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Summary:

Numerous drugs are chird, dly only one enantiomer is thergpeuticdly active
while the other antl pode is completdy mailveor shows often undesired and/or toxic
dde effects For this reeson, dl new chird drugs are now formulated in enantiopure
form Non-steroiddl anticancer and antifungd drugs contain the same chemicd druciure

. Bifonazole 6a and nongderadd aomaase inhibitors such as the Menaini

icancer drug 18. They are charaterized by the presance of Sngle chird centre in

drilic pogtion. Taﬁ)reentworkwasamedatnaNproceduresfor the synthess

]gf Blfonazde 6a and the Menaiini aromaase inhibitors 18 in enantiomé&ic pure
om.

In order to e enantiopure synthons and find products severd hetic
methodsweredallglrepar e ym a e

A chrd |Iﬂ1Lm aumin dride complex with (R)-(-)-2-isoindolinyl-butan+-1-ol
&6)a()2468a,l>(l|l ay was usd for the asymmetric reduction of ketones 25a-d ad

C in order to obtan the correspondi enantmpuredcohds

Reacemic and enantiopure docohals 27a-¢,g,m and 31a-1 were used as dating
mateids in muti-gep synthesss for the comesponding N-imidezole derivatives in
racemic and enantiopure forms Involved are three reaction Seps (@) Mitsuncbu
reection with 4,5-dicyano imidazdle to obtain the N-4,5-dicyanamidazole denvatives
33a -m; (b) hyarolyses of the N-imidazole-4,5-cicarbonitrile denivatives 33a-m to the

dI6CIdS HAa-m, égathermlc decarboxylation of the diacids 34a-m to
meflnd N- |mdazdede1va1ves

This synthetic_procedure was aoﬁgwdly well suted for the production of
enantiopure N-akyl imidszdle devaives b, indeed a'%a/e oh dhamicd yidd but
oompleteraoemc oductswith benzylic dcohols 31d droles27a-c.

modfled Marckwad prooaijrestatlng from chird amines (S)-(+)-44

and (S)-(+)-b1 it was posd bleto1 dazol Seﬂnganda;[%ottanﬂn
s TRt

obtained from the three sep synthess discussd
abweawdprwedthemversonofthecomguralondm theMltSJnobureacnon

In order to obtan the enantiopure aryl-2- bazo[rt;?fuan methands 27 a new
gynthetic method was conddered indead of the asymmeric reduction of the
corresponding ketones thet lead to poor results Theuseof thell SAMII dlowed
the gynthess of ena1t|opure 1ay|-2 1-ds (R)-(-)- ce,hl in hg1
enantiomeric excesss ad ds via rolyss esponding
racemic acetates 60a-c and oaoetatesG - (Scheme 74

The racemic ad enanu re 1a)éla%2 1-0s58 a—I were cydized with 2-
lodophenadl to the comm o[bjfuran carbindls 27g- hand63adand
with 2-N-Mesyl |odoa1|net 2—Nmesyllndolcahrd564a usng Pd(0) as
cadyd. Both products were obtained In high ee and chemicd yidd. These condtitute
thefird goplications of Pd catdyseswith ermtlopureaylpropyml

The reection oondimnswereoptlmzed in order t0 maximize chamicd yidds and
enantiomeric excesses FHndly an hypothesis for the mecheniam of wdlzatlon was
formulated. The first Sep is the PO catdyzed addition of the ¢ compound to
the 2-iodophenadl leeding to_62; the ssoond Sep is the Cul yzed cydization to
benz b]furawedenvaﬂvesZ? or to N-Msindd derivatives64.

condusion the present work led to advances in the Serensdective synthess of

amflga agents uch as bifonezde 6a and the aromatase inhibitors 18; 1n fadt the
applicalion of the described methodology to an enantiopure amine may probebly leed
to the target mdeculein enartiopure form.
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Chapter 1 1

1.Introduction

1.1. Chiral Drugs

A large fraction of the many thousand drugs on the market are chira
compounds (Figl.)!l. Due to economic factors, but also for traditional
reasons, many of them are marketed as racemates. Depending on the
number of asymmetric centres, they can exist as two or more enantiomers
(2n. where n is the numbers of chira centres). For long time it was assumed
that thelr manufacture in enantiomerically pure form was too expensive and
difficult to perform due to the lack of synthetic methods for their
preparation.

Non chird
Natura 6
Semisynthetic Sold as single enantiomers
475 461
A\ Chird
Drugs 469 A\ Sold asracemate
1675 3
Non chird
720
\ gynthetic Sold as 9ngle enantiomers
1200 N / o8
Chird
480 \
A Sold asracemate

422

Figure 1.1: Chira drugs. gpplications as Sngle enantiomers or as racemic mixtures.

Stereoselective syntheses and techniques for the separation of
diasterecisomers are now available and have reached economic feasibility,
thus the dituation is changing rapidly. Similar arguments are vaid for the
use and synthesis of agrochemicals (Fig 1.2.).
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Natural products 13 » Chird ——» 0ld assngle enantiomers
/ i -
Pedticides 550
\ Non chird
AN 447
Synthetic s0ld as single enantiomers
537 7
p Chira <(
X so0ld asracemate
83

Figure 1.2: Chird pegticides and their gpplication as Sngle enantiomers or as racemic
mixtures.

All life processes are characterized by a high levd of dynamic
organization requiring an intricate regulatory network for inter- and
intracellular communication and for communication between living
sysems and their environment. Conveyance of information is largely
controlled by messenger molecules that  sdectively interact with
particular Sites of enzymes, receptors, carrier molecules, etc., which are
essential components congtituting the basis of life. Drugs, pesticides and
pheromones can be regarded as exogeneous messengers. They are
designed for particular functions and are "released" under particular
conditions . Like endogenous messengers, they usually act on specific sites
such as receptors or enzymes. Endogenous and exogeneous messengers
can be subject to activation and/or inactivation by metabolic conversion.
Examples are prodrugs, prehormones and propesticides.

The sdlectivity - the discriminatory capacity of the specific sites for
messenger molecules and substrates - is based upon complementary
chemistry. This can be visualized as the key and lock principle, not as a
static but as a dynamic process of mutual adaptation, an "embracement”
between substrate and enzyme, or messenger molecule and receptor. The
complementary principle concerns the distribution of charge at the
interface of interacting molecules and the spatia structure of the
interactions. Stereoselectivity of biologica systems and stereospecificity
in the action of chiral bioactive xenobioticsis a"natura” matter.
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The concept of stereochemistry and stereoselectivity in biological
processes dates back to Pasteur and van't Hoff-Le Bel, about 100 years
ago. The four valences of carbon imply that, if four different groups are
attached to one carbon atom, the spatial arrangement results in a centre of
asymmetry and thus the occurrence of stereoisomers, such as enantiomers
having a mirror image relationship. Based on the concept of a three point
interaction, the eutomer3.4 may bind to its site of action a, b, g, via three
groups, A, B, and C. The antipode, frequently caled the distomer, in
contrast can only fit with two groups (e.g. A B with a and b), with group C
being in the wrong position w, (Fig. 1.3).

w

N

Figure 1.3: Three-point interaction of enantiomers with a receptor (schematic).

The disomer therefore will have a low affinity. It may be totally
devoid of action or only "inactive" regarding the desired activity. It can
however act in another sense e.g. in causing undesired side reactions or
even antagonize the active isomer. In generd, it is possible to assume that
the two enantiomers of a particular compound can have a) equa
pharmacological activity, b) one may be inactive, or ¢) one may be toxic,
or d) the two might have unequal degrees of various kinds of activities.

In the past, medicinal chemists had been content to develop mostly
racemic forms of chira drugs, under the assumption that both
enantiomers were equaly active or one enantiomer was inactive and
innocuos. The extra steps and expensive chemicals needed to synthesize
enantiomers meant much higher production cost. However, a number of
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trends have developed an irresistable wave of prospects for new chiral
drugs to be developed as single enantiomers. There is adso a strong
movement towards so-called "racemic switches'- single enantiomers
derived from older chiral drugs originaly marketed as racemates.

The development of chird drugs as single enantiomers received a big
boost from the American Food and Drug Administration (FDA)
communication in the summer of 1992 due its its long - awaited guidelines
for the marketing of these drugs. The issue to be decided was whether drug
companies may market such compounds as racemic mixtures or whether
they must develop them as single enantiomers. FDA's position is that drug
companies have the choice of whether to develop chira drugs as racemates
or as sngle enantiomers. But the interpretation of guidelines will rest with
individua FDA reviewers consdering particular cases. And under the
guidelines, drug companies will have to furnish rigorous justification for
FDA approva of racemates. So, in order to avoid unpleasant surprises,
most drug companies have decided to develop only single enantiomers.
Severa have also issued instructions to their research departments to avoid,
whenever possible, chiral molecules.

This evolving regulatory climate in the development of chira drugs
presents many opportunities to drugs firms and their suppliers. The main
beneficiary will be the chemist, because the resolution of racemates,
asymmetric synthesis, and the determination of enantiomeric purities are
chemical activities.

Many chemidts are seeing an advantage in "racemic switches’, the
redevelopments of drugs, aready approved as racemate, as pure
enantiomers. Patents of many racemic drugs are expiring or running out,
and drug companies, in order to defend themselves against competition
from generic drug producers can patent pure enantiomers of the racemic
drug.

In this case fewer biologica tests are needed for an enantiomer to be
approved.

In fact, many older racemic drugs are being switched by third party
firms under the very noses of the original discoverers and/or principal
marketers. One attraction for these third party entrepreneurs in
discovering unexpected and thus patentable properties of enantiomers; or
patenting the most economical production process. One of these racemic
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switches is in the area of analgesics. Thus Menarini (Italy) has collaborated
with the British Company Chiros, ( Cambridge, England) to develop ©)-
(+)-Ketoprofene 1 (Fig 1.4). Discovered by Rhone-Poulenc it was sold in
the U.S. as racemate under the name Orudis, while the enantiomer has been
registered by Menarini in Spain. The (S)-(+) enantiomer is an analges c/anti-
inflammatory drug whereas the (R)-(-) isomer shows activity against bone
loss in periodontal diseased.

I=

Figure 1.4: () Ketoprofene 1 () 2-(3-benzoylphenyl) propionic acid

The discovery of two different pharmacologica effects for opposite
enantiomers is a common driving force for aracemic switch.

Nebivolol, producted by Janssen Pharmaceuticals, is an example for
different pharmacological actions in two enantiomers. It had been
developed as a b-blocker for hypertension. But, whereas (+)-Nebivolol is a
b-blocker, the (-) enantiomer is a vasodilating agent. Thus, by aleviating
hypertension by two different mechanisms of action, the racemate may be
considered superior to either enantiomer>.

There is also a hypothetical case of a chiral drug that is degraded by
metabolic reactions a a dte distant from the asymmetricaly substituted
carbon atom. This way both enantiomers would be inactivated at the same
rate. Therefore, an inactive enantiomer may serve as a sacrifica substrate
for degradation of the enzyme, thus prolonging the residence time of the
active enantiomer in the body. To achieve the same therapeutic benefit, the
patient would have to take the same dose of expensive enantiomers as of
the cheaper racemate.

Clearly, dl indudtria observers believe that if the potency of an active
and inactive enantiomer is such that the dose can be cut in haf, the patient
will benefit.

Candidates for racemic switches are adso antifungal agents, non
steroidal inhibitors of aromatase (anticancer), cardiovascular drugs, non
steroidal anti inflammatory drugs (NSAIDs), centrd nervous system
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agents, antihystaminica, and prescription drugs being considered for
eventua over the counter sale (OTC's).

This thesis will focus on the synthesis of antifungal agents and non
steroida inhibitors of aromatase. These two classes of drugs share general
chemical structures and mechanisms of action. In fact both inhibit two
different cytochrome P-450 dependent enzymes having a protoporphyrin
heme as cataytic site. They present (Fig. 1.5) an heterocyclic moiety such
as an imidazole or triazole in a benzylic or benzhydrilic postion.
Furthermore the asymmetric centre is the benzhydrilic or benzylic carbon
wich is the core of the molecules connecting all other parts of the molecule.

Aromatic Moiety < QP Aromatic Moiety

Benzylic or Benzhydrylic
Imidazole or Triazole -< Chira Centre

L

Figure 1.5: Genera structure of antifungal agents and non steroiddl aromatase inhibitors.

Even though these classes of drugs have very smple structures, they
have never been synthesized in enantiopure form.

1.2. Enzymes containing the Cofactor Cytochrome P-450.

Cytochrome P-450 dependent enzymes constitute a family of enzymes
which catalyze the oxidation of a large range of biological substrates. The
P-450 dependent enzymes are divided into 10 groups and 18 subgroups
based on sequence alignment with groups sharing greater than 30%
sequence homology and subgroups with homology greater than 46%6.8,
The enzymes bind dioxygen and through a stepwise cleavage of the O»

double bond incorporate one oxygen aom into non activated C-H
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-bonds?. It is now widely accepted that some enzymes of the P450
subgroup (notably aromatase and lanosterol 14-a- demethylase) in
extenson to their role in hydroxylation and related oxygen insertion
reactions can catalyze a sequence of reactions leading to C-C bond
cleavage8:9. Cytochrome P-450-dependent lanosterol 14-a- demethylase
(P-450 DM) catdyzes the first step of the biochemicaly important
conversion of lanosterol to cholesterol by removal of the 14-a- methyl
group of lanosterol to give the D 14-15 desatured steroll0, or ergosterol.
Both cholesterol and ergosterol are essentia condtituents of the cdll
membranes in mammals and fungi, respectively.

Figure 1.6 Site of action by Aromatase and 14-a -Demethylase

The aromatase Cytochrome P-450 is involved in the specific
recognition and binding of C-19 steroid substrates and catalyzes the
multistep oxidative reaction sequence leading to aromatization of the A ring
of the steroid 72. In figure 1.6 the reaction sites of the Aromatase
Cytochrome P-450 and the Lanosterol 14-a- demethylase (P-450 DM) are
shown.

1.2.1. Inhibitory Activity of Antifungal Agents on 14-a -
Demethylase.

Ergosterol 2 is the main structurd component of fungal cdll
membranes (Fig.1.7).
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HO

2

Figure 1.7: Ergosterol 2

Diminuition of ergosterol 2 is believed to be the primary mechanism
by which many fungicides inhibit funga growth.

-

Figure 1.8: Lanosterol 3 and 24-methylenedihydrolanosterol 3a.

An early precursor in the synthesis of ergosterol 2 is mevaonic acid
which is condensed via severa steps into squalene. The cyclization of
squalene oxide leads to lanosterol 3 and 24-methylene-dihydrolano-
sterol11.12 3a ( Fig. 1.8). 3a accumulates in drug treated cells because of
the inability of these cells to remove the C-14 methyl group. In contrast,
demethylation would lead to 4,4-dimethylfecosterol, the next sterol along
the biosynthetic pathway leading to ergosterol.

The specific action of fungicides in preventing demethylation at C-14
Is controlled by a Cytochrome P-450 enzyme involved in the
demethylation process. It is believed to involve the association of a
heterocyclic nitrogen atom with the protoheme of Cytochrome P-
4501317, The demethylation a C-14 of the sterol nucleus involves three
reaction steps, shown in Scheme 1.1.
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Cyt P-450 DM
OH O, NADPH
3
Cyt P-450 DM
O, NADPH
Y
A% V\/\—\_
Cyt P-450 DM
My -~

0, NADPH -CO, e

Scheme 1.1: Demethylation of Lanogteral 3 by 14-a -Demethylase

Inibitors prevent the first step of the reactiont4.The inhibition of C-14
demethylation is thought to be due to the binding of a heterocyclic nitrogen
atom in an azole to the protoheme iron atom which in turn would prevent
the activation of oxygen that would normally take part in the reaction. The
non heterocyclic portion in the antifungal agents binds to the lipophilic sites
of Cytochrome P-45015,

Under normal conditions, azole (N-substituted imidazole and triazole)
antifungal antibiotics cure mycoses by inhibiting the funga P-450 DM at
concentrations which are not expected to affect the corresponding host
enzymel6, The accumulation of 14-a- methylated sterols in azole-treated
funga cells affects the membrane structure and their function, resulting in
the inhibition of funga growth 16, 18,

Differential inhibition of this cytochrome P-450 enzyme between
pathogenic fungi and humans is the basis for the clinically important activity
of azole antifunga agents. The anadogous differential inhibition of the
enzyme between fungi and plants is aso responsible for the utility of azole
derivatives as agriculturd antifungad agentsl6. The specificity of the
inhibitors is determined by the differentiad complementarity between the
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structure of the agent and the active sites of the fungal and host enzymes19,
One of the reasons to continue the search for better antifungal agents is to
increase their specificity towards fungal enzymes. This is an important goal
especialy under pathologica circumstances, where the immune system is
compromised to a great extent (AIDS pathology, magjor surgery intervention
follow by an infection) and the side effects (inhibition of the host P-450
DM) due to overdosage of the azole compounds may eventually cause the
death of the patient20. 21,

1.2.2 Antifungal Agentson the market.

Since the advent of the antifungal imidazoles in 1969 severa of these
compounds have been successfully developed and marketed. Many of
these compounds are limited in their use due to their intrinsic toxicity and
scarse solubility. Nevertheless, they positively contribute in the area of
antifungal chemotherapy. A brief survey of some more widdy used
antifunga imidazoles is given beow. All antifungal agents can be classified
into three mgjor classes. Ketoconazole 4a and its analogues 4b-c ( Fig.
1.9), Miconazole 5a and its analogues 5b-d ( Fig. 1.11) and Bifonazole 6a
and its analogues 6b-d ( Fig. 1.12).

In the Ketoconazole series 4a-c ( Fig. 1.9) the azole moiety is not
directely connected to the chira centre. The second classis represented by
the Miconazole series 5a-d ( Fig. 1.11) having the imidazole or triazole ring
in a homobenzylic position, while the chiral atom is in the benzylic position.
The last group is exemplified by Bifonazole 6a and its analogues 6b-d (
Fig. 1.12). Here the imidazole moiety is in benzhydrylic position which also
constitutes the chiral centre.

1.2.2.1 Ketoconazole and its analogues 4a-c.

The structures of Ketoconazole 4a and its analogues 4b-c are shown
in Fg. 1.9.

At present the best drug in the imidazole class of antifungal agents is
Ketoconazole22.244a. It was synthesized and developed by Janssen
Pharmaceuticals in 1977; Ketoconazole (cis-1-acetyl-4-[[2-(2,4-dichloro-
phenyl)-2 (1H-imidazol-1-ylmethyl) -1,3-dioxolan-4-yl] methoxy] phenyl]
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piperazine) is adso the most extensvely documented antifunga
imidazole25,26,

Cl o
CI’ f

4 a-

4a R= Imidazole R= o @— N N—OAc

\__/
. ]

4b R=124Triazole R= o N N
\_/

4c R= Imidazole R'= s@— NH>

4d R=Br R= O@

0

Figure 1.9: Structures of Ketoconazole 4a and its analogues 4b-c, and together with the key
intermediate for the enantiosdective synthesis 4d.

- R
\ o
_\\\(_R
d

Ketoconazole 4a has been shown to have in vitro activity against a
broad spectrum of fungi including the three genera of dermatophytes,
yeasts, dymorphic fungi and a variety of others. In vivo studies with
several animal species demonstrated a broad spectrum of activities against
superficial aswell as systemic fungal infections.

The United States Food and Drug Administration approved 4a in
1981 for the treatment of candidias, chronic mucocutaneous candidias,
ora candidias, candiduria, coccidiomycosis, histoplasmosis, chromomy-
cosis and paracoccidiomycosis27-29, One of the salient characteristics of
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Ketoconazole 4a is that it was the firg orally active antifunga agent of the
iImidazole class after clotrimazole,

Ketonazole 4a, as compared with amphotericin B and miconazole, is
well tolerated athough certain problems in its use in therapy are reported in
the literature (nausea, vomiting or anorexia, abdominal complaints)30,
Gynecomastia has been reported to occur in 3-8% of patients receiving
ketoconazole and this may result in a direct effect of the drug on the breast
tissue31. Another adverse reaction associated with ketoconazole is hepatic
toxicity. 4a has aso been shown to have a smilar inhibitory effect on the
enzyme responsible for the converson of lanosterol to cholesterol in
mammals and has been demonstrated to lower cholesterol levels in
humans32.33, In addition, it inhibits a number of other cytochrome P450
enzymes involved in steroidal biosynthesis and drug metabolism. It has aso
been shown to block adrena steroidogenesis by inhibition of the corticoid
11-b- hydroxylase34. For these properties it has been utilized to treat
prostate cancer and Cushing's syndrome33,

Ketoconazole 4a is marketed as racemic mixture of the cis(2S,4R)
and (2R,4S) enantiomers as illustrated in figure 1.9.

It is one of the few antifungal agents which has aso been synthesized
in enantiopure form. Starting from optically pure (R)- and (S)-solketal
tosylate 4e (figure 1.10), by transketalization with apropiate ketones, both
enantiomers of 4a and aso the corresponding trans derivatives were
prepared36,

The same chiral building block has been used to synthesize selective
inhibitors of the mammalian 14-a-demethylase in order to reduce the
cholesteral levelsin the humans3’.

The latest doereosdective synthess of both enantiomers of
Ketoconazole 4a has been reported in 1995. Starting from commercialy
avalable (R)- or (S-epichlorohydrine38 4f (Fig. 1.10), (+)-or (-)-4a
K etoconazole was obtained in nine steps38.

) /—O(\OTS v’\m
>< o)

(9)-4e (9)-4f

Figure 1.10: (S-solketd tosylate 4e and (S)-epichlorohydrine 4f.
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The four stereoisomers of Ketoconazole 4a were evaduated for their
effectiveness as inhibitors of the cytochrome P450 involved in:

(@ cholesterol biosynthess and degradation (lanosterol 14-
a- demethylase and cholesterol 7-a- hydroxylase); (b) steroid hormone
biosynthesis (cholesterol side chain cleavage, progesterone 17a,20-lyase,
deoxycorticosterone 11-b hydroxylase and aromatase) and (c) xenobiotic
transformation (lauric acid hydroxylation and progesterone
2a-,6b-,15a -, 16 a -, 21 hydroxylation)36.

It was shown that the cisiisomers are more potent inhibitors of
mammadian lanosterol 14-a- demethylase than the diastereomeric trans
iIsomers. The cis(2S54R) isomer is three times more active than its
antipode36,

The most important analogues of Ketoconazole 4a are Terconazole
4b, cis 1,4,2- (2,4-dichlorophenyl) -2- (1-ylmethyl) -1,3 -dioxolan - 4-
ylmetoxyphenyl -4- (methylethyl) piperazine, a triazole ketal synthesized by
Janssen Pharmaceutical s.39

In this case the heterocyclic moiety is a 1,2,4 triazole instead of the
Imidazole, and contains a t-butyl group instead of an acetate group in
position 4 of the piperazine.

In 1995, Menarini reported the first stereoseective synthesis of (+)-or
(-)-Terconazole 4b.

The synthesis of both enantiomers of Terconazole employed as
garting materid (2R,4R)-(+)-and (2S,4S)-(-)-bromobenzoate 4d (Fig. 1.9)
which have been aso used as advanced chiral intermediates for the
synthesis of both enantiomers of ketoconazole40. Another synthesis of the
analogues of K etoconazole 4c¢ has been reported in 199441,

Terconazole 4b has aso been shown to be highly effective in vivo for
the topica treatment of various experimental models of dermatomycosis
and candidiasis. It aso shows some ord activity against experimentaly
induced superficial mycoses 42,

1.2.2.2 Miconazole and its analogues 5a-d.

Miconazole 5a and its analogues 5b-d are shown in Fig 1.11.

Miconazole 1 - [2,4 - dichloro -b- (2,4-dichloro-benzyloxy) phenyl]
Imidazole nitrate 5a is a phenylethyl imidazole derivative synthesized by
Janssen Pharmaceuticalsin 1969 43,
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5a R= Og 5¢c R=

Figure 1.11: Miconazole 5a, Econazole 5b, 1soconazole 5¢ , Tioconazole 5d .

No informations ae avalable in the literature regarding the
stereosel ective synthesis of 5a and its analogues 5c-d. Miconazole 5a has
been shown to have a broad spectrum of antifungal activities 44.

Dermatophytes, pathogenic yeasts, dimorphic fungi, Aspergillus
species and severa mycetoma-causing agents have been shown to be
susceptible to clinically obtainable concentrations of this compound 45,
Clinicdly, Miconazole 5a can be administered either intraveneoudy or
topicaly. It requires solubilization in polyethoxylated castor oil for
intravenous administration, but this vehicle has been suggested to be
responsible for many side effects within this therapy 46. The role of this
imidazole derivative in the therapy of funga diseases remains uncertain,
it has never been properly defined. Some authors 47 have reported the
oral use of miconazole in the prophylaxis in neutropenic cancer. Topical
applications to treat dermatophytes appears to be moderately successful.
Fortunately, no side effects resulted from topical treatments43.

Econazole 1-[2-(2,4-dichlorophenyl)-2-(4-chloro benzyloxy) ethyl]
Imidazole 5b, an andlogue of 5a was aso synthesized by Janssen
Pharmaceuticas 49. In the literature there are no informations regarding
Its stereosel ective synthesis, but it has been a so reported that one of the
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single enantiomers and the racemic mixture virtudly showed the same
antifungal activity 90,

The antimicrobial activity of Econazole 5b has been shown to be
smilar to that of 5a against dermatophytes, pathogenic yeasts, dimorphic
and filamentous as well as gram positive bacteria 91,52,

Isoconazole 5c¢, 1- [ 2, 4- dichloro b- ( 2, 6 - dichloro benzyloxy )
phenylethyl] imidazole nitrate, is an antifugal imidazole structuraly related to
both Miconazole 5a and Econazole 5b, produced by Janssen
Pharmaceuticals.

No informations are available on the enantiosdective synthesis or
chemical resolution of this compound, neither the antimicotic activity of a
single enantiomer.

Isoconazole 5¢ has been demonstrated to have a broad activity
spectrum in vitro against dermatophytes, pathogenic yeasts, pathogenic
filamentous fungi , gram positive bacteria and tricomonas 53. It is very
effective in the treatment of experimentally induced infections following
topical application. In fact, this compound has been developed and
marketed for the topica treatment of vagina candidiasis®3.

Tioconazole, 1-[2-[ (2-chloro-3-thienyl) methoxy]-2-(2,4dichloro
phenylethyl]-1H-imidazole 5d is a substituted imidazole derivate sythesized
by Pfizer. 5d has been shown to be 4 fold more active than 5a against
Candida sp. while it is comparable to 5a in its inhibitory activity againgt
Aspergillus sp.>4 . The main use of this drug is as a topica agent for the
treatment of skin mycose, vagina candidiasis and tricomoniasis®4.

1.2.2.3. Bifonazole and its analogs 6a-d.

Bifonazole 6a and its anaogues 6b-d are shown in figure 1.12.
Bifonazole, 1-[(4-biphenyl)phenylmethyl]-1H-imidazole 6a, is an imidazole
derivative synthesized by the Bayer AG in racemic formd5, Up to now there
are no reports regarding its stereoselective synthesis.There are dso no
pharmacological informations available regarding the activities of the single
enantiomers.

Bifonazole has been shown to have a broad spectrum of antifunga
activity in vitro against many pathogenic yeasts, dimorfic pathogens,
dermatophytes and pathogenic filamentouses fungi=6.
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Figure 1.12: Bifonazole 6a and its analogues 6 b-d.

Generdly, Bifonazole 6a was found to be comparable to Clotrimazole
6d inits in vitro antifunga activity, although quantitatively Bifonazole 6a
was somewhat less potent than Clotrimazole 6d. Experimental studies in
vivo have demonstrated that it is effective in treating dermatophitic
infections, this effectivity being attributed to the therapeutically achievable
fungicidal effect on dermatophites and to the long residence time of the
compound on the skin. Pharmacokinetic studies have demonstrated that this
drug is not mutagenicS7 and well tolerated. The efficacy of Bifonazole as a
topical antifungal agents has been shown by severa clinical studiesand it is
equal or superior to the comparable antifungal imidazoles tested. It has
fewer sde effects and has the distinct advantage of a single daily dose
treatmentS8,

Anaogues of bifonazole are 6b and 6¢ in which the biphenyl moiety
was modified. 6¢ has been shown to be comparable in its activity to
bifonazole againg Candida albicans and Candida sp.59, while 6b has a
higher activity than bifonazole in the treatment of these same diseases 60.

Clotrimazole, 1-(O-chloro-a,a- diphenylbenzyl) imidazole 6d, is a
tritylimidazole in which the benzene ring carries a chlorine substituent. It
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was synthesized by the Bayer AG in 1972 61, |t has been shown to have a
broad spectrum of antimicrobia activity against dermatophytes, pathogenic
yeadts, filamentous and dimorphic fungi, as well as against some gram-
positive bacteria. Studies have shown that 6d required only a very short
contact time in order to achieve maximum inhibitory activity62 It
substantially inhibits the uptake and intracdlular pooling of leucine, lysine
and other aminoacids in the absence of glucose 63,

Clotrimazole 6d was shown to be ordly active in early in vivo studies
but problems with toxicity and side effects directed the development
towards topic applications. The efficacy in the treatment of experimental
fungal infections decreases as a function of timeb4. A progressive decline in
serum concentrations of the drug after administration over severa days has
not been observed. This means a high metabolic stability and a long half
life. Other problems following oral administration 65 are unacceptable high
Incidences of gastrointestinal disturbances, as well as hepatic and adrend
changes.

Clotrimazole 6d has been proven to be effective and safe in the topical
treatment of a variety of funga infections. It is as effective as hydatin in the
treatment of superficiad Candida infections. Clotrimazole 6d has been
shown to be aso active in the treatment of oral Candidiasis.

1.3. Inhibitory activity of anticancer drugson Aromatase.

The biosynthesis of steroids occurs in the gonads where sexual
steroids are produced and in adrenas where glucocorticoids and
mineralcorticoids are synthesized. However, extra glandular production of
some steroids aso takes place in peripheral tissues. For example,
aromatase, which converts androgens into estrogens has been identified in a
wide variety of tissues.

A number of clinical dtuations are documented in which steroid
hormones, either in norma amounts or when produced in excess play a
role in the pathogenesis of diseases. Thus, inhibiton of the steroid-
producing enzymes is a valuable means of treating these conditions. Until
recently, however, there were rdatively few inhibitors avalable that
were specific  for any one steroidogenic enzyme. Most of these
compounds inhibit steroid hydroxylation and interact with the
Cytochrome P-450 component of the enzymes.
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In the last few years, severa compounds have been identified that
sdlectively inhibit aromatase. Since estrogens are important in a variety of
physiological processes and diseases such as gynaecomastia, precocious
puberty, and endometrial and breast cancer - the leading cause of death
among women66 with approximately 40000 deaths per years in the U.SA.
adoned’ |, sdective inhibitors of aromatase are proving useful for both
investigational and therapeutic purposes 68,

Basic and clinica data suggest that human breast cancers can be
divided into hormone-dependent and hormone-independent subtypes, the
former accounting for one-third of the over 100,000 new cases diagnosed in
the USA each year, and even being more prevaent in postmenopausal
women 69, |t was envisaged that an effective inhibition in the biosynthesis
of estrogens may be useful for controlling the amount of circulating
estrogens and, consequently, of estrogen-dependent disorders 70,71,

1.3.1. The Enzyme Complex Aromatase.

The aromatization of C19-steroids (androgens) on the way to C18-
steroids (estrogens) constitutes the last and most important step in the
biosynthetic pathway from cholesterol to estrogens (Scheme 1.2). This is
performed by the enzyme complex aromatase (estrogen synthetase),
conssting of a flavoprotein  NADPH dependent-cytochrome P-450
reductase that transfers eectrons from NADPH (nicotinamide adenine
dinucleotide) to the terminal enzyme, and a specific form of the cytochrome
P-450 enzyme system, known as aromatase cytochrome P-450, which is the
protein involved in the specific recognition and binding of C-19 seroid
substrates.

It catalyzes the multistep oxidative reaction sequence leading to
aromatization of the ring A of the steroid 72. Aromatase, along with other
steroidogenic enzymes such as the cholesterol side-chain cleavage enzyme
(desmolase), 21-hydroxylase, 11b-hydroxylase, 18-hydroxylase, 17a-
hydroxylase, and 17,20-lyase, form part of the subgroup of cytochrome
P-450 enzymes.
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These enzymes are characterized by a heme-iron group, which
activates molecular oxygen. A review addressing the mechanicistic aspect
of oxidative reactions catalysed by the P-450 enzymes with particular
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Scheme 1.2: Biosynthesis of androgens and estrogen.

relevance to steroidogenesis has been reported /3,

Selective inhibition of this ultimate step in estrogen biosynthesis by
specific inactivators of aromatase may soon become a useful therapeutic
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tool for controlling pathological conditions associated with endogenous
estrogens, such as breast and endometrial cancer 74-84, and benign
prostatic hyperplasia 85-87and this by reducing their levels without
affecting production of other physiological steroids.

Aromatase, therefore, has important functions in femae
development and reproduction. In humans, it is produced in the ovaries
and here firg in the theca cells and then in much greater abundance in the
granulosa cells of the developing follicle 88, During pregnancy, the
enzyme is produced in the syncytiotrophoblast of the placenta. In the
mae, aromatase is present in the Leydig cells of the adult testes 89,
Estradiol produced by the testes is thought to be involved in regulating
androgen biosynthesis and the proliferation of the Sertoli and Leydig
cells. In early development, local production of estrogen in the brain has
been shown to be essentiad for sexua differentiation of the mae
phenotype. Central aromatization is necessary for the manifestations of
many kinds of sex behavior, neuroendocrine and developmenta responses
of several species.

In addition, aromatase is formed in a number of other tissues
throughout the body. The most important sites of non-gonadal estrogens
are muscle and adipose tissue 90, where production increases with age in
both sexes. Peripheral aromatization is the main source of estrogens in
post-menopausal women 91,

1.3.2. Enzyme properties.

Aromatization of androgens to estrogen occurs via a series of
reactions. The enzyme aromatase catalyzes the formation of aromatic C18
estrogenic steroids (estradiol and estrone) from C19 androgen precursors
(testosterone and androstenedione), containing the 3-keto-D4 grouping in
ring A of the steroid nucleus.

The process (Scheme 1.3) involves three enzymatic hydroxylation
92-96 which are promoted by the ability of the prosthetic group (heme
iron porphyrin complex) of the aromatase to activate dioxygen for
insertion into nonactivated C-H bonds. The first two occur at the C-19
methyl group, followed by the attack at C-4 by an enzyme nucleophilic
group. Endo shift of the C-4 - C-5 double bond and of the peroxy link to
the heme of the cytochrome and elimination of the C-19 methyl group as
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formic acid results in the formation of the enzyme-bound intermediate93.
(scheme 1.3).

**

\<— C-19 HO

HO

Hydroperoxyaceta of C-19 Aldehyde

HO

Scheme 1.3: Proposed mechanism for the aromatisation of the C-19 Aldehyde
intermediate via hydroperoxyacetal.

This intermediate collapses to an aromatized product via eimination of
the 1b-H and enolisation of the resulting keto-diene moiety which releases
the estrogen and smultaneoudly regenerates the unchanged and active free
enzyme9s,96,

Whether the third hydroxylation occurs at C-19, C-1 or a C-2 of ring
A (as previoudy hypothesized) 97-100, js ill unclear and the
stereochemical outcome of the elimination of the 1- and 2- hydrogens are
still matters for debate. Recent communications, however, confirm the
intermediacy of the C-19 adehyde , which is then attacked by the (heme-
iron)-bound hydroperoxy group to give a hydroperoxy acetal, which
collapses to generate the aromatized product and formic acid via the
concerted loss of the 1b-H and the cleavage of the C-10 -C-19 bond,
followed by the enzyme assisted loss of the 2b-hydrogen 101-107,
Regardless which mechanism will eventually emerge as the one best
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describing the aromatization of androgens, any hypothesis which provides
the basis for designing compounds which selectively inactivate this process
will have served its purpose 93,

1.4. Steroidal and irreversibleinhibitors 108,

Compounds that interfere with the aromatase enzyme activity may be
classfied as reversible or irreversible inhibitors. An attractive approach to
the irreversible inactivation of aromatase is the use of steroidal compounds
possessing latent reactive functionalities which are unmasked at the
enzyme's active Site.

The first selective aomatase inhibitors reported were C-19
steroids109. These compounds were substrates analogues and exihibited
typical properties of competitive inhibitors. They included 1,4,6-
androstatriene-3,17-dione 7 109, 4-hydroxyandrostene-3-17-dione (4-OHA)
8 110 and 4-acetoxyandrostenedione 9 111 (Fig. 1.13)

OH
7 g 4-OHA

OAc

9

Figure 1.13: Irreversbleinhibitors of Aromatase.

Interestingly, some of these inhibitors have been found to cause
inactivation of the enzymell2 and appear to be functioning as mechanism-
based inhibitors. While not intrinsicaly reactive, inhibitors of this type
are thought to compete rapidly with the naturad substrate and
subsequentely interact with the active site of the enzyme. They bind either
very tightly or irreversbly to the enzyme and are thus causing its
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inactivation.113, Because of their binding to the active site, these
inhibitors should be quite specific and should aso have lost effects in vivo
as a result of inactivating the enzyme. Thus, the continued presence of the
drug to maintain inhibition is not necessary and the chance of toxic side
effects, therefore, will be reduced. The inactivation of Aromatase by 4-
OHA 8 can be envisaged to result from the redirection of the elimination
reaction by the enzyme-bound intermediate as shown in scheme 1.4 with the
hydroxy group in postion 4 ( the latent alkylating group), followed
by rapid protonation and loss of water, instead of the normally departing
enzyme nucleophile. Enolisation then occurs to aromatize the steroid ring
A and inactivation results due to the inability of the enzyme to release the
steroid product (scheme 1.4).
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Irrevergble inhibition of aromatase

Scheme 1.4: mechanism of irreversible inhibition of aromatase by 4- OHA 8.

Inactivation of aromatase by the potent inhibitor 8 was demonstrated
following preincubation of the compound for various lengths of time with
microsomes from human placenta or rat ovaries in the presence of
NADPH. After remova of the compound, a time dependent loss of
enzyme activity was observed, which followed pseudo-first order
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kinetics112, This inactivation of the enzyme can be prevented,
If high concentrations of the substrate are present during the reaction. Thus,
binding of [6,73H] 4-OHA 8 to aromatase purified from human placenta
can be prevented by preincubating the enzyme with androstenedione. This
finding aso suggests that the inhibitor interacts with the enzyme a the same
Site as the substrate and at its active Site.

Other steroidal aromatase inhibitors have been shown to cause
Inactivation. 7a-substituted androstenedione derivatives have been studied,
several of which cause inactivation of aromatase 114, 115, The covalent
nature of the binding of 7a-(4'amino)phenyltio-1,4 androstadienedione (7a-
APTADD) 10 (Fig. 1.14) to aromatase was demonstrated by several
methods.
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Figure 1.14: Latest generation of irreversbleinhibitors of Aromatase

Among severa C19 acetylenic anaogs of androstenedione designed as
mechanism-based or enzyme-activated inhibitors, the 10-(2-propynyl)estr-4-
ene-3,17-dione (MDL 18962) 11 has been reported being the most potent
aromatase inhibitor 116 (Fig. 1.14). 11 has significant and long lasting
biochemical and pharmacological activity in vivo.
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Two newer compounds which demonstrated biologica activity are 6-
methylen-androsta- 1,4-diene-3,17-dione = (FCE  24304) 12 or
Examestanell’ and  4-aminoandrosta-1,4,6-triene-3,17-dione  (FCE
24928) 13 118 (Fig. 1.14) which cause inactivation of aromatase.

13, named Minamestane, is an ordly active, irreversible aromatase
inhibitor without any intrinsic androgenic activityl19, The in vivo and in
vitro activity of 13 has been compared to that of FCE 24304 12
(exemestane) and 4-OHA 8 (formestane). No effect was observed on the
5a-reductase and cholesterol side chain cleavage activity and the
compound showed no significant affinity for androgen and estrogen
receptors.

1.5. Non-steroidal and reversibleinhibitors.

The number of sructurdly distinct non-steroidal  Aromatase
inhibitors is rapidly growing, and the biggest class still are the azole
containing analogues. The diversity of active structures contaning the
azole moiety continues to expand, thanks to the ingenuity of chemists and
the tolerance of the target enzyme for adternate substrates.

Aromatase is inhibited by non-steroidal compounds such as
aminoglutethimide 3-(4-aminophenyl)-3-ethylpiperidine-2,6-dione  14a
(AG) and its analogues 14b-d (Fig. 1.15).

This compound was first introduced as an anticonvulsant but its use
was restricted when it was redized that the drug causes adrena
insufficiency. Aminoglutethimide 14a was the first aromatase inhibitor
used in the treatment of metastatic breast cancerl20 in post menopausal
women but it is far from being an optima drugl21-123.14a has a chirdl
center a C(3) of the glutarimide ring. The R-and S enantiomers have
very different activities toward aromatase inhibition, the R-isomer being
36 fold more activel24-125,

AG 14a is dso an inhibitor of another P-450 enzyme, responsible
for the cholesterol side chain cleavage (desmolase)126 and thus the
conversion of cholesterol into pregnenolone. Its inhibition thus reduces
the level of corticosteroid production. Patients treated with AG 14a must
therefore receive hydrocortisone replacement therapy in order to
counteract this effect. AG 14a shows effects to the central nervous system
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(NCS) producing drowsiness and ataxia. To overcome these side effects,
many others anal ogues have been synthesized as shown in figure 1.15.
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Figure 1.15: Aminoglutethimide 14a and its andogues 14 b-d.

The 4-pyridyl anaogue (R)-3-ethyl-(4-pyridyl)-piperidine-2-6-dione
14b has been developed as a sdlective inhibitor of aromatase 127, It does
not inhibit desmolase and does not produce the CNS side effect of AG
14a 128 |t isnow in the last step of dlinical tridsin the U.K.

Recently other analogues of AG 14a possessing an improved
selectivity profile and enhanced potency eg. (9)-(+)-3-(4-aminophenyl)-
3-cycloexyl-piperidine-2,6 dione 14c 129 and (1R59-(+)-1-(4
aminophenyl)-3-cycloexylmethyl-3-azabicyclo-[ 3;1;0]-hexane-2,4-dione
140130 gppeared in the literature as possible back-up for AG 14a.

1.5.1. Fadrozole 15.
Fadrozole hydrocloride 15 [4-(5,6,7,8-tetrahydroimidazo[1,5-4]

pyridin-5-yl) benzonitrile] monohydrocloride 15, is a drug developed by
Ciba Geigy (Fig. 1.16).
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15 is an advanced representative of the new class of azoheterocyclic
inhibitors of aromatase currently under clinical evaluationl31,

B

15

Figure 1.16: (S)-(-) Fadrozole 15.

The pharmacological evaluation of Fadrozole hydrocloride 15 proves
this drug to be a very potent inhibitor which effectively inhibits aromatase in
vivo with an EDsg = 0.03 mg/kg132 leading to a significant reduction of
estrogen levels. The excelent sdlectivity for aromatase over desmolase
supports the working hypothesis that the strong binding to iron is
responsible for the higher potency of the imidazoles and that the
complementarity of the inhibitor with the seroid binding Ste - while
enhancing this potency- more importantly provides sdlectivity for aromatase
over desmolase and other cytochrome P-450 enzymes133,

Fadrozole 15 has a chird centre in the benzylic postion; the two
enantiomers have been separated by chird HPLC and the absolute
configuration has been assigned by X-ray analysis of its corresponding salt
with D-(-)-tartaric acid134. The S - configuration was assigned to the (-)-
enantiomer that was shown to be responsible for the high aromatase
inhibitory activity of fadrozole 134,

The cyano function in the para position of the phenyl ring it is an
essential structura requirement for the high inhibitory activity in fadrozole
and its analogues 133, In fact it seems possible that this polar group might
mimic one of the carbonyl functions of the steroidal inhibitors, either that of
the A or that of the D ring 134,

Ciba Geigy further developed the 1,24 - triazole derivatives CGS
20267 16135, the most potent aromatase inhibitor in vivo reported by the
end of 1993 (Fig. 1.17).



Chapter 1 28

16
Figure 1.17: CGS 20267 16

It is important to note that, in this case the heterocyclic moiety is
directly linked to benzhydrilic position.

1.5.2. Vorazole 17.

Vorazole,  6-[(4-chlorophenil)(1H-1,2,4-triazole-1-yl)]-1-methyl-1H-
benzotriazole] 17 has been recently developed136 as a non steroidal
aromatase inhibitor, (Fig. 1.18).
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Figure 1.18: Vorazole 17.

In vitro and in vivo studies with anima models demonstrated high
potency and specificity and thus its potentid clinical usefulness in humans.
It has aso been demonstrated that almost all aromatase activity resides in
the dextroenantiomer (R83842). The (+)-and (-)-enantiomers were separated
by chird semipreparative HPLC column. Studies both in animas and
humans showed an almost complete inhibition of in vivo human aromatase
activity138,

In May 1994, Janssen Pharmaceuticals patented the synthesis of both
enantiomers139. The procedure is based on the classical resolution of
17a139 (1)-6- [(4-chlorophenyl- hydrazinomethyl) -1-methyl- 1,4-
benzotriazole] using a chird acid (Scheme 1.5) and subsequent
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transformation of the appropriate, enantiomerically pure hydrazine

intermediate into (+)-Vorazole 17 139,
Cl N Cl N
\} \}
SUSY IR OYSH
/ /
NHNH | > IEIHNH |
2 Chirdl acid 2
(¥)-7a (+H)-7a

Scheme 1.5: resolution of (z)-6-[(4-chlorophenyl-hydrazinomethyl)-1-methyl-1,4-
benzotriazole] 17a usng achird acid.

1.5.3. Derivatives of 1[(benzo(b)furan-2-yl)-arylmethyl]
imidazole 18.

Substituted 1[(benzo(b)furan-2-yl)-phenylmethyl]imidazoles have been
demonstrated to be new potent, selective inhibitors of female rat aromatase
in vitro and invivo by Menarini, Florencel40, The general structure of 18
Is shown in figure 1.16.
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Figure 1.16: Genera structures of Menarini Aromatase inhibitors 18.

These compounds with an ICsg <10 nM show very similar potency as
the best existing non-steroidal reversible aromatase inhibitors, such as
fadrozole, vorazole and CGS 20267. Furthermore 18 was shown to be
about 3 orders of magnitude more potent that AG 14a.

In table 1 some of this compounds with their relative activity1l40 are
reported.
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In vivo tests of compounds 18a-g proved to reduce the estradiol level
from 98% to 82% and aso to have higher activities than AG 14a.

Compoun R |C50(nM) Relative Potency
d

18a 4-CN 3 2436
18b 4-Cl 7.7 949
18c 4-F 7.3 1001
18e 2-Me 7.9 925
18d 4-Me 8.8 831
18e 2-Cl 195 375
18f 4-Ph 242 30.2
14a AG 7310 1

Table 1.1: relative potencies of compounds 18a-g in comparison with the AG 14a.

The 4-fluoro derivatives 18c have been separated by analytical chiral
HPLC into the two enantiomers and their activity has been tested: the (+)-
enantiomer was 15 fold more active than the (-)-enantiomerl4la, and the 4-
cloro derivative 18b has been separated in single enantiomers by fractiona
crystalization of their dibenzoyltartrate sat, and aso for this molecule the
(+)-enantiomer was 15 fold more active than the (-)-enantiomer141b,

Molecular Modelling using the approches of Furet et d.142 for the
study of the binding of fadrozole to Aromatase provided a satisfactory
explanation for these observations141,

1.6. Aim of thisthesis.

Aim of the thesis was the synthesis of enantiopure benzhydryl azoles.
This target was chosen both for its industrial importance where products of
this kind are under development as racemates, and because it is considered
a chemistry field not yet explored in depth. In order to achieve this god
three different strategies were chosen (Fig. 1.17):

1) Synthesis and separation of diasteroisomers.
2) Enantioselective synthesis
3) Crysadlization of diasteroisomeric salts.
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Enantiosealective syntheses and the separation of diasteroisomers were
investigated in greater detall as compared to the crystdlization of
diasteroisomeric salts.

Synthesis and sepation of diasteroisomers | ‘ Enantioselective Synthesis |

™ ~

[CHI RAL TARGI:_FS}I

1‘,

Classcd Resolution by Crydalization of Diastereoisomeric Salt

Figure 1.17: Synthetic approaches to enantiopure compounds.

The described work was focused on two different classes of drugs: (a)
bifonazole 6a and its analogues (antifungal agents) and (b) the Menarini
anticancer drug 18 (aromatase inhibitor) (Fig 1.18).
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R = Halides, CN,Me.

Fgure 1.18: Bifonazole 6a and Menarini anticancer drugs 18.

Neither enantioselective syntheses nor general methods to obtain these
classes of compounds in enantiopure form are reported in literature; with
the exception of a patent for Vorazole 17a139,
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These apparently similar two classes of compounds showed a
completely different chemica behavior during our investigation as will
become clear in the following chapters. Structuraly quite smple, these
compounds contain only one chiral centre in form of a tertiary carbon
bound to three different aromatic substituents. The system is prone to form
very sable carbocations143 under acidic conditions, furthermore the
molecules do not posses any site of functionalization which would alow the
formation of separable diasteroisomers. The following paragraphs will show
the consequences of these features on the employed generd strategies.

1.6.1. Approaches based on diaster oisomers.

This approach consists in the synthesis of molecules having a
"removable anchor" group, such as a carboxylic acid, amine or acohol,
that could be bound to another molecule with defined chirality in order to
form a pair of diasteroisomers. The different physico-chemical properties
of the diasteroisomers can be used to separate them by chromatography or
by crystallization. After the separation it is necessary to remove the anchor
group and to generate the molecule with the defined chira centre under such
mild conditions as to avoid any possible racemization of the single isomer
obtained from the separation. The last step is the removal of the anchor
from the molecule to generate the free enantiomer of the drug. Again it is
necessary to find the mildest conditions in order to avoid racemizations of
the final compouds (Fig. 1.20).

Our target molecules are unfunctionalized and we have designed two
different functional groups to be introduced as anchors, either on the
aromatic moieties or on the imidazole ring (Fig. 1.19).

X
AI’Y@ Ar\(O
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Ar= Biphenyl, Benzofurane R =NH »,COOH,OH.

Figure 1.19: Possble positions of anchor groups.
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Figure 1.20: Generic procedure used for the production of single enantiomers from aracemic
mixture via the separation of diasteroisomers.

1.6.2. Approachestowards Enantioselective Synthesis.

Retrosynthetic anaysis (Scheme 1.6) of the target molecules based on
the easiest synthetic and genera pathways results in  two possible key
intermediates:

1) Enantiopure Alcohaol A.
2) Enantiopure Amine B.
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Scheme 1.6: Retrosynthetic andys's

The enantiomerically pure targets could be synthesized using two
possible enantiopure precursors such as the alcohol A or the amine B.
Starting from the enantiomerically pure acohol A a clean S\2 reaction with
imidazole would lead to the find product. Enantiomericaly pure amine B
could be synthesized from the enantiomerically pure acohol A by an Sy2
reaction of the appropiate synthons or by asymmetric reduction of the
prochiral oxime C. Amine B is akey intermediate since the imidazole can be
synthesized directely from it. The real genera precursor for al of the above
strategies however is the achiral ketone D which by asymmetric reduction
would lead to the enantiomerically pure acohaol A.

1.6.3. Resolution of Diasteroisomeric Saltsby Crystallization .

This is the oldest method to produce enantiopure compounds. It is
also the most useful procedure used in industry to produce enantiopure
chemicas. A classcd example is the resolution of amines with
enantiopure tartaric acid, the industrid methodology to produce
enantiopure amines. The method is apparently easy: the racemic amine is
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solubilized in hot ethanol or an other appropriate solvent in presence of the
resolving agent (chiral acid). The diasteroisomeric salts are formed, and if
the choice of solvent and resolving agent is correct, only one
diasteroisomeric st  will precipitate. After separation of the
diasteroisomeric salt by filtration, followed by decomposition with agueous
base, the free enantiomer is usudly extracted in organic solvents. This
procedure, only apparently easy, is often caled "art" because the best
solvent and resolving agent can not be predicted a priori.
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2. Theoretical Discussion of Techniques.

2.1 Synthesisof enantiopure alcohols by asymmetric
reduction of prochiral ketones

2.1.1.Introduction

The reduction of carbonyl groups in aldehydes and ketones to the
corresponding alcohols is ubiquitous in organic synthesis. Since the first
report of such a reduction by diborane more than half a century ago, metal
hydride reagents have became of major importance as reagents of choice
for these synthetic transformations. The opportunities for variations in the
metal, ligands, counterions and reaction conditions have helped to
overcome most problems encountered regarding the stereo-, regio-or
chemo-salectivity in these reactions.

2.1.2. Stereoselectivity.

The origin and magnitude of stereoselectivity observed in the reduction
of chiral carbonyl compounds has long been an area of intense theoretical
and practical studies. Efforts have concentrated largely on the 1,2-
asymmetric induction that occurs in the hydride addition to a carbonyl
group flanked by an asymmetric centre. Cram's rule was formulated to
rationalize the results of nucleophilic addition to aldehydes and ketones
contaning non polar groupst. The most stable conformation A ( Scheme
2.1 ) was assumed to arise by minimization of the interaction between the
largest group R and the carbonyl group which was coordinated to the
approaching reagent. Addition then occured preferentialy from the side of
the smallest substituent Rs rather than the larger medium sized group Ru.
The outcome of the reduction of ketone A to acohol B following Cram's
rule is illustrated in Scheme 2.1. This rule enabled a large body of
experimental results to be correlated, however its theoretical base was
subsequentely shown to be flawed.
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Scheme 2.1: Reduction of ketones: Cram'srule.

The results in the reduction of a-halo-ketones or adehydes were
anomalous and led to Cornforth's dipolar model C (Scheme 2.2), in
which the dipoles of the carbonyl group and the carbon-halogen bond
were in an antiperiplanar arrangement. Reduction then proceeded from
the less hindered side of the ketone C leading to alcohol D2 (Scheme 2.2).

o) )
Rs RL RL.. 0 H RL, OH
— Rs\/'j ( - RSHH
) %ﬁy cl R Cornforth ¢l R
H c R
C C D

Scheme 2.2: Reduction of ketones: Cornforth modd.

The possibility of chelation in case the a-substituent X was an
hydroxy, alkoxy or amino group was covered by Cram's cyclic or chelate
model E 3(Scheme 2.3). The chelating group X and the carbonyl group
were eclipsed and coordinated to the metal M. The reduction occurs again
from the less hindered side. This model has been widely used to
rationalize the diasterosdectivity in reduction of ketones E when
chelation is important, depending on the nature of the substituent X and
the meta ion M (Scheme 2.3).
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Scheme 2.3: Reduction of ketones: Cram's chelate modd!.

Informations regarding the ground state conformation of carbonyl
compounds demonstrated that the conformation in which one bond is
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eclipsing the carbonyl group is energetically favored. Thisled Karabatsos to
propose an dternative model4. Calculation suggested that the most favored
conformation G ( Scheme 2.4) would have the medium size group Ry of
the ketone G eclipsing the carbonyl group, and addition of the hydride
would occur from the side of the less bulky substituent Rs to give the

acohol H ( Scheme 2.4).

Rm O
Rm O H- RmM H
RL = RL\\H - . OH
H ™ R Karabatsos R
S R Rs R Rs R
G G H

Scheme 2.4: Reduction of ketones: Karabatsos modd.

A comparison of the other possble transtion state with this
conformation alowed the magnitude of diasteroselectivity to be correlated
with the experimenta results.

The most influential contribution towards the interpretation of 1,2
asymmetric inductions in carbonyl group reductions was that of Felkins.
Attention was directed for the first time to the structure of the transition
state, which was assumed to be very smilar to that of the substrate.
Torsiona srain caused by interactions between the partialy formed
hydride-carbonyl bond and the full bonds at the adjacent centre was
assumed to cause attack perpendicular to the carbonyl group plane and
staggered to the largest or more electronegative group R . The angle of
approach was later revised by the Burgi-Dunitz trgjectory 6ac, derived from

crystallographic studies. It placed the incoming hydride much closer to the
substituent Rs. This interaction was decisve for the sdection of this

trangition state over the aternative one, in which the position of the small Rg
and the medium Ry, would be exchanged.

Importantly and in agreement with the Felkin modd, if two akyl
subgtitutions are present, the more stable conformation has the larger group
perpendicular to the carbonyl group and points the remaining akyl group
away from the incoming nucleophile.

2.1.2.1. Cyclic Carbonyl Compounds.
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The stereochemistry and the mechanism of reduction in cyclic ketones
by metal hydride reagents provided an unique opportunity for the
comparison of experimental results with theoretica expectations. The
models proposed by Cram, Cornforth and Karabatsos described above
were inadequate for explanations of the stereochemical results. The effect
of steric influences, torsiona and electronic factors in the reduction, its
stereochemical outcome and position of the trangition state have aso been
intensaly reviewed.

Felkin identified torsona effects in the cyclohexanone 19 whose
reduction accounted for the observed stereoselectivity. Minimization of this
torsona effect in the absence of steric hindrance led to the predominance
of axia attack ( Scheme 2.5)".

Axial
OH
R@ o LAH» Ry R
t BUME:' Equatorial ! BUM?H tB R2
[ R1=R2=H 92 8
19 < R1=Me R2=H 93 7
{R1:R2:Me 53 47

Scheme 2.5: Reduction of cyclohexanones 19.

The eclipsing interactions between the incoming nucleophile and the
bond a to the carbonyl group are more important, for any given trgectory,
for an equatorial direction of attack.

The differences are clearly illustrated in the Newman projection of
cyclohexanone 19 ( Figure 2.1).
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Figure 2.1: Newman projection of cyclohexanone 19.
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The dramatically enhanced axia sdectivity demonstrated in the
reduction of cyclohexenone as compared to cyclohexanone was explained
by the different interna dihedral angle which is reduced from 510 in
cyclohexanone 19 to 22° in cyclohexenone 20. This in turn produced a
dramatic change in torsional interaction regarding both the axia or
equatoria attack, as clear from the Newman projection 20 ( Fig. 2.2).

Axid
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_ ] 220 O
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Figure 2.2: Newman projection of cyclohexenone 20.

This conformation explained also the absence of stereoselectivity in
the reduction of conjugated cyclohexenones.

2.1.3. Chiral Reducing Agents.

The reduction of prochiral ketones to optically active acohols is one
of the most useful asymmetric reactions. The alcohols produced by such a
process may serve as chiral building blocks a the beginning of a
synthesis, or they may serve as the desired end products. In either case,
the proper sdection of the asymmetric reducing reagent is critical, and
several factors may influence the choice of reagent. In choosing an
asymmetric reducing agent, one often seeks to mimic the action of
enzymes.Thus one would like to use reagents that are catalytic, selective,
yield products with high enantiomeric purity and behave predictably with
other functional groups. In addition to the selectivities often associated
with enzymes, it is aso desirable to employ reagents that are effective on
a wide range of substrates and alow the convenient isolation of the
products which should be available in both enantiomeric forms. Clearly
no single reagent can be expected to have al these desirable properties.
Thus much efforts have been focused towards developing reagents that
provide useful compromises.
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An asymmetric reducing agent need not be catalytic if it is inexpensive
and can be easily obtained. The cost factor may be further reduced if the
chira ligand can be recycled. Chird modifications of metal hydride reagents
with a wide variety of chira auxiliaries for the asymmetric reduction of
carbonyl compounds have been studied intensively during the last three
decades. However, asymmetric reducing agents developed in the early stage
of this programme commonly provided only low optical induction in the
asymmetric reduction of prochiral ketonessac, A wide variety of asymmetric
reducing agents has now become avallable for such application.
Unfortunaly, no one particular reagent is effective for al the different
classes of ketones.

Presently there are more than twenty promising reagents®, however
only during the last decade some of these have found a wide application.

At the moment, only five of them are extensvely used in asymmetric
reduction: ( Figure 2.3 ):21a diisopinocamphenyl-chloroborane, |PC2BC,
(DIP-Chloride™); 21b B-isopinocampheyl -9- borabicyclo - [3.3.]]
nonane, (Alpine-BoraneTM);  21c oxazaborolidines; 21d aduminium
complexes derived from opticaly active 1,1- Binaphthyl-2,2'-diol, such as
BINAL-H; and 21e BINAP-Ru complexes.

Ph Ph
w BCl B CK
\' 2 ~ O
N \BI/
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21a DIP-Chloride 21b Alpine-Borane 21c Oxazaborolidines

(Brown) (Midland) (Corey)

oC sote
Ary /(
@)
A _RuZ
o o |/\/ |/F|’ é\ﬁi
AI’2
21d BINAL-H 21e BINAP-Ru Complex
(Noyori) (Noyori)

Figure 2.3: Chird Complex 21a-e for the asymmetric reduction of prochira ketones.
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Brown's DIP-Chloride 21a, Midland's Alpine-Borane 21b and Noyori's
Bind-H 21d are used in stoichiometric quantities whereas Corey's
Oxazoloboridines 21c and Noyori's Binap-Ru complexes 21e are used
cadyticaly.

2.1.3.1. Mechanism of Asymmetric Reduction of Prochiral Ketones.

It is interesting to point out that every chira reducing agent forms a
different chiral complex or transition state with the corresponding prochiral
ketones. The proposed mechanism for the reduction of prochiral ketones
with 21a (DIP-chloride) and 21b (Alpine-borane) is smilarl0. Midland
proposed that the reduction proceeds via a bimolecular, sx membered
cyclic, boat like trangtion state in which the tertiary b-hydrogen (in syn-
planar B-C-C-H conformation) eclipsed with the boron atom, is transferred
to the carbonyl carbon. In the trangition state, the smaller alkyl group Rs is
in the axial position and syn-facial with the methyl group of pinene, while the
bulky alkyl group Ry prefers an equatoria position far away from the
pinanyl methyl group (Scheme 2.6).
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Me H o) Difavored Ho  WOH
N / —_— \rRS
Me Me éRS
Re AN
Repulsion

Scheme 2.6: Mechanism and trandtion state for the chiral reduction of ketones with DIP
chloride 21a
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This approach clearly explains the formation of the S-isomer from the
(-) - DIP chloride 21a and the R-isomer from the (+) - DIP chloride 21a
unless the steric bulk of the carbonyl moiety is changed, as in the case of t-
butyl phenyl ketone or in the case of acyl silanes.

A different mechanism has been proposed for Corey's
oxazaborolidines!i21c. It conditutes an dternate chair trandtion state
assembly to explain the origin of the observed enantiosdectivity in
oxazaborolidine catalyzed reductions of prochira ketones.

According to this model ( Scheme 2.7 ), the 1,3 diaxia interaction
between the R and Rs substituents of the ketones and the oxazaborolidone
methyl group differentiates between the two diasteroisomeric transtion
states 22a and 22b, leading to the mgjor R-product and the S-enantiomers
as minor products'2.

Corey's oxazaborolidines can be used in catalytic amounts (5% molar
with respect to the ketone); the source of hydride is BMS or BH3 -THF in
an equimolar ratio with the ketone. A complete investigation of the reaction
conditions has been reported by the Merck Sharp and Dohme department
of process researchlZ,
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Scheme 2.7: Mechanism and trangition state for the chira reduction of ketones with
Oxazaborolidine 21c.
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Chira phosphine complexes of late transition metals in alow oxidation
state catalyze enantioselective reductions in a homogeneous phase. Noyori
developed an interesting approach for the enantioselective reduction of
prochira a-substituted ketones employing an enantiopure Ru (11) complex
with 2,2-Bis-(diaryl phosphino) 1,1'Binaphtyl (BINAP) 21e/d.

These organometdlic catalysts are endowed with functionality and
axia chirality and alow a differentiation between diasteroisomeric trangition
states differing in energy of only 10 K¥mol. Such molecular catalysts are
not only able to accelerate the reaction rate, but also to control the
stereochemical outcome of the reaction in an absolute sense.

BINAP 21e, afully arylated, C2 symmetrical chira diphosphine, is one
of the mogt effective chiral ligands that have been designed®3 (Fig. 2.4).

BINAP ligands can accommodate a wide variety of transition metals to
form conformationally unambiguos seven membered chelate rings
containing only sp2 carbons.

(R)-BINAP (9-BINAP

Figure2.4: R- and SBINAP 21e.

The gngle crysta X-Ray analysis of certan sguare planar or
octahedral BINAP complexes indicates that the seven membered rings have
a higly skewed configuration that provides a distinct chira microenviroment
in which the phosphophenyl groups are oriented into axial and equatoria
directions!4 ( Fig. 2.5).
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Figure 2.5: Orientation of pogphophenyl groupsin BINAP

Thus, spatia characteristics exert a ggnificant influence on the
substrate coordination sites alowing for exceptional efficiency in BINAP
catalysis.

A wide variety of functionalized ketones can be converted into their
respective optically pure alcohols via homogeneous hydrogenation in the
presence of haogen-containing Ru-BINAP catalysts in acoholic media
The reaction proceeds in a higly enantioselective and predictable fashion. A
general mechanism which describes this selective process involves initia
coordination of the carbonyl oxygen and the a or b adjacent heteroatom
(such as nitrogen, oxygen or halogen) to create a five to seven membered
metal chelated ring complex prior to hydrogen transfer.

In the BINAP-Ru catalyzed reaction, diverse polar functionalities
facilitate the hydrogenation of the neighboring carbonyl group and alow the
efficient enantioface differentation. The halogen containing complexes of
type RuX2-BINAP, the dimeric triethylamine complex or dicarboxylate
complex, Ru(OCOR)2-Binap, may be used as catalyst, depending on the
ketonic substrates. Methanol or ethanol are the solvents of choice.

The reaction with a substrate:catalyst molar ratio of 2200:230 proceeds
with a reasonable rate a room temperature using an initia hydrogen
pressure of 40-100 atm.

Noyori, in 1979, reported also the use of optically pure 2,2 dihydroxy-
1,1"- bingphthyl as LiAIH4 chdating agent. The 1,1' Bingphthol itself has an
axid asymmetry and possesses an extremely high ability of chird
recognitionts,

BINAL-H 21e is prepared by modification of LiAIH4 with (R)- or (S)-
binaphthol and one equivaent of ethanol (Scheme 2.8).
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] ! OH LiAIH , N
—> Al
OO /

Scheme 2.8: Formation of BINAL-H 21e.

- | *Li

Complex hydride reagents of the type LIAIH(OR)4-n are known to
exist in a complicated equilibrium with a variety of disproportionated and
aggregated speciesié. However, the stereochemica outcome arising from
the rigid, unique chiral conformation of this reagent is most economically
rationaized by the mechanism involving a six membered, chelating transition
statel”. For example, in the trangition state of the reaction of acetophenone
and (R)-BINAL-H containing an ordinary R' group, the R'O oxygen acts as
bridging atom because of its highest basicity among the three oxygens
bound to Al. Therefore the chair conformation with axia-methyl and
equatoria-phenyl groups 23a is favoured over the diastereomeric transition
state 23b in accordance with the observed enantioselectivity16 (Fig.2.6).

repulson
(0]
|
Al AI
| \
H™
Et Ph Et Me
23a 23b
FAVORED DISFAVORED

Figure 2.6: BINAL-H trangtion state 23a/b in the acetophenon reduction.

The BINAL-H is one of the best chird LiAIH4 complex reported;
many other examples are reported in the literature such as. LAH-Darvon-

Alc (Alc=2S,3R-(+)-4dimethylamino-3-methyl-1,2-di phenyl-2-
butanol)18ad | L AH-MEP-ArOH ( MEP = N-Methyl ephedring; ArOH =
3,5-dimethyl phenol) 19ab, L AH-diaming] diamine(S)-2-(2,6xylidimethyl)-
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pyrrolidine ]2, LAH-aminobutanol [ (S)-4-anilino-3-( methyl amino) -1
butanol?t, LAH-DBP-EtOH[DBP=(S)-(-)10,10'dihydroxy,9,9'biphenylan-
thranyl] 22, LAH-MEP-NEA (MEP=N-MethylephedrineNE ~ AN-
ethylaniline/, LAH-MEP-EAP ( MEP = N-Methyl ephedrine, EAP = 2-
ethylamino aniline?4.

All the classes of chiral reducing agents shown above are used for the
reduction of a wide variety of different classes of prochira ketones.
Unfortunally, however, none of them has never been used for the reduction
of prochira benzophenones or diaryl ketones.

In these ketones, both moieties linked to the carbonyl group have
roughly the same sze. Therefore, the chird reducing agent fails to
discriminate between the two faces.

To the best of our knowledge, only a small number of methods are
reported in literature for the synthesis of enantiopure benzhydroles or diaryl
methanoles. In particular: (d) asymmetric reduction by Rodoporidinium
toruloides?, (b) resolution of diasteroisomeric acetyl mandelate esters?, (c)
nucleophilic addition of aryl groups to aromatic adehydes by
organotitanium chelating agents 27. A much more interesting approach has
been reported by E. Brown in 199128describing the use of the very
interesting LAH complexing agent, (R)-(-)- (2)- (isoindoliny) butan-1-ol 24 (
Fig.2.7) which will be described later.

The mgor advantages of this chiral complexing agent are that the chiral
amino acohoal is very cheap and available in both enantiopure forms.

CCZ: e

Figure 2.7: (R)-(-)-2-(2-isoindolynil) butan-1-ol 24, Brown's chird amino dcohal for the
asymmetric reduction of benzophenones.

An ortho-substituent in one of the aromatic rings seems to be essential
for a good stereosdection in the asymmetric reduction of prochiral
benzophenones with this chira LAH complex. The ortho
bromobenzophenone 25b was reduced to the ortho-bromobenzhydrol 27b
with an enantiomeric excess > 95% eeand a chemica yied of 100%
(Scheme 2.8).
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,O ‘O LAH150R)25 ,lo “
>
dry Ether

Br O Br OH
25b 27b ee. > 95%, 100% Yidd

Scheme 2.8: Chird reduction of ortho bromobenzophenones 25b by the Brown procedure.

The best molar ratio between LAH and the chird ligand 24 is 1 to 2.5;
no mechanistic hypothesis regarding the absolute stereochemistry of the
acohol has yet been reported by Brown.

2.2 Synthesis of enantiopur e alcohols by enzymatic resolution

2.2.1. Introduction

Enzymes ae proteins, which catayze numerous biologica
transformation in vivo . They are constructed from twenty natural amino
acids. The relationship between the amino acid sequence and its catalytic
activity is dill impossible to predict. It is clear that enzymes represent a
valuable class of catalysts for organic transformations and numerous
organic reactions can be catalyzed in their presence. For organic synthesis it
has to be decided whether an enzymatic approach towards the solution of a
paticular synthetic problem is more practicd than a non-biologica
approach. In many instances enzymatic transformations represent only one
dternative or improvement as compared to an existing chemical
methodology. In some cases, however, enzymatic processes are more cost-
effective than non biological methods and thus have clear advantages.
Several large scale enzymatic processes used in industry (resolution of
amino acids with acylase, transformation of pig insuline to human insulin
catalyzed by trypsin, preparation of penicillin analogues with penicillin
acylase, synthesis of optically pure fine chemicals etc) have demonstrated
that enzymatic catalysts can be the best route to fine chemicals.

2.2.2. Enzyme Kkinetics.
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Enzymatic reactions are as a whole multistage processes. The
substrate S initially binds non-covalently to the enzyme E at a specid Ste
caled the active site. The reversible complex of substrate S and enzyme E
is cdled the MichaglisMenten complex. It provides the proper
combination of reactant and catalytic groups in the active dte of the
enzyme (equation 1):

Ky

E+S - ES

K-1

Equation 1

In the active dte, after the formation of the Michadis-Menten
complex, the chemical reaction step takes place and the enzyme substrate
complex breaks down in a sower second step to yield the free enzyme E
and the reaction product P (equation 2):

K>

ES E+P

K-2

Equetion 2

In this model, the second reaction is dower and therefore is rate
limiting for the overdl reaction. From this it follows that the overdl rate
of enzyme-catalyzed reactions must be proportional to the concentration
of the ES complex. At any given instant in an enzyme catalyzed reaction,
the enzyme exigts in two forms, the free or uncombined form E and the
combined form, the ES complex. At low [S], most of the enzyme will be
in the uncombined form E. Under these conditions the rate will be
proportiona to [§] because the equilibrium of equation 1 will be shifted
towards the formation of more ES as [§ is increased. The maximum
initia rate of the catalyzed reaction (Vyax) 1S observed when virtudly al
of the enzyme is present as ES complex and the concentration of E is
extremely small. Under those conditions, the enzyme is "saturated” with its
substrate, Further increases in [S] will not cause any increase in rate. After
the ES complex breaks down to give the product P, the enzyme is free to
catdyze the transformation of another substrate molecule. The
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saturation effect is a distinct characteristic of enzyme catalyzed reactions
and is responsible for the plateau observed in figure 2.8,

VMAX

>
(S

Figure 2.8 Reaction rate as a function of substrate concentration

When the enzyme is treated with a large excess of substrate, there is a
phase called "pre-steady state’. During this short period of time the
concentration of the ES complex builds up, but the pre-steady state is usual
too short to be easily observed. The reaction quickly achieves a steady
gtate in which [ES] (and the concentration of any others intermediates)
remans approximately constant over time. The measured V generdly
reflects the steady state even though Vj is limited to the early part during the
course of the reaction. To study quantitatively the relationship between
substrate concentration and enzymatic reaction rate, it is necessary to make
the following assumptions:

1) The breakdown process of ES is considered to be amost
ireversble (K>>>K-2 and during the early pat of the reaction the
concentration of the product [P] is negligible and thus the smplifying
assumption can be made that K-2 is very small. The overdl reaction thus is
reduced to equation 3:

Kl K2
E+S<—= ES = E+f
K-1 K-2

Equation 3

From this assumption the rate of product formation is ( equation 4):

v=K,[ES]

Equation 4
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As [ES] in equation 4 can not be a measured experimentally, [E]o is
introduced representing the total enzyme concentration ( bound and free
enzyme); [S] is considered costant because the amount of substrate bound
to the enzyme a any given time is negligible as compared to the total
concentration of S.

The steady state assumption proposes that the rates of formation and
breakdown of ES are equa ( equation 5):

K, [E] [S] =Ko[ES]+K; [ES]

Equation 5

Where [E]= [E]o-[ES).
Equation 5 is resolved leading to an expression for [ES] (equation 6):

[El. [S]
K, +K 4

[ES] =
+[9]

1

Equetion 6

The vdue K,+K,/K; is the MichadisMenten constant Km, and
equation 6 becomes equation 7:

[El, [S]
Km +[9]

[ES] =

Equetion 7

Now it is possible to change the [ES] in eg. 4 with the expression in
the eq.7 leading to equation 8:

Kz [Elo[S]
Km +[S]

Equation 8

V =
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This equation can be further smplified because the maximum velocity
will occur when the enzyme is saturated and [ES]=[E]o. Vmax Can then be
defined as K;[E]o. Subgtitution into eg.8 leads to the Michadlis-Menten
equation 9:

V max [S]
Km+[g]

Equation 9: Michaelis-Menten equation

The MichaelissMenten equation 9 expresses the rate equation for the
enzyme catalyzed transformed of one single substrate.

2.2.3 Specificity

Sdlectivity constitutes the mgor synthetic value of enzyme cataysts.
Because enzymes are large chira molecules with a unique structure at the
active dte, they can be highly selective for certain types of substrate
structures and reactions. Useful types of enzyme catalyzed reactions
include the chemosdlective reaction of defined functional groups in a given
molecule. The reactions are:

Regiosalective

Enantiosel ective with racemic substrates

Enantiosel ective with prochira substrates

Diasteroselective

All such sdlective reactions occur because during the reaction the
prochiral or chira reactants form diasteromeric enzyme trangition state
complexesthat differ in trangtion state energy (L1G#).

2.2.3.1. Kinetic resolution of a racemate

In the kinetic resolution of a racemate the two enantiomeric substrates
are competing for the same active ste of the enzyme E. If A and B are two
enantiomers, the reaction scheme is as follows (Scheme 2.9):
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KlA K2A

E+A =——— EA ~ E+P
K-1A
KlB KZB

E+B ———= EB
K-18

Scheme 2.9:

In figure 2.9 the transformation for two enantiomers is represented.
They obvioudy have different transition state (JG#) energies. If the
differencein DG # is high, the enantioselection will be high.

DG+ DG* e e
/\ DG, f DDG*
/ E+A+B
E+Q
E+P >
Reaction coordinates

Figure 2.9: Reaction profile for the kinetic resolution of enantiomers.

The steady state or Michaglis Menten equation can be used to
describe each reaction rate (equation 10 and 11):

Va = (K—°> [E[A]  eqi0
Km A

Vg = (K—C) EB] el
Km B

Equation 10 and 11: reaction rates for two enantiomers.

Theratio of eq. 10 and eqg.11 is therefore (equation 12):
(KCAT> (A]
a Km /A

(KCAT> (8]
Km B

Equation 12: ratio of reaction rates.

VB
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This anayss shows that the ratio of gpecifity congants
(Keat/Km)a/(Kcat/Km)B determines the enantioselectivity of the reaction.
These specificity constants are related to free energy terms expressed by
0GO=- RT InK.

The enantiosdlectivity of the reaction is related to the difference in
energy of the diastereomeric trangition states (see Fig.2.9) by equation 13:

DDG* =( DGp*-DGg*) = -RT In [(Kcat/Km)a/ (Kcat/Km)g]
Equation 13

In an enzyme-catalyzed kinetic resolution which proceeds irreversibly,
the ratio of specificity constants also known as enantioselectivity value E
can be further related to the extent of converson C and the enantiomeric
excess e.e. as shown3 in equation 14. The parameter E is commonly used
In characterizing the enantiosalectivity of an enzyme catalyzed resolution.

IN[(1-C) (1-ee A)] IN[1-C(1+ee p)]
IN[(1-C) (1+ee A)] IN[1-C(1-ee p)]

Equation 14: Expression of E vaue.

The conversion C is expressed as C= 1 - A+B / AptBp and the
enantiomeric excess eep = P-Q / P+Q; the concentrations are in Mol %.

Experimentally, equation 14 can be used to determine one of the three
parameters if two are known from experiments. If the E vaue is known the
equation can be used to predict the ee of the product or the remaining
substrate at a defined degree of conversion.

In a graphic representation the enantiomeric excess (ee%) of product
and substrate is shown as a function of the conversion C (%) for agiven E
vaue. In a norma experiment it is possible to follow both enantiomeric
purities and to calculate with the equation 14 the E vaue. Generdly, in
order, to have a perfect kinetic resolution which can give enantiopure
products and starting material a 50% conversion, the E vaue must be
higher than 100. In cases of lower E values, only one enantiomer (always
the remaining one) can be obtained enantiomerically pure.
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2.2.4 Lipases.

Most lipases are classfied as serine proteases which catalyze the
hydrolysis of lipids to fatty acids and glyceroll. Unlike esterases, which
show a norma Michadlis Menten behaviour, lipases display only little
activity in agueous solutions in presence of soluble substrates. A sharp
increase in activity is observed when the substrate concentration is
increased beyond its critical micellar concentrations2ac, The increased lipase
activity at the lipid-water interface led to the suggestion that soluble lipases
might undergo a conformationa change -interfacia activation- a the oil
water interface®. This conformational change at the interface is supported
by the X-Ray structures of human34ab and Mucor miehei3Sec |ipases,
phospholipase Ax36ab and their complexes with inhibitors where the shift of

aloop cdled "lid" over the active Siteis clearly shown.

RCO,H + Enz-OH

a) eder hydrolysis
H0 | b) esterification
oH C) trandterification
| - R'OH 0
RCO,R' + Enz-OH = R | O-Enz  ——= )]\
OR' R O—Enz

tetrahedral intermediate R'OH ﬂ' o) ayl transfer

RCO,R" + Enz-OH

Figure 2.10: The four reactions catalyzed by ester hydrolases

Generdly lipases catalyze four different reactions involving carboxylic
esters (figure 2.10):

a Ester hydrolysis

b) Esterification

C) Transesterification

d) Acyl transfer

Although not in al cases proven beyond doubt, it is generally accepted
that the catalytic mechanisms are smilar to those of serine proteases which
have been sudied in great detail.
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The generally accepted mechanism of serine dependent lipase is shown
smplified in scheme 2.10:

His His
f o L g L
A A \|/ \|-/
Asp O H-N ——— Ap OH N
>/l N g )A ONH O
~A R\‘/OR
R_ JOR' )
Y X
HH
H H N
w Oxyanion hole
Oxyanion hole ﬂ
/
His His
P T AN S (S
A OH N ~— A OH
Sp>)L S NH OHj\ +H,0 Sp))L NG NH i
R” ~OH R™>0

Scheme 2.10: hydrolysis mechanism of serine lipases.

The reaction proceeds via nucleophilic attack on the carbonyl group
of the substrate ester RCO2R' by the activated primary hydroxy group of
the serine in the active site. The tetrahedra intermediate is stabilized by
formation of hydrogen bonds between the negative charge on the ester
oxygen and the amino acids of the oxyanion hole present in the protein
backbone as shown in scheme 2.10.

There are severa examples of X-Ray crystal data which support this
hypothesis 3.

The tetrahedra intermediate is then stabilized by dimination of ROH
leading to an activated ester termed acyl-enzyme. This is the centra
intermediate in all four esterase-catalyzed reactions.

In agueous media the acyl group of the acyl enzyme is transferred to
the nuclephilic HoO, present in large excess, the equilibrium is shifted
towards the hydrolysis product.

In non agueous systems the reverse reaction is possible and ester
synthesis occurs (reaction b and c figure 2.10). Edterifications via
enzymatic acyl transfer (reaction d figure 2.10) are particularly attractive for
synthesis because no water is involved. If the acyl doner, which often
serves aso as solvent, is used in excess the acyl group from the acyl-
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enzyme intermediate can be transferred also to other nucleophiles such as
R"OH leading to new esters RCO2R". The success of such acyl transfer
reactions largely depends on the nucleophilicity of the acceptor alcohol
R"OH. Upon ingpection of reaction d (figure 2.10) it is evident that the
desired transfer can be achieved only if the initialy eiminated acohol R'OH
Is less nucleophilic than R"OH.

This enzymatic process, however is reversible and often requires long
reaction times and a large excess of ester as acyl doner to form the acyl-
enzyme in order to achieve areasonable degree of conversionsge,

The application of vinyl or isopropenyl esters as acylating agents for
lipase catalyzed edterifications 3%c offers an effective solution of this
problem because the end side product of the esterification is immediately
converted irreversibly into acetaldehyde or acetone, respectively. (scheme
2.11):

Lipase O O
R—OH + /—OAC » R—O)k + )LH

Scheme 2.11: Edterification of acohol by lipase with vinyl acetate

The only nucleophile present in solution is the alcohol that will be
esterified.

The enantiosdlectivity E of lipase catadyzed reactions in agueous
solution, water organic solvent mixtures, and anhydrous organic solvent
follows the classical competitive equation 14 3039,

2241 Activesitemodd for interpreting and predicting the
specificity of lipases.

The previous absence of a complete set for X Ray data of lipases has
led to the development of smple models for interpreting and predicting the
specifity of enzymatic kinetic resolutions. On the basis of substituent sizes
a the Stereocenter, rules, alowing a prediction which enantiomer of a
secondary acohol is favoured in a kinetic enzymatic resolution have been
developed by anadysis of the data reported in the literature and were
confirmed by subsequent experiments. This strategy has been applied to
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three different enzymes# (cholesterol esterase CE, Pseudomonas cepacia
PCL, Candida rugosa CRL).

A more detailled model has been developed for Pig Liver Esterase
(PLE) based on cubic space descriptors that form the active sitetl. For this
model, approximately 100 methyl esters with representative structures were
identified and the results of their PLE catalyzed hydrolyses on a preparative
scale were analyzed collectively. This has led to a model consisting of five
binding loci, where the serine region is consdered as a sphere with a
diameter of 1 A. The binding regions controlling specificity are represented
by two hydrophobic and two more polar pockets. The two hydrophobic
sites, which interact with the aliphatic or aromatic hydrocarbon portions of
substrate, have a volume of approximately 33 A3, and 5,5 A3 respectively.
Polar groups, such as hydroxy, amino, carbonyl, nitro funtions etc, are
excluded from this area. The hydrophobic pockets can, however,
accommodate less polar groups such as ether or ketal groups, if necessary.

The remaining two Sites accept groups that are more polar or
hydrophilic. They are located at the front and back of the active site.

A model accounting for enantioselective edterifications#? catalyzed by
Pseudomonas species has been also developed. Also in this case, from the
literature data, a working hypothesis has been developed assuming that the
adcohal is resolved most efficiently if it has one small and one relatively
large group, the latter dightly removed from the asymmetric center (Fig.
2.11) carrying the hydroxy group.

H_ OH

o)

Figure 2.11:Simple modd for predicting the resolution of secondary acohols via acylation

This study has led to the development of a mode for the lipase
Pseudomonas AK which seems to be effective for the resolution of
molecules with near planar structure. It is not suitable for the resolution of
substrates carrying relatively bulky moieties close to the hydroxymethine
center, or which are unable to adopt low energy planar conformations
around the hydroxy group. The active site is envisaged as a near planar
pocket with a hydrophilic canopy for the acohol functionality
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projecting above the plane. The depth of this active Site area is sufficient to
accomodate at least the terminal methylene group of an dlene (>1.8A). The
model is described in figure 2.12:

58A
2.8A \
36A I
' 3rlA
2.3A 7
__ 51A
2.0A
Y

Figure 2.12: Two dimensona representation of the enzyme active Ste of Pseudomonas AK.

Many other well defined substrate structure/lenzyme  activity
relationships are emerging. For instance, numerous resolutions of a-aryl
alcohols mediated by SAM Il lipase have been reported, alowing to
establish that this is a good enzyme preparation for resolution of these
substrates, and that the R-enantiomer of the acohal is acylated preferentialy
IN Most cases#347,

The SAM I lipase shows more than 75% homology with the lipase
from Pseudomonas cepacia, but no X-Ray structure is available at present
in the Cambridge Brookaven Structures Database or has been published.
Hence only qualitative models have been reported4® essentially consistent
with that shown in figure 2.11.

2.2.5. Enzymatic kinetic resolution of propar gyl alcohols.

Severd enzymes (lipases) are able to resolve racemic mixtures of
propargyl acohols (esters) into the pure enantiomers by a) esterification
or b) hydrolysis.

Thus, the highly enantiosdective ederification of secondary
propargyl acohols by Pseudomonas sp. has been reported in great
detail4249, The substrates used in these studies are characterized by the
presence of two substituents of largely different bulkiness, but in no case
an aromatic ring is attached directly to the hydroxymethine group.
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Another example is the resolution of tertiary propargylic acohols in
presence of Candida cylindracea® where, however, only low enantiomeric
purities where obtained.

2.3 Mitsunobu reaction: mechanisms and applications.

The Mitsunobu reaction, pioneered by Mitsunobu and coworkers in
196751, has proven useful in a wide variety of synthetic applications
involving alcohols. From the first applications the Mitsunobu reaction has
evolved into one of the primary synthetic tools for inverting acohol
stereochemistry as evinced by over 1100 citations of Mitsunobu's 1981
review on the subjects2. Furthermore, it is a very versatile method for the
condensation of alcohols ROH and various nucleophiles (or acids) HA
leading to the product RA ( Scheme 2.11..).

ROH + HA > RA
Mitsunobu reaction

conditions

Scheme 2.11: Mitsunobu reaction.

2.3.1. Reaction M echanism.

A search of the literature indicated that the mechanism of this reaction
has been the subject of only few investigations S3&d, The Mitsunobu
reaction takes place in three steps as outlined in scheme 2.12.

Step 1. Adduct formation

PPh;+ 'RO,C—N=N—CO,;R +AH

> ‘ROZC—I\ll—H—CozR' A”
"PPh3
Step 2: dcohol activation

ROH + 'ROC—N—N—COR > RO—'PPH; A" +(HN—C02R')
*PPhj 2
Step 3: S N2 reaction

RO—'PPH; + A~ ———» RA +0=PPh,

Scheme 2.12: mechanism of the Mitsunobu reaction.
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2.3.1.1. Step 1: Adduct For mation.

The general procedure for the Mitsunobu reaction encompasses the
addition of diakyl diazodicarboxylate to a solution of a carboxylic acid, an
alcohol and triphenylphosphine, the usua solvents being dichloromethane
or tetrahydrofuran. In these media, formation of the betaine adduct A
(Scheme 2.13) from diakyl diazodicarboxylate and triphenylphosphine
occurs within seconds at -20 °C, as evidenced by bleaching of DEAD upon
addition.

PPhy + 'RO,C—N=N—CO,R ~q— > 'ROZC—I\ll —N—-CO,R
A +PPh3

Scheme 2.13: Betaine adduct formation.

The formation of the betaine originaly has been proposed by
Morrison® and was later substantiated by Bunn and Huisgenss. It has been
generadly assumed that the betaine is formed by a Michadl type nucleophilic
attack of the phosphine on the nitrogen, the reaction has been shown to be
irreversble®. In the absence of solvent, a deep red solution is produced in
an exotermic reaction, this color was first noted by Mitsunobus” who
suggested that radical or radical ions might be present and this suggestion
was subsequently confirmed by Jenkins through EPR studies=,

2.3.1.2. Step 2: Alcohol Activation.

The second step of the Mitsunobu reaction entails transfer of the
PPhs* group from the DEAD-PPhg adduct A (Scheme 2.14) to the alcohol.

H

| ;

'ROZC—I\II—N—COZR' + ROH + A" » RO—PPhs* + DEADH+A
"PPhz A B

Scheme 2.14: formation of the oxyphosphonium intermediate B.
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Three different factors control the rate of this transfer:
A) The basicity of the counterion (A-)generated in the formation of
the DEAD-PPhg adduct A.

B) The extent of hydrogen bonding to this counterion

C) Substituent effects in the phospine

Before discussing these effects, first a note regarding the structure of
the oxyphosphonium intermediate. Mitsunobu originaly hypothesized a
phosphonium salt as an intermediate akin to structure B ( Fig. 2.15.), where
the phosphorus has a positive charge and tetrahedra geometry. However,
severa recent papers have presented evidence for a neutral phosphorane
structure C (Fig. 2.15.) that contains two molecules of acohol per molecule
of phosphine53ed,

R T
~PPh
Ph3P<~P\+PPh PPN o 3
> 3
PhsP 3 OR
B C

Figure 2.15.: Oxyphosphonium structures.

Generdly, a neutral phosphorane is formed in the absence of acidic
compounds. The adduct B is stable at -20° C but it rapidly decomposes at
room temperature. Therefore, formation of the oxyphosphonium
intermediate in the presence of the acid component is the best way to
prevent undesirable side-reactions.

2.3.1.2.1. Effect of the basicity of the counterion.

The rate of transfer of the PPhg* group from the DEAD-PPhg adduct
A to the acohol (Scheme 2.14) is highly dependent on the basicity of the
counterion generated in forming the DEAD-PPhg adduct A as well as on the
extent of hydrogen bonding to this counterion. These effects have been
studied by Hughess3d in connection with the substitution of hydroxy groups
in the sde chain of b-lactames.

Generdly, this consideration indicates the role of the counterion as a
base for alcohol deprotonation, which in turn must occur before PPhg™t
transfer takes place (Scheme 2.16.).
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A" +ROH — RO™ + AH

+ -
'ROZC—I\ll—H—COZR‘ + RO ———= RO—PPh3 * ‘ROZC—N—H—COZR'
*PPhg
B
A

Scheme 2.16: oxyphosphonium intermediate B.

Hughes!o studies confirmed this hypothesis. In fact he observed that,
when the DEAD-PPhg adduct A is prepared in presence of p-TsOH,
formation of the oxyphosphonium intermediate B does not occur due to the
weak basicity of p-TsO- which cannot appreciably deprotonate the alcohol.
However addition of a stronger base to the same reaction, such as
triethylamine (TEA), does catayze the formation of the oxyphosphonium
intermediate B. This demonstrated that the oxyphosphonium intermediate B
Isformed at arate wich is dependent on the AH/A- ratio and on the basicity
of A~

In summary, the reactivity of A~ as a base and as a nucleophile in the
first two steps of Mitsunobu reaction must be carefully controlled in
solution. This means that if A~ is a strong base and a poor nucleophile the
oxyphosphonium B adduct forms, while in the opposite situation, when A-
Is a poor base but a strong nucleophile, it competes with DEAD-PPhg
adduct B in reaction with the acohal.

However, the reaction has a serious limitation regarding the acidity of
HA, which must have a pKa <11 in order for the reaction to proceed
satisfactorily. If HA has pKa >11, the chemica yield of RA is lowered
considerably and with HA having pKa > 13 the reaction does not occur at
all. It is aso possible to carry out the Mitsunobu reaction with acids having
pKa >11 if the norma redox system is changed from DEAD/PPh; or
DIAD/PPh;  (diisopropyldiazodicabrboxylate) to  ADDP  [(1-1'
azodicarbonyl) dipiperiding]l in association with tributyl phosphine,
because in this system:

A) The phosphine shows increased nucleophilicity in the formation

betaine A;

B) The positive charge islocaized on P thus facilitating the

nuclephilic attack of RO~

C) The negative charge is localized at the azo nitrogen thus

Increasing its basicity in the betaine A.
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2.3.1.2.2. Effect of Substitution in the Triarylphosphine
moiety on the Rate of Alcohol Activation.

Hughes studied the effect of substitution in the triarylphosphine on the
rate of alcohol activation and found, as expected, that electron withdrawing
groups, such as chlorine in positions 2 or 4 increase the eectrophilicity of
phosphorus. In table 2.1 the relative rates of formation of the
oxyphosphonium intermediate A at 0 °C with substituted triarylphosphines
in CHoClo solution are summarized.

Substituent Rdative Rate
m - Cl 6200
p - Cl 3600
H 780
m - Me 300
p - Meo 1

Table 2.1 :Effect of subgtituents on the rate of formation of the oxyphosphonium intermediate
A.

The strongly desactivating effect of the 4-MeO group suggests that a
significant dp-pp overlap may occur between the aryl ring and phosphorus
as shown in figure 2.13.

Pr\P_

PH

— O*CH3

Figure 2.13: dp-pp overlap

2.3.1.2.3. The SN2 Reaction.

The fina step of the Mitsunobu reaction is the Sn2 reaction of the
anion A~ with the oxyphosphonium intermediate B. Generdly the reaction
proceeds with complete stereochemical inversion. However, for particular
substrates, this general rule is not respected, indicating that an SN1
component becomes relevant. Another side- and competitive reaction is the
E1 eimination that in some cases can become the mgjor reaction.
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There are various effects which can influence the rate of Sn2
substitution. One of them is the effect of the carboxylate basicity when the
nucleophile is an acid. In contrast to the acohol activation step, there is
only a dight dependence of Sn2 rates on the carboxylate basicity. This
indicates that the Sn2 transition state has to some extent SN1 character, with
a smal incidence of bond formation and a large incidence of bond
breaking. This is not unexpected, since carboxylates are weak nucleophiles,
while triphenyl phosphine oxide is an excellent leaving group due to the
formation of the strong P=0 bond.

The influence of acidity on the S\2 reaction has been also studied for
aryl subgtituted acidsS! and it has been demonstrated that less acidic (more
basic) carboxylate species dictate a dow Sn2 reaction. However, with more
acidic (less basic) species, the rates of acohol activation and Sn2
displacement (step 2 and 3 respectively) became comparable.

In summary the Mitsunobu reaction is dramatically influenced by the
acid component. It appears that there is a relationship between the
dissociation constant of the acid and the overall efficiency of the reaction,
whereby more acidic species generadly provide a higher yield of inverted
product.

It is dso apparent that synthetically useful yields are dependent on a
variety of eectron withdrawing substituents on the aryl carboxylic acid.

2.4 Synthesis of heterocycles by transition metal catalyss.

Organotransition metal chemistry is rapidly becoming an important tool
for organic synthesis and during the past three decades enormous advances
have taken place in our understanding of the structure and reactivity of
organotransition metal compounds. These insights have opened the way for
applications of these compounds to ever burgeoning, fields of organic
synthesis, both as stoichiometric reagents and as catalysts. We were
interested in the synthesis of chiral 2-substituted benzo[b]furanes and 2-
substituted indoles from alkynes and aryl haides mediated by transition
metals(scheme 2.17).
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R
X R
M
SO L
YH R Y
X=Br, |
Y=0, NMs

R=H, Alkyl, Aryl, Eers, dcohols
R'=H, Alkyl, Aryl, Edters, Alcohols

Scheme 2.17: Annulation of triple bonds mediated by transition metals.

Three differents methods are reported in the literature for the synthesis
of these compounds mediated by transition metals:

1) Castro's procedure.

2) Cacchi's procedure.

3) Larock's procedure.

For the first methodology copper(l) was used, for the second and the
third Pd catalysts were employed; al of them were applied to racemic or
achiral compounds.

2.4.1 Annulation of triple bonds by Castro's procedure.

Castro and coworkersé2ad. were the first to discover and study the
substitution of o-halophenols and 2-haoanilines with copper(l) acetylide
followed by cyclization to the 2-subdtituted benzo[b]furanes and 2-
substituted indoles in the presence of a base (scheme 2.18).

Cu H

X=1
Y=0, NH, NMsNTs

R=H, Alkyl, Aryl, Esters, dcohols
Solvent = DMF, Py.

Scheme 2.18: Castro's procedure for the synthesis of benzofuranes and indoles.
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The reactions were found to be strongly dependent on the solvent, in
particular on its ability to afford a homogeneous reaction medium. This
aspect is very important for the synthesis of 2-substituted indoles. When
the reaction was carried out in a homogeneous medium (pyridine as solvent)
the ortho amine tolane was obtained (no cyclization to indole occurred),
while in heterogeneous medium (DMF as solvent) 2-substituted indoles
were synthesized 620d (scheme 2.19).

Cu

| H
DMF
+
GO - &

2 Ph N

ridine \ Ph /
Py " @(/ DMF.Cul

NH

Scheme 2.19: Influence of the solvent in Castro's procedure.

2

The Castro procedure has found very good applications in the
syntheses of novel adenosine A1 receptor ligandss.

A limit of this procedure was the fact that the copper(l) acetylides had
to be prepared separately and isolated. Also some of them are known to be
shock sensitive and explosive. Furthermore, many functionalized copper(l)
acetylides cannot be synthesized and isolated in the usual manner, because
they are soluble in, or reactive towards, the reaction mixture used for their
preparation. To circumvent these problems a modification of Castro's
procedure was reported in 1989 by Owen®4, where the copper (1) acetylide
was generated in situ  from the acetylenic compounds and CwO in
presence of base, followed by coupling and cyclization to 2-substituted
benzo[b] furanes (scheme 2.20).
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Cu,O \
| — :
OH Py, reflux,N °

R=Alkyl, S(Me) 5, Ph.

Scheme 2.20: Modification of Castro's procedure by Owen

In al these methods the copper(l) was used in equimolar amounts or in
excess depending on the substrate.

2.4.2 General procedurefor the synthesis of 2-substituted
benzo[b]furanes and 2-substituted indoles via Palladium
catalyzed heter oannulation of triple bonds.

Simultaneoudly, Cacchi and Y amanaka developed a procedure for the
synthesis of 2-substituted benzo[b]furanes and 2-substituted indoles,
respectively, by Palladium catalyzed heteroannulation of alkynes (scheme
2.21).

H
x H
+ il
» R
YH ! v
X=Br, |
Y=0, NMs

R=H, Alkyl, Aryl, Esters, dcohols

Scheme 2.21: Cacchi and Y amanaka procedure for the synthesis of 2-substituted
benzo[b]furanes and 2-substituted indoles

2.4.2.1 Yamanaka's procedur e for the synthesis of 2-
substituted indolesvia a Palladium catalyst.
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Yamanaka and coworkers have studied®sac an approach to the
synthesis of 2-substituted indoles in presence of a Copper-Paladium
catalyst. Essentidly, this procedure alowed the use of copper (I) in
catalytic amounts and did not require prior preparation and isolation of
copper(l) acetylide. Palladium then catalyzed the coupling between the aryl
iodide and the copper (1) acetylide. Conditions to achieve only the coupling
reaction or both coupling and cyclization have been studied in depth
showing the important role of the R group on the aniline (scheme 2.22).

H
o (N
N
| R
@ ) e R=Ms
NHR cul, TEA, 120° _ R H
sealed tube ©\/ ©\/%7RI
L -
> NHR EtO'Na' N
R= Ms, CO zEt R=CO zEt
R=Alkyl, Aryl.

Scheme 2.22.: Influence of activating groupsin the Y amanaka cyclization.

In particular, when R is a mesyl group, 2-substituted indoles can be
directly obtained, while with less electron withdrawing R groups, such as
COoEt the reaction affords the intermediate, uncyclized coupling product.
This, in turn, can be transformed into the heteroannulated compound by the
action of abase.

2.4.2.2. Cacchi's procedure for the synthesis of 2-substituted
benzo[b]furanes using Palladium catalyst.

Cacchi and coworkerssé reported a procedure for the synthesis of 2-
substituted benzo[b]furanes from 1-akynes usng a Copper-Palladium
catalyst. The reaction of 2-hydroxyaryl or 2-hydroxyheteroaryl halides with
severd 1-akynes in the presence of a base, bistriphenylphosphine Pd (I1)
diacetate and Copper (I) iodide in DMF a RT or 60° C leads to 2-
substituted benzo[b]furanes in usually good yields (scheme 2.23).
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Rq X R1

@[ o PA(OAG)/Cul m
NI . ol

A o4 X o 3

Piperidine/RT or 60°C

A =N, CH.

X =I,Br.

R1 =H, CH3,CHO.

R2 =H, OCH3.

R3 =Alkyl,CH(OH)Akyl or Aryl,Esters

Scheme 2.23: Synthesis of benzofuranes according to Cacchi's procedure.

A short communication published in 1992 from Kundu N.G.67ab
represented our most important reference. This paper described the
synthesis of 2-benzo[b]furanyl carbinol by coupling and cyclization of 1-
phenyl 2-propyn-1-ol with o-iodophenol (scheme 2.24).

The molar ratio between propargylic acohol and 2-iodophenol was 2:1
and the yield was calculated on the basis of the conversion of o-iodophenol
as 66%. It is important to emphasize that al of the above described
procedures were reported with achiral or racemic acetylenic compounds
while our investigation is related to the possbility of applying these
methodologies to chira alkynes.

I
Ph  PdClL(PPh),
(L o= e K
oy TEA, Cul 80°C O

OH OH

Scheme 2.24: Kundu's procedure for the synthesis of arylbenzofuranylmethanols.

To our knowledge, these are the best conditions reported to date for
the synthesis of 2-substituted benzo[b]furanes.

2.4.2.3 Larock's procedure for the annulation of internal
alkynesto various heter ocycles.

Larock R.C.88 and coworkers in 1995 reported a very good
procedure to synthesize aromatic heterocycles via Pdladium catalyzed
annulation of interna akynes. Syntheses of various heterocycles,
including  1,2-dihydroquinolines,  benzofuranes, benzopyranes and
iIsocumarines are reported in this article. Generdly, 5% molar Pd(OAC),
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sodium or potassium carbonate as base, lithium chloride or nBusNCl as
chloride source are employed in DMF as solvent with 5% molar
triphenyl phosphine sometimes added to the reaction mixture.

Temperatures ranging from 80° C to 140° C were necessary to effect
the annulation within a reasonable time. The regiochemistry followed the
genera trend with the aryl group being added to the less hindered end of the
adkyne and the Palladium catayst to the more hindered one (scheme 2.25).

Me
! PdCl2(PPhg), \
+ Me——=—1tBu > tBu
OH nBu4NCI, KOAC @)
100°C, 24h.

Scheme 2.25: Regiosdectivity in the paladium catalyzed cydization of asymmetricaly
substituted akynes.

The heteroannulation using o-iodophenol has been found to be more
difficult than the analoguous reaction usng o-iodoaniline. Generdly, higher
temperatures were required for the cyclization of o-iodophenol, thus
reducing the regiosalectivity of the process. For example, the annulation of
ethylphenylpropynate afforded a 2:3 mixture of regioisomers (scheme 2.26).

| Ph CO,Et
Ph——CO2Et
+ \
@i PdCl (PPh3)> @j\co Et Q\/;Ph
OH 2 2 o) 2 O
LiCl K ,.CO, _
135°C, 24h. ratio 2:3

Scheme 2.26: Anullation of ethylphenylpropynate
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3. Synthesis of Substrates.

3.1. Synthesis of Ketones.

Ketones are the starting materids for antifunga agents like bifonazole
and also for antitumor agents such as 18 (Menarini's compounds).

3.1.1. Synthesis of Ketones 25a-f by Friedel-Crafts Acylation-
Starting Materialsfor further studieson Bifonazole.

Benzophenones are ided precursors for bifonazole and its analogues.
Unfortunately they are not commercially available, with the exception of
benzophenone itsdlf.

Frieddl-Crafts acylationt2 is the most important method for the
preparation of aryl ketones. The reagents usualy employed are acyl halides,
carboxylic acids, anhydrides, or ketenes3. The general scheme of the

reaction is shown in scheme 3.1.
1 RI
RTX R p
+ [ ] > R
O Lewis acid T
R=Alkyl, Aryl.
R = Alkyl, Aryl, Hydroxy, Alkoxy, Halides

X=1I,Br,Cl, F.

Scheme 3.1: Friede-Crafts acylation, general scheme.

R may congtitute either an aryl or an akyl group. Since the RCO group
IS deactivating, the reaction stops cleanly after one group is introduced. All
four acyl halides can be used, although chlorides are the most commonly
employed, the order of reactivity is usualy I>Br>CI>F4. Catalysts are
Lewis acids such as AlBr3, AlICl3, GaCls, FeCls, SnClg, BCl3. For the
acylation a little more than 1 mole of catalyst is required per mole of
reagent, because the firss mole is coordinated to the oxygen of the
reagentss.
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The reaction is quite successful for many types of substrates,
including compounds containing ortho and para directing groups such as
akyl, aryl, hydroxy, alkoxy, halogen and acetamido groups. They are easily
acylated and lead mainly or exclusvely to the para acetylated products,
because of the relatively large size of the acetyl group. Friedel-Crafts
acylation is usuadly prevented by meta directing groups. The mechanism of
this reaction is not completely understood, but at least two mechanisms
could operate, depending on conditions’. In most cases the attacking
speciesisthe acyl cation, either inits free form or asion pair8 (scheme 3.2):

RCOCI + AlCh ——>  R-C:=0" +AICl,

R = Alkyl, Aryl.

Scheme 3.2; Formation of acyl cation.

If Risatertiary group, RCO*™ may loose CO to give R, so that the
corresponding akylarene ArR is often a side product or, sometimes, also
the main product. In the other mechanism an acyl cation may not be
involved, in this case the 1:1 complex can attack directly910 (scheme 3.3).

~ -
AICl3

H R
R X R
A+ 1 — X — > R
+0
SAlCls” o |
+O\

AlCI3”

Scheme 3.3; Direct acylation of complex.

A free-ion attack is more likely for sterically hindered groups R1%.

The CH3CO* has been detected (by IR spectroscopy) in the liquid
complex between acetyl chloride and auminium chloride, dissolved in a
polar solvent such as nitrobenzene. In non polar solvents such as
chloroform, only the complex without the free ion is present!2. In any case,
1 mole of the catalyst certainly remains complexed to the product at the end
of the reaction.

Prochiral Ketones 25a-f were prepared via Friedd-Crafts reaction as
shown in scheme 3.4..



Chapter 3 4

L C »S9s
— R AICI
R//
@)

A a-f 25 a-f

Scheme 3.4: Synthesis of prochiral ketones 25 a-f by Friedd-Crafts acylation.

Only commercially available aroylchlorides were consdered as
sarting materials, the choice was based on the possible synthetic
approaches describe in chapter 1.6.

Six different, substituted benzoyl chlorides Aa-f were chosen to
acylate biphenyl and benzene (time, yields and reaction conditions are
summarized in table 3.1).

Product R R' T [°C] Timeh Yield %
25a H Ph O-reflux 28 97
25b 2-Br H O-reflux 16 96
25¢C 2-Br Ph O-reflux 18 98
25d 2-F Ph O-reflux 18 97
25e 4-NO2 Ph 0-50 16 90
25f 3-NO2 Ph 0-50 12 90

Table 3.1: Prochira ketones 25a-f by Friedd Craft acylation.

Aroyl chlorides A a-f were reacted in 1,2 dichloroethane ( in benzene
for 25b) in presence of AICI3 as Lewis acid with biphenyl. Compounds
25a-f represent suitable intermediates for the preparation of the targets via
the strategies described in chapter 2, such as:

1) 4-Phenyl benzophenone 25a would be the precursor of

bifonazole;

2) 25e-f bearing nitro groups in positions 3- and 4- of the aromatic
ring could be transformed to the corresponding amines which could
be coupled with an enantiopure acid to form a separable mixture of
diasteroisomers,

3) 25b-d with halogens in the 2-postion of the phenyl ring were
used for the asymmetric reduction to chiral benzhydroles using
Brown's method25.26, 2-Bromo benzophenone 25b was synthesized
with the purpose of vdidating this method25.26 reported in
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literature as the best substrate for this kind of asymmetric reduction.
2-Bromo-4'-phenyl benzophenone 25c can be considered as
precursor of bifonazole. The ortho substituent is required for good
enantiosdlectivity during the Brown asymmetric reduction, while the
para phenyl group is required for the bifonazole structure. The para
phenyl group on the aromatic moiety of the molecule does not
interfere with the process of chira recognition by the chiral LAH
complex.

The Friedd-Craft's acylation of the biphenyl moiety with al aroyl
chlorides Aa-f proceded with high regioseectivity, biphenyl was only
monoacylated in the para position with respect to the second aromatic ring.
Reactions were followed by both GC-MS and 1H-NMR after work up
without any purification.The chemica yields were dways very high.

3.2. Synthesis of Aryl-2-Benzo-[b]-Furanones 26 a-e: Prochiral
Ketonesfor the Menarini Anticancer Drugs 18viathe
Rap Stormer procedure.

The synthesis of Aryl-2-benzo-[b]-furan ketones 26a-e was achieved
via the Rap Stormer procedure. For this the w-bromo-acetophenones A 1-
5 were condensed with salicyl ddehyde B under basic conditions (scheme
3.5) leading to the ketones 26a-e.

EO Na
/ - EtOH 60°

X =Cl, Br. 26 a-e

Scheme 3.5: Synthesis of Aryl-Benzo[b]furan Ketones 26 a-e.

The required w-Bromo-acetophenones Al1,3-5 were commercidly
avalable, while A2 was prepared from the corresponding 4-
cyanoacetophenone by bromination with molecular bromine in chloroform
at room temperature in high (88%) yield (Scheme3.6).
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NC NC
Br, ; CH.Cl, Br
—_— >

O A2 O

Scheme 3.6: Bromination of 4-Cyano acetophenone .

The crude reaction product was used directly without any further
purification in the following Rap-Stormer synthess leading to the
corresponding 4-cyano-2-benzo[ b]furanone 26b.

In table 3.2 the different w-bromoacetophenones used as substrates
for the condensation to aryl-benzo[b]furan ketones 26a-e are listed,
together with reaction times and obtained chemical yields.

Substrate X R Timeh Product
Yied (%)

Al Br H 12 26a (56)
A2 Br 4-CN 16 26b (66)
A3 Cl 2,4-Cl 16 26c¢ (88)
A4 Br 4-F 14 26d (68)
A5 Br 4-Cl 15 26e (72)

Table 3.2: Synthesis of aryl-benzo[b]furan ketones 26a-e by the Rap Storner procedure.

The chemica yields are moderate. In the case of w-bromo-4-
cyanoacetophenone A2 the chemica yield was caculated based on the
corresponding 4-cyano acetophenone.

All compounds 26a-e are precursors for the most active Menarini
Aromatase inhibitors (see table 1.1, chapter 1 for the activities of the
corresponding compounds). It isinteresting to point out that in the literature
no examples for their asymmetric reduction are reported.

3.3. Reduction of Prochiral Ketones 25a-f and 26a-e to
Racemic Alcohols () 27a-m using NaBHa4.

NaBHg4 is one of the most useful reducing agents for ketones. It is easy
to handle, generally reacts under mild conditions, does not require
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dry solvents and, is cheap. The general mechanism of the reduction is

shown in scheme 2.714:
HI
R_OU:< H—BH3'/J_O_R » RO + HO+H + BHZOR"

Scheme 2.7: Generd mechanism of ketone reduction by NaBH4

The Nat seems not to participate in the transition state (as does Lit in
LiAlIH4 reductions1S) but kinetic evidences showed that an OR group of the
solvent seems to be involved in the reaction and remains attached to the

boron 16,
Both classes of prochira ketones 25a-f and 26a-e were reduced to racemic
acohols 27a-m with NaBH4. A 1:1 mixture of ethanol and THF was used

as solvent to achieve a perfect solubilization of the ketones at low
temperature (scheme 3.8.):

| o | N
R . NaBH,, R .
7 > =

o) THF EtOH OH
25 a-f and 26 a-e 27 a-m

Scheme 3.8: Synthesis of racemic aryl-phenyl methanols (£)27a-f and aryl-2-benzo[b]furan
methanals (£)27g-m.

High yields were obtained and no side products were detected neither
during the reactions nor after the work up. Products, experimenta
conditions and chemical yields are reported in table 3.3.

(x)-27a-m were used as reference materias for the determination of
the enantiomeric excess in the enantiomericaly enriched products.
Furthermore they were used as darting materiads in al the new synthetic
routes in order to prove the feasbility of the strategy. Finaly aso for the
synthesis of separable diasteroisomers.
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Product R R' T°C Yied %
(1)-27a Biphenyl H 0 95
(£)-27b Ph 2Br 0 Y]
(x)-27c Biphenyl 2-Br 0 95
(x)-27d Biphenyl 2-F 0 A
(x)-27e Biphenyl 4-NO2 -15-0 98
(x)-27f Biphenyl 3NO2 -15-0 95
(x)-279 2Benzo[b]furan H 0 93
(1)-27h 2Benzo[b]furan 4-CN -15-0 97
(x)-27i 2Benzo[b]furan 2,4-Cl 0 93
()-27 2Benzo[b]furan 4-F 0 94
(£)-27m | 2Benzo[b]furan 4-Cl 0 95
Table 3.3: Reduction of prochira ketones 25a-f and 26a-e to racemic acohols (+)-27a-m by
NaBHy

3.4. Asymmetric Reduction of Prochiral Ketons.

The most widely used chira agents for the reduction of prochiral
ketones to enantiopure acohols were reported in chapter 2. It was aso
emphasized that the procedure25.26 described by E. Brown should be
considered the only promising method for our purpose, since al other
methods work only very well for ketones having two different substituents
ether in sze (very large-very smal) or in structure (aiphatic-aromatic).

3.4.1 Synthesis of (R)-(-)-2-(2-isoindolinyl) butan-1-ol (-)-24. An
optically active ligand for the asymmetric reduction of
prochiral benzophenones.

Brown and coworkers did not report the experimental procedure for
the preparation of the (R)-(-)-2-(2-iso indolinyl) butan-1-ol (-)-24. The
synthesis was achieved by adkylation of 1,2-dichloroxylene or 1,2-
dibromoxylene with R-(-) -2-aminobutan-1-ol in presence of dry KoCO3 as
base (scheme 3.9).
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X
X
OH DryK,CO; OH
+ H2N‘<; > N

Dry CH3CN
X =Cl, Br. reflux (-)-24

Scheme 3.9: Synthesis of (R)-(-)-2-(2-isoindolinyl)butan-1-ol (-)-24.

Both substrates were used in small scale syntheses (one gram) but 1,2-
dichloroxylene was chosen also for the scale up (150 grams) because it is
more safe in comparison with 1,2-dibromoxylene which has very irritating
properties. The synthesis of (R)-(-)-2-(2-iso indolinyl) butan-1-ol (-)-24 was
performed at different temperatures and in different solvents such as
acetone and acetonitrile. Reactions in acetone were always incomplete even
under reflux for more than 24 hours. Acetonitrile was found to be the
superior solvent for the reaction but only under refluxing conditions. In fact
al experiments carried out at lower temperatures led to mixtures of
products, mainly the N-monoakylated-2-amino-1-butanol (uncyclized
product) in mixture with the desired product (-)-24. Generdly high dilution
conditions were required in order to favour the intramolecular cyclization
instead of intermolecular alkylation. Dry potassum carbonate was used as
base in all cases. Purification was achieved via repeated high vacuum
distillation of the crude solid reaction product.

3.4.2 Asymmetric reduction of prochiral benzophenones 25 a-d
by a complex between (R)-(-)-2-(2-isoindolinyl)-butan-1-ol
(-)-24 and LiAIH,.

The first experiment was performed with 2-bromobenzophenone 25b
(scheme 3.10). This substrate was described by Brown in its papers25.26
and was shown to be the best substrate for this kind of asymmetric
reduction. The experiment was done in order to validate the reproducibility
of the method.

The reaction was carried out under the reported experimental
conditions. a diethyl ether solution of LAH was added to a solution of 2.5
equivalents of (R)-(-)-2-(2-isoindolinyl)-butan-1-ol (-)-24 in dry diethyl
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ether at 0°C, under an inert aimosphere in order to form a complex with the
gross formula of LiAI(OR*)2 5H3 5; After 45 min. the reaction mixture was
cooled to -15°C and a solution of 2-bromobenzophenone 25b in dry
diethyl ether was added dropwise. The asymmetric reduction led to the
ortho-(+)-Bromobenzhydrole (+)-27b (scheme 3.10). After quenching and
work up the opticaly rotation was compared with the value reported in the
literature and an identical rotation was found ([a]p= +46.6; c=1.3 in
acetone), corresponding to an enantiomeric excess of higher than 95 %e.e.
(table 3.4.). The reaction was then repeated with the prochira
benzophenones 25a-d (scheme 3.10).

R R

o
OH
X O ©:N _<__ X  OH

25a X=H R=Ph ()24 (#) 27a X=H R=Ph
25b X=Br R=H Dry efher (+) 27b X=Br R=H
25c X=Br R=Ph (+) 27c X=Br R=Ph
25d X=F R=Ph (+)27d X=F R=H

Scheme 3.10: Synthesis of chird benzhydroles (+)-27b-d and racemic ()-27a

Some modifications of the origina procedure were introduced.
Especidly regarding the reaction work up a procedure was chosen which
alowed the recyclisation of the chiral auxiliary and the improved recovery
of the pure product. The optimal molar ratio of 2.5 equivalents of (R)-(-)-2-
(2-isoindolinyl)-butan-1-ol (-)-24 for one mole of LAH which corresponds
to the gross formula LiAl(OR*)2 sH1 5 was not changed. It was assumed to
be the optimal condition also for the prochiral benzophenones 25a-d. The
chira reducing complex reagent led to very good enantiomeric excesses
only with ortho substituted benzophenones, while meta substituted
benzophenones gave markedly lower enantiomeric excesses.

The reason for this remains unclear. Obvioudy an o-substituent on
the phenyl ring must be present in order to achieve good enantioselection.
Speculations can be based on the results reported by Brown. Due to the
chemical nature of the substituents it seems reasonable to exclude that
electronic effects are involved in the recognition process between the
chird LAH complex and the ketone. Probably the steric effects of the
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substituents are the most important factors governing the enantioselection
of the reduction. It isin fact possible that, due to the presence of the ortho
substituent, the prochiral benzophenone presents the two aromatic moieties
in different planes. The ketone can be amost coplanar with the
unsubstituted aromatic ring to form a flat moiety while the aromatic ring
bearing the ortho substituent is out of the plane (Fig 3.1).

\ N\"

O

Fig.3.1: Conformation of ortho substituted benzophenones.

2-Bromo-(4'phenyl) benzophenone 25c, reduced under identical
experimental conditions as used for 2-bromobenzophenone 25b gave (+)-2-
bromo-4'phenyl-benzhydrol (+)-27c with an enantiomeric excess of higher
than 95% e.e. (scheme 3.10; table 3.4) and with 98% of chemical yield. It is
Interesting to note that in this substrate two substituents are present on the
two aromatic rings. The presence of a phenyl ring in the para position did
not lead to any loss of stereoselectivity in the chira reduction probably
because this did not change the overall geometry of the prochira ketone.
The enantiomeric excess was determinated by examining the carbinolic
proton in the IH-NMR spectrum (200 MHz) in the presence of the chiral
shift reagent tris [3-(heptafluoropropylhydroxy methylen)] camphorato
europium 3 [Eu(hfc)z], and aso confirmed by chiral HPLC ( Chiracel OD).

The procedure was repeated for 4'-phenyl benzophenone 25a and led
to the racemic 4'-phenyl benzhydrole (x)-27a in 98% of chemica yied
(scheme 3.10; table 3.4). 2-Fluoro-4'-phenyl benzophenone 25d was
reduced to (+) 2-fluoro 4-phenyl benzhydrole (+)-27d with 80%
enantiomeric excess and 98% of chemical yield (scheme 3.10; table 3.4).
The loss of enantiomeric excess could be attributed to the reduced steric
hindrance of the fluorine atom in comparison to the bromine. The
enantiomeric excess was determined by chiral HPLC (Chiracel OD), while
dl attempts to examine the carbinolic proton in the H-NMR spectrum
recorded in presence of the above chiral shift reagent failed.
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Product X R Yield % ee. % [ap]
(¥)-27a H Ph 95 0 0
(+)-27b Br H 97 >05 + 46.6
(+)-27c Br Ph 98 >93 +656
(+)-27d F H 98 80 +97.5

Table 3.4.: Enantioselective reduction of prochiral ketones 25a-d.

Enantioselective reduction of 25a with DIP-chloride was aso tried in
order to obtain directly the enantiopure benzhydrol 27a. However this
reduction only led to the racemic acohol (x)-27a.

3.4.3. Synthesis of enantiomerically enriched 2[benzo(b)furan]
phenones by asymmetric reduction.

To the best of our knowledge no examples for the asymmetric
reduction of 2 [benzo(b)furan] phenones are reported in literature, and no
gynthetic drategies for the preparation of the 2-[benzo(b)furan]-aryl
methanols in enantiopure form are known.

Asymmetric reductions of these types of prochira ketones were
Investigated using the above chiral complexes as reducing reagents. It was
expected that the difference between the two aromatic systems would be
recognized by the chira reducing reagent (scheme 3.11), in the hope that the
benzo(b)furane oxygen could be coordinated by the aluminium of the
reducing agent.

R
\ ‘ LiAIH,
E—
o

OH

e s

26a R=R'=H N

26c R=R'=Cl ()-24

Dry ether

Scheme 3.11 : Asymmetric reduction of prochiral ketones 26a and 26c.

This hypotheticadl coordination should give a dereofacid
discrimination in the ketone 26a. Another hypothesis is that the repulsion
between the oxygen of the ketone and the oxygen of the benzofuran
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induces a rotation of the bond between these two moieties and the system
becomes not as coplanar as in the case of the ortho substituted
benzophenones decribed in the previous paragraphs.(R)-(-)-2 (2
isoindolinyl) butan-1-ol (-)-24 was again used as chira complexing agent of
LiAlH,. For this class of prochira ketones no previous informations
regarding the use of this ligand were avalable. Many experiments were
carried out using different molar ratios of the chird auxiliary and LiAlH4.
(1:1; 21; 25:1; 3:1 molar ratio). While al chemica yieds were very high, al
reductions led only to racemic acohols (z)-27g (Table 3.5.). Clearly, our
hypothesis regarding the coordination of auminium by the benzofuran
oxygen or the possibility of recognition of the two different conformations
of the ketone were incorrect.

2-Benzo[b]furan-2',4'dichlorophenone 26¢, in contrast, contains an
ortho substituent which seems to be essentia for this kind of asymmetric
reduction. Again four different reactions were carried out using different
molar ratios between chird auxiliary and LiAlH4 (1.1, 2:1; 25:1,0; 3:1)
(Table 3.5.). The reduction of 26c, usng a ratio of chira auxiliary to
LiAlH4 = 2.5:1 led indeed to higher enantiomeric excess (66% e.e.) with
96% chemicd yidd.

Substrate] R;R' | (ROpAIH4n | Product | ee% a p(CHCy) C
26a H,H n=1 (x)-279 0 0 1,55
26a H,H n=2 (x)-279 0 0 1,45
26a H,H n=25 | (x)-279 0 0 1,49
26a H,H n=3 (x)-279 0 0 1,56
26C Cl,Cl n=1 (x)-271 | 30 +11,01 1,70
26¢C Cl,Cl n=2 (x)-27i 54 + 18,03 1,31
26¢C Cl,Cl n=25 (2)-27i 66 + 18,98 1.42
26¢C Cl,Cl n=3 (2)-27i 51 + 18,01 1,36

Table 3.5: Study of the asymmetric reduction of the prochird ketones 26a and 26c¢.

The different behaviour of the ortho substituted benzophenones
27e,d as compared to 2-benzo[b]furan-2',4'dichlorophenone (26c) is
difficult to rationalize, especidly consdering the fact that the phenyl-2-
benzo[b]furan-ketone 26a) gave the racemic acohol 27g under identica
conditions. It could be considered that for some reason, the chlorine by
electronic repulsion interacts with the oxygen of the benzofuran moiety
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leading to a distortion of the active conformation. Since the reduction of
ketones proved to be unsuccessful, this class of enantiopure alcohols was
obtained by a different procedure described in the next paragraphs.

The enantiomeric excess of the above compounds was determinated
by 1H-NMR with the corresponding esters formed with (S)-(-)-1-camphanic
chloride. The method of analysis will be described in detail in the next
paragraph. Anaysis by chiral HPLC (Chiracel OD) of the free alcohols led
to identical results. It is interesting to note that all first attempts to determine
the enantiomeric excess were, as in the case of the chiral benzhydoles, done
by NMR and using shift reagents. Unfortunately none of the many tried
reagents was able to resolve completely the signals in the spectrum. For this
reason it was necessary to synthesize the corresponding camphanic ester.

3.4.3.1. Deter mination of the enantiomeric excessin (+)-27i
by tH-NMR.

The enantiomeric excess of (+)-27i was determined by H-NMR
after esterification of (+)-27i with (S)-(-)-1-camphanic chloride. The
principle is based on the known property of diasteroisomers to produce
different NMR spectra, next to different physica properties. Calculation
of the relative diasteroisomeric ratios in the H-NMR was done with the
crude product mixture in order to avoid a possible loss of a single
diasteroisomer or partial racemization during sample processing.

The crude H-NMR spectrum of the reaction products of ()-27i
and (S)-(-)-1-Camphanic chloride showed only one perfectly resolved
sgnd, dlowing integration: the b proton in the furane ring of the
benzo[ b]furane moiety.

The 1H-NMR of the free dcohol ()-27i showed the b-proton of
the furan ring at 6.46 ppm and the carbinol proton at 6.28 ppm, the latter
being frequently a doublet because of the coupling between this proton
and the acoholic proton at 2,76 ppm (Fig. 3.2). Generdly, if water was
present in the sample, due to the low exchange rate between water and the
acoholic proton, this resulting signal was broad and the carbinolic proton
gppeared as a singlet (the coupling constant is very small and it is not
detectable); the same effect was found at high concentrations of the NMR
sample. In the absence of these two effects the doublet signals appeared
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very sharp and it was possible to calculate the coupling constant, which

was found to be 3.16 Hz.
b Proton of benzo(b)furanes
( 6,46 ppm
Cl

HO H ¢
Hydroxy proton J k/ Carbinalic proton
2,76ppm (¥)-27 6,28 ppm

Figure 3.2: Chemicd shifts of the protons involved in the determination of the enantiomeric
EXCESS.

When the acohol (%)-27i was acylated with (S)-(-)-1-Camphanic
chloride, the carbinolic proton was shifted by more than 1 ppm into the
aromatic region where it could not be detected as a single signal. On the
contrary, the b proton of the furane ring in the benzo(b)furane moiety
remained at is norma postion, and was split in to two well separated
singlets (each one belonging to a single diasteroisomer).

The first experiment was done with racemic (x)-27i. The signd of the
two diasteroisomers at 6.62 and 6.58 ppm showed the typical 1:1 ratio of a
racemic mixture. The experiment was repeated for each asymmetric
reduction and the enantiomeric excess produced was calculated in all cases
from the reative ratio of the b proton of the furane ring and the
benzo(b)furane moiety. The experiment was developed into a routine
procedure, and the acylation was directly performed in deuterated
chloroform in presence of triethyl amine as base. This was possible since
the region of the spectrum needed for the determination of the e.e. was not
obscured by any other signal resulting from the base, salt or small excess of
the camphanic chloride.

All attempts to separate the diasteroisomers by norma or reverse
phase TLC failed. An enrichment of one diasteroisomer was achieved by
preparative silica TLC, in collecting the product from the higher part of the
gpot. The resulting enantiomeric excess was 82% e.e.
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3.5 Dehalogenation of alcohols containing halogenated aryl
groups.

In order to obtain the benzhydroles and phenyl-2-benzo[b]furan
methanole without substituents, the aryl dehalogenation of (x)-27c, (+)-27¢
and (x)-27i was studied.

Dehydroha ogenations or dehalogenations are a kind of reduction that
can be accomplished using a large variety of reducing reagents2/. The most
common oneis lithium aluminum hydride (scheme 3.12).

RX + LiAIH, - RH

X=Cl, Br.

Scheme 3.12: Dehydroha ogenation by LiAIH 4.

This reagent reduces dmost all types of akyl28 and aryl29.30 haides.
Removal of halogen from aromatic rings can also be accomplished by
various other reducing reagents, such as nBugSnH31, PhzSnH32, metdlic
Zn in acid or base33, catalytic hydrogenolysis34, NaBH4 and a catal yst35,
Nickel-Raney in akaline solution36. Not al of these reagents operate by
electrophilic substitution mechanisms, some are involved in nuclephilic
substitution and othersin free radical processes.

3.5.1 Aryldehalogenation of (x)-27c, (+)-27c and ()-27i.

Various reagents and experimental conditions were used for the aryl
dehalogenation of ()-27c and (+)-27c. Origindly dl the different
procedures were carried out on the racemic material in order to obtain
informations regarding the chemical behavior during these transformations.

Raney Nickd in methanol (scheme 3.13) was found to be unselective.
A mixture of the desired product and the dehydroxylated side product 28
was found in the reaction mixture after a few hours. Both temperature and
reaction times were changed but no selective reaction conditions were
found.
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O O Raney Nicke O O
EE—

OH Br MeOH; reflux R H
(¥)-27c R=0H (¥)-27a
R=H 28

Scheme 3.13: Dehydroha ogenation of (+)-27c by Raney Nicke.

At room temperature the reaction did not occur at all and under reflux
the ratio between the two products (z)-27a and 28 was 1:1. If the reaction
was carried out for extended times mainly 28 was recovered. ldentical
reactions carried out with the benzofurane derivative (x)-27i gave a
complex mixture of unknown products. However, from the crude NMR it
was clear that the benzofurane ring was distroyed.

A second attempt was made with n-tributyltinhydride in dry THF,while
AIBN was used to initiate the radica process. After twenty four hours
under reflux only the starting material was detected by TLC.

Dehydrohalogenation of  (x)-27c by LiAlHs was found to be

exceptionally selective, and the side product 28 was not detected.

oYU hasVe
E—

OH Br THF refflux OH H
(#)-27c;, (+)-27c (1)-27a; (+)-27a

Scheme 3.14: Dehydrohaogenation of (+)-27c and (+)-27¢ by LiAlH,4,

The reaction was aso performed with enantiopure (+)-27¢ (e.e.>93%)
and enantiopure (+)-27a (>93%e.e.) was obtained. Thus, no racemization
occured during the reaction. The e.e. was determinated by chira HPLC
(Chiracel OD). Under completely identical reaction conditions using (£)-
271 no desired product was detected by TLC. Only unreacted starting
material and a series of side products were found.
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4. Stereospecific Synthesis of 1-Alkylimidazole
Derivativesvia Mitsunobu Reaction.

The Mitsunobu reaction was considered to be a good method for the
synthesis of 1-akyl imidazolesTo the best of our knowledge the only
information (no experimental details were reported) in this regard involved
the reaction of both imidazole and 2-methyl-4,(5)- nitroimidazole 29 with
either methanol or 1-phenyl-1-ethanol. Imidazole itself is unreactive under
the normal reaction conditions probably because of its pKa (higher than
11). The nitroimidazol derivative reacts as expected to give a mixture of N-
akyl-2-methyl-4-nitroimidazole 30a and the corresponding 5-nitro isomer
30b (Scheme 4.1):

Vo N DEAD/PPhg Me\(
+ ROH
\«Nl dry THF _z \(_2
NO2  R=Me
29 R=1-phenyl-1-ethyl

Scheme 4.1: Mitsunobu reaction with 2-methyl-4,(5)- nitroimidazole 29.

4.1. Alkylation of Imidazole derivativesvia Mitsunobu reaction.

In order to perform the alkylation with acohols 31a-f and 27a-c,g,m
via Mitsunobu reaction, commercidly available 4,5-dicyano imidazole 32
was chosen as substrate.

This choice has a number of advantages. First, the presence of the
two cyano groups decreases the pKa of the imidazole ring to well below
11. This means that the 4,5 dicyano imidazole 32 is a suitable substrate for
the dkylation via Mitsounobu reaction. Second, 32 has a C-2 symmetry,
consequently the two nitrogens of the imidazole moiety are identical and
the N-akylation leads to a single product. Thirdly, it is commercidly
available and cheap. Fourth, the cyano groups can be removed from the
final product in two steps. by hydrolysis followed by decarboxylation.

Twenty racemic and enantiopure acohols were used to study the
Mitsunobu reaction with 4,5 dicyanoimidazole 32. Alkylated products
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33a-m were hydrolysed to the dicarboxylic acid derivatives 34a-m with
NaOH and findly 34a-m were converted via a decarboxylation step into the
final imidazole products 35a-m (Scheme 4.2).

CN
N CN
QN_§“ CN N j\
or e N N
PN - ]
R1 Ro DEAD PPh 3 R 1)\ R,
3la-i,27a-c,g,m 33a-m
Hydrolyss
Y
CO ,H
VAN \> Decarboxyl aion lN j\ ~CoO oH
A T
Ry R, R R2
35a-m 34a-m

Scheme 4.2: Synthetic pathway, Mitsunobu reaction-Hydrolysis-Decarboxylation.

The racemic and enantiopure acohols 31a-f and 27a-c,g,m were used
as akylating agents in order to establish the stereochemica outcome of the
Mitsunobu reaction with 4,5 dicyanoimidazole 32. Alcohols 31 a-f are
commercidly available both in racemic and enantiopure form. Alcohols
27a-c,g,m (entries 11-19 tab 4.1) were synthesized as reported in chapter 3.
Results are summarized in Tab. 4.1.

3la-f and 27a-c,e,g,m were chosen in order to obtain a complete
picture of the potentia and limits of this methodology; the substrates are
primary, secondary, aiphatic, homobenzylic, benzylic, and benzyhydrilic
alcohols. Tertiary alcohols such as t-butanol are unreactive. The results
were very interesting indeed because it was now possible to understand the
rea limits of the methodology. Specid attention was dedicated to the
stereochemical control rather than the chemical yield.
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Entry | Substrate | Config. R1 R2 Product | Config. Pro
(ee%) (Yield%) | (@ eg)
1 3la - H H 33a (45) -
2 31b - H NC7H15 | 33b (98) -
3 (+)-31c - Me NCeH13 | (-33¢(70) -
4 ()-31c | R(99 Me | nCeH13 | -33¢c(65) | S (97)
5 (+)-31c | S(99) Me | nCeH13 | ()-33c(67) | R (97)
6 (x)-31d - Me Bn (+)33d(40) -
7 (-)-31d R (99) Me Bn (+)33d(39) S (98)
8 (+)-31e - Et Ph (+)-33e(55) -
9 (+)-3le | R(99) Et Ph | (-)33e(55) | S(41)
10 31f - Ph Ph | 33f (94) -
11 (+)-27a - Ph 4PnCeH4 | (+)-33g(96) -
12 | (H)-27a | nd(>95) Ph 4PhCeH4 | )-339(96) | R,S(0)
13 (+)-27b - Ph 2BrCgH4 | ()-33h(81) -
14 | (»)-27b | nd(>95) Ph 2BrCeH4 | +)-33n(96) | R,S (0)
15 | (®)-27c - 2BrCeHy | 4PhCeH4 | (+)-33i(82) -
16 | (#)-27c | nd(>95) | 2BrCgH4 | 4PhCeH4 | (2)-33i86) | R,S (0)
17 | (v)-279 - 2Benzofb)] Ph | (#)-33/(10) -
furane
18 | (1)-27m - 2Benzofb] | 24C6H3 | (+)33m(5) -
furane
19 | #)-27m | nd>60 | 2Benzofb] | 24C6H3| (#)33mi) | R.S (0)
furane

Table 4.1: Mitsunobu reaction of dcohols 31a-f and 27a-c,e,g,m with 4,5-dicyancimidazole.

The experimentd
informations:

1) The reaction did not occur when a tertiary alcohol (e.g. t-butanol)
was used as substrate, even if an excess of reagent was used.

2) When the diaryl methanoles (entries 10-16) were used as substrates
longer reaction times and an excess of reagents (4:1 molar ratio
reagents/substrate) were required in order to achieve complete conversion.
When in this class of compounds one aromatic ring was substituted with 2-

results led to the following, very important
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benzo[b]furane (entries 17-19 Tab 4.1), the reaction led to very low
conversions (5/10%). The starting material was aways recovered also when
the reaction time was very long (>24 hours) and a large excess of reagents
was used (molar ratio reagents / substrate 5/1).

3) The reaction showed pure Sy2 mechanism with secondary aliphatic
acohols. Enantiomerically pure diphatic acohols (-)-(R)-31c, (+)-(S)-31c,
(-)-(R)-31d (entries 4,5 and 7 Table 4.1) gave the corresponding 1-akyl-
4,5-dicyano imidazoles (+)-(S)-33c,(-)-(R)-33c and (+)-(S)-33d as single
enantiomers ( 97/98% e.e.) with medium to good chemicd yields. The
molar ratio between substrate and reagents was always 1:1. In these cases
the reaction conditions were not further optimized towards higher chemical
yields.

4) The reaction had a mixed §2-Sy1 mechanism with the benzylic
secondary acohol (+)-(R)-31e (entry 9 tab 4.1). The resulting product (-)-
(S)-33e showed an enantiomeric excess of 41% e.e.. Thus more than 50%
of the enantiomeric excess of the corresponding starting material was lost.
In order to establish whether the racemization process occured due to
reaction conditions or due to the inherent "mixed" mechanism three
different experiments were perfomed:

A) Reverse addition of reagents:

In this experiment the betaine complex between DEAD and triphenyl
phosphine was preformed at -20°C in dry THF in absence of acohol and
4,5-dicyanoimidazole. Then the last two reagents in dry THF were added to
the reaction mixture. After 20 hours, the temperature was raised to room
temperature for 8 hours. Following this procedure the enantiomeric excess
of the product was not increased.

B) Shorter reaction time;

The reaction was carried out for a short time (10) and immediately
interrupted. The resulting chemica yield was lower than in the norma
experiment, however the enantiomeric excess was identica.

C) Lower temperature;

An experiment as described under B was carried out a a lower
temperature. At -25°C the reaction did not occur, at -15°C the chemical
yield was decreased to 4%. The enantiomeric excess was identical to those
obtained in the other experiments.

The results of these three experiments are summarized in Table 4.2.
The substrate was always (+)-(R)-31e, the molar ratio substrate / reagent
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was 1:1, TLC anaysis showed an amost complete comsumption of the
starting material. However it was impossible to obtain higher chemical yieds
than 55% after purification by flash chromatography. An unknown side
product was detected by NMR analyss, inseparable from the reduced
DEAD:

Entry R1 | R2 | Config. | T(°C) | Product Config.
(ee%0) yiedd % | prod. (ee%o)

A Et Ph R (99) 25 (-)-33e(55) S(4)

B Et Ph | R(99) 25 | (-)-33e(32) S (43)

C Et Ph | R(99) 15 | ()-33e(® S (45)

Table 4.2: Reaction mechaniam for (+)-(R)-31e.

5) Diaryl methanoles (+)-27a, (+)-27b, (+)-27c (entries 12, 14, 16,
Tab. 4.1) and the 2-benzo[b]furane-2,4 dichlorophenyl methanol (+)-27m
(entry 19 tab 4.1) led to racemic products because of a completely Sy1
reaction mechanism. These reactions were performed using both an
equimolar or excess ratio (4:1) of reagents and substrate. Under the latter
conditions a quantitative yield of the corresponding akylate 4,5
dicyanoimidazole derivative with diaryl methanoles (+)-3a, (+)-3g, (+)-3e
was obtained.

The use of different phosphines such as n-tributyl phosphine or p-
methoxytriphenyl phosphine did not show any advantages as compared to
the more common triphenyl phosphine. Identical results were obtained in
usng ether disopropyldiazodicarboxylate DIAD or ADDP [(1,1-
azodicarbonyl) dipepiridine)] instead of DEAD.

On the basis of these results it was clear that the Mitsunobu reaction
was not a preferred methodology to obtain our target compounds in
enantiopure form. Nevertheless it can be considered an aternative synthesis
of the fina products in racemic form.

4.1.1 N-Alkyl-4,5-dicyanoimidazoles 33c-e,g-i,m: determination
of enatiomeric excess.

The determination of the enantiomeric excess in the Mitsunobu
reaction products 33c-e,g-i,m was one of the mgor problems in the
synthetic efforts. These products do not contain functional groups such as
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hydroxy or amine groups, that would alow the synthesis of Mosher or
mandelate esters, amides or generaly diasteroisomers which are easly
analyzed by HPLC, GC or H-NMR. All attempts using chird HPLC were
unsuccessful.

The only method that gave reasonable results was the analysis by 1H-
NMR in presence of the chira shift reagent2 Eu(hfc)z { europium(lI1) trig3-
((heptafluoropropyl)hydroxymethylene)-(+) champhorato} .

"V—I'—T_'% J LR LA B N L B e B JrTTTTTTTT L rrTTT
] ] PPM 8 7
{ S . _dL
J T T TTrr T T TTT LI B B o
] ] PPM 8 7
A AV ( L
Il"l‘l’lll‘[ll‘rrT'rTr‘VTTIII'] g r]f"‘[‘[]]l T ITT
PPM 8 7 3 2

Figure 4.1..1H-NMR spectrum of (+)-33d (above) and (+)-(S)-33d (below) in presence of
chird shift reagent.

A CDCI3z solution of Eu(hfc)z of known concentration was prepared
and added to the NMR tube containing the sample in CDCIl3 solution.
Various amounts of shift regent were added until the splitting of the desired
signals were observed. The best results were obtained with a molar ratio of
the sample and the chiral shift reagent of 1:1.2 to 1.6.
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The first measurements were carried out with the racemic product in
order to obtain a reference spectrum. The experiment was then repeated
with the chira product. Two points are of importance to note with this
method. First, the sample purity must be high in order to avoid the presence
of signals that could be coincident with those of the sample. Second, the
signal to be integrated must be completely resolved and as sharp as
possible, in order to adlow a perfect integration. It would be best to have
more than one signa for integration and take an average of al vaues.

The measurements were performed for al racemic and chira products
reported in table 4.1. In some cases it was not possible to detect any signal
resulting from the minor enantiomer, in these cases the enantiomeric excess
was assigned to be 98% e.e. In figure 4.1 the H NMR spectra (300 MHZz)
of (£)-33d and (+)-(S)-33d in presence of the chiral shift reagent Eu(hfc)z
are shown the selected signals corresponding to the proton of the
imidazole (10.28 and 10.70 ppm), the aromatic groups (7.40-7.55 and 7.65-
7.80 ppm), chloroform (7.23 ppm), methylen (3.75-3.95 and 4.0-4.15 ppm)
and methyl moieties (2.25-2.35 ppm) respectively; the spectrum above is
racemic (x£)33d and the one below from the enantiopure (ee 98%) (+)-(S)-
33d. The Imidazole proton betweeen 10 and 11 ppm were used for the
integration.

4.2. Hydrolysisand Decarboxylation of N-Alkyl-4,5-
dicyanoimidazoles 33c-g.

As reported in scheme 4.2. of the synthetic pathway the akylation of
the 4,5-dicyanoimidazole via Mitsunobu resction is followed by two
additional synthetic steps. hydrolysis and decarboxylation. The cyano
group is transformed into a carboxylic acid by hydrolysis with 10N NaOH
in ethanol under reflux. These harsh conditions were needed for complete
conversion. Less concentrated NaOH solution resulted in only partid
hydrolysis to the corresponding amide.

The N-Alkyl-4,5-dicyanoimidazoles 33c-g were treated with 10N
NaOH in ethanol under reflux for 16-24 h. After acidification with 3N
HCl the N-Alkyl-4,5-imidazoledicarboxylic acids 34a-e precipitated out,
(entries 1-4,7-8 Table 4.3) and were recovered by filtration. Only for the
Isolation of (z)-33e and (-)-(S)-33e (entries 5,6 Table 4.3) extraction of
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the products with ethyl acetate was necessary since after acidification no
precipitation of the products occured. In al cases the chemical yields were
high.

In table 4.3 the structures and chemical yields of the products of the
hydrolysis are reported.

Entry Substrate R1 R2 Produc (Yield t%)

1 (+)-33c Me nCeH13 (+)-34a(77)

2 (+)(5)-33c Me | nCeHiz | (+)-(S)-34a(65)
3 (+)-33d Me Bn (+)-34b (79)

4 ()(9-33d | Me Bn (+)-(S)-34b(76)
5 (+)-33¢ Et Ph (+)-34c (73)

6 (-)-(9)-33e Et Ph (-)-(S)-34c(73)

7 33f Ph Ph 34d (97)

8 (+)-33g Ph 4PhCgHg (+)-34e (85)

Table 4.3: Hydrolyss of the N-Alkyl-4,5-dicyanoimidazoles 33c-g.

At this stage the enantiomeric excess of the diacids was not measured
because of their low solubility in CDCl3 (the normal solvent used with the

shift reagents). Attempts with other solvents like pyridine-dg and DM SO-dg
were unsuccessful. After the addition of the chira shift reagent
precipitations always occured and it was not possible to perform the 1H-
NMR experiment. Thus the synthesis was carried on to the desired final
imidazole derivatives.

Some of the diacids 34a-e were used to synthesize separable
diasteroisomers by reacting them with enantiopure amines or acohols as
described in paragraph 4.5.

4.2.1. Decarboxylation of N-Alkyl-4,5-imidazol dicarboxylic acids
34a-e.

Three different methods were tried for the decarboxylation of the N-
Alkyl-4,5-imidazoldicarboxylic acids 34a-e. The firss method involved
chinoline and copper powder a 120 °C. Almost dl of the unreacted
starting material was recovered from the reaction mixture. The second
method used copper carbonate in DMF under reflux. This reaction did not
give any desred product, only decomposition products and starting
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materiad. The third method was purely therma and was carried out in
diphenyl ether at reflux in an inert atmosphere. The desired product was
obtained in only 10 minutes and purification was carried out by slica gel
filtration with two different solvents. n-hexane to remove the the diphenyl
ether and ethyl acetate to recover the product.

The chemical yields were moderate to very high. For these compounds
it was again possible to caculate the enantiomeric excess using 300 MHz
IH-NMR anaysis in presence of the chira shift reagent Eu(hfc)s {
europium(l11) trig[ 3-((heptafluoropropyl) hydroxymethylene)-(+)
champhorato}  for (+)-(S)-35a and  europium(lil)  {tris(d,d-
dicampholylmethanate)} for (+)-(S)-35b and (+)-35c.

In table 4.4 the chemical yields, the enantiomeric excess and the
absolute configurations of the obtained products are reported.

Entry | Substrate | R1 R2 Product (yield %) | Con. (% e.e)
1 (t)-34a | Me | nCgH13 (+)-35a (81) -
2 (+)-(9)-34a | Me | NCgH13 (+)-35a (77) S(97)
3 (+)-34b Me Bn (x)-35b (55) -
4 (+)-(9)-34b | Me Bn (+)-35b (53) S (98)
5 @-34c | Bt | Ph (+)-35¢ (33) -
6 | ()(534c | Et | Ph (+)-35¢ (38) R,S (0)
7 34d Ph Ph 35d (90) -
8 (1)-34e | Ph |4PnCgHa (+)-6a (98) -

Table 4.4: Decarboxylation products of N-Alkyl-4,5-imidazoldicarboxylic acid 34a-e.

300 MHz *H-NMR anaysisin presence of chiral shift reagents revealed
an enantiomeric excess higher than 97% e.e. for (+)-(S)-35a and (+)-(S)-
35b. Therefore no racemization occurs during the fina steps. Only in the
hydrolysis and the decarboxylation of (-)-(S)-33e the product (x)-35c was
produced in racemic form.

In order to establish where racemization took place in the hydrolysis
and decarboxylation sequence, the intermediate diacid (£)-34c and (-)-(S)-
34c were methylated by an excess of diazomethane to obtain the dimethyl
esters (+)-36 and (-)-(S)-36 (Scheme 4.3).
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Scheme 4.3: Edterification of (+)-34c and (-)-(S)-34c.

Since the dimethyl ester (-)-(S)-36 showed an e.e. of only 40 % e.e. it
was concluded that the intermediate diacid (-)-(S)-34c racemized during the
decarboxylation process. The dimethyl esters (+)-36 and (-)-(S)-36 were
anadyzed again by 1H-NMR in presence of shift reagents in order to
determine the enantiomeric excess.

4.3. Mitsunobu reaction with 4-(5)-ethyl imidazole
carboxylate 37.

With the am of avoiding the drastic conditions required in the
hydrolyss and decarboxylation sequence of 4,5-dicyanoimidazole
derivatives the use of another substituted imidazole was investigated.

4.3.1. Synthesis of 4-(5)-ethyl imidazole car boxylate 37.

The synthesis of 4-(5) - ethyl imidazole carboxylate 37 was reported at
the end of the last century3 without any experimental conditions or physical
constants.

The synthes's involved the acetylation of ethyl glycine ester using
acetyl chloride in presence of triethyl amine leading in quantitave yield to the
acetyl glycine ethyl ester 38. a- dkylation of 38 with ethyl formiate in dry
benzene and sodium ethoxide as base led to the intermediate 39 which was
not purified or characterized. The reaction mixture appeared as a white solid
after 24h at 0°C. The crude product was dissolved in water and acidified
with  hydrochloric acid and cyclized to 2-mercapto-4(5)-ethyl
imidazolecarboxylate 40 usng KCNS. Finally 40 was desulfurated by
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HNO3z and NaNO> a 0°C leading the 4(5) ethyl imidazole carboxylate 37
( Scheme 4.4).

(@] CH 3COC|/ NEt 3 @] EtO-Na+ 0]
HZN\)k > AcHNJL > AcHN
OEt CH 2C| 2 OEt HCO oEt | OEt
Benzene T<15 °C
38 H ONa*
39
KCNS HCI
H0
v 70°C
o) 0
H HNO3/NaNO 5 H
N OEt <~ HS \( N OEt
T \
N N
37 40

Scheme 4.4: Synthesis of 4(5)-ethyl imidazol carboxylate 37.

4.3.2. Mitsunobu Reaction with 4(5)-ethyl-imidazole car boxylate 37.

The Mitsunobu reaction with 4(5)-ethylimidazole carboxylate 37 was
carried out under the norma conditions reported in paragraph 4.2. The
alcohols (z)-27a, (x)-27c and (+)-27c were chosen as substrates because
they are the natural precursors of bifonazole. Since the imidazole derivative
37 was unsymmetrica the reaction led to a 3:1 mixture of the regioisomers
(+)-41a and (£)-41b wich were separated by flash chromatography. When
the reaction was performed with the enantiopure benzhydrole (+)-27a, the
resulting products (£)-41a,b were, also in this case, racemic (scheme 4.5.).
The relative ratio of the regioisomers was 3:1.
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H
37

>
OH DEAD/ PPh, (Nﬁ
()-27a (+)-41a =5 Substituted

(#)-41b =4 Substituted
relativeratio (x)-41a /(x)-41b 31

Scheme 4.5: Mitsunobu reaction with 4(5) ethyl imidazole carboxylate 37.

The sructural assignment of the two regioisomers (x)-4la,b was
achieved by monodimensiona 1H and 13C-NMR and two dimensional one
bond 1H-13C correlation spectra. From these experiments it was possible
to assign the benzhydryl and the imidazole methynes, while long range 1H-
13C-correlation spectra were used to assign the position of the carboethoxy

group on the imidazole ring (Fig. 4.2).
Benzhydrylic proton A

L

Imidazole methyne proton B N
> ( N

N ” COZEt

\\ Carbethoxy group

/ Imidazole proton and carbon C

Imidazole proton and carbon D

Figure 4.2: representative protons and carbons of 41a,b for the assgnment of regiochemidtry.

In the case of (z)-41a the benzhydrylic proton (proton A fig.4.2)
showed a long range correlation only with one of the imidazole methynes (
position B and C fig.4.2). For (x)-41b the correation was found with both
the methynes of the imidazole ring ( position B or C fig.4.2). These results
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indicated that the carbethoxy group was at position 5 in (+)-41la and at
position 4 in (x)-41b. The diagnostic resonances are listed in table 4.5.

Position | ()-4ladH | (£)-4ladC | (2)-41b dH | (2)-41b dC
A 7.57 63.5 6.6 65.3
B 7.85 138.0 75 138.0
C 7,40 1417 - -
D i - 7.55 125.7

Table 4.5: chemicd shifts (ppm) of the diagondtic protons and carbonsin (+)-41a,b.

(x)-41a,b were dso synthesized using another strategy. For this the
acohol (x)-27a was converted into the corresponding bromo derivative
(£)-42 using bromo triphenylphosphine in carbon tetrabromide which,
without isolation was treated with 37. An equimolar mixture of the two
regioisomers was obtained in 32 % overall yield (scheme 4.5)

OH
(#)-27a

PPhsBr,/ CBr 4
N

Br
(¥)-42

N
N
N7 COLEt
H

37

N

( hCO oEt

N_’I

(¥)-41la =5 Subgtituted
(+)-41b = 4 Substituted
relativeratio (x)-41a /(x)-41b 11

Scheme 4.5 : Alternative synthesis of (+)-41a,b.

The different ratio of the two regioisomers obtained in the Mitsunobu
reaction can be explained by the different basicity (pKa) of the two
nitrogens in 4(5)-ethyl imidazol carboxylate 37.
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As aready outlined above (chapter 3, paragraph 3.1.2.1) one of the
most important requirement for the Mitsunobu reaction is the pKa value. In
this case, the two nitrogens have a different pKa, the one next to the
carboxy ethyl group is more acidic (more reactive in the Mitsunobu reaction
conditions) because of the eectron withdrawing effect of the COOEt
group. Probably this effect is stronger than the resonance effect on the
nitrogen.

In the bromine substitution (scheme4.5) the pKais not as important an
parameter as the nucleophilicity of the two nitrogens. In the light of the
previous consderations the expected experimental results could be
opposite to those resulting from the Mitsunobu reaction.

In fact, the nitrogen in the a podgition of the ester is less nucleophilic
than the other, but the experimental results clearly indicate that
regioselection did not occur during displacement of the bromine. It is also
interesting to note that the reaction is apparently not affected by deric
influences on the imidazole ring.

4.3.3. Synthesis of Bifonazole (x)-6a from (z)-41a.

(¥)-41a was hydrolyzed to the corresponding acid (+)-43 in high yidd
with 10% LiOH in a mixture of ethanol / water 1.1 a 0°C for two hours
(scheme 4.6). The reaction conditions were very mild in comparison to the
previoudy reported one for the hydrolysis of dicyano imidazoles derivatives
33c-g.

Unfortunately, al attempts to decarboxylate (+)-43 under mild
conditions were unsuccessful. The only reaction producing the desired
product (£)-6a was again the therma decarboxylation by heating the acid
(£)-43 under reflux in diphenyl ether (scheme 4.6).

In concluson, the monosubstituted imidazole 4(5)-ethyl imidazol
carboxylate 37 can be used in the Mitsunobu reaction but a mixture of
regioisomers was obtained. The reaction led to a racemic product when the
enantiopure benzhydrylic acohol (+)-27a was used as sarting materid.
While the reaction conditions for hydrolysis of the ester groups are milder
than those used for the dicyanoimidazole, unfortunately no mild conditions
were found for the decarboxylation step. Thus, this new strategy did not
have any advantages over the previously reported method using 4,5-dicyano
imidazole.
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l ] LiOH 10% ! ]
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(+)-41a (+)-43
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)
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Scheme 4.6: Hydrolysis and decarboxylation of N-akyl ethyl imidazole carboxylate (+)-41a.

The acid (x)-43a however offered an opportunity to synthesize
separable diasteroisomers as described in paragraph 4.5.

4.4. Stereochemical Assignment of the Mitsunobu Reaction
with Imidazole Derivatives.

The stereochemical assgnment of the Mitsunobu reaction was another
point elucidated in the present work. In the literature there are no data
available on these enantiopure compounds. It was the goa to find an
dternative synthetic pathway for enantiopure N-1-akylimidazoles and to
compare their specific rotation with the products obtained from the
Mitsunobu reaction, followed by hydrolyss and decarboxylation as
described in the above paragraphs and to assign the correct
stereochemistry.

In the literature severa polysubstituted imidazoles were obtained
starting from an amine by construction of the imidazole ring?.
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(+)-(9)-2-octylimidazole (+)-(S)-35a was chosen as target compound
for the dternative synthetic pathway and (+)-(S)-2-octyl amine (+)-(S)-44
(not commercidly available) as starting materid.

The synthesis of (+)-(S)-2-octyl amine (+)-(S)-44 is shown in scheme
4.7. For this the commercially available (-)-(R)-2-octanol (-)-(R)-11c was
converted by Mitsunobu reaction into the (-)-(S-2-octyl phtalimmide
derivative (-)-(S)-45 which by treatment with hydrazine was converted into
the desred (+)-(S)-2-octylamine (+)-(S)-44. Usng (+)-(S)-44 the first
synthesis was performed with racemic (x)-31c in order to check the
strategy and also to obtain reference compounds.

(0]

- OH --"Ni&(j “1INH,
Phtalamide NH,NH
— — 2 5

@)
DEAD, PPH , Reflux

dry THF

(-)-(R)-31c ()-(S)-45 (+)-(9-44

Scheme 4.7: Synthesis of (+)-(S)-44.

The thus produced (+)-(S)-44 had identical physical constants in
comparison with the data reported in the literaturel.

Racemic 2-octylamine (x)-44 treated with aminomalonitrile and triethyl
orthoformiate in acetonitrile was leading the N-1-(2-octyl)-4-cyano-5-
aminoimidazole (+)-46° in good yield. Using the same procedure identical
results were obtained with enantiopure (+)-(S)-2-octyl amine (+)-(S)-44
leading to (+)-(S)-N-1-(2-octyl)-4-cyano-5-aminoimidazole (+)-(S)-46 in
enantiopure form in 52% yield and 98% e.e (scheme 4.8).

The adkaine hydrolyss of the 5-amino-4-cyano-N-1-imidazole
derivatives (x)-46 and (+)-(S)-46 led to the amino acids (x)-47 and (-)-(S)-
47, respectively. The hydrolysis conditions were identical to those used for
the hydrolysis of the dicyanoimidazole derivative (+)-33a and (-)-(R)-33a,
and no racemization did occur during this step. Compounds (z)-47 and (-)-
(S)-47 were decarboxylated to the N-1-(2-octyl)-5-amino imidazole (+)-48
and (+)-(S)-48. Also in this case thermal decarboxylation was used since
during this step on the compounds (£)-34a and (+)-(S)-34a no
racemization occurred.



104

Chapter 4
o e
nC6H13\;/ HZN_(CN nCgH13 %CN
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CH(OEt),
(H)-(9-44 (+)-(9-46
NaOH EtOH
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(+)-(9-48 (H)-(9-47
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Scheme 4.8: Firgt attempt to assign the stereochemisiry of the Mitsunobu-hydrolyss-
decarboxylation reaction (in the scheme represented only by the chird compounds).

Unfortunately the find deaminations of (£)-48 and (+)-(S)-48 by
NaNO2-HCl or isopentyl nitrite were unsuccessful. Therefore using this

synthetic pathway it was not possible to obtain (+)-(S)-2-octylimidazole

(+)-(S)-35a.

Another attempt, based on the same synthetic pathway was tried using
N-1-(2-octyl)-4-cyano-5-aminoimidazole
Unexpectedly the deamination with isopentyl nitrite led to N-1-(2-octyl)-4-

the intermediate

carboxy amide imidazole (x)-49 in 45 % yidld (scheme 4.9).

(+)-46.
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/=N
CN
HoN— >_N _’
>—NH CN NCeHa3
2 > CN
NCeHi3 H2N
(+)-44 CH(OEt)3 (2)-46
| sopentyl nitrite
Y
N/§N NaOH EtOH N/§N
(i)-50 (+)-49 0]

Scheme 4.9: Second attempt to assign the stereochemistry of the Mitsunobu-hydrolysis-
decarboxylation reaction. This was done only with the racemic compounds.

Unfortunately al attempts to hydrolize the amide ()-49 to the
corresponding acid (z)-50 failed and it was thus impossible to obtain the
fina target compound using this synthetic pathway.

Next, the strategy was changed in favour of a Markwald procedures.
For this, the racemic and enantiopure 2-octyl amines (z)-44 and (+)-(S)-44,
1-phenyl-1-ethylamine (£)-51 and (+)-(S)-51 (commercidly avallable) were
akylated with bromoacetaldenyde dimethylacetal in order to provide the
monoalkylated products 52a (62% yield) and 52b (70 % yield) in racemic
and enantiopure form. These compounds were cyclized to racemic and
enantiopure N-1-akyl-5-mercapto imidazoles 53a and 53b respectively
using KCNS in a agueous HCI/THF solution. In both cases the yield was
84%. The final desulfuration was performed with Raney-Ni and afforded
compounds 2-octylimidazole 35a and 1-phenylethyl-1-imidazole 54 in
racemic and enantiopure form with an enantiomeric excess of higher than
98% e.e. In scheme 4.8 all reaction sequences are shown.

(+)-(S)-35a thus obtained proved to be identica in al respects,
including specific rotation with (+)-(S)-35c¢ derived from (-)-(R)-2-octanol
(-)-(R)-31c via the Mitsunobu-hydrolysis-decarboxylation sequence.
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R K ,CO3/ CH3CN MeO e
R=n-Hexyl (+)-(S)-44; (+)-44 R =n-Hexyl (+)-(S)-52a; (+)-52a
R= (+)-(S)-51; (+)-51 R=Ph (+)-(S)-52b; (+)-52b
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R=Ph (+)-(S)-54; (¥)-54 R=Ph (+)-(S)-53b; (+)-53b

Scheme 4.8: Synthesis of racemic and enantiopure N-Alkyl imidazoles 35 and 54via the
Markwald procedure.

It can therefore be implicated that, as expected, the Mitsunobu
condensation proceeded with complete inversion of configuration of the
starting alcohols.

It should be pointed out that this is the first application of the
Markwald procedure to chiral amines. Furthermore this procedure gave
excellent results with the chird benzylamine (+)-(S)-51 and thus resolved al
problems with racemization of the benzylic alcohol during the Mitsunobu-
hydrolysis-decarboxylation sequence. Obtained was enantiopure (+)-(S)-1-
phenyl-1-ethyl imidazole (+)-(S)-54.

The enantiomeric excess of the final product (+)-(S)-35a, (+)-56 and
the chird (+)-(S)-56 was determinated for all compounds by 1H-NMR in
presence of chiral shift reagents as described in paragraph 4.1.1.

4.5 Conversion of chiral alcoholsto chiral amines.
The success achieved in the conversion of the enantiopure benzylic

amine (+)-(S)-51 into enantiopure benzylic imidazole (+)-(S)-56 led us to
consder the alternative synthetic pathway described in chapter 1.6.2. The
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key step is the converson of the enantiopure benzhydrilic alcohol to
enantiopure benzhydrilic amine and via the Markwald procedure to
synthesize the imidazole.

Different methodologies were investigated in order to convert the
enantiopure benzhydrylic alcohol into enantiopure benzhydrilic amine, since,
unfortuntaly no reports for these substrates can be found in the literature.

4.5.1. Conversion of chiral alcoholsto chiral aminesin three steps.

In generd the synthesis of an amine from an acohol proceeds via three
synthetic steps: (a) activation of the alcohol function by synthesis of e.g. a
tosylate, mesylate, triflate or conversion into halides; (b) displacement of
these leaving groups with sodium azide, phtalamide and (c) conversion of
the resulting function to the primary amine. All attempts to convert the 1-
phenyl-1-biphenyl methanol (+)-27a and 1-(2-bromophenyl)-1-biphenyl
methanal (x)-27c into mesylates, tosylates or triflates failed.

IR>..||OH ! Step > 'R>-.||OMS . Step» IR>—NHR
R R R

Scheme 4. : genera synthetic pathway to amines.

The reactions were carried out under different experimenta conditions
by varying temperature, solvent and reaction time and aso with different
reagents, such as MsCl, TsCl and bases such as pyridine or triethylamine.
In no case a product was isolated. The reasons for this are not well
understood. Experiments performed in the NMR-tube indicated that the
products were formed but after a few hours they were degraded to
unknown products. The product showed to be very sensitive to water and
after addition of a drop water the darting materiad was reformed
Immediately. After this observation it was tried to displace the mesylate in a
one-pot reaction with NaN3. But aso in this case no product was detected.
Due to these unsuccessful experiments the attention was turned to other
strategies where the acohols could be converted directly to azides or
suitable precursors.
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4.5.2.Direct conversion of chiral alcholsto chiral amines via chiral
azides.

The literature provided a number of methods for the conversion of
chiral, electron-rich benzylic alcohols into the corresponding azides thereby
maintaining optica activity. The use of the Mitsunobu displacementt with
an azide nucleophile appeared to have the best precedence. It was also the
first example in which an amine equivalent was introduced under Mitsunobu
conditions using phtalamide as nucleophilel. Such reactions with C-N bond
formations were extensively reviewed by Hughes’.

Azide was firgt introduced under Mitsunobu conditions using
hydrazoic acid as azide source8 and this method was recently extended to
chird a-arylethyl amines®. Alternatives to hydrazoic acid include diphenyl
phosphorazidate (DPPA)10 and zinc azide/bis pyridine complex11l. More
recently Merck researchers reported in a paperl2 and expecidly in a
patentl3 a practicd aternative to the Mitsunobu conditions with diphenyl
phosphorylazide (DPPA) and DBU (diazabicycloundecene). Several of
these methods were investigated with the racemic and chira benzhydroles
and a so 2-benzo[b]furane-aryl-methanoles.

45.2.1 Mitsunobu reaction with diphenyl phosphorylazide
(DPPA) as an organic azide sourcel0,

This method was applied to racemic and chiral substrates (x)-27a,(x)-
27c, (+)-27c, (x)-279g, (£)-27m, (+)-27m (scheme 4.12)

Rl\rRz PPh;, DEAD, (PhO) ,PN, RlYRz
>
OH dry THF, RT N3
27-a,c,gm 55-a-d

Scheme 4.12: Synthesis of azides 55a-d usng DPPA.

The procedure described by Basel0 was modified because under their
conditions the chemica yield was very low. The modification consisted in
the sequentia addition of alcohol and triphenylphosphine to a dry THF
solution of diethyldiazodicarboxylate and DPPA a 0° C, smilar to a
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reverse addition in the Mitsunobu reaction. The results using this procedure
are shown in table 4.6.

entry | substrate R1 R2 product yidd% | [a]
1 (+)-27a Ph 4Ph CgH4 | (+)-55a 53.8 0
2 (+)-27c 2 BrPh 4Ph CgH4 | (+)-55b 575 0
3 (+)-27c 2 BrPh 4Ph CgH4 | (+)-55b 68.5 0
4 (£)-279 | 2benzo[b]furane Ph (£)-55¢c 15.0 0
5 (2)-27m | 2 benzo[b]furane | 24 C6H3 | (+)-55d 13.3 0
6 (+)-27m | 2 benzo[b]furane | 24 C6H3 | (+)-55d 10.8 0

Table 4.6: Synthess of azide 55a-d via Mitsunobu reaction with DPPA.

All reactions were carried out in dry THF overnight with an excess of
reagents. In the case of compounds 27g-m (entries 4-6, table 4.6) large
amounts of starting material were aways recovered. With benzhydroles
27a-c (entries 1-3, table 4.6) products were obtained, however, due to
partial decomposition during chromatography yields were low. The
benzhydroles (entries 1-3, table 4.6) led to better results regarding chemica
yields than the benzo[b]furan aryl methanols (entries 4-6). The results are in
good agreement with those obtained in the Mitsunobu reaction with 4,5
dicyanoimidazole using the same substrates. None of the products showed
a specific rotation neither at the sodium line nor at al Hg lines. This led to
the conclusion that al compounds were racemic. All attempts to measure
the enantiomeric excess directly by chird HPLC or by NMR in the
presence of shift reagents failed.

45.2.2. Direct conversion of alcoholsto azides using
diphenylphosphor ocazidate and DBU.

These reactions were carried out by dissolving the alcohols and DPPA
in dry toluene to a fina acohol concentration of about c.a 0.5-1.0 M. To
the reaction mixture a dight excess of DBU was added (Scheme 4.13). The
procedure was applied to the alcohols reported in table 4.7.



Chapter 4 110

RYRl DPPA R\|/Rl

OH DBU Ns
27a,c,gm 55a-d

Scheme 4.13: Synthesis of azides 55a-d by DPPA-DBU.

entry | substrate R1 R2 product yield% [a]
1 (+)-27a Ph 4PhCeH4 |  (¥)-55a 0 0
2 (+)-27¢ 2 BrPh 4PhCeH4 | (+)-55b 5.8 0
3 (+)-27¢ 2 BrPh 4PhCeH4 | (+)-55b 5.2 0
4 (x)-27g | 2benzo[b]furane Ph (x)-55¢c 54.3 0
5 (2)-27m | 2benzo[b]furane | 24CIC6H3| (¥)-55d 67.2 0
6 (+)-27m | 2benzo[b]furane | 24CIC6H3| (+)-55d 69.8 | +05

Table 4.7: Synthesis of azides 55a-d by DPPA-DBU.

The results were quite opposite to those obtained by the Mitsunobu
reaction described in chapter 4.2.2.1. In fact, the benzo[b]furanes (entries
4-6) reacted better than the benzhydroles (entries 1-3) without any
apparent reason. The reaction takes place in two discrete steps, the first
one being the phosphate formation, followed by azide displacement
(Scheme 4.14).

r 4+ 2
RYRl (PhO),PN; R\I/Rl C(/Q R\/Rl
OH S 7 N r— r-:\|3
27acgm DBU O='|°_Oph N3 55a-d
. OPh p

Scheme 4.14: reaction mechanism for azide synthesis by DPPA-DBU.

The mechanism was proposed by Thompson® The reaction has
considerable advantages as compared to the Mitsunobu reaction with
DPPA. The only by-product of the reaction is the DBU sat of
diphenylphosphate. This salt is water soluble and can be removed during
aqueous work up. The other two contaminants were: (a) excess of DBU
which was eliminated by acidic work up and (b) a dlight excess of DPPA
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which was eliminated easily by chromatography. Unfortunately, however,
also in this case the reaction proceeded without any stereocontrol. All
products, with the exception of (+)-55d, showed no specific rotation at
the Na and Hg wavelenght. As in the case of the Mitsunobu reaction with
DPPA measurement of the e.e. of the products was not possible. The last
attempt to synthetize the chiral azide from the chiral alcohols was
perfomed with zinc azide/bis pyridine complexes. Identical conditions as
reported in the literature were used, but no conversion of the starting
material was observed.

45.3. Reduction of the azides 55a-d to the amines.

From the literature several methods for the reduction of azides to
primary amines are known. Two methods (Scheme 4.15) were tried on our
compounds:

A) Reduction by Ph3P/H20 in THF

B) Reduction by SnCl2/MeOH

R R; R Ry
)
N3 method AorB NH,
55a-d 56a-d

Scheme 4.15: Reduction of azides (+)-55a-d to amines(+)-56a-d.

In table 4.8 the results of both methods used for the reduction of the
azides 55a-d are reported.

entry | substrate R1 R2 product | yield% A | yield %B
1 (+)-55a Ph 4PhCgH4 | (+)-56a 50 83
2 ()-55b 2BrPh 4PhCeH4 | (£)-56b 55 80
3 (+)-55¢ | 2benzo[b]furan Ph (+)-56¢ 68 87
4 | (£)-55d | 2benzo[b]furan Ph (+)-56d 38 85
5 (+)-55d | 2benzo[b]furan| 2,4 ClI2Ph | (+)-56d 42 84

Tab 4.8: reduction of azides (+)-55a-d to amines ()-56a-d.

The best results in terms of chemical yields were obtained with
SnClo/MeOH. The reactions were carried out with both the racemic and
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enantiopure azides. It was possible to determinate the enantiomeric excess
of the amines by chiral HPLC. As expected, all amines were racemic
except for (+)-56d which showed an e.e. of 20%. Thus, more than 50% of
enantiomeric excess was lost during the conversion of the alcohol (+)-27m
to the amine (+)-56d. Again it was clear that these methods are not
suitable to obtain the target molecule in enantiopure form.

4.6 Synthesis of separable pairs of diastereoisomers from (+)-34e and
(£)-43a.

4 5-imidazoledicarboxylate derivative (z)-34e and 5-imidazolecar-
boxylate derivative (f)-43a were obtained as intermediates in the
"Mitsunobu-hydrolysis-decarboxylation" procedure. They were considered
as an exceptional opportunity to generate pars of separable
diastereoisomers. The first attempt involved the synthesis of chiral amides.
For this (+)-(R)-1 Naphtyl-1-ethyl amine and (+)-(R)-1-Phenyl-1-ethyl
amine were used , carbonyldiimidazole (CDI) was the coupling reagent
and dry dioxane was the solvent (Scheme 4.16).

O O ZNCHMeR O O

CDlI,dry dloxane

g e

R1 R1
(x)-43a R=CO2oH R1=H (x)-57a R=CONH(C*H Me)1Naphtyl R 1=H
(x)-34e R=R1=COoH (x)-570 R=R;=CONH(C*HMe) 1Naphty!

(+)-57c R=CONH(C*HMe)Ph R{=H
(+)-57d R=R;=CONH(C*HMe)Ph

Scheme 4.16: Synthesis of separable diasteroisomeric amides.

Chemical yields were very high (>95%), and no racemization
occurred during the reactions. More than one hundred TLC eluation
systems were tried to separate the diasterecisomers. Finally with
CH2Cl2:MeOH:AcOH 98:1:1 it was possble to separate the

diasterecisomers (+)-57b and (%)-57d while it proved impossible to
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separate (x)-57a and (x)-57c. Compounds (%)-57b and (£)-57d are
sterically very hindered and one hypothesis was that two conformers were
separated instead of the two diasterecisomers. However 1H-NMR spectra
recorded in DMSO at high temperature did not show any interconversion
between the two separated species (+)-57b and (-)-57b and (+)-57d and (-
)-57d were redly pairs of diastereoisomers. Severa attempts were made to
cleave the amide bond of the single diastereocisomers in order to recover
the single enantiomers (+)34e or (-)-34e. All attempts were unsuccessful,
and sometimes, due to the drastic conditions, the benzhydrylic proton was
racemized. The strategy was abandoned because in the meantime the
racemization of the benzyl product (-)-(S)-33e was observed during the
decarboxylation step in  the "Mitsunobu-hydrolysis-decarboxylation”
methodology. It was not possible to overcome this problem.
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5. Synthesisof Aryl propargylic alcohols of high
enantiomeric purity via Lipase catalysed
resolution.

The aim of this part of the thesis was the synthesis of aryl propargylic
alcohols in enantiopure form, useful building blocks for the synthesis of aryl
2benzo[b]furane methanoles 27 and the Menarini imidazole derivative 18 in
enantiopure form.

5.1 Synthesis of racemic 1-Aryl 2-propyne-2-ols (+)-58.

Several methods are described in the literaturelab.c for the synthesis
of racemic ethynyl carbinoles. The most useful procedure is the addition
of various nucleophilic reagents to aldehydes or ketones, monolithium
acetylide being one example. Several methods for the preparation of this
reagent2ab are reported in literature. One of the procedures involves the
addition of n-butyl lithium to acetylen in dry THF at -78°C followed by
the addition of aldehydes or ketones3a.b, The reported yields of ethynyl
carbinoles are high, but the experimental procedure is very complex.
Furthermore, the use of acetylene bottles in chemistry departments is
regulated by very restricted laws. Lithium acetylide is commercially
available as 0,1 N THF solution, and this was used as nucleophile for the
addition to the benzaldehyde. In the second procedure, ethylenediamine
was used to stabilize the acetylide3b. Both experiments gave very poor
results, only 45% and 42% vyield of 1-Phenyl-2-propyn-1-ol (%)-58a,
respectively were obtained (Scheme 5.1).

H——= - SiMe3
. | X 1) nBULI | AN SiMes
P H dryTHF-780C'R—| P G
0 2) dry THF -78/0:C OH
(x)-59 a-g

Scheme 5.1:Synthesis of 1 Phenyl-2-propyn-1-ol (+)-58a.

The biggest problem encountered with lithium acetylide is its
disproportionation to form dilithium acetylide and acetylene3b, In order
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to avoid this side reaction trimethyl silyl acetylene (TMSA) was used to
generate the stable nucleophile lithium trimethyl silyl acetylide. For this
TMSA in dry THF was cooled to -75°C and n-butyllithium was added
dropwise, leading to lithium trimethyl syl acetylide. The reaction
mixture was then cannulated dropwise into a solution of the aryl adehyde
in dry THF at -78°C to form the desired 1-aryl-2-propyn-3-trimethylsilyl
-1-ols (+)-59a-g (Scheme 5.2).

H——= SiMe3

o X 1) nBuLi N SiMes
( H dryTHF-780(3'R 1 / 4

O 2) dry THF-78/0°C OH
(x)-59 a-g

Scheme 5.2: Synthesis of 1-aryl-2-propyn-3-trimethylsilyl -1-ols (x)-59a-g.

These reactions gave very good chemica yields with seven aryl
aldehydes as reported in table 5.1.

Entry R adehyde T°C Product Yield %
1 H -15 (£)-59a 98.5
2 dMe -7810 (£)-59b 97.0
3 4F -7810 (£)-59c 98.0
4 4Cl -78/-15 (£)-59d 96.0
5 4CN -78 (£)-59e 87.0
6 ANO?2 -78 (£)-50f 49.0
7 3,4 OMe -15 (£)-599 96.0

Table 5.1: Reaction conditions and chemical yields for the synthesis of (+)-59a-f.

It is interesting that for the first four compounds (x)-59a-e (entries
1-4) the reactions were so clean that purifications were unnecessary. For
compounds (£)-59e-f, (entries 5,6), it was necessary to keep the
temperature very low (-78°C). Raising the temperature to -15°C caused
complete degradation of both the starting material and the product. It was
Impossible to recover the materials. Under these conditions, the cyano
group does not react with the lithium reagent. This procedure led to the
desired ethynyl carbinoles in very good yield with the exception of the
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product resulting from 4-nitrobenzol adehyde which led to (£)-59f in
only 49 % yield.

5.1.1.Desllylation of Aryl trimethylsilyl propargylic alcohols 59a-d.

1-Aryl-2-propyn-3-trimethylsilyl-1-ols  (+)-59a-d  constitute  for-
mally protected acetylenes. Various desilylation methods were tried in
order to obtain the acetylenic products (x)-58a-g. No reaction occurred
when (x)-59a was treated with 1 N HCl in THF at different
temperatures. Better results were obtained when the alcohols (z)-59a-g
were treated with KF in DMF (scheme 5.3). The results are reported in
table 5.2.

SiMe3 \
|
7 KF,DMF R _ F

)

H

I\
R
F

oH 25-60°C o

(£)-59%a-g (+)-58a-g

Scheme 5.3: desilylation of (+)-59a-g by KF in DMF.

Entry R T°C Product Yield %
1 4H 60 (%) - 58a 87.1
2 4Me 60 () - 58b 47.5
3 4F 60 () - 58c 96.9
4 4Cl 60 () - 58d 93.2
5 4ACN RT-60 (%) - 58e 0
6 ANO2 RT-60 (%) - 58f 0
7 3,4 OMe RT-60 () - 589 0
Table 5.2: Reaction conditions and chemical yields for the desilylation of (+)-59a-g using
KFin DMF.

The reaction worked, however, well only for three substrates: (+)-
59a,c,d (entries 1,3,4), compounds with an unsubstituted aryl moiety or
with one halogen in the para position.The presence of a methyl group on
the aromatic moiety ()-59b decreased the yield to 47.5% (entry 2).
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Complete degradation of the substrates occurred with compounds (+)-
59e-g carrying nitro, cyano or methoxy groups in the para position
(entries 5-7). The reaction did not work at room temperature, at close to
50°C the reaction took place for compounds (x)-59a-d while for (%)-
59e-g the reaction mixtures became dark and it was impossible to detect
any products.

Also milder conditions than KF in DMF at 60°C were tried for the
desilylation, and TBAF in dry THF was used as an aternative (scheme
5.4).

RS N 4 SiMe3 N H
T R~
A _#  TBAFdy THE " P
OH -15/RT°C OH
(x)-59a,c.e (x)-58a,c,e

Scheme 5.4: Desilylation of (x)-59a,c,e by TBAF.

This procedure was applied only to three substrates (+)-59a,c,e.
Again (x)-59a and (*)-59c gave the best results, while (x)-59e was
degraded during the reaction. The results for this reaction are reported in
table 5.3.

Entry R TC° Product Yield
1 4H -15/RT (£)-58a 94.8
2 4F -15/RT (£)-58c 96.9
3 4CN -15/RT (£)-58e 0

Table 5.3: Reaction conditions and chemical yields for the desilylation of (+)-59a,c,e
using TBAF in THF.

A last attempt of desilylation was carried out under basic conditions.
A saturated solution of K2CO3 in absolute MeOH was used and the
reaction was tried on (x)-59g (one of the arylpropynoles which
decomposed in presence of the KF). The reaction was very slow and gave
a complex mixture of products. In fact, in order to achieve a complete
consumption of the starting material, five days were required and only
43% of the desired product (+)-58g was recovered after purification.
(Scheme 5.5).
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OMe OMe

MeO
SiMe MeO H

ZZ KO,/ absMeOH 7
|

OH RT OH

(+)-599 (+)-58g

Scheme 5.5: Desilylation of (+)-59g under basic condition.

Unfortunately it was not possible to find one generaly applicable
procedure for the desilylation of all aryl propynoles (+)-59a-g.

5.2 Synthesisof Aryl propynols (+)-58 by addition of
Grignard reagentsto aromatic aldehydes.

Grignard reagents were also considered as nucleophiles for the
addition to aryl aldehydes. For this a 1 M solution of magnesiumethynyl
bromide or chloride in dry THF (purchased from Aldrich) was added to
aryl aldehydes (Scheme 5.7).

R:_ N H—=—=—MgBr R—: o y H
AN - A
o) Dry THF OH
(x)-58a-c,e,h-m

Scheme 5.7: Synthesis of aryl-propynols (x)-58a-c,e,h-m by addition of Grignard
reagent to aryl aldehydes.

Usuadly the aldehydes were dissolved in dry THF, the resulting
solution was cooled to low temperatures (in some cases 0°C was
sufficient) in order to have a very clean and fast reaction. In table 5.4 the
results and reaction conditions are reported.

The use of this Grignard reagent also allowed the synthesis of
1[4cyanobenzyl] 2-propyn-1-ole (+)-58e (entry 4). This product could
not be obtained with al the other methods reported in the previous
paragraphs. This arylpropynole was thus obtained in a single step.
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Entry R T°C Product Yield
1 4H 0 (+)-58a 99
2 dMe -15 (£)-58b 98
3 4F 0 (£)-58c 89
4 4CN -78 (£)-58e 90
5 3Me 0 (£)-58h 91
6 3F 0 (£)-58i 78
7 2Me 0 (£)-58l 98
8 2,4Cl 0 (£)-58m 98

Table 5.4: Reaction conditions and chemical yields for the synthisis of aryl-propynols
(x)-58a-c,e,h-m.

The chemical yields were very high, the reaction conditions mild and
all products could be purified by easy filtration over silica gel. In order
to obtain a colorless liquid it was necessary to ditill the crude products
under high vacuum. The cyano group present in 4-cyano benzadehyde
proved to be unreactive with the Grignard reagent also in presence of a
dlight excess.

5.3 Enzymatic resolution of 2-substituted-2-propynyl-1-oles
()-58.

In the literature several methods for the enzymatic resolution of
acetylenic alcohols by hydrolysis or esterification are reported. O'Hagan3
has reported a very good study of the resolution of tertiary acetylene
acetate esters in presence of a lipase from Candida cylindracea. However,
the enantiomeric excesses usually are very low. Much more efficient is the
esterification of secondary acetylenic alcohols in presence of Pseudomonas
(A.K.) in hexane with vinyl acetate9. In these cases e.e.'s higher than 95%
were reported both for the alcohol and the acetate. E values are higher
than 200. Unfortunately, the paper describes only one kinetic resolution
of a secondary propynyl alcohol with an interna triple bond. Only one
example describes a terminal triple bond and this was the worst substrate,
leading to only very low enantiomeric excess. In the master thesis of
Claudia Waldinger® preliminary results were reported concerning the
enzymatic resolution of four different termina aryl propynoles by
hydrolysis or esterification in presence of a lipase from Pseudomonas
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fluorescens (SAM II). The hydrolysis of the acetates gave better results
than the esterification. Only in the case of 1-Phenyl-1-propynl-ol, the E
value was higher than 100 and a perfect resolution of the two enantiomers
was achieved. In presence of a methoxy group on the phenyl ring the
stereoselectivity decreased dramatically, in fact E values of 1.05 for the
ortho methoxy, 5.7 for the meta - and 2.2 for the para - methoxy-
compounds were found. These preliminary results opened the possibility
of obtaining aryl propynoles in enantiopure form by enzymatic
resolution.

53.1 Kinetic resolution of aryl propynoles (%)-58. screening
for useful enzymes.

Lipases are known to catalyse both the enantioselective esterification
of racemic alcohols and/or the hydrolysis of their corresponding esters. In
order to identify the most desirable mode of transformation and the best
suited enzyme for the aryl propynoles, a series of screening experiments
were carried out. Ten different lipases were used in these experiments.

53.1.1 Enzymatic esterification of racemic aryl propargylic
alcohols(z)-58: screening experiments.

Transesterification of aryl propynoles in presence of ten lipases
[from Hog Pankreas, Porcine Pankreas, Aspergillus Niger, Mucor
javanicus, Candida cylindracea, Candida lipolytica, Penicillium
roquefortii, Mucor miehei (Lipozyme), SAMI and SAMII] were carried
out under the conditions of irreversible acyl transfer. They revealed that
only two lipases, those derived from Pseudomonas species (SAMI and
SAMIIl) were able to catalyze these reactions, abeit with rather low
enantioselectivities and in preparatively unsatisfactory reaction times.
(Scheme 5.6 and table 5.5). The substrate chosen for the screening
experiments was (+)-58e because: (a) it contains a para-substituent on the
aromatic ring and (b) it is the most important precursor for the Menarini
aromatase inhibitors.

Enzymatic esterifications were carried out in MTBE as solvent. The
relative ratio between substrate (+)-58e : enzyme : vinyl acetate was
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2:1:3 in weight. All ten reactions were carried out smultaneously at room
temperature.

OH o H ,OH AcO, H
/\OJI\ -, )
N~ — x + AN
H LIPASE H H
NC NC NC

(+)-58e (+)-(5)-58e (+)-(R)-60e

Scheme 5.6: Screening of lipases for the esterification of 1(4cyanophenyl)-2-propyn-1-ol
(£)-58e.

The reactions were monitored by GC every twentyfour hours, for a
total of seven days. Only two enzymes were able to catalyze the
esterification of (£)-58e. In table 5.5 the results obtained after 48 and 96
h are reported.

Lipase Acetate48h Acetate 96h | Alcohol 48h | Alcohol 96h
Hog Pancreas - - + +
PRL - . + +
Aspergillus Niger - - + +
Mucor Javanicus - - + +
Candida Cylindracea - - + +
Candida Lipolytica - - + +
Penicillium Roqueforti - - + +
Mucor Mihei - - + +
sAM | + + + +
saM I + + + +

Table 5.5: Enzymatic screening of lipases for the esterification of (+)-58e.

All reaction rates were very slow. In fact, after six days SAM | showed
23% of conversion and very poor enantiomeric excess for the alcohol
(£)-58e, while SAMII showed a conversion of 40%. In this case, the
enantiomeric excess of the alcohol (+)-(S)-58e was 37.6% ee and for the
product (+)-(R)-60e 56.5% ee was observed, corresponding to E>5. All
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other batches were checked after 6 days and only PPL showed a low 4%
conversion. In table 5.5 the qualitative results are reported, + and - means
presence of the material (alcohol or acetate) detected by GC analysis of
the crude reaction mixture.

5.3.2 Synthesis of racemic aryl propynyl acetate (z)-60.

In order to study the enzymatic hydrolysis three different
arylpropynols were acetylated. Two different conditions were used as

described in scheme 5.8 (condition A: Py, acetic anhydride, RT; condition
B: AcCl, TEA, CH2CI2 or THF). Scheme 5.7

OH

7
R |
AN

A\
H

(x)-58a,b,e

Conditions A or B

=
R_
AN

OAc

I

(x)-60a,b,e

H

Scheme 5.7: Acetylation of aryl propynols (+)-58a,b,e.

Reaction conditions (A or B), substrates, products and chemical
yields are reported in table 5.6.

Entry |Substrate| R Reac. Con. | Timeh | Product | Yield
1 (+)-58a H A 12.0 (£)-60a 95.5
2 (+)-58a H B 1.0 (£)-60a 98.3
3 (£)-58b | 4Me B 1.0 (£)-60b 97.6
4 (£)-58e | 4CN B 1.0 (£)-60e 98.0

Table 5.6: Acetylation of (+)-56a,b,e.

Reactions carried out using method B are much faster than those with

method A. Furthermore the work up using method B is very easy.

5321

Enzymatic

hydrolysis

of

1-(4-Cyanophenyl)-2-Pr opyn-
1-Acetate (x)-60e: screening experiments.

The identical set of enzymes used for the esterifications were used
aso for the screening of the hydrolysis reaction (scheme 5.8). The
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reaction conditions were: room temperature, phosphate buffer pH=7.0
and dtirring; the ratio between ester and enzyme was 1:1. The substrate
was always (z)-60e (Scheme 5.8).

QA H, ,OAc HQ, H
LIPASE . ..
NLISC SIS R
NC H NC NHC H
()-60e (-)-(S)-60e (-)-(R)-58e

Scheme 5.8: lipase screening for the hydrolysis of 1-(4cyanophenyl)-2-propynlacetate
(%)-60e

All reactions were monitored by GC after 24 and 48 hours as in the
case of esterification. Unexpectedly, a completely different behaviour was
found for this reaction in comparison with the corresponding
esterification. The qualitative results are reported in table 5.7.

Lipase Acetate24h Acetate 48h | Alcohol 24h | Alcohol 48h
Hog Pancreas + + + +
PRL + + + +
Aspergillus Niger - - + +
Mucor Javanicus + + - -
Candida Cylindracea - - + +
Candida Lipolytica + + - -
Penicillium Roqueforti - - + +
Mucor Mihei - - + +
SAM | + + + +
saM I + + + +

Table 5.7: Enzymatic screening of lipases for the hydrolyses of (+)-60e.

Only two lipases (Mucor javanicus and Candida lipolytica) were
unable to catalyze the hydrolysis and no product was detected by GC after
48 h; three of the enzymes (Aspergillus niger, Candida cylindracea,
Mucor miehei) were too "efficient”; after 20 hours al the ester was
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converted into alcohol and consequently there was no enantioselectivity
observed. Three other lipases (Hog pancreas, Porcine Pankreas,
Penicillium roquefortii) showed poor conversion, and after 48 h both
acetate and alcohol were present in the reaction mixture in a 95:5 ratio.
SAMI and SAMII were the only promising lipases. After 48 h more than
fifty percent of the ester (+)-60e was converted into the alcohol (-)-
(R)-58e.

The selectivity was not very high. With SAM |l after 52 h the
conversion was 67.8%. The ee. of the acetate (-)-(S)-60e was 86.6 %
e.e. and the e.e. of the acohol (-)-(R)-58e was 41.2% corresponding to
an E value of 6.

This result appeared to be realy promising considering that in the
previous study the presence of para methoxy led to an E vaue <1.
Therefore, further investigation were carried out only with the lipase of
Pseudomonas fluorescens SAMII.

533 Enzymatic hydrolysis of racemic  Aryl-2-propyn-1-
acetates (+)-60a,b,e in presence of the lipase from
Pseudomonas fluorescens (SAMII): effect of the
cosolvent.

In order to obtain more informations regarding the behaviour of
SAMII towards the hydrolysis of this class of acetates, compounds (+)-
60a,b and (x)-60e were including in the screening programme. (x)-
60a was used as a standard because it had aready been studied by Claudia
Waldinger in her master thesis. Experiments were carried out at RT using
10% in weight of SAMII in respect of the substrate. Phosphate buffer
pH=7 was used as solvent and 1.0 N NaOH as titrating reagent (Scheme
5.9). Results are shown in table 5.8; scheme 5.9.

OAc SAM 11 H,,-’ OAC HO, H
— Z Z
N [ N\ PHTRT.RE | U rRE Y
N H AN H AN H
(x)-60a,b,e (-)-(5)-60a,b,e (-)-(R)-58a,b,e

Schemeb.9: Enzymatic hydrolyses of arylpropargylic acetates (+)-60a,b,e.
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Entry | Substrate| R | Timeh| C% | Product | Yied | ee. | E
1 (£)-60a | H 45 | 47.3 | (-)-(S)-60a | 45.2 | 87.0 | 100
2 H (-)-(R)-58a | 30.5 | 97.0
3 (£)-60b [4Me| 144 | 60.7 | (-)-(S)-60b | 57.3 | 99.5| 35
4 4Me (-)-(R)-58b | 33.8 | 64.8
5 (£)-60e |4C 52 | 67.8 | (-)-(S)-60e| 60.1 | 866 | 6

N
6 4C (-)-(R)-58e | 31.0 | 41.2
N

Table 5.8: Enzymatic hydrolyses of arylpropargylic acetates (+)-60a,b,e.

As reported in table 5.8, SAMII worked perfectly with the acetate
(+)-60a which does not contain any substituent on the aromatic moiety,
the corresponding E value was >100. For the two others esters having a
para substituent (Me for (x)-60b and CN for ()-60e) the selectivity
was much lower ((x)-60b E=35, and (£)-60e E=6). In these
experiments (2 mmoles of esters and 10% in weight of lipase Sam II) the
solubility of the substrates became a problem. (z)-60e was insoluble in
the phosphate buffer and appeared as a solid suspension in the reaction
mixture. The inhomogeneity of the reaction mixture led to
unreproducible results for the three sets of experiments. It is well known
that the optimal reaction conditions for lipase catalysed reactions are
those in which the substrates are oil emulsions in buffer since the reaction
occurs at the interface between the two phases. For this reason it was tried
to keep (£)-60e as an oil in the reaction mixture, however aready after
few minutes under stirring in the buffer it became solid. The
inhomogeneity of the reaction mixture could be one reason for the low
selectivity of the lipase during the hydrolysis. Therefore, the use of a
cosolvent was considered as a possible solution for this problem (Scheme
5.10).

OAc H, ,OAc HQ, H
SAM II, cosolvent g .
’—> = =
R—/ | N\ PH=7:RT. R+— | X *f rE | X
N H N H N H
(+)-60a,b,e (-)-(S)-60a,b,e (-)-(R)-58a,b,e

Scheme 5.10: Effect of solvent on the enzymatic hydrolyses of (x)-60a,b,e.
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Three different solvents were considered: MTBE, THF and acetone.
THF was found to be the worst solvent; it was impossible to follow the
reaction by GC. Solvents were used in different concentrations as
reported in table 5.9. For clarity and direct comparison the results
obtained without cosolvent are incorporated in the same table.

Entry | Substrate R Cosolvent | Product C% | Timeh| ee E
1 |(¥)-60b | 4Me - (S9-60b | 60.7 | 144 | >995 | 35
2 dMe - (R)-58b 64.8
3 [(¥)-60b | 4Me |MTBE10%|(S)-60b | 38.1 | 47 473 | 12
4 dMe (R)-58b 77.0
5 [(¥)-60b | 4Me |MTBE25% |(S)-60b | 41.2 | 40 384 | 5
6 dMe (R)-58b 54.7
7 |(¥)-60b | 4Me | Acetones% |(S)-60b | 48.2 | 76 795 | 31
8 dMe (R)-58b 85.4
9 |(x)-60e | 4ACN - (9-60e | 61.8| 52 866 | 6

10 4CN (R)-58e 41.2
11 |(¥)-60e | 4CN |[MTBE10%|(S)-60e | 67.7| 36 | 8.6 | 6
12 4CN (R)-58e 41.2
13 |(¥)-60e | 4CN |MTBE30%|(S)-60e | 66.0| 36 | 868 | 7
14 4CN (R)-58e 44.7

Table 5.9: Effect of cosolvent in the enzymatic hydrolyses of (+)-60e.

All obtained results were redly unsatisfactory. The addition of
MTBE as a cosolvent dramatically decreased the enantioselectivity of the
enzymatic process for (x)-60b. 10% of MTBE gave E = 12 and 25% of
MTBE gave E value = 5 (entries 3-5; table 5.9). Acetone (entry 7; table
5.9) was found to be a much better cosolvent because it did not decrease
the enantioselectivity of the process as compared with the experiment
using no cosolvent (entryl; table5.9).

Its presence did in no way improve the process. The addition of
MTBE with 10% and 30% to the reaction mixture containing (z)-60e
(entries 11,13; table5.9) did not lead to any change of the selectivity as
compared with the experiment without cosolvent (entry 9; table 5.9). It
led to a homogeneous trend of the reaction and the enzymatic process was
much more continuous. The hypothesis that the solid state of (z)-60b,e
was responsible for the low sdlectivity was not supported by these
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experiments. But it was interesting to find that the addition of MTBE as
cosolvent was a good method to obtain reproducible and homogeneous
results.

534 Enzymatic hydrolysis of (x)-60b in presence of SAMII:
effect of the temperature.

The last parameter studied was the temperature; here only one
substrate (+)-60b was used in the experiments (Scheme 5-11.)

QAC SAM 11 H, ,OAc HQ, H
/Q)\PHﬂ; T. '/@K + /Q/\
H H H
M Me
M T #)-600 ® (O«(s)-60 (-)-(R)-58b

Scheme 5.11: Effect of the temperaure on the enzymatic hydrolyses of (+)-60b.

Entry | Substrate [ T°C | Timeh Product C% ee % E
1 (x)60b | RT 144 (S)-60b 60.7 100 35
2 RT (R)-58b 64.8
3 (£)60b | 35 134 (S)-60b 50.4 80.8 22
4 35 (R)-58b 79.7
5 (£)60b | 55 32 (S)-60b 58.1 89.7 14
6 55 (R)-58b 64.8
7 (£)60b | 58 19 (S)-60b 51.5 47.3 12
8 58 (R)-58b 77.0

Tableb.10: Effect of the temperature on the enzymatic hydrolyses of (£)-60b.

Three experiments were carried out at 35°C, 55°C, 58°C. The
results were compared with those obtained at room temperature, as shown
in Tab.5.10.

The increased temperature reduced the reaction time but
simultaneoudly also reduced the E value. Also in this case no improvement
over the original results was achieved, but it is important to note that at
35°C (£)-60b was an ail in the reaction mixture.
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5.4 Synthesis of the racemic chlor oacetate derivatives (+)-61.

The chloroacetate derivatives (+)-61 of the Aryl propynols (£)-58
were synthesized in order to increase the rate of the hydrolysis. Reactions
were carried out in dichloromethane in presence of chloracetic anhydride
as acylating agent and triethylamine as base (Scheme 5.12).

O
OH Z<Cl\)?> O)I\/CI
O
7 7
R— | N > rR— | N
X H TEA; CH2C|2 X H
(£)-58b,c,e,h-m (¥)-61b,c,e,h-m

Scheme 5.12: Synthesis of chloroacetates (+)-61b,c,e,h-m.

In table 5.11 the results of the acetylation are shown . The obtained
yields are very high.

Entry Substrate R Product Yield
1 (£)-58b 4Me (£)-61b 92.8
2 (£)-58c 4F (£)-61c 94.8
3 (£)-58e 4CN (£)-6le 99.8
4 (£)-58h 3Me (£)-61h 99.5
5 (£)-58i 3F (£)-61i 98.4
6 (£)-58l 2Me (£)-61l 93.0
7 (£)-58m 2,4Cl (£)-61m 96.8

Table 5.11: Synthesis of chloroacetates (+)-61b,c,e,h-m.

5.5 Enzymatic hydrolyses of the chloroacetyl esters (+)-61.

Six chloroacetyl esters (+)-61 were hydrolyzed in presence of
SAMII in phosphate buffer pH=7 at room temperature, 1.0 N NaOH was
used as titrating reagent. These are the most extended sets of experiments
carried out with this class of aryl propyl esters (scheme 5.13).
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(¥)-61b,c,e,h-l

(-)-(9)-61b,ceh-l

()-(R)- 58b,c,eh-1

Scheme 5.13: Hydrolysis of Chloroacetates (+)-61b,c,eh-1 by lipase SAM II.

The observed reaction rates were much faster as compared to the
corresponding hydrolyses of the acetates. In some cases also the selectivity
was increased. All chloroacetate esters (x)-61 were oils in the reaction
mixture. This led to homogeneous reactions and all problems previousy

encountered with the acetate (+)-60e were overcome. Table 5.12 shows

the results.
Entry | Substrate| R C% [ Timeh Product e.e% | Yidd E

1 (x)-61b | 4Me | 56.4 10 (-)-(S)-61b | 978 | 4069 | 36
2 (-)-(R)-58b | 75.7 | 51.0

3 (x)-61c 4F 53.8 11 (-)-(S)-61c | 96.8 | 44.9 45
4 (-)-(R)-58c | 83.2 | 53.1

5 (+)-61e | 4CN | 53.0 5.5 (-)-(S)-61e | 96.6 | 44.5 50
6 (-)-(R)-58e | 85.5 | 49.5

7 (x)-61h | 3Me | 51.8 4.5 (-)-(S)-61h | 99.2 | 435 | >140
8 (-)-(R)-58h 92.1 | 46.1

9 (£)-61i 3F 52.1 2.8 (-)-(S)-61i | 99.4 | 46.2 127
10 ()-(R)-58i | 915 | 46.3

11 (x)-611 | 2Me | 53.9 22.0 (-)-(S)-611 | 94.0| 451 39
12 (-)-(R)-58] | 80.4 | 46.9

Table 5.12: Enzymatic resolution of Chloroacetates (+)-61b,c,e h-I by lipase SAM 11

From the comparison of the results obtained in this work and taking

in account the preliminary results from the master thesis of Claudia

Waldinger, it is possible to draw some general conclusions:

1) the edterification of aryl

propynoles by SAMII

cannot be

considered a good process because of the lack of enantioselectivity and the
incredibly low rate;




Chapter 5 130

2) the hydrolysis of aryl propynol acetates and chloroacetates in
presence of SAMII can be considered a method to obtain Aryl propargylic
alcohols of high enantiomeric purity. The use of chloroacetate esters is
recommended due to the higher reaction rates as compared to the acetates.
In the case of (+)-61e a higher sdlectivity (E=50) was aso achieved in
comparison to the corresponding acetate (+)-60e (E=6);

3) it is possible to obtain a SAR (Structure Activity Relationship) for
this class of compounds even if the observed selectivities expressed as E
values were proven to be strongly dependent on the substitution pattern of
the benzene moiety, both regarding the type of substituents and their
position on the aromatic ring. The best position for a substitution of the
aromatic ring is the meta position. Higher E values were observed in all
compounds having a meta substituent. No significant differences between
ortho and para position and the E values were detectable. At present the
variety of the substituents is till too small in order to obtain a complete
overview of the stereoelectronic effects. Apparently electrondonors such
as OMe (Cwaddinger's results) decrease dramaticaly the
enantioselectivity, while electronwithdrawing groups increase the
enantioselectivity (F and CN). Also a small aiphatic group can increase
the enantiosel ectivity.

5.6 Hydrolysisof enantiopure Acetates (-)-(S)-60a,b,e and
chlor oacetates (-)-(S)-61b,c,e,h-1 resulting from the
enzymatic hydrolysisin presence of the lipase SAMII.

Acetates (-)-(S)-60a,b,e and chloroacetates (-)-(S)-61b,c,eh-I
resulting from the enzymatic hydrolysis with lipase SAMII had a higher
enantiomeric excess as compared to the corresponding alcohols because of
the extended conversion rates. It was required to use very mild conditions
for the chemical hydrolysis. A saturated solution of potassum carbonate
in methanol at 0°C for 30 min was found to provide the best conditions
(Scheme 5.14).
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O
H, O/</X H, ,OH
\ H ooC - \ H
XZH’ (-)_( S-Goaabse (+)'(S)-58a-C,e,h-|
X=Cl, (-)-(S)-61b,c,eh-I

Scheme 5.14: Hydrolysis of enantiomeric acetates or chloroacetates (-)-(S)-60 and (-)-
(9)-61

The reaction proceeds smoothly in almost quantitative yield and
without racemization of the chiral centre; the enantiomeric excess of the
products is identical with that of the starting materials. Purity and
enantiomeric excess were determined by chiral GC. In table 5.13. the
results of the reaction are summarized.

Entry | Substrate R Product e.e% Yield

X
1 (-)-(9-60a | H H | (1)-(9-58 | 87.0 94.1
(-)-(S)-60b H | 4Me | (+)-(S)-58b | 65.0 93.5

()-(S-61b | Cl | 4Me | (H)-(9-58b | 97.7 98.9

()-(9-61c | Cl 4F | (+)-(9-58c | 98.8 98.9

(-)-(S)-6le | Cl | 4CN | (H)-(9-58e | 959 97.9

(-)-(S)-60e H | 4CN | (+)(9-58¢e | 86.6 95.8

()-(S-61h | Cl | 3Me | (H)-(9-58n | 99.2 99.6

(-)-(S)-61i Cl 3F | (1)-(9)-58i 98.8 98.7

OO |INO O [WN

()-(S-61 Cl | 2Me | (H)-(9)-58 94.0 98.5

Table 5.13: Hydrolyses of acetates (-)-(S)-60 and chloroacetates (-)-(S)-61.

The low enantiomeric excess for some compounds (entries 1,2,6) was
due to the low enantiomeric excess of the starting material.
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6 Synthesis of Aryl-2-Benzo[b]Furanyl and Aryl-2-
Indonyl Carbinols 27 and 64-a-g of High
Enantiomeric Purity via Palladium-Catalyzed
Heteroannulation of Racemic and Enantiopure 1-
Aryl-1-Propargylic Alcohols 58.

The synthetic methods reported in chapter 2.4 were applied to synthesize
the Aryl-2-Benzo[b]Furanyl and Aryl-2-Indonyl carbinols 27 and 64-a-g
in racemic and enantiopure forms. The synthetic procedures already
known in literature were modified, or in some cases completely changed
from the origina protocol in order to obtain products in high chemical
yield. This work, to the best of our knowledge, is the first application of
palladium catalysed heteroannulation of enantiopure 1-Aryl-2-Propyl-1-ol
alcohols 58 to obtain enantiopure aryl-2-benzo[b]furanyl 27 and aryl-2-
indolinyl carbinols 64-a-g.

6.1 Application of Castro's procedurefor the cyclization of
racemic or enantiopure 1-phenyl-2-propyn-1-ol 58a with
2-iodophenal.

Castro's procedure uses a preformed copper (1) acetylide as
alkylating reagent of 2-iodophenol. The synthesis of this reagent is
performed using CuS04-5H20 and NH4OH in a mixture of ethanol, THF
and water in presence of the acetylenic compound. This experimental
procedure failed when applied to 1-phenyl-2-propyn-1-ol ()-58a: it was
impossible to isolate the product from the reaction mixture by
crystallization because of its high solubility in the reaction mixture. In
order to decrease the solubility of the Copper (1) acetylide of 1-phenyl-2-
propyn-1-ol (£)-58a 1-phenyl-2-propyn-1-acetate (+)-60a was used
under identical reaction conditions as described above. Unfortunately, also
in this case it was impossible to recover the product by crystallization
(Scheme 6.1). For these reasons Castro's procedure was not further
applied and it was necessary to use the modified procedure of Owent,
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H Cu
\Q CuSO,.5H,0N i ,OH \Q

OR H,0, THF, EtOH OR
()-58aR = H _
()-60a R = Ac R=H, Ac

Scheme 6.1: Attempts to form the copper (1) acetylide using Castro's procedure.

The experimental conditions allowed the synthesis of copper (I)
acetylide in presence of 2-iodophenol in situ. The reaction was carried out
in dry pyridine as solvent under reflux in an Argon atmosphere, the
copper source was CwO, and the molar ratio between Cu0/2-
iodophenol/1-phenyl-2-propyn-1-ol (x)-58a was 0.7:1:1 (Scheme 6.2).

H O
\Q 2-lodophenol, Cu,0O | O
- s 0

OH Py, reflux, argon OH

(+)-58a (+)-279

Scheme 6.2: Synthesis of Aryl-2-Benzo[b]Furanyl carbinol (+)-27g using Owen's
procedure.

Aryl-2-Benzo[b]Furanyl carbinol (z)-27g was obtained only with a
low chemical yield of ca. 10%. Identical reaction conditions were applied
to the enantiopure (-)-(R)-1-phenyl-2-propyn-1-ol (-)-(R)-58a. The
harsh experimental conditions and the long reaction time (18h) led to
partial racemization of both the unreacted starting material and the
product. The reaction was followed by chiral HPLC and it was clear that
the amount of racemization was proportional to the reaction time.
Futhermore, the product was much more prone to racemization than the
starting material. Both attempts demonstrated that Castro's procedure and
its modification are not useful for the synthesis of enantiopure aryl-2-
benzo[b]furanyl carbinoles 27.

6.2 Application of Kundu's procedure to cyclize racemic (z)-
58a and enantiopure 1-phenyl-2-propyn-1-ol (-)-(R)-58a
with 2-iodophenal in presence of a Pd catalyst.
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1-Phenyl-2-propyl-1-ol (+)-58a was one of the substrates that
Kundu?z has used in his paper. The experimental conditions were: 1-
phenyl-2-propyn-1-ol (+)-58a, o-iodophenol, PdClz[P(Ph)s]2, Cul, TEA
in the ratio of 2:1:0.035:0.13:2 at 80°C for 24 h: the chemical yield of
phenylbenzo[b]furane carbinol (x)-27g was calculated to be 66% based
on 2-iodophenol (Scheme 6.3).

" Qﬁ “ )
X -
2-lodophenol, Cul . 5 A
TEA, Ar, 80°

OH OH
()58a Paciz[ AP} ()27g

Scheme 6.3: Synthesis of phenylbenzo[b]furanecarbinol (+)-27g using Kundu's
procedure.

Unfortunately, the procedure proved to be not completely
reproducible and the best result obtained in our hands was 50% chemical
yield based on 2-iodophenol corresponding to 25% yield starting from the
propargylic acohol. The method was therefore unacceptable because of
the low chemical yield and expecialy since an excess of arylpropargylic
alcohols 58 was required. These are not commercialy available neither
in racemic nor enantiopure forms, and are therefore synthetically most
demanding as described in chapter 5. Nevertheless the reaction was
carried out also with the chira substrate (-)-(R)-58a in order to study
the stereochemical outcome. Indeed no racemization occurred when chiral
1-phenyl-2-propyn-1-ole (-)-(R)-58a was used as a substrate. This
discovery was considered a real breakthrough for the synthesis of
enantiopure aryl benzofurane carbinoles. Therefore, considerable time
was dedicated to the modification of the reaction conditions in order to
achieve our requirements. Several parameters were changed:

1) the base

2) the ratio of reactants

3) the temperature

4) the molar percentage of the Pd catalyst and Cul

It was the strategy for the optimization of Kundu's procedure to
change only one parameter at a time and mantaining all other parameters
constant.
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6.2.1 Heteroannullation of Phenyl-2-propyn-1-ol (+)-58a:
variation of bases.

Four different bases were tested in order to improve the chemical
yield of the product . Only one arylpropynol was used in the study,
racemic 1-aryl-2-propyn-1-ol (+)-58a (scheme 6.4).

: W,
AN 2-1odophenol Cul o | O

ol
o TEA, Ar, 80° o
PdCL[P(Ph),

(+)-58a (+)-279

Scheme: 6.4: Effects of different bases on the heteroannulation process of aryl propynol
(%)-58a mediated by Pd catalyst.

The molar ratio between the reagents was kept as documented in the
original paper 20 : 10 : 0035 : 013 : 2.0 corresponding to
arylpropynols : iodophenole : PdCI2[P(Ph)s]2 : Cul. The results are shown
in table 6.1.

Entry [Substrate| Base n.Eq. T°C Product | Yidd
1 (+)-58a TEA 2 80 (+)-279 55
2 (+)-58a Py 2 80 (+)-279 35
3 (+)-58a Py 4 80 (+)-279 40
4 (+)-58a | TBUA 2 80 (+)-279 60
5 (+)-58a | TBUA 4 80 (+)-279 63
6 (+)-58a | TMG 2 80 (+)-279 83
7 (+)-58a | TMG 3 80 (+)-279 91
8 (+)-58a | TMG 4 80 (+)-279 92

Table 6.1: effect of the bases and no. of equivalentsin the synthesis of (+)-27g.

The temperature was always mainteined at 80°C and the solvent used
was DMF. Chemical yields were calculated based on 2-iodophenol after
purification by flash chromatography. Pyridine (Py) was the worst base in
terms of chemica yield, difficulties in work up and purification (entries
2,3; Table 6.1). Triethylamine (TEA) gave a low chemical yield (entryl;
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Table 6.1), tributylamine (TBUA) was somewhat better (entries 4,5; Table
6.1). Clearly the best base was tetramethyl guanidine (TMG) which
increased the chemical yield by more than 35% in comparison to TEA
which was the base used in Kundu's paper. The result was considered very
satisfactory since almost al of the 2-iodophenole was converted to the
corresponding aryl-benzo [b] furanyl carbinol (£)-279.

6.2.2 Optimization of molar ratio between Phenyl-2-propyn-1-
ol (£)-58a and 2-iodophenal.

Further optimization was achieved by decreasing the molar ratio of
1-phenyl-2-propyn-1-ole (£)-58a and iodophenol from 2:1 to 1:1 with
additional ratios of 1.5:1 and 1.1:1. (Scheme 6.5).

H O
\Q 2-lodophenol, Cul | O
> o
TMG, Ar, 80°

OH OH
(i)-58a PdCl Z[P(Ph) 3] 2 (i)-27g

Scheme: 6.3: Effects of different ratios between 2-iodophenol and aryl propynol (+)-58a
on the heteroannulation process mediated by Pd catalyst.

Three equivalents of TMG were used in al of the experiments, Pd
catalyst and Cul were also maintained at the origina ratio of 0.035 and
0.13 per cent. The results are shown in table 6-2.

With great surprise and enthusiasm it was discovered that excess of
1-phenyl-2-propyn-1-ol (x)-58a was indeed not necessary. Almost
guantitative yields were obtained with al molar ratios.

Entry Substrate molar ratio Product Yield
1 (+)-58a 2.0:1.0 (£)-279 95.0
2 (+)-58a 1.5:1.0 (£)-279 94.6
3 (+)-58a 1.1:1.0 (+)-27g 93.4
4 (+)-58a 1.0:1.0 (£)-279 90.0

Table 6.2: Optimization of the molar ratio between propynol (+)-58a and 2-iodophenal.
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This discovery alowed the use of the enantiopure aryl propynols
(+)-(9-58 and (-)-(R)-58 obtained from the enzymatic resolution
(chapter 5) in an equimolar ratio with 2-iodophenal.

6.2.3: Optimization of temperature and time.

Temperature and time were optimized together. Four experiments
were carried out at different temperatures, the lower temperatures
corresponding to longer reaction times (Scheme 6.6).The molecular ratios
of the reagents were maintained constant at the optimal value (Paragraphs
6.2.2 and 6.2.1).

H e
\Q 2-lodophenoal, Cul | ‘
> O
TMG, Ar, T t

OH PACL,[P(Ph)4, OH

(+)-58a (*)-279

Scheme 6.6: Effect of temperature and reaction time on the Pd catalyzed
heteroannulation of (+)-58a

In table 6.3 the experimental conditions and the results of this study
are reported.

The best compromise between temperature and time was found to be
40°C (entry 3;Table 6.3), corresponding to a reaction time shorter than
four hours. Furthermore the crude reaction product was cleaner than that
obtained a higher temperature. NoO reaction occurred at room
temperature (entry 4; Table 6.3).

Entry Substrate T°C Timeh Product yield
1 (+)-58a 80 0.5 (£)-279 90.0
2 (+)-58a 60 2< (+)-27g 89.4
3 (+)-58a 40 4< (+)-27g 90.0
4 (+)-58a 25 24 (£)-279 -

Table 6.3: Studies of temperature and reaction time on the Pd catalyzed
heteroannulation of (x)-58a.
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6.2.4. Optimization of catalyst (Pd) amount and Cul.

The last attempt of optimization was aimed at the reduction of the
amount of Pd catalyst and copper iodide. Five experiments were carried
out to find the best molar ratio (Table 6.4; scheme 6.7).

H O
\Q PACI,[P(Ph)]»/Cul | O
> e}
TMG, Ar, 40°

OH OH
(+)-58a 2-lodophenol (#)-27g

Scheme 6.7: Optimization of Pd catalyst/ Cul ratio.

In the first experiment the ratio reported in the original publication was
used where Pd catalyst and Cul were present in 0.035 and 0.13 Mol% in
respect to the 2-iodophenole. The chemical yield was very high (table 6.4;
entry 1). In the second experiment the amount of Cul was reduced in
order to have an equimolar ratio betweeen Pd catalyst and Cul (entry 2,
Table 6.7).

Entry | Substrate | Molar ratio Pd/Cul | Timeh | Product | Yield
1 (+)-58a 0.035:0.13 4< (£)-27g | 90.0
2 (+)-58a 0.035:0.035 4< (£)-27g | 90.0
3 (+)-58a 0.025:0.025 4< (£)-27g | 90.0
4 (+)-58a 0.010:0.025 40 (£)-27g | 40.3

Table 6.4: Optimization of catalyst (Pd) amount and Cul.

Agan the chemical yield was identical to the previous experiment
and proved that an excess of Cul is unnecessary.In the third experiment
the amounts of Pd and Cul were reduced to 2.5 Mol% (entry 3, table 6.4).
Agan an identical result was obtained. In the last experiment only 1% of
Pd catalyst and Cul were used (entry 4, Table 6.4), leading to (£)-27g in
40% vyield. The observation that both 2-iodophenol and the starting
material (+)-58a were completely consumed during the reaction led to
the discovery of a very polar side product which, after isolation and
characterization, was identified to be the uncyclized product ()-62.
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Ve
OH
(+)-62 OH

Figure 6.1 : Side product (£)-62.

From these result it can be concluded that under these reaction
conditions the coupling process is complete while the cyclization was
incomplete. For this reason (+)-62 is recovered as an intermediate of the
reaction. (£)-62 was a very important intermediate for the understanding
of the catalytic Pd cycle.

In summary, the optimal reaction conditions after al optimizations
were: molecular ratios 1 : 1 : 0.025 : 0.025 : 3 between 2-iodophenol, 1-
phenyl-2-propyn-1-ol (£)-58a, PdCl2[P(Ph)s]2, Cul, TMG. The reaction
was carried out in DMF at 40°C and Ar was bubbled through the reaction
mixture at al times.

Also the sequence of addition of the reagents was found to be
important. In fact the reaction can be devided into three steps:

1) The mixture of DMF and TMG was heated to 40° and an Argon
stream led to the solution for 15' before the addition of the other
reagents. The argon stream was maintained during the whole reaction.
This was necessary in order to exclude oxygen from the reaction mixture
and thus to avoid the crosscoupling of the Copper (1) acetylide.

2) 2-1odophenol, Cul, PdCI2[P(Ph3)]», was added in one portion. The
mixture was stirred for 15' before the additon of (+)-58a.

3) Addition of 1-Phenyl-2-propyn-1-ol (£)-58a. The solution
changed colour from pale yellow to red brown.

In the same manner, the enantiopure (-)-(R)-1-phenyl-2-propyn-1-ol
(-)-(R)-58a was cyclized to (-)-(9-phenyl benzo[b]furanil carbinol (-)-
(S)-27gin 91% of chemica yield and with 97.5% enantiomeric excess.

Reactions were scaed up to 25 g. both with the racemic and
enantiopure propargylic acohols. Identical chemical vyields and
enantiomeric excess were found.

The results of this study were so encouraging that the procedure was
applied to all racemic and enantiopure arylpropynols 58.
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6.3 Cyclization of racemic and enantiopure 1-Aryl-2-propyn-1-
ols 58-a-c,e,h-lI to Aryl-benzo[b]furane methanols 27-g,l,h
and 63-a-d.

The optimal reaction conditions described in paragraph 6.2.3 were
applied to racemic and enantiopure 1-Aryl-2-propyn-1-ols 58-a-c,eh-l
in order to explore the application of this reaction for the synthesis of
enantiopure Aryl-benzo[b]furane methanols 27-g,l,h and 63-a-d. The
reaction was always applied first to the racemic compound and then to the
enantiopure substrate (scheme 6.8).

3 7 R g R
X P PACI ,[P(Ph) 4] Cul 5 P
?
TMG, Ar, 40°
OH OH

58-a-c,eh-| 2-lodophenol 27-g,l,h,63-a-d

Scheme 6.8: Cyclization of racemic and enantiopure 1-Aryl-2-propyn-1-ols 58-a-c,e,h-
| to Aryl-benzo[b]furane methanols 27 g,I,h and 63a-d.

The results were very satisfactory indeed as reported in table 6.5.
Yields were caculated following flash chromatography. This purification
can be considered a mere filtration through silica since after work up the
products were always quite pure as judged by NMR and TLC. They were,
however, still colored yellow/brown. The enantiomeric excess was
determined by chiral HPLC of the crude materials (after the reaction
work up) prior to purification. It is interesting to note that the e.e. did not
change from the chiral starting materia to the product before and after
purification.

This method gave very reproducible results both in terms of
chemical yields and enantiomeric excess. From the results shown in table
6.5 it is clear that different substituents on the aromatic ring did not lead
to any modification of the results.

They were aso not influenced by the position of the substituent on
the aromatic ring (see entries 3,4,8,9,12,13; table 5.6) nor by
stereoel ectronic effects (see entries 1,2,3,4,5,6; table 5.6).
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Entry Substrate R Timeh Product Yied | ee%

1 (+)-58a H 4.0 (£)-279 91.0 -

2 (-)-(R)-58a H 4.0 (+)-(9-27g | 90.0 97.5

3 (£)-58b 4Me 4.0 (£)-63a 89.5 -

4 (+H)-(9)-58b | 4Me 4.0 (-)-(R)-63a | 89.9 99.0

5 (£)-58c 4F 2.5 ()27 78.0 -

6 (+)-(S)-58¢c 4F 2.5 (-)-(R)-27 79.7 97.7

7 (£)-58e 4CN 8.0 (1£)-27h 0.0 -

8 (£)-58h 3Me 3.0 (£)-63b 92.0 -

9 (+)-(S)-58h | 3Me 3.0 (-)-(R)-63b | 93.0 98.1
10 (£)-58i 3F 5.0 (£)-63c 85.0 -
11 (+)-(9)-58i 3F 5.0 (-)-(R)-63c | 82.8 98.5
12 (£)-58l 2Me 8.0 (£)-63d 89.5 -
13 (+)-(S)-58 | 2Me 8.0 (-)-(R)-63d | 82.8 93.3

Table 6.5: Times, yields and e.e. of Aryl-benzo[b]furane methanols 27-g,l,h and 63a-
d.obtained by heteroannulation of 1-Aryl-2-propyn-1-ols 58-a-c,e,h-I.

Unfortunately, there was one exception (entry 7; Table 6.5). All
attempts to cyclize racemic 1-[4cyanophenyl]-2-propyn-1-ole (x)-58e to
the corresponding benzo[b]furane, the most active Menarini anticancer
drug, failed. The reaction gave a large number of products among which
the desired product was not detectable.

The present work, to our knowledge, is the first application of
paladium catalysis for the synthesis of enantiopure aryl-benzo[b]furane
methanols 27-gl,h and 63-a-d, deived from enantiopure
arylpropynols. Attempts to synthesize the same products by asymmetric
reduction of the corresponding prochiral ketones failed (chapter 2), and
up to now no chemical chiral synthesis or enzymatic resolution of the
racemic alcohols is reported.

6.4 Cyclization of racemic and enantiopure 1-aryl-2-propyn-1-
ols 58-a-c,eh-l to racemic and enantiopure aryl-2-(N-
mesyl)indolyl methanols 64-a-g.

An obvious expansion of the procedure for the synthesis of
enantiopure arylbenzo[b]furan methanols 27-g,|,h and 63-a-d described
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in the previous paragraph was the application of the methodology to the
synthesis of aryl-2-indolyl methanols 64-a-g. Palladium catalysis is well
known for the synthesis of indols as described in chapter 2, and
benzo[b]furanes and indoles are structurally related. In order to obtain the
indoles it was formally sufficient to use the ortho iodoaniline instead of
ortho iodophenole.

However ortho iodoaniline under the reaction conditions used for the
synthesis of benzofuranes did not lead to the indole. The uncyclized
product (z)-65 was found to be the only reaction product (scheme 6.9).
This result was expected because it is described in literature that the free
amino group of the iodoaniline must have a strong electronwithdrawing
protection group in order to cyclize to indoles.

H 0
TMG, Ar, 40° NH2
OH OH

2-lodoaniline
(+)-58a (+)-65

Scheme 6.9: Attempt for the direct cyclization of aryl propargylic alcohol (£)-58a to
aryl-2-indolylcarbinole.

Thus 2-iodoaniline was first mesylated using mesyl chloride and
pyridine (Scheme 6.10). A stoichiometric amount of mesyl chloride was
used because an excess led to the dimesylated product.

! MsCl ; Py; 0° |
>
NH, NHMs

66

Scheme 6.10: Mesylation of 2-iodoaniline.

With this materia identical reaction conditions were used for the
production of the indols 64-a-g as for the synthesis of benzofuranes 27
and 63 (Scheme 6.11).
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H S /_'R Q\ 7 |
X ! [,[P(Ph)4]; Cul TR
~ PACI,[P(Ph)glai Cul PP

TMG, Ar, 40° N

OH 2-lodomesylaniline 66 Ms OH
58-a-c,e,h-| 64-a-g

Scheme 6.11: Cyclization of racemic and enantiopure arylpropynols 58a-c,e,h-I to
racemic and enantiopure aryl-2-(N-mesyl)indolyl methanols 64a-g.

Entry Substrate R | Timeh Product Yield | ee%

1 (+)-58a H 1.0 (+)-64a 87.4 -

2 (-)-(R)-58a H 1.0 (+)-(9)-64a 87.0 99.1

3 (£)-58b AMe | 4.0 (£)-64b 83.3 -

4 (+)-(9-58b | AMe | 4.0 (-)-(R)-64b 84.3 05.97

5 (£)-58c 4F 1.5 (£)-64c 79.3 -

6 (+)-(9)-58c | 4F 1.5 (-)-(R)-64c 78.0 98.1

7 (£)-58e 4CN 8.0 (+)-64d 0 -

8 (£)-58h 3Me | 35 (£)-64e 93.0 -

9 (+)-(S)-58h | 3Me | 3.5 (-)-(R)-64e 93.2 99.1
10 (£)-58i 3F 3.0 (+)-64f 91.1 -
11 (+)-(S)-58i 3F 3.0 (-)-(R)-64f 92.0 99.55
12 (£)-58l 2Me | 5.0 (+)-64g 83.4 -
13 (+)-(S)-581 | 2Me | 5.0 (-)-(R)-64g 85.0 93.2

Table 6.7: Times, yields and e.e.of aryl-2-(N-mesyl)indolyl methanols 64a-g obtained
by heteroannulation of 1-Aryl-2-propyn-1-ols 58-a-c,e,h-l.
Also in this case the results were very satisfactory as shown in table
6.7.

The reaction times were shorter than those with the corresponding
benzofurans 27 and 63. Both chemical yields and enantiomeric excess are
very high. No racemization occurred during the process of
heteroannulation. Also in this case the 1(4-cyanophenyl)-2-propyn-10l
(+)-58e did not cyclize to the corresponding indol. All starting materia
was decomposed during the reaction.

As in the case of benzofuranes this is the first application of palladium
catalysis to the synthesis of enatiopure aryl-2-indolyl carbinols 64-a-g.
These compounds are not obtainable by asymmetric reduction of the
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corresponding prochiral ketones or by enzymatic resolution of the
racemic alcohols.

6.4.1 Deprotection of Phenyl-2-(N-mesyl)Indonyl methanole
(+)-64a.

In order to obtain the free amino compounds from the Aryl-2-(N-
mesyl)-Indolyl carbinols 64-a-g it was necessary to remove the mesyl
group from the nitrogen. Due to the high stability of this protecting group
drastic basic reaction conditions were required. The first attempt using
K2CO3/methanol under reflux was unsuccessful; after eighteen hours no
conversion of the starting material was observed. With NaOH in methanol
under reflux, after twentyfour hours all starting material was converted
to the product aryl-2-indolyl carbinole ()67 in 85% vyied (Scheme
6.13).

O I O NaOH/ MeOH O I O

) - )
Ms OH reflux H OH

(2)-64a (x)-67

Schem 6.13: Deprotection of phenyl-2-(N-mesyl)-indolyl methanol (+)-64a.

6.5. Cyclization of propargyl alcohol and propargyl amineto
Benzo[b]furane-2-methanole 68 and Benzo[b]furane-2-
methyl amine 69.

2-iodophenol was used as a substrate for the cyclization with
propargylic alcohol and propargylic amine to the corresponding
benzofurane derivatives. Identical reaction conditions were used as for the
synthesis of aryl-benzo[b]furane carbinols 27 and 63 (see paragraph
6.2.3). In the literature it is reported that the use of these unprotected
propargylic derivatives gives poor results and the cyclization process is
quite inefficient. With the optimized procedure developed for the aryl-
benzo[b]carbinols 27 and 63 the coupling and cyclization of the
propargylic alcohol and amine proved to be in fact quite efficient and
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afforded the benzo[b]furane-2-methanole 68 and benzo[b]furane-2-
methylamine 69 in 97 and 86 % yield, respectively (Scheme 6.14).

! X
X - -
OH PdCI,[P(Ph)4],; Cul o) X

TMG, Ar, DMF, 40°

e
- 2

Scheme 6.14: Cyclization of unprotected propargylic alcohol and amine to
benzo[b]furane derivatives 68 and 69.

For a full characterization 69 was acetylated in dichloromethane in
presence of acetyl chloride and triethylamine in 95 % vyield to obtain 70
(Scheme 6.15).

AcCl TEA CH ,ClI

272
@ﬂ — w 0
o] NH o] N—<

H
69 70

Scheme: 6.15: Acetylation of 69.

6.6. Studies of the Pd catalyzed reaction mechanism.

Severa mechanisms were proposed in the literature for the coupling
and cyclization of akynes under paladium catalysis. The mechanism of
coupling between akynes and aryliodide is well established. On the
contrary, for the cyclizations of akynes to benzofuranes or indoles
severa hypotheses are existing. One of the most complete descriptions of
the coupling reaction was reported by J.Burton3 and coworkers in 1993
(Scheme 6.16).
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[P(Ph) 3PdCl 5]
Cu—=——R «——— H—=——R
Cul; DIPEA
DIPEA.HCI
Y
[Pd(Ph 5)Pl{—=—R)
%R = =R
R v X
I [P(Ph) 3]Pa @
R
1
Ph3F7
Phgpv
Pthr, Q‘J
Phgpv u

Scheme 6.16: Crosscoupling mediated by PdO.

The coupling reaction appears to involve Pd° catalysis, the species
being generated by reduction of paladium Il in the organopalladium
halide by attack of the copper acetylide anion. The thus formed bis
(triphenylphophine)dialkynyl palladium undergoes reductive elimination
of disubstituted acetylene to form bis(triphenylphosphine) Palladium(0).
The thus resulting Palladium(0) species enters the catalytic cycle (scheme
6.16) by oxidative addition of para substituted aryliodide, followed by
alkylation to generate again a palladium Il species. Finaly, reductive
elimination leads to a coupling product and the palladium(0) catalyst is
regenerated. This mechanism is the most accepted one for the coupling
between the aryliodide and acetylenic compounds. It seems reliable aso
for the coupling between arylpropynols 58 and 2-iodophenol. The second
step of the synthesis of benzofurans or indols might involve more than
one mechanism. In fact, in the literature? it is reported that Pd° can
catalyze the annulation step (Scheme 6.17).
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P
[P(Ph)]Pe° @(

Scheme 6.17: Pd° catalysis in the heteroannulation step.

An easier explanation could involve a smple base catalyzed 5-
endotrig cyclization favoured by the Baldwin rules (scheme 6.18).

R i R 1
- o
S \
+BASE | ) _ C(>7R
OH >IN ©
+H'B"

Scheme 6.18: base catalyzed cyclization to benzofuran.

The first hypothesis involving the coordination of the triple bond
from Pd® would implicate a double palladium catalytic cycle, whereas the
second hypothesis implicates a single Pd° catalytic cycle and a basic
cyclization to the fina product. In order to shine more light on the
mechanism in the next paragraphs studies to elucidate further the
mechanism are described.

6.6.1. Cyclization studies.

For this 2-iodophenol was first acetylated with acetyl chloride in
dichloromethane and then coupled under palladium catalysis with racemic
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1-phenyl-2-propyn-1-ol (£)-58a to form the compound (z)-71(Scheme
6.19)

OH

/
AcCl; TEA; PICI (PP 9] Cul
CH 2C|2 TMG; 40°; Ar

OAc

(+)-71

Schem 6.19: Synthesis of ()-71.

In an attempt to deprotect the acetyl group in (£)-71 using a
saturated solution of KoCOg3z in absolute methanol at 0°C led to the

racemic aryl-benzo[b]furan carbinol (x)-27g (Scheme 6.20).

‘\/\‘ KaCO5 MeOH QM
OA

N ES Nl (#)-279°

Scheme 6.20: synthesis of (+)-27g by 5-endotrig base catalized cyclization.

The formation of (£)-27g under these reaction condition proved
that the 5-endo trig cyclization can occur in these substrates.

The unprotected analogue of (£)-71, e.i.(*)-62 had aready been
obtained in 60 % yield as side product of the Pd catalyzed cyclization
when only 1% of catalyst was used (entry 4, Table 6.4). In order to
improve the chemical yield it was enough to use only one equivaent of
base. This way (+)-62 was obtained in 89.5% chemical yield (scheme
6.21).

(+)-62 can be considered a key intermediate for studying the
mechanism involved in the second part of the reaction, ei. for the
synthesis of benzofuranes or indoles.
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OH

H
@/ 2-lodophenol F O
L (

TMGA; PdCI ,[P(Ph) 4],; Cul
(x)-58a

OH  (£)-62

Scheme 6.21: Synthesis of ()-62 by Pd catalyses.

The first experiment was carried out to show that the base indeed
catalyzes a 5-endotrig cyclization under the reaction conditions used for
the synthesis of benzofuranes or indols. Two equivalents of tetramethyl
guanidine were added to a solution of (+)-62 in DMF at 40°C to try the
5-endotrig cyclization leading to the benzofuran (x)-27. Surprisingly the
cyclization did not occur at al (Scheme 6.22). This result clearly excluded

the use of a simple base 5-endotrig catalyzed cyclization which was
observed with (z)-71 using K2CO3/MeOH (Scheme 6.20).

Of ()62 (#)-27g "

Scheme 6.22: Attempt to cyclize (x)-62 with TMG.

A second attempt of cyclization was carried out by adding
PdCI2[P(Ph)3]2 and TMG to a solution of (£)-62 in DMF at 40° (Scheme
6.23).

‘\/\‘ PdCIZ[P(Ph)g]Z TMG .jY‘
OH

(+)-62 40°C DMF (+)-27g OH

Scheme 6.23: Attempt to cyclize (x)-62 with PACI2[P(Ph)3]2 and TMG.

Again no cyclization occured after four hours of reaction time. This
result proved that the palladium is involved only in the crosscoupling step
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between aryliodide and copper acetylide and not in the final cyclization
step. A third attempt was made by using the normal cyclization conditions
for the synthesis of benzofurans ()-27g using palladium cataysis. (z)-
62 as expected cyclized in less than three hours to the benzofuranes (+)-
279 in 89% yield (Scheme 6.24)

OH
7 PACL[P(Ph)],, TMG Q | ‘
ol
OH (i)-62 Cul, 40°C,DMF (i)-27gOH

Scheme 6.24: Cyclization of ()-62 under the optimized conditions for the synthesis of
aryl benzofuran carbinols.

A final attempt was made by adding Cul and TMG to a solution of
(+)-62 in DMF at 40°C under argon. Here in less than one hour ()-62
was converted completely to the benzofurane ()-27g. The result proved
again that cyclization takes place only in presence of Cul in basic media.

OH
® -

OH (4)-62 40°C,DMF (i)-27gOH

Scheme 6.25: Cyclization of (x)-62 to aryl benzofuran carbinol (£)-27g by copper-
iodide.

The process is clearly copper mediated as hypothesized in Castro's
publications (Scheme 6.25).

The four different experiments decribed above clearly indicate that
the palladium catalyst is involved only in the crosscoupling between aryl
lodide and the acetylenic compound to form compounds such as (z)-62
but not in the fina cyclization step to benzo[bjfurane. The
heteroannulation is not working by simple organic base cataysis as
proven in the first experiment where tetramethyl guanidine was used as
base to cyclize (+)-62. In redity it is mediated by the copper iodide in
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presence of base as decribed in the last experiment and as tentatively
described in figure 6.2.

OH

/;@
O

_Cy

Figure 6.2: possible Copper coordination.
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7 Summary:

Numerous drugs are chira, generaly only one enantiomer is
therapeutically active while the other antipode is completely inactive or
shows often undesired and/or toxic side effects. For this reason, al new
chira drugs are now formulated in enantiopure form, and consequently
the synthesis of enantiomerically pure compounds is becoming one of the
most important areas in the organic chemistry.

Non-steroidal anticancer and antifungal drugs are particularly
interesting as therapeutic agents. Severa classes of these two different
families of drugs contain the same chemica structure e.g. Bifonazole 6a
and non-steroidal aromatase inhibitors such as the Menarini anticancer

drug 18 (Fig.7.1).
7
ove ~ e
o AN
( ”
(J J
1 ()
Bifonazole 6a Menarini anticancer Drug 18

Fig 7.1: Bifonazole 6a and the Menarini anticancer drug 18.

They are characterized by the presence of an N-imidazole group in a
benzhydrilic position. The carbon atom link to the three aromatic moieties
Is the only chira centre of the molecule. The present work was aimed at
new procedures for the synthesis of both Bifonazole 6a and the Menarini
aromatase inhibitors 18 in enantiomeric form as well as structurd
analogues.

In order to prepare enantiopure synthons and final products several
synthetic methods were devel oped.

A specia attention was dedicated to the synthesis of enantiopure
benzhydrols 27a-f and aryl-2-benzo[b]furancarbinols 27g-i and 63a-d.
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A chird lithium auminiumhydride complex with (R)-(-)-2-
isoindolinyl-butan-1-ol (R)-(-)-24 as auxiliary was used for the
asymmetric reduction of ketones 25a-d and 26a,c in order to obtain the
corresponding enantiopure alcohols. Using this method with the
benzophenones 25b-d high enantiomeric excesses and chemical yields
were obtained, whereas in the case of the aryl-2-benzo[b]furan ketones
25a,c only low enantiomeric excesses yet high chemica yields were
achieved (Scheme 7.1).

o=

R
~ (-)-24
N -
LiAlHs  Dry ether

o) OH
25a X=Ph R=4-Ph (x)-27a X=H R=4-Ph
25b X=2-BrPh R=H (+)-27b X=Br R=H
25c X=2-BrPh R=4-Ph (+)-27c X=2-BrPh R=4-Ph
25d X=2F-Ph R=4-Ph (+)-27d  X=2-FPh R=H
26a X=2-Benzo[b]furan R=H (¥)-27g X=2-Benzo[b]furan R=H
26c X=2-Benzo[b]furan R=2,4Cl (+)-271  X=2-Benzo[b]furan R=2,4Cl

Scheme 7.1: Synthesis of enantiopure alcohols (+)-27b-d,i by reduction with chiral
lithium aluminium complex

Racemic and enantiopure alcohols 27a-c,g,m and 3la-1 were used
as dtarting materials in multi-step syntheses for the corresponding N-
Imidazole derivatives in racemic and enantiopure forms. Involved are
three reaction steps (Scheme 7.2): (@) Mitsunobu reaction with 4,5-
dicyano imidazole to obtain the N-4,5-dicyanoimidazole derivatives 33a-
m; (b) hydrolyses of the N-imidazole-4,5-dicarbonitrile derivatives 33a-
m to the corresponding diacids 34a-m, (c) thermic decarboxylation of
the diacids 34a-m to the final N-imidazole derivatives 35a-d.

This synthetic procedure was exceptionally well suited for the
production of enantiopure N-akyl imidazole derivatives 34a,b.
Complete inversion of the stereochemistry of the starting alcohol was
observed during the Mitsunobu reaction, high enantiomeric excesses were
achieved with generally moderate chemical yields.

Benzhydrilic alcohols 31d showed partial racemization during the
synthesis of 1-(1-Phenyl-1-propyl)-imidazole-4,5-dicarbonitrile 33e in
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the Mitsunobu reaction. No evidence for further racemization was found
during the hydrolysis to the 1-(1-Phenyl-1-propyl) imidazole-4,5-
dicarboxylic acid 34c, but a complete racemization was observed in the
thermic decarboxylation to the final (1-phenyl-1-propyl) imidazole 35c.

CN
N CN
{ _\S\ CN N
N
H ( \
OH 32 CN
PN g |
Ry Ry DEAD PPhy )\
Ry R,
3la-i,27a-c,g,m 33a-m
Hydrolysis
Y
CO,H
N N
( \> Decarboxylation ( \g\ CO.H
N N 2
AT
Ry R Ry R
35a-d; 6a 34a-m

Scheme 7.2: Mitsunobu-Hydrolyses-Decarboxylation for the synthesis of
enantiomeric and racemic N-Alkyl imidazole derivatives.

The application of the Mitsunobu reaction to the enantiopure
benzhydroles 27a-c led to a completely racemic N-4,5-dicyano imidazole
derivatives 33g-i in high chemical yields. The syntheses proceeded
through the next two steps with high chemical yields to produce the
Imidazole derivative 35d and bifonazole 6a in racemic form. All
synthetic pathways were completely unsatisfactory in the case of the aryl-
2-benzo[b]furan methanols 27g,m. An identical procedure was applied to
4(5)-ethylimidazole carboxylate 37 in order to avoid the drastic
conditions during the hydrolyses of the cyano groups of the 4,5
dicyanoimidazole derivatives 33a-m. Overal no advantages in using this
substrate were found.

To demonstrate the complete inversion of the stereocenter during the
Mitsunobu reaction, severa aternative synthetic methods of N-imidazole



Chapter 7 155

derivatives were tried. Using a modified Marckwald procedure starting
from chird amines (9)-(+)-44 and (9)-(+)-51 it was possible to
synthesize the imidazole ring and to obtain the corresponding enantiopure
(9-(+)-1-(2-octyl) imidazole (S)-(+)-35a and (S)-(+)-1-phenyl-1-ethyl
Imidazole (S)-(+)-54 (Scheme 7.3). (9§)-(+)-35a presented an identica
specific rotation as the corresponding compound obtained from the three
step synthesis discussed above.

Br OMe >_"|H
>""NH2 OMe > R
R K,CO5/ CH;CN MeO o
e
R =n-Hexyl (S)- (+)-44; (1)-44 R = n-Hexyl (S)-(+)-52a; (+)-52a
R= (S)-(+)-51; ()-51 R= (S)-(+)-52b; (£)-52b
KCNS/
HCI THF
\
Raney Nickel
N /SN
F> & T meor F> N%
HS
R = n-Hexyl (S)-(+)-35a; (+)-35a R = n-Hexyl (S)-(+)-53a; (+)-53a
R=Ph  (5)-(+)-54; (x)-54 R=Ph (S)-(+)-53b; (+)-53b

Scheme 7.3: Synthesis of the enantiomeric N-akylimidazole (S)-(+)-35a and (S)-(+)-
54

This clearly demonstrated that complete inverson of the
stereochemistry occurred in the Mitsunobu reaction. Futhermore the
modified Marckwald procedure is a good method for the synthesis of
enantiopure benzyl imidazol derivatives. A natura extention was the
application of this methodology to enantiopure benzhydrilic amines.
Syntheses of chiral benzhydrilic amines 56a,b and aryl-2-benzo[b]furan
methylamines 56c¢,d were performed starting from the corresponding
chira acohols, unfortunally no good results were achieved with this
approach.
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In order to obtain the enantiopure aryl-2-benzo[b]furan methanols
27 a new synthetic method was considered instead of the asymmetric
reduction of the corresponding ketones. The use of the lipase SAMII
alowed the synthesis of enantiopure 1-aryl-2-propyn-1-ols (R)-(-)-58a-
c,eh-l in high enantiomeric excesses and good chemical yields via
hydrolysis of corresponding racemic acetates 60a-c and chloroacetates
6la-1 (Scheme 7.4).

o
0
SAM I H., O/</X HO,
Z

RO)\PH =7,R.T. R{j/\ +R_<j/\

N N :

X=Cl (+)-61b,c,e,h-| (S)-(-)-61b,c,eh-I (R)-(-)- 58a-c,e,h-I

X=H ()-60a-c (S)-(-)-60a-c

Scheme 7.4: Enzymatic hydrolyses of acetates and chloroacetates

The racemic and enantiopure l-aryl-2-propyn-1-ols 58 a-I were
cyclized with 2-iodophenol to the corresponding aryl-2-benzo[b]furan
carbinols 27g-h and 63a-d and with 2-N-Mesyl iodoaniline to aryl-2-(N-
mesyl)indol carbinols 64a-g using Pd(0) as catalyst (Scheme 7.5). Both
products were obtained in high e.e. and chemica yield. These congtitute the
first applications of Pd catalyses with enantiopure arylpropynols.

| PACL{P(Ph,)l,; Cul O

TMG AR, 400 C X
OH

(R)-58 X = 0; M=N-Ms X=0 (S)-27 or (S)-63
X=N-Ms (S)-64

Scheme 7.5:Cyclization of racemic and enantiomeric 1-aryl-2-propyn-1-ols to aryl-
benzo[b]furancarbinols 27 and 63or Aryl-N-Msindolylcarbinols 64

The reaction conditions were optimized in order to maximize
chemical yields and enantiomeric excesses. The reaction was also applied
to propargylic amines to synthesize the 2-benzo[ b]furanemethylamines 69.
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Finally an hypothesis for the mechanism of cyclization was
formulated. The first step is the PdO catalyzed addition of the acetylenic
compound to the 2-iodophenol leading to 62; the second step is the Cul
catalyzed cyclization to benzo[b]furane derivatives 27 or to N-Ms-indol
derivatives 64.

In conclusion the present work led to advances in the stereoselective
synthesis of antifungal agents such as bifonazole 6a and the aromatase
inhibitors 18; in fact the application of the described methodology to an
enantiopure amine may probably lead to the target molecule in
enantiopure form.
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8. Synthetic Procedures and Analytical Data

General Methods. Méelting points were taken on a Galenkamp
apparatus and are uncorrected. Optical rotations were measured on a
Perkin-ElImer 241 polarimeter. IR spectra (CHCl3 solutions unless
otherwise stated) were recorded on a Pekin-Elmer 398
spectrophotometer. NMR spectra were run on Bruker AC 200 (200
MHz), Bruker AV 250 (250 MHz) or Varian XL 300 (300 MH2z)
spectrometers. 1H NMR chemica shifts are reported relative to CDCl3 at
_7.24 ppm and tetramethylsilane at [0 0.00 ppm. EI low-resolution mass
spectra were recorded on a Kratos MS 80 spectrometer with an electron
beam of 70 eV. Elemental analyses (C, H, N) were performed in house on
a Perkin-Elmer 240C Analyzer.

Anhydrous DMF was purchased from Aldrich Chemical Co. THF
was distilled from potassium benzophenone ketyl. CH3CN was distilled
from P,Os. Reagents were from commercial suppliers and used without
further purification. Extracts were dried over NaSO, and evaporated
under reduced pressure using a rotary evaporator. Merck silica ge 60
was used for chromatography (70-230 mesh) and flash chromatography
(230-400 mesh) columns. The plates used for analytica and preparative
TLC were Merck silica gel 60 Foss (0.2 mm and 2 mm thickness,
respectively). Yields of the reactions refer to the purified products and
are not optimized.

8.1 Synthesis of prochiral benzophenones 25-a-f:

8.1.1 General synthetic procedure:

Benzoy! chloride (20 mmoles) was added dropwise within 20 min. to
a suspension of AICI3 (28 mmoles) in dry 1,2-dichloroethane cooled to
0°C with an ice bath. A solution of biphenyl (20 mmoles) in dry 1,2-
dichloroethane was added to the reaction mixture 10 min. after the first
addition. The reaction mixture was heated to reflux for 28 hours, then
cooled to R.T. and poured into a 6N HCI solution. The mixture was

stirred for 15 min. The organic phase was separated, the water phase was
washed with (2 x 100 ml) CHCI3 , the organic phases were collected and
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were washed with a saturated solution of NaCl until neutral pH and finally
dried over anhydrous Na2SO4. The organic phase was evaporated on the
rotavapor and the resulting crude product was triturated with petroleum
ether. 19.4 mmoles of 25a (97% yield) were recovered as white solid.

Identical procedures were used for compounds 25a-f. Only for 25b
benzene was used as solvent instead of 1,2-dichloroethane. See table 3.1,
chapter 3 for chemical yields, temperatures and reaction times.

8.2 Synthesisof Aryl-2-benzo[b]furanones 26a-e by the
Rapp Stormer procedure:

8.2.1 General procedure:

Salicyl aldehyde (469 mmoles, 50 ml) was added to an ethanolic
solution of NaOH (469 mmoles in 400 ml of abs. EtOH). Some solid was
formed during the addition. The reaction mixture was warmed to 50°C,
and [J02,4-trichloroacetophenone in 300 ml of abs. EtOH was added
dropwise during 30 min. The mixture was refluxed for 24h, than was
cooled to R.T. and a white solid precipitated. It was filtered off on a
gooch funnel and washed with water and abs. EtOH. Finally it was kept
under high vacuum overnight. 118 gr of a white product 26c were
recovered (88% yield).

Identical procedures were used to obtain 26a-e, see chapter 3, table
3.2 for chemical yields and reaction times.

8.3 Synthesisof racemic alcohols (+)-27a-m by NaBH4
reduction:
8.3.1 General procedure:

The prochiral ketone 25¢ (14.8 mmoles) was dissolved in a 1:1
mixture of THF and EtOH. NaBH4 (44,5 mmoles) was added to the
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mixture as solid in small portions. The reaction was completed after the
last addition. The mixture was diluted with water, and the product was
extracted with CHCI3, the organic phase was washed with (50ml) 1IN HCI,
saturated NaHCO3, saturated NaCl and the organic phase finally dried
using anhydrous NapSO4. The organic phase was evaporated on a
rotavapor, the resulting crude solid was triturated with n-hexane. The
alcohol (x)-27c (14.6 mmoles, 95% yield) was recovered as white solid.

Identical procedures were used for the syntheses of 27a-m; see table
3.3, chapter 3 for chemical yields and reaction temperatures.

8.4 Synthesisof (R)-(-)-2-(isoindonylinyl)-butane-1-ol (R)-
(-)-24

R-2-amino-1-butanole (0.84 mole; 79,64 ml) and 1,2-dichloroxylene
(0.84 mole; 465.1 g) were added to a suspension of K2CO3 (3.36 mal) in
1 L of acetonitrile. The mixture was stirred using a mechanica stirrer
under reflux for 24h. The mixture was cooled to room temperature and
the K2CO3 was filtered off. The solvent was evaporated and the resulting
crude oil was dissolved in EtOAc (750 ml). The organic solution was
washed with saturated NaHCO3 (2 x 200 ml), then the product was
extracted with 2N HCI solution (400 ml). 3N NaOH solution was added to
the acid solution until pH 12 was reached. The product was extracted with
EtOAc (800 ml) and after solvent evaporation the crude product was
purified by two high vacuum distillations. 134 g (84% yield) of product
(R)-(-)-24 were recovered.

8.5 Synthesisof chiral alcohols 27a-d,g,i by asymmetric
reduction:

8.5.1.General synthetic procedure:

ToalM solution of LiAIH4 in Et2O (30 ml, 30 mmoal) a solution of
(R)-(-)-2-(2-isoindolinyl)butan-1-ol (R)-(-)-24 (14.32 g, 75 mmol) in
200 ml of Et,O was added dropwise over 3 h at room temperature. After
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45 min, the mixture was cooled to -15 °C and a solution of 2-bromo-4'-
phenylbenzophenone 25c¢ (8.43 g, 25 mmol) in 30 ml of Et,O was slowly
added during 2 h under stirring. After a further 15 min, the reaction
mixture was quenched with 1 N NaOH (20 ml). The organic phase was
successively washed with 1 N HCl (2 x 100 ml) and 1 N NaOH (2 x 100
ml), then with water to neutral pH. Concentration of the dried extracts
afforded a crude oil, which was purified by flash chromatography
(CHCl3/hexane 8:2) to give the title compound.

Identical synthetic procedures were used to reduce ketones 25a-d
and 26a,c. See chapter 3, table 3.4 for chemical yields and optical
purities (% e.e.) for 25a-d and chapter 3, table 3.5 for 26a,c.

8.6 Dehalogenation of (£)-27c, (+)-27c and (x)-271:

8.6.1 Dehalogenation with Raney Nickel: general procedure.

Excess Ra-Ni (50% dlurry in water) was added to a solution of
alcohol 27 (2.0 mmol) in 10 ml of MeOH. The mixture was heated to
reflux for 30 min. After cooling the reaction mixture was filtered
through celite and the filtrate was diluted with CHCl3, washed with brine
and dried. Evaporation of the solvent afforded a residue which was
purified by column chromatography .

4-phenyl benzhydrole (+)-27a was recovered in 35% vyield and 28
n 35%yield.

(+)-27i decomposed under identical reaction conditions.

8.6.2 Dehalogenation with LiAlH4: general procedure.

LiAlH4 (IM THF solution, 2 mmol) was added to a solution of (*)-
27¢ (1 mmol) in dry THF. The reaction mixture was refluxed for 6 h,
then cooled to RT and the 1IN HCI solution was added to quench the
reaction. The product was extracted with CHCI3 (2x50 ml), the organic
phase was dried over anhydrous NapSO4. The crude product was purified
by flash chromatography. 4-Phenyl benzhydrole (x)-27a was recovered
in 89% vyield. Identical reactions were carried out with the enantiopure
(+)-27c leading to enantiopure (+)-27a in 85 % yield.
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(£)-27i was almost unreactive under identical reaction conditions.

8.7 Mitsunobu Reaction with 4,5-dicyanoimidazole.

8.7.1 General synthetic method a:

Diethylazodicarboxylate (DEAD) (1 ml, 6.0 mmol) was added
dropwise to a cooled (0 °C) solution of alcohol 27 or 31 (6.0 mmal),
PhsP (1.57 g, 6.0 mmol) and 4,5-dicyanoimidazole DCI (0.71 g, 6.0
mmol) in 60 ml of dry THF. The mixture was tirred for 0.5 h a room
temperature. Then the solvent was removed and the residue treated with a
1:1 mixture of hexane/Et,O. The solution was filtered, and the precipitate
was washed with hexane. Evaporation of the combined filtrates afforded a
crude product 33 which was purified as described below.

8.7.2 General synthetic method b:

The reaction was carried out by adding 1 equivalent of al the
reagents to alcohol 27 or 31 at 45 min intervals. After four additions of
reagents, the reaction mixture was allowed to stir at room temperature
for 24 h and was then treated as above.

For yields, absolute configurations and optical purities (% ee) see
Table 4.1 chapter 4.

8.8 Synthesis of the diacids 34.

8.8.1 General Procedure for the Hydrolysis of dicyanoimidazol
derivatives 33 to the Diacids 34.

A solution of 33 (10 mmol) in 30 ml of EtOH was refluxed for 24 h
in the presence of 10 M NaOH (30 ml, 0.30 mol). The hot solution was
poured into 150 ml of cold water, filtered, and brought to pH 2 with 37%
HCI. After cooling, the precipitate was filtered, washed with EtOH, then
with Et,O, and dried. For yields, absolute configuration and optica
purities (% ee) of the products, see Table 4.3; chapter 4.
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8.9 Decarboxylation of the diacids 34 to 1-Alkylimidazoles 35
and Bifonazole 6a.

8.9.1 Decar boxylation: general procedure.

A solution of 34 (10 mmol) in 20 ml of diphenyl ether was heated at
reflux for 0.5 h and, after cooling, applied to a silica gel column. Elution
with Et,0 eliminated the excess diphenyl ether and further elution with
AcOEt led to the products, which were further purified by preparative
TLC (AcOEt for 35a and 35b, CHCI3/MeOH 98:2 for 35c) or
recrystallization (for 35d and 6a). For yields, absolute configurations and
optical purities (% ee) of the products, see Table 4.4, chapter 4.

8.10 Synthesis of 4-(5)-ethyl imidazole carboxylate 37:

8.10.1 Synthesis of acetylglycine ethyl ester 38:

To a suspension of acetyl glycine hydrochloride(100 mmol) in
dichloromethane (400 ml) at 0° C triethylamine (TEA; 220 mmol) and
acetyl chloride (100 mmol) were added. After two hours the reaction
mixture was diluted with dichloromethane and water, the organic phase
was separated and washed with 1 N HCI solution, saturated NaCl solution,
and then dried over anhydrous NapSO4. The solid 38 was recovered after
evaporation (98 mmol, 98 % yield).

8.10.2 Synthess of ethyl 4(5)-(2-thiol)-imidazole carboxylate
40:

Sodium methoxide (95 mmol) was added to a solution of acetyl
glycine ethyl ester 38 (86 mmol) in benzene a 0°C in 10 smal solid
portions. Ethyl formiate (258 mmol) was then added dropwise. The
reaction was carried out for 24 h at 0°C. An orange solid precipitated in
the reaction mixture and cold water (55ml) was added to the mixture
which then became clear. The benzene solution was separated from the
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agueous phase which was cooled again to 0°C and then acidified with 12N
HCl (15.6 ml). KCNS (99 mmol) were added, the mixture was heated to
70°C for two hours and was then left to stand in the refrigerator for 48 h.
A precipitate was formed during this time , which was filtered off and
washed with cold water, and then dried under high vacuum over P2Os

overnight. 55 mmol of 40 were recovered (68 % overal yield).

8.10.3 Synthesis of ethyl 4(5)-imidazole carboxylate 37:

1.65 ml of conc. HNO3 were diluted with 4.75 ml of water and the
resulting solution was cooled to 0°C. NaNO2 (100mg) was added after 10
min.in a single portion and 4(5)-(2-thiol)-imidazole carboxylate 40 1.5 g
(8.7 mmoal) was added in small solid portions. During the last addition the
temperature must be kept below 25 °C. After 30 min solid NapCO3 was
added to the reaction mixture to neutralize the pH. The product was
extracted in CHCI3 (200 ml), the organic phase was washed with saturated
NaCl solution (2x 150 ml) and then dried over anhydrous NapSO4. 840

mg of product 37 were recovered (69% yield).

8.11 Synthesisof ethyl 1-[[1-(4-Biphenylyl)benzyl]imidazole-5-
carboxylate 41a and ethyl 1-[(J-(4-biphenylyl)benzyl]
iImidazole-4-car boxylate 41b.

8.11.1 Synthesis 1:

Prepared by Mitsunobu coupling of acohol 27a and ethyl 4(5)-
imidazole carboxylate 37 as the acidic reagent, following the same
procedure ( synthetic method 7.7.2 b) as described for the synthesis of
(£)-33g. After preliminary purification by flash chromatography (n-
hexane/AcOEt 3:1), the isomeric mixture was separated by another

chromatography using the same eluent affording the less polar compound
(Rf 0.66), which was assigned to have the structure (x)-41a. The second

eluted isomer ()-41b (Rf 0.22) was further purified by flash
chromatography using gradient elution with n-hexane/AcOEt 3:1 to 1:1.

8.11.2 Synthesis 2:
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Alcohol 27a (0.2 mmol) was dissolved in 5 ml of acetonitrile, the
solution was cooled to 0°C and bromo triphenyl phosphine (1.4 mmol)
was added to the solution. The reaction was stirred for three hours. TLC
showed that all of the starting material was consumed and was converted
into 42. Diisopropylethyl amine DIPEA and ethyl 4(5)-imidazole
carboxylate 37 were added and the temperature was allowed to rise to
RT. Stirring was continued over night, the solvent was evaporated, the
crude oil dissolved in CHCI3 and washed consecutively with 1 N HCI,
saturated solution of NaHCO3 and saturated NaCl solution. The crude
product was purified by flash chromatography (n-hexane:EtOAc 1:1).
Products (+)-4la and (£)-41b were recovered in a 1 to 1 ratio with
32.5 % overal yield.

8.12 Synthesisof 1-[a-(4-Biphenylyl)benzyl]imidazole-5-
carboxylic Acid ()-43.

10% aqueous LiOH (1 ml, 4.2 mmol) was added to a solution of 41a
(0.110 g, 0.29 mmoal) in 4 ml of EtOH. After being stirred for 2 h, the
reaction mixture was cooled to 0 °C and acidified by addition of 1 N HCI.
The white precipitate was stirred at 0 °C for another 30 min, and then
filtered to give pure (z)-43 (0.098 g, 96%) as white crystals.

8.13 Synthesis of 5-amino-1-(2-octyl)imidazole-4-carbonitrile
(z)-46:

Dry NH3 was bubbled for 30 min through a stirred suspension of
aminomalonitrile p-toluensulfonate (3.9 g, 155 mmol) in dry CH3CN
(200 ml). After the separated solid was filtered off, the solution was
concentrated to 100 ml and then added to triethyl orthoformiate (2.6 ml,
15.5 mmol). The solution was heated under reflux for 15 min. To the
cooled mixture 2-octylamine (44) (2.6 ml, 15.5 mmol) was added and the
solution stirred a room temperature overnight. The solvent was
evaporated and the resdue was purified by flash chromatography
(AcOEt/n-hexane 3:2) to give a yelow semisolid product, that after
trituration with Et,O/hexane afforded 5-amino-1-(2-octyl)imidazole-4-
carbonitrile (46) (1.8 g, 53%) as a white crystalline compound.



Chapter 8 166

8.14 Synthesis of 5-amino-1-(2-octyl)imidazole-4-carboxylic
acid (x)-47:

A mixture of 5-amino-1-(2-octyl)imidazole-4-carbonitrile 46 (0.30
g, 1.36 mmol), EtOH (3 ml) and aqueous 10 N NaOH (3 ml) was heated
under reflux for 24 h. The solution was cooled to room temperature,
diluted with water (2 ml) and neutralized by dow addition of 2 N HCI.
After 2 h in a cool place, the precipitate was filtered off and washed with
water to give 5-amino-1-(2-octyl)imidazole-4-carboxylic acid (47) (0.32
g, 115%) as a chromatographically pure (5% AcOH in AcOEt, Rf 0.58),
white crystaline solid with no defined melting point, containing some
crystal water.

8.15 Synthesis of 5-amino-1-(2-octyl)imidazole 48

The 5-amino-1-(2-octyl)imidazole-4-carboxylic acid 47 was
decarboxylated following the same procedure 7.9 as described for acids
34 affording 5-amino-1-(2-octyl)imidazole 48 in 15% yield.

8.16 Synthesis of 1-(2-Octyl)imidazole-4-car boxamide 49:

A solution of 5-amino-1-(2-octyl)imidazole-4-carbonitrile 46 (0.33
g, 1.5 mmol) in 10 ml of THF was added during 1 h to a refluxing
solution of isoamyl nitrite (0.63 ml, 4.5 mmol) in 5 ml of THF. After
being heated under reflux for 1 h, the reaction mixture was cooled,
concentrated and purified by flash chromatography (2.5% EtsN in
AcOEt, Rf 0.45) to provide 49 (0.19 g, 45%) as a white amorphous

powder with no defined melting point.

8.17 General procedurefor the synthesis of N-[2,2-
(Dimethoxy)ethyl]amines 52a and 52b.

To a solution of (9-(+)-2-octylamine (+)-44 and (9-(-)-_-
methylbenzylamine (-)-51 (4.0 mmol) in 30 ml of CH3CN were added
anhydrous K>COs3 (0.83 g, 6.0 mmol) and bromoacetaldehyde dimethyl
acetal (0.68 g, 4.0 mmol). The reaction mixture was heated under reflux
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for 48 h. After cooling, the inorganic salts were removed by filtration
and the solution was evaporated under reduced pressure. The residue was
purified by column chromatography (AcOEt) to give 52a and 52b as
yellow oils which were used without further purification.

8.18 General procedurefor the synthesis of 53a and 53b:

To a solution of 52a or 52b (2.0 mmol) in 50 ml of THF were
added 3 N HCl (0.8 ml, 2.4 mmol) and KSCN (0.23 g, 2.4 mmol). After
stirring a 70 °C for 8 h, the cooled solution was made basic by addition
of 1 N NaOH and extracted with CH>Cl,. The organic layer was washed
with brine, then dried and evaporated. The residue was purified by
column chromatography (AcOEt) to give pure 53a and 53b both in 84%
yield.

8.19 General procedurefor the hydrogenolysis of 53a and 53b.

Ra-Ni (50% durry in water; 500 mg) was added to a solution of 53a
or 53b (2.0 mmol) in 10 ml of MeOH. The flask was immersed in an ail
bath preheated to 100 °C and after 5 min cooled to room temperature.
The reaction mixture was filtered through celite and the filtrate was
diluted with CHCI3, washed with brine and dried. Evaporation of the
solvent afforded a residue which was purified by column chromatography
(5% MeOH in AcOEt) to give (9-(+)-35a (85% yield) [identical in all the
respects to that obtained by decarboxylation of (§-(+)-34a)] and (S)-(+)-
54 (quantitative yield).

8.20 Synthesisof Azides55 a-d:

8.20.1General azide synthesis by diphenylphosphorylazide
DPPA under Mitsunobu conditions:

To a solution of acohol 27 (1 mmal), triphenyl phosphine (1 mmol)
and diethyldiazodicarboxylate (1 mmol) in dry THF, a solution of
diphenylphosphorylazide (1 mmol) was added over a period of 15 min
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and the stirring was continued for about 24 h. The solvent was removed
by evaporation on a rotavapor, the crude oil dissolved in CH2Cly, filtered

through a Forosil pad and then purified by flash chromatography
(CH2Cl2) on silicagel.

See chapter 4 and table 4.6 for chemica yields and enantiomeric
ECCESSES.

8.20.2 General azide synthesis by diazabicycloundecene
(DBU) and diphenylphosphorylazide (DPPA):

Alcohol 27 (1 mmol) and DPPA (1.2 mmol) were dissolved in dry
toluene so that the final concentration of the alcohol was ca. 0.5-1 M. To
the mixture was added a dlight excess of DBU (1.1-1.5 mmol). The
reaction mixture was stirred 12-24 h at RT, was then diluted with toluene

and washed consecutively with 1 N HCI, saturated NaCl solution and dried
over anhydrous NapSO4. After solvent evaporation the crude oil was

purified by flash chromatography (CH2Cl2) on silicagel .
See chapter 4, table 4.7 for chemical yields and enantiomeric
purities.

8.21 General proceduresfor the synthesis of amines 56a-d.:

8.21.1 Reduction of azides 55 by Ph3P/H20:

To a solution of azide 55 (1 mmol) in THF/water 10:1 a solution of
Ph3P in THF was added. The mixture was stirred for 3 h. The solvent was
evaporated and the crude oil was purified by flash chromatography over
slicagel.

See chapter 4, table 4.8, method A for the chemical yields.

8.21.2 Reduction of Azides 55 by SnCly:

To a stirred suspension of stannous chloride (2mmol) in methanol, a
solution of azide 55 (1mmol) in methanol was added dropwise. The
reaction was exothermic and N> gas evolved. The mixture was stirred at
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room temperature for two hours. Methanol was evaporated , the resulting
oil was dissolved in ethylacetate and washed with 0.5 N NaOH solution.
The organic phase was washed with saturated solution NaCl and dried
over anhydrous NapSO4. The crude oil was purified by flash
chromatography on silicagel.

See chapter 4, table 4.8 for the chemical yields.

8.22 Synthesis of diamides 57: general procedure

Diacid (%)-34e (1.25 mmol) was dissolved in dry dioxane (20ml)
containing carbonyl diimidazole (CDI; 2.89 mmol) and chira amine (2.55
mmol). The mixture was refluxed for 8 h and after cooling, the solvent
was evaporated. The crude reaction mixture was dissolved in CHCI3, and

the solution washed consecutively with 1IN HCI, saturated NaHCO3
solution and saturated solution of NaCl. The crude product was purified
by preparative TLC (eluent CH2Clo-MeOH- AcOH 98:1:1). The two
diasteroisomers were completely separated in 1:1 ratio. Overall yield was
90%.

8.23 Synthesis of Aryl propynoles

8.23.1 Synthesis of 1-phenyl-2-propyn-1-ol (x)-58a by
addition of lithium acetylide to benzaldeyde:

Benzaldehyde (3.5 mmol) was dissolved in 10 ml of dry THF, the
solution was cooled to -78°C, and a 1IN solution of lithium acetylide in
THF (3.7 mmol) was added dropwised over 30 min. After the addition the
temperature was raised to 0°C. The mixture was quenched with a
saturated solution of NH4Cl and was diluted with CH2Cl2 and water. The
organic phase was separated and washed with a saturated solution of NaCl,
and then dried over anhydrous NapSO4. The product was purified by
flash chromatography on silica gel. The 1-phenyl-2-propyn-1-ol (+)-58a
was recovered as colorless ail in 45 %yield.

Following the same procedure but with the addition of ethylen
diamine to the benzal dehyde solution the yield of (x)-58a was 42%.
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8.23.2  Synthesisof l-aryl-(2-propyn-3-trimethylsilyl)-1-
ols 59a-g: general procedure.

To a solution of trimethylsilyl acetylene (10 mmol) in dry THF at -
78°C n-buty! lithium (10.5 mmol) was added dropwise over 15 min. This
mixture was transferred via a needle to a solution of arylaldehyde in dry
THF at -78°C. The mixture was stirred without further cooling and the
temperature was alowed to raise to 0°C. The reaction was quenched with
a saturated solution of NH4Cl and diluted with CH2Cl2 and water. The
organic phase was separated and washed consecutively with saturated
NaCl solution and dried over anhydrous NapSO4. The product was
purified by flash chromatography on silicagel.

See chapter 5, table 5-1 for products (z)-59a-g and chemical yields.

8.23.3 Desilylation of 1-aryl-(2-propyn-3-trimethylsilyl)-1-ols
59a-q:

8.23.3.1 Desilylation using KF:

The (x)-1-aryl-(2-propyn-3-trimethylsilyl)-1-ol  (£)-59(10 mmol)
was dissolved in 3 ml of DMF, KF (11 mmol) was added, and the mixture
was heated to 60°C for 3 h. It was then cooled to rt and diluted with
CH2Cl2 and IN HCI. The organic phase was separated and washed
consecutively with 1IN HCI, water and saturated NaCl solution. It was
finaly dried over anhydrous NapSO4. The crude oil was purified by flash
chromatography on asilicagel column.

See Table 5-2, chapter 5 for products (+)-58a-g and chemical
yields.

8.23.3.2 Desllylation using TBAF in dry THF:

1-aryl-(2-propyn-3-trimethylsilyl)-1-ol ( 59 ) (10 mmol) was
dissolved in 5 ml of dry THF, the solution was cooled to -20°C and a1 N
solution of TBAF in dry THF (11 mmol) was added. The cooling bath
was removed after 1 h and the reaction mixture was stirred at room
temperature for 4 h. The solvent was evaporated, the crude oil dissolved
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in CH2Cl2 and washed several times with water, then with a saturated
solution of NaCl, and finally dried over anhydrous NapSO4. The crude ail
was purified by flash chromatography on silicagel.

See Table 5.3 chapter 5 for products (z)-58 and chemical yields.

7.23.3.3 Desilylation using K2CO3 in MeOH:

1-(34 dimethoxyphenyl)-(2-propyne-3-trimethylsilyl)-1-ol  (£)-59g
(10 mmol) was dissolved in 25 ml of saturated K2CO3 solution in MeOH.
The mixture was stirred for five days at room temperature. The solvent
was evaporated and the crude product was dissolved in EtOAc. The
solution was washed with water, 1 N HCl and saturated NaCl solution.
The crude oil was purified by flash chromatography on silica gdl. 1-(3,4
dimethoyphenyl)-2-propyne-1-ol (+)-58g was recovered in 43 % vyield as
oil.

8234 Synthesis of (¥)-58a by addition of magnesum
methynyl halide to benzaldehyde:

The aromatic adehyde (15 mmol) was dissolved in dry (100ml)
THF, and the solution was cooled to low temperature. A THF solution of
magnesium methynyl halide (16 mmol) was added dropwise to the
solution within 30 min. The reaction mixture was stirred 1 h and then
guenched with 1 N HCI solution. The product was extracted with ethyl
acetate, and the organic phase washed with saturated NaCl solution. The
crude oil was purified by flash chromatography on silica gel, or by
digtillation under high vacuum. In both cases further purifications were
not necessary.

See Table 5.4, chapter 5 for product (+)-58, chemica yield and
temperature.

8.24 Screening of lipasesfor the esterification of arylpropynols.

8.24.1 General screening procedure:
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In 10 ml of MTBE 100 mg of 1-(4-cyanophenyl)-2-propyn-1ol (*)-
58e were suspended, 50 mg of lipase and 150 mg of vinylacetate were
added. The reaction mixtures were stirred at room temperature for 7
days, and monitored every 24h by chira GC. The analysis was
guantitative and alowed the determination of the conversion and the
enantiomeric excess of both product and starting material. Using this
method ten different lipases were tested, see chapter 5, table 5.5 for
gualitative results and enzymes tested. Only the lipases SAM | and SAMII
were considered for futher applications.

8.25 Synthesis of 1-aryl-2-propyn-1-ol acetate:

8.25.1 General method a:

To a solution of 1-phenyl-2-propyn-lol (*)-58a (10 mmol) and
pyridine (10 ml) at 0°C, acetanhydride (10 mmol) was added dropwise
over 30 min. Reactions were carried out under stirring at rt for 12 h. The
reaction mixture was poured into 1 N HCl solution and the product
extracted with ethyl acetate. The organic phase was washed with 1 N HCI
solution and saturated NaCl solution and finally dried over anhydrous
NapSO4. The crude oil was purified by flash chromatography on silica
gel. 1-phenyl-2-propyn-1ol acetate (+)-60a was recovered in 955 %
yield.

See chapter 5, table 5.6 for substrates, products and chemical yields.

8.25.2 General method b:

To a solution of aryl propynol (£)-58 (10 mmol) and triethylamine
(11 mmol) in dichloromethane (40 ml) at 0°C, acetyl chloride (10.5
mmol) was added dropwise over 30 min. The reaction mixture was
stirred for 1 h at room temperature, it was then diluted with CH2Cl2 and
washed consecutively with 1 N HCI solution, saturated NaCl solution and
then dried over anhydrous NapSO4. The crude product was so clean that
further purification was unnecessary.

See chapter 5, table 5.6 for substrates, products and chemical yields.
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8.26 Screening of lipases and reaction conditions for the
hydrolysis of arylpropynol acetates (+)-60.

8.26.1 General procedurefor the screening of lipases:

In 10 ml of 0.1 N phosphate buffer pH=7.0, 100 mg of 1-(4-
cyanophenyl)-2-propyn-1ol (x)-60e and 100 mg of lipase were
suspended. The reaction mixture was stirred at room temperature for 7
days and the reaction progress was monitored every 24h by chira GC.
The analysis was quantitative and allowed to determine the conversion and
the enantiomeric excess of both product and starting material. Under
identical reaction conditions ten different lipases were tested, see chapter
5, table 5.8 for qualitative results and screened enzymes. Only the lipases
SAM | and SAMII were considered for further applications.

8.26.2 Cosolvent effect on the hydrolysis of arylpropynols
acetates (£)-60 by SAMI I lipase:

In 10 ml of 0.1 N phosphate buffer pH=7.0 100 mg of l-aryl-2-
propyn-1-ol acetate (£)-60, and 10 mg of crude lipase SAMII were
suspended. 0.IN NaOH was used as titrating reagent. The cosolvent of
choice was added as last component of the mixture. The reaction mixtures
were stirred at room temperature and reaction progress was monitored by
chiral GC. The analysis was guantitative and alowed the determination of
the conversion and the enantiomeric excess of both product and starting
materia from the single chromatogram.

See chapter 5, table 5.8 for substrates and products, chemical yields,
conversions, E values and % of cosolvent used.

8.26.3 Temperature effect on the hydrolysis of arylpropynol
acetates (x)-60 in presence of SAMI I lipase:

In 10 ml of 0.1 N phosphate buffer pH=7.0 100 mg of l-aryl-2-
propyn-1-ol acetate (+)-60 and 10 mg of crude lipase SAMIlI were
suspended. 0.1N NaOH was used as titrating reagent. The reaction was



Chapter 8 174

carried out in a thermostated reactor. The reaction mixtures were stirred
a the desired temperature and monitored by chiral GC. The analysis was
guantitative and allowed the determination of converson and the
enantiomeric excess of both product and starting material from the single
chromatogram.

See chapter 5, table 5.10 for substrates and products, chemical yields,
conversions and E-values and temperatures.

8.27 Synthesis of 1-aryl-2-propyn-1-ol chlor oacetate (+)-61.

To a solution of aryl propynol ()58 (10 mmol) and triethylamine
(11 mmol) in dichloromethane (40 ml) a 0°C, chloroacetic anhydride
(10.5 mmol) was added dropwise over 30 min. The mixture was stirred
for 1 h a room temperature, then diluted with CH2Cl2 and washed
consecutively with 1 N HCI solution, saturated NaCl solution and finally
dried over anhydrous NaSOs. The crude product was so clean that
another purification was unnecessary.

See chapter 5, table 5.11 for substrates, products and chemical yields.

8.28 Enzymatic resolution of chlor oacetates (+)-61 b-c,eh-I:

8.28.1 General procedure:

Chloroacetate (+)-61 (10 mmol)was suspended in 0.1 N phosphate
buffer (10 ml, pH=7.0) and the mixture was stirred 10 min.on the
autotitrator in order to test for non-catalyzed hydrolysis. Then the crude
lipase preparation of Pseudomonas species (SAMII) was added (10% by
weight of the ester). The reaction mixture was dtirred a room
temperature, while the pH of the reaction was kept at pH 7.0 by
continuous addition of 1 N NaOH from an autoburette. The reaction
progress was monitored by chira GC alowing simultaneous
determination of conversion and enantiomeric purities of both educt and
product. After the desired or required converson was achieved the
reaction mixture was diluted with water and diethyl ether and the
resulting phases were separated. The organic phase was washed with
water and saturated NaCl solution and finally was dried over anhydrous
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NapSOs. After removal of the solvent the resulting products were
separated and purified by flash chromatography on slica gel. The
enantiomeric purities of the products were determinated by chiral GC.
The enantiomeric excess of both the purified alcohol and the chloroacetate
were identical to those obtained directly from the reaction mixture.

In no case indications for a racemization during the work up or
purification were found.

See chapter 5, table 5.12 for products, starting materials, reaction
times, E-values, % e.e. and chemical yields.

8.29 Hydrolysis of enantiopure acetate (S)-60 and chlor oacetate
(S)-61.

In 10 ml of satured K2CO3 the acetate (S)-60 or the chloroacetate
(9)-61 ( 2 mmol) were dissolved at 0°C. The raction mixture was stirred
for 30 min until the complete consumption of the starting material was
observed on TLC.The mixture was diluted with ethylacetate and water,
the organic phase was separated and washed with saturated NaCl and dried
over anhydrous NapSO4 to afford the clean product (S)-(+)-58 which was
recovered in high yield.

See chapter 5, table 5.13 for substrates, products, % e.e and
chemical yields.

8.30 Synthesis of Aryl-2-benzo[b]furanyl carbinoles 27g,l and
63a-d in racemic and enantiopure form via palladium-
catalyzed heter oannulation (general procedure).

Argon was bubbled into a solution of tetramethylguanidine (TMG,
376 m, 3 mmoal) in 2.5 ml of DMF for 15 min at 40°C before the addition
of 2-iodophenol (220.01 mg, 1 mmol), bis-triphenylphosphine palladium
(1) dichloride ( 17.5 mg, 0.025 mmoal), Cul (4.5mg, 0.025 mmol) and 1-
Phenyl-2-propyn-1-ol (+)-39a ( 123.9m, 1mmol). The mixture was
stirred under argon at 40°C for four hours, whereby the color changed
from pae yellow to red/brown. After cooling, the reaction mixture was
diluted with IN HCI (100ml) solution and ethyl acetate (200ml). The
organic layer was separated and washed with water, saturated NaCl
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solution and finally dried over anhydrous NapSO4. After solvent

evaporation the crude oil was purified by flash chromatography on silica
gel to afford (z)-27g in 91% chemical yield.

The experimental procedure described above was applied also to the
racemic and enantiopure aryl propynols 58a-c,eh-l. See chapter 6, table
6.5.for reaction times, chemical yields and enantiomeric purities.

8.31 Synthesis of aryl benzo[b]furan carbinol by base
catalyzed 5-endotrig cyclization

8.31.1 Synthesis of phenyl-2benzo[b]furanyl carbinol (%)-279
by base catalyzed 5-endotrig cyclization:

(2-Hydroxyphenyl)-2-propyne-1-phenyl-1-ol  (x)-62 (224 mg, 1
mmol) was dissolved in 2 ml of saturated K2CO3 solution in methanal.
After two hours the reaction was completed. Methanol was evaporated
and the crude product dissolved in ethylacetate. The solution was washed
with water and saturated solution of sodium chloride and finally dried
over anhydrous NapSO4. The solvent was evaporated and the crude
product was filtered through a slica gd pad to afford phenyl-
2benzo[b]furanyl carbinol (£)-27g in 92% vyield. All spectroscopic data
were identical with those obtained via other routes.

8.31.2 Cyclization of 1-phenyl-3-(2'acetoxyphenyl)-2-propyn-
1-ol ()71 to phenyl-2benzo[b]furanyl carbinol (x)-2 by
basic catalyzed 5-endotrig cyclization.

1-phenyl-3-(2'-acetoxyphenyl)-2-propyn-1-ol ~ (£)-71 (265 mg,
1mmol) was dissolved in 5 ml of a saturated solution of K2CO3 in
methanol at 0°C. After one hour the TLC showed complete consumption
of the starting material. The methanol was evaporated, and the resulting
oil dissolved in ethylacetate and water. The organic phase was separated
and washed with saturated NaCl solution, and was finaly dried over
anhydrous NapSO4. After evaporation of the solvent (+)-279 was
obtained in 95.0% chemical yield.
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NMR and MS analysis were identical to that of (x)-27g synthesized
by Pd mediated cyclization.

8.32 Synthesis of racemic 1-phenyl-3-(2'aminophenyl)-2-
propyn-1-ol (+)-65.

Argon was bubbled trough a solution of tetramethylguanidine (TMG,
202 ml, 16 mmol) in 25 ml of DMF for 15 min a 40°C before the
addition of 2-iodoaniline (883.4 mg, 4 mmoal), bis-triphenylphosphine
paladium (I1) dichloride ( 141 mg, 0.05 mmol), Cul (38mg, 0.050 mmol)
and 1-Phenyl-2-propyn-1-ol (x)-27g ( 500 m, 4 mmol). The mixture
was stirred under argon at 40°C for four hours, whereby color changed
from pae yellow to red/brown. After cooling, the reaction mixture was
diluted with ethyl acetate and was then washed consecutively with water,
saturated NaCl solution and finaly dried over anhydrous NapSO4. After
evaporation of the solvent the crude oil was purified by flash
chromatography on silica gel to afford (x)-65 in 48.8% chemical yield.

8.33 Synthesis of N-M esyl-2-iodoaniline 46.

To a solution of methanesulfonyl chloride ( 371.1m, 4.79 mmoal) in
5 ml of pyridine 2-iodoaniline ( 1.0 g, 4.56 mmol) was added at 0°C.The
reaction was carried out at room temperature for four hours after which
the TLC showed complete consumption of the starting material. The
reaction mixture was poured into 300ml of ice and the product
precipitated out. The solid was separated by filtration and washed with
water, then dried in a desiccator under vacuum over P2Os. 1.31 g of N-
Mesyl-2-iodoaniline 46 were obtained corresponding to 95% chemical
yield. The reaction was scaled up to 69 mmoles with identical results.

8.34 Synthesis of Aryl 2-(N-mesyl)-indolyl carbinols 64a-g in
racemic and enantiopure form via palladium-catalyzed
heter oannulation of arylpropagylic alcohols 58 (gener al
procedure).

Argon was bubbled into a solution of tetramethylguanidine (TMG,
376 OI, 3 mmol) in 25 ml of DMF for 15 min at 40°C before the
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addition of N-Mesyl-2-iodoaniline 46  (297.11 mg, 1 mmoal), bis
triphenylphosphine palladium (Il) dichloride ( 17.5 mg, 0.025 mmoal),
Cul (4.5mg, 0.025 mmol) and 1-phenyl-2-propyn-1-ol 58a ( 123.9 m,
1mmol). The mixture was stirred under Argon at 40°C for 4 whereby the
color changed from pale yellow to red/brown. After cooling, the reaction
mixture was diluted with 1IN HCI solution and ethyl acetate. The organic
layer was separated and washed consecutively with water and saturated
NaCl solution and was finaly dried over anhydrous NapSOs. After
evaporation of the solvent the crude resulting oil was purified by flash
chromatography on silica gdl to afford (x)-64a in 87% chemical yield.

The same experimental procedure was applied to al of the racemic
and enantiopure aryl propynols 58a-c,eh-I. See chapter 6, table 6.7 for
reaction times, chemical yields and enantiomeric excesses.

8.35 Synthesis of (2'-Hydroxyphenyl)-2-propyn-1-phenyl-1-ol
(+)-62.

(+)-62 can be obtained as side product in the synthesis of 1-phenyl-
2-benzo[b]furane carbinol (£)-27g using 1% of palladium catalyst and
Cul (see Chapter 6.2.4.) or by using one equivaent of base (TMG,
Chapter 6.3.1) The second procedure is described below.

Argon was bubbled thruogh a solution of tetramethylguanidine
(TMG, 125 m, 1 mmol) in 2.5 ml of DMF for 15 min at 40°C before the
addition of 2-iodophenol (220.01 mg, 1 mmoal), bis-triphenylphosphine
palladium (1) dichloride ( 7.5 mg, 0.010 mmol), Cul (1.8 mg, 0.010
mmol) and 1-Phenyl-2-propyn-1-ol (x)-58a ( 123.9 m, 1mmol). The
mixture was stirred under argon at 40°C for 4 h, whereby the color
changed from pae yelow to red/brown. After cooling, the reaction
mixture was diluted with 1IN HCI solution and ethyl acetate. The organic
layer was separated and washed with water, saturated NaCl solution and
was finally dried over anhydrous NapSO4. After evaporation of the
solvent the resulting crude oil was purified by flash chromatography on
silicagel to afford (z)-62 in 90% chemical yield.

8.36 Synthesis of racemic 1-Phenyl-3-(2'acetoxyphenyl)-2-
propyn-1-ole (£)-71.
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Argon was bubbled thrugh a solution of tetramethylguanidine (TMG,
2263.3 m, 21 mmoal) in 20 ml of DMF for 15 min at 40°C before the
addition of 2-acetyliodophenol (500 mg, 191 mmol), bis
triphenylphosphine palladium (1) dichloride ( 66.7 mg, 0.09 mmol), Cul
(18.1 mg, 0.09 mmol) and 1-Phenyl-2-propyn-1-ol 58a ( 1260.1 m, 2.1
mmol). The mixture was stirred under argon at 40°C for 4 h, whereby
color changed from pale yellow to red/brown. After cooling, the reaction
mixture was diluted with ethyl acetate. The organic layer was washed with
water and saturated NaCl solution and was finally dried over anhydrous
NapSO4. After evaporation of the solvent the resulting crude oil was
purified by flash chromatography on silica gel to afford (£)-71 in 78.9%
chemical yield.

8.37 Analytical data:

4-Phenylbenzophenone 25a:

Synthetic procedure 7.1.1

IH-NMR (300 MHz; CDCl3) d = 7.70-7.31 (m,14H)

IR (CHCI3): n (cmr1) = 3030, 1690, 1610, 1290.

GC-MS =258 (M* 70%).

M.P. =110-112°C.

4'-Phenyl-2-br omobenzophenone 25c:

Synthetic procedure 7.1.1

IH-NMR (300 MHz; CDCl3) d = 7.88 (d 2H,8.7 Hz), 7.70-7.59 (m
5H), 7.52-7.31 (m 6H).

IR (CHCI3): n (cml) = 1675, 1625, 1300.

GC-MS =338 (M* 72%), 181 (100%).

M.P. =97-98 °C.

4'-Phenyl-2-fluor obenzophenone 25d:

Synthetic procedure 7.1.1

IH-NMR (300 MHz; CDCl3) d = 7.95 (d 2H,85 Hz), 7.75-7.35
(m8H), 7.30-7.10 (m 3H).

I3C-NMR (CDCl3) d = 19292, 162.51, 157.50, 146.12, 139.83,
136.04, 133.03, 132.87, 130.70, 130.65, 130.40, 128.93, 127.29,
127.11, 127.01, 124.32, 124.25, 116.46, 116.03.
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IR (CHCI3): n (cml) = 1680, 1600, 1295,

GC-MS =278 (M* 100%).

M.P. =101-102 °C.

4'-Phenyl-4-nitr obenzophenone 25e;

Synthetic procedure 7.1.1

IH-NMR (300 MHz; CDCI3) d = 8.35 (d 2H,8.9Hz), 8.10-7.85 (m
3H), 7.80-7.55 (m 4H), 7.50-7.30 (m 3H).

IR (CHCI3): n (cm1)= 1660.

GC-MS =304 (M* 100%).

M.P. = 135-136 °C.

4'-Phenyl-3-nitr obenzophenone 25f:

Synthetic procedure 7.1.1

IH-NMR (300 MHz; CDCI3) d = 8.65 (s 1H), 8.46 (d 1H, 7.70 Hz),
8.18 (d 1H, 6.10 Hz), 7.81 (d 2H, 7.7 Hz), 7.73-7.62 (m 5H), 7.49-
7.35 (m 3H).

IR (CHCI3): n (cm1= 1675.

GC-MS =304 (M* 100%).

M.P. = 154-155 °C.

Phenyl-2-benzo[b]furanone 26a:

Synthetic procedure 7.2.1.

IH-NMR (300 MHz; CDCI3) d=8.07-8.02 (m 1H), 7.75-7.46 (m
8H), 7.46-7.25 (m 1H).

IR (CHCI3): n (cm1= 1675,1605,1550.

GC-MS =222 M+ (100%).

M.P.= 105-106 °C.

4'-Cyanophenyl-2-benzo[b]furanone 26b:

Synthetic procedure 7.2.1.

IH-NMR (300 MHz; CDCl3) d =8.16 (d 2H, 9.0Hz), 7.84 (d2H, 9.0
Hz), 7.71 (d 1H,7.8HZ2), 7.62-7.41 (m3H), 7.30 (d 1H 7.8Hz2).

IR (CHCI3): n cmr1=2220,1680,1610,1550.

GC-MS =247 M+ (100%).

M.P.= 205-206 °C.

2',4'-Dichlor ophenyl-2-benzo[b]furanone 26c:

Synthetic procedure 7.2.1.

IH-NMR (300 MHz; CDCl3) d = 7.70 (d1H, 8.1 Hz), 7.59-7.51
(m3H), 7.47 (s1H), 7.40 (m 3H).
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IR (CHCI3): n cmr1= 1675,1600,1560.

GC-MS =291 M+ (100%)

M.P.= 96-97 °C.

4'-Fluor ophenyl-2-benzo[b]furanone 26d:

Synthetic procedure 7.2.1.

IH-NMR (300 MHz; CDCI3) d =7.99-7.92 (m 2H), 7.56 (d 1H
8.5Hz) 7.50 (m3H), 7.20-7.00 (m 3H).

IR (CHCI3): n cmr1= 1685,1600,1550.

GC-MS =240 M+ (100%)

M.P.= 145-147°C.

4'-Chlor ophenyl-2-benzo[b]furanone 26€:

Synthetic procedure 7.2.1.

IH-NMR (300 MHz; CDCI3) d =8.03 (d 2H, 9.2 Hz), 7.75-7.61 (m
2H), 7.55-7.38 (m4H), 7.37-7.30 (m 1H).

IR (CHCI3): n cmr1= 1680,1595,1540.

GC-MS =256 M+ (100%)

M.P.= 152-153°C.

(£)-4-Phenyl benzhydrol (x)-27a:

Synthetic procedure 7.3.1.or 7.6.1 or 7.6.2.

IH-NMR (300 MHz; CDCl3) d =7.64 (m;3H), 7.50 (m, 9H), 7.32
(m,2H), 5.85 (s,1H), 2.45 (s,1H).

IR (CHCI3): n cmr1= 3380, 1605, 1295.

GC-MS =260 M+ (58%), 243 M-OH (100%).

M.P. = 115-117°C.

(£)-2-Bromobenzhydrol (£)-27b:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz; CDCl3) d =7.59 (1H), 7.53 (1H), 7.40 (2H),7.33
(3H), 7.27 (1H), 7.15 (1H), 6.19 (1H, d 3.7 HZ), 2.41 (1H,d 3.7 H2).
IR (CHCI3): n cmr1= 3375, 1580, 1325.

GC-MS: 262 M*(76%), 246 M-OH (100%)

M.P=58-59 °C.

(+)-2-Bromo-benzhydroal (+)-27b:

Synthetic procedure 7.5.1

[a]2% +46.6 (c 1.30, acetone). e.e. >95 %.

Absolute stereochemistry not determinated.
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Physical and spectral data were identical with those described above
for the racemate (+)-27b.

(£)-2-Bromo-4'-phenyl benzhydrol (x)-27c:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz; CDCI3) d =7.48 (m,13 H), 6.24 (s, 1H), 2.44 (s,
1 H).

IR (CHCI3): n cmr1= 3365,1530,1350.

GC-MS: 339 M+ (68%), 322 M-OH (100%).

M.P. = 101-103 °C.

Anal. Cdcd for CigH1sBrO: C, 67.27; H, 4.46. Found: C, 67.35; H,
4.40.

(+)-2-Bromo-4'-phenylbenzhydrol (+)-27c.

Synthetic procedure 7.5.1

[a]?%p +65.4 (c 2.60, CHCI3).

e.e>95 % HPLC: chiracel OD n-hexane/EtOH 90:20; 1 ml/min. rt=
9.92 min (+)-27c; 13.44 min (-)-27c.

Absolute stereochemistry not determinated.

Physical and spectral data were identical with those described above
for the racemate (+)-27c.

(£)-2-Fluor o-4'-phenyl benzhydrol (+)-27d:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz; CDCl3) d = 7.85 (d 2H,8.5 Hz), 7.75-7.45 (m
8H), 7.35-7.10 (m 3H), 6.35 (s 1H), 2.48 (s 1H).

MP=ail

(+)-2-Fluor o-4'-phenylbenzhydrol (+)-27d:

Synthetic procedure 7.5.1

[a]?%p +58.4 (c 2.35, CHCI3).

e.e>95 % HPLC: chiracel OD n-hexane/EtOH 90:20; 1 ml/min. rt=
8.52(+)-27d; 12.44 (-)-27d.

Absolute stereochemistry not determinated.

Physical and spectral data were identical with those described above
for the racemate (+)-27d.

(£)-4-Nitro-4'-phenyl benzhydrole (x)-27€:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz; CDCI3) d= 7.85 (d, 2H, 9.1Hz), 7.50 (m, 11 H),
5.95 (s1H), 2.60 (s, 1H).

IR (CHCI3): n cmrl= 3375, 1515, 1340.
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GC-MS: 305 M+ (68%), 288 M-0H (100%).

M.P. = 165-166 °C.

(£)-3-Nitro-4'-phenyl benzhydrol (z)-27f:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz; CDCl3) d =8.32 (s, 1H), 8.07 (d 1H, 9.1H2),
7.73 (d 1H, 7.6Hz), 7.42 (m, 10H), 5.95 (s 1H), 2.34 (s 1H).

IR (CHCI3): n cmr1=3380,1525,1335.

GC-MS: 305 M (78%), 288 M-OH (100%).

M.P. = 143-144 °C.

(£)-Phenyl-2-benzo[b]furanyl carbinol (x)-27g:

Synthetic procedure 7.3.1. or 7.30

IH-NMR (200 MHz, CDCI3) d = 2.70 (d,1H), 5.92 (d,1H), 6.51(
s,1H), 7.55-7.16 (m, 9H);

I3C-NMR (CDCl3g) d = 70.514, 103.912, 111.241, 121.057, 122.735,
124.191, 126.727, 127.969, 128.220, 128.477, 140.237, 155.010;
158.484;

13C-J MOD-NMR (CDClg) d =(+)70.514, (+)103.912, (+)111.241,
(+)121.057, (+)122.735, (+)124.191, (+)126.727, (-)127.969,
(+)128.220, (+)128.477, (-)140.237, (-)155.010; (-)158.484;

GC-MS = M+ 224 (100%), M*+-OH 207.

IR (CHCI3): n cmr1= 3390,1640,1600.

M.P. =53-54 °C.

(S)-(+)-Phenyl-2benzo[b]furanyl carbinol (S)-(+)-279:

Synthetic method 7.30:

[a]?p +16.94, (¢ 1.18 CHCl3 )97.53% ee (Chiracel OD n-
hexane/isopropanol)  (S)-(+)-2a rt=10.00 min.,, (R)-(-)-2a
rt=11.62 min.

Physical and spectral data were identical to those described above for
the racemate (z)-27g.

(£)-4'-Cyanophenyl-2-benzo[b]furanyl carbinol (£)-27h:

Synthetic procedure 7.3.1.

IH-NMR (200 MHz, CDCI3) d = 7.69-7.59 (m 4H), 7.54-7.41 (m
2H), 7.28-7.18 (m 2H), 6.55 (s 1H), 6.00 (d 1H, 4.3 Hz), 2.71 (d 1H,
4.3 H2).

IR (CHCI3): n cmr1= 3385,1620,1590.

GC-MS = M+ 249 (73%), M+-OH 232 (100%).

M.P. =115-116 °C
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(x)-2',4'-Dichlor ophenyl-2-benzo[b]furanyl carbinol ()-
271

Synthetic procedure 7.3.1.

IH-NMR (200 MHz, CDCl3) d = 7.64 (d 1H,8.6 Hz), 7.51-7.16 (m
5H), 6.46 (s 1H), 6.28 (d 1H, 3.16 HZ), 2.76 (d 1H, 3.16 HZ).

IR (CHCI3): n cmr1=3380,1630,1590.

GC-MS = M+ 293 (87%), M+-OH 276 (100%).

M.P. = 85-86 °C.

(+)-2',4'-Dichlor ophenyl-2-benzo[b]fur anyl carbinol (+)-
271

Synthetic procedure 7.5.1

[a]2%p +38.5(c 2.98, CHCl3).

e.e. = 66 % HPLC: Chiracel OD n-hexane/propanole 99-1; 1 ml/min.
rt= 61.52 min (+)-27i; 53.46 min (-)-27i

IH-NMR (200 MHz, CDCIl3) of the crude of (+)-27i camphanic
ester (significant signals) d= 6.62 (s) (+)-27i, 6.58 () (-)-27i
relative ratio 7.99 / 1.72; e.e. 66%.

Unknown absolute stereochemistry.

Physical and spectral data were identical to those described above for
the racemate (x)-27i.

(£)-4'-Fluor ophenyl-2benzo[b]furanyl carbinol (£)-27 I:

Synthetic procedure 7.3.1. or 7.30

IH NMR (200 MHz, CDCl3) d = 3.97 (s,1H), 5.85 (s,1H), 6.48
(s,2H), 7.05 (1,10 Hz,2H), 7.55-7.21 (m, 6H).

13C NMR (CDClg) d= 69.764, 103.937, 111.206, 115.070, 115.499,
121.101, 122.833, 124.331, 127.847, 128.453 d, 136.003 d, 154.975,
158.177, 160.042, 164.942.

13C J MOD NMR (CDCl3) d= (+)69.764, (+)103.937, (+)111.206,
(+)115.070, (+)115.499, (+)121.101, (+)122.833, (+)124.331, (-
)127.847, (-)128.453 d, (-)136.003 d, (-)154.975, (-)158.177, (-
)160.042, (-)164.942.

IR (CHCI3): n cmr1= 3370,1660,1600.

GC-MS M+ 242(100%), M+ -OH 225 (86%).

M.P.=58-59°C

(R)-(-)-4'-Fluor ophenyl-2benzo[b]furanyl carbinol (R)-(-)
27 1

Synthetic method 7.31.
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[a]?%p -5.7 (c 1.75, CHCl3), enantiomeric excess 97.66% (Chiracel
OD n-hexane/isopropanole), rt= (S)-(+)-27 | 72.90 min., (R)-(-)-
271 76.29 min.

Physical and spectral data were identical to those described above for
the racemate (z) 27 1.

(£)-4'-Chlor ophenyl-2-benzo[b]furanyl carbinol (£)-27-m:
Synthetic procedure 7.3.1.

1H NMR (200 MHz, CDCI3) d = 7.53-7.15 (m 8H), 6.51 (s 1H), 5.91
(d1H, 4.4Hz), 2.53 (d 1H, 4.4 H2).

IR (CHCI3): n cmr1= 3385,1655,1620.

GC-MS M+ 258(90%), M+ -OH 241 (100%).

M.P.=77-79°C.

(R)-(-)-2-(Isoindonylinyl) butan-1-ol (R)-(-)24:

Synthetic procedure 7.4.

IH-NMR (200 MHz, CDCI3) d =7.20 (s 5H), 4.04 (s 4H), 3.76 (d 1H,
J = 4.1Hz), 3.71 (d 1H, J = 4.1Hz), 2.78 ( slH), 170-1.49 (m 2H)
0.97 (t 3H, J= 7.7 H2).

M.P.= 59-60 °C.

[a]2%5-20.01 (c 1.5, CHCI3).

1-Methylimidazole-4,5-dicar bonitrile 33a

Synthetic method 7.7.1

Purified by chromatography (AcOEt) and then recrystallized from
CH2Cl,/hexane.

IH-NMR (200 MHz, CDCl3) d = 3.85 (s, 3H), 7.70 (s, 1H).

IR (CHCI3): n cmrl= 2260

M.P.= 96-98 °C.

Elementary Analysis. calcd. for CgHsNa: C, 54.54; H, 3.05; N,
42.41. Found: C, 54.70; H, 3.00; N, 42.30.
1-(n-Octyl)imidazole-4,5-dicar bonitrile 33b

Synthetic method 7.7.1.

Purified by flash chromatography (AcOE).

IH-NMR (200 MHz, CDCl3) d = 1.27 (t, J = 5 Hz, 3H), 1.66 (m,
10H), 1.93 (g, J = 5Hz, 2H), 4.18 (t, J = 6 Hz, 2H), 7.69 (s, 1H).

IR (CHCI3): n cmrl= 2250 cmrd;

M.P. = Colorless ail.

Elementary Analysis. calcd.for Ci3HisN4: C, 67.79; H, 7.88; N,
24.33. Found: C, 68.08; H, 7.73; N, 24.19.
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(R,S)-(£)-1-(2-Octyl)imidazole-4,5-dicar bonitrile (£)-33c

Synthetic method 7.7.1.

Purified by preparative TLC (hexanes/AcOEt 3:1).

IH-NMR (200 MHz, CDCl3) d = 0.88 (t, J = 5.7 Hz, 3H), 1.28 (m,
8H), 1.65 (d, J = 5.7 Hz, 3H), 1.93 (m, 2H), 4.43 (sextet, J = 5.7 Hz,
1H), 7.75 (s, 1H).

IR (CHCI3): n cnmrl= 2240 cmrl.

M.P.= Colorless ail.

Elementary Analysis. calcd. for Ci3HigN4a: C, 67.79; H, 7.88; N,
24.33. Found: C, 67.92; H, 7.93, N, 24.15.
(S)-(+)-1-(2-Octyl)imidazole-4,5-dicar bonitrile (9)-(+)-
33c

Synthetic method 7.7.1.

[@]%46+1.1 (Cc 2.91, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-33c.

(R)-(-)-1-(2-Octyl) imidazole-4,5-dicar bonitrile (R)-(-)-
33c

Synthetic method 7.7.1

[@]%0546-1.0 (C 2.18, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-33c.
(R,S)-(z)-1-(1-Phenyl-2-propyl)imidazole-4,5-

dicarbonitrile (+)-33d

Synthetic method 7.7.1.

Purified by flash chromatography (n-hexane/AcOEt 3:1). An
andyticd sample was prepared by recrystallization from
benzene/cyclohexane.

IH-NMR (300 MHz, CDCl3) d = 1.48 (d, J = 4.3 Hz, 3H), 2.86 (dd, J
=14.1, 4.3 Hz, 2H), 2.93 (dd, J = 14.1, 4.3 Hz, 2H), 4.38 (sextet, J =
4.3 Hz, 1H), 6.83 (m, 2H), 7.05 (m, 3H), 7.26 (s, 1H).

IR (CHCI3): n cmr1=2240 cmrL;

M.P.= 138-140 °C.

Elementary Analysis. calcd. for CisHioN4: C, 71.17; H, 5.12; N,
23.71. Found: C, 71.33; H, 5.01; N, 23.57.
(5)-(+)-1-(1-Phenyl-2-propyl)imidazole-4,5-dicar bonitrile
(S)-(+)-33d
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Synthetic method 7.7.1

[a]20p +58.8 (c 0.85, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-33d.
(R,S)-(z)-1-(1-Phenyl-1-propyl)imidazole-4,5-

dicarbonitrile (x)-33e

Synthetic method 7.7.1

Purified by flash chromatography (n-hexane/AcOEt 2:1 ). An
analytical sample was obtained by preparative TLC.

IH NMR (200 MHz, CDCl3) d= 1.05 (t, J = 7.4 Hz, 3H), 2.38
(quintet, J = 7.4 Hz, 2H), 5.23 (t, J = 7.4 Hz, 1H), 7.28 (m, 2H), 7.38
(m, 3H), 7.88 (s, 1H).

IR (CHCI3): n cmrl= 2250 cmrd;

M.P.= Colorless ail.

Elementary Analysis. calcd. for CisHioN4: C, 71.17; H, 5.12; N,
23.71. Found: C, 71.38; H, 5.20; N, 23.42.
(5)-(-)-1-(1-Phenyl-1-propyl)imidazole-4,5-dicar bonitrile
(S)-(-)-33e

Synthetic method 7.7.1

[a]?%p -44.3 (c 2.82, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-33e.
1-(_-Phenylbenzyl)imidazole-4,5-dicar bonitrile 33f

Synthetic method 7.7.2

Purified by flash chromatography (n-hexane/AcOEt 2:1) followed
by recrystalization from Et0.

IH NMR (200 MHz, CDCl3) d = 6.70 (s, 1H), 7.13 (m, 4H), 7.43 (m,
7H).

IR (CHCI3): n cmr1= 2240 cmrl

M.P.= mp 137-138 °C.

Elementary Analysis. calcd. for CigHioN4: C, 76.04; H, 4.25; N,
19.71. Found: C, 76.24; H, 4.18; N, 19.58.
(£)-1-[_-(4-Biphenyl)benzyl]imidazole-4,5-dicar bonitrile

()-339

Synthetic method 7.7.2.

Purified by flash chromatography (n-hexane/AcOEt 5:1 to 3:1). An
analytical sample was prepared by recrystallization from Et0.
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IH-NMR (200 MHz, CDCl3) d = 6.74 (s, 1H), 7.45 (m, 4H), 7.6 (m,
11H).

IR (CHCI3): n cnmrl= 2225 cmrl,

M.P.= 58-59 °C.

Elementary Analysis. calcd. for CosHigN4: C, 79.98; H, 4.47; N,
15.54. Found: C, 80.12; H, 4.39; N, 15.49.
(R,S)-(z)-1-[_-(2-Bromophenyl)benzyl]imidazole-4,5-
dicarbonitrile (£)-33h

Synthetic method 7.7.2

Purified by flash chromatography (n-hexane/AcOEt 2:1) followed by
recrystallization from methanol.

IH-NMR (200 MHz, CDCl3) d = 6.82 (dd, J = 5.7, 2.0 Hz, 1H), 7.05
(s, 1H), 7.10 (m, 2H), 7.38 (m, 3H), 7.45 (m, 3H), 7.70 (dd, J = 5.7,
2.0 Hz, 1H).

IR (CHCI3): n cmr1= 2240 cmrl

M.P.= 176-177 °C.

Elementary Analysis. calcd. for CigH11BrN4: C, 59.52; H, 3.05; N,
15.43. Found: C, 59.43; H, 3.12; N, 15.58.
(R,S)-(z)-1-[_-(2-Bromophenyl)-4-
phenylbenzyl]imidazole-4,5-dicar bonitrile (£)-33i

Synthetic method 7.7.2.

Purified by flash chromatography (n-hexane/AcOEt 3:1) followed by
recrystallization from MeOH.

IH=NMR (200 MHz, CDCl3) d = 6.89 (dd, J = 6.0, 1.8 Hz, 1H), 7.06
(s, 1H), 7.14 (d, J = 7.0 Hz, 2H), 7.41 (m, 6H), 7.65 (m, 5H).

IR (CHCI3): n cmr1= 2230 cmrl

M.P.= 169-171 °C.

Elementary Analysis. calcd. for CpsH1sBrNy4: C, 65.62; H, 3.44; N,
12.75. Found: C, 65.80; H, 3.33; N, 12.91.

(R,S)-(z)-1-{_-[2-Benzo(b)furan]-4-phenylbenzyl}
imidazole-4,5-dicar bonitrile (£)-33 |

Synthetic method 7.7.2.

Purified by flash chromatography (n-hexane/AcOEt 2:1) IH-NMR (200
MHz, CDCl3) d = 6.68 (s 1H), 6.77 (slH), 7.47-7.21 (m 8H),
7.55 (1H d, J=6.1H2z), 7.68 (s1H).

IR (CHCI3): n cmr1= 2220 cmrl
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(R,S)-(£)-1-(2-Octyl)imidazole-4,5-dicar boxylic acid (%)-
34a.

Synthetic method 7.8.1

Recrystallized from EtOH.

IH NMR (200 MHz, CDCl3) d = 0.86 (t, J = 6.0 Hz, 3H), 1.28 (m,
8H), 1.70 (d, J = 6.0 Hz, 3H), 1.90 (m, 2H), 5.93 (m, 1H), 8.68 (s,
1H).

IR (CHCI3): n cmr1= 1735 cmrl

M.P. =188-190 °C.

Elementary Analysis. calcd. for Ci3H2oN204: C, 58.19; H, 7.51; N,
10.44. Found: C, 58.31; H, 7.58; N, 10.29.
(S)-(+)-1-(2-Octyl)imidazole-4,5-dicar boxylic acid (S)-
(+)-34a.

Synthetic method 7.8.1

[a]2%p +20.0 (c 0.95, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-34a.
(R,S)-(z)-1-(1-Phenyl-2-propyl)imidazole-4,5-

dicarboxylic acid (£)-34b.

Synthetic method 7.8.1

Recrystallized from EtOH,

IH NMR (200 MHz, DMSO-dg) d= 1.51 (d, J = 6.9 Hz, 3H), 3.10
(dd, J = 13.1, 6.7 Hz, 1H), 3.25 (dd, J = 13.1, 6.7 Hz, 1H), 6.07
(sextet, J = 6.9 Hz, 1H), 7.23 (m, 5H), 9.36 (s, 1H).

IR (nujol mull) n cm1=1735

M.P.= 210-212 °C.

Elementary Analysis. calcd. for Ci4H14N204: C, 61.30; H, 5.14; N,
10.22. Found: C, 61.44; H, 5.27; N, 9.98.
(5)-(+)-1-(1-Phenyl-2-propyl)imidazole-4,5-dicar boxylic

acid (S)-(+)-34b.

Synthetic method 7.8.1

[a]2%p +2.0 (c 1.40, CgHsN).

Physical and spectral data were identical with those described above
for the racemate (+)-34b.
(R,S)-(z)-1-(1-Phenyl-1-propyl)imidazole-4,5-

dicarboxylic acid (£)-34c.

Synthetic method 7.8.1
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Recrystallized from EtOH/H20 (7:3),

IH-NMR (200 MHz, CDCl3) d =0.98 (t, J = 6.8 Hz, 3H), 2.34
(quintet, J = 6.8 Hz, 2H), 6.83 (t, J = 6.8 Hz, 1H), 7.42 (s, 5H), 8.65
(s, 1H).

IR (nujol mull) n cmr1=1730;

M.P.= 180-182 °C.

Elementary Analysis. calcd. for Ci4H14N204: C, 61.30; H, 5.14; N,
10.22. Found: C, 61.51; H, 5.00; N, 10.06.
(5)-(-)-1-(1-Phenyl-1-propyl)imidazole-4,5-dicar boxylic

acid (S)-(-)-34c.

Synthetic method 7.8.1

[@]%5365-72.8 (C 2.80, DMF).

Physical and spectral data were identical to those described above for
the racemate (z)-34c.

1-(_-Phenylbenzyl)imidazole-4,5-dicar boxylic acid 34d.

Synthetic method 7.8.1

Recrystallized from EtOH.

IH-NMR (200 MHz, DMSO-dg) 00 =7.15 (m, 4H), 7.46 (m, 6H), 8.10
(s, 1H), 8.56 (s, 1H).

IR (nujol mull) n cm1=1730;

M.P. = 202-204 °C.

Elementary Analysis. calcd. for CigH14N204: C, 67.07; H, 4.38; N,
8.69. Found: C, 67.30; H, 4.49; N, 8.50.
(R,S)-(2)-1-[_-(4-Biphenylyl)benzyl]imidazole-4,5-

dicarboxylic acid (x)-34e.

Synthetic method 7.8.1

Recrystallized from EtOH (70%)/DMF (98:2),

IH-NMR (200 MHz, DMF-d;) d = 7.45 (m, 10H), 7.85 (m, 4H), 8.41
(s, 1H), 8.95 (s, 1H).

mp 211-213 °C. IR (nujol mull) 1740 cnr?;

Elementary Analysis. calcd. for CysH1sN204: C, 72.35; H, 4.55; N,
7.03. Found: C, 72.61; H, 4.38; N, 6.88.
(R,S)-(z)-1-(2-Octyl)imidazole ()-35a.

Synthetic procedure 7.9.1. or 7.19.

IH-NMR (200 MHz, CDCl3) d = 0.76 (t, J = 7.0 Hz, 3H), 1.19 (br s,
8H), 1.41 (d, J= 7.0 Hz, 3H), 1.65 (q, J = 7.0 Hz, 2H), 4.04 (sextet, J
= 7.0 Hz, 1H), 6.82 (s, 1H), 6.97 (s, 1H), 7.38 (s, 1H).
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M.P. = ail.

Elementary Analysis. calcd. for CiiHooN2: C, 73.28; H, 11.18; N,
15.54. Found: C, 73.48; H, 11.26; N, 15.26.
(S)-(+)-1-(2-Octyl)imidazole (S)-(+)-35a.

Synthetic procedure 7.9.1. or 7.19

[a]2%5 +16.0 (c 1.1, CHCl3).

Physical and spectral data were identical with those described above
for the racemate (+)-35a.

(£)-1-(1-Phenyl-2-propyl)imidazole (+)-35b.

Synthetic procedure 7.9.1.

IH-NMR (200 MHz, CDCl3) d=1.45(d, J=7.0 Hz, 3H), 2.92 (d, J =
7.0 Hz, 2H), 4.30 (sextet, J = 7.0 Hz, 1H), 6.93 (m, 4H), 7.17 (m,
4H).

M.P. = ail.

Elementary Anaysis. calcd for CioHisNo: C, 77.38; H, 7.58; N,
15.04. Found: C, 77.51; H, 7.67; N, 14.82.
(5)-(+)-1-(1-Phenyl-2-propyl)imidazole (S)-(+)-35b.

Synthetic procedure 7.9.1.

[[0]205 +93.3 (c 0.75, CHCl3).

Physical and spectral data were identical to those described above for
the racemate (z)-35b.

(R,S)-(z)-1-(1-Phenyl-1-propyl)imidazole (+)-35c.

Synthetic procedure 7.9.1.

IH-NMR (200 MHz, CDCl3) d =0.94 (t, J = 7.0 Hz, 3H), 2.23 (m,
2H), 5.00 (t, J = 7.0 Hz, 1H), 6.94 (s, 1H), 7.07 (s, 1H), 7.16 (m,
2H), 7.36 (m, 3H), 7.59 (s, 1H).

M.P.= ail.

Elementary Analysis. calcd. for CioHiaNo: C, 77.38; H, 7.58; N,
15.04. Found: C, 77.48; H, 7.49; N, 15.03.

Starting from (S)-(-)-34c the racemic compound (%)-35¢c was
obtained.

(£)-1-(_-Phenylbenzyl)imidazole (+)-35d.

Synthetic procedure 7.9.1.

IH-NMR (200 MHz, CDCl3) d = 6.55 (s, 1H), 6.85 (s, 1H), 7.08 (m,
5H), 7.36 (m, 7H).

M.P. = 88-89 °C (CH3CN).
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Elementary Analysis. calcd. for CigHsN2: C, 82.02; H, 6.02; N,
11.96. Found: C, 81.89; H, 5.95; N, 12.16.
(R,S)-(x)-1-[_-(4-Biphenylyl)benzyl]limidazole [Bifonazole
(£)-64a].

Synthetic procedure 7.9.1.

IH-NMR (200 MHz, CDCl3) d = 6.58 (s, 1H), 6.88 (s, 1H), 7.13 (m,
10H), 7.42 (m, 6H). Anal. Calcd for CxH1gN2: C, 85.13; H, 5.84; N,
9.03. Found: C, 85.21; H, 5.80; N, 8.99.

M.P. = 145-147 °C (EtOH) (lit.142 °C, from CH3CN).

Following the same procedure (+)-6a was also obtained in 94%
yield by decarboxylation of (£)-43.

Ethyl 4(5)-imidazol carboxylate 37:

Synthetic procedure 7.10.3

IH-NMR (200 MHz, CDCl3) d = 1.36 (3H, t J=7.13Hz), 4.38 (2H, q
J7.13 Hz), 7.77 (s1H) 7.82 (s1H), 8.03 (s 1H).

Acetylglycine ethyl ester 38:

Synthetic procedure 7.10.1

IH-NMR (200 MHz, CDCl3) d = 1.28 (3H, Tr J =7.1 Hz), 2.04 (s,
3H), 4.05 (d 2H J=5.4 Hz), 4.21 (q 2H, J=7.4 H2).

4(5)-(2-Thiol)-imidazol carboxylate 40:

Synthetic procedure 7.10.2

IH-NMR (200 MHz, DMSO) d = 1.29 (3H, t J= 7.06 HZz), 4.24 (2H, q
J=7.06 Hz) 7.64 (s1H), 12.50 (s 1H), 12,76 (s1H).
(£)-Ethyl-1-[_-(4-biphenylyl)benzyl]imidazole-5-

carboxylate (x)-41a:

Synthetic method 7.11.1 50% vyield; Synthetic method 7.11.2
16%yield

IH-NMR (200 MHz, CDCl3) d=1.27 (t, J=7.1 Hz, 3H), 429 (q, J =
7.1 Hz, 2H), 7.13 (m, 4H), 7.36 (m, 7H), 7.58 (m, 5H), 7.85 (s, 1H).
M.P. = 136-137 °C (EtOH).

Elementary Analysis. calcd. for CosHoN2O: C, 78.51; H, 5.80; N,
7.33. Found: C, 78.70; H, 5.75; N, 7.24.
(£)-Ethyl-1-[_-(4-biphenylyl)benzyl]imidazole-4-car boxy-

late (£)-41b:
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Synthetic method 7.11.1 16% yield; Synthetic method 7.11.2
16%yield

IH-NMR (200 MHz, CDCl3) d =1.36 (t, J = 6.9 Hz, 3H), 4.34 (g, J =
6.9 Hz, 2H), 6.58 (s, 1H), 7.16 (m, 4H), 7.54 (m, 12H).

M.P.= 149-151 °C (EtOH).

Elementary Analysis. calcd. for CosH2oN2O,: C, 78.51; H, 5.80; N,
7.33. Found: C, 78.73; H, 5.84; N, 7.109.
(£)-1-[_-(4-Biphenylyl)benzyl]limidazole-5-carboxylic acid
(£)-43.

Synthetic method 7.12

IH-NMR (200 MHz, DMSO-dg) d =7.41 (m, 4H), 7.62 (m, 6H), 7.69
(m, 7H). Ana. Cacd for Co3H1gN2O2: C, 77.95; H, 5.12; N, 7.91.
Found: C, 78.12; H, 5.19; N, 7.83.

IR (nujol mull) n cmr1=1740;

M.P.= 163-166 °C (EtOH/H20).
(£)-5-Amino-1-(2-octyl)imidazole-4-carbonitrile (£)-46
Synthetic method 7.13.

IH-NMR (200 MHz, CDCl3) d =0.87 (t, J = 6.5 Hz, 3H), 1.26 (br s,
8H), 1.46 (d, J = 6.7 Hz, 3H), 1.75 (m, 2H), 3.96 (m, 1H), 7.13 (s,
1H).

IR 3360, 2240 cnr?;

M.P.=110 °C (cyclohexane).

Elementary Analysis. calcd. for CioHooN4: C, 65.41; H, 9.15; N,
25.44. Found: C, 65.67; H, 9.08; N, 25.25.
(£)-5-Amino-1-(2-octyl)imidazole-4-carboxylic acid (%)-
47

Synthetic method 7.14

IH-NMR (200 MHz, DMSO-ds + D20O) d =0.84 (t, J = 7.3 Hz, 3H),
1.25 (br s, 8H), 1.37 (d, J = 7.4 Hz, 3H), 1.73 (m, 2H), 4.11 (m,
1H), 7.18 (s, 1H).

IR (nujol mull) n cm~1=3350, 1735;

47 was not further purified and was directly used in the next step.
(£)-5-Amino-1-(2-octyl)imidazole (£)-48

Synthetic method 7.15

IH=NMR (200 MHz, CDCl3 + D>0O) d = 0.88 (t, J = 6.8 Hz, 3H),
1.30 (br s, 8H), 1.48 (d, J = 7.0 Hz, 3H), 1.75 (m, 2H), 4.04 (m, J =
7.2 Hz, 1H), 4.75 (s, 1H), 7.21 (s, 1H).
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IR (CHCI3) n cm1 = 3350;

M.P.= Colorless ail.

Elementary Analysis. calcd. for Ci1H21N3: C, 67.64; H, 10.84; N,
21.52. Found: C, 67.80; H, 10.72; N, 21.35.
(£)-1-(2-Octyl)imidazole-4-carboxamide (£)-49

Synthetic method 7.16.

IH-NMR (200 MHz, CDCl3 + D»0O) d =0.86 (t, J = 6.7 Hz, 3H), 1.32
(m, 8H), 1.49 (d, J = 6.8 Hz, 3H), 1.75 (m, 2H), 4.17 (m, 1H), 7.59
(s, 1H), 7.67 (s, 1H).

IR (CHCI3) n cm1 = 3540, 3420, 1670;

Elementary Analysis. calcd. for C1oH21N3O: C, 64.51; H, 9.51; N,
18.81. Found: C, 64.84; H, 9.30; N, 18.48.
(£)-N-[2,2-(Dimethoxy)ethyl]-2-octylamine (z)-52a:
Synthetic method 7.17, 62% yield.

IH-NMR (200 MHz, CDCl3) d =0.88 (t, J = 6.3 Hz, 3H), 1.04 (d, J =
6.2 Hz, 3H), 1.27 (m, 8H), 2.05 (s, 1H), 2.72 (m, 4H), 3.85 (s, 6H),
4.65 (t, J=6.2 Hz, 1H).

IR (CHCI3) n cm1 = 3340;
(S)-N-[2,2-(Dimethoxy)ethyl]-2-octylamine (S)-52a:
Synthetic method 7.17, 65% yield

No specific rotation could be measured at different wavelengths.
Physical and spectral data were identical to those described above for
the racemate (z)-52a.
(£)-N-[2,2-(Dimethoxy)ethyl]-1-phenyl-1-ethylamine(t)-
52b:

Synthetic method 7.17, 70% yield.

IH-NMR (200 MHz, CDCl3) d =1.37 (d, J = 6.5 Hz, 3H), 1.65 (s, 1H,
exchangeable with D,0), 2.55 (dd, J = 12.1, 6.3 Hz, 1H), 2.65 (dd, J
=121, 6.3 Hz, 1H), 3.29 (s, 3H), 3.34 (s, 3H), 3.76 (g, J = 6.5 Hz,
1H), 4.45 (t, J = 6.5 Hz, 1H), 7.35 (m, 5H).

IR (CHCI3) n cm1 = 3345;
(S)N-[2,2-(Dimethoxy)ethyl]-1-phenyl-1-ethylamine
(S)-(-)-52b:

Synthetic method 7.17

[a]2%5-31.0 (c 2.09, CHCl3).

Physical and spectral data were identical to those described above for
the racemate (+)-52b
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(£)-N-1-(2-Octyl)-2-thiol-imidazole (+)-53a:

Synthetic method 7.18,84% yield,;

IH NMR (200 MHz, CDCl3) d= 0.82 (t, J = 7.0 Hz, 3H), 1.25 (m,
8H), 1.33 (d, J = 7.0 Hz, 3H), 1.70 (m, 2H), 4.92 (m, J = 7.0 Hz,
1H), 6.69 (s, 1H), 6.75 (s, 1H), 11.40 (br s, 1H, exchangeable with
D20).

IR (CHCI3) n cm1 = 2580;

M.P.= 84-85 °C (Et20).

Elementary Analysis. calcd. for Ci11HooN2S: C, 62.21; H, 9.49; N,
13.19. Found: C, 62.41; H, 9.53; N, 13.25.
(S)-(-)-N-1-(2-Octyl)-2-tiol-imidazole (S)-(-)-53a:

Synthetic method 7.18

[a]?%p-35.6 (c 0.45, CHCl3).

Physical and spectral data were identical to those described above for
the racemate (z)-53a.
(£)-N-1-(1-Phenylethyl)-2-thiol-imidazol e-(x)-53b:

Synthetic method 7.18, 84% yield;

IH-NMR (200 MHz, CDCl3) d =1.74 (d, J = 7.4 Hz, 3H), 6.20 (g, J =
7.4 Hz, 1H), 6.58 (s, 1H), 6.70 (s, 1H), 7.32 (m, 5H), 11.93 (br s,
1H, exchangeable with D20).

IR (CHCI3) n cm1 = 2585;

M.P.=124-127 °C (Et,0).

Elementary Analysis. calcd.for C11H1oNoS: C, 64.66; H, 5.92; N,
13.72. Found: C, 64.52; H, 5.88; N, 13.80.
(S)-(-)-N-1-(1-Phenylethyl)-2-thiol-imidazole (S)-(-)-53b:

Synthetic method 7.18

[a]?%p-239.2 (¢ 4.10, CHCI3).

Physical and spectral data were identical to those described above for
the racemate (+)-53b

(£)-N-1-Phenyl-1-ethyl imidazole (z)-54:

Synthetic method 7.19

IH-NMR (200 MHz, CDCl3) d =1.87 (d, J = 8.0 Hz, 3H), 5.34 (g, J =
8.0 Hz, 1H), 6.90 (s, 1H), 7.08 (s, 1H), 7.14 (m, 2H), 7.30 (m, 3H),
7.58 (s, 1H).

M.P. =yellow ail.

Anal. Calcd for CiiH1oN2: C, 76.71; H, 7.03; N, 16.27. Found: C,
76.86; H, 7.10; N, 16.04.
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(S)-(+)-1-Phenyl-1-ethyl imidazole (S)-(+)-54:

Synthetic method 7.19

[a]20 +5.20 (c 3.84, CHCI3). e.e. > 98%.

Physical and spectral data were identical to those described above for
the racemate (z)-54.

(+)-55a:

Synthetic method 7.20.1

IH-NMR (200 MHz, CDCl3) d = 4.95 (s 1H), 7.14-7.27 (m 14H).

IR (CHCI3) n cm 1 = 2120;

MP: Qil

(z)-55b:

Synthetic method 7.20.1 or 7.20.2

IH-NMR (200 MHz, CDCl3) d = 6.1 (s1H),7.13-7.29 (m3H), 7.31-
7.59 (M10H).

IR (CHCI3): n cm = 2105 cmrl;

MP: Qil

(z)-55c:

Synthetic method 7.20.1 or 7.20.2

IH-NMR (200 MHz, CDCl3) d = 5.34 (slH), 6.25 (s1H), 7.23-7.30
(m 3H), 7.41-7.60 (m 6H).

IR (CHCI3) n cm 1 =2105;

MP: Qil

(z)-55d:

Synthetic method 7.20.1 or 7.20.2

IH-NMR (200 MHz, CDCl3) d = 6.22 (s 1H), 6.58 (s 1H), 7.17- 7.39
(m 3H), 7.43-7.54 (m 4H).

IR (CHCI3) n cm1=2125;

MP: Qil

(+)-55d:

Synthetic method 7.20.2

[a]2%p = +0.5 (c 4, CHCI3). e.e. ND

Physical and spectral data were identical to those described above for
the racemate (z)-55d.

(x)-56a

Synthetic method 7.21.1 or 7.21.2

IH-NMR (200 MHz, CDCl3) d = 1.98 (s 2H), 5.38 (s 1H), 7.28-7.55
(m14H).
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IR (CHCI3) n cm1 = 420,3020,1620, 1600;

MP: Qil

(z)-56b:

Synthetic method 7.21.1 or 7.21.2

IH-NMR (200 MHz, CDCl3) d = 2.55 (s 2H), 5.22 (s 1H), 7.33-7.65
(m13H).

IR (CHCI3) n cm1 = 3080,3020,1610, 1590;

MP: Qil

(z)-560¢:

Synthetic method 7.21.1 or 7.21.2

IH-NMR (200 MHz, CDCl3) d = 2.28 (s 2H), 5.21 (s1H), 6.45 (s1H),
7.10-7.21 (m 3H), 7.27-7.47 (m 6H).

IR (CHCI3) n cm1 = 3420,3120,1620, 1600;

MP: Qil.

(z)-56d:

Synthetic method 7.21.1 or 7.21.2

IH-NMR (200 MHz, CDCl3) d = 1.91 (s 2H), 5.69 (s 1H), 6.55 (s
1H), 7.15-7.7.27 (m 3H), 7.39-7.52 (m 4H).

IR (CHCI3) n cm1 = 3390,3120,1620, 1600;

MP: Qil.

(+)-56d:

Synthetic method 7.21.1 or 7.21.2

[a]2% = not measurable 20%e.e. by chiral HPL C(Chiracel OD).
Physical and spectral data were identical with those described above
for the racemate (+)-56d.

(£)-57a as mixture of diasteroisomers:

Synthetic method 7.22.

IH-NMR (300 MHz, CDCl3) d = 1.63 (d 3H J =6.7 HZz), 5.94 (m 1H),
6.25 (s 1H), 7.06-7.28 (m 4H), 7.33-7.59 (m19H), 7.68-7.91 (m 4H).
57b:

Synthetic method 7.22.

IH-NMR (300 MHz, CDCl3) d=1.75(d 3H J =7.0 Hz), 1.85 (d3H J
=7.0 Hz), 6.05 (9 J =7.0 Hz, dq J =6.17 Hz and J =8.8 Hz) 7.05-804
m, 8.13 (d 1H, J =8.8 Hz), 11.95 (d 1H, J =7.0 H2).

FAB MS=705 M™.

HPLC: Lichrocart 250X4, Lichrospher n-hexane/EtAc gradient rt
16.40 min
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57c:

Synthetic method 7.22.

IH-NMR (300 MHz, CDCl3) d=1.75 (d 3H J =7.0 Hz), 1.85 (d3H J
=7.0 Hz), 6.05 (9 J =7.0 Hz, dq J =6.17 Hz and J =8.8 Hz) 7.05-804
m, 8.05 (d 1H, J =8.8 Hz), 11.88 (d 1H, J =7.0 Hz).

FAB MS=705 M+,

HPLC: Lichrocart 250X4, Lichrospher n-hexane/EtAc gradient rt
17.66 min

(£)-57d mixture of diasteroisomers:

Synthetic method 7.22.

IH-NMR (200 MHz, CDCl3) d = 1.52 (d 3H J =7.10 Hz), 1.62 (d 3H
J =7.10 Hz), 5.13 (m 1H), 5.32 (m m1H), 7.03-7.58 (m 24H), 8.01
(d 1H J=8.5 Hz) 8.27 (s 1H) 11.62 (m2H).

FAB MS=604 M*.

(£)-1-Phenyl-2-propyn-1-ol (+)-58a:

Synthetic methods 7.23.1, 7.23.3.1, 7.23.3.2, 7.23.4. The compound
iscommercially available.

IH-NMR (200 MHz, CDCl3) d =2.28 (d 1H, 6.23 Hz), 2.69 (d 1H, J=
2.17 Hz), 5.48 (dd 1H, J=2.17 Hz; J=6.21 Hz), 7.59-7.32 (m3H).

13C NMR (CDCI3) n = 64.05, 74.65, 83.36, 126.43, 128.27, 128.42,
139.81.

IR (CHCI3) n cm~1 = 3510, 3320, 3080, 2840, 2120.

MP =oil.

(£)-1-(4-M ethylphenyl)-2-propyn-1-ol (x)-58b:

Synthetic method 7.23.3.1 or 7.23.4.

IH-NMR (200 MHz, CDCl3) d = 2.19 (d 1H, J =4.12 Hz), 2.40
(s3H), 2.69 (d 1H, J= 2.2 Hz), 5.48 (d 1H, J= 4.12 HZ), 7.24 (d 2H,
J=8.12 Hz), 7.48 (d 2H, J= 8.12 H2).

13C NMR (CDCl3) d = 21.29, 64.49, 74.72, 83.85, 126.71, 129.51,
137.42, 138.59.

IR (CHCI3) n cm1 = 3540, 3380, 3280, 2120, 1610, 1510.

MP = oil.

(R)-(-)-1-(4-M ethylphenyl)-2-pr opyn-1-ol (R)-(-)-58b:

Synthetic methods 7.28.1, 7.28.2

[a]2%5-27.9 (¢ 3.05, CHCl3). 75.7% ee.

Physical and spectral data were identical to those described above for
the racemate (+)58b.
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(£)-1-(4-Fluor ophenyl)-2-propyn-1-ol (+)-58c:

Synthetic methods 7.23.3.1, 7.23.3.2, 7.23.4.

IH-NMR (200 MHz, CDCl3) d = 2.71 (d 1H, J= 2.9 HZ), 2.73 (s1H),
5.47 (d1H, J=2.90 HZ), 7.12-7.07 (m 2H), 7.57-7.53 (m 2H).

13C NMR (CDCl3) 0 = 63.85, 75.25, 83.53, 115.79, 116.23, 128.69,
136.9, 161.71, 164.166.

IR (CHCI3) n cm1 = 3400, 3390, 3280, 2120, 1610, 1520.

GC-MS = M+ 149 (45%) 133.7 (73%), 101.8 (100%)

MP = oil.

(R)-(-)-1-(4-Fluor ophenyl)-2-pr opyn-1-ol (R)-(-)-58c:

Synthetic method 7.28.2

[a]?2%5-28.3 (¢ 2.11, CHCI3). 83.2% ee.

Physical and spectral data were identical to those described above for
the racemate (+)-58c.

(£)-1-(4-Chlor ophenyl)-2-propyn-1-ol ()-58d:

Synthetic method 7.23.3.1

IH-NMR (200 MHz, CDCl3) d = 2.20 (s1H), 2.65 (d 1H, J = 1.91
Hz), 5.44 (d 1H, J= 1.91 Hz), 7.28 (d 2H, J= 8.51 Hz), 7.38 (d 2H,
J= 8.51 H2).

13C NMR (CDCI3) n = 63.77, 75.13, 83.41, 128.16, 128.91, 134.47,
138.83.

MP = oil.

(£)-1-(4-Cyanophenyl)-2-propyn-1-ol (+)-58e:

Synthetic method 7.23.4

IH-NMR (200 MHz, CDCl3) d = 2.72, (d 1H, J=6.10 Hz), 2.74 (d 1H,
J2.10Hz), 5.56 (dd 1 H, J=2.10 Hz, J= 6.10 HZ), 7.71 (s 4H).

13C NMR (CDCI3) d = 63.10, 75.47, 82.39, 111,68, 118.43, 127.07,
132.23, 145.12.

GC-MS = 157 M+ (100%).

IR (CHCI3) n cm1 = 3445,3300, 2235, 1660, 1408.

MP=79.5-80.5.

(R)-(-)-1-(4-Cyanophenyl)-2-propyn-1-ol (R)-(-)-58e:

Synthetic methods 7.28.1,7.28.2

[a]?%5-20.8 (c 0.60, CHCI3). 85.5% ee.

Physical and spectral data were identical to those described above for
the racemate (+)-58e.

(£)-1-(3,4-Dimethoxyphenyl)-2-pr opyn-1-ol ()-58g:
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Synthetic method 7.23.3.3.

IH-NMR (200 MHz, CDCl3) d =2.52 ( d 1H, J=5.7 Hz), 2.69 ( d 1H,
J=2.1 Hz), 3.89 (s 3H), 3.91 (s 3H), 5,42 (dd 1H, J=2.1Hz, J=5.7 H2z),
6.87 (d 1H, J=8.7 Hz), 7.09 (d 1H, J=8.7 Hz), 7.11 (s 1H).

13C NMR (CDCl3) d = 56,12, 64.35, 74.78, 83.90, 110. 12, 111.24,
119.22, 128.95, 131.01, 133.02, 149.33.

MP= oil.

(£)-1-(3-Methylphenyl)-2-pr opyn-1-ol (x)-58h:

Synthetic method 7.23.4.

IH-NMR (200 MHz, CDCl3) d =2.33 (d 1H, J= 6.1 Hz), 2.42 (s 3H),
2.70 (d 1H, J= 2.21 Hz), 5.46 (dd 1H, J= 6.1 Hz,J= 2.21 Hz), 7.20 (d

1H, =8.1Hz), 7.32 (t 1H, J=8.1Hz), 7.39 (d 1H, J=8.1 Hz), 7.41 (s
1H).

I3C NMR (CDCI3) d = 21.54, 64.63, 74.87, 83.83, 123.816, 127.42,
128.76, 129.48, 138.61, 140.19.

IR (CHCI3) n cm~1 = 3380, 3280, 2120, 1620, 1480.

GC-MS= 146 M+ (56%), 131 (100%).

MP= oil.

(R)-(-)-1-(3-M ethylphenyl)-2-pr opyn-1-ol (R)-(-)-58h:

Synthetic method 7.28.2

[a]20p-27.5 (¢ 0.65, CHCI3). 92.1% ee.

Physical and spectral data were identical to those described above for
the racemate (x)-58h.

(£)-1-(3-Fluor ophenyl)-2-propyn-1-ol (z)-58i:

Synthetic method 7.23.4

IH-NMR (200 MHz, CDCl3) d =2.45 (d 1H, J=6.10 Hz), 2.72 (d 1H,
J 210 Hz), 550 (dd 1H, = 2.1Hz, J= 6.10 Hz) 7.09-7.04 (m 1H)
7.42-7.30 (m 3H).

13C NMR (CDCl3) d = 63.89, 75.32, 83.14, 113.91, 115.65, 230.37,
142.66, 161.85, 164.29.

IR (CHCI3) n cm~1 = 3340, 3300, 2120, 1640, 1590.

GC-MS= 150 M* (100%), 133 (70%).

MP= oil.

(R)-(-)1-(3-Fluorophenyl)-2-propyn-1-ol (R)-(-)-58i:

Synthetic method 7.28.2

[a]20p-21.1 (¢ 1.44, CHCI3). 91.5% ee.
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Physical and spectral data were identical to those described above for
the racemate (z)-58i.
(£)-1-(2-M ethylphenyl)-2-propyn-1-ol (+)-58 I:
Synthetic method 7.23.4
IH-NMR (200 MHz, CDCl3) d =2.38 (d 1H, J=51 Hz) 2.49 (s 3H),
2.68 (d 1H, J=2.1 Hz), 5.65 (dd 1H, J2.1 Hz, J= 5.03 HZ), 7.24-7.22
(m 1H), 7.31-7.27 (m 2 H), 7.72-7.70 (m 1H).
13C NMR (CDCI3) n = 19.04, 62.39, 74.84, 83.52, 126.42, 126.57,
128.72, 130.95, 136.07, 138.042.
GC-MS= 145 M* (18%), 121 (100%).
MP= 30.6-32.0.
(R)-(-)-1-(2-M ethylphenyl)-2-pr opyn-1-ol (R)-(-)-58 I:
Synthetic method 7.28.2
[a]205-18.1 (c 0.65, CHCI3). 80.4% ee.
Physical and spectral data were identical to those described above for
the racemate ()58 I.
(£)-1-(2,4 Dichlor ophenyl)-2-pr opyn-1-ol (£)-58 m:
Synthetic method 7.23.4
IH-NMR (200 MHz, CDCl3) d =22.68 (d 1H, J=5.43 Hz), 2.71 (d 1H,
J2.04 Hz), 5.79 (dd 1H, J=5.43 Hz,J=2.04 Hz), 7.33 (d 1H, J=8.35
Hz), 7.43 (s 1H), 7.73 (d 1H J=8.35 Hz).
1I3C NMR (CDCI3) d = 61.29, 75.29, 82.18, 127.73, 129.31, 129.68,
133.56, 135.18, 136.22.
MP=oil.
(£)-1-Phenyl-2-propyn-3-trimethylsilyl-1-ol (£)-59a:
Synthetic method 7.23.2
IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.40 (s1H), 5.65 (s1H),
7.67-7.23 (Mm5H).
IR (CHCI3) n cm1 = 3620, 3450,3020,2090.
MP = oil.
(£)-1-(4-M ethylphenyl)-2-pr opyn-3-trimethylsilyl-1-ol
(%)-59D:
Synthetic method 7.23.2
IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.12 (s 1H), 2.34 (s 3H),
5.39 (s1H), 7.16 (d 2H, J=8.02 HZ), 7.41 (d 2H, J= 8.02 H2).
IR (CHCI3) n cm1 = 3600, 3470,3020,2100.
MP = oil
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(£)-1-(4-Fluorophenyl)-2-propyn-3-trimethylsilyl-1-ol
(+)-59c:

Synthetic method 7.23.2

IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.16 (d 1H, J= 5.1 Hz),
542 (d 1H, J=5.1 Hz), 7.06 (t 2H, 9.1 Hz), 7.51 (dd 2H, J= 6.1 Hz,
9.1 Hz).

IR (CHCI3) n cm1 = 3580, 3460,3010,2080.

MP = ail
(£)-1-(4-Chlorophenyl)-2-propyn-3-trimethylsilyl-1-ol
()-59d:

Synthetic method 7.23.2

IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.01 (s 1H), 5.40 (s
1H). 7.30 (d 2H, J=8.24 Hz), 7.46 (d 2H, J= 8.24 HZ).

IR (CHCI3) n cm1 = 3580, 3460,3010,2080.

MP = ail

(¥)-1-(4-Cyanophenyl) — 2 — propyn — 3 —trimethylsilyl — 1 - ol (x)-
5%

Synthetic method 7.23.2

IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.31 (s 1H), 5.50 (s
1H), 7.66 (m 4H).

IR (CHCI3) n cm1 = 3544, 3425, 2960, 2232, 2173, 1608.

MP = ail
(£)-1-(4-Nitrophenyl)-2-propyn-3-trimethylsilyl-1-ol (x)-
59f:

Synthetic method 7.23.2

IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.27 (s 1H), 5.54 (s1H),
7.71 (d 2H, J= 8.73 Hz), 8,22 (d 2H, J= 8.73 Hz).

MP = ail.
(£)-1-(3,4-Dimethoxyphenyl)-2-propyn-3-trimethylsilyl-1-
ol ()-59¢:

Synthetic method 7.23.2

IH-NMR (200 MHz, CDCl3) d = 0.00 (s 9H), 2.20 (d 1H, J = 4.42
Hz), 3.92 (s 3H), 3.96 (s 3H), 5,44 (d 1H, J=4.42 Hz), 6.90 (d 1H, J
=8.17 Hz) 7.11 (d 1H, J=8.17 Hz), 7.15 (s 1H).

13C NMR (CDCl3) d = 0.000, 55.98, 56.14, 91.67, 105.312, 110.29,
111,22, 119,36, 133.25, 145.68, 149.37.

MP=ail.
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(£)-1-(Phenyl)-2-propyn-1-ol acetate (+)-60a:

Synthetic method 7.26.1 or 7.26.2.

IH-NMR (200 MHz, CDCl3) d =2.13 (s 3H), 2.67 (d 1H, J=2.29 Hz),
6.43 (d 1H, J=2.29 HZz) 7.57-7.34 (m5H).

13C NMR (CDCI3) d = 20.74, 65.04, 75.04, 80.04, 127.46, 128.47,
128.85, 136.25, 169.39.

IR (CHCI3) n cm-1 = 3320, 3080, 2120, 1760.

GC-MS 174 M+ (100%)

(£)-1-(4-Methylphenyl)-2-propyn-1-ol acetate (+)-60b:

Synthetic method 7.26.2

1H-NMR (200 MHz, CDCI3) d = 2.14 (s 3H), 2.41 (s3H), 2.67 D 1H,
J2.9 HZ), 6.46 (d 1H J=2.19 Hz), 7.23 (d 2H, J=8.2 Hz), 7.46 (d
2H, J=8.2 H2).

13C NMR (CDCI3) d = 21.34, 31.01, 65.36, 75.27, 80.61, 127.83,
129,52, 133.79, 139.22, 169.84.

(£)-1-(4-Cyanolphenyl)-2-propyn-1-ol acetate (+)-60c:

Synthetic method 7.26.2

1H-NMR (200 MHz, CDCI3) d =2.17 (s 3H), 2.73 (d 1H, J=2.28 Hz),
6.51 (d 1H, J=2.28 Hz), 7.68 (d 2H J=8.40 Hz), 7.73 (d 2H J=8.40
Hz).

13C NMR (CDCl3) d = 31.01, 65.01, 76.84, 78.30, 111.62, 118.25,
128.51, 132.79, 140.54, 169.73.

(£)-1-(4M ethylphenyl)-2-pr opyn-1-chlor oacetate (+)-61b:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.47 (s 3H), 2.74 (s1H), 4.12 (dd
2H, 4.9 Hz, 7.2 Hz), 6.52 (s 1H), 7.26 (d2H, J= 8.1 Hz), 7.49
(d2H, J= 8.1 H2).

13C NMR (CDCI3) d = 21.38, 40.95, 67.29, 76.58, 79.88, 128.01,
129.64, 132.88, 139.73, 166.31.

IR (film)OOcemr1 = 3090, 2120, 1780, 1760, 1520.

GC-MS =218 M+ (18%), 128 (100%).

MP= ail
(S)-(-)-1-(4-Methylphenyl)-2-propyn-1-chloroacetate (S)-
(-)-61b:

Synthetic method 7.28.2

[a]?%p - 23.3 (¢ 1.12, CHCI3). 97.8% ee.

Physical and spectral data were identical to those described below for
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the racemate (z)-61 b.

()-1-(4-Fluor ophenyl)-2-propyn-1-chlor oacetate (£)-61c:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.77 (d 1H, J= 2.25 Hz), 4.11 (dd
2H, J=5.1Hz, J=10.8 Hz), 6.51 (d 1H, 2.25 Hz), 7.11 (t 2H, J=6.66
Hz), 7.57 (m 2H).

13C NMR (CDCl3) d = 38.94, 66.63, 76.80, 79.28, 116.06, 130.12,
131.76, 145.65, 162.19, 164.67, 166.25.

IR (film): n cmr1= 3290, 2980, 2120, 1780-1740,1610.

MP= oil.
(S)-(-)-1-(4-Fluorophenyl)-2-propyn-1-chloroacetate (S)-
(-)-61c:

Synthetic method 7.28.2

[a]?%%p- 11.8 (¢ 1.01, CHCI3). 96.8% ee.

Physical and spectral data were identical to those described below for
the racemate (z)-61c.
(+)-1-(4-Cyanophenyl)-2-pr opyn-1-chlor oacetate (z)-61e:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.80 (d 1H, J2.34 Hz), 4.14 (m
2H), 6.56 (d 1H, J2.34 Hz), 7.70 (d 2H, J=8.11 Hz), 7.75 (d 2H,
8.51 Hz).

13C NMR (CDCI3) d = 40.65, 66.25, 76.84, 78.30, 113.62, 118.23,
128.51, 132.80, 140.58, 166.10.

IR (CHCI3): n cmr1 = 3290, 2220, 2120, 1740,1620, 1510.
MP=61-62 °C.
(S)-(-)-1-(4-Cyanophenyl)-2-propyn-1-chloroacetate (S)-
(-)-6le:

Synthetic method 7.28.2

[a]?%p - 31.3 (¢ 0.98, CHCI3). 96.6% ee.

Physical and spectral data were identical to those described below for
the racemate (z)-61e.

(£)-1-(3-M ethylphenyl)-2-pr opyn-1-chlor oacetate (+)-61h:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.42 (s 3H), 2.74 (d 1H, J=2.15 H2),
4.13 (dd 2H, J= 6.6Hz; J=15.10 Hz), 6.52 (d 1H, J=2.15 Hz), 7.24 (d
1H J=7.6 Hz), 7.39 (m 3H).

13C NMR (CDCI3) d = 21.94, 40.94, 67.40, 76.41, 79.58, 125.05,
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128.61, 128.87, 130.39, 135.66, 138.81, 166.28.

IR (film): __cmrl= 3290, 2135, 1785,1740,1610.

GC-MS =222 M+ (18%), 128 (100%).

MP= ail

(S)-(-)1-(3-Methylphenyl)-2-propyn-1-chlor oacetate (S)-
(-)-61h:

Synthetic method 7.28.2

[a]2%p - 13.9 (c 0.84, CHCI3). 99.2% ee.

Physical and spectral data were identical to those described below for
the racemate (z)-61 h.

(£)-1-(3-Fluor ophenyl)-2-propyn-1-chlor oacetate (+)-61i:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.77 (d 1H, J2.22 Hz), 4.15 (m
2H), 6.53 (d 1H; 2.22 Hz), 7.13 (m 1H), 7.36 (m 3H).

13C NMR (CDCl3) O = 40.79, 66.48, 78.89, 115.11, 116.72, 123.56,
130.61, 161.73, 164.19, 166.19.

IR (film): n cmr1= 2980, 2135, 1745,1590.

MP= oil.
(S)-(-)1-(3-Fluorophenyl)-2-propyn-1-chloroacetate (S)-(-
)-611:

Synthetic method 7.28.2

[a]2%p - 5.3 (¢ 1.33, CHCl3). 99.4% ee.

Physical and spectral data were identical to those described below for
the racemate (z)-61 1.

1-(2-M ethylphenyl)-2-propyn-1-chlor oacetate (+)-61 I:

Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.48 (s 3H), 2.73 (d 1H, J2.2H2),
4.15 (m2H), 6.67 (d 1H, J2.2Hz), 7.36-7.24 (m 3H), 7.66 (d 1H,
J=7.82).

13C NMR (CDCI3) d = 19.85, 40.84, 65.44, 76.44, 79.37, 126.57,
128.25, 129.61, 131.11, 133.87, 166.21.

IR (film): n cm1= 3290, 2120, 1770,1730.

MP= oil.
(S)-(+)1-(2-Methylphenyl)-2-propyn-1-chlor oacetate (S)-
(+)-611I:

Synthetic method 7.28.2

[a]2%p + 16.2 (¢ 1.25, CHCl3). 94.0% ee.
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Physical and spectral data were identical to those described below for
the racemate (z)-61 b.

1-(2,4-Dichlor ophenyl)-2-pr opyn-1-chlor oacetate (+)-61m:
Synthetic method 7.27.

IH-NMR (200 MHz, CDCl3) d = 2.77 (d 1H, J=2.21 HZz), 4.14 (m
2H), 6.78 (d 1H, J=2.21 Hz), 7.36 (d 2H, J8.51 HZz), 7.46 (s 1H),
7.77 (d 1H, J=8.51 H2).

MP= oil.

(2'-Hydr oxyPhenyl)-2-pr opyn-1-phenyl-1-ol ()-62.

Synthetic method 7.35

IH NMR (CDCI3) d =2.90 (s, 1H), 5.65 (s, 1H), 6.85 (m,3H), 7.32
(m,4H), 7.68 (m, 2H).

13C NMR (CDCl3g) d= 65.165, 81.590, 98.845, 108.809, 115.346,
120.174, 126.708, 128.568, 128.722, 130.589, 131.951, 140.068,
157.028.

13C J MOD NMR (CDCI3) d= (+)65.165, (-)81.590, (-)98.845, (-)
108.809, (+)115.346, (+)120.174, (+)126.708, (+)128.568,
(+)128.722, (+)130.589, 131.951, (-) 140.068, (-)157.028.

GC-MS M+ 224(100%), M+ -OH 207 (80%).

M.P.: ail.

(£)-(4'-Methylphenyl)-2-benzo[b]furanyl carbinol (+)-63a:
Synthetic method 7.30

IH NMR (CDCl3g) d= 2.35 (s,3H), 2.44 (d, 2H, 4.5Hz), 5.90 (d, 2H,
4.5H2z), 6.52 (s,1H), 7.27-7.14 (m 5H), 7.51-7.34 (m 3H);

13C NMR (CDCI3) d= 21.076, 70.388, 103.729, 111.224, 121.002,
122.673, 124.078, 126.706, 128.032, 129.150, 137.392, 137.957,
155.003, 158.743;

13C J MOD NMR (CDCI3) d= (+)21.076, (+)70.388, (+)103.729,
(+)111.224, (+)121.002, (+)122.673, (+)124.078, (+)126.706, (-)
128.032, (+)129.150, (-)137.392, (-)137.957, (-)155.003, 1(-)
58.743;

GC-MS M+ 238 (100%); M+-OH 221.

(R)-(-)-4'-Methylphenyl- 2 benzo[b]furanyl carbinol (R)-(-
)-63a:

Synthetic method 7.30

[a]?p -8.05, (c 1.6 CHCl3);, 99.0% ee (Chiracel OD n-
hexane/isopropanole), rt (S)-(+)-2b 55.28 min., (R)-(-)-2b 59.44
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min.

Physical and spectral data were identical to those described above for
the racemate (x)-63a.

(+)-(3-Methylphenyl)-2 benzo[b]furanyl carbinol (z)-63b:

Synthetic method 7.30.

1H NMR (CDCI3) d= 2.39 (s,3H), 2.53 (d, 4.3 Hz, 1H), 5.93 (d, 4.3
Hz, 1H), 6.57 (s, 1H), 7.32-7.18 (m,6H), 7.72-7.45 (m,2H).

13C NMR (€PCI3) d= 21.294, 70.509, 103.744, 111,219, 121.000,
122.664, 123.816, 124.075, 127.358, 128.003, 128.356, 128.957,
138.136, 140.211, 154.980, 158.653.

13C J MOD NMR (CDCI3) d= (+)21.294, (+)70.509, (+)103.744,
(+)111,219, (+)121.000, (+)122.664, (+)123.816, (+)124.075,
(+)127.358, (-) 128.003, (+)128.356, (+)128.957, (-)138.136, (-
)140.211, (-)154.980, (-) 158.653.

GC-MS M+ 238(100%), M+ -OH 221.

M.P: ail

(R)-(-)-(3'-Methylphenyl)-2benzo[b]furanyl carbinol (R)-(-
)-63b:

Synthetic method 7.30.

[a]?%p -3.55, (¢ 281 CHCI3), 98.11% ee (Chiracek OD n-
hexane/isopropanole), (S)-(+)-2d rt= 15.38 min., (R)-(-)-2d rt =
17.86 min.

Physical and spectral data were identical to those described above for
the racemate (z)-63b.

(z)-3-Fluorophenyl-2 benzo[b]furanyl carbinol (z)-63c:

Synthetic method 7.30.

1H NMR (CDCI3) d= 2.55 (d,4.2Hz,1H), 5.94 (d,4.2Hz,1H) 6.54
(s,1H), 7.37-6.98 (m,4H), 7.53-7.40 (m, 3H).

13C NMR (CDCI3) d= 69.745d, 104.097, 111.233, 113.435, 113878,
114.794, 115,215, 121.144, 122.236d, 124.390, 127.802, 130.014d,
142.757d, 154.979, 157.728, 160.334, 165.226.

13C JMOD (CDCI3) NMR 00O (+)69.745d, (+)104.097, (+)111.233,
(+)113.435, (+)113878, (+)114.794, (+)115,215, (+)121.144,
(+)122.236d, (+)124.390, (-)127.802, (+)130.014d, (-)142.757d, (-)
154.979, (-)157.728, (-)160.334, (-)165.226.

GC-MS M+ 242(100%), M+ -OH 225.

M.P: ail
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(R)-(+)-3'-Fluorophenyl-2 benzo[b]furanyl carbinol (R)-
(+)-63c:

Synthetic method 7.30.

[ODO20D +6.23, (c 241 CHCI3) 98.50% ee (Chiracel OD n-
hexane/isopropanole), (S)-(-)-2e rt=73.36 min,, (R)-(+)-2e
rt=83.54 min.

Physical and spectral data were identical to those described above for
the racemate (z) 63c.

(£)-2'-Methylphenyl-2benzo[b]furanyl carbinole (+)-63d:

Synthetic method 7.30.

1H NMR (CDCI3) d= 2.02 (s,1H), 2.48 (d,4.2Hz, 1H), 6.13 (d,4.2Hz,
1H), 6.40 (s,1H), 7.27-7.15 (m, 5H), 7.57-7.42 (m,3H).

13C NMR (CDCI3) d= 18.933, 67.475, 104.130, 111.253, 121.037,
122.718, 124.184, 126.219, 126.380, 128.083, 130.445, 135.512,
138.288, 155.036, 158.217.

13C J MOD NMR (CDCI3) d= (+)18.933, (+)67.475, (+)104.130,
(+)111.253, (+)121.037, (+)122.718, (+)124.184, (+)126.219,
(+)126.380, (-) 128.013, (+)128.083, (+)130.445, (-)135.512, (-
)138.288, (-)155.036, (-) 158.217.

GC-MS M+ 238(100%), M+ -OH 221.

M.P: ail

(R)-(-)-2'-Methylphenyl-2-benzo[b]furanyl carbinol (R)- (-
) 63d:

Synthetic method 7.30.

[a]?p -32.53, (¢ 1.076 CHCI3) 93.26% ee (Chiracd OD n-
hexane/isopropanole),  (S)-(+)-2f rt=30.56 min., (R)-(-)-2f
rt=33.92 min.

Physical and spectral data were identical to those described above for
the racemate () 63d.

(x)-Phenyl-2-(N-mesyl)indolyl carbinol (x)-64a:

Synthetic method 7.33:

IH NMR (CDCI3) d= 3.02 (s,3H), 3.24 (d, 5.7 Hz,1H), 6.27 (s,1H),
6.37 (d,5.7Hz,1H), 7.51-7.24 (m,8H), 7.98 (7.56Hz,1H).

13C NMR (CDClg) d= 40.772, 69.230, 111.256, 113.9912, 121.348,
123.677, 125.083, 127.122, 128.097, 128.351, 128.568, 137.134,
140.767, 143.037.



Chapter 8 209

13C J MOD NMR (CDCI3) d= (+)40.772, (+)69.230, (+)111.256,
(+)113.912, (+)121.348, (+)123.677, (+)125.083, (+)127.122,
(+)128.097, (+)128.351,(-)128.568, (-)137.134, (-)140.767, (-
)143.037.

GC-MS M+ 301(75%), M+ -OH 284 (30%), M+ -Ms 221 (100%)

M.P: 131.7-131.9 (DCM-Petroleum ether)
(S)-(+)-Phenyl-2-(N-mesyl)indolyl carbinol (S)-(+)-64a:

Synthetic method 7.33

[a]?p +22.3, (c 202 CHCI3) 96.74% ee (Chiracel OD n-
hexane/isopropanole), (R)-(-)-64a rt=12.69 min., (S)-(+)-64a
rt=15.13 min.

(£)-4'-Methylphenyl-2-(N-mesyl)indolyl carbinol (x)-64b:

Synthetic method 7.33

IH NMR (CDCI3) d= 2.37 (s,3H), 3.01 (s,3H), 3.15 (d,5.4 Hz, 1H),
6.29 (s,1H), 6.33 (d,5.4 Hz, 1H), 7.40-7.17 ( m,5H), 7.45 (d,8.49 Hz,
1H), 7.98 (d,8.64 Hz, 1H).

13C NMR (CDClg) O 21.106, 40.735, 69.040, 110.950, 113,859,
121.257, 123.576, 124.924, 127.036, 128.553, 128.982, 137.095,
137.786, 137.904, 143.205.

13C J MOD NMR (CDClg3) d= (+)21.106, (+)40.735, (+)69.040,
(+)110.950, (+)113,859, (+)121.257, (+)123.576, (+)124.924,
(+)127.036, (-)128.553, (+)128.982, (-)137.095, (-)137.786, (-
)137.904, (-)143.205.

GC-MS M+ 315(56.5%), M+ -OH 298 (20%), M+ -Ms 235 (100%)
M.P: 131.0-131.6 (DCM-Petroleum ether).
(R)-(-)-4'Methylphenyl-2-(N-mesyl)indolyl carbinol (R)-
(-)-64b:

Synthetic method 7.33

95.97% ee (Chiracdl OD n-hexanelisopropanole), (R)-(-)-64b
rt=12.64 min., (S)-(+)-64b rt=16.08 min.

(£)-4'-Fluor ophenyl-2-(N-mesyl)indolyl carbinol (+)-64c:

Synthetic method 7.33.

IH NMR (CDCI3) d= 2.98 (s,3H), 3.30 (d,5.38 Hz, 1H), 6.29 (s,1H),
6.34 (d,5.38 Hz, 1H), 7.05 (m,2H), 7.55-7.21 (m,6H).

GC-MS M+ 319(63%), M+ -OH 302 (12%), M+ -Ms 239 (100%)

M.P: ail.
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(R)-(-)-4'-Fluorophenyl-2-(N-mesyl)indolyl carbinol (R)-
(-) -64c:

Synthetic method 7.33

98.20% ee (Chiracel OD n-hexane/isopropanole), (R)-(-)-64c
rt=33.14 min., (S)-(+)-64c rt=39.78 min.
(3-Methylphenyl)-2-(N-mesyl)indolyl carbinol (+)-64e:

Synthetic method 7.33.

IH NMR (CDCl3) d= 2.36 (s,3H), 3.03 (s,3H), 3.17 (d,5.5Hz,1H),
6.27 (s,1H), 6.34 (d,5.5Hz,1H),7.35-7.14 (m,6H), 7.46 (d,8.1Hz,1H),
7.98 (d, 8.0Hz,1H).

13C NMR (CDCl3) d= 21.386, 40.770, 69.211, 111.236, 113.897,
121.313, 123.639, 124.165, 125.024, 127.719, 128.218, 128.582,
128.823, 137.115, 138.049, 140.752, 143.102.

13C J MOD NMR (CDCI3) d = 21.386, _ 40.770, __ 69.211,
111236, _ 113897, _ 121.313, __ 123.639, __ 124.165,
125024, _ 127.719, 128218, 128582,  128.823,
137115, 138.049,  140.752, _ 143.102.

GC-MS M+ 315(56.34%), M+ -OH 298 (12%), M+ -Ms 235 (100%)
M.P: 119.4-120.4 (DCM-Petroleum ether).
(R)-(-)-(3'-Methylphenyl)-2-(N-mesyl)indolylcarbinol (R)-
(-)-64e:

Synthetic method 7.34.

[a]?p -16.7, (¢ 145 CHCI3) 99.12% ee (Chiracd OD n-
hexane/isopropanole), (R)-(-)-64e rt=10.76 min., (S)-(+)-64e
rt=13.16 min.

(£)-3'-Fluor ophenyl-2-(N-mesyl)indolyl carbinol (x)-64f:

Synthetic method 7.34

IH NMR (CDCI3) d = 2.98 (s,3H), 3.32 (d,5.38Hz, 1H), 6.21 (s,1H),
6.34 (d,5.38Hz, 1H), 7.53-6.98 (m,7H), 7.98 (d, 8.5 Hz,1H).

GC-MS M+ 319(46.34%), M+ -Ms 239 (100%)

M.P: 109.4-110.6 (DCM-Petroleum ether).
(R)-(-)-3'-Fluorophenyl-2-(N-mesyl)indolyl carbinol (R)-
(-)-64f:

Synthetic method 7.34

[a] 295-22.46, (¢ 150 CHCI3) 99.55% ee (Chiracel OD n-
hexane/isopropanole), (R)-(-)-64f rt=1250 min., (S)-(+)-64f
rt=16.00 min.
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(£)-2'-Methylphenyl-2-(N-mesyl)indolyl carbinol (+)-64g:

Synthetic method 7.34.

IH NMR (CDCI3) d = 2.24(s,3H), 3.18 (s,3H), 6.5801(d, 5.3 Hz,1H),
7.47-7.18 (m,6H), 7.63 (m,1H) 8.03 (d, 8.8 HZz).

13C NMR (CDCl3) d= 18.903, 40.898, 65.742, 110.980, 113.933,
121.342, 123.651, 125.087, 126.065, 126.200, 127.921, 128.582,
130.308, 135.395, 137.192, 139.229, 142.456.

13C J MOD NMR (CDClg3) d= (+)18.903, (+)40.898, (+)65.742,
(+)110.980, (+)113.933, (+)121.342, (+)123.651, (+)125.087,
(+)126.065, (+)126.200, (+)127.921, (-) 128.582, (+)130.308, (-)
135.395, (-)137.192, (-)139.229, (-)142.456.

GC-MS M+ 315(32.34%),, M+ -Ms 235 (100%)

M.P: 142.4-144.4 (DCM-Petroleum ether).
(R)-(-)-2'-Methylphenyl-2-(N-mesyl)indolyl carbinol (R)-
(-)-64q9:

Synthetic method 7.34.

93.21% ee (Chiracel OD n-hexane/isopropanole), (R)-(-)-64g
rt=54.69 min., (S)-(+)-64g rt=63.38 min.
(£)-1-Phenyl-3-(2'aminophenyl)-2-pr opyn-1-ol (+)-65:

Synthetic method 7.32

IH NMR (CDCI3) d= 5.74 (s,AH), 6.66 (m,2h), 7.13 (t, 7.8Hz, 1H),
7.45-7.26 (m, 4H), 7.65 (d, 7.8 Hz, 2H).

13C NMR (CDCl3) d= 64.733, 83.047, 94.450, 107.241, 114.539,
117.850, 126.548, 128.080, 128.449, 129.738, 132.068, 140.733,
147.835.

13C J MOD NMR (CDCI3) d= (+)64.733, (-)83.047, (-)94.450, (-)
107.241, (+)114.539, (+)117.850, (+)126.548, (+)128.080,
(+)128.449, (+)129.738, (+)132.068, (-)140.733, (-)147.835.

M.P: ail.

N-M esyl-2-iodoaniline 66:

Synthetic method 7.33:

IH NMR (CDCI3) d= 2.98 (s, 3H), 6.61 (s,1H), 6.91 (t, 7.9 Hz, 1H),
7.36 (t, 7.9 Hz, 1H), 7.63 (d, 7.9 Hz, 1H), 7.81 (d, 7.9 Hz, 1H).
GC-MS M+ 297(100%), M+ -Ms 218(75%).
(£)-1-Phenyl-3-(2'acetoxyphenyl)-2-propyn-1-ol (x)-71.

Synthetic method 7.36
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1H NMR (CDCl3) d = 2.13 (s,3H), 2.53 (s,3H), 5.65 (s,1H), 7.45-
6.90 (m,9H).

13C NMR (CDCI3) d= 20.551, 64.772, 81.287, 94.138, 116.661,
122.169, 125.860, 126.612, 128.281, 1288.556, 129.734, 133.045,
140.617, 151.727, 169.177.

13C J MOD NMR (CDCl3) d= (+)20.551, (+)64.772, (-)81.287, (-)
94138, (-)116.661, (+)122.169, (+)125.860, (+)126.612,
(+)128.281, (+)1288.556, (+)129.734, (+)133.045, (-)140.617, (-
)151.727, (-) 169.177.

GC-MS M+ 266(100%), M+ -OH 249 (39%), M+ -Ac 223 .

IR(film) n cm~1= 3500, 2900, 1760.

M.P. :ail
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