Neue Synthesen chiraler und polar funktionalisierter Phosphanliganden

Inaugural-Dissertation

Zur Erlangung des Grades eines Doktors der Naturwissenschaften, angefertigt im Fachbereich 9, Chemie der Bergischen Universität-Gesamthochschule Wuppertal

von

Thomas Nickel

aus Wuppertal

Wuppertal 2000

Eingereicht am:	04. 09. 2000
Mündliche Prüfung am:	15. 12. 2000
1. Gutachter:	Prof. Dr. O. Stelzer
2. Gutachter:	Prof. Dr. H. Bürger

Die vorliegende Arbeit wurde in der Zeit von März 1997 bis September 2000 im Fach Anorganische Chemie des Fachbereichs 9, Chemie, der Bergischen Universität-Gesamthochschule Wuppertal angefertigt.

Besonderer Dank gilt meinem verehrten Doktorvater Herrn Prof. Dr. O. Stelzer für den mir gewährten Freiraum bei der Gestaltung des Themas sowie für seine hilfreiche Unterstützung bei der Durchführung dieser Arbeit.

Herr Prof. Dr. D. J. Brauer, Herr Dr. P. Machnitzki und Herr Dipl. Chem. K. Kottsieper führten die Röntgenstrukturanalysen durch.

Frau I. Polanz unterstützte diese Arbeit durch die Aufnahme der NMR-Spektren.

Frau Dipl. Chem. E. Smets hat die massenspektrometrischen Messungen durchgeführt.

Frau Dipl. Biol. K. Behrendt führte die CAS-Online-Recherchen durch.

Ihnen allen sei an dieser Stelle herzlich gedankt.

Mein Dank gilt ferner allen Mitarbeiterinnen und Mitarbeitern der Arbeitskreise Anorganische und Organische Chemie, insbesondere Dipl. Chem. S. Roßenbach, Dipl. Chem. S. Schenk und meinen Laborkollegen Dr. O. Herd, Dr. P. Machnitzki, Dipl. Chem. C. Liek und Dipl. Chem. U. Kühner für das freundschaftliche Arbeitsklima

Abstract

Twofold hydroxylated chiral secondary and tertiary phosphines (2a-d) have been obtained in good yields by ringopening reactions of R-(+)-2,3-epoxy-1-propanol with primary or secondary phosphines respectively in the superbasic medium DMSO/KOH.

Subsequent treatment of the compounds 2a, 2d with $PhB(OH)_2$ leads to new chiral dioxaborolane containing ligands (3a, b) with Lewis acid moieties in the periphery. The X-ray structural analysis of 3a reveals the boron substituted aromatic ring system to be almost coplanar with the dioxaborolan moiety.

Watersoluble derivatives (2e, g) are accessible by Pd-catalyzed P-C coupling reaction of the secondary phosphine 2c with suitable substituted aryliodides or by nucleophilic aromatic substitution of fluorine in o-F-C₆H₄-SO₃Na with 2c in DMSO/KOH, respectively.

Improved methods have been developed for the synthesis of mono- and bidentate phosphine ligands (4a-f, 5a-g) bearing chiral dioxolane systems. Compounds 4a and 4d are obtained enantiomerically pure, while the other phosphines are formed as mixtures of diastereoisomers with homochiral β -carbon atoms. Resolution of these mixtures by fractional crystallisation is described in three cases, leading to diastereomerically pure compounds with up to six centers of chirality.

Introduction of polar substituents like sulfonic or guanidinium groups in the aromatic ring system of **4a** was achieved by Pd-catalyzed P-C-coupling reactions of the secondary phosphine **4c** with *p*-I-C₆H₄-SO₃Na or *m*-I-C₆H₄-NC(NMe₂)(NH₂), respectively.

On reaction with $PdCl_2(COD)$ the phosphines **2a**, **3a**, **4a** yield square planar complexes **6-8** of the composition $PdCl_2L_2$ either as *cis* or as *trans* isomers, depending on the steric hindrance and the solvent used. Neutral and cationic Rh(I)-complexes **10-13** are obtained on treatment of **4a**, **5a**, **5b** with [RhCl(NBD)]₂.

The preparation of the new enantiomerically pure bis(phospholane) ligand **19** is described, using PH_3 as a starting material. The tosylated derivative **20** is obtained by reaction of **18** with threitolditosylate in a 1:1 stoichometry. **20** is a valuable synthon for the preparation of C_1 -symmetric diphosphines.

The following part of this work deals with the synthesis of new chiral electron rich phosphines with functionalized bulky cyclohexyl substituents. Base catalyzed addition of PhPH₂ or Ph₂PH to a Michael system affords the phosphines **21** and **22**, which may easily be hydrolyzed yielding water soluble carboxylated compounds.

Employing PH_3 the phospha analogue of the amino acid glycine 23 has been obtained by nucleophilic substitution of chloride in ClCH₂COONa in liquid ammonia. On radical initiated addition of 23 to higher olefins, tertiary phosphines 25 and 26 with tensidic character are formed.

The last part of this work is concerned with the synthesis of the new phosphonatomethyl derivatives of triphenylphosphine **31**, **32**. They are accessible in a two stage synthesis using *o*-iodobenzylchloride or *m*-iodobenzylbromide as starting materials. Arbuzov reaction with $P(OEt)_3$ and Pd-catalyzed P-C coupling reactions with Ph_2PH gave the esters **28**, **29**. Purification of **28** was achieved via its BH₃ adduct **30**.

The catalytic activities of some of the phosphines (2a, d, 3a, b, 4a, d, 31, 32) in a Pdcatalyzed C-C cross coupling reaction (Suzuki reaction) have been investigated.

All compounds have been identified by NMR-spectroscopy and if possible by mass spectrometry. The structures of the phosphines 3a,20 and the phosphine oxide 4g have been determined by X-ray structural analysis.

Abkürzungsverzeichnis

Jahre a Abb. Abbildung AIBN 2, 2'-Azo-bis-(2-methyl-propionsäurenitril) Ar Aryl berechnet ber. *n*-Bu *n*-Butyl *t*-Bu *tertiär*-Butyl COD 1, 5-Cyclooctadien COSYCOrrelated SpectroscopY (NMR) d Tage DEPT Distortionless Enhancement by Polarisation Transfer (NMR) chemische Verschiebung (NMR) δ DME Dimethoxyethan DMSO Dimethylsulfoxid Et Ethyl gef. gefunden Gl. Reaktionsgleichung Stunden h $^{n}J(XY)$ Kopplungskonstante der Kerne X und Y über n Bindungen (NMR) Kap. Kapitel Ligand L Lit. Literatur long range-Kopplung (NMR) l.r. Molarität Μ \mathbf{M}^+ Molekülion (MS) Multiplett (NMR) m Me Methyl min Minuten n. b. nicht beobachtet NBD Norbornadien NMR Kernresonanzspektroskopie ortho-, meta-, parao-, m-, p-Ph Phenyl s, d, dd, t Singulett, Dublett, Dublett von Dubletts, Triplett (NMR) Tab. Tabelle THF Tetrahydrofuran TPPTS Tris-(natrium-m-sulfonatophenyl)phosphan d. Th. der Theorie i. Vak im Vakuum

1 Einleitung und Problemstellung

1.1 Entwicklung der asymmetrischen Katalyse

In der modernen industriellen chemischen Synthese spielt die Entwicklung und Anwendung katalytischer Prozesse eine bedeutende Rolle. Durch Verringerung der Aktivierungsenergie des geschwindigkeitsbestimmenden Schritts wird die Umsatzgeschwindigkeit um bis zu zehn Größenordnungen erhöht. Dies hat zur Folge, daß eine Reaktionsführung unter deutlich milderen Bedingungen (niedriger Druck bzw. Temperatur) ermöglicht wird.

Die *homogene* Katalyse nahm insbesondere seit der Entwicklung der ersten löslichen Rhodium(I)-Komplexkatalysatoren durch Wilkinson und Osborne im Jahre 1966¹ einen sehr raschen Aufschwung und wurde in sehr kurzer Zeit auf Verfahren im industriellen Maßstab übertragen.

Bereits sehr frühzeitig wurde auch die Entwicklung *stereoselektiver* Katalyseverfahren intensiv vorangetrieben, um die multiplikative Übertragung der stereochemischen Information durch einen chiralen Komplexkatalysator zu nutzen. Hier sind insbesondere die 1968 veröffentlichten Pionierarbeiten von Knowles und Sabacky² in den USA sowie von Horner und Mitarbeitern³ in Deutschland zu nennen, die unabhängig voneinander, durch Austausch der Triphenylphosphan-Liganden im Wilkinson-Komplex (Ph₃P)₃RhCl gegen optisch aktive Phosphane, Katalysatoren entwickelten, die in der Lage waren, prochirale Acrylsäurederivate enantioselektiv zu hydrieren.

Nach diesen vielversprechenden ersten Ergebnissen wurden in der Folgezeit eine Vielzahl weiterer chiraler Phosphanliganden dargestellt, die den von ihnen abgeleiteten Katalysatorsystemen zunehmende Aktivität und Selektivität verliehen.

Sehr bald zeigte sich, daß durch Verwendung von Diphosphanen als chelatisierende Komplexliganden eine erhebliche Steigerung der Selektivität möglich war. Der von Kagan und Mitarbeitern 1971 entwickelte Ligand DIOP^{4,5} (Abb. 1-1, **L1**), der in einer

fünfstufigen Synthese aus Weinsäure dargestellt wurde, ist bis heute einer der effizientesten Liganden für die asymmetrische Hydrierung einer großen Anzahl Substrate. Weitere chirale Diphosphane, meist mit asymmetrischen C-Atomen, aber auch mit asymmetrischen P-Atomen wie z.B. DIPAMP, sind in Abb. 1-1 zusammengestellt.

Abb. 1-1. Chirale Diphosphane

Der Ligand BINAP (L5)⁶ weist als Chiralitätselement ein axialchirales Binaphthylrückgrat auf.

Zum Aufbau solcher chiraler zweizähniger Phosphane wird oftmals der "chiral pool" als Quelle der chiralen Information genutzt. So leiten sich die Liganden L1 und L4 von der Weinsäure ab, L6 ist ein Derivat der Aminosäure Prolin⁷. Weitere Liganden, die sich von diversen anderen Naturstoffen wie Mandelsäure⁸, Milchsäure⁹, verschiedenen Terpenen¹⁰ oder auch von Zuckern¹¹⁻¹⁴ ableiten, gelangten ebenfalls zur Anwendung.

Trotz der großen Anzahl der im Laufe der letzten 25 Jahre entwickelten Ligandensysteme und der oft beeindruckenden Resultate im Hinblick auf die Aktivität und Selektivität in vielen katalytischen Prozessen, blieben dennoch einige grundsätzliche Fragen über die Zusammenhänge zwischen strukturellen Parametern des chiralen Katalysators und seiner Aktivität bzw. Selektivität unbeantwortet. Die Suche nach geeigneten Katalysatoren für einen bestimmten Prozeß verläuft daher auch heute noch überwiegend nach dem "trial and error"-Verfahren.

Es wurden jedoch im Laufe des letzten Jahrzehnts Konzepte entwickelt, die, ähnlich wie die bekannten Tolman'schen Parameter zur Charakterisierung einzähniger Phosphane¹⁵, eine systematische Beschreibung der Ligandeneigenschaften zweizähniger Phosphane zum Ziel haben, um auf diese Weise Aussagen über die Struktur-Wirkungs-Beziehung in Komplexkatalysatoren machen zu können. Insbesondere die Aktivität und Regioselektivität von Rhodium-Diphosphan-Komplexen in der Hydroformylierung terminaler Olefine wurden auf der Grundlage des "natural bite angle"-Konzepts¹⁶ eingehend untersucht^{17,18}.

Die Synthese sowohl chiraler als auch achiraler Diphosphane für ein systematisches "Liganden-screening" ist meist aufwendig und kostspielig. Daher kommt der Entwicklung neuer, verbesserter Methoden zur Darstellung zweizähniger Phosphane unter Variation des Ligandenrückgrats eine besondere Bedeutung zu.

Neben den sterischen Parametern zweizähniger Phosphane unter Einbeziehung des Ligandenrückgrats sowie der peripheren molekularen Untereinheiten, die zusammen die Geometrie der Metallbindungsstelle festlegen, sind die elektronischen Eigenschaften der Donoratome (σ -/ π -Donor-/Akzeptorvermögen) die zweite Einflußgröße für die Bildung katalytisch aktiver Übergangsmetallkomplexe. Insbesondere bei Substraten wie Ketonen, α -Ketoestern und Iminen, deren asymmetrische katalytische Reduktion bisher nur in wenigen Fällen mit zufriedenstellender Enantioselektivität gelang^{19,20}, scheint die Verwendung elektronenreicher Phosphane wie z. B. DuPHOS (**L2**) essentiell zu sein^{21,22}. Die Entwicklung neuer elektronenreicher Peralkylphosphane mit chiraler Peripherie und/oder chiralem Ligandenrückgrat ist daher von besonderem Interesse.

1.2 Polar modifizierte Phosphanliganden

Einige der aktivsten Phosphanliganden, die in der homogenen Katalyse Verwendung gefunden haben, besitzen zusätzliche Funktionalitäten, wie z. B. Alkoxyfunktionen (**L1, L3**), in der Peripherie des Liganden oder im Ligandenrückgrat. Ebenso konnte gezeigt werden, daß die Einführung einer Hydroxygruppe in der Ligandenperipherie bei manchen katalytischen Prozessen zu einer Selektivitätssteigerung führen kann^{23,24}. Es wird angenommen, daß Hydroxy- bzw. Alkoxygruppen die Funktion eines intramolekularen Solvensmoleküls übernehmen und somit Koordinationsstellen reversibel besetzen²⁵. Darüberhinaus könnte die Ausbildung von Chelatringen solcher hemilabilen P-O-Hybridliganden die stereodifferenzierenden Eigenschaften des Übergangsmetall-Komplexes zusätzlich verstärken. Ein systematischer Vergleich zwischen β-Alkoxy- und β-Hydroxyalkylphosphanen als Liganden in der asymmetrischen Hydrierung wurde 1995 von A. Börner und Mitarbeitern durchgeführt²⁶.

Neben der Änderung der chemischen Eigenschaften des Phosphanliganden (Donorstärke, Basizität etc.) werden durch die Einführung hydroxylierter Seitenketten auch physikalische Eigenschaften, u. a. die Löslichkeit in polaren Medien, beeinflußt. Mehrfach hydroxylierte Phosphane stellen somit potentielle Liganden für homogenkatalytische Prozesse im Zweiphasensystem Wasser / organisches Lösungsmittel dar²⁷. Die Zweiphasenkatalyse^{28,29} besitzt gegenüber der herkömmlichen homogenen Katalyse in organischen Solventien folgende Vorteile:

- Einfache Abtrennung des wasserlöslichen Katalysators von der (organischen)
 Produktphase
- Geringer Schwermetallgehalt in den Reaktionsprodukten
- Wasser als preiswertes und ökologisch unbedenkliches Lösungsmittel.

Die Übertragung von Wasserlöslichkeit auch auf chirale Phosphanliganden für die asymmetrische Katalyse ist bisher jedoch nur auf wenige Beispiele beschränkt geblieben (s. Abb. 1-2, L7-L9)³⁰⁻³².

Abb. 1-1: Chirale wasserlösliche Diphosphane

Wie in den Beispielen L7-L9 (Abb. 1-2) erfolgt die Vermittlung der Wasserlöslichkeit meist über Sulfonatgruppen, die häufig durch Direktsulfonierung eingeführt werden. Alternativ dazu kann die Wasserlöslichkeit der Katalysatoren auch durch die Einführung von Phosphanen mit anderen anionischen³³⁻³⁵, kationischen³⁶⁻³⁹ oder ungeladenen hydrophilen Gruppen⁴⁰ erreicht werden. Über Phosphane mit Phosphonatgruppen, die im Vergleich zu Sulfonatgruppen eine zusätzliche negative Ladung tragen, wurde erstmals 1994 in der Literatur berichtet⁴¹. Weitere Triphenylphosphanderivate, einschließlich des phosphonierten Analogon zum bekannten TPPTS-Liganden⁴², wurden in der Folgezeit dargestellt^{43,44}.

Zur Optimierung der Katalysatoren im Zweiphasensystem für unterschiedliche Reaktionstypen und verschiedene Substrate ist die Entwicklung einer systematischen Methodik zum modularen Aufbau solcher polar modifizierter Triphenylphosphanderivate ein wichtiger Schritt. Als Synthesestrategien sind hierfür in den letzten Jahren zwei grundlegende Verfahren entwickelt worden:

- Nucleophile Phosphinierung von polar substituierten Arylhalogeniden mit Alkalimetallphosphiden^{45,46} (u. a. im "superbasischen Medium" DMSO/KOH)
- Metallkatalysierte P-C-Kupplungsreaktion von primären oder sekundären Phosphanen mit polar substituierten Aryliodiden⁴⁷.

Neben Triarylphosphanen sind auch polar modifizierte Phosphane mit langkettigen Alkylresten für die Zweiphasenkatalyse von besonderem Interesse. Aufgrund ihres Tensidcharakters sollten solche Phosphane in der Lage sein, Micellen zu bilden⁴⁸. Dies macht hiervon abgeleitete Rhodiumkomplexe zu potentiellen Katalysatoren für die micellare Zweiphasen-Hydroformylierung⁴⁹ langkettiger, in Wasser unlöslicher Olefine.

1.3 Problemstellung

Das Hauptinteresse des ersten Teils dieser Arbeit galt der Darstellung chiraler sekundärer und tertiärer Phosphane und Diphosphane mit mehrfach hydroxylierten Seitenketten sowie zusätzlich polar substituierten Derivaten als potentiellen Liganden für die Zweiphasenkatalyse. Hierbei ergaben sich folgende Teilaspekte:

- Entwicklung geeigneter Synthesemethoden zur Einführung mehrfach hydroxylierter Seitenketten
- Darstellung zusätzlich polar substituierter Derivate durch P-C-Kupplungsreaktionen oder nucleophile Phosphinierung
- Überführung der chiralen Diolsysteme in Dioxaborolan- und Dioxolanringsysteme bzw. Entwicklung alternativer Synthesestrategien sowie die Darstellung polar substituierter Derivate
- Trennung der diastereomeren Diphosphane an ausgewählten Beispielen
- Untersuchung des katalytischen Aktivität der dargestellten Phosphane an ausgewählten Beispielen
- Untersuchungen zur Koordinationschemie der dargestellten Phosphane.

Eine weitere Aufgabenstellung bestand in der Entwicklung verbesserter Methoden zur Darstellung elektronenreicher Phosphane. Hierbei sollten zwei Verbindungsklassen bearbeitet werden:

- Polar substituierte Cyclohexylphosphane
- Zweizähnige Phosphane mit chiralen Phospholangruppen.

Neue amphiphile Phosphanliganden mit Tensidcharakter sollten ausgehend von Phosphinoessigsäure aufgebaut werden.

Im Zusammenhang mit der Entwicklung neuer phosphonierter Phosphanliganden sollte die polare Phosphonatgruppe über eine Methylenbrücke flexibel mit dem aromatischen Kern eines Triphenylphosphan-Grundgerüstes verknüpft werden. Auch hier sollte die palladiumkatalysierte P-C-Kupplungsreaktion ("Hetero-Heck-Reaktion") zur Anwendung kommen.

Alle im Rahmen der Arbeit dargestellten Phosphane sowie ihre Metallkomplexe sollten eingehend NMR-spektroskopisch untersucht werden. Die Strukturen repräsentativer Phosphanliganden sollten durch Röntgenstrukturanalysen ermittelt werden.

2 Synthese und Charakterisierung von Phosphanen mit hydroxylierten Seitenketten

2.1 Synthese der Verbindungen 1, 2a- d

Die hauptsächliche Zielsetzung zu Beginn dieser Arbeit war, möglichst einfache und effiziente Methoden zu entwickeln, um polare Hydroxyalkyl-Reste in die Peripherie von Phosphanliganden einzuführen und hierbei geeignete Wege zu finden, die auch die Einbeziehung chiraler Seitenketten ermöglichen. Synthesestrategien, die gegenüber der Verwendung vielfach funktionalisierter Zuckerbausteine den Vorteil weniger komplexer Edukte besitzen, sind einerseits die Addition von sekundären Phosphanen an Aldehyde⁵⁰ sowie andererseits die nucleophile Ringöffnung chiraler Epoxide.⁵¹⁻⁵⁵ Diese sind in großer Anzahl kommerziell preiswert erhältlich oder durch enantioselektive Synthesen, wie z.B. die Sharpless-Epoxidierung von Allylalkoholen^{56,57}, gut zugänglich. Ein erstes Ziel der vorliegenden Arbeit war die Umsetzung primärer und sekundärer Phosphane mit enantiomerenreinem (R)-(+)-Glycidol (2,3-Epoxy-1-propanol) zur Einführung eines chiralen 2,3-Dihydroxy-propylrestes.

Für die Erzeugung des für die Ringöffnung notwendigen Phosphornucleophils bieten sich, ausgehend von primären oder sekundären Phosphanen, grundsätzlich zwei Möglichkeiten an:

- Metallierung des Phosphans mit *n*-BuLi, MeLi, NaNH₂ u. ä.
- Gleichgewichtsdeprotonierung des Phosphans im "superbasischen Medium" DMSO/KOH^{58,59}

Die Deprotonierung in DMSO/KOH besitzt gegenüber der Metallierung den Vorteil, daß sich neben sekundären auch primäre Phosphane oder PH₃ umsetzen lassen und somit primäre bzw. sekundäre Phosphane zum systematischen Aufbau multifunktioneller Phosphane zugänglich sind.

Abb. 2-1. Nucleophile Ringöffnung von Epoxiden; mögliche Reaktionsprodukte.

Die Ringöffnungsreaktion des Epoxids verläuft in den meisten Fällen sowohl regioals auch stereoselektiv, wie auch durch theoretische Studien belegt werden konnte^{60,61}. So erfolgt der Angriff des Nucleophils bevorzugt am weniger substituierten C-Atom (s. Abb. 2-1, A). Hierbei erfolgt eine Inversion der Konfiguration, während die des höher substituierten, asymmetrischen C-Atoms erhalten bleibt. Dies führt bei Verwendung unsymmetrischer sekundärer Phosphane ($R \neq R'$) zu diastereomeren Verbindungen, die C- und P-chiral sind, bei Verwendung symmetrischer Phosphane, wie Phenyl- oder Diphenylphosphan sowie enantiomerenreiner Epoxide wird dagegen eine enantiomerenreine Verbindung erhalten.

Vorversuche mit den racemischen Epoxiden 1-Butenoxid sowie *rac*-Glycidol zeigten den erwarteten glatten Reaktionsverlauf, der leicht anhand der allmählichen Entfärbung des Reaktionsgemisches verfolgt werden kann. So lieferte die Umsetzung von Diphenylphosphan mit 1-Butenoxid in DMSO/KOH (Gl. 1) nur ein Produkt ($\delta P = -21.25$ ppm), wie mit Hilfe der ³¹P{¹H}-NMR-Spektroskopie belegt werden konnte.

Durch Aufnahme eines ${}^{13}C{}^{1}H$ -DEPT-NMR-Spektrums konnte der Substitutionsgrad des hydroxylsubstituierten C-Atoms C6 ($\delta C = 70.85$ ppm, ${}^{2}J(CP) = 16.3$ Hz) in **1** bestimmt werden. Die Bildung eines primären Alkohols gemäß B (s. Abb. 2-1) kann somit ausgeschlossen werden.

Der Erhalt der Stereochemie konnte durch Umsatz von Phenylphosphan mit 2.2 Äquivalenten Glycidol belegt werden. Das Produkt der Reaktion mit racemischem Glycidol zeigt im ³¹P{¹H}-NMR-Spektrum drei Signale ($\delta P = -32.4, -33.8, -34.4$ ppm) im Verhältnis 1:2:1, die verschiedenen Stereoisomeren zugeordnet werden können. Die möglichen Stereoisomeren sind in Abb. 2-2 dargestellt.

Abb. 2-2. Mögliche Stereoisomere von 2d (s. Schema 2-1, S. 11).

Es wird deutlich, daß aufgrund der Symmetrie der Verbindung vier Stereoisomere entstehen können. Die *meso*-Verbindungen besitzen, aufgrund der unterschiedlich konfigurierten chiralen Seitenketten, das P-Atom als ein zusätzliches Pseudochiralitätszentrum, so daß zwei verschiedene *meso*-Verbindungen mit chemisch inäquivalenten P-Atomen entstehen. Im Falle der Stereoisomere mit homochiralen Seitenketten entfällt dieses Asymmetriezentrum und es ergibt sich ein Paar von

10

Enantiomeren, welches im ${}^{31}P{}^{1}H$ -NMR-Spektrum nur ein Signal mit doppelter Intensität erzeugt.

Eben dieses Signal ($\delta P = -33.8 \text{ ppm}$) zeigt auch das ³¹P{¹H}-NMR-Spektrum des Produktes **2d**, welches bei der Umsetzung mit enantiomerenreinem (*R*)-(+)-Glycidol entsteht. Hieraus ergibt sich zweifelsfrei, daß die Umsetzung ohne Epimerisierung verläuft. In gleicher Weise wurden durch Variation des eingesetzten Phosphans bzw. der Stöchiometrie die Phosphane **2a**, **2b** und **2c** dargestellt (s. Schema 2-1).

Schema 2-1. Darstellung der Phosphane 2a-d

Während die Synthesen der Verbindungen **2a**, **2b** und **2c** mit stöchiometrischen Mengen (R)-(+)-Glycidol erfolgten, mußte zur Darstellung von **2d** ein Überschuss von 10 – 20 % an Glycidol eingesetzt und die Reaktionszeit von ca. 1 h auf 3 h verlängert werden. Darüber hinaus ist das Phosphan **2d** oberhalb von 70 °C thermisch instabil, wodurch seine Einsatzmöglichkeit in katalytischen Prozessen eingeschränkt ist.

2.2 Charakterisierung der Phosphane 1, 2a-d

Das Diphenylphosphanderivat 2a entsteht bei der beschriebenen Synthese, ebenso wie **2d**, in enantiomerenreiner Form (**2a**: $[\alpha]_{D}^{20} = -19.4^{\circ}$, (c = 1.3, CH₂Cl₂); **2d**: $[\alpha]_{D}^{20} = -$ 25.7 °, (Reins.)), während die Verbindungen 2b und 2c aufgrund der asymmetrischen P-Atome als Gemische von je zwei Diastereomeren anfallen. Diese erzeugen jeweils zwei deutlich separierte Signale im ${}^{31}P{}^{1}H$ -NMR-Spektrum (**2b**: $\delta P = -39.1$; -41.0 ppm, **2c**: $\delta P = -63.1$; -63.4 ppm). Beide Signale des sekundären Phosphans **2c** zeigen ³¹P-NMR-Spektrum eine $^{1}J(PH)$ im Aufspaltung einer typischen mit Kopplungskonstanten von 211.8 Hz⁶². Sie sind zudem im Vergleich zum Diphenylphosphan ($\delta P = -42 \text{ ppm}^{63}$), aufgrund des +I-Effektes des Alkylrestes, deutlich zu hohem Feld verschoben. Auch die chemischen Verschiebungen δP der übrigen Phosphane liegen in den für Diarylalkyl- bzw. Dialkylarylphosphane typischen Bereichen.

Die Zuordnung der ¹³C{¹H}-NMR-Signale erfolgte unter Zuhilfenahme von ¹³C{¹H}-DEPT-NMR-Spektren, der Größe der Kopplungskonstanten sowie durch Vergleich mit strukturanalogen literaturbekannten Verbindungen (z.B. L10).

Die Signale der α -C-Atome der Hydroxyalkylreste der tertiären Phosphane liegen im Bereich von $\delta C = 33 - 38$ ppm mit ¹*J*(CP)-Kopplungskonstanten zwischen 12.2 und 14.2 Hz. Ein Vergleich mit ¹³C{¹H}-NMR-Daten des (*R*,*R*)-1,4-Bis(diphenylphosphino)-2,3-dihydroxybutan (**L10**), das von R. Descheneaux und *J*. Stille erstmals dargestellte Hydrolyseprodukt des (*R*,*R*)-DIOP ⁶⁴ ($\delta C(\alpha) = 33.7$ ppm, ¹*J*(CP) = 13.2 Hz⁶⁵), ermöglichte eine eindeutige Zuordnung der Signale.

Die α -C-Atome der diastereomeren sekundären Phosphane **2c** erzeugen im Vergleich dazu hochfeldverschobene Signale bei $\delta C = 27.92$ bzw. 27.97 ppm mit ¹J(PC)-Aufspaltungen von 14.2 bzw. 13.2 Hz.

Die Signale der Methin-C-Atome in β -Position liegen einheitlich in einem engen Bereich von δC zwischen 70 und 72 ppm mit ²*J*(CP)-Kopplungskonstanten von 13.0 bis 16.3 Hz (L7 (S. 5): $\delta C(\beta) = 72.0$ ppm, ²*J*(CP) = 14.8 Hz). Hinsichtlich der Größe der Aufspaltung bildet auch hier das sekundäre Phosphan **2c** eine Ausnahme (²*J*(CP) = 8.1 bzw. 9.2 Hz). In einem ähnlichen Bereich von δC (67.3 – 68.2 ppm) liegen auch die chemischen Verschiebungen der Signale der hydroxylsubstituierten γ -C-Atome. Auch sie zeigen ³*J*(CP)-Kopplungskonstanten in dem für Alkylphosphane typischen Bereich von 6.1 bis 9.2 Hz.

Das Phosphan 1 ist in γ -Position nicht hydroxylsubstituiert, entsprechend zeigt dieses C-Atom im ¹³C{¹H}-NMR-Spektrum eine deutlich abweichende Resonanzfrequenz. Die Resonanz des γ -C-Atoms des 2-Hydroxybutylrestes erscheint bei $\delta C = 31.66$ ppm (³*J*(CP) = 7.1 Hz), das C-Atom der terminalen Methylgruppe erzeugt lediglich ein Singulett bei $\delta C = 10.0$ ppm.

Die Anzahl der Signale in den oben diskutierten ¹³C{¹H}-NMR-Spektren wird durch die Stereochemie der Verbindungen bestimmt. Die Diphenylphosphanderivate **1** und **2a** zeigen im ¹³C{¹H}-NMR-Spektrum für jedes C-Atom ihrer Alkylreste nur ein Signal. Durch ¹³C-Substitution in einem der Phenylreste wird hingegen ein neues Stereozentrum am P-Atom erzeugt, wodurch diese Phenylreste diastereotop werden und somit potentiell anisochron sind. Eine analoge Betrachtung des Dialkylarylphosphans **2d** läßt hier eine doppelte Anzahl der Signale der Alkyl-C-Atome erwarten. Dies konnte durch das ¹³C{¹H}-NMR-Spektrum belegt werden. **2b** und **2c** liefern, da hier jeweils zwei Diastereomere vorliegen, einen verdoppelten Signalsatz.

Somit sind für die C-Atome der Phenylreste aller hier diskutierten Verbindungen, mit Ausnahme von **2d**, acht Signale in dem für aromatische C-Atome typischen Bereich des ¹³C{¹H}-NMR-Spektrums zu erwarten. Durch Linienkoinzidenz werden teilweise nur sieben Signale beobachtet (**2a**, **2b**), sie zeigen jedoch alle die für unsubstituierte Phenylreste in Arylphosphanen typischen Signalreihenfolgen, d.h. die Signale der *ipso*-C-Atome erscheinen bei tiefstem Feld, gefolgt von denen der *ortho-*, *para-* und *meta-*C-Atome⁶⁶. Die Größe der Kopplungskonstanten und die relativen Signalintensitäten wurden zusätzlich zur eindeutigen Zuordnung der ¹³C{¹H}-NMR-Resonanzen herangezogen. Im Falle der Verbindungen **2b** und **2c**, die als Diastereomerengemische anfielen, ist jedoch eine Zuordnung der ${}^{13}C{}^{1}H$ -NMR-Signale zu den jeweiligen Diastereomeren nicht möglich.

Die ¹H-NMR-Spektren der Phosphane **1** und **2a**– **d** zeigen jeweils deutlich separierte Resonanzen für die aromatischen Protonen. Sie repräsentieren, wie für einfach substituierte Phenylreste zu erwarten, den AA'BB'C-Teil von AA'BB'CX-Spinsystemen (A,A',B,B',C = ¹H, X = ³¹P)⁶⁷, deren Analyse aufgrund der zu geringen Auflösung der Spektren nicht möglich war.

Weiterhin zeigen sämtliche ¹H-NMR-Spektren im Bereich zwischen 1 und 4-5 ppm sehr komplexe Linienmuster. Sie resultieren aus den verschiedenen diastereotopen Protonen der Methylengruppen und den Methinprotonen. Bei allen hier diskutierten Verbindungen sind sowohl die Protonen der α -Methylengruppen, als auch die der γ -Methylengruppen diastereotop. Sie repräsentieren im Falle der Verbindungen **2a** und **2b** zusammen mit den Methinprotonen und dem jeweiligen P-Atom ABCDEX-Spinsysteme (A,B,C,D,E = ¹H, X = ³¹P). Das ¹H-NMR-Spektrum des diastereomerenreinen Phosphans **2d** sollte aufgrund der schon diskutierten Diastereotopie der beiden Alkylreste für deren Protonen einen nochmals verdoppelten Signalsatz zeigen; hierbei wird bereits vereinfachend die Kopplung der diastereotopen Protonen über das P-Atom hinweg vernachlässigt. Eine genaue Angabe der chemischen Verschiebung δ H und der Kopplungskonstanten ist daher für diese Protonen meist nicht möglich. Dennoch gelingt in vielen Fällen eine Zuordnung der Multiplettstrukturen zu den entsprechenden Protonengruppen innerhalb eines Moleküls auf der Basis der chemischen Verschiebungen δ H sowie der Integralverhältnisse.

Das ¹H-NMR-Spektrum der diastereomeren sekundären Phosphane **2c** zeigt jeweils ein zusätzliches Signal für die phosphorgebundenen H-Atome mit Dublett von Dublett von Dublett-Aufspaltungen, die aus den Kopplungen zum P-Atom sowie zu den beiden α -Methylenprotonen resultiert (s. Abb. 2-3). Eines der beiden Diastereomeren zeigt ein Signal bei $\delta H = 4.34$ ppm mit ³*J*(HH)-Kopplungskonstanten von 8.0 bzw. 7.1 Hz. Die ³*J*(HH)-Kopplungskonstanten des anderen Diastereomeres ($\delta H = 4.38$ ppm) betragen 8.2 bzw. 6.6 Hz. Die ¹*J*(HP)-Kopplungskonstanten entsprechen den in den ³¹P-NMR-Spektren gefundenen Werten von 211.8 Hz.

Abb. 2-1. 400.1 MHz ¹H-NMR-Spektrum von 2c (Ausschnitt)

Das ¹H-NMR-Spektrum des Diastereomerengemisches **2b** zeigt für die phosphorgebundenen Methylgruppen jeweils ein Dublett bei $\delta H = 1.34$ bzw. 1.36 ppm mit ²*J*(HP)-Kopplungskonstanten von 3.6 bzw. 3.1 Hz.

Für die terminale Methylgruppe in Verbindung **1** wird im ¹H-NMR-Spektrum ein Triplett bei $\delta H = 0.90$ ppm beobachtet, da auch hier die ³*J*(HH)-Kopplungskonstanten zu den diastereotopen Protonen in γ -Position etwa gleich groß sind (³*J*(HH) = 7.4 Hz).

2.3 Synthese der wasserlöslichen Derivate 2e, 2f und 2g

Die Entwicklung von Methoden zur Synthese wasserlöslicher Phosphanliganden für die Zweiphasenkatalyse hat in den letzten Jahren zunehmend an Bedeutung gewonnen. Ziel dieser Arbeit war es daher, die chiralen Phosphane durch Einführung polarer Gruppen zu modifizieren, um so eine Erhöhung ihrer Wasserlöslichkeit zu erreichen. Als Richtwert für den Einsatz von Katalysatorliganden im Zweiphasensystem gilt die Löslichkeit von TPPTS von ca. 1100 g/kg Wasser (20 °C).

Die hydroxylsubstituierten Seitenketten verleihen den Phosphanen **2a**, **2b** und **2d** bereits hydrophile Eigenschaften. Das Diphenylphosphanderivat **2a** mit zwei Hydroxygruppen in der Seitenkette zeigt allerdings nur eine mäßige Wasserlöslichkeit von ca. 50 g/kg Wasser. Demgegenüber ist das Phosphan **2d** mit vier Hydroxylgruppen mit Wasser in jedem Verhältnis mischbar.

Durch Einführung anionischer oder kationischer Gruppen in der Ligandenperipherie läßt sich die Löslichkeit von Phosphanen in Wasser deutlich erhöhen. Als polare Gruppen haben sich Sulfonat-⁶⁸⁻⁷⁰ Carboxylat-⁷¹ und Phosphonatreste⁷², aber auch kationische Guanidiniumreste^{38,39} sehr gut bewährt.

Diesem Prinzip folgend, sollten gezielt Derivate des Phosphans **2a** synthetisiert werden, die polare Substituenten im Phenylrest tragen. Hierzu bieten sich grundsätzlich zwei Strategien an (s. Schema 2-2).

Das sekundäre Phosphan **2c** stellt ein Synthon zum Aufbau unsymmetrisch substituierter tertiärer Phosphane dar. Die nucleophile Phosphinierung eines geeigneten Fluoraromaten (Schema 2-2 B) oder aber die Pd-katalysierte P-C- Kupplung mit dem entsprechenden Iodaromaten (Schema 2-2 A) bieten sich als Syntheserouten zu den Zielverbindungen an. Andererseits besteht die Möglichkeit, ein bereits polar substituiertes Diphenylphosphanderivat im Sinne der beschriebenen Ringöffnungsreaktion mit (R)-(+)-Glycidol umzusetzen (Schema 2-2 C).

Die Umsetzung des sekundären Phosphans 2c im superbasischen Medium DMSO/KOH nach Verfahren B erschien aufgrund potentieller Nebenreaktionen in diesem Medium nicht vorteilhaft; aus diesem Grund wurde zunächst versucht, *m*-Iodphenylguanidin im Sinne einer Pd-katalysierten P-C-Kupplungsreaktion ("Hetero-Heck-Reaktion") (Schema 2-2. A) mit 2c zu verknüpfen.

Das *m*-Iodphenylguanidin **E1** erhält man durch Addition von *m*-Iodaniliniumchlorid an Dimethylcyanamid bei 110 °C und anschließende Deprotonierung mit KOH (Gl. $3)^{73,74}$.

Die Reaktion von **2c** mit dem nach Gl. (3) dargestellten Iodaromaten **E1** verläuft rasch und unter milden Bedingungen bei Temperaturen von 60 °C ohne Zugabe einer Hilfsbase, da diese Funktion von der Guanidingruppe des Iodaromaten übernommen wird. Primäres Reaktionsprodukt ist daher das Guanidiniumiodid **2e** (Gl. 4, Schema 2-3), welches durch anschließende Deprotonierung mit KOH in das guanidinosubstituierte tertiäre Phosphan **2f** überführt werden kann (Gl. 5, Schema 2-3). Hiervon ausgehend, lassen sich nun durch Umsetzung mit Säuren gezielt Guanidiniumsalze mit unterschiedlichen Anionen darstellen. Durch geeignete Wahl des Anions läßt sich die Löslichkeit der guanidiniumsubstituierten Phosphane innerhalb gewisser Grenzen steuern⁷⁷.

Schema 2-2. Synthese von 2f durch "Hetero-Heck-Reaktion"

Die alternative Syntheseroute gemäß C (Schema 2-2) wurde bei der Darstellung des einfach *ortho*-sulfonierten Derivats von **2a** verwirklicht. Hierzu bedarf es jedoch zunächst der Synthese des *ortho*-sulfonierten Diphenylphosphans **E2**, die von O. Stelzer und Mitarbeitern 1996 entwickelt wurde³³ (Gl. 6).

Das benötigte *o*-Fluorbenzolsulfonat wurde zuvor durch Hydrolyse von *o*-Fluorbenzolsulfochlorid mit Essigsäure und anschließende Neutralisation der gebildeten Sulfonsäure mit KOH dargestellt. Das sekundäre Phosphan wurde zunächst durch Umkristallisation gereinigt und daraufhin, ebenfalls in DMSO / KOH, analog zu den in Kap. 2.1 beschriebenen Synthesen, mit (R)-(+)-Glycidol umgesetzt (Gl. 7).

Da eine destillative Reinigung von **2g** nicht möglich war, mußte nach Zugabe von Wasser und Neutralisation mit konz. HCl zunächst das Lösungsmittel im Vakuum entfernt werden. Daraufhin wurde der Rückstand in Methanol aufgenommen, um so das entstandene Kaliumchlorid abzutrennen. Nach Abziehen des Lösungsmittels konnte das Phosphan **2g** in analysenreiner Form erhalten werden.

2.4 Charakterisierung der wasserlöslichen Derivate 2e, 2f und 2g

Wie das sekundäre Phosphan **2c**, besitzt auch das einfach *o*-sulfonierte Diphenylphosphan **E2** (Gl. 6) ein chirales P-Atom. Die tertiären Phosphane **2e**, **2f** und **2g** fallen daher bei ihrer Synthese, aufgrund des unselektiv eingeführten chiralen Phosphoratoms sowie des zweiten Chiralitätszentrums C_{β} in der Seitenkette mit festgelegter Konfiguration, als Gemische von jeweils zwei Diastereomeren an (R_PR_C , S_PR_C).

In den ³¹P{¹H}-NMR-Spektren sind daher jeweils zwei Resonanzen zu erwarten (**2e**: $\delta P = -20.1$, -20.9 ppm; **2f**: $\delta P = -21.5$, -21.7 ppm; **2g**: $\delta P = -28.6$, -29.5 ppm). Die Verbindungen zeigen somit ³¹P{¹H}-NMR-Signale in dem für Diarylalkylphosphane typischen Bereich von δP . Im Vergleich zu den Daten des unsubstituierten Phosphans **2a** sind die Signale von **2g** um ca. 8 ppm zu hohem Feld verschoben. Dies ist auf die

sterische Kompression am P-Atom aufgrund des *ortho*-Substituenten zurückzuführen (γ-Effekt).⁷⁵

Die ¹³C{¹H}-NMR-Spektren von **2e**, **2f** und **2g** zeigen im δ C-Bereich aliphatischer C-Atome erwartungsgemäß drei Signale für jedes Diastereomer, die jeweils Dublettfeinstruktur aufweisen. Die in den ¹³C{¹H}-NMR-Spektren gefundenen chemischen Verschiebungen δ C sowie die Kopplungskonstanten sind denen der Muttersubstanz **2a** ähnlich, wie aus Tabelle 2-1 hervorgeht.

	Cα		Сβ		Cγ	
	δC	$^{1}J(CP)$	δC	$^{2}J(CP)$	δC	$^{3}J(CP)$
	[ppm]	[Hz]	[ppm]	[Hz]	[ppm]	[Hz]
2a	33.49	14.2	70.60	16.3	67.51	9.2
20	33.75	13.2	70.97	15.3	67.56	9.2
20	33.88	13.2	71.12	15.3	67.83	9.2
Эf	33.75	13.2	69.40	15.3	66.51	9.2
21	33.86	13.2	69.50	15.3	-	-
29	34.70	14.2	72.39	17.3	68.52	10.2
∠g	35.09	13.2	72.56	16.3	68.61	8.1

Tabelle 2-1: ¹³C{¹H}-NMR-spektroskopische Daten der aliphatischen C-Atome der Verbindungen 2a, 2e, 2f und 2g; Meßfrequenz: 100.6 MHz.

Im δ C-Bereich aromatischer C-Atome wären für jedes Diastereomer 10 Signale, insgesamt also 20 Signale zu erwarten, die durch P-C-Kopplung zum Teil in Dubletts aufgespalten sein sollten. Aufgrund von Linienkoinzidenzen wurden jedoch nur die gut separierten Resonanzen eindeutig zugeordnet.

Die Signale in den ¹³C{¹H}-NMR-Spektren der Phosphane **2e** und **2f** konnten fast vollständig zugeordnet werden. Dies gelang durch die Auswertung der ¹³C-DEPT-NMR-Spektren sowie durch den Vergleich der chemischen Verschiebungen δC und der Kopplungskonstanten ${}^{n}J(PC)$ mit den entsprechenden ${}^{13}C{}^{1}H$ -NMR-Daten des *m*-(*N*,*N*-Dimethylguanidinio)-phenyldiphenylphosphans (L11 76).

In den ¹³C{¹H}-NMR-Spektren von Guanidiniumverbindungen erzeugt das zentrale C-Atom der Guanidiniumgruppe (C11) ein charakteristisches Signal. Dieses liegt bei beiden Diastereomeren von 2e bei 157.11 und157.13 ppm in einem hierfür typischen Bereich von δC (L11: 155.4 ppm). Durch Deprotonierung des mit dem Aromaten verbundenen Stickstoffatoms wird dieses C-Atom elektronisch mehr abgeschirmt und das ¹³C{¹H}-NMR-Signal somit zu höherem Feld verschoben, so daß die entsprechende Resonanz von **2f** bei $\delta C = 152.29$ bzw. 152.72 ppm erscheint. Umgekehrt liegt das Signal von C1 im Falle der Verbindung 2f bei tieferem Feld (δC = 149.92 bzw. 149.98 ppm) als das von **2e** (δC = 142.66 bzw. 143.18 ppm, **L11**: $\delta C1$ = 140.2 ppm). Auch die übrigen ${}^{13}C{}^{1}H$ -NMR-Signale von **2e** sind hinsichtlich ihrer chemischen Verschiebungen δC und Kopplungskonstanten ⁿ J(PC) mit denen von L11 gut vergleichbar. Neben den bereits beschriebenen Auswirkungen der Deprotonierung des N-Atoms auf die ¹³C{¹H}-NMR-Signale von C1 und C11 wirkt sich diese am stärksten auf das zur Guanidingruppe para-ständige C-Atom (C6) aus. Dessen Resonanz verschiebt sich um ca. 4 ppm zu höherem Feld. Der Einfluß der Deprotonierung auf die übrigen Resonanzen im ${}^{13}C{}^{1}H$ -NMR-Spektrum ist nur gering und läßt sich aufgrund von potentiellen Lösungsmitteleffekten -die NMR-Spektren von 2e und 2f wurden in unterschiedlichen Lösungsmitteln aufgenommen nicht quantifizieren. Die genauen Zuordnungen sind den Tabellen 13 und 15 zu entnehmen.

Im¹³C{¹H}-NMR-Spektrum von **2g** zeigt das Signal des sulfonatsubstituierten C-Atoms eine deutliche Tieffeldverschiebung ($\delta C = 149.80$ bzw. 150.06 ppm), wie sie auch für das sulfonierte sekundäre Phosphan beschrieben wurde⁷⁷. Die ²*J*(CP)-Kopplungskonstante ist mit 21.4 Hz etwas größer als in der Muttersubstanz **2a** (²*J*(CP) = 16.3 Hz). Ebenfalls deutlich separiert liegt die typischerweise hochfeldverschobene Resonanz des zum Sulfonatrest *ortho*-ständigen C-Atoms. Man beobachtet hier nur ein Singulett bei $\delta C = 129.67$ ppm. Die weiteren ¹³C{¹H}-NMR-Daten sind in Tabelle 17 aufgeführt.

Die ¹H-NMR-Spektren der Phosphane **2e**– **g** zeigen Signalgruppen im δ H-Bereich aliphatischer Protonen zwischen 2 und 4 ppm. Die Auswertung der Spinsysteme höherer Ordnung wird hier durch das Auftreten von Diastereomerengemischen zusätzlich erschwert. Erwartungsgemäß sind jedoch die Integralverhältnisse der verschiedenen Signalgruppen sowie deren chemische Verschiebung δ H gut mit denen der Verbindungen **2a-d** vergleichbar, die ebenfalls einen 2,3-Dihydroxypropylrest besitzen (s. Kap. 2.2).

Charakteristische strukturbelegende Signale findet man für die guanidinsubstituierten Phosphane **2e** und **2f** auch in den ¹H-NMR-Spektren. So zeigen beide Verbindungen ein intensives Singulett bei $\delta H = 3.15$ (**2e**) bzw. 2.93 ppm (**2f**), die den Dimethylaminogruppen des Guanidin(ium)restes zugeordnet werden können, wie der Vergleich mit Literaturdaten belegt (**L11**: $\delta H = 3.2 \text{ ppm}$)⁷⁶. Weiterhin zeigen beide¹H-NMR-Spektren breite Signale bei $\delta H = 4.9$ (**2e**) bzw 4.1 ppm (**2f**), deren Lage und Erscheinungsbild allerdings stark lösungsmittelabhängig sind. Die Zuordnung zu den NH₂-Gruppen der Guanidingruppen erfolgte aufgrund des Vergleichs mit Literaturdaten von **L11** ($\delta H = 5.0 \text{ ppm}$).

3 Derivatisierung der Phosphane 2a und 2d

3.1 Synthese der Phosphane mit Dioxaborolan-Ringsystemen (3a, 3b)

Die in Kapitel 2 beschriebenen Phosphane 2a-g weisen als Gemeinsamkeit einen 2,3-Dihydroxypropylrest auf. Sie stellen somit multifunktionelle chiralen Phosphanliganden dar, die es ermöglichen sollten, durch zusätzliche Koordination Hydroxylgruppen frühe Übergangsmetalle oder ihrer an elektropositive Hauptgruppenmetalle chirale Heterobimetall-Komplexe zu bilden. Die Einführung eines solchen Lewis-aciden Zentrums in die Ligandenperipherie hydroxylierter Phosphane wurde 1993 sowohl von Jacobsen und Fields⁷⁸ als auch von Kagan und Börner⁶⁵ beschrieben. Durch Umsetzung des DIOP-Hydrolyseproduktes (L10) mit Benzolboronsäure oder Dichlorphenylboran gelang es diesen Autoren, ein Dioxaborolan-Ringsystem im Ligandenrückgrat aufzubauen (L12).

Die Idee zum Aufbau multifunktioneller Katalysatorkomplexe mit Hilfe dieser Liganden geht auf frühere Arbeiten von Hayashi^{79,80} zurück, der bereits 1980 chirale Bis-phosphino-ferrocenylliganden mit terminalen Aminofunktionen darstellte. Diese Ligandensysteme sollten in der Lage sein, während des katalytischen Prozesses, durch Ausbildung von Wasserstoffbrückenbindungen zwischen Aminogruppe und einer entsprechenden funktionellen Gruppe des Substrats, diese zu präkoordinieren und dadurch die Stereoselektivität des katalytischen Prozesses⁸¹ zu erhöhen. Dieses Prinzip der Selektivitätserhöhung durch Präkoordination des Substrats abseits des katalytisch aktiven Zentrums wird bei enzymatisch katalysierten Reaktionen verwirklicht.

Ziel der vorliegenden Arbeit war es, in Anlehnung an die beschriebenen Vorarbeiten von Jacobsen und Kagan, eine Boronsäurediestergruppe in der aliphatischen Seitenkette aufzubauen. Diese sollte den Liganden oder hiervon abgeleitete Komplexe befähigen, durch Interaktion mit harten Lewis-Basen geeignete Substrate zu präkoordinieren. Hierfür schienen Arylboronate, aufgrund ihrer Stabilität und der bekannten Fähigkeit, Amine reversibel zu binden^{82,83}, besonders geeignet (s. Abb. 3-1).

Abb. 3-1. Präkoordination eines Substratmoleküls durch Lewis-Säure-Base-Wechselwirkung

Die Überführung der Diolfunktion in eine Boronsäurediestergruppe bewirkt zudem eine Reduzierung der Wasserlöslichkeit und erlaubt den Einsatz der Phosphane **3a** und **3b** als Liganden für Katalysatorkomplexe auch in unpolaren Lösungsmitteln.

Schema 3-1: Darstellung der Boronsäurediester 3a und 3b

Die Synthese dieser Boronsäurediester gelingt durch einfache Umsetzung der Phosphane **2a** und **2d** mit Benzolboronsäure in Dichlormethan (Schema 3-1). Die Produkte fallen nach Abziehen des Lösungsmittels als weiße kristalline Feststoffe an, die aus Ethanol umkristallisiert werden können. Die Boronsäurediester sind über Wochen an der Luft stabil. Das Phosphan **3b** ist im Gegensatz zu **2d** auch bei höheren Temperaturen stabil. Die Reaktionen verlaufen ohne Einfluß auf die Konfiguration der asymmetrischen C-Atome, so daß ausgehend von **2a** und **2d** die optisch aktiven Phosphane **3a** und **3b** in enantiomerenreiner Form erhalten wurden ((*R*)-**3a**: $[\alpha]_{D}^{20} = +9.0^{\circ}$ (c = 2, CHCl₃); (*R*,*R*)-**3b**: $[\alpha]_{D}^{20} = -13.8^{\circ}$ (c = 1.7, C₆H₆)).

3.2 Charakterisierung der Phosphane 3a und 3b

Die ³¹P{¹H}-NMR-Spektren der Phosphane **3a** und **3b** zeigen erwartungsgemäß jeweils nur ein Signal bei $\delta P = -22.8$ (**3a**) bzw. -37.4 ppm (**3b**). Dies liegt in den für Diarylalkyl- bzw. Dialkylarylphosphane typischen Bereichen von δP und entspricht im Falle von **3a** etwa der chemischen Verschiebung δP , die für das DIOP-analoge Phosphan (L12, S. 23) in der Literatur berichtet wurde (L12: $\delta P = -24.4$ ppm⁷⁸, -24.0 ppm⁶⁵). Das Auftreten nur eines Signals im ³¹P{¹H}-NMR-Spektrum von **3b** belegt zudem die Diastereomerenreinheit des Phosphans. Wie in Kapitel 2.2 für **2d** erläutert, würden beim Vorliegen eines Diastereomerengemisches im ³¹P{¹H}-NMR-Spektrum drei Signale zu erwarten sein. Dies konnte durch Verwendung des Diastereomerengemisches von **2d** für die Synthese von **3b** belegt werden. In diesem Fall zeigt das ³¹P{¹H}-NMR-Spektrum des Reaktionsproduktes zwei zusätzliche Signale bei $\delta P = -36.5$ und -39.7 ppm, die den beiden *meso*-Verbindungen zugeordnet werden können.

Das ¹³C{¹H}-NMR-Spektrum von **3a** zeigt in dem für aliphatische C-Atome typischen Bereich von δ C drei Signale, die im Vergleich zu den entsprechenden Resonanzen der Muttersubstanz **2a** zu tiefem Feld verschoben sind (s. Tab. 3-1).

	Cα		Сβ		Сү	
	δC	$\Delta \delta \mathbf{C}^{\mathbf{a}}$	δC	$\Delta \delta \mathbf{C}^{\mathbf{a}}$	δC	$\Delta \delta \mathbf{C}^{\mathbf{a}}$
	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
3 a	36.40	2.91	75.82	5.22	71.96	4.45
3h	36.28	1.67	75.69	4.49	71.95	4.45
50	36.46	1.66	76.20	4.62	72.11	3.98

Tabelle 3-1: Vergleich	der chemischen	Verschiebungen δ	C der Phos	phane 3a und 3t
4 2		1		

a) $\Delta\delta C = \delta C(3a) - \delta C(2a)$ bzw. $\delta C(3b) - \delta C(2d)$

Diese Tieffeldverschiebung ist auf die Bildung des Fünfringsystems unter Einbeziehung des Lewis-aciden Boratoms zurückzuführen, die eine Entschirmung der Seitenkette bewirkt. Dies wirkt sich am deutlichsten auf die direkt mit den Sauerstoffatomen verknüpften C-Atome C10 und C11 (s. Tab. 19) des Dioxaborolansystems aus (C4: $\Delta\delta C = 5.2$ ppm; C5: $\Delta\delta C = 4.5$ ppm). Weniger stark tritt dieser Effekt beim an das P-Atom gebundenen α -C-Atom in Erscheinung ($\Delta\delta C = 2.9$ ppm). Im δC -Bereich der aromatischen C-Atome zeigt das ¹³C{¹H}-NMR-Spektrum von **3a** (s. Abb. 3-2) aufgrund der Diastereotopie der Phenylreste acht Signale für die Diphenylphosphinogruppe. Diese weisen typische chemische Verschiebungen δC und ⁿ*J*(PC)-Kopplungskonstanten auf, die gut mit den Literaturdaten von **L12** korrelieren. Der Phenylrest der Phenylboronatgruppe sollte in diesem Bereich von δC vier Resonanzen ohne Kopplungsfeinstruktur erzeugen, von denen, nach Auswertung des ¹³C{¹H}-DEPT-NMR-Spektrums, das Signal des mit dem Boratom verknüpften *ipso*-C-Atoms (C5) aufgrund der Quadrupol-Verbreiterung nicht in Erscheinung tritt.

Abb. 3-1. 100.6 MHz ¹³C{¹H}-NMR-Spektrum von **3a** (Aromatenbereich)

Für das diastereomerenreine Phosphan **3b** wird aufgrund der Diastereotopie der Alkylreste im δ C-Bereich aliphatischer C-Atome der doppelte Liniensatz (sechs Signale mit Dublettfeinstruktur) beobachtet. Die ¹³C{¹H}-NMR-Resonanzen sind im Vergleich zu den entsprechenden Signalen der Muttersubstanz **2d** zu tiefem Feld verschoben

Die Phenylreste der beiden Phenylboronatgruppen sind diastereotop. Daher sollten hierfür acht Resonanzen im ¹³C{¹H}-NMR-Spektrum zu beobachten sein (s. Abb. 3-3), von denen infolge partieller Linienkoinzidenz jedoch nur sechs auftreten. Die Phenylphosphinogruppe von **3b** erzeugt vier Resonanzen, deren chemische Verschiebungen δ C und Kopplungskonstanten ⁿ*J*(PC) gut mit den entsprechenden Signalen im ¹³C{¹H}-NMR-Spektrum von **3a** übereinstimmen.

Abb. 3-2. 100.6 MHz ¹³C{¹H}-NMR-Spektrum von (R,R)-**3b** (Aromatenbereich)

Das bei der Umsetzung des Diastereomerengemisches von 2d mit Benzolboronsäure gebildete Phosphan fällt als Gemisch zweier *meso*-Formen sowie des Enantiomerenpaares (R,R)- und (S,S)-**3b** an (s. Kap. 2.1, Abb. 2-2). Für jedes C-Atom der Alkylreste in **3b** findet man nun vier Signale im ${}^{13}C{}^{1}H$ -NMR-Spektrum, da beide meso-Formen pro C-Atom jeweils nur ein zusätzliches Signal erzeugen. Die meso-Formen weisen bereits chirale P-Atome auf. Die beiden Alkylreste innerhalb eines Moleküls sind somit homotop, da sie kein neues Stereozentrum erzeugen und ergeben keinen verdoppelten Liniensatz. Diese Überlegungen finden sich im ${}^{13}C{}^{1}H$ -NMR-Spektrum des Diastereomerengemisches bestätigt.

Das ¹H-NMR-Spektrum von **3a** zeigt im Hochfeldbereich von δ H zwischen 2.0 und 4.5 ppm aufgrund der Diastereotopie der jeweiligen Protonen der beiden Methylengruppen die Signale eines ABCDEX-Spinsystems (A,B,C,D,E = ¹H, X = ³¹P). Man beobachtet jedoch nur ein sehr linienarmes Spektrum, da beispielsweise die ³*J*(PH)- und ³*J*(HH)-Kopplungskonstanten des Methinprotons von ähnlicher Größe

sind. Dadurch kollabiert das Signal dieses Protons zu einem Sextett zwischen 4.37 und 4.46 ppm, während alle übrigen Methylenprotonen Dublett von Dublett-Feinstrukturen aufweisen. Durch heteronucleare Entkopplung des ³¹P-Kerns wurden vereinfachte ¹H{³¹P}-NMR-Spektren erhalten, die mit Hilfe des Programms gNMR analysiert werden konnten. Die hieraus erhaltenen chemischen Verschiebungen δ H sowie sämtliche ⁿ*J*(HH)-Kopplungskonstanten sind in Tabelle 20 zusammengefaßt.

Im Falle von **3b** wird eine Analyse des ¹H-NMR-Spektrums zusätzlich durch das Auftreten doppelter Signalsätze erschwert. Diese resultieren aus der Diastereotopie der beiden Alkylreste im Molekül. Aus diesem Grund wurde auf die Auswertung dieser Spektren höherer Ordnung verzichtet.

3.3 Röntgenstrukturanalyse von 3a

Durch langsames Umkristallisieren des Phosphans **3a** aus Ethanol gelang es, für eine Röntgenstrukturanalyse geeignete Einkristalle zu erzeugen. Somit gelang es erstmals, einen Phosphanliganden mit einer Lewis-aciden Gruppe in der Peripherie (s. Kap. 3-1) röntgenographisch zu charakterisieren. Die damit erhaltenen Informationen über den Abstand des Donor- und Akzeptorzentrums sollten Aussagen über die Eignung donorfunktioneller Substrate zur Präkoordination an Katalysatorkomplexen dieser Liganden ermöglichen.

Das Phosphan **3a** kristallisiert in der monoklinen Raumgruppe P2₁. Die Elementarzelle enthält zwei kristallographisch unabhängige Moleküle, die jeweils *R*-konfigurierte β -C-Atome besitzen und im Festkörper antiparallel angeordnet sind. Die Ergebnisse der Röntgenstrukturanalyse sind in Abb. 3-4 sowie Tabelle 3-2 bis 3-5 (S. 30-33) zusammengefaßt.

Die zwei unabhängigen Moleküle zeigen im Hinblick auf die geometrischen Parameter des PC₃-Gerüstes geringe Unterschiede. Die P-C-Bindungsabstände [P1 - C1: 1.836(6), P1 – C7: 1.822(7), P1a – C1a: 1.805(7), P1a – C7a: 1.836(6)] sowie die C-P-C-Bindungswinkel [C1 – P1 – C7: $101.8(3)^{\circ}$, C1a – P1a – C7a: $101.2(3)^{\circ}$] innerhalb der Ph₂P-Gruppe sind jedoch mit denen im Ph₃P gut vergleichbar⁸⁴⁻⁸⁷. Die Atome des Dioxaborolanringsystems sind nahezu koplanar mit Auslenkungen aus der Ebene von max. 0.084 Å. Das Bor-Atom innerhalb dieser Gruppe zeigt eine verzerrte trigonalplanare Koordination [O1a – B1a – O2a: 113.7(6)°, O1a – B1a – C16a: 124.1(6)°, O2a – B1a – C16a: 122.1(6)°]. Die Ebene des aromatischen Substituenten an B1a ist nahezu koplanar mit dem Dioxaborolansystem, der Winkel zwischen dem aromatischen Ringsystem und der von O1a, B1a und O2a definierten Ebene beträgt lediglich 4.42°. Ähnliche Koplanarität der BO₂-Einheit mit aromatischen Substituenten wurde bereits bei anderen aromatischen Boronsäuren oder deren Estern beobachtet⁸⁸.

Abb. 3-1: Molekülstruktur von 3a

Tabelle 3-1	Ausgewählte	Bindungslängen	[Å] in 3a
	0	0 0	

Pla-Cla	1.835(7)	C14a – O1a	1.437(8)
P1a - C7a	1.836(6)	C15a - O2a	1.423(7)
P1a – C13a	1.850(7)	B1a – O1a	1.370(8)
C13a – C14a	1.466(9)	B1a - O2a	1.358(8)
C14a – C15a	1.552(8)	B1a – C16a	1.527(9)

C1a – P1a – C7a	101.2(3)	C14a – C15a – O2a	105.7(5)
C1a – P1a – C13a	96.6(3)	C15a – O2a – B1a	108.1(5)
C7a – P1a – C13a	105.0(3)	O1a - B1a - O2a	113.7(6)
P1a - C13a - C14a	116.1(5)	O1a – B1a – C16a	124.1(6)
C13a - C14a - C15a	114.7(6)	O2a – B1a – C16a	122.1(6)
C13a - C14a - O1a	110.5(6)	C14a – O1a – B1a	108.3(5)
O1a – C14a – C15a	103.8(5)		

Tabelle 3-3: Ausgewählte Bindungswinkel [°] in 3a

Tabelle 3-4: Kristallographische Daten von **3a**

Kristallsystem	Monoklin
Raumgruppe	P2 ₁
Zelldimensionen [Å]	a = 11.6050(11)
	b = 12.3033(13)
	c = 13.177(2)
[°]	$\alpha = 90, \beta = 98.709(8), \gamma = 90$
Volumen [Å ³]	1859.6(3)
Z	4
F(000)	728
$\rho_{ber} [Mg/m^3]$	1.236
Kristallgröße [mm]	$0.54 \times 0.33 \times 0.20$
Strahlung	CuK _α (1.54178 Å)
Absorptionskoeffizient μ [mm ⁻¹]	1.383
Absorptionskorrektur	semiempirisch
max. / min. Transmission	0.690 / 0.354
Scan-Methode	ω
2θ-Meßbereich	3.39 - 57.15
gemessene Reflexe	2807
unabhängige Reflexe	2674
R _{int}	0.0318
beobachtete Reflexe	2674
Parameterzahl	452
R1 / wR2	0.0465 / 0.1064
R1 (alle Daten) / wR2 (alle Daten)	0.0660 / 0.1150
--	-----------------
max. / min. Δ [eÅ ⁻³]	0.24 / -0.18
Goodness of fit	0.941
Flack-Parameter	x = -0.03

Tabelle 3-5: Atomkoordinaten (x 10^{-4}) und Auslenkungsparameter (Å x 10^{-4})

	X	У	Ζ	U (eq)
P1	5109(1)	2201(1)	2042(1)	59(1)
01	4301(3)	4853(3)	4360(3)	62(1)
O2	3036(4)	4626(3)	2872(3)	65(1)
B1	3300(6)	5223(5)	3754(5)	50(2)
C1	5425(5)	2054(5)	725(4)	54(2)
C2	6017(5)	1136(5)	489(5)	64(2)
C3	6401(6)	1054(6)	-446(5)	75(2)
C4	6211(6)	1853(7)	-1154(5)	79(2)
C5	5627(6)	2772(7)	-944(5)	81(2)
C6	5224(6)	2884(6)	-17(5)	72(2)
C7	4029(6)	1136(5)	2098(5)	60(2)
C8	3034(6)	986(6)	1358(5)	76(2)
С9	2235(7)	177(7)	1447(7)	94(3)
C10	2408(8)	-512(8)	2261(7)	100(3)
C11	3357(9)	-381(7)	2987(7)	95(3)
C12	4160(7)	422(6)	2916(5)	74(2)
C13	4193(5)	3439(5)	1940(4)	59(2)
C14	3808(5)	3680(5)	2946(4)	55(2)
C15	4782(5)	3994(5)	3807(4)	62(2)
C16	2607(5)	6182(5)	40423(4)	51(2)
C17	1572(6)	6511(6)	3469(5)	74(2)
C18	954(6)	7373(7)	3764(5)	80(2)
C19	1346(6)	7946(6)	4637(5)	73(2)
C20	2376(5)	7669(6)	5225(5)	66(2)
C21	2999(5)	6789(5)	4934(5)	60(2)
P1a	9850(1)	12841(1)	2218(1)	66(1)
Ola	8265(4)	9953(4)	2706(3)	76(1)
O2a	9365(3)	9913(4)	4297(3)	64(1)
B1a	8429(6)	9505(6)	3668(6)	55(2)
Cla	8838(6)	13964(5)	2112(5)	61(2)
C2a	8917(7)	14748(6)	2933(5)	79(2)
C3a	8113(9)	15583(8)	2906(7)	103(3)

	X	У	Z	U (eq)
C4a	7251(8)	15685(7)	2090(7)	100(3)
C5a	7145(6)	14942(7)	1295(7)	93(2)
Сба	7934(6)	14101(6)	1309(5)	81(2)
C7a	10224(5)	12794(5)	914(4)	55(2)
C8a	9950(8)	11969(6)	214(5)	90(2)
C9a	10330(8)	11977(7)	-733(6)	102(3)
C10a	10979(7)	12807(8)	-1000(5)	93(2)
C11a	11255(6)	13661(7)	-337(7)	83(2)
C12a	10878(6)	13626(6)	618(5)	69(2)
C13a	8756(6)	11753(6)	2251(6)	79(2)
C14a	9207(6)	10694(6)	2635(5)	77(2)
C15a	9898(5)	10711(6)	3739(5)	70(2)
C16a	7666(5)	8609(5)	4014(4)	50(2)
C17a	6598(5)	8304(5)	3431(5)	61(2)
C18a	5930(6)	7478(6)	3720(5)	74(2)
C19a	6303(6)	6903(5)	4607(5)	67(2)
C20a	7349(5)	7201(6)	5210(5)	63(2)
C21a	7993(5)	8018(5)	4917(4)	56(2)

Tabelle 5-5: Atomkoordinaten (x 10⁻⁴) und Auslenkungsparameter (Å x 10⁻⁴) (Fortsetzung)

4 Synthese und Charakterisierung von Phosphanen mit Dioxolangruppen

4.1 Synthese der Phosphane 4 a- d

Die in Kapitel 2 beschriebenen Phosphane **2a–d** besitzen chirale 2,3-Dihydroxypropylsubstituenten. Alternativ zu der in Kapitel 3 beschriebenen Überführung in Dioxaborolan-Ringsysteme lassen sich diese vicinalen Diolsysteme mit geeigneten Ketonen oder Aldehyden in Dioxolansysteme überführen. Chirale Dioxolansysteme sind integraler Bestandteil einer Vielzahl ein- und mehrzähniger Phosphanliganden; als prominentester Vertreter sei hier der schon mehrfach zitierte zweizähnige Ligand DIOP (L1 S. 2) erwähnt, der 1971 erstmals von Kagan⁵ dargestellt wurde.

Zu einem Phosphan mit chiralem Dioxolansystem gelangt man durch Ketalisierung des in Kapitel 2 beschriebenen Phosphans **2a** mit Aceton oder 2,2 Dimethoxypropan (Gl. 10a). Die Einführung der Isopropyliden-Schutzgruppe erfolgt ohne Epimerisierung des asymmetrischen β -C-Atoms. Dies wurde durch die Analyse des ³¹P{¹H}-NMR- Spektrums des hiervon abgeleiteten Pd(II)-Komplexes PdL₂Cl₂ (L = **4a**) bestätigt. Das auf diesem Weg in einer Gesamtausbeute von 82 % erhaltene einzähnige DIOP-analoge (*R*)-(+)-2,3-*O*-Isopropylidenglycerin-1-diphenylphosphan (**4a**) wurde erstmals 1987 von Brunner und Leyerer⁸⁹ dargestellt. Die dort beschriebene Synthese geht von dem Naturstoff Mannit aus und verläuft mit einer mäßigen Gesamtausbeute von 55 %.

Versuche, auch das sekundäre Phosphan 2c und das vierfach hydroxylierte Phosphan 2d in gleicher Weise umzusetzen, schlugen allerdings fehl. Es entstanden nicht zu trennende Produktgemische, die neben den gewünschten Verbindungen erhebliche Anteile von nicht näher charakterisierten Zersetzungsprodukten enthielten. Im ${}^{31}P{}^{1}H}-NMR-Spektrum traten zusätzliche Signale auf, die in einem für Phosphanoxide typischen Bereich von <math>\delta P$ lagen.

Um dennoch zu den analogen Derivaten der Phosphane **2b-d** zu gelangen, wurde eine alternative Synthesestrategie gesucht. Die von Brunner beschriebene Synthese von **4a** (s.o.) beinhaltet als letzte Stufe die Umsetzung von (R)-(-)-2,3-O-Isopropylidenglycerin-1-tosylat mit Kaliumdiphenylphosphid-bis(dioxanat) in Dioxan. In Abänderung dieser Synthese, wurde die nucleophile Substitution im "superbasischen Medium" DMSO/KOH durchgeführt (s. Schema 4-1). Das benötigte Tosylat wurde nach Literaturmethoden, ausgehend von (S)-(-)-1,2-Isopropylidenglycerin dargestellt. Die erreichten Ausbeuten nach Reinigung durch Destillation im Vakuum liegen zwischen 65 und 81 %, im Falle von **4a** bei 80 % und somit deutlich über der von Brunner beschriebenen.

Ausbeute: 81 %

Schema 4-1. Synthese der Phosphane 4a-d

Die tertiären Phosphane **4a**, **4b** und **4d** fallen bei der Synthese als hochviskose Öle an, das sekundäre Phosphan **4c** als klare, farblose Flüssigkeit mit einem Siedepunkt von 73 - 75 °C bei 0.01 mbar.

Durch säurekatalysierte Hydrolyse der Isopropyliden-Schutzgruppen gemäß Gl. 10b erhält man wiederum die 2,3-Dihydroxypropylphosphane **2a-d**. Auch diese Umsetzung erfolgt ohne Verlust der optischen Aktivität, wie von Brunner und Rückert erst kürzlich am Beispiel der Hydrolyse von **4a** nachgewiesen werden konnte⁹⁰.

Die isopropylidengeschützten Phosphane **4a-d** zeichnen sich durch gute Löslichkeit in organischen Solventien aus; in Wasser ist ihre Löslichkeit nur gering.

Die Dioxolansysteme der Phosphane **4a-d** sind gegenüber Basen stabil, werden indes von Säuren hydrolysiert; sie stellen somit eine komplementäre Ergänzung zu den Dioxaborolan-Systemen der Phosphane **3a** und **3b** dar, die aufgrund der Lewis-Acidität der Boronatgruppe leicht von Basen zersetzt werden, gegenüber Säuren jedoch inert sind.

4.2 Charakterisierung der Phosphane 4a - 4d

Die in den ³¹P{¹H}-NMR-Spektren der Phosphane **4a** – **4d** beobachteten chemischen Verschiebungen δP unterscheiden sich nur wenig von den δP -Werten der jeweiligen Muttersubstanz (**2a** – **2d**). Mit 1.8 ppm ist diese Differenz im Falle des Dialkylarylphosphans **4d** am größten (**2d**: $\delta P = -33.8$ ppm, **4d**: $\delta P = -35.6$ ppm). Da auch hier die Phosphane **4b** und **4c** unsymmetrisch substituierte P-Atome aufweisen, liegen sie als Diastereomerengemische vor. In den ³¹P-NMR-Spektren werden folglich doppelte Signalsätze beobachtet.

Das ³¹P-NMR-Spektrum des sekundären Phosphans **4c** zeigt demzufolge zwei getrennte Liniensätze aus denen man jeweils typische ¹J(PH)-Kopplungskonstanten von 211.1 bzw. 208.6 Hz entnehmen kann.

Die ¹³C{¹H}-NMR-Spektren der Phosphane **4a-d** sind mit denen der verwandten Verbindungen **2a-d** und **3a,b** gut vergleichbar. Die Signale weisen ähnliche chemische Verschiebungen δC und Kopplungskonstanten ⁿ*J*(CP) auf. Zusätzlich werden die

Signale der Isopropyliden-Schutzgruppen beobachtet, deren Methylgruppen jeweils diastereotop und somit potentiell anisochron sind. Das ¹³C{¹H}-NMR-Spektrum von **4a** zeigt dementsprechend zwei Singuletts bei $\delta C = 26.01$ und 27.26 ppm. In den ¹³C{¹H}-NMR-Spektren der Diastereomerengemische **4b** und **4c** wären in diesem Bereich von δC vier Resonanzen zu erwarten, aufgrund von Linienkoinzidenzen werden jedoch jeweils nur drei Singuletts beobachtet. Im Dialkylarylphosphan **4d** sind nicht nur die Methylgruppen der einzelnen Isopropylidengruppen, sondern auch die beiden Alkylsubstituenten mit den C-Atomen C1-C5 und C1'-C5' diastereotop. Im ¹³C{¹H}-NMR-Spektrum werden daher vier Signale für die Methylgruppen beobachtet (C5, Abb. 4-1).

Abb. 4-1. 100.6 MHz ¹³C{¹H}-NMR-Spektrum von **4d**, Aliphatenbereich

Charakteristisch für die Dioxolangruppen sind ferner die zu tiefem Feld verschobenen Signale im ${}^{13}C{}^{1}H$ -NMR-Spektrum, die von den quarternären C-Atomen der Isopropylidengruppen erzeugt werden. Diese liegen für alle hier beschriebenen Verbindungen in einem engen Bereich von δC zwischen 108.85 und 109.13 ppm. In dem für aromatische C-Atome typischen Bereich von δ C zeigen die ¹³C{¹H}-NMR-Spektren der Phosphane **4a-d** (Abb. 4-2) große Ähnlichkeit mit denen der bereits diskutierten Phosphane **2a-d** bzw. **3a** und **3b**. Die Zahl der Signale entspricht, unter Berücksichtigung der jeweiligen Diastereotopie- bzw. Diastereomeriebeziehungen, ebenso wie die chemischen Verschiebungen δ C und die ⁿ*J*(CP)-Kopplungskonstanten, den Erwartungen. Die NMR-spektroskopischen Daten und Zuordnungen sind den Tabellen 23 - 32 zu entnehmen.

Abb. 4-2. 100.6 MHz ¹³C{¹H}-NMR-Spektren der Phosphane **4a** und **4d**, Aromatenbereich

Im Falle der literaturbekannten Verbindung **4a** stimmen die beobachteten NMR-Parameter gut mit den Literaturwerten⁸⁹ überein, lediglich der polarimetrisch bestimmte Drehwert zeigte mit $[\alpha]_D^{20} = +14.5$ ° (c = 1, Benzol) eine geringe Abweichung vom Literaturwert ($[\alpha]_D^{20} = +11.4$ ° c = 1, Benzol)⁹⁰.

Die ¹H-NMR-Spektren der Phosphane **4a-d** zeigen im Bereich der Signale des Propyl-Grundgerüstes ein ähnliches Erscheinungsbild, wie es bereits bei den Boronatgeschützten Phosphanen **3a** und **3b** bzw. den freien 2,3-Dihydroxypropylsubstituierten Phosphanen **2a-d** zu beobachten war. Auch hier liegen ABCDEX-Spinsysteme vor (A,B,C,D,E = ¹H, X = ³¹P), deren Auswertung aufgrund der zu geringen Linienanzahl nicht möglich war. Zusätzlich findet man im Hochfeldbereich der ¹H-NMR-Spektren die Resonanzen der diastereotopen Methylgruppen der Isopropylidengruppen, die alle in einem Bereich zwischen $\delta H = 1.23$ und $\delta H = 1.42$ ppm liegen. Wie erwartet, beobachtet man im ¹H-NMR-Spektrum von **4a** nur zwei Signale für die CMe₂-Gruppierung, während alle übrigen hier diskutierten Phosphane in diesem Bereich vier Resonanzen aufweisen. Das methylsubstituierte Phosphan **4b** erzeugt für die phosphorgebundene Methylgruppe jeweils ein Dublett pro Diastereomer bei $\delta H = 1.12$ und $\delta H = 1.17$ ppm; die ²*J*(HP)-Kopplungskonstante beträgt 3.6 bzw. 4.1 Hz. Die Größe dieser Kopplungskonstanten liegt in dem für Methylphosphane typischen Bereich (PMe₃: ²*J*(PH) = 2.7 Hz)⁹¹.

Die Signale der aromatischen Protonen konnten aufgrund der zu geringen Auflösung der Spektren nicht ausgewertet werden; sie stellen in allen Fällen gemeinsam mit dem ³¹P-Kern AA'BB'CX-Spinsysteme dar (A,A',B,B',C = ¹H, X = ³¹P).

4.3 Synthese der wasserlöslichen Derivate 4e und 4f

Wie bereits in der Einleitung (Kap. 1.2) betont wurde, stellt die Kombination von Chiralität und Wasserlöslichkeit beim gezielten Aufbau ein- und mehrzähniger Phosphane für die asymmetrische Zweiphasenkatalyse noch immer eine besondere Herausforderung dar. Die ersten wasserlöslichen ditertiären Phosphane mit chiralem Rückgrat wurden durch Direktsulfonierung der entsprechenden Phenylderivate, wie z. B. Cyclobutandiop, Chiraphos oder BDPP mit konz. Schwefelsäure oder Oleum dargestellt (L7 – L9, S. 5)^{31,92,93}. Diese Strategie geht auf Arbeiten von Chatt⁹⁴ zur Synthese sulfonierter Triphenylphosphanderivate zurück. Der Nachteil dieses Verfahrens ist, daß die Direktsulfonierung relativ unselektiv verläuft und zur Bildung von Phosphanen unterschiedlichen Sulfonierungsgrades sowie von Phosphanoxiden führt.

Zum modularen Aufbau chiraler ein und mehrzähniger Phosphane mit polarer Peripherie lassen sich die polar substituierten primären oder sekundären Phosphane wie z. B. **2c** oder **4c** als wertvolle Synthone einsetzen. Die gezielte Darstellung dieser Phosphane gelingt durch nucleophile Phosphinierung von Fluoraromaten oder palladiumkatalysierte P-C-Kupplungsreaktionen (s. Schema 2-2, A und B) und ist von O. Stelzer und Mitarbeitern an zahlreichen Beispielen beschrieben worden (s. Kapitel 1). Ein Ziel der vorliegenden Arbeit war es, diese Synthesestrategien auch für die Darstellung von ein- und zweizähnigen Phosphanen mit chiralen Alkylsubstituenten einzusetzen.

Das sekundäre Phosphan **4c** stellt ebenso wie das in Kapitel 2.1 beschriebene Phosphan **2c** ein nützliches Synthon für den Aufbau chiraler Phosphanliganden dar. So gelang es, durch palladiumkatalysierte P-C-Kupplungen ("Hetero-Heck-Reaktion") mit sulfonierten oder guanidiniumsubstituierten Iodaromaten wasserlösliche Derivate des Phosphans **4a** darzustellen (s. Schema 4-2). Diese Methode ist gegenüber der nucleophilen Phosphinierung als Synthesestrategie überlegen, da die Umsetzung von *p*-Fluorbenzolsulfonat höhere Temperaturen und längere Reaktionszeiten erfordert⁹⁵ und die Einführung guanidinium-substituierter Aromaten auf diesem Weg nicht möglich ist.

Schema 4-1. Synthese der wasserlöslichen Phosphane 4e und 4f

Die in Schema 4-2 dargestellten Reaktionen verlaufen glatt innerhalb von 5 (Gl. 15) bzw. 24 h (Gl. 16).

Auf den Zusatz einer Hilfsbase konnte im Falle der Darstellung von **4e**, wie schon in Kapitel 2.3 erläutert, verzichtet werden. Dagegen erforderte die Darstellung von **4f** die Zugabe von Triethylamin zur Bindung des bei der Reaktion abgespaltenen HI. Das sich im Verlauf der Reaktion bildende Triethylammoniumiodid konnte durch Extraktion mit Dichlormethan entfernt werden.

Die abschließende Reinigung des Phosphans **4e** erfolgte durch Umkristallisation aus Aceton.

Die C- und P-chiralen tertiären Phosphane **4e** und **4f** fallen aufgrund der stereochemisch nicht selektiv verlaufenden P-C-Verknüpfung als Diastereomerengemische an. Man erhält **4e** als schwach beige gefärbten mikrokristallinen Feststoff, **4f** fällt als farbloses Pulver an.

4.4 Charakterisierung der Phosphane 4e und 4f

Die ³¹P{¹H}-NMR-Spektren der Phosphane **4e** und **4f** zeigen wie erwartet jeweils zwei Signale, die den beiden Diastereomeren zuzuordnen sind. Alle Resonanzen liegen im Bereich zwischen $\delta P = -20.8$ und $\delta P = -22.5$ ppm, ihre chemischen Verschiebungen δP unterscheiden sich nur wenig von der der Verbindung **4a**, die keinen zusätzlichen Substituenten am Phenylrest aufweist ($\delta P = -21.7$ ppm). Der elektronische Einfluß der *meta-* bzw. *para-*Substituenten auf das P-Atom ist nur gering; sterische Effekte durch *ortho-*Substitution (vgl. **2g**) wirken sich wesentlich stärker auf die elektronischen Eigenschaften des Phosphans aus.

Im ¹³C{¹H}-NMR-Spektrum von **4f** beobachtet man im Hochfeldbereich von δ C die erwarteten Signale der isopropylidengeschützten Dihydroxypropylreste. Die beiden Diastereomeren zeigen in ihren ¹³C{¹H}-NMR-Spektren jedoch nur für das α -C-Atom zwei getrennte Signale. Alle übrigen Resonanzen sind innerhalb der Linienbreiten isochron. Die chemischen Verschiebungen δC und ⁿ*J*-(CP)-Kopplungskonstanten aller Signale liegen im Erwartungsbereich für diese Gruppierung.

In dem für aromatische C-Atome typischen Bereich des ${}^{13}C{}^{1}H$ -NMR-Spektrums sollten für jedes Diastereomer von 4f acht Signale zu finden sein. Die Signale des meta-C-Atoms des substituierten Phenylrestes treten jedoch nur als ein Singulett bei $\delta C = 127.9$ ppm in Erscheinung. Auch im Falle des *meta*-C-Atoms des unsubstituierten Phenylrestes zeigen die Signale der beiden Diastereomeren Linienkoinzidenz und man beobachtet nur ein Dublett bei $\delta C = 131.1 \text{ ppm} (^{3}J(CP) =$ 6.7 Hz). Die Zuordnungen erfolgten unter Zuhilfenahme von DEPT-Experimenten der NMR-Parameter sowie durch Vergleich mit Literaturwerten des methylsubstituierten sulfonierten Diarylalkylphosphans L13³³.

Die Wasserlöslichkeit sulfonierter Arylphosphane wird überwiegend durch den Sulfonierungsgrad der Arylreste bestimmt⁹⁵, ferner spielen durch die Substituenten bedingte sterische Effekte eine Rolle. Das Phosphan **4f** zeigt aufgrund des sperrigeren Alkylrestes im Vergleich zum Methylsubstituenten in **L13** eine etwas geringere Wasserlöslichkeit von ca. 200 g/kg Wasser (**L13**: 280 g/kg Wasser³³).

Das ¹³C{¹H}-NMR-Spektrum des Phosphans **4e** zeigt in dem für aliphatische C-Atome typischen Bereich von δ C weitgehende Übereinstimmung mit dem des unsubstituierten Phosphans **4a**. Die Resonanzen der aromatischen C-Atome zeigen hingegen ähnliche chemische Verschiebungen δ C wie das analoge nicht isopropylidengeschützte Phosphan **2e**. Lediglich das ¹³C{¹H}-NMR-Signal des in Nachbarschaft zum guanidiniumsubstituierten C-Atom liegenden *ortho*-C-Atoms in **4e** zeigt eine deutlich kleinere ²*J*(CP)-Kopplungskonstante (9.5 Hz) als das entsprechende Signal des C-Atoms in **2e** (²*J*(CP) = 17.3 / 22.4 Hz). Der Vergleich mit den ¹³C{¹H}-NMR-Daten der literaturbekannten Verbindung **L11** (S. 21) sowie die Aufnahme von

¹³C{¹H}-DEPT-NMR-Spektren ermöglichten eine vollständige Zuordnung aller Signale; eine Auflistung findet sich in Tabelle 33.

Im ¹H-NMR-Spektrum von **4e** beobachtet man neben den charakteristischen Signalsätzen des Alkylsubstituenten ein Singulett für die Dimethylaminogruppe des Guanidiniumrestes bei $\delta H = 3.13$ ppm. Das stark verbreiterte Signal bei $\delta H = 4.70$ ppm läßt sich aufgrund seiner relativen Intensität im Vergleich zu der der übrigen Signale der NH₂-Gruppe des Guanidiniumrestes zuordnen.

4.5 Röntgenstrukturanalyse von 4g

Aus einer Lösung des sekundären Phosphans **4c** in Aceton schieden sich nach mehreren Tagen farblose, nadelförmige Kristalle ab. NMR-spektroskopische Untersuchungen ließen vermuten, daß es sich hierbei um das Additionsprodukt des sekundären Phosphanoxids an die Carbonylfunktion des Lösungsmittels (Aceton) handelt. Dies konnte durch eine Röntgenstrukturanalyse der erhaltenen Einkristalle bestätigt werden.

Schema 4-1: Bildung des tertiären Phosphanoxids 4g

Die Reaktionssequenzen, die zur Bildung von **4g** führen sind in Schema 4-3 dargestellt. Da keines der beiden möglichen Intermediate (sekundäres Phosphanoxid

bzw. tertiäres Phosphan) NMR-spektroskopisch nachgewiesen werden konnte, ist eine Angabe der Reihenfolge der Teilreaktionen (Oxidation, Addition) nicht möglich.

Das sekundäre Phosphan **4c** liegt aufgrund des unsymmetrisch substituierten P-Atoms in Form zweier Diastereomere vor. Die Auswertung der NMR-Spektren des Additionsproduktes **4g** (s. Tabelle 36, Kap. 10.1) bestätigte auch hier das Vorliegen zweier Diastereomere in der überstehenden Lösung des kristallinen Produktes. Demgegenüber handelte es sich bei den röntgenographisch untersuchten Einkristallen um eine diastereomerenreine Verbindung mit R_PR_C -Konfiguration, so daß ein Trennung der Diastereomeren durch Kristallisation möglich scheint.

Abb. 4-1. Molekülstruktur von 4g

Das α -hydroxylierte Phosphanoxid **4g** kristallisiert in der monoklinen Raumgruppe P2₁ mit den Gitterkonstanten a = 9.872(2), b = 5.6041(10) und c = 14.231(3). Die kristallographischen Daten, ausgewählte Bindungslängen und –winkel sind in den nachfolgenden Tabellen zusammengefaßt.

P – O1	1.496(2)	O4 - C8	1.430(3)
P - C1	1.807(2)	O3 – C10	1.415(3)
P - C7	1.813(2)	O4 - C10	1.437(3)
P - C13	1.862(2)	C10 - C11	1.508(4)
C7 - C8	1.527(3)	C10 - C12	1.489(4)
C8 - C9	1.502(4)	C13 - C14	1.521(3)
O3 – C9	1.402(4)	C13 – C15	1.514(3)

Tabelle 4-1 Ausgewählte Bindungslängen [Å] in 4g

Tabelle 4-2: Ausgewählte Bindungswinkel [°] in 4g

O1 - P - C1	111.87(11)	O2 - C13 - C15	106.8(2)
O1 - P - C7	113.07(10)	O2 - C13 - C14	110.8(2)
C1 - P - C7	107.53(10)	C15 - C13 - C14	111.4(2)
O1 - P - C13	112.28(9)	P - C13 - O2	109.00(14)
C1 - P - C13	105.51(9)	P - C13 - C15	111.4(2)
C7 - P - C13	106.08(10)	P - C13 - C14	111.0(2)

Tabelle 4-3: Kristallographische Daten von $\mathbf{4g}$

Kristallsystem	Monoklin
Raumgruppe	P2 ₁
Zelldimensionen [Å]	a = 9.872(2)
	b = 5.6041(10)
	c = 14.231(3)
[°]	$\alpha = 90.00, \beta = 92.58(2), \gamma = 90.00$
Volumen [Å ³]	786.5(3)
Z	2
F(000)	320
$\rho_{ber} [Mg/m^3]$	1.260
Kristallgröße [mm]	$0.13 \times 0.16 \times 0.53$
Strahlung	MoK _α (0.71073 Å)
Absorptionskoeffizient μ [mm ⁻¹]	0.185
Absorptionskorrektur	-

Scan-Methode	ω
2θ-Meßbereich	2.06 - 25.05
gemessene Reflexe	4928
unabhängige Reflexe	2793
R _{int}	0.0204
beobachtete Reflexe	2539
Parameterzahl	204
R1 / wR2	0.0323 / 0.0811
R1 (alle Daten) / wR2 (alle Daten)	0.0361 / 0.0827
max. / min. Δ [eÅ ⁻³]	0.239 / -0.178
Goodness of fit	1.077
Flack-Parameter	x = -0.03(9)

Tabelle 4-4: Atomkoordinaten (x 10^{-4}) und Auslenkungsparameter (Å x 10^{-4})

	X	У	Z	U (eq)
Р	2717.8(5)	3609.0(8)	7346.3(3)	295.1(14)
O1	3203(2)	1106(3)	7503.4(10)	403(4)
O2	3123(2)	7427(3)	6257.5(12)	395(4)
O3	3003(2)	3056(3)	10411.3(13)	684(6)
O4	1707(2)	6193(3)	9900.4(10)	444(4)
C1	1025(2)	3697(5)	6807.2(12)	324(4)
C2	153(2)	5607(4)	6913(2)	396(5)
C3	-1121(2)	5625(5)	6460(2)	471(6)
C4	-1527(2)	3736(6)	5891.8(15)	470(5)
C5	-661(2)	1837(5)	5773(2)	470(6)
C6	606(2)	1798(4)	6238(2)	395(5)
C7	2704(2)	5345(4)	8420.6(14)	346(5)
C8	1734(2)	4483(4)	9155(2)	389(5)
C9	2157(3)	2235(5)	9662(2)	595(8)
C10	2502(3)	5297(5)	10695(2)	473(6)
C11	3734(4)	6852(7)	10871(2)	877(11)
C12	1627(4)	5115(9)	11517(2)	108(2)
C13	3798(2)	5291(4)	6535.9(14)	348(5)
C14	5181(2)	5833(6)	7002(2)	523(7)
C15	3925(3)	3804(6)	5656(2)	500(6)

4.6 Synthese der zweizähnigen Phosphane 5a-g

Auf die herausragende Bedeutung zweizähniger Phosphanliganden in der asymmetrischen homogenen Katalyse wurde bereits in der Einleitung hingewiesen. Aus diesem Grund sollten ausgehend von dem C-chiralen sekundären Phosphan **4c** verschiedene ditertiäre Phosphane mit unterschiedlichem Rückgrat dargestellt werden. Durch Variation des Rückgrats der Chelatliganden lassen sich sowohl der "Bißwinkel" als auch ihre elektronischen Donoreigenschaften in gezielter Weise abwandeln. Abbildung 4-4 zeigt eine schematische Darstellung des "natürlichen Bißwinkels", der für eine standardisierte P-M-Bindungslänge von 2.315 Å definiert ist und unabhängig ist von der Natur des zentralen Metallatoms.

Abb. 4-1. Definition des "natürlichen Bißwinkels" (Φ) in quadratisch-planaren, trigonalbipyramidalen und oktaedrischen Metall-Diphosphan-Komplexen; standardisiert für d(P-M) = 2.315 Å

Die Variation des Ligandenrückgrats wurde durch Umsetzung von Alkyldihalogeniden oder -tosylaten unterschiedlicher Kettenlänge mit einem von 4c abgeleiteten Phosphid Sinne nucleophilen im einer Substitution erreicht. Zur Erzeugung des Phosphornucleophils kam sowohl die Metallierung des Phosphans mit n-BuLi als auch seine Gleichgewichtsdeprotonierung in DMSO/KOH in Betracht. In Schema 4-4 sind die "superbasischen Medium" durchgeführt Synthesen, die im wurden, zusammengefaßt.

Schema 4-1: Synthese der zweizähnigen Phosphane 5 a-d

Die Kettenlänge des Ligandenrückgrats der ditertiären Phosphane **5a-d** deckt einen Bereich von einem (**5d**) bis zu vier C-Atomen (**5a**) ab. Die Übergangsmetallkomplexe dieser Liganden bilden somit vier- bis siebengliedrige Chelatringsysteme aus. Die in Schema 4-4 aufgeführten zweizähnigen Phosphane **5a** und **5b** weisen ein relativ flexibles aliphatisches Ligandenrückgrat auf, der bevorzugte Bißwinkel liegt somit in einem größeren Bereich als bei **5c** und **5d** mit kürzerem aliphatischen Rückgrat oder bei zweizähnigen Phosphanen mit aromatischem Rückgrat, wie beispielsweise in DuPHOS (**L2**). Rh-Komplexe von Chelatliganden mit großem Bißwinkel zeigen bei der Hydroformylierung terminaler Olefine eine größere katalytische Aktivität, verbunden mit einer höheren n/i-Selektivität als Chelatliganden mit kleinem Bißwinkel^{17,96}. Letztere zeichnen sich dagegen in der Regel durch höhere Enantioselektivität bei der asymmetrischen Hydrierung aus.

Bei der asymmetrischen Reduktion von α -Ketoestern zeigte sich, daß die Flexibilität des Ligandenrückgrats von entscheidender Bedeutung für die Aktivität des

Katalysatorkomplexes ist. Die systematische Variation der Bißwinkel in den beschriebenen zweizähnigen Phosphanen **5a-g** ermöglicht somit ein Ligandenscreening für verschiedene katalytische Anwendungsbereiche.

Das Phosphan **5a** besitzt, ähnlich wie der bekannte DIOP-Ligand L1, im Rückgrat einen zusätzlichen Dioxolanring, der jedoch, wie Kraftfeldrechnungen an Rhodium-DIOP-Komplexen ergaben⁹⁷, die Flexibilität kaum beeinträchtigt. Der bevorzugte Bißwinkel liegt diesen Berechnungen zufolge in einem relativ großen Bereich zwischen 95 und 123 °.

Die in Schema 4-4 dargestellten Synthesen verlaufen bei Raumtemperatur innerhalb von 8 bis 12 Stunden in hohen Ausbeuten (78 – 93 %). Im Falle von **5c** mußte zum Aufbau des Ethylenrückgrates das entsprechende Ditosylat eingesetzt werden, da bei Verwendung des Dihalogenids Nebenreaktionen zu erwarten waren⁹⁸.

Die Phosphane **5b-d** enthalten jeweils zwei asymmetrische C-Atome mit festgelegter Konfiguration sowie die beiden P-Atome als zusätzliche stereogene Zentren, sie fallen somit bei ihrer Synthese als Gemisch von drei Diastereomeren an. **5a** weist darüber hinaus zwei Chiralitätszentren im Ligandenrückgrat auf, besitzt folglich insgesamt sechs stereogene Zentren. Durch Variation der Phosphor-Konfigurationen ergibt sich auch hier ein Produktgemisch aus drei Diastereomeren.

Abb. 4-2. Mögliche Diastereomere des zweizähnigen Phosphans 5d

Die Bildung von drei Diastereomeren ist in Abb. 4-5 am Beispiel des ditertiären Phosphans **5d** veranschaulicht. Die beiden Diastereomere mit homochiralen P-Atomen (S_PS_P, R_PR_P) stellen aufgrund der chiralen Seitenketten kein Enantiomerenpaar dar. Sie besitzen C₂-Symmetrie, somit sind die Phosphoratome innerhalb eines Moleküls chemisch äquivalent. Die statistische Häufigkeit ihres Auftretens beträgt, unter Vernachlässigung einer asymmetrischen Induktion bei ihrer Darstellung durch den chiralen Alkylrest, jeweils 25 %, während das dritte Diastereomer statistisch mit einem Anteil von 50 % im Produktgemisches auftreten sollte ($S_PR_P = R_PS_P$).

Alle ditertiären Phosphane fallen als hochviskose, im Falle von **5a** leicht gelb gefärbte Öle an. Aufgrund der geringeren Oxidationsempfindlichkeit sowie der größeren Kristallisationstendenz wurden die Produkte anschließend durch Umsetzung mit Boran-Dimethylsulfid-Komplex in die Boran-Addukte überführt.

Der Versuch, ausgehend vom sekundären Phosphan 4c, ditertiäre Phosphane mit teilweise aromatischem Ligandenrückgrat aufzubauen, führte im "superbasischen Medium" zu unerwünschten Nebenprodukten. Das Produkt der Umsetzung mit α, α' -Dibromxylol zeigte im ³¹P{¹H}-NMR-Spektrum neben dem gewünschten ditertiären Phosphan auch Signale, die auf die Bildung von Phosphoniumsalzen hindeuteten. Aufgrund der besonders reaktiven benzylischen Positionen, scheint eine intramolekulare nucleophile Substitution in Konkurrenz zur Zweitsubstitution durch das Phosphidanion aufzutreten. Dies wurde ebenfalls bei der Umsetzung mit 2,6-Bis(chlormethyl)pyridin beobachtet. Da eine Unterdrückung dieser Nebenreaktion auch durch Verwendung höher konzentrierter Reaktionsgemische nicht gelang, wurde als alternative Reaktionsführung eine vorherige Lithiierung des sekundären Phosphans bzw. seines Boran-Adduktes getestet. Durch Erhöhung der Phosphidkonzentration sollte auf diesem Weg ein einheitlicher Reaktionsverlauf begünstigt werden.

Die Überführung des sekundären Phosphans 4c in das BH₃-Addukt gelingt durch Umsetzung mit stöchiometrischen Mengen Boran-Dimethylsulfid-Komplex. Das isolierte sekundäre Phosphan-Boran-Addukt stellt eine hochviskose farblose Flüssigkeit dar.

Schema 4-2. Synthese der zweizähnigen Phosphane 5e-g

Die Reaktionssequenzen zur Darstellung der ditertiären Phosphan-Boran-Addukte **5eg** sind in Schema 4-5 dargestellt. Sie fielen als farblose kristalline Feststoffe an, die durch Umkristallisation aus Methanol oder Ethanol gereinigt und von teilweise vorhandenen Resten der entstandenen Lithiumsalze abgetrennt werden konnten.

Die freien zweizähnigen Phosphane erhält man quantitativ durch Abspaltung der Boran-Schutzgruppe. Hierzu sind in der Literatur verschiedene Methoden beschrieben worden, die meist auf der Umsetzung mit sekundären Aminen beruhen⁹⁹. Als besonders schonend und effizient stellte sich die Abspaltung der Schutzgruppe mit einem etwa zehnfachen Überschuß Morpholin heraus (Gl. 24). Wie durch ³¹P{¹H}-NMR-spektroskopische Untersuchungen nachgewiesen werden konnte, verlaufen diese Reaktionen unter Retention der Konfiguration der Phosphoratome.

Analog zu den Synthesen der zweizähnigen Phosphane **5a-d** entstehen auch hier Gemische von jeweils drei Diastereomeren. Deren Bildung ließe sich zum Teil unterdrücken, wenn die Alkylierung des sekundären Phosphans oder Phosphan-Boran-Adduktes stereoselektiv durchgeführt würde. Hierzu wurden in der Literatur Methoden beschrieben, die auf der Verwendung chiraler Hilfsreagentien beruhen. 1995 beschrieben Evans und Campos¹⁰⁰ die enantioselektive Deprotonierung des prochiralen Dimethylphenylphosphan-Boran-Addukts mit *s*-BuLi, deren Stereoselektivität aus der Koordination der lithiierten Spezies durch den Naturstoff (-)-Spartein resultiert, die zur Bildung diastereotoper Zwischenstufen führt. Dieses Prinzip ist von Livinghouse und Wolfe¹⁰¹ aufgegriffen worden, die das sekundäre *tert*-Butylphenylphosphan-Boran-Addukt, ebenfalls unter Verwendung von (-)-Spartein als chiralem Auxiliar, enantioselektiv mit *n*-BuLi deprotonierten und mit Alkyldihalogeniden umsetzten. Auf diesem Weg gelangten sie zu enantiomerenreinen C₂symmetrischen ditertiären Phosphanen.

Eine entsprechende stereodifferenzierende Bildung des Lithiumphosphids konnte im Falle des sekundären Phosphan-Boran-Adduktes **4c-BH**₃ nicht beobachtet werden, auch bei Verwendung äquimolarer Mengen (-)-Spartein entstand ein Diastereomerengemisch gleicher Zusammensetzung. Aus diesem Grund mußte abschließend eine Methode zur Trennung der Diastereomerengemische gefunden werden (s. Kapitel 4.7), um zu geeigneten diastereomerenreinen Chelatliganden mit homochiralen Dioxolan-Gruppen zu gelangen.

4.7 Versuche zur Diastereomerentrennung am Beispiel der ditertiären Phosphane 5a, 5e und 5f

Diastereomere unterscheiden sich in ihren physikalischen Eigenschaften wie z. B. Schmelz- und Siedepunkte, optische Aktivität und Löslichkeit in verschiedenen Lösungsmitteln. Zunächst wurde daher versucht, eine Trennung der diastereomeren ditertiären Phosphan-Boran-Addukte durch fraktionierende Kristallisation zu erreichen. Die Trennung der chiralen Phosphan-Boran-Addukte wurde im ³¹P{¹H}-NMR-spektroskopischen Maßstab durchgeführt.

Im folgenden werden die C₂-symmetrischen Diastereomeren mit I und III bezeichnet, das unsymmetrische Diastereomer mit R_PS_P -Konfiguration wird mit II gekennzeichnet.

Diastereomerentrennung durch Umkristallisation der BH₃-Addukte

Das ursprüngliche Verhältnis der Diastereomeren im Reaktionsprodukt **5a** betrug bei allen durchgeführten Ansätzen (auch unter Zuhilfenahme von (-)-Spartein als chiralem Auxiliar) etwa 15:50:35 (**I:II:III**, s. Abb. 4-6, S. 54). Eine eindeutige Zuordnung der ³¹P{¹H}-NMR-Signale war nur im Falle des Diastereomers **II** mit unterschiedlich konfigurierten P-Atomen möglich, da dieses im ³¹P{¹H}-NMR-Spektrum ein AB-System mit zwei Dubletts bei $\delta P = -33.8$ und $\delta P = -37.3$ ppm (⁵*J*(PP) = 1.6 Hz) erzeugt. Die diastereomeren Phosphane **I** und **III** besitzen R_PR_P - bzw. S_PS_P -Konfiguration, im ³¹P{¹H}-NMR-Spektrum wird jeweils nur ein Singulett bei $\delta P = -$ 33.5 bzw. $\delta P = -37.5$ ppm beobachtet. Die Abweichung der Zusammensetzung von der statistisch zu erwartenden (25 : 50 : 25) ist auf die stereo-differenzierende Wirkung der chiralen Alkylreste der Edukte zurückzuführen.

In Vorversuchen erwiesen sich Alkohole als die zur Umkristallisation am besten geeigneten Lösungsmittel. In Tabelle 4-5 sind die Zusammensetzungen der Niederschläge nach Umkristallisation aus verschiedenen Alkoholen angegeben. Es wurde jeweils soviel Lösungsmittel zugegeben, daß die Phosphan-Boran-Addukte bei der Siedetemperatur des verwendeten Lösungsmittels gerade vollständig aufgelöst wurden. Bereits nach zweimaliger Umkristallisation aus Ethanol oder Methanol beträgt der Anteil des Diastereomers **III** im Niederschlag nur noch unter 1 %; eine

Trennung der Diastereomeren I und II gelingt hingegen auch durch mehrfache Kristallisation nicht.

	Ι	II	III
Produktgemisch	15.0	50.2	34.8
5a •BH ₃	15.0	50.2	54.0
Methanol 1. Kr.	20.6	72.6	6.8
2. Kr	20.0	79.0	1.0
Ethanol 1. Kr.	36.2	61.3	2.4
2. Kr.	37.5	62.0	0.5
<i>n</i> -Butanol	18.9	62.2	18.9

Tabelle 4-5. Zusammensetzung der Niederschläge nach Umkristallisation aus verschiedenen Alkoholen (Angaben in %)

Abb. 4-1. ³¹P{¹H}-NMR-Spektren der Diastereomerengemische von **5a** nach Umkristallisation: ursprüngliche Produktzusammensetzung (rot), Kristallisat der zweiten Umkristallisation aus Ethanol (blau), Mutterlauge der ersten Umkristallisation aus Ethanol (schwarz).

Die größte Anreicherung eines einzelnen Diastereomers fand sich in der Mutterlauge der ersten Kristallisation aus Ethanol. Hier betrug der Anteil des Diastereomers III 80 %. Abbildung 4-6 zeigt die ³¹P{¹H}-NMR-Spektren verschiedener Fraktionen nach Abspaltung der Boran-Schutzgruppen.

Eine weitere Reinigung des Diastereomers III nach dem oben beschriebenen Verfahren gelang nicht. Auch die Umkristallisation des Produktgemisches bei –30 °C erbrachte keine verbesserte Anreicherung eines Diastereomers. Es gelang auch nicht, das in der Mutterlauge angereicherte Diastereomer III durch Verwendung anderer Lösungsmittel zur Kristallisation zu bringen.

Bei ähnlichen Versuchen mit dem Boran-Addukt des Diastereomerengemisches von **5f** wurde eine Anreicherung eines Diastereomeren in den Kristallisaten beobachtet. Durch Umkristallisation aus Ethanol und anschließende fraktionierende Kristallisation des Niederschlags aus *n*-Propanol konnte eines der C₂-symmetrischen Diastereomeren $(R_PR_P \text{ oder } S_PS_P)$ in etwa 95 %iger Diastereomerenreinheit (90 % de) erhalten werden.

Abb. 4-2. ³¹P{¹H}-NMR-Spektrum von **5e**, a) Diastereomerengemisch, b) isoliertes Diastereomer

Im Falle des ditertiären Phosphan-Boran-Adduktes **5e-BH**₃ konnte das in der Mutterlauge der ersten Umkristallisation aus Ethanol angereicherte Diastereomer aus *n*-Propanol umkristallisiert werden. Dadurch war es möglich, ein C₂-symmetrisches Diastereomer in reiner Form zu isolieren (100 % de). Die ³¹P{¹H}-NMR-Spektren des Ausgangsgemisches und des isolierten Diastereomers nach Abspaltung der BH₃-Schutzgruppen sind in Abb. 4-7 gegenübergestellt.

Diastereomerentrennung von 5a•BH₃ durch chromatographische Trennmethoden

Eine Trennung der diastereomeren Phosphan-Boran-Addukte **5a-BH**₃ durch präparative Dünnschichtchromatographie gelang nicht. Ebensowenig war auf diesem Weg eine Trennung des Gemisches aus I und II (Kristallisat der zweiten Umkristallisation aus Ethanol) möglich.

Der Versuch das Diastereomerengemisch mit Hilfe der HPLC (RP, MeOH / H_2O , 9:1) zu trennen, führte lediglich zu einer Anreicherung des Diastereomers III auf einen Gehalt von 62 %. Das Chromatogramm zeigte keine basisliniengetrennten Signale für die einzelnen Bestandteile.

Ebenfalls keine Verbesserung der Anreicherung ergab die säulenchromatographische Trennung des Gemischs. In Vorversuchen wurde ein Cyclohexan / Essigester-Gemisch (6:4) als das am besten geeignete Laufmittel ermittelt. Hiermit wurde über eine mit Kieselgel befüllte Flash-Säule eine Anreicherung des Diastereomers **III** auf 79.4 % erzielt.

Diastereomerentrennung des Sulfids von 5a durch fraktionierende Kristallisation

Um das ditertiäre Phosphan **5a** mit sechs Stereozentren in diastereomerenreiner Form zu erhalten, wurden weitere Trennversuche mit einem anderen gut kristallisierenden Derivat durchgeführt. Hierzu erwies sich neben dem Boran-Addukt **5a** \cdot BH₃ das Phosphansulfid (**5a(S)**) als besonders geeignet. Das Sulfid von **5a** erhält man in glatter Reaktion durch Umsetzung des Phosphans mit elementarem Schwefel in Benzol (Gl. 25a). Die Suspension geht im Verlauf der Reaktion innerhalb von ca. 8h in eine klare Lösung über.

Nach Abziehen des Lösungsmittels erhält man einen farblosen Feststoff, der im ${}^{31}P{}^{1}H$ -NMR-Spektrum vier Signale zwischen $\delta P = 39$ und 40 ppm zeigt. Die zwei zum Phosphansulfid mit R_PS_P -Konfiguration gehörenden Signale zeigen keine Kopplungsfeinstruktur. Die Zusammensetzung des Diastereomerengemischs liegt wiederum bei 15:50:35 (I:II:III). Der mit Hilfe der ${}^{31}P{}^{1}H$ -NMR-Spektroskopie verfolgte Anreicherungsprozeß eines C₂-symmetrischen enantiomerenreinen Diastereomers ist in Abb. 4-8 abgebildet.

Abb. 4-1. ³¹P{¹H}-NMR-Spektren verschiedener Fraktionen des Phosphansulfids **5a(S)**, Erläuterungen im Text

Das im Hintergrund abgebildete ³¹P{¹H}-NMR-Spektrum gibt die Zusammensetzung des ursprünglichen Produktgemisches wieder. Das mittlere ³¹P{¹H}-NMR-Spektrum zeigt die Anreicherung eines Diastereomers in der Mutterlauge nach Umkristallisation

aus Ethanol. Durch erneute fraktionierende Kristallisation dieser Fraktion aus *n*-Propanol konnte schließlich eine vollständige Abtrennung der übrigen diastereomeren Phosphansulfide erreicht werden. Das ³¹P{¹H}-NMR-Spektrum dieses Kristallisats ist im Vordergrund der Abbildung 4-8 dargestellt.

Die Überführung in das gewünschte ditertiäre Phosphan gelingt in 80 % iger Ausbeute durch reduktive Abspaltung des Schwefels mit Raney-Nickel in Methanol bei 60 - 70 °C (Gl. 25b).

4.8 Hydrolyse der Isopropyliden-Schutzgruppen

Exemplarisch für alle in Kapitel 4 beschriebenen ein- und zweizähnigen Phosphane mit Dioxolangruppen in der Peripherie oder im Ligandenrückgrat wurden am Beispiel des Phosphans **5a** sowie des Sulfids von **5a** die Isopropyliden-Schutzgruppen hydrolytisch abgespalten. Die Reaktionsprodukte dieser analog zu Gl. 10b verlaufenden Umsetzungen besitzen somit sechs freie Hydroxylgruppen und sind in polaren Lösungsmitteln wie Wasser, Methanol oder auch THF hervorragend löslich. Die Hydrolyse (s. Schema 4-6, Gl. 26, 27) wurde in THF durchgeführt und erfolgte ohne Verlust der Stereochemie, wie durch ³¹P{¹H}-NMR-spektroskopische Analyse belegt werden konnte. Die Hydrolyseprodukte zeigen hier, den eingesetzten Edukten entsprechend, jeweils Signale, die einem Produktgemisch von drei Diastereomeren gleicher Zusammensetzung zugeordnet werden können (s. Tabelle 57, 58).

Schema 4-1: Hydrolyse der Isopropyliden-Schutzgruppen von 5a und 5a(S)

4.9 Charakterisierung der Phosphane 5a-g

Das allgemeine Erscheinungsbild der ³¹P{¹H}-NMR-Spektren sämtlicher ditertiärer Phosphane **5a-g** wurde bereits im letzten Kapitel erläutert. Die Signale liegen in allen Fällen in dem für Dialkyarylphosphane typischen Bereich zwischen $\delta P = -20$ und $\delta P = -40$ ppm. Die chemischen Verschiebungen δP der Phosphane **5a-g** und die ⁿJ(PP)-Kopplungskonstanten der unsymmetrischen Diastereomere sind in Tabelle 4-6 aufgeführt.

Ditertiäres	SD [nnm]	ⁿ <i>I</i> (DD) [11 ₇]	Ditertiäres	SD [nnm]	ⁿ <i>I</i> (DD) [11 ₇]
Phosphan	or [hhm]	P	Phosphan	or [hhm]	J(I I) [IIZ]
	-34.0			-26.4	
5a	-36.9		5e	-28.4	
	-34.0; -36.8	${}^{5}J(PP) = 1.6$		-26.8; -28.5	${}^{5}J(PP) = 4.4$
	-29.8			-23.4	
5b	-31.5		5f	-23.9	
	-29.7; -31.3	${}^{4}J(PP) = 1.0$		-24.7	
	-25.0			-38.5	
5c	-27.1		5g	-40.6	
	-24.4; -26.6	${}^{3}J(PP) = 24.1$		-38.5; -40.1	$^{4}J(PP) = 3.5$
	-34.5				
5d	-34.9				
	-34.1; -35.8	$^{2}J(PP) = 102.2$			

Tabelle 4-6. ³¹P{¹H}-NMR-Daten der ditertiären Phosphane **5a-g**

Die zweizähnigen Phosphane **5a-g** unterscheiden sich lediglich in Bezug auf das jeweilige Ligandenrückgrat. Entsprechend finden sich in den ¹³C{¹H}-NMR-Spektren die charakteristischen Signale der ihnen gemeinsamen Molekülbestandteile, wie sie

auch bei den bereits diskutierten Phosphanen **4a-d** aufgetreten sind. Auf eine ausführliche Diskussion dieser NMR-Signale dieser Verbindungen sowie ihrer BH₃-Addukte wird aus diesem Grund verzichtet. Die entsprechenden NMR-Daten und Zuordnungen sind in den Tabellen 37 – 57 (Kapitel 10) zusammengefaßt.

Die zu erwartende Anzahl der Signale dieser Gruppierung in den ¹³C{¹H}-NMR-Spektren der ditertiären Phosphanen wird durch die jeweilige Symmetrie der verschiedenen Diastereomere bestimmt. In den homochiralen Diastereomeren sind die beiden durch das Ligandenrückgrat verknüpften Phenylalkylphosphangruppen aufgrund der C₂-Symmetrie äquivalent, im unsymmetrischen R_PS_P -Diastereomer inäquivalent.

Insgesamt sind folglich im Diastereomerengemisch für jedes C-Atom des Alkylsubstituenten vier Signale im ${}^{13}C{}^{1}H$ -NMR-Spektrum zu erwarten. Die Methylgruppen jeder einzelnen Isopropylidengruppe, mit Ausnahme der zentralen in **5a** (s. Abb. 4-9), sind weiterhin diastereotop und somit anisochron.

Ähnlich liegen die Verhältnisse für das Ligandenrückgrat, das in allen Fällen lokal zumindest C₂-Symmetrie aufweist. In den Diastereomeren R_PR_P und S_PS_P bleibt diese Symmetrie für das gesamte Molekül erhalten, wie in Abb. 4-9 am Beispiel des R_PR_P -Diastereomers von **5a** veranschaulicht wird.

Durch die unterschiedliche Konfiguration der P-Atome wird die Symmetrie im R_PS_P -Diastereomer erniedrigt - durch den chiralen Rest R und im Falle von **5a** das chirale Rückgrat liegt auch keine C_S-Symmetrie vor – und sämtliche C-Atome des Ligandenrückgrates werden inäquivalent.

Abb. 4-1. Stereochemie des $R_P R_P$ -Diastereomers von 5a

Durch die ¹³C-Substitution wird die C₂-Symmetrie zerstört und somit die beiden P-Atome inäquivalent. Im ¹³C{¹H}-NMR-Spektrum sollten für die C-Atome C1 und C2 (s. Abb. 4-9) demnach X-Teile von ABX-Spinsystemen (A,B = 31 P, X = 13 C) auftreten. Für C1 findet man im ¹³C{¹H}-NMR-Spektrum des diastereomerenreinen Phosphansulfids **5a(S)** aufgrund der kleinen ${}^{4}J(PC)$ -Kopplungskonstanten jedoch nur ein Dublett bei $\delta C = 37.70$ ppm mit einer im Vergleich zum Phosphan deutlich größeren ¹J(PC)-Aufspaltung von 54.9 Hz. Für C2 (s. Abb. 4-9) wird ein Dublett von Dubletts bei $\delta C = 76.73$ ppm beobachtet (²J(PC) = 12.2 Hz, ³J(PC) = 3.1 Hz). Aufgrund der nicht zugänglichen aber vermutlich kleinen ${}^{5}J(PP)$ -Kopplungskonstanten (vgl. $5a(R_PS_P)$: ⁵J(PP) = 1.6 Hz) und der nur geringen Differenz der chemischen Verschiebungen $v_0 \delta_{AB}$ der ³¹P-Kerne, die lediglich durch den Isotopeneffekt der ¹³C-Substitution bedingt ist, ist in diesen Fällen eine Auswertung als Spektrum 1. Ordnung zulässig. Dies gilt analog für die C₂-symmetrischen Diastereomere der Diphosphane **5b**, **5e** und **5f** sowie deren BH_3 -Addukte mit ähnlich kleinen ${}^{n}J(PP)$ -Kopplungskonstanten. In den unsymmetrischen Diastereomeren ist die Größe von $v_0\delta_{AB}$ nicht mehr vernachlässigbar, so daß in diesen Fällen nur eine Angabe des N-Dubletts (N = |J(AX) + J(BX)|) möglich ist. Entsprechende Angaben finden sich im Tabellenteil auch für die Rückgrat-C-Atome der zweizähnigen Phosphane 5c und 5d, da hier $J_{AB}(= {}^{n}J(PP))$ nicht mehr klein ist im Vergleich zu den ${}^{n}J(PC)$ -Kopplungskonstanten und somit ein Spektrum höherer Ordnung vorliegt.

Das in reinem Zustand isolierte C2-symmetrische Diastereomer von 5f zeigt im ¹³C{¹H}-NMR-Spektrum (s. Abb. 4-10) ebenfalls die erwartete Anzahl an Signalen. Für das aliphatische C-Atom des Ligandenrückgrates C6 wird hier nur eine Kopplung zum benachbarten P-Atom beobachtet ($\delta C = 38.93$ ppm; ¹J(PC) = 17.3 Hz). Der aromatische Pyridylenbestandteil erzeugt drei Resonanzen, die sich typischerweise über einen großen Verschiebungsbereich erstrecken. Das Signal von C7 liegt zu tiefem Feld verschoben bei $\delta C = 158.16$ ppm, die ²*J*(PC)-Kopplungskonstante beträgt 5.1 Hz. Eine Kopplung über das N-Atom hinweg wird nicht beobachtet. Die zu hohem Feld verschobene Resonanz von C8 bei $\delta C = 120.55$ ppm besitzt dagegen Dublett von Dublett-Feinstruktur. Aus dieser Aufspaltung läßt sich durch Auswertung 1. Ordnung 3 *J*(PC)-Kopplungskonstanten von 5.1 $^{5}J(PC)$ neben der Hz auch die

Kopplungskonstante von 2.0 Hz entnehmen. Für C9 wird, ähnlich wie für das *para*ständige C-Atom im unsubstituierten Pyridin ($\delta C = 135.7 \text{ ppm}^{102}$), ein Singulett bei δC = 135.91 ppm beobachtet.

Abb. 4-2. 100.6 MHz ¹³C{¹H}-NMR-Spektrum und ¹³C-DEPT-NMR-Spektrum von **5f**, (Aromatenbereich)

Bei der NMR-spektroskopischen Untersuchung von Diastereomerengemischen (**5b**, **5c**, **5d**, **5g**) ist aufgrund der vielfachen Überlagerung von Signalen deren zweifelsfreie Zuordnung nicht immer möglich. Sowohl durch Änderung der Meßfrequenz als auch durch Aufnahme von CH- und HH-Korrelationsspektren gelang es, Informationen über die chemischen Verschiebungen δ C und δ H sowie die Kopplungskonstanten ⁿ*J*(PC), ⁿ*J*(HH) und ⁿ*J*(PH) zu gewinnen. Die NMR-Daten und Zuordnungen sind im Tabellenteil zusammengefaßt.

Die Analyse der ¹H-NMR-Spektren der zweizähnigen Phosphane war selbst im Falle der diastereomerenreinen Verbindungen nicht für alle Protonen möglich. So stellen beispielsweise die Methylen- und Methinprotonen des Ligandenrückgrats von **5a** (s. Abb. 4-9) zusammen mit den P-Atomen ein AA'BB'MM'XX'-Spinsystem dar $(A,A',B,B',M,M' = {}^{1}H, X,X' = {}^{31}P)$, welches vom ABCDEX-Spinsystem (A,B,C,D,E = ${}^{1}H, X = {}^{31}P$) des peripheren Alkylrestes überlagert wird.

Das ¹H-NMR-Spektrum des Sulfids von **5a** zeigt im Gegensatz dazu für die meisten Protonen basisliniengetrennte Signalsätze, so daß durch Aufnahme von CH- und HH-Korrelationsspektren eine Zuordnung sowie eine Analyse der zugrundeliegenden Spinsysteme gelang. So zeigt das HH-COSY-NMR-Spektrum für die mit C3 verknüpften Protonen H_c und H_d (s. Abb. 4-11) keine ⁴*J*(HH)-Kopplung mit den Protonen H_a und H_b. Ferner beobachtet man weder eine ⁴*J*(PH)-Kopplung zum ³¹P-Kern noch eine ⁴*J*(HH)-Kopplung der Protonen H_a und H_b über das P-Atom hinweg zu den mit C6 verknüpften Protonen.

Abb. 4-3. Spinsystem im Molekülfragment von 5a(S)

Auf der Grundlage dieser Ergebnisse gelang eine Simulation des ¹H-NMR-Spektrums des oben gekennzeichneten Molekülfragmentes mit Hilfe des Programms gNMR¹⁰³ (s. Abb. 4-12).

Abb. 4-4. Simuliertes ¹H-NMR-Spektrum für die Protonen H_a , H_b , H_c , H_d und H_e (unten) sowie Ausschnitt aus dem experimentellen ¹H-NMR-Spektrum des Sulfids von **5a** (oben)

Die durch Iteration erhaltenen chemischen Verschiebungen δH sowie die HH- bzw. PH-Kopplungskonstanten sind im Tabellenteil (Tab. 41) zusammengefaßt.

In einigen weiteren Fällen konnten deutlich separiert liegende charakteristische Protonenresonanzen zugeordnet und analysiert werden. So findet man für die aromatischen Protonen des Ligandenrückgrats in **5f** ein Dublett und ein Triplett, die eine Auswertung als NMR-Spektrum 1. Ordnung ermöglichten. Die NMR-Parameter dieser Protonen sowie weitere ausgewählte ¹H-NMR-spektroskopische Daten der ditertiären Phosphane **5a-f** bzw. ihrer Boran-Addukte sind ebenfalls im Tabellenteil zusammengefaßt.

5 Koordinationschemie einiger ausgewählter Phosphane

Im Zusammenhang mit der Anwendung der im Rahmen dieser Arbeit dargestellten Phosphane **2a**, **3a**, **4a** und **5b** als Komponenten von Komplexkatalysatoren war die Koordinationschemie der Phosphane gegenüber den Übergangsmetallen Palladium und Rhodium von Interesse.

Die spektroskopischen Daten dieser Komplexe sollten Informationen über die elektronischen und sterischen Eigenschaften der Phosphanliganden liefern.

Die Analyse der NMR-Spektren der $PdCl_2L_2$ -Komplexe (L = **2a**, **3a**, **4a**) sollte darüber hinaus den Nachweis der Enantiomerenreinheit der dargestellten Phosphane gestatten. Eine Epimerisierung des asymmetrischen C-Atoms, die in den NMR-Spektren der freien Liganden mit nur einem stereogenen Zentrum nicht nachweisbar ist, würde hier zur Bildung NMR-spektroskopisch unterscheidbarer diastereomerer Komplexe führen.

5.1 Synthese und Charakterisierung der Palladium(II)-Komplexe 6-9

Tertiäre Phosphane bilden mit Palladium(II)-chloriden quadratisch planare Komplexe der Zusammensetzung PdCl₂L₂. In Lösung liegen die *cis-* und *trans*-Isomere dieser Komplexe im Gleichgewicht nebeneinander vor¹⁰⁴. Die Lage des *cis/trans*-Gleichgewichts wird von verschiedenen Faktoren bestimmt. Bei großem Raumbedarf des Liganden wird das *trans*-Isomer begünstigt, während eine hohe π -Akzeptorfähigkeit des Phosphans die *cis*-Anordnung stabilisiert^{105,106}. Ferner wird die Lage des Gleichgewichts durch die Polarität des Lösungsmittels beeinflußt^{107,108}. Aufgrund des Dipolmoments der *cis*-Komplexe werden diese von polaren Lösungsmitteln stabilisiert, unpolare Lösungsmittel begünstigen eher die *trans*-Anordnung, die kein Dipolmoment aufweist.

Die Palladium(II)-Komplexe **6-8** erhält man in glatter Reaktion durch Umsetzung der tertiären Phosphane mit (Cycloocta-1,5-dien)palladium(II)-chlorid im molaren Verhältnis von 2 : 1 in Dichlormethan (Gl. 28).

Diese Ligandenverdrängungsreaktion liefert nach Abziehen des Lösungsmittels sowie des freigesetzten Cycloocta-1,5-diens im Vakuum die Palladium(II)-Komplexe **6-8** als gelbe bis cremefarbene mikrokristalline Feststoffe.

Durch Metathesereaktion des Dichlorokomplexes 6 mit Silberperchlorat nach einer von Pringle et al. entwickelten Methode^{109,110} (Gl. 29) erhält man den kationischen *spiro*-Komplex 9, der wie 6 eine quadratisch planare Koordination am Pd-Atom aufweist. Das Phosphan 2a fungiert in 9 als P,O-Hybridligand und bildet zwei fünfgliedrige Chelatringe.

Die ³¹P{¹H}-NMR-Spektren der Komplexe **6-9** zeigen jeweils zwei Signale, die im Vergleich zu denen der freien Liganden zu tiefem Feld verschoben sind. Ein Vergleich mit Literaturdaten¹¹¹⁻¹¹⁴ ermöglicht eine Zuordnung zum *cis*- bzw. *trans*-Isomer der PdCl₂L₂-Komplexe Diese unterscheiden sich in der Größe der Koordinationsverschiebung $\Delta\delta P$, die als Differenz der chemischen Verschiebung δP des

Komplexes und des freien Liganden definiert ist. In Tabelle 5-1 sind die Koordinationsverschiebungen sowie die relativen Anteile der Isomeren in den NMRspektroskopisch untersuchten Lösungen zusammengestellt.

Komnley	Konfiguration	Isomeren-	δΡ	ΔδΡ
Komplex	Konngulation	verteilung	[ppm]	[ppm]
6 ^{a)}	cis	93 %	43.0	64.2
0	trans	7 %	26.4	47.6
7 b)	cis	12 %	30.9	53.7
1	trans	88 %	13.6	36.4
Q C)	cis	52 %	28.1	49.8
0	trans	48 %	13.6	35.3
o ^d)	cis	91 %	51.5	72.7
9-7	trans	9 %	47.6	68.8

Tabelle 5-1: ³¹P{¹H}-NMR-spektroskopische Daten der Komplexe 6-9

^{a)} in CD₃OD ^{b)} in CDCl₃ ^{c)} in Benzol-d₆ ^{d)} in Aceton-d₆

Die Koordinationsverschiebungen der *cis*-Isomeren der Dichlorokomplexe **6-8** sind 14 – 18 ppm größer als die der entsprechenden *trans*-Komplexe. Ursache hierfür ist der *trans*-Einfluß der Liganden, der die relative Fähigkeit beschreibt, die Bindung des Liganden in *trans*-Position zu lockern. Diese Labilisierung eines *trans*-ständigen Liganden bezieht sich auf den Grundzustand und ist - im Gegensatz zum kinetisch begründeten *trans*-Effekt - ein thermodynamisches Phänomen¹¹⁵. Da ein Chloridligand im Vergleich zu Phosphanliganden einen geringeren *trans*-Einfluß ausübt, sind die zu den Chloratomen *trans*-ständigen Liganden fester gebunden. Aus diesem Grund sind die P-Atome in den *cis*-Isomeren stärker entschirmt und somit die Signale zu tieferem Feld verschoben¹¹⁶. Im Falle des kationischen Chelatkomplex **9** wird eine größere Koordinationsverschiebung $\Delta\delta P$ beobachtet, da diese einen Ringbeitrag $\Delta\delta P(Ring)$ enthält¹¹⁷, der eine zusätzliche Tieffeldverschiebung bewirkt.
Aus den Intensitätsverhältnissen der Signale im ³¹P{¹H}-NMR-Spektrum von 6 läßt sich der Anteil des *cis*-Isomers zu 93 % bestimmen, das *trans*-Isomer liegt nur zu 7 % in der Lösung vor. Eine ähnliche Verteilung der Isomeren (91:9) findet man auch beim Komplex 9. Aufgrund des etwas größeren Raumbedarfs der Liganden **3a** und **4a** findet man für die Palladium(II)-Komplexe 7 und 8 höhere Anteile der *trans*-Isomeren (s. Tab. 5-1).

Da die chemische Verschiebung δP der *trans*-Isomeren weitgehend unabhängig von den elektronischen Eigenschaften des Liganden ist, ermöglicht die Korrelation dieser Werte mit den Kegelwinkeln eine Charakterisierung des sterischen Anspruchs des Phosphans. Auf der Basis von Röntgenstruktur- und ³¹P{¹H}-NMR-Daten haben Immirzi und Musco¹¹⁸ für diese Korrelation folgende Geradengleichung vorgeschlagen:

$$\Theta_{\text{Mus}} = 0.474 \bullet \delta P(trans-PdCl_2L_2) + 122.1$$

Der so gewonnene Parameter Θ_{Mus} ist mit dem Tolman'schen Kegelwinkel vergleichbar, liefert jedoch systematisch kleinere Werte.

Aufgrund dieser linearen Korrelation ergeben sich für die Phosphanliganden **3a** und **4a** Kegelwinkel Θ_{Mus} von 129 °, während für **2a** ein Wert von 135 ° ermittelt wird. Obgleich der Dihydroxyalkylsubstituent in **2a** kein starres Ringsystems aufweist, wird ein im Vergleich zu **3a** und **4a** größerer Raumbedarf festgestellt. Ein möglicher Grund hierfür könnte die bevorzugte Ausbildung einer Solvathülle, insbesondere in polaren Lösungsmitteln (CD₃OD), durch Wasserstoffbrückenbindungen sein.

Eine weitere Möglichkeit zur Bestimmung der Stereochemie quadratisch planarer Palladium(II)-Komplexe PdCl₂L₂ ergibt sich aus den typischen Aufspaltungsmustern der Signale in den ¹³C{¹H}-NMR-Spektren. Die C-Atome der Alkyl- und Arylsubstituenten repräsentieren jeweils die X Teile von ABX-Spinsystemen (A,B = ³¹P, X = ¹³C). Das Erscheinungsbild eines solchen X-Teils, der typischerweise sechs Linien

aufweist, die symmetrisch zu v_X sind, wird durch folgende Größen bestimmt:

$$D_{+} = \{ [\frac{1}{2} \nu_{0} \delta_{AB} + \frac{1}{4} (J_{AX} - J_{BX})]^{2} + \frac{1}{4} (J_{AB})^{2} \}^{1/2}$$
$$D_{-} = \{ [\frac{1}{2} \nu_{0} \delta_{AB} - \frac{1}{4} (J_{AX} - J_{BX})]^{2} + \frac{1}{4} (J_{AB})^{2} \}^{1/2}$$
$$N = |J_{AX} + J_{BX}|$$

Abb. 5-1. X-Teil eines ABX-Spinsystems

Der Unterschied der chemischen Verschiebungen der beiden Phosphorkerne v₀ δ_{AB} , der durch den ¹³C-Isotopeneffekt bedingt wird, ist nur sehr gering. Aus diesem Grund fallen die mittleren Linien f₁₁ und f₁₂ zusammen (D₊ = D₋). Einen großen Unterschied weisen *cis-* und *trans*-Isomere der PdCl₂L₂-Komplexe jedoch hinsichtlich der AB-Kopplungskonstanten ²*J*(PP) auf. Diese ist für *trans*-Komplexe in der Regel größer als 500 Hz, während bei *cis*-Komplexen nur eine kleine Phosphor-Phosphor-Kopplung beobachtet wird (²*J*(PP) < 10 Hz)^{119,120}. Somit ändert sich das Verhältnis von *J*(AB) relativ zu | *J*_{AX} - *J*_{BX}|, welches u. a. entscheidend für das Erscheinungsbild des X-Teils ist. So ist der Betrag der Kopplungskonstanten ²*J*(PP) in *trans*-Komplexen um ein Vielfaches größer als | *J*_{AX} - *J*_{BX}|, woraus sich für den X-Teil eine Triplettfeinstruktur ergibt, da die Interkombinationslinien f₉ und f₁₄ aufgrund zu geringer Intensität nicht in Erscheinung treten.

Für *cis*-PdCl₂L₂-Komplexe wird dagegen eine "filled in" Dublett-Feinstruktur¹²¹ erwartet, da die Intensität der mittleren Linien f_{11} und f_{12} mit kleiner werdender ²*J*(PP)-Kopplungskonstante abnimmt. Entsprechend muß die Intensität von f_9 und f_{14} zunehmen, da die Summe der Intensitäten von f_9 und f_{11} gleich der Intensität von f_{10} ist. Die Linien f_9 und f_{14} wandern jedoch bei kleiner werdender ²*J*(PP)-Kopplungskonstante in die Flanken von f_{10} und f_{13} und werden somit auch hier meist nicht beobachtet.

Typische Beispiele für die beschriebenen Signalformen finden sich in den ${}^{13}C{}^{1}H$ -NMR-Spektren der PdCl₂L₂-Komplexe *trans*-7 und *cis*-9. Abb. 5-2 zeigt die ${}^{13}C{}^{1}H$ -

NMR-Signale der beiden diastereotopen *ortho*-ständigen C-Atome der Diphenylphosphingruppen von 7 (links) und der *meta*-ständigen C-Atome von 9 (rechts).

Abb. 5-2. Ausschnitte aus den 100.6 MHz-¹³C{¹H}-NMR-Spektren der PdCl₂L₂-Komplexe *trans*-7 (links) und *cis*-9 (rechts); das zusätzliche Singulett im linken Teil der Abbildung stammt vom Phenylrest der Benzolboronatgruppe des Liganden **3a**

Aufgrund des fehlenden AB-Teils dieser Spektren höherer Ordnung ist eine Bestimmung sämtlicher NMR-Parameter nicht möglich. Eine Bestimmung dieser Parameter auf der Grundlage der Intensitätsverhältnisse der Linien des X-Teils dieses Spinsystems gelang trotz ausreichender Linienanzahl (s. Abb. 5-2, rechter Teil) nicht. Das ungünstige Signal-Rausch-Verhältnis ermöglichte lediglich die Bestimmung der Resonanzen der ¹³C-Kerne (v_X) sowie der Summe der Kopplungskonstanten zu den P-Atomen (N = |J(AX) + J(BX)|).

Eine entsprechende Zusammenstellung der chemischen Verschiebungen und der N-Dublett-Aufspaltungen für die Komplexe **6-9** findet sich in den Tabellen 59 - 62. Die Zuordnungen der ¹³C{¹H}-NMR-Signale erfolgten durch Vergleich mit den NMR-Parametern analoger Dichloropalladium(II)-Komplexe¹²². Die relativen Intensitäten der Signale ermöglichten eine zusätzliche Überprüfung der getroffenen Zuordnungen. Die Identifizierung der *ipso*-C-Atome gelang durch die Analyse der ¹³C{¹H}-DEPT-NMR-Spektren.

Die ¹³C{¹H}-NMR-Resonanzen der koordinierten Phosphanliganden zeigen, ebenso wie die ³¹P{¹H}-NMR-Signale, im Vergleich zum freien Liganden eine Koordinationsverschiebung $\Delta\delta C$. Dieser Effekt wirkt sich am stärksten auf die aromatischen *ipso*-C-Atome aus, deren Signale eine Hochfeldverschiebung von 8-12 ppm erfahren. Die Zunahme der Abschirmung ist auf ein Anwachsen des s-Charakters der PC-Bindung zurückzuführen. Dies hat auch eine deutliche Zunahme der ¹*J*(PC)-Kopplungskonstante zur Folge (**8**: $\delta C(ipso) = 130.28$ ppm, N = 46.8 Hz; **4a**: $\delta C(ipso)$ = 139.00 / 139.20 ppm, ¹*J*(PC) = 13.2 Hz).

Die Signale der *para*-C-Atome des Phenylrestes der Komplexe **6-8** zeigen im Gegensatz dazu einheitlich eine Koordinationsverschiebung $\Delta\delta C$ von ca. 2 ppm zu tieferem Feld. Die stärkere Entschirmung dieser C-Atome weist auf eine Abnahme der Elektronendichte im Phenylring hin¹²³. Hieraus folgt, daß bei den Palladium(II)-Komplexen **6-8** keine signifikante Pd-P- π -Rückbindung auftritt, die P-Pd-Bindung besitzt somit einen ausgeprägten σ -Donorcharakter.

Durch die Koordination der Phosphanliganden **2a**, **3a** und **4a** nehmen die ²*J*(PC)-Kopplungskonstanten der β -C-Atomen der Alkylsubstituenten ab. Die N-Dublett-Aufspaltungen sind kleiner als die Linienbreite der ¹³C{¹H}-NMR-Signale und im Aliphatenteil der ¹³C{¹H}-NMR-Spektren wird für dieses C-Atom nur ein Singulett beobachtet.

5.2 Synthese und Charakterisierung der Rhodium(I)komplexe 10-13

Neutrale und kationische Rhodium(I)-(Dien)-Komplexe der Zusammensetzung [(Dien)RhClL] bzw. [(Dien)RhL₂]A (L = tertiäres Phosphan oder L₂ = ditertiäres Phosphan, A = PF_6^- , ClO_4^- , etc.) stellen wichtige "Precursor-Verbindungen" für die vielfach *in situ* erzeugten Katalysatorkomplexe dar. Seit langem ist bekannt, daß sich diese monomeren quadratisch planaren Komplexe auf einfache Weise durch Spaltung

der dimeren μ -Chloro(Dien)-Komplexe [(Dien)RhCl]₂ mit tertiären Phosphanen darstellen lassen.¹²⁴ Die neutralen Komplexe erhält man durch Umsetzung stöchiometrischer Mengen der Reaktanden, die kationischen Komplexe können im Sinne einer Metathesereaktion durch Zugabe von Alkalimetallsalzen nicht-koordinierender Anionen wie PF₆⁻ oder ClO₄⁻ isoliert werden.

Abb. 5-1. Darstellung der Rhodium(I)-Komplexe 10-13

Die Verdrängung des Diens aus diesen Vorläuferkomplexen durch einfaches Aufpressen von H_2 , die mit einer Hydrierung der Doppelbindungen einhergeht, liefert letztlich den aktiven Hydrierkatalysator. Als Dien-Komponente werden überwiegend Cycloocta-1,5-dien (COD) und Bicyclo-hepta-2,5-dien (NBD = Norbornadien) verwendet.

Beispielhaft für die im Rahmen der vorliegenden Arbeit dargestellten chiralen Phosphanliganden wurden die (NBD)Rhodium(I)-Komplexe der Phosphane **2a**, **4a** und der ditertiären Phosphane **5a** und **5b** dargestellt und charakterisiert (s. Abb. 5-3, Gl. 28-31).

Die Komplexe **10-13** fallen als gelb bis orangefarbene mikrokristalline Feststoffe an, die auch in Lösung über Wochen luftstabil sind. Sie sind sehr gut löslich in Alkoholen, THF und anderen polaren organischen Lösungsmitteln, in unpolaren Lösungsmitteln, wie z.B. Hexan, ist ihre Löslichkeit dagegen gering.

Das ³¹P{¹H}-NMR-Spektrum des neutralen Komplexes **10** zeigt erwartungsgemäß ein im Vergleich zum freien Liganden tieffeldverschobenes Signal bei $\delta P = 23.5$ ppm, das durch Rh-P-Kopplung (¹⁰³Rh: s = ½, 100 %) zu einem Dublett aufgespalten ist. Die ¹*J*(RhP)-Kopplungskonstante beträgt 168.7 Hz und liegt somit in einem typischen Bereich für neutrale Rhodium(I)-Phosphan-Komplexe.

Für die aliphatischen Protonen des Phosphanliganden **2a** wird im ¹H-NMR-Spektrum von **10** ein komplexes Linienmuster beobachtet, welches bezüglich der Signallagen und der Feinstruktur dem des freien Liganden ähnlich ist. Durch Überlagerung mit den Resonanzen der olefinischen und der Methinprotonen des Norbornadienliganden ist eine Zuordnung nicht in allen Fällen möglich. Für die olefinischen Protonen findet man ein breites Signal bei $\delta H = 3.77 \text{ ppm}(W_{1/2} = 8.3 \text{ Hz})$. Dies deutet darauf hin, daß das an das Rh-Atom koordinierte Dien bei der Meßtemperatur eine bezüglich der NMR-Zeitskala schnelle Rotation um die Rh-NBD-Achse durchführt, wodurch die olefinischen Protonen (*cis* und *trans* zum Phosphanliganden) einen periodischen Wechsel ihrer chemischen Umgebung und somit ihrer Larmor-Frequenzen durchlaufen und damit äquilibrieren. Ähnliche Beobachtungen wurden bei zahlreichen Rhodium-(Dien)-Komplexen gemacht¹²⁵. Während dem Signal der olefinischen Protonen aufgrund der Linienverbreiterung keine Kopplungskonstante entnommen werden kann, zeigt die Methinresonanz übereinstimmend mit Literaturdaten¹²⁷ eine ³*J*(HH)-

Kopplungskonstante von ca. 2 Hz. Weitere Kopplungen zu den Methylen-protonen des Norbornadiens, dem P-Atom oder dem zentralen Rh-Atom werden nicht beobachtet. Demzufolge erscheint das Signal der Methylenprotonen als ein Singulett bei $\delta H = 1.39$ ppm.

Das C-Atom dieser Methylengruppe des Norbornadiens zeigt im ${}^{13}C{}^{1}H$ -NMR-Spektrum eine schwache Kopplung mit dem Rh-Atom, die eine Aufspaltung des Signals von 3.1 Hz bewirkt. Eine Kopplung des Methin-C-Atoms wird weder mit dem P- noch mit dem Rh-Atom beobachtet. Für die olefinischen C-Atome konnten im ${}^{13}C{}^{1}H$ -NMR-Spektrum keine Signale beobachtet werden.

Die ¹³C{¹H}-NMR-Signale des Phosphanliganden **2a** im Komplex **10** werden durch die Koordination an das Übergangsmetall ähnlich beeinflußt, wie bereits bei den Palladium(II)-Komplexen erläutert wurde (s. Kap. 5.1). So erscheint das Signal des β -C-Atom des Alkylrestes nur als Singulett; die diastereotopen *ipso*-C-Atome der beiden Phenylreste zeigen mit 41.7 bzw. 42.7 Hz eine deutlich größere ¹*J*(PC)-Kopplungs-konstante als im freien Liganden beobachtet wurde, verbunden mit einer Hochfeldverschiebung von ca. 8 ppm, die auch hier ein Anwachsen des s-Charakters der PC-Bindung belegt. Kopplungen zum zentralen Rhodiumatom werden bei keinem der C-Atome beobachtet.

Der Komplex 11 besitzt aufgrund der beiden homochiralen Phosphanliganden C₂-Symmetrie. Die C₂-Achse verläuft durch die Methylengruppe des Norbornadienliganden und halbiert den PRhP-Winkel. Die P-Atome sind äquivalent und erzeugen durch Kopplung mit dem zentralen Rhodiumatom im 101.3 MHz ³¹P{¹H}-NMR-Spektrum ein Dublett bei $\delta P = 24.4$ ppm mit einer Aufspaltung von 155.7 Hz. Die beiden Doppelbindungssysteme des Norbornadiens sind ebenfalls äquivalent, die vinylischen Protonen jeder Doppelbindung sind jedoch jeweils inäquivalent. Im ¹H-NMR-Spektrum von 11 beobachtet man folglich zwei verbreiterte Signale bei $\delta H =$ 4.89 (W_{1/2} = 23 Hz) und 5.10 ppm (W_{1/2} = 28 Hz). Im Vergleich zum Rhodiumkomplex 10 scheint hier, aufgrund der größeren sterischen Hinderung durch den zweiten Phosphanliganden, die Rotation des Norbornadiens langsamer zu verlaufen, so daß noch getrennte Signale beobachtet werden können. Diese Rotation beeinflußt auch die Linienform der Methinprotonensignale des Norbornadiens, die aufgrund der C₂-Symmetrie zwar äquivalent sind, deren chemische Umgebung sich jedoch ebenfalls periodisch ändert, wodurch es zur Linienverbreiterung kommt.

Ähnlich wie im Falle von Komplex **10** werden im 100.6 MHz ¹³C{¹H}-NMR-Spektrum keine Signale für die olefinischen C-Atome beobachtet. Im Gegensatz dazu zeigt jedoch das 62.9 MHz ¹³C{¹H}-NMR-Spektrum zwei Multipletts bei $\delta C = 82.40$ und 83.89 ppm, die diesen C-Atomen zugeordnet werden können. Das Erscheinungsbild dieser Signale entspricht dem X-Teil eines ABMX-Spinsystems mit schwach gekoppeltem M-Kern (A,B = ³¹P, M = ¹⁰³Rh, X = ¹³C). Hieraus läßt sich auf einen ebenfalls verlangsamten Austauschprozeß der Phosphanliganden schließen.

Dies wird zusätzlich durch die ¹³C{¹H}-NMR-Signale der aromatischen *ortho*-C-Atome sowie der α - und γ -C-Atome der Alkylsubstituenten in **11** belegt, die als AB(M)X-Spinsysteme in Form von "Pseudo-Tripletts" in Erscheinung treten. Eine nicht vollständig aufgelöste Feinstruktur der Signale der *ipso*-C-Atome weist ferner auf eine schwache Kopplung zum ¹⁰³Rh-Kern hin. In der Literatur findet man widersprüchliche Angaben über die Größe der auftretenden Kopplungen(ⁿ*J*(PC), ⁿ*J*(RhC)) sowie über die Zuordnung zu den unterschiedlich orientierten Phenylringen im Komplex^{126,127}. In Tabelle 64 sind daher bezüglich dieser C-Atome nur die N-Dublett-Aufspaltungen angegeben.

Beispielhaft für die zweizähnigen Phosphanliganden wurden analoge kationische Rhodium(I)-(NBD)-Komplexe der Diastereomerengemische der Liganden **5a** (13) und **5b** (12) dargestellt. Aufgrund der Bildung dreier diastereomerer Komplexe ist eine Zuordnung der einzelnen ¹H-NMR- und ¹³C{¹H}-NMR-Signale nicht möglich.

Das ³¹P{¹H}-NMR-Spektrum von **12** zeigt allerdings das erwartete Erscheinungsbild mit Dublett-Signalen bei $\delta P = 7.72$ und 7.47 ppm für die beiden C₂-symmetrischen Komplexe I und II (R_PR_P , S_PS_P) sowie den AB-Teil (8-Linienmuster) eines ABX-Spinsystems (A,B = ³¹P, X = ¹⁰³Rh) für den Komplex des R_PS_P -Diastereomers III von **5b**. Unter Berücksichtigung der jeweiligen Anteile der Diastereomeren wurde eine Linienform-Iteration mit Hilfe des Programms gNMR durchgeführt (Abb. 5-4). Die auf diese Weise bestimmten ¹*J*(RhP)-Kopplungskonstanten liegen zwischen 143 und 147 Hz in einem typischen Bereich für Rh-P-Kopplungen. Die ²*J*(PP)-Kopplungskonstante im dissymmetrischen Komplex (R_PS_P) beträgt 52.45 Hz.

Abb. 5-2. gNMR-Iteration der diastereomeren Komplexe [Rh(NBD)(**5b**)]PF₆ (**12**) ,oben: experimentelles ${}^{31}P{}^{1}H$ -NMR-Spektrum, unten: simuliertes ${}^{31}P{}^{1}H$ -NMR-Spektrum

Im Falle des Komplexes **13** war aufgrund der großen Linienbreite der Signale des dissymmetrischen diastereomeren Komplexes (R_PS_P) eine Auswertung des ABX-Systems nicht möglich. Dies ist möglicherweise auf das dynamische Verhalten mehrerer Chelatringkonformationen ähnlicher Stabilität zurückzuführen. Solche in Lösung erfolgende Umwandlungsprozesse wurden bei vielen DIOP-Komplexen mit gleichem Chelatringsystem wie in **13** beobachtet^{128,129}

Die C₂-symmetrischen Diastereomere von **13** erzeugen dagegen im ${}^{31}P{}^{1}H$ -NMR-Spektrum zwei scharfe Dubletts bei $\delta P = 7.76$ und 9.43 ppm mit ${}^{1}J(RhP)$ -Kopplungskonstanten von 152.6 bzw. 151.5 Hz.

6 Katalytische Aktivität der Pd-Komplexe der Phosphane 2a, 2d, 3a, 3b, 4a und 4d

Die Suzuki-Reaktion bezeichnete palladium-katalysierte C-C-Verknüpfung als zwischen Vinyl- oder Arylhalogeniden und Organoboronsäuren hat neben der ebenfalls palladium-katalysierten Verknüpfung von Olefinen mit Vinyl- und Arylhalogeniden ("Heck-Reaktion") in der organischen Synthese zunehmend an Bedeutung gewonnen. Insbesondere mehrkernige aromatische Verbindungen lassen sich durch diese Umsetzung auf einfache Weise darstellen. Die Suzuki-Reaktion folgt für palladiumkatalysierte Kupplungsreaktionen allgemein anerkannten einem Katalysekreislauf, der als ersten Schritt eine oxidative Addition des Vinyl- oder Arylhalogenids an den koordinativ ungesättigten Palladium(0)-Komplex beinhaltet¹³⁰⁻ ¹³². Die anschließende basenunterstützte Transmetallierung führt unter Abspaltung von zur Bildung eines σ -RR'Pd(II)L₂-Komplexes, der im cis/trans-Borsäure Gleichgewicht vorliegt. Durch reduktive Eliminierung von R-R' bildet sich schließlich das Kupplungsprodukt unter Regeneration des Katalysators. Als Basen werden meist Natrium- oder Kaliumcarbonat, -hydroxid oder -alkoxid verwendet; über den Einsatz von Fluoridionen als Lewis-Base wurde ebenfalls berichtet. Diese reagieren analog zu den Hydroxidionen mit den Lewis-aciden Organoboronsäuren unter Bildung des in der Tansmetallierung aktiven Boronat-Anions (Gl. 34).

 $R-B(OH)_2 + X^- \longrightarrow R-B(OH)_2X^- X = F^-, OH^-$ (34)

Anhand einer Modellreaktion dieses Typs sollte die katalytische Aktivität der neuen Phosphanliganden 2a, 2d, 3a, 3b, 4a und 4d untersucht werden.

Als Modellreaktion diente die Kupplung zwischen *m*-Bromphenyl-diphenylphosphanoxid, welches durch Oxidation von (*m*-Bromphenyl)diphenylphosphan mit Wasserstoffperoxid zugänglich ist, und Benzolboronsäure (Gl. 35). Als Katalysator wurden *in situ* dargestellte Palladium(0)-Komplexe eingesetzt. Diese wurden durch Umsetzung einer genau eingewogenen Menge Palladiumacetat mit acht Äquivalenten des jeweiligen Phosphanliganden in Ethylenglykol erhalten.

L = 2a, 2d, 3a, 3b, 4a, 4d, TPPTS

Die Reaktionen wurden unter Verwendung wasserlöslicher Phosphanliganden (**2a**, **2d**, **TPPTS**) im Zweiphasensystem Toluol / Wasser / Ethylenglykol (3:2:1) durchgeführt, bei allen übrigen Liganden diente Toluol / Ethylenglykol (5:1) als Lösungsmittelgemisch.

Zur Bestimmung der Aktivität der Katalysatorkomplexe wurden alle übrigen Reaktanden im Lösungsmittelgemisch vorgelegt, auf 80 °C erhitzt und anschließend die Reaktion durch Zugabe der Katalysatorlösung gestartet. Der Reaktionsverlauf wurde durch ³¹P{¹H}-NMR-Spektroskopie verfolgt; hierbei diente die Diphenyl-phosphanoxid-Gruppe als spektroskopische Sonde.

Ligand	Katalysator- konzentration [mol%]	Umsatz	Reaktionszeit [h]
2a	1.0	24 %	72
2d	1.0	inaktiv	-
3 a	2.0	100 %	72
3b	2.0	75 %	48
4 a	0.5	67 %	18
4d	1.0	inaktiv	-
TPPTS	0.5	75 %	18

Tabelle 6-1: Katalytische Aktivität der von den Phosphanen 2a, 2d, 3a, 3b, 4a und 4d abgeleiteten Pd(0)-Komplexe

In Tabelle 6-1 sind die Ergebnisse der Katalyseexperimente zusammengefaßt. Sämtliche untersuchten Palladiumkomplexe zeigen im Vergleich zum ebenfalls untersuchten Pd(TPPTS)₃-Komplex geringere Aktivitäten. Lediglich der Pd(0)-Komplex des literaturbekannten Liganden **4a** erreichte bei gleicher Katalysatorkonzentration und Reaktionsdauer einen ähnlich großen Umsatz von 67 %. Der Reaktionsverlauf ist nachfolgend in Form eines Umsatz-Zeit-Diagramms graphisch dargestellt.

Diagramm 6-1. Umsatz-Zeit-Diagramm der Suzuki-Kupplung gemäß Gl. 35 unter Verwendung von **4a** als Komplexligand

Die Palladium(0)-Komplexe der Liganden 2d und 4d erwiesen sich hinsichtlich der untersuchten Modellreaktion als inaktiv.

7 Chirale Phospholansysteme

Die multiplikative Übertragung stereochemischer Information macht die asymmetrische Katalyse zu einer der effektivsten und ökonomisch interessantesten Methoden zur Darstellung chiraler Substanzen beispielsweise pharmazeutischer Produkte. Hierzu zählen u. a. eine Vielzahl chiraler Alkohole¹³³. Diese sollten sich grundsätzlich durch enantioselektive Hydrierung prochiraler Ketoverbindungen darstellen lassen.

Übergangsmetall-Komplexe chiraler Phosphanliganden zeigen bei derartigen katalytischen Prozessen jedoch meist unzureichende Aktivität verbunden mit nur mäßiger Stereoselektivität, so daß meist der Einsatz stöchiometrischer Mengen chiraler Hydrid-Reagentien bevorzugt wird. Einzig Ruthenium-basierte Katalysator-Komplexe des atropisomeren BINAP-Liganden (L5)^{134,135} zeigten bei der asymmetrischen Hydrierung einer Reihe von β -Ketosäurederivaten und Arylalkylketonen hohe Enantioselektivität (>98 % ee) sowie außerordentliche katalytische Effizienz (Substrat / Katalysator-Verhältnis bis 2.4 × 10⁶)¹³⁶⁻¹³⁹.

Für manche Substrate, wie z.B. α -Ketoester, bleibt die Entwicklung stereoselektiver Hydrierkatalysatoren nach wie vor eine Herausforderung¹⁴⁰.

Zahlreiche systematische Untersuchungen zu dieser Thematik zeigten, daß die Flexibilität des Ligandenrückgrates maßgeblichen Einfluß auf Aktivität und Selektivität des Katalysators hat¹⁴¹. Ebenso scheint der elektronische Charakter des Liganden von Bedeutung zu sein; mehrfach alkylierte und damit elektronenreiche Phosphanliganden zeigen deutlich höhere Aktivität bei der rhodiumkatalysierten Hydrierung von Carbonylgruppen^{142,143} als die meist verwendeten Arylphosphane. Beispielsweise gelangte Tani *et al.* durch den formalen Austausch aller Phenylsubstituenten im DIOP-Liganden (L1) durch Ethyl- bzw. Isopropylreste zu Katalysatorsystemen, die in der Lage sind, eine Reihe von Ketonen und Aldehyden bereits bei Raumtemperatur und unter Wasserstoffatmosphäre bei Normaldruck zu den entsprechenden Alkoholen zu reduzieren¹⁴⁵. Weiterhin wurden von Burk *et al.* Peralkylderivate seines bekannten DuPHOS-Liganden (**L2**, s. Kap. 1.1) synthetisiert, die zusätzlich zum chiralen Phospholansystem über ein flexibles asymmetrisches C₃-Ligandenrückgrat verfügen (**L14**). Auch von diesen Liganden abgeleitete Rhodiumkomplexe erzielten vielversprechende Ergebnisse bei der asymmetrische Hydrierung von α -Ketosäureestern¹⁴⁴.

7.1 Synthese der chiralen Phosphanliganden mit Phospholangruppen

Basierend auf den in Kapitel 4 beschriebenen Erfahrungen in der Synthese zweizähniger Phosphanliganden mit DIOP-analogem Rückgrat (**5a**) sowie den in Kapitel 5 vorgestellten Synthesen unter Verwendung von PH₃ als Grundbaustein zum Aufbau von Alkylphosphanen, sollten im Rahmen der vorliegenden Arbeit einfachere und effizientere Methoden zur gezielten Synthese chiraler zweizähniger Liganden mit Phospholansystemen entwickelt werden.

Alle bisher in der Literatur beschriebenen Synthesen der Phospholanligandensysteme gingen entweder von recht aufwendig darzustellenden diprimären Phosphanen aus^{145,146} oder beinhalteten mehrstufige Synthesen des Phospholan-Grundkörpers, basierend auf der reduktiven Spaltung des *P*-phenylsubstituierten Phospholans¹⁴⁷. Eine jüngst beschriebene Mehrstufensynthese dieses Liganden geht von dem aufwendig darzustellenden Tris(trimethylsilyl)phosphan¹⁴⁴ aus. Die Entwicklung einer einfacheren Methode zur Darstellung des Phospholan-Grundkörpers schien somit wünschenswert. Es wurde daher eine Synthesestrategie entwickelt, die von kommerziell erhältlichem PH₃ ausgeht.

Die Darstellung des Phospholans gelang durch Umsetzung von Natriumphosphid, das durch Deprotonierung von PH_3 mit Natrium in flüssigem Ammoniak erzeugt wurde, mit enantiomerenreinem cyclischen Sulfat des (*S*,*S*)-2,5-Hexandiols (s. Schema 7-1).

81

Das enantiomerenreine cyclische Sulfat **15** wurde durch Umsetzung des Diols mit Thionylchlorid und anschließende Ruthenium-katalysierte Oxidation erhalten^{148,149}.

Schema 7-1: Synthese des (R,R)-2,5-Dimethylphospholans 17 sowie des Boran-Adduktes 18

Durch ³¹P{¹H}-NMR-spektroskopische Verfolgung des Reaktionsverlaufs konnte gezeigt werden, daß die ringöffnende Phosphinierung von **15** mit NaPH₂ deutlich schneller verläuft als die mit der erneuten Cyclisierung verbundene Zweitsubstitution. Als isolierbares Zwischenprodukt bildet sich somit zunächst das primäre Phosphan **16** ($\delta P = -110.7 \text{ ppm}$) mit 2*R*,5*S*-Konfiguration. Durch den Einsatz von zwei Äquivalenten Natriumphosphid wird die Reaktion weiter vorangetrieben und man erhält nach ca. 48h Reaktionszeit bei –35 bis -40° C als Endprodukt das sekundäre Phospholan **17** ($\delta P = -27.7 \text{ ppm}$). Nach Abtrennen des entstandenen Natriumsulfats konnte **17** destillativ gereinigt werden.

Das auf diese Weise zugängliche Phospholan und das Intermediat **16** stellen interessante neuartige Synthone für die Synthese chiraler Phosphane dar. Die Substitution der Sulfatgruppe in **16** durch Phosphidanionen eröffnet den Zugang zu weiteren wertvollen enantiomerenreinen primären Phosphanen (Me-CH^{*}(PH₂)-(CH₂)₂-

 $CH^{*}(PR_{2})$ -Me) mit zwei definierten Stereozentren. **16** konnte in Form eines farblosen Feststoffs isoliert werden, der sich als bemerkenswert unempfindlich gegenüber Luftsauerstoff erwies.

Erwartungsgemäß verlaufen beide Substitutionsschritte (Gl. 37 und 38) unter Inversion der Konfiguration der stereogenen C-Atome. Folglich bildet sich das enantiomerenreine Phospholan (R,R)-17 mit umgekehrter absoluter Konfiguration bezogen auf das eingesetzte cyclische Sulfat (S,S)-15. Die Enantiomerenreinheit des Produktes wird entsprechend von der Reinheit dieses Startmaterials bestimmt.

Aufgrund der hohen Oxidationsempfindlichkeit sowie der Flüchtigkeit des Phospholans 17 wurde dieses anschließend durch Umsetzung mit Boran-Dimethylsulfid in das Boran-Addukt 18 überführt.

Dieses läßt sich zur Synthese enantiomerenreiner zweizähniger Phosphane einsetzen, wie in Schema 7-2 für zwei Beispiele gezeigt wird. Deprotonierung des Phospholan-Boran-Addukt **18** mit *n*-BuLi liefert das Boran-Addukt des Lithiumphosphids, das anschließend zum Aufbau des Ligandenrückgrats mit enantiomerenreinem Threitolditosylat umgesetzt wird (s. Schema 7-2).

Schema 7-2: Synthese des zweizähnigen Phosphans 19 und des tosylierten Derivats 20

19

19a

Schema 7-3: Abspaltung der BH₃-Schutzgruppe

Die Abspaltung der BH₃-Schutzgruppe (s. Schema 7-3) gelingt, wie durch ³¹P{¹H}-NMR-spektroskopische Verfolgung einer Umsetzung im Maßstab von etwa 100 mg gezeigt werden konnte, durch Umsetzung mit einem Überschuss Morpholin bei ca. 70 °C (s. Kapitel 4.5).

Das vom Boran-Addukt 19 abgeleitete zweizähnige Phosphan 19a besitzt neben den chiralen α -C-Atomen der beiden Phospholangruppen noch zwei S-konfigurierte Stereozentren im Ligandenrückgrat, jedoch keine chiralen P-Atome. Aus diesem Grund entsteht bei der Synthese nur ein C₂-symmetrisches enantiomerenreines Diastereomer mit definierter Stereochemie. Somit entfällt die im Falle der Phosphane 4) zweizähnigen 5a-g (s. Kapitel notwendige Trennung der Stereoisomeren.

Das Phosphan 19a ist aufgrund der Alkylsubstituenten sehr elektronenreich und verfügt über ein relativ flexibles chirales Ligandenrückgrat. Es stellt somit einen potentiell geeigneten Liganden für katalytischen Reduktionen von Carbonylverbindungen dar. Die Vermittlung der Chiralität auf die Koordinationssphäre des katalytisch aktiven Metallkomplexes erfolgt bei einem Liganden dieses Typs nicht nur über die Umgebung der Phosphoratome, sondern wird mit beeinflußt von der Ausbildung der stabilsten Chelatringkonformation. Diese wiederum wird im wesentlichen von der Stereochemie des Ligandenrückgrates bestimmt. Die Untersuchung der Rhodium-Komplexe im Hinblick auf ihre katalytische Aktivität und Stereoselektivität sowie die gegenseitige Beeinflussung der unterschiedlichen Stereozentren, auch als matching bzw. mismatching effect bezeichnet, ist weiteren Arbeiten vorbehalten.

Durch Umsetzung des Phospholan-Boran-Adduktes **18** mit (R,R)-(+)-1,4-Di-*O-p*toluolsulfonyl-2,3-isopropyliden-D-threitol im molaren Verhältnis 1:1 (Gl. 42) erhält man das Phosphan **20** mit einer nucleofugen Tosylatgruppe. Es stellt einen Baustein dar, der durch Umsetzungen mit geeigneten Phosphornucleophilen den gezielten Aufbau enantiomerenreiner C₁-symmetrischer zweizähniger Phosphane gestattet. Ebenso sollten sich, durch Umsetzung mit dem optischen Antipoden des Phospholan-Boran-Adduktes **18**, C₁-symmetrische Diastereomere des Phosphans **19** darstellen lassen, wodurch eine Variation sämtlicher Stereozentren ermöglicht wird. **20** konnte in reiner Form isoliert und durch eine Röntgenstrukturanalyse charakterisiert werden.

7.2 Charakterisierung der Phosphane 16 – 20

Das Zwischenprodukt der Reaktion des cyclischen Sulfats (*S*,*S*)-**15** mit Natriumphosphid – das neuartige primäre Phosphan (2*R*,5*S*)-**16** – zeigt im ³¹P{¹H}-NMR-Spektrum ein Signal bei $\delta P = 110.65$ ppm. Bei Aufnahme der ³¹P{¹H}-NMR-Spektren in D₂O kommt es im Gleichgewicht unter H/D-Austausch zur Bildung von D-Isotopomeren. Das nur zu etwa 0.3 % vorliegende PH₂-Isotopomer erzeugt ein Singulett geringer Intensität ($\delta P = -110.65$ ppm). Die aufgrund des asymmetrischen P-Atoms diastereomeren PHD-Isotopomere erzeugen zwei 1:1:1-Tripletts mittlerer Intensität ($\delta P = -111.95$, -111.98 ppm). Zum größten Teil (> 90 %) liegt das primäre Phosphan zweifach deuteriert vor, entsprechend beobachtet man im ³¹P{¹H}-NMR-Spektrum als Hauptsignal ein 1:2:3:2:1-Quintett bei $\delta P = -113.29$ ppm. Die ¹*J*(PD)-Kopplungskonstanten betragen in allen Fällen 30.1 Hz.

Im ¹³C{¹H}-NMR-Spektrum von **16** beobachtet man erwartungsgemäß sechs Signale, die teilweise Dublettfeinstruktur durch Kopplung mit dem ³¹P-Kern aufweisen. Auffallend ist die kleine ¹*J*(PC)-Kopplungskonstante von nur 2.0 Hz. Alle übrigen auftretenden ⁿ*J*(PC)-Kopplungskonstanten (n = 2, 3) sind innerhalb der Meßgenauigkeit gleich groß und betragen 7.1 Hz. Die Zuordnungen erfolgten aufgrund der chemischen Verschiebungen δC sowie durch Auswertung des ¹³C{¹H}- DEPT-NMR-Spektrums. Eine Zusammenstellung der NMR-spektroskopischen Daten findet sich in den Tabellen 67 und 68.

Eine ausführliche NMR-spektroskopische Charakterisierung des (R,R)-2,5-Dimethylphospholans 17 wurde bereits 1998 im Rahmen einer Diplomarbeit durchgeführt¹⁵⁰. Aus diesem Grund wird an dieser Stelle auf eine Diskussion der sehr gut reproduzierten NMR-Daten (s. Tabellenteil) verzichtet.

Ebenfalls gute Übereinstimmung mit Literaturdaten¹⁴⁵ zeigen die für das Phospholan-Boran-Addukt **18** gemessenen NMR-Parameter. Beispielsweise wurde eine ¹*J*(PB)-Kopplungskonstante von 44.3 Hz sowie eine ¹*J*(PH)-Kopplungskonstante von 349.3 Hz gemessen (Lit.: ¹*J*(PB) = 44 Hz; ¹*J*(PH) = 348 Hz¹⁴⁷). Über die in der Literatur angegebenen Daten hinaus konnte auf der Grundlage von ¹³C{¹H}-DEPT-NMR-Experimenten der Substitutionsgrad der C-Atome bestimmt werden und somit vielfach Signalzuordnungen getroffen werden. Die NMR-Daten sowie die getroffenen Zuordnungen sind in Tabelle 71 und 72 zusammengefaßt.

Das C₂-symmetrische zweizähnige Phosphan-Boran-Addukt **19** zeigt aufgrund der Äquivalenz der P-Atome im ³¹P{¹H}-NMR-Spektrum nur ein Signal bei $\delta P = 38.6$ ppm, welches durch Kopplung mit den zwei NMR-aktiven Bor-Isotopen (¹⁰B: s = 3; ¹¹B: s = 3/2) in Form eines Pseudoquartetts erscheint. Das nach Abspaltung der BH₃-Schutzgruppe ³¹P{¹H}-NMR-spektroskopisch vermessene zweizähnige Phosphan **19a** erzeugt ein Signal bei $\delta P = -6.78$ ppm (Benzol-d₆).

Im ¹³C{¹H}-NMR-Spektrum von **19** findet man, wie durch DEPT-Experimente belegt werden konnte, nur eine Resonanz eines quarternären C-Atoms. Diese erscheint bei δC = 110.31 ppm und kann dem zentralen C-Atom der Isopropyliden-Schutzgruppe des Ligandenrückgrates zugeordnet werden. Die beiden C-Atome der Methylgruppen des Ligandenrückgrates sind in Verbindung **19** homotop und erzeugen ein Singulett bei δC = 28.13 ppm. Alle übrigen C-Atome zeigen im ¹³C{¹H}-NMR-Spektrum Resonanzen, deren chemische Verschiebungen δC sowie ⁿ*J*(PC)-Kopplungskonstanten gut mit denen vergleichbar sind, die für das Phospholan-Boran-Addukt **18** bzw. bezüglich des Ligandenrückgrates für **5a-BH**₃ gemessen wurden.

Auch im ¹H-NMR-Spektrum zeigt sich die Homotopie der beiden zentralen Methylgruppen in **19**, für die ein Signal bei $\delta H = 1.36$ ppm beobachtet wird. Die vier

Methylgruppen der Phospholangruppen erzeugen erwartungsgemäß zwei Signale, die infolge von ${}^{3}J(HP)$ - bzw. ${}^{3}J(HH)$ -Kopplungen jeweils als Dublett von Dubletts erscheinen. Mit Ausnahme der beiden Methinprotonen des zentralen Dioxolansystems, für die ein Multiplett bei tieferem Feld ($\delta H = 4.06 - 4.16$ ppm) beobachtet wird, erhält man für die übrigen Protonen stark überlagerte Multipletts, deren eindeutige Zuordnung nicht möglich war. Für die Protonen der BH₃-Gruppen findet man aufgrund des Quadrupolmomentes des Boratoms ein stark verbreitertes Quartett zwischen $\delta H = 0.1$ und 0.9 ppm.

Das Tosylat **20** wurde ebenfalls NMR-spektroskopisch charakterisiert. Es zeigt, ähnlich wie das zweizähnige Phosphan-Boran-Addukt **19**, im ³¹P{¹H}-NMR-Spektrum ein Pseudoquartett bei $\delta P = 37.9$ ppm, in dem für tertiäre Phosphan-Boran-Addukte typischen Bereich von δP .

Im ¹³C{¹H}-NMR-Spektrum von **20** wird erwartungsgemäß für jedes C-Atom ein separates Signal beobachtet. Die Zuordnung erfolgte durch Auswertung des ¹³C{¹H}-DEPT-NMR-Spektrums sowie durch Vergleich mit den ¹³C{¹H}-NMR-Parametern des Phosphan-Boran-Adduktes **19** bzw. des eingesetzten Ditosylats. Eine Zusammenstellung dieser Daten sowie der ¹H-NMR-Resonanzen findet sich in Tabelle 75.

7.3 Röntgenstrukturanalyse von 20

Durch Umkristallisation von **20** aus Ethanol gelang es, für eine Röntgenstrukturanalyse geeignete Einkristalle zu erhalten. Die Verbindung kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit den Gitterdimensionen a = 11.4991(23), b = 13.5914(27), c = 15.1636(30). Die kristallographischen Daten sowie ausgewählte Bindungslängen und –winkel, die Koordinaten und die anisotropen Temperaturfaktoren sind in den nachfolgenden Tabellen zusammengestellt.

Abb. 7-1: Molekülstruktur von 20

Das Phosphoratom zeigt eine verzerrt tetraedrische Koordination, der Winkel zu den beiden Phospholan-C-Atomen C11 und C14 ist mit 96.73 ° auffallend klein. Ähnliche Beobachtungen wurden auch bei verschiedenen Rhodiumkomplexen verwandter Phospholangruppierungen, beispielsweise des DuPHOS-Liganden (**L2**) gemacht, in denen das P-Atom ebenfalls die Koordinationszahl vier besitzt^{144,146,147}. Das zentrale homochirale C₄-Ligandenrückgrat weist, ebenfalls übereinstimmend mit geometrischen Parametern aus Kristallstrukturen ähnlicher Liganden mit gleichem Rückgrat, einen Dihedralwinkel (C1 – C2 – C3 – C4) von 90.25(29)° auf.

Tabelle 7-1: Ausgewählte Bindungslängen [Å] in 20

P – C1	1.822(3)	C11 – C15	1.522(5)
P – C11	1.828(3)	C12 – C13	1.514(5)
P-C14	1.832(3)	C13 – C14	1.519(4)
P - B	1.907(3)	C14 - C16	1.504(5)
C11 – C12	1.531(5)		

B - P - C1	116.91(14)	P – C11 – C15	113.95(23)
B - P - C11	117.95(16)	C12 - C11 - C15	114.33(29)
B - P - C14	110.47(17)	C11 - C12 - C13	108.51(27)
C1 - P - C11	107.65(13)	C12 - C13 - C14	108.18(33)
C1 - P - C14	104.51(14)	P - C14 - C13	103.79(24)
C11 - P - C14	96.73(15)	P - C14 - C16	117.14(21)
P - C11 - C12	104.18(23)	C13 - C14 - C16	115.58(32)

Tabelle 7-2: Ausgewählte Bindungswinkel [°] in 20

Tabelle 7-3: Kristallographische Daten von 20

Kristallsystem	Orthorhombisch
Raumgruppe	P2 ₁ 2 ₁ 2 ₁
Zelldimensionen [Å]	a = 11.4991(23)
	b = 13.5914(27)
	c = 15.1636(30)
[°]	$\alpha, \beta, \gamma = 90^{\circ}$
Volumen [Å ³]	2369.90
Ζ	4
F(000)	920.0
$\rho_{ber} [Mg/m^3]$	1.200
Kristallgröße [mm]	$0.14 \times 0.21 \times 0.43$
Strahlung	MoK _α (0.71073 Å)
Absorptionskoeffizient μ [mm ⁻¹]	0.23
Scan-Methode	ω
2θ (max)	44.99
gemessene Reflexe	7213
unabhängige Reflexe	3100
R _{int}	0.0603
beobachtete Reflexe	
Parameterzahl	262
R1	0.0335

R1 (alle Daten) / wR2 (alle Daten)	0.0444 / 0.0754
max. / min. Δ [eÅ ⁻³]	0.12 / -0.15
Goodness of fit	0.842
Flack-Parameter	x = 0.0018

Tabelle 7-4: Atomkoordinaten [× 10^{-5}] und Auslenkungsparameter [Å × 10^{-5}]

	X	у	Z	U (eq)
S	19994(8)	80829(6)	76756(5)	6625(27)
Р	14539(6)	77771(6)	35119(4)	4988(23)
01	9985(16)	57555(13)	43507(11)	5123(51)
O2	20173(21)	56525(15)	56278(13)	7379(70)
03	21663(17)	72381(15)	69829(12)	6086(53)
O4	10084(21)	78887(18)	81981(13)	8604(73)
O5	31098(21)	81717(19)	80779(15)	9376(79)
В	30306(29)	79075(33)	38831(25)	7477(119)
C1	3908(24)	74585(19)	43562(17)	4510(74)
C2	6126(24)	65548(19)	48946(16)	4290(70)
C3	15878(25)	66238(20)	55731(16)	4478(72)
C4	11543(23)	69708(23)	64502(16)	5417(77)
C5	15299(32)	50680(23)	49296(20)	6512(92)
C6	6586(40)	43732(26)	53106(25)	9486(131)
C7	25008(38)	45716(30)	44471(24)	10578(146)
C11	11546(28)	70163(26)	25443(17)	6772(93)
C12	8373(28)	77585(31)	18236(21)	9376(129)
C13	2222(36)	86216(31)	22493(25)	9519(138)
C14	9235(29)	89385(24)	30489(20)	6579(93)
C15	21421(35)	63222(30)	22995(23)	10377(137)
C16	3185(37)	96341(25)	36688(26)	9951(129)
C21	17243(26)	91104(22)	70132(19)	5233(78)
C22	25221(30)	93893(25)	63948(24)	7094(93)
C23	22941(35)	101930(27)	58729(24)	7725(107)
C24	12995(38)	107312(24)	59637(22)	7408(101)
C25	5176(34)	104432(27)	65974(24)	7917(106)
C26	7088(30)	96362(24)	71101(20)	6828(94)
C27	10638(42)	116289(27)	53945(25)	11295(165)

Aufgrund der bereits in Kapitel 1 und Kapitel 7 betonten Bedeutung elektronenreicher und sperriger Phosphane in vielen katalytischen Prozessen bestand ein besonderes Interesse daran, neue Phosphanliganden dieses Typs mit polar modifizierter Peripherie aufzubauen. Die Vermittlung von Wasserlöslichkeit gepaart mit sterischem Anspruch des Substituenten sowie die Entwicklung von Phosphanliganden mit detergenten Eigenschaften standen hierbei im Mittelpunkt.

8.1 Phosphane mit carboxylierten Cyclohexylresten

Im Zusammenhang mit dem sterischen Anspruch des Liganden haben insbesondere Phosphane mit Cyclohexylsubstituenten zunehmend an Bedeutung gewonnen.

Ein Ziel dieser Arbeit war daher die Darstellung sekundärer und tertiärer Cyclohexylphosphane, die durch die Einführung geeigneter Substituenten in β -Position eine Modifikation der elektronischen und sterischen, aber auch der makroskopischen Eigenschaften, wie z.B. der Wasserlöslichkeit, gestatten.

Üblicherweise gewinnt man Cyclohexylphosphane durch die Umsetzung geeigneter Grignard-Verbindungen mit Chlorphosphanen; die zusätzliche Funktionalität im Cyclohexylbestandteil macht jedoch eine alternative Vorgehensweise notwendig.

Eine durch Zugabe von AIBN radikalisch initiierte Addition von Phenyl- bzw. Diphenylphosphan an Cyclohexen-1-carbonsäuremethylester gelang nicht; die entsprechend den Gleichungen 43 und 44 (s. Schema 8-1) durchgeführte basenkatalysierte Umsetzung dieses Michael-Systems mit Ph₂PH bzw. PhPH₂ in Toluol führte jedoch zu den Phosphanen **21** und **22**, die durch Umkristallisation aus Methanol (**21**) bzw. durch Destillation im Vakuum (**22**) gereinigt werden konnten.

Schema 8-1. Darstellung der Cyclohexylphosphane 21 und 22

Diese Phosphane zeichnen sich durch folgende Eigenschaften aus:

- Eine Esterhydrolyse ermöglicht die Darstellung wasserlöslicher Carboxylate.
- Die Carbonsäure(ester)-gruppe ermöglicht den Einsatz als P,O-Hybridliganden.
- Die PH-Funktion in 22 ermöglicht den modularen Aufbau weiterer Derivate durch PC-Kupplungsreaktionen.

Die Umsetzung des prochiralen Michael-Systems erzeugt zwei neue stereogene Zentren, somit wären im Falle von **21** grundsätzlich vier stereoisomere Produkte möglich. Die bevorzugte Besetzung äquatorialer Positionen am Cyclohexylring führt jedoch ausschließlich zur Bildung der oben dargestellten enantiomeren *trans*-diäquatorialen Produkte mit *SR*- oder *RS*-Konfiguration. Signale der Produkte mit *cis*-ständigen oder *trans*-diaxialen Substituenten werden in den NMR-Spektren nicht beobachtet.

Das sekundäre Phosphan **22** weist als zusätzliches Stereozentrum ein asymmetrisches P-Atom auf, man erhält als Reaktionsprodukt somit zwei Enantiomerenpaare mit unterschiedlich konfigurierten P-Atomen (R_PRS/S_PSR und R_PSR/S_PRS), die im ³¹P{¹H}-NMR-Spektrum zwei Signale bei $\delta P = -30.0$ und $\delta P = -38.0$ ppm mit ¹J(PH)-Kopplungskonstanten von 208.5 und 210.2 Hz erzeugen.

Die Zuordnung der NMR-Signale der Phosphane **21** und **22** sowie die Analyse der Spinsysteme ihrer ¹H-NMR-Spektren war u.a. Thema einer eigenständigen Diplomarbeit¹⁵¹ und soll aus diesem Grund hier nicht weiter thematisiert werden. Die

getroffenen Zuordnungen sowie die dazugehörigen NMR-Parameter sind in den Tabellen 77 und 78 zusammengefaßt.

8.2 Phosphane mit tensidischen Eigenschaften

Die Vereinigung hydrophiler, polarer oder ionischer Gruppen mit hydrophoben langkettigen Alkylresten innerhalb eines Moleküls führt zu Verbindungen mit tensidischen (detergenten) Eigenschaften (z.B. Seifen). Die Übertragung solcher Eigenschaften auf Phosphane für die Zweiphasenkatalyse ist von besonderem Interesse, da die hiermit verbundene Möglichkeit zur Bildung von Micellen eine bessere Verteilung des Katalysatorkomplexes in der organischen Substrat-Phase ermöglicht⁴⁸.

Herkömmliche katalytische Verfahren in zweiphasigen Gemischen mit wasserlöslichen Komplexkatalysatoren verlaufen an der Phasengrenzfläche. Der Einsatz oberflächenaktiver Phosphanliganden sollte somit zu einer erhöhten katalytischen Aktivität führen. Dies konnte von Fell und Papadogianakis am Beispiel der Hydroformylierung langkettiger, wasserunlöslicher Olefine durch Rh-Komplexe der Sulfobetainphosphane (**L15**) gezeigt werden¹⁵².

 $n = 2, \, 4, \, 6, \, 8, \, 10$

Der im Rahmen dieser Arbeit geplante Aufbau amphiphiler Phosphane sollte durch Addition hydrophiler primärer oder sekundärer Phosphane an terminale langkettige Olefine erfolgen. Ein einfacher Baustein für diese Synthese stellt die Phosphinoessigsäure (23) dar, die 1967 erstmals von Issleib und Mitarbeitern dargestellt wurde¹⁵³. Man erhält dieses primäre Phosphan durch Umsetzung von

NaPH₂ mit Chloressigsäure-Natriumsalz. Das Natriumphosphid ist durch Einleiten von PH₃ in eine Lösung von Natrium in flüssigem Ammoniak auf einfache Weise zugänglich (s. Schema 8-2). Das Reaktionsprodukt **23** stellt eine klare, im Vakuum destillierbare sehr oxidationsempfindliche Flüssigkeit dar, die bei Temperaturen oberhalb von ca. 90 °C unter Bildung von Methylphosphan decarboxyliert.

Schema 8-1. Reaktionssequenz zur Darstellung der Phosphane 25 und 26

In analoger Weise wurde, ausgehend von Phenylphosphan, auch der sekundäre Phosphanbaustein **24** dargestellt.

Die weitere Umsetzung der Phosphinoessigsäure mit den terminalen Olefinen 1-Decen und 1-Dodecen zu den Trialkylphosphanen **25** und **26** erfolgte ohne Verwendung eines Lösungsmittels mit Hilfe des Radikalstarters AIBN bei 70 °C.

Anschließend wurden die bei der Synthese anfallenden Säuren durch Neutralisation mit Natronlauge in die Natriumsalze überführt. Abbildung 8-1 verdeutlicht die amphiphile Natur des Didecylphosphinoessigsäure-Natriumsalzes **25**, die aufgrund der hydrophilen Eigenschaften der Carboxylatgruppe in Verbindung mit den hydrophoben Eigenschaften der Decylreste in wäßrigen Lösungen zur Bildung von Micellen führt.

Abb. 8-1. Hydrophile (blau) und hydrophobe (grün) Molekülbestandteile des Didecylphosphinoessigsäure-Natriumsalzes **25**

Obgleich die Verbindung **23** bereits seit mehr als dreißig Jahren bekannt ist, findet man in der Literatur keine detaillierte NMR-spektroskopische Charakterisierung dieses primären Phosphans. Aus diesem Grund wurde mit Hilfe des Programms gNMR eine Analyse des AA'BB'X-Spinsystems (A, A', B, B' = ¹H, X = ³¹P) sowohl für das ¹H-NMR-Spektrum als auch für das ³¹P-NMR-Spektrum durchgeführt. Die experimentellen und simulierten Spektren sind in Abb. 8-2 und 8-3 dargestellt.

Abb. 8-2. Experimentelles (oben) und simuliertes ¹H-NMR-Spektrum (unten) der Phosphinoessigsäure 23

Die Iteration ergab für die geminalen H,H-Kopplungskonstanten negative Werte von -12.03 Hz für die CH₂-Gruppe und -13.22 Hz für die PH₂-Gruppe. Dagegen wurde für die ²*J*(PH)-Kopplungskonstante ein positiver Wert von 5.4 Hz erhalten. Die iterierten Verschiebungswerte δ H und δ P sowie die Kopplungskonstanten ⁿ*J*(HH) und ⁿ*J*(PH) sind in Tabelle 80 zusammengefaßt.

Abb. 8-3 Experimentelles (oben) und simuliertes ³¹P-NMR-Spektrum (unten) der Phosphinoessigsäure **23**

Das sekundäre Phosphan 24, welches nicht weiter derivatisiert wurde, besitzt ein asymmetrisches P-Atom, die Protonen der Methylengruppe sind folglich diastereotop und damit nicht mehr äquivalent. Sie stellen unter Einbeziehung des ³¹P-Kerns und des phosphorgebundenen Protons ein ABMX-Spinsystem dar (A, B, M = ¹H, X = ³¹P), welches ebenfalls mit Hilfe von gNMR simuliert werden konnte. In Abb. 8-4 sind die simulierten und die experimentellen ¹H-NMR-Signale gegenübergestellt.

Im Vergleich zu den Protonen der PH₂-Gruppe in **23** zeigt das phosphorgebundene Proton in **24** aufgrund des Phenylsubstituenten einen deutlichen Tieffeldshift von mehr als 1.6 ppm. Die Resonanz dieses Protons liegt bei $\delta H = 4.47$ ppm (**23**: $\delta(PH_2) = 2.84$ ppm), die Größe der Aufspaltung durch Kopplung mit dem ³¹P-Kern beträgt 211.8 Hz. Auch hier wurden ebenso wie in Verbindung 23 positive Werte für die ${}^{2}J(PH)$ -Kopplungskonstanten von 4.19 bzw. 2.68 Hz gefunden.

Abb. 8-4. Experimentelles (oben) und simuliertes ¹H-NMR-Spektrum (unten) der Phenylphosphinoessigsäure **24** (unter Vernachlässigung der aromatischen Protonen)

Die Dialkylphosphinoessigsäuren **25** und **26** zeigen in ihren ¹H-NMR-Spektren jeweils stark überlagerte Signale für die aliphatischen Protonen. Lediglich die Signale der zur Carboxylgruppe α -ständigen Methylenprotonen liegen deutlich separiert und zeigen bei beiden Phosphanen eine Dublettfeinstruktur, der sich ²*J*(PH)-Kopplungskonstanten von jeweils ±3.05 Hz entnehmen lassen. Eine Bestimmung des Vorzeichens ist in diesen Fällen nicht möglich.

In den ${}^{13}C{}^{1}H$ -NMR-Spektren erscheinen die erwarteten zwölf bzw. vierzehn Resonanzen, die bis zu den γ -ständigen Alkyl-C-Atomen durch Kopplung mit dem ³¹P-Kern als Dubletts erscheinen; alle übrigen C-Atome der Alkylreste sowie der Carbonsäuregruppen erzeugen Singuletts.

Die Massenspektren der Phosphane **25** und **26** zeigen Fragmentierungsmuster, die für unverzweigte Kohlenwasserstoffreste typisch sind. Das Intensitätsmaximum der Signale liegt jeweils im Bereich von Bruchstücken mit drei und vier C-Atomen. Ferner werden als strukturbelegende Fragmente intensive Signale für m/e = 44 sowie m/e = 76 beobachtet, die dem durch Decarboxylierung freigesetzten CO₂ (44) bzw. dem PMe₃-Fragment (76) zugeordnet werden können (s. Kapitel 10.2).

9 Phosphane mit Benzylphosphonatgruppen

Die Darstellung wasserlöslicher Übergangsmetallkomplexe für die Zweiphasenkatalyse erfolgt nach wie vor meist durch die Einführung einer oder mehrerer Sulfonatgruppen in der Peripherie des Phosphanliganden. Synthesestrategien zum gezielten Aufbau sulfonierter Phosphane sind in zahlreichen Veröffentlichungen beschrieben worden. Beispielhaft seien hier die Addition von Phosphanen an sulfonierte konjugierte Olefine¹⁵⁴, die Reaktion von Metallphosphiden mit Sultonen¹⁵⁵, die nucleophile Substitution von sulfonierten Fluoraromaten mit Phosphanen im "superbasischen Medium"³³ sowie die Pd-katalysierte PC-Kupplung zwischen Phosphanen und sulfonierten Aryliodiden¹⁵⁶ genannt.

Die Entwicklung von Methoden zur Synthese von wasserlöslichen Phosphanen mit Carboxylat- oder Phosphonatgruppen anstelle der Sulfonatgruppen wurde in den letzten Jahren in verschiedenen Arbeitsgruppen eingehend untersucht. In diesem Zusammenhang wurden zahlreiche Phosphane des Typs **A**, **B** und **C** dargestellt und umfassend charakterisiert ^{44,71,72}.

Da die Phosphonatgruppe im Vergleich zur Sulfonatgruppe eine zusätzliche negative Ladung aufweist, zeichnen sich insbesondere die mehrfach phosphonierten Phosphane des Typs A (n = 2, 3) durch hervorragende Wasserlöslichkeit aus.

Ein Ziel der vorliegenden Arbeit war es, die Reihe der Phosphanliganden zu ergänzen. Dabei waren insbesondere solche Triarylphosphane von Interesse, in denen die polare Phosphonatgruppe über eine CH_2 -Gruppe flexibel mit den aromatischen Resten verbunden sind (vgl. Typ **C**). Aufgrund der zusätzlichen CH_2 -Gruppe sollten diese Liganden im Vergleich zu den Phosphanen des Typs **A** eine höhere Wasserlöslichkeit aufweisen. Einen Anhalt für diese Annahme boten die carboxylierten Phosphane des Typs **C**, die im Vergleich zu den Phosphinobenzoesäuren (**B**) gleicher Zahl von COOH-Gruppen eine wesentlich höhere Wasserlöslichkeit aufweisen.

9.1 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32

Als Synthesestrategie wurde eine Sequenz aus "Arbuzov-" und "Hetero-Heck-Reaktionen" gewählt, die von der unterschiedlichen Reaktivität von Aryl- und Benzylhalogeniden Gebrauch macht. In Schema 9-1 ist diese Reaktionssequenz veranschaulicht.

Schema 9-1. Synthese der Phosphane 28 und 29 durch "Arbuzov-" und "Hetero-Heck-Reaktion"

Aufgrund der längeren Reaktionsdauer traten bei der Synthese der *ortho*-Verbindung 28 geringe Mengen an Nebenprodukten auf. Vor der Überführung in die Phosphonsäure oder ihr Natriumsalz 31 wurde 28 zunächst gereinigt.

Zu diesem Zweck wurde das Phosphan **28** durch Umsetzung mit Boran-THF-Komplex in das Boran-Addukt **30** überführt (s. Gl. 49), das aus THF umkristallisiert und gereinigt werden konnte. Die anschließende Abspaltung der BH₃-Schutzgruppe erfolgte durch Umsetzung mit einem ca. zehnfachen Überschuß Morpholin bei 70 – 80 °C.

Zur Darstellung der Dinatriumphosphonate wurden die Phosphonsäurediethylester **28** und **29**, deren direkte Hydrolyse drastische Bedingungen erfordert, zunächst mit Bromtrimethylsilan in die entsprechenden Bis(trimethylsilyl)ester überführt^{157,158}. Die Phosphonsäuren erhält man durch Hydrolyse mit Wasser in Aceton (s. Schema 9-2, Gl. 52), anschließende Deprotonierung mit Natronlauge (Gl. 53) führt zu den Dinatriumphosphonaten.

Schema 9-2. Darstellung der Dinatriumphosphonate **31** und **32**.

Die Bis(trimethylsilyl)ester wurden nicht in Substanz isoliert. Die Bildung dieser Intermediate konnte jedoch ³¹P{¹H}-NMR-spektroskopisch verfolgt werden, da die

Resonanz des Phosphonat-P-Atoms durch Einführung der Trimethylsilylgruppen eine deutliche Hochfeldverschiebung erfährt.

Das Dinatriumsalz **31** zeigt eine nur geringe Wasserlöslichkeit von etwa 6.5 g/kg Wasser (20 °C) und konnte aus Wasser umkristallisiert werden.

Die *meta*-substituierte Verbindung **32** zeigt bei 20 °C eine Wasserlöslichkeit von ca. 350 g/kg Wasser. Dies entspricht etwa der Wasserlöslichkeit der einfach phosphonierten Phosphane des Typs A^{44} . Die abschließende Reinigung des Produkts erfolgte durch Umfällen des Dinatriumsalzes aus Ethanol.

9.2 Charakterisierung der Phosphane 28 - 32

Allen "Phosphonatophosphanen" ist die verbrückende Methylengruppe gemeinsam, die sowohl in den ¹H-NMR-Spektren als auch in den ¹³C{¹H}-NMR-Spektren charakteristische Signale erzeugt.

Im ¹H-NMR-Spektrum der *ortho*-substituierten Verbindungen **28**, **30** und **31** werden Dubletts bei $\delta H = 3.16$ (**31**), 3.37 (**30**) und $\delta H = 3.70$ ppm (**28**) mit den für Benzylphosphonate typischen ²*J*(PH)-Kopplungskonstanten von 19.3 (**31**) bzw. 21.9 Hz (**28**, **30**) beobachtet. Das ¹H-NMR-Signal der Methylenprotonen des Dinatriumphosphonats **31** zeigt durch Kopplung mit dem Phosphin-P-Atom eine zusätzliche Dublettaufspaltung mit einer ⁴*J*(PH)-Kopplungskonstanten von 3.1 Hz. Die entsprechenden Signale der Methylenprotonen der *meta*-substituierten Verbindungen **29** und **32** erscheinen bei vergleichsweise höherem Feld (**29**: $\delta CH_2 = 2.83$ ppm, **32**: $\delta CH_2 = 2.77$ ppm) als Dubletts mit ähnlich großen ²*J*(PH)-Kopplungskonstanten.

Die ¹³C{¹H}-NMR-Signale der Methylengruppen zeigen ebenfalls die erwarteten chemischen Verschiebungen δ C und Kopplungskonstanten ⁿ*J*(PC), wie der Vergleich mit den entsprechenden NMR-Daten des Benzylphosphonsäurediethylesters¹⁵⁹ ergibt. Im Falle der *ortho*-substituierten Verbindungen (**28**, **30**, **31**) findet man auch in den ¹³C{¹H}-NMR-Spektren eine zusätzliche Dublettaufspaltung durch ³*J*(PC)-Kopplung mit dem Phosphan-P-Atom.

Charakteristisch für Phosphonsäurediethylester ist auch das Erscheinungsbild der ¹H-NMR-Signale der Ethylgruppen. Die Methylenprotonen dieser Gruppen sind diastereotop - die Substitution eines Protons erzeugt ein chirales C- und ein chirales P-Atom – sie repräsentieren somit den AB-Teil eines ABM₃X-Spinsystems (A, B, M = ¹H; X = ³¹P). Entsprechende Beobachtungen wurden bereits bei den Phosphonsäurediethylestern des Typs **A** gemacht, deren Spektren durch homonukleare Entkopplungsexperimente ausgewertet werden konnten⁷².

Im Falle der Verbindung **29** gelang mit Hilfe des Programms gNMR eine iterative Analyse dieses Spinsystems. In Abbildung 9-1 sind die simulierten Signale der Methylenprotonen der Ethylestergruppe den entsprechenden Signalen des experimentellen ¹H-NMR-Spektrums gegenübergestellt. Die hieraus erhaltenen NMR-Parameter sind gut mit Literaturdaten ähnlicher Systeme vergleichbar⁷². Eine Zusammenstellung dieser Daten findet sich in Tabelle 88.

Abb. 9-1: Simuliertes (unten) und experimentelles ¹H-NMR-Spektrum (oben) der Methylenprotonen der Phosphonsäurediethylestergruppe in **29**

In dem für aromatische C-Atome typischen Bereich von δC der ¹³C{¹H}-NMR-Spektren der Phosphane **28-32** findet man jeweils vier Signale für die Phenylreste der
Phosphinogruppe sowie sechs Signale, die dem zweifach substituierten aromatischen Rest zuzuordnen sind. Die Zuordnung dieser Signalgruppen erfolgte aufgrund der relativen Intensitäten sowie aufgrund der zusätzlichen Kopplung der C-Atome des zweifach substituierten aromatischen Restes zum P-Atom des Phosphonatrestes. Eine systematische Untersuchung der ¹³C{¹H}-NMR-Spektren von substituierten Benzylphosphonsäurediethylestern wurde 1977 von Ernst durchgeführt¹⁵⁹, so daß eine eindeutige Zuordnung der beobachteten ¹³C{¹H}-NMR-Signale sowie der PC-Kopplungskonstanten in den meisten Fällen möglich war.

Aufgrund des größeren s-Charakters der P^{III}C-Bindung im Phosphan-BH₃-Addukt **30** wurden hier deutlich größere ${}^{1}J(PC)$ -Kopplungskonstanten von 53.9 bzw. 57.0 Hz beobachtet.

Die ³¹P{¹H}-NMR-Spektren der hier diskutierten Verbindungen zeigen erwartungsgemäß jeweils zwei Signale, deren chemische Verschiebungen δP in den typischen Bereichen für. Phosphonate bzw. tertiäre Phosphane liegen. Die ³¹P{¹H}-NMR-Signale der Verbindungen **29** und **32** erscheinen als Singuletts, während die der *ortho*substituierten Verbindungen **28**, **30** und **31** Dublettaufspaltungen mit ⁴*J*(PP)-Kopplungskonstanten zwischen 1.5 und 7.2 Hz aufweisen.

9.3 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der Zweiphasen-Suzuki-Kupplung

Anhand einer Modellreaktion sollte die katalytische Aktivität der neuen phosphonierten Phosphanliganden **31** und **32** untersucht und mit der Aktivität verwandter Liganden des Typs **A**, **B** und **C** verglichen werden.

Als Modellreaktion diente auch hier (s. Kap. 6) die Kupplung zwischen (*m*-Bromphenyl)diphenylphosphanoxid und Benzolboronsäure im Zweiphasensystem Toluol / Wasser / Ethylenglykol (Verhältnis: 3 : 2 : 1). Als Katalysator wurden 0.1 mol% eines *in situ* dargestellten Palladium(0)-Komplexes eingesetzt. Dieser wurde durch Umsetzung einer genau eingewogenen Menge Palladiumacetat mit acht Äquivalenten des jeweiligen Phosphanliganden in Ethylenglykol erhalten. Werden bei der reduktiven Komplexierung von Pd(II) substituierte Triphenylphosphanderivate im Überschuß eingesetzt, so erhält man, wie am Beispiel des TPPTS gezeigt werden konnte, Pd(0)-Komplexe der Zusammensetzung PdL₃ (L = Triarylphosphan)^{160,161}.

Neben den neu dargestellten Phosphonatophosphanen 31 und 32 wurden das *meta*substituierte Phosphan vom Typ A (A1) sowie die *ortho*-substituierten Phosphane vom Typ B und C (B1, C1) zu Vergleichszwecken eingesetzt.

Die Bestimmung der Aktivität der Katalysatorkomplexe erfolgte, wie in Kapitel 6 beschrieben, durch ³¹P{¹H}-NMR-spektroskopische Verfolgung der Umsatzrate. Der Umsatz gibt das molare Verhältnis des Reaktionsproduktes **14** zur Gesamtmenge des eingesetzten Bromphenyldiphenylphosphanoxids in Prozent wieder.

Nach zwanzig Stunden wurden die Reaktionen abgebrochen und der Umsatz bestimmt.

Diagramm 9-1. Umsatz gemäß Gl. 35 nach 20 h Reaktionszeit

Wie sich aus Diagramm 9-1 entnehmen läßt, zeigen die Palladiumkomplexe der phosphonierten Phosphanliganden 31, 32 und A1 hinsichtlich der als Modellreaktion dienenden Suzuki-Kupplung sehr ähnliche katalytische Aktivität. Ein nennenswerter Einfluß der Lage der Phosphonat-Gruppe im Phenylring (*ortho* oder *meta*) auf die Aktivität des Katalysators konnte, wie der Vergleich der Ergebnisse bei Verwendung der Liganden 31 und 32 zeigt, nicht festgestellt werden. Ebenso scheint die größere Flexibilität der polaren Gruppe durch die zusätzliche, verbrückende Methyleneinheit nicht zu einer höheren Aktivität zu führen. So beobachtet man sowohl beim Einsatz von 32 als auch von A1 als Komplexligand nach zwanzig Stunden Reaktionszeit jeweils annähernd 90 %igen Umsatz.

Deutlich geringere katalytische Aktivität zeigten die Palladiumkomplexe der carboxylierten Phosphanliganden **B1** und **C1**.

Anhand eines Konzentrations-Zeit-Diagramms (s. Diagramm 9-2) ist der Reaktionsverlauf der Suzuki-Kupplung gemäß Gl. 35 unter Verwendung des *ortho*phosphonierten Triphenylphosphanderivats **31** als Komplexligand graphisch dargestellt. Nach einer Induktionsphase von ca. drei Stunden, in denen nur etwa 10 % Umsatz erreicht werden, verläuft die Reaktion anschließend mit annähernd konstanter Geschwindigkeit. Nach ca. 60-70 %igem Umsatz tritt infolge abnehmender

106

Substratkonzentration eine deutliche Verlangsamung der Reaktion ein. Aufgrund der geringen Anzahl der Messungen sowie der begrenzten Reproduzierbarkeit der Ergebnisse insbesondere im Verlauf der Induktionsphase, lassen sich hieraus jedoch kaum Rückschlüsse auf den Ablauf des katalytischen Prozesses ziehen.

Diagramm 9-2. Konzentrations-Zeit-Diagramm der Suzuki-Kupplung gemäß Gl. 35 unter Verwendung von **31** als Komplexligand

10 Tabellen

10.1 NMR-spektroskopische Daten

³¹P{¹H}-NMR-Spektrum: $\delta P = -21.3 \text{ ppm} (\text{Benzol-d}_6)$

Tabelle 1:	$^{13}C{^{1}H}-NMR$	-spektroskopische	e Daten (Benzol-d ₆)
------------	---------------------	-------------------	----------------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
$C1/C1^{6}$	139.49 (d)	${}^{1}J(PC) = 13.2$	C 5	37.88 (d)	$\frac{1}{I(PC)} = 14.2$
	139.76 (d)	${}^{1}J(\text{PC}) = 13.2$	C3	37.88 (u)	J(1 C) = 14.2
C_{1}/C_{2}	133.01 (d)	$^{2}J(PC) = 18.3$	C 6	70.85 (d)	$^{2}I(\mathbf{PC}) = 16.3$
C_2 / C_2	133.40 (d)	$^{2}J(\text{PC}) = 19.3$	CU	70.83 (u)	J(1 C) = 10.3
C_2 / C_2	128.65 (d)	${}^{3}J(PC) = 6.1$	C7	31 66 (d)	$^{3}I(\mathbf{PC}) = 7.1$
C37C3	128.71 (d)	$^{3}J(\mathrm{PC})=6.1$	C7	51.00 (u)	J(1C) = 7.1
CA / CA	128.53 (s)	-	C 8	10.00 (a)	
04704	128.79 (s)	-		10.00 (8)	-

Tabelle 2: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]
CH ₃	0.90 (t)	${}^{3}J(\text{HH}) = 7.4$	НО-СН	3.63-3.72 (m)
$P-CH_2$	1.46-1.66 (m)		OH	2.58 (br)
CH_3-CH_2	2.20-2.36 (m)		H _{aromat.}	7.05-7.70 (m)

³¹P{¹H}-NMR-Spektrum: $\delta P = -21.2 \text{ ppm} (\text{Benzol-d}_6)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1/C1	139.18 (d)	${}^{1}J(PC) = 13.2$	C 5	22 40 (d)	$\frac{1}{1}$ <i>(</i> PC) - 14.2
	139.49 (d)	${}^{1}J(\text{PC}) = 12.2$	05	33.49 (d)	J(FC) = 14.2
C^{2}/C^{2}	133.03 (d)	$^{2}J(\text{PC}) = 19.3$	C 6	70.60 (d)	2 <i>I</i> (PC) = 16.3
C27C2	133.45 (d)	$^{2}J(\text{PC}) = 18.3$	Co	70.00 (u)	J(FC) = 10.5
C3/C3	128.72 (d)	${}^{3}J(PC) = 6.1$	C7	67 51 (d)	$^{3}I(\mathbf{PC}) = 0.2$
C37C3	128.84 (d)	$^{3}J(\mathrm{PC})=6.1$	C/	07.31 (u)	5(1 C) = 9.2
CA / CA	128.60 (s)	-			
$C4/C4^{\circ}$	128.75 (s)	-			

Tabelle 3: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

Tabelle 4: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]
$P-CH_2$	2.21-2.44 (m)
$O-CH_2$	3.55-3.72 (m)
O-CH	3.90-3.95 (m)
H _{aromat.}	7.04-7.55 (m)

 $C_{10}H_{15}O_2P$ (198.2)

³¹P{¹H}-NMR-Spektrum: $\delta P = -39.1$, -41.0 ppm (Methanol-d₄)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	1/1 83 (d)	$\frac{1}{1}$ <i>(</i> PC) - 13.2	C 5	36.68 (d)	${}^{1}J(PC) = 13.5$
CI	141.03 (u)	J(1 C) = 13.2	CS	37.00 (d)	${}^{1}J(PC) = 12.6$
\mathbf{C}	132.54 (d)	$^{2}J(PC) = 18.3$	C6	71.26 (d)	$^{2}J(PC) = 13.0$
C2	132.64 (d)	$^{2}J(\text{PC}) = 19.3$	Co	71.89 (d)	$^{2}J(PC) = 14.8$
C3	1 20 <i>44</i> (d)	$^{3}I(\mathbf{PC}) = 6.1$	C7	67.81 (d)	$^{3}J(PC) = 8.5$
C3	129.44 (u)	J(1 C) = 0.1	C/	68.19 (d)	$^{3}J(PC) = 9.2$
C4	129.55 (s)	-	C 8	12.56 (d)	${}^{1}J(PC) = 13.4$
U4	129.64 (s)	-	Co	13.24 (d)	${}^{1}J(PC) = 13.0$

Tabelle 5: ¹³C{¹H}-NMR-spektroskopische Daten (Methanol-d₄)

Tabelle 6: ¹H-NMR-spektroskopische Daten (Methanol-d₄)

	δ [ppm]	ⁿ J [Hz]
	1.34 (d)	$^{2}J(\text{PH}) = 3.6$
Г-СП3	1.36 (d)	$^{2}J(\text{PH}) = 3.1$
$P-CH_2$	1.73-1.97 (m)	
H _{aromat.}	7.31-7.57 (m)	

 $C_9H_{13}O_2P$ (184.2)

³¹P{¹H}-NMR-Spektrum: $\delta P = -63.1$, -63.4 ppm (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	135.76 (d)	${}^{1}J(PC) = 11.2$	C 5	27.92 (d)	${}^{1}J(\text{PC}) = 14.2$
CI	138.84 (d)	${}^{1}J(\text{PC}) = 10.2$	05	27.97 (d)	${}^{1}J(PC) = 13.2$
\mathbf{C}	133.99 (d)	$^{2}J(PC) = 16.3$	C 6	71.00 (d)	$^{2}J(\mathrm{PC}) = 8.1$
C2	134.06 (d)	$^{2}J(\text{PC}) = 15.3$	Cu	71.30 (d)	$^{2}J(PC) = 9.2$
C^{2}	128 76 (d)	$^{3}I(\mathbf{PC}) = 6.1$	C7	67.35 (d)	${}^{3}J(PC) = 8.1$
CS	120.70 (u)	J(1 C) = 0.1	C/	67.40 (d)	${}^{3}J(\text{PC}) = 6.1$
C4	128.33 (s)	-			
U4	128.43 (s)	-			

Tabelle 7: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

Tabelle 8: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ <i>J</i> [Hz]
P-CH ₂	1.73-2.23 (m)	
O- <i>CH</i> ₂	3.45-3.65 (m)	
O-CH	3.78-3.95 (m)	
	4.34 (ddd)	${}^{1}J(\text{PH}) = 211.5$
		${}^{3}J(\text{HH}) = 7.1$
		3 J(HH) =8.0
г- п	4.38 (ddd)	${}^{1}J(\text{PH}) = 211.8$
		$^{3}J(\text{HH}) = 6.6$
		${}^{3}J(\text{HH}) = 8.2$
H _{aromat} .	7.05-7.51 (m)	

³¹P{¹H}-NMR-Spektrum: $\delta P = -33.8$ ppm (Methanol-d₄)

Tabelle 9: ¹³C{¹H}-NMR-spektroskopische Daten (Methanol-d₄)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	120.81 (d)	$\frac{1}{1}$ <i>I</i> (PC) = 14.2	CE / CE	34.61 (d)	${}^{1}J(PC) = 12.2$
CI	139.01 (u)	J(FC) = 14.2	C57C5	34.80 (d)	${}^{1}J(\text{PC}) = 14.2$
\mathbf{C}^{2}	122 62 (d)	2 <i>I</i> (DC) - 20.4		71.20 (d)	$^{2}J(\text{PC}) = 13.2$
C2	155.02 (u)	J(FC) = 20.4		71.58 (d)	$^{2}J(\text{PC}) = 15.3$
\mathbf{C}^{2}	120 49 (4)	3 (DC) - 7.1	C7 / C76	67.50 (d)	$^{3}J(PC) = 9.2$
C3	129.48 (u)	J(PC) = 7.1	C//C/*	68.13 (d)	${}^{3}J(PC) = 8.1$
C4	130.04 (s)	-			

Tabelle 10: ¹H-NMR-spektroskopische Daten (Methanol-d₄)

	δ [ppm]
P-CH ₂	1.93-2.08 (m)
H _{aromat.}	7.30-7.86 (m)

 $C_{12}H_{19}O_4P$ (258.3)

meso-2d (r_P und s_P)

³¹P{¹H}-NMR-Spektrum: $\delta P = -32.4$, -34.4 ppm (DMSO-d₆)

	δ [ppm]	ⁿ J [Hz]
C1	_a)	-
\mathbf{C}^{2}	132.07 (d)	$^{2}J(PC) = 19.3$
02	132.41 (d)	$^{2}J(PC) = 18.3$
C	128.22 (d)	${}^{3}J(\text{PC}) = 6.1$
C3	128.28 (d)	${}^{3}J(PC) = 6.1$
C4	128.53 (s)	-
C5	33.45 (d)	${}^{1}J(PC) = 14.2$
05	33.77 (d)	${}^{1}J(PC) = 14.2$
<u>C6</u>	69.67 (d)	$^{2}J(PC) = 13.2$
CU	69.69 (d)	$^{2}J(PC) = 13.2$
С7	66.36 (d)	${}^{3}J(PC) = 9.1$

Tabelle 11: ¹³C{¹H}-NMR-spektroskopische Daten (DMSO-d₆)

a) keine zusätzlichen Signale für die beiden *meso*-Verbindungen gefunden

Tabelle 12: ¹H-NMR-spektroskopische Daten (DMSO-d₆)

	δ [ppm]
P-C <i>H</i> ₂	1.72-1.98 (m)
H _{aromat.}	7.28-7.58 (m)

2e

 $^{31}P{^{1}H}-NMR-Spektrum : \delta P = -20.1, -20.9 ppm (Methanol-d_4)$

Tabelle 13/14: NMR-spektroskopische Daten (Methanol-d ₄)					
	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [H

	δ [ppm]	$^{\mathrm{n}}J$ [Hz]		δ [ppm]	ⁿ J [Hz]
C1	142.66 (d)	${}^{1}J(PC) = 16.3$	C11	33.75 (d)	${}^{1}J(\text{PC}) = 13.2$
CI	143.18 (d)	$^{1}J(\text{PC}) = 16.3$	CII	33.88 (d)	${}^{1}J(PC) = 13.2$
\mathbf{C}^{2}	129.40 (d)	$^{2}J(PC) = 17.3$	C12	70.97 (d)	$^{2}J(PC) = 15.3$
C2	129.60 (d)	$^{2}J(PC) = 22.4$	C12	71.12 (d)	$^{2}J(PC) = 15.3$
C 3	137.74 (d)	${}^{3}J(PC) = 7.1$	C12	67.56 (d)	${}^{3}J(PC) = 9.2$
C5	137.87 (d)	${}^{3}J(PC) = 7.1$	CIS	67.83 (d)	$^{3}J(PC) = 9.2$
C 4	125.79 (s)	-	C14	157.11 (s)	-
C4	125.98	-	C14	157.13	-
C 5	130.80 (d)	${}^{3}J(PC) = 8.1$	C15	30 40 (c)	
CS	130.88 (d)	${}^{3}J(PC) = 8.1$	CIS	59.40 (8)	-
	131 89 (d)	2 <i>I</i> (PC) = 20.3	¹ H-NMR-		
C6	132.10 (d)	$^{2}I(\mathbf{PC}) = 22.4$	spekt	troskopische	δ [ppm]
	132.10 (u)	J(IC) = 22.4	Daten (CD ₃ OD)		
C7	139.01 (d)	${}^{1}J(PC) = 13.2$		P CH	2.23.2.48 (m)
C7	139.27 (d)	${}^{1}J(PC) = 12.2$	\mathbf{P} -C \mathbf{H}_2		2.23-2.48 (III)
68	133.83 (d)	$^{2}J(PC) = 19.3$		$\mathbf{N}(\mathbf{C}\mathbf{H})$	2 15 (s)
Co	134.15 (d)	$^{2}J(\text{PC}) = 19.3$	$N(CH_3)_2$		5.15 (8)
CO	129.58 (d)	$^{3}J(PC) = 7.1$			1.88 (br)
0,	129.63 (d)	$^{3}J(PC) = 7.1$		1112	4.00 (01)
C10	129.86 (s)	-	-	H _{aromat} .	7.18-7.68 (m)

114

³¹P{¹H}-NMR-Spektrum: $\delta P = -21.5, -21.7 \text{ ppm} (CDCl_3)$

Tabelle 15: ¹³	$C{^{1}H}-NMR$	spektroskopische	Daten (CDCl ₃)
---------------------------	----------------	------------------	----------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	149.92 (d)	${}^{1}J(\text{PC}) = 12.2$	C10	130.27 (s)	-
CI	149.98 (d)	${}^{1}J(PC) = 12.2$	C10	130.61 (s)	-
C^{2}	126.42 (d)	$^{2}J(PC) = 21.4$	C11	32.75 (d)	${}^{1}J(PC) = 13.2$
02	126.69 (d)	$^{2}J(\text{PC}) = 21.4$	CII	32.86 (d)	${}^{1}J(\text{PC}) = 13.2$
C3	138.58 (d)	${}^{3}J(PC) = 12.2$	C12	69.40 (d)	$^{2}J(\text{PC}) = 15.3$
C.S	138.63 (d)	$^{3}J(PC) = 13.2$	C12	69.50 (d)	$^{2}J(\text{PC}) = 15.3$
C4	124.06 (s)	-	C13	66 51 (d)	$^{3}I(PC) = 0.2$
04	124.30 (s)	-	C13	00.31 (u)	J(1 C) = 9.2
C5	129.28 (d)	${}^{3}J(PC) = 8.1$	C14	152.29 (s)	-
C3	129.34 (d)	${}^{3}J(PC) = 8.1$	014	152.72 (s)	-
C6	127.39 (d)	$^{2}J(PC) = 17.3$	C15	37 20 (s)	
CU	127.73 (d)	$^{2}J(\text{PC}) = 17.3$	C15	57.29 (8)	-
C7	138.87 (d)	${}^{1}J(PC) = 11.2$			
C/	138.94 (d)	${}^{1}J(PC) = 11.2$			
C	132.33 (d)	$^{2}J(PC) = 18.3$			
Cð	132.64 (d)	$^{2}J(\text{PC}) = 18.3$			
CO	128.21 (d)	$^{3}J(\mathrm{PC}) = 6.1$			
C9	128.28 (d)	${}^{3}J(PC) = 7.1$			

	δ [ppm]
P-C <i>H</i> ₂	2.10-2.32 (m)
$\mathbf{N}(\mathbf{C}\mathbf{H})$	2.93 (s)
IN((CII3))2	2.96 (s)
O- <i>CH</i> ₂	3.37-3.63 (m)
O-CH	3.66-3.76 (m)
$\mathbf{N}H_2$	4.11 (br)
H _{aromat.}	6.81-7.45 (m)

Tabelle 16: ¹H-NMR-spektroskopische Daten (CDCl₃)

³¹P{¹H}-NMR-Spektrum: $\delta P = -28.6, -29.5 \text{ ppm} (D_2O)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	136.96 (d)	${}^{1}J(PC) = 12.2$	C8	138 38 (d)	2 <i>I</i> (PC) - 23 <i>A</i>
CI	137.01 (d)	${}^{1}J(PC) = 13.2$	Co	138.38 (u)	J(1 C) = 23.4
\mathbf{C}^{2}	149.80 (d)	$^{2}J(PC) = 21.4$	C0	131.24 (s)	-
C2	150.06 (d)	$^{2}J(\text{PC}) = 21.4$	C	131.28 (s)	-
C3 ^a	129.67 (s)	-	C10	132.00 (s)	-
C ¹ ^a	134 71 (s)		C11	34.70 (d)	${}^{1}J(\text{PC}) = 14.2$
C 7	134.71 (8)	-	CII	35.09 (d)	${}^{1}J(PC) = 13.2$
C5 ^a	133.89 (s)	-	C12	72.39 (d)	$^{2}J(\text{PC}) = 17.3$
CJ	133.93 (s)	-	C12	72.56 (d)	$^{2}J(\text{PC}) = 16.3$
C6 ^a	134.57 (s)	-	C13	68.52 (d)	${}^{3}J(\text{PC}) = 10.2$
CO	134.86 (s)	-	015	68.61 (d)	${}^{3}J(PC) = 8.1$
C7	140.83 (d)	${}^{1}J(PC) = 12.2$			
C/	140.94 (d)	${}^{1}J(\text{PC}) = 12.2$			

Tabelle 17: ¹³C{¹H}-NMR-spektroskopische Daten (D₂O)

^{a)} Zuordnung unsicher

	δ [ppm]		δ [ppm]
P-CH ₂	2.24-2.43 (m)	O-CH	3.77-3.85 (m)
\mathbf{O} - $\mathbf{C}H_2$	3.50-3.70 (m)	H _{aromat.}	7.29-8.02 (m)

Tabelle 18: ¹H-NMR-spektroskopische Daten (D₂O)

 $^{31}P{^{H}}-NMR-Spektrum: \delta P = -22.8 ppm (Benzol-d_6)$

Tabelle 19: ¹³ C	L{ ¹ H}-NMR-spek	troskopische D	aten (Benzol- d_6)
-----------------------------	-----------------------------	----------------	-----------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1/C1	138.50 (d)	${}^{1}J(PC) = 13.2$	C7	128 11 (c)	
CI/CI	138.93 (d)	${}^{1}J(PC) = 13.2$	C/	120.11 (8)	-
$C2/C2^{\circ}$	133.10 (d)	$^{2}J(PC) = 20.4$	C8	131 60 (s)	
C27C2	133.19 (d)	$^{2}J(\text{PC}) = 19.3$	Co	131.07 (8)	-
C_2/C_2	128.70 (d)	${}^{3}J(PC) = 7.1$	CO	36.40(d)	$\frac{1}{I(\mathbf{PC})} = 15.2$
05705	128.74 (d)	${}^{3}J(PC) = 7.1$	0,9	30.40 (u)	J(FC) = 13.3
CA/CA^{\prime}	128.82 (s)	-	C10	75.82 (d)	$^{2}I(\mathbf{PC}) = 10.3$
C4/C4	128.90 (s)	-	CIU	73.82 (u)	J(1 C) = 19.3
C5	n.b.	_	C11	71.96 (d)	$^{3}J(\text{PC}) = 10.2$
C6	135.43 (s)	-			

Tabelle20: ${}^{1}H{}^{31}P{}$ -NMR-spektroskopischeDaten(Benzol-d₆); chemischeVerschiebungen und ${}^{n}J(HH)$ -Kopplungskonstanten durch Simulation mit gNMR bestätigt

δ [ppm]		H _b	H _c	H _d	H _e
1.97	H _a	-13.60 ^a	5.72	0	0
2.44	H _b		7.86	0	0
4.38	H _c			7.04	7.62
3.81	H _d				-8.91 ^a
3.98	H _e				

^{a)} Vorzeichen konnte durch Iteration nicht eindeutig bestimmt werden

 $C_{24}H_{25}B_2O_4P$ (430.1)

³¹P{¹H}-NMR-Spektrum: $\delta P = -37.4 \text{ ppm}$ (Benzol-d₆)

	δ [ppm]	ⁿ J[Hz]		δ [ppm]	ⁿ J [Hz]
C1	137 70 (d)	$\frac{1}{I(PC)} = 13.2$	C7 / C7	128.11 (s)	
CI	137.79 (u)	J(FC) = 13.2	C//C/	128.15 (s)	-
\mathbf{C}^{2}	133 01 (d)	$^{2}I(PC) = 21.4$		131.70 (s)	
02	155.01 (u)	J(1 C) = 21.4	0/00	131.75 (s)	-
C3	128.76 (d)	$^{3}I(\mathbf{PC}) = 7.1$		36.28 (d)	${}^{1}J(PC) = 16.3$
C3	128.70 (u)	J(1 C) = 7.1	0709	36.46 (d)	${}^{1}J(\text{PC}) = 14.2$
C4	129 /6 (s)		C10 / C10	75.69 (d)	$^{2}J(\text{PC}) = 15.3$
64	127.40 (3)			76.20 (d)	$^{2}J(\text{PC}) = 18.3$
$C5/C5^{\circ}$	135 86 (s)		C11 / C11	71.95 (d)	$^{3}J(PC) = 9.2$
03703	155.00 (8)	-		72.11 (d)	${}^{3}J(\text{PC}) = 9.2$
C6 / C6'	135.37 (s)	-			

Tabelle 21: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

 $C_{24}H_{25}B_2O_4P$ (430.1)

*meso-*3b (r_P und s_P)

 ${}^{31}P{}^{1}H$ -NMR-Spektrum: $\delta P = -36.5, -39.7 \text{ ppm}$ (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	_a)	-	C7	_ ^{a)}	-
C2	133.11 (d)	$^{2}J(\text{PC}) = 20.4$	C8	_ ^{a)}	-
C 3	128.70 (d)	${}^{3}J(PC) = 8.1$	CO	36.02 (d)	${}^{1}J(\text{PC}) = 15.3$
C3	128.81 (d)	${}^{3}J(PC) = 8.1$	Cy	37.10 (d)	$^{1}J(\text{PC}) = 15.3$
C4	_a)	-	C10	75.56 (d)	$^{2}J(PC) = 15.3$
C5	_a)	_	CIU	75.70 (d)	$^{2}J(PC) = 14.2$
<u> </u>	125 40 (c)		C11	71.86 (d)	${}^{3}J(PC) = 8.1$
0	155.40 (8)	-	CII	71.95 (d)	$^{3}J(PC) = 10.2$

Tabelle 22: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

a) keine zusätzlichen Signale für die beiden meso-Verbindungen gefunden

³¹P{¹H}-NMR-Spektrum: $\delta P = -21.7$ ppm (Benzol-d₆)

Tabelle 23: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten (Benzol-d ₆)
--

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	33.87 (d)	1 <i>I</i> (PC) - 15.3		139.00 (d)	${}^{1}J(PC) = 13.2$
CI	55.87 (u)	J(1 C) = 15.5		139.20 (d)	${}^{1}J(\text{PC}) = 13.2$
C^{2}	74 31 (d)	$^{2}I(\mathbf{PC}) = 20.3$	C7/C7	133.01 (d)	$^{2}J(PC) = 19.3$
C2	74.31 (u)	J(FC) = 20.3	C//C/	133.20 (d)	$^{2}J(\text{PC}) = 19.3$
C3	70.34 (d)	$^{3}J(PC) = 9.2$	C8 / C8'	128.69 (d)	${}^{3}J(PC) = 7.1$
C4	108.04 (c)			128.75 (s)	-
C4	100.94 (8)	-	C97C9	128.85 (s)	-
CE / CE	26.01 (s)	-			
C5/C5	27.26 (s)	-			

Tabelle 24: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm] ^{a)}	$^{n}J[Hz]^{a)}$		δ [ppm] ^{a)}	ⁿJ [Hz] ^{a)}
CH ₂	1.27 (s)	-	O-CH	4.18 (m)	
CII3	1.42 (s)	-	H _{aromat.}	7.08-7.44 (m)	
	2.15 (dd)	$^{2}J(\text{HH}) = 13.5$		3.56 (t)	$^{2}J(\text{HH}) = 7.6$
РСИ		${}^{3}J(\text{HH}) = 8.1$			$^{3}J(\text{HH}) = 7.6$
Γ - $C\Pi_2$	2.54 (dd)	$^{2}J(\text{HH}) = 13.5$	$0-CH_2$	3.88 (dd)	$^{2}J(\text{HH}) = 7.6$
		$^{3}J(\text{HH}) = 5.6$			$^{3}J(\text{HH}) = 5.8$

^{a)} Auswertung erfolgte nach 1. Ordnung

 $C_{13}H_{19}O_2P$ (238.3)

 $^{31}P{^{1}H}-NMR-Spektrum: \delta P = -39.0, -41.2 ppm (Benzol-d_6)$

Tabelle 25:	$^{13}C{^{1}H}-NMR$	-spektroskopische	e Daten (Benzol-d ₆)
-------------	---------------------	-------------------	----------------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	35.57 (d)	${}^{1}J(PC) = 15.3$	<u> </u>	12.49 (d)	${}^{1}J(PC) = 14.2$
CI	36.56 (d)	${}^{1}J(PC) = 14.2$	CO	12.82 (d)	${}^{1}J(\text{PC}) = 15.3$
C	74.23 (d)	$^{2}J(PC) = 14.2$	C7	140.56 (d)	${}^{1}J(PC) = 14.2$
C2	74.94 (d)	$^{2}J(\text{PC}) = 18.3$	C/	140.96 (d)	${}^{1}J(PC) = 14.2$
C 3	70.29 (d)	${}^{3}J(PC) = 9.2$	Ce	121 80 (d)	2 <i>I</i> (P C) = 10.2
C3	70.67 (d)	$^{3}J(PC) = 9.2$	Co	131.09 (u)	J(FC) = 19.3
C4	108.85 (s)	-	CO	128.61 (d)	${}^{3}J(PC) = 8.1$
C4	108.87 (s)	-	0,9	128.68 (d)	${}^{3}J(\text{PC}) = 7.1$
	26.06 (s)	-		1 28 50 (c)	
C5 /C5'	27.23 (s)	-	C10	120.39 (8)	-
	27.27 (s)	-		128.72 (s)	-

Tabelle 26: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]		δ [ppm]
P-C <i>H</i> ₃	1.12 (d)	$^{2}J(PH) = 3.6$	O-CH	3.99-4.08 (m)		1.63 (m)
	1.17 (d)	$^{2}J(PH) = 4.1$	0 011	4.09-4.18 (m)		1.68 (m) 1.82-1.89
	1.25 (s)	-		3.32 (m)	$P-CH_2$	(m)
ССИ	1.29 (s)	-		3.56 (m)		2.01 (m)
C-CH3	1.37 (s)	-	0 - \mathbf{CH}_2	3.77 (m)		2.01 (III)
	1.39 (s)	-		3.85 (m)		
H _{aromat.}	7.07-7.41 (m)					

4b•BH₃

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = 8.6$ ppm (Benzol-d₆)

Tabelle 27: ${}^{13}C{}$	¹ H}-NMR-spektrosko	pische Daten (Benzol-d ₆)
--------------------------	--------------------------------	---------------------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	^{n}J [Hz]
C1	32.70 (d)	${}^{1}J(PC) = 33.6$	66	11.29 (d)	${}^{1}J(PC) = 38.7$
CI	32.87 (d)	${}^{1}J(\text{PC}) = 34.6$	Co	11.47 (d)	${}^{1}J(PC) = 37.6$
\mathbf{C}^{2}	71.00 (br)		C7	129.68 (d)	${}^{1}J(PC) = 51.9$
C2	/1.99 (01)	-	C/	131.37 (d)	$^{1}J(PC) = 53.9$
\mathbf{C}^{2}	70.31 (s)	-	C 9	131.64 (d)	$^2J(\mathrm{PC}) = 9.5$
C3	70.39 (d)	$^{3}J(PC) = 2.0$	Co	132.22 (d)	$^{2}J(PC) = 9.5$
C 4	109.13 (s)	-	CO	128.75 (d)	$^{3}J(PC) = 9.5$
C4	109.24 (s)	-	Cy	128.82 (d)	$^{3}J(PC) = 9.5$
	25.57 (s)	-			
C5	25.60 (s)	-	C10	131.20 (d)	${}^{4}J(PC) = 2.9$
C3	27.01 (s)	-		131.27 (d)	${}^{4}J(PC) = 1.9$
	27.15 (s)	-			

extrum: $\delta P = -62.9 \text{ ppm} (^{3}J(PH) = 211.1\text{Hz})$ -63.4 ppm ($^{1}J(PH) = 208.6 \text{ Hz}$) (Benzol-d₆)

Tabelle 28: $^{13}C{$	¹ H}-NMR-spe	ktroskopische	Daten (Benzol-d ₆)
-----------------------	-------------------------	---------------	--------------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	^{n}J [Hz]
C1	28.30 (d)	${}^{1}J(PC) = 15.3$	C (135.29 (d)	${}^{1}J(\text{PC}) = 11.2$
CI	28.27 (d)	${}^{1}J(\text{PC}) = 14.3$	Co	135.33 (d)	${}^{1}J(\text{PC}) = 11.2$
C	74.83 (d)	$^{2}J(\text{PC}) = 10.2$	C7	133.84 (d)	$^{2}J(PC) = 16.3$
C2	74.91 (d)	$^{2}J(PC) = 9.7$	C7	134.07 (d)	$^{2}J(\text{PC}) = 15.8$
C 3	70.02 (d)	3 <i>I</i> (PC) = 5.1	C 8	128.65 (d)	$^{3}J(PC) = 5.6$
C3	70.02 (u)	J(FC) = 3.1	Co	128.69 (d)	$^{3}J(PC) = 5.6$
C4	108.86 (s)	-	CO	1 78 38 (c)	
C4	109.13 (s)	-	Cy	120.30 (8)	-
	25.98 (s)	-			
C5 /C5'	27.23 (s)	-			
	27.27 (s)	-			

Tabelle 29: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]		δ [ppm]
	1.24 (s)		3.97 (m)
CH_2	1.25 (s)	0-CH	4.03 (m)
Chry	1.35 (s)	н	7.03.7.37 (m)
	1.37 (s)	11 aromat.	7.05-7.57 (III)

	1.61-1.71 (m)	
$P-CH_2$	1.74-1.92 (m)	
	2.08-2.17 (m)	
	3.30 (t)	$^{2}J(\text{HH}) = 7.4$
		${}^{3}J(\text{HH}) = 7.4$
	3.35 (dd)	$^{2}J(\text{HH}) = 7.4$
		${}^{3}J(\text{HH}) = 8.1$
0 - $\mathbf{C}H_2$	3.65 (dd)	$^{2}J(\text{HH}) = 5.7$
		${}^{3}J(\text{HH}) = 7.9$
	3.79 (dd)	$^{2}J(\text{HH}) = 5.7$
		${}^{3}J(\text{HH}) = 8.1$
	4.08 (dt)	${}^{1}J(\text{PH}) = 208.5$
		${}^{3}J(HH) = 7.4$
Р <i>-Н</i>	4.09 (ddd)	${}^{1}J(\text{PH}) = 211.2$
		${}^{3}J(HH) = 8.3$
		${}^{3}J(\text{HH}) = 5.7$

Tabelle 29: ¹H-NMR-spektroskopische Daten (Benzol-d₆) (Fortsetzung)^{a)}

^{a)} Auswertung nach 1. Ordnung

4**c**•BH₃

 $^{31}P{^{1}H}-NMR-Spektrum: \delta P = -9.6 ppm (Benzol-d_6)$

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ J [Hz]
C1	29.31 (d)	${}^{1}J(PC) = 33.6$	C6	125.53 (d)	${}^{1}J(PC) = 54.9$
CI	29.52 (d)	$^{1}J(PC) = 35.6$	CO	126.42 (d)	${}^{1}J(PC) = 54.9$
\mathbf{C}	71.30 (d)	$^{2}J(PC) = 4.1$	C7	133.00 (d)	$^{2}J(PC) = 9.2$
C2	71.89 (s)	-	C/	133.50 (d)	$^{2}J(PC) = 9.2$
C 3	69.80 (d)	${}^{3}J(PC) = 8.1$	C 9	128.95 (d)	${}^{3}J(PC) = 10.2$
C3	70.06 (d)	$^{3}J(PC) = 9.2$	Co	129.01 (d)	${}^{3}J(PC) = 10.2$
C4	109.39 (s)	-	CO	131.55 (d)	${}^{4}J(PC) = 3.1$
C4	109.47 (s)	-	C9	131.65 (d)	${}^{4}J(\text{PC}) = 2.0$
	25.53 (s)	-			
C 5	25.57 (s)	-			
C3	27.06 (s)	-			
	27.17 (s)	-			

Tabelle 30: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

³¹P{¹H}-NMR-Spektrum: $\delta P = -35.6$ ppm (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1/C1	33.80 (d)	${}^{1}J(PC) = 15.3$	C 6	138 48 (d)	$\frac{1}{I(\mathbf{PC})} = 14.2$
CI/CI	34.31 (d)	${}^{1}J(PC) = 13.2$	CO	130.40 (u)	$J(\Gamma C) = 14.2$
C_{2}/C_{2}	74.18 (d)	$^{2}J(\text{PC}) = 16.3$	C7	122.07 (d)	2 <i>I</i> (DC) - 20.2
C_2 / C_2	74.75 (d)	$^{2}J(\text{PC}) = 20.3$	C7	152.97 (u)	J(PC) = 20.3
C_2/C_2	70.22 (d)	$^{3}J(PC) = 9.2$	C	128 68 (d)	$^{3}I(\mathbf{PC}) = 7.1$
C37C3	70.51 (d)	${}^{3}J(PC) = 8.1$	Co	120.00 (u)	J(FC) = 7.1
	108.88 (s)	-	CQ	120 36 (s)	
C47C4	108.89 (s)	-	09	129.30 (8)	-
	25.99 (s)	-			
C5 /C5' /	26.01 (s)	-			
C5" / C5""	27.19 (s)	-			
	27.23 (s)	-			

Tabelle 31: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

Tabelle 32: ¹H-NMR-spektroskopische Daten (Benzol-d₆)^a

	δ [ppm]	ⁿ J [Hz]
	1.25 (s)	
CH_3	1.30 (s)	-
	1.41 (s)	-
H _{aromat} .	7.10-7.48 (m)	-

	1.71 (ddd)	$^{2}J(\text{HH}) = 13.7$
		$^{3}J(\text{HH}) = 6.5$
		$^{2}J(\text{PH}) = 1.9$
	1.92 (ddd)	$^{2}J(\text{HH}) = 13.7$
		$^{3}J(\text{HH}) = 8.0$
$P-CH_2$		$^{2}J(\text{PH}) = 2.9$
	2.07 (dd)	$^{2}J(\text{HH}) = 13.7$
		$^{3}J(\text{HH}) = 7.1$
	2.16 (ddd)	$^{2}J(\text{HH}) = 13.7$
		$^{3}J(\text{HH}) = 5.3$
		$^{2}J(\text{PH}) = 1.8$
	3.31 (t)	$^{2}J(\text{HH}) = 7.6$
		$^{3}J(HH) = 7.6$
	3.66 (t)	$^{2}J(\text{HH}) = 7.6$
		$^{3}J(\text{HH}) = 7.6$
\mathbf{O} - $\mathbf{C}H_2$	3.74 (dd)	$^{2}J(\text{HH}) = 5.8$
		$^{3}J(\text{HH}) = 7.9$
	3.92 (dd)	$^{2}J(\text{HH}) = 5.8$
		$^{3}J(\text{HH}) = 8.9$
	4.05 (m)	-
O-CH	4.16 (m)	-

Tabelle 32: ¹H-NMR-spektroskopische Daten (Benzol-d₆) (Fortsetzung) ^a

^{a)} Auswertung nach 1. Ordnung

4e

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = -20.8$, -21.3 ppm (Methanol-d₄)

Tabelle 33:	$^{13}C{^{1}H}-NM$	IR-spektros	kopische Da	ten (DMSO- d_6)
-------------	--------------------	-------------	-------------	--------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	^{n}J [Hz]
C1	142.56 (d)	${}^{1}J(PC) = 15.3$	C11	33.87 (d)	${}^{1}J(PC) = 14.2$
	142.71 (d)	${}^{1}J(PC) = 14.2$	CII	33.96 (d)	${}^{1}J(PC) = 14.2$
C	129.49 (d)	$^{2}J(PC) = 9.5$	C12	75.17 (d)	$^{2}J(\text{PC}) = 18.3$
C2	129.59 (d)	$^{2}J(PC) = 9.5$	C12	75.24 (d)	$^{2}J(\text{PC}) = 19.3$
C 2	137.65 (d)	${}^{3}J(PC) = 6.1$	C13	71.03 (d)	${}^{3}J(PC) = 9.2$
C3	137.68 (d)	$^{3}J(PC) = 7.1$		71.08 (d)	$^{3}J(PC) = 9.2$
C4	126.02 (s)	-	C14	110.13 (s)	-
04	126.12 (s)	-		110.18 (s)	-
C 5	130.99 (d)	$^{3}J(PC) = 6.7$	C15 / C15'	25.98 (s)	-
C3	131.01 (d)	$^{3}J(\mathrm{PC})=6.7$		27.19 (s)	-
<u> </u>	131.96 (d)	$^{2}J(PC) = 20.0$	C16	157 33 (s)	
CO	132.19 (d)	$^{2}J(PC) = 20.0$	C10	137.33 (8)	-
C7	138.69 (d)	${}^{1}J(PC) = 11.2$	C17	39.27 (s)	-
C	134.10 (d)	$^{2}J(PC) = 20.0$			
Co	134.33 (d)	$^{2}J(\text{PC}) = 20.0$			
CO	129.74 (d)	${}^{3}J(PC) = 7.1$			
C9	129.76 (d)	$^{3}J(PC) = 7.1$			
C10	130.24 (s)	-			
	130.38 (s)	-			

	δ [ppm]	ⁿ J [Hz]
	1.24 (s)	-
C-CH ₃	1.25 (s)	-
	1.32 (s)	-
	1.34 (s)	-
	2.33-2.41 (m)	
$P-CH_2$	2.46-2.53 (m)	
N-(CH ₃) ₂	3.13 (s)	-
	3.56 (t)	$^{2}J(\text{HH}) = 7.6$
		$^{3}J(\text{HH}) = 7.6$
0.011	3.65 (t)	$^{2}J(\text{HH}) = 7.6$
0 - $\mathbf{C}\mathbf{H}_2$		$^{3}J(\text{HH}) = 7.6$
	3.94-3.99 (m)	
	4.00-4.05 (m)	
O-CH	4.10-4.20 (m)	
$\mathbf{N}H_2$	4.70 (br)	
Haromat.	7.23-7.52 (m)	

Tabelle 34: ¹H-NMR-spektroskopische Daten (Methanol-d₄)

C₁₈H₂₀O₅SPNa (402.4)

 $^{31}P{^{1}H}-NMR-Spektrum: \delta P = -22.1, -22.5 ppm (D_2O)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	144.00 (d)	${}^{1}J(PC) = 13.2$	C 8	131.52 (s)	-
CI	144.24 (d)	${}^{1}J(\text{PC}) = 13.2$	Co	131.70 (s)	-
\mathbf{C}	135.25 (d)	$^{2}J(PC) = 21.4$	CO	33.50 (d)	${}^{1}J(PC) = 14.2$
C2	134.75 (d)	$^{2}J(\text{PC}) = 19.3$	09	34.55 (d)	$^{1}J(PC) = 13.2$
C3	127.93 (s)	-	C10	75.93 (d)	$^{2}J(PC) = 18.3$
C4	145.66 (s)	-	C11	71.77 (d)	$^{3}I(\mathbf{PC}) = 0.2$
C4	145.83 (s)	-	CII	/1.// (u)	J(1 C) = 9.2
C5	139.05 (d)	${}^{1}J(PC) = 11.2$	C12	111.48 (s)	-
C6	135.04 (d)	$^{2}J(PC) = 20.3$	C13 /	27.42 (s)	-
CU	135.58 (d)	$^{2}J(\text{PC}) = 20.3$	C13'	28.59 (s)	-
C7	131.07 (d)	$^{3}\overline{J(\mathrm{PC})} = 6.7$			

Tabelle 35: ¹³C{¹H}-NMR-spektroskopische Daten (D₂O)

³¹P{¹H}-NMR-Spektrum: $\delta P = 43.9$, 44.5 ppm (Aceton-d₆)

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ J [Hz]
C1/C1	25.40 (s)	-			
	25.51 (s)	-	C7/C7	nh	
	26.66 (s)	-	CITCI	11.0.	
	26.69 (s)	-			
\mathbf{C}^{2}	108.59 (s)	-	C8	129.12 (d)	1 J(PC) = 85.4
C2	108.70 (s)	-		130.55 (d)	1 J(PC) = 85.4
C 2	69.76 (d)	3 J(PC) = 5.1	PC) = 5.1	131.27 (d)	2 J(PC) = 9.2
C3	70.02 (d)	3 J(PC) = 4.1	Cy	131.76 (d)	2 J(PC) = 8.1
C4	70.61 (s)	-	C10	128 28 (d)	$^{3}I(PC) - 10.2$
64	70.83 (s)	-	CIU	120.20 (u)	J(1 C) = 10.2
C 5	28.90 (d)	2 J(PC) = 61.0	C11	131.80 (s)	
C3	30.08 (d) ${}^{2}J(PC) = 61.0$	131.00 (8)	-		
C6	70.61 (d)	${}^{1}J(PC) = 82.4$			

Tabelle 36: ¹³C{¹H}-NMR-spektroskopische Daten (Aceton-d₆)

5a (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = -34.0, -36.9, -34.0 / -36.8 \text{ ppm} (^{5}J(PP) = 1.6 \text{ Hz})$

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
	26.03 (s)	-			
C1/C9	26.09 (s)	-		79.54 (dd)	N = 19.4
	27.25 (s)	-	C7 ^{a)}	80.12 (dd)	N = 20.4
C1/C9	27.32 (s)	-	C/	80.14 (dd)	N = 22.4
	27.38 (s)	-		80.78 (dd)	N = 23.9
	27.43 (s)	-			
	108.59 (s)	-			
	108.61 (s)	-		129 40 (d)	$\frac{1}{1}$ (DC) - 14.8
C2/C8	108.66 (s)	-	C10	130.40(u)	J(PC) = 14.0
	108.73 (s)	-		139.34 (d)	J(PC) = 14.8
	108.74 (s)	-		139.37 (d)	J(PC) = 14.8
	108.94 (s)	-			
	70.29 (d)	$^{3}I(PC) = 10.2$		132.94 (d)	$^{2}J(PC) = 20.0$
C3	70.29 (d)	3(1C) = 10.2	C11	132.97 (d)	$^{2}J(\text{PC}) = 21.0$
	70.49 (u)	J(rC) = 7.0		133.07 (d)	$^{2}J(PC) = 20.0$
	74.21 (d)	$^{2}J(PC) = 16.3$		128 20 (d)	$^{3}I(PC) - 7.6$
C4	74.23 (d)	$^{2}J(PC) = 16.8$	C12	120.20 (d)	3(IC) = 7.6
	74.78 (d)	$^{2}J(\text{PC}) = 19.8$		120.03 (u)	J(1 C) = 7.0

Tabelle 37: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

C5	33.89 (d) 34.00 (d) 34.95 (d)	${}^{1}J(PC) = 15.3$ ${}^{1}J(PC) = 16.3$ ${}^{1}J(PC) = 15.3$	C13	129.17 (s) 129.33 (s) 129.78 (s) 129.95 (s)	- - - -
C6 ^{a)}	31.88 (m) 32.16 (m) 32.64 (m) 32.98 (m)	N = 17.3 N = 19.4 N = 16.6 N = 18.4			
^{a)} N = \int	J(AX) + J(BX)	: A. B = 31 P. X = 12	³ C		

Tabelle 37: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆) (Fortsetzung)

Tabelle 38: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]
	1.22 (s)
	1.23 (s)
	1.27 (s)
СИ	1.30 (s)
CH_3	1.31 (s)
	1.37 (s)
	1.38 (s)
	1.39 (s)
<i>CH</i> ₂ - <i>P</i> -C <i>H</i> ₂	1.76-2-29 (m)
O- <i>CH</i> ₂ / O- <i>CH</i>	3.25-4.25 (m)
Haromat.	7.03-7.51 (m)

 $C_{31}H_{50}B_2O_6P_2$ (602.3)

5a•BH₃ (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 12.4 \text{ ppm} (\text{Benzol-}d_6)$

. .

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.48 (s)	-		31.64 (d)	${}^{1}J(PC) = 28.5$
	25.67 (s)	-	C5	31.78 (d)	${}^{1}J(PC) = 26.4$
	25.70 (s)	-		31.97 (d)	${}^{1}J(PC) = 32.6$
	26.75 (s)	-		28.93 (d)	${}^{1}J(PC) = 33.6$
C1/C9	26.87 (s)	-	C 6	29.50 (d)	${}^{1}J(PC) = 34.6$
	26.97 (s)	-	CU	29.55 (d)	${}^{1}J(PC) = 36.6$
	27.06 (s)	-		29.64 (d)	${}^{1}J(PC) = 38.7$
	27.11 (s)	-	C7	77.6-78.0	-
	27.12 (s)	-	C10	129.90 (d)	${}^{1}J(PC) = 39.7$
	108.77 (s)	-		132.26 (d)	$^{2}J(PC) = 9.2$
C2/C2	108.84 (s)	-	C11	132.30 (d)	$^{2}J(PC) = 9.2$
C2/C8	109.13 (s)	-	CII	133.09 (d)	$^{2}J(PC) = 9.2$
	109.35 (s)	-		133.14 (d)	$^{2}J(PC) = 9.2$
C 3	70.53 (d)	${}^{3}J(PC) = 6.1$		128.49 (d)	${}^{3}J(PC) = 9.7$
05	70.01 (d)	$^{3}J(PC) = 5.1$	C12	128.56 (d)	$^{3}J(PC) = 9.7$
			C12	128.84 (d)	$^{3}J(PC) = 10.2$
	71.89 (d)	$^{2}J(PC) = 2.0$		128.97 (d)	$^{3}J(PC) = 9.7$
C4	72.09 (d)	$^{2}J(PC) = 4.1$		131.40 (d)	${}^{4}J(PC) = 2.5$
	72.13 (d)	$^{2}J(PC) = 5.1$	C13	131.58 (d)	${}^{4}J(PC) = 2.5$
				131.70 (d)	${}^{4}J(PC) = 2.5$

Tabelle 39: ¹³	³ C{ ¹ H}-NMR	-spektroskopische	Daten (Benzol-d ₆)
---------------------------	-------------------------------------	-------------------	--------------------------------

 $C_{31}H_{44}O_6S_2P_2$ (638.7)

5a-Sulfid (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 39.7^*$, 39.8, 39.5 / 39.8 ppm (Benzol-d₆)

Tabelle 40: $^{13}C{$	¹ H}-NMR-spektro	oskopische Daten	$(\text{Benzol-}d_6)$
-----------------------	-----------------------------	------------------	-----------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.56 (s)	-		38.58 (d)	${}^{1}J(PC) = 52.4$
	$25.60(s)^*$	-	C 5	38.61 (d)	${}^{1}J(PC) = 51.9$
	25.70 (s)	-	65	39.68 (d)	${}^{1}J(PC) = 53.9$
	25.72 (s)	-		39.82 (d)*	${}^{1}J(PC) = 53.9$
	26.77 (s)	-		36.78 (d)	${}^{1}J(PC) = 57.5$
C1/C9	26.79 (s)*	-	C6	36.82 (d)	${}^{1}J(PC) = 59.5$
	26.96 (s)	-		37.70 (d)*	${}^{1}J(PC) = 54.9$
	27.07 (s)	-		76.3-76.9 (m)	
	27.08 (s)*	-	C7 ^{a)}	$76.73 \mathrm{(dd)}^*$	${}^{3}J(PC) = 12.2$
	27.10 (s)	-			${}^{2}J(\text{PC}) = 3.1$
	108.35 (s)	-	C8	$109.25(s)^*$	-
	108.44 (s)	-	Co	109.37 (s)	-
C2	108.69 (s)	-	C10	n.b.	
	$108.82 (s)^*$	-	C11	131.93 (d)*	$^{2}J(\text{PC}) = 10.0$
	69.61 (d)	${}^{3}J(PC) = 4.1$	CII	131.96 (d)	$^{2}J(PC) = 10.2$
C3	69.65 (d)	${}^{3}J(PC) = 5.1$			
	70.39 (d)*	${}^{3}J(\text{PC}) = 7.1$	C12	128.21 (d)*	$^{3}J(PC) = 12.4$
	71.59 (a)				
	71.38(8)	-		131.04 (d)	${}^{4}J(PC) = 4.1$
C4	/1.62 (S)	2 KDC) 2.5	~ 1 •	131.14 (d)	${}^{4}J(PC) = 4.1$
	/1.9/ (d)	J(PC) = 2.5	C13	131.31 (d)	${}^{4}J(PC) = 3.1$
	72.03 (d)	J(PC) = 2.5		131.96 (d) [*]	${}^{4}J(PC) = 2.9$

^{*} Die mit ^{*} gekennzeichneten NMR-Daten konnten dem isolierten Diastereomer mit homochiralen P-Atomen (s. Kap. 4.7) zugeordnet werden; ^{a)} Auswertung nach 1. Ordnung

 Tabelle 41: ¹H-NMR-spektroskopische Daten des isolierten Diastereomers (Benzol-d₆)

 (ⁿJ(HH)-Kopplungskonstanten in Hz)

δ [ppm]		H _a	H _b	H _c	$\mathbf{H}_{\mathbf{d}}$	H _e
2.18	H _a					
2.68	H _b	-14.44 ^{a)}				
3.89	H _c	0	0			
4.07	H _d	0	0	-8.42 ^{a)}		
4.24	H _e	7.67	6.49	6.55	6.11	
	P _x	-13.10 ^{a)}	-10.70^{a}	0	0	6.06

^{a)} Vorzeichen nicht eindeutig bestimmt

	δ [ppm]
	0.98 (s)
C2-CH ₃ / C8-CH ₃	1.13 (s)
	1.33 (s)
C6 <i>H</i> ₂	2.30-2.51 (m)
С7Н	4.35-4.44 (m)
Н	7.06-7.16 (m)
aromat.	7.90-7.96 (m)

 $C_{27}H_{38}O_4P_2$ (488.5)

5b (Diastereomerengemisch)

 $^{31}P{^{1}H}-NMR-Spektrum: \delta P = -29.8, -31.5 ppm$

 $-29.7 / -31.3 \text{ ppm} (^4 J(\text{PP}) = 1.0 \text{ Hz}) (\text{Aceton-d}_6)$

Tabelle 42: ¹³C{¹H}-NMR-spektroskopische Daten (Aceton-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	^{n}J [Hz]
	26.78 (s)	-		23.89 (t)	N - 32.0
C1	26.81 (s)	-	C7	23.05(t)	N = 32.0 N = 31.0
CI	27.94 (s)	-	C7	23.90(t)	N = 31.0
	27.99 (s)	-		24.00 (l)	N = 51.0
\mathbf{C}^{2}	109.85 (s)	-		139.85 (d)	${}^{1}J(PC) = 15.3$
02	109.80 (s)	-	C8	139.95 (d)	${}^{1}J(PC) = 15.3$
	71.32 (d)	${}^{3}J(PC) = 9.2$	Co	140.17 (d)	${}^{1}J(PC) = 16.3$
C3	71.57 (d)	${}^{3}J(PC) = 8.1$		140.26 (d)	${}^{1}J(PC) = 15.3$
	75.42 (d)	$^{2}J(PC) = 15.3$		133.94 (d)	$^{2}J(PC) = 20.3$
C4	76.03 (d)	$^{2}J(PC) = 18.3$	C0	133.99 (d)	$^{2}J(\text{PC}) = 20.3$
C5 ^{a)}	21 1 21 9	-	CJ	134.04 (d)	$^{2}J(PC) = 19.3$
05	51.1-51.0			134.07 (d)	$^{2}J(\text{PC}) = 20.3$
C6 ^{b)}	3/31 (m)	N – 23 /	C10	129.94 (d)	${}^{3}J(PC) = 7.1$
	34.05 (m)	N = 23.7	C11	130.41 (s)	-
	54.95 (III)	1N - 22.4	CII	130.46 (s)	-

a) teilweise überdeckt von Aceton-d₆-Signal b) N = |J(AX) + J(BX)|; A, B = ³¹P, X = ¹³C
140	

	δ [ppm]
	1.22 (s)
CH_3	1.25 (s)
	1.30 (s)
C-CH ₂ -C	1.38-1.53 (m)
CH_2 -P- CH_2	1.81-2.17 (m)
O- <i>CH</i> ₂ / O- <i>CH</i>	3.34-4.20 (m)
H _{aromat} .	7.33-7.59 (m)

Tabelle 43: ¹H-NMR-spektroskopische Daten (Aceton-d₆)

 $C_{26}H_{36}O_4P_2$ (474.5)

5c (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = -25.0, -27.1 \text{ ppm}$

 $-24.4 / -26.6 \text{ ppm} (^{3}J(\text{PP}) = 24.1 \text{ Hz}) (\text{Benzol-d}_{6})$

Tabelle 44: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.99 (s)	-	C 6 ^{a)}	24 8-25 2 (m)	_
C1	26.04 (s)	-	CU	24.0 25.2 (m)	
CI	27.23 (s)	-	C7	138.31 (d)	${}^{1}J(PC) = 11.2$
	27.27 (s)	-	C7	138.87 (d)	${}^{1}J(PC) = 10.7$
	108.89 (s)	-		132 92 (d)	2 <i>I</i> (PC) - 19.8
C2	108.92 (s)	-	C8	132.92 (d)	J(PC) = 19.8
	108.96 (s)	-		152.90 (u)	J(IC) = 19.0
	70.23 (d)	${}^{3}J(PC) = 6.1$		128 68 (d)	3 <i>I</i> (PC) - 7.1
C3	70.24 (d)	$^{3}J(PC) = 9.2$	С9	120.00 (d)	J(IC) = 7.1
	70.62 (d)	${}^{3}J(PC) = 8.1$		120.09 (u)	J(FC) = 7.1
	74 14 (d)	$^{2}I(PC) = 15.3$		129.14 (s)	-
C4	74.17 (d)	3(PC) = 15.3	C10	129.18 (s)	-
64	74.17 (u)	J(IC) = 10.3	CIU	129.20 (s)	-
	74.03 (u)	J(FC) = 19.5		129.24 (s)	-
C5	32.96 (d)	${}^{1}J(\text{PC}) = 16.3$			
05	33.71 (d)	$^{1}J(PC) = 15.3$			

^{a)} stark überlagerte Signale

	δ [ppm]		
CH ₃	1.22 (s)		
	1.23 (s)		
	1.26 (s)		
	1.28 (s)		
	1.35 (s)		
	1.36 (s)		
	1.38 (s)		
	1.39 (s)		
CH_2 -P- CH_2	1.50-2.08 (m)		
O-CH ₂ / O-CH	3.20-4.20 (m)		
H _{aromat} .	7.00-7.44 (m)		

Tabelle 45: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

 $C_{26}H_{42}B_2O_4P_2$ (502.2)

5c-BH₃ (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 18.4$ ppm (Benzol-d₆)

Tabelle 46: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
Cl	25.48 (s) 25.50 (s) 25.57 (s)		C6	19.74 (d) 19.57 (d)	${}^{1}J(PC) = 35.6$ ${}^{1}J(PC) = 37.6$
CI	26.90 (s) 27.03 (s) 27.21 (s)		C7	n.b.	
C2	109.27 (s) 109.31 (s) 109.42 (s)	- - -	C8	132.16 (d) 132.39 (d) 132.91 (d) 133.10 (d)	${}^{2}J(PC) = 8.6$ ${}^{2}J(PC) = 9.5$ ${}^{2}J(PC) = 8.6$ ${}^{2}J(PC) = 9.5$
C3	70.0-70.5	-	C9	128.91 (d) 128.96 (d)	3 J(PC) = 8.6 3 J(PC) = 9.5
C4	71.6-71.8	-		129.15 (d)	3 J(PC) = 9.5
C5	31.56 (d) 31.90 (d) 31.72 (d)	${}^{1}J(PC) = 34.6$ ${}^{1}J(PC) = 34.6$ ${}^{1}J(PC) = 34.6$	C10	131.50 (s) 131.59 (s) 131.64 (s) 131.77 (s)	- - -

 $C_{25}H_{34}O_4P_2$ (460.5)

5d (Diastereomerengemisch)

 ${}^{31}P{}^{1}H$ -NMR-Spektrum: $\delta P = -34.5, -34.9 \text{ ppm}$

$$-34.1 / -35.8 \text{ ppm} (^2 J(\text{PP}) = 102.4 \text{ Hz}) (\text{Benzol-d}_6)$$

Tabelle 47: $^{13}C{$	¹ H}-NMR-spektroskopisch	e Daten (Benzol-d ₆)
-----------------------	-------------------------------------	----------------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
				35.01 (d)	${}^{1}J(PC) = 14.8$
	26.01 (s)	-	C5	35.09 (d)	${}^{1}J(PC) = 14.8$
	26.04 (s)	-		34.35-34.60 ^{b)}	-
	26.05 (s)	-		28 56 (m)	N - 46.8
C1	26.07 (s)	-	C6 ^{a)}	20.00 (m)	N = 44.2
U	27.19 (s)	-		29.02 (III)	1N — 44.2
	27.24 (s)	-		138.93 (d)	${}^{1}J(\text{PC}) = 12.2$
	27.26 (s)	-	C7	138.96 (d)	${}^{1}J(PC) = 13.2$
	27.27 (s)	-		139.01 (d)	${}^{1}J(\text{PC}) = 11.7$
	108.85 (s)	-	C8 ^{b)}	132.75-133.12	
\mathbf{C}^{2}	108.92 (s)	-		128 58(d)	$^{3}J(PC) = 7.6$
C2	108.93 (s)	-	CO	128.50(d)	$^{3}I(PC) = 7.0$
	108.96 (s)	-	0,7	120.01 (d)	3(1 C) = 7.1 3I(PC) = 7.6
	70.21 (4)	3 (DC) 7.6	 	120.03 (u)	5(1 C) = 7.0
	70.31 (d)	J(PC) = 1.0	C10	129.18 (8)	-
C3	70.41 (d)	J(PC) = 8.1		129.32 (s)	-
	70.44 (d)	$^{5}J(PC) = 7.1$			
	70.56 (d)	$^{3}J(PC) = 7.6$			
C4 ^{b)}	74.15-74.95	-	1		

^{a)} N = |J(AX) + J(BX)|; A, B = ³¹P, X = ¹³C; ^{b)} stark überlagerte Signale

	δ [ppm]		
	1.22 (s)		
CH ₃	1.23 (s)		
	1.28 (s)		
	1.35 (s)		
	1.37 (s)		
	1.39 (s)		
CH_2 -P- CH_2	1.77-2.28 (m)		
O- <i>CH</i> ₂	3.29-3.90 (m)		
O-CH	3.95-4.24)m)		
Haromat	7.05-7.48 (m)		

Tabelle 48: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

 $C_{25}H_{40}B_2O_4P_2$ (488.1)

 $5d \cdot BH_3$ (Diastereomerengemisch)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	^{n}J [Hz]
	25.53 (s)	-	C5	31.0-32.2 (m)	
	25.66 (s)	-	C6	21.3-24.5 (m)	
	25.83 (s)	-	C7	n.b.	
C 1	26.86 (s)	-		132.25 (d)	$^{2}J(PC) = 9.5$
	26.94 (s)	-	~	132.37 (d)	$^{2}J(PC) = 9.5$
	27.06 (s)	-	C8	132.45 (d)	$^{2}J(PC) = 9.5$
	27.20 (s)	-		132.88 (d)	$^{2}J(PC) = 9.5$
	109.22 (s)	-		128 46 (d)	$^{3}I(PC) = 10.5$
\mathbf{C}^{2}	109.31 (s)	-	CO	128.40 (d)	J(IC) = 10.3 $^{3}I(PC) = 10.5$
C2	109.39 (s)	-	C	128.73 (d)	J(IC) = 10.5
	109.44 (s)	-		128.83 (d)	J(PC) = 10.5
C 3	70.2.70.6 (m)			131.36 (d)	${}^{4}J(PC) = 1.4$
CS	70.2-70.0 (III)		C10	131.63 (d)	${}^{4}J(PC) = 2.4$
C 4	717720(131.77 (d)	${}^{4}J(PC) = 1.9$
C4	71.7-72.0 (m)			132.04 (d)	${}^{4}J(PC) = 2.4$

Tabelle 49: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

5e (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = -26.4, -28,4^*$ ppm

 $-26.8 / -28.5 \text{ ppm} (^{5}J(\text{PP}) = 4.4 \text{ Hz}) (\text{Benzol-d}_{6})$

Tabelle 50:	$^{13}C{^{1}H}-NM$	R-spektrosl	kopische Daten	(Benzol-d ₆)
-------------	--------------------	-------------	----------------	--------------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.96 (s)	-		130.93 (dd)*	$^{3}J(PC) = 9.4$
	26.01 (s)*	-	C8 ^{a)}		${}^{4}J(PC) = 4.3$
	26.04 (s)	-		130.7-131.0	
C 1	27.18 (s)	-		126.19 (s)	-
	27.20 (s)*	-		126.25 (s)	-
	27.28 (s)	-	C9	126.27 (s)	-
	27.32 (s)	-		126.34 (s)*	-
	108.93 (s)	-		138.0.130.0	
C	108.95 (s)	-	C10	130.0-139.0 128 17 (dd) [*]	$\frac{1}{1}$ <i>I</i> (P C) = 10.2
C2	108.97 (s)	-		136.17 (uu)	J(PC) = 19.3
	108.98 (s) [*]	-			J(PC) = 2.0
	70.34 (d) [*]	3 <i>I</i> (PC) - 9.2		132.30 (d)	$^{2}J(\text{PC}) = 20.4$
C3	70.34 (d)	3(IC) = 9.2	C11	132.98 (d)	$^{2}J(\text{PC}) = 19.8$
CJ	70.55 (d)	J(IC) = 9.2		$133.02 (d)^*$	$^{2}J(\text{PC}) = 21.4$
	70.55 (u)	J(1 C) = 0.0		133.04 (d)	$^{2}J(\text{PC}) = 21.9$
	74.21 (d) [*]	$^{2}J(\text{PC}) = 17.8$		128.49 (d)	${}^{3}J(PC) = 7.6$
~ (74.25 (d)	$^{2}J(\text{PC}) = 16.8$	~ 1	128.52 (d)	$^{2}J(PC) = 7.6$
C4	74.88 (d)	$^{2}J(\text{PC}) = 20.9$		128.58 (d)*	$^{2}J(PC) = 7.1$
	74.93 (d)	$^{2}J(\text{PC}) = 21.4$		128.61 (d)	${}^{2}J(\text{PC}) = 7.1$

C5	32.19 (d) [*] 32.35 (d) 33.43 (d) 33.49 (d)	${}^{1}J(PC) = 15.8$ ${}^{1}J(PC) = 17.8$ ${}^{1}J(PC) = 15.3$ ${}^{1}J(PC) = 15.8$	C7 ^{a)}	136.1-136.7 136.35 (dd) [*]	$^{2}J(PC) = 4.1$ $^{3}J(PC) = 4.1$
C6 ^{a)}	34.5-35.5 34.97 (dd) [*]	J(PC) = 17.8 J(PC) = 7.6	C13	129.27 (s) 129.31 (s) [*] 129.39 (s) 129.42 (s)	- - -

Tabelle 50: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆) (Fortsetzung)

^{*} s. Tab. 40 ^{a)} Auswertung nach 1. Ordnung

Tabelle 51: Ausgewählte ¹H-NMR-spektroskopische Daten (Benzol-d₆)

δ [ppm]
1.26 (s)
1.29 (s)
1.30 (s)*
1.36 (s)
1.41 (s)
1.44 (s)
1.45 (s) [*]
1.49 (s)
6.82-7.54 (m)

s. Tab. 40

 $C_{32}H_{46}B_2O_4P_2$ (578.3)

5e-BH₃ (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 15.6$, 16.5 ppm (Benzol-d₆)

Tabelle 52: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.44 (s)	_	<u>C6</u>	31.20 (d)	${}^{1}J(\text{PC}) = 28.5$
	$25.48 (s)^*$	-	CU	32.26 (d)*	${}^{1}J(PC) = 42.7$
	25.52 (s)	-	C7	n.b.	
C1	25.79 (s)	-	C8	131.4-131.8	
UI	26.95 (s)	-		126.60 (s)	-
	$27.05 (s)^*$	-	С9	126.85 (s)*	-
	27.32 (s)	-		126.88 (s)	_
	27.38 (s)	-			
	109.20 (s)		C10	n.b.	
	$109.20(3)^{*}$	_			
C2	109.24(3) 109.54(s)	_		132.74 (d)	$^{2}J(\text{PC}) = 8.1$
	109.57 (s)		C11	132.93 (d)	$^{2}J(\text{PC}) = 8.1$
	107.57 (8)	3		$133.08 (d)^*$	$^{2}J(PC) = 9.2$
	70.37 (d)	${}^{3}J(PC) = 8.1$			
C3	70.56 (d)	${}^{3}J(PC) = 7.1$		128.53 (d)	3 $J(PC) = 7.1$
	70.62 (d)*	${}^{3}J(PC) = 7.1$		$128.61 (d)^*$	$^{3}J(PC) = 10.2$
	71.90 (d)*	$^2J(\mathrm{PC}) = 1.0$	C12	128.64 (d)	3 <i>I</i> (PC) = 9.2
C4	71.98 (d)	$^{2}J(\text{PC}) = 1.5$		128.66 (d)	$^{3}I(PC) = 9.2$
	72.10 (d)	$^{2}J(\text{PC}) = 2.5$		120:00 (4)	
				131.45 (d)*	${}^{4}J(\text{PC}) = 2.5$
	29.58 (d)	$^{1}J(PC) = 33.6$	C12	131.50 (d)	${}^{4}J(\text{PC}) = 2.0$
05	30.55 (d)*	$^{1}J(\text{PC}) = 33.6$	013	131.60 (d)	${}^{4}J(\text{PC}) = 1.5$
				131.55 (d)	${}^{4}J(PC) = 2.5$

* s. Tab. 40

 $C_{31}H_{39}NO_4P_2$ (551.6)

5f (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = -23.4, -23.9^*, -24.7 \text{ ppm}$ (Benzol-d₆)

Tabelle 53: ¹³	¹³ C{ ¹ H}-NMR-spektroskopische Daten ($(\text{Benzol-}d_6)$
---------------------------	---	-----------------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
	25.75 (s)	-			
	26.06 (s)	-		120.0-120.8	-
C1	26.14 (s)*	-	C8 ^{a)}	$120.55 (dd)^*$	${}^{3}J(PC) = 5.1$
	27.17 (s)	-			${}^{5}J(PC) = 2.0$
	27.30 (s)*	-			
	$108.86 (s)^*$	-		135.82 (s)	-
C2	108.93 (s)	-	С9	135.91 (s) [*]	-
	108.96 (s)	-		135.98 (s)	-
C 2	70.2-71.4	-	C10	137.5-139.5	-
C3	70.50 (d) [*]	${}^{3}J(PC) = 8.1$	CIU	138.96 (d)*	${}^{1}J(\text{PC}) = 17.3$
64	74.75 (d) [*]	$^{2}J(PC) = 20.4$		132.99 (d)	$^{2}J(PC) = 21.4$
C4	74.42 (d)	$^{2}J(PC) = 17.3$		133.03 (d)	$^{2}J(PC) = 20.3$
			C11	$133.10 (d)^*$	$^{2}J(PC) = 20.3$
	32.41 (d)	J(PC) = 17.3		133.13 (d)	$^{2}J(PC) = 20.3$
C5	32.35 (d)	$^{1}J(PC) = 17.3$			
	$33.12 (d)^*$	$^{1}J(PC) = 16.3$		128.46 (d)	${}^{3}J(PC) = 7.1$
	20.02 (4)*	$\frac{1}{1}$ (DC) 17.2	C12	128.49 (d)	${}^{3}J(\text{PC}) = 7.1$
C6	38.93 (U)	J(PC) = 17.5	C12	128.51 (d) [*]	${}^{3}J(\text{PC}) = 7.1$
	38.3-39.3	-		128.53 (d)	${}^{3}J(\text{PC}) = 7.1$
				129.05 (s)	-
C7	158 16 (2)	$^{2}I(\mathbf{PC}) = 5.1$	C12	129.11 (s)	-
	130.10 (u)	$J(\mathbf{rC}) = 3.1$	015	129.16 (s)*	-
				129.28 (s)	-

* s. Tab. 40; ^{a)} Auswertung nach 1. Ordnung

	δ [ppm]	ⁿ J [Hz]
СН	1.36 (s)	
СПз	1.47 (s)	
C8H	6.52 (d)	${}^{3}J(\text{HH}) = 7.6$
С9Н	6.88 (t)	${}^{3}J(\text{HH}) = 7.6$

Tabelle 54: Ausgewählte ¹H-NMR-spektroskopische Daten (Benzol-d₆)^{*}

* s. Tab. 40

 $C_{31}H_{45}B_2NO_4P_2$ (579.2)

5f•BH₃ (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 15.5$ ppm (Benzol-d₆)

Tabelle 55: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	25.54 (s)	-		36.52 (d)	${}^{1}J(\text{PC}) = 30.5$
	25.72 (s)	-	C6	36.58 (d)*	${}^{1}J(\text{PC}) = 30.0$
	25.78 (s)*	-		36.83 (d)	${}^{1}J(PC) = 31.5$
C1	27.07 (s)	-		153.67 (m) ^{b)}	N = 7.2
	27.09 (s)	-	C7 ⁾	$153.72 (dd)^{*a)}$	$^2J(\mathrm{PC}) = 6.6$
	27.21 (s)	-			${}^{4}J(\text{PC}) = 2.0$
	27.23 (s)*	-		122.82 (dd)*	$^{3}I(\mathbf{DC}) = 2.8$
	100.02 ()		C8 ^{a)}		J(FC) = 3.8
C 2	109.03(8)	-		122.7-123.2	J(PC) = 2.5
C2	109.10 (s)	-		136.3-136.5	
	109.15 (s)	-	C9	136.33 (t) [*]	${}^{4}J(PC) = 1.8$
	70.27 (d)*	${}^{3}J(\text{PC}) = 6.1$			
C3	70.29 (d)	$^{3}J(PC) = 7.1$	C10	129.08 (d)*	${}^{1}J(PC) = 51.4$
	70.45 (d)	${}^{3}J(PC) = 6.1$			
	72 05 (d)	$^{2}I(PC) = 1.5$		132.63 (d)	$^{2}J(\text{PC}) = 8.6$
C4	72.03 (d)	3(IC) = 1.5 $^{2}I(PC) = 3.6$	C11	$132.70 (d)^*$	$^{2}J(PC) = 9.2$
C4	$72.20 (d)^*$	J(IC) = 3.0	CII	132.92 (d)	$^{2}J(PC) = 9.2$
	72.23 (u)	J(FC) = 4.1		132.98 (d)	$^{2}J(\text{PC}) = 9.2$
	30.25 (d)	${}^{1}J(\text{PC}) = 33.1$	C12	$128.72 (d)^*$	${}^{3}J(PC) = 9.7$
C5	30.33 (d)	${}^{1}J(\text{PC}) = 33.1$		()	/ - · · ·
C3	30.38 (d)*	${}^{1}J(\text{PC}) = 33.1$	C13	$131.47 (d)^*$	4 <i>I</i> (PC) = 2.5
	30.51 (d)	${}^{1}J(PC) = 33.6$		131.77 (u)	<i>U</i> (1 C) - 2.5

* s. Tab.40; ^{a)} Auswertung nach 1. Ordnung; ^{b)} N = |J(AX) + J(BX)| A, B = ³¹P, X = ¹³C

	δ [ppm]	ⁿ J [Hz]
СН	1.36 (s)	-
CH_3	1.46 (s)	-
C8H	6.56 (d)	${}^{3}J(\text{HH}) = 7.6$
С9Н	6.80 (t)	${}^{3}J(\text{HH}) = 7.6$

Tabelle 56: Ausgewählte ¹H-NMR-spektroskopische Daten (Benzol-d₆)^{*}

* s. Tab. 40

 $^{31}P{^{1}H}-NMR-Spektrum: \delta P = -33.5, -37.5, -33.8 / -37.2 ppm (Methanol-d_4)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
	67.57 (d)	${}^{3}J(\text{PC}) = 9.2$		139.80 (d)	${}^{1}J(PC) = 14.2$
C1	68.19 (d)	$^{3}J(\mathrm{PC})=8.6$	C (139.85 (d)	${}^{1}J(\text{PC}) = 13.2$
	68.20 (d)	${}^{3}J(\text{PC}) = 8.6$	Co	140.08 (d)	${}^{1}J(\text{PC}) = 13.7$
	71.29 (d)	$^{2}J(\text{PC}) = 14.2$		140.11 (d)	${}^{1}J(\text{PC}) = 13.7$
C2	71.31 (d)	$^{2}J(\text{PC}) = 13.7$		133.67 (d)	$^{2}J(\text{PC}) = 25.4$
	71.81 (d)	$^{2}J(\text{PC}) = 15.8$	C7	133.71 (d)	$^{2}J(PC) = 23.4$
	35.35 (d)	${}^{1}J(\text{PC}) = 12.7$	C/	133.86 (d)	$^{2}J(\text{PC}) = 24.9$
C3	35.39 (d)	${}^{1}J(PC) = 12.7$		133.91 (d)	$^{2}J(PC) = 23.4$
	34.21 (d)	${}^{1}J(\text{PC}) = 15.3$			
C4	34.36 (d)	${}^{1}J(PC) = 14.2$		129.50 (d)	${}^{3}J(PC) = 7.1$
C4	34.46 (d)	${}^{1}J(PC) = 13.2$	C8	129.51 (d)	$^{3}J(PC) = 7.6$
	34.65 (d)	${}^{1}J(\text{PC}) = 13.7$		129.53 (d)	${}^{3}J(PC) = 7.1$
	72.31 (m)	N = 22.3			
	73.02 (m)	N = 22.5 N = 23.4		129.77 (s)	-
C5 ^{a)}	73.57 (m)	N = 20.3	CO	129.98 (s)	-
	74.00 (m)	N = 20.3 N = 22.3	0,9	130.03 (s)	-
	74.09 (III)	1N - 22.3		130.12 (s)	-

Tabelle 57: ¹³C{¹H}-NMR-spektroskopische Daten (Methanol-d₄)

^{a)} N = |J(AX) + J(BX)| A, B = ³¹P, X = ¹³C

³¹P{¹H}-NMR-Spektrum: $\delta P = 44.83 / 43.41, 44.77, 43.36 \text{ ppm}$ (Methanol-d₄)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	67.51 (d)	${}^{3}J(PC) = 14.2$	<u>C(</u>	133.50 (d)	${}^{1}J(PC) = 68.2$
CI	67.73 (d)	$^{3}J(PC) = 12.7$	Co	133.64 (d)	${}^{1}J(PC) = 59.5$
				132.03 (d)	$^{2}J(PC) = 10.2$
\mathbf{C}^{2}	68.98 (d)	$^{2}J(PC) = 7.6$	C7	132.07 (d)	$^{2}J(PC) = 9.7$
C2	69.01 (d)	$^{2}J(PC) = 7.1$	C7	132.33 (d)	$^{2}J(\text{PC}) = 10.2$
				132.37 (d)	$^{2}J(\text{PC}) = 10.2$
	37.57 (d)	$^{1}J(PC) = 53.9$		129.40 (d)	${}^{3}J(PC) = 12.2$
C_2 / C_4	38.22 (d)	${}^{1}J(PC) = 53.9$	C8	129.43 (d)	${}^{3}J(\text{PC}) = 12.7$
C3 / C4	38.26 (d)	${}^{1}J(PC) = 53.9$	Co	129.73 (d)	${}^{3}J(\text{PC}) = 11.7$
	38.38 (d)	${}^{1}J(PC) = 55.4$		129.75 (d)	${}^{3}J(\text{PC}) = 11.7$
C5 ^{a)}	70.91 (m)	N = 16.2	CO	132.51 (d)	${}^{4}J(PC) = 3.1$
05	71.19 (m)	N = 15.3	ĊŸ	132.82 (d)	${}^{4}J(\text{PC}) = 3.1$

Tabelle 58: ¹³ C ¹	${}^{1}H$ -NMR-s	pektroskopische	Daten (Methanol-d	$l_4)$
--	------------------	-----------------	-------------------	--------

^{a)} N = |J(AX) + J(BX)| A, B = ³¹P, X = ¹³C

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = 43.0$ ppm (Methanol-d₄)

Tabelle 59: ¹³C{¹H}-NMR-spektroskopische Daten (Methanol-d₄)

	δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{\mathrm{a}}$		δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{\mathrm{a}}$
C1	38 31	35.5	C 5	133.73	10.5
CI	50.51	55.5	C3	135.86	11.4
\mathbf{C}^{2}	72.84		C	129.87	12.4
C2	72.04	-	CO	130.19	11.4
C3	66.37	14.9	C7	132.66	2.9
C4	127.75	58.0			

^{a)} A, B = 31 P, X = 13 C

 $C_{42}H_{40}B_2Cl_2O_4P_2Pd$ (869.7)

³¹P{¹H}-NMR-Spektrum: $\delta P = 13.6 \text{ ppm} (Chloroform-d_1)$

Tabelle 60: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten (Chloroform-d ₁)
--

	δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{\mathrm{a}}$		δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{\mathrm{a}}$
Cl	32.0	28.5	C7	130.69	-
CI	32.9	28.3	C/	130.75	-
C2	74.01 (br)	-	C8	n.b.	
C3	72.37 (br)	-	С9	134.89	-
CA	129.10	47.8	C10	127.68	
U 4	129.91	47.3		127.08	-
C 5	133.55	12.4	C11	131 / 2	
C3	134.39	13.2	CII	131.42	-
<u>C</u> 6	128.22	11.4			
	128.44	10.5			

^{a)} A, B = 31 P, X = 13 C

³¹P{¹H}-NMR-Spektrum: $\delta P = 13.6 \text{ ppm} (trans), 28.1 \text{ ppm} (cis) (Benzol-d_6)$

	S []	N =		S []	N =
	o [ppm]	$ J(\mathbf{AX}) + J(\mathbf{BX}) ^{\mathrm{a}}$		o [ppm]	$ J(\mathbf{AX}) + J(\mathbf{BX}) ^{\mathrm{a}}$
C1	30.77 (trans)	28.5	C 6	130.28 (trans)	46.8
CI	32.76 (<i>cis</i>)	33.6	CO	130.78 (trans)	46.8
C2	73.01 ^{b)}	-		133.75 (cis)	10.5
02	72.24 ^{b)}	-	C7	134.15 (trans)	12.4
	70.23 ^{b)}	_	C/	134.19 (<i>cis</i>)	9.5
C3	70.34 ^{b)}	-		134.49 (<i>trans</i>)	12.4
				128.18 (trans)	10.5
C 4	108.90 ^{b)}	-		128.33 ^{b)}	11.4
C4	109.32 ^{b)}	-	C/	128.49 ^{b)}	9.5
				128.65 (<i>cis</i>)	11.4
	25.56 ^{b)}	-		130.49 ^{b)}	
C5	25.81 ^{b)}	-	C	130.61 ^{b)}	
C3	26.82 ^{b)}	-	CO	131.52 ^{b)}	
	26.95 ^{b)}	-		131.55 ^{b)}	

Tabelle 61: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten (Benzol-d₆)

^{a)} A, B = ³¹P, X = ¹³C ^{b)} Zuordnung zum *cis*- oder *trans*-Isomer unsicher

 $C_{30}H_{34}Cl_2O_{12}P_2Pd$ (825.8)

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = 51.5$ ppm (Aceton-d₆)

	δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{\mathrm{a}}$		δ [ppm]	$\mathbf{N} = J(\mathbf{A}\mathbf{X}) + J(\mathbf{B}\mathbf{X}) ^{(a)}$
C1	37.05	32.4	C 5	134.61	11.7
C2	76.72	-	00	136.49	13.7
C3	65 27	15.0	C 6	130.86	12.2
CJ	05.27	15.0	CU	131.30	12.2
C4	123.10	60.5	C7	135.07	2.5
04	125.29	60.5	C/	135.34	2.5

Tabelle 62: ¹³C{¹H}-NMR-spektroskopische Daten (Aceton-d₆)

^{a)} A, B = 31 P, X = 13 C

 $C_{22}H_{25}ClO_2PRh$ (490.8)

³¹P{¹H}-NMR-Spektrum: $\delta P = 23.5 \text{ ppm} (^{1}J(\text{RhP}) = 168.7 \text{ Hz}) (\text{Chloroform-d}_{1})$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C 1	33.30 (d)	${}^{1}J(PC) = 23.4$	C6	128.31 (d) 128.47 (d)	${}^{3}J(PC) = 9.2$ ${}^{3}J(PC) = 9.2$
C2	67.77 (s)	-	C7	129.90 (d) 130.43 (d)	${}^{4}J(PC) = 2.0$ ${}^{4}J(PC) = 2.0$
C3	67.18 (d)	${}^{3}J(PC) = 12.2$	C8	63.81 (d)	$^{3}J(\text{RhC}) = 3.1$
C4	131.19 (d) 132.20 (d)	${}^{1}J(PC) = 41.7$ ${}^{1}J(PC) = 42.7$	С9	52.55 (s)	-
C5	132.51 (d) 133.66 (d)	${}^{2}J(PC) = 10.2$ ${}^{2}J(PC) = 11.2$	C10	n.b.	

Tabelle 63:	$^{13}C{^{1}H}$	}-NMR-s	pektrosko	pische Date	en (Chloroform- d_1)
-------------	-----------------	---------	-----------	-------------	-------------------------

 $C_{43}H_{50}F_6O_4P_3Rh$ (940.7)

 ${}^{31}P{}^{1}H$ -NMR-Spektrum: $\delta P = 19.5$ ppm (br), 143.0 ppm (Aceton-d₆) Tabelle 64: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten (Aceton-d₆)

	δ [ppm]	N = J(AX) + J(BX)		δ [ppm]	N = J(AX) + J(BX)
C 1	31.60 (d)	24.4	C7	134.39 (d)	10.2
C2	74.71 (s)	-	07	135.22 (d)	11.2
C3	71.81 (d)	9.2	C8	130.23 (d)	6.1
C 5	26.64 (s)	-	CQ	132.10 (s)	-
CJ	27.64 (s)	-	C	132.68 (s)	-
C4	110.91 (s)	-	C10	54.49 (d)	$^{n}J(RhC) = 1.7$
C6	132.19 (d)	42.7	C11 /	82.40 (m)	
Cu	132.63 (d)	44.8	C12	83.89 (m)	
			C13	69.00 (m)	

Tabelle 65: ¹H-NMR-spektroskopische Daten (Aceton-d₆)

	δ [ppm]		δ [ppm]		δ [ppm]
CH ₃	1.33 (s) 1.39 (s)	O-CH	4.04-4.08 (m)	Haromat	7.37-7-73 (m)
CH_2 (NBD)	1.59 (s)	C10 <i>H</i> (NBD)	4.40-4.50 (br)		3 41-3 45 (m)
P-CH.	2.05-2.15 (m)	C11 <i>H</i> / C12 <i>H</i>	4.80-5.00 (br)	\mathbf{O} - $\mathbf{C}H_2$	$3.07_{-}3.06 \text{ (m)}$
г-сп ₂	2.43-2.53 (m)	(NBD)	5.00-5.20 (br)		5.72-5.90 (III)

³¹P{¹H}-NMR-spektroskopische Daten (Aceton-d₆), Analyse mit Hilfe von gNMR:

 $[Rh(NBD)(5b-I)]PF_{6} / [Rh(NBD)(5b-II)]PF_{6}:$ $\delta P = 7.47 \text{ ppm}, {}^{1}J(PRh) = 145.85\text{Hz}$ $\delta P = 7.72 \text{ ppm}, {}^{1}J(PRh) = 143.00 \text{ Hz}$ $[Rh(NBD)(5b-III)]PF_{6}:$ $\delta P_{A} = 5.62 \text{ ppm}$ $\delta P_{B} = 7.37 \text{ ppm}$ ${}^{1}J(P_{A}Rh) = 146.39 \text{ Hz}$ ${}^{1}J(P_{B}Rh) = 145.47 \text{ Hz}$ ${}^{2}J(P_{A}P_{B}) = 52.45 \text{ Hz}$

 $C_{38}H_{51}F_6O_6P_3Rh$ (914.6)

13 (Diastereomerengemisch)

³¹P{¹H}-NMR-Spektrum: $\delta P = 7.8 \text{ ppm} (^{1}J(PRh) = 152.6 \text{ Hz}) (Aceton-d_{6})$

C₂₄H₁₉PO (354.4)

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = 27.0 \text{ ppm} (\text{Benzol-d}_6)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	134.19 (d)	${}^{1}J(PC) = 102.7$	C7	142.01 (d)	${}^{3}J(\text{PC}) = 12.2$
C2	132.41 (d)	$^{2}J(PC) = 10.2$	C8 / C9	128.32 $(s)^{a}$ 128.97 $(s)^{a}$	-
C3	128.59 (d)	${}^{3}J(\text{PC}) = 11.2$	C11	140.38 (s)	-
C4	131.66 (d)	${}^{4}J(PC) = 3.1$	C12	127.41 (s)	-
C5	134.90 (d)	${}^{1}J(PC) = 102.7$	C13	129.11 (s)	-
C6 / C10	$130.50 (d)^{a}$ $131.11 (d)^{a}$	${}^{2}J(PC) = 3.1$ ${}^{2}J(PC) = 10.2$	C14	127.86 (s)	-

Tabelle 66: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

 $^{31}P{^{1}H}-NMR-Spektrum:$

R-PH₂:
$$\delta P = -110.65 \text{ ppm } (D_2 \text{O})$$

R-PHD: $\delta P = -111.95 \text{ ppm } (^1J(\text{PD}) = 30.1 \text{ Hz})$
 $-111.98 \text{ ppm } (^1J(\text{PD}) = 30.1 \text{ Hz}) (D_2 \text{O})$
R-PD₂: $\delta P = -113.29 \text{ ppm} (^1J(\text{PD}) = 30.1 \text{ Hz}) (D_2 \text{O})$

Tabelle 67: ¹³C{¹H}-NMR-spektroskopische Daten (D₂O)

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ J [Hz]
C1 / C2	24.85 (d)	$^{2}J(PC) = 7.1$	C4	37.07 (d)	${}^{3}J(PC) = 7.1$
	23.72 (d)	${}^{1}J(PC) = 2.0$	C5	80.27 (s)	-
С3	36.24 (d)	$^{2}J(PC) = 7.1$	C6	22.54 (s)	-

Tabelle 68: ¹H-NMR-spektroskopische Daten (D₂O)

	δ [ppm]	ⁿ J [Hz]
C1 <i>H</i> ₃	1.18 (dd)	${}^{3}J(PH) = 13.2$ ${}^{3}J(HH) = 6.9$
C6 <i>H</i> ₃	1.32 (d)	${}^{3}J(\text{HH}) = 6.4$
CH ₂ -CH ₂	1.41-1.77 (m)	
Р-СН	1.86-1.96 (m)	
NaO ₃ SO-CH	4.46 (m)	

³¹P-NMR-Spektrum: $\delta P = -27.7$ ppm, ¹*J*(PH) = 181.1 Hz (Benzol-d₆)

Tabelle 69: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
C1	10.42 (a)		C_{2}/C_{4}	38.70 (d)	$^{2}J(PC) = 3.1$
CI	19.43 (8)	-	C3/C4	40.75 (d)	$^2J(\mathrm{PC}) = 6.1$
C2/C5	29.31 (d)	${}^{1}J(PC) = 6.6$	C6	21.65 (d)	$^{2}I(\mathbf{PC}) = 31.0$
02705	32.46 (d)	${}^{1}J(PC) = 8.6$	CU	21.03 (d)	J(rC) = 51.0

Tabelle 70: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
C1 <i>H</i> 3	1.11 (dd)	${}^{3}J(PH) = 11.4$ ${}^{3}J(HH) = 6.3$
C6 <i>H</i> 3	1.10 (dd)	${}^{3}J(PH) = 17.6$ ${}^{3}J(HH) = 7.6$
CH ₂ -CH ₂	1.02-1.22 (m) 1.82-2.05 (m)	
СН	1.82-1.92 (m) 2.45-2.55 (m)	
P <i>H</i>	2.75 (ddd)	${}^{1}J(PH) = 181.8$ ${}^{3}J(HH) = 11.2$ ${}^{3}J(HH) = 8.9$

³¹P{¹H}-NMR-Spektrum: $\delta P = 24.0$ ppm, ¹J(PB) = 44.3 Hz (Benzol-d₆) ³¹P-NMR-Spektrum: $\delta P = 24.0$ ppm, ¹J(PH) = 349.3 Hz (Benzol-d₆) Tabelle 71: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
C1/C6	16.04 (d)	$^2J(\mathrm{PC}) = 5.1$
	17.52 (d)	$^{2}J(PC) = 3.1$
C2/C5	28.15 (d)	${}^{1}J(PC) = 34.6$
C_2/C_5	33.77 (d)	${}^{1}J(\text{PC}) = 36.6$
C^2 / C^4	36.79 (s)	-
C3/C4	37.04 (d)	$^{2}J(PC) = 3.1$

Tabelle 72: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
	1.16(dd)	${}^{3}J(\text{PH}) = 17.0$
СН		${}^{3}J(\text{HH}) = 7.4$
CH ₃	1.27 (dd)	$^{3}J(\text{PH}) = 15.5$
		${}^{3}J(\text{HH}) = 6.9$
$\mathbf{B}H_3$	0.49 (m)	$^{1}J(\mathrm{BH}) = 98$
СН	1.32-1.48 (m)	
	2.11-2.29 (m, 3H)	
CH_2 - CH_2	2.56-2.71 (m, 1H)	
PH	4.34 (m)	${}^{1}J(\text{PH}) = 349.3$

 $C_{19}H_{42}B_2O_2P_2$ (386.1)

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = 38.6 \text{ ppm} (\text{Aceton-d}_6)$

Tabelle 73: ¹³C{¹H}-NMR-spektroskopische Daten

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
C1/C6	14.96 (d)	$^{2}J(\text{PC}) = 3.1$	C7	25.44 (d)	$\frac{1}{1}$ (PC) - 26.3
01/00	16.01 (d)	$^{2}J(PC) = 5.1$	C7	23.44 (u)	J(1 C) = 20.3
	22 20 (d)	$\frac{1}{1}I(\mathbf{DC}) = 24.6$	C 9	70.11 (44)	$^{2}J(PC) = 3.1$
C2 / C5	35.39(u)	J(PC) = 34.0	Co	79.11 (uu)	$^{3}J(PC) = 9.2$
	35.76 (d)	J(PC) = 36.6	С9	110.31 (s)	-
C3/C4	35.76 (s)	-	C10	28 13 (s)	
03/04	35.80 (s)	-		20.13 (8)	-

Tabelle 74: ¹H-NMR-spektroskopische Daten (Aceton-d₆)

	δ [ppm]	ⁿ J [Hz]
$\mathbf{B}H_{3}$	0.45 (m)	$^{1}J(\mathrm{BH}) = 94$
	1.17 (dd)	${}^{3}J(\text{PH}) = 16.0$
C1H3 / C6H3		${}^{3}J(\text{HH}) = 6.9$
	1.23 (dd)	${}^{3}J(\text{PH}) = 13.0$
		${}^{3}J(\text{HH}) = 6.9$
C10 <i>H</i> ₃	1.36 (s) -	
O-CH	4.06-4.16 (m)	
	1.25-1.36 (m, 2H)	
Zuordnung	1.40-1.54 (m, 2H)	
unsicher	1.90-2.20 (m, 10H)	
	2.30-2.46 (m, 2H)	

³¹P{¹H}-NMR-Spektrum: $\delta P = 37.9 \text{ ppm} (\text{Chloroform-d}_1)$

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
C1 / C6	13.98 (d)	$^{2}J(PC) = 3.1$	C12	78.24 (d)	${}^{3}J(PC) = 8.1$
	14.96 (d)	$^{2}J(PC) = 5.1$	C13	68.39 (d)	${}^{4}J(PC) = 6.1$
C2/C5	32.50 (d)	${}^{1}J(PC) = 34.6$	C_{10}/C_{11}	26.51 (s)	-
02703	34.09 (d)	$^{1}J(PC) = 35.6$		27.22 (s)	-
C3/C4	34.37 (d)	$^{2}J(PC) = 3.1$	C14	145 15 (s)	_
05704	34.55 (s)	-	C14	145.15 (5)	
C7	24.87 (d)	${}^{1}J(\text{PC}) = 25.4$	C15	128.00 (s)	-
C8	74.02 (d)	$^2J(\text{PC}) = 2.0$	C16	129.97 (s)	-
C9	109 97 (s)	_	C17	132.58 (s)	-
	107.77 (3)		C18	21.63 (s)	-

Tabelle 75: ¹³C{¹H}-NMR-spektroskopische Daten (Chloroform-d₁)

Tabelle 76: Ausgewählte ¹H-NMR-spektroskopische Daten (Chloroform-d₁)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]
	1.18 (dd)	$^{3}J(\text{PH}) = 13.0$	11	7.74-7.80 (m)
$C1H_{1}/C6H_{2}$		$^{3}J(\text{HH}) = 6.9$	H _{aromat} .	7.31-7.36 (m)
	1.22 (dd)	${}^{3}J(\text{PH}) = 16.3$	DII	0.0.0.0 (m)
		$^{3}J(\text{HH}) = 6.6$	D <i>Π</i> 3	0.0-0.9 (11)
	1.29 (s)	-	C1011	2.42 (a)
	1.39 (s)	-		2.43 (8)

 $^{31}P{^{1}H}$ -NMR-Spektrum: $\delta P = -1.6 \text{ ppm} (Chloroform-d_1)$

Cabelle 77: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten (Chloroform-d ₁)
--

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	35.53 (d)	${}^{1}J(PC) = 14.2$	C8	51.30 (s)	-
C2	46.10 (d)	$^{2}J(PC) = 19.3$	С9	135.08 (d)	${}^{1}J(PC) = 13.2$
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			135.88 (d)	${}^{1}J(PC) = 11.2$
$C3/C5^{a}$	25.37 (d)	${}^{3}J(PC) = 5.1$	C10	132.75 (d)	$^{2}J(\text{PC}) = 17.3$
05705	27.04 (d)	$^{3}J(\mathrm{PC})=5.1$	CIU	134.65 (d)	$^{2}J(\text{PC}) = 21.4$
C4	24.71 (s)		C11	128.15 (d)	${}^{3}J(PC) = 8.1$
C4	24.71 (8)	-	CII	128.25 (d)	$^{3}J(PC) = 6.1$
<u>C6</u>	20.87 (d)	2 <i>I</i> (PC) = 10.2	C12	128.22 (s)	-
Cu	29.87 (u)	J(FC) = 10.2	C12	129.10 (s)	-
C7	175.55 (d)	${}^{3}J(PC) = 3.0$			

³¹P-NMR-Spektrum:
$$\delta P = -30.0 \text{ ppm} (^{1}J(PH) = 208.5 \text{ Hz})$$

-38.0 ppm ($^{1}J(PH) = 210.2 \text{ Hz}$) (Benzol-d₆)

Tabelle 78: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	35.85 (d)	${}^{1}J(PC) = 11.2$	C e	51.07 (s)	-
CI	36.08 (d)	${}^{1}J(\text{PC}) = 14.2$	Co	51.09 (s)	-
C	47.62 (d)	$^{2}J(PC) = 12.2$	CO	133.62 (d)	${}^{1}J(PC) = 13.2$
C2	48.40 (d)	$^{2}J(\text{PC}) = 12.2$	Cy	134.09 (d)	${}^{1}J(PC) = 13.2$
	26.15 (d)	${}^{3}J(PC) = 7.1$			
C3 /	26.69 (d)	$^{3}J(PC) = 6.1$	C10	135.01 (d)	$^{2}J(\text{PC}) = 15.3$
C5 ^{a)}	31.13 (d)	${}^{3}J(\text{PC}) = 8.1$	CIU	135.84 (d)	$^{2}J(\text{PC}) = 16.3$
	31.72 (d)	$^{3}J(PC) = 3.1$			
C4	25.03 (s)	-	C11	128.45 (d)	${}^{3}J(PC) = 7.1$
C4	25.18 (s)	-	CII	128.53 (d)	${}^{3}J(\text{PC}) = 6.1$
C6	30.73 (d)	$^{2}J(\text{PC}) = 10.2$	C12	128.53 (s)	-
CU	30.82 (d)	$^{2}J(\text{PC}) = 13.2$	C12	128.79 (s)	-
C7	175.16 (s)	-			
U/	175.23 (s)	-			

Tabelle 79: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
CH ₂	19.54 (d)	${}^{1}J(PC) = 18.3$
CO ₂ H	180.62 (s)	-

Tabelle 80: ¹H-NMR- und ³¹P-NMR- spektroskopische Daten (Benzol-d₆)

δ [ppm]		H _A	H _A ,	H _B	H _B ,
2.84	H _A				
2.01	H _A .	-13.22			
2 04	H _B	4.35	11.28		
2.01	H _B ,	11.28	4.35	-12.03	
-143.55	P _X	19.	5.5	5	.4

Tabelle 81: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ <i>J</i> [Hz]
C 1	29.58 (d)	${}^{1}J(PC) = 23.4$	C4	134.10 (d)	$^{2}J(PC) = 17.3$
C2	178.02 (s)	-	C5	128.77 (d)	$^{3}J(\mathrm{PC}) = 6.1$
C3	133.45 (d)	${}^{1}J(PC) = 12.2$	C6	129.04 (s)	-

Tabelle 82: ¹H-NMR- und ³¹P-NMR-spektroskopische Daten (Benzol-d₆)

δ [ppm]		H _A	H _B	H _C
2.54	H _A			
2.62	H _B	-13.6		
4.47	H _C	5.72	8.72	
-56.20	P _X	4.19	2.68	211.8

³¹P{¹H}-NMR-Spektrum: $\delta P = -28.4 \text{ ppm}$ (Benzol-d₆)

	δ [ppm]	^{n}J [Hz]		δ [ppm]	^{n}J [Hz]
	26.26 (d)	${}^{n}J(PC) = 15.3$			
C1 / C2 / C3 ^{a)}	27.46 (d)	$^{n}J(PC) = 15.3$	C10	14.32 (s)	-
	31.67 (d)	${}^{n}J(PC) = 12.2$			
C4	32.32 (s)	-	C11	31.71 (d)	${}^{1}J(PC) = 29.5$
	29.77 (s)	-			
$C \in (C \cap C \cap C \cap C \cap a)$	29.79 (s)	-	C12	177.33 (s)	
$C_{3}/C_{0}/C_{1}/C_{0}$	29.98 (s)	-	C12		-
	30.05 (s)	-			
С9	23.08 (s)	-			

Tabelle 83: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

³¹P{¹H}-NMR-Spektrum: $\delta P = -28.3 \text{ ppm}$ (Benzol-d₆)

Tabelle 84: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	^{n}J [Hz]
	26.27 (d)	${}^{n}J(PC) = 14.2$			
C1 / C2 / C3 ^{a)}	27.42 (d)	${}^{\rm n}J({\rm PC}) = 15.3$	C12	14.33 (s)	-
	31.68 (d)	${}^{n}J(PC) = 11.2$			
C4	32.34 (s)	-	C13	31.69 (d)	${}^{1}J(\text{PC}) = 28.5$
C5 / C6 / C7 / C8 / C9 / C10 ^{a)}	29.81 (s)	-			
	30.02 (s)	-			
	30.12 (s)	-	C14	177.38 (s)	-
	30.13 (s)	-			
	30.15 (s)	-			
C11	23.10 (s)	-			

 $C_{23}H_{26}O_3P_2$ (412.3)

³¹P{¹H}-NMR-Spektrum: P^{III}:
$$\delta P = -14.6 \text{ ppm (d) (Benzol-d_6)}$$

P^V: $\delta P = 27.1 \text{ ppm (d) (Benzol-d_6)}$
⁴J(PP) = 1.7 Hz

Tabelle 85: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	137 08 (dd)	${}^{1}J(PC) = 12.7$	C8	134.03 (d)	$^{2}J(\text{PC}) = 19.3$
	137.00 (dd)	${}^{3}J(PC) = 8.7$	С9	128.78 (d)	$^{3}J(\mathrm{PC}) = 6.6$
C2 13	138 3 (dd)	$^2J(\mathrm{P^{III}C})=27.5$	C11	32.22 (dd)	${}^{1}J(\text{PC}) = 137.3$
	150.5 (uu)	$^2J(\mathbf{P}^{\mathbf{V}}\mathbf{C}) = 8.1$	UII		$^{3}J(PC) = 25.9$
C3	129.33 (d)	$^{3}J(\text{PC}) = 2.5$	C10	128.77 (s)	-
C4	134.96 (s)	-	C12	61.74 (d)	$^2J(\text{PC}) = 6.6$
C5	127.38 (d)	${}^{3}J(PC) = 3.1$	C13	16.44 (d)	$^{3}J(\text{PC}) = 5.6$
C6	131.16 (t)	${}^{2}J(PC) = 4.6$ ${}^{4}J(PC) = 4.6$	C7	137.57 (d)	${}^{1}J(\text{PC}) = 11.2$

Tabelle 86: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
CH_3	0.96 (t)	${}^{3}J(\text{HH}) = 6.87$
O- <i>CH</i> ₂	3.87 (m)	
P-C <i>H</i> ₂	3.70 (d)	$^{2}J(\text{PH}) = 21.9$
Haromat.	6.89-7.76 (m)	

 $C_{23}H_{26}O_3P_2$ (412.3)

³¹P{¹H}-NMR-Spektrum: P^{III}:
$$\delta P = -3.9$$
 ppm (Benzol-d₆)
P^V: $\delta P = 26.8$ ppm (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	133.17 (t)	${}^{2}J(PC) = 7.1$ ${}^{3}J(PC) = 7.1$	C8	134.16 (d)	$^{2}J(PC) = 20.4$
C2	135.66 (dd)	${}^{2}J(PC) = 21.9$ ${}^{3}J(PC) = 6.6$	С9	128.77 (d)	${}^{3}J(PC) = 7.1$
C3	138.08 (dd)	${}^{1}J(PC) = 11.7$ ${}^{4}J(PC) = 3.6$	C10	128.85 (s)	-
C4	132.36 (dd)	${}^{2}J(PC) = 18.8$ ${}^{5}J(PC) = 3.6$	C11	34.06 (d)	${}^{1}J(\text{PC}) = 137.3$
C5	n. b.		C12	61.67 (d)	${}^{2}J(\text{PC}) = 6.1$
C6	130.72 (d)	${}^{3}J(PC) = 7.1$	C13	16.44 (d)	${}^{3}J(PC) = 6.1$
C7	137.98 (d)	${}^{1}J(PC) = 12.2$			

δ [ppm]		$\mathbf{H}_{\mathbf{A}}$	H _B	$\mathbf{H}_{\mathbf{M}}$
3.77	H _A			
3.80	H _B	-10.28		
0.93	H _M	7.15	7.15	
26.77	P _X	8.89	8.12	0

Tabelle 88: Ergebnisse der iterativen Analyse des ABM₃X-Spinsystems (A, B, M = 1 H ; X = 31 P) der Phosphonsäurediethylestergruppe

Tabelle 89: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
P-CH ₂	2.83 (d)	$^{2}J(\text{PH}) = 21.4$
Haromat.	7.02-7.47 (m)	

 $C_{23}H_{29}BO_3P_2$ (426.2)

³¹P{¹H}-NMR-Spektrum: P^{III}: $\delta P = 21.3 \text{ ppm (d) (Benzol-d_6)}$ P^V: $\delta P = 26.5 \text{ ppm (d) (Benzol-d_6)}$ ⁴J(PP) = 1.5 Hz

Tabelle 90: ¹³C{¹H}-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	128.79 (dd)	${}^{1}J(PC) = 53.9$	C8	133.52 (d)	$^{2}J(\text{PC}) = 10.2$
		${}^{3}J(PC) = 11.2$	С9	129.23 (d)	${}^{3}J(\text{PC}) = 10.2$
C2	137 75 (dd)	$^{2}J(PC) = 10.7$	C11	32,10 (dd)	${}^{1}J(\text{PC}) = 138.3$
02	137.75 (dd)	$^2J(\mathrm{PC}) = 6.6$	CII	22.13 (uu)	$^{3}J(\mathrm{PC})=6.1$
C3	128.81 (d)	${}^{3}J(PC) = 11.2$	C10	131.70 (d)	${}^{4}J(PC) = 2.0$
C4	135.12 (d)	${}^{4}J(PC) = 7.1$	C12	62.17 (d)	$^{2}J(PC) = 7.1$
C5	127 13 (dd)	${}^{3}J(PC) = 9.2$	C13	16 38 (d)	$^{3}I(PC) - 5.1$
05	127.13 (uu)	${}^{5}J(PC) = 2.0$	015	10.30 (d)	S(1 C) = 5.1
C6	131.99 (d)	$^{2}J(\text{PC}) = 10.2$	C7	129.36 (d)	${}^{1}J(PC) = 57.0$

Tabelle 91: ¹H-NMR-spektroskopische Daten (Benzol-d₆)

	δ [ppm]	ⁿ J [Hz]
CH ₃	1.15 (t)	${}^{3}J(\text{HH}) = 6.99$
$O-CH_2$	3.86 (m)	
P-C <i>H</i> ₂	3.37 (d)	$^{2}J(\text{PC}) = 21.9$
H _{aromat} .	7.03-7.91 (m)	

³¹P{¹H}-NMR-Spektrum: P^{III}: $\delta P = -12.6 \text{ ppm (d) (Methanol-d_4)}$ P^V: $\delta P = 19.3 \text{ ppm (d) (Methanol-d_4)}$ ⁴J(PP) = 7.2 Hz

Tabelle 92: NMR-spektroskopische Daten (Methanol-d₄)

	δ [ppm]	ⁿ <i>J</i> [Hz]		δ [ppm]	ⁿ J [Hz]
C1	137.24 (dd)	${}^{1}J(PC) = 10.2$ ${}^{3}J(PC) = 9.2$	C7	138.74 (d)	${}^{1}J(PC) = 11.2$
C2	145.20 (dd)	${}^{2}J(PC) = 25.4$ ${}^{2}J(PC) = 5.1$	C8	135.06 (d)	$^{2}J(\text{PC}) = 19.3$
C3 / C4 ^{a)}	133.64 (s)	-	С9	129.40 (d)	${}^{3}J(PC) = 7.1$
C4	132.01 (dd)	${}^{2}J(PC) = 10.4$ ${}^{5}J(PC) = 2.8$	C10	129.51 (s)	-
C5	126.08 (s)	-	C11	36.61 (dd)	${}^{1}J(PC) = 125.12$ ${}^{3}J(PC) = 21.4$
C6	131.55 (dd)	${}^{2}J(PC) = 4.6$ ${}^{4}J(PC) = 4.6$	CH ₂	3.16 (dd)	${}^{2}J(PH) = 19.3$ ${}^{4}J(PH) = 3.1$

^{a)} Zuordnung unsicher

³¹P{¹H}-NMR-Spektrum: P^{III}:
$$\delta P = -5.2 \text{ ppm }(D_2O)$$

P^V: $\delta P = 18.6 \text{ ppm }(D_2O)$

Tabelle 93: NM	R-spektroskopische	Daten (D_2O)
----------------	--------------------	----------------

	δ [ppm]	ⁿ J [Hz]		δ [ppm]	ⁿ J [Hz]
C1	137.48 (dd)	${}^{n}J(PC) = 5.1$ ${}^{n}J(PC) = 2.0$	C7	138.46 (d)	${}^{1}J(PC) = 6.6$
C2	137.43 (dd)	${}^{2}J(PC) = 27.7$ ${}^{3}J(PC) = 5.7$	C8	135.73 (d)	$^{2}J(PC) = 19.3$
C3	141.51 (dd)	${}^{1}J(PC) = 9.7$ ${}^{4}J(PC) = 7.6$	С9	130.95 (d)	${}^{3}J(PC) = 7.1$
C4	132.01 (dd)	${}^{2}J(PC) = 10.4$ ${}^{5}J(PC) = 2.8$	C10	131.32 (s)	_
C5	130.75 (dd)	${}^{3}J(PC) = 5.6$ ${}^{4}J(PC) = 2.5$	C11	39.59 (d)	${}^{1}J(PC) = 122.1$
C6	132.88 (d)	${}^{3}J(PC) = 5.1$	CH ₂	2.77 (d)	$^{2}J(\text{PH}) = 19.8$

10.2 Massenspektrometrische Daten

	1 $C_{16}H_{19}OP$				
m/e	rel. Int.	Molekülionen / Fragmentionen			
258	32.5	\mathbf{M}^+			
241	33.1	M^+ - OH			
240	100.0	M^+ - H_2O			
199	45.6	M ⁺ - CH ₃ CH ₂ CHOH			
186	72.4	Ph ₂ PH			
185	80.4	$\mathrm{Ph}_{2}\mathrm{P}^{+}$			
183	99.9	Ph_2P^+ - $2H$			
109	38.6	\mathbf{PhPH}^+			
108	69.5	PhP^+			
77	14.8	$C_{6}H_{5}^{+}$			

Tabelle 94:

Tabelle 95:

		2a $C_{15}H_{17}O_2P$
m/e	rel. Int.	Molekülionen / Fragmentionen
260	32.1	\mathbf{M}^+
243	24.1	M^+ - OH
200	78.8	$Ph_2PCH_3^+$
199	100.0	$Ph_2PCH_2^{+}$
185	28.0	Ph_2P^+
183	85.7	$Ph_2P^+ - 2H$
121	57.4	$PhP=CH^+$
108	57.6	PhP^+
77	26.7	$C_{6}H_{5}^{+}$

		2b $C_{10}H_{15}O_2P$
m/e	rel. Int.	Molekülionen / Fragmentionen
198	28.9	M^+
181	17.6	M^+ - OH
167	9.0	M^+ - CH_2OH
138	100.0	MePhPCH ₃ ⁺
123	41.0	MePhP ⁺
121	26.1	$PhP=CH^+$
109	31.9	$PhPH^+$
77	17.3	$C_6H_5^+$

Tabelle 96:

Tabelle 97:

$2c C_9H_{15}O_2P$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
184	33.8	\mathbf{M}^+	
167	7.3	M^+ - OH	
153	6.7	M^+ - CH_2OH	
125	100.0	$MePhPH_2^+$	
121	15.9	$PhP=CH^+$	
109	84.2	PhPH^+	
77	19.9	$C_{6}H_{5}^{+}$	
47	53.2	$CH_3CH_2OH_2^+$	

Tabelle 98:

2d $C_{12}H_{19}O_4P$		
m/e	rel. Int.	Molekülionen / Fragmentionen
258	17.3	M^+
241	27.6	M^+ - OH
227	18.4	M^+ - CH_2OH
198	17.8	M ⁺ - COHCH ₂ OH
184	25.6	M ⁺ - CHCHOHCH ₂ OH
138	100.0	M^+ - 2(COHCH ₂ OH)
125	96.5	$MePhPH_2^+$
109	45.4	PhPH^+
77	36.2	$C_6H_5^+$
47	83.8	$CH_3CH_2OH_2^+$

2f $C_{18}H_{24}N_3O_2P$		
m/e	rel. Int.	Molekülionen / Fragmentionen
345	38.7	M^+
289	66.0	M ⁺ - CNHNMe
274	19.2	M^+ - CNHNMe ₂
262	73.7	M^+ - NCNNMe ₂
183	44.9	Ph_2P^+-2H
163	9.3	Ph-NCNH ₂ NMe ₂
108	20.0	PhP^+
77	9.0	$C_{6}H_{5}^{+}$
44	100.0	NMe_2^+

Tabelle 99:

Tabelle 100:

3a $C_{15}H_{17}O_2P$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
346	32.2	M^+	
199	100.0	M^+ - $C_2H_3O_2BPh$	
183	44.4	Ph_2P^+ - $2H$	
121	22.7	$PhP=CH^+$	
108	22.5	PhP^+	
77	10.0	$C_6H_5^+$	

Tabelle 101:

3b $C_{24}H_{25}B_2O_4P$		
m/e	rel. Int.	Molekülionen / Fragmentionen
430	6.2	\mathbf{M}^+
312	6.0	M^+ - PhBOCH ₂
284	7.3	M^+ - $C_2H_2O_2BPh$
270	5.7	M^+ - $CHC_2H_2O_2BPh$
138	100.0	Me_2PhP^+
78	9.8	$C_6H_6^+$

4a $C_{18}H_{21}O_2P$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
300	31.7	\mathbf{M}^+	
200	27.0	$MePh_2P^+$	
199	46.9	$Ph_2PCH_2^+$	
186	100.0	$\mathrm{Ph}_{2}\mathrm{PH}^{+}$	
183	41.9	Ph_2P^+ - $2H$	
121	15.9	$PhP=CH^+$	
108	59.5	PhP^+	
77	8.2	$C_{6}H_{5}^{+}$	
43	21.6	$CHMe_2^+$	

Ta	bell	le 1	102:

Tabelle 103:

4b $C_{13}H_{19}O_2P$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
238	20.7	M^+	
223	8.0	M^+ - CH_3	
180	11.4	M^+ - OCMe ₂	
138	45.8	MePhPCH ₂ ⁺	
124	100.0	MePhPH ⁺	
109	12.7	PhPH^+	
77	9.0	$C_{6}H_{5}^{+}$	
59	6.7	Me_2COH^+	
43	31.8	$\mathrm{CHMe_2}^+$	

Tabelle 104:

4c $C_{12}H_{17}O_2P$		
m/e	rel. Int.	Molekülionen / Fragmentionen
224	7.4	\mathbf{M}^+
209	11.2	M^+ - CH_3
166	83.9	M^+ - $CH_3 - OCMe_2$
125	100.0	MePhPH ⁺
110	46.4	\mathbf{PhPH}^+
78	19.6	$C_{6}H_{6}^{+}$
59	16.7	Me_2COH^+
43	59.2	$\mathrm{CHMe_2}^+$

$4\mathbf{c} \cdot \mathbf{BH_3} \mathbf{C}_{12}\mathbf{H}_{20}\mathbf{BO}_2\mathbf{P}$		
m/e	rel. Int.	Molekülionen / Fragmentionen
237	3.6	M^+ - H
223	21.7	M^+ - BH_3
179	33.9	M^+ - $CH_3 - OCMe_2 - H$
166	53.3	M^+ - $BH_3 - CH_3 - OCMe_2$
125	95.1	$MePhPH^+$
109	87.0	PhP^+
78	39.2	$C_{6}H_{6}^{+}$
59	43.6	Me_2COH^+
43	100.0	$\mathrm{CHMe_2}^+$

Tabelle 105:

Tabelle 106:

4d $C_{18}H_{27}O_4P$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
338	29.0	\mathbf{M}^+	
323	20.5	M^+ - CH_3	
166	100.0	$PhEt_2P^+$	
138	51.7	MePhPCH ₂ ⁺	
125	94.5	$PhMePH^+$	
109	43.3	\mathbf{PhPH}^+	
78	16.0	$C_{6}H_{6}^{+}$	
59	20.8	Me_2COH^+	
43	87.5	$\mathrm{CHMe_2}^+$	

Tabelle 107:

5a $C_{31}H_{44}O_6P_2$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
558	3.8	M^+ - $CH_3 - H$	
459	100.0	M ⁺ - CHCHCH ₂ O ₂ CMe ₂	
351	29.4	M^+ - CH_2PPhR	
59	5.7	Me_2COH^+	
43	29.1	$CHMe_2^+$	

		5a(S) $C_{31}H_{44}O_6S_2P_2$
m/e	rel. Int.	Molekülionen / Fragmentionen
639	20.5	M^+
624	34.9	M^+ - CH_3
491	96.1	M^+ - S – CHCHCH ₂ O ₂ CMe ₂
383	45.4	M^+ - $S - CH_2PPhR$
351	33.6	M^+ - 2S – CH ₂ PPhR
109	9.5	$PhPH^+$
59	15.2	Me_2COH^+
43	51.3	CHMe_2^+

Tabelle 108:

Tabelle 109:

		5a • BH ₃ $C_{31}H_{50}O_6B_2P_2$
m/e	rel. Int.	Molekülionen / Fragmentionen
602	1.9	M^+
587	23.5	M^+ - $BH_3 - H$
573	6.3	$M^{+} - 2BH_{3} - H$
459	11.7	M^+ - 2BH ₃ – CHCHCH ₂ O ₂ CMe ₂
351	100.0	M^+ - $2BH_3 - CH_2PPHR$
108	7.3	PhP^+
78	2.3	$C_{6}H_{6}^{+}$
43	23.7	$\mathrm{CHMe_2}^+$

Tabelle 110:

		5b $C_{27}H_{38}O_4P_2$
m/e	rel. Int.	Molekülionen / Fragmentionen
488	2.3	M^+
473	14.7	M^+ - CH_3
374	100.0	M^+ - $CH_2C_2H_3O_2CMe_2$
259	18.1	M^+ - 2(CH ₂ C ₂ H ₃ O ₂ CMe ₂)
109	82.5	$PhPH^+$
78	22.1	$C_6H_6^+$
59	22.3	Me_2COH^+
43	99.7	$CHMe_2^+$

	5c	• BH ₃ $C_{26}H_{42}B_2O_4P_2$
m/e	rel. Int.	Molekülionen / Fragmentionen
502	11.6	\mathbf{M}^+
501	27.7	M^+ - H
487	89.1	M^+ - $BH_3 - H$
473	12.9	M^+ - $2BH_3 - H$
109	58.4	$PhPH^+$
78	19.3	$C_{6}H_{6}^{+}$
59	24.4	Me_2COH^+
43	100.0	$CHMe_2^+$

Tal	bell	le	1	11	:

Tabelle 112:

5e $C_{32}H_{46}B_2O_4P_2$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
578	1.3	\mathbf{M}^+	
563	12.8	M^+ - $BH_3 - H$	
435	22.6	M^{+} - 2BH ₃ - CH ₂ C ₂ H ₃ O ₂ CMe ₂	
109	36.0	\mathbf{PhPH}^+	
105	55.9	$MeC_6H_4CH_2^+$	
78	18.3	$C_6H_6^+$	
59	6.7	Me_2COH^+	
43	55.3	$CHMe_2^+$	

Tabelle 113:

		5f · BH ₃ $C_{31}H_{45}B_2O_4P_2$
m/e	rel. Int.	Molekülionen / Fragmentionen
564	2.3	M^+ - $BH_3 - H$
550	3.7	M^+ - $2BH_3 - H$
536	2.6	M^+ - $CH_3 - 2BH_3$
437	43.3	M^+ -2BH ₃ – CH ₂ C ₂ H ₃ O ₂ CMe ₂
329	77.2	M^+ - $2BH_3 - HPPhR^*$
214	78.0	$HPPhCH_2PyrCH_2^+$
107	100.0	Me_2Pyr^+
78	25.2	$C_6H_6^+$
43	85.3	CHMe_2^+

14 C ₂₄ H ₁₉ OP			
m/e	rel. Int.	Molekülionen / Fragmentionen	
354	71.1	\mathbf{M}^+	
353	100.0	\mathbf{M}^+ - \mathbf{H}	
277	67.2	M^+ - C_6H_5	
201	13.2	Ph_2PO^+	
183	13.9	Ph_2P^+ - $2H$	
152	63.2	$Ph-Ph^+ - 2H$	
77	52.6	$C_{6}H_{5}^{+}$	

Ta	bell	le	11	4:
	001			

Tabelle 115:

19 $C_{19}H_{42}B_2O_2P_2$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
386	32.6	\mathbf{M}^+	
385	24.2	M^+ - H	
371	100.0	M^+ - H - BH_3	
357	7.7	M ⁺ - 2BH ₃ - H	
243	94.6	M^+ - 2BH ₃ - C ₆ H ₁₂ PH	
129	20.0	${f C_6 H_{12} PCH_2^+ \ C_7 H_{13} O_2^+}$	
115	90.1	$C_6H_{12}PH^+$	
43	18.8	$CHMe_2^+$	

Tabelle 116:

20 $C_{31}H_{45}B_2O_4P_2$			
m/e	rel. Int.	Molekülionen / Fragmentionen	
428	10.2	M^+	
427	37.5	M^+ - H	
413	71.5	M^+ - $BH_3 - H$	
399	11.4	M^+ -BH ₃ – CH ₃	
385	80.8	M^+ -BH ₃ - CH ₃ - CH ₂	
243	88.8	M^+ - BH_3 – OTos	
155	80.2	$C_7 H_7 O_2 S^+ (TosO^+)$	
115	100.0	$C_6H_{12}PH^+$	
43	92.2	$CHMe_2^+$	

		22 $C_{19}H_{21}O_2P$
m/e	rel. Int.	Molekülionen / Fragmentionen
326	28.2	\mathbf{M}^+
311	100.0	M^+ - CH_3
267	13.5	M^+ -CO ₂ Me
185	17.8	Ph_2P^+
183	64.4	Ph_2P^+ - $2H$
109	46.3	\mathbf{PhPH}^+
108	57.6	PhP^+
81	53.6	$C_6H_9^+$

Tabelle 117:

Tabelle 118:

25 $C_{22}H_{45}O_2P$						
m/e	rel. Int.	Molekülionen / Fragmentionen				
372	3.2	M^+				
328	19.2	M ⁺ - CO ₂ (=M1)				
313	2.7	$M1 - CH_3$				
299	6.1	$M1 - C_2H_5$				
285	10.6	$M1 - C_3H_7$				
271	9.9	$M1 - C_4H_9$				
257	12.3	$M1 - C_5H_{11}$				
243	9.5	$M1 - C_6H_{13}$				
229	4.2	$M1 - C_7 H_{15}$				
215	21.7	$M1 - C_8H_{17}$				
76	100.0	PMe ₃				
44	79.2	CO_2				

Tabelle 119:

26 C ₂₆ H ₅₃ O ₂ P					
m/e	rel. Int.	Molekülionen / Fragmentionen			
428	2.1	\mathbf{M}^+			
384	29.1	M^+ - CO_2 (=M1)			
369	3.0	$M1 - CH_3$			
355	4.7	$M1 - C_2H_5$			
341	3.7	$M1 - C_3H_7$			
327	9.0	$M1 - C_4H_9$			
313	10.2	$M1 - C_5 H_{11}$			
299	8.2	$M1 - C_6 H_{13}$			
285	7.9	$M1 - C_7 H_{15}$			
271	4.7	$M1 - C_8 H_{17}$			
257	4.5	$M1 - C_9H_{19}$			
243	17.3	$M1 - C_{10}H_{21}$			
76	100.0	PMe ₃			
44	93.7	CO_2			

11 Zusammenfassung

Der erste Teil der vorliegenden Arbeit befaßte sich mit der Synthese chiraler Phosphane mit hydroxylierten Alkylresten.

Die nucleophile Ringöffnung chiraler Epoxide im superbasischen Medium DMSO/KOH erwies sich hierbei als eine effektive Methode. Die chiralen Phosphane 1, 2a-d wurden entsprechend Gleichung 55 in hohen Ausbeuten dargestellt.

Die anschließende Umsetzung der Phosphane **2a** und **2d** mit Benzolboronsäure eröffnete einen neuen Zugang zu Phosphanen mit chiralen Dioxaborolansystemen (**3a**, **3b**), die aufgrund der Lewis-aciden Gruppierung in der Peripherie eine interessante Ligandenklasse darstellen. Nach den Ergebnissen der Röntgenstrukturanalyse des Phosphans **3a** liegen der Dioxaborolanring und der über das Boratom hiermit verknüpfte Phenylring annähernd in einer Ebene.

Wasserlösliche Derivate des Phosphans **2a** mit Sulfonat- bzw. Guanidinium-Substituenten (**2e**, **2f**, **2g**) wurden durch Pd-katalysierte PC-Kupplungsreaktion von **2c** mit *m*-Iodphenylguanidin bzw. durch nucleophile Phosphinierung des entsprechenden sulfonierten Fluoraromaten erhalten. Auf diese Weise gelang der modulare Aufbau chiraler, wasserlöslicher Phosphane, die als Liganden für die asymmetrische Zweiphasenkatalyse von Interesse sind.

Für die isopropylidengeschützten Derivate der Phosphane **2a-d** wurde eine verbesserte Synthese entwickelt (Gl. 56). Das auf diese Weise zugängliche sekundäre Phosphan **2c** stellt ein wertvolles Synthon für den Aufbau weiterer tertiärer und ditertiärer Phosphane dar, wie durch die anschließende Überführung in wasserlösliche chirale Phosphane mit polar substituierten Arylresten (**4e**, **4f**) gezeigt werden konnte. Als Aufbauprinzip wurde die Pd-katalysierte PC-Kupplungsreaktionen eingesetzt.

Ausgehend vom sekundären Phosphan 4c gelang die Synthese C₂-symmetrischer Diphosphane (**5a-g**) mit unterschiedlichem Ligandenrückgrat, die als Diastereomerengemische anfielen. In drei Fällen (**5a**, **e**, **f**) wurden die Diastereomeren durch fraktionierende Kristallisation getrennt. Es gelang somit, sowohl P- als auch C-chirale ditertiäre Phosphane mit bis zu sechs Stereozentren in diastereomerenreiner Form zu erhalten.

Die Koordinationschemie dieser Liganden wurde am Beispiel einiger Pd(II)- sowie Rh(I)-Komplexe sowohl einzähniger als auch zweizähniger Phosphane (**2a**, **3a**, **4a**, **5a**, **5b**) untersucht. Detaillierte NMR-spektroskopische Messungen ermöglichten Aussagen über Komplexgeometrie, elektronische Eigenschaften der P-M-Bindung sowie das dynamische Verhalten beteiligter Coliganden (Norbornadien).

Für den Aufbau enantiomerenreiner Phospholansysteme wurden effektive Synthesestrategien entwickelt. Durch direkte Umsetzung von PH_3 mit dem cyclischen Sulfat **15** in Na/NH₃(1) konnte das enantiomerenreine Phospholan **17** erstmals dargestellt werden. Ausgehend von diesem Baustein können gezielt C₁- und C₂-symmetrische Diphosphane unter Variation des Ligandenrückgrats aufgebaut werden, wie an zwei Beispielen (**19**, **20**) exemplarisch gezeigt wurde. Mit **20** steht ein Baustein zur Verfügung, der die systematische Darstellung unterschiedlicher Diastereomere gestattet; eine Analyse von matching und mismatching Effekten in katalytischen Prozessen wird somit ermöglicht. Stukturelle Parameter konnten über eine Röntgenstrukturanalyse des Phosphans **20** ermittelt werden.

Weitere elektronenreiche Phosphane mit sterisch anspruchsvollen Cyclohexylsubstituenten (**21**, **22**) wurden durch basenkatalysierte Addition von Ph_2PH bzw. $PhPH_2$ an ein Michael-System erhalten. Die Carbonsäureestergruppe ermöglicht hier eine weitere Derivatisierung, z.B. die Überführung in wasserlösliche Carboxylate. Die Addition verläuft stereoselektiv unter ausschließlicher Bildung diäquatorialer Konformere.

Ausgehend von PH₃ konnte mit der Phosphinoessigsäure **23** ein Synthon dargestellt werden, das den Aufbau elektronenreicher Phosphane mit langkettigen Alkylresten ermöglicht. Durch radikalinitiierte Addition von **23** an höhere terminale Olefine konnten Phosphane mit tensidischen Eigenschaften (**25**, **26**) dargestellt werden, die als Liganden für die micellare Zweiphasenkatalyse von Bedeutung sind.

Der letzte Teil der vorliegenden Dissertation war der Synthese wasserlöslicher phosphonierter Triphenylphosphanderivate gewidmet, in denen die polaren Substituenten über eine Methyleneinheit flexibel mit dem aromatischen Kern verknüpft sind (31, 32). Diese peripher funktionalisierten Phosphane konnten durch eine Sequenz von "Arbuzov"- und "Hetero-Heck-Reaktionen" dargestellt werden. Die Verfügbarkeit dieser Phosphane ermöglicht den systematischen Vergleich phosphonierter, carboxylierter und sulfonierter Triphenylphosphanderivate mit unterschiedlichem Substitutionsgrad und verschiedener Anknüpfung der polaren Gruppen. Zu diesem Zweck wurde anhand einer Modellreaktion die katalytische Aktivität der Pd-Komplexe der Phosphane 31 und 32 ermittelt. Beide Phosphane erwiesen sich als effektive Komplexliganden in der Pdkatalysierten Suzuki-Kupplungsreaktion im Zweiphasensystem. Zu Vergleichszwecken wurden carboxylierte Derivate des Triphenylphosphans mit herangezogen, die eine deutlich geringere Aktivität als die Pd-Komplexe der Phosphane 31 und 32 zeigten. In einer analogen, im Falle der wasserunlöslichen Phosphane **3a,b**, **4a,d** jedoch einphasig durchgeführten, Modellreaktion wurde die katalytische Aktivität der Phosphane 2a, 2d, **3a**, **3b**, **4a** und **4d** bestimmt. Die Palladium(0)-Komplexe der Dialkylarylphosphane **2d** und 4d erwiesen sich in dieser Reaktion als inaktiv, der von 4a abgeleitete Komplex zeigte eine dem Pd(TPPTS)3 vergleichbare Aktivität.

12 Experimenteller Teil

12.1 Arbeitsmethoden

Die nachfolgend beschriebenen Reaktionen wurden, falls notwendig, unter Ausschluß von Feuchtigkeit und Sauerstoff in einer Stickstoff- oder Argon-Schutzgasatmosphäre unter Anwendung der Schlenktechnik durchgeführt. Die verwendeten Chemikalien und Lösungsmittel wurden nach Standardmethoden^{162,163} gereinigt, getrocknet und mit Argon bzw. Stickstoff gesättigt. Die Ausgangsverbindungen wurden als Handelschemikalien der Firmen Aldrich, Fluka, Lancaster, Jülich Fine Chemicals und Riedel-de-Haën bezogen.

12.2 Analytische Methoden

NMR-Spektroskopie

Für die ³¹P-NMR-spektroskopische Reaktionskontrolle wurde ein *J*eol FX 90 Q NMR-Spektrometer (36.2 MHz) verwendet. Die Aufnahme der ¹H-, ¹³C- und ³¹P-NMR-Spektren erfolgte an einem Bruker AC 250 (250.13 MHz, 62.90 MHz und 101.26 MHz) bzw. einem Bruker AMX 400 (400.13 MHz, 100.63 MHz, 161.98 MHz). Als externer Standard für die ³¹P-NMR-Spektroskopie diente 85 %ige Phosphorsäure, für die ¹H- und ¹³C-NMR-Spektroskopie wurde Tetramethylsilan als interner Standard verwendet. Bei den ¹³C-NMR-Spektren wurde, soweit möglich, auf das Lösungsmittel referenziert.

Massenspektrometrie

Die Aufnahme der EI-Massenspektren erfolgte an einem Varian MAT 311 A (70 eV).

♦ Polarimetrie

Die Drehwertmessungen wurden an einem Perkin-Elmer 241 Polarimeter durchgeführt.

Elementaranalysen

Die Elementaranalysen der neu synthetisierten Verbindungen wurden an einem Perkin-Elmer 240B Elementar Analyzer (BUGH Wuppertal) sowie durch das Mikroanalytische Labor I. Beller, Göttingen durchgeführt.

Röntgenstrukturanalysen

Die Datensammlung erfolgte an einem automatischen Vierkreisdiffraktometer P4 der Firma Siemens, unter Verwendung von MoK_{α}-Strahlung ($\lambda = 0.71073$ Å). Die Kristallstrukturen wurden mit dem Programm SHELXS-86¹⁶⁴ gelöst und mit SHELXL-93¹⁶⁵ verfeinert.

12.3 Darstellung der Ausgangsverbindungen

Folgende Chemikalien wurden kommerziell erworben:

Ammoniak, Ammoniumchlorid, Benzolboronsäure, Boran-Dimethylsulfid-Komplex, *m*-Bromiodbenzol, Bromtrimethylsilan, 1-Butenoxid, *n*-Butyllithium, Chloressigsäure-Na-Salz, Cyclohexen-1-carbonsäuremethylester, 1,5-Cyclooctadien-palladium(II)chlorid, 1-Decen, 1-Dodecen, Diazabicyclo[2.2.2.]-octan, 1,3-Dibrompropan, α,α' -Dibromxylol, rac- und (S)-(+)- 2,2-Dimethyl-4-hydroxymethyl-1,3-dioxolan, Diphe-(R,R)-(+)-1,4-Di-O-tosyl-2,3-isopropyliden-D-threitol, nylchlorphosphan, Ethylenglykolditosylat, rac- und R-(+)-Glycidol (2,3-Epoxy-1-propanol), o- und m-Iodbenzylchlorid, Kaliumcarbonat, Kaliumcyanid, Kaliumhexafluorophosphat, Kalium-tert.-butylat, Magnesiumsulfat, Morpholin, Palladium-(II)acetat, Phenyldichlorphosphan, Phosphan, Raney-Nickel, p-Toluolsulfonyl-chlorid, Triethylamin, Triethylphosphit, (*S*,*S*)-2,5-Hexandiol

12.3.1 Darstellung der Phosphane

Phenylphosphan¹⁶⁶

$PhPH_2$

Die Darstellung von Phenylphosphan erfolgte durch Reduktion von Phenyldichlorphosphan mit Lithiumaluminiumhydrid in Diethylether.

Ausbeute: 70 % d. Th.

Diphenylphosphan

Ph₂PH

In einen Dreihalskolben wurden bei -78 °C ca. 800 ml Ammoniak einkondensiert und innerhalb von 45 min 23 g (1 mol) Natrium hinzugefügt. Anschließend wurden 131.1 g (0.5 mol) Triphenylphosphan zugegeben, woraufhin sich die Lösung allmählich rot färbte. Es wurde ca. 1 h gerührt und dann im Verlauf von 45 min 53.5 g (1 mol) Ammoniumchlorid zugegeben. Die gelb gefärbte Lösung wurde über Nacht stehen gelassen, so daß nach Verdampfen des Ammoniaks ein farbloser Rückstand übrigblieb, der in 500 ml Diethylether aufgenommen wurde. Über eine Umkehrfritte wurde abfiltriert und der Rückstand zweimal mit je 200 ml Ether gewaschen. Nach Abdestillieren des Ethers unter Normaldruck wurde der Rückstand abschließend über eine Vigreux-Kolonne (15 cm) im Vakuum (0.01 mbar, 110 °C) destilliert.

Ausbeute: 77.2 g (83 % d. Th.)

Phenylmethylphosphan PhMePH

In einen Dreihalskolben wurden bei -78 °C ca. 800 ml Ammoniak einkondensiert und innerhalb von 45 min 23 g (1 mol) Natrium hinzugefügt. Anschließend wurden 131.1 g (0.5 mol) Triphenylphosphan zugegeben. Nach etwa einstündigem Rühren wurde der sich allmählich rot färbenden Lösung innerhalb von 45 min 26.7 g (0.5 mol) Ammoniumchlorid zugefügt. Nach einer weiteren halben Stunde wurden dann 71 g (0.5 mol) Methyliodid langsam zugetropft und erneut eine Stunde nachgerührt. Zu dieser Lösung wurden wiederum 23 g (1 mol) Natrium gegeben, 1h gerührt sowie anschließend 53.5 g (1 mol) Ammoniumchlorid hinzugefügt. Nach Verdampfen des Ammoniaks über Nacht wurde der Rückstand in 500 ml Diethylether aufgenommen und über eine Umkehrfritte abgetrennt. Die zurückbleibenden Salze wurden zweimal mit je 250 ml Ether gewaschen, das Lösungsmittel abdestilliert und das Produkt abschließend über eine Vigreux-Kolonne (15 cm) destilliert (0.01 mbar, **XX** °C)

Ausbeute: 44.68 g (72 % d. Th.)

Phosphinoessigsäure (23) H₂PCH₂COOH

In einen Dreihalskolben wurden bei -78 °C zunächst 250 ml Ammoniak einkondensiert und portionsweise 4.5 g (195 mmol) Natrium hinzugefügt. In diese Lösung wurde nun, ebenfalls portionsweise, Phosphan eingeleitet, wobei ein Überdruck von etwa 0,1 bar eingestellt wurde. Nach quantitativer Umsetzung des Natriums. welche anhand des spontan ablaufenden Farbwechsels der Reaktionsmischung von Tiefblau nach Gelb gut erkennbar ist, wurden 21.6 g (185 mmol) Chloressigsäure-Na-Salz über eine Feststoffbirne zugegeben und der Ansatz über Nacht rühren gelassen, wobei durch die allmähliche Erwärmung der Ammoniak entfernt wurde. Der zurückbleibende Feststoff wurde in ca. 150 ml Diethylether aufgenommen und mit 90 ml 3 M H₂SO₄ hydrolysiert. Die organische Phase wurde abgetrennt, über Magnesiumsulfat getrocknet und anschließend vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgte durch fraktionierende Destillation (Sdp.: 74 – 76 °C, 0.01 mbar).

Ausbeute: 11.8 g (66 % d. Th.)

(o-Kaliumsulfonatophenyl)-phenylphosphan (E2)

In einem Schlenkkolben wurden 3.3 g (51.4 mmol) KOH in ca. 80 ml Dimethylsulfoxid vorgelegt und 5.14 g (46.7 mmol) Phenylphosphan zugegeben. Nach etwa einstündigem Rühren wurde der tieforangen Lösung 10.0 g (46.7 mmol) Kalium*o*-fluorbenzolsulfonat hinzugefügt und anschließend 4 Tage bei RT rühren gelassen. Nach vollständiger Umsetzung wurde zunächst das Lösungsmittel im Vakuum abdestilliert, der Rückstand in 50 ml Wasser aufgenommen und abfiltriert. Der verbleibende Feststoff enthielt noch geringe Mengen an tertiärem Phosphan als Verunreinigung, welche durch Umkristallisation aus wenig Wasser abgetrennt werden konnten.

Ausbeute: 10.2 g (72 % d. Th.)

 $C_{12}H_{10}KO_{3}PS (304.4) \qquad \qquad \text{ber.: } C \ 47.35 \% \ H \ 3.31 \%$ gef.: C \ 46.44 \% \ H \ 3.40 \%

12.3.2 Darstellung der Übergangsmetallverbindungen

Tetrakis(triphenylphosphan)palladium(0) Pd(PPh₃)₄

Eine Suspension von 4.43 g (25 mmol) Palladium(II)-chlorid und 32.75 g (125 mmol) Triphenylphosphan in 300 ml Dimethylsulfoxid wurde im Ölbad auf ca. 160 °C erhitzt, wobei sich eine klare dunkelrote Lösung bildete. Diese wurde nach Entfernen des Ölbads weitere 15 min gerührt und anschließend mit 4.8 ml (100 mmol) Hydrazinhydrat versetzt. Beim Abkühlen bildet sich ein gelber Niederschlag, der über eine Umkehrfritte abgetrennt und zweimal mit je 30 ml Ethanol bzw. Diethylether gewaschen wurde. Nach Trocknen im Vakuum erhielt man intensiv gelb gefärbte Kristalle.

Ausbeute: 27.0 g (94 % d. Th.)

Di-µ-chloro-bis-[(bicyclo[2.2.1]hepta-2,5-dien)-rhodium(I)]¹⁶⁷ [C₇H₈RhCl]₂

Die Umsetzung von Rhodium(III)-chlorid Trihydrat mit Norbonadien (Bicylo[2.2.1]hepta-2,5-dien) in Ethanol lieferte $[C_7H_8RhCl]_2$ in 80 %iger Ausbeute.

12.3.3 Darstellung der organischen Verbindungen

o- und m-Iodbenzylphosphonsäurediethylester

In einem Schlenkkolben wurden 60.2 g (362 mmol) bzw. 50.0 g (301 mmol) Triethylphosphit mit 61.0 g (242 mmol) *o*-Iodbenzylchlorid bzw. 59.3 g (200 mmol) *m*-Iodbenzylbromid versetzt und bei 120 °C 16 h gerührt. Überschüssiges Triethylphosphit wurde anschließend im Vakuum (60 °C, 0.01 mbar) abgezogen; die Iodbenzylphosphonsäurediethylester blieben in reiner Form zurück.

Ausbeuten: 84.0 g (98 % d. Th.) *o*-Iodbenzylphosphonsäurediethylester 70.0 g (99 % d. Th.) *m*-Iodbenzylphosphonsäurediethylester

12.4 Darstellung der Phosphane mit hydroxylierten Seitenketten

12.4.1 Darstellung von 1

Zu einer Suspension von 5 g (76 mmol) KOH in 50 ml Dimethylsulfoxid wurden zunächst 12.91 g (69.3 mmol) Diphenylphosphan gegeben und ca. 1 h gerührt. Anschließend wurde innerhalb von 30 min 5.0 g (69.3 mmol) 1-Butenoxid zugetropft und eine weitere Stunde gerührt. Nach Zugabe von 50 ml H₂O kam es zu einer allmählichen Phasentrennung. Die obere Phase wurde abgetrennt und im Vakuum fraktionierend destilliert.(Sdp.: ca. 200 °C, 0.01 mbar)

Ausbeute: 16.2 g (91.0 % d. Th.) rac-2-Hydroxybutyl-1-diphenylphosphan (1)

$C_{16}H_{19}OP$	(258.30)	ber.: C	74.40 %	Η	7.41 %
		gef.: C	74.13 %	Η	7.60 %

12.4.2 Darstellung von *rac*- und (*R*)-(-)-2a

Zu einer Suspension von 0.83 g (13.0 mmol) bzw. 4.90 g (77.0 mmol) KOH in 10 bzw. 50 ml Dimethylsulfoxid wurden 2.0 g (11.0 mmol) bzw. 12.6 g (67.5 mmol) Diphenylphosphan gegeben und etwa 1 h gerührt. Nach Zugabe von 0.90 g (12.0 mmol) *rac*-Glycidol bzw. 5.0 g (68.0 mmol) (*R*)-(+)-Glycidol, die zu einer allmählichen Entfärbung der orangefarbenen Lösung führte, wurden 10 bzw. 50 ml Wasser hinzugefügt und anschließend die Lösungsmittel im Vakuum (0.01 mbar) bei 70 °C entfernt. Der Rückstand wurde in 10 bzw. 50 ml Ethanol aufgenommen und mit konz. HCl neutralisiert. Der sich bildende Niederschlag (Kaliumchlorid) wurde abfiltriert, und das Lösungsmittel im Vakuum abgezogen. Die zurückbleibenden Phosphane wurden durch Destillation im Vakuum (Ölbadtemperatur: 180 °C, 0.01 mbar) gereinigt.

Ausbeuten: 2.4 g (84.0 % d. Th.) *rac*-2,3-Dihydroxypropyl-1-diphenylphosphan (**2a**) 14.8 g (84.0 % d. Th.) (*R*)-(-)-2,3-Dihydroxypropyl-1-diphenylphosphan

$C_{15}H_{17}O_2P$ (260.3)	ber.: C	69.22 %	Η	6.63 %				
	gef.: C	69.14 %	Η	6.63 %				
Drehwert: $[\alpha]_{D}^{20} = -19.4 \circ (c = 1.3, CH_2Cl_2)$								

12.4.3 Darstellung von $[(R,S)_P,R_C]$ -2b

Die Reaktion wurde in der gleichen Weise, wie für Verbindung **2a** beschrieben (s. o.) durchgeführt. 1.07 g (14.5 mmol) (R)-(+)-Glycidol wurden hierbei mit 1.8 g (14.5 mmol) Phenylmethylphosphan unter Verwendung von 1.05 g (16.5 mmol) KOH umgesetzt.

Ausbeute: 2.33 g (81 % d. Th.) $[(R,S)_P,R_C]$ -2,3-Dihydroxypropyl-1-phenylmethyl-
phosphan (2b) $C_{10}H_{15}O_2P$ (198.2)ber.: C 60.60 % H 7.63 %
gef.: C 59.98 % H 7.67 %

12.4.4 Darstellung von *rac*- und $[(R,S)_P,R_C]$ -2c

In analoger Weise, wie für die Verbindungen **2a** und **2b** beschrieben, wurden 2.0 g (18.2 mmol) bzw. 1.5 g (13.5 mmol) Phenylphosphan, 1.4 g (22.0 mmol) bzw. 1.0 g (15.7 mmol) KOH mit 1.48 g (20.0 mmol) *rac*-Glycidol bzw. 1.1 g (14.8 mmol) (R)-(+)-Glycidol umgesetzt.

Ausbeuten: 2.78 g (83 % d. Th.) *rac*-2,3-Dihydroxypropyl-1-phenyl-phosphan (**2c**) 1.98 g (80 % d. Th.) $[(R,S)_P,R_C]$ -2,3-Dihydroxypropyl-1-phenyl-phosphan

$C_9H_{13}O_2P$	(184.2)	ber.:	С	58.69 %	Η	7.11 %
		gef.:	С	58.43 %	Н	6.89 %

12.4.5 Darstellung von *rac*- und (*R*,*R*)-(-)-2d

Abweichend von den oben beschriebenen Synthesen der Verbindungen **2a-c** wurden die Reaktionen von 6.88 g (92.8 mmol) *rac*-Glycidol bzw. 2.22 g (30.0 mmol) (*R*)-(+)-Glycidol mit 4.62 g (42.0 mmol) bzw. 1.5 g (13.6 mmol) Phenylphosphan bei erhöhter Temperatur (80 °C) durchgeführt.

Ausbeuten: 8.35 g (77 % d. Th.) *rac*-Bis-(2,3-dihydroxypropyl)-1-phenylphosphan (2d) 2.60 g (74 % d. Th.) (*R*,*R*)-(-)-Bis-(2,3-dihydroxypropyl)-1-phenylphosphan

$$C_{12}H_{19}O_4P$$
 (258.3)ber.: C 55.80 % H 7.42 %gef.: C 55.40 % H 7.18 %

Drehwert: $[\alpha]_{D}^{20} = -11.0 \circ (c = 10, MeOH), -25.7 \circ (Reinsubstanz)$

12.4.6 Darstellung von *rac*-2,3-Dihydroxypropyl-1-phenyl-[3-(*N*,*N*-dimethyl-guanidino)phenyl]phosphan (2e, 2f)

Zu einer Lösung von 2.5 g (8.6 mmol) *m*-Iodphenyl-N,N-dimethylguanidin sowie 1.6 g (8.6 mmol) **2c** in 10 ml Acetonitril wurden 0.2 g (2 mol-%) Pd(Ph₃P)₄ gegeben und das Reaktionsgemisch auf 60 – 70 °C erhitzt. Nach dreistündigem Rühren wurde das Lösungsmittel im Vakuum entfernt (60 °C, 0.01 mbar), der verbleibende Rückstand in 20 ml n-Hexanol aufgenommen und anschließend mit 150 ml Diethylether versetzt. Der entstandene Niederschlag des gebildeten Kupplungsproduktes (Guanidiniumiodid) wurde abfiltriert, getrocknet und mit einem Überschuß wäßriger KOH umgesetzt. Die erhaltene wäßrige Lösung des Guanidins wurde dreimal mit je 30 ml Dichlormethan extrahiert, die organischen Phasen vereinigt, über Magnesiumsulfat getrocknet und im Vakuum vom Lösungsmittel befreit.

Ausbeute: 1.8 g (55 % d. Th.) 2f

12.4.7 Darstellung von 2g

Zu einer Suspension von 0.23 g (3.6 mmol) KOH in Dimethylsulfoxid wurden 1.0 g (3.3 mmol) (*o*-Kaliumsulfonatophenyl)phenylphosphan sowie 0.4 g (5.4 mmol) *rac*-Glycidol gegeben. Das Reaktionsgemisch wurde auf ca. 70 °C erhitzt, woraufhin es sich im Laufe von 3 h entfärbte. Anschließend wurden 5 ml Wasser zugefügt und mit konz. HCl neutralisiert. Die flüchtigen Anteile wurden nun bei 80 °C im Vakuum entfernt und der verbleibende Rückstand in Methanol aufgenommen. Der KCl-Niederschlag wurde abfiltriert, die Lösung abschließend im Vakuum vom Lösungsmittel befreit und bei 80 °C getrocknet.

Ausbeute: 0.8 g (65 % d. Th.) *rac*-2,3-Dihydroxypropyl-1-phenyl-[-*o*-(kalium-sulfonato)-phenyl]phosphan (**2g**)

$C_{15}H_{16}KO_5PS$	(378.4)	ber.:	С	47.61 %	Η	4.26 %
		gef.:	С	47.95 %	Н	4.78 %

12.5 Direkte und indirekte Derivatisierung der Verbindungen 2a und 2d

12.5.1 Darstellung von *rac*- und (*R*)-(+)-(2-Phenyl-1,3,2dioxaborolano-4-methyl)-diphenylphosphan sowie *rac*- und (*R*,*R*)-(-)-Bis(2-Phenyl-1,3,2-dioxa-borolano-4methyl)phenylphosphan (3a, 3b)

Einer Suspension von 0.9 g (3.5 mmol) bzw. 1.47 g (5.6 mmol) rac-2a bzw. (*R*)-(-)-2a in 20 ml Dichlormethan wurden 0.42 g (3.5 mmol) bzw. 0.7 g (5.6 mmol) Benzolboronsäure, gelöst in Dichlormethan, zugefügt und etwa 1 h gerührt. Hierbei

kam es zur Bildung von klaren Lösungen. Nach Entfernen der flüchtigen Bestandteile im Vakuum wurden die Rohprodukte zur Reinigung aus Ethanol umkristallisiert.

Ausbeuten: 0.90 g (74 % d. Th.) *rac*-**3a** 1.49 g (77 % d. Th.) (*R*)-(+)-**3a**

Drehwert: $\left[\alpha\right]_{D}^{20} = +9.0^{\circ}$ (c = 2, Chloroform)

In analoger Weise wurden, unter Verwendung von 3.58 g (13.9 mmol) bzw. 1.06 g (4.1 mmol) des Phosphans **2d** (*rac*- bzw. (R,R)-(-)-Form) sowie 3.38 g (27.7 mmol) bzw. 1.0 g (8.2 mmol) Benzolboronsäure, die Verbindungen *rac*- bzw. (R,R)-(-)-**3b** dargestellt.

Ausbeuten: 4.6 g (77 % d. Th.) *rac*-**3b** 1.4 g (80 % d. Th.) (*R*,*R*)-(-)-**3b**

Drehwert: $[\alpha]_{D}^{20} = -13.8 \circ (c = 1.7, Benzol)$

12.5.2 Allgemeine Arbeitsvorschrift zur Darstellung der Phosphane mit isopropylidengeschützten 2,3-Dihydroxypropyl-Substituenten

Die entsprechende Menge an primärem bzw. sekundärem Phosphan (Phenylphosphan, Diphenylphosphan bzw. Phenylmethylphosphan) wurde jeweils zu einer Suspension von 1.1 eq KOH in Dimethylsulfoxid gegeben, etwa 1 h bei RT gerührt und die intensiv rot gefärbten Lösungen anschließend, innerhalb von 30 min mit den stöchiometrischen Mengen *rac*- bzw. (*R*)-(-)-2,3-*O*-Isopropylidenglyceryl-1-tosylat versetzt. Nach ca. 8 h waren die Lösungen nur noch schwach gelb gefärbt; sie wurden nun mit Wasser versetzt und dreimal mit Toluol extrahiert. Die vereinigten Toluolphasen wurden über Magnesiumsulfat getrocknet und anschließend im Vakuum vom Lösungsmittel befreit. Die zurückbleibenden öligen Rohprodukte wurden sorgfältig im Vakuum getrocknet (80 °C, 0.01 mbar, mind. 18h) und, sofern möglich, zur weiteren Reinigung im Vakuum fraktionierend destilliert (**4c**).

Darüber hinaus wurde die Verbindung **4c** zur weiteren Umsetzung sowie aufgrund der geringeren Oxidationsempfindlichkeit in das Boran–Addukt überführt, dessen elementaranalytische Daten der Übersichtlichkeit halber hier aufgeführt sind.

rac-4a: Ansatz: 5.0 g (27.0 mmol) Diphenylphosphan
7.7 g (27.0 mmol) *rac*-2,3-O-Isopropylidenglyceryl-1-tosylat
1.9 g (29.6 mmol) KOH

Ausbeute: 6.5 g (80 % d. Th.)

(*R*)-(+)-4a: Ansatz: 2.5 g (13.4 mmol) Diphenylphosphan
 3.85 g (13.4 mmol) (*R*)-(-)-2,3-*O*-Isopropylidenglyceryl-1-tosylat
 1.0 g (14.7 mmol) KOH

Ausbeute: 3.1 g (77 % d. Th.)

 $C_{18}H_{21}O_2P$ (300.3)ber.: C 71.98 % H 7.05 % P 10.31 %gef.: C 71.71 % H 6.65 % P 9.76 %

Drehwert: $[\alpha]_{D}^{20} = +14.5 \circ (c = 1, Benzol)$

(*R*,*R*)-(+)-4d: Ansatz: 1.64 g (14.9 mmol) Phenylphosphan 8.53 g (29.8 mmol) (*R*)-(-)-2,3-*O*-Isopropylidenglyceryl-1-tosylat 2.16 g (33.9 mmol) KOH

Ausbeute: 4.1 g (81 % d. Th.)

 $C_{18}H_{27}O_4P$ (338.4) ber.: C 63.89 % H 8.04 %

gef.: C 63.55 % H 7.81 %

Drehwert: $\left[\alpha\right]_{D}^{20} = +32.8^{\circ}$ (Reinsubstanz)

```
[(R,S)_P,R_C]-4c: Ansatz: 5.04 g (45.8 mmol) Phenylphosphan
13.1 g (45.8 mmol) (R)-(-)-2,3-O-Isopropylidenglyceryl-1-tosylat
3.20 g (50.3 mmol) KOH
```

Ausbeute: 6.7 g (65 % d. Th.)

 $[(R,S)_{P},R_{C}]-4c \cdot BH_{3}$ $C_{12}H_{20}BO_{2}P (238.1) \qquad ber.: C 60.54 \% H 8.47 \%$ gef.: C 60.72 % H 8.31 %

Ausbeute: 1.48 g (71 % d. Th.)

12.5.3 Darstellung von zusätzlich funktionalisierten Derivaten des Phosphans 4a

2,3-*O*-Isopropylidenglyceryl-1-[*m*-(*N*,*N*-dimethylguanidinium)phenyl]phosphan Iodid (4e)

0.55 g (2.45 mmol) des sekundären Phosphans **4c** wurden zusammen mit 0.71 g (2.45 mmol) *m*-Iodphenyl-*N*,*N*-dimethylguanidin in 10 ml Acetonitril gelöst, 28 mg (1.0

mol%) des Katalysatorkomplexes $Pd(Ph_3P)_4$ zugefügt und das Reaktionsgemisch 5 h bei 60 °C gerührt. Nach Entfernen der flüchtigen Bestandteile im Vakuum wurde das erhaltene Rohprodukt aus Aceton umkristallisiert.

Ausbeute: 1.13	g (90 % d. Th.) 4	e					
$C_{21}H_{29}IN_3O_2P$	(513.3)	ber.: C	49.13 %	Η	5.69 %	N	8.19 %
		gef.: C	49.81 %	Η	5.57 %	Ν	7.77 %

2,3-O-Isopropylidenglyceryl-[p-(natriumsulfonato)phenyl]phenylphosphan (4f)

0.73 g (3.25 mmol) des sekundären Phosphans **4c** wurden zusammen mit 1.06 g (3.25 mmol) Natrium-*p*-iodbenzolsulfonat und 0.36 g (3.6 mmol) Triethylamin in 15 ml Methanol gelöst und mit 38 mg (1 mol%) des Katalysators $Pd(Ph_3P)_4$ versetzt. Die Reaktionsmischung wurde auf 60 °C erhitzt und 24 h gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt und der verbleibende Rückstand mit 25 ml Dichlormethan gewaschen, um die entstandenen Ammoniumsalze abzutrennen. Das ungelöste schwach gelb gefärbte Produkt wurde abfiltriert und bei 80 °C im Vakuum getrocknet.

Ausbeute: 1.3 g (99 % d. Th.) 4f			
$C_{18}H_{20}NaO_5PS$ (402.4)	ber.: C 53.73 %	Н	5.01 %
	gef.: C 53.09 %	Η	5.51 %

12.6 Darstellung von chiralen zweizähnigen Phosphanen, ausgehend vom sekundären Phosphan 4c

12.6.1 Methode A: Nucleophile Phosphinierung im "superbasischen" Medium DMSO/KOH

Die entsprechende Menge des sekundären Phosphans **4c** wurde zu einer Suspension von 1.1 Äquivalenten KOH in Dimethylsulfoxid gegeben und das Reaktionsgemisch etwa 1 h gerührt. Anschließend wurde eine Lösung von 0.5 Äquivalenten des jeweiligen Alkyldihalogenids bzw. Alkylditosylats, ebenfalls in Dimethylsulfoxid langsam zugetropft. Nach mehrstündigem Rühren bei RT (8 – 12 h) entfärbte sich die anfänglich intensiv orange gefärbte Lösung allmählich und wurde daraufhin mit etwa 50 % des Volumens an Wasser versetzt. Nach dreimaliger Extraktion mit Dichlormethan wurden die vereinigten und über Magnesiumsulfat getrockneten organischen Phasen vom Lösungsmittel befreit und der verbleibende Rückstand im Vakuum bei 80 °C getrocknet.

Die zweizähnigen Phosphane wurden zur Reinigung in ihre Bis-boran-Addukte überführt, da diese eine geringe Oxidationsempfindlichkeit und eine größere Tendenz zur Kristallisation zeigten. Auch die Trennung der entstandenen Diastereomere sollte auf diese Weise erleichtert werden. Elementaranalytische Daten, die sich auf diese Verbindungen beziehen, sind aus Gründen der Übersichtlichkeit untenstehend mit aufgeführt.

(*S*,*S*)-2,3-*O*-Isopropyliden-2,3-dihydroxy-1,4-bis[(*R*,*R*)-2',3'-*O*-isopropylidenglyceryl-1-phenylphosphino]butan (5a)

Ansatz: 15.3 g (68.2 mmol) **4c** 5.0 g (78 mmol) KOH 16.1 g (34.1 mmol) (*R*,*R*)-(+)-1,4-Di-*O-p*-toluolsulfonyl-2,3-isopropyliden-D-threitol Ausbeute: 18.2 g (93 % d. Th.) 5a

(S,S)-2,3-O-Isopropyliden-2,3-dihydroxy-1,4-bis[(R,R)-2',3'-O-isopropyliden-glyceryl-1-phenylphosphino]butan • 2BH₃ (5a • BH₃)

1,3-Bis-[(*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1-phenylphosphino]propan (5b)

Ansatz: 1.84 g (8.2 mmol) **4c** 0.83 g (4.1 mmol) 1,3-Dibrompropan 0.60 g (9.4 mmol) KOH

Ausbeute: 1.56 g (78 % d. Th.) 5b

$C_{27}H_{38}O_4P_2$	(488.5)	ber.:	С	66.38 %	Η	7.84 %
		gef.:	С	66.28 %	Η	7.86 %

1,2-Bis-[(*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1-phenylphosphino]ethan (5c)

Ansatz: 1.34 g (6.0 mmol) **4c** 1.14 g (3.0 mmol) Ethylenglykolditosylat 0.43 g (6.7 mmol) KOH

Ausbeute: 1.14 g (80 % d. Th.) 5c

1,2-Bis-[(<i>R</i> , <i>R</i>)-2,3- <i>O</i> -isopropyli	lenglyceryl-1-phenylphosphino]ethan • 21	BH ₃
(5c • BH ₃)		
$C_{26}H_{42}B_2O_4P_2$ (502.2)	ber.: C 62.18 % H 8.43 %	
	gef.: C 61.85 % H 8.32 %	

```
1,1-Bis-[(R,R)-2,3-O-isopropylidenglyceryl-1-phenylphosphino]methan (5d)
Ansatz: 1.96 g (8.7 mmol) 4c
0.37 g (4.4 mmol) Dichlormethan
0.64 g (10.0 mmol) KOH
Ausbeute: 1.65 g (82 % d. Th.) 5d
```

1,1-Bis-[(R,R)-2,3-O-isopropylidenglyceryl-1-phenylphosphino]methan • 2BH3(5d • BH3) $C_{25}H_{40}B_2O_4P_2$ (488.1)ber.: C 61.51 % H 8.26 %
gef.: C 61.19 % H 8.34 %

12.6.2 Methode B: Nucleophile Phosphinierung von Alkyldihalogeniden mit Lithiumphosphiden

Die zunächst generierten Boranaddukte (s. u.) des sekundären Phosphans **4c** wurden in Diethylether vorgelegt, auf –78 °C gekühlt und mit der stöchiometrischen Menge *n*-Butyllithium (1.6 m Lösung in Hexan) versetzt. Nach vollständiger Zugabe wurde etwa 1 h nachgerührt und anschließend, ebenfalls bei –78 °C, die entsprechende Menge des Alkyldihalogenids, gelöst in Diethylether, hinzugegeben. Das Reaktionsgemisch wurde über Nacht weitergerührt, wobei es sich allmählich erwärmte. Zur Abtrennung der wasserlöslichen Bestandteile wurde nun dreimal mit Wasser (je 50 % des Lösungsmittelvolumens) extrahiert, die organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Zur Reinigung bzw. zur Trennung der erhaltenen diastereomeren Boran-Addukte wurden die Rohprodukte aus Alkohol umkristallisiert.

1,2-Bis-[((*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1-phenylphosphino)-methyl]benzol•2BH₃ (5e • BH₃)

Ansatz: 1.24 g (5.2 mmol) 4c • BH₃

3.25 ml (5.2 mmol) n-BuLi (1.6 M Lsg. in Hexan)

0.69 g (2.6 mmol) α,α'-Dibromxylol Ausbeute: 1.17 g (78 % d. Th.) **5e • BH**₃ (Diastereomerengemisch)

$C_{32}H_{46}B_2O_4P_2$	(578.3)	ber.:	С	66.46 %	Η	8.02 %
		gef.:	С	66.31 %	Η	8.01 %

2,6-Bis-[((*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1-phenylphosphino)-methyl]pyridin • 2BH₃ (5f • BH₃)

Ansatz: 1.05 g (4.4 mmol) 4c • BH₃

2.80 ml (4.4 mmol) n-BuLi (1.6 M Lsg. in Hexan)

0.39 g (2.2 mmol) α , α '-Dichlorlutidin

Ausbeute: 0.93 g (73 % d. Th.) 5f • BH₃ (Diastereomerengemisch)

$C_{31}H_{45}B_2NO_4P_2$	(579.2)	ber.:	С	64.28 %	Η	7.83 %
		gef.:	С	64.10 %	Н	7.77 %

1,3-Bis-[(*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1-phenylphosphino]-2,2-dimethylpropan • 2BH₃ (5g • BH₃)

Ansatz: 1.98 g (8.3 mmol) 4c • BH₃

3.3 ml (8.3 mmol) *n*-BuLi (1.6 M Lsg. in Hexan)

0.59 g (4.15 mmol) 1,3-Dichlor-2,2-dimethylpropan

Ausbeute: 1.69 g (75 % d. Th.) 5g • BH₃ (Diastereomerengemisch)

$C_{29}H_{48}B_2O_4P_2$	(544.2)	ber.:	С	64.00 %	Η	8.89 %
		gef.:	С	63.34 %	Η	8.51 %
12.7 Schutzgruppensynthesen

12.7.1 Einführung und Abspaltung der Boran–Schutzgruppen

Zur Einführung der Boran-Schutzgruppen wurde das jeweilige Phosphan (sekundär, tertiär oder ditertiär) mit der stöchiometrischen Menge Boran-Dimethylsulfid-Komplex (ca. 10.0 – 10.2 M Lösung in Dimethylsulfid) umgesetzt. Hierbei wurde das Phosphan teilweise in Reinsubstanz, gegebenenfalls auch gelöst in THF, eingesetzt. Nach zwei- bis vierstündigem Rühren wurde das überschüssige Dimethylsulfid sowie eventuell vorhandenes Lösungsmittel im Vakuum bei 80 °C entfernt. Alle Umsetzungen verliefen quantitativ.

Zur Abspaltung der Boran-Schutzgruppen wurden die jeweiligen Verbindungen in Reinsubstanz vorgelegt, mit einem 10- bis 20-fachen Überschuss an Morpholin versetzt und bei 70 °C 2 – 6 h gerührt. Nach vollständiger Umsetzung wurde das überschüssige Morpholin sowie das entstandene Morpholin-Boran-Addukt im Vakuum bei 0.01 mbar und 80 °C entfernt.

12.7.2 Einführung und Abspaltung der Sulfid-Schutzgruppe

Die Überführung des zweizähnigen Phosphans **5a** in das entsprechende Phosphansulfid erfolgte durch Umsetzung des Phosphans mit der stöchiometrischen Menge elementaren Schwefels in Benzol. Die Reaktionsmischung wurde über einen Zeitraum von 16 h bei RT gerührt; hierbei bildete sich allmählich eine klare Lösung. Nach Entfernen des Lösungsmittels im Vakuum (80 °C, 0.01 mbar) erhielt man das Phosphansulfid als farblosen Feststoff in quantitativer Ausbeute.

Ansatz: 1.77 g (3.1 mmol) **5a**

0.10 g (3.1 mmol) S_8 Ausbeute: 1.98 g (100 % d. Th.) **5a(S)** $C_{31}H_{44}O_6P_2S_2$ (638.7) ber.: C 58.29 % H 6.94 %

gef.: C 58.50 % H 7.01 %

Die Abspaltung des Schwefels erfolgte durch Reduktion mit Raney-Nickel in Methanol bei 60 - 70 °C über einen Zeitraum von 24 h.

12.7.3 Hydrolyse der Isopropyliden-Schutzgruppen der Phosphane 4a,5a und des Sulfids von 5a

2.31 g (4.0 mmol) des zweizähnigen Phosphans **5a**, 0.7g (2.3 mmol) **4a** bzw. 0.6 g (0.9 mmol) **5a(S)** wurden in ca. 10 ml THF vorgelegt, mit 10 (**5a**) bzw. 5 ml 2 M HCl. versetzt und 16h bei 50 – 60 °C gerührt. Anschließend wurde mit wäßriger KOH neutralisiert und nach Phasentrennung die organische Phase vom Lösungsmittel befreit (70 °C, 0.01 mbar).

Ausbeute: 1.46 g (80 % d. Th.) (*S*,*S*)-2,3-dihydroxy-1,4-bis[(R,R)-2,3-dihydroxy-propyl-1-phenylphosphino]butan (**5h**)

Ausbeute: 0.5 g (82 % d. Th.) 2a

 $\left[\alpha\right]_{D}^{20}$ = -18.0 ° (c = 10 in Dichlormethan)

Ausbeute: 0.4 g (82 % d. Th.) 5h(S)

12.8 Darstellung der Phosphinoessigsäuren

12.8.1 Darstellung von Phenylphosphinoessigsäure (24)

In einen Dreihalskolben wurden bei -78 °C ca. 100 ml Ammoniak einkondensiert und portionsweise 1.04 g (45.2 mmol) Natrium hinzugegeben. Anschließend wurden 5.0 g (45.4 mmol) Phenylphosphan langsam zugetropft. Die nach vollständiger Zugabe intensiv gelb gefärbte Lösung wurde 1 h nachgerührt und im Anschluß mit 4.66 g (40.0 mmol) Chloressigsäure-Na-Salz versetzt, das über eine Feststoffbirne zudosiert wurde. Nach Abdampfen des Ammoniaks wurde der verbleibende Rückstand in 50 ml 2 M H₂SO₄ aufgenommen und dreimal mit je 30 ml Diethylether extrahiert. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.

Ausbeute: 5.9 g (77 % d. Th.) 24

Zur Überführung in das Natrium-Salz wurden 1.2 g (7.1 mmol) der Phenylphosphinoessigsäure in 5 ml Wasser digeriert und mit einer äquimolaren Menge (0.29 g) NaOH versetzt. Es bildete sich eine klare Lösung, die auf 50 % ihres Volumens eingeengt wurde. Die Isolierung des Phenylphosphinoessigsäure-Na-Salzes erfolgte durch Umfällung aus 20 ml Ethanol sowie anschließender Trocknung im Vakuum.

Ausbeute: 1.2 g (90 % d. Th.)

$C_8H_8NaO_2P$	(190.1)	ber.:	С	50.54 %	Η	4.24 %
		gef.:	С	50.34 %	Н	4.15 %

12.8.2 Darstellung von 25 und 26

0.52 g (5.6 mmol) bzw. 0.90 g (9.8 mmol) Phosphinoessigsäure wurden vorgelegt, mit 1.59 g (11.3 mmol) 1-Decen bzw. 3.29 g (19.6 mmol) 1-Dodecen versetzt und die Reaktionsgemische auf 60 - 70 °C erwärmt. Zu Beginn der Umsetzung sowie nach ca. 4 h wurde eine Spatelspitze AIBN zugefügt. Nach 8 h wurde das Ölbad entfernt. Beim Abkühlen erhielt man einen farblosen Niederschlag, der abfiltriert und anschließend aus Methanol umkristallisiert wurde.

Ausbeuten: 1.96 g (93 % d. Th.) Bisdecylphosphinoessigsäure (25) 3.98 g (95 % d. Th.) Bisdodecylphosphinoessigsäure (26)

$C_{22}H_{45}O_2P$	(372.6)	ber.: C	70.92 %	Η	12.17 %
		gef.: C	70.82 %	Н	11.95 %
C ₂₆ H ₅₃ O ₂ P	(428.7)	ber.: C	72.84 %	Н	12.46 %
		gef.: C	72.65 %	Н	12.35 %

12.9 Darstellung von 21 und 22

Zu einer Lösung von 2.66 g (14.3 mmol) Diphenylphosphan bzw. 1.84 g (16.7 mmol) Phenylphosphan in je 20 ml Toluol wurden 2.00 g (14.3 mmol) bzw. 2.34 g (16.7 mmol) Cylohexen-1-carbonsäuremethylester gegeben. Nach Zugabe von jeweils 10 mol% (0.15 bzw. 0.17 g) Kalium-*tert*.-butylat wurden die leicht gelb gefärbten Reaktionsmischungen für 1 h auf ca. 70 °C erhitzt, anschließend mit 10 ml Wasser versetzt und mit 10 %iger HCl neutralisiert. Die Toluol-Phasen wurden abgetrennt, über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung der Rohprodukte erfolgte im Falle von Verbindung **21** durch Umkristallisation aus Methanol, im Falle der Verbindung **22** durch fraktionierende Destillation im Vakuum.

Ausbeuten:	2.6	g (50	5 %	d.	Th.)	Cyclohey	kyl	-1-dipheny	/lph	osphino-2-carbo	onsäure-
						methyles	ste	r 21			
	2.8 g	(67 9	% d.	Th.) Cyc	lohexyl-1	-pł	nenylphosp	ohino	o-2-carbonsäure	emethyl-
						ester 22					
$C_{20}H_{23}O_2P$	(326	.4)				ber.:	С	73.60 %	Η	7.10 %	
						gef.:	С	73.39 %	Η	7.13 %	
$C_{14}H_{19}O_2P$	(250	.3)				ber.:	С	67.19 %	Н	7.65 %	
						gef.:	С	66.94 %	Н	7.44 %	

12.10 Darstellung der chiralen Phosphanliganden mit Phospholansystemen

12.10.1 Darstellung von (*R*,*R*)-2,5-Dimethylphospholan (17)

In einem Dreihalskolben wurden bei –78 °C ca. 300 ml Ammoniak einkondensiert und portionsweise 5.4 g (234 mmol) Natrium gelöst. Mit einem Überdruck von ca. 0.1 bar wurde nun, ebenfalls portionsweise, Phosphan zudosiert, bis die Lösung eine leichte Gelbfärbung annahm. Durch weiteres Einleiten von PH₃ wurde die Lösung mit Phosphan gesättigt und anschließend mit 21.1 g (117 mmol) cylischem Sulfat (**15**) über eine Feststoffbirne umgesetzt. Nachdem der Ammoniak vollständig verdampft war, wurde der Rückstand in 300 ml Diethylether aufgenommen und 2 Tage bei RT rühren gelassen. Zur Aufarbeitung wurde zunächst vom entstandenen Natriumsulfat über eine Umkehrfritte abfiltriert, der zurückbleibende Feststoff gründlich mit dreimal 100 ml Diethylether gewaschen und das Lösungsmittel anschließend bei Normaldruck abdestilliert. Fraktionierende Destillation, ebenfalls bei Normaldruck, lieferte 7.4 g des gewünschten enantiomerenreinen Produkts; dies entspricht einer Ausbeute von 54.5 %

Der zurückbleibende Feststoff enthielt neben Natriumsulfat auch das Zwischenprodukt der beschriebenen Synthese ((2R,5S)-Natrium-2-phosphinohex-5-ylsulfat (**16**)). Dieses konnte durch Extraktion des Feststoffes mit 200 ml Methanol isoliert werden.

12.10.2 Darstellung von 19

Zu einer Menge von 0.62 g (5.3 mmol) (R,R)-2,5-Dimethylphospholan (17) wurden zunächst 0.53 ml einer 10 molaren Lösung von Boran-Dimethylsulfid-Komplex gegeben und etwa 2 h gerührt. Überschüssiges Dimethylsulfid wurde anschließend im Vakuum entfernt, 10 ml THF als Lösungsmittel hinzugegeben und der Ansatz auf –60 °C gekühlt. Nach der Zugabe von 2.1 ml n-BuLi (2.5 m in Diethylether) wurde weitere 90 min nachgerührt und daraufhin eine Lösung von 1.25 g (2.65 mmol) (R,R)-(+)-1,4-Di-O-p-toluolsulfonyl-2,3-isopropyliden-D-threitol in 5 ml THF zugetropft. Nach erneutem zwölfstündigen Rühren wurde die Lösung dreimal mit 5 ml Wasser extrahiert, die organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Das erhaltene Rohprodukt wurde abschließend aus Methanol umkristallisiert.

Ausbeute: 0.90 g (88 % d. Th.) (*S*,*S*)-2,3-*O*-Isopropyliden-2,3-dihydroxy-1,4-bis-[(R,R)-2',5'-dimethylphospholan-1'-yl]butan • 2 BH₃ **19**

$C_{19}H_{42}B_2O_2P_2$	(386.1)	ber.:	С	59.10 %	Η	10.96 %
		gef.:	С	58.66 %	Η	10.86 %

Drehwert: $[\alpha]_{D}^{20} = +14.7 \circ (c = 1.7, Chloroform)$

12.10.3 Darstellung von 20

Durch analoge Umsetzung von 1.00 g (2.12 mmol) (R,R)-(+)-1,4-Di-O-p-toluolsulfonyl-2,3-isopropyliden-D-threitol mit nur einem Äquivalent (R,R)-2,5-Dimethylphospholan (0.25 g, 2.12 mmol) läßt sich gezielt das einfache Substitutionsprodukt erzeugen. Die Aufarbeitung erfolgte in der in Kap. 12.10.2 beschriebenen Weise, das Rohprodukt wurde aus Methanol umkristallisiert.

Ausbeute:
$$0.78 \text{ g}$$
 (86 % d. Th.) (S,S)-2,3-O-Isopropyliden-2,3-dihydroxy-1-[(R,R)-
2',5'-dimethylphospholan-1'-yl]-4-(p-toluol-
sulfonyl)butan •BH3 (20) $C_{20}H_{34}BPO_5S$ (428.3)ber.: C 56.08 % H 8.00 % S 7.49 %
gef.: C 55.68 % H 7.87 % S 7.40 %

Drehwert: $[\alpha]_{D}^{20} = +11.0 \circ (c = 0.78, Chloroform)$

12.11 Darstellung der Phosphonatophosphane

12.11.1 Palladium-katalysierte Synthese von 28 und 29

Die o- bzw. *m*-Iodbenzylphosphonsäurediethylester wurden in sorgfältig entgastem Toluol vorgelegt, Triethylamin und Tetrakis(triphenylphosphan)palladium(0) zugegeben und zuletzt die entsprechende Menge Diphenylphosphan zugetropft. Die Reaktionsmischungen wurden auf 80 – 90 °C erwärmt und bis zur vollständigen Umsetzung gerührt. Zur Aufarbeitung wurde den Ansätzen das gleiche Volumen an Wasser zugefügt und anschließend mit zusätzlich zweimal 100 ml Toluol extrahiert. Die vereinigten organischen Phasen wurden mit 100 ml einer 1 M KaliumcyanidLösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum (60 °C, 0.01 mbar) vom Lösungsmittel befreit.

Im Falle der *ortho*-Verbindung enthielt das erhaltene Rohprodukt geringe Mengen an Phosphanoxiden als Verunreinigungen. Um diese abzutrennen wurde das ölige Produkt mit einem geringen Überschuß an 1 M Boran-THF-Lösung umgesetzt. Nach Einengen des Ansatzes auf ca. 30 % wurde dieser über Nacht stehen gelassen, woraufhin das entstandene Phosphan-Boran-Addukt in reiner Form auskristallisierte.

o-Diphenylphosphinobenzylphosphonsäurediethylester • BH₃ (30):

Ansatz: 15.7 g (44.3 mmol) o-Iodbenzylphosphonsäurediethylester

8.26 g (44.3 mmol) Diphenylphosphan

4.94 g (48.7 mmol) Triethylamin

 $\approx 500 \text{ mg Pd}(\text{PPh}_3)_4 \ (\approx 1 \text{ mol}\%)$

50 ml 1 M BH₃-THF-Lösung

Reaktionsdauer: 48 h

Ausbeute: 11.3 g (60 % d. Th.) 30

$C_{23}H_{29}BO_3P_2$	(426.2)	ber.:	С	64.81 %	Η	6.86 %
		gef.:	С	64.78 %	Η	7.00 %

m-Diphenylphosphinobenzylphosphonsäurediethylester (29):

Ansatz: 31.5 g (89.0 mmol) *m*-Iodbenzylphosphonsäurediethylester 16.6 g (89.1 mmol) Diphenylphosphan 9.9 g (98 mmol) Triethylamin ~ 1 g Pd(PPh₃)₄ (~ 1 mol%) Reaktionsdauer: 4 h Ausbeute: 33.0 g (90 % d. Th.) **29**

12.11.2 Darstellung der Dinatriumphosphonate 31 und 32

Zu den Lösungen der Verbindungen **28** und **29** in 30 ml Dichlormethan wurde die entsprechende Menge an Bromtrimethylsilan gegeben und die Ansätze jeweils 20 h bei RT gerührt. Anschließend wurden Lösungsmittel und Ethylbromid im Vakuum (50 °C, 0.01 mbar) abgezogen, der verbleibende Rückstand in 30 ml Aceton gelöst und mit Wasser versetzt. Nach zweistündigem Rühren bei RT, Abziehen des Lösungsmittels sowie des Hexamethyldisiloxans im Vakuum (50 °C, 0.01 mbar) verblieben die freien Phosphonsäuren als farblose Feststoffe.

Die *meta*-substituierte Verbindung wurde in 20 ml Wasser suspendiert und mit der entsprechenden Menge an 2 M NaOH versetzt, woraufhin sich eine klare Lösung bildete. Diese wurde auf 50 % ihres Volumens eingeengt und das Produkt **32** aus 100 ml Ethanol umgefällt.

Im Falle der *ortho*-substituierten Verbindung wurde die freie Phosphonsäure mit 20 ml 2 M NaOH umgesetzt und zum Sieden erhitzt; beim Abkühlen schied sich das Dinatriumsalz **31** in Form farbloser Kristalle ab.

Dinatrium-o-Diphenylphosphinobenzylphosphonat (31):

Ansatz: 2.5 g (6.1 mmol) *o*-Diphenylphosphinobenzylphosphonsäurediethylester 2.8 g (18 mmol) Trimethylbromsilan

Ausbeute: 1.72 g (68 % d. Th.) 31

$C_{19}H_{16}Na_2O_3P_2 \cdot H_2O$ (418.3)) ber.: C	54.56 %	Η	4.34 %
	gef.: C	55.03 %	Η	4.32 %

Dinatrium-*m*-Diphenylphosphinobenzylphosphonat (32):

Ansatz: 9.14 g (22.2 mmol) *m*-Diphenylphosphinobenzylphosphonsäurediethylester 10.2 g (66.5 mmol) Trimethylbromsilan 11.1 ml 2 M NaOH

Ausbeute: 6.0 g (68 % d. Th.) 32		
$C_{19}H_{16}Na_2O_3P_2$ (400.3)	ber.: C 57.01 %	H 4.03 %
	gef.: C 56.95 %	H 4.35 %

12.12 Darstellung der Übergangsmetallkomplexe

12.12.1 Darstellung der Palladium(II)-Komplexe L₂PdCl₂ (6-8)

Die Phosphanliganden **2a** (1.46 g, 5.6 mmol), **3a** (0.42 g, 1.2 mmol) und **4a** (0.50 g, 1.66 mmol) wurde jeweils in 10 ml Dichlormethan gelöst und 0.80 g (2.8 mmol), 0.17 g (0.6 mmol) bzw. 0.24 g (0.83 mmol) 1,5-Cyclooctadien-Palladium(II)-chlorid hinzugefügt. Die Ansätze wurden 3 h bei RT gerührt und anschließend im Vakuum (50 °C, 0.01 mbar) vom Lösungsmittel befreit. Die Palladium-Komplexe blieben als gelbe bis orange-braune Feststoffe zurück.

Ausbeuten: 1.92 g (98 % d. Th.) 6 0.43 g (83 % d. Th.) 7 0.62 g (96 % d. Th.) 8 **6**: $C_{30}H_{34}Cl_2O_4P_2Pd$ (697.9) ber.: C 51.63 % H 4.91 % gef.: C 50.99 % H 5.24 % 7: $C_{42}H_{40}B_2Cl_2O_4P_2Pd$ (869.7) ber.: C 58.00 % H 4.64 % gef.: C 57.82 % H 4.58 % **8** $C_{36}H_{42}Cl_2O_4P_2Pd$ (778.0) ber.: C 55.58 % H 5.44 % gef.: C 55.31 % H 5.28 %

12.12.2 Darstellung von 9

Zu einer Lösung von 0.17 g (0.24 mmol) **6** in 15 ml Toluol wurden 0.22 g (1.06 mmol) Silber(I)perchlorat, gelöst in 5 ml Toluol, gegeben und die Reaktionsmischung 2 h gerührt. Nach Entfernen des Lösungsmittels im Vakuum wurde der Rückstand in 20 ml Dichlormethan aufgenommen, anschließend filtriert und das Filtrat auf 10 ml eingeengt. Durch Zugabe von 10 ml Diethylether erhielt man einen Niederschlag, der abfiltriert und im Vakuum getrocknet wurde.

Ausbeute:0.18g(92%d.Th.) $Bis[(R)-(-)-2,3-dihydroxypropyl-1-diphenyl-phosphan]-palladium(II)diperchlorat (9)<math>C_{30}H_{34}Cl_2O_{12}P_2Pd$ (825.9)ber.:C43.63H4.15%gef.:C43.65H3.87%

12.12.3 Darstellung der Rhodium(I)-Komplexe (10-13)

(Bicyclo[2.2.1]hepta-2,5-dien)[(*R*)-(-)-2,3-dihydroxypropyl-1-diphenylphosphan]rhodium(I)chlorid (10)

Zu einer Suspension von 0.49 g (1.06 mmol) Di- μ -chloro-bis-[(bicyclo[2.2.1]hepta-2,5-dien)-rhodium(I) in 8 ml Methanol wurde eine Lösung von 0.55 g (2.12 mmol) des Phosphanliganden **2a** in 5 ml Methanol gegeben und die Reaktionsmischung 2 h gerührt. Der Reaktionsverlauf war mit einem Farbwechsel von gelb nach orange verbunden. Anschließend wurde das Lösungsmittel im Vakuum entfernt und man erhielt den Rhodium(I)-Komplex als orange gefärbten Feststoff.

Ausbeute: 0.98 g (94 % d. Th.) 10

$C_{22}H_{25}ClO_2PRh$	(490.8)	ber.:	С	53.84 %	Η	5.13 %
		gef.:	С	53.32 %	Н	5.11 %

Rhodium(I)-Komplexe 11 und 12

Die Phosphanliganden **4a** und **5b** wurden in Aceton gelöst, die entsprechenden Mengen an $[Rh(NBD)Cl]_2$ sowie Kaliumhexafluorophosphat hinzugefügt und die Reaktionsmischungen 12 h bei RT gerührt. Anschließend wurden sie filtriert, auf ein Volumen von 5 ml eingeengt und mit 20 ml Diethylether versetzt. Der sich daraufhin bildende Niederschlag wurde abfiltriert und im Vakuum getrocknet. Man erhielt die Rhodium(I)-Komplexe als orangefarbene Pulver.

(Bicyclo[2.2.1]hepta-2,5-dien)bis[(*R*)-(+)-2,3-*O*-isopropylidenglyceryl-1diphenylphosphan]rhodium(I)hexafluorophosphat (11)

Ansatz: 1.00 g (3.33 mmol) 4a

0.38 g (0.83 mmol) [Rh(NBD)Cl]2

0.31 g (1.67 mmol) Kaliumhexafluorophosphat

Ausbeute: 1.5 g (96 % d. Th.) 11

$C_{43}H_{50}F_6O_4P_3Rh$	(940.7)	ber.: C	54.90 %	Η	5.36 %
		gef.: C	54.06 %	Η	5.33 %

(Bicyclo[2.2.1]hepta-2,5-dien)[1,3-bis{(*R*,*R*)-2,3-*O*-isopropylidenglyceryl-1phenylphosphino}propan]rhodium(I)hexafluorophosphat (12)

Ansatz: 0.82 g (1.68 mmol) **5b**

 $0.39 g (0.84 mmol) [Rh(NBD)Cl]_2$

0.31 g (1.68 mmol) Kaliumhexafluorophosphat

Ausbeute: 1.32 g (98 % d. Th.) 12

$C_{34}H_{46}F_6O_4P_3Rh$	(828.6)	ber.: C	49.29 %	Η	5.60 %
		gef.: C	49.10 %	Η	5.58 %

12.13 Bestimmung der katalytischen Aktivität am Beispiel einer "Suzuki-Kupplung"

12.13.1 Darstellung von *m*-Bromphenyldiphenylphosphanoxid

Zu einer Lösung von 12.02 g (35.2 mmol) *m*-Bromphenyldiphenylphosphan in 20 ml Dichlormethan wurden unter Eiskühlung 20 ml einer 30 %igen wäßrigen Wasserstoffperoxid-Lösung gegeben und 30 min gerührt. Anschließend wurde die organische Phase abgetrennt, die wäßrige Phase zweimal mit je 30 ml Dichlormethan extrahiert, die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Das Produkt fiel als farbloser Feststoff an.

Ausbeute: 11.4 g (91 % d. Th.)

12.13.2 Darstellung der Palladium-Katalysatoren

Zur Herstellung einer geeigneten Pd-Maßlösung wurden 0.225 g (1 mmol) Palladiumacetat in 100 ml Ethylenglykol gelöst; von dieser 0.01 M Lösung wurden dann entsprechende Mengen entnommen, mit Ethylenglykol auf ein Volumen von 5 ml aufgefüllt und mit 8 Äquivalenten des jeweiligen Phosphanliganden umgesetzt Nach 30 minütigem Rühren wurde diese Lösung der Reaktionsmischung als Katalysatorlösung zugefügt und somit die Katalyse gestartet.

12.13.3 Versuchsvorschrift für die "Suzuki-Kupplung von (*m*-Bromphenyl)diphenylphosphanoxid mit Benzolboronsäure

Die Lösung von 1.0 g (2.8 mmol) (*m*-Bromphenyl)diphenylphosphanoxid, 0.38 g (3.1 mmol) Benzolboronsäure und 0.85 g (6.16 mmol) Kaliumcarbonat in 15 ml Toluol

bzw. DME wurde sorgfältig von gelöstem Sauerstoff befreit, im Falle der wasserlöslichen Komplexkatalysatoren mit 10 ml Wasser versetzt und auf 80 °C erhitzt. Die Reaktion wurde durch Zugabe der jeweiligen Katalysatorlösungen gestartet. Im weiteren Verlauf wurden dem Reaktionsgemisch Proben entnommen und durch ³¹P{¹H}-NMR-spektroskopische Untersuchung die Konzentrationen des Edukts und des Produkts bestimmt (s. Kap. 6).

13 Verzeichnis der Verbindungen

4b

4c

Ι-

4d

4e

4f

5a

5a • BH₃

5a(S)

5**b** • BH₃

5c

5c • BH₃

5d • BH₃

5d

5e

5e • BH₃

5f

5f• BH₃

5g

5g•BH₃

5h

4**b** • BH₃

25: n = 8 26: n = 10

14 Literaturverzeichnis

- [1] J. A. Osborne, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc A 1966, 1711
- [2] W. S. Knowles, M. J. Sabacky, J. Chem. Soc. Chem. Comm. 1968, 1445
- [3] L. Horner, H. Siegel, H. Büthe, Angew. Chem. 1968, 80, 1034
- [4] H. B. Kagan, T. P. Dang, J. Chem. Soc. Chem. Comm. 1971, 481
- [5] H. B. Kagan, T. P. Dang, J. Am. Chem. Soc 1972, 94, 6429
- [6] M. Kitamura, M. Tokunaga, R. Noyori, J. Org. Chem 1992, 57, 4053
- [7] H. Takahashi, T. Morimoto, K. Achiwa, Chem. Lett. 1987, 855
- [8] G. Kang, W. R. Cullen, M. D. Fryzuk, B. R. James, J. P. Kutney, J. Chem. Soc. Chemm. Comm. 1988, 1466
- [9] H. Brunner, F. Prester, J. Organomet. Chem. 1991, 414, 401
- [10] A.Kinting, H. Krause, M. Capka, J. Mol. Catal. 1985, 33, 215
- [11] R. Selke, J. Organomte. Chem. 1989, 370, 249
- [12] R. Selke, H. Pracejus, J. Mol. Catal. 1986, 37, 213
- [13] S. Saito, Y. Nakamura, Y. Morita, Chem. Pharm. Bull. 1985, 33, 5284
- [14] D. Sinou, D. Lafont, G. Descotes, T. Dayrit, Nouv. J. Chim. 1983, 7, 291
- [15] C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2953
- [16] C. P. Casey, G. T. Whiteker, *Isr. J. Chem.* **1990**, 30, 299
- [17] C. P. Casey, G. T. Whiteker, M. G. Melville, L. M. Petrovich, J. A. Gavney Jr., J. Am. Chem. Soc 1992, 114, 5535
- [18] M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van der Leeuwen, Organometallics 1995, 14, 3081
- [19] G. Zassinovich, F. Grisoni, J. Organomet. Chem. 1983, 247, C24
- [20] T. Hayashi, K. Kanehira, M. Kumada, *Tetrahedron Lett.* 1981, 4417
- [21] M. J. Burk, A. Pizzano, A. L. Rheingold, Organometallics 2000, 19, 250
- [22] M. J. Burk, J. Am. Chem. Soc 1991, 113, 8518
- [23] T. Hayashi, T. Mise, M. Kumada, *Tetrahedron Lett.* 1976, 4351
- [24] T. Hayashi, K. Kanehira, T. Hagihara, M. Kumada, J. Org. Chem 1988, 53, 113

- [25] A. Bader, E. Lindner, Coord. Chem. Rev. 1991, 108, 27
- [26] A. Börner, A. Klessm, R. Kempe, D. Heller, J. Holz, W. Baumann, *Chem. Ber.* 1995, 128, 767
- [27] J. Holz, M. Quirmbach, A. Börner, *Synthesis* 1997, 983
- [28] a) W. A. Herrmann, J. A. Kulpe, J. Kellner, H. Riepl, H. Bahrmann, W. Konkol, *Angew. Chem.* 1990, 102, 408
 b) B. Cornils, *Nachr. Chem. Tech. Lab.* 1994, 42, 1136
- [29] B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds Bd. 2, VCH-Verlagsgesellschaft, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 1996
- [30]
- [31] a) L. Lecomte, D. Sinou, *J. Mol. Catal.* 1989, 52, L21
 b) L. Lecomte, D. Sinou, J. Bakos, I. Toth, B. Heil, *Organometallics* 1989, 8, 542
- [32] C. Lensink, J. G. de Vries,
- [33] F. Bitterer, O. Herd, A. Heßler, M. Kühnel, K. Rettig, O. Stelzer, W. S. Sheldrick, S. Nagel, N. Rösch, *Inorg Chem* 1996, 35, 4103
- [34] O. Herd, A. Heßler, K. P. Langhans, O. Stelzer, W. S. Sheldrick, N. Weferling, J. Organomet. Chem. 1994, 475, 99
- [35] a) W. Keim, R. P. Schulz, *J. Mol. Catal.* 1994, 92, 21
 b) V. Ravindar, H. Hemling, H. Schumann, J. Blum, *Synth. Commun.* 1992, 22, 841
- [36] a) E. Renaud, R. B. Russel, S. Fortier, S. J. Brown, M. C. Baird, J. Organomet. Chem. 1991, 419, 403
 b) R. T. Smith, R. K. Ungar, L. J. Sanderson, M. C. Baird, Organometallics 1983, 2, 1138
- [37] F. Bitterer, S. Kucken, O. Stelzer, Chem. Ber. 1995, 128, 275
- [38] A. Heßler, O. Stelzer, H. Dibowski, K. Worm, F. P. Schmidtchen, *J. Org. Chem* **1997**, 62, 2362
- [39] H. Dibowski, F. P. Schmidtchen, *Tetrahedron* 1995, 51, 2325
- [40] a) D. E. Bergbreiter, L. Zhang, V. Mariagnanam, J. Am. Chem. Soc. 1993, 115. 9295

b) M. Beller, J. G. E. Krauter, A. Zapf, Angew. Chem. 1997, 109, 793

- [41] A. Miedaner, C. J. Curtis, R. M. Barkley, D. L. DuBois, *Inorg. Chem.* 1994, 33, 5482
- [42] a) E. Kuntz, *CHEMTECH* 1987, 17, 570
 b) E. Kuntz, *French Patent* 2314190, 1975 [C. A. 1977, 101944n]
- [43] a) A. Köckritz, A. Weigt, M. Kant, *Phosphorus Sulfur and Silicon* 1996, 117, 287

b) T. L. Schull, J. C. Fettinger, D. A. Knight, Inorg. Chem. 1996, 35, 6717

- [44] P. Machnitzki, *Dissertation*, BUGH-Wuppertal, **1999**
- [45] F. Bitterer, O. Herd, A. Heßler, M. Kühnel, K. Rettig, O. Stelzer, W. S. Sheldrick, S. Nagel, N. Rösch, *Inorg Chem* 1996, 35, 4103
- [46] a) O. Herd, K. P. Langhans, O. Stelzer, N. Weferling, W. S. Sheldrick, *Angew. Chem.* 1993, 105, 1097
 b) M. Tepper, O. Stelzer, T. Häusler, W. S. Sheldrick, *Tetrahedron Lett.* 1997, 38, 2257
- [47] a) O. Herd, A. Heßler, M. Hingst, P. Machnitzki, M. Tepper, O. Stelzer, *Catalysis Today* 1998, 42, 413
 b) O. Herd, A. Heßler, M. Hingst, M. Tepper, O. Stelzer, *J. Organomet. Chem.* 1996, 522, 69
- [48] H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. 1988, 100, 117
- [49] W. A. Herrmann, *Hoechst High Chem Magazin* 1992, 13, 15
- [50] H. Hellmann, J. Bader, H. Birkner, O. Schumann, Ann 1962, 659, 49
- [51] K. Issleib, R. Reischel, *Chem. Ber.* **1964**, 98, 2086
- [52] K. Issleib, H.-M. Möbius, *Chem. Ber.* **1961**, 64, 102
- [53] H. Kagan, M. Tahar, J. C. Fiaud, *Tetrahedron Lett.* 1991, 32, 42, 5959
- [54] H. Brunner, A. Sicheneder, Angew. Chem. 1988, 100, 5
- [55] G. Muller, D. Sainz, J. Organomet. Chem 1995, 495, 103
- [56] R. M. Hanson, K. B. Sharpless, J. Org. Chem. 1986, 51, 1922
- [57] J. G. Hill, K. B. Sharpless, C. M. Exon, R. Regenye, *Org. Synthesis* 1984, 63, 66
- [58] K. P.Langhans, O. Stelzer, J. Svara, N. Weferling, Z, Naturforsch. 1990, 45b, 203

- [59] E. N. Tsvekhov, N. A. Bondarenko, I. G. Malakhova, M. I. Kabachnik, *Synthesis* **1986**, 198
- [60] S. Harder, J. H. van Lenthe, N. J. R. van Eikema Hommes, P. von Rague Schleyer, *J. Am. Chem. Soc* **1994**, 116, 2508
- [61] H. Fujimoto, I. Hataue, N. Koga, T. Yamasaki, *Tetrahedron Lett.* 1984, 5339
- [62] C. Glidewell, J. Organomet. Chem 1977, 142, 171
- [63] R. Batchelor, T. Birchall, J. Am. Chem. Soc. 1982, 104, 674
- [64] R. Descheneaux, J. Stille, J. Org. Chem. 1985, 50, 2299
- [65] A. Börner, J. Ward, K. Kortius, H. B. Kagan, *Tetrahedron Asymm.* 1993, 4, 2219
- [66] E. Vincent, L. Verdonck, G. P. van der Kelen, *Spectrochim. Acta* **1980**, 36A, 699
- [67] T. Schaefer, R. Sebastian, R. W. Schurko, F. E. Hruska, *Canad. J. Chem.* 1993, 71, 1384
- [68] E. Kuntz, French Patent 2314190, **1975** [C. A. **1977**, 101944n]
- [69] W. A. Herrmann, J. A. Kulpe, W. Konkol, H. Bahrmann, *J. Organomet. Chem.* **1990**, 389, 85
- [70] W. A. Herrmann, C. W. Kohlpaintner, Angew. Chem. 1993, 105, 1588
- [71] M. Hingst, M. Tepper, O. Stelzer, Eur. J. Inorg. Chem. 1998, 73
- [72] P. Machnitzki, T. Nickel, O. Stelzer, C. Landgrafe, *Eur. J. Inorg. Chem.* 1998, 1029
- [73] P. Machnitzki, M. Tepper, K. Wenz, O. Stelzer, E. Herdtweck, J. Organomet. Chem. 2000, 602, 158
- [74] R. A. Corral, O. O. Orazi, M. F. de Petruccelli, *Chem. Comm.* **1970**, 570
- [75] D. M. Grant, B. V. Cheney, J. Am. Chem. Soc. 1967, 89, 5315
- [76] A. Heßler, *Dissertation*, BUGH-Wuppertal, **1996**
- [77] K. Rettig, *Diplomarbeit*, BUGH-Wuppertal, 1995
- [78] L. B. Fields, E. N. Jacobsen, *Tetrahedron Asymm.* 1993, 4, 10, 2229
- [79] T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada,
 A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto, M. Kumada, *Bull. Chem. Soc. Jpn.* 1980, 53, 1138
- [80] T. Hayashi, M. Kumada, Acc. Chem. Res. 1982, 15, 395

- [81] T. Hayashi, N. Kawamura, Y. Ito, J. Am. Chem. Soc. 1987, 109, 7876
- [82] S. Toyota, M. Oki, Bull. Chem. Soc. Jpn. 1990, 63, 1168
- [83] K. Narasaka, H. Sakurai, T. Kato, N. Iwasawa, Chem. Lett. 1990, 1271
- [84] J. J. Daly, J. Chem. Soc. 1964, 3799
- [85] B. J. Dunne, A. G. Orpen, Acta Cryst. 1991, C47, 345
- [86] B. J. Dunne, R. B. Morris, A. G. Orpen, J. Chem. Soc. Dalton Trans. 1991, 653
- [87] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, J. Chem. Soc. Perkin Trans. 1987, 2, 1
- [88] H. Shimanouchi, N. Saito, Y. Sasada, Bull. Chem. Soc. Jpn. 1969, 42, 1239
- [89] H. Brunner, H. Leyerer, J. Organomet. Chem. 1987, 334, 369
- [90] H. Brunner, T. Rückert, Monatsh. Chem. 1998, 129, 339
- [91] S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Bd. 3, ³¹P-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, 1993
- [92] L. Lecomte, D. Sinou, J. Mol. Catal. 1989, 52, L21
- [93] L. Lecomte, D. Sinou, J. Bakos, I. Toth, B. Heil, Organometallics 1989, 8, 542
- [94] S. Ahland, J. Chatt, N. R. Davies, J. Chem. Soc 1958, 264
- [95] O. Herd, A. Heßler, K. P. Langhans, O. Stelzer, W. S. Sheldrick, J. Organomet. Chem. 1994, 475, 99
- [96] P. Dierkes, P. W. N. M. van der Leeuwen, J. Chem. Soc. Dalton Trans. 1999, 1519
- [97] D. Gleich, W. A. Herrmann, Organometallics 1999, 18, 21, 4354
- [98] K. Issleib, *Chem. Ber.* **1961**, 94, 107
- [99] T. Imamoto, T. Oshiki, T. Omozawa, T. Kusumoto, K. Sato, J. Am. Chem. Soc
 1990, 112, 5244
- [100] A. R. Muci, K. R. Campos, D. A. Evans, J. Am. Chem. Soc 1995, 117, 9075
- [101] B. Wolfe, T. Livinghouse, J. Am. Chem. Soc 1998, 120, 5116
- [102] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie Georg Thieme Verlag, Stuttgart, New York, 1991
- [103] gNMR V4.1.0, Ivory Soft, Cherwell Scientific Publishing, 1998

- [104] A. T. Hutton, C. P. Morley, *Comprehensive Coordination Chemistry Vol 5*, Pergamon Press, Oxford, New York, Frankfurt, Sao Paulo, Tokyo, Sydney, 1987
- [105] F. Mathey, J. Fischer, J. H. Nelson, Struct. Bonding 1983, 55, 153
- [106] D. A. Redfield, J. H. Nelson, L. W. Cary, *Inorg. Nucl. Chem. Lett.* 1974, 10, 727
- [107] S. O. Grim, R. L. Keiter, *Inorg. Chim. Acta* 1970, 4, 56
- [108] A. W. Versteuft, J. H. Nelson, Inorg. Chem. 1975, 14, 1501
- [109] N. W. Alcock, A. W. G. Platt, P. G. Pringle, Inorg. Chim. Acta 1987, 128, 215
- [110] A. W. G. Platt, P. G. Pringle, J. Chem. Soc. Dalton Trans. 1989, 1193
- [111] S. O. Grimm, R. L. Keiter, *Inorg. Chim. Acta* 1970, 4, 56
- [112] B. E. Mann, B. L. Shaw, R. M. Slade, J. Chem. Soc. (A) 1971, 2976
- [113] G. Baliman, H. Motschi, P. S. Pregosin, Inorg. Chim. Acta 1977, 23, 191
- [114] T. Bartik, T. Himmler, J. Organomet. Chem. 1985, 293, 343
- [115] T. G. Appleton, H. C. Clark, L. E. Manzer, Coord. Chem. Rev. 1973, 10, 335
- [116] J. A. Rahn, M. S. Holt, M. O'Neill-Johnson, Inorg. Chem. 1988, 27, 1316
- [117] P. E. Garrou, Chem. Rev. 1981, 81, 221
- [118] A. Immirzi, A. Musco, Inorg. Chim. Acta 1977, 25, L41
- [119] E. G. Finer, R. K. Harris, Progress in Nuclear Magnetic Resonance Spectroscopy, Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, 1971
- [120] F. B. Ogilivie, J. M. Jenkins, J. G. Verkade, J. Am. Chem. Soc. 1970, 92, 1916
- [121] D. A. Redfield, J. H. Nelson, L. W. Cary, *Inorg. Nucl. Chem. Lett.* 1974, 10, 727
- [122] K. Wenz, *Diplomarbeit*, BUGH-Wupopertal, **1998**
- [123] O. A. Gansow, B. Y. Kimura, Chem. Comm. 1970, 1621
- [124] R. R. Schrock, J. A. Osborn, J. Am. Chem. Soc. 1971, 93, 2397
- [125] K. Vrieze, H. C. Volger, A. P. Praat, J. Organomet. Chem. 1968, 14, 185
- [126] I. Toth, B. E. Hanson, Organometallics 1993, 12, 1506
- [127] M. Michalik, T. Freier, M. Schwarze, R. Selke, *Magn. Reson. Chem.* 1995, 33, 835
- [128] J. M. Brown, P. A. Chaloner, J. Am. Chem. Soc. 1978, 100, 4307

- [129] E. M. Campi, P. S. Elmes, W. R. Jackson, R. J. Thompson, J. A. Weingold, J. Organomet. Chem. 1989, 371, 393
- [130] R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985
- [131] F. E. Meyer, A. de Meijere, Angew. Chem. 1994, 106, 2473
- [132] J. K. Stille, K. S. Y. Lau, Acc. Chem. Res. 1985, 10, 434
- [133] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Chapter 2, Wiley, New York, 1994
- [134] R. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345
- [135] R. Schmid, E. A. Broger, M. Cereghetti, Y. Crameri, J. Foricher, M. Lalonde,
 R. K. Mueller, M. Scalone, G. Schoettel, U. Zutter, *Pure Appl. Chem.* 1996, 68, 131
- [136] M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa,
 T. Ohta, H. Takaya, R. Noyori, *J. Am. Chem. Soc.* 1988, 110, 629
- [137] B. Heiser, E. A. Broger, Y. Crameri, *Tetrahedron Asym.* 1991, 2, 51
- [138] H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama,A. F. England, T. Ikariya, R. Noyori, *Angew. Chem. Int. Ed.* 1998, 37, 1703
- [139] T. Ohkuma, M. Koizumi, H. Doucet, T, Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1998, 120, 13529
- [140] M. Studer, S. Burkhardt, Chem. Comm. 1999, 1727
- [141] M. J. Burk, T. G. P. Harper, J. R. Lee, C. Kalberg, *Tetrahedron Lett.* 1994, 35, 4963
- [142] K. Tani, K. Suwa, T. Yamagata, S. Otsuka, *Chem. Lett.* **1982**, 265
- [143] K. Tani, K. Suwa, E. Tanigawa, T. Ise, T. Yamagata, Y. Tatsuno, S. Otsuka, J. Organomet.Chem. 1989, 370, 203
- [144] M. J. Burk, A. Pizzano, A. L. Rheingold, Organometallics 2000, 19, 250
- [145] M. J. Burk, J. Am. Chem. Soc. 1991, 113, 8518
- [146] M. J. Burk, J. E. Feaster, W. A. Nugent, R. L. Harlow, J. Am. Chem. Soc.
 1993, 115, 10125
- [147] M. J. Burk, J. E. Feaster, R. L. Harlow, Organometallics 1990, 9, 2653
- [148] K. B. Sharpless, Y. Gao, J. Am. Chem. Soc. 1988, 110, 7538

- [149] B. Kim, K. B. Sharpless, *Tetrahedron Lett.* 1989, 30, 655
- [150] S. Roßenbach, *Diplomarbeit* BUGH-Wuppertal, **1998**
- [151] K. Kottsieper, *Diplomarbeit*, BUGH-Wuppertal, 1999
- [152] B. Fell, G. Papadogianakis, J. Mol. Catal. 1991, 66, 143
- [153] K. Issleib, R. Kuemmel, *Chem. Ber.* **1967**, 100, 3331
- [154] L. Lavenot, M. H. Bortoletto, A. Roucoux, C. Larpent, H. Patin, J. Organomet. Chem. 1996 509, 9
- [155] E. Paetzold, A. Kinting, G. Oehme, J. Prakt. Chem. 1987, 329, 725
- [156] O. Herd, A. Heßler, M. Hingst, M. Tepper, O. Stelzer, *J. Organomet. Chem.* 1996, 522, 69
- [157] C. E. McKenna, J. Schmidhauser, J. Chem. Soc. Chem. Commun. 1979, 739
- [158] C. J. Salomon, E. Breuer, Tetrahedron Lett. 1995, 36, 6759
- [159] L. Ernst, Org. Magn. Res. 1977, 9, 1, 35
- [160] W. A. Herrmann, J. Kellner, H. Riepl, J. Organomet. Chem. 1990, 389, 103
- [161] A. L. Casalnuovo, J. C. Calabrese, J. Am. Chem. Soc. 1990, 112, 4324
- [162] Autorenkollektiv, Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986
- [163] D. D. Perrin, W. F. L. Amarego, D. R. Perrin, *Purification of Laboratory Chemicals*, Pergamon Press, Oxford, London, New York, **1966**
- [164] G. M. Sheldrick, SHELXS-86, Universität Göttingen, 1986
- [165] G. M. Sheldrick, SHELXL-93, Universität Göttingen, 1993
- [166] M. Baudler, A. Zarkadas, Chem. Ber. 1971, 104, 3519
- [167] R. B. King, Organometallic Synthesis, Academic Press, New York, London, 1965

Inhaltsverzeichnis

1	Einleitung und Problemstellung1
1.1	Entwicklung der asymmetrischen Katalyse1
1.2	Polar modifizierte Phosphanliganden 4
1.3	Problemstellung
2	Synthese und Charakterisierung von Phosphanen mit hydroxy- lierten Seitenketten8
2.1	Synthese der Verbindungen 1, 2a-d
2.2	Charakterisierung der Phosphane 1, 2a-d12
2.3	Synthese der wasserlöslichen Derivate 2e, 2f und 2g 15
2.4	Charakterisierung der wasserlöslichen Derivate 2e, 2f und 2g 19
3	Derivatisierung der Phosphane 2a und 2d23
3.1	Synthese der Phosphane mit Dioxaborolan-Ringsystemen (3a , 3b)
3.2	Charakterisierung der Phosphane 3a und 3b
3.3	Röntgenstrukturanalyse von 3a
4	Synthese und Charakterisierung von Phosphanen mit Dioxolan- gruppen34
4.1	Synthese der Phosphane 4a-d
4.2	Charakterisierung der Phosphane 4a - 4d
4.3	Synthese der wasserlöslichen Derivate 4e und 4f
4.4	Charakterisierung der Phosphane 4e und 4f
4.5	Röntgenstrukturanalyse von 4g
4.6	Synthese der zweizähnigen Phosphane 5a-g
4.7	Versuche zur Diastereomerentrennung am Beispiel der ditertiären Phosphane 5a , 5e und 5f
4.8	Hydrolyse der Isopropyliden-Schutzgruppen58

4.9	Charakterisierung der Phosphane 5a-g 59
5.	Koordinationschemie einiger ausgewählter Phosphane65
5.1	Synthese und Charakterisierung der Palladium(II)-Komplexe 6-9 65
5.2	Synthese und Charakterisierung der Rhodium(I)komplexe 10-13
6	Katalytische Aktivität der Pd-Komplexe der Phosphane 2a, 2d,3a, 3b, 4a und 4d77
7	Chirale Phospholansysteme80
7.1	Synthese der chiralen Phosphanliganden mit Phospholangruppen
7.2	Charakterisierung der Phosphane 16 – 20 85
7.3	Röntgenstrukturanalyse von 20
8	Phosphane mit sperrigen und unpolaren Resten91
8.1	Phosphane mit carboxylierten Cyclohexylresten
8.2	Phosphane mit tensidischen Eigenschaften93
9	Phosphane mit Benzylphosphonatgruppen99
9 9.1	Phosphane mit Benzylphosphonatgruppen
9 9.1 9.2	Phosphane mit Benzylphosphonatgruppen
9 9.1 9.2 9.3	Phosphane mit Benzylphosphonatgruppen
 9 9.1 9.2 9.3 10 	Phosphane mit Benzylphosphonatgruppen .99 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32 .100 Charakterisierung der Phosphane 28 - 32 .102 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der .104 Tabellen .108
 9 9.1 9.2 9.3 10 10.1 	Phosphane mit Benzylphosphonatgruppen .99 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32 .100 Charakterisierung der Phosphane 28 - 32 .102 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der .104 Tabellen .108 NMR-spektroskopische Daten .108
 9 9.1 9.2 9.3 10 10.1 10.2 	Phosphane mit Benzylphosphonatgruppen 99 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32 100 Charakterisierung der Phosphane 28 - 32 102 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der 104 Tabellen 108 NMR-spektroskopische Daten 108 Massenspektrometrische Daten 181
 9 9.1 9.2 9.3 10 10.1 10.2 11 	Phosphane mit Benzylphosphonatgruppen 99 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32 100 Charakterisierung der Phosphane 28 - 32 102 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der 104 Tabellen 108 NMR-spektroskopische Daten 108 Massenspektrometrische Daten 181 Zusammenfassung 190
 9 9.1 9.2 9.3 10 10.1 10.2 11 12 	Phosphane mit Benzylphosphonatgruppen
 9 9.1 9.2 9.3 10 10.1 10.2 11 12 12.1 	Phosphane mit Benzylphosphonatgruppen
 9 9.1 9.2 9.3 10 10.1 10.2 11 12 12.1 12.2 	Phosphane mit Benzylphosphonatgruppen .99 Synthese der Diphenylphosphinobenzylphosphonate 31 und 32 .100 Charakterisierung der Phosphane 28 - 32 .102 Bestimmung der katalytischen Aktivität der Phosphane 31 und 32 in der .104 Tabellen .108 NMR-spektroskopische Daten .108 Massenspektrometrische Daten .181 Zusammenfassung .190 Experimenteller Teil .194 Arbeitsmethoden .194

	12.3.1	Darstellung der Phosphane
	12.3.2	Darstellung der Übergangsmetallverbindungen
	12.3.3	Darstellung der organischen Verbindungen 199
12.4	Darstellu	ung der Phosphane mit hydroxylierten Seitenketten
	12.4.1	Darstellung von 1
	12.4.2	Darstellung von <i>rac</i> - und (<i>R</i>)-(-)-2a
	12.4.3	Darstellung von $[(R,S)_P,R_C]$ - 2b
	12.4.4	Darstellung von <i>rac</i> - und $[(R,S)_P,R_C]$ -2c
	12.4.5	Darstellung von <i>rac</i> - und (<i>R</i> , <i>R</i>)-(-)- 2d
	12.4.6	Darstellung von 2e und 2f
	12.4.7	Darstellung von 2g
12.5 Direkte und indirekte Derivatisierung der Verbindungen 2a und 2d		
	12.5.1	Darstellung von <i>rac</i> - und (<i>R</i>)-(+)- 3a sowie <i>rac</i> - und (<i>R</i> , <i>R</i>)-(-)- 3b 203
	12.5.2	Allgemeine Arbeitsvorschrift zur Darstellung der Phosphane mit
		isopropylidengeschützten 2,3-Dihydroxypropyl-Substituenten 204
	12.5.3	Darstellung von zusätzlich funktionalisierten Derivaten des
		Phosphans 4a
12.6	Darstell sekundä	ung von chiralen zweizähnigen Phosphanen, ausgehend vom ren Phosphan 4c
	12.6.1	Methode A: Nucleophile Phosphinierung im "superbasischen"
		Medium DMSO/KOH
	12.6.2	Methode B: Nucleophile Phosphinierung mit Lithiumphosphiden 210
12.7	Schutzgi	cuppensynthesen
	12.7.1	Einführung und Abspaltung der Boran–Schutzgruppen
	12.7.2	Einführung und Abspaltung der Sulfid-Schutzgruppe
	12.7.3	Hydrolyse der Isopropyliden-Schutzgruppen der Phosphane 4a, 5a
		und des Sulfids von 5a

12.8	Darstellung der Phosphinoessigsäuren		
	12.8.1	Darstellung von 24	
	12.8.2	Darstellung von 25 und 26	
12.9	Darstellu	ung von 21 und 22	
12.10 Darstellung der chiralen Phosphanliganden mit Phospholansystemen			
	12.10.1	Darstellung von 17	
	12.10.2	Darstellung von 19	
	12.10.3	Darstellung von 20	
12.11 Darstellung der Phosphonatophosphane			
	12.11.1	Palladium-katalysierte Synthese von 28 und 29	
	12.11.2	Darstellung der Dinatriumphosphonate 31 und 32	
12.12 Darstellung der Übergangsmetallkomplexe			
	12.12.1	Darstellung der Palladium(II)-Komplexe L ₂ PdCl ₂ (6-8)	
	12.12.2	Darstellung 9	
	12.12.3	Darstellung der Rhodium(I)-Komplexe 10-13	
12.13 Bestimmung der katalytischen Aktivität am Beispiel einer "Suzuki-Kupplun			
	12.13.1	Darstellung von <i>m</i> -Bromphenyldiphenylphosphanoxid	
	12.13.2	Darstellung der Palladium-Katalysatoren	
	12.13.3	Versuchsvorschrift für die "Suzuki-Kupplung von	
		(<i>m</i> -Bromphenyl)diphenylphosphanoxid mit Benzolboronsäure 224	
13	Verzeich	nis der Verbindungen226	
14	Literaturverzeichnis233		