explicitly taken into account what happens when defla-
tion occurs. As a result of deflation the block-featured deflated Lanczos-type
process that we base our method on removes columns in the Lanczos block-
vectors 𝑉 (𝑘). Moreover, the matrix 𝑇 (𝑘,𝑘−1) ∈ ℂ𝑚(𝑘)×𝑚(𝑘−1) can be rectangular
with a smaller number of rows than columns and 𝑇 (𝑘,𝑘) might have less rows
and columns than 𝑇 (𝑘−1,𝑘−1).

A close look on the derivation in Section 7.3.1 and 7.3.2 reveals that all the
relations we formulated stay true when deflation occurs. In fact, the compu-
tation of 𝐿(𝑘,𝑘−1) for the update of the root-free Cholesky decomposition of
𝙏 (𝑘) in (7.38) yields an 𝑚(𝑘) × 𝑚(𝑘−1) matrix. The decomposition in (7.39)
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reduces the size from 𝑚(𝑘−1) to 𝑚(𝑘), too. Finally, in (7.41) the rectangu-
lar matrix 𝐿(𝑘,𝑘−1) reduces the 𝑚(𝑘−1) columns of 𝑃 (𝑘−1) to 𝑚(𝑘) columns in
𝑃 (𝑘−1)(𝐿(𝑘,𝑘−1))𝐻. The number of rows in 𝑈 (𝑘) is affected in the same way.
An actual implementation needs to be able to adjust the sizes of the involved
matrices.

All in all, the relations defining the updates of the iterates are robust and
capable of handling a reduction in the block size. Furthermore, our method
updates the iterates for all systems, even those belonging to deflated right-hand
sides, since 𝑈 (𝑘) retains 𝑚 columns. Thus, we do not have to treat deflated
systems specially and retrieve their solutions when the non-deflated systems
have converged like it is the case in some other methods.

As for the update of the iterates, the computation of 𝑆(𝑘) only involves
matrices of matching dimensions. Hence, equation (7.42) also yields a feasible
stopping criterion in case of deflation.

7.3.4 The Block-Featured Deflated Shifted CG Method

Now we want to extend the method for being able to handle multiple shifts.
Once again, we have to add a constraint on the choice of the starting block-
vector which have to yield collinear initial residuals for all shifts of a given
right-hand side. We describe the idea for one additional shift 𝜎 and use the
notation 𝐴𝜎 ∶= 𝐴 + 𝜎𝐼 . The final algorithm will be stated for an arbitrary
number of shifts.

Because of the shift invariance of deflated block Krylov subspaces the block-
featured deflated Lanczos-type process generates the same Lanczos vectors if
it is applied to 𝐴 or 𝐴𝜎 and the same stating block-vector. Then the relation
(7.24) yields

𝐴𝜎𝙑 (𝑘) = 𝙑 (𝑘+1)𝙏 (𝑘+1,𝑘)
𝜎 + 𝙑 (𝑘+1)

defl

with

𝙏 (𝑘+1,𝑘)
𝜎 = 𝙏 (𝑘+1,𝑘) + 𝜎𝐼.

Hence, we have

(𝙑 (𝑘))𝐻(𝐴 + 𝜎𝐼)𝙑 (𝑘) = 𝙏 (𝑘) + 𝜎𝐼 =∶ 𝙏 (𝑘)
𝜎 ,

and can obtain the iterates for the shifted system in the same manner as for
the unshifted system except for 𝙏 (𝑘) being replaced by 𝙏 (𝑘)

𝜎 . The expensive
part of creating 𝙑 (𝑘) and 𝙏 (𝑘) can be done just once and is then recycled for all
shifted systems. It remains to compute and store the Cholesky factorisation
𝙇(𝑘)

𝜎 and 𝘿(𝑘)
𝜎 as well as the matrices 𝙋(𝑘)

𝜎 and 𝙐(𝑘)
𝜎 for all shifts individually.
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7.3.5 The BFDSCG Algorithm

Now we can put together all parts and state the BFDSCG algorithm in Algo-
rithm 7.5.

Before discussing the memory requirements and computational complexity
we want to elaborate on computing iterates if a subset of the right-hand sides
has converged. In line 28 we independently check the convergence for all
the right-hand sides belonging to the system with shift 𝜎𝑖 via the norm of the
columns of 𝑆(𝑐)

𝑖 . In principle, we could stop updating column 𝑗 of the iterate 𝑋𝑖
and skip the computation of the corresponding column of 𝑃 (𝑐)

𝑖 whilst keeping
its original size if system 𝑗 has converged. Furthermore, we would even be
able to delete this column from 𝑃 (𝑐)

𝑖 . Skipping columns in 𝑋𝑖 or 𝑃 (𝑐)
𝑖 leads

to introducing additional logic in line 26 or line 27 preventing us from using
block-vector operations. If we choose to remove column 𝑗 from 𝑃 (𝑐)

𝑖 then
subsequently the number of columns in 𝑉 (𝑐+1) and 𝑃 (𝑐)

𝑖 differs and we cannot
user block-vector operations there. Thus, we found that it is best to just
keep computing iterates even for the converged systems until all the systems
belonging to one shift have converged.

In the following proposition we summarise the memory requirements of Al-
gorithm 7.5.

Proposition 7.12. The BFDSCG algorithm requires the storage of

(𝑠 + 3)𝑚𝑛 + 4𝑠𝑚2 + 𝑠𝑚 + 𝒪(𝑚) (7.43)

floating point numbers in addition to the storage for the matrix 𝐴, the right-
hand side block-vector 𝐵, and the result block-vectors 𝑋𝑖.

Proof. Algorithm 7.5 needs to store 3 + 𝑠 block-vectors—2 of them containing
Lanczos vectors, one temporary block-vector, and one search direction block-
vector per shift. Additional memory for 𝑉keep is actually not needed since
every time a vector is deflated and appended to the matrix 𝑉keep the block size
of the block-vector for storing the Lanczos vectors can be reduced. Besides
this, we need to store 4 matrices of size 𝑚 × 𝑚 for 𝑈 (𝑐), 𝐿(𝑐,𝑐), 𝐿(𝑐+1,𝑐), and
𝑆(𝑐) for every shift. What remains is the storage for 𝑠 diagonal matrices 𝐷(𝑐)

accounting for 𝑠𝑚 floating point numbers and some 𝒪(𝑚) storage including,
for instance, the permutations Π(𝑐+1). Overall we end up with the number of
floating point numbers as stated in (7.43).

As for DSBlockCG we only analyse the non-deflation case and assume that
𝑛 ≫ 𝑚 and 𝑛 ≫ 𝑠 so that 𝒪(𝑚3) and 𝒪(𝑚𝑠) operations are negligible com-
pared to the vector operations.
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Algorithm 7.5: BFDSCG
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝐵 = [𝑏1| ⋯ |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝜎1, … , 𝜎𝑠 shifts with 𝜎𝑖 ∈ ℝ, s.t. 𝐴 + 𝜎𝑖𝐼 is hpd
toldefl deflation tolerance

Output: approximate solutions 𝑥(𝑘)
𝑖,𝑗 to (𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗

1 𝑉 (0) = 0, 𝑋(0) = 0, 𝑃 (0) = 0, 𝑈 (0) = 0
2 𝓥 (1)𝓣 (1,0) = 𝐵Π(1) // rank-revealing QR decomposition of 𝐵
3 check 𝓣 (1,0) for deflation yielding 𝑚(1)

4 𝑉 (1) = 𝓥 (1)
∶,1∶𝑚(1)

5 𝑉 (1)
keep = (𝐵Π(1))∶,𝑚(1)+1∶𝑚 // keep deflated vectors

6 𝑇1,0 = (𝓣 (1,0)(Π(1))−1)1∶𝑚(1),∶
7 for 𝑐 = 1, 2, … until convergence do

// block-featured deflated Lanczos-type process part
8 ̃𝑉 = 𝐴𝑉 (𝑐) − 𝑉 (𝑐−1)𝑇𝑐,𝑐−1
9 𝑇𝑐,𝑐 = (𝑉 (𝑐))𝐻 ̃𝑉

10 ̃𝑉 = ̃𝑉 − 𝑉 (𝑐)𝑇𝑐,𝑐
11 ̃𝑉 = ̃𝑉 − 𝑉 (𝑐)

keep((𝑉 (𝑐)
keep)𝐻 ̃𝑉 ) // orthogonalisation against previously deflated vectors

12 𝓥 (𝑐+1)𝓣 (𝑐+1,𝑐) = ̃𝑉 Π(𝑐+1) // rank-revealing QR decomposition of ̃𝑉
13 check 𝓣 (𝑐+1,𝑐) for deflation yielding 𝑚(𝑐+1)

14 𝑉 (𝑐+1) = 𝓥 (𝑐+1)
∶,1∶𝑚(𝑐+1)

15 𝑉 (𝑐+1)
keep = [𝑉 (𝑐)

keep | (𝑉 (𝑐)Π(𝑐+1))∶,𝑚(𝑐+1)+1∶𝑚(𝑐) ] // keep deflated vectors
16 𝑇𝑐+1,𝑐 = (𝓣 (𝑐+1,𝑐)(Π(𝑐+1))−1)1∶𝑚(𝑐+1),∶
17 𝑇𝑐,𝑐+1 = (𝑇𝑐+1,𝑐)𝐻

// block-featured deflated shifted CG part
18 forall the shifts 𝜎𝑖 with unconverged systems do
19 if c == 1 then 𝐿(1,1)

𝑖 𝐷(1)
𝑖 (𝐿(1,1)

𝑖 )𝐻 = 𝑇 (1,1) + 𝜎𝑖𝐼 // cf. (7.39)
20 else
21 𝐿(𝑐,𝑐−1)

𝑖 = 𝑇 (𝑐,𝑐−1)
𝑖 (𝐿(𝑐−1,𝑐−1)

𝑖 )−𝐻(𝐷(𝑐−1)
𝑖 )−1 // cf. (7.37)

22
𝐿(𝑐,𝑐)

𝑖 𝐷(𝑐)
𝑖 (𝐿(𝑐,𝑐)

𝑖 )𝐻= 𝑇 (𝑐,𝑐) + 𝜎𝑖𝐼
− 𝐿(𝑐,𝑐−1)

𝑖 𝐷(𝑐−1)
𝑖 (𝐿(𝑐,𝑐−1)

𝑖 )𝐻 // cf. (7.39)

23 if c == 1 then

24
𝑃 (1)

𝑖 = 𝑉 (1)(𝐿(1,1)
𝑖 )−𝐻

𝑈 (1)
𝑖 = (𝐿(1,1)

𝑖 )−1(𝑉 (1))𝐻𝐵 // cf. (7.41)

25 else

26
𝑃 (𝑐)

𝑖 = (𝑉 (𝑐) − 𝑃 (𝑐−1)
𝑖 (𝐿(𝑐,𝑐−1)

𝑖 )𝐻) (𝐿(𝑐,𝑐)
𝑖 )−𝐻

𝑈 (𝑐)
𝑖 = (𝐿(𝑐,𝑐)

𝑖 )−1 (−𝐿(𝑐,𝑐−1)
𝑖 𝑈 (𝑐−1)

𝑖 ) // cf. (7.41)

27 𝑋(𝑐)
𝑖 = 𝑋(𝑐−1)

𝑖 + 𝑃 (𝑐)
𝑖 (𝐷(𝑐)

𝑖 )−1𝑈 (𝑐)
𝑖 // update iterates, cf. (7.40)

28 𝑆(𝑐)
𝑖 = −𝑇 (𝑐+1,𝑐)

𝑖 (𝐿(𝑐,𝑐−1)
𝑖 )−𝐻(𝐷(𝑐)

𝑖 )−1𝑈 (𝑐)
𝑖 // check convergence, cf. (7.42)
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Proposition 7.13. We assume that no deflation occurs and that all systems
from (7.1) belonging to the same shift 𝜎𝑖 are solved after 𝑘𝑖 steps. Let 𝑘 =
max𝑖=1,…,𝑠 {𝑘𝑖} denote the number of iteration steps of BFDSCG applied to
solve (7.1). The total number of operations in Algorithm 7.5 for solving (7.1)
is

ℴbfdscg = 𝑘𝑚(𝒸□
𝐴(𝑚) + 5𝑚 + 6) + 2𝑚2

𝑠
∑
𝑖=1

𝑘𝑖. (7.44)

Proof. The computational cost for one step in the BFDSCG algorithm consists
of

• a matrix-block-vector product with the matrix 𝐴,
• the orthogonalisation against 2 previous block-vectors,
• the rank-revealing QR decomposition of the new block-vector whose span

extends the Krylov subspace,
• the update of the search direction matrices 𝑃 (𝑐)

𝑖 and the iterates 𝑋(𝑐)
𝑖 for

every system belonging to a non-converged shift 𝜎𝑖.
The orthogonalisation needs 2 block-vector additions but just 1 block-vector
inner product. Normalising the resulting block-vector via a column-pivoting
Householder rank-revealing QR decomposition takes the equivalent of 2𝑚2 +
6𝑚 vector operations as stated in Proposition 1.6. The updates of the search
directions and the iterates account for 2𝑚2 vector operations but are only per-
formed for not yet converged systems. Overall we end up with a computational
complexity as stated in (7.44).

Concluding this section the following proposition quantises how BFDSCG in
Algorithm 7.5 performs against DSBlockCG from Algorithm 7.4.

Proposition 7.14. Assume that no deflation occurs and that DSBlockCG
solves the systems belonging to shift 𝜎𝑖 in (7.1) in 𝑘𝑖𝑚 steps and BFDSCG
solves the same systems in 𝑘𝑖 steps. The number of vector operations in
BFDSCG is less than the number of vector operations in DSBlockCG, hinting
at BFDSCG being faster than DSBlockCG for solving all systems in (7.1), if

2𝑚 + 5 ≤ 𝒸𝐴 − 𝒸□
𝐴(𝑚)

holds.
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Proof. Let 𝑘 = max𝑖∈{1,…,𝑠} {𝑘𝑖}. Comparing ℴdsblockcg and ℴbfdscg under the
stated assumptions yields

ℴbfdscg ≤ ℴdsblockcg

⇔ 𝑘𝑚(𝒸□
𝐴(𝑚) + 5𝑚 + 6) + 2𝑚2

𝑠
∑
𝑖=1

𝑘𝑖 ≤ 𝑘𝑚(𝒸𝐴 + 3𝑚 + 1) + 2𝑚
𝑠

∑
𝑖=1

𝑘𝑖𝑚

⇔ 𝒸□
𝐴(𝑚) + 5𝑚 + 6 ≤ 𝒸𝐴 + 3𝑚 + 1.

Proposition 7.14 shows that if the blocked nature of the performed operations
leads to some improvements in computational time for the matrix-block-vector
multiplications expressed by 𝒸□

𝐴(𝑚) < 𝒸𝐴 then BFDSCG can be faster than
DSBlockCG. In Chapter 8 we will see that 𝒸□

𝐴(𝑚) ≪ 𝒸𝐴 can result in a signif-
icant difference in computational time of both algorithms.

7.4 Shifted BCGrQ
In this section we briefly introduce the SBCGrQ algorithm from [Fut+13]. We
were made aware of this method by coincidence via a talk given by Prof. Saku-
rai. The algorithm itself is published in volume 7851 of “Lecture Notes in
Computer Science” with a title unrelated to shifted block methods which made
it unlikely to be found.

We omit the details of the derivation of SBCGrQ and state it as Algo-
rithm 7.6. The outer loop and lines 4 to 8 are equivalent to the BCGrQ
algorithm in a slightly different notation. The loop starting in line 9 extends
BCGrQ for solving (𝐴 + 𝜎𝑖𝐼)𝑋𝑖 = 𝐵. Note that only the updates of 𝑋(𝑐+1)

𝑖
and 𝑃 (𝑐+1)

𝑖 as well as some operations on small matrices depend on the number
of shifts. Most importantly, the QR decomposition is computed just once per
step and not for every shift.

The memory requirements of Algorithm 7.6 are summarised in the following
proposition.
Proposition 7.15. The SBCGrQ algorithm requires the storage of

(𝑠 + 3)𝑚𝑛 + (7 + 4𝑠)𝑚2 + 𝒪(𝑚)
floating point numbers in addition to the storage for the matrix 𝐴, the right-
hand side block-vector 𝐵, and the result block-vectors 𝑋𝑖.

Proof. Algorithm 7.6 needs to store 3 + 𝑠 block-vectors—the block-vectors
𝑄(𝑐+1), 𝑃 (𝑐+1), a temporary block-vector, and for every shift 𝑃 (𝑐+1)

𝑖 . The re-
maining storage is of order 𝒪(𝑚2) and stems from the following matrices. The
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Algorithm 7.6: SBCGrQ
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝐵 = [𝑏1| ⋯ |𝑏𝑚] ∈ ℂ𝑛×𝑚 right-hand side block-vector
𝜎1, … , 𝜎𝑠 shifts with 𝜎𝑖 ∈ ℝ, s.t. 𝐴 + 𝜎𝑖𝐼 is hpd

Output: approximate solutions 𝑥(𝑘)
𝑖,𝑗 to (𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗

1 𝑋(0) = 0, 𝜉(−1)
𝑖 = 𝛼(−1) = 𝐼𝑚

2 𝑄(0)𝜌(0) = 𝐵 // QR decomposition
3 for 𝑐 = 0, 1, 2, … until convergence do
4 𝛼(𝑐) = ((𝑃 (𝑐))𝐻𝐴𝑃 (𝑐))−1

5 𝑋(𝑐+1) = 𝑋(𝑐) + 𝑃 (𝑐)𝛼(𝑐)Δ(𝑐)

6 𝑄(𝑐+1)𝜌(𝑐+1) = 𝑄(𝑐) − 𝐴𝑃 (𝑐)𝛼(𝑐) // QR decomposition
7 Δ(𝑐+1) = 𝜌(𝑐+1)Δ(𝑐)

8 𝑃 (𝑐+1) = 𝑄(𝑐+1) + 𝑃 (𝑐)(𝜌(𝑐+1))𝐻

9 forall the shifts 𝜎𝑖 with unconverged systems do
10 ̃𝜉 = 𝐼𝑚 + 𝜎(𝑖)𝛼(𝑐) + [𝜌(𝑐) − 𝜉(𝑐)

𝑖 (𝜉(𝑐−1)
𝑖 )−1] (𝛼(𝑐−1))−1(𝜌(𝑐))𝐻𝛼(𝑐)

11 𝜉(𝑐+1)
𝑖 = 𝜌(𝑐+1) ̃𝜉−1𝜉(𝑐)

𝑖
12 𝛼(𝑐)

𝑖 = 𝛼(𝑐)(𝜌(𝑐+1))−1𝜉(𝑐+1)
𝑖

13 𝛽(𝑐)
𝑖 = 𝛼(𝑐)

𝑖 (𝜉(𝑐)
𝑖 )−1(𝛼(𝑐))−1(𝜌(𝑐+1))𝐻

14 𝑋(𝑐+1)
𝑖 = 𝑋(𝑐)

𝑖 + 𝑃 (𝑐)
𝑖 𝛼(𝑘)

𝑖
15 𝑃 (𝑐+1)

𝑖 = 𝑄(𝑐+1) + 𝑃 (𝑐)
𝑖 𝛽(𝑘)

𝑖

matrices 𝛼(𝑐), 𝛼(𝑐−1), 𝜌(𝑐), 𝜌(𝑐+1), and Δ(𝑐+1) are independent from the number
of shifts. Additionally, we need one temporary matrix and 𝛽(𝑐)

𝑖 which can be
shared for every shift. Finally, we need to store 𝜉(𝑐+1)

𝑖 , 𝜉(𝑐)
𝑖 , 𝜉(𝑐−1)

𝑖 , and 𝛼(𝑐)
𝑖 for

every shift separately.

For comparing the computational cost of SBCGrQ with BFDSCG we count
the number of vector operations in the following proposition.

Proposition 7.16. We assume that all systems from (7.1) belonging to the
same shift 𝜎𝑖 are solved after 𝑘𝑖 steps. Let 𝑘 = max𝑖=1,…,𝑠 {𝑘𝑖} denote the
number of iteration steps of SBCGrQ applied to solve (7.1). The total number
of operations in Algorithm 7.6 for solving (7.1) is

ℴsbcgrq = 𝑘𝑚(𝒸□
𝐴(𝑚) + 5𝑚 + 4) + 2𝑚2

𝑠
∑
𝑖=1

𝑘𝑖. (7.45)

Proof. The computational cost for one step in the SBCGrQ algorithm in terms
of vector operations consists of
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• a matrix-block-vector product with the matrix 𝐴,
• computing 𝛼(𝑐),
• the QR decomposition of the residual block-vector,
• the updates of the iterate and search direction block-vectors of the un-

shifted system, and
• the updates of the search direction and iterate block-vectors for every

system belonging to a non-converged shift.
The QR decomposition takes an equivalent of 2𝑚2 + 4𝑚 vector operations.
Every other operation in the list requires 𝑚2 vector operations. Overall we
end up with a computational complexity as stated in (7.45).

Comparing the computational cost ℴsbcgrq from (7.45) with ℴbfdscg from (7.44)
we can conclude that SBCGrQ is likely to be faster than BFDSCG. Especially,
if we consider that the algorithm can be modified to solve one of the shifted
systems instead of the unshifted systems as a seed system then the compu-
tational costs would even be smaller than estimated in (7.45). However, the
number of operations involving small matrices of size 𝑚2 is larger in SBCGrQ
which is not represented in our cost model. Moreover, SBCGrQ cannot benefit
from deflation. In such circumstances, the BFDSCG algorithm might be faster
than SBCGrQ.



8 Numerical Results
In this chapter we compare the performance of the presented methods from
chapters 5, 6 and 7 for different test settings. In particular, the contestant
algorithms are

• shifted CG (sCG) from Section 5.1,
• restarted shifted CG (rsCG) from Section 5.2,
• the Single Seed Method (SSM) and Seed-CG from Section 6.1,
• incremental eigCG (iEigCG) from Section 6.2,
• BlockCG, BCGAdQ and BCGrQ from Section 6.3 and
• DSBlockCG as well as BFDSCG from Section 7.2 and Section 7.3.

Our main goal will be to analyse if and for which kind of application and
setting our newly presented methods restarted shifted CG, DSBlockCG and
BFDSCG can be used as an alternative or even an improvement to existing
methods.

This chapter is organised as follows. First, we describe the test problems and
some implementation details which influence the numerical tests we perform.
Afterwards, some tests with the deflated block Lanczos-type process and the
block-featured deflated Lanczos-type process as a basis for the algorithms of
the methods from Chapter 7 are conducted. Finally, we display and discuss
results for applying the implemented algorithms to particular applications.

Some of the results for the DSBlockCG algorithm were already published
in [BF14]. There, however, we only compared time measurements for sparse
matrices.

8.1 Implementation Details and Test Problems
Often, comparing Krylov subspace methods is done by only counting the num-
ber of matrix-vector multiplications. Especially in the case of block methods
this can be quite deceptive. In every step of the iteration, besides the multipli-
cation with a matrix for expanding the Krylov subspace, additional work has
to be performed. In block Krylov subspace methods for solving 𝑚 right-hand

183
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sides this usually involves 𝒪(𝑚2) vector operations. This is reflected in sim-
ply counting the iteration steps or matrix-vector multiplications, since block
methods tend to reduce the number of matrix-vector multiplications whilst in-
creasing the amount of additional work. Hence, measuring the runtime of the
algorithms can be a more accurate indicator for their applicability for certain
problems.

Runtime measurements, however, give rise to a set of different problems.
An implementation in, for instance, Matlab grants only limited control over
the amount of parallelism in each performed operation. If, for example, block-
vector operations are parallelised and vector operations are not, then time mea-
surements are biased in favour of methods that involve block-vector operations.
On the other hand, if different algorithms exhibit a different amount of code
optimisation then comparisons of highly optimised production-grade code can
result in skewed results, too. Therefore, we chose to compare non-parallelised
C++-implementations of the presented algorithms yielding fairer time measure-
ments. We use the Eigen library [G+10] in version 3.2.2 for sparse and dense
BLAS operations. The tests were performed on an Intel Core i7-4770 CPU
running at 3.40 GHz with 32 GiB memory and 8 MiB L3 cache. As compiler
we used clang in version 3.3 with optimisation flag -O3.

Throughout this chapter 𝑥 denotes a vector 𝑥 ∈ 𝕂𝑛 and we use 𝑋 ∈ 𝕂𝑛×𝑚

as a generic block-vector where in both cases 𝑛 is clear by context. Here and
there we will use 𝑋𝑚 ∈ 𝕂𝑛×𝑚 to refer to a block-vector having a particular
number of columns.

For the applications that we have presented in Chapter 4 we need to solve
linear systems that involve an operator 𝐴𝐻𝐴. Hence, we will perform the time
measurements in this section with 𝐴𝐻𝐴 although the methods presented in
chapters 5, 6, and 7 can also be applied to 𝐴 if 𝐴 is hpd.

Runtime comparisons for Krylov subspace methods and block Krylov sub-
space methods building subspaces with respect to 𝐴𝐻𝐴 hinge—at least in
part—on how fast 𝐴𝐻𝐴𝑥 and 𝐴𝐻𝐴𝑋 for a vector 𝑥 and a block-vector 𝑋,
respectively, can be computed. Moreover, according to our cost model from
Section 1.3 we need to quantify how the time for computing 𝐴𝐻𝐴𝑥 compares
to a vector operation. Thus, in the following we describe some details of our
implementation for those exemplary applications that we will use in the re-
mainder of this chapter.

8.1.1 Sparse Matrices
For storing general sparse matrices we use the compressed column storage
(CCS) format of the sparse matrix implementation of the Eigen library.
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We will use 6 sparse matrices in our experiments given in Table 8.1. The

Table 8.1: Sparse test matrices used throughout this chapter. The first four
of which are from the Florida sparse matrix collection [DH11] the latter two

are Wilson-Dirac matrices as introduced in Chapter 4.

matrix name dimension non-zeros
average

non-zeros
per column

𝐴msc msc04515 4515 97707 21.6
𝐴pois Pres_Poisson 14822 715804 48.3
𝐴smt smt 25710 3749582 145.8
𝐴nd12k nd12k 36000 14220946 395.0
𝐷𝑊8 WDSparse8 49152 2408448 49.0
𝐷𝑊16 WDSparse16 786432 38535168 49.0

matrices 𝐷𝑊8 and 𝐷𝑊16 are sparse matrix representations of the Wilson-
Dirac operator from Section 4.1.1. These correspond to a typical configuration
in lattice QCD with parameters 𝛽 = 5.6 and 𝜅 = 0.15825 for both matrices
taken from run 𝐴3 in [Del+07a; Del+07b]. The matrix 𝐷𝑊8 represents an 84

lattice whereas 𝐷𝑊16 represents a 164 lattice, respectively.
As it is explained in [Fro+13a, Section 2.2] the Wilson-Dirac operator can

be represented in matrix terms as

(�̃�𝑊 𝜓)(𝑥) =𝑚0 + 4
𝑎 𝐼12𝜓(𝑥)

− 1
2𝑎

3
∑
𝑖=0

((𝐼4 − 𝛾𝑖) ⊗ 𝑈𝑥
𝜇𝑖

) 𝜓(𝑥 + 𝜇𝑖)

− 1
2𝑎

3
∑
𝑖=0

((𝐼4 + 𝛾𝑖) ⊗ (𝑈𝑥−𝜇𝑖𝜇𝑖 )𝐻) 𝜓(𝑥 − 𝜇𝑖).

(8.1)

This representation also clarifies the 49 non-zeros per row/column for the
Wilson-Dirac operator. We have three entries from the gauge links 𝑈𝑥

𝜇𝑖
for

every one of the 8 space-/time-directions which doubles because of (𝐼4 − 𝛾𝑖)
having 2 entries per row plus the diagonal entry from 𝐼12 which all in all sums
up to 49.

Important for our experiments is how a multiplication 𝐴𝐻𝐴𝑥—computed as
𝐴𝐻(𝐴𝑥)—compares to a vector operation of corresponding size vectors for 𝐴
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being a matrix from Table 8.1. Additionally, we need to compare the time for
computing 𝐴𝐻𝐴𝑋 = 𝐴𝐻(𝐴𝑋) for 𝑋 ∈ 𝕂𝑛×𝑚 with the time for computing 𝑚
matrix-vector multiplications 𝐴𝐻𝐴𝑥. For this we conducted a couple of tests
whose results we present in Table 8.2, Figure 8.1 and Table 8.3.

Table 8.2: Time measurements for the sparse matrices of Table 8.1. We
measured the time in seconds for an axpy operation of vectors whose size
corresponds to 𝐴, a matrix-vector multiplication 𝐴𝐻𝐴𝑥 and matrix-block-
vector multiplications 𝐴𝐻𝐴𝑋 for 𝑋 having 𝑚 = 1, 10 and 100 columns. All

times were averaged over 100 measurements.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑋1 𝐴𝐻𝐴𝑋10 𝐴𝐻𝐴𝑋100

𝐴msc 5.49 × 10−6 2.97 × 10−4 3.01 × 10−4 2.82 × 10−3 2.48 × 10−2

𝐴pois 1.83 × 10−5 2.35 × 10−3 2.38 × 10−3 2.09 × 10−2 1.75 × 10−1

𝐴smt 3.16 × 10−5 1.17 × 10−2 1.19 × 10−2 1.08 × 10−1 8.94 × 10−1

𝐴nd12k 4.44 × 10−5 4.52 × 10−2 4.47 × 10−2 4.15 × 10−1 3.41 × 100

𝐷𝑊8 6.35 × 10−5 8.14 × 10−3 8.14 × 10−3 7.21 × 10−2 6.14 × 10−1

𝐷𝑊16 1.90 × 10−3 1.42 × 10−1 1.44 × 10−1 1.17 × 100 9.72 × 100

Table 8.2 shows that depending on the matrix properties the matrix-vector
multiplication 𝐴𝐻𝐴𝑥 can be much more expensive than an axpy operation and
we elaborate on this in a moment. The second observation is that computing
with block-vectors instead of vectors introduces an overhead that results in a
small time penalty for a small number 𝑚 of columns which becomes clearer in
Figure 8.1. This can be seen by comparing the column labelled 𝐴𝐻𝐴𝑥 with
the one labelled 𝐴𝐻𝐴𝑋1. This, however, is only true, if the compiler can
perform optimisations by knowing the number of columns at compile-time.
If we would store 𝑋1 in an array whose number of columns is not known at
compile-time we would end up with an inner loop causing time(𝐴𝐻𝐴𝑋1) to be
significantly larger than time(𝐴𝐻𝐴𝑥) even though the floating-point compu-
tations are essentially the same. Only with an increasing number of columns
of the block-vector 𝑋 the computation of 𝐴𝐻𝐴𝑋 can benefit from applying
the same matrix 𝐴𝐻𝐴—still computed as 𝐴𝐻(𝐴𝑋)—to the 𝑚 columns of the
block-vector which can be seen in the columns labelled 𝐴𝐻𝐴𝑋10 and 𝐴𝐻𝐴𝑋100
of Table 8.2 as well as in Figure 8.1. In the latter we plotted the number 𝑚
against the time measurements for computing 𝑚 matrix-vector multiplications
𝐴𝐻𝐴𝑥 divided by the time for computing 𝐴𝐻𝐴𝑋𝑚. Starting from 2 right-hand
sides we switch from a vector representation of 𝑥 = 𝑋1 to 𝑋𝑚 for which, for
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a small number of right-hand sides, 𝐴𝐻𝐴𝑋𝑚 is slower than 𝑚 matrix-vector
multiplications 𝐴𝐻𝐴𝑥. This explains the spike at 2 right-hand sides in Fig-
ure 8.1.

Finally, Table 8.2 and Figure 8.1 show that the matrix-block-vector mul-
tiplication at one point catches up with computing 𝐴𝐻𝐴𝑋 as 𝑚 separate
matrix-vector multiplications and can be faster for larger 𝑚. Comparing Ta-
ble 8.2 with Figure 8.1 we see that the factor time(𝐴𝐻𝐴𝑥)𝑚/time(𝐴𝐻𝐴𝑋)
stays approximately the same from 𝑚 = 30 to 100.
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Figure 8.1: Time measurements for computing 𝐴𝐻𝐴𝑋 for the sparse
matrices of Table 8.1 depending on the number 𝑚 of columns of 𝑋.
We measured the time for computing 𝐴𝐻𝐴𝑋𝑚 and plotted 𝑚 against
time(𝐴𝐻𝐴𝑥)𝑚/time(𝐴𝐻𝐴𝑋). Values larger than 1 indicate that computing
𝐴𝐻𝐴𝑋𝑚 is faster than computing 𝑚 matrix-vector multiplications 𝐴𝐻𝐴𝑥.

Table 8.3 displays the cost of a matrix-vector multiplication 𝐴𝐻𝐴𝑥 as com-
pared to an axpy operation for the matrices introduced in Table 8.1 which is
important for our cost model from Section 1.3. We can make use of this mea-
surement for defining 𝒸𝐴 instead of assuming that 𝐴𝐻𝐴𝑥 costs the equivalent
of 2𝑛𝑛𝑧/𝑛 vector operations if 𝑥 ∈ 𝕂𝑛. Hence, in the following we use the
numbers from Table 8.3 as 𝒸𝐴.

The drop in the quotient time(𝐴𝐻𝐴𝑥)/ time(axpy) from 𝐷𝑊8 to 𝐷𝑊16 is
caused by hitting the cache limit with the size of the involved vectors. The
dimension of 𝐷𝑊16 is 𝑛16 = 12 × 164 which is 16 times the dimension 𝑛8 =
12 × 84 of 𝐷𝑊8 and the time for computing 𝐴𝐻𝐴𝑥 for WDSparse16 is roughly
16 times the time for the same computation in case of WDSparse8. However,
the time for an axpy operation for a vector 𝑥 ∈ ℂ𝑛16 does not scale by a
factor of 16 compared to the time for an axpy operation of dimension 𝑛8—the
factor is close to 2 × 16. This is because storing a vector 𝑥 ∈ ℂ𝑛 of dimension
𝑛 = 12 × 164 = 786432 requires 𝑛 ∗ 16 = 12582912 byte, i.e. 12 MiB, whereas
our system has 8 MiB L3 cache. Hence, somewhere around a vector size of
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Table 8.3: Comparison of the time for an axpy operation and the time for
computing 𝐴𝐻𝐴𝑥 for the sparse matrices of Table 8.1.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑥/axpy nnz/row

𝐴msc 5.49 × 10−6 2.97 × 10−4 54.2 21.6
𝐴pois 1.83 × 10−5 2.35 × 10−3 128.5 48.3
𝐴smt 3.16 × 10−5 1.17 × 10−2 368.9 145.8
𝐴nd12k 4.44 × 10−5 4.52 × 10−2 1017.1 395.0
𝐷𝑊8 6.35 × 10−5 8.14 × 10−3 128.2 49.0
𝐷𝑊16 1.90 × 10−3 1.42 × 10−1 74.8 49.0

5 × 105 we can expect a drop in performance for computing axpy operations.
We performed time measurements for computing axpy operations for complex-
and real-valued vectors of various sizes which support this claim and the results
are displayed in Figure 8.2.
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Figure 8.2: Performance of axpy operations averaged over 5000 operations
depending on the vector size showing a drop in performance for larger vector
sizes. We used complex-valued vectors on the left and real-valued vectors

on the right.

8.1.2 Wilson-Dirac Operator Implementation

Representing the Wilson-Dirac operator from Section 4.1.1 as a sparse matrix
in actual computations is possible, albeit not advisable. It introduces a lot
of redundant storage and computations. Moreover, a tailored implementation
is able to make use of symmetries that the operator is endowed with. For
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example, in the matrices (𝐼4 +𝛾𝑖) and (𝐼4 −𝛾𝑖) two of the columns are trivially
linearly dependent on the other two. This can be exploited for reducing the
cost of computing (�̃�𝑊 𝜓)(𝑥) by about a factor of 2 as compared to a naïve
implementation.

Independent of the representation as a stencil or a sparse matrix we can
exploit the 𝛾5-symmetry (4.3) when computing 𝐷𝐻

𝑊 𝐷𝑊 𝑥, because

𝐷𝐻
𝑊 𝐷𝑊 𝑥 = Γ5𝐷𝑊 (Γ5𝐷𝑊 𝑥).

This means that no special representation for 𝐷𝐻
𝑊 is needed.

We implemented the Wilson-Dirac operator �̃�𝑊 given in equation (8.1) as
a stencil operator. For this we store the configuration 𝒰 from equation (4.1)
via its gauge links 𝑈𝑥

𝜇 as a list of 𝑆𝑈(3)-matrices. As example operators we
use �̃�𝑊8 called WDStencil8 and �̃�𝑊16 called WDStencil16 which are exactly
the same operators as �̃�𝑊8 and �̃�𝑊16, respectively, in an efficient stencil
implementation.

As for the sparse matrix representations we performed time measurements for
applications of the operators �̃�𝑊8 and �̃�𝑊16 displayed in Table 8.4, Table 8.5
and Figure 8.3. Again, we use 𝐴 to denote either �̃�𝑊8 or �̃�𝑊16.

Table 8.4: Time measurements for the Wilson-Dirac operators WDStencil8
and WDStencil16. The measurements were performed in the same manner

as described in Table 8.2.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑋1 𝐴𝐻𝐴𝑋10 𝐴𝐻𝐴𝑋100

�̃�𝑊8 6.38 × 10−5 3.03 × 10−3 3.09 × 10−3 2.80 × 10−2 2.56 × 10−1

�̃�𝑊16 1.97 × 10−3 5.30 × 10−2 5.44 × 10−2 4.93 × 10−1 4.22 × 100

Overall, the comparisons yield similar results as those for our sparse ma-
trix implementation. It is noteworthy, though, that computing 𝐴𝐻𝐴𝑋 for 𝑋
having one column is only slightly slower than computing 𝐴𝐻𝐴𝑥. This means
that the efficiency of block methods for a small number of right-hand sides
is increased. Furthermore, multiplications with �̃�𝑊8 are 2 to 3 times faster
than multiplications with 𝐷𝑊8 for our implementations and the same holds for
�̃�𝑊16. Lastly, the break even point where multiplying with a block-vector 𝑋𝑚
is faster than 𝑚 matrix-vector multiplications with 𝑥 is reached for a smaller
number of columns 𝑚 than for sparse matrices.
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Table 8.5: Comparison of the time for an axpy operation and the time
for computing 𝐴𝐻𝐴𝑥 for the Wilson-Dirac operators WDStencil8 and

WDStencil16.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑥/axpy

�̃�𝑊8 6.38 × 10−5 3.03 × 10−3 47.6
�̃�𝑊16 1.97 × 10−3 5.30 × 10−2 26.9

0 20 40 60 80 100
0.95

1.00

1.05

1.10

1.15

1.20

1.25 WDStencil8

WDStencil16

Figure 8.3: Time measurements for computing 𝐴𝐻𝐴𝑋 for the Wilson-
Dirac operators �̃�𝑊8 and �̃�𝑊16 depending on the number 𝑚 of columns of
𝑋. The measurements were performed in the same manner as described in

Table 8.1.

8.1.3 Image Convolution Operator Implementation

In Section 4.2.2 we introduced image deconvolution and described the kernel
for Gaussian blur (4.15) as a particular choice of a point spread function. We
implemented the convolution operator from (4.16) using the Gaussian blur
kernel as a stencil and applying reflective boundary conditions. For our exper-
iments we chose the parameters 𝑚𝑘 = 𝑛𝑘 = 13, 𝑛𝑐 = 𝑚𝑐 = 7 and 𝜎 = 3. This
represents a moderate blurring for the image sizes that we use as examples.
As example operators we use 𝐴psf200 called PSF200 and 𝐴psf400 called PSF400
which implement the described convolution with Gaussian blur for images of
size 200 × 200 and 400 × 400, respectively.

As for the operators that we have introduced before we performed time
measurements for applications of the operators 𝐴psf200 and 𝐴psf400 displayed in
Table 8.6, Table 8.7 and Figure 8.4.

We use 𝐴 to denote either 𝐴psf200 or 𝐴psf400. The tables and the figure
reveal that an application of one of the operators 𝐴psf200 and 𝐴psf400 is more
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Table 8.6: Time measurements for the operators PSF200 and PSF400. The
measurements were performed in the same manner as described in Table 8.2.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑋1 𝐴𝐻𝐴𝑋10 𝐴𝐻𝐴𝑋100

𝐴psf200 1.74 × 10−5 2.35 × 10−2 2.36 × 10−2 7.10 × 10−2 6.57 × 10−1

𝐴psf400 6.89 × 10−5 9.53 × 10−2 9.68 × 10−2 2.81 × 10−1 2.71 × 100

Table 8.7: Comparison of time for an axpy operation and for computing
𝐴𝑥 for the operators PSF200 and PSF400.

matrix axpy 𝐴𝐻𝐴𝑥 𝐴𝐻𝐴𝑥/axpy

𝐴psf200 1.74 × 10−5 2.35 × 10−2 1347.8
𝐴psf400 6.89 × 10−5 9.53 × 10−2 1384.5

0 20 40 60 80 100

1

2

3

4
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6
PSF200

PSF400

Figure 8.4: Time measurements for computing 𝐴𝐻𝐴𝑋 for the operators
𝐴psf200 and 𝐴psf400 depending on the number 𝑚 of columns of 𝑋. The mea-
surements were performed in the same manner as described in Figure 8.1.
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costly compared to an axpy operation than for any operator introduced so far.
Moreover, as for the Wilson-Dirac operator stencil implementations we have an
early break even point for the block-vector multiplication. As we can see, even
for small 𝑚 computing 𝐴𝐻𝐴𝑋𝑚 is at least twice as fast as 𝑚 multiplications
𝐴𝐻𝐴𝑥 and can reach a factor of 5 for some 𝑚.

The saw-tooth pattern in Figure 8.4 is caused by a non-optimal memory
access pattern for odd numbers of right-hand sides. Since we store 𝑋𝑚 in a
row-major format and have real values as data the start of every other row in
𝑋𝑚 for 𝑚 = 2𝑘 + 1 and 𝑘 = 0, 1, … is not 128-bit aligned resulting in costly
assembler opcodes to fill the SSE registers. This problem does not arise for
even numbers of right-hand sides and for complex valued data as is the case,
for example, for the Wilson-Dirac operator.

8.2 Lanczos-Type Processes Tests

In this section we conduct some tests for our implementation of the deflated
block Lanczos-type process and the block-featured deflated Lanczos-type pro-
cess. These two processes are the basis for the methods from Chapter 7. Hence,
we validate the block Krylov subspace generated by our algorithm by checking
the orthogonality of the generated Lanczos vectors.

We use WDStencil8 to compute an orthonormal basis of the deflated block
Krylov subspace with the deflated block Lanczos-type process and the block-
featured deflated Lanczos-type process. But first of all, we compute a basis
for the Krylov subspace 𝒦𝑘(�̃�𝐻

𝑊8�̃�𝑊8, 𝑥) using the Lanczos process of Algo-
rithm 2.2 and a random vector 𝑥 ∈ ℂ𝑛. Figure 8.5 shows the magnitude of the
entries of 𝑉 𝐻

𝑘 𝑉𝑘 on a logarithmic scale for 𝑘 = 600. We see the well-known be-
haviour that the Lanczos vectors lose orthogonality as the iteration progresses
and only for a narrow band close to the diagonal of 𝑉 𝐻

𝑘 𝑉𝑘 we have small entries
close to machine precision.

Now, we can compare this to the Lanczos-type processes of Chapter 7. In
Figure 8.6 we display four plots of 𝑉 𝐻

𝑘 𝑉𝑘 where 𝑉𝑘 was computed by the
deflated block Lanczos-type process of Algorithm 7.2. From the top left to
bottom right plot we built 𝒦defl

𝑘 (�̃�𝐻
𝑊8�̃�𝑊8, 𝑋𝑖) for 𝑘 = 600, 𝑋𝑖 ∈ ℂ𝑛×6 and

𝑖 = 1, 2, 3, 4. The columns of 𝑋1 were chosen randomly. In 𝑋2 we computed
one column to be nearly linearly dependent on the remaining columns of 𝑋2.
We enforced similar linear dependency in 𝑋3 and 𝑋4 except that in 𝑋3 we
have 3 inexact deflations and in 𝑋4 all vectors but one are deflated. Moreover,
we constructed 𝑋3 and 𝑋4 such that deflation occurs after some steps of the
deflated block Lanczos-type process.
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Figure 8.5: Orthogonality of the Lanczos vectors generated by the Lanczos
process. We display the logarithm to base 10 of the magnitude of the entries

of the matrix 𝑉 𝐻𝑉 .

no deflation 1 vector deflated

3 vectors deflated 5 vectors deflated

Figure 8.6: Orthogonality of the Lanczos vectors generated by the deflated
block Lanczos-type process. We display the logarithm to base 10 of the

magnitude of the entries of the matrix 𝑉 𝐻𝑉 .
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In these lower two pictures we can see dark blue bars as an indicator of
the orthogonalisation against inexactly deflated vectors. Comparing the plots
for 𝑋1, 𝑋2 and 𝑋3 to the Lanczos process from Figure 8.5 shows that the
orthogonality of the vectors spanning the block Krylov subspace is better than
that of the Lanczos vectors spanning a Krylov subspace of the same dimension.
For the former we have to spend more work on orthogonalisation, though. If
all vectors except one are deflated as in the last plot of Figure 8.6 then the
plot looks similar to Figure 8.5. This means that we do not obtain worse
orthogonality than with the non-block Lanczos process.

For the block-featured deflated Lanczos-type process the same test for check-
ing the orthogonality of 𝑉𝑘 by computing 𝑉 𝐻

𝑘 𝑉𝑘 as in Figure 8.6 was performed
and the results can be found in Figure 8.7.

no deflation 1 vector deflated

3 vectors deflated 5 vectors deflated

Figure 8.7: Orthogonality of the Lanczos vectors generated by the block-
featured deflated Lanczos-type process. We display the logarithm to base

10 of the magnitude of the entries of the matrix 𝑉 𝐻𝑉 .

We can observe an almost identical behaviour to the deflated block Lanczos-
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type process in Figure 8.6. The only difference is the step in which deflation
occurs as we have explained in Section 7.3. For instance, in our example with
5 deflated vectors the first deflation in the deflated block Lanczos-type process
(Figure 8.6) occurs when the subspace reaches a dimension of around 140
whereas in the block-featured deflated Lanczos-type process (Figure 8.7) this
happens at about 100.

8.3 Comparison of Methods for Solving Shifted
Block Systems

In this section we will present the numerical results for the tests that we have
conducted for the applications from Chapter 4. First, we present and discuss
the results for applications from lattice QCD. Afterwards, we focus on results
for image deconvolution. For both applications we want to have some realistic
examples at hand. In Section 8.1 we have already defined the operators that
we use for our tests. In the following subsections we start by describing the
test settings, e.g. how we obtained the shifts for the family of shifted systems
with multiple right-hand sides

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗, 𝑖 = 1, … , 𝑠, 𝑗 = 1, … , 𝑚 (1.1)

and which right-hand sides we chose.

8.3.1 Lattice QCD - Prerequisites

For our tests with the Wilson-Dirac matrices we use several numbers of ran-
dom right-hand sides. The systems (1.1) for the operators WDSparse8 and
WDStencil8 are solved for up to 30 right-hand sides. For the operators rep-
resenting a 164 lattice, i.e. WDSparse16 and WDStencil16, we use up to 10
right-hand sides.

For stopping the iteration we use the condition (5.7), i.e. we monitor the
residuals and stop the iteration for every shifted system depending on the
number of shifts and the corresponding weight of the partial fraction expansion.

We simulate the computations involved in the application of the overlap
operator from Section 4.1.3 by computing (𝐷𝐻

𝑊 𝐷𝑊 )−1/2𝑥 as needed in equa-
tion (4.7). For this we compute rational approximations to 𝑓(𝑥) = 𝑥−1/2 for
the Wilson-Dirac operators from Section 8.1. For each of the operators we
use two different approximations that approximate 𝑓(𝑥) to a given accuracy.
The rational approximations were obtained via a Zolotarev approximation,
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see Section 3.2.4, for 𝑓(𝑥) with respect to the spectrum of the operators. The
resulting approximations can be found in Table 8.8.

For simulating the computations in the Rational Hybrid Monte Carlo al-
gorithm, see (4.9) in Section 4.1.4, we computed rational approximations to
𝑓(𝑥) = 𝑥−1/4. As for the approximations to 𝑓(𝑥) = 𝑥−1/2 we computed a
couple of approximations also displayed in Table 8.8. For these, however, we
used Kronecker’s algorithm 3.1 from Section 3.2.3 to obtain an 𝑛-point Padé
approximation with the interpolation nodes as given by equation (3.10).

Table 8.9 and Table 8.10 display the complete sets of shifts 𝜎𝑗 and weights
𝜔𝑗 (using the notation from equation (3.7)) of the partial fraction expansions
corresponding to the rational approximations from Table 8.8 as (shift,weight)-
pairs. Note that we are using [𝑛−1/𝑛]-type rational approximation and there-
fore 𝜋 ≡ 0 in (3.7).

One important conclusion that we can draw from the tables is that small
shifts which result in a large condition number of the shifted system go along
with small weights. This means that even though in general these systems
are harder to solve we do not have to solve them to a high precision when we
want to compute a matrix function. However, the weights cannot alleviate the
large condition number completely and in computations we see that solving
the systems belonging to smaller shifts still need more iterations.

The 𝑛-point Padé approximations are non-optimal since they were created
based on heuristically chosen interpolation nodes. In Figure 8.8 we compare
the Zolotarev approximations pfe𝑍8𝑠7 and pfe𝑍8𝑠14 from Table 8.8 to 𝑛-point
Padé approximations resulting in the partial fraction expansions pfe𝑃8𝑠7 and
pfe𝑃8𝑠14 with the same number of poles. Especially the plot for 14 poles
shows that our 𝑛-point Padé approximation can be worse by some orders of
magnitude caused by the heuristics. This means that one might achieve the
same accuracy with a lower number of poles in the partial fraction expansion.
For our tests, however, this is irrelevant since we are only interested in hav-
ing realistic partial fraction expansions for comparing the performance of the
algorithms.

8.3.2 Lattice QCD - Methods

Before actually presenting time measurements we need to give some custom
explanations for some of the used algorithms. Moreover, we give estimates for
the performance of the algorithms by applying our cost model. For this we use
the measured ratio time(𝐴𝐻𝐴𝑥)/ time(𝑎𝑥𝑝𝑦) from Section 8.1 as constant 𝒸𝐴
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Figure 8.8: Comparison of Zolotarev and 𝑛-point Padé approximation
where we used equation (3.10) to compute heuristically chosen interpo-
lation nodes. On the left we compare pfe𝑍8𝑠7 and pfe𝑃8𝑠7 and on the
right pfe𝑍8𝑠14 and pfe𝑃8𝑠14, respectively. Displayed is the relative error

(𝑥−1/2 − pfe(𝑥))/𝑥 on the relevant interval.

for the corresponding operator. For those methods that perform matrix-block-
vector multiplications instead of matrix-vector multiplications we measured
time(𝐴𝐻𝐴𝑋𝑚)/(𝑚 ⋅ time(𝑎𝑥𝑝𝑦)) to obtain 𝒸□

𝐴(𝑚).

Shifted Methods

We want to apply shifted methods to (1.1) by applying them to all the right-
hand sides separately. As already discussed after Proposition 5.1, shifted CG
should almost always perform better than CG. Hence, the more important
analysis that we want to address with numerical examples here is how restarted
shifted CG performs as compared to shifted CG. For this we pick up on Propo-
sition 5.5 and obtain from (5.15) that the quotient �̂�

�̃�
is allowed to range from

about 1 to 1 + 2𝑠−1
𝒸𝐴+5 for restarted shifted CG being faster than shifted CG

depending on the number of steps after which the shifted systems converge.
Note that we assumed for the cost model that every shifted system was solved
after �̃�𝑖 = 𝑘 steps.

In Figure 8.9 we display four test cases in which we applied our cost model.
Since there is no dependence on the number of right-hand sides we performed
tests with one random right-hand side for the Wilson-Dirac operators described
in Section 8.1 using the values of 𝒸𝐴 that we measured there. Furthermore, we
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used the partial fraction expansions from tables 8.8 to 8.10 and the iteration
was stopped as soon as the relative residual norm fulfilled the condition (5.7)
for 𝜖 = 1 × 10−5. For rsCG we performed restarts after 100 steps.

In three cases the quotient �̂�
�̃�

obtained from our test exceeded the estimate
from (5.15) and in two of which rsCG was actually slower than sCG. This
leaves us with one false negative and no false positives from Proposition 5.5
for this example.

As a result from these tests one should not consider the estimate from (5.15)
using our cost model as a definitive bound. Instead, one could use it as an
indicator that rsCG should not be used if a large number of restarts can be
expected or if the estimate is close to 1. In practical implementations it could
make sense to solve one shifted system from (1.1) with sCG to get estimates for
the number of steps after which the shifted systems are solved. These numbers
can be used in (5.15) to compute the estimate bound. Moreover, the number
of steps sCG performs can be used to obtain a lower bound for the number
of restarts that rsCG has to perform. The quotient of iteration steps of rsCG
over the iteration steps of sCG is a function of the number of restarts. Hence,
knowledge of the lower bound of restarts combined with some estimate with
the inflicted slow-down of convergence might help to support the decision if
rsCG is to be used instead of sCG.

The profound impact of the restarts on the iteration is displayed in Fig-
ure 8.10. Since our cost model does not consider the effect of restarts it cannot
be used to predict the number of rsCG steps. However, since it yielded no false
positives in our test cases, it could prove useful if the iteration steps of rsCG
can be guessed.

Since neither sCG nor rsCG can be identified as being always a better choice
we will use both of them in later comparisons.

Methods for Multiple Right-Hand Sides

When we use methods for multiple right-hand sides to solve (1.1) then we
need to apply them to all the shifts separately. This applies to the Single Seed
Method, Seed-CG, incremental eigCG as well as the block methods BlockCG,
BCGAdQ and BCGrQ. In order to make use of the cost model analysis that
we have presented after each of the algorithms we need an informed guess
for their iteration numbers as for restarted shifted CG. But unlike restarted
shifted CG there are no parameters in the methods—except for incremental
eigCG—which we could use for tuning the iteration number.

As parameters of the incremental eigCG method we use 𝑛ev = 10 and 𝑐rest =
50 which was found to result in goods eigenvector approximations in [SO10].
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Figure 8.9: Comparison of rsCG and sCG using our cost model, actual
iteration numbers, and time measurements for four test cases. The green
bar represents the estimate bound from (5.15) using the actual number of
steps after which each shifted system converged in sCG. The blue bar shows
the quotient of rsCG iteration steps �̂� and sCG iteration steps �̃�. The red
bar displays the comparison of measured times where values larger than
one indicate that rsCG solved the systems faster than sCG. Additionally,

we display the number of restarts that rsCG performed on the left side.

Figure 8.10: Comparison of sCG and rsCG with different restart lengths.
We performed test runs for WDStencil16 and pfe𝑃16𝑝23 and stopped the
iteration as soon as the relative residual norm fulfilled (5.7). We use the

same notation and colour-coding as in Figure 8.9.
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We chose 𝑚eig = 𝑚 − 1 to obtain the best reduction in number of iterations
which we found to often result in the best time measurements too.

Shifted Block Methods

The methods DSBlockCG and BFDSCG from Chapter 7 need no special tuning
and can be applied directly to the systems (1.1). As deflation tolerance for
exact deflation we use 5 × 10−14 and the inexact deflation tolerance is set one
order of magnitude lower than the target relative residual norm. For example,
for a target relative residual norm of 1 × 10−10 we use an inexact deflation
tolerance of 1 × 10−11.

Cost Models for All Tested Methods

To test our cost models and comparisons we computed the values of ℴx for all
the methods we presented in Chapters 5, 6, and 7 using an example setting.
This means, we computed ℴcg (2.16), ℴscg (5.9), ℴrscg (5.14), ℴblockcg (6.23),
ℴbcgadq (6.25), ℴbcgrq (6.26), ℴeigcg (6.14), ℴssm (6.3), ℴseedcg (6.8), ℴdsblockcg (7.33),
and ℴbfdscg (7.44).

As test setting we solved (1.1) for the operator WDStencil8, 10 random
right-hand sides and shifts and weights stemming from pfe𝑃8𝑝18. The target
relative residual norms were computed using (5.7). From Section 8.1 we obtain
𝒸𝐴 ≈ 47.6 for a matrix-vector multiplication 𝒸□

𝐴(𝑚) ≈ 47.6/1.1 ≈ 43.3 for a
matrix-block-vector multiplication with a block-size of 𝑚 = 10. The time for
a vector operation is about 6.28 × 10−5 seconds.

First we solved the systems belonging to the first right-hand side using CG
to obtain the number of steps in which CG solves them. Then we used the
following assumptions to feed our cost models that are inspired by observations
during our test runs:

• The same number of iterations is needed to solve the systems belonging
to different right-hand sides with CG.

• For rsCG the number of iteration steps increases by about 5% per restart.
• The number of iterations in the Single Seed Method and Seed-CG reduces

linearly along the right-hand sides down to 90% for the last right-hand
side.

• The number of iterations in incremental eigCG reduces linearly along the
right-hand sides to 65% for the last right-hand side.
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• All block methods reduce the dimension of the spanned block Krylov
subspace to 65% of the accumulated dimension of the Krylov subspaces
that CG needs to span for solving all the systems.

The results can be found in Table 8.11.

Table 8.11: Comparison of cost model estimates and time measurements
for WDStencil8 and all the contestant methods. The estimated time is the
product of the estimated vector operations from our cost model and the

measured time per vector operation (6.28 × 10−5 seconds).

method vector operations estimated time measured time ratio

CG 1530660 96.15 101.50 0.95
sCG 257376 16.17 19.28 0.84
rsCG 235039 14.76 15.95 0.93
SSM 1956883 122.93 126.79 0.97
Seed-CG 1558279 97.89 105.00 0.93
iEigCG 2023701 127.13 131.40 0.97
BlockCG 1846104 115.97 128.89 0.90
BCGAdQ 2489214 156.37 216.45 0.72
BCGrQ 2110914 132.60 204.34 0.65
DSBlockCG 575507 36.15 48.99 0.74
BFDSCG 638232 40.09 65.91 0.61

The most notable finding from Table 8.11 is that our cost model estimates
predict the right order of the methods with respect to their runtime. However,
some of the estimates in the table are closer to the actually measured time.
This can be explained by some additional computations that are not reflected
in our cost model. The most notable deviations from the estimate appear
in the block methods except for plain BlockCG. This is caused by the cost
of operations on small matrices which can be substantial. The remaining
methods largely consist of vector operations and block-vector operations that
are represented in our cost models.

Since rsCG computes the approximation 𝑥 to 𝑓(𝐴)𝑏 directly and does not
yield solutions for the shifted systems, we cannot check our results by com-
puting residuals. However, we can compare the solutions computed by the
different methods to each other as a sanity check for our implementations.
As we can see in Figure 8.11 all the approximations are close by. Since we
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are using (5.7) as a stopping criterion we cannot guarantee that the error is
smaller than the target relative residual norm plus the approximation error
introduced by the rational approximation. However, Figure 8.11 suggests that
the computed solutions are not too far off.

C
G

sC
G

rs
C
G

S
S
M

S
ee
d
-C
G

iE
ig
C
G

B
lo
ck
C
G

B
C
G
A
d
Q

B
C
G
rQ

D
S
B
lo
ck
C
G

B
F
D
S
C
G

CG

sCG

rsCG

SSM

Seed-CG

iEigCG

BlockCG

BCGAdQ

BCGrQ

DSBlockCG

BFDSCG

−8

−9

−10

−11

−12

−13

Figure 8.11: Check of the quality of the solution for all tested methods. We
display the logarithm to base 10 of ‖𝑥𝑖−𝑥𝑗‖2 for 𝑥𝑖 and 𝑥𝑗 being the solution
obtained by method 𝑖 and method 𝑗. The largest value is 5.48 × 10−08 and
the smallest off-diagonal value is found to be 2.15 × 10−10. Here we chose

𝜖 = 1 × 1010 as stopping criterion in (5.7).

A conclusion we draw from Table 8.11 and some more observations is that
we do not need to include all the methods in every test in the remainder of
this chapter. Even though seed, deflation, and block methods represent good
methods for solving systems with multiple right-hand sides they cannot out-
compete methods that can solve shifted systems like (1.1). Therefore, we will
only compare sCG, rsCG, DSBlockCG, and BFDSCG in that case. However,
we will include CG in some of our tests to have a comparison to the naïve
approach for solving (1.1). Still, some of the methods we ruled out for systems
that involve shifts will have a return in Section 8.4 when we consider solving
non-shifted systems with multiple right-hand sides.

8.3.3 Lattice QCD - Results

In the following we want to present the results of the tests that we have con-
ducted focussing mainly on the algorithms CG, sCG, rsCG, DSBlockCG, and
BFDSCG. Our main goal will be to compare different (mostly) realistic QCD
test settings and the runtime dependence on the number of right-hand sides.
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We refrain from presenting convergence plots for two reasons. First, since we
want to apply a matrix function the individual residuals for the involved sys-
tems are not of paramount interest. Second, displaying the convergence for
the 𝑚 right-hand sides and 𝑠 shifts would be of limited value. Hence, we only
checked whether the solutions are close in the sense of Figure 8.11 instead.

For each run with 𝑘 right-hand sides we used the same 𝑘 random right-hand
sides for all methods. We encountered no deflation in our test settings.

Realistic Tests for a 84 Lattice

Figure 8.12 shows a realistic setting for solving the family of systems (1.1)
for the operator WDStencil8 with 1 to 30 random right-hand sides and the
18 shifts and weights stem from pfe𝑃8𝑝18. The target relative residual norms
were computed using (5.7) matching pfe𝑃8𝑝18. In Table 8.11 we presented the
actual numbers and cost model estimates for 𝑚 = 10 right-hand sides in this
test setting. This is why we include all methods in Figure 8.12 for once.

We can see that if we use the number of matrix-vector multiplications or
matrix-block-vector multiplications as a metric for comparing the methods
then all other methods are better than CG. Moreover, CG needs about 8 times
the number of matrix-vector multiplications than what sCG needs to solve all
systems. For larger numbers of right-hand sides DSBlockCG and BFDSCG
even need about half the number of matrix-vector multiplications of sCG.

However, as our cost model estimated in Table 8.11 this is not in one-to-
one correspondence when we compare actual time measurements. There, we
can see that most methods are even slower than CG and that sCG as well as
rsCG are the best methods to solve the systems. Furthermore, even though
DSBlockCG and BFDSCG can solve the systems with less matrix-vector mul-
tiplications than every other method they cannot outperform sCG and rsCG
when it comes to time measurements. This reflects the fact that the additional
work to be invested to handle multiple right-hand sides is not negligible. We
will see later that the situation changes in favour of DSBlockCG and BFDSCG
not only when the cost 𝒸𝐴 of a matrix-vector multiplication increases but also
when the matrix is less well conditioned.

From Figure 8.13 we can get a glimpse of the effect of 𝒸𝐴 on time measure-
ments. There, we used the exact same test setting as in Figure 8.12 except
for using the operator WDSparse8 resulting in 𝒸𝐴 ≈ 128.2. We see that the
numbers of matrix-vector multiplications are exactly the same as they should
be and the gap between DSBlockCG/BFDSCG and sCG/rsCG closes. The re-
maining methods get closer to the time performance of CG, too, and BlockCG
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Figure 8.12: Comparison of all implemented methods for solving the family
of linear systems (1.1) for the operator WDStencil8 with 1 to 30 right-
hand sides. The left plot displays the relative number of matrix-vector
multiplications and the right plot shows the relative time normalised with

respect to sCG in both cases.
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Figure 8.13: The same test setting as in Figure 8.12 except for using
WDSparse8. The spike for the block methods at 2 right-hand sides stems
from our sparse matrix-block-vector multiplication implementation as de-

scribed for Figure 8.1. Left: relative mvms, right: relative time.
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even overtakes CG.

Realistic Tests for a 164 Lattice

Results for tests with a larger and thus more realistic lattice are displayed in
Figure 8.14. We used the operator WDStencil16 with 1 to 10 random right-
hand sides and we applied pfe𝑍16𝑠18 and pfe𝑃16𝑝23. For the computations
with pfe𝑍16𝑠18 we chose a restart length of 400 and a restart length of 100 for
pfe𝑃16𝑝23 in rsCG.
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Figure 8.14: Comparison of some selected methods for the operator
WDStencil16 with 1 to 10 right-hand sides. In the top plots we used
pfe𝑃16𝑝23 and in the bottom plots the shifts and weight stem from pfe𝑍16𝑠18.
The left plots display the relative number of matrix-vector multiplications
and the right plots show the relative time normalised with respect to sCG

in both cases.

In Figure 8.14 we can see that DSBlockCG and BFDSCG perform slightly
better when compared to sCG than in the plots in Figure 8.12 where we used
a 84 lattice. However, in the time measurements the handling of multiple
right-hand sides still outweighs the possible savings.

Test Runs Including Deflation

Even though we never observed deflation happening in our QCD test cases we
cannot ignore the possibility of linear dependency while spanning the block
Krylov subspace. Moreover, DSBlockCG and BFDSCG are designed to make
use of deflation in the block Krylov subspace. Therefore, we present two test
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cases in Figure 8.15 in which we generated the right-hand sides in such a
manner that after a few steps deflation occurs. With this we want to show
that DSBlockCG and BFDSCG can properly handle deflation and might even
profit from removing (nearly) linearly dependent vectors.

For the following examples we use WDStencil16 with the partial fraction ex-
pansion pfe𝑍16𝑠18 and corresponding target relative residual norms. Moreover,
for rsCG we use a restart length of 400.

In the first test setting that is displayed in the upper plots in Figure 8.15
we chose random right-hand sides except for the last column of 𝐵. The last
column 𝑏𝑚 of 𝐵 was set to 𝑏𝑚 = 𝑣(15) where 𝑚 is the number of right-hand sides
and 𝑣(15) is the 15-th Lanczos vector generated by the Lanczos process applied
to 𝐴 and 𝑏1. In exact arithmetic exact deflation would occur while spanning
𝒦□

15(𝐴, 𝐵) if 𝑏𝑚 is computed in this way. For finite precision arithmetic we
encounter inexact deflation for larger numbers of right-hand sides instead. As
we can see for up to 4 right-hand sides DSBlockCG is faster than sCG and
rsCG in this test setting. After that it again loses ground.
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Figure 8.15: Comparison of some selected methods for the operator
WDStencil16 with 1 to 10 right-hand sides that are created such that after
a few iteration steps one Lanczos vector becomes linearly dependent. Left:

relative mvms, right: relative time.

In the lower plots in Figure 8.15 we again chose random right-hand sides but
this time ⌊𝑚/2⌋ columns of 𝐵 were enforced to become linearly dependent. In
detail, we computed 𝑏𝑖 = 𝑣(⌊2

√
𝑖∗(𝑖−1)+5⌋) for 𝑖 = 2, 4, … where 𝑣(𝑗) is the 𝑗-th

Lanczos vector generated by the Lanczos process applied to 𝐴 and 𝑏1. Again,
we cannot expect exact deflation for larger numbers of right-hand sides. In
this, admittedly unrealistic, setting DSBlockCG is faster than sCG and rsCG



210 8. Numerical Results

for all test up to 10 right-hand sides. BFDSCG gains from the deflation too
and is about as fast as sCG and rsCG.

Test Simulating Larger Lattice Sizes

In lattice QCD, bigger lattices allow to adjust parameters close to physically
relevant values, typically resulting in less well conditioned systems. Since we
have chosen to implement all methods in a non-parallel version to have fair time
comparisons we cannot increase the lattice size arbitrarily. However, we want
to simulate less well conditioned systems on a 164 lattice. We do so by choosing
a different mass parameter 𝑚0 for the Wilson-Dirac operator WDStencil16 and
shift it such that the smallest eigenvalue of becomes 10−8. This is consistent
to what is done on large lattices, where smaller mass parameters are used, too.

We computed an 𝑛-point Padé approximation to 𝑓(𝑥) = 𝑥−1/4 with 14 poles
which has a maximal error of less than 7 ×10−5 on the spectrum of the shifted
operator. This was chosen since a higher precision approximation on an in-
terval whose left end is 10−8 would need an unfeasible number of shifts. The
iteration was stopped as soon as the relative residual norm fulfilled the condi-
tion (5.7) for 1 × 10−4.

The results for these settings are shown in Figure 8.16. We can see that
for 2 to 5 right-hand sides DSBlockCG performs slightly better than sCG
before the costs for handling multiple right-hand sides starts to outweigh the
time savings steming from a reduced number of matrix-vector multiplications.
Since the time for sCG increases linearly in the number of right-hand sides one
idea in this situation could be to always combine 3 or 4 of the 𝑚 right-hand
sides and solve them with DSBlockCG resulting in an overall gain as compared
to sCG.
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Figure 8.16: Comparison of some selected methods for the operator
WDStencil16 which we have shifted to have smallest ev 10−8 with 1 to

10 right-hand sides. Left: relative mvms, right: relative time.
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8.3.4 Image Deconvolution - Prerequisites

For our tests with the operators PSF200 and PSF400 we use right-hand sides
that stem from two sequences of a film.

We extracted the first sequence of 72 contiguous frames from the film “Big
Buck Bunny” [Ble08] which is released under a Creative Commons (CC By
3.0) license1. While extracting we scaled and cropped the frames2 so that we
obtain images of the size 200 × 200 and 400 × 400. Then, we converted the
two-dimensional RGB data into three vectors of size 40000 and 160000, respec-
tively, by splitting the colour channels. Afterwards we blurred all extracted
frames using 𝐴psf200 and 𝐴psf400, respectively. We end up with two example
right-hand sides 𝐵1,200 ∈ ℝ40000×216 and 𝐵1,400 ∈ ℝ160000×216.

For the second sequence we again chose 72 contiguous frames at a different
position3 which includes a fade-to/from-black section. The frames 23 to 44 are
completely black and the fade-in/out takes about 10 frames each. We refer to
these right-hand sides as 𝐵2,200 ∈ ℝ40000×216 and 𝐵2,400 ∈ ℝ160000×216.

When we perform our tests with PSF200 or PSF400 for 𝑘 right-hand sides we
will use (𝐵𝑥,𝑦)∶,1∶𝑘 as the right-hand side block-vector. We use the 20 shifts 𝜎𝑖
with

𝜎𝑖 ∈ {1.00 × 10−2, 1.65 × 10−2, 2.60 × 10−2, 4.04 × 10−2, 6.25 × 10−2,
9.81 × 10−2, 1.61 × 10−1, 2.90 × 10−1, 6.73 × 10−1, 2.12,
3.24, 5.15, 6.07, 6.71, 7.29, 7.84, 8.39, 8.93, 9.46, 10.0}.

(8.2)

To help to determine the optimal regularisation parameter for the L-curve cri-
terion we generated4 the small shifts more densely. This heuristically resulted
in distinctive L-curves.

In the QCD test cases we computed the target relative residual norm de-
pending on the weight that corresponds to the shift of the system. Since we
are not computing a matrix function we do not have weights and we stop the
iterations at a fixed target relative residual norm of 10−5 for every shifted sys-
tem. The restarted shifted CG algorithm cannot be applied in this situation
because we need to compute individual solutions to all of the shifted systems

1http://creativecommons.org/licenses/by/3.0
2Using ffmpeg -i big_buck_bunny_480p_h264.mov -r 24 -ss 00:05:06 -t 3

-filter:v "scale=-1:200,crop=200:200:100:0" %03d.png
and the same with "scale=-1:400,crop=400:400:200:0" for the 400 × 400 images.

3Using ffmpeg2 again with -ss 00:07:40 as start time.
4c = 20; lmin = -2; lmax = 1;
ls = linspace(-10,10,c); ls = ls.*abs(ls);
d = (pi/2+atan(ls))/pi;
sigma = ((1-d).*logspace(lmin,lmax,c)+(d).*linspace(10^lmin,10^lmax,c));

http://creativecommons.org/licenses/by/3.0


212 8. Numerical Results

and not a single vector 𝑥 as the result of a matrix function 𝑥 = 𝑓(𝐴)𝑏.

8.3.5 Image Deconvolution - Methods

To determine which methods are most likely to perform well in our tests we
applied our cost model to a test setting consisting of the operator PSF400, 26
right-hand sides and 20 shifts. As in the QCD case, we actually performed
the computations to be able to compare the predictions of our cost models
to measured times. For this setting we obtain from Section 8.1 that 𝒸𝐴 ≈
1384.5 for a matrix-vector multiplication and 𝒸□

𝐴 ≈ 1384.5/4 ≈ 346.1 for a
matrix-block-vector multiplication. The time for a vector operation is about
6.89 × 10−5 seconds.

We used the following assumptions to feed our cost models:
• The same number of iterations is needed to solve the systems belonging

to different right-hand sides but the same shift.
• The number of iterations in the Single Seed Method, Seed-CG, and in-

cremental eigCG reduces linearly along the right-hand sides to 50% for
the last right-hand side.

• All block methods reduce the number of matrix-vector multiplications to
90% (counting a matrix-block-vector multiplication as 26 matrix-vector
multiplications) of the number of matrix-vector multiplications that CG
needs to solve all the systems.

The last point is due to the fact that for image deconvolution no high precision
solutions are needed and therefore the number of iteration steps is quite small.
As seen in the QCD test setting this results only in a minor reduction of
iteration steps by block methods. In Table 8.12 we present our findings.

Again, our cost model estimates seem to be quite good in predicting the
ranking of the methods with respect to their runtime. Only for methods whose
runtime is roughly of the same magnitude our cost model fails to predict the
right order as for example comparing CG and incremental eigCG. From Ta-
ble 8.12 we can draw the conclusion that in our tests with PSF200 and PSF400
we only need to compare sCG, DSBlockCG, and BFDSCG.

8.3.6 Image Deconvolution - Results

Figure 8.17 displays the comparison of sCG, DSBlockCG, and BFDSCG for
the operators PSF200 and PSF400 and the right-hand sides 𝐵1,200 and 𝐵1,400,
respectively. We solved for 𝑘 = 1, 6, 11, … , 216 right-hand sides to generate
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Table 8.12: Comparison of cost model estimates and time measurements
for all the contestant methods. The estimated time is the product of the
estimated vector operations from our cost model and the measured time per

vector operation (6.89 × 10−5 seconds).

method vector operations estimated time measured time ratio

CG 7080892 487.87 632.38 0.77
sCG 1490333 102.68 104.88 0.98
SSM 5179214 356.85 380.83 0.94
Seed-CG 5025218 346.24 396.62 0.87
iEigCG 7782320 536.20 593.49 0.90
BlockCG 2183699 150.46 166.65 0.90
BCGAdQ 2559784 176.37 262.69 0.67
BCGrQ 2321291 159.94 259.50 0.62
DSBlockCG 1642574 113.17 141.68 0.80
BFDSCG 701043 48.30 69.08 0.70

the plots. In case of PSF200 both block methods can reduce the number
of matrix-vector multiplications (or the equivalent number of matrix-block-
vector multiplications) by up to a factor of 3 as compared to sCG. For the
time measurement of this test setting we see that BFDSCG can make use of
the notably better performance of a matrix-block-vector multiplication over
a matrix-vector multiplication as we found out in Figure 8.4. This results in
BFDSCG being faster than and needing only between 50% and 80% of sCG.
For DSBlockCG the cost of handling multiple right-hand sides outweighs the
reduction in matrix-vector multiplications so that sCG is faster.

The bottom two plots in Figure 8.17 show the same comparison for PSF400.
There, the reduction in the number of matrix-vector multiplications is smaller
than for PSF200. The outcome of this is that with respect to computing time
for more than approximately 50 right-hand sides the tide turns in favour of
sCG.

In Figure 8.18 we show some more details of the plot in Figure 8.17. There,
we plotted the results for 𝑘 = 1, 2, … , 20 right-hand sides. We see that already
for about 10 right-hand sides the maximum performance gain as compared to
sCG is achieved. The saw-tooth pattern that emerges in the time measure-
ments in this plot is caused by the performance of the matrix-block-vector
multiplication that we have discussed for Figure 8.4. Moreover, we can deduce
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Figure 8.17: Comparison of sCG, DSBlockCG, and BFDSCG for the oper-
ator PSF200 (top) and PSF400 (bottom) with 1 to 216 right-hand sides from
𝐵1,200 and 𝐵1,400, respectively. The left plots display the relative number
of matrix-vector multiplications and the right plots show the relative time

normalised with respect to sCG in both cases.

that the time savings stem almost exclusively from the fast matrix-block-vector
multiplication since the reduction in matrix-vector multiplications by the block
methods is marginal. Here, BFDSCG seems to need more matrix-vector mul-
tiplications than DSBlockCG which is caused by the small number of iteration
steps and the fact that BFDSCG can only stop after performing a complete
matrix-block-vector multiplication. For every right-hand side the family of
shifted systems is solved in about 40 steps of sCG.
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Figure 8.18: Detailed plot of the first 20 right-hand sides of the plots from
Figure 8.17.
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In Figure 8.19 we show the results of using 𝐵2,200 and 𝐵2,400 as right-hand
sides. All other settings were the same as before. The black frames 23 to 44
result in the right-hand sides from 67 to 132 being zero. However, we cannot
expect performance improvements over sCG there since sCG does not need to
be applied to a zero right-hand side. On the other hand, these frames can be
regarded as a stress test for our block methods since failing to deflate these
would imply loosing ground to sCG or even failing to converge at all. Our
intention of using 𝐵2,200 and 𝐵2,400 was to have an example where (inexact)
deflation occurs naturally in the fade-in/out frames. But we did not observe
any further (inexact) deflation than the removal of the black frames in the
beginning of the iteration.

All in all, we see for the example in Figure 8.19 the same behaviour as in
Figure 8.17 except that the gain in matrix-vector multiplications stagnates
while adding those right-hand sides that get deflated.
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Figure 8.19: Comparison of sCG, DSBlockCG, and BFDSCG for the oper-
ator PSF200 (top) and PSF400 (bottom) with 1 to 216 right-hand sides from
𝐵2,200 and 𝐵2,400, respectively. The left plots display the relative number
of matrix-vector multiplications and the right plots show the relative time

normalised with respect to sCG in both cases.

Our final test for PSF200 in Figure 8.20 shows how sCG, DSBlockCG, and
BFDSCG compare depending on the number of shifts. For this setting we
solved (1.1) for the first 20 columns of 𝐵1,200. We used the first 𝑘 shifts
from (8.2) for 𝑘 = 1, … , 20 and plotted the results from that against the
number of matrix-vector multiplications and the measured time, respectively.
Since the number of matrix-vector multiplications depends on the magnitude
of the smallest shift, which in this test setting is always the same, we see no
dependence on the number of shifts. The right plot in Figure 8.20 shows no
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significant dependence of the time for solving (1.1) depending on the number
of shifts.
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Figure 8.20: Comparison of sCG, DSBlockCG, and BFDSCG for the op-
erator PSF200 with 1 to 20 shifts for 𝐵 = (𝐵1,200)∶,1∶20. The left plot
displays the relative number of matrix-vector multiplications and the right
plot shows the relative time normalised with respect to sCG in both cases.

As a conclusion of our tests with PSF200 and PSF400 we see that BFDSCG
has the potential to yield considerable time improvements over sCG. Even
though BFDSCG tends to be slower than sCG for a large number of right-
hand sides one might pack a small number of right-hand sides into blocks and
apply BFDSCG multiple times which is actually backed by the observations
in Figure 8.18. Moreover, like in the QCD test cases we observed no naturally
occurring deflation.

8.4 Comparison of Methods for Solving Block
Systems

DSBlockCG and BFDSCG even though developed for shifted block systems
can also be used as a non-shifted methods for block systems. Then they
reduce to two block CG algorithms involving the deflation from [Ali+00]. Our
goal here is to show that DSBlockCG and BFDSCG can compete with block
methods like BCGrQ and outperform CG when applied to non-shifted block
systems.

For this we use the four matrices msc04515, Pres_Poisson, smt, and nd12k
from the Florida sparse matrix collection [DH11] that were presented in Ta-
ble 8.1. We chose these matrices as examples, because they are hpd and have a
relatively high number of non-zeros per column. For more detailed information
on the matrices see [DH11]. For all matrices we computed solutions to random
right-hand sides and compared our algorithm to BlockCG and BCGrQ.

In our tests we experienced that if inexact deflation happens early in the
iteration the stability of the method suffers especially if a high precision as
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the target residual norm is requested. This behaviour was already described
and discussed in [BPS11]. Thus, we have to balance the deflation tolerance
for DSBlockCG and BFDSCG and the final required accuracy. We chose a
deflation tolerance of 10−10 and stopped the iteration as soon as a relative
residual norm of 10−8 was reached.

Figure 8.21 displays the results for these runs depending on the number of
right-hand sides. Even though BlockCG needs slightly more iteration steps
in the examples given it is significantly faster especially for those examples
where matrix-vector multiplications are relatively cheap. In the test run with
nd12k, where the time for matrix-vector multiplications gets more dominant,
the gap between BlockCG and the other methods closes. For smt we could not
include BlockCG in the test since it failed to converge for a larger number of
right-hand sides. This is possibly related to the larger number of matrix-vector
multiplications of BlockCG as compared to those block methods that involve
a QR decomposition in the other tests. It seems as if the QR decomposition
stabilises the iteration even when no deflation occurs.

Amongst the other block methods the number of matrix-vector multiplica-
tions is almost the same in all examples. But there is a noticeable difference
in the total execution time for the more sparse matrices like msc04515 and
Pres_Poisson. In these matrices and for small numbers of right-hand sides
DSBlockCG is faster than BCGrQ. In the tests with the matrix msc04515
there is a turning point at 25 right-hand sides after which BlockCG solves
the systems faster than DSBlockCG. When solving systems with the matrix
Pres_Poisson DSBlockCG is faster than BlockCG for up to 12 right-hand
sides. For the other two matrices DSBlockCG and BFDSCG are slower than
BCGrQ.

In the examples presented in Figure 8.21 we encountered no deflation.
In the previous plots we did not include CG since it cannot compete with

the block methods in these examples. To show how CG compares to the other
methods we include Figure 8.22. This is the same test run for msc04515 as in
Figure 8.21. For the other tests CG behaves similar as in Figure 8.22.

Deflation is a situation in which DSBlockCG and BFDSCG should benefit
and be able to reduce the computational time. Since there is a lack of naturally
occurring situations in which deflation is needed we created special right-hand
sides to show the impact of deflation on the time measurements. We artificially
chose one right-hand side to be linearly dependent from the others after a few
iteration steps. More specifically, we computed 𝑏𝑚 = 𝑣(15) where 𝑚 is the
number of right-hand sides and 𝑣(15) is the 15-th Lanczos vector generated by
the Lanczos process applied to 𝐴 and 𝑏1. In this way, in exact arithmetic we
should encounter exact deflation while spanning 𝒦□

15(𝐴, 𝐵). In finite precision,
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Figure 8.21: Comparison of block methods depending on the number of
right-hand sides. The left plots display the number of matrix-vector mul-
tiplications normalised to BCGrQ and the right plots display the relative
time as compared to BCGrQ. The matrices used for the examples are from

top to bottom: msc04515, Pres_Poisson, smt, and nd12k.
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Figure 8.22: Comparison of block methods and CG. We show here the
same test run as in the first row of Figure 8.21 but include CG this time.
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however, we see this change to inexact deflation for larger numbers of right-
hand sides.

In Figure 8.23 we used the same settings for the matrices msc04515 and
nd12k as described before for Figure 8.21. As expected our algorithms can
benefit from deflating the linearly dependent vector. The reduction in the
number of matrix-vector multiplications in the tests directly translates into
improved timings. Hence, having a not too large number of right-hand sides
and deflation early in the iteration leads to DSBlockCG and BFDSCG being
faster than BCGrQ. Note that in these test BlockCG failed to converge and is
therefore no alternative to the DSBlockCG, BFDSCG, and BCGrQ.
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Figure 8.23: Comparison of block methods depending on the number of
right-hand sides including deflation of one vector. The left plots display
the number of matrix-vector multiplications normalised to BCGrQ and the
right plots display the relative time as compared to BCGrQ. The matrices

used for the examples are from msc04515 (top) and nd12k (bottom).

In Figure 8.24 we want to display how the deflation tolerance for inexact
deflation affects DSBlockCG and BFDSCG. We show two runs with msc04515
there and we used the settings as described before. In the upper plot in
Figure 8.24 we used 10−10 as deflation tolerance and in the lower 10−8. For
the 10−10 deflation tolerance (upper plot) in the DSBlockCG algorithm no
inexact deflation occurred for 38 or more right-hand sides since the tolerance
was not reached. In the BFDSCG algorithm the deflation tolerance was not
reached any more starting with 32 right-hand sides. Hence, the nearly linearly
dependent vector was kept and resulted in a slowed down convergence for
DSBlockCG whereas BFDSCG failed to converge.

When adjusting the deflation tolerance to 10−8 (lower plot in Figure 8.24)
both methods, DSBlockCG and BFDSCG, did apply inexact deflation and
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Figure 8.24: Comparison of deflation tolerance in DSBlockCG and
BFDSCG. In the upper plot we used 10−10 as deflation tolerance and in

the lower 10−8.

converge. However, the number of matrix-vector multiplications still increased
and with it the time.

8.5 Conclusion for the Numerical Results

In Section 8.2 we saw that the deflated block Lanczos-type processes from
Chapter 7 provide bases that keep orthogonality well when deflation occurs.
This is important for deflated block Krylov subspace methods that are based
on these processes.

In Section 8.3 we applied our cost model for the tested algorithms. We found
that it reflects the ranking of the different methods quite well.

From the examples for shifted block systems in Section 8.3 we can draw the
conclusion that BFDSCG and DSBlockCG can be faster than all the other
methods in some circumstances. Especially, when matrix-vector multiplica-
tions are costly as compared to vector operations and block-vector operations
noticeably save computational time over vector operations then BFDSCG can
outperform the other methods. DSBlockCG can be a good choice in situations
where block-vector operations do not yield a larger performance gain. For the
remaining examples sCG and—if the number of restarts can be kept low—
rsCG remain the methods of choice for solving (1.1). In all cases, deflation,
albeit occurring rarely, is beneficial for DSBlockCG and BFDSCG.

From the block system examples in Section 8.4 we can draw the conclusion
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that BFDSCG and DSBlockCG can be faster than BCGrQ in some cases,
especially when deflation occurs. If no deflation occurs then BlockCG tends
to be the fastest method to solve block systems. However, we found BlockCG
to not be a reliable algorithm since even without deflation it sometimes fails
to converge.





9 Conclusion and Outlook

Here, we summarise our findings and contributions. Afterwards we discuss
some possible future work that can be based upon the work done in this thesis.

Contributions

The incentive for this work was the realisation of a lack of methods targeted
at solving

(𝐴 + 𝜎𝑖𝐼)𝑥𝑖,𝑗 = 𝑏𝑗, 𝑖 = 1, … , 𝑠, 𝑗 = 1, … , 𝑚. (1.1)

for Hermitian positive definite matrices (𝐴 + 𝜎𝑖𝐼) ∈ ℂ𝑛×𝑛 efficiently and reli-
ably. Primarily, this was driven by the need for solving this family of shifted
linear systems in lattice QCD applications. But as we illustrated in Chapter 4
there are more applications requiring solutions for (1.1). In our search for the
best way of solving (1.1) we have

• developed two novel shifted block Krylov subspace methods, namely the
DSBlockCG and the BFDSCG algorithm, that are based on deflated
Lanczos-type processes,

• worked out the algorithmic details of a restarted shifted CG method for
computing 𝑓(𝐴)𝑥, and

• explored multiple other approaches like shifted methods and methods for
multiple right-hand sides.

To tackle the problems of the common practice of simply counting matrix-
vector multiplications as a method to compare Krylov subspace methods we
developed a cost model that allows to estimate the runtime of an algorithm.
This cost model differentiates between the costs of matrix-vector multipli-
cations and matrix-block-vector multiplications and can thereby be used for
algorithms using either approach. We applied this cost model to all the meth-
ods and used it to rank them by which method is most likely to show the
shortest runtime. However, these estimates need some knowledge of the con-
vergence behaviour, information on the matrix 𝐴, and a few educated guesses.
Apart from that, it can be used as decision support for which method might

223
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be applied to solve (1.1) in a particular application and which method can be
ruled out.

Our numerical examples showed that there is no best method in the sense
that one method is always the fastest and thus first choice. In our observa-
tions the major performance gain is achieved by exploiting the shift invariance
of Krylov subspaces. Block methods are typically faster than methods for
single right-hand sides but in some situations the costs for handling multi-
ple right-hand sides outweigh the benefits. We found that using block meth-
ods that involve matrix-block-vector multiplications instead of matrix-vector
multiplications can yield a considerable gain especially for a large number of
right-hand sides. The combination of handling multiple right-hand sides and
multiple shifts at the same time has the potential to improve performance but
is not guaranteed to be faster than shifted methods. Depending on the specific
parameters of the application we found in our tests one of the methods sCG,
rsCG, DSBlockCG, and BFDSCG to be the fastest to solve (1.1).

In our tests we never observed near linear dependency occurring naturally. In
some of the tests in Chapter 8 we artificially introduced near linear dependency.
These suggest that if there are real applications in which deflation occurs
naturally then these would be opportunities for DSBlockCG and BFDSCG to
shine. Moreover, when solving block systems DSBlockCG and BFDSCG can
be alternatives for BlockCG which sometimes fails to converge even when no
deflation occurs.

All in all, we have presented new methods that can—in certain situations—
improve on existing methods for solving families of shifted linear systems with
multiple right-hand sides.

Future Work

There are some paths that opened up in this thesis for being explored further
in future work.

As a start it would be interesting to investigate if other restarting techniques
could be used in rsCG. This might make the algorithm less prone to slowdowns
caused by large numbers of restarts.

Especially for sparse matrices the block methods suffered from the matrix-
block-vector multiplications not being much faster than matrix-vector multi-
plications. If other sparse matrix formats like the SELL-𝐶-𝜎 [Kre+14] format
could be employed then block methods could make up some ground to shifted
(block) methods.

Another possible path of exploration which is of practical interest is how
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parallel implementations of these methods behave in terms of runtime. De-
pending on which operations benefit from parallelisation, the outcome of the
tests could be quite different. But, if parallelisation only reweighs the ratio of
the time for different operations then our cost model would stay valid and the
new numbers could be fed back to it.

An algorithmically interesting question to answer is whether the rsCG algo-
rithm could be extended to be able to solve systems with multiple right-hand
sides. Clearly, this would immediately imply the question of how to address
deflation properly.
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