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I

Zusammenfassung

Der zelluläre Schleimpilz Dictyostelium discoideum zeigt in Bezug auf posttranslationale

Modifikationen viele Parallelen zu höherentwickelten Organismen. Aufgrund dieser Tatsache und

wegen seiner einfachen Kultivierung wurde dieser Eukaryont herangezogen um die funktionelle

Bedeutung von Glycanstrukturen an Proteinen zu untersuchen. Mutanten mit einem reduzierten

Fucosylierungsgrad zeigen phänotypische Veränderungen in der Lebensfähigkeit ihrer Sporen und

präsentieren im Vergleich zum Wildtyp veränderte glycanabhängige Epitope an deren Proteinen.

Bislang fehlte eine detaillierte Charakterisierung der vorhandenen Glycanstrukturen in Wildtyp und

Mutanten. Diese ist jedoch erforderlich, um den beobachteten Phänotyp auf molekularer Ebene

erklären zu können. Anhand des prominenten Sporenmantelproteins SP96 wurde in der vorliegenden

Arbeit eine eindeutige strukturelle Aufklärung der in den verschiedenen Mutanten vorliegenden

posttranslationalen Modifikationen erreicht.

Am Protein des Wildtyps konnten etwa 20 an Serine gebundene Fucose-Einheiten, sowie etwa

60 Einheiten der neuartigen, phosphodiester gebundenen Disaccharidstruktur (Fuc(α1-3)GlcNAc-α-1-

P) an Serine nachgewiesen werden. Diese wurde mittels GC-MS und  LC-MS Analysen, sowie durch

1D- und 2D-NMR-Spektroskopie eindeutig identifiziert.

Die Quantifizierung der posttranslationalen Modifikationen am SP96 Protein erfolgte mittels

HPAEC-PAD Monosaccharid-  und GC-MS Analyse, sowie eines colorimetrischen  Phosphattests und

zeigte, daß im Protein des Wildtyps über 70% der Serine glykosyliert vorliegen. Die Abnahme der

Fucose in den zwei Mutanten auf etwa 20 % bzw. < 5% im Vergleich zum Wildtyp konnte in einer

Mutante eindeutig dem Verlust der terminalen Fucose von der Disaccharideinheit, in einer anderen

Mutante dem weiteren Verlust der O-glycosydisch gebundenen Fucose zugeordnet werden. Die

Lokalisierung der vorhandenen Glycanstrukturen erfolgte nach enzymatischer Spaltung des Proteins

und anschließender Edman-Sequenzierung der mittels Antikörper markierbaren Fragmente.

Darüberhinaus wurde ein bereits in D. discoideum etabliertes Expressionssystem benutzt, um

Peptidmotive aus SP96 auf ihre potentielle Glykosylierbarkeit hin zu untersuchen.

Es konnte gezeigt werden, daß alle Modifikationen an der Aminosäure Serin vorliegen, wobei

der überwiegende Teil am C-terminus des Proteins lokalisiert zu sein scheint. Die identifizierten,

quantifizierten und lokalisierten Glycanstrukturen konnten abschließend in direkten Zusammenhang

zu den Epitopen monoklonaler Antikörper gebracht werden.

Die phänotypischen Beobachtungen lassen sich so erklären, daß der Verlust der direkt an Serin

gebundenen Fucose, im Gegensatz zu der terminal am Disaccharid gebundenen, einen größeren

Einfluß auf die korrekte Eingliederung von SP96 in den Komplex von Sporenmantelproteinen hat.

Dies führt letztendlich zu einem permeableren Sporenmantel.



II

Abstract
In relation to post-translational modifications the cellular slime mold Dictyostelium discoideum has

many features in common with higher eukaryotic cells. Therefore this easy-to-handle eukaryotic

organism was chosen to study the relationship of glycosylation patterns on proteins to their function.

Mutants with a lack in fucosylation have a phenotype of less viable spores and present different glycan

dependant epitopes on proteins. Until now no detailed study has been done to characterise the different

oligosaccharide structures in order to elucidate the relationship of the glycan to function and to relate

the glycan structures to the antibody epitopes.

In this thesis the exact differences in the post-translational modifications of wild-type and

mutants of D. discoideum were analysed on the purified major spore coat protein SP96.

The wild-type protein contains approximately 20 serine linked fucose residues and

approximately 60 sites with a newly identified, O-linked phosphodiester-linked disaccharide structure

(Fuc(α1-3)GlcNAc-α-1-P) attached to serine. This new structure was identified by GC-MS and LC-

MS analysis as well as by 1D and 2D-NMR spectroscopy.

It could be shown that the decreased amount of fucose in one mutant to 20% of the wild-type

content was the result of a missing terminal fucose on the newly identified disaccharide structure.

Another mutant, with a further decreased amount of fucose (less than 5% of the wild-type content) lost

furthermore the O-linked fucose residues.

 The identified glycan structures were correlated with the epitopes of some monoclonal

antibodies. This allowed some conclusions as to the mutations in the different mutants to be drawn.

The quantification of post-translational modifications of the SP96 protein was determined by

HPAEC-PAD monosaccharide and GC-MS analysis as well as by a colourimetric phosphate assay.

This showed that more than 70% of the serines in wild-type SP96 were glycosylated.

The localisation of modifications on SP96 was also partially achieved. To localise some of the

glycan structures on SP96 it was enzymatically digested, and peptide fragments detected by

monoclonal antibodies were used for Edman sequencing. A second approach used an already

established D. discoideum expression system to analyse recombinant peptide motifs of SP96 for their

O-glycosylation. It was shown that serine was the only modified hydroxyamino acid and that the main

location of the glycosylation was the serine-rich C-terminus of the protein.

It can be concluded that O-linked fucose has a higher influence on the correct integration of

SP96 in the spore coat than the terminal fucose of the disaccharide. This, finally, leads to the increased

permeability of the spore coat.
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1 Introduction

This dissertation deals with the localisation, qualitative and quantitative determination

of post-translational modifications to the spore coat glycoprotein SP96 in the eukaryotic

organism Dictyostelium discoideum. The vegetative amoebae of D. discoideum have many

features in common with mammalian cells and are therefore suitable for basic research on

differentiation, cell motility, membrane trafficking,  cell-cell recognition and different aspects

of glycobiology.

The spore, the final stage in the organisms developmental process, is created to

survive long starvation periods. The coat surrounding the spore is the protective barrier

against environment stress, as for example against protease digestion and dehydration. In

recent years progress has been made in understanding spore coat assembly (120, 121, 136,

137). The major part of the spore coat is built of glycoproteins. The functional importance of

glycosylation of spore coat   proteins could be demonstrated in survival of mutants with a lack

in fucosylation. The mutants show a higher permeability of the spore coat which results in a

lower viability. However, the detailed structures of protective glycans are still unknown.

Earlier experiments on glycosylation of proteins in D. discoideum involved the use of

monoclonal antibodies created against late stage glycoproteins of wild-type and mutants

lacking fucosylation (10, 11, 48).  A panel of antibodies recognised more or less undefined

carbohydrate structures on spore coat proteins, including SP96 and PsB as well as cysteine

proteinases secreted from vegetative amoebae (12).

That glycosylation is developmentally regulated could be demonstrate using the

mutants which lack fucose causing  the absence of carbohydrate epitope on proteins of only

one stage of development compared to wild-type proteins. Spore coat proteins of the mutant

lack the carbohydrate depending epitope, but the same strain is still able to construct the

carbohydrate structure recognised by the antibody on the cysteine proteinase, expressed by

vegetative growing amoebae.

This developmentally regulated glycosylation and the  phenotypic characterisation of

fucose mutants led to research focussing on the glycosylation structures recognised by the

monoclonal antibodies. A major spore coat protein, SP96, of the wild-type strain and fucose

mutants has several carbohydrate epitopes. This glycoprotein is important for the correct

assembly of the spore coat. Characterisation of its post-translational modifications and their

localisation on SP96 provided an opportunity to relate to the antibody epitopes, and shed light

on  glycan/ function relationships.
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1.1 Glycosylation of proteins

Glycoproteins are proteins with different carbohydrates covalently bound at distinct

amino acids within the protein backbone. The content of carbohydrate can vary from less than

1 %  in some collagens  to more than 85 % in some blood group substances (82, 115).

Although studies of glycoproteins date back more than a century, the enormous

significance of glycosylation as a common and highly diverse co- and post-translational

modification on proteins has really started to be appreciated only in the last decade.

Increasing the sensitivity of the methods used to detect and analyse accurately glycosylation

has revealed the diversity in both structures and  functions of  the carbohydrate component of

proteins.  Glycosylation can effect the physicochemical or biological nature of proteins (Table

1-1). Frequently,  a relationship can be observed between the amount of glycosylation on a

protein  and its function (Figure 1-1). However, whilst the function of glycosylation is

becoming well understood in some biological processes, the relationship between the glycan

structure and their functions still remains speculative.

Glycosylation of proteins mainly occurs by the action of glycosyltransferases,

enzymes which catalyse the transfer of carbohydrate residues from activated sugar donors to

the protein backbone or to already attached glycans. These enzymes are predominately

resident membrane proteins of the endoplasmic reticulum and the Golgi apparatus. The

sequential processing of glycan structures goes through these compartments.

Glycosyltransferases are  mainly highly specific for their donor and acceptor substrates,

resulting in specific linkages of the attached carbohydrate (105).

The carbohydrate components of glycoproteins are often heterogeneous. Variation at a

single site of glycosylation is termed microheterogeneity and diversity between sites of

glycosylation is termed macroheterogeneity. This combined heterogeneity results in many

discrete subsets or glycoforms of a glycoprotein (25, 110). Diversity can be observed of

carbohydrates attached to a single protein produced by different tissues or organisms. Even in

one cell type glycosylation may vary depending on the cell cycle, state of differentiation and

development. It is also known that during the progression of some diseases,  for example

cancer and Alzheimer, a change of glycosylation in some proteins can be observed (52).

Glycosylation is also important during embryonic development but in mammals these stages

are not easily manipulated experimentally. Therefore, for a better understanding of this

structure/ function relationship in development, it is useful to analyse the glycosylation of less

complex organisms, working as a model for differentiation and development. In this case the
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glycosylation is easier to manipulate using inhibitors or mutations and changes can be related

to phenotypical  observations.

Effect Functional effect

Physicochemical Modifies solubility, electrical charge, mass, size and viscosity in solutions.

Controls protein folding, stabilize protein conformation, confers thermal stability

and protection against proteolysis

Biological Modifies protein trafficking and turnover, immunological properties. Modulates

activity of enzymes and hormones, cell recognition and adhesion, signal

transduction.

Table 1-1 Function of the glycan component of glycoproteins.

 Adapted from Sharon and Lis (82, 115).

Figure 1-1 Relationship of glycosylation level/ function

Often

Rarely

Affect solubility, charge and viscosity
Control folding and subunit assembly
Stabilize protein conformation
Protect against proteolysis
Affect the lifetime in circulation
Change the immunological properties
Modify the transmission of signals by cellular receptors
Modify the activity of enzymes and hormones
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1.2 Types of protein glycosylation

Glycosylation of proteins is classified into different types, depending on the

carbohydrate-peptide linking group.  A recent review (115) describes three major types of

glycosylation (A-C) and furthermore three minor types (D-F).

A) N-linked glycosylation: the reducing terminal sugar is covalently bound to the amide

group of the amino acid asparagine (77, 110).

B) O-linked glycosylation: the reducing terminal sugar is bound to the hydroxyl group of

an amino acid, commonly serine (Ser) or threonine (Thr) and less frequently tyrosine

(Tyr), hydroxylysine (Hly) or hydroxyproline (Hpr).

C) Glycosylphosphatidylinositol (GPI)-anchor: the carboxy terminus of a protein is

attached via ethanolamine to a carbohydrate structure containing inositol, which in

turn is connected to  a hydrophobic lipid membrane anchor (27).

D) Phosphoglycosylation:  the linkage of a carbohydrate through a phosphodiester bond

to a hydroxy amino acid, such as Thr or Ser (62).

E) C-mannosylation: the indole ring of tryptophan (Trp) has a mannose residue attached

(19, 64).

F) Ribosylation: the linkage of  the 3-hydroxyl group of ribose to glutamic acid (Glu),

asparagine (Asp), arginine (Arg) or cysteine (Cys).

Of special interest in this thesis are N-linked, O-linked and phosphodiester linkages.

1.2.1 N-linked glycosylation

N-linked glycosylation in eucaryotes is the best analysed form of glycosylation so far.

The core structure of GlcNAc2Man5 is built on the cytoplasmic side of the endoplasmic

reticulum (ER),  on the lipid carrier molecule dolichol, which consists of 16-20 isoprene units.

After translocation of the glycan core structure to the lumen of the ER, it is modified by the

addition of four mannose and three glucose residues, resulting in the structure

GlcNAc2Man9Glc3. Finally this glycan is  transferred en bloc to the growing polypeptide at

the amino acid asparagine residue in the consensus tripeptide sequence Asn-X-Ser/Thr

(X≠Pro) (77). This glycosylation occurs co-translational as the growing peptide is
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translocated into the ER. After transfer of the glycoprotein  to the Golgi apparatus the glycan

undergoes reconstruction, being trimmed to a core structure and rebuilt to form three

structural types of N-linked oligosaccharides. These structures are called A) high mannose-

type, B)  complex-type and C) hybrid type (Figure 1-2), but may possess a broad  range of

structural variation.

An important tool in the analysis of N-linked glycans are specific N-glycosidases, used

to release the reducing end of the glycan from the protein. For a complete glycan release it

requires denaturation of the protein which is not suitable for functional studies. Functional

studies on the effect of N-glycans on intact proteins have been done in three ways. Inhibitors

like tunicamycin, which inhibit the first glycosylation step, the addition of GlcNAc to

dolicholphosphate resulting in proteins lacking N-glycans. Secondly mutants defective, or

deficient in one or more glycosyl transferases (129). The effect of altered N-linked

glycosylation goes over a broad range depending on the modified protein (128). For example,

most lysosomal enzymes lose the targeting signal for delivery to lysosomes or lose their

activity (128). On the other hand, some glycoprotein hormones show complex effects like

unusual combinations of subunits, or an agonist being converted into an antagonist by loss of

glycosylation or changes in specifity (128). Apart from complex effects, also the simple loss

of protection can be observed on proteins resulting from changed  conformation (128).

In the last decade, several new carbohydrate structures linked to asparagine have been

Asn-X-Ser/Thr

GlcNAc

GlcNAc

β

β 1-4

Man
β 1-4

ManMan
α 1-3 α 1-6

Man

Man

α 1-2

α 1-2
Man Man

Asn-X-Ser/Thr

GlcNAc

GlcNAc

β

β 1-4

Man
β 1-4

ManMan
α 1-3 α 1-6

Man Man

α 1-3 α 1-6

α 1-2 α 1-2
GlcNAcGlcNAc

Gal Gal

β 1-2 β 1-2

β 1-4 β 1-4

Neu5Ac Neu5Ac
α 2-6α 2-6

α 1-6α 1-3

α 1-6α 1-3
Man Man

β 1-4
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β 1-4

β

GlcNAc

GlcNAc

Asn-X-Ser/Thr

ManMan
β 1-2
GlcNAc

Gal
β 1-4

A
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B
Complex

C
Hybrid

core
structure

Figure 1-2 Representative  structures of N-linked oligosaccharides

A) high mannose–type, B) complex-type, C) hybrid-type
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discovered, mainly in bacterial glycoproteins and all cases fit the tripeptide Asn-X-Ser/Thr

consensus sequence mentioned above (115). Table 1-2 shows all known reducing terminal

linkages of carbohydrate to asparagine (115).

In a recently published paper it was assumed that the majority of proteins, containing

the consensus sequence, will be found to be glycosylated (3) provided that they have a signal

sequence i.e. transit to the ER/Golgi.

Reducing terminal linkage Amino acid Occurrence

βGlcNAc Asn Eukaryote

βGalNAc Asn Archaebacteria

βGlc Asn Animals (only laminin)

Archaebacteria

Rha Asn Eubacteria

Table 1-2Carbohydrate-asparagine linkages  (115)

1.2.2 O-linked glycosylation

O-linked glycosylation is less well characterised than N-linked glycosylation. The

carbohydrate is commonly attached via a hydroxyl group of the amino acid serine or

threonine and infrequently to tyrosine, hydroxylysine or hydroxyproline.  O-glycosylation is

mainly a post-translational and post-folding event; therefore, only serine and threonines on

the protein surface will be glycosylated (127). O-linked glycosylation  can be initiated in

several subcellular compartments. It may occur in the ER or in the three regions of the Golgi

apparatus (proximal-, intermediate- and beyond-compartment). In addition cytosolic O-

glycosylation, O-GlcNAc, occurs in eukaryotes. Furthermore, the presence/ location of

glycosyltransferases  is cell- or tissue-specific (14).

O-linked glycosylation has no defined core glycan structure unlike eukaryotic

N-linked glycosylation. There is a wide variety of reducing terminal sugar residues

(Table 1-3). Size may vary from a  single unit (for example O-GlcNAc) up to elongated
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oligosaccharides more than 100 residues in length, as found on some cell surface  proteins

(115). One problem in analysing O-glycans is the lack of a generally applicable enzyme for

releasing a broad range of O-linked glycans from the protein, like for example, PNGase F for

N-linked sugars.

Determing the exact localisation of O-glycosylation sites is also a very complicated

issue, since all chemical methods used to release the O-glycan also destroy the protein. For

example, peptides cannot be analysed by mass-spectrometry after releasing their O-linked

modification because commonly the peptide is degraded afterwards. One successful way of

identifying the glycosyated sites of native glycoproteins is solid phase Edman sequencing

with aqueous phase chromatography, which allows the identification of modified amino acids

and the identification of the attached reducing sugar (47). Identification of acceptor sites for

O-glycosylation has also been carried out using in vitro glycosylation assays (6, 94, 95, 122,

133, 152) and more recently using in vivo glycosylation systems (71, 91, 92). In the latest in

vivo glycosylation systems, a carrier protein is expressed with an attached peptide which can

be modified by the organisms “glycosylation machinery”. The carrier protein is chosen to be

easily purified by affinity chromatography and the glycopeptide used for further

characterisation (70, 71).

The characterisation of different glycosylation sites should help to predict rules when

O-glycosylation  will occur (46). No peptide specific consensus sequence for O-glycosylation

can yet be defined. Indeed, with the possible motifs already identified (28, 46, 149), it seems

unlikely that a single consensus sequence exists, particularly in view of the larger variety of

reducing terminal carbohydrates.  So far, two neuronal networksa have been developed that

predict sites of O-glycosylation based on “training sets” compiled  from known glycosylation

sites  (53, 57). One predicts the sites of αGalNAc on secreted mammalian proteins and the

other the addition of αGlcNAc to the polypeptide backbone of secreted cell surface proteins

of D. discoideum (57).

O-glycosylation has been observed at single sites or accumulated in clusters in

proteins, in contrast to eukaryotic N-linked glycosylation with its mostly well separated

glycosylation sites. Often O-glycosylation can be clustered in serine and/ or threonine rich

repeat regions, so called “mucin domains”, sometimes interrupted by single proline residues.

Mucins are glycoproteins with highly glycosylated domains of oligosaccharides  linked via

α−GalNAc to Ser/ Thr. The extensive glycosylation on mucins and in the functional domains

                                                
a http://www.cbs.dtu.dk/services/NetOGlyc/
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of many cell-surface proteins is believed to force the protein backbone into a semi-rigid or

extended conformation. This “bottlebrush glycosylation” provides spatial separation between

functional domains, or projects functional domains away from the cell membrane (68). It is

speculated that the high carbohydrate content on mucins influence their physicochemical

functions such as hydrodynamic properties, solubility and buffering capabilities and,

moreover, has biological function in cell–adhesion, migration and differentiation (130).

Reducing terminal linkage Amino acid Occurrence

Araf Hyp Plants

α-Fuc Ser, Thr Animals

α-Gal Hyp Plants, eubacteria

α-Gal Ser Plants, eubacteria

β-Gal Hyl Animals (collagen only)

β-Gal Tyr Eubacteria

α-GalNAc Ser, Thr Eukaryotes

α-Glc Tyr Animals (glycogen only)

β-Glc Ser, Thr Eubacteria, Animals

α-GlcNAc Ser, Thr Protozoa

β-GlcNAc Ser, Thr Animals

α-Man Ser, Thr Yeast, animals

β-Xyl Ser Animals

Table 1-3 Carbohydrate-hydroxy amino acid  linkages

1.2.3 Phosphoglycosylation

The first reported example of a protein modified by phosphoglycosylation was an

endopeptidase known as Proteinase I, isolated from the cellular slime mold Dictyostelium

discoideum (54). A released glycan contained GlcNAc-1-PO4, later confirmed as single

GlcNAc residues phosphodiester linked to serine (87). A highly specific monoclonal antibody

against GlcNAc-1-PO4 was used to identify further phosphoglycosylated proteinases in this
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organism (101, 118). Recently, a new  phosphoglycosylation (Fuc-β-1-P) was identified  on

an artificial peptide and further characterised as an antibody epitope in D. discoideum (119).

Phosphodiester linked carbohydrates were also identified on secreted proteins of the

protozoan flagellate Leishmania, where this class of glycosylation could act as a secretion

signal (62). In Trypanosoma cruzi, a kinetoplastid parasite, phosphoglycosylation was

detected on some cell surface proteins (63) (Table 1-4). The variety of glycan structures

ranges from  single carbohydrates up to long oligosaccharides, which may be formed from

phosphodiester-linked disaccharide repeat units. The attached glycans in Leishmania are

linear or branched, and may be further phosphorylated (62, 67). Phosphoglycosylation is

found in repetitive Ser/ Thr rich motifs (145), but at this time no consensus peptide sequence

has been reported for phosphoglycosylation (86).

One feature common to all phosphoglycoproteins characterized is a high level

immunogenicity, which assist the production of a large number of highly specific monoclonal

antibodies (16, 65). The strength of the immune response suggests that phosphoglycosylation

is unlikely to occur in mammalian cells.

Reducing terminal linkage Amino acid Occurrence

Fuc* Ser D. discoideum

GlcNAc* Ser D. discoideum

α-Man Ser Leishmania mexicana

Xyl Ser/ Thr Trypanosoma cruzi

Table 1-4 Phosphoglycosylation adapted from Haynes (62).
* single carbohydrate unit linked over phosphodiester
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1.3 Dictyostelium discoideum- a model system for developmental

glycobiology

Our understanding of glycobiology of multicellular organisms is largely based on

studies in a limited number of model systems such as Drosophila and the Muridae (mouse).

D. discoideum has a unique life cycle, during which it grows as single cells, but on starvation

cells aggregate together to form a multicellular organism and progressing through a series of

well defined developmental steps. In this study the cellular slime mold D. discoideum has

been used as a model to study glycobiology during growth and development. The amoeba

exhibits the same types of protein modifications as are found in complex eukaryotes,

including sulphation, phosphorylation and N-linked and O-linked glycosylation (9, 38, 39).

There are two reports of sialic acid (NeuNAc) in D. discoideum (153, 154), although modern

studies have failed to find sialylation in this organism. To date relatively few glycan

structures have been solved in D. discoideum. Progress so far has relied on immunochemisty.

Since many Dictyostelium glycans are highly immunogenic in mammals, monoclonal

antibodies have been generated against carbohydrate antigens expressed at different stages in

development. Although the structures the antibodies recognize are unknown, they are an

important tool for studying developmental regulation of the respective epitopes and

physiological consequences of their loss in mutant strains  (40). The generation of mutants

with altered glycosylation patterns is greatly assisted by the cells being haploid and

parasexual genetic techniques to compliment mutations (148).

1.3.1 D. discoideum life cycle

D. discoideum is an unicellular free-living amoeba (∼10 µm) and was first isolated

from temperate forest soil by Raper in 1933 (107). The unicellular amoeba is fed by

phagocytosis of bacteria. When all the bacteria are consumed, starvation triggers a complex

developmental program (Figure 1-3). Cells migrate into mounds using pulses of cyclic

adenosine 3´, 5´-monophosphate (cAMP) as a chemotactic signal. As a result groups of 103-

105 cells become mutually adhesive and undergo a synchronous morphogenesis.  The mounds

of cells form into a motile, multicellular  structure the so called “slug”, that migrates along

light and heat gradients. During this time the cells differentiate into two cell types, prespore

cells in posterior 2/3 and prestalk cells in the anterior 1/3 of the slug. Approximately  24 h
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after aggregation the slug cells form a fruiting body (2-3 mm). The mature fruiting body

contains about 70,000 spores, supported by a stalk and basal disc of about 30,000 cells

sheathed in cellulose walls to hold up the mass of spores. Each spore encloses a viable,

dormant cell. Under proper environmental conditions (17, 18), like exposure to water and a

suitable supply of nutrients,  the dormant spore germinates, rupturing the spore coat to release

a viable, free living amoeba.

Dictyostelium is an eukaryotic organism; it is easy to handle and shows a tightly

regulated pattern of development. Moreover, strains exist which can also be cultivated in

liquid media like bacteria suspension and  axenic- and synthetic-media, which provide an easy

to handle developmental system.

fruit ing body (2-3 mm)

early -,    mid- and late culminant

amoeba
bacteria

slug

slug formation

aggregate

spores

germination

vegetative phase

Figure 1-3 Life cycle of Dictyostelium discoideum
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1.3.2 Spores

The spore is an important developmental stage of the organism, which allows single

viable cells to survive long periods of starvation. To protect the enclosed cell from

environmental stress, as desiccation, heat and UV light, the individual spores are covered by a

multi-layered coat (30). The spore wall outer layer consists of  glycoproteins, a middle layer

contains cellulose and the inner layer containing further glycoproteins and galactose/

N-Acetyl galactosamine polysaccharides and appears to have some physical association with

the plasma membrane (140) (Figure 1-4).  The cellulose plays an important structural role in

the spore coat assembly. Enzymes such as  α-Mannosidase and  acid phosphatase are located

in the inner spore coat and in the soluble matrix surrounding the spore (140). The spore coat is

composed of approximately 50 % cellulose and 50 % glycoprotein (140). More than 25

different spore coat proteins have been identified, however some of them have been only

described by single research groups.

Immuno-precipitation and immunogold labelling experiments displayed that during

the assembly of the spore coat,  several structural spore coat proteins (SP) and other essential

components are secreted from prespore cells from prespore vesicles (PSVs). The PSVs appear

in the posterior prespore cells during the latter half of morphogenesis and at culmination they

move to, and synchronously fuse with the plasma membrane. Their contents (proteins and

other polysaccharide components) are deposited into the extracellular space and then

incorporated into the spore coat (120).  Up to know more than 25 different spore coat proteins

have been identified, although some of them have been described by only one research group.

Four of the major spore coat proteins, SP96b, SP85 (PsB), SP70 and SP60, are preassembled

in a so called  PsB protein complex inside the prespore vesicles (120, 136). One important

feature for the proper integration of the PsB complex in the spore coat is its cellulose binding

activity which is generated by assembly of at least SP96, PsB and SP70 (84, 121).  Another

spore coat protein SP75 (found within PSVs but not as part of the PsB complex) is intergrated

later into the spore coat after secretion and gives further stability to the spore coat. After the

fruiting body has been formed some spore coat proteins of the contents of PSVs are more

strongly associated with the spore coat and are also disulfide-cross-linked to each other (147).

This association is supported by the observation that most of the spore coat proteins have a

                                                
b the number after the abbreviation  SP for spore coat protein is derived  from the size of the protein band  after

    SDS-PAGE separation.
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relatively high content of cysteine in their amino acid sequence and were only extracted from

the spores during SDS or urea treatment and SDS or urea/ reducing conditions, respectively

(136, 147). Fluorescence staining with  a monoclonal antibody which recognises SP96

(MUD3) demonstrates that SP96 is associated with the outer and inner layer of the coat and

therefore seems to traverse the cellulose layer (108, 121, 136). Additional SP96 can be found

in the soluble material from between the spores. SP85 is found only in the inner layer of the

spore coat, whereas SP75 is in the outer layer. SP70 and SP60 are also found in the outer

layer, although a location in the middle or inner spore coat cannot be excluded (40).

The spore coat proteins SP96, SP85 (PsB), SP75, SP70 and SP60 contain frequented

amino acids sequences with some similarities to epithelial mucin repeats (143). The similarity

to mucin proteins is of particular interest as this indicates a  possible protective function in the

spore coat. It is almost certain that the spore coat proteins are glycosylated within these

mucin-like regions.
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Figure 1-4 Schematic assemble of the spore coat with integrated PsB spore coat protein
complex

only the best analysed spore coat proteins are shown (References see Table 1-6)

 modified by glycosylation,          modified by phosphorylationP
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1.3.3 Tools for glycosylation analysis of spore coat proteins

Most studies on the glycobiology of D. discoideum have been done using tools such as

mutant strains and monoclonal antibodies. Although the exact structures that the antibodies

recognize are unknown they have been used to define different types of glycosylation (11)

and for identification and purification of fully-, partly-, or non-glycosylated forms of the

molecule being studied. An expression system established in D. discoideum has been used for

the analysis of O-linked glycosylation acceptor motifs (24, 70, 71).

1.3.3.1 D. discoideum  glycosylation mutants

After mutagenesis mutants were isolated which miss a wild-type specific antigen. Up

to now various glycosylation mutants have been isolated, whereby at least 5 different genes

could be identified. Defect in the modA locus influences N-glycosylation and results in

incompetence to trim the N-glycan. Defect in the modB locus influences O-glycosylation and

leads to the absence of GlcNAc on proteins. The defects leading to the modC, modD and

modE  loci mutation all show changes in the fucosylation on O-glycans (11, 39).

 In glycosylation studies done by Champion et al. (10) the strain X22, which was

generated  from the parent strain NC4 (148), was used as a wild-type. Amoeba of strain X22

were mutagenized, plated out and slugs of individual colonies were screened for the loss of

carbohydrate dependent antibody epitopes of MUD50 and/ or MUD62 (see 1.3.3.2.1 and

1.3.3.2.2). Finally two strains, HU2470 and HU2471 with independent mutations in loci

modD and modE, respectively, were found to lack the MUD62 epitope but still retain the

MUD50 epitope (10, 11). Biochemical analysis of spores showed in strain HU2470 (modD) a

decreased  fucose content of 17 % and in HU2471 (modE)  of 5.8 % of the wild-type (X22)

level (11). Both strains developed normally and produced spores, although carrying a mutated

modE gene had a lower viability after storage (121). The aggregation was somewhat delayed

and HU2471 (modE) produced slightly smaller colonies than its parent strain X22.

Fucosylation is also implicated in strains with a mutant allele in the modC which show

definite phenotypes (11). The defect in the modC locus disables formation of GDP-fucose

from GDP-mannose, and therefore the gene may encode the dehydratase or epimerase enzyme

activities responsible for this conversion (43). The resulting total lack of fucose is reflected in

phenotypes such as slow proliferation, a defective slime sheath and a permeable spore coat.

The latter result in a less protected dormant cell with lower viability.
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1.3.3.2 Carbohydrate specific antibodies

Studies of glycoproteins in D. discoideum using mAbs have used two approaches. One

approach is commonly termed the “shotgun” approach, where monoclonal antibodies are

produced from crude cellular extract containing many different proteins, and the proteins

identified by the mAbs are further examined. For example, a preparation of cells or cellular

membranes of multicellular-stage cells used as an antigen could be expected to yield mAbs

which recognise cell surface molecules, candidates for cell adhesion and cell interaction

functions (10, 48, 50). Alternatively, molecules have first been purified by conventional

protein chemistry, and then monoclonal antibodies have been produced to these purified

molecules. Monoclonal antibodies have also been prepared from mutant strains which lack

immunodominant carbohydrate epitopes.

In the following  mainly monoclonal antibodies are described which were relevant for

the glycan analysis of the spore coat protein SP96 (Table 1-5).
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1.3.3.2.1 MUD50

Grant and Williams (48) showed that the monoclonal antibody MUD50, raised against

urea extracted extracellular matrix proteins of D. discoideum, recognise pronase-insensitive

determinants which are on slug cells and sheath proteins. Strains with a mutation in the modB

gene lose the MUD50 epitope. It has been shown with PsA (prespore specific Antigen) that

the reducing terminal sugar fails to be attached to the protein (45). The antigenic determinants

are developmentally regulated. Extensive studies on the proteins recognised by this antibody

indicate that they are also found preferentially, but not exclusively, in pre–spore cells (2). The

antibody defines an O-linked glycosylation in D. discoideum which is present on PsA, contact

site A (csA), SP85 (PsB) and others (11). The MUD50 epitope is resistant to mild acid

hydrolysis. In studies on recombinant PsA (PTVT repeat) and O-glycosylation acceptor

motifs it was shown that MUD 50 recognises single GlcNAc units bound to serine or

threonine (71, 155). In the cell surface molecule PsA it recognises a GlcNAc linkage to

threonine (44), further it probably contains  fucose and  phosphate in PsA (61, 156). MUD 50

reacts with some but not all larger oligosaccharides with the same modB dependent reducing

sugar. For example, MUD 50 reacts with the natural PsA cell surface molecule produced at

the slug stage, despite of the fact that the reducing terminal GlcNAc residues can be further

modified by phosphodiester linked GlcNAc, Fuc-GlcNAc or P-Fuc-GlcNAc (156).

1.3.3.2.2 MUD62

Monoclonal antibody MUD62 was produced using extracellular matrix from slugs as

the immunogen and it was the major antigen when slug cell membranes of a modB mutants

(lacking the highly immunogenic MUD50 epitope) were used (10).  The antibody defines a

O-linked glycosylation which is found on wild-type (X22) spore coat proteins SP96 and SP75

(141) and on cysteine proteinases, CP4 and CP5c in vegetative cells. The binding on

vegetative proteins is much weaker compared to that seen on spore coat proteins (12). So far

fucose and GlcNAc have been identified as part of the epitope, but the details of the linkage

are still unknown (11, 43). It could be shown that the binding of MUD62 can be inhibited  by

L-fucose and that the epitope is susceptible to mild acid hydrolysis.  Strains with a mutation

                                                
c A. Champion, G. Harrison, M. Wilkins, M.North, A. Gooly and  K. Williams (unpublished work)
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in the loci modD (HU2470) or modE (HU2471) show a decreased level of fucosylation which

results in loss of the MUD62 epitope on the spore coat proteins (11). On vegetative cysteine

proteinases of strain HU2470 (modD) the epitope is still found, despite its absence on spore

coat proteins.

1.3.3.2.3 MUD166

Monoclonal antibody MUD166 was prepared against partly purified slug membranes

of a modB/modE double mutant which lacks the immunodominant MUD50 and MUD62

reactive glycoantigens. On western blots it reacts weakly with the SP96 and SP75 of wild-

type (X22) slug or spore preparations, but it reacts strongly with SP96 and SP75 of fucose

mutants with mutations in modD (HU2470) or  modE (HU2471). Because similar patterns of

protein staining are observed with spore preparations of  MUD62 in wild-type and MUD166

in fucose mutants, it is assumed that MUD166 recognises a truncated form of the MUD62

epitope. Interestingly MUD166 reacts with the vegetative cysteine proteinases in wild-type

strain (X22) and in the fucose mutants HU2470 (modD) and HU2471 (modE) with a weaker

but similar intensity (12). The MUD166 epitope is also similar to the MUD62 epitope in

being sensitive to mild acid hydrolysis. Binding of MUD166 can be inhibited by GlcNAc; so

the epitope probably consists at least partly of this carbohydrate (11).

1.3.3.2.4 MUD3

Monoclonal antibody MUD3 was raised against spores and is specific for the spore

coat protein SP96 (131). It is assumed that the epitope contains at least partly fucose, because,

while MUD3 recognises SP96 only in the wild-type (X22) and  in the fucose mutant HU2470,

the fucose mutant HU2471 with a further decreased level of fucose lacks the epitope. MUD3

is not competed by fucose, so this probably means that the epitope has conformational

requirements.  The MUD3 epitope is sensitive to mild acid hydrolysis and

β-elimination, which is consistent with the hypothesis that the epitope consist at least partly of

carbohydrates. However, one strange result was that it is not sensitive to periodate teatment,

which attacks cis hydroxyl groups and so would destroy unsubstituted fucose residues (12).
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1.3.3.2.5 83.5

Monoclonal antibody 83.5 was raised against glycoconjugates from slug membranes

fractionated by wheat germ agglutinin affinity purification (141). The antibody recognises

several developmentally regulated proteins including SP96, SP75 on wild-type preparations

and is able to label some vegetative cysteine proteinases. Strain HU2470 and HU2471 with a

mutation in loci modD or modE respectively, lack the epitope of 83.5 which is similar but not

identical to the MUD62 antibody epitope. Antibody 83.5 recognises a glycoantigen reported

to be an O-linked fucose and GlcNAc-containing oligosaccharide (43, 109) which is similar,

but not identical to the independently  isolated  MUD62 antibody. Antibody 83.5 is inhibited

by L-fucose and the epitope is labile to mild acid  (87).  Recently published in vivo studies on

artificial peptides revealed that the essential minimal epitope of antibody 83.5 is a

Fucβ-1-P unit phosphodiester linked to serine (119).

1.3.3.2.6 AD7.5

Monoclonal antibody AD7.5 was made against the purified lysosomal proteinase-1,

that contains multiple GlcNAc-α-1-P residues in phosphodiester linkage to serine (87).

Antibody AD7.5 can be inhibited by UDP-GlcNAc, UDP-Glc, GlcNAc-α-1-P and partially

by UDP-GalNAc (87). On a western blot it weakly recognises cysteine proteinases produced

by amoebae grown on bacteria. It can be specifically inhibited  by UDP-GlcNAc, UDP-Glc,

GlcNAc-α-1-P and partially by UDP-GalNAc (87). Spore extract of wild-type (X22) shows

labelling with AD7.5 of numerous proteins, but only a weak recognition of SP96. In the

fucose mutants HU2470 (modD) and HU2471 (modE) the protein band pattern is similar to

that found in wild-type, although the SP96 band labelled much more stronger.
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1.3.3.3 Expression of O-linked glycosylation acceptor motifs in D. discoideum

A recent review of  Jung and Williams highlighted  the potential of D. discoideum as a

host for recombinant (glyco-) protein expression (72). Six different heterologous recombinant

proteins  have been successfully produced in D. discoideum. These include S. japonicum

Glutathione-S-transferase (GST) (24), rotavirus VP7 (29), human IgE receptord, human

muscarinic receptor (132), malaria circumsporozoite antigen (31) and human antithrombin III

(23).

 To analyse motifs for O-glycosylation in vivo the 3` end of GST gene was so

modified to encode a 10-30 amino acid long peptide containing O-glycosylation acceptor

motif. The expression system was built up of a Ddp2-based extrachromosomal plasmid

containing the modified GST gene under control of an D. discoideum actin15 promoter (24,

71). The construct includes a D. discoideum signal sequence so the fusion protein is secreted.

The actin15 promoter is active early in starvation phase causing transformed D. discoideum

cells to express the GST fusion protein and the peptide acceptor motif modified by the

organism´s glycosylation machinery. The secreted fusion protein can be purified using a GST

affinity chromatography column and the cleaved acceptor motif used for further glycosylation

analysis.

In other studies on the recombinant prespore-specific antigen (rPsA) expressed under

the actin 15 promoter it was demonstrated that D. discoideum adds single GlcNAc residues to

a threonine-rich (PTVT)3-5 domain (157). The same glycosylation was observed on GST

shorter (PTVT) repeats and proteins fused with repeats where threonine was replaced with

serine (71). Interestingly there was a difference in modification between the glycosylation at

different stages of development. The recombinant rPsA expressed during vegetative growth

contained only single GlcNAc residues, but on  the authentic PsA produced by prespore cells

during the slug stage of development the reducing terminal GlcNAc is further modified with

phosphate and/or GlcNAc and  fucose (61, 156). Thus the elaboration of O-glycosylation

structure is dependent on the developmental stage of the organism.

The GST expression system was further used to identify glycosylated serines and/ or

threonines in human mucin-like motifs (70). D. discoideum attached GlcNAc to Ser/ Thr

residues in mucin repeats, unlike to mammalian glycosylation which has GalNAc on the

reducing terminus. Since there has been no clear evidence of GalNAc linked to serine or

threonine residues in D. discoideum to date, it seems that in this organism GlcNAc might

                                                
d I.Wilson, M.B. Slade and K.L Williams unpublished work
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substitute for GalNAc in this first step of O-glycosylation but the peptide motif remains the

same.

1.3.4 Glycosylation studies on spore coat proteins

Most glycosylation studies on spore coat proteins of D. discoideum have been done

without knowing the exact glycan structure (40). Detection methods like periodic acid/ Schiff

staining, radiolabelling with carbohydrates and detection with monoclonal antibodies, give an

impression of a wealth of glycoproteins at this developmental stage (Table 1-6) (43, 102, 137,

140, 147).

Radiolabelling studies have demonstrated that in prespore cells incorporation of Fuc is

greatly enhanced (49) and that most fucoproteins are prespore cell specific (79). A problem

has been that in earlier studies the same protein has been given different names in different

laboratories. However, more recently the major spore coat proteins have been defined by their

gene sequences. Some of the already identified spore coat glycoproteins have been targets  of

further, more detailed, analysis. In particular, PsA and the spore coat proteins of the PsB

spore coat complex (SP96, SP85, SP75 and SP70) have received attention (10, 11, 33, 84,

121, 136, 137, 139, 141, 142).

Radioactive labeling experiments revealed that SP96 and SP75 are highly

phosphorylated and also glycosylated like most of the other spore coat proteins (1, 2, 20, 22).

The post- translational modifications of these proteins are important for protection as has been

shown by phenotypical characterisation of mutant strains with a lack in fucosylation. Their

spores were less viable as a result of a higher permeability of the spore coat.

One of the most complete studies on the structure of a D. discoideum glycoprotein is

that done on the Prespore specific Antigen (PsA). The protein size is approximately 30 kDa, it

can be labelled with monoclonal antibody MUD50 and has the modB dependent O-linked

glycosylation. PsA has no N-linked glycosylation site as was evident from the published DNA

sequence (26). Until quite recently the structure of the O-linked oligosaccharides has not been

fully defined, but it was concluded that these contain GlcNAc (61, 109), Fuc and phosphate

(61). Latest studies have shown that a phosphate group modifies the reducing terminal

GlcNAc and that these are further modified by either GlcNAc, Fuc-GlcNAc or P-Fuc-

GlcNAc (156).  Threonine in a proline rich repeat domain (PTVT)3-5 is modified at the

reducing terminus with  GlcNAc (45). It seems that this repeat domain is a “spacer” domain
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which extends the functional domain beyond the cell surface. The glycosylation is necessary

to protect the protease sensitive domain from cleavage. This was demonstrated with the

proteolytic enzyme papain, where PsA was cleaved from the cell surface of modB cells. This

did not occur in wild-type cells (45). On a truncated form of PsA which was expressed during

the vegetative stage it was shown that a single N-acetylglucosamine residue on threonine was

the minimal epitope for MUD50 (155). This clearly indicates a developmental regulation of

type  2 oligosaccharides. Further it was demonstrated that a substitution in the motif of

threonine (PTVT) to serine (PSVS) leads to the same single GlcNAc modification, also

recognised by MUD50 (71).

The assembly of the spore coat PsB protein complex is now quite well understood

(1.3.2, Figure 1-4) and  therefore the next step of interest was to elucidate the significance of

the extensive protein modifications (136, 137). PsB (SP85) is recognised, like PsA, by

MUD50 and also exhibits modB glycosylation. However, little is known about structural

details because most studies of the MUD50 epitope have been done on PsA (1.3.3.2.1) (117).

Both SP75 and SP70 have potential N-glycosylation sites, but probably only SP75 is modified

by N-linked oligosaccharides since its molecular weight is altered in a strain carrying the

modA mutation (140).  The modA mutation in glycosidase II alters the size and charge of N-

linked oligosacchrides (36, 37, 41, 42). Both proteins show phosphorylation on serine

residues (22). A fucose containing glycan could be released by β-elimination from SP75

which runs as a hexasaccharide in gel chromatography and contains the epitope recognized by

antibodies 83.5 and MUD62 (40). Although SP70 is not reactive to the  MUD62 antibody, it

is fucosylated since its molecular size is reduced in the modC and modE mutants which are

deficient in fucose glycosylation (10, 43, 136). There is no direct evidence that SP60 is

glycosylated or phosphorylated, but the calculated molecular weight of the unmodified

protein without the signal peptide is only 47 kDa  compared to the observed 60 kDa

suggesting that post-translational modifications may exist (35, 136, 137).
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Protein name Detection of the post-

translational modification

Characteristic Reference

SP170 pa/Ss, ca-la Man, GlcNH2, Fuc (147)

SP103 pa/Ss, ca-la Man, GlcNH2, Fuc (147)

SP96/ p112 ca-la, mAb, [32P]Pi Fuc, GlcNAc, -PO4 (10, 11, 22, 30, 131)

SP90 pa/Ss, ca-la ? (147)

SP85/ PsB  mAb Fuc?, GlcNAc? (136, 140)

SP82 pa/Ss, ca-la Man, GlcNH2, Fuc (147)

SP80 mAb Fuc (141)

SP76 pa/Ss, ca-la Man, GlcNH2, Fuc (147)

SP75 ca-la, mAb, [32P]Pi Fuc, GlcNAc, -PO4 (10, 11, 84, 136, 140)

SP70/ p78 ca-la, mAb, [32P]Pi Fuc, -PO4 (10, 22, 43, 136)

SP68 (102)

SP60/ p58 (35, 136, 137)

SP33 pa/Ss (147)

SP29/ PsA mAb Fuc, GlcNAc, -PO4 (61, 142)

Table 1-6  Glycoproteins identified as spore coat proteins
pa/ Ss: periodic acid/ Schiff staining mAb: monoclonal antibody
ca-la: carbohydrate radio-labelling [32P]Pi: radio-labelling with phosphate

1.3.5 Spore coat protein SP96

SP96 is composed of 580 amino acids (Figure 1-5). After cleavage of the 20 AA long

signal sequence, it is one of the largest spore coat proteins of the PsB protein complex. The

calculated mass of the protein component is 57,510 Dalton, but the protein is further post-

translationally modified and runs on SDS PAGE  at an apparent molecular weight of 96 kDa.

Although the amino acid sequence reveals one possible N-linked glycosylation site (AA 99;

NSS) no N-linked glycan could be detected (A. Champion, pers. communication). Possible

sites for O-linked glycosylation in the protein are 121 serine and 83 threonine residues. More

than half (74 Ser and 42 Thr) form a  C-terminal serine and threonine rich domain.
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    1 MRVLLVLVAC LTYFSGGALA QSCSSYSGDN CPSTCFQGSY DIPCGAQVKY CTEMKDNCGE

   61 GGDVKCWKDG SNLPVQTWSS CVPSELFGPN GKFKPSEIPN SSNCPTNCEN GVEWVNLCGL

  121 SCDAKTACCP DVCQCKGGQT SGGSTTGSQT SGGSTSGGST TGSQTSGGST TGSQTSGSQT

  181 SAGSCSNTQC PNGFYCQVQG NNAVCVPQQS STSGGHQNDP CDTVQCPYGY SCESRDGFEA

  241 KCTRDEDEPT HRPTHRPKPP HDSDKYLCDN VHCPRGYKCN AKNGVAKCIA GYEIPRVCRN

  301 IQCPTGYRCE DHNRNPICVL EERENPDNCL TCNDVNCEAS GLVCVMTRAR CKVGAAKCCD

  361 VQPTCIKPST IAGSTIASIA STIASTGSTG ATSPCSVAQC PTGYVCVAQN NVAVSLPRPT

  421 TTTGSTSDSS ALGSTSESSA SGSSAVSSSA SGSSAASSSP SSSAASSSPS SSAASSSPSS

  481 SAASSSPSSS ASSSSSPSSS ASSSSAPSSS ASSSSAPSSS ASSSSASSSS ASSAATTAAT

  541 TIATTAATTT  ATTTATTATT  TATTTATTTA  ATIATTTAAT  TTATTTATTA TTTATTTATS

Figure 1-5 Amino acid sequence of SP96 (34)
underlined sequence: 20 AA long N-terminal signal sequence
NSS motif for N-linked glycosylation

Radiolabelling experiments demonstrate that SP96 is heavily phosphorylated on serine

(2, 21) and that it has at least 50 times more phosphate incorporated than PsA (61, 136, 137).

Apart from the possibility of a monoester phosphate it was speculated that phosphate could

also occur in a phosphodiester linkage.

Fucose and N-acetyl-glucosamine were also identified on the protein by radio-

labelling experiments (109). However, the exact O-linked glycan structure is still unknown.

After the release of glycans by  β-elimination, some fucose could be identified as fucitol as a

result of being directly attached to the protein backbone (109). It was assumed that SP96

possesses multiple O-linked fucosylated glycans (109).  Further evidence for the presence of

fucose in SP96 is deduced from the creation of mutant strains with a decreased level in

fucosylation (10, 11). The SP96 protein of the different strains looses fucose-dependent

epitopes of monoclonal antibodies MUD62, mAb 83.5 and MUD3. A new GlcNAc

containing epitope recognised by MUD166 and AD7.5, respectively, is revealed in these

mutant strains (Table 1-7).
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strains mod

mutation

Fucosylation

level*

Mr of SP96

[kDa]

mAb

[%] MUD62/
83.5

MUD3 MUD166/
AD7.5

X22 + 100 96 + + -

HU2470 modD 17 93 - + +

HU2471 modE 5 90 - - +

HU2733 modC 0 90 - - +

Table 1-7 Antibody definition of fucosylation mutants
 * fucosylation level in spores in % compare to wild-type (X22)
 Apparent molecular mass (Mr) of SP96 was determined by recognition with the different mAb.
 Strength of labelling: +, present at similar level
   -, absent or almost absent
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1.4 Aim of this thesis

The aim of this thesis is the characterisation and the quantification of the different

post-translational modifications on the D. discoideum spore coat protein SP96.  To this end,

SP96 of the wild-type (X22) and mutant strains HU2470 and HU2471 with a decreased level

of fucosylation were analysed and compared. The results allow elucidation of the differences

in glycosylation related to the lost MUD62, mAb 83.5 and MUD3 antibody epitopes. Further

work focuses on the localisation of the glycosylation sites in SP96 with its different serine and

threonine rich domains. The work required either purified SP96 protein or expression of

potential SP96 glycosylation motifs in the D. discoideum GST-fusion system. Combining the

results found in this thesis with the already published phenotypic characteristics of the

different mutant strains allow some speculation about possible glycan structure/ function

relationships.
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2 Material and Methods

2.1 Enzymes, antibodies and chemicals

Enzymes:

Alkaline phosphatase Boehringer Mannheim

Pretaq Gibco BRL

Proteinase K Boehringer Mannheim

Accutaq-LA DNA Polymerase Sigma

BamH1 Boehringer Mannheim

T4 DNA ligase Promega

Antibodies: Reference

MUD3, monoclonal antibody (131)

MUD62, monoclonal antibody (10)

MUD166, monoclonal antibody (11)

83.5, monoclonal antibody (141)

AD 7.5, monoclonal antibody (87)

Anti S. japonicum GST, polyclonal antibody Sigma

I-SPY 11, monoclonal antibody, HRP conjugated  Amrad Biotech

Sheep anti mouse IgG, HRP conjugated Silenus Laboratories

Sheep anti rabbit IgG, HRP conjugated Silenus Laboratories

Chemicals:

All chemicals were of analytical reagent grade and were from Merck unless otherwise

indicated. All solutions were prepared with MilliQ-water.
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2.2 Strains and Vectors

2.2.1 D. discoideum strains

For the experiments were following D. disoideum strains used:

X22 wild-type (148)

HU2470 fucose mutant (10)

HU2471 fucose mutant (10)

HU2868 strain NP2 maintained on Micrococcus luteus (146)

HU2942 (this thesis)

HU2943 (this thesis)

HU2944 (this thesis)

HU2945 (this thesis)

2.2.2 E. coli strains

E.coli cells used for transformation and plasmid preparation

E. coli DH5α (56)

2.2.3 Bacteria used as food source for D. discoideum

Klebsiella aerogenes (148)

Mircococcus luteus PRF3 (146)

E. coli B/r
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2.2.4 Vectors

pMUW2442 (containing GST gene Nsi/KpNI; M. Slade)e

pMUW2882 (modified pMUW1632 by W. Dittrich)1

pMUW110 (13)

pMUW2911 (this thesis)

pMUW2921 (this thesis)

pMUW2931 (this thesis)

pMUW5021 (this thesis)

2.3 Media, buffers and cell culture

2.3.1 Media and buffer

Salt solution

Compound Concentration

NaCl 10 mM

KCl 10 mM

CaCl2 3  mM

The salts were dissolved in 1 litre dH2O and autoclaved in aliquots.

HEPES buffer (pH 7.5)

Compound Concentration

NaCl 10  mM

KCl 10  mM

HEPES (Sigma) 5    mM

CaCl2 0.1 mM

                                                
e M. Slade (pers. communication)
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SM agar  (124)

Compound Amount/ litre

SM SM/5

Agar (Calbiochem) 12.0 g 12.0 g

Special peptone (Oxoid, code L72) 10.0 g 2.0 g

Yeast extract (Oxoid, code L21) 10.0 g 2.0 g

Glucose (BDH) 10.0 g 2.0 g

MgSO4 ⋅ 7H20 1.0 g 1.0 g

K2HPO4 1.0 g 1.0 g

KH2PO4 2.2 g 2.2 g

Autoclaved agar was cooled to 50°C and poured into (9 cm) sterile petri dishes using 25 ml

per plate. Plates were stored in sealed bags at 4°C.

Geneticin (G418) agar

As for SM/5 agar plates, plus 10 µg/ml of filter sterilised G418 (Amresco) added immediately

before pouring. Plates stored in sealed bags at 4 °C for up to 10 days.

Water agar

Compound Amount/ litre

Agar (Calbiochem) 11.0 g

Dihydrostreptomycin sulphate 0.25 g

Autoclaved agar was cooled to 50°C and poured into 9 cm sterile petri dishes using 25 ml per

plate. Plates were stored in sealed bags at 4°C.
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Axenic medium (138)

Compound Amount/ litre

Glucose (BDH) or maltose 15.4 g

Special peptone (Oxoid, code L72) 14.3 g

Yeast extract (Oxoid, code L21) 7.15 g

Dihydrostreptomycin sulphate 0.25 g

KH2PO4 0.48 g

Na2HPO4 x 2H20 0.64 g

Axenic medium was autoclaved and stored in the dark. Before use a sterile stock vitamin

solution (5 mg/ml vitamin B12 and 2 mg/ml folic acid) was added to 1:1000.

L-Broth

Compound Amount/ litre

Tryptone (Oxoid) 10 g

Yeast extract (Oxoid, code L21) 5 g

NaCl 10 g

Adjusted to pH 7.0 with NaOH, aliquot and autoclaved.

L-Agar

As for L-Broth, plus 12 g of agar per litre. L-agar was cooled down to 50 °C before pouring

into plates (25 ml per plate). Plates were stored in sealed bags at 4 °C.
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Ampicillin agar

As for L-agar plates, plus 100 µg/ml of filter sterilised ampicillin (Sigma) added immediately

before pouring. Plates stored in sealed bags at 4 °C for up to 10 days.

2.3.2 Growth of D. discoideum cultures on SM plates

Cultures were grown at 21±1°C on lawns of K. aerogenes on SM agar plates

(9 cm). For weekly maintenance, D. discoideum fruiting bodies were collected from single

colonies on a sterile loop, suspended in 1.5 ml of sterile salt solution and streaked onto fresh

plates of SM agar prespread with bacteria. The spores germinated, and the amoebae fed on the

bacteria by phagocytosis creating plaques in the bacterial lawn. Cells behind the edge of the

plaque were starved of their food supply and so entered the developmental pathway. Cultures

grown on bacterial lawns finish the developmental process and form fruiting bodies after

5-7 days.

To get large quantities of spores, cells were also grown on K. aerogenes in 40 x 40 x 2

cm autoclaved steel trails containing 1 litre SM agar.

2.3.3 Growth of D. discoideum cultures on SM/5 plates

Transformed D. discoideum cultures were routinely maintained under G418 selection.

Cultures were grown at 21±1 °C on lawns of  M. luteus  on SM/5 agar containing

10 µg G418/ml. For maintenance every 2 weeks fruiting bodies were collected from single

colonies, suspended in 1.5 ml of sterile salt solution and restreaked onto fresh plates of SM/5

agar prespread with bacteria.

2.3.4 Development   of D. discoideum slugs on water agar

Spores of Micrococcus grown D. discoideum  transformants were plated out on SM

agar plates with K. aerogenes as a food source. After  approximately  3-4 days the clearance

of the bacteria lawn could be observed and the cells were harvested in HEPES buffer; they
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were shaken in this buffer until nearly all bacteria were eaten. Afterwards the cells were

harvested at 4 °C by centrifugation in a Beckman J2-21 centrifuge (rotor JA10, 3500 rpm,

2150 g, 10 min) and resuspended in a small volume of HEPES buffer before the thick

D. discoideum suspension was plated out on a water agar plate. The cells started to aggregate

within a few hours, so that after 1 day slugs were collected.

2.3.5 Harvest and storage of D. discoideum spores

For long term storage, spores from five small plates were combined by tapping onto the same

petri dish lid. The spores were released and stuck to the inner surface of the lid. These were

then suspended in 0.25 ml of sterile horse serum (CSL) using a glass spreader and poured into

a prechilled (-20°C) glass vial containing dry, sterile silica crystals. The crystals were evenly

coated with the spore suspension by repeatedly hitting the vial sharply in the palm of the hand

and turning (the pre-chilling was necessary to prevent overheating the spores at this stage).

The vial was then sealed, labelled and placed in a desiccated storage box at 4°C. Spores stored

in this way were viable for several years.

2.3.6 Growth of D. discoideum in liquid culture and harvesting of cells

For axenic culture, spores were inoculated into axenic medium in Erlenmeyer flasks,

containing between 10-30 % of their nominal volume with medium, at a density of 2 x 105

spores/ml. Axenic grown cultures had a generation time of 10-12 hours. For transformants

selection  was maintained with Geneticin (G418; 10µg G418/ml). The cultures were

maintained at 21±1 °C on a rotating shaker at 150 rpm and subcultured into fresh axenic

medium before cells reached densities of 5x106 cells/ml.

To grow D. discoideum in bacterial suspension, K. aerogenes or E. coli  bacteria

grown on SM plates were resuspended in  HEPES buffer and density adjusted to (OD460 10).

Bacterial suspensions were inoculated with 2 x 105 D. discoideum spores per ml.  The

generation time of bacteria grown cells ranged between 3-4 hours. The D. discoideum cells

were harvested by centrifugation in a Beckman J2-21 centrifuge (rotor JA10, 3500 rpm, 2150

g, 10 min) at 4 °C.
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Spores from small plates and large steel trails were harvested  by inverting  and

tapping the plate firmly on the surface of a bench, taking care not to dislodge the agar before

the spores were suspended in buffer used in the first step of extraction (2.4.2.1).

2.4 Protein chemistry methods

2.4.1 Buffers and solutions

Phosphate buffered saline (PBS) 5x stock (pH 7.2)

Compound Concentration

Na2HPO4 100 mM

KH2PO4 7.5  mM

KCl 130 mM

NaCl 770 mM

 Polyacrylamide gel electrophoresis (PAGE) buffers

Lower gel buffer 4 x

(pH 8.8; conc. HCl)

Upper gel buffer 4 x

(pH 6.8; conc. HCl)

Tris        1.5 M Tris      0.5    M

SDS  14.0 mM SDS   14.0 mM
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Recipe for pouring PAGE gels

Compound Amount Compound Amount

Resolving gel 10 % 12 %  Stacking gel 4%

dH2O 4.84 ml 4.34 ml dH2O 3.2 ml

Lower gel buffer 2.6 ml 2.6 ml Upper gel buffer 1.3 ml

Liquigel (*Gradipore) 2.5 ml 3.0 ml Liquigel (*Gradipore) 0.5 ml

20 % (w/v) APS 50 µl 50 µl 20 % (w/v) APS 25  µl

Temed (BioRad) 15 µl 15 µl Temed (BioRad) 7.5 µl

*From a 40% acrylamide stock, acrylamide:bis ratio of 29:1 (Gradipore).

Electrophoresis SDS running buffer, 5 x stock (pH 8.5)

Compound Concentration

Tris  125 mM

Glycine   1.0    M

SDS 0.5 % (w/v)

Reducing sample buffers for SDS-PAGE, 3 x stock

Compound Concentration

Tris/HCl (pH 6.8) 65         mM

Glycerol 10 %    (v/v)

SDS 2.3 %   (w/v)

2-Mercaptoethanol (Sigma)   5 %    (v/v)

Bromophenol Blue 0.25%  (w/v)
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2.4.2 Purification of spore coat protein SP96

2.4.2.1 Extraction of SP96 from the spore coat

All extraction steps were done twice to get as little contamination as possible between

the different fractions.

5-10 x 1010 spores were harvested into 40 ml of extraction solution 1, shaken for 10

min/ room temperature and then centrifuged at 3000 g. The pellet of spores was resuspended

in 40 ml extraction solution 2 and the procedure repeated. A third extraction step also used

extraction solution 2 (15 ml) with the temperature increased to 100 °C, by incubating in a

boiling water bath for 10 min. A fourth extraction step was done at 100 °C under reducing

conditions with extraction solution 3 (15 ml). The third extract (Extraction solution 2; 100 °C)

contained most of the SP96 protein and was used for further purification.

Extraction solution 1 Extraction solution 2

50 mM Tris/HCl pH 8 50 mM Tris/HCl pH 8

  8    M Urea

Extraction solution 3

50 mM Tris/HCl pH 8

8    M Urea

0.7 M 2-Mercaptoethanol

The solution used to extract the spores were stored at room temperature.

2.4.2.2 Column chromatography steps

The SP96 positive extract from  step 3 was diluted 1:1 with dH2O and applied  to a

DEAE cellulose column (DE52, Whatman, 1.4 cm x 10 cm, volume: ∼15 ml) with a flow rate

of 0.5 ml/ min. After intensive washing (approximately 5 x column volume) with 25 mM

Tris/ 4 M urea (pH8) the retained proteins were eluted by steps of 100 mM, 250 mM, 500 mM

and 1 M NaCl.  SP96 was eluted with 250 mM NaCl and extensively dialysed against

coupling buffer (0.1 M NaHCO3/ 0.5 M NaCl (pH 8.3)), incubated for 1 h with Sepharose 4B
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to minimize nonspecific binding and the eluate then applied to a MUD3 affinity column (2 ml

column size). Monoclonal antibody MUD3 was used to purify SP96 from the wild-type X22

and mutant HU2470 as both strains carry the MUD3-epitope. For the preparation of these

columns MUD3 antibody was purified from ascites on an EconoPac Protein A cartridge (Bio-

Rad) and then coupled to CNBr activated Sepharose (Pharmacia). Both steps were carried out

essentially as described in the protocols of the companies. SP96 fractions eluted from the

DEAE column were applied to the MUD3 affinity column with 2 h incubation at 20 ºC and

the bound SP96 was eluted with 100 mM diethylamine (pH 11), after which the pH was

immediately lowered with 50 µl 1 M Tris (pH 8) solution. The SP96 positive fractions were

repurified on the same MUD3 column. It was not necessary to remove the neutralised

diethylamine for the repurification step because the SP96 was eluted on the basis of high pH.

After the pH was decreased to pH 8 with 1 M Tris the SP96 protein could be bound

immediately again on the column. The positive fractions were pooled and concentrated.

Approximately 12-16 nmols of SP96 was extracted from 5 x 1010 spores of each strain

of D. discoideum.

2.4.3 Purification of recombinant GST fusion proteins

Glutathione-S-transferases (GST) possess selective and reversible binding for reduced

glutathione and can be efficiently affinity purified on immobilised glutathione.

The culture supernatant of axenic grown stationary phase D. discoideum cells was

dialysed extensively against PBS buffer at 4°C to remove free glutathione. For affinity

purification of GST-fusion proteins, 500 ml culture supernatant was adjusted to reducing

conditions of 2 mM DTT and incubated with 1.5 ml equilibrated glutathione-Agarose

(Sigma) overnight at 4 °C. The affinity matrix was slowly packed (flow rate 2-3 ml/ min) into

a column (∅ 1 cm) and was washed twice with 50 ml PBSD buffer ( 1 x PBS containing 2

mM DTT (Sigma), pH 7.2). The retained GST binding proteins were eluted in 5 x 1 ml

fractions of TE buffer (1 mM EDTA, 10 mM Tris/HCl; pH 8.0) containing 20 mM reduced

glutathione (Sigma) and 2 mM DTT.
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2.4.4 Peptide purification by reversed phase chromatography

The glyco-peptides, which were released from the purified GST-fusion proteins by

factor Xa cleavage (2.4.8.3), were separated based on their hydrophobicity on a reverse phase

Sephasil  C8 column using a SMART System (Pharmacia, LKBµ).

The samples (∼ 0.5 ml) were applied by multi injections of 100 µl aliquots in intervals

of 8 min to a column equilibrated with solution A (0.5 % TFA in dH2O) for 10 min. The used

flow rate was 100 µl/ min.  5 min after the last injection a dipolar gradient 0-30 % solvent B

(0.45 % TFA in 85 % acetonitrile) was established over a period of 30 min followed by a

further linear gradient to 100 % over 30 min.  The eluted sample was collected in 200 µl

aliquots.

2.4.5 SDS polyacrylamide gel electrophoresis (SDS-PAGE)

The discontinuous, one dimensional gel electrophoresis was carried out with the

Laemmli buffer system (78) in a Mini-Protean II apparatus (BioRad).

10 % or 12 % (w/v) acrylamide resolving gels (0.5 mm thick) with a 3 % (w/v) stacking gel

were mainly used. For protein separation on gradient gels BioRad Ready Gels (4-20 %) were

choosen. Samples were suspended in 1 x sample buffer, heated to 95 ºC  for 3 min and

centrifuged before loading on a gel. Protein bands were visualised with Coomassie Blue or

the more sensitive silver nitrate stain methods.

2.4.6 Western blotting and staining of proteins on membrane

After SDS-PAGE the proteins were transfered onto nitrocellulose (0.1 µ Schleicher

and Schuell) or PVDF membrane (Millipore) using a semi-dry electroblotting system (76)

(12V for 1 h) with a discontinuous buffer system.

To visualise proteins on the membrane, a standard staining method with Amido black

10B (Sigma) was used (0.1 g Amido black 10B (Sigma) in 10 ml (methanol:acetic acid

:water; 3:1:6 v/v)). The stained bands were then used for amino acid anaylsis, Edman

sequencing or glycan analysis.

Glycoproteins were detected on membranes using the Bio-Rad Immun-Blot Kit as

described by the manufacturer. This stain is based on immunochemical detection of biotin

which is bound to the aldehyde groups of periodate cleaved sugars.
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For immunochemical  labelling of  proteins the membrane was rinsed for 10 min in PBS

followed by a 10 min wash with 3 % (w/v) skimmed milk powder (Diploma) in PBS to block

non-specific binding. The incubation with the first antibody was done in the same solution

used to block the membrane, with the SP96 recognising antibodies  for 1 h (hybridoma

supernatant) and with the anti GST antibody for 3 h (1:10000 dilution in PBS), on a rocking

platform. After rinsing for 3 times for 5 minutes with PBS it was incubated with the sheep

anti-mouse antibody or sheep anti-rabbit antibody conjugated to horse radish peroxidase

(Silenus) diluted to 1:1500 in 3 % (w/v) skimmed milk powder in PBS for 2 hours or

overnight. After washing 3 times for 5 min with PBS to remove the unbound components, the

blot was developed using a fresh solution of 4CN substrate.

Developing substrate for horse radish peroxidase

Compound volume

4-chloro-1-naphthol (3 mg/ml stock in methanol) 2 ml

PBS 8 ml

H2O2 (30%, BDH) 20 µl

This solution was made fresh for each reaction.

2.4.7 Protein quantification

The amount of protein in samples was determined by using the Bio-Rad Dc protein

assay in the range of 0.2 mg/ ml  up to 1.6 mg/ ml . The calibration standard was bovine

serum albumin (BSA). Lower levels of protein in liquid samples or on PVDF membranes

were quantified by using amino acid analysis (151).
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2.4.8 Protein digest

2.4.8.1 Pretaq (thermostable protease)

SP96 protein (∼700 pmol) was dissolved in 120 µl dH2O and incubated  at 80 ºC

before adding  90 mU of Pretaq enzyme. To determine the optimal digest conditions an

aliquot was taken out every 10 min (0-60 min) and frozen immediately to stop the reaction.

The samples were separated on SDS-PAGE without boiling which activates the protease.

Aliquots of Pretaq enzyme (3 Units) were stored at –20 ºC.

2.4.8.2 Proteinase K

SP96 protein (∼700 pmol) was dissolved in 50 mM Tris/ HCl (pH8) and Proteinase K

(90 mU) added and incubated at room-temperature. Samples were taken at time intervals

(0-60 min) and the reaction immediately stopped by boiling with SDS-PAGE sample buffer.

2.4.8.3 Factor Xa

The factor Xa cleavage was used to release the potential O-glycosylation acceptor

peptides from the expressed and purified GST fusion protein. The protease recognised

specifically the amino acid sequence IEGR and cleaved at the C-terminus of the arginine in

this sequence. The digest was done at 30 ºC in elution buffer containing 1 mM CaCl2. The

enzyme:substrate ratio was approximately 1:10. The cleavage process was monitored by SDS-

PAGE.
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2.5 Characterisation of post-translational modifications

2.5.1 Analysis of phosphorylation

2.5.1.1 Phosphoamino acid analysis

Affinity purified SP96 of strains X22 and HU2470 and HU2471 (20-60 pmol) were

gas phase hydrolysed with 6 M HCl for 4h at 110ºC, derivatised with Fmoc as a fluorogenic

reagent and analysed for the presence of phosphoamino acids by HPLC (150).

2.5.1.2 Total phosphate analysis after acid hydrolysis

The degree of phosphorylation of SP96 was determined by measuring the amount of

inorganic phosphate released by strong acid hydrolysis using the method of Lanzetta et al.

(80), which was modified for microplate analysis. The method is based on a colour reaction

involving formation of phosphomolybdate complexes.

20µl protein samples (20-100 pmol) of SP96 were hydrolysed with 4 µl 10 M H2SO4

at 170ºC in a sealed tube for 4 h. The samples were transferred into a 96 well microplate, 100

µl of phosphate reagent was added and carefully mixed. After 1 min the reaction was stopped

by adding 10 µl of a 25 % (w/v) trisodium citrate solution and after 20 min incubation the

absorbance was measured at 630 nm. A potassium dihydrogenphosphate standard curve (0 -

4.0 nmol) was used to calculate the concentration of inorganic phosphate in the samples. To

determine the background phosphate in the samples, non hydrolysed SP96 protein samples

were also assayed.

2.5.1.3 Enzymatic release of phosphate with alkaline phosphatase

 10-20 µl SP96 sample (100-200 pmol) in 30 µl of 100 mM ammonium bicarbonate

(pH8.3) and 10 µl (15 mU) alkaline phosphatase were incubated for 16 h at 37ºC. The

reaction was stopped with 10 µl 4 M HCl and the released phosphate was detected as in

2.5.1.2.
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2.5.1.4 Dephosphorylation with HF

After reductive β-elimination and desalting (2.5.2.3), samples were lyophilized and

mixed at 4°C with pre-cooled 40% (v/v) HF (50µl) for 48 h. The HF was neutralised with an

equimolar concentration of LiOH, the LiF pelleted and washed. The supernatants were pooled

and used for further analysis.

2.5.2 Analysis of glycosylation

2.5.2.1 Monosaccharide analysis

To release the monosaccharides, 25 pmol of affinity purified SP96 was hydrolysed

with 2 M TFA for 4h at 100ºC. To quantitate the amino sugars, a stronger hydrolysis with 4

M HCl for 4h at 100ºC was carried out. The hydrolysates were analysed on a HPAEC-PAD

system (Dionex), by isocratic elution from a CarboPac PA10 column at 1 ml/min with 12 mM

NaOH for 20 min. 2-deoxyglucose (1 nmol) was added as internal standard for quantitation of

the sugars.

2.5.2.2 Oligosaccharide/ charged glycan analysis

The glycans on SP96 were released by mild acid hydrolysis or non-reductive β-

elimination. β-elimination was carried out by dissolving SP96 (1nmol) in 50 µl 100mM

NaOH and incubating at room temperature for 4 h. The alkaline sample was directly separated

on a CarboPac PA1 column (Dionex) using three sequential linear gradients of 1M sodium

acetate in 100 mM NaOH for 1 min, raised to 15% (v/v) over 20 min, to 50% (v/v) over 10

min and to 70 % (v/v) over 10 min. With this method glycans P1 and P2 were isolated from

the wild-type X22 and the fucose mutants HU2470 and HU2471, respectively.

Mild acid hydrolysis was achieved by treating the purified SP96 protein sample (0.5 nmol)

with 40 mM TFA for 8 min at 100ºC. After drying, the sample was dissolved in water and the

released sugars separated as above.
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2.5.2.3 GC-MS Analysis

To determine the reducing-terminal linkages of the glycans on SP96, samples were

subjected to reductive β-elimination, acetylated and analysed by gas chromatography/mass

spectrometry (GC-MS). SP96, from all strains (0.2-0.5 nmol), was dissolved in 400µl 100

mM NaOH, 1 M sodium borohydride and incubated at 45 ºC for 18h. The samples were

carefully neutralised with 4 M acetic acid and desalted by anion-exchange chromatography

(Bio-Rad AG 50W-X8 200-400 mesh). Dried samples were acetylated with excess anhydrous

acetic anhydride (50µl) and anhydrous pyridine (50µl) at 100ºC for 1h. The acetylated alditols

were extracted into dichloromethane and analysed on a Fisons MD800 GC-MS using a BPX5

(0.22mm x 25m) column. Samples (1µl) were analysed by injection onto the column at

150ºC, the temperature was held for 5 min, then increased to 300ºC over 30 min and held for

10 min.

2.5.2.4 Electrospray-ionisation mass spectrometry

Glycans released by ß-elimination with 100 mM NaOH at 45 ºC  for 4 h  (∼300 pmol)

were desalted through a Hypercarb® (Shandon Scientific, UK) guard column (103). After

washing with MilliQ water to remove the salt, the carbohydrates were eluted from the column

into the mass spectrometer using a 15 min linear gradient of 0.05% (v/v) TFA in water to 90%

(v/v) acetonitrile/0.05% (v/v) TFA at a flow rate of 100 µl/min. Spectra were collected in

negative ion mode on an ESI-TOF (LCT; Micromass, UK.). Samples were introduced into the

electrospray source through a capillary held at a potential of 3.5 kV. The sample cone voltage

was 30V, or 80V for in-source collision induced dissociation (CID). Full scan spectra were

acquired over a mass range of 70-1200 Da with 0.7 sec scan duration and 0.7 sec interscan

delay. All spectra were externally calibrated with NaI.

2.5.2.5 Nuclear magnetic resonance spectroscopy

The HPLC purified X22-SP96 disaccharide P1 (~100 µg) (2.5.2.2) was dissolved in

D2O (0.5 ml; 99.96 atom%, Aldrich), repeatedly lyophilized from D2O and filtered into an
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NMR tube (PP527, Wilmald).  The sample was degassed and equilibrated under an

atmosphere of nitrogen.

The NMR data were acquired on a Bruker DRX600 (600 MHz) NMR spectrometer at

27°C and processed using xwinNMR (version 2.6; Bruker).  All 2D NMR experiments were

run with quadrature detection with an 1H spectral width of 6009 Hz and a recycle delay of 2

s.  Chemical shifts were referenced to the fucose methyl (δH 1.166 ppm; δC 16.2 ppm).  High

power 1H π/2 pulses were determined to be 9.5 µs and low power (for DIPSI spin lock) at

25.15 µs.  DIPSI sequences were flanked with trim pulses at the same low power of 2 ms

duration.  13C high power π/2 pulse was 10.5 µs and a low power pulse of 65 µs was used for

GARP decoupling.  Gradient pulses were delivered along the z-axis using a 100 step sine

program.

Data for 1D experiments were acquired using a WATERGATE 3-9-19 pulse sequence

(106) enhanced with gradient selection (116). All pulses were delivered at the same power of

0 decibels and gradients were at the ratio 50:50 of full power.  Two dummy scans were used

before the acquisition of 128 scans, using a recycle delay of 2 s.  32,000 real points were

acquired and zero filled to 64,000 and then Gaussian multiplied for resolution enhancement.

Carbon - hydrogen correlation (HSQC) was achieved via a sensitivity enhanced double

INEPT transfer using echo/antiecho-TPPI gradient (80:20.1) selection (74, 104, 112). 2,000

data points were collected in t2 (128 scans per increment) with a 1.3 s recycle delay with

decoupling during acquisition.  In t1, 512 increments were used (10-120 ppm) and the INEPT

sequence was optimized for a X-H coupling of 145 Hz.  A gradient ratio of 80:20.1 was used

to select echo/antiecho-TPPI phase sensitivity.

One dimensional ROSEY spectra were measured using a selective Gaussian pulse on

the anomeric protons.  A 1000 step Gaussian program (60 ms, 64.6 dB) was used to achieve a

π/2 pulse.  A mixing time of 250 ms (13 dB) was used for a continuous wave spin lock.

Gradient selection was achieved with a 15% gradient along the z-axis and 10,000 transients

were accumulated over 6009 Hz.  ROE enhancements were measured as a percentage of the

irradiated peak and not compensated for offset from the carrier frequency.

Two dimensional homonuclear Hartman-Hahn transfer spectra (TOCSY) were

measured using the MLEV17 (4) pulse sequence flanked with 2 ms low power trim pulses.

Water suppression was achieved using a gradient assisted WATERGATE (106, 116) pulse

sequence and a gradient ratio of 50:50 was used in the WATERGATE sequence. A mixing

time of 30 ms was used for the Hartman-Hahn transfer.  Sine bell shifted (90°) apodization
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was used in the processing of both dimensions. Homonuclear shift correlation (COSY) with

double quantum filter phase sensitivity using States-TPPI method was supplemented with a

gradient-assisted WATERGATE sequence (106, 116) to achieve water suppression. A

gradient ratio of 30:30 was used in the WATERGATE sequence.

2.5.2.6 Cleavage of the X22-SP96 glycan P1 with periodate

Approximately 3 nmol of purified glycan was treated in the dark with 10 µl 20 mM

sodium-periodate for 40 min at room temperature. Desalting was done over a 50 µl carbon

column (Carbograph, Alltech) prewashed with 80 % (v/v) acetonitrile/ 0.05 % (v/v) TFA and

equilibrated with water before the sample was applied, washed with water and eluted with

100 µl 25 % (v/v) acetonitrile/ 0.05 % (v/v) TFA. After drying the sample was hydrolysed

with 2 M TFA/ 100 °C/ 4 h and separated on HPAEC-PAD.
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2.6 Molecular biological methods

2.6.1 Buffers and solutions

5 x TBE buffer (pH 8.3)

Compound Concentration

Tris 450 mM

Boric acid 450 mM

EDTA   10 mM

The buffer was used at a 1x concentration after dilution with 4 vol. of dH2O.

10 x TE stock (pH 8.0)

Compound Concentration

Tris 100 mM

Na2EDTA   10 mM

Adjusted to pH 8.0 with conc. HCl, autoclaved and used at a 1x concentration.

DNA Gel Loading Buffer

Compound Amount

glycerol 30 %    (w/v)

Orange G (Sigma) 0.1 %   (w/v)

Xylene Cyanol 0.25 % (w/v)

in TBE buffer (pH 8.3). Aliquots stored at -20°C.
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SOC medium

Compound Amount (g/l)

Tryptone (Oxoid)  20.0   g

Yeast extract (Oxoid, code L21)    5.0   g

NaCl    0.58 g

KCl    0.18 g

After autoclaving, glucose (filter sterilised) was added to 20 mM . 1 ml aliquots were stored at

–20 °C .

PIPES/ HL5 medium

Compound Amount (g/l)

Yeast extract (Oxoid, code L21)   5.0 g

Special peptone (Oxoid, code L72) 10.0 g

glucose 10.0 g

PIPES 6.04 g

 

The pH adjusted to 6.9 and autoclaved and stored at room temperature in the dark.

PIPES buffer

Compound Concentration

PIPES, pH 6.9 20  mM

NaCl 140  mM

Na2HPO4 0.75 mM
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2.6.2 Oligonucleotides

All oligos were dissolved in 10 mM Tris (pH8.3) to a final concentration of 100

pmol/µl. The probability of oligonucleotides forming secondary structures was checked using

the Fold RNA prediction in the GCG package.

Primer

Name

Order name Sequence of oligonucleotide

“Oligo

primer1”

SP96S.r1a 5´CAGGTGAGTGCTGGATATTGAGAGGAAGATGCAGA
  TGAAGATGGAGCTGATGATGATGAAGCACGACCTT
  CGATGGCATCTGAAC-3’

“Oligo

primer2”

SP96T.r1a 5’CAGGTGAGTGCTGGATATTGTGCGGTGGTGGTAG
  CAGTAGTAGCGGTAGTGGTAGCACGACCTTCGAT
  GGCATCTGAAC-3’

“Oligo

primer 3”

SP96G.r1a 5’AGGTGAGTGCTGGATATTGAGATCCGGTAGAACCA
  CCTGAAGTAGATCCTCCAGAGGTTTGTGAACCAGC
  ACGACCTTCGATGGC-3’

“primer A” GSTL99.f1 5’-TTCAATGCTTGAAGGAGCTGTTT-3’

“primer B” VBamKpn 5´-CTAGAGGATCCCCGGGTACCTAAATC-3´

“primer C” GSTptxt.r4a 5´-CCGGGGATCCTCAGGTTG-5´

“primer D” ISPY.r1a 5’-ACTGGGGATCCTCAGGTGAGTGCTGGATATTG-3’

“primer 1” SP60.f1a 5´-CTCTAAGATAACTAATACTCAAACTCA-3´

“primer 2” SP60.r1a 5´-TGTTCCAATCACCATTAACTTCACCA-3´

“primer 3” SP60.f2a 5´-CCACCTCTAGAATCCCATACTACATTAAAATATTTG-3´

“primer 4” SP60.r2a 5´-GCTAATGCATATGTTAAGAGTGATAATAAGGCAATT
  AATAATGATAAAATCTTCA-3´

“primer 5” PsAsig.f1 5-GCCTTATTATCACTCTTAACATATGCATTAGC-3´

“primer 6” ISPY.r1a 5-ACTGGGGATCCTCAGGTGAGTGCTGGATATTG-3’

“primer 7” Ddp2.ori.xba.r2 5´-GTAGATCCTCTAGACGAGCAC-3´

“primer 8” VBamKpn 5´-CTAGAGGATCCCCGGGTACCTAAATC-3´

P174GST.f2c 5´-GTGCCTTGATGCCTTCCCAAA-3´

gstA89.r2 5-CCAAAACAGCTCCTTCAAGCATTGAAATTTCTGC-3´

Primer for

sequencing

GSTfx.R4 5´-GCACGACCTTCGATGGCATCTGAACCT-3´

Table 2-1 Oligonucleotides used in  PCR reactions
Primer name: used for the PCR schemes figure 3-30,  3-35 and 3-37 in the result

  chapter
Factor X cleavage site, ISPY sequence, BamH1 cleavage site, corrected

 mutation, XbaI cleavage site, NsiI cleavage site in PsA sequence
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2.6.3 PCR (Polymerase chain reaction)

DNA fragments were modified by PCR reactions (111). To guarantee a good

annealing of the primers with the template DNA, they were so chosen that their annealing

values (Tm), calculated using the formula Tm = 2(A+T) + 4(G+C), were similar. This

temperature was reduced by further 2 °C for each mismatched base. The annealing

temperature used in the PCR was 5 °C lower than the calculated Tm value. The extension time

(Et), required to synthesise the PCR product, was calculated as Et=1 min/500 bp.  Generally

20-30 cycles were  used to amplify the DNA.

The reaction was done in 0.5 ml Eppendorf tubes (Bacto) containing ∼8 ng template

DNA, 10 pM each primer, 500 µM dNTPs (lithium salts, Boehringer Mannheim) and Accutaq

buffer (Sigma) to 20 µl  total volume. The liquid was covered by 20 µl  mineral oil and the

reaction was started during the 94 °C  hold period  by adding an Accutaq polymerase mixture

(5µl  Accutaq buffer containing dNTP′s).

PCR program chosen on Hybaid Omnigene PCR machine:

94 °C 3 min
94 °C hold
[94 °C, 30 sec/ (Tm – 7) °C, 1 min/ 68 °C, Et min] x   5 cyles
[94 °C, 30 sec/ (Tm – 5) °C, 1 min/ 68 °C, Et min] x 15 – 20 cycles
68°C 8 min
26°C 1 min

2.6.4 Separation and recovery of DNA using agarose gels

DNA was routinely separated at a constant voltage of 90 V in 1 % agarose gels (w/v)

(Progen) for fragments larger than 0.5 kb size and in 2 % (w/v) gels for smaller pieces.

Running buffer was 1 x TBE buffer. Ethidium bromide (Sigma, 25 µg/ml) was added before

the agarose gel was poured so the DNA bands could be afterwards visualised  under UV light.

To recover DNA, the bands were cut out and extracted as described in the QIAquick gel

extraction kit  protocol  (Qiagen).
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2.6.5 Precipitation of DNA

To enhance the precipitation of DNA (100 µl sample volume) 1/10 volume of 3 M

sodium acetate (pH 7) solution was added to neutralise the negatively charged DNA backbone

with sodium ions. 3 volumes ethanol 95 % was added and kept for 20 min at –80 °C. The

precipitated DNA was spun for 20 min at 14000 rpm in an Eppendorf centrifuge and the

supernatant discarded. The DNA pellet was washed with 500 µl  (70 % v/v) ethanol. The

pellet was dried for 5 min in the Speedyvac and the DNA dissolved in sterile dH2O and stored

at –20.

2.6.6 Restriction digests and ligation

 DNA was digested using Boehringer restriction enzyme buffers and 1-10 units (U)

enzyme  per µg of DNA for 1-2 h at 37 °C. The reaction was stopped by heating for 15 min to

70 °C. DNA fragments were purified by agarose gel electrophoresis.

When two DNA fragments were to be ligated the fragments were gel purified and

pooled. When a PCR of the whole plasmid was to be recircularized the ligation was carried

out directly on the restriction digest. The digestion was stopped and 1:2 diluted with water

before the right condition for the ligation was adjusted with 10 x ligase buffer. To start the

reaction 1-2 units  T4 DNA ligase (Sigma) was added and incubated at 4 °C overnight. The

reaction was stopped by heating for 15 min to 70 °C.

2.6.7 DNA sequencing

DNA for sequencing was prepared using Qiagen midiprep filter kit and the sequencing

reaction used the Big Dye Terminator RR-Mix (Perkin Elmer) solution. The used primers are

listed in Table 2-1. For DNA sequencing gels were run by the sequencing facility at the

University of New South Wales or Macquarie University (Sydney, Asutralia).
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2.6.8 Preparation of electroporation competent  E. coli cells

10 ml L-broth  media was inoculated with E. coli DH5α cells stored at  –80 °C. The

culture was incubated overnight at 37 °C at 200 rpm on an orbital shaker before it was diluted

on the next day in 1 L of 37 °C warm L-broth. This flask was shaken vigorous at 200 rpm,

until the cells had reached an optical density of 0.5 to 0.6 at 600 nm and therefore still grew

logarithmically. The culture was chilled to 4 °C  for 30 min and maintained at this

temperature for all the next steps. The cells were pelleted at 4000 g for 15 min in a prechilled

rotor and as much as possible of the supernatant was removed. To remove the rest of the

medium the cells were washed twice with 500 ml chilled sterile water. The cells were

resuspended in 20 ml chilled sterile 10 % (v/v) glycerol in dH2O, pelleted again and then

finally resuspended in sterile 10 % (v/v) glycerol solution to a density of 1-3 x 1010 cells/ml.

The cells were aliquoted into sterile tubes, snap frozen in liquid nitrogen and stored at

–80 °C.

2.6.9 Transformation of plasmids into E. coli

Electroporation was carried out using a BioRad Gene Pulser set at:

1.8 kV, 25µFD capacitance and 200 ohms resistance

Capacitance Extender 250 µFD

Competent E. coli cells were thawed slowly on ice. 40 µl aliquots of E. coli were

mixed with 2 µl DNA immediately before the solution was pipetted in a 0.1 cm prechilled

cuvette (BioRad). After the voltage pulse was applied the cells were immediately resuspended

with 200 µl  of SOC media. The cells were transferred  back in the Eppendorf cup and

incubated with shaking at 37 °C for 1 h, before being plated out in different dilutions onto L-

agar plates containing 100 µg/ml ampicillin and grown at 37 °C  overnight.

2.6.10 Plasmid preparation

Isolation of plasmid DNA from E. coli was done by using the Qiagen Qiafilter Midi

Kits as described in Qiagen Plasmid Purification Handbook (January 1997).
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2.6.11 Transformation of D. discoideum

The DNA was transformed into D. discoideum by the calcium phosphate

transformation procedure according to Nellen (93). Before transformation, 10 µg pMUW110

vector DNA were mixed with 2 µg expression vector DNA and precipitated to ensure the

DNA sterile. The pellet was dissolved in 300 µl dH2O and used for the calcium phosphate

precipitation step.

For the transformation D. discoideum strain HU2868 was used. 20 ml HU2868

(1-2 x 106 cells/ml) of ashax growing cells were placed on a plastic petri dish for at least 30

min, allowed the cells to settle down and adhere to the plastic. The medium was carefully

replaced by 10 ml of 20 mM PIPES/ HL5 medium  containing  100 µg/ml  ampicillin to wash

the cells. During this time the calcium phosphate precipitation was done. 300 µl DNA was

mixed in a glass tube with 38 µl 2 M CaCl2 solution followed by 300 µl 40 mM PIPES buffer

and allowed to precipitate for a repeated mixing of the sample for 25 min. As much as

possible of the washing media was again carefully removed  from the cells and the Ca-DNA

precipitate added dropwise onto the cells. The DNA was allowed to coat the cells for 30 min

by gentle rocking and then 10 ml of PIPES/ HL5 medium containing 10 µl Ampicillin (10 %)

and 10 µl of the fungicide Amphotericin B (500 µg /ml) was added. Three hours later the cells

were given an osmotic shock. The medium was removed and the cells covered with 2 ml of

18 % glycerol in 20 mM PIPES buffer for exactly 3 min, before 10 ml medium 20 mM

PIPES/ HL5 medium containing 10 µl Ampicillin  (10 %) was added. The cells were allowed

to recover overnight before the media was replaced with axenic media including 10 µg  G418.

One day later, the transformed cells were spread on plates of the bacteria Micrococcus luteus

(32, 146). M. luteus is used as the food source because of its resistance against the selective

marker G418. The bacteria suspended in salt solution were spread out on SM/5 agar plates

containing 5 µg  G418 and allowed to dry. The transformant Dictyostelium cells were

resuspended in the axenic medium and spun down for 3 min at 1000 rpm. The pellet was

resuspended in the rest of the bacteria salt solution and spread out on the M. luteus  spread

plates and dried again. After 7-9 days little colonies could be observed. Cells or spores from

the colonies were maintained on Micrococcus on SM/5 containing 10 µg  G418 plates.
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3 Results

At the beginning of this chapter different monoclonal antibodies are introduced which

are an important tool for purification of SP96 and for characterisation of its modifications.

The purification of SP96 from different D. discoideum strains is described, followed by the

qualitative and quantitative characterisation of the glycan structures on the protein. The

composition of  the glycans was determined by phosphate, monosaccharide and GC-MS

analysis. GC-MS analysis was also used to determine the linkage of the sugars to the protein.

To elucidate the intact glycan structure, released oligosaccharides were analysed by HPAEC-

PAD, LC-MS and NMR spectrometry.

The last part of this chapter deals with the localization of the modified sites in the

SP96 protein. The modified hydroxyamino acids are identified by amino acid  analysis and

the specific sites are identified by two approaches. One approach uses an unspecific digestion

enzyme to cleave the protein. The heavily glycosylated part of the protein is resistant to

digestion and is partially characterised by Edman sequencing. The second approach is the use

of an in vivo expression system established in D. discoideum itself for the analysis of potential

glycosylated motifs. DNA encoding potential motifs for O-glycosylation were fused to a gene

for a carrier protein, glutathione-S-transferase (GST), and expressed in D. discoideum. After

purification of the GST fusion protein, the attached motifs were analysed immunochemically

for glycosylation.

3.1 Overview: Immunochemical detection of SP96 in different strains

An important tool for the work on spore coat proteins is the use of monoclonal

antibodies. These antibodies, mostly made against crude protein extracts, recognise highly

specific  structural elements on the proteins. The binding region, called the epitope, can be an

amino acid sequence,  a structural element of post-translational modifications, a mixture of

both, or the three dimensional structure of the protein.  Although only little is known about

most of the epitope structures recognised by monoclonal antibodies, their sensitivity and

specificity are helpful for the purification and characterisation of the spore coat proteins. For

this work different mAbs were used to detect SP96 in the wild-type (X22) and the fucose

mutants HU2470 and HU2471. It is known (11, 43, 87, 141) that the epitopes of these

antibodies include at least partly different carbohydrate structures.
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of fucosylation in the mutants HU2470 (B) and HU2471 (C) results in the loss of the

recognised epitope structure and therefore no labelling can be observed with both monoclonal

antibodies. MUD3 (3) is the only mAb which recognises specifically SP96 in the wild-type

X22 (A) and the fucose mutant HU2470 (B). The MUD3 epitope is not recognised in the

fucose mutant HU2471 (C) (Figure 3-1). The difference of about 10kDa between the X22-

SP96 protein and HU2470-SP96 is the result of the altered migration due to decreased

fucosylation of the mutant protein (11). The monoclonal antibodies MUD166 (4) and AD7.5

(5) (Figure 3-1) show a reciprocal binding intensity for SP96 in mutant versus wild-type in

comparison to MUD62 and 83.5. On wild-type SP96 only a very weak labelling can be

observed. It seems that here fucose prohibits the binding of MUD166 and AD7.5. In the

fucose mutants the SP96 band is strongly visualized by these mAbs which indicates that the

epitope is presented after losing fucose. Interesting is the difference of the labelling of SP75

with MUD166 and AD7.5, because in binding studies of cysteine proteinases and of SP96

they showed some similarities.

3.2 Purification of SP96

3.2.1 Strategy

The protein SP96 is part of an external protein complex in the spore coat. A four step

sequential extraction of D. discoideum spores with (I) 50 mM Tris/HCl (pH8), (II) 50 mM

Tris/HCl (pH8)/ 8 M urea  at room-temperature, (III) the same solution under boiling

conditions and (IV) finally boiling under reduced conditions shows that SP96 is associated

with the protein complex in different forms. The first extraction step released only a minor

amount of weakly associated SP96 from the protein complex detected by MUD3. The main

part of the protein was extracted by boiling with 8 M urea, which breaks down non-covalent

bonds. The last step of boiling under reduced conditions released further SP96 from the

membrane; therefore, part of the protein must  also be integrated by covalent disulfide bonds

or be hold in place by proteins that are linked by S-S bonds in the spore coat protein complex.

After extraction of SP96 out of the spore coat the already reported highly negative

charge of the protein (22, 43) allowed an ion exchange chromatography purification step to be

used to purify the protein. The monoclonal antibody MUD3, which recognised SP96 in the
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wild-type X22 and the fucose mutant HU2470 was used as a tool for further affinity

purification of SP96 from these strains. Figure 3-2 outlines this process of purification.
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3.2.2 Steps of purification

Spores of the strains X22, HU2470 and HU2471 were harvested and extracted

(Material and Methods; 2.4.2). For development of the purification protocol the fraction with

the highest content of MUD3 recognising  SP96 protein, ”hot urea fraction”, was chosen.

Anion-exchange-chromatography with a stepwise gradient for elution was the first step of

purification which was done on a DEAE-anion exchange column. X22-SP96,  HU2470-SP96

and HU2471-SP96 positive fractions were identified by western blot analysis with MUD3 or

MUD166, respectively (Figure 3-2) and gave an approximately 10 fold purification. A typical

elution profile of the anion exchange chromatography is shown in Figure 3-3 for strain

HU2471. The corresponding SDS-PAGE of the different eluted protein fractions  is presented

in Figure 3-4. Both the wild-type strain and also the fucose mutant HU2470 had a similar

elution profile and protein pattern on the SDS-PAGE.

0.00

1.00

2.00

0.0

50.0

100.0

00:00 01:00 02:00 03:00 04:00
Hr:Min

mS/cmAU280nm

2 5 0 m M N aC l

1 0 0 m M N aC l

5 0 0 m M N aC l

Figure 3-3 Elution profile DEAE-anion exchange chromatography
 (strain HU2471)
 DEAE column volume 15 ml.
 Protein elution was done with 4 M urea/ 25 mM Tris (pH 8) solution with
  different NaCl salt concentrations (100 mM, 250 mM, 500 mM and 1 M)
 up to the point where Absorbance (AU280 nm) reached baseline.
 Conductivity of the increased salt concentration was monitored in mS/ cm.
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Figure 3-4 Silver stained SDS-PAGE of eluted
                   protein fractions after DEAE Anion-
                   exchange chromatography of strain
                   HU2471
1) Extract of spores

2) Flow through

3) 100 mM NaCl fraction

4) 250 mM NaCl fraction

5) 500 mM NaCl fraction

6)     1    M NaCl fraction

Although the level of purification was still quite low, the  SP96 protein of each strain

was the major protein band in the range of approximately 80-140 kDa for the fractions eluted

with 250 mM NaCl. Indeed, the amino acid composition analysis of the SP96 protein band

from the different strains, after transfer to a PVDF membrane and hydrolysis, already gave a

good match to the ExPASy databasef amino acid composition  of SP96g.

To be able to quantify the post-translational modifications on SP96 and to be flexible

in the choice of methods used to characterise them, it was necessary to get pure SP96 sample

in salt-free solution. The wild-type SP96 and  the fucose mutant HU2470-SP96  were

specifically recognised by the monoclonal antibody MUD3 (Figure 3-1), and so a MUD3

affinity column was used for the next purification step. Eluted fractions were

immunochemically screened by MUD3 dot-blot analysis (Figure 3-5). The major two

fractions (M) were checked by a silver stained SDS-PAGE which displayed that the SP96

protein in those fractions was still contaminated by four proteins in the range of 55-85 kDa

(Figure 3-6). Therefore, the fractions (S) on either side of the main peak were discarded and

the main fractions (M) were used for a repeated purification step on the affinity column.

Again, only the main fractions were picked, concentrated in a concentrator (Millipore

Ultrafree-15 Biomax) and this time desalted in the same concentrator by several water washs.

Figure 3-7 shows the purified X22-SP96 and HU2470-SP96 sample after SDS-PAGE. Quite

often glycoproteins show a weak stain with the common staining methods, like coomassie or

silver stain, but the SP96 band was quite visible and it was the only protein visible in the

                                                
f http://www.expasy.ch/   (Identification tools; AACompIdent)
g SWISS-PROT and TrEMBL Protein Sequence Databases: AC number P14328
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silver stained gel (Figure 3-7, A). After transfer of the proteins to PVDF membrane a very

sensitive glycostain, based on immunochemical detection of biotin which is bound to the

aldehyde groups of periodate cleaved sugars, was used to exclude the contamination through

glycoproteins. The result showed that the purified SP96 of both strains was homogeneous and

that no further glycoprotein contamination was visible (Figure 3-7, B). That the visualised

band in (Figure 3-7, A and B) were definitely SP96 could be displayed after immunochemical

detection with MUD3  (Figure 3-7, C)

Figure 3-5 MUD3 dot blot to screen for SP96
 positive fractions after stepwise
 elution (1-6) from the MUD3
 affinity column
 S) side fraction, M) main fraction

fraction size 1ml

Figure 3-6

Silver stained SDS-PAGE of a site fraction (S; 2)
and a main (M; 3) after MUD3 affinity
purification
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Amino acid analysis of the protein preparations from 1 x 1010 spores showed a yield of

2.4 nmol protein from the X22 wild-type and 3.2 nmol protein from the mutant HU2470. This

is equivalent to not less than 105 molecules of SP96 recovered in the hot urea extraction of

each mutant and wild-type spore, probably 106 after losses considered. The average amount of

total protein after each purification step is shown in Table 3-1. The original spore

extract (hot urea fraction) from the X22 strain (80 mg) yielded, after approximately 560 times

concentration, 144 µg SP96 protein and and a yield of 190 µg SP96 protein from HU2470 (87

mg), after approximately 450 times concentration.

The following characterisation of the post-translational modifications of X22-SP96

and HU2470-SP96 was done from affinity purified salt free sample. Because MUD3 could

not be used for purifying HU2471-SP96, all characterisation steps of this protein were done

after transfer to a PVDF membrane. SP96 from this mutant was transferred by western blot

onto PVDF membrane and visualised  with Amido-black after the second purification step

(DEAE column).

kDa

250

98

64

50

36

30
 1      2        1        2       1       2

A              B             C

M

Figure 3-7 SDS-PAGE of  final purified X22-SP96 (1) and HU2470-SP96 (2)
 Separation of affinity purified SP96 from the wild-type (lane 1, about 1µg) and

 fucose mutant (lane 2, about 1 µg) on a 10 % (w/v acrylamide) SDS-PAGE under

 reducing conditions. Visualisation in gel with silver nitrate stain (A), after western

 blot onto nitrocellulose with ImmunoBlot stain for glycoproteins (B) and SP96

 protein/ carbohydrate specific antibody MUD3 (C). Lane M, molecular mass marker

 proteins with values in kDa.
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Purification step Total amount of protein [[[[µµµµg]]]]

X22 HU2470

1) Spore-Extract 80000 87000

2) Anion-exchange 7300 8200

3)  MUD3 affinity (2 x) 144 190

Table 3-1 Summary of the recovery of protein in each purification step

All values are calculated to the extraction of 1010 spores.

3.3 Identification of post-translational modifications on SP96

The identification of the post-translational modifications was done in two steps

(Figure 3-8). The first, a composition analysis, was done to identify the phosphoamino acids

and the sugars which are involved in the construction of the modifications. This step removed

and took apart the modification of SP96 in detectable units by acid hydrolysis. The second

step was a detailed structure analysis of the different modifications. The questions to answer

were:  1) How many different modification forms are attached to the protein?

2) How are the modification forms linked to the protein ?

3) What is the size of the modifications ?

4) What is the detailed structure of each modification?

In this step the intact glycans were removed from the SP96 protein by an alkaline β-

elimination.
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3.3.1 Identification of phosphorylated amino acids

The typical acceptors for eukaryotic phosphorylation are the hydroxyamino acids

serine (Ser), threonine (Thr) and tyrosine (Tyr). The SP96 amino acid composition includes

121 Ser, 83 Thr and 12 Tyr residues, which are potential sites for phosphorylation and/ or

glycosylation.

In the early eighties it was shown by 32P radiolabelling experiments that some spore

coat proteins of D. discoideum were phosphorylated. A major spore coat phosphoprotein was

identified by several groups as a 103 kDa (1), 95 kDa (15) and 96 kDa (22) spore coat protein.

These proteins correspond to the now named SP96. By comparing  the radiolabelled,

Purified SP96 protein

Composition analysis
of modification

Structure analysis
of modifications

Phosphoamino
 Acid Analysis

Monosaccharide
Analysis

Acid
Hydrolysis

Separation
of released glycans

Analysis of glycan
linkage to the protein

Mass analysis
of released glycans

by LC-MS

Analysis of the
linkage between

the sugars

 Alkaline
β-elimination

Periodate
 cleavage

1D and 2D
NMR techniques

Phosphate
Analysis

Figure 3-8 Scheme of  identification of post-translational modifications on SP96
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hydrolysed protein with standard phosphoamino acids using thin layer chromatography,

serine was identified as the only phosphorylated amino acid in those experiments.

 In this work it was confirmed that serine was the only phosphorylated amino acid in

SP96 from all three strains using the very sensitive Fmoc phosphoamino acid analysis method

(150). The acid hydrolysed protein from the strains showed the presence of serine phosphate

with no evidence of threonine phosphate or tyrosine phosphate (Figure 3-9). For hydrolysis

MUD3-affinity purified X22-SP96 and the HU2470-SP96 samples (approx. 20 pmol)  as well

as a destained piece of PVDF membrane blotted HU2471-SP96 was used.
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Figure 3-9 Phosphoamino acid composition
Hydrolysed and Fmoc derivatised sample of X22-SP96 (1) compared to
derivatised standard phoshoamino acids (2) after reversed phase
separation (a, phospho-serine; b, phospho-threonine; c, phospho-tyrosine)
Chromatograms of acid hydrolysed SP96 from HU2470 and HU2471
showed the same result.
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3.3.2 Monosaccharide composition analysis

For monosaccharide analysis, a high performance anion exchange chromatography

system with pulsed amperometric detection (HPAEC-PAD) was used. For this all glycan

structures on the protein have to be released and hydrolysed by TFA or HCl to

monosaccharides which can then be detected in the nmol range. The identification was done

by comparing the retention time to the internal standard deoxyglucose.

For monosaccharide analysis, X22-SP96 and HU2470-SP96 protein (25 pmol) was

hydrolysed and the monosaccharides separated on a CarboPac PA10 column. Hydrolysis from

the HU2471-SP96 protein was done again from PVDF membrane after partial purification by

ion-exchange-chromatography without further quantification of the protein. The

monosaccharide analysis of the acid hydrolysed proteins showed the presence of fucose (Fuc)

(peak 1) and glucosamine (peak 3) in all strains (Figure 3-10, Figure 3-11). Hydrolysis with 4

M HCl, to release all amino sugars, showed no increase in the amount of glucosamine in all

strains (data not shown). Glucosamine is the  product of hydrolysed N-acetylglucosamine

(GlcNAc), a common aminosugar in post-translationally modified proteins. The glucose,

apparent in the chromatograms (peak 4), is a common contaminant of monosaccharide

analysis and varied in all analyses. Using the internal standard (peak 2) the calculated ratio of

Fuc:GlcNAc in SP96 was 1.2 : 1 in the wild-type, 0.3 : 1 in HU2470, and 0.04 : 1 in the

HU2471 mutant. As the protein amount could not be quantified on the PVDF membrane, it

was  assumed  that the amount of GlcNAc in HU2471-SP96 is comparable to that in the other

strains (Chapter 3.4).  The fucose content was calculated to drop from 100%  in the X22-SP96

to approximately 25% in  HU2470-SP96  to 3% in HU2471-SP96. These results coincide with

observations done by Champion (11) where the fucose content in spores of these strains was

determined. His experiments displayed a decrease of fucose to 15% in HU2470 compared to

the wild-type, and  to <5% in HU2471.

Figure 3-10 Monosaccharides in all analysed strains of SP96
* shown is the enantiomer of each sugar generally found in biological
   systems
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Figure 3-11 Monosaccharide analysis
1) Fucose; 2) deoxyglucose (1nmol internal standard); 3) glucosamine;
4) glucose (contamination, as signal fluctuated in different measurements done on
 the same sample)
   * amount of HU2471-SP96 was not quantified before hydrolysis; therefore the ratio
   of GlcNAc to deoxyglucose is different in comparison to X22-SP96 and HU2470-SP96.
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3.3.3 Determination of the glycan linkage to the protein by GC-MS analysis

To analyse the linkage of the sugars to the protein the glycans were β-eliminated,

reduced and peracetylated for analysis by GC-MS. After β-elimination a single reducing

terminal sugar, which is directly attached to the protein, is detected as an acetylated alditol, an

open chain sugar form (Figure 3-12). Glycans larger than monosaccharides and

phosphorylated sugars cannot be detected by this method. The composition of these larger

glycans can then be determined by hydrolysis of the reduced β-eliminated sugars prior to

acetylation for GC-MS. Any reducing terminal sugar is detected as an alditol, whereas any

sugar attached to a linkage other than the peptide will not be reduced and will maintain an

acetylated pyranoside ring structure. The alditols and pyranoses can be readily separated by

GC and identified by their different fragmentation spectra obtained by EI-MS. Phosphorylated

sugars will not be seen in the conditions of GC-MS so that dephosphorylation of the

monosaccharides prior to peracetylation is required to determine the presence of any sugar

phosphates.

The glycans of SP96 of each strain were released by β-elimination using reducing

alkaline conditions and aliquoted into four samples, each for a different treatment (Figure

3-13). To see whether a single monosaccharide was directly attached to the protein, the first

sample was directly peracetylated (a). The second sample was hydrolysed with TFA and

peracetylated to see the whole monosaccharide composition (b). The presence of

phosphorylated sugars in the third aliquot was determined after treatment with HF to

dephosphorylate the sugars prior to peracetylation (c) and the fourth aliquot was an  acid

hydrolysate of a similarly dephosphorylated sample (d).

Figure 3-12 Example of the ββββ-elimination of GlcNAc from serine with subsequent
  reduction
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As an example, the GC-chromatograms of the β-eliminated, acid hydrolysed sample

(treatment (b)) of X22-SP96,  HU2470-SP96 and HU2471-SP96 are shown in Figure 3-14 .

In the X22 and HU2470 sample a large fucitol acetate peak (peak 2) was detected compared

to the HU2471 sample where this peak was completely missing. A peak of GlcNAc acetate in

the pyranoside form (peak 4) could be observed in the sample of all three strains. The peaks,

collectively labelled as 1, are the multiple isomers of deoxyhexosepyranoside (fucose acetate).

The peak at around 16 min in the X22 and HU2470 and before at around 15.3 min in the

HU2471 strain is of contaminating glucose peracetate which varied in all samples. Peak 3 is

the internal standard myo-inositol. The corresponding EI-MS fragmentation spectra (Figure

3-15) were used to identify these sugars. In the HU2471 strain sample, were the glycans were

released from the PVDF membrane, further non-sugar signals were observed as byproducts.

The results after reductive β-elimination and acetylation (treatment (a)) showed a deoxysugar

in the alditol acetate form which, from the monosaccharide analysis, must be fucitol with

approximately the same amount in both the wild-type and the HU2470 mutant. The HU2471

mutant completely lacks this sugar modification. Single fucoses are thus attached via a

protein

glycans

β -elimination

 acid hydrolysis dephosphorylation

a b c d

peracetylation

GC-MS

acid
hydrolysis

Figure 3-13 Flow chart of sample preparation for GC-MS



3. Results

68

glycosidic O-linkage directly to X22-SP96 and to HU2470-SP96, but not to HU2471-SP96. In

both mutants, HU2470-SP96 and HU2471-SP96, a small amount of non-reduced aminosugar

in the pyranoside acetate form was detected, which agreed with the monosaccharide analysis

where GlcNAc was observed in the mutants (Figure 3-11). Unfortunately the amount of

GlcNAc pyranoside in the mutants after β-elimination treatment (a) could not be calculated

because of a large contaminating peak. However, GlcNAc pyranoside was not in sufficient

quantity to be significant, suggesting that most of the GlcNAc occurs in the mutant in an

alkali-labile linkage that could not be reduced.

The GC of the acid hydrolysate of the reductively β-eliminated glycans (treatment (b))

showed approximately the same amount of fucitol as prior to hydrolysis. There was also a

large amount of acid-released GlcNAc in the pyranoside form in the wild-type and mutant

strains. The presence of the acetylated pyranoside form of the amino sugar reveals that

GlcNAc is contained in the glycans of SP96, but is not at the reducing terminal attachment

site to the protein.

The presence of a deoxysugar in the pyranoside form was also detected in the wild-

type after hydrolysis, which suggests the presence of additional fucose residues which are not

directly linked to the protein. This peak was dominant (approximately 30 fold more) in the

wild type, hardly detectable in the HU2470 mutant, and not detectable at all in the HU2471

mutant. This absence of fucose in the mutants reflects the modD352 mutation in HU2470, the

modE353 in HU2471, and therefore the loss of the MUD62 and Ab83.5 epitope (Figure 3-1).

As there was no evidence of N-acetylglucosaminitol after reductive β-elimination, it

can be concluded that none of the N-acetylglucosamine is linked directly to the protein.

Instead, in the wild-type and the mutants, GlcNAc is located as a distal residue of the sugar

modification on the protein.

Dephosphorylation of the reduced β-eliminated glycans (treatment (c)) also showed

the fucitol peak but, contrary to the non-dephosphorylated sample, GlcNAc pyranoside was

present in all strains. This result strongly suggests that GlcNAc exists as a phosphorylated

non-reducing terminal monosaccharide. The phosphate must be attached to the anomeric

carbon (C1) position, as its location on any other carbon would result in an alditol acetate

rather than an acetylated pyranoside, appearing after reductive β-elimination and

dephosphorylation. This implies that GlcNAc is attached to the protein via a phosphodiester

bond. Fucose pyranoside was also detected in the wild type at a low level after

dephosphorylation but was not detected in mutant protein, even though the same amount of
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HU2470-SP96 protein was used for the analysis. The same rationale would indicate the

presence of a small amount of fucose in a phosphodiester linkage to the protein in the wild

type SP96. Hydrolysis of the dephosphorylated β-eliminated glycans (treatment (d)) yielded

the same GC eluted sugar forms (fucitol, GlcNAc pyranoside and Fuc pyranoside) as in

treatment (b) (data not shown), since 2M TFA acid hydrolysis removed the phosphate from

the sugars to the same extent as the HF treatment.

The results show that the approximately 75 % decreased level of fucose  from wild-

type to the HU2470 mutant is the consequence of a missing non reducing fucose linkage. This

linkage could be explained by a phosphodiester linked fucose to the protein and/or a terminal

fucose on the GlcNAc. If it is the former linkage, however, it would be expected to give a

much stronger signal of fucose after dephosphorylation (treatment (c) provided it is  the main

modification, because of the resulting monosacchride.

The further decreased level of fucose between HU2470-SP96 and HU2471-SP96

(Figure 3-11) is thus the result of the missing, directly attached O-linked fucose (Figure

3-14).This modification has to be relevant to the MUD3 epitope because of the resulting loss

of reactivity to MUD3 in the HU2471 strain compared to the other fucose mutant (HU2470)

(Figure 3-1). Although the outcome from the monoaccharide analysis demonstrated that the

HU2471 mutant has still approximately 3 % fucose on SP96,  the GC-MS analysis did not

show a possible linkage for this.

The following possible modifications of the different strains could be deduced from

the GC-MS analysis (Figure 3-16)

.
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Figure 3-14 GC spectrum of the released sugars.
Gas chromatograms of the released sugars of SP96 from X22, HU2470 and HU2471 after
β-elimination under reducing conditions, acid hydrolysis and peracetylation. Peak 1 was identified
by retention time (dotted lines show window of retention of the isomeric forms of the standard
sugars derivatised and run under the same conditions) and EI-MS fragmentation pattern, as acetyl-
2,3,4-tri-O-acetyl-6-deoxy-hexopyranoside, which corresponds to fucose peracetate; peak 2 was
identified as 1,2,3,4,5-penta-O-acetyl-6-deoxy-hexitol, which is the open chain reduced form of
acetylated fucitol; peak 3 was the internal standard myo-inositol (0.5 nmol) and peak 4 was
identified as hexopyranose-2-(acetylamino)-2-deoxy-1,3,4,6-tetraacetate, the pyranoside structure
of GlcNAc peracetylated.

 ↓↓↓↓ contamination signal of glucose peracetate which varied in all samples
* sample was separated on a new column; therefore shift of retention time
** observed contamination signal shortly after internal standard peak (at 16.1 min for HU2471),

 stronger in PVDF membrane prepared sample
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Figure 3-15 EI-MS spectrum of peaks 1, 2 and 4 of Figure 3-14
 The sugars were identified as
 1) acetyl-2,3,4-tri-O-acetyl-6-deoxy-hexopyranoside (fucose peracetate)

2) 1,2,3,4,5-penta-O-acetyl-6-deoxy-hexitol (acetylated fucitol)
4) hexopyranose-2-(acetylamino)-2-deoxy-1,3,4,6-tetraacetate (GlcNAc peracetylated)

 by comparison with the standard library (GC-MS Software: Masslab)

S er

P

G lcN A c

F u c

S er

P

F u c

S er / T h r

F u c

A 1 B 1 ,2 C 1 ,2
S er

P

G lcN A c

D 1 ,2 ,3

Figure 3-16 Possible modifications on SP96 deduced from GC-MS analysis
1) X22; 2) HU2470; 3) HU2471
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3.3.4 Release and identification of phosphorylated mono- and disaccharides

For both analyses described previously (HPAEC-PAD and GC-MS) the glycan was

hydrolysed to single sugars to determine the composition. To analyse the intact glycan

structures, they need to be released without hydrolysis. They can then be analysed by liquid

chromatography and mass spectrometry. Common ways to release intact glycans from protein

are alkaline β-elimination (0.1 M NaOH) or mild acid hydrolysis (40mM TFA, 8 min,

100°C).

The phospho-amino acid analysis indicated the presence of phosphorylated serines,

and the GC-MS results implied that the sugar phosphates were linked to the protein via a

phosphodiester bond. Phosphodiester and fucose linkages have both been shown to be

susceptible to mild-acid hydrolysis (114). Furthermore, some of the mAbs epitopes on SP96

have been observed to be mild-acid labileh. To analyse the mild-acid labile sugar linkages,

SP96 protein from the wild-type and mutant strains (∼500 pmol) was treated with mild acid

and the released sugars separated by HPAEC-PAD. In all cases a large peak at 4 min was

observed, which eluted at the same time as monosaccharides on a gradient capable of

resolving monosaccharides from monosaccharide phosphates and disaccharides (data not

shown). The acid treatment appeared to remove the phosphate from the sugar as well as to

hydrolyse any disaccharides present.

Nonreductive β-elimination using 0.1 M NaOH was also used to try to release the glycans

from the SP96 protein (1 nmol; X22-SP96, HU2470-SP96 and approximately the same

amount HU2471-SP96). The reducing terminus of non substituted sugars undergoes a

degradative ‘peeling’ reaction under alkaline conditions and would not be detectable. The

treatment of X22-SP96 with NaOH (Figure 3-17) released one glycan (P1; 14.4 min). The

same treatment released a single different glycan (P2 and P3 respectively; 18.1 min) from

both HU2470-SP96 and HU2471-SP96 (Figure 3-17). This happened with a shift of retention

time of over 4 min and a weaker signal.

Peak P1 was collected, desalted over a graphitised carbon column and an aliquot of the

sample hydrolysed. Fucose and GlcNAc were detected by monosaccharide analysis and

quantified by comparison to an internal standard (Figure 3-18). Phosphate was assayed after

both strong-acid hydrolysis and alkaline-phosphatase treatment of the released P1 glycan. A

                                                
h A. Champion & L. Browne, unpuplished work
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molar ratio of 1:1:1 of Fuc:GlcNAc:phosphate was obtained in the glycan released by β-

elimination of the wild-type SP96.

The HPLC peak (Figure 3-17, P2 and P3) at 18.1 min from the alkaline treatment of

the mutants HU2470-SP96 and HU2471-SP96 showed the same retention time as a standard

of GlcNAc-α-1-P.  Chromatography of a mixture of the sample with a GlcNAc-α-1-P

standard gave one peak. The small shoulder on the P2 peak was also observed after treatment

of the GlcNAc-α-1-P standard with alkali. This might be due to the cyclisation of some of the

phosphate on the sugar under alkaline conditions (7).

To check for the possibility of phosphodiester-linked fucose, Fuc-α-1-P was analysed

by HPAEC-PAD. Fuc-α-1-P eluted with a  retention time of 16.2 min. In the X22-SP96,

HU2470-SP96 and the HU2471-SP96 samples, no signal was detected at this retention time.

However, the presence of this glycan cannot be discounted, as the response of the detector to

phosphorylated fucose was much weaker (1:50) than to the monosaccharides, and therefore

less than 5 nmol would be hard  to detect. If the glycan were present, then the amount would

be >50 x less than the amount of GlcNAc-α-1-P.

Treatment of the samples with mild acid (40mM TFA, 8 min, 100°C) caused the peaks

of the P1, P2 and P3 glycans to disappear with a concomitant large increase of

monosaccharide eluting at 4 min (data not shown). To investigate this apparent acid lability of

GlcNAc-α-1-P, the standard was treated with two different mild-acid hydrolysis conditions

which have been reported in the literature (viz: 40 mM TFA/ 100ºC/ 8 min (63) and 10mM

HCl/ 100ºC/ 8 min (119)). After both treatments GlcNAc-α-1-P could no longer be detected

by CarboPac PA1 chromatography. Also, under these conditions, the glycan P1 apparently

lost both the phosphate and the fucose, thus confirming the similar sensitivity of these bonds

to mild-acid hydrolysis (114) and explaining why no phosphorylated mono- or disaccharides

were detected by the analysis of the mild-acid hydrolysate.

In summary, the wild-type analysis showed the presence of (Fuc, GlcNAc, Pi), while

both mutants appeared to contain only GlcNAc, Pi.
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Figure 3-17 Separation of released phosphorylated sugars by HPAEC-PAD
After alkaline β-elimination of the SP96 protein (~1nmol), the released

 phosphorylated sugars were separated on a CarboPac PA1 column: X22 chromatogram
 of the released sugar (P1: 14.4 min); HU2470 and HU2471 chromatogram of the
 released sugar (P2 and P3: 18.1 min). This latter peak eluted at the same time as a
  GlcNAc-α-1-P standard.
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Figure 3-18 Monosaccharide composition of X22-SP96 glycan P1
The β-eliminated and HPAEC-PAD separated peak (P1)

 (Figure 3-17) of wild-type SP96 was desalted on a graphitised carbon column
 and hydrolysed in 2M TFA. The monosaccharides were identified by their
 retention times on HPAEC-PAD as fucose (1) and glucosamine (3)
 in the molar ratio of 1:1. Deoxyglucose (2) was added as an internal-standard for
 quantitation, and some commonly contaminating glucose (4) was present.
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3.3.5 Mass analysis of the released glycans by LC-MS

Samples of X22-SP96, HU2470-SP96 and HU2471-SP96 protein were treated with

alkaline conditions (0.1M NaOH) and desalted over cation exchange resin. The samples were

passed through an in-line graphitised carbon cartridge and were analysed by LC-MS-TOF in

negative-ion mode (Figure 3-19). Measured with the low cone voltage the spectrum of the

X22 sample still showed some glycan TFA adducts (data not shown) which disappeared after

increasing the voltage. The major signal in the X22 sample of mass m/z 446.05 correlates

with the negative-ion mass of a Fuc-GlcNAc-1-P disaccharide, while the signal at m/z 300.05

is the result of the loss results from this structure. It is not possible to definitively differentiate

as to whether this loss has resulted from the mass spectrometry ionisation or reflects the

native heterogeneity of the structures. The former interpretation is favoured, however, since

only the disaccharide phosphate was seen in the HPAEC–PAD chromatogram of the

eliminated wild-type glycans (Figure 3-17). In the spectrum also the masses of dimers of

these saccharides were detected at m/z 893.13 (Fuc-GlcNAc-1-P)2
 and at m/z 747.10 the

defucosylated dimer (Fuc-GlcNAc-1-P+GlcNAc-1-P). Because of the high mass accuracy of

an ESI-TOF mass spectrometer, these masses cannot be accounted for by larger

oligosaccharide structures. If the glycosylation was composed of repeats of these structures

then a mass of m/z 875.12, representing the structure Fuc-GlcNAc-1-P-Fuc-GlcNAc-1-P,

would result. This mass was not observed.

The major signal in the HU2470  sample of mass m/z 300.10 correlates with the

negative ion mass of a GlcNAc-1-P saccharide, while the signal at m/z 601.13 is the result of

dimers of these saccharides (Figure 3-19). Also detected here is its sodium adduct with a mass

of m/z 623.16. The spectrum of HU2471 showed the same signals as seen in HU2470 (data

not shown).

Although the LC-MS method is much more sensitive than HPAEC-PAD, it could not

give  clear evidence for the existence of Fuc-1-P (m/z 243.06)  in the strains. The tiny signal

at m/z 243 in spectrum X22 (arrow in Figure 3-19) may be from Fuc-1-P, but this did not

appear in the 30 V spectrum under the conditions used to analyse the Fuc-1-P standard. This

result could mean that, if this signal is from the glycan Fuc-1-P, it is only a minor

modification on the X22-SP96. There is no evidence that it is a modification in the mutants.

Indeed, both the chromatographic and mass spectrometric data support the conclusion that the

major modification in the wild–type SP96 is the phosphorylated disaccharide Fuc-GlcNAc-1-
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P. The mutants appear to have the terminal fucose missing  and only a GlcNAc-1-P is

released.
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Figure 3-19 Negative ion LC-ESI-TOF mass analysis of released glycans of
 X22-SP96 and HU2470-SP96
 The β-eliminated released glycans (100pmol) were desalted on an in-line
 graphitised carbon-cartridge and eluted directly into an ESI-TOF mass
 spectrometer and detected in negative-ion mode. The mass spectra of SP96 from
 X22 and HU2470 were obtained by in-source ionisation with a cone voltage of
 80 V(X22) and 30 V (HU2470), respectively.
 X22) The major ion at m/z 446.05 corresponds to the mass of Fuc-GlcNAc-1-P.
 A loss of fucose generates the ion m/z 300.05 which is identical to the mass of
  GlcNAc-1-P. The mass at m/z 893.13 corresponds to a dimer of the
 Fuc-GlcNAc-1-P and m/z 747.10 to the loss of fucose from that dimer.

The arrow →→→→ labelled the possible Fuc-1-P mass (m/z 243.06).
HU2470) The major ion at m/z 300.10 corresponds to the mass of  GlcNAc-1-P.

 Also detected were the dimer of this saccharide m/z 601.13 and its sodium adduct
 m/z 623.16, respectively.
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3.3.6 Determination of  disaccharide phosphate linkages

To determine the complete structure of X22-SP96 glycan P1, the linkage of Fuc to

GlcNAc and the anomeric configuration (α or β) had to be elucidated.

To answer these questions different approaches are available. A common wet-

chemical method to analyse linkages between sugars is methylation analysis  by GC-EI-MS.

With the characteristic fragmentation pattern it is  possible to infer the linkage of the sugars.

For the identification of the anomeric configuration, enzymatic approaches with exo- and

endoglycosidases are often used. If available it is also possible to use immediately a highly

linkage- and anomeric- specific enzyme. The advantage is here the low amount of glycan

needed for analysis. For glycan P1, fucosidases  are necessary which are only available in

α–1,2;  α–1,6 and α–1→(3,4) specificity.  A simple periodate cleavage of the glycan P1, used

as a pre-experiment, should help to restrict the choice of enzymes.

Another approach for the analysis of complete glycan structures is NMR (nuclear

magnetic resonance) spectroscopy, which is also able to answer all these questions of linkage

and anomericity. The development of high resolution NMR (>500 MHz)  and two-

dimensional (2D) techniques make it possible to resolve complex spectra. The only

disadvantage of these techniques is the high amount of purified sample needed. Typically, a

0.5-5 mM solution (1ml)  of purified sample is required to conduct 500 MHz 1H NMR

experiments in the Fourier-transform (FT) mode in  2D in a reasonable time.

3.3.6.1 Periodate treatment of glycan P1

Periodate is commonly used for oxidative cleavage of the carbon–carbon bond

between  vicinal diols. To a smaller extent the cleavage between a hydroxy group and amino

alcohols and their derivatives is possible (83). A  periodate treatment of a glycan chain would

therefore destroy all sugars with vicinal OH groups. Only sugars which generally have or

necessitate, because of the linkage to another sugar, no vicinal diols can be detected by

monosaccharide analysis. This result excludes some of the sugar linkages. This is helpful to

finally restrict  the choice of fucosidase.

The glycan was oxidised with periodate, desalted over a carbon column and

hydrolysed to release any unoxidised monosaccharide. Terminal fucose would be completely

cleaved by this treatment and could not be detected. The fate of the GlcNAc, however,
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depended on the position of  the attached fucose. Only in case of a fucose linkage to the 6

position of the GlcNAc could it be cleaved between the vicinal diols of positions 3 and 4

(Figure 3-20) and hence, GlcNAc could not be detected anymore by monosacharide analysis.

A fucose linkage to the 4 position would result in a slower cleavage of the carbon-carbon

bond between the hydroxy group (ring position 3) and the amino alcohol group on position 2.

If the glucosamine is still detectable, a linkage to either the 3 or 4 position of GlcNAc is

possible.  In this case further resolution using an enzymatic approach can be dismissed,

because no enzymes are available which differentiate between these linkage positions.

The released glycan P1 was used for periodate cleavage, as well as the same amount of

GlcNAc-α-1-P standard used in a control experiment. The result showed complete cleavage

of fucose in the periodate treated sample P1 (B) compare to the untreated one (A) which had a

large fucose signal at around 5 min (1) (Figure 3-21). The glucosamine signal (2) at around 12

min was, however, visible in both chromatograms. The periodate treated standard GlcNAc-α-

1-P sample was completely cleaved  after this time (data not shown). The lower amount of

GlcNAc in sample B compared to A could be probably explained by to the loss during the

carbon-column desalting step, which does not retain monosaccharides quantitatively.

The conclusion drawn from this result was that a 1,6 linkage between Fucose and

GlcNAc could be excluded. The last two possible linkages, (1,3 and 1,4), cannot be

differentiated by an enzymatic approach, as specific fucosidases for these linkages are not

available. Therefore  the NMR approach was chosen to determine the linkages.
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Figure 3-20 Periodate cleavage sites on GlcNAc-1-P
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Figure 3-21 Monosaccharide analysis of periodate treated and untreated glycan P1
 A) untreated, hydrolysed P1; B) periodate treated, hydrolysed P1

 1) fucose; 2) glucosamine
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3.3.6.2 NMR analysis of glycan P1

The glycan was released from X22-SP96 in liquid sample and from PVDF-membrane

blotted bands by β-elimination, before it was further purified twice by HPAEC-PAD

chromatography and desalted over a graphitised carbon column. The  amount of glycan P1

isolated for the NMR analysis was approximately 120 µg.

3.3.6.2.1 1H-NMR

The first NMR experiment performed was a one-dimensional 1H-NMR, because of its

higher sensitivity compared to the two-dimensional experiments. Useful information can

already be obtained by this, because of the so called “structural reporter groups”, specific

types of protons which resonate in characteristic regions of the spectrum. From the

Fuc-GlcNAc-1-P  glycan the following protons belong to it: anomeric protons from the fucose

and from the N-acetylglucosamine, the fucose H-5 and CH3 protons and the aminosugar

N-acetyl CH3  protons. The anomeric protons show generally a chemical shift between 4.5

and 5.5 ppm, whereas the protons of α−anomers are more deep-field shifted than those of the

the β type. The observed coupling constant for a 3JH1,H2  coupling in the α−anomers is  ∼2-4

Hz, whereas the corresponding β-anomers show coupling values from 7-9 Hz for 3JH1,H2,

because of the larger dihedral angle of ∼180 °.  Thus, the anomeric configuration of a glycosyl

residue can be inferred both from the chemical shift and the coupling constant of its anomeric

proton signal in the 1H-NMR  spectrum.

The significant signal overlap  in the region of  ∼3.5-4.2 ppm originate from the so

called “sugar skeleton protons”. These protons often create non-first-order spectra, which

make it very difficult to locate the resonance of individual nuclei and to assign these

resonances to specific nuclei in the oligosaccharide structure. To interpret  this part of the

spectrum  two-dimensional (2D) NMR experiments are helpful.

The spectrum of phospho-glycan P1 (Figure 3-22) revealed an anomeric proton with a

chemical shift  δH 5.37  indicative of α-anomeric sugars. For GlcNAc, H1 was assigned on the

basis of  the coupling to  H2 and phosphorus  (3JHP=6.9 Hz ). In addition, the small coupling

constant to GlcNAcH2 (J=3.3Hz) is not consistent with an axial proton at H1 where a much

larger coupling would be expected. Similarly, a doublet of the fucose anomeric proton with a

chemical shift (δH 5.03) was coupled to Fuc H2 (J = 4.1Hz) indicating that fucose was also in

an α-configuration. Further assignment was possible for the singlet signal of the N-acetyl CH3
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protons of the aminosugar at (δH 2.05) and the doublet of the fucose CH3 protons at δH 1.17

(out of range of the spectrum shown in Figure 3-22).

2.02.53.03.54.04.55.05.5ppm

5.15.25.35.4ppm

6.9 H z 4.1 Hz

3.3 Hz

GlcNAcH1

FucH1

NAc

3.3.6.2.2 2D-NMR (COSY, TOCSY and HSQC)

After characterisation of the α-anomeric configuration, the linkage attachment of Fuc

to GlcNAc was, however, still unknown. The linkage could only be identified by the

assignment of all signals in the spectrum. The strategy for obtaining sequential assignments in
1H spectra of carbohydrates basically involves two different types of NMR experiments. The

various glycosyl spin systems of a particular carbohydrate are identified by a combination of

2D direct (COSY; Correlated Spectroscopy) and relayed (TOCSY; Total Correlation

Figure 3-22 Part of 1H-NMR spectrum of purified X22-SP96 glycan P1
Zoomed location of anomeric protons displayed between 5-5.4 ppm and

 the not resolved skeleton protons between 3.5 –4-5 ppm.
 (120 µg glycan P1 repeatedly lyophilised and redissolved in D2O)
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Spectroscopy)  J-correlated spectroscopy. Because of the consecutive allocation of protons

around each glycosyl ring, a vicinal J-coupled connectivity exists for each residue such that

each proton leads to the next proton of the ring. Conveniently, the anomeric protons (H1) of

each aldosyl residue resonate in a characteristic region (4.5<δ<5.5 ppm) that contains few

other signals. Thus the J-connectivity trail for such residues can be initiated in this region.

The actual magnitudes of the J-coupling reveal the stereochemistry and configuration at each

carbon; the complete set of J-couplings characterizes the identity of the residue. The TOCSY

technique normally permits subspectral editing of the 1H spectrum for each constituting

glycosyl residue and, consequently, the virtually complete assignment of all multiple patterns

in the 1H spectrum.

Another supplementary NMR technique is the heteronuclear 2D  NMR  spectroscopy.

More recently, the sensitivity problem in the detection of 1J-connectivities between 13C and
1H nuclei has been overcome to a large extent by the introduction of the so-called reversed i.e.
1H-detected 2D {13C,1H} shift-correlation experiment termed HSQC (Heteronuclear Single

Quantum Coherence).  From these experiments a complete {13C,1H} one-bond shift-

correlation map, with a high resolution in the 1H dimension, could be obtained from the

glycan.

To identify the exact linkage between Fuc and GlcNAc in the X22-SP96

phosphoglycan  P1, the full 13C and 1H assignment of the disaccharide is required. This was

achieved using the techniques mentioned above (HSQC, Figure 3-23; TOCSY, Figure 3-24

and COSY Figure 3-25).

Assignment of the Fuc signals was aided by the HSQC (Figure 3-23) and the COSY

(Figure 3-25, Table 3-2) spectra. It was found, that in particular, H6 was coupled to H5 (δH

4.36). No correlation was observed in the COSY spectrum between H5 and H4, but the

TOCSY spectrum (Figure 3-24) showed a strong correlation between H1 and H2/H3 and a

weak correlation to H4 of Fuc. For GlcNAc, H1 was assigned on the basis of the coupling to

H2 and phosphorus (3JHP=6.9Hz). The HSQC (Figure 3-23) was used to help assign the

remaining signals. (H6)2 was evident as the only correlation of two protons to the same

carbon (δc 61.7). Both C6 protons were coupled to H5 (COSY; δH 3.96) which was in turn

coupled to H4 (δH 3.59). The TOCSY spectrum (Figure 3-24) showed correlation between H1

to H2 and H3 and a weak correlation to H4 to complete the assignments. The chemical shifts

of Fuc were similar to those previously reported (81), while those of GlcNAc were affected

by the α-1-phosphate. In particular, C2 and C5 were shifted by ~2ppm upfield by the
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shielding effect of the phosphate. This was also observed in the GlcNAc-α-1-P standard

(Table 3-2). Comparisons of the C3, C4 and C5 chemical shifts with those of similar

disaccharides (81) indicated that substitution was at C3 (Table 3-2). The chemical shifts of C4

(δc 69.5) and C3 (δc 79.3.) of GlcNAc were similar to those of a α1-3-linkage (δc 69.7, δc 83.4

respectively).
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Figure 3-23 HSQC spectrum of glycan P1 of skeleton protons and carbons
 Sensitivity-enhanced double INEPT (insensitive nuclei enhanced by polarization) transfer
 was used to correlate carbons and protons in the enonanomeric region, to help assign all
 the signals of the disaccharide. The boxed signal is an impurity in the sample.
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Figure 3-24 TOCSY spectrum of skeleton protons of glycan P1
 Correlation between the two anomeric protons with the next protons (H-2
 and H-3) are evident. Weaker correlations to H-4 can also be observed.
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Figure 3-25 COSY spectrum of skeleton protons of glycan P1
 arrows illustrate the coupled-neighbour protons in GlcNAc (dotted line) and
 some of Fuc (broken line)
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(P1) GlcNAca GlcNAcb ββββ-Fuc Fuc(αααα-1) GlcNAc(α(α(α(α-1)P

Assign. 13C 1H 13C 13C 13C 13C 13C 1H

FucC6 16.2 1.17 16.5 16.3

Ac 23.1 2.04 23.1 2.04

GlcNAcC2 54.6 4.10 55.5 56.9 55.2 3.92

GlcNAcC6 61.7 3.81,

3.88

61.7 61.0 61.8 3.77,

3.89

FucC5 67.9 4.36 71.9 67.9

FucC2 69.1 3.70 71.5 68.9

GlcNAcC4 69.5 3.59 69.7 78.5 71.1 3.49

FucC3 70.7 3.84 74.1 70.3

FucC4 73.0 3.80 72.4 72.7

GlcNAcC5 73.7 3.96 76.2 76.1 73.1 3.97

GlcNAcC3 79.3 3.85 83.4 73.5 72.6

GlcNAcC1 94.4 5.37 101.1 101.8 93.7 5.36

FucC1 100.8 5.03 104.8 100.4

Table 3-2 13C and 1H chemical shifts of the isolated disaccharide (P1).

Proton and carbon chemical shifts were referenced to the fucose methyl (δH 1.166, δC 16.2 ppm).

 For comparison, published 13C shifts for residue linked to the  a 3  and  b 4 position ofGlcNAc

 (81), α- and β-fucose (5, 81) α-1-GlcNAc-P (Sigma) are given.
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3.3.6.2.3 1D-ROESY NMR

A one dimensional ROESY experiment of glycan P1 was chosen to support the

interpretation of the 2D-NMR results seen above (3.3.6.2.2).

ROESY (rotating-frame nuclear Overhauser spectroscopy) experiments allow one to

probe which protons are close in space to each other (less than 450 pm away). The experiment

involves the selective irradiation of an anomeric proton for a given period, followed by signal

detection in the absence of irradiation. In general, 1,3-diaxial and 1,2-eq-ax proton pairs in

pyranosyl rings will produce intraresidue ROESY peaks. More importantly, however,

ROESY peaks may be observed between interresidue proton pairs. Thus, in some cases,

ROESY is valuable in determination and confirmation of linkage sites and O-glycosidic

conformation in oligosacharides.

The α1-3-linkage was confirmed by the ROESY spectrum (Figure 3-26)  which

showed a strong interresidue correlation between Fuc H1 and GlcNAcH3 (4.5%). In addition,

approximately equal (~1%) ROE’s were observed between FucH1, GlcNAcH2 and

GlcNAcH4. Also detected were the intraresidue correlations to FucH2 (3.8%).

These data established conclusively the substitution and stereochemistry of the

disaccharide as Fuc(α1-3)GlcNAc-α-1-P.
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Figure 3-26 One-dimensional ROESY spectrum of the released disaccharide P1
Proton NMR spectra of Fuc(α1-3)GlcNAc-α-1-P showing the non-anomeric region. The normal

 WATERGATE spectrum (A) shows a quartet (δH 4.36) for FucH5. The singlet at (*; δH 3.74) is an
 unidentified impurity. Spectrum B is a one-dimensional ROESY obtained by selective irradiation of
 FucH1. Enhancements of GlcNAcH3 (4.5%) and GlcNAcH2/H4 (1%) indicate an  α1-3 linkage.



3. Results

88

3.4 Quantitative analysis of the post-translational modifications on

X22-SP96 and HU2470-SP96

Previously, radiolabelling experiments (21, 109) indicated that  SP96 may be modified

by glycosylation and phosphorylation. Until now the protein has, however, not been purified

far enough for quantitative analysis. This kind of information could be helpful to get a better

understanding of the possible function of the modifications of this spore coat protein, for

example, if a glycan is implicated in protein conformation or in conferring protease resistance

to the spore. For the quantitative analysis only the samples of X22-SP96 and HU2470–SP96

were used, because of their high purity after affinity purification.

The quantification of the fucose by monosaccharide analysis showed that fucose was

approximately four times higher in wild-type X22-SP96 compared to that in the fucose

mutant HU2470-SP96 ( Table 3-3). The quantification of N-acetylglucosamine as

glucosamine resulting from acid hydrolysis of the protein showed 21% more in the wild type

( Table 3-3). To quantify the degree of phosphorylation of SP96, the purified protein from

both strains (20-100 pmol) was hydrolysed with sulfuric acid, and the released inorganic

phosphate was measured by adapting a nanomole-sensitive colourimetric phosphate assay

(80) to a microtitre plate format. By comparison with a standard curve, the calculated amount

of released phosphate was ~17% higher from the X22-SP96 wild-type compared to that in the

HU2470-SP96 mutant ( Table 3-3).

To determine whether the phosphate exists as a monoester (on either an amino acid or

a sugar), the protein (0.2 nmol) was treated with alkaline phosphatase, which removes singly

substituted phosphates, and the released phosphate was detected with the same assay. The

limit of detection of the phosphate assay is 200 pmoles and no measurable released phosphate

was detected in SP96 protein from both strains. Although the phosphate may be otherwise

inaccessible to the enzyme, this suggests that less than 1 % of the total phosphate on the

protein was not further modified.

The ratio of GlcNAc to phosphate (1:1) was the same in both the wild-type and the

mutant. The slightly lower (approximately 20 %) molar content of each substituent in the

mutant may be significant in the number of sites which are substituted or may be a function of

the analysis involved as the values lie within the standard error range.
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nmol/ nmol protein

Strain Fucose GlcNAc Phosphate

X22 78±6 66±4 63±13

HU2470 18±2 52± 4 54±9

 Table 3-3 Compositional analysis of SP96

GC-MS analysis was also used for quantification of the component sugars. Sugars

were released by reductive β-elimination from the purified SP96  protein (0.2-0.5 nmol) of the

X22 and HU2470 strain and converted to a volatile form pre- (a) and post- (b) acid

hydrolysis, before they were analysed by gas chromatography mass spectrometry (see 3.3.3).

Quantification of the GC peaks was carried out relative to the internal standard myo-inositol.

The compositions are shown in Table 3-4. As fucose is susceptible to the acid degradation

used in the monosaccharide analysis, these values are necessarily less reliable, and the GC

quantitative data (an average of 28 sites) are probably a more accurate estimation of the

fucitol which is more stable to acid. A problem in the quantification of GlcNAc in the

HU2470 sample was that it eluted close to a contamination peak, as proven by a comparison

measured EI-MS spectra with database results. The quantification of the amount of the sugars

in the HF treated samples (treatment c and d; 3.3.3) is not shown, as it was apparent that

destruction of the monosaccharides was occurring over the long period of incubation in the

HF acidic conditions, even at 0°C.

nmol/ nmol protein

Treatment Fucitol acetate Fucose acetate GlcNAc acetate

Strain X22 HU2470 X22 HU2470 X22 HU2470

(a) red. β-elimination 28 29 - - - +*

(b) red. β-elimination/

     acid hydrolysis

33 23 56 2 56 +*

Table 3-4 Quantification of ββββ-eliminated sugars from SP96 by GC-MS
*signal  partly overlapped with a contaminating peak; could be identified as GlcNAc acetate but

   not quantified.
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There are 121 serine and 83 threonine residues in unprocessed SP96. In the 20 amino

acid signal sequence, which is cleaved from the mature protein, there is only one serine and

one threonine. Therefore, 120 serine and 82 threonine residues have the potential to be O-

glycosylated.

The results show that, on average 60 GlcNAc were attached to serine via phosphodiester

bonds,  which is the only phospho-amino acid in SP96 (see 3.3.1) with  no further phosphate

on non reducing positions of the sugars. This conclusion was also supported by the 1:1 ratio

between GlcNAc and phosphate in both strains ( Table 3-3). Therefore, about

50 % of the serines are modified by this glycan. As the remaining O-linked fucose is also

attached to serine (see 3.5.2), approximately  70 % of this amino acid is modified in total.

As shown by ES-MS analysis (see 3.3.5),  the only apparent difference between the wild-type-

SP96 and HU2470-SP96 modifications is a missing terminal fucose on the phosphodiester-

linked GlcNAc. The total mass of approximately 60 missing fucose residues would be 8.8

kDa. Although migration of glycoproteins on SDS-PAGE is not always proportional to the

mass of the glycan, this result is consistent with the predicted mass difference after

SDS-PAGE between X22-SP96 and HU2470-SP96 of approximately 10 kDa, seen on the

MUD3 western blot (see 3.1).
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3.5 Location of glycosylation sites in SP96

3.5.1 Strategy

After quantification of the post-translational modifications it was now of interest to

locate the glycosylation sites in the SP96 protein. A closer look at the 580 amino acid (AA)

long sequence (1.3.5) displayed that, as already mentioned earlier, SP96 has many  potential

O-glycosylation sites due to its 120 (20 %) serine and 82 (14 %) threonine residues. Also

interesting was that 73 serine and 47 threonine residues were contained in the last 180 amino

acids on the C-terminus, resulting in a serine- and a threonine-rich repeat region. A further

serine/ threonine mixed region combined with glycine is further upstream in the sequence

between amino acids 140-180. Ser/ Thr rich domains are quite often targets for substantial O-

glycosylation. They  are found on mammalian cell surface glycoproteins, like mucins, and

immunoglobulins (127).  With at least 60 phosphoglycans linked to serine it was therefore

assumed that part of the serine-rich tail of SP96 would also be glycosylated. The hydroxy

amino acid to which fucose was directly O-linked could be either serine or threonine as both

these can be β-eliminated to release fucose.

One approach commonly used for characterisation of heavily glycosylated sites in

proteins such as mucins, is digestion with an unspecific protease. Highly glycosylated regions

resistant to this digestion can be separated in gel and used for further analysis. Glycosylated

fragments of SP96 were separated by SDS-PAGE and screened for the MUD3 or MUD62

epitope, before being used for further analysis. Another approach to identify potentially

glycosylated sites is to use the established D. discoideum  in vivo expression system for the

identification of O-glycosylation acceptor sites (24, 70, 71). In the case of SP96 three

different motifs out of the repeat regions of the protein were examined for their acceptance of

O-glycosylation.
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3.5.2 Amino acid analysis pre and post ββββ-elimination

The phosphodiester linked glycans were definitively assigned to serine, yet the

hydroxy amino acid to which fucose was O-linked was still not identified.

β-elimination releases O-linked glycans from proteins while, at the same time,

converts the modified hydroxy amino acid into its dehydro-form. For example, serine is

converted to dehydroalanine (see Figure 3-12) and threonine to dehydroamino-2-butyric acid.

The consequence of this conversion is a different retention time of the original amino acid

compared to the dehydro amino acid during amino acid analysis. Therefore, the modified

hydroxyamino acids  can be quantified by the decrease in the amount of detected

hydroxyamino acid pre- and post β-elimination.

Purified samples of X22-SP96 and HU2470-SP96 were aliquoted (10-20 pmol each) and at

least four determinations were done after β-elimination and hydrolysis (post β-elimination) as

well as after hydrolysis only (pre β-elimination) with 6 M HCl. The results pre and

post β−elimination were normalised to isoleucine  and shown in Figure 3-27.
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In both the wild type and the mutant, the amino acid ratio after normalisation to

isoleucine showed only a drop in the amount of serine. Although this result would not exclude

the possibility of a small amount of modified threonine, any difference is within the error of

the analysis. This shows that serine is probably the only modified hydroxyamino acid in SP96

and that, therefore, up to 70 % of the serines are modified by glycosylation, phosphorylation

or phosphoglycosylation.

3.5.3 Non-specific protease digest of SP96

The non-specific proteases Pretaq and Proteinase K were used to digest SP96 so that

the glycosylated, more resistant part of the protein could be further analysed. These proteases

are common used in glycobiology for analysis of glycopeptides. The Pretaq enzyme is an

extracellular alkaline serine protease which was isolated out of hot spring bacteria Thermus

sp. strain Rt41A and was originally used to remove proteins during the DNA isolation

procedure. This aggressive protease is also stable in the presence of denaturing reagents and

has its optimum activity at pH 8 and 90°C. The other protein used, Proteinase K, is also a

serine protease which has a good activity at room temperature and pH 8.

X22-SP96 protein was at first incubated for different times with a fixed amount of

Pretaq  and Proteinase K . After 20 min, in both protease samples no uncleaved SP96 could

be detected with MUD3. A longer incubation time resulted in a complete cleavage and the

loss of the MUD3 and MUD62 epitope.  The sample preparation for SDS-PAGE of the

Pretaq digest was done without boiling, because of the high activity of the enzyme under

reduced conditions and at high temperatures. Although the products of the digestion were not

uniformly reproducible, several bands often appeared at the same mass. A digest with a

decreased amount of protease (20 mU) and a longer incubation time was also not able to yield

a better reproducibility of the results.

In both samples the smallest MUD3 detected fragment was around 55 kDa. A weak

labelling of fragments at 62 kDa and 92 kDa was also observed. The difference between the

Pretaq and Proteinase K digest was that in the latter one the two larger fragments were

labelled more strongly by MUD3 compared to the band at 55 kDa.    The progress of the

digest was done after SDS-PAGE by  western blot analysis with MUD3, silverstain and an

immuno-glycostain (Figure 3-28). All the MUD3 detected fragments showed also the MUD62
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epitope (data not shown). The band at 55 kDa of the SDS-PAGE separated sample was used

for a western blot to a PVDF membrane and was chosen for analysis by Edman degradation.

The glycopeptide was sequenced up to 9 cycles from the N-terminus. As expected, the

interpretation of the results was difficult, because of the multiple starting sites which resulted

from the use of an unspecific protease. Nevertheless, there was a possible sequence

homology to the sequence between amino acid 359-368 of SP96 (Table 3-5). This result

showed that the more digestion-resistant part of SP96 started around 60 amino acids upstream

of the serine / threonine-rich tail of SP96. This part of the protein appeared to be modified by

O-linked fucose and the phosphodiester linked Fuc(α1-3)GlcNAc-α-1-P disaccharide,

because of the positive MUD3 and the MUD62 epitope reactivity, respectively.

M     1     2    1      2       1     2

250

98

64
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36

30

kDa

A           B              C
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Figure 3-28

X22-SP96 digestion  with the unspecific

protease Pretaq

 1) undigested ; 2) digested
 A) immunoblot MUD3; B) silver stain;
 C) immuno glycostain
 *)    labeled fragments at approximately 94, 62
         and 55 kDa.

N-terminal sequence of SP96 fragment

(55 kDa)

DVQPTCIKP

Table 3-5
N-terminal sequence of the first 9
amino acids of the 55 kDa fragment
obtained by Pretaq digest of SP96
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3.5.4 An in vivo system for the identification of O-glycosylation acceptor sites in

D. discoideum

An alternative to the identification of O-glycosylation sites in original glycoproteins is

the use of short-candidate acceptor peptides for in vivo or in vitro studies. In in vivo studies

different potential acceptor peptides are expressed and the glycopeptides characterised.

Usually short synthetic peptides (10-20 amino acids) are used in combination with diverse

glycosyl-transferases (99, 119, 134, 135).

To analyse regions of SP96 for O-glycosylation acceptor sites advantage was taken of

D. discoideum  in vivo expression system (24, 71). For glutathione-S-transferase (GST) fusion

proteins, the C-terminus of GST is fused with the candidate acceptor peptides via a factor Xa-

specific endonuclease cleavage site.  The D. discoideum  cells secrete the GST-peptide fusion

protein in the liquid media from which it can be purified by affinity chromatography using

glutathione agarose.

The expression system utilized two different plasmids, one integrating vector

pMUW110 (9 kb) and one extrachromosomal expression vector pMUW2882 (3.8 kb)(Figure

3-29) and maintains 100 copies of extrachromosomal expression plasmids per cell (13).

The integrating vector contains a neomycin phosphotransferase (Neo) gene conferring

resistance to geneticin (G418) and the Ddp2 Rep gene. On co-transformation of the two

plasmids into D. discoideum and selection with G418, pMUW110 integrates into the

chromosome and the product of the Rep gene can be expressed. The Ddp2 rep gene acts in

trans on the Ddp2 origin of replication to ensure the autonomous replication of  pMUW2882

in the nucleus of D. discoideum.

The expression vector contains the D. discoideum plasmid Ddp2 origin of replication

and an expression cassette, consisting of an actin15 promoter, the secretion signal of the

glycoprotein  PsA fused in frame to the Schistosoma japonicum glutathione-S-transferase

(sj 26) gene elongated with the 12 bp stretch of the factor Xa –cleavage site followed by a

unique cloning site (BamHI) and a polyadenylation signal.

It should be mentioned that native spore coat protein SP96 is expressed in a later

developmental stage compared to the peptide fusion protein which is expressed in this system

under the control of the actin 15 promoter. Therefore, differences in glycosylation are

possible. For example, SP29 (PsA) is originally also expressed at a later developmental stage

like SP96,  and glycosylation analysis of acceptor motifs analysed with this expression system

show less complex glycosylation than identified on native PsA (61, 142, 155). The target of
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the protein is also different as the GST-fusion protein is secreted while authentic SP96 is

targeted to prespore vesicles.

3.5.4.1 Three repeat regions in SP96 as possible motifs for O-glycosylation

In SP96 three serine and/ or threonine rich repeat regions stand out (3.5.1). These are

the serine/ threonine mixed region AA 140-180 (with 13 Ser and  11 Thr ), a serine rich

region at AA 425-535 (73 Ser) and a threonine rich sequence at AA 535-600 (42 Thr).

Although it was already shown that serine was probably the only modified amino acid in

SP96, a similar threonine rich sequence was also chosen for comparison. Three 12-17  amino

acid long sequences were chosen as the possible motif for O-glycosylation (Table 3-6). Each

peptide also contained a C-terminal I-SPY antibody epitope (QYPALT) for immunochemical

detection of the peptides (I-SPY, AMRAD BIOTECH).

Table 3-6 Chosen amino acid sequences of SP96 for analysis of O-glycosylation sites
 Bold letters display the sequence of SP96, normal letters display the sequence-tag  (I-SPY)

Figure 3-29 Two vector expression system

motif amino acid area in

SP96

theoretical mass amino acid sequence

SP96G-motif 146-163 2041 AGSQTSGGSTGGSTGSQYPALT

SP96T-motif 550-562 1767 ATTTATTATTTAQYPALT

SP96S-motif 500-514 1855 ASSSSAPSSSASSSQYPALT
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3.5.4.2 Construction of the expression vectors and their insertion  in D. discoideum    

By exchanging existing motifs against new ones, several generations of expression

vectors containing different O-glycosylation acceptor motifs were available. In the vectors

used by Jung et al. (70, 71) a small section of DNA encoding the peptides is inserted between

NcoI/ KpnI close to the factor Xa cleavage sites. However, these vectors were subsequently

formed by further mutations in the GST gene (M. Slade, personal communication). A later

generation of vectors corrected these mutations, improved the codon usage and the cloning

efficiency in E. coli by replacing parts of the gyrase codon. This second generation of vectors

lack convenient cloning sites for replacing the fusion peptide, since it has been observed that

vector cloning in AT rich sequences in D. discoideum was less stable than that by PCR

reactions (M. Slade, personal communication). To have a better control over the exchange of

the old against the new motif and to be able to correct one mutation on the pMUW2882

plasmid in the GST gene (mutation methionine  to isoleucine), the reconstruction of the

plasmid was done by three separate  polymerase chain reactions (PCR) . The exact

oligonucleotide sequences of the primers are listed in chapter 2.6.2.

The first PCR step was done by using three different oligonucleotides encoding for the

SP96G, SP96T and the SP96S-motif (“oligo primer1-3”), and a primer which overlaps with

part of the GST gene (Primer A) to correct the mutation (methionine to isoleucine) (Figure

3-30, PCR 1). The “oligo primers1-3” coding the SP96 sequences showed an overlap on the

3´ site with a factor X cleavage site  which exists on plasmid pMUW2882. The 5´ site of the

SP96 sequences flanks an epitope sequence of a commercially available antibody (I-SPY

sequence tag). The first PCR product gave a band at approximately 470 bp. The DNA was

extracted and used again in a later stage as a primer (PCR 3). The second PCR was to amplify

the whole plasmid  and was produced with the “Primer B” and “Primer C” (Figure 3-30, PCR

2). The result showed a  3.8 kb band on the 1% agarose gel which was also extracted out of

the gel. The last PCR was done with  three primers (PCR 1 product of the different motifs,

Primer B and Primer D) and replaced the old O-glycosylation acceptor motif against the new,

SP96, motif (Figure 3-30, PCR 3). The primer created in PCR 1 and “Primer B” were both

able to anneal with the pMUW2882 plasmid, whereas the latter inserted a BamHI restriction

site to the 3´end . “Primer D” was only able to anneal to the 5´ end of PCR 1 product primer

and inserted the BamHI cutting site which was necessary for ligation to the 5´ end. Lastly, the

plasmid DNA was digested with the restriction enzyme BamHI and self-ligated to produce

circular plasmids.
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This isolated plasmid DNA was electroporated into E. coli cells and transformant

clones selected by ampicillin resistance. Four transformants were picked out for each

PCR 1

new Oligo-
nucleotide

Primer A

PCR-products

oligo primer 1-3
5’- -3’

corrected
mutation

PCR 2
Primer B

Primer C

ca. 3.8 kb5’- -3’

BamHI

BamHI
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Primer D

PCR 3
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470 bp
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Amp
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Figure 3-30 PCR reactions used for the construction of the expression vectors
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construct  and tested by PCR for the presence of the GST-SP96 peptide fusion (primer:

P174GST.f2c/ ISPY. r1a; Material and Methods 2.6.2). The expected 256 bp large fragment

was visible in three of the SP96S-motif transformants, in three of the SP96T-motif  and in all

four of SP96G-motif vectors (data not shown). Plasmids were prepared from two

transformants of each construct and their GST genes sequenced. The old mutation (bp 1197,

isoleucine → methionine) was corrected in all three constructs, but unexpectedly some new

mutations were detected (see below). It seemed the used AccuTaq polymerase mix lost its

“proofreading” activity and therefore some new misincorporations had taken place. The

plasmids chosen for further work were pMUW2911 (SP96G-motif), pMUW2921 (SP96T-

motif) and pMUW2931 (SP96S-motif) (Sequences are listed in the appendix).

Vector pMUW2911 (SP96G-motif) had two mutations, one at 994 bp in the PsA

secretion signal,  where the amino acid lysine was converted to glutamic acid, the second

changing isoleucine to valine in the GST gene at base 1190. Vector pMUW2921 contained

only one mutation, in the factor Xa cleavage site at 1590 bp (glycine to serine), which could

effect a cleavage of the O-glycosylation acceptor motif from the GST protein. The

pMUW2931 vector showed two mutations: one converted the amino acid at  995 bp from

lysine this time to threonine, the second mutation was at 1510 bp and changed isoleucine to

threonine.

In the next step, the three expression vectors were co-transformed by means of the

integrating vector pMUW110 into D. discoideum strain HU2868 by a calcium precipitation

method (93). Strain HU2868 is derived from strain NP2 (32) and was maintained on

Micrococcus luteus. This bacterial food source was chosen because of its resistance against

the antibiotic Geniticin (G418), the selective  marker  for transformed D. discoideum.

Typically 5-10 D. discoideum  transformants were obtained with a transformation of 107cells.

One transformant of each  containing the  vector was characterised in detail (Table 3-7).

Motif of SP96 Name of the vector Name of the D.discoideum
transformant

G-motif pMUW2911 HU2942

T-motif pMUW2921 HU2944

S-motif pMUW2931 HU2943

Table 3-7 SP96 repeat region and the corresponding vector and transformed strain,
   respectively
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3.5.4.3 Expression and purification of recombinant GST fusion protein

For expression of  recombinant GST the transformants were usually grown in glucose

containing axenic media under G418 selection. Only during the final scale-up were cultures

grown in maltose as a carbon source because of the higher expression rate

(M. Slade, personal communications). The use of the PsA signal sequence resulted in a

secretion of the fusion proteins after having been processed through the endoplasmic

reticulum (ER) and  Golgi apparatus. Previous studies have shown that the maximum

expression levels under control of the actin 15 promoter were obtained when the cells entered

the stationary phase. Growth rate slows at approximately 6*106 cells/ml and generally reached

1*107 cells/ml before the supernatant was collected. A fourfold higher concentration of  the

culture media of all three transformants was required for a weak detection of the expressed

protein in western blot analysis with anti GST antibody (data not shown).

For further purification, the culture supernatant had to be dialysed extensively against

PBS to remove free glutathione. The supernatant was reduced with  DTT and GST fusion

proteins which were purified  by affinity–chromatography using glutathione Sepharose. The

yield of GST protein was approximately 20-30 µg per 1 L culture supernatant. This is much

lower than previous  results using this expression system,  where between 500 µg  and mg´s

of GST protein could be purified (70, 71). It was noticed that the weak GST band observed in

concentrated media was not related to the amount of GST after affinity purification. It

appeared  that the GST  underwent degradation caused by the reducing conditions necessary

for the affinity purification, although all purification steps were done at 4°C. It is known that

D. discoideum  secrets some cysteine protease in the media (11, 96, 98), but the use of the

cysteine protease inhibitor E64 did not increase the yield.  So far no explanation can be given

for this observation.

The calculated mass of the GST peptides was around 30 kDa, that of

S. japonicum GST was approximately ∼28 kDa, and that of the acceptor motif

2 kDa. The apparent size of purified GST (HU2943 strain; S-motif) was ∼35 kDa, the GST-T

motif (HU2944 strain) and the  GST-G motif (HU2942 strain) were approximately ∼33 kDa

and ∼36 kDa size, respectively (Figure 3-31). All GST bands were higher than expected  from

their theoretical mass and could  therefore be post-translationally modified. The GST-T motif

was used as a negative control, as threonine was not found to be modified in SP96 (3.5.2), but

here it had a larger than expected protein mass. The G-motif (HU2942) gave a second  weak

band at 33 kDa which could be the breakdown product of the top band or due to a partly



3. Results

101

glycosylated motif.  A glycostain  based on immunochemical detection of Biotin, which was

bound over the aldehyde groups of periodate cleaved sugars, reacted strongly with GST-S

motif (HU2943), but weakly with GST-T motif (HU2944) This could also be an artefact

showing a detectable band with GST-G motif (HU2942) (data not shown). Previously studies

have reported that GST expressed without an attached acceptor motif was not modified by

glycosylation (69).
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Figure 3-31 Western blot of purified GST-acceptor motif of different strains

 separated on a gradient gel and stained with anti GST antibody

A) HU2943   (S-motif); B) HU2944  (T-motif); C) HU2942   (G-motif)

* breakdown product of the top band or only partly glycosylated motif
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3.5.4.4 Immunochemical characterisation of the different SP96 motifs

Monoclonal antibodies recognising SP96 epitopes (3.1) were used to screen against

carbohydrate dependent epitopes. The antibody MUD3 which recognises the wild-type and

fucose mutant (HU2470) SP96 did not show any labelling on the western-blot of all three

GST fusion proteins. This was not surprising as MUD3 is a developmentally regulated

epitope, i.e., the necessary glycosyltransferase is probably  not present at the stage the GST-

fusion proteins are expressed. The immunochemical detection with MUD62 antibody, which

was able to recognise the terminal fucose of the phosphodiester bound Fucose(α1,3)GlcNAc-

unit on wild-type  SP96 (3.3.5), reacted weakly with only the GST-S motif and a ∼1 kDa

smaller band. The latter could be a fragment or only partly glycosylated (Figure 3-32). The

same pattern was displayed by the immunochemical detection with Ab 83.5, which reacts

similarly as MUD62 (Figure 3-32). Both antibodies did neither detect the GST-T motif nor

the GST-G motif. Also the use of the sensitive mAb MUD166 both displayed a labelling of

the S-motif and the G-motif fusion protein. However, the bands were much stronger than seen

on the MUD62 or Ab83.5 western-blot, respectively. The high sensitivity of this mAb also

lead to the detction of some  weak contamination bands. Monoclonal antibody AD7.5 which

recognises GlcNAc-1-P (87) also reacted with the GST-S motif and the GST-G motif as

expected because of the similarity to the MUD166 epitope (this study). This antibody is less

sensitive in comparison  to MUD166, and therefore only the stronger fusion protein bands

were  observed. Neither MUD166 nor AD7.5 reacted with GST-T motif fusion protein. All

monoclonal antibodies recognising SP96 post-translational modifications were unable to react

with GST proteins after the C-terminal peptide motif was cleaved with factor Xa (data not

shown).
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SP96 recognising antibodies were unable to detect a glycan structure on the

T-motif, which was consistent with earlier results (3.5.2). However, a very weak band seen in

a glycostain suggests there may be a low level of glycosylation. Jung et al. reported O-

glycosylation with this expression system on a  threonine-rich repeat region of a MUC2-like

peptide and showed that directly O-linked GlcNAc glycosylation was present (70). This

Figure 3-32 Western blot analysis of GST fusion proteins of different strains with SP96
 recognising mAb MUD62, Ab83.5, MUD166 and AD7.5

A) HU2943 (S-motif); B) HU2944 (T-motif); C) HU2942 (G-motif)
 Approximately 0.4 µg purified GST sample of each strain was used
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glycosylation was biochemically analysed and also detected with an antibody called MUD50.

Because of the similarity of the two threonine-rich repeat sequences (Table 3-8), MUD50 was

used to screen against O-linked GlcNAc on the T-motif fusion protein. In this way it could be

and demonstrated that the MUD50 epitope was present on the HU2944 peptide fusion protein.

This result was surprising because the MUD50 epitope is normally expressed at a different

time and differently targeted and is further not present on native SP96 (Figure 3-33). Another

interesting observation was the spontaneous cleavage of the acceptor motif, which resulted in

the loss of the MUD50 epitope as is also shown in Figure 3-33(C). This cleavage could be

accelerated by using factor Xa protease. An possible explanation could be the mutation in the

factor Xa cleavage site found in the vector pMUW2921 (3.5.4.2).

MUC2-like peptide P T T T P I T T T T T T V T P T P T P T G T Q T (70)

SP96-T motif A T T T A T T A T T T A this study

Table 3-8 Comparison of a MUC2-like peptide sequence with the SP96 T motif used in
 this study
 bold T: with α-GlcNAc modified threonine (70)
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Figure 3-33 Identification of T-motif glycosylation by using O-linked
 GlcNAc recognising mAb MUD50
 A: GST labeled mAb MUD50

B: GST labeled with anti S. japonicum  GST
C: partly cleaved GST labeled with anti S. japonicum  GST
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3.5.4.5 Separation of the released acceptor motif

The amount of purified GST-fusion protein was quite low in all transformants.

Nevertheless, an attempt was made to recover the factor Xa cleaved acceptor motifs for mass-

spectrometry analysis by MALDI-MS or LC-MS. The glycopeptide mass could be used to

calculate the number of glycosylated sites on each motif.

The peptide-fusion proteins from HU2942 and HU2944 were factor Xa cleaved and

separated over a reversed phase column (Sephasil C8). The peptides were eluted with an

acetonitrile gradient from 0-85 % at a flow rate of 100 µl/min and samples were collected

every 2 minutes. Positive fractions for the S-motif, eluted at 52 % v/v acetonitrile, were

identified by dot blot with MUD166  and with MUD50 for the T-motif 49 % v/v acetonitrile,

respectively (Figure 3-34).

The acetonitrile concentration needed to elute the S- and the T-motif in this study

differs from Jung´s results who eluted four different glycosylated motifs with 16-22 % v/v

acetonitrile  and characterised them using mass-spectrometry (70, 71). These differences raise

doubts concerning the interpretation of the spectra in Figure 3-34. As fractions were only

tested by dot blot with MUD166 and MUD50, but not with anti GST antibody it one cannot

could exclude that the positive peaks results from non-cleaved  peptide fusion proteins. It is

possible that in an incomplete digest the amount of released peptide was too small to be

detected by UV absorption and immunochemical detection. All analysis done on the positive

fractions by mass-spectrometry with MALDI-MS and LC-MS did not give any positive

results, although both are sensitive analytical methods. Both mass-spectrometers were

adjusted to a mass window capable to detect peptides in the range from 500-3500 m/z. Hence

non-cleaved protein (∼ 35 kDa) would be out of range. A further interpretation could be that

the amount of cleaved peptides were too low or were not ionised because of a high content of

glycosylation.
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Figure 3-34 Reversed phase separation of GST S- and T-motif fusion proteins after
 factor Xa cleavage, respectively

Positive fractions indicated by arrows were identified in HU2942 by MUD166
 and in HU2944 by MUD50 dot blot
 Dashed lines: acetonitrile concentration. Dotted lines: absorbance at 280 nm,
 solid lines: absorbance at 214nm
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3.5.5 Analysis of T-motif glycosylation in dependence of the expression time

The GST expression results shown in 3.5.4.4 demonstrated that the chosen repeat

regions out of SP96 are  acceptor motifs for O-glycosylation. However, it is possible that the

glycosylation could be dependent on the time of expression. For example, the MUD50

epitope detected on the GST-T motif fusion protein produced during the stationary phase was

not present on native SP96 expressed in a later developmental stage. To support this result the

actin 15 promoter of the expression vector pMUW2921 was exchanged by the promoter of the

spore coat protein SP60, the only well described promoter of a later stage (55, 144). SP60,

like SP96, is synthesised exclusively in prespore cells at the tipped aggregate stage of

development  (125).  Transformants with expression plasmid containing SP60 promoter were

grown on bacteria plates so they were able to go through the developmental program. At the

slug stage the SP60 promoter would be active and the peptide fusion protein would be

expressed. Slugs were used for immunochemical analysis with MUD50 to compare it with the

results seen Figure 3-33.

3.5.5.1 Construction of the expression vector with the SP60 promoter and the

insertion  in D. discoideum    

The promoter region in the plasmid was again amplified by different PCR reactions.

The schematic PCR steps are displayed in Figure 3-35 and Figure 3-36. The first PCR

reaction to isolate the SP60 promoter was done on purified DNA from D. discoideum strain

HU2868  as a template with two primers (“primer 1” and “primer 2”; exact sequence see

Material and Methods 2.6.2), which enclosed the SP60 promoter region and the 5´end of the

SP60 gene (PCR 1, sequence shown in appendix). The reverse “primer 2” within this SP60

gene was chosen for a relatively high GC rich sequence to ensure a correct annealing. The

final PCR product was an approximately 1 kb  fragment which was used as a template in a

second PCR. The primers in the second PCR step (PCR 2) inserted a XbaI cleaving site on

the 3´ end and on the 5´ end an overlap with the PsA sequence with an NsiI cleavage site. The

resulting PCR product was here 750 bp (Figure 3-38, 1). The step is size serving as a control

for the right PCR product in the first PCR step. The DNA encoding the PsA secretion signal,

the S. japonicum GST and the SP96 T-motif were amplified in PCR 3 using the pMUW2921

plasmid  as a template and the “primer 5” and “primer 6” (Figure 3-38, 2). The PCR2  (∼750

bp) and  PCR3 products  (∼750 bp), as well as the primers 3 and 6 were used in PCR 4 to fuse
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the SP60 promoter with the PsA- S. japonicum GST SP96T-motif sequence to produce a 1,5

kbp large fragment (Figure 3-38, 3). PCR 5 amplified most of the plasmid vector

pMUW2442 to give a product of 2,85 kbp (Figure 3-38, 4). The “primer 7” inserted an XbaI

site at the start of the promoter (Actin 15) (Figure 3-36). In the final step, the 2,85 kbp

fragment from PCR 5  and the 1,5 kbp fragment of PCR 4 were digested with restriction

enzymes BamH1 and XbaI and ligated (Figure 3-37). The newly constructed plasmid with the

SP60 promoter was sequenced and named  pMUW5021.

-3’

Primer 1

PCR 1

Primer 2

~1 kb

PCR product

PCR 2
750 bp

Nsil cleavage site

Overlapping to PsA

Primer 3

Primer 4

750 bpNsil

Primer 5

Primer 6

XbaI

BamH1

Primer 6

Primer 3

Nsil
XbaI

BamH1

PCR 3

PCR 4
1,5 kbp

PCR 2 product

PCR 3 product

5’
SP60 promoter region

sj 26 gene

5’ -3’

5’ -3’

-3’

5’

PCR 1 product

SP60 promoter

PsA
secretion signal

sj 26 gene

XbaI Nsil

Nsil BamH1

XbaI Nsil BamH1

Figure 3-35 Schema of PCR reactions used to construct plasmid with an
 exchanged promoter region (Actin15 against SP60 promoter)

PCR1: Template was D. discoideum DNA from strain HU2868 to multiply SP60
 promoter sequence

PCR3: Template was plasmid pMUW2921 (T-motif, construction Figure 3-30)
 to multiply PsA-sj26-T-motif sequence



3. Results

109
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polyadenylation
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Figure 3-36 Original plasmid pMUW2442 used as a template in PCR5 step
 to amplify the part of the plasmid (Ampr, Ddp2 ori and ColE1 ori)  

Ampr
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ColE1ori
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5021

4.3Kb

Secretion signal (PsA)

SP60
promotor

sj26 gene

SP96 T-motif
oligo-nucleotideBamHI
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Figure 3-37 Constructed plasmid pMUW5021 containing the SP60 promoter
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3.5.5.2 Immunochemical characterisation of  SP96 T-motif in slugs expressing

GST-fusion protein

In this experiment it was not absolutely clear how the organism can secrete protein in

the slug stage, therefore also samples of the slime sheath of the slugs was taken and used for

analysis. After slugs (approximately 20) were collected in reducing sample buffer. The

proteins were separated by SDS-PAGE, transferred to nitrocellulose and the GST bands were

stained immunochemically with anti GST antibody.

The western blot with anti S. japonicum GST antibody did not label any protein band

in the slime sheath sample (data not shown). The slug sample showed a low amount of

expressed peptide fusion protein which made further analysis difficult. The GST expressed

during the slug stage reacted with the GST antibody only as a very weak band at ∼70 kDa

720

1,510

2,810
1,950
1,860

980

 4      3       2       1     M

bp

Figure 3-38 Agarose gel with  PCR products of reactions PCR2-PCR5

M:  SPP1/EcoR1 marker
1 : PCR 2 (primer3/ primer4)
2 : PCR 3 (primer5/ primer6)
3 : PCR4  (primer3/ primer6)
4 : PCR5  (primer7/ primer8)
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(Figure 3-39, 1), compared to the GST fusion protein at 33 kDa isolated during the stationary

phase out of the axenic media (Figure 3-39, 2). The slug GST fusion protein band (1) had

approximately twice the size compared to the protein band labelled (2) in Figure 3-39.

Therefore, it was suspected that the GST might have dimerised. GST is naturally a

homodimeric molecule stabilized by salt bridges and hydrophobic contacts (85), but should be

monomeric under the chosen conditions. Interestingly, a similar GST fusion protein band

pattern was detected during the analysis of supernatant of  bacteria grown cells, using Actin

15 promoter (Figure 3-40) instead of the SP60 one. The Actin 15 promoter expressed sample

was taken while the cells were in the stationary phase, at a cell density of approximately

1,5*107 cells/ml. However, only the lower band (∼33 kDa) could be affinity purified (data not

shown).  The higher band (∼65 kDa) was only observed in bacterially grown cells.

The purpose of using the SP60 promoter was to elucidate and compare the MUD50

binding capability on the T-motif during different expression times. Secreted GST-T motif

fusion protein from strain HU2944 in axenic growth presented the MUD50 epitope (Figure

3-33). However, the protein band at ∼70 kDa of sample 1 (Figure 3-39) expressed by SP60-

promoter  HU2945 did not show a labelling with MUD50, even after a 5 fold concentration.

The result is consistent with observations made on native SP96 protein, but nevertheless

should be taken with skepticism, because of the low amount of sample. It is still possible that

the observation is the result of the missing carbohydrate epitope of MUD50 or that the

amount of protein  was under the detection limit.
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Figure 3-39 Expression of GST T-motif fusion protein at different times
 1) Slugs of strain HU2945 (SP60 promoter) grown on bacteria
 2) Out of supernatant purified GST T-motif fusion protein of
     strain HU2944 grown in axenic media
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Figure 3-40  GST fusion protein of strain HU2944 grown in  bacteria/
buffer solution and secreted into the buffer
Separated on a SDS-PAGE and detected with anti S. japonicum

 GST antibody.
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3.6 Prediction of modified sites in SP96 by different databases

Two databases were consulted for prediction of modified sites in native SP96 and in

the SP96 motifs expressed as GST-fusion proteins.

The first database (DictyOGlyc 1.1i)  predicts O-GlcNAc glycosylation sites in

D. discoideum based on a small data set of known glycosylation sites and sites not

glycosylated for this class of O-glycosyation in D. discoideum. Although the database is

limited because of the small data set, it was used to make predictions on the three repeat

motifs of SP96 and on the whole SP96 sequence. It was of interest to see if the MUD50

positive SP96-T motif shows potential sites for this glycosylation.  AA 96 in SP96 sequence,

or AA 17 in the SP96-G motif predicts only for one a small potential over the threshold (see

Appendix). SP96 is not recognised by MUD50, nor is the SP96-G motif. Therefore, it is

unlikely that the database prediction is correct. For the MUD50 positive SP96-T motif no

positive prediction for glycosylation was made.

The second database (NetPhos 2.0j) is used for prediction of phosphorylated sites in

eucaryotic proteins. The search was done with the sequence of the SP96-G, SP96-S and

SP96–T motif and whole SP96. The result (see Appendix) predicts  potential for 88 of the 121

serine, 8 of the 83 threonine  and 6 of the 12 tyrosine residues in the SP96 sequence. The

prediction that serine is the main phosphorylated amino acid is in harmony with experimental

work which gives no hint for threonine and tyrosine phosphorylation.  The positive prediction

for serine in this database covered the whole SP96 tail region (AA457-600). The results of the

different motifs showed no potential for threonine phosphorylation in all three motifs. There

was a potential for 2 of the 5 serines in the SP96-G motif and for 5 of the 10 serines in the

SP96-S motif to be phosphorylated. While it is unknown whether motifs used for

phosphorylation are comparable to motifs of phosphoglycosylation, the predicted results are

in harmony with the observed intensities of immunochemical labelling  with MUD166 of the

different GST-SP96 motifs (3.5.4.4).

                                                
i http://www.cbs.dtu.dk/services/NetOGlyc/
j http://www.cbs.dtu.dk/services/NetPhos/
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4 Discussion

The spore is the dormant stage of the asexual developmental cycle of D. discoideum. It

is a resistant structure capable of surviving for long periods. Spores are surrounded by three

different layers, in which proteins are embedded. These build up a shield and protect the

dormant amoeba from environmental stress. Some of the proteins carry post-translational

modifications, and previous studies have shown that a lack in fucosylation on modifications

increases the permeability of the spore coat. This makes the spores less viable with time (43).

There is a picture emerging  of the assembly of the spore coat, involving a complex of

proteins (137) and cellulose binding (84, 158). In order to better understand the nature of the

spore coat, detailed structural information is required for each of the component

glycoproteins.

In previous studies changes of post-translational modifications have been analysed in

these proteins, in wild-type and mutants with a decreased amount of fucose, using monoclonal

antibodies. Inhibition studies, comparison of binding patterns and radiolabelling experiments

helped to get some information about the differences in modification, though details about the

exact structures could not be obtained by these methods (10, 11, 22, 30, 43, 84, 136, 141, 142,

147). It was further observed that some of the detected carbohydrate epitopes on spore coat

proteins were also present on proteins expressed during the earlier, vegetative stage.

To get a better understanding how glycosylation fulfils the protective function in

spores, how glycosylation changes during development  and which glycosyltransferases are

regulated over the time of expression, it is necessary to obtain more information about the

carbohydrate structures on these proteins.

This thesis clarifies the post-translational modifications of the major spore coat

protein, SP96, from the wild-type X22, the modD fucose mutant HU2470 and the modE

fucose mutant HU2471 of D. discoideum. The detailed structural differences between the

glycosylation of the SP96 protein in the different strains has been determined and related to

the carbohydrate dependent epitopes recognised by the monoclonal antibodies MUD62,

MUD166, MUD3 and mAb83.5. The quantification of these modifications,  which is done

here for the first time on SP96, in combination with partial localisation of the modifications

on the already known sequence of SP96 (34), is an important step toward understanding how

the protein is embedded in the spore coat and how it protects the spore.
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Some of these studies concerning of the differences in post-translational modifications

of wild-type X22 and fucose mutant HU2470, as well as their quantitative analysis have

already been  published Mreyen et al. (90).

4.1 Multiple forms of modifications on SP96

Before commencing these studies there was a fragmentary amount of information

about SP96. The presence of phosphoserine was an early discovery (20, 22) and this helped

explain the acidic isoelectric point  (pI) observed by 2D-PAGE (22, 43). The presence of

more than one SP96 spot on 2D-gels could indicate differently phoshorylated forms of the

protein. In early studies (20) it was speculated that the phosphate group could be part of a

phosphodiester linkage.

This study shows that, if there is phosphoserine on SP96, it represents only a minor

part of the modified serine residues. Most of the phosphate-modified serine residues are

moreover elongated by the addition of N-acetylglucosamine and fucose in the wild-type. It

was shown that the novel phosphoglycan structure (Fuc(α1-3)GlcNAc-α-1-P-Ser) is a major

component of the modification of SP96. More than 50% of serine residues in SP96 are

modified with this glycan. A further 15-20% of the serines are modified by O-linked fucose.

If present at all, phosphoserine accounts for less than 1% of the modifications. The

phosphoglycosylation of SP96 may be analogous to the phosphoglycan assembly observed in

the protozoan parasite Leishmania although the glycans are different. In a Leishmania acid

phosphatase, more than 60% of serine residues of a serine/threonine rich domain are modified

by Man-α-1-P-Ser and elongated by other sugars (66, 145). It may be that the abundant O-

glycans stabilize and protect the enzyme from proteases (66).

Mutants of D. discoideum and monoclonal antibodies have helped to understand the

O-glycosylation of SP96 (Table 4-1). Comparing the structures of the modification on the

mutants confirmed  the ideas about the nature of the epitopes of the mAbs MUD62 and

MUD166, which had been developed from a previous study of fucose mutants (11).

Champion et al. (11) observed that the GA-X epitope, recognised by MUD62 on wild-type

SP96, was competed by fucose, as was a previous, independently isolated anti-carbohydrate

antibody, mAb 83.5 (141). It was reported that this antigen GA-X is an O-linked GlcNAc-

containing oligosaccharide (43). The fucose mutants modD HU2470 and modE HU2471 lost

this epitope and a new epitope appeared (GA-XIII) which was competed by GlcNAc; this
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epitope is recognised by MUD166. All these observations can  now be explained (Figure 4-1).

The  modD mutant HU2470-SP96 and the modE mutant HU2471-SP96 are missing the

terminal fucose from the phosphodiester-linked  Fuc(α1-3)GlcNAc-α-1-P-Ser disaccharide.

This fucose residue is necessary for recognition by MUD62. Therefore the mutants present a

new terminal sugar structure, GlcNAc-α-1-P-Ser, which is recognised by MUD166 and also

by AD7.5, the latter of which recognises a GlcNAc-α-1-P-Ser glycan structure on cysteine

proteinases of D. discoideum (87). Specifically, the modD mutation appears to affect the

activity of the (α1-3) fucosyltransferase, because of its selective effect on the GA-X

(MUD62) epitope in developing cells, compared with the retention of the fucose depending

GA-XX (MUD3) epitope (involving Fuc-Ser) in these cells.

Srikrishna et al. (119) suggest that the mAb 83.5 epitope involves Fuc-β-1-P-Ser.

Based on experiments performed in this thesis the evidence is that there are only minor

amounts of this structure on SP96. However, the evidence to date suggests that mAb 83.5 and

MUD62 have similar recognition patterns and here we show  that MUD62 identifies  Fuc(α1-

3)GlcNAc-α-1-P-Ser. On this basis it is suggested that mAb 83.5 is also likely to identify this

structure. Metha et al. (87), however, have dismissed this structure as the epitope for mAb

83.5 in studies on proteinase 1.  Cysteine proteinase 1 from D. discoideum displays the mAb

83.5 epitope, contains as post-translational modification  the phosphoglycan GlcNAc-α-1-P

and further fucose in an unknown linkage. Treatment with α-fucosidase did not release any

fucose,  therefore it was concluded that fucose does not exist in a linkage to GlcNAc-α-1-P.

Certainly, most studies with both mAb 83.5 and MUD62 antibodies on later growth stage

proteins conclude that both antibodies recognise fucose as part of the epitope. It appears now

that, at least for mAb83.5, there may be two different glyco-antigens (90, 119). It is still

unclear if MUD62 is also able to recognise Fuc-β-1-P-Ser.

Carbohydrate dependent epitopes are found on spore coat proteins which are

expressed during the multicellular stage of the organism,  and also on proteins, especially

cysteine proteinases, of vegetative growing cells. Wild-type cysteine proteinases of vegetative

cells show both epitopes, the MUD62 and the MUD166, compared to spore coat proteins of

this strain which show only the MUD62. Interestingly the modD mutation only partially

inhibits fucosylation in prespore/ spore cells. The spore coat proteins of a strain containing the

modD mutation show the MUD166 epitope, but lack the mAb83.5 and MUD62 epitope

GA-X, whereas vegetative cysteine proteinases are still able to express this epitope (12). It

seems that the activation of different glycosyltransferases is developmentally regulated.  It is
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shown that Fuc(α1-3)GlcNAc-α-1-P-Ser is the dominant glycan structure in the MUD62

epitope of wild-type SP96.  This does not mean that the structure has to be identical to the

glycan structure in the MUD62 epitope on the cysteine proteinases. In studies done by

Srikrishna et al. on an artificial peptide the less complex Fuc-β-1-P-Ser phosphoglycan was

identified as a minimal epitope for mAb 83.5 (119). Because of the similarity of the binding

pattern of mAb 83.5 and MUD62, it  cannot be excluded that MUD62 binds in the same way

and also recognises the Fuc-β-1-P-Ser  phosphoglycan structure. A detailed analysis of the

epitopes of these two antibodies on the cysteine proteinase could elucidate this question.

It has further been shown that incorporation of fucose into glycoproteins is increased

by more than a factor of 3 in D. discoideum during early development (126). Also observed

was an increasing amount of secreted fucosidase after 4 hours of starvation. It is possible that

the developmentally regulated α-L-fucosidase participates in defucosylation as part of a

process of carbohydrate-structure alteration preceding and accompanying late development.

The Fuc(α1-6)GlcNAc linkages were most susceptible, followed by Fuc(α1-2)Gal and

Fuc(α1-3)Glc, but not Fuc(α1-3)GlcNAc and Fuc(α1-4)GlcNAc linkages under these

conditions.  This observation is in harmony with the identified Fuc(α1-3)GlcNAc linkage on

the SP96 spore coat protein, because a susceptibility of the linkage would interfere with the

construction of this kind of glycan linkage. On the contrary fucosidases from human serum

show  a higher susceptibility for the Fuc(α1-3)GlcNAc, the Fuc(α1-4)GlcNAc and the

Fuc(α1-2)Gal linkages and only a poor cleavage rate for Fuc(α1-6)GlcNAc (113).

Late expressed proteins in Dictyostelium  quite often contain O-glycans composed  of

fucose and GlcNAc, showing variation in their arrangements and types of linkages. The

glycans detected on native SP29 (PsA) all have reducing terminal GlcNAc. In some cases the

sites are further modified by addition of either GlcNAc, Fuc-GlcNAc or P-Fuc-GlcNAc

through a phosphodiester bond  (156). The glycans detected on SP96 are also composed of

Fuc, GlcNAc and phosphate, but with a different arrangement.  It was shown that

N-acetylglucosamine in the reducing position directly attached to threonine or serine is the

minimal epitope of MUD50 (44, 71). This kind of observation that glycans can vary in their

linkages but not in their sugar composition has already been made on the Lewis blood group

antigens where linkages in α1-4 and  α1-3 between fucose and N-acetylglucosamine are

found (115) .

The modE mutant  HU2471 shows a reduced fucosylation of < 5% of the wild-type

(11). SP96 from this mutant had a fucose content of approximately 3% of wild-type. This
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reduction is beyond the missing terminal fucose of the phosphodiester-linked disaccharide the

result of the missing O-linked fucose monosaccharide residue attached directly to serine. This

form of glycosylation has been discovered on a small number of secreted proteins involved in

the blood coagulation cascade or clot dissolution in humans. This structure is also found

within epidermal growth-factor like (EGF) modules (58, 59), which are typically 30 to 40

amino acids in length and are a common structural motif found on numerous secreted and cell

surface proteins in animals (8). They often mediate protein-protein interactions. More recently

O-linked fucose was detected on a mammalian cell surface receptor, responsible as an

essential player in a wide variety of developmental cascades (88).

Comparison of results from immmunochemical and glycan characterisation between

wild-type X22,  mutant HU2470 and mutant HU2471 demonstrate that the observed loss of

the MUD3 (GA-XII) epitope on HU2471-SP96 is definitely the result of the missing O-fucose

linked to serine. The only protein which is recognised by MUD3 is SP96, and that only in the

X22 and the HU2470 strain. SP96 of these strains is also the only protein in D. discoideum

where this glycan could be detected so far. There the MUD3 epitope is less common in

comparison to epitopes of MUD62, MUD166, MUD50, AD7.5 and 83.5. It was also

suspected that the O-linked fucose glycan structure is only part of the epitope. The epitope

could also be a combination between carbohydrate and  amino acid sequence. This would also

explain the specificity for SP96. It is more unlikely that the antibody recognises a glycan

stabilized conformation, because of its binding after denaturing conditions (SDS-PAGE/

western-blot analysis), although minor renaturation under these conditions cannot be

excluded. The modE mutation appears to prevent fucosylation globally, because of the loss of

two different fucose-dependent epitopes on SP96 (GA-X and GA-XII) and of the GA-X

epitope on cysteine proteinases.  A possible step affected by this gene is transport of GDP-

fucose into the Golgi apparatus, rather than a fucosyltransferase (11). On the other hand,

strains carrying the modC mutation have a complete lack of fucose and are probably unable to

transform GDP-Man to GDP-Fuc. Therefore, they lose all fucose-dependent epitopes.
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Strain Mutation Antibody

recognition

postulated glycan structure

involved in mAb epitopes

Postulated

defect

MUD62 Fuc(α1-3)GlcNAc-α-1-P-Ser

mAb 83.5 Fuc(α1-3)GlcNAc-α-1-P-Ser/

Fuc-β-1-P-Ser

X22 -

MUD3 Fuc-Ser

-

MUD166

AD7.5

GlcNAc-α-1-P-SerHU2470 modD

MUD3 Fuc-Ser

α1-3

fucosyltransferase

HU2471 modE MUD166

AD7.5

GlcNAc-α-1-P-Ser GDP fucose

transport

HU2733 modC MUD166

AD7.5

GlcNAc-α-1-P-Ser Formation of

GDP-fucose from

GDP-mannose

Table 4-1 SP96 in D. discoideum strains X22, HU2470, HU2471 and HU2733; the
 epitopes, postulated glycan structures and possible defects in the mutant
 strains

m A b  83 .5

M U D 62/ m A b  83 .5

M U D 166 / A D 7 .5 M U D 3
at leas t pa rtly

G A -X  ep itop e
F uc dep end ing

G A -X III  ep itop e
G lcN A c depend in g

G A -X II ep itop e
partly  F uc d epend ing

(1 ) (2 ) (3 )

P

β Fuc

Ser

P

α Fuc

Ser

α G lcN A c

P

Ser

α G lcN A c

Fuc

Ser

(1    3 )

Figure 4-1 Simplified model of mAb binding sites on SP96.
  Identified post-translational modifications and their postulated antibody epitopes, on the spore
 coat protein SP96. (1) on spore coat proteins from the wild-type ; (2) on some spore coat proteins
 from the fucose mutants HU2470, HU2471 and HU2733 with a mutation in modD,  modE  and
 modC; (3) on spore coat protein  SP96 from the wild-type and the modD mutant HU2470. The
 mutants HU2471 and HU2733, with further decreased amount of fucose, lose this epitope.
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4.2 Location of modifications on SP96

SP96 has on the C-terminal 180 amino acids a serine/ threonine rich tail where 74 of

the 120 serines and 47 of the 82 threonines are located. In this tail region of SP96k (protein

sequence, see 1.2.8) there are two repeat regions: one serine-rich (ASSSSAPSSSA) and one

threonine rich repeat (TTTATTA) located in the last 65 amino acids. N-terminal for these

regions is a repeat with both serine and threonine (AGSQTSGGSTSG).

It was shown that all post-translational modifications found on SP96 are localized on

serine and that any modification on threonine can almost be excluded. Edman sequence

analysis and immunochemical analysis with MUD62 of digested SP96 demonstrated that

most of the phosphoglycans are on the serine-rich tail, which also contains O-linked fucose

(MUD3 epitope).  Whether the O-linked fucose is only in the tail region or possibly also

further upstream on the protein is still unknown. Up to now only one amino acid motif for the

addition of fucose as a reducing terminal sugar to threonine/ serine has been described from

epidermal growth factor regions in human of some multidomain proteins (Cys-X-X-Gly-Gly-

Thr/Ser-Cys) (59). This motif  is not found in the SP96 sequence.

The analysis with the GST expression system of three serine/ threonine repeat regions

of SP96 as potential O-glycan acceptor sites confirmed the result of the location of the

phosphoglycosylation in the serine rich tail and further identified this modification in the

mixed serine/ threonine sequence closer to the N-terminus in the SP96 sequence.

Interestingly the dominant epitope, expressed during this earlier vegetative stage, is

that recognised by MUD166 instead of MUD62 which is the main epitope found in the spore

cells. In D. discoideum it has been shown that lysosomal cysteine proteinases expressed

during the vegetative stage have a serine-rich domain, similar to SP96, which is the target for

GlcNAc-α-1-P-Ser modification (101). The cysteine proteinase CP6 has 44% serine in 100

amino acids, while CP7 contains 43% serine in its 130 amino-acid domain. The latter contains

several short repeat motifs such as (SGSG, SQSQ, SQSA and SGSA) (101).

That the phosphodiester-linked glycan structure is on the serine rich tail is also

supported by the databasel prediction of phosphorylated amino acids which predicts that all

serines in the tail region have the potential for becoming phosphorylated. These results, in

combination with the calculated ∼60 phosphodiester glycan units per protein molecule,

suggest a “bottle-brush” like glycan orientation on the SP96 tail. This is also observed on the

                                                
k Swiss-Prot P14328
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serine/ threonine rich domains of animal and human mucins which have carbohydrate chains

with up to 20 sugar residues (123). The reducing terminal sugar in mucins is, however, a

GalNAc which is further elongated. No phosphodiester-linked glycans have been reported in

vertebrates.

In previous studies it has been shown that labelling of vegetatively expressed cysteine

proteinases with MUD62 and mAb83.5 antibodies was weaker than that observed on

multicellular-stage proteins (12). A weaker immunolabelling was also observed on the

expressed GST-S motif and GST-G motif fusion protein with MUD62 antibodies compared to

MUD166. This is consistent with the fucose labelling in the development of D. discoideum,

where the fucose content increases in the late development. A possible explanation could be

that there is a lower level of  α1-3 fucosyltransferase at this stage of expression which results

in less Fuc(α1-3)GlcNAc-α-1-P-Ser modification. Another possibility is that Fuc-β-1-P-Ser is

expressed at the vegetative stage instead of Fuc(α1-3)GlcNAc-α-1-P-Ser. At least for the

mAb 83.5  it is proven that the Fuc-β-1-P-Ser glycan  is a possible epitope,  and that the

antibodies bind to this modification with a lower affinity. Unfortunately, no accurate mass

could be obtained of the modified O-glycosylation acceptor peptides of the GST-fusion

protein, which would have been helpful to estimate the number of modified sites and glycan

composition.  Up to now there was only minor evidence for the Fuc-β-1-P-Ser modification

on native SP96 protein and facts for MUD62 binding to this structure.

There is also a variation in the intensity of the MUD166 and AD7.5 labelling between

SP96 and the GST fusion proteins. Both antibodies show similar band intensities with the

same amount of HU2470-SP96 protein. The same amount of expressed GST-S motif or GST-

G motif peptides, however, displayed strong differences in intensity in favour of MUD166.

Thus it seems that AD7.5 recognises a more conformational-dependent epitope which is better

presented on the SP96 protein than on short acceptor peptides. In vitro studies on

N-acetylglucosamine-1-phosphotransferase specificity with different acceptor motifs in

D. discoideum demonstrated that a serine flanked by alanines  is a 13-fold better acceptor for

GlcNAc-α-1-P-Ser modification than serine flanked by valines or by basic amino acids (86).

This result is confirmed by comparing immunochemical results of MUD166 and AD7.5

western blot analysis for the GST-S motif, where four serines are flanked by alanine, and the

GST-G motif, where no serine is flanked by alanine. Here the same tendency can be observed

                                                                                                                                                        
l http://www.cbs.dtu.dk/service/NetPhos/
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as that described by Metha et al. (86). The prediction from the database for phosphorylation

also showed a higher content of potential modified serine residues in the GST-S motif than in

the GST-G. Although nothing is known about the comparability between  phosphorylation

and phosphoglycosylation of acceptor motifs, this result fits with the observations.

Comparison of different immuno-blot patterns of MUD166 and AD7.5 of total spore protein

extract is also consistent with the suggestion that there are  unknown differences in their

epitopes. Although both antibodies seem to need GlcNAc-α-1-P-Ser in the epitope, a

significant difference in labelling of SP75 can be observed. MUD166 antibody labels the

SP75 band in both mutants, while there was no SP75 detection with AD7.5. On the other

hand,  AD7.5 makes some protein bands visible which are not detected by MUD166.

An interesting feature was the immunochemical labelling of the expressed threonine

rich GST-T acceptor motif of SP96 with the monoclonal antibody MUD50. The MUD50

epitope (minimal epitope: GlcNAc-Thr/Ser) is not found on native SP96. In addition to sheath

proteins, the MUD50 epitope occurs on glycoproteins found primarily, but not exclusively, in

prespore cells (2). This theronine-rich motif was chosen as a negative control for

glycosylation, as there was no evidence for threonine glycosylation in SP96. As all motifs

were expressed during the vegetative stage under the control of an actin15 promoter it may be

assumed that this type of  glycosylation is a developmentally regulated process. A similar

observation of positive MUD50 labelling was made on a threonine-rich motif of SP29 (PsA),

expressed with the same GST expression system, although in this case the native protein has

this epitope. Further analysis on this motif showed, however, that on the earlier expressed

acceptor motif only a truncated glycan structure is added. The minimal epitope for MUD50 is

a single GlcNAc residue directly linked to threonine (71).  The D. discoideum databasem

prediction for O-GlcNAc glycosylation of the SP96-T motif was negative although the

MUD50 epitope was detected. An exact identification of the glycosylation sites on this motif

could help to improve the reliability of this prediction neural network.

In this expression system the replacement of the actin15 (vegetative stage) promoter

by a SP60 promoter, active during the multicellular stage, should demonstrate the

developmentally regulated glycosylation on the GST-T motif of SP96. Under control of the

SP60 promoter the expressed GST fusion protein of slug cells could not be labelled with

MUD50, which strongly supports the conjecture that the different glycosylation is

                                                
m http://www.cbs.dtu.dk/service/NetOGlyc/
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developmentally regulated. Unfortunately the amount of expressed protein was too low  for

further analysis.

An interesting phenomenon of peripheral importance was the observed GST dimer. It

is still not understood why a GST fusion protein dimer is expressed in bacterially grown D.

discoideum cells. This was observed under control of the actin15 promoter, from bacteria

liquid-culture grown Dictyostelium cells, and with the SP60 promoter out of slug cells. The

GST dimer can, however, be compared with the monomeric form, not be affinity-purified.

This phenomenon has already been observed during expression of a soluble form of a human

mast cell IgE receptor (Wilson, Slade and Williams, unpublished). Under the chosen

conditions, the naturally occurring homodimeric form of GST should not be observed.

4.3 Structure/Function relationship

The link between the identified glycan structures on SP96 of the analysed

D. discoideum strains and their phenotypical observations allows no definite conclusions of

structure/ function  relationship. However, some observations can be made.

The Fuc-Ser modification is apparently more important to the structural integrity of

the spore coat than the fucose of the  Fuc(α1-3)GlcNAc-α-1-P-Ser structure, since mutants

carrying mutations in the modC or modE genes (which lack all or nearly all fucose containing

structures) exhibit shorter viability on storage than strains carrying a modD mutation (which

only lacks the phosphodiester-linked disaccharide containing fucose).  How far the loss of the

retaining GlcNAc-α-1-P-Ser modification influences the structural integrity is still unknown.

The amount of Fuc-Ser with  ∼30 modified sites in SP96 is quite high and therefore could be

expected to have a strong conformational influence on SP96.

Extraction studies done on X22 wild-type and HU2470 mutant spores demonstrated

that SP96 is released in different forms from the spore coat (12, 51, 89, 121). It can be

extracted in a soluble form by washing spores with buffer, a stronger associated form by

boiling spores in high urea concentration, and a disulfide-linked form by boiling in high urea

concentration under reducing conditions (89). All extracted forms of SP96 are modified with

the MUD62 or the MUD166 epitope. SP96 with the MUD3 epitope, however, is mainly

extracted in the strongly associated form and the covalently linked form. This clearly

demonstrates the relevance of the Fuc-Ser modification on SP96 for the strong assembly of

the spore coat.
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A modC mutant with a complete loss of fucosylation showed after germination a 45

kDa breakdown product of SP96 which remained sedimentable with the coat. Here it was

reasoned that SP96 was cleaved either because of the unmasking of a proteolytically sensitive

site owing to the defect in glycosylation, or because of a greater accessibility of a protease to

SP96 in the spore coat matrix (43). This is also supported by the observed activation of

cysteine proteinases after germination of spores (97), in which wild-type SP96 is unaffected

by this digestion (43).

Recently the Fuc-Ser modification was identified on two sites on a EGF-like domain

from a human blood coagulation factor. The glycosylation was believed to affect the

interaction of full-length coagulation factor with tissue factor by influencing its Ca2+ binding

affinity (73). Also recently identified was O-fucose  as monosaccharide and elongated species

in subsets of EGF modules on a large cell surface receptor, which was speculated to influence

receptor-ligand  interaction (88). Compared to these examples, SP96 is much more

profoundly modified. O-linked glycans have also been shown to be important for the stability

of glycoproteins. This is illustrated very well on a granulocyte colony stimulation factor (G-

CSF) where one O-linked sugar protects the molecule against polymerisation at 37 °C and

against heat denaturation (100). In this case it is possible that the sugar chain protects a

cysteine (in the ionized state) against oxidising radical attack (60).

The high level “bottle brush” like glycosylation with the newly identified

Fuc(α1-3)GlcNAc-α-1-P-Ser provides SP96 with a very hydrophilic tail. It is difficult to

estimate the compactness of this tail on the spore surface, but it may be assumed that it sticks

out of the spore coat and helps to protect the dormant amoeba from protease digestion and

other environmental influences. The glycans may also be relevant for building up hydrogen

bonds between water molecules to form a hydrated coat around the spore. This would prevent

it drying out and further stabilise the pH of the environment surrounding the spore.

In mucins several of these “bottle brush” like glycosylation domains can be observed,

where they are very resistant to protease digestion and partly function as spatial separation

between functional domains, or project functional domains away from cell membrane (68).

SP96 has on the C-terminal site of the heavily glycosylated serine-rich region an unmodified

threonine-rich tail, which probably does not work as a functional domain.

The loss of the terminal Fuc of this disaccharide, as observed in the modD mutant

strain, shows only minor phenotypical changes, and up to now no mutant with a lack of the

remaining GlcNAc-α-1-P-Ser structure has been obtained. How far this is an experimental
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problem, that means that a knock out of the relevant enzyme for phosphoglycosylation is

lethal, or  if no one has tried it yet is unknown. Cysteine proteinases of D. discoideum which

also have phosphoglycans (GlcNAc-1-P-Ser or Man-6-P, respectively) are found in separate

vesicles. It is therefore speculated that they are sorted out via their mutually exclusive

carbohydrate modifications (40). Although it is possible that the phosphoglycosylation on

SP96 functions as protection against proteolysis, it has to be mentioned that  phosphodiester

linkages are generally less stable than most of the direct glycosidic linkages to proteins.

Mucins, for example, display reducing terminal GalNAc-elongated sugar chains having

protective function. A phosphodiester-linked glycan is more acid labile than the linkage of a

reducing sugar to the protein. However it is unknown how far this is relevant to the organism

under real environmental condition.  That spores are able to survive acidic treatments is

shown on spores, which pass through the very acidic digestive systems of birds and are still

able to germinate afterwards.

4.4 Further prospects

To get a better understanding of O-glycosylation function in D. discoideum further

work should focus on the analysis of cysteine proteinases and other spore coat proteins. To

get a better understanding about the function of phosphoglycosylation during the different

stages of development it is necessary to create mutants, which lose this modification on spore

coat proteins and cysteine proteinases, respectively. With a phenotypical analysis of these

mutants it should be possible to assess functions for these modifications.

In summary, one can say that SP96 is the first spore coat protein of D. discoideum

wich has been analysed in detail and found to have further newly identified phosphoglycan

modification Fuc(α1-3)GlcNAc-α-1-P-Ser. SP96 seems to be modified by at least three

different O-glycosylation forms (Fuc-Ser and Fuc(α1-3)GlcNAc-α-1-P-Ser and possibly a

minor amount Fuc-P-Ser), which were localized at different clusters on the protein backbone.

This is the first example of a protein with such diverse O-glycosylation. A knowledge of these

glycan structures together with the phenotype correlation with mutations and antibody

recognition makes it possible to speculate on the relationship between glycosylation and

function of the spore coat proteins. Different glycan structures on SP96 have been assigned to

antibody epitopes which is an important step forward to the characterisation of these often

used tools.
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NetPhos 2.0 Prediction Results

Name:  SP96             Length: 600

MRVLLVLVACLTYFSGGALAQSCSSYSGDNCPSTCFQGSYDIPCGAQVKYCTEMKDNCGEGGDVKCWKDGSNLPVQTWSS
CVPSELFGPNGKFKPSEIPNSSNCPTNCENGVEWVNLCGLSCDAKTACCPDVCQCKGGQTSGGSTTGSQTSGGSTSGGST
TGSQTSGGSTTGSQTSGSQTSAGSCSNTQCPNGFYCQVQGNNAVCVPQQSSTSGGHQNDPCDTVQCPYGYSCESRDGFEA
KCTRDEDEPTHRPTHRPKPPHDSDKYLCDNVHCPRGYKCNAKNGVAKCIAGYEIPRVCRNIQCPTGYRCEDHNRNPICVL
EERENPDNCLTCNDVNCEASGLVCVMTRARCKVGAAKCCDVQPTCIKPSTIAGSTIASIASTIASTGSTGATSPCSVAQC
PTGYVCVAQNNVAVSLPRPTTTTGSTSDSSALGSTSESSASGSSAVSSSASGSSAASSSPSSSAASSSPSSSAASSSPSS
SAASSSPSSSASSSSSPSSSASSSSAPSSSASSSSAPSSSASSSSASSSSASSAATTAATTIATTAATTTATTTATTATT
TATTTATTTAATIATTTAATTTATTTATTATTTATTTATS

........................SY.............Y........................................

...............S...........................................TS.........S..S.S..S.

.....S......S..S.S.T...S..........Y.................S....................S......

..T......T...T........S..Y..........Y...........................................

................................................S....S.............S....S.......

...Y................TT..S.S..S...S.S.SS.S..S..S.S.S.....SSS.SSS..SSS.SSS..SSS.SS
S..SSS.SSS.SSSSS.SSS.SSSS..SSS.SSSS..SSS.SSSS.SSSS.SS...........................
.......T...............................S

Ser: 88 Thr:    Tyr:

Ser: 8  Thr: 6  Tyr:

                Serine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96            15   LTYFSGGAL  0.019    .
SP96            22   ALAQSCSSY  0.066    .
SP96            24   AQSCSSYSG  0.056    .
SP96            25   QSCSSYSGD  0.584  *S*
SP96            27   CSSYSGDNC  0.432    .
SP96            33   DNCPSTCFQ  0.041    .
SP96            39   CFQGSYDIP  0.092    .
SP96            71   WKDGSNLPV  0.002    .
SP96            79   VQTWSSCVP  0.010    .
SP96            80   QTWSSCVPS  0.030    .
SP96            84   SCVPSELFG  0.262    .
SP96            96   KFKPSEIPN  0.861  *S*
SP96           101   EIPNSSNCP  0.271    .
SP96           102   IPNSSNCPT  0.026    .
SP96           121   LCGLSCDAK  0.004    .
SP96           141   GGQTSGGST  0.925  *S*
SP96           144   TSGGSTTGS  0.353    .
SP96           148   STTGSQTSG  0.454    .
SP96           151   GSQTSGGST  0.988  *S*
SP96           154   TSGGSTSGG  0.789  *S*
SP96           156   GGSTSGGST  0.939  *S*
SP96           159   TSGGSTTGS  0.854  *S*
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SP96           163   STTGSQTSG  0.454    .
SP96           166   GSQTSGGST  0.987  *S*
SP96           169   TSGGSTTGS  0.353    .
SP96           173   STTGSQTSG  0.614  *S*
SP96           176   GSQTSGSQT  0.987  *S*
SP96           178   QTSGSQTSA  0.867  *S*
SP96           181   GSQTSAGSC  0.291    .
SP96           184   TSAGSCSNT  0.699  *S*
SP96           186   AGSCSNTQC  0.008    .
SP96           210   VPQQSSTSG  0.049    .
SP96           211   PQQSSTSGG  0.311    .
SP96           213   QSSTSGGHQ  0.635  *S*
SP96           231   PYGYSCESR  0.008    .
SP96           234   YSCESRDGF  0.667  *S*
SP96           263   PPHDSDKYL  0.802  *S*
SP96           340   NCEASGLVC  0.004    .
SP96           369   CIKPSTIAG  0.767  *S*
SP96           374   TIAGSTIAS  0.629  *S*
SP96           378   STIASIAST  0.083    .
SP96           381   ASIASTIAS  0.447    .
SP96           385   STIASTGST  0.481    .
SP96           388   ASTGSTGAT  0.867  *S*
SP96           393   TGATSPCSV  0.958  *S*
SP96           396   TSPCSVAQC  0.037    .
SP96           415   NVAVSLPRP  0.497    .
SP96           425   TTTGSTSDS  0.996  *S*
SP96           427   TGSTSDSSA  0.985  *S*
SP96           429   STSDSSALG  0.204    .
SP96           430   TSDSSALGS  0.838  *S*
SP96           434   SALGSTSES  0.987  *S*
SP96           436   LGSTSESSA  0.894  *S*
SP96           438   STSESSASG  0.665  *S*
SP96           439   TSESSASGS  0.970  *S*
SP96           441   ESSASGSSA  0.987  *S*
SP96           443   SASGSSAVS  0.144    .
SP96           444   ASGSSAVSS  0.705  *S*
SP96           447   SSAVSSSAS  0.975  *S*
SP96           448   SAVSSSASG  0.424    .
SP96           449   AVSSSASGS  0.897  *S*
SP96           451   SSSASGSSA  0.936  *S*
SP96           453   SASGSSAAS  0.355    .
SP96           454   ASGSSAASS  0.439    .
SP96           457   SSAASSSPS  0.976  *S*
SP96           458   SAASSSPSS  0.867  *S*
SP96           459   AASSSPSSS  0.986  *S*
SP96           461   SSSPSSSAA  0.966  *S*
SP96           462   SSPSSSAAS  0.960  *S*
SP96           463   SPSSSAASS  0.770  *S*
SP96           466   SSAASSSPS  0.983  *S*
SP96           467   SAASSSPSS  0.867  *S*
SP96           468   AASSSPSSS  0.986  *S*
SP96           470   SSSPSSSAA  0.966  *S*
SP96           471   SSPSSSAAS  0.960  *S*
SP96           472   SPSSSAASS  0.770  *S*
SP96           475   SSAASSSPS  0.983  *S*
SP96           476   SAASSSPSS  0.867  *S*
SP96           477   AASSSPSSS  0.986  *S*
SP96           479   SSSPSSSAA  0.966  *S*
SP96           480   SSPSSSAAS  0.960  *S*
SP96           481   SPSSSAASS  0.770  *S*
SP96           484   SSAASSSPS  0.983  *S*
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SP96           485   SAASSSPSS  0.867  *S*
SP96           486   AASSSPSSS  0.986  *S*
SP96           488   SSSPSSSAS  0.974  *S*
SP96           489   SSPSSSASS  0.969  *S*
SP96           490   SPSSSASSS  0.972  *S*
SP96           492   SSSASSSSS  0.985  *S*
SP96           493   SSASSSSSP  0.989  *S*
SP96           494   SASSSSSPS  0.955  *S*
SP96           495   ASSSSSPSS  0.838  *S*
SP96           496   SSSSSPSSS  0.995  *S*
SP96           498   SSSPSSSAS  0.985  *S*
SP96           499   SSPSSSASS  0.969  *S*
SP96           500   SPSSSASSS  0.972  *S*
SP96           502   SSSASSSSA  0.982  *S*
SP96           503   SSASSSSAP  0.987  *S*
SP96           504   SASSSSAPS  0.629  *S*
SP96           505   ASSSSAPSS  0.767  *S*
SP96           508   SSAPSSSAS  0.987  *S*
SP96           509   SAPSSSASS  0.849  *S*
SP96           510   APSSSASSS  0.873  *S*
SP96           512   SSSASSSSA  0.982  *S*
SP96           513   SSASSSSAP  0.987  *S*
SP96           514   SASSSSAPS  0.629  *S*
SP96           515   ASSSSAPSS  0.767  *S*
SP96           518   SSAPSSSAS  0.987  *S*
SP96           519   SAPSSSASS  0.849  *S*
SP96           520   APSSSASSS  0.873  *S*
SP96           522   SSSASSSSA  0.972  *S*
SP96           523   SSASSSSAS  0.989  *S*
SP96           524   SASSSSASS  0.766  *S*
SP96           525   ASSSSASSS  0.963  *S*
SP96           527   SSSASSSSA  0.984  *S*
SP96           528   SSASSSSAS  0.989  *S*
SP96           529   SASSSSASS  0.727  *S*
SP96           530   ASSSSASSA  0.939  *S*
SP96           532   SSSASSAAT  0.941  *S*
SP96           533   SSASSAATT  0.890  *S*
SP96           600   TTATS----  0.680  *S*
_________________________^_________________

                Threonine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96            12   VACLTYFSG  0.084    .
SP96            34   NCPSTCFQG  0.053    .
SP96            52   VKYCTEMKD  0.133    .
SP96            77   LPVQTWSSC  0.270    .
SP96           106   SNCPTNCEN  0.085    .
SP96           126   CDAKTACCP  0.072    .
SP96           140   KGGQTSGGS  0.794  *T*
SP96           145   SGGSTTGSQ  0.096    .
SP96           146   GGSTTGSQT  0.446    .
SP96           150   TGSQTSGGS  0.441    .
SP96           155   SGGSTSGGS  0.450    .
SP96           160   SGGSTTGSQ  0.096    .
SP96           161   GGSTTGSQT  0.446    .
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SP96           165   TGSQTSGGS  0.441    .
SP96           170   SGGSTTGSQ  0.096    .
SP96           171   GGSTTGSQT  0.446    .
SP96           175   TGSQTSGSQ  0.152    .
SP96           180   SGSQTSAGS  0.527  *T*
SP96           188   SCSNTQCPN  0.315    .
SP96           212   QQSSTSGGH  0.026    .
SP96           223   DPCDTVQCP  0.266    .
SP96           243   EAKCTRDED  0.735  *T*
SP96           250   EDEPTHRPT  0.954  *T*
SP96           254   THRPTHRPK  0.923  *T*
SP96           305   IQCPTGYRC  0.033    .
SP96           331   DNCLTCNDV  0.117    .
SP96           347   VCVMTRARC  0.049    .
SP96           364   DVQPTCIKP  0.065    .
SP96           370   IKPSTIAGS  0.140    .
SP96           375   IAGSTIASI  0.043    .
SP96           382   SIASTIAST  0.270    .
SP96           386   TIASTGSTG  0.015    .
SP96           389   STGSTGATS  0.033    .
SP96           392   STGATSPCS  0.087    .
SP96           402   AQCPTGYVC  0.024    .
SP96           420   LPRPTTTTG  0.138    .
SP96           421   PRPTTTTGS  0.936  *T*
SP96           422   RPTTTTGST  0.943  *T*
SP96           423   PTTTTGSTS  0.290    .
SP96           426   TTGSTSDSS  0.313    .
SP96           435   ALGSTSESS  0.058    .
SP96           536   SSAATTAAT  0.301    .
SP96           537   SAATTAATT  0.366    .
SP96           540   TTAATTIAT  0.149    .
SP96           541   TAATTIATT  0.360    .
SP96           544   TTIATTAAT  0.164    .
SP96           545   TIATTAATT  0.063    .
SP96           548   TTAATTTAT  0.224    .
SP96           549   TAATTTATT  0.354    .
SP96           550   AATTTATTT  0.199    .
SP96           552   TTTATTTAT  0.201    .
SP96           553   TTATTTATT  0.300    .
SP96           554   TATTTATTA  0.106    .
SP96           556   TTTATTATT  0.082    .
SP96           557   TTATTATTT  0.178    .
SP96           559   ATTATTTAT  0.224    .
SP96           560   TTATTTATT  0.300    .
SP96           561   TATTTATTT  0.180    .
SP96           563   TTTATTTAT  0.201    .
SP96           564   TTATTTATT  0.300    .
SP96           565   TATTTATTT  0.180    .
SP96           567   TTTATTTAA  0.122    .
SP96           568   TTATTTAAT  0.506  *T*
SP96           569   TATTTAATI  0.017    .
SP96           572   TTAATIATT  0.101    .
SP96           575   ATIATTTAA  0.128    .
SP96           576   TIATTTAAT  0.242    .
SP96           577   IATTTAATT  0.350    .
SP96           580   TTAATTTAT  0.224    .
SP96           581   TAATTTATT  0.354    .
SP96           582   AATTTATTT  0.199    .
SP96           584   TTTATTTAT  0.201    .
SP96           585   TTATTTATT  0.300    .
SP96           586   TATTTATTA  0.106    .
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SP96           588   TTTATTATT  0.082    .
SP96           589   TTATTATTT  0.178    .
SP96           591   ATTATTTAT  0.224    .
SP96           592   TTATTTATT  0.300    .
SP96           593   TATTTATTT  0.180    .
SP96           595   TTTATTTAT  0.201    .
SP96           596   TTATTTATS  0.103    .
SP96           597   TATTTATS-  0.085    .
SP96           599   TTTATS---  0.080    .
_________________________^_________________

                Tyrosine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96            13   ACLTYFSGG  0.428    .
SP96            26   SCSSYSGDN  0.594  *Y*
SP96            40   FQGSYDIPC  0.680  *Y*
SP96            50   AQVKYCTEM  0.075    .
SP96           195   PNGFYCQVQ  0.621  *Y*
SP96           228   VQCPYGYSC  0.036    .
SP96           230   CPYGYSCES  0.086    .
SP96           266   DSDKYLCDN  0.953  *Y*
SP96           277   CPRGYKCNA  0.685  *Y*
SP96           292   CIAGYEIPR  0.316    .
SP96           307   CPTGYRCED  0.329    .
SP96           404   CPTGYVCVA  0.977  *Y*
_________________________^_________________

NetPhos 2.0 Prediction Results

Name:  SP96-T           Length: 12

ATTTATTATTTA
............

Ser: 0  Thr: 0  Tyr: 0

                Threonine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96-T           2   ---ATTTAT  0.178    .
SP96-T           3   --ATTTATT  0.375    .
SP96-T           4   -ATTTATTA  0.259    .
SP96-T           6   TTTATTATT  0.082    .
SP96-T           7   TTATTATTT  0.178    .
SP96-T           9   ATTATTTA-  0.047    .
SP96-T          10   TTATTTA--  0.111    .
SP96-T          11   TATTTA---  0.093    .
_________________________^_________________
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NetPhos 2.0 Prediction Results

Name:  SP96-S           Length: 14

ASSSSAPSSSASSS
.......SSS.SS.

Ser: 5  Thr: 0  Tyr: 0

                Serine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96-S           2   ---ASSSSA  0.008    .
SP96-S           3   --ASSSSAP  0.024    .
SP96-S           4   -ASSSSAPS  0.008    .
SP96-S           5   ASSSSAPSS  0.214    .
SP96-S           8   SSAPSSSAS  0.987  *S*
SP96-S           9   SAPSSSASS  0.849  *S*
SP96-S          10   APSSSASSS  0.788  *S*
SP96-S          12   SSSASSS--  0.783  *S*
SP96-S          13   SSASSS---  0.864  *S*
SP96-S          14   SASSS----  0.314    .

NetPhos 2.0 Prediction Results

Name:  SP96-G           Length: 16

AGSQTSGGSTGGSTGS
.....S..S.......

Ser: 2  Thr: 0  Tyr: 0

                Serine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96-G           3   --AGSQTSG  0.012    .
SP96-G           6   GSQTSGGST  0.914  *S*
SP96-G           9   TSGGSTGGS  0.649  *S*
SP96-G          13   STGGSTGS-  0.232    .
SP96-G          16   GSTGS----  0.013    .
_________________________^_________________
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                Threonine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
SP96-G           5   AGSQTSGGS  0.478    .
SP96-G          10   SGGSTGGST  0.366    .
SP96-G          14   TGGSTGS--  0.032    .
_________________________^_________________
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DictyOGlyc 1.1 Prediction Results

Name:  SP96     Length:  600

MRVLLVLVACLTYFSGGALAQSCSSYSGDNCPSTCFQGSYDIPCGAQVKYCTEMKDNCGEGGDVKCWKDGSNLPVQTWSS 80
CVPSELFGPNGKFKPSEIPNSSNCPTNCENGVEWVNLCGLSCDAKTACCPDVCQCKGGQTSGGSTTGSQTSGGSTSGGST160
TGSQTSGGSTTGSQTSGSQTSAGSCSNTQCPNGFYCQVQGNNAVCVPQQSSTSGGHQNDPCDTVQCPYGYSCESRDGFEA240
KCTRDEDEPTHRPTHRPKPPHDSDKYLCDNVHCPRGYKCNAKNGVAKCIAGYEIPRVCRNIQCPTGYRCEDHNRNPICVL320
EERENPDNCLTCNDVNCEASGLVCVMTRARCKVGAAKCCDVQPTCIKPSTIAGSTIASIASTIASTGSTGATSPCSVAQC400
PTGYVCVAQNNVAVSLPRPTTTTGSTSDSSALGSTSESSASGSSAVSSSASGSSAASSSPSSSAASSSPSSSAASSSPSS480
SAASSSPSSSASSSSSPSSSASSSSAPSSSASSSSAPSSSASSSSASSSSASSAATTAATTIATTAATTTATTTATTATT560
TATTTATTTAATIATTTAATTTATTTATTATTTATTTATS

................................................................................ 80

...............G................................................................160

................................................................................240

................................................................................320

................................................................................400

................................................................................480

................................................................................560

........................................

Name    Residue   Number  Potential Threshold   Assignment
SP96     Thr     0012    0.0116     0.8213       .
SP96     Ser     0015    0.0097     0.7184       .
SP96     Ser     0022    0.0132     0.7124       .
SP96     Ser     0024    0.0141     0.6575       .
SP96     Ser     0025    0.0209     0.6595       .
SP96     Ser     0027    0.0140     0.5715       .
SP96     Ser     0033    0.0283     0.6804       .
SP96     Thr     0034    0.0130     0.6974       .
SP96     Ser     0039    0.0160     0.6874       .
SP96     Thr     0052    0.0184     0.6625       .
SP96     Ser     0071    0.1903     0.5586       .
SP96     Thr     0077    0.0160     0.6944       .
SP96     Ser     0079    0.2230     0.7254       .
SP96     Ser     0080    0.2159     0.7334       .
SP96     Ser     0084    0.2026     0.7294       .
SP96     Ser     0096    0.6995     0.6045       G
SP96     Ser     0101    0.0187     0.6255       .
SP96     Ser     0102    0.3943     0.5915       .
SP96     Thr     0106    0.0177     0.6025       .
SP96     Ser     0121    0.0402     0.7254       .
SP96     Thr     0126    0.0109     0.6365       .
SP96     Thr     0140    0.0146     0.5576       .
SP96     Ser     0141    0.0093     0.5616       .
SP96     Ser     0144    0.4789     0.5965       .
SP96     Thr     0145    0.0118     0.5995       .
SP96     Thr     0146    0.0135     0.5975       .
SP96     Ser     0148    0.3566     0.5845       .
SP96     Thr     0150    0.0106     0.5865       .
SP96     Ser     0151    0.0099     0.5765       .
SP96     Ser     0154    0.2008     0.5735       .
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SP96     Thr     0155    0.0148     0.5865       .
SP96     Ser     0156    0.0103     0.5895       .
SP96     Ser     0159    0.4549     0.5965       .
SP96     Thr     0160    0.0118     0.6015       .
SP96     Thr     0161    0.0137     0.5995       .
SP96     Ser     0163    0.3636     0.5835       .
SP96     Thr     0165    0.0106     0.5875       .
SP96     Ser     0166    0.0097     0.5725       .
SP96     Ser     0169    0.4455     0.5875       .
SP96     Thr     0170    0.0114     0.5945       .
SP96     Thr     0171    0.0135     0.5935       .
SP96     Ser     0173    0.3501     0.5835       .
SP96     Thr     0175    0.0102     0.5895       .
SP96     Ser     0176    0.0157     0.5715       .
SP96     Ser     0178    0.0722     0.5855       .
SP96     Thr     0180    0.0116     0.6035       .
SP96     Ser     0181    0.0099     0.6015       .
SP96     Ser     0184    0.0372     0.6425       .
SP96     Ser     0186    0.0296     0.6115       .
SP96     Thr     0188    0.0271     0.6405       .
SP96     Ser     0210    0.0318     0.5715       .
SP96     Ser     0211    0.0224     0.5576       .
SP96     Thr     0212    0.0152     0.5745       .
SP96     Ser     0213    0.0164     0.5785       .
SP96     Thr     0223    0.0191     0.6635       .
SP96     Ser     0231    0.0400     0.6844       .
SP96     Ser     0234    0.0137     0.5935       .
SP96     Thr     0243    0.0150     0.5556       .
SP96     Thr     0250    0.0527     0.5136       .
SP96     Thr     0254    0.1092     0.5306       .
SP96     Ser     0263    0.1295     0.5266       .
SP96     Thr     0305    0.0230     0.6325       .
SP96     Thr     0331    0.0116     0.6794       .
SP96     Ser     0340    0.0123     0.7374       .
SP96     Thr     0347    0.0145     0.7763       .
SP96     Thr     0364    0.0184     0.6345       .
SP96     Ser     0369    0.1434     0.6445       .
SP96     Thr     0370    0.0166     0.6375       .
SP96     Ser     0374    0.0271     0.7454       .
SP96     Thr     0375    0.0240     0.7384       .
SP96     Ser     0378    0.0228     0.7743       .
SP96     Ser     0381    0.0767     0.7624       .
SP96     Thr     0382    0.0138     0.7494       .
SP96     Ser     0385    0.0149     0.6665       .
SP96     Thr     0386    0.0120     0.6465       .
SP96     Ser     0388    0.0588     0.6045       .
SP96     Thr     0389    0.0180     0.5975       .
SP96     Thr     0392    0.0253     0.6285       .
SP96     Ser     0393    0.0441     0.6425       .
SP96     Ser     0396    0.0658     0.6655       .
SP96     Thr     0402    0.0283     0.6814       .
SP96     Ser     0415    0.0203     0.7074       .
SP96     Thr     0420    0.0948     0.5456       .
SP96     Thr     0421    0.0194     0.5486       .
SP96     Thr     0422    0.0288     0.5616       .
SP96     Thr     0423    0.0159     0.5596       .
SP96     Ser     0425    0.1348     0.5586       .
SP96     Thr     0426    0.0218     0.5755       .
SP96     Ser     0427    0.0137     0.5815       .
SP96     Ser     0429    0.0173     0.6085       .
SP96     Ser     0430    0.0145     0.6195       .
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SP96     Ser     0434    0.0704     0.6155       .
SP96     Thr     0435    0.0188     0.6205       .
SP96     Ser     0436    0.0121     0.6005       .
SP96     Ser     0438    0.0127     0.5775       .
SP96     Ser     0439    0.0142     0.5865       .
SP96     Ser     0441    0.0133     0.5965       .
SP96     Ser     0443    0.0922     0.6245       .
SP96     Ser     0444    0.0337     0.6395       .
SP96     Ser     0447    0.0143     0.6615       .
SP96     Ser     0448    0.0203     0.6545       .
SP96     Ser     0449    0.0133     0.6465       .
SP96     Ser     0451    0.0149     0.6035       .
SP96     Ser     0453    0.0196     0.6085       .
SP96     Ser     0454    0.0216     0.6035       .
SP96     Ser     0457    0.1355     0.5795       .
SP96     Ser     0458    0.0180     0.5785       .
SP96     Ser     0459    0.1487     0.5695       .
SP96     Ser     0461    0.0569     0.5596       .
SP96     Ser     0462    0.0173     0.5765       .
SP96     Ser     0463    0.0146     0.5805       .
SP96     Ser     0466    0.1630     0.5775       .
SP96     Ser     0467    0.0179     0.5745       .
SP96     Ser     0468    0.1484     0.5675       .
SP96     Ser     0470    0.0555     0.5596       .
SP96     Ser     0471    0.0173     0.5765       .
SP96     Ser     0472    0.0146     0.5795       .
SP96     Ser     0475    0.1630     0.5765       .
SP96     Ser     0476    0.0179     0.5735       .
SP96     Ser     0477    0.1484     0.5675       .
SP96     Ser     0479    0.0555     0.5596       .
SP96     Ser     0480    0.0173     0.5765       .
SP96     Ser     0481    0.0146     0.5795       .
SP96     Ser     0484    0.1622     0.5785       .
SP96     Ser     0485    0.0167     0.5765       .
SP96     Ser     0486    0.1518     0.5656       .
SP96     Ser     0488    0.0586     0.5586       .
SP96     Ser     0489    0.0124     0.5656       .
SP96     Ser     0490    0.0178     0.5666       .
SP96     Ser     0492    0.0134     0.5675       .
SP96     Ser     0493    0.0161     0.5715       .
SP96     Ser     0494    0.1817     0.5646       .
SP96     Ser     0495    0.0139     0.5526       .
SP96     Ser     0496    0.1358     0.5476       .
SP96     Ser     0498    0.0576     0.5576       .
SP96     Ser     0499    0.0129     0.5675       .
SP96     Ser     0500    0.0175     0.5705       .
SP96     Ser     0502    0.0148     0.5705       .
SP96     Ser     0503    0.0174     0.5845       .
SP96     Ser     0504    0.1900     0.5795       .
SP96     Ser     0505    0.0114     0.5715       .
SP96     Ser     0508    0.0463     0.5695       .
SP96     Ser     0509    0.0142     0.5805       .
SP96     Ser     0510    0.0206     0.5725       .
SP96     Ser     0512    0.0152     0.5685       .
SP96     Ser     0513    0.0165     0.5805       .
SP96     Ser     0514    0.1771     0.5785       .
SP96     Ser     0515    0.0112     0.5715       .
SP96     Ser     0518    0.0435     0.5695       .
SP96     Ser     0519    0.0145     0.5805       .
SP96     Ser     0520    0.0153     0.5765       .
SP96     Ser     0522    0.0138     0.5815       .
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SP96     Ser     0523    0.0161     0.5925       .
SP96     Ser     0524    0.0157     0.5975       .
SP96     Ser     0525    0.0108     0.5965       .
SP96     Ser     0527    0.0132     0.5835       .
SP96     Ser     0528    0.0155     0.5945       .
SP96     Ser     0529    0.0143     0.6025       .
SP96     Ser     0530    0.0119     0.5965       .
SP96     Ser     0532    0.0137     0.6115       .
SP96     Ser     0533    0.0124     0.6195       .
SP96     Thr     0536    0.0121     0.6485       .
SP96     Thr     0537    0.0117     0.6575       .
SP96     Thr     0540    0.0118     0.6884       .
SP96     Thr     0541    0.0138     0.6914       .
SP96     Thr     0544    0.0178     0.6914       .
SP96     Thr     0545    0.0113     0.6794       .
SP96     Thr     0548    0.0123     0.6385       .
SP96     Thr     0549    0.0142     0.6225       .
SP96     Thr     0550    0.0185     0.6155       .
SP96     Thr     0552    0.0179     0.6105       .
SP96     Thr     0553    0.0125     0.6035       .
SP96     Thr     0554    0.0181     0.6095       .
SP96     Thr     0556    0.0136     0.6135       .
SP96     Thr     0557    0.0110     0.6115       .
SP96     Thr     0559    0.0185     0.6085       .
SP96     Thr     0560    0.0124     0.6055       .
SP96     Thr     0561    0.0189     0.6125       .
SP96     Thr     0563    0.0183     0.6075       .
SP96     Thr     0564    0.0125     0.6005       .
SP96     Thr     0565    0.0187     0.6155       .
SP96     Thr     0567    0.0213     0.6275       .
SP96     Thr     0568    0.0125     0.6395       .
SP96     Thr     0569    0.0158     0.6555       .
SP96     Thr     0572    0.0110     0.6914       .
SP96     Thr     0575    0.0236     0.6834       .
SP96     Thr     0576    0.0146     0.6814       .
SP96     Thr     0577    0.0140     0.6525       .
SP96     Thr     0580    0.0120     0.6245       .
SP96     Thr     0581    0.0142     0.6155       .
SP96     Thr     0582    0.0183     0.6145       .
SP96     Thr     0584    0.0178     0.6095       .
SP96     Thr     0585    0.0125     0.6025       .
SP96     Thr     0586    0.0181     0.6085       .
SP96     Thr     0588    0.0136     0.6125       .
SP96     Thr     0589    0.0110     0.6105       .
SP96     Thr     0591    0.0188     0.6085       .
SP96     Thr     0592    0.0124     0.6055       .
SP96     Thr     0593    0.0187     0.6095       .
SP96     Thr     0595    0.0195     0.5785       .
SP96     Thr     0596    0.0129     0.5496       .
SP96     Thr     0597    0.0262     0.5186       .
SP96     Thr     0599    0.0414     0.5046       .
SP96     Ser     0600    0.0398     0.4876       .
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DictyOGlyc 1.1 Prediction Results

Name:  SP96-T motif   Length:  12

ATTTATTATTTA
............

Name    Residue   Number  Potential Threshold   Assignment
SP96-T     Thr     0002    0.0141     0.3658       .
SP96-T     Thr     0003    0.0147     0.3837       .
SP96-T     Thr     0004    0.0252     0.3857       .
SP96-T     Thr     0006    0.0166     0.4117       .
SP96-T     Thr     0007    0.0121     0.4067       .
SP96-T     Thr     0009    0.0233     0.3548       .
SP96-T     Thr     0010    0.0210     0.3358       .
SP96-T     Thr     0011    0.0404     0.3418       .

DictyOGlyc 1.1 Prediction Results

Name:  SP96-S motif  Length:  14

ASSSSAPSSSASSS
..............

Name    Residue   Number  Potential Threshold   Assignment
SP96-S     Ser     0002    0.0174     0.2908       .
SP96-S     Ser     0003    0.0199     0.3268       .
SP96-S     Ser     0004    0.2404     0.3298       .
SP96-S     Ser     0005    0.0128     0.3488       .
SP96-S     Ser     0008    0.0471     0.3807       .
SP96-S     Ser     0009    0.0161     0.3757       .
SP96-S     Ser     0010    0.0336     0.3448       .
SP96-S     Ser     0012    0.0471     0.3128       .
SP96-S     Ser     0013    0.0511     0.3028       .
SP96-S     Ser     0014    0.0488     0.3058       .
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DictyOGlyc 1.1 Prediction Results

Name:  SP96-G motif  Length:  16

AGSQTSGGSTGGSTGS
................

Name    Residue   Number  Potential Threshold   Assignment
SP96-G     Ser     0003    0.0433     0.3408       .
SP96-G     Thr     0005    0.0120     0.3797       .
SP96-G     Ser     0006    0.0105     0.3997       .
SP96-G     Ser     0009    0.0811     0.4237       .
SP96-G     Thr     0010    0.0130     0.4187       .
SP96-G     Ser     0013    0.0471     0.3468       .
SP96-G     Thr     0014    0.0485     0.3418       .
SP96-G     Ser     0016    0.3274     0.3488       .



6. Appendix

pM
U

W
 2

92
1 

(S
P9

6T
-m

ot
if)

St
ar

t o
f D

dp
2 

or
i

 
C
G
A
T
A
G
G
C
A
A
T
T
T
A
T
T
T
T
T
A
T
A
T
C
T
A
T
C
T
A
A
A
A
A
A
A
A
A
C
T
A
G
G
A
A
A
A
A
T
G
A
A
T
G
T
C
A
T
C
A
A
A
T
A
G
T
A
T
T
T
T
A
A
C
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
 
1
0
 
 
 
 
 
 
 
 
2
0
 
 
 
 
 
 
 
 
3
0
 
 
 
 
 
 
 
 
4
0
 
 
 
 
 
 
 
 
5
0
 
 
 
 
 
 
 
 
6
0
 
 
 
 
 
 
 
 
7
0
 
 
 
 
 
 
 
 
8
0
 
 
 
 
 
 
 
 
9
0

 
T
T
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G
A
G
G
G
G
A
A
A
G
T
A
A
T
T
A
T
A
A
C
T
A
G
G
T
T
A
G
T

 
 
 
 
 
 
 
 
1
0
0
 
 
 
 
 
 
 
1
1
0
 
 
 
 
 
 
 
1
2
0
 
 
 
 
 
 
 
1
3
0
 
 
 
 
 
 
 
1
4
0
 
 
 
 
 
 
 
1
5
0
 
 
 
 
 
 
 
1
6
0
 
 
 
 
 
 
 
1
7
0
 
 
 
 
 
 
 
1
8
0

 
T
T
T
T
T
A
T
A
A
T
T
T
T
T
A
C
A
T
A
T
T
T
G
T
T
A
A
T
A
A
C
T
T
T
T
A
A
T
T
T
T
G
A
A
T
C
A
T
A
T
A
T
G
A
T
A
T
T
A
C
A
T
C
G
T
C
C
C
G
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T

 
 
 
 
 
 
 
 
1
9
0
 
 
 
 
 
 
 
2
0
0
 
 
 
 
 
 
 
2
1
0
 
 
 
 
 
 
 
2
2
0
 
 
 
 
 
 
 
2
3
0
 
 
 
 
 
 
 
2
4
0
 
 
 
 
 
 
 
2
5
0
 
 
 
 
 
 
 
2
6
0
 
 
 
 
 
 
 
2
7
0

 
T
T
T
T
T
T
T
T
C
A
A
A
C
A
T
T
T
T
C
A
T
T
T
T
T
T
A
A
A
A
A
A
T
G
A
T
A
T
A
A
A
A
T
T
T
T
A
A
A
C
T
A
A
A
C
T
A
T
T
T
T
A
T
T
A
A
A
T
A
C
A
A
A
C
A
T
A
T
A
A
C
T
T
T
A
T
C
T
T
A

 
 
 
 
 
 
 
 
2
8
0
 
 
 
 
 
 
 
2
9
0
 
 
 
 
 
 
 
3
0
0
 
 
 
 
 
 
 
3
1
0
 
 
 
 
 
 
 
3
2
0
 
 
 
 
 
 
 
3
3
0
 
 
 
 
 
 
 
3
4
0
 
 
 
 
 
 
 
3
5
0
 
 
 
 
 
 
 
3
6
0

 
A
T
C
A
A
T
T
T
T
T
T
T
G
G
T
T
T
A
T
A
C
A
T
A
T
T
T
A
T
G
T
T
C
G
T
A
C
T
G
A
A
G
T
A
T
A
G
A
T
C
G
A
T
C
T
T
A
T
T
A
C
T
A
A
A
G
T
T
T
C
A
A
A
A
G
T
T
T
T
A
A
A
A
A
A
A
A
T
T
A

 
 
 
 
 
 
 
 
3
7
0
 
 
 
 
 
 
 
3
8
0
 
 
 
 
 
 
 
3
9
0
 
 
 
 
 
 
 
4
0
0
 
 
 
 
 
 
 
4
1
0
 
 
 
 
 
 
 
4
2
0
 
 
 
 
 
 
 
4
3
0
 
 
 
 
 
 
 
4
4
0
 
 
 
 
 
 
 
4
5
0

 
A
A
G
G
G
G
G
T
A
A
A
T
A
T
A
T
A
A
C
T
T
T
C
T
G
T
T
T
T
T
T
T
C
A
A
T
T
C
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T

 
 
 
 
 
 
 
 
4
6
0
 
 
 
 
 
 
 
4
7
0
 
 
 
 
 
 
 
4
8
0
 
 
 
 
 
 
 
4
9
0
 
 
 
 
 
 
 
5
0
0
 
 
 
 
 
 
 
5
1
0
 
 
 
 
 
 
 
5
2
0
 
 
 
 
 
 
 
5
3
0
 
 
 
 
 
 
 
5
4
0

E
n
d
 
o
f
 
D
d
p
2
 
o
r
i

<
O
l
i
g
o
 
D
d
p
2
o
r
i
.
x
b
a
.
r
2

 
T
T
A
T
T
T
C
T
T
C
A
A
T
A
G
G
T
A
T
T
G
A
A
A
T
G
A
C
C
T
C
C
G
T
T
T
T
T
A
A
T
A
A
A
A
A
G
T
A
T
A
T
A
T
T
T
G
T
G
C
T
C
G
T
C
T
A
G
C
G
G
A
T
C
T
A
C
A
A
A
T
T
A
A
T
T
A
A
T
C

 
 
 
 
 
 
 
 
5
5
0
 
 
 
 
 
 
 
5
6
0
 
 
 
 
 
 
 
5
7
0
 
 
 
 
 
 
 
5
8
0
 
 
 
 
 
 
 
5
9
0
 
 
 
 
 
 
 
6
0
0
 
 
 
 
 
 
 
6
1
0
 
 
 
 
 
 
 
6
2
0
 
 
 
 
 
 
 
6
3
0

 
 
 
 
 
 
 
A
c
t
i
n
 
1
5
 
p
r
o
m
o
t
o
r

 
C
C
A
T
C
A
A
A
T
C
T
T
T
A
A
A
A
A
A
A
A
A
A
A
T
G
G
T
T
T
A
A
A
A
A
A
A
C
T
T
G
G
G
T
T
G
G
T
T
A
A
T
T
A
T
T
A
T
T
T
G
A
A
A
A
T
T
T
T
A
A
A
A
C
C
C
A
A
A
T
T
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
 
6
4
0
 
 
 
 
 
 
 
6
5
0
 
 
 
 
 
 
 
6
6
0
 
 
 
 
 
 
 
6
7
0
 
 
 
 
 
 
 
6
8
0
 
 
 
 
 
 
 
6
9
0
 
 
 
 
 
 
 
7
0
0
 
 
 
 
 
 
 
7
1
0
 
 
 
 
 
 
 
7
2
0

 
A
A
A
T
G
G
G
A
T
T
C
A
A
A
A
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
C
A
G
A
T
T
G
C
A
T
A
A
A
A
A
G
A
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
7
3
0
 
 
 
 
 
 
 
7
4
0
 
 
 
 
 
 
 
7
5
0
 
 
 
 
 
 
 
7
6
0
 
 
 
 
 
 
 
7
7
0
 
 
 
 
 
 
 
7
8
0
 
 
 
 
 
 
 
7
9
0
 
 
 
 
 
 
 
8
0
0
 
 
 
 
 
 
 
8
1
0

S
t
a
r
t
 
P
s
A
 
l
e
a
d
e
r
 
s
e
q
u
e
n
c
e

>
O
l
i
g
o
P
s
A
s
i
g
.
f
1

 
T
T
T
T
T
T
T
C
T
T
A
T
T
T
C
T
T
A
A
A
A
C
A
A
A
T
A
A
A
T
T
A
A
A
T
T
A
A
A
T
A
A
A
A
A
A
T
A
A
A
A
A
T
G
A
A
A
T
T
C
C
A
A
C
A
T
A
C
A
T
T
T
A
T
T
G
C
C
T
T
A
T
T
A
T
C
A
C
T
C

 
 
 
 
 
 
 
 
8
2
0
 
 
 
 
 
 
 
8
3
0
 
 
 
 
 
 
 
8
4
0
 
 
 
 
 
 
 
8
5
0
 
 
 
 
 
 
 
8
6
0
 
 
 
 
 
 
 
8
7
0
 
 
 
 
 
 
 
8
8
0
 
 
 
 
 
 
 
8
9
0
 
 
 
 
 
 
 
9
0
0

 
Sequences of plasmids



6. Appendix6. Appendix

 
 
 
 
 
 
 
 
 
 
 
 
 
N
s
i
I

 
T
T
A
A
C
A
T
A
T
G
C
A
T
T
A
G
C
A
T
C
A
C
C
A
A
T
C
C
T
C
G
G
T
T
A
C
T
G
G
A
A
A
A
T
T
A
A
A
G
G
T
C
T
C
G
T
T
C
A
A
C
C
T
A
C
T
C
G
T
C
T
T
C
T
T
T
T
G
G
A
A
T
A
T
C
T
T
G
A
A

 
 
 
 
 
 
 
9
1
0
 
 
 
 
 
 
 
9
2
0
 
 
 
 
 
 
 
9
3
0
 
 
 
 
 
 
 
9
4
0
 
 
 
 
 
 
 
9
5
0
 
 
 
 
 
 
 
9
6
0
 
 
 
 
 
 
 
9
7
0
 
 
 
 
 
 
 
9
8
0
 
 
 
 
 
 
 
9
9
0

E
n
d
 
o
f
 
P
s
A
 
s
e
q
u
e
n
c
e
 
 
 
s
t
a
r
t
 
o
f
 
G
S
T
 
s
e
q
u
e
n
c
e

 
G
A
A
A
A
A
T
A
T
G
A
A
G
A
G
C
A
T
T
T
G
T
A
T
G
A
A
C
G
T
G
A
T
G
A
A
G
G
T
G
A
T
A
A
A
T
G
G
C
G
T
A
A
C
A
A
A
A
A
A
T
T
T
G
A
A
T
T
A
G
G
T
T
T
A
G
A
A
T
T
T
C
C
A
A
A
T
C
T
T

 
 
 
 
 
 
 
1
0
0
0
 
 
 
 
 
 
1
0
1
0
 
 
 
 
 
 
1
0
2
0
 
 
 
 
 
 
1
0
3
0
 
 
 
 
 
 
1
0
4
0
 
 
 
 
 
 
1
0
5
0
 
 
 
 
 
 
1
0
6
0
 
 
 
 
 
 
1
0
7
0
 
 
 
 
 
 
1
0
8
0

 
C
C
T
T
A
T
T
A
T
A
T
T
G
A
T
G
G
T
G
A
T
G
T
T
A
A
A
T
T
A
A
C
A
C
A
G
T
C
T
A
T
G
G
C
C
A
T
C
A
T
A
C
G
T
T
A
T
A
T
A
G
C
T
G
A
C
A
A
G
C
A
C
A
A
C
A
T
G
T
T
G
G
G
T
G
G
T
T
G
T

 
 
 
 
 
 
 
1
0
9
0
 
 
 
 
 
 
1
1
0
0
 
 
 
 
 
 
1
1
1
0
 
 
 
 
 
 
1
1
2
0
 
 
 
 
 
 
1
1
3
0
 
 
 
 
 
 
1
1
4
0
 
 
 
 
 
 
1
1
5
0
 
 
 
 
 
 
1
1
6
0
 
 
 
 
 
 
1
1
7
0

 
 
 

o
l
d
 
m
u
t
a
t
i
o
n
 
i
n
 
G
S
T
 
c
o
r
r
e
c
t
e
d

<
O
l
i
g
o
 
g
s
t
A
8
9
.
r
2

C
C
A
A
A
A
G
A
G
C
G
T
G
C
A
G
A
A
A
T
T
T
C
A
A
T
G
C
T
T
G
A
A
G
G
A
G
C
T
G
T
T
T
T
G
G
A
T
A
T
T
A
G
A
T
A
C
G
G
T
G
T
T
T
C
G
A
G
A
A
T
T
G
C
A
T
A
T
A
G
T
A
A
A
G
A
C
T
T
T

>
O
l
i
g
o
 
G
S
T
L
9
9
.
f
1

 
 
 
 
 
 
 
1
1
8
0
 
 
 
 
 
 
1
1
9
0
 
 
 
 
 
 
1
2
0
0
 
 
 
 
 
 
1
2
1
0
 
 
 
 
 
 
1
2
2
0
 
 
 
 
 
 
1
2
3
0
 
 
 
 
 
 
1
2
4
0
 
 
 
 
 
 
1
2
5
0
 
 
 
 
 
 
1
2
6
0

 
 
P
 
 
K
 
 
E
 
 
R
 
 
A
 
 
E
 
 
I
 
 
S
 
 
M
 
 
L
 
 
E
 
 
G
 
 
A
 
 
V
 
 
L
 
 
D
 
 
I
 
 
R
 
 
Y
 
 
G
 
 
V
 
 
S
 
 
R
 
 
I
 
 
A
 
 
Y
 
 
S
 
 
K
 
 
D
 
 
F

 
G
A
A
A
C
T
C
T
C
A
A
A
G
T
T
G
A
T
T
T
T
C
T
T
A
G
C
A
A
G
C
T
A
C
C
T
G
A
A
A
T
G
C
T
G
A
A
A
A
T
G
T
T
C
G
A
A
G
A
T
C
G
T
T
T
A
T
G
T
C
A
T
A
A
A
A
C
A
T
A
T
T
T
A
A
A
T
G
G
T

 
 
 
 
 
 
 
1
2
7
0
 
 
 
 
 
 
1
2
8
0
 
 
 
 
 
 
1
2
9
0
 
 
 
 
 
 
1
3
0
0
 
 
 
 
 
 
1
3
1
0
 
 
 
 
 
 
1
3
2
0
 
 
 
 
 
 
1
3
3
0
 
 
 
 
 
 
1
3
4
0
 
 
 
 
 
 
1
3
5
0

 
 
E
 
 
T
 
 
L
 
 
K
 
 
V
 
 
D
 
 
F
 
 
L
 
 
S
 
 
K
 
 
L
 
 
P
 
 
E
 
 
M
 
 
L
 
 
K
 
 
M
 
 
F
 
 
E
 
 
D
 
 
R
 
 
L
 
 
C
 
 
H
 
 
K
 
 
T
 
 
Y
 
 
L
 
 
N
 
 
G

 
>
O
l
i
g
o
 
P
1
7
4
G
S
T
.
f
2
c

 
G
A
T
C
A
T
G
T
T
A
C
C
C
A
T
C
C
T
G
A
T
T
T
C
A
T
G
T
T
A
T
A
C
G
A
T
G
C
T
C
T
T
G
A
T
G
T
T
G
T
T
T
T
A
T
A
C
A
T
G
G
A
C
C
C
A
A
T
G
T
G
C
C
T
T
G
A
T
G
C
C
T
T
C
C
C
A
A
A
A

 
 
 
 
 
 
 
1
3
6
0
 
 
 
 
 
 
1
3
7
0
 
 
 
 
 
 
1
3
8
0
 
 
 
 
 
 
1
3
9
0
 
 
 
 
 
 
1
4
0
0
 
 
 
 
 
 
1
4
1
0
 
 
 
 
 
 
1
4
2
0
 
 
 
 
 
 
1
4
3
0
 
 
 
 
 
 
1
4
4
0

 
 
D
 
 
H
 
 
V
 
 
T
 
 
H
 
 
P
 
 
D
 
 
F
 
 
M
 
 
L
 
 
Y
 
 
D
 
 
A
 
 
L
 
 
D
 
 
V
 
 
V
 
 
L
 
 
Y
 
 
M
 
 
D
 
 
P
 
 
M
 
 
C
 
 
L
 
 
D
 
 
A
 
 
F
 
 
P
 
 
K

6. Appendix6. Appendix6. Appendix

6. Appendix



6. Appendix

6. Appendix

 
T
T
A
G
T
T
T
G
T
T
T
T
A
A
A
A
A
A
C
G
T
A
T
T
G
A
A
G
C
C
A
T
C
C
C
A
C
A
A
A
T
T
G
A
T
A
A
A
T
A
C
T
T
G
A
A
A
T
C
T
A
G
T
A
A
A
T
A
T
A
T
A
G
C
A
T
G
G
C
C
T
T
T
G
C
A
A
G
G
T

 
 
 
 
 
 
 
1
4
5
0
 
 
 
 
 
 
1
4
6
0
 
 
 
 
 
 
1
4
7
0
 
 
 
 
 
 
1
4
8
0
 
 
 
 
 
 
1
4
9
0
 
 
 
 
 
 
1
5
0
0
 
 
 
 
 
 
1
5
1
0
 
 
 
 
 
 
1
5
2
0
 
 
 
 
 
 
1
5
3
0

 
 
L
 
 
V
 
 
C
 
 
F
 
 
K
 
 
K
 
 
R
 
 
I
 
 
E
 
 
A
 
 
I
 
 
P
 
 
Q
 
 
I
 
 
D
 
 
K
 
 
Y
 
 
L
 
 
K
 
 
S
 
 
S
 
 
K
 
 
Y
 
 
I
 
 
A
 
 
W
 
 
P
 
 
L
 
 
Q
 
 
G

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
u
t
 
F
a
c
t
o
r
 
X
a
 
<
O
l
i
g
o
 
S
P
9
6
T
.
r
1
a

 
T
G
G
C
A
A
G
C
C
A
C
A
T
T
T
G
G
A
G
G
T
G
G
A
G
A
T
C
A
T
C
C
T
C
C
T
A
A
A
G
G
T
T
C
A
G
A
T
G
C
C
A
T
C
G
A
A
A
G
T
C
G
T
G
C
T
A
C
C
A
C
T
A
C
C
G
C
T
A
C
T
A
C
T
G
C
T
A
C
C

M
u
t
a
t
i
o
n
 
o
f
 
G
 
t
o
 
S

 
 
 
 
 
 
 
1
5
4
0
 
 
 
 
 
 
1
5
5
0
 
 
 
 
 
 
1
5
6
0
 
 
 
 
 
 
1
5
7
0
 
 
 
 
 
 
1
5
8
0
 
 
 
 
 
 
1
5
9
0
 
 
 
 
 
 
1
6
0
0
 
 
 
 
 
 
1
6
1
0
 
 
 
 
 
 
1
6
2
0

 
 
W
 
 
Q
 
 
A
 
 
T
 
 
F
 
 
G
 
 
G
 
 
G
 
 
D
 
 
H
 
 
P
 
 
P
 
 
K
 
 
G
 
 
S
 
 
D
 
 
A
 
 
I
 
 
E
 
 
S
 
 
R
 
 
A
 
 
T
 
 
T
 
 
T
 
 
A
 
 
T
 
 
T
 
 
A
 
 
T

I
S
P
Y
 
e
p
i
t
o
p
e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B
a
m
H
I

 
K
p
n
I

S
t
a
r
t
 
a
c
t
i
n
 
1
5
 
p
o
l
y
a
d
e
n
y
l
a
t
i
o
n
 
s
i
g
n
a
l

 
A
C
C
A
C
C
G
C
A
C
A
A
T
A
T
C
C
A
G
C
A
C
T
C
A
C
C
T
G
A
G
G
A
T
C
C
C
C
G
G
G
T
A
C
C
T
A
A
A
T
C
A
T
G
A
A
T
G
A
A
A
G
T
G
C
T
T
C
A
C
A
T
A
A
A
A
A
T
A
A
T
A
A
T
A
A
T
A
A
T

<
O
l
i
g
o
 
I
s
p
y
.
r
1
a

>
O
l
i
g
o
 
V
B
a
m
K
p
n

 
 
 
 
 
 
 
1
6
3
0
 
 
 
 
 
 
1
6
4
0
 
 
 
 
 
 
1
6
5
0
 
 
 
 
 
 
1
6
6
0
 
 
 
 
 
 
1
6
7
0
 
 
 
 
 
 
1
6
8
0
 
 
 
 
 
 
1
6
9
0
 
 
 
 
 
 
1
7
0
0
 
 
 
 
 
 
1
7
1
0

 
 
T
 
 
T
 
 
A
 
 
Q
 
 
Y
 
 
P
 
 
A
 
 
L
 
 
T
 
 
*
 
 
G
 
 
S
 
 
P
 
 
G
 
 
T
 
 
*
 
 
I
 
 
M
 
 
N
 
 
E
 
 
S
 
 
A
 
 
S
 
 
H
 
 
K
 
 
N
 
 
N
 
 
N
 
 
N
 
 
N

 
A
T
A
A
C
A
A
T
A
A
T
A
A
T
A
T
T
T
A
A
A
T
G
T
A
T
A
A
T
A
A
A
A
T
T
T
A
A
T
T
A
C
T
T
T
T
T
T
T
T
T
A
A
T
G
G
T
T
G
T
T
G
A
T
C
T
T
T
A
T
C
C
G
A
C
C
T
T
A
A
A
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
1
7
2
0
 
 
 
 
 
 
1
7
3
0
 
 
 
 
 
 
1
7
4
0
 
 
 
 
 
 
1
7
5
0
 
 
 
 
 
 
1
7
6
0
 
 
 
 
 
 
1
7
7
0
 
 
 
 
 
 
1
7
8
0
 
 
 
 
 
 
1
7
9
0
 
 
 
 
 
 
1
8
0
0

 
A
T
A
A
A
A
C
C
A
A
T
A
G
G
C
T
A
T
T
G
G
T
T
T
T
T
T
T
T
T
T
A
A
T
T
G
T
T
T
T
T
T
T
A
T
T
T
T
T
T
A
T
T
A
T
T
A
C
T
T
T
A
A
T
T
A
T
C
A
T
T
T
T
T
T
A
A
A
T
T
A
C
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
1
8
1
0
 
 
 
 
 
 
1
8
2
0
 
 
 
 
 
 
1
8
3
0
 
 
 
 
 
 
1
8
4
0
 
 
 
 
 
 
1
8
5
0
 
 
 
 
 
 
1
8
6
0
 
 
 
 
 
 
1
8
7
0
 
 
 
 
 
 
1
8
8
0
 
 
 
 
 
 
1
8
9
0

 
T
T
A
A
A
A
A
T
C
C
A
G
A
T
A
T
T
A
A
G
G
T
A
T
T
T
G
C
A
C
T
A
G
T
G
C
T
T
T
A
A
C
G
T
T
A
A
A
A
T
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T
A
A
T
A
A
T
T
T
T
A
C
C
C
T
T
T
A
T
G
G
G

 
 
 
 
 
 
 
1
9
0
0
 
 
 
 
 
 
1
9
1
0
 
 
 
 
 
 
1
9
2
0
 
 
 
 
 
 
1
9
3
0
 
 
 
 
 
 
1
9
4
0
 
 
 
 
 
 
1
9
5
0
 
 
 
 
 
 
1
9
6
0
 
 
 
 
 
 
1
9
7
0
 
 
 
 
 
 
1
9
8
0

 
T
A
A
A
C
G
A
T
T
C
T
C
A
C
A
T
A
T
A
A
T
A
C
A
A
T
C
T
C
C
A
T
G
A
A
A
A
G
A
T
C
C
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
G
A
A
C
C
G
T
A
A
A
A
A
G
G
C
C
G

 
 
 
 
 
 
 
1
9
9
0
 
 
 
 
 
 
2
0
0
0
 
 
 
 
 
 
2
0
1
0
 
 
 
 
 
 
2
0
2
0
 
 
 
 
 
 
2
0
3
0
 
 
 
 
 
 
2
0
4
0
 
 
 
 
 
 
2
0
5
0
 
 
 
 
 
 
2
0
6
0
 
 
 
 
 
 
2
0
7
0

 
C
G
T
T
G
C
T
G
G
C
G
T
T
T
T
T
C
G
A
T
A
G
G
C
T
C
C
G
C
C
C
C
C
C
T
G
A
C
G
A
G
C
A
T
C
A
C
A
A
A
A
A
T
C
G
A
C
G
C
T
C
A
A
G
T
C
A
G
A
G
G
T
G
G
C
G
A
A
A
C
C
C
G
A
C
A
G
G
A
C

 
 
 
 
 
 
 
2
0
8
0
 
 
 
 
 
 
2
0
9
0
 
 
 
 
 
 
2
1
0
0
 
 
 
 
 
 
2
1
1
0
 
 
 
 
 
 
2
1
2
0
 
 
 
 
 
 
2
1
3
0
 
 
 
 
 
 
2
1
4
0
 
 
 
 
 
 
2
1
5
0
 
 
 
 
 
 
2
1
6
0

< <<< O
lig

o 
G

ST
fx

.R
4



6. Appendix

6. Appendix

 
T
A
T
A
A
A
G
A
T
A
C
C
A
G
G
C
G
T
T
T
C
C
C
C
C
T
G
G
A
A
G
C
T
C
C
C
T
C
G
T
G
C
G
C
T
C
T
C
C
T
G
T
T
C
C
G
A
C
C
C
T
G
C
C
G
C
T
T
A
C
C
G
G
A
T
A
C
C
T
G
T
C
C
G
C
C
T
T
T
C

 
 
 
 
 
 
 
2
1
7
0
 
 
 
 
 
 
2
1
8
0
 
 
 
 
 
 
2
1
9
0
 
 
 
 
 
 
2
2
0
0
 
 
 
 
 
 
2
2
1
0
 
 
 
 
 
 
2
2
2
0
 
 
 
 
 
 
2
2
3
0
 
 
 
 
 
 
2
2
4
0
 
 
 
 
 
 
2
2
5
0

 
T
C
C
C
T
T
C
G
G
G
A
A
G
C
G
T
G
G
C
G
C
T
T
T
C
T
C
A
T
A
G
C
T
C
A
C
G
C
T
G
T
A
G
G
T
A
T
C
T
C
A
G
T
T
C
G
G
T
G
T
A
G
G
T
C
G
T
T
C
G
C
T
C
C
A
A
G
C
T
G
G
G
C
T
G
T
G
T
G
C

 
 
 
 
 
 
 
2
2
6
0
 
 
 
 
 
 
2
2
7
0
 
 
 
 
 
 
2
2
8
0
 
 
 
 
 
 
2
2
9
0
 
 
 
 
 
 
2
3
0
0
 
 
 
 
 
 
2
3
1
0
 
 
 
 
 
 
2
3
2
0
 
 
 
 
 
 
2
3
3
0
 
 
 
 
 
 
2
3
4
0

 
A
C
G
A
A
C
C
C
C
C
C
G
T
T
C
A
G
C
C
C
G
A
C
C
G
C
T
G
C
G
C
C
T
T
A
T
C
C
G
G
T
A
A
C
T
A
T
C
G
T
C
T
T
G
A
G
T
C
C
A
A
C
C
C
G
G
T
A
A
G
A
C
A
C
G
A
C
T
T
A
T
C
G
C
C
A
C
T
G
G

 
 
 
 
 
 
 
2
3
5
0
 
 
 
 
 
 
2
3
6
0
 
 
 
 
 
 
2
3
7
0
 
 
 
 
 
 
2
3
8
0
 
 
 
 
 
 
2
3
9
0
 
 
 
 
 
 
2
4
0
0
 
 
 
 
 
 
2
4
1
0
 
 
 
 
 
 
2
4
2
0
 
 
 
 
 
 
2
4
3
0

 
C
A
G
C
A
G
C
C
A
C
T
G
G
T
A
A
C
A
G
G
A
T
T
A
G
C
A
G
A
G
C
G
A
G
G
T
A
T
G
T
A
G
G
C
G
G
T
G
C
T
A
C
A
G
A
G
T
T
C
T
T
G
A
A
G
T
G
G
T
G
G
C
C
T
A
A
C
T
A
C
G
G
C
T
A
C
A
C
T
A

 
 
 
 
 
 
 
2
4
4
0
 
 
 
 
 
 
2
4
5
0
 
 
 
 
 
 
2
4
6
0
 
 
 
 
 
 
2
4
7
0
 
 
 
 
 
 
2
4
8
0
 
 
 
 
 
 
2
4
9
0
 
 
 
 
 
 
2
5
0
0
 
 
 
 
 
 
2
5
1
0
 
 
 
 
 
 
2
5
2
0

 
G
A
A
G
G
A
C
A
G
T
A
T
T
T
G
G
T
A
T
C
T
G
C
G
C
T
C
T
G
C
T
G
A
A
G
C
C
A
G
T
T
A
C
C
T
T
C
G
G
A
A
A
A
A
G
A
G
T
T
G
G
T
A
G
C
T
C
T
T
G
A
T
C
C
G
G
C
A
A
A
C
A
A
A
C
C
A
C
C
G

 
 
 
 
 
 
 
2
5
3
0
 
 
 
 
 
 
2
5
4
0
 
 
 
 
 
 
2
5
5
0
 
 
 
 
 
 
2
5
6
0
 
 
 
 
 
 
2
5
7
0
 
 
 
 
 
 
2
5
8
0
 
 
 
 
 
 
2
5
9
0
 
 
 
 
 
 
2
6
0
0
 
 
 
 
 
 
2
6
1
0

 
C
T
G
G
T
A
G
C
G
G
T
G
G
T
T
T
T
T
T
T
G
T
T
T
G
C
A
A
G
C
A
G
C
A
G
A
T
T
A
C
G
C
G
C
A
G
A
A
A
A
A
A
A
G
G
A
T
C
T
C
A
A
G
A
A
G
A
T
C
C
T
T
T
G
A
T
C
T
T
T
T
C
T
A
C
G
G
G
G
T

 
 
 
 
 
 
 
2
6
2
0
 
 
 
 
 
 
2
6
3
0
 
 
 
 
 
 
2
6
4
0
 
 
 
 
 
 
2
6
5
0
 
 
 
 
 
 
2
6
6
0
 
 
 
 
 
 
2
6
7
0
 
 
 
 
 
 
2
6
8
0
 
 
 
 
 
 
2
6
9
0
 
 
 
 
 
 
2
7
0
0

 
C
T
G
A
C
G
C
T
C
A
G
T
G
G
A
A
C
G
A
A
A
A
C
T
C
A
C
G
T
T
A
A
G
G
G
A
T
T
T
T
G
G
T
C
A
T
G
A
G
A
T
T
A
T
C
A
A
A
A
A
G
G
A
T
C
T
T
C
A
C
C
T
A
G
A
T
C
C
T
T
T
T
A
A
A
T
T
A
A
A

 
 
 
 
 
 
 
2
7
1
0
 
 
 
 
 
 
2
7
2
0
 
 
 
 
 
 
2
7
3
0
 
 
 
 
 
 
2
7
4
0
 
 
 
 
 
 
2
7
5
0
 
 
 
 
 
 
2
7
6
0
 
 
 
 
 
 
2
7
7
0
 
 
 
 
 
 
2
7
8
0
 
 
 
 
 
 
2
7
9
0

 
A
A
T
G
A
A
G
T
T
T
T
A
A
A
T
C
A
A
T
C
T
A
A
A
G
T
A
T
A
T
A
T
G
A
G
T
A
A
A
C
T
T
G
G
T
C
T
G
A
C
A
G
T
T
A
C
C
A
A
T
G
C
T
T
A
A
T
C
A
G
T
G
A
G
G
C
A
C
C
T
A
T
C
T
C
A
G
C
G
A

 
 
 
 
 
 
 
2
8
0
0
 
 
 
 
 
 
2
8
1
0
 
 
 
 
 
 
2
8
2
0
 
 
 
 
 
 
2
8
3
0
 
 
 
 
 
 
2
8
4
0
 
 
 
 
 
 
2
8
5
0
 
 
 
 
 
 
2
8
6
0
 
 
 
 
 
 
2
8
7
0
 
 
 
 
 
 
2
8
8
0

 
T
C
T
G
T
C
T
A
T
T
T
C
G
T
T
C
A
T
C
C
A
T
A
G
T
T
G
C
C
T
G
A
C
T
C
C
C
C
G
T
C
G
T
G
T
A
G
A
T
A
A
C
T
A
C
G
A
T
A
C
G
G
G
A
G
G
G
C
T
T
A
C
C
A
T
C
T
G
G
C
C
C
C
A
G
T
G
C
T
G

 
 
 
 
 
 
 
2
8
9
0
 
 
 
 
 
 
2
9
0
0
 
 
 
 
 
 
2
9
1
0
 
 
 
 
 
 
2
9
2
0
 
 
 
 
 
 
2
9
3
0
 
 
 
 
 
 
2
9
4
0
 
 
 
 
 
 
2
9
5
0
 
 
 
 
 
 
2
9
6
0
 
 
 
 
 
 
2
9
7
0

 
C
A
A
T
G
A
T
A
C
C
G
C
G
A
G
A
C
C
C
A
C
G
C
T
C
A
C
C
G
G
C
T
C
C
A
G
A
T
T
T
A
T
C
A
G
C
A
A
T
A
A
A
C
C
A
G
C
C
A
G
C
C
G
G
A
A
G
G
G
C
C
G
A
G
C
G
C
A
G
A
A
G
T
G
G
T
C
C
T
G

 
 
 
 
 
 
 
2
9
8
0
 
 
 
 
 
 
2
9
9
0
 
 
 
 
 
 
3
0
0
0
 
 
 
 
 
 
3
0
1
0
 
 
 
 
 
 
3
0
2
0
 
 
 
 
 
 
3
0
3
0
 
 
 
 
 
 
3
0
4
0
 
 
 
 
 
 
3
0
5
0
 
 
 
 
 
 
3
0
6
0

 
C
A
A
C
T
T
T
A
T
C
C
G
C
C
T
C
C
A
T
C
C
A
G
T
C
T
A
T
T
A
A
T
T
G
T
T
G
C
C
G
G
G
A
A
G
C
T
A
G
A
G
T
A
A
G
T
A
G
T
T
C
G
C
C
A
G
T
T
A
A
T
A
G
T
T
T
G
C
G
C
A
A
C
G
T
T
G
T
T
G

 
 
 
 
 
 
 
3
0
7
0
 
 
 
 
 
 
3
0
8
0
 
 
 
 
 
 
3
0
9
0
 
 
 
 
 
 
3
1
0
0
 
 
 
 
 
 
3
1
1
0
 
 
 
 
 
 
3
1
2
0
 
 
 
 
 
 
3
1
3
0
 
 
 
 
 
 
3
1
4
0
 
 
 
 
 
 
3
1
5
0

 
G
C
A
T
T
G
C
T
A
C
A
G
G
C
A
T
C
G
T
G
G
T
G
T
C
A
C
G
C
T
C
G
T
C
G
T
T
T
G
G
T
A
T
G
G
C
T
T
C
A
T
T
C
A
G
C
T
C
C
G
G
T
T
C
C
C
A
A
C
G
A
T
C
A
A
G
G
C
G
A
G
T
T
A
C
A
T
G
A
T

 
 
 
 
 
 
 
3
1
6
0
 
 
 
 
 
 
3
1
7
0
 
 
 
 
 
 
3
1
8
0
 
 
 
 
 
 
3
1
9
0
 
 
 
 
 
 
3
2
0
0
 
 
 
 
 
 
3
2
1
0
 
 
 
 
 
 
3
2
2
0
 
 
 
 
 
 
3
2
3
0
 
 
 
 
 
 
3
2
4
0

 
C
C
C
C
C
A
T
G
T
T
G
T
G
C
A
A
A
A
A
A
G
C
G
G
T
T
A
G
C
T
C
C
T
T
C
G
G
T
C
C
T
C
C
G
A
T
C
G
T
T
G
T
C
A
G
A
A
G
T
A
A
G
T
T
G
G
C
C
G
C
A
G
T
G
T
T
A
T
C
A
C
T
C
A
T
G
G
T
T
A

 
 
 
 
 
 
 
3
2
5
0
 
 
 
 
 
 
3
2
6
0
 
 
 
 
 
 
3
2
7
0
 
 
 
 
 
 
3
2
8
0
 
 
 
 
 
 
3
2
9
0
 
 
 
 
 
 
3
3
0
0
 
 
 
 
 
 
3
3
1
0
 
 
 
 
 
 
3
3
2
0
 
 
 
 
 
 
3
3
3
0



6. Appendix

 
T
G
G
C
A
G
C
A
C
T
G
C
A
T
A
A
T
T
C
T
C
T
T
A
C
T
G
T
C
A
T
G
C
C
A
T
C
C
G
T
A
A
G
A
T
G
C
T
T
T
T
C
T
G
T
G
A
C
T
G
G
T
G
A
G
T
A
C
T
C
A
A
C
C
A
A
G
T
C
A
T
T
C
T
G
A
G
A
A
T

 
 
 
 
 
 
 
3
3
4
0
 
 
 
 
 
 
3
3
5
0
 
 
 
 
 
 
3
3
6
0
 
 
 
 
 
 
3
3
7
0
 
 
 
 
 
 
3
3
8
0
 
 
 
 
 
 
3
3
9
0
 
 
 
 
 
 
3
4
0
0
 
 
 
 
 
 
3
4
1
0
 
 
 
 
 
 
3
4
2
0

 
A
G
T
G
T
A
T
G
C
G
G
C
G
A
C
C
G
A
G
T
T
G
C
T
C
T
T
G
C
C
C
G
G
C
G
T
C
A
A
T
A
C
G
G
G
A
T
A
A
T
A
C
C
G
C
G
C
C
A
C
A
T
A
G
C
A
G
A
A
C
T
T
T
A
A
A
A
G
T
G
C
T
C
A
T
C
A
T
T
G

 
 
 
 
 
 
 
3
4
3
0
 
 
 
 
 
 
3
4
4
0
 
 
 
 
 
 
3
4
5
0
 
 
 
 
 
 
3
4
6
0
 
 
 
 
 
 
3
4
7
0
 
 
 
 
 
 
3
4
8
0
 
 
 
 
 
 
3
4
9
0
 
 
 
 
 
 
3
5
0
0
 
 
 
 
 
 
3
5
1
0

 
G
A
A
A
A
C
G
T
T
C
T
T
C
G
G
G
G
C
G
A
A
A
A
C
T
C
T
C
A
A
G
G
A
T
C
T
T
A
C
C
G
C
T
G
T
T
G
A
G
A
T
C
C
A
G
T
T
C
G
A
T
G
T
A
A
C
C
C
A
C
T
C
G
T
G
C
A
C
C
C
A
A
C
T
G
A
T
C
T
T

 
 
 
 
 
 
 
3
5
2
0
 
 
 
 
 
 
3
5
3
0
 
 
 
 
 
 
3
5
4
0
 
 
 
 
 
 
3
5
5
0
 
 
 
 
 
 
3
5
6
0
 
 
 
 
 
 
3
5
7
0
 
 
 
 
 
 
3
5
8
0
 
 
 
 
 
 
3
5
9
0
 
 
 
 
 
 
3
6
0
0

 
C
A
G
C
A
T
C
T
T
T
T
A
C
T
T
T
C
A
C
C
A
G
C
G
T
T
T
C
T
G
G
G
T
G
A
G
C
A
A
A
A
A
C
A
G
G
A
A
G
G
C
A
A
A
A
T
G
C
C
G
C
A
A
A
A
A
A
G
G
G
A
A
T
A
A
G
G
G
C
G
A
C
A
C
G
G
A
A
A
T

 
 
 
 
 
 
 
3
6
1
0
 
 
 
 
 
 
3
6
2
0
 
 
 
 
 
 
3
6
3
0
 
 
 
 
 
 
3
6
4
0
 
 
 
 
 
 
3
6
5
0
 
 
 
 
 
 
3
6
6
0
 
 
 
 
 
 
3
6
7
0
 
 
 
 
 
 
3
6
8
0
 
 
 
 
 
 
3
6
9
0

 
G
T
T
G
A
A
T
A
C
T
C
A
T
A
C
T
C
T
T
C
C
T
T
T
T
T
C
A
A
T
A
T
T
A
T
T
G
A
A
G
C
A
T
T
T
A
T
C
A
G
G
G
T
T
A
T
T
G
T
C
T
C
A
T
G
A
G
C
G
G
A
T
A
C
A
T
A
T
T
T
G
A
A
T
G
T
A
T
T
T

 
 
 
 
 
 
 
3
7
0
0
 
 
 
 
 
 
3
7
1
0
 
 
 
 
 
 
3
7
2
0
 
 
 
 
 
 
3
7
3
0
 
 
 
 
 
 
3
7
4
0
 
 
 
 
 
 
3
7
5
0
 
 
 
 
 
 
3
7
6
0
 
 
 
 
 
 
3
7
7
0
 
 
 
 
 
 
3
7
8
0

 
A
G
A
A
A
A
A
T
A
A
A
C
A
A
A
T
A
G
G
G
G
T
T
C
C
G
C
G
C
A
C
A
T
T
T
C
C
C
C
G
A
A
A
A
G
T
G
C
C
A
C
C
T
G
A
C
G
T
C
T
A
A
G
A
A
A
C
C
A
T
T
A
T
T
A
T
C
A
T

 
 
 
3
7
9
0
 
 
 
 
 
 
3
8
0
0
 
 
 
 
 
 
3
8
1
0
 
 
 
 
 
 
3
8
2
0
 
 
 
 
 
 
3
8
3
0
 
 
 
 
 
 
3
8
4
0
 
 
 
 
 
 
3
8
5
0



pM
U

W
 2

93
1 

(S
P9

6S
-m

ot
if)

St
ar

t o
f D

dp
2 

or
i

C
G
A
T
A
G
G
C
A
A
T
T
T
A
T
T
T
T
T
A
T
A
T
C
T
A
T
C
T
A
A
A
A
A
A
A
A
A
C
T
A
G
G
A
A
A
A
A
T
G
A
A
T
G
T
C
A
T
C
A
A
A
T
A
G
T
A
T
T
T
T
A
A
C
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
 
1
0
 
 
 
 
 
 
 
 
2
0
 
 
 
 
 
 
 
 
3
0
 
 
 
 
 
 
 
 
4
0
 
 
 
 
 
 
 
 
5
0
 
 
 
 
 
 
 
 
6
0
 
 
 
 
 
 
 
 
7
0
 
 
 
 
 
 
 
 
8
0
 
 
 
 
 
 
 
 
9
0

 
T
T
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G
A
G
G
G
G
A
A
A
G
T
A
A
T
T
A
T
A
A
C
T
A
G
G
T
T
A
G
T

 
 
 
 
 
 
 
 
1
0
0
 
 
 
 
 
 
 
1
1
0
 
 
 
 
 
 
 
1
2
0
 
 
 
 
 
 
 
1
3
0
 
 
 
 
 
 
 
1
4
0
 
 
 
 
 
 
 
1
5
0
 
 
 
 
 
 
 
1
6
0
 
 
 
 
 
 
 
1
7
0
 
 
 
 
 
 
 
1
8
0

 
T
T
T
T
T
A
T
A
A
T
T
T
T
T
A
C
A
T
A
T
T
T
G
T
T
A
A
T
A
A
C
T
T
T
T
A
A
T
T
T
T
G
A
A
T
C
A
T
A
T
A
T
G
A
T
A
T
T
A
C
A
T
C
G
T
C
C
C
G
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T

 
 
 
 
 
 
 
 
1
9
0
 
 
 
 
 
 
 
2
0
0
 
 
 
 
 
 
 
2
1
0
 
 
 
 
 
 
 
2
2
0
 
 
 
 
 
 
 
2
3
0
 
 
 
 
 
 
 
2
4
0
 
 
 
 
 
 
 
2
5
0
 
 
 
 
 
 
 
2
6
0
 
 
 
 
 
 
 
2
7
0

 
T
T
T
T
T
T
T
T
C
A
A
A
C
A
T
T
T
T
C
A
T
T
T
T
T
T
A
A
A
A
A
A
T
G
A
T
A
T
A
A
A
A
T
T
T
T
A
A
A
C
T
A
A
A
C
T
A
T
T
T
T
A
T
T
A
A
A
T
A
C
A
A
A
C
A
T
A
T
A
A
C
T
T
T
A
T
C
T
T
A

 
 
 
 
 
 
 
 
2
8
0
 
 
 
 
 
 
 
2
9
0
 
 
 
 
 
 
 
3
0
0
 
 
 
 
 
 
 
3
1
0
 
 
 
 
 
 
 
3
2
0
 
 
 
 
 
 
 
3
3
0
 
 
 
 
 
 
 
3
4
0
 
 
 
 
 
 
 
3
5
0
 
 
 
 
 
 
 
3
6
0

 
A
T
C
A
A
T
T
T
T
T
T
T
G
G
T
T
T
A
T
A
C
A
T
A
T
T
T
A
T
G
T
T
C
G
T
A
C
T
G
A
A
G
T
A
T
A
G
A
T
C
G
A
T
C
T
T
A
T
T
A
C
T
A
A
A
G
T
T
T
C
A
A
A
A
G
T
T
T
T
A
A
A
A
A
A
A
A
T
T
A

 
 
 
 
 
 
 
 
3
7
0
 
 
 
 
 
 
 
3
8
0
 
 
 
 
 
 
 
3
9
0
 
 
 
 
 
 
 
4
0
0
 
 
 
 
 
 
 
4
1
0
 
 
 
 
 
 
 
4
2
0
 
 
 
 
 
 
 
4
3
0
 
 
 
 
 
 
 
4
4
0
 
 
 
 
 
 
 
4
5
0

 
A
A
G
G
G
G
G
T
A
A
A
T
A
T
A
T
A
A
C
T
T
T
C
T
G
T
T
T
T
T
T
T
C
A
A
T
T
C
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T

 
 
 
 
 
 
 
 
4
6
0
 
 
 
 
 
 
 
4
7
0
 
 
 
 
 
 
 
4
8
0
 
 
 
 
 
 
 
4
9
0
 
 
 
 
 
 
 
5
0
0
 
 
 
 
 
 
 
5
1
0
 
 
 
 
 
 
 
5
2
0
 
 
 
 
 
 
 
5
3
0
 
 
 
 
 
 
 
5
4
0

E
n
d
 
o
f
 
D
d
p
2
 
o
r
i

<
O
l
i
g
o
 
D
d
p
2
o
r
i
.
x
b
a
.
r
2

 
T
T
A
T
T
T
C
T
T
C
A
A
T
A
G
G
T
A
T
T
G
A
A
A
T
G
A
C
C
T
C
C
G
T
T
T
T
T
A
A
T
A
A
A
A
A
G
T
A
T
A
T
A
T
T
T
G
T
G
C
T
C
G
T
C
T
A
G
C
G
G
A
T
C
T
A
C
A
A
A
T
T
A
A
T
T
A
A
T
C

 
 
 
 
 
 
 
 
5
5
0
 
 
 
 
 
 
 
5
6
0
 
 
 
 
 
 
 
5
7
0
 
 
 
 
 
 
 
5
8
0
 
 
 
 
 
 
 
5
9
0
 
 
 
 
 
 
 
6
0
0
 
 
 
 
 
 
 
6
1
0
 
 
 
 
 
 
 
6
2
0
 
 
 
 
 
 
 
6
3
0

 
 
 
 
 
 
A
c
t
i
n
 
1
5
 
p
r
o
m
o
t
o
r

 
C
C
A
T
C
A
A
A
T
C
T
T
T
A
A
A
A
A
A
A
A
A
A
A
T
G
G
T
T
T
A
A
A
A
A
A
A
C
T
T
G
G
G
T
T
G
G
T
T
A
A
T
T
A
T
T
A
T
T
T
G
A
A
A
A
T
T
T
T
A
A
A
A
C
C
C
A
A
A
T
T
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
 
6
4
0
 
 
 
 
 
 
 
6
5
0
 
 
 
 
 
 
 
6
6
0
 
 
 
 
 
 
 
6
7
0
 
 
 
 
 
 
 
6
8
0
 
 
 
 
 
 
 
6
9
0
 
 
 
 
 
 
 
7
0
0
 
 
 
 
 
 
 
7
1
0
 
 
 
 
 
 
 
7
2
0

 
A
A
A
T
G
G
G
A
T
T
C
A
A
A
A
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
C
A
G
A
T
T
G
C
A
T
A
A
A
A
A
G
A
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
7
3
0
 
 
 
 
 
 
 
7
4
0
 
 
 
 
 
 
 
7
5
0
 
 
 
 
 
 
 
7
6
0
 
 
 
 
 
 
 
7
7
0
 
 
 
 
 
 
 
7
8
0
 
 
 
 
 
 
 
7
9
0
 
 
 
 
 
 
 
8
0
0
 
 
 
 
 
 
 
8
1
0

S
t
a
r
t
 
P
s
A
 
l
e
a
d
e
r
s
e
q
u
e
n
c
e

>
O
l
i
g
o
P
s
A
s
i
g
.
f
1

 
T
T
T
T
T
T
T
C
T
T
A
T
T
T
C
T
T
A
A
A
A
C
A
A
A
T
A
A
A
T
T
A
A
A
T
T
A
A
A
T
A
A
A
A
A
A
T
A
A
A
A
A
T
G
A
A
A
T
T
C
C
A
A
C
A
T
A
C
A
T
T
T
A
T
T
G
C
C
T
T
A
T
T
A
T
C
A
C
T
C

 
 
 
 
 
 
 
 
8
2
0
 
 
 
 
 
 
 
8
3
0
 
 
 
 
 
 
 
8
4
0
 
 
 
 
 
 
 
8
5
0
 
 
 
 
 
 
 
8
6
0
 
 
 
 
 
 
 
8
7
0
 
 
 
 
 
 
 
8
8
0
 
 
 
 
 
 
 
8
9
0
 
 
 
 
 
 
 
9
0
0

6. Appendix



 
 
 
 
 
 
 
 
 
 
 
 
 
N
s
i
I

 
T
T
A
A
C
A
T
A
T
G
C
A
T
T
A
G
C
A
T
C
A
C
C
A
A
T
C
C
T
C
G
G
T
T
A
C
T
G
G
A
A
A
A
T
T
A
A
A
G
G
T
C
T
C
G
T
T
C
A
A
C
C
T
A
C
T
C
G
T
C
T
T
C
T
T
T
T
G
G
A
A
T
A
T
C
T
T
G
A
A

 
 
 
 
 
 
 
9
1
0
 
 
 
 
 
 
 
9
2
0
 
 
 
 
 
 
 
9
3
0
 
 
 
 
 
 
 
9
4
0
 
 
 
 
 
 
 
9
5
0
 
 
 
 
 
 
 
9
6
0
 
 
 
 
 
 
 
9
7
0
 
 
 
 
 
 
 
9
8
0
 
 
 
 
 
 
 
9
9
0

E
n
d
 
o
f
 
P
s
A
 
s
e
q
u
e
n
c
e
 
 
 
s
t
a
r
t
 
o
f
 
G
S
T
 
s
e
q
u
e
n
c
e

M
u
t
a
t
i
o
n
 
o
f
 
K
 
t
o
 
T

 
G
A
A
A
C
A
T
A
T
G
A
A
G
A
G
C
A
T
T
T
G
T
A
T
G
A
A
C
G
T
G
A
T
G
A
A
G
G
T
G
A
T
A
A
A
T
G
G
C
G
T
A
A
C
A
A
A
A
A
A
T
T
T
G
A
A
T
T
A
G
G
T
T
T
A
G
A
A
T
T
T
C
C
A
A
A
T
C
T
T

 
 
 
 
 
 
 
1
0
0
0
 
 
 
 
 
 
1
0
1
0
 
 
 
 
 
 
1
0
2
0
 
 
 
 
 
 
1
0
3
0
 
 
 
 
 
 
1
0
4
0
 
 
 
 
 
 
1
0
5
0
 
 
 
 
 
 
1
0
6
0
 
 
 
 
 
 
1
0
7
0
 
 
 
 
 
 
1
0
8
0

 
 
E
 
 
T
 
 
Y
 
 
E
 
 
E
 
 
H
 
 
L
 
 
Y
 
 
E
 
 
R
 
 
D
 
 
E
 
 
G
 
 
D
 
 
K
 
 
W
 
 
R
 
 
N
 
 
K
 
 
K
 
 
F
 
 
E
 
 
L
 
 
G
 
 
L
 
 
E
 
 
F
 
 
P
 
 
N
 
 
L

 
C
C
T
T
A
T
T
A
T
A
T
T
G
A
T
G
G
T
G
A
T
G
T
T
A
A
A
T
T
A
A
C
A
C
A
G
T
C
T
A
T
G
G
C
C
A
T
C
A
T
A
C
G
T
T
A
T
A
T
A
G
C
T
G
A
C
A
A
G
C
A
C
A
A
C
A
T
G
T
T
G
G
G
T
G
G
T
T
G
T

 
 
 
 
 
 
 
1
0
9
0
 
 
 
 
 
 
1
1
0
0
 
 
 
 
 
 
1
1
1
0
 
 
 
 
 
 
1
1
2
0
 
 
 
 
 
 
1
1
3
0
 
 
 
 
 
 
1
1
4
0
 
 
 
 
 
 
1
1
5
0
 
 
 
 
 
 
1
1
6
0
 
 
 
 
 
 
1
1
7
0

 
 
 

o
l
d
 
m
u
t
a
t
i
o
n
 
i
n
 
G
S
T
 
c
o
r
r
e
c
t
e
d

<
O
l
i
g
o
 
g
s
t
A
8
9
.
r
2

C
C
A
A
A
A
G
A
G
C
G
T
G
C
A
G
A
A
A
T
T
T
C
A
A
T
G
C
T
T
G
A
A
G
G
A
G
C
T
G
T
T
T
T
G
G
A
T
A
T
T
A
G
A
T
A
C
G
G
T
G
T
T
T
C
G
A
G
A
A
T
T
G
C
A
T
A
T
A
G
T
A
A
A
G
A
C
T
T
T

>
O
l
i
g
o
 
G
S
T
L
9
9
.
f
1

 
 
 
 
 
 
 
1
1
8
0
 
 
 
 
 
 
1
1
9
0
 
 
 
 
 
 
1
2
0
0
 
 
 
 
 
 
1
2
1
0
 
 
 
 
 
 
1
2
2
0
 
 
 
 
 
 
1
2
3
0
 
 
 
 
 
 
1
2
4
0
 
 
 
 
 
 
1
2
5
0
 
 
 
 
 
 
1
2
6
0

 
 
P
 
 
K
 
 
E
 
 
R
 
 
A
 
 
E
 
 
I
 
 
S
 
 
M
 
 
L
 
 
E
 
 
G
 
 
A
 
 
V
 
 
L
 
 
D
 
 
I
 
 
R
 
 
Y
 
 
G
 
 
V
 
 
S
 
 
R
 
 
I
 
 
A
 
 
Y
 
 
S
 
 
K
 
 
D
 
 
F

 
G
A
A
A
C
T
C
T
C
A
A
A
G
T
T
G
A
T
T
T
T
C
T
T
A
G
C
A
A
G
C
T
A
C
C
T
G
A
A
A
T
G
C
T
G
A
A
A
A
T
G
T
T
C
G
A
A
G
A
T
C
G
T
T
T
A
T
G
T
C
A
T
A
A
A
A
C
A
T
A
T
T
T
A
A
A
T
G
G
T

 
 
 
 
 
 
 
1
2
7
0
 
 
 
 
 
 
1
2
8
0
 
 
 
 
 
 
1
2
9
0
 
 
 
 
 
 
1
3
0
0
 
 
 
 
 
 
1
3
1
0
 
 
 
 
 
 
1
3
2
0
 
 
 
 
 
 
1
3
3
0
 
 
 
 
 
 
1
3
4
0
 
 
 
 
 
 
1
3
5
0

 
>
O
l
i
g
o
 
P
1
7
4
G
S
T
.
f
2
c

 
G
A
T
C
A
T
G
T
T
A
C
C
C
A
T
C
C
T
G
A
T
T
T
C
A
T
G
T
T
A
T
A
C
G
A
T
G
C
T
C
T
T
G
A
T
G
T
T
G
T
T
T
T
A
T
A
C
A
T
G
G
A
C
C
C
A
A
T
G
T
G
C
C
T
T
G
A
T
G
C
C
T
T
C
C
C
A
A
A
A

 
 
 
 
 
 
 
1
3
6
0
 
 
 
 
 
 
1
3
7
0
 
 
 
 
 
 
1
3
8
0
 
 
 
 
 
 
1
3
9
0
 
 
 
 
 
 
1
4
0
0
 
 
 
 
 
 
1
4
1
0
 
 
 
 
 
 
1
4
2
0
 
 
 
 
 
 
1
4
3
0
 
 
 
 
 
 
1
4
4
0

6. Appendix



M
u
t
a
t
i
o
n
 
o
f
 
I
 
t
o
 
T

 
T
T
A
G
T
T
T
G
T
T
T
T
A
A
A
A
A
A
C
G
T
A
T
T
G
A
A
G
C
C
A
T
C
C
C
A
C
A
A
A
T
T
G
A
T
A
A
A
T
A
C
T
T
G
A
A
A
T
C
T
A
G
T
A
A
A
T
A
T
A
T
A
G
C
A
T
G
G
C
C
T
T
T
G
C
A
A
G
G
T

 
 
 
 
 
 
 
1
4
5
0
 
 
 
 
 
 
1
4
6
0
 
 
 
 
 
 
1
4
7
0
 
 
 
 
 
 
1
4
8
0
 
 
 
 
 
 
1
4
9
0
 
 
 
 
 
 
1
5
0
0
 
 
 
 
 
 
1
5
1
0
 
 
 
 
 
 
1
5
2
0
 
 
 
 
 
 
1
5
3
0

 
 
L
 
 
V
 
 
C
 
 
F
 
 
K
 
 
K
 
 
R
 
 
I
 
 
E
 
 
A
 
 
I
 
 
P
 
 
Q
 
 
I
 
 
D
 
 
K
 
 
Y
 
 
L
 
 
K
 
 
S
 
 
S
 
 
K
 
 
Y
 
 
T
 
 
A
 
 
W
 
 
P
 
 
L
 
 
Q
 
 
G

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
u
t
 
F
a
c
t
o
r
 
X
a

<
O
l
i
g
o
 
S
P
9
6
S
.
r
1
a

 
T
G
G
C
A
A
G
C
C
A
C
A
T
T
T
G
G
A
G
G
T
G
G
A
G
A
T
C
A
T
C
C
T
C
C
T
A
A
A
G
G
T
T
C
A
G
A
T
G
C
C
A
T
C
G
A
A
G
G
T
C
G
T
G
C
T
T
C
A
T
C
A
T
C
A
T
C
A
G
C
T
C
C
A
T
C
T
T
C
A
T

 
 
 
 
 
 
 
1
5
4
0
 
 
 
 
 
 
1
5
5
0
 
 
 
 
 
 
1
5
6
0
 
 
 
 
 
 
1
5
7
0
 
 
 
 
 
 
1
5
8
0
 
 
 
 
 
 
1
5
9
0
 
 
 
 
 
 
1
6
0
0
 
 
 
 
 
 
1
6
1
0
 
 
 
 
 
 
1
6
2
0

 
 
W
 
 
Q
 
 
A
 
 
T
 
 
F
 
 
G
 
 
G
 
 
G
 
 
D
 
 
H
 
 
P
 
 
P
 
 
K
 
 
G
 
 
S
 
 
D
 
 
A
 
 
I
 
 
E
 
 
G
 
 
R
 
 
A
 
 
S
 
 
S
 
 
S
 
 
S
 
 
A
 
 
P
 
 
S
 
 
S

I
S
P
Y
 
e
p
i
t
o
p
e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B
a
m
H
I

 
K
p
n
I

S
t
a
r
t
 
a
c
t
i
n
 
1
5
 
p
o
l
y
a
d
e
n
y
l
a
t
i
o
n
 
s
i
g
n
a
l

 
C
T
G
C
A
T
C
T
T
C
C
T
C
T
C
A
A
T
A
T
C
C
A
G
C
A
C
T
C
A
C
C
T
G
A
G
G
A
T
C
C
C
C
G
G
G
T
A
C
C
T
A
A
A
T
C
A
T
G
A
A
T
G
A
A
A
G
T
G
C
T
T
C
A
C
A
T
A
A
A
A
A
T
A
A
T
A
A
T
A
A

<
O
l
i
g
o
 
I
s
p
y
.
r
1
a

>
O
l
i
g
o
 
V
B
a
m
K
p
n

 
 
 
 
 
 
 
1
6
3
0
 
 
 
 
 
 
1
6
4
0
 
 
 
 
 
 
1
6
5
0
 
 
 
 
 
 
1
6
6
0
 
 
 
 
 
 
1
6
7
0
 
 
 
 
 
 
1
6
8
0
 
 
 
 
 
 
1
6
9
0
 
 
 
 
 
 
1
7
0
0
 
 
 
 
 
 
1
7
1
0

 
S
 
 
A
 
 
S
 
 
S
 
 
S
 
 
Q
 
 
Y
 
 
P
 
 
A
 
 
L
 
 
T
 
 
G
 
 
S
 
 
P
 
 
G
 
 
T
 
 
*
 
 
I
 
 
M
 
 
N
 
 
E
 
 
S
 
 
A
 
 
S
 
 
H
 
 
K
 
 
N
 
 
N
 
 
N
 
 
N

 
T
A
A
T
A
T
A
A
C
A
A
T
A
A
T
A
A
T
A
T
T
T
A
A
A
T
G
T
A
T
A
A
T
A
A
A
A
T
T
T
A
A
T
T
A
C
T
T
T
T
T
T
T
T
T
A
A
T
G
G
T
T
G
T
T
G
A
T
C
T
T
T
A
T
C
C
G
A
C
C
T
T
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
1
7
2
0
 
 
 
 
 
 
1
7
3
0
 
 
 
 
 
 
1
7
4
0
 
 
 
 
 
 
1
7
5
0
 
 
 
 
 
 
1
7
6
0
 
 
 
 
 
 
1
7
7
0
 
 
 
 
 
 
1
7
8
0
 
 
 
 
 
 
1
7
9
0
 
 
 
 
 
 
1
8
0
0

A
A
A
A
T
A
A
A
A
C
C
A
A
T
A
G
G
C
T
A
T
T
G
G
T
T
T
T
T
T
T
T
T
T
A
A
T
T
G
T
T
T
T
T
T
T
A
T
T
T
T
T
T
A
T
T
A
T
T
A
C
T
T
T
A
A
T
T
A
T
C
A
T
T
T
T
T
T
A
A
A
T
T
A
C
A
A
A
A
A
A

 
 
 
 
 
 
 
1
8
1
0
 
 
 
 
 
 
1
8
2
0
 
 
 
 
 
 
1
8
3
0
 
 
 
 
 
 
1
8
4
0
 
 
 
 
 
 
1
8
5
0
 
 
 
 
 
 
1
8
6
0
 
 
 
 
 
 
1
8
7
0
 
 
 
 
 
 
1
8
8
0
 
 
 
 
 
 
1
8
9
0

A
A
T
T
A
A
A
A
A
T
C
C
A
G
A
T
A
T
T
A
A
G
G
T
A
T
T
T
G
C
A
C
T
A
G
T
G
C
T
T
T
A
A
C
G
T
T
A
A
A
A
T
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T
A
A
T
A
A
T
T
T
T
A
C
C
C
T
T
T
A
T
G
G

 
 
 
 
 
 
 
1
9
0
0
 
 
 
 
 
 
1
9
1
0
 
 
 
 
 
 
1
9
2
0
 
 
 
 
 
 
1
9
3
0
 
 
 
 
 
 
1
9
4
0
 
 
 
 
 
 
1
9
5
0
 
 
 
 
 
 
1
9
6
0
 
 
 
 
 
 
1
9
7
0
 
 
 
 
 
 
1
9
8
0

G
T
A
A
A
C
G
A
T
T
C
T
C
A
C
A
T
A
T
A
A
T
A
C
A
A
T
C
T
C
C
A
T
G
A
A
A
A
G
A
T
C
C
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
G
A
A
C
C
G
T
A
A
A
A
A
G
G
C
C
G

 
 
 
 
 
 
 
1
9
9
0
 
 
 
 
 
 
2
0
0
0
 
 
 
 
 
 
2
0
1
0
 
 
 
 
 
 
2
0
2
0
 
 
 
 
 
 
2
0
3
0
 
 
 
 
 
 
2
0
4
0
 
 
 
 
 
 
2
0
5
0
 
 
 
 
 
 
2
0
6
0
 
 
 
 
 
 
2
0
7
0

< <<< O
lig

o 
G

ST
fx

.R
4

6. Appendix



 
C
G
T
T
G
C
T
G
G
C
G
T
T
T
T
T
C
G
A
T
A
G
G
C
T
C
C
G
C
C
C
C
C
C
T
G
A
C
G
A
G
C
A
T
C
A
C
A
A
A
A
A
T
C
G
A
C
G
C
T
C
A
A
G
T
C
A
G
A
G
G
T
G
G
C
G
A
A
A
C
C
C
G
A
C
A
G
G
A
C

 
 
 
 
 
 
 
2
0
8
0
 
 
 
 
 
 
2
0
9
0
 
 
 
 
 
 
2
1
0
0
 
 
 
 
 
 
2
1
1
0
 
 
 
 
 
 
2
1
2
0
 
 
 
 
 
 
2
1
3
0
 
 
 
 
 
 
2
1
4
0
 
 
 
 
 
 
2
1
5
0
 
 
 
 
 
 
2
1
6
0

 
T
A
T
A
A
A
G
A
T
A
C
C
A
G
G
C
G
T
T
T
C
C
C
C
C
T
G
G
A
A
G
C
T
C
C
C
T
C
G
T
G
C
G
C
T
C
T
C
C
T
G
T
T
C
C
G
A
C
C
C
T
G
C
C
G
C
T
T
A
C
C
G
G
A
T
A
C
C
T
G
T
C
C
G
C
C
T
T
T
C

 
 
 
 
 
 
 
2
1
7
0
 
 
 
 
 
 
2
1
8
0
 
 
 
 
 
 
2
1
9
0
 
 
 
 
 
 
2
2
0
0
 
 
 
 
 
 
2
2
1
0
 
 
 
 
 
 
2
2
2
0
 
 
 
 
 
 
2
2
3
0
 
 
 
 
 
 
2
2
4
0
 
 
 
 
 
 
2
2
5
0

 
T
C
C
C
T
T
C
G
G
G
A
A
G
C
G
T
G
G
C
G
C
T
T
T
C
T
C
A
T
A
G
C
T
C
A
C
G
C
T
G
T
A
G
G
T
A
T
C
T
C
A
G
T
T
C
G
G
T
G
T
A
G
G
T
C
G
T
T
C
G
C
T
C
C
A
A
G
C
T
G
G
G
C
T
G
T
G
T
G
C

 
 
 
 
 
 
 
2
2
6
0
 
 
 
 
 
 
2
2
7
0
 
 
 
 
 
 
2
2
8
0
 
 
 
 
 
 
2
2
9
0
 
 
 
 
 
 
2
3
0
0
 
 
 
 
 
 
2
3
1
0
 
 
 
 
 
 
2
3
2
0
 
 
 
 
 
 
2
3
3
0
 
 
 
 
 
 
2
3
4
0

 
A
C
G
A
A
C
C
C
C
C
C
G
T
T
C
A
G
C
C
C
G
A
C
C
G
C
T
G
C
G
C
C
T
T
A
T
C
C
G
G
T
A
A
C
T
A
T
C
G
T
C
T
T
G
A
G
T
C
C
A
A
C
C
C
G
G
T
A
A
G
A
C
A
C
G
A
C
T
T
A
T
C
G
C
C
A
C
T
G
G

 
 
 
 
 
 
 
2
3
5
0
 
 
 
 
 
 
2
3
6
0
 
 
 
 
 
 
2
3
7
0
 
 
 
 
 
 
2
3
8
0
 
 
 
 
 
 
2
3
9
0
 
 
 
 
 
 
2
4
0
0
 
 
 
 
 
 
2
4
1
0
 
 
 
 
 
 
2
4
2
0
 
 
 
 
 
 
2
4
3
0

 
C
A
G
C
A
G
C
C
A
C
T
G
G
T
A
A
C
A
G
G
A
T
T
A
G
C
A
G
A
G
C
G
A
G
G
T
A
T
G
T
A
G
G
C
G
G
T
G
C
T
A
C
A
G
A
G
T
T
C
T
T
G
A
A
G
T
G
G
T
G
G
C
C
T
A
A
C
T
A
C
G
G
C
T
A
C
A
C
T
A

 
 
 
 
 
 
 
2
4
4
0
 
 
 
 
 
 
2
4
5
0
 
 
 
 
 
 
2
4
6
0
 
 
 
 
 
 
2
4
7
0
 
 
 
 
 
 
2
4
8
0
 
 
 
 
 
 
2
4
9
0
 
 
 
 
 
 
2
5
0
0
 
 
 
 
 
 
2
5
1
0
 
 
 
 
 
 
2
5
2
0

 
G
A
A
G
G
A
C
A
G
T
A
T
T
T
G
G
T
A
T
C
T
G
C
G
C
T
C
T
G
C
T
G
A
A
G
C
C
A
G
T
T
A
C
C
T
T
C
G
G
A
A
A
A
A
G
A
G
T
T
G
G
T
A
G
C
T
C
T
T
G
A
T
C
C
G
G
C
A
A
A
C
A
A
A
C
C
A
C
C
G

 
 
 
 
 
 
 
2
5
3
0
 
 
 
 
 
 
2
5
4
0
 
 
 
 
 
 
2
5
5
0
 
 
 
 
 
 
2
5
6
0
 
 
 
 
 
 
2
5
7
0
 
 
 
 
 
 
2
5
8
0
 
 
 
 
 
 
2
5
9
0
 
 
 
 
 
 
2
6
0
0
 
 
 
 
 
 
2
6
1
0

 
C
T
G
G
T
A
G
C
G
G
T
G
G
T
T
T
T
T
T
T
G
T
T
T
G
C
A
A
G
C
A
G
C
A
G
A
T
T
A
C
G
C
G
C
A
G
A
A
A
A
A
A
A
G
G
A
T
C
T
C
A
A
G
A
A
G
A
T
C
C
T
T
T
G
A
T
C
T
T
T
T
C
T
A
C
G
G
G
G
T

 
 
 
 
 
 
 
2
6
2
0
 
 
 
 
 
 
2
6
3
0
 
 
 
 
 
 
2
6
4
0
 
 
 
 
 
 
2
6
5
0
 
 
 
 
 
 
2
6
6
0
 
 
 
 
 
 
2
6
7
0
 
 
 
 
 
 
2
6
8
0
 
 
 
 
 
 
2
6
9
0
 
 
 
 
 
 
2
7
0
0

 
C
T
G
A
C
G
C
T
C
A
G
T
G
G
A
A
C
G
A
A
A
A
C
T
C
A
C
G
T
T
A
A
G
G
G
A
T
T
T
T
G
G
T
C
A
T
G
A
G
A
T
T
A
T
C
A
A
A
A
A
G
G
A
T
C
T
T
C
A
C
C
T
A
G
A
T
C
C
T
T
T
T
A
A
A
T
T
A
A
A

 
 
 
 
 
 
 
2
7
1
0
 
 
 
 
 
 
2
7
2
0
 
 
 
 
 
 
2
7
3
0
 
 
 
 
 
 
2
7
4
0
 
 
 
 
 
 
2
7
5
0
 
 
 
 
 
 
2
7
6
0
 
 
 
 
 
 
2
7
7
0
 
 
 
 
 
 
2
7
8
0
 
 
 
 
 
 
2
7
9
0

 
A
A
T
G
A
A
G
T
T
T
T
A
A
A
T
C
A
A
T
C
T
A
A
A
G
T
A
T
A
T
A
T
G
A
G
T
A
A
A
C
T
T
G
G
T
C
T
G
A
C
A
G
T
T
A
C
C
A
A
T
G
C
T
T
A
A
T
C
A
G
T
G
A
G
G
C
A
C
C
T
A
T
C
T
C
A
G
C
G
A

 
 
 
 
 
 
 
2
8
0
0
 
 
 
 
 
 
2
8
1
0
 
 
 
 
 
 
2
8
2
0
 
 
 
 
 
 
2
8
3
0
 
 
 
 
 
 
2
8
4
0
 
 
 
 
 
 
2
8
5
0
 
 
 
 
 
 
2
8
6
0
 
 
 
 
 
 
2
8
7
0
 
 
 
 
 
 
2
8
8
0

 
T
C
T
G
T
C
T
A
T
T
T
C
G
T
T
C
A
T
C
C
A
T
A
G
T
T
G
C
C
T
G
A
C
T
C
C
C
C
G
T
C
G
T
G
T
A
G
A
T
A
A
C
T
A
C
G
A
T
A
C
G
G
G
A
G
G
G
C
T
T
A
C
C
A
T
C
T
G
G
C
C
C
C
A
G
T
G
C
T
G

 
 
 
 
 
 
 
2
8
9
0
 
 
 
 
 
 
2
9
0
0
 
 
 
 
 
 
2
9
1
0
 
 
 
 
 
 
2
9
2
0
 
 
 
 
 
 
2
9
3
0
 
 
 
 
 
 
2
9
4
0
 
 
 
 
 
 
2
9
5
0
 
 
 
 
 
 
2
9
6
0
 
 
 
 
 
 
2
9
7
0

 
C
A
A
T
G
A
T
A
C
C
G
C
G
A
G
A
C
C
C
A
C
G
C
T
C
A
C
C
G
G
C
T
C
C
A
G
A
T
T
T
A
T
C
A
G
C
A
A
T
A
A
A
C
C
A
G
C
C
A
G
C
C
G
G
A
A
G
G
G
C
C
G
A
G
C
G
C
A
G
A
A
G
T
G
G
T
C
C
T
G

 
 
 
 
 
 
 
2
9
8
0
 
 
 
 
 
 
2
9
9
0
 
 
 
 
 
 
3
0
0
0
 
 
 
 
 
 
3
0
1
0
 
 
 
 
 
 
3
0
2
0
 
 
 
 
 
 
3
0
3
0
 
 
 
 
 
 
3
0
4
0
 
 
 
 
 
 
3
0
5
0
 
 
 
 
 
 
3
0
6
0

 
C
A
A
C
T
T
T
A
T
C
C
G
C
C
T
C
C
A
T
C
C
A
G
T
C
T
A
T
T
A
A
T
T
G
T
T
G
C
C
G
G
G
A
A
G
C
T
A
G
A
G
T
A
A
G
T
A
G
T
T
C
G
C
C
A
G
T
T
A
A
T
A
G
T
T
T
G
C
G
C
A
A
C
G
T
T
G
T
T
G

 
 
 
 
 
 
 
3
0
7
0
 
 
 
 
 
 
3
0
8
0
 
 
 
 
 
 
3
0
9
0
 
 
 
 
 
 
3
1
0
0
 
 
 
 
 
 
3
1
1
0
 
 
 
 
 
 
3
1
2
0
 
 
 
 
 
 
3
1
3
0
 
 
 
 
 
 
3
1
4
0
 
 
 
 
 
 
3
1
5
0

 
G
C
A
T
T
G
C
T
A
C
A
G
G
C
A
T
C
G
T
G
G
T
G
T
C
A
C
G
C
T
C
G
T
C
G
T
T
T
G
G
T
A
T
G
G
C
T
T
C
A
T
T
C
A
G
C
T
C
C
G
G
T
T
C
C
C
A
A
C
G
A
T
C
A
A
G
G
C
G
A
G
T
T
A
C
A
T
G
A
T

 
 
 
 
 
 
 
3
1
6
0
 
 
 
 
 
 
3
1
7
0
 
 
 
 
 
 
3
1
8
0
 
 
 
 
 
 
3
1
9
0
 
 
 
 
 
 
3
2
0
0
 
 
 
 
 
 
3
2
1
0
 
 
 
 
 
 
3
2
2
0
 
 
 
 
 
 
3
2
3
0
 
 
 
 
 
 
3
2
4
0

 
C
C
C
C
C
A
T
G
T
T
G
T
G
C
A
A
A
A
A
A
G
C
G
G
T
T
A
G
C
T
C
C
T
T
C
G
G
T
C
C
T
C
C
G
A
T
C
G
T
T
G
T
C
A
G
A
A
G
T
A
A
G
T
T
G
G
C
C
G
C
A
G
T
G
T
T
A
T
C
A
C
T
C
A
T
G
G
T
T
A

 
 
 
 
 
 
 
3
2
5
0
 
 
 
 
 
 
3
2
6
0
 
 
 
 
 
 
3
2
7
0
 
 
 
 
 
 
3
2
8
0
 
 
 
 
 
 
3
2
9
0
 
 
 
 
 
 
3
3
0
0
 
 
 
 
 
 
3
3
1
0
 
 
 
 
 
 
3
3
2
0
 
 
 
 
 
 
3
3
3
0

6. Appendix



 
T
G
G
C
A
G
C
A
C
T
G
C
A
T
A
A
T
T
C
T
C
T
T
A
C
T
G
T
C
A
T
G
C
C
A
T
C
C
G
T
A
A
G
A
T
G
C
T
T
T
T
C
T
G
T
G
A
C
T
G
G
T
G
A
G
T
A
C
T
C
A
A
C
C
A
A
G
T
C
A
T
T
C
T
G
A
G
A
A
T

 
 
 
 
 
 
 
3
3
4
0
 
 
 
 
 
 
3
3
5
0
 
 
 
 
 
 
3
3
6
0
 
 
 
 
 
 
3
3
7
0
 
 
 
 
 
 
3
3
8
0
 
 
 
 
 
 
3
3
9
0
 
 
 
 
 
 
3
4
0
0
 
 
 
 
 
 
3
4
1
0
 
 
 
 
 
 
3
4
2
0

 
A
G
T
G
T
A
T
G
C
G
G
C
G
A
C
C
G
A
G
T
T
G
C
T
C
T
T
G
C
C
C
G
G
C
G
T
C
A
A
T
A
C
G
G
G
A
T
A
A
T
A
C
C
G
C
G
C
C
A
C
A
T
A
G
C
A
G
A
A
C
T
T
T
A
A
A
A
G
T
G
C
T
C
A
T
C
A
T
T
G

 
 
 
 
 
 
 
3
4
3
0
 
 
 
 
 
 
3
4
4
0
 
 
 
 
 
 
3
4
5
0
 
 
 
 
 
 
3
4
6
0
 
 
 
 
 
 
3
4
7
0
 
 
 
 
 
 
3
4
8
0
 
 
 
 
 
 
3
4
9
0
 
 
 
 
 
 
3
5
0
0
 
 
 
 
 
 
3
5
1
0

 
G
A
A
A
A
C
G
T
T
C
T
T
C
G
G
G
G
C
G
A
A
A
A
C
T
C
T
C
A
A
G
G
A
T
C
T
T
A
C
C
G
C
T
G
T
T
G
A
G
A
T
C
C
A
G
T
T
C
G
A
T
G
T
A
A
C
C
C
A
C
T
C
G
T
G
C
A
C
C
C
A
A
C
T
G
A
T
C
T
T

 
 
 
 
 
 
 
3
5
2
0
 
 
 
 
 
 
3
5
3
0
 
 
 
 
 
 
3
5
4
0
 
 
 
 
 
 
3
5
5
0
 
 
 
 
 
 
3
5
6
0
 
 
 
 
 
 
3
5
7
0
 
 
 
 
 
 
3
5
8
0
 
 
 
 
 
 
3
5
9
0
 
 
 
 
 
 
3
6
0
0

 
C
A
G
C
A
T
C
T
T
T
T
A
C
T
T
T
C
A
C
C
A
G
C
G
T
T
T
C
T
G
G
G
T
G
A
G
C
A
A
A
A
A
C
A
G
G
A
A
G
G
C
A
A
A
A
T
G
C
C
G
C
A
A
A
A
A
A
G
G
G
A
A
T
A
A
G
G
G
C
G
A
C
A
C
G
G
A
A
A
T

 
 
 
 
 
 
 
3
6
1
0
 
 
 
 
 
 
3
6
2
0
 
 
 
 
 
 
3
6
3
0
 
 
 
 
 
 
3
6
4
0
 
 
 
 
 
 
3
6
5
0
 
 
 
 
 
 
3
6
6
0
 
 
 
 
 
 
3
6
7
0
 
 
 
 
 
 
3
6
8
0
 
 
 
 
 
 
3
6
9
0

 
G
T
T
G
A
A
T
A
C
T
C
A
T
A
C
T
C
T
T
C
C
T
T
T
T
T
C
A
A
T
A
T
T
A
T
T
G
A
A
G
C
A
T
T
T
A
T
C
A
G
G
G
T
T
A
T
T
G
T
C
T
C
A
T
G
A
G
C
G
G
A
T
A
C
A
T
A
T
T
T
G
A
A
T
G
T
A
T
T
T

 
 
 
 
 
 
 
3
7
0
0
 
 
 
 
 
 
3
7
1
0
 
 
 
 
 
 
3
7
2
0
 
 
 
 
 
 
3
7
3
0
 
 
 
 
 
 
3
7
4
0
 
 
 
 
 
 
3
7
5
0
 
 
 
 
 
 
3
7
6
0
 
 
 
 
 
 
3
7
7
0
 
 
 
 
 
 
3
7
8
0

 
A
G
A
A
A
A
A
T
A
A
A
C
A
A
A
T
A
G
G
G
G
T
T
C
C
G
C
G
C
A
C
A
T
T
T
C
C
C
C
G
A
A
A
A
G
T
G
C
C
A
C
C
T
G
A
C
G
T
C
T
A
A
G
A
A
A
C
C
A
T
T
A
T
T
A
T
C
A
T

 
 
 
3
7
9
0
 
 
 
 
 
 
3
8
0
0
 
 
 
 
 
 
3
8
1
0
 
 
 
 
 
 
3
8
2
0
 
 
 
 
 
 
3
8
3
0
 
 
 
 
 
 
3
8
4
0
 
 
 
 
 
 
3
8
5
0

6. Appendix



pM
U

W
 2

91
1 

(S
P9

6G
-m

ot
if)

St
ar

t o
f D

dp
2 

or
i

C
G
A
T
A
G
G
C
A
A
T
T
T
A
T
T
T
T
T
A
T
A
T
C
T
A
T
C
T
A
A
A
A
A
A
A
A
A
C
T
A
G
G
A
A
A
A
A
T
G
A
A
T
G
T
C
A
T
C
A
A
A
T
A
G
T
A
T
T
T
T
A
A
C
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
 
1
0
 
 
 
 
 
 
 
 
2
0
 
 
 
 
 
 
 
 
3
0
 
 
 
 
 
 
 
 
4
0
 
 
 
 
 
 
 
 
5
0
 
 
 
 
 
 
 
 
6
0
 
 
 
 
 
 
 
 
7
0
 
 
 
 
 
 
 
 
8
0
 
 
 
 
 
 
 
 
9
0

T
T
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G
A
G
G
G
G
A
A
A
G
T
A
A
T
T
A
T
A
A
C
T
A
G
G
T
T
A
G
T

 
 
 
 
 
 
 
 
1
0
0
 
 
 
 
 
 
 
1
1
0
 
 
 
 
 
 
 
1
2
0
 
 
 
 
 
 
 
1
3
0
 
 
 
 
 
 
 
1
4
0
 
 
 
 
 
 
 
1
5
0
 
 
 
 
 
 
 
1
6
0
 
 
 
 
 
 
 
1
7
0
 
 
 
 
 
 
 
1
8
0

T
T
T
T
T
A
T
A
A
T
T
T
T
T
A
C
A
T
A
T
T
T
G
T
T
A
A
T
A
A
C
T
T
T
T
A
A
T
T
T
T
G
A
A
T
C
A
T
A
T
A
T
G
A
T
A
T
T
A
C
A
T
C
G
T
C
C
C
G
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T

 
 
 
 
 
 
 
 
1
9
0
 
 
 
 
 
 
 
2
0
0
 
 
 
 
 
 
 
2
1
0
 
 
 
 
 
 
 
2
2
0
 
 
 
 
 
 
 
2
3
0
 
 
 
 
 
 
 
2
4
0
 
 
 
 
 
 
 
2
5
0
 
 
 
 
 
 
 
2
6
0
 
 
 
 
 
 
 
2
7
0

T
T
T
T
T
T
T
T
C
A
A
A
C
A
T
T
T
T
C
A
T
T
T
T
T
T
A
A
A
A
A
A
T
G
A
T
A
T
A
A
A
A
T
T
T
T
A
A
A
C
T
A
A
A
C
T
A
T
T
T
T
A
T
T
A
A
A
T
A
C
A
A
A
C
A
T
A
T
A
A
C
T
T
T
A
T
C
T
T
A

 
 
 
 
 
 
 
 
2
8
0
 
 
 
 
 
 
 
2
9
0
 
 
 
 
 
 
 
3
0
0
 
 
 
 
 
 
 
3
1
0
 
 
 
 
 
 
 
3
2
0
 
 
 
 
 
 
 
3
3
0
 
 
 
 
 
 
 
3
4
0
 
 
 
 
 
 
 
3
5
0
 
 
 
 
 
 
 
3
6
0

A
T
C
A
A
T
T
T
T
T
T
T
G
G
T
T
T
A
T
A
C
A
T
A
T
T
T
A
T
G
T
T
C
G
T
A
C
T
G
A
A
G
T
A
T
A
G
A
T
C
G
A
T
C
T
T
A
T
T
A
C
T
A
A
A
G
T
T
T
C
A
A
A
A
G
T
T
T
T
A
A
A
A
A
A
A
A
T
T
A

 
 
 
 
 
 
 
 
3
7
0
 
 
 
 
 
 
 
3
8
0
 
 
 
 
 
 
 
3
9
0
 
 
 
 
 
 
 
4
0
0
 
 
 
 
 
 
 
4
1
0
 
 
 
 
 
 
 
4
2
0
 
 
 
 
 
 
 
4
3
0
 
 
 
 
 
 
 
4
4
0
 
 
 
 
 
 
 
4
5
0

A
A
G
G
G
G
G
T
A
A
A
T
A
T
A
T
A
A
C
T
T
T
C
T
G
T
T
T
T
T
T
T
C
A
A
T
T
C
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T

 
 
 
 
 
 
 
 
4
6
0
 
 
 
 
 
 
 
4
7
0
 
 
 
 
 
 
 
4
8
0
 
 
 
 
 
 
 
4
9
0
 
 
 
 
 
 
 
5
0
0
 
 
 
 
 
 
 
5
1
0
 
 
 
 
 
 
 
5
2
0
 
 
 
 
 
 
 
5
3
0
 
 
 
 
 
 
 
5
4
0

En
d 

of
 D

dp
2 

or
i

<
O

lig
o 

D
dp

2o
ri

.x
ba

.r
2

T
T
A
T
T
T
C
T
T
C
A
A
T
A
G
G
T
A
T
T
G
A
A
A
T
G
A
C
C
T
C
C
G
T
T
T
T
T
A
A
T
A
A
A
A
A
G
T
A
T
A
T
A
T
T
T
G
T
G
C
T
C
G
T
C
T
A
G
C
G
G
A
T
C
T
A
C
A
A
A
T
T
A
A
T
T
A
A
T
C

 
 
 
 
 
 
 
 
5
5
0
 
 
 
 
 
 
 
5
6
0
 
 
 
 
 
 
 
5
7
0
 
 
 
 
 
 
 
5
8
0
 
 
 
 
 
 
 
5
9
0
 
 
 
 
 
 
 
6
0
0
 
 
 
 
 
 
 
6
1
0
 
 
 
 
 
 
 
6
2
0
 
 
 
 
 
 
 
6
3
0

   
   

   
   

  A
ct

in
 1

5 
pr

om
ot

or
C
C
A
T
C
A
A
A
T
C
T
T
T
A
A
A
A
A
A
A
A
A
A
A
T
G
G
T
T
T
A
A
A
A
A
A
A
C
T
T
G
G
G
T
T
G
G
T
T
A
A
T
T
A
T
T
A
T
T
T
G
A
A
A
A
T
T
T
T
A
A
A
A
C
C
C
A
A
A
T
T
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
 
6
4
0
 
 
 
 
 
 
 
6
5
0
 
 
 
 
 
 
 
6
6
0
 
 
 
 
 
 
 
6
7
0
 
 
 
 
 
 
 
6
8
0
 
 
 
 
 
 
 
6
9
0
 
 
 
 
 
 
 
7
0
0
 
 
 
 
 
 
 
7
1
0
 
 
 
 
 
 
 
7
2
0

A
A
A
T
G
G
G
A
T
T
C
A
A
A
A
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
C
A
G
A
T
T
G
C
A
T
A
A
A
A
A
G
A
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
7
3
0
 
 
 
 
 
 
 
7
4
0
 
 
 
 
 
 
 
7
5
0
 
 
 
 
 
 
 
7
6
0
 
 
 
 
 
 
 
7
7
0
 
 
 
 
 
 
 
7
8
0
 
 
 
 
 
 
 
7
9
0
 
 
 
 
 
 
 
8
0
0
 
 
 
 
 
 
 
8
1
0

St
ar

t P
sA

 le
ad

er
 se

qu
en

ce
>O

lig
oP

sA
sig

.f1
T
T
T
T
T
T
T
C
T
T
A
T
T
T
C
T
T
A
A
A
A
C
A
A
A
T
A
A
A
T
T
A
A
A
T
T
A
A
A
T
A
A
A
A
A
A
T
A
A
A
A
A
T
G
A
A
A
T
T
C
C
A
A
C
A
T
A
C
A
T
T
T
A
T
T
G
C
C
T
T
A
T
T
A
T
C
A
C
T
C

 
 
 
 
 
 
 
 
8
2
0
 
 
 
 
 
 
 
8
3
0
 
 
 
 
 
 
 
8
4
0
 
 
 
 
 
 
 
8
5
0
 
 
 
 
 
 
 
8
6
0
 
 
 
 
 
 
 
8
7
0
 
 
 
 
 
 
 
8
8
0
 
 
 
 
 
 
 
8
9
0
 
 
 
 
 
 
 
9
0
0

 
 
 
 
 
 
 
 
 
 
 
 
 

6. Appendix



T
T
A
A
C
A
T
A
T
G
C
A
T
T
A
G
C
A
T
C
A
C
C
A
A
T
C
C
T
C
G
G
T
T
A
C
T
G
G
A
A
A
A
T
T
A
A
A
G
G
T
C
T
C
G
T
T
C
A
A
C
C
T
A
C
T
C
G
T
C
T
T
C
T
T
T
T
G
G
A
A
T
A
T
C
T
T
G
A
A

 
 
 
 
 
 
 
9
1
0
 
 
 
 
 
 
 
9
2
0
 
 
 
 
 
 
 
9
3
0
 
 
 
 
 
 
 
9
4
0
 
 
 
 
 
 
 
9
5
0
 
 
 
 
 
 
 
9
6
0
 
 
 
 
 
 
 
9
7
0
 
 
 
 
 
 
 
9
8
0
 
 
 
 
 
 
 
9
9
0

 
 
L
 
 
T
 
 
Y
 
 
A
 
 
L
 
 
A
 
 
S
 
 
P
 
 
I
 
 
L
 
 
G
 
 
Y
 
 
W
 
 
K
 
 
I
 
 
K
 
 
G
 
 
L
 
 
V
 
 
Q
 
 
P
 
 
T
 
 
R
 
 
L
 
 
L
 
 
L
 
 
E
 
 
Y
 
 
L
 
 
E

E
n
d
 
o
f
 
P
s
A
 
s
e
q
u
e
n
c
e
 
 
 
s
t
a
r
t
 
o
f
 
G
S
T
 
s
e
q
u
e
n
c
e

M
u
t
a
t
i
o
n
 
K
 
t
o
 
E

G
A
A
A
A
A
T
A
T
G
A
A
G
A
G
C
A
T
T
T
G
T
A
T
G
A
A
C
G
T
G
A
T
G
A
A
G
G
T
G
A
T
A
A
A
T
G
G
C
G
T
A
A
C
A
A
A
A
A
A
T
T
T
G
A
A
T
T
A
G
G
T
T
T
A
G
A
A
T
T
T
C
C
A
A
A
T
C
T
T

 
 
 
 
 
 
 
1
0
0
0
 
 
 
 
 
 
1
0
1
0
 
 
 
 
 
 
1
0
2
0
 
 
 
 
 
 
1
0
3
0
 
 
 
 
 
 
1
0
4
0
 
 
 
 
 
 
1
0
5
0
 
 
 
 
 
 
1
0
6
0
 
 
 
 
 
 
1
0
7
0
 
 
 
 
 
 
1
0
8
0

 
 
E
 
 
E
 
 
Y
 
 
E
 
 
E
 
 
H
 
 
L
 
 
Y
 
 
E
 
 
R
 
 
D
 
 
E
 
 
G
 
 
D
 
 
K
 
 
W
 
 
R
 
 
N
 
 
K
 
 
K
 
 
F
 
 
E
 
 
L
 
 
G
 
 
L
 
 
E
 
 
F
 
 
P
 
 
N
 
 
L

C
C
T
T
A
T
T
A
T
A
T
T
G
A
T
G
G
T
G
A
T
G
T
T
A
A
A
T
T
A
A
C
A
C
A
G
T
C
T
A
T
G
G
C
C
A
T
C
A
T
A
C
G
T
T
A
T
A
T
A
G
C
T
G
A
C
A
A
G
C
A
C
A
A
C
A
T
G
T
T
G
G
G
T
G
G
T
T
G
T

 
 
 
 
 
 
 
1
0
9
0
 
 
 
 
 
 
1
1
0
0
 
 
 
 
 
 
1
1
1
0
 
 
 
 
 
 
1
1
2
0
 
 
 
 
 
 
1
1
3
0
 
 
 
 
 
 
1
1
4
0
 
 
 
 
 
 
1
1
5
0
 
 
 
 
 
 
1
1
6
0
 
 
 
 
 
 
1
1
7
0

 
 
P
 
 
Y
 
 
Y
 
 
I
 
 
D
 
 
G
 
 
D
 
 
V
 
 
K
 
 
L
 
 
T
 
 
Q
 
 
S
 
 
M
 
 
A
 
 
I
 
 
I
 
 
R
 
 
Y
 
 
I
 
 
A
 
 
D
 
 
K
 
 
H
 
 
N
 
 
M
 
 
L
 
 
G
 
 
G
 
 
C

 
 
 

m
u
t
a
t
i
o
n
 
I
 
t
o
 
V

o
l
d
 
m
u
t
a
t
i
o
n
 
i
n
 
G
S
T
 
c
o
r
r
e
c
t
e
d

<
O

lig
o 

gs
tA

89
.r

2
C
C
A
A
A
A
G
A
G
C
G
T
G
C
A
G
A
A
G
T
T
T
C
A
A
T
G
C
T
T
G
A
A
G
G
A
G
C
T
G
T
T
T
T
G
G
A
T
A
T
T
A
G
A
T
A
C
G
G
T
G
T
T
T
C
G
A
G
A
A
T
T
G
C
A
T
A
T
A
G
T
A
A
A
G
A
C
T
T
T

>
O
l
i
g
o
 
G
S
T
L
9
9
.
f
1

 
 
 
 
 
 
 
1
1
8
0
 
 
 
 
 
 
1
1
9
0
 
 
 
 
 
 
1
2
0
0
 
 
 
 
 
 
1
2
1
0
 
 
 
 
 
 
1
2
2
0
 
 
 
 
 
 
1
2
3
0
 
 
 
 
 
 
1
2
4
0
 
 
 
 
 
 
1
2
5
0
 
 
 
 
 
 
1
2
6
0

 
 
P
 
 
K
 
 
E
 
 
R
 
 
A
 
 
E
 
 
V
 
 
S
 
 
M
 
 
L
 
 
E
 
 
G
 
 
A
 
 
V
 
 
L
 
 
D
 
 
I
 
 
R
 
 
Y
 
 
G
 
 
V
 
 
S
 
 
R
 
 
I
 
 
A
 
 
Y
 
 
S
 
 
K
 
 
D
 
 
F

G
A
A
A
C
T
C
T
C
A
A
A
G
T
T
G
A
T
T
T
T
C
T
T
A
G
C
A
A
G
C
T
A
C
C
T
G
A
A
A
T
G
C
T
G
A
A
A
A
T
G
T
T
C
G
A
A
G
A
T
C
G
T
T
T
A
T
G
T
C
A
T
A
A
A
A
C
A
T
A
T
T
T
A
A
A
T
G
G
T

 
 
 
 
 
 
 
1
2
7
0
 
 
 
 
 
 
1
2
8
0
 
 
 
 
 
 
1
2
9
0
 
 
 
 
 
 
1
3
0
0
 
 
 
 
 
 
1
3
1
0
 
 
 
 
 
 
1
3
2
0
 
 
 
 
 
 
1
3
3
0
 
 
 
 
 
 
1
3
4
0
 
 
 
 
 
 
1
3
5
0

 
>O

lig
o 

P1
74

G
ST

.f2
c

G
A
T
C
A
T
G
T
T
A
C
C
C
A
T
C
C
T
G
A
T
T
T
C
A
T
G
T
T
A
T
A
C
G
A
T
G
C
T
C
T
T
G
A
T
G
T
T
G
T
T
T
T
A
T
A
C
A
T
G
G
A
C
C
C
A
A
T
G
T
G
C
C
T
T
G
A
T
G
C
C
T
T
C
C
C
A
A
A
A

 
 
 
 
 
 
 
1
3
6
0
 
 
 
 
 
 
1
3
7
0
 
 
 
 
 
 
1
3
8
0
 
 
 
 
 
 
1
3
9
0
 
 
 
 
 
 
1
4
0
0
 
 
 
 
 
 
1
4
1
0
 
 
 
 
 
 
1
4
2
0
 
 
 
 
 
 
1
4
3
0
 
 
 
 
 
 
1
4
4
0

T
T
A
G
T
T
T
G
T
T
T
T
A
A
A
A
A
A
C
G
T
A
T
T
G
A
A
G
C
C
A
T
C
C
C
A
C
A
A
A
T
T
G
A
T
A
A
A
T
A
C
T
T
G
A
A
A
T
C
T
A
G
T
A
A
A
T
A
T
A
T
A
G
C
A
T
G
G
C
C
T
T
T
G
C
A
A
G
G
T

 
 
 
 
 
 
 
1
4
5
0
 
 
 
 
 
 
1
4
6
0
 
 
 
 
 
 
1
4
7
0
 
 
 
 
 
 
1
4
8
0
 
 
 
 
 
 
1
4
9
0
 
 
 
 
 
 
1
5
0
0
 
 
 
 
 
 
1
5
1
0
 
 
 
 
 
 
1
5
2
0
 
 
 
 
 
 
1
5
3
0

 
 
L
 
 
V
 
 
C
 
 
F
 
 
K
 
 
K
 
 
R
 
 
I
 
 
E
 
 
A
 
 
I
 
 
P
 
 
Q
 
 
I
 
 
D
 
 
K
 
 
Y
 
 
L
 
 
K
 
 
S
 
 
S
 
 
K
 
 
Y
 
 
I
 
 
A
 
 
W
 
 
P
 
 
L
 
 
Q
 
 
G

6. Appendix

M M




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
u
t
 
F
a
c
t
o
r
 
X
a
 

<O
lig

o 
SP

96
G

.r
1a

T
G
G
C
A
A
G
C
C
A
C
A
T
T
T
G
G
A
G
G
T
G
G
A
G
A
T
C
A
T
C
C
T
C
C
T
A
A
A
G
G
T
T
C
A
G
A
T
G
C
C
A
T
C
G
A
A
G
G
T
C
G
T
G
C
T
G
G
T
T
C
A
C
A
A
A
C
C
T
C
T
G
G
A
G
G
A
T
C
T

 
 
 
 
 
 
 
1
5
4
0
 
 
 
 
 
 
1
5
5
0
 
 
 
 
 
 
1
5
6
0
 
 
 
 
 
 
1
5
7
0
 
 
 
 
 
 
1
5
8
0
 
 
 
 
 
 
1
5
9
0
 
 
 
 
 
 
1
6
0
0
 
 
 
 
 
 
1
6
1
0
 
 
 
 
 
 
1
6
2
0

 
 
W
 
 
Q
 
 
A
 
 
T
 
 
F
 
 
G
 
 
G
 
 
G
 
 
D
 
 
H
 
 
P
 
 
P
 
 
K
 
 
G
 
 
S
 
 
D
 
 
A
 
 
I
 
 
E
 
 
G
 
 
R
 
 
A
 
 
G
 
 
S
 
 
Q
 
 
T
 
 
S
 
 
G
 
 
G
 
 
S

I
S
P
Y
 
e
p
i
t
o
p
e
 

B
a
m
H
I

 
K
p
n
I

 
A
C
T
T
C
A
G
G
T
G
G
T
T
C
T
A
C
C
G
G
A
T
C
T
C
A
A
T
A
T
C
C
A
G
C
A
C
T
C
A
C
C
T
G
A
G
G
A
T
C
C
C
C
G
G
G
T
A
C
C
T
A
A
A
T
C
A
T
G
A
A
T
G
A
A
A
G
T
G
C
T
T
C
A
C
A
T
A
A
A
A

<O
lig

o 
Is

py
.r

1a

>O
lig

o 
V

B
am

K
pn

 
 
 
 
 
 
 
1
6
3
0
 
 
 
 
 
 
1
6
4
0
 
 
 
 
 
 
1
6
5
0
 
 
 
 
 
 
1
6
6
0
 
 
 
 
 
 
1
6
7
0
 
 
 
 
 
 
1
6
8
0
 
 
 
 
 
 
1
6
9
0
 
 
 
 
 
 
1
7
0
0
 
 
 
 
 
 
1
7
1
0

 
 
T
 
 
S
 
 
G
 
 
G
 
 
S
 
 
T
 
 
G
 
 
S
 
 
Q
 
 
Y
 
 
P
 
 
A
 
 
L
 
 
T
 
 
*
 
 
G
 
 
S
 
 
P
 
 
G
 
 
T
 
 
*
 
 
I
 
 
M
 
 
N
 
 
E
 
 
S
 
 
A
 
 
S
 
 
H
 
 
K

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S
t
a
r
t
 
a
c
t
i
n
 
1
5
 
p
o
l
y
a
d
e
n
y
l
a
t
i
o
n
 
s
i
g
n
a
l

A
T
A
A
T
A
A
T
A
A
T
A
A
T
A
T
A
A
C
A
A
T
A
A
T
A
A
T
A
T
T
T
A
A
A
T
G
T
A
T
A
A
T
A
A
A
A
T
T
T
A
A
T
T
A
C
T
T
T
T
T
T
T
T
T
A
A
T
G
G
T
T
G
T
T
G
A
T
C
T
T
T
A
T
C
C
G
A
C
C
T

 
 
 
 
 
 
 
1
7
2
0
 
 
 
 
 
 
1
7
3
0
 
 
 
 
 
 
1
7
4
0
 
 
 
 
 
 
1
7
5
0
 
 
 
 
 
 
1
7
6
0
 
 
 
 
 
 
1
7
7
0
 
 
 
 
 
 
1
7
8
0
 
 
 
 
 
 
1
7
9
0
 
 
 
 
 
 
1
8
0
0

A
A
A
A
A
A
A
A
A
A
A
A
A
T
A
A
A
A
C
C
A
A
T
A
G
G
C
T
A
T
T
G
G
T
T
T
T
T
T
T
T
T
T
A
A
T
T
G
T
T
T
T
T
T
T
A
T
T
T
T
T
T
A
T
T
A
T
T
A
C
T
T
T
A
A
T
T
A
T
C
A
T
T
T
T
T
T
A
A
A
T

 
 
 
 
 
 
 
1
8
1
0
 
 
 
 
 
 
1
8
2
0
 
 
 
 
 
 
1
8
3
0
 
 
 
 
 
 
1
8
4
0
 
 
 
 
 
 
1
8
5
0
 
 
 
 
 
 
1
8
6
0
 
 
 
 
 
 
1
8
7
0
 
 
 
 
 
 
1
8
8
0
 
 
 
 
 
 
1
8
9
0

T
A
C
A
A
A
A
A
A
A
A
T
T
A
A
A
A
A
T
C
C
A
G
A
T
A
T
T
A
A
G
G
T
A
T
T
T
G
C
A
C
T
A
G
T
G
C
T
T
T
A
A
C
G
T
T
A
A
A
A
T
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T
A
A
T
A
A
T
T
T
T
A
C

 
 
 
 
 
 
 
1
9
0
0
 
 
 
 
 
 
1
9
1
0
 
 
 
 
 
 
1
9
2
0
 
 
 
 
 
 
1
9
3
0
 
 
 
 
 
 
1
9
4
0
 
 
 
 
 
 
1
9
5
0
 
 
 
 
 
 
1
9
6
0
 
 
 
 
 
 
1
9
7
0
 
 
 
 
 
 
1
9
8
0

C
C
T
T
T
A
T
G
G
G
T
A
A
A
C
G
A
T
T
C
T
C
A
C
A
T
A
T
A
A
T
A
C
A
A
T
C
T
C
C
A
T
G
A
A
A
A
G
A
T
C
C
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
G
A
A
C
C
G
T
A

 
 
 
 
 
 
 
1
9
9
0
 
 
 
 
 
 
2
0
0
0
 
 
 
 
 
 
2
0
1
0
 
 
 
 
 
 
2
0
2
0
 
 
 
 
 
 
2
0
3
0
 
 
 
 
 
 
2
0
4
0
 
 
 
 
 
 
2
0
5
0
 
 
 
 
 
 
2
0
6
0
 
 
 
 
 
 
2
0
7
0

A
A
A
A
G
G
C
C
G
C
G
T
T
G
C
T
G
G
C
G
T
T
T
T
T
C
G
A
T
A
G
G
C
T
C
C
G
C
C
C
C
C
C
T
G
A
C
G
A
G
C
A
T
C
A
C
A
A
A
A
A
T
C
G
A
C
G
C
T
C
A
A
G
T
C
A
G
A
G
G
T
G
G
C
G
A
A
A
C
C
C

 
 
 
 
 
 
 
2
0
8
0
 
 
 
 
 
 
2
0
9
0
 
 
 
 
 
 
2
1
0
0
 
 
 
 
 
 
2
1
1
0
 
 
 
 
 
 
2
1
2
0
 
 
 
 
 
 
2
1
3
0
 
 
 
 
 
 
2
1
4
0
 
 
 
 
 
 
2
1
5
0
 
 
 
 
 
 
2
1
6
0

G
A
C
A
G
G
A
C
T
A
T
A
A
A
G
A
T
A
C
C
A
G
G
C
G
T
T
T
C
C
C
C
C
T
G
G
A
A
G
C
T
C
C
C
T
C
G
T
G
C
G
C
T
C
T
C
C
T
G
T
T
C
C
G
A
C
C
C
T
G
C
C
G
C
T
T
A
C
C
G
G
A
T
A
C
C
T
G
T
C
C

 
 
 
 
 
 
 
2
1
7
0
 
 
 
 
 
 
2
1
8
0
 
 
 
 
 
 
2
1
9
0
 
 
 
 
 
 
2
2
0
0
 
 
 
 
 
 
2
2
1
0
 
 
 
 
 
 
2
2
2
0
 
 
 
 
 
 
2
2
3
0
 
 
 
 
 
 
2
2
4
0
 
 
 
 
 
 
2
2
5
0

G
C
C
T
T
T
C
T
C
C
C
T
T
C
G
G
G
A
A
G
C
G
T
G
G
C
G
C
T
T
T
C
T
C
A
T
A
G
C
T
C
A
C
G
C
T
G
T
A
G
G
T
A
T
C
T
C
A
G
T
T
C
G
G
T
G
T
A
G
G
T
C
G
T
T
C
G
C
T
C
C
A
A
G
C
T
G
G
G
C
T

< <<< O
lig

o 
G

ST
fx

.R
4

6. Appendix

M M


M M


M M




 
 
 
 
 
 
 
2
2
6
0
 
 
 
 
 
 
2
2
7
0
 
 
 
 
 
 
2
2
8
0
 
 
 
 
 
 
2
2
9
0
 
 
 
 
 
 
2
3
0
0
 
 
 
 
 
 
2
3
1
0
 
 
 
 
 
 
2
3
2
0
 
 
 
 
 
 
2
3
3
0
 
 
 
 
 
 
2
3
4
0

G
T
G
T
G
C
A
C
G
A
A
C
C
C
C
C
C
G
T
T
C
A
G
C
C
C
G
A
C
C
G
C
T
G
C
G
C
C
T
T
A
T
C
C
G
G
T
A
A
C
T
A
T
C
G
T
C
T
T
G
A
G
T
C
C
A
A
C
C
C
G
G
T
A
A
G
A
C
A
C
G
A
C
T
T
A
T
C
G
C
C

 
 
 
 
 
 
 
2
3
5
0
 
 
 
 
 
 
2
3
6
0
 
 
 
 
 
 
2
3
7
0
 
 
 
 
 
 
2
3
8
0
 
 
 
 
 
 
2
3
9
0
 
 
 
 
 
 
2
4
0
0
 
 
 
 
 
 
2
4
1
0
 
 
 
 
 
 
2
4
2
0
 
 
 
 
 
 
2
4
3
0

A
C
T
G
G
C
A
G
C
A
G
C
C
A
C
T
G
G
T
A
A
C
A
G
G
A
T
T
A
G
C
A
G
A
G
C
G
A
G
G
T
A
T
G
T
A
G
G
C
G
G
T
G
C
T
A
C
A
G
A
G
T
T
C
T
T
G
A
A
G
T
G
G
T
G
G
C
C
T
A
A
C
T
A
C
G
G
C
T
A
C

 
 
 
 
 
 
 
2
4
4
0
 
 
 
 
 
 
2
4
5
0
 
 
 
 
 
 
2
4
6
0
 
 
 
 
 
 
2
4
7
0
 
 
 
 
 
 
2
4
8
0
 
 
 
 
 
 
2
4
9
0
 
 
 
 
 
 
2
5
0
0
 
 
 
 
 
 
2
5
1
0
 
 
 
 
 
 
2
5
2
0

A
C
T
A
G
A
A
G
G
A
C
A
G
T
A
T
T
T
G
G
T
A
T
C
T
G
C
G
C
T
C
T
G
C
T
G
A
A
G
C
C
A
G
T
T
A
C
C
T
T
C
G
G
A
A
A
A
A
G
A
G
T
T
G
G
T
A
G
C
T
C
T
T
G
A
T
C
C
G
G
C
A
A
A
C
A
A
A
C
C
A

 
 
 
 
 
 
 
2
5
3
0
 
 
 
 
 
 
2
5
4
0
 
 
 
 
 
 
2
5
5
0
 
 
 
 
 
 
2
5
6
0
 
 
 
 
 
 
2
5
7
0
 
 
 
 
 
 
2
5
8
0
 
 
 
 
 
 
2
5
9
0
 
 
 
 
 
 
2
6
0
0
 
 
 
 
 
 
2
6
1
0

C
C
G
C
T
G
G
T
A
G
C
G
G
T
G
G
T
T
T
T
T
T
T
G
T
T
T
G
C
A
A
G
C
A
G
C
A
G
A
T
T
A
C
G
C
G
C
A
G
A
A
A
A
A
A
A
G
G
A
T
C
T
C
A
A
G
A
A
G
A
T
C
C
T
T
T
G
A
T
C
T
T
T
T
C
T
A
C
G
G
G

 
 
 
 
 
 
 
2
6
2
0
 
 
 
 
 
 
2
6
3
0
 
 
 
 
 
 
2
6
4
0
 
 
 
 
 
 
2
6
5
0
 
 
 
 
 
 
2
6
6
0
 
 
 
 
 
 
2
6
7
0
 
 
 
 
 
 
2
6
8
0
 
 
 
 
 
 
2
6
9
0
 
 
 
 
 
 
2
7
0
0

G
T
C
T
G
A
C
G
C
T
C
A
G
T
G
G
A
A
C
G
A
A
A
A
C
T
C
A
C
G
T
T
A
A
G
G
G
A
T
T
T
T
G
G
T
C
A
T
G
A
G
A
T
T
A
T
C
A
A
A
A
A
G
G
A
T
C
T
T
C
A
C
C
T
A
G
A
T
C
C
T
T
T
T
A
A
A
T
T
A
A

 
 
 
 
 
 
 
2
7
1
0
 
 
 
 
 
 
2
7
2
0
 
 
 
 
 
 
2
7
3
0
 
 
 
 
 
 
2
7
4
0
 
 
 
 
 
 
2
7
5
0
 
 
 
 
 
 
2
7
6
0
 
 
 
 
 
 
2
7
7
0
 
 
 
 
 
 
2
7
8
0
 
 
 
 
 
 
2
7
9
0

A
A
T
G
A
A
G
T
T
T
T
A
A
A
T
C
A
A
T
C
T
A
A
A
G
T
A
T
A
T
A
T
G
A
G
T
A
A
A
C
T
T
G
G
T
C
T
G
A
C
A
G
T
T
A
C
C
A
A
T
G
C
T
T
A
A
T
C
A
G
T
G
A
G
G
C
A
C
C
T
A
T
C
T
C
A
G
C
G
A

 
 
 
 
 
 
 
2
8
0
0
 
 
 
 
 
 
2
8
1
0
 
 
 
 
 
 
2
8
2
0
 
 
 
 
 
 
2
8
3
0
 
 
 
 
 
 
2
8
4
0
 
 
 
 
 
 
2
8
5
0
 
 
 
 
 
 
2
8
6
0
 
 
 
 
 
 
2
8
7
0
 
 
 
 
 
 
2
8
8
0

A
T
C
T
G
T
C
T
A
T
T
T
C
G
T
T
C
A
T
C
C
A
T
A
G
T
T
G
C
C
T
G
A
C
T
C
C
C
C
G
T
C
G
T
G
T
A
G
A
T
A
A
C
T
A
C
G
A
T
A
C
G
G
G
A
G
G
G
C
T
T
A
C
C
A
T
C
T
G
G
C
C
C
C
A
G
T
G
C
T
G

 
 
 
 
 
 
 
2
8
9
0
 
 
 
 
 
 
2
9
0
0
 
 
 
 
 
 
2
9
1
0
 
 
 
 
 
 
2
9
2
0
 
 
 
 
 
 
2
9
3
0
 
 
 
 
 
 
2
9
4
0
 
 
 
 
 
 
2
9
5
0
 
 
 
 
 
 
2
9
6
0
 
 
 
 
 
 
2
9
7
0

C
A
A
T
G
A
T
A
C
C
G
C
G
A
G
A
C
C
C
A
C
G
C
T
C
A
C
C
G
G
C
T
C
C
A
G
A
T
T
T
A
T
C
A
G
C
A
A
T
A
A
A
C
C
A
G
C
C
A
G
C
C
G
G
A
A
G
G
G
C
C
G
A
G
C
G
C
A
G
A
A
G
T
G
G
T
C
C
T
G

 
 
 
 
 
 
 
2
9
8
0
 
 
 
 
 
 
2
9
9
0
 
 
 
 
 
 
3
0
0
0
 
 
 
 
 
 
3
0
1
0
 
 
 
 
 
 
3
0
2
0
 
 
 
 
 
 
3
0
3
0
 
 
 
 
 
 
3
0
4
0
 
 
 
 
 
 
3
0
5
0
 
 
 
 
 
 
3
0
6
0

C
A
A
C
T
T
T
A
T
C
C
G
C
C
T
C
C
A
T
C
C
A
G
T
C
T
A
T
T
A
A
T
T
G
T
T
G
C
C
G
G
G
A
A
G
C
T
A
G
A
G
T
A
A
G
T
A
G
T
T
C
G
C
C
A
G
T
T
A
A
T
A
G
T
T
T
G
C
G
C
A
A
C
G
T
T
G
T
T
G

 
 
 
 
 
 
 
3
0
7
0
 
 
 
 
 
 
3
0
8
0
 
 
 
 
 
 
3
0
9
0
 
 
 
 
 
 
3
1
0
0
 
 
 
 
 
 
3
1
1
0
 
 
 
 
 
 
3
1
2
0
 
 
 
 
 
 
3
1
3
0
 
 
 
 
 
 
3
1
4
0
 
 
 
 
 
 
3
1
5
0

G
C
A
T
T
G
C
T
A
C
A
G
G
C
A
T
C
G
T
G
G
T
G
T
C
A
C
G
C
T
C
G
T
C
G
T
T
T
G
G
T
A
T
G
G
C
T
T
C
A
T
T
C
A
G
C
T
C
C
G
G
T
T
C
C
C
A
A
C
G
A
T
C
A
A
G
G
C
G
A
G
T
T
A
C
A
T
G
A
T

 
 
 
 
 
 
 
3
1
6
0
 
 
 
 
 
 
3
1
7
0
 
 
 
 
 
 
3
1
8
0
 
 
 
 
 
 
3
1
9
0
 
 
 
 
 
 
3
2
0
0
 
 
 
 
 
 
3
2
1
0
 
 
 
 
 
 
3
2
2
0
 
 
 
 
 
 
3
2
3
0
 
 
 
 
 
 
3
2
4
0

C
C
C
C
C
A
T
G
T
T
G
T
G
C
A
A
A
A
A
A
G
C
G
G
T
T
A
G
C
T
C
C
T
T
C
G
G
T
C
C
T
C
C
G
A
T
C
G
T
T
G
T
C
A
G
A
A
G
T
A
A
G
T
T
G
G
C
C
G
C
A
G
T
G
T
T
A
T
C
A
C
T
C
A
T
G
G
T
T
A

 
 
 
 
 
 
 
3
2
5
0
 
 
 
 
 
 
3
2
6
0
 
 
 
 
 
 
3
2
7
0
 
 
 
 
 
 
3
2
8
0
 
 
 
 
 
 
3
2
9
0
 
 
 
 
 
 
3
3
0
0
 
 
 
 
 
 
3
3
1
0
 
 
 
 
 
 
3
3
2
0
 
 
 
 
 
 
3
3
3
0

T
G
G
C
A
G
C
A
C
T
G
C
A
T
A
A
T
T
C
T
C
T
T
A
C
T
G
T
C
A
T
G
C
C
A
T
C
C
G
T
A
A
G
A
T
G
C
T
T
T
T
C
T
G
T
G
A
C
T
G
G
T
G
A
G
T
A
C
T
C
A
A
C
C
A
A
G
T
C
A
T
T
C
T
G
A
G
A
A
T

 
 
 
 
 
 
 
3
3
4
0
 
 
 
 
 
 
3
3
5
0
 
 
 
 
 
 
3
3
6
0
 
 
 
 
 
 
3
3
7
0
 
 
 
 
 
 
3
3
8
0
 
 
 
 
 
 
3
3
9
0
 
 
 
 
 
 
3
4
0
0
 
 
 
 
 
 
3
4
1
0
 
 
 
 
 
 
3
4
2
0

A
G
T
G
T
A
T
G
C
G
G
C
G
A
C
C
G
A
G
T
T
G
C
T
C
T
T
G
C
C
C
G
G
C
G
T
C
A
A
T
A
C
G
G
G
A
T
A
A
T
A
C
C
G
C
G
C
C
A
C
A
T
A
G
C
A
G
A
A
C
T
T
T
A
A
A
A
G
T
G
C
T
C
A
T
C
A
T
T
G

 
 
 
 
 
 
 
3
4
3
0
 
 
 
 
 
 
3
4
4
0
 
 
 
 
 
 
3
4
5
0
 
 
 
 
 
 
3
4
6
0
 
 
 
 
 
 
3
4
7
0
 
 
 
 
 
 
3
4
8
0
 
 
 
 
 
 
3
4
9
0
 
 
 
 
 
 
3
5
0
0
 
 
 
 
 
 
3
5
1
0

G
A
A
A
A
C
G
T
T
C
T
T
C
G
G
G
G
C
G
A
A
A
A
C
T
C
T
C
A
A
G
G
A
T
C
T
T
A
C
C
G
C
T
G
T
T
G
A
G
A
T
C
C
A
G
T
T
C
G
A
T
G
T
A
A
C
C
C
A
C
T
C
G
T
G
C
A
C
C
C
A
A
C
T
G
A
T
C
T
T

 
 
 
 
 
 
 
3
5
2
0
 
 
 
 
 
 
3
5
3
0
 
 
 
 
 
 
3
5
4
0
 
 
 
 
 
 
3
5
5
0
 
 
 
 
 
 
3
5
6
0
 
 
 
 
 
 
3
5
7
0
 
 
 
 
 
 
3
5
8
0
 
 
 
 
 
 
3
5
9
0
 
 
 
 
 
 
3
6
0
0

C
A
G
C
A
T
C
T
T
T
T
A
C
T
T
T
C
A
C
C
A
G
C
G
T
T
T
C
T
G
G
G
T
G
A
G
C
A
A
A
A
A
C
A
G
G
A
A
G
G
C
A
A
A
A
T
G
C
C
G
C
A
A
A
A
A
A
G
G
G
A
A
T
A
A
G
G
G
C
G
A
C
A
C
G
G
A
A
A
T

6. Appendix



 
 
 
 
 
 
 
3
6
1
0
 
 
 
 
 
 
3
6
2
0
 
 
 
 
 
 
3
6
3
0
 
 
 
 
 
 
3
6
4
0
 
 
 
 
 
 
3
6
5
0
 
 
 
 
 
 
3
6
6
0
 
 
 
 
 
 
3
6
7
0
 
 
 
 
 
 
3
6
8
0
 
 
 
 
 
 
3
6
9
0

G
T
T
G
A
A
T
A
C
T
C
A
T
A
C
T
C
T
T
C
C
T
T
T
T
T
C
A
A
T
A
T
T
A
T
T
G
A
A
G
C
A
T
T
T
A
T
C
A
G
G
G
T
T
A
T
T
G
T
C
T
C
A
T
G
A
G
C
G
G
A
T
A
C
A
T
A
T
T
T
G
A
A
T
G
T
A
T
T
T

 
 
 
 
 
 
 
3
7
0
0
 
 
 
 
 
 
3
7
1
0
 
 
 
 
 
 
3
7
2
0
 
 
 
 
 
 
3
7
3
0
 
 
 
 
 
 
3
7
4
0
 
 
 
 
 
 
3
7
5
0
 
 
 
 
 
 
3
7
6
0
 
 
 
 
 
 
3
7
7
0
 
 
 
 
 
 
3
7
8
0

A
G
A
A
A
A
A
T
A
A
A
C
A
A
A
T
A
G
G
G
G
T
T
C
C
G
C
G
C
A
C
A
T
T
T
C
C
C
C
G
A
A
A
A
G
T
G
C
C
A
C
C
T
G
A
C
G
T
C
T
A
A
G
A
A
A
C
C
A
T
T
A
T
T
A
T
C
A
T

 
 
 
3
7
9
0
 
 
 
 
 
 
3
8
0
0
 
 
 
 
 
 
3
8
1
0
 
 
 
 
 
 
3
8
2
0
 
 
 
 
 
 
3
8
3
0
 
 
 
 
 
 
3
8
4
0
 
 
 
 
 
 
3
8
5
0

6. Appendix



pM
U

W
 5

02
1 

(S
P6

0 
pr

om
ot

er
 S

P9
6T

-m
ot

if)

St
ar

t o
f D

dp
2 

or
i

C
G
A
T
A
G
G
C
A
A
T
T
T
A
T
T
T
T
T
A
T
A
T
C
T
A
T
C
T
A
A
A
A
A
A
A
A
A
C
T
A
G
G
A
A
A
A
A
T
G
A
A
T
G
T
C
A
T
C
A
A
A
T
A
G
T
A
T
T
T
T
A
A
C
A
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

 
 
 
 
 
 
 
 
1
0
 
 
 
 
 
 
 
 
2
0
 
 
 
 
 
 
 
 
3
0
 
 
 
 
 
 
 
 
4
0
 
 
 
 
 
 
 
 
5
0
 
 
 
 
 
 
 
 
6
0
 
 
 
 
 
 
 
 
7
0
 
 
 
 
 
 
 
 
8
0
 
 
 
 
 
 
 
 
9
0

T
T
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G
A
G
G
G
G
A
A
A
G
T
A
A
T
T
A
T
A
A
C
T
A
G
G
T
T
A
G
T

 
 
 
 
 
 
 
1
0
0
 
 
 
 
 
 
 
1
1
0
 
 
 
 
 
 
 
1
2
0
 
 
 
 
 
 
 
1
3
0
 
 
 
 
 
 
 
1
4
0
 
 
 
 
 
 
 
1
5
0
 
 
 
 
 
 
 
1
6
0
 
 
 
 
 
 
 
1
7
0
 
 
 
 
 
 
 
1
8
0

T
T
T
T
T
A
T
A
A
T
T
T
T
T
A
C
A
T
A
T
T
T
G
T
T
A
A
T
A
A
C
T
T
T
T
A
A
T
T
T
T
G
A
A
T
C
A
T
A
T
A
T
G
A
T
A
T
T
A
C
A
T
C
G
T
C
C
C
G
T
T
G
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T
T

 
 
 
 
 
 
 
1
9
0
 
 
 
 
 
 
 
2
0
0
 
 
 
 
 
 
 
2
1
0
 
 
 
 
 
 
 
2
2
0
 
 
 
 
 
 
 
2
3
0
 
 
 
 
 
 
 
2
4
0
 
 
 
 
 
 
 
2
5
0
 
 
 
 
 
 
 
2
6
0
 
 
 
 
 
 
 
2
7
0

T
T
T
T
T
T
T
T
C
A
A
A
C
A
T
T
T
T
C
A
T
T
T
T
T
T
A
A
A
A
A
A
T
G
A
T
A
T
A
A
A
A
T
T
T
T
A
A
A
C
T
A
A
A
C
T
A
T
T
T
T
A
T
T
A
A
A
T
A
C
A
A
A
C
A
T
A
T
A
A
C
T
T
T
A
T
C
T
T
A

 
 
 
 
 
 
 
2
8
0
 
 
 
 
 
 
 
2
9
0
 
 
 
 
 
 
 
3
0
0
 
 
 
 
 
 
 
3
1
0
 
 
 
 
 
 
 
3
2
0
 
 
 
 
 
 
 
3
3
0
 
 
 
 
 
 
 
3
4
0
 
 
 
 
 
 
 
3
5
0
 
 
 
 
 
 
 
3
6
0

A
T
C
A
A
T
T
T
T
T
T
T
G
G
T
T
T
A
T
A
C
A
T
A
T
T
T
A
T
G
T
T
C
G
T
A
C
T
G
A
A
G
T
A
T
A
G
A
T
C
G
A
T
C
T
T
A
T
T
A
C
T
A
A
A
G
T
T
T
C
A
A
A
A
G
T
T
T
T
A
A
A
A
A
A
A
A
T
T
A

 
 
 
 
 
 
 
3
7
0
 
 
 
 
 
 
 
3
8
0
 
 
 
 
 
 
 
3
9
0
 
 
 
 
 
 
 
4
0
0
 
 
 
 
 
 
 
4
1
0
 
 
 
 
 
 
 
4
2
0
 
 
 
 
 
 
 
4
3
0
 
 
 
 
 
 
 
4
4
0
 
 
 
 
 
 
 
4
5
0

A
A
G
G
G
G
G
T
A
A
A
T
A
T
A
T
A
A
C
T
T
T
C
T
G
T
T
T
T
T
T
T
C
A
A
T
T
C
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
G
T
G
T
C
A
T
G
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T

 
 
 
 
 
 
 
4
6
0
 
 
 
 
 
 
 
4
7
0
 
 
 
 
 
 
 
4
8
0
 
 
 
 
 
 
 
4
9
0
 
 
 
 
 
 
 
5
0
0
 
 
 
 
 
 
 
5
1
0
 
 
 
 
 
 
 
5
2
0
 
 
 
 
 
 
 
5
3
0
 
 
 
 
 
 
 
5
4
0

En
d 

of
 D

dp
2 

or
i

>O
lig

o 
SP

60
.f2

a
X
b
a
I

T
T
A
T
T
T
C
T
T
C
A
A
T
A
G
G
T
A
T
T
G
A
A
A
T
G
A
C
C
T
C
C
G
T
T
T
T
T
A
A
T
A
A
A
A
A
G
T
A
T
A
T
A
T
T
T
G
T
G
C
T
C
G
T
C
T
A
G
A
A
T
C
C
C
A
T
A
C
T
A
C
A
T
T
A
A
A
A
T
A
T

 
 
 
 
 
 
 
5
5
0
 
 
 
 
 
 
 
5
6
0
 
 
 
 
 
 
 
5
7
0
 
 
 
 
 
 
 
5
8
0
 
 
 
 
 
 
 
5
9
0
 
 
 
 
 
 
 
6
0
0
 
 
 
 
 
 
 
6
1
0
 
 
 
 
 
 
 
6
2
0
 
 
 
 
 
 
 
6
3
0

T
T
G
T
A
T
A
T
C
A
A
T
C
A
G
A
A
A
T
T
T
A
A
A
T
T
A
A
A
T
T
G
T
T
T
T
T
T
T
T
T
T
C
A
C
A
C
A
C
C
C
A
C
A
C
A
C
T
A
A
T
T
T
A
C
C
C
C
A
T
T
T
T
T
T
A
C
A
T
T
T
C
T
C
A
T
A
T
A
A
A

 
 
 
 
 
 
 
6
4
0
 
 
 
 
 
 
 
6
5
0
 
 
 
 
 
 
 
6
6
0
 
 
 
 
 
 
 
6
7
0
 
 
 
 
 
 
 
6
8
0
 
 
 
 
 
 
 
6
9
0
 
 
 
 
 
 
 
7
0
0
 
 
 
 
 
 
 
7
1
0
 
 
 
 
 
 
 
7
2
0

A
A
T
T
A
T
T
T
A
T
T
G
T
A
C
A
T
T
G
T
T
C
A
A
T
A
T
T
C
A
T
T
C
A
C
A
C
A
T
T
A
A
C
A
C
A
C
T
T
T
C
A
A
C
T
C
A
A
T
T
A
T
T
T
T
T
T
T
T
T
C
C
A
A
A
A
A
A
A
C
A
A
T
A
A
T
A
T
A
T
A

 
 
 
 
 
 
 
7
3
0
 
 
 
 
 
 
 
7
4
0
 
 
 
 
 
 
 
7
5
0
 
 
 
 
 
 
 
7
6
0
 
 
 
 
 
 
 
7
7
0
 
 
 
 
 
 
 
7
8
0
 
 
 
 
 
 
 
7
9
0
 
 
 
 
 
 
 
8
0
0
 
 
 
 
 
 
 
8
1
0

T
A
T
A
C
A
C
T
G
T
G
A
G
A
A
T
T
T
T
C
T
A
T
T
A
A
T
A
G
C
G
A
T
A
G
A
A
A
A
A
A
A
T
T
T
T
A
T
T
T
T
C
A
A
A
C
A
C
A
C
T
C
C
C
A
A
C
A
C
A
C
A
A
G
C
A
T
A
T
G
A
A
A
A
A
A
C
T
C
A
C

 
 
 
 
 
 
 
8
2
0
 
 
 
 
 
 
 
8
3
0
 
 
 
 
 
 
 
8
4
0
 
 
 
 
 
 
 
8
5
0
 
 
 
 
 
 
 
8
6
0
 
 
 
 
 
 
 
8
7
0
 
 
 
 
 
 
 
8
8
0
 
 
 
 
 
 
 
8
9
0
 
 
 
 
 
 
 
9
0
0

A
C
C
A
A
T
T
A
T
A
A
T
T
T
G
T
A
A
A
A
C
A
T
A
G
A
A
C
A
A
A
T
T
T
A
A
T
A
A
T
T
A
T
T
T
T
T
T
A
T
T
A
A
A
T
T
G
T
A
T
T
A
T
T
T
T
T
T
T
T
T
A
T
T
A
T
T
T
A
T
T
T
A
T
T
T
T
T
T
A
T

6. Appendix



 
 
 
 
 
 
 
9
1
0
 
 
 
 
 
 
 
9
2
0
 
 
 
 
 
 
 
9
3
0
 
 
 
 
 
 
 
9
4
0
 
 
 
 
 
 
 
9
5
0
 
 
 
 
 
 
 
9
6
0
 
 
 
 
 
 
 
9
7
0
 
 
 
 
 
 
 
9
8
0
 
 
 
 
 
 
 
9
9
0

T
T
T
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
G
T
T
A
A
C
A
G
A
C
A
A
A
A
A
G
T
A
T
A
A
T
C
T
A
T
T
T
A
A
T
T
A
T
T
C
A
A
A
A
A
A
A
A
A
A
A
T
A
T
T
A
A
A
T
C
A
T
T
G
T
A
G
T
A
T
T
T
T
G

 
 
 
 
 
 
 
1
0
0
0
 
 
 
 
 
 
1
0
1
0
 
 
 
 
 
 
1
0
2
0
 
 
 
 
 
 
1
0
3
0
 
 
 
 
 
 
1
0
4
0
 
 
 
 
 
 
1
0
5
0
 
 
 
 
 
 
1
0
6
0
 
 
 
 
 
 
1
0
7
0
 
 
 
 
 
 
1
0
8
0

T
T
C
A
T
A
T
T
C
A
A
T
T
T
A
A
A
T
A
T
C
A
A
T
A
C
A
A
T
T
A
A
A
A
A
A
A
G
T
T
A
A
A
A
T
G
T
A
A
T
T
A
T
T
A
A
T
A
T
A
T
A
T
A
T
A
T
A
T
T
T
A
T
C
A
A
T
A
T
A
T
A
A
T
T
T
A
A
T
A
T

 
 
 
 
 
 
 
1
0
9
0
 
 
 
 
 
 
1
1
0
0
 
 
 
 
 
 
1
1
1
0
 
 
 
 
 
 
1
1
2
0
 
 
 
 
 
 
1
1
3
0
 
 
 
 
 
 
1
1
4
0
 
 
 
 
 
 
1
1
5
0
 
 
 
 
 
 
1
1
6
0
 
 
 
 
 
 
1
1
7
0

A
A
A
A
A
A
A
A
A
A
A
A
G
A
A
A
T
T
T
A
A
T
A
A
A
C
A
T
A
T
A
A
T
A
T
T
T
A
T
A
T
A
A
A
A
T
C
A
T
A
A
A
T
T
T
A
A
A
A
T
A
A
A
T
A
A
T
T
T
T
T
T
T
A
A
T
A
T
T
T
A
A
A
A
A
T
T
C
T
A
A

 
 
 
 
 
 
 
1
1
8
0
 
 
 
 
 
 
1
1
9
0
 
 
 
 
 
 
1
2
0
0
 
 
 
 
 
 
1
2
1
0
 
 
 
 
 
 
1
2
2
0
 
 
 
 
 
 
1
2
3
0
 
 
 
 
 
 
1
2
4
0
 
 
 
 
 
 
1
2
5
0
 
 
 
 
 
 
1
2
6
0

T
A
A
A
A
A
G
T
T
T
T
T
T
A
T
A
T
T
T
A
G
T
A
A
A
T
T
T
G
T
A
A
A
A
T
C
A
A
T
T
T
G
T
A
A
C
A
A
A
A
A
C
T
A
G
T
A
A
T
T
T
A
A
A
A
A
A
A
A
A
A
A
A
A
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
1
2
7
0
 
 
 
 
 
 
1
2
8
0
 
 
 
 
 
 
1
2
9
0
 
 
 
 
 
 
1
3
0
0
 
 
 
 
 
 
1
3
1
0
 
 
 
 
 
 
1
3
2
0
 
 
 
 
 
 
1
3
3
0
 
 
 
 
 
 
1
3
4
0
 
 
 
 
 
 
1
3
5
0

 
<O

lig
o 

SP
60

.r
2b

   
   

 S
P6

0/
 P

sA
 jo

in
T
G
A
A
G
A
T
T
T
T
A
T
C
A
T
T
A
T
T
A
A
T
T
G
C
C
T
T
A
T
T
A
T
C
A
C
T
C
T
T
A
A
C
A
T
A
T
G
C
A
T
T
A
G
C
A
T
C
A
C
C
A
A
T
C
C
T
C
G
G
T
T
A
C
T
G
G
A
A
A
A
T
T
A
A
A
G
G
T
C
T

O
lig

o 
Ps

A
si

g.
f1

 
 
 
 
 
 
 
1
3
6
0
 
 
 
 
 
 
1
3
7
0
 
 
 
 
 
 
1
3
8
0
 
 
 
 
 
 
1
3
9
0
 
 
 
 
 
 
1
4
0
0
 
 
 
 
 
 
1
4
1
0
 
 
 
 
 
 
1
4
2
0
 
 
 
 
 
 
1
4
3
0
 
 
 
 
 
 
1
4
4
0

E
nd

 o
f P

sA
 se

qu
en

ce
   

   
st

ar
t o

f G
ST

 se
qu

en
ce

 
C
G
T
T
C
A
A
C
C
T
A
C
T
C
G
T
C
T
T
C
T
T
T
T
G
G
A
A
T
A
T
C
T
T
G
A
A
G
A
A
A
A
A
T
A
T
G
A
A
G
A
G
C
A
T
T
T
G
T
A
T
G
A
A
C
G
T
G
A
T
G
A
A
G
G
T
G
A
T
A
A
A
T
G
G
C
G
T
A
A
C

 
 
 
 
 
 
 
1
4
5
0
 
 
 
 
 
 
1
4
6
0
 
 
 
 
 
 
1
4
7
0
 
 
 
 
 
 
1
4
8
0
 
 
 
 
 
 
1
4
9
0
 
 
 
 
 
 
1
5
0
0
 
 
 
 
 
 
1
5
1
0
 
 
 
 
 
 
1
5
2
0
 
 
 
 
 
 
1
5
3
0

A
A
A
A
A
A
T
T
T
G
A
A
T
T
A
G
G
T
T
T
A
G
A
A
T
T
T
C
C
A
A
A
T
C
T
T
C
C
T
T
A
T
T
A
T
A
T
T
G
A
T
G
G
T
G
A
T
G
T
T
A
A
A
T
T
A
A
C
A
C
A
G
T
C
T
A
T
G
G
C
C
A
T
C
A
T
A
C
G
T
T

 
 
 
 
 
 
 
1
5
4
0
 
 
 
 
 
 
1
5
5
0
 
 
 
 
 
 
1
5
6
0
 
 
 
 
 
 
1
5
7
0
 
 
 
 
 
 
1
5
8
0
 
 
 
 
 
 
1
5
9
0
 
 
 
 
 
 
1
6
0
0
 
 
 
 
 
 
1
6
1
0
 
 
 
 
 
 
1
6
2
0

 
 
 

o
l
d
 
m
u
t
a
t
i
o
n
 
i
n
 
G
S
T
 
c
o
r
r
e
c
t
e
d

<
O

lig
o 

gs
tA

89
.r

2
A
T
A
T
A
G
C
T
G
A
C
A
A
G
C
A
C
A
A
C
A
T
G
T
T
G
G
G
T
G
G
T
T
G
T
C
C
A
A
A
A
G
A
G
C
G
T
G
C
A
G
A
A
A
T
T
T
C
A
A
T
G
C
T
T
G
A
A
G
G
A
G
C
T
G
T
T
T
T
G
G
A
T
A
T
T
A
G
A
T
A

>O
lig

o 
G

ST
L9

9.
f1

 
 
 
 
 
 
 
1
6
3
0
 
 
 
 
 
 
1
6
4
0
 
 
 
 
 
 
1
6
5
0
 
 
 
 
 
 
1
6
6
0
 
 
 
 
 
 
1
6
7
0
 
 
 
 
 
 
1
6
8
0
 
 
 
 
 
 
1
6
9
0
 
 
 
 
 
 
1
7
0
0
 
 
 
 
 
 
1
7
1
0

6. Appendix

M M




C
G
G
T
G
T
T
T
C
G
A
G
A
A
T
T
G
C
A
T
A
T
A
G
T
A
A
A
G
A
C
T
T
T
G
A
A
A
C
T
C
T
C
A
A
A
G
T
T
G
A
T
T
T
T
C
T
T
A
G
C
A
A
G
C
T
A
C
C
T
G
A
A
A
T
G
C
T
G
A
A
A
A
T
G
T
T
C
G
A
A

 
 
 
 
 
 
 
1
7
2
0
 
 
 
 
 
 
1
7
3
0
 
 
 
 
 
 
1
7
4
0
 
 
 
 
 
 
1
7
5
0
 
 
 
 
 
 
1
7
6
0
 
 
 
 
 
 
1
7
7
0
 
 
 
 
 
 
1
7
8
0
 
 
 
 
 
 
1
7
9
0
 
 
 
 
 
 
1
8
0
0

 
 
G
A
T
C
G
T
T
T
A
T
G
T
C
A
T
A
A
A
A
C
A
T
A
T
T
T
A
A
A
T
G
G
T
G
A
T
C
A
T
G
T
T
A
C
C
C
A
T
C
C
T
G
A
T
T
T
C
A
T
G
T
T
A
T
A
C
G
A
T
G
C
T
C
T
T
G
A
T
G
T
T
G
T
T
T
T
A
T
A
C
A

 
 
 
 
 
 
 
1
8
1
0
 
 
 
 
 
 
1
8
2
0
 
 
 
 
 
 
1
8
3
0
 
 
 
 
 
 
1
8
4
0
 
 
 
 
 
 
1
8
5
0
 
 
 
 
 
 
1
8
6
0
 
 
 
 
 
 
1
8
7
0
 
 
 
 
 
 
1
8
8
0
 
 
 
 
 
 
1
8
9
0

 
>O

lig
o 

P1
74

G
ST

.f2
c

T
G
G
A
C
C
C
A
A
T
G
T
G
C
C
T
T
G
A
T
G
C
C
T
T
C
C
C
A
A
A
A
T
T
A
G
T
T
T
G
T
T
T
T
A
A
A
A
A
A
C
G
T
A
T
T
G
A
A
G
C
C
A
T
C
C
C
A
C
A
A
A
T
T
G
A
T
A
A
A
T
A
C
T
T
G
A
A
A
T
C

 
 
 
 
 
 
 
1
9
0
0
 
 
 
 
 
 
1
9
1
0
 
 
 
 
 
 
1
9
2
0
 
 
 
 
 
 
1
9
3
0
 
 
 
 
 
 
1
9
4
0
 
 
 
 
 
 
1
9
5
0
 
 
 
 
 
 
1
9
6
0
 
 
 
 
 
 
1
9
7
0
 
 
 
 
 
 
1
9
8
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
u
t
 
F
a
c
t
o
r
 
X
a

T
A
G
T
A
A
A
T
A
T
A
T
A
G
C
A
T
G
G
C
C
T
T
T
G
C
A
A
G
G
T
T
G
G
C
A
A
G
C
C
A
C
A
T
T
T
G
G
A
G
G
T
G
G
A
G
A
T
C
A
T
C
C
T
C
C
T
A
A
A
G
G
T
T
C
A
G
A
T
G
C
C
A
T
C
G
A
A
A
G
T

 
 

M
u
t
a
t
i
o
n
 
o
f
 
G
 
t
o
 
S

 
 
 
 
 
 
 
1
9
9
0
 
 
 
 
 
 
2
0
0
0
 
 
 
 
 
 
2
0
1
0
 
 
 
 
 
 
2
0
2
0
 
 
 
 
 
 
2
0
3
0
 
 
 
 
 
 
2
0
4
0
 
 
 
 
 
 
2
0
5
0
 
 
 
 
 
 
2
0
6
0
 
 
 
 
 
 
2
0
7
0

 
G
 
 
S
 
 
D
 
 
A
 
 
I
 
 
E
 
 
S

I
S
P
Y
 
e
p
i
t
o
p
e

 
<O

lig
o 

SP
96

T.
r1

a 
B
a
m
H
I

 
K
p
n
I

S
t
a
r
t
 
a
c
t
i
n
 
1
5

C
G
T
G
C
T
A
C
C
A
C
T
A
C
C
G
C
T
A
C
T
A
C
T
G
C
T
A
C
C
A
C
C
A
C
C
G
C
A
C
A
A
T
A
T
C
C
A
G
C
A
C
T
C
A
C
C
T
G
A
G
G
A
T
C
C
C
C
G
G
G
T
A
C
C
T
A
A
A
T
C
A
T
G
A
A
T
G
A
A
A

<
O
l
i
g
o
 
I
s
p
y
.
r
1
a

R
 
 
A
 
 
T
 
 
T
 
 
T
 
 
A
 
 
T
 
 
T
 
 
A
 
 
T
 
 
T
 
 
T
 
 
A
 
 
Q
 
 
Y
 
 
P
 
 
A
 
 
L
 
 
T
 
 
*
 
 
G
 
 
S
 
 
P
 
 
G
 
 
T

>
O
l
i
g
o
 
V
B
a
m
K
p
n

 
 
 
 
 
 
 
2
0
8
0
 
 
 
 
 
 
2
0
9
0
 
 
 
 
 
 
2
1
0
0
 
 
 
 
 
 
2
1
1
0
 
 
 
 
 
 
2
1
2
0
 
 
 
 
 
 
2
1
3
0
 
 
 
 
 
 
2
1
4
0
 
 
 
 
 
 
2
1
5
0
 
 
 
 
 
 
2
1
6
0

 
p
o
l
y
a
d
e
n
y
l
a
t
i
o
n
 
s
i
g
n
a
l

G
T
G
C
T
T
C
A
C
A
T
A
A
A
A
A
T
A
A
T
A
A
T
A
A
T
A
A
T
A
T
A
A
C
A
A
T
A
A
T
A
A
T
A
T
T
T
A
A
A
T
G
T
A
T
A
A
T
A
A
A
A
T
T
T
A
A
T
T
A
C
T
T
T
T
T
T
T
T
T
A
A
T
G
G
T
T
G
T
T
G

 
 
 
 
 
 
 
2
1
7
0
 
 
 
 
 
 
2
1
8
0
 
 
 
 
 
 
2
1
9
0
 
 
 
 
 
 
2
2
0
0
 
 
 
 
 
 
2
2
1
0
 
 
 
 
 
 
2
2
2
0
 
 
 
 
 
 
2
2
3
0
 
 
 
 
 
 
2
2
4
0
 
 
 
 
 
 
2
2
5
0

A
T
C
T
T
T
A
T
C
C
G
A
C
C
T
T
A
A
A
A
A
A
A
A
A
A
A
A
A
T
A
A
A
A
C
C
A
A
T
A
G
G
C
T
A
T
T
G
G
T
T
T
T
T
T
T
T
T
T
A
A
T
T
G
T
T
T
T
T
T
T
A
T
T
T
T
T
T
A
T
T
A
T
T
A
C
T
T
T
A
A

 
 
 
 
 
 
 
2
2
6
0
 
 
 
 
 
 
2
2
7
0
 
 
 
 
 
 
2
2
8
0
 
 
 
 
 
 
2
2
9
0
 
 
 
 
 
 
2
3
0
0
 
 
 
 
 
 
2
3
1
0
 
 
 
 
 
 
2
3
2
0
 
 
 
 
 
 
2
3
3
0
 
 
 
 
 
 
2
3
4
0

6. Appendix

M M


M M




T
T
A
T
C
A
T
T
T
T
T
T
A
A
A
T
T
A
C
A
A
A
A
A
A
A
A
T
T
A
A
A
A
A
T
C
C
A
G
A
T
A
T
T
A
A
G
G
T
A
T
T
T
G
C
A
C
T
A
G
T
G
C
T
T
T
A
A
C
G
T
T
A
A
A
A
T
T
T
G
A
A
A
A
A
A
A
A
A
A
A

 
 
 
 
 
 
 
2
3
5
0
 
 
 
 
 
 
2
3
6
0
 
 
 
 
 
 
2
3
7
0
 
 
 
 
 
 
2
3
8
0
 
 
 
 
 
 
2
3
9
0
 
 
 
 
 
 
2
4
0
0
 
 
 
 
 
 
2
4
1
0
 
 
 
 
 
 
2
4
2
0
 
 
 
 
 
 
2
4
3
0

A
A
A
T
T
A
A
T
A
A
T
T
T
T
A
C
C
C
T
T
T
A
T
G
G
G
T
A
A
A
C
G
A
T
T
C
T
C
A
C
A
T
A
T
A
A
T
A
C
A
A
T
C
T
C
C
A
T
G
A
A
A
A
G
A
T
C
C
A
A
A
G
G
C
C
A
G
C
A
A
A
A
G
G
C
C
A
G
C
A
A

 
 
 
 
 
 
 
2
4
4
0
 
 
 
 
 
 
2
4
5
0
 
 
 
 
 
 
2
4
6
0
 
 
 
 
 
 
2
4
7
0
 
 
 
 
 
 
2
4
8
0
 
 
 
 
 
 
2
4
9
0
 
 
 
 
 
 
2
5
0
0
 
 
 
 
 
 
2
5
1
0
 
 
 
 
 
 
2
5
2
0

A
A
G
G
C
C
A
G
G
A
A
C
C
G
T
A
A
A
A
A
G
G
C
C
G
C
G
T
T
G
C
T
G
G
C
G
T
T
T
T
T
C
G
A
T
A
G
G
C
T
C
C
G
C
C
C
C
C
C
T
G
A
C
G
A
G
C
A
T
C
A
C
A
A
A
A
A
T
C
G
A
C
G
C
T
C
A
A
G
T
C

 
 
 
 
 
 
 
2
5
3
0
 
 
 
 
 
 
2
5
4
0
 
 
 
 
 
 
2
5
5
0
 
 
 
 
 
 
2
5
6
0
 
 
 
 
 
 
2
5
7
0
 
 
 
 
 
 
2
5
8
0
 
 
 
 
 
 
2
5
9
0
 
 
 
 
 
 
2
6
0
0
 
 
 
 
 
 
2
6
1
0

A
G
A
G
G
T
G
G
C
G
A
A
A
C
C
C
G
A
C
A
G
G
A
C
T
A
T
A
A
A
G
A
T
A
C
C
A
G
G
C
G
T
T
T
C
C
C
C
C
T
G
G
A
A
G
C
T
C
C
C
T
C
G
T
G
C
G
C
T
C
T
C
C
T
G
T
T
C
C
G
A
C
C
C
T
G
C
C
G
C
T

 
 
 
 
 
 
 
2
6
2
0
 
 
 
 
 
 
2
6
3
0
 
 
 
 
 
 
2
6
4
0
 
 
 
 
 
 
2
6
5
0
 
 
 
 
 
 
2
6
6
0
 
 
 
 
 
 
2
6
7
0
 
 
 
 
 
 
2
6
8
0
 
 
 
 
 
 
2
6
9
0
 
 
 
 
 
 
2
7
0
0

T
A
C
C
G
G
A
T
A
C
C
T
G
T
C
C
G
C
C
T
T
T
C
T
C
C
C
T
T
C
G
G
G
A
A
G
C
G
T
G
G
C
G
C
T
T
T
C
T
C
A
T
A
G
C
T
C
A
C
G
C
T
G
T
A
G
G
T
A
T
C
T
C
A
G
T
T
C
G
G
T
G
T
A
G
G
T
C
G
T
T

 
 
 
 
 
 
 
2
7
1
0
 
 
 
 
 
 
2
7
2
0
 
 
 
 
 
 
2
7
3
0
 
 
 
 
 
 
2
7
4
0
 
 
 
 
 
 
2
7
5
0
 
 
 
 
 
 
2
7
6
0
 
 
 
 
 
 
2
7
7
0
 
 
 
 
 
 
2
7
8
0
 
 
 
 
 
 
2
7
9
0

 
G
C
T
C
C
A
A
G
C
T
G
G
G
C
T
G
T
G
T
G
C
A
C
G
A
A
C
C
C
C
C
C
G
T
T
C
A
G
C
C
C
G
A
C
C
G
C
T
G
C
G
C
C
T
T
A
T
C
C
G
G
T
A
A
C
T
A
T
C
G
T
C
T
T
G
A
G
T
C
C
A
A
C
C
C
G
G
T
A
A

 
 
 
 
 
 
 
2
8
0
0
 
 
 
 
 
 
2
8
1
0
 
 
 
 
 
 
2
8
2
0
 
 
 
 
 
 
2
8
3
0
 
 
 
 
 
 
2
8
4
0
 
 
 
 
 
 
2
8
5
0
 
 
 
 
 
 
2
8
6
0
 
 
 
 
 
 
2
8
7
0
 
 
 
 
 
 
2
8
8
0

G
A
C
A
C
G
A
C
T
T
A
T
C
G
C
C
A
C
T
G
G
C
A
G
C
A
G
C
C
A
C
T
G
G
T
A
A
C
A
G
G
A
T
T
A
G
C
A
G
A
G
C
G
A
G
G
T
A
T
G
T
A
G
G
C
G
G
T
G
C
T
A
C
A
G
A
G
T
T
C
T
T
G
A
A
G
T
G
G
T
G

 
 
 
 
 
 
 
2
8
9
0
 
 
 
 
 
 
2
9
0
0
 
 
 
 
 
 
2
9
1
0
 
 
 
 
 
 
2
9
2
0
 
 
 
 
 
 
2
9
3
0
 
 
 
 
 
 
2
9
4
0
 
 
 
 
 
 
2
9
5
0
 
 
 
 
 
 
2
9
6
0
 
 
 
 
 
 
2
9
7
0

G
C
C
T
A
A
C
T
A
C
G
G
C
T
A
C
A
C
T
A
G
A
A
G
G
A
C
A
G
T
A
T
T
T
G
G
T
A
T
C
T
G
C
G
C
T
C
T
G
C
T
G
A
A
G
C
C
A
G
T
T
A
C
C
T
T
C
G
G
A
A
A
A
A
G
A
G
T
T
G
G
T
A
G
C
T
C
T
T
G
A

 
 
 
 
 
 
 
2
9
8
0
 
 
 
 
 
 
2
9
9
0
 
 
 
 
 
 
3
0
0
0
 
 
 
 
 
 
3
0
1
0
 
 
 
 
 
 
3
0
2
0
 
 
 
 
 
 
3
0
3
0
 
 
 
 
 
 
3
0
4
0
 
 
 
 
 
 
3
0
5
0
 
 
 
 
 
 
3
0
6
0

T
C
C
G
G
C
A
A
A
C
A
A
A
C
C
A
C
C
G
C
T
G
G
T
A
G
C
G
G
T
G
G
T
T
T
T
T
T
T
G
T
T
T
G
C
A
A
G
C
A
G
C
A
G
A
T
T
A
C
G
C
G
C
A
G
A
A
A
A
A
A
A
G
G
A
T
C
T
C
A
A
G
A
A
G
A
T
C
C
T
T

 
 
 
 
 
 
 
3
0
7
0
 
 
 
 
 
 
3
0
8
0
 
 
 
 
 
 
3
0
9
0
 
 
 
 
 
 
3
1
0
0
 
 
 
 
 
 
3
1
1
0
 
 
 
 
 
 
3
1
2
0
 
 
 
 
 
 
3
1
3
0
 
 
 
 
 
 
3
1
4
0
 
 
 
 
 
 
3
1
5
0

T
G
A
T
C
T
T
T
T
C
T
A
C
G
G
G
G
T
C
T
G
A
C
G
C
T
C
A
G
T
G
G
A
A
C
G
A
A
A
A
C
T
C
A
C
G
T
T
A
A
G
G
G
A
T
T
T
T
G
G
T
C
A
T
G
A
G
A
T
T
A
T
C
A
A
A
A
A
G
G
A
T
C
T
T
C
A
C
C
T
A

 
 
 
 
 
 
 
3
1
6
0
 
 
 
 
 
 
3
1
7
0
 
 
 
 
 
 
3
1
8
0
 
 
 
 
 
 
3
1
9
0
 
 
 
 
 
 
3
2
0
0
 
 
 
 
 
 
3
2
1
0
 
 
 
 
 
 
3
2
2
0
 
 
 
 
 
 
3
2
3
0
 
 
 
 
 
 
3
2
4
0

G
A
T
C
C
T
T
T
T
A
A
A
T
T
A
A
A
A
A
T
G
A
A
G
T
T
T
T
A
A
A
T
C
A
A
T
C
T
A
A
A
G
T
A
T
A
T
A
T
G
A
G
T
A
A
A
C
T
T
G
G
T
C
T
G
A
C
A
G
T
T
A
C
C
A
A
T
G
C
T
T
A
A
T
C
A
G
T
G
A
G

 
 
 
 
 
 
 
3
2
5
0
 
 
 
 
 
 
3
2
6
0
 
 
 
 
 
 
3
2
7
0
 
 
 
 
 
 
3
2
8
0
 
 
 
 
 
 
3
2
9
0
 
 
 
 
 
 
3
3
0
0
 
 
 
 
 
 
3
3
1
0
 
 
 
 
 
 
3
3
2
0
 
 
 
 
 
 
3
3
3
0

G
C
A
C
C
T
A
T
C
T
C
A
G
C
G
A
T
C
T
G
T
C
T
A
T
T
T
C
G
T
T
C
A
T
C
C
A
T
A
G
T
T
G
C
C
T
G
A
C
T
C
C
C
C
G
T
C
G
T
G
T
A
G
A
T
A
A
C
T
A
C
G
A
T
A
C
G
G
G
A
G
G
G
C
T
T
A
C
C
A
T

 
 
 
 
 
 
 
3
3
4
0
 
 
 
 
 
 
3
3
5
0
 
 
 
 
 
 
3
3
6
0
 
 
 
 
 
 
3
3
7
0
 
 
 
 
 
 
3
3
8
0
 
 
 
 
 
 
3
3
9
0
 
 
 
 
 
 
3
4
0
0
 
 
 
 
 
 
3
4
1
0
 
 
 
 
 
 
3
4
2
0

C
T
G
G
C
C
C
C
A
G
T
G
C
T
G
C
A
A
T
G
A
T
A
C
C
G
C
G
A
G
A
C
C
C
A
C
G
C
T
C
A
C
C
G
G
C
T
C
C
A
G
A
T
T
T
A
T
C
A
G
C
A
A
T
A
A
A
C
C
A
G
C
C
A
G
C
C
G
G
A
A
G
G
G
C
C
G
A
G
C
G

 
 
 
 
 
 
 
3
4
3
0
 
 
 
 
 
 
3
4
4
0
 
 
 
 
 
 
3
4
5
0
 
 
 
 
 
 
3
4
6
0
 
 
 
 
 
 
3
4
7
0
 
 
 
 
 
 
3
4
8
0
 
 
 
 
 
 
3
4
9
0
 
 
 
 
 
 
3
5
0
0
 
 
 
 
 
 
3
5
1
0

T
C
A
G
A
A
G
T
G
G
T
C
C
T
G
C
A
A
C
T
T
T
A
T
C
C
G
C
C
T
C
C
A
T
C
C
A
G
T
C
T
A
T
T
A
A
T
G
T
T
G
C
C
G
G
G
A
A
G
C
T
A
G
A
G
T
A
A
G
T
A
G
T
T
C
G
C
C
A
G
T
T
A
A
T
A
G
T
T
T
G

 
 
 
 
 
 
 
3
5
2
0
 
 
 
 
 
 
3
5
3
0
 
 
 
 
 
 
3
5
4
0
 
 
 
 
 
 
3
5
5
0
 
 
 
 
 
 
3
5
6
0
 
 
 
 
 
 
3
5
7
0
 
 
 
 
 
 
3
5
8
0
 
 
 
 
 
 
3
5
9
0
 
 
 
 
 
 
3
6
0
0

6. Appendix



C
G
C
A
A
C
G
T
T
G
T
T
G
G
C
A
T
T
G
C
T
A
C
A
G
G
C
A
T
C
G
T
G
G
T
G
T
C
A
C
G
C
T
C
G
T
C
G
T
T
T
G
G
T
A
T
G
G
C
T
T
C
A
T
T
C
A
G
C
T
C
C
G
G
T
T
C
C
C
A
A
C
G
A
T
C
A
A
G
G
C

 
 
 
 
 
 
 
3
6
1
0
 
 
 
 
 
 
3
6
2
0
 
 
 
 
 
 
3
6
3
0
 
 
 
 
 
 
3
6
4
0
 
 
 
 
 
 
3
6
5
0
 
 
 
 
 
 
3
6
6
0
 
 
 
 
 
 
3
6
7
0
 
 
 
 
 
 
3
6
8
0
 
 
 
 
 
 
3
6
9
0

G
A
G
T
T
A
C
A
T
G
A
T
C
C
C
C
C
A
T
G
T
T
G
T
G
C
A
A
A
A
A
A
G
C
G
G
T
T
A
G
C
T
C
C
T
T
C
G
G
T
C
C
T
C
C
G
A
T
C
G
T
T
G
T
C
A
G
A
A
G
T
A
A
G
T
T
G
G
C
C
G
C
A
G
T
G
T
T
A
T
C

 
 
 
 
 
 
 
3
7
0
0
 
 
 
 
 
 
3
7
1
0
 
 
 
 
 
 
3
7
2
0
 
 
 
 
 
 
3
7
3
0
 
 
 
 
 
 
3
7
4
0
 
 
 
 
 
 
3
7
5
0
 
 
 
 
 
 
3
7
6
0
 
 
 
 
 
 
3
7
7
0
 
 
 
 
 
 
3
7
8
0

A
C
T
C
A
T
G
G
T
T
A
T
G
G
C
A
G
C
A
C
T
G
C
A
T
A
A
T
T
C
T
C
T
T
A
C
T
G
T
C
A
T
G
C
C
A
T
C
C
G
T
A
A
G
A
T
G
C
T
T
T
T
C
T
G
T
G
A
C
T
G
G
T
G
A
G
T
A
C
T
C
A
A
C
C
A
A
G
T
C
A

 
 
 
 
 
 
 
3
7
9
0
 
 
 
 
 
 
3
8
0
0
 
 
 
 
 
 
3
8
1
0
 
 
 
 
 
 
3
8
2
0
 
 
 
 
 
 
3
8
3
0
 
 
 
 
 
 
3
8
4
0
 
 
 
 
 
 
3
8
5
0
 
 
 
 
 
 
3
8
6
0
 
 
 
 
 
 
3
8
7
0

T
T
C
T
G
A
G
A
A
T
A
G
T
G
T
A
T
G
C
G
G
C
G
A
C
C
G
A
G
T
T
G
C
T
C
T
T
G
C
C
C
G
G
C
G
T
C
A
A
T
A
C
G
G
G
A
T
A
A
T
A
C
C
G
C
G
C
C
A
C
A
T
A
G
C
A
G
A
A
C
T
T
T
A
A
A
A
G
T
G
C

 
 
 
 
 
 
 
3
8
8
0
 
 
 
 
 
 
3
8
9
0
 
 
 
 
 
 
3
9
0
0
 
 
 
 
 
 
3
9
1
0
 
 
 
 
 
 
3
9
2
0
 
 
 
 
 
 
3
9
3
0
 
 
 
 
 
 
3
9
4
0
 
 
 
 
 
 
3
9
5
0
 
 
 
 
 
 
3
9
6
0

T
C
A
T
C
A
T
T
G
G
A
A
A
A
C
G
T
T
C
T
T
C
G
G
G
G
C
G
A
A
A
A
C
T
C
T
C
A
A
G
G
A
T
C
T
T
A
C
C
G
C
T
G
T
T
G
A
G
A
T
C
C
A
G
T
T
C
G
A
T
G
T
A
A
C
C
C
A
C
T
C
G
T
G
C
A
C
C
C
A
A

 
 
 
 
 
 
 
3
9
7
0
 
 
 
 
 
 
3
9
8
0
 
 
 
 
 
 
3
9
9
0
 
 
 
 
 
 
4
0
0
0
 
 
 
 
 
 
4
0
1
0
 
 
 
 
 
 
4
0
2
0
 
 
 
 
 
 
4
0
3
0
 
 
 
 
 
 
4
0
4
0
 
 
 
 
 
 
4
0
5
0

C
T
G
A
T
C
T
T
C
A
G
C
A
T
C
T
T
T
T
A
C
T
T
T
C
A
C
C
A
G
C
G
T
T
T
C
T
G
G
G
T
G
A
G
C
A
A
A
A
A
C
A
G
G
A
A
G
G
C
A
A
A
A
T
G
C
C
G
C
A
A
A
A
A
A
G
G
G
A
A
T
A
A
G
G
G
C
G
A
C
A

 
 
 
 
 
 
 
4
0
6
0
 
 
 
 
 
 
4
0
7
0
 
 
 
 
 
 
4
0
8
0
 
 
 
 
 
 
4
0
9
0
 
 
 
 
 
 
4
1
0
0
 
 
 
 
 
 
4
1
1
0
 
 
 
 
 
 
4
1
2
0
 
 
 
 
 
 
4
1
3
0
 
 
 
 
 
 
4
1
4
0

C
G
G
A
A
A
T
G
T
T
G
A
A
T
A
C
T
C
A
T
A
C
T
C
T
T
C
C
T
T
T
T
T
C
A
A
T
A
T
T
A
T
T
G
A
A
G
C
A
T
T
T
A
T
C
A
G
G
G
T
T
A
T
T
G
T
C
T
C
A
T
G
A
G
C
G
G
A
T
A
C
A
T
A
T
T
T
G
A
A
T

 
 
 
 
 
 
 
4
1
5
0
 
 
 
 
 
 
4
1
6
0
 
 
 
 
 
 
4
1
7
0
 
 
 
 
 
 
4
1
8
0
 
 
 
 
 
 
4
1
9
0
 
 
 
 
 
 
4
2
0
0
 
 
 
 
 
 
4
2
1
0
 
 
 
 
 
 
4
2
2
0
 
 
 
 
 
 
4
2
3
0

G
T
A
T
T
T
A
G
A
A
A
A
A
T
A
A
A
C
A
A
A
T
A
G
G
G
G
T
T
C
C
G
C
G
C
A
C
A
T
T
T
C
C
C
C
G
A
A
A
A
G
T
G
C
C
A
C
C
T
G
A
C
G
T
C
T
A
A
G
A
A
A
C
C
A
T
T
A
T
T
A
T
C
A
T

 
 
 
 
 
 
 
4
2
4
0
 
 
 
 
 
 
4
2
5
0
 
 
 
 
 
 
4
2
6
0
 
 
 
 
 
 
4
2
7
0
 
 
 
 
 
 
4
2
8
0
 
 
 
 
 
 
4
2
9
0
 
 
 
 
 
 
4
3
0
0

6. Appendix



Curriculum vitae

Personal data

Name : Marcus Mreyen

Date of birth : 27.09.1969

Place of birth : Essen

Parents : Manfred and Edeltraud Mreyen née Rurainski

School Education

Primary school : 1975 to 1979

Secondary school : 1979 to 1986

Occupational career

Apprenticeship : 1986 to 1989 (Chemielaborant an der Universität Dortmund)

Matriculation : 1989 to 1990 (Fachoberschule)

Study : 1990 to 1996 (Studium an der Bergische Universität Wuppertal)

degree : 02.12.1996 Diplom Chemiker

   (The practical part of the thesis (Diplomarbeit) was done at the

   Macquarie University and at the Macquarie University Centre

    for Analytical Biotechnology (MUCAB), Sydney, NSW 2109,

    Australia)

Studying for a doctorate : 1997 to present    (Bergische Universität Wuppertal)

  (Practical parts of the PhD thesis were mostly done at the

   Macquarie University, the Australian Proteome Analysis Facility

  (APAF) and Proteome Systems Limited (PSL), Sydney, NSW,

   Australia)


