Identification of the midecamycin biosynthetic gene cluster in Streptomyces mycarofaciens UC189B (ATCC 21454) and analysis of the enzymes for dTDP-D-mycaminose biosynthesis

A dissertation submitted to the Fachbereich Naturwissenschaften II (Chemie/Biologie) Bergische Universität - Gesamthochschule Wuppertal for the degree of Doctor of Natural Science

presented by
Lina Cong

Wuppertal
February 2000

To all my teachers

To my parents and John

ACKNOWLEDGEMENTS

This study was carried out during the period between July, 1996 to February, 2000, am Lehrstuhl für Chemische Mikrobiologie, Fachbereich Chemie, der Bergischen Universität GH Wuppertal. I wish to express my sincere gratitude to:

My supervisor, Professor Piepersberg, for introducing me to this interesting project and for his invaluable support and guidance throughout the years. I especially appreciate his help for constructing the phylogenetic trees. His scientific ideas and vision will benefit me in my future career.

Professor Vogel for his review of my thesis.
Dr. Wehmeier for his intensive help in solving the experimental problems and fruitful discussion during these years. Special thanks for his criticism of part of my thesis.

The "Hyglide" project co-operators, Dr. Raynal, Professor Leadlay, Professor Salas, Professor Elling and all colleagues from their laboratories, for fruitful collaboration and mutual experimental support.

Dr. Beyer for his support and help during the initial phase of my work.
Christoph for his skilful help to manipulate the HPLC analysis system.
Petra and Dr. Blüggel for their help and co-operation in performing the LC-MS analysis.
Elisabeth and Yvonne for their assistance with the sequencing work.
All my former and current colleagues for their help and for creating a pleasant and friendly atmosphere in the laboratory during these years.

Professor Mattiasson (University of Lund, Sweden) for providing me the opportunity to work in his group for a year. The most important lesson I learnt from him is to understand how hard-working and active-thinking a scientist should be.

Professor Mäntsälä (University of Turku, Finland) for introducing me into the field of molecular biology.

Last but not least, my parents, and my boy friend, John, for their love, support and patience.

Contents

Abbreviations vi
Abstract viii
Zusammenfassung ix

1. Introduction 1
1.1. Secondary metabolites and macrolide antibiotics 1
1.1.1 Roles of secondary metabolites in Streptomyces 1
1.1.2. Character, structure and classification of macrolides 1
1.2. Cloning of erythromycin and tylosin biosynthesis genes 4
1.3. Biosynthesis of macrolide lactones 8
1.3.1 Basis of fatty acid and polyketide biosynthesis 8
1.3.2. Synthesis of macrolide lactone via type I PKSs 10
1.4. Biosynthesis of 6-deoxysugars 11
1.4.1. $\quad 6$-Deoxysugar genes found in antibiotic biosynthesis 11
1.4.2. Genetics of 6-deoxysugars in erythromycin and tylosin biosynthesis 12
1.4.3. Mechanism elucidation of some deoxysugar biosynthetic enzymes 13
1.5. Aims of the present study 16
2. Materials 17
2.1. Chemicals and enzymes 17
2.2. Media and Buffers 18
2.2.1 Media for cultivation of E. coli 18
2.2.2. Media for cultivation of Streptomyces 19
2.2.3. Buffers 21
2.3 Bacteria, cosmids and plasmids 27
2.3.1 Bacteria 27
2.3.2 Vectors 28
2.3.3 Recombinant plasmids 29
2.4 Oligonucleotides 37
3. Methods 39
3.1. Cultivation and maintenance of bacterial strains 39
3.1.1. \quad Cultivation and maintenance of E. coli 39
3.1.2. Cultivation and maintenance of Streptomyces 39
3.2. S. mycarofaciens fermentation and product extraction 40
3.3. General manipulation of DNA 40
3.3.1. Isolation of genomic DNA from Streptomyces 40
3.3.2. Preparation of plasmid DNA from E. coli 41
3.3.3. Preparation of plasmid DNA from Streptomyces sp. 41
3.3.4. In vitro manipulation of DNA 42
3.3.5. Polymerase chain reactions (PCR) 43
3.3.6. Separation of DNA fragment 44
3.3.7. Radioactive labelling of DNA fragments 44
3.3.8. DNA-DNA hybridization 45
3.3.9. DNA sequencing 45
3.3.10. Determination of DNA concentration 45
3.3.11. Transformation of E. coli and S. lividans 46
3.3.12. Heterologous gene expression in E. coli BL21(DE3)pLysS 46
3.3.13. Heterologous gene expression in S. lividans 1326 46
3.4. Manipulation of the cosmid genomic library of S. mycarofaciens 47
3.4.1. Construction of the cosmid genomic library 47
3.4.1.1. Partial digestion of S. mycarofaciens genomic DNA 47
3.4.1.2. Size fractionation of DNA fragments 48
3.4.1.3. Digestion of the cosmid vector pKU206 49
3.4.1.4. Ligation of insert DNA to vector DNA 49
3.4.1.5. Packaging of ligated DNA 50
3.4.1.6. Adsorption of packaged recombinant cosmids to E. coli 50
3.4.1.7. Plating of packaged recombinant cosmids 50
3.4.2. Plating out, amlification and maintenance of the cosmid genomic library 51
3.4.2.1. Plating on agar for the library amplification 51
3.4.2.2. Picking and streaking colonies for screening and maintenance of the library 51
3.4.3. Screening of the cosmid genomic library 52
3.4.3.1. Preparing duplicate membranes of cosmid colonies 52
3.4.3.2. Cosmid DNA binding to the membranes 52
3.4.3.3. Screening the cosmid membranes 52
3.5. Biochemical methods 53
3.5.1. Cell-free extracts of E. coli and Streptomyces 53
3.5.2. Determination of protein concentration 53
3.5.3. SDS polyacrylamide gel electrophoresis (PAGE) 53
3.5.4. Western blotting and immuno-detection of proteins 54
3.5.5. Analysis of the activity of dTDP-D-glucose 4,6-dehydratase by RmlB 54
3.5.6. Analysis of the activity of enzymes participating in dTDP-D-mycaminose 55biosynthesis via a coupling reaction of RmlB , MidH and MidC
3.6. Chromatography methods 55
3.6.1. Thin-layer chromatography (TLC) 55
3.6.2. High pressure liguid chromatography (HPLC) 56
3.6.3. HPLC coupled to mass spectrometry (LC-MS) 56
3.7. Computer programs 56
4. Results 57
4.1. Detection of pathway-specific genes from S. mycarofaciens by PCR 57
4.1.1. Identification and isolation of a gene, $\operatorname{mid} B$, encoding a dTDP-glucose 58 4, 6- dehydratase from S. mycarofaciens
4.1.2. Identification and isolation of a gene, midI, encoding a glycosyltransferase 58 from S. mycarofaciens
4.2. Construction and screening of a genomic library from S. mycarofaciens 60
4.2.1. Construction of the genomic cosmid library 60
4.2.1.1. Selection of $20-35 \mathrm{~kb}$ DNA fragments in S. mycarofaciens partial digestion 60
4.2.1.2. Ligation, packaging and plating the library 63
4.2.2. \quad Screening of the cosmid genomic library probed by the midB and midI 64 DNA fragments
4.3. Restriction analysis and sequencing of partial regions of the recombinant 65 cosmids
4.4. Chromosomal walking by using a 2.3 kb DNA fragment close to one end 68 of Smyc-LC1 as a probe to screen the S. mycarofaciens genomic library
4.5. Open reading frames found in the gene sub-cluster analysed from 68 Smyc-LC1
4.6. Open reading frames found in the gene sub-cluster analysed from 71 Smyc-LC3
4.7. \quad The PKS genes (mid G) 71
4.8. \quad Regulation genes ($m i d F$ and $m i d R$) 72
4.9. \quad Resistance genes ($m d m A$ and $m i r B$) 73
4.10. Identification of $m i d E, m d m B$ and $m d m C$ 74
4.11. The midC gene 74
4.12. \quad The midA and midB genes 76
4.13. The midK gene 77
4.14. \quad The midH gene 79
4.15. The midI gene 79
4.16. Identification of genes encoding dTDP-D-mycaminose biosynthetic 80 pathway
4.17. About strains of S. mycarofaciens UC189B (ATCC 21454) and 82 S. mycarofaciens ATCC 21454
4.18. Heterologous complementation of midK and midI into Sac. erythraea 82 mutants
4.19. Heterologous expression of the MidH, MidC, MidK and MidI proteins 83
4.19.1. Overexpression of the MidH protein 85
4.19.2. Overexpression of the MidC protein 86
4.19.3. Expression and detection of the MidK protein 87
4.19.4. Expression and detection of the MidI protein 88
4.20. Assay for activity of a coupling reaction of the RlmB, MidH and MidC 89 protein
4.20.1. Activity assay of dTDP-D-glucose 4,6 -dehydratase by RmlB 89
4.20.2. Reaction products from combined catalysis by RmlB, MidH and MidC 90
5. Discussion 92
5.1. The S. mycarofaciens cosmid genomic library 92
5.2. Architecture of the mid gene cluster in S. mycarofaciens 93
5.3. Hybrid antibiotic production by heterologous complementation 98
5.4. Heterologous enzyme expression and combined enzymatic analysis 99
5.5. Phylogenetic analysis of some enzymes involved in midecamycin 101 biosynthesis
6. References 109
7. Appendices 122
7.1 The nucleotide and encoded amino acid sequences of the midM region 122 of Smyc-LC1
7.2. The nucleotide and encoded amino acid sequences of the midCA region 123 of Smyc-LC1
7.3. The nucleotide and encoded amino acid sequences of the midDBL region 125 of Smyc-LC1
7.4. The nucleotide and encoded amino acid sequences of the midE region 128 of Smyc-LC1
7.5. The nucleotide and encoded amino acid sequences of the midGKHIJ 129 region of Smyc-LC3
7.6. Sequence alignment of the MidD protein with other thioesterases for 133 construction of MidD-tree in Fig. 5.2
7.7. Sequence alignment of the MidA protein with other dTDP-glucose 134 synthases for construction of MidA-tree in Fig. 5.2
7.8. Sequence alignment of the MidB protein with other dTDP-glucose 4,6- 135 dehydratases for construction of MidB-tree in Fig. 5.2
7.9. Sequence alignment of the MidH protein with other putative isomerases 137 for construction of MidH-tree in Fig. 5.2
7.10. Sequence alignment of the MidC protein with other aminotransferases 138 for construction of MidC-tree in Fig. 5.2
7.11. Sequence alignment of the MidK protein with other methyltransferases 139 for construction of MidK-tree in Fig. 5.2
7.12. Sequence alignment of the MidI protein with other glycosyltransferases 141 for construction of MidI-tree in Fig. 5.2

Abbreviations

A	adenine
aa	amino acid
acc. no.	accession number
ALF	automatic laser fluorescens DNA sequencer
APS	ammonium persulfate
ATCC	American Type Culture Collection
bp	base pair
BSA	bovine serum albumin
C	cytosine
ca	circa
Ci	curie
d	day
dATP	2^{\prime}-deoxyadenosine triphosphate
dCTP	2^{\prime}-deoxycytidine triphosphate
dGTP	2^{\prime}-deoxyguanosine triphosphate
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside triphosphate
6DOH	6-deoxyhexose
dTDP	2^{\prime}-deoxythymine diphosphate
DTT	dithiothreitol
dTTP	2^{\prime}-deoxythymidine triphosphate
E. coli	Escherichia coli
EDTA	ethylendiaminotetraacetic acid
ery genes	erythromycin biosynthetic genes
G	guanine
g	gram
g	gravity
h	hour
HPLC	high performance liquid chromatography
IPTG	isopropyl-1-thio- β-D-galactoside
kb	kilobase
kDa	polyacrylamide gel electrophoresis
λ	navalton
nt	wave length
ODx	nucleotide
orf	optical density at x nm and 1 cm depth
ori	open reading frame
$m i d$ genes	origin
min	midecamycin biosynthetic genes
Mr	minute
MW	relative molecule weight
No.	molecule weight
nt	number
p	PAGE

PAA	polyacrylamide
PCR	polymerase chain reaction
PEG	polyethylenglycol
psi	pounds per square inch'
PVDF	polyvinyl difluoride
RBS	ribosome binding site
PLP	pyridoxal phosphate
PMP	pyridoxamine phosphate
Rnase	ribonuclease
rpm	rounds per minute
RT	room temperature
Sac	Saccharoployspora
sec	second
S.	Streptomyces
SDS	sodium dodecyl sulphate
ssp.	subspecies
T	thymine
Tab.	Table
TEMED	N, N, N^{\prime}, N^{\prime}-tetramethylethylendiamine
TES	N-tris(hydroxymethyl)methyl-2-aminoethanesulphonic
	acid
TLC	thin-layer chromotography
Tris	trishydroxymethylaminomethane
tyl genes	tylosin biosynthetic genes
U	enzyme unit
Uni.	University
UV/VIS	ultraviolet/visible light
V	volt
X-gal	5-bromo-4-chloro-3-indolyl- β-D- galactoside

Abstract

In this study the following aspects have been worked out by studying the genetics of midecamycin biosynthesis as a model system to elucidate the biosynthesis of sugar components in 16 -membered macrolides and to acquire tools for the production of new hybrid macrolide antibiotics. 1. By sequentially screening a genomic library in the cosmid vector pKU206 via two homologous gene probes which were detected by PCR, the midecamycin biosynthetic (mid) gene cluster has been identified in the isolated ca. 74 kb DNA in the genome of S. mycarofaciens, falling into two regions. 2. About 10 kb DNA from the cosmid Smyc-LC1 and ca. 7 kb DNA from the cosmid Smyc-LC3 were sequenced contiguously. The remaining regions of these two cosmids were partially sequenced to get further information on extension and informational contents of the cluster. Among them, 10 genes with complete reading frames and 14 genes incomplete were identified, all of which are necessary for midecamycin biosynthesis. The region of genes responsible for mycarose biosynthesis was found in Smyc-LC1. A complete set of genes for the biosynthesis and transfer of mycaminose was identified. The organisation of the overall mid gene cluster revealed that, similar to other macrolide gene clusters, the PKS genes are flanked by two regions containing genes encoding enzymes for sugar biosynthesis, with others for resistance, regulatory, and sugar or lactone modification. 3. The genes, midC, midH, midK and midI, were characterised by heterologous expression of these enzymes. MidC and MidH were over-produced as soluble proteins in E. coli both in native form and as His-tag fusion. Soluble proteins His-tag-MidK and His-tagMidI were detected only by Western blotting in low quantities. 4. To characterise the postulated function of MidH (3,4-isomerase) and MidC (3aminotransferase), the products of a coupling enzymatic reaction to convert dTDP-Dglucose by RmlB (4,6-dehydratase), MidH and MidC were analysed by HPLC and LCMS. It has been confirmed that the MidC protein is responsible for transamination to form dTDP-amino-6-deoxy-D-glucose.

ZUSAMMENFASSUNG

In dieser Arbeit wurden die folgenden Aspekte der Genetik und Biosynthese des Makrolids Midecamycin ausgearbeitet, um die Mechanismen der Makrolidzuckersynthese zu klären und Handwerkszeuge für die Herstellung hybrider Makrolide zu liefern.

1. Durch sequentielles Screening einer genomischen DNA-Bank im Cosmidvektor pKU206 durch zwei homologe PCR-amplifizierte Genproben wurden zwei Regionen von insgesamt ca. 75 kb DNA isoliert, die die gewünschten Anteile des Midecamycin (mid) Genclusters enthielten.
2. Ca. 10 kb DNA aus Cosmid Smyc-LC1 und ca. 7 kb DNA aus Smyc-LC3 wurden komplett sequenziert. Die übrigen Regionen wurden durch partielle Sequenzierung charakterisiert, um weitere Informationen über Struktur und Genverteilung zu erhalten. Unter den Genen wurden 10 komplette und 14 unvollständige Leserahmen identifiziert, die für die Midecamycin-Biosynthese notwendig sind. Die Region der MycaroseBiosynthesegene wurde auf Smyc-LC1 gefunden. Das komplette Set der Gene für Biosynthese und Transfer der Mycaminose wurde kloniert. Die Organisation des mid Genclusters ist ähnlich wie in andern Makroliden zu beiden Seiten der zentralen PKS Gene mit zwei gemischten Gruppen von Zucker-, Acylierungs-, Resistenz- und Regulatorgenen strukturiert.
3. Die Genen, midC, midH, midK und midI, wurden durch heterologe Expression charakterisiert. MidC und MidH wurden als lösliche Proteine in E. coli überproduziert, jeweils in nativer und His-tag fusionierter Primärstruktur. Die ebenfalls löslichen Histag Proteine MidK und MidI wurden nur in geringer Menge gebildet und über Westernblot nachgewiesen.
4. Um die postulierten Funktionen der MidH (3,4-Isomerase) und MidC (3Aminotransferase) nachzuweisen, wurden die Produkte eines gekoppelten Enzymtests zur Umsetzung von dTDP-D-Glucose mit RmlB (4,6-Dehydratase), MidH und MidC mittles HPLC und LC-MS Techniken ausgewertet. Es wurde bestätigt, daß das MidC Protein verantwortlich ist für die Transaminierungsreaktion bei der Bildung des dTDP-Amino-6-Deoxy-D-Glucose.

1. Introduction

1.1. Secondary metabolites and macrolide antibiotics

1.1.1. Roles of secondary metabolites in Streptomyces

Secondary metabolites are synthesized via multistep pathways leading from precursors (usually intermediates of primary metabolism) to the specific moieties of these metabolites (Drew et al., 1978). The majority of bioactive products (for instance, antibiotics, pigments, alkaloids, enzyme inhibitors, and so on) of microorganisms, is generated by secondary metabolism. This part of the metabolic machinery of microorganisms may play no essential role in the vegetative development of the producing organisms, but seems to convey advantages to the pertinent species with regard to its long-term survival in the biological community and environment (Vining, 1992).

Actinomycetes, to which the streptomycetes belong, are well known for the synthesis of a broad range of biologically active secondary metabolites with antibacterial, anti-viral, antitumor and immuno-suppressive activities. Tab. 1.1 lists a few of these compounds with their respective activities. Understanding roles of secondary metabolites in Streptomyces has been increased by cloning numerous genes involved in the biosynthesis of antibiotics, pigments and other secondary metabolites (Beppu, 1996; Minas, 1997). A comprehensive picture of their organization in clusters is emerging. Knowledge about expression of these genes, which are not essential for growth, is of utmost importance for establishing how they have evolved as compared to operons of primary biosynthetic genes. Furthermore, understanding of the regulatory mechanisms controlling gene expression has relevance for industrial over-production of these metabolites.

1.1.2. Character, structure and classification of macrolides

Macrolides are a class of antibiotics that contain a macrocyclic lactone ring (Omura, 1984) composed of a polyketide-derived backbone to which one, two or three sugars are

Tab. 1.1. Some medically important Streptomyces secondary metabolites and their mode of action

Type	Antibiotic	Producer	Activity	Target
B-Lactams (peptides)	Cephalosporin Cephamycin	S. clavuligerus	Gram +/- bacteria	D-Ala metabolism in cell wall formation
Chorismic acid	Chloramphenicol	S. venevuelae Chemical Synthesis	Bacteria, Mycoplasma	Ribosome 50S subunit
Aromatic polyketides	Mithramycin	S. argillaceus	Antitumor	DNA intercalating or binding agents Ribosome 30S subunit
Macroildes	Erythromycin Rapamycin, FK506	Sac. erythraea S. hygroscopicus	Bacteria Immunosuppressants	Ribosome 50s subunit T-cell differentiation

commonly attached. They are produced as secondary metabolites by mycelium-forming soil bacteria from the order Actinomycetales; the majority are from members of the genera Streptomyces, Micromonospora and Saccharopolyspora (Nakagawa et al., 1984). Macrolide antibiotics are widely used as anti-infective, immuno-supressive, insecticidal, and parasiticidal agents in the clinic or for agricultural purposes. The known mechanism of the biological function of the main group of classical macrolides (erythromycin, tylosin, etc.) is to bind to the peptidyltransferase center of the 50S subunit of the bacterial ribosome, thereby inhibiting bacterial protein synthesis (Gale et al., 1981). Other macrocyclic lactones, like polyenes and avermectin, have different modes of action.

Macrolides are conveniently divided into different groups according to the atom numbers of the formation of lactone rings (Omura, 1984). They are composed of 12 to 16 atoms, socalled 12 -membered macrolides (e.g., methymycin); 14-membered macrolides (e.g., erythromycin and oleandomycin); and 16-membered macrolides (e.g., tylosin, spiramycin, carbomycin and midecamycin) (Fig. 1.1).

CARBOMYCIN A

4"-Isovalerylmycarose $\mathrm{R}=\mathrm{CoCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

Mycinose

TYLOSIN

Fig. 1.1. Examples of macrolides. Structures of one 14-membered (erythromycin) and four 16-membered macrolides (tylosin, midecamycin, spiramycin and carbomycin).

1.2. Cloning of erythromycin and tylosin biosynthesis genes

Large numbers of macrolides have been structurally isolated and some of them have been in practical use for many years, but cloning and genetic analysis of biosynthesis genes have only been extensively studied for erythromycin and tylosin. The molecular biology of picromycin, carbomycin, spiramycin and midecamycin has also been studied but at a much lower level. In the cases of erythromycin and tylosin, the biosynthesis genes are demonstrated to be clustered among one or more resistance-determining genes in the chromosome. Therefore, cloning of the resistance genes has allowed the isolation of large segments of adjacent DNA.

For cloning of erythromycin biosynthesis genes, the ermE gene, that determines macrolide-lincosamide-streptogramin B (MLS) resistance in the erythromycin-producing strain Sac. erythraea, was first used as a hybridization probe to identify linked genomic fragments from Sac. erythraea (Stanzak et al., 1986). The first biosynthesis gene identified in the cluster was ery G, which encodes the O-methyltransferase catalyzing the last step of the pathway (Weber et al., 1989). The isolation of the erythromycin gene cluster (ca. 54 kb ; Fig. 1.2) has been completed (Dhillon et al., 1989; Donadio et al., 1991; 1992; Vara et al., 1989; Weber et al., 1990), and the nucleotide sequence of all the genes in the cluster has been revealed (Cortes et al., 1990; Dhillon et al., 1989; Donadio et al., 1991; Gaisser et al., 1997; 1998; Haydock et al., 1991; Salah-Bey et al., 1998; Summers et al., 1997; Weber et al., 1991). This macrolide, according to the present knowledge, requires approximately 30 enzymatic steps for its construction.

The first gene in tylosin biosynthesis, designated as tylF, encoding macrosin O methyltransferase that acts at the last step in the pathway in S. fradiae (Fishman et al., 1987), was isolated and cloned by using a reverse genetics approach, which employed a partially degenerated oligonucleotide probe derived from a portion of the N -terminal sequence obtained from the purified enzyme (Bauer et al., 1988). Evidence shows tylosin biosynthetic and self-resistance genes are closely linked in the genome of Streptomyces (Beckmann et al., 1989). Four different resistance genes, $\operatorname{tlr} A, \operatorname{tlr} B$, $\operatorname{tlr} C$ and $t l r D$, have been cloned from S. fradiae (Baltz \& Seno, 1988; Birmingham et al., 1989; Zalacain \&

3-a-Mycarosylerythronolide B

Erythromycin A

Fig. 1.2. Organisation of the ery cluster of Sac. erythraea and pathway for the formation of erythromycin. Top: arrows, each aligned along the direction of the transcription, indicate the open reading frames of the cluster (not drawn to scale). Bottom: only the macrolide portion of the pathway is illustrated. The proposed pathways for 6-deoxysugar formation see Section 1.4.

Cundliffe, 1991) in which $\operatorname{tlr} B$ and $\operatorname{tlr} C$ are located at the two ends of the cluster (Beckmann et al., 1989) and tlrD is within a region of the cluster (Gandecha et al., 1997). More recent analysis shows that the tylosin gene cluster, which covers about 85 kb in the genome of S. fradiae, contains over 40 genes, including and surrounding the tylG (PKSencoding) sub-cluster. This large interval segment is flanked by $t l r B$ and $t l r C$, and has originally been mapped into 13 different loci ($t y l A$ to $t y l M$) according to the results of cosynthesis studies with idiotrophic mutants blocked at different steps in tylosin biosynthesis (Baltz et al., 1983) (Fig. 1.3). The five tylG genes occupy ca. 41 kb (acc. no. U78289). The tyllBA region, in which 11 genes cover about 14.8 kb , is located between tylG and tlrC (Merson-Davies \& Cundliffe, 1994; Butler et al., 1999). The tylLM region is located downstream of $t y l G$, showing five genes which are mainly involved in mycaminose biosynthesis and attachment (Gandecha et al., 1997). The tylCK region, in which five genes have recently been found in a 7 kb region, is adjacent to the left side of $t y l L M$, . These genes are involved in mycarose biosynthesis and attachment (acc. no. AF147704). The remaining region, $t y l E D H F J$, is located at the left side of the cluster, and recently, the sequence of 11.9 kb of this region has been shown to include 11 orfs, 10 of them belonging to the biosynthetic cluster, which is involved in mycinose biosynthesis and attachment (Fouces et al., 1999). Of particular interest in the tylosin gene cluster is the presence of at least five candidate regulatory genes: $t y l P$ encodes a γ-butyrolactone signal receptor for which $t y l Q$ is the probable target; tyl Q is a transcriptional regulator; tylS and tylT encode pathwayspecific regulatory proteins of the Streptomyces antibiotic regulatory protein (SARP) family (Wietzorrek \& Bibb, 1997); tylR has been shown by mutational analysis to control various aspects of tylosin production, thereby designated as a global regulator (Bate et al., 1999). The regulatory genes identified here probably control tylosin biosynthesis in cascade fashion and might form a link to the control of sporulation. In contrast, other antibiotic biosynthetic gene clusters are not known to contain multiple pathway-specific regulators, and no regulatory genes are present in the erythromycin gene cluster.

O-Mycaminosyltylonolide

$\downarrow \begin{aligned} & \text { tylA, tylD } \\ & \text { tylJ, tylN }\end{aligned}$
23-Deoxy-O-mycaminosyltylonolide
 $t y l E \downarrow$

Fig. 1.3. Organisation of the $t y l$ cluster of S. fradiae and pathway for the formation of tylosin. Top: arrows, denote the open reading frames of the cluster (not drawn to scale). Bottom: only the macrolide portion of the pathway is illustrated. The proposed pathways for 6-deoxysugar formation see Section 1.4.

1.3. Biosynthesis of macrolide lactones

1.3.1 Basis of fatty acid and polyketide biosynthesis

The early stages in both fatty acid and polyketide biosynthesis are catalyzed by enzymes, referred to collectively as fatty acid synthases (FASs) and polyketide synthases (PKSs), that operate on identical principles (Fig. 1.4). Simple carboxylic acids are activated as thioesters (CoA). The acetyl unit which acts as a 'starter' is transferred via an acyl carrier protein (ACP) to a cysteine thiol group at the active site of a β-ketoacyl synthase (KS: the condensing enzyme). A malonate ('extender') unit is then transferred onto the thiol of ACP. Thereafter, the KS catalyzes the condensation of the two acid residues to give a β-ketoacyl C_{4} intermediate attached to ACP. At this point the pathway to fatty acids and polyketides usually diverges. In the fatty acid pathway, the β-ketoacyl C_{4} intermediate is acted upon successively by a β-ketoacyl reductase (KR), a dehydrase (DH) and an enoyl reductase (ER) to generate a fully reduced acyl C_{4} intermediate that will normally be returned to the active-site cysteine of KS to serve as the starter unit for another round of extension and reduction. In the pathway usually followed by PKSs, the β-ketoacyl C_{4} intermediate is not automatically reduced; instead it is transferred directly to the active-site cysteine of KS, where it serves as the starter unit for condensation with a second ACP-borne extender unit. The condensation yields a β, δ-diketoacyl C_{6} intermediate attached to the ACP , and then this intermediate can in turn be transferred to the vacant active site on the condensing enzyme for further extension of the polyketide chain. Evolutionarily it is more logical to regard FASs as a special case of PKSs, since the basic mechanisms are all identical and catalysed by enzymes all in common families and the PKSs already can contain modules with full β-ketoreduction capacity.

PKSs usually can be subdivided into two types: type I, a modular PKS of complex polyketide, consists of several large multifunctional proteins carrying a separate active site for each individual enzyme-catalyzed reaction in the pathway; type II, the aromatic PKS, consists of a group of separate proteins with iterative active sites for enzyme-catalyzed reactions (Katz \& Donadio, 1993). Information about type I PKSs has been obtained from sequence analysis of the cloned genes from Sac. erythraea (Cortes et al., 1990; Donadio

Fatty acid route

Fig. 1.4. A schematic diagram of fatty acid and polyketide biosynthesis. The first four reactions are common to both pathways; the subsequent reactions in route A lead to polyketides, and in route B to fatty acids. Circle represents the synthase complex; ACP is the acyl carrier protein, on which SH is the functional thiol on the 4 '-phosphopantetheinyl prosthetic group of the protein. KS is the condensing enzyme, on which SH is the cysteine thiol group at the active site of the enzyme.
Enzymes: 1, acetyl transferase; 2, acyl transferase; 3, malonyl transferase; 4, β-ketoacyl synthase; 5, ketoreductase; 6 , dehydrase; 7 , enoylreductase.
et al., 1991) and S. avermitilis (MacNeil et al., 1992b), which reveals that there is a separate set of active sites (a 'module'; Donadio et al., 1991) for each round of carbon chain assembly and appropriate reduction. The genetic organization and enzyme function in the biosynthesis of the polyketide aglycone of erythromycin is reviewed below.

1.3.2. Synthesis of macrolide lactone via type I PKSs

As described above, complex polyketides, which include the aglycone components of macrolides, are synthesized through the successive condensation of activated acetate, propionate or butyrate units which are either directly extended or followed by reduction at the β-keto carbon to varying degrees. In the synthesis of the macrocyclic lactones of the well-known macrolides, starter units are commonly acetate (oleandomycin, midecamycin, spiramycin) or propionate (erythromycin and tylosin), and extender units for $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} chains are likely to arise from malonyl-, methymalonyl- and ethylmalonyl-CoA, respectively. Classical lactone rings contain an even number of atoms: 12- (e.g., methymycin), 14- (e.g., erythromycin, oleandomycin and pikromycin) and 16-membered rings (e.g., midecamycin, spiramycin and tylosin), resulting from the successive condensation of 5, 6 and 7 extender units, respectively (Omura et al., 1984).

The nucleotide sequence of the genes for the lactone of erythromycin supports the organization of the modular type I PKSs that is composed of a few very large multifunctional enzymes, each composed of modules containing all the activities required in a single round of synthesis (Cortes et al., 1991; Donadio et al., 1991; Donadio \& Katz, 1992). Corresponding to the sequence of the 6-deoxyerythronolide B (6dEB) PKS genes (eryA), the EryA polypeptides include three proteins (EryAI, EryAII and EryAIII) containing domains typical of fatty acid synthases: ACP (acyl carrier protein), AT (acyltransferase), DH (dehydratase), ER (enoylreductase), KR (ketoreductase), KS (ketosynthase) and AT (thioesterase). These are grouped into six modules where modules 1 and 2 in eryAI encode a 6-deoxyerythronolide B synthase (DEBS) subunit, DEBS1, believed to participate in the first two steps of 6dEB synthesis. Similarly, eryAII and eryAIII contain modules 3 and 4, and 5 and 6, respectively, encoding DEBS2 and DEBS3, which catalyze the third through sixth cycles. For the detail processes of 6dEB synthesis
through sequential action of the six modules, the reader is directed to Katz and Donadio (1993).

The genes involved in the synthesis of the 16 -membered lactone rings of spiramycin and tylosin have been designated srm G and $t y l G$ in S. ambofaciens and S. fradiae. Like eryA, the genetic organization of the PKS genes for platenolide (srmG) and tylactone (tylG) synthesis appears to correspond to the order of the chemical reactions, both containing five genes which are grouped into 7 modules, respectively (Kuhstoss et al., 1996). Platenolide and tylactone undergo an identical set of post-condensation processing steps; however, the substrates chosen for incorporation in the two pathways differ in some steps. For example, the first reaction in platenolide synthesis involves the condensation of an acetyl-CoA and a malonyl-CoA, while in tylactone synthesis, the corresponding substrates are propionyl-CoA and methylmalonyl-CoA (Omura et al., 1975a,b; 1979; Marsden et al., 1994). In other type I polyketides, amino acids, aromatics or short branched-chain fatty acids can be used as starter units, e.g., branched chains, an isobutyryl-CoA or 2-methylbutyryl-CoA used in avermectin (MacNeil et al., 1992a, b).

1.4. Biosynthesis of 6-deoxysugars

1.4.1. 6-Deoxysugar genes found in antibiotic biosynthesis

In nature, a wide variety of deoxysugars are found in lipopolysaccharides, glycoproteins, glycolipids and many secondary metabolites (Liu \& Thorson, 1994; Piepersberg, 1994). The deoxysugars belong to an important class of carbohydrates and exhibit various potent and interesting biological activities (Williams \& Wander, 1980). These compounds are formed from common monosaccharides by replacement of one or more hydroxyl group(s) with hydrogen(s). Such a substitute generally induces dramatic variation in biological function, and in many cases, these unusual sugars have been shown to be indispensable for the activity of the parent molecule (Weymouth-Wilson, 1997).

In the past few years, sequencing and analysis of various antibiotic biosynthetic gene clusters and the correlation of blocked mutants with phenotypes have provided critical evidence allowing the identification of a number of complete sugar biosynthetic gene
clusters, for instance, L-streptose biosynthetic cluster in streptomycin (Distler et al., 1992); L-daunosamine biosynthetic cluster in daunorubicin biosynthesis (Otten et al., 1997); Ddesosamine and L-mycarose biosynthetic clusters in erythromycin biosynthesis (Gaisser et al., 1997; Summers et al., 1997; Salah-Bey et al., 1998); D-desosamine and L-oleandrose biosynthetic clusters in oleandomycin biosynthesis (Salas, personal communication; Olano et al., 1998); D-mycaminose, D-mycinose and L-mycarose biosynthetic clusters in tylosin biosynthesis (Merson-Davies \& Cundliffe, 1994; Gandecha et al., 1997; Fouces et al., 1999). The recent advances also include the identification of some genes needed for the production of deoxysugar components in avilamycin of S. viridochromogenes Tü57 (Gaisser et al., 1997), mithramycin of S. argillaceus (Lombó et al., 1997), nogalamycin of S. nogalater (Torkkel et al., 1997). The structure of these sugars is shown in Fig. 1.5.

1.4.2. Genetics of 6-deoxysugars in erythromycin and tylosin biosynthesis

Two extensively studied examples, erythromycin and tylosin, have received a leading position in the genetic analysis of 14 -membered and 16 -membered macrolactone antibiotics, not only because of their well-studied PKSs and PKS-encoding sub-clusters but also because of the identification of almost all pathway-specific genes of appended sugars (Merson-Davies \& Cundliffe, 1994; Gandecha et al., 1997; Gaisser et al., 1997; Summers et al., 1997; Salah-Bey et al., 1998; Fouces et al., 1999).

Erythromycin contains two 6-deoxyhexoses, L-mycarose first attached to the $\mathrm{C} 3-\mathrm{OH}$ of the aglycone 6-deoxyerythronolide B , and D-desosamine then attached to $\mathrm{C} 5-\mathrm{OH}$ of the aglycone. Tylosin contains three 6-deoxyhexoses, D-mycaminose as the first sugar added to C5-OH of tylactone, D-mycinose then added to C23-OH of tylactone, and L-mycarose finally substituted onto $\mathrm{C} 4-\mathrm{OH}$ of mycaminose. According to the pathway analysis and protein similarity of several identified 6-deoxysugar genes in antibiotic biosynthesis, a common pathway of these sugars is deduced as follows: the first two steps are believed to be the synthesis of dTDP-D-glucose and its conversion into dTDP-4-keto-6-deoxyglucose, catalysed respectively by dTDP-glucose synthase and dTDP-glucose dehydratase; thus, dTDP-4-keto-6-deoxyglucose is a common intermediate before the pathway divergance (Piepersberg, 1994). For the L-mycarose production in erythromycin biosynthesis, the ery B

D-mycaminose

D-desosamine

D-mycinose

D-olivose

L-streptose

L-mycarose

L-daunosamine

L-oleandrose

L-nogalose

Fig. 1.5. Structure of selected deoxysugars. These sugars participate in the biosynthesis of antibiotics described in the text.
genes contribute to the pathway (see next Section 1.4.3). The genes involved in the Ddesosamine pathway have been identified as the eryC genes: the eryCII product may be responsible for 3,4-isomerase of dTDP-4-keto-6-deoxyglucose, then eryCI for C -3 transamination, and eryCIV for C-4 dehydration, eryCV for C-4 reduction, eryCVI for Nmethyl transfer and eryCIII for glycosyl transfer (Gaisser et al., 1997; Salah-Bey et al., 1998) (Fig. 1.6). For the production of D-mycaminose involved in tylosin biosynthesis, tylMIII was recently identified as 3,4 -isomerase (acc. no. X81885), then tylB for C-3 transamination, tylMI for N-methyl transfer, and tylMII for glycosyl transfer (Gandecha et al., 1997) (Fig. 1.6).

1.4.3. Mechanism elucidation of some deoxysugar biosynthetic enzymes

It is evident that our knowledge of the biosynthesis of deoxysugars, especially their genetics and pathways, has accumulated rapidly over the past few years (Kirschning et al., 1997; Liu \& Thorson, 1994). A number of important deoxysugar biosynthetic genes have been cloned and identified, and mechanistic studies of the expressed enzymes have provided fresh insights into deoxysugar biosynthesis.

Fig. 1.6. Proposed pathways for dTDP-desosamine synthesis in the erythromycin gene cluster and dTDP-mycaminose synthesis in the tylosin gene cluster. They all start from the common intermediate, dTDP-4-keto-6-deoxyglucose (I).

A earlier example is that in vitro characterization of several TDP-D-glucose 4,6dehydratases (TDPGDH; EC 4.2.1.46) from the erythromycin-producing strain Sac. erythraea (Vara \& Hutchinson, 1988), from the daunorubicin- and baumycin-producing organisms Streptomyces sp. C5, and from the daunorubicin-producing strain S. peucetius ATCC 29050 (Thompson et al., 1992). These TDPGDHs were purified to homogeneity or near to homogeneity and showed requiring NAD^{+}as a cofactor. The N -terminal amino acid sequences of the TDPGDHs from Sac. erythraea and S. peucetius were similar, whereas the enzyme from Streptomyces sp. C5 contained a different N -terminal amino acid sequence from either of the other two enzymes (Thompson et al., 1992).

A recent notable case is the identification of a set of genes (the cluster strO-stsABCDEFG) that encode proteins for streptomycin production in S. griseus (Ahlert et al., 1997). Sequence analysis revealed that StsA and StsC proteins are members of a new class of aminotransferases that are used mainly in carbohydrate biosynthetic pathways. Purification
of the StsC protein permitted unambiguous assignment of StsC as the L-glutamine:scylloinosose aminotransferase, which catalyzes the first cyclitol transamination reaction in the biosynthesis of the streptidine subunit of streptomycin. Because genes related to sts A and sts C also occur in actinomycete producers of other diaminocyclitol aminoglycosides such as neomycins, kanamycins and hygromycin B, the StsA and StsC proteins may be considered as representatives of aminoglycoside-specific aminotransferases.

Another significant example is the recent determination of the function of the eryBVII gene in erythromycin biosynthesis (Kim et al., 1999). The eryBVII was overexpressed in E. coli strain and the crude enzyme was able to convert TDP-6-deoxy-L-threo-D-glycero-4hexulose into the epimerized product. It is not clear at this point whether the epimerization occurs at C-5 and /or C-3. However, since the configuration of the hydroxyl group at C-3 in TDP-6-deoxy-L-threo-D-glycero-4-hexulose is not changed in TDP-L-mycarose, and thus the EryBVII enzyme may catalyze the epimerization at C-5 only. According to this experiment, the biosynthetic route of TDP-L-mycarose from TDP-6-deoxy-L-threo-D-glycero-4-hexulose, or of dTDP-L-mycarose from dTDP-4-keto-6-deoxyglucose, requires at least four chemical transformations, as proposed by Gaisser et al. (1998) and Summers et al.(1997). They would be the epimerization at C-5 (EryBVII), the deoxygenation at C-2 (?), the methylation at $\mathrm{C}-3$ (EryBIII) and the reduction at C-4 (EryBIV) (Fig. 1.7).

Fig. 1.7. Possible biosynthetic pathway of TDP-L-mycarose in Sac. erythraea from TDP-6-deoxy-L-threo-D-glycero-4-hexulose (II).

1.5. Aims of the present study

This study belongs to a project designed to first elucidate basic mechanisms of the biosynthesis and transfer of sugar residues present on macrolide compounds. Secondly, this knowledge should be used to produce new hybrid macrolide antibiotics by re-targeting sugar residues on heterologous lactones. The particular target of this work was cloning of the gene cluster from a 16 -membered macrolide producing strain. The aims of the research were:
(1) to clone the gene cluster of midecamycin biosynthesis from S. mycarofaciens.
(2) to identify genes involved in mycaminose and mycarose biosynthesis from the midecamycin biosynthetic gene cluster.
(3) to over-express the 6-deoxysugar genes in E. coli and S. lividans.
(4) to in vitro analyse the expressed protein function.

2. Materials

2.1. Chemicals and enzymes

Antibiotics

Ampicillin	Roche, Mannheim
Chloramphenical	Serva, Heidelberg
Kanamycin	Serva, Heidelberg
Midecamycin	Sigma, Deisenhofen
Thiostrepton	Squibb and Sons, Princeton, USA

Chemicals p.A. quality

Fluka, Buchs, CH
Merck, Darmstadt
Roth, Karlsruhe
Serva, Heidelberg
Sigma, Deisenhofen

Enzymes

Alkaline Phosphatase (calfs intestine)
DNA-Polymerase I Klenow-Fragment
Lysozyme
Protease Inhibitor Set
Restriction enzymes

Ribonuclease A
Taq DNA ploymerase
T4-DNA ligase
Vent DNA polymerase

Media Components

Roche, Mannheim
Life Technologies, Eggenstein
Serva, Heidelberg
Roche, Mannheim
New England Biolabs, Schwalbach
Roche, Mannheim
Life Technologies, Eggenstein
Promega-Serva, Heidelberg
Sigma, Deisenhofen
Life Technologies, Eggenstein
Life Technologies, Eggenstein
New England Biolabs, Schwalbach

Difco, Detroit, USA
Merck, Darmstadt
Oxoid, Wesel

Roth, Karlsruhe

Kits

Bio-Rad Protein Assay Kit
BM Chromogenic Western Blotting Kit
QIAquick PCR Purification Kit
QIAprep Spin Miniprep Kit
NucleoSpin Extract
Rediprime Random Primer Labeling Kit
Thermosequenase Cycle-Sequencing Kit

Other materials

$\alpha-{ }^{32} \mathrm{P}-\mathrm{dCTP}$
Hybond- ${ }^{+}$Membrane
Hybond-P Membrane
Membrane filters BA 85 ($0.45 \mu \mathrm{~m}$)
3MM Whatman
X-ray film Hyperfilm-MP
X-ray film Hyperfilm- β-max

Bio-Rad, München
Roche, Mannheim
Qiagen, Hilden
Qiagen, Hilden
Macherey-Nagel, Düren
Amersham Buchler, Braunschweig
Pharmacia, Freiburg

Amersham Buchler, Braunschweig
Amersham Buchler, Braunschweig
Amersham Buchler, Braunschweig
Schleicher \& Schuell, Dassel
Biometra, Göttingen
Amersham Buchler, Braunschweig
Amersham Buchler, Braunschweig

2.2. Media and Buffers

2.2.1. Media for cultivation of E. coli

LB medium (Miller, 1972)
Difco Tryptone $10 \mathrm{~g} / \mathrm{l}$
Difco Yeast extract $5 \mathrm{~g} / \mathrm{l}$
NaCl

$$
5 \quad \mathrm{~g} / \mathrm{l}
$$

LB agar
LB medium
Agar
$15 \mathrm{~g} / \mathrm{l}$
SNA: Soft Nutrient Agar (Hopwood et al., 1985)

Difco Nutrient Broth	8	$\mathrm{~g} / \mathrm{l}$
Difco Bacto Agar	3	$\mathrm{~g} / \mathrm{l}$

SOB (Hanahan,1983)

Difco Tryptone	20	$\mathrm{~g} / \mathrm{l}$
Difco Yeast extract	5	$\mathrm{~g} / \mathrm{l}$
NaCl	0.58	$\mathrm{~g} / \mathrm{l}$
KCl	0.19	$\mathrm{~g} / \mathrm{l}$

After autoclaving, supplemented with:
$\mathrm{MgCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{M}) \quad 10 \mathrm{ml} / \mathrm{l}$
$\mathrm{MgSO} 4 \times \mathrm{H}_{2} \mathrm{O}(1 \mathrm{M}) \quad 10 \mathrm{ml} / \mathrm{l}$
SOC (Hanahan, 1983)
Glucose
$3.6 \mathrm{~g} / \mathrm{l}$
in SOB

2.2.2. Media for cultivation of Streptomyces

EP1 (erythromycin production) (Salah-Bey et al., 1998)

Solulys L corn steep liquor	5	$\mathrm{~g} / \mathrm{l}$
Defatted soya flour	10	$\mathrm{~g} / \mathrm{l}$
CaCO_{3}	2	$\mathrm{~g} / \mathrm{l}$
NaCl	5	$\mathrm{~g} / \mathrm{l}$
pH	6.8	
autoclaving, supplemented with:		
Glucose	15	$\mathrm{~g} / \mathrm{l}$

EP2 (erythromycin production) (Salah-Bey et al., 1998)
Defatted soya flour $10 \mathrm{~g} / \mathrm{l}$
$\mathrm{CaCO}_{3} \quad 2 \mathrm{~g} / \mathrm{l}$
$\mathrm{CoCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O} \quad 1 \mathrm{mg} / \mathrm{l}$
pH
6.8-7.0

After autoclaving, supplemented with:
Glucose
$20 \mathrm{~g} / \mathrm{l}$

ISP2 (according to the International Streptomyces Project)

Difco Yeast Extract	4	$\mathrm{~g} / \mathrm{l}$
Difco Malt Extract	10	$\mathrm{~g} / \mathrm{l}$
Difco Dextrose	4	$\mathrm{~g} / \mathrm{l}$
Agar	20	$\mathrm{~g} / \mathrm{l}$

SMA (Distler et al., 1985)

$$
\text { Soybean powder } 20 \mathrm{~g} / \mathrm{l}
$$

Mannitol $20 \mathrm{~g} / \mathrm{l}$

Agar 20 g/l
Tap water used
SPMR (Babcock \& Kendrick, 1988)

Sucrose	103	$\mathrm{~g} / \mathrm{l}$
$\mathrm{MgCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$	10	$\mathrm{~g} / \mathrm{l}$
Glucose	5	$\mathrm{~g} / \mathrm{l}$
Difco yeast extract	5	$\mathrm{~g} / \mathrm{l}$
TES buffer, $\mathrm{pH} 7.6(1 \mathrm{M})$	20	ml / l
Trace elements solution*	2	ml / l
Difco-Bacto agar	22	$\mathrm{~g} / \mathrm{l}$

After autoclaving, supplemented with:
$\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$ (5M)
ml / l

$*$ Trace elements solution (Hopwood et al.,	1985)	
ZnCl_{2}	0.04	$\mathrm{~g} / \mathrm{l}$
$\mathrm{FeCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$	0.2	$\mathrm{~g} / \mathrm{l}$
$\mathrm{CuCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$	0.01	$\mathrm{~g} / \mathrm{l}$
$\mathrm{MnCl}_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$	0.001	$\mathrm{~g} / \mathrm{l}$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \times 10 \mathrm{H}_{2} \mathrm{O}$	0.01	$\mathrm{~g} / \mathrm{l}$
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \times 4 \mathrm{H}_{2} \mathrm{O}$	0.01	$\mathrm{~g} / l$
Sterile filtration		

TSB (Hopwood et al., 1985)
Tryptone Soja Broth (Oxoid) $30 \mathrm{~g} / \mathrm{l}$
TSB-PEG 8000 (Babcock \& Kendrick, 1988)

TSB	30	$\mathrm{~g} / \mathrm{l}$
PEG 8000	50	$\mathrm{~g} / \mathrm{l}$

YEME (Hopwood et al., 1985)
Difco yeast extract $3 \mathrm{~g} / \mathrm{l}$
Difco peptone $5 \mathrm{~g} / \mathrm{l}$
Difco malt extract $3 \mathrm{~g} / \mathrm{l}$
Glucose $10 \mathrm{~g} / \mathrm{l}$
Sucrose $340 \mathrm{~g} / \mathrm{l}$
After autoclaving, supplemented with:
$\mathrm{MgCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{M}) \quad 2 \mathrm{ml} / \mathrm{l}$

SGYEME

A modified YEME medium.
Sucrose

2.2.3. Buffers

-for isolation of plasmid DNA

Alkaline Lysis Solution (Birnboim \& Doly, 1979)
Solution I:
Glucose 50 mM
Tris/HCl, pH 8.0
EDTA, pH 8.0
50
mM
mM
Solution II:
SDS
$20 \mathrm{ml} / \mathrm{l}$
NaOH
0.2 M

Solution III:
Potassium acetate
3 M
Formic acid
1.8 M

STET buffer (Sambrook et al., 1989)

Sucrose	80	$\mathrm{~g} / \mathrm{l}$
Triton X-100	50	ml / l
Tris/HCl, pH 8.0	50	mM
EDTA, pH 8.0	50	mM

Lysozyme solution (Hopwood et al., 1985)

Sucrose	0.3	M
Tris/HCl, pH 8.0	25	mM
EDTA, pH 8.0	25	mM

-for preparation of competent \boldsymbol{E}. coli cells (Hanahan, 1983)
FSB-buffer

Potassium acetate, pH 7.0	10	mM
KCl	100	mM
$\mathrm{MnCl}_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$	45	mM
$\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$	10	mM
Hexaminecobaltchloride	3	mM
Glycerol	100	$\mathrm{~g} / \mathrm{l}$
pH	6.4	
Filtration		

-for preparation of genomic DNA from Streptomyces (Pospiech \& Neumann, 1995)

NaCl	75	mM
EDTA	25	mM
Tris	20	mM
pH	7.5	

TE buffer (Sambrook et al., 1989)

Tris	10	mM
EDTA	1	mM
pH	8.0	

- for preparation of protoplasts from Streptomyces (Chater et al., 1982)

P-buffer

Sucrose	103	g
$\mathrm{~K}_{2} \mathrm{SO} 4$	0.25	g
$\mathrm{MgCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$	2.02	g
Trace elements	2	ml
Add $\mathrm{H}_{2} \mathrm{O}$ to 800 ml volume		

Autoclave in 80 ml aliquots and supplement with:
$\mathrm{K}_{2} \mathrm{HPO} 4$ (0.5%) 1 ml
$\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}(3.68 \%) \quad 10 \mathrm{ml}$
TES (5.73\%), pH7.2 10 ml

- for transformation in Streptomyces (Babcock \& Kendrick, 1988)

T-buffer

Sucrose (10.3\%)	25	ml
$\mathrm{K}_{2} \mathrm{SO} 4(2.5 \%)$	1	ml
$\mathrm{H}_{2} \mathrm{O}$	75	ml
Trace elements	0.2	ml
CaCl2 $(0.25 \mathrm{M})$	0.2	ml
Tris/maleicacid $(1 \mathrm{M}) ; \mathrm{pH} 8.0$	0.5	ml

T-buffer/PEG

Polyethyleneglycol 1000	1	g
T-buffer	900	$\mu \mathrm{l}$

- for agarose gel electrophoresis of DNA fragments (Sambrook et al., 1989)

DNA loading buffer (10 x)

Sucrose	0.5	$\mathrm{~g} / \mathrm{ml}$
EDTA; pH 8.0	160	mM
Bromophenol Blue	0.5	$\mathrm{mg} / \mathrm{ml}$
Xylene cyanol	0.5	$\mathrm{mg} / \mathrm{ml}$

TAE (50 x)

Tris
Glacial acetic acid EDTA pH
$242 \mathrm{~g} / \mathrm{l}$
$57.1 \mathrm{ml} / \mathrm{l}$
$0.4 \mathrm{~g} / \mathrm{l}$
8.3

TBE (10 x)

Tris	108	$\mathrm{~g} / \mathrm{l}$
Boricacid	61	$\mathrm{~g} / \mathrm{l}$
EDTA	0.4	$\mathrm{~g} / \mathrm{l}$

-for constructure of genomic libraries

Sucrose gradients (Weis, 1987)

Sucrose	100	$\mathrm{~g} / \mathrm{l}$
Tris/HCl, pH 8.0	10	mM
EDTA	1	mM
NaCl	1	M
autoclaved		

SM phage dilution buffer (Boehringer's DNA packaging protocol)

Tris/HCl pH 7.5	50	mM
MgSO 4	10	mM
NaCl	100	mM
gelatine	0.1	$\mathrm{~g} / \mathrm{l}$
autoclaved		

- for DNA-DNA hybridization (Southern, 1975)

Hybridization solution

SSC $(20 \mathrm{x})$	330	ml / l
Sodium phosphate buffer	10	ml / l
$(1 \mathrm{M})$, pH6.8		
EDTA $(0.5 \mathrm{M})$, pH 8.0	2	ml / l
SDS (10%)	50	$\mathrm{ml} / 1 \mathrm{l} ? ?$
Blocking reagent	1	$\mathrm{~g} / \mathrm{l}$

Wash solution (2 x)

SSC $(20 \mathrm{x})$	200	ml / l
SDS (10%)	10	ml / l

Wash solution $((0.5 \mathrm{x})$

SSC $(20 \mathrm{x})$	25	ml / l
SDS (10%)	10	ml / l

$\underline{\operatorname{SSC}(20 x)}$

NaCl
Sodium citrate
pH 7.2 adjust with citric acid

- for denatured polyacrylamide gel electrophoresis (Laemmli, 1970)

30\% PAA solution
Acrylamide
N, N-methylene bisacrylamid
$290 \mathrm{~g} / \mathrm{l}$
10 g/l

Resolving gel buffer
$\begin{array}{lrl}\text { Tris } / \mathrm{HCl} ; \mathrm{pH} 8.9 & 1.5 & \mathrm{M} \\ \text { SDS } & 4 & \mathrm{~g} / \mathrm{l}\end{array}$
Stacking gel buffer
$\begin{array}{lrl}\text { Tris/HCl; pH } 6.7 & 0.5 & \mathrm{M} \\ \text { SDS } & 1 & \mathrm{~g} / \mathrm{l}\end{array}$
$\underline{\text { SDS electrophoresis running buffer (} 10 \mathrm{x} \text {) }}$

Tris	30	$\mathrm{~g} / \mathrm{l}$
Glycine	144	$\mathrm{~g} / \mathrm{l}$
SDS	10	$\mathrm{~g} / \mathrm{l}$
pH	8.3	

Sample loding buffer (5x)

SDS $(20 \mathrm{~g} / \mathrm{l})$	2	ml
β-mercaptoethanol	4	ml
Glycerol	2	ml
Bromophenol Blue $\left(1 \mathrm{~g} / \mathrm{l}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$	2	ml

Gel staning solution

Coomassie Brilliant Blue R250	1.5	$\mathrm{~g} / \mathrm{l}$
Methanol	450	$\mathrm{ml} / 1$
Acetic acid	100	$\mathrm{ml} / 1$

Destaining solution

Methanol	250	ml / l
Acetic acid	100	ml / l

-for Western blotting and detection of proteins

Western blotting buffer

Tris	98	mM
Glycine	39	mM
10% SDS	3.75	ml / l
Methanol	200	ml / l

- for sonification of expression proteins

Buffer 1

Tris/HCl, pH 7.5
50 mM
DTT
1 mM
MgCl_{2}
10 mM
EDTA, pH 8.0
1 mM

Buffer 2

Potassium phosphate buffer, pH 7.2
50 mM
β-mercaptoethanol
10 mM
EDTA, pH 8.0
0.1 mM

Buffer 3
Buffer 2
PLP
$50 \quad \mu \mathrm{M}$

- for HPLC analysis

Reversed phase chromatography
Running buffer A:
Potassium phosphate buffer, $\mathrm{pH} 6.0 \quad 30 \mathrm{mM}$
Tetrabutylammoniumhydrogen 5 mM
sulphate
Acetonitril $20 \mathrm{ml} / 1$
Running buffer B :
Acetonitril
100 \%

2.3 Bacteria, cosmids and plasmids

2.3.1. Bacteria

Tab. 2.1. Bacteria used in this study

Strain	Genotype/Product	Reference/Origin
E. coli BL21(DE3) pLysS	omp T, hsdSB $\left(\mathrm{r}_{\mathrm{B}}{ }^{-} \mathrm{m}_{\mathrm{B}}{ }^{-}\right), \lambda$ prophage with polymerase gene, pLysS, cat	Studier et al., 1990
E. coli DH5 α	F[JS1], ф80dlacZ4M15, recA1, endA1, gyrA96, thi-1, hsd R17($r_{k},{ }^{-}{ }_{k}{ }^{+}$), supE44, relA1, deoR, $\Delta(l a c Z Y A-a r g F) U 169$	D. Hanahan, 1983
E. coli JM108	endA1, recA1, gyrA96, thi, hsd R17 $\left(r_{k} m_{k}{ }^{+}\right)$, relA1, supE44, $\Delta($ lac-proAB $)$,	Yanisch-Perron et al., 1985
E. coli JM109	endA1, recA1, gyrA96, thi, hsd R17 $\left(r_{k} m_{k}{ }^{+}\right)$, relA1, supE44, $\Delta($ lac-proAB), [F^{\prime}, traD36, proAB, lac $\mathrm{l}^{4} \mathrm{Z} \Delta \mathrm{M} 15$]	Yanisch-Perron et al., 1985
E. coli JM109 (DE3)	endA1, recA1, gyrA96, thi, hsd R17 $\left(r_{k}{ }^{-}{ }_{k}{ }^{+}\right)$, relA1, supE44, $\Delta($ lac-proAB), [${ }^{\prime}$, traD36, proAB, lacl $\left.{ }^{\dagger} \mathrm{Z} \triangle \mathrm{M} 15\right]$, $\lambda(\mathrm{DE} 3)$	Yanisch-Perron et al., 1985
E. coli XL1-Blue	$r e c \mathrm{~A} 1, e n d \mathrm{~A} 1, g y r \mathrm{~A} 96, t h i-1, h s d \mathrm{R} 17$, sup E 44 , relA1, lac, $\left[\mathrm{F}^{\prime}\right.$ pro AB , lacI ${ }^{9} \mathrm{Z} \Delta \mathrm{M} 15, \mathrm{Tn} 10\left(\right.$ tet $\left.\left.^{R}\right)\right]$	Loenen \& Blattner, 1983
ET12567	$\mathrm{F}^{-}, \operatorname{dam} 13:: \mathrm{Tn} 9, d c m 6, h s d M, h s d R$, recF143, zjj201::Tn10, galK2, galT22, ara-14, lacY1, xyl-5, leuB6, thi-1, tonA31, rpsL136, hisG4, tsx-78, mtl-1, glnV44	$\begin{aligned} & \text { MacNeil et al., } \\ & 1992 \end{aligned}$
S. lividans 661326	actinorhodin, prodigiosin	John Innes Institute, Norwich, UK
S. lividans 66 TK23	actinorhodin, spc-1	John Innes Institute, Norwich, UK
S. mycarofaciens	non-producing	UC189B (ATCC 21454) Heochst
S. mycarofaciens	midecamycin	ATCC 21454

2.3.2. Vectors

Tab. 2.2. Plasmid and cosmid vectors used in this study

Plasmid/Cosmid	Genetype, Properties and Use	Reference/Origin
pAL201	bla, tsr, pUC18 ori, pJV1 ori, Streptomyces-E. coli shuttle vector, for transformation in Saccharopolyspora erythraea	Hoechst Marion Roussel
pDNW16RBSY	derived from pUWL201 with $l m b Y$ RBS, His-tag, expression of $l m b Y$ gene	Neußer, Uni. Wuppertal
pEFBA	$b l a$, aparamycin resistance cassette, for mutagenesis	Fernandez, Uni. Oviedo
pET11a	bla, lacIT7-ф10, for heterologous expression in E. coli	Studier et al., 1990
pET16b	bla, lacIT7-中10, His-tag, for heterologous expression in E. coli	Novagen, Heidelberg
pHM8a	$h y g$, mini-circle, integrative into Streptomyces	Motamedi et al., 1995
pIJ4123	kan, tsr, redD, His-tag, for heterologous expression in S. lividans	Takano et al., 1995
pSL1180	bla, polylinker containing 78 recognition sites, for subcloning	Pharmacia
pSVW701	bla, T7-\$10, for expression of $r m l B$ gene	Verseck, 1997
pUWL201	bla, tsr, pUC18 ori, pJJ101 ori, ermE up promoter, Streptomyces-E. coli shuttle plasmid, for heterologous expression in S. lividans	Wehmeier, Uni. Wuppertal
pUWL219	bla, tsr, pUC18 ori, pJJ101 ori, Streptomyces-E. coli shuttle plasmid for subcloning	Wehmeier, 1995
pUC18	bla, lacZ- α, for subcloning	Vieira \& Messing, 1982
pKU206	SCP2* ori and stability, pMB1 ori, tsr, bla, cos, Streptomyces-E. coli shuttle cosmid for gene library	Kakinuma et al., 1991

2.3.3. Recombinant plasmids

Tab. 2.3. New constructed plasmids for screening S. mycarofaciens genomic library

Plasmid	Description	Host strain
pLCW1	301 bp PCR fragment by primers AS2 and AS5 (identified as midB gene) from S. mycarofaciens in pUC18 SmaI	E. coli DH5 α
pLCW17	420 bp PCR fragment by primers LC6 and EryCIII/I (identified as midI gene) from S. mycarofaciens in pUC18 SmaI	E. coli DH5

Tab. 2.4. Recombinant cosmid plasmids constructed in this study

Cosmid plasmid	Description	Host strain
Smyc-LC1	ca. 30.2 kb fragment from partially digested S. mycarofaciens gemomic DNA with Sau3AI in pKU206 BamHI	E. coli JM108 S. lividans TK23
Smyc-LC2	ca. 22.6 kb fragment from partially digested S. mycarofaciens gemomic DNA with Sau3AI in pKU206 BamHI	E. coli JM108 S. lividans TK23
Smyc-LC3	ca. 26.3 kb fragment from partially digested S. mycarofaciens gemomic DNA with Sau3AI in pKU206 BamHI	E. coli JM108 S. lividans TK23
Smyc-LC4	ca. 29.3 kb fragment from partially digested S. mycarofaciens gemomic DNA with Sau3AI in pKU206 BamHI	E. coli JM108 S. lividans TK23

Tab. 2.5. New constructed plasmids for sequencing

Plasmid	Description	Host strain
pLC1-1	$0.8 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-2	$1.5 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg}$ III fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-3	$2.3 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-4	$4.2 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-5	$4.2 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-6	$4.8 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-7	$8.2 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg}$ III fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-8	0.8 kb SstI fragment from pLC1-2 in pUC18 SstI	E. coli DH5 α
pLC1-9	0.7 kb SstI fragment from pLC1-2 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-10	4.0 kb EcoRI/HindIII fragment from pLC1-7 in pUC18 EcoRI/HindIII	E. coli $\mathrm{DH} 5 \alpha$
pLC1-11	2.0 kb EcoRI fragment from pLC1-7 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-12	1.0 kb EcoRI fragment from pLC1-7 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-13	0.9 kb EcoRI fragment from pLC1-7 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-14	$4.2 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-15	$2.1 \mathrm{~kb} \operatorname{Sph} /$ BamHI fragment from pLC1-4 in pUC18 SphI/BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-16	1.3 kb SphI fragment from pLC1-4 in pUC18 Sphi	E. coli $\mathrm{DH} 5 \alpha$
pLC1-17	0.7 kb SphI fragment from pLC1-4 in pUC18 Sphi	E. coli $\mathrm{DH} 5 \alpha$

pLC1-18	1.8 kb Pst//EcoRI fragment from pLC1-10 in pUC18 PstI/EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-19	1.5 kb PstI fragment from pLC1-10 in pUC18 PstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-20	0.6 kb PstI/SstI fragment from pLC1-18 in pUC18 PstI/SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-21	1.2 kb EcoRI/SstI fragment from pLC1-18 in pUC18 EcoRI/SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-22	1.5 kb BamHI fragment from Smyc-LC1 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-23	0.2 kb PstI/BamHI fragment from pLC1-10 in pUC18 PstI/BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-24	0.4 kb PstI fragment from pLC1-10 in pUC18 PstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-25	1.6 kb EcoRI fragment from pLC1-4 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-26	1.4 kb EcoRI fragment from pLC1-4 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-27	0.75 kb EcoRI fragment from pLC1-4 in pUC18 EcoRI	E. coli DH5 α
pLC1-28	0.55 kb EcoRI fragment from pLC1-4 in pUC18 EcoRI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-29	0.7 kb SstI fragment from pLC1-19 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC1-30	0.9 kb SstI fragment from pLC1-19 in pUC18 SstI	E. coli DH5 α
pLC1-31	14 kb BglII fragment from Smyc-LC1 in pUC18 BamHI	E. coli XL1-Blue
pLC1-32	5.1 kb BglII fragment from Smyc-LC1 in pUC18 BamHI	E. coli XL1-Blue
pLC2-1	8.2 kb BamHI/BglII fragment from Smyc-LC2 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC2-2	0.7 kb BamHI/BglII fragment from Smyc-LC2 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC2-3	1.5 kb BamHI/BglII fragment from Smyc-LC2 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$

pLC2-4	$5.0 \mathrm{~kb} \mathrm{BamHI} / B g I I I$ fragment from Smyc-LC2 in pUC18 BamHI	E. coli DH5 α
pLC2-5	$0.8 \mathrm{~kb} \mathrm{BamHI} / B g l \mathrm{II}$ fragment from Smyc-LC2 in pUC18 BamHI	E. coli DH5 α
pLC2-6	2.0 kb BamHI/BglII fragment from Smyc-LC2 in pUC18 BamHI	E. coli DH5 α
pLC2-7	$4.2 \mathrm{~kb} \operatorname{BamHI} / B g I I I$ fragment from Smyc-LC2 in pUC18 BamHI	E. coli DH5 α
pLC3-1	6.7 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-2	5.9 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli DH5 α
pLC3-3	4.3 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-4	2.8 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-5	1.8 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-6	1.5 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-7	0.9 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-8A	1.6 kb BamHI/Eco47III fragment from pLC3-3 in pUC18 BamHI/HincII	E. coli $\mathrm{DH} 5 \alpha$
pLC3-9A	1.6 kb BamHI/Eco47III fragment from pLC3-3 in pUC18 BamHI/HincII	E. coli DH5 α
pLC3-10	0.7 kb BamHI/SalI fragment from pLC3-3 in pUC18 BamHI/SalI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-11	1.5 kb BamHI fragment from Smyc-LC3 in pUC18 BamHI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-12	1.2 kb SalI fragment from pLC3-3 in pUC18 SalI	E. coli DH5 α
pLC3-13	$0.9 \mathrm{~kb} \mathrm{BamHI} /$ HincII fragment from pLC3-3 in pUC18 BamHI/HincII	E. coli DH5 α
pLC3-14	0.7 kb SalI fragment from pLC3-3 in pUC18 SalI	E. coli $\mathrm{DH} 5 \alpha$

pLC3-15	0.7 kb HincII fragment from pLC3-3 in pUC18 HincII	E. coli DH5 α
pLC3-16	1.2 kb Eco47III fragment from pLC3-3 in pUC18 HincII	E. coli $\mathrm{DH} 5 \alpha$
pLC3-17A	$0.2 \mathrm{~kb} \mathrm{BamHI} / \mathrm{SstI}$ fragment from pLC3-6 in pUC18 BamHI/SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-18A	$0.6 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Sst} \mathrm{I}$ fragment from pLC3-6 in pUC18 BamHI/SstI	E. coli DH5 α
pLC3-18D	0.6 kb SstI fragment from pLC3-6 in pUC18 SstI	E. coli DH5 α
pLC3-19A	$1.4 \mathrm{~kb} \mathrm{BamHI} / \mathrm{Bg} \mathrm{III}$ fragment from $\mathrm{pLC} 3-4$ in pUC18 BamHI	E. coli DH5 α
pLC3-19B	1.4 kb BamHI/BglII fragment from pLC3-4 in pUC18 BamHI	E. coli DH5 α
pLC3-20	2.3 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-21	1.7 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli DH5 α
pLC3-22	1.7 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli DH5 α
pLC3-23	1.4 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-24	1.4 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-25	1.2 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-26	0.8 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-27	0.6 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-28	0.6 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-29	0.4 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-30	0.4 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli DH5 α
pLC3-31	6.0 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-32	0.45 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-33	0.45 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli DH5 α
pLC3-34	0.4 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$
pLC3-35	0.2 kb SstI fragment from Smyc-LC3 in pUC18 SstI	E. coli $\mathrm{DH} 5 \alpha$

Tab. 2.6. New constructed plasmids for expression

Plasmid	Description	Host strain
pLCW1-22	1.3 kb PCR fragment by primers LC9 and LC10 (contaning midI gene) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-Blue
pLCW1-23	$1.3 \mathrm{~kb} \mathrm{NdeI/BamHI}$ fragment from pLCW1-22 in pET16b NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW1-33	$1.3 \mathrm{~kb} \mathrm{NdeI} / \mathrm{BamHI}$ fragment from pLCW1-22 in pET11a NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW1-41a	$1.7 \mathrm{~kb} \mathrm{XbaI} /$ HindIII-blunt fragment from pLCW1-33 in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW1-41b	1.7 kb EcoRI/HindIII fragment from pLCW1-41b in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW1-51a	1.75 kb XbaI/HindIII-blunt fragment from pLCW1-23 in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW1-51b	1.75 kb EcoRI/HindIII fragment from pLCW1-51b in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW1-61	$1.3 \mathrm{~kb} \mathrm{NdeI} / \mathrm{BamHI}$ fragment from pLCW1-22 in pIJ4123	S. lividans 661326
pLCW2-1	1.2 kb PCR fragment by primers LC13 and LC14 (containing midC gene) from Smyc-LC1 in pUC18 SmaI	E. coli XL1-Blue
pLCW2-20	$1.2 \mathrm{~kb} \mathrm{NdeI/BglII}$ fragment from pLCW2-1 in pET16b NdeI/BamHI	E. coli $\mathrm{BL} 21(\mathrm{DE} 3)$ pLysS; XL1-Blue
pLCW2-8	1.2 kb PCR fragment by primers LC17 and LC14 (containing midC gene) from Smyc-LC1 in pUC18 SmaI	E. coli XL1-Blue
pLCW2-21	$1.2 \mathrm{~kb} \mathrm{NdeI/BglII}$ fragment from pLCW2-8 in pET16b NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW2-23	$1.2 \mathrm{~kb} \mathrm{NdeI/BglII}$ fragment from pLCW2-8 in pET11a NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW3-1	0.8 kb PCR fragment by primers LC11 and LC12 (containing midK gene) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-Blue

pLCW3-2	$0.8 \mathrm{~kb} \mathrm{NdeI} /$ BamHI fragment from pLCW3-1 in pET11a NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW3-3	0.8 kb NdeI/BamHI fragment from pLCW3-1 in pET16b NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW3-6	$1.2 \mathrm{~kb} \mathrm{XbaI} / H i n d$ III-blunt fragment from pLCW3-2 in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW3-7	$1.25 \mathrm{~kb} \mathrm{XbaI} / H i n d \mathrm{dII}-\mathrm{blunt}$ fragment from pLCW3-3 in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW3-8	1.2 kb EcoRI/HindIII fragment from pLCW3-6 in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW3-9	1.25 kb EcoRI/HindIII fragment from pLCW3-7 in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW3-12	$0.8 \mathrm{~kb} \mathrm{NdeI} / \mathrm{BamHI}$ fragment from pLCW3-1 in pIJ4123	S. lividans 661326
pLCW4-1	1.3 kb PCR fragment by primers LC15 and LC16 (containing midH gene) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-Blue
pLCW4-2	$1.3 \mathrm{~kb} \mathrm{Nde} / / B g l \mathrm{II}$ fragment from pLCW4-1 in pET11a NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW4-3	$1.3 \mathrm{~kb} \mathrm{NdeI} / \mathrm{Bg} / \mathrm{II}$ fragment from pLCW4-1 in pET16b NdeI/BamHI	E. coli BL21(DE3) pLysS; XL1-Blue
pLCW4-4	$1.7 \mathrm{~kb} \mathrm{XbaI/HindIII-blunt} \mathrm{fragment} \mathrm{from} \mathrm{pLCW4-2}$ in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW4-5	$1.75 \mathrm{~kb} \mathrm{XbaI/HindIII}-$ blunt fragment from pLCW4-3 in pUC18 XbaI/SmaI	E. coli XL1-Blue
pLCW4-6	1.7 kb EcoRI/HindIII fragment from pLCW4-4 in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW4-7	1.75 kb EcoRI/HindIII fragment from pLCW4-5 in pUWL201	E. coli XL1-Blue S. lividans TK23
pLCW4-10	$1.3 \mathrm{~kb} \mathrm{NdeI} / \mathrm{Bg} / \mathrm{II}$ fragment from pLCW4-1 in pIJ4123	S. lividans 661326

Tab. 2.7. New constructed plasmids for heterologous complementation

Plasmid	Description	Host strain
pRBS201	pJV 1 ori from pAL201 instead of pIJ101 ori in pDNW16RBSY	E. coli XL1-blue
pLCW1-21	4.3 kb BamHI fragment from pLC3-3 (containing midHI region) in pAL201 BamHI	E. coli XL1-blue ET12567
pLCW1-25	1.3 kb PCR fragment by primers LC29 and LC19 (containing midI gene) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-blue
pLCW1-26	$1.3 \mathrm{~kb} \mathrm{NcoI/BamHI}$ fragment from pLC1-25 in pRBSY201 NcoI/BamHI	E. coli XL1-blue ET12567
pLCW1-28	4.3 kb BamHI fragment from pLC3-3 (containing midHI region) ligated with pLCW3-20 BamHI (select the orientation and combine midKHI genes)	E. coli XL1-blue
pLCW1-29	5.7 kb HindIII/EcoRI fragment from pLCW1-28 in pAL201 HindIII/EcoRI	E. coli XL1-blue ET12567
pLCW3-15	1.4 kb BamHI fragment from pLC3-6 in pAL201 BamHI	E. coli XL1-blue ET12567
pLCW3-16	0.85 kb PCR fragment by primers LC24 and LC25 (containing 64 bp upstream sequence of midK, and midK) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-blue
pLCW3-17	0.8 kb PCR fragment by primers LC28 and LC25 (containing midK) from Smyc-LC3 in pUC18 SmaI	E. coli XL1-blue
pLCW3-18	0.85 kb HindIII/BamHI fragment from pLCW3-16 in pAL201 HindIII/BamHI	E. coli XL1-blue ET12567
pLCW3-19	$0.8 \mathrm{~kb} \mathrm{NcoI/BamHI}$ fragment from pLCW3-17 in pRBSY201 NcoI/BamHI	E. coli XL1-blue ET12567
pLCW3-20	1.4 kb BamHI fragment from pLC3-6 (containing midK region) in pSL1180 BamHI/BgIII (select the orientation of $\operatorname{BamHI} / B g l I I$ site of recombinant plasmid located upstream midK gene)	E. coli XL1-blue

2.4. Oligonucleotides

Tab. 2.9. Oligonucleotides used in this study

Primer AS2	Nucleotide sequence* ${ }^{*}$ Restic	estriction site	Gene strE
	5^{\prime} GCCGCCGCGTCCCATGTCGAC 3'		
AS5	5^{\prime} CCCGTAGTTGTTGGAGCAGCGGGT 3'		strE
EryCIII/H	5' CACGCGCGGCTGCTGTGGGGACCCGAC 3'		ery CIII
EryCIII/I	5^{\prime} CGCCGCGCAGGTCGGCAGCAGCGCGTG CAT 3 ${ }^{\prime}$		ery CIII
LC1	5^{\prime} GCCGCCGAATCCCATGTGGAC 3^{\prime}		midB
LC2	5' CCCGTAGTTGTTGGAGCAGCGGGT 3'		midB
LC6	5^{\prime} GAGGAGCCCCGGGAGGACCCGGTCGCCGA 3 ${ }^{\prime}$		tylM2
LC9	5^{\prime} GTCCATATGCGCGTCCTG 3'	NdeI	midI
LC10	5^{\prime} TCGGGATCCGCATGACTG 3 ${ }^{\prime}$	BamHI	midI
LC11	5 ${ }^{\prime}$ ACACATATGTACGCCAACG 3 ${ }^{\prime}$	$N d e \mathrm{I}$	midK
LC12	5^{\prime} CGGATCCGGTCAGTTGAA 3^{\prime}	BamHI	midK
LC13	5' GAGCATCATATGAACGTGCCCTTTCC 3	NdeI	midC
LC14	5^{\prime} CGGCGAAGATCTTTCCCTTCATTCC 3'	BglII	$m i d \mathrm{C}$
LC15	5' GAGGAACATATGCCAATCCCTGCCA 3'	$N d e \mathrm{I}$	midH
LC16	5' ACTCCAGATCTGGCCGGGGTGTAC 3'	BglII	midH
LC17	5' GCGCGACATATGGAGCATAAAGTGA 3'	NdeI	$m i d \mathrm{C}$
LC19	5'CATGGTGGATCCGCTCCGTTCGAACG 3'	BamHI	midI
LC24	5 ${ }^{\prime}$ ACGACAAGCTTGGTGCCGACC 3^{\prime}	HindIII	midK
LC25	5^{\prime} AAGCCGGATCCCGAGCTCCC 3^{\prime}	BamHI	midK
LC28	5 ${ }^{\prime}$ AAACACCCATGGACGCCAACG 3 ${ }^{\prime}$	NcoI	midK
LC29	5'AGTCACCATGGGCGTCCTGCTGACCT 3'	NcoI	midI
LC30	5 ${ }^{\prime}$ AGGGCAGCGCTGTCGTTG 3'	Eco47III	midG
LC31	5^{\prime} TCCTTCAGCGCTGGCTACGTC 3^{\prime}	Eco47III	midKH

LC33	5 $^{\prime}$ GCGCATATGGACTCCAGTTCG 3'	NdeI	midKH
LC35	5'CGGAGATCTCCATCGCCG 3' $^{\prime}$	BglII	midG

The underlined sequences are the corresponding restriction site.

3. Methods

3.1. Cultivation and maintenance of bacterial strains

3.1.1. Cultivation and maintenance of \boldsymbol{E}. coli

E. coli strains were generally cultivated at $37^{\circ} \mathrm{C}$ on LB plates or in LB liquid medium (Miller, 1972), except for some E. coli strains containing the expressed genes that were cultivated in LB liquid supplemented with 1 M sorbitol and 2.5 mM betaine (Blackwell et al., 1991). Strains harboring plasmids were grown on solid or in liquid media supplemented with the appropriate antibiotics. Unless otherwise stated, the final concentrations of used antibiotics were: ampicillin $80 \mu \mathrm{~g} / \mathrm{ml}$; chloramphenicol $25 \mu \mathrm{~g} / \mathrm{ml}$; hygromycin B $200 \mu \mathrm{~g} / \mathrm{ml}$. In the case of pUC-derived recombinant plasmids, $40 \mu \mathrm{~g} / \mathrm{ml}$ Xgal was added into LB plates for the blue-white selection. Cultures were stored at $-20^{\circ} \mathrm{C}$

3.1.2. Cultivation and maintenance of Streptomyces

Wild type strains of Streptomyces sp. were grown on SMA plates and cultivated in TSB, YEME or SGYEME liquid media at $28-30^{\circ} \mathrm{C}$ for $3-5 \mathrm{~d}$. For the cultivation of strains containing plasmids, a final concentration of thiostrepton in $25 \mu \mathrm{~g} / \mathrm{ml}$ was added to agar plates and $15 \mu \mathrm{~g} / \mathrm{ml}$ in liquid media. Kanamycin and hygromycin B were supplemented into solid and liquid media with concentrations of $50 \mu \mathrm{~g} / \mathrm{ml}$ and $200 \mu \mathrm{~g} / \mathrm{ml}$, respectively.

Spore suspensions were prepared according to Hopwood et al. (1985) by adding 20% glycerol onto a well-sporulated plate and scraping off the spores from the surface of the plate. The suspension was then filtrated through sterile non-absorbant cotton wool to remove mycelial remnants. The spore suspensions were stored at $-20^{\circ} \mathrm{C}$.

3.2. S. mycarofaciens fermentation and product extraction

S. mycarofaciens was grown on ISP2 plates and sporulated at $28^{\circ} \mathrm{C}$ for 5 d . To produce a seed culture, 10 ml of EP1 medium (Salah-Bey et al., 1998) in a $10 \times 22 \mathrm{~cm}$ glass tube with a short metal spring was inoculated with spore suspensions of S. mycarofaciens. Cultivation was carried out at $28^{\circ} \mathrm{C}$ for 3 d in a rotary shaker at 230 r.p.m. Then 4.2 ml of the seed culture were inoculated into 60 ml of EP2 medium (Salah-Bey et al., 1998) in a 500 ml Erlenmeyer flask with a round metal spring. The production culture was grown for 5-7 d by shaking (230 r.p.m.) at $28^{\circ} \mathrm{C}$.

The extraction of the fermenting broth of S. mycarofaciens was followed as in Salah-Bey et al. (1998). The broth was separated by centrifugation and the cells were washed once with water. The supernatant was adjusted to $\mathrm{pH} 9-10$ with 1 M NaOH and extracted three times with an equal volume of ethyl acetate. The extracts were dried by evaporation. The residue was dissolved in an appropriate volume of dichloroform for assay.

3.3. General manipulation of DNA

3.3.1. Isolation of genomic DNA from Streptomyces

Chromosomal DNA was isolated from mycelia of Streptomyces sp. according to the protocol of Pospiech et al. (1995) with minor modifications. The following steps were used.
(1) Strains were inoculated in 25 ml of TSB liquid medium in 250 ml Erlemeyer flasks, each flask containing a short metal spring. The culture was heavily aerated by rotary shaking and grown at $28^{\circ} \mathrm{C}$ for 2 d to the late logarithmic phase.
(2) The mycelia were pelleted and washed twice with 10.3% sucrose.
(3) Approximately 0.5 g of cells were resuspended in 5 ml SET buffer (see Section 2.2.3), lysozyme was added to a concentration of $1 \mathrm{mg} / \mathrm{ml}$ and incubated at $37^{\circ} \mathrm{C}$ for $30-60$ min.
(4) $1 / 10$ volumes of 10% SDS and $0.5 \mathrm{mg} / \mathrm{ml}$ of proteinase K were added and incubated at $55^{\circ} \mathrm{C}$ with occasional inversion for 60 min .
(5) The lysates were extracted by the addition of $1 / 3$ volumes of 5 M NaCl and 1 volume of chlorofrom and incubated at room temprature for 30 min with frequent inversion.
(6) The flocculant precipitate was removed by centrifugation at $4^{\circ} \mathrm{C}, 4500 \mathrm{rpm}$ for 15 min . The aqueous phase was transferred to a new tube using a blunt-ended pipette tip.
(7) The chromosomal DNA was precipitated by adding 1 volume of isopropanol, centrifuged, washed with 70% ethanol, dried at room temperature and dissolved in 200 $\mu \mathrm{l}$ TE buffer with $2 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ RNase.

In the case of isolation of chromosomal DNA from S. mycarofaciens for the preparation of the cosmid genomic library, in step (3) it was found to be better to incubate for 30 min with 2-3 gentle inversion. After step (6), the aqueous phase was extracted again by adding 1 volume chlorofrom and incubated as in step (5).

3.3.2. Preparation of plasmid DNA from E. coli

Plasmid DNA from E. coli was prepared via three methods depending on the different application of the DNA.
(1) Plasmid DNA to be used for cloning and sequencing was isolated from cells by using the Miniprep Plasmid Kit (Qiagen).
(2) The boiling preparation method was used for rapid screening of transformants (Sambrook et al., 1989).
(3) In this work, the alkaline lysis method (Birnboim \& Doly, 1979) was especially adapted for the isolation of recombinant cosmid DNA. After the cells were lysed and neutralized by solution I, II and III (see Section 2.2.3.), the lysates were extracted twice with phenol/chloroform/isoamylalcohol (25:24:1) (Carl Roth, Karlruhe) and once with chloroform/isoamyl alcohol (24:1).

3.3.3. Preparation of plasmid DNA from Streptomyces sp.

Two methods were used to isolate plasmid DNA from Streptomyces mycelia.
(1) For generally checking the recombinant transformants, the Birnbiom \& Doly (1979) method was adapted with minor modification. The cells were suspended in solution I,
then solution II was added in the presence of $5 \mathrm{mg} / \mathrm{ml}$ lysozyme and incubated at $37^{\circ} \mathrm{C}$ for 30 min .
(2) For the preparation of Streptomyces plasmid vectors, an alkaline lysis method (Hopwood et al., 1985) was introduced with modifications (this study). An aliquot of Streptomyces culture (1.5 ml) was harvested and the pellet was resuspended in 1 ml lysozyme solution (see Section 2.2.3) in a 2 ml Eppendorf tube. The suspension was incubated for 30 min at $37^{\circ} \mathrm{C}$ and gently mixed after the incubation. Then $500 \mu \mathrm{l}$ of alkaline SDS solution ($0.3 \mathrm{M} \mathrm{NaOH}, 2 \% \mathrm{SDS}$) was added and, the mixture was agitated by vortexing and incubated at $70^{\circ} \mathrm{C}$ for 15 min . After incubation, the mixture was placed at room temperature for 3 min . Then $160 \mu \mathrm{l}$ of acid phenol/chloroform (5 g phenol, 5 ml chloroform and $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) was added and mixed vigorously. The mixture was centrifuged for 2 min . The supernatant was transferred into a new Eppendorf tube containing $140 \mu \mathrm{l}$ of 3 M sodium acetate and 1.4 ml of isopropanol. The suspension was mixed and left at room temperature for 5 min , and then centrifuged. The supernatant was decanted and the pellet was dried. The pellet was then re-dissolved in $100 \mu \mathrm{l}$ TE buffer, and $10 \mu \mathrm{l}$ of 3 M sodium acetate and $50 \mu \mathrm{l}$ of neutral phenol/chloroform (saturated with TE buffer; Carl Roth, Karlsruhe) were added. The mixture was vortexed and centrifuged. The supernatant was transferred into a new Eppendorf tube and $100 \mu \mathrm{l}$ isopropanol was added. The solution was mixed, left at room temperature for 10 min and centrifuged. The pellet was dried and re-dissolved in $50 \mu \mathrm{l}$ TE buffer with addition of $2 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ RNase.

3.3.4. In vitro manipulation of DNA

Restriction endonucleases for DNA hydrolysis, alkaline phosphatase for removing 5'phosphate group from linearized DNA, Klenow fragment of DNA polymerase I for generation of blunt end at 3^{\prime} - or 5^{\prime} - overhang of linearized DNA, and T4-DNA ligase for ligation of DNA fragments were routinely used according to the manufacturer's specifications. For the first three enzyme reactions, the enzymes were inactivated by incubation for 10 minutes at $70^{\circ} \mathrm{C}$. The resulting DNA fragments were isolated either by phenol/chloroform extraction or by agarose gel separation.

3.3.5. Polymerase chain reactions (PCR)

The PCR amplification was done according to Innis et al. (1992). In this study, two polymerases (Vent- and Taq-) were used depend of the further uses of genes found by PCR. Therefore, two PCR reactions were performed as follows:

Vent polymerase buffer $(10 \times)$	10	$\mu 1$
dNTP's	200	$\mu \mathrm{M}$
DMSO	10	$\mu 1$
MgSO $_{4}(100 \mathrm{mM})$	1	$\mu 1$
Forward primer	50	pmol
Reverse primer	50	pmol
DNA template	$10-100$	ng
Vent-DNA polymerase	2.5	U
$\mathrm{H}_{2} \mathrm{O}$	to 100	$\mu \mathrm{l}$
Mineral oil	50	$\mu 1$
Taq polymerase buffer $(10 \times)$	10	$\mu \mathrm{l}$
dNTP's	200	$\mu \mathrm{M}$
DMSO	5	$\mu \mathrm{l}$
MgCl 2 (50 mM)	3	$\mu 1$
Forward primer	50	pmol
Reverse primer	50	pmol
DNA template	$10-100$	ng
Taq-DNA polymerase	2.5	U
$\mathrm{H}_{2} \mathrm{O}$	to 100	$\mu \mathrm{l}$
Mineral oil	50	$\mu \mathrm{l}$

The amplification profile was performed in two ways.
(1) Usually the amplification was done as follows. After an initial hot start at $98^{\circ} \mathrm{C}$ for 2 min, the polymerase was immediately added into the above mixture tubes. The mixture was subjected to 30 cycles of amplification, each consisting of 1 min at $95^{\circ} \mathrm{C}, 40 \mathrm{~s}$ at an annealing temperature (variable) and $1-2 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$. The thermal cycle was
(2) To detect the genes containing high GC contents from chromosomal DNA, 6 special cycles were introduced before starting the 30 cycles of method (1). The first cycle was 1 min at $95^{\circ} \mathrm{C}, 40 \mathrm{~s}$ at an annealing temperature of $\mathrm{T}^{\circ} \mathrm{C}$, and $1-2 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$. In every subsequent cycle the annealing temperature was decreased by $1^{\circ} \mathrm{C}$ until the sixth cycle
at $(\mathrm{T}-5)^{\circ} \mathrm{C}$. Then the annealing temperature was returned to $\mathrm{T}^{\circ} \mathrm{C}$, performing amplication as (1).

The PCR products were analysed and purified by agarose gels or using the NucleoSpin Extract kit.

3.3.6. Separation of DNA fragment

Agarose gel electrophoresis was performed essentially as described by Sambrook et al., 1989. DNA fragments were separated on horizontal $0.7-1.5 \%$ agrose gels containing 0.1 $\mu \mathrm{g} / \mathrm{ml}$ ethidium bromide. One tenth volume of $10 \times$ loading buffer was added to the DNA solution. The agarose was dissolved in $1 \times$ TAE buffer and electrophoresis was carried out at $5-10 \mathrm{~V} / \mathrm{cm}$. DNA was visualized by illumination with long wavelength UV-light (366 nm).

The separation of DNA fragments for sequencing was carried out on a vertical denaturing PAA gel. The gel contained 5.5% polyacrylamide (the FMC Long-Ranger Solution, Biozym, Hameln), 7 M urea in $1 \times$ TBE buffer. Then $350 \mu \mathrm{l}$ APS (10\%) and 42μ I TEMED were added into 80 ml above solution to start the polymerization. The gel solution was sandwiched between the glass plates $(50 \times 50 \times 0.05 \mathrm{~cm})$ and polymerized for 2 h . The gel was run with $1 \times \mathrm{TBE}$ buffer at $45^{\circ} \mathrm{C}$ at $1500-2000 \mathrm{~V}$ in an A.L.F. DNA Sequencer (Amersham).

Sucrose gradients were used for the size fractionation of DNA fragments for the cosmid genomic library (see Section 3.4.1.2).

3.3.7. Radioactive labelling of DNA fragments

Double strand DNA fragments were labelled with [$\left.{ }^{32} \mathrm{P}\right]$ using the Rediprime DNA labelling system (Amersham) according to the manufacturer's specifications. In general, $5 \mu \mathrm{l}$ of α $\left[{ }^{32} \mathrm{P}\right]-\mathrm{dCTP}$ with a specific activity of $3000 \mathrm{Ci} / \mathrm{mmol}$ were used in the labelling reaction.

3.3.8. DNA-DNA hybridization

The DNA fragments were separated on 0.8-1.0\% agarose gels and transferred by capillary stock onto a Hybond N^{+}membrane (Amersham) using 0.4 M NaOH for 12 h (Reed \& Mann, 1985). The membranes were shortly washed with $2 \times$ SSC, air-dried and fixed at $80^{\circ} \mathrm{C}$ for 10 min or at UV light (360 nm) for 3 min . Membranes were prehybridized in 200400 ml prehybridization solution in a shaking water bath at $68^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. The [${ }^{32} \mathrm{P}$] labelled DNA probe was denatured by boiling for 10 min and immediately placed on ice. Membranes were transferred to 100 ml hybridization solution and the denatured radioactive probe was then added. The hybridization was carried out at $68^{\circ} \mathrm{C}$ for 12 h . A series of washing steps followed. Membranes were washed twice with $6 \times \mathrm{SSC} / 0.1 \%$ SDS, each for 15 min . Stringency washes were carried out with $0.5-2 \times \mathrm{SSC} / 0.1 \% \mathrm{SDS}$ at $68^{\circ} \mathrm{C}$ for 10 min with gentle shaking.

The cosmid colony hybridization for screening the gene library was performed as described in Section 3.4.3.3.

3.3.9. DNA sequencing

Sequencing of double-stranded DNA was performed using the dideoxy nucleotide chain termination method (Sanger et al., 1977). 6-8 $\mu \mathrm{g}$ of pUC18-derived plasmid DNA, mp13 (universal) and pUC18 (reverse) primers labelled with fluorescent dye, and the Thermosequenase Cycle-Sequencing Kit were used in a sequencing reaction according to the manufacturer's specifications in an A.L.F. DNA sequencer.

3.3.10. Determination of DNA concentration

The concentration of double-stranded DNA was photometrically quantified at a wavelength of 260 nm as described by Sambrook et al. (1989). An OD_{260} of 1.0 is equivalent to approximately $50 \mu \mathrm{~g} / \mathrm{ml}$ of double-stranded DNA. The value of OD in the DNA solution was also measured at 280 nm to examine the contamination with phenol or proteins. The ratio of OD_{260} to OD_{280} in pure DNA solution should be in a range of 1.8-2.0.

3.3.11. Transformation of E. coli and S. lividans

Competent cells of E. coli strains were prepared as described by Hanahan (1983). The transformation of E. coli cells was followed according to the protocol of Sambrook et al. (1989). In general, $0.01-1 \mu \mathrm{~g}$ DNA was added to $100 \mu \mathrm{l}$ competent cells, SOC or LB medium was used to regenerate the cells.

Protoplasting and transformation of Streptomyces were carried out based on the method of Babcock and Kendrick (1988). TSB-PEG 8000 medium was used to cultivate the cells. PEG 1000 was used to mediate the transformation.

3.3.12. Heterologous gene expression in E. coli BL21 (DE3) pLysS

The method used was based on the description of Studier et al. (1990). A single colony of E. coli BL21 (DE3) pLysS harboring a pET-derived plasmid was inoculated in 3 ml of LB medium containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $25 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol and the cells were grown overnight at $37^{\circ} \mathrm{C}$. The overnight culture (0.5 ml) was re-inoculated in 50 ml of LB medium (or LB supplemented with 1 M sorbitol and 2.5 mM betaine) with the same antibiotics, and the cells were grown at $28^{\circ} \mathrm{C}$ in a rotary shaker (100 r.p.m.) to an $\mathrm{OD}_{600 \mathrm{~nm}}$ of 0.5-0.7. Then the final concentration of 0.4 mM IPTG was added to the culture to induce the T7-RNA polymerase production. In LB culture, the other 4 h cultivation was done after induction, and 12 h was required in the culture of LB containing sorbitol and betaine. Samples (1 ml) were taken prior to induction and at intervals after induction. The cells were harvested by centrifugation and re-suspended in $50-100 \mu \mathrm{l}$ of the loading buffer. The proteins were subjected to electrophoresis by SDS-PAGE gel (see Section 3.5.3). The remaining cultivated cells were extracted as described in Section 3.5.1.

3.3.13. Heterologous gene expression in S. lividans 1326

The expression of the specific genes inserted in pIJ4123 in S. lividans 1326 was followed as the method of Takano et al. (1995) but using SGYEME medium. A single colony was
inoculated into 10 ml of SGYEME medium with $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin and the cells was grown at $28^{\circ} \mathrm{C}$ for 2 d as pre-culture. The pre-culture (0.5 ml) was then inoculated in 50 ml of SGYEME medium containing the same antibiotic. After 12 h of cultivation, $10 \mu \mathrm{~g} / \mathrm{ml}$ thiostrepton was added to induce tipAp promoter. The cultivation was continued for another 24-36 h. The cells were harvested and extracted as described in section 3.5.1.

3.4. Manipulation of the cosmid genomic library of S. mycarofaciens

3.4.1. Construction of the cosmid genomic library

The genomic library of S. mycarofaciens UC189B (ATCC 21454) was constructed in this work by using the pKU206 vector (Omura, personal communication; Kakinuma et al., 1991) (Fig. 3.1) and S. mycarofaciens chromosomal DNA. The following manipulation was based on Weis et al. (1987) with modifications.

Fig. 3.1. The bifunctional cosmid vector pKU206.

3.4.1.1. Partial digestion of S. mycarofaciens genomic DNA

The chromosomal DNA from S. mycarofaciens was prepared as described in Section 3.3.1. 0.3% agarose gel (using 0.5 cm depth of 1% agarose gel as a supporter under the bottom of the gel lid) was used to examine the size of DNA (Little, 1987). The molecular length of DNA must be larger than λ DNA.

Partial digestion of the genomic DNA with Sau3AI was done in a Eppendorf tube, including $215 \mu \mathrm{l}$ of DNA $(\sim 20 \mu \mathrm{~g}), 25 \mu \mathrm{l}$ of $10 \times$ React 4 buffer (Gibco BRL) and $10 \mu \mathrm{l}$ diluted Sau3AI (1U) and mixed carefully. The digestion was preformed at $37^{\circ} \mathrm{C}$, and a 50 $\mu \mathrm{l}$ aliquot was removed at $5 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}$, and 25 min and inactivated at $68^{\circ} \mathrm{C}$ for 10 min . Samples were combined when they showed the DNA in the size range of $25-45 \mathrm{~kb}$ by electrophoresis through 0.5% agarose gel.

3.4.1.2. Size fractionation of DNA fragments

Sucrose gradients were used for size fractionation of DNA molecules (Hadfield, 1987). The new SW-41 ultracentrifuge tubes (Beckman, München) were filled with 10 ml of sucrose gradient solution (see Section 2.2.3), sealed with Parafilm and frozen overnight at $-20^{\circ} \mathrm{C}$. The frozen tubes were thawed at room temperature for $4-5 \mathrm{~h}$. The freeze-thaw process was repeated once to form the gradient.

The combined partially digested DNA was heated at $65^{\circ} \mathrm{C}$ for 5 min in order to dissociate any DNA aggregates. $166 \mu \mathrm{l}$ of the DNA solution was carefully layered on the top of the sucrose gradient. The tubes were then centrifuged in an SW-28 rotor (Beckman) at $20^{\circ} \mathrm{C}$, $25,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , for 18 h . After centrifugation, the bottom of the tubes were gently cleaned with ethanol. The gradients were fractionated by carefully piercing the bottom of the tube with a sterile needle. The small hole was rapidly blocked with the thumb and drops of the gradient solution were allowed by slightly moving the thumb. Samples (each 0.2-0.3 ml) were dropped into the new Eppendorf tubes and around 50 aliquots were collected from 10 ml of the sucrose gradient. Samples ($15 \mu \mathrm{l}$) from every fifth aliquot were taken and checked by electrophoresis on 0.5% gels, using the DNA marker diluted by the sucrose gradient solution because of the high salt concentration in the solution affects DNA mobility.

The correctly sized DNA ($25-35 \mathrm{~kb}$) was precipitated by adding two volumes of ethanol. To avoid precipitation of sucrose, a further 1.5 ml of 70% ethanol was added and mixed thoroughly and placed at $-20^{\circ} \mathrm{C}$ overnight. The DNA was pelleted by centrifugation, and the pellets were washed twice with 70% ethanol and re-suspended in an appropriate TE
buffer. The aliquots of the DNA solution were combined to give a final concentration of $0.3-0.5 \mu \mathrm{~g} / \mu \mathrm{l}$.

3.4.1.3. Digestion of the cosmid vector pKU206

The cosmid vector pKU206 contains a BamHI site cloning site, (Kakinuma et al., 1991). Hydrolysis of the vector was performed including $200 \mu \mathrm{l}$ of pKU206 DNA ($\sim 20 \mu \mathrm{~g}$), $1 \times$ React 3 buffer (Life Technologie), 100 U of BamHI enzyme and distilled water in a $400 \mu \mathrm{l}$ volume. The incubation was carried out at $37^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. An aliquot ($3 \mu \mathrm{l}$) was removed and analyzed by electrophoresis through a 0.6% agarose gel and compared to undigested pKU206. The completely hydrolised sample was then extracted with phenol/chloroform and the DNA was precipitated with ethanol. The DNA was re-suspended in $200 \mu \mathrm{l}$ of TE buffer. A $5 \mu \mathrm{l}$ aliquot was taken and stored at $-20^{\circ} \mathrm{C}$.

The remainder of the sample was treated with 50 units (ATP hydrolysis units) of calf intestinal phosphatase by an incubation at $37^{\circ} \mathrm{C}$ for 30 min . The dephosphorylation was terminated by adding $1 \mu \mathrm{l}$ of 0.5 M EDTA. The DNA was extracted twice with phenol and once with chloroform and precipitated with ethanol. The pellet DNA was re-suspended in TE buffer to give a final concentration of $0.3-0.5 \mu \mathrm{~g} / \mu \mathrm{l}$. A test re-ligation was carried out to determine the effectiveness of the phosphatase treatment of the linearized vector. The reaction was set up in a $10 \mu \mathrm{l}$ volume including BamHI-cleaved pKU206 either phosphatase-treated DNA or untreated (i.e. the above aliquot stored at $-20^{\circ} \mathrm{C}$) and using a standard ligation buffer and conditions (see below). The test ligations were examined using agarose gels. The phosphatase-treated sample should not be re-ligated.

3.4.1.4. Ligation of insert DNA to vector DNA

The following reaction mixture was set up in a $20 \mu \mathrm{l}$ volume:

$25-35 \mathrm{~kb}$ fragments of S. mycarofaciens	$5 \mu \mathrm{l}(\sim 2.5 \mu \mathrm{~g})$
phosphatase-treated pKU206	$10 \mu \mathrm{l}(\sim 5 \mu \mathrm{~g})$
$10 \times$ ligation buffer* (Roche)	$2 \mu \mathrm{l}$
$\mathrm{H}_{2} \mathrm{O}$	$3 \mu \mathrm{l}$

* the ligation buffer should be PEG-free quality.

An aliquot ($1 \mu \mathrm{l}$) was removed and stored at $4^{\circ} \mathrm{C}$. Then $1 \mu \mathrm{l}$ (5 Weiss units) of T4 DNA ligase (Roche) was added to the remainder of the mixture. The reaction was incubated overnight at $12^{\circ} \mathrm{C}$. At the end of the ligation, another $1 \mu \mathrm{l}$ aliquot was taken and analyzed by electrophoresis using 0.5% agarose gel together with the above aliquot stored at $4^{\circ} \mathrm{C}$. If the ligation was successful, the S. mycarofaciens DNA should have been converted to high-molecular-weight concatemers.

3.4.1.5. Packaging of ligated DNA

The ligated DNA was packaged in vitro into bacteriophage λ particles following the protocol of DNA Packaging Kit (Roche). $4 \mu \mathrm{l}$ of the ligation mixture was used, and the rest of the ligation was stored at $-20^{\circ} \mathrm{C}$. After packaging was complete, 0.5 ml of SM buffer was added to the reaction, and this packaging reaction was then mixed with $20 \mu \mathrm{l}$ of chloroform and stored at $4^{\circ} \mathrm{C}$ for two weeks.

3.4.1.6. Adsorption of packaged recombinant cosmids to E. coli

The host strain E. coli JM108 was prepared as recommended by the protocol of DNA Packaging Kit (Roche). $10 \mu \mathrm{l}$ aliquot of the packaging reaction was mixed with 0.1 ml of SM buffer and 0.2 ml of the host strain. The mixture was incubated for 30 min at $30^{\circ} \mathrm{C}$ to allow the adsorption of the bacteriophage particles to the E. coli cells. Then 1 ml of SOC medium was added and the incubation was continued for a further 60 min .

3.4.1.7. Plating of packaged recombinant cosmids

Samples (0.1 ml and 0.5 ml) of the bacterial culture were spread onto LB agar plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin. After incubating the plates at $30^{\circ} \mathrm{C}$ for $14-16 \mathrm{~h}$, the number of bacterial colonies was counted. Usually each microgram of ligated DNA should yield at least 5×10^{4} bacterial colonies.

A number of individual colonies were picked and grown in 4 ml of overnight LB culture at $37^{\circ} \mathrm{C}$. The plasmid DNA was isolated by using the alkaline lysis method (Birnboim \& Doly, 1979). The plasmid DNA was digested with BamHI or other restriction enzyme(s) and the size of the resulting fragments was analysed by gel electrophoresis.

3.4.2. Plating out, amplification and maintenance of the cosmid genomic library

This work was done with reference to Sambrook et al. (1989) and Weis et al. (1987).

3.4.2.1. Plating on agar for the library amplification

$200 \mu \mathrm{l}$ of the cells prepared as in Section 3.4.1.7 was spread on a LB plate containing 50 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin. The plates were incubated overnight at $30^{\circ} \mathrm{C}$ and usually over 2000 colonies were produced on a plate. Then 2 ml of LB liquid containing 15% glycerol was added to the grown-colony plates. The colony suspension was carefully mixed, scraped, pooled and stored at $-70^{\circ} \mathrm{C}$.

3.4.2.2. Picking and streaking colonies for screening and maintenance of the library

$100 \mu \mathrm{l}$ of the cells prepared as in Section 3.4.1.7 was spread on a LB plate containing 50 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin. The plates were incubated overnight at $30^{\circ} \mathrm{C}$ and usually over 1000 colonies were produced on a plate. In order to absolutely ensure the authentic result of screening the library, ten thousand colonies were picked and streaked one by one onto new LB plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, in a matrix of 47 numbered points (each point size ca. 2 mm). Each colony was picked and streaked onto two plates in the same position, which one plate was used for screening the library and the other for maintenance of the library.

Microtiter plates were used to store the cosmid colony cultures. A 96-well microtiter plate was labelled and divided into two parts which were used for transferring two plates of colonies. $300 \mu \mathrm{l}$ of LB liquid containing 15% glycerol were first titred into each well. A plate containing 47 colonies grown overnight was gently duplicated using a sterile stainless steel stamp containing 47 feet which is exactly the same as the matrix mentioned above.

The stamp with the adhering bacteria was then dipped into the LB and glycerol medium at the correct position in the microtiter plate and gently shaked for 1 min . The plates were incubated overnight at $30^{\circ} \mathrm{C}$ and stored at $-20^{\circ} \mathrm{C}$.

3.4.3. Screening of the cosmid genomic library

The following experiments were based on the protocols described as Hanahan \& Meselson (1983) and Weis et al. (1987) with modifications.

3.4.3.1. Preparing duplicate membranes of cosmid colonies

Bacterial plates each containing 47 colonies grown overnight were first stored at $9^{\circ} \mathrm{C}$ for 1 h. Numbered disc membranes were then placed on the surface of the colony plates for 1 min , peeled off and air-dried for 10 min . The master plates were incubated for 3-4 h and stored at $4^{\circ} \mathrm{C}$.

3.4.3.2. Cosmid DNA binding to the membranes

A Whatman 3MM filter paper in a tray was soaked in 0.5 M sodium hydroxide. The disc membranes, colony side uppermost, were placed onto this wet filter and lysed for 5 min to denature the DNA. This step was repeated with a new 3 MM paper with 0.5 M NaOH . The membranes were then transferred onto a 3MM paper soaked with a solution of 1 M Tris $/ \mathrm{HCl}, \mathrm{pH} 7.5$ for neutralization. After 3 min the membranes were neutralized once again by placing them onto a new 3 MM paper with the same solution. The membranes were then washed with $2 \times$ SSC solution for 5 min and air-dried. The dried membranes were baked at $80^{\circ} \mathrm{C}$ for 90 min .

3.4.3.3. Screening the cosmid membranes

The baked membranes were placed in a plastic box with 300 ml of prehybridization. The box was shaked slowly in a water bath at $65^{\circ} \mathrm{C}$. After 1.5 h , the bacterial debris on the membranes were wiped using soft tissues and the new prehybridization solution was added into the box. The process was continued for another 1.5 h . The probe DNA was labelled as
described in Section 3.3.7. The conditions of hybridization for the disc membranes were the same as described in Section 3.3.8. After hybridization, the membranes were washed at $65^{\circ} \mathrm{C}$ twice with $2 \times \mathrm{SSC} / 0.5 \% \mathrm{SDS}$, each time for 10 min , twice with $0.5 \times \mathrm{SSC} / 0.5 \%$ SDS, each time for 15 min , and once with $0.1 \times \mathrm{SSC} / 0.5 \% \mathrm{SDS}$ for 15 min . The autoradiography of the membranes was followed by the standard method (Sambrook et al., 1989). The positive spots were identified by comparing precisely the same position on the membranes and the master plates. Finally the positive cosmid clones were picked from the master plates and the plasmid DNA was prepared for further genetical analysis.

3.5. Biochemical methods

3.5.1. Cell-free extracts of E. coli and Streptomyces

The E. coli or Streptomyces cells containing the expression-plasmids were harvested by centrifugation and washed twice with a cold buffer of 25 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 7.5$ or 25 mM potassium phosphate buffer, pH 7.2 . The pellet was suspended with an appropriate sonification buffer (see Section 2.2.3) according to the further use of the extracts in a ratio of 1.0 ml buffer/ 0.2 g for E. coli cells and $1.5 \mathrm{ml} / \mathrm{g}$ for Streptomyces. The cells were disrupted by treating 2 times for E. coli and 4 times for Streptomyces (each time for 20 sec following 20 sec break) with the French-Press under a pressure of 1300 psi. The cell suspension was centrifuged for 30 min at 30000 g and the crude cell-free extracts were stored at $-80^{\circ} \mathrm{C}$ for $1-2$ weeks.

3.5.2. Determination of protein concentration

The protein concentration of the cell-free extracts was measured according to Bradford (1976) using Bio-Rad Protein Assay Kit (Bio-Rad) and BSA as a standard at a wavelength of 595 nm .

3.5.3. SDS polyacrylamide gel electrophoresis (PAGE)

SDS-PAGE was performed according to Laemmli (1970) using 10-12\% of polyacrylamide in vertical slab gels. The protein standard VII-L (Sigma), BSA ($\mathrm{Mr}=66 \mathrm{kDa}$), ovalbumin
$(\mathrm{Mr}=45 \mathrm{kDa})$, glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle $(\mathrm{Mr}=36$ kDa), carbonic anhydrase from bovine erythrocytes ($\mathrm{Mr}=29 \mathrm{kDa}$), trypsinogen from bovine pancreas $(\mathrm{Mr}=24 \mathrm{kDa})$, trypsin inhibitor from soybean $(\mathrm{Mr}=20 \mathrm{kDa})$ and α lactalbumin ($\mathrm{Mr}=14 \mathrm{kDa}$), was applied to the gels in order to determine the Mr of the proteins.

3.5.4. Western blotting and immuno-detection of proteins

The proteins produced in E. coli and Streptomyces were separated by SDS-PAGE. When the expected protein was not detected on the gels, Western blotting was used for the detection. The protein gels were transferred onto PVDF membrane ('Hybond P', Amersham) using the Semi-Dry Transfer Cell (Bio-Rad). The Western blotting was followed by a standard protocol (Winston et al., 1987) and the method of immunodetection of proteins was adapted here as recommended by Qiagen's protocol using an Anti-His-tag antibody.

3.5.5. Analysis of the activity of dTDP-D-glucose 4, 6-dehydratase by RmIB

The activity of dTDP-D-glucose 4,6-dehydratase was determined according to Wang \& Gabriel (1969) and Okazaki et al. (1962) with minor modifications. The rmlB gene (formerly called as $r f b B$) from Salmonella enterica B was cloned on the plasmid pSVW701 by Verseck (1997) and overexpressed in E. coli BL21(DE3). The reaction for analysis of RlmB protein was performed as follows.

Potassium phosphate buffer, pH 7.2	50 mM
dTDP-D-glucose	4 mM
RlmB crude extract	$0.1-0.2 \mathrm{mg} / \mathrm{ml}$
Final volume	$200 \mu \mathrm{l}$

The mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 h . The formation of dTDP-4-keto-6-deoxyglucose was determined by taking $40 \mu \mathrm{l}$ of the reaction sample and adding $960 \mu \mathrm{l}$ of 0.1 N NaOH and the mixture was re-incubated at $37^{\circ} \mathrm{C}$ for 20 min . The absorption was measured
at $320 \mathrm{~nm}\left(\varepsilon_{320 \mathrm{~nm}}=4800 \mathrm{l} / \mathrm{mol} \times \mathrm{cm}\right)$. Blank experiments were carried out in the same way but omitting the substrate.

3.5.6. Analysis of the activity of enzymes participating in dTDP-D-mycaminose biosynthesis via a coupling reaction of RmIB, MidH and MidC

The genes encoded in the biosynthetic pathway of dTDP-D-mycaminose in macrolide antibiotics were proposed as described as Gandecha et al. (1997). In this study, the determination of the activities of the 3,4-isomerase (MidH) and the aminotransferase (MidC) was performed with reference to the methods of Walker \& Walker (1969). The conversion of dTDP-glucose to dTDP-D-mycaninose by the coupling reaction of RlmB, MidH and MidC was carried out as follows.

Potassium phosphate buffer, pH 7.2	50 mM
dTDP-glucose	4 mM
MgCl_{2}	10 mM
L-Alanine or L-Glutamic acid	2.5 mM
PLP	1 mM
RlmB crude extract	$0.1-0.2 \mathrm{mg} / \mathrm{ml}$
MidH crude extract	$0.2-0.3 \mathrm{mg} / \mathrm{ml}$
MidC crude extract	$0.2-0.3 \mathrm{mg} / \mathrm{ml}$

The mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 h and the reaction was terminated by heating at $95^{\circ} \mathrm{C}$ for 2 min . The mixture was centrifuged at $4^{\circ} \mathrm{C}$ for 20 min to remove the debris and the supernatant was stored at $-20^{\circ} \mathrm{C}$ for the product assay.

3.6. Chromatography methods

3.6.1. Thin-layer chromatography (TLC)

Antibiotic metabolites from cultures of Streptomyces were preliminarily identified by TLC as described by Salah-Bey et al. (1998). The supernatants of cultures were adjusted to pH $9.0-10.0$ with sodium hydroxide and extracted with ethyl acetate. Chromatogarphy was
performed using dichloromethane-methanol (90/10, v/v). The compounds were visualized by spraying the TLC plates with p-anisaldehyde/sulphuric acid/ethanol (1/1/9, v/v) with subsequent heating for a few minutes at $80^{\circ} \mathrm{C}$.

3.6.2. High pressure liquid chromatography (HPLC)

Analysis of nucleotide-activated sugars from the enzymatic reaction was performed by HPLC according to Payne \& Ames (1982) with modifications. A reversed phase chromatography was used as separation system equipped with a Eurospher 100 C18 (corn: $5 \mu, 250 \times 4.6 \mathrm{~mm}$) (Knauer, Berlin). The mobile phase and operation of this system were recommended by Verseck (1997).

3.6.3. HPLC coupled to mass spectrometry (LC-MS)

HPLC coupled to mass spectrometry (LC-MS) was carried out on a chromatography system (Waters) equipped with a Finnigan TSQ 7000 mass spectrometer to identify the novel products. This assay was performed at the University of Bochum by Dr. Blüggel.

3.7. Computer programs

DNA sequences were analysed using the program DNA-Strider 1.1 (Mark, 1988). The programs Brugene II and MacFrame 1.3 were used to determine open reading frames and $\mathrm{G}+\mathrm{C}$ contents. Multiple sequence alignments were performed using the Clustal V 3.0 program (Higgins, 1991). Comparisons of DNA- and protein-sequences to GenBank were done using FASTA (Pearson \& Lipman, 1988) and BLAST (Altschul, 1990). Phylogenetic trees were construcetd via the neighbor joining method (Saitou \& Nei, 1987) using the PAUP 3.1 program (D.L. Swofford, Center of Biodiversity, Champaign, III., USA). Amplification temperatures for primers were calculated by the PrimFind V3.0 program (Fröbel Labor-Geräte, Lindau).

4. Results

4.1. Detection of pathway-specific genes from S. mycarofaciens by PCR

As mentioned in the introduction, most of the 6-deoxysugar biosynthetic genes are clustered on both sides of a large portion of polyketide synthases (PKSs) in the macrolide antibiotic biosynthesis, such as erythromycin (Gaisser et al., 1997; 1998; Salah-Bey et al., 1998), oleandomycin (Olano et al., 1998), tylosin (Merson-Davies et al., 1994; Gandecha et al., 1997; Fouces et al., 1999) and so on. Experimental evidence has suggested that dTDP-4-keto-6-deoxyglucose is the precusor of most of the deoxysugars, for instance, found from macrolide-producing strains (Liu \& Thorson, 1994; Piepersberg, 1994) as well as from anthracycline-producing strains (Thompson et al., 1992). Thus, because of the similarity to tylosin, the detection of the gene encoding dTDP-glucose 4,6-dehydratase was hoped to be the first and rational choice in order to probe the midecamycin biosynthetic (mid) gene cluster from S. mycarofaciens. Based on mechanisms and pathways from deoxysugar biosynthesis research, a glycosyltransferase is responsible for transferring the sugar to the antibiotic aglycone when a D- or L-6-deoxysugar is formed (Otten et al., 1995; Liu et al., 1993). Since midecamycin is structurally closely related to tylosin, the organisation of the gene cluster of tylosin biosnythesis (acc. no. U08223; Merson-Davies et al., 1994; acc. no. X81885; Gandecha et al., 1997) gives a hint that at least some of the glycosyltransferase genes are located in the gene cluster on the side opposite to the dTDP-glucose 4,6-dehydratase gene. Therefore, as a prediction, the detection of a glycosyltransferase gene is the second choice in order to probe the gene cluster of midecamycin biosynthesis in S. mycarofaciens.

In this study, PCR amplifications were applied to directly detect the genes encoding the biosynthetic pathway of midecamycin from S. mycarofaciens UC189B (ATCC21454). The identified genes were then used as homologous probes to hybridize the cosmid library of S. mycarofaciens in order to identify the mid gene cluster.

4.1.1. Identification and isolation of a gene, midB, encoding a dTDP-glucose 4, 6dehydratase from S. mycarofaciens

To identify the specific gene in midecamycin biosynthesis, the genomic DNA of S. mycarofaciens was amplified by PCR using two oligodeoxynucleotide primers, AS2 and AS5 (Stratmann, 1997), which were derived from the strE gene, encoding dTDP-glucose 4,6-dehydratase in the gene cluster of streptomycin biosynthesis from S. griseus (Pissowotzki et al., 1991) and showed the highly conserved sequences in the other dTDPglucose 4,6-dehydratase genes, such as tylAII from S. fradiae (Merson-Davies et al., 1994) and $r f b B$ from Salmonella typhimurium LT2 (Jiang et al., 1991). As a result of PCR amplification, a 303 bp DNA fragment from S. mycarofaciens genome was detected, and the gel-purified DNA fragment was cloned into the SmaI site of pUC18 (Arnold, 1996). This recombinant plasmid was named pLCW1, and the gene in the corresponding insert DNA was designated midB. Sequencing analysis indicated that midB encodes a dTDPglucose 4,6-dehydratase and the product of midB in a 101 amino acid (aa) overlap is 58% identical to the products of strE and tylAII, respectively, and 44% identical to the product of $r f b B$. The sequence comparison between these proteins is shown in Fig. 4.1.

4.1.2. Identification and isolation of a gene, midI, encoding a glycosyltransferase from S. mycarofaciens

The oligodeoxynucleotide primers, EryCIII/H, EryCIII/I and LC6, were derived from the highly conserved sequence regions of macrolide glycosyltransferse genes, eryCIII and tylMII in the gene clusters of erythromycin and tylosin biosynthesis (Salah-Bey et al., 1998; Gandecha et al., 1997). The genomic DNA of S. mycarofaciens was first amplified using primers EryCIII/H and EryCIII/I by PCR method 2 (see Section 3.3.5). The reaction was carried out at an annealing temperature of $63^{\circ} \mathrm{C}$ and for an enlongation time of 60 sec . An expected DNA fragment (500 bp) was observed in the PCR products by the use of 1.5% agarose gel. However, there existed unspecific bands mixed with or close to this expected band, which caused difficulties for purification and cloning. Therefore, a pair of internal primers, LC6 and EryCIII/I, were used to re-amplify the above product mixture by using PCR method 1 (see Section 3.3.5) at an annealing temperature of $65^{\circ} \mathrm{C}$ and for an enlongation time of 45 sec . As expected, a 420 bp DNA fragment was detected, and the resulting fragment was cloned into the HincII site of pUC18. This recombinant plasmid was named pLCW17, and the gene in the corresponding insert DNA was designated midI.

Sequencing analysis confirmed that midI encodes a glycosyltransferase. The comparison of the midI product to other known glycosyltransferases revealed that MidI in a 142 amino acid overlap is 56% identical to TylMII and 53\% identical to EryCIII, respectively (for sequence alignment see Section 4.15).

TylAII	--MRVLVTGGAGFIGSHFTGQLLT-GAYPDLGATRTVVLDKLTYAGNPANLEVA-GHP
Stre	MALTTHLLVTGAAGFIGSQYVRTLLGPGGPPDVVVT---ALDALTYAGNPDNLAAVRGHP
RfbB	--VKILITGGAGFIGSAVVRHIIK--NTQDTVVN----IDKLTYAGNLESLSDISESN
MidB	
	AS2
TylAII	DLEFVRGDIADHGWWRRLMEGVGL--VVHFAAESHVDRSIESSEAFVRTNVEGTRVLLQA
StrE	RYRFERGDICDAPG-RRVMAGQDQ--VVHLAAESHVDRSLLDASVFVRTNVHGTQTLLDA
RfbB	RYNFEHADICDSAEITRIFEQYQPDAVMHLAAESHVDRSITGPAAFIETNIVGTYALLEV
MidB	AAESHVDRSIDDADAFVRTNYLGTHVLLTE
	********* * ** ** **
TylAII	AVDAG-VG--------RFVHISTDEVYGSIAE----------GSWPEDHPVAPNSPYAAT
StrE	ATRHG-VA--------SFVQVSTDEVYGSLEH----------GSWTEDEPLRPNSPYSAS
RfbB	ARKYWSALGEDKKNNFRFHHISTDEVYGDLP HPDEVENSVTLPLFTETTAYAPSSPYSAS
MidB	ALAVRRPG--------RFVHVSTDEVYGSIPE----------GSWSEDHPLSPNSPYAAS
	* * ******* * * *** *
	AS5
TylAII	KAASDLLALAYHRTYGLDVRVTRCSNNYGPRQYPEKAVPLFTTNLLDGLPVPLYGDGGNT
Stre	KASGDLLALAHHVSHGLDVRVTRCSNNYGPRQFPEKLIPRFITLLMDGHRVPLYGDGLNV
RfbB	KASSDHLVRAWRRTYGLPTIVTNCSNNYGPYHFPEKLIPLVILNALEGKPLPIYGKGDQI
MidB	KAASDQLALAFHRTHGLPVCVTRCSNNYG
	** * * ** ** ******
TylAII	REWLHVDDHCRGVALVGAGGRPGVIYNIGGG-------TELTNAELTDRILELCGADRSA
Stre	REWLHVDDHVRGIEAVRTRGRAGRVYNIGGG-------ATLSNKELVGLLLEAAGADWGS
RfbB	RDWLYVEDHARALHMVVTEGKAGETYNIGGHNEKKNLDVVFTICDLLDEIVPKATSYREQ
MidB	
TylAII	LRRVADRPGHDRRYSVDTTKIREELGYAPRTGITEGLAGTVAWYRDNRAWWEPLKRSPGG
Stre	VEYVEDRKGHDRRYAVDSTRIQRELGFAPAVDLADGLAATVAWYHKHRSWWEPLVPAGSL
RfbB	ITYVADRPGHDRRYAIDAGKISRELGWKPLETFESGIRKTVEWYLANTQWVNNVKSGAYQ
MidB	
TylAII	RELERA-----
Stre	PA--
RfbB	SWIEQNYEGRQ
MidB	

Fig. 4.1. Amino acid sequence comparison of MidB with other dTDP-glucose dehydratases from different bacteria. The proteins TylAII from S. fradiae, StrE from S. griseus and RfbB from Salmonella typhimurium LT2 are aligned with MidB. The highly conserved sequence regions used for designing the primers, AS2 and AS5, are marked and indicated by arrows. Sequence identities between these proteins are indicated by asterisks.

4.2. Construction and screening of a genomic library from S. mycarofaciens

A genomic library of S. mycarofaciens UC189B (ATCC 21454) was constructed during this work by using the cosmid vector pKU206 and S. mycarofaciens chromosomal DNA. The DNA fragments of midB and midI obtained by heterologous PCR (see Section 4.1.12) were used as probes to sequentially screen the cosmid library.

4.2.1. Construction of the genomic cosmid library

To clone large DNA fragments (20-35 kb) in E. coli strains, and to be able at the same time to directly introduce recombinant plasmids into Streptomyces strains, a SreptomycesE. coli bifunctional cosmid vector pKU206 (15.5 kb) was used (Omura, personal communication) (see Fig. 3.1). The shuttle cosmid pKU206 was derived from pKU205 (Kakinuma et al., 1991), containing the replication regions SCP2* and pMB1 and the lambda cos region, by introduction of the $5 \mathrm{~kb} \mathrm{SCP2*}$ stability region. Therefore, it was expected that the vector and its recombinant derivatives should be relatively stable in S. lividans. The steps taken to construct the cosmid library from the genomic DNA of S. mycarofaciens are shown in Fig. 4.2.

4.2.1.1. Selection of 20-35 kb DNA fragments in S. mycarofaciens partial digestion

The genomic DNA of S. mycarofaciens was prepared as described in Section 3.3.1. Since maximally non-sheared DNA fragments (usually in the size of 200-500 kb) are required for obtaining a statistically useful cosmid library, the chromosomal DNA was tested for its size before digestion. It is shown in Fig. 4.3 that the prepared S. mycarofaciens DNA (track 3) was much larger than the λ DNA (48 kb) (track 1).

The partial digestion of the genomic DNA of S. mycarofaciens was tested first in two trial digestions in order to establish the optimal conditions to employ (see Section 3.4.1.1). About $20 \mu \mathrm{~g}$ of the genomic DNA was used for partial digestion and for the subsequent size fractionation. The digestion was controlled by time limitation during an incubation at

Cosmid pKU206

\downarrow Dephosphorylation

S. mycarofaciens genomic DNA

\downarrow Size fractionation

20-35 kb DNA fragments

Fig. 4.2. Construction of the genomic library of S. mycarofaciens in the cosmid pKU206. 2035 kb fragments of S. mycarofaciens genomic DNA generated by partial digestion with Sau3AI were ligated to DNA of the cosmid pKU206 digested with BamHI and dephosphorylated with alkaline phosphatase. The resultant concatemers served as substrates for in vitro packaging of bacteriophage λ particles. Following introduction into E. coli, the cosmid DNA re-circularized and replicated in the form of a large plasmid. The plasmid contains a β-lactamase gene that confers resistance to ampicillin on the host bacterium.
$37^{\circ} \mathrm{C}$. and the samples were removed at 5 min intervals, up to 25 min (Fig. 4.3). In this experiment, samples from 5 min to 20 min digestions were combined for further use since they seem to be the most suitable for providing high molecular weight genomic fragments ($\geq 20 \mathrm{~kb}$).

Fig. 4.3. Analysis of Sau3AI partial digestion of genomic DNA by agarosegel electrophoresis. A 0.5% gel was used. Tracks (1) λ DNA; (2) λ DNA digested with HindIII as size markers. Tracks containing identical samples of genomic DNA digested with equal unit amounts of Sau3AI for different time periods (as described in Section 3.4.1.1) (3) 0 min ; (4) 5 min ; (5) 10 min ; (6) 15 $\min ;(7) 20 \mathrm{~min}$; (8) 25 min .

Sucrose gradients were used for size fractionation of DNA molecules (see Section 3.4.1.2). The fractionated DNA solutions were analysed and the DNA samples were selected in a range of $20-35 \mathrm{~kb}$ (Fig. 4.4). Since it turned out that the sucrose concentration affected migration of DNA fragments, the size marker of DNA had to be diluted 1:2 with the 40% sucrose solution. Finally, fractions 1-20 in Fig. 4.4 were combined for further use.

> | | No. of Fractions | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 10 | 15 | 20 | 25 | 30 |

Fig. 4.4. Analysis of sucrose gradient fractions by agarose gel electrophoresis. The first three tracks on the left contain λ DNA digested with HindIII as size markers, λ DNA and S. mycarofaciens genomic DNA. A 0.5% agarose gel was used. $15 \mu \mathrm{l}$ of every fifth sample was loaded.

4.2.1.2. Ligation, packaging and plating the library

According to their relative sizes (Tab. 4.1), approximately $5 \mu \mathrm{~g}$ of cosmid DNA and 2.5 $\mu \mathrm{g}$ of genomic DNA fragments were used for ligation as described in Section 3.4.1.4. An aliquot sample was used to examine the results of ligation, and it proved that the ligation was successful (Fig. 4.5) .

Tab. 4.1. Relative sizes of DNA molecules

DNA molecule	Size (kb)	Relative size
Cosmid pKU206	15.5	1.0
S. mycarofaciens genomic fragment	$20-35$	$1.6-2.2$

Fig. 4.5. Analysis of ligation reaction by agarose-gel electrophoresis. A 0.5% gel was used. Tracks (1) λ DNA digested with HindIII as size markers; (2) S. mycarofaciens 20-35 kb fragments; (3) pKU206 digested with BamHI and treated with phosphatase; (4) ligation of DNA fragments from (2) and (3) (1 $\mu \mathrm{l}$ ligation mixture).

The adsorption of packaged recombinant cosmids to E. coli and the plating of packaged recombinant cosmids were followed as in Section 3.4.1.6-7. The result was that around 5 x 10^{4} to 5×10^{5} transfected bacterial colonies per microgram of ligated DNA were counted. About 5×10^{3} ampicillin-resistant colonies were collected and used as the cosmid genomic library for screening.

Twenty of the cosmid clones from the library were picked at random and the plasmid DNA was isolated as described in Section 3.4.1.7. The DNA of plasmids was digested by BamHI to examine the inserted DNA size of the recombinant cosmid clones. As a result,
eighteen of the cosmid plasmids were observed to contain the insert DNA, the size being in a range of $20-35 \mathrm{~kb}$ (data not shown).

4.2.2. Screening of the cosmid genomic library probed by the midB and midI DNA fragments

As described in Section 4.1.1-2, the midB DNA fragment (303 bp) from pLCW1 and midI DNA fragment (420 bp) from pLCW17 were identified as dTDP-glucose 4,6-dehydratase and gylcosyltransferase, respectively. They were used as probes to hybridize the aboveestablished S. mycarofaciens genomic library. The probe fragments were purified twice by agarose gel electrophoresis before radiolabelling in order to avoid non-specific hybridization with vector DNA. Resulting from hybridization experiments, 2 out of 3000 colonies on the disc membranes showed significant signals against the midB probe (Fig. 4.6). The cosmid DNA was isolated from these two putative positive clones and digested with BamHI and BglII. The resulting DNA was transferred onto nylon filters and hybridized with the midB probe again. As expected, the DNA of these two clones showed signal bands in which the location was the same as the positive control from S. mycarofaciens genomic DNA (data not shown). Also, both cosmids were used as templates and amplified by primers AS2 and AS5, which could produce the midB DNA fragment as described in Section 4.1.1. These two positive recombinant cosmids were designated as Smyc-LC1 and Smyc-LC2.

One significant signal from 2000 colonies was obtained by the midI probe when screening the same genomic library for a second time (data not shown). This putative positive cosmid was further examined again by DNA hybridization and PCR amplification (data not shown). All results supported that the insert DNA of this cosmid contained the midI DNA fragment. This recombinant cosmid was designated as Smyc-LC3.

Fig. 4. 6. Autoradiographic analysis of screening the cosmid genomic library probed by the midB DNA fragment through Southern hybridization. Sets of each 47 single cosmid colonies were blotted on Hybond N^{+}disc membranes. Screening colonies against the probe was carried out as described in Section 3.4.3.3. Two strong signals from discs A and B hybridized with the radiolabelled midB DNA fragment are visible (see arrows).

4.3. Restriction analysis and sequencing of partial regions of the recombinant cosmids

In order to analyse the insert DNA in the three recombinant cosmids, Smyc-LC1, SmycLC2 and Smyc-LC3 were digested with BamHI, BglII and BamHI/BglII. The calculated results showed that the insert DNA of Smyc-LC1, Smyc-LC2 and Smyc-LC3 were ca. $30.2 \mathrm{~kb}, 22.6 \mathrm{~kb}$ and 26.3 kb , respectively. The DNA fragments of Smyc-LC1 and SmycLC2 overlap each other in a region of ca. 14.7 kb . This overlap was also confirmed through hybridization of Smyc-LCl DNA with the DNA fragment probes from both terminal sides of Smyc-LC2. Therefore, Smyc-LC1 and Smyc-LC3 were used for further restriction enzyme analysis. A set of single or double enzymes were applied in the digestion reactions. From the results of the restriction enzyme analysis, restriction maps of Smyc-LC1, Smyc-LC2 and Smyc-LC3 were constructed (Fig. 4.7 and Fig.4.8).

To quickly localize pathway-specific genes in Smyc-LC1 and Smyc-LC3, a set of subclones in E. coli cloning vectors were also made as given in Fig. 4.7 and Fig. 4.8. The insert DNA fragments of all subclones were sequenced at least at their ends. The regions of Smyc-LC1 and Smyc-LC3 surrounding the already identified genes midB and midI, were fully sequenced in about 10 kb and 6 kb , respectively.

Fig. 4.7. Restriction map of Smyc-LC1 and Smyc-LC2 and sequencing strategy. The plasmids for sequencing were designated as pLC1and pLC2- with a number. The region of ca. 15 kb BglII fragment is shown in greater detail.

Smyc-LC3

Fig. 4.8. Restriction map of Smyc-LC3 and sequencing strategy. Plasmids for sequencing were named as pLC3- with a number.

4.4. Chromosomal walking by using a 2.3 kb DNA fragment close to one end of SmycLC1 as a probe to screen the S. mycarofaciens genomic library

To extend the existing gene sub-cluster region covered by Smyc-LC1, a 2.3 kb BamHI fragment was isolated from pLC1-3 (see Fig. 4.7). This DNA fragment, when used as a probe to again screen the cosmid genomic library, resulted in isolation of a positively hybridizing cosmid, which was designated Smyc-LC4. The restriction analysis of this recombinant cosmid with BamHI and $\mathrm{BamHI} / \mathrm{Bg} / \mathrm{II}$ showed the size of the inserted DNA to be ca. 29.3 kb . The DNA fragment of Smyc-LC4 overlaps with Smyc-LC1 in a region of ca. 11.3 kb and extends away from Smyc-LC1 in a region of ca. 18 kb , containing a unique BamHI fragment. The summary of the suggested map location of the four cosmids, Smyc-LC1, Smyc-LC2, Smyc-LC3 and Smyc-LC4, is shown in Fig. 4.9.

4.5. Open reading frames found in the gene sub-cluster analysed from Smyc-LC1

The sequence of a ca. 14 kb BglII fragment (site 1-15) of Smyc-LC1 which includes the midB region was determined from the respective segments subcloned, in which some regions were completely sequenced (ca. 10 kb) and others were partially sequenced (ca. 4 kb) (Fig. 4.10). The arrangement of the identified open reading frames and their encoded proteins, e.g., midC encodes a TylB-related aminotransferase, was very similar to the tylosin gene cluster of S. fradiae (see below). Therefore, the previous proposal was confirmed that the sub-cluster covered by Smyc-LC1 is part of the gene cluster in midecamycin biosynthesis and that these genes are essential for the 6-deoxysugar biosynthetic pathway.

Upstream of midC there was a 500 bp non-coding sequence gap. Adjacent to this region, one open reading frame was found to be orf1 (midM), showing the same reading direction as midC. Downstream of midC, five further complete open reading frames, orf3 (midA), orf4 (midB), orf5 (midD), orf6 (midE) and orf8 (midL) were identified. The locations and the reading directions are given in Fig. 4.10. An uncomplete reading frame, orf7, identified as midF from the sequence of two small segments, was also found downstream of midE. All of the reading frames display a typical Streptomyces codon bias (Bibb et al., 1984).

Smyc-LC1 (30.2 kb)

Smyc-LC4 (29.3 kb)
Smyc-LC3 (26.3 kb)

Fig. 4.9. Schematic representation of cosmid clone location in the mid gene cluster. The black bars represent the region of S. mycarofaciens chromosomal DNA found in existing cosmids. The white bar indicates the unresearched region of the chromosome with a break shown as a double slant.

Fig. 4.10. Organisation of the midecamycin biosynthetic gene cluster from Smyc-LC1 and Smyc-LC3 in S. mycarofaciens. The regions midM-midF and midG-midJ are shown in greater detail. The restriction sites are numbered. Orfs and the direction of transcription are shown by arrows. The open bars indicate the sequences obtained only from small segments (see the details in the text).

The further analysis of some pathway-specific genes postulated to be involved in midecamycin sugar biosynthesis will be described in the following sections.

4.6. Open reading frames found in the gene sub-cluster analysed from Smyc-LC3

The complete sequence of a 4.3 kb BamHI fragment (sites 42-47) of Smyc-LC3 which includes the midI region was determined from the suitable plasmids of the pLC3- series. Adjacent to this region, a 1.38 kb BamHI fragment (sites 41-42) was also completely sequenced, and another ca. 1.0 kb SstI-BamHI fragment (sites 40-41) was partially sequenced. As a result, five open reading frames (orf11-15) were found in the region between sites 40 and 47, four of which represented the complete reading frames, and all read in the same direction (Fig. 4.10). Although the first open reading frame, orf11 (midG), had no complete sequence, it was found to encode PKS at the 3^{\prime} end. Orf12 (midK) is located immediately downstream of midG. Orf13 (midH) was found to share the sequence with the 3^{\prime} end of the midK gene in a region of 31 base pairs. Orf14 (midI) is located downstream of the $m i d H$ gene, and following the midI gene comes orf15 (midJ). The detail analysis of the first four genes will be done in the following sections.

The sequence of an approximately 9.2 kb DNA fragment (sites $47-54$ in Fig. 4.10) was partially performed using respective plasmids from the pLC3- series. In this region, only orf19 (mirA) was identified to be a complete open reading frame. The organization of the partially sequenced orf16 (mdmB), orf17 (midN), orf18 (mirB), orf20 (midR) and orf21 (mdmC) is shown in Fig. 4.10.

4.7. The PKS genes (midG)

Although finding the midecamycin PKS genes was not the target of this study, they could facilitate the identification of the overall organisation and orientation of the gene cluster and the genes encoding 6-deoxysugar biosynthetic enzymes. A little information about the PKS genes was obtained from two adjacently sequenced fragments in Smyc-LC3. The first sequence (404 bp) derived from plasmid pLC3-6, named as orf11 (midG), is located immediately upstream of the 5^{\prime} end of orf12 (midK) in the BamHI fragment (site 41-42)
(see Fig. 4.10). The deduced 133 aa sequence encoded by $\operatorname{mid} G$ was found to be the 3^{\prime} end sequence of the midecamycin PKS, since the product of midG shows 60% identity to PKS module 7, NidA5, in 16-membered niddamycin biosynthesis from S. caelestis (acc. no. AF016585; Stephan et al., 1997), and 48% identity to tylactone PKS module 7, TylGV, in tylosin biosynthesis (acc. no. U78289). The high sequence identity between the deduced C-terminal amino acids derived from MidG and NidA5 has revealed that the current found sequence is possibly encoded as a thioesterase (TE) which is responsible for the release and cyclization of the macrolide ring, identifying the end of the PKS subcluster (Donadio \& Katz, 1992) (for sequence see Appendices 7.5). Another DNA sequence of about 1.0 kb was obtained from part of the insert fragment of the plasmid pLC3-22 extending from the BamHI (site 41) to the SstI (site 40) at the end of the SmycLC3 insert. Although this fragment was not completely sequenced, information obtained from partial sequencing has strongly supported that it is encoded as a PKS near the Cterminus. The deduced 264 aa sequence derived from pLC3-22 shows end-to-end similarity to niddamycin PKS module 7, NidA5 (58\% identity) in which the nucleotide sequence in this region is encoded as an acyl carrier protein (ACP) and a TE.

4.8. Regulation genes (midF and midR)

Sequencing two DNA segments, from pLC1-11 and pLC1-13 in Smyc-LC1, revealed that the deduced product encoded by the nucleotide sequence is similar to the SrmR protein. Therefore, this gene was identified as orf7 (midF) (see Fig. 4.10). The deduced 228 aa sequence close to the N -terminus of MidF was found to have 49% identity to the product of srmR (acc. no. X63451). SrmR has been identified as a transcriptional activator of the expression of the PKS genes in the spiramycin biosynthetic gene cluster from S. ambofaciens (Geistlich et al., 1992).

A second putative regulator gene, orf20 (midR) was found on Smyc-LC3 cloned in pLC326, which is located downstream of orf19 (see Fig. 4.10). This partial sequence revealed that the encoded 140 aa sequence, close to the N -terminus of MidR, was similar to OrfY (36% identity), a regulator of antibiotic transport complexes in the rapamycin producing strain S. hygroscopicus (acc. no. X86780; Schwecke et al., 1995), and SC7H1.21 (34\% identity), a putative transcriptional regulator in S. coelicolor (acc. no. AL021411).

4.9. Resistance genes (mdmA and mirB)

The 813 bp nucleotide sequence of orf19 located in Smyc-LC3 was found to be identical to the previously identified gene, $m d m A$, whose sequence had been published elsewhere (acc. no. A60725; Hara \& Hutchinson, 1990). The deduced product of orf19 (271 aa) exhibits 54% sequence identity to that of TlrD from S. fradiae (acc. no. X97721), which confers ribosomal resistance to macrolides, lincosamides and streptogramin B type (MLS) antibiotics, and methylates 23S rRNA (Gandecha \& Cundliffe, 1996). So Orf19 (MdmA) is identified as a putative midecamycin-resistance protein.

The second resistance gene, orf 18 (mirB), was found to be located upstream of $m d m A$ (see Fig. 4.10). Only a small segment encoding the N -terminal region (135 aa) of mirB was sequenced from the plasmid pLC3-2. This showed strikingly high sequence similarity to three resistance proteins from the products of other 16-membered macrolides: CarA (67\% identity) from S. thermotolerans, a carbomycin producer (Schoner et al., 1992), SrmB (63\% identity) from S. ambofaciens in the spiramycin gene cluster (Geistlich et al., 1992), and TlrC (54% identity) from S. fradiae in the tylosin gene cluster (Rosteck et al., 1991). These proteins possess significant sequence similarity to ABC-transporters. The sequence alignment (Fig. 4.11) demonstrates that all these proteins contain highly conserved regions in the cytoplasmic ATP-binding domains typically present within this superfamily of transport proteins.

$$
\begin{aligned}
& \text { MirB ---MLTAQLALHDITKRYNDRVVLDRVGFTIKP GEKVGIIGHNGSGKSTLLKLIAGREQA } \\
& \text { CarA ---MSTAQLALHDITKRYQDHVVLDRIGFTIKPGEKVGVIGDNGSGKSTLIKLIAGREQP } \\
& \text { SrmB ---MSIAQYALHDITKRYHDCVVLDRVGFSIKPGEKVGVIGDNGSGKSTLLKILAGRVEP } \\
& \text { TlrC MRTSPSSQLSLHGVTKRYDDRVVLSQVSLAISPGEKAGIIGDNGAGKSTLLRLLAGEERP } \\
& \text { MirB DNGAVTMVAPGGTGYLAQTLELAPEATVQDAVDLAMVELREIEAGVRRAEAELGRTAL } \\
& \text { CarA DNGAVTVVAPGGVGYLAQTLELPLEATVQDAVDLALADLRELEEGMRRTEAELAER-- } \\
& \text { SrmB DNGALTVVAPGGVGYLAQTLELPLDATVQDAVDLALSDLRELEAAMREAEAELGES-- } \\
& \text { TlrC DAGEVTVIAPGGVGYLPQTLGLPPRATVQDAIDLAMTELRVLEAELRRTEAALAEAA- } \\
& \text { * * * **** *** *** * ****** *** ** * * ** * }
\end{aligned}
$$

Fig. 4.11. Comparison of the \mathbf{N}-terminal amino acid sequence of MirB with those of other ABC-transporters from products of $\mathbf{1 6}$-membered macroildes. The following resistance proteins are compared: CarA protein from S. thermotolerans (M80346); SrmB protein from S. ambofaciens (X63451); TlrC protein from S. fradiae (M57437). GenBank accession numbers are given in parentheses. A consensus ATP-binding motif is marked. Sequence identities between these proteins are indicated by asterisks.

4.10. Identification of $m i d E, m d m B$ and $m d m C$

In the sequence of a complete open reading frame, orf6 (midE), located in Smyc-LC1, it was found that the deduced product (388 aa) encoded by midE shows 51% sequence identity to that of $a c y B 1$ from S. thermotolerans (acc. no. D31821; Arisawa et al., 1993). AcyB1 is identified as $4 "-O$-isovaleryl transferase to convert the isovaleryl group to the $\mathrm{C} 4-\mathrm{OH}$ of mycarose in carbomycin biosynthesis. Therefore, MidE is deduced as a $4 "-\mathrm{O}$ propionyl transferase to convert the propionyl group to the $\mathrm{C} 4-\mathrm{OH}$ of mycarose in midecamycin biosynthesis (see the structures in Fig. 1.1; for sequence see Appendices 7.4).

Two adjacent genes, orf16 and orf21, are located downstream of midGKHIJ in Smyc-LC3 and both read in the opposite direction to midGKHIJ (see Fig. 4.10). Based on the nucleotide sequences from small segments, orf16 and orf21 were found to be identical to the genes, $m d m B$ and $m d m C$, whose sequences have earlier been published by Hara and Hutchinson (1992; acc. no. M93958). The $m d m B$ gene encodes a 3 - O-acyltransferase which has the ability to catalyse the addition of a propional group to $\mathrm{C} 3-\mathrm{OH}$ of the lactone ring in midecamycin biosynthesis. The $m d m C$ gene encoding a O-methyltransferase is located immediately downstream of $m d m B$, and the deduced product catalyzes the addition of a methyl group to $\mathrm{C} 4-\mathrm{OH}$ of the lactone ring in the production of midecamycin.

4.11. The midC gene

Orf2 (midC), was identified in Smyc-LC1, encoding a polypeptide of 398 aa with an estimated Mr of 42323 and an average $\mathrm{G}+\mathrm{C}$ content of 72.8%. At the stage of sequence analysis, orf2 shows three putative start codons: an ATG codon which contains no satisfied potential ribosomal binding site, a GTG codon located 12 base pairs downstream of the first putative start codon, and another GTG codon appeared 6 base pairs downstream of the second putative start codon, of which the first GTG codon is preceded by a sequence (GGAGC) that possibly represents a ribosomal binding site, since it shows a degree of complementarity to a region close to the 3 ' end of the 16 S rRNA of S. lividans (Bibb \& Cohen, 1982) (Fig. 4.12). The definitive start codon will be determined through gene expression by cloning these possible start codons into the expression vectors and
examining the expression patterns (see Section 4.19.2). The orf2 ends in a TGA codon which is one nucleotide before starting orf3 (midA) (for sequence see Appendices 7.2).

```
CAC ATt CCT GCG CGA CGC ATG GAG CAT AAA GTG AAC GTG CCC TTT CCT
H
```

Fig. 4.12. The sequence around the starting region of midC. Three putative start codons of midC are printed in bold. A possible ribosomal binding site is underlined.

The deduced product of midC shows significant sequence similarity with putative aminotransferases from several deduced gene products in different antibiotic biosynthetic pathways. The highest identity scores were found to OleN2 in the oleandomycinproducing strain, S. antibioticus (49\% identity); TylB in S. fradiae (47\% identity); EryCI in Sac. erythraea (47\% identity; Dhillon et al., 1989); DesV in S. venezuelae (45\% identity), which is notable for its ability to produce two distinct groups of macrolide antibiotics, 12 -membered methymycin and neomethymycin, and 14-membered narbomycin and pikromycin (Xue et al., 1998). The tylB product might catalyse the conversion of dTDP-3-keto-6-deoxyglucose to dTDP-3-amino-6-deoxyglucose during dTDP-D-mycaminose biosynthesis in the tylosin biosynthetic gene cluster. The EryCI, OleN2 and DesV proteins might be involved in transamination during dTDP-Ddesosamine biosynthesis in the biosynthetic gene clusters of erythromycin, oleandomycin and macrolides, respectively. The aminotransferase enzyme is thought to be dependent on pyridoxal phosphate as a cofactor (Thorson et al., 1993; Piepersberg, 1994; Pascarella \& Bossa, 1994). The sequence similarities between these proteins are most covered in a region of the protein that contains the conserved lysine residue which is supposed to be the attachment site for pyridoxal phosphate and the conserved aspartate residue which makes a hydrogen bond with N 1 of the pyridoxal ring (Fig. 4.13).

```
MidC PVHLYGHPADLDPLLAIAERHGLAVVEDAGSAR-RPLPGRRIGS
TylB PVHLYGHPVDLDPVGAFAEPHGLAVVEDAAQAT-ARYRGRRIGS
OleN2 PVHLYGHPADLAALSEVAERHGVRILEDAAQAHGAQAYGRRVGA
EryCI PVHLYGHPADLDALRAIADRHGLALVEDVAQAVGARHRGHRVGA
DesV PVHLYGHPADMDALRELADRHGLHIVEDAAQAHGARYRGRRIGA
MidC GH-VVAFSFYPGKNLGAMGDGGAVVTGDAALADRIRLLRKCG
TylB GH-RTAFSFYPGKNLGALGDGGAVVTSDPELADRLRLLRNYG
OleN2 WS-TTAFSFYPGKNLGGFGDGGAVVTDDAELAERVRLLRNYG
EryCI GSNAAAFSFYPGKNLGALGDGGAVVTTDPALAERIRLLRNYG
DesV GSSVAAFSFYPGKNLGCFGDGGAVVTGDPELAERLRMLRNYG
```

Fig. 4.13. Partial sequence alignment of MidC with other macrolide aminotransferases. TylB from S. fradiae (U08223), OleN2 from S. antibioticus (AF055579), EryCI from Sac. erythraea (X155541) and DesV from S. venezuelae (AF079762). GenBank accession numbers are given in parentheses. The marked letters indicate the proposed consensus sequence for putative pyridoxal phosphate-binding site (Piepersberg, 1994).

4.12. The midA and midB genes

Two complete open reading frames, orf3 and orf4, designated as midA and midB, were found in Smyc-LC1, respectively. Orf3 is translationally coupled to orf2 (midC) using an ATG start codon by overlapping one nucleotide with the 3 ' end of orf2, and terminates in a TGA codon. Orf4 overlaps the 5' end of orf8 (midL) by two nucleotides, but reads away from orf8. It starts with an ATG and ends six nucleotides upstream of orf5 (midD) in a TGA codon (see Fig. 4.10; for sequence see Appendics 7.2 and 7.3).

The deduced product of midA (a protein of 303 aa residues) shows significant sequence identity to putative dTDP-glucose syntheses from several Streptomycetes. These proteins include DesIII from S. venezuelae (62% identity; acc. no. AF079762), TylAI from S. fradiae (61\% identity; acc. no. U08223), AveBIII from the avermectin-producing strain, S. avermitilis (61% identity; acc. no. AB032523; Ikeda et al., 1999), SnogJ from the nogalamycin-producing strain, S. nogalater (56% identity; acc. no. AF187532; Torkkell, et al., 1997), and StrD from S. griseus (54\% identity; acc. no. AF128273; Pissowotzki et al., 1991). They all share a highly conserved motif close to the N -terminus (data not shown).

The deduced product of midB (a protein of 326 aa residues) is highly similar in sequence to dTDP-glucose-4,6-dehydratases from several deduced gene products in macrolide antibiotics. These proteins include TylAII from S. fardiae (64% identity; acc. no.

U08223), AveBII from S. avermitilis (64\% identity; acc. no. AB032523), Gdh from Sac. erythraea (60\% identity; acc. no. L37354; Vara \& Hutchinson, 1988), and DesIV from S. venezuelae (60% identity; acc. no. AF079762). The dTDP-glucose-4,6-dehydratase purified from Sac. erythraea showed that the enzyme required NAD^{+}as a cofactor (Vara \& Hutchinson, 1988). There is a putative binding site for the cofactor NAD^{+}located within the N -terminus 30 aa residues of these proteins (data not shown) (Wierenga et al., 1985; Scrutton et al., 1990). The enzyme activity of dTDP-glucose-4,6-dehydratase from S. griseus in the gene cluster of streptomycin biosynthesis was also stimulated by addition of NAD ${ }^{+}$(Verseck, 1997).

4.13. The midK gene

Orf12 (midK) located in Smyc-LC3 encodes a polypeptide of 249 aa ($\mathrm{Mr}=28899$ and average $\mathrm{G}+\mathrm{C}=69 \%$). Orf12 is immediately dowmstream of and reads in the same direction as the genes encoding PKS, with an ATG start condon. Analysis of the open reading frame showed that orf12 ends with a TGA codon and overlaps the 5 ' end of orf13 (midH) by 31 base pairs (Fig. 4. 14(a), (b); for sequence see Appendices 7.5).

Fig. 4.14 (a), (b). The location of start and stop sequences of orf12 (midK).

The deduced product of midK shows significant sequence similarity to a family of enzymes which has recently been proposed to function as S-adenosylmethionine (SAM)dependent methyltransferases (Gandecha et al., 1997). Members of this family include TylMI from S. fradiae (60% identity), which acts on the amino group of dTDP-3-amino-6deoxyglucose during mycaminose biosynthesis, perhaps by introducing two methyl groups at that site (Gandecha et al., 1997); OleM1 from S. antibioticus (57% identity), which is
involved in oleandomycin biosynthesis (Olano et al., 1998), DesVI from S. venezuelae (53\% identity), which is deduced as a N, N-dimethyltransferase involved in macrolide biosynthesis (Xue et al., 1998), and EryCVI from Sac. erythraea (51% identity), which participates in erythromycin biosynthesis (Gaisser et al., 1997). A sequence alignment of these proteins shows that they each possess all three of the consensus sequence motifs typical of methyltransferases that use SAM as co-substrate (Kagan \& Clarke, 1994) (Fig. 4.15). Motif I, near their N-terminus in these proteins, containing the consensus sequence LLDVACGTG, is thought to be a variant of canonical methyltransferase motif $\mathrm{G} \times \mathrm{G} \times \mathrm{G}$ (Ingrosso et al., 1989; Haydock et al., 1991) which is found in glycine Nmethyltransferases, and forms part of the SAM-binding pocket according to crystallographic data relating to the HhaI DNA $\mathrm{m}^{5} \mathrm{C}$ methyltransferase (Cheng et al., 1993).

Fig. 4.15. Partial comparison of the amino acid sequence of MidK with other macrolide methyltransferases. The following proteins are compared: TylMI from S. fradiae (X81885); OleM1 from S. antibioticus (AJ002638); DesVI from S. venezuelae (AF079762); EryCVI protein from Sac. erythraea (U77459). GenBank accession numbers are given in parentheses. Sequence identities between these proteins are indicated by asterisks. Motifs I to III are marked and shown by circles.

4.14. The midH gene

Orf13 (midH) found in Smyc-LC3 encodes a 414 aa polypeptide $(\mathrm{Mr}=44275$ and average $\mathrm{G}+\mathrm{C}=75.7 \%$). Based on sequence alignment and open reading frame analysis, orf13 is translationally coupled to orf12, since the putative ATG start codon of orf13 begins 31 base pairs upstream of the TGA stop codon of orf12 (see Fig. 4. 14(b)). The overlapping genes, like orf12 and orf13, which are involved in the same metabolic process, are quite common in bacteria (Normark et al., 1983). Orf13 ends 42 base pairs upstream of orf14 with a TGA codon (for sequence see Appedix 7.5) .

The deduced product of midH shows sequence similarity to TylMIII from the tylosin biosynthetic gene cluster of S. fardiae (35\% identity; acc. no. X81885), which was recently identified as a hypothetical NDP-hexose 3,4-isomerase and may be involved in mycaminose biosynthesis, and to DnrQ from the daunorubicin biosynthetic gene cluster of S. peucetius (32\% identity; acc. no. L47164; Otten et al., 1995), which might participate in daunosamine biosynthesis. The midH gene product also shows a moderate overall sequence similarity (2830\%) to OleP1 from S. antibioticus (acc. no. AJ002638), DesVIII from S. venezuelae (acc. no. AF079762), SnogN from S. nogalater (acc. no. AF187532), and EryCII from Sac. erythraea (acc. no. Y14332). All these proteins also show end-to-end sequence similarity to cytochrome P450 enzymes from a variety of sources, but none of them have the characteristic P450 motif (Bairoch, 1992) which contains the highly-conserved heme binding site and includes the cysteine residue that serves as the heme iron ligand (Nelson et al., 1993). In the case of the EryCII protein, experimental evidence demonstrated that it possibly acts as a 3,4-isomerase to form dTDP-3-keto-6-deoxy-hexose during dTDP-D-desosamine biosynthesis (Summers et al., 1997; Salah-Bey et al., 1998).

4.15. The midI gene

Orf14 (midI) found in Smyc-LC3 encodes a 421 aa polypeptide ($\mathrm{Mr}=45993$ and average $\mathrm{G}+\mathrm{C}=80 \%$). Orf14 starts 42 base pairs downstream of orf13 (midH) using a GTG codon with a putative ribosomal binding site (GGAGT) and ends 31 base pairs upstream of orf15 (midJ) using a TGA codon (for sequence see Appendices 7.5).

The deduced product of midI shows convincing end-to-end sequence similarity to several macrolide antibiotics. The highest identity scores were found to TylMII from S. fradiae (59% identity), which encodes a glycosyltransferase that adds mycaminose to the $5-\mathrm{OH}$ of tylactone, the polyketide aglycone of tylosin (Gandecha et al., 1997), DesVII from S. venezuelae (55% identity), which has the ability to catalyze glycosylation of both the 12membered and 14-membered ring macrolactones in macrolide biosynthesis (Xue, et al., 1998), OleG2 from S. antibioticus (54% identity), which catalyses glycosylation of oleandolide in the oleandomycin biosynthetic pathway (Olano et al., 1998), and EryCIII from Sac. erythraea (51\% identity) (Summers et al., 1997; Salah-Bey et al., 1998), which encodes the desosaminyl glycosyltransferase that adds dTDP-D-desosamine to the $5-\mathrm{OH}$ of $3-\alpha$-mycarosyl erythronolide B , an intermediate after the first sugar, mycarose, is attached to erythronolide B that is catalysed by another glycosyltransferase, EryBV (46% sequence identity to MidI) (Gaisser et al., 1997; Summers et al., 1997). A sequence alignment of these proteins is shown in Fig. 4.16. All these glycosyltransferases retain a characteristic motif, P-NVR-VDFVPL-ALLP-C---VHHGG-GT--TA--HG-P, present in UDP-glycosyl transferases(Jenkins \& Cundliffe, 1991), which is localised close to the C-terminus of these enzymes.

4.16. Identification of genes encoding dTDP-D-mycaminose biosynthetic pathway

As described in the introduction, various 6-deoxyhexoses, present in a range of antibiotic molecules, are made from D-glucose-1-phosphate via dTDP-glucose and dTDP-4-keto-6-deoxy-glucose before the pathways diverge (Liu \& Thorson, 1994; Piepersberg, 1994). Based on the above sequence analysis and comparison, the midA and midB genes are supposed to be responsible for the early steps in the midecamycin biosynthetic gene cluster. Three genes, midC, midH and midK, might participate in the synthesis route to dTDP-D-mycaminose, and the midI gene is believed to be responsible for attachment of mycaminose to midecamycin lactone. The detail discussion about these genes and their deduced functions involved in the mycaminose biosynthetic pathway and transfer will be commented and concluded in Section 5.

MidI
TylMII
DesVII
OleG2
ErycIII

MidI
TylmiI
DesVII
OleG2
EryCIII

MidI
TylmiI
DesVII
OleG2
Erycili

MidI
TylMII
DesVII
OleG2
ErycIII

MidI
TylmiI
DesVII
OleG2
ErycIII
---------------------VRVLLTSLAHNTHYYSLVPLAWALRAAGHEVRVASPPSLT MRRALDDRRRGP HGPEGKPPMRVLLTCIAHNTHYYNLVPVAWALRAAGHEVRVAAQPALT --------------------MRVLLTSFAHHTHYYGLVPLAWALLAAGHEVRVASQPALT --------------------MRVLLTCFANDTHFHGLVPLAWALRAAGHEVRVASQPALS $-----------------M R V V F S S M A S K S H L F G L V P L A W A F R A A G H E V R V V A S P A L T$

DVITSTGLPAVPVGDDQPAAELLAEMGGDLVPYQRGFEFAEVEPAQETTWEHLLGQQSMM DTITASGLTAVPVGGNESVLEFVTEIGGDPGPYQRGMDFAETC-GEPLSYEHALGQQTAM DTITGSGLAAVPVGTDHLIHEYRVRMAGEPRPNHPAIAFDEAR-PEPLDWDHALGIEAIL DTITQAGLTAVPVGRDTAFLELMGEIGADVQKYSTGIDLGVR--AELTSWEYLLGMHTTI EDITAAGLTAVPVGTDVDLVDFMTHAGHDIIDYVRSLDFSERD-PATLTWEHLLGMQTVI
** ** *****

SALWFAPFSGAATMDDIGRLRRDWRPDLVVWEPWTYAGPIAARACGAAHARILWGPDAIG SALCFAPFNCDSTIDDMVALARSWRPDLVLWEPFTYAGP IAAHACGAAHARLLWGPDVIL APYFHLLANNDSMVDDLVDFARSWQPDLVLWEPTTYAGAVAAQVTGAAHARVLWGPDVMG VPTFYSLVNDEPFVDGLVALTRAWRPDLILWEHFSFAGALAARATGTP HARVLWGSDLIV TPTFYALMSPDTLIEGMVSFCRKWRPDLVIWEPLTFAAPIAAAVTGTP HARLLWGPDITT

	LC6
RSRRRFLEALERV	DPIAEWLGWTLDRYGCAFD----ERDVLGHWVIDPGPRSTR
NARAQFRRLAPDSP	EEPREDPVAEWLGWTLERHGLTAERETVEELIGGQWTLDPTAESLR
SARRKFVALRDRQP	PEHREDPTAEWLTWTLDRYGASFE----EELLTGQFTIDPTPPS
RFRRDFLAERANRP	AEHREDPMAEWLGWAAERLG-STFD---EELVTGQWTIDPLPRS
RARQNFLGL	EHREDPLAEWLTWTLEKYGGPAFD---EEVVVGQWTIDPAPAAIR

LDLGQTTVPMCYVPYNGRAVIEPWLAEKPERPRVCLTLGISARETYGRDAVSYSELFQAL CPR-PAVVPFRFVPYNGRSVLPDWLLRKPGRPRVCFTLGVSARETYGRDAVPFHELLAGL LDTGLPTVGMRYVPYNGTSVVPDWLSEPPARPRVCLTLGVSAREVLGGDGVSQGDILEAL LPTGTTTVPMRYVPYNGRAVVPAWVRQRARRPRICLTLGVSARQTL-GDGVSLAEVLAAL LDTGLKTVGMRYVDYNGPSVVPEWLHDEPERRRVCLTLGISSRENS-IGQVSIEELLGAV

	EryCIII/I
GRMEIEVVATLDASQQKRLGSLPDNVVPVDF	FVPLDALLPSCAAIIHHGGAGTWSTALLHG
GDLDAEIVATLDPGQLSGAGEVPRNVRAVD	FVPMDALLPTCSAVVHHGGAGTCFTATLNG
ADLDIELVATLDASQRAEIRNYPKHTRFTD	FVPMHALLPSCSAIIHHGGAGTYATAVINA
GDVDAEIVATLDASQRKLLGPVPDNVRLVD	FVP LHALMPTCSAIVHHGGAGTWLTAAVHG
GDVDAEIIATFDAQQLEGVANIPDNVRTVG	GVPMHALLPTCAATVHHGGPGSWHTAAIHG
**	**** *

VPQILLPALWDAPLKAQQLQRLSAGLNLPAATLTARRLADAVHTAVHDP-AIRAGARRLR
MidI
TylmiI LPQIVVAALWDAPLKGAQLAEAGAGVSIAPEKLDAATLRAGVVRALEDEGHSRRSAGLLR DesVII VPQVMLAELWDAPVKARAVAEQGAGFFLPPAELTPQAVRDAVVRILDDP-SVATAAHRLR
OleG2 VPQIVLGDLWDNLLRARQTQAAGAGLFIHPSEVTAAGLGEGVRRVLTDP-SIRAAAQRVR EryCIII VPQVILPDGWDTGVRAQRTQEFGAGIALPVPELTPDQLRESVKRVLDDP-AHRAGAARMR

MidI EEMLADPTPAAIVPTLERLTALHRAA--------
TylMII
DesVII AEMLAEPTPAGLVPQLERLTALHRNGRSRSAPER

Fig. 4.16. Comparison of amino acid sequence of MidI with other macrolide glycosyltransferases. The following proteins are compared: TylMII from S. fradiae (X81885); DesVII from S. venezuelae (AF079762); OleG2 from S. antibioticus (AJ002638); EryCIII protein from Sac. erythraea (Y14332). GenBank accession numbers are given in parentheses. Sequence similarity between these proteins are indicated by asterisks. The highly conserved sequence regions used for designing the primers, EryCIII/H, EryCIII/I and LC6, are marked and indicated by arrows (see Section 4.1.2).

4.17. About strains of S. mycarofaciens UC189B (ATCC 21454) and S. mycarofaciens ATCC 21454

During the course of examining the production pattern of S. mycarofaciens UC189B (ATCC 21454), it was proved that it is a non-producing strain. In order to re-evaluate the two currently identified gene sub-clusters, a series of PCR experiments to compare S. mycarofaciens UC189B (ATCC 21454) with S. mycarofaciens ATCC 21454, which is a midecamycin-producing strain, were carried out by using primers designed from the identified genes, midB, midC, midK and midI, as previously described. As a result, it is confirmed that the two existed sub-clusters encoding deoxysugar genes do contain the same pattern in S. mycarofaciens UC189B (ATCC 21454) and ATCC 21454 (data not shown). Further sequence analysis found that downstream of the midG (PKS) starting region is a large segment gap (about 4 kb) of unknown coding sequence, that is unusual when compared to those of other macrolide PKS genes, e.g., tylactone PKS tylG from S. fradiae (acc. no. U78289) and platenolide PKS SrmG from S. ambofaciens (acc. no. Z46913), which are themselves clustered. Therefore, it is concluded that a mutation in the early steps of midecamycin lactone biosynthesis pre-existed in S. mycarofaciens UC189B (ATCC 21454).

4.18. Heterologous complementation of midK and midI into Sac. erythraea mutants

To characterise some pathway-specific genes involved in the mycaminose biosynthetic pathway and for the sugar attachment to the midecamycin lactone, plasmids containing either midK, or midI or both genes were constructed to transform Sac. erythrea mutants CIII68 and CIV89 (Fig. 4.17). The mutants CIII68 and CIV89 were generated by SalahBey et al. (1998) and identified as the deficient of desosamine biosynthesis and its attachment to macrolactone in the erythromycin gene cluster. When cell supernatants were analysed by TLC from individual transformants of CIII68/pLCW1-29, CIII68/pLC1-31 and CIII68/pLCW1-21, there were some new spots available compared to several control samples. However, none of them showed antibiotic activities via bioassay (data not shown).

Fig. 4.17. Plasmids used to transform into Sac. erythraea mutants strains CIII68 and CIV89

4.19. Heterologous expression of the MidH, MidC, MidK and MidI proteins

In order to characterise enzyme proteins encoded by the proposed genes for the pathway of mycaminose biosynthesis and transfer of the sugar to the midecamycin lactone, the overexpression of individual genes in suitable hosts was investigated. The genes, midH, midC, midK and midI, were amplified by PCR from the cosmid DNA of Smyc-LC1 and SmycLC3. The forward primers were designed for introduction of an NdeI site, changing the sequence at the natural start codon for the ability to create start codon fusion of these genes into the promoter/ribosome-binding-site cassettes of expression vectors. The reverse primers were designed for introduction of a BamHI or BglII site located immediately downstream of the stop codon of the gene. The amplified DNA fragments were cloned into (i) two expression vectors of E. coli, pET11a, and pET16b (a His-tag fusion protein), under the control of the T7 promoter; (ii) a E. coli-Stretomyces shuttle vector, pUWL201 under the control of ermE up promoter; (iii) a S. lividans vector, pIJ4213 (a His-tag fusion protein) under the control of tipAp promoter (Tab. 4.2). The expression conditions and the host strains used will be given in detail in the following sections.

Tab. 4.2. The structure of recombinant plasmids for the heterologous expression of proteins MidH, MidC, MidK and MidI in E. coli and S. lividans

Protein	Recombinant Plasmid	Vector	Mr. of recombinant proteins (kDa)
MidH	pLCW4-2	pET11a	44.3
His-tag-MidH	pLCW4-3	pET16b	46.3
MidH	pLCW4-6	pUWL201	44.3
His-tag-MidH	pLCW4-7	pUWL201	46.3
His-tag-MidH	pLCW4-10	pIJ4123	45.1
His-tag-MidC	pLCW2-20	pET16b	43.5
His-tag-MidC	pLCW2-21	pET16b	44.3
MidC	pLCW2-23	pET11a	42.3
MidK	pLCW3-2	pET11a	28.9
His-tag-MidK	pLCW3-3	pET16b	30.9
MidK	pLCW3-8	pUWL201	28.9
His-tag-MidK	pLCW3-9	pUWL201	30.9
His-tag-MidK	pLCW3-12	pIJ4123	29.7
MidI	pLCW1-33	pET11a	46.0
His-tag-MidI	pLCW1-23	pET16b	48.0
MidI	pLCW1-41b	pUWL201	46.0
His-tag-MidI	pLCW1-51b	pUWL201	48.0
His-tag-MidI	pLCW1-61	pIJ4123	46.8

For the plasmid construction see Section 2.3.3. The amplification was performed by using PCR method 2 as described in Section 3.3.5.

4.19.1. Over-expression of the MidH protein

Two recombinant expression-plasmids, pLCW4-2 and pLCW4-3 were constructed to introduce the midH gene and transformed into E. coli BL21(DE3)pLysS. When the respective transformants were cultivated in LB liquid medium at $28^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ at 220 r.p.m. in a rotary shaker, the over-expressing MidH proteins in both expression-clones were visible on SDS-PAGE gels, but they formed insoluble inclusion bodies. However, when the shaking rate was decreased from 200 r.p.m. to 100 r.p.m., surprisingly, a production of soluble native MidH protein was obtained in large quantities (Fig. 4.18A). A further effort to produce soluble MidH protein was made by using LB liquid supplemented with 1 M sorbitol and 2.5 mM betaine. Because of enhanced osmotic stress of the medium, the culture grew much more slowly (see Section 3.3.12). The resulting expression pattern of E. coli /pLCW4-2 or /pLCW4-3 (Fig. 4.18B) showed that the proteins of MidH and its His-tag derivative were produced in large quantities in soluble form. The attempt to express the midH gene in S. lividans TK23 using the recombinant plasmids pLCW4-6 and pLCW4-7 failed, since neither the SDS-PAGE gels nor Western blotting could observe any visible expected bands.

Fig. 4.18. Expression of MidH in E. coli BL21 (DE3) pLysS. The cultivation of transformants was performed by (A) agitation at 100 r.p.m, or (B) using LB medium supplemented with sorbitol and betaine. For the other expression conditions see text. Electorphoresis was run in 10% SDS-PAGE gel. About $5 \mu \mathrm{~g}$ of protein was loaded in each lane. Extracts were obtained from E. coli transformants containing the following plasmids: pET11a, from the intact cells (lanes 1 and 5) and the cell-interrupted supernatants (lanes 3 and 6); pLCW4-2, from the intact cells (lanes 2 and 9) and the cell-interrupted supernatants (lanes 4 and 10); pLCW4-3, from the intact cells (lane 7) and the cell-interrupted supernatants (lane 8), respectively. The molecular masses (kDa) of the marker proteins (lane M) are given. The overproduction of the MidH protein is indicated by arrows.

4.19.2. Overexpression of the MidC protein

As described in Section 4.11, the sequence analysis of midC shows three putative start codons: the first is an ATG codon, the second is a GTG codon located 12 bp downstream of the first putative start codon, and the third is another GTG codon, which is located 6 bp downstream of the second putative start codon (see Fig. 4.12). In order to be able to express an active protein, three recombinant expression-plasmids were constructed in E. coli expression vectors (see Tab. 4.2). In pLCW2-21 and pLCW2-23 the first start codon (ATG) regions, and in pLCW2-20 the second start codon (GTG) region, were replaced by an NdeI site. When transformed into E. coli BL21 (DE3)pLysS, the expression of MidC proteins was tested in LB liquid medium at 100 r.p.m., $28^{\circ} \mathrm{C}$. From the results of SDSPAGE separation of the respective cell extracts (Fig. 4.19), the overproduction of large amounts of the soluble MidC protein was achieved from the cell-free extracts of the transformants E. coli/pLCW2-21 or /pLCW2-23. However, E. coli/pLCW2-20 didn't show the expected expression band. The expression could not even be detected by Western blotting analysis (data not shown). Based on this experimental evidence, it is concluded that the translation of midC starts with the first ATG codon.

Fig. 4.19. Expression of MidC in E. coli BL21 (DE3) pLysS. For the expression conditions see text. Electrophoresis was run in 10% SDS-PAGE gel. About $5 \mu \mathrm{~g}$ of protein was loaded in each lane. Extracts were obtained from E. coli containing the following plasmids: pET11a, from the intact cells and the cell-interrupted supernatants (lanes 1 and 5); pLCW2-21 from the intact cells and the cell-interrupted supernatants (lanes 2 and 6); pLCW2-23 from the intact cells and the cell-interrupted supernatants (lanes 3 and 7); pLCW2-20 from the intact cells and the cell-interrupted supernatants (lanes 4 and 8), respectively. The molecular masses (kDa) of the marker proteins (lane M) are given. The overproduction of soluble MidC protein is indicated by arrows.

4.19.3. Expression and detection of the MidK protein

An attempt was made to express the MidK protein from two recombinant plasmids, pLCW3-2 and pLCW3-3. These were again transformed into E. coli BL21 (DE3)pLysS. The expression of both corresponding clones resulted in the overproduction of large amounts of the MidK protein. However, the protein was formed as insoluble inclusion bodies although various experimental conditions, such as cultivating in LB medium with or without sorbitol and betaine, or in mineral medium; also, different incubation temperatures at $37^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$ or $20^{\circ} \mathrm{C}$ with high or slow shaking rates, were tried, but to no avail (data not shown).

Attempts were made to clone the midK gene into the E. coli-S. lividans shuttle expression vector, pUWL201. The respective plasmids, pLCW3-8 and pLC3-9, were transformed into S. lividans TK23. Unfortunately, no visible specific-expression bands were visible either on SDS-PAGE gels from the extracts of both expressing clones or by Western blotting detection from the extracts of TK23/pLCW3-9 (data not shown). Next, the midK gene was cloned into the S. lividans expression vector, pIJ4123, and the resulting recombinant plasmid pLCW3-12 was transformed into S. lividans 1326. Expression of MidK was tested in SGYEME liquid medium at 220 r.p.m., $28^{\circ} \mathrm{C}$ by thiostrepton induction (see Section 3.3.13). These transformants didn't express the MidK protein in a visible form on SDSPAGE gels. Therefore, Western blotting and immuno-detection were used to detect the His-tag MidK protein. The result of the expression (Fig. 4.20) showed that soluble His-tag-MidK protein was indeed produced by the recombinant clone, but in low quantities.

Fig. 4.20. Analysis of the expression of MidK in S. lividans 1326 by Western blotting. For the expression conditions see text. Western blotting and immuno-detection see Section 3.5.4. Cell-free extracts were obtained from S. lividans containing the following plasmids: pIJ6021 (lane 1) and pLCW3-12 (lanes 2 and 3). The expression of MidK is indicated by arrows.

4.19.4. Expression and detection of the MidI protein

For the expression of the putative glycosyltransferase, MidI, two recombinant expressionplasmids, pLCW1-23 and pLCW1-33 were constructed. These were transformed into E. coli BL21 (DE3) pLysS and E. coli JM109 (DE3). Overproduction of the MidI protein was observed in the intact cell extracts of both expression-clones in both E. coli host strains. However, the products were not visible in the cell-disrupted supernatant (cell-free extracts) (data not shown). By using Western blotting and immuno-detection, the soluble His-tagMidI protein was detected from the clone E. coli BL21 (DE3) pLysS/pLCW1-23 (Fig. 4.21).

Other efforts were made in order to produce the soluble MidI protein, such as testing different media and temperatures, but all failed. The midI gene was also cloned into pUWL201, resulting in the plasmids pLCW1-41b and pLCW1-51b, and into pIJ4123, producing the respective plasmid pLCW1-61. These were transformed into S. lividans TK23 and S. lividans 1326, respectively. Unfortunately, the expression of MidI was not visible on SDS-PAGE gels in any of the recombinant clones. Further analysis by Western blotting revealed that small quantities of the soluble MidI protein were obtained from the cell-free extracts of S. lividans 1326/pLCW1-61, however, the expression band was much weaker than the expression shown in lane 2 of Fig. 4.21 (data not shown).

Fig. 4.21. Analysis of the expression of MidI in E. coli BL21 (DE3) pLysS by Western blotting. The
kDa expression strain contains the following plasmids: pET16b from the cell-disrupted supernatants (lane 1) and the intact cell extracts (lane 3); pLCW1-23 from the cell-disrupted supernatants (lane 2) and the intact cell extracts (lane 4). The expression of MidI is indicated by arrows.

4.20. Assay for activity of a coupling reaction of the RImB, MidH and MidC proteins

The proposed mycaminose biosynthetic pathway starts from D-glucose-1-phosphate, via dTDP-glucose and dTDP-4-keto-6-deoxy-glucose. In course of their further conversion to dTDP-D-mycaminose, the following two intermediates, dTDP-3-keto-6-deoxy-D-glucose and dTDP-3-amino-6-deoxy-d-glucose, are postulated (see Fig. 1.6). In order to confirm this hypothesis by experimental data, the over-expressed proteins, MidH and MidC, putatively involved in the biosynthesis of mycaminose, were tested by coupled enzyme reactions in vitro.

4.20.1. Activity assay of dTDP-D-glucose 4,6-dehydratase by RmIB

To prepare the first intermediate, dTDP-4-keto-6-deoxy-D-glucose (II), the expressed RmlB protein (Verseck, 1997) was used to catalyse the following reaction using dTDP-Dglucose (I) as a substrate.

The crude extract of soluble RmlB protein was obtained from the expression-clone E. coli BL21(DE3)/pSVW701, thereby the enzymatic reaction doesn't need NAD ${ }^{+}$as a cofactor since NAD^{+}is present in tightly bound dehydratases in E. coli (Wang \& Gabriel, 1969). The analysis of this enzyme reaction (see Section 3.5.5) was performed by HPLC. A typical wide peak appeared at 33.37 min , which was identified as the converted prodcut II, compared to a peak at 34.49 min for the substrate I (Fig. 4.22A, B). Some small peaks came out at the early stage in Fig. 4.22B because the RmlB was extracted directly from the expression culture without further purification.

Fig. 4.22. HPLC analysis of the RmIB reaction product. (A) a peak at 34.49 min is dTDP-Dglucose (I) as a control. (B) a peak at 33.37 min is dTDP-4-keto-6-deoxy-D-glucose (II) converted by the crude RmlB extracts.

4.20.2. Reaction products from combined catalysis by RmIB, MidH and MidC

Two enzymes are postulated to be involved in the following reactions in the pathway of mycaminose biosynthesis. Based on the above study, the over-expressed MidH and MidC proteins were used to test their deduced functions as an isomerase and an aminotransferase, respectively.

Since the intermediates II and III were produced as an unstable form, a coupling enzymatic reaction to combine RmIB , MidH and MidC was done to detect the conversion of the substrate I to the product IV, by using L-alanine or L-glutamic acid as an amino acid
donor and PLP as a cofactor. The crude extracts of MidH and MidC were obtained from the expression clones E. coli BL21(DE3)/pLCW4-2 and /pLCW2-23, respectively. The result of HPLC assay showed that there was a specific peak at 4.6 min when compared to all other controls. Unfortunately, because all used enzymes, RmlB, MidH and MidC, were not purified, the high background appeared at the beginning of retention time on HPLC (data not shown). Therefore, LC-MS was used to further analyse this new peak. It showed a peak at $\mathrm{m} / \mathrm{z}=546\left(\mathrm{M}-\mathrm{H}^{+}\right)$which is the expected dTDP-amino-6-deoxy-D-glucose product, compared to a peak at $\mathrm{m} / \mathrm{z}=545\left(\mathrm{M}-\mathrm{H}^{+}\right)$which is the compound II and a peak at $\mathrm{m} / \mathrm{z}=547\left(\mathrm{M}-\mathrm{H}^{+}\right)$which is dTDP-L-rhamnose that was produced as a by-product due to the crude enzymes used. ESI-MS/MS spectra by single ion monitoring confirmed this result to compare a peak at $\mathrm{m} / \mathrm{z}=562.8\left(\mathrm{M}-\mathrm{H}^{+}\right)$which is the substrate \mathbf{I} (Fig. 4.23).

Fig. 4. 23. ESI-MS/MS spectra of dTDP-D-glucose and dTDP-amino-6-deoxy-D-glucose.

5. Discussion

Midecamycin biosynthesis proceeds via the production of a 16-atom polyketide lactone, to which two deoxyhexose moieties are subsequently added (see Fig. 1.1). For a better understanding and application of this process, cloning of the midecamycin biosynthetic (mid) gene cluster was suggested as a useful tool to step-wise analyse the functions encoded by these genes in the production of midecamycin. The individual tools delivered by the mid gene cluster could also be used as part of a system for combinatorial biosynthesis, which involves the genetic manipulation of mutistep biosynthetic pathways to create molecular diversity in natural products for use in drug discovery. The main goals of this work, therefore, were to identify the sub-clusters for 6-deoxyhexose formation and transfer as well as the expression and enzymological analysis of the dTDP-D-mycaminose pathway.

5.1. The S. mycarofaciens cosmid genomic library

To quickly isolate the mid gene cluster and identify the sugar sub-clusters in it, a cosmid genomic library was first constructed using the S. mycarofaciens chromosomal DNA and the cosmid vector pKU206. This turned out to be a straightforward process for the following reasons. (1) Large and expected DNA fragments were cloned in a range of 20-35 kb. (2) The recombinant cosmid clones can directly replicate both in E. coli and in S. lividans, which could facilate gene function analysis in Streptomyces. (3) It is more stable when the positive recombinant cosmid clones are kept in S. lividans for maintenance.

There were two major problems encountered during the manipulation of this gene library. First, how to maintain all cosmid clones as long as possible? Three alternative methods for storing different stages of the gene library were used in this study. They were (i) as ligation stored at $-20^{\circ} \mathrm{C}$ for an indefinite period; (ii) as frozen transformed E. coli clone mixture at $-70^{\circ} \mathrm{C}$ for a few years; (iii) as frozen transformed E. coli single clones in microtiter plates stored at $-70^{\circ} \mathrm{C}$ for a few years (see Section 3.4.1.5 and 3.4.2.1-2). We had used the two-year-old ligation for packaging and plating a new gene library. The efficiency of producing
cosmid clones turned out to be almost the same as the first gene library. The second method was easier to handle but it implicated the amplification of the whole library during repeated uses. The third method can keep an authentic gene library, but it requires some skill to handle the process of storing. Secondly, cosmid clones have been noted to have a problem of instability (Weis et al., 1987). Deletions arose if the cloned DNA contained larger repeated sequences, especially PKS genes (Omura \& Ikeda, personal communication). In this study, E. coli JM108 was chosen as the host strain, which is recA deficient, and transductions and transformations were performed at $30^{\circ} \mathrm{C}$ to minimize the potential problems. It was also suggested that plating and screening the gene library be done immediately, because a proportion of E. coli cells containing cosmids lose viability.

5.2. Architecture of the mid gene cluster in S. mycarofaciens

DNA sequencing of two cosmid plasmids, Smyc-LC1 and Smyc-LC3, allowed the identification of PKS genes, lactone and sugar modification genes, resistant and regulatory genes, and sugar biosynthetic genes, which are all necessary for midecamycin biosynthesis (Tab. 5.1 and Tab. 5.2). Up to now, the mid gene cluster has been obtained from about 74 kb in the genome of S. mycarofaciens. The gene organisation in the midecamycin producer, S. mycarofaciens, at the beginning seemed to be quite similar to that of the tylosinproducing S. fradiae in the large central region. Both gene clusters demonstrate that the large PKS genes ($m i d G$ or $t y l G$) are flanked by two regions containing genes encoding enzymes for the biosynthetic deoxysugars, as well as resistance and regulatory enzymes (for midecamycin biosynthesis: Hara \& Hutchinson, 1990; 1992; this study; for tylosin biosynthesis: Baltz \& Seno, 1988; Birmingham et al., 1989; Zalacain \& Cundliffe, 1991; Merson-Davies et al., 1994; Gandecha et al., 1997; Bate et al., 1999; Buter et al., 1999). As shown in Fig. 5.1, the gene order for the mycaminose biosynthetic genes and some others for lactone ring modification and regulation was found to be conserved between both clusters, but the transcription patterns were different in part.

However, the location of genes involved in the mycarose biosynthetic pathway turned out to be different between the mid and tyl (tylosin biosynthetic) gene clusters. The five genes (tylCII, tylCIII, tylCIV, tylCV and tylCVII) are located downstream of $t y l G$. In contrast,

Tab. 5.1. Summary of the genes found in Smyc-LC1

Orf in Fig. 4.10	Gene	Coding capacity		
		aa	Putative function	Proteins with identity score ${ }^{3}$
orf1	midM^{1}	\{388\}	cytochrome P450	TylI: 57\%; PicK: 32\%
orf2	midC	398	aminotransferase	OleN2: 49\%; TylB: 47\%; EryCI: 47\%; DesV: 45\%
orf3	midA	303	dTDP-glucose synthase	DesIII: 62\%; TylAI: 61\%; AveBIII: 61\%; SnogJ: 56\%
orf4	midB	326	dTDP-glucose 4,6-dehydratase	TylAII: 64\%; AveBII: 62\%; Gdh: 60\%; DesIV: 60\%
orf5	midD	264	thioesterase	TylO: 44\%; PikAV: 39\%; Rif-ORF12: 43\%
orf6	midE	388	4"-O-propionyl transferase	AcyB1: 51\%
orf7	$m i d F^{2}$	\{228\}	regulator	SrmR: 49\%
orf8	$m i d L^{1}$	\{372\}	2,3-dehydratase	TylCVI: 50\%; OleV: 48\%; EryBVI: 42\%
Location at site No. in Fig. 4.10	Temporary gene name	Coding capacity		
		DNA length (kb)	Putative function of deduced aa seq.	Proteins with identity score
1-3	mid1-4	1.8	unknown	
15-16	midO	0.6	4-ketoreductase	TylCIV: 50\% \{in 54 aa\}
17-18	midl-6rp	0.55	dehydratase	OleN2: 72\%; EryCIV: 67\% \{in 132 aa\}
17-18	midl-6up	0.55	acyl-CoA dehydrogenase	$\begin{aligned} & \text { SCI30A.22c: } 44 \% \\ & \{\text { in } 95 \text { aa }\} \end{aligned}$
18-19	mid1-3up	0.6	pyruvate dehydrogenase	PdhA: 41% \{in 175 aa\}
18-19	mid1-3rp	0.8		

(1) Partial sequence of orfs, incomplete at the 3' end. (2) Partial sequence of orf. (3) AcyB1 from S. thermotolerans (D31821); AveBII and AveBIII from S. avermitilis (AB032523); DesIII, DesIV and DesV (AF079762), and PicK (AF087022) from S. venezuelae; EryCI (X155541), EryBVI (Y11199) and Gdh (L37354) from Sac. erythraea; OleN2 and OleV from S. antibioticus (AF055579); PdhA (L31844) from Thiobacillus ferrooxidans; Rif-ORF12 (AF040571) from Amycolatopsis mediterranei; SCI30A.22c (AL096811) from S. coelicolor; SnogJ from S. nogalater (AF187532); SrmR from S. ambofaciens (X63451); TylI, TylAI, TylAII, TylB and TylO (U08223), TylCIV (U77459) and TylCVI (AF210634) from S. fradiae. Acc. no. are given in parentheses. The aa numbers in partial protein sequence are indicated in braces.

Tab. 5.2. Summary of the genes found in Smyc-LC3

		Coding capacity		
in Fig. 4.10	Gene	aa	Putative function	Proteins with identity score ${ }^{3}$
orf11	$m i d G{ }^{1}$	\{133\}	PKS module 7?(3'-end)	NidA5: 60\%; TylGV: 48\%
orf12	midK	249	N -methyltransferase	TylMI: 60\%; OleM1: 57\% DesVI: 53\%; EryCVI; 51\%
orf13	midH	414	3,4-isomerase	TylMIII: 35\%; DnrQ: 32%;
orf14	midI	421	glycosyltransferase	TylMII: 59\%; DesVII: 55\%; OleG2: 54\%; EryCIII: 51\%
orf15	midJ	448	crotonyl-CoA reductase	Ccr: 75\%; SC9C7.09c: 75\%
orf16	$m d m B^{2}$	387	3-O-acyltransferase	AcyA: 59\%
orf17	$m i d N^{1}$	\{109\}	cytochrome P450	Car-orfP450: 56\%
orf18	$m i r B^{1}$	\{135\}	ABC-transporter	CarA: 67%; SrmB: 63%
orf19	$m d m A^{2}$	271	resistance	TlrD: 54\%
orf20	$m i d R^{1}$	\{140\}	regulator	OrfY:36\%; SC7H1.21:34\%
orf21	$m d m C^{2}$	221	O-methyltransferase	Car-orfB: 51\%
			Coding capacity	
Location at site No. in Fig. 4.10	Temporary gene name	aa	Putative function	Proteins with identity score
40-41	$m i d G^{1}$	\{265\}	PKS module7?	NidA5: 55\%; TylGV: 43\%
55-56	mid3-19B ${ }^{1}$	\{243\}	3-oxoadipate enol-lactone hydrolase/4-carboxymuconolactone decarboxylase	SC3A7.07: 61\%
56-57	mid3-19A ${ }^{1}$	\{246\}	hypothetical protein putative exonuclease	SC3A7.08: 72\% \{in 124 aa\} SC3A7.09: 78\% \{in 101 aa $\}$
57-58	mid3-7 ${ }^{1}$	\{250\}	glutamate uptake system ATP-binding protein	$\begin{aligned} & \text { SC4H8. 16c (GluA): } 73 \% \\ & \{\text { in } 147 \text { aa }\} \end{aligned}$

(1) Partial sequence of orfs. (2) The genes, $m d m A$ (A60725), $m d m B$ and $m d m C$ (M93958) were identified elsewhere (see Section 4.9-10). (3) AcyA, Car-orfB and Car-orfP450 (D30759), and CarA (M80346) from S. thermotolerans; DesVI and DesVII from S. venezuelae (AF079762); DnrQ from S. peucetius (L47164); EryCIII (Y14332) and EryCVI (U77459) from Sac. erythraea; NidA from S. caelestis (U78289); OleG2 and OleM1 from S. antibioticus (AJ002638); OrfY from S. hygroscopicus (X86780); SC3A7.07, SC3A7.08 and SC3A7.09 (AL031155), SC4H8.16c (AL020958), and SC9C7.09c (AL035161) from S. coelicolor; TylG (U78289), TylMI, TylMII, TylMIII and ccr (X81885), and TlrD (X97721) from S. fradiae. Acc. no. are given in parentheses. The aa numbers in partial protein sequence are indicated in braces.

Fig. 5.1. Comparison of part of the gene clusters of midecamycin and tylosin. (A) The region of upstream of PKSs (midG and $t y l G I$). (B) The region of downstream of PKSs (midG and $t y l G V$). Genes are not drawn to scale. Genes having the same function from the mid and tyl clusters are drawn by arrow bars with the same dark colour or pattern, in which uc means uncoding sequences, and the deduced gene functions from the mid cluster were listed in Tab. 5.1 and Tab. 5.2. The white arrow bars indicate various genes which are specific in the mid or $t y l$ clusters, in which $t y l$-orf9 and $m e t K$ are not published the sequence data, tylCII encodes a 2,3-enoyl reductase, tylCIII encodes a 3-C-methyltransferase, tylCIV encodes a 4-ketoreductase, tylCV encodes a mycarosyl transferase and tylCVII encodes a 3,5- (or 5-) epimerase (acc. no. AF147704), and the mid genes see Tab. 5.1 and Tab. 5.2.
a partial sequence midO (tylCIV-like) was found on the cosmid Smyc-LC1, upstream of midG (Fig. 5.1). Analogous to $t y l C$-gene organisation, the further genes encoding mycarose biosynthetic enzymes are expected to locate in the region of the $4.2 \mathrm{~kb} B a m \mathrm{HI}-\mathrm{Bg} / \mathrm{II} \mathrm{DNA}$ fragment (site16-17 in Fig. 4.10), next to the midO gene. Very recently, this fragment was partially sequenced by a Cambridge group (Leadlay, personal communication), confirming that it contains a set of genes for mycarose biosynthesis.

As seen in Tab. 5.1, a putative dehydratase gene, temporarily named as midl-6rp, was found in the Smyc-LC1 sub-cluster at the site 17-18 of Fig. 4.10. The deduced product of this gene showed high identities with OleN2 and EryCIV, in which EryCIV might act as a
pyridoxal phosphate-dependent dehydratase to catalyse the removal of a water molecule at C3-C4 during the biosynthesis of desosamine in Sac. erythraea (Gaisser et al., 1997), and OleN2 might be involved in the course of transamination for the biosynthesis of the desosamine precursor of oleandomycin in S. antibioticus. However, since the structure of mycaminose differs from that of desosamine in that no C-4 hydroxyl elimination has to take place, therefore, the finding of midl-6rp gene in the mid gene cluster is currently beyond a useful explanation.

In the sub-cluster contained on Smyc-LC3, the region (4 kb or larger) downstream of midR was found to host genes for which the deduced polypeptide products are highly similar in both structure and order to those of so-called house-keeping genes from the S. coelicolor genome (see Tab. 5.2). These genes in the vicinity of the mid gene cluster might play an important role in the primary metabolism for the synthesis of the sugar or lactone precusors before or during midecamycin biosynthesis. Another, more likely, explanation would be that the whole mid-cluster has been inserted into a control region of the chromosome containing essential genes and, therefore, might be more stable than the genes at the chromosome ends (Lin \& Chen, 1997; Volff et al., 1997).

The mid gene cluster was successfully probed by two homologous genes, midB (encoding a dTDP-glucose 4,6-dehydratase) and midI (encoding a glycosyltransferase). These two genes were first amplified by PCR and then chosen as probes to screen the cosmid library of S. mycarofaciens. This basic strategy was considered mainly on the basis of the published data of the $t y l$ gene cluster, since the two genes, $t y l B$ (as midB) and $t y l M I I$ (as midI) are located at the two sides of the PKS sub-cluster. The data obtained have confirmed that the midB and midI genes in the mid cluster have the same order as in the $t y l$ cluster, and this could be understood as both antibiotics are structurally closely-related 16-membered macrolides. This study could suggest that the midB- or tylB-like genes, and the midI- and tylMII-like genes can now be used as further hybridization probes with much higher safety to quickly isolate other 16 -membered macrolide biosynthetic clusters. Since the dTDPglucose 4,6-dehydratase is a common enzyme catalysing in the biosynthetic pathways of mycaminose, mycarose and other 6-deoxysugars, and glycosyltransferase for the macrolide aminosugar is necessary for sugar transfer to the aglycone directly, i.e., the specific macrolactone ring.

5.3. Hybrid antibiotic production by heterologous complementation

Recombinant DNA techniques now make it possible to produce new antibiotic structures by engineering the biosnythetic pathways of antibiotics. This experimental approach is called combinatorial biosynthesis and the substances thus produced are called hybrid antibiotics. One of the methods to reach this goal is to transform the specific genes into heterologous host strains, express and recombine them there in new combinations. Although there were no antibiotic activities detected when the midK and midI genes were transformed into the Sac. erythraea mutants CIII68 and CIV89 (see Section 4.18), it is a preliminary trial towards hybrid antibiotic production. Moreover, the finding of the mid gene cluster and the analysis of gene functions carried out in this study have opened several opportunities for further efforts to produce novel antibiotics. (1) Three acylation genes, $m d m B, m d m C$ and $m i d E$, could be used to modify the activity of macrolide antibiotics by acylating hydroxyl groups on both lactone and sugar moieties, as was demonstrated earlier engineering of carE from S. thermotolerans into S. thermotolerans and S. lividans (Epp et al., 1989). For example, if $m d m B$ (3-O-acyltransferase), or/and midE (4"-Opropionyltransferase) could be introduced into the tylosin-producing strain, S. fradiae, which does not acylate tylosin, it is expected that the recombinants would produce 3-Oacetyltylosin, or 4"-O-propionyltylosin or 3-O-acetyl 4"-O-propionyltylosin, respectively. (2) The midI gene encodes a glycosyltransferase possibly responsible for transfer of mycaminose to the midecamycin aglycone. Recently, several experiments demonstrated remarkably relaxed specificities of other glycosyltransferases towards both their sugar and aglycone substrates. For instance, Xue et al. (1998) found that the desVII gene could accept both 10-deoxymethynolide, the macrolactone of the 12-membered macrolides methymycin and neomethymycin, and narbonolide, the macrolactone of the 14-membered macrolides narbomycin and pikromycin, as substrates to add the desosamine moiety to their aglycones in S. venezuelae. Moreover, Borisova et al. (1999) revealed that the glycosyltransferase (DesVII) of the desosamine biosynthetic pathway is capable of recognizing the keto sugar intermediate, the macrolide product produced by a des mutant, to attach it to the macrolactone of methymycin. Therefore, it is conceivable that the MidI protein as a component of the condensing machinery in macrolide biosynthesis could further explore its application, including carrying sets of diverse nucleotide sugars, and attaching them to different targets, such as 14- and 16-membered macrolide aglycones, or even an already
glycosylated macrolide. Protein engineering even could widen the specificity of MidI, or hybrids thereof, for the acceptance of completely different aglycones and/or NDP-sugars.

5.4. Heterologous enzyme expression and combined enzymatic analysis

In order to achieve the soluble proteins of MidH, MidC, MidK and MidI, each in their active forms, different expression systems in E. coli and S. lividans were tested and the interpreted results are summarised in Tab. 5.3. To optimize the expression conditions, lower temperature ($28^{\circ} \mathrm{C}$), and slow shaking rate (100 r.p.m.) and different media were compared for expression of MidH, MidC, MidK and MidI in E. coli BL21(DE3)pLysS. As a successful example the native soluble protein of MidH could be obtained when the shaking rate was decreased from 200 r.p.m. to 100 r.p.m. during expression cultivation (cf. Fig. 4.18A). This possibly causes change in the cytoplasmic environment for expression and especially could reduce the rate of protein synthesis and, therefore, could facilitate its correct folding. When the medium of LB/sorbitol/betaine was used instead of LB medium for expression of the four proteins, the production in all cases was significantly increased (see Tab. 5.3). This osmotic stress culture system could decrease growth rates because of reduction of the carbon dioxide level, however, it can facilitate the uptake of the 'compatible solute', glycyl betaine, which is believed to cause thermodynamically unfavourable 'preferential hydration' if excluded from the immediate domains of proteins and, thus minimisation of solvent-protein contact and stabilisation of protein structure could be the result (Arakawa \& Timasheff, 1985; Blackwell \& Horgan, 1991). However, the expression of MidK and MidI in E. coli resulted in strong production of inclusion bodies under various conditions of manipulation tested. Further efforts will have to be made to recover the active proteins of MidK and MidI in E. coli, e.g., by applying other expression strategies, including co-expression of molecular chaperones (Martin \& Hartl, 1997), using thioredoxin-deficient host strains to maintain a favorable redox potential and facilitate disulfide bond formation in the cytoplasmic environment, and/or using soluble polypetide products of the host as fusion partners (Makrides, 1996; Hannig \& Makrides, 1998). Expression of the four proteins failed by using the pUWL201 vector and insertion at the 3' end of the ermE up promoter in S. lividans TK23. One of the possible reasons could be the structure of the ribosomal binding sites (RBS) of these recombinant expression-
plasmids which were taken from that of the pET-cassette. This RBS might not be suitable for the translation of mRNA to protein in Streptomyces.

Tab. 5.3. Summary of protein expression in different expression systems

Protein	Expression plasmids						
	pET11a		pET16b		pUWL201		$\begin{aligned} & \text { pIJ4123 } \\ & \text { (His-tag) } \end{aligned}$
	M1	M2	M1	M2	(native)	(His-tag)	
MidH	++/s	+++/s	+++/is	++++/s	-	w/-	
MidC	++++/s		+++/s		-	w/-	
MidK	+++/is	++++/is	$\begin{gathered} +++ \text { /is } \\ \text { w/+ } \end{gathered}$	$\begin{gathered} ++++/ \text { is } \\ \text { w/+ } \end{gathered}$	-	w/-	w/+
MidI	+++/is	++++/is	$\begin{gathered} +++/ \text { is } \\ \text { w/+ } \end{gathered}$	$\begin{gathered} ++++/ \mathrm{is} \\ \mathrm{w} /+ \end{gathered}$	-	w/-	w/+

$++=$ protein overexpression, the production level is increased with more plus; - = no protein expression on SDS-PAGE gels; $++/ \mathrm{s}$ or $++/$ is $=$ soluble or insoluble proteins were observed on SDS-PAGE gels, respectively; $\mathrm{w} /+=$ soluble proteins were detected by Western boltting; $\mathrm{w} /-=$ no expected proteins were detected by Western boltting. M1: LB liquid medium; M2: LB with sorbitol and betaine.

To characterise the postulated function of MidH as an isomerase and MidC as an aminotransferase in the pathway of mycaminose biosynthesis, a coupling enzymatic reaction of RmlB, MidH and MidC was analysed by HPLC and followed by LC-MS. It was confirmed that: (i) RmlB as a 4,6-dehydratase is to convert the substrate dTDP-D-glucose to the intermediate dTDP-4-keto-6-deoxy-D-glucose (Verseck, 1997); and (ii) MidC is indeed responsible for transamination to form dTDP-amino-6-deoxy-D-glucose (see Section 4.20.2). But it is not clear at this point whether this transamination occurs at $\mathrm{C}-3$ or C-4 since the function of MidH was not individually elucidated. To further characterise the specific function of MidC in the future, it is suggested that all three enzymes have to be purified to reduce non-specific products produced. For instance, dTDP-L-rhamnose was detected as a by-product in the reaction catalysed by the mixture of the crude extracts containing the above three enzymes. The MidK (N-methyltransferase) protein was also combined with RmlB, MidH and MidC to assay the reaction products. However, there was no measurable transfer of methyl groups to the products. The possible reasons were either because the soluble MidK protein was produced at very low levels (see Fig. 4.20), or the protein is inactived.

5.5. Phylogenetic analysis of some enzymes involved in midecamycin biosynthesis

A detailed analysis of the phylogenetic relationships of several of the mid-encoded proteins within the same family of proteins was carried out in order to obtain further information about how the secondary metabolic gene clusters, especially for macrolides, have been evolved. In Fig. 5.2, seven phylograms are re-produced in which the MidD-tree deals with thioesterases, affecting the product accumulation in the producing strains, and the other six trees concern proteins which are involved in de novo mycaminose biosynthetic enzymes.

Fig. 5.2. Phylogenetic trees (non-rooted) of the proteins of MidD, MidA, MidB, MidC, MidH, MidK and MidI aligned with the protein sequences of the corresponding family. The phylograms were calculated by the program PAUP 3.1. The numbers denote the calculated lengths of branches; The numbers in parentheses give the percent score of nodes found in bootstrapping (500 times). For the amino acid sequence alignments see Appendices 7.6 to 7.12. The following sequences were used and identified by their accession numbers in parentheses. MidD-tree: ORF12Ame: Amycolatopsis mediterranei (AF040571); ThiESgr: S. griseus (M93058); PikAVSve: S. venezuelae (AF079138); TylOSfr: S. fradiae (U08223); GrsTBbr: Bacillus brevis (M29703); SC3F7.14Sco: S. coelicolor (AL021409); TesAMtu: Mycobacterium tuberculosis (Z74697); MLCB12.04cMle: M. leprae (AL035480); Orf1Shy: S. hygroscopicus (M64783); PchCPae: Pseudomonas aeruginosa (X82644); Ery3Ser: Sac. erythraea (X60379); SrfADBsu: Bacillus subtilis (X70356). MidA-tree: StrDSgr: S. griseus (X62567); OleDSan1: S. antibioticus (AF055579); DnrLSpe: S. peucetius (L47163); GraDSvi: S. violaceoruber Tü22 (AJ011500); RmlAMle: M. leprae (L78815); TylAISfr: S. fradiae (U08223); AcbAAct: Actinoplanes sp. (Y18523); YifGEco: E. coli (U00096); RmlAEco: E. coli (AF125322); LmbOSli: S. lincolnensis (X79146). MidB-tree: SCF81.08c: S. coelicolor (AL133171); StrESgr: S. griseus (X62567); StrESgl: S. glaucescens (AJ006985); OleESan: S. antibioticus (AF055579); GraESvi: S. violaceoruber Tü22 (AJ011500); TylAIISfr: S. fradiae (U08223); GdhSer: Sac. erythraea (L37354); AcbBact: Actinoplanes sp. (Y18523); AcbDSgl: S. glaucescens (Fa. Hoechst. Dt. Patentanmeldung Nr. 19622783 [1996]); RffEEco: E. coli (M87049); RmlBEco: E. cloi (AF125322); LmbMSli: S. lincolnensis (X79146). MidH-tree: DnrQSpe: S. peucetius (L47164); TylMIIISfr: S. fradiae (X81885); OleP1San: S. antibioticus (AJ002638); DesVIIISve: S. venezuelae (AF079762); SnogNSno: S. nogalater (AF187532); Pra10Ahi: Actinomadura hibisca (D87924); MidC-tree: StsASgr: S. griseus (Y08763); StsCSgr: S. griseus (Y08763); StrSSgr: S. griseus (Y00459); DnrJSpe: S. peucetius (M80237); TylBSfr: S. fradiae (U08223); OleN2San: S. antibioticus (AF055579); DesVSve: S. venezuelae (AF079762); EryCISer: Sac. erythraea (X155541); EryCIVSer: Sac. erythraea (U77459); OleN1San: S. antibioticus (unpublished data); PerSVch: Vibrio cholerae (X59554); LamSSli: S. lincolnensis (X79146). MidK-tree: OleM1San: S. antibioticus (AJ002638); EryCVISer: Sac. erythraea (U77459); StsGSgr: S. griseus (Y08763); GlyMRa: glycine methyltransferase from rat (X07833); LmbJSli: S. lincolnesis (X79146). MidItree: OleG1San: S. antibioticus (AJ002638); OleG2San: S. antibioticus (AJ002638); EryCIISer: Sac. erythraea (Y14332); TylMIISfr: S. fradiae (X81885); EryBVSer: Sac. erythraea (U77459); TylNSfr: S. fradiae (AJ005397).

MidD-tree

MidA-tree

MidB-tree

MidH-tree

MidK-tree

MidC-tree

MidI-tree

The second thioesterase (MidD): The polypeptide product of midD was shown to be highly identical to the second thioesterase encoded by the $t y l O$ gene in tylosin biosynthesis of S. fradiae (Merson-Davis et al., 1994) (see Tab. 5.1), and both genes are located shortly upstream of $m i d G$ and $t y l G$, respectively. As with other type I PKS, the enzyme catalysing the final enlongation step (TylGV) in S. fradiae contains an integral C-terminal thioesterase domain that is believed to be responsible for chain termination and ring closure to produce tylactone; also, the aa sequence is highly identical to the C-terminal segment of the midecamycin PKS, MidG (see Section 4.7). The question then arises what is the function of MidD or TylO, these second (or free) thioesterases in macrolide biosynthesis. Bulter et al. (1999) recently demonstrated that this free thioesterase activity of TylO is necessary for bulk accumulation of tylosin in S. fradiae and that at least 85% of antibiotic production is lost when TylO is inactivated. Therefore, they proposed that the TylO protein carries out an editing function, whereby aberrant polyketide precusors blocking the synthase complex can be removed to allow continued synthesis of normal products. Such free thioesterase genes also have been found in the gene clusters of other macrolide biosynthesis, such as orf5 in Sac. erythraea (Haydock et al., 1991), pikV in S. venezuelae (Xue et al., 1998), as well as the free thioesterase gene in Bacillus subtilis during non-ribosomal peptide biosynthesis (Schneider \& Marahiel, 1998). However, suprisingly, the results of the phylogram showed a close correlation between several sources of organisms (MidD-tree in Fig. 5.2). This could be explained in that either, all of the genes have had a high rate of evolution, or, the DNA fragments have horizontally been transferred between species which probably could reduce the enzyme specificity. In part recent horizontal gene transfer and sometimes recent gene duplication and divergence possibly resulted in two branches, GrsTBbr and SC3F7.14Sco, and TesAMtu and MLCB12.04cMle, respectively.

The dTDP-D-glucose synthase (MidA): This enzyme has been studied in several cases and catalyses the activation of nucleotidyl glucoside in the biosynthetic sequence for 6deoxysugars. In the comparison of the aa sequences of 12 proteins in this family, the MidAtree in Fig. 5.2 revealed that overall there are two principal subgroups, when LmbO, with clearly having a different function, was used as an outgroup. It is indicated in the first group that MidA and TylAI which are the enzymes for 16-membered macrolide sugar biosynthesis in Streptomyces, and AcbA which is the enzyme for the biosynthesis of the $\alpha-$ glucosidase inhibitor acarbose in Actinoplanes, are closer to three other proteins from E.
coli and Mycobacteria. However, MidA and TylAI are distinct from the second group, i.e., enzymes for the same function in the biosynthesis of 14 -membered macrolides (OleD), aminoglycosides (StrE), and anthracyclines (DnrL) in Streptomyces species. This indicates that all of these genes, though being of common ancestry, have undergone divergence in at least the Actinomycetes after horizontal gene migration. Therefore, the relationships seem to be distributed non-taxonomically. In contrast to all other proteins in the MidA-tree, the LmbO protein was proposed to use dTDP-octose instead of dTDP-glucose as substrate for lincomycin biosynthesis in S. lincolnensis (Peschke et al., 1995; Piepersberg, personal communication). Thus, the changed function to accept different substrate probably led to fast evolution of the gene in the producers of lincosamids.

The dTDP-glucose 4,6-dehydratase (MidB): This enzyme is characterised as for conversion of dTDP-D-glucose into dTDP-4-keto-6-deoxyglucose, a common intermediate for most 6-deoxysugars. This is a catalytically NAD^{+}-dependent redox reaction for water elimination (Wierenga et al., 1985; Scrutton et al., 1990). As shown in MidB-tree of Fig. 5.2 , it is obvious that the enzymes in the first large group including 10 members of Actinomycetes sequences are distinct from the second group, two enzymes from E. coli. Multiple branches in the first group may be of recent origin or the genes have recently evolved at different rates. As a result, the MidB, TylAII and Gdh proteins are closelyrelated to each other which are all likely to be involved in macrolide biosynthesis. However, it is important to note, (1) the $g d h$ gene was not found within the erythromycin gene cluster of Sac. erythraea, which lacks the dTDP-glucose 4,6-dehydratase gene, (2) the $\operatorname{mid} B$ gene is separated by another gene, midD, from midA, which is in contrast to the organisation of the equivalent genes in the $t y l$ cluster (cf. Fig. 5.1; the midBD unit might have been inverted later after branching off from a common ancestor in which the gene order was as in the $t y l$ cluster, $t y l A I, A I I, O)$, (3) the OleE protein is more related to those proteins in another branch of actinomycete members, though being used in an erythromycin-like macrolide pathway. This allows the following general conclusions: (i) the genes for the more frequently used first- and second-step enzymes (e.g., MidA, MidB) in dTDP-6-deoxysugar pathways are not necessarily needed as inside components (strongly co-regulated) of the gene clusters (as are more specific genes); (ii) these genes, when present inside the biosynthetic clusters, do not necessarily co-evolve with the cluster. Rather they can be easily gathered from various different sources, probably by horizontal
gene transfer in most cases; (iii) their presence and conservation of these genes are kept under selective pressure only by the end product(s) which are formed from the pathway(s).

The differently functioning LmbM protein was used as an outgroup again in the MidB-tree and confirmed that in the lincomycin biosynthesis, a biosynthetic unit, α methylthiolincosaminide (MTL), utilized a starting sugar other than D-glucose.

The 3,4-isomerase (MidH): The aa sequence comparison of midH to other proteins in the GenBank showed that the top scores of identities to TylMIII and DnrQ are only 35\% and 32%, respectively. Although these proteins showed end-to-end sequence similarity to cytochrome P450 enzymes from a variety of organismal sources, they all lack the critical cysteine residue which provides the characteristic ligand to the heme iron in cytochrome P450 (Bairoch, 1992; Nelson et al., 1993). This fact suggests that they represent a new family of proteins with unknown enzymatic mechanism though they are likely to be derived from cytochrome P450 proteins. The MidH-tree in Fig. 5.2 revealed that these proteins from Actinomycetes seem not to need high sequence conservation. Therefore, rapid divergence could cover to form a new family of enzymes, probably because very few or none of the aa-motifs needed to be conserved for the mechanism. These genes may have had a long period of evolution and during this period they have acquired their species specificity by rapid horizontal gene exchanges to add up to the overall picture of a family of proteins with the low conservation level and no heme-binding motif. It is clear from the recently reported data (Gandecha et al., 1997; Salah-Bey et al., 1998; Madduri et al., 1998) that these proteins are 6-deoxy-hexose 3,4-isomerases involved in 3-aminosugar biosynthesis in several gene clusters. Therefore, the still unknown mechanism of action and the high divergence rate will have to be further analysed in order to interpret this result.

The aminotransferase (MidC): The polypeptide product of midC highly resembles the putative aminotransferases from several deduced gene products in antibiotic biosynthesis, so-called secondary metabolic aminotransferases (SMAT). The phylogenetic tree of 13 members of proteins in the SMAT family (MidC-tree in Fig. 5.2) demonstrated the following. (1) The proteins MidC, TylB, EryCI, OleN2 and DesV for transamination in macrolide biosynthesis are more closely-related than the proteins from other Streptomyces species. In addition, the MidC and TylB proteins of 16 -membered macrolides are much
closer than the proteins of 12- or 14-membered macrolides. (2) The StsA, StsC and StsS proteins are more similar to one another, where StsC acts as the L-glutamine:scyllo-inosose aminotransferase to catalyse the first amino transfer in the biosynthesis of the streptidine subunit of streptomycin, and StsA might catalyse the second step of the cyclitol transamination reaction in S. griseus (Ahlert et al., 1997). The EryCIV and OleN1 proteins are distinct from the proteins of the above macrolide group because they might act as pyridoxal-phosphate-dependent dehydratases during desosamine biosynthesis in the macrolide production as explained in Section 5.2. (3) The branch of the LmbS protein in this phylogram was again used as an outgroup because it is a putative ketooctose aminotransferase (Peschke et al., 1995; Piepersberg, personal communication). Taken together, the macrolide sugar aminotransferases here behave as would be expected from a common brand of PKS and sugar genes (in contrast to the other trees above).

The methyltransferase (MidK): The MidK protein shows significant sequence similarity to a family of SMA-dependent N-methyltransferases from several Streptomces species. A mini-phylogram (MidK-tree in Fig. 5.2) showed that there are two subgroups, a macrolide group and the other group in addition to one outgroup (LmbJ). In the first group, the relationship between MidK and OleM1 is surprisingly closer than that between EryCVI and OleM1. The StsG protein from S. griseus is close to GlyM, a glycine methyltransferase from rat (Ogawa et al., 1987). This reflects the common ancestry on one hand, but also the random and non-predictable horizontal gene transfer between various organisms.

The glycosyltransferase (MidI): The MidI protein highly resembles various glycosyltransferases that are involved in the transfer of various deoxysugars to different aglycones during antibiotic biosynthesis. The MidI-tree (see Fig. 5.2) revealed that, as is expected, the relationship between MidI and TylMII, which are the putative mycaminosyltransferases, is closer than that between EryCIII and OleG2, which are desosaminyltransferases. It is understood that the EryBV protein is distinct from the above four proteins because it is a putative mycarosyltransferase. The OleG1 protein is responsible for oleandrose transfer in the biosynthesis of oleandomycin in S. antibioticus (Olano et al., 1998). However, OleG1 is closer to OleG2 and EryCIII in the MidI-tree. This could be explained in that the oleG1 and oleG2 genes are adjacent in the oleandomycin gene cluster of S. antibioticus, and one gene was derived from the other via recent gene
duplication and subsequent functional divergence. The TylN protein is responsible for 6deoxyallose transfer in tylosin biosynthesis of S. fradiae (Wilson \& Cundliffe, 1998), therefore, it is less-closely related to the TylMII and MidI proteins.

Based on analysis of the deduced functions of the above proteins and mechanistic considerations, the biosynthetic route to dTDP-D-mycaminose, a precursor of midecamycin in S. mycarofaciens is proposed as given in Fig. 5.3, in which the proposed action of the MidH protein (3,4-isomerase) is still hypothetical, since it is the only remaining essential gene product for aminosugar biosynthesis, which could have that function.

Fig. 5.3. The proposed biosynthetic route to mycaminose and the mid-encoding proteins deduced to catalyse the various steps.

6. References

Ahlert J, Distler J, Mansouri K, Piepersberg W (1997) Indentification of $s t s C$, the gene encoding the L-glutamine:scyllo-inosose aminotransferase from streptomycin-producing Streptomycetes. Arch. Microbiol. 168: 102-113.

Altschul SF, Gish W, Miller W, Myers EW, Lipmann DJ (1990) Basic logical alignment search tool. J. Mol. Biol. 215: 403-410.

Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. J. Biophys. 47: 411-414.

Arisawa A, Kawamura N, Tsunekawa H, Okamura K, Tone H (1993) Cloning and nucleotide sequences of two genes involved in the 4"-O-acylation of macrolide antibiotics from Streptomyces thermotolerans. Biosci. Biotechnol. Biochem. 57: 2020-2025.

Arisawa A, Kawamura N, Takeda K, Tsunekawa H, Okamura K, Okamoto R (1994) Cloning of the macrolide antibiotic biosynthesis gene acyA, which encodes 3-Oacyltransferase, from Streptomyces thermotolerans and its use for direct fermentative production of a hybrid macrolide antibiotic. Appl. Environm. Microbiol. 60: 2657-2660.

Arnold A (1996) Klonierung und Screening von 6-Desoxyhexose-Genen in Makrolidproduzierenden Streptomyceten. Diploma thesis, Uni. Wuppertal.

August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chemistry \& Biology 5: 69-79.

Babcock MJ, Kendrick KE (1988) Cloning of DNA involved in sporulation of Streptomyces griseus. J. Bacteriol. 170: 2802-2808.

Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends in Microbiology 6: 76-83.

Baltz RH, Seno ET (1981) Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20: 214225.

Balz RH, Seno ET (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu. Rev. Microbiol. 42: 547-574.

Bairoch A (1992) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 20: 2013-2018.

Bauer NJ, Kreuzman AJ, Dotzlaf JE, Yeh WK (1988) Purification, characterization, and kinetic mechanism of S -adenosyl-L-methionine:macrocin O-methyltransferase from Streptomyces fradiae. J. Biol. Chem. 263: 15619-15625.

Beckmann RJ, Cox K, Seno ET (1989) A cluster of tylosin biosynthetic genes is interrupted by a structurally unstable segment containing four repeated sequences. In: Hershberger CL, Queener SW, Hegeman G (eds). Genetics and Molecular Biology of Industrial Microorganisms. Washington, DC: American Society for Microbiology, p176186.

Beppu T (1996) Genes, enzymes and secondary metabolites in industrial microorganisms. The 1995 Thom Award Lecture. J. Ind. Microbiol. 16: 360-363.

Bibb MJ, Cohen SN (1982) Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces. Mol. Gen. Genet. 187: 265277.

Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein coding sequences. Gene 30: 157-166.

Birmingham VA, Cox KL, Larson JL, Fishman SE, Hershberger CL, Seno ET (1986) Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204: 532-539.

Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.

Blackwell JR, Horgan, R (1991) A novel strategy for production of highly expressed recombinant protein in an active form. FESB Lett. 295: 10-12.

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248254.

Butler AR, Bate N, Cundliffe E (1999) Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem. Biology, 6: 287-292.

Chater K, Hopwood DA, Kieser T, Thompson C (1982) Gene cloning in Steptomyces. Curr. Top. Microbiol. Immunol. 96: 69-95.

Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ (1993) Crystal structure of the Hha DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74: 299-307.

Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polyketide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348: 176-178.

Cortes J, Weissman K, Roberts G, Brown M, Staunton J, Leadlay P (1995) Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268:1487-1489.

Dhillon N, Hale RS, Cortes J, Leadlay PF (1989) Molecular characterization of a gene from Saccharopolyspora erythraea (Streptomyces erythraeus) which is involved in erythromycin biosynthesis. Mol. Microbiol. 3: 1405-1414.

Dickens ML, Ye J, Strohl WR (1996) Cloning, sequencing, and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J. Bacterial. 178: 3384-3388.

Distler J, Manouri K, Piepersberg W (1985) Streptomyces biosynthesis in Streptomyces griseus II: Adjacent genomic location of biosynthetic genes and one of two streptomycin resistance genes. FEMS Microbiol. Lett. 30: 151-154.

Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675-679.

Donadio S, Katz L (1992) Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene 111: 51-60.

Drew S, Demain AL (1978) Effect of primary metabolites on secondary metabolism. Annu. Rev. Microbiol. 31: 343-356.

Epp J, Huber M, Turner J, Goodson T, Schoner B (1989) Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin gene from Streptomycins thermotolerans. Gene 85:293-301.

Fernandez E, Weißbach U, Reillo C, Brana A, Mendez C, Rohr J, Salas J (1998) Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J. Bacteriol. 180: 4929-4937.

Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh WK, Van Frank R, Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc. Natl. Acad. Sci. USA 84: 8248-8252.

Fouces R, Mellado E, Diez B, Barredo (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organisation of the left region. Microbiology, 145: 855-868.

Gaisser S, Böhm G, Cortes J, Leadlay P (1997) Analysis of seven genes from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea. Mol. Gen. Genet. 256: 239-251.

Gaisser S, Trefzer A, Stockert S, Kirschning A, Bechthold A (1997) Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. J. Bacteriol. 1997, 179: 6271-6278.

Gaisser S, Böhm G, Doumith M, Raynal M, Dhillon N, Cortes J, Leadlay P (1998) Analysis of eryBI, eryBIII, eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea. Mol. Gen. Genet. 258: 78-88.

Gandecha AR, Cundliffe E (1996) Molecular analysis of tlrD, a MLS resistance determinant from the tylosin producer, Streptomyces fradiae. Gene 180: 173-176.

Gandecha AR, Large S, Cundliffe E (1997) Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome. Gene 184: 197-203.

Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of polyketide synthese gene in Streptomyces ambofaciens. Mol. Microbiol. 6: 2019-2029.

Gray PP, Bhuwapathanapun S (1980) Production of the macrolide antibiotic tylosin in batch and chemostat culture. Biotechnol. Bioeng. 22: 1785-1804.

Hadfield C (1987) Genomic library cloning - with plasmid, lambda and cosmid vectors. In: Boulnois GJ (eds). Gene Cloning Analysis, a laboratory guide. Blackwell Scientific Publications. p61-105.

Hanahan D (1983) Studies on transformation of E. coli with plasmids. J. Mol. Biol. 166: 557-580.

Hanahan D, Meselson M (1983) Plasmid screening at high density. Methods Enzymol. 100: 333-342.

Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. TIBTECH 16: 54-60.

Hara O, Hutchinson CR (1992) A macrolide 3-O-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens. J. Bacteriol. 174: 5141-5144.

Hara O, Hutchinson CR (1990) Cloning of midecamycin (MLS)-resistance genes from Streptomyces mycarofaciens, Streptomyces lividans and Streptomyces coelicolor A3(2). J. Antibiotics 43: 977-991.

Haydock SF, Dowson JA, Dhillon N, Roberts GA, Cortes J, Leadlay PF (1991) Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol. Gen. Genet. 230: 120-128.

Higgins DG, Bleasby AJ, Fuchs R (1991) CLUSTAL V: improved software for multiple sequence alignment.

Hohn B, Collins J (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11: 291-298.

Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomycetes: A laboratory manual. The John Innes Foundation, Norwich.

Hopwood DA (1988) Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. Roy. Soc. London B 235: 121-138.

Hopwood DA, Khosla C (1992) in Secondary Metabolites: Their Function and Evolution. Ciba Foundation Symposium 171, Wiley, Chichester, UK, p 88-112.

Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96: 9509-9514.

Ingrosso D, Fowler AV, Bleibaum J, Clarke S (1989) Sequence of the D-aspartyl/Lisoaspartyl protein methyltransferase from human erythrocytes. common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J. Biol. Chem. 264: 20130-20139.

Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR-Protocols: a guide to methods and applications. Academic Press, INC.

Jenkins G, Cundliffe E (1991) Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 108: 55-62.

Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR (1991) Structure and sequence of the $r f b$ (O antigen) gene cluster of Salmonella serovar thyphimurium (strain LT2). Mol. Microbiol. 5: 695-713.

Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys. 310: 417-427.

Kakinuma S, Takada Y, Ikeda H, Tanaka H, Ömura S, Hopwood DA (1991) Cloning of large DNA fragments, which hybridize with actinorhodin biosynthesis genes, from kalafungin and nanaomycin A methyl ester producers and identification of genes for kalafungin biosynthesis of the kalafungin producer. J. Antibiotics 44: 995-1005.

Katz L, Donadio, S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875-912.

Kim W, Kim C, Han O (1999) The function of eryBVII gene is to epimerize TDP-6-deoxy-L-threo-D-glycero-4-hexulose in the biosythesis of erythromycim A. J. Biochemistry \& Mol.Biology 32: 72-75.

Kirschning A, Bechthold AFW, Rohr J (1997) Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top. Curr. Chem. 1997, 188: 1-84.

Kuhstoss S, Huber M, Turner J, Paschal J, Rao R (1996) Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 183: 231-236.

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lin YS, Chen CW (1997) Instability of artificially circularized chromosomes of Streptomyces lividans. Mol. Microbiol. 26: 709-719.

Linton KJ, Jarvis BW, Hutchinson CR (1995) Cloning of the genes encoding thymidine diphospho-glucose 4,6-dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5epimerase from the erythromycin-producing Saccharopolyspora erythraea. Gene 153: 3340.

Little P (1987) Choice and use of cosmid vectors. in : Glover DM (eds). DNA cloning Volume III, a practical approach. IRL Press Limited, England, p19-42.

Liu D, Haase AM, Lindqvist L, Lindberg AA, Reeves PR (1993) Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: Identification and characterisation of transferase genes of groups B, C2 and E1. J. Bacteriol. 175: 3408-3413.

Lombó F, Siems K, Brana A, Mendez C, Bindseil K, Salas J (1997) Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin. J. Bacteriol. 179: 3354-3357.

MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992a) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68.

MacNeil DJ, Occi JL, Gewain KM, MacNeil T, Gibbons PH, Ruby CL, Danis SJ (1992b) Complex organization of the Streptomyves avermitilis genes encoding avermectin polyketide synthase. Gene 115: 119-125.

Madduri K, Kennedy K, Rivola G, Inventi-Solari A, Filippini S, Zanuso G, Colombo A, Gewain K, Occi J, MacNeil D, Hutchinson C (1997) Production of the antitumor drug epirubicin (4'-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotech. 16: 69-74.

Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538.

Marck C (1988) "DNA-Strider": a 'C' programm for the fast analysis of DNA and protein sequences on the Macintosh family of computers. Nucleic Acids Res. 16.

Marsden AFA, Caffrey P, Aparico JF, Loughran MS, Staunton J, Leadlay PF (1994) Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263: 378-380.

Martin JF, Liras P (1981) Biosynthetic pathway of secondary metabolites in industrial microorganisms. In: Rehm HJ, Reed G (eds). Biotechnology. Vol.1, Microbial Fundaments, Verlag Chemie, Weinheim, p211-233.

Martin J, Hartl FU (1997) Chaperone-assisted protein folding. Curr. Opin. Struct. Biol. 7: 41-52.

Merson-Davies LA, Cundliffe E (1994) Analysis of five biosynthetic genes from the tylIBA region of the Streptomyces fradiae genome. Mol. Microbiol. 13(2): 349-355.

Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, p433.

Minas W (1997) Fascination Streptomycetes. Bio World 5: 14-17.
Motamedi H, Shafiee A, Cai SJ (1995) Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160: 25-31.

Nakagawa A, Omura S (1984) Structure and stereochemistry of macrolides. In: Omura S (eds). Macrolide antibiotics. Chemistry, biology and practice. Academic Press, Inc., New York, p37-84.

Nelson DR, Kamataki T, Wasman DJ, Guenguerich FP, Estrabrook RW, Feyerensen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 12: 1-51.

Normark S, Bergström S, Edlund T, Grundström T, Jaurin G, Lindberg FP, Olsson O (1983) Overlapping genes. Annu. Rev. Genet. 58: 229-241.

Ogawa H, Konishi K, Takata Y, Nakashima H, Fujioka M (1987) Rat glycine methyltransferase. Complete amino acid sequence deduced from a cDNA clone and characterization of the genome DNA. Eur. J. Biochem. 168: 141-151.

Okazaki R, Okazaki T, Strominger JT, Michelson AM (1962) Thymidine-diphosphate-4-keto-6-deoxyglucose, an intermediate in thymidine-diphosphate-L-rhamnose synthesis in Escherichia coli strains. J. Biol. Chem. 237: 3014-3026.

Olano C, Rodriguez A, Michel J, Mendez C, Raynal M, Salas J (1998) Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring. Mol. Gen. Genet. 259: 299-308.

Omura S, Nakagawa A, Neszmeli A, Gero SD, Sepulchre AM, Piriou F, Lukacs G (1975a) Carbon-13 nuclear magnetic resonance spectral analysis of 16 -membered macrolide antibiotics. J. Am. Chem. Soc. 97: 4001-4009.

Omura S, Nakagawa A, Takeshima H, Mlyazawa J, Kitao C (1975b) A C13 nuclear magnetic resonance study of the biosynthesis of the 16 -membered macrolide antibiotic tylosin. Tetrahedon Lett. 50: 4503-4506.

Omura S, Kitao C, Hamada H, Ikeda H (1979) Bioconversion and biosynthesis of 16membered macrolide antibiotics. X. final steps in the biosynthesis of spiramycin, using enzyme inhibitor: cerulenin. Chem. Pharm. Bull. 27: 176-182.

Omura S (1984) In: Omura S (eds). Macrolide Antibiotics: Chemistry, Biology, and Practice. Academic Press, New York.

Otten SL, Liu X, Ferguson F, Hutchinson CR (1995) Cloning and characterisation of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol. 177: 6688-6692.

Otten S, Gallo MA, Madduri K, Liu X, Hutchinson CR (1997) Cloning and characterization of Streptomyces peutetius dnmZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine. J. Bacteriol. 179: 4446-4450.

Pascarella S, Bossa F (1994) Similarity between pyridoxal/pyridoxamine phosphatedependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes. Protein Sci. 3: 701-705.

Payne SM, Ames BN (1982) A procedure for rapid extraction and high pressure liquid chromatographic separation of the nucleotides and other small molecules from bacterial cells. Anal. Biochem. 123: 151-161.

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85: 2444-2448.

Peschke U, Schmidt H, Zhang HZ, Piepersberg W (1995) Molecular characterisation of the lincomycin production gene cluster of Streptomyces lincolnensis 78-11. Mol. Microbiol. 16: 1137-1156.

Piepersberg W (1994) Pathway engineering in secondary metabolite-producing actinomycetes. Crit. Rev. in Biotech. 14(3): 251.285.

Piepersberg W (1995) Streptomycin and related aminoglycoside. In: Vining LC, Stuttard C (eds). Genetics and biochemistry of antibiotic production. Butterworth-Heinemann, Biotechnology series, Vol. 28, Newton, MA, p531-570.

Piepersberg W, Distler J (1997) Aminoglycosides and sugar components in other secondary metabolites. In: Rehm HJ, Reed G (eds.). Biotechnology. second, completely revised edition, Vol. 7, Verlag Chemie, Weinheim, p397-488.

Pissowotzki K, Mansouri K, Piepersberg W (1991) Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Mol. Gen. Genet. 231: 113-123.

Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from Grampositive bacteria. Technical Tips 11: 217-218.

Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21: 77-96.

Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13: 7207-7221.

Reeves A, Post D, Vanden Boom T (1998) Physical-genetic map of the erythromycinproducing organism Saccharopolyspora erythraea. Microbiology 144: 2151-2159.

Robinson JA (1988) Enzymes of secondary metabolism in microorganisms. Chem. Soc. Rev. 17: 383-452.

Rosteck P Jr, Reynolds P, Hershberger C (1991) Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102: 27-32.

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Sakakibara H, Omura S (1984) Chemical modification and structure-activity relationship of macrolides. In: Omura S (eds). Macrolide antibiotics. Chemistry, biology and practice. Academic Press, Inc., New York, p85-126.

Salah-Bey K, Doumith M, Michel JM, Haydock S, Cortes J, Leadlay PF, Raynal MC
(1998) Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol. Gen. Genet. 257: 542-553.

Sales J, Mendez C (1998) Genetic manipulation of antitumor-agent biosynthesis to produce novel drugs. Tibtech 16: 475-482.

Sambrook J, Fritsch EF, Manniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York.

Sanger F, Nicklan S, Coulson AR (1977) DNA sequencing with chain-determination inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch. Microbiol. 169: 404-410.

Schoner B, Geistlich M, Rosteck P Jr, Rao RN, Seno E, Reynolds P, Cox K, Burgett S, Hershberger C (1992) Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 115: 93-96.

Schwecke T, Aparicio JF, Molnár I, König A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortés J, Lester JB, Böhm GA, Staunton J, Leadlay PF (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92: 7839-7843.

Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343: 38-43.

Solenberg P, Matsushima P, Stack D, Wilkie S, Thompson R, Baltz R (1997) Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biology 4: 195-202.

Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-521.

Stanzak R, Matsushima P, Baltz RH, Rao RN (1986) Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from Streptomyces erythraeus. Bio/Technology 4: 229-232.

Stassi D, Donadio S, Staver MJ, Katz L (1993) Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175: 182-189.

Steven AF, Cundliffe E (1997) Stimulation of polyketide metabolism in Streptomyces fradiae by tylosin and its glycosylated precursors. Microbiology 143: 3871-3876.

Stockmann M, Piepersberg W (1992) Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes. FEMS Microbiol. Lett. 90: 185-190.

Stratmann A (1997) Identifizierung eines Acarbose-Biosynthesegenclusters in Actinoplanes sp. und Charakterisierung ausgewählter Enzyme des Acarbose-Stoffwechsels. PhD thesis, Uni. Wuppertal.

Studier WF, Rosenberg AH, Dunn JJ, Dubendroff JW (1990) Use of the T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 61-89.

Summers RG, Donadio S, Staver MJ, Wendt-Pienkowski E, Hutchinson CR, Katz L (1997) Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology 143:3251-3262.

Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostreptoninducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166: 133-137.

Thompson MW, Strohl WR, Floss HG (1992) Purification and characterisation of TDP-D-glucose 4,6-dehydratase from anthracycline-producing streptomycetes. J. Gen. Microbiol. 138: 779-786.

Thorson JS, Lo SF, Liu HW, Hutchinson CR (1993) Biosynthesis of 3,6dideoxyhexoses: new mechanistic reflections upon 2,6-dideoxy, 4,6-dideoxy, and amino sugar construction. J. Amer. Chem. Soc. 115: 6993-6994.

Torkkell S, Ylihonko K, Hakala J, Skurnik M (1997) Characterization of Streptomyces nogalater genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis. Mol. Gen. Genet. 256: 203-209.

Vara J, Hutchinson CR (1988) Purification of thymidine-diphospho-D-glucose 4,6dehydratase from an erythromycin-producing strain of Saccharopolyspora erythraea by high resolution liquid chromatography. J. Biol. Chem. 263: 14992-14995.

Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythraeus). J. Bacteriol. 171: 5872-5881.

Verseck S (1997) Klonierung und Expression von bakteriellen Enzymen der Biosynthese von 6-Desoxyhexose-Derivaten und deren Verwendung zur präparativen Herstellung von dTDP-aktivierten Hexosen. PhD thesis, Uni. Wuppertal.

Vieira J, Messing JR (1982) The pUC plasmids and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259-268.

Vining LC (1992) Roles of secondary metabolites from microbes. In: Wiley J, Sons (eds). Secondary Metabolites: Their Function and Evolution. Ciba Foundation Symposium 171, a Wiley-interscience Publication, p184-198.

Volff JN, Viell P, Altenbuchner J (1997) Artifical circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans. Mol. Gen. Genet. 253: 753-760.

Wakil SJ (1989) Fatty acid synthase, a proficient mutifunctional enzyme. Biochemistry 28: 4523-4530.

Walker JB (1975) Pathway of biosynthesis of the guanidinated inositol moieties of streptomycin and bluensomycin. Methods Enzymol. 43: 429-470.

Walker JB, Walker MS (1969) Streptomycin biosynthesis. Transamination reactions involving inosamines and inosadiamines. Biochemistry 8: 763-770.

Wang SF, Gabriel O (1969) Biological mechanisms involved in the formation of deoxy sugars. V. Isolation and crystallization of thymidine diphosphate-D-glucose oxidoreductase from Escherichia coli B. J. Biol. Chem. 244: 3430-3437.

Weber JM, Wierman CK, Hutchinson R (1985) Genetic analysis of erythromycin production in Streptomyces erythraeus. J. Bacteriol. 164: 425-433.

Weber JM, Schoner B, Losick R (1989) Identification of a gene required for the terminal step in erythromycin A biosynthesis in Saccharopolyspora erythraea (Streptomyces erythraeus). Gene 75: 235-241.

Weber JM, Leung JO, Swanson SJ, Idler KB, McAlpine JB (1991) An erythromycin derivative produced by trageted gene disruption in Saccharopolyspora erythraea. Science 252: 114-117.

Wehmeier UF (1995) New multifunctional Escherichia coil-Streptomyces shuttle vectors allowing blue-white screening on Xgal plates. Gene 165: 149-150.

Weis JH, Quertermous T (1987) Construction of recombinant DNA libraries. In : Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (eds.). Current Protocols in Molecular Biology. Supplement 4. New York: John Wiley and Sons.

Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14: 99-110.

Wierenga RK, De Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with α-helices in dinucleotide binding proteins. J. Biochem. 24: 1346-1357.

Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol. Microbiol. 25: 1177-1184.

Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Eschericha coli. Biotechnology 9: 443-448.

Williams N, Wander J (1980) Deoxy and branched-chain sugars. In: Pigman W, Horton D (eds). The Carbohydrates: Chemistry and Biochemistry. New York: Academic, p761-798.

Wilson V, Cundliffe E (1998) Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer Streptomyces fradiae. Gene 214: 95-100.

Winston SE, Fuller SA, Hurrell JGR (1987) Western blotting. In : Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K (eds.). Current Protocols in Molecular Biology. Supplement 4. New York: John Wiley and Sons.

Woodward RB (1957) Angrew. Chem. 69: 50-58.
Wu JC, Santi DV (1987) Kinetic and catalytic mechanism of HhaI methyltransferase. J. Biol. Chem. 262: 4778-4786.

Wu JC, Santi DV (1988) High level expression and purification of HhaI methyltransferase. Nucleic Acids Res. 16: 703-717.

Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95: 12111-12116.

Ylihonko K, Tuikkanen J, Jussila S, Cong L, Mäntsälä P (1996) A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and
complementation of early-block mutations in the anthracycline pathway. Mol. Gen. Genet. 251: 113-120.

Zalacain M, Cundliffe E (1991) Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97: 137-142.

7. Appendices

7.1 The nucleotide and encoded amino acid sequences of the midM region of Smyc-LC1

1										31									
$\begin{aligned} & \text { TTT } \\ & 61 \end{aligned}$	CTC	CGT	GCA	TCC	CTC	TCG	CAC	GTG	AAC	$\begin{aligned} & \text { AGT } \\ & 91 \end{aligned}$	GAA	GTG	TTC	AGC	ACC	GGG	ACG	GCG	AGG
ACA	ACC	GGC	GAG	CGG	TGA	ATG	TGT	CAG	GGT	GCC	GGG	GGC	GCT	GCG	GCA	GCC	CCG	GCG	GTT
121										151									
TCC	CGT	CCG	CGG	GGG	CGG	ACG	GGG	AGG	TCA	TTG	TGT	CAG	GAC	TCC	CTT	GCT	GGC	GAT	CTT
181										211									
GAG	CGA	TTC	ATA	C	TCA	G	G	G	GA	GAC	CGA	AGT	GCC	GC	TC	CG	TGC	TCG	TC
241										271									
CGC	CGT	ACC	ACT	TCC	CAA	GGA	GAA	TGG	CCG	ATG	TCC	GAG	GCT	CCG	ACA	GTG	CCA	CTC	AA
												E	A	P	T	V	P	L	E
										MidM	\longrightarrow								
301										331									
CTC	AGC	AAG	GAG	GCG	AAC	GCC	CAG	GAA	CTC	CTG	GGA	CTG	GGT	TCG	CCT	TCA	ACC	GGG	ACC
L	S	K	E	A	N	A	Q	E	L	L	G	L	G	S	P	S	T	G	T
361										391									
CAT	CAC	CCG	GTC	TTC	TGG	GAC	GAG	AAT	TGG	GCA	TGC	CTG	GGC	AAG	GTC	TTC	CGT	TAC	GAC
H	H	P	V	F	W	D	E	N	W	A	C	L	G	K	V	F	R	Y	D
421										451									
GAC	TAC	CTG	ACG	GTC	TCC	AAC	AAT	CCG	CAG	TTC	TTC	TCC	TCC	GAC	TTC	AAC	GAG	GTC	ATG
D	Y	L	T	V	S	N	N	P	Q	F	F	S	S	D	F	N	E	V	M
481										511									
CCG	ACC	CCG	CCC	GAG	CTG	GAG	AtG	GTC	ATC	GGG	CCG	GGG	ACC	ATC	GGC	GCC	CTC	GAC	CCG
P	T	P	P	E	L	E	M	V	I	G	P	G	T	I	G	A	L	D	P
541										571									
CCC	GCC	CAC	GGC	CCG	ATG	CGC	AAG	CTG	GTC	AGC	CAG	GCC	CTC	ACC	CCG	CGG	CGG	ATG	GCC
P	A	H	G	P	M	R	K	L	V	S	Q	A	L	T	P	R	R	M	A
601										631									
CGT	CTG	GGA	CCC	CGC	ATC	CGG	GCC	GTC	ACT	CAG	GGG	CTC	CTC	GAT	GCG	GTG	CGC	GGC	CAG
R	L	G	P	R	I	R	A	V	T	Q	G	L	L	D	A	V	R	G	Q
661										691									
GAG	ACC	ATC	GAC	GTC	GTC	GGC	GAC	CTC	TCC	TAC	GCC	CTG	CCC	GTG	ATC	GTC	ATC	GCC	GAG
E	T	I	D	V	V	G	D	L	S	Y	A	L	P	V	I	V	I	A	E
721										751									
CTG	CTG	GGC	ATA	CCG	TCC	GGT	GAC	CGC	GAT	GTG	TTC	CGC	GGG	TGG	GTC	GAC	ACC	CTG	CTC
L	L	G	I	P	S	G	D	R	D	V	F	R	G	W	V	D	T	L	L
781										811									
ACC	AAC	GAG	GGC	CTG	GGG	TAC	CCG	AGC	CTC	CCG	GAC	AAC	TTC	AGC	GAG	ACG	ATC	GCC	CCC
T	N	E	G	L	G	Y	P	S	L	P	D	N	F	S	E	T	I	A	P
841										871									
GCC	CTC	AAG	GAG	ATG	ACC	GAC	TAT	CTC	CTG	CAC	CAG	ATT	CAC	GCC	AAG	CGC	GAG	GCC	CCG
A	L	K	E	M	T	D	Y	L	L	H	Q	I	H	A	K	R	E	A	P
901										931									
GTC	GAC	GAC	CTG	ATC	TGC	GGC	CTG	GTC	CAG	GCC	GAG	CAG	GAC	GGC	CGC	AAG	CTC	ACC	GAC
V	D	D	L	I	C	G	L	V	Q	A	E	Q	D	G	R	K	L	T	D
961										991									
GTG	GAG	ATC	GTC	AAC	ATC	GTG	GCC	CTG	CTG	CTC	ACC	GCC	GGG	CAC	GTC	TCG	TCA	AGC	ACG
V	E	I	V	N	I	V	A	L	L	L	T	A	G	H	V	S	S	S	T
1021										1051									
CTG	CTC	AGC	AAC	CTC	TCC	CTG	GTA	CTG	GAG	GAG	AAC	CCG	CAG	GCG	CTG	GCG	GAC	CTG	CGC
L	L	S	N	L	S	L	V	L	E	E	N	P	Q	A	L	A	D	L	R
1081										1111									
GCC	GAC	CGC	GAG	CTG	GTG	ACC	GGT	GCG	GTG	GAG	GAG	ACA	CTG	CGC	TAC	CGC	AGC	CCC	TTC
A	D	R	E	L	V	T	G	A	V	E	E	T	L	R	Y	R	S	P	F
1141										1171									
AAC	AAC	ATC	TTC	CGC	TTC	CTC	AAG	GAG	GAC	ACC	GAC	ATC	CTC	GGC	CCG	GAA	ATG	AAG	AAG
N	N	I	F	R	F	L	K	E	D	T	D	I	L	G	P	E	M	K	K
1201										1231									
GGC	CAG	ATG	GTC	ATC	GCC	TGG	AGC	CAG	TCG	GCC	AAC	CGC	GAC	CCC	GAA	CAC	TTC	CCG	GAG
G	Q	M	V	I	A	W	S	Q	S	A	N	R	D	P	E	H	F	P	E
1261										1291									
CCC	GAC	ACC	TTC	GAC	ATC	CGA	CGC	TCA	AGC	AGC	TCC	CGC	CAT	ATG	GCG	TTC	GGC	ATC	GGT
P	D	T	F	D	I	R	R	S	S	S	S	R	H	M	A	F	G	1	G
1321										1351									
ATT	CAC	CAC	TGC	CTG	GGC	GCC	TTC	CTG	GCA	CGT	CAG	GAA	GGC	AAG	GTG	GTA	CTG	GAA	CTG
I	H	H	C	L	G	A	F	L	A	R	Q	E	G	K	V	V	L	E	L

$1381 \quad 1411$
Atg Ctg gat Cag gic agg gai tic gag ctc Ggt acc cga gat cct cta gag tcg ac* M L D Q V R E F E L G T R D

* The sequence is not complete at the 3^{\prime} end.

7.2. The nucleotide and encoded amino acid sequences of the midCA region of Smyc-LC1

1										31										
GGC	CCA	ATG	GTT	TTG	CCG	AGT	GCT	CAA	GGA	AtT	CGC	ACC	GGA	ATC	GTT	CGC	CCT	TAG	TCC	
61										91										
TTC	GCT	CGC	GGC	ATA	CGA	GGA	GTC	CGA	TTA	TTA	CCG	CGA	CTA	CGA	CAC	AtT	CCT	GCG	CGA	
121										151										
CGC	ATG	GAG	CAT	AAA	GTG	AAC	GTG	CCC	TTT	CCT	CGA	CGC	GGG	TGC	GGC	TAT	CGG	GAG	CTG	
	M	E	H	K	V	N	V	P	F	P	R	R	G	C	G	Y	R		L	
	MidC	\rightarrow																		
181										211										
CGG	GCC	GAC	ATC	GAC	GGG	GCC	CTT	CGG	CGG	GTG	TCC	GCC	TCC	GGA	CGC	TAT	CTG	CTG	GGT	
R	A	D	I	D	G	A	L	R	R	V	S	A	S	G	R	Y	L	L	G	
241										271										
GCG	GAA	CTG	GCG	GGG	TTC	GAG	GCG	GAA	TTC	GCC	GCG	TAC	TGC	GAC	AAC	GAC	TGC	GTG	GCG	
A	E	L	A	G	F	E	A	E	F	A	A	Y	C	D	N	D	C	V	A	
301										331										
GTC	GGC	AGC	GGC	TGC	GAC	GCC	CTG	GAG	CTG	GTG	CGC	GCG	CTC	GGC	ATC	GGC	CCC	GGT	GAC	
V	G	S	G	C	D	A	L	E	L	V	R	A	L	G	I	G	P	G	D	
361										391										
GAG	GTG	GTG	GTG	CCC	GCG	CAC	ACC	TTC	ATC	GGC	ACC	TGG	CTG	GCG	GTG	TCC	GCC	GCC	GGG	
E	V	V	V	P	A	H	T	F	I	G	T	W	L	A	V	S	A	A	G	
421										451										
GCC	CGG	CCG	GTG	GGT	GTC	GAC	CCG	ACG	CCG	GAC	GGG	CTG	TCC	ATG	GAC	CCG	GCG	CAG	GTG	
A	R	P	V	G	V	D	P	T	P	D	G	L	S	M	D	P	A	Q	V	
481										511										
GAG	GCG	GCG	ATC	ACT	CCC	CGG	ACC	AGG	GCC	GTG	ATG	CCG	GTG	CAT	CTG	TAC	GGG	CAT	CCG	
E	A	A	I	T	P	R	T	R	A	V	M	P	V	H	L	Y	G	H	P	
541										571										
GCC	GAT	CTG	GAC	CCG	CTT	CTG	GCG	ATC	GCC	GAA	CGG	CAC	GGC	CTG	GCC	GTG	GTG	GAG	GAC	
A	D	L	D	P	L	L	A	I	A	E	R	H	G	L	A	V	V	E	D	
601										631										
GCC	GAG	CAG	GCG	CAC	GGC	GCC	CGC	TAC	CGG	GGC	CGC	CGG	ATC	GGC	TCG	GGC	CAT	GTG	GTC	MidC
A	E	Q	A	H	G	A	R	Y	R	G	R	R	I	G	S	G	H	V	V	
661										691										
GCG	TTC	AGC	TTC	TAC	CCC	GGC	AAG	AAC	CTC	GGC	GCC	ATG	GGA	GAC	GGC	GGG	GCG	GTG	GTC	
A	F	S	F	Y	P	G	K	N	L	G	A	M	G	D	G	G	A	V	V	
721										751										
ACC	GGC	GAC	GCC	GCC	CTG	GCC	GAC	CGG	ATC	CGG	CTG	CTG	CGC	AAA	TGC	GGC	TCC	CGT	GAG	
T	G	D	A	A	L	A	D	R	I	R	L	L	R	K	C	G	S	R	E	
781										811										
AAG	TAC	CGG	CAC	GAG	GTA	CAG	GCC	ACC	AAC	TCG	CGG	CTC	GAC	GAG	TTC	CAG	GCC	GCC	GTG	
K	Y	R	H	E	V	Q	A	T	N	S	R	L	D	E	F	Q	A	A	V	
841										871										
CTG	CGC	GCC	AAG	CTG	CCA	CGG	GTG	CCG	GCC	TGG	AAC	GCC	CTC	CGA	GTG	CGC	ACG	GCC	GAG	
L	R	A	K	L	P	R	V	P	A	W	N	A	L	R	V	R	T	A	E	
901										931										
CGC	TAC	AGC	CAG	GTC	TTG	GGT	GCC	CTC	CCG	CAG	ATT	GCC	GTC	CCC	GCC	GCC	GCC	CCC	TGG	
R	Y	S	Q	V	L	G	A	L	P	Q	I	A	V	P	A	A	A	P	W	
961										991										
GCC	GAT	CCG	GTG	TGG	CAC	CTT	TAT	GTG	ATC	CTG	CGC	GCG	AAC	CGC	GAC	GAA	CTG	CGC	CGC	
A	D	P	V	W	H	L	Y	V	I	L	R	A	N	R	D	E	L	R	R	
1021										1051										
CGA	ATC	GAA	CGG	GCC	GGG	GTG	GAG	ACC	CTG	ATC	CAC	TAC	CCC	GTA	CCG	CCC	CAC	CGG	ACC	
R	I	E	R	A	G	V	E	T	L	I	H	Y	P	V	P	P	H	R	T	
1081										1111										
CCG	GCC	TAC	GCC	GAC	GAT	TCC	GGC	CGG	CGC	TCC	GGC	CGC	ACC	CAC	CCG	CTC	AGC	GAA	CGC	
P	A	Y	A	D	D	S	G	R	R	S	G	R	T	H	P	L	S	E	R	
1141										1171										
CGT	GCG	GCG	GAG	AGC	CTC	AGC	CTT	CCC	TCG	GGC	CCC	CAC	CTC	GGG	GAC	GAC	GCG	TTC	CAG	
R	A	A	E	S	L	S	L	P	S	G	P	H	L	G	D	D	A	F	Q	
1201										1231										
ACC	GTC	GTA	GCG	GCG	GTC	CGC	GCG	GCG	GCC	GTA	GGA	CTG	CCG	GCG	TAT	CCG	GCG	CCG	GAC	
T	V	V	A	A	V	R	A	A	A	V	G	L	P	A	Y	P	A	P	D	

1261

1291
GAC ACG GAG CGC GCG ACG CCG GGC GGC CAC CGT CTT CCT CTA TCG ACG GAG ATA CGA TGA
 CCG AgA CCA TAt CGG GGT GTC CCG GAA TGA AGG GAA TCA TCC TCG CCG GTG GCG GTG GCA

R	L	R	P	L	T	G	T	L	S	K	Q	L	L	P	V	Y	N	K	P

14411471

CGA TGA TCT ACT ACC CGC TGT CCG TGC TGA TGC TGG GCG GCA TCA ACG AGA TCC TCA TTA
 15011531 TCT CCA CGC CGG ACC ATA TCC TTG AGC AGT TCA GCG GCT GCT GGC GAC GGG TCC GGC TCG
 GCC TCG ACA TCA CGT ACG CGG AGA GCC CGA GCC CCA GGG GCA TCG CCC AGG CCC TCA CCA
 16211651
TCG GCT CGG ACC ACA TCG GCA ACT CCC CGG TGG CGC TGA TCC TGG GCG ACA ACA TCT TCC
 16811711 ACG GCC CCG GGT TCT CCT CCG TGC TCC AGG GCA GCA TCC GCC ACC TTG ACG GCT GTG TGC
TGT TCG GCT ATC CGG TGA GCG ATC CAG GGC GCT ACG GCG TCG GGG AGA TCG ACC GGG ACG

18011831
GGC TGC TGC TCT CCC TGG AGG AGA AGC CCG TTC GTC CCC GCT CCA ACC TGG CCG TCA CCG

GGC TGT ACC TCT ACG ACA ACG ACG TCG TCG ACA TCG CCA AGA ACA TCA GGC CGT CCG CAC

19211951
GCG GTG AGT TGG AGA TCA CCG ACG TCA ACA AGG TCT ATC TGG AGC AGC GAC GCG CCC GGT

19812011
TGA TCG AGC TGG GTC ACG GCT TCG CCT GGC TGG ACA TGG GTA CCC ACG ACT CGC TGC TCC

20412071
AGG CCA GCC AGT ACG TCC AAC TGC TGG AGC AGC GCC AGG GGG TGC GGA TCG CCT GCG TCG

2101 Q 2131
AGG AGA TCG CCC TGC GGA TGG GGT TCA TCA ACG CCG ACG AGC TGT ATC TGC TCG GCT GCG
$\begin{array}{lllllllllllllllllll}\mathrm{E} & \mathrm{I} & \mathrm{A} & \mathrm{L} & \mathrm{R} & \mathrm{M} & \mathrm{G} & \mathrm{F} & \mathrm{I} & \mathrm{N} & \mathrm{A} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{L} & \mathrm{L} & \mathrm{G} & \mathrm{C} \\ \mathrm{E}\end{array}$
$2161 \quad 2191$
AGC TGG GCA ACT CGG GCT ACG GCT CCT ACC TGA TGG AGG tGg CTT CCC ATG CCG GCG CTG

22212251
CCT GAG ACG GAA CCG TGG ACC AAC ACC CGG GGC ATC ATC CGG GGA CCG CTG CGG ATT CCC
22812311
GGT ACC GAT CTC CGG TAC CCG GGG ATC CTC CTA G

7.3. The nucleotide and encoded amino acid sequences of the midDBL region of Smyc-LC1

1										31									
CTG	CAG	GCG	GTC	GGC	GTA	GTC	GGC	CTC	GGC	GAC	GGA	CCC	CGG	TTC	AGG	CCG	CAT	GGC	TCC
GAC	GTC	CGC	CAG	CCG	CAT	CAG	CCG	GAG	CCG	CTG	CCT	GGG	GCC	AAG	TCC	GGC	GTA	CCG	AGG
														*	A	A	H	S	G
61										91									
CCC	TGG	CGC	CCG	CGG	GGA	GCA	GCG	GTG	CGA	GGG	TGT	CCA	TGA	GGG	CCC	CGC	ACA	CCT	CTG
GGG	ACC	GCG	GGC	GCC	CCT	CGT	CGC	CAC	GCT	CCC	ACA	GGT	ACT	CCC	GGG	GCG	TGT	GGA	GAC
R	A	G	A	P	L	L	P	A	L	T	D	M	L	A	G	C	V	E	A
121										151									
CGA	CCT	GCT	GGT	AGA	GGA	AGA	AGT	GGC	CGC	CGG	GGA	AGG	TCC	GCA	CCT	GGG	CGC	CGG	CCT
GCT	GGA	CGA	CCA	TCT	CCT	TCT	TCA	CCG	GCG	GCC	CCT	TCC	AGG	CGT	GGA	CCC	GCG	GCC	GGA
V	Q	Q	Y	L	F	F	H	G	G	P	F	T	R	V	Q	A	G	A	E
181										211									
CCG	CGA	CGG	CCT	GCC	ATG	CCG	CTG	CCT	CGG	TCG	CCG	TGA	CGT	TGG	GGT	CGT	CGG	CGC	CGG
GGC	GCT	GCC	GGA	CGG	TAC	GGC	GAC	GGA	GCC	AGC	GGC	ACT	GCA	ACC	CCA	GCA	GCC	GCG	GCC
A	V	A	Q	W	A	A	A	E	T	A	T	V	N	P	D	D	A	G	T
241										271									
TGA	ACA	CGG	TGA	GCG	CGG	AGG	CCA	GCG	GCG	CCC	CGG	GCG	GGT	GGG	TGT	AGG	TCC	CCA	CGG
ACT	TGT	GCC	ACT	CGC	GCC	TCC	GGT	CGC	CGC	GGG	GCC	CGC	CCA	CCC	ACA	TCC	AGG	GGT	GCC
F	V	T	L	A	S	A	L	P	A	G	P	P	H	T	Y	T	G	V	A
301										331									
CCC	GGT	AGT	CGT	TGC	GGA	TCG	CGG	GCA	GCA	CCA	TCT	GCA	GCA	GCT	CGG	GGT	CGT	TGA	GCA
GGG	CCA	TCA	GCA	ACG	CCT	AGC	GCC	CGT	CGT	GGT	AGA	CGT	CGT	CGA	GCC	CCA	GCA	ACT	CGT
R	Y	D	N	R	I	A	P	L	V	M	Q	L	L	E	P	D	N	L	L
361										391									
GAC	TCT	CGT	CGG	TGC	CTT	CGA	GCG	AGC	GGA	GCT	CAG	CCA	GCA	GCC	GGT	CGT	CGT	CAT	AGA
CTG	AGA	GCA	GCC	ACG	GAA	GCT	CGC	TCG	CCT	CGA	GTC	GGT	CGT	CGG	CCA	GCA	GCA	GTA	TCT
S	E	D	T	G	E	L	S	R	L	E	A	L	L	R	D	D	D	Y	L
421										451									

GGT GCA CGG TCA TCG GAC GGT TCA CGA TGG GGG CCC GGC GGC CGG AGA CCA CCA ATC CGG
CCA CGT GCC AGT AGC CTG CCA AGT GCT ACC CCC GGG CCG CCG GCC TCT GGT GGT TAG GCC 481
CCG GCG CCG CCC CCC GCT GCT GGA GCA CGC GGG CGA CCT CGT AGG CCA CGG TGG CGC CCA GGC CGC GGC GGG GGG CGA CGA CCT CGT GCG CCC GCT GGA GCA TCC GGT GCC ACC GCG GGT
$\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{R} & \mathrm{Q} & \mathrm{Q} & \mathrm{L} & \mathrm{V} & \mathrm{R} & \mathrm{A} & \mathrm{V} & \mathrm{E} & \mathrm{Y} & \mathrm{A} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{G} & \mathrm{M}\end{array}$ 541571
TGC TGT GCC CGA AGA GCA CCA GGG GCC GGT CGG AGT GCG TCG CCA GCA CCt CGG CCA GGG ACG ACA CGG GCt TCT CGT GGT CCC CGG CCA GCC TCA CGC AGC GGT CGT GGA GCC GGT CCC

GCt CGA CCA GGC CCT CGA TGG TCC CGA TCA GCG GCT CGC CGC GGC GGT CCT GGC GGC CGG CGA GCt GGT CCG GGA GCT ACC AGG GCT AGT CGC CGA GCG GCG CCG CCA GGA CCG CCG GCC
 661691
 CCA TGA CCT GCC GGT CGT AGA GCT GGA CCA GCC CGT CGC AGA CCT GCT TGC CGT CCT TCC $\begin{array}{ccccccccccc}Y & \text { Q } & \text { V } & \text { A } & \text { L } & \text { M } & \text { E } & \text { V } & \text { Q } & \text { D } & \text { P } \\ 721 & & & & & & & & & & 751\end{array}$
ACG TGG CCG AGC CGC CGG CGT GCG GGA AGC AGA CCA GCC GCA CCG CAG GGG CCG GCC GGg TGC ACC GGC TCG GCG GCC GCA CGC CCT TCG TCT GGT CGG CGT GGC GTC CCC GGC CGG CCC $\begin{array}{llllllllllllllllllllllll}\mathrm{T} & \mathrm{A} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{A} & \mathrm{H} & \mathrm{P} & \mathrm{F} & \mathrm{C} & \mathrm{V} & \mathrm{L} & \mathrm{R} & \mathrm{V} & \mathrm{A} & \mathrm{P} & \mathrm{A} & \mathrm{P} & \mathrm{R} & \mathrm{A}\end{array}$ 781 A 811 CCG GTA ACC GGC GCA GCA CAA GGT CGC TCA GGA GGC GCG GAT CTG TCG ATG CGG ACA CGA GGC CAT TGG CCG CGT CGT GTT CCA GCG AGT CCT CCG CGC CTA GAC AGC TAC GCC TGT GCT $\begin{array}{lllllllllll}\text { P } & \mathrm{L} & \mathrm{R} & \mathrm{R} & \mathrm{L} & \mathrm{V} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{L} & \mathrm{L}\end{array}$

841
871
AGg TTC ATC GTC CTT TCT TGA GGG GCT TCC ACC ACG CGC GGT TCT CGC GAt ACC AGC GCA TCC AAG TAG CAG GAA AGA ACT CCC CGA AGG TGG TGC GCG CCA AGA GCG CTA TGG TCG CGT
 901931
CGG TCT CCG CCA GTC CCT CGT CGA TAC CGA TCC GCG GCG CAT AGC CCA GCT CAT TGG CGA GCC AGA GGC GGT CAG GGA GCA GCT ATG GCT AGG CGC CGC GTA TCG GGT CGA GTA ACC GCT
 961991
TCT TGG CGT AGT CGA CGG AGT AGC GGC GGT CGT GGC CCT TGC GGT CCG GTA CCT CCC GCA AGA ACC GCA TCA GCT GCC TCA TCG CCG CCA GCA CCG GGA ACG CCA GGC CAT GGA GGg CGT $\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{A} & \mathrm{Y} & \mathrm{D} & \mathrm{V} & \mathrm{S} & \mathrm{Y} & \mathrm{R} & \mathrm{R} & \mathrm{D} & \mathrm{H} & \mathrm{G} & \mathrm{K} & \mathrm{R} & \mathrm{D} & \mathrm{P} & \mathrm{V} & \mathrm{E} & \mathrm{R} & \mathrm{V}\end{array}$

1021
1051
CCG CCG ACC AGT CGG TTC GCA CAG CTT CAG CAG GGC GTT CGG TGA GCT CGG TGT TGG TCA GGC GGC TGG TCA GCC AAG CGT GTC GAA GTC GTC CCG CAA GCC ACT CGA GCC ACA ACC AGT $\begin{array}{lllllllllllllllllllll}\text { A } & \mathrm{S} & \mathrm{W} & \mathrm{D} & \mathrm{T} & \mathrm{R} & \mathrm{V} & \mathrm{A} & \mathrm{E} & \mathrm{A} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{T} & \mathrm{L} & \mathrm{E} & \mathrm{T} & \mathrm{N} & \mathrm{T} & \mathrm{L}\end{array}$ 10811111
GTt CGG TGC CGC CGC CGA TGT TGT AGA CCT TCG CCG GGC GGC CGC CCC GGG CCA CCA GGG CAA GCC ACG GCG GCG GCT ACA ACA TCT GGA AGC GGC CCG CCG GCG GGG CCC GGT GGT CCC
 11411171
CGA TGC CCC GGC AGT GGT CGT CCA CGT GCA GCC AGT CGC GCC GGT TGC CGC CGT CGC CGT GCT ACG GGG CCG TCA CCA GCA GGT GCA CGT CGG TCA GCG CGg CCA ACG GCG GCA GCg GCA $\begin{array}{lllllllllllllllllllll}\text { I } & \mathrm{G} & \mathrm{R} & \mathrm{C} & \mathrm{H} & \mathrm{D} & \mathrm{D} & \mathrm{V} & \mathrm{H} & \mathrm{L} & \mathrm{W} & \mathrm{D} & \mathrm{R} & \mathrm{R} & \mathrm{N} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{G} & \mathrm{Y}\end{array}$ 12011231
AGA GCG GGA CGG CCG CCC CGT CAA GCA GAt TGC TGA CGA ACA GCG GAA TGA TCT TCT CCG TCT CGC CCt GCC GGC GGG GCA GTt CGT CTA ACG ACT GCT TGT CGC CTT ACt AGA AGA GGC
 GGT ACT GGT ACG GGC CGT AGT TGT TGG AGC AGC GGG TGA CGC ACA CCG GCA GCC CGT GTG CCA TGA CCA TGC CCG GCA TCA ACA ACC TCG TCG CCC ACT GCG TGT GGC CGT CGG GCA CAC $\begin{array}{llllllllllllllllllllll}\mathrm{Y} & \mathrm{Q} & \mathrm{Y} & \mathrm{P} & \mathrm{G} & \mathrm{Y} & \mathrm{N} & \mathrm{N} & \mathrm{S} & \mathrm{C} & \mathrm{R} & \mathrm{T} & \mathrm{V} & \mathrm{C} & \mathrm{V} & \mathrm{P} & \mathrm{L} & \mathrm{G} & \mathrm{H} & \mathrm{T}\end{array}$ 13211351
TCC GGt GGA AGg CCA GCG CCA GCT GGT CGG AGG CCG CCt tGg Agg CGg CGt Agg Ggg Agt AGg CCA CCT TCC GGT CGC GGT CGA CCA GCC TCC GGC GGA ACC TCC GCC GCA TCC CCC TCA
 TGG GGC TCA GCG GGT GGT CCT CAG ACC ACG ACC CTT CCG GAA TCG AGC CGT ACA CCT CGT ACC CCG AGT CGC CCA CCA GGA GTC TGG TGC TGG GAA GGC CTT AGC TCG GCA TGT GGA GCA 1441 GGC ACC TCT GTA CGT GCT TGG CCG GGC CCG CGT GCC GGT CGC GGA GGG CCT CCT CCT GCA $\begin{array}{lllllllllllllllllllll}T & S & V & H & V & F & R & G & P & R & V & A & L & A & E & R & L & L & V & H\end{array}$ 15011531
GGg tgC CCA GCA CAT TGG TGC GCA CGA AGG CGT CCG CGT CGT CGA TCG ACC GGT CCA CAT CCC ACG GGT CGT GTA ACC ACG CGT GCT TCC GCA GGC GCA GCA GCT AGC TGG CCA GGT GTA
 15611591
GCg Act CGg CCG CGA Agt GCA CCA CCA GAt CGG CGC CCG CCA TGG CAA GGg CGA CGg TGC CGC TGA GCC GGC GCT TCA CGT GGT GGT CTA GCC GCG GGC GGT ACC GTT CCC GCT GCC ACG $\begin{array}{lllllllllllllllllllll}\mathrm{S} & \mathrm{E} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{H} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{D} & \mathrm{A} & \mathrm{G} & \mathrm{A} & \mathrm{M} & \mathrm{A} & \mathrm{L} & \mathrm{A} & \mathrm{V} & \mathrm{T} & \mathrm{S}\end{array}$ $1621 \quad 1651$
TGC GGT CGC AGA TGT CCC ACG CAA CGA CCC TCA GCC CCC CAC AGT CGC CCA CCG GCG CCA ACG CCA GCG TCT ACA GGG TGC GTT GCT GGG AGT CGG GGG GTG TCA GCG GGT GGC CGC GGT
 16811711
GAt TgG CCA GGT TGC CCG CGT AGG TAA GCG CGT CCA GCA CCA CCA CCT CGG GCT TGC CGA CTA ACC GGT CCA ACG GGC GCA TCC ATT CGC GCA GGT CGT GGT GGT GGA GCC CGA ACG GCT
 17411771
ACT CCG GCA GCG AGC CGT TCA GCA GGG CGT TCA CAA AGC GTG AGC CGA TGA AGC CGG CCC TGA GGC CGT CGC TCG GCA AGT CGT CCC GCA AGT GTT TCG CAC TCG GCT ACT TCG GCC GGG

1801 CTC CGG TGA CCA GGA TCC TCT GCA TGC CTG CAG GCG GTG GTC CTT GCG AAG ACG GCA CCG GAG GCC ACt GGT CCT AGG AGA CGT ACG GAC GTC CGC CAC CAG GAA CGC TTC TGC CGT GGC | G | T | V | L | I | R | Q | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $M i d B$ | | | | | | |

 GCA Atc TGC GCC ACG AGA CGG GTC GCT TCT TCT CCG TCG AAG GTC TGC GTA CCA GCT CCG CGT TAG ACG CGG TGC TCT GCC CAG CGA AGA AGA GGC AGC TTC CAG ACG CAT GGT CGA GGC 1921 1951
 ACC TCG ACC CCG TCG ACC GCA TCC AGC CGA TCA TCG TGC AGC CCG AAG TGG GGC TGC TGG TGG AGC TGG GGC AGC TGG CGT AGG TCG GCT AGT AGC ACG TCG GGC TTC ACC CCG ACG ACC 19812011
 GCA tCC TGG CGC GCG AGT TCG ACG GGG TGT TGC ACT TTC TGA TGC AGG CGA AGC CGG AAC CGT AGG ACC GCG CGC TCA AGC TGC CCC ACA ACG TGA AAG ACT ACG TCC GCT TCG GCC TTG 2041 2071
 CCG GCA ACG TCA ACG GGC TCC AGC TCT CCC CTA CGG TGC AGg CCA CCC GCA GCA ACT TCG GGC CGT TGC AGT TGC CCG AGG TCG AGA GGG GAt GCC ACG TCC GGT GGG CGT CGT TGA AGC

2101 2131
 ACG AGG TGC ATC GCG GCC GCT CGA CGC CGT TCC TGG ACC GCT TCA TCC AGC GAC CGG GGC TGC TCC ACG TAG CGC CGG CGA GCT GCG GCA AGG ACC TGG CGA AGT AGG TCG CTG GCC CCG 21612191
 GCC GGG TGC TGG TCG ATG CCA TTC AGT CGG AGC AAG CCG ACT GGT TCC TGC ACA AAC GCA CGG CCC ACG ACC AGC TAC GGT AAG TCA GCC TCG TTC GGC TGA CCA AGG ACG TGT TTG CGT 2221 2251
 ACC GCA ACA TGG TCG TCG AGA TCG ACT CGG GCG TGG CGG AGC ACT GCT CGT TCC GCT GGC TGG CGT TGT ACC AGC AGC TCT AGC TGA GCC CGC ACC GCC TCG TGA CGA GCA AGG CGA CCG 2281 2311
$\begin{array}{llllllllllllllllllll}\mathrm{T} & \mathrm{L} & \mathrm{G} & \mathrm{Q} & \mathrm{I} & \mathrm{R} & \mathrm{R} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{R} & \mathrm{D} & \mathrm{D} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{M} & \mathrm{D} & \mathrm{T} & \mathrm{R}\end{array}$ TGA CGC TCG GCC AGA TCC GTC GCC TGC TGC TCC GGG ACG ACC TCG TCA ATA TGG ACA CCC ACT GCG AGC CGG TCT AGG CAG CGG ACG ACG AGG CCC TGC TGG AGC AGT TAT ACC TGT GGG 2341

2371
 GCA GCG TGC TGG CCT GCC TGC CGA ACT GCG CAC GGC GCA CCC GGC GAC GAC GAC GAA GGT CGT CGC ACG ACC GGA CGG ACG GCT TGA CGC GTG CCG CGT GGG CCG CTG CTG CTG CTT CCA 2401 2431
$\begin{array}{lllllllllllllllllllllllll}\text { P } & \mathrm{A} & \mathrm{A} & \mathrm{L} & \mathrm{R} & \mathrm{R} & \mathrm{S} & \mathrm{F} & \mathrm{Y} & \mathrm{G} & \mathrm{E} & \mathrm{T} & \mathrm{E} & \mathrm{L} & \mathrm{N} & \mathrm{A} & \mathrm{I} & \mathrm{T} & \mathrm{G} & \mathrm{C}\end{array}$ TCC CGG CGG CGC TGA GGC GCT CCT TCT ACG GGG AGA CCG AGC TCA ACG CGA TCA CCG GCT AGG GCC GCC GCG ACT CCG CGA GGA AGA TGC CCC TCT GGC TCG AGT TGC GCT AGT GGC CGA 2461 2491
 GTC TCA TCG ACG TCC AGG CGC TGC GTG TGC TGC GCC AGC AGA AGG TCC CGC TCA ACC AGG CAG AGT AGC TGC AGG TCC GCG ACG CAC ACG ACG CGG TCG TCT TCC AGG GCG AGT TGG TCC $\begin{array}{clllllllllllllllllll}2521 \\ Y & E & D & G & W & Q & R & I & G & A & T & I & R & H & R & S & G & E & G & L\end{array}$ TGT ACG AGG ACG GCT GGC AAC GGA TCG GGG CCA CCA TCC GGC ACC GCA GCG GCG AGG GCT ACA TGC TCC TGC CGA CCG TTG CCT AGC CCC GGT GGT AGG CCG TGG CGT CGC CGC TCC CGA 25812611
$\begin{array}{lllllllllllllllllllllll}\mathrm{P} & \mathrm{I} & \mathrm{M} & \mathrm{A} & \mathrm{V} & \mathrm{E} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{E} & \mathrm{Q} & \mathrm{R} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{S} & \mathrm{W} & \mathrm{T} & \mathrm{Q} & \mathrm{P}\end{array}$ TGC CCA TCA TGG CGG TCG AGG TCA CCG CGG AGC AGC GCG AGG TGG CGT CCT GGA CCC AGC ACG GGT AGT ACC GCC AGC TCC AGT GGC GCC TCG TCG CGC TCC ACC GCA GGA CCT GGG TCG 2641 2671
 CGC TGC TGG CGC CCG TGT CCC AGG GGC TGA TGG CCC TGG TCG TCC GGC GGA TCA ACG GGG GCG ACG ACC GCG GGC ACA GGG TCC CCG ACT ACC GGG ACC AGC AGG CCG CCT AGT TGC CCC 27012731
 CGT TGC ACG CCC TGG TGG CGG CCC GGT CGG ACG TGG GCA CGC TGA ACt TCG CCG AGT TCG GCA ACG TGC GGG ACC ACC GCC GGG CCA GCC TGC ACC CGT GCG ACT TGA AGC GGC TCA AGC 2761 2791
 GCC CCA CCG TGC AGC TCA GGT CGG CGT GGC CGC GCG GCA AGg GCA ACC CGC CGC CGT ATC CGG GGT GGC ACG TCG AGT CCA GCC GCA CCG GCG CGC CGT TCC CGT TGG GCG GCG GCA TAG 2821 2851
$\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{Y} & \mathrm{V} & \mathrm{Q} & \mathrm{S} & \mathrm{A} & \mathrm{A} & \mathrm{P} & \mathrm{G} & \mathrm{R} & \mathrm{V} & \mathrm{R} & \mathrm{Y} & \mathrm{D} & \mathrm{A} & \mathrm{V} & \mathrm{A} & \mathrm{L} & \mathrm{V} & \mathrm{R}\end{array}$ TAG AGT ACG TGC AGT CCG CTG CTC CGG GCC GCG TAC GGT ACG ACG CGG TGG CTC TCG TAA ATC TCA TGC ACG TCA GGC GAC GAG GCC CGG CGC ATG CCA TGC TGC GCC ACC GAG AGC ATT 2881 2911
 GAG GGT GGG CGC TTC TAT CCA CGC GCG CAA CCG GGT CAC AGG TCG TCG AGG CCG GCC CTT CTC CCA CCC GCG AAG ATA GGT GCG CGC GTT GGC CCA GTG TCC AGC AGC TCC GGC CGG GAA 2941

L P G G L P A R L
AAC TTC CCG GTG GAC TTC CCG CCC GGC TT*
TTG AAG GGC CAC CTG AAG GGC GGG CCG AA

* The sequence of midL is not complete at the 3' end.

7.4. The nucleotide and encoded amino acid sequences of the midE region of Smyc-LC1

1										31									
$\begin{aligned} & \text { GGC } \\ & 61 \end{aligned}$	GGC	CGG	CAG	CGC	ACC	CGT	ACC	TGA	TGG	$\begin{aligned} & \text { CCA } \\ & 91 \end{aligned}$	ACT	CAC	CTG	TAC	GGA	CCG	CTG	GTT	GGT
GTC	GGG	ACA	CCT	CAT	CGA	ATG	GCG	CTA	CGG	AAC	GAC	GCC	GCT	ACG	TCC	GGT	GAT	TGC	GAA
121										151									
ATC	CAT	TCT	TCC	TGA	CGT	TTT	CCG	GAC	GCT	GAC	ACC	ACT	GTG	TCA	GCT	GCC	ACT	TGC	CGG
181										211									
GCT	CAG	CGG	CCA	TGC	CCT	AGA	AAT	CCC	CTC	TCA	TCC	ACG	CCC	ATT	TAC	CTG	CGA	GGT	ACT
241										271									
GCT	ATG	CCC	TTG	CCG	AAA	CAC	CTG	CCG	TCG	CTC	GGC	GGC	ATG	CGG	GCC	ATC	GCC	GCA	CTG
	M	P	L	P	K	H	L	P	S	L	G	G	M	R	A	I	A	A	L
	MidE																		
301										331									
GTG	GTG	TTC	TGC	TCT	CAT	ATC	GCT	TCC	CAG	CCG	TTT	TTC	CGC	AAC	GCC	AAG	ATA	TAC	TCC
V	V	F	C	S	H	I	A	S	Q	P	F	F	R	N	A	K	I	Y	S
361										391									
ACC	GCA	CAG	GTC	CCG	CTG	GAC	GTC	CTG	GGG	CCG	CTG	GCG	GTC	TCG	TTC	TTC	TTC	ATG	CTC
T	A	Q	V	P	L	D	V	L	G	P	L	A	V	S	F	F	F	M	L
421										451									
AGC	GGA	TTC	GTC	CTC	ACC	TGG	GCG	GGC	ATG	CCC	GAC	CCG	TCC	AAG	CCT	GCC	TTC	TGG	CGC
S	G	F	V	L	T	W	A	G	M	P	D	P	S	K	P	A	F	W	R
481										511									
CGC	CGT	TGG	GTT	CGG	GTC	TAC	TCG	CTG	CAC	CTG	CCG	GTC	CTG	CTG	CTC	ACG	CTG	GCG	ATC
R	R	W	V	R	V	Y	S	L	H	L	P	V	L	L	L	T	L	A	I
541										571									
GTG	CTG	TGG	CTG	AAG	GAA	CCC	AAT	ATG	GGC	GGG	TCG	GTG	TGG	GAC	GGC	TTC	CTC	AGC	AAC
V	L	W	L	K	E	P	N	M	G	G	S	V	W	D	G	F	L	S	N
601										631									
CTG	CTG	CTC	GTC	CAG	TCG	TGG	TGC	CCC	GAC	TAC	CAC	CAG	TAC	GGC	AGC	ATG	AAC	CCG	GTG
L	L	L	V	Q	S	W	C	P	D	Y	H	Q	Y	G	S	M	N	P	V
661										691									
GCG	TGG	TCC	CTC	TCC	TGC	GAG	ATG	CTG	TTC	TAC	GCC	GCC	TTC	CCG	TTC	CTG	TTC	GCC	TTC
A	W	S	L	S	C	E	M	L	F	Y	A	A	F	P	F	L	F	A	F
721										751									
TTC	TCC	AAG	ATG	CGT	GCC	GAG	CGG	CTG	TGG	TCC	TGG	GTC	CTG	GGC	ATC	TCC	GTC	GTC	GCC
F	S	K	M	R	A	E	R	L	W	S	W	V	L	G	I	S	V	V	A
781										811									
GCG	GCC	GTG	CCC	GCC	CTC	GCC	CTG	CTG	CTC	CCC	TCG	GCC	CCC	ACG	CTG	CCC	TGG	GAC	CCG
A	A	V	P	A	L	A	L	L	L	P	S	A	P	T	L	P	W	D	P
841										871									
AAC	ATG	CCG	GAG	CTC	CAA	TAC	TGG	TTC	ATC	TAC	ATG	CTT	CGC	GCG	GTG	CGG	CTG	CTG	GAA
N	M	P	E	L	Q	Y	W	F	I	Y	M	L	R	A	V	R	L	L	E
901										931									
TTC	GCG	CTC	GGC	GGC	GTC	CTG	ATG	GCG	CAG	ATC	GTC	AGG	CGC	GGC	CGC	TGG	ATC	GGC	CCG
F	A	L	G	G	V	L	M	A	Q	I	V	R	R	G	R	W	I	G	P
961										991									
ACC	CCG	GGG	GTG	TGC	GCG	CTG	CTG	TTC	GCC	GGC	GCG	TTC	GCG	CTG	TCC	TTC	GCC	CTG	CCG
T	P	G	V	C	A	L	L	F	A	G	A	F	A	L	S	F	A	L	P
1021										1051									
TCC	TAT	CTG	GCT	CGC	GAT	GCG	CCG	ACG	GTC	CCG	CTG	ATC	GCG	CTG	CTG	CTC	GGC	TCC	CTG
S	Y	L	A	R	D	A	P	T	V	P	L	I	A	L	L	L	G	S	L
1081										1111									
GCA	GCT	GGC	GAC	ATA	CGC	GGT	ACC	CGG	TCG	TGG	CTG	GGC	ACC	CGG	ACG	ATG	GTG	CTG	CTG
A	A	G	D	I	R	G	T	R	S	W	L	G	T	R	T	M	V	L	L
1141										1171									
GGT	GAA	CTC	ACC	TTC	GCC	TTC	TAC	GTC	ATC	CAC	TAC	CTC	GTC	ATC	CAG	TAC	GGG	CAC	CGC
G	E	L	T	F	A	F	Y	V	I	H	Y	L	V	I	Q	Y	G	H	R
1201	1/401									1231	1/411								
TTC	CTC	GGC	GGT	GAG	CTG	AGC	TAC	TAC	CGA	CAG	TGG	GAC	ACC	CCG	GCC	GCG	ATC	GGC	CTC
F	L	G	G	E	L	S	Y	Y	R	Q	W	D	T	P	A	A	1	G	L
1261										1291									
ACC	GTT	CTC	GCC	CTC	GGG	CTC	AGC	GTG	GGC	CTC	GCC	GCG	CTC	CTC	CAC	TTC	TTC	GTG	GAG
T	V	L	A	L	G	L	S	V	G	L	A	A	L	L	H	F	F	V	E
1321										1351									
AAG	CCG	GTC	GTC	CGG	GCC	CTC	GGC	CGC	TCC	GGC	AAG	GCG	TCC	CGC	GCG	TCC	AAG	GCC	CCG
K	P	V	V	R	A	L	G	R	S	G	K	A	S	R	A	S	K	A	P
1381										1411									
CAG	CCC	GAG	CCG	CCG	GCG	CCC	CTG	CTG	TCC	TGA	GCG	GGT	CCG	GCG	GCA	CAA	CAG	TGT	GCG
	P	E	P	P	A	P	L	L	S	*									
1441																			
GGG	CGC	GCC	ACA	TG															

7.5. The nucleotide and encoded amino acid sequences of the midGKHIJ region of Smyc-LC3

421										451									
CAT	CGC	GGC	CCT	CTA	CGA	CCT	GGT	CCA	CGA	AGG	GAA	GGG	CAA	GGA	CTA	CCG	GCA	GGA	GGC
I	A	A	L	Y	D	L	V	H	E	G	K	G	K	D	Y	R	Q	E	A
481										511									
CGA	GGA	GAT	CGC	CCA	GTT	GGT	GCG	AGC	CCA	CCG	CCC	GGC	CAC	CCG	GTC	GCT	GCT	CGA	CGT
E	E	I	A	Q	L	V	R	A	H	R	P	A	T	R	S	L	L	D	V
541										571									
CGC	CTG	CGG	AAC	CGG	CCA	GCA	CCT	GCG	CCA	CCT	CGA	CGG	CCT	CTT	CGA	CCA	CGT	CGA	GGG
A	C	G	T	G	Q	H	L	R	H	L	D	G	L	F	D	H	V	E	G
601										631									
CTT	GGA	GCT	CTC	CCA	GGA	CAT	GCT	GGC	CAT	CGC	CAT	CGG	CCG	GAA	CCC	GGA	TGT	CAC	CCT
L	E	L	S	Q	D	M	L	A	I	A	I	G	R	N	P	D	V	T	L

CCA CGA GGG AgA TAT GCG CTC CTT CGC GCT GGG CCG CCG GTT CGA TGC GGT GAT CTG CAT
 721 CTT CAG CTC CAT CGG TCA TTT ACG GAC CAC CGA CGA ACT CGA CAG CAC CCT GCG GTG CTT

CGC CGG CCA CCT TGA GCC CGG CGG CGC CAT CGT CAT CGA ACC CTG GTG GTT CCC CGA CTC
$\begin{array}{llllllllllllllllllll}\text { A } & \text { G } & \text { H } & \text { L } & \text { E } & \text { P } & \text { G } & \text { G } & \text { A } & \text { I } & \text { V } & \text { I } & \text { E } & \text { P } & \text { W } & \text { W } & \text { F } & \text { P } & \text { D } & \text { S }\end{array}$
CTT CAC CCC CGG CTA CGT CGG CGC CAC GTC ACC GAG GCG GGC GAA CGG CAC CAT CTG CCG

901931
GGT CTC CGA CTC CGT GCG GGA GGG GGA CGC CAC ACG CAT TGA GGT GCA CTA CCT GGT CGC
$\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{S} & \mathrm{D} & \mathrm{S} & \mathrm{V} & \mathrm{R} & \mathrm{E} & \mathrm{G} & \mathrm{D} & \mathrm{A} & \mathrm{T} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{V} & \mathrm{H} & \mathrm{Y} & \mathrm{L} & \mathrm{V} & \mathrm{A}\end{array}$
961991
CGA GCC AGG CGG CGG CAT TCG CCA CCT CAC CGA GGA CCA CAC CAT CAC CCT GTT CCC ACG

1021
CGC CGA CTA TGA GCG CGC CTT CGA GCG TGC CGG CTG CGA CGT GCG CTA CCA GGA GGG CGG

10811111
CTC CTC CGG CCG CGG ACt GTt CAT CGG CAG CCG GCT GAC GCG GAT TCC GCC CCG AGA CGA

$1141 \quad 1171$
CGA GAG GAA CCC AtG CCA ATC CCT GCC ACG GCG CCG GCG CCC GTG AAC GCC GGC ACC CGG

1201 1231
GAG CtC GGC CGC CGG CTT CAA CTG ACC CGT GCC GCG CAG TGG TGC GCG Ggt AAC CAG GGC

$1261 \quad 1291$
GAC CCG AAC GCG CTG ATC CTG CGC GCC ACC GCC GAC CCC GCC CCG CTC GAA CGG GAG ATC
 $1321 \quad 1351$
CGC GCC CGC GGA CCA TGG TTC CGC AGC GAG TTG ACC GGC GCT TGG GTG ACC GCG GAT CCG
 $1381 \quad 1411$
AGG TGG CGG CAG GCC GCG CTG GCC GAC CGC GCC TTT GCA CGC TCG ACC GCG CCG ACC GTC
 $1441 \quad 1471$
GTC CGG ACG CGG AAC TGC TGC CCC TCG CAG AGG CTT TCC CCT GCC ATG AGC GTG CAG AGC
 1501 1531
TCG CCC GGC TAC GGG CTG GCC GCC CCG GTG CTG AGT CGC TGC GCC CCG GCC GAG GCG CCC
 15611591
TGC GAG GCG CGT ACC GCC GCT CGT CGG TTG CTC CGC CGT CTC CTT CCC TCC GAC GGC GCC
 $1621 \quad 1651$
GGG TTC GAC CTC GTC ACC GAG GTC GCC CGG CCG TAC GCC GTC GGG CTG GTG CTC CGG CTT

16811711

CTC GGC GTG CCG GAC TGC GAC CGC GAC ACC ATG GGG CGG GCG CTC GCC GGC TGC GCT CCC
 17411771
AAC TTt GAC GCC CGG TTG GCC CGC AGA CCC TGG CTG TCG CTC GGG AGT CCA CCG ACG CCG
 18011831
TCC AGA CCT TGG CCG ACC ATG TCC CGG AAC TCG TTG CTG AGA AGC AGC GGG CCG TCG AGA

18611891

GCG CCG AGC CCC GGC CCG ACG ATG TTC TCG CCC TCC TCC TGC GCG ACG GTG CCG CCC CGC
 19211951
GAT GTC GAG CGG ATC GCG CTG CTC CTC GCC ATC GGC ACC CCC GAG CCC GCG GCC ACC GCC

19812011

GTC GCG AAC ACG GTG CAC CGG CTG CTG AAC CGG CCG GGG GAG TGG GGA CGT GTC CGC CGG

20412071

ACC CCG GCC GCC GCG CGG GCC GTC GAC CGG ACC CTG CGC GAC CGG CCC CCG GCC CGA CTG
 21012131
GAG AGC AGG GTC GCC AGC ACC GAC CTT GAG TCG CGT GGT TGC CGG ATC GCC GCC GAC GAC
 $2161 \quad 2191$
CAC GTC GTG GTG CTG GCC GCC GCG GGG CGG GAC GCT CCG GGG CCC GAG CCG CTC GGC GGC
 2221 R 2251
CGG ACG CGA CCG CAC TTG GCC CTC GCC CTC CCG CTC ATC CGG CTG GCC GCC ACC ACC GCT
 22812311
GTC CAG GTC ATG GCC GGA CGC CTG CCC GGA CTG AGG GTC GAG GAC GAG CCT CTG ACC CGG
 $2341 \quad 2371$
CCG CGC TCC CCG GTC GTA TGC GCC TGT GCC CGC TTC CGG GTC CAC CCG GGA TGA CCC TGC
 24012431
CGC CCG TAC ACC CCG GCC CGA ACT GGA GTC ACC GTG CGC GTC CTG CTG ACC TCC CTA GCC

| M | R | V | L | L | T | S | L | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | MidI 2491

2461
CAC AAC ACC CAC TAC TAC AGC CTG GTG CCC TTG GCG TGG GCC CTA CGC GCG GCC GGG CAC
 $2521 \quad 2551$
GAG GTG CGG GTG GCG AGC CCG CCC TCG CTC ACC GAT GTC ATC ACC TCC ACC GGG CTG CCC
 2581 2611
GCC GTC CCC GTC GGC GAC GAC CAG CCC GCC GCC GAA CTG CTC GCC GAG ATG GGC GGC GAC
 26412671
CTC GTC CCC TAT CAG CGG GGC TTT GAG TTC GCC GAG GTG GAG CCC GCC CAG GAG ACC ACC $\mathrm{L} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{Y} \quad \mathrm{Q} \quad \mathrm{R} \quad \mathrm{G} \quad \mathrm{F} \quad \mathrm{E} \quad \mathrm{F} \quad \mathrm{A} \quad \mathrm{E} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{T}$ $2701 \quad 2731$
TGG GAG CAT CTG CTC GGC CAG CAG AGC ATG ATG TCC GCC TTG TGG TTC GCG CCG TTC AGC

27612791
GGC GCC GCC ACG ATG GAC GAC ATC GTC GAC TTC GCC CGC GAC TGG CGT CCC GAC CTC GTC $\begin{array}{lllllllllllllllllllll}\text { G } & \text { A } & \text { A } & \text { T } & \text { M } & \text { D } & \text { D } & \text { I } & \text { V } & \text { D } & \text { F } & \text { A } & \text { R } & \text { D } & \text { W } & \text { R } & \text { P } & \text { D } & \text { L } & \text { V }\end{array}$ 28212851
GTA tGG GAA CCC tgG ACC tac GCC GGG CCG ATC GCG GCT CGT GCC TGC GGC GCC GCC ACC $\begin{array}{lllllllllllllllllll}\text { V } & \text { W } & \text { E } & \text { P } & \text { W } & \text { T } & \text { Y } & \text { A } & \text { G } & \text { P } & \text { I } & \text { A } & \text { A } & \text { R } & \text { A } & \text { C } & \text { G } & \text { A } & \text { A }\end{array}$ 28812911
GCG CGT ATC CTC TGG GGC CCC GAC GCC ATC GGA CGG TCC CGG CGG CGC TTC CTC GAA GCG
 29412971
CTC GAA CGA GTG CCG GAG GAg Ctg CGC GAG GAC CCC ATC GCC GAA TGG CTC GGC TGG ACG
 30013031
CTG GAC CGG TAC GGG TGC GCC TTC GAC GAA CGC GAC GTG CTC GGC CAC TGG GTG ATC GAC
 30613091
CCG GGg CCC CGC AGT ACC CGA CTG GAC CTG GGA CAG ACC ACG GTC CCC Atg tGC tac gig $\begin{array}{llllllllllllllllllll}\text { P } & \mathrm{G} & \mathrm{P} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{G} & \mathrm{Q} & \mathrm{T} & \mathrm{T} & \mathrm{V} & \mathrm{P} & \mathrm{M} & \mathrm{C} & \mathrm{Y} & \mathrm{V}\end{array}$ 31213151
CCC TAT AAC GGG CGC GCC GTC ATC GAA CCC TGG CTT GCC GAG AAG CCC GAG CGC CCT CGC
 31813211
GTC TGC CTC ACt CTC GGG ATC TCC GCC CGC GAG ACC TAC GGC CGC GAC GCG GTC TCC TAC $\mathrm{V} \quad \mathrm{C} \quad \mathrm{L} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{Y} \quad \mathrm{G} \quad \mathrm{R} \quad \mathrm{D} \quad \mathrm{A} \quad \mathrm{V} \quad \mathrm{S} \quad \mathrm{Y}$ 3241 3271
TCC GAG TTG CTT CAG GCG CTG GGC CGC ATG GAG ATC GAG GTG GTG GCC ACC CTC GAt GCC
 33013331
TCG CAG CAG AAG CGC CTC GGC AGC CTT CCC GAC AAC GTC GTG CCG GTG GAC TTC GTG CCG $\begin{array}{llllllllllllllllllll}S & Q & Q & K & R & L & G & S & L & P & D & N & V & V & P & V & D & F & V & P\end{array}$ 33613391
CTC GAC GCG CtG CTG CCG AGC TGT GCC GCG ATC ATC CAC CAC GGC GGC GCG GGC ACT TGG $\begin{array}{llllllllllllllllllll}\text { L } & \text { D } & \text { A } & \text { L } & \text { L } & \text { P } & \text { S } & \text { C } & \text { A } & \text { A } & \text { I } & \text { I } & \text { H } & \text { H } & \text { G } & \text { G } & \text { A } & \text { G } & \text { T } & \text { W }\end{array}$ 34213451
TCC ACC GCC CTG CTC CAC GGC GTA CCG CAG ATC CTG CTG CCC GCG CTG TGG GAC GCG CCG
 34813511
CTC AAG GCC CAG CAG CTC CAG CGC CTG TCG GCC GGA CTC AAC CTG CCC GCC GCG ACC CTC
 35413571
ACG GCG CGC CGC TTG GCC GAC GCG GTG CAC ACG GCC GTA CAC GAT CCC GCG ATC CGg GCg
 36013631
GGC GCG CGG CGG CTG CGC GAG GAG ATG CTC GCC GAC CCC ACG CCC GCG GCA ATC GTC CCC
 36613691
ACg Ctg gag CgC CTC ACC GCC Ctg CAC CGg GCg GCC TGA CGC AAC GTt CGA ACG GAg CCG $\begin{array}{llllllllllll}\text { T } & \text { L } & \text { E } & \text { R } & \text { L } & \text { T } & \text { A } & \text { L } & \text { H } & \text { R A }\end{array}$ 37213751
ATC CAC CAT GCC CGA CAG TCA TGC CCT GAG CGA GCT GCT CGC CGC GAG CCG CGC GCC CGA

37813811
CCA CAC CCC CGA GGA CAT CGC CGC GCT GCC CCT GCC CGA ATC CTT CCG GGC CGT GAC CGT
 38413871
CCA CAA AGA GGA CAC CGA GAT GTT CCG CGG CAT GAC CAG CGC GGA CAA GGA CCC GCG CAA 39013931
GTC GCt GTG CGT CGA CGA GGT GCC GGT TCC CGA AGT CGG GCC CGG CGA GGC CCT GAt AgC S
3961
GGT GAt GGC CAG CTC GGT CAA CTA CAA CAC CGT GTG GTC GTC CCT CTT CGA GCC GAT GCC
 40214051
GAC CTT CGG CTT CCT GGA GCG CTA CCG GCC GCA CCT CGC CGT GGC CGC TCG TCA CGA CCT $\begin{array}{llllllllllllllllllllll}\text { T } & \mathrm{F} & \mathrm{G} & \mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \mathrm{Y} & \mathrm{R} & \mathrm{P} & \mathrm{H} & \mathrm{L} & \mathrm{A} & \mathrm{V} & \mathrm{A} & \mathrm{A} & \mathrm{R} & \mathrm{H} & \mathrm{D} & \mathrm{L}\end{array}$ 40814111
GCC GTA CCA CAT CCT CGG CTC CGA CCT GGC CGG CGT TGT GCT ACG CAC CGG CCC GGg Ggt $\begin{array}{llllllllllllllllllll}P & Y & H & I & L & G & S & D & L & A & G & V & V & L & R & T & G & P & G & V\end{array}$ 41414171
GAA TGT TTG GGC GCC CGG CGA CGA GAT CGT GGC GCA CTG TCT AAC GGT GGA GCT GGA AAA
 CCC GGA CGg ACA CGA CGA CAC CCT GCT CGA CCC GGC CCA GCG GAT CTG GGg CtT CGA GAC

```
4261/1421 4291
CAA CTT CGG CGG CCT GGC CGA GAT AGC CCT GGT CAA GGC CAA CCA GCT GAT GCC CAA GGC
```



```
4321 ACA CCT CAC CTG GGA GGA GGC CGC CGC ACC GGG TCT GGT GAA CTC CAC CGC CTA CCG
```



```
4 3 8 1 ~ 4 4 1 1
TCA GCT GGT CTC CCG CAA CGG CGC CGG CAT GAA GCA GCA CAA CGT GTT GAT CTG GGg CGC
```



```
4441 4471
CAG CGG CGG TCT GGG CTC GTA CGC CAC CCA GCT CGC CCT CGC CGG TGG GGC CAA CCC CGT
```



```
4 5 0 1 ~ 4 5 3 1
CTG TGT GGT CTC CAA CCA GCG CAA GGC CGA GGT GTG CCG GGC CAT GGG CGC GGG GGC GAT
C Vlllllllllllllllllllll
4 5 6 1 ~ 4 5 9 1
CAT CGA CCG CTC GGC CGA GGA CTA CCG CTT CTG GAG CGA CGA GCA GAC CCA GAA TCC GCG
```



```
GGA GTG GAA GCG GTT CGG TGC CCG TAT CCG GGA GTC GAC CGG TGG TGA GGA CGT GGA CAT
```



```
4 6 8 1 4 7 1 1
CGT CTT CGA GCA TCC TGG CCG GGA GAC GTT CGG GGC GTC TGT CTA CGT CGC CCG CCG GGG
```



```
4 7 4 1 ~ 4 7 7 1
CGG CAC CAT CGT CAC CTG CGC CtC CAC TTC CGG CTA CCG TCA CGA GTT CGA CAA CCG CTA
```



```
4 8 0 1 ~ 4 8 3 1
TCT GTG GAT GCA CCT CAA GCG CAT CGT CGG CAC CCA CTT CGC CAA CTA CCG CGA GGC ATG
```



```
4 8 6 1 ~ 4 8 9 1
GGA GGC GAA CCG CCT CGT CAC CAA AGG GAA GAT TTA CTC CAC CCT CTC CTG CAC CTA CCC
E Fllllllllllllllllllllllllllllll
4 9 2 1 ~ 4 9 5 1
GCT GGC TTT TTT CGC GCT TGC CGT CCA CGA CGT GCA CCG CAA CGT CCA CCA GGG CAA GGT
L A F F F A A L A A V Fllllllllllllllllllllll
4 9 8 1 ~ 5 0 1 1
CGG CGT GCt GTG TCT GGC CCC GAT GGA GGG TCT GGG CGT GCG CGA CGA GGA GAT GCG CGC
G V L L C L L A P P M M E F G L L Fllllllllllllllll
5041 5071
GCA GCA CCT CGA CGC GAT CAA CCG ATT CCG CTG ACC GCT CCT TTG TCC CGA GGC ATA TCC
Q H L D D A I I N N R F F R *
5 1 0 1 ~ 5 1 3 1
GCC GCT CGT CCC GGA GGT TTT TTC AAA GGA GGG GCC CAC AGT CCG AAA GCG GTT TCA TGC
5 1 6 1 ~ 5 1 9 1
AGG CGC TCG GCT GGG GGT TTC CCA GCC GAG CGT TTG TTG CGT GGG CTT TTG GTC GCG ATG
5221
GCC GGC G
```


7.6. Sequence alignment of the MidD protein with other thioesterases for construction of MidD-tree in Fig. 5.2

MidDSmy
ORF12Ame
ThiESgr
PikAVSve
TyloSfr
GrsTBbr
TesAMtu
MLCB12.04C
Orf1Shy
PchCPae SC3F7.14Sco
Ery3Ser
SrfADBsu

LVLRRL-PARPAPAVRLVCFPHAGGSATSF-LPFVQTLPDQVEMLAVQYPGRQDRRGEPLIGTIEG KWLRRF-ERAPDARARLVCLPHAGGSASFF-FPLAKALAPAVEVLAVQYPGRQDRRHEPPVDSIGG RWLRRYHP-AEADAVRLVCFPHAGGSASFY-HPVSARFAPGAEVVSLQYPGRQDRRKEPCVPDLGT LWIRRFHP-APNSAVRLVCLPHAGGSASYF-FRFSEELHPSVEALSVQYPGRQDRRAEPCLESVEE MWLRCYAPVPGTPAHRLVCFPHAGGSARAYRPFALELAAAGVETHAVQYPGRQDRRKEPFARTLEE KWFVNAN-VNSAAKLRLFCIPYAGGGASAF-YEWSHFFPKEIEVCSIQLPGRENRGAEVPLTNLQQ GHSDDSSGDAKQAAPTLYIFPHAGGTAKDY-VAFSREFSADVKRIAVQYPGQHDRSGLPPLESIPT GHSNNGNDDETSTTPTLYIFPHAGGDATYY-VPFSREFSADIKRIAVHYPGQRDGYGLPALTSIPA MTDWIQSVSAPDAVARVVCLSRAGGSARDF-DRWRAPMGEDVELAAVQLPGRLDRFHEPPLSDLHE AAWVRPFRLTPMPRLRLACFPHAGGSASFF-RSWSERLPPDIDLLALQYPGREDRFNEAPATRLED AAPAAEPPDPAAAPLRLVCFPYAGGTVSAF-RGWQERLGDEVAVVPVQLPGRGLRLRERPYDTMEP STWLRRFGPPVEHRARLVCFPHAGAAADSY-LDLARALAPEIDVDAVQYPGRQDRRDEEPLGTAGE SQLFKSFDA--SEKTQLICFPFAGGYSASF-RPLHAFLQGECEMLAAEPPGHGTNQ-TSAIEDLEE

MidDSmy ORF12Ame ThiESgr PikAVSve Tylosfr GrsTBbr TesAMtu MLCB12.04C Orf1Shy PchCPae SC3F7.14Sco Ery3Ser SrfADBsu

LVEPLAEVLATHSDRP----LVLFGHSMGATVAYEVARVLQQRGA-APAGLVVSGRRAPIVNRPMT LTNRLLEVLRPFGDRP----LALFGHSMGAIIGYELALRMPEAGLPAPVHLFASGRRAPSRYRDDD LDLITEQLL-PLDERP----TVFFGHSMGAALAFETAWRLEQKGA-GPRTVIASGRRGPSTTRAER LAEHVVAATEPWWQEGR---LAFFGHSLGASVAFETARILEQRHGVRPEGLYVSGRRAPSLAPDRL LAERVLPELRRLLDAPDGVPVALFGHSMGAVVAYETARLLHRSGAPRPAGLILSGRRAPTADRTET IVEIVAEEIQPLINIPF----AFLGHSMGALISFELARTIRQKSNVNPVHLFVSGRHAPQIPCAKQ LADEIFAMMKPSARIDD--PVAFFGHSMGGMLAFEVALRY-QSAGHRVLAFFVSACSAPGHIRYKQ LADEIFAIMKPSAPPEG--AVAFFGHSMGGMLAFEVALRF-QSAGYRLIALFVSACSAPGYIRYKQ IAEEVAAALTTLPARP----YVLFGDCMGALLAFETACALRRRGAAPPDCLVVASYPAPDRLRTER LADGAALALRDFADAP----LALFGHSLGAALAYETALRLET-PAALR-HLFVSAHPAPHRQRGGA LAEAVADALEEHRLTHD---YALFGHSMGALLAYEVACVLRRRGAPRPRHLFVSGSRAPHLYGDRA IADEVAAVLRASGGDG---PFALFGHSMGALIAYETARRLEREPGGGPLRLFVSGQTAPRVHERRT LTDLYKQELNLRPDR----PFVLFGHSMGGMITFRLAQKLEREGIFPQAVII-SAIQPPHIQRKKV

MidDSmy ORF12Ame ThiESgr PikAVSve Tylosfr GrsTBbr TesAMtu MLCB12.04C Orf1Shy PchCPae SC3F7.14Sco Ery3Sery SrfADBsu

MidDSmy ORF12Ame ThiESgr PikAVSve TyloSfr GrsTBbr TesAMtu MLCB12.04C Orf1Shy PchCPae SC3F7.14Sco Ery3Ser SrfADBsu
-VHLYDDDRLLAELRSLEGTDESLLNDPELLQMVLPAIRNDYRAVGTYTHPPGAPLASALTVFTG -VRGASDERLVAELRKLGGSDAAMLADPELLAMVLPAIRSDYRAVETYRHEPGRRVDCPVTVFTG -VHTRDDDGIVAEMKRLNGTAAGVLGDEEILRMALPALRGDYRAIETYTCPPDRRLACGLT-LTG -VHQLDDRAFLAEIRRLSGTDERFLQDDELLRLVLPALRSDYKAAETYLHRPSAKLTCPVMALAG -AHLLGDRELLAEIRRLQGTDPGALADEEVLRMVLPAIRGDYAAVGRYRHVPGPRPGCPLTVFTG DYHLLPDEQFIQELRSLNGTPEIVLQDAEMMSILLPRLRADFSVCGSYQYKNDEPFECPITAFGG -LQDLSDREMLDLFTRMTGMNPDFFTDDEFFVGALPTLRAV-RAIAGYSCPPETKLSCPIYAFIG -IKDFSDNDMLDLVVRMTGMNPDFFEDEEFRVGVLPTLRAA-RIIAGYNCPPETTVSCPIYTYIG PYGDGSADDLRQRLREVGGVPPAVLDEDELFELMLPMLRADFAAFEGYRHRPTEPLSVDIHALVG -LHRG-DEAALLEDVRRQGGASELLEDADLRALFLPILRADYQAIETYRRAQP IALACALDVLLG -DHTLSDTALREVIRDLGGLDDADTLGAAYFDRRLPVLRADLRACERYDWHPRPPLDCPTTAFSA -DLPGDDG-LVDELRRL-GTSEAALADEALLAMSLPVLRADYRVLRSYAWADGPPLRAGITALCG -SHLPDDQFLDHIIQ-LGGMPAELVENKEVMSFFLPSFRSDYRALEQFELYDLAQIQSPVHVFNG

ADDPNVTATEAAAWQAVAEAGAQVRTFPGGHFFLYQQVAEVCGALMD-TLAPLLPAG DHDPRVSVGEARAWEEHTTGPADLRVLPGGHFFLVDQAAPMIATMTE-KLAG--PAL EDDPLTTVEEAERWRDHTTGPFRLRVFTGGHFFLTQHLDAVNTEIAQ-ALHPD-RAA DRDPKAPLNEVAEWRRHTSGPFCLRAYSGGHFYLNDQWHEICNDISD-HLLVTRGAP DADPNVTLPEAEAWRELTTGAFALRVFPGGHFYLNDQREAVCRTIEE-TLRHGSKSA KNDNGVTYQSLEAWREQTKREFSVCMYPGDHFFLYESKYEMIEFMCK-QLRLVLAPK DKDWIATQDDMDPWRDRTTEEFSIRVFPGDHFYLNDNLPELVSDIEDKTLQWHDRA-DKDWIATQEDMKPWRERTTGAFAIRVFPGDHFYLNGNLSELVCDIEDKTLEWCDRA-ADDPYVTVTDLHGWQRHTTGEFTARALPGGHFFLHESDDAVSRVRSL-ALAGARAAR EHDEEVSAAEAQAWSDASRTPARLRRFPGGHFYLSEGRDAVIEHLLR-RLAHPDALS AADP IATPEMVEAWRPYTTGSFLRRHLP GNHFFLNGGP SRDRLLAHLGTELDALGTT DADPLTATGDAERWLQHSVIPGRTRTFPGGHFYLGEQVTEVAGAVRRDLLRAGLAG-LDDKK-CIRDAEGWKK-WAKDITFHQFDGGHMFLLSQTEEVAERIFA-ILNQHPIIQ

7.7. Sequence alignment of the MidA protein with other dTDP-glucose synthases for construction of MidA-tree in Fig. 5.2

StrDSgr
OleDSan1
OleDSan2
GraDSvi
DnrLSpe
RmlAMle
TylAISfr
MidASmy
AcbAAct
YifGEco
RmlAECO
LmbOSli

StrDSgr OleDSan1 OleDSan2 GraDSvi
DnrLSpe RmlAMle TylAISfr MidASmy AcbAAct YifGEco RmlAEco LmbOSli

StrDSgr OleDSan1 OleDSan2 GraDSvi DnrLSpe RmlAMle TylAISfr MidASmy AcbAAct YifGEco RmlAEco LmbOSli

StrDSgr OleDSan1 OleDSan2 GraDSvi DnrLSpe RmlAMle TylAISfr MidASmy AcbAAct YifGEco RmlAEco LmbOSli

Abstract

M----KALVLAGGTGTRLRPITHTSAKQLVPVANKPVLFYGLEAIRAAGIIDVGIVVG-DTAD V----KALVLAGGSGTRLRPITHTSAKQLVAVANKPVLFYGLEAIAAAGITDVGLIVG-DTAG M----KALVLAGGSGTRLRPITHTSAKQLVAVANKPVLFYGLEAIAAAGITDVGLIVG-DTAG M----KALILSGGMGDRLRPFTYSMP KQLVPVANKP ILVHCLENVRAIGVEEVAVVVG-DRAD M----KALVLSGGSGTRLRPFTHTSPKQLVPVANKPVLYYVLEDIAQASITEVGIVVG-ETSN M----RGIILAGGSGTRLYPITLGISKQLLPVYDKPMIYYPLSTLMMAGIRDILVITTAHDAP M----KGIILAGGSGTRLRPLTGTLSKQLLPVYDKPMIYYPLSVLMLAGIREIQIISSKDHLD M----KGIILAGGGGTRLRPLTGTLSKQLLPVYNKPMIYYPLSVLMLGGINEILIISTPDHIL MVGHVRGILLAGGTGSRLRPVTWAVSKQLMPVYDKPMIYYPLATLVSCGIREILVITTETEAA M----KGIMLAGGSGTRLHPITRGVSKQLLPIYDKPMIYYPLSVLMLAGIREILIITTPEDKG MKTR-KGIILAGGSGTRLYPVTMAVSKQLLPIYDKPMIYYPLSTLMLAGIRDILIISTPQDTP M-T---LVVLAGGRGTRLGAYA-TTAKALLPVDGEPFLVRALRRYRAGAASPMSCCAPGHHAA

EIVAAVGDGSRFGLKVSYIPQSKPLGLAHCVLISRDFLGEDDFIMYLGDNFVVGVVEDSVREF EVRAPVGDGAKFGLDITYIEQSRPLGLAHAVLIAHTYLGDDDFVMYLGDNFIVGGIDDLVRTF EVRAAVGDGAKFGLDITYIEQSRPLGLAHAVLIAHTYLGDDDFVMYLGDNFIVGGIDDLVRTF EVRAVVGDGSAFGLDVTYLQQEAPLGLAHCVSIAEEFLGDEDFVMYLGDNILAEGIAESARAF EIRKAVGSGDRFGLRVTYLPQEAPLGLAHAVLIARDYLGEEDFVMYLGDNFVVGGIAGNSSTF GFKRLLGDGTQFGVNISYATQDHPDGLAQAFVIGANHIGADTVALVLGDNIFYGPGLGTSLRLFRSLLGEGDRLGLSISYAEQREPRGIAEAFLIGARHIGGDDAALILGDNVFHGPGFSSVLTG EQFSGCWRRVRLGLDITYAESPSPRGIAQALTIGSDHIGNSPVALILGDNIFHGPGFSSVLQG QFQRLLGDGSQWGLRLEFAVQQRPGGIAEAFLIGEEFLAGGPVALMLGDNLLHGVDFRPCVQR YFQRLLGDVGEFGIQLEYAEQPSPDGLAQAFIIGETFLNGEPSCLVLGDNIFFGQGFSPKLRH RFQQLLGDGSQWGLNLQYKVQPSPDGLAQAFIIGEDFIGGDDCALVLGDNIFYGHDLPKLMEA QVQEVIGDGSALGLRVTHSAEPEPLGPIGALRHALPLLPET----YLLTYCDVVPTIDV----

RAAR-P--DAHLMLTRVPEPRSFGVAELS-DSGQVLGLEEKPAHPKSDLALVGVYLFSPAIHE
 RDGRPP--AARILLTHVSDPSAFGVAELD-DDGRVVGLEEKPRHPKSDLALVGVYFFTPAIHE RDER-S--AARLLLTKVADPRAYGVAETD-ATGRVHALVEKPERPRSDLAVIGVYFFTAAVHD RAER-P--DAQILLTRVSDPSSFGVAEIG-CDGRVVALEEKPRHPRSDLAVVGIYLFTPVVHE RFQYVS--GGAIFAYCVANPSSYGIVELGID-GIALSLEEKPATPKSQYAVPGLYFYDNDVVE TVARLD--GCELFGYPVKDAHRYGVGEIDSG-GRLLSLEEKPRRPLEP-GRHRLYLYTNDVVE SIRHLD--GCVLFGYPVSDPGRYGVGEIDRD-GLLLSLEEKPVRPRSNLAVTGLYLYDNDVVD ARET-A--GGHVFGVAVADP SAYGVVEFDAA-GRVLSIEEKPVRPRSPYAVPGFYLYDADVVE VAARTE--GP-VFGYQVMDPERFGXVEFD-DNFRAISLEEKPKQPKSNWAVTGLYFYDSKVVE AVNKES--GATVFAYHVNDPERYGVVEFD-NNGTAISLEEKPLEPKSNYAVTGLYFYDNDVVE R--------------------SFTAAARASDCPAVMAVGTAPTPPEANVLLSG-----QQVSS

AVAA-ITPSWRGELEITDAVQWLIDAGRDVRSTVISGY-WKDTGNVTDMLEVNRLVLE PSAP-IEPSWRGELEITHAIQHLIDNGADIQSMVIEGY-WKDTGNVADMLEVNRTVLE AVRA-IEPSWRGELEITHAIQHLIDNGADIQSMVIEGY-WKDTGNVADMLEVNRTVLE AVRA-IEPSARGELEITDAIQYLVERGDRVVADEYTGY-WKDTGSPDDLLDCNRVLLG AVRA-LTPSRRGELEITDALQWLLDGPYDVRYTTISGY-WKDTGNVADMLEVNRAVLD IAR-GLTKSARGEYEITEVNQIYLNQGRLTVEVLARGTAWLDTGTFDSLLDASDFV--IAR-TISPSARGELEITDVNKVYLEQGR-AAHGAGAVVAWLDMGTHDSLLQAGQYV--IAK-NIRPSARGELEITDVNKVYLEQRRARLIELGHGFAWLDMGTHDSLLQASQYV--TAR-SLRPSARGELEITEVNQAYLRRGALSVTLLGRGAG-LARHRHPGRLHARGRL--YAKQ-VKPSERGELEITS INQMYLEAGNLTVELLGRGFAWLDTGTHDSLIEASTFV--MARKNLKPSARGELEITDINRIYMEQGRLSVAMMGRGYAWLDTGTHQSLIEASNFI--YAKSPPPGATHCDRGLLALERRLLDRHP----------GRTEADFYGALARRGELGAV

StrDSgr OleDSan1 OleDSan2 GraDSvi DnrLSpe RmlAMle TylAISfr MidASmy AcbAAct YifGEco RmlAEco LmbOSli

StrDSgr OleDSan1 OleDSan2 GraDSvi DnrLSpe RmlAMle TylAISfr MidASmy

AcbAAct

 YifGEco RmlAEco LmbOSliTT-EPRCDGLVDERSGLIGRVLVEEGAEVRNSRVMGPTVIGAGTRVTNSYVGPFTSLAEDC DL-EPRIEGTVDEHTVVIGRVVVGEGARVTNSRIMGPAIIGAGPEISDSYIGPFTSVGDNC DL-EPRIEGTVDEHTVVIGRVVVGEGARVTNSRIMGPAIIGAGAEISDSYIGPFTSVGDNC RL-RPGVHGEVDAASTVEGTVVVEAGRSWSDSRLVGPLVVGAGSVVRGSELGPYTALGRDC GI-EPGMEGQADAASELVGRVRIEAGAQIRASRIVARRHRAG--RVTDR-TSALHVDRGDC --------RTLERRQGL--KVSVPEEVSWRMGWIDDEQLALRAHSLAKSGYGCY----------------QLLEQRQGE--RIACIEEIAMRMGFISAEQCYRLGQELRSSSYGSY--------------------QLLEQRQGV--RIACVEEIALRMGFINADELYLLGCELGNSGYGSY------------------RARHRRGP-----GHQDRLCGGGGLAGRFPRHRARACPRRAVDEQR-----------------QTVEKRQGF--KIACLEEIAWRNGWLDDEGVKRAASSLAKTGYGQY------------------ATIEERQGL--KVSCPEEIAYRKGFIDAEQVKVLAEPLKKNAYGQY---------RIGAPGADIGTAHR--YERYLRTGEK-

VVEDSEVEFSIVLRGASISGVR-RIEASLIGRHVQVTSAPEVPHAHRLVLGDHSRAQISS RITGSEMEFSIMLAESAITGVR-RIEGSLIGRNVQVTQSLHAPNAHRFVLGDHSKVEIQS RITGSEMEFSIMLAESAITGVR-RIEGSLIGRNVQVTQSLHAPNAHRFVLGDHSKVEIQS VLEDAGIRDSIVLDGVSIQGVR-GLSGSLIGRSAAV-RTGEAAGRR-LIIGDHTQAEVAA SIETARSSLHHA-GRLPAHGTR-RVQHSLLGRNVTVAPAPRVPAGSRLILGDDSRVEISS
-----------------------------LSELLERGXFRQAXPTPRRLLWSTGLTEQALC
-----------------------------IIDVAMRGAAA-----------------DRAQ----
-----------------------------LMEVASHAGAA------------------------------1
-----------------------------LRTVPAGSDRRRAQPYPQ-WPA---LTAAAG-
----------------------------LLELL---RARPRQ-Y----------------------

7.8. Sequence alignment of the MidB protein with other dTDP-glucose 4,6dehydratases for construction of MidB-tree in Fig. 5.2

SCF81.08c
StrESgr
StrESgl
OleESan
GraESvi
TylAIISfr MidBSmy GdhSer AcbBAct AcbDSgl Rffeeco RmlBECo LmbMSli

SCF81.08c
StrESgr
StrESgl
OleESan
GraESvi
TylAIISfr
MidBSmy
GdhSer
AcbBAct
AcbDSgl
Rffeeco
RmlBECo
LmbMSli
-NILVTGAAGFIGSRYVRGLLASDAPG---APRVTVLDALTYAGSTANFTLELGHPRLEF -HLLVTGAAGFIGSQYVRTLL-G--PGGPPDVVVTALDALTYAGNPDNLAAVRGHPRYRF TRLLVTGGAGFIGSHYVRTLL-G--PDGPPDAVVTVLDALSYAGNLANLDPVRDHPRLRF -NLLVTGAAGFIGSRYVHHLLEATRRGREPAPVITVLDKLTYAGV---LGNVPDDPAVTF -RLLVTGAAGFIGSHYVREILAGSYPESDDVH-VTVVDRLTYAGRRDNLPE--HHERLDF -RVLVTGGAGFIGSHFTGQLLTGAYPDLGATRTV-VLDKLTYAGNPANLEHVAGHPDLEF QRILVTGGAGFIGSRFVNALLNGSLPEFGKPEVV-VLDALTYAGNLANLAPVGDCGGLRV -RVLVTGGAGFIGSHYVRQLLGGAYPAFAGADVV-VLDKLTYAGNEENLRPVADDPRFRF -KILVTGGAGFIGSHFVTSLISGDIATPQPVTQVTVVDKLGYGGNLRNLAEASADPRFSF TTILVTGGAGFIGSAYVRRLLSPGAP--GGV-AVTVLDKLTYAGSLARLHAVRDHPGLTF RKILITGGAGFIGSALVRYIIN------ETSDAVVVVDKLTYAGNLMSLAPVAQSERFAF -KILVTGGAGFIGSAVVRHIIN------NTQDSVVNVDKLTYAGNLESLAEISDSERYSF GRYCVHRGAGF IGSPTSSKRLLAE----EGTRGVVAYDDLSNTTT-RWIEPLLADERLRF

VHGDIRDAALVDRLTAGA--DQVVHFAAESHVDRSIHAASDFVLTNVVGTQFTNLLDAAL ERGDICDAPG-RRVMAG-Q-DQVVHLAAESHVDRSLLDASVFVRTNVHGTQ-T-LLDAAT VHGDICDADLVDRVMAG-Q-DQVVHLAAESHVDRSLLDAAAFVRTNAGGTQ-T-LLDAAL VRGDIADAPLVDSLMAEA--DQVVHFAAETHVDRSITSPGTFVRTNVLGTQV--LLDAAL VHGDICDRDLLDRVLPGH--DAVVHFAAESHVDRSLTGPGEFVRTNVMGTQ-Q-LLDAAL VRGDIADHGWWRRLMEGV--GLVVHFAAESHVDRSIESSEAFVRTNVEGTRV--LLQAAV VAWDICDRSTVALAMAGA--DLVVHFAAESHVDRSIDDADAFVRTNVLGTHV--LLREAL VRGDICEWDVVSEVMREV--DVVVHFAAETHVDRSILGASDFVVTNVVGTN-T-LLQGAL VRGDICDEGLIEGLMARH--DTVAHFAAETHVDRSVVASGPFVASNLVGTQV--LLDAAL VQGDVCDTALVDTLAARH--DDIVHFAAESHVDRSITDSGAFTRTNVLGTQV--LLDAAL EKVDICDRAELARVFTEHQPDCVMHLAAESHVDRSIDGPAAFIETNIVGTY-T-LLEAAR ENADICDAEGDGLYFGQHQLDAVMHLAAESHVDRSITGPAAFIETNIVGTYV--LLEAAR VRADVLDTA---RL-TEELADDVCHLASSVDMRKGYHDRGFDLRQCAEGTL-S-VLNAMR

SCF81.08c
StrESgr
StrESgl
OleESan
GraESvi
TylAIISfr
MidBSmy
GdhSer
AcbBAct
AcbDSgl
Rffeeco
RmlBECo
LmbMSli

SCF81.08c
StrESgr
StrESgl
OleESan
GraESvi
TylAIISfr
MidBSmy
GdhSer
AcbBAct
AcbDSgl
Rffeeco
RmlBECo
LmbMSli

SCF81.08c
StrESgr
StrESgl
OleESan
GraESvi
TylAIISfr
MidBSmy
GdhSer
AcbBAct
AcbDSgl
RffeEco
RmlBEco
LmbMSli

SCF81.08C
StreSgr
StrESgl
OleESan
GraESvi
TylAIISfr
MidBSmy
GdhSer
AcbBAct
AcbDSgl
RffeEco
RmlBECo
LmbMSli

----------RHGVGPFVHVSTDEVYGSVDAGS-----------ATEEHP LRPSSPYSASKA-
---------RHGVASFVQVSTDEVYGSLEHGS-----------WTEDEPLRPNSPYSASKA-
---------RHGVAPFVQVSTDEVYGSLETGS-----------WTEDEPLRPNSPYATSKA-
---------RHGVGPFVHVSTDEVYGSIEHGS-----------WPEHQPLCPNSPYSASKA-
---------HAGVDRVLHVSTDEVYGSLDSGT-----------WTEDSPLLPNSPYAASKA-
---------DAGVGRFVHISTDEVYGSIAEGS-----------WPEDHPVAPNSPYAATKA-
---------AVRPGRFVHVSTDEVYGSIPEGS----------WSEDHPLSPNSPYAASKA-
---------AANVSKFVHVSTDEVYGTIEHGS-----------WPEDHLLEPNSPYSAAKA----------RHHIGRFLHVSTDEVYGSIDTGS-----------WAEGHPLAPNSPYAASKA----------RHGVRTFVHVSTDEVYGSLPHGA-----------AAESDPLLPTSPYAASKA-AYWNALTEDKKSAFRFHHISTDEVYGDLHSTDD--------FFTETTPYAPSSPYSASKA-NYWSGLDDEKKKNFRFHHISTDEVYGDLPHPDEVNSNETLQLFTETTAYAPSSPYSASKA-A--SG-P--RTVLFS----SSSTVYGD---------PVTLPTPEHAGPYAPHLDVRGREAL

SGDLLALSYHRFTTHGLDVRVTRCSNNYGP HQFPEKLVPLFVTRLLDGHRVPLYGDGRNV SGDLLALAHHV-S-HGLDVRVTRCSNNYGPRQFPEKLIPRFITLLMDGHRVPLYGDGLNV SGDLLALAMHV-S-HGLDVRITRCSNNYGPYQFPEKLVPRFVTLLLEGRKVPLYGDGLHV SSDLLALSYHR-T-HGLDVRVTRCSNNYGP HQFPEKIVPLFVTNLLDGLRVP LYGDGLNV STTWSAAPTTV-R-HGLDVRITRCSNNYGPRQHPEKLIPNFVTRLLTGRQVPLYGDGRNV ASDLLALAYHR-T-YGLDVRVTRCSNNYGPRQYPEKAVPLFTTNLLDGLPVPLYGDGGNT ASDQLALAFHR-T-HGLPVCVTRCSNNYGPYQYPEKIIPLFVSNLLDGAAVPLYGDGGNR GSDLIARAYHR-T-HGLPVCITRCSNNYGPYQFPEKVLPLFITNLMDGRRVPLYGDGLNV GSDLLALAYHQ-T-HGMDVVVTRCSNNYGPRQFPEKMIPLFVTRLLDGLDVPVYGDGRNI ASDLMALAHHR-T-HGLDVRVTRCSNNFGPHQHPEKLIPRFLTSLLSGGTVPLYGDGRHV SSDHLVRAWLR-T-YGLPTLITNCSNNYGPYHFPEKLIPLMILNALAGKSLPVYGNGQQI SSDHLVRAWKR-T-YGLPTIVSNCSNNYGPYHFPEKLIPLVILNALEGKALPIYGKGDQI AAEGLLSANCHL--DGFTAHVFRFGNVVGGRMNHGVIHDFIEKLDARRVRLQVLGDGRQR

RDWLHVDDHCRGFTVDLVRTRGRAGE-VYNIGGGTELSNRDLTGL---LLDACGAG-------REWLHVDDHVRGIEA--VRTRGRAGR-VYNIGGGATLSNKELVGL---LLEAAGAD--------RDWLHVDDHVGGIEA--VRARGRAGR-VYNIGGGTSLANRDLVDL---LLKACGAG-------REWLHVDDHCLGVDL--VRTQGRPGE-VYHIGGGTELTNRDLTGL---LLDAFGVG--------REWLHVDDHCRALQL--VLTKGRAGE-IYNIGGGSGMSNREMTAR---LLDLLGAD-------REWLHVDDHCRGVAL--VGAGGRPGV-IYNIGGGTELTNAELTDR---ILELCGAD-------RDWLHVDDHCRGIAL--VARGGRPAK-VYNIGGGTELTNTELTER---PAEAVRTD-------RDWLHVTDHCRGIQL--VAESGRAGE-IYNIGGGTELTNKELTER---VLELMGQD-------RDWLHVSDHCRGLAL--ALGAGRAGE-VYHIGGGWEATNLELTEI---LLEACGAR-------RDWLHVDDHVR--AVELVRVSGRPGE-IYNIGGGTSLPNLELTHR---LLALCGAGP------RDWLYVEDHARALYC--VATTGKVGET-YNIGGHNERKNLDVVETICELLEELAPNKPHGVA RDWLYVEDHARALYT--VVTEGKAGET-YNIGGHNEKKNIDVVFTICDLLDEIVPKEKS---KNYFLVEECVDGI----LTASGKLGPG-FHVLNLGNPGTVSVDEIAAIVIDEMGLKGV-GLE
--PDRIVHVEDRKGHDLRYSVDWFTSKAREELGYRPHRDLATGLAETVAWYRDNRAWWEPL --WGSVEYVEDRKGHDRRYAVD--STRIQRELGFAPAVDLADGLAATVAWYHKHRSWWEPL --WDRVEHVPDRKGHDRRYSVD--ASRIRRELGHVPATDLSTGLAATVAWYRDNRAWWEPL --WDVVDPVADRKGHDRRYALD--CAKAADELGYRPRRDFAEGIARTIDWYRDNRAWWEPL --WDMVRHVEDRLGHDFRYAID--DSKIREELGYAPRWSIESGLGAVVDWYRDHPDFWRAP --RSALRRVADRPGHDRRYSVD--TTKIREELGYAPRTGITEGLAGTVAWYRDNRAWWEPL
--WSAVREVPDRKGHDRRYSVD-Y-AKIANELGYAPRIGIDEGLADTVRWYRENRAWWKPL
--WSMVQPVTDRKGHDRRYSVD--HTKISEELGYEPVVPFERGLAETIEWYRDNRAWWEPL
--RSRISFVTDRKGHDRRYSLD-Y-SKIAGELGYRPRVDFTDGIAETVAWYRANRSWWTDG ---ERIVHVENRKGHDRRYAVD--HSKITAELGYRPRTDFATALADTAKWYERHEDWWRPL HYRDLITFVADRPGHDLRYAIDA--SKIARELGCVPQETFESGMRKXVQWYLANESWWKQV -YREQITYVADRPGHDRRYAIDA-D-KISRELGWKPQETFESGIRKTVEWYLANTNWVENV --HEGG--VRGWP GDVPVVEYDL-T-RV-HELGWSAP TDGRQAIRTCARRLLAERGWQRP-

7.9. Sequence alignment of the MidH protein with other putative isomerases for construction of MidH-tree in Fig. 5.2

MidHSmy	VNAGTRELGRRLQLTRAAQWCAGIQGDPYALILRATADPAPL-EREIRARGPWFRSELTGAWVT
DnrQSpe	AAPTDSELGRHLLTVRGFHFVFGALGDPYARRLRGEADHLSL-GELVRDRGP-LHGSALGTWVT
TylMIISfr	AHDLSR-AGRRLQLTRAAQWFAGNQGDPYGMILRAGTADPAPYEEEIRERGPLFHSELLGTWVT
OleP1San	MED-S-ELGRRLQMLRGMQWVFGANGDPYARLLCGMEDDPSPFYDAIRTLGE-LHRSRTGAWVT
DesVIISve	RAVADRELGTHLLETRGIHWIHAANGDPYATVLRGQADDPYPAYERVRARGA-LSFSPTGSWVT
SnogNSno	MKLTDSELGRALLSLRGYQWLRGIHHDPYALLLRAESDDPAQLGRLLRERGR-LHRSDTGTWVT
PraloAhi	MPSSKDAPTVDPRPDVTPAFPFRPD-DPF----QPPCEHARLRASDPVAKVV-LPTGDH-AWVV

MidHSmy	ADPRWRQAALADRAFFDLVTEVAR-PYAVGLVLRLLGVPDCDRDTMGRALAGCAPNFDARLARR
DnrQSpe	ADGGISARLLDDPLLFDVVSDLAR-PAIAGSLAAVLGLPDEARAELPDLLAACGPVLDSALCPP
TylMIISfr	GSRHVADAVTADDAFLGVPAE--R-----SALDAAHGNPGGPLPRFETALTGCRRALDALLCPQ
OleP1San	ADPGLGGRILADRKAFDLVEEYAG-PVEVLA--RIWGVPEEDRARFGRDCRALAPALDSLLCPQ
DesVIISve	ADHALAASILCSTDFFVRPAVTLV-PYAAAA-AAVLGVPADRRADFADLLERLRPLSDSLLAPQ
SnogNSno	ADHATASRLLADPRFFDLRADYAL--VEAAC--ALLGLPAGQCSLFG-AFS-PAVLLDATVVPP
Pral0Ahi	TRYADVRFVTSDRRF--VICEMLGVPPEDRPRFQDWTDRMLTIGAPALAQADEIKAAVGRLRGY

MidHSmy PWLSLGSPPTPSRPWPTMSRNNRPGEWGRVRRTPA-AARAVDRTLRDRPPARLESRVASTDLES DnrQSpe TylMIISfr OleP1San DesVIISve SnogNSno RLPVARAMTQALRRVRELMAAKHDEQWSLLRADPGRAADAVEETLRWAPPVTLRSLITQGEVQI QLALSKDMASALEDLR-LLFD--TGRVAAGQVAGQALHRAVSYRIATRFA-REDLELAGCEVKS

Pra10Ahi SLRTVRAADGALAELTALLADDPPVQLDARVVRGETELAGRRLPAGAHVVVLTAATGRDPEVFT RLPEARALIASTAELTALWPRAAPA-VEETLRHAPPARLFTLHATGPER-VADVDLPAGAEVA-LAELIDAKTAAPAD-DLLSLLGIPAAVEELLRYGQIGGGAGAIRIAVEDVEVGGTLVRAGEAV-

MidHSmy	RGC-RIAADDHVVVLAAA-GRDAPGPE-P----------------LGGRTRPHLALALPLIRLAA
DnrQSpe	GGE-TLEADQHVVVLVDAAQRDPALYEDPDRFRLDRPRSPGFTHMALAGRDHLGLVAPLVRVQC
TylMIISfr	AGR-TLPAGTHLVVLAAAANRDACRNAGPAVTGFDVLRRASD----GGPQPH-GLPEDLHFRLS
OleP1San	GDEVVVLAGAIGRNGPSAAPPAPPGPAAPPAPSV-FGAAAFENALAEPLVRAVTGAALQALAEG
DesVIISve	DPERFDLARPD---AAAHLALHPAGPYGPVASLVRLQAEVALRTLAGRFPGLRQAGDVLRPRRA
SnogNSno	$-----------V V V A A A-H R D P S W C P D P D R F D L T R N E R----H L A L P P D L P L G A L A P L L R V C A ~$
Pral0Ahi	$-----I P L-----F N A A N R D P E V F A D P E E L D L G R T D N P H I A L G H G I H Y C L G A P L A R L E L Q V V L E ~$

MidHSmy	TTAVQVMAGRLPGLRVEDEPLTRPRSPVVCACARFRVHPG
DnrQSpe	TAVLRALAERLPGLRAEGEPLRRGRSPVVRAPLSLRLAQK
TylMIISfr	GPLVRRTAEAGLRALAEGPPRLTAAGPVVRRRRGLGRLPV
OleP1San	PPRLTAAGPVVRRRRSP-VVGGLHRAPVA-A-A-------
DesVIISve	PVGRGPLSVPVSSSRQAGDVLRPRRAPVGRGPLSVPVSSS
SnogNSno	TAAVAALAAGLLPLRAVGPPVRRLRAPVTRSVLRFPVAPC
Pra10Ahi	TLVERT--PALRLAIDDADITWR-PGLAFARPDALPIAW-

7.10. Sequence alignment of the MidC protein with other aminotransferases for construction of MidC-tree in Fig. 5.2

LmbSSli StsASgr StsCSgr StrSSgr DnrJSpe TylBSfr MidCSmy OleN2San DesVSve EryCISer ErycIVSer OleN1San Rfbevch

FDTAEEEAVLRVVR---SG-WGVSTGAEAQSFEEEFAAYIGRRHAGA---LT--SCT--A WAES-REAFDDP------GE-----GEWVRRFEQAAADRFGAAHCL---GV--NSGTS-A WPQPGDRALKSLEDVLTSGRWTISCAYQGRDSYERQFASAFADYCGSAMCVPISTGT--A WPQLTDDDIEAAVAALRS-NRLV--GQGNSTVEEFEAALAAGQ--GVEHAVAVSTGTA-A REERADIL-DAVETVFESGQLIL--GTSVRSFEEEFAAYHGLPYCT-G--VD-N-GTN-A GVESAIGGGAAAVA--ARGRYLL--GAELAAFEERFAEYCGNAHC-----VAVGSGLDDA RELRADIDG-ALRRVSASGRYLL--GAELAGFEAEFAAYC-DNDC-----VAVGSGCD-A LELKHDIDA-ATGRVLDSGRYLL--GPELAAFETEWAAYCGARHC-----VAVGSGCD-A EELRAETDA-AIARVLDSGRYLL--GPELEGFEAEFAAYCETDHA-----VGVNSGMD-A LELRSDIF-QACRRVLGSGWYL--HGPEEEAFEAEFAAYCENAHC-----VTVGSGCD-A TVGDRERFFARLEWALNNNW-LTNGGP LVREFEGRVADLAGVRHC-----VATCNATV-A NTGDRKRLLDRLEWALDNRW-LTNGGPLVREFEQRIADLAGVRNC-----VATCNATAG-LDGNERKYLNDC---IDSGW-VSSRGKYIDRFETEFAEFLKVKHA-----TTVSNGT-VA

LmbSSli StsASgr StsCSgr StrSSgr DnrJSpe TylBSfr MidCSmy OleN2San DesVSve EryCISer ErycivSer OleN1San VchPers

ARHGALRANGIGPGDEVSVPQVPFVPRPPAWSTPGGA-PCSRTS-VP-----STSPFDPD LV-AALVGLGIGPGDEVIVPGYMFVASIAAV-LHCGADVVLAEV-D------DSLTLDPA SLAIALEACGVGAGDEVIVPGLSWVASASAV-LGINAVPVLVDV-DP-----ATYCLDPA -VHLALHALDVGPGDEVIVPTHTFIGSASPVTY-LGARPVFADV-TP-----DTHCLDPD LV-LGLRALGIGPGDEVVTVSNTAAPTVVAIDA-VGATPVFVDVHE--E---NY-LMDTG -V-WALWALGVGEGDEVIVPSHTFIASWLAVSA-TGATPVPVEPGDPGEPGPGAFLLDPD L-ELV-RALGIGPGDEVVVPAHTFIGTWLAVSA-AGARPVGVDP-TP-----DGLSMDPA L-ELALRAMDIGPGDEVIVPAHTFAATWLAVSA-TGAEPVAVEP-EP-----ATFTLDPE L-QLALRGLGIGPGDEVIVPSHTYIASWLAVSA-TGATPVPVEPHE------DHPTLDPL L-ELSLVALGVGQGDEVIVPSHTFIATWLGVP--VGAVPVPVEP----E-G-VSHTLDPA L-QLVLRASDVS-G-EVVMPSMTFAATAHAASW-LGLEPVFCDV-DP-ETG----LLDPE L-QLLLREAEVT-G-EVIMP SMTFVATAHAVRW-LGLRPVFCDI-DPD-TG----CLDPK L-HLAMSALGITQGDEVIVPTFTYVASVNTIVQ-CGALPVFAEI-E----G-ESLQVSVE

LmbSSli
StsASgr StsCSgr StrSSgr DnrJSpe TylBSfr MidCSmy OleN2San DesVSve EryCISer EryCIVSer OleN1San VchPers

QVKSLITERTKAVRARCTFRPHGRHWNPLRFLCDSHGLTLPRTPRTPLPARDGDAVAGRA DVRARITPRTRAVMPVHMLG-APADMTALRAVADEHGLHLLEDCAQSAGGSYRGRPLGTL ATEAAITERTRAITVVHAYS-AVADLDALLDIARRHGLPLIEDCAHAHGAGFRGRPVGAH SVKSLIGERTKAIVVVHING-IAADMAALTAVAAEAGVPVIEDAAQALGTEIGGRPIGGF RLRSVIGPRTRCLLPVHLYG-QSVDMTPVLELAAEHDLKVLEDCAQAHGARRHGRLVGTQ RLEAALTPRTRAVMPVHLYG-HPVDLDPVGAFAEPHGLAVVEDAAQATARY-RGRRIGSG QVEAAITPRTRAVMPVHLYG-HPADLDPLLAIAERHGLAVVEDAGSAR-RPLPGRRIGSG RVEAAITSRTRVILPVHLYG-HPADLAALSEVAERHGVRILEDAAQAHGAQAYGRRVGAW LVEKAITPRTRALLPVHLYG-HPADMDALRELADRHGLHIVEDAAQAHGARYRGRRIGAG LVEQAITPRTAAILPVHLYG-HPADLDALRAIADRHGLALVEDVAQAVGARHRGHRVGAG HVASLVTPRTGAIIGVHLWG-RPAPVEALEKIAAEHQVKLFFDAAHALGCTAGGRPVGAF LVEAAVTPRTGAILGVHLWG-RP SRVDELAAIAAEHGLKLFYDAAHALGCTSRQRRLGSF DVKRKINKKTKAVMAVHIYG-QACDIQSLRDLCDEHGLYLIEDCAEAIGTAVNGKKVGTF

LmbSSli
GDASAFSFFATKPITTA-EGGMLCTDTARVADEARRWSLHGLSRGAVV-N-------RYStsASgr StsCSgr StrSSgr DnrJSpe GSAGTFSLNHYKMITSL-QGGFVLMDDPLVFQRAYSFHDQGWFPYRQD-RG------------GAAGVFSMQGSKLLTC-GEGGALVTDDADVALRAEHLRADGRVVRR-E---PV-GVGEME GDLACVSLFEQKVITSGGEGGAVLTDNPVYAERVRRLRSHGEG--------PVSGSPGMI GHAAAFSFYPTKVLGAYGDGGAVVTPDAEVDRRLRRLRYYGMGER---------------YY -HRTAFSFYPGKNLGALGDGGAVVTSDPELADRLRLLRNYGAREK---------------YR -HVVAFSFYPGKNLGAMGDGGAVVTGDAALADRIRLLRKCGSREK--------------YR MidCSmy ST-TAFSFYPGKNLGGFGDGGAVVTDDAELAERVRLLRNYGSREK-------------YR SSVAAFSFYPGKNLGCFGDGGAVVTGDPELAERLRMLRNYGSRQK--------------YS SNAAAFSFYPGKNLGALGDGGAVVTTDPALAERIRLLRNYGSKQK-------------YV GNAEVFSFHATKAVTSF-EGGAIVTDDGLLADRIRAMHNFGIAPD-------------KLV GDAEVFSFHATKVVNSF-EGGGIVTDDDTRAERLRALHNFGLGHD---------GV------GDVSTFSFFGNKTITS-GEGGMVVSNSDIIIDKCLRLKNQGVVAGK---R--------YW

LmbSSli ---R---PGHKYNMSDLGRRPGPAQLAKAGRLHARRTAIAEVYLRE-LAGLD-RLELPRG StsASgr StsCSgr StrSSgr DnrJSpe TylBSfr MidCSmy OleN2San DesVSve EryCISer EryCIVSer
OleN1San VchPers -EGD-PLLGMNLGLGELNAAVALAQLGKLDLILDRIRGVKHR-LVAAIGEL-PGVRRRTL LEETGRMMGSNACLSEFHAAVLLDQLELLDGQNARRTR-AADHLTDRLSEL-GMTAQATA WAHEV---GYNYRLTSVQAAVGLAQHKRLGDL-EARRRNAA-YLSERLAGVE-GLELPVE VVDTP---GHNSRLDEVQAEILRRKLRRLDAYVEGRRAVARRY-EEGLGDLD-GLVLPTI HEER----GTNSRLDELQAAARVRKLPRNLDAWNTRRREIAARYGEALAGL-PGVTVPEA HEVQ----ATNSRLDEFQAAVLRAKLPRVPAWNALRVRTAERYS-QVLGAL-PQIAVPAA HEVR----ATNFRLDELQAAVLRVKLAHLDAWTERRAAVAARYL-DGLAGLD-GIVLPRP HETK----GTNSRLDEMQAAVLRIRLAHLDSWNGRRSALAAEYL-SGLAGLP-GIGLPVT HEVR----GTNARLDELQAAVLRVKLRHLDDWNARRTTLAQHY-QTELKDV-PGITLPET TD-----VGTNGKMSECAAAMGLTSLDAFAETRVHNRLNHALY-SDELRDV-RGISVHAF --G----AGINAKMSEAAAAMGLTSLEAFADAVASNRANYELY-RQELSGL-PGVRLIDY HD----LVAYNYRMTNLCAAIGVAQLERVDKIIKAKRDIAEIY-RSELAGL-PMQVHKES

LmbSSli
StsASgr StsCSgr StrSSgr DnrJSpe

HRHQPSSWYLFPV-RVHGHRRDAFRQR-L-HALGVGTS-VHFEPLHRFTWLRDHVVRTGQ HDAEGECGTVAVYV-FEDAAHALDVARRLGTRVLL-DSPTHYYGGLPALAAFGRGDRSTV PGTTARAYYRYLV-RLPDEVLAVAPVERFAHALTAELGFAVTQTHRPLNDNPLNRPSSRR PPGTTHAYWKYAV-RVVPGDGRRSAADIAAHLRSRGVP-VLLRYPYPLHKQPAFA-----AEGNDHVYYVYVV-RHPE--RDRILEALTAY-D-IH-LNISYPW--PVHTMSGFAHL-GY TylBSfr ARGGAGVWHQYVL-RQPV--RDR-LRRRL--AEAGVETLVHYPV--AVHASGYAGA--GMidCSmy APWADPVWHLYVI-LRAN--RDE-LRRRI--ERAGVETLIHYPV--PPHRTPAYADDSGR OleN2San DesVSve EryCISer ErycIVSer OleN1San VchPers APWADPVWHLFVI-RSAD--RSA-LRERLA--AAGVETLIHYPV--PVHRSEAYAGSRQA APDTDPVWHLFTV-RTER--RDELRSHL---DARGIDTLTHYPV--PVHLSPAYAGE--A HPWADSAWHLFVL-RCEN--RDH-LQRHL--TDAGVQTLIHYPT--PVHLSPAYADL-GL DPGEQNNYQ-YVIISVDSAATGIDRDQLQAILRAEKVVAQPYFSPG-CHQMQPYRTE---DPAERNNYH-YVIALIDAGVTGLHRDLLLTLLRAENVVAQPYFSPG-CHQREPYRTE---NGTFHSYWLTSIILD-QE-F--EVHRDGLMTFLENNDIES-RPFFYPAH-T------------

LmbSSli StsASgr StsCSgr StrSSgr DnrJSpe TylBSfr MidCSmy OleN2San DesVSve EryCISer EryCIVSer OleN1San VchPers --G-FPVA------DAAA-----DTLV---SLPVFPAMHDDAAVSRVVAAVR---PFRAPGG---RPSASFEPGTLPRTDDVLGRSIALATGVSDDYLGPGFGVHADSSA RFATDARYLERVDPSRFDLPAAKRAHE---SVVSFSHEVLLAPLDAIDDIARAFR
V---------------SLPVAERLSQELLALLPSHPGLVEG---------EYHG--
---GPGDPVT-ERLAG-
VL--------------SLPIGPHLPDEAVE-VVIAAVQSAA-P-------ERLAGE
SL-------------SLPSGPHLGDDAFQTVVAAVRAAAVRSGRTHPLSERRAAE
VL--------------SLP IGPHLSDDAVKAVIEAVRGAVAARA--QPVAERLARE
VL-------------SLPIGPHLERPQALRVIDAVREWAEPPEGSLPRAESFARQ
VL-------------SLPIGPHLSREAADH-VIATLKAGAPPGSFPVA-ESLAGE
VL--------------ALPTGPAVSSEDIRRVCDIIRLAATPPLRLENT-EQLSDR
VI-------------ALPTGPAVSREDIRRVCDIIRVAAAHPVSLPHT-EHLAEQ TAFPLSNSYSHRGI-NLPSWPGLCDDQVKE-ICNCIKNYF----LPMY-EHLAEK

7.11. Sequence alignment of the MidK protein with other methyltransferases for construction of MidK-tree in Fig. 5.2

MidKSmy	M-------------YANDIAALYDLVHEGKGKD----YRQEAEEI-A-QLVRAHRPATRSLLDVA
TylMISfr	MAHSSATAGPQADYSGEIAELYDLVHQGKGKD----YHREAADL-A-ALVRRHSPKAASLLDVA
OleM1San	MRADTEP---TTGYEDEFAEIYDAVYRGRGKD----YAGEAKDV-A-DLVRDRVPDASSLLDVA
EryCVISer	M------------YEGGFAELYDRFYRGRGKD----YAAEAAQV-AR-LVRDRLPSASSLLDVA
LmbJSli	MS-DHDFA---KLYGDKIADVYDVWPGDAGPP-P-----DADRA-APFLAALANGRPALELGV-
StsGSgr	MNPRK-P---HVDWDHLFGDDYDYF-DLPDLTP-ELSEKEASNM-V-ELGGFDAGMD--LLDAP
GlyMRa	MDSVYRTRSLGVAAEGIPDQYADGEAARVWQLYIGDTRSRTAEYKAWLLGLLRQHGCHRVLDVA

MidKSmy CGTGQHLRHLDGLFDHVEGLELSQDMLAIAIGRNPDVTL--H-EGDMRSFAL------G-RRFD TylMISfr OleM1San EryCVISer LmbJSli StsGSgr GlyMRa CGTGMHLRHLADSFGTVEGLELSADMLAIPRRRNPDAVL--H-HGDMRDFSL------G-RRFS CGTGAHLRHFATLFDDARGLELSASMLDIARSRMPGVPL--H-QGDMRSFDL------GPR-VS CGTGTHLRRFADLFDDVTGLELSAAMIEVARPQLGGIPV---LQGDMRDFAL---D----REFD -GTGRVAVPLAESGVEVHGVDSSARMLEILKEKSGGA-VHGH-QQDFGRLDL------GERRFG CGHGRHANVLASRGYRVVGVDRDERFLSMARKEAESMG----VQVDYRHVDLREMSF--SAEFD CGTGVDSIMLVEEGFSVTSVDASDKMLKYALKERWNRRKEPAFDKWVIEEANWLTDVPAGDGFD

MidKSmy
AVICMFSSIGHLRTTDELDSTLRCFAGH----LEPGGAIVIEPWWFPDSFTPGY--V-GA--TS
TylMISfr AVTCMFSSIGHLAGQAELDAALERFAAH----VLPDGVVVVEPWWFPENFTPGY--VAAGTV-E OleM1San AVTCMFSSVGHLATTAELDATLRCFARHT----RPGGVAVIEPWWFPETFTDGY--VAGDIV-R EryCVISer LmbJSli
StsGSgr GlyMRa AVTCMFSSIGHMRDGAELDQALASFARH----LAPGGVVVVEPWWFPEDFLDGY--VAGDVV-R LVFALFNTLFCLLTQDEQIACLRSAA-NC---LETEGLLVLQCLN-PKSLPDGS-DVAL-VELE AAVSWYSSFGYFDDETDRD-ILRR----YRRALRPGGRFLLDMHS-PYRHIPS---VLANHEMH AVICLGNSFAHLPDSKGDQSEHRLALKNIASMVRPGGLLVIDHRNYDYILSTGCAPPGKNIYYK

MidKSmy PRRANGTICRVSDSVR-EGKTTRIEVHYLVAEPGGGI--RHLTEDHTITLF--PRADYERAFE TylMISfr AGGTTVT--RVSHSSR-EGEATRIEVHYLVAGPDRGI-THH-EESHRITLF--TREQYERAFT OleM1San EryCVISer LmbJSli StsGSgr GlyMRa VDG-R-TISRVSHSVR-DGGATRMEIHYVIADAEHGP--RHLVEHHRITLF--RWHAYTAAYE -DG-DLTISRVSHSVR-AGGATRMEIHWVVADAVNGP--RHHVEHYEITLF--ERQQYEKAFT HDGVHL--D-VSKHDPVAQTLTAHHIVLSESGARFFPYTLRYSHHTELDLMAARFAGFELRSR VDILRRGQD-MA-VDIQELDAEASRYYAEKLTIRDDKVVRARYSVRMFTAPEILEWFRSAGFS SDLTKDITTSVLTVNNKAHMVTLDYTVQVPGAGRDGAPGFSKFRLSYYPHCLASFTELVQEAF

MidKSmy	RA-GCDVRYQEGGSSGRG-LF------N-RQ-PA
TylMISfr	AA-GLSVEFMPGGPSGRG-LFTGLPGA--KGETR
OleM1San	KA-GYTVEYLDGGPSGRG-LFV-----GTR--T-
EryCVISer	-AAGCAVQYLEGGPSGRG-LFV-----GVRG---
LmbJSli	HADFDGAAYRPDSRYHVS-VYA---RAH--GD--
StsGSgr	HARVMDETGGTFTVSSRR-LMV-------LG-TA
GlyMRa	GGRCQHSVLGDFKPYRPGQAYVPCYFIHVLKKTG

7.12. Sequence alignment of the MidI protein with other glycosyltransferases for construction of MidI-tree in Fig. 5.2

OleG1San EryBVSer OleG2San EryCIIISer TylMIISfr MidISmy
TylNSfr
OleG1San EryBVSer OleG2San EryCIIISer Tylmilsfr MidISmy TylNSfr

OleG1San EryBVSer OleG2San Eryciliser TylMIISfr MidISmy TylNSfr EryBVSer OleG2San EryCIIISer TylMIISfr MidISmy TylNSfr

OleG1San EryBVSer OleG2San EryCIIISer TylMIISfr MidISmy TylNSfr EryBVSer OleG2San EryCIIISer TylMIISfr MidISmy TylNSfr

OleG1San EryBVSer OleG2San EryCIIISer Tylmilsfr MidISmy TylNSfr

OleG1San TFDEEL-----VTGPWTIDPLPRSMRLPTGTTT-V-PMRYVRTT-AA-VVPAWVRHVRGGPRICL

OleG1San CTPVLPTCSAIVHHGGAGTWLTAAVHGVPQIVLGDLWDNPVRARQTQARARGLFIHPSEVRRPG
MRVLLTCFANDTHFHGLVPLAWALRAAGHEVRVASQPALSDTITQAGLTACPWAGT-RFLELMGE MRVLLTSFAHRTHFQGLVPLAWALRTAGHDVRVAAQPALTDAVIGAGLTAVPVGSDHRLFDIVPE MRVMMTTFAANTHFQPLVPLAWALRTAGHEVRVVSQPSLSDVVTQAGLTSVPVGTEAPVEQFAAT MRVVFSSMASKSHLFGLVP LAWAFRAAGHEVRVVASPALTEDITAAGLTAVPVGTDVDLVDFMTH MRVLLTCIAHNTHYYNLVPVAWALRAAGHEVRVAAQPALTDTITASGLTAVPVGGNESVLEFVTE MRVLLTSLAHNTHYYSLVPLAWALRAAGHEVRVASPPSLTDVITSTGLPAVPVGDDQPAAELLAE M-----------------PEVVETLRRGPAMRDLMKGLPPAPEEYDQEVLDRIERAGEGVDLVVH

IGADVQKYSTGIDL-GVR-AELTSWEYLLGMHTTLVPTFYSLVNDEPFVDGLVALTRAWRPDLIL VAAQVHRYSFYLDFYHRE-QELHSWEFLLGMQEATSRWVYPVVNNDSFVAELVDFARDWRPDLVL WGDDAYIGVNS IDFTGNDP-GLWTWPYLLGMETMLVPAFYELLNNESFVDGVVEFARDWRPDLVI AGHDIIDYVRSLDFSERDPA-TLTWEHLLGMQTVLTPTFYALMSPDTLIEGMVSFCRKWRPDLVI IGGDPGPYQRGMDFAETCG-EPLSYEHALGQQTAMSALCFAPFNCDSTIDDMVALARSWRPDLVL MGGDLVPYQRGFEFAEVEPAQETTWEHLLGQQSMMSALWFAPFSGAATMDDIGRLRRDWRPDLVV

WEHFSFAGALAARATGTP HARVLWGSDLIVRFRRDFLAAAANPARRAPRDPMAAWLGW-RTGWVS WEPFTFAGAVAARACGAAHARLLWGSDLTGYFRGRFQAQRLRRPPEDRPDPLGTWLTE-VAGRFG WEPLTFAGAVAARVTGAAHARLPWGQEITLRGRQAFLAERALQPFEHREDPTAEWLP--HARPVR WEPLTFAAPIAAAVTGTPHARLLWGPDITTRARQNFLGLLPDQPEEHREDPLAEWLTWTLEKYGG WEPFTYAGP IAAHACGAAHARLLWGPDVILNARAQFRRLAPDSPEEPREDPVAEWLGWTLERHGL WEPWTYAGP IAARACGAAHARILWGPDAIGRSRRRFLEALERVPEELREDP IAEWLGWTLDRYGC F-P---AVE-----SG--QRRM--GP-LT-PLYNRL-THW-RA--E-R-D---HW-GWRRAEVNE VE----FGEDLAVGQWSVDQLPPSFRLDTGMET-VVA-RTLPYNGAS-VVPDWLKKGSATRRICI CSFDE----EMVTGQWTIDTLPRTMRLELSEELRTLDMRYVPYNGPA-VVPPWVWEPCERPRVCL PA----FDEEVVVGQWTIDPAPAAIRLDTGLKT-V-GMRYVDYNGPS-VVPEWLHDEPERRRVCL TAERE-TVEELIGGQWTLDPTAESLRCPR-P-A-VVPFRFVPYNGRS-VLPDWLLRKPGRPRVCF AFDERD-----VLGHWVIDPGPRSTRLDLGQ-T-TVPMCYVPYNGRA-VIEPWLAEKPERPRVCL FRGRPRL---PPFGKSSPLRRLGHPRHHLYPFSPSVLPKPRDWPGQCHVTGYWFWDQPGW-RPSP

TLGVSARQ-TLGDG-VSLA-EVLAALGDVDAEIVATLDASQRKLLGPVPD-----NVRLVDSPCP TGGFSGLGLAADADQFARTLAQLARF---DGEIVVTG-SGPDTSAV-------PDNIRLVD-FVP TIGTSQRD-S-GRDLVP--STTCSTP-DVAAEIVATSTPPSRRSAA-APG-----NVRAGD-FVP TLGISSRENSIGQ--VSI-EELLGAVGDVDAEIIATFDAQQLEGVA-----NIPDNVRTVG-FVP TLGVSARE-TYGRDAVPF-HELLAGLGDLDAEIVATLDPGQLSGAG-----EVPRNVRAVD-FVP TLGISARE-TYGRDAVSY-SELFQALGRMEIEVVATLDASQQKRLGSLPD-----NVVPVD-FVP ELEDFLADGEPPVLLTLGSTWP LHRQEMVEYPVTTARGARRRLLLVGGPE-----NVVRVPS-AD MGVLLQNCAAIIHHGGAGTWATALHHGIPQISVAHEWDCMLRGQQTAELGAGIYLRPDEVDA-D LHALMPTCSAIVHHGGPGTWSTA-LHGVPQIILDTSWDTPVRAQRMQQLGAGLSMPVGELGV-E MHALLPTCAATVHHGGPGSWHTAAIHGVPQVILPDGWDTGVRAQRTQEFGAGIALPVPELTP-D MDALLPTCSAVVHHGGAGTCFTATLNGLPQIVVAALWDAP LKGAQLAEAGAGVSIA-PEKLD-A LDALLPSCAAIIHHGGAGTWSTALLHGVPQILLPALWDAPLKAQQLQRLSAGLNLPAATLTA-R YSWLMPRTAAVVHHGGFGTTADAVRAGVPQVLVPVLRRPPLLGRPAAADGHGDHPVPLARMNRE

SVRACAGVLTGAPSI----RAAAQRVRDEMNAEPTPGEVVTVLERLAAS----
SLASALTQVVEDPTY----TENAVKLREEALSDPTPQEIVPRLEELTRRH-AG ALRDRVLRLLGEPEF-----RAGAERI-----------------------------------QLRESVKRVLDDPAH----RAGAARMRDDMLAEPSPAEVVGICEELAAGRREP ATLRAGVVRALEDE-GHSRRSAGLL-RAEMLAEPTPAGLVPQLERLTALHRNG RLADAVHTAVHDPAI----RAGARRLREEMLADPTPAAIVPTLERLTALHRAA ALAASVRTAVTDPAMAVRARWLGEAVAAERGVENACVLIEEWAETRTTAHTPG

