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Part I

I N T R O D U C T I O N : T H E H I G G S , T H E L H C , A N D
T H E T O O L B O X

In this introductory part we will briefly discuss motiva-
tions for studying Higgs Physics in general and more par-
ticularly at the Large Hadron Collider, as well as some
theoretical concepts and tools needed to make predictions
for observables in this context.





1
H I G G S P H Y S I C S

All known fundamental forces of nature — except for gravity — are
described with remarkable precision by the Standard Model (SM) of
particle physics:1 the strong force, described by QCD based on the
gauge group SU(3), as well as the electromagnetic and the weak force,
incorporated in a common electroweak theory [3] with initial SU(2)×
U(1) gauge symmetry. Among these three forces the weak force has
unique and especially interesting properties, which are highlighted
in the first section.

1.1 properties of the weak interaction

Since the weak force is mediated by massive W and Z bosons, the cor-
responding generators of the gauge transformation must be broken
at the scale of MZ ≈ 91 GeV. Explicit breaking would result in a non-
renormalizable and, which is even more severe, unitarity-violating
theory. As it is well known, this is solved in the SM by using sponta-
neous symmetry breaking (SSB) via the Higgs mechanism, where the
gauge symmetry is not a symmetry of the vacuum state of the Higgs
field. This brings along the prediction of the Higgs boson as a new
massive, fundamental scalar particle, whose mass is however not pre-
dicted. Whether this mechanism was realized in nature was unclear
until the discovery of a boson with a mass of about 125 GeV at the
Large Hadron Collider (LHC)2 that seems to have the properties of the
Higgs boson within the current experimental limits.

Another unique feature of the weak interaction is inherent to its
coupling to fermions. As opposed to the strong and electromagnetic
interaction it is chiral, i.e. left and right-chiral fermions couple differ-
ently to W and Z bosons. As a consequence, fermion masses would
break the gauge symmetry, too, so that also the chiral symmetry must
be broken spontaneously by the Higgs field rather than explicitly.
Thus each massive fermion should interact with the Higgs boson with
the strength being proportional to its mass.

1It is assumed that the reader is familiar with the SM and the basics of Quantum
Field Theory (QFT). For pedagogical introductions to the former see Ref. [1] and to
the latter Ref. [2], for example.

2The LHC, located at the CERN site near Geneva, Switzerland, in a tunnel with
a circumference of about 27 kilometers, is the largest particle collider in the world.
During its first major run from 2010 to 2012, proton-proton collisions were studied at
record-breaking 3.5 TeV and later 4 TeV per beam at the two multi-purpose detectors
ATLAS and CMS. Currently, the LHC is shut down for maintenance and is scheduled
to start operating at presumably 6.5 TeV per beam in 2015.

3



4 higgs physics

A closer look at the Yukawa couplings of the Higgs H to fermions
fields ψi, given by

LSM 3 Yijψ̄iψjH, (1.1)

reveals that it is not only the origin of the fermion masses but also
of the mixing between the three generations, which shows up in
charged-current interactions mediated by W bosons, and is therefore
the basis for Flavor Physics, i.e. the description of phenomena where
flavor quantum numbers are not conserved. Besides, this provides the
only known source of CP violation in the SM.3

1.2 the higgs at the lhc

Having pointed out the important theoretical role of the Higgs bo-
son, let us now discuss its phenomenological properties with special
regard to searches at the LHC. After a few general remarks on cross
sections at hadron colliders, the main results for Higgs boson produc-
tion and decay rates within the SM will be reviewed shortly, followed
by a discussion of observations by the LHC experiments, both from
the time of the discovery of the new boson in July 2012 and more
recent results.

1.2.1 Interlude: Hadronic Processes

The basic quantities in High Energy Physics (HEP) experiments are
count rates of particles, measured either as total rates or as functions
of additional observables like energy, momentum, or charge of the
detected particles. Such a rate can be written as

dN
dt

= L · σ, (1.2)

where technical parameters of the experiment like the intensity of the
beams are absorbed in the luminosity L and the physical properties
of the system are contained in the cross section σ.

If the colliding particles are hadrons made up of partons, i.e. quarks
and gluons, the calculation of the cross section is only possible using
several steps of approximation. The first step consists in separating
the soft physics that takes place at low energy and determines the
structure of the hadron from the hard interaction that is responsible
for the production of heavy particles. This is expressed in the fac-
torization formula for hadronic cross sections,4 which reads for the

3There is also the possibility of CP violation in the strong interaction (induced
by the so-called θ term proportional to the contraction of the gluonic field-strength
tensor and its dual), which has however not been observed yet. The puzzle why this
term is absent or highly suppressed is known as the strong CP problem.

4For further reading see Chapter 7 of Ref. [4], for example.
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production of a heavy particle C in the collision of hadrons of type A
and B plus any hadronic final state X:

σAB→C+X

(
M2

s

)
=

∑
i,j∈{q,q̄,g}

∫1
0

dx1
∫1
0

dx2 fi/A(x1)fj/B(x2)

·
∑
n>0

σ̂ij→C+n partons

(
M2

ŝ

) ∣∣∣∣
ŝ=x1x2s

, (1.3)

where
√
s is the center-of-mass energy and M the mass of particle

C, which is required to be much larger than ΛQCD, the scale where
the strong coupling αS becomes of order one. The functions fi/A(x)
are known as parton distribution functions (PDFs) and describe the
probability density to find a parton i with a momentum fraction x
within the hadron A. σ̂ denotes the hard cross section on the parton
level, which can be calculated in perturbation theory, i.e. as a series in
powers of αS, which is small only at sufficiently high scales. The PDFs

have to be determined by fits to experimental data. Since in practice
one can calculate only a finite number of terms in the perturbative
expansion, this is another approximation.5 Note that the center-of-
mass energy relevant for the partonic process, given by

√
ŝ =
√
x1x2s,

varies between M and
√
s. Thus hadron colliders actually probe a

large spectrum of energies and are ideal for the discovery of new par-
ticles. Since the probability densities for the parton momentum frac-
tion decrease rapidly, high partonic energies are strongly suppressed,
however.

In fact, Eq. (1.3) still does not cover all the features of hadronic
interactions. In reality also the final state involves hadrons instead
of partons. Color-charged particles in the final state lose their en-
ergy by successively radiating off partons and finally form hadrons.
This final-state radiation, and similarly initial-state radiation as well,
can be taken into account by parton showers. They apply in an in-
termediate range, where perturbation theory is in principle still ap-
plicable, but truncating the series at a fixed order is no longer a
good approximation.6 The formation of hadrons is dominated by non-
perturbative effects and can be described only by phenomenological
models. Hard scattered partons show up in detectors as more or less
localized bunches of hadrons, known as jets. Within perturbation the-
ory one can at least specify the number of jets and roughly their
kinematics, using so-called jet functions. In this thesis however, we
restrict ourselves to inclusive quantities, where simply any additional
hadronic final state is accepted.

5How one arrives at a series expansion for the hadronic cross section will be
explained in the next chapter.

6For details see Ref. [5], for example.



6 higgs physics

1.2.2 Higgs Production and Decay in the Standard Model

In the following the most important results for Higgs boson produc-
tion and decay rates within the SM are discussed.7

1.2.2.1 Higgs Production

g

g

t, b

H

(a) Gluon fusion

q

q′

H

W,Z

W,Z

(b) Vector boson fusion

q̄

q H

W,Z

(c) Higgs strahlung

g

g

H

t

t̄

(d) Associated with tt̄

Figure 1: Important Higgs production channels at hadron colliders in the
SM.

The most important production modes of a SM Higgs at hadron
colliders are shown in Fig. 1 for the LHC at its latest center-of-mass en-
ergy of

√
s = 8 TeV. Since the strength of the interaction of a particle

with the Higgs boson is proportional to its mass, all of these produc-
tion channels involve heavy quarks or vector bosons, either solely as
virtual particles or on their mass shell. In the so-called gluon-fusion
mode shown in Fig. 1a, the Higgs couples to two initial gluons via
a virtual heavy quark loop, where the largest contribution is from
the top quark. The vector boson fusion and Higgs strahlung channels
(see Figs. 1b and 1c, respectively) involve the Higgs coupling to vec-
tor bosons. In the former channel, the Higgs is radiated off a virtual
vector boson exchanged between two incoming quarks, and in the lat-
ter off a vector boson produced by an annihilating quark-anti-quark
pair. Associated production with a top-anti-top-quark pair is some-
what similar to gluon fusion, except that the top-quark line does not
form a closed loop but is part of the final state.

In case of the LHC it turns out that the gluon fusion production
mode has by far the largest cross section, as illustrated in Fig. 2. Al-

7For a detailed discussion of state-of-the-art results see Ref. [6].
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Figure 2: Production cross sections of the SM Higgs at the LHC with a center-
of-mass energy of 8 TeV; from Ref. [7].

most over the complete mass range it is at least one order of magni-
tude larger than the vector boson fusion channel. At low values of
MH, Higgs strahlung is at the same order of magnitude as vector
boson fusion, but decreases faster with increasing mass, so it is rele-
vant for low to moderate Higgs masses only. The same is true for the
associated production with a tt̄ pair, whose cross section is almost
another magnitude smaller than the one of Higgs strahlung.

1.2.2.2 Higgs Decays

Significant for the experimental sensitivity is the combination of the
production and the subsequent decay of the Higgs. If the decay width
ΓH is small compared to the mass, it can be calculated simply as

σpp→H→X = σpp→H ·BRH→X +O

(
ΓH
MH

)
, (1.4)

where the branching ratio is defined in terms of the partial and total
decay widths as

BRH→X :=
ΓH→X
ΓH

. (1.5)

This is known as the narrow-width approximation.
In Fig. 3a the branching ratios for the individual decay channels

for the Higgs boson are plotted as a function of MH. The low mass
range is dominated by the decay into a bb̄ pair with a fraction of
up to around 80%. At about 135 GeV H → WW(∗) takes the lead
and reaches a fraction of almost 1 between 160− 180 GeV. It remains
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Figure 3: Branching ratio (left) and total width (right) of the SM Higgs; from
Ref. [7].

dominant in the high mass range, where the sub-leading channels
H → ZZ and H → tt̄ reach fractions at the order of 10% each. The
total decay width is shown in Fig. 3b. As a function ofMH it increases
over several orders of magnitude as more and more channels open up.
While for low masses MH . 150 GeV it is below 10−2 GeV, it is at the
order of MH for high masses MH & 500 GeV.

1.2.3 Higgs Search and Discovery

Before the launch of the LHC the Higgs boson had escaped discovery
for over 40 years since the postulation of the Higgs mechanism in
1964 [8, 9, 10, 11]. The experiments at LEP8 had been able to set a lower
limit on the Higgs mass of MH > 114.4 GeV at 95% confidence level
(CL) [12], and the Tevatron9 was only beginning to become sensitive
to signals of the Higgs. Thus the discovery of the Higgs was one of
the main goals of the LHC.

As described above, the Higgs boson has a variety of production
and decay modes. Deciding on which channel is the most sensitive,
not only the branching ratio of a certain decay is important but also
how well it can be distinguished from the background. Since the LHC

is a hadron collider, hadronic final states usually suffer from large
backgrounds. In addition, as already mentioned, these states show up

8The Large Electron-Positron Collider (LEP) was a particle collider at the CERN
site located in the tunnel where today is the LHC. It was operated from 1989 to 2000,
reaching a maximum center-of-mass energy of 209 GeV, and allowed to study the
properties of W and Z bosons with high precision.

9The Tevatron was a circular proton-anti-proton accelerator located at Fermilab
near Batavia, Illinois, and in operation from 1983 to 2011 with a maximum energy of
about 1 TeV per beam. A great success was the discovery of the top quark in 1995.
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as jets, whose energy cannot be determined to satisfactory precision.
In contrast, leptons and photons allow for a better reconstruction of
the energy and the momentum of the decayed particles so that cleaner
signals can be expected.

For these reasons in the low mass range the obvious channel H →
bb̄ is not suitable unless there are additional final state particles to
help identify the signal. In the dominant production mode, gluon
fusion, there are no such extra particles, so that the most significant
channel is H→ γγ, even though the corresponding branching ratio is
at the order of 10−3. The decays into vector bosons, which dominate
for larger Higgs masses, can also provide clean signals, if the bosons
decay leptonically, i.e Z → l+l− and W → lν, where l ∈ {e,µ}. In
the case of W bosons, there is however the limitation that neutrinos
cannot be detected directly, but only from the fact that the transverse
momenta10 of the other final state particles do not add up to zero,
which brings in additional uncertainties.
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Figure 4: γγ invariant mass spectrum published in July 2012 from ATLAS
(left, from Ref. [13]) and CMS (right, from Ref. [14]).

On July 4th, 2012, CERN announced the observation of a new par-
ticle, mainly due to a clearly visible resonance in the invariant mass
spectrum of γγ pairs at about 126 GeV, observed by both ATLAS and
CMS (see Fig. 4a and Fig. 4b, respectively). Combined with signals
seen in other search channels, mostly from H → ZZ, both experi-
ments reported an excess large enough to claim discovery.

10The transverse momentum pT is the projection of the momentum in the plane
perpendicular to the beam axis. This is a useful quantity in collider physics, because
the momentum component parallel to beam axis of the underlying partonic system
is not known.
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1.2.4 Measuring Higgs properties

After the discovery of the new boson the natural question to ask is
whether it has all the properties of the SM Higgs or whether there
are deviations on some level of precision. Its basic quantities fit: the
predicted spin-parity of JP = 0+ is favored by the data [15, 16], and
the observed mass of MH = 125 GeV11 is not too far away from the
range around about 100 GeV expected by fits of electroweak precision
data [19].

) µSignal strength (
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Figure 5: Higgs signal strength with full 2011 and 2012 data from ATLAS
(left, from Ref. [20]) and CMS (right, from Ref. [21]).

The next step is to go more into detail by comparing the observed
signal to the SM prediction. Current results for the Higgs signals in
various channels normalized to the SM expectation are shown in Fig. 5.
Whereas there are mentionable deviations in individual channels the
overall picture is consistent with the hypothesis that the new boson
is the SM Higgs. On the other hand, there is still plenty room for
extensions of the SM that involve a SM-like Higgs. Therefore, besides
the ongoing search for further new particles, the investigation of all
the available Higgs channels to the highest possible precision will be
the top challenge for the next run of the LHC.

11The Higgs mass has already been determined with remarkably good preci-
sion. Using the channels with the best resolution H → γγ and H → ZZ → 4l,
ATLAS has measured MH = 125.36 ± 0.37 ± 0.18 GeV [17] and CMS MH =

125.03+0.26
−0.27

+0.13
−0.15 GeV [18], where the former uncertainties are statistical and the

latter systematic, respectively.
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1.3 the higgs and new physics

Given the special role of the Higgs field and boson in the understand-
ing of electroweak scale physics it does not come as a surprise that
many ideas for beyond the Standard Model (BSM) physics are some-
how related to Higgs physics, some of which shall be sketched in
this section. This makes it worthwhile to understand the theoretical
properties of the Higgs boson precisely — in the SM and beyond —
to be able to find possible deviations from the SM when comparing to
experimental results.

1.3.1 Sensitivity to Higher Scales

Although the SM is a self-consistent QFT (however not up to arbitrary
scales, see below), it is clear that it cannot be fundamental from the
mere fact that gravity is not included. Hence it makes sense to regard
it rather as an effective theory with a limited range of validity up
to some scale ΛNP, where one expects new physics (NP) phenomena.
Since the SM — extended by right-handed neutrinos — is successful
in describing all known phenomena up to the electroweak scale, and
effects of quantum gravity should become important at the Planck
scale MP at the latest, it must be MZ < ΛNP < MP.

A well-known reason to believe that NP should exist not far above
the electroweak scale is known as the hierarchy problem and due to
the fact that the Higgs is a fundamental scalar. As is now established
experimentally, the Higgs mass is at the electroweak scale. However,
quantum corrections should actually drive the Higgs to higher scales
because there is — in contrast to fermion and vector boson masses
— no reason that these corrections have to be proportional to the
mass itself, i.e. ∆M2

H ∝ M2
H. If there is any large scale Λ entering

the problem, there will be a term proportional to its square, and thus
∆M2

H ∝ Λ2. This could be a cut-off scale introduced to regulate the
ultraviolet (UV) divergencies of the theory12 or, even if a regulariza-
tion method without such a scale is used, the mass of a heavy particle
that is part of a more complete theory coupling directly or indirectly
to the SM particles. In any case, the Higgs mass is highly sensitive to
physics at higher scales, which must exist at MP at the latest, requir-
ing the introduction of a fine-tuned counterterm to keep MH small.13

A well-studied solution is to embed the SM into a supersymmet-
ric14 theory like the Minmal Supersymmetric Standard Model (MSSM),
where every fermionic (bosonic) SM particle is related to a bosonic
(fermionic) super-partner with – apart from the spin – identical quan-

12More on regularization of infinities in Section 2.2.
13This is explained well in Ref. [22].
14For a pedagogical introduction to Supersymmetry (SUSY) see Refs. [22] and [23],

for example.
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tum numbers. The corrections of particles and their super-partner to
scalar masses (partly) compensate each other so that the quadratic
sensitivity is canceled.15 In other words SUSY can serve as a protective
symmetry for the scalar masses as the chiral symmetry does for the
fermion and gauge symmetry for vector boson masses.

It is clear that SUSY is not realized exactly in nature but broken at a
scaleMSUSY, because no equal-mass super-partners of the SM particles
are observed. As a consequence, one expects ∆M2

H ∝ M2
SUSY + · · · .

Hence MSUSY should not be much larger than MZ lest the fine-tuning
problem reappears. However, no super-partners have been observed
until now.

Another at least imaginable way out may be that there is no NP be-
tween the electroweak and the Planck scale and the coupling between
the Higgs and gravity is such that it does not effect the Higgs mass
for some reason we do not understand yet.

The sensitivity of the Higgs boson to higher scales can also have
positive aspects. For example we know that there cannot be a fourth
generation of the same kind because the production cross section for
gg→ H is independent of the quark mass running in the loop in the
limit of very large masses16 and the observed signal strength is in
agreement with the three-generation SM.

Another even more speculative hint of a connection of the Higgs
to higher scales comes from a very different direction, namely Neu-
trino Physics. From the observation of neutrino oscillations we know
that neutrinos must have small but non-zero masses. This could be in-
corporated into the SM by simply introducing right-handed neutrino
fields and Yukawa terms as for generating the masses of the up-type
quarks. However, this does neither explain why neutrino masses are
so small, nor is it known whether neutrinos are described accurately
as Dirac fermions. Since they are electrically neutral and colorless
they might as well be their own antiparticles, so they would have to
be understood as Majorana fermions. If this is the case and we still
insist that their masses be generated by the Higgs mechanism, we are
forced to introduce a dimension-five operator to describe the interac-
tion between the Majorana neutrino N and the Higgs field:

L 3 yN
Λ
N̄HHN. (1.6)

Since this interaction is non-renormalizable it is valid up to the scale
Λ, where it has to be replaced by a deeper theory.

However, as evidence of NP is still lacking, one may wonder what
the maximum value for Λ is without running into consistency issues
such as vacuum instability when the running quartic self coupling of

15For this cancellation it is essential that fermionic loops get a minus sign due to
anti-commutation instead of commutation relations whereas bosonic loops do not
and that the couplings of the super-partners are related by SUSY.

16cf. Section 4.2
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the Higgs becomes negative so that the Higgs potential is no longer
bounded from below. The answer to this question depends critically
on the Higgs and the top quark mass. The larger the Higgs mass
is, the larger the initial value for the Higgs self coupling must be
and thus the larger is the scale where the vacuum becomes unsta-
ble and NP must occur at the latest. Recent next-to-next-to-leading
order (NNLO) results [24] show that this coupling becomes negative
between 108 − 1018 when the relevant parameters are varied by three
standard deviations and that absolute stability up to the Planck scale
is excluded for MH < 126 GeV at 98% CL.

On the other hand, if unknown particles existed that couple strongly
enough to the Higgs boson and are light enough, they would be
visible in exotic decays. Weakly-interacting particles like Dark Mat-
ter (DM) candidates could be seen in invisible Higgs decays. Conse-
quently the Higgs can be sensitive to physics below MZ as well.

1.3.2 Extended Higgs Sector

NP could also be connected immediately to Higgs physics. It is well
possible that there exists simply more than one Higgs multiplet. The
central constraint on a possible extended Higgs sector is given by the
ρ parameter [25], which is defined as

ρ :=
M2
W

cos2 θwM2
Z

, (1.7)

where θw is the weak mixing angle. Since the experimental value
is very close to unity,17 this must be respected by possible extended
theories.

It can be shown that only doublets and some exotic higher repre-
sentations of SU(2) are possible . The minimally possible extension
is the Two-Higgs-Doublet Model (2HDM), where the assumed two
Higgs doublets lead to five physical Higgs bosons. A phenomenolog-
ical study of Higgs strahlung in the 2HDM will be given in Chapter 5.
In supersymmetric extensions of the SM two Higgs doublets are re-
quired. Hence hints of the existence of additional Higgs bosons may
be considered first hints that SUSY could be realized in nature.

17Deviations to unity can be understood as quantum corrections, which will be
the subject of Section 8.3.





2
P E RT U R B AT I V E C A L C U L AT I O N S

The goal of this chapter is to outline the basic concepts as well as
some useful techniques and tools applied in this thesis in perturbative
calculations for observables at hadron colliders. Besides, it also serves
the purpose of fixing some notation for the main parts of this thesis.

2.1 matrix elements from feynman diagrams

In the following the relation of cross sections to Feynman diagrams
will be recapped.1 To describe scattering processes in the framework
of QFT the basis quantity to compute is simply the overlap of the
final state f with the initial state i. In experiments the initial and final
states are typically characterized only by the four momenta of the
colliding and scattered particles and are represented in theory rather
by asymptotic states with definite momenta in the distant past and
future, respectively. If we consider the scattering of two particles A
and B with momenta pA and pB to a final state of n particles with
momenta p1, · · · ,pn, we can write

〈f|i〉 = 〈p1, · · · ,pn|S|pA,pB〉, (2.1)

which defines the so-called S matrix. It can be represented in terms of
the interaction part of the Hamiltonian HI as a Dyson series:

S = T exp
[
−i

∫∞
−∞ dtHI

]
, (2.2)

where T denotes the time-ordering operator. Using HI = −
∫

d3xLI,
where LI is the interaction part of the Lagrangian, this can be rewrit-
ten in a manifestly Lorentz invariant way:

S = T exp
[
i

∫
d4xLI

]
. (2.3)

We do not need all the information from S. To separate configura-
tions where initial and final states are the same, one introduces the
T matrix, from which, in turn, one can factorize a delta function rep-
resenting overall momentum conversation:

S = 1+ iT, (2.4a)

〈p1, · · · ,pn|iT|pA,pB〉 = (2π)4δ(4)
(
pA + pB −

∑
pf

)
· iM(pA,pB, {pf}). (2.4b)

1This section is based on Ref. [2], in particular Chapter 4.

15
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The relevant information on the scattering process is contained in the
invariant matrix element M.

As already mentioned in Section 1.2.1, the central observable we
wish to compute is the cross section σ. Its differential dσ is related to
the absolute square of M in the case of n final state particles via

dσ =
1

F
|M(pA,pB, {pf})|

2 dPSn(pA + pB), where (2.5a)

F = 2EA2EB|vA − vB|, (2.5b)

EA,B and vA,B denote energy and velocity of the colliding particles,
respectively, and

dPSn(P) =

(∏
f

∫
d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)

(
P−
∑
f

pf

)
(2.6)

is the Lorentz-invariant n-particle phase space. The total cross section
can be calculated by integrating over dPSn:

σ =

∫
n

dσ . (2.7)

It can be instructive to perform this integration only partially to ob-
tain kinematical distributions and/or to restrict it to certain kinemat-
ical regions in order to increase the comparability to experimental
results.

Another observable of interest for HEP is the decay rate Γ of an
unstable particle. In analogy to Eq. (2.5) it is given by

dΓ =
1

2mA
|M(pA, {pf})|

2 dPSn(pA) (2.8)

for the decay of a particle with mass mA and momentum pA into an
n-particle final state.

The calculation of M is a major challenge. In perturbation theory it
is obtained as an expansion of the right hand side of Eq. (2.3) in terms
of small couplings using free-particle states defined in the unper-
turbed theory for the external particles in the evaluation of Eq. (2.1).
This procedure is equivalent to calculating the corresponding Feyn-
man diagrams based on the Feynman rules.2 One can write:

iM(pA,pB, {pf}) ∝
∑

connected, amputated

(
Feynman diagrams

in momentum space

)
.

(2.9)

Diagrams that are not fully connected contribute to the 1 in Eq. (2.4a),
hence they are neglected. Amputating the diagrams means to cut off

2Unless stated otherwise, we will use the conventions of Ref. [2] throughout this
work.
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corrections to the external legs, which should not be regarded as part
of the scattering process but rather of the external states transform-
ing from the free to the interacting theory. This is stated precisely in
the Lehmann-Symanzik-Zimmermann-reduction formula, which also
fixes the constant in Eq. (2.9) as will be taken up later.

In this way one obtains a perturbation series for M in terms of the
coupling constants. As we will calculate solely QCD corrections in this
thesis, we will write only the dependence on the strong coupling gs
(or rather αS = g2s

4π ) explicitly:

M =
∑
l>0

(αS,0

π

)l
M(l). (2.10)

The subscript 0 indicates that this is the bare coupling, which still has
to be replaced by the measurable renormalized coupling. Accordingly,
this yields a series expansion for the cross section, which we write as

σ = αkS,0

∑
l>0

(αS,0

π

)l
σ
(l)
0 , k > 0, (2.11)

where we have factorized the dependence of the cross section on αS,0

at leading order (LO). Going to higher orders in the perturbative ex-
pansion increases the number and complexity of the diagrams that
have to be evaluated dramatically as more and more closed-loop mo-
menta have to be integrated over.

2.2 regularization of infinities

The integrals over loop and final-state momenta often involve diver-
gencies of different kinds. Loop integrations may exhibit singulari-
ties for large loop momenta (UV divergencies), small loop momenta
(infrared (IR) divergencies) and integrable singularities at thresholds.
Since final state momenta are naturally cut off by the available en-
ergy, integrating them can only induce IR divergencies. It is clear that
infinities are acceptable only in intermediate terms and should can-
cel in physical quantities. To this end, they must be regulated in a
consistent way to obtain an unambiguous result.

An obvious approach to regulate UV divergencies is to introduce
an upper cutoff Λ on the loop momenta. This can be useful for cer-
tain considerations, e.g. to classify integrals according to their degree
of divergency: If the result behaves like ln (Λ), it is called logarithmi-
cally divergent and in the case of polynomial behavior ∼ Λn linearly,
quadratically, etc. divergent.

In practice, however, a different method has turned out to be most
useful, namely Dimensional Regularization (DR). It was introduced by
’t Hooft and Veltman in 1972 [26] and is based on the observation
that integrals can be made convergent if the number of space-time
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dimensions is altered. For example, a logarithmically UV-divergent
integral would be convergent in less than four dimensions.

On the integrand level, all momenta, or alternatively only loop mo-
menta, are interpreted as d dimensional objects. The Dirac algebra
has to be extended to d dimensions as well:

{γµ,γν} = 2gµν, µ = 0, · · · ,d− 1. (2.12)

Of course one cannot expect to find a four-dimensional representation
for each d, but nevertheless the trace of the unit matrix is usually
kept to be equal to four. Although the d-dimensional integral itself
is only well-defined for positive integer d, its result is interpreted
as the analytic continuation to arbitrary complex d. Then one can
analyze the behavior close to four dimensions. Writing d = 4 − 2ε,
divergencies show up as poles of the form 1

εk
, k = 1, · · · , 2L, where L

denotes the number of loops.
A conceptual advantage of DR is the fact that gauge symmetries are

in principle respected, which is essential especially in the SM. As a
consequence, for instance, it is ensured that Ward identities are valid
during all steps of the calculation. A complication arises, however, if
axial-vector or pseudoscalar currents are involved. This is because the
continuation of γ5, which is an intrinsically four-dimensional object,
is problematic. The original proposition by ’t Hooft and Veltman was
to use

γ5 = iγ
0γ1γ2γ3, (2.13)

which results in mixed commutation and anti-commutation relations:

{γµ,γ5} = 0 µ = 0, 1, 2, 3, (2.14a)

[γµ,γ5] = 0 µ = 4, · · · ,d− 1. (2.14b)

An equivalent and more practical alternative we will pursue through-
out this thesis is to write

γ5 =
i

4!
εµνρσγ

µγνγργσ (2.15)

and to perform the contraction with the epsilon tensor after a finite
result has been obtained so that one can safely return to d = 4. A good
testing ground for consistency of the definition of γ5 is the anomalous
chiral symmetry breaking known as the ABJ anomaly [27]. While the
result is correct at one-loop order, it has to be fixed by hand in multi-
loop calculations [28].

The IR divergencies appearing in loop and phase-space integrations
can be treated by DR as well. However, here the number of dimensions
needs to be larger than four to arrive at a convergent integral. Despite
of this, one can use DR for UV and IR divergencies at the same time.

Whereas we will use DR exclusively in the first main part of this
thesis, from Chapter 6 on we will switch to Four-Dimensional Regu-
larization (FDR), a recently introduced alternative approach.
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2.3 renormalization

A problem of quantum field theory is the fact that the relation be-
tween observable quantities and their theoretical correspondence is
changed by the interaction of the theory itself, which is fixed in the
renormalization procedure.3 If this is possible with a finite number
of renormalization parameters, as is the case for the SM, the theory is
called renormalizable.

In perturbation theory, these parameters have to fixed be order by
order. We write

Xbare = ZXX, (2.16a)

ZX = 1+

∞∑
k=1

(αS
π

)k
Z
(k)
X (2.16b)

for the renormalization of a quantity X.
In QCD calculations, when DR is used, the modified minimal sub-

traction (MS) scheme is common, where only the poles and a univer-
sal combination of ln(4π) and Gamma-Euler γE are subtracted. In
this scheme the renormalization of the strong coupling gs, for exam-
ple, reads

Zg = 1+
αS
π

(
4πµ2

eγEµ2R

)ε(
−
11

6
CA +

2

3
TRnf

)
1

4ε
+O

(
α2S
)

,

(2.17)

where TR = 1
2 and CA = 3 are QCD color factors, and nf denotes

the number of active quark flavors. µ denotes the auxiliary scale in-
troduced in the definition of the loop integrals (as for example in
Section A.1.1), and µR is the renormalization scale.4 Since the bare
coupling does not depend on µR, the renormalized one will. The run-
ning of αS = g2s

4π is determined by the renormalization group equa-
tion (RGE) obtained from evaluating

0 = µR
∂

∂µR
Z2gαS. (2.18)

The mass M of a particle is usually defined as the pole of the prop-
agator when the momentum goes on-shell. The corresponding mass
is known as the pole mass and for a quark is given by

Z
pole
M = 1−

αS
π
CF

[
3

4ε
+ 1−

3

4
ln
(
M2

µ2

)]
+O

(
α2S,0

)
, (2.19)

where CF = 4
3 . The residue of the pole Z2 is essential as well and iden-

tical to Zm at this order. By definition the pole mass is independent of

3For this section see also Ref. [2].
4In the rest of this work we will consistently drop the ln(4π) and γE terms .
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µR if expressed in terms of the renormalized coupling. However, since
free quarks do not exist, it is doubtful whether this should be consid-
ered an observable quantity, especially for light quarks, or rather a
parameter of the theory so that one might as well renormalize it in
the MS scheme:

ZMS
M = 1−

αS
π
CF

3

4ε
+O

(
α2S
)

. (2.20)

Analogously to the running of the coupling the MS mass will be scale
dependent.

Gluons and massless quarks are massless to all orders thanks to
gauge and chiral symmetry, respectively, so there is no mass param-
eter to be renormalized. However, the residue of the pole at momen-
tum squared equals zero changes. For the on-shell renormalization of
the gluon one has

Z3 = 1−
∑
q

αS
π
TR

[
1

3ε
−
1

3
ln

(
M2
q

µ2

)]
+O

(
α2S
)

, (2.21)

where the sum is over all massive quarks. Massless quarks do not
contribute at this order in αS because the corresponding one-loop
corrections to the gluon propagator are scaleless for vanishing exter-
nal momentum and thus vanish in DR.5 For the same reason it is

Z2 = 1+O
(
α2S
)

(2.22)

for massless quarks.
Now we are ready to fix the constant in Eq. (2.9) to relate M to

Feynman diagrams: For each external particle the square root of the
residue from the corresponding on-shell renormalization, i.e.

√
Z2 in

case of a quark and
√
Z3 in case of a gluon, has to be multiplied to

the sum of diagrams.
As mentioned in the last section DR does not account for chiral

symmetry properly beyond NLO. This can be compensated by a finite
renormalization [28]:

ZP
5 = 1− 2

αS
π
CF +O

(
α2S
)

, (2.23a)

ZA
5 = 1−

αS
π
CF +O

(
α2S
)

, (2.23b)

which, if necessary, has to be included in M for the case of a pseu-
doscalar or axial-vector, respectively.

For color-charged external particles one should always sum over
the color indices of final state particles and average over those of
initial state particles. Since we will exclusively consider unpolarized
cross sections in this work, we will do the same for the spin degrees

5This is a consequence of regulating IR and UV divergencies simultaneously in
DR and not distinguishing the corresponding poles in ε.
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of freedom, and denote the properly summed/averaged matrix ele-

ment squared by |M|
2. Using this notation we arrive at the UV-finite,

unpolarized cross section in terms of renormalized parameters as a
series of αS:

σ =
1

F

∫
|M|

2dPS

= αkS(µR)
∑
l>0

(
αS(µR)

π

)l
σ(l)(µR). (2.24)

In principle σ is independent of µR. If, however, the series is truncated
at a certain order N there will be a dependence on the renormaliza-
tion scale proportional to αN+1

S . Often the influence of higher order
terms is estimated by the influence of varying the scale µR around a
central value.

2.4 infrared singularities

In general, the cross section (2.24) obtained from squaring the UV-
renormalized matrix element can still contain IR divergencies from
the integration over loop and phase-space momenta, indicating that
it is not yet a proper observable.

For example configurations with and without an additional gluon
in the final state cannot be distinguished in the limit where the gluon
becomes soft, i.e. its energy vanishes. Such configurations have to be
combined to obtain an IR-finite result. The amplitude for the emission
of a soft gluon often tends to infinity, i.e. the phase-space integration
diverges, which will be canceled by an IR divergency appearing in
the integration over a closed loop involving an extra gluon. However,
this cancellation is complete only if the gluon is radiated of a final
state particle. Initial state radiation causes an additional complication
as will be discussed in the following subsection.

Afterwards, we will discuss at the NLO level how the cancellation
of IR divergencies between contributions with extra gluon radiation
(real corrections) and those with an extra gluon propagator (virtual
corrections) can be organized despite the fact that they appear at dif-
ferent stages of the calculation.



22 perturbative calculations

2.4.1 Mass Factorization

Now we specialize the discussion to hadronic cross sections.6 Recall-
ing Eq. (1.3), which more precisely reads

σAB→C+X

(
M2

s

)
=

∑
i,j∈{q,q̄,g}

∫1
0

dx1
∫1
0

dx2 fi/A(x1,µF)fj/B(x2,µF)

·
∑
n>0

σ̂ij→C+n partons

(
M2

x1x2s
,µ2F

)
, (2.25)

where σ̂ describes the hard scattering to produce the final state C of
invariant massM2 � ΛQCD and fi/A(x) gives the probability to find a
parton i within the hadron A carrying a fraction x of the momentum.
Similarly as for the renormalization procedure, the factorization is
defined at scale µF, the factorization scale, which we have omitted
previously. Whereas the dependence on µF is given by the Alarelli-
Parisi-splitting functions Pab [30], which describe the probability for
a parton b to emit or split into a parton a,

µF
∂

∂µF
fa/A(x,µF) =

∑
b

∫1
x

dyPab(y,αS(µF))fb/A(x/y,µF),

(2.26)

the initial conditions cannot be calculated from first principles and
have to be determined from fits to experimental data.

The partonic cross section σ̄ that is obtained from Feynman dia-
grams contains not only this hard scattering we are interested in, but
also soft and collinear configurations7 that cannot be treated in per-
turbation theory and have to be replaced by the proper low energy
behavior. To this end one factorizes the renormalized partonic cross
section as well, yielding

σ̄ab→C+partons

(
M2

s

)
=

∑
i,j∈{q,q̄,g}

∫1
0

dx1
∫1
0

dx2 Γi/a(x1,µF)Γj/b(x2,µF)

·
∑
n>0

σ̂ij→C+n partons

(
M2

x1x2s
,µ2F

)
, (2.27)

6For this subsection see also Ref. [29].
7By soft configuration it meant that the energy of a massless external particle

vanishes, and by collinear that the momenta of two such particles become parallel.
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where Γij are known explicitly in terms of the splitting functions,
which in the MS scheme reads8

Γij(x) = δijδ(1− x) −
1

2ε

(
4πµ2

eγµ2F

)ε
αS
π
P
(0)
ij (x) +O

(
α2S
)

, (2.28)

and absorbs the remaining 1
ε poles resulting from IR divergencies

in σ̄. One can solve Eq. (2.27) for the hard scattering cross section σ̂
order by order in αS, which yields a finite result that can be inserted
in Eq. (2.25) to calculate the hadronic cross section. Whereas at LO σ̄

and σ̂ are identical, at higher orders convolutions involving splitting
functions have to taken into account. We will not show this explicitly
because in this thesis only the NLO cases will be required, which is
included in the method discussed in the next subsection.

2.4.2 Dipole Subtraction

Up to NLO QCD the hard partonic cross section for an n particle final
state can be written as

σ̂ = σ̂LO + σ̂NLO, (2.29a)

σ̂LO =

∫
n

dσB , (2.29b)

σ̂NLO =

∫
n

dσV +

∫
n+1

dσR +

∫
n

dσC , (2.29c)

where dσB denotes the differential Born cross section, proportional
to the LO approximation of the matrix element squared for the de-
sired final state, dσV the virtual correction, obtained from the NLO

term of the same (renormalized) quantity, dσR the real corrections,
given by the leading term of the matrix element squared involving
an additional parton, and dσC the collinear counterterm, accounting
for the difference between σ̂ and σ̄ at NLO.

The idea of the subtraction method is to define a local counterterm
dσA that

• approaches dσR in the peculiar soft and collinear limits so that
dσR − dσA is finite and thus integrable in four dimensions,

• can be integrated easily over the phase space of the additional
parton so that

∫
1 dσA has born kinematics and explicitly can-

cels 1ε poles in dσV ,

• and, ideally, is universal so that the analytical integration can
be performed in full generality.

8As for MS renormalization we show the ln(4π) and γE terms only this once
explicitly.
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In formulas, this reads

σ̂ =

∫
n

dσV +

∫
n+1

dσR +

∫
n

dσC ,

=

∫
n

(
dσV +

∫
1

dσA + dσC
) ∣∣∣∣
ε=0

+

∫
n+1

(
dσR

∣∣
ε=0

− dσA
∣∣
ε=0

)
. (2.30)

The remaining phase-space integrals can then be evaluated numeri-
cally.

A straight-forward way to find suitable universal counterterms sys-
tematically is the Dipole Subtraction method [31], where dσA is given
by

dσA =
∑

dipoles

dσB ⊗ dVdipoles , (2.31)

where ⊗ indicates connection in spin and color space in this case.
In the limit, where two partons i and j become collinear or one

of them soft, the singular terms of the matrix element squared are
shown to behave like the sum over dipoles

|Mn+1|
2 ∼
∑
k6=,i,j

Dij,k, (2.32)

where the sum is over all color-charged external particles other than
i and j. The dipole Dij,k is connected to a Born-like matrix element,
where i and j are merged to a single parton in the presence of par-
ton k, and a universal splitting operator Vij,k. The momenta for this
Born-like matrix element are expressed in terms of the n + 1 origi-
nal ones in such a way that momentum conservation holds and all
transformed partons are on-shell. The counterterm dσA is then con-
structed by adding up such dipole sums for every peculiar region
of the phase space. Possible restrictions on the phase space have to
be implemented separately for dσ R and dσA in the evaluation of∫
n+1 dσ R − dσA because they have to be applied to the transformed

momenta in the case of dσA .
The piece that has to be added to the virtual corrections can be

expressed as follows:∫
n+1

dσA +

∫
n

dσC =

∫
n

dσB ⊗ (I+K+ P). (2.33)

The insertion operator I is connected to dσB in spin and color space
but has the same kinematics and cancels all the poles of dσV . The
K and P terms are the finite remainders of the collinear counterterms
and correspond to configurations where the momentum p of an initial
state parton is replaced by xp. The momentum fraction x has to be
integrated over in addition to the n particle phase-space integration.
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2.5 asymptotic expansions

For multi-scale problems analytic expressions for amplitudes are of-
ten very hard to obtain at higher loop orders. In such cases it can
be helpful to restrict oneself to certain limits, where for example one
scale is larger than all the others. This can be systematically evaluated
using the method of asymptotic expansions [32, 33].

We will restrict the discussion to the case of a large mass.9 Suppose
we are interested in the behavior of a Feynman integral in the limit
where one internal mass M is larger than any other scale Λ, i.e. we
seek for an expansion in Λ2

M2 . The question is how one can reproduce
this series by an expansion before the integration in order to simplify
the calculation.

Since loop momenta can take arbitrary values, one generally cannot
just expand all the propagators in terms of the large mass. Instead,
the region where a loop momentum is smaller than or of the same
order of the large mass have to be distinguished. The expansion of
the propagators is then only performed with respect to quantities that
are small. This does not yield a disjoint separation of the integration
region but it can be shown that the remaining integrals combine to
scaleless tadpoles that vanish in DR.

The procedure how to find the contributions of the different cases
is most easily memorized graphically. Take a subgraph that contains
at least all the lines involving the large mass, Taylor-expand the cor-
responding integral assuming all external momenta of the subgraph
to be small, and insert the result into the remaining diagram, which
is called co-subgraph and obtained by shrinking the lines of the sub-
graph to a point. The sum over all pairs of subgraphs and co-sub-
graphs will reproduce the correct asymptotic behavior in the limit
where Λ2

M2 is small.

t −→ t ×

+ t ×

Figure 6: Asymptotic expansion of a double-box integral. The dotted lines
indicate that the corresponding external momentum is assumed to
be small in the expansion.

9For a detailed review see Ref. [34].
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As an example Fig. 6 shows the expansion of a diagram we will
need to evaluate in Chapter 4. Originally a five-scale problem, the
calculation is simplified dramatically by taking the top-quark mass
to be the largest scale of the problem. For the first term the complete
diagram is taken to be the subgraph, i.e. both loop momenta are not
smaller thanMt and only the external momenta are considered small.
This results in a two-loop vacuum diagram, which poses only a one-
scale problem, and a tree-level diagram. The second contribution is
obtained by taking only the top-quark loop as subgraph. Expanding
this subgraph in terms of the external as well as the loop momentum
running through the gluon arc, leaves us with a one-loop vacuum
integral. The corresponding co-subgraph is a massless one-loop dia-
gram that depends on all the external momenta but on Mt.

2.6 program setup

Performing the methods described in this chapter is complex and re-
quires an efficient combination of suitable programs. In the following
the default setup used for calculations throughout this work will be
described briefly.

The first step is to find all the Feynman diagrams for a specific
problem. For this task we use the program qgraf [35], which auto-
matically generates all the (fully connected) diagrams for given in
and out states at a certain loop order based on a model, i.e. the parti-
cle content and interaction structure of the theory. Further restrictions
on the diagrams to be generated can be made, e.g. to eliminate cor-
rections on external legs. Needless to say, this procedure has to be
carried out separately for virtual and real corrections and in hadronic
collisions for each partonic subchannel.

Next the package q2e/exp [36, 37] is run. The program q2e serves
as an interface between qgraf and exp. On the one hand it assigns
masses to the internal lines completing the topology information10

on each graph. On the other hand it generates the mathematical ex-
pression belonging to each diagram by inserting the Feynman rules.

Then the program exp tries to match the diagrams to known topolo-
gies. If necessary, asymptotic expansions can be taken into account
in order to break diagrams down to pairs of simpler sub- and co-
subgraphs. The topologies to be used have to be specified in a spe-
cific topology selection file, including the information which topology
shall be handled by which integration routine later on.

All subsequent analytic manipulations are performed using the
computer algebra program FORM [38]. After evaluation of fermion
traces, expansion of certain propagators in case of asymptotic expan-

10A certain topology is defined by the number of internal and external lines, the
number of loops as well as the detailed distribution of masses and momenta.
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sions, and possible further steps scheduled by the user, the corre-
sponding integration routine is called depending on the topology.

After performing the asymptotic expansions one is often left with
massive vacuum and massless diagrams as was described in the pre-
ceding section. The former can be treated with MATAD [39] for the
case of one non-zero mass up to three loops. The complexity of the
latter depends not only on the number of loops but also on the num-
ber of the external legs. Massless three-point integrals with one mas-
sive external leg up to two loops can be calculated with the program
mint [40]. For massless one-loop integrals with up to four external
legs, one or two of them massive, we have developed the routine
tribox, which is presented in a bit more detail in Section A.1.4.





Part II

H I G G S S T R A H L U N G AT T H E L H C : S TA N D A R D
M O D E L A N D B E Y O N D

This part is about Higgs strahlung at the LHC. After a short
introductory chapter, we will focus on two aspects: NLO

QCD effects to the gluon-induced sub-channel gg → HZ

and secondly a study of Higgs strahlung in a simple ex-
tension of the SM, namely the 2HDM, as an example of how
NP could show up in this channel.





3
H I G G S S T R A H L U N G AT T H E L H C : I N T R O D U C T I O N

As pointed out in Chapter 1, after the discovery of a Higgs boson it
is essential to learn about this particle as much as possible to under-
stand whether it has all properties of the SM Higgs boson. This applies
particularly to the various production and decay channels predicted
by the SM, including the associated production of a Higgs boson with
a weak gauge boson, i.e. pp→ HV , where V ∈ {W±,Z}. Motivation to
study this channel, which is also known as Higgs strahlung, in detail
will be given in this chapter, supplemented by an overview of the var-
ious contributions to the cross section at higher orders in the strong
coupling.

3.1 motivation

At the Tevatron pp̄ → HV with H → bb̄ was the most promising dis-
covery channel for low Higgs masses.1 At the LHC Higgs strahlung
turns out to be harder to access experimentally because the expected
signal-to-background ratio is smaller compared to other channels,
however not hopeless. To improve this, it was proposed to consider
HV production with a highly boosted Higgs boson [43], i.e. to require
the transverse momentum of the Higgs to be large.

The main advantage that Higgs strahlung has to offer is the extra
vector boson in the final state, which provides a clean signal if decay-
ing into leptons. This allows searches for Higgs decays that will be
impossible to see if the Higgs is produced alone.2 The most important
example is H → bb̄, but also generic BSM searches for exotic Higgs
decays into invisible particles [44, 45], such as DM candidates, should
be mentioned.

Recalling from Fig. 2 that the cross section for Higgs strahlung
drops relatively fast with increasing Higgs mass, the low value of
about 125 GeV is fortunate. Clearly SM searches for HV production
will mostly use the dominant decay mode for this mass value, namely
H→ bb̄. Although experiments have only started to become sensitive
to this channel,3 prospects are good that Higgs strahlung may help to

1The latest analysis shows evidence for this channel with a local significance of
2.8 standard deviations at MH = 125 GeV [41]. For the latest combination of Higgs
searches at the Tevatron see Ref. [42].

2To be more precise: in association with soft jets only.
3Whereas CMS has already observed an excess of 2.1 standard deviations corre-

sponding to a signal of 1± 0.5 times the SM expectation [46], ATLAS has only been
able to set an upper limit on the cross section times branching ratio of 1.4 times the
SM prediction (at 95% CL) for the bb̄ channel [47].

31
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complete the picture of the observed Higgs boson in the future. For
this purpose precise knowledge of the cross section is essential. In
Chapter 4 we will present a calculation of NLO QCD effects to a par-
ticular sub-channel to HZ production, which is intended to increase
the reliability of the prediction for the cross section. In addition it is
desirable to understand the possible impact of BSM physics. As an
example for such NP effects, Chapter 5 will examine the influence of
an extended Higgs sector on Higgs strahlung in the framework of the
2HDM.

3.2 contributions to the cross section

q̄

q H

W,Z

(a)

q̄

q H

W,Z

(b)

t, b

H

Z

(c)

t, b

H

Z

Z∗

(d)

q̄

q H

W,Z

t

(e)

q̄

q H

Z

t

(f)

Figure 7: Exemplary Feynman diagrams for different contributions to
HV production.

Example diagrams for the different contributions relevant in the
SM are shown in Fig. 7. At LO, a quark-antiquark pair annihilates and
produces a virtual vector boson, just like in the Drell-Yan process
pp → V∗, which then decays into an on-shell vector boson and a
Higgs (see Fig. 7a). Since neither the vector nor the Higgs boson are
color-charged, QCD corrections from diagrams like in Fig. 7b, for ex-
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ample, do not affect the decay V∗ → HV and can thus be reduced to
those for the Drell-Yan process. One can write

σHV ,DY =

∫
dq2

dΓ V∗(q2)→HV
dq2

· σpp→V∗(q2)+X, (3.1)

where q is the momentum of the intermediate vector boson. For this
kind of contributions, NLO [48] and later NNLO results [49] (using the
results of Ref. [50, 51]) were obtained, amounting to about 30% of the
LO prediction for the total cross section.

Up to NLO QCD, only Drell-Yan-like contributions occur, but at
NNLO new channels open up. The most important one is initiated
by gluons that couple to a Higgs and a Z boson via a virtual heavy
quark loop (see Figs. 7c and 7d) and were first studied in Ref. [52]
and included in Ref. [49]. As these diagrams have no Drell-Yan corre-
spondence, it is their squared sum which enters the cross section at
order α2S. This term, denoted as σggHZ in the following, contributes
around 5% to the total cross section at the LHC, depending on the
center-of-mass energy. The perturbative uncertainty induced by the
dependence on the renormalization and factorization scale of this
channel is relatively large, leading to a higher scale dependence of
the total cross section of around 2% than with HW production, where
it is below 1% [53]. This is the main motivation to study this partic-
ular contribution at NLO QCD [54], which will be presented in the
following chapter.

Diagrams containing Yukawa couplings also exist with quarks in
the initial state. Consider a quark-antiquark pair that annihilates to
produce a vector boson involving a virtual or real gluon line with
a quark-loop insertion. If the Higgs is radiated off the quark loop
instead of off the vector boson, the diagram will not be Drell-Yan-
like, as shown in Fig. 7e, for example. A mentionable effect should
be expected from the heaviest quarks only, which is why we will
restrict the discussion to top-quark loops in the following. In the case
of HZ production, the Z boson, being electrically neutral, can as well
be attached to the top-quark loop (see Fig. 7f). The interference of
both types of diagrams with the corresponding tree-level Drell-Yan-
type diagram yields a contribution to the cross section of order λtα2S,
which we label σtop I or σtop II, respectively. These effects have been
studied in Ref. [55] and shown to be at the order of 1-3% with respect
to the LO contribution.

This completes the NNLO QCD contributions to Higgs strahlung.
However, also NLO electroweak (EW) corrections are numerically im-
portant and decrease the total cross section by about 5-10% [56]. At
NLO, EW effects can be assumed to factorize from the QCD corrections
and written as a correction factor 1 + δEW acting on the Drell-Yan
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term [57]. Summing up all the contributions, the NNLO QCD + NLO

EW prediction for the total cross section is given by

σHV = (1+ δEW)σHV ,DY + σtop I + δVZ
(
σggHZ + σtop II

)
, (3.2)

as implemented in the public version of the program vh@nnlo [49,
58]. Effects of soft gluon resummation have been studied in Ref. [59]
and are negligible for the total cross section, reinforcing the excellent
behavior of the perturbative series for the Drell-Yan part. Differential
results are available at NNLO QCD [60, 61] and NLO EW [62] as well.

3.3 the HW/HZ ratio

Having in mind primarily the Drell-Yan-like contributions (see Figs. 7a
and 7b) with differences appearing only at NNLO, the following idea
may sound surprising: The ratio RWZH := σHW

σHZ
is possibly an in-

teresting observable to search for deviations from the SM [63]. In-
deed, any modification of the SM couplings that acts uniformly on
the HWW and HZZ couplings will simply cancel in the ratio. How-
ever, two aspects should be kept in mind.

Firstly, the gg → HZ channel, which constitutes the major differ-
ence between the two sorts of Higgs strahlung, is far from marginal
although it is an NNLO contribution. As we will see in Chapter 4,
it receives large radiative corrections. Furthermore it is sensitive to
quark Yukawa couplings (see Fig. 7c) as well as to the ZZH coupling
(Fig. 7d) so that it behaves very differently from the Drell-Yan part
in extended theories. We will elaborate on this in Chapter 5, where
Higgs strahlung in the 2HDM will be studied and the ratio RWZH will
play a central role.

Secondly, the similarity of the HW and HZ channels could in fact
turn out to be advantageous as systematic uncertainties cancel in the
ratio. On the theoretical side, this should be the case for the uncer-
tainties due to inexact knowledge of the PDFs and αS . As an example
for an experimental source of uncertainty that might be significantly
reduced in the ratio one should mention the limited efficiency in the
identification of b quarks stemming from the decay H → bb̄.

To sum up, the differences in HW and HZ production are more
profound than one may think at first sight and can be quantified in
the ratio RWZH, which could turn out to be a valuable probe for
deviations from the SM.
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In this chapter a study of NLO QCD effects in gluon-induced Higgs
strahlung will be presented.1 Since the exact determination of the
virtual corrections requires the evaluation of massive double-box di-
agrams, which is hardly possible with current calculational tools,
we restrict ourselves to the limit of infinite top-quark and vanish-
ing bottom-quark mass. Technically the calculation in this effective
theory is performed using the method of asymptotic expansions.2 By
this means the problem is reduced to the evaluation of one-loop, two-
loop vacuum, and massless two-loop triangle diagrams. The latter
can even be avoided by a suitable choice of gauge.

After motivating this study in the first section, we will start by
discussing the details and consequences of employing the effective
theory at LO in Section 4.2. Then we move on to NLO in Section 4.3,
showing details of the evaluation of the virtual and real corrections as
well as numerical results for the perturbative correction factor. Finally
we conclude in Section 4.4.

4.1 motivation

As already mentioned in the previous chapter, the scale dependence
of the gg → HZ contribution leads to a larger uncertainty on the
cross section for HZ production compared to HW production. Since
this contribution is separately gauge invariant as well as UV and IR-
finite, one can think of it as an independent channel known only to
LO accuracy rather than a piece of the NNLO calculation. Hence it
makes sense to consider NLO QCD corrections to this channel, which
are formally of the same order as next-to-next-to-next-to-leading or-
der (N3LO) corrections to the Drell-Yan terms, in order to arrive at an
equally reliable prediction for HZ production. As discussed in Sec-
tion 3.1, this is phenomenologically desirable to fully understand the
properties of the new Higgs boson once enough data has been col-
lected by the experiments at the LHC.

It is instructive to draw an analogy to the well-studied process
gg → H. There the perturbative correction factor (K factor) defined
by

KNnLO :=
σNnLO

σLO , n = 1, 2, 3, · · · , (4.1)

1The ideas and results of this chapter have been published previously in Ref. [54].
2cf. Section 2.5
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is large (KNLO
gg→H ≈ 2) [64]. Notably, this is larger than expected from

the scale uncertainty of the LO prediction. Only at NNLO the pertur-
bative series stabilizes and the error bands overlap [51]. In view of
the close similarity of the two processes,3 which is manifest in the
identical color structure and the fact that both are induced by heavy
quark loops, there is thus good reason to believe that the corrections
to gg→ HZ may be similarly large, and that the error obtained from
scale variation of the LO result may underestimate the effect of miss-
ing higher order corrections. Then, following this analogy, the NLO

calculation should yield a more reliable result.

4.2 general strategy and leading-order results

Since the process gg→ HZ is loop-induced already at LO just as gg→
H, higher order calculations are especially challenging. As mentioned
previously the calculation is simplified enormously by switching over
to an effective theory obtained from taking the limit Mt → ∞ and
Mb → 0. In this section we will explore this effective theory for gg→
HZ at LO for a start. After motivating the optimal gauge for this task,
we will discuss the behavior of the various contributions in this limit,
followed by a numerical analysis of the LO cross section.

4.2.1 Choice of Gauge

In the context of electroweak symmetry breaking, one often chooses
the physical or unitarity gauge, in which the Goldstone bosons are
absorbed by the W± and Z bosons. Whereas this is helpful to under-
stand that the theory indeed describes massive gauge bosons and also
to prove the unitarity of the theory, different choices of the gauge can
be useful in practical calculations. The Goldstone bosons then appear
as virtual particles increasing the number of Feynman diagrams to
be calculated. However, choosing a certain gauge may lead to ulterior
simplifications. As we will discuss in the following, this is the case
for gg→ HZ.

t, b

H

Z

(a)

t, b

H

Z

Z∗

(b)

t, b

H

Z

G0

(c)

Figure 8: Leading-order Feynman diagrams for gg→ HZ.

3Compare the Feynman diagrams depicted in Figs. 1a and 7c.
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In a general Rξ gauge, one encounters three types of diagrams con-
tributing to the amplitude for gg → HZ at LO as shown in Fig. 8.
The first type are box diagrams (Fig. 8a). Since they involve the quark
Yukawa coupling, only heavy quarks (t,b) have to be considered. The
same is true for the triangle diagrams with an attached G0 propa-
gator (Fig. 8c), where G0 denotes the neutral Goldstone boson that
corresponds to the longitudinal degree of freedom of the Z boson,
because the coupling of quarks and Goldstone bosons is proportional
to the respective Yukawa coupling as well. Also in case of an inter-
mediate off-shell vector boson (Fig. 8b) the light quarks (u,d,s,c) may
be neglected in the triangle loops, but for different reasons. Due to
Furry’s theorem [65] the vector part of the qq̄Z coupling cancels in
the sum of diagrams with opposite fermion number flow. The axial-
vector part is proportional to the third component of the weak isospin
and vanishes when summing over mass-degenerate isospin doublets.

One might think that the diagrams involving an intermediate vec-
tor boson should already be included in the Drell-Yan-like contribu-
tions given by Eq. (3.1). However, according to the Landau-Yang the-
orem [66, 67], the decay of a massive vector into two massless vector
particles is forbidden, which applies to the reverse process as well, of
course. Thus the amplitude for gg → Z∗(q2) must vanish, because it
corresponds to the on-shell production of a vector boson with mass√
q2.
This fact can be exploited to simplify the calculation of the gg →

HZ amplitude. Note that the projector onto the transverse polariza-
tion modes of a vector particle with momentum qµ is identical to
polarization sum over the three (transverse and longitudinal) modes
εi of an on-shell vector boson with same momentum and mass

√
q2:

−gµν +
qµqν

q2
=

3∑
i=1

ε
µ
i (q)

∗ενi (q). (4.2)

As a consequence, the transverse modes of the Z propagator cancel
when contracted with the sub-amplitude gg → Z∗, and only the lon-
gitudinal part contributes. Recall that in a general Rξ gauge the prop-
agators of the Z and G0 bosons read

D
µν
Z (q) =

−i

q2 −M2
Z

[
gµν + (ξ− 1)

qµqν

q2 − ξM2
Z

]
, (4.3a)

DG0(q) =
i

q2 − ξM2
Z

. (4.3b)

One can make the Z propagator purely transverse by going to Landau
gauge (ξ = 0). Then the Z∗ diagrams do not contribute at all and all
the remaining diagrams involve the Yukawa coupling of the quark
running in the loop.
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4.2.2 Effective Lagrangians

Now we are ready to employ the limit Mt →∞ and Mb → 0, which
can be regarded as an effective theory where the Yukawa coupling of
the bottom quark is set to zero and the top quark is integrated out.
To understand what behavior should be expected in the limit of an
infinite top-quark mass, let us first recall the situation for the process
gg→ H. In that case one can use an effective Lagrangian

LggH ∝ GaµνGa,µνH, (4.4)

where G denotes the gluonic field strength tensor and the coefficient
can be obtained by matching to the full theory in the limit Mt → ∞.
Hence it must be proportional to g2sλt = g2s

√
2Mt

v . Since the operator
GaµνG

a,µνH has dimension five, the matrix element for gg→ H must
involve an additional suppression factor 1

Mt
in order for the matching

to work out. For this reason one expects

LggH = cggH(αS)G
a
µνG

a,µνH

v
, (4.5)

where cggH ∝ g2s is dimensionless and finite in the heavy-top limit.4

In view of Fig. 8 an effective theory for gg → HZ requires several
terms, involving effective ggHZ, ggZ∗, and ggG∗0 vertices. One can
write

LggHZ = GaµνG̃
a
ρσ

{(
c
(1)
ggZ∗ + c

(1)
ggHZ

H

v

)
∂µZρgνσ + · · ·

}
+ cggG0G

a
µνG̃

a,µνG0
v

, (4.6)

where the ellipsis indicates other possible contractions between the
vector fields. From parity considerations and the fact that the vector
part of the q̄qZ coupling does not contribute, one sees that it is the
dual G̃aµν of the gluonic field-strength tensor that appears in the effec-
tive vertex. By a similar dimensional analysis as in the gg → H case
we conclude

c
(1)
ggZ∗ ∝ g2sgw

1

M2
t

, (4.7a)

c
(1)
ggHZ ∝ g2sgw

1

M2
t

, (4.7b)

cggG0 ∝ g2s , (4.7c)

i.e. in the heavy-top limit only the tt̄G0 coupling gives a non-zero
contribution to the cross section. In practice, we will not explicitly
use these coefficients but expand the diagrams in 1

Mt
when applicable

and then take the limit Mt →∞.
4Indeed one finds cggH = 1

12
αS
π (1+O (αS)). For the N3LO result (i.e. to O

(
α4S
)
)

see Ref. [68].
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The massless-quark limit is easy to understand: If the Yukawa cou-
pling of the bottom quark is set to zero, only the diagrams involving
the bb̄Z vertex remain. As explained above, the contribution of the
diagrams with a Z propagator vanishes in Landau gauge, so that in
the end only top-quark loops have to be evaluated, which can be sim-
plified by asymptotic expansion for the case of large Mt. At higher
orders, this will still hold for virtual corrections, which have the same
kinematical configuration, but not for real emission contributions, as
will be discussed in detail in Section 4.3.

Finally, we give the expression for the LO amplitude in the effective
theory, which reads

M(0) =
αSα

sin2 θw cos2 θwMZ

δabεε1ε2p1p2
pH · ε∗Z
ŝ

, (4.8)

where α = e2

4π is the electromagnetic coupling, a and b are the color
indices of the gluons, p1,2 their momenta, and ε1,2 their polarization
vectors, respectively, and we have defined εvwxz := εµνρσvµwνxρyσ.
Furthermore pH denotes the momentum of the Higgs, εZ the polar-
ization vector of the Z boson, and ŝ := (p1 + p2)

2 is the square of the
partonic center-of-mass energy.

Performing spin and color sums (indicated by the bar over |M|2)
and expressing α by the Fermi constant GF via the relation

α =

√
2GFM

2
W sin2 θw
π

, (4.9)

one obtains for the LO cross section

dσB =
1

2ŝ

∣∣M(0)
∣∣2dPS2

=
(αS
π

)2 G2FM2
Z

256 ŝ
λ(ŝ,M2

H,M2
Z)dPS2, (4.10)

where

λ(x,y, z) = x2 + y2 + z2 − 2xy− 2xz− 2yz (4.11)

is the same function that appears in the two-particle phase-space el-
ement dPS2 as given in Eq. (A.14). In the following subsection we
will compare this to the full result, which can be calculated using the
program vh@nnlo, for example.

4.2.3 Numerical Consequences

The effective theory with infinite top-quark and vanishing bottom-
quark mass can be expected to be a good approximation if

Mb � Λ� 2Mt, (4.12)
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where Λ denotes any relevant scale of the process and 2Mt is the
threshold for the on-shell production of a top-anti-top-quark pair. Re-
garding the mass values

Mb = 4.75 GeV, (4.13a)

MZ = 91.1876 GeV, (4.13b)

MH = 125 GeV, (4.13c)

Mt = 172 GeV, (4.13d)

this is obviously fulfilled if Λ ∈ {MZ,MH}. A problem arises for the
partonic center-of-mass energy, i.e. for Λ =

√
ŝ, because in principle

it is

MH +MZ 6
√
ŝ 6
√
s, (4.14)

where
√
s is of order 10 TeV. Whereas the condition Mb �

√
ŝ is

always met,
√
ŝ can well be greater than 2Mt. However, since es-

pecially the gluon PDFs fall off steeply with increasing momentum
fraction, larger values of

√
ŝ are suppressed and contribute less to

the hadronic cross section.5 Therefore one may hope that the region√
ŝ < 2Mt, where the expansion in 1

Mt
is valid, is dominant in the

convolution.

 0.01

 0.1

 1

 10

 200  300  400  500  600  700  800  900  1000√
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Figure 9: gg → HZ partonic cross section at LO for different finite values
of the top-quark mass and in the heavy-top limit (“LME”); from
Ref. [54].

To address this question quantitatively we will compare the LO

cross section in the full and the effective theory in the following. As

5cf. Eq. (2.25)
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numerical input we use the mass values from Eq. (4.13) unless stated
otherwise as well as

MW = 80.399 GeV, (4.15a)

GF = 1.16637 · 10−5 GeV−2. (4.15b)

Hadronic cross sections are evaluated with MSTW2008LO PDF sets [69]
using the running of αS provided by the PDF routines. We take the
renormalization and factorization scale to be equal to the invariant
mass of the HZ system by default:

µ = µR = µF =
√

(pH + pZ)2. (4.16)

Figure 9 compares the partonic cross section as a function of
√
ŝ for

different top-quark masses (and Mb = 0). First we note that, as ex-
pected, the full result approaches the one in the heavy-top limit (red
short-dashed line) as the top-quark mass is increased for fixed value
of
√
ŝ. For the realistic value of Mt = 172 GeV (green solid line),

the heavy-top limit yields an acceptable result for
√
ŝ . 300 GeV.

Around the threshold at 2Mt = 244 GeV, the enhancement of the
full cross section is not reproduced by the heavy-top limit, i.e. it un-
derestimates the cross section in this region. Whereas the full result
decreases monotonously above threshold, the heavy-top results still
grows, overrating the cross section for

√
ŝ & 500 GeV.
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Figure 10: LO hadronic cross section for finite (“Full”) and infinite top-quark
mass (“LME”) at the LHC with

√
s = 8 TeV (dashed) and 14 TeV

(solid); from Ref. [54].

In the hadronic cross section these competing effects should tend
to average out, which is another reason to hope for the heavy-top
limit to work reasonably in addition to the fact that the PDFs suppress
higher values of

√
ŝ. For the total cross section presented in Fig. 10a

as a function of the Higgs mass, this seems to be the case for not
too large values of MH. Not surprisingly, the agreement is better for
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√
s = 8 TeV (dashed lines) than for

√
s = 14 TeV (solid lines) because

the probability that
√
ŝ is in the window where the expansion in 1

Mt

is expected to work, namely

MH +MZ 6
√
ŝ 6 2Mt, (4.17)

decreases with increasing
√
s as higher center-of-mass energies be-

come less suppressed.
As already mentioned in Section 3.1, to increase the experimental

sensitivity to Higgs strahlung at the LHC it is helpful to require the
Higgs to be produced at high transverse momentum. For this pur-
pose we consider a boosted scenario where pT ,H > 200 GeV. This is
problematic for the validity of the heavy-top approximation because
now it is

ŝ >M2
H +M2

Z + 2p2T ,H + 2
√
(M2

Z + p2T ,H)(M
2
H + p2T ,H), (4.18)

so that the energy window (4.17) is further diminished.6 Hadronic
results for this scenario are shown in Fig. 10b. It appears that the
hadronic cross section is already dominated by the region above the
tt̄ threshold, where the heavy-top limit yields too large results.

To sum up, mass effects are not negligible in the gg→ HZ cross sec-
tion, but perturbative corrections are potentially large. As long as the
NLO calculation including the full mass dependence is out of reach, a
compromise is to determine the K factor in the effective theory but to
include the LO mass dependence, i.e. to make the approximation

σNLO(Mt,Mb) = σ
LO(Mt,Mb)K

NLO(Mt,Mb)

≈ σLO(Mt,Mb)K
NLO(Mt →∞,Mb = 0).

(4.19)

This procedure is known to work well for the gg→ H process as long
as one considers the inclusive cross section [70] or not too large values
of pT ,H in differential distributions [71, 72] and has also been applied
to Higgs pair production [73]. However, one cannot expect this strat-
egy to work equally well for gg → HZ as for gg → H, especially in
the boosted scenario, because the convergent region is smaller, and
there are regions where

√
ŝ > 2Mt even if no or only soft extra par-

tons are present in the final state. Unfortunately, it would most likely
not be helpful to include higher order terms in the expansion in 1

M2
t
,

at least not if the region where ŝ � 4M2
t is dominant, which is why

we stick to the strict limit Mt → ∞. In the following section details
on the NLO calculation in the effective theory will be discussed.

4.3 next-to-leading order calculation

To regulate the IR divergencies occurring in the calculation of the
NLO cross section we use the dipole subtraction method [31] sketched

6See also the discussion in Ref. [63].
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in Section 2.4.2. There are three different kinds of contributions to the
hard partonic cross section σ̂NLO:

• regularized virtual corrections,∫
2

(
dσV + dσB ⊗ I

)
, (4.20)

• real corrections minus dipoles,

∫
3

dσR −
∑

dipoles

dσB ⊗ dVdipoles

 , (4.21)

• and finite remainder terms from mass factorization,∫
2

dσB ⊗ (P+K), (4.22)

which involve an additional integration over the momentum
fraction left after radiation of a collinear parton.

In the next two subsections we will discuss the calculation of the
virtual and real corrections in detail. Afterwards numerical results
for the hadronic cross section will be presented. To this end for each
of the three kinds of integrals the required integrations including
the convolution with the PDFs are combined and evaluated using
the adaptive Monte-Carlo algorithm Vegas [74]. Suitable parametriza-
tions of the two and three-particle phase space are given in Sec-
tion A.2.1 and Section A.2.2, respectively.

4.3.1 Virtual Corrections

Typical diagrams that need to be evaluated for the virtual corrections
are shown in Fig. 11. Apart from genuine two-loop diagrams obtained
by inserting virtual gluon lines into the LO diagrams (Figs. 11a to 11e),
there are diagrams where theH and Z bosons couple to the gluons via
separate quark loops (Fig. 11f), and which can hence be reduced to a
product of two one-loop diagrams. In both cases it is the interference
with the LO amplitude that contributes to dσV .

As explained in Section 4.2, the diagrams with a Z propagator
(Fig. 11c and 11d) vanish when working in Landau gauge. All remain-
ing diagrams are simplified by asymptotic expansions7 so that only
massive one-loop and two-loop vacuum and massless one-loop dia-
grams need to be evaluated. This can be performed automatically by
using the setup described in Section 2.6.8 Since, however, within this

7cf. Section 2.5
8In Ref. [54] this setup was used in one of two independent calculations of the

virtual corrections.
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Figure 11: Virtual correction diagrams for gg→ HZ.

setup the massless two-loop three-point integrals resulting from the
bottom quark loops of Figs. 11c and 11d can be evaluated automati-
cally with the program mint [40], we perform the calculation in the
unitarity gauge9 as well. Then the Goldstone bosons disappear and
the virtual contributions are completely given by the bottom-quark
loops in the effective theory. This provides an excellent check of the
calculation.

There are two ingredients to Eq. (4.20). The first one is the UV-
renormalized virtual correction given by

dσV = 2Re
{
M(1)

(
M(0)

)∗}
, (4.23)

where M(0) and M(1) are the LO and NLO terms of the renormalized
matrix element expanded in terms of αSπ with the renormalized cou-
pling αS, which is related to the bare coupling by Eq. (2.17). We will
comment on the renormalization procedure below. The second one is
the part of the integrated dipoles that has the same kinematics as the
Born term. Using the formulas of appendix C of Ref. [31] one obtains
for the case of two initial state gluons and a colorless final state

dσB ⊗ I = dσB · αS
π

(
µ2

ŝ

)ε(
1−

π2

12
ε2
)

·
[
CA

(
1

ε2
−
π2

3

)
+

(
1

ε
+ 1

)(
11

6
CA −

2

3
TRnl

)
+

(
67

18
−
π2

6

)
CA −

10

9
TRnl

]
, (4.24)

9The unitarity gauge is obtained from the general Rξ gauge by letting ξ→∞ so
that the Z propagator contains all three polarization modes (cf. Eq. (4.3)).
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where nl = 5 is the number of light quarks and we have set µ = µF =

µR. The sum of these two terms is finite in four dimensions and given
by

dσV + dσB ⊗ I =
[
1+

α
(5)
S (µ)

π

(
164

9
+
23

6
ln
(
µ2

ŝ

))]
dσB

+ dσred , (4.25)

where we have inserted the SU(3) color factors CA = 3, CF = 4
3 , and

TR = 1
2 . The contribution dσred from reducible diagrams of the type

of Fig. 11f reads

dσred = dPS2
(αS
π

)3 G2F
768 ŝ

1

ŝ−M2
Z

·
{(
ŝM2

ZM
2
H + ŝM4

Z − ŝ2M2
H − 2ŝ2M2

Z + ŝ3
)

·
(
−2+ ln

(
−û

M2
Z

)
M2
Z

û−M2
Z

+ ln
(

−t̂

M2
Z

)
M2
Z

t̂−M2
Z

)
+
(
−ŝM2

ZM
2
H + ŝM4

Z + ŝ2M2
H − 2ŝ2M2

Z + ŝ3
)

×
(

−M2
Z

t̂−M2
Z

+
−M2

Z

û−M2
Z

+ ln
(
−û

M2
Z

)
M4
Z

(û−M2
Z)
2

+ ln
(

−t̂

M2
Z

)
M4
Z

(t̂−M2
Z)
2

)}
, (4.26)

where t̂ = (p1 − pZ)
2 and û = (p1 − pH)

2.
We conclude the discussion of the virtual corrections by a few re-

marks about the renormalization procedure:

• Since chiral symmetry is not broken correctly in DR at higher or-
ders in perturbation theory as discussed in Section 2.3, we have
to renormalize the pseudoscalar or axial-vector current appear-
ing in Fig. 8c and Fig. 8b by relation (2.23a) or (2.23b), respec-
tively, depending on whether we work in Landau or unitarity
gauge.

• In Landau gauge, the LO amplitude contains a factor of M−2ε
t ,

which yields a finite correction independent of the renormaliza-
tion scheme chosen for Mt, i.e. Eqs. (2.19) and (2.20) give the
same result.

• The on-shell renormalization of the external gluons given by
Eq. (2.21) introduces a logarithmic dependence on the top-quark
mass, which can be eliminated by expressing the results through
the coupling α(5)

S defined for five active flavors, where the top-
quark is completely decoupled and the limit Mt → ∞ can be
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performed. It is connected to α(6)
S with six flavors by the match-

ing relation [75]

α
(5)
S (µ) = α

(6)
S (µ)

[
1−

α
(6)
S (µ)

6π
ln
(
µ2

M2
t

)
+O

(
α2S
)]

.

(4.27)

In addition this is necessary to be consistent with current PDF sets,
which use five active flavors.

4.3.2 Real Corrections

t
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t, b
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t, b
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Figure 12: Real emission diagrams for gg→ HZ.

The real emission corrections to gg→ HZ are obtained by attaching
external gluon lines to the LO diagrams and calculating the absolute
square of the sum for each partonic subchannel. Figure 12 shows
exemplary diagrams, where it is understood that crossed diagrams
have to be considered as well.

Again we find that the diagrams where the Higgs is coupled di-
rectly to the quark loop (Figs. 12a to 12c) vanish in the limit Mt →∞,
Mb → 0. In contrast to the virtual corrections, the transverse polariza-
tion modes of the Z propagator do not vanish, so that bottom-quark
loops, which cannot be simplified by asymptotic expansion, have to
be evaluated in the diagrams of types 12d to 12f. The most compli-
cated ones are the box diagrams 12d. Furry’s theorem does not sim-
plify matters much because the color structure is not symmetric when
the orientation of the loop is changed. If a, b, and c denote the color
indices of the three gluons and ta representation matrices of SU(3),
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summation of loops with opposite fermion number flow yields a con-
tribution proportional to

Tr[tatbtc]± Tr[tctbta] = TR ·

dabc
ifabc

, (4.28)

where + applies to the vector and − to the axial-vector part of the
q̄qZ coupling. Thus the vector part contributes as well, proportional
to the symmetric factor dabc. The axial-vector part receives an anti-
symmetric factor of fabc. However, it is at least obvious that the
vector-axial-vector interference is identical to zero. The four vector
particles make the tensor reduction of the loop integrals algebraically
quite complex. Within our default setup this task is performed by the
routine tribox.10,11

Upon squaring the amplitude we project on physical gluon polar-
izations by using a general axial gauge for the external gluons defined
with respect to arbitrary light-like vectors nj (j = 1, 2, 3):

2∑
i=1

ε
µ,a
i (pj)

∗εν,b
i (pj) = δ

ab

(
−gµν +

p
µ
j n
ν
j + p

ν
j n
µ
j

pj ·nj

)
. (4.29)

As expected we find that the result is independent of all nj, which
provides a good check on the calculation. The results for the real
emission amplitude are too lengthy to be printed here.

The integration over the three-particle phase space leads to IR di-
vergencies that are canceled by the corresponding dipole terms. Note
that the diagrams contributing to the gg → HZg channel (Fig. 12e)
can be subdivided into s, t, and u channel diagrams.12 Whereas the
s channel contribution is finite, we need one dipole each for the t and
u channels, which we calculate using the formulas for the case of two
initial-state hadrons given in Section 5.5 of Ref. [31]. Similarly, the qg
and gq channels (Fig. 12f and crossed diagrams) require one dipole
each, while the qq̄ channel does not.

4.3.3 Numerical Results

Finally we present numerical results for the gg → HZ cross section
at NLO evaluated according to Eq. (4.19). For this purpose we take the
same numerical input as in Section 4.2.3 except that MSTW2008NLO PDFs

are used for NLO quantities.
Figure 13a illustrates the absolute results for the total cross section

at LO and NLO for
√
s = 8 TeV and

√
s = 14 TeV as well as the NLO cor-

rection factor as a function of the Higgs mass. The same quantities are
10Details are given in Section A.1 of the appendix.
11This method was used in one of three independent calculations of the real

corrections in Ref. [54].
12More precisely the corresponding gluon propagators are 1

s , 1t3 and 1
u3

as de-
fined in Eq. (A.31).
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Figure 13: LO (lower, red lines) and NLO (upper, blue lines) hadronic cross
section (top) and K factor (bottom) at the LHC with

√
s = 8 TeV

(dashed) and 14 TeV (solid); from Ref. [54].

shown for the boosted scenario defined by requiring pT ,H > 200 GeV
in Fig. 13b. As expected from the analogy to gg → H, we find huge
K factors of around two, where the correction is a bit larger for 8 TeV
than for 14 TeV.
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Figure 14: Scale dependence of the LO and NLO hadronic cross section for
Mh = 125 GeV at the LHC with

√
s = 8 TeV (dashed) and

14 TeV (solid), where µR = µF = µ and µ0 =
√

(pH + pZ)2; from
Ref. [54].

The dependence of the gg → HZ cross section on the factorization
and renormalization scale as they are varied simultaneously around
the central scale µ0 =

√
(pH + pZ)2 is depicted in Fig. 14 for MH =

125 GeV, again for the total cross section (Fig. 14a) and for the boosted
scenario (Fig. 14b). Both at LO and NLO level the cross section de-
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creases monotonously as the scale is increased where the slope is
visibly reduced at NLO. When µ

µ0
is altered between 1

6 and 6, σLO

varies by about 100% and σNLO by about 60% with respect to the cen-
tral value. As anticipated from the analogy to gg→ H, the error band
obtained from varying the scale in the LO cross section in an inter-
val [12µ0, 2µ0] or even [13µ0, 3µ0] does not cover the true size of the
NLO corrections. However, the variation of the NLO prediction — in
an interval µ ∈ [13µ0, 3µ0] to be on the safe side — should be a more
reliable estimated of missing higher order corrections.

4.4 conclusion

We have considered NLO contributions to gluon-induced HZ produc-
tion. The correction factor was evaluated in the limit of infinite top-
quark and vanishing bottom-quark mass and found to be about two,
similarly as in gluon-induced Higgs production.

Since the gg → HZ channel previously contributed about 5% to
the total HZ cross section, the latter is roughly increased by another
5% if the newly evaluated corrections are included. The absolute un-
certainty on the total cross section from the scale variation of the
gg → HZ contribution is not reduced but even slightly increased,
however, indicating that it was grossly underestimated before. For
updated numbers the reader is referred to Refs. [54] and [6]. The new
corrections have also been implemented in an updated version of the
program vh@nnlo.





5
H I G G S S T R A H L U N G : F R O M S M T O 2 H D M

In this chapter a study of Higgs strahlung in the 2HDM will be pre-
sented.1 We start by summarizing basic properties of the 2HDM in the
first section before discussing the behavior of the different contribut-
ing to Higgs strahlung in the transition from the SM to the 2HDM in
Section 5.2. Section 5.3 presents numerical results for exemplary sce-
narios before we conclude in Section 5.4.

5.1 the two-higgs-doublet model

As already mentioned in Section 1.3.2, the Higgs mechanism of the
SM could in principle involve several Higgs multiplets, where the sim-
plest extension contains two doublets and is known as the 2HDM.2

The vector-boson masses are generated in the 2HDM analogously to
the SM but they now receive contributions from the vacuum expecta-
tion values (VEVs) of the neutral components of both doublets. The
well-known value of v = 1√√

2GF
≈ 246 GeV for the VEV is shared

between the two,

v2 = v21 + v
2
2, (5.1)

and one defines

tanβ =
v2
v1

. (5.2)

Since the two Higgs doublets contain eight degrees of freedom but
only three of these are absorbed as longitudinal degrees of freedom
of the weak vector bosons, the 2HDM predicts five physical particles
in the scalar sector. Two of these fields are electrically charged, which
we denote by H±. If CP conservation is assumed as we do throughout
this study, two of the three electrically neutral Higgs bosons will be
CP-even and one CP-odd. The CP-even states mix with a mixing an-
gle α and form the two physical states h and H0, where Mh < MH0 ,
which are referred to as the light and heavy Higgs boson, respectively.
Finally, the CP-odd or pseudoscalar state is named A.

We assume not only CP conservation but also no flavor-changing
neutral currents at tree level. Then 2HDMs can be split into four dif-
ferent classes according the fermion Yukawa couplings. Since in this
study exclusively the quark Yukawa couplings are used, only two

1The ideas and results of this chapter have been published previously in Ref. [63].
2For reviews see Refs. [76] or [77], for example.

51
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types yield different results. Whereas in the 2HDM of type I both up-
type and down-type quarks couple to the same Higgs doublet simi-
larly as in the SM, the masses of the down-type quarks are generated
by the other doublet in case of type II. Note that in the MSSM, the
structure of the Yukawa sector (without the SUSY partners) is identi-
cal to the type II 2HDM, except that SUSY puts additional constraints
of the couplings and masses.

The Higgs boson discovered at the LHC with a mass of about 125GeV
is usually interpreted as the light boson h in the context of the 2HDM.
The other bosons are then assumed to have escaped detection so far,
for example because they have higher masses. Under this assumption,
the properties of the observed boson allow to employ constraints on
a possibly realized 2HDM.3

5.2 theory of higgs strahlung in the 2hdm

In the 2HDM there are more varieties of Higgs strahlung than in the
SM, which we summarize as φV production, where φ ∈ {h,H0,A} and
V ∈ {W±,Z}, i.e. we restrict the discussion to neutral Higgs bosons.4

We express the required couplings of φ relative to the correspond-
ing ones of the SM Higgs. For the vector bosons it is

〈φVV〉 : igµνgφVV
eM2

V

sin θwMW
, (5.3)

where gHVV = 1 in the SM. The relative couplings are functions of α
and β, for example ghVV = sin(β−α). Note that in the limit sin(β−

α) → 1 the coupling of the h boson to the vector bosons becomes
SM-like.

Similarly we write for the Yukawa couplings

〈φff̄〉 : −
Mf

v
gφ,f

γ5, φ = A

i, φ ∈ {h,H0}.
(5.4)

The type II 2HDM offers the possibility of an enhancement of the bot-
tom with respect to the top Yukawa coupling. Since it is

g
Type I
h,u = g

Type I
h,d = g

Type II
h,u

=
cosα
sinβ

= sin(β−α) + cos(β−α)
1

tanβ
, (5.5a)

g
Type II
h,d = −

sinα
cosβ

= sin(β−α) − cos(β−α) tanβ, (5.5b)

3Many studies have analyzed experimental data by scanning the parameter
space for allowed or excluded regions, see Refs. [78, 79, 80], for example.

4For older studies of associated production of scalar neutral Higgs and Z bosons
in the context of the MSSM see Refs. [81] and [82], and for the pseudoscalar case
Refs. [83, 84, 85, 86, 82].
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this is the case for the light Higgs h if tanβ is large and cos(α−β) is
not too small.

In the following we will discuss the steps required to generalize the
SM prediction for the Higgs strahlung cross section as summarized in
Eq. (3.2) to the 2HDM. To this end it is not only necessary to rescale
the SM couplings but also to take new diagrams into account. We will
also comment on the corresponding modifications in our program
vh@nnlo.

q̄

q φ

W,Z

(a)

q̄

q φ

W,Z

(b)

Figure 15: Feynman diagrams for Drell-Yan-like contribution to qq→ φV .

The Drell-Yan-like contributions, for which example diagrams are
shown in Fig. 15, are easily generalized to the 2HDM. Since only the
decay V∗ → φV is modified, one simply has

σφV ,DY = g2φVV σHV ,DY . (5.6)

This holds also to higher orders in αS, so the result calculated by
the corresponding subroutine of vh@nnlo can simply be multiplied
by g2φVV . For the electroweak corrections this is not true, which is
why we neglect them in this study.

The top-quark induced terms σtop I and σtop II share this simple
scaling behavior neither. In contrast to the SM, the bottom Yukawa
coupling is not always negligible as it may be enhanced in certain sce-
narios. However, these terms are known only in the heavy-top limit
and the result including the full mass dependence seems out of reach
with current calculational tools because massive two-loop four-point
integrals (see Figs. 7e and 7f) are involved. As the heavy-quark limit
is unacceptable for the bottom quark, we discard these terms in view
of the fact that they only contribute a few percent to the total cross
section in the SM.

The most profound and interesting changes take place in the gluon-
induced channel depicted in Fig. 16. Not only do the different dia-
grams that are present in the SM scale differently because they involve
either a Yukawa (see Fig. 16a) or the φZZ coupling (Fig. 16b), but also
new diagrams come into play where the intermediate Z∗ boson is
replaced by one of the other neutral Higgs bosons φ ′ (Fig. 16c). A
combination (φ,φ ′) is allowed if one of the bosons is CP-even and
the other CP-odd. Depending on the choice of the 2HDM parameters,
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Figure 16: Feynman diagrams contributing to gg→ φZ channel.

it is possible that Mφ ′ > Mφ +MZ so that the φ ′ propagator is on
the mass shell if

√
ŝ = Mφ ′ . This resonance is regulated by the total

width Γφ ′ of the intermediate boson φ ′, which we introduce by the
replacement

1

ŝ−M2
φ ′
→ 1

ŝ−M2
φ ′ + iMφ ′Γφ ′

. (5.7)

The implementation of the gg → HZ contribution in vh@nnlo has
not only been extended to include these s channel contributions but
completely renewed on the basis of FeynArts/FormCalc [87, 88] and
designed in such a way that physical parameters can be more easily
varied. Note that we include gg → φZ at LO only because the influ-
ence of the bottom Yukawa coupling on the NLO correction factor for
gg→ HZ is unknown.

b̄

b φ

Z

(a)
b̄

b φ

Z

(b)
b̄

b φ

Z

φ′

(c)

Figure 17: Feynman diagrams contributing to bb̄→ φZ channel.

Contributions where both the Z boson and the Higgs couple to an
annihilating bottom-quark pair (see Figs. 17a and 17b) are in princi-
ple present also in the SM but completely negligible. As already men-
tioned the bottom Yukawa coupling can be enhanced, so that this
channel may become relevant in the 2HDM. Similarly as for gg→ φZ

resonant s channel contributions (Figs. 17c) appear, which we treat in
the same way, i.e. by employing the replacement (5.7). In the present
study the bb̄ → φZ channel is taken into account at LO. Note that
there is no interference with the Drell-Yan-like bb̄ → Z∗ → φZ dia-
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grams included in σφZ,DY for vanishing Mb so that the new contri-
butions can be calculated separately.

An interesting observable related to Higgs strahlung in the context
of NP searches was already introduced in Section 3.3, namely the ratio
of the HW and HZ cross sections, which we extend to the 2HDM by
writing

RWZφ =
σφW

σφZ
. (5.8)

In the SM this quantity can be predicted with a precision of about
3%.5 If the cross section for Higgs strahlung was determined com-
pletely by the Drell-Yan term, the ratio would simply be identical
to the SM value in the 2HDM because gφZZ = gφWW . However, the
gg→ φZ and potentially also the bb̄→ φZ channel induce a sensitiv-
ity to the 2HDM parameters, which could make the ratio an exciting
indicator of NP effects. In the next section it will be studied quantita-
tively in different 2HDM scenarios.

5.3 numerical results

In this section numerical results for the φZ production cross section
and the ratio RWZφ will be presented. After stating the numerical
input parameters, we treat the case φ = h in detail for the 2HDM of
Type I and Type II. Then we move on to H0Z and AZ production in
Type II scenarios before discussing the qualitative effect of a lower cut
on the Higgs transverse momentum.

5.3.1 Setup and Choice of Input Parameters

To produce the numerical results the appropriately modified version
of the program vh@nnlo is applied, using LoopTools [88] for the eval-
uation of one-loop functions and CUBA [89] for the numerical integra-
tion.

5For numerical values and details on the determination of the uncertainties we
refer the reader to Ref. [63].
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Our choice of the required SM parameters reads:

M
pole
t = 172.3 GeV, (5.9a)

M
pole
b = 4.75 GeV, (5.9b)

MMS
b (Mb) = 4.16 GeV, (5.9c)

MW = 80.398 GeV, (5.9d)

MZ = 91.1876 GeV, (5.9e)

ΓW = 2.141 GeV, (5.9f)

ΓZ = 2.4952 GeV, (5.9g)

GF = 1.16637 · 10−5 GeV, (5.9h)

sin2 θC = 0.0508. (5.9i)

Whereas we use the pole masses Mpole
t and Mpole

b in the Yukawa cou-
plings for gg → φZ, the bottom Yukawa is calculated with the run-
ning mass MMS

b for the bb̄→ φZ channel. Quark mixing is taken into
account only for the first two generations described by the Cabbibo
angle θC. The hadronic cross section is obtained with the MSTW2008-

NNLO PDF set [69] and αS from this set with a default scale choice of
µR = µF =

√
(pφ + pZ)2.

Furthermore the new version of vh@nnlo can be linked to the pro-
gram 2HDMC [90, 91]. In case of a resonance this is mandatory to cal-
culate the required total width Γφ, but it is also useful for the user to
fix the desired 2HDM in various parametrizations. As input for 2HDMC
we specify a value of αS(MZ) = 0.119.

In the following we will analyze observables as a function of sin(β−
α) for fixed values of tanβ, Mh, MA, and MH0 . Note, however, that
identifying the observed boson at 125 GeV with the light Higgs h re-
quires | sin(β−α)| to be close to one in order to be consistent with ex-
perimental data. In this limit, all couplings approach their SM values.
The total width Γφ depends on the parameters MH± and M12 (the
off-diagonal element of the scalar mass matrix before SSB) as well, for
which our default choices are MH± =MA and M12 = 0.

5.3.2 Light Higgs

5.3.2.1 2HDM Type I

Let us start the discussion of hV production with a Type I scenario,
where the masses are chosen to be Mh = 125 GeV and MA =MH0 =

200 GeV, i.e. the s channel diagrams cannot become resonant yet,
and tanβ = 1. Results for the different contributions to the hZ cross
section in this case are illustrated in Fig. 18a, where the black solid
line shows their sum. The behavior of the Drell-Yan terms σhZ,DY

(green, dotted line) is easy to understand as it is simply proportional
to sin2(β − α). The same applies to the hW cross section because
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Figure 18: Cross section (top) and ratio RWZh (bottom) for hV production
at
√
s = 14 TeV in the 2HDM Type I for Mh = 125 GeV, MA =

MH0 =MH± = 200 GeV and tanβ = 1 (left) or tanβ = 20 (right);
from Ref. [63].

we neglect σtop I,II in (the generalization of) Eq. (3.2). In contrast, the
gluon-induced contribution σgg→hZ (red, dashed line) depends both
on the quark Yukawa couplings and the φZZ coupling, and in addi-
tion is influenced by s channel A bosons, leading to non-trivial inter-
ference effects. For | sin(β−α)| . 0.5 it is of the same order as or even
larger than σhZ,DY . The bottom-quark-induced terms σbb̄→hZ (blue,
dash-dotted line) are completely negligible in this scenario just as in
the SM.

Next we modify this scenario by choosing tanβ = 20. The effect of
this can be seen in Fig. 18b, which is otherwise analogous to Fig. 18a.
Because of this large value for tanβ, the Yukawa couplings to the
light Higgs scale roughly as sin(β−α),6 and the coupling to the pseu-
doscalar is suppressed by gType I

A,u/d = ± cotβ. Thus the whole cross

6cf. Eq. (5.5a)



58 higgs strahlung : from sm to 2hdm

section behaves approximately like the Drell-Yan part. These differ-
ences are also reflected in the ratio RWZh, which is presented for the
two scenarios in Figs. 18c and 18d, respectively, normalized to the
SM value obtained at the same level of approximation.7 Whereas for
tanβ = 1 RWZh depends strongly on sin(β − α) as one leaves the
SM values at the edges, the ratio is clearly flatter and drops to zero
at sin(β− α) = 0 only because the hW cross section becomes zero in
our approximation.
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Figure 19: Cross section (top) and ratio RWZh (bottom) for hV production
at
√
s = 14 TeV in the 2HDM Type I for Mh = 125 GeV, MA =

MH0 =MH± = 300 GeV and tanβ = 1 (left) or tanβ = 20 (right);
from Ref. [63].

Now we consider the case MA = 300 GeV, so that MA > Mh +

MZ and the processes gg,bb̄ → A → hZ with A on shell become
possible. Results are shown in Fig. 19, which is analogous to Fig. 18

except for the increase in MA, i.e. again we give results for tanβ = 1

7This means that for consistency the σtop I,II terms as well as the NLO corrections
to σgg→HZ and the electroweak corrections are omitted also for the SM values here.
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and tanβ = 20. The altered behavior of the various contributions can
be seen from Figs. 19a and 19b. Note that the Drell-Yan terms are
unchanged as they are independent of MA. The gg → hZ and bb̄ →
hZ contributions, however, are drastically enhanced for tanβ = 1 and
exceed the Drell-Yan part already for small deviations from | sin(β−

α)| = 1. Accordingly the ratio RWZh (Fig. 19c) drops sharply close to
the edges. Increasing tanβ to 20 again foils this enhancement for the
reasons explained above and it is the Drell-Yan part that dominates
most of the sin(β− α) range. The ratio (see Fig. 19d) decreases only
slightly, yet visibly, as one leaves the SM values at the edges before
finally dropping to zero at sin(β−α) = 0.

5.3.2.2 2HDM Type II
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Figure 20: Cross section (top) and ratio RWZh (bottom) for hV production
at
√
s = 14 TeV in the 2HDM Type II for Mh = 125 GeV, MA =

MH0 =MH± = 200 GeV and tanβ = 1 (left) or tanβ = 20 (right);
from Ref. [63].
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Next we turn to the 2HDM Type II. Figure Fig. 20 has the same struc-
ture as Fig. 18 and shows results for the non-resonant case MA =

200 GeV. Whereas the Drell-Yan terms are identical to the case of the
Type I 2HDM, the other contributions can change significantly due to
the fact that, above all, the behavior of the bottom Yukawa is altered.

For tanβ = 1, however, the results for hZ cross section (see Fig. 20a)
and for the ratio (Fig. 20c) still resemble those for Type I, especially
the bb̄ → hZ contribution is still small. As can be seen from Fig. 20b,
this changes for tanβ = 20. Now the bb̄ → hZ terms are compet-
itive to the gg → hZ terms, which suffer from destructive interfer-
ence effects, and even dominant for small values of | sin(β− α)|. The
dash-dotted curve in Fig. 20d shows ratio RWZh without the bb̄ →
hZ terms, which might be useful if b jets are suppressed in experi-
mental analyses. As this curve is much flatter than the full curve for
RWZh, this underlines the importance of the bb̄ → hZ contribution
for large tanβ.

To complete the discussion of hV production we give results for
MA = 300 GeV in the 2HDM Type II in Fig. 21. Again we find that
the results for tanβ = 1 (see Figs. 21a and 21c) are similar to those in
the 2HDM Type I and that the resonant A propagator leads to an enor-
mous enhancement of especially the gg → hZ contribution. In con-
trast to the Type I results, also for large tanβ the ratio (see Fig. 21d)
drops very fast for | sin(β− α)| 6= 1, which is due to the largely en-
hanced bb̄ → hZ terms that are clearly dominant in the bulk of the
sin(β−α) range (see Fig. 21b).

5.3.3 Heavy and Pseudoscalar Higgs

So far we have discussed hV production from the perspective that the
h boson has already been discovered and we are interested in devia-
tions from the SM cross section. In case of H0V and AZ production the
observation of such a channel would itself constitute the discovery of
a NP effect.

We begin the discussion with heavy Higgs associated production.
In this case the coupling to the vector bosons is complementary to
the one of the light Higgs, i.e. proportional to gH0VV = cos(β− α).
This is why the Drell-Yan part is suppressed for sin(β − α) → ±1
when the light Higgs becomes SM-like. However, the Yukawa cou-
plings need not vanish in this limit. Thus larger cross sections are
to be expected in Type II scenarios, to which we restrict the dis-
cussion in the following. In Fig. 22 the different contributions to the
H0Z cross section are shown (labeled like before) for MH0 = 200 GeV
and tanβ = 20, without (MA = 200 GeV, see Fig. 22a) and with a
resonance (MA = 300 GeV, Fig. 22b). For MA = 200 GeV the Drell-
Yan terms give the largest contribution except very close to the edges
where it vanishes and the bb̄ → H0Z contribution is dominant. The
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Figure 21: Cross section (top) and ratio RWZh (bottom) for hV production
at
√
s = 14 TeV in the 2HDM Type II for Mh = 125 GeV, MA =

MH0 =MH± = 300 GeV and tanβ = 1 (left) or tanβ = 20 (right);
from Ref. [63].

resonance present for MA = 300 GeV enlarges the region where the
latter is the case. However, this effect is not as large as with hZ pro-
duction, which can be understood as follows. Since other decays of
A are possible, for example A → hZ, there is (assuming the narrow
width approximation) a suppression factor ΓA→H0ZΓA

, which would can-
cel if the decay A→ H0Z was dominant and lead to a similarly large
effect as observed in the previous subsection.8

Finally we consider AZ production, for which results in a similar
scenario as for the H0V case are shown in Fig. 23, the only differ-
ence being that the values for MA and MH0 are swapped. If MH0 =

300 GeV, it is the intermediate H0 boson that can become resonant.
As the coupling of the pseudoscalar to the gauge bosons is identi-

8In principle, if the H0 and H± bosons were light enough, this suppression
would also appear in hZ production.
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Figure 22: Cross section for H0Z production at
√
s = 14 TeV in the 2HDM

Type II for Mh = 125 GeV, MH0 = MH± = 200 GeV, tanβ = 20,
andMA = 200 GeV (left) orMA = 300 GeV (right); from Ref. [63].

cally zero, there is no Drell-Yan part as thus no AW production at
all because the Yukawa effects for φW are neglected in our approxi-
mation. In the non-resonant case shown in Fig. 23a the cross section
is hardly dependent on α for this angle enters the calculation only
indirectly via the total width ΓH0 . In presence of the resonance (see
Fig. 23b) this dependence is more pronounced.

5.3.4 Boosted Scenario

In Section 3.1 it was already mentioned that the experimental sen-
sitivity to Higgs strahlung can be improved by requiring the Higgs
transverse momentum to be large. As pointed out also in Ref. [92],
the fraction of the gg → φZ channel, which is particularly sensitive
to NP effect as we have seen, can be enhanced by such a lower pT ,φ cut.
According to Ref. [61], this fraction can be doubled compared to the
total cross section for pT ,H > 150 GeV in the SM.

In the following we will estimate the effect of this requirement on
the results presented in this chapter, restricting ourselves to hV pro-
duction, however. We will argue as follows: The Drell-Yan terms have
the same form of the pT spectrum as in the SM, as they are simply
rescaled by an overall factor. This will not be true for the gg → hZ

and bb̄→ hZ channels. To estimate how their sensitivity to NP effects
is altered when the cut is applied, we evaluate σgghZ over the SM

value σggHZ (and the corresponding fraction for bb̄→ hZ) with and
without pT cut.

In general, from the statements made above, one would expect
the influence of modification of the couplings with respect to SM

to be enhanced. However, the sensitivity to possible resonances can
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Figure 23: Cross section for AZ production at
√
s = 14 TeV in the 2HDM

Type II for Mh = 125 GeV, MA = MH± = 200 GeV, tanβ =

20, and MH0 = 200 GeV (left) or MH0 = 300 GeV (right); from
Ref. [63].

be significantly lowered. Application of Eq. (4.18) shows that the cut
pT ,φ > 150 GeV implies a minimal partonic center-of-mass energy of√
ŝ > 370 GeV (for Mφ = 125 GeV), i.e. a resonance at 300 GeV would

be cut away.
For hZ production, this negative effect is even visible for MA =

200 GeV when the A propagator is only close to resonant. In Fig. 24

the influence of requiring pT ,φ > 150 GeV on the gg → hZ and
bb̄ → hZ contributions normalized to the SM cross section in each
case is shown, where the parameters are chosen like in Fig. 20. For
small tanβ (see Fig. 24a) the pT cut reduces the relative size of the
gg→ hZ channel visibly. This effect is even stronger for the bb̄→ hZ

channel, which is negligible in this case, however. In the case of large
tanβ (see Fig. 24b) the gg→ hZ channel is reduced significantly only
for small | sin(β− α)|. The contribution from the bb̄ → hZ channel,
however, which is dominant in this scenario, is lowered by an order
of magnitude almost over the complete range in sin(β−α).

In case of a real resonance, like for MA = 300 GeV, as shown in
Fig. 25 with the same parameters as used for Fig. 21, this becomes
even more drastic. The 2HDM effects in both the gg → hZ and the
bb̄ → hZ channel are reduced by up to about two orders of magni-
tude.

5.4 conclusions

In this study the possible influence of an extended Higgs sector in
the form of the 2HDM on associated production of Higgs and heavy
vector boson was considered.
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Figure 24: Cross section for gg→ hZ (red) and bb̄→ hZ (blue) normalized
to corresponding SM prediction with (solid) and without pT ,φ cut
(dashed) at

√
s = 14 TeV in Type II 2HDM withMh = 125 GeV and

MA = 200 GeV for tanβ = 1 (left) and tanβ = 20 (right); from
Ref. [63].

As a potentially useful observable the ratio of the HW and HZ

production cross section was proposed, which is theoretically well
under control and sensitive to deviations from the SM because such
effects are expected to have a significantly larger impact on HZ than
on HW production.

Concretely it was demonstrated that even if the light Higgs of the
2HDM is SM-like, the ratio drops in various exemplary scenarios be-
cause of an enhancement in hZ production, especially if s channel
resonances due to additional bosons are present. However, such res-
onant enhancements may be lost if only events with boosted Higgs
bosons are analyzed. It would be desirable not to restrict the searches
for Higgs strahlung exclusively to the boosted regime. If such a reso-
nance was realized, it would most likely improve the signal-to-back-
ground ratio anyway and allow for a measurement of the total cross
section.

From the theoretical point of view it would be desirable to examine
the effects in the boosted regime more precisely. Especially interesting
would be to better understand the influence of the NLO QCD effects on
the gg → φZ contribution, which have been shown to be large (see
Chapter 4) in the SM case but are known only in the limit Mt → ∞
and Mb → 0. The former limit is problematic for large pT ,φ and the
latter if the bottom Yukawa is enhanced. Hence these results cannot
be generalized to extended scenarios, but the full calculation would
be highly complex. For the bb̄→ φZ channel NLO effects are far more
easily obtained and already available [86].
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Figure 25: Cross section for gg→ hZ (red) and bb̄→ hZ (blue) normalized
to corresponding SM prediction with (solid) and without pT ,φ cut
(dashed) at

√
s = 14 TeV in Type II 2HDM withMh = 125 GeV and

MA = 300 GeV for tanβ = 1 (left) and tanβ = 20 (right); from
Ref. [63].

Phenomenologically, it would be interesting to study the experi-
mental sensitivity to the ratio in more detail including the relevant
decay rates, for example, but also to extend this study to other mod-
els like the MSSM.





Part III

N U M E R I C A L I N T E G R AT I O N O F L O O P
I N T E G R A L S I N F O U R - D I M E N S I O N A L

R E G U L A R I Z AT I O N

In this part we will explore the alternative regularization
method FDR with emphasis on the numerical evaluation of
IR-finite two-loop diagrams using suitable counterterms.
A method to contruct such counterterms is presented and
implemented for the case of vanishing external momenta.
Finally, for selected physical applications agreement to
known results is shown.





6
I N T R O D U C T I O N T O F D R

Four-Dimensional Regularization was proposed by Roberto Pittau in
2012 [93] as an alternative approach to regularization and renormal-
ization of quantum field theories. It is based on the idea to absorb
infinities by a redefinition of the vacuum rather than adding coun-
terterms to the Lagrangian. This is achieved by a reinterpretation of
loop integrals in such a way that they can be integrated in four di-
mensions while gauge symmetry is maintained.

In this work we will rather think of FDR as a calculational tool and
focus on practical aspects,1 with special emphasis on the numerical
integration of loop integrals with the help of local counter terms pre-
sented in Chapter 7. In the following the basic ideas of FDR including
in particular the definition of the FDR integral will be summarized.

6.1 isolation of uv divergencies

Consider a generic one-loop integral with internal masses {mi} and
external momenta {pi} in DR,

IDR = I({pi,mi},µR, ε) = µ2εR

∫
ddl J(l, {pi,mi}, ε), (6.1)

where d = 4− 2ε and µR denotes the renormalization scale. Assume
that there is a splitting of J into a UV-finite part JF and a part JV that
is independent of any masses and external momenta:

J(l, {pi,mi}, ε) = lim
µ→0

[JV(l,µ, ε) + JF(l, {mi,pi},µ)] . (6.2)

In other words, JV contains all the UV divergencies and does not de-
pend on details of the underlying process. The reason for the new
arbitrary scale µ will become clear soon. Inserting Eq. (6.2) into (6.1)
yields a corresponding splitting of IDR:

IDR = lim
µ→0

[IV(µ,µR, ε) + IF({mi,pi},µ)] , (6.3a)

IV(µ,µR, ε) = µ2εR

∫
ddl JV(l,µ, ε), (6.3b)

IF({mi,pi},µ) =
∫

d4l JF(l, {mi,pi},µ). (6.3c)

The limit µ → 0 is to be understood as the asymptotic behavior for
small µ. Now it is evident why an additional scale is needed. Other-
wise Eq. (6.3b) would be zero since scaleless integrals vanish in DR.

1The idea that FDR may help facilitate NNLO calculations was pointed out in
Ref. [94].

69
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Realizing that µ is the only scale in the integrand JV , the structure
of IV can be anticipated easily. In case of a polynomial UV divergency
of degree k, the result must be proportional to µk by power counting.
Thus it will vanish when the limit µ → 0 is taken and not contribute
to IDR. A logarithmic divergency on the other hand leads to a factor
of µ−2ε and a pole in ε. In this case one can write

IV =

(
µ2R
µ2

)ε [ ∞∑
k=−1

akε
k

]

= a−1

[
1

ε
+ ln

(
µ2R
µ2

)]
+ a0 +O (ε) . (6.4)

Note that if JV contained convergent vacuum integrals, these would
behave like powers of 1

µ and make the splitting (6.2) more compli-
cated than necessary. Thus this situation should be avoided.

Let us now assume that there is a logarithmic divergency that we
remove by MS renormalization, i.e. by subtraction of the pole:

IMS = I− a−1
1

ε

= ln
(
µ2R
µ2

)
+ a0 + lim

µ→0
IF({mi,pi},µ). (6.5)

Note that since I and IMS cannot depend on µ but only on µR, the
dependence of IMS on µR must be the same as the dependence of
limµ→0 JF on µ. Thus it makes sense to identify µ with µR and to
write

IMS = a0 + lim
µ→0

IF({mi,pi},µ)
∣∣∣∣
µ=µR

. (6.6)

Suppose there is a method to obtain a splitting as in Eq. (6.2) and
reasoning to believe that a0 is completely universal. Then Eq. (6.6)
discloses a strategy to perform the renormalization of UV divergen-
cies before the integration so that there is no need to evaluate any
dimensionally regulated integrals. This is exactly what FDR claims to
do. The quantity defined by

IFDR := lim
µ→0

IF({mi,pi},µ)
∣∣∣∣
µ=µR

(6.7)

is finite in four dimensions and related to IMS by a finite renormaliza-
tion like the usual translation between two different renormalization
schemes. In the following section, details on the separation of UV di-
vergencies in the FDR framework will be discussed.

6.2 definition of the fdr integral

As indicated in the previous section, within FDR loop integrals are
defined by separating and dropping divergent vacuum contributions
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on the integrand level. The method to arrive at the separation J =

JV + JF is best illustrated with a simple example. Consider the one-
loop two-point function,

B0(p
2) = µ2εR

∫
ddl

1

(l2 −M2)((l+ p)2 −M2)

=
i

16π2

(
µ2R
M2

)ε [
1

ε
+ 2−β ln

(
β+ 1

β− 1

)]
+O (ε) ,

β =

√
1−

4m2

s
. (6.8)

This dimensionally-regulated integral has a logarithmic UV diver-
gence resulting in a pole in ε. The new scale µ is introduced as an
additional mass, yielding for the integral from Eq. (6.8)

B0(p
2) = lim

µ→0
µ2εR

∫
ddl

1

(l2 − µ2 −M2)((l+ p)2 − µ2 −M2)︸ ︷︷ ︸
≡J

.

(6.9)

Using the partial-fraction relations

1

l
2
−M2

=
1

l
2

(
1+

M2

l
2
−M2

)
, (6.10a)

1

(l+ p)
2
−M2

=
1

l
2

(
1+

M2 − p2 − 2l · p
(l+ p)

2
−M2

)
, (6.10b)

where l2 := l2 − µ2, we may now rewrite the integrand in the follow-
ing way:

J =
1

(l
2
−M2)((l+ p)

2
−M2)

=
1

l
2
((l+ p)

2
−M2)

+
M2

l
2
(l
2
−M2)((l+ p)

2
−M2)

=
1

l
4︸︷︷︸
≡JV

+
M2 − p2 − 2l · p
l
4
((l+ p)

2
−M2)

+
M2

l
2
(l
2
−M2)((l+ p)

2
−M2)︸ ︷︷ ︸

≡JF

.

(6.11)

Note that the UV divergency has been isolated in the first term JV , as
can be checked by power counting, and that this term is independent
of M and p. By dropping this term, the UV divergencies are traded in
for IR divergencies regulated by µ.

The question remains how to fix the difference between the MS and
the FDR results.2 For our example, it is

µ2εR

∫
ddl JV =

i

16π2

[
1

ε
+ ln

(
µ2R
µ2

)
+O (ε)

]
. (6.12)

2cf. Eq. (6.6)
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Thus the subtraction of JV before the integration has the same effect
as the MS subtraction when identifying µ = µR. In this case one ex-
pects IMS = IFDR, which will be verified in Section 7.4.

The procedure shown for B0 can easily be generalized to any scalar
integral:

• replace all propagators according to

1

(l+ p)2 −m2
→ 1

(l+ p)2 −m2 − µ2
, (6.13)

• use the relations (6.10) to separate JV and JF,

• calculate
∫

d4l JF in four dimensions,

• take the asymptotic behavior for µ2 → 0,

• evaluate the result at µ = µR.

In Ref. [93] it was argued that for φ3 and φ4 theory the dropping of
JV can be understood as a simple redefinition of the vacuum which
replaces the usual renormalization procedure and thus the results
obtained in FDR should be consistent.

Let us now extend the discussion to theories involving gauge bosons
and fermions. A key feature of FDR is that it respects gauge symme-
try. At first sight, an additional mass µ introduced in the gauge boson
propagators is in conflict with this claim. To compensate for this, the
replacement l2 → l

2
= l2 − µ2 must be performed in the numerator

as well, and the µ2 part has to be treated in the same way as the l2

part during the separation of JV and JF.3 This construction is meant to
ensure that all the cancellations between numerators and propagators
that occur in DR also take place in FDR, so that the consequences of
gauge symmetry, such as Ward identities, are automatically fulfilled.
According to Ref. [93], this fixes the constant in Eq. (6.6), because it
could be corrected by demanding that the Ward identities be fulfilled,
which they are by construction, however.

Concerning integrals involving fermions, in the original paper [93]
it was required to replace

1

/l + /p−m
→ 1

/l + /p−m− µ
. (6.14)

Later in Ref. [95], it was clarified that one may as well take the trace
over fermion lines first and consistently replace l2 → l2 − µ2 after-
wards. This is the understanding we will apply in this thesis.

3As a consequence, a factor of µ2 in the numerator must be counted as l2 when
the UV behavior of an integral is examined. This point will be discussed in more
detail in Section 8.1.2.1.
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6.3 properties of the fdr integral

Adopting the notation from Ref. [93], we write the FDR interpretation
of a dimensionally regulated L-loop integral

IDR =

L∏
i=1

∫
ddli J({li, l2i ,pi,mi}, ε) (6.15)

as

IFDR =

L∏
i=1

∫
[d4li ]J({li, li

2,pi,mi}, 0)

:= lim
µ→0

L∏
i=1

∫
d4li JF({li, li

2,pi,mi}, 0)
∣∣∣∣
µ=µR

= IDR − lim
µ→0

L∏
i=1

∫
d4li JV({li, li

2,pi,mi}, 0)
∣∣∣∣
µ=µR

, (6.16)

where the squared brackets indicate that the integral is to be treated
according to the rules presented in the last section. The rules (6.10)
generalize easily to the multi-loop case. A difference is that possi-
bly sub-divergencies come up, which have to be isolated using the
partial-fraction relations with respect to a part of the integral only,
treating the other loop momenta as external ones as explained al-
ready in Ref. [93] for the two-loop case. As a consequence, one cannot
expect the FDR integral to be simply the finite piece of the DR result
anymore. From the second line in Eq. (6.16), where the FDR integral
is represented as the difference of two DR integrals, it is clear that it
fulfills basic properties of integrals, such as shift invariance.

In Ref. [94] differences between FDR and DR are discussed. One fea-
ture of FDR mentioned there is that at most a finite renormalization
is needed to express the result of the calculation in terms of experi-
mental observables.4 Another advantage of FDR for multi-loop calcu-
lations is the fact that no ε

ε terms occur. Thus there is for example no
need to determine higher terms in the expansion in ε when an L-loop
result is included in the (L+ 1)-loop calculation. However, a different
kind of spurious terms shows up, namely those with µ2 in the nu-
merator. It appears that they balance the missing ε

ε terms, at least in
the context of tensor reduction. Consider for example the integral∫

[d4l ]
lµlν

l
2
(l
2
−m2)2

=
gµν

4

∫
[d4l ]

l2

l
2
(l
2
−m2)2

=
gµν

4

∫
[d4l ]

(
1

(l
2
−m2)2

+
µ2

l
2
(l
2
−m2)2

)
,

(6.17)

4We will have to do this for the top-quark mass in Section 8.3.
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where we are allowed to replace lµlν → l2

4 g
µν because of the four-

dimensionality, but l2 can be canceled against l2 only for the price of
an extra term. In DR on the other hand, one would replace lµlν →
l2

d g
µν, which produces an ε

ε term if the integral is divergent. Simi-
larly, the extra µ2 term gives a finite contribution if the original inte-
gral was divergent, as shown in Ref. [93].

IR divergencies in the loop integrals, both soft and collinear, are
regulated by the introduction of the small mass µ2 as well. These will
produce terms of the form lnk(µ2), k 6 2L, which are compensated
by the real emission. To achieve this cancellation, one has to perform
the phase-space integration with photons and gluons having a small
mass µ2. This has been shown to work at one loop in Ref. [96] for
H→ gg at NLO QCD.
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In summary the technical challenge that follows from the previous
chapter is as follows. After the removal of the UV divergencies by
making use of the partial-fraction identities and dropping divergent
vacuum integrals, which can be automatized easily, the task is to cal-
culate integrals that are finite in four dimensions but depend on the
additional small mass parameter µ. In fact, we need the asymptotic
behavior of these integrals for vanishing µ, but evaluated at µ = µR.
In this chapter we will demonstrate how this can be performed with
the help of local counterterms that have the same asymptotic behavior
but can be integrated more easily. The difference can then be evalu-
ated numerically with µ = 0.

7.1 motivation

In principle the four-dimensionality welcomes numerical evaluation
of the integrals. Nevertheless it is challenging to determine the behav-
ior for µ→ 0 numerically. To be able to discuss this in more detail, let
us recall that we expect the integrals to behave like

I =
∑
i

Ai lni
(
µ2

M2

)
+
∑
j

Bj

(
µ2

M2

)j
+C, (7.1)

where M denotes a scale at the order of the physical scales in the
integrand. Following the FDR prescription, we have to set Bj = 0 for
all j and evaluate the result at µ = µR, which should be chosen at the
order of M to achieve a reasonable convergence of the perturbation
series. That is, if we simply tried to suppress the Bj terms by choosing
µ2 � M2, the result would not be sensible. In addition, this might
cause the convergence of the numerical integration to slow down to
unacceptable extent.

One possible solution would be to determine the coefficients Ai in
some other way, e.g. by calculating the behavior of the subtracted vac-
uum integrands or by making use of lower order results and renor-
malization group arguments. Then one could subtract the logarith-
mic terms from the result evaluated at some value µ = µ0, where
µ20 � M2, to determine C. However, the problem of possibly bad
convergence would remain. In practice, one would even have to per-
form the integration several times varying µ0 to ensure that the Bj
terms are sufficiently suppressed.

Therefore we pursue a different approach, namely to aim at finding
auxiliary integrands with the same local behavior as the original in-
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tegrands in the regions where the divergencies for small µ originates
from. In the following sections we will analyze typical FDR integrals
on the level of Feynman parameters and propose counterterms for
one-loop integrals and a large class of two-loop integrals.

7.2 general considerations

To identify the region in the integration space where the logarith-
mic dependence on µ2 has its origin, let us examine the Feynman
parametrization of a typical FDR L-loop integral. In Section B.1 it is
argued that this parametrization has the form

I =

Nx∏
i=1

∫1
0

dxi

Ny∏
j=1

∫1
0

dyj δ

1− Nx∑
k=1

xk −

Ny∑
l=1

yl


· p(x1, · · · , xNx ,y1, · · · ,yNy)

(bT adj(A)b+ det(A)c)N1 det(A)N2
, (7.2)

where

c =

Nx∑
i=1

xi(m
2
i − q

2
i ) + µ

2 − iε. (7.3)

We distinguish between parameters for propagators with non-zero
mass mi and/or momentum qi and the ones for propagators that
depend on µ2 (and the loop momenta) only, and label them xi and
yi, respectively. Furthermore p is a polynomial determined by the
structure of the numerator and the powers of the propagators, the
L×L-dimensional matrix A has components given by the structure of
the corresponding graph, and b is an L-dimensional vector containing
linear combinations of the external momenta.

The logarithmic dependence on µ2 must originate from a region
where the denominator would vanish if µ2 was zero. Since µ2 enters
the denominator at the right-hand side of Eq. (7.2) only via c, Eq. (7.3)
should be the key to single out this region. Let us first demand that
q2i � m2i for all i so that c > 0, and also that all other momentum
invariants appearing in bT adj(A)b are such that the denominator is
positive-definite. We will discuss a possible generalization below. Un-
der this assumption, since µ2 is assumed to be smaller than any other
scale appearing in the integrand, it follows that all xi must be small
in order for c to become small in the limit µ2 → 0. Note that this also
implies b → 0, so that indeed the denominator of (7.2) is of order µ2

for x→ 0.
If we release the constraints on the momenta, additional singular-

ities will occur. In case they originate from an IR divergency that is
regulated by µ2 playing the role of a small mass of otherwise mass-
less particles, they would have to be canceled by logarithms from



7.2 general considerations 77

the phase-space integration of the real emission amplitude or even
by mass factorization. This would have to be done consistently in
FDR, which is beyond the scope of this work, where we restrict our-
selves to IR-finite quantities. Otherwise they simply signal that we
have crossed a threshold for the on-shell production of intermediate
particles and are merely a practical complication. In an analytic calcu-
lation, one would perform the integration assuming the denominator
is positive-definite, and afterwards analytically continue the result
to the region above the threshold, taking into account the +iε pre-
scription. For the numerical evaluation this problem is more severe.
Setting ε to a small positive value would in principle suffice but lead
to sharply peaked integrands that are difficult to integrate. In prac-
tice, one has to deform the integration contour in the complex plane
to achieve a well-behaved numerical integration [97]:

n∏
i=1

∫1
0

dxi θ

1− n∑
j=1

xi

 f(x1, · · · , xn)→
∫
C

dnz f(z1, · · · , zn),

(7.4)

where a possible parametrization is given by

∫
C

dnz f(z) =
n∏
i=1

∫1
0

dξi θ

1− n∑
j=1

ξi

 f(z1(ξ), · · · , zn(ξ)),

zi(ξ) =
ξi + iηi(ξ)

1+ i
∑
j ηj(ξ)

. (7.5)

One can verify easily that this deformation vanishes at the integra-
tion boundaries, provided that ηi(ξ) → 0 for ξi → 0. If, in addition,
the deformation can be performed continuously from the start with-
out crossing any singularities, the result must be the same due to
Cauchy’s integral theorem. This idea is used in the second version
of SecDec [98], for example, a program for the numerical evaluation
of dimensionally regulated integrals. We will demonstrate later how
this could work for our approach at least in the one-loop case.

Another complication arises when det(A) becomes small. At first
glance one might think that these singularities are not regulated by
µ2, since the coefficient of µ2 disappears and hence it does not seem
to be able to prevent the denominator from vanishing in this situation.
The conclusion would be that such singularities must be integrable
independently of µ2 and thus do not contribute to the ln(µ2) terms.
However, it turns out that the integral over the yi parameters can
become divergent for vanishing xi, meaning that indirectly µ2 does
regulate these singularities as well. In the one-loop case, which will
be studied in the next section, it is always A = 1, so this problem can-
not occur. For more than one loop, this overlapping of divergencies
appears to be the most serious technical difficulty in the construction
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the counterterms. This will be discussed in detail for the two-loop
case later on.

7.3 the one-loop infrared-finite case

At the one-loop level, a typical scalar FDR-regulated integral has the
form

I(1l) =

∫
d4l


Nx∏
j=1

1(
(l+ qj)2 −m

2
j − µ

2
)αj
 1(

l2 − µ2
)β . (7.6)

Following the notation from Section B.1, the coefficients of the loop
momenta in the quadratic form obtained by Feynman or Schwinger
parametrization are

A =

Nx∑
i=1

xi + y, (7.7)

b =

Nx∑
i=1

xiqi, (7.8)

simply because there is only one loop momentum l. Thus Eq. (B.19)
reduces to

I(1l)

iπ2
= (−1)NΓ(N− 2)

Nx∏
i=1

∫1
0

dxi
Γ(αi)

∫1
0

dy
Γ(β)

δ

(
1− y−

Nx∑
k=1

xk

)

· xαi−1i yβ−1(
µ2 +

∑Nx
j=1 xj(m

2
j − q

2
j ) + b

Tb
)N−2

, (7.9)

where N =
∑Nx
i=1 αi + β, and we have used the delta function to

simplify det(A) = 1. The next step is to integrate out y by means of
the delta function, which yields

I(1l)

iπ2
= (−1)N

Γ(N− 2)

Γ(β)

Nx∏
i=1

∫1
0

dxi
Γ(αi)

θ

(
1−

Nx∑
k=1

xk

)

·
xαi−1i

(
1−
∑Nx
k=1 xk

)β−1
(
µ2 +

∑Nx
j=1 xj(m

2
j − q

2
j ) + b

Tb
)N−2

. (7.10)

Next we introduce a reference mass scale M to write the integral in
terms of dimensionless parameters:

I(1l)

iπ2
=

(−1)N

(M2)N−2

Γ(N− 2)

Γ(β)

Nx∏
i=1

∫1
0

dxi
Γ(αi)

θ

(
1−

Nx∑
k=1

xk

)

·
xαi−1i

(
1−
∑Nx
k=1 xk

)β−1
(
a+
∑Nx
j=1 xjcj +

∑Nx
j,k=1 cjkxjxk

)N−2
. (7.11)
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The new parameters are defined as a := µ2

M2 , cj :=
m2
j−q

2
j

M2 , and bTb
M2

has been written in a form, where cjk are momentum invariants di-
vided by M2.

Let us now apply the general idea sketched in the previous section
to this integral. Assuming the external momenta are such that one
can integrate Eq. (7.11) without the need to change the integration
contour in the complex plane, singularities can occur only when all
xi are small. To single out the behavior of the integrand in this region,
the relation shown in Eq. (B.44) turns out to be very useful:

n∏
i=1

∫1
0

dxi θ

(
1−

n∑
k=1

xk

)
f(x1, · · · , xn)

=

n∏
i=1

∫1
0

dxi δ

(
1−

n∑
k=1

xk

) ∫1
0

dr rn−1f(rx1, · · · , rxn). (7.12)

Making use of it we can write

I(1l)

iπ2
=

(−1)N

(M2)N−2

Γ(N− 2)

Γ(β)

Nx∏
i=1

∫1
0

dxi x
αi−1
i

Γ(αi)
δ

(
1−

Nx∑
k=1

xk

)

·
∫1
0

dr
rN−β−1(1− r)β−1(

a+ r
∑Nx
j=1 xjcj + r

2
∑Nx
j,k=1 cjkxjxk

)N−2
,

(7.13)

where we have inserted
∑Nx
i=1 αi = N−β when counting powers of r.

What we have achieved by this transformation is that the divergency
for a → 0 is now associated with the region of small r, assuming
sufficiently many ci are non-zero, rather than the region where all
xi are small. The degree of divergence can now be determined easily
by power counting. If β = 1, the integrand is finite at r = 0 even for
a = 0, while in the case β = 2, the integrand would behave like 1r for
vanishing a and produce a logarithmic divergency. For even larger
β, the integral would diverge like 1

(µ2)β−2
, which one should avoid

as pointed out in Section 6.1. Looking back to Eq. (7.6), this is exactly
what one would expect from counting the powers of µ2 in the limit
l→ 0.

The advantage of the representation (7.13) is that after performing
a single integration over r we may already take the limit µ → 0. The
coefficients of lnk(µ2), k = 0, 1, are then given by integrals over the xi
that are expected to converge if there are no additional IR singularities,
and do no longer depend on µ. Since we aim at numerical evaluation
of these integrals anyway, we can make our life even simpler by ap-
proximating Eq. (7.13) by a simpler integral with the same structure
in the divergent region, and taking the difference afterwards.
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The basic idea for the simplification is to linearize the denomina-
tor. To illustrate this, let us first consider a simple, logarithmically
divergent example:∫1

0

dr
1

a+ br+ cr2

=
2√

4ac− b2

[
arctan

(
b+ 2c√
4ac− b2

)
− arctan

(
b√

4ac− b2

)]
=

−1

b

[
ln
(a
b

)
+ ln

(
b+ c

b

)
+O (a)

]
. (7.14)

Instead of calculating the exact dependence on a and expanding in
small a, we can evaluate a simpler integral producing the same ln(a)
term, and add back the difference integrated with a→ 0:

lim
a→0

∫1
0

dr
1

a+ br+ cr2

=

∫1
0

dr
1

a+ br
+

∫1
0

dr lim
a→0

[
1

a+ br+ cr2
−

1

a+ br

]
+O (a)

=
−1

b
ln
(a
b

)
+

∫1
0

dr
−c

b(b+ cr)
+O (a)

=
−1

b
ln
(a
b

)
+

−1

b
ln
(
b+ c

b

)
+O (a) . (7.15)

Similarly, additional powers of r in the numerator can be neglected
when determining the dependence on ln(a).

Before applying this idea to Eq. (7.13), we rewrite it as

I(1l)

iπ2
=

(−1)N

(M2)N−2

Γ(N− 2)

Γ(β)

Nx∏
i=1

∫1
0

dxi x
αi−1
i

Γ(αi)
δ

(
1−

Nx∑
k=1

xk

)

·
∫1
0

dr I(N−2,2−β,β−1)
1

a,
Nx∑
j=1

xjcj,
Nx∑
j,k=1

cjkxjxk, r

 ,

(7.16)

where we have introduced a generic notation for the integrand:1

I
(N1,n1,n2)
1 (a, c1, c2, r) :=

rN1−1+n1(1− r)n2

(a+ c1r+ c2r2)N1
. (7.17)

The definition of n1 is such that the integral is logarithmically diver-
gent if n1 = 0. The corresponding auxiliary integrand, which serves as
a local counterterm, can be chosen as

A
(N1,n1)
1 (a, c1, r) := I(N1,n1,0)

1 (a, c1, 0, r)

=
rN1−1+n1

(a+ c1r)N1
. (7.18)

1In the appendix, Section B.3, this integrand is slightly more generalized.
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In the logarithmically divergent case, n1 = 0, its integral is given by∫1
0

drA(N1,n1)
1 (a, c1, r) = −

1

cN11

(
ln
(
a

c1

)
+HN1−1

)
, (7.19)

where Hn =
∑n
i=1

1
n denotes the nth harmonic number.

Defining the difference between integrand and counterterm as

R
(N1,n1,n2)
1 (c1, c2, r) := lim

a→0

{
I
(N1,n1,n2)
1 (a, c1, c2, r)

−A
(N1,n1)
1 (a, c1, r)

}
, (7.20)

we arrive at our final expression for I(1l) in the case of a logarithmic
divergency:

I(1l)

iπ2
=

(−1)NΓ(N− 2)

(M2)N−2

Nx∏
i=1

∫1
0

dxi x
αi−1
i

Γ(αi)
δ

(
1−

Nx∑
k=1

xk

)

·

 1(∑Nx
j=1 cjxj

)N−2

− ln(a) + ln

Nx∑
j=1

cjxj

−HN−3


+

∫1
0

dr R(N−2,0,1)
1

Nx∑
j=1

xjcj,
Nx∑
j,k=1

cjkxjxk, r

+O (a)

 .

(7.21)

The formal limit µ2 → 0 can now be performed by omitting terms
of order a, and Eq. (7.21) can be evaluated numerically with arbitrary
µ = µR.

The result shown in Eq. (7.21) reflects the general remarks on pos-
sible additional singularities due to different configurations of the
external momenta given in Section 7.2. Either we have to require(∑Nx

j=1 cjxj
)
6= 0 here, or, for momentum configurations above thresh-

old, deform the integration contour in a way consistent with the +iε

prescription. In case of an IR divergency, this does not suffice, and one
has to perform more integrations analytically before it is legitimate
to take a→ 0, which will in general lead to a ln2(a) term.

7.4 analytic continuation : a one-loop example

To illustrate the method described in the previous section, especially
the aspect of analytic continuation, let us return to the simple, but in-
structive example we have already considered in Section 6.2, namely
the one-loop two-point function:

B0(q
2) =

∫
[d4l]
(2π)4

1(
l
2
−m2

)(
(l+ q)

2
−m2

) . (7.22)
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Using the partial-fraction identities (6.10) we write the integrand as∫
d4l

[
1

l
4

]
+

∫
d4l

m2 − 2l · q− q2

l
4
(
(l+ q)

2
−m2

)
︸ ︷︷ ︸

=:I1

+

∫
d4l

m2

l
2
(
l
2
−m2

)(
(l+ q)

2
−m2

)
︸ ︷︷ ︸

=:I2

. (7.23)

The first term forms the divergent vacuum integral that will be dropped
as indicated by the square brackets, and thus it is

(2π)4B0(q
2) = lim

µ2→0
{I1 + I2}

∣∣
µ=µR

. (7.24)

For I1 and I2 we introduce Feynman parameters as described in Sec-
tion B.1, yielding

I1
iπ2

= −

∫1
0

dx
(1− x) [(1+ (2x− 1)s)]

a+ x(1− s) + x2s− iε
,

I2
iπ2

= −

∫1
0

dx1
∫1
0

dx2
θ (1− x1 − x2)

a+ x1 + x2 − sx2(1− x2) − iε
, (7.25)

where a = µ2

m2 and s = q2

m2 .
I2 is already finite for µ = 0, so we can simply integrate it with

a suitable contour deformation. For I1 we put Eq. (7.21) to use. The
integrated auxiliary integral can be analytically continued by writing

ln(1− s− iε) = ln |1− s|− iπ θ(s− 1). (7.26)

The difference function R1 is integrated numerically after applying
the contour deformation using the NIntegrate routine of Mathematica.
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Figure 26: Real and imaginary part of B0 as a function of q
2

m2

The results for the real and imaginary part of B0 are shown as dots
in Fig. 26, where the solid line is the finite part of Eq. (6.8), correspond-
ing to the MS-renormalized result. As anticipated in Section 6.2, we
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find agreement between the two because the divergent vacuum inte-
gral that is discarded in FDR has a vanishing finite part. Note that I1
and I2 separately develop an imaginary part already for s > m2, i.e.
below the threshold for the on-shell production of a pair of particles
with mass m. This is due to the additional propagators with vanish-
ing mass µ and corresponds to the production of a massive and a
massless particle. As required, this effect cancels in the sum, leaving
an imaginary part only above the expected threshold at s > 4m2.
These additional thresholds in intermediate steps seem to be a gen-
eral feature of the FDR approach.

7.5 the two-loop case

To make the notation from Section B.1 more specific to the case L = 2,
we define l12 := l1 + l2 and note that then each propagator contains
either l1, l2, or l12. If we use this to subdivide the massive prop-
agators into three groups and collect their indices in three sets Xi,
i = 1, 2, 3, we can write the argument of the exponential as2

D =
∑
k∈X1

xk
(
l21 + 2qk · l1 + q2k −m2k

)
+
∑
k∈X2

xk
(
l22 + 2qk · l2 + q2k −m2k

)
+
∑
k∈X3

xk(l
2
12 + 2qk · l12 + q2k −m2k)

+ y1l
2
1 + y2l

2
2 + y3l

2
12 − µ

2, (7.27)

where X1 ∪ X2 ∪ X3 = {1, · · · ,Nx} and X1 ∩ X2 ∩ X3 = { }. Without
loss of generality we can assume the xi to be ordered in a way such
that

X1 = {1, · · · ,N1},

X2 = {N1 + 1, · · · ,N1 +N2},

X3 = {N1 +N2 + 1, · · · ,N1 +N2 +N3}, (7.28)

where N1 +N2 +N3 = Nx. In general, the yi terms need not all
be present and also the sets Xi could partly be empty. Some of these
special cases have to be distinguished and are discussed in Section B.2
of the appendix. For now, we simply assume N1, N2, N3, and Ny to
be always sufficiently large.

2cf. Eq. (B.6)
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To obtain the connection to equation (B.19) we write

D = (y1 +

N1∑
k=1

xk)︸ ︷︷ ︸
=:a1

l21 + 2

N1∑
k=1

xkqk︸ ︷︷ ︸
=:b1

·l1

+ (y2 +

N1+N2∑
k=N1+1

xk)︸ ︷︷ ︸
=:a2

l22 + 2

N1+N2∑
k=N1+1

xkqk︸ ︷︷ ︸
=:b2

·l2

+ (y3 +

Nx∑
k=N1+N2+1

xk)︸ ︷︷ ︸
=:a3

l212 + 2

Nx∑
k=N1+N2+1

xkqk︸ ︷︷ ︸
=:b3

·l12

−


 Nk∑
k=1

xk +

Ny∑
l=1

yl

µ2 + Nx∑
k=1

xk(m
2
k − q

2
k)

︸ ︷︷ ︸
=:c

= (a1 + a3)l
2
1 + (a2 + a3)l

2
2 + 2a3l1 · l2

+ 2(b1 + b3) · l1 + 2(b2 + b3) · l2 − c, (7.29)

Comparing to equation (B.6) one can read off the coefficient matrix A
and the vector b:3

A =

(
a1 + a3 a3

a3 a2 + a3

)
, (7.30a)

b =

(
b1 + b3

b2 + b3

)
. (7.30b)

Equation (B.19) now takes the form

I(2l)

(iπ2)2
= (−1)NΓ(N− 4)

Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

Ny∏
j=1

∫1
0

dyj
y
βj−1
j

Γ(βj)

· δ

1− Nx∑
k=1

xk −

Ny∑
l=1

yl

 det(A)N−6

(bT adj(A)b+ det(A)c)N−4
,

(7.31)

where

N =

Nx∑
i=1

αi +

Ny∑
j=1

βj (7.32a)

det(A) = a1a2 + a1a3 + a2a3, (7.32b)

bT adj(A)b = a3(b1 − b2)
2 + a2(b1 + b3)

2 + a1(b2 + b3)
2,
(7.32c)

3Note that the meaning of the bi has changed slightly.
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and Ny ∈ {1, 2, 3}. Note that in any case the delta function induces

a1 + a2 + a3 =

Ny∑
i=1

yi +

Nx∑
i=1

xi = 1. (7.33)

If there are non-trivial numerators, we take them into account by tak-
ing the derivative of the corresponding Schwinger parameters as ex-
plained in Section B.1.2. The evaluation of the derivatives will not
change the structure of the denominator significantly but only influ-
ence its power. Accordingly, most of the following analysis, which is
focused on scalar integrals, can be carried over for the case of non-
trivial numerators.

The next step is to find a parametrization suited to tailor the aux-
iliary integrals. As pointed out earlier, it is essential to understand
when a zero of det(A) overlaps with the region of interest, namely
where all xi are small. To disentangle this situation, we will make use
of Eq. (7.12) several times. Afterwards it can be judged which terms
in the denominator can be neglected without changing the logarith-
mic dependence on µ2 and thus need not be included in the auxiliary
integral. To illustrate how this will work, let us consider an example:

J =

∫1
0

dx
∫1
0

dy
θ(1− x− y)

(x+ y)(a+ bx) + cx2
. (7.34)

This integral has a logarithmic divergency for small a. Suppose we
want to find out whether the cx2 term has any influence on the ln(a)
terms of the result without performing the analytic integration. Re-
calling the situation in the one-loop case,4 one might expect that it
only enters the finite piece of the result. However, as x approaches
zero, the integral over y becomes logarithmically divergent, i.e. x
serves as a regulator here. In fact, both divergencies are in the end reg-
ulated by µ. To make this apparent, let us apply Eq. (7.12) to Eq. (7.34),
which yields

J =

∫1
0

dx
∫1
0

dy
∫1
0

dr
r δ(1− x− y)

r(x+ y)(a+ brx) + cr2x2

=

∫1
0

dx
∫1
0

dr
1

a+ brx+ crx2
. (7.35)

Now the divergent region is symmetric in the two integration vari-
ables: r or x must be small. The leading term b will certainly con-
tribute to the logarithm. In the region of small x, the c term is sup-
pressed compared to the b term, but if, conversely, r is small and x is

4cf. Eq. (7.15)
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not, the two terms will be of the same order. So c is indeed expected
to influence the logarithmic term. In fact, the integrated result is

J =
1

2b
ln2(a) +

1

b
[−2 ln(b) + ln(b+ c)] ln(a)

+
1

b

[
π2

6
+ ln2(b) −

1

2
ln2(b+ c) − 2Li2

(
−
c

b

)]
+O (a) ,

(7.36)

i.e. c contributes not to the leading but to the sub-leading logarithm.
As a consequence, only terms that are suppressed with respect to the
leading term in all regions, where the denominator is of order a, can
safely be neglected.

Now we apply this idea to the two-loop integral (7.31). Since ai > 0
for i = 1, 2, 3 and a1 + a2 + a3 = 1, det(A) has a zero if and only
if two of the three ai vanish. The question is which of these zeros
can increase the logarithmic divergency as described above. A typical
structure that produces a logarithmic dependence on µ2 at the two-
loop level has the form

1

l1
4
l2
2
l12
2

. (7.37)

It turns out to be convenient to always eliminate the parameter of
the divergent propagator with the highest power by means of the
overall delta function. The most severe divergency occurs when the
parameter for this propagator goes to one (and all other parameters
go to zero), because it has the highest power in the numerator and
thus decreases the ability of the numerator to compensate for a zero
of the denominator. Let us assume in the following that y1 has the
highest power and is chosen to be eliminated. Then it is

det(A) = (1− a2 − a3)(a2 + a3) + a2a3. (7.38)

Now we would like to factorize the simultaneous vanishing of a2 and
a3. For this purpose, we apply Eq. (7.12) to all variables contributing
to a2 and a3, i.e. to yi, i ∈ {2, · · · ,Ny}, and xi, i ∈ {N1 + 1, · · · ,Nx},5

so that

a2,3 → ra2,3,

a2 + a3 → r,

b2,3 → rb2,3,

det(A)→ r [1− r+ ra2a3]

bT adj(A)b→ r
[
a3(b1 − rb2)

2 + a2(b1 + rb3)
2

+ra1(b2 + b3)
2
]

. (7.39)

5Note that introducing an additional theta function of the form θ(1 −∑
any subset of parameters) is legitimate here.
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The differentials and integration boundaries transform as

Nx∏
i=1

∫1
0

dxi

Ny∏
j=1

∫1
0

dyj δ

1− Nx∑
k=1

xk −

Ny∑
l=1

yl


=

Nx∏
i=1

∫1
0

dxi

Ny∏
j=2

∫1
0

dyj θ

1− Nx∑
k=1

xk −

Ny∑
l=2

yl


→
∫1
0

dr rN2+N3+Ny−2
Nx∏
i=1

∫1
0

dxi

Ny∏
j=2

∫1
0

dyj

θ

(
1−

N1∑
k=1

xk − r

)
δ

1− Nx∑
l=N1+1

xl −

Ny∑
m=2

ym

 . (7.40)

What we have achieved is that factors of r can be split off from the
denominator and be canceled against corresponding factors from the
transformed differential.

Before writing the integrand explicitly, we perform another trans-
formation. Recall that we are still interested in the region where all xi
are small. To parametrize this region in the one-loop case, we applied
Eq. (7.12) to all the xi. Here, we do this separately for i ∈ {1, · · · ,N1}
and for i ∈ {N1 + 1, · · · ,Nx}, naming the scaling variable s and t, re-
spectively. In addition, we rescale the remaining yi by u. This yields∫1

0

dr
∫1
0

ds
∫1
0

dt
∫1
0

du rN2+N3+Ny−2sN2+N3−1tN1−1uNy−2

· θ (1− t− r) δ (1− s− u)
Nx∏
i=1

∫1
0

dxi

Ny∏
j=2

∫1
0

dyj

· δ

1− Nx∑
l=N1+1

xl

 δ

(
1−

N1∑
m=1

xm

)
δ

1− Ny∑
n=2

yn

 .

(7.41)

The integration over u can be performed immediately:∫1
0

dr
∫1
0

ds
∫1
0

dt rN2+N3+Ny−2sN2+N3−1tN1−1(1− s)Ny−2

· θ (1− t− r)
Nx∏
i=1

∫1
0

dxi

Ny∏
j=2

∫1
0

dyj

· δ

1− Nx∑
l=N1+1

xl

 δ

(
1−

N1∑
m=1

xm

)
δ

1− Ny∑
n=2

yn

 .

(7.42)

For the sake of symmetry the other delta functions are kept as they
are for now. To get rid of the remaining theta function, we substitute
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t → (1 − r)t. The complete transformation can be summarized as
follows:

xi → (1− r)txi i ∈ {1, · · · ,N1}, (7.43a)

xi → rsxi i ∈ {N1 + 1, · · · ,Nx}, (7.43b)

y1 → (1− r)(1− t), (7.43c)

yi → r(1− s)yi i ∈ {2, · · · ,Ny}, (7.43d)

and
Nx∏
i=1

∫1
0

dxi

Ny∏
j=1

∫1
0

dyj δ

1− Nx∑
k=1

xk −

Ny∑
l=1

yl


=

Nx∏
i=1

∫1
0

dxi

Ny∏
j=2

∫1
0

dyj
∫1
0

dr
∫1
0

ds
∫1
0

dt

· δ

1− Nx∑
l=N1+1

xl

 δ

(
1−

N1∑
m=1

xm

)
δ

1− Ny∑
n=2

yn


· rN2+N3+Ny−2sN2+N3−1tN1−1(1− r)N1(1− s)Ny−2. (7.44)

Application of this transformation to Eq. (7.31) yields the final parametriza-
tion of the two-loop FDR integral:

I(2l)

(iπ2)2

=
(−1)NΓ(N− 4)

Γ(β1)

(
Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

)Ny∏
j=2

∫1
0

dyj
y
βj−1
j

Γ(βj)


· δ

1− Nx∑
l=N1+1

xl

 δ

(
1−

N1∑
m=1

xm

)
δ

1− Ny∑
n=2

yn


·
∫1
0

dr
∫1
0

ds
∫1
0

dt I(2l)(r, s, t), (7.45)

where

I(2l)(r, s, t)

= r−2+
∑Ny
j=2βj(rs)

−1+
∑Nx
i=N1+1

αi [(1− r)t]−1+
∑N1
i=1αi

· (1− r+ r d(s))
N−6 (1− r)β1(1− s)−1+

∑Ny
j=2βj(1− t)β1−1

[(1− r+ r d(s)) (µ2 + c1rs+ c2(1− r)t) + e(r, s, t)]
N−4

.

(7.46)

The coefficients

c1 =

Nx∑
l=N1+1

xl(m
2
l − q

2
l ), (7.47a)

c2 =

N1∑
k=1

xk(m
2
k − q

2
k), (7.47b)
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are constants with respect to r, s, and t, whereas d and e are polyno-
mials in these variables:

d(s) = a2(s)a3(s), (7.48a)

e(r, s, t) = (1− r)2t2b21 + 2rs(1− r)t [a2(s)b3 − a3(s)b2] · b1
+ r2s2

[
a2(s)b

2
3 + a3(s)b

2
2

]
+ rs2(1− r)(b2 + b3)

2.
(7.48b)

Whereas for the combinations of the external momenta bi the old
definitions before the transformations still apply, for the terms ai the
s dependence does not factorize in general and we define6

a2(s) = (1− s)y2 + s

N2∑
k=N1+1

xk, (7.49a)

a3(s) = (1− s)y3 + s

Nx∑
k=N2+1

xk. (7.49b)

The purpose of the transformation was to disentangle the divergen-
cies of the integrations over the xi and yi parameters, as it was done
earlier in this section for a simpler example (going from Eq. (7.34)
to (7.35)), in order to understand how to construct possible countert-
erms. The parametrization given in Eqs. (7.45) and (7.46) still looks
complicated, but after studying it in detail, we will be able to write
down the counterterms. The core is the term

(1− r+ r d(s))
(
µ2 + c1rs+ c2(1− r)t

)
(7.50)

in the denominator, which is the only place where µ2 enters the inte-
grand. In order for this to be of order µ2 and produce a logarithmic
dependence on µ2, rs and (1 − r)t have to be small. This would be
a suitable criterion to find suppressed terms that can be omitted in
the auxiliary integral. However, there are two conditions that must be
fulfilled. First of all, c1 and c2 as given in Eq. (7.47) may not vanish. If
we require q2i < m

2
i for all i, this will be the case because of the delta

functions in Eq. (7.45). They ensure that the sum of the xi appearing
in c1 and c2 is one in each case. Secondly, the factor in front of µ2

must not approach zero too fast in the region of interest, otherwise
the disentangling of the divergencies would not have been successful.
We note that this factor is independent of t and is close to one when
r is small for all s. Thus only the region where r is close to one (and s
close to zero) could be problematic. The factor then behaves like d(s).
Looking at Eqs. (7.48a) and (7.49), we see that d(0) = y2y3, which
obviously has two zeros at y2 = 0 and y3 = 0. In view of Eq. (7.43),
these zeros in the limit (r, s) → (1, 0) correspond to a1 = a2 = 0 and

6In case Ny < 3, when y2 and/or y3 are not present in a2,3, they are omitted
here as well, of course.
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a1 = a3 = 0, respectively. Here we have recovered the two other ze-
ros of det(A), that, however, we expect to be less severe than the one
at a2 = a3 = 0, since we required the power of y1 to be the highest
of all yi. Thus there is an additional suppression factor in the numer-
ator, which in Eq. (7.46) shows up as (1− r)β1 , and we conclude that
the integral should be convergent in this region.7 Accepting this, the
criterion proposed above (rs and (1− r)t small) to find the origin of
the logarithmic µ2 dependence should be valid.

To eventually construct the auxiliary integral, we have to consider
the complete denominator

D := (1− r+ r d(s))
(
µ2 + c1rs+ c2(1− r)t

)
+ e(r, s, t). (7.51)

In the region where this is of order µ2, the terms with c1 and c2 are
dominant. As stated before, the idea is to neglect terms that are sup-
pressed relative to the leading ones. To begin with, we approximate
d(s) by d(0), which means neglecting terms of order rsµ2, r2s2, or
rs(1 − r)t. Taking a close look at Eq. (7.48b), one sees that only the
term proportional to (b2 + b3)

2 is not sufficiently suppressed to be
neglected. Thus one may write

D = D̃+O
(
rsµ2, r2s2, rs(1− r)t, (1− r)2t2

)
, where (7.52a)

D̃ = (1− r+ r d(0))
(
µ2 + c1rs+ c2(1− r)t+ rs

2(b2 + b3)
2
)

.
(7.52b)

In the auxiliary integral, we can replace D by D̃, which is an enor-
mous simplification for the analytical integration, because D̃ is factor-
ized. The factors of (1− r+ rd(0)) can then be combined with those
in the numerator.

In Chapter 8 these ideas will be put to use for the special case of
vacuum integrals, where the (b2 + b3)

2 term does not appear. The
presence of this term would make the integration and expansion in
small a slightly more demanding, but certainly not impossible.

7If this were not the case, one could separate the integration volume in such a
way that the three zeros of det(A) are well separated, and control each zero in the
way we did for a2 = a3 = 0. However, the number of integrals would increase and
the boundaries of the cut integration volumes would be disadvantageous. This is
why we refrain from doing this unless it should turn out to be indispensable.



8
A P P L I C AT I O N T O T W O - L O O P VA C U U M
I N T E G R A L S

For a first test of how the method presented in Chapter 7 works out in
practice for the two-loop case, we assume all momentum invariants
to be so small that no thresholds are ever crossed, neither physical
thresholds nor thresholds at lower energies in intermediate results in-
duced by the propagators with a mass of µ1. Then a contour deforma-
tion will never be required. If we accept this, it makes sense to apply
another simplification, namely to perform asymptotic expansions in
small external momenta before the Feynman parametrization, so that
only vacuum integrals have to be considered. In most cases the physi-
cal range of validity would not be much larger if finite momenta were
allowed but always required to be below any threshold.

In the first section of this chapter an implementation for two-loop
vacuum integrals will be described. Afterwards some physical appli-
cations of this program will be shown.

8.1 implementation

The software setup presented in this section will be referred to as
FDRcalc in the following. Making use of FORM [38] and Mathematica,
it creates c++ code to finally obtain an executable file for the numerical
evaluation of the regularized integrals.

8.1.1 Overview and Input

The setup within and around FDRcalc is illustrated schematically in
Fig. 27. At the beginning, FDRcalc uses FORM to perform three impor-
tant steps:

• partial fractioning of the integrand to separate the divergent vac-
uum integrals from the physical, finite part (partfrac2l.prc),

• introduction of a suitable parametrization for each integrand
(feynpar2l.prc), and

• matching of the integrands to standard ones that can be easily
integrated with Mathematica (match2l.prc).

The input file, here generically denoted as <problem>, must contain
four sections, so-called folds. The first three folds are read by FORM be-
fore the corresponding procedure is called, and the fourth one before

1cf. Section 7.4
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FORM

Mathematica

c++

partfrac2l.prc
partial fractioning

feynpar2l.prc
parametrization

match2l.prc
integrand matching

<problem>.m
Mathematica format

<problem>
definition of integrand

exp/q2e
topology matching

problem.frm
exp/q2e output

qgraf
generation of diagrams

model files
Feynman rules

<problem>.qgraf
criteria for diagrams

Topology files
definition of topologies

CalcDia2l.m
preparation for

numerical evaluation

CalcInt*.m
integration of

auxiliary integrals

<problem>/*.cpp
c++ code

<problem>.x
evaluation with CUBA

<problem>.in
numerical input

<problem>.out
numerical output

Figure 27: Schematic overview of the FDRcalc setup, optionally used in com-
bination with qgraf and q2e/exp

the output is written in Mathematica format. A minimal input file is
shown in Listing 1. The integrand must be defined in the first fold
as an expression, whose name should be given in the preprocessor
variable EXPR. The notation for the propagators reads

Di(M,q) =
1

(li + q)
2
−M2

,

D0i =
1

li
2

,
(8.1)

where i ∈ {1, 2, 12} and l12 = l1 + l2. The numerators can simply be
given as scalar products using the dot operator.
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Listing 1: Minimal input file for FDRcalc

*--#[ partfrac :

*
#define EXPR "dia"

#define MAXENUMPOW "4"

l dia = D1(M1,vec0)^2*D2(M2,vec0)^2*l2.l2*D012;

*

*--#] partfrac :

*--#[ feynpar :

*

*--#] feynpar :

*--#[ match :

*

*--#] match :

*--#[ write :

*

*--#] write : �
Since the purpose of the program is the automatic evaluation of

many integrals to calculate complete amplitudes rather than just a
single one, it is useful to link it to other programs, e.g. the setup
of qgraf and q2e/exp, which was described in Section 2.6. In the
topology selection (topsel) file, one should provide all the topologies
needed in the specific problem. The corresponding integration proce-
dures then only have to express the integrand in terms of l1, l2, l12,
and the external momenta in the format given above, readily setting
ε = 0. Subsequently, the output can be included in the first fold of
the input file for FDRcalc.

Next the result, expressed in terms of the standard integrals, is pro-
cessed by the Mathematica package CalcDia2l, which plugs in the
integrated auxiliary integrals and creates c++ code for the numerical
evaluation of the remaining integrations. The integration of the auxil-
iary integrals is performed by individual modules CalcInt*.m for the
various types of integrals listed in Section B.3.

In the following subsections, the key ideas for the implementation
of each step will be presented in brief.

8.1.2 Part I: FORM

Since the first steps of the calculation involve repeated insertion of
identities and potentially a large number of terms at least in sub-
expressions, they are performed in FORM.
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8.1.2.1 Partial Fractioning

As explained in Section 6.2, the first task is to separate the divergent
vacuum integrals from the physical pieces and to remove the former
in order to obtain integrals that are finite in four dimensions. At the
two-loop level, this is done in two steps: overall divergencies should
be removed first and possible sub-divergencies afterwards.

In order to eliminate the overall divergencies, we make repeated
use of relations like those in Eq. (6.10b), namely

1

(li + p)
2
−M2

=
1

l
2
i

(
1+

M2 − p2 − 2li · p
(li + p)

2
−M2

)
, i ∈ {1, 2, 12},

(8.2)

as often as necessary. To begin with, we analyze for each term the
behavior at large loop momenta by simple power counting. In terms
of an effective number of propagators2

P := number of propagators

− b1
2

powers of li in the numeratorc, (8.3)

a necessary condition for the integral to be finite is P > 4. If an in-
tegrand with P = N 6 4 is found, Eq. (8.2) is applied (at most once
for each i) and the power counting is performed once again. This is
repeated in a while loop until no terms with P = N containing other
than pure µ2 propagators are left. Thus all terms for which P = N

still holds are divergent vacuum integrals and can be dropped. With
the remaining terms, it is P > N+ 1 and the procedure is repeated
for N+ 1 unless this is already larger than four. In this way, overall
divergencies are successively removed, starting from the highest de-
gree of divergency one expects to occur in intermediate results, e.g.
P = 0, up to logarithmical divergencies with P = 4.

The integrands are now convergent in the region where both inte-
gration momenta are large, but can still contain divergencies if only
one momentum is large, as e.g. in

1(
l1
2
−M2

)3 (
l2
2
−M2

)
l12
2

, (8.4)

when l2 is large but l1 is not. The proper way to proceed is to consider
only the integration over one loop momentum, treating the other one
as an external momentum.3 If we regard l1 as external momentum
with respect to the integral over l2, we can make use of the relation

1

l12
2
=

1

l2
2
−
l21 + 2l1 · l2
l2
2
l12
2

(8.5)

2Note that a single factor of l does not impair the UV behavior and can be ne-
glected by rounding down the powers in the numerator to an even number.

3cf. Section 5 of Ref. [93]
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in combination with Eq. (8.2) for i = 2, in order to decouple the diver-
gency of the l2 integration from l1. In this case, the term that has to be
classified as divergent vacuum integral and consequently be dropped
is the integral over l2 of

1(
l1
2
−M2

)3 · 1
l2
4

. (8.6)

To be completely general, relation (8.5) is needed for non-zero mass
and momentum as well:

1

(l12 + p)
2
−M2

=
1

l2
2
+
M2 − p2 − l21 − 2l1 · l2 − 2l12 · p

l2
2
l12
2

.

(8.7)

In the implementation we proceed in a similar way as with overall
divergencies. Sub-divergencies are searched for by power counting,
but only with respect to two of the three momenta l1, l2, and l12.
Since we deal with one-loop sub-integrals, the condition for a finite
integral is that the effective number of propagators belonging to the
sub-integral is larger than two. To apply the proper partial-fraction
relations, analogous while loops are used to successively eliminate
sub-divergencies of decreasing degree of divergence. In fact, there
are three constellations in which sub-divergencies can occur. Either
one of l1, l2, and l12 may be the one to be treated as external momen-
tum with respect to the divergent sub-integral. To find the required
partial-fraction identities for the cases not discussed so far, one can
for example interchange l1 ↔ l2 or l2 ↔ l12 in Eq. (8.7).

Two remarks about the partial fractioning are in order. Firstly, in-
tegrals that can be factorized into two one-loop integrals are treated
separately as two independent one-loop integrals to avoid unneces-
sary complication. The final remark concerns the appearance of µ2 in
the numerator. As pointed out in Section 6.2, it is important to treat
the µ2 part of a li

2 in the numerator in the same way as the l2i part.
In the current implementation this is achieved by writing them as
inverse propagators, i.e.

li
2
= 1/D0i , i ∈ {1, 2, 12}. (8.8)

Alternatively, one could distinguish µ21, µ22, and µ212 depending on
their origin, and give these factors the same weight as l2i during the
power counting.

8.1.2.2 Parametrization

The next step is to introduce the parametrization presented in Sec-
tion 7.5. First it is determined which one of the variables will be elim-
inated using the overall delta function. Recall that in the motivation
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of the parametrization it was assumed that the parameter of the µ2

propagator with the highest power should be eliminated. Since in
general we do not only have to deal with scalar integrals, we should
take into account powers of the loop momenta in the numerator as
well in this reckoning. In other words, we perform a power counting
for small loop momenta and select the variable of the propagator as-
sociated with the most severe IR divergency. The result is stored for
each term by multiplication of a tag.

Afterwards Schwinger parameters are introduced for each propaga-
tor and also for scalar products of momenta in the numerator. In the
latter case, a derivative with respect to the corresponding parameter
will be performed later instead of an integration, and these param-
eters will be named zi in order to be distinguishable. In doing so,
the values of the coefficients ai, bi, i = {1, 2, 12}, and c as defined in
Eq. (7.29) are stored as function arguments for each term.

Now the loop momenta are integrated out after completing the
square in the exponential. The result is given by Eq. (B.22), which for
vanishing external momenta reads

I = (−1)N(iπ2)L
Nx∏
i=1

∫∞
0

dxi
xαi−1i

Γ(αj)

Ny∏
j=1

∫∞
0

dyj
y
βj−1
j

Γ(βk)

· exp (−c)

Nz∏
k=1

∂γ
k

∂z
γk
k

1

det(A)2

∣∣∣∣
zk=0

. (8.9)

Note that this formula is valid only if bi = 0 for all i, i.e. scalar prod-
ucts of loop and external momenta stemming from an asymptotic
expansion, for example, have to be removed in advance. This can be
achieved in a straight-forward way using reduction identities based
on Lorentz invariance.

Next the derivatives with respect to zi are evaluated. In FORM this
is done algebraically by writing all factors that depend on zi as non-
commuting objects, multiplying ∂

∂zi
from the left, and commuting it

all the way to the right using relations of the form[
∂

∂z
, f(z)

]
= f ′(z). (8.10)

At the very right, ∂
∂zi

is set to zero. For the case of vanishing external
momenta we only need to implement two types of relations:[

∂

∂zi
,

1

det(A)n

]
= −

n

det(A)n+1

{
∂a1
∂zi

(a2 + a3)

+
∂a2
∂zi

(a1 + a3) +
∂a3
∂zi

(a1 + a2)

}
, (8.11a)[

∂

∂zi
,aj

]
=
∂aj

∂zi
. (8.11b)
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The derivatives ∂aj∂zi
are either one or zero. This fact is used as soon as

possible in order not to generate unnecessarily many terms.
Then the transformation from Schwinger to Feynman parameters

is performed by inserting the relations (B.15), (B.16), and (B.18) ex-
plicitly. This is necessary for we do not have a closed formula at hand
because of the derivatives. For factorizable integrals this is done sep-
arately in order to obtain a product of two independent Feynman
parameter integrals.

The next step is the one which requires most careful distinction
of cases, namely to decide which parameters will be scaled by new
variables r, s, t, and u. In doing so, the choice which parameter to
eliminate made at the beginning, the number of µ2 propagators Ny,
and the information which parameters contribute to a1, a2, and a3
are taken into account. The special cases described in Section B.2,
where not all new variables are needed, are handled automatically
in this way, because in the case where an empty set of parameters
is supposed to be transformed, simply nothing will be done. The
result of this decision is once again stored as function arguments for
each term. Needless to say that factorizable integrals are processed
separately in this step as well.

Subsequently, the scaling of the chosen variables by r, s, t, u, and
1− r is executed by explicit replacement of the parameters and mul-
tiplication of corresponding factors for the differentials. The informa-
tion which variables have to be integrated later on, as well as possible
theta and delta functions, are kept track of all the time. Parts of the
arisen delta functions are used for simplifications, where again the
distinction of different cases is at order.

In the end, integrals that share the same denominator are collected
in order to decrease the number of integrals and to avoid possible
cancellations. Now the integrals are ready to be matched to standard
integrals.

8.1.2.3 Matching to Generic Integrals

The last step performed in FORM is the matching of the integrals to the
generic ones listed in Section B.3, which involve the integration over
r, r and s, or r,s, and t.4

In principle, all that needs to be done is to select the suitable generic
integral and read off the coefficients of the different powers of r, s, t,
and combinations of these. In addition, factors of r, 1 − r, s, 1 − s,
and t, as well as µ2 in the numerator are counted. The preprocessor
MAXENUMPOW defined in the input file5 determines the highest power r
and s expected in the remaining polynomial of the numerator. During
the matching of the coefficients, a reference scale M is introduced in

4It turns out that integrals involving r and t can be avoided by a clever choice of
the parametrization for the physical applications considered in this thesis.

5cf. Listing 1
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order to obtain integrals that depend only on the ratios of the phys-
ical scales appearing in the problem over M, i.e. on dimensionless
quantities. The dimension of the integral itself can then be factorized
in terms of powers of M2.

The coefficients and parameters determined in this way are stored
in long chains of function arguments. In this way, the next step con-
sisting in pattern matching with Mathematica will be sufficiently ef-
ficient. Finally, the result is printed in <problem>.m formatted for
Mathematica.

8.1.3 Part II: Mathematica

Now that the integrals are expressed in terms of the generic ones
defined in Section B.3, we need to integrate the corresponding auxil-
iary integrals analytically. Since they depend on many parameters, a
closed form appears difficult to obtain. Instead, we keep only the de-
pendence on those parameters that depend on the remaining integra-
tion variables or masses and momenta. The other parameters, mostly
integer powers, are inserted before the integration. The auxiliary inte-
grals are then calculated as necessary by Mathematica routines.

As a first step, Mathematica reads the content of <problem>.m and
searches for generic integrals and their coefficients and other param-
eters via pattern matching. This matching is done by the function
CalcDia2l. Whenever such an integral is found, the appropriate in-
tegration routine CalcInt* is called with the matched values of the
parameters. The asterisk stands for the type of generic integral that
has been matched, e.g. CalcIntrst calculates integrals that depend
on all three variables r,s, and t. The return values of the CalcInt*
functions are of the form

ln2
(
µ2

M2

)
Int[i]+ ln

(
µ2

M2

)
Int[i+1]+ Int[i+2]+ Int[i+3],

(8.12)

where Int[i] stands for the result of the ith numerical integration
which will be performed by the c++ code later. There are two inte-
grals contributing to the finite term, because the finite piece of the
auxiliary integral and the regularized integral, i.e. the difference be-
tween primary and auxiliary integral, have to be integrated over dif-
ferent variables.

Let us briefly discuss how the CalcInt* routines work. At first it
calls the definitions of the original, the auxiliary, and the integrated
auxiliary integral and plugs in the parameters it has been given as
arguments. The definition of the integrated auxiliary integrals is such
that a corresponding routine is called unless the result is already
known. In the former case the auxiliary integral is integrated over
r, s, and t, or parts of these, and expanded in small a afterwards,
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while in the latter case the known result is returned. Additionally,
these results are saved at the very end of the Mathematica part of
FDRcalc and loaded at the beginning of the next run to make them
reusable. Details about the choice of the auxiliary integrals are given
in Section B.3 of the appendix. Next CalcInt* calls a subroutine that
writes standardized c++ code passing all information needed for the
numerical integration: the integrand definition, the integration vari-
ables, constraints of the form

∑
i xi = 1, and the number of the

integral. In case of such a constraint, a suitable parametrization is
automatically inserted. As indicated in Eq. (8.12), there are up to four
numerical integrations to be done per matched integral.

Finally, after all the matched integrals have been treated, the ex-
pression for the final result given in terms of ln

(
µ2

M2

)
and Int[i] is

written as c++ code to another source file.

8.1.4 Part III: c++

The output written by the Mathematica routine CalcDia2l together
with some generic c++ code can be compiled and linked immediately
to create an executable. In the following the structure of the program
will be briefly discussed.

The task is to perform several numerical integrations that differ in
dimension and required precision. To be able to store the information
about these integrations in a convenient way, we introduce the class
FDRint. It contains all relevant parameters for the numerical evalu-
ation, in particular a pointer to the integrand function. The actual
numerical integration is then initiated by calling a member function
of this class. For this purpose we use the CUBA library [89], which
implements different Monte Carlo and deterministic integration al-
gorithms. It appears that the deterministic Cuhre algorithm is best
suited for our current purposes, because it allows for high precision
with a reasonable number of function calls in moderate dimensions,
as long as the integrand does not have any sharp peaks. In the case of
(integrable) singularities, which could appear above thresholds where
a contour deformation is required, one might have to switch to Monte
Carlo methods such as Vegas [74].

After reading numerical input parameters, such as masses and mo-
mentum invariants, the generic main file calls the problem specific
function setintegrands. This function returns a vector of FDRint ob-
jects with integrands and number of dimensions set accordingly. The
main function then iterates through this vector calling the integration
member function for each element. Afterwards another problem spe-
cific function named finalresult calculates the final result from the
outcome of the single integrations, returning three numbers for the
coefficients of lni(µ2), where i = 1, 2, 3.
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A practical question is how to choose the precision goal for the
various numerical integrations. Let ε be the desired precision for the
complete result. The impact of a single integral Ik on the final result
J depends not only on its value but also on the derivative ∂J

∂Ik
. Ac-

cording to Gaussian propagation of uncertainties the estimate for the
uncertainty of J reads

(∆J)2 =

n∑
k=1

(
∂

∂Ik
J(I1, · · · , Ik, · · · , In)∆Ik

)2
. (8.13)

To estimate the derivatives, we perform a quick run for all integrals
with only moderate relative precision & 10−3 and calculate

wk := |J(I1, · · · , (1+ δ)Ik, · · · , In)

+ J(I1, · · · , (1− δ)Ik, · · · , In)| /(2δ)

≈ ∂J

∂Ik
(8.14)

with δ = O (0.1). Then in a second run we require

∆Ik <
ε√
nwk

(8.15)

so that

∆J ≈

√√√√ n∑
k=1

(wk∆Ik)
2 < ε. (8.16)

Apart from computation time the possible accuracy is limited by
instabilities of the integrands on the borders of the integration area.
As simple remedies we use longer floating point numbers than usual
in the critical part of the calculation (long double instead of double
in c++) and extrapolate the integrand if one (or more) of the variables
is closer to the border than a certain limit. The extrapolation which is
currently implemented has the form

f̃(x) =


f(κ), if x < κ,

f(x), if κ 6 x 6 1− κ,

f(1− κ), if x > 1− κ,

(8.17)

i.e. the integrand is simply set to a constant value close to the bor-
ders. For typically choices κ = O

(
10−8

)
, the impact of replacing f

by f̃ should be small compared to the uncertainty of the integration.
Otherwise a more elaborate extrapolation might have to be used.

8.2 φ → γγ at nlo qcd

The first complete two-loop calculation in FDR was presented in Ref. [94]
for the decay of a Higgs boson into two photons at NLO QCD in the
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heavy-top limit. Agreement with the well-known DR result [99, 100]
was found. As a first check of our program, we reproduce this result
in this section. In addition, we also study the case of a pseudoscalar
Higgs boson [101]. It will be interesting to see whether a finite renor-
malization for the pseudoscalar current is needed in FDR as it is the
case for DR at higher loop orders.6

8.2.1 Notation for the Amplitude

γ

t, bφ

γ

γ

Wφ

γ

W

W

(a) Leading order

γ

tφ

γ

γ

tφ

γ

γ

tφ

γ

(b) QCD corrections

Figure 28: Feynman diagrams for φ→ γγ, φ ∈ {h,H,A}

The decay of the scalar or pseudoscalar Higgs boson φ is induced
by heavy charged particles, i.e. heavy quarks or W bosons, as shown
in Fig. 28a. In any case, the amplitude can be written as

Mφ→γγ = M
µ1µ2
φ ε

µ1
1 (q1)

∗εµ22 (q2)
∗, (8.18)

where q1,2 denote the momenta of the photons and ε1,2 their po-
larization vectors. For the decay of a scalar Higgs boson h we use
the fact that the photons must be longitudinally polarized. Since
εi · qi = 0 (i = 1, 2), only terms proportional to gµ1µ2 and qµ21 q

µ1
2 in

6cf. Section 2.3
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M
µ1µ2
h can contribute. Their ratio is fixed by gauge invariance, which

implies M
µ1µ2
φ · qi,µi = 0 (i = 1, 2), so one can write

M
µ1µ2
h = (Mh,t +Mh,b +Mh,W)

(
gµ1µ2 −

q
µ2
1 q

µ1
2

q1 · q2

)
. (8.19)

In case of the pseudoscalar boson A, the only available structure for
the amplitude is εε1ε2q1q2 . Thus we write

M
µ1µ2
A = (MA,t +MA,b) ε

µ1µ2q1q2 , (8.20)

where we assume that the pseudoscalar does not couple to the heavy
vector bosons as it is the case in the 2HDM.

Here we are only interested in QCD corrections to the top quark
contribution, i.e.

Mφ,t = M
(0)
φ,t +

αS
π

M
(1)
φ,t +O

(
α2S
)

. (8.21)

Since the bottom-quark contribution is suppressed at least in SM-like
scenarios when the bottom Yukawa is not enhanced and Mh,W does
not receive QCD corrections at this order in the electroweak couplings,
we assume these to be the dominant QCD corrections. Because of color
conservation there is no real emission at NLO QCD, and the corrections
to Mφ,t are given by the diagrams in Fig. 28b plus additional ones
obtained by inverting the fermion flow or crossing the two photons.
For the tt̄-Higgs vertices we insert7

〈tit̄jh〉 : igtMt,0δij, (8.22a)

〈tit̄jA〉 : ig̃tMt,0γ5δij, (8.22b)

where i and j denote color indices, and we have factorized the bare
top-quark mass Mt,0 from the Yukawa couplings leaving the generic
factors gt and g̃t, respectively.

8.2.2 Results in Dimensional Regularization

For comparison we need results in DR, which we obtain with the
qgraf/q2e/exp/MATAD setup described in Section 2.6. Since all exter-
nal legs are connected to massive lines only, the asymptotic expan-
sion8 in 1

M2
t

simply amounts to expanding the massive propagators
in terms of small external momenta. In case of the pseudoscalar decay,
we proceed with γ5 as described in Section 2.2, i.e. replacing

γ5 =
i

4!
εµνρσγµγνγργσ (8.23)

and keeping the epsilon tensor outside the d-dimensional calculation
until the renormalization has been performed. Then we renormalize

7cf. Eq. (5.4)
8cf. Section 2.5
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the pseudoscalar current by ZP5 as given in Eq. (2.23a). Furthermore,
only the top-quark mass requires renormalization at this order in α
and αS. However, this has no effect on the first non-vanishing term in
the expansion in 1

M2
t

because it does not depend on Mt. Finally, one
obtains

Mh,t =
iα

4π
gt (Qt)

2 s

{
4

3
nc −ncCF

αS
π

+O

(
α2S,

s

M2
t

)}
,

(8.24a)

MA,t =
−α

4π
g̃t (Qt)

2

{
4nc +O

(
α2S,

s

M2
t

)}
, (8.24b)

where Qt = 2
3 is the top-quark charge, nc = 3 the number of colors,

CF = 4
3 , and s = (p1 + p2)

2 = M2
h. In both cases the leading term

proportional to M2
t vanishes so that the limit Mt → ∞ exists. For

the pseudoscalar decay, the O (αS) corrections are zero in this limit af-
ter multiplying the finite renormalization to restore the correct chiral
anomaly.

8.2.3 Evaluation with FDRcalc

Now we put the program FDRcalc to use in combination with qgraf

and q2e/exp as explained in Section 8.1. Some additional steps are
necessary, which we insert in the appropriate fold of the input file9

and will be explained in the following. Afterwards, numerical results
will be presented.

8.2.3.1 Details of the Setup

We start by using qgraf and q2e/exp as usual except that we take
the fermion traces in four dimensions so that FORM uses relations for
traces involving γ5. In the end, instead of the MATAD files that per-
form the integration of the vacuum integrals, new routines are called,
which interpret the integrand in FDR and print them so that they can
be included from the input file for FDRcalc.

In order to use the current implementation correctly, we have to
make sure that external momenta appear neither in the propagators
nor in scalar products with loop momenta. The expansion of the prop-
agators is dealt with by exp. For the numerator this can be achieved
in a straight-forward way using reduction identities based on Lorentz

9cf. Listing 1
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invariance, which hold for two-loop vacuum integrals in four dimen-
sions:

l
µ1
i1
l
µ2
i2

=
1

4
li1 · li2gµ1µ2 , (8.25a)

l
µ1
i1
l
µ2
i2
l
µ3
i3
l
µ4
i4

=
1

72

(
gµ1µ2gµ3µ4 gµ1µ3gµ2µ4 gµ1µ4gµ2µ3

)

·

 5 −1 −1

−1 5 −1

−1 −1 5


li1 · li2li3 · li4li1 · li3li2 · li4
li1 · li4li2 · li4

 , (8.25b)

l
µ1
i1
· · · lµnin = 0 for n odd, (8.25c)

where i1, i2 ∈ {1, 2}. These relations are sufficient for the first non-
vanishing terms for φ → γγ. Calculation of higher terms in the 1

Mt

expansion would require relations for higher-rank tensor integrals.
After employing these relations, the tensor structure of the result is
disclosed. In case of the scalar Higgs decay, we take the coefficient of
gµ1µ2 , whereas for the pseudoscalar decay there is only one structure
εµ1µ2q1q2 at this point, which we simply set to one.

The questions is whether and if yes, when to cancel scalar products
of loop momenta against propagators, using for example the relation

l2i

li
2
= 1+

µ2

li
2

, i = 1, 2, (8.26)

because the µ2 terms in the numerator need special treatment. In
Ref. [94] this is done right after the tensor reduction but before the
partial fractioning, treating the µ2 terms as separate objects. For a
completely analytic calculation this certainly makes sense, but in our
approach, which aims for a high degree of automation, this appears
to produce unnecessary complication. The partial fractioning leads to
additional scalar products in the numerator anyway, which are dealt
with by the introduction of derivatives of Schwinger parameters, as
discussed in Section B.1.2. However, a lot of powers li in the numera-
tor cause several derivatives and thus higher powers of det(A) in the
denominator. Since the region where det(A) becomes small is slightly
problematic anyway,10 we make repeated use of Eq. (8.26).

l2i

li
2
−M2

= 1+
M2 + µ2

li
2
−M2

, i = 1, 2, (8.27)

for the sake of numerical stability right after the partial fractioning.
The price to pay is that integrals with powers of µ2 in the numera-
tor are introduced. Potentially, the term on the very right may cause
polynomially divergent integral which gives a finite contribution if
multiplied with powers of µ2. This causes some new types of inte-
grals that have to be treated case by case, which however fit easily in
the CalcInt* routines.

10See Section B.3 for details.
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In the problem at hand, it is useful to fix the reference scale M
introduced during the matching to standard integrals. The only scale
entering the loop integrations is the top-quark mass, so we set M =

Mt before the intermediate result for Mathematica is written. This
enables us to separate different terms in the 1

Mt
expansion at this

point, because the integrals no longer depend on any scale.

8.2.3.2 Numerical Results

The structure of the one-loop vacuum integrals is so simple that the
auxiliary integrals are identical to the original ones and no numerical
integration is required. Because of this, the LO results are reproduced
exactly by FDRcalc.

Next we determine the NLO correction factors
M

(1)
φ,t

M
(0)
φ,t

for φ = h,A.

Our default choice for the aspired accuracy and the distance from the
integration boundaries, up to which the integrand is extrapolated,
are ε = 10−6 and κ = 10−10, respectively. Using these parameters we
obtain

M
(1)
h,t

M
(0)
h,t

= (1.9± 3.3) · 10−6M
2
t

s
− 1− (2.7± 0.7) · 10−6 +O

(
s

M2
t

)
,

(8.28a)

M
(1)
A,t

M
(0)
A,t

= (0.1± 0.8) · 10−6 +O

(
s

M2
t

)
. (8.28b)

This agrees well with the DR result given in Eq. (8.24), although for
the scalar case the deviation is a bit larger than ε.

Note that we did not have to perform any renormalization. It was
already shown in Ref. [93] that FDR produces the correct axial anomaly
at one-loop. The fact that we did not need to renormalize the pseu-
doscalar current can be seen as strong indication that FDR respects
chiral symmetry also at higher orders in contrast to DR.

8.3 the ρ parameter to order GFM
2
tαS

As a second physical application at the two-loop level we consider
QCD corrections to the ρ parameter. As discussed in Section 1.3.2, the
relation

ρ =
M2
W

cos θ2wM2
Z

= 1 (8.29)

imposes an important constraint on a possible extended Higgs sector.
However, this relation is valid only at tree level. Heavy-quark loops,

as shown in Fig. 29a, yield small corrections. Writing

ρ = 1+ δρ, (8.30)



106 application to two-loop vacuum integrals
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Figure 29: Heavy-quark contributions to the W and Z propagator

these can be expressed as

δρ =
ΠZZ(0)

M2
Z

−
ΠWW(0)

M2
W

, (8.31)

where ΠVV(0), V ∈ {W,Z}, denotes the transverse part of the weak
gauge boson polarization function evaluated at vanishing momen-
tum. Since gµν is the only available tensor structure at vanishing mo-
mentum, we can simply multiply by the projector 14g

µν to obtain the
coefficient. We will recalculate the contribution from the top-bottom
doublet in the limit Mb → 0 to order GFM2

tαS using FDRcalc in the
same way as described in Section 8.2.3.11 To this end, diagrams like
those in Fig. 29b need to be evaluated.

The DR result, which we quote from Ref. [102] for comparison, de-
pends on the renormalization scheme for the top-quark mass and
reads

δρMS =
3GF

(
MMS
t

)2
8
√
2π2

[
1+

αS
π

(
2−

4

3
ζ2 + 2L

)
+O

(
α2S
)]

,

(8.32a)

δρpole =
3GF

(
M

pole
t

)2
8
√
2π2

[
1+

αS
π

(
−
2

3
−
4

3
ζ2

)
+O

(
α2S
)]

,

(8.32b)

in the terms of the MS and the pole mass, respectively, where L =

ln
(
µ2

M2
t

)
.

11For DR results in this limit up to O
(
GFM

2
tα
2
S

)
see Ref. [102].
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In FDR we obtain at first the following result:

δρFDR =
3GF

(
MFDR
t

)2
8
√
2π2

[
1+

αS
π

(2L+ 0.4734216(3))
]

=
3GF

(
MFDR
t

)2
8
√
2π2

[
1+

αS
π

(
2L+

8

3
−
4

3
ζ2

+ (4± 3) · 10−7
)]

, (8.33)

where MFDR
t is the bare FDR mass. Note that this mass is not the

MS mass although the result from Section 7.4 might suggest that one-
loop corrections evaluated in FDR are always identical to the MS result.
Comparing Eq. (8.33) to Eq. (8.32a) we see that the logarithmic term
is the same as in the MS scheme but the finite part is not. The relation
to the pole mass is given by [94]

MFDR
t

M
pole
t

= 1+
αS
π

(
−L−

5

3

)
+O

(
α2S
)

. (8.34)

Performing this finite renormalization and discarding the numerical
error yields

δρFDR =
3GF

(
M

pole
t

)2
8
√
2π2

[
1+

αS
π

(
−
2

3
−
4

3
ζ2

)
+O

(
α2S
)]

(8.35)

for the FDR result, which is identical to the DR result expressed in
terms of the pole mass as given in Eq. (8.32b).

8.4 the photon propagator to order ααS
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(a) One loop
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Figure 30: Top-quark contributions to the photon propagator at NLO QCD

Using the same setup as in the previous sections we also calculate
QCD corrections to the top-quark contribution to the photon propaga-
tor at vanishing momentum. Diagrams contributing at order α and
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ααS are shown in Figs. 30a and 30b, respectively, and are similar to
the ones evaluated in Section 8.3, except that only vector couplings
are present.

Note that the quantity Πγγ defined analogously to ΠVV vanishes
due to the Ward identity, which we also verify numerically with our
setup:

ΠFDR
γγ (0) =

α

4π
nc
(
MFDR
t

)2
(0L+ 0)

+
α

4π

αS
4π
NATR

(
MFDR
t

)2 (
0L+ (0.5± 4.7) · 10−5

)
(8.36)

As before we have defined L = ln
(
µ2

M2
t

)
and nc = 3 denotes the

number of colors.
More interesting is the quantity Π ′γγ(0), which corresponds to the

usual Quantum Electrodynamics (QED) vacuum polarization function
at zero momentum. To calculate it, we multiply by the projector

1

(d− 1)q2

(
gµν −

qµqν

q2

)
(with d = 4 for FDR) and let q2 → 0 afterwards. Let us first show
the DR result for comparison. In this case the unrenormalized result,
which we calculate with MATAD, reads for vanishing momentum:

Π ′γγ(0) =
α

4π
nc

(
−
4

3ε
−
2

3
ζ2ε

)(
µ2

M2
t,0

)ε
+
α

4π

αS
4π
NATR

(
6

ε
−
13

3

)(
µ2

M2
t,0

)2ε
+O

(
α2,αα2S

)
,

(8.37)

where Mt,0 is the bare top-quark mass. The result does not depend
on the renormalization scheme for Mt at this order. Using either
Eq. (2.19) or Eq. (2.20) and expanding in ε yields

Π ′γγ(0) =
α

4π
nc

(
−
4

3ε
−
4

3
ln
(
µ2

M2
t

))(
1+ 2

αS
π
CF
3

4

)
+
α

4π

αS
4π
NATR

(
6

ε
+ 12 ln

(
µ2

M2
t

)
−
13

3

)
=
α

4π
nc

(
−
4

3ε
−
4

3
ln
(
µ2

M2
t

))
+
α

4π

αS
4π
NATR

(
−
2

ε
+ 4 ln

(
µ2

M2
t

)
−
13

3

)
. (8.38)

In the last line we have used that ncCF = NATR.
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In the calculation with FDRcalc the numerical stability appears to
be more difficult for this problem. Setting the integration parameters
to κ = 10−6 and ε = 10−3 we obtain

Π ′(0)FDR
γγ =

α

4π
nc

(
−
4

3
L+ 0

)
+
α

4π

αS
4π
NATR (4.0000L− 1.7917(4)) . (8.39)

Comparing this result to the finite DR terms, we observe a similar be-
havior as for the ρ parameter. The one-loop result and the logarithmic
term of the two-loop contribution are identical but the finite two-loop
part is not. Note that this is not problematic at all because Π ′(0) is
not a proper observable. This merely shows once again that unrenor-
malized FDR results are generally different from the MS scheme.

8.5 conclusion and outlook

A method to calculate IR-finite two-loop integrals in FDR numerically
was introduced and an implementation for the case of vanishing ex-
ternal momenta was presented. For important physical applications
we found satisfying agreement with existing results, reassuring the
consistency of the FDR approach.

The logical next step would be to modify the implementation to
allow for finite external momenta. To this end, it would be necessary
to generalize the calculation of the derivatives based on the algebra
(8.10), which is needed to take into account scalar products in the nu-
merator. This task is in principle straight-forward, but as it might gen-
erate much more terms than before, it must be organized efficiently.
Secondly, the non-linear rs2 terms12 must be included in the auxil-
iary integrals, leading to more complicated expressions during the
analytic integration in Mathematica. If arbitrary values of the exter-
nal momenta are to be allowed, the construction of suitable contour
deformations for the numerical evaluation like in Section 7.4 must be
implemented, which is more involved for two-loop case, however.

Furthermore it would be desirable to extend the class of integrals
that are covered by the method. For example one could aim at includ-
ing IR-divergent two-loop integrals, or at increasing the loop order. In
both cases, contributions proportional to lni(µ2) with i > 2 would
have to be incorporated.

In addition, the use of reduction techniques like integration-by-
parts identities, as proposed in Ref. [103], would be desirable to re-
duce the cost of the calculation of complete amplitudes.

Since observables calculated in FDR are finite by construction and
require a finite renormalization at most, one might interpret unrenor-
malized FDR results as physical quantities expressed in a new scheme,

12cf. Eq. (7.52b)
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which is similar, yet not identical, to the MS scheme. It appears worth-
while to investigate this possibility in more detail.
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A
D I M E N S I O N A L LY- R E G U L AT E D I N T E G R A L S

a.1 massless one-loop integrals

a.1.1 Definitions

The integrals appearing explicitly in this work have vanishing inter-
nal masses. For scalar integrals, i.e. such without loop momenta in
the numerator, we use the notation

B0(p
2) := µ4−d

∫
ddl
(2π)d

1

l2(l+ p)2
, (A.1a)

C0(p
2
1,p22,p212) := µ

4−d

∫
ddl
(2π)d

· 1

l2(l+ p1)2(l+ p1 + p2)2
,

(A.1b)

D0(p
2
1,p22,p23,p2123,p212,p223)

:= µ4−d
∫

ddl
(2π)d

1

l2(l+ p1)2(l+ p12)2(l+ p123)2
, (A.1c)

where p12 := p1 + p2 etc. The scale µ fixes the mass dimension for
d 6= 4 and can be identified with the renormalization or factorization
scale. Tensor integrals we write as

Bµ1···µk(p) := µ4−d
∫

ddl
(2π)d

lµ1 · · · lµk
l2(l+ p)2

, (A.2a)

Cµ1···µk(p1,p2) := µ4−d
∫

ddl
(2π)d

lµ1 · · · lµk
l2(l+ p1)2(l+ p1 + p2)2

,

(A.2b)

Dµ1···µk(p1,p2,p3)

:= µ4−d
∫

ddl
(2π)d

lµ1 · · · lµk
l2(l+ p1)2(l+ p12)2(l+ p123)2

. (A.2c)

a.1.2 Scalar Integrals

We use analytic results for the scalar integrals as presented in Ref. [104].
The two-point integral reads

B0(s) =
irΓ

(4π)2−ε

(
−
µ2

s

)ε [
1

ε
+ 2+ 4ε+ 8ε2 +O

(
ε3
)]

, (A.3)

where d = 4− 2ε has been inserted and

rΓ = 1− γEε+

(
γ2E
2

−
π2

12

)
ε2. (A.4)
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For the three-point function we only need two special cases:

C0(0, 0, s12) =
irΓ

(4π)2−ε
1

s212

(
−
µ2

s212

)ε
1

ε2
, (A.5a)

C0(p
2
1,p22, 0) =

irΓ
(4π)2−ε

1

p21 − p
2
2

[(
−
µ2

p21

)ε
−

(
−
µ2

p22

)ε]
1

ε2
.

(A.5b)

The four-point function with one massive external leg is given by

D0(0, 0, 0,p24, s12, s23)

=
irΓ

(4π)2−ε
1

s12s23

{
2

ε2

[(
−
µ2

s12

)ε
+

(
−
µ2

s23

)ε
−

(
−
µ2

p24

)ε]

−2Li2

(
1−

p24
s12

)
− 2Li2

(
1−

p24
s23

)
− ln2

(
s12
s23

)
−
π2

3
.
}
(A.6)

a.1.3 Passarino-Veltman Reduction

At the one-loop level, tensor integrals can always be reduced to scalar
integrals. To this end we apply the traditional reduction approach by
Passarino and Veltman [105]. It is based on the observation that scalar
products of loop and external momenta can be written in terms of
inverse propagators and thus be canceled, e.g.

p · l
l2(l+ p)2

=
1

2

[
1

l2
−

1

(l+ p)2
−

p2

l2(l+ p)2

]
. (A.7)

If the momentum p enters the loop integral, such a relation can al-
ways be found. Thus the power of l in the numerator is reduced by
one. Successively one arrives at scalar integrals.

General n-point tensor integrals can be written in the form

Iµ1···µk(p1, · · · ,pn) =
∑
j

T
µ1···µk
j (p1, · · · ,pn)Ij({pa · pb}),

(A.8)

where the sum is over all symmetric tensor structure Tµ1···µkj that
can be build from the external momenta and gµν. The coefficients,
which only depend on invariants of the external momenta, can then
be obtained by inverting the matrix equation∑

j

TijIj = Ti,µ1···µkI
µ1···µk , (A.9a)

Tij := Ti,µ1···µkT
µ1···µk
j . (A.9b)

A practical problem may arise from the determinant of Tij appearing
in the denominator in phase-space regions where it becomes small.
This is why we will try to cancel it as often as possible.
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a.1.4 Integration Routine tribox

The integration routine tribox applies Passarino-Veltman reduction
to massless triangle and box diagrams to obtain an analytic result in
terms of scalar integrals like Eqs. (A.3) to (A.6). It is written in FORM,
used in combination with the exp/q2e setup described in Section 2.6,
and is an advanced version of the code developed in Refs. [106, 55].

For box integrals there are three different topologies, where the
first one corresponds to the integral (A.1c) and the two other ones
result from swapping either p1 ↔ p2 or p1 ↔ p3. Depending on
the topology the terms are matched to tensor integrals as in Eq. (A.2).
Then the corresponding expansions as defined in the next subsection
are inserted.

Next the results for tensor coefficients are plugged in. Simplifica-
tion is achieved mainly by partial fractioning e.g. with respect to t by
repeatedly making use of relations like

t

(t−m24)
= 1+

m24
(t−m24)

, (A.10a)

1

t(t−m24)
= −

1

m24t
+

1

m24(t−m
2
4)

. (A.10b)

Finally, the ε expansions of scalar integrals shown in Section A.1.2
are inserted as well.

a.1.5 Definition of Coefficients

In the following we fix the definition of the coefficients implemented
in tribox used in this work. They have been calculated by solving
Eq. (A.9) but are too long to be printed here.

The two-point tensor integrals up to rank four we write as

Bµ = B11p
µ, (A.11a)

Bµν = B21p
µpν +B22g

µν, (A.11b)

Bµνρ = B31p
µpνpρ +B32g

[µνpρ], (A.11c)

Bµνρσ = B41p
µpνpρpσ +B42g

[µνpρpσ] +B43g
[µνgρσ],

(A.11d)

where the coefficients depend on p2.
The three-point coefficients are functions of p21, p22, and p212:

Cµ = C11p
µ
1 +C12p

µ
2 , (A.12a)

Cµν = C21p
µ
1p
ν
1 +C22p

µ
2p
ν
2 +C23p

[µ
1 p

ν]
2 +C24g

µν, (A.12b)

Cµνρ = C31p
µ
1p
ν
1p
ρ
1 +C32p

µ
2p
ν
2p
ρ
2 +C33p

[µ
1 p

ν
1p
ρ]
2

+C34p
[µ
1 p

ν
2p
ρ]
2 +C35g

[µνp
ρ]
1 +C36g

[µνp
ρ]
2 . (A.12c)
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In case of four-point integrals, the coefficients are only functions
of p212, p213, p223, and p2123, since we assume p21 = p22 = p23 = 0. The
following ones are required in this work:

Dµ = D11p
µ
1 +D12p

µ
2 +D13p

µ
3 , (A.13a)

Dµν = D21p
µ
1p
ν
1 +D22p

µ
2p
ν
2 +D23p

µ
3p
ν
3

+D24p
[µ
1 p

ν]
2 +D25p

[µ
1 p

ν]
3 +D26p

[µ
2 p

ν]
3

+D27g
µν, (A.13b)

Dµνρ = D31p
µ
1p
ν
1p
ρ
1 +D32p

µ
2p
ν
2p
ρ
2 +D33p

µ
3p
ν
3p
ρ
3

+D34p
[µ
1 p

ν
1p
ρ]
2 +D35p

[µ
1 p

ν
1p
ρ]
3 +D36p

[µ
2 p

ν
2p
ρ]
1

+D37p
[µ
2 p

ν
2p
ρ]
3 +D38p

[µ
3 p

ν
3p
ρ]
1 +D39p

[µ
3 p

ν
3p
ρ]
2

+D310p
[µ
1 p

ν
2p
ρ]
3 +D311g

[µνp
ρ]
1 +D312g

[µνp
ρ]
2

+D313g
[µνp

ρ]
3 , (A.13c)

Dµνρσ = D41p
µ
1p
ν
1p
ρ
1p
σ
1 +D42p

µ
2p
ν
2p
ρ
2p
σ
2 +D43p

µ
3p
ν
3p
ρ
3p
σ
3

+D44p
[µ
1 p

ν
1p
ρ
1p
σ]
2 +D45p

[µ
1 p

ν
1p
ρ
1p
σ]
3 +D46p

[µ
2 p

ν
2p
ρ
2p
σ]
1

+D47p
[µ
2 p

ν
2p
ρ
2p
σ]
3 +D48p

[µ
3 p

ν
3p
ρ
3p
σ]
1 +D49p

[µ
3 p

ν
3p
ρ
3p
σ]
2

+D410p
[µ
1 p

ν
1p
ρ
2p
σ]
2 +D411p

[µ
1 p

ν
1p
ρ
3p
σ]
3 +D412p

[µ
2 p

ν
2p
ρ
3p
σ]
3

+D413p
[µ
1 p

ν
1p
ρ
2p
σ]
3 +D414p

[µ
2 p

ν
2p
ρ
1p
σ]
3 +D415p

[µ
3 p

ν
3p
ρ
1p
σ]
2

+D416g
[µνp

ρ
1p
σ]
1 +D417g

[µνp
ρ
2p
σ]
2 +D418g

[µνp
ρ
3p
σ]
3

+D419g
[µνp

ρ
1p
σ]
2 +D420g

[µνp
ρ
1p
σ]
3 +D421g

[µνp
ρ
2p
σ]
3

+D422g
[µνgρσ]. (A.13d)

a.2 phase-space parametrization

In this section we present the phase-space parametrization used in the
calculation of NLO QCD corrections to gg → HZ presented in Chap-
ter 4, i.e. for the cases of two massive and two massive plus one mass-
less particles.1 Thanks to the subtraction method2, the phase-space
integration can be carried out in four dimensions. Nevertheless we
present the expressions in d = 4− 2ε dimension here.

a.2.1 Phase Space for Two Massive Particles

Let p1 and p2 denote the four-momenta of the incoming particles,
which are assumed to be massless, and p3 and p4 those of the out-
going ones, which have masses m3 and m4, respectively. The two-
particle phase-space factor in d dimensions in the center-of-mass frame

1This section is mostly taken from the appendix of Ref. [106]. The derivation
given there was in turn based on Ref. [107], where the case of one massive and two
massless particles was treated.

2cf. Section 2.4.2
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of p1 and p2 (or p3 and p4), which we simply quote here, can be writ-
ten as

dPS2 =
1

8π

(4π)ε

Γ(1− ε)

1

s1−ε
λ1/2−ε(m23,m24, s) y−ε(1− y)−εdy ,

(A.14)

where s = (p1 + p2)
2 and

λ(x,y, z) = x2 + y2 + z2 − 2xy− 2xz− 2xy. (A.15)

The variable y can have values between 0 and 1 and is connected to
the angle θ between the two final state particles by

y ≡ 1
2
(1− cos θ). (A.16)

Finally we give expressions for the Mandelstam varibles t := (p1 −

p3)
2 and u := (p2 − p3)

2 in terms of the integration variable y:

t = −
1

2

(
s−m23 −m

2
4 + (2y− 1)λ

1
2 (m23,m24, s)

)
, (A.17a)

u = −
1

2

(
s−m23 −m

2
4 − (2y− 1)λ

1
2 (m23,m24, s)

)
. (A.17b)

a.2.2 Phase Space for Two Massive and One Massless Particle

The parametrization of the three-particle phase space has been slightly
improved compared to Ref. [106] and will be re-derived in the follow-
ing. Let again p1 and p2 denote the momenta of the massless incom-
ing and p3, p4 and p5 those of the outgoing particles, where m3 = 0

and m4,m5 6= 0. In the center of mass frame the phase-space element
is given by

dPS3 =
dd−1p3

(2π)d−12E3

dd−1p4
(2π)d−12E4

dd−1p5
(2π)d−12E5

· (2π)d δ(d)(p1 + p2 − p3 − p4 − p5)

=
dd−1p3d

d−1p4
(2π)2d−38E3E4E5

δ(
√
s− E3 − E4 − E5), (A.18)

where ~pi denotes the (d− 1)-dimensional spatial part of pi, and the
energy components are given by

E3 = |~p3|, (A.19a)

E4 =
√
m24 + |~p4|2, (A.19b)

E5 =
√
m25 + |~p3 + ~p4|2, (A.19c)

since momentum conservation has been used to eliminate ~p5.
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Next we choose coordinates for p1, p2, and p3 in the center-of-mass
system of p1 and p2 as follows:

p1 =

√
s

2
(1, 0, · · · , 0, 1), (A.20)

p2 =

√
s

2
(1, 0, · · · , 0,−1), (A.21)

p3 = |~p3|(1, 0, · · · , 0, sin θ, cos θ). (A.22)

To determine the direction of ~p4 two more angles are required. It is
useful to define them with respect to ~p3. Spherical coordinates in a
system whose (d− 1)-axis points in the direction of ~p3, read

~p4
′ = |~p4|(0, · · · , sinχ sinφ, sinχ cosφ, cosχ). (A.23)

Rotating into a system with (d− 1)-axis in direction of ~p1,

~p4 = R ~p4
′ with R =

 1d−3 0 0

0 cos θ sin θ

0 − sin θ cos θ

 , (A.24)

yields

p4 = (E4, 0, · · · , |~p4| sinχ sinφ, |~p4|(sin θ cosχ+ cos θ sinχ cosφ),

|~p4|(cos θ cosχ− sin θ sinχ cosφ)). (A.25)

For the elements of integration one obtains

dd−1p3 = Ed−23 sind−3 θdE3 dθdΩd−2 , (A.26a)

dd−1p4 = |detR|︸ ︷︷ ︸
=1

dd−1p ′4

= |~p4|
d−2 sind−3 χ sind−4φd|~p4|dχdφdΩd−3

= |~p4|
d−3E4 sind−3 χ sind−4φdE4 dχdφdΩd−3 ,

(A.26b)

where Ωn denotes the solid angle in n dimensions. Thus one has

dPS3 =
Ed−33 |~p4|

d−3

(2π)2d−38E5
sind−3 θ sind−3 χ sind−4φ

· dE3 dE4 dθdχdφdΩd−2 dΩd−3 δ
(√
s− E3 − E4 − E5

)
.

(A.27)

In order to make use of the remaining delta function, an expression
for E5 is required. Note that E5 is fixed if E3, E4, and the angle χ be-
tween ~p3 and ~p4 are known, which can be seen from relation (A.19c):

E25 = m
2
5 + |~p3 + ~p4|

2 = m25 + E
2
3 + |~p4|

2 + 2E3|~p4| cosχ. (A.28)
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By substituting

cosχ =
E25 −m

2
5 − E

2
3 − |~p4|

2

2E3|~p4|
, (A.29a)

d cosχ =
E5

E3|~p4|
dE5 , (A.29b)

the delta function can be integrated. Performing the trivial integra-
tions over the solid angles using

∫
dΩn = 2πn/2

Γ(n/2) as well, one obtains

dPS3 =
Ed−43 |~p4|

d−4

8(2π)2d−3
sind−3 θ sind−4 χ sind−4φdE3 dE4 dE5

· dθdφdΩd−2 dΩd−3 δ
(√
s− E3 − E4 − E5

)
=

Ed−43 |~p4|
d−4

4(2π)dΓ(d− 3)
sind−3 θ sind−4 χ sind−4φ

· dE3 dE4 dθdφ . (A.30)

In addition it is useful to introduce the following invariants:

s ≡ (p1 + p2)
2 = 2p1 · p2, (A.31a)

t3 ≡ (p1 − p3)
2 = −2p1 · p3, (A.31b)

u3 ≡ (p2 − p3)
2 = −2p2 · p3, (A.31c)

t4 ≡ (p1 − p4)
2 = m24 − 2p1 · p4, (A.31d)

u4 ≡ (p2 − p4)
2 = m24 − 2p2 · p4, (A.31e)

s34 ≡ (p3 + p4)
2 = m24 + 2p3 · p4, (A.31f)

s35 ≡ (p3 + p5)
2, (A.31g)

s45 ≡ (p4 + p5)
2. (A.31h)

Only five of them are independent. Using momentum conservation it
is easy to show that

s+ t3 + u3 = s45, (A.32a)

s+ t4 + u4 = m
2
4 + s35, (A.32b)

s34 + s35 + s45 = s+m
2
3 +m

2
5. (A.32c)

With the choice of coordinates introduced above one obtains

t3 = −
√
sE3 (1− cos θ) , (A.33a)

u3 = −
√
sE3 (1+ cos θ) , (A.33b)

t4 = m
2
4 −
√
s

(
E4 −

√
E24 −m

2
4(cos θ cosχ− sin θ sinχ cosφ)

)
,

(A.33c)

u4 = m
2
4 −
√
s

(
E4 +

√
E24 −m

2
4(cos θ cosχ− sin θ sinχ cosφ)

)
.

(A.33d)
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Adding the first two and the last two of these relations make it possi-
ble to express the energies E3 and E4 in the center of mass frame in
terms of invariants:

E3 =
1

2
√
s
(−t3 − u3) =

1

2
√
s
(s− s45) , (A.34a)

E4 =
1

2
√
s

(
2m24 − t4 − u4

)
=

1

2
√
s

(
m24 + s− s35

)
. (A.34b)

Since E5 =
√
s − E3 − E4, inserting these relations into Eq. (A.29a)

yields cosχ in terms of invariants:

cosχ =
(m24 + s− s35)(s− s45) − 2s(s+m

2
5 − s35 − s45)

(s− s45)λ
1
2 (s35,m24, s)

,

(A.35)

with λ as in Eq. (A.15).
Substituting E3 and E4 by s45 and s35 in (A.30) according to Eqs. (A.34)

and using (A.35), the phase-space element can be expressed in terms
of invariants and angles:

dPS3 =
(
λ(m24, s35, s)(s− s45)2

−
[
(m24 + s− s35)(s− s45) − 2s(s+m

2
5 − s35 − s45)

]2 )−ε
· 1

(4π)dΓ(d− 3)s1−2ε
ds35 ds45 sind−3 θ sind−4φdθdφ .

(A.36)

From trivial conditions like E3 > 0 or E4 > m4 one has

m25 6 s35 6 (
√
s−m4)

2, (A.37a)

(m4 +m5)
2 6 s45 6 s. (A.37b)

Actually, the limits of integration for s35 and s45 are coupled. Since
there may be poles in s − s45, when the massless particle becomes
soft, it makes sense to choose the simpler limits for s45. The limits
for s35 then follow from | cosχ| 6 1. Solving a quadratic equation one
obtains

s−35 6 s35 6 s+35, (A.38)

where

s±35 =
1

2s45

[
(s+ s45)m

2
5 + (s45 −m

2
3)(s− s45)

±(s− s45)λ
1
2 (m24,m25, s45)

]
. (A.39)

Thus one is lead to substitute

s35 =
1

2s45

[
(s+ s45)m

2
5 + (s45 −m

2
3)(s− s45)

− (1− 2x)(s− s45)λ
1
2 (m24,m25, s45)

]
, (A.40)



A.2 phase-space parametrization 121

in order to arrive at limits 0 and 1. This also casts the expression for
cosχ into a simpler form. It seems to appear mostly in the following
combination:

λ
1
2 (m4, s35, s) cosχ = −

1

2s45

[
(m24 −m

2
5 + s45)(s− s45)

+ (1− 2x)(s+ s45)λ
1
2 (m24,m25, s)

]
.

(A.41)

The awkward first factor on the right hand side of Eq. (A.36) is sim-
plified as well and can be factorized:

λs2(s− s45)
2

−
[
(m24 + s− s35)(s− s45) − 2s(s+m

2
5 − s35 − s45)

]2
= 4s(s− s45)

2s−145 λ(m
2
4,m25, s45)(1− x)x. (A.42)

Substituting s45 = zs the phase-space factor finally becomes

dPS3 =
4−ελ

1
2−ε(m24,m25, zs)

(4π)dΓ(d− 3)
(1− x)−εx−ε(1− z)1−2εz−1+ε

· dxdz sind−3 θ sind−4φdθdφ . (A.43)

The boundaries for z are zmin =
(m4+m5)

2

s and 1, where z→ 1 corre-
sponds to the soft limit. The angular integrations run from 0 to π for
both θ and φ and may produce collinear divergencies.
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F D R I N T E G R A L S

b.1 parametrization of fdr-regulated integrals

b.1.1 Scalar Integrals

Let us start from a scalar integral1 that has been made convergent
with FDR and is thus at most logarithmically divergent in µ2:

I =

L∏
i=1

∫
d4li

Nx∏
j=1

1(
(pj + qj)2 −m

2
j − µ

2
)αj Ny∏

k=1

1(
p2k − µ

2
)βk ,

(B.1)

where the pi are combinations of the loop momenta li, the qi are
combinations of the external momenta, and αi,βi ∈ N. By introduc-
ing Schwinger parameters using the relation

1

Aα
=

(−1)α

(−A)α
=

(−1)α

Γ(α)

∫∞
0

dxxα−1exA (B.2)

for each propagator, one obtains

I = (−1)N
Nx∏
j=1

∫∞
0

dxj
x
αj−1
j

Γ(αj)

Ny∏
k=1

∫∞
0

dyk
y
βk−1
k

Γ(βk)

·
L∏
i=1

∫
d4li exp(D), (B.3)

where we have defined

N :=

Nx∑
i=1

αi +

Ny∑
j=1

βj, (B.4)

and the argument of the exponential can be written as

D =

Nx∑
i=1

xi((pi + qi)
2 −m2i − µ

2) +

Ny∑
j=1

yj(p
2
j − µ

2)

=

Nx∑
i=1

(xip
2
i + 2xipi · qi) +

Ny∑
j=1

yjp
2
j

−

Nx∑
i=1

xi(m
2
i − q

2
i ) −

Nx∑
i=1

xi +

Ny∑
j=1

yj

µ2. (B.5)

1By scalar integral we mean that the numerator of the integrand is equal to one.

123
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x = (x1, · · · , xNx) are the parameters for the propagators that do not
diverge at small loop momentum because they have a non-zero mass
or non-zero scalar product of external momenta2 and y = (y1, · · · ,yNy)
are the parameters for the remaining, possibly infrared-divergent prop-
agators.

Before completing the square, D has to be expressed in terms of an
linearly independent set of li, which we write as an L-dimensional
vector l = (l1, · · · , lL).3 Then we collect the coefficients of the scalar
products, which are determined by the topology of the graph:

D =

L∑
i,j=1

aijlilj +

L∑
i=1

2bili − c, (B.6)

with

aij =
∑
k∈Xij

xk +
∑
k∈Yij

yk, (B.7a)

bi =
∑
k∈Xii

xkpk, (B.7b)

c =

Nx∑
j=1

xj(m
2
j − q

2
j ) +

Nx∑
i=1

xi +

Ny∑
j=1

yj

µ2, (B.7c)

where Xij and Yij are empty or non-empty index sets. Obviously it is
aji = aij.

Now we diagonalize the symmetric matrix A :=
(
aij
)

by an or-
thogonal matrix O, so that OAOT = diag

(
ã1, · · · , ãL

)
, and change

the integration momenta to l̃ := Ol. Making use of the orthogonality
of O, the exponential can be rewritten as

D = lTAl+ 2b · l− c
= (Ol)TOAOT (Ol) + 2(Ob) · (Ol) − c

=

L∑
i=1

(
ãil̃

2
i + 2(Ob)i · l̃i

)
− c

=

L∑
i=1

ãi

(
l̃i +

1

ãi
(Ob)i

)2
−

L∑
i=1

1

ãi
(Ob)2i − c

=

L∑
i=1

ãi

(
l̃i +

1

ãi
(Ob)i

)2
− (Ob)T diag(

1

ã1
, · · · ,

1

ãL
)︸ ︷︷ ︸

=(OAO)−1=OA−1OT

(Ob) − c

=

L∑
i=1

ãi

(
l̃i +

1

ãi
(Ob)i

)2
− bTA−1b− c. (B.8)

2At the moment, it is assumed that no thresholds are crossed, which requires in
particular q2i < m

2
i for all i.

3This should be done in a way that all the pi are positive sums of the li.
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For the integration measure one obtains

L∏
i=1

d4l̃i = det(O)4︸ ︷︷ ︸
=1

L∏
i=1

d4li . (B.9)

The next step is to shift and rescale the l̃i as

l̃i →
1√
ãi
l̃i −

1

ãi
(Ob)i (B.10)

to obtain

D =

L∑
i=1

l̃2i − (Ob)T diag(
1

ã1
, · · · ,

1

ãL
)(Ob) − c

=

L∑
i=1

l̃2i − b
TA−1b− c (B.11)

and

L∏
i=1

d4l̃i →
L∏
i=1

1

ã2i
d4l̃i =

1

detA2

L∏
i=1

d4l̃i . (B.12)

So the Schwinger-parametrized integral now reads

I = (−1)N
Nx∏
j=1

∫∞
0

dxj
x
αj−1
j

Γ(αj)

Ny∏
k=1

∫∞
0

dyk
y
βk−1
k

Γ(βk)

· 1

detA2
exp

(
−bTA−1b− c

) L∏
i=1

∫
d4li exp

(
L∑
i=1

l̃2i

)
︸ ︷︷ ︸

=iπ2

. (B.13)

We have chosen Schwinger parameters because this allows for fac-
tors in the numerator to be taken into account in a convenient way,
which will be explained in the next subsection. For further analyses,
however, Feynman parameters turn out to be more useful. The inte-
gral (B.13) can be transformed to Feynman parameters4 by inserting

1 =

∫∞
0

dr δ

r− Nx∑
i=1

xi −

Ny∑
j=1

yj

 (B.14)

and substituting

xi → rxi, (B.15a)

yi → ryi (B.15b)

4cf. Section 3.4 of Ref. [108]
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so that

b→ rb, (B.16a)

A→ rA, (B.16b)

detA→ rL detA, (B.16c)

c→ rc, (B.16d)

and thus

I = (−1)N(iπ2)L
Nx∏
j=1

∫∞
0

dxj
x
αj−1
j

Γ(αj)

Ny∏
k=1

∫∞
0

dyk
y
βk−1
k

Γ(βk)

· δ

1− Nx∑
i=1

xi −

Ny∑
j=1

yj


· 1

det(A)2

∫∞
0

dr exp
(
−r(bTA−1b+ c)

)
· rN−2L−1. (B.17)

Integrating out r using the relation∫∞
0

dr exp(−rc)rn−1 =
Γ [n]

cn
, (B.18)

we arrive at the Feynman parameter integral:

I = (−1)N(iπ2)LΓ(N− 2L)

Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

Ny∏
j=1

∫1
0

dyj
y
βj−1
j

Γ(βj)

· δ

1− Nx∑
k=1

xk −

Ny∑
l=1

yl

 det(A)N−2L−2

(bT adj(A)b+ det(A)c)N−2L
,

(B.19)

where we have written det(A)A−1 = adjA for the adjugate of the
matrix A, whose elements are polynomials in x and y. The expression
for c can now be simplified using the delta function:

c =

Nx∑
j=1

xj(m
2
j − q

2
j ) + µ

2. (B.20)

Note that the delta function also allows to restrict the upper integra-
tion limit to one.

b.1.2 Tensor Integrals

If we allow for non-trivial numerators, we assume they have the form
of an inverse, massless propagator and include them in the argument
of the exponential,5 making use of

Aα =
∂α

∂xα
exA

∣∣∣
x=0

. (B.21)

5cf. Section 2.3 of Ref. [108]
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Thus the inverse propagators are taken into account when complet-
ing the square, and the transformations of the loop momenta (B.10)
never have to be performed explicitly. The coefficients aij and bi then
involve additional summands with parameters with respect to which
a derivative has to be performed instead of an integral. To distinguish
them from the regular xi or yi, we label them zi.

Assuming Nz inverse propagators with powers γi, we obtain in-
stead of (B.13) the more general form

I = (−1)N(iπ2)L
Nx∏
i=1

∫∞
0

dxi
xαi−1i

Γ(αj)

Ny∏
j=1

∫∞
0

dyj
y
βj−1
j

Γ(βk)

·
Nz∏
k=1

∂γ
k

∂z
γk
k

1

det(A)2
exp

(
−bTA−1b− c

) ∣∣∣∣
z1=···zNz=0

. (B.22)

So we have to evaluate

Nz∏
k=1

∂γ
k

∂z
γk
k

1

det(A)2
exp

(
−bTA−1b− c

) ∣∣∣∣
zk=0

= exp (−c)

Nz∏
k=1

∂γ
k

∂z
γk
k

1

det(A)2
exp

(
−
bT adj(A)b

det(A)

) ∣∣∣∣
z1=···zNz=0

(B.23)

before we can introduce Feynman parameters analogously to the
scalar case in the previous section. Structurally, the result will be simi-
lar to (B.19), but with additional powers of det(A) in the denominator
and additional factors involving xi and yi in the numerator.

b.2 two-loop counterterms : the special cases

The transformation (7.43) is only valid if N1 > 1, Nx −N1 > 1, and
Ny > 2. The idea how to proceed otherwise is apparent tough. Since
Eq. (7.43) has been motivated by applying the scaling relation (7.12)
repeatedly to different subsets of parameters, the scaling is simply not
done if it were to be applied to an empty set. In general, this leads to
simpler integrals but quite a few cases that have to be distinguished.
In the following, the cases where either t or s or both are absent are
discussed. By construction, r is always present except for trivial cases.
If an integral can be written as the product of two one-loop integrals,
they can be treated separately with one one-loop transformation each.
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b.2.1 The Case N1 = 0

If N1 = 0, all the xi are scaled by rs and the variable t need not be
introduced. The transformation then reduces to

xi → rsxi i ∈ {1, · · · ,Nx}, (B.24a)

y1 → 1− r, (B.24b)

yi → r(1− s)yi i ∈ {2, · · · ,Ny}, (B.24c)

which yields

I(2l)

(iπ2)2

=
(−1)NΓ(N− 4)

Γ(β1)

(
Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

)Ny∏
j=2

∫1
0

dyj
y
βj−1
j

Γ(βj)


· δ
(
1−

Nx∑
l=1

xl

)
δ

1− Ny∑
n=2

yn


·
∫1
0

dr
∫1
0

ds I(2l)N1=0
(r, s), (B.25)

where

I
(2l)
N1=0

(r, s)

= r−2+
∑Ny
j=2βj(rs)

−1+
∑Nx
i=N1+1

αi

· (1− r+ r d(s))
N−6 (1− r)β1(1− s)−1+

∑Ny
j=2βj

[(1− r+ r d(s)) (µ2 + c1rs) + e(r, s, 0)]
N−4

. (B.26)

Since t did not enter d(s) anyway, nothing has changed in the first
factor of the denominator. From the second factor we conclude that
the region where the logarithmic dependence on µ2 originates from
is determined only by rs being small.

b.2.2 The Cases Ny < 2

The case Ny = 0 is trivial. Since each propagator is massive or has a
non-zero momentum squared, the integral must be finite for µ2 = 0

and can be evaluated as is. If Ny = 1, the only y parameter dis-
appears after using the overall delta function. Thus there cannot be
overlapping divergencies leading to a ln(µ2) behavior. In principle
they could be treated like one-loop integrals. Nevertheless it might
be advantageous to cancel a factor of r from the det(A) factors. To do
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so, one can use the two-loop transformation without introducing the
parameter s:

xi → (1− r)txi i ∈ {1, · · · ,N1}, (B.27a)

xi → rxi i ∈ {N1 + 1, · · · ,Nx}, (B.27b)

y1 → (1− r)(1− t). (B.27c)

Then one obtains

I(2l)

(iπ2)2
=

(−1)NΓ(N− 4)

Γ(β1)

(
Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

)
δ

1− Nx∑
l=N1+1

xl


· δ
(
1−

N1∑
m=1

xm

) ∫1
0

dr
∫1
0

dt I(2l)Ny=1
(r, t), (B.28)

where

I
(2l)
Ny=1

(r, t)

= r
−3+

∑Nx
i=N1+1

αi [(1− r)t]−1+
∑N1
i=1αi

· (1− r+ r d(1))N−6 (1− r)β1(1− t)β1−1

[(1− r+ r d(1)) (µ2 + c1r+ c2(1− r)t) + e(r, 1, t)]
N−4

.

(B.29)

The appearance of a logarithmic dependence on µ2 is then associated
with the vanishing of r and t only.

b.2.3 The Case N1 = 0 and Ny = 1

A combination of the cases discussed above is possible as well. The
transformation is even simpler then and identical to the one-loop case:

xi → rxi i ∈ {1, · · · ,Nx}, (B.30a)

y1 → 1− r. (B.30b)

This yields

I(2l)

(iπ2)2
=

(−1)NΓ(N− 4)

Γ(β1)

(
Nx∏
i=1

∫1
0

dxi
xαi−1i

Γ(αi)

)
δ

(
1−

Nx∑
l=0+1

xl

)

·
∫1
0

dr I(2l)Ny=1;N1=0
(r), (B.31)

where

I
(2l)
Ny=1;N1=0

(r) = r
−3+

∑Nx
i=N1+1

αi [(1− r)t]−1+
∑N1
i=1αi

· (1− r+ r d(1))N−6 (1− r)β1

[(1− r+ r d(1)) (µ2 + c1r) + e(r, 1, 0)]
N−4

.

(B.32)



130 fdr integrals

The most important structural difference to the one-loop case is the
factor of 1− r+ rd(1), which can be neglected in the auxiliary inte-
gral, though. However, e(r, 1, 0) still might have to be taken into ac-
count.

b.3 standard integrals

In this section we define generic integrands I to which the actually
occurring integrands are matched and discuss the corresponding aux-
iliary integrand A as well.

b.3.1 One Loop

All IR-finite integrands can be matched to

I
(1l)
N1,n1,n2

(r) =
rN1−1+n1(1− r)n2(f0 + f1(r)r)

(a+ c1r+ c2r2)N1
. (B.33)

The correct asymptotic behavior for small a is reproduced by

A
(1l)
N1,n1

(r) =
rN1−1+n1f0
(a+ c1r)N1

, (B.34)

which is needed if n1 6 0.

b.3.2 Two Loop

In this subsection all the generic integrands needed in the context
of the applications presented in Chapter 8 are listed, including their
approximations to obtain the expansion for small a.

b.3.2.1 One-Parameter Integrals

Whereas the two-loop version of the r integral,

IN1,N2,n1,n3,n6(r)

=
rn1+N1−1(1− r)n3(f0 +

∑Npow
n=1 fnr

n)an6

(a+ c1r+ c2r2)N1(1− r+ r(d0 + d1s+ d2s2))N2
, (B.35)

has a richer structure than the one-loop integral, the approximative
integral is basically the same:

AN1,n1,n6(r) =
rn1+N1−1f0a

n6

(a+ c1r)N1
. (B.36)

The only difference is that we allow for additional powers of a in the
numerator. In case n1 = n6 = 0 there will be a ln(a) dependence.
If n1 < 0 (and N1 > 1− n1), the integral behaves like powers of 1a ,
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which can be compensated by large enough n6 to produce a finite
result.6

b.3.2.2 Two-Parameter Integrals

The rs integral,

IN1,N2,n1,n2,n3,n4,n6(r, s)

=
rn1+N1−1sn2+N1−1(1− r)n3(1− s)n4an6

(a+ c1rs)N1

· (f0 +
∑Npow
n=1 fr,nr

n +
∑Npow
n=1 fs,ns

n + frs(r, s)rs)
(1− r+ r(d0 + d1s+ d2s2))N2

, (B.37)

is the simplest one that can have a ln2(a) dependence. This occurs if
n1 = n2 = n6 = 0 (and f0 6= 0). To reproduce this dependence cor-
rectly, only terms suppressed by rs may be neglected in the auxiliary
integral:

A
(1)
N1,N2,n1,n2,n3,n4,n6

(r, s)

=
rn1+N1−1sn2+N1−1(1− r)n3(1− s)n4an6

(a+ c1rs)N1

·

(
f0 +

∑Npow
n=1 fr,nr

n + (1− r)max(N2−n3,0)∑Npow
n=1 fs,ns

n
)

(1− r+ d0r)N2
.

(B.38)

A problem may arise if N2 > n3. Then the denominator will be pro-
portional to d0 in the limit r → 1, and d0 might have a zero. At
(r, s) = (1, 0), the auxiliary integral behaves exactly like the origi-
nal one, which must be integrable. Thus this point should not cause
any problems. The point (r, s) = (1, 1) is more dangerous, however.
There, the numerator of the original integrand tends towards f0 +∑Npow
n=1 fr,n +

∑Npow
n=1 fs,n + frs(1, 1). In case there are delicate cancella-

tions to balance the vanishing of d(1), this is disturbed by neglecting
the frs(r, s) term in the auxiliary integral. To compensate for that, we
introduce the additional factor (1 − r)max(N2−n3,0) in front of the s
dependent terms in the enumerator, which is allowed because it only
alters terms of order rs. As a consequence, the auxiliary integral now
tends to f0 +

∑Npow
n=1 fr,n in the numerator and to d0 in the denomina-

tor both at (r, s) = (1, 0) and (r, s) = (1, 1) even if N2 > n3, and thus
be integrable at both points.

Sometimes the powers of r and s that can be factorized in the enu-
merator are not the same. Suppose for example that n1 = n6 = 0 and

6Of course, one could allow this in the one-loop case as well. As explained in
Section 8.2, these integrals appear from canceling scalar products of loop momenta
against propagators to obtain better behaved integrals, which is only required for
two-loop integrals.
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n2 > 0. Then an extra factor of r would make the integral conver-
gent and one should choose a simplified auxiliary integral, where all
terms suppressed by a factor of r are dropped as well:

A
(2)
N1,n1,n2,n4,n6

(r, s)

=
rn1+N1−1sn2+N1−1(1− s)n4an6

(
f0 +

∑Npow
n=1 fs,ns

n
)

(a+ c1rs)N1
(B.39)

This choice is also suited for the case n1 < 0, n2 > 0, and n6 > 0.
Under analogous conditions with n1 ↔ n2, we define

A
(3)
N1,N2,n1,n2,n3,n6

(r, s)

=
rn1+N1−1sn2+N1−1(1− r)n3an6

(
f0 +

∑Npow
n=1 fr,nr

n
)

(a+ c1rs)N1(1− r+ d0r))N2
.

(B.40)

b.3.2.3 Three-Parameter Integrals

The most complicated integrand is the one dependent on r, s, and t:

IN1,N2,n1,n2,n3,n4,n5,n6(r, s, t)

=
rn1+N1−2+n5sn2+N1−2+n5(1− r)n3(1− s)n4tn5an6

(a+ c1rs+ c2(1− r)t)N1

· f0 +
∑Npow
n=1 fr,nr

n +
∑Npow
n=1 fs,ns

n + frs(r, s, t)rs+ ft(r, s, t)t
(1− r+ r(d0 + d1s+ d2s2))N2

.

(B.41)

The parameters n1 and n2 are defined so that there is a ln2(a) be-
havior if n1 = n2 = n6 = 0. The corresponding auxiliary integral
reads:

A
(1)
N1,N2,n1,n2,n3,n4,n5,n6

(r, s, t)

=
rn1+N1−2+n5sn2+N1−2+n5(1− r)n3(1− s)n4tn5an6

(a+ c1rs+ c2(1− r)t)N1

· f0 +
∑Npow
n=1 fr,nr

n + (1− r)max(N2−n3,0)∑Npow
n=1 fs,ns

n

(1− r+ d0r))N2
,

(B.42)

where we have neglected all terms of order rs and t and introduced
a factor of (1− r)max(N2−n3,0) to stabilize the integrand in the region
where (r, s) = (1, 1). The conditions when to use a simplified auxiliary
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integral discussed in the previous paragraph apply as well. For the
sake of completeness we print these as well:

A
(2)
N1,n1,n2,n4,n5,n6

(r, s, t)

=
rn1+N1−2+n5sn2+N1−2+n5(1− s)n4tn5an6

(a+ c1rs+ c2(1− r)t)N1

·

f0 +Npow∑
n=1

fs,ns
n

 , (B.43a)

A
(3)
N1,N2,n1,n2,n3,n5,n6

(r, s, t)

=
rn1+N1−2+n5sn2+N1−2+n5(1− r)n3tn5an6

(a+ c1rs+ c2(1− r)t)N1

· f0 +
∑Npow
n=1 fr,nr

n

(1− r+ d0r)N2
. (B.43b)

There is one particularity in the analytical integration compared to
the cases where t is absent. The integration over t is performed first.
The denominator of the primitive contains a factor of

(1− r)(a+ c1rs+ c2(1− r)t)
N1−1−n5 .

As we assume again that the integral is integrable at r = 1, the factor
of (1 − r) must cancel. The two terms that arise from inserting the
integration boundaries 0 and 1 are handled separately. Whereas the
former has just the form of Eq. (B.38), the integral over r and s of the
latter must be finite and will be evaluated numerically later.
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b.4 miscellaneous

Here we present a proof of the “scaling relation", which helps to an-
alyze the limit where a set of parameters vanishes simultaneously.7

The following lines should be self-explanatory:

n∏
i=1

∫1
0

dxi f(x1, · · · , xn) θ

(
1−

n∑
k=1

xk

)

=

n∏
i=1

∫∞
0

dxi f(x1, · · · , xn) θ

(
1−

n∑
k=1

xk

)

=

∫∞
0

dr
n∏
i=1

∫∞
0

dxi f(x1, · · · , xn) θ (1− r) δ

(
r−

n∑
k=1

xk

)

=

∫∞
0

dr
n∏
i=1

∫∞
0

d(rxi) f(rx1, · · · , rxn) θ (1− r) δ

(
r− r

n∑
k=1

xk

)

=

∫∞
0

dr
n∏
i=1

∫∞
0

dxi rn−1f(rx1, · · · , rxn) θ (1− r) δ

(
1−

n∑
k=1

xk

)

=

n∏
i=1

∫1
0

dxi δ

(
1−

n∑
k=1

xk

) ∫1
0

dr rn−1f(rx1, · · · , rxn). (B.44)

7A similar relation is used to transform from Schwinger to Feynman parameters,
see Eqs. (B.14) and (B.15).
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