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1 Introduction

1.1 Multiobjective Optimization

Over one hundred years ago, Francis Edgeworth (1845–1926) and Vilfredo Pareto
(1848–1923) laid the foundations of what is today called multicriteria decision mak-
ing. The basic assumption of multicriteria decision making is that whenever a de-
cision has to be taken, not only one but multiple objectives have to be taken into
account. Moreover, in general, these objectives are competing, i.e., no solution or
decision action exists for which all objectives can be met best simultaneously. An
example is given by different products in a market. Since, in general, a cheap prod-
uct has a rather bad quality while a product of good quality is rather expensive, a
compromise between the objectives ‘price’ and ‘quality’ has to be found. We can
only exclude products from consideration that are at least as expensive and, simul-
taneously, of at most the same quality as some other product. This is the basic
idea of dominance and nondominance in multiobjective optimization: Of interest
are exactly those solutions (products) that cannot be improved with respect to one
criterion without being impaired with respect to at least one other criterion. In the
literature, these solutions are called ‘nondominated’, ‘efficient’ or, in honor to the fa-
thers of multicriteria decision making, ‘Pareto’ or sometimes also ‘Edgeworth-Pareto
optimal’, see Section 2.1 for a precise definition. Due to the conflicting nature of the
objectives, there is, in general, not only one but a set of Pareto optimal solutions.
As already suggested by the titles of the early publications Mathematical psychics

(Edgeworth, 1881) and Cours d’Economie Politique (Pareto, 1896), multicriteria de-
cision making is an interdisciplinary field that, from the very beginning up to today,
attracts researchers and practitioners from various disciplines as economics, psychol-
ogy, mathematics and computer as well as engineering science. Thereby, the interests
range from the theoretical analysis of multiobjective optimization problems over the
practical computation and representation of solutions up to economical utility theory
and questions of human behavior in decision making. In brief, this thesis presents
new theoretical results for generating Pareto optimal solutions and shows the prac-
tical usefulness of the new theory.

7



1 Introduction

1.2 Outline of This Thesis

The content of this thesis is organized in two parts and nine chapters. The first three
chapters present the basics. The fourth and fifth chapter, which build Part I, contain
new theoretical results. Their practical application is demonstrated in Part II, which
consists of chapters six to eight. The last chapter summarizes the results of this
thesis. In what follows we describe the content of each chapter in more detail.

Chapter 2 assembles the relevant definitions, notions and concepts from the lit-
erature that are needed in the following. First, we provide general definitions from
the field of multicriteria optimization. After that we introduce the notions of repre-
sentations and approximations of the nondominated set and indicate quality criteria
from the literature. Then scalarizations as a well known concept to solve multicrite-
ria optimization problems are presented. Finally, the idea of a parametric algorithm
that consists in the iterative solution of scalarizations with varying parameters is
specified and the notions of a priori and adaptive (a posteriori) parameter schemes
are introduced.

Chapter 3 provides a detailed literature review on methods using (adaptive)
parametric algorithms. The survey on this topic starts with early publications dating
from the sixties of the last century and ends with very recent publications. As several
methods are solely applicable to the bicriteria case, we organize the literature review
into two sections, one devoted particularly to the bicriteria and the other one to the
general multicriteria case.

After the introduction, the preparation of the basics and the presentation of re-
lated literature, new theoretical results are presented in Part I. In brief, Chapter 4
deals with new adaptive parameter schemes for well-known scalarization methods
with augmentation terms, particularly the augmented weighted Tchebycheff method.
Chapter 5 is concerned with the general framework of a new parametric algorithm.

In Chapter 4 we derive an adaptive parameter scheme for the augmented weighted
Tchebycheff method which is the first classic scalarization for which an augmenta-
tion term has been introduced. So far, only the weights have been controlled in
an adaptive way but the augmentation parameter has been chosen fixed to a small
positive constant. As reported in the literature, on the one hand, numerical issues
arise when this constant is too small and, on the other hand, nondominated points
are missed when the constant is chosen too large. We construct all parameters of
the augmented weighted Tchebycheff method in an adaptive way such that every
nondominated point of a discrete multicriteria optimization problem can be gener-
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1.2 Outline of This Thesis

ated and, at the same time, the augmentation parameter can be chosen as large
as possible up to a feasible upper bound. Besides the classic augmented weighted
Tchebycheff method we consider a generalized problem formulation that contains an
augmentation parameter for each objective and, thus, provides more flexibility. The
generalized formulation is particularly useful for the application to continuous prob-
lems, as it allows to incorporate a given trade-off among the objectives. For bicriteria
problems it is well known that a prescribed two-sided trade-off can be translated into
suitable parameters of a generalized augmented weighted Tchebycheff problem. We
improve existing approaches by proposing an adaptive parameter scheme that takes
all parameters, i.e., also the weights, into account. Finally, augmented variants of
the ε-constraint method from the literature are discussed. We show that the aug-
mentation parameter of an augmented ε-constraint scalarization can be determined
in the same way as it is proposed for the augmented weighted Tchebycheff method.

In Chapter 5 we develop the general framework of an adaptive parametric al-
gorithm that is based on a systematic decomposition of the search region, i.e., the
region potentially containing further nondominated points. We particularly study the
number of subproblems that have to be solved to generate complete representations
for discrete problems. In the literature, the best known upper bound on the number
of subproblems in the tricriteria case depends quadratically on the number of non-
dominated points. By indicating a new parametric algorithm in which at most three
subproblems are solved per nondominated point, we improve the former quadratic to
a linear upper bound. Thereby, the main key is a new decomposition criterion which
avoids redundancy. The parametric algorithm can be applied with any scalarization
that is suited for non-convex or discrete problems. If the ε-constraint method is used,
we can reduce the upper bound further and show that at most two subproblems per
nondominated point are sufficient to obtain a complete representation. Finally, we
propose an extension of the new algorithm for any number of objectives.

The theoretical results of Part I are validated computationally in Part II. Thereby,
the results of Part I are combined in the sense that the adaptive parameter scheme
from Chapter 4 is employed for each subproblem that is solved in the parametric
algorithm derived in Chapter 5.

In Chapter 6 we generate complete representations for discrete problems. In
the bicriteria case the performance of different variants of Tchebycheff scalarizations
is examined. Besides the validation of the adaptive parameter scheme proposed in
Chapter 4 we compare the adaptive parameter scheme to the classic fixed choice of
the augmentation parameter which is common in the literature. In particular, we
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1 Introduction

show computationally that already for small instances of knapsack problems non-
dominated points are missed with the classic approach but not with the adaptive
parameter selection. We also study further algorithmic variants with local reference
points by which larger values for the augmentation parameter can be obtained. In
the tricriteria case we validate the formulas for the parameters of the augmented
weighted Tchebycheff method as well as the upper bound on the number of sub-
problems derived in Chapter 5. In all instances the complete nondominated set is
computed reliably with the help of the adaptive parameter scheme. Moreover, the
predicted upper bound on the number of subproblems is met exactly in all instances.
Besides the validation of our new parametric algorithm, we also compare it with
three state of the art methods for the generation of complete representations. Our
algorithm clearly outperforms one of the three algorithms and can compete with the
other two in the sense that no algorithm outperforms the other with respect to the
number of subproblems solved and the required computational time.

In Chapter 7 we apply the new adaptive parametric algorithm to continuous
problems, for which incomplete representations of the nondominated set are sought.
We use common quality criteria to measure the quality of the representations. In or-
der to refine the representations iteratively, we propose different selection rules based
on the volume of the boxes into which the search region is decomposed and the contri-
bution to the dominated hypervolume. Tests with bi- and tricriteria problems from
the literature are performed. We compare different variants of Tchebycheff methods
employing an adaptive parameter scheme with an a priori ε-constraint method. We
observe that with the adaptive methods considerably less infeasible or redundant
subproblems are generated than with the a priori method, in general. The adaptive
approaches perform particularly well when the nadir point is not known and its esti-
mate is rather bad. Hence, they are particularly useful for problems with more than
two criteria.

Chapter 8 treats a real-world problem in which the multicriteria control of sewer
networks is considered. Within a preliminary offline analysis we aim at constructing
a discrete representation of the nondominated set. Since the single-criterion solver
used for the subproblems is interrupted before its termination, it typically does not
provide local or global minima but intermediate solutions. These solutions often
correspond to dominated or even infeasible points. Therefore, we can only construct
a very scarce discrete approximation of the nondominated set. Moreover, due to
numerical issues, an a priori parameter scheme yields better results than an adaptive
scheme in some test cases. This shows that the performance of the underlying single-
criterion solver is crucial for the successful use of adaptive parameter schemes. If the
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1.2 Outline of This Thesis

generated points are not nondominated or close to nondominated points, an a priori
parameter selection might be preferred.

Chapter 9 contains a summary of the results of this thesis. Ideas for future
research are indicated directly at the end of each chapter of Parts I and II.
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2 Preliminaries

In this chapter we collect the relevant notions, definitions and concepts that are
used in this thesis. They are common knowledge and can be found in textbooks
on multicriteria optimization, e.g., in Chankong and Haimes (1983), Steuer (1986),
Miettinen (1999), Jahn (2004) or Ehrgott (2005).

2.1 Terminology and Definitions

We consider multiple criteria optimization problems

min
x∈X

f(x) = (f1(x), . . . , fm(x))> (2.1)

with m ≥ 2 objective functions fi : X → R, i = 1, . . . ,m, and with feasible set
X ⊆ Rn. We assume that the functions fi, i = 1, . . . ,m, are continuous and that
X is non-empty and compact. If X is a discrete finite set, we call Problem (2.1)
discrete. The image of the feasible set X is denoted by Z := f(X) ⊆ Rm and is
called set of feasible outcomes.
To simplify notation, we will often refer to the points in Z without relating them

back to their preimages in the feasible set. Consequently, we equivalently formulate
Problem (2.1) in the outcome space as

min
z∈Z

z = (z1, . . . , zm)>. (2.2)

For two vectors z, z̄ ∈ Z we define

z < z̄ :⇔ zi < z̄i ∀ i = 1, . . . ,m,
z ≤ z̄ :⇔ zi ≤ z̄i ∀ i = 1, . . . ,m and ∃ j∈{1, . . . ,m} : zj < z̄j ,

z 5 z̄ :⇔ zi ≤ z̄i ∀ i = 1, . . . ,m.
(2.3)

The symbols >, ≥ and = are used accordingly. As there exists no canonical ordering
on Rm for m ≥ 2, a definition of optimality is required. We use the Pareto concept
of optimality: A solution x̄ ∈ X is called Pareto optimal or efficient if there does
not exist a feasible solution x ∈ X such that f(x) ≤ f(x̄). The corresponding

13



2 Preliminaries

objective vector f(x̄) ∈ Rm is called nondominated in this case. If, on the other
hand, f(x) ≤ f(x̄) for some feasible x ∈ X, we say that f(x) dominates f(x̄), and
x dominates x̄. If strict inequality holds for all m components, i.e., if f(x) < f(x̄),
then x strictly dominates x̄. If there exists no feasible solution x ∈ X that strictly
dominates x̄, then x̄ is called weakly Pareto optimal or weakly efficient. We denote
the set of efficient solutions of (2.1) by XE and refer to it as the efficient set, i.e.,

XE := {x ∈ X : @ x̃ ∈ X : f(x̃) ≤ f(x)}. (2.4)

The image set of the set of efficient solutions is denoted by

ZN := f(XE) = {z ∈ Z : @ z̃ ∈ Z : z̃ ≤ z} (2.5)

and is called the nondominated set of problem (2.1). In general, one nondominated
point f(x̄) might have more than one preimage x̄ ∈ X. However, throughout this
thesis, it is sufficient to know one efficient solution per nondominated point.
A point x̄ ∈ X is called properly efficient according to Geoffrion (1968) if it is

efficient and if there exists a scalar M > 0 such that for each i = 1, . . . ,m and each
x ∈ X satisfying fi(x) < fi(x̄) there exists an index j 6= i with fj(x) > fj(x̄) and

fi(x̄)− fi(x)
fj(x)− fj(x̄)

≤M. (2.6)

An efficient point that is not properly efficient is called improperly efficient. Note
that if the outcome space Z is discrete and finite, every efficient point is properly
efficient.
The notion of trade-off is closely related to the definition of proper efficiency.

According to Chankong and Haimes (1983), for given x, x̄ ∈ X, the ratio of change
Tij(x, x̄) involving objective functions fi and fj , i, j = 1, . . . ,m, i 6= j, is defined as

Tij(x, x̄) := fi(x)− fi(x̄)
fj(x̄)− fj(x)

(2.7)

for fj(x) 6= fj(x̄). Note that if fi(x) 6= fi(x̄), then Tij(x, x̄) = (Tji(x, x̄))−1 and
Tij(x, x̄) = Tij(x̄, x) hold. In Kaliszewski and Michalowski (1997), for z̄ ∈ Z and a
problem in maximization format, the trade-off TGij (z̄) involving objective functions
zi and zj , i, j = 1, . . . ,m, i 6= j, is defined as

TGij (z̄) := sup
z∈Z<j (z̄)

zi − z̄i
z̄j − zj

, (2.8)

where Z<j (z̄) = {z ∈ Z : zj < z̄j , zi ≥ z̄i, i = 1, . . . ,m, i 6= j}. If Z<j (z̄) = ∅, then
TGij (z̄) :=∞ for all i = 1, . . . ,m, i 6= j.

14



2.1 Terminology and Definitions

Pareto optimality can also be defined geometrically with the help of ordering cones,
which are defined as convex cones that characterize a partial ordering in a real linear
space. For simplicity, we restrict the description here to the case of pointed ordering
cones and use Rm as a partially ordered linear space. Then, given a nonempty subset
S ⊂ Rm and a pointed ordering cone C ⊂ Rm, an element ȳ ∈ S is called minimal
element (or C-minimal element) of S if

({ȳ} − C) ∩ S = {ȳ}, (2.9)

see, e.g., Jahn (2004). Thereby, {ȳ} − C := {ȳ − c : c ∈ C} denotes the algebraic
difference. For y, ȳ ∈ S we say that ȳ dominates y if

y − ȳ ∈ C\{0},

where 0 denotes the m-dimensional zero vector. We use the notation

y′ ≤C y :⇔ y − y′ ∈ C (2.10)

for y, y′ ∈ Rm. If we choose C := Rm+ with Rm+ := {y ∈ Rm : yi ≥ 0, i = 1, . . . ,m}, we
obtain the notion of (non)dominance with respect to Pareto optimality. Therefore,
the closed positive orthant Rm+ is sometimes called Pareto cone. The more general
definition of minimal elements using ordering cones is typically used in, however,
not limited to, the field of vector optimization. From this perspective multiobjective
optimization can be seen as a special case of vector optimization. For details we refer
to the monograph of Jahn (2004).
Nondominated points can be classified further. A nondominated point is called

supported if it is contained in the set

F :=
{
y ∈ conv(ZN ) :

(
{y} − Rm+

)
∩ conv(ZN ) = {y}

}
,

see, e.g., Ruzika (2007), where conv(S) denotes the convex hull of a set S. Other-
wise, i.e., if a nondominated point is not contained in F , it is called unsupported or
nonsupported. If the set of feasible outcomes Z of a given problem is Rm+ -convex,
then all nondominated points are supported. A set is called Rm+ -convex if Z +Rm+ is
convex (Ehrgott, 2005), where Z + Rm+ := {z + y : z ∈ Z, y ∈ Rm+} denotes the alge-
braic sum of the two sets Z and Rm+ . The breakpoints of the nondominated set of an
Rm+ -convex problem are called extreme nondominated points. The nondominated set
of a discrete or non-convex problem typically contains supported and unsupported
points.
An order of special interest is the lexicographic order. For two vectors z, z̄ ∈ Z we

define “≤lex” as

z ≤lex z̄ :⇔ z = z̄ or zi < z̄i for i = min{j : zj 6= z̄j , j = 1, . . . ,m}.

15



2 Preliminaries

Let π = (π1, . . . , πm) be any permutation of (1, . . . ,m). Then x̄ ∈ X is said to be
lexicographically optimal with respect to π if there exists no x ∈ X,x 6= x̄, such that
fπ(x) ≤lex fπ(x̄), where fπ(x) = (fπ(1)(x), . . . , fπ(m)(x))>, see, e.g., Gorski (2010).
It is immediately clear that every lexicographically optimal solution is also efficient.
Under the given assumption that Z is compact, lower and upper bounds on ZN

can be computed. A sharp lower bound on the nondominated set is given by the
ideal point which we denote by zI . The i-th component of the ideal point is defined
as the minimum of the i-th objective, i.e.,

zIi := min{zi : z ∈ Z} ∀ i = 1, . . . ,m. (2.11)

In general, it holds that zI 6∈ Z. If Z is replaced by a subset S ⊂ Z in (2.11), then we
call the resulting point a local ideal point with respect to S. A point zU that strictly
dominates zI is called a utopia point. A sharp upper bound on the nondominated
set is given by the nadir point zN with components

zNi := max{zi : z ∈ ZN} ∀ i = 1, . . . ,m. (2.12)

Note that in case of the nadir point the maximum over the nondominated set is
built which is a complicated task in general. However, for bicriteria problems the
nadir point can be easily determined in the following way. The two lexicographically
optimal points are computed with respect to π = (1, 2) and π = (2, 1) by solving
first zIi := min{zi : z ∈ Z} for each i = 1, 2 and then, again for each i = 1, 2,
z∗j := min{zj : zi ≤ zIi , z ∈ Z} with j ∈ {1, 2}\{i}. The nadir point then equals z∗.
For more than two objectives the nadir point can no longer be computed with the
help of all lexicographically optimal points as the following example of Szczepanski
and Wierzbicki (2003) shows. The considered tricriteria linear optimization problem,
transformed into minimization format, reads

min
x∈R3

−


100− 7x1 − 20x2 − 9x3

4x1 + 5x2 + 3x3

x3


s.t. 3

2x1 + x2 + 8
5x3 ≤ 9,

x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(2.13)

The nondominated set of Problem (2.13) consists of two faces, which are defined
by the extreme points z1 = −(100, 0, 0)>, z2 = −(58, 24, 0)>, z3 = −(493

8 , 167
8 , 5

5
8)>,

z4 = −(12, 31, 0)> and z5 = −(3 7
11 , 26 9

11 , 3
7
11)>, see Figure 2.1. The points defining

zIi , i = 1, 2, 3, are z1, z4 and z3, respectively. The local nadir point with respect to
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Figure 2.1: Example of Szczepanski and Wierzbicki (2003): The local nadir point zLN ,
computed from the three lexicographically optimal points z1, z3 and z4, underestimates the
true nadir point zN , defined by z1, z3 and z5.

these three points is −(12, 0, 0)>. However, the true nadir point is defined by z1, z3

and z5 and equals zN = −(3 7
11 , 0, 0)>. This simple example shows that for m ≥ 3

the local nadir point defined by the lexicographically optimal points is only a lower
bound on the nadir point, in general.
An estimate on the nadir point that may under- or overestimate the true nadir

point is computed with the help of the well-known payoff-table, see, e.g., Isermann
and Steuer (1987). Each objective is individually minimized and the resulting out-
come is inserted as corresponding column of an (m×m)-matrix. While the diagonal
of the payoff-table contains the components of the ideal point, an estimate on the
nadir point is obtained by computing the maximum entry of each row and combining
these maxima to a corresponding vector. Note that the resulting vector might over-
estimate the true nadir point if some of the individual minima correspond to weakly
nondominated points.
A guaranteed upper bound on ZN is given by

zMi := max{zi : z ∈ Z}+ δ ∀ i = 1, . . . ,m (2.14)

with δ > 0. We will use this vector of individual maxima whenever the nadir point
is not available.
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2.2 Representation and Approximation of the Nondominated
Set

We call a finite set of nondominated points (discrete) representation, representative
subset or representative system in the following, see, e.g., Armann (1989), Sayın
(2000), Ruzika (2007) or the survey of Faulkenberg and Wiecek (2010).

Definition 2.1 (Representation). A finite set R ⊆ ZN is called a (discrete) rep-
resentation of ZN . If R = ZN , we call R a complete representation, otherwise an
incomplete representation.

The notion of an approximation of the nondominated set is more general: An
approximation might contain points that are not nondominated. We borrow the
definition of Hansen and Jaszkiewicz (1998) but modify it slightly to our purpose as
we do not assume A to be a finite subset of f(X) and use the Pareto cone C = Rm+ .

Definition 2.2 (Approximation). A set A ⊆ Rm is called an approximation of the
set ZN if for all points z1, z2 ∈ A, z1 6= z2 it holds that

z1 � z2 and z2 � z1,

i.e., if no point in A is dominated by any other point in A.

Note that, according to Definitions 2.1 and 2.2, a representation is also an ap-
proximation. Nevertheless, we will use the term approximation in the following only
when the set of computed points contains at least one point that is not part of ZN
or if we cannot guarantee that all points are nondominated. In the literature, there
is no unifying notion and often the term approximation is used for both, i.e., a set
of approximating or representing points. An approximation might be constructed
from a discrete representation whose points are connected, e.g., by piecewise linear
functions. However, an approximation might also consist of a set of discrete points
which are not nondominated themselves but close to nondominated points. We refer
to the survey paper of Ruzika and Wiecek (2005) for more details.
From a practical perspective incomplete representations and approximations are

important for several reasons. If the nondominated set is not finite and no method is
known to find the nondominated set by solving a finite number of auxiliary problems
(as is, e.g., possible for linear bicriteria problems), then we are naturally limited to
generate only an incomplete representation or an approximation. But even if the
nondominated set is finite, it may still grow exponentially with the problem size and,
hence, be intractable (Ehrgott and Gandibleux, 2000). This means that, on the one
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hand, the computational effort of generating a complete representation is too high,
while, on the other hand, no sense is seen in presenting an exponentially large set of
points to a decision maker.
From a theoretical perspective it is typically of interest whether a method is able to

find a complete representation for finite problems, even if the latter is not generated
in practice. Thereby, the generation of a complete representation can also be seen
as a sort of validation of a solution method.

Quality Criteria

In Definitions 2.1 and 2.2 no quality criteria are given. However, in order to have
meaningful substitutes of the nondominated set, indicators measuring the quality of
a representation or approximation have been introduced. In Sayın (2000) the three
criteria coverage, uniformity and cardinality are proposed as quality measures for
representations. The coverage error of a representation R is defined by

dC(R, ZN ) := sup
z∈ZN

min
y∈R

d(z, y), (2.15)

with d being a norm. Coverage is a measure for the worst represented nondominated
point. Note that (2.15) corresponds to the Hausdorff metric for the two sets ZN
and R

dH(R, ZN ) := max
{

sup
y∈R

inf
z∈ZN

d(z, y), sup
z∈ZN

inf
y∈R

d(z, y)
}

= sup
z∈ZN

inf
y∈R

d(z, y), (2.16)

as R ⊆ ZN . The uniformity level is defined by

dU (R) := min
z,y∈R,z 6=y

d(z, y) (2.17)

and measures the distance between the closest representing points. Lastly, cardinal-
ity is given by the number of representing points, hence, it equals |R|. In order to
obtain a ‘good’ representation, the coverage error is minimized, the uniformity level
is maximized and the cardinality is minimized. As pointed out, e.g., by Eichfelder
(2006) and Ruzika (2007), these three criteria are competing, i.e., the generation of
a representation that meets all criteria is again a multiobjective problem. In par-
ticular, minimizing the coverage error on the one hand and maximizing uniformity
and minimizing cardinality on the other hand are contrary, in general. A good com-
promise would be a representation that contains sufficiently many but not too many
evenly distributed points which cover all parts of the nondominated set ‘sufficiently
well’.
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In general, it is difficult to compute the coverage error as the nondominated set
is typically not available (Armann, 1989). Therefore, Eichfelder (2006) proposes to
replace (2.15) by

max
j∈{1,...,R}

max
z∈N (zj)

d(zj , z), (2.18)

where R = {z1, . . . , zR} is the representation and N (zj), j = 1, . . . , R, denotes the
set of representatives that are neighbors of zj ∈ R. Thereby, it is assumed that
the representatives cover the entire nondominated set sufficiently well. However, a
difficulty consists in the determination of neighbored representatives. While this task
is easy in the bicriteria case, it is not evident for three or more objectives. Another
problem that is also mentioned in Eichfelder (2006), is that for non-convex problems
the nondominated set is not connected, in general. This must be respected in the
determination of neighboring points, too.

A further quality measure, introduced by Zitzler and Thiele (1998), is the so-
called hypervolume indicator. It was originally intended for (and is mainly used in)
the context of evolutionary algorithms. The (dominated) hypervolume denotes the
m-dimensional volume that is dominated by a given set of nondominated points.
Therefore, typically a reference point r ∈ Rm is chosen. Then, the dominated hy-
pervolume with respect to a finite set of nondominated points R is given by the set

⋃
z∈R
{y ∈ Rm : zi ≤ yi ≤ ri ∀ i = 1, . . . ,m}. (2.19)

If available, the nadir point can be chosen as reference point. For further quality
criteria for representations we refer to Faulkenberg and Wiecek (2010).

If a continuous (e.g., a piecewise linear) approximation is sought, the criteria uni-
formity and cardinality are not meaningful, but coverage is still a useful criterion. In
the literature, the notions of an inner and outer approximation are used, where —
roughly spoken — an inner approximation contains feasible points, while an outer
approximation contains mostly infeasible points. If both approximations are con-
structed in parallel, the notion sandwich approximation is common as the nondom-
inated set is bounded from below and above. In this case the Hausdorff distance
between these two sets serves as quality criterion. In this thesis we only focus on
representations. Therefore, we omit a detailed discussion of quality criteria for ap-
proximations and refer to Ruzika and Wiecek (2005) for further information.
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2.3 Scalarization Methods

A common technique to solve problems of the form (2.1) is to replace the original
multiple objective problem by one or a series of parametric single objective problems
with a scalar-valued objective function, a so-called scalarization (see, e.g., Ehrgott,
2005; Miettinen, 1999). Then well-known (single criterion) methods can be applied
to solve the problem. A variety of different scalarization methods exists.
However, scalarizations are not the only concept available to solve multiobjective

optimization problems. A different, very common methodology is evolutionary mul-
tiobjective optimization (EMO), see, e.g., Deb (2001) for an overview. Thereby, not
only one but a set of initial solutions is created. A so-called fitness, that is related to
the values of the objective functions evaluated for the respective solution, is assigned
to each solution. By specific mechanisms which mimic a genetic process, the fitness
of the maintained solutions is improved so that the population tends to efficient so-
lutions. Evolutionary methods can be easily applied to multicriteria optimization
problems, as the method deals with a set of points at every step of the algorithm.
Therefore, typically a good diversity among the solutions can be achieved. However,
as the solution process is stochastic, there is no guarantee to obtain efficient solu-
tions. Nevertheless, EMO is very popular and widely used, especially in engineering
applications.
A second non-scalarizing methodology consists in the generalization of the theory

of single objective optimization to the multiobjective case. This results in multicri-
teria variants of the steepest descent or Newton method. We refer to Fliege and
Svaiter (2000) and Fliege et al. (2009) for details.
In this thesis we focus on scalarization methods for solving multicriteria optimiza-

tion problems. In the following we present a selection of well-known scalarization
approaches from the literature and state their theoretical properties. Of particular
importance is the question whether the outcomes generated by a specific method
always correspond to nondominated points of (2.1) and whether all nondominated
points of (2.1) can be generated by appropriately varying the involved parameters
of the respective scalarization. Besides, also the structure of the scalarization plays
a role, as it is typically correlated to the effort needed to solve the problem compu-
tationally.

The Weighted Sum Method

Probably the most widely used scalarization is the weighted sum method where a
convex combination of the objective functions is built. In Gass and Saaty (1955)
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the weighted sum is introduced as ‘the parametric function’ for linear programming
problems with two objectives. In general, the weighted sum problem is formulated
as

min
x∈X

m∑
i=1

λifi(x), (2.20)

where λ ∈ Rm+ , i.e., λi ≥ 0 for all i = 1, . . . ,m, and ∑m
i=1 λi = 1. The parameters λi,

i = 1, . . . ,m, are usually called weights since they indicate which relative importance
the objective fi, to which λi is associated, has with respect to the other objectives.
One important advantage of the weighted sum approach is that the constraints of
the problem do not change with respect to the underlying multicriteria problem, i.e.,
that the feasible set of (2.20) is the same as of (2.1). This implies that the scalarized
problem does not become more difficult to solve than its multicriteria counterpart.
This property is particularly important when a combinatorial problem is considered
whose constraint set has a specific structure.
It is well-known (Geoffrion, 1968) that for λ ∈ Rm> , i.e., λi > 0 for all i = 1, . . . ,m,

every solution of (2.20) is properly efficient. If λi = 0 for at least one i = 1, . . . ,m,
then a solution of (2.20) is weakly efficient, and efficient if the solution is unique.
Conversely, every supported efficient solution can be obtained as a solution of (2.20)
with suitable weights. This implies that for convex problems every properly effi-
cient solution can be obtained for some λ ∈ Rm> and every weakly efficient solution
for some λ ∈ Rm+ . However, no unsupported efficient solution can be generated
by a weighted sum regardless of the choice of the weights, which represents the
main drawback of this method. Nevertheless, because of its simple construction and
structure-preserving nature, it is frequently used in practice. Besides, since all sup-
ported nondominated points can be computed by a weighted sum, the method is
often used for that purpose, see, e.g., the two phase method of Ulungu and Teghem
(1995).

The ε-Constraint Method

The ε-constraint method was first proposed in Haimes et al. (1971) and is discussed
in more detail in Chankong and Haimes (1983). In this method one of the objectives
fi with i ∈ {1, . . . ,m} is selected and minimized whereas bounds are imposed on all
other objectives, which yields

min fi(x)
s.t. fk(x) ≤ εk ∀ k = 1, . . . ,m, k 6= i,

x ∈ X,

(2.21)
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where ε ∈ Rm. Note that component i of vector ε is not used in (2.21). It is well-
known that every feasible solution of (2.21) is weakly efficient. If the solution is
unique, then it is efficient.
On the other hand, for every efficient solution x̄ ∈ XE there exists a vector ε ∈ Rm

such that x̄ solves (2.21) for any i = 1, . . . ,m. More precisely, every efficient solution
x̄ ∈ XE is an optimal solution of (2.21) for any i = 1, . . . ,m and ε = f(x̄).

The Hybrid Method

Wendell and Lee (1977) and Corley (1980) propose to combine the weighted sum
and the ε-constraint problem. The resulting problem, known as hybrid approach,
see, e.g., Chankong and Haimes (1983), reads

min
m∑
i=1

λifi(x)

s.t. fi(x) ≤ εi ∀ i = 1, . . . ,m,

x ∈ X

(2.22)

with λi > 0 for all i = 1, . . . ,m. Due to the weighted sum objective and the positive
weights, every feasible solution of (2.22) is properly efficient. On the other hand,
every properly efficient solution can be obtained by a suitable choice of ε ∈ Rm and
arbitrarily chosen λ ∈ Rm> . Note that, in contrast to the weighted sum, also all non-
supported properly efficient solutions can be computed thanks to the ε-constraints.

Compromise Programming

The ideal point is the most desired point of a multicriteria problem as it meets all
objectives best. However, in the presence of conflicting objectives, the ideal point is
not feasible, in general. A point as close as possible to the ideal point is seen as a
good compromise. This is the basic idea of Compromise programming according to
Zeleny (1973), also called method of the global criterion, see, e.g., Miettinen (1999).
Thereby, the distance is measured with the help of a norm, typically an lp-norm. Of

special interest are the cases p = 1, 2,∞. In general, the formulation of compromise
programming reads

min
x∈X

(
m∑
i=1
| fi(x)− zIi |p

) 1
p

(2.23)

for 1 ≤ p <∞ and
min
x∈X

max
i=1,...,m

{∣∣∣ fi(x)− zIi ∣∣∣} (2.24)
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for p = ∞. Problem (2.24) is also called Tchebycheff problem and will be treated
separately below. Note that fi(x)−zIi ≥ 0 holds for all i = 1, . . . ,m according to the
definition of the ideal point, i.e., the absolute values in the objective function can be
dropped. From a more general perspective the ideal point can be seen as a reference
point and the objective function with absolute values dropped as an achievement
scalarizing function as introduced by Wierzbicki (1980).
It is well-known that every solution of (2.23) is efficient, see, e.g., Miettinen (1999).

Note that the use of the ideal point as reference point in (2.23) is important. If, for
example, the ideal point was replaced by any feasible point f(x̄), x̄ ∈ X, then x̄

would be optimal for (2.23) regardless whether f(x̄) is (weakly) nondominated or
not. If we were allowed to vary the reference point, then it would be immediately
clear that every efficient solution can be obtained as a solution of (2.23). However,
if the reference point remains fixed to the ideal point, we might only obtain different
outcomes by varying the norm, or, more precisely, the value of p. Thereby, typically,
only a small subset of the nondominated set can be obtained. Thus, a more flexible
problem formulation is desirable, which is, for example, given by a weighted variant
of (2.23) that reads

min
x∈X

(
m∑
i=1

wi| fi(x)− zIi |p
) 1
p

(2.25)

with w ∈ Rm+ . However, note that the objective function of (2.25) does not necessarily
constitute a norm if some components of w are zero. Therefore, in some formulations,
the reference point zI is replaced by a utopian point zU , as then also those points
that equal zI in at least one component can be generated with positive weights, i.e.,
w ∈ Rm> can be set. Now, similar to the unweighted case, it holds that every solution
of (2.25) is efficient if either w ∈ Rm> or the solution of (2.25) is unique.
Note that for p = 1, the weighted sum method is obtained, as the objective func-

tion then equals (2.20) up to the constant −∑m
i=1 wiz

I
i , that can be omitted for

optimization. Therefore, converse results for p = 1 are the same as for the weighted
sum method.

The Weighted Tchebycheff Method and Variants

The weighted Tchebycheff problem was introduced in Bowman (1976) and studied in
detail in Steuer and Choo (1983). It is defined as

min
x∈X

max
i=1,...,m

{
wi
∣∣∣ fi(x)− zUi ∣∣∣} (2.26)

with w ∈ Rm> . The weights are typically normalized, i.e., ∑m
i=1wi = 1. Note that, as

already discussed for the weighted variant of compromise programming, a utopian
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point zU instead of the ideal point is chosen as reference point, as otherwise the
lexicographically optimal solutions could not necessarily be obtained by (2.26) due
to the positive weights.
It is well-known (Bowman, 1976) that every solution of (2.26) is weakly efficient,

and efficient if the solution is unique. Conversely, for every efficient solution x̄ ∈ XE

there is some w ∈ Rm> such that x̄ solves (2.26). The corresponding weights are
explicitly stated in Steuer and Choo (1983).
As, by definition, zUi < fi(x) for all i = 1, . . . ,m holds, the absolute values in

the objective function of (2.26) can be dropped. Moreover, the max-function in the
objective can be replaced by inequalities. An alternative formulation of (2.26) is,
thus, given by

min t

s.t. t ≥ wi
(
fi(x)− zUi

)
, i = 1, . . . ,m,

t ∈ R, x ∈ X.
(2.27)

Formulation (2.27), presented in Steuer and Choo (1983), which employs an addi-
tional variable t and introduces m new constraints, is particularly used when all un-
derlying functions are differentiable. While the objective function of problem (2.26)
with the absolute values dropped is not differentiable due to the l∞-norm, the ob-
jective and all constraints of problem (2.27) are, see, e.g., Miettinen (1999). Since
w ∈ Rm> , another equivalent reformulation of (2.26) is given by

min t

s.t. zUi + 1
wi
t ≥ fi(x), i = 1, . . . ,m,

t ∈ R, x ∈ X,
(2.28)

where d := ( 1
w1
, . . . , 1

wm
)> can be interpreted as search direction. Formulations (2.27)

and (2.28) have the same theoretical properties as (2.26), i.e., the solutions are weakly
efficient, but not necessarily efficient. Therefore, Steuer and Choo (1983) propose the
following two modifications of the weighted Tchebycheff problem so that a solution
is guaranteed to be efficient.

The Lexicographic or Two-Stage Weighted Tchebycheff Method

The first approach is called lexicographic weighted Tchebycheff method and consists
of two stages. In the first stage a weighted Tchebycheff problem is solved. In the
second stage the (weakly efficient) solution x∗ of the first stage is used to solve the
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problem

min
m∑
i=1

fi(x)

s.t. fi(x) ≤ fi(x∗), i = 1, . . . ,m,
x ∈ X

(2.29)

to optimality. It is shown in Steuer and Choo (1983) that every optimal solution
of (2.29) is efficient. Conversely, every nondominated point can be found by selecting
appropriate parameters w ∈ Rm> and solving (2.26) and (2.29). Note that (2.29) can
be seen as a hybrid approach with ε = f(x∗) and w = e = (1, . . . , 1)>.
According to the terminology used in Sayın and Kouvelis (2005), we also refer to

this method as the two-stage weighted Tchebycheff method in the following, which
reflects the fact that, independently of the number of objectives, two optimization
problems are solved to obtain one nondominated point. Note that, in general, a
second stage problem of the form (2.29) can be combined with any scalarization that
yields a weakly nondominated point in the first stage, for example also with the
classic ε-constraint method.

The Augmented Weighted Tchebycheff Method

A second variant of the weighted Tchebycheff method that avoids weakly nondomi-
nated points consists in modifying the objective function of the scalarization method
slightly by adding a so-called augmentation term such that all objective functions
become involved. The augmented weighted Tchebycheff method is given by

min
x∈X

max
i=1,...,m

{
wi
(
fi(x)− zUi

)}
+ ρ

m∑
j=1

(
fj(x)− zUj

)
(2.30)

with w ∈ Rm> ,
∑m
i=1wi = 1 and ρ > 0, where ρ is a sufficiently small scalar. Likewise

we might set ρ ≥ 0 such that (2.26) becomes a special case of (2.30). Sometimes zI

is used as a reference point instead of zU in (2.30), and w ∈ Rm+ is assumed. Then
we require that either w ∈ Rm> or ρ > 0.
It is shown in Steuer and Choo (1983) that for a sufficiently small choice of ρ > 0

every optimal solution of (2.30) is properly efficient. Conversely, every properly
nondominated point can be obtained by solving Problem (2.30) with an appropriate
choice of the involved parameters. An improperly nondominated point cannot be
generated with a positive value of ρ. In this case, the two-stage approach must be
used instead of the augmented approach. The advantage of the augmented variant
in comparison to the two-stage variant is that only one stage, i.e., one scalarized
problem, must be solved. On the contrary, the determination of an appropriate
value of ρ is required.
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The Modified Weighted Tchebycheff Method

Kaliszewski (1987) proposes the modified weighted Tchebycheff problem. It is given
by

min
x∈X

max
i=1,...,m

wi
(fi(x)− zUi )+ ρ

m∑
j=1

(
fj(x)− zUj

) (2.31)

with w ∈ Rm> ,
∑m
i=1wi = 1 and ρ > 0 sufficiently small. This scalarization has the

same theoretical properties as the augmented weighted Tchebycheff method.

The Method of Pascoletti and Serafini

In Pascoletti and Serafini (1984) the scalarization

max
(ξ,x,λ)

ξ

s.t. f(x) = p+ ξq + λ, λ ∈ Λ,
(ξ, x, λ) ∈ R×X × Y

(2.32)

is considered for maximization problems, where X is a set, Y a finite-dimensional
real linear space, f : X → Y a map and Λ ⊂ Y a closed convex cone. Moreover,
(p, q) ∈ Y × L(Λ) denotes the given parameter set with L(Λ) being the smallest
subspace of Y containing Λ. It is shown that for any Λ-minimal x0 there exists some
pair (p, q) such that (2.32) has a solution (ξ, x, λ) with x = x0. Conversely, for any
solution (ξ, x, λ) of (2.32), x is Λ′-optimal, where Λ′ denotes the relative interior
of Λ. If Λ equals the Pareto cone, the result implies that x is weakly efficient.
However, note that (2.32) does not necessarily have a solution. In Eichfelder (2006),
see also Eichfelder (2009a) and Eichfelder (2009b), (2.32) is restricted to the case
Y = Rm, q ∈ int(C) 6= ∅, where C ⊂ Rm is a closed pointed convex cone and int(C)
denotes the interior of C. Moreover, (2.32) is reformulated for minimization problems
as

min
(ξ,x)

ξ

s.t. p+ ξq − f(x) ∈ C,
ξ ∈ R, x ∈ X.

(2.33)

According to (2.10), p+ξq−f(x) ∈ C is equivalent to f(x) ≤C p+ξq. For C := Rm+ ,
we equivalently obtain p+ ξq = f(x).
In Eichfelder (2009b) it is shown that for a specific choice of p, q and C, most of the

classic scalarizations can be obtained. For example, the ε-constraint method (2.21)
results from (2.33) by setting C = Rm+ , pk = εk for all k 6= i, pi = 0 and q = ei,
where ei denotes the i-th unit vector. The weighted Tchebycheff method is derived
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for C = Rm+ , p = zU and qi = 1/wi for all i = 1, . . . ,m. Other scalarizations that are
proven to be special cases of (2.33) are, among others, the weighted sum method,
the hybrid approach and the modified weighted Tchebycheff problem.

2.4 Parametric Algorithms

The solution of one scalarization yields one (weakly) efficient solution and, thus,
one (weakly) nondominated point in the objective space. In order to compute a set
of nondominated points with the help of a scalarization method, the parameters of
the chosen scalarization have to be varied. Therefore, the scalarization is typically
embedded in an algorithm that repeatedly solves the same scalarized problem for
different choices of its parameters. We refer to such an algorithm as a parametric
algorithm in the following, independent of the specific scalarization chosen. We also
use the term parametric scalarization in order to emphasize that the parameters of
the chosen scalarization are varied. A scalarization with a certain parameter choice is
called a subproblem. Hence, a parametric algorithm consists in the successive solution
of subproblems.
Thereby, the question arises how the parameters should be varied. Following the

terminology of Hamacher et al. (2007), we distinguish a priori and a posteriori pa-
rameter schemes. For brevity, we will often simply speak of a priori and a posteriori
methods. Note that, throughout this thesis, these notions always refer to the param-
eter selection and not, as in other classifications, to the articulation of preferences
(Miettinen, 1999) or the incorporation of error measures (Faulkenberg and Wiecek,
2012).

A Priori Parameter Selection

We call a parameter choice a priori if the parameters of all subproblems are fixed
before the iterative solution procedure starts. Bounds on the nondominated set
might already be available and used. Examples are a random parameter selection,
see, e.g. Steuer and Choo (1983), or a uniform parameter choice. For example, in
case of the weighted sum method for bicriteria problems with normalized parameters
λ1 = λ, λ ∈ [0, 1], λ2 = 1 − λ, the interval [0, 1] is divided into N subintervals
[λi, λi+1], i = 0, 1, . . . , N − 1, where λi = i/N for all i = 0, 1, . . . , N . However, this
simple technique has the drawback that even for Rm+ -convex nondominated sets, an
evenly distributed set of weights does typically not produce an even distribution of
nondominated points from all parts of the nondominated set, as discussed in Das
and Dennis (1997).
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An a priori parameter selection for the ε-constraint method can be found, e.g.,
in Hamacher et al. (2007) or Eichfelder (2009a). As the ε-constraints are related
to the values of the respective objectives, bounds on the latter should be included
into the computation of a priori parameters. Otherwise, a high number of infeasible
subproblems might be obtained. Therefore, parameters of an ε-constraint method
are typically computed based on available bounds. The subdivision is then achieved
with a specified fixed stepsize for each objective, see, e.g., Chankong and Haimes
(1983).
A further drawback of a priori approaches is that different choices of parameters

might yield the same nondominated point, which causes an unnecessary computa-
tional effort.

A Posteriori or Adaptive Parameter Selection

We call a parameter selection scheme a posteriori or adaptive if the computation of
the parameters is based on already known (nondominated) points. This implies that
the parameters are updated during the run of the algorithm.
If the parameters are chosen appropriately, then both disadvantages of an a priori

method, the unnecessary investigation of infeasible subproblems and the repeated
computation of the same nondominated points, can be avoided. However, the suc-
cessful application of adaptive methods depends on the quality of the computed
points. If the generated points are not nondominated, but, e.g., dominated or have
infeasible preimages, then parameters based on these ‘wrong’ points might be mis-
leading in the sense that regions containing further nondominated points are excluded
from further investigation. However, when nondominated points can be generated,
adaptive parameter schemes are very appealing as they automatically adapt to the
shape of the nondominated set.
Moreover, if a complete representation of a discrete problem is sought, the number

of subproblems can be bounded by the number of nondominated points when an
adaptive parameter scheme is used. This implies that it is possible to indicate the
number of subproblems solved in the worst case dependent on the cardinality of the
nondominated set.
In this thesis we propose a new adaptive parametric algorithm for generating a

representation of the nondominated set. Before presenting our main results in Part I,
we provide a detailed survey on related literature in the next chapter.
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3 Literature Review on Parametric
Algorithms

3.1 Introduction

In this chapter we give a detailed survey on (adaptive) parametric algorithms for
bicriteria and multicriteria optimization problems. While the methods in the multi-
criteria case are also applicable in the bicriteria case, we review methods which are
explicitly designed for bicriteria problems separately.

All reviewed methods generate a representation or a piecewise linear approximation
that is constructed from a discrete representation. Most of the presented approaches
either generate complete or incomplete representations or consider either discrete or
continuous problems. In the bicriteria case we do not classify the methods further.
With regard to the topic of this thesis we focus on methods that generate a com-
plete representation in the multicriteria case. While, in general, methods designed
for generating complete representations can be stopped prematurely resulting in an
incomplete representation and, conversely, methods that yield an incomplete rep-
resentation can also be used to generate a complete representation, if the specified
maximal error is selected small enough, the course of the corresponding algorithms
is typically different. If an incomplete representation is sought, quality measures as
discussed in Section 2.2 guide the search for new nondominated points. If a com-
plete representation is aimed at, quality criteria as discussed in Section 2.2 are not
meaningful. Recall that coverage, uniformity, cardinality and the dominated hyper-
volume are possible measures for a representation. These measures are useless in the
situation where a complete representation is sought, as they are intrinsically given
by the structure of the nondominated set. In contrast, the number of iterations is
of particular interest as it measures the number of subproblems solved and, hence,
influences the computational time of an underlying algorithm.
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3.2 Bicriteria Approaches

In Geoffrion (1967) a problem

max{h(f1(x), f2(x)), x ∈ X} (3.1)

is numerically solved with the help of a weighted sum problem. Thereby, h is an
increasing utility function, preferably quasiconcave, its arguments f1 and f2 are con-
cave (objective) functions andX is a convex set. Instead of the original problem (3.1),
max{wf1(x) + (1 − w)f2(x), x ∈ X} with w ∈ [0, 1] is solved by known parametric
programming algorithms, e.g., parametric linear or quadratic programming. As a
utility function is given explicitly, the method of Geoffrion (1967) computes only one
representing or approximating point.

Pasternak and Passy (1973) build on the approach of Geoffrion (1967). They
also assume that a utility function is given. In a first stage, they solve weighted sum
problems where the weight is initially set to one half. A particular bisection approach
is applied for varying the weight subsequently. In a second stage, a parametric hybrid
scalarization of the form

max wf1(x) + (1− w)f2(x)
s.t. f2(x) ≥ θ, (3.2)

x ∈ X

is used, where the values of θ ∈ R are selected dependent on the values of the second
objective of the nondominated points obtained in the first stage. Implicit enumera-
tion is used to solve the subproblems.

Cohon et al. (1979), see also Cohon (1978), design an algorithm called NISE
(NonInferior Set Estimation) that generates a piecewise linear inner and outer ap-
proximation of the nondominated set of bicriteria linear programs. Therefore, a
sequence of parametric weighted sum problems is solved. The algorithm starts by
computing the lexicographic maxima. While the line connecting these two points
serves as the initial inner approximation of the nondominated set, the two lines
connecting the two points with the ideal point, respectively, define an initial outer
approximation. The error is measured by the Hausdorff metric (2.16) between the in-
ner and outer approximation using the l2-norm. Initially, the error equals the length
of the perpendicular from the ideal point on the inner approximation. The normal
of the inner approximation is used to define the weights of the next subproblem. In
each iteration, the inner and outer approximation are updated based on the solution
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of the subproblem. The next subproblem is defined by the segment of the inner ap-
proximation with the largest error. The algorithm terminates when a specified error
is reached.

Aneja and Nair (1979) also use the weighted sum method to solve bicriteria lin-
ear programs. They focus on the generation of the extreme nondominated points
which are sufficient to describe the complete nondominated set. First, the two lex-
icographic minima are determined. The points are saved in increasing order with
respect to the first objective. Furthermore, the pair of indices of the two points is
saved. In all subsequent iterations, a pair of indices (r, s), that corresponds to a
pair of (temporary) adjacent nondominated points zr, zs, is selected arbitrarily. The
weights are set to w1 := |zs2 − zr2| and w2 := |zs1 − zr1|, i.e., the objective value of the
corresponding weighted sum problem is the same for both points zr and zs. If an
extreme nondominated point exists between zr and zs, it must be generated by the
weighted sum problem, as a smaller objective value of the weighted sum is obtained.
Note that it is assumed that alternative optima of the weighted sum problem can be
determined, and that, in case of the existence of alternative optima, the nondomi-
nated point with minimal value in the first objective is computed. If the outcome
of the subproblem equals zr, the pair of indices (r, s) is removed from the list since
no further extreme nondominated point exists between zr and zs. Otherwise, i.e.,
if a new nondominated point z∗ is detected, this point is saved and two new pairs
of indices corresponding to zr and z∗ and z∗ and zs are saved for an investigation
in a later iteration. The authors show that if the bicriteria problem has N extreme
nondominated points (N > 2), the algorithm performs exactly 2N − 3 iterations
after having determined the lexicographic minima. Note that Aneja and Nair (1979)
motivate their approach for a bicriteria transportation problem. However, as pointed
out by Ulungu and Teghem (1995), only supported nondominated points of the latter
can be found by this approach.

Chalmet et al. (1986) propose an algorithm for solving bicriteria integer problems
in maximization format. They focus on a complete representation of the finite non-
dominated set. While the proposed algorithm is very similar to the one of Aneja and
Nair (1979), an important difference is that constraints are imposed that eliminate
all known nondominated points as well as the regions dominated by them. In each
iteration, a subproblem

max w1f1(x) + w2f2(x)
s.t. fi(x) ≥ zLNi + 1, i = 1, 2, (3.3)

x ∈ X
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is solved, where w1, w2 > 0 and zLN denotes the local nadir point with respect to the
pair of known nondominated points (zr, zs) that has been selected for investigation.
Assuming without loss of generality that zr1 < zs1, it holds that zLN = (zr1, zs2)>.
With the help of the hybrid formulation it is possible to generate all supported and
unsupported nondominated points. It is shown that 2|ZN |+ 1 integer programs are
solved in total. Note that this bound is compatible with the one of Aneja and Nair
(1979) since four integer problems need to be solved to determine the lexicographic
maxima. Chalmet et al. (1986) also extend their approach to problems with more
than two criteria. We will discuss this extension in Section 3.3 below.

Eswaran et al. (1989) propose an algorithm for nonlinear integer bicriteria prob-
lems in maximization format. As scalarization a weighted Tchebycheff method with
normalized weights is used, i.e., the weight parameter is chosen from the initial para-
metric spaceW := [0, 1]. Since the efficient set is assumed to be uniformly dominant,
which excludes the existence of weakly efficient points, every solution of the weighted
Tchebycheff method is efficient and its image is nondominated. In the algorithm the
initial parametric space is subsequently decomposed into subintervals. Thereby, the
limits of each subinterval correspond to instances of weighted Tchebycheff problems
that have already been solved. For example, w = 0 and w = 1 correspond to the
two lexicographic maxima. In every iteration a subinterval is chosen for further re-
finement and a new weight is determined by simple bisection. If the solution of the
corresponding subproblem is a new nondominated point, then the current subinterval
is divided into two new subintervals. Thereby, with every subinterval [wr, ws] ⊂W ,
always the two nondominated points that were generated for wr and ws, respec-
tively, are saved. If one of the two nondominated points that are associated with a
subinterval is recomputed, the respective part of the subinterval is discarded from
further consideration. The algorithm terminates when ws−wr ≤ ξ holds for all (non
discarded) subintervals of W , where ξ is a prescribed small positive number. If ξ is
chosen sufficiently small, all nondominated points can be generated.

Solanki (1991) generate incomplete representations of mixed integer bicriteria lin-
ear programs in maximization format. The presented approach is similar to the al-
gorithm of Cohon (1978), but instead of a weighted sum scalarization an augmented
weighted Tchebycheff method is used. After having computed the lexicographic max-
ima and, hence, zI and zN , an initial rectangle containing further nondominated
points is computed. This rectangle is refined subsequently in the following. In
general, each rectangle is defined by two adjacent nondominated points. In each
iteration, the next rectangle is always selected as the one with the largest width
or height scaled by the ranges of the objective, i.e., scaled by |zNi − zIi | for each
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i = 1, 2. The weights are then chosen such that the inflection point of the weighted
Tchebycheff contour lies on the diagonal of the considered rectangle. The algorithm
terminates when a prescribed maximal width or height is reached in all rectangles.
The augmentation parameter ρ is chosen fixed from the interval [10−3, 10−2]. The
author states that, on the one hand, numerical difficulties may arise if ρ is chosen
too small and, on the other hand, some nondominated points might be unreachable
if the value of ρ is too large.

Ulungu and Teghem (1995) address bicriteria combinatorial optimization prob-
lems. Combinatorial problems are discrete problems with a particular structure for
which efficient single-criterion methods exist, as, e.g., the Hungarian method for the
assignment problem (Kuhn, 1955). While the weighted sum method is well suited for
combinatorial problems in general since the structure of the underlying multicriteria
problem is not destroyed by additional constraints, only supported nondominated
points can be computed. In contrast, when scalarizations are applied that gener-
ate supported as well as non-supported points, at least one additional constraint is
introduced and, consequently, efficient combinatorial methods can not be used di-
rectly, in general. Ulungu and Teghem (1995) propose a two phase procedure. In
the first phase, all supported nondominated points are determined with a weighted
sum scalarization, where the weights are varied as in Aneja and Nair (1979). Note
that, as in Aneja and Nair (1979), it is assumed that all alternative optima of the
weighted sum problem are determined, respectively. When the first phase stops, a set
of triangles between adjacent supported points remains in which further unsupported
nondominated points might lie. In the second phase, all triangles are investigated
with a problem-specific combinatorial procedure.

In Schandl et al. (2001) an algorithm that generates a piecewise linear approx-
imation for continuous and discrete bicriteria problems in minimization format is
proposed. A scalarization of the general form

max
{
γ(z) : z ∈ Z ∩

(
{r} − R2

+

)}

is used, where γ : R2 → R is an oblique norm (i.e., a norm with a polyhedral unit
ball where no facet is parallel to any coordinate axis), and r ∈ Z + R2

+ is a given
reference point. W.l.o.g., the origin is taken as reference point. The principal idea is
to use a part of the unit ball of the oblique norm as (convex) approximation of the
nondominated set. The unit ball, which is assumed to be polyhedral, is decomposed
into a set of cones, each of which is defined by a pair of two adjacent nondominated
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points. For each cone, a candidate is computed by solving

max γ(z) = λi + λj

s.t. z = λiz
i + λjz

j ,

λi, λj ≥ 0,
z ∈ Z.

(3.4)

Note that the ‘weights’ λi and λj that are associated with the known nondominated
points zi and zj are variables themselves. In (3.4) a nondominated point z∗ is de-
termined that lies in the cone defined by zi and zj and, thus, can be expressed as
a linear combination of zi and zj with non-negative weights. The deviation of the
candidate from the current approximation is given by |γ(z∗)− 1|, i.e., it is computed
with the help of the optimal objective value of (3.4). In each iteration, the candidate
with the largest deviation is inserted, the approximation is updated by connecting
the new point with the two points defining the corresponding cone, respectively, and
the cone is subdivided into two new cones. Then, a new candidate is computed in
each of the two new cones and a new iteration starts. The procedure stops when
either a prescribed number of cones or a desired maximal deviation is obtained. How-
ever, only supported nondominated points can be computed by (3.4). Therefore, if a
general, possibly non-convex or discrete problem is considered, a second stage is per-
formed when the desired accuracy has been obtained. Now, a lexicographic weighted
Tchebycheff method with a local ideal point as reference point and the weights de-
fined with respect to the local nadir and the local ideal point is employed in order
to generate additional unsupported points. The main difference of the approach of
Schandl et al. (2001) from all previously presented methods is the property that the
approximation error is provided by the scalarization itself.

Sayın and Kouvelis (2005) use a two-stage weighted Tchebycheff scalarization
to solve bicriteria discrete optimization problems in minimization format. Thereby,
two variants are employed, where the first uses the ideal point and the second the
origin as fixed reference point. Note that, w.l.o.g., it is assumed that Z ⊆ R2

>. The
algorithm is similar to the algorithm of Eswaran et al. (1989). It improves the latter,
as, instead of simple bisection, the weights of the current subproblem are determined
based on the fixed reference point and the local nadir point with respect to the se-
lected pair of adjacent points. However, the authors do not discard the complete
rectangle between two adjacent points when one of its defining points is computed in
the current subproblem. Instead, the algorithm keeps on subdividing the paramet-
ric space, even if certain subproblems can not contain further nondominated points.
Similar to Eswaran et al. (1989), the algorithm terminates when a prescribed dis-
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tance between every pair of subsequent weights is reached. A numerical study reveals
that the variant which uses the origin as reference point requires considerably less
computational time than the original Tchebycheff method. While no explanation
for this observation is given, the difference is probably caused by the fact that the
weights depend on the chosen reference point while the termination criterion does
not.

In Eichfelder (2006), see also Eichfelder (2009a), an equidistant representation
of the nondominated set of continuous multicriteria optimization problems is gen-
erated in which the representing points have a predefined l2-distance α > 0. As
scalarization the method of Pascoletti and Serafini (2.32) is used which, among oth-
ers, also comprises the weighted Tchebycheff method as a special case. We describe
the general method with the help of this scalarization in the bicriteria case in the
following. Note that while the method can be used for an arbitrary number of ob-
jectives, a special algorithm is derived in the bicriteria case. Therefore, we discuss
the bicriteria case separately and will state the algorithm for the general case in
Section 3.3 below. In the bicriteria case, the considered Tchebycheff subproblems are
of the form

min t

s.t. ri + t di ≥ fi(x), i = 1, 2,
t ∈ R, x ∈ X.

(3.5)

Thereby, the direction d ∈ R2
+, d1 > 0, is given as input and kept constant throughout

the algorithm. The reference points r ∈ R2 are chosen adaptively from a hyperplane
H := {y ∈ R2 : b>y = β} whose parameters b ∈ R2 and β ∈ R are also given as
input. First, the lexicographic minima are determined. The corresponding reference
points r1 ∈ H and rE ∈ H are computed as well as the Lagrangian multiplier µ1,
corresponding to the constraints r1 + t1 d = f(x1) in (3.5). In each iteration, the
next reference point on the line connecting r1 and rE is determined adaptively based
on the previously computed point. Thereby, a first or second order approximation of
the nondominated set is implicitly constructed and, with the help of the Lagrangian
multipliers, a reference point r ∈ H is determined such that the solution of the next
subproblem (3.5) yields a point that has approximately the desired distance α from
the previously computed point. Based on this approximated reference point, (3.5)
is solved in the following. If, for the resulting point f(x∗), all constraints in (3.5)
are satisfied with equality, the algorithm proceeds by computing the next estimated
reference point. Otherwise, a correction of the next reference point is applied which
avoids that the algorithm gets stuck in non-convex parts of the nondominated set.
The algorithm proceeds until the reference point that corresponds to xE is reached.
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Laumanns et al. (2006), see also Laumanns et al. (2005), propose an approach
to generate a complete representation for problems in maximization format with any
number of criteria. However, as their method yields the best known upper bound on
the number of subproblems in the bicriteria case, we review their approach for the
bi- and the general multicriteria case separately. Laumanns et al. (2006) employ a
lexicographic ε-constraint method

lex max (f1(x), f2(x))>

s.t. l2 < f2(x),
x ∈ X

(3.6)

as scalarization. A first (unconstrained) scalarization with l2 := ‘∞′ is solved that
yields the nondominated point z∗ with minimal second component. In all iterations,
l2 := z∗2 is set, where z∗ denotes the nondominated point obtained in the previous
iteration. Thereby, all nondominated points are generated sorted in increasing order
with respect to the second component. Every subproblem yields a new nondominated
point besides the last subproblem which is infeasible. Hence, a complete representa-
tion is obtained within the solution of |ZN |+ 1 subproblems.

Ralphs et al. (2006) propose an algorithm for integer bicriteria optimization prob-
lems in maximization format. The (augmented) weighted Tchebycheff method is
used as scalarization. The authors improve the approach of Eswaran et al. (1989) by
computing the weights of the subproblems as presented in Solanki (1991), i.e., based
on the local ideal and local nadir point with respect to the two nondominated points
between which a new nondominated points is sought. Thereby, in each iteration, ei-
ther a new nondominated point is generated or the pair of nondominated points that
define the weights of the current subproblem can be discarded from further consider-
ation. The algorithm is shown to solve 2|ZN |−1 subproblems , where the generation
of the lexicographic maxima is included and the computation of each lexicographic
maximum is counted as one subproblem. Hence, the stated number of subproblems
equals the one presented in Chalmet et al. (1986). If the efficient set is uniformly
dominant (see Eswaran et al. (1989)), a weighted Tchebycheff method is used, oth-
erwise an augmented weighted Tchebycheff method with ρ ∈ {10−4, 10−3, 10−2} is
employed. As an alternative, a weighted Tchebycheff method that enumerates all op-
timal outcomes is proposed. If more than one nondominated point is found, weakly
nondominated points are eliminated by imposing a cut during the branch and bound
procedure. As already stated in Solanki (1991), the choice of the augmentation pa-
rameter in the augmented weighted Tchebycheff method is crucial. Even for ρ = 10−4,
the authors experience numerical problems in the sense that in some instances not
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only some nondominated points are missed but also weakly nondominated points are
computed. They conclude that it is not possible to choose a proper fixed augmenta-
tion parameter for these instances.

Hamacher et al. (2007), see alsoRuzika (2007), present an a priori and an a pos-
teriori algorithm for generating an incomplete representation for discrete bicriteria
optimization problems in minimization format. In both algorithms, a lexicographic
ε-constraint method

lexmin (f2(x), f1(x))
s.t. f1(x) ≥ ε, (3.7)

x ∈ X

is used to generate nondominated points. First, the lexicographic minima are de-
termined which define the initial rectangle in which possibly further nondominated
points lie. In the a priori variant, equidistant values for ε are determined based
on zI1 and zN1 , and a corresponding subproblem is solved. In the a posteriori vari-
ant, the area of the initial rectangle is computed which serves as quality measure
in the following. In each iteration, the rectangle with the largest area is selected
for further refinement. Let zi and zi+1 be two nondominated points defining the
current rectangle, where, w.l.o.g., zi1 < zi+1

1 holds. Then, (3.7) is solved with
ε := bzi1 + (zi+1

1 − zi1)/2c. Let z∗ be the resulting nondominated point. The au-
thors show that it is sufficient to consider the two rectangles defined by the pairs of
points (zi, z∗)> and ((ε, z∗2)>, zi+1)>, respectively, using not only the nondominance
of z∗ but also the properties of the ε-constraint method (cf. Laumanns et al. (2006)).
If an integer-valued problem is assumed, the rectangles can even be reduced further.
In any case the area of the considered rectangle can be reduced at least by a factor
of two. As termination criterion either a desired accuracy, i.e., a bound on the area
of all rectangles, or a desired maximal cardinality of the representation can be set. If
the accuracy is set to one, all nondominated points are computed by both variants.

Faulkenberg and Wiecek (2012) address the problem of generating equidistant
representations for continuous bicriteria optimization problems. Two alternative
methods to the approach of Eichfelder (2009a) are proposed. In the first method,
called Constraint Controlled-Spacing Formulation, the desired distances among the
generated points are obtained by imposing appropriate constraints. However, prob-
lems arise for non-convex problems for which the nondominated set is not connected.
Additional scalarizations are needed to check whether a point is dominated. The sec-
ond approach is denoted as Bilevel Controlled-Spacing method and addresses convex
problems. A bilevel problem is formulated in which the nondominated point is gen-
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erated in the lower level and the spacing is controlled in the upper level. The lower
level is then reformulated with the help of Lagrangian multipliers.

3.3 Multicriteria Approaches

In the following, we review literature that deals with (adaptive) parametric algo-
rithms for optimization problems with an arbitrary number of objectives. We con-
centrate on approaches that generate a complete representation of the nondominated
set for discrete multicriteria optimization problems. These methods are presented
first, while approaches for generating incomplete representations or piecewise linear
approximations are discussed at the end of this section.

Generation of complete representations

Klein and Hannan (1982) generalize the bicriteria approach of Pasternak and
Passy (1973) to a procedure for multicriteria linear integer problems in minimization
format. In every iteration s ≥ 1, they solve a problem of the form

min fk(x)

s.t.
s−1∧
i=1

 ∨
j=1,...,m
j 6=k

fj(x) ≤ fj(xi)− δj

 , (3.8)

x ∈ X,

where k ∈ {1, . . . ,m} is an arbitrarily chosen index, x1, . . . , xs−1 denote the efficient
solutions found in the previous iterations, and δj , j = 1, . . . ,m, is a positive integer.
Since the objective function comprises only one single objective, outcomes of (3.8)
might also be weakly nondominated. With the help of the disjunctive constraints
in (3.8) it is possible to consider all remaining parts of the search region simultane-
ously. However, thereby, in each iteration, a set of m− 1 constraints is added to the
problem. Numerical results for problems with two to five objectives, the largest one
having on average less than 45 efficient solutions, are presented. Besides CPU time,
the emphasis lies on the number of nodes visited in the corresponding enumeration
tree.

The method of Chalmet et al. (1986), discussed in the previous section, mainly
addresses bicriteria problems. Therefore, their idea how to extend their algorithm
to the general multicriteria case probably remained unnoticed by most authors. A
recursive procedure is proposed which, on the basic level, uses the approach for bi-
criteria problems. We describe the recursive procedure exemplary for the tricriteria
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case. First, all points are determined that are nondominated with respect to the
first two objectives and that are lexicographically maximal with respect to the third
objective. Among these nondominated points, the point with the minimal value in
the third objective is identified. Let z̄ be this point. The constraint f3(x) ≥ z̄3 + 1
is added to the formulation of the subproblem and again, all nondominated points
with respect to f1 and f2 can be determined for the modified subproblem. In order
to avoid that the same nondominated points are recomputed, additional constraints
based on known nondominated points that are adjacent in the f1-f2-projection are
imposed. Therefore, it can be guaranteed that no nondominated point is computed
more than once. For more than three criteria, further levels of recursion are required.
The authors show that at least m|ZN |+ 1 integer programs need to be solved. This
lower bound occurs when all nondominated points are found on the lowest level of
recursion and the remaining iterations are required to verify that no further non-
dominated points exist.

In the technical report of Tenfelde-Podehl (2003) a recursive approach for combi-
natorial multicriteria optimization problems is proposed. In a first stage, for a given
problem with m criteria, all m corresponding (m − 1)-criteria problems are solved
which might include further recursions until bicriteria problems are obtained. These
are solved by known methods. According to Ehrgott and Tenfelde-Podehl (2003) the
points obtained by solving all (m−1)-criteria problems represent a subset of the non-
dominated set of the original problem and, in particular, all points defining the ideal
and nadir point belong to this subset. Based on these results, the regions in which
all remaining nondominated points might lie can be described after having solved
all (m − 1)-criteria problems. In the second stage, for each nondominated point z̄
computed in the first stage, m hyperplanes hi(z̄) = {z ∈ Rm : zi = z̄i}, i = 1, . . . ,m,
are introduced which decompose the set of feasible outcomes that is bounded by the
ideal and the nadir point into boxes. A part of these boxes can be directly excluded
due to the points obtained in the first stage being nondominated. All boxes that
remain after this reduction are regrouped according to several criteria. As observed
in the computational tests of Przybylski et al. (2009), the limitation of this method
is the memory requirement needed for saving the huge number of boxes.

Sylva and Crema (2004) revisit the idea of Klein and Hannan (1982) for solving
multiple objective integer linear programs in maximization format. They change the
objective to a weighted sum in order to avoid weakly nondominated points. More-
over, they use the common reformulation (see, e.g. Nemhauser and Wolsey (1999))
of the disjunctive constraints in (3.8) with the help of binary variables. Hence, the
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subproblem to be solved in iteration s ≥ 1 reads

max
m∑
j=1

wjfj(x)

s.t. fj(x) ≥
(
fj(xi) + 1

)
yij −Mj(1− yij), j = 1, . . . ,m, i = 1, . . . , s− 1,

m∑
j=1

yij ≥ 1, i = 1, . . . , s− 1,

yij ∈ {0, 1}, j = 1, . . . ,m, i = 1, . . . , s− 1,
x ∈ X,

(3.9)

where w ∈ Rm> are given weights, −Mj is a lower bound on fj for every j = 1, . . . ,m,
e.g., M := −zI , and x1, . . . , xs−1 denote the efficient solutions found in the previous
iterations. In every iteration, m binary variables as well as m + 1 constraints are
added, which makes this approach computationally demanding. Indeed, Sylva and
Crema (2004) only generate complete representations for the bicriteria case. For
three objectives they restrict the numerical study to the generation of incomplete
representations.

In Laumanns et al. (2006) multicriteria optimization problems in maximization
format are addressed. The proposed method relies on the decomposition of the
objective space into disjoint cells based on already computed nondominated points.
Since a lexicographic ε-constraint method is used as scalarization, the search region
can be projected to an (m − 1)-dimensional subspace, see Section 5.4 for further
details. The subproblems to be solved are of the form

lex max f(x) = (f1(x), . . . , fm(x))>

s.t. li < fi(x) ≤ ui ∀ i = 2, . . . ,m, (3.10)
x ∈ X,

where l and u denote the vertices of the current (m − 1)-dimensional cell. The lat-
ter is initialized by l := −(∞, . . . ,∞)> and u := (∞, . . . ,∞)>. In every iteration,
the algorithm investigates all current cells in a specified order until a new point is
obtained as solution of (3.10). Note that the point corresponding to the solution
of (3.10) is not necessarily nondominated due to the two-sided constraints. However,
it is excluded by the order in which the cells are investigated that a dominated point
is generated before a point dominating it is known. Every new nondominated point
is inserted into the (m− 1)-dimensional search region which, thereby, is decomposed
into (n+ 1)m−1 cells in total, where n denotes the number of currently known non-
dominated points. After the update of the cells the algorithm restarts with the first
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cell according to the specified order. Whenever the subproblem in a cell is infeasible
or a dominated point is obtained, the cell is marked as empty, i.e., the bounds of
the current cell are saved such that this cell or a cell that is completely contained in
it is not investigated in later iterations. Moreover, when a new nondominated point
z∗ is detected in a certain cell, the subcell that is dominated by the projection of
z∗ is discarded as well. Before solving (3.10) the list of discarded cells is scanned
in order to prevent the unnecessary solution of subproblems. In the worst case, a
subproblem is solved in every cell. Hence, at most (|ZN | + 1)m−1 subproblems are
solved in the course of the algorithm. Therefore, a complexity of O(|ZN |m−1 · T ) is
derived where T denotes the running time of the single-objective optimizer. To the
best of our knowledge, Laumanns et al. (2006) state the first upper bound on the
number of subproblems to be solved for any m ≥ 2. The two-sided bounds in (3.10)
which might cause the generation of dominated points are removed in Laumanns
et al. (2005). Moreover, the lexicographic objective is replaced by a two-stage for-
mulation, and a kind of relaxation test is performed based on saved subproblems.
However, the (worst-case) complexity is not improved and the main drawback, the
huge amount of cells to be investigated, remains.

Özlen and Azizoğlu (2009) propose a recursive algorithm for generating the en-
tire nondominated set of integer multicriteria optimization problems in minimization
format. Their approach is similar to the approach of Chalmet et al. (1986) for more
than two criteria. On the lowest level of recursion, constraint problems of the form

min f1(x) + w2f2(x) + · · ·+ wmfm(x)
s.t. fj(x) ≤ uj , j = 2, . . . ,m,

x ∈ X

(3.11)

are solved. Thereby, the coefficients wi, i = 2, . . . ,m, are set to

wi :=

 i∏
j=2

(
fGUBj − fGLBj + 1

)−1

,

where fGLBj and fGUBj , j = 2, . . . ,m, denote global lower and upper bounds on
objective fj , respectively, which are computed before the recursion starts. The pa-
rameters uj , j = 2, . . . ,m, are set to the respective upper bounds fGUBj in the be-
ginning. By systematically varying u2 and keeping uj , j = 3, . . . ,m, fixed, all points
that are nondominated with respect to the first two objectives and which satisfy the
imposed bounds on the remaining objectives are determined. Thereby, in each iter-
ation s ≥ 2, the value of u2 is subsequently updated by setting u2 := f2(xs−1) − 1,
where xs−1 denotes the efficient solution of the previous iteration. Note that due
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to the augmented objective of (3.11) the outcomes of (3.11) are nondominated with
respect to all criteria. When (3.11) becomes infeasible, the maximal value of the
third component of the obtained points is determined. Let x∗ be the correspond-
ing solution. Then u3 is updated by setting u3 := f3(x∗) − 1, u2 is reset to fGUB2
and a new sequence of problems (3.11) is solved. The same principle applies to all
recursion levels, i.e., as soon as the problem of the current level becomes infeasible,
the value of the bound uj corresponding to the next higher level is updated based
on the nondominated points found in the current level. It is shown in Özlen and
Azizoğlu (2009) that the entire nondominated set can be computed by this recursive
procedure. However, the algorithm might generate the same nondominated point
several times during the algorithm. In the worst case, only one nondominated point
is excluded when the bound uj , j = 3, . . . ,m, is updated, i.e., for a tricriteria prob-
lem up to 1 + 2 + · · ·+ |ZN | = 1

2 |ZN |(|ZN |+ 1) = O(|ZN |2) subproblems need to be
solved. For general m ≥ 2, a complexity of O(|ZN |m−1) with respect to the number
of subproblems is derived.

Dhaenens et al. (2010) extend the approach of Tenfelde-Podehl (2003) by propos-
ing a three-stage procedure. The first stage is identical to the first stage in Tenfelde-
Podehl (2003), the second stage consists in selecting a well-dispersed subset from
the points computed in the first stage. In the third stage, all remaining points are
computed. Thereby, an improved decomposition of the search region is proposed.
However, no comparative computational studies are provided.

Przybylski et al. (2010a) propose an extension of the two phase method of Ulungu
and Teghem (1995) for multicriteria combinatorial optimization problems and apply
it to tricriteria assignment problems. In the first phase, a weighted sum method is
used to determine all supported nondominated points (Przybylski et al., 2010b) as
well as the hyperplanes of the facets of the convex hull of these points. Analogously
to the bicriteria case the search area can also be bounded from below with the help
of the hyperplanes determined in the first phase. However, different from the bicri-
teria case, the nadir point is not necessarily available after the computation of all
supported points. Therefore, the authors continue by solving all m problems with
m − 1 objectives. In doing so, the nadir point is determined, see also Ehrgott and
Tenfelde-Podehl (2003) and Tenfelde-Podehl (2003). Based on all nondominated
points found so far and the hyperplanes determined in the first stage, a so-called
search area is defined that is described by an upper bound set. Thereby, only upper
bound vectors u are maintained that do not equal the ideal point in any component
and for which no vector u′ 6= u in the set of upper bounds exists with u 5 u′. Then,
the original second phase starts by computing all remaining nondominated points
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with the help of a problem specific method. In a computational study the authors
compare their multicriteria version of the two phase method with the approaches of
Sylva and Crema (2004), Laumanns et al. (2006) and Tenfelde-Podehl (2003). They
report that their two phase method outperforms all other methods considerably.

Lokman and Köksalan (2013) present two algorithms for integer multicriteria
optimization problems in maximization format. The first directly builds upon the
method of Sylva and Crema (2004). Lokman and Köksalan (2013) state that when
using a particular choice of the weight in the objective function of the approach
of Sylva and Crema (2004), one constraint and one binary variable can be saved
per iteration. In other words the authors use the original formulation of Klein and
Hannan (1982), but augment the objective by all other objectives scaled by a small
constant. Thereby, the weakly dominated outcomes of (3.8) can be avoided. While
better computational times compared to the algorithm of Sylva and Crema (2004)
are reported and also tricriteria problems are solved, the algorithm still suffers from
the quickly increasing number of constraints and binary variables. The second algo-
rithm proposed in Lokman and Köksalan (2013) relies on the observation that for
each feasible point, at most one constraint from (3.9) is sufficient for each of the
m− 1 criteria. Note that this fact has already been used in Laumanns et al. (2005),
as each cell is described by m− 1 constraints. In each iteration, n+ 1 subproblems
of the form

max fm(x) + ε
m−1∑
j=1

fj(x)

s.t. fj(x) ≥ bkj , j = 1, 2, . . . ,m− 1,
x ∈ X

(3.12)

with k = 0, . . . , n are considered. The parameter ε denotes a small positive constant.
The bounds bk, k = 0, . . . , n, are computed based on the set S = (z1, . . . , zn) which
contains the n nondominated points found so far in the order in which they have
been generated. In the tricriteria case the bounds bk = (bk1, bk2)>, k = 0, . . . , n, are
defined by

bk1 :=
{
−M, if k = 0,
zk1 + 1, otherwise,

where the constant −M denotes a global lower bound on every component of every
feasible point, and

bk2 :=

 −M, if Sk = ∅,
max
z∈Sk
{z2}+ 1, otherwise,
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where Sk := {z ∈ S : zi1 ≥ bk1} for every k = 0, . . . , n. Note that the method is
applicable to problems with an arbitrary number of criteria, but that we restrict the
description here to m = 3 for simplicity. Before the current subproblem is solved,
a suitable relaxation is searched among the list of already investigated subprob-
lems. Numerical results of Lokman and Köksalan (2013) show that their second
approach outperforms the algorithm of Sylva and Crema (2004), their own improve-
ment of the latter as well as the algorithm of Özlen and Azizoğlu (2009). Moreover,
for m = 3, on average 2.13 subproblems are solved per nondominated point on
randomly generated instances of multiobjective knapsack, minimum spanning tree
as well as shortest path problems. However, the theoretical upper bound on the
number of subproblems is again O(|ZN |m−1). For example, in the tricriteria case
1 + 2 + · · · + (|ZN | + 1) = 1

2 · (|ZN | + 1) · (|ZN | + 2) subproblems are solved in the
worst case.

Ozlen et al. (2014) improve the method of Özlen and Azizoğlu (2009). The main
drawback of the latter is the solution of subproblems which have already been solved
before. In Ozlen et al. (2014) the right-hand side vectors in (3.11) are saved to-
gether with either the corresponding nondominated point or the information that
the subproblem is infeasible. Before a new subproblem with bound u is solved, it is
checked whether a relaxation exists, i.e., a saved subproblem with bound u′ where
u′ 5 u. Note that the authors require ’≤’, which is naturally satisfied since at least
one component must have changed. Two cases may occur: If the relaxation is in-
feasible, the current problem must be infeasible as well. If the relaxation is feasible
and all outcomes of this relaxation are feasible for the current problem, the set of
outcomes of the relaxation equals the set of outcomes of the current problem. Note
that as soon as only one outcome of the potential relaxation is not feasible, the cur-
rent subproblem must be resolved. In the computational tests in Ozlen et al. (2014)
significant savings of up to 95% with respect to the algorithm of Özlen and Azizoğlu
(2009) are reported. For a knapsack problem with three objectives used as a test
problem in Laumanns et al. (2005), the improved approach is additionally compared
to the algorithm of Laumanns et al. (2005) and a significant saving in computational
time is demonstrated.

The approach of Kirlik and Sayın (2014) is very similar to the algorithm of Lau-
manns et al. (2005), but removes the fixed order in which the cells are investigated.
Instead, as next cell always the one with the largest (m−1)-dimensional volume that
is defined by

m−1∏
j=1

(
uj − zIj

)
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is selected, where u denotes the upper bound of the corresponding cell. By this
small change the number of subproblems solved is reduced drastically. However,
the theoretical worst case bound is not improved in comparison to the approach of
Laumanns et al. (2005) and Laumanns et al. (2006). Numerical tests are carried out
for knapsack and assignment problems with three and four objectives. For tricriteria
problems the authors compare their approach with the ones of Sylva and Crema
(2004), Laumanns et al. (2005) and Özlen and Azizoğlu (2009). The four-objective
problem can only be solved by the new approach of the authors and the one of
Özlen and Azizoğlu (2009). The results show that the proposed method clearly
outperforms all other ones. Moreover, for m = 3, at most 1.99 subproblems are
solved per nondominated point.

Generation of incomplete representations and approximations

In the remainder of this chapter we discuss methods generating incomplete repre-
sentations or approximations of the nondominated set. We limit the discussion to
parametric algorithms that are applicable to general multicriteria optimization prob-
lems, i.e., in particular, to discrete or non-convex problems. We do not review special
approaches for linear or convex problems, but refer to Solanki et al. (1993), Rennen
et al. (2009), Özpeynirci and Köksalan (2010b) and Przybylski et al. (2010b) and
references therein.

In Das and Dennis (1998), the normal boundary intersection method, known un-
der its acronym NBI, is proposed. For different values of the normalized parameter
vector β ∈ Rm+ , a scalarization of the form

max t

s.t. φβ + t n̂ = f(x),
t ∈ R, x ∈ X

(3.13)

is solved. Thereby, φ is an (m×m)-matrix whose i-th column consists of a point f(x)
with fi(x) = zIi . Hence, φ can be chosen as the payoff-table given in Section 2.1.
With the help of the parameter β ∈ Rm+ , ∑m

i=1 βi = 1, theoretically all convex
combinations {

φβ : β ∈ Rm+ ,
m∑
i=1

βi = 1
}

of the column vectors of φ that represent the convex hull of the individual minima,
called CHIM, can be constructed. Finally, n̂ ∈ Rm denotes the unit normal of the
CHIM pointing towards the ideal point. The basic idea of the method is to choose
a set of (reference) points φβ for specific choices of β on the CHIM and to project
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them in the direction given by the normal to the boundary of the outcome space.
Therefore, the NBI method can be classified as an a priori method.
While the principal idea of the NBI method is very appealing, the method has some

shortcomings. Unfortunately, as already stated by the authors themselves, not every
solution of (3.13) is weakly efficient. The reason is the equality in the constraints
which causes that dominated points might be optimal for (3.13) in non-convex re-
gions of the outcome space. However, as the authors particularly deal with nonlinear
multicriteria problems, they argue that a solution of (3.13) might always be only
a local optimum of the single-objective problem and therefore computational prob-
lems typically occur anyway. Also for the converse result there are some limitations.
While in the bicriteria case every nondominated point can be obtained as a solution
of (3.13) for an appropriate parameter choice, this is not true for m ≥ 3, at least
when the reference points are restricted to the CHIM. Also this fact has already been
noticed by the authors who use the sphere of the unit ball in R3 as an example of the
set Z. None of the points lying on the boundary of ZN except the three individual
minima can be computed by (3.13) with a non-negative choice of β, however, all
these points are nondominated.

Schandl et al. (2002) generalize the approach of Schandl et al. (2001) to approx-
imate the nondominated set of problems with an arbitrary number of objectives.
The two main differences with respect to the bicriteria case are that, even in the
Rm+ -convex case, an outcome of the gauge method

max γ(z) =
m∑
i=1

λi

s.t. z =
m∑
i=1

λiz
i,

λi ≥ 0, i = 1, . . . ,m,
z ∈ Z

(3.14)

is not necessarily nondominated. Moreover, the update of the piecewise linear ap-
proximation becomes more involved.

Klamroth et al. (2002) extend Schandl et al. (2002) and provide several further
ideas. For the Rm+ -convex and Rm+ -non-convex case, the construction of an inner and
outer piecewise linear approximation is proposed, respectively. Note that only an
inner approximation is provided in Schandl et al. (2001) and Schandl et al. (2002).
Moreover, a convergence rate is given for the bicriteria Rm+ -convex case. In the Rm+ -
non-convex case, weighted Tchebycheff problems as in Schandl et al. (2002) are used.
However, the reference points and the coefficients of the search directions are cho-
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sen such that the objective function value of the scalarization captures the distance
information. Hence, the unsupported points are measured in the same way as the
supported ones and it is possible to insert the point with the largest deviation from
the current approximation regardless whether the point is supported or not.

The approach of Eichfelder (2006), see also Eichfelder (2009a), is intended to
generate an equidistant representation of the nondominated set of continuous multi-
criteria optimization problems. If more than two criteria are considered, the method
is subdivided into two stages. In the first stage, a coarse initial representation is
computed with the help of the ε-constraint method with an a priori parameter selec-
tion. In the second stage, a refinement with equidistant points is constructed around
points of the initial representation. Note that no first stage is needed for bicriteria
problems, but that the method constructs points with almost equal spacing based
on the two lexicographic minima as described in Section 3.2.

Sylva and Crema (2007) present a variant of the method of Sylva and Crema
(2004) and apply it to generate incomplete representations. In each iteration, the
point which maximizes the infinity-norm distance from the dominated set, i.e., the
set dominated by all previously generated points, is computed.
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4 Adaptive Parameters for Scalarizations
with Augmentation

4.1 Introduction

In this chapter we consider the computation of adaptive parameters for scalarizations
with a so-called augmentation term. In particular, we study the weighted Tchebycheff
method for which the concept of augmentation was introduced originally.
The weighted Tchebycheff method and its variations are among the most common

scalarization methods in multiple criteria optimization, see, e.g., Steuer and Choo
(1983), Eswaran et al. (1989), Solanki (1991), Alves and Climaco (2000), Schandl
et al. (2001), Schandl et al. (2002), Klamroth et al. (2002), Sayın and Kouvelis
(2005), Ralphs et al. (2006), Bozkurt et al. (2010) and Luque et al. (2010). As
already stated in Section 2.3, every nondominated point of a general multiple criteria
optimization problem can be generated with the help of the weighted Tchebycheff
method. This explicitly includes non-convex and discrete problems which may have a
large percentage of unsupported nondominated points, which are not computable by
a weighted sum method. Since the decision maker can easily interpret the reference
point and the distance information, the method is frequently used within interactive
approaches, see, e.g., Miettinen et al. (2006) or the survey of Alves and Climaco
(2007). In the context of multiple criteria combinatorial optimization problems,
Tchebycheff scalarizations often lead to NP-complete problems, see, e.g., Murthy and
Her (1992). Nevertheless, Tchebycheff scalarizations are also used in this context due
to their general applicability.
As the outcomes of the weighted Tchebycheff method may be weakly nondomi-

nated, two variants are proposed in Steuer and Choo (1983), the lexicographic and
the augmented weighted Tchebycheff method, see problems (2.29) and (2.30). While
the main advantage of the lexicographic method is that no additional parameter has
to be chosen, its drawback is that two single optimization problems have to be solved
to determine one nondominated point, which means a higher computational effort.
In the augmented approach only one scalarization is solved per nondominated point,
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but the additional augmentation parameter has to be chosen appropriately.
In the literature it is typically assumed that the augmentation parameter can be

chosen ‘sufficiently small’. In Steuer (1986) it is recommended to choose ρ between
0.0001 and 0.01. However, when the augmentation parameter is not related to the
given data, either nondominated points might be missed (when ρ is not small enough),
or numerical problems may occur (when ρ is too small), see, e.g., Steuer (1986),
Solanki (1991) or Ralphs et al. (2006). Based on the complete set of nondominated
points, Steuer and Choo (1983) calculate an upper bound on ρ such that for all
smaller values of ρ all nondominated points can be found. However, this theoretical
upper bound has no practical application if the nondominated set is not known in
advance.
Given a discrete problem with a finite nondominated set we show how all pa-

rameters of the augmented weighted Tchebycheff method (2.30), including the aug-
mentation parameter ρ, can be computed in an adaptive way such that the entire
nondominated set can be computed within a parametric algorithm. In particular,
for each subproblem solved within a parametric algorithm we derive a (local) upper
bound on the value of ρ such that for all values of ρ smaller than this upper bound
either a new nondominated point is generated or a certain part of the outcome space
can be discarded from further consideration. Moreover, among all feasible choices
of ρ, we study how ρ can be chosen largest in order to avoid numerical difficulties.
While an appropriate parameter scheme has already been studied for the bicriteria
case in Dächert et al. (2012), the analysis derived in the following is carried out for an
arbitrary number of criteria. Besides the augmented weighted Tchebycheff method
we also study a generalization of it as well as an augmented ε-constraint method.
The remainder of this chapter is organized as follows. In Section 4.1.1 we discuss

the geometry of the contour of an augmented weighted Tchebycheff norm and mo-
tivate our construction in the discrete case. In Section 4.2, the main section of this
chapter, we propose a new adaptive parameter scheme for the augmented weighted
Tchebycheff method. This includes the computation of feasible upper bounds on ρ
which, on the one hand, are used to show maximality of ρ and, on the other hand,
serve to determine appropriate values for the practical application. In Section 4.3 we
study a generalization of the augmented weighted Tchebycheff method which permits
a more intuitive understanding of the parameters. Furthermore, we discuss the well-
known relation between augmentation parameters and prescribed trade-offs on pairs
of objectives. The use of trade-offs permits an adaptive parameter computation for
continuous problems. In Section 4.4 we consider an augmented ε-constraint method.
We review existing formulations and propose an adaptive parameter scheme analo-
gous to the construction in Section 4.2. In Section 4.5 we summarize the content of
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1

0

Figure 4.1: Contour of an augmented (solid) and a weighted Tchebycheff norm (dashed) for
m = 2

this chapter and suggest further directions of research.

4.1.1 Geometry of the Augmented Weighted Tchebycheff Norm

We first state some well-known geometrical properties of the augmented weighted
Tchebycheff norm which are the basis of our construction. We use the following
notation:

Definition 4.1 (Weighted Tchebycheff Norm). The weighted Tchebycheff norm
‖ · ‖w,∞ : Rm → R+ is defined by

‖z‖w,∞ := max
i=1,...,m

{wi|zi|}, (4.1)

where w ∈ Rm> and
∑m
i=1wi = 1.

Definition 4.2 (Augmented Weighted Tchebycheff Norm). The augmented weighted
Tchebycheff norm ‖ · ‖w,ρ : Rm → R+ is defined by

‖z‖w,ρ := max
i=1,...,m

{wi|zi|}+ ρ ‖z‖1, (4.2)

where w ∈ Rm+ ,
∑m
i=1wi = 1, ρ ≥ 0 and wi + ρ > 0, i = 1, . . . ,m.

It is well-known (Steuer, 1986) that the contour Lα := {z ∈ Rm : ‖z‖w,ρ = α} of
the augmented weighted Tchebycheff norm with respect to a certain level α ∈ R+

is piecewise linear for all α > 0 and symmetric with respect to the origin. For
an illustration in the bicriteria case, see Figure 4.1. In the classic (augmented)
weighted Tchebycheff method, the ideal point or an utopian point is taken as the point
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from which the distance to the feasible set is minimized. Consequently, as already
discussed in Section 2.3 and stated, e.g., in Steuer (1986), the absolute values in (4.2)
can be dropped. Geometrically, this implies that only the portion of the contour in
the positive orthant is relevant.
In order to understand how the weights w and the augmentation parameter ρ

influence the shape of the contour, consider m = 2 and let z ∈ R2
+, w ∈ R2

> and
ρ > 0. Then

‖z‖w,ρ = max{w1z1, w2z2}+ ρ(z1 + z2) = α

is equivalent to  z2 = [α− (w1 + ρ)z1] · ρ−1, if w1z1 ≥ w2z2,

z2 = (α− ρz1) (w2 + ρ)−1 , otherwise.

Thus, the contour of an augmented weighted Tchebycheff norm in the positive orthant
is represented by segments of the two lines

h1(t) = α

w2 + ρ
− ρ

w2 + ρ
· t and h2(t) = α

ρ
− w1 + ρ

ρ
· t,

which are depicted in Figure 4.2 for α = 1. For arbitrary m ≥ 2 and w ∈ R2
>, the

contour is composed of m hyperplanes of dimension m − 1 in each orthant. The
intersection of these m hyperplanes, which we call inflection point, and which we
denote by zq in the following, is characterized as the point for which w1z1 = w2z2 =
· · · = wmzm holds. For a small value of ρ the hyperplanes are nearly parallel to
the coordinate axes, and for ρ = 0 the contour of the weighted Tchebycheff norm
is obtained. Note that the slope of the hyperplanes depends not only on ρ but also
on the weights w, see the definition of h1(t) and h2(t) above. This dependence is
removed in the modified weighted Tchebycheff norm, cf. Problem (2.31). For m = 2,
the two lines of which the contour is constituted in the positive orthant have a slope
of (1 + ρ)/ρ and ρ/(1 + ρ), respectively, i.e., the slope only depends on ρ.
The augmented weighted Tchebycheff method consists in minimizing the distance

between the reference point r := zU and the set of feasible outcomes. Analogous
to (2.28), for w ∈ Rm> the augmented weighted Tchebycheff method (2.30) can be
equivalently written as

min λ+ ρ
m∑
j=1

(
fj(x)− zUj

)
s.t. zUi + 1

wi
λ ≥ fi(x), i = 1, . . . ,m,

λ ∈ R, x ∈ X.

(4.3)
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Figure 4.2: Geometry of the unit ball (α = 1) of the augmented weighted Tchebycheff norm
restricted to the positive orthant for m = 2

Geometrically, starting from the given reference point zU , the contour Lα (with fixed
parameters w and ρ) is shifted along the direction d := (w−1

1 , . . . , w−1
m )> towards

f(X) until the intersection of f(X) and Lα becomes non-empty for some α > 0.
This is illustrated in Figure 4.3. Note that the point where f(X) and Lα intersect
with minimal α does not necessarily coincide with the inflection point zq of the
contour, which is also illustrated in Figure 4.3.

4.1.2 Motivation in the Discrete Bicriteria Case

Let a discrete multicriteria optimization problem be given. Without loss of generality,
we restrict the general discrete case to the integer-valued case in the following. We
motivate our approach with the help of a bicriteria problem. Let z1, z2 ∈ Z,Z ⊆ Z2

denote two nondominated points of (2.1) where, w.l.o.g., z1
1 < z2

1 . Furthermore,
let r ∈ Z2 denote the local ideal point with respect to {z1, z2}. Without loss of
generality, we assume r = 0 in the following, as for arbitrary m ≥ 2 we can apply
the linear mapping ψ : Zm → Zm, zi 7→ zi− ri, for i = 1, . . . ,m to the given problem
such that the reference point coincides with the origin. Thereby, z1 = (0, z1

2)> and
z2 = (z2

1 , 0)> hold. Let
B(u) := {z ∈ Rm+ : z < u}

with u := (z2
1 , z

1
2)> be the region ‘between’ z1 and z2 in which further nondominated

points are searched for. We assume that u1, u2 ≥ 2 holds, as, otherwise, B(u) can
not contain further nondominated points due to the integrality assumption on the
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1

z1

z2
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Figure 4.3: Working principle of the augmented weighted Tchebycheff method for m = 2

nondominated points. For the same reason the set

B̃(u) := {z ∈ B(u) : ũ1 < z1 < u1} ∪ {z ∈ B(u) : ũ2 < z2 < u2},

with ũ := u − e = (z2
1 − 1, z1

2 − 1)> does not contain further nondominated points.
The set is depicted as the shaded region in Figure 4.4. Hence, if B(u) contains a
nondominated point, then this point must be contained in

B(u)\B̃(u) = {z ∈ B(u) : z 5 ũ}.

By computing the parameters w and ρ of an augmented weighted Tchebycheff norm
such that every possibly existing nondominated point z ∈ B(u) has a strictly smaller

1

ũ

z2

z1

0

u

ũ

u

z2

z1

0

ũ

u

z2

z1

0

Figure 4.4: Empty region (shaded) between two nondominated points z1 and z2 of an integer-
valued, bicriteria problem; due to the integrality assumption the sets defined by u and
ũ = u− e cannot contain further nondominated points
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ũ

z2

z1

0

u

ũ
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ũ
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Figure 4.5: Two contours of an augmented weighted Tchebycheff norm (dashed curve); in (a)
the point ũ has a smaller level than z1 and z2, in (b) not, hence, (4.6) is not satisfied

level than z1 and z2, i.e.,

‖z‖w,ρ < min{‖z1‖w,ρ, ‖z2‖w,ρ} (4.4)

holds for all z ∈ ZN ∩ B(u), and by solving an augmented weighted Tchebycheff
problem with these parameters, we can guarantee that a nondominated point in B(u)
is detected, whenever there exists one. As we do not know possible nondominated
points in B(u) before solving the corresponding subproblem(s), we replace (4.4) by a
‘worst-case’ scenario which consists in the situation that ũ = u−e is a nondominated
point. Hence, we compute parameters of an augmented weighted Tchebycheff norm
such that

‖ũ‖w,ρ < min{‖z1‖w,ρ, ‖z2‖w,ρ} (4.5)

holds. Obviously, every nondominated point in B(u)\{ũ} has a strictly smaller level
than ũ with respect to the constructed augmented weighted Tchebycheff norm. This
is the basic idea of our construction. Since the strict inequality in (4.5) is not
practical, in particular not with regard to the determination of a maximal value of
ρ, we first construct the parameters such that

‖ũ‖w,ρ ≤ min{‖z1‖w,ρ, ‖z2‖w,ρ} (4.6)

holds. By a slight perturbation of the values of z1 and z2 we can later achieve
that (4.5) holds. Figure 4.5 shows an example of two level curves of an augmented
weighted Tchebycheff norm, one satisfying the condition in (4.6), the other not.
Among the feasible choices of the parameters satisfying (4.6) we further aim at

maximizing the value of ρ in order to avoid numerical difficulties that may arise when
too small values for ρ are used. In the second part of our analysis, we will discuss
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the question on how large a value of ρ can be selected at maximum such that finding
all nondominated points of the given problem can still be guaranteed.

4.2 Parameters of the Augmented Weighted Tchebycheff
Norm

For a general number of objectives m ≥ 2, let a vector u ∈ Nm be given, where,
without loss of generality, u1 ≥ u2 ≥ · · · ≥ um ≥ 2. Let u1, . . . , um ∈ Nm0 be m
vectors with ui := (0, . . . , 0, ui, 0, . . . , 0)>, i.e., with the only non-zero entry ui ≥ 2
at the i-th position, i = 1, . . . ,m. These m points denote extreme points of the box
B(u) to be considered. Furthermore, let U := ∑m

j=1
1
uj
.

As motivated in Section 4.1.2 for the bicriteria case, we construct the contour of
an augmented weighted Tchebycheff norm such that

‖ũ‖w,ρ ≤ min
i=1,...,m

{‖ui‖w,ρ} (4.7)

with ũ := u − e, e = (1, . . . , 1)>. In order to simplify the analysis, we first consider
the special case

‖ũ‖w,ρ = ‖u1‖w,ρ = ‖u2‖w,ρ = · · · = ‖um‖w,ρ (4.8)

in the next subsection.

4.2.1 Feasible Parameter Choice

In contrast to the augmented weighted Tchebycheff norm, the construction of a con-
tour of a weighted Tchebycheff norm that comprises all m points ui, i = 1, . . . ,m, or,
equivalently, whose vertex is u, is well-known.

Lemma 4.3 (Parameters of the Weighted Tchebycheff Norm (Steuer and Choo,
1983)). Let α ∈ R+. It holds that the points ui, i = 1, . . . ,m, lie on a common
level curve of a weighted Tchebycheff norm with level α, i.e., ‖ui‖w,∞ = α for all
i = 1, . . . ,m, if and only if

α = U−1 ∧ wi = 1
ui
· U−1 ∀ i = 1, . . . ,m.

Proof. By definition it holds for all i = 1, . . . ,m that ‖ui‖w,∞ = wiui, thus,
‖ui‖w,∞ = α if and only if wi = α · (ui)−1. Using ∑m

j=1wj = 1 yields 1 =
α ·
∑m
j=1(uj)−1, so α = U−1 holds. Then wi = (ui)−1 ·U−1. The converse statement

is obvious.
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Remark 4.4. For m = 2 we obtain

w1 = u2
u1 + u2

and w2 = u1
u1 + u2

, (4.9)

see also Solanki (1991), Sayın and Kouvelis (2005) or Ralphs et al. (2006).

Note that the level α and the parameters wi, i = 1, . . . ,m, are uniquely defined by
the coordinates of the given points ui, i = 1, . . . ,m, in case of a weighted Tchebycheff
norm. This property no longer holds true when the augmented weighted Tchebycheff
norm is considered. In more detail, for fixed ui, i = 1, . . . ,m, the weights wi, i =
1, . . . ,m, and the parameter ρ can be chosen dependent on an appropriately chosen
value of α.

Theorem 4.5 (Parameters of the Augmented Weighted Tchebycheff Norm). Let
α ∈ R+. It holds that the points ui, i = 1, . . . ,m, lie on a common level curve of
an augmented weighted Tchebycheff norm with level α, i.e., ‖ui‖w,ρ = α for all
i = 1, . . . ,m, if and only if

ρ(α) = αU − 1
m

∧ wi(α) = α

ui
− ρ(α) ∀ i = 1, . . . ,m, (4.10)

where α ∈ I with

(i) I :=
[
U−1,∞

)
, if u1 = um, and

(ii) I :=
[
U−1, u1

u1U−m

]
otherwise, i.e., if u1 > um.

Proof. By definition, it holds that ‖ui‖w,ρ = α if and only if (wi + ρ)ui = α for all
i = 1, . . . ,m, which is equivalent to wi = α

ui
−ρ, as ui > 0. As∑m

i=1wi = 1, it follows
that 1 = αU − ρm, or, equivalently,

ρ(α) = αU − 1
m

, (4.11)

and, thus,
wi(α) = α

ui
− αU − 1

m
, i = 1, . . . ,m. (4.12)

However, the parameters wi(α), i = 1, . . . ,m, and ρ(α) only define a valid augmented
weighted Tchebycheff norm, if additionally the conditions ρ(α) ≥ 0, wi(α) ≥ 0 and
wi(α) + ρ(α) > 0, i = 1, . . . ,m, are satisfied. Hence, we have to restrict the value of
α such that these conditions are valid. It holds that

ρ(α) ≥ 0 ⇐⇒ α ≥ U−1, (4.13)
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which implies the lower bound on the level α. For all i = 1, . . . ,m it holds that

wi(α) ≥ 0 ⇐⇒ α (m− ui · U) ≥ −ui. (4.14)

For all i = 1, . . . ,m for which m− uiU ≥ 0 holds, this inequality does not impose a
restriction since ui > 0 for all i = 1, . . . ,m. For all i = 1, . . . ,m for whichm−uiU < 0
holds, we obtain the upper bound

α ≤ ui
uiU −m

.

If u1 = um, then m− uiU = m− u1 ·m · 1
u1

= 0. Therefore, no upper bound on α is
imposed in this case. If u1 > um, it holds that m− u1U = m−

∑m
i=1

u1
ui
< 0 due to

the general assumption u1 ≥ uj for all j = 2, . . . ,m. Furthermore,

min
i=1,...,m

{
ui

uiU −m
: uiU −m > 0

}
= min

i=1,...,m

{
1

U − m
ui

: uiU −m > 0
}

= 1
U − m

u1

,

which is, thus, the smallest upper bound on α if u1 > um. Finally, wi(α) + ρ(α) =
α
ui
> 0 holds for all i = 1, . . . ,m since α ≥ U−1 > 0. The converse results stated in

the theorem are obvious.

Remark 4.6.

1. For fixed α it follows from u1 ≥ u2 ≥ · · · ≥ um that w1 ≤ w2 ≤ · · · ≤ wm. If
u1 = um, then w1 = · · · = wm = 1

m .

2. The lower bound for α in Theorem 4.5 and the uniquely determined value of
α in Lemma 4.3 coincide, thus, α = U−1 corresponds to the case ρ = 0. If
u1 > um and α = u1/(u1U −m), then w1 = 0. If u1 = um, then the parameter
ρ tends to infinity when α→∞ is considered. In this case, the influence of the
l∞-norm vanishes and in the limit, the distance is measured by a pure l1-norm.

For fixed and finite α ∈ I, the contour

L+
α := {z ∈ Rm+ : ‖z‖w,ρ = α}

can be represented as the union of the m sets

L+
α,k := {z ∈ Rm+ : ‖z‖w,ρ = α,wkzk ≥ wizi ∀ i = 1, . . . ,m}

= {z ∈ Rm+ : (wk + ρ)zk + ρ
∑

j=1,...,m,
j 6=k

zj = α,wkzk ≥ wizi ∀ i = 1, . . . ,m},

k = 1, . . . ,m, which are subsets of hyperplanes of dimension m− 1 for w ∈ Rm> . The
point lying at the intersection of these m hyperplanes, the inflection point zq(α), can
be characterized as follows.
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Lemma 4.7 (Inflection point of the contour). Let w ∈ Rm> , and let zq(α) ∈ Rm

denote the intersection point of the m sets L+
α,k, k = 1, . . . ,m. Then the coordinates

of zq(α) are given by

zqi (α) = α

1 + ρW
· 1
wi

∀ i = 1, . . . ,m (4.15)

with W := ∑m
j=1

1
wj

.

Proof. As zq(α) ∈ ⋂k=1,...,m L+
α,k, it holds that (wk + ρ)zqk(α) + ρ

∑m
i=1, i 6=k z

q
i (α) = α

for all k = 1, . . . ,m. We claim that the solution of the linear system

Amz
q(α) = α · e (4.16)

with

Am :=



w1 + ρ ρ · · · · · · ρ

ρ w2 + ρ ρ · · · ρ

ρ ρ
. . . . . . ...

... . . . . . . . . . ρ

ρ · · · ρ ρ wm + ρ


and e = (1, . . . , 1)> is given by (4.15). First, we show that (4.16) admits a unique
solution since Am has full rank. Therefore, we prove the more general result that
det(Am) > 0 holds if w ∈ Rm+ , wi = 0 for at most one index i ∈ {1, . . . ,m}, ρ ≥ 0
and wi + ρ > 0 for all i = 1, . . . ,m. First, consider ρ = 0. Then wi > 0 for all
i = 1, . . . ,m must hold and, thus, det(Am) = Πm

i=1wi > 0. The case ρ > 0 is shown
by induction on m :
m = 1: det(A1) = w1 + ρ > 0
m→ m+ 1: We assume that det(Am) > 0 and show that det(Am+1) > 0 holds. Let
w1, . . . , wm+1 ≥ 0 with at most one wj = 0. Furthermore, define w0 := 0. Then,

det(Am+1) = det


w1 −w2 0 · · · 0
ρ w2 + ρ ρ · · · ρ
... . . . . . . ρ

ρ · · · · · · ρ wm+1 + ρ

 = w1 det(Bm) + w2 det(Cm)

with

Bm :=


w2 + ρ ρ · · · ρ

ρ w3 + ρ · · · ρ
... . . . . . . ρ

ρ · · · ρ wm+1 + ρ


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and

Cm :=


ρ ρ · · · ρ

ρ w3 + ρ · · · ρ
... . . . . . . ρ

ρ · · · ρ wm+1 + ρ

 .

Note that det(Bm) > 0 holds by the induction hypothesis.

i) If w1 = 0, then w2, . . . , wm+1 > 0 follows. With w0 = 0 we have

Cm =


w0 + ρ ρ · · · ρ

ρ w3 + ρ · · · ρ
... . . . . . . ρ

ρ · · · ρ wm+1 + ρ

 .

Using the induction hypothesis we see that det(Cm) > 0. Hence, it holds that
det(Am+1) = w2 det(Cm) > 0.

ii) If w1 > 0, then w1 det(Bm) > 0. Consequently, det(Am+1) = w1 det(Bm) > 0
if, additionally, w2 = 0 holds. The same holds if w2 > 0 but wj = 0 for some
j = 3, . . . ,m+ 1, as then Cm contains two rows with all entries being ρ, thus,
det(Cm) = 0. If wi > 0 for all i = 2, . . . ,m, then det(Bm) > 0 and det(Cm) > 0
by induction, thus, det(Am+1) > 0.

Therefore, det(Am) > 0 holds for arbitrary m, which implies that the solution of
(4.16) is unique. Hence, it suffices to verify (4.15). For every k = 1, . . . ,m it holds
that

wkz
q
k(α) + ρ

m∑
i=1

zqi (α) = wk ·
α

1 + ρW
· 1
wk

+ ρ
m∑
i=1

α

1 + ρW
· 1
wi

= α

1 + ρW

[
1 + ρ

m∑
i=1

1
wi

]
= α.

We have shown that for a given level α the inflection point zq(α) is uniquely
determined. For the case m = 2, a visualization of the curve γ which describes
the location of the inflection points zq(α) for all feasible values α ∈ I is given in
Figure 4.6. For an explicit representation of γ for m = 2 we refer to Dächert et al.
(2012).
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z1

z2

z̄
zq

γ

Figure 4.6: Example for the curve γ for u1 = z2
1 = 5 and u2 = z1

2 = 3. γ describes the
location of the inflection point zq(α) for α ∈ I = [1.875; 7.5].

Summarizing the discussion above, the formulas for w and ρ stated in Theo-
rem 4.5 imply that we can compute parameters of a valid augmented weighted
Tchebycheff norm such that all ui, i = 1, . . . ,m, lie on the same level curve. How-
ever, our derivations show that under this assumption the inflection point of the
contour cannot be chosen arbitrarily, but lies on a curve dependent on u and α.
In particular, this implies that the parameters cannot be set such that the point
ũ = (u1 − 1, u2 − 1, . . . , um − 1)> is the inflection point of this level curve, in gen-
eral. This can be seen in Figure 4.6 where the point ũ = z̄ = (4, 2)> is not an element
of zq(α), α ∈ I.
This particular point ũ is now included into the construction, i.e., in the following

we compute parameters w and ρ such that

‖ũ‖w,ρ = ‖u1‖w,ρ = ‖u2‖w,ρ = · · · = ‖um‖w,ρ

holds. As mentioned above, typically ũ 6= zq(α), α ∈ I, but ũ lies on only one of the
hyperplanes which constitute the contour. By definition, ũ lies on the hyperplane
L+
α,l with index l ∈ {1, . . . ,m} for which wl(α)ũl ≥ wi(α)ũi for all i = 1, . . . ,m

holds. This particular hyperplane, i.e., the index l ∈ {1, . . . ,m}, will be specified
later. First, we treat l as a parameter.

Lemma 4.8. Let m ≥ 3 or u1 > um hold. Furthermore, let α ∈ R+, and let
σ̃ := ∑m

i=1 ũi. If ‖ũ‖w,ρ = α and ‖ui‖w,ρ = α for all i = 1, . . . ,m hold, then

α = ul(σ̃ − ũl)
ulU(σ̃ − ũl)−m

, (4.17)

where l ∈ {1, . . . ,m} such that wl(α)ũl ≥ wi(α)ũi for all i = 1, . . . ,m.
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Proof. We recall from Theorem 4.5 that ‖ui‖w,ρ = α for all i = 1, . . . ,m if and only
if

wi(α) = α(m− uiU) + ui
mui

and ρ(α) = αU − 1
m

hold for α ∈ I as specified in Theorem 4.5. Assume that l ∈ {1, . . . ,m} is chosen
such that wl(α)ũl = maxi=1,...,m{wi(α)ũi} is satisfied. Then

‖ũ‖w,ρ = wl(α)ũl + ρ(α)
m∑
i=1

ũi = α(m− ulU) + ul
mul

· ũl +
αU − 1
m

· σ̃

and the following equivalences are valid:

‖ũ‖w,ρ = α ⇐⇒ α

[(m− ulU)ũl
mul

+ U

m
σ̃ − 1

]
= 1
m
σ̃ − 1

m
ũl

⇐⇒ α (mũl − ulUũl + Uulσ̃ −mul) = ul(σ̃ − ũl)

⇐⇒ α [ulU(σ̃ − ũl)−m]︸ ︷︷ ︸
=:A

= ul(σ̃ − ũl).

If m = 2 and u1 = u2 = 2, then A = 0. Since ul(σ̃− ũl) = 2 6= 0 there does not exist
a level α such that ‖ũ‖w,ρ = α in this case. In all other cases, A > 0 holds: If there
exists some j 6= l such that uj ≥ 3, then

σ̃ − ũl =
∑

i=1,...,m,
i 6=l

ũi ≥ m,

and with
ulU = 1 +

∑
i=1,...,m
i 6=l

ul
ui︸︷︷︸
>0

> 1

it follows that A > 0. Otherwise, i.e., if ui = 2 ∀ i = 1, . . . ,m, i 6= l, then ulU ≥ 2
and σ̃ − ũl = m− 1, thus, A ≥ m− 2. We see that A > 0 if m ≥ 3 or if m = 2 and
ul > 2, as then ulU > 2. So it holds that

α = ul(σ̃ − ũl)
ulU(σ̃ − ũl)−m

in all cases except m = 2 and u1 = u2 = 2.

The value of α derived in the previous lemma is only formal, i.e., it is not clear
whether α ∈ I. However, the lower bound can be easily verified: As ul(σ̃ − ũl) > 0,

α =
(
U − m

ul(σ̃ − ũl)

)−1
> U−1. (4.18)

It remains to show that the upper bound is valid in the case u1 > um. Moreover, the
index l has to be specified, i.e., the hyperplane on which ũ lies. Inserting (4.17) into
the formulas for wi(α) and ρ(α) derived in Theorem 4.5 directly yields
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Corollary 4.9. Let the assumption of Lemma 4.8 hold and let α be defined according
to (4.17). Then

wi = ul(σ̃ − ũl)− ui
ui(ulU(σ̃ − ũl)−m) , i = 1, . . . ,m, and ρ = 1

ulU(σ̃ − ũl)−m

hold, where l ∈ {1, . . . ,m} such that wl(α)ũl ≥ wi(α)ũi for all i = 1, . . . ,m.

Proof. A short calculation yields

ρ = ρ(α) = α · U
m
− 1
m

= ul(σ̃ − ũl)
ulU(σ̃ − ũl)−m

· U
m
− 1
m

= ulU(σ̃ − ũl)− (ulU(σ̃ − ũl)−m)
m(ulU(σ̃ − ũl)−m) = 1

ulU(σ̃ − ũl)−m

and, for all i = 1, . . . ,m,

wi = wi(α) = α

ui
− ρ(α) = α

ui
− 1
ulU(σ̃ − ũl)−m

= ul(σ̃ − ũl)− ui
ui(ulU(σ̃ − ũl)−m) .

We finally specify the index l for which wl(α)ũl ≥ wi(α)ũi for all i = 1, . . . ,m is
satisfied.

Lemma 4.10. Let m ≥ 3 or u1 > u2 be satisfied. Furthermore, let α be defined
according to (4.17). Then it holds

1. for m = 2 that w2ũ2 ≥ w1ũ1, i.e., l = 2, and

2. for m ≥ 3 that w1ũ1 ≥ wiũi for all i = 1, . . . ,m, i.e., l = 1,

where l ∈ {1, . . . ,m} such that wlũl ≥ wiũi for all i = 1, . . . ,m.

Proof. Let σ̃ := ∑m
i=1 ũi and A := ulU(σ̃ − ũl) −m as in the proof of Lemma 4.8.

From Corollary 4.9 we see that for all i = 1, . . . ,m

wiũi = ũi
ui
· ul(σ̃ − ũl)− ui

A
.

Thus, using ui > 0 for all i = 1, . . . ,m and A > 0 (c.f. the proof of Lemma 4.8), the
following equivalences hold for all i = 1, . . . ,m, i 6= l:

wlũl ≥ wiũi ⇐⇒ ũl · ui · [ul(σ̃ − ũl)− ul] ≥ ũi · ul · [ul(σ̃ − ũl)− ui]

⇐⇒ (σ̃ − ũl) [ũlui − ũiul] ≥ ui(ũl − ũi)

⇐⇒ (σ̃ − ũl) [−ui + ul)] ≥ ui(ul − ui)
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⇐⇒ (σ̃ − ũl − ui)(ul − ui) ≥ 0. (4.19)

We therefore investigate for which choices of l (4.19) is valid.

For m = 2, it holds that σ̃ − ũl − ui = −1 < 0 for any choice of l since i 6= l is
assumed. If u1 > u2, we see that (4.19) holds if and only if i = 1 and l = 2, thus, by
definition of l we have w2ũ2 ≥ w1ũ1. If u1 = u2, then w1ũ1 = w2ũ2.

Now, consider m ≥ 3. In this case, as i 6= l,

σ̃ − ũl − ui =
∑

j=1,...,m,
j 6=l,i

(uj − 1)− 1 ≥ m− 2− 1 ≥ 0.

Thus, (4.19) holds if ul ≥ ui for all i 6= l which is satisfied for l = 1.

Note that for m ≥ 3, l = 1 is not necessarily the only valid choice but that in some
cases (4.19) might also be satisfied for some l 6= 1.

Lemma 4.11. Let m ≥ 3 or u1 > u2 be satisfied. Let α ∈ R+ and σ̃ := ∑m
i=1 ũi. If

‖ũ‖w,ρ = α and ‖ui‖w,ρ = α for all i = 1, . . . ,m, then the level α is given by

α =


ũ1u2

ũ1u2U − 2 , m = 2

u1(σ̃ − ũ1)
u1U(σ̃ − ũ1)−m

, m ≥ 3.
(4.20)

The level is feasible, i.e., α ∈ I holds, where I is defined as specified in Theorem 4.5.

Proof. The representation (4.20) is directly derived from (4.17) and Lemma 4.10. It
remains to show that α is feasible. As stated in (4.18), α > U−1 is satisfied which is
the imposed lower bound. It remains to show that α ≤ u1

u1U−m for u1 > um. Consider
first m ≥ 3. It holds that

α = u1(σ̃ − ũ1)
u1U(σ̃ − ũ1)−m

= 1
U − m

u1(σ̃−ũ1)
≤ 1
U − m

u1

= u1
u1U −m

since σ̃ − ũ1 ≥ u2 + u3 − 2 ≥ 2 for m = 3. For m = 2,

α = ũ1u2
ũ1u2U − 2 = 1

U − 2
ũ1u2

≤ 1
U − 2

u1

= u1
u1U − 2 ,

as ũ1u2 = (u1 − 1)u2 = u1u2 − u2 ≥ 2u1 − u2 ≥ u1.
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m = 2 m ≥ 3

α
u1u2ũ1

(u1 + u2)ũ1 − 2u1

u1(σ̃ − ũ1)
u1U(σ̃ − ũ1)−m

wi
u1(u2ũ1 − ui)

ui[(u1 + u2)ũ1 − 2u1]
u1(σ̃ − ũ1)− ui

ui[u1U(σ̃ − ũ1)−m]

ρ
u1

(u1 + u2)ũ1 − 2u1

1
u1U(σ̃ − ũ1)−m

Table 4.1: Parameters w and ρ and corresponding level α of an augmented weighted Tcheby-
cheff norm such that ‖ũ‖w,ρ = ‖u1‖w,ρ = · · · = ‖um‖w,ρ for two and more than two criteria

The value of α given in (4.20) is therefore feasible and can be used to compute
parameters w and ρ such that the extreme points of a given box B(u) as well as
the point ũ = u− e lie on a common contour of an augmented weighted Tchebycheff
norm. A summary of the computed parameters is given in Table 4.1. Interestingly,
for m = 2 the point ũ is situated on another hyperplane than in the case m ≥ 3. An
illustration of this result is presented in the next example.

Example 4.12. Consider first m = 2 and u = (5, 3)>, thus, ũ = (4, 2)>. An
illustration of the resulting contour is shown in Figure 4.6. Using the formulas stated
in Table 4.1, we compute α = 30

11 , w1 = 7
22 , w2 = 15

22 and ρ = 5
22 ≈ 0.227. Moreover,

zq ≈ (4.19, 1.95)>. Note that zq 6= ũ but that ũ lies on the line for which w2z2 ≥ w1z1

z1

z2

z3
•

0
2

4
6

8
10

0

2

4

6

0

0.5

1

1.5

2

2.5

3

Figure 4.7: Contour of an augmented weighted Tchebycheff norm with u = (9, 5, 4)>. The
point ũ = (8, 4, 2)> is represented by a dot.
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holds.
For an example with three criteria, consider u = (9, 5, 3)>, hence ũ = (8, 4, 2)>.

Then α = 90
53 , w1 = 25

159 , w2 = 49
159 , w3 = 85

159 and ρ = 5
159 ≈ 0.031. In Figure 4.7, the

contour is depicted. The inflection point of the contour is zq ≈ (7.94, 4.05, 2.33)>.
The point ũ lies on the same hyperplane as u1 = (9, 0, 0)>, i.e., on the hyperplane
for which w1z1 ≥ w2z2 and w1z1 ≥ w3z3 hold.

4.2.2 Optimal Parameter Choice

In the previous section we constructed an augmented weighted Tchebycheff norm
such that the m points ui, i = 1, . . . ,m, that represent extreme points of a box B(u)
and ũ = (u1−1, . . . , um−1)> lie on the same contour. However, as the point ũ might
be a feasible nondominated point itself, we must guarantee that it can be generated
when searching for points in B(u). Therefore, it must have a strictly smaller level
than all ui, i = 1, . . . ,m, i.e.,

‖ũ‖w,ρ < min
i=1,...,m

{‖ui‖w,ρ}

must hold. Therefore, we modify our setting slightly and replace ui, i = 1, . . . ,m, by
ui(η) := (0, . . . , 0, ui − ηi, 0, . . . , 0)>, respectively, with η ∈ (0, 1)m. By constructing
parameters w and ρ such that all ui(η), i = 1, . . . ,m, and ũ lie on a common level
curve, we guarantee that all ui, i = 1, . . . ,m, have a strictly larger level than ũ and,
hence, ũ can be found by an augmented weighted Tchebycheff method if it represents
a nondominated point. Note that η = 0 corresponds to the formulas derived in the
previous section.
Every choice of η ∈ (0, 1)m yields an augmented weighted Tchebycheff norm that

satisfies our primary goal, i.e., the possible generation of every nondominated point.
However, as stated in the literature (see, e.g. Ralphs et al. (2006)), a too small value
of ρ might imply numerical problems. Therefore, our secondary goal is to choose ρ
as large as possible. In this subsection we show that ρ as a function of η is strictly
decreasing. Therefore, it is favorable to choose rather small values for the components
of η.
In what follows, we first generalize all formulas of the previous section for a param-

eter η ∈ [0, 1]m. This includes the case η = 0 treated so far as well as the case η = e

resulting in a weighted Tchebycheff norm. Then we investigate how ρ depends on η.
Finally, we propose a concrete parameter choice for the practical implementation
which theoretically guarantees the generation of every nondominated point.
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4.2 Parameters of the Augmented Weighted Tchebycheff Norm

Formulas Dependent on η

When replacing u ∈ Nm, ui ≥ 2 for all i = 1, . . . ,m, by u(η) ∈ Rm, ui(η) ≥ 1 for
all i = 1, . . . ,m, η ∈ [0, 1]m, we can basically repeat the steps of the previous section
in order to determine the parameters of the augmented weighted Tchebycheff norm.
Remember that we assumed without loss of generality that u1 ≥ u2 ≥ · · · ≥ um.
Without loss of generality, we can also assume that the components of u(η) are
ordered decreasingly: If ui > ui+1 for some i ∈ {1, . . . ,m− 1}, then ui(η) ≥ ui+1(η),
as ηk ≤ 1 for all k = 1, . . . ,m. If ui = ui+1 for some i ∈ {1, . . . ,m − 1}, then
ui(η) may be smaller than ui+1(η). However, in this case, we can interchange the
components i and i + 1. Thereby, u remains unchanged, hence the components of
both vectors u and u(η) are ordered decreasingly.
The recalculation of the respective formulas is straightforward and we omit the

details. In analogy to Theorem 4.5 we compute the parameters w and ρ dependent
on the level α and now, additionally, on η ∈ [0, 1]m:

Theorem 4.13. Let α ∈ R+. The points ui(η), i = 1, . . . ,m, lie on a common level
curve of an augmented weighted Tchebycheff norm with level α, i.e., ‖ui(η)‖w,ρ = α

for all i = 1, . . . ,m, if and only if

ρ(α, η) = αU(η)− 1
m

(4.21)

and
wi(α, η) = α

ui(η)
− ρ(α, η) ∀ i = 1, . . . ,m (4.22)

with U(η) := ∑m
j=1

1
uj(η) and α ∈ I(η), where

(i) I(η) :=
[
(U(η))−1,∞

)
, if u1(η) = um(η), and

(ii) I(η) :=
[
(U(η))−1, u1(η)

u1(η)U(η)−m

]
otherwise, i.e., for u1(η) > um(η).

Proof. The proof is completely analogous to the proof of Theorem 4.5.

In analogy to Lemma 4.8, the level α is uniquely determined if, additionally, the
point ũ lies on the contour. As in Lemma 4.8, the case m = 2, u1 = u2 = 2 and
η1 = η2 = 0 must be excluded.

Lemma 4.14. Let m ≥ 2 and, for m = 2, let the case u1 = u2 = 2 and η1 = η2 = 0
be excluded. Let α ∈ R+, and let σ̃ := ∑m

i=1 ũi. If ‖ũ‖w,ρ = α and ‖ui(η)‖w,ρ = α

for all i = 1, . . . ,m hold, then

α(η) = ul(η)(σ̃ − ũl)
ul(η)U(η)(σ̃ − ũl)−m(1− ηl)

, (4.23)

where l ∈ {1, . . . ,m} such that wl(α, η)ũl ≥ wi(α, η)ũi for all i = 1, . . . ,m.
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Proof. The proof is analogous to the proof of Lemma 4.8. We use that ‖ui(η)‖w,ρ = α

for all i = 1, . . . ,m if and only if (4.21) and (4.22) hold. Again, we assume that
l ∈ {1, . . . ,m} is the index for which

wl(α, η)ũl = max
i=1,...,m

{wi(α, η)ũi}

is satisfied which characterizes the hyperplane on which ũ lies. Then

‖ũ‖w,ρ = wl(α, η)ũl + ρ(α, η)
m∑
i=1

ũi =
(

α

ul(η)
− αU(η)− 1

m

)
· ũl +

αU(η)− 1
m

· σ̃

and, thus,

‖ũ‖w,ρ = α ⇐⇒ α

(
m− ul(η)U(η)

mul(η)
· ũl
)

+ 1
m
ũl + α · U(η)

m
· σ̃ − 1

m
· σ̃ = α

⇐⇒ α

[ [m− ul(η)U(η)]ũl
mul(η)

+ U(η)
m

σ̃ − 1
]

= 1
m
σ̃ − 1

m
ũl

⇐⇒ α [mũl − ul(η)U(η)ũl + U(η)ul(η)σ̃ −mul(η)] = ul(η)(σ̃ − ũl)

⇐⇒ α [ul(η)U(η)(σ̃ − ũl)−m(1− ηl)]︸ ︷︷ ︸
=:A(η)

= ul(η)(σ̃ − ũl)

Consider A(η): It holds that

ul(η)U(η) = 1 +
∑

i=1,...,m,
i 6=l

ul − ηl
ui − ηi

> 1.

We consider the following cases:

(1) There exists an index j ∈ {1, . . . ,m}\{l} such that uj ≥ 3. Then

σ̃ − ũl =
∑

i=1,...,m,
i 6=l

ũi ≥ m,

thus, A(η) > m−m(1− ηl) = m · ηl ≥ 0, i.e., A(η) > 0.

(2) For all i = 1, . . . ,m, i 6= l it holds that ui = 2. Then

σ̃ − ũl =
∑

i=1,...,m,
i 6=l

ũi = m− 1.

(2a) If ul > 2, then, as ul − ηl ≥ 2 and ui(η) = 2− ηi ≤ 2 hold for all i 6= l,

ul(η)U(η) = 1 +
∑

i=1,...,m,
i 6=l

ul − ηl
2− ηi

≥ 2,
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with equality if and only if ul = 3, ηl = 1 and ηi = 0 for all i 6= l. However,
in this case, A(η) ≥ 2(m−1)−m(1−ηl) = m−2+m ·ηl > 0. Otherwise,
A(η) > 2(m − 1) − m(1 − ηl) = m − 2 + m · ηl ≥ 0, so in both cases
A(η) > 0.

(2b) If ul = 2, i.e., ui = 2 for all i = 1, . . . ,m, then

ul(η)U(η) = 1 +
∑

i=1,...,m,
i 6=l

2− ηl
2− ηi

≥ 1 + 1
2(m− 1)

as 1 ≤ 2− ηi ≤ 2 for all i = 1, . . . ,m.
If m ≥ 3, then A(η) ≥ 2(m− 1)−m(1− ηl) = m− 2 +m · ηl ≥ 1.
If m = 2, then, for i ∈ {1, 2}\{l},

A(η) =
(

1 + 2− ηl
2− ηi

)
· 1− 2(1− ηl) = −1 + 2− ηl + 2ηl(2− ηi)

2− ηi

= −1 + 2 + ηl(4− 2ηi − 1)
2− ηi

≥ −1 + 2 + ηl
2− ηi

≥ 0.

Note that equality holds if and only if η = 0.

Hence, α is well defined except for the case m = 2, u = (2, 2)> and η1 = η2 = 0.

In the following, we exclude this case from consideration. Again, we have to
show that α(η) is not only formally well-defined but is also feasible, i.e., α ∈ I(η).
We show equivalently that, for α specified as in (4.23), ρ(η) ≥ 0, wi(η) ≥ 0 and
wi(η) + ρ(η) > 0 hold for all i = 1, . . . ,m, i.e., that the parameters of the associated
augmented weighted Tchebycheff norm are well-defined.

Lemma 4.15. Let
α(η) = ul(η)(σ̃ − ũl)

A(η)

be defined as in (4.23) with denominator A(η) := ul(η)U(η)(σ̃− ũl)−m(1−ηl). Then

ρ(η) = 1− ηl
A(η) , wi(η) = ul(η)(σ̃ − ũl)− ui(η)(1− ηl)

ui(η)A(η) , i = 1, . . . ,m,

and ρ(η) ≥ 0, wi(η) ≥ 0 and wi(η) + ρ(η) > 0 hold for all i = 1, . . . ,m.

Proof. Inserting α(η) into (4.21) yields

ρ(η) = ul(η)(σ̃ − ũl)U(η)−A(η)
mA(η) = 1− ηl

A(η) ≥ 0,
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where equality holds if and only if ηl = 1. Inserting α(η) into formula (4.22) for all
i = 1, . . . ,m yields

wi(η) = 1
ui(η)

· ul(η)(σ̃ − ũl)
A(η) − ρ(η) = ul(η)(σ̃ − ũl)− ui(η)(1− ηl)

ui(η)A(η) .

As ui(η) > 0 for all i = 1, . . . ,m and A(η) > 0, it suffices to consider the numerator
of wi(η) in order to show that it is well-defined. We distinguish the following cases:
If i = l, then

ul(η)(σ̃ − ũl)− ui(η)(1− ηl) = ul(η)(σ̃ − ũl − 1 + ηl) ≥ 0.

If i 6= l and m ≥ 3, then

ul(η)(σ̃ − ũl)− ui(η)(1− ηl) ≥ ul(η)(σ̃ − ũl)− ui(η)ul(η)
= ul(η)(σ̃ − ũl − ui(η)) ≥ 0.

If i 6= l and m = 2, then

ul(η)(σ̃ − ũl)− ui(η)(1− ηl) = ul(η)ũi − ui(η)(1− ηl)
= (ul − ηl)(ui − 1)− (ui − ηi)(1− ηl) = ul(ui − 1)− ui + ηl(1− ηi) + ηi

≥ 2(ui − 1)− ui + ηl(1− ηi) + ηi ≥ ui − 2 ≥ 0.

Finally, wi(η) + ρ(η) > 0 holds for all i = 1, . . . ,m as ρ(η) = 0 if and only if
ηl = 1. But then the numerator of wi(η) is ul(η)(σ̃ − ũl) > 1, i.e., wi(η) > 0 for all
i = 1, . . . ,m.

In the case η = 0 presented in the previous section, we proceeded by specifying
the index l explicitly. Now the index l additionally depends on η. However, for our
purpose, the determination of l for arbitrary η is not necessary, as the behavior of
ρ as a function of η can be analyzed without specifying l. This will be presented in
the following.

Maximality of ρ

In what follows, we analyze ρ as a function of η and show that ρ(η) attains its
maximum on [0, 1]m for η = 0. So far, we have computed ρ(η) assuming that index
l ∈ {1, . . . ,m} is the index for which

wl(α, η)ũl = max
i=1,...,m

{wi(α, η)ũi}

holds. This implies that ρ is defined piecewise on specific subsets of [0, 1]m. For a
given l ∈ {1, . . . ,m} we define the set Ul by

Ul := {η ∈ [0, 1]m : wl(α, η)ũl ≥ wi(α, η)ũi ∀ i = 1, . . . ,m}.
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Note that ⋃ml=1 Ul = [0, 1]m and

Ui ∩ Uj = {η ∈ [0, 1]m :wi(α, η)ũi = wj(α, η)ũj ,
wi(α, η)ũi ≥ wk(α, η)ũk ∀ k ∈ {1, . . . ,m}}

for all i 6= j. Hence,
ρ(η) = 1− ηl

A(η) for all η ∈ Ul

with A(η) := ul(η)U(η)(σ̃− ũl)−m(1−ηl). For every l = 1, . . . ,m, the function ρ(η)
is continuous on Ul. As the intersection of two sets Ui and Uj , i 6= j, is non-empty,
we see that ρ(η), defined piecewise on Ul, is continuous on [0, 1]m. On every Ul, the
partial derivatives of ρ(η) with respect to ηl and ηi, i = 1, . . . ,m, i 6= l, are

∂ρ(η)
∂ηl

=
−A(η)− (1− ηl)

[
−(σ̃ − ũl)

(∑
i 6=l

1
ui(η)

)
+m

]
A(η)2

=
−ul(η)U(η)(σ̃ − ũl) + (1− ηl)(σ̃ − ũl)

(∑
i 6=l

1
ui(η)

)
A(η)2

= (σ̃ − ũl)
A(η)2

−1−
∑
i 6=l

ul − ηl
ui(η)

+
∑
i 6=l

1− ηl
ui(η)


= (σ̃ − ũl)

A(η)2

−1−
∑
i 6=l

ul − 1
ui(η)

 < 0

since ul−1
ui(η) > 0 for all i = 1, . . . ,m and σ̃− ũl > 0. For all i = 1, . . . ,m, i 6= l, we have

∂ρ(η)
∂ηi

= −(1− ηl)(σ̃ − ũl)ul(η)
(ui(η))2A(η)2 ≤ 0,

with equality if and only if ηl = 1. Obviously, the partial derivatives of ρ(η) are
continuous and decreasing functions on Ul for all l = 1, . . . ,m. Furthermore, since⋃m
l=1 Ul = [0, 1]m we obtain

Lemma 4.16. The maximal value for ρ(η) on [0, 1]m is attained for η = 0.

Proof. The set U := [0, 1]m is compact and the function ρ(η) is continuous on U ,
thus, the maximum of ρ(η) exists and is attained in U . As all partial derivatives of
ρ(η) are negative on U with ηl 6= 1 and zero if and only if ηl = 1, the maximum of
ρ(η) is attained for η = 0.

Practical Parameter Choice

The foregoing lemma shows that the smaller the value η, the higher the value of the
parameter ρ, which is aimed at for numerical purposes. However, as pointed out
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m = 2

α(η̄) u1(η̄)u2(η̄)ũ1
(u1(η̄) + u2(η̄))ũ1 − 2u1(η̄)(1− η̄)

wi(η̄)
u1(η̄)[u2(η̄)ũ1 − ui(η̄)(1− η̄)]

ui(η̄)[(u1(η̄) + u2(η̄))ũ1 − 2u1(η̄)(1− η̄)]

ρ(η̄) u1(η̄)(1− η̄)
(u1(η̄) + u2(η̄))ũ1 − 2u1(η̄)(1− η̄)

Table 4.2: Practical choice of parameter values for an augmented weighted Tchebycheff norm
dependent on η̄ ∈ (0, 1) for m = 2

before, the choice η = 0 is not feasible, as then ‖ũ‖w,ρ < mini=1,...,m{‖ui‖w,ρ} is not
satisfied. Therefore, we need to bound η away from zero. If we want to determine the
parameters w and ρ for arbitrary η ∈ (0, 1)m, we need to specify l, which means that
we need to analyze on which hyperplane ũ lies. This investigation can be simplified
if we restrict the choice of η to η1 = η2 = · · · = ηm = η̄ with η̄ ∈ (0, 1). In analogy
to Lemma 4.10, we obtain

Lemma 4.17. Let α be defined according to (4.23), where l ∈ {1, . . . ,m} such that
wl(η)ũl ≥ wi(η)ũi for all i = 1, . . . ,m, and let η1 = η2 = · · · = ηm = η̄ with
η̄ ∈ (0, 1). Then it holds

1. for m = 2 that w2(η)ũ2 ≥ w1(η)ũ1, i.e., l = 2, and

2. for m ≥ 3 that w1(η)ũ1 ≥ wi(η)ũi for all i = 1, . . . ,m, i.e., l = 1.

Proof. From Lemma 4.15 we see that for all i = 1, . . . ,m

wi(η)ũi = ul(η)(σ̃ − ũl)− ui(η)(1− ηl)
ui(η)A(η) · ũi.

Therefore, using ui(η) > 0 and A(η) > 0, it holds for all i = 1, . . . ,m, i 6= l that

wl(η)ũl ≥ wi(η)ũi ⇐⇒ (σ̃ − ũl) [ũlui(η)− ũiul(η)] ≥ ui(η)(1− ηl)(ũl − ũi)
⇐⇒ (σ̃ − ũl) [ul(1− ηi)− ui(1− ηl) + ηi − ηl] ≥ ui(η)(1− ηl)(ul − ui).

If η1 = η2 = · · · = ηm = η̄ and η̄ ∈ (0, 1), this is equivalent to

(σ̃ − ũl − ui(η̄))(ul − ui) ≥ 0 (4.24)
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m ≥ 3

α(η̄) u1(η̄)(σ̃ − ũ1)
u1(η̄)U(η̄)(σ̃ − ũ1)−m(1− η̄)

wi(η̄)
u1(η̄)(σ̃ − ũ1)− ui(η̄)(1− η̄)

ui(η̄)[u1(η̄)U(η̄)(σ̃ − ũ1)−m(1− η̄)]

ρ(η̄) 1− η̄
u1(η̄)U(η̄)(σ̃ − ũ1)−m(1− η̄)

Table 4.3: Practical choice of parameter values for an augmented weighted Tchebycheff norm
dependent on η̄ ∈ (0, 1) for m ≥ 3

For m = 2, it holds that σ̃ − ũl − ui(η̄) = η̄ − 1 < 0 for any choice of l since i 6= l is
assumed. Thus, (4.24) holds for m = 2 if and only if ul ≤ ui for all i 6= l which is
satisfied for l = 2. If m ≥ 3, then

σ̃ − ũl − ui(η̄) =
∑
j 6=l

ũj − ui(η̄) =
∑
j 6=l,i

(uj − 1)− 1 + η̄ ≥ m− 3 + η̄ > 0.

Thus, (4.24) holds for m = 3 if and only if ul ≥ ui for all i 6= l which is satisfied for
l = 1.

Tables 4.2 and 4.3 show a summary of the formulas obtained for η̄ ∈ (0, 1).

4.3 Parameters of a Generalized Augmented Weighted
Tchebycheff Norm

As we have seen in the previous section, the use of the classic augmented weighted
Tchebycheff method for constructing a contour on which the points ui, i = 1, . . . ,m,
and ũ lie is possible but not necessarily intuitive as ũ typically lies in the relative
interior of one face of the contour. The construction would be much easier if we
could choose ũ as the inflection point zq. Therefore, in this section we study a
generalization of the augmented weighted Tchebycheff method, see, e.g., Kaliszewski
(2000), which offers more flexibility. Let

‖z‖Gw,ρ := max
i=1,...,m

{wi|zi|}+
m∑
j=1

ρj |zj |, (4.25)

where w, ρ ∈ Rm+ , ∑m
i=1wi = 1 and wi + ρi > 0 for all i = 1, . . . ,m. We call ‖ · ‖Gw,ρ a

generalized augmented weighted Tchebycheff norm in the following.
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4.3.1 Feasible Parameter Choice

As in the previous section we determine the parameters w and ρ of (4.25) such that
the m points ui, i = 1, . . . ,m, and ũ lie on a common contour. Now, additionally, ũ
equals the inflection point. In order to apply the next theorem not only to integer-
valued (discrete) but also to continuous multicriteria optimization problems, we do
not set ũ := u − e but consider an arbitrary ũ ∈ B(u). However, as we will see in
the next theorem, in order to obtain a valid contour of a norm with a positive level
α and well-defined parameters w and ρ, ũ cannot be chosen freely in B(u) but must
satisfy the two technical conditions

m∑
j=1

ũj
uj

> 1 (4.26)

and

(m− 1)ũi ≥

 m∑
j=1

ũj
uj
− 1

ui (4.27)

for every i = 1, . . . ,m. Moreover, ũi > 0 for all i = 1, . . . ,m must hold.

Theorem 4.18 (Parameters of the Generalized Augmented Weighted Tchebycheff
Norm). Let α ∈ R+, u ∈ Rm+ , ui ≥ 2 for all i = 1, . . . ,m as well as ũ ∈ Rm+ satisfying
(4.26) and (4.27). It holds that ‖ui‖Gw,ρ = α for all i = 1, . . . ,m, ‖ũ‖Gw,ρ = α and
wiũi = wj ũj for all i, j ∈ {1, . . . ,m} if and only if

wi =

ũi m∑
j=1

1
ũj

−1

∧ ρi = α

ui
− wi ∀ i = 1, . . . ,m,

where

α = (m− 1)

 m∑
j=1

1
ũj

 m∑
j=1

ũj
uj
− 1

−1

.

Proof. Assume that wiũi = wj ũj for all i, j ∈ {1, . . . ,m} or, equivalently, that
w1ũ1 = wj ũj for all j ∈ {1, . . . ,m}. As ũj > 0 for all j = 1, . . . ,m, it holds
that

w1ũ1 = wj ũj ∀ j ∈ {1, . . . ,m} ⇐⇒ wj = w1ũ1
ũj
∀ j ∈ {1, . . . ,m}.

Moreover, as ∑m
j=1wj = 1, it follows that 1 = w1ũ1

∑m
j=1

1
ũj

which is equivalent to

w1 =

ũ1

m∑
j=1

1
ũj

−1

.
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Thus, for all i = 1, . . . ,m,

wi = w1
ũ1
ũi

=

ũi m∑
j=1

1
ũj

−1

. (4.28)

Note that wi > 0 for all i = 1, . . . ,m, as ũi > 0 for all i = 1, . . . ,m. Furthermore,
for all i = 1, . . . ,m, using ui > 0,

‖ui‖Gw,ρ = α ⇐⇒ (wi + ρi)ui = α⇐⇒ ρi = α

ui
− wi

and, hence, using (4.28),

‖ũ‖Gw,ρ = α ⇐⇒ w1ũ1 +
m∑
j=1

ρj ũj = α ⇐⇒ w1ũ1 +
m∑
j=1

(
α

uj
− wj

)
ũj = α

⇐⇒ −(m− 1)w1ũ1 + α
m∑
j=1

ũj
uj

= α

⇐⇒ α

 m∑
j=1

ũj
uj
− 1

 = (m− 1)

 m∑
j=1

1
ũj

−1

(4.26)⇐⇒ α = (m− 1)

 m∑
j=1

1
ũj

 m∑
j=1

ũj
uj
− 1

−1

.

Then

ρi = α

ui
− wi =

(m− 1)ũi −
(∑m

j=1
ũj
uj
− 1

)
ui

ũiui
(∑m

j=1
1
ũj

) (∑m
j=1

ũj
uj
− 1

)
follows for all i = 1, . . . ,m. Thereby, ρ ∈ Rm+ holds if, additionally to (4.26), (4.27)
is valid for i = 1, . . . ,m. The converse statement is obvious.

In Theorem 4.18, the conditions (4.26) and (4.27) limit the possible choices of ũ.
In the following we investigate two important choices for ũ and study whether (4.26)
and (4.27) are satisfied. First, we consider ũ := u − η̄e with η̄ ∈ (0, 1]. This case
corresponds to the situation in which ũ is placed with an absolute distance from u

as treated in the previous section. However, different from the construction before,
we do not perturb the values of ui but choose ũ slightly away from u. Note that this
also guarantees that every integer-valued nondominated point in B(u) has a strictly
smaller level than the extreme points ui, i = 1, . . . ,m. Secondly, we investigate
ũ := δu for some δ ∈ (0, 1), i.e., the situation in which the inflection point is located
with a relative distance from u. If δ is chosen sufficiently large, then also with this
setting every integer-valued nondominated point in B(u) can be generated.
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Locating the Inflection Point with Absolute Distance to u

Let ũ := u− η̄e, η̄ ∈ (0, 1]. Then

m∑
j=1

ũj
uj

= m−
m∑
j=1

η̄

uj
≥ m

(
1− η̄

2

)
≥ m · 12 ≥ 1

holds with equality if and only if m = 2, u1 = u2 = 2 and η̄ = 1, thus, (4.26) is
satisfied for all choices of u except the case m = 2, u1 = u2 = 2 and η̄ = 1. Recall
that this case was also excluded in the previous section. For i = 1, . . . ,m, (4.27) can
be reformulated as follows:

(m− 1)ũi ≥

 m∑
j=1

ũj
uj
− 1

ui ⇐⇒ (m− 1)(ui − η̄) ≥

m− m∑
j=1

η̄

uj
− 1

ui
⇐⇒ −η̄ (m− 1) ≥ −η̄

m∑
j=1

ui
uj

η̄>0⇐⇒
∑

j=1,...,m,
j 6=i

ui
uj
− (m− 2) ≥ 0 (4.29)

Form = 2, (4.29) is satisfied for every i = 1, 2 and for any choice of u with u1, u2 ≥ 2.
However, for m ≥ 3, not all choices of u are valid. Let, for example, m = 3 and
u = (20, 10, 5)>. Then, for i = 3,

2∑
j=1

u3
uj

= 5
20 + 5

10 < 1,

which, in turn, implies ρ3 < 0, thus, ‖ · ‖Gw,ρ does not represent a norm in this case.
Note that for m = 3, (4.29) is satisfied for every i = 1, 2 and every u ∈ Rm+ for which,
w.l.o.g., u1 ≥ u2 ≥ u3 holds, as ui/u3 ≥ 1 for every i = 1, 2 and ui/uj > 0 for every
i, j = 1, 2, i 6= j. Therefore, when the components of u are ordered decreasingly,
only i = 3 is critical and needs to be checked. An example in which a valid norm is
obtained for m = 3 is given by u = (10, 6, 4)>. Condition (4.27) is satisfied for all
i = 1, 2, 3 as

2∑
j=1

u3
uj

= 4
10 + 4

6 = 16
15 > 1.

We conclude that in the bicriteria case the generalized augmented weighted Tcheby-
cheff norm (4.25) can be used to define a contour such that the points u1, u2 and
ũ := u − η̄e, η̄ ∈ (0, 1], lie on this contour and, additionally, ũ equals the inflection
point for every feasible choice of u and η̄ besides u1 = u2 = 2 and η̄ = 1. For m ≥ 3,
this is only possible if u satisfies (4.29) for every i = 1, . . . ,m.
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Locating the Inflection Point with Relative Distance to u

Let now ũ := δu for some δ ∈ (0, 1). Condition (4.26) yields

m∑
j=1

ũj
uj

=
m∑
j=1

δuj
uj

= mδ > 1 ⇐⇒ δ > m−1,

i.e., the larger m is, the smaller δ can be chosen such that the resulting contour is
valid. Condition (4.27) reads

(m− 1)δui ≥ (mδ − 1)ui ⇐⇒ ui(1− δ) ≥ 0,

which is valid for every i = 1, . . . ,m, as δ ∈ (0, 1). So the only limiting condition is
δ > m−1. By setting δ := (ū− η̄)/ū with ū := max{ui : i = 1, . . . ,m} and η̄ ∈ (0, 1) a
valid contour is defined for everym ≥ 2 such that every integer-valued nondominated
point in B(u) has a strictly smaller level than all ui, i = 1, . . . ,m.

We conclude that for m ≥ 3 even the generalized augmented weighted Tcheby-
cheff norm does not provide enough flexibility to construct a contour for which the
inflection point has the same small absolute distance from u with respect to every
component. In particular, the point ũ := u− e can not be chosen as inflection point
for m ≥ 3, in general. However, when the inflection point is located in a relative
distance to u, the generalized augmented weighted Tchebycheff norm is suitable for
arbitrary u under the rather mild condition that δ > m−1.

4.3.2 Relations Between Trade-Offs and Augmentation Parameters

In Section 4.1.2, we motivated the computation of the parameters of an augmented
weighted Tchebycheff norm for integer-valued problems. The construction was based
on the fact that due to the integrality of the nondominated points a part of the
considered box B(u) could be discarded because of being empty. If a continuous
problem is given, we cannot exclude a part of the box B(u) a priori, but a possible
nondominated point might be located everywhere in B(u). If we search for new
nondominated points by solving a (generalized) augmented weighted Tchebycheff
problem with ρ > 0, then only new nondominated points having a smaller level than
the (nondominated) points used for defining the contour can be computed. Figure 4.8
depicts the ‘reachable’ and ‘unreachable’ area in the bicriteria case.
We can also say that only points having a certain trade-off can be generated.

The fact that the parameter ρ of an augmented or modified weighted Tchebycheff
scalarization provides a valuable source of trade-off information has been pointed out
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1

z1

z2

(a)

1

z1

z2

(b)

Figure 4.8: The ’reachable’ (white) and ’unreachable’ (shaded) area for different values of
augmentation parameters

in, e.g., Kaliszewski (2000). The connection between trade-offs and the augmenta-
tion term(s) of different variants of Tchebycheff norms is studied in Kaliszewski and
Michalowski (1997) and Kaliszewski (2000). Among others, it is shown in Kaliszewski
(2000) that if a point z̄ solves a generalized augmented weighted Tchebycheff problem

min
z∈Z

max
i=1,...,m

{
wi
(
zUi − zi

)}
+

m∑
j=1

ρj
(
zUj − zj

)
(4.30)

with w, ρ ∈ Rm> , then the trade-off as defined in (2.8) is bounded by

TGij (z̄) ≤
wj + ρj
ρi

for all i, j = 1, . . . ,m, i 6= j. Note that Kaliszewski (2000) considers multicrite-
ria optimization problems in maximization format. For minimization problems we
analogously obtain

TGij (z̄) ≤
ρi

wj + ρj
(4.31)

for all i, j = 1, . . . ,m, i 6= j. Conversely, it is demonstrated in Kaliszewski (2000)
for m = 2 that specified trade-offs TG12(z̄) and TG21(z̄) can be translated into suitable
values for ρ1 and ρ2 such that every (properly) nondominated point obtained as
optimal solution of (4.30) satisfies the given trade-offs. The values of ρ are obtained
by solving the linear system TG12(z̄) = (w2 + ρ2)ρ−1

1 and TG21(z̄) = (w1 + ρ1)ρ−1
2 .

Thereby, the weights w that determine the search direction can be chosen arbitrarily.
However, as stated in Kaliszewski (2000), no straightforward generalization form ≥ 3
exists since the resulting system of m(m− 1) equations is not necessarily consistent.
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In Podkopaev (2007) the problem of prescribing trade-offs for anym ≥ 2 is studied.
The author proposes to consider

min
z∈Z

max
i=1,...,m

wi
(zUi − zi)+

∑
j=1,...,m,

j 6=i

βij
(
zUj − zj

)
 , (4.32)

where (βij)i,j=1,...,m denotes a positive (m×m)-matrix with βii = 1 for all i = 1, . . . ,m
and βijβjk ≤ βik for all i 6= j, j 6= k which implies βijβji ≤ 1 for i = k. It is shown
that the trade-off of a point z̄ ∈ Z that solves (4.32) is bounded by

TGij (z̄) ≤
1
βji

for all i, j = 1, . . . ,m, i 6= j. With the help of this formulation, a trade-off between
every pair of objectives (for arbitrary many objectives) can be prescribed. The
parameters βij , i, j = 1, . . . ,m, represent augmentation parameters. The weights
can be chosen arbitrarily.
Different from the approaches of Kaliszewski (2000) and Podkopaev (2007), which

focus on the computation of the augmentation parameters and use arbitrarily chosen
weights, Theorem 4.18 provides a formula for computing all parameters. Note that
an adaptive selection of the weights is important for directing the search to a partic-
ular part of the search region. However, as pointed out above, only in the bicriteria
case pairwise given trade-offs on all objectives can be transformed into suitable pa-
rameters. We conclude this section with a bicriteria example in which trade-offs are
imposed.

Example 4.19. Let m = 2 and let the two nondominated points u1 = (0, 6)> and
u2 = (10, 0)> of an underlying minimization problem be given. First, assume that
the problem is integer-valued and that parameters of (4.25) are to be constructed
such that u1, u2 and ũ := u − e = (9, 5)> lie on one contour. Alternatively, we can
prescribe trade-offs TG12(ũ) = TG21(u1) ≥ 1/9 and TG21(ũ) = TG12(u2) ≥ 1/5. Then, using
Theorem 4.18, we obtain

w1 = 5/14, w2 = 9/14, ρ1 = 25/308, ρ2 = 27/308.

For given weights we can also use (4.31) to compute ρ. Then, with T12 := 1/9 and
T21 := 1/5 we obtain

ρ1 = T12(w2 + w1T21)
1− T12T21

, ρ2 = T21(w1 + w2T12)
1− T12T21

,

which yields the same values for ρ1 and ρ2 as computed above.
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Now, assume that either a continuous problem is given or a representative subset
that does not necessarily contain all nondominated points is to be computed. Let
δ = 3/5 and ũ := δu = (6, 3.6)> or, alternatively, TG12(ũ) = TG21(u1) ≥ 2/5 and TG21(ũ) =
TG12(u2) ≥ 10/9. As δ > m−1 we can apply the formulas derived in Theorem 4.18 and
obtain

w1 = 3/8, w2 = 5/8, ρ1 = 3/4, ρ2 = 5/4.

Note that it is possible to prescribe a two-sided trade-off when using the gener-
alized augmented weighted Tchebycheff problem for m = 2. If, instead, the classic
augmented problem is used, only a one-sided trade-off, i.e., either TG12(ũ) or TG21(ũ)
can be prescribed such that the resulting contour is uniquely determined. This is
due to the fact that the inflection point can not be varied freely but lies on a curve,
see Figure 4.6. Prescribing a one-sided trade-off is equivalent to fixing the slope of
one of the lines of the contour. Thereby, the inflection point and, hence, the contour
is fixed.

4.4 Parameters of Augmented ε-Constraint Scalarizations

The ideas presented in the foregoing sections for a (generalized) augmented weighted
Tchebycheff method can be directly translated to an ε-constraint method with an
augmenting l1-term. While the notion of an augmented ε-constraint method has
only recently been employed, see the approach of Mavrotas (2009) below, already
the hybrid method can be interpreted as an augmented ε-constraint method. Recall
from Section 2.3 that the hybrid method combines the ε-constraint method with a
weighted sum objective.
A generalized ε-constraint method is given in Ruzika (2007), see also Ehrgott and

Ruzika (2008). Therein, different improvements on the classic ε-constraint method
are proposed. One improvement consists in adding slack variables to the constraints
and supplementing the objective function by a weighted sum of these slack variables,
which yields the problem

min fk(x)−
∑
i 6=k

µisi

s.t. fi(x) + si ≤ εi, i = 1, . . . ,m, i 6= k,

si ≥ 0, i = 1, . . . ,m, i 6= k,

x ∈ X,

(4.33)

where ε ∈ Rm and µ ∈ Rm+ . The authors show that if (x∗, s∗) is an optimal solution
of (4.33) with µ ∈ Rm> , x∗ is efficient. Furthermore, if µ ∈ Rm> , every optimal solution
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of (4.33) satisfies fi(x∗) + s∗i = εi for all i 6= k. Therefore, at optimality, (4.33) can
be reformulated as

min fk(x) +
∑
i 6=k

ρifi(x)

s.t. fi(x) ≤ εi, i = 1, . . . ,m, i 6= k,

x ∈ X

(4.34)

with ρi = µi for all i = 1, . . . ,m, since by setting si := εi − fi(x), i = 1, . . . ,m, the
objective of (4.33) reads

fk(x)−
∑
i 6=k

µi(εi − fi(x)) = fk(x) +
∑
i 6=k

µifi(x)−
∑
i 6=k

µiεi,

where ∑i 6=k µiεi is a constant. The first constraint of (4.33) vanishes and the second
becomes fi(x) ≤ εi for all i 6= k. Therefore, (4.34) is a special case of the hybrid
method with weights

λ = (ρ1, . . . , ρk−1, 1, ρk+1, . . . , ρm)> .

In analogy to the previous section, we call (4.34) a generalized augmented ε-constraint
method.
Mavrotas (2009) proposes a method called AUGMECON, an acronym for ‘aug-

mented ε-constraint method’. Thereby, the objective function of the classic ε-con-
straint method is augmented by a sum of slack variables. Analogously to the aug-
mented weighted Tchebycheff method, one single augmentation parameter ρ > 0 is
used. The considered problem is of the form

min f1(x)− ρ
m∑
i=2

si
ri

s.t. fi(x) + si ≤ εi, i = 2, . . . ,m,

si ≥ 0, i = 2, . . . ,m,

x ∈ X,

(4.35)

where ε ∈ Rm and r ∈ Rm> denotes the range of the objectives, obtained as difference
between an estimate on the nadir point and the ideal point. Note that in order to ease
comparison, we transformed the original maximization problem into minimization
format. Moreover, note that (4.35) has the same structure as (4.33), hence, at
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optimality, we can transform it analogously into a problem of the form

min fk(x) + ρ
∑
i 6=k

fi(x)

s.t. fi(x) ≤ εi ∀ i 6= k,

x ∈ X,

(4.36)

with k = 1. Problem (4.36) is employed in Özpeynirci and Köksalan (2010a). The
authors use this scalarization for integer-valued problems and indicate

ρ ∈

0,
(

m∑
i=1

zMi − zIi

)−1
 (4.37)

as an interval for a suitable choice of ρ where zM denotes an upper bound on the
nondominated set. Note that (4.36) corresponds to the hybrid method with

λ = (ρ, . . . , ρ, 1, ρ, . . . , ρ)> .

We call it augmented ε-constraint method in the following. Adaptive values of all
parameters can be determined similar to the construction in the previous sections.
In order to restrict the search for new nondominated points to the box B(u), we set
εi := ui for all i 6= k in (4.36). For the computation of ρ we consider the contour
of the objective function of (4.36), which is represented by an (m − 1)-dimensional
hyperplane of the form

H(α) :=

z ∈ Rm : zk + ρ
∑
i 6=k

zi = α


with α > 0. In order to obtain an appropriate value for ρ, we require that ũ := u− e
has a strictly smaller level α than the nondominated point defining u with respect
to component k. Due to the integrality of the nondominated points, we assume
without loss of generality that ui ≥ 2 holds for all i = 1, . . . ,m. The bicriteria
case is illustrated in Figure 4.9 for k = 2. The contour is constructed such that
ũ := (u1 − 1, u2 − 1)> and u2(η̄) := (0, u2 − η̄)>, η̄ ∈ (0, 1), both lie on H(α). In
general, i.e., for arbitrary m ≥ 2, we compute ρ and α such that uk(η̄) ∈ H(α) with
uk(η̄) := (0, . . . , 0, uk − η̄, 0, . . . , 0)>, η̄ ∈ (0, 1), and ũ := u− e ∈ H(α). Hence,

uk − η̄ = α and uk − 1 + ρ
∑
i 6=k

(ui − 1) = α,

thus, ρ
∑
i 6=k

(ui − 1) = 1− η̄, which yields

ρ = 1− η̄∑
i 6=k(ui − 1) . (4.38)
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1

ũ

u2(η̄)

H(α)

z2

z1

Figure 4.9: Contour line of an augmented ε-constraint problem for m = 2

Note that independent of m, the two points uk(η̄) and ũ are sufficient to uniquely
determine ρ and α. As in case of the augmented weighted Tchebycheff norm, the
maximal value of ρ would be obtained for η̄ = 0. However, as discussed before, this
choice is not possible as uk(η̄) must have a strictly smaller level than ũ.

4.5 Conclusion and Further Ideas

In this chapter, we studied the well-known augmented weighted Tchebycheff method
and derived parameters for it such that every nondominated point of a discrete
(integer-valued) multicriteria optimization problem with a finite nondominated set
can be detected. In particular, we derived an upper bound on the parameter ρ such
that for all choices of ρ smaller than this upper bound either a new nondominated
point is generated or, otherwise, the considered box B(u) can be discarded from
further investigation.
We also studied a generalized augmented weighted Tchebycheff method that offers

more flexibility. Moreover, based on the connection between trade-offs and augmen-
tation parameters, we showed how trade-off information can be incorporated into
our approach. Thereby, the proposed parameter scheme is not only applicable to
discrete problems but also to continuous ones. Finally, we also stated an augmented
ε-constraint method and showed how to choose the parameters in an analogous way.
In the future it would be interesting to study the approach of Podkopaev (2007) in

more detail which allows the incorporation of pairwise trade-offs on all objectives for
any number of criteria. A computation of all parameters would be useful such that
all prescribed trade-offs can be respected and the investigation of a specified search
region is possible.
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5 A Parametric Algorithm with a New
Bound on the Number of Subproblems

5.1 Introduction

In this chapter we present a new algorithm that generates a representation of the
nondominated set by solving a series of scalarized problems whose parameters are
varied in a systematic way. In particular, we focus on the generation of complete
representations for discrete multicriteria optimization problems with a finite nondom-
inated set. When generating complete representations, then, as already discussed in
Section 3.1, common quality criteria like coverage, uniformity or cardinality are not
meaningful. Instead, the main goal is to keep the number of subproblems as small
as possible. Recall from the literature review in Section 3.2 that in the bicriteria
case approaches are known which require the solution of at most 2|ZN | − 1 subprob-
lems. Thereby, |ZN | subproblems are solved to generate all points in ZN , and the
additional |ZN | − 1 subproblems are needed to ensure that no further nondominated
points exist between the already generated ones. Corresponding algorithms have
been proposed by Chalmet et al. (1986), who use a hybrid method as scalarization,
and Ralphs et al. (2006), who employ Tchebycheff scalarizations. If the ε-constraint
method is chosen as scalarization, the number of subproblems to be solved at maxi-
mum can be reduced to |ZN |+ 1 if the points are generated in a specific order, see,
e.g., Laumanns et al. (2006). By indicating a corresponding algorithm for general
m ≥ 2, Laumanns et al. (2006) show that at most (|ZN |+ 1)m−1 subproblems need
to be solved to obtain a complete representation. While no better bound can be
expected in the bicriteria case, the quadratic bound in the tricriteria case seemed
not to be tight. Numerical experiments of Laumanns et al. (2006) for a knapsack
problem with three objectives reveal that the number of subproblems that are solved
in their algorithm is considerably smaller than (|ZN | + 1)2. Further algorithms for
generating complete representations for discrete multicriteria optimization problems
are proposed in Özlen and Azizoğlu (2009), Lokman and Köksalan (2013), Kirlik
and Sayın (2014) and Ozlen et al. (2014). We refer to Section 3.3 for a detailed de-
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scription of these algorithms. However, no better theoretical bound on the number
of subproblems could be proven so far.
In the following, we propose a new parametric algorithm for which the number of

subproblems solved to generate a complete representation of the nondominated set of
a tricriteria optimization problem depends linearly on the number of nondominated
points. More precisely, if |ZN | ≥ 3 and if the ideal point and an arbitrary upper
bound on Z are given, at most 3|ZN | − 2 subproblems have to be solved. The linear
bound is achieved by the definition of a new split criterion which allows to exclude
redundant sets from the decomposition of the so-called search region. The latter
describes a set in which further nondominated points might be contained. In our
approach we describe the search region as the union of rectangular sets called boxes.
All boxes have the ideal point as common lower vertex. Any upper bound on Z can be
used as upper vertex of the initial search region. Whenever a new nondominated point
is computed, this point and all points dominated by it are eliminated from the search
region. This is achieved by splitting the search region according to some specific rule.
In each iteration, a box is selected from the current decomposition of the search region
and a corresponding subproblem is solved. To this end, any scalarization can be used
with the help of which the selected box can be investigated. This means that a new
nondominated point in the considered box has to be generated whenever there exists
one, and the selected box has to be identified as empty otherwise. The weighted
Tchebycheff method and the ε-constraint method can be used for this purpose if an
appropriate parameter scheme as proposed, e.g., in Chapter 4 is applied. If the ε-
constraint method is used, the upper bound on the number of subproblems can even
be decreased to 2|ZN | − 1 due to particular properties of this scalarization. Note
that the number of boxes of the decomposition which are obtained in the course
of the algorithm equals the number of iterations of the algorithm, as every box
is investigated exactly once. Moreover, since in every iteration one subproblem is
solved, the number of iterations also equals the number of subproblems. Therefore,
when addressing the upper bound on the number of subproblems, we can equivalently
speak of an upper bound on the number of iterations or boxes.
The result that the search region of a tricriteria problem can be decomposed into

a number of boxes (hypercubes) that depends linearly on the number of nondom-
inated points goes in line with results from the field of computational geometry.
In Boissonnat et al. (1998) it is shown that for a set of n points in Rm the maximum
complexity of its Voronoi diagram under the l∞-metric is O(ndm/2e). Moreover, it is
demonstrated that the same complexity holds for the union of n axis-parallel hyper-
cubes in Rm. If all hypercubes have the same size, the complexity can be improved
to O(nbm/2c) for m ≥ 2. It remains O(n) for m = 1. While the boxes, into which
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we decompose the search region, are not of the same size, in general, they all share
the vertex zI . As shown in Bringmann (2013) an instance in which all boxes share
one common vertex can be transformed into an instance in which all boxes have the
same size. Therefore, the upper bound O(nbm/2c) for m ≥ 2 holds for a set of n
nondominated points and yields O(n) for m = 3. However, no algorithm is indicated
in Boissonnat et al. (1998) or Bringmann (2013).
A topic that is closely related to the description of the search region with respect

to a set of nondominated points is the computation of the dominated hypervolume
with respect to a set of points, see the definition in (2.19). Indeed, the dominated
hypervolume can be seen as a complement to the search region in the sense that the
union of both sets (with respect to the same set of points) yields the initial search
region. Consequently, similar algorithms can be used to compute either the search
region or the dominated hypervolume with respect to a given set of points. Beume
et al. (2009) and Guerreiro et al. (2012) present algorithms for the determination of
the dominated hypervolume with respect to a given set of n points for m = 3 and
m = 4, respectively. They order the set of points with respect to one component
beforehand and apply a so-called dimension sweep technique that makes use of the
order. The overall complexity of the algorithms is shown to be O(n logn) for m = 3
(Beume et al., 2009) and O(n2) for m = 4 (Guerreiro et al., 2012). Note that this
complexity refers to the overall algorithm and does not only count the number of
hypercubes (subproblems) as the bounds stated above do.
The algorithm that is proposed in this chapter can also be used when a set of

points is given and the search region potentially containing further nondominated
points shall be generated. However, different from the approaches that apply a
dimension-sweep technique, we insert the points one by one and update the search
region directly after each insertion. An application of computing an initial search
region with respect to a given set of points and updating it iteratively is given within
a two phase method. In Przybylski et al. (2010a) all supported nondominated points
are computed in a first stage. They define an initial search region. The nonsupported
nondominated points, which are detected in the second phase, require an iterative
update of the search region. In the approach of Przybylski et al. (2010a) basically
the same decomposition is obtained as in our approach. However, no bound on the
number of boxes, described by their respective upper vertices, is derived.
The remainder of this chapter is organized as follows. In Section 5.2 we present

a decomposition of the search region based on nondominance and propose a general
box algorithm for m ≥ 2. We show that this algorithm may produce redundant
boxes for problems with more than two criteria which makes the algorithm ineffi-
cient, in general. In Section 5.3 an improved split is presented for the tricriteria
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case. Under the technical assumption that all nondominated points differ pairwise in
every component, we show how to construct a decomposition that only contains non-
redundant boxes. As our main result, we prove that the number of boxes is bounded
by 3|ZN |−2 for |ZN | ≥ 3. Finally, we show that the algorithm can also be applied if
the nondominated points are in arbitrary (non-general) position, i.e., if every pair of
points may have up to one equal component for m = 3. The upper bound 3|ZN | − 2
is also valid in this general case. In Section 5.4 the ε-constraint method is studied as
a special scalarization for which the number of subproblems can be reduced further.
In the tricriteria case we obtain a new upper bound of 2|ZN | − 1. In Section 5.5
we propose a generalization of the algorithm presented in Section 5.3 that can be
applied to problems with any number of criteria. Moreover, in the tricriteria case,
this algorithm is supposed to reduce the number of boxes further if the nondomi-
nated points are in arbitrary (non-general) position. However, no theoretical upper
bound on the number of subproblems analogous to the bound in Section 5.3 can be
derived. Section 5.6 provides a conclusion and further ideas. Parts of this chapter
have already been published as a technical report in Dächert and Klamroth (2013).

5.2 Split of the Search Region for Multicriteria Problems

Let B0 denote an initial search region of the form

B0 := {z ∈ Rm : lj ≤ zj < uj , j = 1, . . . ,m}

with l, u ∈ Rm, l ≤ u. As lower and upper vertex of B0 we choose a global lower
and upper bound on the set of feasible outcomes, for example, l := zI and u := zM

as defined in Section 2.1. Alternatively, explicit bounds on the search region as
provided, for example, by a decision maker can be used to specify l and u.
If no special scalarization method is employed, the iterative reduction of the search

region can solely be based on nondominance. Thereby, every generated nondomi-
nated point allows to restrict the search region, as for any z∗ ∈ ZN the two sets

S1(z∗) := {z ∈ B0 : z 5 z∗} and S2(z∗) := {z ∈ B0 : z = z∗}

do not contain any nondominated points besides z∗, i.e., S1(z∗)∩ZN = {z∗} as well
as S2(z∗) ∩ ZN = {z∗}. Moreover, S1(z∗) ∩ Z = {z∗}, thus, S1(z∗)\{z∗} contains no
feasible points.

5.2.1 A Full-Dimensional Split

In the following, we decompose a given initial search region B0 iteratively into subsets
B ⊂ B0 of the same form, i.e., into sets B := {x ∈ Rm : lj ≤ xj < u′j , j = 1, . . . ,m}
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with u′ ∈ Rm, l ≤ u′ ≤ u. As the initial search region that potentially contains
nondominated points of (2.1) as well as each subset B as defined above describe
rectangular subsets of Rm with sides parallel to the coordinate axes, we call these
sets boxes in the following. The search region is always represented as the union of
certain boxes B. With the generation of every new nondominated point we replace
some of the boxes of the current search region by appropriate new boxes such that the
whole search region is covered. This property is called correctness in the following.

Definition 5.1 (Correct decomposition). Let B0 denote the starting box, let Bs
denote the set of boxes at the beginning of iteration s ≥ 1, where B1 := {B0}, and let
zp ∈ ZN , p = 1, . . . , s − 1, be already determined nondominated points. We call Bs
correct with respect to z1, . . . , zs−1 if

B0 \

 ⋃
B∈Bs

B

 =
⋃

p=1,...,s−1
S2(zp) (5.1)

holds, where S2(zp) := {z ∈ B0 : z = zp} denotes that subset of the box B0 that is
dominated by the point zp ∈ ZN , p = 1, . . . , s− 1.

Any split presented in the following maintains a correct decomposition of the search
region at any time. Under this basic condition, we try to generate as few boxes as
possible, as for every generated box a scalarized subproblem needs to be solved. Our
aim is to keep the number of subproblems low. The simplest split decomposes a
box B which contains a new outcome z∗ ∈ (B ∩ ZN ) into m subboxes (see also
Tenfelde-Podehl (2003) or Dhaenens et al. (2010)).

Definition 5.2 (Full m-split). Let a nondominated point z∗ ∈ (B ∩ ZN ) be given.
We call the replacement of B by the m sets

Bi := {z ∈ B : zi < z∗i } ∀ i = 1, . . . ,m (5.2)

a full m-split of B.

Recursively applying the full m-split to every box which contains the current non-
dominated point yields a correct decomposition, as the following lemma shows.

Lemma 5.3 (Correctness of the full m-split). Let Bs, s ≥ 1, with B1 := {B0} be a
correct decomposition with respect to the nondominated points z1, . . . , zs−1, and let
zs ∈ ZN . If a full m-split is applied to all boxes B ∈ Bs with zs ∈ B, then the
resulting decomposition is correct.
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Proof. By induction on s.
s = 1 : Let B1 := {B0}, and z1 ∈ ZN . Then, by definition of the full m-split, B0 is
replaced by m boxes. It holds that

B0 \

 ⋃
B∈B2

B

 = B0 \

 ⋃
i=1,...,m

{z ∈ B0 : zi < z1
i }

 = S2(z1),

thus, B2 is correct.
s→ s+ 1 : Let Bs be correct, and let zs ∈ ZN . Let Bs ⊂ Bs denote the set of

all boxes B ∈ Bs for which zs ∈ B holds. Let I be the index set of these boxes
and let Q := |Bs|. Now, let a full m-split with respect to zs be applied to all
B ∈ Bs, i.e., each of the boxes BI(q), q = 1, . . . , Q, is replaced by m new boxes
B
I(q)
1 , . . . , B

I(q)
m , q = 1, . . . , Q and⋃

i=1,...,m
q=1,...,Q

B
I(q)
i =

⋃
B∈Bs

B \ S2(zs)

holds. Then

B0 \

 ⋃
B∈Bs+1

B

 = B0 \


 ⋃
B∈Bs\Bs

B

 ∪
 ⋃
i=1,...,m
q=1,...,Q

B
I(q)
i




= B0 \


 ⋃
B∈Bs\Bs

B

 ∪
 ⋃
B∈Bs

B \ S2(zs)


 = B0 \

 ⋃
B∈Bs

B \ S2(zs)


=

B0 \

 ⋃
B∈Bs

B

 ∪ S2(zs) =
⋃

p=1,...,s
S2(zp).

Note that all new boxes B ∈ Bs+1, s ≥ 2, obtained from boxes in Bs, are defined
as sets with open upper boundary, as we need to exclude zs from the search region in
order to prevent it from further generation. In practical applications, it will often be
useful to replace the boxes by closed subsets and exclude zs by using, for example,
appropriate scalarization approaches.
Also note that we describe the boxes by their upper vertex u only and that the

lower vertex of all boxes is kept constant. This means that the decomposition of
the search region contains the union of the sets S1(zp)\{zp}, 1 ≤ p ≤ s, for all
nondominated points zp ∈ ZN which have already been generated by the algorithm,
even if these sets do not contain any feasible points. However, the split operation is
simplified by including these sets, since a box is never split into more than m new
boxes.
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A Generic Algorithm Based on the Full m-Split

Algorithm 1 shows a basic algorithm using the full m-split. Due to Lemma 5.3, the
algorithm is correct as it does not exclude regions from the search region which might
contain further nondominated points. A problem formulation is given as input, which
is denoted by Z. Note that this does not mean that the set of feasible outcomes is
known explicitly, but it is to be understood as a substitute for the objective functions
and the constraints.

Algorithm 1 Algorithm with full m-split
Input: Image of the feasible set Z ⊂ Rm, implicitly given by some problem formu-

lation
1: N := ∅; δ > 0;
2: InitStartingBox(Z, δ);
3: s := 1; // Initialize starting box
4: while Bs 6= ∅ do
5: Choose B ∈ Bs;
6: zs := opt(Z, u(B)); // Solve scalarized subproblem
7: if zs = ∅ then // Subproblem infeasible
8: Bs+1 := Bs\{B}; // Remove (empty) box
9: else

10: N := N ∪ {zs}; // Save nondominated point
11: Bs+1 := Bs; // Copy set of current boxes
12: GenerateNewBoxes(Bs, zs, zI ,Bs+1);
13: end if
14: s := s+ 1;
15: end while
Output: Set of nondominated points N

16: procedure InitStartingBox(Z, δ)
17: for j = 1 to m do // Compute bounds on Z
18: zIj := min{zj : z ∈ Z};
19: zMj := max{zj : z ∈ Z}+ δ;
20: uj(B0) := zMj ;
21: end for
22: B1 := {B0}; // Initialize set of boxes
23: return B1

24: end procedure
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25: procedure GenerateNewBoxes(Bs, zs, zI ,Bs+1)
26: for all B̂ ∈ Bs do
27: if zs < u(B̂) then // Point is contained in box
28: Bs+1 := Bs+1\{B̂}; // Remove box
29: for i = 1 to m do // Apply full m-split
30: if zsi > zIi then
31: B′ := ∅; // Create new box
32: ui(B′) := zsi ; // Update upper bound
33: uj(B′) := uj(B̂) ∀ j 6= i;
34: Bs+1 := Bs+1 ∪ {B′}; // Append new box
35: end if
36: end for
37: end if
38: end for
39: return Bs+1

40: end procedure

As long as Bs contains unexplored boxes, a box B is selected according to some
rule as specified, for example, by an error measure or by a decision maker. However,
as we are interested in generating the entire nondominated set, no special rule is
employed in the following, and we may, for example, always take the first box in the
list Bs. The upper bound vector u(B) of the chosen box B is used to determine the
parameters of the selected scalarization. Note that the scalarization method can be
chosen freely as long as it is guaranteed that the method finds a nondominated point
in B whenever there exists one. For example, the augmented weighted Tchebycheff
scalarization with a parameter scheme as presented in Chapter 4 is an appropriate
method. We do not specify a scalarization method in Algorithm 1, but express by
opt(·) in Line 6 that any scalarization can be chosen that is suited for the discrete or
non-convex case. The result of the subproblem is either a nondominated point zs in
the considered box or the detection of infeasibility which corresponds to the situation
in which the considered box does not contain further nondominated points. In the
latter case, B is removed from the list Bs and the iteration is finished. Otherwise,
zs is saved and all boxes B̂ ∈ Bs are identified that contain zs. All these boxes
are split with respect to all i ∈ {1, . . . ,m} for which zsi > zIi holds and replaced by
the new boxes. The algorithm iterates until all boxes are explored. Then the entire
nondominated set has been detected.
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z1

z2

z3

z4

1

Figure 5.1: Decomposition of the search region for m = 2

The Bicriteria Case

For m = 2, Algorithm 1 is not only correct but also efficient, in the sense that the
number of subproblems that need to be solved depends linearly on the number of
nondominated points. As the decomposition does not contain redundant boxes, an
upper bound on the number of boxes can easily be derived, which can be seen as
follows. Let B0 denote the starting box and let z1 ∈ B0 ∩ ZN be the first generated
point. Consider the two new boxes B1, B2 replacing B0 in the first iteration. It holds
that

B1 ∩ Z = {z ∈ B0 : z1 < z1
1} ∩ Z =

(
{z ∈ B0 : z1 < z1

1} ∩ Z
)
\S1(z1)

= {z ∈ B0 : z1 < z1
1 , z2 > z1

2} ∩ Z

and, analogously,

B2 ∩ Z = {z ∈ B0 : z2 < z1
2} ∩ Z = {z ∈ B0 : z2 < z1

2 , z1 > z1
1} ∩ Z,

thus, (B1 ∩ Z) ∩ (B2 ∩ Z) = ∅. Therefore, the second generated point z2 ∈ ZN is
contained in exactly one of the two boxes B1, B2. This box is again split into two
new boxes whose intersections with Z are disjoint among themselves as well as from
the box (intersected with Z) which has not been changed in the current iteration.
Repeating this argument, we see that for m = 2, no redundancy occurs. Therefore,
we can easily indicate the number of iterations of Algorithm 1 in the bicriteria case
based on the knowledge that a new nondominated point lies in exactly one box. In
the initialization phase, zI and zM are computed in order to define B0. In every
iteration, either a (new) nondominated point is generated or a box is discarded from
the search region. For every new nondominated point zs > zI , two new boxes replace
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z! z! z!

1

Figure 5.2: Boxes Bi, i = 1, 2, 3, obtained by a full 3-split of the initial search region with
respect to z? ∈ ZN

the currently investigated box, and for each of the two lexicographic optimal points
(defining the ideal point) the current search box is replaced by one new box. So, the
total number of iterations is 2|ZN | − 1, see Chalmet et al. (1986) or Ralphs et al.
(2006).
In Figure 5.1, we illustrate the search region after four nondominated points

z1, z2, z3, z4 have been generated. If we assume that these solutions build the entire
nondominated set, Algorithm 1 terminates after seven iterations.

5.2.2 Redundancy for m ≥ 3

When dealing with more than two criteria, the full m-split can also be applied, see
Dhaenens et al. (2010) and Figure 5.2 for an illustration for m = 3. However, for
m ≥ 3, a nondominated point may lie in the intersection of multiple boxes. If we
perform the fullm-split in every box which contains the current nondominated point,
we typically create nested and, thus, redundant subboxes. This is illustrated in the
following example.

Example 5.4. Let m = 3 and let the initial search region be given by

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}.

Assume that the first nondominated point that is generated is z1 = (2, 2, 2)>. Per-
forming a full 3-split in B0 with respect to z1 replaces the search region B0 by the
three sets

B1,i := {z ∈ B0 : zi < 2}, i = 1, 2, 3.

Let z2 = (1, 1, 4)> be the next nondominated point that is generated. It holds that
z2 ∈ B11 as well as z2 ∈ B12, but z2 /∈ B13. Performing a full 3-split in B11 yields

B21 := {z ∈ B0 : z1 < 1},
B22 := {z ∈ B0 : z1 < 2, z2 < 1},
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B23 := {z ∈ B0 : z1 < 2, z3 < 4}.

Performing a full 3-split in B12 yields

B′21 := {z ∈ B0 : z1 < 1, z2 < 2},
B′22 := {z ∈ B0 : z2 < 1},
B′23 := {z ∈ B0 : z2 < 2, z3 < 4}.

It holds that B′21 ⊂ B21 and B22 ⊂ B′22, thus, the boxes B22 and B′21 are redundant
in the decomposition of B0.

If redundant boxes are kept in the decomposition, this typically increases the
running time of the algorithm, as additional, unnecessary scalarized subproblems
are solved. Depending on the given problem, this may be time-consuming. Thus,
redundant boxes should be detected and removed immediately. In the following, we
will analyze under which conditions redundant boxes can occur. We first define our
notion of non-redundancy:

Definition 5.5 (Non-redundant decomposition). Let B0 denote the starting box and
let Bs be a correct decomposition at the beginning of iteration s ≥ 1. We call Bs (and
every B ∈ Bs) non-redundant if for every pair of boxes B, B̃ ∈ Bs, B 6= B̃, it holds
that

∃ i ∈ {1, . . . ,m} : ui(B) < ui(B̃) and ∃ j ∈ {1, . . . ,m} : uj(B) > uj(B̃).

In the case that u(B) ≤ u(B̃) we say that box B̃ dominates B.

Note that the definition of a dominated box is somehow opposite to the definition
of a dominated point. While u ∈ Rm is dominated by u′ ∈ Rm if u = u′, box B is
dominated by B′ if u(B) 5 u(B′).
For simplicity, we make a technical assumption concerning the values of the nondo-

minated points that will be removed later. Moreover, we define our general setting.

Assumption 5.6. Let the following hold:

1. For all nondominated points zp ∈ ZN , p = 1, . . . , s, generated up to iteration
s ≥ 1, it holds that zpj 6= zqj for all j = 1, . . . ,m and 1 ≤ q < p.

2. The starting box B0 is non-empty, and B1 := {B0} denotes the initial decom-
position of the search region.

3. For every 1 ≤ i ≤ s, Bi is a correct, non-redundant decomposition of the search
region. By Bs := {B ∈ Bs : zs ∈ B} we denote the subset of boxes in iteration
s containing zs.
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Lemma 5.7 (Generation of redundant boxes). Let Assumption 5.6 be satisfied. If
we apply a full m-split to every box B ∈ Bs, then redundancy can only occur among
the ‘descendants’ of two different boxes which have been split with respect to the same
component in the current iteration.

Proof. We first show that no redundancy occurs between two boxes if at least one
of the boxes has not been changed in the current iteration. Therefore, consider two
arbitrary boxes B, B̃ ∈ Bs where B̃ ∈ Bs\Bs:

1. If B ∈ Bs\Bs, both boxes remain unchanged in the current iteration and, thus,
due to Assumption 5.6 (3), both boxes are non-redundant.

2. If B ∈ Bs, none of the boxes obtained from a split in B can dominate B̃, as
B does not dominate B̃ and the upper bound of B is only decreased by the
split. Conversely, B̃ cannot dominate any of the boxes obtained from a split in
B, as B̃ ∈ Bs\Bs implies that uj(B̃) ≤ zsj for at least one j ∈ {1, . . . ,m}. As
zs < u(B), for every Bi, i = 1, . . . ,m, resulting from a split of B it holds that
zsi = ui(Bi) and zsj < uj(Bi) for all j 6= i. Thus, B̃ dominates Bi if and only if
zsi = ui(B̃) holds. This, however, is excluded by Assumption 5.6 (1).

Therefore, redundancy can only occur among newly generated boxes. Consider two
boxes Bi 6= B̂j obtained from B, B̂ ∈ Bs (the case B = B̂ is included) that are split
with respect to components i 6= j. Then it holds that ui(Bi) = zsi < ui(B̂j) and
uj(Bi) > zsj = uj(B̂j), thus, none of the boxes can dominate the other one. It follows
that redundancy can only occur among the descendants of two different boxes that
are split with respect to the same component.

Corollary 5.8. Let Assumption 5.6 hold. If only one box is split in some iteration,
then all m resulting subboxes are non-redundant. In particular, the boxes obtained in
the first iteration are always non-redundant.

Corollary 5.9. Let Assumption 5.6 hold. Let two boxes B, B̂ ∈ Bs be split with
respect to the same component i = 1, . . . ,m. Then the resulting boxes Bi, B̂i are
non-redundant if and only if there exists an index p 6= i such that up(Bi) < up(B̂i)
and there exists an index q 6= i such that uq(Bi) > uq(B̂i).

These observations allow to detect redundant boxes by checking specific boxes of
the current decomposition. Translating this to an algorithm for arbitrary m ≥ 3, we
apply, in every iteration, a full m-split to every box containing the current solution.
If more than one box is split in one iteration, we compare the upper bounds of those
new boxes that were generated with respect to the same component pairwise to detect
redundancy. The respective boxes are then removed from the decomposition.
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V (B1)

V (B2)

V (B3)

z!

1

Figure 5.3: Individual subsets V (Bi), i = 1, 2, 3, obtained by a full 3-split of the initial search
region with respect to z? ∈ ZN

A corresponding algorithm can be improved further if redundant boxes are al-
ready detected before their creation. In the next section we develop such an explicit
criterion for tricriteria problems that indicates already before the split is performed
whether the resulting box is redundant or not, and, thus, allows to maintain only non-
redundant boxes in the decomposition. We prove that the number of non-redundant
boxes or, equivalently, the number of subproblems to be solved in the course of an
algorithm based on such an improved split operation depends linearly on the number
of nondominated points.

5.3 An Improved Split in the Tricriteria Case

5.3.1 Individual Subsets and the v-Split

According to Definition 5.5 a non-redundant box can be characterized as follows. A
box is non-redundant if and only if it contains a non-empty subset which is not part
of any other box of the decomposition. These subsets are studied in the following.

Definition 5.10 (Individual subsets). Let Bs, s ≥ 1 be a non-redundant decomposi-
tion. For every B ∈ Bs, the set

V (B) := B \

 ⋃
B̃∈Bs\{B}

B̃

 (5.3)

is called individual subset of B.

Obviously, for every B ∈ Bs, s ≥ 1, it holds that V (B) ⊆ B and V (B)∩ V (B̃) = ∅
for every B̃ ∈ Bs, B̃ 6= B. Figure 5.3 shows the individual subsets of the three boxes
Bi, i = 1, 2, 3, in R3 obtained by a full 3-split of the initial search box, which are
depicted in Figure 5.2.
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Now, maintaining only non-redundant boxes in the decomposition of the search
region is equivalent to maintaining boxes with non-empty individual subsets. An
explicit split criterion should indicate already before performing the split whether a
given box will have a non-empty individual subset after having performed the split.
To this end, we have to describe the individual subsets explicitly. For m = 3, we
observe that the individual subset of a box is bounded by the neighbors of that box.
After defining the neighbor of a box with respect to a certain component, we show
its existence and indicate the respective neighboring boxes by a constructive proof.

Definition 5.11 (Neighbor of a box). Let Bs, s ≥ 1 be a non-redundant decompo-
sition of the search region, and let ui := min{ui(B) : B ∈ Bs}. Let any B̄ ∈ Bs be
given. For every i ∈ {1, 2, 3}, for which ui(B̄) > ui, we call a box B̂ ∈ Bs\{B̄} that
satisfies

ui(B̂) < ui(B̄), (5.4)
uj(B̂) > uj(B̄) for some j 6= i, (5.5)
uk(B̂) ≥ uk(B̄) for k 6= i, j (5.6)

and

ui(B̂) = max{ui(B) : B ∈ Bs\{B̄}, ui(B) < ui(B̄)} (5.7)

the neighbor of B̄ with respect to i at the beginning of iteration s, denoted by Bs
i (B̄).

Example 5.12. Consider Figure 5.2, which depicts the three boxes that are obtained
in the first iteration. At the beginning of iteration s = 2, it holds that B2

1(B2) = B1,
since B1 is the unique box satisfying (5.4)–(5.7) for B̄ := B2. Analogously, B2

3(B2) =
B3 holds. A neighbor B2

2(B2) is not defined as u2(B2) = u2.

The following lemma shows that, under appropriate assumptions, for every box
B̄ ∈ Bs and every component i ∈ {1, 2, 3} for which ui(B̄) > ui holds there exists
a unique neighbor Bs

i (B̄) satisfying (5.4)–(5.7) of Definition 5.11. These neighbors,
which will be indicated with the help of a constructive proof, will turn out to be the
boxes that define the individual subset of B̄.

Assumption 5.13. Let the following hold:

1. For all nondominated points zp ∈ ZN , p = 1, . . . , s, generated up to iteration
s ≥ 1, it holds that zpj 6= zqj for all j ∈ {1, 2, 3} and 1 ≤ q < p.

2. The starting box B0 is non-empty, and B1 := {B0} denotes the initial decom-
position of the search region.
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3. For every iteration 1 ≤ i ≤ s, the set Bi+1 is obtained from Bi by applying a
full 3-split to every B ∈ B̄i, where B̄i := {B ∈ Bi : zi ∈ B}. All redundant
boxes are removed from Bi+1 at the end of the respective iteration i.

Note that Assumption 5.13 substantiates Assumption 5.6 by specifying that the
correct, non-redundant decompositions are obtained by iterative full 3-splits and that
redundant boxes are removed.
As the proof of the following lemma is rather technical, we illustrate it with the help

of two examples. In both examples u(B0) := (5, 5, 5)> is assumed, and z1 := (2, 2, 2)>

is inserted as a first nondominated point. In the first example, depicted in Figure 5.4,
z2 := (3, 1, 4)> is inserted as a second nondominated point. In the second example,
depicted in Figure 5.5, z2 := (1, 1, 4)> represents the second nondominated point.

Lemma 5.14. Let Assumption 5.13 be satisfied. Then, for every s ≥ 2, every
B̄ ∈ Bs and every i ∈ {1, 2, 3}, for which ui(B̄) > ui := min{ui(B) : B ∈ Bs}
holds, there exists a unique neighbor Bs

i (B̄) ∈ Bs satisfying (5.4)–(5.7). Particularly,
uk(Bs

i (B̄)) = uk(B̄) holds, i.e., Bs
i (B̄) satisfies

ui(Bs
i (B̄)) < ui(B̄), (5.8)

uj(Bs
i (B̄)) > uj(B̄) for some j 6= i, (5.9)

uk(Bs
i (B̄)) = uk(B̄) for k 6= i, j (5.10)

and

ui(Bs
i (B̄)) = max{ui(B) : B ∈ Bs, ui(B) < ui(B̄)}. (5.11)

If ui(B̄) = ui, we set Bs
i (B̄) := ∅.

Proof. By induction on s.
s = 2 : B1 = {B0} = B1, as z1 < u(B0) = zM . The starting box is split into three

subboxes B̂i := {z ∈ B0 : zi < z1
i }, i ∈ {1, 2, 3}. Due to Lemma 5.7, the new boxes

are non-redundant, thus, B2 = {B̂1, B̂2, B̂3}. Consider B̂i for fixed i ∈ {1, 2, 3}:
Since ui(B̂i) = z1

i < ui(B̂j) for every j 6= i, by definition, B2
i (B̂i) = ∅ holds. Since

uj(B̂i) > z1
j = min{uj(B) : B ∈ B2}, for every j 6= i, a unique neighbor B2

j (B̂i)
exists and, obviously, B2

j (B̂i) = B̂j holds.
s→ s+ 1: We assume that unique neighbors satisfying (5.4)–(5.7) exist for all B ∈
Bs and that, additionally, (5.10) holds. We insert zs ∈ ZN . Due to the correctness
of the full 3-split, there exists at least one box which is split, i.e., |Bs| ≥ 1.
Case 1: |Bs| = 1, i.e., only one box is split. Let B̂ be this box, and B̂i, i ∈ {1, 2, 3},

be the subboxes resulting from the split. Due to Lemma 5.7, the new boxes are
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(b) After the insertion of z2

Figure 5.4: Visualization of the upper bound vectors u(B) in case 1 of the proof of
Lemma 5.14: z2 = (3, 1, 4)> lies only in box B12 with u(B12) = (5, 2, 5)>, i.e., |B2| = 1.
For a better illustration, the individual subsets V (B) of all boxes are depicted.

non-redundant, thus, Bs+1 = (Bs\{B̂}) ∪ {B̂1, B̂2, B̂3}. The corresponding box in
Figure 5.4 (a) is B̂ = B12, which is replaced by B̂1 = B21, B̂2 = B22, B̂3 = B23, see
Figure 5.4 (b).
Consider an arbitrary box B̂i, i ∈ {1, 2, 3}. Then the following holds:

(i) Bs+1
i (B̂i) = Bs

i (B̂):
B̂i is the only new box B with ui(B) = zsi and there is no other new box
B satisfying ui(B) < zsi . Hence, Bs+1

i (B̂i) /∈ {B̂1, B̂2, B̂3}. If Bs
i (B̂) = ∅

then Bs+1
i (B̂i) = ∅. Otherwise, i.e., if Bs

i (B̂) exists, ui(Bs
i (B̂)) < ui(B̂),

uj(Bs
i (B̂)) > uj(B̂) for some j 6= i and uk(Bs

i (B̂)) = uk(B̂) for k 6= i, j hold
due to the induction hypothesis. Now ui(Bs

i (B̂)) ≤ zsi must be satisfied, as
otherwise Bs

i (B̂i) ∈ Bs would hold, which would be a contradiction to the
assumption that Bs = {B̂}. Moreover, ui(Bs

i (B̂)) = zsi is excluded due to
Assumption 5.13 (1). Therefore, (5.8)–(5.11) holds for Bs+1

i (B̂i) = Bs
i (B̂).

The uniqueness of Bs
i (B̂) follows from the induction hypothesis.

In Figure 5.4 (b), an example of this case is given by B3
1(B21) = B2

1(B12) = B11.

(ii) Bs+1
j (B̂i) = B̂j for all j 6= i:

B̂j is the only new box B with uj(B) = zsj and there is no other new box
B satisfying uj(B) < zsj . Furthermore, box B̂j satisfies (5.8)–(5.10) since
uj(B̂j) < uj(B̂i), ui(B̂j) > ui(B̂i) and uk(B̂j) = uk(B̂i) for k 6= i, j hold.
Moreover, uj(B̂j) is maximal, as uj(B̂j) = zsj ≥ uj(Bs

j (B̂)) if Bs
j (B̂) 6= ∅ and

uj(Bs
j (B̂)) maximal due to the induction hypothesis. As zsj = uj(Bs

j (B̂)) is
excluded due to Assumption 5.13 (1), the uniqueness of Bs+1

j (B̂i) follows.
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In Figure 5.4 (b), examples are given by B3
2(B21) = B22 and B3

3(B21) = B23.

Now consider an arbitrary box B 6= B̂. Then the following holds:

(iii) If Bs
i (B) 6= B̂ for some i ∈ {1, 2, 3}, then Bs+1

i (B) remains unchanged:
Assume that Bs+1

i (B) changes due to the split of box B̂. Then the only can-
didate for Bs+1

i (B) is B̂i and only in case that ui(B̂i) < ui(B) ≤ ui(B̂), as
otherwise Bs

i (B) = B̂ would have been valid. Now suppose that Bs+1
i (B) = B̂i.

Since uj(B̂i) = uj(B̂) for all j 6= i and, by definition of Bs
i (B), uj(B̂i) ≥ uj(B)

for all j 6= i, we have that uj(B̂) ≥ uj(B) for all j 6= i and hence ul(B̂) ≥ ul(B)
for all l ∈ {1, 2, 3}, a contradiction to Bs being non-redundant. Thus, Bs+1

i (B)
remains unchanged.

In the example depicted in Figure 5.4 (b), let B = B13. As B2
1(B13) = B11 6=

B12, the neighbor remains unchanged, thus, B3
1(B13) = B11.

(iv) If Bs
i (B) = B̂ for some i = 1, . . . ,m, then Bs+1

i (B) = B̂j with j being the
unique index for which uj(B̂) > uj(B) holds:
By the induction hypothesis, ui(B̂) < ui(B), uj(B̂) > uj(B) for some j 6= i and
uk(B̂) = uk(B) for k 6= i, j. As zsi = ui(B̂i) < ui(B̂) and ul(B̂i) = ul(B̂) for all
l 6= i, B̂i is a candidate for Bs+1

i (B). As B /∈ Bs and zsl < ul(B) for all l 6= j it
follows that zsj ≥ uj(B), and, due to Assumption 5.13 (1), zsj > uj(B). Thus,
ui(B̂j) = ui(B̂) < ui(B), uj(B̂j) = zsj > uj(B) and uk(B̂j) = uk(B̂) = uk(B)
hold. Therefore, B̂j is the unique other candidate for Bs+1

i (B) besides B̂i. As
ui(B̂i) < ui(B̂j) = ui(B̂), B̂j is the unique neighbor Bs+1

i (B) after the split.

In the example depicted in Figure 5.4 (b), B2
2(B13) = B12 = B̂ and B3

2(B13) =
B23. Box B22 is the unique other candidate for B3

2(B13), however, since
u2(B22) < u2(B23) it holds that B3

2(B13) = B23.

Case 2: |Bs| > 1. By definition of Bs, it holds that zsi < ui(B) for all i ∈ {1, 2, 3}
and B ∈ Bs, thus, zsi < min{ui(B) : B ∈ Bs} for all i ∈ {1, 2, 3}. According to
Lemma 5.7 and Corollary 5.9, redundancy occurs only for boxes B̂, B̃ ∈ Bs which
are split with respect to the same component i ∈ {1, 2, 3} (i.e., ui(B̂i) = ui(B̃i) = zsi )
and for which ul(B̂i) ≥ ul(B̃i) or ul(B̂i) ≤ ul(B̃i) holds for all l 6= i. By assumption,
those boxes are removed, i.e., Bs+1 contains only non-redundant boxes. We illustrate
this case by the example depicted in Figure 5.5.
Let Bs = {B̂1, . . . , B̂P } with P ∈ N, P ≥ 2. The corresponding boxes in Fig-

ure 5.5 (a) are B̂1 = B11 and B̂2 = B12. For every i ∈ {1, 2, 3}, let Ii ⊆ {1, . . . , P}
be the index set of the boxes from Bs whose split with respect to i yields a non-
redundant box. Note that Ii 6= ∅ for every i ∈ {1, 2, 3}, which can be seen as follows:
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Figure 5.5: Visualization of the upper bound vectors u(B) in case 2 of the proof of
Lemma 5.14: z2 = (1, 1, 4)> lies in the two boxes B11 with u(B11) = (2, 5, 5)> and B12

with u(B12) = (5, 2, 5)>, i.e., |B2| = 2. For a better illustration, the individual subsets V (B)
of all boxes are depicted.

Consider an arbitrary box B ∈ Bs. Applying the full 3-split to B results in three
new boxes. Now any of the resulting boxes is removed if and only if there exists
another box that dominates it. According to Lemma 5.7 the dominating box must
have been created by a split with respect to the same component as the dominated
box. Therefore, Ii 6= ∅ for every i ∈ {1, 2, 3}. We set Qi := |Ii| ≥ 1 for every
i ∈ {1, 2, 3}. Furthermore, let ūi := max{ui(B), B ∈ Bs} for all i ∈ {1, 2, 3} in the
following, which is well defined as Bs 6= ∅.
In the example depicted in Figure 5.5 (b), Q1 = Q2 = 1 and Q3 = 2. Moreover,

from Figure 5.5 (a) we see that ū = (5, 5, 5)>.
Consider now i arbitrary but fixed. Let B̂Ii(1), . . . , B̂Ii(Qi) denote the boxes whose

split with respect to component i yields a non-redundant box. As ui(B̂Ii(q)
i ) = zsi

holds for all B̂Ii(q)
i ∈ Bs+1, q = 1, . . . , Qi, asm = 3 and as we assume non-redundancy,

we can order the boxes with respect to their upper bounds increasingly by some
component j 6= i and decreasingly by component k 6= i, j, i.e.,

zsj <uj(B̂
Ii(1)
i ) < uj(B̂Ii(2)

i ) < · · · < uj(B̂Ii(Qi)
i ), (5.12)

uk(B̂Ii(1)
i ) > uk(B̂Ii(2)

i ) > · · · > uk(B̂Ii(Qi)
i ) > zsk. (5.13)

Thereby, uj(B̂Ii(Qi)
i ) = uj(B̂Ii(Qi)) = ūj holds, since in the other case, i.e., if there

was some B̃ ∈ Bs with uj(B̃) > uj(B̂Ii(Qi)
i ), either B̃ would have been the last box

in (5.12) with index Ii(Qi) or B̂Ii(Qi)
i would have been dominated by B̃, both in

contradiction to the construction. Analogously, uk(B̂Ii(1)
i ) = uk(B̂Ii(1)) = ūk must

hold.
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In the example depicted in Figure 5.5 (a), consider i = 3 and, without loss
of generality, let B̂I3(1) = B11 and B̂I3(2) = B̂I3(Q3) = B12. The upper bounds
u(B11) = (2, 5, 5)> and u(B12) = (5, 2, 5)> can be ordered increasingly with respect
to component j = 1 and decreasingly with respect to component k = 2. It holds that
u1(B̂I3(Q3)

3 ) = 5 = ū1 and u2(B̂I3(1)
3 ) = 5 = ū2.

If ui(B̂Ii(1)) = max{ui(B) : B ∈ Bs, uk(B) = ūk} =: ūi,k holds, then the split
of B̂Ii(1) with respect to j generates a non-redundant box, too, and, depending on
the chosen enumeration, Ii(1) either equals Ij(1) or Ij(Qj). W.l.o.g. we can set
Ii(1) = Ij(1). Otherwise, i.e., if ui(B̂Ii(1)) < ūi,k holds, then B̂Ii(1)

j is dominated by
a unique box B̃ ∈ Bs with uk(B̃) = ūk and ui(B̃) = ūi,k. Then B̃ = B̂Ij(1) holds.
Analogously, if ui(B̂Ii(Qi)) = max{ui(B) : B ∈ Bs, uj(B) = ūj} =: ūi,j holds,

then the split of B̂Ii(Qi) with respect to k generates a non-redundant box, too, and,
w.l.o.g., we can identify Ii(Qi) = Ik(Qk). Otherwise, i.e., if ui(B̂Ii(Qi)) < ūi,j holds,
B̂
Ii(Qi)
k is dominated by a unique box B̃ ∈ Bs with uj(B̃) = ūj and ui(B̃) = ūi,j .

Then B̃ = B̂Ik(Qk) holds.
Note that if Qi = 1, then B̂Ii(1) = B̂Ii(Qi) =: B̂ and uj(B̂) = ūj as well as uk(B̂) =

ūk hold. In this case, ui(B̂) < ūi must be satisfied, as otherwise B̂ would dominate
any other box in Bs, a contradiction to |Bs| > 1 and Bs being non-redundant.
In the example depicted in Figure 5.5, consider i = 3 and k = 2. It holds that

u3(B̂I3(1)) = 5 = max{u3(B) : B ∈ Bs, u2(B) = 5}. The split of B̂I3(1) with re-
spect to j = 1 generates the non-redundant box B21. If we consider i = 1, then
u1(B̂I1(1)) = u1(B11) = 2 < 5 = max{u1(B) : B ∈ Bs, u3(B) = 5}, hence, the split of
B11 with respect to component j = 2 must be redundant, and, indeed, the resulting
box is dominated by B22.

Analogously to Case 1, we will now indicate the neighbor boxes explicitly. There-
fore, consider B̂Ii(q)

i ∈ Bs+1 for fixed i ∈ {1, 2, 3}, q ∈ {1, . . . , Qi}. It holds that

(i) Bs+1
i (B̂Ii(q)

i ) = Bs
i (B̂Ii(q)):

Assume that Bs
i (B̂Ii(q)) ∈ Bs. By definition of Bs

i , ui(Bs
i (B̂Ii(q))) < ui(B̂Ii(q))

and ul(Bs
i (B̂Ii(q))) ≥ ul(B̂Ii(q)) for all l 6= i hold. But then, by an i-split of

B̂Ii(q) and Bs
i (B̂Ii(q)), the box B̂Ii(q)

i would be redundant. So, Bs
i (B̂Ii(q)) /∈ Bs

must hold. Analogously to Case 1(i), we obtain Bs+1
i (B̂Ii(q)

i ) = Bs
i (B̂Ii(q)).

In the example depicted in Figure 5.5, it holds that B3
3(B23) = B2

3(B11) = B13

and B3
3(B′23) = B2

3(B12) = B13.

(ii) Determination of Bs+1
j (B̂Ii(q)

i ) and Bs+1
k (B̂Ii(q)

i ) for j, k 6= i:
Consider all B̂Ii(q)

i ∈ Bs+1, q = 1, . . . , Qi, ordered as in (5.12) and (5.13): It
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holds that
Bs+1
j (B̂Ii(q)

i ) = B̂
Ii(q−1)
i for all q = 2, . . . , Qi,

since for all other boxes B̂Ii(p)
i , p 6= q − 1, it holds that either uj(B̂Ii(p)

i ) <
uj(B̂Ii(q−1)

i ) or uj(B̂Ii(p)
i ) > uj(B̂Ii(q)

i ). Moreover, all new boxes split with
respect to j have component uj smaller than uj(B̂Ii(q−1)

i ) and all new boxes split
with respect to k have component uk smaller than uk(B̂Ii(q)

i ), and, thus, do not
satisfy (5.10). For all boxes B /∈ Bs, it holds that ul(B) < min{ul(B) : B ∈ Bs}
for some l, so either uj(B) < uj(B̂Ii(q−1)

i ) or (5.10) is not satisfied.

Next, we determine Bs+1
j (B̂Ii(1)

i ): Since uj(B̂Ii(q)
i ) > uj(B̂Ii(1)

i ) holds for all
q = 2, . . . , Qi, no box that is split with respect to i can be the neighbor
Bs+1
j (B̂Ii(1)

i ). Furthermore, as uk(B̂Ii(1)
i ) > zsk, B

s+1
j (B̂Ii(1)

i ) cannot be found
among the new boxes split with respect to k. Therefore, Bs+1

j (B̂Ii(1)
i ) can only

be found among the boxes split with respect to component j. Now, as shown
above, uk(B̂Ii(1)) = ūk holds, which implies that uk(Bs+1

j (B̂Ii(1)
i )) = ūk must

be satisfied. Therefore, the unique candidate for Bs+1
j (B̂Ii(1)

i ) is B̂Ij(1)
j , which,

as explained above, either equals the box obtained from B̂Ii(1) by a split with
respect to j or the unique box dominating it.

Analogously, it can be shown that

Bs+1
k (B̂Ii(q)

i ) = B̂
Ii(q+1)
i for all q = 1, . . . , Qi − 1,

and
Bs+1
k (B̂Ii(Qi)

i ) = B̂
Ik(Qk)
k ,

where B̂
Ik(Qk)
k either equals the box obtained from B̂Ii(Qi) by a split with

respect to k (then Ii(Qi) = Ik(Qk)) or the unique box dominating it.

In the example depicted in Figure 5.5, B3
1(B′23) = B23 and B3

1(B23) = B21

hold.

Finally, for all B /∈ Bs we obtain the following results which are equivalent to
Case 1:

(iii) If Bs
i (B) /∈ Bs for some i ∈ {1, 2, 3}, then Bs+1

i (B) remains unchanged. As in
the example depicted in Figure 5.5 box B13 is the unique box which is not split
and all of its neighbors are split, this case does not occur.

(iv) If Bs
i (B) =: B̂ ∈ Bs for some i ∈ {1, 2, 3}, then, following the same argumen-

tation as in Case 1(iv), zsj > uj(B) for one unique index j 6= i and, thus, the
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correct candidate for Bs+1
i (B) would be B̂j . It remains to show that B̂j exists

and that ui(B̂j) = max{ui(B̃) : B̃ ∈ Bs+1, ui(B̃) < ui(B)}.

Assume that B̂j does not exist, i.e., it is redundant in Bs+1. Then there exists
B̄ ∈ Bs with ui(B̄) ≥ ui(B̂) and uk(B̄) ≥ uk(B̂). As B̄, B̂ ∈ Bs and Bs, by
induction, is non-redundant, uj(B̄) < uj(B̂) must hold. As B̄ ∈ Bs it follows
that zsj < uj(B̄), so uj(B) < zsj < uj(B̄) and uk(B) = uk(B̂) ≤ uk(B̄) hold.
If ui(B̄) ≥ ui(B), B would have been redundant in Bs. Thus, ui(B̄) < ui(B)
must hold. However, as Bs

i (B) = B̂, the induction hypothesis then implies
that ui(B̄) < ui(B̂), a contradiction to the assumption on B̄. Thus, B̂j is
non-redundant and ui(B̂j) = ui(B̂) = max{ui(B̃) : B̃ ∈ Bs+1, ui(B̃) < ui(B)}
holds.

In the example depicted in Figure 5.5, consider B2
1(B13) = B11. Since j = 3

is the unique index 6= 1 such that z2
j > uj(B13), it holds that B3

1(B13) = B23,
i.e., the new neighbor is the box which results from B11 by a split with respect
to j.

In the next corollary we summarize the properties of the neighbors of all new boxes
obtained in the constructive proof of Lemma 5.14.

Corollary 5.15. Let Assumption 5.13 be satisfied. Besides, for every i ∈ {1, 2, 3},
let Ii ⊆ {1, . . . , P}, Ii 6= ∅, P ∈ N, |Ii| = Qi, be the index set of the boxes of Bs
whose split with respect to i ∈ {1, 2, 3} yields a non-redundant box. Then for all new
boxes B̂Ii(q)

i , q = 1, . . . , Qi, it holds that

Bs+1
i (B̂Ii(q)

i ) = Bs
i (B̂Ii(q)) ∀ q = 1, . . . , Qi, (5.14)

Bs+1
j (B̂Ii(q)

i ) =

 B̂
Ij(1)
j q = 1,

B̂
Ii(q−1)
i ∀ q = 2, . . . , Qi,

(5.15)

Bs+1
k (B̂Ii(q)

i ) =
{
B̂
Ii(q+1)
i ∀ q = 1, . . . , Qi − 1,

B̂
Ik(Qk)
k q = Qi,

(5.16)

where the indices j and k are chosen as in (5.12) and (5.13), which means that the
boxes B̂Ii(q)

i , q = 1, . . . , Qi, are ordered with respect to their upper bounds increas-
ingly by component j 6= i and decreasingly by component k 6= i, j. Moreover, Ij(1)
and Ik(Qk) are chosen such that B̂Ij(1)

j and B̂Ik(Qk)
k either equal B̂Ii(1)

j and B̂Ii(Qi)
k ,

respectively, or the unique box dominating it.

Using Lemma 5.14 we can derive an explicit formulation of the individual subsets
V (B) for m = 3:
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Lemma 5.16. Let Assumption 5.13 hold. Then, for m = 3, the individual subsets
V (B), B ∈ Bs, which are introduced in Definition 5.10, can be represented as

V (B) = {z ∈ B0 : v(B) 5 z < u(B)}

with

vi(B) :=
{
ui(Bs

i (B)), if Bs
i (B) 6= ∅

zIi , otherwise
, i ∈ {1, 2, 3}. (5.17)

Proof. For B̄ ∈ Bs, s ≥ 1, by definition,

V (B̄) := B̄ \

 ⋃
B̃∈Bs\{B̄}

B̃


holds. We consider the sets Bs,i := {B ∈ Bs : ui(B) < ui(B̄)} for i = 1, 2, 3. For
fixed i ∈ {1, 2, 3}, the following two cases can occur: If Bs,i 6= ∅, then, as shown in
Lemma 5.14, Bs

i (B̄) 6= ∅ and Bs
i (B̄) ∈ Bs,i, where ui(Bs

i (B̄)) = max{ui(B) : B ∈
Bs,i}. Furthermore, as ul(Bs

i (B̄)) ≥ ul(B̄) for all l 6= i,

B̄ \

 ⋃
B̃∈Bs,i

B̃

 = {z ∈ B̄ : zi ≥ ui(Bs
i (B̄))}.

Otherwise, i.e., if Bs,i = ∅, then, obviously, B̄ \
(⋃

B̃∈Bs,i B̃
)

= B̄. So, in both cases,
it holds that

B̄ \

 ⋃
B̃∈Bs,i

B̃

 = {z ∈ B̄ : zi ≥ vi(B̄)}

with

vi(B̄) :=
{
ui(Bs

i (B̄)), if Bs
i (B̄) 6= ∅

zIi , otherwise.

As every box B ∈ Bs\{B̄} belongs, due to the assumption of non-redundancy, to at
least one set Bs,i, i ∈ {1, 2, 3}, there does not exist any other box which can reduce
V (B̄) further. Thus, we obtain the desired representation.

Lemma 5.16 shows that form = 3 the individual subset of a box can be represented
as a box itself. As the upper bound of V (B) and B are the same, V (B) can be
described by its lower bound v(B) ∈ Rm only. Next we show, using Corollary 5.15,
how the lower bounds v(B) can be updated in an iterative algorithm.

Lemma 5.17. Let Assumption 5.13 be satisfied. We use the notation of Corol-
lary 5.15. Let B̂Ii(q)

i , q = 1, . . . , Qi, be the non-redundant boxes that are obtained
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from B̂Ii(q) ∈ Bs by a split with respect to i ∈ {1, 2, 3}. Then the lower bound vectors
v(B) ∈ Rm of these new boxes in Bs+1 are determined by

vi(B̂Ii(q)
i ) = vi(B̂Ii(q)) ∀ q = 1, . . . , Qi,

vj(B̂Ii(q)
i ) =

 uj(B̂
Ij(1)
j ) = zsj q = 1,

uj(B̂Ii(q−1)
i ) ∀ q = 2, . . . , Qi,

vk(B̂Ii(q)
i ) =

{
uk(B̂Ii(q+1)

i ) ∀ q = 1, . . . , Qi − 1,
uk(B̂Ik(Qk)

k ) = zsk q = Qi.

All individual subsets V (B) of all B /∈ Bs remain unchanged.

Proof. The update of v(B̂Ii(q)
i ) of all new boxes B̂Ii(q)

i , q = 1, . . . , Qi, for some fixed
i ∈ {1, 2, 3} is derived directly from Corollary 5.15. The individual subsets of all boxes
which are not split in the current iteration do not change, as, according to the proof
of Lemma 5.14, either Bs+1

i (B) remains unchanged (Case (iii)) or Bs+1
i (B) = B̂j

(Case (iv)), i.e., ui(B) remains unchanged.

Recall that we want to split a box B ∈ Bs with respect to a component i ∈ {1, 2, 3}
if and only if the individual subset V (Bi) of the resulting box Bi is non-empty, which
is equivalent to Bi being non-redundant. With the vector v(B) ∈ Rm at hand, this
can be easily checked as the following lemma shows.

Lemma 5.18. Let Assumption 5.13 hold up to iteration s− 1 for s ≥ 2, i.e., let Bs
be a correct, non-redundant decomposition of the search region obtained by iterative
3-splits. Let zs ∈ ZN satisfy Assumption 5.13 (1), and let Bi be the box obtained from
B ∈ Bs by a split with respect to component i ∈ {1, 2, 3}. Then Bi is non-redundant
if and only if zsi > vi(B) holds.

Proof. Consider a fixed i ∈ {1, 2, 3}.

“⇒”: Let Bi be non-redundant and assume that zsi < vi(B) holds. Note that the
case zsi = vi(B) does not occur due to Assumption 5.13 (1). Then vi(B) > zIi ,
and, thus, vi(B) = ui(Bs

i (B)) with Bs
i (B) 6= ∅. As ul(Bs

i (B)) ≥ ul(B) for all
l 6= i, zs ∈ Bs

i (B) must hold. But then, Bi would be redundant as it would
be dominated by the box obtained from Bs

i (B) by a split with respect to i, a
contradiction to the assumption of non-redundancy.

“⇐”: Let zsi > vi(B). A split of B with respect to i yields Bi = {z ∈ B : zi < zsi }.
Assume that there exists B̃i 6= Bi which dominates Bi. As Bs is non-redundant
and due to Lemma 5.7, B̃i must result from a split with respect to i from some
box B̃ ∈ Bs, i.e., zs ∈ B̃ must hold. As B and B̃ are split with respect to i,
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ui(Bi) = ui(B̃i) = zsi holds, and, due to the assumption that B̃i dominates
Bi, ul(B̃) ≥ ul(B) for all l 6= i. Now B, B̃ ∈ Bs and Bs being non-redundant
imply that ui(B̃) < ui(B). This in turn means that vi(B) ≥ ui(B̃). But then
zsi > ui(B̃), a contradiction to zs ∈ B̃. It follows that Bi is non-redundant.

Lemma 5.18 provides a tool for defining a split operation for tricriteria problems
which generates all boxes that are necessary for maintaining the correctness of a
decomposition, but avoids the generation of redundant boxes. We call the split
based on the individual subsets V (B) a v-split in the following.

Definition 5.19 (v-split). Let Assumption 5.13 hold up to iteration s− 1 for s ≥ 2,
i.e., let Bs be a correct, non-redundant decomposition of the search region obtained
by iterative 3-splits, and let zs ∈ ZN . We call the split of a box B ∈ Bs with respect
to components i ∈ {1, 2, 3} for which

zsi ≥ vi(B) (5.18)

holds a v-split of B.

Note that equality in (5.18) does not occur due to Assumption 5.13 (1). However,
as Assumption 5.13 (1) will be removed in Section 5.3.4, we present the v-split already
at this point in this general form.

Lemma 5.20. Let Assumption 5.13 (1),(2) hold. Then the iterative application of
a v-split to every B ∈ Bs in every iteration s ≥ 1 yields a correct, non-redundant
decomposition.

Proof. Due to Assumption 5.13 (1), zsi ≥ vi(B) is equivalent to zsi > vi(B). Accord-
ing to Lemma 5.18, the v-split avoids exactly the generation of redundant boxes and,
therefore, yields a correct, non-redundant decomposition.

5.3.2 The v-Split Algorithm

Algorithm 2 shows the implementation of the v-split. As in Algorithm 1, an initial
box B0 is computed, which is represented by its upper bound vector u(B0). Addi-
tionally, for B0 as well as for all other boxes B which are generated in the course of
the algorithm, the lower bound vector of the individual subset v(B) is saved. Anal-
ogously to Algorithm 1, as long as the decomposition contains unexplored boxes, a
box is selected and a subproblem is solved. If the box is empty, which corresponds
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Algorithm 2 Algorithm with v-split for m = 3
Input: Image of the feasible set Z ⊂ Rm, implicitly given by some problem formu-

lation
1: N := ∅; δ > 0;
2: InitStartingBoxVsplit(Z, δ);
3: s := 1;
4: while Bs 6= ∅ do
5: Choose B̄ ∈ Bs;
6: zs := opt(Z, u(B̄)); // Solve scalarized subproblem
7: if zs = ∅ then // No nondominated point found
8: Bs+1 := Bs\{B̄};
9: else

10: N := N ∪ {zs}; // Add point to nondominated set
11: Bs+1 := Bs; // Copy set of current boxes
12: GenerateNewBoxesVsplit(Bs, zs, zI ,Bs+1);
13: UpdateIndividualSubsets(S1,S2,S3,Bs+1);
14: end if
15: s := s+ 1;
16: end while
17: return Set of nondominated points N

to zs = ∅, the selected box is deleted from the list of unexplored boxes. Otherwise,
the nondominated point zs is saved and all boxes are determined that contain zs.
Now, different from Algorithm 1, zs is compared componentwise to v(B) for every

B ∈ Bs. A split with respect to component i is performed if and only if zsi ≥ vi(B)
and zsi > zIi hold. If vi(B) > zsi for all i ∈ {1, 2, 3}, then B is deleted. Finally, the
vectors v of all new boxes are updated according to Lemma 5.17 and a new iteration

18: procedure InitStartingBoxVsplit(Z, δ)
19: for j = 1 to 3 do
20: zIj := min{zj : z ∈ Z};
21: zMj := max{zj : z ∈ Z}+ δ;
22: vj(B0) := zIj ;uj(B0) := zMj ;
23: end for
24: B1 := {B0};
25: return B1

26: end procedure
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27: procedure GenerateNewBoxesVsplit(Bs, zs, zI ,Bs+1)
28: Si := ∅ ∀ i = 1, 2, 3; // Initialize set for each component i ∈ {1, 2, 3}
29: for all B ∈ Bs do
30: if zs < u(B) then // Point is contained in box
31: for i = 1 to 3 do // Apply v-split
32: if zsi ≥ vi(B) and zsi > zIi then
33: B′ := ∅; // Create new box
34: u(B′) := u(B); v(B′) := v(B); // Copy bounds
35: ui(B′) := zsi ; // Update upper bound
36: Si := Si ∪ {B′}; // Save new box in respective set Si
37: end if
38: end for
39: Bs+1 := Bs+1\{B}; // Remove B
40: end if
41: end for
42: return Bs+1,S1,S2,S3;
43: end procedure

44: procedure UpdateIndividualSubsets(S1,S2,S3,Bs+1)
45: for i = 1 to 3 do
46: Q := |Si|;
47: Sort all boxes BIi(q)

i , q = 1, . . . , Qi, in Si such that for j, k 6= i

uj(BIi(1)
i ) ≤ uj(BIi(2)

i ) ≤ · · · ≤ uj(BIi(Qi)
i ) and

uk(BIi(1)
i ) ≥ uk(BIi(2)

i ) ≥ · · · ≥ uk(BIi(Qi)
i );

48: if u(BIi(q)
i ) = u(BIi(q+1)

i ) for some q = 1, . . . , Qi − 1 then
49: (re)sort BIi(q)

i and BIi(q+1)
i such that

vj(BIi(q)
i ) ≤ vj(BIi(q+1)

i ) and vk(BIi(q)
i ) ≥ vk(BIi(q+1)

i );
50: end if
51: Set vj(BIi(1)

i ) := zsj ; vk(B
Ii(Qi)
i ) := zsk; // Update v

52: for q = 2 to Qi do
53: vj(BIi(q)

i ) := uj(BIi(q−1)
i ); vk(BIi(q−1)

i ) := uk(BIi(q)
i );

54: end for
55: Bs+1 := Bs+1 ∪ Si; // Append new boxes
56: end for
57: return Bs+1

58: end procedure
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starts. According to the proof of Lemma 5.14 we can uniquely order all newly
generated, non-redundant boxes resulting from a split with respect to component
i such that their upper bound values u are increasing in one component j 6= i

and decreasing in the remaining component k 6= i, j. Hence, in Line 47 in the
procedure UpdateIndividualSubsets, strict inequalities hold between each pair
of upper bounds. However, in order to make the algorithm also applicable when
Assumption 5.13 (1) is removed, see Section 5.3.4 below, we formulate Algorithm 2
already in a general form. Therefore, in Line 47, the strict inequalities are replaced by
inequalities and in Lines 48 to 50 the case that the upper bound vectors of two boxes
are equal is handled. Note that this case does not occur under Assumption 5.13 (1).

Example 5.21 (Application of Algorithm 2). Consider again the tricriteria problem
of Example 5.4 with initial search region

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}

and V (B0) = B0, thus, v(B0) = (0, 0, 0)>. Consider z1 = (2, 2, 2)>. The v-split
applied to the initial box equals a full 3-split and, thus, results in

B1,i := {z ∈ B0 : zi < 2}, i = 1, 2, 3.

The corresponding individual subsets are

V (B1,i) := {z ∈ B1,i : zj ≥ 2 ∀ j 6= i}, i = 1, 2, 3,

thus, v(B11) = (0, 2, 2)>, v(B12) = (2, 0, 2)> and v(B13) = (2, 2, 0)>. Consider
z2 = (1, 1, 4)> as second point. It holds that z2 ∈ B11 as well as z2 ∈ B12, but
z2 /∈ B13. Consider first the v-split in B11: As z2

1 ≥ v1(B11), z2
2 6≥ v2(B11) and

z2
3 ≥ v3(B11), B11 is split with respect to the first and third component into

B21 := {z ∈ B11 : z1 < 1} and B23 := {z ∈ B11 : z3 < 4}.

We save S1 = {B21}, S2 = ∅ and S3 = {B23}. Applying the v-split to B12 results in
a split with respect to the second and third component into

B22 := {z ∈ B12 : z2 < 1} and B′23 := {z ∈ B12 : z3 < 4}

and S1 = {B21}, S2 = {B22} and S3 = {B23, B
′
23}. Note that the redundant boxes

which were obtained with the full 3-split in Example 5.4 are not generated by the
v-split.
Finally, the individual subsets of the new boxes of each set Si, i ∈ {1, 2, 3}, are

updated: Box B21 is the only box generated for i = 1, box B22 the only one for i = 2.
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Therefore, v(B21) = (v1(B11), z2
2 , z

2
3)> = (0, 1, 4)> and v(B22) = (z2

1 , v2(B12), z2
3)> =

(1, 0, 4)>. Boxes B23 and B′23 are both generated by a split with respect to i = 3. We
can order the upper bounds of the boxes u(B23) = (2, 5, 4)> and u(B′23) = (5, 2, 4)>

increasingly with respect to component j = 1 and, at the same time, decreasingly with
respect to k = 2, thus, BI(1)

3 := B23 and BI(2)
3 := B′23. Therefore,

v1(B23) = z2
1 = 1, v2(B′23) = z2

2 = 1,
v2(B23) = u2(B′23) = 2, v1(B′23) = u1(B23) = 2.

The third component is not changed, so v(B23) = (1, 2, 2)> and v(B′23) = (2, 1, 2)>.

According to Lemma 5.20, Algorithm 2 maintains a correct, non-redundant de-
composition in each iteration. In this sense, the non-redundant representation of
the search region based on the upper bounds u(B) is equivalent to the construc-
tion presented in Przybylski et al. (2010a). While the algorithm of Przybylski et al.
(2010a) filters out ‘dominated’ upper bound vectors by performing pair-wise com-
parisons with all other upper bound vectors, no pair-wise comparisons are needed in
Algorithm 2 since all information is captured in the vectors v(B), respectively.

5.3.3 A Linear Bound on the Number of Subproblems

In the following, we will bound the number of boxes generated in the course of the
algorithm with the help of the v-split. If a box B ∈ Bs contains the current point zs,
i.e., if B ∈ Bs, we can make the following assertion concerning the neighbors of B.

Lemma 5.22. Let Assumption 5.13 hold. Let any B ∈ Bs be given. We denote by
JB ⊆ {1, 2, 3} the index set of all components with respect to which B is split, and
by J̄B := {1, 2, 3}\JB the complement of JB. Then the following holds:

1. If J̄B 6= ∅, then for every j ∈ J̄B, the neighbor Bs
j (B) exists and contains zs,

i.e., Bs
j (B) 6= ∅ and Bs

j (B) ∈ Bs holds for every j ∈ J̄B.

2. If J̄B = ∅, then Bs = {B} holds.

Proof. Let B ∈ Bs. By definition of the v-split, it holds that zs < u(B), zsj ≥ vj(B)
for every j ∈ JB and zsj < vj(B) for every j ∈ J̄B. Thus, vj(B) > zIj holds for every
j ∈ J̄B. This, however, implies that Bs

j (B) 6= ∅ for every j ∈ J̄B, see the update of
v in (5.17).
First, let J̄B 6= ∅. Then, for fixed j ∈ J̄B and according to Definition 5.11, it

holds that uj(Bs
j (B)) ≤ uj(B) and ul(Bs

j (B)) ≥ ul(B) for all l 6= j. As uj(Bs
j (B)) =

vj(B) > zsj , B
s
j (B) ∈ Bs holds.
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Now, consider the case J̄B = ∅. Due to Lemma 5.14, every box B̃ ∈ Bs\{B} has
an upper bound vector for which ul(B̃) ≤ vl(B) for at least one l ∈ {1, 2, 3}. This
implies that zs /∈ B̃ for any B̃ ∈ Bs\{B}, thus, Bs = {B}.

With the help of Lemma 5.22, we can bound the number of new boxes that are
generated in each iteration of Algorithm 2.

Lemma 5.23. Let Assumption 5.13 hold. Then, in every iteration s ≥ 1 in which
a new nondominated point zs is found, the number of boxes in the decomposition
increases by at most two.

Proof. If there exists a box B ∈ Bs which is split with respect to all three components,
then, using Lemma 5.22, Bs = {B} holds, thus, |Bs| = 1. In this case, the box B
is removed and replaced by three new boxes in the decomposition, and, thus, the
number of boxes in the decomposition increases by two.
It follows that if |Bs| > 1, then every B ∈ Bs is split with respect to at most two

components. Let |Bs| > 1 and let B ∈ Bs be split with respect to two components
i, j ∈ {1, 2, 3}, j 6= i. Then, for all other boxes B̃ ∈ Bs\{B} it holds that ul(B̃) ≤
vl(B) for some l ∈ {1, 2, 3}. If l = i, then ui(B̃) ≤ vi(B) ≤ zsi , thus the box is not
split with respect to i. Analogously, if l = j, then uj(B̃) ≤ vj(B) ≤ zsj , thus, the
box is not split with respect to j. If l = k (with k 6= i, j), then, for any B̃ satisfying
uk(B̃) ≤ vk(B) it holds that vi(B̃) ≥ ui(B) or vj(B̃) ≥ uj(B), thus, B̃ cannot be
split with respect to both components i and j.
Therefore, if two boxes are split with respect to two components, then these com-

ponents must differ in one component. This implies that in one iteration, at most
three boxes are split with respect to two components. Any other boxes in Bs are
split with respect to at most one component.
In the case that three boxes are split with respect to two components, six new

boxes would replace three old ones, thus, the number of boxes would increase by
three. So it remains to show that in this case, at least one box B in Bs is removed
without being split, i.e., v(B) > zs holds for at least one B ∈ Bs. In other words, we
have to prove the existence of a ’0-box’, i.e., a box, which is contained in Bs, but is
not split with respect to any component.
To this end, we assume to the contrary that Bs contains three boxes which are

split with respect to two components (’2-boxes’), respectively, but that no ’0-box’
exists. From Lemma 5.22 we see that a ’2-box’ has exactly one neighbor in Bs, as J̄B
contains exactly one element. A ’1-box’ has exactly two neighbors in Bs, while all
three neighbors are contained in Bs in case of a ’0-box’. Now, starting from a ’2-box’,
one uniquely defined neighbor of it must be in Bs. If that box is also a ’2-box’ (see
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Figure 5.6: Possible neighborhood structures of boxes in Bs: (a) Bs contains two ’2-boxes’;
(b) Bs contains three ’2-boxes’.

Figure 5.6 (a)), no neighbor of the latter box is in Bs. The third ’2-box’ would require
a neighbor in Bs, but only ’1-boxes’ are available, which require a second neighbor
in turn. Thus, a fourth ’2-box’ would be needed, which, however, does not exist.
Therefore, the three ’2-boxes’ must all be connected by one structure of neighbors.
But this implies that there exists exactly one ’0-box’ connecting the three branches
emerging from each ’2-box’ (see Figure 5.6 (b)).

Theorem 5.24. For a finite set of nondominated points and a given appropriate
starting box which includes all nondominated points and has the ideal point as lower
bound vector, Algorithm 2 requires the solution of at most 3|ZN | − 2 subproblems in
order to generate the entire nondominated set.

Proof. In every iteration of Algorithm 2, one scalarized subproblem is solved, and,
thus, the number of subproblems to be solved equals the number of iterations. When
a nondominated point is generated, then the number of boxes increases by at most
two according to Lemma 5.23. As every nondominated point is generated exactly
once, and since every empty box is investigated exactly once to verify that no further
nondominated points are contained, at most 3|ZN | boxes are explored in the course
of the algorithm. Together with the initial search box, at most 3|ZN |+ 1 boxes are
explored, which corresponds to the number of subproblems to be solved for a given
appropriate initial search box containing all nondominated points.
Since we additionally assume that the ideal point is given, we can reduce this

bound further: In every iteration in which the current nondominated point equals
the ideal point in at least one component, one box per component equal to the ideal
point can be directly discarded. For each component i ∈ {1, 2, 3}, there must exist
at least one nondominated point whose i-th component equals zIi . Therefore, the
total number of subproblems to be solved is at most 3|ZN | − 2.
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Figure 5.7: Individual subsets of the final decomposition of an example with 21 nondominated
points from the nadir point perspective

Figure 5.7 shows an example with 21 nondominated points. After having de-
termined the initial search box, 3|ZN | − 2 = 61 subproblems are solved until the
termination criterion of Algorithm 2 is reached, i.e., the upper bound derived in
Theorem 5.24 is sharp.

5.3.4 Quasi Non-Redundancy

Until now we assumed that no pair of nondominated points has an identical value
in any component, i.e., that all values are pairwise different (Assumption 5.13 (1)).
Under this assumption the individual subsets of all boxes which are necessary and
sufficient to describe the search region can be represented as boxes themselves and
are non-empty. Conversely, all boxes with empty individual subset are redundant
and not maintained in the decomposition.
In practice, Assumption 5.13 (1) is typically not satisfied, as arbitrary nondom-

inated points may coincide in up to m − 2 components, i.e., in one component for
m = 3. In this case additional redundant boxes may occur as the following example
shows.

Example 5.25. Let an initial decomposition be given by B1 := {B0} with

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}.

Let z1 = (3, 1, 4)> and z2 = (3, 2, 1)> be two nondominated points. By inserting z1

into B0 we obtain B2 = {B11, B12, B13}, where B1,i := {z ∈ B0 : zi < z1
i }, i = 1, 2, 3,
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and
u(B11) = (3, 5, 5)>, u(B12) = (5, 1, 5)>, u(B13) = (5, 5, 4)>.

The second point z2 = (3, 2, 1)> is only contained in B13, thus, B13 is replaced by the
three subboxes B2,i := {z ∈ B13 : zi < z2

i }, i = 1, 2, 3, with respective upper bounds

u(B21) = (3, 5, 4)>, u(B22) = (5, 2, 4)>, u(B23) = (5, 5, 1)>.

It holds that B21 ⊆ B11, thus, B21 is redundant.

Note that under Assumption 5.13 (1) no redundancy appears if |Bs| = 1 which is,
as shown in Example 5.25, no longer true if the nondominated points are in arbitrary
position. If the redundant box B21 is removed from the decomposition, i.e., if we
set B3 := {B11, B12, B22, B23}, then the individual subset V (B11) does not have the
structure of a box anymore, as

V (B11) = B11 \

 ⋃
B̃∈B3\{B11}

B̃


= {z ∈ B11 : z = (0, 2, 1)>} ∪ {z ∈ B11 : z = (0, 1, 4)>}.

In Section 5.5 we will present an algorithm that removes all redundant boxes, in-
cluding the ones that appear due to nondominated points having equal components.
Alternatively, we can maintain the redundant box B21 in the decomposition and ap-
ply Algorithm 2 as usual. In Example 5.25 this implies to maintain B11 and B21 with
v(B11) = (0, 1, 4)> and v(B21) = (3, 2, 1)>. As B21 ⊆ B11, the individual subset

V (B21) = {z ∈ B0 : (3, 2, 1)> 5 z < (3, 5, 4)>}

is empty. Nevertheless, in the following iterations, the v-split can be applied regularly,
as v is compared to the current nondominated point zs component-wise. Thus, it
is irrelevant for the v-split if V (B) for some B ∈ Bs is empty or not. Clearly, in
Example 5.25, box B21 cannot be split with respect to the first component, but it
can be split with respect to the second and the third component like a ‘regular’
non-redundant box.
In order to distinguish the redundant boxes that appear when two nondominated

points coincide in (at least) one component from the redundant boxes treated so far,
we denote the former as quasi non-redundant boxes in the following.

Definition 5.26 (Quasi non-redundant boxes). Let a box B be given, defined by its
upper bound vector u(B) ∈ Rm. Let V (B) be the individual subset of B, and let the
vector v(B) ∈ Rm describe the lower bound of V (B). We call B quasi non-redundant
(with respect to i) if vi(B) = ui(B) for some i ∈ {1, 2, 3} holds.
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In Example 5.25, B21 is quasi non-redundant with respect to the first component.
As discussed above, the occurrence of quasi non-redundant boxes does not pose any
difficulties, but Algorithm 2 can be applied also when Assumption 5.13 (1) does not
hold. In the following we show two special situations that might occur for quasi non-
redundant boxes. The first example shows that a box might be quasi non-redundant
with respect to two components, which implies that the respective box is contained
in two different boxes of the decomposition. The second example demonstrates that
two quasi non-redundant boxes might be contained in each other, which results in
two boxes of the decomposition that have identical upper bound vectors.

Example 5.27. As in Example 5.25, let B1 := {B0} with

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}

be a given initial decomposition, and let z1 = (3, 1, 4)> and z2 = (3, 2, 1)> be
two nondominated points. Then, the decomposition of the search region (includ-
ing the quasi non-redundant box B21) at the beginning of the third iteration is B3 :=
{B11, B12, B21, B22, B23} with

u(B11) = (3, 5, 5)>, v(B11) = (0, 1, 4)>,
u(B12) = (5, 1, 5)>, v(B12) = (3, 0, 4)>,
u(B21) = (3, 5, 4)>, v(B21) = (3, 2, 1)>,
u(B22) = (5, 2, 4)>, v(B22) = (3, 1, 1)>,
u(B23) = (5, 5, 1)>, v(B23) = (3, 2, 0)>.

The corresponding individual subsets are depicted in Figure 5.8 (a). Note that the
empty individual subset of the quasi non-redundant box B21 is illustrated as the two-
dimensional face

{z ∈ B0 : v(B21) 5 z 5 u(B21)} .

Let now as third nondominated point z3 = (2, 2, 2)> be given. As z3 is contained in
B11 and B21, we consider v(B11) = (0, 1, 4)> and v(B21) = (3, 2, 1)> for the v-split.
Comparing z3 with these two vectors reveals that B11 is split with respect to the first
and the second component, and B21 is split with respect to the second and the third
component, which yields

u(B31) = (2, 5, 5)>, u(B32) = (3, 2, 5)>, u(B′32) = (3, 2, 4)>, u(B33) = (3, 5, 2)>.

Hence, B4 := {B12, B22, B23, B31, B32, B
′
32, B33}. As B31 is the only box obtained by a

split with respect to the first component, we obtain v(B31) = (0, 2, 2)>. Analogously,
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Figure 5.8: Illustration of the sets V (B) in Example 5.27; In (a) the individual subset of
the occurring quasi non-redundant box (which is actually empty) is represented as a two-
dimensional face, in (b) as a one-dimensional face, i.e., a line.

v(B33) = (2, 2, 1)>. For the update of v(B32) and v(B32)′, the upper bound vectors
u(B32) and u(B′32) are ordered increasingly with respect to one component j 6= 2 and
decreasingly with respect to the remaining component k 6= j, k 6= 2, e.g., j = 1 and
k = 3. As u1(B32) = u1(B′32) and u3(B32) > u3(B′32), we can order the boxes strictly
decreasingly with respect to k = 3. Therefore,

v(B32) = (2, 1, 4)> and v(B′32) = (3, 2, 2)>

is obtained. As v1(B′32) = u1(B′32) and v2(B′32) = u2(B′32), box B′32 is quasi non-
redundant with respect to the first and second component. This implies that B′32 is
completely contained in two other boxes of the decomposition. Indeed, B′32 ⊂ B22 and
B′32 ⊂ B32, as (3, 2, 4)> 5 (5, 2, 4)> and (3, 2, 4)> 5 (3, 2, 5)>, respectively.
The individual subsets of all B ∈ B4 are depicted in Figure 5.8 (b). As the indi-

vidual subset V (B′32) is empty, we depict the set

{z ∈ B0 : v(B′32) 5 z 5 u(B′32)} = {z ∈ B0 : (3, 2, 2)> 5 z 5 (3, 2, 4)>}

instead, which describes a one-dimensional face. It is represented as a black line in
Figure 5.8 (b).

Example 5.28. Consider again Example 5.25, i.e., B3 := {B11, B12, B21, B22, B23}
is the decomposition obtained by inserting z1 and z2 as described above. Let now
z3 = (1, 3, 4)> be given. This point is only contained in B11, which is, therefore, split
into three new boxes B31, B32 and B33 with

u(B31) = (1, 5, 5)>, v(B31) = (0, 3, 4)>,
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Figure 5.9: Illustration of the sets V (B) in Example 5.28; the individual subsets of the
occurring quasi non-redundant boxes (which are actually empty) are represented as two-
dimensional faces

u(B32) = (3, 3, 5)>, v(B32) = (1, 1, 4)>,
u(B33) = (3, 5, 4)>, v(B33) = (1, 3, 4)>.

The resulting decomposition is B4 := {B12, B21, B22, B23, B31, B32, B33}. Box B33

is quasi non-redundant with respect to the third component. Moreover, u(B33) =
u(B21), thus, the two quasi non-redundant boxes B21 and B33 are equal (as the boxes
are characterized by their upper bounds). However, they differ in their associated
vectors v. Figure 5.9 (a) shows the respective sets V (B), where, as above, the sets

{z ∈ B0 : v(B) 5 z 5 u(B)}

are drawn to represent also boxes with empty individual subsets.
Let, finally, z4 = (2, 4, 2)> be given, which is contained in the two quasi non-

redundant boxes B33 and B21. The box B33 is split with respect to the first and second
component, B21 is split with respect to the second and third component. Hence, the
new decomposition is B4 := {B12, B22, B23, B31, B32, B41, B42, B

′
42, B43} with

u(B41) = (2, 5, 4)>, u(B42) = (3, 4, 4)>, u(B′42) = (3, 4, 4)>, u(B43) = (3, 5, 2)>.

As only B33 is split with respect to the first component, v(B41) = (1, 4, 2)>. Analo-
gously, v(B43) = (2, 4, 1)>. As both boxes are split with respect to the second compo-
nent, B42 and B′42 must be ordered appropriately. As the corresponding upper bound
vectors are equal, we sort the boxes according to the temporary values of v(B42) and
v(B42)′ (see Lines 48 to 50 in Algorithm 2), which are identical to v(B33) and v(B21),
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5 A Parametric Algorithm with a New Bound on the Number of Subproblems

respectively. As v1(B33) < v1(B21), the boxes are ordered increasingly with respect to
the first and decreasingly with respect to the third component. Hence,

v(B42) = (2, 3, 4)> and v(B′42) = (3, 2, 2)>

are uniquely determined. The corresponding individual subsets are depicted in Fig-
ure 5.9 (b).

Example 5.28 illustrates that the correct order of the boxes, that is required for the
update of v, cannot always be determined solely based on the upper bound vectors
in the quasi non-redundant case. It might be necessary to take the corresponding
(temporary) values of v into account, with the help of which a unique ordering is
obtained.

The Notion of Neighbors in the Quasi Non-Redundant Case

As we have seen, we can apply Algorithm 2 also when Assumption 5.13 (1) does
not hold. The algorithmic procedure does not change when quasi non-redundant
boxes occur. It might only be necessary to establish the required ordering of the
upper bounds of the new boxes with the help of the vectors v, as illustrated in
Example 5.28.
However, in the quasi non-redundant case, the notion of a neighbor of a box

changes. This can be seen from Example 5.25. Box B21 would not have a neigh-
bor with respect to the first component according to Definition 5.11, as u1(B21) =
min{u1(B) : B ∈ B3}. This, in turn, would imply v1(B21) = zI1 = 0 according to
Lemma 5.16. However, v1(B21) = 3 = u1(B11), thus, B2

1(B21) = B11 must hold.
Moreover, even if neighbors according to Definition 5.11 exist, they might not be
unique, which can also be seen from Example 5.25. Boxes B11 and B21 are both
neighbors of B23 with respect to the first component according to Definition 5.11.
The notion of a neighbor is not relevant for the application of Algorithm 2, as the

neighbors are not determined explicitly therein. However, the existence of a unique
neighbor is required for the proofs of Lemma 5.22, Lemma 5.23 and Theorem 5.24,
respectively. Fortunately, the neighborhood structure in the non-redundant case
can be transferred to the quasi non-redundant case. However, the neighbors are no
longer determined according to Definition 5.11, but are recursively defined as it is
implicitly done in Algorithm 2. In the following, we indicate this recursive definition
of a neighbor explicitly. Note that this definition coincides with Definition 5.11 when
Assumption 5.13 (1) holds. As we will see, this explicit recursive definition is not
only the correct notion of a neighbor in the quasi non-redundant case, but can also
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be used to design an improved variant of Algorithm 2 in the general case, i.e., also
when Assumption 5.13 (1) holds.

Assumption 5.29. Let the starting box be denoted by B0 and defined by its upper
bound vector u(B0) := zM . Furthermore, let v(B0) := zI . The initial decomposition
of the search region is denoted by B1 := {B0}. The neighbors of the initial box are
defined to be empty, i.e., B1

i (B0) := ∅ for all i ∈ {1, 2, 3}.

Definition 5.30 (Recursive definition of neighbors). Let Assumption 5.29 hold. For
every s ≥ 1, let zs ∈ ZN denote the nondominated point that is generated in itera-
tion s. Furthermore, let Bs := {B ∈ Bs : zs ∈ B}.
Then, for every s ≥ 1, unique neighbors of all boxes B ∈ Bs+1 are defined recur-

sively in the following way:

1. Determination of boxes to be split in iteration s:
For every i ∈ {1, 2, 3}, let Si := {B ∈ Bs : vi(B) ≤ zsi }. Let Qi := |Si| for all
i ∈ {1, 2, 3} and let Ii ⊂ N, Ii 6= ∅, denote the index set of the boxes contained
in Si, i.e., Si := {B̂Ii(1), . . . , B̂Ii(Qi)}. Furthermore, let these boxes be ordered
such that

zsj <uj(B̂Ii(1)) ≤ uj(B̂Ii(2)) ≤ · · · ≤ uj(B̂Ii(Qi)), (5.19)
uk(B̂Ii(1)) ≥ uk(B̂Ii(2)) ≥ · · · ≥ uk(B̂Ii(Qi)) > zsk, (5.20)

holds for some j 6= i and k 6= i, j. If there exists p ∈ {1, . . . , Qi − 1} with
uj(B̂Ii(p)) = uj(B̂Ii(p+1)) and uk(B̂Ii(p)) = uk(B̂Ii(p+1)), then order B̂Ii(p) and
B̂Ii(p+1) such that vj(B̂Ii(p)) ≤ vj(B̂Ii(p+1)) and vk(B̂Ii(p)) ≥ vk(B̂Ii(p+1)) hold.

2. Determination of neighbors:

a) For all new boxes B̂Ii(q)
i ∈ Bs+1, q = 1, . . . , Qi, obtained from B̂Ii(q) by a

split with respect to i, we set:

Bs+1
i (B̂Ii(q)

i ) := Bs
i (B̂Ii(q)) ∀ q = 1, . . . , Qi, (5.21)

Bs+1
j (B̂Ii(q)

i ) :=

 B̂
Ij(1)
j q = 1,

B̂
Ii(q−1)
i ∀ q = 2, . . . , Qi,

(5.22)

Bs+1
k (B̂Ii(q)

i ) :=
{
B̂
Ii(q+1)
i ∀ q = 1, . . . , Qi − 1,

B̂
Ik(Qk)
k q = Qi,

(5.23)

where Ij is assumed to be sorted decreasingly with respect to k and Ik is
assumed to be sorted increasingly with respect to j.
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b) The neighbors of all B ∈ Bs, B /∈ Bs, Bs
i (B) /∈ Bs for all i ∈ {1, 2, 3}

remain unchanged, i.e.,

Bs+1
i (B) = Bs

i (B) ∀ i ∈ {1, 2, 3}. (5.24)

c) The neighbors of all boxes B ∈ Bs, B /∈ Bs, for which Bs
j (B) = B̂ ∈ Bs

for some j ∈ {1, 2, 3}, are defined as follows:

Bs+1
j (B) := B̂i, (5.25)

where i 6= j is the unique index for which zsi ≥ ui(B) holds.

Note that (5.19) corresponds to (5.12) and (5.20) corresponds to (5.13) in the proof
of Lemma 5.14. Moreover, (5.21), (5.22) and (5.23) correspond to (5.14), (5.15) and
(5.16) in Corollary 5.15. Finally, (5.24) and (5.25) relate to cases (iii) and (iv) in the
proof of Lemma 5.14.
Once having specified unique neighbors for each box, the lower bounds v(B) are

updated as usual. As in the non-redundant case, in every iteration s, the lower bound
vectors of all B ∈ Bs are

vi(B) :=
{
ui(Bs

i (B)), if Bs
i (B) 6= ∅

zIi , otherwise
, i ∈ {1, 2, 3}.

Due to Definition 5.30 every box has a unique neighbor with respect to every
component. Based on this neighborhood structure, Lemma 5.22, Lemma 5.23 and
Theorem 5.24 also hold in the quasi non-redundant case.

A Variant of Algorithm 2 with Explicit Update of the Neighbors

As already mentioned above, the explicit recursive update of the neighbors is not only
needed in the quasi non-redundant case, but also yields a variant of Algorithm 2 with
improved performance. This variant is briefly described in the following. Recall that
in Algorithm 2 in every iteration, in which a new nondominated point is found, the
entire list of boxes is scanned in order to find the boxes that contain the current
nondominated point. Moreover, in the update of the individual subsets, the boxes
that are obtained by the split have to be ordered such that the correct new values of
v can be determined.
Both aspects can be improved if the neighbors are saved explicitly. Due to Lem-

ma 5.22 and the proof of Lemma 5.23 we know that if |Bs| > 1, i.e., if more than
one box contains the nondominated point in the current iteration, then all boxes
B ∈ Bs are connected by a chain of neighbors. We start from the box B, in which the
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scalarization has been solved, and which, therefore, contains the current point zs. By
investigating v(B), we can identify the components, with respect to which B is split
as well as the components, with respect to which a neighbor exists which is contained
in Bs. If, e.g., v(B) 5 zs, then we do not have to search for further boxes in Bs, as
then |Bs| = 1 must hold. If, however, vi(B) > zsi for some component i = 1, 2, 3, then
Bs
i (B) ∈ Bs must hold, as ui(Bs

i (B)) = vi(B) > zsi and uj(Bs
i (B)) ≥ uj(B) > zsj for

all j 6= i. By subsequently investigating neighbor boxes, Bs can be obtained without
testing every box of the current decomposition. Moreover, by using the neighborhood
structure, the sorting of the boxes in lines 47 to 50 in Algorithm 2 can be simplified.
While detecting Bs, the sets Si, i = 1, 2, 3, can be sorted immediately.

5.4 The ε-Constraint Method in Combination with the
v-Split

Algorithm 2 presented in Section 5.3 is formulated independently of a specific scalar-
ization. In every iteration only points that are dominated by the current nondomi-
nated point are eliminated. In this section we show that we can reduce the search
region and, thereby, the number of subproblems further if we use the ε-constraint
method. In the tricriteria case the number of subproblems can be bounded by
2|ZN | − 1.
The algorithm of Laumanns et al. (2006) makes implicitly use of this property of

the ε-constraint method by projecting the set of feasible outcomes to an (m − 1)-
dimensional subset. Thereby, in the bicriteria case, Laumanns et al. (2006) can
generate a complete representation by solving |ZN |+ 1 subproblems, see Section 3.2
for a detailed description of the corresponding algorithm. Also Hamacher et al. (2007)
exploit properties of the ε-constraint method, by which the area of the rectangles
considered in their bicriteria method can be diminished further. Details can be
found in Section 3.2. However, as to the best of our knowledge we present the first
algorithm for tricriteria problems whose number of subproblems depends linearly on
the number of nondominated points, the bound which is derived in this section is
new as well.
The reduction of the search region stems from the following property of the ε-

constraint method, which holds for any number of criteria. First, recall that for
every z∗ ∈ ZN ∩B, by definition of nondominance, we can exclude the two sets

S1(z∗) := {z ∈ B : z 5 z∗} and S2(z∗) := {z ∈ B : z = z∗}

from a given box B := {z ∈ Rm : z < u(B)}. If the point z∗ has been obtained as
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1
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Figure 5.10: Reduction of the search region for m = 3: Solely based on nondominance of z∗

(left) and when taking into account that z∗ is obtained as optimal point of a corresponding
ε-constraint method (right)

an optimal solution of an ε-constraint problem of the form

min z1

s.t. zi < ui(B̄) ∀ i = 2, . . . ,m, (5.26)

where B̄ is a box of the current decomposition, then, additionally to S1(z∗) and
S2(z∗), the set

S′1(z∗) := {z ∈ B̄ : z1 < z∗1} = {z ∈ Rm : z1 < z∗1 , zi < ui(B̄) ∀ i = 2, . . . ,m}

cannot contain any further nondominated points, as this would contradict the op-
timality of z∗ in (5.26). Thereby, S′1(z∗) depends on the chosen box B̄ as well as
on the component i with respect to which the ε-constraint problem is minimized.
Throughout this section we choose i = 1 without loss of generality. In Figure 5.10,
an example of the sets S1,S′1 and S2 is depicted. Note that in order to guarantee that
the outcome z∗ is nondominated, a two-stage or an augmented ε-constraint method
should be employed.
We consider now the implications of this additional reduction of the search region

in the tricriteria case, i.e., in combination with the v-split algorithm. Let box B̄ ∈ Bs
be the currently selected box, and let zs denote the nondominated point obtained
in iteration s. Then, the set S′1(zs) := {z ∈ B̄ : z1 < zs1} corresponds to the box
obtained by a split of B̄ with respect to the first component. Since S′1(zs) is empty, B̄
does not need to be split with respect to the first component. A split with respect to
all other components i ∈ {2, 3} is performed according to the v-split criterion, i.e., if
and only if zsi ≥ vi(B̄) holds for i ∈ {2, 3}. For all other boxes B ∈ Bs\{B̄} the usual
v-split criterion is employed with respect to all components. In particular, a box
B ∈ Bs\{B̄} must be split with respect to the first component whenever zs1 ≥ v1(B)
holds.
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In order to benefit from the fact that the set S′1(zs) can be excluded additionally
from the search region, we must guarantee that the box resulting from a split of
B̄ with respect to the first component would have been part of the decomposition.
According to the definition of the v-split, this is the case if zs1 ≥ v1(B̄) holds. A
sufficient criterion to guarantee that zs1 ≥ v1(B̄) holds is to select a box B̄ that does
not have a neighbor in Bs with respect to i = 1, i.e., Bs

i (B̄) = ∅. Equivalently, we
might select a box B̄ which satisfies v1(B̄) = min{v1(B) : B ∈ Bs}. This means that
we replace Line 5 in Algorithm 2 by ‘choose B̄ ∈ Bs such that v1(B̄) = min{v1(B) :
B ∈ Bs}’. If a box with minimal value v1 is selected according to this rule at the
beginning of each iteration, then one box is saved in each iteration in which a new
nondominated point is generated that does not equal the ideal point in the first
component. Therefore, we obtain 2|ZN | − 1 as new upper bound on the number of
subproblems to be solved in the tricriteria case.

Example 5.31 (Application of Algorithm 2 with ε-constraint scalarization). Con-
sider a tricriteria problem with ZN = {(2, 2, 4)>, (4, 1, 2)>, (3, 4, 1)>}, i.e., the non-
dominated set consists of three points. Let the initial search region

B0 := {z ∈ Z : 0 ≤ zi ≤ 5 ∀ i = 1, 2, 3}

be given. Solving (5.26) in B0 yields the nondominated point with the smallest value
in the first component, thus, z1 = (2, 2, 4)>. The v-split with respect to z1 applied to
B0 results in three boxes. As, due to (5.26), the box resulting from B0 by a split with
respect to the first component is known to be empty, this box is not generated, and
we obtain B2 = {B12, B13} with

u(B12) := (5, 2, 5)>, v(B12) := (2, 0, 4)>,
u(B13) := (5, 5, 4)>, v(B13) := (2, 2, 0)>.

In the next iteration, we may choose any of the two boxes in B2 as v1(B12) = v1(B13)
holds. W.l.o.g., we select box B12. Solving (5.26) with right-hand side u(B12) yields
z2 = (4, 1, 2)>, as (3, 4, 1)> /∈ B12. Since z2 ∈ B13, a v-split with respect to z2

is applied to both boxes B12 and B13. As z2 has been generated in B12, no box with
respect to the first component is derived from B12. As z2

2 ≥ v2(B12) but z2
3 < v3(B12),

box B12 is only split with respect to its second component. Comparing all three
components of v(B13) with z2 yields that B13 is split with respect to its first and third
component. Thus, B3 = {B21, B22, B23}, where

u(B21) := (4, 5, 4)>, v(B21) := (2, 1, 2)>,
u(B22) := (5, 1, 5)>, v(B22) := (4, 0, 2)>,
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u(B23) := (5, 5, 2)>, v(B23) := (4, 1, 0)>.

In the next iteration we choose B21, as v1(B21) < min{v1(B22), v1(B23)} holds. Solv-
ing (5.26) with right-hand side u(B21) yields z3 = (3, 4, 1)>. It holds that z3 ∈ B21,
z3 /∈ B22 and z3 ∈ B23. Again, box B21, that has been selected in the current itera-
tion, is not split with respect to the first component. As v2(B21) < z3

2, v3(B21) > z3
3,

v1(B23) > z3
1, v2(B23) < z3

2 and v3(B23) < z3
3, B21 and B23 are both split with respect

to the second component, B23 is split with respect to the third component and no box
is split with respect to the first component. In total, as in the previous iterations, one
additional box is obtained. Note that if we had chosen B23 instead of B21 for solving
the third subproblem, then, as v1(B23) > z3

1, box B23 would not have been split with
respect to the first component regardless of the scalarization used. Therefore, two
new boxes would have been generated in this case.

The presented improved method based on Algorithm 2 in combination with the
ε-constraint scalarization requires only (2|ZN | − 1)/(3|ZN | − 2) ≈ 2/3 of the sub-
problems needed in the general case, i.e., when no specific scalarization is applied.
However, in order to benefit from this saving of subproblems, the boxes cannot be
solved in an arbitrary order, but the next box must be selected from the boxes with
minimal value v1. Note that this restriction is irrelevant whenever a complete rep-
resentation is sought, as the order in which nondominated points are generated does
not matter then. However, with regard to an incomplete representation, it might be
unfavorable to select the next box only from a very restricted subset of all boxes.

5.5 Generalization of the v-Split Algorithm for m ≥ 3

In this section we present an improvement on Algorithm 2 in the sense that the
generation of quasi non-redundant boxes is avoided. At the same time, the resulting
algorithm generalizes the v-split algorithm to any number of criteria.
In Section 5.3 we showed that each box of the decomposition has a unique neighbor

with respect to every component i ∈ {1, 2, 3}. The respective components of the
upper bound vectors of these three uniquely determined boxes defined the lower
bound of the individual subset of the considered box. The components of this lower
bound vector were used to decide whether the considered box is split with respect to
this component or not. We obtained a quasi non-redundant box from B̄ ∈ Bs with
respect to component i ∈ {1, 2, 3} if and only if vi(B̄) = zsi . Therefore, as a direct
consequence, we can avoid quasi non-redundant boxes if we split a box B̄ ∈ Bs with
respect to component i ∈ {1, 2, 3} if and only if zsi > vi(B̄) holds. However, then, as

130



5.5 Generalization of the v-Split Algorithm for m ≥ 3

Algorithm 3 A v-split algorithm for m ≥ 3
Input: Image of the feasible set Z ⊂ Rm, implicitly given by some problem formu-

lation
1: N := ∅; δ > 0;
2: for j = 1 to m do
3: zIj := min{zj : z ∈ Z};
4: zMj := max{zj : z ∈ Z}+ δ;
5: end for
6: U := {zM}; // Boxes represented by upper bound vectors only
7: while U 6= ∅ do
8: Choose ū ∈ U ;
9: zs := opt(Z, ū); // Solve scalarized subproblem

10: if zs = ∅ then // No nondominated point found
11: U := U\{ū};
12: else
13: N := N ∪ {zs}; // Add point to nondominated set
14: Determine T := {u ∈ U : z < u}; // Upper bounds that ‘contain’ zs

15: for i = 1 to m do
16: U i := T ; // Copy set T
17: for all ũ ∈ U i do
18: Determine N(ũ) := {u ∈ U : ui < ũi, uj ≥ ũj ∀ j 6= i};
19: if N(ũ) = ∅ then
20: v := zIi ;
21: else
22: v := max{ui : u ∈ N(ũ)}; // ‘Closest’ upper bound
23: end if
24: if v < zi then
25: ũi = zi; // Change bound
26: else
27: U i := U i\{ũ}; // Remove upper bound from temporary set
28: end if
29: end for
30: end for
31: U := (U\T )∪

(⋃m
i=1 U

i
)
; // Remove old and add new upper bounds to U

32: end if
33: end while
Output: Set of nondominated points N
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discussed in Section 5.3.4, the sets{
z ∈ R3 : v(B̄) 5 z < u(B̄)

}
(5.27)

do no longer describe the individual subset V (B̄), i.e., the set that is contained in
B̄ but in no other box B 6= B̄ of the current decomposition. While the concept of
individual subsets served as motivation for constructing the v-split, it is not necessary
for the algorithm, i.e., Algorithm 2 does not rely on whether (5.27) describes the
individual subset of B̄ or not. As the current nondominated point is compared
component-wise to v(B̄), it is sufficient that the components of v(B̄) equal the upper
bound values of the respecting neighbor boxes.
If no quasi non-redundant boxes occur, then, according to Definition 5.11, a neigh-

bor B̂ ∈ Bs of a box B̄ ∈ Bs with respect to i ∈ {1, 2, 3} satisfies

ui(B̂) < ui(B̄),
uj(B̂) > uj(B̄) for some j 6= i,

uk(B̂) ≥ uk(B̄) for k 6= i, j (5.28)

and

ui(B̂) = max{ui(B) : B ∈ Bs, ui(B) < ui(B̄)}.

This definition of a neighbor can be generalized to arbitrary m ≥ 3 as follows. Box
B̂ ∈ Bs is defined to be a neighbor of box B̄ ∈ Bs with respect to i = 1, . . . ,m if

ui(B̂) < ui(B̄),
uj(B̂) ≥ uj(B̄) for all j 6= i (5.29)

and

ui(B̂) = max{ui(B) : B ∈ Bs, ui(B) < ui(B̄)}.

Obviously, if no quasi non-redundant boxes occur, (5.28) is a special case of (5.29).
By using (5.29) we can formulate an algorithm for any number of criteria, i.e., m ≥ 3.
Algorithm 3 shows the pseudocode of a corresponding algorithm. Note that, different
from Algorithm 2, we do not save the vectors v(B) for each box B explicitly, but
determine the values required to decide whether a box is split each time from scratch.
Therefore, instead of using box structures as in Algorithm 2, it is sufficient to save a
list of upper bound vectors U . As discussed in Section 5.3.4, (5.28) and, thus, (5.29)
are only valid if no quasi non-redundant boxes occur. However, quasi non-redundant
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boxes can be easily suppressed as explained above. This is realized in Line 24 in
Algorithm 3.
While the correctness of Algorithm 3 is immediately clear for m = 3 and easy to

see for m ≥ 4, no theoretical bound on the number of subproblems can be derived
from this algorithm, in general. Recall that the results of Section 5.3.3, in which the
linear bound in the tricriteria case was proven, relied on the representation of the
individual subsets, which is unknown for Algorithm 3. However, as Algorithm 3 is
very similar to Algorithm 2 in the tricriteria case, and as quasi non-redundant boxes
are additionally suppressed, we can expect that less than 3|ZN | − 2 subproblems are
solved in the tricriteria case. Numerical experiments in Section 6.3 for tricriteria
problems confirm that, in general, less subproblems are solved with Algorithm 3
compared to Algorithm 2, but that no longer a constant number of new boxes is
created per iteration. Moreover, different from Algorithm 2, the order, in which the
nondominated points are generated, influences the number of subproblems. This is
illustrated in the next example.

Example 5.32. Let

ZN =




1
1
9

 ,


1
4
8

 ,


1
6
7

 ,


4
6
6

 ,


5
6
5

 ,


7
1
6

 ,


9
1
2




be the nondominated set of a given problem, which is a slight modification of an
example of Fonseca (2013). We apply Algorithm 3 using an ε-constraint scalarization
in a two-stage (TS) and an augmented formulation (A). Recall from Section 5.4 that
in case that the ε-constraint method is used and we want to make use of the additional
reduction of the search region, the box at the beginning of each iteration can not be
chosen freely, but must be a box with minimal v1-value. As Algorithm 3 does not save
the vectors v for each box B explicitly, we determine a box instead that does not have
a neighbor with respect to the first component.
Table 5.2 shows the upper bounds U and the solution of the subproblem z of each

iteration, which either corresponds to a new nondominated point or the empty set.
We see that depending on the formulation of the scalarization, the nondominated

points are computed in a different order. In this example, the two-stage variant
requires one iteration less than the augmented variant. Moreover, the number of
additional boxes generated in each iteration varies. If we apply Algorithm 2, then,
independent of a two-stage or an augmented formulation 2|ZN |−1−2 = 11 subprob-
lems are solved. Note that two additional subproblems are saved as there are three
nondominated points which equal the ideal point in the second or third component.
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It
TS A

U z U z
1 10 10 10 1 6 7 10 10 10 1 1 9
2 10 6 10 1 4 8 10 10 9 1 4 8

10 10 7
3 10 10 7 4 6 6 10 4 9 7 1 6

10 4 10 10 10 8
10 6 8

4 10 4 10 1 1 9 7 10 8 1 6 7
10 6 8 10 10 6
10 10 6

5 10 6 8 7 1 6 10 10 6
10 10 6 7 6 8 ∅
10 4 9 7 10 7

6 10 10 6 5 6 5 10 10 6
7 4 9 7 10 7 4 6 6

7 7 4 9 ∅ 10 10 6 5 6 5
10 6 6 7 6 7
10 10 5

8 10 6 6 9 1 2 7 6 7 ∅
10 10 5 10 6 6

10 10 5
9 9 10 5 ∅ 10 6 6 9 1 2

10 10 5
10 – – 9 10 5 ∅

Table 5.2: Upper bound vectors U and nondominated points z obtained in Example 5.32; due
to different formulations of the ε-constraint method the nondominated points are generated
in different orders, which results in a different number of iterations of Algorithm 3

5.6 Conclusion and Further Ideas

In this chapter we have developed a new parametric algorithm. We particularly
focused on the application to discrete problems with a finite nondominated set, for
which a complete representation can be computed. In this situation it is of particular
interest to limit the number of subproblems that need to be solved. While a linear
bound was known in the bicriteria case, the best known bound so far in the tricriteria
case had a quadratic dependence on the number of nondominated points.
We demonstrated by indicating a new parametric algorithm that the maximal

number of subproblems to be solved depends linearly on the number of nondominated
points in the tricriteria case. More precisely, an explicit upper bound is given by
3|ZN | − 2. The linear upper bound is achieved by a new split criterion, the so-
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called v-split, which identifies redundant boxes and does not insert them into the
decomposition of the search region. As scalarization any method can be chosen by
which a given box can be investigated for further nondominated points. Possible
choices are, e.g., a weighted Tchebycheff method or an ε-constraint method. This
flexibility in choosing a scalarization is very appealing and makes the parametric
algorithm applicable to a multitude of problems.
If the ε-constraint method is applied and the box to be investigated next is chosen

according to a specific rule as specified in Section 5.4, the number of subproblems
can be bounded by 2|ZN | − 1.
We have also presented a generalization of the v-split algorithm for an arbitrary

number of criteria. This algorithm slightly differs from the algorithm, for which a
linear bound on the number of subproblems was shown. So far we have not derived
an upper bound on the number of subproblems for the generalized algorithm.
According to the results of Boissonnat et al. (1998), mentioned in Section 5.1, and

a counterexample given in Fonseca et al. (2011), no linear bound exists for m ≥ 4. In
general, a bound O(|ZN |bm/2c) is expected (Fonseca, 2013), which would match the
complexity stated in Boissonnat et al. (1998). However, no algorithm realizing the
expected complexity form ≥ 4 is known so far. Hence, future research should address
the question whether an upper bound ofO(|ZN |bm/2c) can be derived for Algorithm 3.
Thereby, ideas from the field of computational geometry as well as algorithms that
determine the dominated hypervolume in more than three dimensions could be useful.
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Practical Application of Adaptive
Parametric Algorithms
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6 Generation of Complete
Representations for Discrete Test
Problems

6.1 Introduction

In this chapter, we apply the theoretical results of Part I to discrete problems.
Thereby, Chapter 4 provides the formulas for the determination of adaptive param-
eters for each subproblem and Chapter 5 yields the general parametric algorithm,
by which a representation of the nondominated set is generated subsequently. If the
nondominated set is finite, a complete representation can be computed. Throughout
this chapter we assume that a discrete multicriteria optimization problem with a
finite nondominated set is given. In particular, we generate complete representations
for bi- and tricriteria problems. The topic of generating incomplete representations
will be treated in Chapter 7 below.
For the bicriteria case, we focus on testing the parameters of the augmented

weighted Tchebycheff method derived in Chapter 4. In particular, we want to verify
that with our adaptive parameter scheme every nondominated point can be gener-
ated, while this is not necessarily the case when employing the (classic) parameter
scheme with fixed augmentation parameters. We also study the implications of the
chosen reference point with respect to the values of the augmentation terms as well
as computational time.
In the tricriteria case, we do not only validate the adaptive parameter scheme of

Chapter 4, but also test the new parametric algorithm for tricriteria problems that
is proposed in Chapter 5. In particular, we want to confirm the new linear upper
bound on the number of subproblems. As scalarization, we use a two-stage and an
augmented weighted Tchebycheff method, for which an upper bound of 3|ZN | − 2
should be realized according to the theoretical results of Chapter 5. As described
in Section 5.4, the upper bound on the number of subproblems can be improved
to 2|ZN | − 1 when an ε-constraint method is used. We also validate this bound by
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numerical results for a two-stage and an augmented ε-constraint method. Besides the
number of subproblems solved, also the achieved computational times are of interest.
Finally, we compare our new algorithm to three state of the art approaches to test
its performance in comparison to existing methods.

In all tests, i.e., in the bicriteria and tricriteria case, we additionally study the
performance of the augmented weighted Tchebycheff method in comparison to a two-
stage method. In Miettinen et al. (2006), an experimental comparison of methods
with and without augmentation term for continuous problems revealed that methods
with augmentation term significantly outperform equivalent methods without such a
term with respect to computational costs. We are interested whether we can observe
the same effect in the discrete case.

The remainder of this chapter is organized as follows. Section 6.2 contains a
numerical study for the bicriteria case. In Section 6.3 the tricriteria case is treated.
A conclusion together with further ideas is presented in Section 6.4.

6.2 Bicriteria Problems

As already discussed in Section 5.2, the bicriteria case is special for several reasons.
First, if the nondominated points are maintained in a list that is sorted increasingly
with respect to one component, then, due to the definition of nondominance, the
points are automatically sorted decreasingly with respect to the other component.
Secondly, the upper bound u ∈ R2 of each box is defined by two subsequent non-
dominated points in the list. Therefore, all information can be easily retrieved from
the sorted list of points and there is no need to save the upper bounds explicitly.
Finally, a new nondominated point is always located in exactly one box. Therefore,
the regions that contain further nondominated points do not overlap and no redun-
dancy occurs. Consequently, no specific split criterion is required, and the general
full m-split algorithm presented in Section 5.2 can be applied efficiently.

This section is organized as follows. In Subsection 6.2.1 we present a particular
full 2-split algorithm which makes use of the simplifications in the bicriteria case
mentioned above. In Subsection 6.2.2, we discuss the use of local ideal points as
reference points. Our computational setup is presented in Subsection 6.2.3. Finally,
in Subsection 6.2.4, numerical results comparing different scalarization variants are
presented and discussed. Parts of this section have already been published in Dächert
et al. (2012).
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6.2.1 Implementation of the Full 2-Split Algorithm

Algorithm 1 presented in Section 5.2 is a general framework of a parametric algo-
rithm that relies on the fullm-split. In every iteration, in which a new nondominated
point is generated, every box that contains the current nondominated point is de-
composed into m new boxes. Algorithm 4 presented below can be seen as a special
case of Algorithm 1 for bicriteria problems. Moreover, it is similar to existing al-
gorithms that generate complete representations for bicriteria problems, see, e.g.,
Aneja and Nair (1979), Chalmet et al. (1986), Solanki (1991) or Ralphs et al. (2006).
However, different from these algorithms, no particular scalarization is prescribed in
Algorithm 4.

Algorithm 4 The full m-split algorithm in the bicriteria case
Input: Image of the feasible set Z ⊂ R2, implicitly given by some problem formu-

lation
1: z1 = (z1

1 , z
1
2) := lexmin{(z1, z2) : z ∈ Z}; // Compute the two

z2 = (z2
1 , z

2
2) := lexmin{(z2, z1) : z ∈ Z}; // lexicographic minima

2: if z1 = z2 then
3: N := {z1};
4: else
5: N := {z1, z2}; // sorted list of nondominated points
6: l(z1, z2) = 1; // Label
7: while I := {i ∈ {1, . . . , |N | − 1} : l(zi, zi+1) = 1} 6= ∅ do
8: Choose i ∈ I according to some predefined rule
9: Compute parameter set P wrt. zi,zi+1;

10: z∗ := opt(Z,P); // Solve scalarized subproblem
11: if z∗ = zi or z∗ = zi+1 then
12: l(zi, zi+1) := 0; // Label as investigated
13: else
14: Insert z∗ between zi and zi+1 in ND;
15: l(zi, z∗) := 1, l(z∗, zi+1) := 1;
16: end if
17: end while
18: end if
Output: Set of nondominated points N (points ordered increasingly w.r.t. z1)

The algorithm starts by computing the two lexicographic minima, which are the
first two entries of the list N . All elements which are consecutively added to the list
are kept sorted with respect to their first coordinate in ascending order. Furthermore,
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a label is assigned to each pair of subsequent elements to indicate whether the pair
has already been investigated. If yes, the corresponding pair is labeled permanently
by zero, otherwise it is labeled temporarily by one. In each iteration, a temporarily
labeled pair of points is selected according to some specified rule. Note that whenever
a complete representation is sought, we might choose any temporarily labeled pair
of points, e.g., always the first in the list. After having selected an unlabeled pair
of points, the parameters of the selected scalarization are computed with respect
to this pair of points. Thereby, the parameters are chosen such that either a new
nondominated point is obtained ‘between’ these points or the pair of points can be
labeled as investigated, since no further nondominated points exist ‘between’ them.
We use the notation z∗ := opt(Z,P) in Line 10 of Algorithm 4 to indicate that the
selected scalarization is solved for a particular parameter choice (P) and using the
problem formulation (Z). Note that, as discussed in Chapter 5, a scalarization must
be chosen that is suitable for discrete problems, i.e., for the case that nonsupported
points exist.
In our numerical study, either a Tchebycheff-type method with parameters as spec-

ified in Section 4.2 or an augmented ε-constraint approach with parameters chosen
as in Section 4.4 is used for solving the subproblems. If the lexicographic (two-stage)
weighted Tchebycheff method is used, the values of the parameters w1 and w2 are
chosen as given in (4.9). The same formula is used to determine the weights for
the classic augmented weighted Tchebycheff method with fixed augmentation term.
Note that if this method is applied, the value of ρ is specified at the beginning of the
algorithm and remains unchanged for all subproblems. If, in contrast, the adaptive
augmented weighted Tchebycheff method is applied, then w1, w2 and ρ are dynam-
ically updated according to the formulas given in Section 4.2, Table 4.2 for some
η̄ ∈ (0, 1).
The augmented ε-constraint method has been additionally implemented in order

to study whether and how the structure of the respective scalarization influences
computational time. We use formulation (4.36) with k = 2. Furthermore, the pa-
rameter ρ is set adaptively according to (4.38) and dependent on the same parameter
η̄ ∈ (0, 1) as it is used for the augmented weighted Tchebycheff method. Note that we
do not make use of the reduction of subproblems that is possible when the complete
nondominated set is generated with the help of the ε-constraint method as described
in Section 5.4, since, in this numerical study, we want to evaluate the scalarizations
and not the number of subproblems.
Due to the particular construction of the parameters as presented in Chapter 4,

a subproblem is never infeasible, but always computes a nondominated point. Let
z∗ denote the nondominated point which corresponds to the optimal solution of the
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current subproblem. Two cases may occur: If z∗ = zi or z∗ = zi+1, the results
of Chapter 4 imply that the box B(u) with u := (zi+1

1 , zi2)> (that is not explicitly
computed here) contains no further nondominated points and, hence, (zi, zi+1) can be
labeled as investigated. This case corresponds to the situation that the subproblem
is infeasible, see Line 7 in Algorithm 1. Otherwise, i.e., if z∗ does not equal zi or zi+1,
then the nondominated point z∗ implicitly induces two new boxes that may contain
further nondominated points. In this case, z∗ is inserted into N at the respective
position to maintain the desired ordering of the elements, and the two new pairs of
subsequent points are labeled temporarily.

The procedure of selecting and solving subproblems is repeated until every pair
of consecutive points in N is labeled permanently. Due to the correctness of Algo-
rithm 4, that follows from the correctness of Algorithm 1, the complete nondomi-
nated set has been generated, then. As explained in Section 5.2, the overall number
of subproblems, including the computation of the two lexicographical minima at
the beginning, is given by 2|ZN | − 1, see also Chalmet et al. (1986), Ralphs et al.
(2006). However, note that the complexity of Algorithm 4 does not only depend on
the number of subproblems, but also on the complexity required to solve one sub-
problem. Since the original bicriteria optimization problem might be intractable, the
time needed to generate ZN may grow exponentially with the size of the considered
bicriteria problem.

6.2.2 Local Ideal Points as Reference Points

In the classic formulation of the (augmented) weighted Tchebycheff method, see (2.26)
and (2.30), a utopian or the ideal point is chosen as reference point. In the follow-
ing, we discuss the use of local ideal points as reference points. A variation of the
reference point is interesting since the parameter values derived in Chapter 4 depend
on the size of the considered box, hence, in particular on the reference point that
constitutes the lower bound of the respective box. If local ideal points are chosen as
reference points, then, in general, larger values of ρ can be obtained. Therefore, the
use of local ideal points as reference points seems to be advantageous and is included
in our numerical study. Recall from Section 2.1 that a local ideal point is defined
with respect to a subset of Z. In this section, it will always be defined with respect
to a pair of consecutive points in the sorted list N , i.e., for two points z1, z2 ∈ N the
local ideal point is given by s = (z1

1 , z
2
2)>.

In order to use local ideal points as reference points in the augmented weighted
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1

z1

z2

z3

z4

s

f1

f2

(a) Local ideal point as reference point

1

z1

z2

z3

z4

s f1

f2

(b) (Global) ideal point as reference point

Figure 6.1: Example in which a nondominated point z4 cannot be generated with the
augmented weighted Tchebycheff method using a local ideal point with respect to z1 and
z2, since z3 has a smaller level than z4 (a); in contrast, z4 can be generated when the
(global) ideal point is used (b); the solid and dashed lines represent parts of the contour of
an augmented weighted Tchebycheff norm with the origin translated to the local ideal point

Tchebycheff method, we consider the formulation

min
x∈X

max
i=1,...,m

{wi |fi(x)− si|}+ ρ
m∑
j=1
|fj(x)− sj | (6.1)

with s ∈ Rm a given reference point.
We call (6.1) an augmented weighted Tchebycheff problem with reference point

s ∈ Rm, even if it does not meet the definition in its original form for s 6= zU or
s 6= zI . Note that the objective function of (6.1) can be seen as a special achievement
(scalarizing) function (Wierzbicki, 1980). Of course, the theoretical properties of the
augmented weighted Tchebycheff method do not necessarily hold if we choose an
arbitrary reference point. As stated in Steuer (1986), see also Section 2.3, the abso-
lute values in the weighted Tchebycheff problem (2.26) and the augmented weighted
Tchebycheff problem (2.30) can be dropped if the ideal or a utopian point is taken
as reference point. A feasible outcome of problem (2.26) or (2.30) with the absolute
values dropped is not only proven to be (weakly) nondominated, but automatically
lies in the considered box. Consequently, we can discard a box from the search space
when no new outcome is obtained. When a local ideal point is used as reference point
and we drop the absolute values in (6.1), then a feasible outcome is also (weakly)
nondominated, see, e.g., Luque et al. (2012). However, the outcome does not neces-
sarily lie in the considered box. This is illustrated in Figure 6.1(a), where a local ideal
point with respect to z1 and z2 is used for constructing the contour of an augmented
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1

z1

z2

z3

z4

s

f1

f2

Figure 6.2: Contour of an augmented weighted Tchebycheff norm with the origin translated
to the local ideal point

weighted Tchebycheff norm with the absolute values omitted. The point z3 6∈ B(u)
with u := (z2

1 , z
1
2)> has a strictly smaller level than z4 ∈ B(u) and, thus, would be

obtained when searching for new outcomes in B(u). In this case, it may happen
that a box B(u) would be selected over and over again in Algorithm 4 without being
able to generate z4. Moreover, if no stopping criterion is active, Algorithm 4 would
not terminate. This situation does not occur when the ideal point is chosen as a
fixed reference point, see Figure 6.1(b), as then every feasible outcome must lie in
the considered box by construction of the contour.
We apply three different approaches to enable the use of local ideal points as

reference points of an augmented weighted Tchebycheff problem. One possibility
consists in modeling the absolute values in (6.1) by introducing two additional vari-
ables µi ∈ R, i = 1, 2, and four additional constraints. Thereby, we obtain the linear
program

min λ+ ρ (µ1 + µ2)
s.t. λ ≥ wiµi, i = 1, 2,

µi ≥ zi − si, i = 1, 2,
µi ≥ −(zi − si), i = 1, 2,
z ∈ Z.

(6.2)

An alternative approach consists in dropping the absolute values, but restricting the
search to the desired box by adding either m = 2 constraints from above, i.e.,

z1 ≤ z2
1 and z2 ≤ z1

2 (6.3)

or from below, i.e.,
z1 ≥ z1

1 and z2 ≥ z1
2 (6.4)
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(a) Pubc : Upper bound constraints

1

z1

z2

z3

z4

s

f1

f2

(b) Plbc : Lower bound constraints

Figure 6.3: Adding constraints such that the nondominated point z4 ‘between’ the two
nondominated points z1 and z2 can be generated with the augmented weighted Tchebycheff
method using the local ideal point with respect to z1 and z2 as reference point

to the problem

min λ+ ρ
2∑
j=1

(zj − sj)

s.t. λ ≥ wi (zi − si) , i = 1, 2,
z ∈ Z.

(6.5)

A visualization of these three variants is given in Figures 6.2 and 6.3.

6.2.3 Computational Setup

For our computational tests we consider a bicriteria knapsack problem as a well-
studied example of a discrete bicriteria optimization problem with non-negative ob-
jective values. To be consistent with problem formulation (2.1), we formulate the
problem as a minimization problem with objective coefficients (costs) C ∈ Z2×n

+ ,
constraint vector (profit) a ∈ Zn+ and minimum profit requirement b ∈ Z+:

min f(x) = Cx

s.t. a>x ≥ b,

xl ∈ {0, 1}, l = 1, . . . , n.
(6.6)

Note that the bicriteria knapsack problem has also been used as a test problem, e.g.,
in Sayın and Kouvelis (2005) and Ralphs et al. (2006). Similar to these references,
we do not aim at outperforming specialized algorithms for the determination of the
nondominated set of the bicriteria knapsack problem with respect to computational
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times. Algorithm 4 is rather used as a general framework to compare the performance
of different variants of scalarizations. For these reasons, a standard integer linear
programming solver is sufficient for the solution of the respective subproblems.
The test problems are generated using the approach and the code of Sayın and Kou-

velis (2005). In this approach, the elements of C ∈ Z2×n
+ and a ∈ Zn+ are randomly

drawn from the interval [1, 1000], following a uniform distribution. The minimum
profit b ∈ Z+ of a feasible knapsack is set to b := 0.5 ·∑n

i=1 ai, rounded to the nearest
integer. We consider five different problem sizes n ∈ {50, 75, 100, 125, 150}, where n
denotes the total number of available items. For every problem size n, 30 different
instances are evaluated. Note that the instances belonging to one problem size typi-
cally all have a different number of nondominated points. As already stated above,
the parameters of the Tchebycheff scalarizations are set according to the formulas
given in Chapter 4. The scalar η̄ in the formulas of Table 4.2 is set to 0.1 by default.
Moreover, if not stated otherwise, the ideal point is taken as reference point.
Two series of experiments are presented. In a first test series, we compare the aug-

mented weighted Tchebycheff method with adaptively chosen parameters (AAWT)
to the augmented weighted Tchebycheff method with a priori chosen values of ρ,
where we set ρ to 10−2, 10−3 and 10−4, respectively, as proposed by Steuer (1986).
We denote the resulting problems by P0.01, P0.001 and P0.0001, respectively. Fur-
thermore we compare the adaptive augmented weighted Tchebycheff method to an
adaptive augmented ε-constraint method (AEC) of the form (4.36) with k = 1. The
parameter ρ is set according to (4.38) with η̄ = 0.1.
The two-stage or lexicographic weighted Tchebycheff method (TS) is used as ref-

erence method, i.e., we compare all methods with TS in terms of the number of
determined nondominated points and computational time. Note that we exactly
compute the complete nondominated set with the help of the two-stage approach.
We confirmed this additionally with the help of a dynamic programming algorithm,
see Klamroth and Wiecek (2000). We also verified that whenever a lower number
of points was found by the respective method, it is always a strict subset of the
nondominated set.
In a second test series, we investigate the impact of using local ideal points as

reference points in the augmented weighted Tchebycheff method. In a first step, we
compare the different reformulations of the absolute values described in Section 6.2.2
with respect to CPU time. In a second step, we test an improved approach that
still uses local ideal points but replaces the absolute values only when needed, i.e.,
whenever nondominated points outside the current box may potentially be generated.
Dependent on the parameter η̄, we compare CPU time and average values of ρ.
For better comparison we always state absolute values for TS and relative devi-
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n TS AAWT P0.01 P0.001 P0.0001 AEC

50 46.43 0 -0.0622 -0.0066 0 0
75 91.57 0 -0.0695 -0.0055 0 0
100 150.60 0 -0.0748 -0.0051 -0.0004 0
125 225.23 0 -0.0770 -0.0056 -0.0005 0
150 341.77 0 -0.0695 -0.0054 -0.0004 -0.0001

Table 6.1: Relative deviation of the number of nondominated points found by different
augmented weighted Tchebycheff methods with respect to TS (absolute values)

ations from the respective value of TS for all other methods. All figures represent
averages over K = 30 instances, where the average relative deviations are computed
as follows: Let vn,k,M be a considered value (e.g., CPU time) of problem size n,
instance k and method M different from TS. Then

Vn,M := 1
K

K∑
k=1

vn,k,M − vn,k,TS
vn,k,TS

.

We additionally indicate standard deviations whenever useful in order to help to
understand the relevance of the observed differences in CPU time or the values of ρ.
The standard deviations are calculated as

σn,M :=

√√√√ 1
K

K∑
k=1

(
vn,k,M − vn,k,TS

vn,k,TS
− Vn,M

)2

for all problem sizes n and methods M.

The computational platform for our study is a compute server with 4x Intel Xeon
E7540 CPUs (2.0 GHz) and 128 GB of memory. Algorithm 4 is implemented in C++,
and as subproblem solver we use CPLEX 11.2.0. We turned off the option of CPLEX
to parallelize due to much longer computational times for the small instances.

6.2.4 Computational Results

A direct comparison of the different scalarization approaches is given in Tables 6.1
and 6.2. Thereby, Table 6.1 shows the average number of nondominated points found,
and Table 6.2 shows the average CPU time needed by the respective method.
From Table 6.1 we see that the adaptive augmented weighted Tchebycheff method

reliably generates the complete nondominated set (deviation of 0% from TS). How-
ever, this does not hold for the methods in which ρ is fixed a priori: For ρ = 0.01
and ρ = 0.001, for each problem size, a certain percentage of nondominated points is
missed. For example, for ρ = 0.01 and n = 50, on average 6.2% of the nondominated
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n TS AAWT P0.01 P0.001 P0.0001 ε-constr

50 CPU 1.668 -0.433 -0.458 -0.435 -0.435 -0.450
σ 0.865 0.036 0.045 0.037 0.037 0.054

75 CPU 5.651 -0.471 -0.506 -0.473 -0.472 -0.475
σ 3.278 0.027 0.024 0.027 0.027 0.048

100 CPU 13.889 -0.490 -0.526 -0.491 -0.491 -0.488
σ 6.182 0.025 0.030 0.025 0.026 0.054

125 CPU 30.734 -0.497 -0.537 -0.498 -0.497 -0.485
σ 15.880 0.024 0.031 0.025 0.024 0.064

150 CPU 67.227 -0.496 -0.539 -0.499 -0.499 -0.511
σ 26.807 0.024 0.028 0.024 0.024 0.048

Table 6.2: Absolute CPU time of TS and relative deviation of CPU time (with respect to
TS) of different augmented weighted Tchebycheff methods. The second row contains the
respective standard deviations. Highlighted CPU times correspond to the case in which the
complete nondominated set has been generated.

points are missed. When setting ρ = 0.0001, for problem sizes n = 50 and n = 75,
the entire set of nondominated points is found, whereas for larger problem sizes also
some nondominated points are missed. This shows the difficulty when using a fixed
value for the parameter ρ, as already discussed in Section 4.1: Depending on the data
of the given problem, a fixed value of ρ may not be appropriate (i.e., too large) for
the generation of all nondominated points. In contrast, the complete nondominated
set is computed with an adaptive calculation of ρ based on the given problem data.
We note for the augmented ε-constraint method, that, for problem size n = 150,

0.01% of the nondominated points is missed, which corresponds to one missing so-
lution in one test instance. As the ε-constraint method uses an adaptive parameter
scheme, this solution should theoretically have been found and is probably missed for
numerical reasons. It could be generated when an ε-constraint was set on the first
objective. This, in turn, led to much higher computational times of this method.
In Table 6.2 we show the respective average CPU times and standard deviations.

For example, for n = 50, TS requires on average 1.668 seconds with a standard
deviation of 0.865 seconds. The adaptive augmented weighted Tchebycheff method
requires on average 43.3% less CPU time than the two-stage approach, the respective
standard deviation amounts to 3.6%. Analyzing computational time in Table 6.2 in
general, it can be observed that for all problem sizes the methods with augmentation
term require at least 43% less CPU time than the two-stage method. This observation
reflects the fact that in TS, two optimization problems have to be solved for each
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n TS σ Pavc σ Pubc σ Plbc σ

50 1.668 0.8654 0.073 0.1216 -0.281 0.0455 -0.048 0.1268
75 5.651 3.2778 0.458 0.2000 -0.246 0.0476 0.301 0.1724
100 13.889 6.1824 0.747 0.1939 -0.225 0.0421 0.568 0.1520
125 30.734 15.8798 0.951 0.2039 -0.210 0.0334 0.754 0.1707
150 67.227 26.8068 1.089 0.1226 -0.177 0.0270 0.850 0.1100

Table 6.3: Absolute CPU time of TS and relative deviation of CPU time (with respect to TS)
of different augmented weighted Tchebycheff methods. Additionally, the respective standard
deviations are given.

feasible point, resulting in considerably longer computational times. Note that we
did not pass the solution from the first stage as a starting solution to the second
stage as it took more time to solve the specific problem in practice.
Comparing computational times among the different methods with augmentation

term is only meaningful for those methods that find all nondominated points. The
corresponding entries are highlighted in Table 6.2. We observe that the solution
times of all augmented methods, which generate the entire nondominated set, differ
only slightly. Hence, the adaptive update of the parameters does not have a negative
impact on the computational time. Comparing the augmented weighted Tchebycheff
method with the augmented ε-constraint method, we state that no method outper-
forms the other. Since only one additional constraint is introduced in the augmented
ε-constraint method in comparison to two additional constraints in the case of the
augmented weighted Tchebycheff method, the solution of the augmented ε-constraint
method might take less computational time. However, we could not observe such an
effect in this numerical study.
In the second test series we address the question whether we can obtain better

(i.e., larger) values for ρ for AAWT without impairing the CPU times recorded in
Table 6.2. Therefore, we replace the ideal point by local ideal points, individually
chosen for each subproblem. As explained in Section 6.2.2, this implies the necessity
to take the absolute values in problem (6.1) into account. In the method Pavc we
include the absolute values explicitly by introducing additional variables and con-
straints as specified in (6.2). In the methods Pubc and Plbc we omit the absolute
values but add upper box constraints (6.3) and lower box constraints (6.4), respec-
tively. Since all three methods are equivalent in the sense that they reliably generate
all nondominated points, we only report average CPU times in Table 6.3 and omit
the (equal) numbers of determined nondominated points. As before, we show the
deviations in CPU time of the three formulations as compared to the two-stage ap-
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η̄ = 0.1 η̄ = 0.9

n TS σ AAWT σ Pcomb σ AAWT σ Pcomb σ

50 1.668 0.865 -0.433 0.036 -0.416 0.036 -0.432 0.041 -0.446 0.039
75 5.651 3.278 -0.471 0.027 -0.430 0.035 -0.471 0.027 -0.479 0.026
100 13.889 6.182 -0.490 0.025 -0.423 0.031 -0.490 0.026 -0.494 0.025
125 30.734 15.880 -0.497 0.024 -0.427 0.028 -0.496 0.023 -0.501 0.024
150 67.227 26.807 -0.496 0.024 -0.408 0.027 -0.498 0.025 -0.495 0.024

Table 6.4: Absolute CPU time of TS and relative deviation of CPU time (with respect to TS)
of different augmented weighted Tchebycheff methods with different scaling of ρ. Additionally,
the respective standard deviations are given.

proach. Only method Pubc performs better than TS for all problem sizes. The other
two methods even consumed more CPU time than TS for all problem sizes except
Plbc for n = 50. But also the CPU times of Pubc, compared to the CPU times of
AAWT in Table 6.2, show a clear impairment (gain with respect to TS is less than
30%). We conclude that the additional variables and constraints seem to make the
augmented problem more difficult to solve.
In order to avoid as much as possible of the additional computational burden

induced by the linearizations of the absolute values in (6.1), we additionally im-
plemented an alternative approach, where these reformulations are only used when
necessary. Indeed, the absolute values in (6.1) are only needed if there exists a non-
dominated point that is located outside the considered box and that minimizes the
augmented weighted Tchebycheff scalarization with absolute values omitted (cf. Fig-
ure 6.1(a)). Instead of introducing additional variables and/or constraints in every
subproblem, we may also omit the absolute values, i.e., solve problem (6.5), and
check afterwards whether the solution satisfies the box constraints. If the solution
lies in the considered box, we can proceed as usual and turn to the next subproblem.
If, however, the solution lies outside the box selected box, we insert the solution (if it
is not already contained in N ). Then we repeat the search for nondominated points
in the same box, but this time by solving problem Pubc, i.e., by explicitly including
the box constraints in the problem formulation.
The average CPU times for this alternative approach, denoted by Pcomb, are given

in Table 6.4 in relation to the two-stage approach. For better comparison, Table 6.4
also contains the data of method AAWT using the global ideal point. For TS, the
global ideal point is used. Additionally to the default setting η̄ = 0.1, we test η̄ = 0.9.
For η̄ = 0.1, AAWT clearly outperforms Pcomb for all problem sizes. However, for

η̄ = 0.9, Pcomb performs as good as AAWT. This can be explained as follows: The
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η̄ = 0.1 η̄ = 0.9

n AAWT σ Pcomb σ AAWT σ Pcomb σ

50 0.00054 0.00011 0.01040 0.00396 0.00006 0.00001 0.00112 0.00039
75 0.00039 0.00007 0.01398 0.00394 0.00004 0.00001 0.00150 0.00040
100 0.00030 0.00004 0.01810 0.00410 0.00003 0.00001 0.00192 0.00039
125 0.00024 0.00004 0.02033 0.00379 0.00003 0.00001 0.00217 0.00037
150 0.00019 0.00003 0.02401 0.00360 0.00002 0.00000 0.00254 0.00035

Table 6.5: Comparison of average values of ρ (with standard deviation σ)

larger η̄ is, the less likely it is that solutions of (6.5) lie outside the current box, since
then the contour of the corresponding augmented weighted Tchebycheff norm is only
slightly lifted as compared to the weighted Tchebycheff norm without the augmen-
tation term. Having fewer solutions outside of the considered box implies that fewer
of the (computationally more expensive) problems with additional box constraints
have to be solved. In the limit, i.e., if no solution lies outside the corresponding box,
a computational time similar to AAWT is obtained.
The advantage when using local ideal points instead of the (global) ideal point is

that we can expect that, on average, larger values of ρ in the augmented weighted
Tchebycheff subproblems are obtained. This can be observed in Table 6.5, where
values of ρ (averaged over all instances and over all subproblems for each problem
size) for AAWT and Pcomb with η̄ = 0.1 and η̄ = 0.9 are given. It is interesting to
note that even for Pcomb with η̄ = 0.9, larger average values for ρ are obtained than
for AAWT with η̄ = 0.1 (the respective columns are highlighted).
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2 ×10−3Figure 6.4: Exemplary development of ρ for augmented weighted Tchebycheff method with
local and global ideal point and the same parameter η̄ = 0.1 (instance n = 50, |ZN | = 32)
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Figure 6.5: Exemplary development of ρ for augmented weighted Tchebycheff method with
local and global ideal point and different parameters η̄: we set η̄ = 0.1 for (AAWT) and
η̄ = 0.9 for (Pcomb) (instance n = 50, |ZN | = 32)

Taking into account that the computational times are nearly the same for both
variants (see Table 6.4), this indicates that larger average values for ρ, and, thus, a
probably numerically more stable method, are obtained with local ideal points.
Figures 6.4 and 6.5 show an exemplary development of ρ for one selected instance

of problem size n = 50. The value of ρ is plotted for the consecutively solved
subproblems. In Figure 6.4 we see that, for all subproblems, larger values of ρ can be
achieved when using local ideal points (Pcomb) instead of global ideal points (AAWT)
and the same choice of η̄ (= 0.1) for both methods. However, the larger values of
ρ imply higher computational times, see Table 6.4. For both methods shown in
Figure 6.5, computational times are nearly equal. The values of ρ achieved with the
local version (Pcomb) with η̄ = 0.9 are partially higher, partially lower than those of
the global version (AAWT) with small η̄ = 0.1, but on average higher, see Table 6.5.

6.3 Tricriteria Problems

In this section, we generate complete representations of the nondominated set of
discrete tricriteria optimization problems. We apply Algorithm 2, introduced in
Section 5.3, that is based on the v-split. Recall that by this split the generation
of redundant boxes is avoided. Only so-called quasi non-redundant boxes occur in
the situation in which nondominated points with equal components exist. Besides
Algorithm 2 we also evaluate Algorithm 3, see Section 5.5, in which additionally the
generation of quasi non-redundant boxes is suppressed.
The aim of our numerical study is twofold. On the one hand, we validate the

formulas derived in Chapter 4 for an adaptive parameter scheme, in particular for
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the augmented weighted Tchebycheff method. On the other hand, we verify the upper
bounds on the number of subproblems derived in Chapter 5, i.e., 3|ZN |−2 in the case
of the (augmented) weighted Tchebycheff method and 2|ZN | − 1 in the case of the
ε-constraint method, in which, as discussed in Section 5.4, one box per iteration can
be discarded immediately. Note that the (augmented) weighted Tchebycheff method
is used as an example of an arbitrary scalarization which is suitable for discrete
problems.

6.3.1 Computational Setup

For our tests we use five instances of a tricriteria multidimensional knapsack prob-
lem, i.e., a zero-one knapsack problem with three objectives and three constraints.
The considered instances have already been employed for numerical experiments in
Laumanns et al. (2006), Laumanns et al. (2005) and Ozlen et al. (2014), wherefore
we regard them as a good benchmark. The five instances correspond to five different
numbers of (knapsack) items n = 10, 20, 30, 40, 50. The respective cardinality of the
nondominated set is 9, 61, 195, 389 and 1048, as reported in Laumanns et al. (2005)
and Ozlen et al. (2014) and verified by our algorithms. Note that we generated and
saved the nondominated set of every instance once. For all methods presented in the
following we always compare the respective generated representation with the saved
nondominated set in order to verify that the complete nondominated set is computed
correctly.
For all algorithms we use the adaptive parameter scheme from Chapter 4. As

the parameters are constructed such that a specified box is investigated for new
nondominated points, no additional constraints need to be set in the scalarizations
which might force the outcome to lie in the considered box. Instead, we check after
the solution of the scalarization (in case of feasiblity) whether the computed point
lies in the considered box, i.e., whether all of its components are strictly smaller than
the upper bound vector of the current box. In this case the generated point must be
a new (weakly) nondominated point. Note that when the two-stage formulation is
used, then a second-stage problem is solved in the following such that the generation
of a nondominated point is assured. Otherwise, i.e., if the generated point does not
lie in the considered box, we define the subproblem to be infeasible and remove the
corresponding box from the decomposition.
In the first test, we compare Algorithm 2 and Algorithm 3, each of which in

combination with a weighted Tchebycheff and an ε-constraint method. Thereby, the
weighted Tchebycheff and the ε-constraint method are both tested in an augmented
and a two-stage formulation. The parameters of the augmented weighted Tchebycheff
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method are computed according to the formulas given in Section 4.2, Table 4.3 with
η̄ = 0.1. The two-stage weighted Tchebycheff method employs Lemma 4.3 for the
computation of the weights. If the ε-constraint method is used, we set the right-hand
side vector ε to the upper bound vector of the considered box. Note that throughout
this section we minimize all ε-constraint variants with respect to the first component,
without loss of generality. Therefore, no constraint on the first objective is required.
The parameter ρ in the augmented ε-constraint method as described in Section 4.4
is set according to formula (4.38) with k = 1 and η̄ = 0.1.
In the second test, we compare our algorithms to three recent algorithms for gener-

ating complete representations for discrete multicriteria optimization problems with
finite nondominated set, see Section 3.3 for a detailed description. These comprise
the second algorithm stated in Lokman and Köksalan (2013), the approach of Kirlik
and Sayın (2014) and the method of Ozlen et al. (2014). All three methods employ
an ε-constraint scalarization, however, in three different variants: Lokman and Kök-
salan (2013) use an augmented, Kirlik and Sayın (2014) a two-stage and Ozlen et al.
(2014) a lexicographic ε-constraint method. Note that Lokman and Köksalan (2013)
state that the augmentation parameter has to be chosen sufficiently small, but do
not specify how they select the parameter in their numerical study.
In Section 3.3 further methods to compute complete representations of discrete

multicriteria optimization problems were presented. The method of Sylva and Crema
(2004) is not evaluated as it was shown to be outperformed by the approaches of
Lokman and Köksalan (2013) and Kirlik and Sayın (2014). We neither incorporate
the algorithm of Tenfelde-Podehl (2003), as it was shown to be outperformed by the
method of Laumanns et al. (2005) in the computational experiments of Przybylski
et al. (2009) due to the large memory requirement in the second phase. We neither
test the algorithm of Laumanns et al. (2005) as it was shown to be outperformed
considerably by the methods of Kirlik and Sayın (2014) and Ozlen et al. (2014)
in their respective numerical studies. However, so far, no comparative numerical
study between the methods of Ozlen et al. (2014), Lokman and Köksalan (2013) and
Kirlik and Sayın (2014) has been undertaken. Finally, we neither include two phase
methods as proposed in Przybylski et al. (2010a) into our experiments, as, different
from the general methods considered here, the latter explicitly exploit the particular
combinatorial structure of the underlying problem.
As observed in the numerical study in the bicriteria case, it makes a difference for

computational time whether an augmented or a two-stage approach is used. More
precisely, the results in Section 6.2.3 show that the augmented weighted Tchebycheff
method requires roughly half of the computational time that is needed by the two-
stage weighted Tchebycheff method. This is caused by the fact that in the latter
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two integer problems are solved in every subproblem in which the first stage yields a
feasible solution. In contrast, when an augmented method is used, only one integer
problem per subproblem is solved. In order to make the comparison in our numerical
study as fair as possible, all methods should use the same scalarization type with
the same parameter scheme to solve the subproblems. Hence, we implement and
test all algorithms with both, a two-stage and an augmented formulation, where the
augmentation parameter ρ is set according to (4.38) with η̄ = 0.1 in all compared
algorithms. Note, however, that thereby we modify the original algorithms of Lokman
and Köksalan (2013), Kirlik and Sayın (2014) and Ozlen et al. (2014).
All algorithms are (re)implemented in MATLAB R2013a and call IBM ILOG

CPLEX Optimization Studio Version 12.5 to solve the subproblems. Note that we
chose an implementation in MATLAB for compatibility with the implementation
for continuous problems, see Chapter 7. However, one should keep in mind that an
implementation in C probably yields much better results concerning (absolute) CPU
time.

6.3.2 Computational Results

Comparison of the v-Split Algorithm and an Algorithmic Variant

First, we test Algorithm 2 and Algorithm 3 both in combination with a weighted
Tchebycheff method (WT) and an ε-constraint method (EC). In particular, we are
interested in the question whether the upper bounds on the number of subproblems
3|ZN |−2 (WT) and 2|ZN |−1 (EC), which were derived in Chapter 5, can be validated
numerically.
In Table 6.6, the results of the four algorithmic variants are reported. The CPU

times (in seconds) are averaged over three independent runs. The corresponding
standard deviations are given in Table 6.7. Since the number of subproblems solved
is the same in all of the three independent runs, no standard deviations are given
with respect to the number of subproblems. Note that, as in the bicriteria study,
a subproblem refers to the solution of the selected scalarization. In the two-stage
approach, a subproblem comprises both stages, i.e., if the solution of the first stage
is feasible, then the second stage problem is solved without being counted separately.
To ease the comparison of the number of subproblems with the values 3|ZN | − 2 and
2|ZN | − 1, respectively, we indicate these values in parentheses in the second column
of Table 6.6.
Consider first the number of subproblems solved in Algorithm 2 in combination

with a weighted Tchebycheff scalarization (WT) and an ε-constraint scalarization
(EC). From Table 6.6 we see that Algorithm 2 (WT) requires exactly 3|ZN | − 2
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n |ZN |
Algo 2 (WT) Algo 3 (WT) Algo 2 (EC) Algo 3 (EC)
CPU #SP CPU #SP CPU #SP CPU #SP

10
9 TS 10.03

25
9.73

25
7.97

17
7.96

17
(25/17)? A 7.81 7.76 6.09 6.08

20
61 TS 56.42

181
55.33

177
43.29

121
42.36

117
(181/121)? A 42.72 41.87 30.02 29.20

30
195 TS 213.31

583
209.02

568
163.15

389
159.13 371

(583/389)? A 163.29 159.02 114.39 110.35 372

40
389 TS 464.47

1165
453.70

1127
361.74

777
355.50

742
(1165/777)? A 361.01 349.53 257.64 251.62

50
1048 TS 1552.56

3142
1498.61 2985 1369.89

2095
1340.13 1924

(3142/2095)? A 1174.90 1122.74 2980 1012.15 998.60 1925

Table 6.6: Average CPU times (in seconds) and number of subproblems solved by Algo-
rithm 2 and Algorithm 3 both in combination with a weighted Tchebycheff method (WT)
and an ε-constraint method (EC). Each scalarization is evaluated in a two-stage (TS) and
an augmented (A) formulation, respectively. In the second column, additional to |ZN |, the
theoretical upper bounds 3|ZN | − 2 (WT) and 2|ZN | − 1 (EC) are given in parentheses ()?

for better comparison.

subproblems and Algorithm 2 (EC) exactly 2|ZN | − 1 subproblems for all problem
sizes and for both formulations, i.e., for a two-stage (TS) and an augmented (A)
formulation. Hence, the predicted upper bound on the number of subproblems is
met precisely.
Regarding the number of subproblems for Algorithm 3 we can expect that less

subproblems are solved in comparison to Algorithm 2, since Algorithm 3 suppresses
the generation of quasi non-redundant boxes. Indeed, in all instances besides n = 10,
less subproblems are solved by Algorithm 3 compared to Algorithm 2 (with the same
scalarization used). Note that the nondominated points of instance n = 10 satisfy
Assumption 5.6 (1), i.e., are in general position, wherefore no quasi non-redundant
boxes occur and, consequently, the number of subproblems solved with Algorithm 2
and Algorithm 3 is the same. However, in all other instances, a saving with respect
to the number of subproblems solved is observed for Algorithm 3. Moreover, we
notice that the number of subproblems in Algorithm 3 differs in some instances for
the two-stage and the augmented formulation, see n = 50 for Algorithm 3 (WT)
and n = 30 and n = 50 for Algorithm 3 (EC). Indeed, as demonstrated in Exam-
ple 5.32, the number of iterations of Algorithm 3 might vary due to the order in which
nondominated points are computed and inserted. Since typically the nondominated
points are obtained in a different order by a two-stage or augmented formulation,
the number of subproblems can vary slightly depending on the formulation used. In
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6 Generation of Complete Representations for Discrete Test Problems

contrast, the number of subproblems that are solved in Algorithm 2 does not depend
on the order in which the nondominated points are inserted.
While Algorithm 3 requires less subproblems than Algorithm 2 in all instances of

our numerical tests, no theoretical upper bound on the number of subproblems is
available for Algorithm 3. More precisely, the fact that the number of additional
boxes, that are created in each iteration, is constantly two as in Algorithm 2 (WT)
or constantly one as in Algorithm 2 (EC) does not hold for Algorithm 3. As an exam-
ple, consider Algorithm 3 (EC) in variant (TS) for n = 50. According to Table 6.6,
1924 subproblems are solved in total. Besides the 1048 subproblems that contribute
a nondominated point to the representation, 876 additional subproblems are solved.
We recorded the additional boxes created in each of the 1048 iteration, in which a
new nondominated point is found. In 188 of these iterations the number of boxes
remains the same. In 833 iterations one additional box and in 23 iterations two ad-
ditional boxes are created. In four iterations, the number of boxes decreases by one.
Hence, together with the initial box, we obtain 876 additional boxes. In comparison,
Algorithm 2 (EC) generates constantly one additional box in each of the 1048 iter-
ations, in which a new nondominated point is found that does not equal the ideal
point in the second or third component. As two such points exist for the considered
instance n = 50, Algorithm 2 (EC) creates one additional box in 1046 iterations.
From this example we see that also Lemma 5.23 (and the corresponding result when
the ε-constraint method is used) is confirmed numerically for Algorithm 2, but no
corresponding result can be expected for Algorithm 3.
Regarding computational times in Table 6.6 we observe that Algorithm 3 requires

less CPU time than Algorithm 2 (with the same scalarization used) in all instances

n |ZN | Algo 2 (WT) Algo 3 (WT) Algo 2 (EC) Algo 3 (EC)

10 9
TS 0.05 0.04 0.04 0.04
A 0.03 0.05 0.06 0.06

20 61
TS 0.50 0.34 0.27 0.28
A 0.18 0.25 0.17 0.22

30 195
TS 1.39 1.50 1.11 1.00
A 0.94 0.92 0.72 0.61

40 389
TS 2.60 2.37 1.72 1.67
A 1.62 1.68 1.18 1.16

50 1048
TS 7.31 6.98 4.80 5.96
A 5.16 5.08 4.23 4.23

Table 6.7: Standard deviations of CPU times stated in Table 6.6, which are averaged over
three independent runs
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in which less subproblems are solved. Moreover, all variants using (EC) are con-
siderably faster than the variants using (WT) as the former solve about one third
less subproblems compared to the latter. However, the savings with respect to com-
putational time are not proportional to the savings with respect to the number of
subproblems, in general. For example, for n = 50, Algorithm 3 (EC) solves 1924 sub-
problems in the two-stage formulation. In comparison to Algorithm 3 (WT), which
requires 2985 subproblems, a saving of 36% is obtained. However, the corresponding
computational times amount to 1340.13 and 1498.61 seconds, respectively. Hence,
the saving of variant (EC) with respect to CPU time is only approximately 10%. The
explanation for this observation can be found when the algorithmic differences as dis-
cussed in Section 5.4 are taken into account. Recall that in order to achieve a saving
with respect to the number of subproblems when an ε-constraint method is used, the
box at the beginning of each iteration cannot be selected arbitrarily, but a box which
has no neighbor with respect to the first component in the current decomposition
must be identified. This causes an additional computational effort in comparison to
all variants employing (WT). Summarizing, Algorithm 3 (EC) performs best among
all four variants compared in Table 6.6. Algorithm 2 (EC) consumes only slightly
more computational time, followed by Algorithm 3 (WT) and Algorithm 2 (WT).
Finally, we analyze the computational time of the two-stage versus the augmented

scalarizations in all variants in Table 6.6. We observe that in all instances smaller
CPU times are recorded with the augmented scalarization. More precisely, with the
augmented formulation, between 20% and 31%, on average 26% less computational
time is required than with the two-stage formulation. Recall that in the two-stage
method, a second stage problem is solved for every feasible point in the first stage,
which increases the CPU time compared to the augmented approach. We conclude
that for the tested instances, Algorithm 3 in combination with an augmented ε-
constraint method performs best with respect to computational time.

Comparison of Three Recent Algorithms to the New Algorithm

In a second study, we compare Algorithm 3 (EC) with reimplementations of the recent
methods of Lokman and Köksalan (LK), Kirlik and Sayın (KS) and Ozlen, Burton
and MacRae (OBM). Note that the algorithm of Lokman and Köksalan (2013) is
the only of the tested algorithms that is formulated for problems in maximization
format. For the sake of simplicity, we implement it for minimization problems. More-
over, as recommended in Lokman and Köksalan (2013), we keep the list of current
nondominated points sorted, as, thereby, better computational times are obtained.
As described in Section 3.3, the methods of Lokman and Köksalan (2013) and Ozlen
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n |ZN |
LK KS OBM Algo 3 (EC)

CPU #SP CPU #SP CPU #SP CPU #SP

10
9 TS 9.48

20
8.50

17
8.85

19
7.88

17
(17)? A 6.67 6.07 6.46 6.05

20
61 TS 53.04 127 50.08

115
48.50

117
42.06

117
(121)? A 31.76 128 30.26 28.83 28.94

30
195 TS 267.88 468 242.42 373 197.05 375 158.04 371

(389)? A 159.12 464 155.89 372 110.33 374 109.39 372

40
389 TS 657.58

852
701.95 739 430.84 741 351.63

742
(777)? A 445.07 516.15 738 246.68 740 248.79

50
1048 TS 4772.89 2193 4174.48 1913 1533.93 1915 1326.12 1924

(2095)? A 4129.47 2200 3603.67 1914 945.35 1916 987.52 1925

Table 6.8: Average CPU times (in seconds) and number of subproblems solved by three state
of the art algorithms and Algorithm 3 (EC). Each scalarization is evaluated in a two-stage
(TS) and an augmented (A) formulation, respectively. In the second column, additional to
|ZN |, the value of 2|ZN | − 1 is given in parenthesis ()? for better comparison.

et al. (2014) both save the bounds, i.e., the right-hand side vectors, of previously
solved subproblems as well as the corresponding results, i.e., a (nondominated) point
or a value indicating infeasibility. Before solving a subproblem, the list of bounds
is scanned to find a so-called relaxation. If a relaxed problem exists and it is either
infeasible or the saved point is feasible for the current subproblem, then the cur-
rent subproblem does not need to be solved since the solution of the relaxation is
also valid for the considered subproblem. In this case, the bounds of the current sub-
problem should not be saved, as they do not contribute new information and, clearly,
the shorter the list of bounds is, the better computational times can be expected.
In the implementation of (KS) we change a detail with respect to the pseudocode
given in Kirlik and Sayın (2014). When a new nondominated point is generated,
all cells of the decomposition are checked twice in Kirlik and Sayın (2014): first, to
identify the cells to be split, secondly, to remove cells that can not contain further
nondominated points. We combine both checks, which are performed within two
independent procedures in the original pseudocode, into one by removing cells that
can not contain further nondominated points immediately after or during the split.
In our implementation, this slight modification led to a huge saving of computational
time.
The CPU times and the number of subproblems solved by all methods and for all

instances are given in Table 6.8. Again, the given CPU times are averaged over three
independent runs. The corresponding standard deviations are given in Table 6.9. For
a better comparison the value of 2|ZN | − 1 is indicated in parentheses in the second
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column of Table 6.8. Note that, as in the previous study, all methods generate the
complete nondominated set correctly.
Regarding the number of subproblems solved, we observe that (KS) generates a

complete representation within the lowest number of subproblems among all com-
pared methods in almost all instances. Only for n = 30 and the two-stage formula-
tion, Algorithm 3 (EC) requires two subproblems less than (KS). Methods (OBM)
and Algorithm 3 (EC) solve both only very few additional subproblems in comparison
to (KS). While (OBM) requires exactly two subproblems more than (KS) in all tested
instances and for all tested formulations, Algorithm 3 (EC) requires 11 subproblems
more for n = 50, but, on the other hand, performs as good as (KS) or even better
for n = 10 and n = 30. Method (LK) requires the largest number of subproblems in
all instances. While methods (OBM), (KS) and Algorithm 3 (EC), except (OBM)
for n = 10, solve at most 2|ZN | − 1 subproblems, (LK) exceeds this bound in all
instances. These results go in line with the results of Lokman and Köksalan (2013),
who state that they solved on average 2.08 subproblems per nondominated point in
their numerical study for a classic (one-dimensional) tricriteria knapsack problem.
Our results also coincide with the results of Kirlik and Sayın (2014), who state that
they required on average 1.97 and at most 1.99 subproblems per nondominated point
with their algorithm when it was applied to a classic tricriteria knapsack problem.
In our study, (KS) even performs better. In the worst case (n = 30) less than 1.92
subproblems per nondominated point are solved. The results of (OBM) can be com-
pared directly with the results reported in Ozlen et al. (2014), as they solve the same
problem with the same instances. In their numerical study, 46, 333, 1204, 2357 and
6001 subproblems are solved for n = 10, . . . , 50, respectively. Interestingly, we obtain
a considerably smaller number of subproblems with our reimplementation in all in-
stances. A possible reason for this mismatch might be the scalarization used. While
we apply (OBM) in combination with a two-stage and an augmented scalarization,
a lexicographic ε-constraint scalarization is used in Ozlen et al. (2014), for which the
subproblems might have been counted in a different way.
Considering CPU times, we obtain a slightly different picture. For the small in-

stance n = 10, the CPU times of all methods are quite close, with Algorithm 3 (EC)
slightly leading. For all other problem sizes, the best CPU times are clearly ob-
tained by Algorithm 3 (EC) and (OBM). Thereby, when the augmented formulation
is used, in all instances besides n = 50 both methods perform almost equally well.
For n = 50, (OBM) consumes less CPU time than Algorithm 3 (EC). When the
two-stage formulation is used, Algorithm 3 (EC) outperforms (OBM) for all problem
sizes.
Both other methods, i.e., (LK) and (KS) require considerably more CPU time than
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n |ZN | LK KS OBM Algo 3 (EC)

10 9
TS 0.02 0.02 0.02 0.01
A 0.01 0.01 0.01 0.01

20 61
TS 0.06 0.06 0.26 0.07
A 0.04 0.04 0.04 0.03

30 195
TS 0.18 0.27 0.29 0.18
A 0.18 0.28 0.13 0.12

40 389
TS 0.75 1.17 0.53 0.44
A 0.50 0.97 0.28 0.26

50 1048
TS 9.13 12.71 1.99 1.04
A 10.45 12.93 1.04 0.71

Table 6.9: Standard deviations of CPU times stated in Table 6.8, which are averaged over
three independent runs

(OBM) and Algorithm 3 (EC) for n = 20, 30, 40, 50. Besides n = 40, (LK) performs
worst. As (LK) solves more subproblems than all other methods, this result is not
surprising. In contrast, the rather bad performance of (KS) is not expected with
regard to the fact that (KS) solves the lowest number of subproblems in basically
all instances. The reason lies in the huge number of cells, which are maintained in
(KS) and which are scanned several times during each iteration. This computational
effort is reflected in the CPU times.
Finally, we compare the two-stage scalarization to the augmented scalarization

for all methods in Table 6.8. In all instances and for all methods, a considerable
saving in computational time is reported when the augmented scalarization is used.
In particular, with the augmented formulation, between 13% and 44%, on average
32% less computational time is required than with the two-stage formulation.

6.4 Conclusion and Further Ideas

In this chapter, we numerically validated the theoretical results of Chapters 4 and 5.
In the bicriteria study, we compared different scalarizations and parameter schemes
embedded in a full 2-split algorithm by applying them to a classic knapsack problem.
Our numerical results show that the augmented weighted Tchebycheff method with
adaptively chosen parameters reliably finds all nondominated points. This does not
hold for the classic method, in which the augmentation parameter ρ is chosen fixed.
Indeed, in our numerical study, a certain percentage of nondominated points is missed
when the augmentation parameter is chosen a priori from {10−2, 10−3, 10−4}, which is
common in the literature. Moreover, in our tests considerably better computational
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times are recorded for the augmented weighted Tchebycheff method in comparison to
a two-stage approach. We also tested a variant of the adaptive augmented weighted
Tchebycheff method that uses local ideal points. Depending on the slope of the level
curve we observed a trade-off between CPU time and the average value of ρ. When
a rather small inclination of the slopes of the level curve is used, similar CPU times
as compared to the method using the global ideal point are achieved while getting a
larger average value for ρ.
In the tricriteria case, we applied Algorithm 2 and its variant Algorithm 3 from

Chapter 5 as well as three state of the art methods from the literature to a multi-
dimensional knapsack problem. All methods are evaluated with the same two-stage
and augmented scalarization, where the parameters are computed according to the
formulas obtained in Chapter 4.
We observed that all methods generate the complete nondominated set reliably in

all instances. This validates the parameter scheme derived in Chapter 4, by which all
parameters and, in particular, the augmentation parameter can be chosen such that
no nondominated point is missed when a discrete multicriteria optimization problem
is given.
For Algorithm 2 that is based on the v-split, the predicted upper bound on the

number of subproblems that was derived in Chapter 5 is met in all instances. In
our tests, exactly 3|ZN | − 2 subproblems are solved when the (augmented) weighted
Tchebycheff method is used as scalarization. When the (augmented) ε-constraint
method is applied, exactly 2|ZN |−1 subproblems are solved. Algorithm 3, that does
not generate quasi non-redundant boxes, performs slightly better than Algorithm 2,
i.e., in general, less subproblems are solved in comparison to Algorithm 2. However,
for Algorithm 3, no theoretical upper bound on the number of subproblems is known
so far.
Our numerical study reveals that in case that a complete representation is sought,

the use of the ε-constraint method is favorable, since approximately one third less
subproblems have to be solved compared to an arbitrary scalarization method, e.g.,
the weighted Tchebycheff method. The reduction of the number of subproblems
yields a considerable saving of computational time. Our new parametric algorithm in
combination with an ε-constraint method can compete with state of the art methods.
It outperforms the method of Lokman and Köksalan (2013) with respect to CPU time
and the number of subproblems solved. While the method of Kirlik and Sayın (2014)
often generates slightly fewer subproblems than our approach, it is outperformed with
respect to CPU time. The method of Ozlen et al. (2014) turns out to be comparable
to our approach with respect to the number of subproblems solved and CPU time.
Depending on the instance, one method yields a better result than the other.
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The scalarizations used in all algorithms in the tricriteria case were tested in a two-
stage and an augmented formulation, respectively. We observe that in all instances,
the augmented scalarization yields better computational times than the two-stage
scalarization. In particular, savings of approximately 25% are achieved, on average.
This confirms the importance of suitable parameters for methods with augmentation
terms as proposed in Chapter 4 of this thesis.
The new parametric algorithm can compete with state of the art algorithms from

the literature. However, while the latter rely on the ε-constraint scalarization and
are explicitly designed to generate complete representations, our approach is much
more general. It is not only possible to use other scalarizations as, e.g., a weighted
Tchebycheff method, but a further advantage consists in the fact that our algorithm
gives a description of the remaining search region, i.e., the region which might contain
further nondominated points, at any time. Note that this is not possible with any of
the three algorithms from the literature presented in this chapter.
So far, the total number of subproblems has attracted the attention of most au-

thors. However, the performance of the algorithms is not necessarily mainly driven
by the time needed to solve the subproblems. As the numerical results show, the
approach of Kirlik and Sayın (2014) which solves the fewest number of subprob-
lems does not perform best. Therefore, in the future, the overall complexity of the
algorithms should be additionally studied. Besides, it would be interesting if an im-
proved worst-case bound can be given for the approaches of Kirlik and Sayın (2014)
and Ozlen et al. (2014), which showed a very competitive behavior with respect to
the number of subproblems solved in this numerical study.
In this chapter we only considered bi- and tricriteria problems. While Algorithm 2

can only be applied to tricriteria problems, Algorithm 3 is applicable to problems with
an arbitrary number of criteria. As the algorithms of Lokman and Köksalan (2013),
Kirlik and Sayın (2014) and Ozlen et al. (2014) can also be applied to problems with
any number of criteria, a comparison would be interesting.
Another idea consists in using our new approach within a two phase method which

generates all supported nondominated points in a first phase and searches for unsup-
ported nondominated points in a second phase. For example, it would be interesting
to study whether the method of Przybylski et al. (2010a) can benefit from the v-split
criterion with respect to computational time.
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7 Generation of Incomplete
Representations for Continuous Test
Problems

7.1 Introduction

In this chapter we demonstrate that the adaptive parametric algorithm which was
developed in Part I is not only applicable for generating a complete representation of
the nondominated set of a discrete multicriteria optimization problem but can also
be used when an incomplete representation of the nondominated set of a discrete
or continuous, convex or non-convex multicriteria optimization problem is sought.
Throughout this chapter, we consider continuous multicriteria optimization prob-
lems.

When an incomplete representation is sought, quality criteria as discussed in Sec-
tion 2.2 are used to evaluate the corresponding representation. Moreover, in this
numerical study we are particularly interested in the question whether less infeasible
and/or redundant subproblems are obtained by an adaptive in comparison to an a
priori parameter scheme. Recall from Section 2.4 that the parameters of a priori
approaches are fixed in the initialization phase. Therefore, in this case, typically a
certain quantity of infeasible and/or redundant subproblems which do not contribute
points to the representation is produced. Since adaptive approaches take all previ-
ously obtained nondominated points into account, we expect them to perform better
in this regard.

In the remainder of this section we describe the general setting of our numerical
study. In Section 7.2 bicriteria problems are studied. Tricriteria problems are con-
sidered in Section 7.3. Section 7.4 contains the conclusion and future directions of
research.

165



7 Generation of Incomplete Representations for Continuous Test Problems

Parametric Algorithms

Analogously to the discrete case, we use Algorithm 4 for bicriteria and Algorithm 2
for tricriteria problems in combination with an adaptive parameter scheme. For the
a priori parameter scheme, no particular algorithmic framework is required. After
having computed the parameter grid, the corresponding subproblems are solved. In
the bicriteria case, we additionally apply the sensitivity-based approach of Eichfelder
(2006), see Section 3.2 for a detailed description.
As scalarization for the a priori approach we select the ε-constraint method in the

formulation
min {fm(x) : fj(x) ≤ εj ∀ 1 ≤ j ≤ m− 1, x ∈ X} .

Note that, different from Section 5.4 and Section 6.3, we do not minimize with respect
to the first component but with respect to component m here. This is due to the
fourth tricriteria test case, in which component m is selected in the literature. For
simplicity, we keep this choice fixed for all test cases in this chapter. In order to
avoid weakly nondominated outcomes, a second stage problem of the form

min
{

m∑
i=1

fi(x) : fj(x) ≤ fj(x∗), j = 1, . . . ,m, x ∈ X
}

is solved with x∗ being the solution obtained in the first stage. We do not employ
an augmented formulation, as this would require prescribed trade-off information in
the continuous case which is not given. However, if trade-off information was given,
we could easily translate this information into suitable parameters, see Section 4.3.
All adaptive approaches employ a two-stage weighted Tchebycheff method, if not

stated otherwise. Again, the reason is that no trade-off information is given. How-
ever, in order to validate the parameters given in Section 4.3, we also test one variant
that uses a generalized augmented weighted Tchebycheff method in the tricriteria
case. Note that we do not incorporate an adaptive ε-constraint method, as this
would require to specify a certain distance of the right-hand side parameters ε from
the upper bounds of the respective box, in order to make sure that a nondominated
point different from the previous ones is computed, see, e.g., Hamacher et al. (2007).
A disadvantage of this artificial reduction of the current box is that the resulting
subproblem might be infeasible even if the considered box contains additional non-
dominated points. Moreover, the choice of the distance of ε from the upper bound
of the box strongly influences the points that are obtained. Therefore, a Tcheby-
cheff scalarization seems to be more appropriate, and we do not use an ε-constraint
scalarization as adaptive method. In the method of Eichfelder (2006) we also choose
a weighted Tchebycheff scalarization, see Problem (3.5).
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All algorithms are implemented in MATLAB R2011a. We use the non-linear func-
tion fmincon to solve the scalarizations. As single-criterion solver the SQP-method
is selected. The use of gradient information is turned on.

Refinement of the Representation and Termination Criterion

The adaptive algorithms are slight modifications of Algorithm 4 in the bicriteria
and Algorithm 2 in the tricriteria case. They only differ in two details. First,
since the nondominated set is not finite, a suitable termination criterion is required.
Secondly, a rule is to be formulated which box shall be selected at the beginning of
each iteration, i.e., where the representation is to be refined next. Note that neither
a termination criterion nor a particular selection rule is needed when a complete
representation is to be generated.
As termination criterion, we will always set a bound on the number of subproblems

to be solved. For the refinement of the representation, we implement and test two
different rules, yielding two different algorithmic variants. The first variant, which
we call volume-based in the following, saves the volume that contains possibly further
nondominated points of each box in the decomposition. In each iteration, the box
having the largest volume is selected. In the bicriteria case, this criterion equals the
one used in Hamacher et al. (2007). In the second variant, called hypervolume-based
in the following, we select the next box according to the highest contribution to the
dominated hypervolume that is realized by the outcome computed in this box. Recall
from Section 2.2 that the dominated hypervolume, defined in (2.19), describes the
set that is dominated by all points of the current representation. In order to be able
to insert the point with the highest contribution to the dominated hypervolume, we
must know the outcome obtained in each box before selecting a box. Therefore, in
this variant, we solve a subproblem for each new box directly after the split. The
resulting point is not inserted directly into the search region but is saved with the
box in which it was generated. Moreover, the theoretical contribution of this point
to the dominated hypervolume is computed and saved. In each iteration, that box
is selected whose associated nondominated point contributes most to the dominated
hypervolume. Note that the hypervolume-based variant bares similarity to the gauge
algorithm of Klamroth et al. (2002) that constructs a piece-wise linear inner or outer
approximation of the nondominated set, see Section 3.3. Instead of the contribution
to the dominated hypervolume, the latter uses the gauge of the current point as
selection criterion where to refine next. Thereby, in the general non-convex case, the
gauge corresponds to the scaled level of a weighted Tchebycheff norm. As we do not
construct an approximation of the nondominated set, we do not include the gauge
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algorithm into our numerical study. One drawback of the hypervolume-based variant
is the fact that more solutions are computed than inserted. However, it is possible to
insert all computed points into the final representation at the end of the algorithm.

Quality Criteria

In Section 2.2, we presented common quality criteria for (discrete) representations
according to Zitzler and Thiele (1998), Sayın (2000) and Eichfelder (2006), which
are used for the evaluation in this numerical study. The criteria cardinality and
uniformity are defined according to Sayın (2000). Considering coverage, we use
(2.18), thus, we follow the concept of Eichfelder (2006). The author argues that
if we can assume that the representation covers all parts of the nondominated set
sufficiently well, the computation of the coverage error, which is a measure for the
worst-represented point of the nondominated set, can be approximated by half of
the largest distance among ‘adjacent’ points. For simplicity, we omit the division by
the constant factor one half and state the largest distance as coverage error in the
following. While the definition of adjacent points is obvious for bicriteria problems,
it becomes involved for three or more criteria. Therefore, we evaluate this criterion
only in the bicriteria case. Moreover, as also discussed in Eichfelder (2006) and
Section 2.2, the coverage error is only defined in a meaningful way among representing
points from the same connected component of the nondominated set. In this study
we assume that we know the connected components. In general, information about
connectedness might be retrieved from the scalarization, see, e.g., Eichfelder (2006).
As fourth quality criterion, we use the dominated hypervolume (2.19) introduced in
Zitzler and Thiele (1998) and relate it to the volume of the initial search region.
Summarizing, we evaluate the four quality criteria

(i) cardinality, given by |R|,

(ii) uniformity, computed as

dU (R) := min
y∈R,q∈R\{y}

‖y − q‖2,

(iii) coverage, given by
dC(R) := max

y∈R
min
q∈N (y)

‖y − q‖2,

where N (y) ⊆ R denotes the set of neighbors of y ∈ R, see Section 2.2, and

(iv) relative dominated hypervolume, given by

rH(R) :=
V
(⋃

y∈R{z ∈ B0 : z = y}
)

V (B0)
,
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where B0 := {z ∈ Rm : zI 5 z 5 r} with r ∈ Rm a given reference point, and
V (S) denotes the volume of S ⊂ Rm. Throughout this study, we set r := zN

for m = 2 and r := zM for m = 3.

Before presenting the test cases and results, we state particularities of the imple-
mentation in the bi- and tricriteria case, respectively.

7.2 Bicriteria Problems

7.2.1 Computational Setup

Initial Bounds on the Nondominated Set

All tested methods start by computing the lexicographically minimal points that
define the ideal point zI as well as the nadir point zN . Recall that it is a speciality of
bicriteria problems that the nadir point can be computed from the lexicographically
minimal points.

Termination Criterion

As already mentioned in Section 7.1, the number of subproblems solved serves as
termination criterion. Since the method of Eichfelder (2006) does not deal with the
number of subproblems as input data but with a given prescribed spread between
the points to be computed, we first evaluate this algorithm for a selected accuracy
α, i.e., a prescribed l2-distance among all points of the representation, and count the
required number of subproblems s ∈ N. The latter serves as termination criterion
for all other methods. Note that the subproblems solved to obtain the lexicographic
minima at the beginning of each method are not counted.

Tested Variants and their Parameters

A summary of all tested methods is stated in Table 7.1. Based on the number of
iterations s ∈ N and the bounds zI and zN , the ε-constraint method (EC) computes
a one-dimensional grid of parameter values εj ∈ R, j ∈ {1, . . . , s}, where

εj = zI1 + j · z
N
1 − zI1
s+ 1 for j = 1, . . . , s.

Note that the parameters are set such that the lexicographic minima, which have al-
ready been generated beforehand, are not necessarily recomputed. In the sensitivity-
based method of Eichfelder (SB) we use the direction d := (1, 1)> and define the
hyperplane, from which the reference points are taken, by b := (1, 1)> and β := 0.
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EC ε-constraint method with uniformly chosen parameters (a priori)
SB Sensitivity-based approach of Eichfelder (2006)
LV Algorithm 4 with local ideal points as reference points and a

volume-based selection of the next box
GV Algorithm 4 with (global) ideal point as reference point and a

volume-based selection of the next box
LH Algorithm 4 with local ideal points as reference points and a

hypervolume-based selection of the next box
GH Algorithm 4 with (global) ideal point as reference point and a

hypervolume-based selection of the next box

Table 7.1: Summary of tested methods in the bicriteria case

The parameters of all other methods using a two-stage weighted Tchebycheff scalar-
ization are computed according to (4.9). Thereby, the reference point is either set to
the (global) ideal point (GV, GH) or to a local ideal point (LV, LH).

Refinement of the Representation

In Section 7.1, we specified the volume-based and the hypervolume-based selection
rule according to which we select the box for the next subproblem. In the bicriteria
case, the calculation of both, the volume of a box containing possibly further non-
dominated points as well as the contribution of a point to the dominated hypervolume
is simple. For every pair of adjacent points that implicitly define a box, the volume
is computed as the area of the rectangle whose lower and upper vertices are given
by the local ideal and the local nadir point with respect to the two adjacent points.
The contribution of a new point to the dominated hypervolume is determined as the
area of the rectangle defined by the new point and the upper bound of the box to
which the point is associated. We test two variants that use a volume-based selection
of the next box (LV, GV) as well as two variants employing a hypervolume-based
choice (LH, GH).
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7.2.2 Test Problems

Test Problem 1

The first test case is taken from Eichfelder (2006) and given by

min

 √
1 + x2

1

x2
1 − 4x1 + x2 + 5


s.t.

x2
1 − 4x1 + x2 + 5 ≤ 3.5,
x1, x2 ≥ 0,
x ∈ R2.

(7.1)

The efficient set of (7.1) is

XE =
{
x ∈ R2 : x1 ∈

[
2−
√

2.5, 2
]
, x2 = 0

}
.

This example with zI ≈ (1.08, 1)> and zN ≈ (2.24, 3.5)> has a simple R2
+-convex

nondominated set. We apply the algorithm of Eichfelder (2006) with a given l2-
distance of α = 0.5 and α = 0.2 among the representing points, which yields s = 6
and s = 15 subproblems, respectively. The results of the tested six methods with
s = 6 and s = 15 are stated in Table 7.2. The respective final representations of the
nondominated set are depicted in Figures 7.1 and 7.2.
Consider first the cardinality of the representations in Table 7.2. Including the two

lexicographically minimal points, methods EC, LV and GV generate 8 and 17 points,
respectively, i.e., every of the 6 and 15 subproblems solved yields a point of the final
representation. Method SB generates one point less, which is due to the fact that
the second lexicographic minimum that is computed at the beginning is recomputed
within the algorithm. The final representations of methods LH and GH comprise

#SP EC SB LV GV LH GH

6 (+2) |R| 8 7 8 8 6 6
dU 0.17 0.44 0.27 0.18 0.27 0.20
dC 0.95 0.50 0.60 0.67 0.96 1.15
rH 64.67% 64.00% 65.22% 64.28% 62.07% 61.35%

15 (+2) |R| 17 16 17 17 10 10
dU 0.07 0.14 0.13 0.05 0.14 0.11
dC 0.49 0.21 0.27 0.40 0.52 0.67
rH 69.18% 69.35% 69.71% 68.92% 67.20% 66.25%

Table 7.2: Cardinality, uniformity, coverage and relative dominated hypervolume for test
case 1
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Figure 7.1: Representations of the nondominated set computed by different parametric al-
gorithms for test case 1 and 6 subproblems

less points, respectively, as in each iteration (besides the first one) two subproblems
are solved, but only one point is inserted into the representation. Therefore, when
the termination criterion is reached, LH and GH both have inserted 6 and 10 points,
respectively. Hence, no infeasibility or redundancy occurs for any method in this test
case.

Considering uniformity and coverage, given as maximal distance between adjacent
points, we observe that SB achieves the best result in the sense that the distances
between adjacent points vary the fewest, namely in the interval [dU , dC ] = [0.44, 0.5]
for s = 6 and [dU , dC ] = [0.14, 0.21] for s = 15. Remember that SB is particularly
designed for generating equidistant representations, and that we chose α = 0.5 and
α = 0.2, respectively. As the second best method with respect to the criterion
‘maximal uniformity and minimal coverage’ we identify LV with [dU , dC ] = [0.27, 0.6]
for s = 6 and [dU , dC ] = [0.13, 0.27] for s = 15. In comparison, the representation
computed by EC is much less uniform, since [dU , dC ] = [0.17, 0.95] for s = 6 and
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Figure 7.2: Representations of the nondominated set computed by different parametric al-
gorithms for test case 1 and 15 subproblems

[dU , dC ] = [0.07, 0.49] for s = 15. Also GV, LH and GH yield worse results than LV.
When comparing the relative dominated hypervolumes of the final representations,

the differences among the methods EC, SB, LV and GV are small with LV slightly
leading. The results of LH and GH are worse. However, we have to take into
account that the cardinality of the representations obtained by LH and GH is smaller
compared to LV.
The observations derived from Table 7.2 are also confirmed by the visualizations in

Figures 7.1 and 7.2. Because of EC not having the possibility to adjust to the shape
of the nondominated set, more points are computed where the curve is rather flat and
less where it is steep. Method SB computes points with nearly equal distance in every
part of the nondominated set. Also LV obtains a nearly equidistant representation.
In contrast, method GV tends to build clusters of points. Also method GH computes
a non-uniform representation. Method LH produces an approximately equidistant
representation for s = 15, however containing less points compared to LV.
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Figure 7.3: Feasible set of test case 2

In general, comparing the global to the local variants, i.e., GV to LV and GH to
LH, we observe that the local variants result in more uniform representations than
the global ones. Hence, the use of the (global) ideal point as fixed reference point
seems to be disadvantageous. The local variants can adapt better to the shape of
the nondominated set.
Concluding, we state that no infeasible or redundant subproblems occur for any

of the tested methods. Method SB generates an equidistant representation of the
nondominated set. Among the adaptive methods particularly LV performs well and
produces a more uniform representation than the a priori method.

Test Problem 2

The second test case is taken from Tanaka et al. (1995) and has also been used, e.g.,
in Eichfelder (2006). Its formulation is

min
(
x1

x2

)
s.t.

x2
1 + x2

2 − 1− 0.1 cos
(
16 arctan

(
x1
x2

))
≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,
x1, x2 ∈ (0, π],
x ∈ R2.

(7.2)
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# SP EC SB LV GV LH GH

8 (+2) |R| 8 7 10 10 7 7
dU 0.05 0.12 0.08 0.04 0.14 0.13
dC 0.28 0.23 0.22 0.19 0.34 0.19
rH 23.68% 26.02% 27.12% 22.25% 21.47% 21.30%

16 (+2) |R| 13 15 18 10 11 11
dU 0.04 0.02 0.03 0.05 0.07 0.05
dC 0.23 0.12 0.14 0.19 0.22 0.19
rH 26.82% 28.97% 28.36% 27.68% 27.61% 22.73%

Table 7.3: Cardinality, uniformity, coverage and relative dominated hypervolume for test
case 2

The efficient set equals the nondominated set and consists of three unconnected
parts. Numerically, we obtained zI ≈ (0.04, 0.04)> and zN ≈ (1.04, 1.04)>. The
feasible set of (7.2) is depicted in Figure 7.3. Again, we first evaluate SB, here with
a given l2-distance of α = 0.2 and α = 0.1, which results in s = 8 and s = 16
subproblems, respectively. The results for all methods are presented in Table 7.3,
the final representations as well as the R2

+-non-convex, disconnected nondominated
set are depicted in Figures 7.4 and 7.5.
Due to the non-convexity, dominated outcomes might be obtained which typically

correspond to local minima of the scalarized problem. For example, in Figure 7.4 (d),
three points of the final representation are actually dominated. Therefore, Eichfelder
(2006) proposes to apply global single-criterion solvers in the non-convex case. How-
ever, as our results with SQP are rather good and the observed dominated outcomes
lie quite close to the nondominated set, we do not change the solver and accept the
occurrence of some dominated points.
Consider first the cardinality of all representations stated in Table 7.3. While

for methods LV, LH and GH in every iteration a point of the final representation is
computed, this is not the case for the other methods. In EC, only eight of ten (s = 8)
and 13 of 18 (s = 16) subproblems contribute a point to the final representation.
The small cardinality of method GV is caused by dominated points. Note that if in
the course of the algorithm a dominating point is computed, all dominated points
are removed.
Considering uniformity and coverage, the results are less clear than in the R2

+-
convex case. Due to the unconnectedness of the nondominated set, SB can not
compute all points with the desired accuracy of 0.2 and 0.1, respectively, which
results particularly for s = 16 in a rather small uniformity level of 0.02. Nevertheless,
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the results [dU , dC ] = [0.12, 0.23] for s = 8 and [dU , dC ] = [0.02, 0.12] for s = 16 are
satisfying. A quite similar interval is obtained by LV. The results of EC are inferior,
even if for s = 16 a slightly higher uniformity level compared to LV is obtained.
However, coverage is considerably worse in both runs. Interestingly, for s = 8,
methods GV and GH achieve a better result with respect to uniformity and coverage
than LV. Considering the relative dominated hypervolume we observe that SB and
LV achieve the best result and GH the worst.
A view on the graphics explains the surprisingly good values of the global vari-

ants particularly with respect to coverage. Two of the three connected parts are,
besides for GV and s = 16, only covered by one single point. As coverage is com-
puted only among points of the same connected component, two of the three parts
are not included into the computation of the coverage error, yielding to misleading
results. This shows that replacing the computation of coverage by the maximal dis-
tance between neighboring points of the final representation must be done with care,
as it is not always assured that all parts of the nondominated set are covered well.
The representations of all other methods cover all three parts of the disconnected
nondominated set. Note that while the nondominated set is symmetric, the repre-
sentation obtained by EC is not. This is due to the fact that constraints are only
set on the first objective. This effect does not occur for all other methods as both
components of the objective function are treated equally in the weighted Tchebycheff
method.
We conclude that in every iteration a point of the final representation is computed

by the adaptive methods LV, LH and GH but not by EC. Moreover, the adaptive
methods generate more uniform representations than the a priori method, in general.
Besides SB, particularly LV performs well in this example.
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Figure 7.4: Representations of the nondominated set computed by different parametric al-
gorithms for test case 2 and 8 subproblems
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Figure 7.5: Representations of the nondominated set computed by different parametric al-
gorithms for test case 2 and 16 subproblems

178



7.3 Tricriteria Problems

7.3 Tricriteria Problems

In this section, we consider continuous tricriteria optimization problems. As stated
above, we are mainly interested in the question whether an algorithm with adap-
tive parameter selection as derived in Part I performs better than an algorithm with
a priori parameter choice, in the sense that less infeasible and/or redundant sub-
problems occur. Before presenting the test cases, we discuss particularities of the
implementation in the tricriteria case.

7.3.1 Computational Setup

Initial Bounds on the Nondominated Set

As in the bicriteria case, all algorithmic variants start by computing the lexico-
graphically minimal points, which define the ideal point. However, as explained in
Section 2.1, only an estimate on the nadir point can be obtained based on these
points for more than two criteria. In order to have a valid upper bound at hand, we
additionally compute the individual maxima on f(X) that define zM , which serves
as the upper bound to start with. Note that we explicitly deal with the general
situation in which the nadir point is not known.

Decomposition of the Search Region

In the bicriteria case the split of the search region into boxes is obvious. Every
new nondominated point lies in exactly one box and evokes a split of this box into
two new boxes. In three dimensions, principally two possibilities for splitting the
search region exist. The first relies on the v-split criterion as proposed in Chapter 5,
with the help of which the creation of redundant boxes can be avoided. Since at
most two new boxes are created in each iteration in total, see Lemma 5.23, the
search region is decomposed into at most 2n+ 1 boxes, where n denotes the number
of points inserted so far. The main feature of Algorithm 2, that relies in the fact
that no redundant boxes are generated and, hence, no unnecessary subproblems are
solved, is also advantageous in the continuous case. Note that quasi non-redundant
boxes as discussed in Section 5.3.4 typically do not occur in a continuous setting,
hence, there is no advantage in considering Algorithm 3 instead of Algorithm 2. The
v-split algorithm is especially favorable when the dominated hypervolume is used
as selection criterion of the next box. In this variant, as explained in Section 7.1,
a subproblem is solved for every new box that is created. In each iteration, only
the nondominated point that contributes most to the dominated hypervolume is
inserted. As we use the number of subproblems as termination criterion, each new
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z!

1

Figure 7.6: Decomposition of a box into six disjoint boxes

box implicitly increases the subproblem counter. The less new boxes are created,
the less subproblems have to be solved and the more (nondominated) points can be
inserted before the algorithm terminates.
The second possibility of decomposing the search region is given by a split into

disjoint boxes, see Figure 7.6. Clearly, a higher number of boxes has to be handled
in this split, wherefore we have not used it in the situation where a complete rep-
resentation is sought. However, an advantage consists in the fact that a local ideal
point can be easily associated with each box, as it equals the lower bound of the
respective box. Consequently, the volume of each box can be easily computed based
on its lower and upper bound. This is particularly favorable for the variant in which
the next box is selected as the one with the largest volume.

Refinement of the Representation

As in the bicriteria case, we select the next box either according to its volume or to
the contribution to the dominated hypervolume, which is achieved by inserting the
point generated in the respective box. However, the computation of both, the volume
and the dominated hypervolume, becomes more involved than in the bicriteria case.
First, consider the computation of the volume. If we apply the v-split, the part of

a box containing possibly further nondominated points is a subset of this box and
is given by the union of several disjoint subboxes. Hence, the volume of a box is
determined as the sum of the volumes of all disjoint subboxes that are contained in
this box. Consider Figure 7.7 for an illustration. The volume of each of the three
boxes consists of the volumes of three disjoint subboxes, respectively. To ease the
computation of the volumes, we compute and save the upper and lower vertices of
these disjoint boxes additionally to the bounds of the boxes needed for the v-split.
Also the computation of the contribution to the dominated hypervolume of a newly

generated point becomes more involved in comparison to the bicriteria case, since a
nondominated point might lie in more than one box. Hence, all boxes that contain

180



7.3 Tricriteria Problems

z! z! z!

1

Figure 7.7: Volumes of boxes decomposed by the v-split

the current point have to be taken into account when computing the contribution to
the dominated hypervolume of this point. In our implementation, we associate points
with the boxes in which they were generated. We also associate the contribution to
the dominated hypervolume of some point with the box, in which the point has been
generated. Therefore, the contribution to the dominated hypervolume obtained by a
point in a certain box might change even if the corresponding box has not been split
in the current iteration. Consequently, in our implementation, we always recompute
the contribution to the dominated hypervolume for every box of the decomposition.
Thereby, the contribution to the dominated hypervolume is determined as difference
between the dominated hypervolumes before inserting and after having inserted the
considered point. We use the algorithm of Beume et al. (2009) for this purpose, which
can be briefly summarized as follows. First, the given n points are ordered with
respect to one component. The dominated hypervolume is decomposed into layers.
Two-dimensional projections of the points build the basis of the hypervolume, which
can be computed with a complexity of O(n logn). As reference point we use zM .

Quality Criteria

In the tricriteria case, we only evaluate cardinality and the relative dominated hyper-
volume. As in the bicriteria case, cardinality measures the number of subproblems
that contribute points to the final representation, hence, implicitly reflects infeasi-
bility or redundancy of subproblems. The relative dominated hypervolume indicates
the percentage of the portion of the initial search region that is discarded by the
computed points. We use the algorithm of Beume et al. (2009) for its determination
with zM as reference point. Note that, if zM overestimates zN considerably, the
hypervolume of two representations might be nearly the same as the nondominated
set lies in a relatively small portion of the initial search region.
The computation of the coverage error requires the knowledge of neighboring
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EC ε-constraint method with uniformly chosen parameters (a priori)
GV Algorithm 2 with (global) ideal point as reference point and a volume-based selection

of the next box
GH Algorithm 2 with (global) ideal point as reference point and a hypervolume-based

selection of the next box
GH2 like GH, but all computed points are inserted when the termination criterion is reached
GHA like GH, but a generalized augmented weighted Tchebycheff norm with δ = 0.7 is used
LV Decomposition of the search region into disjoint boxes, use of local ideal points as

reference points and a volume-based selection of the next box

Table 7.4: Summary of tested methods in the tricriteria case

points, which are not as easy to obtain as in the bicriteria case. Therefore, we
do not evaluate coverage and uniformity for the tricriteria case.

Tested Variants and their Parameters

All methods that are compared in the tricriteria case are summarized in Table 7.4.
After having computed zI and zM , the a priori approach installs a two-dimensional
grid of N2 parameter values (ε1,k, ε2,l)> ∈ R2, k, l ∈ {1, . . . , N}, where, for i = 1, 2,

εi,j = zIi + (j − 1) · z
M
i − zIi
N − 1 for j = 1, . . . , N.

For simplicity, we use the same number of grid points N = 5, 7, 10 in each dimension,
resulting in s = 25, 49, 100 subproblems, respectively. Note that we define ε slightly
different from the bicriteria case such that points that coincide with zI or zM in
one component can also be computed, resulting in a possibly better coverage of the
boundary of the nondominated set.
Again, the parameters of all adaptive variants are computed according to the

formulas provided in Chapter 4. We also include a generalized augmented weighted
Tchebycheff method (GHA) as scalarization, where the inflection point is set to
the upper bound of the respective box multiplied by δ = 0.7, see the formulas in
Theorem 4.18 in Section 4.3.
In all variants in which we apply the v-split, we use the ideal point as reference

point. Therefore, in analogy to m = 2, we call these variants global variants (GV,
GH, GH2 and GHA in Table 7.4). Note that also other reference points could be
chosen, but that we do not additionally vary the reference point in this study.
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Figure 7.8: Nondominated set of test problem 1

7.3.2 Test Problems

Test Problem 1

The first test case is given by

min


x1

x2

x3


s.t. (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 ≤ 1,

x ∈ R3.

(7.3)

The feasible set X of (7.3) is the unit ball centered at (1, 1, 1)>. The efficient set
equals the nondominated set and is given by

XE = ZN = {x ∈ [0, 1]3 : (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 = 1},

i.e., it equals the lower left part of the sphere, see Figure 7.8 for an illustration.
The ideal point is zI = (0, 0, 0)>, and the local nadir point which is defined by the
lexicographic minima is (1, 1, 1)>. It equals the true nadir point. The upper bound
on X = f(X) is zM = (2, 2, 2)>. Despite its simplicity, already this simple test case
can be an issue for parametric algorithms if the initial search region is not chosen
appropriately.
As the nondominated set is R3

+-convex, the weighted sum method can be used
to generate every nondominated point in theory. Specific methods for Rm+ -convex
problems exist, see, e.g., Klamroth et al. (2002) or Rennen et al. (2009). However,
as pointed out above, our approach does not assume convexity, but is intended for
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any problem type. Therefore, we do not incorporate specific approaches, but only
compare our new adaptive parametric algorithm to an a priori algorithm using the
ε-constraint scalarization. A visualization of the respective final representations is
given in Figures 7.10 to 7.12. Cardinality and relative dominated hypervolume of the
corresponding representations are stated in Table 7.5. Note that, as in the bicriteria
case, the lexicographic minima, that are generated for each method at the beginning,
are counted separately.
Different from the bicriteria case, the cardinality of the representations obtained

by the adaptive methods and the a priori approach varies considerably. This is
due to the fact that the initial parameter grid for EC is no longer computed with
respect to zN , but with respect to zM . Typically, in addition to certain infeasible
subproblems, a high percentage of redundant subproblems occurs. In test case 1,
only about one fourth of the subproblems solved in EC yield a nondominated point.
The adaptive methods yield a significantly better cardinality than EC. Indeed, for
method GV, with every subproblem solved a point is generated that contributes to
the final representation. In methods GH2 and LV, not all but still many subproblems
contribute points to the representation. Methods GH and GHA generate considerably
less points. This is due to the fact that in both algorithms only around half of the
points that are obtained from the subproblems are inserted into the representation.
However, even these variants contribute more points than EC.
The stated relative dominated hypervolumes draw basically the same picture.

However, there, the differences are less sharp, which is on the one hand due to the
fact that zM overestimates zN , and on the other hand caused by the fact that some
of the adaptive methods produce clustered points which contribute few to the dom-
inated hypervolume. This is confirmed by the graphical illustration in Figures 7.10
to 7.12. Particularly method GV produces clusters at the boundary of ZN . Also LV
generates most of its points at the boundary of ZN . This is caused by boxes that
have an upper bound equal to the artificial initial bound zM in at least one com-

# SP EC GV GH GH2 GHA LV

25 (+3) |R| 6 28 11 24 11 25
rH 66.43% 80.96% 77.02% 80.77% 77.13% 80.48%

49 (+3) |R| 11 52 19 45 19 40
rH 73.39% 82.69% 80.06% 82.67% 80.29% 82.28%

100 (+3) |R| 26 103 29 71 29 76
rH 77.75% 83.05% 81.69% 83.42% 81.84% 83.66%

Table 7.5: Cardinality of R and relative dominated hypervolume for test case 1
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Figure 7.9: Decomposition of the search region obtained by LV after 20 iterations

ponent. These boxes have a rather large volume and are, thus, selected preferably.
Figure 7.9 shows an exemplary decomposition of the search region obtained by LV
after 20 iterations. The decomposition contains many boxes with a vertex equal to
two in at least one component. While the clustering of GV is unwanted, the covering
of the boundary obtained by LV may be advantageous as it provides a good idea of
the shape of the nondominated set. Particularly if only a coarse initial representation
shall be generated, then LV in combination with a modest number of subproblems
provides a good result. The variants GH, GH2 and GHA, that all select the next
box according to the contribution to the dominated hypervolume, also perform well.
Particularly GH is of interest as it does not generate as many points as GV or LV,
but provides at least optically a well-spread representation.
Summarizing the results for the sphere problem we see that all adaptive methods

generate fewer infeasible or redundant problems than the a priori method with uni-
formly chosen parameters. The latter is outperformed by all adaptive methods with
respect to cardinality and dominated hypervolume.
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Figure 7.10: Representations of the nondominated set computed by different parametric
algorithms for test case 1 and 25 subproblems
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Figure 7.11: Representations of the nondominated set computed by different parametric
algorithms for test case 1 and 49 subproblems
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Figure 7.12: Representations of the nondominated set computed by different parametric
algorithms for test case 1 and 100 subproblems
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Figure 7.13: Approximate nondominated set of test problem 2

Test Problem 2

The second test problem is taken from Rennen et al. (2009) and is given by

min


x1

x2

x3


s.t.

x1 ≥ (x2 − 9)2 + (x3 − 3)2,
x2 ≥ (x1 − 4)2 + (x3 − 3)2,
x3 ≥ (x1 − 4)2 + (x2 − 9)2,
x ∈ R3

(7.4)

As in the first test problem, the efficient set equals the nondominated set and is
R3

+-convex. However, no explicit description of it is available, wherefore we use a
(piece-wise linear) approximation of the nondominated set for the visualization in
Figures 7.13 to 7.16. As ideal point we obtain zI ≈ (1.91, 7.08, 0.79)>, as vector of
individual maxima zM ≈ (6.24, 10.92, 5.41)>. The local nadir point is approximately
(4.88, 9, 4.38)> and equals the true nadir point. As in test case 1, zM overestimates
zN in all components.
The results obtained are presented in Figures 7.14 to 7.16 and Table 7.6. Note

that the visualization suggests a cluster of points at the lower right boundary, which,
however, is caused by the perspective and could not be avoided without impairing
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# SP EC GV GH GH2 GHA LV

25 (+3) |R| 8 28 11 24 11 25

rH 58.86% 72.09% 67.85% 71.94% 67.93% 71.55%

49 (+3) |R| 14 52 18 42 19 45

rH 65.58% 73.51% 71.09% 74.10% 71.54% 74.24%

100 (+3) |R| 31 77 29 76 30 79

rH 70.27% 73.55% 73.22% 75.64% 73.50% 75.76%

Table 7.6: Cardinality of R and relative dominated hypervolume for test case 2

the visualization at another part of the nondominated set. In contrast, the cluster of
points of GV observed at the left boundary is not caused by a visualization problem.
Comparing all methods, we can basically draw the same conclusions as for test

case 1. However, the number of points obtained by EC increases to about one third
of the subproblems solved, because of zM overestimating zN less than in test case 1.
Consequently, the differences with respect to cardinality and dominated hypervolume
between EC and the adaptive methods decrease. For s = 100, the final representation
of EC contains slightly more points than that of GH and GHA. However, with respect
to the relative dominated hypervolume all adaptive methods outperform EC.
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Figure 7.14: Representations of the nondominated set computed by different parametric
algorithms for test case 2 and 25 subproblems
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Figure 7.15: Representations of the nondominated set computed by different parametric
algorithms for test case 2 and 49 subproblems
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Figure 7.16: Representations of the nondominated set computed by different parametric
algorithms for test case 2 and 100 subproblems
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Figure 7.17: Nondominated set of test problem 3

Test Problem 3

This problem with an R3
+-non-convex nondominated set is taken from Eichfelder

(2006), see also Eichfelder (2009a). It has also been used as a test case in Gourion
and Luc (2010) and it is a slight modification of one of the test cases proposed in Kim
and de Weck (2006). It is given by

min −


x1

x2

(x3)2


s.t.

− cos(x1)− exp(−x2) + x3 ≤ 0,
0 ≤ x1 ≤ π, 0 ≤ x2, 1.2 ≤ x3,

x ∈ R3.

(7.5)

The corresponding efficient set is

XE = {x ∈ R3 : 0 ≤ x1 ≤ arccos(0.2), 0 ≤ x2 ≤ − ln(1.2− cos(x1)),
1.2 ≤ x3 ≤ cos(x1) + exp(−x2)},

see Gourion and Luc (2010). The corresponding nondominated set is depicted in
Figure 7.17. The ideal point is zI ≈ (−1.37,−1.61,−4)> and the local nadir point
equals the vector of individual maxima zM = (0, 0,−1.44)>, thus, zM = zN .
The results are stated in Table 7.7 and in Figures 7.18 to 7.20. In this test case,

EC performs quite well. About half of the subproblems solved by EC contribute
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# SP EC GV GH GH2 GHA LV

25 (+3) |R| 14 28 12 25 12 27

rH 6.43% 10.06% 8.05% 9.52% 8.05% 9.62%

49 (+3) |R| 26 52 18 45 19 49

rH 9.10% 11.18% 9.21% 10.89% 9.30% 11.25%

100 (+3) |R| 52 103 32 87 32 100

rH 11.14% 12.11% 10.56% 11.97% 10.30% 12.56%

Table 7.7: Cardinality of R and relative dominated hypervolume for test case 3

a point to the final representation. This is due to the fact that the nadir point is
implicitly known, i.e., considerably less subproblems with redundant solutions are
obtained. Comparing cardinality, we observe that EC generates less points than GV,
GH2 and LV, but more points than GH and GHA for s = 25, 49, 100. However, when
comparing EC to GH and GHA, a better dominated hypervolume is only obtained
for s = 100. All other methods, i.e., GV, LV and GH2, yield a better dominated
hypervolume than EC.
The representations depicted in Figures 7.18 to 7.20 reveal that all hypervolume-

based methods generate basically all points at the interior of ZN . This is caused
by the fact that the reference point equals zN and that all points at the boundary
share one component with zN . Consequently, these points are never inserted since
their contribution to the dominated hypervolume would be zero. Interestingly, also
GV represents the boundary of ZN rather badly. Only LV provides a good cover of
the boundary as well as the interior of ZN . It generates twice as many points as
EC while providing approximately the same quality for the same number of points
(compare, e.g., the cardinality of LV for s = 25 to the one of EC for s = 49).
We conclude that the variant using the dominated hypervolume as refinement cri-

terion does not cover the entire nondominated set, in particular not its boundary,
whenever the true nadir point is known and is used as reference point for the com-
putation of the dominated hypervolume. In this situation it might be advantageous
to shift the reference point slightly. In contrast, the a priori method works quite well
when the nadir point is known. Nevertheless, even in this situation, the adaptive
volume-based variant LV produces better representations in terms of cardinality and
relative dominated hypervolume.
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Figure 7.18: Representations of the nondominated set computed by different parametric
algorithms for test case 3 and 25 subproblems
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Figure 7.19: Representations of the nondominated set computed by different parametric
algorithms for test case 3 and 49 subproblems
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Figure 7.20: Representations of the nondominated set computed by different parametric
algorithms for test case 3 and 100 subproblems
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Figure 7.21: Nondominated set of test problem 4 from different perspectives

Test Problem 4

This tricriteria test problem from Deb et al. (2001), see also Deb et al. (2005), has
been designed originally for testing evolutionary methods. It also served as a test
case in Eichfelder (2006), see also Eichfelder (2009a). It is given by

min


(1 + x3)(x3

1x
2
2 − 10x1 − 4x2)

(1 + x3)(x3
1x

2
2 − 10x1 + 4x2)

3(1 + x3)x2
1


s.t. 1 ≤ x1 ≤ 3.5,

−2 ≤ x2 ≤ 2,
0 ≤ x3 ≤ 1.

(7.6)

The name of the problem stems from the form of the nondominated set that resembles
a comet. In Deb et al. (2001) it is stated that the efficient set is given by

S := {x ∈ R3 : 1 ≤ x1 ≤ 3.5, −2 ≤ x2x
3
1 ≤ 2, x3 = 0}.

This is, however, not correct. Consider, e.g., x̄ := (3.5, 0, 0)>. Then x̄ ∈ S and
f(x̄) = (−35,−35, 36.75)>. Let x̃ := (2, 0, 1)>. This point is feasible for (7.6) and
x̃ /∈ S holds. However, f(x̃) = (−40,−40, 24)> 5 f(x̄). Hence, S does not represent
the efficient set of (7.6). Without proof, but confirmed by the numerical results, we
claim that f(S′) with

S′ :={x ∈ R3 : 1 ≤ x1 ≤ 3.5, −2 ≤ x2x
3
1 ≤ 2, x3 = 1} (7.7)

∪ {x ∈ R3 : x1 = 1, −2 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 1}

199
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# SP EC GV GH GH2 GHA LV

25 (+4) |R| 5 29 12 21 12 21

rH 71.08% 86.89% 86.21% 86.82% 86.24% 87.18%

49 (+4) |R| 8 53 17 39 17 37

rH 71.09% 87.01% 86.83% 87.42% 86.90% 87.96%

100 (+4) |R| 6 78 32 82 29 73

rH 77.81% 87.15% 87.76% 88.19% 87.27% 88.44%

Table 7.8: Cardinality of R and relative dominated hypervolume for test case 4

represents the nondominated set of (7.6). An illustration of f(S′) is given in Fig-
ure 7.21. Note that the same shape of the nondominated set has been obtained in the
numerical study of Eichfelder (2006). The ideal point is zI ≈ (−70.19,−70.19, 3)>,
the vector of individual maxima is zM = (289, 289, 73.5)>. The local nadir point is
given by (2, 2, 73.5)>, the true nadir point is zN = (4, 4, 73.5)>.
According to Deb et al. (2001), the comet problem is difficult to solve by classic

generating methods as the ε-constraint method. When choosing the third objective
as objective of the ε-constraint method, Deb et al. (2001) estimate that 88% of the
subproblems are redundant if a uniform set of ε-vectors is chosen.
The results for all tested variants are given in Table 7.8. The corresponding rep-

resentations are depicted in Figures 7.22 to 7.24. Let us consider the graphics first.
Already for s = 25, LV provides a nice coarse initial representation comprising 21
points. In contrast, for EC, only 5 points are generated. If we take into account that
the given problem has four lexicographic minima which are generated beforehand,
only one subproblem of EC contributes a point to the final representation for s = 25.
This rather extreme result is also observed for s = 49 and s = 100. While only few
points are computed by EC, the adaptive methods contribute many points to the
final representation. Particularly LV provides a very good (graphical) coverage of
the nondominated set. Note that only LV approximates the two points, by which
the true nadir point is defined, well. Also GH yields a good representation of the
nondominated set. Method GV produces a cluster of points, hence performs worse.
Table 7.8 confirms the graphical observations.
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Figure 7.22: Representations of the nondominated set computed by different parametric
algorithms for test case 4 and 25 subproblems
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Figure 7.23: Representations of the nondominated set computed by different parametric
algorithms for test case 4 and 49 subproblems
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Figure 7.24: Representations of the nondominated set computed by different parametric
algorithms for test case 4 and 100 subproblems
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Figure 7.25: Nondominated set of test problem 5

Test Problem 5

This test problem is a modification of problem DTLZ7, see Deb et al. (2001) and Deb
et al. (2005). The problem is designed for an arbitrary number of objectives and
n = m − 1 + k variables, where k ∈ N is a parameter. The authors suggest k = 20.
The resulting problem formulation in the tricriteria case, which is also considered in
Eichfelder (2006), is

min


x1

x2

g(x) ·
(

3−
2∑
i=1

(
xi
g(x) (1 + sin(3πxi)

))


s.t.
xi ∈ [0, 1] ∀ i = 1, . . . , 2 + k,

x ∈ R2+k

(7.8)

with

g(x) = 2 + 9
k

2+k∑
i=3

xi.

For k = 20, a nonlinear solver might experience problems when solving the sub-
problems. As our focus does not lie on improving existing nonlinear single objective
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# SP EC GV GH GH2 GHA LV

25 (+4) |R| 22 27 11 20 13 25
rH 36.48% 33.28% 29.77% 31.43% 32.77% 35.20%

49 (+4) |R| 41 47 19 40 18 44
rH 36.24% 36.53% 32.49% 34.14% 34.80% 38.25%

100 (+4 ) |R| 54 82 31 74 29 89
rH 38.82% 37.46% 35.32% 36.59% 35.71% 39.61%

Table 7.9: Cardinality of R and relative dominated hypervolume for test case 5

solvers, we consider the modified problem

min


x1

x2

6−
2∑
i=1

(xi (1 + sin(3πxi))


s.t.

xi ∈ [0, 1] ∀ i = 1, 2,
x ∈ R2

(7.9)

with only two variables. Note that (7.9) is not a special case of (7.8), as g(x) is not
defined for k = 0. However, the nondominated set of (7.9) is the same as of (7.8)
for arbitrary k ∈ N0, which can be easily seen. The third objective of (7.8) can be
reformulated as

f3(x) = 3g(x)−
2∑
i=1

xi (1 + sin(3πxi)).

Since g(x) does not depend on x1 and x2, and, at the same time, the variables
x3, . . . , xk+2 only occur in g(x), which only occurs in the third objective function, we
can eliminate the variables x3, . . . , xk+2 from (7.8). Indeed, for any nondominated
point of (7.8), x3 = · · · = xk+2 = 0 must hold (see also Deb et al. (2001), Deb
et al. (2005), Eichfelder (2006)). This implies g(x) = 2. As f(x) = (x1, x2, f3(x))>

only depends on x1 and x2, the nondominated sets of (7.8) and (7.9) are the same.
An illustration of the R3

+-non-convex nondominated set of (7.9) is provided in Fig-
ure 7.25. It consists of four disconnected parts. The ideal point is zI = (0, 0, 2.61)>,
the vector of individual maxima is zM = (1, 1, 6)> and the local nadir point is given
by (0.86, 0.86, 6)>, which equals zN .
The results are given in Table 7.9 and Figures 7.26 to 7.28. Also in this test

case, EC performs pretty well, because zN is well estimated by zM . Moreover,
the minimization of the third objective is advantageous for this problem due to the
shape of the nondominated set, which is symmetric with respect to the first and

205



7 Generation of Incomplete Representations for Continuous Test Problems

second component. For s = 25, EC even provides the highest relative dominated
hypervolume of all tested variants, hence outperforms the other methods. Observing
the figures we see that only LV can compete with EC in this test case. Indeed,
LV provides a higher cardinality and, for s = 49 and s = 100, a higher relative
dominated hypervolume. Note that in this test case, the single-criterion solver seems
to compute local minima, as the representations computed by all adaptive variants
besides GH contain dominated points.
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Figure 7.26: Representations of the nondominated set computed by different parametric
algorithms for test case 5 and 25 subproblems
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Figure 7.27: Representations of the nondominated set computed by different parametric
algorithms for test case 5 and 49 subproblems
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Figure 7.28: Representations of the nondominated set computed by different parametric
algorithms for test case 5 and 100 subproblems
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7.4 Conclusion and Further Ideas

In this chapter we applied different variants of a new parametric algorithm with
an adaptive parameter scheme to continuous bicriteria and tricriteria optimization
problems.
In the bicriteria case, we tested four different adaptive variants, in which the next

box is selected either as the box with the largest area or the box for which the
largest contribution to the dominated hypervolume is obtained. Moreover, we var-
ied the reference point of the weighted Tchebycheff scalarization. The resulting four
adaptive variants were compared to an a priori method and the method of Eich-
felder (2006). We applied all variants to two test problems, one with a R2

+-convex
and one with an R2

+-non-convex, disconnected nondominated set. All variants were
evaluated with respect to cardinality, uniformity, coverage and relative dominated
hypervolume. In general, we observed that all variants including the a priori method
generate acceptable representations of the nondominated set. We obtained more uni-
form representations with our adaptive variants compared to the a priori approach.
Comparing our methods among each other, it turned out that much better results
were obtained when local ideal points instead of a fixed (global) ideal point are used.
While the hypervolume-based variant contributes less points to the representation
than the volume-based variant, results with the former variant were also very ap-
pealing.
In the tricriteria case, we evaluated adaptive and a priori approaches for test prob-

lems with R3
+-convex and R3

+-non-convex nondominated sets. We considered cardi-
nality and the relative dominated hypervolume as quality criteria. The results show
that adaptive methods are particularly superior to a priori methods when the nadir
point is not available and the used upper bound zM overestimates the true nadir
point significantly. In cases where the nadir point is known, an a priori method per-
forms quite well, in general, but might still be outperformed by an adaptive method
with respect to cardinality and relative dominated hypervolume. In general, adaptive
methods generate considerably less infeasible and/or redundant subproblems than a
priori methods.
We conclude that adaptive algorithms are well suited to generate incomplete rep-

resentations of the nondominated set. Particularly when only a moderate number
of subproblems is solved, they provide a good coarse representation of the nondomi-
nated set.
With respect to efficiency, the proposed algorithms can still be improved. In the

tricriteria case, we use the method of Beume et al. (2009) in order to compute the
contribution of each point to the dominated hypervolume in each iteration and each
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box of the decomposition. An incremental computation would be beneficial such that
the dominated hypervolumes are not recomputed from scratch in every iteration and
for every box.
So far, only cardinality and dominated hypervolume have been evaluated as quality

measures in the tricriteria case. Further research should address the incorporation of
coverage, which requires the identification of neighboring points. As we also observed
cases where it was not satisfactory to consider only points of the final representation
for estimating coverage, the development of alternative approaches would be useful.
Furthermore, for more than two criteria it would be interesting to couple our algo-

rithm with the sensitivity-based method of Eichfelder (2006) by using our approach in
a (short) first stage and the method of Eichfelder (2006) in a second stage. Thereby,
based on a (coarse) initial representation, the generation of a nearly equidistant
representation of the nondominated set can be expected.
In this chapter we computed discrete sets of (nondominated) points. Based on

these sets, piece-wise linear approximations could be constructed and comparisons
with the gauge method of Klamroth et al. (2002) could be drawn. Lastly, the appli-
cation to discrete problems, for which an incomplete representation is sought, could
be considered.
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8 Multiobjective Optimal Control of
Sewer Networks

8.1 Introduction

In this chapter, we consider the optimal control of sewer networks which is a real-
world application that involves multiple goals. Thereby, the task is to determine a
real-time optimal control of the actuators such that a sewer network is operated best
with respect to several objectives. The traditional approach consists in an offline
control. Thereby, a database of control decisions in form of if-then-rules is created
by simulating a huge number of different scenarios before the system is actually
operated. The control decisions needed in the operational phase are then obtained
from the database. In contrast, online control comprises the computation of the
control settings during the operational phase. Therefore, an online monitoring of data
as rainfall, runoff as well as information on water level, flow rate and water quality
in the sewer network is needed. With the help of a process model that processes the
available data, future state developments of the system are predicted. Based on the
response of the process model, optimal control settings can be computed. Note that
in the engineering context ‘optimal’ often means that the solution has been improved
sufficiently with respect to some reference solution.
Online control of sewer networks is challenging due to several reasons: firstly, the

shallow water flow in networks is described by a system of hyperbolic partial dif-
ferential equations, i.e., one has to deal not only with nonlinearities but also with
discontinuities of solutions, e.g., shock waves. Secondly, in online control the time
to find control settings is typically limited to five minutes. Therefore, a compromise
has to be found between a process model that describes the complex hydrodynamic
process sufficiently well and, on the other hand, computes system states in the re-
quired short time. A third challenge is the size of the network, which, already for
small cities, typically contains a large number of actuators, i.e., variables of the un-
derlying control problem. A meaningful reduction is required to keep these networks
manageable. We refer to Martin et al. (2012) for further details.
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Despite of these challenges, optimal control of sewer networks is an interesting topic
for a multicriteria analysis, as the problem formulation contains multiple objectives.
Two main strategies are pursued in the literature. The first combines the objectives
to a weighted sum, see, e.g., Marinaki and Papageorgiou (2005). The weights are de-
termined by a trial-and-error procedure, which starts by assigning some initial values
to the parameters. Then, similar to the creation of if-then-rules for the offline con-
trol, various representative inflow scenarios are tested in order to adjust the weights.
Thereby, however, no systematic approach is reported. The second strategy is the
application of evolutionary multicriteria optimization (EMO), see, e.g., Rauch and
Harremoës (1999) or Muschalla (2008) for applications in the wastewater manage-
ment context. However, since EMO methods are typically based on a multitude of
function evaluations, which, in case of a hydrodynamic process model, require a large
number of time consuming simulation runs, and since an interaction with a decision
maker does not seem useful within an online optimization process, EMO appears to
be less suited for the use in online optimal control.
In Dächert and Klamroth (2012) we presented a preliminary, scenario-based of-

fline investigation taking the multiple objectives arising in wastewater management
into account. Therefore, we studied the applicability of the weighted sum, the ε-
constraint and the augmented weighted Tchebycheff method with a priori and a
posteriori parameter schemes for the determination of a ‘good’ representation of the
nondominated set. Our work was part of a research project funded by the BMBF,
the German Ministry of Education and Research. Its main goal was to develop in-
novative methods in the context of water supply and wastewater management based
on state of the art mathematical and engineering knowledge. The contributions of
all research groups are collected in Martin et al. (2012), to which we refer for all
modeling and numerical aspects as well as for a detailed problem description.
This chapter is organized as follows. In Section 8.2, we present the objectives aris-

ing in wastewater management together with a short literature review. In Section 8.3,
we describe the computational setup, including the single-objective optimizer and
different parameter schemes. In Section 8.4, we show results of our scenario-based
analysis and discuss them particularly with respect to the adaptive parameter se-
lection that is promoted in this thesis. This chapter has already been published in
Dächert and Klamroth (2012).

8.2 Objectives in Wastewater Management

In the literature several objectives for the optimal control of sewer networks are
stated. Marinaki and Papageorgiou (2005) formulate five goals, namely avoiding
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overloads in storage elements without overflow, minimizing overflows, maximizing
the utilization of the wastewater treatment plant, obtaining a desired distribution of
the reserve storage volume and avoiding abrupt changes of outflows. In Pleau et al.
(2005) the experiences of the Québec urban community are described, where since
the year 2000 a real-time optimal control system has been installed and monitored.
The system covers the minimization of overflows, the maximization of the use of the
wastewater treatment plant capacity and the minimization of accumulated volumes in
the tunnels as well as set point variations. Furthermore, the preferential treatment
of some overflow sites and the dewatering of the upstream tunnel are included in
the system. While in Marinaki and Papageorgiou (2005) and Pleau et al. (2005)
pollution is not considered as an objective, it is listed as an important goal among
the future trends in Schütze et al. (2004). Moreover, pollution in the receiving water
is considered as one of the objectives in Rauch and Harremoës (1999) and Weinreich
et al. (1997). The minimization of pollution and economical costs in an estuary is
studied in Alvarez-Vazquez et al. (2010). Based on these references we consider the
following objectives as particularly relevant in the context of optimal control of sewer
networks:

1. Minimization of overflows, i.e., the amount of water which has to be released
due to capacity limitations of the network

2. Minimization of pollution mass in the released water

3. Minimization of variations of inflow to the wastewater treatment plant (WWTP),
as the WWTP works best when inflow is as constant as possible

4. Minimization of variations of all controllable weirs and pumps in order to get
a smooth control profile, i.e., unnecessary and sudden opening and closing of
the controllable elements should be avoided

5. Maximization of inflow to the WWTP such that unnecessary storage of water
in the network is prevented

We assume that the data which is necessary to consider these objectives is available,
i.e., especially the network contains sensors to measure the required data online.
Concerning pollution load, this is an idealized situation since in practice online mea-
surements of the chemical oxygen demand (COD) are usually not available.
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Figure 8.1: Test network from Heusch and Ostrowski (2012)

8.3 Computational Setup

Test Networks

In our computational study we consider a network from Heusch and Ostrowski (2012)
with two inflows (S01, S02) and two storage units (B01, B02), depicted in Figure 8.1.
Each of the storage units has a controllable pump and an overflow to a nearby river.
We also study a subnetwork of it, which is depicted in Figure 8.2. It consists of one
single inflow node, a channel connecting this inflow node to a storage unit, and a
controllable pump at the end of the storage unit, through which water enters another
channel, which leads to the wastewater treatment plant. Whenever the storage unit
is overcharged, water leaves the storage unit through an overflow. The height of this
overflow can be controlled by a weir. Note that this simple network can be seen as
a detail of a bigger network. Thus, the inflow node does not necessarily represent
a natural inflow, but a node of inflow of water coming from the upper part of a
larger network. Analogously, the channel behind the pump does not necessarily lead
directly to the wastewater treatment plant, but may connect to parts of a bigger
network lying behind.

Formulation of Objective Functions

We use the following formulation of the objectives presented in Section 8.2. Let T
denote the time steps considered and let S be the number of storage units in the
network.
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S01

B01 Treatment Plant

River

Figure 8.2: Considered subnetwork

1. The minimization of the total release of water is modelled by

f1 =
S∑
i=1

T∑
t=1

Qi,t, (8.1)

where Qi,t denotes the overflow rate at storage unit i in time step t averaged
over the time interval ∆t.

2. The minimization of the pollution mass of released water is obtained by

f2 =
S∑
i=1

T∑
t=1

ρi,t ·Qi,t, (8.2)

where ρi,t denotes the pollution density given by the chemical oxygen demand
(COD).

3. Variations of some specific controllable element i ∈ S are modeled by

f i3 =
T−1∑
t=1

(ui,t+1 − ui,t)2 , (8.3)

where ui,t ∈ [0, 1] denotes the control. For describing variations in inflow to
the WWTP we minimize the variation of flow through the last controllable
element in the network before the WWTP is reached. Therefore, goals 3 and
4 described in Section 8.2 can both be modeled by (8.3).

4. The maximum utilization of the WWTP is described by

f4 =
T−1∑
t=1

(umax − ui,t)2 , (8.4)
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where i denotes the last controllable element before the wastewater treatment
plant is reached and umax is the maximal capacity of this element. This goal
prevents unnecessary storage in the network.

In the following, we only include objectives (8.1) to (8.3) into our numerical study.
Thereby, the third goal is seen to be subordinate to the first two objectives. Con-
sequently, we treat the problem as a bicriteria optimization problem and minimize
lexicographically with respect to the third objective.

Hydrodynamic Process Model

In Hild and Leugering (2012), a hydrodynamic process model together with an im-
plementation in C++ is proposed. We use this process model for our computational
study. The code is supplemented by an implementation of the weighted sum, the
ε-constraint and the augmented weighted Tchebycheff method, a list which main-
tains the set of nondominated points, functions updating the parameters of the sub-
problems and some interface functions. The user can choose which objectives are
considered, which scalarization method and which parameter update scheme is used,
see the description below.
Besides, in order to evaluate (8.2), the movement of the pollution particles has

to be modeled. This is realized by a pure transport equation, which simplifies the
underlying physical and chemical processes immensely and, thus, only gives a rough
idea of the distribution of pollution mass in the network, but which was sufficient for
our analysis.

Single-Objective Solver

As a flexible single-objective optimizer for nonlinear constrained optimization prob-
lems, IPOPT (Wächter and Biegler, 2006) is applied, which has already been tested
for real-world multiobjective problems, see, e.g., Hakanen et al. (2007). IPOPT is
a primal-dual interior-point algorithm with a filter line-search method for nonlinear
programming. For details, we refer to Wächter and Biegler (2006). IPOPT con-
verges, if a sufficient number of iterations is performed. If, however, due to time
restrictions, a maximum number of iterations is specified in advance, this may not
be sufficient for finding a stationary point. In this situation, only an intermediate
solution is returned by IPOPT. Note that the returned solution may even not be
feasible.
In the case of wastewater management problems, and particularly in the context

of a real-time optimal control, we have to interrupt the minimization process after
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some predetermined number of iterations due to the limited amount of time that
is available for the individual optimization runs. We, thus, have to expect that
the outcomes of our computations are intermediate solutions and are, in general,
no stationary points. For practical problems this is usually not critical since in
the wastewater management context with its dynamics and uncertainties the goal is
generally not to find the absolute optimum. A reasonable improvement as compared
to the uncontrolled case is usually satisfactory. From a theoretical point of view,
however, it is important to note that we often deal with dominated or even infeasible
outcomes, despite the theoretical properties of the applied scalarization methods.

Approximation of the Nondominated Set

Due to the interruption of the solution process, we can not expect to find a discrete
representation of the nondominated set but are satisfied with a discrete approxima-
tion, which should give a rough idea of the shape of the nondominated set. Note
that due to possible dominated outcomes it is mandatory to test each point enter-
ing the approximation for nondominance with respect to the points contained in the
current approximation. In particular, every point of the approximation may be dom-
inated by some outcome that is found in a later subproblem and, thus, may leave
the approximation at a later stage.

Parameter Variation Schemes

In order to find suitable parameters of the subproblems, we employ different strate-
gies. Thereby, the parameters to be selected are the weights λ in the weighted sum
approach, the scalar ε related to the second objective in the ε-constraint method and
the directions d in the augmented weighted Tchebycheff method which correspond to
the weights. Note that in the latter, the reference point was set to the origin and the
augmentation parameter to ρ = 10−3. We test three different rules for the parameter
selection.

R1: Simple a priori approach: For the first and simplest rule a total number
N ≥ 1 of subproblems to be solved is given, and the parameters are chosen
with equidistant spread. For the weighted sum approach, λ1 varies between 0
and 1 with an even increment of 1

N in each iteration. The second parameter is
computed by λ2 = 1−λ1. The ε-constraint approach is not evaluated with this
simple method as it does not take the magnitude of the objective function values
into account. Therefore, it is very likely to construct infeasible problems when
fixing ε to any value not related to the left-hand side of the ε-constraint. The
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directions in the augmented weighted Tchebycheff problem are set to d1 = λ2

and d2 = λ1, where the same values as for the weighted sum parameters are
chosen.

R2: Improved a priori approach: The second rule follows the parameter update of
the a priori box algorithm described in Hamacher et al. (2007). While the box
algorithm is developed for the ε-constraint method, the parameter scheme can
be transferred to the weighted sum and to the augmented weighted Tchebycheff
approach. Let z1 and z2 be the lexicographically minimal solutions with respect
to the first and second objective, respectively, and let again N ≥ 1 denote the
number of subproblems to be solved. Let 4x := z2

1 − z1
1 and 4y := z1

2 − z2
2 .

The parameters of the weighted sum method are set to

λ1 = k4y
4x+4y , λ2 = 1− λ1,

the parameter of the ε-constraint method to

ε = z2
2 + k

N
4y

and the directions in the augmented weighted Tchebycheff problem to

d1 = k · 4x, d2 = (N − k) · 4y

for k = 1, . . . , N−1, respectively. As the parameters are computed based on the
lexicographically minimal solutions, the magnitude of the individual objective
function values is taken into account.

R3: Adaptive approach: All parameters are computed with respect to the lo-
cal ideal and local nadir point of two adjacent points in the approximation.
Thereby, a volume-based selection rule is applied, i.e., we choose the next box
as the one with the largest volume. Let zi and zi+1 be two points of the current
approximation with zi1 < zi+1

1 , without loss of generality. Then, the directions
of the augmented weighted Tchebycheff problem are set to

d1 = zi+1
1 − zi1, d2 = zi2 − zi+1

2 ,

the weights of the weighted sum method to

λ1 = d2
d1 + d2

, λ2 = 1− λ1

and the parameter of the ε-constraint method is set to

ε = zi+1
2 + 1

2(zi2 − zi+1
2 ).
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If the solutions of the single-criterion solver are globally optimal, see the exam-
ples in Section 7.2, either a new point in the considered box or one of its defining
points is computed. In the latter case, the considered box can be excluded from
the search region. In the former case, the new point is inserted into the (dis-
crete) approximation, the box volumes are updated and the search continues
until a predefined maximum box volume is attained. If, due to numerical issues
described above, the subproblem solved in a certain box yields a point that lies
outside this box, we have to exclude the considered box from the search region
as well, because otherwise, it would be selected in each subsequent iteration,
since its volume does not change.

8.4 Computational Results

First, we analyze the effects between pairs of objectives in more detail. For this
purpose, we present results for two objectives and for the subnetwork depicted in
Figure 8.2.

Total Release versus Total Pollution Mass

The two goals (8.1) and (8.2) concerning quantity and quality of water release, re-
spectively, can be conflicting, but this is not necessarily the case for all data sets
and/or network structures. If there exists, for example, an optimal control strategy
such that no water has to be released at all, we clearly attain the goal of minimizing
pollutants at the same time. Besides this trivial case, there are also non-trivial cases
in which, by minimizing with respect to (8.1), we also achieve the minimal total
pollution. These examples are less interesting for our analysis as the nondominated
set then shrinks to one single point, i.e., the ideal point is feasible. In the following,
we discuss two examples for which it is not possible to minimize total release and
total pollution at the same time.
Scenario 1: This scenario represents a heavy and sudden rainfall, which causes a

high inflow. The concentration of COD (chemical oxygen demand) is low at the first
time steps and then rises significantly. This may reflect removal of deposits from the
channel walls in upper parts of the network. We set the total time to T = 3000, i.e.,
we consider 3000 time steps. The flow and pollution input data is updated each 60
time steps, so we set 4t = 60. The inflow Qt, t = 1, 2, . . . , T, (in m3 per second)
and the pollution density ρt, t = 1, 2, . . . , T , (in kg per m3) are given explicitly for
t = 4t, 24t, . . . and are interpolated linearly for all other time steps. The values
used for the example are depicted in Figure 8.3. The weir is controlled each 100 time

221



8 Multiobjective Optimal Control of Sewer Networks

0 1000 2000 30000

0.2

0.4

0.6

0.8

time (sec)

flo
w

 (m
3 /s

)

0 1000 2000 30000

100

200

300

400

500

600

time (sec)

C
O

D
 (m

g/
l)

Figure 8.3: Inflow Qt and pollution density ρt over time

steps, so there are 30 variables. The weir height is scaled to [0, 1], where ut = 0
means that the weir is completely opened at time t and ut = 1 denotes that the weir
is closed.
Minimizing only with respect to total release yields the solution z1 = (93.8, 11.85)>,

so a total release of 93.8 m3 and a total pollution mass of 11.85 kg. Fixing the
optimal objective function value f1 = 93.8 and optimizing with respect to the pol-
lution mass, i.e., solving min{f2(x) : f1(x) ≤ 93.8, x ∈ X}, results in the solution
z2 = (95.2, 5.1)>. Although this solution is not feasible for the constrained prob-
lem (recall that this effect is due to the limit on the maximum number of itera-
tions of IPOPT which may not be sufficient to guarantee convergence to a station-
ary point), it is a feasible solution for the optimal control problem. Compared to
z1 = (93.8, 11.85)>, it only has a small impairment with respect to f1 (1.5%), but a
large improvement with respect to f2 (57.0%). When computing an approximation
of the set of nondominated points we obtain for the weighted sum method with the
a posteriori parameter update rule (R3) the solution z3 = (94.2, 0.1)>, which we
expect to be the (local) ideal point. Thus, the second objective is nearly reduced to
its minimum, zero pollution, and the objective function value of the first objective is
only slightly worse compared to z1 (0.4%). Note that z3 dominates z2, i.e., z2 leaves
the approximation when z3 is inserted.
A closer look at the two control strategies for z1 and z3 reveals that the water

quantities to be released are simply shifted, see Figure 8.4. By releasing more clean
water in earlier time steps, capacity is made available for the time steps when polluted
water streams in. Thereby, nearly all the polluted water can be kept in the network.
But whether such an ideal strategy is possible depends on the parameters of the
scenario and can not be guaranteed in general, as the following example shows.
Scenario 2: We consider the same inflow data as in Scenario 1 but limit the capacity
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Figure 8.4: Total release (left) and pollution mass (right) for solutions z1 (min release) and
z3 (shifted)

of the pump in the first 700 time steps. Instead of 90 l/s, only 18 l/s (20%) can be
pumped out of the storage unit. This represents the case that less water can leave
the storage unit in the first time steps because the capacity of the network behind
the pump is exhausted.
In this example we can not shift water volumes in order to reduce the pollution

of the released water to zero. We thus have a significant conflict between the two
criteria. Improving the solution with respect to one criterion causes an impairment
with respect to the other criterion. While the optimization with respect to the
first objective yields z1 = (140.5, 14.0)>, the best value for the second objective is
obtained for solution z2 = (217.0, 0.2)>. Note that, similar to the previous example,
we can find a good compromise solution z3 = (147.4, 3.1)> that improves the water
quality immensely (by 78.9%), whereas the released quantity only rises by 4.9%. An
approximation generated with the weighted sum method is depicted in Figure 8.5.
Note that even though many more subproblems are solved, the approximation only
contains four points since in most subproblems dominated points are computed.

Total Release versus Constant Inflow to the WWT

The third objective, the minimization of variations in inflow to the wastewater treat-
ment plant, was investigated separately. Different from the goal to minimize pollution
mass, we see this goal clearly subordinate to minimizing the total release of water.
Therefore, we search only among the optimal solutions of the minimal total release
problem for an optimal solution of minimal variance of inflow to the wastewater treat-
ment plant. Consequently, the lexicographic optimization approach is applied in this
case. As in the previous case, there exist scenarios for which this secondary objective
is automatically optimized in the primary optimization process. If, for example, in
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numerical issues dominated points are obtained which are not depicted

each time step water has to be released, then there are no variations in the inflow
to the wastewater treatment plant since the channel connecting to it is always fully
charged. To avoid trivial cases in the following, we consider only scenarios in which
release of water does not occur in every time step. Figure 8.6 shows the considered
inflow data. In this example, the pump is controlled.
Minimizing the total release yields a solution for which no water is released at all

(f1 = 0). There are infinitely many controls leading to this result, and the optimal
control returned by the solver depends on the starting solution. Figure 8.6 shows
two solutions minimizing the total release obtained from different starting solutions.
Fixing the total release to zero and optimizing with respect to the second objective
then yields in both cases a much smoother control than before. Note that these
smoothed solutions would probably not have been found by only considering the
total release of water and, thus, the lexicographic approach significantly improves
the solution.
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Figure 8.6: Inflow (left) and two different controls minimizing total release and their
smoothed counterpart
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8.4 Computational Results

Comparison of the Parameter Selection Rules

As expected, the simple a priori parameter scheme (R1) with the evenly distributed
parameters not related to the magnitude of the objective function values performs
quite badly for the weighted sum as well as for the augmented weighted Tchebycheff
method. Recall that the ε-constraint method is not evaluated with this simple rule.
For N = 10, no new solution different from the solution obtained for weights (1, 0)>

is computed. So the variation of the weights is useless because no new solution is
found due to the relative ‘overweighting’ of the first objective. This is also observed
for the augmented weighted Tchebycheff method with evenly distributed directions.
The improved a priori rule (R2) performs well. After having computed the two

lexicographic minima, different new points that are mutually nondominated are found
with all three scalarization methods.
With the adaptive rule (R3) the termination criterion is typically reached very

quickly. Hence, only few iterations are performed and, thus, only few new points
are generated. However, the generated points have a good quality, in general. For
example, the quasi-ideal solution of the first scenario was computed with this rule.
For generating an approximation of the Pareto set in the wastewater management

problem it seems to be the best option to use an a priori parameter scheme (R2),
because, on the one hand, it automatically includes information about the magnitude
of the objective function values and, on the other hand, it screens the interesting
region without premature termination. However, the adaptive method (R3) also
contributes points not found by the a priori method.

Comparison of the Scalarizations

In general, we can say that all three methods, the weighted sum, the ε-constraint and
the augmented weighted Tchebycheff method, solve the problems in a satisfying way.
All three methods contribute points to the approximation. However, we notice that
for the considered example problems the weighted sum method seems to generate
better solutions, i.e., contributes more points to the final approximation. This can be
explained by the structure of the scalarized optimization problems. In the weighted
sum method no new constraints are introduced. This in turn also means that every
control associated to an intermediate solution is feasible both for the original optimal
control problem as well as for the scalarization. For methods in which constraints are
added, the initial and intermediate solutions may be infeasible and, thus, the solver
has to find an optimal and feasible solution simultaneously. Even if the infeasibility
with respect to the scalarization is not a problem because the solution is feasible for
the optimal control problem, this may, nevertheless, influence the quality of the final
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objective function value obtained after a prescribed number of iterations.

Numerical Results for the Academic Test Network and Three Criteria

Finally, we present the results obtained for the academic network from Heusch and
Ostrowski (2012), see Figure 8.1. Four different data sets for inflow values are given,
see Figure 8.7. We consider the data recorded during the first four hours of the time
series given in Heusch and Ostrowski (2012), Figure 9. One control step takes 10
minutes. The problem consists of 24 variables which equal the number of control
steps during the considered four hours. Our reference problem is the uncontrolled
case, i.e., 90 l/s leave B01 constantly. For every instance, a tricriteria optimization
problem is solved where the third objective is lexicographically optimized after the
approximation of the nondominated set with respect to the first two objectives has
been computed.
In the first example, the uncontrolled solution is (1192.34, 349.15)>. With the lex-

icographic approach we get (304.93, 64.87)>, which corresponds to an improvement
of 74.4% with respect to the first and 81.4% with respect to the second objective.
With the weighted sum method we find the even better solution (280.30, 58.98)>

for weights (0.6, 0.4)>. In the second example, the same inflow data is used as in
Example 1 but the lower storage unit B01 is set one meter deeper and the power of
the pump behind the upper storage unit B02 is increased from 90l/s to 120l/s. The
uncontrolled solution is (850.49, 236.67)>. With the lexicographic approach we get
(0, 0)> which is the ideal solution. In the third example, the uncontrolled solution
is (850.70, 48.27)>. With the lexicographic approach we get (287.52, 14.38)>. No
better solution was found so we expect this solution to be the ideal solution. In
the fourth example, the uncontrolled solution is (771.76, 88.50)>. With the lexico-
graphic approach we get (312.09, 24.12)>. With the weighted sum method we find
the improved solution (303.76, 23.32)> for weights (0.1, 0.9)>.
Note that for all test problems, the lexicographic minimization with respect to

the third objective, the minimization of variations of control, did not lead to an
improvement of the third objective while maintaining the objective values in the first
two components. Therefore the resulting controls are not stated here.

8.5 Conclusion and Further Ideas

The numerical study presented in this chapter demonstrates that the successful ap-
plication of adaptive methods highly depends on the quality of the computed points.
When, for some reason, the single-criterion solver cannot compute global minima
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(b) COD Example 1 and 2
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(c) Inflow Example 3
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(d) COD Example 3
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(e) Inflow Example 4
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Figure 8.7: Inflow and pollution density at the two runoffs S01 and S02
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that correspond to nondominated points of the multicriteria problem, an adaptive
parametric algorithm might not work properly. In this situation, an a priori parame-
ter scheme might yield better results. Moreover, the final approximation might only
contain few points. From a theoretical perspective and in comparison to the results of
Chapter 7, the results obtained in this chapter are disappointing. Nevertheless, since
we were able to improve the uncontrolled solutions considerably, the results might
be satisfactory for the practical application. In all considered examples, significant
reductions in the pollution of released water could be achieved at the price of only a
small increase in the total overflow, i.e., the total amount of released water.
Future research should address the observed numerical problems from the point of

view of multiobjective approximation algorithms. By combining appropriate scalar-
izing functions with an adaptive approach, an approximation of the nondominated
set that is in a certain sense robust with respect to non-optimality in the subproblems
is aimed at.
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9 Conclusion

In this thesis, we elaborated a new adaptive parametric algorithm based on a sys-
tematic decomposition of the search region. The algorithm consists in the iterative
solution of a scalarization for different parameter choices. Thereby, common scalar-
izations like the classic ε-constraint or the (augmented) weighted Tchebycheff method
can be used. The algorithm is universally applicable to generate (discrete) represen-
tations of discrete and continuous, convex and non-convex multicriteria optimization
problems.
An important ingredient for achieving efficient parametric algorithms are adaptive

parameter schemes. The notion ‘adaptive’ means that the parameters of the chosen
scalarization are constructed dependent on the nondominated points that are known
so far. Given a subset of the search region that is defined by components of known
nondominated points, the parameters of the scalarization are chosen such that either
a new nondominated point in the considered subset is generated or that this subset
can be discarded from the search region. While adaptive parameter schemes have
already been derived for the ε-constraint and the weighted Tchebycheff method, no
formulas for selecting all parameters of the augmented weighted Tchebycheff method
in an adaptive way have been available so far. In most applications, only the weights
are selected adaptively but the augmentation parameter is fixed to a small posi-
tive constant. However, this frequently causes that nondominated points are missed
and/or dominated points are obtained. Other approaches use the augmentation
parameter in order to incorporate trade-off information, but chose the weights arbi-
trarily. However, an adaptive choice of the weights is needed to direct the search to a
certain region within a parametric algorithm. In this thesis, we derived explicit for-
mulas such that all parameters of an augmented weighted Tchebycheff scalarization,
i.e., the weights and the augmentation parameter, can be chosen dependent on the
nondominated points generated so far. Thereby, for discrete problems the parameters
are computed such that it can be guaranteed that a possibly existing nondominated
point in a certain region is generated. For the application in the continuous case
we use a generalized formulation of the augmented weighted Tchebycheff method
and demonstrate under which conditions given trade-off information expressed with
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respect to certain nondominated points can be translated into suitable parameters.
If the nondominated set of the considered multicriteria optimization problem is

finite, a complete representation can be computed with the help of the proposed al-
gorithm. In this case, the number of subproblems solved is of particular interest. In
the tricriteria case we were able to improve the best known upper bound on the num-
ber of subproblems. We showed that at most three subproblems per nondominated
point need to be solved if an initial search region based on the ideal point and an ar-
bitrary upper bound on the set of feasible outcomes is available. We emphasize that
the nadir point is not required in the algorithm. This is important as, in general, the
nadir point is difficult to compute as soon as more than two criteria are considered.
The linear bound on the number of subproblems could be established with the help
of a new split criterion, which allows to avoid the generation of redundant boxes.
In order to find new nondominated points any scalarization can be used by which a
certain box of the search region can be investigated. This includes, e.g., Tchebycheff
approaches with and without augmentation term. If, in particular, the ε-constraint
method is used as scalarization, we could further improve the upper bound on the
number of subproblems. In this case we demonstrated that at most two subproblems
per nondominated point are required to generate a complete representation of the
nondominated set.
Our numerical results confirmed the theoretical findings. We demonstrated with

the help of discrete bi- and tricriteria problems that the entire nondominated set
is computed reliably when the parameters are chosen adaptively according to the
formulas developed in this thesis. In contrast, a fixed choice of the augmentation
parameter caused that a certain percentage of nondominated points could not be
generated. In the tricriteria case we successfully validated the new linear upper
bound with the help of multidimensional knapsack problems. A comparison with very
recent approaches from this field showed that our proposed algorithm can compete
with state of the art algorithms.
We also applied our algorithm to generate incomplete representations for contin-

uous problems. In particular, we compared an adaptive parameter scheme to an a
priori parameter scheme, which is frequently used in practice. We showed that the
parametric algorithm using an adaptive parameter scheme performs particularly well
in the tricriteria case when the nadir point is not available and a substitute overesti-
mating it is used. However, our study also revealed that the main feature of adaptive
parameter schemes, which relies in their adaptivity to the nondominated set, is at
the same time their weakness when the solutions of the subproblems are subopti-
mal, hence, the outcomes are not non-dominated. We experienced this difficulty for
a real-world application, in which the single-criterion solver had to be interrupted
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and, thus, frequently returned non-optimal solutions. In this situation a very simple
parameter selection might be a better choice than a sophisticated adaptive selection.
However, when the outcomes of the subproblems are nondominated or near to non-
dominated points, adaptive parameter schemes are superior to a priori schemes, in
general. By adapting to the shape of the nondominated set, the generation of infea-
sible and/or redundant subproblems can be avoided and, typically, a good coverage
of the nondominated set can be obtained within rather few iterations.
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Notation

N set of natural numbers {1, 2, . . . }
N0 N ∪ {0}
Z set of integer numbers {. . . ,−2,−1, 0, 1, 2, . . . }
R set of real numbers

Rn n-dimensional Euclidean space
Rn> {x ∈ Rn : xi > 0, i = 1, . . . , n}
Rn+, Rn= {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}

X feasible set (subset of Rn)
Z, f(X) set of feasible outcomes (subset of Rm)
XE efficient set, see (2.4)
ZN nondominated set, see (2.5)
R (discrete) representation of the nondominated set, see Definition 2.1
A approximation of the nondominated set, see Definition 2.2
C cone, typically restricted to the Pareto cone C = Rm+

Y 1 + Y 2 algebraic sum of two sets Y 1, Y 2 ⊆ Rm

Rm+ -convex a set Y ⊆ Rm for which Y + Rm+ is convex

< z < z̄ :⇔ zi < z̄i ∀ i = 1, . . . ,m
≤ z ≤ z̄ :⇔ zi ≤ z̄i ∀ i = 1, . . . ,m and ∃ j∈{1, . . . ,m} : zj < z̄j

5 z 5 z̄ :⇔ zi ≤ z̄i ∀ i = 1, . . . ,m

m ∈ N number of objectives, typically m ≥ 2
f : X → Rm (vector-valued) objective function
z point in Rm

zI ideal point, see (2.11)
zU utopian point, point that strictly dominates zI

zN nadir point, see (2.12)
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zM point of individual maxima, see (2.14)

TGij (z) trade-off in z with respect to objectives fi, fj , see (2.8)
Tij(x, x′) ratio of change with respect to x, x′ and objectives fi, fj , see (2.7)

dC(R, ZN ) coverage of a representation, see (2.15)
dU (R) uniformity of a representation, see (2.17)
rH relative dominated hypervolume of a representation

‖ · ‖w,∞ weighted Tchebycheff norm, see (4.1)
‖ · ‖w,ρ augmented weighted Tchebycheff norm, see (4.2)
‖ · ‖Gw,ρ generalized augmented weighted Tchebycheff norm, see (4.25)
Lα contour of the (augmented) weighted Tchebycheff norm
L+
α contour of the (augmented) weighted Tchebycheff norm in Rm+

α level of the contour of a norm
zq inflection point of the contour of a Tchebycheff norm
w weight (vector in Rm)
ρ augmentation parameter (real number)
r reference point (vector in Rm)
d direction (vector in Rm)
ε right-hand side vector of the ε-constraint method (vector in Rm)
η perturbation parameter (vector in Rm)
η̄ perturbation parameter (scalar)

B box, i.e., rectangular subset of a decomposition of the search region
B0 initial search region
u,u(B) upper bound (of box B), vector in Rm

V (B) individual subset of box B
v(B) lower bound of the individual subset of box B (vector in Rm)
Bs decomposition of the search region in iteration s
Bs set of boxes which are split in iteration s
Bs
i (B) neighbor of box B with respect to component i in iteration s
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