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Abstract

This thesis discusses existing methods for the reliable solution of nonlinear systems
of equations and presents various approaches to improve these methods. The
reliability of all methods is ensured by the application of interval analysis.

In particular, the issue of utilizing extended systems is addressed. These sys-
tems are obtained from the given system of equations by the introduction of ad-
ditional variables for suitable subterms.

An existing approach to control the usage of extended systems in an overall
branch-and-bound scheme is presented. Subsequently, a new, adaptive strategy is
developed. This adaptive strategy allows to exploit the advantages of the different
extended systems well-aimed and effectively. We further give detailed considera-
tions concerning the usage of the preconditioned interval Newton method on the
extended systems.

Although the adaptive strategy provides the title for this work, the discussion
of techniques for the reliable solution of nonlinear systems is interspersed with
further deliberations for improvements.

Another significant part of this work is dedicated to the issue of verification
tests. These tests can verify the existence and even uniqueness of solutions in
a given bounded box. Existing verification methods are discussed and different
modifications of the tests are examined. A general scheme to apply verification
tests for square systems is given. For non-square systems we discuss the veri-
fication of square subsystems and especially possibilities to fix the variables of
underdetermined systems.

Our theoretical considerations are supported by numerical studies within the
framework of the software SONIC, in which the proposed algorithms and strategies
have been implemented and tested.





Zusammenfassung

Im Rahmen dieser Arbeit werden verschiedene Ansätze zur Verbesserung exis-
tierender Methoden zum verifizierten Lösen nichtlinearer Gleichungssysteme dis-
kutiert und diverse Ansätze zur Verbesserung dieser Methoden vorgestellt. Die
Verlässlichkeit dieser Methoden wird durch die Anwendung der Intervallrechnung
gewährleistet.

Besondere Aufmerksamkeit wird auf die Betrachtung erweiterter Systeme ge-
legt. Diese entstehen, wenn in ein vorgegebenes System zusätzliche Variablen für
geeignete Teilterme eingeführt werden.

Es wird ein bekannter Ansatz zur Nutzung erweiterter Systeme innerhalb
eines Branch-and-Bound-Verfahrens vorgestellt. Anschließend wird ein neuer,
adaptiver Ansatz entwickelt. Dieser adaptive Ansatz erlaubt es, die Vorteile
der verschiedenen erweiterten Systeme gezielter und effektiver auszunutzen. Des
Weiteren werden detaillierte Überlegungen zur Nutzung des präkonditionierten
Intervall-Newton-Verfahrens auf den erweiterten Systemen angestellt.

Obwohl die adaptive Strategie den Titel dieser Arbeit liefert, ist die Diskus-
sion der Techniken für die verlässliche Lösung nichtlinearer Gleichungssysteme
durchsetzt mit Überlegungen zu weiteren Verbesserungsmöglichkeiten.

Ein weiterer signifikanter Teil dieser Arbeit ist dem Thema der Verifikations-
tests gewidmet. Betrachtet werden Methoden zur Verifikation der Existenz und
Eindeutigkeit von Lösungen nichtlinearer Gleichungssysteme. Es werden Tests
zur Verifikation von Lösungen diskutiert und Modifikationen dieser Tests unter-
sucht. Zudem wird ein Schema zum Einsatz der Verifikationstests für quadratische
Systeme angegeben. Für nichtquadratische Systeme wird die Verifikation quadra-
tischer Untersysteme besprochen, insbesondere im Hinblick auf die Fixierung von
Variablen für unterbestimmte Systeme.

Die theoretischen Ausführungen werden unterstützt durch numerische Studien
im Rahmen des Programms SONIC, in dem die vorgeschlagenen Algorithmen und
Strategien umgesetzt und getestet wurden.
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Introduction

In contemplation, if a man begins with certainties he shall end in doubts;
but if he will be content to begin with doubts, he shall end in certainties.

Francis Bacon

Employing computers for calculating solutions of mathematical problems en-
ables us to resolve many problems much faster and/or more accurately than possi-
ble by hand. Although, everybody dealing with calculations on computers should
know that care has to be taken to avoid computational errors whenever solving
a problem numerically. Some of these errors can be alleviated by the application
of numerically stable methods. We face this restriction by space limitation when
storing information physically. In addition, computers cannot even store some
seemingly innocuous numbers. An often-quoted example is 0.1 = 1/10. Why can
this number not be stored—although only two digits are needed for its decimal
representation? The simple answer is that computers do not work with decimal
numbers, but with binary ones. The decimal number 0.1 is represented by 0.00011
in the binary system. To be stored exactly it would thus require an infinite number
of digits.

However, there are ways to calculate rigorous solutions despite the shortcom-
ings of computers in representing numbers exactly. One of them is to enclose
all numbers and uncertain values by intervals. Interval analysis provides funda-
mental rules and universal methods to deal with these intervals. Every method
takes into account all possible sources of errors and provides guaranteed results.
By contrast to earlier approaches for utilizing intervals in calculations, interval
analysis includes automated error handling. Its main principle is to validate the
assumptions of mathematical claims with the help of interval calculations.

In summary, interval analysis computes with guaranteed enclosures of given
values instead of numbers of finite precision. It enables us to calculate rigor-
ously and provides trustworthy results. This makes it a perfect tool for reliable
computations.



2 Introduction

Since the need for reliable numerical calculations arose as recently as comput-
ers were used for the solution of mathematical problems, interval analysis is a
relatively young subject. First works relating to interval operations seem to be
published around the year 1930. Nevertheless, R. E. Moore’s “Interval Analy-
sis” [Moo66], published in 1966, is generally taken to be the first important work
on this subject. Since its publication interval analysis has become a field of inter-
est for a number of researchers, augmenting it with more methods and new areas
of application.

In practice, however, interval computations did not gain full acceptance for
a long time. One reason for this is that the naive approach to replace numbers
and operations in a given algorithm by their interval counterparts is in most cases
bound to fall short due to vast overestimation of the desired result.

Meanwhile, appropriate interval methods have been developed for many fields
of interest. Basic examples for sophisticated interval methods are those for en-
closing the values of a function for all arguments in an interval. Of course, also
more complex tasks such as solving systems of linear and nonlinear equations as
well as optimization problems have been discussed before (as in [Han92], [Kea96b]
and [Neu90]). Further fields of interval analysis include the verification of solu-
tions (see Chapter 4) and the solution of differential equations [Ebl07]. Applica-
tions of interval analysis can, e.g., be found in satisfiability problems [FHT+07], in
robotics and robust control (see for example [JKDW01]), the analysis of chemical
processes [BBLSA04,BLMM01], and even in the search for Nash equilibria [KW10]
and computer assisted proofs [CFL09,BLUW09,Fro01].

Many interval-related publications can be found in the Reliable Computing
journal [webb]. Even more publications, historical information, fields of applica-
tions and software employing interval computations are listed in publications such
as [Kea96a] and online [weba].

For most practical calculations, still floating point procedures are employed.
They have been under development for some decades and quite a few have been
highly optimized. But floating point computations cannot grant guaranteed so-
lutions. They suffer not only from rounding errors in the given numbers, but
also from the accumulation of rounding and truncation errors within the line of
computation.

A common approach to check floating point computations is to calculate with
different precisions of the utilized numbers. The results of those computations
are assumed to be correct if their first significant digits coincide. This approach
may be less time-consuming than to use interval methods, but it is not sufficient
to ensure the correctness of the result. Indeed, it cannot even guarantee that the
result approximates the solution. In an example given by Rump (published, e.g.,
in [Rum10, p. 9]) computations in three different precisions seem to lead to the
same result. Thus, one would have to trust in the results if there is no possibility to
check the results by other means. However, the computed results for this example
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are not only plainly wrong, they do not even have the right sign! Interval analysis
may not lead to a better approximation of the exact solution, but it provides us
with an interval guaranteed to contain the solution and may draw attention to
numerical instabilities.

Reliable computations are especially important for safety-critical applications.
For them one should not rely on error-prone floating point calculations. This still
holds true if reliable computations are more expensive with regard to computation
time or memory.

Furthermore, with more research in interval analysis, interval methods will
most probably become faster and provide more accurate results. And there already
exist interval methods that are faster than their real-valued counterparts (for
references see [Kea96a, p. 6]).

⋄

This work aims at promoting the scientific progress in interval analysis. Its
focus is the development and improvement of methods to solve nonlinear systems
of equations rigorously and efficiently and of tests to verify solutions of those
systems.

To be able to present these methods, basic definitions are introduced and
the principles of interval analysis are discussed (see Chapter 1). Subsequently
the problem of solving nonlinear systems of equations in an interval context is
introduced formally. Afterwards, we give an overview of the methods utilized to
solve this problem class (see Chapter 2). We augment this overview by several
suggestions for improvements.

The idea and usage of extended systems is introduced in Chapter 3. Emphasis
is put on strategies to solve nonlinear systems of equations even faster with the
help of extended systems. As a result of the conducted studies, a new, adaptive
strategy is proposed that improves the utilization of these systems. The new
strategy is analyzed in detail.

Chapter 4 is dedicated entirely to verifying the existence and uniqueness of
solutions in a predefined area. Various modifications of existing verification tests
are investigated.

Most strategies proposed in this work have been integrated into the verified
solver SONIC. Chapter 5 gives a general introduction of this program. Although
this chapter only provides an overview and cannot serve as manual, users of SONIC
may find helpful advice and an outline of the features of this tool.

Eventually, a review states the achievements of this work and gives pointers
for possible future work.





Chapter 1

Notations and the basics of
interval analysis

Information is the resolution of uncertainty.

Claude Shannon

We define and use most technical terms and notations as suggested in [KNN+02]
and recent books about interval analysis. Experts in interval analysis may there-
fore safely skip this chapter. Note, however, that we utilize not only bounded
intervals but also unbounded ones. If necessary, further information can be found
in the list of used symbols in the appendix.

Most of the definitions and descriptions in this chapter are given regard-
ing functions already implemented in the solver SONIC. For this reason, they
mainly follow earlier work related to this program (especially [BBLW04], [Wil04]
and [Bee06]). (In his dissertation Beelitz gave a comprehensive description of all
functions implemented up to then. Unfortunately this work is written in Ger-
man. For completeness and the reader’s convenience we thus decided to give
descriptions of the most important functions nonetheless.) For a comprising sur-
vey of interval analysis the reader may want to consult further literature such
as [Moo66], [AH83], [Neu90], [Han92] or [JKDW01].

This chapter will introduce some basic definitions and claims concerning in-
tervals and the arithmetic on intervals. Since the theoretical claims require exact
computations, section 1.9 deals with the issue of transferring theory into practice
and real numbers to machine intervals.

Notations that are not introduced in this chapter will be are announced where
they are needed.

5



6 Notations and the basics of interval analysis

1.1 Algorithms, numerical results and fonts

1.1.1 Notation of algorithms

All algorithms that occur in this work are denoted in pseudo code and use common
instructions. An example for the appearance is given by Algorithm 1.1. Further
we often shorten constructs for more concise notations and paraphrase specific
instructions in words.

Algorithm 1.1 Name of the algorithm (parameter1, . . . )

1: for elements for which the body of the for loop is executed do
2: instructions {comment}
3: end for
4: while condition do
5: instructions
6: continue {ends current pass of a loop}
7: exit {terminates the algorithm}
8: end while
9: if condition then

10: instructions
11: else
12: instructions
13: end if
14: x← y {assign variable x with value of y}

1.1.2 Numerical results

The theoretical considerations presented in this work are supported by numerical
results. For this purpose newly established as well as modified methods have been
implemented and evaluated with the help of numerical experiments.

Some heuristics in this work evolved from theoretical considerations about dif-
ferent approaches and subsequent systematic testing of the corresponding imple-
mentations. Herein the heuristics have been developed with regard to performance
for a small set of test problems and evaluated using a larger set. The main goal
of this development was to provide algorithms that are suited for a wide range
of nonlinear systems while providing good results with default settings. Still all
algorithms should be adjustable to specific problems.

The methods presented in this work are often assessed based on their compu-
tational costs. Those costs comprise computation time as well as memory require-
ments. Within this work the latter are not regarded explicitly, instead the needed
number of “boxes”(defined below) for the main branch-and-bound algorithm is
evaluated. Note that the computational costs of a specific strategy always de-
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pends on several parameters and that the effects caused by the parameters often
interfere.

All numerical tests were executed with the help of SONIC, a rigorous solver and
optimizer. The acronym stands for Solver and Optimizer for Nonlinear Problems
based on Interval Computation. If not stated otherwise, all timings and results
were obtained by serial computations on an Intel R©CoreTM2 Quad CPU Q9650 @
3.00GHz employing the interval library C-XSC 2.2.4.

All timings displayed in this work are given in seconds and rounded to one
decimal place. If those timings have been used to compute further values, we used
measurements in higher precision. Note further that the tests have been conducted
in different stages of the development of SONIC. Nonetheless, the results we com-
pare directly are yielded by versions differing only in the evaluated parameters or
methods.

1.1.3 Conventions

Some noticeable values are highlighted, especially in tables. They are either em-
phasized as good or not so good. Parameters, problems and files used in SONIC
are highlighted as well.

Even before Chapter 5 will introduce SONIC in detail, we give some back-
ground information on the program close to the respective theoretical discussion.
This is either done in separate sections or within the text, where appropriate.

Small text passages only related to the implementation in SONIC are detached
by shaded background color. They can be skipped by the reader without missing
theoretical deliberations.

1.2 Intervals

There exist several approaches on how to define intervals. The Kaucher notation,
for example, uses midpoint and radius to define an interval. Another important
example are complex intervals.

We use the most common definition and handle intervals as connected and
closed sets of real numbers defined by a lower and an upper endpoint. In addition,
we allow our intervals to be unbounded sets. This becomes an advantage when it
comes to enclosing parameters in real world problems. For them it is not always
possible to determine finite guaranteed bounds. Thus, if we could only handle
intervals that are bounded by real numbers, we would have to introduce artificial
bounds for those values. Since this is not necessary when using unbounded inter-
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vals, we use them in theory as well as in the implementation in SONIC. Hence,
we are not compelled to introduce artificial bounds, but are free to work with the
truly known range of all values.

For representing the desired kind of interval, the set of real numbers R is
extended by the two elements −∞ and +∞ fulfilling

−∞ < a < +∞, for all a ∈ R.

R is thus augmented to the set of extended real numbers ∗R by defining

∗R := R ∪ {−∞,+∞}.

Instead of writing +∞ we will just write ∞ later. It is also worthwhile to stress
explicitly that some expressions in the extended real numbers are not defined
(such as −∞ + ∞). We evade these expressions by suppressing the—not very
helpful—intervals [−∞,−∞] and [+∞,+∞].

To denote intervals, we write x = [x, x] with bold face indicating interval
values. Thereby x is called the lower bound , lower endpoint or infimum and x the
upper bound , upper endpoint or supremum of the interval x.

Given this notation, an arbitrary non-empty interval in the extended real num-
ber system can be written as

x = [x, x] = {x ∈ R | x ≤ x ≤ x, x ∈ ∗R\{∞}, x ∈ ∗R\{−∞}} .

A non-empty interval x is called bounded if its limits x and x are real numbers, it
is called half-bounded if exactly one of its limits is finite. Every non-empty interval
that is not bounded is called unbounded. (Thus also half-bounded intervals are
unbounded.)

Note that neither bounded nor unbounded intervals contain the infinite values
+∞ and −∞. Intervals only comprise elements in R, whether when their borders
lie in R or ∗R. For reasons of consistency of the denotation, unbounded intervals
are denoted by [a,∞]—although the common mathematical notation of this in-
terval would be [a,∞). For the empty interval, containing no real number, we use
the symbol ∅ for the empty set.

The set of all non-empty intervals is denoted as ∗IR, the set of all bounded
intervals as IR. We can define the latter by

IR := {[x, x] ∈ ∗IR | x, x ∈ R} .

The sets and their power sets (denoted by P) are obviously connected by the
following relations

IR ( ∗IR, IR ( P(R) and ∗IR ( P(∗R).

A bounded interval x is called a point interval or thin if x equals x. In other
words, a point interval consists of exactly one real number. (In other publications
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this kind of interval is also called a punctual or degenerate interval .) Every real
number x ∈ R can be embedded into ∗IR (and IR) by identifying it with the point
interval [x, x]. This interval corresponding to the number x is also denoted by
[x]. Whenever we use real numbers in interval analysis we consider them as point
intervals. In practice, we even have to embed numbers and intervals into the set of
intervals with machine-representable limits (cf. section 1.9). In this case, a single
number that cannot be represented on the computer has to be represented by an
interval x with nonzero width.

An interval that is neither a point interval nor empty is called a proper in-
terval or thick and comprises infinitely many real numbers. We further call an
interval positive (nonnegative or negative) if it contains only positive (nonnegative
or negative) numbers.

Definition 1.1 (Functions of intervals)
For non-empty intervals x ∈ ∗IR the following functions are defined.

• Infimum inf(x) := x = inf{x | x ∈ x}

• Supremum sup(x) := x = sup{x | x ∈ x}

• Midpoint mid (x) :=

{
0 if x = −∞ and x =∞
x+x
2 else

• Width width (x) := x− x
(also called diameter)

• Radius rad (x) := 1
2 · width (x) =

1
2(x− x)

• Magnitude |x| = mag(x) := max{|x| | x ∈ x}

• Mignitude mig(x) := min{|x| | x ∈ x}

• Interior int (x) := {x ∈ x | x < x < x}

• Topological boundary ∂(x) := {x, x}

Note that midpoint and width of x are always defined and the width is nonnegative
because the definition of intervals specifies x ≤ x, x 6= ∞ and x 6= −∞. Further
the magnitude of an interval argument should not be confused with the absolute
value for real-valued arguments.

These definitions are applicable for arbitrary intervals in ∗IR since bounded as
well as unbounded intervals only contain elements in R. Furthermore, as intervals
are a only a special kind of sets, we use the usual notation for subsets, supersets
and the set operations, as intersection and union, with their traditional meaning.
We speak of disjoint sets if their (pairwise) intersection is empty.
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Note that the union of two disjoint intervals [a, b] and [c, d] from ∗IR is not
necessarily an interval itself. It can also be a more general kind of set. (In case
of b < c the union of the intervals is [a, b] ∪ [c, d].) To be able to work in ∗IR one
defines an operator enclosing an arbitrary set of real numbers with the smallest
possible interval. It is called the box operator �. For P ∈ P(R) it is given as

� : P(R)→ ∗IR

�(P ) :=

{
[inf(P ), sup(P )] if P 6= ∅,

∅ else.

Thus we get an interval—but have to accept overestimation of the set P . (For
our example, �([a, b] ∪ [c, d]) yields the interval [a, d]. The overestimation thus
comprises all numbers between b and c.) Having to enclose arbitrary sets by
intervals is one of the reasons forcing us to deal with overestimation whenever
calculating in ∗IR.

SONIC can store finite unions of intervals. As long as we do not make use of
the information about gaps (cf. section 2.2.1), computations are conducted with
the hull of this union. (So our theorems do not need to be reformulated for unions
of intervals.)

1.3 Vectors of real numbers and intervals

We denote vectors in the extended real numbers ∗R as

x = (x1, . . . , xn)
T ∈ ∗Rn

and vectors of intervals as

x = (x1, . . . ,xn)
T ∈ ∗IR

n

with subscripts indicating components. In general, interval values are set in bold
face to separate them from real-valued ones. There is no typographical distinction
between numbers and vectors. Following the common usage in mathematics we
use lower case for both of them. Dimensions will be apparent by context.

Interval vectors in IRn can be interpreted as (possibly hyperdimensional) cu-
boids and as boxes in the special case IR3. We generalize this term and call every
arbitrary, possibly unbounded, interval vector x ∈ ∗IRn a box .

A box is called bounded if all its components are bounded and unbounded
if at least one of its components is unbounded. It is called half-bounded if it
contains at least one half-bounded component and consists only of bounded and
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half-bounded components. Furthermore, if a box x ∈ ∗IRn is contained in
another box y ∈ ∗IRn in the sense of

x ⊆ y ⇔ xi ⊆ yi for all i ∈ {1, . . . , n},

we call x a subbox of y and y a superbox of x.

In the special case of decomposing a box x into k subboxes x(1), . . . ,x(k) fulfilling

x = x(1) ∪ . . . ∪ x(k)

and
int (x(i)) ∩ int (x(j)) = ∅ for all i, j ∈ {1, . . . , k}

we speak of a subdivision of box x and say that x is subdivided into the set
{x(1), . . . ,x(k)}. If only the first condition is fulfilled, we speak of a covering of
box x. In both cases we say that we subdivide the box x.

When subdividing in the branch-and-bound algorithm we use denotations re-
sembling terms of genealogy. We speak of a parentbox x for the box we subdivide
and of childboxes for the resulting boxes x(1), . . . ,x(k) . The childboxes form a
covering or subdivision of the parentbox. An ancestorbox of a box x is a box that
was subdivided into childboxes once or repeatedly with x being one of the evolving
parts. Owing to these definitions, trivially every box is a subbox of all its parent-
and ancestorboxes. The concepts of super- and subboxes as well as parent- and
childboxes is depicted by Figure 1.1.

Note that a slight change of meaning will prove to be beneficial in Chapter
2. In this chapter the terms ancestorbox, parentbox and childbox are also used if
boxes are not only subdivided but on the back of this also contracted.

(a) Superbox and subbox (b) Parentbox and two childboxes

Figure 1.1: Relations of boxes

1.4 Matrices of real numbers and intervals

Matrices are denoted by capital letters. They are written as

A = (ai,j)i=1,...,m
j=1,...,n

for matrices A from ∗Rm×n and
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A = (ai,j)i=1,...,m
j=1,...,n

for interval matrices A from ∗IRm×n.

As well as real numbers are embedded into ∗IR, vectors and matrices of real
numbers are embedded into the set of interval vectors ∗IRn and matrices ∗IRm×n,
respectively, by identifying every component with the corresponding point interval.

As usual, a square matrix in Rn×n is denoted as regular or nonsingular if it is
invertible. A square interval matrix in ∗IRn×n is labeled regular or nonsingular if
it contains only regular matrices in Rn×n. In any other case, both matrix types
are called singular.

Of course, the nonsingularity of an interval matrixA can be checked in different
ways. According to Beelitz [Bee06] an appropriate way is to show

||I −∆C ·A||∞ < 1

using the inverse midpoint preconditioner C = (mid (A))−1. Further conditions
for nonsingularity may be found in [RR95] or [Roh09].

1.5 Functions of interval vectors and matrices

For vectors and matrices of real numbers we use the operations of linear algebra
in the usual sense. The box operator is applied componentwise, so for P ∈ P(Rn)
we get �(P ) := (�(P1), . . . ,�(Pn))

T .

If possible, functions defined for intervals are transferred to work on inter-
val vectors by applying the original functions to every component of the interval
vector. By doing so we get the following definitions.

Definition 1.2 (Functions of interval vectors)
For interval vectors x ∈ ∗IRn we define the following functions.

inf(x) := (inf(x1), . . . , inf(xn))
T = (x1, . . . , xn)

T

sup(x) := (sup(x1), . . . , sup(xn))
T = (x1, . . . , xn)

T

mid (x) := (mid (x1), . . . ,mid (xn))
T

width (x) := (width (x1), . . . ,width (xn))
T

rad (x) := (rad (x1), . . . , rad (xn))
T

mag(x) = |x| := (|x1|, . . . , |xn|)
T

mig(x) := (mig(x1), . . . ,mig(xn))
T

int (x) := (int (x1), . . . , int (xn))
T
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In addition, the volume of a box x is defined as

vol(x) :=

n∏

i=1

width (xi)

and its topological boundary as

∂x :=
n⋃

i=1

(
(x1, . . . ,xi−1, xi,xi+1, . . . ,xn)

T ∪ (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)
T
)
.

As for interval vectors, we transfer the functions inf, sup, mid , width and
� componentwise to interval matrices. Further, for each differentiable function
f : Rn → Rm, the Jacobian matrix comprising all first-order partial derivatives of
f is denoted as Df . For m = 1 we use ∇f to denote the gradient of a function f .
For twice differentiable functions the matrix of the second order partial derivatives
is written as D2f . For m = 1, matrix D2f is referred to as the Hessian matrix of
the function f .

1.6 Interval arithmetic

As for real numbers, one has to define operations and elementary arithmetic func-
tions for intervals in order to work with them. The proposed interval arithmetic
is called extended (since it is working on intervals with endpoints in the extended
real numbers). The extended arithmetic operations are mainly adopted from the
study in [HvEW98].

Note that we confine ourselves to the discussion of real-valued functions f :
Rn → R. One can easily generalize the definitions to functions of higher dimen-
sions by applying the given definitions to their components. Furthermore, we
assume to calculate exactly in the following. In section 1.9 we will discuss some
further aspects that have to be considered when implementing interval analysis
on a computer.

Definition 1.3 (Range of a function)
May f : Rn → R be a real-valued function, then the range of f over D ∈ P(Rn)
is defined as

rangef : P(Rn)→ P(R)

rangef (D) = {y ∈ R | it exists an x ∈ D with f(x) = y}.

For the range over a box x ∈ IRn we get the special case

rangef (x) = {y ∈ R | it exists an x ∈ x with f(x) = y}.
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Since also unbounded boxes only have elements in the real numbers, the last formula
can be applied for unbounded boxes x ∈ ∗IRn as well leading to the definition

rangef : ∗IRn → P(R)

rangef (x) = {y ∈ R | it exists an x ∈ x with f(x) = y}

where rangef (x) is called the range of f over the interval x.

The range provides us with the set of all output values of function f for ar-
guments x in x for which the function is defined. Note that the range of f over
x is defined even if f is not defined for every real number x in the interval x.
For instance, the function f defined by f(x) = 1/x is not defined for x = 0, but
rangef ([0, 1]) = [1,∞].

The range can be an arbitrary subset of the real numbers. Thus, if we want
to work only with intervals and boxes, a further definition is needed.

Definition 1.4 (Function enclosure)
Let f : Rn → R be a real-valued function. Every function f : ∗IRn → ∗IR fulfilling

f(x) ⊇ rangef (x) for all x ∈ ∗IR
n

is called a function enclosure of f .

In other publications a function enclosure is also called an interval enclosure
or inclusion function. If it is clear that we refer to a function, we will also just
speak of the enclosure. For clear notations the function enclosure will be denoted
as [f ] instead of f whenever appropriate.

The crucial point to be derived from the definition is that every function enclo-
sure is guaranteed to contain the range of the function. For reliable computations
this is an advantage over using an approximation of the function (cf. also Figure
1.2).

(a) Evaluation by approximation (b) Evaluation by function enclosure

Figure 1.2: Approaches to evaluate a function

In the past, different methods to compute function enclosures have been de-
veloped. These differ widely in regard to the quality of the results and the com-
putational costs. Quality herein refers to the sharpness of a function enclosure.
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Definition 1.5 (Sharpness of a function enclosure)
We say that a function enclosure f1(x) is better or sharper than another enclo-
sure f2(x) for the same function over a box x if f1(x) ⊂ f2(x).

Of course, we are interested in minimizing the overestimation of the true range.
Thus we want our function enclosures to be as sharp as possible. Some examples
for function enclosures and a further measure for the quality of function enclosures
can be found in section 1.8.

A first, very simple function enclosure is the function always returning the
interval [−∞,∞]. Moreover, it is the one with the maximum width and suited for
every function. However, this function enclosure is completely useless in practice.

On the other hand, if the range of f over each x is an interval itself, the
sharpest possible function enclosure is given by

f(x) = rangef (x) for all x ∈ ∗IR
n.

Unfortunately, for general functions, the range does not always yield single inter-
vals. If the range is no interval, the best enclosure one can attain is

f(x) = �(rangef (x)) for all x ∈ ∗IR
n.

Consider, for example, the range of f(x) = 1/x over the box [−1, 1]. It is given as
rangef ([−1, 1]) = [−∞,−1] ∪ [1,∞]. The smallest interval enclosing this range is
[−∞,∞].

Still, for some functions the range over a box is an interval and therefore itself
the sharpest possible function enclosure. Due to the intermediate value theorem,
this property is fulfilled for the important class of continuous functions. If the
function is monotonic as well, one can even attain explicit formulae for the range.
By virtue of these formulae we do not need to consider an infinite number of real
numbers to determine the range, it is enough to compute with the endpoints of
the interval arguments.

Note that explicit formulae are absolutely necessary when implementing in-
terval analysis, since we cannot apply the theoretical formula for the range of a
function when working with a computer but are bound to methods requiring only
finitely many operations. For instance, the ranges of the arithmetic operations
“+”, “−” and “·” over intervals [a, b] and [c, d] can be computed using formulae
(1.1), (1.2) and (1.3) because the functions are continuous, their ranges over in-
tervals are intervals themselves and thereby the best possible enclosures. (We also
use the shorter notation xy instead of x ·y when a multiplication is to be applied.)

[a, b] + [c, d] = [a+ c, b+ d] (1.1)

[a, b] − [c, d] = [a− d, b− c] (1.2)

[a, b] · [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}] (1.3)
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A proof of these formulae for unbounded intervals can be found in [HvEW98].

We can further give exact ranges for monotonic continuous functions, as for
the exponential function over a bounded box [a, b] ∈ IR

exp([a, b]) = [exp(a), exp(b)].

Moreover, this is also possible for piecewise monotonic functions like sine or cosine.

If we want to extend division to intervals, we can make use of the following
formula for the range given e.g. in [Bee06].

[a, b]

[c, d]
=





[a, b] · [1/d, 1/c] if 0 6∈ [c, d]

∅ if c = d = 0

[a/d,∞] if a ≥ 0, c = 0

[−∞,∞] if 0 ∈ [a, b], c = 0

[−∞, b/d] if b ≤ 0, c = 0

[−∞, a/c] ∪ [a/d,∞] if a > 0, c < 0 < d

[−∞,∞] if 0 ∈ [a, b], c < 0 < d

[−∞, b/d] ∪ [b/c,∞] if b < 0, c < 0 < d

[−∞, a/c] if a ≥ 0, d = 0

[−∞,∞] if 0 ∈ [a, b], d = 0

[b/c,∞] if b ≤ 0, d = 0

(1.4)

In [Wil04, page 30] Willems shows that the division for intervals defined as in
formula (1.4) is not sufficient for solving a multiplication for a variable without
losing solutions. Because this operation is essential for the methods described in
section 2.3.1, we need another division operator.

Definition 1.6 (Relational division)
The relational division for bounded intervals x,y ∈ IR

x⊘ y := {z ∈ R | there exist x ∈ x, y ∈ y with x = z · y}

was defined by Ratz [Rat96] and is computed via the formula

[a, b]⊘ [c, d] :=





[a, b] · [1/d, 1/c] if 0 6∈ [c, d]
[−∞,∞] if 0 ∈ [a, b] ∩ [c, d]
[b/c,∞] if b < 0, c < d = 0
[−∞, b/d] ∪ [b/c,∞] if b < 0, c < 0 < d
[−∞, b/d] if b < 0, 0 = c < d
[−∞, a/c] if 0 < a, c < d = 0
[−∞, a/c] ∪ [a/d,∞] if 0 < a, c < 0 < d
[a/d,∞] if 0 < a, 0 = c < d
∅ if 0 6∈ [a, b], c = d = 0.

(1.5)

The relational division has been extended to be used with unbounded intervals in
[HJvE99].
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Note that the result of the relational division operation is not always a single
interval but may consist of the union of two disjoint intervals. Of course, this union
can simply be enclosed in one single interval to achieve a function enclosure. By
doing so, however, we lose the information about the “gap”, which does not contain
any solution. As mentioned previously, in some cases we exploit this information
(see section 2.2.1).

As already shown in [HJvE99], one should always prefer the standard division
(1.4) if we do not want to solve for a variable but to compute function enclosures
because it provides sharper enclosures. To be precise the following lemma has
been proved.

Lemma 1.1 ( [HJvE99, Theorem 2])
The inclusion

x

y
⊆ x⊘ y

holds for all x,y ∈ ∗IR

To get to know the formulae for more functions see, e.g., [Neu90]. In the fol-
lowing, all arithmetic operations not applied to real numbers are to be understood
as the corresponding interval operations. As long as nothing else is stated, we re-
fer to the function f if the arguments are real numbers and to an enclosure f for
interval arguments.

1.7 Properties of interval arithmetic

In the following, we want to highlight some of the effects distinguishing interval
computations from real-valued ones.

1.7.1 Dependency problem

In interval arithmetic, and interval analysis in general, the intervals replacing vari-
ables that occur more than once in an arithmetic expressions are not “connected”.
Each appearance of a variable is handled independently of any other. As a con-
sequence, in a computation, one might calculate with the upper bound for one
occurrence of the variable, with the lower bound for another and with an inner
point for a third occurrence. Hoefkens [Hoe01] described this property as follows.

As far as interval arithmetic is concerned ... two intervals ... are two
different entities with no relation between them, and the fact that they
have the same endpoints is seen as a mere coincidence.

In the field of interval analysis this behavior is referred to as the dependency
problem. It is one of the main obstacles in interval computations, although it is
not a specific problems of intervals, but inherent to arbitrary sets.
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Example 1.1
If we subtract a variable from itself using real numbers, we know the result to be
zero. Applying interval arithmetic we can only conclude

x− x = {x− y | x, y ∈ x}.

The resulting set surely contains zero, but maybe many more numbers too. For
instance, given x = [1, 2], the result of the subtraction x − x is an interval of
diameter 2:

[1, 2] − [1, 2] = [−1, 1].

Equally, for the division of a variable by itself (given in formula (1.4)) one gets

x/x = {x/y | x, y ∈ x}.

For our example interval x = [1, 2] we see that this does not result in the point
interval [1] but in

[1, 2]/[1, 2] = [0.5, 2].

1.7.2 Algebraic rules

Due to the dependency problem not all of the algebraic rules for real numbers
can be conveyed to intervals. For instance, addition and subtraction, as well as
multiplication and division, are no longer inverse functions. Besides, the result of
a multiplication of an interval with itself does not have to be nonnegative. For
example, for the interval x = [−1, 1] multiplication yields

x · x = [−1, 1] · [−1, 1] = [−1, 1]

which contains negative numbers. This is the reason for defining the square func-
tion

x2 :=





[0, |x|2] if 0 ∈ x

[x2, x2] if x > 0

[x2, x2] if x < 0

(1.6)

which has nonnegative range for all intervals x ∈ ∗IR. For vectors this function is
applied componentwise. For the example interval x = [−1, 1] we now attain

x2 = [−1, 1]2 = [0, 1]

which is not only nonnegative and a reduction of the overestimation of the en-
closure, but the best possible result. Other power operators can be defined in a
similar manner to avoid repeated multiplication and the resulting overestimation
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due to the dependency problem. For any degree k ∈ N the power operator can be
given as

xk :=





[0, |x|k] for 0 ∈ x and even k

[xk, xk] for x > 0 and even k

[xk, xk] for x < 0 and even k

[xk, xk] for odd k.

(1.7)

Considering arithmetic properties, the commutative law and the associative law
are fulfilled for intervals (see for example [Neu90]). Even though, one cannot apply
the distributive law in general. Take for example the intervals a = [−1, 1], b =
[−1, 0] and c = [0, 1]. Since

a · (b+ c) = [−1, 1] · ([−1, 0] + [0, 1]) = [−1, 1] · [−1, 1] = [−1, 1]

is not equal to

ab+ ac = [−1, 1] · [−1, 0] + [−1, 1] · [0, 1] = [−1, 1] + [−1, 1] = [−2, 2]

distributivity cannot hold in general, although it holds for some special cases (see,
e.g., [Neu90]). What we can rely on when working with intervals, is a weaker
version of distributivity, called subdistributivity. This is given by the property

a · (b± c) ⊆ ab± ac for all intervals a, b, c ∈ ∗IR.

1.7.3 Wrapping effect

Another source of overestimation is the so-called wrapping effect. Since we are
only working with vectors of intervals, the only sets that can be enclosed exactly
are intervals and boxes x ∈ ∗IRn. For them �(x) = x always holds true. For
all other sets P ∈ P(∗Rn) \ ∗IRn we have to “wrap” P by a box �(P ). This box
necessarily has to overestimate P . Figure 1.3 illustrates the wrapping effect with
a two-dimensional example.

Figure 1.3: Wrapping effect for a two-dimensional set P ∈ P(∗R2)

However, there exist approaches to diminish the overestimation caused by the
wrapping effect. We can subdivide sets into smaller parts and enclose the evolving
parts with boxes. Other approaches that will not be followed here are variable
transformations or the usage of other polytopes or ellipsoids to enclose sets. Ref-
erences to these approaches can, e.g., be found in [Rum10].



20 Notations and the basics of interval analysis

1.7.4 Cluster effect

A further interval-related problem occurring when solving systems is the cluster
effect. Its name is derived from the effect it causes: a cluster of boxes which contain
the same solution or for which the existence of a solution cannot be precluded.

The first situation—multiple boxes containing the same solution—can occur
if a box is subdivided such that a solution lies on the common boundary of two
emerging subboxes (we subdivide “at a solution”). This can happen in one or
more dimensions. Even if working only with boxes in ∗IRn that are disjoint up to
their boundaries, we may thus end up with 2n boxes containing the same solution
on their common boundaries.

A similar problem occurs when it is not possible to determine in which of
the boxes evolving from subdivision a solution is seated. This can happen due
to overestimation of function enclosures. In this case, we cannot discard boxes
that do not contain a solution. The result is nearly the same: a cluster of boxes
containing only one solution. The only difference is that not all boxes really
contain the solution.

Both situations are referred to as cluster effect. Most strategies to cope with
this effect try to prevent the formation of clusters. Some possibilities to avoid the
formation of clusters are proposed when handling subdivision in section 2.2.

For clusters that already have evolved in a given algorithm, we propose a
different approach. One could check for clusters and try to get rid of them. This
can, for example, be achieved by enclosing a cluster into one or more new boxes
and proceeding to work with these boxes in the algorithm. One simplified possible
approach is sketched in Figure 1.4. The dot in these figures represents a solution.
The union of the subboxes shown in the first part of the figure is enclosed by
a superbox. In the second part, this superbox is subdivided into another set of
boxes. In the third part of the figure, we assume to have precluded the existence
of solutions in the outer subboxes. We can thus discard these boxes.

Figure 1.4: An approach to reduce the cluster effect

This handling is not included in SONIC until now, since it is assumed to
influence the overall computation time negatively. Furthermore, the enclosure by a
superbox may itself lead to multiple boxes covering the same solution. Approaches
to reduce the cluster effect after the computation of the solution boxes is completed
are discussed in section 4.3.5)
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1.8 Function evaluation and enclosures

Until now we only discussed how to compute function enclosures for those basic
functions for which we can compute the exact range by the endpoints of the in-
terval arguments. For general functions another approach is needed. For them,
it is usually not possible to compute a function enclosure by determining (and
enclosing) the range, because we simply cannot compute the range of the func-
tion. However, interval analysis provides us with different methods for calculating
enclosures that do not rely on knowledge of the function range. In this section
some of these methods suited for general functions will be presented and pointers
concerning the sharpness of the evolving function enclosures will be given.

Before presenting the techniques for calculations, we want to give the definition
of a well-known measure for the quality of enclosures. (More possibilities to assess
and compare the quality of function enclosures can, e.g., be found in [Neu90].)

Definition 1.7 (Order of function enclosures)
Let f : Rn → R be a function and f : ∗IRn → ∗IR an enclosure for f . Further-
more, let x be an arbitrary box in ∗IRn and rangef (x) the exact range over this
box.

If there exist a constant number ρ ∈ R, independent of x, and a fixed positive
integer α ∈ N, such that the inequality

||width (f(x))||∞ − ||width (�rangef (x))||∞ ≤ ρ · ||width (x)||
α
∞

holds for every x with sufficiently small width (x), then f is called an enclosure
of order α for the function f .

Of course, this definition is useful only when considering bounded intervals.
Which is satisfactory since we are just interested in the asymptotic behavior for
small intervals. Note furthermore that, although it is true that higher order en-
closures are more accurate for rather small boxes, it would be wrong to claim that
they always provide better results. For larger boxes enclosures of lower order may
still be favorable.

As said before, interval analysis provides us with different options to compute
enclosures for the range of a function over some interval or interval vector. Be
aware that due to overestimation these often yield an interval larger than the true
range. Since function enclosures are not only important for single computations
but have a huge influence on the performance of complex algorithms and solvers,
a main goal in the field of interval analysis is to provide enclosures as small as
possible. Besides the usage of a single promising function enclosure, we have some
further options to reduce overestimation.

As a first option, we could compute function enclosures by different methods
and intersect the results. Another way to sharpen function enclosures is to refor-
mulate expressions (cf. section 1.8.7). A third possibility to reduce overestimation
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is to compute a function enclosure over a box x with the help of a covering or
subdivision x = x(1) ∪ . . . ∪ x(k). The latter option benefits from the fact that
overestimation usually grows with the size of the considered boxes. This property
can be proved if a function is inclusion monotonic, which means nothing else than

f(xsub) ⊆ f(x) for all xsub ⊆ x.

Then for the function enclosure over the covering (or subdivision) we know that

k⋃

i=1

f(x(i)) ⊆ f(x)

holds. But even if we do not consider an inclusion monotonic function enclosure,
for subdivisions and coverings of x the inclusion

rangef (x) =

k⋃

i=1

rangef (x
(i)) ⊆

k⋃

i=1

f(x(i)) (1.8)

holds. We can thus compute the function enclosures for all parts x(i) (i ∈
{1, . . . , k}) and join them to attain a function enclosure fsub over the original
box

fsub(x) := f(x(1)) ∪ . . . ∪ f(x(k)).

The capacity of this method to reduce overestimation is illustrated by Figure 1.5.
Note that in practice one always needs to find a trade-off between accuracy and
the computation time needed to evaluate the enclosures on the subboxes. In most
cases this has to be done using heuristics.

(a) Function enclosure over an interval (b) Function enclosure on subdivision
of the interval

Figure 1.5: Function enclosures

In the following, we briefly present some well-known methods to compute func-
tion enclosures.
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1.8.1 Natural function enclosure

The natural or naive function enclosure is a very well-known and simple function
enclosure. For attaining it, one only has to apply interval arithmetic for evaluating
the function over a box. For that purpose, all variables in the function are replaced
with intervals and the arithmetic operations and standard functions are interpreted
as their interval counterparts.

Example 1.2
We evaluate the natural function enclosure fN for the function f defined by f(x) =
x2 − 2x+ 1 on the interval x = [0, 2].

fN (x) = x2 − 2x+ [1] = [0, 2]2 − 2 · [0, 2] + [1]

= [0, 4] − [0, 4] + [1] = [−4, 4] + [1]

= [−3, 5]

The same function can be defined by f(x) = (x − 1)2. Using this formulation we
elude the dependency problem and get

fN (x) = (x− 1)2 = ([0, 2] − [1])2 = [−1, 1]2 = [0, 1]

which is the exact range of f over the interval x = [0, 2].

The natural function enclosure is a function enclosure of order one and inclusion
monotonic [RR84]. One advantage of the natural function enclosure is that it only
causes little computational effort. Moreover, if every variable occurs only once in
a function, the enclosure is exact. This still holds true if variables with multiple
occurrences are enclosed by point intervals. (Powers xk in this case have to be
considered as multiple occurrences of x, or we have to enclose them exactly as
done by formula (1.7). Note again that point intervals may be enclosed by proper
intervals in the set of machine-representable numbers, see section 1.9.)

When we have to deal with multiple occurrences of variables on the other hand,
the natural function enclosure can cause vast overestimation. In this case usually
one of the following more sophisticated methods provides a sharper enclosure.

1.8.2 Centered forms

If we consider a continuously differentiable function on a given box, we may apply
the centered function evaluation for which we employ the mean value theorem.

Theorem 1.1 (Mean value theorem)
For a convex and open set D ⊆ Rn, two vectors x ∈ D and c ∈ D and a function
f : Rn → R that is continuously differentiable on D, there exists a value ξ =
c+ θ(x− c) with θ ∈ [0, 1] such that

f(x) = f(c) +∇f(ξ)(x− c).
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Given this formulation, a continuously differentiable function f : Rn → R, substi-
tuting D = x ∈ ∗IRn and utilizing the definition of a function enclosure (Def. 1.4)
as well as a point c ∈ x and an enclosure [∇f ] of the gradient ∇f we get

fC(x) := f(c) + [∇f ](x)(x− c) (1.9)

as an alternative function enclosure for f . The interval function fC is called a
centered form and is at least of quadratic order [RR84].

The vector c in this formula is called the center of the enclosure. Its selection
can have enormous impact on the quality of the achieved function enclosure. If
we consider the special case of evaluating at the midpoint, we set the center to
the midpoint (c = mid (x)) and get the so-called mean value form. This special
centered form is illustrated by Figure 1.6.

Figure 1.6: Function enclosure by the mean value

1.8.2.1 The center

We illustrate the influence of the choice for the center by an example.

Example 1.3
As in Example 1.2, we evaluate the centered function enclosure for the function
defined by f(x) = x2 − 2x + 1 on the interval x = [0, 2]. The center is chosen as
the midpoint c = 1. The first derivative is computed with the help of the natural
function enclosure as

[∇f ](x) = 2x− 2 = [2] · [0, 2] − [2] = [0, 4] − [2] = [−2, 2].

Inserting the above result into formula (1.9) we get

fC(x) = f(1) + [−2, 2]([0, 2] − [1]) = 0 + [−2, 2][−1, 1] = [−2, 2]

which is a sharper enclosure than the naive one, which only gave us [−3, 5].
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For showing the influence of the center, we repeat our computations for c =
1/2. Since the first derivative stays the same this results in

fC(x) = f

(
1

2

)
+ [−2, 2]

(
[0, 2] −

[
1

2

])
=

(
1

4
− 1 + 1

)
+ [−2, 2]

[
−
1

2
,
3

2

]

=
1

4
+ [−3, 3].

We can see clearly that in this case the first choice for the center delivers the
sharper enclosure over the given interval.

A method for choosing centers sensibly was given by Baumann (see [Neu90,
p. 58], [Bau88]). It tells us that choosing c as the midpoint of the given interval (or
box) results in a width-optimal result. Further it states how to determine a center
c1 to attain the largest possible lower bound for the centered form and how to
choose a center c2 providing a smallest upper bound. One can now compute two
function enclosures, one with center c1, one with c2. Then both function enclo-
sures are intersected. For implementations, this procedure has the disadvantage
of needing to compute two enclosures—resulting in higher computational efforts
(although the derivatives only need to be computed once)—but it provides us with
a sharper function enclosure.

1.8.3 Taylor forms

The centered form can also be seen as being derived from a Taylor expansion
of order one. If a function can be differentiated more than once, one can apply
higher order Taylor expansions as well to attain function enclosures. This is what
is done for so-called Taylor forms. In principle, Taylor expansions are used to
bound nonlinear interval functions by interval valued polynomials. The transfer
to a function enclosure then is a simple adaptation of Definition 1.4. A Taylor
form is called Taylor form of order k, depending on the order k of the Taylor
expansion used to deduce it. (This is not the same as the order of convergence of
the function enclosure.)

As an example, the enclosure based on the Taylor expansion of second order is
given. For a twice continuously differentiable function f : Rn → R, a box x ∈ ∗IRn

and c ∈ x we get the enclosure

fT (x) := f(c) +∇f(c)(x− c) +
1

2
(x− c)T [D2f ](x)(x− c).

Example 1.4
As before, we consider the function f defined by f(x) = x2 − 2x+ 1, the interval
x = [0, 2] with a center c = 1. The first derivative is again computed with the help
of the natural function enclosure

[∇f ](c) = 2c− 2 = [2] · [1]− [2] = [2]− [2] = [0].
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The second derivative is simply enclosed by the point interval [2]. We attain the
second order Taylor form as

fT (x) = f(1) + [0] · ([0, 2] − [1]) +
1

2
([0, 2] − [1])[2]([0, 2] − [1])

= 0 + [0][−1, 1] +
1

2
[−1, 1][2][−1, 1] = [0] +

1

2
[−2, 2] = [−1, 1].

Thus, for our example, the result for the Taylor form provides a sharper enclosure
than that of the centered function enclosure.

For enclosures using Taylor forms of nth order, one has to consider the necessity
of computing all derivatives up to nth order. Thus Taylor forms may require high
computational efforts. On the other hand, one obtains function enclosures of at
least quadratic order for all Taylor forms of at least second order [RR84]. (Note
that in general it is difficult to attain a convergence order larger than 2 for Taylor
forms of arbitrary functions [Kea96b].) A further thorough discussion of Taylor
forms can be found in [Neu02].

Kienitz tested the application of higher order Taylor forms in his diploma
thesis [Kie03]. His observation is that, in general, they deliver sharper enclosures
only for small boxes but require a lot more computation time. For this reason,
only first- and second-order Taylor enclosures are used in SONIC.

1.8.4 Taylor models

As well as Taylor forms, Taylor models are derived from Taylor expansions. For a
Taylor model all coefficients of the Taylor expansion except the constant term are
computed as real numbers. The constant term is replaced by a remainder interval
accumulating all computation errors that could be introduced by computing only
with real coefficients instead of intervals. The simplest way to compute a function
enclosure of Taylor model is to compute a function enclosure for the polynomial
term and to add the remainder interval. For even sharper enclosures one can also
use techniques such as linear dominated bounder [Mak98].

The fundamental difference between function enclosures relying on boxes and
Taylor models is illustrated by Figure 1.7. Of course, Taylor models can also be
used to compute function enclosures on subboxes.

Thorough definitions and studies can, e.g., be found in the work of the group
around Berz and Makino (see for example [BM09] and [Ber]). They further imple-
mented Taylor models in their software COSY Infinity [Cos] and consider so-called
inverse Taylor models [Hoe01] [BH01] [HB02].
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(a) Enclosure with a box (b) Enclosure by a Taylor model

Figure 1.7: Function enclosures

1.8.5 Derivatives and slopes

As can be seen from the previous formulae, we need to compute enclosures not
only for functions, but also for their derivatives. If a formula for the derivative is
known or can be computed its function enclosure can be computed by the same
methods as other functions. The natural function enclosure can be used for every
function. For a twice differentiable function the first-order derivative can also be
computed using the mean value form. For functions that are differentiable more
than twice, we could even compute higher order derivatives and enclose them by
applying Taylor forms of higher orders. (For a k times continuously differentiable
function, the order of the derivative plus the order of the Taylor form applied to
the derivative has to be smaller or equal k.)

Additionally, in the centered and Taylor form there is no need to use the
derivative. One can also use a so-called slope.

Definition 1.8 (Slope)
For a function f : Rn → R an interval vector s ∈ ∗IRn is called the slope over a
box x with center c ∈ x if for all x ∈ x there exists a vector s ∈ s such that

f(x)− f(c) = sT (x− c).

For multidimensional functions we can define slope matrices in the same way.
Methods for computing slopes can, e.g., be found in [Kea96b].

A method to attain sharper enclosures of derivatives for multivariate functions
is the progressive derivation. The ansatz dates back to Hansen and is also related
to as “Hansen’s slope technique” [Kea96b, p. 30] [Han92, p. 51] [JKDW01]. It
computes derivatives by considering changes in the variables componentwise, not
simultaneously.

In the following chapters we will further speak of the influence a variable has on
a function and its enclosure. This influence is generally estimated by an enclosure
of the Jacobian matrix Df , since Dfi,j gives us a measure for the rate of change
of function fi with respect to a variable xj within a given box.
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1.8.6 Contractors

Definition 1.9 (Contractor)
For a function f : D ⊂ Rn → Rm with solution set S = {x ∈ D | f(x) = 0}, a
function µ : ∗IRn → ∗IRn ∪ {∅} is said to be a contractor or contraction method
of the system f(x) = 0 if it fulfills

µ(x) ⊆ x for all x ⊆ D

and

S ∩ x = S ∩ µ(x) for all x ⊆ D.

By using contractors we can shrink boxes while still covering the solution set S.
In the special case µ(x) = ∅ we even get the information that the box x contains
no solution of the system. In this case we can discard the box completely from
the branch-and-bound algorithm.

Since contractors can reduce the box number in the solution of interval prob-
lems considerably and thus accelerate the solving process, they are sometimes also
referred to as “acceleration techniques”.

Definition 1.10 (Contraction of a box)
For a function f : D ⊂ Rn → Rm with solution set S = {x ∈ D | f(x) = 0} and
a contractor µ : ∗IRn → ∗IRn ∪ {∅}, the box x is said to be contracted by µ if it
fulfills the relation

µ(x) ( x.

If µ is a contractor on x and

width (x)/width (µ(x)) > κ

holds for some predefined value κ ∈ R with κ > 1 we say that the contractor µ is
successful or successful enough on x. Accordingly a contractor is called successful
if it is successful for all boxes x in a given domain. For boxes x the volume is
considered instead of the width.

Note the subtle difference of the demand for a proper subset in this definition.

1.8.6.1 Direct function evaluation

A simple and cheap contractor is the direct function evaluation given by formula
(1.10).

µ(x) :=

{
∅ for 0 6∈ f(x)

x else
(1.10)
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For this contractor we consider an arbitrary function enclosure f , compute a
function enclosure f(x) and check whether it contains zero. If 0 6∈ f(x), the box
x cannot contain any solution of the system (x ∩ S = ∅) and can be discarded. If
0 ∈ f(x), box x may or may not contain a solution and x is not changed by the
contractor.

Note that the direct function evaluation cannot discard all boxes that do not
contain a solution. It cannot discard a box when the function enclosure contains
zero due to pure overestimation. But even if we can compute exact ranges instead
of function enclosures, some boxes without solutions will withstand the contractor.
This happens if the output of function f : Rn → Rm has more than one dimension
(m > 1) and the ranges of function components of f in the dimensions i and j (in
{1, . . . ,m)) both contain zero, but the roots do not coincide. In other words: fi
may be zero for a root x(1) ∈ x, but fj is zero just for x(2) ∈ x with x(1) 6= x(2)

(and fi(x
(2)) 6= 0, fj(x

(1)) 6= 0).

1.8.6.2 Linear constraints

For constructing further contractors, we first search all solutions for linear con-
straints such as

0 =
n∑

j=1

xj · yj

for x ∈ x, y ∈ y. For any solution we can transform this constraint into the
equation

xi · yi = −
n∑

j=1
j 6=i

xj · yj

and use enclosures of the variables and relational division to attain

xi ∈


−

n∑

j=1
j 6=i

xj · yj


⊘ yi. (1.11)

A contractor for x can thus be defined by

µ(xi) := xi ∩





−

n∑

j=1
j 6=i

xj · yj


⊘ yi


 for i = 1, . . . , n.

If we are interested in contracting y, this can be done in the same way.
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1.8.6.3 Linear systems

We further consider linear systems. A linear system of equations including interval
values can be denoted as

A · x = b

with A ∈ ∗IRm×n, x ∈ ∗IRn and b ∈ ∗IRm. We thus search for the solution set

{x ∈ x | Ax = b for some A ∈ A and some b ∈ b}.

For this purpose, we can apply an interval version of the Gauß-Seidel method.
In theory, we could resolve any constraint for any variable. However, we mostly
assume to deal with square systems with A near to the identity matrix. Often
this property can be attained by preconditioning.
Then for the interval Gauß-Seidel method the ith constraint is resolved as in
equation (1.11) to contract the ith component of a given box x. For non-square
systems one can clearly contract the first min{m,n} variables in the same manner.

We make use of the most current values of all other components of x. (Without
this update of the variables we would end up with a Jacobi method.) In the
following, we simply speak of the Gauß-Seidel method as it is clear that we have
to apply the interval version for interval valued systems.

One step of the Gauß-Seidel method can be described by

x′
i := xi ∩




bi −

i−1∑

j=1

ai,j(x
′
j)−

n∑

j=i+1

ai,j(xj)


⊘ ai,i




for all components i = 1, . . . ,min{m,n}. If we consider an underdetermined
system (m < n), the remaining components stay unchanged (x′

i := xi for i =
m+1, . . . , n). To enhance the Gauß-Seidel method, these could also be contracted
by suitable components.

Applying the same reasoning for an interval system in the later needed form

A · (x− x̃) = b

with A ∈ ∗IRm×n, x ∈ ∗IRn and b ∈ ∗IRm we get a contractor

GS(A, b,x, x̃) : ∗IRn → ∗IR
n

x 7→ x′

by computing

x′
i := xi ∩


x̃i +




bi −

i−1∑

j=1

ai,j(x
′
j − x̃j)−

n∑

j=i+1

ai,j(xj − x̃j)


⊘ ai,i
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Algorithm 1.2 Interval Gauß-Seidel method GS(A, b,x, x̃)

1: for i = 1, . . . ,min{m,n} do

2: x′
i = x̃i +�




bi −

i−1∑

j=1

ai,j(x
′
j − x̃j)−

n∑

j=i+1

ai,j(xj − x̃j)


⊘ ai,i




3: if x′
i ∩ xi = ∅ then

4: exit {x cannot contain a solution}
5: else
6: x′

i = x′
i ∩ xi

7: end if
8: end for

for all components i = 1, . . . ,min{m,n}. The algorithm for this formulation of
the interval Gauß-Seidel method is given in Algorithm 1.2.

The Gauß-Seidel method becomes a promising contractor in connection with
preconditioning. In this case we solve the preconditioned system

(CA) · (x− x̃) = Cb (1.12)

with a real-valued preconditioning matrix C ∈ Rm×m.

Thus we attain the preconditioned Gauß-Seidel method as denoted in Algorithm
1.3. In our notation, Ck stands for the kth row of a preconditioner, so

Ck = (ck,1, . . . , ck,m)

and Aj is the jth column of the interval matrix A ∈ ∗IRm×n

Aj = (a1,j, . . . ,am,j)
T .

Algorithm 1.3 Preconditioned interval Gauß-Seidel method PGS
(A, b,x, x̃)

1: for k = 1, . . . ,min{m,n} do
2: compute preconditioner row Ck

3: x′
k = x̃k +�






Ckb−

n∑

j=1
j 6=k

(CkAj)(xj − x̃j)


⊘ (CkAk)





4: if x′
k ∩ xk = ∅ then

5: exit {x cannot contain a solution of system (1.12) }
6: else
7: xk = x′

k ∩ xk

8: end if
9: end for
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Preconditioners are discussed in detail in section 2.3.5. However, we want to
say in advance that preconditioning preserves the property of the Gauß-Seidel
method of being a contractor.

Note that there exist further methods to solve interval linear systems, as the
Krawzcyk method or Gaussian elimination. The discussion of contractors for
nonlinear constraints is postponed to Chapter 2.

1.8.7 Expression optimization

Many functions can be defined by different expressions. As we have already seen
in Example 1.2, different expressions may lead to different function enclosures.

To avoid overestimation due to the dependency problem we have the option
to rearrange the expression defining a function. For this purpose, expressions
are modified and terms simplified before any variables are replaced by interval
values and the computation is started. Naturally, this has to be done without
changing the represented functions. Generally, due to the dependency problem,
fewer occurrences of a variable in an expression have to be preferred. Likewise, it
is often helpful to use fewer operations.

We can formulate some rules for simplifying terms with the aim of reducing
overestimation. Examples for simplification rules are straightforward conversions
applying algebraic rules. These are rules like 0 +x = x, −(−x) = x, x−x = [0],
exp(log(x)) = x, x + x = 2x and x · x = x2 using the square function given in
equation (1.6).

Note that expression optimization has to be applied to algebraic expressions
and cannot be used after replacing variables with intervals. Furthermore, the usage
of predefined rules for reformulating expressions can only be fruitful if unfavorable
constellations are easy to spot. For more complicated expressions, it often is
impossible to minimize the number of occurrences of variables and the number of
operations at the same time. In this case one often does not know for sure, which
formulation of a term provides the sharper enclosure. Even more, which enclosure
is sharper may also depend on the considered interval (see Example 1.5).

For getting a small enclosure for the function range, it may help to compute
enclosures for different expressions defining the function and to intersect them. Of
course, this results in higher computational costs due to the necessity to calculate
more than one function enclosure.

Example 1.5
We consider the function f given by the expression x−x2 and calculate the natural
function enclosure on two intervals x′ and x′′.

x′ = [0, 1] : x′ − x′2 =[0, 1] − [0, 1]2 =[0, 1] − [0, 1] = [−1, 1]

x′′ = [−1, 1] : x′′ − x′′2 =[−1, 1] − [−1, 1]2=[−1, 1]− [0, 1]= [−2, 1]
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The same function can be defined using the expression x · (1− x). This results in
other enclosures.

x′ = [0, 1] : x′ · ([1]− x′) =[0, 1] · ([1] − [0, 1]) = [0, 1] · [0, 1] = [0, 1]

x′′ = [−1, 1] : x′′ · ([1]− x′′) =[−1, 1] · ([1]− [−1, 1])= [−1, 1] · [0, 2] =[−2, 2]

We see that for x′ enclosing the second expression results in the sharper enclosure
while for x′′ the first expression does. Hence we cannot decide which of the two
given formulations should be preferred in general.

Actually the expression 1
4 − (12 − x)

2 can get us the exact range of function f ,
since the function is continuous and variable x only occurs once.

x′ = [0, 1] :
1

4
−

(
1

2
− x′

)2

=
1

4
−

(
1

2
− [0, 1]

)2

=
1

4
−

([
−
1

2
,
1

2

])2

=
1

4
−

[
0,

1

4

]
=

[
0,

1

4

]

x′′ = [−1, 1] :
1

4
−

(
1

2
− x′′

)2

=
1

4
−

(
1

2
− [−1, 1]

)2

=
1

4
−

([
−
1

2
,
3

2

])2

=
1

4
−

[
0,

9

4

]
=

[
−2,

1

4

]

Comparing the results of the two expressions, the overestimating effect caused by
the dependency problem becomes apparent again.

The set of rules for expression optimizations used in SONIC can be found in
the Rules-File. A big advantage of these rules is that we do not have to burden the
user with formulating the problem in an optimal way. Even more important, all
formulae arising in the computation, like derivatives, are simplified automatically.
Thus we can, e.g., reduce overestimation of function enclosures working relying
on enclosures of the derivatives.

⋄

In later chapters we will use the following definitions for terms and operators.
Herein we restrict our considerations to unary (Φ = Φ(τ)) and binary operators
(Φ = Φ(τ1, τ2)).

Definition 1.11
An operator or function Φ is called elementary if it depends only on one or two
operands. Thus it is either an unary or binary operator. A constraint is called
elementary if it comprises only one elementary operator.
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Also in SONIC we only work with unary and binary operators.

Definition 1.12 (Term)
Let Vτ be a set of variables and Cτ a set of constants. Let Φ define an elementary
operator on these variables.

Then the set of terms over Vτ is defined as the minimal set such that

• every element of Vτ and Cτ is a term,

• if τ1 is a term and Φ is an unary operator then also (τ1) and Φ(τ1) are terms
and

• if τ1 and τ2 are terms and Φ is a binary operator then also Φ(τ1, τ2) is a
term.

For the expressions occurring in our problems, Vτ is the set of variables, Cτ

the set of constants of the system.

1.9 Interval arithmetic and computers

As already addressed in short in the introduction, we cannot represent arbitrary
real numbers when using computers. This is a fundamental issue, arising from
the inevitably limited storage space of computers. The internal representation
of numbers in the storage is given by a predefined number of significant digits.
Consequently, computers can only work with a finite subset of the infinite set of
real numbers. This subset RM of so-called machine numbers can never contain
any numbers requiring an infinite number of digits. Neither representable on a
computer are almost all finite real numbers (thus RM ( R). Which finite numbers
are included in RM depends on the used computer number format.

Furthermore, computers store numbers in binary representation. Common
formats are presented in every introduction to computer science. Mostly, floating
point numbers are used, representing numbers by significant digits and exponents.
As an important ramification, all numbers that cannot be represented exactly
have to be rounded to machine numbers. We denote the rounding to the nearest
machine number by

fl : R→ RM .

If we assume to use standard double precision numbers, usually about 16 sig-
nificant digits can be stored. It is easy to see that we cannot store any number
with, e.g., 100 nonzero digits exactly by this kind of machine number.
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Example 1.6
We again consider the example 0.1. Its binary representation is given by

0.110 = 0.000110011001100110011001100110011...2

= 0.000112

and has an infinite number of significant digits. Because only a finite number of
the significant digits is storable, 0.1 cannot be represented exactly on a computer—
independent of the number of stored digits.

If we cannot store all initially given numbers accurately, we also cannot as-
sume computations on the rounded representatives to yield exact results. At best
they yield approximations. In the worst case, or for difficult computations, these
approximations may deviate severely from the true result. This is due to the
tendency of (ever so minor) errors to spread and grow during computations.

However, even if we were able to represent all initial values, errors could still
be introduced within the computation because intermediate results cannot be
represented and have to be rounded to machine numbers. For example, if we use
numbers strongly differing in magnitude such as in the formula

(230 + 1)− 230,

we get the wrong result zero, whenever 230 ∈ RM but the intermediate result
230 + 1 is no element of the machine numbers RM and has to be rounded to 230.
We thus have to deal with inevitable rounding and truncation errors whenever
using computers. To give another formulation by Hoefkens [Hoe01, Introduction]:

Most of these errors are caused by the transition from the perfect world
of numerical analysis to the limited world of finite state machines.

Interval analysis can alleviate this problem and provide guaranteed enclosures
of the precise results. (However, this enclosure may suffer from overestimation.)
This is accomplished by enclosing every number and every interval into an interval
in RM , mostly by outward rounding.

Outward rounding is defined by downward rounding of the lower bound, mean-
ing rounding to the next smaller or equal number in RM , and analogously upward
rounding of the upper bound to the next greater or equal number in RM . Follow-
ing the notation proposed in [KNN+02], we denote the outward rounding of an
interval x as flint(x). Within this work we assume RM to be extended by symbols
for −∞ and ∞ (which is requested by the IEEE 754 standard and realized in
SONIC). Thus outward rounding is possible for all intervals in ∗IR. For vectors
outward rounding is applied componentwise.

To preclude rounding errors and attain verified solutions, outward rounding has
to be applied for numbers, point intervals, and every interval in the computation
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process. Be aware that herein a set consisting of a single number not in RM is
enclosed by an interval with diameter larger than zero. Besides, outward rounding
can cause a function enclosure to overestimate the function range—even if the
exact range could be computed with interval analysis in ∗IR.

Note that mathematical rigor of interval analysis on the machine numbers is
ensured by the theory of interval analysis and appropriate handling of rounding
when transferring theory to practice. To regulate how machine numbers are han-
dled, the IEEE 754 standard was enacted in 1985 (and updated in 2008 [iee08]).
It provides definitions for different rounding modes as rounding to the nearest
number, upward and downward rounding. An IEEE 754 format also has to com-
prise symbols for the infinities −∞ and ∞. Since rounding errors are inevitable
and for the sake of convenient reading, they are not mentioned in this work unless
necessary. Correct rounding is assumed implicitly in all of the algorithms within
this work.

Of course, the reliability of numerical results relies on several components.
The program itself, as well as the underlying soft- and hardware, has to work
correctly. If these presumptions are met, interval analysis can rise to its strength
and provides mathematically rigorous results.



Chapter 2

Nonlinear systems of equations

If there is a problem you can’t solve,
then there is an easier problem you can solve: find it.

George Pólya

The upcoming chapter is dedicated to the definition of the systems we want
to study as well as to the most important techniques for solving these systems
reliably. Again, the descriptions are given matching the functionality in SONIC.
Thus they follow [Bee06] and [Wil04] in wide parts and our selection of presented
methods is inevitably biased.

The classical formulation of a nonlinear system of equations is based on a
function f : D ⊆ Rn → Rm and formulated as

f(x) =




f1(x)
...
fm(x)


 = 0 (2.1)

with x ∈ D. (The right-hand side is to be understood as a column vector of m
zeros.) The solution set S of this problem can be denoted as

S = {x ∈ D | f(x) = 0}.

Before we transfer this real-valued problem to the interval formulation of a
nonlinear systems of equations we are interested in, we want to define a precision
requirement for boxes.

37
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Definition 2.1 (Small enough)
For a given precision vector ψ ∈ Rn

+ and threshold vector Ψ ∈ Rn
+, a box x ∈ ∗IRn

is called small enough if it fulfills at least one of the precision requirements

• width (xi) ≤ ψi for all i ∈ {1, . . . , n}

or

• there exists an index i with mig(xi) ≥ Ψi.

Thus the width of a small enough box is less or equal ψi in every direction or one of
its components exceeds the threshold given by the ψi. The latter condition is not
commonly found when interval systems are considered. The author enhanced the
usual precision requirements by introducing the threshold vector Ψ for the purpose
of handling unbounded boxes. The threshold vector provides a stopping criterion
for handling half-bounded boxes with components of large mignitude that cannot
be discarded by other means. For details see section 2.2.2.

We now proceed to reformulate system (2.1) into an interval problem.

Definition 2.2 (Interval nonlinear system of equations)
An interval nonlinear system of equations is given by

• a function f : D ⊆ Rn → Rm,

• a startbox x(0) ∈ ∗IRn,

• the system (2.1) with solution set S = {x ∈ x(0) | f(x) = 0},

• a precision vector ψ ∈ Rn
+ and

• a threshold vector Ψ ∈ Rn
+.

We call an interval nonlinear system of equations square (non-square) if n = m
(n 6= m).

The solution of an interval nonlinear system of equations is defined as a set of
small enough solution boxes x(i) ∈ ∗IRn fulfilling the conditions

• i ∈ {1, . . . , s}, s ∈ {0} ∪ N and S ⊆
s⋃

i=1

x(i).

(Thus the solution list may also be the empty set.)

Note that an unbounded startbox x(0) is allowed in the context of this work.
Thus we can even handle problems for which not all variables are bounded or
not all boundaries are known. Consequently we do not need to restrict variables
artificially.
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Every set of solution boxes is guaranteed to “cover” all solutions of system (2.1)
in the startbox x(0). Thus no element of S is contained in x(0) \ (x(1) ∪ . . .∪x(s)).
However, not every solution box of system (2.1) is required to actually contain a
solution of system (2.1). How to compute a set of solution boxes is the main topic
of this chapter. (Usually there exist various sets of solution boxes for one and
the same interval nonlinear system of equations. We are interested in determining
just one of them.)

By choosing a small vector ψ for the required precision of the solution boxes, we
request narrow solution boxes. However, in implementations a smaller precision
vector typically causes higher computational costs. Further, if system (2.1) does
not have isolated solutions but has a manifold of solutions, a choice of ψ with
entries of small absolute value results in an enormous number of solution boxes.

The definition of the solution set has two important ramifications for algo-
rithms to solve interval nonlinear systems of equations. Firstly, if we end up with
an empty list of solution boxes, then there exists no solution to system (2.1) in
the entire startbox x(0). Secondly, if we attain a non-empty list of solution boxes,
we still do not know in which way the number of solution boxes is related to the
number of solutions of system (2.1) and in which boxes the real-valued solution
may be seated. To be able to make such statements we need further methods sup-
plied by interval analysis. Those methods allow the verification of the existence
or even uniqueness of a solution within a box and are treated in Chapter 4.

We could also demand disjoint interiors of the solution boxes. However, this
additional requirement would prevent the deliberate inflation of boxes within the
computation or for verification methods (as done for exclusion regions [SN04,
Bee06] or for epsilon-inflation). We decided to waive this additional requirement.

Note further, that we can augment nonlinear systems of equations by inequal-
ities. Those then have to be checked by interval methods, too.

Unless stated otherwise, all problems considered in this work are interval non-
linear systems of equations. For ease of notation they are also simply referred to
as “problems” or “nonlinear systems”.

2.1 Basic approach: branch-and-bound

The basic strategy to compute a set of solution boxes from a startbox is a branch-
and-bound algorithm. Its concept includes the application of methods that are
meant to either contract a given box or to determine that it does not contain any
solution of the system and to discard it. If a box is not discarded, it is subdivided
into two (or more) smaller subboxes. In the same way, the approach is applied to
the evolving subboxes. The branch-and-bound algorithm stops as soon as all boxes
have been discarded or have reached the precision demand for solution boxes.
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Algorithm 2.1 Branch-and-bound (box x(0), working list Lw := {x(0)}, solu-
tion list Ls := ∅)

1: while Lw 6= ∅ do
2: pick a box x from the working list Lw

3: if box x is small enough then
4: move x from Lw to Ls

5: continue {ends current pass of the while-loop}
6: end if
7: if box x does not contain a solution then
8: discard x from Lw

9: continue {ends current pass of the while-loop}
10: end if
11: apply contractors (Alg. 2.8)

{try to contract box x while maintaining all comprised solutions}
12: subdivide x (Alg. 2.6)
13: in Lw: replace x by all its subboxes
14: end while

Algorithm 2.1 sketches the basic branch-and-bound algorithm. In a first step
the working list Lw is initialized with the startbox. Afterwards, the algorithm
repeats to analyze individual boxes from the working list. Contractors determine
whether the current box can be contracted or even discarded from the working
list. This contracting or discarding of boxes is called the “bounding step” of the
algorithm. (Literally we cut branches of the branch-and-bound tree as depicted
in Figure 2.1.) If a box meets the precision requirements for a solution box, it is
moved from the working list to a solution list Ls. If the box is not yet small enough,
it subdivided in the “branching step” and replaced by the evolving subboxes. This
procedure is repeated until the working list is empty.

Because we only discard boxes that are proved to contain no solution of system
(2.1), the solution set S is covered by the boxes in solution and working list at all
times, meaning

S ⊆
⋃

x∈Lw∪Ls

x

holds throughout the branch-and-bound algorithm. At the end of the algorithm,
the working list is empty and the solution list comprises all solutions in its boxes.

Algorithm 2.1 gives a formulation of the branch-and-bound algorithm with
loops. If we would reformulate the branch-and-bound algorithm into a recursive
form, the concept of a recursion level would arise intuitively. Since the formu-
lation with loops is suited for parallelization (cf. section 5.4), we stay with that
formulation and just transfer the concept of recursion levels for our purposes. The
recursion level of a box then equals its “depth” in the tree evolving from the
branch-and-bound algorithm. Note that in a single branching step the box may
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be subdivided iteratively (see section 2.2).

Definition 2.3 (Recursion level)
The recursion level of the startbox x(0) is set to 1 (rl(x(0)) = 1). For a box x

of recursion level rl(x) ∈ N, the recursion level of all subboxes xsub obtained by
a single branching step in the branch-and-bound algorithm is given by rl(xsub) =
rl(x) + 1.

We speak of an upper recursion level, for recursion levels with small values of
r and of a deeper recursion level if r is large.

Figure 2.1: Scheme of the branch-and-bound tree for a two-dimensional example.
The tree begins in the startbox x(0) and evolves due to the subdivision of boxes.
The dashed lines indicate where a box is to be subdivided. The boxes for which
the existence of a solution is excluded are depicted in white. The solution list
consists of all non-white leaves of the tree.

Figure 2.2: Scheme of a branch-and-bound algorithm for a two-dimensional ex-
ample. Shown is the sequence of computation steps.

In Figure 2.1 and 2.2 a possible execution process for the branch-and-bound
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algorithm is illustrated. These figures are simplified depictions and showed only
the discarded boxes, not the contracted ones. The status of the boxes in each
recursion level is shown in the state as in line 14 of Algorithm 2.1. We find upper
recursion levels at the top of the branch-and-bound tree and the deeper recursion
levels at its bottom.

For solving nonlinear systems of equations, the branch-and-bound algorithm
provides two major benefits. By subdividing boxes, in general, sharper enclosure
for the function of the nonlinear system can be obtained. By contracting and
discarding boxes that do not contain a zero, the exponentially increasing number
of boxes is reduced. If a box can be discarded, there is no need for further in-
vestigation of its subboxes. Both steps—contracting and discarding boxes—save
computational costs that otherwise would be needed in the following recursion
levels.

We want to append some deliberations concerning the correctness of the branch-
and-bound algorithm as given in Algorithm 2.1. Firstly, the algorithm has to
terminate, so the working list Lw has to run empty at some point. This happens
when, in every step, we can discard a box completely or replace it by one or more
smaller subboxes until all boxes reached one of the criteria for small enough boxes.
(Special consideration would be needed if we would use methods inflating boxes
during the computation as the so-called exclusion regions [SN04].) Furthermore,
every contractor has to terminate.

For the correctness of the algorithm we have to preserve all solutions contained
in the startbox x(0). Under special conditions for the branching (subdivision) and
bounding (the application of contractors) step we want to argue that all solutions
in the startbox are contained in the union of all elements in the lists Lw and Ls,
i.e.

x(0) ∩ S = (Lw ∪ Ls) ∩ S (2.2)

at the end of each statement of Algorithm 2.1. This formula is clearly fulfilled
right at the beginning of the branch-and-bound algorithm because then

Lw = {x(0)} and Ls = ∅

hold and it is trivial to conclude

x(0) ∩ S = Lw ∩ S = (Lw ∪ Ls) ∩ S.

It is further simple to see that nothing changes if a box is either small enough
and moved from Lw to Ls or discarded because it cannot contain a solution of the
system.

To preserve property (2.2) in the branching step, we need to ensure that the
evolving subboxes x(1), . . . ,x(k) form a covering for the dissected box x fulfilling
x = x(1) ∪ . . . ∪ x(k), k ∈ N. Then

x ∩ S = (x(1) ∪ . . . ∪ x(k)) ∩ S for all x ∈ Lw.
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In the bounding step we have to take care to apply just contractors. For those
the prerequisite

S ∩ x = S ∩ µ(x)

is fulfilled for arbitrary boxes x ⊆ x(0). Thus, replacing a box x in Lw by µ(x)
does not interfere with property (2.2). Within a branch-and-bound algorithm we
have to take care to fulfill the mentioned conditions to achieve correctness of the
algorithm.

2.2 Branching / Subdivision

In our algorithm “branching” stands for the subdivision of boxes. The union of
these subboxes of a box x covers the box x itself and thus contains all solutions
included in x. Furthermore, subboxes are chosen to be disjoint up to their relative
boundaries. Subdivision of boxes can be realized by different methods, some of
which will be discussed in the following section.

For most subdivision strategies, we subdivide a box into two subboxes along a
subdivision direction d. The point in which we subdivide is called the subdivision
point p ∈ xd. In a simple bisection x is parted into the two subboxes

x(1) = (x1, . . . ,xd−1, [xd, p],xd−1, . . . ,xn)
T

x(2) = (x1, . . . ,xd−1, [p, xd],xd−1, . . . ,xn)
T

(2.3)

with union x(1) ∪ x(2) = x. (When saying “we subdivide x at some subdivision
point” we always mean a subdivision in the subdivision direction.)

The presumably most simple way to subdivide a box is to subdivide it into two
subboxes of equal size in the component of maximum width. Other methods use
more sophisticated approaches to determine subdivision direction and subdivision
point or subdivide in more than two subboxes. To ensure that we always achieve
subboxes smaller than the subdivided box, we do not allow to subdivide in point
intervals or to choose the subdivision point p equal to an endpoint of the box in
the subdivision direction.

As said before, the main motivation for subdivision is to get smaller boxes
and to attain sharper function enclosures according to relation (1.8). A sharper
enclosure in turn is more likely to give information about the existence of roots
in the box. Thus a sensible choice of the subdivision strategy is crucial for the
efficiency of the overall branch-and-bound algorithm. (For a numerical impression,
see section 2.2.9.)

In the following, parameter SubMinNew (SubMaxNew) denotes the minimum
(maximum) number of subboxes a branching step should yield. Both parameters
are used to control the subdivision strategies.
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2.2.1 Subdivision using gaps

As stated before, the result of a relational division (Definition 1.6) is a union of
disjoint boxes if the interval in the denominator contains zero in its interior. For
two intervals y and z in ∗IR with y < z we refer to the (exceptionally) open
interval (y, z) as the gap between y and z. If we store both intervals y and z, we
can exploit the implicit information about the gaps for subdivision.

The following method we call “subdivision using gaps” thus does not simply
subdivide boxes, but uses the additional information about the location of roots
originating from relational division to “cut out” pieces without any computational
cost. Thus it is not a pure subdivision method but rather a subdivision combined
with a contractor. The method is discussed at length in [Wil04] and [Bee06].
Similar approaches have been proposed in [HJvE99] and [Han92]. We want to
recapitulate it in short for a better overview of the methods used in the branching
step.

When applying subdivision using gaps, the biggest gaps (relative to the width)
are chosen to separate a box. If subdivision is applied in direction d where

xd = �(y ∪ z), y, z ∈ ∗IR
n

then box x is split into the subboxes

x(1) := (x1, . . . ,xd−1,y,xd+1, . . . ,xn)
T

and
x(2) := (x1, . . . ,xd−1,z,xd+1, . . . ,xn)

T .

An analogous procedure is chosen if xi is a union of more than two disjoint boxes.
However, not all gaps have to be made use of, see Algorithm 2.2.

Figure 2.3: Subdivision using gaps

Algorithm 2.2 Subdivision using gaps (box x, SubMaxNew)

1: compute relative size of gaps in the components xi

2: while box x is a union of more than SubMaxNew parts do
3: find direction i of smallest gap
4: in direction i: enclose all parts into one
5: end while
6: remove x from Lsub

7: add parts of x to Lsub
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In SONIC, finite unions of boxes are stored in a special data type (XDivision).
This data type allows us to store information about gaps resulting from relational
division. As long as we do not want to exploit the additional information about
the gaps, we compute with the convex hull of the set of boxes as if dealing with
a usual box. When subdividing however, we make use of the information about
gaps.

The minimal width a gap must have to be used for subdivision can be chosen in
the Controls-File with the variable MinRelGapsizeForSubdivisionUsingGaps The
number of resulting subboxes can be limited by choosing the value of SubMaxNew.

To subdivide a given box if no information about gaps can be exploited, a
promising subdivision direction and a subdivision point have to be determined.
Different strategies for this purpose are presented in the next sections.

2.2.2 Handling of unbounded variables

Unbounded variables cannot be handled sensibly by the strategies in the following
sections. Therefore they have to be treated separately. We adjust the strategy
given in [Bee06] to attain a subdivision scheme that can handle boxes with multiple
unbounded components.

For a box x ∈ ∗IRn containing one or more component equal [−∞,∞], the
subdivision direction is determined as the smallest d ∈ {1, . . . , n} with xd =
[−∞,∞]. The subdivision point is chosen as some fixed number δ1 ∈ R. If x has
only bounded or half-bounded components xi = [−∞, a] or xi = [a,∞] with a ∈ R,
we subdivide the box in one of the half-bounded components. This component is
dissected into a bounded interval and another half-bounded one. The subdivision
direction d is chosen from the index set of all half-bounded components of xi by
considering the function

v : ∗IR \ {[−∞,∞]} → R

v(y) :=

{
y for y = −∞

−y for y =∞

and picking the direction d maximizing this function.

v(xd) = max
i∈{1,...,n}

width (xi)=∞

v(xi)

As for the subdivision point, our strategy is to begin to “split off” bounded
intervals of small width. Small intervals because we want to avoid having to
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subdivide the evolving bounded intervals. If the box containing the left-over half-
bounded interval in direction d cannot be discarded in the bounding step of the
branch-and-bound algorithm, in the next branching steps we split off bounded
intervals of increasing width in direction d. Thus the mignitude (in direction d)
of the leftover half-bounded box grows. To attain this goal, we use a predefined
parameter δ2 ∈ R+ and the subdivisions

[−∞, a] = [−∞,min{−δ2, 2a}] ∪ [min{−δ2, 2a}, a]

and
[a,∞] = [a,max{δ2, 2a}] ∪ [max{δ2, 2a},∞]

for any a ∈ R. The complete algorithm for determining a subdivision direction
and subdivision point for an unbounded box is given in Algorithm 2.3.

Algorithm 2.3 Subdivision of an unbounded box (box x, parameters δ1, δ2)

1: if there exist unbounded components of x then
2: if there exists i ∈ {1, . . . , n} with xi = [−∞,∞] then
3: determine subdivision direction d← min

xi=[−∞,∞]
i

4: subdivision point p is set to δ1
5: else {only half-bounded and bounded components}
6: subdivision direction d is determined as v(xd) = max

j∈{1,...,n}
v(xj)

7: if inf(xd) = −∞ then
8: determine subdivision point p as min{−δ2, 2 · sup(xd)}
9: else

10: determine subdivision point p as max{δ2, 2 · inf(xd)}
11: end if
12: end if
13: end if

To prevent that the branch-and-bound algorithm does not terminate due to
half-bounded boxes that are subdivided over and over without being discarded in
the bounding step, the author introduced the threshold vector Ψ within Definition
2.1. It allows the branch-and-bound algorithm to stop when the mignitude of a
component xi exceeds Ψi.

As for the choice of the parameters, experience showed that many test problems
have a root in zero. Subdividing with δ1 = 0 may thus cause a cluster effect.
Therefore the author favors to shift the subdivision point slightly and to set δ1 to
0.1. Furthermore, the minimum width for one of the subboxes resulting from the
subdivision of unbounded boxes can be shown to be δ2/2 in direction d. Thus for
small δ2 many branching steps may be needed to find small enough boxes. This is
especially true when, in one component, searching for a zero with large absolute
value in a half-bounded box with small mignitude in that very component (as
evolving when we start with components [−∞,∞]). If calculating with a large
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δ2, on the other hand, the evolving box has a large diameter in the subdivision
direction and many branching steps may be needed, if a root with small absolute
value is to be found. (This problem still occurs when starting with a box containing
half-bounded intervals of large mignitude.) The author proposes the value δ2 = 1
for general problems.

The default value for Ψ in SONIC is set to 10100. We tested to replace the
factor 2 in min{−δ2, 2a} and max{δ2, 2a} by 16.) The results for changing the
factor 2 to 16 were ambiguous, therefore no “optimal” factor can be given. We
further conducted some tests with different values for Ψ (1010, 1020 and 1050) for
a problem modified to need to be stopped due to the new criterion based on Ψ.
Herein the change of Ψ had no significant effect on the computational costs.

The handling of unbounded and half-bounded boxes in SONIC was changed
to the described strategy. The parameters have been changed as proposed for the
practical use of the solver.

Another way to handle unbounded variables are variable transformations as
mentioned in [BFLW05].

2.2.3 Determining a direction for subdivision

From now on subdivision strategies for bounded boxes are considered. In a first
step we want to determine a direction d ∈ {1, . . . , n} for subdivision.

In each of the following strategies to select a subdivision direction d, the di-
rection is additionally demanded to be chosen such that width (xd) > ψd. This
additional demand prevents subdivision in directions, in which the box already ful-
fills the given precision requirements. (However, subdividing in directions fulfilling
width (xd) < ψd may still improve function enclosures.)

MaxDiam The most basic strategy for choosing a subdivision direction is to
take the direction with the largest width of the box. We thus determine d by

width (xd) = max
i

width (xi).

This strategy is called MaxDiam. It causes less computational costs than the
following strategies to elect a subdivision direction. A further advantage of the
MaxDiam strategy is that it always terminates (even without the additional de-
mand of not subdividing components fulfilling the precision requirements).

MaxSmear The MaxSmear strategy originates in the works of Kearfott and
Novoa [KN90]. It uses the Jacobian matrix as a clue to judge the influence of
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the xi to a function enclosure. The subdivision direction is chosen as the index
of the component with the highest influence on the function value. To establish
the strategy one considers the function enclosures calculated by a centered form
as given in equation (1.9). Because we examine a function with more-dimensional
range, we have to substitute the gradient by an enclosure Df of the Jacobian
matrix. The width of the enclosure fi(x) is

width (fi(x)) =
n∑

j=1

|Dfi,j| · width (xj).

For the MaxSmear strategy, the subdivision direction d is chosen to fulfill

|Dfid,d| · width (xd) = max
i,j

(
|Dfi,j| · width (xj)

)

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and a suiting function component id.

MaxSmearDiam The MaxSmearDiam strategy mentioned by Hansen [Han92]
resembles the MaxSmear strategy. However, instead of the magnitude, the width
is considered to estimate the influence of the xj to the function enclosure for f
over x. The subdivision direction d is determined by

width (Dfid,d
) · width (xd) = max

i,j

(
width (Dfi,j) · width (xj)

)
.

MaxSumMagnitude TheMaxSumMagnitude strategy is mentioned in [Han92]
and discussed in detail in [SA02]. It determines d such that xd is the component
of x with maximum contribution to all fi and can be modified by a parameter
ω1 ∈ R+ according to the rule

m∑

i=1

|Dfi,d| · width (xd)
ω1 = max

j

m∑

i=1

|Dfi,j| · width (xj)
ω1 .

In SONIC, 1.0 is the default value for ω1.

ZeroNearBound In the ZeroNearBound strategy we search a function com-
ponent fid for which a root is supposed to be seated near the boundary of the
considered box. A root near to a boundary is assumed if zero is near to one of the
boundaries of the function enclosure f id

(x). As subdivision direction the variable
d with xd most influencing fid is chosen. The goal of this strategy is to subdivide
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such that one of the evolving subboxes can be discarded in the next bounding
steps. We determine id as the variable i minimizing the “symmetry measure”

σ(fi(x)) :=
min{− inf(fi(x)), sup(fi(x))}

max{− inf(fi(x)), sup(fi(x))}

and the subdivision direction d as the solution of

|Dfid,d
| · width (xd)

ω2 = max
(
|Dfid,j

| · width (xj)
ω2
)

for some parameter ω2 ∈ R+.

In SONIC, 1.0 is used as default value for ω2.

Hybrid strategy by Beelitz In his thesis, Beelitz [Bee06] argues that every
subdivision strategy works fine for some nonlinear problems—but none does work
equally well for all.

Because of this, Beelitz developed a special hybrid strategy (based on a strat-
egy used in GlobSol) to automatically choose a promising direction. This strategy
really is a heuristic determining which of the above basic strategies to elect a sub-
division direction is appropriate for a given box. The strategy was chosen with
the intention to provide a robust and strong strategy for most nonlinear systems
of equations. For that purpose different measures of the box are evaluated. A
remark by Beelitz is that boxes with strongly varying width in different directions
tend to have a negative influence on the performance of the overall solver. He
introduced a threshold to determine whether the width of some xd is “too large”
in comparison to the others. In this case the subdivision direction d is determined
by the MaxDiam strategy and the component is subdivided at its midpoint. Zero-
NearBound is only used if the enclosure for f id

(x) is not “too small” and one
boundary of the function enclosure is almost zero. A summary of the strategy
is given in Algorithm 2.4. More details and a comparison of the basic strategies
called by the hybrid strategy can be found in the work by Beelitz [Bee06].

The default parameters for this algorithm are currently set as b1 = 20, b2 =
0.01, b3 = 0.5 and b4 = 1.0.

Other strategies A further tempting strategy is to simply subdivide a box
periodically in one direction after the other (round-robin). This procedure is
suggested, e.g., in [SA02] and used by some interval solvers. Our own tests showed
that this strategy is not to be favored in practice. Indeed, compared to the hybrid
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Algorithm 2.4 Hybrid strategy (box x, Jacobian matrix Df (x), parameters
b1, b2, b3 and b4)

1: wmax = max
i=1,...,n

width (xi)

2: wmean =
1

n

n∑

i=1

width (xd)

3: if wmax/wmean ≥ b1 then
4: determine d by MaxDiam
5: else
6: compute id as in ZeroNearBound
7: if width

(
f id

(x)
)
> b2 and σ(fid

(x)) < b3 then
8: determine d by ZeroNearBound
9: else

10: compute id and d by MaxSmearDiam
11: if mag(Dfid,d

) < b4 · width (Dfid,d
) then

12: determine d by MaxSmearDiam
13: else
14: determine d by MaxSmear
15: end if
16: end if
17: end if

subdivision strategy, we observed increases in computation time and box number
by factors as high as 70.

⋄

Up to this point, all presented strategies were dedicated to the best choice
for the subdivision direction. Nothing was said about the subdivision point. In
the following, methods to determine one or more points to subdivide a box are
discussed.

Mind that, when implementing the proposed strategies, one has to take addi-
tional care considering rounding issues. Every subdivision point is rounded to a
number in RM . Thus one must ensure that the rounded subdivision point is still
an element of xd. For each subdivision point p we thus compute

p′ = max (xd,min (xd,fl(p)))

and actually subdivide at p′.
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2.2.4 Bisection

The most common way to subdivide boxes is a bisection, i.e. a subdivision into two
subboxes. For applying bisection a subdivision direction d is determined by one
of the methods described in section 2.2.3. If not stated otherwise, the subdivision
point is chosen as the midpoint of xd. Consequently, subdivision is conducted as
given by formula (2.3) with subdivision point

p = mid (xd).

By this choice, the box is subdivided into two subboxes of half volume.

Figure 2.4: Bisection in the midpoint of one component

Bisection in the midpoint is the standard subdivision in SONIC as well as
many other interval solvers.

2.2.5 Multisection

We speak of applying a multisection when subdividing a box into more than two
subboxes along one direction. Of course, in this case we need to determine more
than one subdivision point.

For testing purposes, we implemented multisection into three subboxes with
equal width. The subdivision direction d was chosen by the hybrid strategy and
subdivision of a box x was conducted to yield the subboxes

x(1) = (x1, . . . ,xd−1, [xd, xd + 1/3 · width (xd)],xd+1, . . . ,xn)
T

x(2) = (x1, . . . ,xd−1, [xd + 1/3 · width (xd), xd + 2/3 · width (xd)],xd+1, . . . ,xn)
T

and

x(3) = (x1, . . . ,xd−1, [xd + 2/3 · width (xd), xd],xd+1, . . . ,xn)
T

with union x(1) ∪ x(2) ∪ x(3) = x.

For some of the tested problems the computation time decreases rapidly by
applying the described multisection. In other cases computation time increases
strongly. The author ascribes the positive behavior to situations where a cluster
effect is prevented or more subboxes are discarded in upper recursion levels than
for a simple bisection. An increase in computation time can be explained by
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Figure 2.5: Multisection into three subboxes

subboxes that cannot be discarded immediately. In this case, a higher number
of boxes has to be considered and thus more computation time is spent. This
becomes important considering that the box number increases exponentially in
the worst case. Using multisection into i parts instead of bisection, the maximum
box number in a given recursion level r rises from 2r to ir.

Because we do not know about any universal strategy on when to apply mul-
tisection, it is not implemented in the current version of SONIC.

2.2.6 Non-equidistant subdivision

Standard subdivision yields subboxes of equal size. Another possibility the author
wants to discuss at this point is a non-equidistant subdivision (Figure 2.6).

Figure 2.6: Bisection in a shifted subdivision point

In most cases, equidistant subdivision is applied because we do not have any
information to determine in which part of a box a solution may lie. Therefore we
also do not know where to subdivide a box to attain sharper function enclosures or
to be able to discard a box. Using a non-equidistant subdivision can nevertheless
have advantages. It can, for example, reduce the cluster effect.

A common cause of the cluster effect are symmetric intervals (xi = [−a, a] with
a ∈ R+) in combination with a root in zero. If we always split in the midpoint,
the solution will be seated on the boundary of the evolving subboxes and thus be
contained in both subboxes. If the indicated situation occurs in c dimensions, we
get up to 2c boxes that have to be handled in the working list. And because all
of them contain a solution, we end up with the same amount of solution boxes for
a single root of the system. One disadvantage in this situation is that multiple
solution boxes contain the same solution. A second downside is that we cannot
discard any of the subboxes and all of them need further consideration in the
branch-and-bound algorithm.
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Often the first problem is circumvented by increasing the startbox slightly so
it becomes asymmetric (for example by changing [−a, a] to [−a, a + δ] for some
small δ ∈ R+). In our tests, increasing the startbox worked extremely well for the
problem Brent7. Only about a fifth of boxes and computation time were needed.

However, inflation of the startbox changes the solved problem. Thus solution
boxes may be computed that do not lie in the originally given startbox. By em-
ploying a non-equidistant subdivision, we evade the cluster effect without changing
the given problem. (Of course, this can only hold true if the new subdivision point
does not fall on a solution itself.)

An arbitrary subdivision point p in xd ∈
∗IR can be determined by the formula

p = xd + η · width (xd)

using a real-valued parameter η ∈ (0, 1) to shift the subdivision point from the
midpoint. For η = 0.5 (and provided exact computations) the subdivision point
p coincides with the midpoint of the interval xd. To avoid an increase of the
total box number, the subdivision point should be shifted just slightly from the
midpoint.

Another possibility we want to propose for a reasonable usage of the non-
equidistant subdivision is to apply it in combination with the strategy ZeroNear-
Bound. Remind that this strategy determines a subdivision direction d in which it
is probable that a root of function component fid is seated near to one boundary
of the interval xd. We could now use a shifted subdivision to enlarge the subbox
that is probable not to contain a root but to be discarded in the next bound-
ing step. In order to subdivide appropriately, we need some further information,
near to which one of the endpoints the root may lie. This information influences,
whether we should shift the subdivision point to the upper or lower boundary
of xd. Near to which endpoint the root is seated may be assessed by a func-
tion evaluation of fid over the two subboxes (x1, . . . ,xd−1, xd,xd+1, . . . ,xn)

T and
(x1, . . . ,xd−1, xd,xd+1, . . . ,xn)

T . The subdivision point can then be chosen near
to that endpoint. Our tests for this strategy showed ambiguous results, but con-
tained encouraging time reduction for individual problems. For other problems it
seemed that, the assessed information about the function was not enough to deter-
mine the best subdivision point. This can be ascribed to the different possibilities
for the function behavior on an interval, see the sketches in Figure 2.7. How the
shift η should be determined exactly thus needs some further investigations.

Note further that, if we evaluate the function component fid over a box y with
yd being a proper subintervals of xd and its enclosure would not contain zero, we
could yet “shave off” that part of box x. Our tests, however, showed that for all
our test problems f id

contained zero even when evaluated for yd = x or yd = x.
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(a) Subdivision point should be shifted
towards the lower boundary

(b) Subdivision point should be shifted
towards the upper boundary

Figure 2.7: Two functions with roots near to the boundaries of interval xd

The option of a shifted midpoint was also introduced into SONIC, where pa-
rameter η can be found as ShiftSubPoint.

2.2.7 Iterated subdivision

A further option for subdividing a box is to subdivide it repeatedly before exe-
cuting the bounding step of the branch-and-bound algorithm. In effect, one can
apply more than one subdivision per box and recursion level in a single branching
step.

The subdivision to be applied in each iteration step can be chosen among
the strategies presented above. Only if a box with unbounded components is
to be subdivided, the only option is to evoke subdivision for unbounded boxes.
Subdivision is iterated until the desired number of subboxes is attained. Boxes
fulfilling the precision requirements for solution boxes are moved directly to the
solution list. Algorithm 2.5 illustrates the approach.

Note that intermediate boxes are not considered in the bounding step of the
branch-and-bound algorithm and do not contribute to the overall box number.

⋄

If a subdivision into four or more boxes is aspired, one has to ponder, whether
to use a multisection or an iterated subdivision. Generally speaking, the iterated
subdivision is the more sophisticated strategy because for every subdivision a
new subdivision direction is chosen. Even if it increases the computational costs
to compute subdivision directions we recommend to use iterated subdivision if
SubMinNew > 4.

Consult Table 2.1 for average results for multisection into three boxes and it-
erated subdivision with SubMinNew = 3. What the table does not show is that
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Algorithm 2.5 Iterated subdivision (list of boxes Lsub, SubMinNew)

1: while Lsub is not empty and contains fewer than SubMinNew subboxes do
2: pick first box y from list Lsub

3: if y is small enough then
4: move y to solution list Ls (box is removed from Lsub)
5: else
6: if y is unbounded then
7: apply subdivision of unbounded boxes (Alg. 2.3)
8: else
9: determine subdivision direction d

10: determine subdivision point(s) for subdivision in direction d
11: subdivide y

12: remove y from list Lsub

13: attach parts of y to list Lsub

14: end if
15: end if
16: end while

multisection provided better computation time for Brent7 (factor 0.24) and 7er-
System (factor 0.56). These results even improve the computation time compared
to an iterated subdivision with a minimum number of three new boxes (yield-
ing time factors 0.74 and 1.16). The most probable explanation for this result
is that the derived subboxes have simply been more advantageous in the overall
algorithm. A further reason for the observed behavior could be that only one
subdivision direction is needed for multisection whereas multiple directions have
to be determined for iterated subdivision.

...( )
Figure 2.8: Iterated subdivision

2.2.8 Subdivision strategy in SONIC

The parameters SubMinNew and SubMaxNew are also used in SONIC. They con-
trol the implemented subdivision strategy. In this strategy, subdivision using gaps
is applied followed by iterated subdivision. In the default settings, each step of
the iterated subdivision of bounded boxes is a bisection in the midpoint. The sub-
division direction is determined by the hybrid strategy. The overall subdivision
strategy yields at least SubMinNew subboxes and at most SubMinNew subboxes.
The default values are SubMinNew = 2 and SubMaxNew = 16. If not stated oth-
erwise, all further tests in this work are conducted with the standard subdivision
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strategy.

In the branch-and-bound algorithm given in Algorithm 2.1 we evoke Algorithm
2.6 for subdivision.

Algorithm 2.6 Subdivide (box x, ψ, Ψ, SubMinNew, SubMaxNew)

1: initialize the list Lsub of subboxes with x

2: {small enough boxes will be removed from Lsub immediately}
3: if Lsub is not empty and contains fewer than SubMinNew subboxes then
4: if subdivision using gaps should be used then
5: apply subdivision using gaps (Alg. 2.2)
6: end if
7: end if
8: if Lsub is not empty and contains fewer than SubMinNew subboxes then
9: apply iterated subdivision to Lsub (Alg. 2.5) {includes subdivision of un-

bounded boxes (Alg. 2.3)}
10: end if

2.2.9 Numerical studies

We conducted some numerical studies to give an impression of the huge influence
the subdivision strategy have on the computation time and box number needed
by the branch-and-bound algorithm.

To this end, we give the average ratio of box number and computation time
over test set TB (cf. appendix). The numbers boxesinit and timeinit refer to the
box number and computation time needed if running the standard subdivision as
presented in the last section. The values boxesmod and timemod refer to the box
number and computation time for a modified subdivision strategy.

The average box and time ratio are computed by

boxesratio :=
1

number of problems
·

∑

problems

boxesmod

boxesinit

and

timeratio :=
1

number of problems
·

∑

problems

timemod

timeinit
.

In Table 2.1 we list the results for some variations of the standard subdivision
strategy in SONIC, especially of parameter SubMinNew and the shift η for non-
equidistant subdivision. (In this case, we employ the box-intern hierarchy as
described in section 3.3.) Beyond this we show our measurements for a trisection,
a multisection into three equally sized subboxes. Two versions of this multisection
have been implemented and tested. For the first test, we subdivided every box into
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three equidistant subboxes. For a second test, trisection was only applied once per
component of the startbox x(0). Afterwards, the standard subdivision strategy was
deployed. This strategy was chosen in an attempt to reduce the cluster effect while
at the same time restraining the (potentially) exponential increase in box number
caused by multisection. (Remember that in the worst case trisection subboxes
would result in 3r boxes in recursion level r whereas bisection would only cause
2r boxes to be considered.)

setting boxesratio timeratio

SubMinNew 2 1.00 1.00
SubMinNew 3 1.01 0.80
SubMinNew 4 1.02 0.71
SubMinNew 5 1.16 0.70
SubMinNew 8 1.45 0.65
SubMinNew 16 2.18 0.69

η 0.1 8.34 8.57
η 0.2 2.27 2.40
η 0.3 1.33 1.35
η 0.4 3.82 4.59
η 0.45 6.69 6.75
η 0.49 - -
η 0.5 1.00 1.00
η 0.51 0.86 0.86
η 0.55 1.07 1.10
η 0.6 1.99 2.11
η 0.7 1.33 1.30
η 0.8 2.03 1.93
η 0.9 5.86 5.41

trisection

for all boxes 1.14 0.87
once per direction 0.88 0.87

Table 2.1: Comparison of different subdivision strategies in box number and com-
putation time

Table 2.1 shows that setting SubMinNew to a value greater than 2 can reduce
the average computation time while the box number rises due to the higher num-
ber of subboxes per branching step. Reasonable explanation for the decrease of
computation time would be that the smaller boxes can be discarded faster in the
following bounding steps or that more gaps are exploited in subdivision and thus
larger parts of a box are discarded within subdivision. However, the behavior for
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the problems in the test set differs strongly. Thus no universal advice is given
concerning the choice of parameter SubMinNew.

The individual test problems also behave differently with respect to the choice
of the shift η. Especially the values for Trigexp1 include significant outliers. It
turned out that this problem is extremely sensitive with respect to subdivision (or
more precisely with respect to the subboxes considered in the branch-and-bound
algorithm). For η = 0.49, 0.4 and 0.6 the box number and computation time
increase massively, causing an increased value for the average over the test set.
(For η = 0.49 the computation time and box number of Trigexp1 are omitted since
the computation for this problem could not be finished within the given time limit
of 36 hours. Further tests for this problem showed, that these values for η resulted
in intervals with endpoints near to the single root of the problem. These could
then not be discarded. We observed that the number of recursion level exceeded
250 for η = 0.49 and at least 4 boxes in each level.)

When ignoring outliers, the average computation time and box number be-
have as assumed: they increase when the subdivision point is shifted towards the
boundaries of the subdivided interval. This is hardly surprising, as the box x is
then subdivided into one comparatively small box and one box of only slightly
smaller volume than x, meaning the box size is not reduced adequately in the
branch-and-bound algorithm. Hence more recursion levels have to be run and
more subboxes are computed—causing an increase in computation time.

The results for single test problems show that shifted subdivision can be bene-
ficial for the computation. For example, setting η = 0.49 the computational costs
for problem Brent7 dropped to one fourth compared to the equidistant subdivi-
sion. However, as for SubMinNew, no general strategy could be found to calibrate
parameter η a priori.

Multisection too only shows improvement for specific problems, but not on av-
erage. For the test applying subdivision into three subboxes, the computation time
of problem Brent7 is reduced by a factor of 0.24 and for the problem 7erSystem
at least by a factor 0.56. For all other problems, the negative effects of a higher
number of subboxes seem to be predominant resulting in increased computation
time.

⋄

Note again, that an appropriate subdivision is necessary for the termination
of the branch-and-bound algorithm. We can only guarantee termination if every
box is subdivided into one or more smaller subboxes.
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2.3 Bounding / Contracting

This chapter introduces some contractors, symbolical as well as numerical ones,
that help to reduce the number of subdivisions in the branch-and-bound algorithm—
either by reducing boxes in volume or by discarding whole boxes. The invocation
of any contractor in one of the following algorithms implies that its prerequisites
have been checked and are fulfilled.

2.3.1 Constraint propagation

Constraint propagation (CP) is a symbolic contractor. Its basics seem to have been
discovered more than once, in different areas of science. One often quoted origin
are the works by van Hentenryck. An advantage of CP is that it does not require
the considered functions to be continuous, differentiable or total. Furthermore, it
is applicable to square and non-square systems.

The principle of constraint propagation is to attain sharper enclosures by re-
arranging constraints. The algorithm begins by resolving one constraint for one
of the contained variables. Subsequently, a new enclosure for the variable is com-
puted based on the new representation.

The procedure is repeated for changing combinations of variables and con-
straints. Thus information about the variables and function enclosures is propa-
gated through the constraints. CP is terminated, as soon as the variables cannot
be contracted any longer or are not contracted by more than a certain threshold
value.

When rearranging constraints to yield enclosures of variables and function
values, we have to deal with two basic problems. Firstly, we have to be able to
resolve the constraints for specific variables. Secondly, the enclosure is required to
be an interval.

Based on the reformulated constraint, it may be impossible to enclose the
variable by an interval or a finite union of intervals. Take for example the simple
constraint x2 = sin(x1). Resolving for x1 yields x1 = sin−1(x2) which may consist
of an infinite union of intervals. Indeed, this problem has a simple solution. We
just need to intersect the result of a resolved constraint with the previously known
domain of the variables. Thus we attain a further contractor. For our example
function resolving results in the new value x1

′ = x1 ∩ sin−1(x2). As a second
example consider the function f : R2 → R defined by

f(x) = x1
2 + x2.

If an enclosure f(x) for f is known, the enclosure for variable x2 can be refined
by calculating

x2
′ = x2 ∩

(
f(x)− x1

2
)
.
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The enclosures of x2 and f(x) can be contracted in the same manner using the
updated domain of x1.

The issue of complicated expressions in the constraints is addressed by intro-
ducing additional variables to store intermediate results. Intermediate variables
are introduced for every elementary function and every operator in the system.
Yet only one variable is introduced for expressions that occur more than once.
All intermediate variables are initialized with the interval [−∞,∞]. We end up
with an extended system consisting of elementary constraints. We will consider
the described extended system in some more detail in Chapter 3 under the name
fullsplit. For a technical solution, a computational graph is constructed, represent-
ing the constraint system including the intermediate variables. The elementary
constraints can now be resolved for the variables they contain.

Example 2.1
For our example function

f(x) = x1
2 + x2

an intermediate variable x3 = x1
2 can be introduced and initialized with [−∞,∞].

We attain the new system

x3 = x1
2

f(x) = x3 + x2.

In a first step we may compute a new enclosure for x3 by

x3
′ = x3 ∩ x1

2 = [−∞,∞] ∩ x1
2,

or optionally by calculating

x3
′ = x3 ∩ (f(x)− x2) .

The first formula represents a forward propagation step, the second a backward
propagation step. In general, the forward step propagates information about the
variables to the function values, the backward step proceeds the other way around.

Note that for the running time of the algorithm the sequence in which the
constraints and variables are considered is important. Our scheduling strategy to
choose the next step in constraint propagation is given in [Wil04]. The next con-
straint for contraction is determined based on a priority assigned to the constraints.
This priority depends on the relative changes of variables and the estimated costs
to resolve constraints. The variable to consider next in constraint propagation is
chosen to be “near” (in the computational graph) to the best contraction observed.

A more detailed presentation of CP can be found in most books concern-
ing interval analysis (for example in [Kea96b] under the name of “substitution-
iteration”). A nice, formal presentation can be found in [Wil04] in which Willems
also allows to work with more general kinds of sets such as unions of intervals.
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Furthermore, [Wil04] and [Bee06] discuss the issue of constraint propagation when
there exist cycles in the computational graph.

In SONIC the computational graph is subdivided into acyclic subgraphs. They
are considered as elementary constraints by constraint propagation. We can then
not only resolve these constraints, but also apply Taylor refinements for some
of them. We refer to this option as the internal usage of Taylor refinement in
constraint propagation.

A method based on constraint propagation that offers a more effective sequence
to consider the constraints is called forward-backward propagation and is, e.g.,
discussed in [JKDW01].

2.3.2 Taylor refinement

Taylor refinements can be applied to square and non-square systems. Like CP
their purpose is to achieve sharper enclosures for variables by resolving constraints.
Herein Taylor refinements make use of Taylor expansion and rearrangement of the
constraints.

For the Taylor refinement of first order a once differentiable function f : D ⊆
Rn → R is considered. A linearization is attained by the Taylor expansion of first
order given by

f(x) ⊆ f(c) +
n∑

i=1

si · (xi − ci)

with some center c ∈ x and a slope vector s. Now one can search for the solutions
of the linear constraint

0 = f(c) +

n∑

i=1

si · (xi − ci).

These solutions have to comprise all solutions of the (possibly nonlinear) constraint
f(x) = 0 with x ∈ x. A contractor can be computed by Algorithm 2.7. The
algorithm is given with slopes, although also derivatives could be used instead.

Algorithm 2.7 Taylor refinement of first order (box x)

1: for i = 1, . . . , n do

2: x′
i ← xi ∩




ci −


f(c) +

n∑

j=1
j 6=i

sj · (xj − cj)


⊘ si





3: end for

Willems showed in [Wil04] that the computed enclosure does not get sharper
if the xj with i < j in Algorithm 2.7 are replaced by the already computed x′

i—
unless the slope s is updated as well. (He also emphasizes correctly that we have
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to use [f(c)] instead of an evaluation of f(c) to evade rounding errors. This is one
of the many subtle sources of error when transferring interval analysis to machine
numbers.)

For functions that are twice continuously differentiable on the box x we can
further utilize the Taylor refinement of second order. The principle to be applied
is the same, except that a Taylor expansion of order two is employed. However,
some reformulations are helpful, see for example [BBLSA04,SA02] for details.

In SONIC we usually use only the Taylor refinement of first order, since the
second-order refinement is computationally expensive.

2.3.3 Contraction by Taylor models

Also Taylor models can be used to create a contractor. Basically this method
is just an evaluation of the function enclosure fTM computed by Taylor models.
As for the direct function evaluation test, the box is discarded if the function
enclosure does not contain zero.

µTM(x) :=

{
∅ for 0 6∈ fTM (x)

x else

The disadvantage of Taylor models is their time-consumption. In general they
cannot compensate this downside with sharper function enclosures.

Our first approach to the usage of Taylor models in SONIC was to integrate an
existing C++ implementation (modul in RiOT [RiO] by Eble, described in [Ebl07]).
However, this implementation can only handle eight variables in the Taylor models
and does not include inverse Taylor models.

For these reasons we opted for a custom-built implementation of Taylor mod-
els in SONIC. A preliminary implementation was realized by Lars Balzer for his
masters thesis [Bal13]. He also gave some test results for his Taylor models. His
implementation uses the naive function enclosure to evaluate the polynomial part
of the Taylor model could further be improved by techniques such as linear dom-
inated bounder [Mak98]. It is further not yet optimized for performance and
,though it seems to work correctly for most functions, Balzer announced that the
solution of one test problem is lost when applying the Taylor models. We thus did
not include this method in our standard version of the solver.

Although, we conducted some further tests with those Taylor models to as-
sess the yet available functionality and the potential for better enclosures. For
those tests, the contractor based on Taylor models was included in our scheme
for the application of contractors. We were especially interested in comparing the
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strength of µTM with that of the second expensive contractor, the interval New-
ton method (described in the next section). Taylor models have thus been applied
directly before the interval Newton method so this method could be skipped if
the Taylor models could discard a box (an application scheme for the contractors
follows in section 2.3.7, Algorithm 2.8). For our tests we considered spherical t-
designs (see appendix) for t = 3 and different precision vectors ψ as it was done
in [BLUW09]. The sobering results showed that the box number could not be
decreased by the additional usage of Taylor models and that computation time
increased dramatically.

Still, augmenting the first implementation we tested may improve these results.
A first possibility to do so is to use techniques providing sharper enclosures of the
function enclosure for Taylor models. Further, to the impression of the author, the
utilization of inverse Taylor models [Hoe01] seems promising for the construction
of contractors because they can benefit from their utilization of dependencies in a
system.

2.3.4 Interval Newton method

The interval Newton method is a modification of the well known Newton method
or Newton-Gauß-Seidel method for systems of equations with interval coefficients.
The technique applies an interval Newton operator to contract intervals and boxes.
Especially the preconditioned interval Newton method is an effective contractor.

To construct the interval Newton operator, we consider a box x ∈ ∗IRn and
a linearization of a function f : Rn → Rm. Further needed is an interval matrix
S containing slopes or derivatives for function f on x with respect to a predictor
or initial guess point c ∈ x. For setting c point near to a solution, a real-valued
Newton method can be employed. We then can linearize to get

f(x) ⊆ f(c) + S(x− c)

as for Taylor refinements (and as before one has to calculate with the enclosure
[f(c)] in an implementation). For each solution x∗ of f(x) = 0 with x∗ ∈ x one
can reformulate the above relation into

0 ∈ f(c) + S(x∗ − c)

and derive that x must be a solution of the corresponding linear system

−f(c) = S(x∗ − c) (2.4)

as well. Thus every contractor of the linear system also has to be a contractor for
the nonlinear system.

For solving the linear system (2.4), the Gauß-Seidel-approach GS presented in
Algorithm 1.2 or the preconditioned version PGS given in Algorithm 1.3 can be
utilized.
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The evolving operator for the nonlinear system is called the interval Newton
operator. It can be computed using slopes

N (f,x) : IRn → IRn

(x1, . . . ,xn)
T 7→ GS(S,−f(c),x, c).

or enclosures of the derivatives

N (f,x) : IRn → IRn

(x1, . . . ,xn)
T 7→ GS(Df(x),−f(c),x, c).

A further advantage of the interval Newton method is that it does not only
contract boxes, but can even verify the existence or uniqueness of solutions in
given boxes. For verifying solutions we use a modified interval Newton method
with operator Nmod(f,x). In principle, Nmod(f,x) is equal to the interval Newton
operator when omitting the intersection with the original box x in the Gauß-Seidel
method (Alg. 1.2, line 6), thus

N (f,x) ⊆ Nmod(f,x) ∩ x

holds and we can formulate the following theorem.

Theorem 2.1 (Properties of the modified interval Newton operator [Kea96b,
SA02])
Let f : Rn → Rn be continuous over a bounded box x ∈ IRn and c ∈ x and S be
chosen as for the interval Newton method. Then

Nmod(f,x) ⊆ x

implies that

(i) the slope matrix S is regular and

(ii) Nmod(f,x) (and therefore x) contains a root of function f .

If Df(x) ⊆ S holds additionally, the root in x is unique. If

Nmod(f,x) ∩ x = ∅

no root of f exists in x.

In combination with the preconditioners described in section 2.3.5 the inter-
val Newton method becomes crucial for the efficiency of most nonlinear interval
solvers. Chapter 3 will revisit the interval Newton method. It introduces extended
systems and presents strategies for applying the Newton method on the different
systems. Further a row-wise application of the interval Newton method will be
discussed.
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2.3.5 Preconditioning

Preconditioners are used to modify functions. A preconditioner is a real-valued
matrix which is multiplied from the left to a linear system of equations. It can be
computed without using interval analysis.

For a given system of dimension m× n

f(x) = A · (x− x̃)− b (2.5)

the preconditioner C is element of Rm×m and the preconditioned system can be
formulated as

g(x) = C · f = (C ·A) · (x− x̃)−C · b.

Lemma 2.1
For every system of the form (2.5) and any preconditioning matrix C, the roots of
the preconditioned function g = C · f comprise the roots of function f .

Proof. Let x∗ be a root of f . Then A(x∗ − x̃)− b = 0. Hence x∗ is also a root of
C · (A(x∗ − x̃)− b) = C · A · (x∗ − x̃)− C · b and therefore a root of g.

Lemma 2.2
For a system of the form (2.5) and a regular preconditioning matrix C ∈ Rm×m,
the given function f has the same roots as the preconditioned function g.

Proof. The last lemma showed that each root of f is also a root of g. What is left
to show is that also every root of g is also a root of f . We consider the equation

0 = g(x) = (C ·A) · (x− x̃)− C · b = C · (A · (x− x̃)− b).

Since C is regular we can conclude that

0 = A(x∗ − x̃)− b

and thus x∗ is root of f .

Lemma 2.3
Every contractor of the preconditioned function g is also a valid contractor for
function f .

Proof. We need to consider both functions over the startbox x(0). We already
know that the set Sg of roots of g comprises Sf , the set containing all roots of f .
By definition, every contractor for g fulfills the conditions

µ(x) ⊆ x for all x ⊆ x(0) (2.6)
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and

Sg ∩ x = Sg ∩ µ(x) for all x ⊆ x(0).

To show that µ also is an contractor for f we simply have to show

Sf ∩ x = Sf ∩ µ(x) for all x ⊆ x(0).

The inclusion Sf ∩ µ(x) ⊆ Sf ∩ x holds due to (2.6). For proving the reversed
inclusion we consider an arbitrary box x ⊆ x(0) and an arbitrary solution x∗ ∈
Sf ∩ x. Then clearly x∗ ∈ Sf holds and Sf ∩ x ⊆ Sg ∩ x = Sg ∩ µ(x) ⊆ µ(x)
yields x∗ ∈ µ(x). Combining these results we get x∗ ∈ Sf ∩ µ(x) and thus

Sf ∩ x ⊆ Sf ∩ µ(x) for all x ⊆ x(0)

(and thus the desired equality Sf ∩ x = Sf ∩ µ(x)).

Thus, one can apply every matrix with suiting dimension as preconditioner and
still have a contractor for f .

2.3.5.1 Row-wise preconditioners

One step of the preconditioned interval Gauß-Seidel method (Alg. 1.3) for the kth
component of the linear system was formulated as

x′
k = x̃k −

{
− Ckb +

k−1∑

j=1

(CkAj)(x
′
j − x̃j)

+

n∑

j=k+1

(CkAj)(xj − x̃j)

}
⊘ (CkAk) (2.7)

As before, Ck denotes the kth row of a preconditioner C and Aj names the
jth column of the interval matrix A ∈ ∗IRm×n.

Note that for the computation of x′
k only the kth row of the preconditioner is

needed. Thus, if we do not compute all x′
k, we may save computational effort by

just computing the needed preconditioner rows Ck. This is possible for precon-
ditioners that can be computed row-wise, called row-wise preconditioners. The
preconditioner for which we compute a certain preconditioner row for the interval
Gauß-Seidel method can then even be chosen individually for each variable.

Helpful preconditioners can be constructed considering the influence the vari-
ables of a system have on the function enclosures. Preconditioners aim to trans-
form the system such that every variable i is most influential in the preconditioned
function component gi. This provides benefits, e.g., for the interval Gauß-Seidel
method.
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2.3.5.2 A simple preconditioner

A class of very simple preconditioners are “pivot preconditioners”. They only
contain one entry different from zero per row Ci, all other entries are zero. For
each component of a function fi this entry marks the one variable with the largest
influence on the function enclosure for fi. One special pivot preconditioner is
described by Stadtherr in [LS03]. Its nonzero entries are equal to 1.

However, pivot preconditioners have the disadvantage that each component of
the preconditioned function g is only related to one component of function f . This
can be changed by allowing more than one nonzero entry per row.

2.3.5.3 The inverse midpoint preconditioner

A widely known and successfully applied preconditioner (given a differentiable
function) is the inverse midpoint preconditioner. Unlike pivot preconditioners, it
replaces a single function component by a linear combination of several function
components.

The inverse midpoint preconditioner of an interval system Ax = b is computed
as

CInvMid := (mid (A))−1.

Note that the existence of the inverse matrix is required. In general this is only
possible for square matrices A and thus only for square systems. There exists a
related approach that allows to compute row-wise preconditioners for non-square
systems as well (see [Bee06, p. 38]).

For nonlinear systems one often calculates with A = Df(x) which occurs in
linearizations. In this case Df(x) is a measure for the influence the variables have
on the function enclosures. For rigorous calculations one has to keep in mind that
only an approximation of the inverse midpoint preconditioner is computed.

2.3.5.4 Optimal preconditioners

It was shown that for the interval Gauß-Seidel method there exist even better
preconditioners than the inverse midpoint preconditioner [Kea90]. Even more,
formulae have been developed to compute preconditioners which provide optimal-
ity with respect to several criteria for x′

i as computed by the Gauß-Seidel method.
(Note that this optimality properties cannot necessarily be transferred to the result
of the intersection of x′

i ∩ xi.)

Like the inverse midpoint preconditioner, these preconditioners typically have
more than one nonzero entry per row Ck. Thus the application of the precon-
ditioner results in the replacement of one function component by a linear combi-
nation of function components.
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For the further discussion the numerator and denominator of the relational
division in equation (2.7) are shortened by

nk(Ck) := −Ckb+
k−1∑

j=1

(CkAj)(x
′
j − x̃j) +

n∑

j=k+1

(CkAj)(xj − x̃j)

and dk(Ck) := CkAk.

Thus the formula for x′
k is simplified to

x′
k = x̃k −nk(Ck)⊘ dk(Ck)

= x̃k − [inf nk(Ck), supnk(Ck)]⊘ [inf dk(Ck), supdk(Ck)]

In [Nov93] Novoa presents and categorizes row-wise applicable preconditioners
which are defined to be optimal in a predefined sense. His first distinction is made
with respect to dk.

Definition 2.4
The preconditioner row Ck is called a C-preconditioner if

0 6∈ dk(Ck).

It is furthermore called normal if

dk(Ck) = 1.

The “C” in the name is based on the contracting property of Ck. (Because
dk(Ck) does not contain zero, x′

k is a single, connected interval and x′
k∩xk ⊆ xk.)

Novoa further introduced a second class of preconditioners for which the con-
ditions 0 ∈ dk(Ck) and 0 6∈ nk(Ck) hold and the relational division of nk(Ck) by
dk(Ck) thus yields two disjoint intervals. Since the result is “split” into two parts,
the preconditioners in this class are called S-preconditioners (sometimes also E-
preconditioners). S-preconditioners can be useful to separate multiple solutions in
a box. However, this work concentrates on C-preconditioners.

Note that the case 0 ∈ dk(Ck) and 0 ∈ nk(Ck) is neither covered by C- nor
S-preconditioners because this would yield dk(Ck) ⊘ nk(Ck) = [−∞,∞] and no
contraction could be attained in the interval Gauß-Seidel method.

The existence of a C-preconditioner can be proved considering column Ak of
the interval matrix A.

Theorem 2.2 (Existence of a C-preconditioner [Kea96b])
A C-preconditioner exists if and only if at least one element of Ak does not contain
zero.

Furthermore, preconditioner rows can be defined as equivalent.
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Definition 2.5
The preconditioner rows C

(1)
k and C

(2)
k are called equivalent, if there exists a real

number ρ ∈ R\{0} such that

C
(1)
k = ρ · C

(2)
k

holds.

Lemma 2.4
For every C-preconditioner row C

(1)
k there exists an equivalent normal C-preconditioner

row C
(2)
k .

Proof. Since C
(1)
k is a C-preconditioner, dk(C

(1)
k ) does not contain zero and a

normal preconditioner C
(2)
k can be constructed by

C
(2)
k :=





C
(2)
k := 1

dk(C
(1)
k )

C
(1)
k if dk < 0

C
(2)
k := 1

dk(C
(1)
k

)
C

(1)
k if dk > 0

.

C
(2)
k is obviously equivalent to C

(1)
k and normal.

Lemma 2.5
The interval Gauß-Seidel method computes the same enclosures for equivalent pre-
conditioner rows.

Proof. Assume we have given two equivalent preconditioner rows C
(1)
k and C

(2)
k

with C
(2)
k = ρ · C

(1)
k and ρ ∈ R\{0}. Then we can reformulate

nk(C
(2)
k )⊘ dk(C

(2)
k ) = nk(ρ · C

(1)
k )⊘ dk(ρ · C

(1)
k )

=
(
ρ · nk(C

(1)
k )

)
⊘

(
ρ · dk(C

(1)
k )

)

= nk(C
(1)
k )⊘ dk(C

(1)
k ).

Thus the enclosures of the interval Gauß-Seidel method have to coincide for arbi-
trary k.

We proceed by introducing the criteria for optimality of a C-preconditioner fol-
lowing the works of Novoa and Kearfott [Nov93,Kea96b]. Due to Lemma 2.4 the
following considerations can be restricted to normal C-preconditioners.
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Definition 2.6
Let x′

k be the box yielded by the interval Gauß-Seidel method. A C-preconditioner
row Ck is called a

• CW-preconditioner, if it minimizes width (x′
k)

• CL-preconditioner, if it maximizes inf(x′
k)

• CR-preconditioner, if it minimizes sup(x′
k)

and

• CM-preconditioner, if it minimizes the magnitude |x′
k − x̃k|

over all C-preconditioners.

Considering the spectrum of categories, only one will be interesting for us:
width optimal CW-preconditioner. In [KS96] Kearfott speaks about the applica-
tion of the different preconditioners. He suggests to use CW-preconditioners for
finding solutions of nonlinear systems and CM-preconditioners for verifying solu-
tions. (S-preconditioners are suggested as appropriate to prove that no solution
exists in a given box.)

Each of the optimal preconditioners is the solution of a nonlinear optimization
problem. Novoa showed that one does not even need to solve this nonlinear prob-
lem, but that the optimization problem can be reformulated as a linear problem.
The formulation of the linear optimization problem for the CW-preconditioner
(and its derivation) can be found both in [Kea96b] and [Bee06].

Note that the solution of this optimization problem may differ from the CW-
preconditioner. As in [Kea96b], we speak of the CW-LP-preconditioner for the
computed solution of the linear optimization problem for the CW-preconditioner.
For 0 ∈ nk(Ck) the numerical results likewise only give an approximation of
the CW-LP-preconditioner, e.g., because only a fixed number of iterations are
conducted in a simplex method to solve the optimization problem.

Further the optimization problem requires the condition 0 ∈ nk(Ck) to be
fulfilled to yield an optimal preconditioner. This condition cannot be checked in
advance. But even if 0 6∈ nk(Ck) for the resulting CW-LP-preconditioner, it still
provides significant contraction for variable xk in the sense that

width (x′
k ∩ xk) ≤

1

2
· width (xk)

holds true for every C-preconditioner with 0 6∈ nk(Ck) [Kea90].

2.3.5.5 The CW-LP-preconditioner

Within the development of SONIC different approaches were made to compute
the CW-LP-preconditioner. For the time being, the default solving method is a
C++ version of an GlobSol simplex algorithm.
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Another way to compute a CW-LP-preconditioner is to construct the opti-
mization problem and to hand it over to an arbitrary optimizer for real-valued
optimization problems. There are multiple programs available for this task. Some
of them make use of the structure of the optimization problem or of sparse data
structures. The usage of sparse data structures gains additional importance in
combination with systems that contain many variables—as the extended systems
presented in Chapter 3. These systems often contain a large number of variables
and constraints, but each constraint depends only on a handful of variables. Thus
the Jacobian matrix contains few entries per row and can be saved as a sparse
matrix.

The extern optimizers for solving linear problems that can be started within
SONIC are Galahad and GLPK. However, using them implies downsides. Either
the solvers do not solve all problems and abort with errors or they are not thread-
safe and can thus not be used in parallel computations (cf. section 5.4).

Some more optimizers (namely CLP, lp solve and qsopt) have recently been
investigated by Balzer in [Bal10]. In parts these optimizers also have the problem
of stopping due to errors. Moreover, relating to the computation time needed in
SONIC, they still are inferior to the previously used routine. Thus the GlobSol
version stays the default linear optimizer in SONIC.

Despite the usage of other external optimizers, the author sees room for further
improvements with respect to the computation of the CW-LP-preconditioner in
SONIC. A goal for upcoming work is to reformulate the computation based on
GlobSol to sparse data structures. Also the usage of fast routines for vector and
matrix operations may provide significant benefit for this implementation.

A reformulation of the current implementation, which we tested following a
suggestion by B. Lang, was to change the computation sequence of rows and
columns for matrix operations. The purpose of that reformulation is to make
better use of the cache. However, our test problems are usually too small to see a
difference in computation time. (For the extended systems presented in the next
chapter the CW-LP-preconditioner is not applied for large extended systems in
the default setting due to step size σCW (E).) Yet, the reducing influence on the
computation time becomes obvious if we force our solver to compute the CW-LP-
preconditioner for all variables in large systems. But we also sas that for some
problems the computation on a single box can consume more time than our default
approach needs to consider several thousand boxes and to solve the whole problem.

Another point worth further consideration is an appropriate choice of the pa-
rameter δ and the iteration number in the simplex algorithm used for the compu-
tation of the CW-LP-preconditioner. Again a trade-off has to be found between
more iterations, providing better preconditioners, and fewer iterations saving com-
putation time.
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2.3.6 Application scheme for contractors

For general problems, one cannot decide a priori which contractors provide the
sharper enclosures. This decision is yet impossible if considering just the two most
important contractors, constraint propagation and the interval Newton method.
Although there seems to exist a general consensus in the interval community that
constraint propagation is more appropriate for boxes with “larger” width and
the Newton method should be preferred for “small” intervals, nobody can give a
universal a priori decision when to switch the applied contractor.

In the context of this work some tests were conducted, showing that a simple
switching from constraint propagation to the Newton method does not provide
uniform improvement. For that purpose the two contractors were applied depend-
ing on the width of the considered boxes. If the width of a box has been larger
than a prescribed threshold 10ν in every direction, only CP was applied. As soon
as width (xi) became smaller than 10ν for some i ∈ {1, . . . , n}, the Newton method
was the only contractor applied for the box. The predefined integer ν ∈ N was
varied from −7 up to 1.

We found that there exists no value for ν suited equally well for all problems,
but that the computation time for individual problems was smallest for different
values of ν. As examples we address Trigonometric and min-04-07. While for
Trigonometric ν = 1 yielded the best computation time for our simple test, ν = −1
was a good choice for min-04-07.

2.3.7 Application of contractors in SONIC

In SONIC a general strategy to apply the contractors is pursued. It is summarized
in Algorithm 2.8. (Naturally, the requirements of the contractors, as continuity
or differentiability, are checked implicitly before the methods are applied.) Note
that CP is applied repeatedly following the other contractors. This is done to
propagate contractions in single variables through the whole constraint system.

Experience has taught us that good average timings can be achieved by dis-
abling the Taylor refinement of second order within constraint propagation as
well as separate Taylor refinements of first and second order. However, activating
more contractors can reduce the average box number. For individual problems
they also reduce the computation time considerably. For example, using a Tay-
lor refinement of first order within CP reduces the computation time needed for
problem Trigonometric by nearly 60% (and the box number by 50%).

⋄

For easier denomination of the relations between boxes in the branch-and-
bound algorithm some definitions of Chapter 1 are expanded.
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Algorithm 2.8 Application scheme for contractors (box x)

1: if enabled: apply CP {can use Taylor refinement of first and second order
internally}

2: if box x cannot contain a solution: discard x

3: if Taylor refinement of first order is enabled then
4: apply Taylor refinement of first order (Alg. 2.7)
5: if enabled: apply CP
6: end if
7: if box cannot contain a solution: discard
8: if Taylor refinement of second order is enabled then
9: apply Taylor refinement of second order

10: if enabled: apply CP
11: end if
12: if box x cannot contain a solution: discard x

13: if interval Newton method is enabled then
14: apply hybrid Newton method (Alg. 3.2)
15: if enabled: apply CP
16: end if
17: if box x cannot contain a solution: discard x

We furthermore speak of x as a childbox of y if it is derived from y by one
branching step and the application of contractors (y ⊇ x and rl(y) + 1 = rl(x)).
In analogous fashion, the box y will be referred to as the parentbox of x if it was
the last superbox of x regarded in the branch-and-bound algorithm. In the same
way we speak of y as an ancestorbox if y is a superbox of x and the recursion
level of x is larger than that of y (y ⊇ x and rl(y) > rl(x)).

2.4 Operating sequence for the branch-and-bound al-
gorithm

All choices in the branching as well as the bounding step of the branch-and-
bound algorithm result in different overall computation time and box number.
Figuratively speaking, the configuration of the methods determines which branch-
and-bound tree is build. However, until now, we have not discussed, how to process
through the boxes in a given branch-and-bound tree.

This sequence depends on how boxes are inserted into and picked and deleted
from the working list Lw. If, for example, we always take the first box from the
list and attach each new box to its end, we traverse the branch-and-bound tree
breadth-first.

If we are only interested in whether the system has any solution, huge amounts
of computation time can be saved by stopping the computation as soon as a single
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solution box is found and verified to indeed contain a solution of the system. (The
option to do so in SONIC is set by parameter TerminationOnFirstHit. Methods
for the verification of solutions are discussed in Chapter 4.) For finding the solution
boxes faster, one can adjust the order of elements in the working list. This can
be done by assigning a rank to each box and processing the boxes in the working
list according to their rank. The rank is picked to relate to the probability for a
box to contain a solution [Bee06]. We start to search for solutions in the most
promising box.

Furthermore, the data structure for Lw can be handled both as list and as a
heap.

In SONIC boxes can be stored in a heap or list. Three box ordering strategies
can be chosen. A short presentation and comparison of these strategies can be
found in [Bee06, p. 67].

⋄

Note again that in the following we are mainly interested in reducing the
average computation time for the overall computation of the branch-and-bound
algorithm. A reduction of the box number is just an auxiliary goal to lower the
computation time. If one is interested in a small average box number, one would
simply apply all available contractors in the bounding step of the branch-and-
bound algorithm and choose an appropriate subdivision strategy.



Chapter 3

Extended systems

I cannot say whether things will get better if we change; what I can say is they
must change if they are to get better.

Georg C. Lichtenberg

The main idea to be presented in this chapter is that contractors cannot only
be applied to the originally given system of equations. They can be even more
helpful if applied to extended systems. Those are modified nonlinear systems
derived from the original system by adding intermediate variables for subterms.
Extended systems have simpler, “extended” constraints, but still represent the
same system. We will focus on strategies for employing these systems efficiently.

The utilization of different extended systems is one of the features making
SONIC a powerful solver for nonlinear systems of equations. It further is an
advantage over other solvers that do not apply contractors on these systems.

The systems implemented in SONIC have been described by Willems in [Wil04]
under the name of split levels or splits. He used this denomination because the
new variables allow the “splitting” of constraints into more simple relations. (The
name “split” remains in use for parameters in the implementation for reasons of
consistency with earlier publications.)

75
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3.1 Basics

The following section is dedicated to extended systems and the contractors used
on them. All of the following extended systems have been named, defined formally
and described in detail in [Wil04].

3.1.1 Introduction of extended systems

As functions can be represented by different expressions, a given system of equa-
tions of functions f1, . . . , fm in variables x1, . . . , xn can be formulated with the
help of different sets of constraints. An extended system is a representation of a
given system in which intermediate variables are introduced together with con-
straints defining them. In general, the first additional variable is called xn+1. It
is identified with a term τ and each occurrence of this term is replaced by xn+1.
The following variables xn+2, xn+3, . . . are introduced in the same manner.

Every extended systems contains at least the variables of the originally given
system. Depending on the parts of a constraint system that are represented by
intermediate variables, different extended systems are constructed.

The box we consider is not augmented by intermediate variables. Consequently
every volume we speak about is computed for x = (x1, . . . ,xn)

T .

Definition 3.1
For each system of equations E, the set Var(E) is defined as the set of all variables
in E. The number of variables in is denoted by |Var(E)|.

An extended system E(1) is called finer than another system E(2) if |Var(E(1))| >
|Var(E(2))|. System E(2) is then called coarser than E(1).

Note that this definition does not imply that a finer system E(1) contains all
the variables of a coarser system E(2) (so even if |Var(E(1))| > |Var(E(2))| holds,
the inclusion Var(E(1)) ⊃ Var(E(2)) does not have to be true).

Definition 3.2 (Hierarchy of extended systems)
A hierarchy of extended systems is a list containing different extended systems in
coarse to fine order. It is denoted by HE . The coarsest system of the hierarchy is
denoted as Ecoarsest, the finest as Efinest.

When the extended systems are built for a special problem and two extended
systems contain the same variables, one of them is discarded from the hierarchy.

After all intermediate variables are introduced, a renumbering of the variables
is enforced. Thus we attain a numbering in which the constraints for intermediate
variables only depend on variables with smaller index. These dependencies can be
used when applying contractors.
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Original system

The given system, more precisely the system without any additional variables, is
called the original system and denoted by Eorig. We also speak of the original
variables for the elements of Var(Eorig).

In SONIC the original system may still differ from the system in the problem
file due to expression optimization. Due to implementation issues, SONIC is
bound to elementary operators. All systems are constructed once, prior to any
computations on the systems.

Fullsplit system

The fullsplit system Efull was described before by Kearfott [Kea96b,Kea91] and
is also applied in other solvers such as GlobSol [Kea09]. To obtain the fullsplit
system, we start with the original system and introduce intermediate variables
until only elementary constraints are left.

Any subset of Var(Efull) containing at least the variables of the original system
Var(Eorig) defines an extended system. The following three systems have been
developed by Willems [Wil04] for the usage in SONIC. In the same work, Willems
analyzed additional extended systems that turned out as not promising and are
not addressed within this work.

CST system

The name of the CST system Ecst is an abbreviation of Common SubTerms. As
the name suggests, intermediate variables are added for the “largest” subterms
with multiple occurrences in the original system. This choice of additional vari-
ables has the advantage of reducing the number of identical entries in the Jacobian
matrix.

How common subterms are found and handled is discussed in [Wil04]. In prin-
ciple, subterms are processed from smaller to larger ones. For unary operators just
the operation and the operand need to be compared. If two subterms τ1 and τ2
occur more than once and are connected by binary operators, one checks whether
there can be found an even larger common subterm. For that purpose, the con-
necting operator is considered. If the operator is the same (Φ) and connects τ1 and
τ2 in the same order, then Φ(τ1, τ2) is itself a subterm with multiple occurrences.
If Φ represents an addition or multiplication, it is commutative and Φ(τ1, τ2) and
Φ(τ2, τ1) are considered as the same term. There are also other approaches to use
multiple occurrences in constraints, see for example [ANT12].
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CSTN system

A further extended system is called the CSTN system Ecstn (short for Common
SubTerms and Neighbors). Like the CST system, it comprises the “largest”
subterms with multiple occurrences. In addition, Ecstn contains intermediate
variables for their “siblings” and “parents” in the fullsplit system as defined by
Willems [Wil04]. This means that, if a common subterm (or multiply used original
variable) τ1 is found and it is connected to another term τ by τ = Φ(τ1) in the
fullsplit system, then not only

xn+1 = τ1

is introduced as for the CST system, but also the additional constraint

xn+2 = Φ(xn+1).

If τ = Φ(τ1, τ2) the added constraints are

xn+1 = τ1

xn+2 = τ2 and

xn+3 = Φ(xn+1, xn+2).

This is done for all common subterms.

Linear system

One advantage of extended systems is their “reduced nonlinearity”. To promote
this property one can define intermediate variables just for those subterms in the
original system that are neither atomic nor linear. Although, the system still
contains constraints that “concentrate” nonlinear operations, Willems called this
system the linear extended system or linear system Elin.

Example 3.1
We show the extended systems and computational graphs for the original system
Eorig

0 = f1 = x21 − exp(x2)

0 = f2 = x21 + x2 · x3.
(3.1)

In the CST system Ecst an intermediate variable is introduced for the common
subterm x21 yielding the system

0 = x4 − exp(x2)

0 = x4 + x2 · x3

x4 = x21.
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For the fullsplit system Efull further variables are introduced for exp(x2) and x2 ·x3.

0 = x4 − x5

0 = x4 + x6

x4 = x21

x5 = exp(x2)

x6 = x2 · x3

Figure 3.1 shows the computational graphs for the three extended systems. An
example including Ecstn and Elin extended systems can, e.g., be found in [JL12].

(a) Eorig (b) Ecst (c) Efull

Figure 3.1: Computational graph for three extended systems of system (3.1)
(Intermediate variables are depicted with colored background.)

For the hierarchy of extended systems HE it is usually sensible to choose
Ecoarsest as the original system and Efinest as the fullsplit system. Our default
hierarchy of extended systems is

HE = (Eorig, Ecst, Efull).

3.1.2 Contractors on extended systems

The contractors presented in section 2.3 can also be applied on extended systems.
For shorter notations the author will often speak of the “choice and application of
an extended system” instead of the “choice and application of contractors for an
extended system”. Accordingly other technical terms like the success of contrac-
tors are transferred to extended systems (still, mathematically they refer to the
contractors on the system in question).
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3.1.2.1 Constraint propagation

Constraint propagation is always applied on the fullsplit system. It thus up-
dates all variables, including the intermediate variables in the extended systems.
Constraint propagation can be interpreted as “connecting” the different extended
systems, because it is applied after the contractors are applied on the separate
extended systems,.

3.1.2.2 Extended Newton method

Since the interval Newton method is only formulated for finding zeros of a given
function, the extended systems have to be modified before the interval Newton
operator can be applied. Assume we have given a function f : D ⊆ Rn → Rm and
an extended system for this function

E :=





0 = Φ1

...

0 = Φm

xn+1 = Φm+1

...

xN = ΦM

comprising N ∈ N variables and M ∈ N elementary functions Φ1, . . . ,ΦM (with
N − n = M − m). This system is modified into a system E ′ and defines the
modified function fE ′ by

E ′ :=





0 = Φ1

...

0 = Φm

0 = xn+1 − Φm+1

...

0 = xN − ΦM

and fE ′ :=





Φ1

...

Φm

xn+1 − Φm+1

...

xN −ΦM

.

Obviously, the zeros of function fE ′ in a box x are the same as for function f
and equal to the solutions of the systems E and E ′ in box x. The zeros of fE ′ can
now be determined by applying the Newton method to it (row-wise for non-square
systems).

Note that all variables in the extended system are contracted by the interval
Newton operator, not only the variables in the original system we are mainly
interested in. Furthermore, the variables of the extended systems have to be
initialized before running the Newton method. This is done by a run of CP. To
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propagate contractions in the variables, CP is used again after the Newton method
was applied to function fE ′ . The application of the interval Newton operator in
combination with CP, as stated in Algorithm 3.1, is referred to as the interval
Newton method on an extended system or simply as the extended Newton method.
The expression “application of the extended Newton method” always refers to the
application of the Newton method to the modified system fE ′ = 0.

Algorithm 3.1 Extended Newton method (box x, system E)

1: update all variables by CP on box x

2: apply Newton method to function fE ′ on box x

3: update all variables by CP on box x

The complexity of each step of the extended Newton method is given as
O(|Var(E)|3) [Wil04, p. 100]. Thus using it on extended systems E with large
|Var(E)| can be way more expensive than applying the Newton method on Eorig.
Nevertheless, there exist good reasons to apply the Newton method on extended
systems. Primarily, the Newton method is assessed to be more powerful on finer
extended systems because these systems are less complex in structure and “more
linear” than the original system. As a ramification, the linearization in the New-
ton method should be more efficient. In addition, the Jacobian matrix of an
extended system can be sparse and the derivatives can be computed exactly more
often [Kea91] [Bee06, p. 49] [Wil04, p. 101]. Numerical validation for the useful-
ness of extended systems follow within this chapter. For computations one can
choose between the different systems and their respective advantages concerning
contractors.

3.1.2.3 Hybrid Newton method

The hybrid Newton method was presented by Beelitz [Bee06]. It works row-wise
and controls, for which rows or constraints the extended Newton method is applied
and which preconditioners are used. (Since we solve the ith constraint for the ith
variable within the extended Newton method we will speak as well of “contracting
variable i” as of the constraint i we are working on.) The general workflow of the
hybrid Newton method is given in Algorithm 3.2.

As the extended systems, the preconditioners to be applied are ordered in
a hierarchy Hprecond. They are ordered by strength (as well as computational
costs), the most promising preconditioner is the first in the hierarchy. Currently
the hierarchy contains 4 elements: the CW-LP-preconditioner (C(1)), the inverse
midpoint preconditioner (C(2)), the simple pivot preconditioner (C(3)) and the
identity matrix (C(4)) representing a computation without preconditioning. All
preconditioners are computed and applied row-wise.

There exist problems for which another sequence of preconditioners or the
selection of fewer preconditioners in the hierarchy showed to be advantageous.
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For example, the computation time for problem Reactor could be reduced to
one third when not applying the CW-LP-preconditioner. On the other hand, the
computation time for DirectKinematics rises by a factor 4 with this option. The
hierarchy of the preconditioners was elected (in earlier works) to provide good
average results and is based on experience and numerical tests.

A special remark needs to be made regarding the variables considered in the
extended systems. Willems introduced two step sizes for each system. The step
sizes are used to skip variables in large systems. The internal numbering of vari-
ables needed for applying a step size is done in the fullsplit system. However, the
variables in the original system are always considered since our main interest is to
contract them.

The first step size σvar is used to choose the variables to be considered in
the extended Newton method. The second step size σCW is used to regulate
the number of variables for which the computationally expensive CW-LP-precon-
ditioner (see section 2.3.5.4) is computed. The step sizes are defined as

σvar(E) :=

{
1 if |Var(E)| ≤ 50

max {|Var(Eorig)|, ⌊0.2 · |Var(E)|⌋} else

and

σCW (E) :=





1 if |Var(E)| ≤ 10 or E = Eorig

2 if |Var(E)| ≤ 20

5 if |Var(E)| ≤ 50

|Var(E)|+ 1 else

for every extended system E . (Thus the CW-LP-preconditioner is per default not
used for each system with more than 50 variables) The aim of the step sizes σvar
and σCW is to attain comparable computation time for systems strongly differing
in variable number. Tests showed the that the step sizes reduce the overall com-
putation time dramatically, despite lessening the contraction per box (if not only
the original system is considered). In that sense, the step sizes provide a trade-off
between the contraction provided and the computation time consumed by calcu-
lations on extended systems. The step sizes are an inherent part of the strategies
for utilization of extended systems to be presented in this chapter (namely AS and
BIH).
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Algorithm 3.2 Hybrid Newton method (box x, system E , Hprecond)

1: compute σvar(E) and σCW (E)
2: repeat
3: i← |Var(E)|
4: while i > 0 do
5: if i = |Var(E)| or volume of x was reduced by a predefined amount then
6: compute derivatives anew
7: apply CP
8: end if
9: l = 0

10: repeat
11: l← l + 1
12: apply extended Newton method with preconditioner row C

(l)
k on system

E
13: until l ≥ |Hprecond| or box small enough
14: if i ≤ |Var(Eorig)| then
15: i← i− 1 {all variables in Eorig are considered}
16: else
17: if l = 1 then {CW-LP-preconditioner }
18: i← i− σCW (E)
19: else
20: i← i− σvar(E)
21: end if
22: end if
23: end while
24: until box is small enough or contracted enough or applied maximum number

of times
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3.1.3 Extended systems in SONIC

Extended systems are not constructed explicitly in SONIC. They are implicitly
derived from the internal representation of the fullsplit system. Which systems
are constructed and used in SONIC can be chosen in the file config.cpp. If two
extended systems are identical for a given problem, only one of them is used.
As soon as all systems have been constructed, the extended systems are sorted by
variable number to build a hierarchy HE of extended systems. (If two systems E(1)

and E(2) are constructed with |Var(E(1))| = |Var(E(2))|) but Var(E(1)) 6= Var(E(2)))
their order in HE follows the sequence in which the systems are built.) These are
the two reasons why we may end up with different HE for individual problems
even if we start to construct the same extended systems. If we do not consider a
specific problem, especially the number of variables in the linear system is hard
to relate to the CST or CSTN system. In general, we can only state the relations

|Var(Eorig)| ≤ |Var(Ecst)| ≤ |Var(Ecstn)| ≤ |Var(Efull)|

and
|Var(Eorig)| ≤ |Var(Elin)| ≤ |Var(Efull)|.

If we would not construct a system E(2) based on the original system but on
the previous extended system E(1), we could also attain the relation Var(E(2)) ⊇
Var(E(1)).

⋄

Having defined extended systems and contractors to work on them further
questions arise. Which extended systems should be constructed? And which
contractors should be run on each of them to optimize the overall computation
time of the branch-and-bound algorithm? Does the choice of appropriate extended
systems and contractors depend on the given problem or is it universal for all
nonlinear systems of equations?

For these considerations we have to remind that coarse and fine systems each
have their advantages and disadvantages. In general, coarser systems cause less
computational costs due to their lower variable number. When applying the con-
tractors to finer systems we can assume to attain a stronger contraction than on a
coarser system. To balance these benefits out, the step sizes σvar(E) and σCW (E)
are applied.

It is easy to guess that running only computational cheap contractors on the
coarsest system will result in the least amount of time needed per box. However,
this strategy often leads to an enormous overall box number. On the other side,
running all contractors on all available extended systems tends to minimize the
overall box number while increasing the computation time needed for a single box
tremendously.
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Unfortunately, one cannot say that either of the two strategies is better than
the other. For example, for some of the harder problems (for example min-04-
07 ) it is better to go for mere box throughput by disabling all contractors but
CP [BLUW09]. By contrast, when applying all extended systems for problem
Trigonometric, 12, 241 boxes and 149.8 seconds are needed for the computation.
Turning off all contractors on the other hand results in a vast increase of both
these numbers: now 46, 919, 939 boxes are computed and 27, 945.1 seconds are
needed to consider them.

In fact, even if HE is fixed, we are not be able to determine which contrac-
tors to apply in general. This has already been discussed in section 2.3.6, where
contractors for the original system were examined.

In the following, we discuss strategies to choose the extended systems to be
applied. These strategies can represent the branching-step of the branch-and-
bound algorithm. All strategies for the usage of extended systems have been
developed to suit a wide range of problems and aim at finding a compromise
between the extremes of using none or all systems.

3.2 Separate analysis phase

A first possibility to choose “promising” extended systems and contractors is the
following. For each problem the branch-and-bound algorithm is started for an
“analysis phase”. In this phase, a computation is started just to store information
about successful extended systems and contractors. Afterwards, the computation
is started anew. In the second, “computation phase” the successful systems and
contractors are preferred.

However, this approach has not been implemented since the author sees several
disadvantages. Firstly, we cannot analyze all boxes in the first phase if the entire
approach should be competitive. Since we cannot compute all boxes, we should use
a depth-first recursion through the branch-and-bound algorithm in the analysis
phase to get results in as many recursion levels as possible. But still only boxes in
some branches of the branch-and-bound tree are analyzed. Thus predictions may
only be valid for the boxes considered in the first phase.

A second problem is that it is likely that the choice for extended systems
and contractors is modified when changing from the analysis to the computation
phase. Hence different boxes are computed in the branch-and-bound algorithm.
For these boxes the sampled information could not be suited at all. Thus the
analysis phase cannot only cause an overhead in computation time but even lead
to an unfavorable strategy for the computation step.
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3.3 A box-intern hierarchy controlling extended sys-

tems (BIH)

Willems suggested an approach to apply the extended systems as they appear in
HE . His approach combines the benefits of the different extended systems in a
sensible way. The coarsest systems, with anticipated low computation time, are
applied first.

The hierarchical approach is applied independently for every box considered
in the bounding step of the branch-and-bound algorithm. Thus we will call it the
box-intern hierarchy or BIH. Below we describe the strategy in short. A depiction
of the algorithm is given in Figure 3.2. A representation in pseudo code can be
found in Algorithm 3.3. For further background information see [Wil04] (esp.
p. 114 ff.).

Ecoarsest

contractors

apply contractors on
intermediate system(s) if existent

Efinest

contractors

box small enough

or contractors
applied for a maximum
number of time

restart hierachy
depending on
contraction

Figure 3.2: BIH for using extended systems

The strategy of the BIH mainly is a traversal of the hierarchy of extended
systems. By applying Ecoarsest first, a box is contracted while investing little com-
putation time. If a box could not be contracted sufficiently, the next finer system
is applied. Analogously, one proceeds to apply contractors on increasingly finer
systems until a sufficient contraction has been attained or until Efinest has been
applied.
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Algorithm 3.3 BIH for using extended systems (box x, HE)

1: E ← Ecoarsest
2: repeat
3: determine the number of point intervals Thinold in x

4: determine the relative volume of the box RelVolold ← RelVol(x)
5: run contractors on current system E (Alg. 2.8)
6: determine the number of thin variables Thinnew
7: determine the relative volume of the box: RelVolnew ← RelVol(x)

{Which system to consider next?}
8: if E = Ecoarsest then
9: Thinold ← Thinnew

10: RelVolold ← RelVolnew
11: end if
12: if E 6= Ecoarsest and

(RelVolnew · κ < RelVolold or Thinnew > Thinold) then
13: {contraction sufficient for restart}
14: E ← Ecoarsest
15: Thinold ← Thinnew
16: RelVolold ← RelVolnew
17: else if box x is small enough or E = Efinest then
18: break {terminate repeat-loop}
19: else
20: E ← next finer extended system
21: end if
22: until the loop body has been executed a maximum number of times
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The success of contraction is monitored via the relative volume

RelVol(x) :=
∏

width (xj)6=0

width (xj)

of box x. Replacing the width in Definition 1.10 by the modified volume we attain
the new qualifier

RelVol(x)

RelVol(xnew)
> κ

for the contraction success of a contractor. The default choice for factor κ in
SONIC is 100.025 (approximately 1.06). Thin components do not contribute to
the relative volume, but are counted separately. A reduction of a component
from a proper interval to a point interval is considered as a sufficient contraction
success, too.

In addition to this simple strategy, Willems restarted the traversal of HE ,
whenever a box is contracted successfully in a system E 6= Ecoarsest. In that case
it can be expected that Ecoarsest may again be successful on the changed box x.

The traversal will be aborted, when the box is contracted to the desired size
for a solution box or when the extended systems have been applied for a prede-
fined maximum number of times. Willems chose a regulation depending on the
number of available extended systems. In the default settings the parameter Max-
RepsHierarchyPerSystem is set to 2. With this parameter the number of applied
extended systems is determined as twice the number of overall extended systems.
This the finest system is applied at most twice, which happens if the hierarchy
is restarted only once after the finest system was applied. However, it is also
possible that the finest systems are never applied because coarser systems provide
enough contraction and the hierarchy is restarted before reaching the finer systems
themselves.

In SONIC the threshold value for restarting the traversal of HE is Restart-
HierarchyFactor. It determines κ by the relation κ = 10RestartHierarchyFactor.

Willems already speculated that his regulation by hierarchy may not be the
ideal heuristic for the application of the extended systems. In fact, the author will
derive a more promising heuristic in the next sections.

3.4 Studies for selecting extended systems

One drawback we see in the box-intern hierarchy is that every box is considered
independently of all others. Therefore the heuristic makes no use of information
gained in earlier computations on other boxes. In the following, strategies are
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developed to deduce additional information from the overall branch-and-bound
algorithm and to exploit it for regulating the use of the different extended systems.

Eventually, an adaptive strategy for selecting systems is presented. Numerical
tests will show that the new strategy significantly improves the average computa-
tion time compared to the box-intern hierarchy.

3.4.1 Skipping extended systems

One way to save computation time without waiving extended systems E 6= Eorig
completely is to apply them only a subset of the boxes evolving in the branch-
and-bound algorithm. But how should we decide on which boxes to use them?

One approach would be to use all systems on the boxes in the upmost recursion
levels. The more those boxes are contracted, the more subboxes can be spared in
deeper recursion levels. However, this approach has two downsides. Firstly, one
still has no clue in how many recursion levels the finer extended systems should be
employed. Secondly, the interval Newton method is usually more powerful when
applied to small boxes. Thus it may not be able to provide contraction for the wide
boxes considered in upper recursion levels of the branch-and-bound algorithm.

Our second approach adapts the box-intern hierarchy and tries to estimate the
contraction success of the extended systems. A system E 6= Eorig is only employed
in the next traversing of HE if it provided contraction for the current box. If
it does not contract or (alternatively) not contract successfully, we assume that
the considered box is too wide and has to be reduced in size before starting the
extended systems anew.

The simplest way to secure a reduction in box size is to subdivide the box. We
can even subdivide more than once before applying the extended systems again to
save computation time on the finer systems. Algorithm 3.4 clarifies this “skipping”
of extended systems. Within the algorithm we use the step size σE which is a
fixed number that can be chosen separately for each extended system E .

Note that the employed systems are not necessarily the same for all boxes in a
recursion level. Which extended systems are allowed for a given box depends on
their success in the ancestorboxes. One could also apply the approach of skipping
systems on whole recursion levels. In this case, whether or not to apply extended
systems would be chosen uniformly for all boxes in a recursion level. However,
the decision whether to use finer extended systems on the following recursion level
would be complicated. Further it is not recommendable to make decisions for
whole recursion levels since the function may behave very differently in different
subboxes of the startbox x(0).

Tables 3.1 and 3.2 state the computation time and box number needed for the
box-intern hierarchy as presented in section 3.3 and different strategies to employ
extended systems. The modifications are described below. Shown are the results
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for test set TA (cf. appendix) and the default hierarchy HE = (Eorig, Ecst, Efull).
Note that the CST system was not constructed for Brent7 and Eco9 because
those problems do not contain any subterms with multiple occurrences. For con-
clusive time measurements, verification (see Chapter 4) was deactivated for all
tests contained in this chapter.

The first part of tables 3.1 and 3.2 summarizes results for simple modifications
of the box-intern hierarchy. In the first modification the box-intern hierarchy was
allowed to restart after Ecoarsest (here Eorig) was applied (cf. line 12 in Alg. 3.3). In a
second setting, the finer extended systems were started, but the expensive Newton
method was conducted only on the original system. For the third modification
every extended system was employed exactly once per box. In a last setting only
the original system was allowed. The table easily reveals that test set TA contains
only one problem for which extended systems are beneficial in the standard version
of BIH.

The second part of the tables 3.1 and 3.2 states the results for the skip-
ping of extended systems. The headers state the extended systems Eskip that
are “skipped”, and the number σE of subdivision steps for which the systems are
not applied. So all extended systems are applied until Eskip no longer provides
enough contraction. Subsequently Eskip is skipped for σE recursion levels before
giving it a new try.

If a value for κ is given in the table, the skipping is applied with respect to
the success of the extended system. This more sophisticated strategy is employed
according to Algorithm 3.4. The success of the contraction is computed as for the
box-intern hierarchy, by a ratio of relative volumes. Parameter κ is used as the
threshold to decide, whether a method provided enough contraction and should be
used again. In any other case system E is skipped for σE subdivision steps. (The
approximate values for κ are 100.025 ≈ 1.06, 100.2 ≈ 1.58 and 100.5 ≈ 3.2.) Note
that the finer extended systems do not have to be applied, although this would be
allowed. When a box could be contracted enough by coarser systems, there is no
need to apply further finer ones.

Table 3.2 shows that the average box number cannot be improved by any
modification. This was to be expected due to the more seldom application of finer
systems. Computation time on the other hand can be saved by skipping finer
extended systems as is displayed in Table 3.1. For problem 7erSystem savings in
computation time up to 75% are observed when skipping systems. In fact, for
test set TA, improved computation time can be attained for all problems except
the Trigonometric problem. For this problem skipping the CST system leads to
a significant increase in computation time.

For all problems but Trigonometric computation time decreases when increas-
ing parameter σE . This is accounted for by less time-consuming calculations when
skipping systems more often. For parameter κ the value 100.025 turned out to be
slightly more advantageous than the other tested values.
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Algorithm 3.4 Skipping extended systems (box x, step size σE , success rate
κ)

1: if x equals startbox x(0): σ ← σ = 1
2: E ← Ecoarsest
3: boolean value success ← false
4: determine Thinold as the number of thin variables of box x

5: determine RelVolold as the relative volume of the box x

6: for E traversing HE in coarse-to-fine order do
7: if E = Ecoarsest or σ = 1 then
8: run contractors on current system E (Alg. 2.8)
9: end if

{Which system to consider next?}
10: if E = Ecoarsest then
11: Thinold ← Thinnew, RelVolold ← RelVolnew
12: end if
13: if E 6= Ecoarsest and

(RelVolnew · κ < RelVolold or Thinnew > Thinold) then
14: success ← true
15: else if box x is small enough or E = Efinest then
16: break
17: end if
18: end for
19: if success = true or σ > σE then
20: σ ← 1
21: else
22: increase σ by one
23: end if

Further tests, not presented here, showed only minor differences in needed
computation time when no restart is used in the box-intern hierarchy.

For a general approach on how to select the extended systems to be applied for
an arbitrary problem, the different behavior of the problems has to be considered.
For example, it emerged to be better to discard just the fullsplit or no system at
all for problem Trigonometric whereas for min-04-07 it is a better choice to skip
both finer systems, the CST and fullsplit system.

Thus we easily see that none of the investigated simple approaches is suited for
all problems. A more sophisticated method is needed to decide, which extended
systems should be employed. One promising approach to do so is scrutinized in
the next section.
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setting 7erSystem Brent7 Eco9 Trigonometric min-04-07

default version of BIH 436.7 78.5 84.5 128.6 1830.2
also restart after Eorig 436.6 78.4 84.5 128.6 1835.6
Newton only on Eorig 436.7 78.4 84.6 128.7 1835.9
every system once per box 433.9 78.5 84.6 125.3 1829.9
only Eorig 83.7 27.1 47.0 472.8 1020.3

Eskip σE κ

Efull 5 - 156.2 38.9 56.2 111.7 1319.2
Ecst, Efull 5 - 155.8 38.9 56.1 175.6 1170.3
Ecst, Efull 3 100.025 207.8 45.6 61.1 152.2 1287.2
Ecst, Efull 3 100.2 213.4 45.7 61.1 152.2 1284.9
Ecst, Efull 3 100.5 230.4 46.2 61.2 148.1 1284.7
Ecst, Efull 5 100.025 156.5 38.9 56.1 174.1 1173.1
Ecst, Efull 5 100.2 160.8 39.2 56.1 181.2 1171.9
Ecst, Efull 5 100.5 168.0 39.6 56.2 176.6 1171.4
Ecst, Efull 10 100.025 106.8 33.9 52.6 355.9 1114.1
Ecst, Efull 10 100.2 107.8 34.1 52.6 357.7 1115.4
Ecst, Efull 10 100.5 111.7 34.6 52.7 357.5 1113.6

Table 3.1: Computation time (in seconds) for variations of BIH (with markers for the lowest and highest values)
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setting 7erSystem Brent7 Eco9 Trigonometric min-04-07

default version of BIH 11523 51851 30109 18569 68185
also restart after Eorig 11523 51851 30109 18569 68185
Newton only on Eorig 11523 51851 30109 18569 68185
every system once per box 11789 51903 30171 18913 68185
only Eorig 24035 55205 36889 204013 73287

Eskip σE κ

Efull 5 - 12623 54253 30861 19487 70165
Ecst, Efull 5 - 16707 54253 30861 55469 71771
Ecst, Efull 3 100.025 14953 53489 30685 35011 70595
Ecst, Efull 3 100.2 14611 53365 30631 33951 70595
Ecst, Efull 3 100.5 13921 52683 30537 31593 70593
Ecst, Efull 5 100.025 16677 54249 30861 49973 71771
Ecst, Efull 5 100.2 16499 54037 30819 48211 71771
Ecst, Efull 5 100.5 16165 53275 30787 45601 71769
Ecst, Efull 10 100.025 17885 54833 30905 127917 71931
Ecst, Efull 10 100.2 17801 54719 30889 128721 71931
Ecst, Efull 10 100.5 17627 53913 30871 127937 71929

Table 3.2: Box numbers for variations of BIH (with markers for the lowest and highest values)
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3.4.2 Predicting contraction success

In the last subsection we simply presumed it to be more likely to contract a box x

on a certain extended system E if its parentbox or ancestorbox could be contracted
by E . The theoretical backbone of this ansatz is our assumption that a function
often behaves similarly on a box and its subboxes. Of course, this presumption
cannot always be fulfilled, but we expect it to work for the majority of boxes
(especially if they are sufficiently small).

The author thus proposes to use measurements of the success of contractors on
the parentbox and ancestorboxes as a hint, which contractors are most probably
suited for box x. If our approach shows to be reasonable, we attain the possibility
to select the extended system to be applied by evaluating the former successes in
contracting boxes and thus to construct more sophisticated decision strategies.

Hence want to evaluate this idea in more detail. Tests were conducted to
strengthen the made assumption. For that purpose, the contraction achieved
in every extended system was measured. Every constructed system was started
once in the box-intern hierarchy. For the upcoming tests the hierarchy HE =
(Eorig, Ecst, Efull) is used. (For the problems Brent7 and Eco9 again only the orig-
inal system and the fullsplit systems are constructed.)

Note that the different systems are not necessarily applied to the same box
since the boxes may have been contracted by coarser systems. Furthermore, for
different options, different boxes emerge in the branch-and-bound algorithm. This
is the point where we encounter an inherent problem of tests in the branch-and-
bound algorithm: we can never test every possible regulation of contractors and
extended systems depending on properties of the boxes. Thus we have to put
up with an assortment of sensible tests. With the results of these tests we then
build reasonable heuristics. (Within the tests we only examine the systems in
hierarchies ordered by variable number this is the one in which we want to apply
our extended systems later on.)

For the next test the numbers of contracted boxes are considered. Those
are given as ratios with respect to the success of the extended systems for the
parentboxes. The contraction is achieved either by the extended Newton method
or by all used contractors.

For a formal denotation some events are introduced. Remember that for a
contractor µ a box is called not contracted if µ(x) = x and contracted if µ(x) ( x.
However, no statement is made about the quality of a contraction.

B box was contracted

B box was not contracted
P parentbox was contracted

P parentbox was not contracted

Now we can count the occurrences of each event in the branch-and-bound algo-
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rithm. The amount of boxes for which a certain event X is observed is denoted
by p(X). For two arbitrary events X and Y we define p(X,Y ) as the amount of
boxes for which event X and Y were observed. Herein all numbers are normalized
by the overall number of boxes. Due to the normalization the relation

p(B,P ) + p(B,P ) + p(B,P ) + p(B,P ) = 1

holds. (Since rounded numbers are displayed in the upcoming tables, the given
values do not always sum up to 1 exactly.) The denotation is deliberately chosen
to resemble that of probabilities. For example, p(B,P ) can be interpreted as
the probability to observe that a box and its parentbox in the branch-and-bound
algorithm are both contracted.

Tables 3.3 and 3.4 display the results calculated for test set TA. They also
tell us how often the extended Newton method is not started because the current
box was contracted enough before. This number gives an impression, how often
constraint propagation and Taylor refinements are sufficient to contract a box. It
also gives us a hint that less computation time was demanded for the extended
Newton method (since it was called less often).

For the computation of the contraction rates an altered volume computation
is used. This was necessary because the relative volume RelVol can yield zero or
infinite volumes and is thus not suited for computing ratios. To surmount this
obstacle we introduced two thresholds θj, sufficiently small, and Θj, sufficiently
large, to handle very narrow and very wide intervals. We achieve a finite, nonzero
approximate for the box volume, called the thresholded volume, defined by

ThVol(x) :=
∏

j

widthTh(xj),

where

widthTh(xj) :=





θj if width (xj) ≤ θj

width (xj) if θj ≤ width (xj) ≤ Θj

Θj if Θj ≤ width (xj)

.

No further treatment is needed for unbounded or point intervals. One reason for
doing so is that we see no great advantage in getting from a narrow interval to a
point interval if the required precision for this interval is already reached and the
contraction does not influence the function enclosure over the box. The volume
of a box before the application of an extended system is denoted as ThVolold, and
afterwards as ThVolnew.

As an advantage of the thresholded volume, information about whether a box
was contracted in any dimension is consolidated into a single number. And it is
applicable as well for boxes with zero or infinite volume. A further virtue of the
new definition is that the computed volume of a box cannot get larger. This was
possible when using the relative volume RelVol if a box component was contracted
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to a point interval. As already suggested in [SA02,Wil04], the volumes are used
in a logarithmic form in the implementation for numerical reasons (especially to
avoid over- or underflows).

The quotient γEcontr is computed as the arithmetic mean of the contraction rate
over all boxes, for which the contractors on a given system were applied. A system
E is rated as more successful the smaller γEcontr gets.

γEcontr :=
1

overall calls of E
·

∑

x considered in E

(ThVolnew(x)/ThVolold(x))

Moreover, the computation time is desired to be as small as possible, too. Thus a
further quotient γEtime is computed to assess the success of the system with respect
to time(x), the time spent on a box x.

γEtime :=
1

overall calls of E
·

∑

x considered in E

(ThVolnew(x)/ThVolold(x) · time(x))

Hence a smaller value of γEtime indicates better average performance in contraction
per time.

Tables 3.3 confirms the contraction success of Ecst for problem Trigonometric
and that for min-04-07 the extended Newton method seldom provides contraction,
no matter on which system, as indicated by earlier measurements skipping systems.

Tables 3.3 and 3.4 further reveal that for test set TA the contraction success of
a box indeed is related to the success on the parentbox. In general

p(B,P ) + p(B,P ) > p(B,P ) + p(B,P ).

is valid. In many cases even

p(B,P ) + p(B,P ) > 0.7

holds, indication a strong correlation of the contraction in a box and its parentbox.
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problem system calls Newton p(B,P ) p(B,P ) p(B,P ) p(B,P ) γEcontr γEtime

not done

Brent7 Eorig 41274 78 0.03 0.78 0.10 0.10 0.99 0.0004
Efull 25961 15313 0.19 0.61 0.10 0.10 0.95 0.0019

Eco9 Eorig 30134 0 0.36 0.21 0.22 0.22 0.66 0.0007
Efull 15438 14696 0.06 0.70 0.12 0.12 0.95 0.0022

Trigonometric Eorig 19245 83 0.11 0.68 0.11 0.11 0.85 0.0006
Ecst 14890 4355 0.63 0.12 0.12 0.12 0.40 0.0010
Efull 9615 5275 0.34 0.35 0.15 0.15 0.74 0.0017

7erSystem Eorig 11765 0 0.94 0.00 0.03 0.03 0.33 0.0007
Ecst 7444 4321 0.66 0.06 0.14 0.14 0.64 0.0023
Efull 6289 1155 0.02 0.84 0.07 0.07 0.96 0.0556

min-04-07 Eorig 66039 0 0.01 0.93 0.03 0.03 0.98 0.0078
Ecst 34693 31346 0.01 0.90 0.04 0.04 0.96 0.0041
Efull 34064 629 0.01 0.93 0.03 0.03 0.97 0.0187

Table 3.3: Contraction success of the extended Newton method in relation to success on the parentbox on the same system
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problem system calls Newton p(B,P ) p(B,P ) p(B,P ) p(B,P ) γEcontr γEtime

not done

Brent7 Eorig 41274 78 0.60 0.06 0.17 0.17 0.56 0.0002
Efull 25961 15313 0.19 0.61 0.10 0.10 0.95 0.0019

Eco9 Eorig 30134 0 0.86 0.01 0.06 0.06 0.31 0.0003
Efull 15438 14696 0.06 0.70 0.12 0.12 0.95 0.0023

Trigonometric Eorig 19245 83 0.66 0.11 0.12 0.12 0.55 0.0005
Ecst 14890 4355 0.63 0.12 0.12 0.12 0.40 0.0011
Efull 9615 5275 0.34 0.35 0.15 0.15 0.74 0.0019

7erSystem Eorig 11765 0 1.00 0.00 0.00 0.00 0.29 0.0007
Ecst 7444 4321 0.66 0.06 0.14 0.14 0.64 0.0025
Efull 6289 1155 0.02 0.84 0.07 0.07 0.96 0.0556

min-04-07 Eorig 66039 0 0.50 0.13 0.19 0.19 0.46 0.0031
Ecst 34693 31346 0.01 0.90 0.04 0.04 0.96 0.0042
Efull 34064 629 0.01 0.93 0.03 0.03 0.97 0.0185

Table 3.4: Contraction success of all contractors on extended systems in relation to success on the parentbox on the same
system
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3.5 A new, adaptive strategy (AS)

The basis for our new heuristic is the observation made in the last section: for a
given box the most efficient extended systems are probably those that have already
been successful in contracting the parentbox. The new strategy deduces informa-
tion from parent- and ancestorboxes to choose promising extended systems. This
means that the selection of extended systems for a box is guided “by experience”
and adapts itself to each specific problem during the computation. Moreover, the
strategy adapts the usage of the extended systems for every individual box. Its
main goal is to reduce the computation time by starting only extended systems
for which it is assumed that they can contract a given box.

For each box the new heuristic processes through the hierarchy of extended
systems (without restarts). Whether or not to apply each system is decided sep-
arately for each box. No system is employed more than once per box.

For every box the extended systems E are started depending on gauges or key
figures γE . Each γE is composed out of the contraction rates and the computation
time of the contractors in system E . All key figures are initialized with zero for
the startbox. Every other box inherits the values γEold of its parentbox. The value
for each extended system E is updated if it is applied and stays the same in any
other case.

To obtain smoother behavior, old values are taken into account when updating.
Thus the update is done by averaging the previous value with γEnew, which is the
product of contraction ratio and computation time needed for the current run.
Hence the gauge γE is computed by

γE :=

{
0 for the startbox x(0)

β · γEnew + (1− β) · γEold for all other boxes

for a fixed weight β ∈ [0, 1]. In the computation of the average it emerged to be
useful to weigh the new value with β < 1/2 to alleviate the impact of outliers in
running time or contraction.

Using the γE we achieve a reliable, adaptive strategy. Moreover, we have to
store and process only one additional value per box and system. To improve the
start value of γE , by default all extended systems are run for the three upmost
recursion levels. If each box is subdivided into a maximum of two subboxes, these
levels contain a maximum of only seven boxes, but these include the first three
boxes in every path of the branch-and-bound tree beginning in the startbox x(0).
By virtue of this procedure, at least three values for averaging are calculated per
system. As a positive side-effect, all boxes are contracted by all systems in the
upmost recursion levels. This helps to reduce the number of boxes to be considered
in deeper recursion levels.

In the deeper recursion levels two comparisons are used to decide whether a
system E is applied. The coarsest system Ecoarsest in the hierarchy of extended
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systems is applied unless the gauge γEcoarsest is larger than the gauge of the next
finer system Ecoarsest+1. The other systems E are applied if the gauge γE is small
compared to γEcoarsest . In this comparison a parameter α is used.

The adaptive strategy measures the contraction and computation time needed
for all contractors on the extended systems. Although usually the extended New-
ton method accounts for the largest part of the computation time, the times for
constraint propagation and Taylor refinements are included in the measurements.
This is done because for some problems also constraint propagation and Taylor
refinements cause a significant part of the computation time. So the adaptive
strategy regulates the usage of the extended systems.

By calculating the key figures γE and using them to regulate the usage of the
extended systems the author attains an adaptive strategy “driven by experience”.
The line of action for the adaptive strategy (AS) on each box is illustrated by
Algorithm 3.5 and Figure 3.3.

Ecoarsest

contractors

apply contractors on
intermediate system(s) if existent

Efinest

contractors

box small enough

systems started by
adaptive strategy

Figure 3.3: AS for using extended systems
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Algorithm 3.5 AS for using extended systems (box x, HE)

1: for E traversing HE in coarse-to-fine order do
2: if (recursion level ≤ 3) or

(E = Ecoarsest and γEcoarsest ≤ γEcoarsest+1) or
(E 6= Ecoarsest and γE < α · γEcoarsest ) then

3: ThVolold ← ThVol(x)
4: timestart ← current time
5: run contractors on current system E (Alg. 2.8)
6: ThVolnew ← ThVol(x)
7: timeend ← current time
8: γEnew ← (timeend − timestart) · (ThVolnew/ThVolold)
9: γE ← β · γEnew + (1− β) · γE

10: end if
11: end for

3.5.1 Implementation details

The adaptive strategy was implemented to be applicable for arbitrary hierarchies
HE . The gauges γ

E are stored in the data structure for the boxes and are inherited
by the subboxes when the box is subdivided. Thus, no global variables are needed
and the adaptive strategy can be applied in parallel versions of the program (cf.
section 5.4).

The parameters α and β can be found in the Settings-File in SONIC as
AveragingGauge and ComparisonFactorForLargerSystems , respectively. The de-
fault setting for the parameters are α = 4 and β = 0.25.

Note that the box number, the computation time and the set of solution boxes
may differ slightly in each run of the adaptive strategy. This is due to its de-
pendence on the computation time, which can deviate in different runs. So this
algorithm is not deterministic. In all conducted tests, however, times and box
number were nearly the same. The observed differences between two runs were
less than 1%. Note that the non-deterministic behavior is by no means a general
downside, but an essential characteristic allowing the algorithm to adapt itself ac-
cording to the computation time. If deterministic behavior is necessary for special
purposes, e.g., debugging, one still can resort to the box-intern hierarchy.
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3.6 Comparison of the strategies BIH and AS

We now want to compare the box-intern hierarchy (BIH) and the newly devel-
oped adaptive strategy (AS). For the numerical tests both strategies use HE =
(Eorig, Ecst, Efull) (compare Figure 3.5).

Eorig

CP, Taylor

Newton

Ecst

CP, Taylor

Newton

Efull

CP, Taylor

Newton

box small enough

or contractors
applied for a maximum
number of time

restart hierarchy
depending on
contraction

(a) Box-intern hierarchy

Eorig

CP, Taylor

Newton

Ecst

CP, Taylor

Newton

Efull

CP, Taylor

Newton

box small enough

systems started by
adaptive strategy

(b) Adaptive strategy

Figure 3.4: BIH and AS for the default hierarchy HE = (Eorig, Ecst, Efull)

3.6.1 Comparison in computation time and box number

Considering that test set TA (cf. appendix) was applied for testing and calibra-
tion of the adaptive strategy and the larger test set TB is employed to validate
improvements. Numerical tests yielded evidence that the new adaptive strategy
is superior to the box-intern hierarchy with respect to computation time.

Table 3.5 lists the box numbers and computation time needed in both strate-
gies. One can see that for some test problems the adaptive strategy achieves a
major decrease in computation time (eg. 7erSystem). Even more, there exists no
problem for which the computation time increases significantly. The only prob-
lem for which the computation time is not reduced is Trigonometric. However,
for this problem we already noted in earlier tests that a reduced usage of finer
extended systems most often increases the computation time instead of reducing
it (cf. Table 3.1).
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problem boxesBIH boxesAS timeBIH timeAS

min-04-06 785 809 12.2 8.6
G7 gradientsystem 2175 2175 12.6 6.6
Reactor 549 577 27.9 12.4
Chemistry1 5889 6907 48.9 37.5
Brent7 51851 55421 79.1 29.3
Eco9 30109 30929 85.8 55.2
Trigexp1 1385 1405 105.6 31.7
Trigonometric 18569 31751 132.7 133.9
Chemistry2 49195 49201 185.9 88.2
DirectKinematics 9157 10401 189.8 53.3
DesignProblem9 27949 44497 195.0 112.2
7erSystem 11523 17375 446.3 79.7
min-04-07 68185 68699 1894.4 1408.9
Chemistry3 2959459 2976919 32902.3 13886.7

Table 3.5: Comparison of the box-intern hierarchy (BIH) and adaptive strategy
(AS)

0 2 4 6 8 10 12 14

101

102

103

104

problem

co
m
p
u
ta
ti
on

ti
m
e
in

se
co
n
d
s

(a) Comparison in computation time

0 2 4 6 8 10 12 14

103

104

105

106

problem

b
ox
es

n
ee
d
ed

(b) Comparison in box number

Figure 3.5: Comparison of BIH ( ) and AS ( ) (problem numbers refer to order in
test set TB)
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Box numbers, on the other side, usually increase for the adaptive strategy. This
happens because the large systems, anticipated to provide the best contraction, are
applied less often. Therefore more boxes have to be considered in the branch-and-
bound algorithm. However, the contractors applied for the boxes are potentially
cheaper in computational costs. Thus, for some problems, like DesignProblem,
the box number is significantly higher than for the box-intern hierarchy. Still the
adaptive strategy achieves better results in computation time.

The overall results can be condensed in two simple numbers: the arithmetic
mean of the ratio of the box number in box-intern hierarchy (BIH) and adaptive
strategy (AS)

1

number of problems
·

∑

problems

boxesAS

boxesBIH
= 1.17

and the ratio of the computation time needed for the considered test set

1

number of problems
·

∑

problems

timeAS

timeBIH
= 0.53.

Hence, on average, the adaptive strategy considers 17% more boxes, but needs
only about half the computation time of the box-intern hierarchy.

Note that the adaptive strategy cannot only adapt the usage of extended sys-
tems to a given problem and box. If the times needed for computing different op-
erations vary for different hardware structures, the adaptive strategy still chooses
time-efficient systems. Thus it can even adjust to the underlying soft- and hard-
ware structure.

Our tests conducted with the interval library filib++ instead of C-XSC and
another machine (Intel R©CoreTM2 Duo CPU P8600 @ 2.40GHz) showed equally
good results when comparing our adaptive strategy to the box-intern hierarchy.
Using filib++, the computation time decreased by 24% (box number raised by 16%).
On the second machine, the computation time was reduced by 46% (box number
increased by 13%) if C-XSC was used and using filib++ we observed a saving of
58% in computation time (and a box number risen by 15%).

3.7 Modifications of the adaptive strategy

The parameters for the adaptive strategy presented in section 3.5 were derived
from various deliberations and extensive experiments. On this basis, the strategy
has been provided with the most promising default parameters. In this section
some possible modifications of the adaptive strategy are discussed. Since the new
strategy was custom-built to provide good results for test set TA, the modifications
are tested for the test set TB to shown that the chosen approach is also suited for
a larger set of problems.
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For every modification the required box number is denoted as boxesmod and
the time as timemod. For easier comparison we set these values in relation to
boxesAS and timeAS which name the box number and computation time needed
by the standard adaptive strategy (represented in Table 3.5). We compute the
ratio

boxesratio :=
1

number of problems
·

∑

problems

boxesmod

boxesAS

for the box numbers and correspondingly for computation time

timeratio :=
1

number of problems
·

∑

problems

timemod

timeAS
.

The mentioned modifications that appear to be useful in reducing the com-
putation time for at least some problems can be activated in the Controls-File of
SONIC and combined if a user wants to do so.

3.7.1 Restarting

Our tests indicated that restarting the adaptive strategy provides no further ad-
vantage with respect to computation time. Thus restarts have not been imple-
mented in the adaptive strategy. However, the box number decreases for some
test problems when a restart was used, caused by the higher effort in contracting
boxes before subdividing again and proceeding to deeper recursion levels.

3.7.2 Varying parameter α

To prefer finer or coarser extended systems we can adjust variable α in Alg. 3.5.
The default value for α is 4. We tested the alternative values 3 (evoking more
finer systems, see Table 3.6) and 5 (evoking fewer finer systems, see Table 3.7).

For α = 3 the computation time for problem Eco9 is reduced by 9%, for
Trigexp1 by 14% and for min-04-07 even by 31%. Then again, the computation
time needed for Trigonometric increased (by 19%). For α = 5 the computation
time for Trigonometric decreased by 10%. Anyway, none of the options could
provide significantly better computation time on average.

As mentioned before, parameter α equals ComparisonFactorForLargerSystems
in SONIC. The default value is retained as 4.
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problem boxesmod boxesratio timemod timeratio

min-04-06 793 0.98 8.1 0.93
G7 gradientsystem 2175 1.00 6.6 1.00
Reactor 575 1.00 12.3 0.99
Chemistry1 6871 0.99 35.2 0.94
Brent7 55569 1.00 29.1 0.99
Eco9 30981 1.00 50.1 0.91
Trigexp1 1407 1.00 27.3 0.86
Trigonometric 45781 1.44 159.3 1.19
Chemistry2 49201 1.00 88.2 1.00
DirectKinematics 10401 1.00 53.8 1.01
DesignProblem9 45409 1.02 112.4 1.00
7erSystem 18737 1.08 79.8 1.00
min-04-07 70215 1.02 967.3 0.69
Chemistry3 2957333 0.99 13761.4 0.99

average 1.04 0.96

Table 3.6: Comparison of AS with the modification α = 3.0 to default α = 4.0

problem boxesmod boxesratio timemod timeratio

min-04-06 793 0.98 8.8 1.01
G7 gradientsystem 2175 1.00 6.7 1.03
Reactor 577 1.00 12.4 1.00
Chemistry1 6757 0.98 41.4 1.10
Brent7 55029 0.99 30.0 1.02
Eco9 30889 1.00 62.0 1.12
Trigexp1 1407 1.00 31.0 0.98
Trigonometric 22729 0.72 120.9 0.90
Chemistry2 49195 1.00 88.2 1.00
DirectKinematics 10401 1.00 53.8 1.01
DesignProblem9 40319 0.91 118.0 1.05
7erSystem 14657 0.84 83.4 1.05
min-04-07 68423 1.00 1534.1 1.09
Chemistry3 2963875 1.00 13799.3 0.99

average 0.96 1.03

Table 3.7: Comparison of AS with the modification α = 5.0 to default α = 4.0
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3.7.3 Use all extended systems on designated recursion levels

If an extended system E(i) has not been successful in a previous recursion level, it
can happen that on some box x, the gauge γE

(i)
gets too large in comparison to

the gauges E(j) of the other systems E(j) (i 6= j). If the gauges for the E(j) stay
small, it can happen that E(i) is not used for any subboxes of x, even if this would
be sensible in deeper recursion levels. One may want to prevent this situation.
This and the next section are concerned with modifications that ensure that all
systems are applied again, including those with high values of γE

(i)
.

In a first approach, a step size σall to apply all extended systems is introduced.
The condition in of the if-statement beginning in line 2 of Algorithm 3.5 then
changes to the following lines.

(recursionlevel ≤ 3) or
(recursionlevel mod σall = 0) or
(E = Ecoarsest and γEcoarsest ≤ γEcoarsest+1) or
(E 6= Ecoarsest and γE < α · γEcoarsest)

problem boxesmod boxesratio timemod timeratio

min-04-06 785 0.97 9.6 1.11
G7 gradientsystem 2175 1.00 7.3 1.12
Reactor 595 1.03 14.0 1.12
Chemistry1 6753 0.98 39.8 1.06
Brent7 54607 0.99 34.8 1.19
Eco9 30845 1.00 58.4 1.06
Trigexp1 1405 1.00 39.3 1.24
Trigonometric 28503 0.90 131.8 0.98
Chemistry2 49199 1.00 117.4 1.33
DirectKinematics 10193 0.98 65.8 1.23
DesignProblem9 40099 0.90 123.7 1.10
7erSystem 14873 0.86 110.3 1.38
min-04-07 69567 1.01 1171.2 0.83
Chemistry3 2952923 0.99 16539.6 1.19

average 0.97 1.14

Table 3.8: Comparison of the adaptive strategy and a modification applying all
systems in every 10th recursion level

For a test, parameter σall was set to 10. Thus it is guaranteed that all ex-
tended systems are used in every tenth recursion level. The results are listed in
Table 3.8. We see that for the min-04-07 problem a better computation time is
achieved. Even though, for nearly all other problems the computation time stayed
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the same or increased slightly. The time needed on average increased by 14%, the
box number dropped by 3%. The reason for this behavior lies in the additional
extended systems used in the modification. They provide some contraction (and
thus reduce the box number) but consume additional computation time.

The modification is assessed as not beneficial for reducing the average compu-
tation time.

In SONIC the step size σall may be chosen by setting the parameter AllSystems-
EveryXRecursionLevels. In the default options, however, we did not activate the
proposed modification.

3.7.4 Reducing γ
E if system E is not applied

Another way to ensure that systems with high γE are not completely excluded from
the computation is to reduce γE whenever an extended system E is not applied.
In detail, we set γEnew (line 8 in Alg. 3.5) as

γEnew ← 0

when a system E was not applied and compute γE anew using this value.

As shown in Table 3.9, a significant reduction in box number and computation
time can only be observed for the Trigonometric problem. Nevertheless, on aver-
age computation time increases by 34% while the box number decreases slightly
because of the more frequent usage of finer systems. In general, the approach does
not provide benefits in computation time, but it appears to be useful for individual
problems.

Reducing γE is no default option in SONIC, but can be enabled by setting
parameter AverageWithZeroIfSystemNotUsed in the Controls-File.
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problem boxesmod boxesratio timemod timeratio

min-04-06 785 0.97 10.0 1.16
G7 gradientsystem 2175 1.00 9.5 1.45
Reactor 607 1.05 12.8 1.03
Chemistry1 6477 0.94 44.2 1.18
Brent7 53443 0.96 50.9 1.74
Eco9 30825 1.00 72.2 1.31
Trigexp1 1405 1.00 61.4 1.94
Trigonometric 21575 0.68 124.2 0.93
Chemistry2 49203 1.00 100.9 1.14
DirectKinematics 10295 0.99 84.0 1.58
DesignProblem9 32543 0.73 157.0 1.40
7erSystem 13807 0.79 134.6 1.69
min-04-07 68697 1.00 1472.9 1.05
Chemistry3 2964831 1.00 15479.8 1.11

average 0.94 1.34

Table 3.9: Comparison of AS and the modification reducing γE by setting γEnew = 0
when an extended system E was not applied

3.7.5 Averaging γ
E depending on the recursion level

In the next modification, finer extended systems are used more often in the upper
recursion levels. Thus we test whether it is sensible to invest more computation
time to achieve good contraction in the upper recursion levels. The deliberation
is to reduce the number of computed subboxes (and thus the spent computation
time) in the following recursion levels.

Our try to achieve this goal was to compute the γE depending on the recursion
level r. To that end we replace the computation of γE (line 9 in Alg. 3.5) by

γE ← 1
4 ·

(
3 · γEold + (timeend − timestart) · (ThVolnew/ThVolold)

(1+ 4
r
)
)

and continued in the algorithm using this value. However, it turned out that the
modified γE change nearly equally for all extended systems. Thus the choice of
the extended systems stays the same as in the standard version of the adaptive
strategy.

A second attempt was made by modifying the comparison of the γE instead of
changing the γE themselves. The comparison in line 2 of Alg. 3.5 was altered to
rely on the recursion level. However, in our tests this change could only reduce
the box numbers by a few percent while the computation time stayed nearly the
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same.

(recursion level ≤ 3) or
(E = Ecoarsest and γEcoarsest ≤ γEcoarsest+1) or
(E 6= Ecoarsest and γE <

(
α+ 10 · e−0.1·r

)
· γEcoarsest)

3.7.6 Changing the averaging for the gauges γ
E

For changing the computation of γE , we can alter parameter β (which is equal to
0.25 by default).

γE ← β · γEnew + (1− β) · γE for some fixed β ∈ [0, 1]

In Table 3.10 we give an overview of box number and time ratios for some
values of β. As we see, none of the tested values for β can reduce the average
computation time significantly. Although, the author observed that the box num-
ber and computation time does vary for single problems. But as the problems
react differently to the adjusted use of the extended systems, their timings do also
change individually. On average, positive and negative effects nearly compensate
one another.

β 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
boxesratio 1.38 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00
timeratio 1.10 0.97 0.98 1.00 1.02 1.03 1.04 1.08 1.08 1.09 1.08

Table 3.10: Ratios for box number and computation time for different values of
parameter β in the adaptive strategy (compared to default value 0.25)

Parameter β is equal to parameter AveragingGauge in SONIC.

3.7.7 Volume computation

Another test was conducted with respect to the threshold θ for point intervals
used for the computation of the box volumes ThVol(x) since a changed volume
computation might influence the contraction rates. In our tests with θ = 10−20,
10−16 and 10−10 it became apparent that the threshold θ has no impact on the
overall performance of the solver. Setting the threshold to the required precision
for solution boxes also did not provide an advantage. We could even observe an
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increase in computation time by a factor two for problem Chemistry3. Hence the
default threshold value of 10−20 is retained.

3.7.8 Using all extended systems

At last the adaptive strategy was tested with a hierarchy containing all five types
of extended systems presented in section 3.1.1. Namely HE was set to consist of
the systems Eorig, Ecst, Ecstn, Elin and Efull.

The computation time was not improved by adding the additional CSTN and
linear system to the hierarchy of extended systems (cf. Tables 3.11 and 3.14). The
average box number stayed the same, the average computation time increased
by 8%. Especially for the min-04-07 problem, the computation time increased
significantly due to the expensive, but unhelpful application of the two additional
extended systems.

Thus the default hierarchy of extended systems, comprising the three systems
original, CST and fullsplit, remains unchanged in SONIC.

problem boxesmod boxesratio timemod timeratio

min-04-06 793 0.98 11.6 1.35
G7 gradientsystem 2175 1.00 6.6 1.01
Reactor 577 1.00 12.7 1.02
Chemistry1 6919 1.00 41.2 1.10
Brent7 55427 1.00 29.3 1.00
Eco9 30919 1.00 56.6 1.02
Trigexp1 1385 0.99 33.0 1.04
Trigonometric 33423 1.05 136.7 1.02
Chemistry2 49201 1.00 87.8 1.00
DirectKinematics 10401 1.00 54.1 1.02
DesignProblem9 44123 0.99 113.4 1.01
7erSystem 16869 0.97 80.1 1.01
min-04-07 68267 0.99 2185.1 1.55
Chemistry3 2974411 1.00 13827.0 1.00

average 1.00 1.08

Table 3.11: Comparison of the adaptive strategy using HE =
(Eorig, Ecst, Ecstn, Elin, Efull) to default using HE = (Eorig, Ecst, Efull)

However, this result does not imply that other extended systems cannot be
beneficial for individual problems. Variations of the proposed adaptive strategy
or the usage of other extended systems might prove to be advantageous. Partic-
ularly beneficial may be the construction of extended systems that are fitted for
a given problem. Still, until now we did not find an appropriate strategy to do
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so because the dependence of contraction to the extended system is obscured by
preconditioning and (for some contractors) linearization.

3.7.9 Using other extended systems

It is possible to construct further extended systems (and to use them in SONIC).
However, a good strategy is needed to do so. As mentioned before, Willems
constructed various extended systems in [Wil04] and rejected the ones not listed
in our presentation as not beneficial.

Some further experiments were conducted with the new adaptive strategy, e.g.,
with a modified hierarchy HE . For these tests the original and the fullsplit system
are combined with one or two other systems.

In another test it was tried to decide a priori and individually for each problem,
which extended systems should be applied. If we would assume the success and
the computational costs of an extended system to depend only its variable number
|Var(E)|, the decision could be made depending on this parameter. We conducted
some tests using three extended systems. Besides the original and fullsplit system,
one further extended system was used for each test problem. This system E was
chosen to minimize

(
|Var(E)| −

|Var(Eorig)|+ |Var(Efull)|

2

)2

so the variable number approximates the mean of the variable number of the
original and the fullsplit system.

Because none of the extended systems implemented in SONIC may have the
desired number of variables, for a further test an artificial system E with the
prescribed number of variables

|Var(E)| =

⌊
|Var(Eorig)|+ |Var(Efull)|

2

⌋

was constructed (using every second variable in Efull.)

None of the tests showed significant improvement for our test set TB, thus
different extended systems suit different problems. However, the tests supported
our assumption that the contraction success of an extended system does not only
depend on its number of variables, but also on the structure of the system.
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3.8 Survey of the utilization of the extended systems

For assessing the usage of the extended systems for different problems, it is inter-
esting to see, how much computation time is spent on the individual systems. Be-
cause, for general extended systems, the preconditioned extended Newton method
is the contractor with the highest influence on the computation time, emphasis
will be laid on this contractor.

The given tables show the number of calls for the extended Newton method,
how often it can discard or contract a box. Also given is the variable number of
each system, the computation time spent for the Newton method in each extended
system and the overall running time and the box number needed for each problem.
The results are stated for BIH (Table 3.12) and AS (Table 3.13). In both cases
the default hierarchy of extended system HE = (Eorig, Ecst, Efull) is applied. A third
table states the results when using five systems in the adaptive strategy (Table
3.14).

In the studies employing the adaptive strategy it is anticipated that the ex-
tended systems that have been invoked often provide efficient contractions. Still,
for individual problems it can be even more beneficial to employ other systems.
However, all tests concerning the adaptive strategy showed that the heuristic pro-
vides very good decisions on average.

The tables again indicate that the CST system is important for problem
Trigonometric (corresponding to the results of the setting “only Eorig” in Ta-
ble 3.1). For G7 gradientsystem we see that the extended Newton method does
never discard or contract a box and that the adaptive strategy “learns” this within
the computation and does not start Ecst and Efull for all boxes as the box-intern
hierarchy does.
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Eorig variables 15 7 29 13 7 8 50 10 6 11 9 7 21 13
called 581 1087 213 3451 26026 20847 716 18447 49182 7112 19439 11486 35048 2903774
discarded boxes 186 0 22 444 25 4583 12 824 4 1701 1566 3915 316 1458
contracted boxes 56 0 191 2157 5286 12807 370 2980 49157 4875 12936 7571 2021 2900959
time 1.5 0.4 14.9 12.5 8.8 23.7 12.5 20.0 29.8 18.1 24.6 21.7 289.1 9522.1

Ecst variables 81 24 38 19 - - 99 23 15 34 16 14 102 19
called 395 1087 178 2945 - - 704 17163 26649 5112 17537 7538 34722 2437696
discarded boxes 0 0 0 38 - - 0 4536 4 426 1490 1160 633 170
contracted boxes 9 0 175 2101 - - 52 12004 26643 3527 12575 5411 2679 2416131
time 0.5 2.1 10.3 10.2 - - 12.4 54.5 55.5 95.8 63.7 30.1 152.7 10499.9

Efull variables 280 79 171 82 61 65 832 86 52 184 91 430 359 82
called 392 1087 168 2883 25978 15438 694 7693 26644 4619 15643 6087 34058 2437337
discarded boxes 0 0 0 7 1 170 0 32 0 21 965 300 1050 116
contracted boxes 0 0 114 761 12520 7935 668 5599 26620 2167 6537 5638 4099 1773511
time 2.3 3.4 2.1 8.3 50.2 36.0 71.2 17.5 38.7 42.3 56.6 359.6 641.1 7978.5

total boxes 785 2175 549 5889 51851 30109 1385 18569 49195 9157 27949 11523 68185 2959459
total time 12.2 12.6 27.9 48.9 79.1 85.8 105.6 132.7 185.9 189.8 195.0 446.3 1894.4 32902.3

Table 3.12: Usage and success for HE = (Eorig, Ecst, Efull) in BIH
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Eorig variables 15 7 29 13 7 8 50 10 6 11 9 7 21 13
called 64 1087 205 3903 27627 21206 517 20670 49178 7905 28291 16443 131 2923072
discarded boxes 22 0 18 463 20 4899 12 3576 2 2354 5251 7522 0 1758
contracted boxes 7 0 187 2259 6285 12853 100 4171 49155 5062 18787 8921 3 2919995
time 0.2 0.4 11.1 13.0 9.5 23.8 6.4 20.2 29.7 19.6 36.9 28.7 1.0 9513.1

Ecst variables 81 24 38 19 - - 99 23 15 34 16 14 102 19
called 559 18 15 392 - - 684 13216 5 10 280 1760 35140 579
discarded boxes 164 0 0 1 - - 0 4657 0 0 25 333 919 3
contracted boxes 49 0 14 296 - - 73 8276 5 2 209 1248 6203 484
time 0.7 0.0 0.4 1.3 - - 12.5 45.7 0.0 0.1 1.0 7.0 168.1 2.5

Efull variables 280 79 171 82 61 65 832 86 52 184 91 430 359 82
called 148 9 18 457 197 2434 34 3722 22 33 597 6 26316 836
discarded boxes 0 0 0 0 0 7 0 422 0 0 93 0 959 2
contracted boxes 3 0 8 133 120 1413 31 2777 3 1 333 3 3708 218
time 0.6 0.0 0.2 1.4 0.4 5.6 4.1 10.6 0.0 0.1 2.0 0.3 502.8 2.5

total boxes 809 2175 577 6907 55421 30929 1405 31751 49201 10401 44497 17375 68699 2976919
total time 8.6 6.6 12.4 37.5 29.3 55.2 31.7 133.9 88.2 53.3 112.2 79.7 1408.9 13886.7

Table 3.13: Usage and success for HE = (Eorig, Ecst, Efull) in AS
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Eorig variables 15 7 29 13 7 8 50 10 6 11 9 7 21 13
called 64 1087 205 3895 27631 21203 649 24617 49178 7906 28060 15861 194 2920100
discarded boxes 22 0 18 448 20 4900 12 4773 2 2354 5162 7101 2 1763
contracted boxes 7 0 187 2260 6278 12850 108 4902 49155 5063 18619 8759 8 2916989
time 0.2 0.4 11.1 12.6 9.4 23.4 7.8 22.2 29.5 19.5 36.2 26.9 1.5 9358.2

Ecst variables 81 24 38 19 - - 99 23 15 34 16 14 102 19
called 557 21 15 462 - - 664 12553 5 10 704 2581 35030 843
discarded boxes 164 0 0 1 - - 0 4573 0 0 84 499 828 5
contracted boxes 49 0 14 368 - - 37 7903 5 2 557 1774 6193 557
time 0.7 0.0 0.4 1.6 - - 11.3 39.2 0.0 0.1 2.4 9.5 167.2 3.0

Ecstn variables 228 79 145 76 48 56 589 81 52 158 91 262 285 76
called 335 9 18 681 17 8 47 1214 5 126 10 6 32554 988
discarded boxes 0 0 0 1 0 0 0 155 0 0 1 0 1122 12
contracted boxes 13 0 7 156 3 1 40 1058 5 42 4 6 3559 212
time 1.1 0.0 0.1 1.8 0.0 0.1 4.0 6.6 0.0 0.5 0.1 0.3 354.9 2.7

Elin variables 185 72 76 59 28 30 344 30 38 73 38 50 230 59
called 308 8 18 486 8 778 8 580 20 37 11 6 25835 777
discarded boxes 0 0 0 0 0 6 0 25 0 0 0 0 28 0
contracted boxes 2 0 3 32 0 297 1 386 2 1 2 0 421 53
time 1.2 0.0 0.2 1.3 0.0 1.9 0.6 1.7 0.0 0.1 0.1 0.1 363.8 2.2

Efull variables 280 79 171 82 61 65 832 86 52 184 91 430 359 82
called 178 8 18 433 157 2322 6 2719 21 33 577 6 24854 739
discarded boxes 0 0 0 0 0 4 0 269 0 0 67 0 9 0
contracted boxes 0 0 4 18 101 1194 2 1923 1 2 358 0 120 33
time 0.8 0.0 0.2 1.2 0.3 5.3 0.6 6.8 0.0 0.1 2.0 0.3 489.2 2.2

total boxes 793 2175 577 6919 55427 30919 1385 33423 49201 10401 44123 16869 68267 2974411
total time 11.6 6.6 12.7 41.2 29.3 56.6 33.0 136.7 87.8 54.1 113.4 80.1 2185.1 13827.0

Table 3.14: Usage and success for HE = (Eorig, Ecst, Ecstn, Elin, Efull) in BIH
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3.9 Choosing the variables considered by the Newton

method

In addition to the suitable selection of the extended systems to be applied, there
surely exist further ways to reduce the overall computation time. One important
way is to reduce the time spent on the contractors.

Our tests confirmed that it is not sensible to run the extended Newton method
and CW-LP-preconditioner for all variables of the extended systems. Table 3.15
compares the box-intern hierarchy with the default step sizes and σvar(E) = 1
and σCW (E) = 1. For most problems we observe a considerable decrease in box
number. We can thus infer that due to the step sizes we “miss chances” to contract
boxes. (The slight increase in box number for Chemistry2 is most probably caused
by an unfavorable subdivision.) Nevertheless we also see that the computation
time increases enormously for some of the problems, since we have to conduct a
higher number of evaluations of the extended Newton method and of the time-
consuming CW-LP-preconditioner.

problem boxesmod boxesratio timemod timeratio

min-04-06 563 0.72 12278.3 1018.35
G7 gradientsystem 2175 1.00 110.5 8.80
Reactor 529 0.96 729.5 31.85
Chemistry1 3361 0.67 1591.2 32.46
Brent7 23579 0.45 2659.6 33.11
Eco9 28129 0.93 9668.3 111.91
Trigexp1 435 0.35 10294.1 106.21
Trigonometric 7525 0.41 348.1 2.66
Chemistry2 53279 1.08 2107.3 11.21
DirectKinematics 5455 0.58 34046.2 186.97
DesignProblem9 11027 0.39 3032.63 15.89

Table 3.15: Box-intern hierarchy with σvar(E) = 1 and σCW (E) = 1 compared to
results for default step sizes (three problems have not been computed due to their
high computational costs)

So the step sizes σvar(E) and σCW (E) improve the overall branch-and-bound
algorithm with respect to time issues. However, the subset of variables V E for
which the interval Newton method is considered is predefined and does not take
into account the structure of individual problems, only the number of variables
|Var(E)|. To alleviate the problem of always considering the same subset V E

for all boxes, one can elect the first variable to be included in V E randomly in
{|Var(E)|, . . . , |Var(E)| − σvar(E) + 1} (in Alg. 3.2 line 5) as suggested in [Bee06].
However, we could just find one test problem for which this option had any
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influence (factor 0.90 in computation time for 7erSystem). To achieve deter-
ministic behavior the author also tested to traverse the first variable through
{|Var(E)|, . . . , |Var(E)| − σvar(E) + 1} repeatedly in all calls of the extended New-
ton method, but this option was only as successful as the random choice.

The author wants to propose another approach to select the subset V E . This
approach shall not rely on a fixed step size predefined by the size of the extended
systems but is meant to select the variables in V E based on the properties of the
given problem and system E . (The sets V E can be determined when building the
representation of the systems E in the computer. Thus the variables in V E can
be chosen based on the structure of the constraint system and V E only has to be
assigned once.)

In SONIC we yet provide the possibility to choose the variables in V E based
on system properties .

The purpose of the proposed “selection by structure” is to consider only “prom-
ising” variables. Our vision would be to select only those variables that provide
(sufficient) contraction success and to save computation time by not considering
any other variables. However, until now we have no general strategy to choose
V E prior to computations. We even do not know yet, whether such a selection is
possible at all. No selection may, e.g., be possible if the extended systems provide
equal, but only minor contraction (e.g. with κ = 1.001) on all variables.

We nevertheless want to give some results for tested choices of V E . For our
tests we applied the selection of set V Efull for the fullsplit system, with and without
using the step sizes. We began our considerations with a study of the contraction
success in the constraints measured in a run with σvar(E) = 1 and σCW (E) = 1
for all systems E in HE = (Eorig, Ecst, Efull). These results indicated that con-
sidering variables defined by elementary constraints with operators +,−, ·, / and
constraints like xi = c for some constant c seldom result in good contraction. We
therefore excluded intermediate variables defined by such constraints from V Efull.
The results of our tests for σvar(E) = 1 and σCW (E) = 1 and the default step sizes
can be found in tables 3.16 and 3.17.

Table 3.16 shows that our choice of V Efull did indeed reduce the computation
time for σvar(E) = 1 and σCW (E) = 1 (compared to Table 3.15)—but not enough
to keep up with the default step sizes. If we combine the step sizes and our selection
V Efull, the results are beneficial for all tested problems. (For the combination we
apply the step sizes as usual. Subsequently we check whether the variable to
be considered next in the interval Newton method is contained in V Efull. If not,
we step to the very next variable. If we find a variable v in V Efull we apply the
contractor and apply the step sizes again counting from v.)
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problem boxesmod boxesratio timemod timeratio

min-04-06 563 0.72 3509.75 291.09
G7 gradientsystem 2175 1.00 35.28 2.81
Reactor 609 1.10 223.06 9.74
Chemistry1 3583 0.72 382.33 7.80
Brent7 49515 0.95 1461.60 18.19
Eco9 30091 1.00 894.25 10.35
Trigexp1 923 0.74 13018.20 134.32
Trigonometric 7523 0.41 186.44 1.43
Chemistry2 53279 1.08 2107.28 11.21
DirectKinematics 6761 0.72 6579.46 36.13
DesignProblem9 18611 0.67 1012.95 5.31

Table 3.16: BIH with selection of V Efull with σvar(E) = 1 and σCW (E) = 1 com-
pared to default (using step sizes and no selection of V Efull)

problem boxesmod boxesratio timemod timeratio

min-04-06 785 1.00 10.9 0.91
G7 gradientsystem 2175 1.00 11.9 0.94
Reactor 553 1.00 22.9 1.00
Chemistry1 4983 1.00 47.8 0.98
Brent7 52633 1.02 77.4 0.96
Eco9 30233 1.00 69.4 0.80
Trigexp1 985 0.79 83.8 0.86
Trigonometric 18599 1.00 131.6 1.01
Chemistry2 - - - -
DirectKinematics 9377 1.00 170.4 0.94
DesignProblem9 28841 1.03 181.9 0.95
7erSystem 12635 1.10 151.6 0.34
min-04-07 68185 1.00 1601.8 0.86
Chemistry3 - - - -

Table 3.17: BIH with selection of V Efull with default step sizes σvar(E) compared
to default (using step sizes and no selection of V Efull)
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Other selections of V E combining information of more than one constraint have
not yet proved to be helpful in improving the computational costs of our solver.
However, they would allow for more sophisticated selection strategies for V E .

For min-04-07 we also tested to choose V Efull “by hand” based on the a pos-
teriori evaluation of contraction success over all variables. But it became obvious
that this selection still consumed more computation time than BIH or AS with
step sizes.

For further considerations one might also introduce V CW
⊆ V E as the set of

variables for which the interval Newton method is combined with the optimal pre-
conditioner. Moreover, one could not only use the proposed set V E to choose the
considered variables for the interval Newton method but also other expensive con-
tractors. We could even again think of an adaptive method that adds and removes
variables from V E relying on the success of the contractors for each variable. Still,
for extended systems E with many variables this adaption may itself require vast
amounts of computational cost if starting with V E = Var(E) since many variables
are considered in the beginning. (Experience showed that calculating the extended
Newton method on all systems with the CW-LP-preconditioner for one single box
can already cause higher computation time than the overall solution of a problem
with BIH or AS using step sizes.)

Another method would be to select a subset V E separately for each box, relying
on information as provided by the constraints or other system values like the
Jacobian matrix. Yet, the author assumes that this approach would most probably
be too costly.

3.10 Improvements for preconditioners

Especially interesting for a reduction of the overall computation time are ways
to reduce the costs for the computation of preconditioners and the multiplication
with them. For most problems these operations cause a large portion of the com-
putation time. On average these costs amount up to about 30% for the adaptive
strategy and about 50% of the overall computation time for the box-intern hier-
archy. Even worse, for individual problems, preconditioning consumes up to 90%
of the computation time.

We see different options to reduce the time spent on preconditioning. A first
method, of course, is to reduce the computation time spent for computing a single
preconditioner, especially the expensive CW-LP-preconditioner. Possibilities for
doing so were discussed in section 2.3.5.

A further possibility is to deactivate all or at least some types of precondi-
tioners for all extended systems. But mind, this would affect the strength of the
contractors. It is thus probable not to result in a reduction but in an overwhelming
increase of computation time.
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Beyond that, the author proposes a third way to save computation time. The
basic idea for this approach is to “recycle” preconditioner rows, thus saving the
computation time for computing them anew. (A resembling approach, reusing
preconditioning information for sibling boxes in the branch-and-bound algorithm,
was also mentioned in [KHN91].)

Note first that every preconditioner computed for a box x can also be applied
as a preconditioner for all other boxes. Thus, if we store already computed precon-
ditioner rows, we get a preconditioner with computational costs next to naught.
Of course, it may not be as good as a preconditioner computed directly for the
respective subbox. For a promising strategy using “recycled preconditioners row”,
one needs to weigh the advantages of reusing information and the presumably
better contraction provided by “new” preconditioners.

An enhancement of this strategy can be reached by storing information about
the success of the preconditioners or of single preconditioner rows. With this
additional information, the application of preconditioners could be controlled by
a strategy “based on experience” similar to the adaptive strategy for selecting
extended systems. One could think of storing “successful” preconditioner rows
and computing a new preconditioner row only if no row has been stored so far or
if the previously saved preconditioner row did not provide sufficient contraction.

Our tests indicated that the usage of “recycled preconditioners” can indeed
provide benefits in computation time, see Table 3.18. On the other hand, for at-
taining these benefits, one has to store the preconditioner rows. Since we again
assume that it is best to use the preconditioner rows computed for parent- or an-
cestorboxes, the preconditioner rows have to be processed and stored individually
for every box. The efforts in storing and processing the preconditioner rows grows
in correspondence with the number of preconditioners to save and the variable
number in the considered systems. Because of this downside, the author refrained
from the option of saving preconditioning information for the time being.



122 Extended systems

problem boxesmod boxesratio timemod timeratio

min-04-06 563 1.00 8326.69 0.68
G7 gradientsystem 2175 1.00 110.56 1.00
Reactor 503 0.95 377.93 0.52
Chemistry1 3623 1.08 168.39 0.11
Brent7 43479 1.84 262 0.10
Eco9 29367 1.04 207.27 0.02
Trigexp1 435 1.00 8556.61 0.83
Trigonometric 10355 1.38 194.67 0.56
Chemistry2 53481 1.00 781.83 0.37
DirectKinematics 6761 1.24 3447.7 0.10
DesignProblem9 20973 0.79 643.34 0.65

Table 3.18: Box-intern hierarchy with saved preconditioner rows for σvar(E) = 1
and σCW (E) = 1 compared to results with newly computed preconditioner rows in
all steps (three problems have not been computed due to their high computational
costs)

3.11 Interaction of branching and bounding strategies

At this point we want to append some more test results for the different subdivision
strategies as presented in Table 2.1. This time however, we present the results in
combination with the adaptive strategy, see Table 3.19 and compare to Table 2.1.

We can see that the subdivision strategies do not provide equal ratios for the
different strategies. In particular, the ratio for SubMinNew = 16 does not result
in reduced average computation time for the adaptive strategy. We ascribe this
to the reduced similarity of functions between the box and its subboxes when
we partition into many small boxes. Note that, although the computed averaged
ratios are higher, the absolute running times for the adaptive strategy are most
often still smaller than for the box-intern hierarchy.

The combination of extended systems and subdivision strategies is just one
further example for the subtle interactions of methods and parameter settings in
the solver. This interplay also depends on the considered problem and cannot
often be foretold. This makes it all the more important for us to find promising
subdivision strategies as well as techniques such as the adaptive strategy for ap-
plying contractors on the extended systems that provide good contraction without
being a burden with regard to computation time.
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setting boxesratio timeratio

SubMinNew 2 1.00 1.00
SubMinNew 3 1.05 0.88
SubMinNew 4 1.11 0.88
SubMinNew 5 1.23 0.90
SubMinNew 8 1.56 0.97
SubMinNew 16 2.32 1.16

η 0.1 8.29 8.05
η 0.2 2.24 2.27
η 0.3 1.31 1.29
η 0.4 5.64 5.59
η 0.45 1.17 1.15
η 0.49 96.32 93.42
η 0.5 1.00 1.00
η 0.51 0.87 0.87
η 0.55 1.08 1.08
η 0.6 2.57 2.24
η 0.7 1.44 1.24
η 0.8 2.25 1.94
η 0.9 6.62 5.20

trisection

for all boxes 1.58 1.17
once per direction 0.99 0.98

Table 3.19: Comparison of different subdivision strategies in box number and
computation time





Chapter 4

Verification

All truths are easy to understand once they are discovered;
the point is to discover them.

Galileo Galilei

The branch-and-bound algorithm, yields a solution list after repeated subdivi-
sion and application of contractors. The elements of the solution list, the solution
boxes, are guaranteed to cover all solutions of a (real-valued) system of nonlinear
equations in a given startbox.

What is not ensured is that every solution box corresponds to exactly one
solution. It is still possible that the system has multiple solutions in a solution
box x or none at all. A solution box containing multiple solutions can occur,
when the precision requirements are not sharp enough to enclose the solutions by
separate boxes or because we deal with a manifold of solutions. That a box x

is incorporated into the solution list although it does not contain a solution, can
happen if the box cannot be discarded in the branch-and-bound algorithm because
the function enclosure was overestimated (0 ∈ f(x) but 0 6∈ rangef (x)). Yet, even
if we can compute the ranges of the function components exactly and they contain
zero (0 ∈ rangefi(x) for all i ∈ {1, . . . , n}), this is no sufficient condition for box
x to contain a solution. There exists no solution if the function components
vanish at different points (fi(x

(1)) = 0 and fj(x
(2)) = 0 for x(1), x(2) ∈ x and

i, j ∈ {1, . . . , n}, but x(1) 6= x(2) and fi(x
(2)) 6= 0, fj(x

(1)) 6= 0).

Nevertheless, we have several options to prove the existence or uniqueness of a
solution in a given box with the help of interval analysis—in exact interval analysis
as well as when transferring interval concepts to machine numbers.

125



126 Verification

Definition 4.1
If we can prove the existence or uniqueness of a solution in a given box x we
say x is verified. The verification of solutions is done by verification methods.
The implementation of a verification method is referred to as the corresponding
verification test. A verification method or test is called successful for box x if it
can verify a solution in x.

Verification tests in interval analysis rely on checking sufficient conditions based
on function enclosures. However, the tests can fail due to overestimation although
it would be possible to verify a solution in exact arithmetic. Thus the success of
verification tests relies heavily on the quality of the employed function enclosures.

All our verification tests are restricted to bounded boxes, verification for ar-
bitrary sets is not considered. In particular, half-bounded solution boxes are
excluded from verification. The verification methods presented in section 4.3 can
further only be applied to square systems. Possibilities to handle non-square sys-
tems are discussed prior to these tests in section 4.2.

Note that every solution box is considered separately to verify solutions. Ver-
ification tests can thus be applied every time a new solution box is added to the
solution list or after the branch-and-bound algorithm is completed. The advan-
tages of both options will be discussed in section 4.5.2.

4.1 Definitions

Some definitions are needed when we want to speak about verification. Note
thatall of them are applicable since we only conduct verification tests on bounded
boxes.

4.1.1 Preconditioning

For attaining sharper function enclosures, we again make use of preconditioners. A
preconditioner in this case is a nonsingular matrix C ∈ Rn×n and yields an affinely
scaled preconditioned function g(x) = C · f(x). Preconditioning can be dismissed
by setting C to the identity matrix. A second preconditioner appropriate for all
verification tests is the inverse midpoint preconditioner. For the Borsuk test one
further has the freedom to apply a specially designed preconditioner (see section
4.3.3).

Note that, in contrast to the preconditioners for contractors, we only allow
nonsingular preconditioners in verification because we need the functions f and
g to have the same zeros. Hence all verification tests can be applied to f as
well as to g to prove zeros of f and the tests can be formulated directly for the
preconditioned function g.
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4.1.2 Epsilon-inflation

The so-called epsilon-inflation realizes a slight inflation of an interval or a box. In
verification, epsilon-inflation can be most useful due to its influence on the function
enclosures evaluated in the verification tests. In addition, it was constructed to
have only small enlarging impact on the boxes to be verified. This is important
because we want verification to yield boxes as small as possible.

Definition 4.2 (Epsilon-inflation)
For a given ǫ ∈ R+ the epsilon-inflation of an interval x yields

xǫ :=

{
x+ [−ǫ, ǫ] if width (x) = 0

(1 + ǫ) · x− ǫ · x otherwise.

For boxes epsilon-inflation is applied componentwise.

Further competing definitions and applications of the epsilon-inflation can, e.g., be
found in [May95]. For any implementation of an epsilon-inflation in combination
with interval analysis, the real values (1+ǫ) and ǫ have to be enclosed by intervals.

When verifying an inflated box, one cannot draw conclusions about the unin-
flated box. Thus we have to replace the smaller box we started with by a larger,
verified one in the list of solution boxes. Note furthermore that the usage of
epsilon-inflation can lead to solution boxes with intersecting interior.

In SONIC the value ǫ can be set in the Controls-File (as parameter Verification-
EpsInflationValue).

4.1.3 Facets and subfacets

This section provides definitions needed for some verification tests.

Definition 4.3 (Facets)
For a bounded box x ∈ IRn, we define n pairs of opposite facets. For that purpose
the components of the box are replaced by their infimum or supremum one at a
time. The facets are denoted as

xi,+ := (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)
T ∈ IRn and

xi,− := (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)
T ∈ IRn.

for 1 ≤ i ≤ n. Given this definition, the topological boundary ∂x of a box x can
be represented as the union of its 2n facets

∂x =
n⋃

i=1

(
xi,+ ∪ xi,−

)
.
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To reduce overestimation of the function enclosures, the facets are dissected. Any
member of a covering of a facet is called a subfacet. All tests formulated for
facets can also be used checking the same conditions on subfacets (according to
the enclosure property in (1.8)).

Definition 4.4 (Subfacets)
Consider an arbitrary component i ∈ {1, . . . , n} of a box x ∈ IRn. For two
integers Ki, Li ∈ N the subfacets of the facets xi,+ and xi,− are denoted by xi,+,k

with k ∈ {1, . . . ,Ki} and xi,−,l with l ∈ {1, . . . , Li}.
Subfacets have to fulfill the following properties

• xi,+,k,xi,−,l ∈ IRn for all k ∈ {1, . . . ,Ki} and l ∈ {1, . . . , Li}

• the union of the subfacets is the facet itself

xi,+ =
⋃

k∈{1,...,Ki}

xi,+,k, xi,− =
⋃

l∈{1,...,Li}

xi,−,l.

Subfacets are called symmetric if they are pairwise symmetric with respect to the
midpoint of the box (for all y ∈ xi,+,k exists z ∈ xi,−,k such that z = 2 ·mid (x)−y
and vice versa).

If we do not need symmetry of subfacets, the subdivision of the facets can be
done independently and can result in different numbers of subfacets. If subfacets
are required to be pairwise symmetric, this yields the same number of subfacets
on opposite facets. For attaining symmetric facets, we have to subdivide in the
same direction and to take care of the choice of the subdivision points (especially
in an implementation, cf. section 4.5.5).

Mostly one can additionally demand the subfacets to be disjoint up to their
relative boundaries, so the subfacets form a subdivision of the facet. The only case
for which this requirement cannot be fulfilled in the upcoming verification tests
is the implementation of symmetric subfacets. Methods to subdivide facets into
subfacets will be discussed in section 4.5.5 and 4.5.6. At this point we only want
to introduce the parameters MaxSub for the maximum number of subfacets con-
sidered per facet and MaxDepth for the maximum subdivision depth for subfacets
as those will be needed to note the upcoming algorithms.
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(a) Facets in component i (b) Asymmetric subfacets (c) Symmetric subfacets

Figure 4.1: Facets and subfacets for a 3-dimensional box x

4.1.3.1 Facet-centered function enclosure

If we use facets and want to evaluate function enclosures on them, we can utilize
a function enclosure similar to the mean value form discussed in section 1.8.2.
Herein a point within the facet is used as center.

For every facet xfacet ∈ {x
i,+,xi,−} a center x̃facet ∈ xfacet has to be deter-

mined. Furthermore, an interval slope vector sfacet fulfilling

gi(x)− gi(x̃facet) ∈ sfacet · (x− x̃facet) for all x ∈ xfacet

is needed for each facet. With these settings we can state

gi(xfacet) ⊆ gi(x̃facet) + sfacet · (xfacet − x̃facet)

for every facet. This enclosure is called a facet-centered function enclosure. We
choose every center x̃facet as the midpoint of the facet in question. The slope
vector sfacet is taken as the ith row of g′(xfacet) = C · f ′(xfacet).

4.2 Verification for non-square systems

As emphasized before, the verification tests to be described in section 4.3 are only
applicable for square systems of nonlinear equations.

For non-square systems we can only verify on appropriate square subsystems.
However, precautions have to be taken when conveying information about solu-
tions of the square system to the non-square system.

4.2.1 Underdetermined systems

Given an underdetermined system, a function f : Rn → Rm with fewer constraints
than variables (n > m) has to be considered. The usual approach to handle
underdetermined systems is to fix n−m variables of the system and to verify the
remaining square system. “Fixing a variable” means that the variable is handled
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rather as a parameter (with interval or point value) than as variable in the square
subsystem.

We are interested in fixing the variables in which the system is least sensitive.
Thus a subsystem is built containing the m most influential variables, n−m fixed
variables and all of the m given equations. (“Most influential” or “most sensitive”
here refers to the influence of changes of the variable j on the function value of
function component i. An indicator for this influence is the (i, j)th entry of the
Jacobian matrix.)

At this point, another definition is introduced to shorten the following nota-
tions.

Definition 4.5
For a list of n arguments and an index set K ⊆ {1, . . . , n}, the sublist xK of
x is composed by the components xk with k ∈ K. The complement of this list,
containing the xk with k 6∈ K, is denoted as x 6∈K . The same notation applies for
interval values.

Let the index set K contain the indices of the m components in a solution
box x most influential on the function enclosure of function f and let x and y be
real-valued elements in x. The function for the desired square subsystem can now
be defined as

fsquare(xK) = f(xK , y 6∈K) = f(v) with vk =

{
xk if k ∈ K

yk if k 6∈ K
.

For an interval valued function, let y for now be an arbitrary but fixed subbox of
x. (Methods for choosing y will be discussed soon.)

f square(xK) := f(xK ,y 6∈K) = f(v), vk =

{
xk if k ∈ K

yk if k 6∈ K.
(4.1)

Verification tests for the subsystem are based on the evaluation of the function
enclosures fsquare(xK) and thus of f(xK ,y 6∈K). Hence, if a solution xK ∈ xK of
fsquare = 0 is verified, it is not only shown that

∃ xK ∈ xK with fsquare(xK) = 0 (4.2)

but even that

∃ xK ∈ xK with f(xK , y 6∈K) = 0 for all y 6∈K ∈ y 6∈K

holds.

Which variables are to be fixed The next question arising is how to deter-
mine the variable indices to be comprised in the index set K. For that purpose



4.2 Verification for non-square systems 131

we utilize a QR decomposition with column pivoting based on an algorithm given
in [GVL89]. This algorithm is applied to the (real-valued) matrix containing the
midpoint matrix of the Jacobian matrix. It determines the desired set K con-
taining the indices of the m most influential variables (by a permutation of the
matrix ). Notice that set K has to be determined separately for every solution
box because the variables may have different influence on the function enclosures
for different boxes.

Fixation to interval values We now want to discuss how to choose the subbox
y of x. When considering formula (4.1) we can argue to “fix” variables to subsets
in y 6∈K .

The first option to fix a variable is to set it to its interval value in the solution
box by defining

y := x.

Hence the verification of (4.2) includes that a solution is verified for all possible
values of x 6∈K ∈ x6∈K and

∃ xK with fsquare(xK) = f(xK , x 6∈K) = 0 for all x 6∈K ∈ x 6∈K .

Thus the existence of a manifold of solutions for the underdetermined system is
verified whenever width (x 6∈K) > 0 and a verification test proves the existence of
a solution for the corresponding square system.

Fixation to point values Another option for fixing variables is the fixation to
a single number x̃ (or better: the point interval [x̃]) from the given interval leading
to

y := x̃ ∈ x.

In this case the verification of (4.2) again implies

∃ xK fsquare(xK) = f(xK , y 6∈K) = 0 for all y 6∈K ∈ y 6∈K

and results in

∃ xK f(xK , x̃ 6∈K) = 0

for the special choice of y. Fixing the variables xi with i 6∈ K to point instead
of interval values has the advantage to reduce overestimation in the verification
tests. It might therefore be possible to verify more often with this choice.

Mind that none of these options allows to verify unique solutions in the solution
boxes. Even if uniqueness is verified for the box xK in the square subsystem, only
the existence of a solution can be claimed in the corresponding box x for the whole
system. The reason for this “loss of information” is that for the fixed variables
only one single value from each y 6∈K is considered in the verification test. Note
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further that a verification test may really verify a manifold of solutions if the point
values cannot be enclosed by point intervals but have to be rounded outward to
proper intervals y = flint(x̃). In implementations one can evade this problem by
simply choosing x̃ as a machine number in x.

Try fixation to intervals The author proposes a third option to fix variables
for underdetermined systems. It combines the two simpler fixation options. Our
strategy basically tries first to verify setting all variables to interval values. If this
is not possible, we verify the existence or uniqueness of a solution with fixation of
the variables to single numbers. Afterwards, we test whether it is still possible to
verify if some of the variables are reset to their intervals values.

For a formal representation, the variables fixed to intervals have to be distin-
guished from those fixed to point values. In the following lines, the index set I
corresponds to the variables fixed to interval values and P is the index set relating
to variables fixed to point values. For the index sets the following relations have
to hold

I, P ⊆ {1, . . . , n}, I ∩ P = I ∩K = K ∩ P = ∅ and K ∪ I ∪ P = {1, . . . , n}.

We can now write the square function as

fsquare(xK) = f(xK , yI , zP ) = f(v) with vk :=





xk if k ∈ K

yk if k ∈ I

zk if k ∈ P

with x, y, z ∈ x. For an interval notation, yI is chosen to be equal to x and zP is
set to the midpoint vector of xk yielding

f square(xK) := f(xK ,yI ,zP ) = f(v) with vk :=





xk if k ∈ K

xk if k ∈ I

mid (xk) if k ∈ P

.

In this case 0 ∈ fsquare(xK) implies

∃ xK ∈ xK with f(xK , yI , zP ) = 0 for all yI ∈ yI .

The exact approach is given in Algorithm 4.1. It proceeds stepwise. First all
variables are fixed to interval values. If no solution can be verified with this
setting, all intervals are fixed to their midpoints and the verification is repeated.
If the second verification succeeds, the variables are reset to their interval values
step by step. To maximize the chances to remain able to verify, in each step the
variable with the least influence on the function values is reset to its interval value.
This is done as long as verification is still possible.
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Algorithm 4.1 Try to fix to intervals (box x)

1: fix all variables to their interval values
2: run verification tests for square subsystem
3: if neither uniqueness nor existence could be proved then
4: fix all variables to their midpoints
5: run verification tests for square subsystem
6: if solution was verified then
7: for i = 1, . . . , n −m do
8: set the least influential variable back to its interval value
9: run verification tests for square subsystem

10: end for
11: set x to last box that was verified
12: end if
13: end if

The author implemented all three options to fix variables into SONIC. In case
of fixing to numbers, all variables to be fixed are set to the midpoints of their
interval values.

4.2.2 Overdetermined systems

For overdetermined systems we have to consider a function f : Rn → Rm with more
constraints than variables (m > n). For those systems we can only check whether
a solution can be verified for an appropriate square subsystems and whether this
solution fulfills the constraints not in the subsystem. A verification of a solution
within a box as for square systems is not possible for overdetermined systems.

As mentioned by Beelitz [Bee06]), the rank-revealing QR factorization can be
applied to select n constraints to build a square system. All verification methods
can then be applied to the evolving subsystem.

SONIC handles overdetermined systems as indicated. The purpose of this
approach is to give the user a hint for the existence or uniqueness of a solu-
tion. To distinguish the attained information from verified solutions, two ad-
ditional states ContainsSolutionForSubsystem and UniqueSolutionForSubsystem
have been added in the implementation.
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4.3 Verification for square systems

We now want to discuss some tests to verify solutions for square systems of non-
linear equations. It is worth noting in advance that the Newton test utilizes an
interval Newton step and can be applied to prove the uniqueness of a solution,
while the Miranda, Borsuk and degree test work based on interval evaluations on
the boundary of the solution boxes and prove the existence of a solution in a given
box.

Thus tests can be improved by sharper function enclosures. Two common
approaches to do so are preconditioning and, for the latter three tests, subdivision
of the boundary of the box to compute function enclosures on smaller domains. If
overestimation is too large, however, the tests fail although they would be able to
verify solutions given the exact range instead of function enclosures.

4.3.1 Newton test

The Newton test is based on the interval Newton method as discussed in section
2.3.4. To verify the uniqueness of a solution in a given box, we simply apply one
step of the interval Newton operator. Herein derivatives (or slopes including these
derivatives) have to be employed to be able to prove uniqueness (cf. Theorem 2.1).
If the inflated box x can be contracted to a smaller box y by the interval Newton
operator, one has proved the uniqueness of a solution in x and even in y. Note
further that the Newton test may also be applied implicitly in the interval Newton
method while computing the solution boxes in the branch-and-bound algorithm.

Since the interval Newton operator is a contracting operator, in some cases,
solutions cannot be verified. In this case it can thus be beneficial to apply the
interval Newton operator to a solution box xǫ that has been widened by an epsilon-
inflation (cf. section 4.1.2). Even if starting with this inflated box xǫ, one might
verify a solution in a box smaller than the original solution box x.

Figure 4.2: Anticipated interaction of epsilon-inflation and the interval Newton
operator N
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4.3.2 Miranda test

In [Mir40], Miranda gives a theorem generalizing the intermediate value theorem to
higher dimensions. It leads to the claim that a box contains a zero for a continuous
function if the function enclosures over the pairs of opposite facets have different
signs.

Theorem 4.1 (Miranda)
Let f : Rn → Rn be a continuous function and x ∈ IRn a box. If

fi(x
i,−) ≤ 0 ≤ fi(x

i,+) (4.3)

or fi(x
i,−) ≥ 0 ≥ fi(x

i,+) (4.4)

holds for all xi,+ ∈ xi,+, all xi,− ∈ xi,− and for all i ∈ {1, . . . , n}, then f has a
zero in x.

In practice, conditions (4.3) and (4.4) are checked for a preconditioned function
g(x) = C · f(x). Note that condition (4.3) is equivalent to condition (4.4) when
replacing fi by −fi. We continue considering solely the first condition (4.3) for all
fi, since any system fulfilling a combination of (4.3) and (4.4) for its components
fi can be verified using only (4.3) when applying an appropriate diagonal matrix
with entries in {−1, 1} as preconditioner. (In an implementation, however, all
possible combinations of the conditions have to be checked.) Thus we can proceed
with the condition

gi(x
i,−) ≤ 0 ≤ gi(x

i,+)

for the preconditioned function g for all xi,+ ∈ xi,+, xi,− ∈ xi,− and all i ∈
{1, . . . , n}. Using interval analysis, this condition can be checked by confirming
the inequality

sup(gi(x
i,−)) ≤ 0 ≤ inf(gi(x

i,+)) (4.5)

for all i ∈ {1, . . . , n}. If this condition is fulfilled, the existence of a zero in box x

is revealed.

As for all verification tests, overestimation could lead the test of condition
(4.5) to fail although all prerequisites of the above theorem are fulfilled. To re-
duce overestimation, we use subfacets instead of facets. The subdivision can be
conducted independently for all facets (for details see section 4.5.5) and we get a
condition for the subfacets. Function f has a zero in box x if

{
sup(gi(x

i,−,l)) ≤ 0 and
inf(gi(x

i,+,k)) ≥ 0

can be shown for all i ∈ {1, . . . , n} and all subfacets (i.e. for all k ∈ {1, . . . ,Ki}
and all l ∈ {1, . . . , Li}). The evolving test is called the Miranda test and given in
Algorithm 4.2. For shorter notations the representation info(x) is introduced for
the available information about solutions in a given box x.
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Algorithm 4.2 Miranda test (bounded box x)

1: for i = 1, . . . , n do
2: for facet xfacet ∈ {x

i,+,xi,−} do

3: initialize list L
(1)
facet with xfacet

4: nsub ← 1
5: for u = 1, . . . ,MaxDepth do

6: while L
(u)
facet is not empty do

7: take first element y in L
(u)
facet

8: if y together with previously handled facets contradicts (4.3) or (4.4)
as condition for Miranda test then

9: exit {verification not possible}
10: end if
11: if y fulfills condition for Miranda test then

12: delete y from list L
(u)
facet

13: else {no decision possible, y has to be subdivided}
14: if u < MaxDepth and nsub + 2 ≤ MaxSub then
15: subdivide y into two subfacets
16: nsub ← nsub + 2
17: insert subfacets into list L

(u+1)
facet

18: else
19: exit {no further subdivision allowed, no solution verified}
20: end if
21: end if
22: end while
23: end for
24: end for
25: end for
26: info(x)← ContainsSolution
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4.3.3 Borsuk test

The next test is based on a theorem originally given by Borsuk in [Bor33]. From
a geometrical point of view, the theorem of Borsuk guarantees the existence of a
zero if a function points in different directions for each pair of opposite points on
the boundary of the box.

Theorem 4.2 (Borsuk [FL05])
Let f : Rn → Rn be a continuous function and x a box in IRn. Function f has a
zero in box x if

f(mid (x) + y) 6= λ · f(mid (x)− y) (4.6)

holds true for all positive real numbers λ ∈ R+ and for all y, for which (mid (x)+y)
is an element of the facet xi,+ (and (mid (x)− y) is element of xi,−).

As before, we have the option to reduce overestimation by subdividing facets
into subfacets. For the Borsuk test, symmetrical subfacets xi,+,l and xi,−,l (l ∈
{1, . . . , Li}, Li ∈ N) have to be used for opposite pairs of facets.

Further we can again conduct preconditioning with a nonsingular precondition-
ing matrix C ∈ Rn×n and apply the verification test to the preconditioned function
g(x) = C · f(x). Like in the Miranda test the inverse midpoint preconditioner can
be used for preconditioning.

As stated in [FL04], one has even more freedom of choice concerning the pre-
conditioner for the Borsuk test. By contrast to the Miranda test, where the
same preconditioner has to be applied for all facets, for the Borsuk test one has
the opportunity to employ different preconditioners for the pairs of facets. Even
more, one can choose a different preconditioner for each offset y in (4.6).

Furthermore, a new preconditioner for the Borsuk test, which can be computed
separately for each pair of symmetric subfacets, is presented in the same paper
[FL04]. The ansatz for this preconditioner is to choose the preconditioning matrix
Ci,l in such a way that g = Ci,l ·f points in almost opposite directions on opposite
subfacets xi,+,l and xi,−,l. To attain this property, the function values at the
midpoints of the subfacets are considered. The matrix Ci,l is chosen such that the
preconditioned function for one facet is

Ci,l · f(mid (xi,+,l)) = (100, 1, 0, . . . , 0)T

and for the other

Ci,l · f(mid (xi,−,l)) = (−100, 1, 0, . . . , 0)T .
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A numerical example for the application of the Borsuk test with an evaluation
of its success can be found in [FL05]. For an example system the authors gave
a study of the success of preconditioners for the Borsuk test with respect to the
number of subfacets. Further comparisons of the verification tests discussed in
this thesis can be found in section 4.6.

Besides, for a practical verification test, another range based-condition is used
that can be checked by interval analysis. Condition (4.6) holds for the precondi-
tioned function g if

n⋂

j=1

gj(x
i,+)

gj(x
i,−)
∩ (0,∞) = ∅

holds for each i ∈ {1, . . . , n}. (At this point the denotation of an open interval is
allowed as an exception for the sake of consistency with the original paper [FL05].

By using subfacets as well as the preconditioned function g, we attain the
formulation

n⋂

j=1

gj(x
i,+,l)

gj(x
i,−,l)

︸ ︷︷ ︸
=:G

∩(0,∞) = ∅ (4.7)

for all i ∈ {1, . . . , n} and all pairs of symmetric subfacets (meaning for all l ∈
{1, . . . , L}) for proving a zero of f in the box x. We refer to an implementation of
this formulation as the Borsuk test, see Algorithm 4.3. Note that in all formulae
divisions are to be understood as relational divisions (cf. Definition 1.6) whenever
an interval in the denominator contains zero. In an implementation condition, the
intersection G can further be checked to be a subset of R+.
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Algorithm 4.3 Borsuk test (bounded box x)

1: for i = 1, . . . , n do

2: initialize list L
(1)
facet with xi,+

3: nsub ← 1
4: set z ← (0,∞)
5: for u = 1, . . . ,MaxDepth do

6: while L
(u)
facet is not empty do

7: take first element y in L
(u)
facet

8: compute symmetric facet or subfacet ysymm of y
9: test condition (4.7) for Borsuk test with pair of symmetric subfacets

z ← z ∩
n⋂

j=1

gj(y)

gj(ysymm)

10: if condition (4.7) not proved by now (z 6= ∅) then

11: delete y from list L
(u)
facet

12: end if
13: if condition (4.7) is proved (z = ∅) then
14: info(x)← ContainsSolution
15: exit {algorithm is terminated}
16: else {no decision possible, y has to be subdivided}
17: if u < MaxDepth and nsub + 2 ≤ MaxSub then
18: subdivide y into two subfacets
19: nsub ← nsub + 2
20: insert subfacets into list L

(u+1)
facet

21: else
22: exit {no further subdivision allowed, no solution verified}
23: end if
24: end if
25: end while
26: end for
27: end for
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4.3.4 A test based on the topological degree

The next test is called the “degree test” within this work. The framework of the
degree test is presented following [FHL07] and [BFLW09]. Given

• an open and bounded set D ⊆ Rn with closure cl(D) and

• a continuous function f : cl(D)→ Rn with f(x) 6= y for all x ∈ ∂D

the topological degree d(f,D, y) is an integer providing information about the
number of solutions x ∈ D of f(x) = y. For the intended verification test we
do not have to determine this number, but will make use of the invariance of the
topological degree under homotopies as claimed by the following theorem.

Theorem 4.3 (Properties of the topological degree [FHL07,BFLW09])
If the prerequisites given above are fulfilled, the following properties of the topolog-
ical degree can be proved.

(i) If a homotopy h : cl(D)× [0, 1]→ Rn is continuous and fulfills

h(x, t) 6= y for all x ∈ ∂D and all t ∈ [0, 1],

then d(h(x, t),D, y) does not depend on t.

(ii) If f is (Fréchet-) differentiable and the Jacobian matrix f ′(x) is nonsingular
at all points x ∈ D with f(x) = y, then

d(f,D, y) =
∑

x∈D
f(x)=y

sign det f ′(x).

(iii) If d(f,D, y) 6= 0, then there exists an element x ∈ D with f(x) = y.

The proof for Theorem 4.3 and further information regarding the topological
degree can, e.g., be obtained from [Dei85].

Since we are interested in verifying a zero of f in a box x, we consider part
(iii) of Theorem 4.3, set y to zero and D to the interior of the box x.

At this point it has to be emphasized that the topological degree is not defined
if D = x and the box contains a zero of f on its boundary—which is not unlikely
for small solution boxes. In this case the following test is not applicable.

As before, we consider the preconditioned function g(x) instead of f . Thus we
can prove the existence of a zero of f by considering the homotopy

h : x× [0, 1]→ Rn defined by

h(x, t) = t · g(x) + (1− t) · (x− x̃).
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Within that formula, x and x̃ are inner points of x and x̃ is fixed. Provided h has
no zero in ∂x× [0, 1], due to part (i) of Theorem 4.3 we know that d(h, int (x), 0)
does not depend on t. Thus, g(x) has the same topological degree as function
(x− x̃). Considering x̃ ∈ int (x) and x ∈ ∂x, part (ii) of Theorem 4.3 tells us that

d(x− x̃, int (x), 0) = 1.

By combining these two results we get

d(x− x̃, int (x), 0) = d(h, int (x), 0) = d(g, int (x), 0) = 1.

Now part (iii) of Theorem 4.3 tells us that there exists a zero for g in x. To sum
up, it is sufficient to show

0 6= h(x, t) = t · g(x) + (1− t) · (x− x̃) for all x ∈ ∂x, t ∈ [0, 1] (4.8)

to prove the existence of a zero of g (and therefore of f) in x.

The purpose of the preconditioner is to get the preconditioned function g as
similar to (x − x̃) as possible. Because x̃ is chosen from the interior of x, this
choice of the preconditioner reduces the odds of h having a zero in ∂x× [0, 1]. To
prove that h has indeed no zero in ∂x × [0, 1], interval analysis is applied. The
next theorem evolves from a reformulation of condition (4.8) using facets to cover
∂x.

Theorem 4.4
Let t be the interval [0, 1] and i ∈ {1, . . . , n}. The function f has a zero in x if
none of the 2n systems

h(x, t) = 0 with (x, t) ∈ xi,+ × t or (x, t) ∈ xi,− × t

has a solution. The facets xi,+ × t and xi,− × t herein have to fulfill

n⋃

i=1

(
xi,+ × t

)
∪

n⋃

i=1

(
xi,− × t

)
= ∂x× t.

A verification test based on the last theorem checks that h(x, t) has no zero
for x ∈ ∂x and t ∈ [0, 1]. For doing so we have to consider h on 2n boxes in
Rn+1. At first glance it may seem unreasonable to consider 2n boxes instead of
just verifying a zero of f in a single box. But in many cases it emerges to be much
easier and cheaper in computational costs to exclude the existence of a zero in a
given box than proving it.

To avoid overestimation, the facets are again subdivided into subfacets. For a
computational test using interval analysis, one further has to subdivide the interval
t and to consider h on all emerging parts of ∂x × [0, 1]. The subdivision of t is
necessary because [0, 1] · g(x) + [0, 1] · (x− x̃) contains zero, independently of the
choice of function g or the subdivision of x. Hence every calculation with t = [0, 1]
has to fail in proving the non-existence of zero. In the following theorem, both
subdivisions are applied.
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Theorem 4.5 ( [FHL07])
Let x be an interval vector in Rn and x̃ ∈ int (x). Let

∂x =

K⋃

k=1

y(k) and [0, 1] =

L⋃

l=1

t(l).

be subdivisions of ∂x and [0, 1]. If for all k ∈ {1, . . . ,K} and l ∈ {1, . . . , L} there
exists an index j = j(k, l) ∈ {1, . . . , n} such that

0 /∈ t(l) · gj(y
(k)) + (1− t(l)) · (y(k) − x̃)j = hj(y

(k), t(l)) (4.9)

then the function g (and thus f) has a zero in int (x).

The proof is simply done by showing that zero is not included in the union of all
h(y(k), t(l)). Since this union includes rangeh(x×t), the range also cannot contain
zero. Condition (4.9) can be checked using interval analysis to get a computational
test. We refer to this test as the degree test. It is represented in Algorithm 4.4. For
the degree test the same preconditioner has to be used for all facets and subfacets.

Depending on how to split t and the subfacets, how to compute the function
enclosures, how to check for zeros of h, and the employed homotopy this leads to
different computational existence tests. Some variations and realizations of the
degree test are examined in section 4.6.2.
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Algorithm 4.4 Degree test (bounded box x)

1: t← [0, 1]
2: for i = 1, . . . , n do
3: for facet xfacet ∈ {x

i,+,xi,−} do

4: initialize list L
(1)
facet with xfacet

5: nsub ← 1
6: for u = 1, . . . ,MaxDepth do

7: while L
(u)
facet is not empty do

8: take first element y in L
(u)
facet

9: for all parts t(l) of t do
10: if (y, t(l)) fulfills condition for degree test then

11: delete y from list L
(u)
facet

12: else {facet has to be divided}
13: if u < MaxDepth and nsub + 2 ≤ MaxSub then
14: subdivide y into two subfacets
15: nsub ← nsub + 2
16: insert subfacets into list L

(u+1)
facet

17: else
18: exit {no further subdivision allowed, no solution verified}
19: end if
20: end if
21: end for
22: end while
23: end for
24: end for
25: end for
26: info(x)← ContainsSolution



144 Verification

4.3.5 Intersecting boxes

Solution boxes can always have intersecting boundaries. Due to epsilon-inflation
the intersections of two solution boxes can be even larger. In this section we want
to present approaches that can reduce the number of solution boxes without losing
information or solutions.

In some cases the reduction of the number of solution boxes is possible if one
solution box is contained in another (xsup ⊇ xsub). Which one of these boxes
can be discarded relies on the information about existence and uniqueness of
solutions in the boxes. We proceed according to the (pre-existing) Algorithm 4.5
and follow the simple logic to reduce the box number and to save smaller boxes
under the condition that no information is lost. Note especially that the subbox
xsub is not discarded if it is known to contain a unique solution and the number
of solutions in the superbox xsup is unknown. In this case, box xsub could be
discarded without loss of solutions, but information about the location of a unique
solution would be lost. The handling for the values ContainsSolutionForSubsystem
and UniqueSolutionForSubsystem was added. It is done as for the corresponding
values for square systems if the same subsystem is chosen for two boxes and is not
noted explicitly.

An example for which Algorithm 4.5 can reduce the number of boxes is prob-
lem G7 gradientsystem. For this problem our solver ends up with a list containing
320 solution boxes. However, the box [0, 0]7 is contained 64 = 26 times within this
set. Other boxes are contained 32 = 25 or 16 = 24 times, so we observe clusters
of different sizes. Here we clearly see a result of the cluster effect, where subdivi-
sion yielded multiple subboxes containing the same solution on their boundaries.
Since these boxes were contracted to point intervals in all components by the sub-
sequent application of contractors, they result in the same solution boxes (equal to
vectors of point intervals corresponding to the real-valued solutions). The collect
algorithm reduced the number of solution boxes to 13.

We introduce a further check for intersecting boxes. If for two intersecting
boxes the uniqueness of a solution has been shown by verification, there exist two
possible scenarios. There could be two solutions in the non-intersecting parts of
the boxes or only one solution in the intersection (as depicted in Figure 4.3). Thus
each search for intersecting unique boxes has to be followed by a verification of
the intersection. Herein no epsilon-inflation is allowed. If the verification proves
the uniqueness or existence of a solution in the intersection, the solutions in the
boxes have to coincide. Hence the two intersecting boxes can be replaced in the
solution list by just one, smaller box known to contain a unique solution. The
algorithm is summarized in Algorithm 4.6.
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Algorithm 4.5 Collect boxes (list Ls of solution boxes)

1: for all pairs of solution boxes xsup and xsub with xsup ⊇ xsub do
2: if info(xsup) = NoInformation then
3: if info(xsub) = NoInformation then
4: delete xsub

5: else
6: info(xsup)← ContainsSolution
7: end if
8: end if
9: if info(xsup) = ContainsSolution then

10: if info(xsub) = NoInformation then
11: delete xsub

12: end if
13: end if
14: if info(xsup) = UniqueSolution then
15: if info(xsub) = NoInformation then
16: delete xsub

17: else
18: if info(xsub) = ContainsSolution then
19: info(xsub)← UniqueSolution
20: delete xsup

21: else
22: if info(xsub) = UniqueSolution then
23: delete xsup

24: end if
25: end if
26: end if
27: end if
28: end for

Algorithm 4.6 Collect unique boxes (list Ls of solution boxes)

1: for each ordered pair of intersecting solution boxes x(1) and x(2) containing
unique solutions do

2: if x(1) ⊆ x(2) then
3: delete x(2)

4: else
5: x∩ ← x(1) ∩ x(2)

6: if existence or uniqueness can be verified in x∩ then
7: add x∩ to Ls

8: delete x(1) and x(2) from Ls

9: end if
10: end if
11: end for
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(a) Boxes cover the same solution (b) Boxes cover different solutions

Figure 4.3: Possible location of solutions in intersecting boxes containing unique
solutions

To provide some further helpful information, the user of SONIC is informed of
the number of pairs of intersecting unique boxes.

4.4 Verification scheme

For verifying a single box, the author proposes the scheme represented by Algo-
rithm 4.7. The sequence of the verification tests is influenced by considerations
about the strength of the verification tests as will be given in section 4.6. For
clarification, the information about solutions that can be obtained in this scheme
is illustrated by Figure 4.4.

For shorter notation only the procedure for square systems is given. Over- and
underdetermined systems are handled, as described in the previous sections. We
discuss the values UniqueSolution, ContainsSolution and NoInformation with ob-
vious meanings. The values ContainsSolutionForSubsystem and UniqueSolution-
ForSubsystem were introduced by the author for storing information about the
verification success for subsystems of non-square systems. For these systems the
information about existence and uniqueness of a solution are adjusted after run-
ning the verification tests (to ContainsSolutionForSubsystem or UniqueSolution-
ForSubsystem according to the claims in section 4.2).
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Algorithm 4.7 Verification for square systems (box x, ǫ, maximum num-
ber of inflations)

1: copy box (y ← x)
2: if uniqueness not verified then
3: while existence not verified and not reached maximum number of inflations

do
4: apply Newton test
5: if uniqueness not verified then
6: apply epsilon-inflation with given ǫ (x← xǫ)
7: end if
8: end while
9: end if

10: if neither uniqueness nor existence verified then
11: set box back to value before inflation (x← y)
12: while existence not verified and not reached maximum number of inflations

do
13: apply Miranda test (Alg. 4.2)
14: if existence not verified then
15: apply Borsuk test (Alg. 4.3)
16: end if
17: if existence not verified then
18: apply degree test (Alg. 4.4 or 4.8)
19: end if
20: if existence not verified then
21: apply epsilon-inflation with given ǫ (x← xǫ)
22: end if
23: end while
24: end if
25: if existence not verified then
26: set box back to value before inflation (x← y)
27: end if
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not unique

Newton test

epsilon
inflation

no information

Miranda test

Borsuk test

Degree test

epsilon
inflation

UniqueSolution

ContainsSolution

NoInformation

if Newton can only
prove existence

Figure 4.4: Verification scheme for square systems with attainable information
about solutions in a box

4.5 Practical details concerning verification

Because former implementations of the Miranda test and the Borsuk test in SONIC
were only available in a draft implementation, not maintained and no longer func-
tional, the author implemented those two tests anew. Among other things, the
new versions handle memory space more efficiently and save facets and subfacets
in lists. Moreover, special care was taken concerning the subdivision of symmetric
subfacets (see section 4.5.6). The degree test was added to SONIC’s toolbox. The
implementation is complemented by a general handling of non-square systems.
This involves the (non-trivial) handling for facets with fixed components in the
verification tests and the two additional states ContainsSolutionForSubsystem and
UniqueSolutionForSubsystem
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The most important options for all verification methods can be chosen in the
Settings-File. Among other options one can choose the function enclosure(s) for
each test. At choice are the naive, centered and facet-centered evaluation with or
without using Baumann’s formula. Finally, detailed statistics for all verification
tests have been added in the Statistics-File.

4.5.1 Lists of facets and subfacets

The algorithms of the Miranda, Borsuk and degree test were noted with one list

L
(u)
facet per subdivision level u. This description was chosen for a clear notation

of the algorithms. In our implementations, however, only one single list Lfacet is
needed for each test to attain the same functionality. Lfacet is initialized with the
facet under consideration and traversed MaxDepth times.

Discarding elements is done as described for multiple lists. If it becomes neces-
sary to subdivide a facet or subfacet y in the list, the next element to be considered
is chosen as the successor of y in Lfacet and y itself is replaced by its parts.

4.5.2 When to apply verification tests

As already mentioned, the verification routines can be started every time a new
solution box is found or after all solution boxes have been determined. Both
possibilities can be chosen in SONIC. Using the former option helps to reduce
workload and data transfer in parallel computations (since the solution boxes are
not distributed again for verification). For details about parallelization see section
5.4.

Verified solutions could also be written into a file instantly, reducing the mem-
ory requirements during the computation (not implemented). A (pre-existing)
feature of SONIC is the option to stop after a single solution has been found
and verified (TerminationOnFirstHit). If one is interested in finding only one
solution of the system, this early termination can reduce the computation time
dramatically.

4.5.3 Segregation of computation and verification

As a new option in SONIC, the verification can be segregated from the computa-
tion of the solution boxes. For this purpose we store the computed solution boxes
(in binary format to avoid rounding errors due to conversion from and into decimal
numbers). In the verification step the computation of the solution boxes can be
skipped and the saved boxes are loaded and verified directly. Herein the stored
data itself is not changed when running verification tests. Thus, we can execute
different verification tests and settings on the exactly same boxes and without the
need of computing the solution boxes anew.



150 Verification

4.5.4 Row-wise verification

In his thesis [Bee06] Beelitz comments on the possibility to apply the presented
verification methods row-wise. He proposes to use the Miranda test first for every
row if it fails to apply the Borsuk test and finally the degree test.

This is possible, but we do not recommend to do so. The reasons for this
advice are as follows. Firstly, the Miranda test and degree test can only verify a
solution in a given box after all pairs of facets have been considered. It can thus
not be aborted in advance. Secondly, if we do not apply the Borsuk test for rows
in which the Miranda test succeeds, its conditions are not checked on all facets.
Thus we lose information about the considered values and weaken the test.

4.5.5 Subdividing facets

In all tests employing subfacets, different subdivision strategies can be used to
split the facets and subfacets and to attain sharper function evaluations. Further
one might wish to apply different subdivision strategies for the branch-and-bound
algorithm and for verification. Thus the subdivision strategies in SONIC can be
chosen separately for the branch-and-bound algorithm and the three verification
tests utilizing subfacets. With this option it is, e.g., possible to make use of a
sophisticated subdivision strategy for getting the best boxes for branch-and-bound
and to choose a simple and cheap strategy within verification.

In verification we always apply an equidistant subdivision into two subfacets,
gaps are not used. For determining the subdivision direction, similar subdivision
strategies as in the basic branch-and-bound algorithm (see section 2.2.3) are uti-
lized. Two options have been implemented by the author. One can choose between
the simple MaxDiam strategy and a variation of the hybrid subdivision strategy
(Alg. 2.4). In the latter, the ZeroNearBound strategy is excluded because it is
not very powerful for small boxes (as solution boxes) [Bee06, p. 61] and we always
assume a zero to be near to the boundary for a solution box.

The computational cost of all verification tests rises with the number of con-
sidered subfacets. To ensure the termination of the tests and to restrict their
computational cost, it is thus sensible to limit the number of subfacets to be
considered per facet or the subdivision depth. These limits can be chosen individ-
ually for every test. Of course, the tests may not need the maximum number of
subfacets allowed.

In SONIC the number of subdivisions of a facet and of overall subfacets can
be restricted in the Controls-File. The Statistics-File informs about the number
of subfacets actually considered for each test.
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For asymmetric facets subdivision is done independently for all facets. To
attain symmetric facets for the Borsuk test, we need some further deliberations.

4.5.6 Subdivision of symmetrical facets

When we consider asymmetric facets and divide facet y in subdivision direction
d, it does not matter whether we take the exact midpoint as subdivision point or
whether the rounded midpoint fl(mid (yd)) ∈ RM is used as long as fl(mid (yd)) ∈
y. We could even subdivide at any other point in int (yd), but we prefer two
subboxes of approximately the same size.

For attaining subfacets which are symmetric with respect to the midpoint of
the given box, we have to take some precautions when subdividing. Clearly, we
always have to choose the same subdivision direction d 6= i for each pair of sym-
metric facets xi,+ and xi,− or subfacets xi,+,k and xi,−,k. As for the subdivision
point, subdividing the facet xi,+ and xi,− in their midpoints along the subdivision
direction would always result in symmetric subfacets in exact arithmetic. The
same holds true when subdividing a pair of symmetric subfacets. The downside
of a computational test is that we lose this property when calculating in the fi-
nite set of machine numbers RM . This happens, whenever the rounded midpoints
fl(mid (xi,+

d )) and fl(mid (xi,−
d )) themselves are not symmetric with respect to the

midpoint of box x. Figure 4.5 shows a scenario for which the intuitive approach
would not result in symmetric facets.

Figure 4.5: Symmetry of subfacets lost due to rounding

Nevertheless, it is still possible to compute with symmetric subfacets in an
implementation. However, we will not attain a subdivision of the facets but only
a covering. We still can prove the conditions of the verification tests since also the
function enclosure over the elements of coverings include the range over the facets
(see relation (1.8)). The author wants to propose two ways to attain symmetry.

The underlying principle is the same for both options: we compute a covering
with parts enclosing the symmetric subfacets. Since all computational verification
tests are based on checking conditions for the function range over the facets, we
only need to compute function enclosures including the true range over the facets.
Thus, rigorous computations are ensured and whenever a solution can be verified,
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we can be sure of its existence. Still, overestimation may lead the verification tests
to fail although they would succeed for exact computations, thus weakening the
verification tests.

A first ansatz to attain enclosures of symmetrical subfacets is to compute the
midpoints as intervals. For facet xi,+ and subdivision direction d this results in
a box m

i,+
d = [mi,+

d ,mi,+
d ] containing the true midpoint. We can then subdivide

facet xi,+ in direction d ∈ {1, . . . , n} \ {i} by setting

x
i,+
d = [inf(xi,+

d ),mi,+
d ] ∪ [mi,+

d , sup(xi,+
d )].

All other components of the subfacets are retained as in xi,+. The opposite facet
xi,− can be subdivided in the same manner. The resulting subfacets are guaran-
teed to contain the mathematically exact symmetrical subfacets. A downside of
the proposed ansatz is that the overestimation of the subfacets grows each time
we subdivide. This growth gets even larger when we subdivide more than once
per direction. This happens since the interval mi,+

d has to be considered as one
boundary when subdividing again in direction d. When calculating the next mid-
points we thus have to use the upper and lower bounds of interval mi,+. We
sketched the situation in Figure 4.6.

(a) In exact arithmetic (b) Enclosing the midpoint

Figure 4.6: Computing subfacets (1D)

We counteract overestimation by using another approach to compute symmet-
rical subfacets. For this ansatz, one facet out of each pair of opposite facets is
subdivided with the usual methods described in the last section—even if it is not
subdivided at the exact midpoint. If we always subdivide xi,+, we attain subfacets
xi,+,l. Now the symmetric subfacets xi,−,l are computed with the help of interval
analysis. Thus a box m enclosing the exact midpoint of the box x is needed. The
symmetric subfacets are then yielded by

xi,−,l = 2m− xi,+,l.

This interval computation results in a box which is guaranteed to contain the
subfacet symmetric to xi,+,l since for every x ∈ xi,+,l and the exact midpoint m,
the symmetrical point 2m − x is contained in xi,−,l. A sketch of the computed
enclosures for subfacets is given in Figure 4.7.
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Figure 4.7: Computing an enclosure for subfacet xi,−,l from the opposite subfacet
xi,+,l and an enclosure m of the midpoint of the box

We furthermore know that all points symmetric to xi,+,l have to be part of the
facet xi,−. Hence we reduce overestimation by replacing the computed xi,−,l with

xi,−,l ∩ xi,−.

For easier notation, the box resulting from the last intersection containing the
symmetric subfacet is itself also referred to as a subfacet.

In an implementation the second approach has the additional advantage that
only one subfacet has to be stored, the corresponding subfacet can be computed
when needed. Note that we still have to accept overestimation of the enclosures
of subfacets.

For the realization in SONIC the author picked the second approach to ensure
the correct handling of symmetric subfacets.

4.5.7 Variations of the degree test

Just as well as the Borsuk test, the degree test can be realized in various ways.
The condition h(x, t) = 0 for arbitrary x ∈ x and t ∈ [0, 1] is equivalent to

0 ∈ rangeh(x× [0, 1]).

Hence it is sufficient to prove the non-existence of zeros in the function enclosure
for this range to fulfill the degree test. Of course, the function enclosure can
be varied by utilizing the methods discussed earlier in this work. Namely these
are the naive, centered or facet-centered evaluation, the method by Baumann
and preconditioning. These modifications are well-known and applicable for all
verification tests. They are thus not discussed in detail.

In this section further variations of the degree test are presented and investi-
gated. In particular, we address the newly discussed and implemented issues of
varying homotopies and subdivision strategies for the degree test.
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4.5.7.1 Homotopy

The most simple way to alter the degree test is to change the considered homotopy.
We also attain different realizations of the test by changing the terms used to
express the homotopy because different expressions potentially lead to differing
function enclosures. Function enclosures yielded by different expressions of one
and the same homotopy can further be intersected to attain a sharper enclosure
for the homotopy.

For tests concerning the strength of the degree test the following homotopies
and formulations are examined. Herein formulation h1a is the standard expression
used in [FHL07,BFLW09].
First homotopy

h1a(t, x) = t · g(x) + (1− t) · (x− x̃)

h1b(t, x) = t · (g(x) − (x− x̃)) + (x− x̃)

Second homotopy

h2a(t, x) = t2 · g(x) + (1− t2) · (x− x̃)

h2b(t, x) = t2 · (g(x)− (x− x̃)) + (x− x̃)

Third homotopy

h3a(t, x) = t10 · g(x) + (1− t10) · (x− x̃)

h3b(t, x) = t10 · (g(x)− (x− x̃)) + (x− x̃)

4th homotopy

h4(t, x) = t10 · g(x) + (1− t) · (x− x̃)

5th homotopy

h5(t, x) = t · g(x) + (1− t10) · (x− x̃)

Numerical tests of these homotopies were conducted. The results are summarized
in section 4.6.2.4.

4.5.7.2 Sufficient Condition

Another computationally verifiable sufficient condition for the non-existence of
solutions of

h1a(x, t) = 0 with x ∈ x and t ∈ t

was presented in [BFLW09]. Instead of a simple test for zeros in the range of
h1a(x, t) on the box x × t, a division in standard extended arithmetic is utilized
in that condition.



4.5 Practical details concerning verification 155

Theorem 4.6 ( [BFLW09])
Assume x̃ ∈ int (x), t ∈ t and y ⊂ ∂x and t ⊆ [0, 1]. For j ∈ 1, . . . , n let gj(y) be
a function enclosure for the preconditioned function component gj over y. If

n⋂

j=1

gj(y)

(y − x̃)j
∩

(
1−

1

t

)
= ∅

is fulfilled, homotopy h (=h1a) has no zero in y × t.

A proof of the theorem can be found in [BFLW09].

A third way to prove the non-existence of zeros of the homotopy is to analyze
the homotopy itself by a result-verifying nonlinear solver. Some considerations
and tests concerning this possibility can be found in [BFLW09]. An advantage of
feeding the homotopy to a verified solver is that all techniques provided by the
solver can be used to solve the problem. However, to apply our solver SONIC
directly to the problem h(x, t) = 0, symbolic preprocessing would be needed for
testing the homotopy and the additional computations would be very expensive.
Hence this idea has not been realized.

4.5.7.3 Subdivision

Within the degree test not only the facets can be subdivided, but the interval
t = [0, 1] as well. In Algorithm 4.4 usually a fixed subdivision of t is employed.
In [FHL07] it is proposed to subdivide interval t into a given number tSub ∈ N

of disjoint intervals with equal width. The facets of x are subdivided iteratively
by the MaxDiam strategy. One has to consider that the homotopy has to be
computed on at least tSub boxes for each subfacet of x. Thus a small number is
to be chosen for tSub to restrain computational costs.

The author implemented the described strategy using an equidistant multisec-
tion for t. The default value for tSub in SONIC is 4. As a further improvement we
allow not only the MaxDiam strategy to subdivide facets but the modified hybrid
subdivision strategy described earlier.

We now want to introduce a further option for applying the existing subdivision
strategies. We use them to subdivide the parameter interval t together with the
boundary of the box. For this purpose, we accumulate t and the facets xi,+ and
xi,− from ∂x in interval vectors

x
i,+
t

:=

(
xi,+

t

)
and x

i,−
t

:=

(
xi,−

t

)
.

We will speak of these vectors as augmented facets. For every augmented facet
y = (z,u)T with z ∈ IRn, z ⊆ ∂x and u ∈ IR with u ⊂ t we define

h(y) := h(z,u)
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such that we can directly reformulate the conditions for the degree test to aug-
mented facets. The aim of our approach is to find that coordinate of the augmented
facet x

i,+
t

(or x
i,−
t

) with the largest influence on the function enclosures and to
avoid having to fix the number of subintervals of t. However, if employed on the
augmented facets, the simple MaxDiam strategy may be less useful since the inter-
val t is usually much bigger than the intervals in the facets xi,+ and xi,− and only
t would be subdivided. Note that the maximum number of considered subfacets
per facet (MaxSub) is multiplied by tSub when subdividing the augmented facets.
This is done for a fair comparison, since we additionally have to subdivide t, not
only the facets of x.

For some of the subdivision strategies in SONIC the Jacobian matrix is needed.
If it has been computed before, it is available without causing further computa-
tional costs. If the hybrid strategy is applied to the augmented facets, however, the
Jacobian matrix of the homotopy is needed. This leads to higher computational
costs than for a fixed subdivision of t.

The modified degree test is displayed in Algorithm 4.8. Both strategies to
subdivide t have been implemented and will be compared in the next section.
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Algorithm 4.8 Degree test with combined subdivision for x and t

(bounded box x)

1: MaxSubt := MaxSub · tSub
2: for i = 1, . . . , n do
3: for facet xfacet ∈ {x

i,+,xi,−} do

4: initialize list L
(1)
facet with (xfacet, t)

T

5: nsub ← 1
6: for u = 1, . . . ,MaxDepth do

7: while L
(u)
facet is not empty do

8: take first augmented facet y in L
(u)
facet

9: if y fulfills condition for degree test (0 6∈ h(y)) then

10: delete y from list L
(u)
facet

11: else {facet has to be divided}
12: if u < MaxDepth and nsub + 2 ≤ MaxSubt then
13: subdivide y into two parts
14: nsub ← nsub + 2
15: insert parts into list L

(u+1)
facet

16: else
17: exit {no further subdivision allowed, no solution verified}
18: end if
19: end if
20: end while
21: end for
22: end for
23: end for
24: info(x)← ContainsSolution
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4.6 Comparison of the verification tests

All computational verification tests are based on numerical evaluations of function
enclosures. With their help one can draw conclusions based on theorems. Thus
computational tests only check sufficient conditions and may suffer from overesti-
mation of the enclosures they rely on. In addition, one has to take into account
the methods used to compute the function enclosures.

Due to these reasons we have to distinguish whether we compare theorems,
theoretical tests or implemented tests. In this section we first focus on the strength
of the theorems, afterwards on the strength of the tests they result in. Comparisons
of the implemented tests follow in the subsection 4.6.2.

4.6.1 Theoretical comparisons

Note that there exist more verification methods than presented up to this point.
One further example makes use of the following theorem dating back to Moore
[Moo77].

Theorem 4.7 (Moore)
Let f : Rn → Rn be a continuous function, S an interval slope matrix, C a
nonsingular preconditioning matrix in Rn×n, I the identity matrix in Rn×n, x ∈
IRn a box and x̃ ∈ x a point in the box. If the slope based Krawczyk operator

K(x, x̃,S, C) := x̃− Cf(x̃) + (I − CS)(x− x̃)

fulfills

K(x, x̃,S, C) ⊆ x,

then K(x, x̃,S, C) (and therefore x) contains a zero of f .

By virtue of this theorem, Moore’s existence test proves a zero by checking
whether the Krawczyk operator K(x, x̃,S, C) maps a box x into itself.

Like the Newton test and the Miranda test, Moore’s existence test is based on
Brouwers fixed-point theorem. By contrast, the Borsuk and degree test are based
on properties of the topological degree.

In [FLS04] a version of the Miranda test is used that is comparable to the
presented formulation of the Miranda test combined with a function evaluation
in centered form and without the usage of subfacets. This test requires only one
function evaluation at the point x̃. It has been proved that for this special version
the Miranda test is always at least as powerful as a test based on Moore’s theorem.
The paper also gives some conditions under which the tests are equivalent. (Nev-
ertheless, we implemented a test based on Moore’s theorem for numerical tests.
Because it could not verify any solution for the tested problems, it has not been
incorporated into SONIC.)



4.6 Comparison of the verification tests 159

A further theorem applicable to verify solutions of interval systems is given
by Kantorovich. In [AMFH02] the theorem of Kantorovich is compared with the
theorems of Miranda and Borsuk. A generalization of Miranda’s theorem for
arbitrary norms is given and it has been proved that the Kantorovich theorem
is a special case of this generalized theorem as well as a special case of Borsuk’s
theorem. For the exact conditions confer [AMFH02]. Remind that this is not a
hierarchy of computational tests but of the theorems with respect to the existence
of a zero. The theorem of Kantorovich can be used furthermore to prove the
uniqueness of a zero. However, according to [Ral80], a computational test based on
Kantorovich’s theorem would be significantly more costly, but not much stronger
than a test based on Moore’s theorem. Thus we refrained from implementing this
test.

In [FL05] it is proved that the Miranda theorem is a special case of Borsuk’s
theorem—under the assumption that no zeros exist on the boundary of the box.
In theory this means that we can prove the existence of a zero with the Borsuk
test whenever this is possible using the Miranda test. Thus the Borsuk test may
succeed in more situations than the Miranda test. However, for numerical imple-
mentations one has to regard that the above claim is only true if there exists no
zero in the function enclosure on the boundary of the box. (And a zero on the
boundary is not unlikely for small solution boxes). In this case the Miranda test
might still work if the Borsuk test fails.

In [FL05] it is shown that the Miranda as well as the Borsuk test become more
powerful (but also more expensive) if we use facet-centered function evaluation
instead of centered evaluation. (The center of the facet in this case is chosen
as the projection of the box center.) Furthermore, it is proved that the Borsuk
test with naive, centered and facet-centered function evaluation is successful in at
least as many situations as the Miranda test using the same function evaluation.
To illustrate this fact, the paper gives an example for which the Borsuk test is
successful whereas Miranda- and Moore-based tests have to fail. Although, it is
also mentioned that the superiority may not pertain for small boxes like those we
want to verify.

[FHL07] gives a proof that the degree test is more general than the Miranda
test, provided there exists no zero on the boundary of the box. Also given is an
example for which the Miranda test has to fail whereas the degree test succeeds
in verifying a solution.

[BFLW09] states that the degree test is more general than the test based on
Moore’s theorem and a test similar to the one given by Moore and Kioustelidis
in [MK80]. The proof of this statement can be found in [FHL07].

Until now it is not shown that the degree test is more powerful than the
Borsuk test. Nevertheless, numerical experiments seem to sustain this hypothesis.
In [FHL07,BFLW09] a numerical example is given for which the degree test always
performs better than the tests based on the theorems of Miranda and Borsuk if all
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tests are conducted uniformly either without preconditioning or with the inverse
midpoint preconditioner. Still, the Borsuk test can verify more solutions if applied
in combination with the new preconditioner—but it is more costly as well. Recall
furthermore that for the Borsuk test we could use different preconditioners for the
facets whereas we have to use the same preconditioner for all subfacets for the
Miranda and degree test. This gives an advantage to the Borsuk test if varying
preconditioners are allowed when comparing the tests.

4.6.2 Numerical comparisons using SONIC

There are many implementation issues to concern when comparing the strength
of numerical verification tests. It is possible to find examples of systems for which
the Borsuk test can verify a solution although the degree test fails. This is caused
by the implementation of the midpoint computation. For the considered small
boxes and facets, the midpoint cannot always be computed exactly for numerical
reasons. As for subdivision, the midpoint is evaluated as

mid (x) = max

{
x,min

{
x,
x+ x

2

}}

and can be equal to one of the boundaries. Hence the calculated midpoint may
also lie on the boundary of the box. If x̃ is chosen as mid (x) for the degree test,
this causes that x− x̃ = x−mid (x) may get zero, thus affecting the enclosure for
the homotopy used in the degree test.

We can even find examples for which only the Miranda test verifies a solution
because the considered box is too small to be compressed by the Newton test and
the Borsuk as well as the degree test fail because the function enclosures over the
boundary contain zero.

We now want to evaluate the tests implemented in SONIC. For this purpose
the problems in test set TV are used. Those contain all problems from test set TB
that yielded at least one solution box but no manifold of solutions. In a first step,
the solution boxes have been computed with the box-intern hierarchy and stored
without verification. Subsequently all tests were run on identical boxes.

Considering the test results, note again that the numbers of solutions and
solution boxes does not have to coincide. It is possible that a solution is contained
by more than one box or that a box contains more than one solution. It can further
happen that boxes are contained in the list more than once if boxes containing
the same solution were contracted to thin boxes containing the solution. These
multiple occurrences of solution boxes are only diminished by collecting boxes
after the verification tests have been applied.

In each test using facets we apply the naive, centered and facet-centered func-
tion enclosure as well as the centers proposed by Baumann (see sections 4.1.3.1 and
1.8.2.1). The further parameters for the facet-based tests are chosen uniformly.
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Unless stated otherwise, the inverse midpoint preconditioner and the MaxDiam
strategy are employed and the maximum number of subfacets considered per facet
(MaxSub) is set to 8. (The maximum subdivision depth for subfacets (MaxDepth)
is set to 100 and has no influence on the presented test results.) Furthermore,
for the degree test we use a fixed subdivision for t into 4 parts by default (De-
gree FixedPartitionForT=on, Degree PartsOfT=4 ) and make use of the sufficient
condition as given in Theorem 4.6.

It will become apparent that one should make use of epsilon-inflation to verify
more solutions. Nevertheless, for the sake of more lucid comparisons, epsilon-
inflation is not applied unless mentioned explicitly.

Note that a deviant choice of parameters can influence the received results of
the verification tests seriously.

4.6.2.1 Epsilon-inflation

In a first step, an impression of the influence of the epsilon-inflation is given. As
mentioned earlier, an epsilon-inflation can be helpful if applied in combination
with a Newton test (since the interval Newton operator has to contract the box
to verify a solution and may not be successful for boxes that are too small).
Furthermore, by inflating the box, one tries to elude zeros on the boundary of a
box which interfere with the Borsuk and degree test.

For our test, the verification strategy given in section 4.4 has been applied.
The solution boxes were enlarged by an epsilon-inflation with ǫ = 0.25 in every
inflation step. Note that the verification strategy includes a separate application
of the epsilon-inflation in the Newton method. For Newton and all other tests the
same number of epsilon-inflations was allowed. Moreover, the verification scheme
stops as soon as no test can provide any further information about the uniqueness
or existence of a solution in a box.

Table 4.1 states the number of solution boxes for each problem as well as the
number of verified boxes for each test and in total. For further comparisons,
the number of subfacets considered for the Miranda test, Borsuk test and degree
test is listed. Note, however, that this number cannot be used directly for a
comparison of the computational costs of the verification tests (due to the different
evaluations conducted in the computational tests). Verification tests are applied
to an overall amount of 1492 solution boxes. If no epsilon-inflation is employed
(VerificationMaxEpsInflations=0), 343 boxes can be verified. Note that in this
case most boxes are verified by the Miranda test and only one by a Borsuk test.
This implies that only existence can be proved for the verified boxes. We assume
that the uninflated boxes are too small to be contracted by the interval Newton
operator and zeros on the boundaries cause the Borsuk test and degree test to fail
in most cases.
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boxes verified done tests successful tests subfacets

no epsilon-inflation N M B D N M B D M B D

G7 gradientsystem 320 192 320 320 128 128 0 192 0 0 3328 1408 704
Reactor 1 0 1 1 1 1 0 0 0 0 4 8 4
Brent7 128 110 128 128 19 18 0 109 1 0 1716 250 182
Eco9 16 8 16 16 8 8 0 8 0 0 181 90 56
Trigexp1 1 1 1 1 0 0 0 1 0 0 100 0 0
Trigonometric 1024 32 1024 1024 992 992 0 32 0 0 6762 10256 6359
DesignProblem9 1 0 1 1 1 1 0 0 0 0 6 10 6
7erSystem 1 0 1 1 1 1 0 0 0 0 7 10 16

total 1492 343 1492 1492 1150 1149 0 342 1 0 12104 12032 7327

one epsilon-inflation N M B D N M B D M B D

G7 gradientsystem 320 320 320 256 128 128 192 128 0 0 2432 1408 704
Reactor 1 1 1 2 1 1 0 1 0 0 62 8 4
Brent7 128 128 128 47 19 18 99 28 1 0 582 250 182
Eco9 16 16 16 17 7 7 6 10 0 0 219 82 52
Trigexp1 1 1 1 0 0 0 1 0 0 0 0 0 0
Trigonometric 1024 1012 1024 1987 1004 1004 29 983 0 0 25878 10352 6431
DesignProblem9 1 1 1 2 1 1 0 1 0 0 24 10 6
7erSystem 1 1 1 2 1 1 0 1 0 0 21 10 16

total 1492 1480 1492 2313 1161 1160 327 1152 1 0 29218 12120 7395

Table 4.1: Success of the verification scheme when allowing no or one single epsilon-inflation
(N=Newton test, M=Miranda test, B=Borsuk test, D=degree test)
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Using epsilon-inflation many more boxes are verified. Indeed, for our test set,
verification was successful for all but 12 boxes. Of the verified boxes, 327 are
verified by the Newton test and contain unique solutions. When allowing to apply
epsilon-inflation twice (or more often), the Newton test can verify unique solutions
in all 1492 boxes. (The other tests are then not started again for the twice-inflated
boxes.) Note that for manifolds this would not be possible.

4.6.2.2 Success of the verification tests

We now want to consider the verification tests separately and to present more
detailed results. As a reminder: all tests have been conducted with the inverse
midpoint preconditioner. Our findings are stated in Table 4.2.

Further tests not represented here show that the individual tests can verify
little more solutions when allowing to consider more subfacets per facets. Setting
this parameter to 100 instead of 8, the Miranda test can verify two more solutions,
the Borsuk test and degree test three more solutions. As computation time is
subordinate in verification, we recommend not to choose this parameter too small.

4.6.2.3 Borsuk test

For the Borsuk test the three available options for preconditioners are tested.
Table 4.3 shows the results for each option. We see clearly that a precondition-
ing improves the results. However, for this special test set, the subfacet-based
preconditioner could not be shown to perform superior to the inverse midpoint
preconditioner.

4.6.2.4 Degree test

In the preceding sections referring the degree test we spoke about different options
that can influence its performance.

Tests showed that the discussed evaluation strategies yield nearly the same
results for the homotopies and the sufficient condition given in Theorem 4.6. Only
the application of the new test in connection with the homotopies h1b, h2b or h3b
are slightly superior to their counterparts h1a, h2a or h3a as well as h4 and h5 with
respect to the considered number of facets. For all homotopies and the changed
sufficient condition (Theorem 4.6) the existence of solutions in 149 boxes could be
verified by the degree test (without epsilon-inflation).

More varying results could be observed for the subdivision strategies applied
in the degree test. Although the results do not vary for tSub between 2 and
10 or between MaxDiam and the hybrid strategy, differences can be observed
when subdividing t differently (cf. Table 4.4). The results indicate that a fixed
subdivision for t should be preferred over a subdivision of augmented facets.



1
6
4

V
e
rifi

c
a
tio

n

boxes done tests successful tests subfacets

no epsilon-inflation N M B D N M B D M B D

G7 gradientsystem 320 320 320 320 320 0 192 0 0 3328 2688 1376
Reactor 1 1 1 1 1 0 0 0 0 4 8 4
Brent7 128 128 128 128 128 0 109 94 108 1716 1888 1723
Eco9 16 16 16 16 16 0 8 6 8 181 208 184
Trigexp1 1 1 1 1 1 0 1 0 1 100 8 100
Trigonometric 1024 1024 1024 1024 1024 0 32 26 32 6762 10926 6999
DesignProblem9 1 1 1 1 1 0 0 0 0 6 10 6
7erSystem 1 1 1 1 1 0 0 0 0 7 10 16

total 1492 1492 1492 1492 1492 0 342 126 149 12104 15746 10408

one epsilon-inflation N M B D N M B D M BD

G7 gradientsystem 320 640 448 640 640 192 320 320 320 5120 7168 5856
Reactor 1 2 2 2 2 0 1 1 1 62 66 62
Brent7 128 256 147 162 148 99 128 128 128 1982 2364 2003
Eco9 16 32 24 26 24 6 15 15 15 307 372 306
Trigexp1 1 2 1 2 1 1 1 1 1 100 108 100
Trigonometric 1024 2048 2016 2022 2016 29 1012 1012 1012 26458 30790 26703
DesignProblem9 1 2 2 2 2 0 1 1 1 24 28 24
7erSystem 1 2 2 2 2 0 1 1 1 21 24 30

total 1492 2984 2642 2858 2835 327 1479 1479 1479 34074 40920 35084

two epsilon-inflations N M B D N M B D M BD

G7 gradientsystem 320 768 448 640 640 320 320 320 320 5120 7168 5856
Reactor 1 3 2 2 2 1 1 1 1 62 66 62
Brent7 128 285 147 162 148 128 128 128 128 1982 2364 2003
Eco9 16 42 25 27 25 16 15 15 15 311 380 310
Trigexp1 1 2 1 2 1 1 1 1 1 100 108 100
Trigonometric 1024 3043 2028 2034 2028 1024 1012 1012 1012 26506 30886 26763
DesignProblem9 1 3 2 2 2 1 1 1 1 24 28 24
7erSystem 1 3 2 2 2 1 1 1 1 21 24 30

total 1492 4149 2655 2871 2848 1492 1479 1479 1479 34126 41024 35148

Table 4.2: Success of the individual verification tests with no, one or two allowed epsilon-inflations
(N = Newton test, M= Miranda test, B=Borsuk test, D= degree test)



4
.6

C
o
m
p
a
riso

n
o
f
th

e
v
e
rifi

c
a
tio

n
te
sts

1
6
5

no preconditioning inverse midpoint subfacet based
boxes successful

tests
subfacets successful

tests
subfacets successful

tests
subfacets

G7 gradientsystem 320 0 2688 0 2688 0 2688
Reactor 1 0 8 0 8 0 8
Brent7 128 0 1158 94 1888 23 1618
Eco9 16 0 134 6 208 0 134
Trigexp1 1 0 8 0 8 0 8
Trigonometric 1024 0 8216 26 10926 0 8328
DesignProblem9 1 0 8 0 10 0 8
7erSystem 1 0 10 0 10 0 10

total 1492 0 12230 126 15746 23 12802

Table 4.3: Success of the Borsuk test with different preconditioners, without epsilon-inflation
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fixed subdivision of t subdivision of the augmented facets
successful

tests
facets successful

tests
facets

G7 gradientsystem 0 1376 0 1856
Reactor 0 4 0 4
Brent7 108 1723 90 1690
Eco9 8 184 6 152
Trigexp1 1 100 0 7
Trigonometric 32 6999 21 6164
DesignProblem9 0 6 0 6
7erSystem 0 16 0 5

total 149 10408 117 9884

Table 4.4: Different subdivision strategies for parameter t of the degree test
(using homotopy t and the hybrid subdivision strategy)



Chapter 5

SONIC

The hardest thing is to go to sleep at night, when there are so many urgent things
needing to be done. A huge gap exists between what we know is possible with

today’s machines and what we have so far been able to finish.

Donald E. Knuth

As mentioned earlier, the acronym SONIC stands for Solver and Optimizer for
Nonlinear Problems based on Interval Computation. SONIC has been developed
at the RWTH Aachen and the University of Wuppertal. Its main contributors
include Dr. Thomas Beelitz, Prof. Dr. Bruno Lang, Dipl. Math. Klaus Schulte Al-
thoff, Prof. Dr. Peer Ueberholz, Dr. Paul Willems and the author. SONIC was par-
tially supported by VolkswagenStiftung within the project “Konstruktive Metho-
den der Nichtlinearen Dynamik zum Entwurf verfahrenstechnischer Prozesse”.

The initial goal in its development was to solve dynamic systems arising from
chemical processes [BBLW04, BBLSA04,MMB+07]. However, in the meantime
SONIC has been augmented to a rigorous general purpose solver for nonlinear
systems of equations and enhanced by an optimizer.

The implementation of the mathematical methods presented in the previous
chapters has been discussed next to the theory. Parameters for adapted or newly
implemented methods can be found there.

The goal of the current chapter is to give a brief glimpse into further, previously
implemented methods. Although this chapter is not a manual, it provides some
technical background for potential users of SONIC.

Our presentation is strongly influenced by the current version of SONIC as
well as previous publications such as [BBLW04], [Bee06] and [BLB06].
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5.1 Features and concept

The features of SONIC comprise, but are not limited to, the possibilities yet
described in this work. This section states SONICs main features for a clear
overview. Those features not discussed within the last chapters will be introduced
briefly in the following.

The main features of SONIC include

• the implementation in C++

• the storage of many settings, all problems and results in plain text form

• default settings that are suitable for a wide range of problem classes

• easy modification of parameters by the user

• the possible utilization of three basic interval libraries

• the handling of unbounded intervals (including a special stopping criterion)

• internal storage of finite unions of intervals

• a solver for nonlinear systems of equations utilizing

– a basic branch-and-bound scheme

– various subdivision strategies

– contractors such as

∗ constraint propagation

∗ Taylor refinement of first and second order

∗ an interval Newton method (row-wise, hybrid version)

– preconditioners such as

∗ the inverse midpoint preconditioner

∗ a width optimal preconditioner (CW-LP-preconditioner)

– multiple extended systems combined with

∗ the possibility to select the extended systems to be utilized in com-
putations

∗ two sophisticated strategies to apply these systems

∗ many parameters to adapt the strategies for specific problems

– verification of solution boxes

∗ including the handling of non-square systems

∗ verification scheme utilizing epsilon-inflation and different verifi-
cation tests (Newton test, Miranda test, Borsuk test and degree
test)
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– methods to collect solution boxes

– the option to execute computation and verification separately

• a verified solver for optimization problems

• parallel versions for

– shared memory (OpenMP)

– distributed memory (MPI).

In addition, a restart facility is implemented, allowing the user to interrupt the
calculation after a predefined amount of time (CheckpointingTime) and to continue
later. If one is only interested in whether or not a system has a solution in a given
startbox, one can profit from another option of SONIC (TerminationOnFirstHit).
It stops the calculation as soon as a single verified solution has been found and
can save huge amounts of computation time.

Most features of SONIC can be activated in the Controls-File. In the same
file one finds a variety of parameters to adjust the features to special needs. The
default options are chosen to work well for a wide range of problems. cd Work If
a user is, however, inclined to adjust the parameters for a special problem, this
can be accomplished by simple changes in the Controls-File.

5.2 Install and run SONIC

General advice for building and running SONIC can be found in the readme in
the main folder of SONIC. Note that in addition to the program itself at least one
interval library has to be installed.

All test problems are given in files called problemname.in and are provided
in the folder data. The problem files carry information about the variables, the
desired precision of the solution boxes and the constraint system. A commented
example file can be found in example.in.

The folder settings contains the Controls-File, in which parameters can be
adapted to adjust SONIC, as well as a file called Rules. The latter contains the
rules applied for expression optimization (see section 1.8.7)

Results are written into a folder named results into a subfolder with the same
name as the problem. The two most important files in this folder are the Statistics-
File in problemname.sta, giving overall statistics for the solver and for the indi-
vidual methods, and problemname.res, containing the computed solution boxes.
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5.3 Interval libraries

SONIC was designed to make use of different basic interval libraries. By now we
can work with

• C-XSC [HK03, cxs],

• filib++ [LTG+06,fil] and

• the interval library by Sun [Sun].

These libraries implement the basic operations of interval arithmetic with special
care to performance factors such as the number of rounding mode changes.

As mentioned before, SONIC can handle unbounded variables. A further spe-
cial feature is the possibility to store finite unions of boxes and to compute with
the hull of this union until the additional information is exploited for subdivision
(as discussed in section 2.2.1). For realizing these features SONIC makes use of
a special interval class taking care of unbounded intervals and unions of intervals.
This class serves as a wrapper. Interval computations for bounded intervals are
forwarded to the interval libraries. For more details concerning this part of the
implementation see [Wil04].

For comparable results, the C-XSC library in version 2.2.4 has been utilized
for all tests shown until now. A test with the recent version 2.5.3 yielded nearly
uniform savings in computation time by a factor of 0.75. We also tested filib++ in
version 3.0.2. It could reduce the average timing by a factor 0.6. However, the
time savings differed considerably between the test problems (for timings see Table
5.2). Unfortunately, for one test problem, the solution was lost when employing
filib++. Up to this point the author could not detect the exact source of this error.

5.4 Parallelization of the nonlinear solver

In addition to sophisticated algorithms and techniques, SONIC is provided with
two efficient parallel versions. The author will only outline the basic parallelization
strategies in SONIC. This is done according to [Bee06, BLB03, BLB06, Ueb07].
More specific information can be found in these publications.

5.4.1 Fundamental concepts

Parallelization enables us to tackle tasks that require immense computing power
by conducting computations in parallel whenever possible. The improvement of
running the parallel version of an algorithm on more than one execution unit
(which we call a core) is measured by the speedup.
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Definition 5.1 (Speedup)
The speedup of a parallel algorithm is defined as

Speedup(p) :=
time1
timep

where time1 is the computation time needed when running the algorithm on one
core and timep is the computation time of the same algorithm running on p cores.

The optimal speedup is equal to the number of cores. To attain it, the whole
algorithm is required to run in parallel on all cores from beginning to the end of
the calculation. Optimal speedup is rarely reached since portions of the algorithm
cannot be performed in parallel. A relation between the maximal speedup and the
fraction of the algorithm that can be run in parallel is given by Amdahl’s Law.

Theorem 5.1 (Amdahl’s law [SCB05])
If p cores can work in parallel on a fraction a ∈ [0, 1] of a given algorithm and the
remaining part of the algorithm has to be run in serial, the maximum attainable
speedup is given as

Speedup(p) =
1

(1− a) + a
p

.

Thus, to obtain the best possible speedup, one has to maximize the fraction of
the algorithm that is run in parallel. If the fraction is too small, this necessarily
leads to a low speedup even if a high number of cores is employed (an upper bound
for the speedup is given by supp∈N Speedup(p) = 1/(1− a)). For example, if only
half of a algorithm can be run in parallel (a = 1/2), the best speedup achievable
is 2—independent of the number of cores (supp∈N Speedup(p) = 2).

For further details concerning parallel computations we refer to the dedicated
literature.

In SONIC parallelization can be applied in two “levels”. Firstly, all boxes can
be analyzed independently. Secondly, for each box the enclosures of the function
components and the entries of the Jacobian matrix can be computed concurrently.

5.4.2 OpenMP

OpenMP (Open Multiprocessing) is used for the parallelization using shared
memory for parallel threads. Two approaches to integrate OpenMP into the
framework of SONIC were examined in earlier works [BLB03,BLB06].

One is an easy to implement method that analyzes all boxes in a given recursion
level in parallel. After completing one recursion level r, computations are started
for the next level r+1. The approach is working fairly well for low core numbers.
Given a high core number and few boxes per recursion level, many cores will be idle
during the computation. A further downside of the approach is its load balancing
if it is not appropriate, again there will be idle cores. These cores could already
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work on a box of the next recursion level but have to wait until all work on the
current level is completed.

The second approach harnesses a task queue for better load-balancing. It was
shown to be preferable to the first approach [BLB06].

5.4.3 MPI

MPI (Message Passing Interface) is used widely for parallelization with dis-
tributed memory. Again, two strategies are available in SONIC.

The first is a master-worker algorithm. Given p cores, one of them acts as the
master and does not analyze any boxes but only distributes them to the workers.
The workers solely analyze boxes and send them back to the master. Obviously, the
master-worker approach can attain a maximum speedup of supp∈N Speedup(p) =
p− 1.

In a second algorithm all cores analyze boxes. For load-balancing the cores
exchange information about their workload and, if required, also boxes. A dis-
tinguished process keeps track of additional information about the work already
done. This ansatz was shown to offer a nearly perfect speedup [Ueb07] and was
successfully applied for computational proofs concerning the existence of spherical
t-designs as described in [BLUW09]. Furthermore, comparing numerical studies
indicate a better performance of the MPI versions in relation to the OpenMP
implementations [BLB06].

⋄

In [BLB03] a hybrid parallelization scheme was proposed. It applies different
parallelization strategies for the two levels of parallelism. MPI is employed to run
different boxes in parallel, OpenMP for parallel calculations on each box.

5.5 Optimization

Interval analysis does not only allow to solve nonlinear systems of equations reli-
ably, but also to find guaranteed global solutions of nonlinear optimization prob-
lems.

This section gives a definition for nonlinear optimization problems followed by
an overview of the most important methods to solve nonlinear optimization prob-
lems using interval methods. (Our description relies on [Bee06].) Herein only min-
imization problems are considered. Maximization problems can easily be trans-
formed into this formulation by a simple negation of the objective (min{−f(x)}).

Definition 5.2 (Nonlinear optimization problem)
Letm, n and r be positive integers. For an arbitrary objective function f : Rn → R
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and a startbox x(0) as well as the inequality constraints p : Rn → Rm and equality
constraints q : Rn → Rr the problem

min f(x) with x ∈ x(0) ⊆ Rn

under
pi(x) ≤ 0 (i = 1, . . . ,m)
qj(x) = 0 (j = 1, . . . , r)

is known as an optimization problem.

If only the objective is given (m = r = 0), this problem is an unconstrained
optimization problem. In any other case we speak of a constrained optimization
problem.

The aim of global optimization in interval analysis is to find a sharp enclosure
of the global minimum f∗ for an optimization problem and a list of small enough
boxes comprising the set of solutions or minimal points

{x ∈ x(0) | f(x) = f∗}

for the unconstrained optimization problem or

{x ∈ x(0) | f(x) = f∗, p(x) ≤ 0, q(x) = 0}

for the constrained optimization problem.

5.5.1 General approach

As for the solution of nonlinear systems of equations, a branch-and-bound algo-
rithm is the backbone of the optimization strategy. The implementation in SONIC
is based on investigations by Berner [Ber95]. The basic algorithm is initialized with
the startbox x(0), stores boxes evolving in the branch-and-bound algorithm in a
working list and yields a solution list covering the set of minimal points. As for
nonlinear systems of equations, the boxes evolving in the branch-and-bound algo-
rithm can be stored either in a list or a heap. The box to be considered next in
the algorithm is chosen as the one minimizing inf(f(y)) over all boxes y in the
working list.

For subdividing boxes, the current implementation follows the recommenda-
tions in [Ber95]. Per default a box is subdivided into four subboxes. However,
most of the subdivision strategies for nonlinear systems of equations could be
applied as well.

As for nonlinear systems, we speak of a contractor if a function maps a box
into itself while preserving all contained solutions. Some basic strategies will be
presented in the following sections. We refer to the books of Hansen [Han92] and
Kearfott [Kea96b] as starting points to gain more information about the rigorous
solution of optimization problems.
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5.5.2 Unconstrained optimization

Several contractors have been developed to approach unconstrained optimization
problems by the means of interval analysis. Using them speeds up the branch-and-
bound algorithm. The contractors for unconstrained optimization are presented
in order of ascending requirements with regard to the objective function.

5.5.2.1 Cut-off-test

Since it only makes use of function enclosures, the cut-off-test can be applied for
arbitrary functions. It calculates an upper bound f̃ for the global minimum. Since
it is obvious that no box x ⊆ x(0) fulfilling f(x) > f̃ or simply inf(f(x)) > f̃ can
contain a minimal point, those boxes can be discarded.

The upper bound f̃ can further be updated during the computation. Updating
with the infimum of the function evaluation of a box in x(0) seems tempting.
However, function enclosures overestimate the true range of a function, thus we
cannot infer the minimum of the function from (proper) function enclosures. A
guaranteed upper bound f̃ can be attained by updating with the minimum of the
former value of f̃ and the supremum of the function enclosure over the box x or
at some point x̃ ∈ x. To avoid rounding errors, in implementations we would have

to calculate f̃ ′ = min
{
f̃ , sup (f(flint(x̃)))

}
for some x̃ ∈ x with flint(x̃) ∈ x.

5.5.2.2 Monotonicity test

Monotonicity can be checked in every variable xi in which the objective is contin-
uously differentiable. If the function is strictly monotonic in xi on a given box,
the box can either be contracted or discarded (see Algorithm 5.1).

5.5.2.3 Non-convexity test

If a function is twice continuously differentiable, one can make additional use of
information about second derivatives. For example, the Hessian matrix can be
utilized to determine whether a function is non-convex. Because for boxes in the
interior of the startbox, convexity is a necessary condition for a local minimum
(and therefore also for a global minimum in the interior), a box x ⊆ int (x(0)) can
be discarded by showing f(x) to be non-convex. Boxes intersecting the boundaries
of x(0) have to be considered separately. They can only be reduced to their
intersection with the boundary of the startbox x(0). For a computational test,
the fact that every convex function has a positive semidefinite Hessian matrix is
utilized. In turn, a necessary condition for positive semidefiniteness of the Hessian
is the non-negativity of all its diagonal elements [Han92, p. 125]. The last condition
can be checked using interval analysis.
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Algorithm 5.1 Monotonicity test (startbox x(0), box x, objective f)

1: for i = 1, . . . , n do

2: if sup
([

∂f
∂xi

])
< 0 then {f strictly decreasing in xi}

3: if sup(xi) = sup(x
(0)
i ) then

4: x← (x1, . . . , sup(xi), . . . ,xn)
T

5: else
6: discard x

7: end if
8: end if
9: if inf

([
∂f
∂xi

])
> 0 then {f strictly increasing in xi}

10: if inf(xi) = inf(x
(0)
i ) then

11: x← (x1, . . . , inf(xi), . . . ,xn)
T

12: else
13: discard x

14: end if
15: end if
16: end for

5.5.2.4 Special Newton process

For twice continuously differentiable functions there exists a further possibility
to contract a box x ⊆ int (x(0)) without losing any minimal points. Since the
gradient has to be zero in each local minimum in the interior of the startbox, one
simply applies the interval Newton method to the gradient system ∇f(x) = 0.
Thus the given box can be contracted preserving all zeros of the gradient system
and therefore all the minimal points of the original optimization problem.

5.5.3 Constrained optimization

As an important restriction in constrained optimization, one always has to check
the feasibility of the boxes. In the context of interval analysis feasibility means
that a box contains at least one element x fulfilling the constraints p(x) ≤ 0 and
q(x) = 0.

One well known method to handle constrained optimization problems is to
check necessary conditions for local and global minima, namely the Fritz John
conditions. Consult for instance [Han92].

5.5.4 Parallelization of the optimizer

A distributed memory parallelization of the unconstrained optimization part of
SONIC is available. This parallelization goes back to the work of Berner [Ber95].
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Its backbone is a master-worker approach, augmented by a propagation of new
upper bounds for the global minimum between the cores. Test results in [Bee06]
show that the parallel version offers a good speedup for “hard” problems. For other
problems many cores are said to be working on boxes that are “not promising”,
meaning unlikely to contain an optimal point. The author refers to [Bee06] and
[Ber95] for further details and an analysis of the strategy.

5.6 Other nonlinear solvers and optimizers

Note that time comparisons to other implementations are difficult. Overall com-
parisons only have a restricted validity since they do not take into consideration
that different implementations may use different languages, methods and varying
strategies to combine these methods. Thus even setting parameters appropriately
cannot make different implementations comparable.

GlobSol

GlobSol is an interval optimizer, but has an option for solving nonlinear systems.
Comparisons of an older version of SONIC with GlobSol in the version of 2003
can be found in [Bee06]. It shows favorable results for SONIC.

The officially available version is from 2003. By courtesy of Baker Kearfott, we
could conduct some further tests with a more current developers version (end of
2012, with settings suiting for 7erSystem). Although the performance of GlobSol
might be improved in the next release version, these tests showed SONIC to be
competitive in the solution of nonlinear interval systems.

problem GlobSol SONIC (BIH, C-XSC)

Brent7 92.4 29.3
Trigexp1 >36000 31.7
Trigonometric >36000 133.9
DesignProblem9 279.5 112.2
7erSystem 6195.4 79.7

Table 5.1: Comparison of the computation time in GlobSol and SONIC

Ibex

We further chose to compare our solver to the program Ibex, which contains a
ready-to-use solver for nonlinear systems and an optimizer. Ibex is a customiz-
able interval software which is developed by a group of researchers around Gilles
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Chabert. It is available online [ibe], can deal with different interval libraries (Gaol,
filib++ and Profil/Bias) and contains some other techniques than these described
in this work.

We conducted our tests with the solver for nonlinear problems in version 2.0.6
of Ibex. An overview of the results is shown in Table 5.2. To achieve comparable
results, both SONIC and Ibex are run on the same machine and with the same
version of filib++.

problem Ibex SONIC

min-04-06 5.6 0.02
G7 gradientsystem 5.0 4.5
Reactor 10.4 -
Chemistry1 24.38 5.0
Brent7 20.46 1.9
Eco9 45.53 16.1
Trigexp1 0.5 (31.7)
Trigonometric 60.38 44.7
Chemistry2 61.76 207.3
DirectKinematics 36.15 35.7
DesignProblem9 58.77 36.0
7erSystem 55.64 49.6
min-04-07 556.49 97.0
Chemistry3 8265.48 40296.9

Table 5.2: Comparison of the computation time in SONIC and Ibex

We want to add some remarks concerning this table. Firstly, we did not run
problem Reactor in Ibex, since it has different precision requirements ψ for the
variables and the default input in Ibex is one uniform value. (Even though, ac-
cording to Gilles Chabert, the subdivision strategies can be adapted to model
differing ψ for the variables.) Secondly, as said before there is some problem in
computing the solution for Trigexp1 using SONIC in combination with filib++.
In this case we gave the measurement using C-XSC. For this problem the result
of Ibex is remarkably good, demanding further investigations into the techniques
used to attain this result.

As well as SONIC, Ibex is able to handle unbounded intervals, but there exists
no stopping criterion like our criterion using the threshold vector Ψ. For the
single unbounded problem Chemistry1 in our test set this was no hurdle. (It
was, however, when we changed one problem manually to contain two intervals
[−∞,∞] in the startbox x(0). In this case the solver produced an enormous
number of solution boxes containing intervals like [∞].)

Overall, we see that each solver (with default options) wins the comparison in
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computation time for some of the test problems. To the author, the differences
in computation time are caused by two main reasons: the different techniques
in the solvers and the varying strength of the default settings for the individual
test problems. As we already saw for SONIC, computation time relies heavily as
well on the subdivision techniques as on the contractors. We also know that the
performance of the solver for a single problem is strongly influenced by the param-
eters used for its solution. For example, when simply applying Taylor methods
of second order for Brent7 we can easily reduce the computation time of SONIC
by over 60% and the advantage of Ibex over SONIC is reduced considerably. The
timings of SONIC could further be reduced by running a parallel version (which
is not yet possible in Ibex).

⋄

There exist further programs for the reliable solution of nonlinear systems
of equations and optimization problems. However, most of them are not freely
available or the available versions are restricted in functionality and do not fulfill
our requirements (as for variable numbers).

An informative comparison of existing global constrained optimization software
can be found in [NSHV05].



Conclusion

Knowledge is an unending adventure at the edge of uncertainty.

Jacob Bronowski

We conclude our work with an outline of the accomplishments presented in the
last chapters and give suggestions for future research.

Accomplishments

The author has developed general concepts as well as specific modifications of
existing strategies for solving nonlinear systems of equations based on interval
analysis. Most suggested techniques have been implemented for numerical tests
and enhanced the functionality of the verified solver SONIC. However, the strate-
gies are not bound to this implementation, but can also provide improvements for
other nonlinear solvers. Our contributions mainly comprise the following concepts
and achievements.

The available set of subdivision strategies has been augmented. For example,
subdivision with a shifted subdivision point has been implemented and evaluated
by a numerical study. Further, the handling of unbounded variables has been
improved by an appropriate handling of multiple unbounded components, an ad-
justed subdivision and an additional stopping criterion for half-bounded boxes
with large mignitude of at least one component. We further gave some test re-
sults concerning a trisection of intervals.

For applying extended systems, an adaptive strategy has been derived. Com-
pared to the pre-existing box-intern hierarchy, this strategy has shortened the
average computation time over our test sets significantly without evoking any
negative outliers. The new strategy relies on data measured during the compu-
tation of a given nonlinear system of equations and allows the solver to adapt to
individual problems as well as the underlying soft- and hardware structure. We
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have shown that the modus operandi and the standard parameters of the strategy
are sensibly chosen.

Considerable efforts were made to reduce the computation time spent on each
single extended system. Two influential time factors in the application of extended
systems are the considered variables and the computation time needed for optimal
preconditioners. Thus the author scrutinized how to choose the considered vari-
ables and how to save computation time in the calculation of preconditioners. We
further provided an implementation to choose the variables based on structural
properties of the constraint system and revealed first test results.

Two verification tests have been implemented anew to make them usable in
SONIC. The degree test has been inserted into SONIC for the first time. In addi-
tion, different variations of the available verification tests have been implemented
and assessed.

For subdivision in the verification methods more sophisticated strategies have
been harnessed. The author has further formulated a general verification scheme
combining the available verification tests with stepwise epsilon-inflation. This
scheme can even handle non-square systems. To verify them, the verification tests
are invoked for a square subsystem. Subsequently, the information about existence
and uniqueness of solutions is adjusted automatically to fit the originally given
non-square system. For underdetermined systems, several options for fixing vari-
ables were provided and studied with respect to their mathematical statements.

An algorithm for finding and handling intersecting boxes that contain unique
solutions has been proposed and implemented. In addition, the computation and
verification of solutions can now be executed independently. Thus, if needed,
solution boxes can be verified with the help of different verification methods or
combinations of verification methods.

Concerning the general implementation of SONIC, the author has removed
some bugs and enhanced the functionality, e.g., by a corrected power function.
Further the program has been made more user-friendly, e.g., by appropriate out-
puts to support the user with the correct mathematical interpretation of the re-
sults.

We have set default values for all studied parameters. Those have been deter-
mined to ensure a good performance of SONIC for various problem types. The
most influential parameters have been incorporated into the Controls-File for mod-
ification by the user. Thus the solver can easily be customized to special problems
or problem classes.
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Perspectives

In addition to earlier remarks concerning possible improvements in the correspond-
ing sections of this work, the most promising directions for further development
should be summarized at this point. The following suggestions comprise ideas to
enhance the theory of the reliable solution of nonlinear systems of equations as
well as pointers on how to augment the implementation of SONIC.

First of all, further methods for the calculation of function enclosures could
provide sharper or faster evaluations of the true function range. This is a com-
mon goal in interval analysis and would contribute to an overall reduction of the
computation time of the solver. The savings could be achieved by reducing the
number of boxes needed in the branch-and-bound by sharper function enclosure
or directly by reducing the time needed to analyze a single box.

Candidates for function enclosures of inverse functions are inverse Taylor mod-
els as presented in [Hoe01] [BH01] [HB02]. Although these are very costly, an
implementation of inverse Taylor models is envisaged, associated with a study
whether our solver can benefit from their utilization.

An ansatz related to the concept of extended systems lies in the design of
customized extended systems with respect to the structural properties of a given
problem or problem class. However, designing those systems is complicated due
to the influence of preconditioning and linearizations in the contractors. Which
variables should be considered on extended systems is another question worth
further investigation—especially with respect to the usage of time-consuming op-
timal preconditioners. It may also be possible to achieve better results just by
improving the algorithm for finding common subterms in the construction of the
CST system.

Width-optimal preconditioner can be made even more appealing by reducing
the computational costs for their computation—especially if the preconditioners
have to be computed as many times as when applying extended systems. It might
be possible to save computation time if one could “guess” an optimal or nearly
optimal preconditioner. According to the authors opinion, this could work par-
ticularly well for extended systems with their simple constraints. Furthermore,
computation time could be improved by utilizing the special structure of the opti-
mization problem for the optimal preconditioner, sparse data structures or faster
routines for vector and matrix operations. One option to achieve this goal is to
feed the optimization problem to an appropriate external solver. Another ap-
proach could be the adjustment of a given algorithm to the given optimization
problem. A third promising approach to reduce the computation time for precon-
ditioning is to re-utilize preconditioner rows, as proposed in this work.

Up to now the optimization part of SONIC is rather a byproduct of the non-
linear solver. However, Beelitz showed that it works fairly well [Bee06]. Since the
author has only changed details in the internal processing of optimization prob-
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lems, there is a wide field for further improvements of the optimization part of
SONIC. For example, the appropriate utilization of the subdivision strategies of
the nonlinear solver could already provide considerable benefits for the optimizer.
We could further think of specialized strategies as subdividing boxes near to points
in which the monotonicity or curvature of a function changes.

To promote the common usage of SONIC, a web interface is in process of plan-
ning. Furthermore, the graphical output of the solution boxes and an appropriate
representation of the calculation steps in the branch-and-bound algorithm are in-
tended. Evaluated in combination with the yet available statistics and an analysis
of the counters for the invocations and success of the implemented techniques,
these graphical auxiliaries may provide further helpful insights for both, users and
researchers.
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List of symbols

∃ existential quantifier (“exists”)
P power set
N set of the natural numbers, N = {1, 2, 3, . . .}
m,n if not stated otherwise m,n ∈ N

(usually used for a function with m constraints and n variables)

R set of the real numbers
R+ set of the positive real numbers R+ = {r ∈ R | r > 0}
R≥0 set of the nonnegative real numbers R≥0 = {r ∈ R | r ≥ 0}
Rn set of all vectors of real numbers with length n
Rm×n set of all m× n matrices with elements from R
∗R set of the extended real numbers ∗R = R ∪ {−∞,+∞}
IR set of all non-empty, bounded intervals in R

IRn set of all vectors of length n with elements from IR

IRm×n set of all m× n matrices with elements from IR
∗IR set of all non-empty intervals in ∗R
∗IRn set of all vectors of length n with elements from ∗IR
∗IRm×n set of all m× n matrices with elements from ∗IR

⌊x⌋ largest natural number not greater than x ∈ R

x = (x1, . . . , xn)T a vector of length n
A = (ai,j)i=1,...,m

j=1,...,n
an m× n matrix

detA determinant of a square matrix A

U, V ∈ P(∗R) arbitrary sets in the extended real numbers
inf(U) infimum of set U
sup(U) supremum of set U
U ∪ V union of sets U and V
U ∩ V intersection of sets U and V
U \ V relative complement of V with respect to set U
U ⊆ V U is a subset of V
U ⊂ V or U ( V U is a proper subset of V
�(U) the box operator � yields the smallest interval enclosing an arbitrary

set of real numbers U ∈ P(∗R), also interpreted componentwise for the
smallest box comprising a set of vectors
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cl(U) closure of set U

x = [x, x] interval or box (vector of intervals)
x = [x] = [x, x] point interval or vector of point intervals
inf(x) = x lower bound / infimum of x
sup(x) = x upper bound / supremum of x
xi ith component of a vector x of intervals
x̃ an inner point of x
mid (x) midpoint of x (defined componentwise for vectors)
width (x) width (or diameter) of x (always nonnegative)
rad (x) radius of x
mag(x) = |x| magnitude of x
mig(x) mignitude of x
int (x) interior of x
vol(x) volume of a box x

RelVol(x) relative volume of a box x

ThVol(x) thresholded volume of a box x

⊘ relational division
∂x topological boundary of x
xi,+, xi,− facets of x in direction i

xi,+,k, xi,−,k subfacets of x in direction i

fi ith component of a function
Df Jacobian matrix of a differentiable function f
D2f Hessian matrix of a differentiable function f
f or [f ] interval-valued function, mostly function enclosure for some function f
||·||∞ maximum norm
sign sign function
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Test problems

We conducted our tests with three different sets of test problems: test set TA, test set TB and
test set TV . Herein test set TA is contained in test set TB . The problems have been chosen to
represent a wide range of nonlinear problems and to cover a diversified spectrum of computation
time. Each problem has a computation time of more than 10 seconds (in the initial version of
SONIC). Test set TV also is subset of test set TB and is used for tests concerning verification
methods.

Many problems can be found in the collection on the Coprin homepage [COP]. The chemistry
systems are derived from modeling different singularities in process design, cf. [MMB+07]. Since
these problems contain sensitive data, we only display approximate values for these problems.

The min-t-N systems represent N-point spherical t-designs [HS96,SW09] formulated in polar
coordinates. An N-point spherical t-design is a set of N points z1, . . . , zN on the unit sphere
Sd = {x = (x1, . . . , xd) ∈ Rd | ‖x‖2 = 1} in d dimensions. For all polynomials p(x1, . . . , xd) with
degree up to t a spherical t-design fulfills the property

1

|Sd|

∫

Sd

p(x)dµ =
1

N

N∑

i=1

p(zi)

where µ denotes the unit measure and |Sd| is the surface measure of the sphere. Thus spherical
t-designs provide quadrature rules that are exact for polynomials up to t-th degree over the
sphere.

All min-t-N problems can be reformulated as nonlinear systems of equations and feed to
SONIC. The details on the reformulation can be found in [BLUW09]. The same paper gives in-
formation about two computational proofs, based on SONIC, stating that there exists no spherical
t-design for d = 3, t = 3 and N = 7 or N = 9. With the help of these computational proofs, all
designs for t = 3 are found or an existence is ruled out.

Test set TA

Our test set TA comprises five problems, Brent7, Eco9, Trigonometric, 7erSystem and min-04-07.
In the following, we list the startbox, precision vector ψ and the constraints for each test problem.
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Brent7 The formulation of BrentN for general N can be found in [COP], we only consider
N = 7.

xi = [−108, 108], ψi = [10−8] for i = 1, . . . , 7

f1(x) = 3 · x1 · (x2 − 2 · x1) + x2
2/4

fi(x) = 3 · xi · (xi+1 − 2 · xi + xi−1) + (xi+1 − xi−1)2/4

for i ∈ i = 2, . . . , 6 and

f7(x) = 3 · x7 · (20 − 2 · x7 + x6) + (20 − x6)2/4

Eco9 [COP] [Bee06]

xi = [−100, 100], ψi = [10−6] for i = 1, . . . , 8

f1(x) = x1 + x2 · (x1 + x3) + x4 · (x3 + x5) + x6 · (x5 + x7) −
(
x8 ·

(
1

8
− x7

))

f2(x) = x2 + x3 · (x1 + x5) + x4 · (x2 + x6) + x5 · x7 −
(
x8 ·

(
2

8
− x6

))

f3(x) = x3 · (1 + x6) + x4 · (x1 + x7) + x2 · x5 −
(
x8 ·

(
3

8
− x5

))

f4(x) = x4 + x1 · x5 + x2 · x6 + x3 · x7 −
(
x8 ·

(
4

8
− x4

))

f5(x) = x5 + x1 · x6 + x2 · x7 −
(
x8 ·

(
5

8
− x3

))

f6(x) = x6 + x1 · x7 −
(
x8 ·

(
6

8
− x2

))

f7(x) = x7 −
(
x8 ·

(
7

8
− x1

))

f8(x) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1

Trigonometric [COP] n = 10

xi = [0, 2π − 0.001], ψi = [10−6] for i = 1, . . . , 10

fi(x) = 5 − (l+ 1)(1 + cos(xi))− sin(xi)−
5l+5∑

j=5l+1

cos(xj) with l = ⌊(i− 1)/5⌋ for i = 1, . . . , 10

7erSystem [Bee06]

xi = [−2, 2], ψi = [10−6] for i = 1, . . . , 7

f1(x) = x1 + x2 + x3 − 1
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f2(x) = − 0.6675958407

+ 0.2055525566 · x1 + 0.6625749516 · 10−1 · x2 + 0.2135733917 · 10−1 · x3

− 0.3294350663 · x4 − 0.2878424112 · x5

− 0.2515010154 · x6 − 0.2197478839 · x7

+ 0.2003078577 · 10−2 · x1 · x2 + 0.6456692700 · 10−3 · x1 · x3

+ 0.2081240402 · 10−3 · x2 · x3 + 0.2099295270 · 10−1 · x1 · x4

+ 0.6766836107 · 10−2 · x2 · x4 + 0.2181211551 · 10−2 · x3 · x4

+ 0.1834249824 · 10−1 · x1 · x5 + 0.5912492690 · 10−2 · x2 · x5

+ 0.1905823807 · 10−2 · x3 · x5 + 0.5954522808 · 10−1 · x4 · x5

+ 0.1602667555 · 10−1 · x1 · x6 + 0.5166013963 · 10−2 · x2 · x6

+ 0.1665205002 · 10−2 · x3 · x6 + 0.5202737589 · 10−1 · x4 · x6

+ 0.4545868627 · 10−1 · x5 · x6 + 0.1400323585 · 10−1 · x1 · x7

+ 0.4513781523 · 10−2 · x2 · x7 + 0.1454965400 · 10−2 · x3 · x7

+ 0.4545868627 · 10−1 · x4 · x7 + 0.3971932318 · 10−1 · x5 · x7

+ 0.3470458044 · 10−1 · x6 · x7

+ 0.3107104497 · 10−2 · x2
1 + 0.3228346350 · 10−3 · x2

2

+ 0.3354319164 · 10−4 · x2
3 + 0.3407469747 · 10−1 · x2

4

+ 0.2601368795 · 10−1 · x2
5 + 0.1985966159 · 10−1 · x2

6

+ 0.1516148573 · 10−1 · x2
7

f3(x) = − 0.5828529757

+ 0.1228340113 · x1 + 0.2805508994 · 10−1 · x2 + 0.6407737265 · 10−2 · x3

− 0.3414023228 · x4 − 0.2406648259 · x5

− 0.1696519167 · x6 − 0.1195927686 · x7

+ 0.1073433627 · 10−2 · x1 · x2 + 0.2451705080 · 10−3 · x1 · x3

+ 0.5599654833 · 10−4 · x2 · x3 + 0.1806580429 · 10−1 · x1 · x4

+ 0.4126200541 · 10−2 · x2 · x4 + 0.9424175444 · 10−3 · x3 · x4

+ 0.1273513199 · 10−1 · x1 · x5 + 0.2908683592 · 10−2 · x2 · x5

+ 0.6643386384 · 10−3 · x3 · x5 + 0.4705176468 · 10−1 · x4 · x5

+ 0.8977379819 · 10−2 · x1 · x6 + 0.2050419062 · 10−2 · x2 · x6

+ 0.4683124045 · 10−3 · x3 · x6 + 0.3316821239 · 10−1 · x4 · x6

+ 0.2338127636 · 10−1 · x5 · x6 + 0.6328426630 · 10−2 · x1 · x7

+ 0.1445402428 · 10−2 · x2 · x7 + 0.3301275819 · 10−3 · x3 · x7

+ 0.2338127636 · 10−1 · x4 · x7 + 0.1648216907 · 10−1 · x5 · x7

+ 0.1161877962 · 10−1 · x6 · x7

+ 0.2349915088 · 10−2 · x2
1 + 0.1225852540 · 10−3 · x2

2

+ 0.6394760633 · 10−5 · x2
3 + 0.3337334754 · 10−1 · x2

4

+ 0.1658410619 · 10−1 · x2
5 + 0.8241084535 · 10−2 · x2

6

+ 0.4095214628 · 10−2 · x2
7
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f4(x) = − 0.5196091865

+ 0.7952023194 · 10−1 · x1 + 0.1369550717 · 10−1 · x2 + 0.2358732012 · 10−2 · x3

− 0.3231249836 · x4 − 0.1842648187 · x5

− 0.1050786078 · x6 − 0.5992198558 · 10−1 · x7

+ 0.5914814012 · 10−3 · x1 · x2 + 0.1018688901 · 10−3 · x1 · x3

+ 0.1754454283 · 10−4 · x2 · x3 + 0.1415543336 · 10−1 · x1 · x4

+ 0.2437943581 · 10−2 · x2 · x4 + 0.4198789790 · 10−3 · x3 · x4

+ 0.8072258394 · 10−2 · x1 · x5 + 0.1390258429 · 10−2 · x2 · x5

+ 0.2394396220 · 10−3 · x3 · x5 + 0.3198484963 · 10−1 · x4 · x5

+ 0.4603275220 · 10−2 · x1 · x6 + 0.7928069027 · 10−3 · x2 · x6

+ 0.1365425170 · 10−3 · x3 · x6 + 0.1823963734 · 10−1 · x4 · x6

+ 0.1040131107 · 10−1 · x5 · x6 + 0.2625057537 · 10−2 · x1 · x7

+ 0.4521049982 · 10−3 · x2 · x7 + 0.7786455212 · 10−4 · x3 · x7

+ 0.1040131107 · 10−1 · x4 · x7 + 0.5931437666 · 10−2 · x5 · x7

+ 0.3382453669 · 10−2 · x6 · x7

+ 0.1717159416 · 10−2 · x2
1 + 0.5093444506 · 10−4 · x2

2

+ 0.1510819362 · 10−5 · x2
3 + 0.2804415971 · 10−1 · x2

4

+ 0.9119818669 · 10−2 · x2
5 + 0.2965718833 · 10−2 · x2

6

+ 0.9644367408 · 10−3 · x2
7

f5(x) = − 0.9708221316

+ 0.8863865849 · x1 + 0.8095263737 · x2 + 0.7393308528 · x3

− 0.9374687356 · 10−2 · x4 − 0.2969634573 · 10−2 · x5

− 0.9406958507 · 10−3 · x6 − 0.2979857157 · 10−3 · x7

+ 0.4233432703 · 10−3 · x1 · x2 + 0.3866343967 · 10−3 · x1 · x3

+ 0.3531086170 · 10−3 · x2 · x3 + 0.2009129356 · 10−3 · x1 · x4

+ 0.1834914054 · 10−3 · x2 · x4 + 0.1675805281 · 10−3 · x3 · x4

+ 0.6364350907 · 10−4 · x1 · x5 + 0.5812486333 · 10−4 · x2 · x5

+ 0.5308474951 · 10−4 · x3 · x5 + 0.2648440225 · 10−4 · x4 · x5

+ 0.2016045525 · 10−4 · x1 · x6 + 0.1841230509 · 10−4 · x2 · x6

+ 0.1681574025 · 10−4 · x3 · x6 + 0.8389506080 · 10−5 · x4 · x6

+ 0.2657557139 · 10−5 · x5 · x6 + 0.6386259364 · 10−5 · x1 · x7

+ 0.5832495068 · 10−5 · x2 · x7 + 0.5326748692 · 10−5 · x3 · x7

+ 0.2657557139 · 10−5 · x4 · x7 + 0.8418385875 · 10−6 · x5 · x7

+ 0.2666705437 · 10−6 · x6 · x7

+ 0.2317687279 · 10−3 · x2
1 + 0.1933171983 · 10−3 · x2

2

+ 0.1612449597 · 10−3 · x2
3 + 0.4180362680 · 10−4 · x2

4

+ 0.4194753040 · 10−5 · x2
5 + 0.4209192938 · 10−6 · x2

6

+ 0.4223682540 · 10−7 · x2
7
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f6(x) = − 0.9802721137

+ 0.9219460300 · x1 + 0.8672034774 · x2 + 0.8157113830 · x3

− 0.4450172272 · 10−2 · x4 − 0.9941956844 · 10−3 · x5

− 0.2221093924 · 10−3 · x6 − 0.4962059574 · 10−4 · x7

+ 0.2128632096 · 10−3 · x1 · x2 + 0.2002239931 · 10−3 · x1 · x3

+ 0.1883352576 · 10−3 · x2 · x3 + 0.6717220595 · 10−4 · x1 · x4

+ 0.6318370998 · 10−4 · x2 · x4 + 0.5943203966 · 10−4 · x3 · x4

+ 0.1500668136 · 10−4 · x1 · x5 + 0.1411562698 · 10−4 · x2 · x5

+ 0.1327748090 · 10−4 · x3 · x5 + 0.4276502662 · 10−5 · x4 · x5

+ 0.3352584336 · 10−5 · x1 · x6 + 0.3153517342 · 10−5 · x2 · x6

+ 0.2966270385 · 10−5 · x3 · x6 + 0.9553968318 · 10−6 · x4 · x6

+ 0.2134414915 · 10−6 · x5 · x6 + 0.7489878308 · 10−6 · x1 · x7

+ 0.7045150477 · 10−6 · x2 · x7 + 0.6626829330 · 10−6 · x3 · x7

+ 0.2134414915 · 10−6 · x4 · x7 + 0.4768413372 · 10−7 · x5 · x7

+ 0.1065292692 · 10−7 · x6 · x7

+ 0.1131501407 · 10−3 · x2
1 + 0.1001119965 · 10−3 · x2

2

+ 0.8857622082 · 10−4 · x2
3 + 0.9571140702 · 10−5 · x2

4

+ 0.4776984159 · 10−6 · x2
5 + 0.2384206686 · 10−7 · x2

6

+ 0.1189964491 · 10−8 · x2
7

f7(x) = − 0.7736815316

+ 0.3617367006 · x1 + 0.1724108153 · x2 + 0.8217438040 · 10−1 · x3

− 0.2477761981 · x4 − 0.2472344192 · x5 − 0.2466938251 · x6

− 0.2461544129 · x7

+ 0.3187193360 · 10−2 · x1 · x2 + 0.1519078946 · 10−2 · x1 · x3

+ 0.7240228578 · 10−3 · x2 · x3 + 0.1746280745 · 10−1 · x1 · x4

+ 0.8323116969 · 10−2 · x2 · x4 + 0.3966960997 · 10−2 · x3 · x4

+ 0.1742462389 · 10−1 · x1 · x5 + 0.8304917930 · 10−2 · x2 · x5

+ 0.3958286979 · 10−2 · x3 · x5 + 0.4371338635 · 10−1 · x4 · x5

+ 0.1738652381 · 10−1 · x1 · x6 + 0.8286758688 · 10−2 · x2 · x6

+ 0.3949631927 · 10−2 · x3 · x6 + 0.4361780417 · 10−1 · x4 · x6

+ 0.4352243100 · 10−1 · x5 · x6 + 0.1734850704 · 10−1 · x1 · x7

+ 0.8268639147 · 10−2 · x2 · x7 + 0.3940995796 · 10−2 · x3 · x7

+ 0.4352243100 · 10−1 · x4 · x7 + 0.4342726636 · 10−1 · x5 · x7

+ 0.4333230981 · 10−1 · x6 · x7

+ 0.3343539697 · 10−2 · x2
1 + 0.7595394732 · 10−3 · x2

2

+ 0.1725417563 · 10−3 · x2
3 + 0.2190458898 · 10−1 · x2

4

+ 0.2180890209 · 10−1 · x2
5 + 0.2171363318 · 10−1 · x2

6

+ 0.2161878045 · 10−1 · x2
7
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min-04-07 [BLUW09]

ϕ3 = [0, π], ψϕ3 = [10−8]

ϕi = [0, 2π], ψϕi
= [10−8] for i = 4, . . . , 7

θi = [0, π], ψθi = [10−8] for i = 2, . . . , 7

f1(x) = sin(θ2)

+ (sin(θ3) · cos(ϕ3)) + (sin(θ4) · cos(ϕ4)) + (sin(θ5) · cos(ϕ5))

+ (sin(θ6) · cos(ϕ6)) + (sin(θ7) · cos(ϕ7))

f2(x) = (sin(θ3) · sin(ϕ3)) + (sin(θ4) · sin(ϕ4)) + (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · sin(ϕ6)) + (sin(θ7) · sin(ϕ7))

f3(x) = 1 + cos(θ2) + cos(θ3) + cos(θ4) + cos(θ5) + cos(θ6) + cos(θ7)

f4(x) = sin(θ2)2

+ (sin(θ3) · cos(ϕ3))2 + (sin(θ4) · cos(ϕ4))2 + (sin(θ5) · cos(ϕ5))2

+ (sin(θ6) · cos(ϕ6))2 + (sin(θ7) · cos(ϕ7))2 − 7/3

f5(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7))

f6(x) = sin(θ2) · cos(θ2)

+ (sin(θ3) · cos(ϕ3)) · cos(θ3) + (sin(θ4) · cos(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · cos(θ5) + (sin(θ6) · cos(ϕ6)) · cos(θ6)

+ (sin(θ7) · cos(ϕ7)) · cos(θ7)

f7(x) = (sin(θ3) · sin(ϕ3))2 + (sin(θ4) · sin(ϕ4))2 + (sin(θ5) · sin(ϕ5))2

+ (sin(θ6) · sin(ϕ6))2 + (sin(θ7) · sin(ϕ7))2 − 7/3

f8(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3) + (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · sin(ϕ5)) · cos(θ5) + (sin(θ6) · sin(ϕ6)) · cos(θ6)

+ (sin(θ7) · sin(ϕ7)) · cos(θ7)

f9(x) = 12 + cos(θ2)2 + cos(θ3)2 + cos(θ4)2

+ cos(θ5)2 + cos(θ6)2 + cos(θ7)2 − 7/3

f10(x) = sin(θ2)3 + (sin(θ3) · cos(ϕ3))3 + (sin(θ4) · cos(ϕ4))3

+ (sin(θ5) · cos(ϕ5))3 + (sin(θ6) · cos(ϕ6))3 + (sin(θ7) · cos(ϕ7))3
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f11(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6))

+ (sin(θ7) · cos(ϕ7))2 · (sin(θ7) · sin(ϕ7))

f12(x) = sin(θ2)2 · cos(θ2) + (sin(θ3) · cos(ϕ3))2 · cos(θ3)

+ (sin(θ4) · cos(ϕ4))2 · cos(θ4) + (sin(θ5) · cos(ϕ5))2 · cos(θ5)

+ (sin(θ6) · cos(ϕ6))2 · cos(θ6) + (sin(θ7) · cos(ϕ7))2 · cos(θ7)

f13(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))2

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))2

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))2

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))2

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7))2

f14(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3)) · cos(θ3)

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5)) · cos(θ5)

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6)) · cos(θ6)

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7)) · cos(θ7)

f15(x) = sin(θ2) · cos(θ2)2 + (sin(θ3) · cos(ϕ3)) · cos(θ3)2

+ (sin(θ4) · cos(ϕ4)) · cos(θ4)2 + (sin(θ5) · cos(ϕ5)) · cos(θ5)2

+ (sin(θ6) · cos(ϕ6)) · cos(θ6)2 + (sin(θ7) · cos(ϕ7)) · cos(θ7)2

f16(x) = (sin(θ3) · sin(ϕ3))3 + (sin(θ4) · sin(ϕ4))3 + (sin(θ5) · sin(ϕ5))3

+ (sin(θ6) · sin(ϕ6))3 + (sin(θ7) · sin(ϕ7))3

f17(x) = cos(θ2)

+ (sin(θ3) · sin(ϕ3))2 · cos(θ3) + (sin(θ4) · sin(ϕ4))2 · cos(θ4)

+ (sin(θ5) · sin(ϕ5))2 · cos(θ5) + (sin(θ6) · sin(ϕ6))2 · cos(θ6)

+ (sin(θ7) · sin(ϕ7))2 · cos(θ7)

f18(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3)2 + (sin(θ4) · sin(ϕ4)) · cos(θ4)2

+ (sin(θ5) · sin(ϕ5)) · cos(θ5)2 + (sin(θ6) · sin(ϕ6)) · cos(θ6)2

+ (sin(θ7) · sin(ϕ7)) · cos(θ7)2

f19(x) = 13 + cos(θ2)3 + cos(θ3)3 + cos(θ4)3 + cos(θ5)3 + cos(θ6)3 + cos(θ7)3
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f20(x) = sin(θ2)4

+ (sin(θ3) · cos(ϕ3))4 + (sin(θ4) · cos(ϕ4))4 + (sin(θ5) · cos(ϕ5))4

+ (sin(θ6) · cos(ϕ6))4 + (sin(θ7) · cos(ϕ7))4 − 7/5

f21(x) = (sin(θ3) · cos(ϕ3))3 · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4))3 · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5))3 · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6))3 · (sin(θ6) · sin(ϕ6))

+ (sin(θ7) · cos(ϕ7))3 · (sin(θ7) · sin(ϕ7))

f22(x) = sin(θ2)3 · cos(θ2)

+ (sin(θ3) · cos(ϕ3))3 · cos(θ3) + (sin(θ4) · cos(ϕ4))3 · cos(θ4)

+ (sin(θ5) · cos(ϕ5))3 · cos(θ5) + (sin(θ6) · cos(ϕ6))3 · cos(θ6)

+ (sin(θ7) · cos(ϕ7))3 · cos(θ7)

f23(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3))2

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4))2

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5))2

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6))2

+ (sin(θ7) · cos(ϕ7))2 · (sin(θ7) · sin(ϕ7))2 − 7/15

f24(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3)) · cos(θ3)

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5)) · cos(θ5)

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6)) · cos(θ6)

+ (sin(θ7) · cos(ϕ7))2 · (sin(θ7) · sin(ϕ7)) · cos(θ7)

f25(x) = sin(θ2)2 · cos(θ2)2

+ (sin(θ3) · cos(ϕ3))2 · cos(θ3)2 + (sin(θ4) · cos(ϕ4))2 · cos(θ4)2

+ (sin(θ5) · cos(ϕ5))2 · cos(θ5)2 + (sin(θ6) · cos(ϕ6))2 · cos(θ6)2

+ (sin(θ7) · cos(ϕ7))2 · cos(θ7)2 − 7/15

f26(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))3

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))3

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))3

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))3

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7))3



193

f27(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))2 · cos(θ3)

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))2 · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))2 · cos(θ5)

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))2 · cos(θ6)

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7))2 · cos(θ7)

f28(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3)) · cos(θ3)2

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4)) · cos(θ4)2

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5)) · cos(θ5)2

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6)) · cos(θ6)2

+ (sin(θ7) · cos(ϕ7)) · (sin(θ7) · sin(ϕ7)) · cos(θ7)2

f29(x) = sin(θ2) · cos(θ2)3 + (sin(θ3) · cos(ϕ3)) · cos(θ3)3

+ (sin(θ4) · cos(ϕ4)) · cos(θ4)3 + (sin(θ5) · cos(ϕ5)) · cos(θ5)3

+ (sin(θ6) · cos(ϕ6)) · cos(θ6)3 + (sin(θ7) · cos(ϕ7)) · cos(θ7)3

f30(x) = (sin(θ3) · sin(ϕ3))4 + (sin(θ4) · sin(ϕ4))4 + (sin(θ5) · sin(ϕ5))4

+ (sin(θ6) · sin(ϕ6))4 + (sin(θ7) · sin(ϕ7))4 − 7/5

f31(x) = (sin(θ3) · sin(ϕ3))3 · cos(θ3) + (sin(θ4) · sin(ϕ4))3 · cos(θ4)

+ (sin(θ5) · sin(ϕ5))3 · cos(θ5) + (sin(θ6) · sin(ϕ6))3 · cos(θ6)

+ (sin(θ7) · sin(ϕ7))3 · cos(θ7)

f32(x) = (sin(θ3) · sin(ϕ3))2 · cos(θ3)2 + (sin(θ4) · sin(ϕ4))2 · cos(θ4)2

+ (sin(θ5) · sin(ϕ5))2 · cos(θ5)2 + (sin(θ6) · sin(ϕ6))2 · cos(θ6)2

+ (sin(θ7) · sin(ϕ7))2 · cos(θ7)2 − 7/15

f32(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3)3 + (sin(θ4) · sin(ϕ4)) · cos(θ4)3

+ (sin(θ5) · sin(ϕ5)) · cos(θ5)3 + (sin(θ6) · sin(ϕ6)) · cos(θ6)3

+ (sin(θ7) · sin(ϕ7)) · cos(θ7)3

f33(x) = 1 + cos(θ2)4 + cos(θ3)4 + cos(θ4)4 + cos(θ5)4

+ cos(θ6)4 + cos(θ7)4 − 7/5

ϕ4 ≥ ϕ3 ϕ5 ≥ ϕ3 ϕ5 ≥ ϕ4

ϕ6 ≥ ϕ3 ϕ6 ≥ ϕ4 ϕ6 ≥ ϕ5

ϕ7 ≥ ϕ3 ϕ7 ≥ ϕ4 ϕ7 ≥ ϕ5

ϕ7 ≥ ϕ6
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Test set TB

Test set TB comprises 14 test problems, including all problems from test set TA. The other nine
are given as follows.

min-04-06 [BLUW09]

ϕ3 = [0, π], ψϕ3 = [10−8]

ϕi = [0, 2π], ψϕi
= [10−8] for i = 4, . . . , 6

θi = [0, π], ψθi = [10−8] for i = 2, . . . , 6

f1(x) = sin(θ2)

+ (sin(θ3) · cos(ϕ3)) + (sin(θ4) · cos(ϕ4))

+ (sin(θ5) · cos(ϕ5)) + (sin(θ6) · cos(ϕ6))

f2(x) = (sin(θ3) · sin(ϕ3)) + (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · sin(ϕ5)) + (sin(θ6) · sin(ϕ6))

f3(x) = 1 + cos(θ2) + cos(θ3) + cos(θ4) + cos(θ5) + cos(θ6)

f4(x) = sin(θ2)2

+ (sin(θ3) · cos(ϕ3))2 + (sin(θ4) · cos(ϕ4))2

+ (sin(θ5) · cos(ϕ5))2 + (sin(θ6) · cos(ϕ6))2 − 2

f5(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))

f6(x) = sin(θ2) · cos(θ2)

+ (sin(θ3) · cos(ϕ3)) · cos(θ3) + (sin(θ4) · cos(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · cos(θ5) + (sin(θ6) · cos(ϕ6)) · cos(θ6)

f7(x) = (sin(θ3) · sin(ϕ3))2 + (sin(θ4) · sin(ϕ4))2

+ (sin(θ5) · sin(ϕ5))2 + (sin(θ6) · sin(ϕ6))2 − 2

f8(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3) + (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · sin(ϕ5)) · cos(θ5) + (sin(θ6) · sin(ϕ6)) · cos(θ6)

f9(x) = 1 + cos(θ2)2 + cos(θ3)2 + cos(θ4)2 + cos(θ5)2 + cos(θ6)2 − 2
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f10(x) = sin(θ2)3 + (sin(θ3) · cos(ϕ3))3 + (sin(θ4) · cos(ϕ4))3

+ (sin(θ5) · cos(ϕ5))3 + (sin(θ6) · cos(ϕ6))3

f11(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6))

f12(x) = sin(θ2)2 · cos(θ2)

+ (sin(θ3) · cos(ϕ3))2 · cos(θ3) + (sin(θ4) · cos(ϕ4))2 · cos(θ4)

+ (sin(θ5) · cos(ϕ5))2 · cos(θ5) + (sin(θ6) · cos(ϕ6))2 · cos(θ6)

f13(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))2

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))2

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))2

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))2

f14(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3)) · cos(θ3)

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5)) · cos(θ5)

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6)) · cos(θ6)

f15(x) = sin(θ2) · cos(θ2)2

+ (sin(θ3) · cos(ϕ3)) · cos(θ3)2 + (sin(θ4) · cos(ϕ4)) · cos(θ4)2

+ (sin(θ5) · cos(ϕ5)) · cos(θ5)2 + (sin(θ6) · cos(ϕ6)) · cos(θ6)2

f16(x) = (sin(θ3) · sin(ϕ3))3 + (sin(θ4) · sin(ϕ4))3

+ (sin(θ5) · sin(ϕ5))3 + (sin(θ6) · sin(ϕ6))3

f17(x) = (sin(θ3) · sin(ϕ3))2 · cos(θ3) + (sin(θ4) · sin(ϕ4))2 · cos(θ4)

+ (sin(θ5) · sin(ϕ5))2 · cos(θ5) + (sin(θ6) · sin(ϕ6))2 · cos(θ6)

f18(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3)2

+ (sin(θ4) · sin(ϕ4)) · cos(θ4)2

+ (sin(θ5) · sin(ϕ5)) · cos(θ5)2

+ (sin(θ6) · sin(ϕ6)) · cos(θ6)2

f19(x) = 13 + cos(θ2)3 + cos(θ3)3 + cos(θ4)3 + cos(θ5)3 + cos(θ6)3
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f20(x) = sin(θ2)4

+ (sin(θ3) · cos(ϕ3))4 + (sin(θ4) · cos(ϕ4))4

+ (sin(θ5) · cos(ϕ5))4 + (sin(θ6) · cos(ϕ6))4 − 6/5

f21(x) = (sin(θ3) · cos(ϕ3))3 · (sin(θ3) · sin(ϕ3))

+ (sin(θ4) · cos(ϕ4))3 · (sin(θ4) · sin(ϕ4))

+ (sin(θ5) · cos(ϕ5))3 · (sin(θ5) · sin(ϕ5))

+ (sin(θ6) · cos(ϕ6))3 · (sin(θ6) · sin(ϕ6))

f22(x) = sin(θ2)3 · cos(θ2)

+ (sin(θ3) · cos(ϕ3))3 · cos(θ3) + (sin(θ4) · cos(ϕ4))3 · cos(θ4)

+ (sin(θ5) · cos(ϕ5))3 · cos(θ5) + (sin(θ6) · cos(ϕ6))3 · cos(θ6)

f23(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3))2

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4))2

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5))2

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6))2 − 2/5

f24(x) = (sin(θ3) · cos(ϕ3))2 · (sin(θ3) · sin(ϕ3)) · cos(θ3)

+ (sin(θ4) · cos(ϕ4))2 · (sin(θ4) · sin(ϕ4)) · cos(θ4)

+ (sin(θ5) · cos(ϕ5))2 · (sin(θ5) · sin(ϕ5)) · cos(θ5)

+ (sin(θ6) · cos(ϕ6))2 · (sin(θ6) · sin(ϕ6)) · cos(θ6)

f25(x) = sin(θ2)2 · cos(θ2)2

+ (sin(θ3) · cos(ϕ3))2 · cos(θ3)2 + (sin(θ4) · cos(ϕ4))2 · cos(θ4)2

+ (sin(θ5) · cos(ϕ5))2 · cos(θ5)2 + (sin(θ6) · cos(ϕ6))2 · cos(θ6)2 − 2/5

f26(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))3

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))3

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))3

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))3

f27(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3))2 · cos(θ3)

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4))2 · cos(θ4)

+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5))2 · cos(θ5)

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6))2 · cos(θ6)

f28(x) = (sin(θ3) · cos(ϕ3)) · (sin(θ3) · sin(ϕ3)) · cos(θ3)2

+ (sin(θ4) · cos(ϕ4)) · (sin(θ4) · sin(ϕ4)) · cos(θ4)2
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+ (sin(θ5) · cos(ϕ5)) · (sin(θ5) · sin(ϕ5)) · cos(θ5)2

+ (sin(θ6) · cos(ϕ6)) · (sin(θ6) · sin(ϕ6)) · cos(θ6)2

f29(x) = sin(θ2) · cos(θ2)3

+ (sin(θ3) · cos(ϕ3)) · cos(θ3)3 + (sin(θ4) · cos(ϕ4)) · cos(θ4)3

+ (sin(θ5) · cos(ϕ5)) · cos(θ5)3 + (sin(θ6) · cos(ϕ6)) · cos(θ6)3

f30(x) = (sin(θ3) · sin(ϕ3))4 + (sin(θ4) · sin(ϕ4))4

+ (sin(θ5) · sin(ϕ5))4 + (sin(θ6) · sin(ϕ6))4 − 6/5

f31(x) = (sin(θ3) · sin(ϕ3))3 · cos(θ3) + (sin(θ4) · sin(ϕ4))3 · cos(θ4)

+ (sin(θ5) · sin(ϕ5))3 · cos(θ5) + (sin(θ6) · sin(ϕ6))3 · cos(θ6)

f32(x) = (sin(θ3) · sin(ϕ3))2 · cos(θ3)2 + (sin(θ4) · sin(ϕ4))2 · cos(θ4)2

+ (sin(θ5) · sin(ϕ5))2 · cos(θ5)2 + (sin(θ6) · sin(ϕ6))2 · cos(θ6)2 − 2/5

f32(x) = (sin(θ3) · sin(ϕ3)) · cos(θ3)3 + (sin(θ4) · sin(ϕ4)) · cos(θ4)3

+ (sin(θ5) · sin(ϕ5)) · cos(θ5)3 + (sin(θ6) · sin(ϕ6)) · cos(θ6)3

f33(x) = 1 + cos(θ2)4 + cos(θ3)4 + cos(θ4)4 + cos(θ5)4 + cos(θ6)4 − 6/5

ϕ4 ≥ ϕ3 ϕ5 ≥ ϕ3 ϕ5 ≥ ϕ4

ϕ6 ≥ ϕ3 ϕ6 ≥ ϕ4 ϕ6 ≥ ϕ5

G7 gradientsystem Is equal to problem “Griewank” in [Bee06].

xi = [−3, 3], ψi = [10−2] for i = 1, . . . , 7

For shorter notation we introduce x̆i := xi√
i

for i = 1, . . . , 7. (These were not part of the

system as used for calculations.)

f1(x) =
x1

2000
+

1√
1

sin(x̆1) cos(x̆2) cos(x̆3) cos(x̆4) cos(x̆5) cos(x̆6) cos(x̆7)

f2(x) =
x2

2000
+

1√
2

cos(x̆1) sin(x̆2) cos(x̆3) cos(x̆4) cos(x̆5) cos(x̆6) cos(x̆7)

f3(x) =
x3

2000
+

1√
3

cos(x̆1) cos(x̆2) sin(x̆3) cos(x̆4) cos(x̆5) cos(x̆6) cos(x̆7)

f4(x) =
x4

2000
+

1√
4

cos(x̆1) cos(x̆2) cos(x̆3) sin(x̆4) cos(x̆5) cos(x̆6) cos(x̆7)

f5(x) =
x5

2000
+

1√
5

cos(x̆1) cos(x̆2) cos(x̆3) cos(x̆4) sin(x̆5) cos(x̆6) cos(x̆7)
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f6(x) =
x6

2000
+

1√
6

cos(x̆1) cos(x̆2) cos(x̆3) cos(x̆4) cos(x̆5) sin(x̆6) cos(x̆7)

f7(x) =
x7

2000
+

1√
7

cos(x̆1) cos(x̆2) cos(x̆3) cos(x̆4) cos(x̆5) cos(x̆6) sin(x̆7)

Reactor We introduce the following parameters p1, . . . , p21.

p1 ≈ 2000 p2 ≈ 0.02 p3 ≈ 0.1

p4 ≈ 20000 p5 ≈ 0.3 p6 ≈ 0.1

p7 ≈ 0.3 p8 ≈ 0.2 p9 ≈ 0.2

p10 ≈ 40 p11 ≈ 2 p12 ≈ 500

p13 ≈ 1 p14 ≈ 200 p15 ≈ 0.5

p16 ≈ 0.7 p17 ≈ 0.4 p18 ≈ 0.3

p19 ≈ 1.0 p20 ≈ 0.6 p21 ≈ 0.7

x1 = [10−6, 100], ψ1 = [10−8]

xi = [10−6, 1], ψi = [10−7] for i = 2, 6, 9

xi = [10−6, 1], ψi = [10−9] for i = 3, 4, 5, 14

xi = [10−6, 10], ψi = [10−6] for i = 7, 8, 10, 11, 12

x13 = [10−6, 1000], ψ13 = [10−4]

x15 = [0, 1], ψ15 = [10−7]

xi = [−1, 1], ψi = [10−9] for i = 16, 17, 18, 23, 27, 28

xi = [−1, 1], ψi = [10−8] for i = 19, 20, 22, 24, 25

xi = [−1, 1], ψi = [10−7] for i = 21, 26

x29 = [0, 10], ψ29 = [10−6]

f1(x) = x29 · p3 − 0.01 · x1 · x2 − 1/6 · x10

f2(x) = p16 · 10−1 · x29 − 100 · x1 · x3 + 1 · x10/6

f3(x) = p17 · x29 − 100 · x1 · x4

f4(x) = − 100 · x1 · x5 + 2 · x10/3 + x29 · x14

f5(x) = − x1 · x6 + x7 − x8 + x9
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f6(x) = − 1 + 10−4 · x2 + x3 + x4 + x5 + 0.01 · x6

f7(x) = p5 · 0.1 · x8 − p5 · 0.1 · x9 − p5 · 0.1 · x10

f8(x) = − p10 · p1 · (p6 · 10−3 − p7 · 10−4 · x4 − p8 · 10−4 · x5 − p9 · 10−3 · x6) + x7

f9(x) = x8 − p4 · p2 · x6 · (1 − 0.1 · x11 − 0.1 · x12)

f10(x) = x9 − p11 · p2 · x11

f11(x) = x10 − p12 · p2 · x2 · x11

f12(x) = − p9 · 10−5 · x2/(p13 · 10−7 + p9 · 10−5 · x2) + 0.1 · x12

f13(x) = − p14 · x29 · p3 + 35 · p2 · x13

f14(x) = − p15 + p3 + x14

f15(x) = − 0.01 · x15 · x2 − 100 · x16 · x3 − 100 · x17 · x4 − 100 · x18 · x5 − x19 · x6

f16(x) = − 0.01 · x15 · x1 + 0.1 · 10−3 · x20 − p12 · x25 · p2 · x11

+ x26 · (−p9 · 10−5/(p13 · 10−7 + p9 · 10−5 · x2)

+ p18 · 10−11 · x2/(p13 · 10−7 + p9 · 10−5 · x2)2)

f17(x) = − 100 · x16 · x1 + x20

f18(x) = − 100 · x17 · x1 + x20 + p19 · 10−3 · x22 · p1

f19(x) = − 100 · x18 · x1 + x20 + p20 · 10−3 · x22 · p1

f20(x) = − x19 · x1 + 0.1 · 0.1 · x20 + p21 · 10−2 · x22 · p1
− p4 · x23 · p2 · (1 − 0.1 · x11 − 0.1 · x12)

f21(x) = x19 + x22

f22(x) = − x19 + p5 · 0.1 · x21 + x23

f23(x) = x19 − p5 · 0.1 · x21 + x24

f24(x) = − 1/6 · x15 + 1/6 · x16 + 2/3 · x18 − p5 · 0.1 · x21 + x25
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f25(x) = 0.1 · p4 · x23 · p2 · x6 − p11 · x24 · p2 − p12 · x25 · p2 · x2

f26(x) = 0.1 · p4 · x23 · p2 · x6 + 0.1 · x26

f27(x) = 35 · x27 · p2

f28(x) = x18 · x29 + x28

f29(x) = x2
15 + x2

16 + x2
17 + x2

18 + x2
19 + x2

20 + x2
21 + x2

22 + x2
23

+ x2
24 + x2

25 + x2
26 + x2

27 + x2
28

Chemistry1
ψi = [10−8] for i = 1, . . . , 12

x1 ≈ [0.6, 0.8]

x2 = [0, 1]

x3 = [0, 1]

x4 ≈ [−1, 9]

x5 ≈ [−10, 20]

x6 ≈ [0, 100]

x7 ≈ [−2000, 5000]

x8 = [−1, 1]

x9 = [−1, 1]

x10 = [−1, 1]

x11 = [−1, 1]

x12 = [−∞,∞]

p ≈ [0.2, 0.4]

f1(x) = − x2 − (x3 − 1) · exp(25/3 · p · x3) · x1 · x2

f2(x) = − x3 − (x3 − 1) · (5.4 + 180 · p) · exp(25/3 · p · x3)/(5.4 − 180 · p · x3 + 180 · p) · x1 · x2

f3(x) = x4 + 1 + (x3 − 1) · exp(25/3 · p · x3) · x1

f4(x) = x5 + exp(25/3 · p · x3) · x1 · x2 + 25/3 · (x3 − 1) · p · exp(25/3 · p · x3) · x1 · x2

f5(x) = x6 + (x3 − 1) · (5.4 + 180 · p) · exp(25/3 · p · x3)/(5.4 − 180 · p · x3 + 180 · p) · x1

f6(x) = x7 + 1 + (5.4 + 180 · p) · exp(25/3 · p · x3)/(5.4 − 180 · p · x3 + 180 · p)
· x1 · x2 + 25/3 · (x3 − 1) · (5.4 + 180 · p) · p · exp(25/3 · p · x3)

/(5.4 − 180 · p · x3 + 180 · p) · x1 · x2 + 180 · (x3 − 1) · (5.4 + 180 · p)
· exp(25/3 · p · x3)/(5.4 − 180 · p · x3 + 180 · p)2 · x1 · x2 · p
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f7(x) = x4 · x8 + x5 · x9 + x12 · x10

f8(x) = x6 · x8 + x7 · x9 + x12 · x11

f9(x) = x4 · x10 + x5 · x11 − x12 · x8

f10(x) = x6 · x10 + x7 · x11 − x12 · x9

f11(x) = x2
8 + x2

9 + x2
10 + x2

11 − 1

f12(x) = x8 · x10 + x9 · x11

Trigexp1 [COP] with n = 50
(Be aware of typos in [COP] itself. The system is given as in reference cited by [COP].)

xi = [−100, 100], ψi = [10−6] for i = 1, . . . , n

f1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) · sin(x1 + x2)

fi(x) = 3x3
i + 2xi+1 − 5 + sin(xi − xi+1) · sin(xi + xi+1) + 4xi − xi−1 exp(xi−1 − xi) − 3

for i = 2, . . . , n− 1

fn(x) = 4 · xn − xn−1 · exp(xn−1 − xn) − 3

Chemistry2

x1 ≈ [0.5, 0.6]

x2 = [0, 1]

x3 = [0, 1]

x4 = [−1, 1]

x5 = [−1, 1]

x6 ≈ [0.2, 0.4]

ψi = [10−5] for i = 1, . . . , 6

For shorter denotation, additional variables to display the problem. (These were not part of the
system as used for calculations.)

y1 = 25/3 · x6 y2 = exp(y1 · x3) y3 = 5.4 + 180 · x6

y4 = 5.4 − 180 · x6 · x3 y5 = y4 + 180 · x6 y6 = (x3 − 1) · y2 · y3

f1(x) = − x2 − y6 · x1 · x2

f2(x) = − x3 − y6 · y3/(y4 + 180 · x6) · x1 · x2

f3(x) = (−1 − y6 · x1) · x4 − (y2 + y6 · y1) · x1 · x2 · x5

f4(x) = − y6/y5 · x1 · x4
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+ x5 · ((−1) − ((((y3 · y2 + y6 · y1) · y5 − y6 · (−180 · x6))/y25) · x1) · x2)

f5(x) = 1 − x2
4 − x2

5

DirectKinematics [COP], [Bee06]

We use the following parameters.

p1 = 12.80624847 p2 = 1.570796327 p3 = 304.0192

p4 = 7.011678 p5 = 4.065716 p6 = 25.46010

p7 = 28.04672 p8 = 420.7008 p9 = 243.9430

p10 = 16.26286 p11 = 196.3270 p12 = 113.8400

p13 = 1.54924278922385

The variables for this problem are given as follows.

xc = [−p1, p1] yc = [−p1, p1] zc = [0, p1]

p = [−p2, p2] t = [−p2, p2] x1 = [−12.0,−2.0]

y1 = [10.0, 20.0] z1 = [−5.0, 5.0] x2 = [2.0, 12.0]

y2 = [10.0, 20.0] z2 = [−5.0, 5.0]

The demanded precision ψi is 10−6 for all variables.

f1(x) = x2
c + y2c + z2c − 164

f2(x) = p3 − 20 · xc − 300 · cos(p) + 100 · sin(p) · cos(t) − 10 · yc
− 150 · sin(p) − 50 · cos(p) · cos(t) + 30 · xc · cos(p)

− 10 · xc · sin(p) · cos(t) + 30 · yc · sin(p)

+ 10 · yc · cos(p) · cos(t) + 10 · zc · sin(t)

f3(x) = p3 + 20 · xc − 300 · cos(p) − 100 · sin(p) · cos(t) − 10 · yc
+ 150 · sin(p) − 50 · cos(p) · cos(t) − 30 · xc · cos(p)

− 10 · xc · sin(p) · cos(t) − 30 · yc · sin(p)

+ 10 · yc · cos(p) · cos(t) + 10 · zc · sin(t)

f4(x) = (x1 + 7)2 + (y1 − 15)2 + z21 − 25

f5(x) = (cos(p) · (x1 − xc) + sin(p) · (y1 − yc) + 7)2

+ (− sin(p) · cos(t) · (x1 − xc) + cos(p) · cos(t) · (y1 − yc)

+ sin(t) · (z1 − zc) − p4)2

+ (sin(p) · sin(t) · (x1 − xc) − cos(p) · sin(t) · (y1 − yc)

+ cos(t) · (z1 − zc) + p5)2 − p6

f6(x) = (x2 − 7)2 + (y2 − 15)2 + z22 − 25

f7(x) = (cos(p) · (x2 − xc) + sin(p) · (y2 − yc) − 7)2
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+ (− sin(p) · cos(t) · (x2 − xc) + cos(p) · cos(t) · (y2 − yc)

+ sin(t) · (z2 − zc) − p4)2

+ (sin(p) · sin(t) · (x2 − xc) − cos(p) · sin(t) · (y2 − yc)

+ cos(t) · (z2 − zc) + p5)2 − p6

f8(x) = 60 · z1 − 4 · z1 · yc + (p7 · y1 − p8) · sin(t) + (p9 − p10 · y1) · cos(t)

+ 28 · z1 · sin(p) + (−p10 · sin(t) · z1 − p7 · cos(t) · z1) · cos(p)

+ (−60 + 4 · y1) · zc

f9(x) = 28 · z1 + 4 · z1 · xc + (−p11 − p7 · x1) · sin(t) + (p12 + p10 · x1) · cos(t)

+ (−p10 · sin(t) · z1 − p7 · cos(t) · z1) · sin(p) − 28 · z1 · cos(p)

+ (−4 · x1 − 28.) · zc

f10(x) = 60 · z2 − 4 · z2 · yc + (−p8 + p7 · y2) · sin(t) + (p9 − p10 · y2) · cos(t)

− 28 · z2 · sin(p) + (−p7 · cos(t) · z2 − p10 · sin(t) · z2) · cos(p)

+ (4 · y2 − 60) · zc

f11(x) = − 28 · z2 + 4 · z2 · xc + (p11 − p7 · x2) · sin(t) + (−p12 + p10 · x2) · cos(t)

+ (−p7 · cos(t) · z2 − p10 · sin(t) · z2) · sin(p) + 28 · z2 · cos(p)

+ (−4 · x2 + 28) · zc
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DesignProblem9 [Bee06] , [COP]

xi = [0, 10], ψi = [10−4] for i = 1, . . . , 9

Additionally, we introduce the following parameters.

p1 = 28.5132 p2 = 23.3037

p3 = 111.8467 p4 = 101.779

p5 = 134.3884 p6 = 111.461

p7 = 211.4823 p8 = 191.267

p9 = 0.0052095 p10 = 0.0100677

p11 = 0.0229274 p12 = 0.0202153

f1(x) = − p1 + p2 · x2

+ (1 − x1 · x2) · x3 · (exp(x5 · (0.485 − p9 · x7 − 0.0285132 · x8)) − 1)

f2(x) = p2 − p1 · x1

+ (1 − x1 · x2) · x4 · (exp(x6 · (0.116 − p9 · x7 + 0.0233037 · x9)) − 1)

f3(x) = − p3 + p4 · x2

+ (1 − x1 · x2) · x3 · (exp(x5 · (0.752 − p10 · x7 − 0.1118467 · x8)) − 1)

f4(x) = p4 − p3 · x1

+ (1 − x1 · x2) · x4 · (exp(x6 · (−0.502 − p10 · x7 + 0.101779 · x9)) − 1)

f5(x) = − p5 + p6 · x2

+ (1 − x1 · x2) · x3 · (exp(x5 · (0.869 − p11 · x7 − 0.1343884 · x8)) − 1)

f6(x) = p6 − p5 · x1

+ (1 − x1 · x2) · x4 · (exp(x6 · (0.166 − p11 · x7 + 0.111461 · x9)) − 1)

f7(x) = − p7 + p8 · x2

+ (1 − x1 · x2) · x3 · (exp(x5 · (0.982 − p12 · x7 − 0.2114823 · x8)) − 1)

f8(x) = p8 − p7 · x1

+ (1 − x1 · x2) · x4 · (exp(x6 · (−0.473 − p12 · x7 + 0.191267 · x9)) − 1)

f9(x) = x1 · x3 − x2 · x4
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Chemistry3 The system is the same as for Chemistry1, only the demanded precision and
the startbox differ.

ψi = [10−5] for i = 1, . . . , 12

x1 ≈ [0.5, 0.6]

x2 = [0, 1]

x3 = [0, 1]

x4 ≈ [−1, 7]

x5 ≈ [−10, 20]

x6 ≈ [0, 100]

x7 ≈ [−1000, 4000]

x8 = [−1, 1]

x9 = [−1, 1]

x10 = [−1, 1]

x11 = [−1, 1]

x12 = [−10, 10]

p ≈ [0.2, 0.4]

Test set TV

Test set TV is a subset of test set TB utilized for verification. It comprises problems for which at
least one solution box was computed, but that do not contain a manifold of solutions. Namely
those are G7 gradientsystem, Reactor, Brent7, Eco9, Trigexp1, Trigonometric, DesignProblem9
and 7erSystem.
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box operator, 10
box-intern hierarchy, 86
branch-and-bound algorithm, 39

bounding, 59
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centered function enclosure, 23
childbox, 11, 73
cluster effect, 20, 52, 57
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constrained optimization problem, 173, 175
constraint propagation, 59
contraction method, 28
contractor, 28
contractor

success, 28
contractors

constraint propagation, 59
extended Newton method, 80
forward-backward propagation, 61
hybrid Newton method, 81
in SONIC, 72
Newton method, 63
on extended systems, 79

preconditioner, 65
Taylor refinement, 61

covering, 11
CP, 59
CST system, 77
CSTN system, 78
cut-off-test, 174
CW-preconditioner, 70
CW-LP-preconditioner, 70

degree test, 140, 142
dependency problem, 17
derivatives, 27
diameter, 9
division

relational, 16
downward rounding, 35

elementary, 33
enclosure, 14

order, 21
epsilon-inflation, 127
expression optimization, 32
extended Newton method, 80
extended real numbers, 8
extended systems, 75

contractors, 79
CST, 77
CSTN, 78
fullsplit, 77
linear, 78
original, 77

facet, 127
facets, 127

facet-centered function enclosure, 129
subdividing, 150
subfacets, 127

filib++, 170
forward-backward propagation, 61
fullsplit system, 77
function
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centered, 23
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facet-centered, 129
naive, 23
order, 21

evaluation, 21
Baumann, 25

inclusion function, 14
interval enclosure, 14
range, 13

function enclosure, 14

gaps in intervals, 44, 170
Gauß-Seidel method

preconditioned, 31
gauge, 99
GlobSol, 176
gradient, 13

Hessian matrix, 13
hybrid Newton method, 81
hybrid subdivision, 49

Ibex, 176
inclusion monotonic, 22
infimum, 8, 9
interior, 9
interval

bound
lower, 8
upper, 8

bounded, 8
degenerate, 9
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infimum, 8, 9
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point, 8
positive, 9
proper, 9
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radius, 9
supremum, 8, 9
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width, 9

interval analysis, 1
dependency problem, 17
subdistributivity, 19

interval arithmetic, 13
interval enclosure, 14

interval libraries, 170
interval nonlinear system of equations, 38

Jacobian matrix, 13

key figure, 99
Krawczyk operator, 158

linear system, 78

machine numbers, 34
magnitude, 9
matrix

Hessian, 13
Jacobian, 13

MaxDiam, 47
MaxSmear, 47
MaxSmearDiam, 48
MaxSumMagnitude, 48
mean value form, 24
midpoint, 9
mignitude, 9
Miranda test, 135
Moore

verification test based on, 158
MPI, 172
multisection, 51

naive function enclosure, 23
Newton method, 63

extended, 80
hybrid, 81

Newton test, 134
nonsingular interval matrix, 12

objective fct, 172
OpenMP, 171
Optimization, 172
optimization problem, 173
original system, 77

parallelization, 170
MPI, 172
OpenMP, 171
speedup, 171

parentbox, 11, 73
preconditioner, 65

C-preconditioner, 68
CW-LP-preconditioner, 70
equivalent, 69
inverse midpoint, 67
normal, 68
optimal, 67
pivot, 67
row-wise, 66
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S-preconditioner, 68
precision vector, 38
problems

7erSystem, 186
Brent7, 186
Chemistry1, 200
Chemistry2, 201
Chemistry3, 205
DesignProblem9, 204
DirectKinematics, 202
Eco9, 186
G7 gradientsystem, 197
Reactor, 198
Trigexp1, 201
Trigonometric, 186
min-04-06, 194
min-04-07, 190

radius, 9
range, 13
recursion level, 41
regular interval matrix, 12
relational division, 16
relative volume, 88
round-robin, 49
rounding

downward, 35
mode, 36
upward, 35

skipping systems, 89
slope, 27
slopes, 27
small enough, 38
solution box, 38
SONIC

parameters
AllSystemsEveryXRecursionLevels,

108
AverageWithZeroIfSystemNotUsed,

108
AveragingGauge, 101, 110
CheckpointingTime, 169
ComparisonFactorForLargerSystems,

101, 105
ContainsSolutionForSubsystem, 133
Degree FixedPartitionForT, 161
Degree PartsOfT, 161
MaxDepth, 128, 161
MaxRepsHierarchyPerSystem, 88
MaxSub, 128, 156, 161
MinRelGapsizeForSubdivisionUsing-

Gaps, 45
RestartHierarchyFactor, 88

ShiftSubPoint, 54
SubMaxNew, 43
SubMinNew, 43
TerminationOnFirstHit, 149, 169
tSub, 156
UniqueSolutionForSubsystem, 133
VerificationEpsInflationValue, 127
VerificationMaxEpsInflations, 161

speedup, 171
spherical t-design, 172, 185
step size, 82
subbox, 11
subdistributivity, 19
subdivision, 11

bisection, 51
direction, 43, 47

hybrid, 49
MaxDiam, 47
MaxSmear, 47
MaxSmearDiam, 48
MaxSumMagnitude, 48
ZeroNearBound, 48

iterated, 54
multisection, 51
non-equidistant, 52
point, 43
round-robin, 49
shifted, 52
strategy, 55
unbounded variables, 45
using gaps, 44

subfacets, 127, 128
subdividing, 150
symmetric, 128

SunIA, 170
superbox, 11
supremum, 8, 9
system

extended, 75
split, 75

Taylor forms, 25
Taylor model, 26
Taylor refinement, 61
threshold vector, 38
thresholded volume, 95
topological boundary, 13, 127
topological degree, 140

unconstrained optimization problem, 173,
174

upward rounding, 35

verification, 125, 126
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for non-square systems, 129
for square systems, 134
methods, 126
preconditioners, 126
row-wise, 150
scheme, 146
success, 126
test, 126

Borsuk, 137
Miranda, 135
Moore, 158
Newton, 134
topological degree, 140

volume, 13, 110
relative, 88
thresholded, 95

width, 9
wrapping effect, 19

ZeroNearBound, 48
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