Darstellung und Eigenschaften CF₃-substituierter SiSi- und SiOSi-Bindungssysteme

Vom Fachbereich Chemie der Bergischen Universität-Gesamthochschule Wuppertal
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
- Dr. rer. nat

genehmigte

Dissertation

von

Achim Roth aus Mainz

Wuppertal 1999

Die vorliegende Arbeit wurde in der Zeit vom Mai 1995 bis Mai 1999 im Fachbereich Naturwissenschaften II, Anorganische Chemie, der Bergischen Universität –Gesamthochschule Wuppertal unter Anleitung von Herrn Prof. Dr. R. Eujen angefertigt.

Herrn Prof. Dr. R. Eujen gilt mein besonderer Dank für seine jederzeit gewährte Unterstützung und sein stetes Interesse am Fortgang dieser Arbeit.

Herrn Prof. Dr. D.J. Brauer danke ich für die Durchführung der Kristallstrukturanalysen.

Herrn Prof. Dr. M. Binnewies (Universität Hannover) und Herrn Prof. Dr. K. Hassler (TU Graz) danke ich für die Bereitstellung von Chemikalien. Herrn Prof. Dr. K. Hassler danke ich zudem für theoretische Rechnungen und Raman-spektroskopische Untersuchungen an [CF₃Me₂Si]₂.

Herrn Prof. Dr. B. Engels (Universität Würzburg) und Herrn Dipl.-Chem. H. Hildebrandt (Universität Bonn) möchte ich für theoretische Rechnungen zu donorstabilsierten Silylenen danken.

Für die Aufnahme von NMR-Spektren danke ich besonders Herrn. Prof. Dr. R. Eujen und Frau I. Möller sowie für die Aufnahme von Massenspektren Frau E. Smets.

Allen Mitarbeitern des Arbeitskreises Anorganische Chemie danke ich für die gute Arbeitsatmosphäre und stete Hilfsbereitschaft.

1. Gutachter: Prof. Dr. R. Eujen

2. Gutachter: Prof. Dr. H. Bürger

Eingereicht am 25.05.1999

Tag der mündlichen Prüfung: 05.08.1999

Abstract

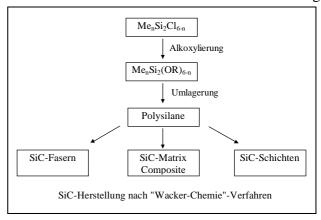
(Trifluoromethyl)organopolysilanes and -siloxanes were prepared either by coupling of (trifluoromethyl)monosilanes or by trifluoromethylation of SiSi and SiOSi backbones. The monosilanes CF_3R_2SiX , CF_3RSiX_2 (X = halogen, H, NR₂, OR; R = alkyl, aryl) have been obtained by trifluoromethylation of chlorosilanes with P(NEt₂)₃/ CF₃Br in high yields. A new approach to CF₃SiCl₃ by the reaction of HSiCl₃ with NR₃ in presence of CF₃Br was investigated. Reaction in diglyme at 25°C affords CF₃SiCl₃ in 20 % yield. The base-catalysed disproportionation of Si₂Cl₆ with $P(NEt_2)_3/$ CF₃Br leads to donor-stabilised (CF₃)₂SiCl₂←P(NEt₂)₃, whereas the disproportionation of Me₂Cl₄Si₂ gives CF₃MeSiCl₂. By conversion of the donor-stabilised (CF₃)₂SiCl₂ to (CF₃)₂Si(NMe₂)₂ bis(trifluoromethyl)silanes are readily accessible in good yields. (CF₃)₂SiCl₂←P(NEt₂)₃ has been converted also into the chemically and thermally stable complex (CF₃)₂SiCl₂←Bipy. The NMR parameters and the chemical behaviour of these compounds are compared with the properties of (CF₃)₂SiX₂←Bipy (X = Cl, Br) and $CF_3SiX_3 \leftarrow D$ (X = Cl, D = Bipy, Phen, DMSO), which have been synthesisedby the reaction of the free silanes and the donor-ligand.

The first trifluoromethylated oligosilanes ([CF₃Me₂Si]₂SiMeCF₃, (CF₃Me₂Si)₃SiMe, [CF₃Me₂Si]₂(SiMe)₂ [SiMe₂CF₃]₂, CF₃Si(SiMe₃)₃) and some new CF₃-disilanes ([CF₃R₁R₂Si]₂, R₁,R₂ = Me, R₂ = NR₂) were prepared by trifluoromethylation of the corresponding chlorosilanes and characterised by NMR and vibrational spectroscopy. The yield of CF₃ substituted silanes depends on the steric hindrance of the silanes and the number of CF₃ groups, which have to be transferred. Formation of CF₃SiSi backbones by coupling of (trifluoromethyl)monosilanes has been achieved by reaction of CF₃Me₂SiCl with Li/ HMPA or in the photo-induced coupling of CF₃Me₂SiH with HgR₂ (R = Me, Et) both leading to CF₃Me₂SiSiMe₂CF₃. The lewis-acidic disilanes CF₃Me(X)SiSi(X)MeCF₃ (X = Cl, Br) show a dynamic intramolecular halogen exchange in presence of ammonium salts. Heating the mixture to 100°C leads to a crude product, which contains CF₃SiSi fragments.

Trifluoromethylated disiloxanes were prepared either by trifluoromethylation of the corresponding halo-disiloxanes or by hydrolyses of CF_3R_2SiCl leading to $[CF_3R_1R_2Si]_2O$ (R_1 , R_2 = Me; R_1 = Me, R_2 = Ph; R_1 , R_2 = Ph). Coupling of $CF_3MeSi(H)Br$ with ZnO gives $[CF_3Me(H)Si]_2O$ in low yield. CF_3 -oligosiloxanes have been obtained by hydrolyses of CF_3MeSiX_2 (X = Cl, OMe) or $CF_3PhSiCl_2$. Reaction in polar solvents like Et_2O leads to the partiall loss of the CF_3 moiety resulting in silsesquioxane structures. The incompletely condensed silsesquioxane $[CF_3MeSiO]_3[MeSiO_{1.5}]_4$ has been isolated and structurally characterised. The hydrolyses in $CHCl_3$ leads to the formation of the first cyclic (trifluoromethyl)siloxane $[CF_3MeSiO]_4$ and linear polysiloxanes. $[CF_3MeSiO]_4$ has been isolated by sublimation in vacuum and its structure was determined by X-ray analysis. The (trifluoromethyl)siloxanes were characterised by IR and NMR spectroscopy, showing a typical " CF_3 "-shift of the resonances compared to organopolysiloxanes.

The electron withdrawing effect of the trifluoromethylgroup has also been studied by structure analysis of the atranes $CF_3E(OCH_2CH_2)_3N$ (E = Si, Ge). The atranes were prepared by the reaction of $CF_3E(OMe)_3$ with $N(CH_2CH_2OH)_3$. They are stable complexes, which are insoluble in non-polar solvents but soluble in solvents like DMF, DMSO or NMP. The transannular E-N contact of both atranes is considerably shorter than in other organylatranes.

Inhaltsve	erzeic	hnis	Seite
Kapitel 1		Einleitung	3
	1.1	Allgemeines	3
	1.2	Themenstellung	5
Kapitel 2		CF ₃ -Übertragung auf Siliciumverbindungen	8
	2.1	Allgemeine Methoden	8
	2.2	Limitierende Faktoren für die CF ₃ -Übertragung, Schutzgruppentechnik	12
	2.3 2.3.1 2.3.2	Die <i>Benkeser</i> -Reaktion von Chlorsilanen mit CF ₃ Br HSiCl ₃ und MeSi(H) ₂ Cl CF ₃ Si(H)Cl ₂	14 18
Kapitel 3		CF ₃ -substituierte Monosilane	19
	3.1	Die Trifluormethylsilane (CF ₃)R ₂ SiX	19
	3.2	Die Trifluormethylsilane (CF_3) $RSiX_2$ und (CF_3) $_2SiX_2$	21
	3.3 3.3.1 3.3.2	Eigenschaften CF ₃ -substituierter Monosilane NMR-Spektren Schwingungsspektren	23 28
Kapitel 4		CF ₃ -substituierte SiSi-Bindungssysteme	30
	4.1	Synthesestrategien	30
	4.2 4.2.1 4.2.2	Trifluormethylierung "nicht lewis-acider" Disilane NMR-Spektren Schwingungsspektren	33 34 38
	4.3 4.3.1 4.3.2 4.3.3 4.3.4	Trifluormethylierung "lewis-acider" Disilane Das Reaktionssystem Si_2Cl_6 / Base / CF_3Br Das Reaktionssystem $Me_2Cl_4Si_2$ / Base / CF_3Br Diskussion des Reaktionsmechanismus Die Disilane $CF_3Me(X)SiSi(X)MeCF_3$ und $CF_3Me(X)SiSiMeX_2$	41 42 47 50 54
	4.4	Austauschverhalten "lewis-acider" Disilane	58
	4.5	Trifluormethylierte Oligosilane	61


	4.6	SiSi-Aufbau ausgehend von CF ₃ -Monosilanen	
	4.6.1	Reduktive Enthalogenierung	64
		Übergangsmetall-katalysierte Dehydrogenierung	65
	4.6.3	Silyl-Anionen und -Radikale	66
	4.6.4	Photolyse von HgSi-Verbindungen	69
Kapitel 5		CF ₃ -substituierte SiOSi-Bindungssysteme	72
	5.1	Synthesestrategien	72
	5.2	Trifluormethylierung von SiOSi-Gerüsten	74
	5.3	SiOSi-Aufbau ausgehend von CF ₃ -Monosilanen	75
	5.4	Eigenschaften CF ₃ -substituierter SiOSi-Systeme	70
	5.4.1	NMR-Spektren	79 92
	5.4.2 5.4.3	Schwingungsspektren Messenspektren	82 84
	5.4.3 5.4.4	Massenspektren Die Kristallstrukturen von [CF ₃ MeSiO] ₄ und	86
	3.7.7	[CF ₃ MeSiO] ₃ [MeSiO _{1.5}] ₄	00
Kapitel 6		Komplexverbindungen CF ₃ -substituierter Silane	89
	6.1	Die Bipyridyl-Komplexe $(CF_3)_2SiX_2 \leftarrow Bipy (X = Cl, Br)$	90
	6.1.2	Komplexverbindungen des CF ₃ SiCl ₃	97
	6.2	$[CF_3MeSi(bipy)_2]I_2$	99
	6.3	1-Trifluormethylsilatran, $CF_3Si(OCH_2CH_2)_3N$ und -germatran, $CF_3Ge(OCH_2CH_2)_3N$	101
Kapitel 7		Experimenteller Teil	107
	7.1	Allgemeine Arbeitstechniken	107
	7.2	Ausgangsverbindungen	108
	7.3	Arbeitsvorschriften	108
Kapitel 8		Zusammenfassung	126
Anhang			
8	A	Liste der Abkürzungen	129
	В	Liste der Verbindungen	131
	C	Literaturverzeichnis	132

Kapitel 1 Einleitung

1.1 Allgemeines

Organopolysilane und -siloxane sind aufgrund ihrer vielfältigen Verwendungszwecke ein fester Bestandteil industrieller Prozesse und Forschungsgebiete. Die Anwendungsgebiete der "anorganisch-organischen" Polymere erstrecken sich dabei über medizinische, keramische bis hin zu überwiegend technischen Produkten. Der Anteil der Siliciumpolymere an der Gesamt-Kunststoffproduktion ist bislang noch gering, jedoch werden sie zunehmend in solchen Bereichen genutzt, in denen organische Polymere nur unzureichende Eigenschaften aufweisen. Polysilane, die aus linearen Siliciumketten mit organischen Seitengruppen aufgebaut sind, fanden in den letzten Jahren wachsendes Interesse einerseits als Precursor zur SiC-Herstellung

[1]. andererseits aufgrund besonderer physikalischer Eigenschaften wie Photolumineszens [2], Photokonduktivität [3] oder nichtlineare Suszeptibiltät [4]. Vor allem die Entwicklung großtechnischer Prozesse zur Herstellung von SiC- bzw. SiN- oder Si(C,N)-Fasern, Schichten und Compositen wurde aufgrund der außerordentlichen Stabilität der Materialien gegenüber thermischer und mechanischer Belastung vorangetrieben.

Die thermische Stabilität Alkyl- und Aryl-substituierter Polysilane resultiert aus den starken Silicium-Kohlenstoff- und Kohlenstoff-Wasserstoff-Bindungen, wohingegen die Abschirmung des SiSi-Gerüstes durch die Substituenten die chemische Stabilität gewährleistet. Die elektronischen Eigenschaften der Polysilane basieren auf der Delokalisierung der bindenden σ-Elektronen über das SiSi-Gerüst; dies gilt vor allem für cyclische Polysilane, deren Photo-Elektronenspektren vergleichbar mit denen konjugierter aromatischer Systeme sind [5].

Die stetig anwachsende Zahl neuer Polysilane, meist durch Modifizierung der Seitenkette, beruht auf etablierten Synthesemethoden. Neben der reduktiven Enthalogenierung von Chlorsilanen konnten sich im wesentlichen nur die durch Lewis-Säure katalysierte Umlagerung von Polysilanen sowie die Übergangsmetall-katalysierte Dehydrogenierung von SiH-funktionellen Silanen durchsetzen [6].

Organopolysiloxane haben eine weitaus größere Bedeutung im Vergleich zu Polysilanen, was durch die Vielzahl verschiedener Produkte dokumentiert wird. Je nach Polymerisationsgrad und Verzweigung fallen diese als Öle, Harze oder als Gummi-ähnliche Verbindungen an, deren physikalische Eigenschaften durch Zusätze eingestellt werden können. Der bekannteste Vertreter seiner Verbindungsklasse, das Polydimethylsiloxan (PDMS), wurde bereits 1937 ausgehend von Me₂SiCl₂ dargestellt. Durch Variation der Substituenten und der Hydrolyseprozesse wurde die Entwicklung neuer Siloxane kontinuierlich vorangetrieben. Organopolysiloxane sind nicht nur thermisch stabil und wetterbeständig, sondern behalten ihre Flexibilität bei tiefen Temperaturen

und sind physiologisch inert [7, 8, 9]. Insbesondere PDMS zeichnet sich durch eine sehr niedrige Glastemperatur von $T_g = -130^{\circ}$ C aus, die auf die niedrige Torsionsbarriere der SiO-Bindungen, die Bereitschaft zur SiOSi-Winkelaufweitung und die geringen intramolekularen Wechselwirkungen zurückgeführt werden kann [10].

Die hohe Stabilität alkylierter Polysiloxane resultiert aus den sehr starken Si-C- und Si-O-Bindungen, wobei der chemische Abbau des Siloxans durch SiO-Bindungsspaltung eingeleitet wird. Eine Verstärkung der SiOSi-Bindung kann durch Substitution mit elektronenziehenden Gruppen erreicht werden, die eine erhöhte Wechselwirkung der freien Elektronenpaare des Sauerstoffs mit den freien Orbitalen des Siliciums bewirken [9]. Im gleichem Maße wie die SiO-Bindung gestärkt wird, wird die SiX-Bindung zu dem Substituenten geschwächt:

R = ElektronendonatorSiOSi-Bindung wird geschwächtSiR-Bindung wird gefestigt

X = ElektronenacceptorSiOSi-Bindung wird gestärktSiX-Bindung wird geschwächt

Durch Einführung fluorierter Seitenketten in die Siloxansysteme werden die Eigenschaften der Polymere bezüglich thermischer Stabilität, chemischer Resistenz und Flexibilität bei tiefen Temperaturen verbessert [11]. Als Beschichtungsmaterial eignen sich fluorierte Silicone aufgrund der sowohl Wasser- als auch Öl-abstoßenden Eigenschaften. Glasflächen, die beispielsweise mit $CF_3(CF_2)_9CH_2CH_2SiX_3$ (X = NCO, OMe) beschichtet wurden, weisen mit 113° bzw. 118° sehr hohe Kontaktwinkel gegenüber H_2O auf [12, 13].

Das hohe Interesse an den teilfluorierten Siliconen förderte die Suche nach Zugangswegen zu fluoralkylierten Monosilanen. Die Übertragung von Fluoralkylgruppen kann sowohl durch Grignardreaktion [14] wie auch durch Hydrosilylierung fluorierter Alkene [11] erfolgen, z.B.:

$$HSiCl_3 + C_6F_{13}C_2H_4MgI \longrightarrow HSi(C_2H_4C_6F_{13})_3$$
 (1-1)

- 4 -

$$CF_{3}CH=CH_{2} + CH_{3}Si(H)Cl_{2} \xrightarrow{250-300^{\circ}C} CF_{3}CH_{2}CH_{2}Si(CH_{3})Cl_{2}$$

$$\downarrow H_{2}O,$$

$$50-60^{\circ}C$$

$$KOH,$$

$$200^{\circ}C$$

$$H_{3}C \xrightarrow{Si} O Si \xrightarrow{CH_{3}} RF$$

$$CH_{3} CH_{2}CH_{2}CF_{3}(CH_{3})O]_{n}H$$

$$Cyclische Oligomere$$

$$(n = 5-10)$$

$$R_{F} = CH_{2}CH_{2}CF_{3}$$

Synthese teilfluorierter Siloxane nach Dow Corning

Nach dem "Dow Corning"-Verfahren wurde eine Reihe weiterer fluorierter Silicone dargestellt, wobei überwiegend der Rest R variiert wurde, z.B. R = CH₂CH₂C₄F₉ [15], CH₂CH₂C₈F₁₇ [16]. Der elektronenziehende Einfluß der Perfluoralkylgruppen auf das Siloxan-Gerüst wird durch die Methylenbrücken deutlich abgeschwächt, so daß die Bindungssituation der Si-αC-Atome mit der Alkyl-substituierter Polysiloxane vergleichbar ist. Die Methylenbrücken verleihen den fluorierten Siliconen eine hohe Stabilität und gewährleisten damit den Einsatz der Polymere unter extremen Druck- und Temperaturbedingungen (z.B. als Pumpenöl oder als Schmieröl in der Automobil- und Flugzeugindustrie).

1.2 Themenstellung

Während die Synthese und Eigenschaften teilfluorierter Silicone eingehend untersucht wurden, sind SiSi- bzw. SiOSi-Systeme mit *direkt* an Silicium gebundenen Perfluoralkylresten nahezu unbekannt. Die Substitution der Siliciumgerüste mit Perfluoralkylgruppen sollte einerseits ähnliche physikalischen Eigenschaften hervorbringen, wie sie auch für die teilfluorierten Silicone beobachtet wurden, andererseits sollte der elektronenziehende Charakter der Reste R_F zu einem elektronendefizienten Gerüstsystem führen. Vor allem für Polysilane kann neben besonderen elektronischen Eigenschaften eine erhöhte SiSi-Bindungsfestigkeit erwartet werden. Als einfachster möglicher Rest R_F zeichnet sich vor allem die Trifluormethylgruppe durch besondere Eigenschaften aus:

So ist die CF_3 -Gruppe durch eine für Alkyl-Gruppen extreme Gruppenelektronegativität gekennzeichnet, die sie elektronisch mit dem Chlor-Atom vergleichbar macht, ohne daß sie aber über die Fähigkeit des Chlors zur π -Rückbindung verfügt. Infolgedessen sind mehrfach CF_3 -

substituierte Verbindungen durch eine sehr hohe Lewis-Acidität des Zentralatoms gekennzeichnet, das ähnlich wie bei entsprechenden Halogeniden zur Erweiterung der Koordinationssphäre befähigt ist. Limitierend wirkt der nicht unerhebliche Raumbedarf der CF₃-Gruppe, der mit dem eines Brom-Atoms vergleichbar ist. Von den Halogenen unterscheidet sich die CF₃-Gruppe aber in der hohen Basizität des CF₃-Anions, die eine gegenüber nucleophilem Angriff wesentlich erhöhte Stabilität bewirkt. So sind CF₃-Derivate deutlich hydrolysestabiler als die Halogenide.

Auch in ihren Bindungseigenschaften sind CF₃-Derivate elektropositiver Elemente ungewöhnlich: Als insgesamt stark elektronenziehende Einheit bindet die CF₃-Gruppe über ein extrem positiviertes Kohlenstoffatom, woraus eine signifikante Coulomb-Abstoßung einhergehend mit schwachen M-C-Bindungen resultiert. Gleichzeitig bieten CF₃-substituierte SiSi- und SiOSi-Systeme die Möglichkeit des thermischen Abbaus zu reaktiven SiF-Bindungen und damit den Zugang zu bisher schwer darstellbaren fluorierten Polymeren.

Erste einfache CF₃-substituierte SiSi- bzw. SiOSi-Systeme wurden bereits von *Sharp et al.* dargestellt [17, 18], ohne daß jedoch eine systematische Untersuchung der Aufbaureaktionen oder Eigenschaften dieser Systeme folgte:

$$CF_3SiF_3 + SiF_2 \longrightarrow CF_3F_2SiSiF_3$$
 (1-3)

$$CF_3I + SiF_2 \longrightarrow CF_3SiF_2I \longrightarrow CF_3F_2SiOSiF_2CF_3$$
 (1-4)

Zudem eignen sich diese Verbindungen aufgrund der Hydrolyseempfindlichkeit der SiF-Funktionen sowie der zu erwartenden thermischen Labilität nur wenig für weitergehende Untersuchungen.

Eine ausreichende chemische und thermische Stabilität sollte vor allem bei Alkyl- oder Arylsubstituierten Verbindungen $[CF_3RSi]_n$ bzw. $[CF_3RSiO]_n$ zu finden sein, wohingegen für die perfluoralkylierten Silane $[(CF_3)_2Si]_n$ bzw. Siloxane $[(CF_3)_2SiO]_n$ instabilere Verhältnisse erwartet werden. Der Aufbau der CF_3 -substituierten Polymere ausgehend von trifluormethylierten Monosilanen soll in erster Linie mittels bekannter Reaktionen, wie z.B. reduktive Enthalogenierung von Halogensilanen oder Hydrolyse von Chlorsilanen, erfolgen. Als alternativer Zugangsweg bietet sich die Trifluormethylierung bestehender SiSi- bzw. SiOSi-Gerüste an.

Für die CF₃-Übertragung auf Siliciumverbindungen stehen mehrere Methoden zur Auswahl, wobei nur Ergebnisse für die Trifluormethylierung von Monosilanen vorliegen. CF₃-Übertragungen auf SiSi- bzw. SiOSi-Gerüste sind bisher noch unbekannt.

Im Zusammenhang mit der Darstellung sowie der Untersuchung der physikalischen und chemischen Eigenschaften der CF₃-substituierten SiSi- und SiOSi-Systeme sollten in der vorliegenden Arbeit folgende Themen im Vordergrund stehen:

- Optimierung der Übertragung von CF₃-Gruppen auf Monosilane im Hinblick auf die Darstellung präparativ nutzbarer Mengen für Folgereaktionen und systematische Untersuchungen
- 2) Entwicklung neuer Synthesewege für Trifluormethylsilane des Typs (CF₃)R₂SiX, (CF₃)RSiX₂ und (CF₃)₂SiX₂, die in den Aufbaureaktionen zu trifluormethylierten Diund Oligosilanen bzw. –siloxanen eingesetzt werden.
- 3) Darstellung einfacher Systeme, d.h. von Disilanen und Disiloxanen, mit dem Ziel, die Reaktivität der Monosilane in Aufbaureaktionen zu überprüfen sowie Informationen zu spektroskopischen und chemischen Eigenschaften der trifluormethylierten SiSiund SiOSi-Bindungssysteme zu gewinnen.
- 4) Übertragung der Synthesemethoden auf oligomere und polymere Systeme sowie Charakterisierung dieser Verbindungen mittels spektroskopischer Methoden und Strukturanalysen.
- 5) Spektroskopische Charakterisierung reaktiver Zwischenstufen zur Aufklärung der Reaktionsmechanismen.

Kapitel 2 CF₃-Übertragung auf Siliciumverbindungen

2.1 Allgemeine Methoden

Mit der Zielsetzung, CF₃-substituierte Monosilane als Ausgangsverbindungen in der Synthese perfluoralkylierter Polymere einzusetzen, wurden eine Reihe von Methoden zur CF₃-Gruppenübertragung auf Siliciumverbindungen entwickelt.

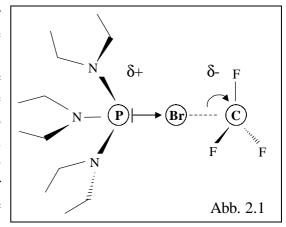
Eine erfolgreiche Darstellung gelang erstmalig durch Cokondensation von Difluorsilylen mit CF₃I, wobei CF₃SiF₂I als Ausgangsmaterial für weitere Derivatisierungen (Fluorierung, Hydrierung) erhalten wurde [19]:

$$SiF_2 + CF_3I \xrightarrow{-196^{\circ}C} CF_3SiF_2I$$
 (2-1)

Auf diese Weise wurden die ersten Vertreter der Reihe CF_3SiX_3 (X = H, F) dargestellt und spektroskopisch charakterisiert [20]. Diese Methode beschränkt sich jedoch zum einem auf Mono(trifluormethyl)verbindungen, zum anderen ist sie für die Darstellung großer, präparativ nutzbarer Mengen für Folgereaktionen nicht praktikabel.

Ein wesentlicher Fortschritt konnte durch die Verwendung der von *Ruppert et al.* entwickelten Reagenzkombination P(NEt₂)₃/ CF₃Br erzielt werden [21], die auch erstmals ermöglichte, mehrere CF₃-Gruppen auf Si-Cl-funktionelle Silane zu übertragen, z.B.:

Während die Umsetzung von RSiCl₃ (R = Alkyl, Aryl) immer zu Produktgemischen entsprechend nach Gl. (2-2) führt, wird ausgehend von SiCl₄ ausschließlich das einfach trifluormethylierte Silan, CF₃SiCl₃, erhalten [22, 23]. Diese Beobachtung unterstützt nicht das Modell eines präformierten CF₃-Nucleophils [21], das gerade mit CF₃SiCl₃ bevorzugt reagieren sollte. Zudem sollte die Stabilität solch eines CF₃-Anions in Lösung sehr gering sein und ein Zerfall nach


$$"CF_3" \longrightarrow \{CF_2\} + F$$
 (2-3)

aufgrund der hohen Solvatationsenergie des Fluorid-Anions in polaren Lösungsmitteln sowie der hohen Bildungstendenz des Difluorcarbens (und Folgeprodukten) energetisch begünstigt sein. Plausibel erscheint dagegen die primäre Bildung eines Charge-Transfer-Komplexes zwischen dem elektronenreichen Phosphan P(NEt₂)₃ und CF₃Br (Abb. 2.1). Entsprechende Komplexe von CF₃I und CF₃Br wurden mit verschiedenen Donormolekülen bereits beschrieben [24, 25]. Einhergehend mit der Komplexbildung findet eine Polarisierung der CBr-Bindung statt, die die elektrophile Substitution des CF₃-Kohlenstoffs erleichtert. Die hohe Elektronendichte am

Phosphor ist für die Komplexbildung (und damit für die Übertragungsreaktion) essentiell, bei

Substitution des Phosphans mit weniger elektronenreichen Gruppen (z.B. PPh₃) werden keine CF₃-Übertragungsprodukte beobachtet.

Für die Übertragung der CF₃-Gruppe auf die Siliciumverbindung liegen bis dato noch keine gesicherten Erkenntnisse vor, die den Mechanismus eindeutig beschreiben und damit auch die Kriterien für die elektronischen Voraussetzungen der E-X-Bindung festlegen. Neben offenkettigen oder cyclischen Übergangszuständen [23] muß auch die Beteiligung von radikalischen oder radikal-

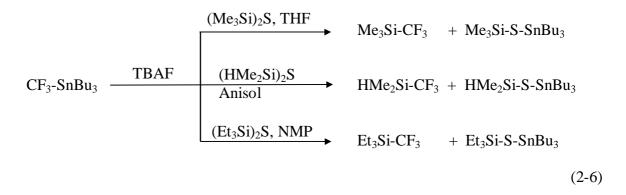
anionischen Intermediaten diskutiert werden, insbesondere da aus Experimenten Hinweise erhalten werden, die auf eine Unterdrückung der Übertragung bei Anwesenheit von Sauerstoff deuten. Einer Reaktion basierend auf freien Radikalen widersprechen jedoch hohe Selektivitäten, beispielsweise bei der Umsetzung mit SiCl₄, sowie die sterische Hinderung im Fall von sehr sperrigen Substituenten am Silicium. Aus den experimentellen Ergebnissen erscheint daher eine konzertierte Übertragungsreaktion (mit cyclischen Übergangszustand) noch am wahrscheinlichsten, wobei vor allem die Lewis-Acidität des Siliciums eine große Rolle spielt.

Auf der Grundlage dieser Übertragungsreaktion wurden von *H.Beckers*, *H. Bürger*, *R. Eujen et al.* neben einer Vielzahl von Mono- und Bis(trifluormethyl)silanen auch die dreifach trifluormethylierte Verbindung (CF₃)₃Si(NEt₂) dargestellt und charakterisiert [22, 23, 43], (CF₃)₄Si ist dagegen bis heute noch unbekannt.

Die Bildung eines Charge-Transfer-Komplexes steht auch bei der von *Pawelke* entwickelten Methode im Vordergrund, die eine Polarisierung der CI-Bindung von CF₃I durch Komplexbildung mit der elektronenreichen Doppelbindung des Tetrakis(dimethylamino)ethens bewirkt [26]:

$$Me_{3}SiCl \xrightarrow{(Me_{2}N)_{2}C=C(NMe_{2})_{2}} Me_{3}SiCF_{3}$$
 (2-4)

Der Vorteil des kommerziell verfügbaren Aminoethens wird durch die aufwendigere und kostenintensivere Darstellung des CF₃I gemindert; die Verwendung von CF₃Br führt zu wesentlich geringeren Umsätzen.

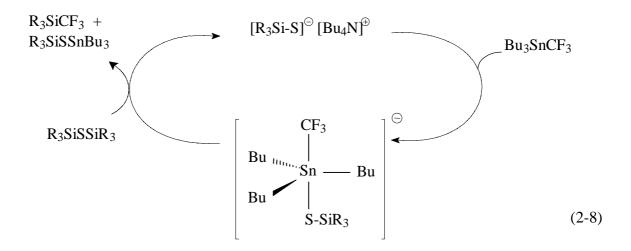

Prakash et al. stellten ausgehend von Me₃SiCl CF₃SiMe₃ elektrochemisch durch kathodische Reduktion von CF₃Br dar [27]. In Gegenwart von Al³⁺-Ionen in HMPA wurde das Trifluormethylsilan in 73% iger Ausbeute isoliert.

Eine Weiterentwicklung dieser Reaktion erfolgte durch *Grobe* und *Hegge*, die zur Reduktion des Trifluorbrommethans elementares Aluminium einsetzten [28]:

$$Me_3SiCl + CF_3Br + 2/3 Al \xrightarrow{20^{\circ}C, NMP} Me_3SiCF_3 + 2/3 Al(Cl,Br)_3$$
 (2-5)

Eigene Versuche, diese Übertragungsreaktion auf die Halogensilane MeSiCl₃, Me₂SiCl₂ und [Cl₂MeSi]₂ anzuwenden, zeigten jedoch, daß die wesentlichen Probleme, die bei der Verwendung von P(NEt₂)₃ auftreten, auch hier erhalten bleiben bzw. verstärkt werden. Als weiterer negativer Gesichtspunkt erweist sich zudem die in der Induktionsphase der Reaktion notwendige Temperatur von 50°C, die eine Darstellung temperaturempfindlicher Trifluormethylsilane ausschließt, sowie die erschwerte Isolierung der Produkte aus dem teilweise polymeren Reaktionsgemisch.

Ein mechanistisch anderer Weg zu CF₃-Siliciumverbindungen wurde 1996 von *Olah*, *Prakash et al.* beschritten. Unter Nutzung der stärkeren Affinität des Zinns zu Schwefel führte die Umsetzung von Bu₃SnCF₃ mit Disilylsulfiden unter Fluorid-Katalyse zu CF₃-Siliciumverbindungen [29]:



Im ersten Schritt wird die SiSSi-Einheit durch das Fluoridanion zu Me₃SiF und einem Silylmercapthio-Anion gespalten:

$$R_3Si-S-SiR_3 + [Bu_4N]F \longrightarrow [R_3Si-S]^-[Bu_4N]^+ + Me_3SiF$$

$$R = Me, Et, H$$
(2-7)

Für den weiteren Ablauf wurde ein Katalysecyclus formuliert, der zur Bildung von Trifluormethylsilan und Silylstannylsulfiden führt:

Direkte Vorteile dieses Verfahrens sind allerdings nicht ersichtlich, da zum einem sowohl CF_3SnBu_3 als auch die Disilylsulfide aufwendig synthetisiert werden müssen, zum anderen die Silane R_3SiCF_3 mit der Reagenzkombination $P(NEt_2)_3/CF_3Br$ leicht und in höheren Ausbeuten zugänglich sind.

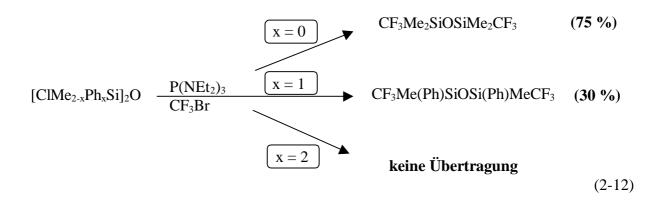
Als metallorganisches CF_3 -Übertragungsreagenz hat sich neben $Hg(CF_3)_2$ [30] vor allem donorstabilisiertes $Cd(CF_3)_2$ bewährt [31]:

$$2 R_3E-X + Cd(CF_3)_2 \leftarrow D \longrightarrow 2 R_3E-CF_3 + 2 CdX_2 + D$$
 (2-9)
 $E = Ge, Sn, Pb \text{ und andere; } D = Diglyme, CH_3CN$

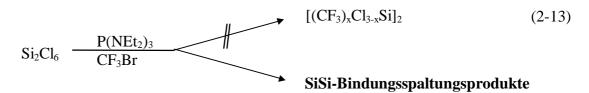
In Übereinstimmung mit *Naumann et. al* [33] führten jedoch alle Versuche, CF₃-Gruppen auf Halogensilane mittels Hg(CF₃)₂ oder Cd(CF₃)₂ (sowohl donorstabilisiert als auch donorfrei [32]) zu übertragen, ausschließlich zur Ausbildung von SiF-Bindungen:

$$R_3SiCl + Cd(CF_3)_2 \leftarrow D \xrightarrow{-50^{\circ}C - RT} R_3SiF + CdCl_2 + 2 \{CF_2\}$$
 (2-10)

Zusammenfassend zeigt der Vergleich der bekannten CF₃-Übertragungsmethoden, daß die Reagenzkombination P(NEt₂)₃/ CF₃Br insbesondere aufgrund der höchsten Variabilität deutliche Vorteile aufweist. Unter Beachtung der elektronischen Besonderheiten der Übertragungsreaktion sowie durch Anwendung von Schutzgruppentechniken (siehe Kap. 2.2) ist eine große Bandbreite funktioneller Trifluormethylsilane zugänglich, die auch in präparativ nutzbaren Mengen dargestellt werden können.


2.2 Limitierende Faktoren für die CF₃-Übertragung, Schutzgruppentechnik

Die Verwendung der Reagenzkombination P(NEt₂)₃/ CF₃Br bietet im Vergleich zu anderen Übertragungstechniken zwar die meisten Vorteile, unterliegt aber auch gleichzeitig mehreren limitierenden Faktoren:


1) Während die Trifluormethylierung von SiCl₄ als einziges Produkt CF₃SiCl₃ liefert, wird bei der Umsetzung von MeSiCl₃ stets ein Gemisch erhalten, das sich aufgrund der Ähnlichkeit der Siedepunkte destillativ nicht auftrennen läßt [21, 3]:

Generell findet man bei allen Silanen R_xSiCl_{4-x} (x = 1, 2; R = Alkyl, Aryl, OR, NR₂), bei denen die Möglichkeit zur mehrfachen Trifluormethylierung gegeben ist, stets ein Gemisch vor. Der Grad der Trifluormethylierung kann durch die Stöchiometrie nur unwesentlich beeinflußt werden, so daß bestenfalls eine Anreicherung einer Verbindung erreicht wird.

2) Der sterische Anspruch der CF₃-Übertragung zeigt sich in abnehmenden Ausbeuten bei Silanen mit sperrigen Substituenten, der bis zur vollständigen Unterdrückung der CF₃-Substitution führen kann. So sind beispielsweise CF₃SiPh₃ oder CF₃Si(NEt₂)₃ nicht mehr aus den entsprechenden Chlorsilanen durch Trifluormethylierung zugänglich. Wird die Phenylgruppe schrittweise durch die sterisch etwas anspruchslosere Methylgruppe ersetzt, steigt die Ausbeute an CF₃-substituierten Silanen an. In gleicher Weise erhöhen sich die Ausbeuten, wenn die Diethylaminofunktion durch die etwas kleinere Dimethylaminogruppe ersetzt wird. Das Ausbleiben der CF₃-Übertragung bei sterischer Belastung hat nicht nur Konsequenzen für die Darstellung von Monosilanen, sondern beeinflußt auch die Synthesemöglichkeiten von CF₃-substituierten SiSi- bzw. SiOSi-Bindungssystemen. So ist das Bis(trifluormethyl)-tetramethyldisiloxan noch in recht guten Ausbeuten erhältlich, die bei Einführung von Phenylresten drastisch absinken. In gleicher Weise gilt dies auch für die entsprechenden trifluormethylierten SiSi-Systeme:

3) Eine Limitierung erfährt die Übertragungsreaktion auch dann, wenn das Siliciumatom aufgrund einer hohen Anzahl elektronegativer Substituenten sehr lewis-aciden Charakter besitzt. Dies gilt vor allem für hochhalogenierte SiSi- bzw. SiOSi-Systeme. So führt beispielsweise die Umsetzung von Hexachlordisilan nicht zu trifluormethylierten Disilanen, sondern es entstehen SiSi-Spaltungsprodukte infolge der Einwirkung des elektronenreichen Phosphans P(NEt₂)₃:

Der Reaktionsverlauf sowie die Spaltungsprodukte werden in Kap. 4.3 näher beschrieben. Bei hoher Lewis-Acidität der Silane werden in vielen Fällen auch Transaminierungsreaktionen beobachtet, die durch die Anwesenheit von Ammoniumsalzen katalysiert werden:

$$SiCl_4 + P(NEt_2)_3 \xrightarrow{\qquad} SiCl_{4-x}(NEt_2)_x + P(NEt_2)_{3-x}Cl_x \qquad (2-14)$$

Da Chloraminophosphane im Gegensatz zu P(NEt₂)₃ nicht als Übertragungsreagenzien wirken können, entstehen Gemische von verschiedenen trifluormethylierten Aminosilanen und -phosphanen. Diese können zwar aufgrund der unterschiedlichen Siedepunkte getrennt werden, jedoch werden die Ausbeuten an Trifluormethylsilanen deutlich geringer.

Durch die CF_3 -Substitution wird die Acidität der Silane teilweise so stark angehoben, daß mit überschüssigem $P(NEt_2)_3$ eine Donor-Akzeptor-Wechselwirkung eintritt, die eine Abtrennung der Produkte aus dem Reaktionsgemisch sehr erschwert. Vor allem hochsiedende Produkte können nur durch aufwendige Extraktionsprozeße gewonnen werden.

Durch Einführung von Schutzgruppen läßt sich prinzipiell sowohl der Grad der Trifluormethylierung steuern als auch die Lewis-Acidität der Silane erniedrigen. Die Grundvoraussetzungen für eine erfolgreiche Anwendung der Schutzgruppentechnik sind neben hohen Gesamtausbeuten vor allem die Beständigkeit während des Trifluormethylierungsschrittes (b) sowie der Erhalt der CF₃-Gruppe bei der Abspaltungsreaktion (c). Als Schutzgruppen haben sich neben Arylfunktionen vor allem Amino- und Alkoxyreste bewährt, die ansonsten in der Organosiliciumchemie verwendet werden [34].

$$X - Si - Y \xrightarrow{(a)} X - Si - R_S \xrightarrow{(b)} CF_3 - Si - R_S \xrightarrow{(c)} CF_3 - Si - Y$$

$$Einführung der Schutzgruppe Trifluormethylierung Entschützung (2-15)$$

Durch Einführung von Aminogruppen kann das Elektronendefizit lewis-acider SiSi-Systeme soweit ausgeglichen werden, daß eine Trifluormethylierung ohne Bindungsspaltung durchgeführt werden kann. Einen Überblick über die verschiedenen Schutzgruppen gibt Tab. 2.1:

Tabelle 2.1: Schutzgruppen für die Darstellung von Trifluormethylsilanen

Schutzgruppe	Einführung	Abspaltung
Aryl (Ph, Tol)	PhLi, TolMgBr	$HX (X = Cl,Br), Br_2$
Amino (NEt ₂ , NMe ₂)	HNEt ₂ , HNMe ₂	$\begin{aligned} &HX \text{ (} X = Cl, Br_2 \text{ , I)} \\ &RCOCl \text{ (} R = Me, Ph), \\ &BX_3 \text{ (} X = Cl, Br) \end{aligned}$
Alkoxy (OMe)	MeOH (Base)	RCOCl ($R = Me, Ph$), TiCl ₄

Die Verwendung von Alkoxyresten erweist sich in der Synthese von SiOSi-Systemen als vorteilhaft, da bei der Hydrolyse keine Derivatisierung mehr erforderlich ist und die Trifluormethyl-alkoxysilane direkt eingesetzt werden können. Die Ausbeuten liegen für die geschützten Silane zwischen 70 % und quantitativem Umsatz, wobei ein Abbau der CF₃-Gruppierung nur selten zu beobachten ist. Die Entschützung kann gleichfalls unter so milden Bedingungen durchgeführt werden, daß eine Reihe funktioneller Silane zugänglich ist, die durch direkte Trifluormethylierung nicht gewonnen werden können.

2.3 Die Benkeser - Reaktion von Chlorsilanen mit CF₃Br

2.3.1 HSiCl₃ und MeSiH₂Cl

Für den Einsatz des Reaktionssystems HSiCl₃/ Base zur Silylierung sowohl von organischen als auch anorganischen Verbindungen existieren zahlreiche Beispiele in der Literatur [35, 36]. Während Halogenide mit aromatischen Resten wie z.B. p-Chlor-benzylchlorid glatt reagieren [37], lassen sich Alkylhalogenide meist nur in geringem Umfang silylieren [35]:

$$p-ClC_6H_4-CH_2Cl \xrightarrow{\text{HSiCl}_3} p-ClC_6H_4CH_2SiCl_3 \quad (78\%)$$
 (2-16)

Br₂CHCH₃
$$\xrightarrow{\text{HSiCl}_3}$$
 CH₃CH(SiCl₃)₂ (28%) (2-17)

Als reaktives Teilchen des als *Benkeser*-Reaktion bekannt gewordenen Systems wird von den meisten Autoren das Trichlorsilylanion, SiCl₃-, postuliert, was aber in Zusammenhang mit den Ergebnissen aus der basenkatalysierten Spaltung von Si₂Cl₆ angezweifelt werden kann (siehe Kap. 4.3). Wahrscheinlicher ist dagegen die HCl-Eliminierung zum Dichlorsilylen, welches durch überschüssiges Amin stabilisiert wird und durch Insertion in Element-Halogenbindungen abreagiert.

Erste Versuche, teilfluorierte Methylgruppen über den Mechanismus der *Benkeser*-Reaktion auf Silicium zu übertragen, wurden von *Ruppert* und *Josten* durchgeführt [38]. Dabei konnte ausgehend von CFCl₃ und HSiCl₃ in Gegenwart einer Base (Dichlorfluormethyl)trichlorsilan in 21% iger Ausbeute isoliert werden:

$$HSiCl_3 + CFCl_3 \xrightarrow{\hspace{0.5cm} + \hspace{0.5cm} NEt_3 \hspace{0.5cm}} Cl_3Si(CFCl_2) \hspace{0.5cm} (2-18)$$

Die geringe Ausbeute an Silylierungsprodukt wird dabei auf eine nachträgliche SiC-Spaltung durch das Ammoniumchlorid zurückgeführt. Diese Deutung steht jedoch nicht im Einklang mit den chemischen Eigenschaften vergleichbarer Verbindungen (z.B. CF₃SiCl₃):

$$Cl_3Si(CFCl_2)_2$$
 \longrightarrow $HCFCl_2 + SiCl_4$ (2-19)

Bei der Umsetzung von HSiCl₃ mit CF₃Br in Gegenwart von Basen hängt die Produktverteilung von der Reaktionstemperatur sowie dem Lösungsmittel ab. Unter den flüchtigen Produkten kann CF₃SiCl₃ (1) in Anteilen bis zu 20% neben SiCl₄ NMR-spektroskopisch nachgewiesen werden:

$$HSiCl_3 + CF_3Br \xrightarrow{NR_3, L} CF_3SiCl_3 + SiCl_4$$
 (2-20)

R = Et, Pr, Bu; L = ohne Lsgm., Hexan, Heptan, Toluol, Triglyme

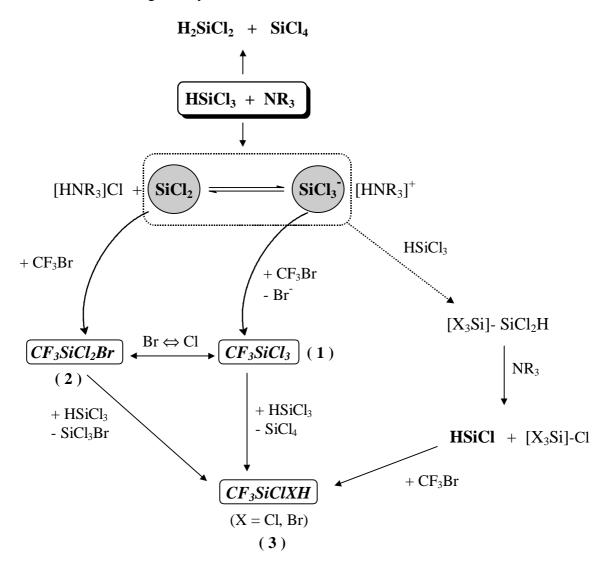
Als weitere CF_3 -Siliciumverbindungen wurden in wesentlich geringeren Mengen CF_3 Si Cl_2 Br (2) sowie CF_3 Si HX_2 (X = Cl, Br) (3) beobachtet (Tab. 2.2).

Tab. 2.2: Trifluormethylsilane aus der Reaktion HSiCl₃/ Amin/ CF₃Br

Silan		δ^{13} C	$\delta^{\!\scriptscriptstyle 19}$ F	δ^{29} Si	2 <i>J</i> (SiF)	Ausbeute
CF ₃ SiCl ₃ ^a	(1)	123.3	-70.3	-16.6	76.1	ca. 20%
$CF_3SiCl_2Br^b$	(2)	122.9	-70.5	-22.8	76.4	ca. 5%
CF ₃ SiHX ₂ ^c	(3)		-68.6		66.8	Spuren

a) ${}^{1}J(CF)$ 314.3 Hz, b) ${}^{1}J(CF)$ 315.4 Hz, c) $\delta^{1}H$ 5.68 ppm, ${}^{3}J(HF)$ 4.1 Hz.

Eingehende Variation der Reaktionsbedingungen zeigte, daß bei der Verwendung eines sehr polaren Lösungsmittels (Diglyme, Triglyme) und bei relativ hohen Reaktionstemperaturen (30°C) der Umsatz zu CF₃SiCl₃ am höchsten ist. Bei Temperaturen unterhalb von -25°C erfolgt zunächst Adduktbildung des Amins mit HSiCl₃, wonach es bei weiterem Aufwärmen vermutlich zur raschen Abfolge mehrerer konkurrierender Reaktionen kommt.


Zugleich konnte festgestellt werden, daß die Stöchiometrie der Reaktion nicht einer einfachen 1:1-Umsetzung des Amins mit HSiCl₃ entspricht. Werden equimolare Mengen der beiden Komponenten eingesetzt, wird nach Aufarbeitung des Reaktionsansatzes ein Teil des HSiCl₃ zurückgewonnen. Erst bei Verwendung der zweifachen Menge an Amin wird HSiCl₃ vollständig umgesetzt.

Eigene NMR-spektroskopische Untersuchungen an dem System HSiCl₃/ NR₃ zeigen, daß die Dismutierung von HSiCl₃ (δ^1 H 6.26 ppm, δ^{29} Si -10.6 ppm, 1 J(SiH) 363.0 Hz) zu SiCl₄ und H₂SiCl₂ (δ^1 H 5.59 ppm, δ^{29} Si -12.0 ppm, 1 J(SiH) 286.3 Hz) nur langsam, d. h. über mehrere Stunden verläuft, während in Gegenwart von CF₃Br das System sehr schnell abreagiert. Bei NMR-spektroskopischer Verfolgung der Reaktion von HSiCl₃ mit NBu₃ konnten neben den oben erwähnten Produkten noch weitere SiH-funktionelle Chlorsilane beobachtet werden, wobei eine Resonanz die für SiSi-Systeme charakteristische SiH-Fernkopplung aufweist (δ^1 H 5.71 ppm, δ^{29} Si -10.2 ppm, 1 J(SiH) 285.6 Hz, J(SiH) 6.1 Hz, Vergleich Cl₃SiSi(H)Cl₂: δ^{29} Si(Si(H)Cl₂) -8.2 ppm, 1 J(SiH) 294.0 Hz; [Cl₂(H)Si]₂: δ^{29} Si(Si(H)Cl₂) -5.4 ppm, 1 J(SiH) 285.3 Hz [39]). Der Aufbau des SiSi-Systems kann durch Insertion des Dichlorsilylens in die SiH-Bindung von HSiCl₃ erfolgen, wobei Konkurrenzreaktionen (z.B. Insertion in SiCl-Bindungen [40]) nicht auszuschließen sind. Ein Wachstum der SiSi-Kette wird durch die Anwesenheit der Base verhindert, die in lewis-sauren SiSi-Bindungssystemen zur Kettenspaltung führt (siehe Kap. 4.3: Reaktion von Si₂Cl₆ mit P(NEt₂)₃).

Eine Insertion von $SiCl_2$ in CF_3Br führt zunächst zu dem gemischten Trifluormethylsilan ($\mathbf{2}$), das durch Halogenaustausch in CF_3SiCl_3 überführt wird. Der Halogenaustausch wird vermutlich durch die Ammoniumsalze [HNR3]Cl katalysiert, so wie es auch in dem Reaktionssystem $Si_2Cl_6/Base/CF_3Br$ zu beobachten ist (Kap. 4.3). Die Ammoniumsalze sind auch in der Lage, einen Cl/H-Austausch zu katalysieren [41], der zu der hydrierten Verbindung ($\mathbf{3}$) führt. Alternativ ist auch eine SiSi-Spaltung des [X_3Si]-SiCl $_2$ H-Systems (X_3 H-Gulgomerer Rest) in X_3Si Cl und ClSiH denkbar, wobei durch Addition des ClSiH an CF_3Br ein SiH-funktionelles Silan entstehen sollte.

Insgesamt steht dem System HSiCl₃/ Base/ CF₃Br eine Reihe vermutlich konkurrierender Reaktionskanäle zur Verfügung, wobei die chemischen Eigenschaften der beteiligten Intermediate die Produktverteilung steuern (Schema 2.1).

Schema 2.1: Reaktionswege im System HSiCl₃/ NR₃/ CF₃Br

Da CF₃SiCl₃ auf destillativem Wege leicht von SiCl₄ zu trennen ist, steht mit der *Benkeser*-Reaktion von HSiCl₃ mit CF₃Br eine Darstellungsmethode für ein funktionelles Trifluormethylsilan zur Verfügung, die sich in ihrer Einfachheit deutlich von anderen Methoden abhebt. Die geringen Ausbeuten werden dabei durch die hohe Verfügbarkeit der Edukte kompensiert.

Eine Übertragung des Reaktionsweges auf MeSi(H)Cl₂ scheitert überwiegend an der wesentlich schwächeren Neigung des Silans zur HCl-Eliminierung. So konnte bei der Reaktion des Dichlormethylsilans mit CF₃Br in Gegenwart von NBu₃ das gewünschte Silan CF₃MeSiCl₂ (4) nur in Spuren neben dem Edukt beobachtet werden:

$$MeSi(H)Cl_2 \xrightarrow{CF_3Br, NBu_3, RT} CF_3MeSiCl_2 (Spuren)$$

$$(2-21)$$

Auch durch Variation der Basen oder der Reaktionsbedingungen wird keine Anreicherung des Trifluormethylsilans (4) erzielt, so daß eine Darstellung über diesen Weg nicht praktikabel erscheint.

2.3.2 CF₃Si(H)Cl₂

Aufgrund der ähnlichen elektronischen Eigenschaften von CF₃Si(H)Cl₂ und HSiCl₃ kann ebenfalls ein ähnlicher Ablauf für die *Benkeser*-Reaktion erwartet werden. Dies ist von besonderem Interesse, da auf diesem Weg ein Zugang zu Bis(trifluormethyl)silanen eröffnet würde, die bisher nur unter großem präparativen Aufwand dargestellt werden konnten [23].

Dichlor(trifluormethyl)silan ist prinzipiell durch direkte Hydrierung von CF₃SiCl₃ mit Bu₃SnH oder LDA zugänglich, jedoch werden gleichzeitig mehrfach hydrierte Produkte erhalten, deren destillative Auftrennung sehr aufwendig ist:

$$CF_3SiCl_3 \xrightarrow{Bu_3SnH \text{ oder LDA}} CF_3(H)_xSiCl_{3-x}, x = 1-3$$

$$(x = 1 \text{ (5a)}, 2 \text{ (5b)})$$

Einfacher kann das Silan durch Trifluormethylierung von HSi(NMe₂)₂Cl mit nachfolgender Abspaltung der Aminofunktionen durch HCl gewonnen werden [23]:

$$HSi(NMe_2)_2Cl \xrightarrow{P(NEt_2)_3} CF_3Si(H)(NMe_2)_2 \xrightarrow{+ HCl} CF_3Si(H)Cl_2 \qquad (2-23)$$

Bei der Umsetzung von $CF_3Si(H)Cl_2$ mit CF_3Br und NBu_3 konnte innerhalb von 2 Stunden der vollständige Abbau des Trifluormethylsilans festgestellt werden, wobei als flüchtige Produkte CF_3SiCl_3 , Difluorchlormethan, HCF_2Cl (δ^1H 7.5 ppm, $\delta^{19}F$ -69.1 ppm, $^2J(HF)$ 59.5 Hz), sowie eine weitere Siliciumverbindung erhalten wurde, bei der es sich nach NMR-spektroskopischer Analyse um ($ClCF_2$)Si Cl_3 ($\mathbf{6}$) handelt ($\delta^{13}C$ (CF_2) 125.5 ppm, $^1J(CF)$ 319.9 Hz, $\delta^{19}F$ -67.4 ppm, $\delta^{29}Si$ -15.3 ppm, $^2J(SiF)$ 62.7 Hz).

$$CF_{3}SiHCl_{2} \xrightarrow{NBu_{3}} CF_{3}SiCl_{3} + (ClCF_{2})SiCl_{3} + HCF_{2}Cl$$

$$(2-24)$$

$$(1)$$

Die Bildung von CF₃SiCl₃ entspricht der Bildung von SiCl₄ ausgehend von HSiCl₃, wohingegen HCF₂Cl und (ClCF₂)SiCl₃ auf einen Abbau der CF₃-Gruppe unter Difluorcarben-Eliminierung hinweisen. Hinweise auf Bis(trifluormethyl)verbindungen wurden nicht gefunden, so daß von einer zu hohen Labilität der CF₃-Gruppe unter den Reaktionsbedingungen ausgegangen werden muß.

Kapitel 3 CF₃-substituierte Monosilane

Für den Aufbau zwei- bzw. dreidimensionaler SiSi- und SiOSi-Systeme werden Trifluormethylsilane mit reaktiven Funktionalitäten (X = H, Halogen, OAlkyl)) benötigt, wohingegen
der organische Rest R (R = Alkyl, Aryl) einen stabilisierenden Einfluß ausüben soll. Aufgrund
ihrer Verfügbarkeit, der günstigen chemischen und spektroskopischen Eigenschaften wurde
besonderes Gewicht auf die methylsubstituierten Vertreter gelegt. Die Darstellung der
phenylierten Derivate soll vor allem den sterischen Ansprüchen der Aufbaureaktionen Rechnung
tragen, wobei auch gute Löslichkeitseigenschaften der polymeren Systeme erwartet werden
können.

(CF ₃)R ₂ SiX	R = Alkyl, Aryl X = H, Halogen	→ Disilane, -siloxane
(CF ₃)RSiX ₂ , (CF ₃) ₂ SiX ₂	R = Alkyl, Aryl X = H, Halogen, OAkyl	Ringe, Ketten
(CF ₃)SiX ₃	X = H, Halogen, OAlkyl	

Die Darstellung der Bis(trifluormethyl)silane $(CF_3)_2SiX_2$ ist die Voraussetzung für die Synthese vollständig trifluormethylierter Gerüste, wobei nach bisherigen Erfahrungen die Stabilität der Monosilane stark von der Funktionalität X abhängig ist. Besonders die Silane mit X = Halogen neigen zur Eliminierung von Difluorcarben, die auch unter Anwesenheit nucleophiler Reagenzien ausgelöst werden kann. Für SiSi- und SiOSi-Gerüste wird wiederum eine höhere Stabilität erwartet, die eine Isolierung ermöglichen sollte. Trifunktionelle Silane des Typs CF_3SiX_3 (X = Cl, OMe, H) für den Aufbau Netzwerk-ähnlicher Strukturen sind schon erfolgreich dargestellt und charakterisiert worden. Ausgehend von CF_3SiCl_3 können durch Hydrierung bzw. Alkoholyse der Chlorfunktionen die entsprechenden CF_3 -Silane gewonnen und isoliert werden [23, 43].

3.1 Die Trifluormethylsilane (CF₃)R₂SiX

Ausgangspunkt für die Darstellung der Monosilane CF₃Me₂SiX ist Me₂SiCl₂, das zunächst mit einer Schutzfunktion versehen wird:

$$Me_2SiCl_2 + ArMgBr \xrightarrow{Et_2O} ArMe_2SiCl + MgBrCl$$

$$(3-1)$$

$$(Ar = Tol, Ph)$$

$$Me_2SiCl_2 + 2 HNEt_2 \xrightarrow{Hexan,} (NEt_2)Me_2SiCl + [H_2NEt_2]Cl$$
 (3-2)

Dimethylphenylchlorsilan ist kommerziell erhältlich oder kann durch Reaktion von Me₂SiCl₂ mit PhLi gewonnen werden. Die anschließende Trifluormethylierung der geschützten Silane führt in meist guten Ausbeuten zu den CF₃-substituierten Derivaten:

ArMe₂SiCl
$$\xrightarrow{P(NEt_2)_3}$$
 CF_3Me_2SiAr , Ar = Tol (7a) (79 %) Ph (7b) (75 %)

$$(NEt2)Me2SiCl \xrightarrow{P(NEt2)3} CF3Me2Si(NEt2) (8) (73 %)$$
(3-4)

Die Aryl-substituierten Monosilane werden in einer Tieftemperaturreaktion mit HX (X = Cl, Br) in die Halogenide überführt. Alternativ kann CF_3Me_2SiBr durch Umsetzung mit elementarem Brom dargestellt werden:

$$CF_3Me_2SiAr \xrightarrow{HX} CF_3Me_2SiX, X = Cl(9a), Br(9b), I(9c)$$
(3-5)

$$CF_3Me_2SiAr \xrightarrow{+Br_2, 0^{\circ}C - RT} CF_3Me_2SiBr + ArBr$$

$$(3-6)$$

Das Amino-Silan ($\bf 8$) kann prinzipiell auch mit den Halogenwasserstoffen HX zu den entsprechenden Halogeniden ($\bf 9a-c$) umgesetzt werden. Präparativ einfacher ist jedoch die Si-N-Spaltung mit Benzoylchlorid, bei der nach kurzer Reaktionszeit (15-30 min) das Chlorsilan quantitativ gebildet wird. Bei der Umsetzung von ($\bf 8$) mit BI $_3$ wird neben dem Iodsilan ($\bf 9c$) auch die Bildung kleiner Mengen von CF $_3$ Me $_2$ SiF ($\bf 9d$) beobachtet.

$$CF_3Me_2Si(NEt_2) + PhCOC1 \xrightarrow{\qquad \qquad } CF_3Me_2SiCl + PhCO(NEt_2) \qquad (3-7)$$

$$(9a)$$

Durch Reduktion der Halogensilane (9) mit LiAlH₄ ist CF₃Me₂SiH (10) zugänglich:

$$CF_3Me_2SiX \xrightarrow{LiAlH_4} CF_3Me_2SiH (10)$$
 (3-8)

Das phenylierte Monosilan CF₃Ph₂SiCl (**11a**) wird durch Phenylierung von CF₃SiCl₃ dargestellt, wobei die Trennung des Produktgemisches aufgrund der unterschiedlichen Siedepunkte leicht möglich ist.

$$CF_{3}SiCl_{3} \xrightarrow{PhLi, THF,} CF_{3}Ph_{2}SiCl (+ CF_{3}PhSiCl_{2} + CF_{3}SiPh_{3})$$

$$(3-9)$$

$$(11a) (11b)$$

3.2 Die Trifluormethylsilane (CF₃)RSiX₂ und (CF₃)₂SiX₂

Als Ausgangsstoffe für die Darstellung difunktioneller Trifluormethylsilane eignen sich MeSiCl₃ bzw. für partiell hydrogenierte Silane MeSi(H)Cl₂; beide Chemikalien sind ebenso wie Me₂SiCl₂ als Grundchemikalien der Siliciumchemie kommerziell erhältlich.

Als Schutzgruppen eignen sich aufgrund ihrer vielfältigen Möglichkeiten zur selektiven Abspaltung neben Arylresten insbesondere Aminofunktionen. Außerdem hat sich als alternative Schutzgruppe die Methoxygruppe bewährt. Durch selektive Chlorierung wird aus MeSi(OMe)₃ das Edukt für die CF₃-Übertragung gewonnen:

$$MeSi(OMe)_3 + PhCOCl \xrightarrow{80^{\circ}C} MeSi(OMe)_2Cl + PhCO(OMe)$$
 (3-10)

$$MeSi(OMe)_2Cl \xrightarrow{P(NEt_2)_3} CF_3MeSi(OMe)_2$$
 (3-11)

Trifluormethylierung mit $P(NEt_2)_3$ / CF_3Br ergibt $CF_3MeSi(OMe)_2$ (**12**) in Ausbeuten bis zu 70%. Durch Reaktion mit Benzoylchlorid bei $60^{\circ}C$ kann nahezu selektiv eine Methoxy-Funktion aus (**12**) durch Chlor ersetzt werden:

$$CF_3MeSi(OMe)_2 + PhCOCl \xrightarrow{60^{\circ}C} CF_3MeSi(OMe)Cl + PhCO(OMe)$$
 (3-12) (13)

Unter milderen Bedingungen verläuft die Umsetzung mit TiCl₄ zu CF₃MeSiCl₂ (**14a**), das in Ausbeuten bis zu 90% erhalten werden kann:

Die Trifluormethylierung des sterisch anspruchsvolleren Diaminosilans MeSi(NEt₂)₂Cl ergibt CF₃MeSi(NEt₂)₂ (**15**) in mäßigen Ausbeuten (54 %), die durch Verwendung des Dimethylaminoderivats auf 67 % gesteigert werden können:

MeSi(NR₂)₂Cl
$$\xrightarrow{P(NEt_2)_3}$$
 CF₃MeSi(NR₂)₂ $R = Et (15)$ (3-14)
= Me (16)

Die Aminosilane (15) und (16) oder das Diphenylderivat $CF_3MeSiPh_2$ (17) können mit Halogenwasserstoffen HX leicht in die Dihalogenide CF_3MeSiX_2 (X = Cl, I) überführt werden:

$$CF_3MeSi(NMe_2)_2 \xrightarrow{HX, -78^{\circ}C} CF_3MeSiX_2 \qquad X = Cl (14a)$$
 (3-15)
= I (14b)

Die nahezu quantitativ verlaufende Hydrierung von (14a) mit LiAlH₄ ergibt das Hydrid CF₃MeSiH₂ (18), während die partiell hydrierten Silane CF₃MeSi(H)X über Schutzgruppentechnik zugänglich sind. Ausgehend von MeSi(H)Cl₂ wird durch selektive Aminierung einer Chlorfunktion MeSi(H)NEt₂Cl erhalten, das nach Trifluormethylierung und Entschützung mit HX in die Halogensilane CF₃MeSi(H)X, (X = Cl, Br, I) überführt werden kann:

$$CF_{3}MeSi(H)NEt_{2} \xrightarrow{HX, -78^{\circ}C} CF_{3}MeSi(H)X \qquad X = Cl (20a) (3-16)$$

$$= Br (20b)$$

$$= I (20c)$$

Die Hydrierung von $CF_3PhSiCl_2$ (11b), das durch Reaktion von CF_3SiCl_3 mit PhLi gewonnen wird (vergl. (3-9)), mit LiAlH₄ ergibt CF_3PhSiH_2 (21). Durch Umsetzung von (21) mit equimolaren Mengen $HNEt_2$ entsteht das Aminosilan (22), das wiederum als Edukt für weitere Synthesen genutzt werden kann:

$$CF_3PhSiH_2 + HNEt_2 \longrightarrow CF_3PhSi(H)NEt_2 + H_2$$
 (3-17)
(21)

Bis(trifluormethyl)silane waren bisher nur durch Trifluormethylierung der Aminochlorsilane $(NR_2)Si(H)Cl_2$, $(R=Me,Et,{}^iPr)$ zugänglich [23, 43f]:

$$(NR2)Si(H)Cl2 \xrightarrow{P(NEt2)3} (CF3)2Si(H)NR2$$
 (3-18)

Durch Si-N-Spaltung und Halogenierung der SiH-Funktion konnten die difunktionellen Bis(trifluormethyl)silane $(CF_3)_2SiX_2$ (X=Cl, Br) erhalten werden. Alternativ lassen sich diese Verbindungen in einer einfachen Synthese durch Umsetzung von Si_2Cl_6 mit $P(NEt_2)_3/CF_3Br$ darstellen. Das primäre Produkt der Reaktionsfolge, $(CF_3)_2SiCl_2\leftarrow P(NEt_2)_3$ (23), wird in das Aminosilan $(CF_3)_2Si(NMe_2)_2$ (24) überführt, welches durch Reaktion mit HX in die freien Halogenide umgewandelt werden kann. Das Aminosilan $(CF_3)_2Si(NMe_2)_2$ (24) kann in Ausbeuten bis zu 65% erhalten werden, als Nebenprodukt wird $CF_3Si(NMe_2)_3$ (ca. 5%) (25) beobachtet. (Über den Mechanismus der Reaktion und die Bildungsweise des Monosilans wird in Kapitel 4.3 ausführlicher berichtet).

$$Si_{2}Cl_{6} \xrightarrow{P(NEt_{2})_{3}} (CF_{3})_{2}SiCl_{2} \leftarrow P(NEt_{2})_{3} + SiCl_{4}$$

$$(3-19)$$

$$(23)$$

$$(CF_3)_2SiCl_2 \leftarrow P(NEt_2)_3 \xrightarrow{+ HNMe_2 \\ -[H_2NMe_2]Cl} \xrightarrow{+ CF_3Si(NMe_2)_2 + P(NEt_2)_3} (3-20)$$

$$(24)$$

$$(+ CF_3Si(NMe_2)_3) (25)$$

$$(CF_3)_2Si(NMe_2)_2 \xrightarrow{HBr, -60^{\circ}C} (CF_3)_2SiBr_2 + 2 [H_2NMe_2]Br$$

$$(24) \qquad (26)$$

$$(+CF_3SiBr_3) (27)$$

3.3 Eigenschaften CF₃-substituierter Monosilane

3.3.1 NMR-Spektren

Die NMR-Parameter der Trifluormethylsilane CF_3R_2SiX und CF_3RSiX_2 (Tabellen 3.1-3.3) spiegeln nur bedingt den Einfluß der Substituenten wider. In erster Linie spricht die Größe der $^2J(SiF)$ -Kopplung auf die elektronische Umgebung des Siliciums an, die außerdem auch die $^1J(CF)$ -Kopplung dominiert. Ähnliche Abhängigkeiten wurden auch bei den Trifluormethylderivaten des Zinns gefunden, wenngleich die Absolutbeträge der $^1J(CF)$ - und $^2J(MF)$ -Kopplungen bei den schweren Homologen (M = Ge, Sn, Pb) größere Werte aufweisen [30, 31]. Die chemische Verschiebung der CF_3 -Gruppen in den ^{19}F -NMR-Spektren eignet sich dagegen nur in geringem Maße als Zuordnungskriterium, da die ^{19}F -Resonanzfrequenz nicht mit der Elektronegativität der Substituenten korreliert. Auch in den ^{29}Si -NMR-Spektren ist eine Abhängigkeit der Resonanzlagen nur innerhalb bestimmter Substitutionsreihen festzustellen. So wird wie bei den Halogensilanen $Y_{4-n}SiX_n$ (X,Y=F, Cl, Br, I) [42] auch bei den Trifluormethylsilanen CF_3Me_2SiX bei Substitution mit schweren Halogenen eine Hochfeldverschiebung der Resonanzen beobachtet (X=Cl: $\delta+18.0$ ppm, X=Br: $\delta+12.6$ ppm, X=I: $\delta-1.6$ ppm), die bei weiterer Halogenierung an Größe gewinnt (CF_3MeSil_2 : $\delta-57.4$ ppm). Die ^{29}Si -Resonanzen der Trifluormethylsilane ($CF_3Si(H)_n(CH_3)_{3-n}$ werden bei zunehmender

Methylsubstitution zu tiefem Feld verschoben, wohingegen die ²⁹Si-Resonanzen der Chlorsilane (CF₃)Si(Cl)_n(CH₃)_{3-n} nur bedingt diesem Trend folgen (δ²⁹Si CF₃SiMe₃ +4.2 ppm, CF₃Me₂SiCl +18.0 ppm, CF₃MeSiCl₂ +7.3 ppm). Für die phenylsubstituierten Trifluormethylsilane wird grundsätzlich ein Hochfeld-Shift gegenüber den Methylderivaten beobachtet. Deutlicher kommen die elektronischen Eigenschaften der Substituenten in den ²J(SiF)- und ¹J(CF)-Kopplungskonstanten zum Ausdruck. Trifluormethylsilane, die ausschließlich Alkyl-, Aryl- bzw. Amino-Gruppen enthalten, weisen ²J(SiF)-Konstanten in der Größenordnung von 36 -38 Hz auf, die bei schrittweiser Einführung von elektronegativen Substituenten in ihrem Betrag größer werden (Abb. 3.1). In gleichem Maße wie die ²J(SiF)-Kopplung zunimmt, wird die ¹J(CF)-Kopplung kleiner. Die höchsten Werte (324.5 - 326.5 Hz) werden bei den Aminosilanen CF₃MeSi(NR₂)₂ gefunden, deren ²J(SiF)-Konstanten von 37 - 40 Hz am unteren Ende der Skala zu finden sind.

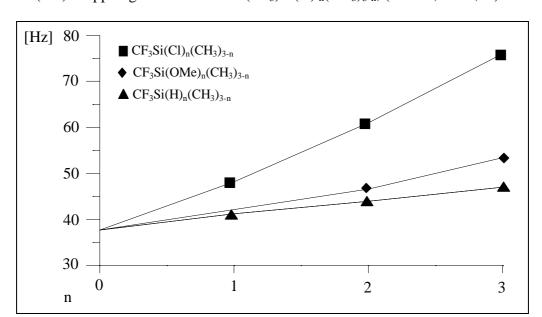


Abb. 3.1: ${}^{2}J(SiF)$ -Kopplungskonstanten von $(CF_{3})Si(X)_{n}(CH_{3})_{3-n}$, (X = Cl, OMe, H)

Ähnlich wie die ¹⁹F- bzw. ²⁹Si- Resonanzfrequenzen folgen die ¹³C-Resonanzen nur bedingt den elektronischen Eigenschaften der Substituenten, wobei tendenziell ein Hochfeld-Shift bei zunehmender Elektronegativität beobachtet wird. Die ¹⁹F-Verschiebungen der Bis(trifluormethyl)silane unterscheiden sich nur geringfügig von vergleichbaren Mono(trifluormethyl)verbindungen. Dagegen bewirkt die Einführung der zweiten CF₃-Gruppe eine Erhöhung der ²J(SiF)-Kopplung gegenüber der Methylgruppe bzw. eine Absenkung gegenüber der Substitution mit Chlor: CF₃SiMe₃ 37.7 Hz, (CF₃)₂SiMe₂ 44.0 Hz, CF₃(Cl)SiMe₂ 48.2 Hz. In den ²⁹Si-NMR-Spektren führt der Austausch von Chlor- oder Methylgruppen gegen eine CF₃-Gruppe zu einem Hochfeld-Shift der Resonanzen (δ²⁹Si CF₃SiCl₃ -16.3 ppm, CF₃MeSiCl₂ +7.3 ppm, (CF₃)₂SiCl₂ -23.5 ppm), während für die Bromderivate aufgrund des ausgeprägten Halogeneffekts die umgekehrte Tendenz zu verzeichnen ist. (δ²⁹Si (CF₃)₂SiBr₂ -27.8 ppm, CF₃SiBr₃ -42.7 ppm). Unter Berücksichtigung der ²⁹Si-NMR-Parameter bisher bekannter Trifluormethylsilane lassen sich somit vor allem für halogenierte Vertreter Erwartungswerte errechnen, die als Zuordnungshilfe bei der Identifizierung unbekannter Verbindungen genutzt werden können.

Tabelle 3.1 : NMR-Parameter von CF_3R_2SiX (R = Me, Ph; X = Ar, NEt₂, H, Halogen)

Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

		$\delta^{\mathrm{l}}\mathrm{H}\left(\mathrm{CH}_{\mathrm{3}}\right)$	δ^{13} C (CF ₃)	$\delta^{\!\scriptscriptstyle 19}$ F	δ^{29} Si	¹ J(CF)	2 <i>J</i> (SiF)
CF ₃ Me ₂ SiTol ^a	(7a)	0.81	131.8	-65.1	-4.5	323.5	38.5
CF ₃ Me ₂ SiPh ^b	(7b)	0.80	131.8	-65.0	-1.2	322.2	38.1
$CF_3Me_2Si(NEt_2)^c$	(8)	0.09	131.3	-67.0	-4.6	326.3	39.7
$CF_3Me_2SiCl^d$	(9a)	0.71	128.1	-69.1	+18.0	321.5	48.2
$CF_3Me_2SiBr^e$	(9b)	0.84	127.3	-68.6	+12.6	319.4	48.2
$CF_3Me_2SiI^f$	(9c)	1.04	125.9	-67.8	-1.6	321.5	45.2
$CF_3Me_2SiF^g$	(9d)	0.53	127.6	-69.6	+16.5	318.9	47.1
$CF_3Me_2SiH^h$	(10)	0.60	131.4	-64.9	-12.9	318.8	41.2
CF ₃ Ph ₂ SiCl	(11b)		128.2	-63.6	-9.4	319.7	48.8

CDCl₃, **a**) δ^1 H (CH₃Ph) 2.6 ppm, δ^{13} C (CH₃) - 6.5 ppm, δ^{13} C (CH₃Ph) 21.6 ppm, 1 J(SiC)(SiCH₃) 55.9 Hz, 2 J(SiH)(SiCH₃) 6.7 Hz; **b**) δ^{13} C (CH₃) -6.6 ppm, 1 J(SiC)(SiCH₃) 55.9 Hz; **c**) δ^1 H (NCH₂CH₃) 0.85 ppm, δ^1 H (NCH₂CH₃) 2.49 ppm, δ^{13} C (CH₃) -0.4 ppm, δ^{13} C (NCH₂CH₃) 45.4 ppm, 3 J(CF)(H₃CSiCF₃) 1.0 Hz, 3 J(HH) 7.1 Hz, 3 J(CH)(H₃CSiCF₃) 2.1 Hz; **d**) δ^{13} C (CH₃) -1.8 ppm, 1 J(SiC)(SiCH₃) 62.1 Hz; **e**) δ^{13} C (CH₃) -0.9 ppm, 1 J(SiC)(SiCH₃) 60.0 Hz; **f**) δ^{13} C (CH₃) 0.3 ppm, 3 J(CF) 1.0 Hz, 2 J(SiH) 7.2 Hz; **g**) δ^{13} C (CH₃) -4.6 ppm, δ^{19} F (SiF) -168.3 ppm, 1 J(SiF) 292.3 Hz, 3 J(FF) 3.4 Hz, 3 J(HF) 7.6 Hz, 2 J(SiH) 7.2 Hz, 2 J(CF)(H₃CSiF) 12.7 Hz, 3 J(CF)(H₃CSiF) 1.2 Hz, **h**) C₆D₆ ext., δ^1 H (SiH) 4.5 ppm, δ^{13} C (CH₃) -8.9 ppm, 3 J(HF) 5.5 Hz, 3 J(HH) 3.7 Hz, 3 J(CF)(H₃CSiCF₃) 1.6 Hz, 2 J(CH)(H₃CSiH) 5.1 Hz, 3 J(CH)(H₃CSiCH₃) 1.7 Hz, 2 J(CH)(F₃CSiH) 6.2 Hz, 3 J(CH) (F₃CSiCH₃) 3.0 Hz, 1 J(SiH) 206.8 Hz, 2 J(SiH) 7.6 Hz.

Tabelle 3.2: NMR-Parameter der Silane CF_3RSiX_2 (R = Me, X = Halogen, OMe, NR₂, H, Ph)

Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

		δ^{l} H (CH ₃)	δ^{13} C (CF ₃)	$\delta^{\!\scriptscriptstyle 19}$ F	δ^{29} Si	$^{1}J(\mathrm{CF})$	² J(SiF)
CF ₃ MeSi(OMe) ₂ ^a	(12)	0.80	127.6	-68.1	-29.2	318.3	46.6
CF ₃ MeSi(OMe)Cl ^b	(13)	0.71	127.5	-68.3	-29.3	318.7	47.5
CF ₃ MeSiCl ₂ ^c	(14a)	0.64	124.8	-70.5	7.3	316.5	61.0
$CF_3MeSiI_2^d$	(14b)	1.76	119.8	-68.9	-57.4	320.1	57.5
$CF_3MeSi(NEt_2)_2^e$	(15)	0.02	130.8	-67.5	-10.3	324.5	36.7
$CF_3MeSi(NMe_2)_2^f$	(16)	0.27	130.1	-64.0	-18.3	326.5	40.1
$CF_3MeSiPh_2^g$	(17)	1.12	131.2	-61.7	-11.8	322.5	36.6
CF ₃ MeSiH ₂ ^h	(18)	0.47	131.5	-60.5	-35.7	316.6	43.9
$CF_3MeSi(H)NEt_2^i$	(19)	0.38	129.8	-66.7	-18.1	324.5	41.8
CF ₃ MeSi(H)Cl ^j	(20a)	0.80	127.5	-67.4	-3.4	316.9	52.3
$CF_3MeSi(H)Br^k$	(20b)	0.95	126.2	-66.0	-10.0	318.4	51.9
$CF_3MeSi(H)I^l$	(20c)	1.14	124.2	-64.6	-33.3	318.4	51.0

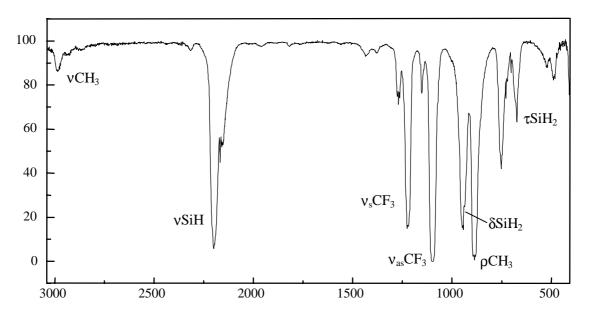
CDCl₃ int.; **a**) δ^{1} H (OCH₃) 4.1 ppm, δ^{13} C (CH₃) -9.5 ppm, δ^{13} C(OCH₃) 50.3 ppm, 1 J(SiC)(*SiC*H₃) 82.7 Hz, 2 J(SiH) 7.9 Hz, 3 J(SiH) 3.9 Hz; **b**) δ^{1} H (OCH₃) 4.0 ppm, δ^{13} C (CH₃) -9.6 ppm, δ^{13} C (OCH₃) 50.2 ppm, 2 J(SiH) 7.9 Hz, 3 J(SiH) 3.9 Hz; **c**) 1 J(SiC) 67.0 Hz; **d**) δ^{13} C (CH₃) 7.1 ppm, 2 J(SiH) 7.9 Hz; **e**) δ^{1} H (NCH₂CH₃) 2.80, δ^{1} H (NCH₂CH₃) 0.95, δ^{13} C (CH₃) 1.2 ppm, δ^{13} C (NCH₂CH₃) 39.3 ppm, δ^{13} C (NCH₂CH₃) 15.6 ppm, 3 J(HH) 7.1 Hz; **f**) δ^{1} H (NCH₃) 2.56, δ^{13} C (CH₃) -7.0 ppm, δ^{13} C (NCH₃) 37.0 ppm, 1 J(SiC)(*SiC*H₃) 68.2 Hz; **g**) δ^{13} C (CH₃) -7.3 ppm, 1 J(SiC)(*SiC*H₃) 59.5 Hz; **h**) δ^{1} H (SiH) 4.11 ppm, δ^{13} C (CH₃) -12.3 ppm, 3 J(HH) 4.3 Hz, 3 J(HF) 6.5 Hz, 3 J(CF) 1.8 Hz, 1 J(SiH) 213.9 Hz, 3 J(SiH) 8.1 Hz; **i**) δ^{1} H (SiH) 4.42 ppm, δ^{13} C (CH₃) -7.7 ppm, δ^{1} H (NCH₂CH₃) 2.90 ppm, δ^{1} H (NCH₂CH₃) 1.04 ppm, δ^{13} C (NCH₂CH₃) 41.0 ppm, δ^{13} C (NCH₂CH₃) 15.0 ppm, δ^{1} J(HH)(CH₃SiH) 3.3 Hz, δ^{1} J(HH)(NCH₂CH₃) 7.1 Hz, δ^{1} J(CF)(H₃CSiCF₃) 1.5 Hz, δ^{1} J(SiC)(*SiC*H₃) 62.3 Hz, δ^{1} J(CH)(H₃CSiH) 7.6 Hz, δ^{1} J(CH)(F₃CSiH) 16.3 Hz, δ^{1} J(CH)(F₃CSiCF₃) 1.2 Hz, δ^{1} J(HF) 5.3 Hz; **j**) δ^{1} H (SiH) 5.01 ppm, δ^{13} C (CH₃) -4.1 ppm, δ^{1} J(CF)(H₃CSiCF₃) 1.2 Hz, δ^{1} J(SiC)(*SiC*H₃) 59.0 Hz, δ^{1} J(HF) 4.9 Hz, δ^{1} J(CH)(F₃CSiH) 14.2 Hz, δ^{1} J(CH)(F₃CSiCH₃) 2.6 Hz, δ^{1} J(SiH) 253.9 Hz; δ^{1} H (SiH) 4.80 ppm, δ^{13} C (CH₃) -4.3 ppm, δ^{1} J(CH)(F₃CSiH) 13.2 Hz, δ^{1} J(CH)(F₃CSiCH₃) 2.8 Hz, δ^{1} J(HF) 5.3 Hz, δ^{1} J(HH) 3.1 Hz.

Tabelle 3.3: NMR-Parameter von CF₃PhSiX₂, CF₃SiX₃ und (CF₃)₂SiX₂ Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

		δ^{13} C (CF ₃)	$\delta^{\!\scriptscriptstyle 19}$ F	$\delta^{29}\mathrm{Si}$	$^{1}J(\mathrm{CF})$	$^2J(SiF)$
CF ₃ PhSiCl ₂	(11a)	125.5	-68.0	-7.6	317.9	60.0
CF ₃ PhSiH ₂ ^a	(21)	129.7	-63.3	-38.6	318.5	43.8
CF ₃ PhSi(H)NEt ₂ ^b	(22)	-	-62.6	-26.5	323.7	41.8
$(CF_3)_2Si(NMe_2)_2^c$	(24)	127.0	-62.5	-43.7	319.3	45.8
$CF_3Si(NMe_2)_3^d$	(25)	129.8	-60,2	-37.9	325.2	40.7
$(CF_3)_2SiBr_2^e$	(26)	121.5	-65.4	-27.8	316.2	67.1
CF ₃ SiBr ₃	(27)	121.1	-70.4	-42.7	318.7	74.8

CDCl₃ int.; **a**) δ^{1} H (SiH) 4.60 ppm, 3 J(HF) 6.5 Hz, 1 J(SiH) 219.9 Hz, 3 J(SiH) 6.4 Hz, ${}^{4/6}$ J(SiH) 1.1 Hz; **b**) δ^{1} H (SiH) 5.00 ppm, δ^{1} H (NC H_{2} CH₃) 3.05 ppm, δ^{1} H (NC H_{2} CH₃) 1.15 ppm, 3 J(HH) 7.1 Hz, 4 J(HH) 1.6 Hz, 3 J(HF) 5.2 Hz; **c**) δ^{1} H (CH₃) 2.60 ppm, δ^{13} C (CH₃) 36.4 ppm, 3 J(CF) 2.9 Hz, 4 J(FF) 4.2 Hz; **d**) δ^{13} C (CH₃) 36.5 ppm; **e**) 4 J(FF) 3.7 Hz.

3.3.2 Schwingungsspektren


Schwingungsspektroskopische Analysen wurden bereits an mehreren trifluormethylierten Silanen durchgeführt [23, 43], deren Ergebnisse als Zuordnungshilfen für die IR/ Raman-Spektren genutzt werden können. Die CF₃-Gruppenschwingungen, insbesondere die Deformationsschwingungen, sind sehr lagekonstant und können anhand ihrer Intensität und ihrem Polarisationsverhalten (Raman) leicht identifiziert werden. So erscheint die asymmetrische Deformationsschwingung (δ_{as} CF₃) in einem charakteristischen Bereich von 520 cm⁻¹ bis 525 cm⁻¹ als schwache IR-Bande, die mit einer ebenfalls schwachen bis mittelstarken, meist depolarisierten Ramanlinie koinzidiert. Die symmetrische Komponente (δ_{s} CF₃), welche auch keine ausgeprägte IR-Intensität besitzt, erscheint dagegen als sehr starke polarisierte Ramanlinie bei ca. 725 cm⁻¹. Die Streckschwingungen ν_{as} CF₃ und ν_{s} CF₃ variieren zwischen 1080 cm⁻¹ - 1100 cm⁻¹ bzw. 1220 cm⁻¹ - 1240 cm⁻¹ und geben sich zumeist als sehr starke IR-Banden zu erkennen (z.B. Abb. 3.3: IR-Spektrum von CF₃MeSiH₂ (**18**)), während sie in den Ramanspektren nur mit geringer Intensität erscheinen.

Die Schwingungsspektren der Methylderivate werden durch die charakteristischen CH_3 -Gruppenschwingungen ergänzt, wobei die Rocking-Schwingungen (ρCH_3) zwischen 740 - 890 cm⁻¹, die Deformationsschwingungen (δ_s und δ_{as}) bei ca. 1260 cm⁻¹ bzw. 1430 cm⁻¹, sowie die Streckschwingungen (ν_s und ν_{as}) oberhalb 2920 cm⁻¹ lokalisiert sind. In dem Frequenzbereich < 400 cm⁻¹ sind die Trifluormethylsilane vor allem durch die Raman-intensive νSiC^F -Schwingung charakterisiert. Wie bereits an verschiedenen Aminochlorsilanen und den entsprechenden Trifluormethylderivaten gezeigt werden konnte [23], ändert sich die auf Substituenten empfindlich reagierende SiH-Streckschwingung bei CF_3 /Cl-Austausch nur wenig, während Cl/Me-Austausch zur Abnahme der Schwingungsfrequenz führt. Gleiches findet man auch für Methylchlorsilane (Abb. 3.2) [44 - 47].

Abb. 3.2: SiH-Streckschwingungsfrequenzen von Methyl(chlor)- und Methyl(trifluormethyl)silanen

Me₂(Cl)SiH

Abbildung 3.3: IR-Spektrum von CF₃MeSiH₂ (18) von 400 cm⁻¹ bis 3000 cm⁻¹

Auch für das Bromderivat $CF_3MeSi(H)Br$ (20b) (vSiH (IR/ Ra) 2216/ 2200 cm⁻¹) ist eine Abnahme der SiH-Frequenz gegenüber (CF_3)₂SiHBr (vSiH (IR/ Ra) 2247/ 2250 cm⁻¹) zu verzeichnen, während Br/I-Substitution keine wesentliche Änderung mehr verursacht: $CF_3MeSi(H)I$ (20c) vSiH (IR/ Ra) 2208/ 2208 cm⁻¹ (vergl. $MeSi(H)_2Br$: vSiH (IR) 2198 cm⁻¹, $MeSi(H)_2I$ vSiH (IR) 2190 cm⁻¹ [45]).

Kapitel 4 CF₃-substituierte SiSi-Bindungssysteme

4.1 Synthesestrategien

Die Darstellungsmöglichkeiten für CF₃-haltige Oligo- bzw. Polysilane orientieren sich primär an den bisher bekannten Verfahren zur Synthese von Organopolysilanen [6].

Besonders hohe Bedeutung erlangte die reduktive Enthalogenierung von Organochlorsilanen mit Alkalimetallen, die in Abhängigkeit von den organischen Substituenten am Silicium eine große Bandbreite an verschiedenen Produkten zulassen. Variationen bezüglich der Lösungsmittel, Temperatur und Stöchiometrie der Reaktion bieten weitere Möglichkeiten zur Produktsteuerung, wobei das Verhältnis von linearen zu cyclischen Silanen durch Wahl unterschiedlicher Reaktionsparameter eingestellt werden kann.

Als Alkalimetall-freie Alternative gewann in den letzten Jahren die Übergangsmetall-katalysierte Kopplung von SiH-funktionellen Monosilanen an Bedeutung [48]. Im Gegensatz zu der reduktiven Enthalogenierung ist die dehydrogenative Kopplung wesentlich stärker von der Reaktivität der eingesetzten Silane abhängig. Primäre Silane zeigen dabei die höchste Aktivität, während tertiäre Monosilane nicht oder nur in geringem Maße zu Kopplungsreaktionen befähigt sind [48c]. Auch Wasserstoff-substituierte Disilane können in Gegenwart von Übergangsmetall-Katalysatoren und BuLi zu Oligosilanen umgesetzt werden [49]. Der Polymerisationsgrad der Dehydrogenierungsreaktionen ist generell recht gering, so daß hochpolymere Produkte nur durch Alkalimetallsynthesen erzielt werden können.

Weitere Möglichkeiten zur SiSi-Bindungsknüpfung, wie die Photolyse von Hydrosilanen [50] oder Silylquecksilberverbindungen [51], Substitutionsreaktionen von Silylanionen [52] oder Insertionsreaktionen von Silylenen [53] spielen zumeist nur eine untergeordnete Rolle und werden präparativ dann genutzt, wenn erste Aufbaureaktionen nicht oder nur in geringen Ausbeuten zum Erfolg führen. Eine interessante Alternative zu den genannten Methoden ist die elektrochemische Polymerisation von Chlorsilanen, die einen SiSi-Bindungsaufbau frei von Katalysatoren oder Metallen erlaubt [54].

Als Ausgangsmaterialien für die Darstellung von Trifluormethylpolysilanen stehen die in Kapitel 3) beschriebenen Monosilane zur Verfügung, wobei in erster Linie Halogensilane und Hydrosilane der Reihen CF_3R_2SiX und CF_3RSiX_2 (R = Alkyl, Aryl, X = Halogen, H) in Frage kommen.

Ein zweiter Syntheseweg ist die Modifizierung bereits bestehender Siliciumgerüste, wobei ausgehend von chlorfunktionalisierten Di- oder Oligosilanen eine Substitution der Halogenatome durchführbar sein sollte. Diese Methode eignet sich vor allem für Alkyl- bzw. aminsubstituierte Systeme, z.B.:

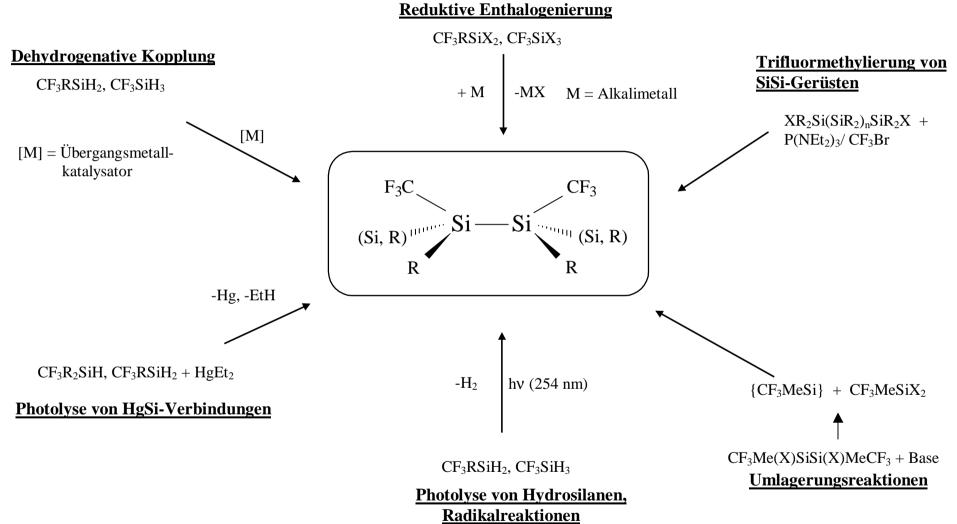
$$XR_2Si(SiR_2)_nSiR_2X \xrightarrow{P(NEt_2)_3} CF_3Br \qquad CF_3R_2Si(SiR_2)_nSiR_2CF_3 \qquad (4-1)$$

$$R = Me, NMe_2; X = Cl, Br; n = 0, 1, 2$$

Eine erfolgreiche Übertragung von CF_3 -Gruppen auf die Ausgangsverbindungen ist jedoch nur dann gewährleistet, wenn die Lewis-Acidität der Siliciumatome gering ist. Wird die Summe der Elektronegativität der Substituenten am Silicium zu hoch, finden Nebenreaktionen wie Transaminierung oder SiSi-Bindungsspaltung statt. Di- und Oligosilane mit sehr elektronenarmen Siliciumatomen (Si_2Cl_6 oder $Me_2Cl_4Si_2$) lassen sich daher durch die Reagenzkombination $P(NEt_2)_3/CF_3Br$ nicht mehr zu den gewünschten CF_3 -substituierten Silanen trifluormethylieren.

Eine Unterteilung der Edukte in "lewis-acide" und "nicht lewis-acide" Di- oder Oligosilane kann durch das chemische Verhalten der SiSi-Bindung bei Anwesenheit von (Lewis)Basen erfolgen. Als Basen fungieren beispielsweise tertiäre Amine NR₃ oder Phosphane PR₃, wobei die SiSi-Bindungsspaltung bei ca. 20°C Reaktionstemperatur auftreten sollte.

$$X_{n}R_{3-n}Si\text{-}SiR_{3-n}X_{n} \xrightarrow{\qquad + \text{Base} \qquad \qquad } keine \ \textit{SiSi-Spaltung} \\ \hline 20^{\circ}C & \qquad \qquad \\ n=2, \ 3 & \qquad \qquad \\ R=Alkyl, \ X=Halogen \qquad \qquad (4-2)$$


Demnach sind Disilane wie ClMe₂SiSiMe₂Cl oder ClMe(NMe₂)SiSi(NMe₂)MeCl der Gruppe der "nicht lewis-aciden" Silane zuzuordnen, wohingegen Si₂Cl₆ oder Me₂Cl₄Si₂ als "lewis-acide" anzusehen sind.

Eine zusätzliche Einschränkung ergibt sich bei zunehmender sterischer Belastung der Ausgangsverbindungen, wie es schon bei Trifluormethylierungsversuchen an Monosilanen beobachtet wurde. So erschweren sperrige Substituenten am Siliciumgerüst (z.B. Phenyl oder Diethylamino) zunehmend die Übertragung bis hin zur vollständigen Unterdrückung.

Neben der Trifluormethylierung von Siliciumgerüstsystemen bieten Umlagerungsreaktionen an Disilanen eine weitere Möglichkeit, CF₃-substituierte Oligosilane zu erhalten. Die Umlagerungen werden meist thermisch oder im Falle "lewis-acider" Disilane mit Basen induziert und führen nach Neuordnung der SiSi-Bindungen zum Aufbau neuer Oligosilane.

Die Darstellung von Oligo- bzw. Polysilanen sollte wie in Schema 4.1 dargestellt sowohl durch Modifizierung von bestehenden SiSi-Gerüsten wie auch durch Kopplungsreaktionen von CF₃-substituierten Monosilanen erreicht werden. Für die Ermittlung chemischer und physikalischer Eigenschaften, verbunden mit der spektroskopischen Charakterisierung, eignen sich vor allem Disilane als Modellsubstanzen, da für sie zahlreiche Vergleichsdaten verfügbar sind.

Schema 4.1: Mögliche Reaktionswege zu trifluormethylierten Oligo- und Polysilanen

4.2 Trifluormethylierung "nicht lewis-acider" Disilane

Die Umsetzung von 1,2-Dichlor-tetramethyldisilan, ClMe₂SiSiMe₂Cl, mit dem Übertragungsreagenz liefert in Ausbeuten von 75% das entsprechende Trifluormethyl-substituierte Disilan (**28**):

$$ClMe_2SiSiMe_2Cl \xrightarrow{P(NEt_2)_3} CF_3Me_2SiSiMe_2CF_3$$

$$(4-3)$$

$$(28)$$

In gleicher Weise ist auch das asymmetrische Disilan $CF_3Me_2SiSiMe_3$ ($\mathbf{29}$) rein darstellbar, während die Trifluormethylierung von $[ClMe(NMe_2)Si]_2$ nur unvollständig verläuft und neben dem Bis(trifluormethyl)disilan $[CF_3Me(NMe_2)Si]_2$ ($\mathbf{30}$) auch Anteile der Mono(trifluormethyl)verbindung , $CF_3Me(NMe_2)SiSi(NMe_2)MeCl$ ($\mathbf{31}$), ergibt.

Die höhere sterische Belastung der SiSi-Bindung durch sperrige Liganden führt zu einer deutlichen Verminderung der CF₃-Gruppenübertragung bis hin zur vollständigen Unterdrückung im Fall des Dichlor-tetraphenyldisilans.

Edukt	CF ₃ -Disilan		Ausbeute
ClMe ₂ SiSiMe ₂ Cl	CF ₃ Me ₂ SiSiMe ₂ CF ₃	(28)	75%
$ClMe_2SiSiMe_3$	$CF_3Me_2SiSiMe_3$	(29)	75%
$[Cl(NMe_2)MeSi]_2$	$[CF_{3}(NMe_{2})MeSi]_{2}$	(30)	ca. 45%
$[Cl(NEt_2)MeSi]_2$	$[CF_3(NEt_2)MeSi]_2$	(32)	Spuren
ClPh ₂ SiSiPh ₂ Cl	$[CF_3Ph_2Si]_2$		

in CH₂Cl₂, 0°C - RT

Die Abtrennung der trifluormethylierten Produkte von den Edukten ist aufgrund der ähnlichen physikalischen Eigenschaften auf destillativem Wege nicht möglich.

Durch Derivatisierung der noch freien SiCl-Funktionen mit Diethylamin können jedoch sehr schwerflüchtige Disilane erhalten werden, welche eine destillative Anreicherung der etwas flüchtigeren Disilane CF₃Me(NMe₂)SiSi(NMe₂)MeCl und [CF₃Me(NMe₂)]₂ erlauben, z.B.:

$$CF_{3}Me(NMe_{2})SiSi(NMe_{2})MeCl \xrightarrow{+ HNEt_{2}} CF_{3}Me(NMe_{2})SiSi(NMe_{2})Me(NEt_{2}) \qquad (4-4)$$

bzw.

$$ClMe(NMe_2)SiSi(NMe_2)MeCl \xrightarrow{+ \ HNEt_2} (NEt_2)Me(NMe_2)SiSi(NMe_2)Me(NEt_2) \quad (4-5)$$

Die CF_3 -substituierten Disilane sind thermisch stabile Verbindungen, die bis $120^{\circ}C$ nicht zur Difluorcarben-Eliminierung neigen und sich im Fall der permethylierten Disilane (28) und (29) gegenüber Luftfeuchtigkeit als inert erweisen. Die Disilane (30 - 32) zeigen die typischen Hydrolyse-Eigenschaften aminierter Silane und müssen daher unter Feuchtigkeitsauschluß gehandhabt werden.

Der Siedepunkt des Mono(trifluormethyl)disilans (**29**) ist mit 126°C fast ebenso hoch wie der des ClMe₂SiSiMe₃ (125°C [55]) während das zweifach CF₃-subsituierte Disilan (**28**) mit 132°C deutlich niedriger siedet als das entsprechende Dichlordisilan (148°C [56]). Bei Raumtemperatur liegt (**28**) als Feststoff vor, der bei 42-43°C schmilzt.

4.2.1 NMR-Spektren

Die Identifizierung der Produkte erfolgte hauptsächlich über ²⁹Si-NMR-Spektroskopie, wobei neben der charakteristischen ²J(SiF)-Kopplungskonstante vor allem ³J(SiF)-Kopplungen einen hohen diagnostischen Wert besitzen. Anhand der charakteristischen Kopplungsmuster ist es möglich, die Substitution mit CF₃-Gruppen an einem bestehenden SiSi-Gerüst zu verifizieren. Weitere "long-range"-Kopplungen, wie beispielsweise ⁴J(CF)-, ³J(SiH)- oder aber auch ³J(CH)-Kopplungen erlauben es in Kombination mit ¹H-, ¹³C- und ¹⁹F-NMR-Spektroskopie, die Struktur der Disilane zweifelsfrei zu bestimmen.

CF₃-substituierte Siliciumatome sind gegenüber benachbarten permethylierten Gruppen durch die tieffeldverschobenen ²⁹Si-NMR-Resonanzen gekennzeichnet. Anhand der Größe der ²J(SiF)-Kopplung kann eindeutig bestimmt werden, welches Siliciumatom über eine ²J- oder ³J-Kopplung mit der CF₃-Gruppe verbunden ist (CF₃Me₂SiSiMe₃, Abb. 4.1). Bei gleichem Substitutionsmuster der Siliciumatome wird nur eine Signalgruppe beobachtet (CF₃Me₂SiSiMe₂CF₃, Abb. 4.2).

Die Größe der ²J(SiF)-Konstante liegt mit ca. 37 Hz im Bereich von bekannten Trifluormethyl-Alkylmonosilanen (CF₃SiMe₃ 37.7 Hz, [21]), während die ³J(SiF)-Kopplungskonstante Werte zwischen 2.4 und 3.0 Hz annehmen kann.

Abbildung 4.1: ²⁹Si{¹H}-DEPT-Spektrum von CF₃Me₂SiSiMe₃ (**29**)

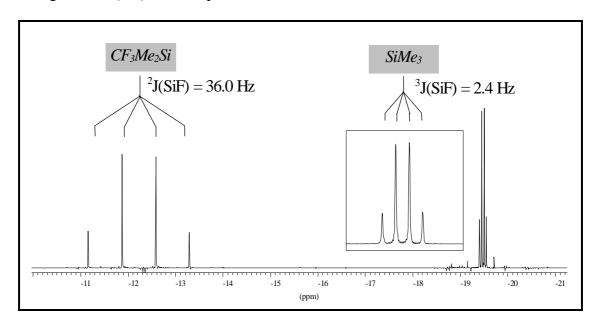
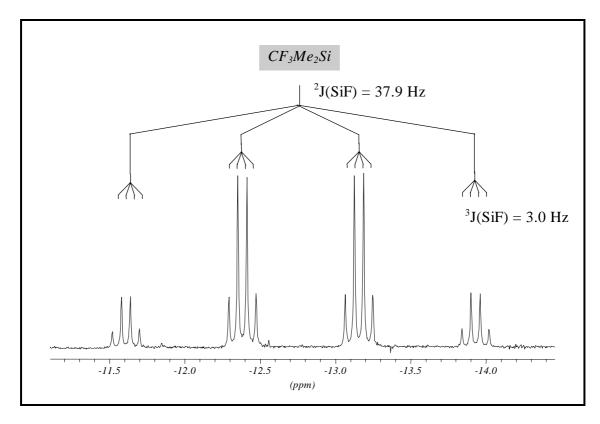
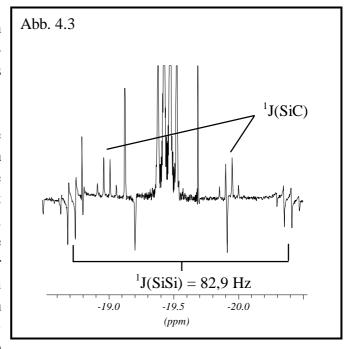



Abbildung 4.2: 29 Si $\{^{1}$ H $\}$ -DEPT-Spektrum von CF $_{3}$ Me $_{2}$ SiSiMe $_{2}$ CF $_{3}$ (**28**)

Die CF₃-Substitution beeinflußt nur die chemische Verschiebung direkt gebundener Siliciumatome. So ist der Shift der SiMe₃-Gruppe im Disilan ($\bf 29$) mit δ^{29} Si -19.5 ppm vergleichbar mit dem der SiMe₃-Gruppe in ClMe₂SiSiMe₃ (δ^{29} Si -18.0 ppm), während die CF₃Me₂Si- und ClSiMe₂-Gruppierung erheblich in ihren Werten differieren (δ^{29} Si(CF₃Me₂Si) -12.2 ppm, δ^{29} Si(ClSiMe₂) +23.8 ppm).


Ähnliche Verhältnisse finden sich bei den Disilanen CF₃Me₂SiSiMe₂CF₃ und ClMe₂SiSiMe₂Cl, bei denen sich die chemische Verschiebung der CF₃-substituierten und Halogen-substituierten Siliciumresonanzen um 30 ppm unterscheiden.

Zusätzliche Strukturinformationen können aus den ¹J(SiSi)-Satellitenspektren der ²⁹Si-Resonanzen gewonnen werden, die im Fall benachbarter, unterschiedlich substituierter

Siliciumatome zu beobachten sind.

Abbildung 4.3 zeigt einen vergr

Abbildung 4.3 zeigt einen vergrößerten ²⁹Si-INEPT-NMR-Ausschnitt eines Spektrums der SiMe₃-Gruppierung des CF₃Me₂SiSiMe₃. Neben dem ¹³C-Satellitenpaar ist ein weiteres Satellitenteilspektrum zu erkennen, das durch die ¹J(SiSi)-Kopplung der unterschiedlichen Siliciumatome hervorgerufen wird. Die negative Phase des Teilspektrums, bedingt durch INEPT-Aufnahmetechnik, erlaubt eine leichtere Zuordnung, da diese Teilspektren bei positiver Phase nur schwer im Gesamtaufspaltungsmuster zu erkennen sind. Mit einer Größe von ¹J (SiSi) = 82.9 Hz ist die Kopplungskonstante um 11 Hz kleiner als im

entsprechenden Chlordisilan ClMe₂SiSiMe₃ (94.0 Hz, [57]) und entspricht damit eher den Werten für Alkyl- bzw. Aryl-substituierten Disilanen (Me₃SiSiMe₂Ph: 86.1 Hz, [57]; Ph₃SiSiMe₂Bu^t: 80.0 Hz [58]).

In Tabelle 4.1 sind die NMR-Parameter der Disilane $CF_3R_2SiSiR_2CF_3$ ($R=Me, NMe_2$) und $CF_3Me_2SiSiMe_3$ zusammengefaßt. Zudem konnte die monotrifluormethylierte Verbindung $[CF_3(NMe_2)MeSiSiMe(NMe_2)Cl]$ spektroskopisch erfaßt werden.

Die Werte für die einzelnen chemischen Verschiebungen und die Größe der Kopplungskonstanten sind sehr ähnlich, was aufgrund der vorliegenden ähnlichen elektronischen Verhältnisse auch zu erwarten ist.

Die $^1\text{H-}$, $^{13}\text{C-}$ und $^{19}\text{F-NMR-}$ Resonanzen für $[CF_3(NMe_2)MeSi]_2$ sowie $[CF_3(NMe_2)MeSi-SiMe(NMe_2)Cl]$ sind jeweils aufgrund der 4 unterschiedlichen Substituenten am Silicium in Diastereomerenpaare aufgespalten, während in den $^{29}\text{Si-NMR-Spektren}$ diese zu einem Signal zusammenfallen.

Tabelle 4.1: NMR-Parameter der Disilane $CF_3R_2SiSiR_2CF_3$ (R = Me, NMe₂) und $CF_3Me_2SiSiMe_3$ Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

Disilan	$\delta(^{1}\mathrm{H})\ \mathrm{C}H_{3}$	δ (13C) C H ₃	δ (13C) C F ₃	δ (¹⁹ F)	δ(²⁹ Si)	$^{1}J(\mathrm{CF})$	2 <i>J</i> (SiF)	$^{3}J(SiF)$
$CF_3Me_2SiSiMe_2CF_3^{(a)}$ (28)	0.47	-7.3	132.2	-60.8	-12.8	322.4	37.9	3.0
$CF_3Me_2Si^ASi^BMe_3^{(b)}$ (29) A		-7.8 -3.2	133.4	-61.5	-12.2 -19.5	324.2	36.0	2.4
$[CF_3(NMe_2)MeSi]_2^{(c)}$ (30)	0.53/ 0.55	-5.8/ -5.9	130.6/ 130.8	-62.5/ -62.8	-13.5	327.2	39.7	3.4
$[CF_3(NMe_2)MeSi^A-ASi^BMe(NMe_2)Cl]^{(d)} \qquad (\textbf{31}) E$		-6.0 2.1/ 2.5	131.1	-62.0/ -62.1	-13.9 -4.6	328.1	37.1	4.4

CDCl₃, TMS bzw. CFCl₃ externer Lock, (**a**) 1 J(SiC)(*SiC*H₃) 47.5 Hz, 1 J(SiC)(*SiC*F₃) 74.4 Hz, 2 J(SiH) 7.0 Hz, 3 J(SiH) 2.7 Hz, 3 J(CH) (F₃*C*SiC*H*₃) 3.3 Hz; (**b**) 1 J(SiC)(*SiC*H₃) 43.7 Hz, 1 J(SiC)(*SiC*F₃) 44.8 Hz, 1 J(SiSi) 82.9 Hz, 2 J(SiC)(*SiSiC*H₃) 6.3 Hz, 3 J(CF)(H₃*C*SiC*F*₃) 2.0 Hz, 3 J(CH)(*H*₃CSi*CF*₃) 3.3 Hz; (**c**) 5 H (NMe₂) 2.62/ 2.63 ppm, 5 C (NMe₂) 38.6 ppm; (**d**) 5 H (CF₃SiNMe₂) 2.54/ 2.56 ppm, 5 H (CISiNMe₂) 2.76/ 2.77 ppm, 5 C (CF₃SiN*Me*₂) 37.9 ppm, 5 C (CISiN*Me*₂) 38.8 ppm.

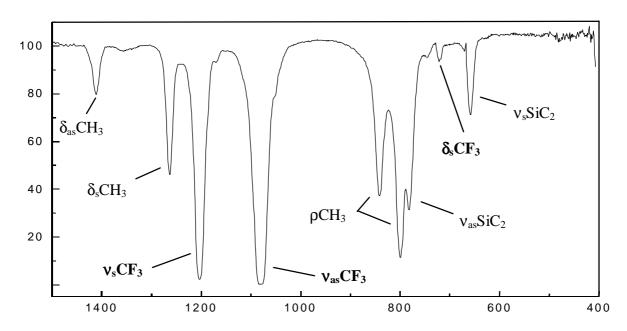
4.2.2 Schwingungsspektren

IR- und Ramanspektroskopische Untersuchungen an $CF_3Me_2SiSiMe_2CF_3$ und $CF_3Me_2SiSiMe_3$ zeigen, daß eine Separierung der CH_3 - und CF_3 -Gruppenschwingungen wie bei Trifluormethylmonosilanen gut durchführbar ist.

Die hohen Streckschwingungs- (ν CH₃) bzw. Deformationsschwingungsfrequenzen (δ CH₃) der Methylgruppen (> 1200 cm⁻¹) werden durch die CF₃-Substitution in ihrer Lage kaum beeinflußt. Auch die charakteristischen Deformationsschwingungen der CF₃-Gruppe, δ_s (CF₃) und δ_{as} (CF₃), variieren gegenüber den Werten für Monosilane nur geringfügig.

Die SiSi-Streckschwingungen der CF₃-substituierten Disilane liegen mit 372 cm⁻¹ bzw. 363 cm⁻¹ sehr nahe zusammen (Tabelle 4.2). Während die Lage der SiSi-Streckschwingung für das monotrifluormethylierte Disilan (**29**) zwischen den Werten des Chlor- und Bromderivates wiederzufinden ist [59, 60], ist die Bande für das Bis(trifluormethyl)disilan (**28**) deutlich gegenüber den Dihalogendisilanen abgesenkt [61].

Tabelle 4.2: vSiSi- und vSiX-Frequenzen der Disilane $Me_3SiSiMe_2X$ und $XMe_2SiSiMe_2X$ sowie vSiX-Frequenzen von Me_3SiX (X = F, Cl, CF_3 , Br)


	$Me_3SiSiMe_2X$			$XMe_2SiSiMe_2X$			Me ₃ SiX		
	v(SiSi) [cm ⁻¹]	v(SiX) [cm ⁻¹]		v(SiSi) [cm ⁻¹]	ν(SiX) [cm ⁻¹]		v(SiX) [cm ⁻¹]		
F	418	-	F	431	856	F	900		
Cl	401	486	C1	398	515	Cl	486		
CF_3	372	450	CF_3	363	393	CF ₃	390		
Br	352	435	Br	465	347	Br	386		

Der erhebliche Unterschied in den SiSi-Streckschwingungsfrequenzen für CF₃Me₂SiSiMe₂CF₃ und BrMe₂SiSiMe₂Br wird durch unterschiedliche Kopplungseffekte der vSiSi mit der Valenzschwingung vSiX hervorgerufen. Während im Bromderivat die Kopplungsabstoßung der Valenzschwingungen zu einer erheblichen Erniedrigung der vSiBr bei gleichzeitiger Erhöhung der vSiSi führt, wird für das Bis(trifluormethyl)disilan eher ein gegenteiliger Effekt erwartet, so wie er auch für ClMe₂SiSiMe₂Cl zu beobachten ist.

Die tiefliegenden Gerüstschwingungen der Trifluormethyldisilane δSiC_3 (Me₃SiSiMe₂X) bzw. δSiC_2 (XMe₂SiSiMe₂X) entsprechen mit 185 cm⁻¹ und 228 cm⁻¹ bzw. 188 cm⁻¹ und 230 cm⁻¹ den Bromderivaten.

Die charakteristischen CF_3 -Gruppenschwingungen (δCF_3 und νCF_3) sind in den für Trifluormethyl-siliciumverbindungen typischen Bereichen lokalisiert, wobei die Deformationsschwingungen als schwache IR-Banden, die Streckschwingungen als sehr intensive Banden zu erkennen sind (Abbildung 4.4, Tabelle 4.3).

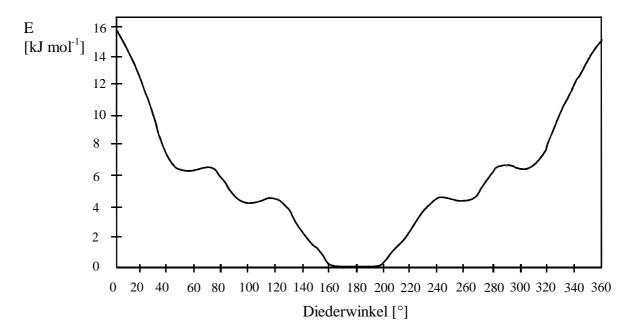
Abbildung 4.4: IR-Spektrum von (28) im Bereich 400 - 1500 cm⁻¹, 15 mbar, KBr

 $\label{lem:condition} Tabelle~4.3:~IR/~Ramanbanden~von~CF_3Me_2SiSiMe_2CF_3~und~Me_3SiCF_3Me_2Si\\ CF_3Me_2SiSiMe_2CF_3~(~28~)~CF_3Me_2SiSiMe_3~(~29~)$

$IR(g)^a$	Raman (s)	Zuordnung	$IR(g)^a$	Raman (l)	Zuordnung
	93 (m,dp)	δCSiSi		140 (m, dp)	$\delta C^H SiC^F$
	136 (m, dp)	$\delta C^H SiC^F$		185 (vs, dp)	δSiC_3
	188 (s, dp)	δSiC_2		212 (m, dp)	δSiC_3
241 (w)	230 (m, dp)	δSiC_2		228 (m, dp)	δSiC_3
293 (s)	295 (w,sh,dp)	ρCF_3		281 (w)	ρCF_3
	309 (w, dp)	ρCF_3		299 (w, dp)	ρCF_3
	363 (m, dp)	vSiSi (g)		372 (vs, p)	vSiSi
	382 (s, p)	$vSiC^F$ (g)	450 (w)	450 (s, p)	νSiC^F
393 (s)		$vSiC^F$ (u)	521 (vw)	521 (w, dp)	$\delta_{as}CF_3$
	470 (w)		621 (w)	623 (s, p)	νSiC
	524 (w, dp)	$\delta_{as}CF_3$	669 (w)	671 (vs, p)	νSiC
659 (m)		v_sSiC_2	696 (w)	698 (m, dp)	$v_{as}SiC_3$
	681 (vs, p)	v_sSiC_2		717 (m, p)	$\delta_s CF_3$
	713 (w, dp)	$v_{as}SiC_2$	739 (w)	741 (w, dp)	ρCH_3
721 (w)	721 (w, dp)	$\delta_s CF_3$	773 (w)	773 (w, dp)	ρCH_3
782 (s)	785 (w, dp)	$v_{as}SiC_2$	804 (s)		ρCH_3
800 (s)		ρCH_3	840 (s)	842 (w, dp)	ρCH_3
841 (m)	837 (w, dp)	ρCH_3	875 (m)	880 (w, dp)	$\rho \mathrm{CH}_3$
	874 (w, dp)	ρCH_3	1077 (s)	1064 (w, dp)	$v_{as}CF_3$
1079 (vs)	1070 (w, dp)	$v_{as}CF_3$	1206 (s)	1202 (w, dp)	v_sCF_3
1204 (vs)	1211 (m, dp)	v_sCF_3	1258 (m)	1256 (w, dp)	$\delta_{as}CH_3$
1263 (s)	1268 (w, dp)	$\delta_s CH_3$		1269 (w, dp)	$\delta_s CH_3$
1412 (m)	1412 (w, dp)	$\delta_{as}CH_3$	1410 (w)	1414 (w, dp)	$\delta_{as}CH_3$
2911 (w)	2914 (w, p)	v_sCH_3	2905 (w)	2905 (vs, p)	νCH_3
2975 (m)	2979 (w, dp)	$v_{as}CH_3$	2962 (m)	2965 (m, dp)	νCH_3

a) 15 mbar, KBr

Theoretische und Ramanspektroskopische Untersuchungen bezüglich der Konformationsgeometrie des Disilans CF₃Me₂SiSiMe₂CF₃ wurden von R. Zink und K. Hassler durchgeführt [62].


Ab initio Rechnungen auf 6-31G*/MP2-Level bestätigen die Existenz dreier verschiedener stabiler Konformere (gauche, anti und ortho), die durch Tieftemperatur-Ramanspektroskopie nachgewiesen wurden.

Als Indikator für die Konformeren wurde die sehr Raman-intensive vSiC^F-Schwingung gewählt, die nach den Berechnungen Banden bei 354 (gauche), 364 (ortho) und 377 cm⁻¹ (anti) zeigen sollte. Tatsächlich wurde eine Aufspaltung der vSiC^F in drei Linien (359, 369, 380 cm⁻¹) beobachtet, die temperaturabhängig unterschiedliche Intensitäten aufweisen.

Die Energieunterschiede zwischen den Konformeren sind erwartungsgemäß sehr gering. So zeichnet sich die Potentialkurve des Gerüstdiederwinkels im Bereich von 60° und 100° durch einen sehr flachen Kurvenverlauf aus (Abbildung 4.5).

Das berechnete Torsions-Energieprofil für das $CF_3SiSiCF_3$ -Gerüst gibt die drei verschiedenen Konformere mit Diederwinkeln von $\pm 56^\circ$ ($E_{rel.}=6.3$ kJ mol⁻¹), $\pm 101^\circ$ ($E_{rel.}=4.3$ kJ mol⁻¹) und $\pm 171^\circ$ ($E_{rel.}=0$ kJ mol⁻¹) wieder.

Abbildung 4.5: Torsions-Energieprofil von CF₃Me₂SiSiMe₂CF₃

Die experimentell gefundenen Energiedifferenzen (bestimmt aus Van't Hoff-Auftragungen) zwischen den Rotameren betragen: H_{gauche} - H_{anti} = 2,65 kJ mol⁻¹, H_{ortho} - H_{anti} = 2,64 kJ mol⁻¹ und H_{gauche} - H_{ortho} = 0 kJ mol⁻¹.

Ein Nachweis der Konformeren durch NMR-spektroskopische Methoden war aufgrund der sehr geringen Energiebarrieren nicht möglich. Selbst bei Temperaturen von -70°C (Toluol-d⁸) wurde keine Aufspaltung oder Verbreiterung der Resonanzen gefunden.

4.3 Trifluormethylierung "lewis-acider" Disilane

Disilane mit hoher Lewis-Acidität des Siliciums, wie Hexachlordisilan oder 1,2-Dimethyltetrachlordisilan, sind durch ihr charakteristisches Reaktionsverhalten gegenüber (Lewis)Basen gekennzeichnet. Je nach Basenstärke findet schon bei milden Temperaturen (ca. 20°C) eine Spaltung der SiSi-Bindung statt. In Anwesenheit geeigneter Reaktionspartner werden durch Folgereaktionen neue Element-Siliciumbindungen aufgebaut. So führt im einfachsten Fall die Reaktion von Si₂Cl₆ mit Trimethylamin zu Perchlor-Neopentasilan und SiCl₄ [63]:

$$Cl_3Si-SiCl_3$$
 \longrightarrow $SiCl_4 + Si(SiCl_3)_4$ (4-6)

Je nach Reaktionsbedingungen wurden noch weitere perchlorierte Polysilane der Zusammensetzung SiCl_{2.05} - SiCl_{2.10} im Produktgemisch identifiziert [64]. Bei Anwesenheit des Alkylhalogenids CH₃Cl wird die Bildung von Methyltrichlorsilan beobachtet [65]:

$$Cl_3Si-SiCl_3 + CH_3Cl$$
 $\xrightarrow{NMe_3}$ $SiCl_4 + CH_3SiCl_3$ (4-7)

In ähnlicher Weise neigt Cl₂MeSiSiMeCl₂ zu Spaltungsreaktionen, wobei die Umsetzung des Disilans mit Basen zu einem Gemisch aus verzweigten Chlor(methyl)oligosilanen führt [66]. Während tertiäre Amine als mittelstarke Basen schon bei Raumtemperatur zur SiSi-Bindungsspaltung ausreichen, ergeben sich bei Verwendung von tertiären Phosphanen Unterschiede in der Reaktivität. Nach eigenen Beobachtungen ist das sehr elektronenreiche P(NEt₂)₃ schon bei tiefen Temperaturen (ca. -80°C) in der Lage, die SiSi-Bindung zu spalten, während für die elektronenärmeren Phosphane PPh₃ eine Reaktionstemperatur von ca. 100°C bzw. für P(CF₃)₃ keinerlei Reaktion mit der SiSi-Bindung bis 200°C beschrieben wird [67]. Alternativ zu den Stickstoff- und Phosphorbasen können auch quaternäre Phosphoniumhalogenide eingesetzt werden, wobei die Reaktionstemperatur mindestens 100°C betragen muß. So konnten *Baney et al.* ausgehend von der "Disilan-Fraktion" der Rochow-Synthese (ClMe₂SiSiMe₂Cl und Cl₂MeSiSiMe₂Cl) durch mehrstündiges Erhitzen mit [Bu₄P]Cl hochpolymere Silane erhalten [68].

Allen Reaktionen gemeinsam ist, daß die SiSi-Spaltung mit der Bildung eines Monosilans einhergeht, dessen Substituenten sich formal aus der Hälfte des eingesetzten Disilans, sowie des gewanderten Substituenten (im Fall der Chlordisilane ein Chloratom) zusammensetzt. Ausgehend von einem intramolekularem Mechanismus wird das Chloratom durch einen 1,2-Shift auf das Siliciumatom des Monosilans übertragen, wobei gleichzeitig ein basenkoordiniertes Silylen entsteht:

$$X \longrightarrow Si \longrightarrow Si \longrightarrow X$$

$$Cl \longrightarrow X$$

Die Existenz der basenstabilisierten Silylene SiCl₂ bzw. MeSiCl kann nur anhand von Reaktionsmechanismen und Endprodukten postuliert werden. Ein direkter spektroskopischer Nachweis der reaktiven Intermediate ist unter den Bedingungen der kondensierten Phase sehr schwierig.

Die Reaktivität der lewis-aciden Disilane gegenüber starken Basen stellt für die Trifluormethylierung ein erhebliches Problem dar, da beim Einsatz des CF₃-Übertragungsreagenzes P(NEt₂)₃ SiSi-Spaltung zu erwarten ist. Selbst bei einer zunächst erfolgreichen Substitution der Cl-Funktionen durch CF₃-Gruppen sollte die Lewis-Acidität der Siliciumatome so hoch sein, daß eine Spaltungsreaktion durch P(NEt₂)₃ kaum zu vermeiden ist.

4.3.1 Das Reaktionssystem Si₂Cl₆/ Base/ CF₃Br

Nach der Umsetzung von Si₂Cl₆ mit P(NEt₂)₃/ CF₃Br in CH₂Cl₂ bei 0°C können wie erwartet keine trifluormethylierten SiSi-Systeme NMR-spektroskopisch nachgewiesen werden, sondern es entsteht ein Produktgemisch, welches sowohl flüchtige wie auch nicht flüchtige CF₃Si-haltige Komponenten enthält:

$$Si_{2}Cl_{6} \xrightarrow{P(NEt_{2})_{3}, CF_{3}Br} CH_{2}Cl_{2}, 0^{\circ}C \Rightarrow SiCl_{4} + (CF_{3})_{2}Si(Cl)NEt_{2} + (CF_{3})Si(Cl)_{2}NEt_{2} + (CF_{3})_{2}SiCl_{2}\leftarrow P(NEt_{2})_{3}$$

$$(+ (CF_{3})_{2}SiClBr\leftarrow P(NEt_{2})_{3})$$

$$(4-9)$$

Als flüchtige Komponenten werden neben $SiCl_4$ zwei Trifluormethyl-aminosilane der Zusammensetzung $(CF_3)Si(Cl)_2NEt_2$ und $(CF_3)_2Si(Cl)NEt_2$ identifiziert:

 $(CF_3)Si(Cl)_2NEt_2$ ($\delta^{19}F = -69.1$ ppm, $\delta^{29}Si = -29.8$ ppm, $\delta^{13}C$ (CF_3) = 125.1 ppm, $^2J(SiF) = 63.7$ Hz, $^1J(CF) = 317.9$ Hz) und (CF_3) $_2Si(Cl)NEt_2$ ($\delta^{19}F = -64.8$ ppm, $\delta^{13}C$ (CF_3) = 124.9 ppm, $^2J(SiF) = 56.5$ Hz, $^1J(CF) = 317.0$ Hz). Die Zusammensetzung der flüchtigen Produkte variiert mit den Reaktionsbedingungen: Bei einem 5fachen oder höheren Überschuß an $P(NEt_2)_3$ sowie einer Reaktionstemperatur von 0°C bis RT werden fast ausschließlich die Aminosilane erhalten (im Verhältnis 1:2,5), während bei 2-3 fachen Überschuß $P(NEt_2)_3$ und einer Temperatur von -70°C überwiegend $SiCl_4$ als flüchtiges Produkt erhalten wird.

Die nicht flüchtigen Produkte, die aufgrund der spektroskopischen Analyse und chemischen Reaktionen als Addukte des P(NEt₂)₃ an (CF₃)₂SiCl₂ bzw. (CF₃)₂SiClBr (s.u.) identifiziert werden konnten, entstehen stets unter beiden Reaktionsbedingungen, wobei das Dichlorsilan den Hauptanteil (ca. 95 %) ausmacht.

Die NMR-spektroskopische Analyse von $(CF_3)_2SiCl_2\leftarrow P(NEt_2)_3$ zeigt z.T. starke Abweichungen von den Werten der bekannten Bis(trifluormethyl)silane $(CF_3)_2SiCl_2$ und $(CF_3)_2SiBr_2$ (Tabelle 4.4). Dies äußert sich beispielsweise in der extremen Hochfeldverschiebung der ²⁹Si-Resonanz oder der stark vergrößerten $^1J(CF)$ -Kopplungskonstante.

Tabelle 4.4: NMR-Parameter der Bis(trifluormethyl)silane (CF₃)₂SiX₂ (X = Cl, Br) [23] und (CF₃)₂SiCl₂ \leftarrow P(NEt₂)₃

	$(CF_3)_2SiCl_2$	$(CF_3)_2SiBr_2$	$(CF_3)_2SiCl_2\leftarrow D$
δ^{19} F	-66.3	-65.9	-73.6
$\delta^{29}\mathrm{Si}$	-23.5	-27.9	-99.4
δ^{13} C	122.2	121.5	129.4
² J(SiF)	68.8	67.0	67.7
¹ J(CF)	314.7	317.5	335.2

 δ in [ppm], J in[Hz], D = P(NEt₂)₃

Die spektroskopischen Eigenschaften der Addukte deuten auf Koordination des sehr lewisaciden Siliciums in Form von penta- oder hexakoordinierten Species hin, was im Einklang mit der Schwerflüchtigkeit des Komplexes steht. Für die Koordination kommen als Donormoleküle prinzipiell P(NEt₂)₃ oder Phosphoniumsalze, die während der CF₃-Übertragung entstehen, in Betracht, wobei die Koordinationsfähigkeit von P(NEt₂)₃ höher als die quarternärer Phosphoniumsalze einzuschätzen ist. Die Komplexierung des "harten" Siliciumatoms wird mit hoher Wahrscheinlichkeit über die freien Elektronenpaare des relativ zum Phosphor härteren Stickstoffs erfolgen. Hinweise auf die Anzahl der Koordinationspartner oder auf eine statische Koordination, z.B. in Form einer SiP-Kopplung, wurden in den NMR-Spektren nicht gefunden, so daß von einem schnellen dynamischen Austausch der Donormoleküle ausgegangen werden muß.

Das donorkomplexierte Bis(trifluormethyl)dichlorsilan, $(CF_3)_2SiCl_2\leftarrow P(NEt_2)_3$ (**23**), ist in polaren Lösungsmitteln sehr gut löslich, hingegen in apolaren Lösungsmitteln wie Hexan oder Petrolether vollständig unlöslich. Seine Abtrennung von den restlichen Komponenten ist durch Extraktion somit nicht möglich. Im Gegensatz zu dem freien Silan neigt das donorstabilisierte $(CF_3)_2SiCl_2$ auch bei Raumtemperatur über mehrere Stunden hinweg nicht zur Zersetzung.

Da die Isolierung von $(CF_3)_2SiCl_2$ aus dem Reaktionsgemisch weder durch Destillation noch durch Extraktion zu erreichen ist, muß die Lewis-Acidität des Siliciums gesenkt werden, so daß die Wechselwirkung mit dem Phosphan verringert wird. Versuche, die Chloratome durch Hydrierung oder Alkylierung zu derivatisieren, scheiterten. Mit aciden Reagenzien wie beispielsweise MeOH reagiert $(CF_3)_2SiCl_2\leftarrow P(NEt_2)_3$ unter HCF_3 -Entwicklung zu Zersetzungsprodukten.

Erfolgreich verläuft jedoch die Aminierung mit Dimethylamin, wobei $(CF_3)_2Si(NMe_2)_2$ als flüchtige Komponente erhalten wird:

$$(CF_3)_2SiCl_2 \leftarrow P(NEt_2)_3 \xrightarrow{HNMe_2, -40^{\circ}C} CHCl_3, Hexan \qquad (CF_3)_2Si(NMe_2)_2 + P(NEt_2)_3 + 2 [H_2NMe_2]Cl$$
(23)

Die Ausbeute, bezogen auf "SiCl₃", liegt bei ca. 60% neben geringen Mengen (5 %) der Monotrifluormethylverbindung $CF_3Si(NMe_2)_3$ (25).

Die Aminosilane können wiederum durch Umsetzung mit Bortrihalogeniden in die entsprechenden freien Halogensilane überführt werden, z.B.:

$$3 (CF_3)_2Si(NMe_2)_2 + 2 BBr_3 \xrightarrow{-60^{\circ}C - RT} 3 (CF_3)_2SiBr_2 + 2 B(NMe_2)_3 (4-11)$$
(24)

Eine weitere Möglichkeit zur chemischen Derivatisierung bietet der Austausch der Donormoleküle. Dafür sind vor allem harte Stickstoffbasen geeignet, welche in der Lage sind, das etwas weichere Phosphan P(NEt₂)₃ zu verdrängen. Als gute Komplexbildner haben sich bei Trifluormethyl-zinnverbindungen Liganden wie Bipyridyl oder Phenanthrolin bewährt, die mit dem lewissauren Zentrum außerordentlich stabile hexakoordinierte Verbindungen bilden [69].

Im Falle des donorstabilisierten (CF₃)₂SiCl₂ können ebenfalls stabile Komplexe erhalten werden, wenn das Reaktionsgemisch mit einer Lösung von Bipyridyl in CH₂Cl₂ versetzt wird:

$$(CF_3)_2SiCl_2 \leftarrow P(NEt_2)_3 \xrightarrow{Bipyridyl} (CF_3)_2SiCl_2 \leftarrow Bipy + P(NEt_2)_3$$

$$(4-12)$$

$$(23)$$

Das Bipyridyladdukt des Silans (53) fällt in Form einer farblosen, pulvrigen Verbindung an, die aufgrund ihrer Unlöslichkeit in CH_2Cl_2 leicht von den restlichen Komponenten abgetrennt werden kann. Die Koordination des Liganden an das Siliciumatom ist so stark, daß eine chemische Derivatisierung der Halogenfunktionen nicht mehr möglich war. Während $CF_3SiCl_3\leftarrow$ Bipy mit MeOH zu $CF_3Si(OMe)_3$ reagiert [23], zeigt sich $(CF_3)_2SiCl_2\leftarrow$ Bipy gegenüber Alkoholen als vollkommen inert:

$$CF_3SiCl_3 \leftarrow Bipy + 3 MeOH \longrightarrow CF_3Si(OMe)_3 + Bipy + 3 HCl$$
 (4-13)

$$(CF_3)_2SiCl_2\leftarrow Bipy$$
 ROH keine Reaktion (4-14)

Auch die Lewis-Säuren HCl und HBr bewirkten keine Freisetzung des Bis(trifluormethyl)silans, ebenso wie Aminierungsversuche mit HNMe₂ und HNEt₂ erfolglos blieben. Weitere chemische und spektroskopische Eigenschaften dieser Komplexverbindungen werden in Kapitel 6 ausführlicher diskutiert.

Die hohe Selektivität, mit der (CF₃)₂SiCl₂←P(NEt₂)₃ gebildet wird, ist durch einen einfachen Übertragungsmechanismus, wie er bei den Monosilanen diskutiert wird, nicht zu beschreiben. Eine zweifache Trifluormethylierung auf einer Seite des Si₂Cl₆ erscheint schon aus statistischen Gründen eher unwahrscheinlich, da nach Übertragung einer CF₃-Gruppe keine elektronische oder sterische Bevorzugung der CF₃SiCl₂-Seite gegenüber der SiCl₃-Seite zu erkennen ist:

$$Si_{2}Cl_{6} \xrightarrow{P(NEt_{2})_{3}} CF_{3}SiCl_{2}-SiCl_{3} \xrightarrow{P(NEt_{2})_{3}} (CF_{3})_{2}SiCl_{2}-SiCl_{3} \qquad (4-15)$$

$$Oder$$

$$(CF_{3})SiCl_{2}-SiCl_{2}(CF_{3})$$

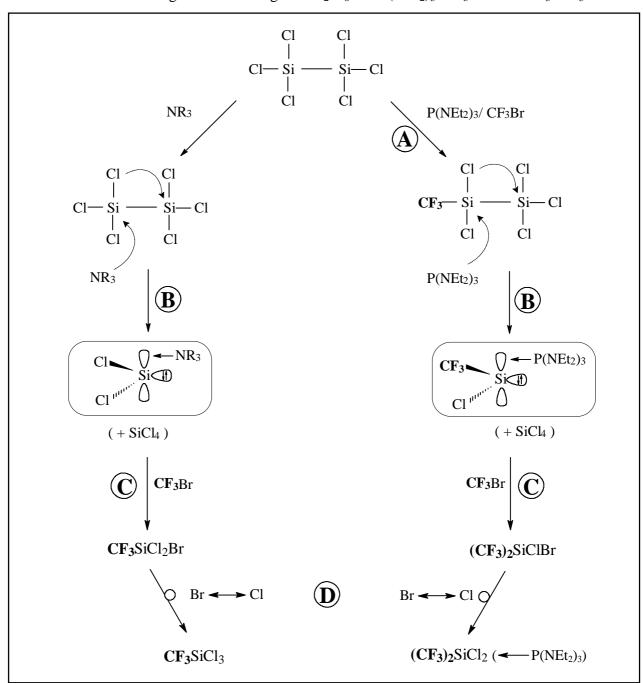
Da CF₃SiCl₃ bei der SiSi-Spaltung eines hypothetischen (CF₃)SiCl₂SiCl₂(CF₃) entstehen müßte, läßt sich anhand der Produktverteilung der flüchtigen Anteile die intermediäre Bildung des Disilans ausschließen.

Zur Überprüfung der Rolle des P(NEt₂)₃ bei der Bildung von (CF₃)₂SiCl₂←P(NEt₂)₃ wurde Si₂Cl₆ mit tertiären Aminen in Gegenwart von CF₃Br zur Reaktion gebracht. Eine Übertragung von CF₃-Gruppen mittels Amin/ CF₃Br kann dabei ausgeschlossen werden.

Nach Aufarbeitung des Reaktionsansatzes konnten neben SiCl₄ zwei flüchtige Trifluormethylsilane, CF₃SiCl₃ (δ^{19} F -70.1 ppm, ²J(SiF) 75.9 Hz, δ^{29} Si -16.4 ppm, ¹J(CF) 314.5 Hz) und CF₃SiCl₂Br (δ^{19} F -70.2 ppm, ²J(SiF) 74.4 Hz, δ^{29} Si -23.6 ppm) NMR-spektroskopisch identifiziert werden, wobei die gemischte Halogenverbindung nur in sehr geringen Mengen auftritt.

$$Si_2Cl_6 \longrightarrow NEt_3, CF_3Br \longrightarrow CF_3SiCl_3 + CF_3SiCl_2Br (+ SiCl_4)$$
 (4-16)

Bis(trifluormethyl)silane werden bei dieser Amin-katalysierten SiSi-Spaltung nicht gebildet, so daß für die Entstehung von donorstabilisiertem $(CF_3)_2SiCl_2$ die Anwesenheit von $P(NEt_2)_3$ essentiell ist.


Als mögliche Mechanismen kommt eine Abfolge von Reaktionssequenzen in Frage, die als entscheidenden Schritt die Insertion eines intermediär gebildeten Silylens in das Trifluorbrommethan enthalten (Schema 4.2).

Im primären Schritt wird bei der Reaktion von Si₂Cl₆ mit P(NEt₂)₃/ CF₃Br eine CF₃-Gruppe unter Ausbildung eines asymmetrischen Disilans übertragen (**A**). Generell sind CF₃-Gruppen- übertragung schon bei tiefen Temperaturen möglich, wie bei der Darstellung verschiedener Trifluormethyl-Monosilane gezeigt wurde [23]. Anschließend wird durch das Phosphan P(NEt₂)₃ die SiSi-Bindung gespalten, wobei unter Chlorwanderung SiCl₄ und das donorstabilisierte

Silylen $CF_3SiCl \leftarrow P(NEt_2)_3$ gebildet werden. In ähnlicher Weise reagiert Si_2Cl_6 mit dem Amin NR_3 zu $SiCl_4$ und $SiCl_2 \leftarrow NR_3$ (**B**).

Die donorstabilisierten Silylene reagieren mit CF_3Br , das im großen Überschuß vorliegt, unter Insertion in die C-Br-Bindung ($\bf C$), woraus zunächst CF_3SiCl_2Br und $(CF_3)_2SiClBr$ entstehen sollten. Diese reagieren anschließend durch Halogenaustausch zu CF_3SiCl_3 und $(CF_3)_2SiCl_2$ weiter ($\bf D$). Der Austausch von SiBr-Funktionen gegen Chlor-Substituenten wird durch Ammonium- oder Phosphoniumsalze katalysiert, wobei einerseits die Phosphoniumsalze, die während der Trifluormethylierung entstehen, als Chlor-Lieferant dienen können, andererseits eine (Lewis)Basen-katalysierte Austauschreaktion mit SiCl $_4$ denkbar ist.

Schema 4.2: Reaktionsweg der Umsetzung von Si₂Cl₆ mit P(NEt₂)₃/ CF₃Br bzw. NR₃/ CF₃Br

Der Nachweis des asymmetrischen Disilans CF₃SiCl₂-SiCl₃ durch NMR-spektroskopische Methoden ist selbst bei Temperaturen von -60°C nicht gelungen. Nach einer Reaktionszeit von 60 min bei ca. -65°C konnte nur noch der vollständige Abbau des Si₂Cl₆ zu den bekannten Produkten festgestellt werden. Die hohe Reaktivität der SiSi-Bindung steht im Einklang mit den Ergebnissen von *Kummer et al.* [70], die eine Spaltung der SiSi-Bindung mit NMe₃ oberhalb -78°C beobachten.

Unterstützt wird die Spaltungsreaktion durch die zusätzliche Polarisation der SiSi-Bindung nach Einführung der CF₃-Gruppe und durch das polare Medium, in dem die Reaktion durchgeführt wird. Die flüchtigen Komponenten, die als Trifluormethyl(amino)silane identifiziert wurden, entstehen mittels Transaminierungsreaktionen zwischen den elektronenarmen Halogensilanen und P(NEt₂)₃; der Anteil dieser Nebenprodukte ist im gleichen Rahmen, wie er auch bei Trifluormethylierungen von Monosilanen beobachtet wurde.

Eine mögliche Alternative zu dem oben genannten Mechanismus ist die stufenweise Trifluormethylierung von SiCl₄, das zwangsläufig während der basenkatalysierten SiSi-Spaltung gebildet wird:

$$SiCl_4 \xrightarrow{P(NEt_2)_3} CF_3SiCl_3 \xrightarrow{P(NEt_2)_3} (CF_3)_2SiCl_2$$
 (4-17)

Da jedoch bei früheren Trifluormethylierungsversuchen von SiCl₄ keine Bis(trifluormethyl)silane festgestellt werden konnten, ist dieser Weg auszuschließen.

4.3.2 Das Reaktionssystem Me₂Cl₄Si₂/ Base/ CF₃Br

Die Umsetzung von 1,2-Dimethyl-tetrachlordisilan mit P(NEt₂)₃/ CF₃Br führt wie die Reaktion des Hexachlordisilans ausschließlich zu SiSi-Bindungsspaltungsprodukten, wobei auch hier zwei flüchtige CF₃-Silane sowie MeSiCl₃ identifiziert werden konnten:

Die infolge der Methyl-Substitution verringerte Lewis-Acidität dieser Monomeren erlaubt ihre Abtrennung aus dem Reaktionsgemisch im Hochvakuum. Die Substitution der CF₃-Silane mit Chloratomen ist durch NMR-spektroskopisches Vergleichsmaterial gesichert (CF₃MeSiCl₂: δ^{29} Si +7.4 ppm, 2 J(SiF) 59.0 Hz; (CF₃)₂MeSiCl: δ^{29} Si -4.0 ppm, 2 J(SiF) 53.8 Hz). Die entsprechenden Bromsilane, die in den 29 Si-NMR-Spektren an ihrer charakteristischen Hochfeld-Verschiebung zu erkennen sind, werden nicht beobachtet.

Im Rückstand der Reaktionsmischung befinden sich eine Vielzahl von z.T. CF₃-haltigen Siliciumverbindungen, deren Strukturelemente anhand der ¹⁹F- und ²⁹Si-NMR-Parameter bestimmt werden können.

Eine Zuordnung der Resonanzen zu definierten Verbindungen ist nicht möglich, da charakteristische Fernkopplungen nicht beobachtbar waren.

Die Produktverteilung der Reaktion von $Me_2Cl_4Si_2$ mit $P(NEt_2)_3$ / CF_3Br läßt verschiedene mechanistische Möglichkeiten zu, die zunächst die Frage offen lassen, ob eine Trifluormethylierung des Disilans oder eine SiSi-Bindungsspaltung als primärer Schritt stattfindet:

Reagiert das Disilan nach **A** unter Bindungsspaltung, so kann das entstehende MeSiCl₃ durch überschüssiges Übertragungsreagenz trifluormethyliert werden, wobei CF₃MeSiCl₂ und (CF₃)₂MeSiCl gebildet werden (vergl. [21]). Das stabilisierte Silylen könnte unter Insertion in CF₃Br mit anschließendem Halogenaustausch abreagieren, wobei ebenfalls CF₃MeSiCl₂ gebildet würde. Sollte dagegen eine Trifluormethylierung des Disilans nach **B** bevorzugt werden, würde im Fall eines zunächst entstehenden symmetrischen Bis(trifluormethyl)disilans die nachfolgende Spaltung der SiSi-Bindung zu CF₃MeSiCl₂ sowie CF₃SiMe führen, welches dann in vergleichbarer Weise wie CF₃SiCl letztlich zu (CF₃)₂MeSiCl weiterreagieren kann.

Komplexer wird der Mechanismus, wenn nur eine Monotrifluormethylierung stattfindet, da nun 2 Möglichkeiten für den 1,2-Chlor-Shift existieren. Je nach Wanderungstendenz kann einerseits das Silylen ClSiMe, andererseits CF₃SiMe gebildet werden:

Da die CF₃-Gruppe und Chlor in ihren elektronischen Eigenschaften sehr ähnlich sind und auch keine sterischen Bevorzugung zu erkennen ist, ist es nicht möglich, die Richtung des Chlor-Shiftes vorherzusagen. Eine Konkurrenz beider Wege muß ebenso in Betracht gezogen werden. Eindeutige Aussagen zum Mechanismus konnten durch Verfolgung des Reaktionsablaufs mittels Tieftemperatur-NMR-Spektroskopie (-60°C) gewonnen werden. Danach erfolgt zunächst die Trifluormethylierung des Disilans, wobei das gebildete CF₃Me(Cl)SiSiMeCl₂ als komplexiertes Molekül vorliegt (Abb. 4.6). Die Komplexierung erfolgt dabei selektiv auf der trifluormethylierten Seite, was sich in einem ausgeprägten Hochfeldshift und der Verbreiterung der ²⁹Si-Resonanz der CF₃Si-Einheit äußert. Die Resonanz der SiMeCl₂-Gruppe ist dagegen mit einem Wert von +15.7 ppm nahezu unbeeinflußt und läßt die Quartett-Feinstruktur infolge der ³J(SiF)-Kopplung gut erkennen.

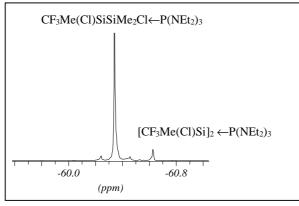


Abb. 4.6: ¹⁹F-NMR-Spektrum bei -40°C

$$\begin{array}{c} \text{CF}_{3}\text{Me}(\text{Cl})\text{Si} \longrightarrow \text{SiMeCl}_{2} \\ & \uparrow \\ & \text{P(NEt}_{2})_{3} \\ & \textbf{(33)} \end{array}$$

$$\begin{array}{c} \textbf{CF}_{3}\text{Me}(\text{Cl})\text{Si} & \delta^{29}\text{Si} & -60.5 \text{ ppm} \\ & \delta^{19}\text{F} & -60.3 \text{ ppm} \\ & {}^{2}\text{J}(\text{SiF}) & 50.9 \text{ Hz} \\ & {}^{1}\text{J}(\text{CF}) & 322.6 \text{ Hz} \\ & \textbf{SiMeCl}_{2} & \delta^{29}\text{Si} & +15.7 \text{ ppm} \end{array}$$

 3 J(SiF)

3.3 Hz

In wesentlich geringeren Anteilen sind in den 19 F-NMR-Spektren 2 weitere Resonanzen zu erkennen, wovon eine dem symmetrischen Disilan $[CF_3Me(Cl)Si]_2$ zugeordnet werden kann (δ^{19} F -60.6 ppm, 2 J(SiF) 48.0 Hz). Die 29 Si-NMR-Linien sind stark verbreitert und gleichfalls hochfeldverschoben (δ^{29} Si ca. -43 ppm), was ebenfalls für eine Komplexierung durch das Phosphan spricht. Die Koordination bedingt zudem eine deutliche Temperaturabhängigkeit der chemischen Verschiebungen. Oberhalb ca. -20°C zersetzt sich das asymmetrische Disilan langsam zu dem bekannten Produktspektrum, in dem $CF_3MeSiCl_2$ eindeutig identifiziert werden konnte, während MeSiCl $_3$ nicht auftrat. Die Richtung des Chlor-Shifts ist somit durch Übertragung des Chlors auf das lewis-acidere Silicium (Ausbildung von MeSiCl und $CF_3MeSiCl_2$) gegeben.

Der oligomere Rückstand resultiert vermutlich aus Insertionsreaktionen des MeSiCl in SiCl-Funktionen, wobei die Reaktion mit CF₃MeSiCl₂ zu CF₃-Oligosilanen führt.

Bei der Umsetzung von Me₂Cl₄Si₂ mit Aminen in Gegenwart von CF₃Br wurden überraschenderweise keine trifluormethylierten Silane erhalten. Vielmehr scheint die Reaktion in der von *Roewer* und *Herzog* beschriebenen Weise abzulaufen [66], ohne daß eine Reaktion der

Silylene mit CF₃Br eintritt. Dementsprechend muß sich die Reaktivität des Silylens ClSiMe deutlich von der der Silylene CF₃SiCl und SiCl₂ unterscheiden. Eine ausführlichere Diskussion der Eigenschaften der Silylene erfolgt im nachfolgenden Kapitel.

Im Gegensatz zu der basenkatalysierten Umlagerung von Si_2Cl_6 , welche in guten Ausbeuten Bis-(trifluormethyl)silane zugänglich macht, ergibt sich aus der Spaltungsreaktion des $Me_2Cl_4Si_2$ kein präparativer Vorteil, da die isolierten Produkte durch einfache Trifluormethylierung von $MeSiCl_3$ zu erhalten sind. Die wesentlich interessanteren oligomeren Einheiten konnten weder durch Destillation noch durch Extraktion aus dem Reaktionsgemisch isoliert werden.

4.3.3 Diskussion des Reaktionsmechanismus

Von entscheidender Bedeutung für die formulierten Reaktionsmechanismen sind im wesentlichen zwei Punkte,

- a) die Disproportionierung des Disilans unter Basenkatalyse zu einem tetravalenten Monosilan und einem donorstabilisiertem Silylen,
- b) das unterschiedliche chemische Verhalten der Silylene.

Die Spaltung der SiSi-Bindung unter dem Einfluß von Lewis-Basen kann experimentell bisher nur anhand der Spaltungsprodukte nachgewiesen werden. Eine spektroskopische Verfolgung des Reaktionsablaufes, insbesondere der Nachweis der Donor-stabilisierten Silylene, ist aufgrund der hohen Reaktivität dieser Intermediate schwierig. Infolgedessen werden theoretische Betrachtungen, wie sie von *Engels* und *Hildebrandt* an dem Modellsystem

durchgeführt wurden [71], zur Aufklärung des möglichen Reaktionsweges herangezogen. Aus Gründen der praktischen Durchführbarkeit wurden nur einfache Donormoleküle gewählt, die aber die wesentlichen elektronischen Eigenschaften des experimentellen Systems berücksichtigen.

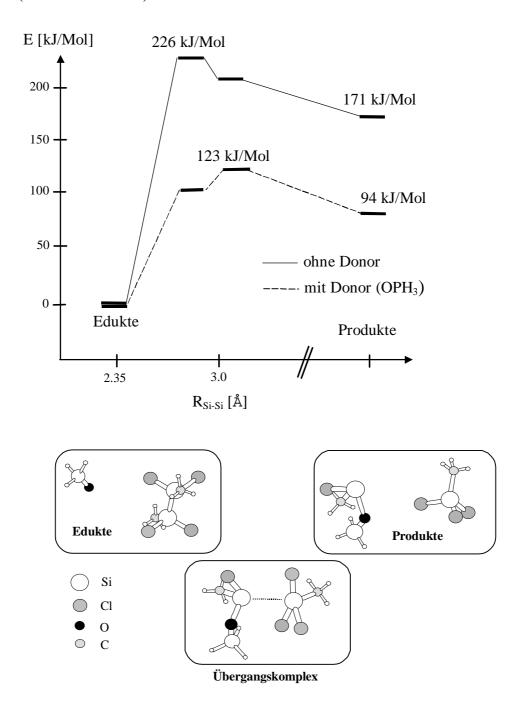

Aus dem nach DFT-Methoden berechneten Reaktionsprofil der Disproportionierung wird deutlich, daß die Energiebarriere der SiSi-Spaltung mit Donor gegenüber der Disproportionierung ohne Donor erheblich abgesenkt wird (Tabelle 4.5, Abb. 4.7), also die Bindungsspaltung erleichtert wird. Für das Reaktionssystem Me₂Cl₄Si₂ bzw. Si₂Cl₆/ P(NEt₂)₃ kann ebenfalls von einer Wechselwirkung des Phosphans und anschließender Bindungsspaltung ausgegangen werden, wobei die niedrige Barriere der NH3-induzierten SiSi-Spaltung auf eine Komplexierung durch die freien Elektronenpaare der Aminofunktionen hinweist.

Tabelle 4.5: Energiewerte [kJ/ Mol] der Disproportionierung von Me₂Cl₄Si₂

	ohne Donor	OPH_3	NH_3	PH ₃
Barriere der Disproportionierung ^a	226	123	109	184
Reaktionsenergie der Dispr. ^a	171	88	71	138
Barriere der Insertion ^b	55	35	38	46

a) bezogen auf die Edukte, b) bezogen auf die Produkte der Disproportionierung

Abb. 4.7: Reaktionsprofil der Disproportionierung von Me₂Cl₄Si₂ mit OPH₃ und ohne Donor (B3-LYP/ 6-31G**)

Berechnungen für das Modellsystem Si₂Cl₆/ OPH₃ zeigen, daß die Barriere für die Disproportionierung auf 97 kJ/ Mol absinkt, also um 20 kJ/ Mol gegenüber Me₂Cl₄Si₂ verringert ist. Gleichzeitig steigt dagegen die Barriere für die Insertion (Rückreaktion) auf 73 kJ/ Mol an

und ist damit fast doppelt so hoch wie die vergleichbare Insertionsbarriere beim Me₂Cl₄Si₂ (Tabelle 4.5). Die Insertionsreaktion ist nahezu unabhängig von der Art des Donors, wird jedoch von den Substituenten am Silylen beeinflußt. Anhand der berechneten Stabilsierungsenergien verschiedener Silylen-Donorkomplexe konnte gezeigt werden, daß potentielle CF₃-substituierte Silylene im Vergleich zu Methyl- und auch Chlor-substituierten Silylenen deutlich stärker stabilisiert werden (Tabelle 4.6).

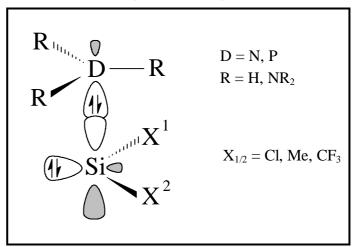


Tabelle 4.6: Stabilisierungsenergien der Silylen-Donorkomplexe von MeSiCl, SiCl₂ und (CF₃)₂Si

<u>Donor</u>		<u>Silylen</u>	
Moleküle	$SiCl_2$	MeSiCl	$(CF_3)_2Si$
N H $_3$	102	100	177
P H ₃	27	33	104
PH_2NH_2	53	57	139
N H $_2$ PH $_2$	79	78	155
$PH(NH_2)_2$	72	-	156
$(NH_2)_2$ PH	87	-	162
$P(NH_2)_3$	100	-	197
$(NH_2)_3P$	110	-	192
$P(NMe_2)_3$	88	-	120
$(NMe_2)_3P$	71	-	162

Energien in kJ/ Mol, **P**: Koordination über Phosphor, **N**: Koordination über Stickstoff.

Die hohe Stabilsierungsenergie des (CF₃)₂Si resultiert aus der hohen Lewis-Acidität des Siliciums und damit verbunden einer stärkeren Wechselwirkung des Donors mit dem leeren p-Orbital des Siliciums. Die Energiewerte für die Stabilisierung mit P(NMe₂)₃ weisen auf eine Koordination des Silylens über den Stickstoff hin. Bei Koordination über den Phosphor verringert sich die Stabilität um 42 kJ/ Mol.

Die berechneten Energiewerte, sowohl für die Disproportionierung der Disilane wie auch für die Stabilisierung der Silylene durch Donormoleküle, zeigen deutlich, daß die Gründe für das unterschiedliche Reaktionsverhalten der Silylene SiCl₂ und MeSiCl in den unterschiedlichen Insertionsbarrieren zu suchen sind. MeSiCl wird nach den Berechnung eher zur Rückreaktion

(Insertion in SiCl-Bindungen) neigen, wohingegen das mehr nucleophile SiCl₂ aufgrund der hohen Barriere der Insertion eher mit dem elektronenarmen CF₃Br reagiert. Daraus folgt, daß im Reaktionssystem Disilan/ NR₃/ CF₃Br ausgehend von Si₂Cl₆ die Trifluormethylsilane CF₃SiCl₂Br bzw. CF₃SiCl₃ gebildet werden, bei der Umsetzung von Me₂Cl₄Si₂ jedoch keine Insertionsprodukte von MeSiCl in CF₃Br gefunden werden. Für das Silylen CF₃SiCl, das aus der Reaktion des Si₂Cl₆ mit P(NEt₂)₃/ CF₃Br resultiert, kann trotz der wohl erhöhten Lewis-Acidität ein ähnliches Reaktionsverhalten erwartet werden, wie es für SiCl₂ gefunden wird.

Disilan	Silylen	RktPartner	Produkte
Cl ₃ SiSiCl ₃	SiCl ₂	CF ₃ Br	CF ₃ SiCl ₂ Br/ CF ₃ SiCl ₃
CF ₃ SiCl ₂ SiCl ₃	CF ₃ SiCl	CF ₃ Br	$(CF_3)_2SiClBr/(CF_3)_2SiCl_2$
$MeCl_2SiSiCl_2Me\\$	MeSiCl	R_3SiCl	[MeSiCl]-Oligosilane
$CF_3Me(Cl)SiSiCl_2Me$	MeSiCl	R ₃ SiCl/	[SiMe(CF ₃ /Cl)]-Oligosilane
		$CF_3MeSiCl_2$	

Obwohl das chemische Verhalten der donorstabilisierten Silylene nach theoretischer Betrachtung mit den experimentellen Ergebnissen übereinstimmt, ist eine präzise Voraussage über den Reaktionsablauf in kondensierter Phase nur schwer möglich. Lösungsmittel- und Temperatureinflüße können eine zusätzliche Stabilisierung oder Destabilisierung der Komplexe bewirken und damit das Reaktionsverhalten entscheidend beeinflussen. Somit sind auch experimentelle Ergebnisse aus den Reaktionen der freien Silylene SiX_2 (X = F, Cl) [72, 73] und MeSiOMe [74] nicht auf das System übertragbar.

Trotz der scheinbaren Unterschiede in der elektronischen Struktur der Silylene muß davon ausgegangen werden, daß die verschiedenen Reaktionskanäle (Insertion in SiCl vs. Addition von CF₃Br) stets miteinander konkurrieren werden. So ist es auch zu erklären, daß bei der Spaltung von Si₂Cl₆ nicht die vollständige theoretische Menge an Monosilanen entsteht, sondern auch ein geringer Anteil von perchlorierten Oligosilanen durch Insertion in SiCl-Bindungen gebildet wird.

4.3.4 Die Disilane CF₃Me(X)SiSi(X)MeCF₃ und CF₃Me(X)SiSiMeX₂

Von besonderem Interesse im Hinblick auf die basenkatalysierte Umlagerung von Disilanen sind die Disilane CF₃Me(X)SiSi(X)MeCF₃ (X = Cl, Br): Aufgrund der ähnlichen elektronischen Eigenschaften der CF₃-Gruppe und des Halogens können auch ähnliche Eigenschaften der SiSi-Bindung erwartet werden, wobei die Lewis-Acidität des Siliciums im Vergleich zum MeCl₂SiSiCl₂Me eher größer ist. In Analogie zur Reaktion des Si₂Cl₆ bzw. Me₂Cl₄Si₂ sollte bei Zugabe von Lewis-Basen donorstabilisiertes CF₃SiMe als Intermediat auftreten, das durch Insertion in SiCl-Bindungen neue SiSi-Bindungen aufbauen kann, wohingegen eine Umsetzung mit CF₃Br zu Bis(trifluormethyl)silanen nicht oder nur im untergeordneten Maße zu beobachten sein sollte.

Die Darstellung der Disilane $CF_3Me(X)SiSi(X)MeCF_3$ (X = Cl ($\bf 34$), Br ($\bf 35$)) erfolgte durch Deaminierung von ($\bf 30$) mit HX:

$$CF_{3}Me(NMe_{2})SiSi(NMe_{2})MeCF_{3} \xrightarrow{HX} CF_{3}Me(X)SiSi(X)MeCF_{3}$$

$$(4-22)$$

$$X = Cl(34), Br(35)$$

Bei Anwesenheit der von (30) nur schwer abtrennbaren Dimethyl-ammoniumchloriden entstehen bei der Umsetzung mit HBr durch Austauschreaktionen zusätzlich die gemischten Halogendisilane $CF_3Me(Cl/Br)SiSi(Cl/Br)MeCF_3$ (34a) ($^{19}F-NMR-Spektrum Abb. 4.8).$

Da bei der Trifluormethylierung von $[ClMe(NMe_2)Si]_2$ neben ($\bf 30$) auch das monotrifluormethylierte Disilan $CF_3Me(NMe_2)SiSi(NMe_2)MeCl$ ($\bf 31$) entsteht, sind die Mono(trifluormethyl)disilane $CF_3Me(X)SiSiMeX_2$ ($\bf 36a$ - $\bf f$) im Produktgemisch der Disilane ($\bf 34$) und ($\bf 35$) vorhanden. Nach Deaminierung mit HBr unter Anwesenheit von Ammoniumchloriden konnten alle gemischten Halogendisilane NMR-spektroskopisch identifiziert werden (Tabelle $\bf 4.7$).

Infolge der Asymmetrie der Siliciumatome durch die vier unterschiedlichen Substituenten der CF₃Me(X)Si-Gruppen werden die Diastereomere der Bis(trifluormethyl)disilane (meso/ racem.-Form) als doppelter Satz von Resonanzen in den ¹⁹F- bzw. ²⁹Si-NMR-Spektren wiedergegeben (Abb. 4.8, Tabelle 4.7, I und II). Die asymmetrisch substituierten Mono(trifluormethyl)disilane (**36b**) und (**36e**) treten wiederum als Diastereomerenpaare auf.

Neben den Trifluormethylverbindungen konnten auch alle Disilane der Reihe $Me_2X_4Si_2$ (X = Cl, Br) über ²⁹Si-NMR-Spektroskopie beobachtet werden (siehe Tabelle 4.8, Kap. 4.4), was auf noch vorhandene Anteile nicht trifluormethylierter Amino-halogendisilane oder aber auf den Abbau von CF_3 -Gruppen schließen läßt.

Eine Auftrennung des Reaktionsgemisches in die einzelnen Komponenten ist destillativ nicht möglich, allenfalls gelingt eine Anreicherung der etwas leichter flüchtigen Chlordisilane gegenüber den Bromderivaten. Für die weiteren Untersuchung der chemischen Eigenschaften der Trifluormethyl(halogen)disilane wurde jeweils das Gemisch dieser Verbindungen eingesetzt, wobei die Anteile der verschiedenen Disilane variiert wurden.

Die Reaktion von CF₃Me(X)SiSi(X)MeCF₃ (bzw. CF₃Me(X)SiSiMeX₂) mit Aminen führt in erster Linie zu dem erwarteten flüchtigen Produkt CF₃MeSiX₂ und einem schwer flüchtigen Rückstand, der nach NMR-spektroskopischer Untersuchung CF₃MeSi- und CF₃MeSiX- sowie nicht trifluormethylierte MeSiX- bzw. MeSiX₂-Einheiten enthält.

$$CF_3Me(X)SiSi(X)MeCF_3 \xrightarrow{NR_3} CF_3MeSiX_2 + [MeSi(CF_3/X) -Oligomer]$$
 (4-23)

Die chemischen Verschiebungen sowie die SiF-Kopplungskonstanten des Rückstandes zeigen ähnliche Werte wie die Verbindungen, die bei der Umsetzung von Me₂Cl₄Si₂ mit P(NEt₂)₃/CF₃Br erhalten wurden. Die für CF₃SiSi-Systeme charakteristischen ³J(SiF)-Fernkopplungen führen aufgrund ihrer geringen Größe meist nur zu einer Verbreiterung der Signale. Erschwerend macht sich neben der hohen Anzahl der möglichen Produkte die mit zunehmender Kettenlänge steigende Anzahl der Isomere bemerkbar, so daß eine hohe Signaldichte resultiert.

Variation der Basen sowie der Reaktionstemperatur, z.B. N-Methylimidazol bei RT oder PPh_4X bei $100^{\circ}C$, führten zu keiner wesentlichen Veränderung der Produktzusammensetzung. Die Umsetzung der Disilane mit $P(NEt_2)_3$ / CF_3Br ergab nach Aufarbeitung der flüchtigen Produkte neben HCF_2X und HCF_3 hohe Anteile von monomeren CF_3SiF -Silanen, die auf Zersetzung von Bis(trifluormethyl)silanen hinweisen; $(CF_3)_2MeSiX$ oder aber $(CF_3)_3SiX$ konnten nicht identifiziert werden.

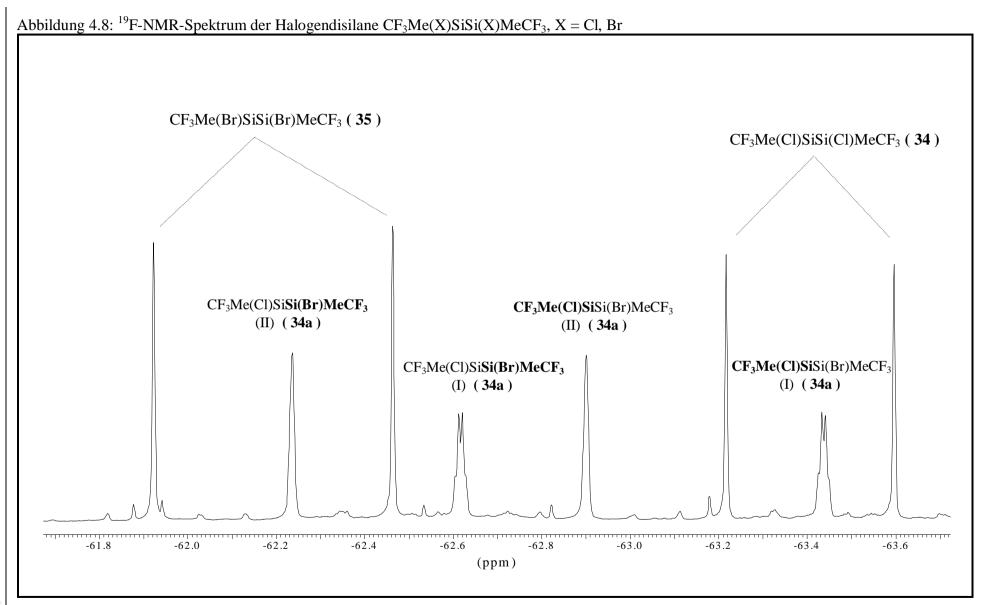


Tabelle 4.7: NMR- Parameter der Disilane CF₃Me(X)SiSi(X)MeCF₃ und CF₃Me(X)SiSiMeX₂^a

Disilan			δ^{19} F	δ^{29} Si	² J(SiF)	³ J(SiF)
CF ₃ MeClSi-SiClMeCF ₃ ^b	(34)	(I)	-63.2	+1.8	51.6	2.8
		(II)	-63.6	+1.3	51.2	3.0
CF ₃ MeCl/BrSi-Br/ClMeCF ₃	(34a)					
CF ₃ MeClSi-SiBrMeCF ₃		(I)	-63.4	+1.1	50.9	2.9
CF ₃ MeClSi-SiBrMeCF ₃		(I)	-62.6	-4.8	51.2	3.0
CF₃MeClSi -SiBrMeCF ₃		(II)	-62.9	+0.5	50.5	2.9
CF ₃ MeClSi- SiBrMeCF ₃		(II)	-62.2	-5.0	51.2	2.9
CF ₃ MeSiBr-SiBrMeCF ₃ ^c	(35)	(I)	-62.5	-6.3	50.5	2.8
-	` ,	(II)	-61.9	-7.0	50.2	2.8
CF ₃ MeClSi-SiCl ₂ Me ^d	(36a)	(I)	-63.4	-0.7	48.5	
CF ₃ MeClSi- SiCl₂Me	()	(I)		+19.0		3.4
CF ₃ MeClSi-SiClBrMe	(36b)	(I)	-63.1	-1.1	48.3	
CF ₃ MeClSi- SiClBrMe	,	(I)		+12.5		3.4
CF₃MeClSi -SiClBrMe		(II)	-63.0	-1.2	48.1	
CF ₃ MeClSi- SiClBrMe		(II)		-		
CF₃MeClSi -SiBr ₂ Me	(36c)	(I)	-62.7	-1.9	48.1	
CF ₃ MeClSi- SiBr₂Me	` ,	(I)		+3.8		3.4
CF₃MeBrSi -SiCl ₂ Me	(36d)	(I)	-62.5	-6.8	47.5	
CF ₃ MeBrSi-SiCl ₂ Me	,	(I)		+18.2		3.4
CF ₃ MeBrSi-SiClBrMe	(36e)	(I)	-62.1	-7.2	48.0	
CF ₃ MeBrSi- SiClBrMe	()	(I)		+10.9		3.4
CF ₃ MeBrSi-SiClBrMe		(II)	-62.2	-7.0	48.1	
CF ₃ MeBrSi- SiClBrMe		(II)		-		
CF₃MeBrSi -SiBr ₂ Me	(36f)	(I)	-61.8	-7.7	47.5	
CF ₃ MeBrSi- SiBr₂Me	(202)	(I)	21.0	+2.9		3.2

a) δ in [ppm], J in [Hz], CDCl₃, b) δ^1 H 0.93 ppm, δ^{13} C (Me) -3.4 ppm, δ^{13} C (CF₃) 127.9 ppm, 1 J(CF) 319.4 Hz, 1 J(SiCH₃) 54.7 Hz; c) δ^1 H 1.04 ppm; d) δ^1 H (CH₃SiCF₃) 1.02 ppm, δ^1 H (CH₃SiCl₂) 1.06 ppm, δ^{13} C (CH₃SiCF₃) -4.0 ppm, δ^{13} C (CH₃SiCl₂) 5.8 ppm, δ^{13} C (CF₃) 128.8 ppm, δ^{13} C (CF) 319.8 Hz; keine Aufspaltung bei b) und d) durch Anwesenheit von Halogenidionen (siehe Kapitel 4.4).

4.4 Austauschverhalten "lewis-acider" Disilane

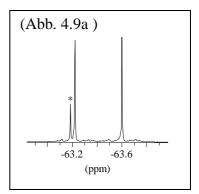
Halogen-Austauschphänomene sind eine charakteristische Eigenschaft lewis-acider Disilane. Relativ zu Organodisilanen wird der Ligandenaustausch der Halogene ohne Katalysator und bei wesentlich niedrigeren Temperaturen erreicht. So fanden *Schmölzer* und *Hengge* alle gemischten Halogendisilane Si₂Cl_xBr_{6-x} bei der Umsetzung von Si₂Cl₆ mit Si₂Br₆ [75]:

$$Si_2Cl_6 + Si_2Br_6 \xrightarrow{21 \text{ d}, 100^{\circ}C} Si_2Cl_xBr_{6-x}$$
 (4-24)

Die Reaktionszeit von 21 Tagen ist deutlich kürzer als der beobachtete Halogenaustausch zwischen Si₂Cl₆ und SiBr₄, der nach 35 Tagen bei 100°C nur geringe Mengen an Si₂Cl₃Br₃ und SiCl₂Br₂ liefert. Der sehr langsame Austausch ermöglicht die Isolierung der Halogendisilane durch rasche Destillation.

Nach eigenen Untersuchungen wird das Equilibrierungsgleichgewicht zwischen Me₂Cl₄Si₂ und BBr₃ nahezu nach 4 Tagen bei 130°C erreicht, eine Verlängerung der Reaktionszeit auf 7 Tage bei gleichzeitiger Steigerung der Temperatur auf 145°C ändert nur geringfügig die Produktverteilung (²⁹Si-NMR siehe Tab. 4.8).

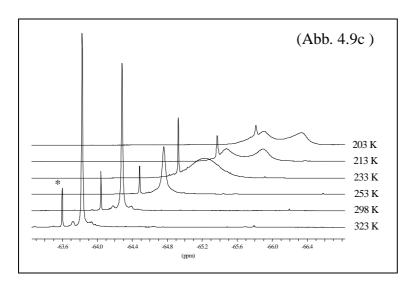
$$Me_{2}Cl_{4}Si_{2} + BBr_{3} \xrightarrow{\text{4 d, } 130^{\circ}C} Me_{2}Cl_{x}Br_{4-x}Si_{2} + BBr_{3-x}Cl_{x}$$
(4-25)
(37a)


Tabelle 4.8: ²⁹Si-Resonanzen der Disilane Me₂Si₂Cl_xBr_{4-x} (**37a-f**)

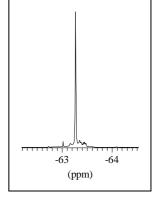
Disilan		$\delta^{29}{ m Si}$	[76]
MeCl ₂ Si-SiCl ₂ Me	(37a)	+18.1	+17.7
MeCl ₂ Si-SiClBrMe	(37b)	+17.4	+17.5
MeCl ₂ Si-SiBr ₂ Me	(37c)	+16.3	+16.3
MeCl ₂ Si-SiClBrMe	(37b)	+12.3	+12.4
MeClBrSi-SiClBrMe (I)	(37d)	+11.6	+11.4
MeClBrSi-SiClBrMe (II)	(37d)	+11.7	+11.6
MeBr ₂ Si- SiClBrMe	(37e)	+10.6	+10.7
MeCl ₂ Si-SiBr ₂ Me	(37c)	+5.1	+5.2
MeBr ₂ Si-SiClBrMe	(37e)	+4.6	+4.6
MeBr ₂ Si-SiBr ₂ Me	(37f)	+3.6	+3.6

δ in [ppm], CDCl₃

Im Fall des Bis(trifluormethyl)disilans CF₃Me(Cl)SiSi(Cl)MeCF₃, das aufgrund der asymmetrischen Substitution in zwei isomeren Formen (meso-, rac.-Form) vorliegt, kann bereits auf der NMR-Zeitskala ein Halogenaustausch beobachtet werden, der durch Halogenidionen katalysiert wird.


In halogenidfreien Lösungen zeigt das ¹⁹F-NMR-Spektrum für die beiden Diastereomere des CF₃Me(Cl)SiSi(Cl)MeCF₃ 2 scharfe Linien von nahezu gleicher Intensität (Abb. 4.9a, T = 298 K)).

 $* = CF_3Me(Cl)SiSiCl_2Me$


Katalytische Spuren von Chloridionen führen in einem wenig polaren Medium wie Toluold⁸ (Abb. 4.9b) bei Raumtemperatur zur Verbreiterung der Signale, wobei die Koaleszenztemperatur bei ca. 340 K erreicht wird. Das Signal des weniger lewis-aciden CF₃MeClSiSiCl₂Me zeigt unter diesen Bedingungen keine Verbreiterung.

Anders liegen die Verhältnisse bei **Einsatz** des stärker polaren Lösungsmittels CDCl₃ (Abb. 4.9c): Schon bei 233 K ist Koaleszenz der Resonanzen zu verzeichnen, die selbst bis zur meßtechnisch bedingten tiefsten Temperatur von 203 K für eine Verbreiterung sorgt. Raumtemperatur die Bei sind Signale vollständig zu einer scharfen Linie zusammengefallen.

Der Austauschprozeß kann auch durch [PPh₄]Br katalysiert werden, wobei selbst bei hohen Bromid-Konzentrationen kein Einbau von Brom zu gemischten Halogendisilanen CF₃Me(Cl/Br)SiSi(Cl/Br)MeCF₃ beobachtet wird und somit von einem intramolekularen Prozeß ausgegangen werden muß. Die katalytische Wirksamkeit der Halogenidionen wird durch die Zugabe geringer Mengen [PPh₄]Cl zu der Toluol-Lösung bestätigt, welche einen vollständigen Austausch schon bei 298 K bewirkt (Abb. 4.9d).

(Abb. 4.9d)

Die NMR-Spektren von Mischungen der verschiedenen Trifluormethyl-halogendisilane zeigen deutlich den Einfluß der Substitution auf den Austauschprozeß. Unter ansonsten gleichen Bedingungen sind auch die Mono(trifluormethyl)disilane CF₃Me(X)SiSiMeX₂ einbezogen, wobei die Koaleszenz der Signale allerdings erst bei deutlich höheren Temperaturen erreicht wird. Ferner tauschen die Bromdisilane schneller als die entsprechenden Chlorsilane aus. Insgesamt läßt sich für die Austauschgeschwindigkeit folgende Abstufung feststellen:

$$CF_3Me(X)SiSi(X)MeCF_3 >> CF_3Me(X)SiSiMeX_2 >> X_2MeSiSiMeX_2$$

sowie $X = Br > Cl$

Die den Austausch beschleunigende höhere Acidität bei CF_3 -Substitution ist im Einklang mit theoretischen Rechnungen. Andere Verhältnisse liegen bei den Aminodisilanen $XMe(NR_2)SiSi(NR_2)MeX$ ($X=Cl, CF_3$; R=Me, Et) vor, bei denen durch die elektronenliefernden Eigenschaften der Aminofunktionen das Elektronendefizit am Silicium weitgehend ausgeglichen wird. Auch unter Halogenidionenkatalyse werden keine Hinweise für Austauschprozeße gefunden. Dagegen sollte auch beim Si_2Cl_6 ein Austausch erfolgen, der sich NMR-spektroskopisch allerdings nicht bemerkbar macht.

Die Neigung der Disilane zu Halogenaustauschreaktionen läßt sich in Zusammenhang mit der basenkatalysierten SiSi-Spaltung bringen: Durch Koordination mit einem starken Donor ist die Abspaltung des Chlor- bzw. Bromatoms nicht mehr reversibel, sondern erfolgt irreversibel unter SiSi-Bindungsspaltung. Daraus lassen sich auch die Reaktionsbedingungen für die Darstellung von Oligosilanen verstehen: Während Cl₄Me₂Si₂ bzw. [CF₃Me(X)Si]₂ mit [PPh₄]X erst bei erhöhten Temperaturen reagieren, gelingt die SiSi-Bindungsspaltung der Disilane mit Aminen schon bei Raumtemperatur.

4.5 Trifluormethyl-Oligosilane

Die Darstellung CF₃-substituierter Tri-, Tetra- oder Hexasilane kann durch Trifluormethylierung der entsprechenden Chlor-Derivate erfolgen. Unter Berücksichtigung der sterischen und elektronischen Gegebenheiten der Übertragungsreaktion (siehe Kap. 2.2) sind methylierte Oligosilane am ehesten geeignet.

Mit steigender Anzahl der zu übertragenden CF_3 -Gruppen nimmt die Ausbeute an vollständig trifluormethylierten Oligosilanen ab, wobei auch partiell trifluormethylierte Produkte wie z.B. ($\bf 38a$) beobachtet werden. Die Isolierung der hochsiedenden Silane aus dem Reaktionsgemisch ist schwierig, so daß beispielsweise $MeSi(SiMe_2CF_3)_3$ ($\bf 40$), $CF_3Si(SiMe_3)_3$ ($\bf 41$) oder $[CF_3Me_2Si]_2(SiMe)_2[SiMe_2CF_3]_2$ ($\bf 42$) nur noch durch Extraktion aus dem Reaktionsgemisch entfernt werden konnten.

Durch die Synthese von 1,2,3-Tris(trifluormethyl)-pentamethyltrisilan (**39**) konnte gezeigt werden, daß eine Trifluormethylierung von zentralen SiMeCl-Einheiten ohne SiSi-Bindungsspaltung durchführbar ist. Dies ist auf die geringe Acidität des zentralen Siliciums zurückzuführen, wobei der Umsatz der Trifluormethylierung mehr durch sterische Einflüsse gesteuert wird. Die Trifluormethylierung endständiger SiMe₂Cl-Funktionen erfolgt wie bei den Disilanen ohne Schwierigkeiten, so daß partiell trifluormethylierte Oligosilane nur in geringen Mengen auftreten.

Die strukturelle Charakterisierung der Verbindungen (**38 - 42**) kann wie bei den Disilanen vollständig über NMR-Spektroskopie abgesichert werden (Tab. 4.9). Vor allem Fernkopplungen über das SiSi-Gerüst hinweg erlauben eine eindeutige Zuordnung der Strukturelemente.

In den 29 Si-NMR-Spektren sind die zentralen Silicium-Einheiten (SiMe und SiMe₂) gegenüber den endständigen CF_3Me_2Si -Gruppen deutlich hochfeldverschoben, wobei Werte bis zu -92 ppm erreicht werden. Demgegenüber variieren die CF_3Me_2Si -Gruppen nur geringfügig in einem Bereich von -4.5 bis -9.1 ppm und sind somit leicht tieffeldverschoben im Vergleich zu $CF_3Me_2SiSiMe_2CF_3$.

Tabelle 4.9: NMR-Parameter CF₃-substituierter Oligosilane

Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

Oligosilan			$\delta^{\rm l} { m H}$	δ^{13} C (Me)	δ^{13} C (CF ₃)	δ^{19} F	δ^{29} Si	¹ <i>J</i> (CF)	² J(SiF)	³ J(SiF)
(CF ₃ Me ₂ Si ^A) ₂ Si ^B Me ₂ ^a	(38)	A	0.35	-6.7	133.0	-60.7	-8.8	324.1	36.7	
		В	0.32	-7.5			-49.7			2.3
(CF ₃ Me ₂ Si ^A)Si ^B Me ₂	(38a)	A	0.36	-6.5	133.1	-60.8	-9.1	324.2	36.4	
(Si ^C Me ₂ Cl) ^b	, ,	В	0.29	-7.7			-46.7			2.2
		C	0.54	2.6			25.9			
(CF ₃ Me ₂ Si ^A) ₂ Si ^B MeCF ₃ ^c	(39)	A	0.49	-6.9/ -7.0	131.6	-60.7	-9.3	322.1	40.0	3.8
	. ,	В	0.54	-11.8	132.8	-51.7	-38.1	323.0	37.1	2.9
MeSi ^A (Si ^B Me ₂ CF ₃) ₃ ^d	(40)	A	0.38	-13.6			-92.6			2.2
	` ,	В	0.44	-5.1	132.7	-60.9	-5.1	323.6	37.1	
$CF_3Si^A(Si^BMe_3)_3^e$	(41)	A			136.7	-41.2	-66.6	327.2	27.5	4.5
	` /	В	0.27	0.5			-12.3			
$[CF_3Me_2Si^A]_2(Si^BMe)_2$	(42)	A	0.45	-4.4/ -4.6	132.6	-60.2	-4.6	325.2	36.9	
[SiMe ₂ CF ₃] ₂ ^f	. /	В	0.10	-9.6			-81.4			g)

CDCl₃, TMS bzw. CFCl₃ ext. Lock; **a**) ¹J(SiC)(*SiC*H₃) 42.1 Hz, ¹J(SiC)(H₃*CS*iCF₃) 46.1 Hz, ¹J(SiC)(*SiC*F₃) 69.8 Hz, ¹J(SiSi) 73.5 Hz, ³J(CF)(H₃*CS*iCF₃) 2.0 Hz, ³J(CH)(*H*₃CSi*C*F₃) 3.3 Hz, ⁴J(CF)(*F*₃CSiSi*C*H₃) 0.6 Hz, ⁴J(SiF) 0.7 Hz; **b**) ¹J(SiC)(*SiC*H₃Cl) 47.1 Hz, ³J(CF)(H₃*CS*iC*F*₃) 5.9 Hz, ³J(CH)(*H*₃CSi*C*F₃) 3.3 Hz, ¹J(SiSi)(CF₃*SiSi*Me₂) 72.8 Hz, ¹J(SiSi)(Me₂*SiSi*Me₂Cl) 84.0 Hz; **c**) ³J(CH)(F₃*C*SiC*H*₃) 3.8 Hz, ³J(CH)(F₃*C*SiC*H*₃) 3.3 Hz; **d**) ¹J(SiSi) 63.0 Hz, ³J(CH)(F₃*C*SiC*H*₃) 3.2 Hz; **e**) ¹J(SiC)(*SiC*H₃) 46.8 Hz, ²J(SiH) 6.7 Hz, ³J(SiH) 2.7 Hz; **f**) ³J(CH)(F₃*C*SiC*H*₃) 3.2 Hz; **g**) ³J(SiF) nicht aufgelöst.

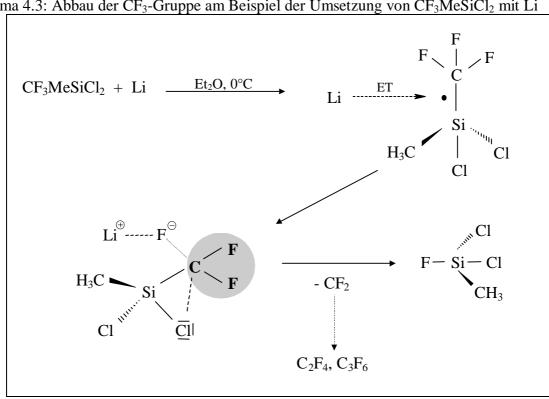
Nahezu konstant ist chemische Verschiebung der CF_3 -Gruppen im ^{19}F -NMR-Spektrum (δ = -60 ppm), die dazu gehörigen $^2J(SiF)$ -Kopplungskonstanten sind mit 36 bis 37 Hz charakteristisch für die terminalen CF_3Me_2Si -Gruppen, während die zentrale MeSi CF_3 -Einheit des Trisilans (39) eine um ca. 3 Hz größere Konstante aufweist. Die $^1J(SiSi)$ -Kopplungskonstante liegt im typischen Bereich methylierter Oligosilane [77] und ist etwas kleiner als bei den Chlor-Derivaten. Der besondere Einfluß von mehrfacher Substitution mit Si Me_3 -Gruppen auf die CF_3Si -Einheit wird in den NMR-Parametern von $CF_3Si(SiMe_3)_3$ (41) sichtbar. Während sich die chemischen Verschiebungen der Siliciumatome in den typischen Bereichen befinden, zeigen vor allem die NMR-Parameter der CF_3 -Gruppe ungewöhnliche Abweichungen von bisher bekannten Daten. So ist die ^{19}F -Resonanz um ca. 20 ppm tieffeldverschoben, einhergehend mit einer sehr kleinen $^2J(SiF)$ -Kopplungskonstante von 27.5 Hz. Auch die Verschiebung in den ^{13}C -NMR-Spektren unterscheidet sich deutlich um ca. 4 ppm bei einer gleichzeitig vergrößerten $^1J(CF)$ -Kopplungskonstante. Da elektronische Gründe für die ungewöhnlichen Abweichungen der NMR-Parameter ausscheiden, ist dies allein auf die hohe sterische Belastung zurückzuführen, welche auf die CF_3Si -Einheit einwirkt.

Die dargestellten Oligosilane zeichnen sich sowohl durch chemische als auch durch thermische Beständigkeit aus und sind in ihren Eigenschaften den permethylierten Vertretern ähnlich. Difluorcarben-Eliminierung oder Umlagerungsreaktionen des SiSi-Gerüstes konnten bei Temperaturen bis zu 150°C nicht nachgewiesen werden. Dementsprechend können für hochmolekulare trifluormethylierte Polysilane der Zusammensetzung [CF₃MeSi]_n vergleichbare Stabilitäten erwartet werden.

4.6 SiSi-Gerüstaufbau ausgehend von CF₃-Monosilanen

4.6.1 Reduktive Enthalogenierung

Als Modellreaktion für die Knüpfung von SiSi-Bindungen ausgehend von CF_3 -substituierten Monosilanen ist die Synthese des Disilans $[CF_3Me_2Si]_2$ ($\mathbf{28}$) besonders geeignet, da einerseits das Monosilan CF_3Me_2SiX (X=Cl,Br) gut verfügbar, andererseits das Kopplungsprodukt auch auf anderem Wege erhältlich und aufgrund charakteristischer NMR-Daten leicht zu identifizieren ist.


Die Umsetzung von CF₃Me₂SiCl bzw. CF₃Me₂SiBr mit den Alkalimetallen Natrium oder Lithium führt unter üblichen Bedingungen (0°C - RT, Et₂O oder THF) in keinem Fall zu dem Disilan. Bei Steigerung der Reaktionstemperatur auf 60°C reagiert CF₃Me₂SiBr mit Natrium nicht im Sinne einer Kopplungsreaktion, sondern unter Etherspaltung mit dem Lösungsmittel THF,

wobei (43) in einer auf -40°C gekühlten Falle isoliert werden kann. Die Zusammensetzung der Verbindung ist aufgrund NMR-spektroskopischer Daten eindeutig und zudem in Einklang mit der entsprechenden Reaktion von Me₃SiCl mit THF und MgBr₂ [78]. Erst nach Zugabe stöchiometrischer Mengen HMPA konnte (28) nach 24stündiger Reaktion bei RT erhalten werden:

Der Einsatz von HMPA bewirkt zwar eine wesentliche Beschleunigung der Reaktion, führt aber gleichzeitig zur Bildung von Siloxanen [79]. Dabei übersteigt der Produktanteil des Disiloxans CF₃Me₂SiOSiMe₂CF₃ (**46**) die Menge an [CF₃Me₂Si]₂. Bei der Verwendung equimolarer Mengen von HMPA und Monosilan werden ca. 40% Disilan und 53% Disiloxan neben nicht umgesetztem Monosilan isoliert. Die Herabsetzung der HMPA-Menge führt nur zu geringeren Umsätzen, wobei der Anteil des Disilans nicht erhöht wird.

Versuche zum SiSi-Aufbau durch Umsetzung des Dichlorsilans $CF_3MeSiCl_2$ mit Alkalimetallen waren nicht erfolgreich. Überwiegend wurde ein Abbau der CF_3 -Gruppierung beobachtet, der sich auch durch Variation der Reaktionsbedingungen (apolare Medien, tiefe Temperaturen) nicht unterdrücken ließ. Somit wurden nur verschiedene Fluorsilane sowie die Difluorcarbenfolgeprodukte C_2F_4 und c- C_3F_6 registriert.

Der Abbau der Trifluormethylgruppe wird durch mehrere Faktoren begünstigt und durch einen Elektronentransfer vom Alkalimetall in das LUMO (σ^* -Orbital der SiC^F-Bindung) eingeleitet (Schema 4.3).

Schema 4.3: Abbau der CF₃-Gruppe am Beispiel der Umsetzung von CF₃MeSiCl₂ mit Li

Das zusätzliche Elektron kann leicht von einem Fluor-Atom der CF₃-Gruppe übernommen werden, wobei die negative Ladung durch das Lithium-Kation stabilisiert wird.

Durch die Polarisierung der CF₃-Gruppe sowie durch die benachbarten freien Elektronenpaare der Chlor-Atome wird die CF2-Eliminierung erleichtert, zumal die Bildungstendenz der Folgeprodukte C₂F₄ und c-C₃F₆ sehr hoch ist. Unter den Produkten wurden keinerlei Hinweise auf Moleküle mit SiSi-Bindungen gefunden. Ein präparativer Zugang zu [CF₃MeSi]-Polysilanen durch reduktive Enthalogenierung kann somit ausgeschlossen werden. Noch weniger Aussichten bestehen bei der Umsetzung von Bis(trifluormethyl)silanen (CF₃)₂SiX₂, da die Tendenz zur CF₂-Eliminierung noch wesentlich größer ist, die Reaktivität der SiX-Funktionen jedoch nicht.

Eine ausreichende Stabilität wird somit nur bei den Monohalogensilanen CF₃Me₂SiX gefunden, die aber wesentlich reaktionsträger sind und deren Umsetzung von Nebenprodukten begleitet wird. Damit beschränkt sich der präparative Nutzen der reduktiven Enthalogenierung allenfalls auf die Darstellung von Disilanen.

4.6.2 Übergangsmetall-katalysierte Dehydrogenierung

Die Oligomerisierung SiH-funktioneller Silane mittels Übergangsmetall-katalysierter Dehydrogenierung wurde überwiegend mit primären Silanen durchgeführt, die in ihrer Silane übertreffen Reaktivität sekundären um ein Vielfaches und höhere Polymerisationsgrade zulassen [48a, b], z.B.:

RSiH₃
$$\xrightarrow{\text{Cp}_2\text{TiR}'_2 \text{ cat.}}$$
 $\xrightarrow{\text{RT, -H}_2}$ $\xrightarrow{\text{(SiRH)}_n}$ $R = \text{Ph, Hex, R'} = \text{Me, PhCH}_2$ (4-28)

$$R_2SiH_2 \xrightarrow{RhCl(PPh_3)_3 \text{ cat.}} H(SiR_2)_nH + R_mSiH_{4-m}, (R_2 = PhMe, n = 2,3)$$
 (4-29)

Das Trifluormethyl-Derivat CF₃SiH₃ kann aufgrund seines niedrigen Siedepunktes nur druckverflüssigt in geschlossenen Systemen eingesetzt werden, wohingegen die sekundären Silane CF₃MeSiH₂ und CF₃PhSiH₂ auch Reaktionen bei erhöhten Temperaturen (100°C) ermöglichen. Die Auswahl der Übergangsmetallkatalysatoren wurde auf Cp₂TiMe₂, ClRhPPh₃ und Pd(PPh₃)₄ beschränkt, die bekannterweise mit primären und sekundären Silanen Kopplungsreaktionen eingehen [48a].

Die Reaktion von CF₃SiH₃ mit Cp₂TiMe₂ führt je nach eingesetzter Menge an Katalysator ausschließlich zu Methylierungsprodukten:

$$CF_3SiH_3 \xrightarrow{[Cp_2TiMe_2]} CF_3SiMe_3 + CF_3Me_2SiH + CF_3MeSiH_2$$
 (4-30)

Hinweise auf Kopplungsprodukte konnten weder in den flüchtigen Fraktionen noch im Rückstand gefunden werden. Der Einsatz des Wilkinson-Katalysators ClRh(PPh₃)₃ führte nach kurzer Reaktionszeit zur heftigen Detonation. Bei alternativer Reaktionsführung mit Et₂O als Lösungsmittel wurde nach 4h bei RT eine deutliche Veränderung des Katalysators sichtbar, als flüchtige Produkte konnten jedoch nur Fluorsilane mit unbekannter Zusammensetzung erhalten werden. Mit Pd(PPh₃)₄ zeigte CF₃SiH₃ keine Reaktion, in allen Versuchen konnte nur das Edukt in unveränderter Form zurückerhalten werden.

Umsetzungen von CF₃MeSiH₂ oder CF₃PhSiH₂ mit den verschiedenen Übergangsmetallkatalysatoren verliefen ebenso ohne Erfolg, entweder wurde das Edukt in unveränderter Form zurückgewonnen oder es kam auch hier zur Ausbildung von Fluorsilanen.

Die Gründe für das Scheitern der Dehydrogenierung von CF₃-Silanen sind einerseits in der Fluorophilie der Metalle (besonders Titan) zu suchen, die eine Difluorcarben-Eliminierung begünstigen, andererseits in der CF₃-Substitution, die die elektronischen Eigenschaften der SiH-Bindung verändern.

4.6.3 Silyl-Anionen und -Radikale

Die Erzeugung von Silylanionen, die nachfolgend über nucleophile Substitutionsreaktionen SiSi-Bindungen aufbauen, wird überwiegend *in situ* durch Umsetzung der Halogensilane mit Alkalimetallen erreicht. Um einen Abbau der CF₃-Gruppe durch die Alkalimetalle zu vermeiden ist die Verwendung "stabiler" Anionen denkbar, die mit Trifluormethylhalogensilanen zu asymmetrischen SiSi-Systemen weiterreagieren. Die Beständigkeit der Anionen in Lösung wird durch geeignete Substituenten wie Aryl- oder Aminoreste gewährleistet [52], beispielsweise

$$(NEt2)Ph2SiCl + 2 Li \xrightarrow{THF, 0^{\circ}C} [(NEt2)Ph2Si] Li^{+} + LiCl$$

$$(98\%)$$

$$(4-31)$$

$$[(NEt_2)Ph_2Si^-] + Me_2Si(H)Cl \longrightarrow (NEt_2)Ph_2SiSiMe_2H + Cl^-$$
(85%)

Nach Reaktion von CF₃Me₂SiCl mit dem Anion [(NEt₂)Ph₂Si] kann zwar die Bildung eines neuen Trifluormethylsilans NMR-spektroskopisch verfolgt werden, das jedoch aufgrund der nicht vorhandenen charakteristischen ³J(SiF)-Kopplung nicht auf ein Kopplungsprodukt hinweist.

Eine alternative Methode zur Gewinnung von Silyl-Anionen ist die SiSi-Spaltung von Disilanen mit Alkyllithium-Reagenzien. So kann beispielsweise aus Hexamethyldisilan durch Spaltung mit MeLi das Trimethylsilyl-Anion in HMPA gewonnen werden [80]:

$$Me_3SiSiMe_3 + MeLi \xrightarrow{HMPA} Me_3SiLi + Me_4Si$$
 (4-33)

Problematisch ist hierbei die Verwendung von HMPA als stabilisierendes Lösungsmittel, das bekannterweise mit SiCl-Funktionen unter Siloxanbildung reagiert. So konnte nach der Umsetzung von Me₆Si₂ mit BuLi in HMPA und anschließender Zugabe von CF₃MeSiCl₂ neben dem Edukt im wesentlichen 2 flüchtige Trifluormethylsilane erhalten werden, die ihren spektroskopischen Eigenschaften zufolge SiO-Bindungen enthalten. Anzeichen für mögliche Kopplungsprodukte wurden weder in den flüchtigen noch in den schwerflüchtigen Fraktionen gefunden. Die Anwendung der SiSi-Spaltung auf CF₃Me₂SiSiMe₂CF₃ führt unter gleichen Bedingungen ausschließlich zu Zersetzungsprodukten.

Anstelle der bisher verwendeten Halogenfunktionen kommen auch SiH-Bindungen als Angriffspunkte in Betracht, deren Labilität für Eliminierungsreaktionen genutzt werden kann. Beispiele für die Eliminierung von Wasserstoff aus elektronenarmen EH-Bindungen finden sich bei den schweren Homologen des Siliciums, z.B. den Synthesen der Anionen (CF₃)₃Ge⁻ und (CF₃)₃Sn⁻ [69, 81]. Prinzipiell könnte auch die Abstraktion des Wasserstoffs aus einem elektronenarmen Silan möglich sein.

Mit Triethylamin konnte keine Veränderung von CF₃MeSiH₂ erzielt werden, während mit Diethylamin eine Aminierung der SiH-Funktionen unter Wasserstoffentwicklung stattfindet. Je nach Stöchiometrie entstehen Mono- oder Di(amino)silane:

$$CF_3MeSiH_2 + HNEt_2 \longrightarrow CF_3MeSi(H)NEt_2 \xrightarrow{+ HNEt_2} CF_3MeSi(NEt_2)_2$$
 (4-34)

In ähnlicher Weise wird das Silan durch BuLi alkyliert. Selbst die wenig nucleophilen Basen tert.-BuLi und LDA substituieren die SiH-Funktion, wobei die Aminierung mit LDA aus sterischen Gründen nur einfach erfolgt.

Vergleichbare Ergebnisse werden mit den etwas elektronenärmeren Halogensilanen $CF_3MeSi(H)X$ (X = Cl, Br) erhalten: In erster Stufe wird zunächst die SiH-Bindung nucleophil angegriffen, darauffolgend die Halogenfunktion.

Alle Ausgangsverbindungen verfügen offenbar nicht über eine ausreichende Acidität des Wasserstoffs, die auch durch einen zweiten elektronegativen Substituenten nicht deutlich erhöht wird. Infolgedessen ist der Wasserstoff selbst durch schwache Nucleophile zu verdrängen, wodurch die Bildung anionischer Species ausgeschlossen wird.

Die Silyl-Radikalrekombination ist eine eher selten benutzte Methode für SiSi-Kopplungen und wird meist dann angewendet, wenn klassische Wege nur unzureichende Ergebnisse liefern, wie z.B. im Fall sterisch gehinderter Disilane [82]. Die Radikale werden aus Hydrosilanen durch Photolyse [50, 82] oder durch Einsatz von Radikalstartern wie AIBN oder tert.-Butylperoxid erzeugt [83]. Die thermische Generierung von Radikalen wurde aufgrund der Labilität der CF₃-Gruppe nicht berücksichtigt.

Die Quecksilber-sensibilisierte Bestrahlung (Hg-Lampe, 254 nm) von CF₃Me₂SiH und CF₃MeSiH₂ führt selbst nach einer Reaktionszeit von 3 Tagen und einer Erhöhung der Temperatur auf 50°C zu keinem sichtbaren Abbau der SiH-Funktionen; das Edukt konnte in allen Fällen unverändert wiedergewonnen werden.

CF₃Me₂SiH, CF₃MeSiH₂
$$\xrightarrow{\text{hv } (254 \text{ nm})}$$
 keine Reaktion (4-35)

Dagegen wird bei der Reaktion von CF_3MeSiH_2 mit tert.-Butylperoxid bei einer Starttemperatur von $110^{\circ}C$ innerhalb von 20 min der vollständige Umsatz der SiH-Funktionen NMR-spektroskopisch beobachtet. Neben dem zweifachen Rekombinationsprodukt $CF_3MeSi(O^tBu)_2$ ($\delta^{29}Si$ -24.2 ppm, $^2J(SiF)$ 47.1 Hz) sind in den ^{29}Si -NMR-Spektren eine Vielzahl von Resonanzen im Bereich von -45 bis -48 ppm zu erkennen, deren Aufspaltungsmuster auf eine $^3J(SiF)$ -Kopplung in der Größenordnung von 1 Hz hinweisen. Aufgrund der recht hohen Signaldichte konnten jedoch keine definierten Strukturen bestimmt werden.

4.6.4 Photolyse von HgSi-Verbindungen

Bis(silyl)quecksilberverbindungen können thermisch oder photochemisch unter Abscheidung von elementarem Quecksilber zu Disilanen umgesetzt werden. Bekanntestes Beispiel hierfür ist die photochemische Reaktion von Bis(trimethylsilyl)-quecksilber zu Hexamethyldisilan [84]:

$$Me_3Si-Hg-SiMe_3 \xrightarrow{hv (254 \text{ nm})} Me_3Si-SiMe_3 + Hg$$
 (4-36)

Als vorteilhaft erweisen sich die sehr milden Bedingungen dieser Methode bei recht guten Ausbeuten. Die Synthese der Silylquecksilberverbindungen erfolgt allerdings unter Wurtz-Kopplungsbedingungen aus Me₃SiCl und elementarem Quecksilber [85], die nicht auf CF₃-Silane übertragbar sind.

Ein Zugang zu CF₃-substituierten HgSi-Verbindungen wird durch die photochemische Reaktion von trifluormethylierten Hydrosilanen in Anwesenheit von Quecksilberorganylen (HgEt₂, HgMe₂) ermöglicht:

$$2 \text{ CF}_3 \text{Me}_2 \text{Si-H} + \text{HgR}_2 \xrightarrow{\text{hv } (254 \text{ nm})} \text{(CF}_3 \text{Me}_2 \text{Si})_2 \text{Hg} + 2 \text{ R-H}$$

$$(4-37)$$

$$R = \text{Me, Et}$$

NMR-spektroskopische Detektion während der Photolyse zeigte allerdings, daß neben der gewünschten Verbindung $(CF_3Me_2Si)_2Hg$ (**44**) auch größere Anteile CF_3Me_2SiR entstehen. Zeitgleich mit der Bildung des Monosilans wurde eine weitere Quecksilberverbindung beobachtet, die als monosilyliertes Quecksilberorganyl CF_3Me_2SiHgR (R = Me (**45a**), R = Et (**45b**)) identifiziert wurde (Tab. 4.10: NMR-Daten, Abb. 4.10: ^{19}F -NMR-Spektrum nach 45 min Bestrahlung).

Im ersten Reaktionsschritt wird zunächst die asymmetrische Quecksilberverbindung (45a, b) gebildet, die einerseits unter Hg-Abscheidung zu CF_3Me_2SiR zersetzt wird oder mit einem weiteren Molekül CF_3Me_2SiH zu (44) weiterreagiert. Die Photolyse von (44) ergibt schließlich das Bis(trifluormethyl)disilan (28). Da beide Reaktionswege parallel verlaufen, ist es nicht möglich, $(CF_3Me_2Si)_2Hg$ selektiv ohne Anteile der Monosilyl-Verbindung darzustellen. Nach mehrstündigem Bestrahlen des Reaktionsgemisches können schließlich nur noch CF_3Me_2SiR und $[CF_3Me_2Si]_2$ detektiert werden.

Photolytische Aktivität wird nur bei den Alkylverbindungen des Quecksilbers verzeichnet, HgPh₂ reagiert selbst nach mehrtägigem Bestrahlen nicht mit CF₃Me₂SiH. Ebensowenig konnte eine thermische Initierung der Silylierung bis 100°C erreicht werden.

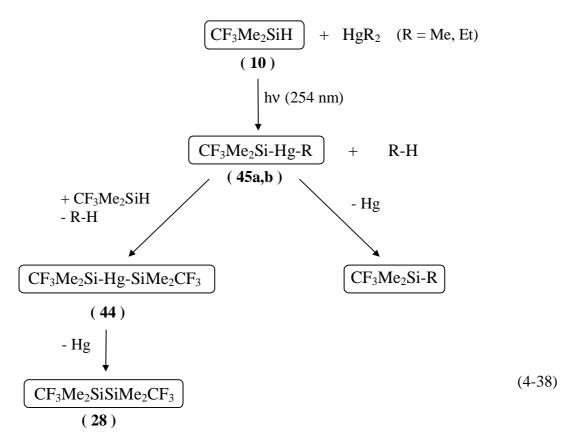


Abb. 4.10: ¹⁹F-NMR-Spektrum der Reaktion von CF₃Me₂SiH mit HgEt₂ nach 45 min Bestrahlung.

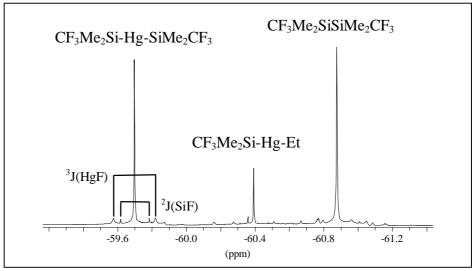


Tabelle 4.10: NMR-Parameter von [CF₃Me₂SiHgR] und [CF₃Me₂Si]₂Hg, R = Me, Et

HgSi	$\delta^{\!\scriptscriptstyle 19}$ F	δ^{29} Si	δ^{199} Hg	$^2J(SiF)$	$^{3}J(HgF)$
CF ₃ Me ₂ SiHgMe ^a	-60.4	41.2	17.7	38.7	64.4
CF ₃ Me ₂ SiHgEt	-60.4	42.6	-131.6	39.3	55.8
$(CF_3Me_2Si)_2Hg^b$	-59.7	61.2	118.2	40.3	57.1

ohne Lock, TMS, CFCl₃ ext., a) ${}^{1}J(HgSi) = 1438.9 \text{ Hz}$, ${}^{2}J(SiH) = 7.0 \text{ Hz}$, ${}^{3}J(SiH) = 3.6 \text{ Hz}$; b) ${}^{4}J(SiF) = 2.4 \text{ Hz}$

Von besonderem Interesse für den Aufbau von linearen oder cyclischen Silanen ist der Einsatz des sekundären Trifluormethylsilans CF₃MeSiH₂. Dabei sollten intermediär mehrere miteinander verknüpfte [Si-Hg-Si]- Einheiten entstehen, welche bei weiterer Photolyse zu CF₃-substituierten SiSi-Bindungen reagieren.

Nach mehrstündiger Reaktion von CF_3MeSiH_2 mit $HgEt_2$ konnte die Bildung mehrerer Verbindungen NMR-spektroskopisch beobachtet werden, die sowohl SiSi- als auch SiHgSi-Bindungen enthalten. Als terminale Gruppen kommen dabei sowohl HgEt- wie auch $(CF_3)MeSiH$ -Einheiten in Frage.

Auch durch sehr lange Bestrahlung konnte das Quecksilber im Sinne von Gl. (4-39) nicht vollständig entfernt werden, so daß stets mit einem Gemisch aus cyclischen oder linearen Oligosilanen zu rechnen ist, die noch SiHgSi-Einheiten enthalten. Im Vergleich mit den bisher vorgestellten Methoden erscheint die Photolyse der HgSi-Verbindungen durchaus geeignet, da milde Bedingungen die Beständigkeit der CF₃-Gruppe gewährleisten und die Durchführung präparativ einfach ist. Dagegen sprechen allerdings die hohe Giftigkeit der Quecksilberalkyle Nebenreaktionen, und die nicht zu vermeidenden welche die Ausbeute und Produkteinheitlichkeit limitieren.

Eine Übertragung des Syntheseweges auf Cadmiumalkyle scheitert an der hohen Labilität der intermediär auftretenden CdSi-Verbindungen. So wird in erster Stufe vermutlich CF₃Me₂SiCdR (R = Me, Et) gebildet, das aber sofort unter Cadmiumabscheidung zu CF₃Me₂SiR weiterreagiert:

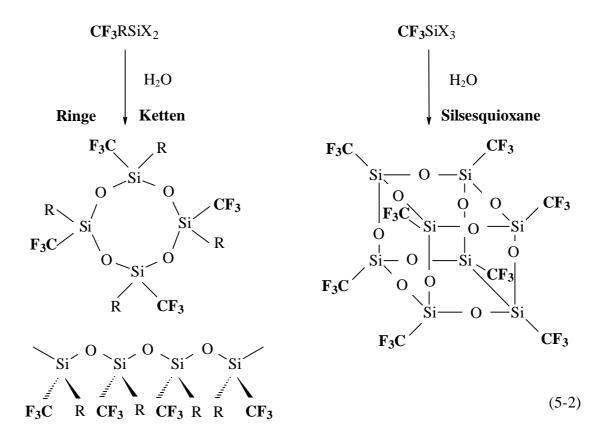
Im Gegensatz zu der photolytisch initierten Quecksilberabscheidung ist die Reaktivität der Cadmiumorganyle so hoch, daß die Reaktion ohne Bestrahlung und bei niedrigen Temperaturen abläuft [86]. Als Endprodukte werden dabei ausschließlich die alkylierten Monosilane erhalten.

Kapitel 5 CF₃-substituierte SiOSi-Bindungssysteme

5.1 Synthesestrategien

Disiloxane als kleinste SiOSi-Einheiten können sowohl durch Trifluormethylierung Cl-funktionalisierter Edukte wie auch durch Kondensationsreaktion von Monohalogensilanen dargestellt werden:

$$2 CF_3R_2SiX \xrightarrow{Hydrolyse} CF_3R_2SiOSiR_2CF_3 \xrightarrow{P(NEt_2)_3} ClR_2SiOSiR_2Cl$$


$$R = Alkyl, Aryl, X = Cl, Br$$

$$R = Alkyl$$

$$(5-1)$$

Im Fall sperriger Substituenten (R = Aryl) ist aus sterischen Gründen nur die Kondensationsreaktion durchführbar. Die Synthese von cyclischen oder linearen Oligosiloxanen durch Trifluormethylierung bestehender SiOSi-Gerüste ist wenig aussichtsreich, da einerseits geeignete Ausgangsmaterialien kaum verfügbar sind, andererseits aus statistischen Gründen eine vollständige Trifluormethylierung aller Halogenfunktionen unwahrscheinlich ist.

Bifunktionelle (CF₃RSiX₂) oder trifunktionelle Monosilane (CF₃SiX₃) sollen bei Hydrolyse zwei- bzw. dreidimensionale Einheiten ausbilden:

Prinzipiell steht als "Sauerstofflieferant" für die SiOSi-Bindung eine Vielzahl von Reagenzien zur Verfügung, wobei die Hydrolyse mit H₂O die meist verwendete Reaktion ist. Die Variationsmöglichkeiten hierbei reichen von sauren bzw. basischen Bedingungen über das Konzentrationsverhältnis der Edukte bis hin zu unterschiedlichen Reaktionstemperaturen. Je nach kinetischer oder thermodynamischer Kontrolle der Reaktion werden Produkte mit unterschiedlich hohem Polymerisationsgrad erhalten [7, 9, 87], z. B.:

Durch Polymerisation von cyclischen Siloxanen (Si₃O₃-(D₃) oder Si₄O₄-(D₄)Ringsysteme) können ebenfalls Polymere mit hohem Molekulargewicht erhalten werden, wobei die Ringöffnungs- und Kondensationsreaktionen meist anionisch oder kationisch initiiert werden [88].

Organohalogensilane, die aus sterischen Gründen nur sehr geringe Hydrolyseneigung besitzen, können in einer heterogenen Reaktion mit Metalloxiden zu Polysiloxanen umgesetzt werden [89]. Je nach Substituent werden dabei erstaunlich hohe Selektivitäten erzielt, so wird beispielsweise aus der Umsetzung von Ph₂SiCl₂ mit ZnO der Cyclotrisiloxanring in 97% iger Ausbeute erhalten [90]:

$$3 \text{ Ph}_2 \text{SiCl}_2 + 3 \text{ ZnO} \longrightarrow [\text{Ph}_2 \text{SiO}]_3 + 3 \text{ ZnCl}_2$$
 (5-4)

Etwas ungewöhnlicher erscheint die "nicht-wäßrige" Hydrolyse von Chlorsilanen mit DMSO, in der in Abhängigkeit von der Stöchiometrie kleine lineare oder cyclische Siloxane dargestellt werden [91]. Diese Methode bietet den Vorteil, daß sie unter sehr milden Bedingungen abläuft und gleichzeitig kinetisch gesteuert werden kann.

$$Me_2SiCl_2 \longrightarrow Cl_y[Me_2SiO]_xCl_y + [Me_2SiO]_n$$

$$(5-5)$$

$$(n = 3,4)$$

Während die vorangestellten Methoden eine statistische Verteilung der verschiedenen linearen oder cyclischen Siloxane liefern, wird ein gezielter Aufbau von Cyclosiloxanen durch Kondensation eines Dichlordisiloxans mit einem amingeschützten Distannoxan erreicht [92]:

Dieser Weg ist zwar mit erheblichem präparativen Aufwand verbunden, jedoch werden daraus funktionelle Cyclosiloxane erhalten, die eine Derivatisierung am bestehenden SiO-Gerüst ermöglichen. Dreidimensionale SiO-Gerüste (Silsesquioxane) werden überwiegend hydrolytisch dargestellt [87].

5.2 Trifluormethylierung von SiOSi-Gerüsten

Chlorsubstituierte Disiloxane lassen sich mit der Reagenzkombination P(NEt₂)₃/ CF₃Br zu den entsprechenden CF₃-Derivaten umsetzen:

$$ClR_{1}R_{2}SiOSiR_{1}R_{2}Cl \xrightarrow{P(NEt_{2})_{3}} CF_{3}R_{1}R_{2}SiOSiR_{1}R_{2}CF_{3}$$

$$R_{1}, R_{2} = Me (46)$$

$$R_{1} = Me, R_{2} = Ph (47)$$
(5-7)

Das Disiloxan (**46**) wird in Ausbeuten bis zu 75 % erhalten, wohingegen die Trifluormethylierung des sterisch etwas anspruchsvolleren Disiloxans (**47**) nur noch mit ca. 30 % verläuft. Für R_1 , R_2 = Ph unterdrückt der sterische Einfluß der Phenylgruppen eine Trifluormethylierung der Cl-Funktionen vollständig.

Die Trifluormethylierung sehr lewis-acider Siloxane, wie beispielsweise des Si₂Cl₆O oder Si₃Cl₈O₂, führt primär nicht zu den gewünschten CF₃SiO-Systemen, sondern zu einem komplexen Gemisch verschiedener Komponenten. Wird das Übertragungsreagenz im Verhältnis 1:1 zu dem Siloxan eingesetzt, kann aus der Reaktion von Si₂Cl₆O mit P(NEt₂)₃/ CF₃Br das monotrifluormethylierte Disiloxan CF₃SiCl₂OSiCl₃ (**48**) als flüchtige Verbindung erhalten werden. Bei Verwendung größerer Mengen des Phosphans wird (**48**) nicht mehr beobachtet, vielmehr tritt die Bildung trifluormethylierter Aminophosphane als Folge einer Transaminierung in den Vordergrund:

Die Umsetzung von $Si_3Cl_8O_2$ mit zwei Äquivalenten $P(NEt_2)_3$ führt prinzipiell auch zu CF_3Si -Verbindungen, die anhand der ¹⁹F-NMR-Resonanzen in einem für Siloxane typischen Bereich von $\delta = -70$ ppm erkennbar sind. Eine Identifizierung oder Isolierung ist aus oben genannten Gründen erschwert, sowie aufgrund SiO-Bindungsspaltung und SiF-Bildung kaum realisierbar.

5.3 SiOSi-Aufbau ausgehend von CF₃-Monosilanen

Die Hydrolyse der Monohalogensilane CF₃R₂SiX führt in Ausbeuten von 40 - 70% zu den entsprechenden Disiloxanen, wobei auch das sterisch anspruchsvollere Disiloxan [CF₃Ph₂Si]₂O (49) zugänglich wird:

$$2 \text{ CF}_{3}\text{Me}_{2}\text{SiCl} \xrightarrow{\text{H}_{2}\text{O} \text{ (HCl)}} \text{CF}_{3}\text{Me}_{2}\text{SiOSiMe}_{2}\text{CF}_{3}$$

$$(5-9)$$

$$2 \text{ CF}_{3}\text{Ph}_{2}\text{SiCl} \xrightarrow{\text{H}_{2}\text{O (HCl)}} \text{CF}_{3}\text{Ph}_{2}\text{SiOSiPh}_{2}\text{CF}_{3}$$

$$(5-10)$$

Die Hydrolyse wird unter salzsauren Bedingungen (pH ca. 1-2) durchgeführt, da im basischen Medium ein partieller oder vollständiger Abbau der CF₃-Gruppe erfolgt.

Alternativ lassen sich die Disiloxane (46, 49) auch durch Umsetzung mit Metalloxiden gewinnen, wobei auch SiH-funktionelle Monosilane eingesetzt werden können, die unter hydrolytischen Bedingungen zu SiH-Bindungsspaltung neigen.

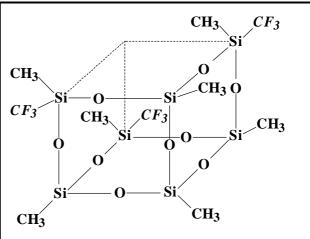
$$2 CF_3MeSi(H)Br + ZnO \xrightarrow{4d, RT} CF_3Me(H)SiOSi(H)MeCF_3 + ZnBr_2 (5-11)$$
(50)

Die heterogene Reaktion mit Metalloxiden erfordert bei geringeren Umsätzen längere Reaktionszeiten als die wäßrige Hydrolyse. Höhere Reaktionstemperaturen oder auch sehr lange Reaktionszeiten führen allerdings zum Abbau der SiH-Funktion.

Der Aufbau zweidimensionaler SiOSi-Systeme, d.h. cyclischer oder linearer Verbindungen, erfolgt durch Hydrolyse der difunktionellen CF₃-Silane CF₃RSiX₂ (R = Me, Ph, X = Cl, OMe). Für R = Me ist ähnlich wie bei der Hydrolyse von Me₂SiCl₂ vorwiegend mit der Bildung des tetrameren Cyclosiloxanringes zu rechnen [93], während bei stärkerem sterischen Anspruch größere Anteile des trimeren Cyclosiloxanringes erwartet werden.

Unter neutralen Bedingungen führt die Hydrolyse von CF₃MeSi(OMe)₂ jedoch nicht zu dem erwartenden Produktspektrum. Stattdessen wird vielmehr ein partieller Abbau der CF₃-Gruppe beobachtet, der sich einerseits in HCF₃-Entwicklung äußert, andererseits durch die Isolierung von [CF₃MeSiO]₃ [MeSiO_{1.5}]₄ (51) belegt wird.

$$CF_{3}MeSi(OMe)_{2} \xrightarrow{H_{2}O, Et_{2}O} FT, -HCF_{3}$$


$$[CF_{3}MeSiO]_{3} [MeSiO_{1.5}]_{4}$$

$$(5-12)$$

$$+ hochpolymere Anteile$$

Einkristalle von (51) konnten in geringen Mengen durch Sublimation bei 80°C im Hochvakuum gewonnen werden. Es kann davon ausgegangen werden, daß der nichtflüchtige Rückstand aus hochverzweigten Netzwerken von MeSiO₃- und (CF₃)MeSiO₂-Einheiten besteht. In Abbildung 5.1 ist der schematische Aufbau von (51) wieder-Struktur gegeben. Die läßt sich "unvollständig kondensiertes Silsesquioxan (POSS)" beschreiben, bei der die Strukturelemente [CF₃SiMe] und [MeSi] über

Abb. 5.1: Schematischer Aufbau von (**51**)

Sauerstoffatome verbrückt jeweils an den Ecken eines Würfels sitzen. Vergleichbare Strukturen der Zusammensetzung [RXSiO]₃ [RSiO_{1.5}]₄ sind vor allem mit sperrigen Liganden R bekannt, wobei eine OH-Gruppe (X) den Platz für die CF₃-Gruppe einnimmt; als Alkylreste werden häufig R = c- C_5H_9 , c- C_6H_{11} und c- C_7H_{13} eingesetzt [94].

Durch fortwährende Verzweigung nähert sich das System der idealen Silsesquioxanstruktur (T₈-Struktur) an, die dann erreicht werden würde, wenn alle CF₃-Gruppen abgebaut werden und die unbesetzte Ecke des Würfels durch Kondensation geschlossen ist.

Um die Eliminierung der CF₃-Gruppe durch Angriff von Methanolat zu unterdrücken, ist es zweckmäßig, die Hydrolyse in einer Zweiphasenreaktion durchzuführen. Dabei hat sich aufgrund der Löslichkeit der Produkte vor allem CHCl₃ bewährt. Unter diesen Bedingungen wird ein Produktgemisch der Zusammensetzung [CF₃MeSiO]_n erhalten, wobei je nach Konzentration des Trifluormethylsilans viskose Öle oder farblose Feststoffe anfallen, die selbst in CHCl₃ vollständig löslich sind. Durch Sublimation oder Vakuum-Destillation können flüchtige trifluormethylierte Cyclosiloxane abgetrennt werden, wobei [CF₃MeSiO]₄ (**52**) anteilsmäßig am stärksten vertreten ist.

Einkristalle des Tetracyclosiloxans mit all-trans-Konfiguration, das als thermodynamisch günstige Form vor den anderen drei Konfigurationsisomeren bevorzugt sein sollte, konnten durch Sublimation gewonnen werden (Kap. 5.4). Die massenspektroskopische Analyse der flüchtigen Bestandteile belegt die Existenz größerer Ringsysteme, die aber nur in geringen Mengen entstehen; ein Cyclotrisiloxan [CF₃MeSiO]₃ konnte spektroskopisch nicht nachgewiesen werden. Der übrige Bestandteil des Produktgemisches (ca. 70%) enthält polymere nichtflüchtige Öle oder Feststoffe. Die Produktverteilung kann durch die Reaktionszeit gesteuert werden: Nach mehreren Tage überwiegen kleine, meist cyclische Siloxane, wohingegen polymere Produkte nach sehr kurzen Reaktionszeiten entstehen.

Überwiegend polymere Siloxane werden auch aus der Umsetzung von CF₃MeSiCl₂ mit Ag₂O erhalten, die Anteile oligomerer Verbindungen liegen eher im Spurenbereich:

$$CF_3MeSiCl_2 + Ag_2O \longrightarrow [CF_3MeSiO]_{\infty} + 2 AgCl$$
 (5-14)

Infolge der Abwesenheit katalytischer Mengen an Säure wird in diesem Reaktionssystem die Einstellung des Gleichgewichtes zwischen linearen und cyclischen Siloxanen verhindert und somit fast ausschließlich der lineare Kettenaufbau gefördert.

Ein Produktgemisch mit ähnlichen Eigenschaften wird aus der Umsetzung von CF₃MeSiCl₂ mit DMSO erhalten. Im Gegensatz zu der wäßrigen Hydrolyse kann die Reaktion in polaren Lösungsmitteln und unter pH-neutralen Bedingungen ohne CF₃-Gruppenabbau durchgeführt werden:

$$CF_3MeSiCl_2 \xrightarrow{DMSO, Et_2O} [CF_3MeSiO]_{\infty}$$
 (5-15)

Der hochpolymere Charakter des Produktes steht im Widerspruch zu den Ergebnissen aus der Umsetzung von Me₂SiCl₂ mit DMSO (siehe [91]), in der überwiegend kleine lineare oder cyclische SiO-Systeme NMR-spektroskopisch beobachtet wurden. Auch unter Anwendung des Verdünnungsprinzips gelang es nicht, die Ergebnisse auf Trifluormethylsilane zu übertragen.

Die Hydrolyse von CF₃PhSiCl₂ unter salzsauren Bedingungen führt zu einem Gemisch CF₃-substituierter Siloxane, das sowohl aus farblosen Feststoffen wie auch hochviskosen Ölen besteht:

$$CF_3PhSiCl_2$$
 $\xrightarrow{H_2O, (HCl)}$ $CHCl_3, RT$ $[CF_3PhSiO]_n$ (5-16)

Dagegen führt die Umsetzung mit ZnO fast ausschließlich zum Abbau der CF₃-Gruppe; nach zweitägiger Reaktion bei 80°C konnten nur noch SiF-Funktionen NMR-spektroskopisch beobachtet werden, der Anteil CF₃-substituierter Verbindungen lag im Spurenbereich.

In ähnlicher Weise reagiert (CF₃)₂SiBr₂ mit Ag₂O: Nach einer kurzen Induktionsphase kommt es zu einer heftigen Reaktion, aus der überwiegend die Abbauprodukte des Eduktes erhalten werden:

$$(CF_3)_2SiBr_2 \xrightarrow{Ag_2O, Et_2O} CF_3SiF_3 + SiF_4 + HCF_2Br + CF_2Br_2$$
 (5-17)

Auch bei der Hydrolyse von $(CF_3)_2SiBr_2$ kann nur ein CF_3 -Gruppenabbau festgestellt werden, Hinweise auf ein perfluoralkyliertes SiOSi-Bindungssystem werden nicht gefunden. Unter gleichen Bedingungen reagiert $(CF_3)_2Si(H)Br$ sehr heftig mit Spuren von Wasser, selbst bei Temperaturen von -10°C läßt sich eine Zersetzung der Verbindung nicht aufhalten.

Die Umsetzung von $(CF_3)_2SiBr_2$ mit DMSO ist wenig praktikabel, da in erster Linie Komplexbildung des sehr aciden Silans erfolgt und somit der Aufbau von Siloxanbindungen unterdrückt wird. Insgesamt leidet die Synthese perfluoralkylierter SiOSi-Systeme ausgehend von Bis(trifluormethyl)silanen an der hohen Labilität der Verbindungen, die in Gegenwart von Nucleophilen oder Metalloxiden zu CF_2 -Eliminierung neigen.

Die Hydrolyse von CF₃SiCl₃ bzw. CF₃Si(OMe)₃ unter salzsauren Bedingungen führt überwiegend zu einem schwerlöslichen Rückstand, der nach IR-spektroskopischer Untersuchung keine CF₃SiO-Systeme enthält. In dem geringen löslichen Anteil des Reaktionsproduktes (ca. 5 %) konnte NMR-spektroskopisch ebenfalls eine CF₃Si-Gruppierung nicht nachgewiesen werden, so daß von einem vollständigen Abbau der CF₃-Gruppe ausgegangen werden muß. Limitierend wirkt bei der Hydrolyse von CF₃SiX₃ zu Netzwerk-ähnlichen Strukturen (z.B. Silsesquioxane) vor allem der Zeitfaktor, da für eine vollständige Kondensation aller Bindungen ein langer Zeitraum benötigt wird. Nach einer Reaktionszeit von 2 Wochen ist jedoch die Wahrscheinlichkeit der SiF-Bildung aus den labilen CF₃SiO-Systemen sehr hoch.

.

5.4 Eigenschaften CF₃-substituierter SiOSi-Systeme

5.4.1 NMR-Spektren

Die ¹⁹F-Resonanzen der CF₃-substituierten Siloxane liegen in einem sehr engen und charakteristischen Bereich von -64 ppm bis -71 ppm und sind damit um fast 10 ppm gegenüber den entsprechenden Disilanen hochfeldverschoben (Tabelle 5.1). Der elektronenziehende Einfluß der SiO-Bindung äußert sich in einem Anstieg der ²J(SiF)-Kopplungskonstante, deren Größenordnung generell durch die Summe der elektronegativen Substituenten am Silicium bestimmt wird. So ist die Kopplung in CF₃Cl₂SiOSiCl₃ mit 74.2 Hz deutlich größer als in CF₃Me₂SiOSiMe₂CF₃ (44.3 Hz). Die Lage der ¹³C-Resonanzen sowie die Größe der ¹J(CF)-Kopplungskonstante werden gleichfalls durch die SiO-Bindung beeinflußt, wobei die CF₃-Gruppen des Cyclotetrasiloxans (52) um fast 3 ppm hochfeldverschoben gegenüber den linearen Verbindungen erscheinen. Kopplungen über den Sauerstoff werden mit Ausnahme der ³J(SiH)-Kopplung im [CF₃Me(H)Si]₂O (**50**) nicht aufgelöst. Während die ¹⁹F-NMR-Parameter wenig charakteristisch für die Strukturelemente der Siloxane sind, lassen sich aus den ²⁹Si-NMR-Spektren eindeutige Aussagen über die Eigenschaften des SiOSi-Gerüstes treffen. Allgemein sind die ²⁹Si-Resonanzen der trifluormethylierten Disiloxane um ca. 10 ppm gegenüber den entsprechenden methylierten Verbindungen hochfeldverschoben, das cyclische Tetramer sogar um 21 ppm:

	[CF ₃ -SiO]	[CH ₃ -SiO]
	[CF ₃ Me ₂ Si] ₂ O	[Me ₃ Si] ₂ O [95]
$\delta^{29}Si$	-1.6 ppm	+6.8 ppm
	[CF ₃ MePhSi] ₂ O	[Me ₂ PhSi] ₂ O [96]
$\delta^{29}Si$	-14.7 ppm	-1.8 ppm
	[CF ₃ Ph ₂ Si] ₂ O	[MePh ₂ Si] ₂ O [96]
$\delta^{29}Si$	-24.1 ppm	-12.5 ppm
	[CF ₃ Me(H)Si] ₂ O	[Me ₂ (H)Si] ₂ O [97]
$\delta^{29}Si$	-17.1 pmm	-7.0 ppm
	[CF ₃ MeSiO] ₄	[Me ₂ SiO] ₄ [98]
δ^{29} Si	-41.2 ppm	-20.0 ppm

²⁹Si-NMR-Untersuchungen an permethylierten Siloxanen zeigen, daß die verschiedenen Baugruppen (M-, D-, T- oder Q-Einheiten) deutlich in ihren Resonanzlagen separiert sind [99, 100]. Mit zunehmenden SiO-Bindungsanteilen wird eine Hochfeldverschiebung beobachtet, wobei SiO₄ (Q)-Einheiten mit ca. -110 ppm den höchsten Wert annehmen. Geringer fallen dagegen die Effekte für unterschiedliche Ringgrößen bei gleichem Substitutionsmuster aus, so ist [Me₂SiO]₄ (D₄) gegenüber [Me₂SiO]₅ (D₅) nur um ca. 2 ppm tieffeldverschoben [98]. In der gleichen Größenordnung befinden sich auch die Unterschiede zwischen cyclischen und linearen (D)-Gruppen, wobei die linearen Einheiten meist bei höherem Feld erscheinen. Diese

Zuordnungsprinzipien lassen sich unter Berücksichtigung des "CF₃-Shifts" auch auf die Trifluormethyl-Derivate übertragen, was zur Strukturaufklärung oligomerer und polymerer Siloxane genutzt werden kann. So erscheinen die cyclischen CF₃-Siloxane in den ²⁹Si-NMR-Spektren zwischen -41 ppm und -43 ppm, wobei die Resonanzen der Cyclen >D₄ im Bereich von -43 ppm lokalisiert sind. Aufgrund der starken Überlappung der Liniensysteme ist eine Zuordnung der Resonanzen zu möglichen Ringgrößen und deren Stellungsisomeren nicht möglich. Für die überwiegend linearen Baugruppen, die aus der Umsetzung von CF₃MeSiCl₂ mit Ag₂O erhalten werden, sind die Resonanzen um ca. -4 ppm zu höherem Feld verschoben und werden bei -47 ppm beobachtet.

Die ²⁹Si-Resonanzen der Trifluormethyl(phenyl)polysiloxane (nach Gl. 5-16) liegen in einem Bereich von -57 bis -60 ppm. Dies entspricht unter Berücksichtigung des "CF₃-Shifts" den erwarteten Werten, da die perphenylierten Siloxane um ca. 11 bis 14 ppm zu tieferem Feld verschoben sind [96]. Die ²J(SiF)-Kopplungskonstanten der CF₃-Phenylsiloxane sind mit 54.5 bis 56 Hz nahezu konstant und um 5-10 Hz größer als die Werte der methylierten Verbindungen.

Tabelle 5.1: NMR-Parameter CF₃-substituierter Siloxane

Chemische Verschiebung in [ppm], Kopplungskonstanten in [Hz]

Siloxan	δ^{1} H (CH ₃)	δ^{13} C (CF ₃)	δ^{19} F	δ^{29} Si	$^{1}J(CF)$	$^2J(SiF)$
$[CF_3Me_2Si]_2O^a$ (46)	0.41	128.9	-70.2	-1.6	320.1	44.3
$[CF_3Me(Ph)Si]_2O^b$ (47)	0.86/ 0.89	129.0	-67.54/ -67.56	-14.72/ -14.73	319.9	45.8
$CF_3Si^ACl_2OSi^BCl_3$ (48)			-69.7	A: -45.5 B: -43.7	312.4	74.2
$[CF_3Ph_2Si]_2O$ (49)		129.2	-64.2	-24.1	320.8	43.5
$[CF_3Me(H)Si]_2O^c$ (50)	0.57	128.0	-68.51/ -68.56	-17.07/ -17.10	317.9	49.3
[CF ₃ MeSiO] ₄ (52)	0.57	125.5	-71.2	-41.2	314.5	54.9

CDCl₃, **a**) ¹J(SiC)(*SiC*H₃) 65.1 Hz, ¹J(SiC)(*SiC*F₃) 97.0 Hz, ²J(SiH) 7.3 Hz, ¹J(CH) 121.6 Hz, ³J(CH)(F₃CSiCH₃) 2.0 Hz; **b**) δ¹H (Ph) 7.5 - 7.9 ppm, δ¹³C (Ph) 128.73/76, 132.12/16, 134.1, 135.38/39 ppm, ³J(CH)(F₃CSiCH₃) 1.9 Hz; **c**) δ¹H(SiH) 4.84 ppm, ³J(HH) 2.8 Hz, ³J(HF) 5.0 Hz, ²J(CH)(F₃CSiH) 16.7 Hz, ³J(CH)(F₃CSiCH₃) 2.4 Hz, ¹J(SiH) 243.3 Hz, ³J(SiH) 1.5 Hz.

5.4.2 Schwingungsspektren

Das Schwingungsspektrum des $CF_3Me_2SiOSiMe_2CF_3$ (46) setzt sich aus den Komponenten der CF_3 -Gruppenschwingungen sowie des $Siloxangerüstes \ XMe_2SiOSiMe_2X$ zusammen. Während die CF_3 -Schwingungen (δCF_3 und νCF_3) nahezu lagekonstant sind, zeigt die asymmetrische Schwingung (ν_{as}) des SiOSi-Gerüstes eine starke Abhängigkeit vom Substitutent X. So wird bei zunehmend elektronenziehenden Eigenschaften der Substituenten eine Verschiebung der asymmetrischen Schwingung $\nu_{as}(SiOSi)$ zu höheren Wellenzahlen beobachtet [101]. Diese Abhängigkeit findet sich nicht nur für die Methylenderivate mit $X = CH_2Cl$ (Br, I) und $CHCl_2$ sondern ist auch auf weitere Tetramethyldisiloxane übertragbar (Tabelle 5.2). Die asymmetrische SiOSi-Streckschwingung des CF_3 -Derivates liegt im gleichen Bereich wie die ebenfalls sehr intensive Streckschwingung der CF_3 -Gruppe ($\nu_{as}CF_3$), welche in den Ramanspektren als schwache depolarisierte Bande zu erkennen ist (Tabelle 5.3). Dagegen besitzt die SiOSi-Schwingung keine nennenswerte Ramanaktivität, so daß beide Banden eindeutig zugeordnet werden können. Die Lage der symmetrischen SiOSi-Schwingung $\nu_s(SiOSi)$ wird überwiegend durch Schwingungskopplung, z.B. mit der $\nu(SiX)$, gesteuert.

Tabelle 5.2: vSiOSi-Frequenzen von XMe₂SiOSiMe₂X, [cm⁻¹]

X =	CF ₃	F	Cl	I	Н	CH ₃
		[102]	[103]	[102]	[103]	[104]
$\nu_s(SiOSi)$	551	547	578	551	552	519
$\nu_{as}(SiOSi)$	1118	1100	1070	1068	1058	1055

Die Identifizierung der sehr tiefliegenden Deformationsschwingung des SiOSi-Gerüstes ($< 200~\text{cm}^{-1}$) erscheint schwierig, da zum einem nur wenige Informationen von bekannten Systemen vorliegen (Me₆Si₂O, δ SiOSi = 180 cm⁻¹ [104]), zum anderen die Deformationsschwingungen der SiC₂-Einheit in dem gleichen Bereich lokalisiert sind. So finden sich in dem Ramanspektrum von (46) zwei starke polarisierte Banden bei 190 bzw. 195 cm⁻¹, die beiden Schwingungstypen zugeordnet werden können.

Die Lage der SiC_2 -Streckschwingungen (660 cm⁻¹ bis 810 cm⁻¹) stimmen mit den Werten des Fluor- bzw. Chlorderivates überein ebenso wie die höher liegenden Schwingungen der CH_3 -Gruppen ρCH_3 , δCH_3 und νCH_3 (Tabelle 5.3). Die Deformationsschwingungen der CF_3 -Gruppe befinden sich in dem für Trifluormethylsilane charakteristischen Bereich, gleiches gilt für die asymmetrische Streckschwingung $\nu_{as}CF_3$, während die symmetrische Komponente ν_sCF_3 mit 1237 cm⁻¹ ebenso wie bei den Methoxysilanen $CF_3MeSi(OMe)_2$ (1243 cm⁻¹) und $CF_3Si(OMe)_3$ (1252 cm⁻¹, [23]) zu höheren Wellenzahlen verschoben ist.

Die Analyse der IR/ Ramanspektren oligomerer und polymerer Substanzen der Zusammensetzung [CF₃MeSiO]_n ergibt ähnliche Frequenzlagen für die verschiedenen Gruppenschwingungen, besonders die Banden > 1200 cm⁻¹ stimmen mit denen von (**46**) überein. Auch die Deformationsschwingungen der CF₃-Gruppe werden nicht durch unterschiedliche

Kettenlängen oder Quervernetzungen beeinflußt. Dagegen variiert die Lage der v_s SiOSi deutlich mit der Struktur des Polymers. Bei kettenförmigen CF₃MeSiO-Einheiten wird eine breite Ramanbande bei 500 cm⁻¹, bei cyclischen Derivaten bei ca. 550 cm⁻¹ beobachtet. In den IR-Spektren bilden die sehr intensiven asymmetrischen Streckschwingungen des SiOSi-Gerüstes zusammen mit der asymmetrischen Streckschwingung der CF₃-Gruppe ein breites Bandensystem, in dem die v_{as} CF₃ meist nur als Schulter der SiOSi-Schwingungen zu erkennen ist. Gegenüber linearen permethylierten Oligo- und Polysilanen [105] sind die v_{as} SiOSi-Schwingungen der CF₃-Derivate zu höheren Wellenzahlen verschoben (ca. 1100 cm⁻¹ - 1145 cm⁻¹).

Tabelle 5.3: Frequenzen der Disiloxane $XMe_2SiOSiMe_2X$ ($X = CF_3$, Cl, F) von 400 cm^{-1} - 3000 cm^{-1}

CF ₃ Me ₂ S	SiOSiMe ₂ CF ₃	ClMe ₂ SiOMe ₂ Cl /	FMe ₂ SiOSiMe ₂ F	[102, 103]
IR (g)	Raman (l)	IR	Raman	Zuordnung
	93 (w, dp)			δSiC
	136 (m, dp)			$\delta C^H SiC^F$
	190 (s, dp)			$\delta SiOSi, \delta SiC_2$
	195 (s, dp)			_
	226 (m, dp)			δSiC_2
	270 (m, dp)			
	308 (w, dp)			ρCF_3
	337 (w, dp)			δSiC_2
	395 (vs, p)			$vSiC^F$
412 (m)				
520 (w)	520 (m, dp)			$\delta_{as}CF_3$
551 (w)	552 (s, p)	578 (m)/ 547 (vw)	579/ 548	v_s SiOSi
670 (m)	673 (w, dp)	673 (m)/658 (s)	675/656	v_sSiC_2
708 (w)	709 (vs, p)	705 (w)/	707/711	v_sSiC_2
724 (w)				$\delta_s CF_3$
		/ 782 (w)	/ 784	$v_{as}SiC_2$
812 (s)	809 (w, dp)	808 (vvs)/ 813 (vs)	801/814	$v_{as}SiC_2$
839 (m)		830 (vvs)/		$\rho \mathrm{CH}_3$
	875 (w, dp)	/873 (w)	874/879	$\rho \mathrm{CH}_3$
1090 (vs)	1074 (w, dp)			$v_{as}CF_3$
1118 (vs)		1070 (vvs)/ 1100 (vs)		$v_{as}SiOSi$
1237 (s)	1233 (w, dp)			v_sCF_3
1270 (s)	1272 (w, dp)	1258 (s)/ 1274 (s)	1264/ 1273	$\delta_{\rm s}{ m CH}_3$
1410 (w)	1412 (w, dp)	1408 (w)/ 1418 (vw)	1406/ 1412	$\delta_{as}CH_3$
		1458 (vw)/ 1458 (w)		$\delta_{as}CH_3$
2911 (w)	2917 (vs, p)	2918 (w)/2921 (w)	2907/2906	v_sCH_3
2977 (m)	2983 (m, dp)	2970 (m)/ 2983 (m)	2971/2974	$v_{as}CH_3$

5.4.3 Massenspektren

Bei der Fragmentierung von CF₃Me₂SiOSiMe₂CF₃ (**46**) dominiert der Abbau der CF₃-Gruppen deutlich vor der SiOSi-Bindungsspaltung. Ein Molekülpeak konnte unter den verwendeten Bedingungen (Ionisation: EI, 70 eV) nicht beobachtet werden. Als Fragment mit der höchsten Massenzahl wurde [FMeSiOSiMe₂F]⁺ (m/z 155, 41 %), als Basis-Peak [Me₂SiOSiMe₂F]⁺ (m/z 151, 100 %) beobachtet. Erst in den nachfolgenden Fragmentierungsschritten erfolgt die Gerüstspaltung ([FSiMe₂]⁺, m/z 77, 16.5 %).

Wie im Fall von (**46**) wird beim Tetracyclosiloxan (**52**) kein Molekülpeak beobachtet. Die Fragmentierung von $[CF_3MeSiO]_4$ kann erst ab dem Fragment $[(CF_3)_2(CH_3)_4Si_4O_4F]^+$ (m/z 393) nachvollzogen werden. (Abb. 5.2). Neben dem Hauptfragmentierungsweg ausgehend von $[(CF_3)_2(CH_3)_4Si_4O_4F]^+$ existiert eine zweite untergeordnete Abbaulinie, deren Ausgangspunkt $[(CH_3)_2Si_4O_4F_4]^+$ (m/z 297) ist. Typischerweise werden auch bei (**52**) zunächst alle CF_3 -Gruppen abgebaut, bevor die Fragmentierung des Ringsystems beginnt.

Die recht hohe Beständigkeit des Siloxangerüstes erlaubt in den Spektren der Hydrolyseprodukte aus Gl. (5-13) die Identifizierung eines weiteren Siloxans neben [CF₃MeSiO]₄ (**52**). Das Fragment mit einer Massenzahl von m/z = 527 entspricht einer cyclischen Verbindung der Zusammensetzung Me₇Si₇O₇F₆, deren weiterer Fragmentierungsweg durch Verlust von MeSiOF gekennzeichnet ist. So konnten ausgehend von [Me₇Si₇O₇F₆]⁺ (m/z 527, 4.5 %) noch folgende Abbaufragmente gefunden werden:

$$[Me_6Si_6O_6F_5]^+$$
 (m/z 449, 7.5 %) und $[Me_5Si_5O_5F_4]^+$ (m/z 371, 3.8 %)

Der relative Anteil dieser Verbindung ist aufgrund seiner Schwerflüchtigkeit deutlich kleiner als für das Cyclotetrasiloxan, die angegeben Werte beziehen sich auf Messungen bei ca. 60°C Verdampfungstemperatur.

Abb. 5.2: Fragmentierung von [CF₃MeSiO]₄ (**52**)

5.4.4 Die Kristallstrukturen von [CF₃MeSiO]₃[MeSiO_{1.5}]₄ und [CF₃MeSiO]₄

Strukturanalysen von Silsesquioxanen der Zusammensetzung [XRSiO]₃ [RSiO]₄ liegen bisher nur für wenige Verbindungen vor, was hauptsächlich durch die schwierige Synthese und Isolierung der Verbindungen begründet ist. So sind bisher nur die Strukturdaten von Silsesquioxanen mit großen Resten R wie z.B. c-C₅H₉, c-C₆H₁₁ und c-C₇H₁₃ [94] oder aber Phenyl-substituierte Vertreter bekannt (X = OH) [106, 107]. Ein Silsesquioxan mit R = Et und X = OBu wurde zwar spektroskopisch charakterisiert, jedoch liegen keine Strukturdaten zu dieser Verbindung vor [108]. Methyl-substituierte Silsesquioxane konnten bisher nicht erfolgreich dargestellt oder isoliert werden.

Die Besetzung der OH-Plätze durch CF₃-Gruppen (Schema: Abb. 5.1. Struktur: Abb. 5.3), sowie die Substitution mit R = Me führt im Trifluormethylderivat (**51**) zu einer geringen Verkürzung der durchschnittlichen SiO-Bindungen im Vergleich zu dem Cyclohexyl-silsesquioxan [109]. Die Verkürzung ist gleichzeitig mit einer Aufweitung der OSiO-Bindungswinkel der CF₃MeSi-Einheiten auf 112° verbunden, während die Winkel der MeSi-Gruppen um ca. 4° kleiner sind. In der Summe aller Strukturparameter wird das Si₇O₉-Gerüst der unvollständig kondensierten Silsesquioxane nur geringfügig durch die unterschiedlichen Substituenten beeinflußt, selbst die sterisch und elektronisch sehr unterschiedlichen Substituenten CF₃, OH bzw. Me und Cyclohexyl führen nur zu sehr kleinen Veränderungen der Strukturparameter.

Abb. 5.3: Kristallstruktur von [CF₃MeSiO]₃ [MeSiO_{1.5}]₄ (**51**)

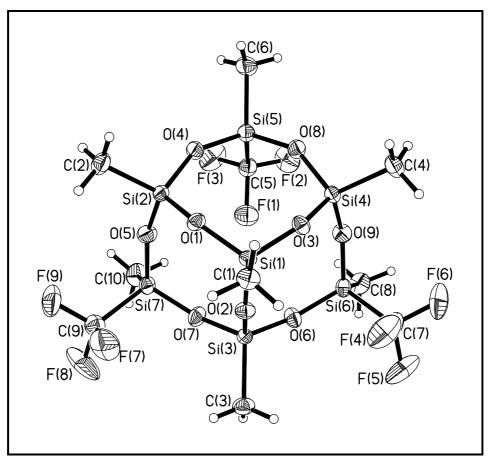


Tabelle 5.4: Ausgewählte Strukturparameter von [CF₃MeSiO]₃ [MeSiO_{1.5}]₄ (51)

Monocline Raumgruppe P2₁/c, a = 1855.59(2), b = 877.81(10), c = 1720.04(2), $\beta = 99.097(9)^{\circ}$, Z = 4, D = 1.567 g cm⁻¹

Si-CF:	3	Si-Me	9
Si(5)-C(5)	187.0(6)	Si(1)-C(1)	182.6(5)
Si(6)-C(7)	189.0(6)	Si(2)-C(2)	181.8(5)
Si(7)-C(9)	188.9(6)	Si(3)-C(3)	183.0(5)
		Si(4)-C(4)	180.8(5)
Si(5)-C(6)	184.0(5)		
Si(6)-C(8)	182.4(5)		
Si(7)-C(10)	182.2(5)		
Si(5)-O(8)	160.5(3)	Si(1)-O(1)	161.2(3)
Si(6)-O(6)	160.4(3)	Si(2)-O(4)	160.8(3)
Si(7)-O(5)	159.7(3)	Si(3)-O(6)	161.0(3)
		Si(4)-O(8)	162.3(3)
O(4)-Si(5)-O(8)	112.1(2)	O(1)-Si(1)-O(2)	108.4(2)
O(6)-Si(6)-O(9)	112.3(2)	O(4)-Si(2)-O(5)	106.7(2)
O(5)-Si(7)-O(7)	112.3(2)	O(2)-Si(3)-O(7)	109.2(2)
		O(9)-Si(4)-O(3)	108.8(2)
Si(7)-O(5)-Si(2)	157.6(2)	Si(1)-O(1)-Si(2)	150.2(2)
Si(6)-O(6)-Si(3)	151.4(2)	Si(3)-O(2)-Si(1)	152.1(2)
Si(5)-O(8)-Si(4)	149.3(2)	Si(1)-O(3)-Si(4)	148.4(2)
		Si(2)-O(4)-Si(5)	150.9(2)

Bindungslängen in [pm], Bindungswinkel in [°]

Die Strukturanalyse des Cylotetrasiloxans $[CF_3MeSiO]_4$ (**52**) (Abb. 5.4) zeigt, daß das Ringsystem in der energetisch günstigen all-trans-Konfiguration vorliegt, in der die etwas größeren CF_3 -Gruppen maximalen Abstand voneinander besitzen. Die gleiche Konfiguration wurde auch für das Fluormethylderivat $[(CH_2F)MeSiO]_4$ gefunden [110]. Der SiO-Abstand in (**52**) ist mit 159 pm deutlich kürzer als im $[Me_2SiO]_4$ [111], aber nur geringfügig verkürzt gegenüber $[(CH_2F)MeSiO]_4$. Auch die SiOSi-Winkel der Fluor-substituierten Siloxane sind mit ca. 158° nahezu identisch und um 15° gegenüber $[Me_2SiO]_4$ aufgeweitet, während die OSiO-Winkel durch die CF_3 - bzw. CH_2F -Substitution unbeeinflußt bleiben (Tabelle 5.5).

Abbildung 5.4: Kristallstruktur von [CF₃MeSiO]₄ (**52**)



Tabelle 5.5: Strukturparameter der Tetracylosiloxane [XMeSiO]₄, (X = Me, CH₂F, CF₃)

	[Me ₂ SiO] ₄ [111]	[(CH2F)MeSiO]4 [110]	[(CF ₃)MeSiO] ₄
Si-O	165	159.9(3)	159.1(3)
Si-C(F)		185.6(6)	187.5(7)
Si-C(H)	192	182.7(6)	182.0(6)
Si-O-Si	142.5	158.3(2)	158.8(2)
O-Si-O	109.0	110.9(2)	110.8(2)

Bindungslängen in [pm], Winkel in [°]

Tabelle 5.6: Zusätzliche Strukturparameter von [CF₃MeSiO]₄

Tetragonale Raumgruppe I4₁/a, a = 1718.63(10), b = 1718.63(10), c = 723.16(19), Z = 4, D = 1.594 g cm⁻¹

F(1)-C(1)	130.2(7)	F(3)-C(1)-F(1)	103.8(6)	
F(2)-C(1)	130.7(8)	F(3)-C(1)-F(2)	104.0(6)	
F(3)-C(1)	128.5(7)	F(1)-C(1)-F(2)	102.7(6)	
O-Si#(1)	160.6(3)	F(3)-C(1)-Si	116.3(5)	
Si-O#(2)	160.6(3)	F(1)-C(1)-Si	115.5(5)	
		F(2)-C(1)-Si	112.9(5)	
		O-Si-C(2)	112.6(3)	
		O#(2)-Si-C(2)	113.3(3)	
		O-Si-C(1)	105.6(3)	
		O#(2)-Si-C(1)	104.4(3)	
		C(2)-Si- $C(1)$	109.5(3)	

Bindungslängen in [pm], Winkel in [°].

Kapitel 6 Komplexverbindungen CF₃-substituierter Silane

Durch die Substitution mit elektronenziehenden CF3-Gruppen wird die Komplexbildung von Halogensilanen begünstigt. Dies wird besonders im Fall des CF₃SiCl₃ und der Bis(trifluormethyl)silane (CF_3)₂SiX₂ (X = Cl, Br) deutlich, die nicht nur mit 2,2-Bipyridyl oder 1,10-Phenanthrolin stabile Addukte bilden, sondern auch mit Liganden wie P(NEt₂)₃ ((CF₃)₂SiCl₂) oder DMSO (CF₃SiCl₃). Die Komplexe (CF₃)₂SiX₂←Bipy wurden in erster Linie synthetisiert um die Trifluormethylierung des Si₂Cl₆ aufzuklären. Aufgrund der chemischen sowie der spektroskopischen Eigenschaften der dargestellten Komplexe kann belegt werden, daß als Endprodukt der basenkatalysierten Spaltung von Si₂Cl₆ in Gegenwart von P(NEt₂)₃/ CF₃Br donorstabilisiertes welches $(CF_3)_2SiCl_2$ entsteht, als Bipyridyl-Addukt der Reaktionsmischung entfernt werden kann:

$$Si_{2}Cl_{6} \xrightarrow{P(NEt_{2})_{3}/CF_{3}Br} \bullet (CF_{3})_{2}SiCl_{2} \leftarrow P(NEt_{2})_{3} \xrightarrow{Bipyridyl} \bullet (CF_{3})_{2}SiCl_{2} \leftarrow Bipy$$

$$\bullet P(NEt_{2})_{3} \bullet (CF_{3})_{2}SiCl_{2} \leftarrow Bipy$$

Die Komplexe der Bis(trifluormethyl)silane lassen sich wie die entsprechenden Addukte der Halogensilane SiX₄←D (X = F, Cl, Br) [112] durch Reaktion der freien Silane mit dem Komplexbildner darstellen. Komplexe trifluormethylierter Silane sind bisher nur von CF₃SiCl₃ (Pyridin und Bipyridyl-Komplexe) bekannt [23, 113], wobei NMR-spektroskopische Daten nicht vorliegen; Komplexe zweifach trifluormethylierter Silane sind noch unbekannt.

Während aus der Umsetzung von SiX₄ mit dem Komplexbildner neutrale Komplexverbindungen erhältlich sind, können kationische Komplexe ausgehend von Diiodsilanen gewonnen werden [114, 115], z.B. Gl. (6-3):

$$SiX_4$$
 + Bipy \longrightarrow $SiX_4 \leftarrow$ Bipy $(X = F, Cl, Br)$ (6-2)

SiXYI₂ + n Bipy
$$\longrightarrow$$
 [SiXY(bipy)₂]I₂ + (n-2) Bipy (n \geq 2) (6-3) (z.B. X, Y = CH₃, H, Cl, I, Ph)

Die Darstellung CF₃-substituierter Bis(bipyridyl)komplexe nach Gl. (6-3) ist am ehesten erfolgversprechend. Alternative Darstellungsmethoden wie die reduktive Enthalogenierung von Komplexen des SiX₄ [116] oder die SiSi-Spaltung von lewis-aciden Disilanen in Gegenwart des Komplexbildners [117] sind ungeeignet bzw. mit hohem präparativen Aufwand verbunden.

Befindet sich das Silicium in den oben erwähnten Komplexen stets in einer hexakoordinierten Umgebung so ändert sich diese zu Penta-Koordination in der Verbindungsklasse der Silatrane. Silatrane und verwandte Verbindungen sind bis heute Gegenstand ausgiebiger Untersuchungen, die sich neben der biologischen Aktivität hauptsächlich mit dem Einfluß verschiedener Substituenten auf die transannulare Si-N-Bindung beschäftigten [118]. Bei Substitution des Siliciums mit elektronenziehenden Gruppen wird eine Verkürzung des SiN-Abstandes beobachtet, so daß für das CF₃-Derivat ein ähnlicher Wert wie für Halogensilatrane erwartet werden kann. Frühere Versuche, 1-Trifluormethylsilatran durch Derivatisierung an einem bestehenden Silatrangerüst darzustellen, scheiterten[119], während nun die Synthese ausgehend von Trimethoxy-(trifluormethyl)silan und Triethanolamin problemlos gelang.

6.1 Die Bipyridyl-Komplexe (CF₃)₂SiX₂ \leftarrow Bipy (X = Cl, Br)

Die Darstellung von $(CF_3)_2SiX_2 \leftarrow Bipy (X = Cl (53), Br (54))$ erfolgt im Fall des Chlorsilans (53) entweder durch Austauschreaktion mit dem in Kap. 4.3.1 beschriebenen Phosphan-Addukt (23) oder durch einfache Komplexierung des freien Bis(trifluormethyl)silans mit Bipyridyl:

$$(CF_3)_2SiCl_2 \leftarrow P(NEt_2)_3 \xrightarrow{Bipyridyl} (CF_3)_2SiCl_2 \leftarrow Bipyridyl + P(NEt_2)_3$$
 (6-4)
$$(23)$$
 (53)

$$(CF_3)_2SiX_2 + Bipyridyl$$
 \xrightarrow{THF} $(CF_3)_2SiCl_2 \leftarrow Bipyridyl$ $(6-5)$ $X = Cl (53), Br (54)$

Bei beiden Reaktionen fällt der Komplex aufgrund seiner Schwerlöslichkeit als pulvrige, nahezu farblose Substanz aus. Im Gegensatz zum Addukt (23), welches in CHCl₃ oder CH₂Cl₂ noch vollständig löslich ist, gelingt es nur in stark polaren Medien wie DMF, DMSO oder NMP, die Komplexe (53) und (54) in ausreichender Menge für NMR-spektroskopische Untersuchungen zu lösen.

In den NMR-Spektren des Komplexes (**53**) wurden je nach Reaktionsansatz (aus Gleichung (6-4) oder (6-5)) 4 bzw. 3 verschiedene Komplexe gefunden, die in Lösung zu Umlagerung oder Reaktion neigen (Schema 6.1). Neben dem zu erwartenden symmetrischen trans-Komplex (**53a**) und asymmetrischen cis-Komplex (**53b**) wurden jeweils noch die asymmetrischen trans-Komplexe von (CF₃)₂SiClBr (**53c**) sowie (CF₃)₂SiCl(NMP) (**53d**) beobachtet. Komplex (**53c**), welcher nur in der Reaktion nach Gleichung (6-4) auftritt, entsteht nach dem in Kap. 4.3.1 beschriebenen Reaktionsweg mit (CF₃)₂SiClBr als Zwischenstufe. Komplex (**53d**) bildet sich langsam im Laufe mehrerer Tage bei beiden Umsetzungen. Hinweise auf NMP als Koordinationspartner werden aus den ¹H- und ¹³C-NMR-Spektren erhalten, in denen die Signale des koordinierenden NMP deutlich tieffeldverschoben gegenüber freiem NMP erscheinen (Tabelle 6.1) und im integralen Verhältnis 1:1 zu den Signalen des Bipyridyls stehen.

Schema 6.1: Komplexverbindungen des (CF₃)₂SiCl₂ bzw. (CF₃)₂SiClBr nach Gl. (6-4) und (6-5)

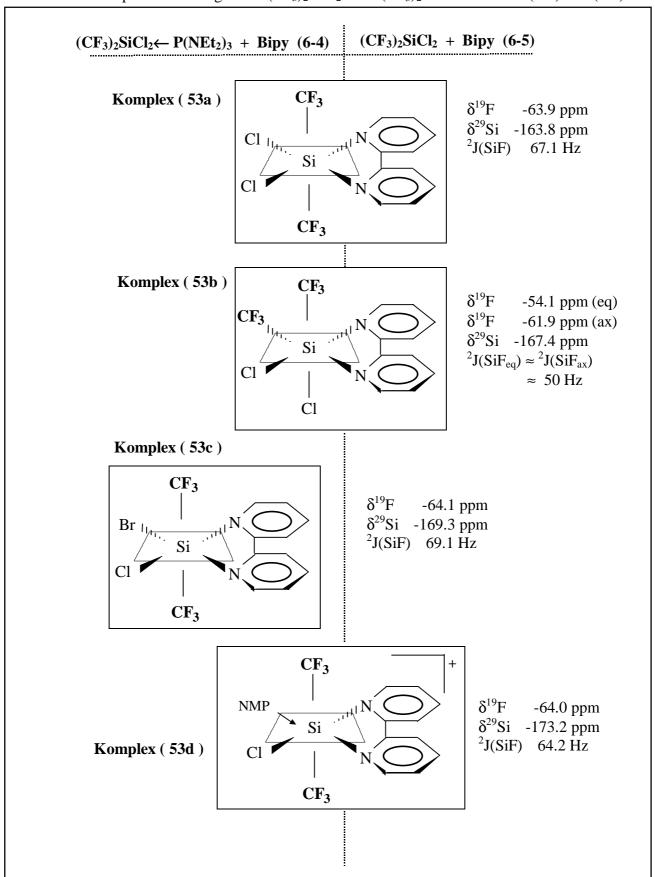
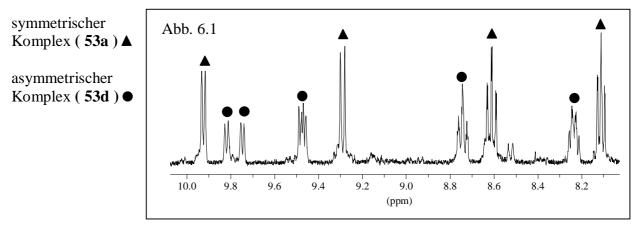


Tabelle 6.1: Chemische Verschiebungen von freiem und koordinierendem NMP

	NMP "frei"	NMP "koordinativ"
	δ ^{1}H / ^{13}C	$\delta^{1}H/^{13}C$
1	2.52 / 28.9	3.20 / 33.4
2	3.05 / 48.8	3.80 / 53.4
3	1.65 / 17.8	2.05 / 18.1
4	1.99 / 30.4	3.17 / 32.7
5	- / 173.7	- / 177.3

 δ in [ppm]


Die Umwandlung des Isomers (53c) nach (53d) erfolgt innerhalb weniger Stunden, wobei das Bromid durch koordinatives NMP ersetzt wird. Der vollständige Abbau des cis-Isomers (53b) benötigt dagegen mehrere Tage, wobei neben der SiCl-Bindungsspaltung auch eine cis-trans-Isomerisierung durchlaufen werden könnte. Die Anteile des cis-Isomers an der Gesamtproduktmenge sind in den beiden Reaktionswegen recht unterschiedlich. Während (53b) aus der Umsetzung mit dem Phosphan-Addukt (23) nur in geringen Mengen entsteht (ca. 2%), bildet es bei der Reaktion des freien (CF_3) $_2SiCl_2$ mit Bipyridyl den Hauptbestandteil des Produktgemisches. Dies läßt vermuten, daß durch die Koordination des prinzipiell über mehrere Donor-Funktionen verfügenden Phosphans (CF_3) $_2SiCl_2 \leftarrow P(NEt_2)_3$ die cis-Geometrie der Bipyridyl-Komplexe vorherbestimmt wird. Die symmetrische Komponente (53a), die bei beiden Reaktionen in hohen Anteilen erhalten wird, ist über mehrere Tage stabil.

Die Identifizierung der Verbindungen und die Bestimmung der Konfiguration erfolgt über NMR-Spektroskopie, wobei die Unterscheidung zwischen symmetrischen (**53a**) und asymmetrischen (**53b-d**) Komplexen über die ¹H- bzw. ¹³C-Resonanzen der Bipyridyl-Ringe möglich ist. Bei asymmetrischer Konfiguration wird eine Verdopplung der Linienzahl der Protonen- bzw. Kohlenstoffresonanzen des Bipyridyls beobachtet (Abb. 6.1 und 6.2, Tab. 6.3). Die ¹⁹F-NMR-Signale der cis-ständigen CF₃-Gruppen von (**53b**) sind um ca. 8 ppm voneinander getrennt, wobei die äquatoriale CF₃-Gruppe tieffeldverschoben ist (Tab. 6.2, Abb. 6.3). Gleiches gilt für die ¹³C-NMR-Spektren, in denen die CF₃-Gruppen um ca. 1 ppm separiert sind. Diese Zuordnung kann mit Hilfe von ¹⁹F/¹³C{¹⁹F}-2D -Spektren durch Vergleich mit analogen Zinnkomplexen getroffen werden [69]. Die ³J(CF)-Kopplung des cis-Komplexes (**53b**) ist mit 5 Hz deutlich größer als die entsprechenden Werte der trans-Komplexe, die im Fall von (**53a**) und (**53d**) nicht mehr aufgelöst werden.

NMR-spektroskopische Strukturaufklärung der Bipyridyl-Komplexe:

Abb. 6.1 und 6.2:

¹H- bzw. ¹³C{¹H}-NMR-Spektrum (Ausschnitt der Bipyridyl-Resonanzen) der Reaktionslösung (**Gl. 6-5**) nach 2 Tagen.

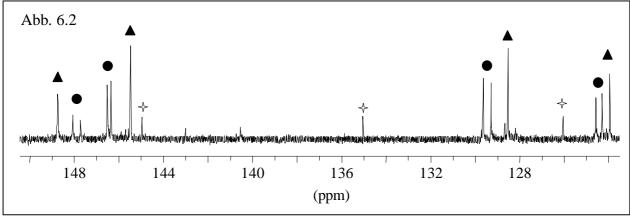
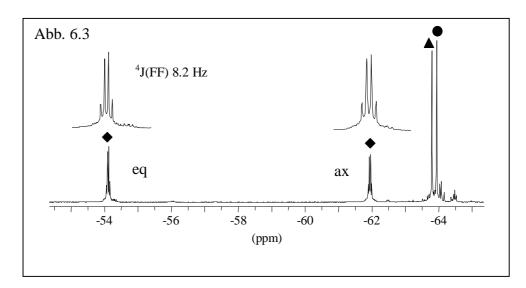



Abb. 6.3: ¹⁹F-NMR-Spektrum der Reaktionslösung (**Gl. 6-6**) nach 2 Stunden

Tabelle 6.2: NMR-Parameter der Kom	plexverbindungen (CF ₃) ₂ SiCl ₂ ←	$-P(NEt_2)_3$ (23) bzy	w. Bipyridyl (53)

$(CF_3)_2SiCl_2\leftarrow X$	δ^{13} C (CF ₃)	$\delta^{\!\scriptscriptstyle 19}{ m F}$	δ^{29} Si	$^{1}J(\mathrm{CF})$	$^2J(SiF)$	$^{3}J(CF)$
$P(NEt_2)_3^a (23)$	129.4	-73.6	-99.6	335.2	67.7	
Bipyridyl ^b						
(53a) (trans, sym)	131.5	-63.9	-163.8	335.5	67.1	≈0
(53b) (cis, asym) ^c	131.5 (eq) 132.6 (ax)	-54.1 (eq) -61.9 (ax)	-167.4	337.2	49.9 (eq) 49.9 (ax)	5.0
(53c) (trans, asym)	130.7	-64.1	-169.3	335.9	69.1	1.3
(53d) (trans, asym)	131.9	-64.0	-173.2	333.1	64.2	≈0

 δ in [ppm], J in [Hz], a) $CH_{2}Cl_{2},$ $CDCl_{3};$ b) NMP, $C_{6}D_{6}$ int.; c) $^{4}J(FF)$ 8.2 Hz,

Tabelle 6.3: 13 C- und 1 H-Resonanzen der Bipyidyl-Ringatome in (53), δ in [ppm], J in [Hz]

somer	C_1	C_3	C_4	C_5	C_6	
(53a)						
¹³ C	145.6	149.0	128.6	145.5	123.9	5 6
$^{1}\mathrm{H}$		9.93	8.07	8.55	9.39	4
(53b)						$\frac{1}{3}$ N N
13 C	145.6	146.7	128.7	145.0	124.6	3 1 1
	145.3		128.6		124.2	2,2'-Bipyr
$^{1}\mathrm{H}$		10.04/9.95	8.49/8.02	8.69/8.64	9.15/9.11	2,2 -Dipyi
(53c)						
(53c) ¹³ C	145.2	149.8	128.8	145.8	124.1	
		149.2	128.4	145.8	124.0	
$^{1}\mathrm{H}$		10.25/10.02	8.2	8.6	9.2	
(53d)						
13 C	145.0	148.7	129.7	146.6	124.6	
		148.3	129.4	146.5	124.3	
1 H		9.77/9.72	8.22/8.16	8.70	9.57	

Die NMR-Spektren des in NMP gelösten Bromkomplexes (**54**) zeigen ebenfalls die Präsenz von 3 verschiedenen Verbindungen an, wobei eine andere Verteilung als beim Chlorkomplex beobachtet wird. Anzeichen für ein symmetrischen trans-Komplex entsprechend (**53a**) konnten nicht gefunden werden. Ein cis-koordinierter Komplex findet sich dagegen in Spuren in der Lösung.

Hauptprodukt ist ein asymmetrischer Komplex (54a), dessen NMR-Daten (Tabelle 6.4 und 6.5) weitestgehend den Werten für den Chlorkomplex (53d) entsprechen, wobei die 29 Si-Resonanz den für Brom-substituierte Silane typischen Hochfeld-Shift aufweist und eine 3 J(CF)-Kopplung nicht zu beobachten ist. Bemerkenswert ist auch hier der starke Tieffeld-Shift der H₃-Resonanzen einhergehend mit einer deutlichen Separierung der beiden Linienpaare.

Im Verlauf weniger Stunden wird (54a) zugunsten zweier neuer Verbindungen vollständig abgebaut, vorwiegend einem symmetrischen Komplex (54b) neben geringen Anteilen eines asymmetrischen Komplexes (54c). Eine deutliche Änderung der koordinativen Umgebung wird aus den Werten für den asymmetrischen Komplex (54c) ersichtlich, wobei neben einer wesentlich kleineren 2 J(SiF)-Kopplung vor allem der Hochfeld-Shift der 29 Si-Resonanz mit -183.8 ppm hervorsticht. Zudem sind die H_3 -Protonen in den 1 H-NMR-Spektren stark zu tieferem Feld verschoben, gleiches findet man für die dazugehörigen Linien in den 13 C-NMR-Spektren.

Tabelle 6.4: NMR-Parameter der Isomere (**54a-c**)

$(CF_3)_2SiBr_2\leftarrow Bipy$	δ^{13} C (CF ₃)	δ^{19} F	δ^{29} Si	¹ <i>J</i> (CF)	2 <i>J</i> (SiF)	$^3J(CF)$
(54a)	131.0	-64.4	-176.3	333.6	70.7	
(54b)	129.4	-63.8	-177.6	336.6	66.7	ca. 1
(54c)		-61.8	-183.8		61.8	

 δ in [ppm], J in [Hz], NMP, C_6D_6 int.

Tabelle 6.5: ¹H- und ¹³C-Resonanzen der Bipyridyl-Ringatome von (**54a-c**)

$(CF_3)_2SiBr_2\leftarrow Bipy$	C_1	C_3	C_4	C_5	C_6
(54a) ¹ H		10.21/9.46	8.19/7.85	8.68/8.35	8.88/8.84
(54b) 13C 1H	143.7	146.9 9.7	127.4 7.85	142.8 8.37	124.3 8.85
(54c) ¹³ C	145.5 145.5	149.3 148.6	129.8 129.2	146.7 146.7	124.8 124.4
¹ H	173.3	10.04/9.93	8.31/8.21	8.81/8.80	9.62/9.62

 δ in [ppm], NMP, C_6D_6 int.

Die Strukturen der Komplexe (54a-c) lassen sich nicht so eindeutig beschreiben, wie die der Komplexverbindungen des Chlorsilans (53a-d). So wurde kein symmetrischer trans-Komplex von (CF₃)₂SiBr₂ gefunden, was für eine sofort einsetzende Polarisation und Abspaltung einer Br-Funktion durch NMP unter Bildung von [(CF₃)₂SiBr(NMP)←Bipy]⁺ (**54a**) spricht. Der weitere Abbau dieser Verbindung zu einem symmetrisch koordinierten Komplex (54b) ist möglicherweise durch die Substitution des verbleibenden Broms durch NMP zu erklären; dieser Komplex entspräche dann der Zusammensetzung [(CF₃)₂Si(NMP)₂←Bipy]²⁺. Die Substitution durch NMP macht sich in einer kleiner werdenden ²J(SiF)-Kopplungskonstanten sowie einen Tieffeld-Shift der Protonenresonanzen bemerkbar (siehe (CF₃)₂SiClBr←Bipy). Eine deutliche Änderung der ²⁹Si-Resonanz findet man für den asymmetrischen Komplex (**54c**), der sich zudem durch eine kleine ²J(SiF)-Kopplung auszeichnet. Dementsprechend müssen in diesem Komplex gegenüber den anderen beiden Komplexen erheblich veränderte koordinative Verhältnisse vorliegen, was aber nicht durch Substituententausch begründet werden kann. Als mögliche Alternative kommen auch Reaktionen des Koordinationspartners NMP (z.B. Ringöffnung) in Betracht, die dann wieder zu asymmetrischen Komplexen führen würden. In den ¹H- und ¹³C-NMR-Spektren werden in der Tat Hinweise für verschiedene NMP-Systeme gefunden, ohne daß eine Zuordnung oder Interpretation der Signale durchgeführt werden kann. Nach der zu Beginn recht schnellen Umlagerung des ersten Komplexes sind die neu entstandenen Verbindungen stabil und können selbst nach mehreren Tagen unverändert beobachtet werden, wobei auch das Mengenverhältnis nahezu konstant bleibt.

Alle Komplexe des (CF₃)₂SiBr₂ bzw. der sich daraus ableitenden Verbindungen geben in den ²⁹Si-NMR-Spektren deutlich von den Komplexen des (CF₃)₂SiCl₂ separierte Signale, so daß eine Unterscheidung zwischen Chlor- und Bromsubstitution leicht getroffen werden kann.

Im Gegensatz zu dem dynamischen Komplexierungsverhalten von P(NEt₂)₃ ist die Koordination zwischen Bipyridyl und Silicium durch eine statische Bindung gekennzeichnet; dies äußert sich sowohl in den chemischen Eigenschaften wie auch in den NMR-Parametern der Komplexe.

So kann in den ²⁹Si{¹⁹F}-DEPT-Spektren des (CF₃)₂SiCl₂←Bipy die ³J(SiH)-Kopplung des Siliciumatoms mit den ortho-Wasserstoffen des Bipyridylringes beobachtet werden, die mit ca. 2 Hz im Bereich der ³J(SiH)-Kopplungen permethylierter Oligosilane liegt [120]. Auch die um ca. 70 ppm hochfeldverschobene Lage der ²⁹Si-Resonanzen sowie die tieffeldverschobenen ¹⁹F-Resonanzen der Bipyridyl-Komplexe weisen auf unterschiedliche elektronische und koordinative Verhältnisse hin.

Eine chemische Derivatisierung der Halogen-Funktionen ist aufgrund der sehr starken Koordination kaum möglich, einzig durch protische Reagenzien konnten die Bipyridyl-Komplexe langsam zur Reaktion gebracht werden, wobei jedoch hauptsächlich HCF₃-Entwicklung zu verzeichnen ist. Gegenüber Luft und Feuchtigkeit sind die dargestellten Komplexe außerordentlich stabil und können problemlos bei Raumtemperatur gelagert werden.

Die DSC/TG-Analyse von (53) ergibt bei einer Aufheizrate von 10 K/ min einen scharfen exothermen Peak bei 173°C, der mit einem Gewichtsverlust von 68% verbunden ist. Dies entspricht ungefähr dem prozentualen Gewichtsanteil von (CF₃)₂SiCl₂ (Theorie 60 %), so daß von einer raschen Dissoziation in beide Komponenten ausgegangen werden kann. Bei langsamen Erwärmen des Komplexes wird dagegen der schrittweise Abbau der CF₃-Gruppen beobachtet, wobei die Dissoziationstemperatur des Komplexes auf ca. 225°C steigt.

6.1.2 Komplexe des CF₃SiCl₃

Die Darstellung der CF₃SiCl₃-Addukte erfolgt durch Zugabe des Komplexbildners zu einer Lösung von CF₃SiCl₃ in THF, wobei die Bipyridyl- und Phenanthrolin-Komplexe quantitativ in Form farbloser Feststoffe ausfallen:

$$CF_3SiCl_3 + D \xrightarrow{THF, RT} CF_3SiCl_3 \leftarrow D$$

$$D = Bipy (55), phen (56)$$
(6-6)

Die Löslichkeitseigenschaften der so erhaltenen Verbindungen gleichen den Addukten der Bis-(trifluormethyl)silane, zu NMR-spektroskopischen Untersuchungen wurden die Komplexe ebenfalls in NMP gelöst.

Im Fall der Bipyridylkomplexe werden zwei Verbindungen beobachtet, eine mit symmetrischer (**55a**) und eine mit asymmetrischer (**55b**) Bipyridyl-Einheit, während mit Phenanthrolin lediglich der symmetrische Komplex (**56**) gebildet wird (Abb. 6.1, Tabelle 6.6, 6.7). Komplex (**55b**) entsteht mit großer Wahrscheinlichkeit durch Spaltung einer SiCl-Funktion und Koordination durch NMP. Kontrollversuche mit SiCl₄←Bipy in NMP zeigen, daß auch hier zwei Komplexe, symmetrisch und asymmetrisch, entstehen.

Die statische Koordination der Bipyridyl-Liganden wird aus den ²⁹Si{¹⁹F}-DEPT-Spektren ersichtlich, in denen im Falle des symmetrischen Komplexes eine ³J(SiH)-Kopplung von ca. 2.6 Hz auftritt, die jedoch beim asymmetrischen Komplex nicht mehr aufgelöst werden konnte.

Die NMR-Parameter der Verbindungen (**55**) und (**56**) entsprechen aufgrund der ähnlichen elektronischen Eigenschaften den Werten der Bis(trifluormethyl)komplexe. Andere Verhältnisse findet man bei der Komplexierung von CF₃SiCl₃ mit DMSO (**57a - c**), die sich vor allem durch einen wesentlich kleineren Hochfeldshift von -72 bzw. -82 ppm in den ²⁹Si-NMR-Spektren auszeichnen (Tab. 6.6 und 6.7). Gleichzeitig wird eine kleinere ²J(SiF)-Kopplung einhergehend mit einer Hochfeldverschiebung der ¹⁹F-Resonanzen beobachtet. Unter Annahme einer hexakoordinierten Sphäre des Siliciums sind 3 verschiedene Komplexe möglich (Abbildung 6.4), wobei eine Zuordnung der Resonanzen zu bestimmten Isomerformen nicht durchführbar ist.

Ein Vergleich aller NMR-Parameter der Komplexverbindungen von Mono- und Bis(trifluormethyl)silanen zeigt, daß es vor allem anhand der ²⁹Si-Resonanzen möglich ist das Komplexierungsverhalten der Koordinationspartner zu beschreiben. Erwartungsgemäß zeichnen sich die über Stickstoff koordinierenden Liganden durch eine feste, statische Bindung zu dem Siliciumatom aus, während die über Phosphor- bzw. Sauerstoff koordinierenden Bindungspartner zu Austauschprozeßen neigen.

Abb. 6.4: Komplexverbindungen des CF₃SiCl₃

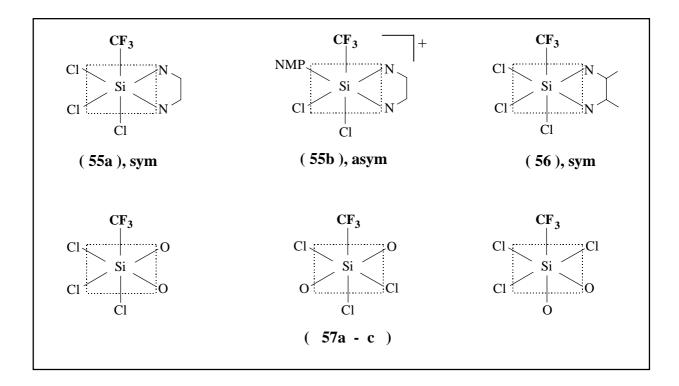


Tabelle 6.6: NMR-Parameter der Komplexe CF₃SiCl₃←D

CF ₃ SiCl ₃ ←D	$\delta^{\!\scriptscriptstyle 19}$ F	δ^{13} C(CF ₃)	δ^{29} Si	$^2J(SiF)$	$^{1}J(CF)$
Bipyridyl					
(55a)	-64.2	132.0	-170.9	61.5	335.7
` '					
(55b)	-64.4	134.2	-176.4	58.7	333.7
Phen					
(56)	-64.7		-170.9	62.5	336.4
DMSO					
(57a-c)	-66.8		-72.0	50.8	
` ,	-67.3		-81.8	54.5	
	-67.4		-82.0	55.1	

 δ in [ppm], J in [Hz], NMP, C_6D_6

Isomer	C_1	C_3	C_4	C_5	C_6
(55a)					
^{13}C	143.6	146.4	129.0	145.2	124.5
1 H		10.01	8.21	8.68	9.57
(55b)					
13 C	143.4	147.5	129.9	146.1	125.0
	142.7	146.3	129.6	145.8	124.7
¹ H		9.92/9.85	8.32/8.18	8.80/8.74	9.70/9.67
(56)	C_2	C_3	C_4	C ₅	
¹ H	10.41	8.78	9.66	8.86	

Tabelle 6.7: ¹³C- und ¹H-Resonanzen von (**55a**), (**55b**) und (**56**)

 δ in [ppm], NMP, C₆D₆

2,2'-Bipyridyl

1,10-Phenanthrolin

6.2 [CF₃MeSi←(bipy)₂]I₂

Bis(bipyridyl)-Komplexe der Monosilane sind durch Umsetzung der Diiodsilane mit dem Komplexbildner zugänglich [116], z.B.:

$$SiXYI_2 + 2 Bipy \xrightarrow{CHCl_3} [SiXY \leftarrow (bipy)_2]I_2$$
 (6-7)

Während die Substituenten X und Y sehr variabel gewählt werden können, muß für die Direktsynthese der Komplexe das Monosilan mindestens zwei SiI-Bindungen enthalten, die sich durch eine leichte Polarisierbarkeit in Gegenwart der Komplexbildner auszeichnen. Für die hexakoordinierten Komplexe konnte sowohl in Lösung als auch in Substanz eine cisoktaedrische Struktur nachgewiesen werden, während die trans-Isomere in keinem Fall beobachtet wurden [116]. Durch Anwendung des oben genannten Reaktionsprinzips auf Trifluormethylsilane konnte ausgehend von CF_3MeSiI_2 ein entsprechend CF_3 -substituierter Komplex dargestellt und untersucht werden:

$$CF_3MeSiI_2 + 2 Bipyridyl \xrightarrow{CHCl_3} [CF_3MeSi\leftarrow (bipy)_2]I_2$$
 (6-8)

Verbindung (58) fällt als rotbrauner Feststoff an, der wie die Monoaddukte nur in stark polaren Medien löslich ist. Die Charakterisierung des Komplexes erfolgte über NMR-Spektroskopie. In Übereinstimmung mit den Arbeiten von Kummer et al. liegt eine cis-oktaedrische Geometrie vor, die sich in 4 nicht äquivalenten aromatischen Ringsystemen des Bipyridyl-Liganden widerspiegelt (Abb. 6.5). Die Separierung der ¹H-Resonanzen in den NMR-Spektren ist nur schwer möglich; einfacher wird der Sachverhalt durch die Analyse denen für jedes ¹³C-NMR-Spektren, in Kohlenstoffatome Ringsystem die einzelnen beobachtet werden können.

Eine Zuordnung der in Tabelle 6.8 aufgelisteten Resonanzen zu den jeweiligen Ringsystemen ist allerdings nicht möglich.

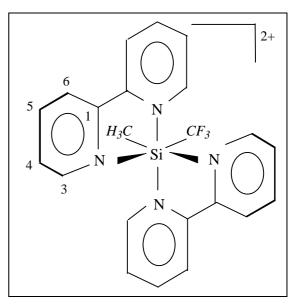


Abb. 6.5: Molekülgeometrie des [CF₃MeSi(bipy)₂]²⁺-Kations (**58**)

Die starke Koordination des Siliciums in diesem zweifach positiv geladenen Komplex wird durch die große Hochfeldverschiebung im 29 Si-Spektrum und durch die große 1 J(CF)-Kopplungskonstante zum Ausdruck gebracht (δ^{29} Si -138.4 ppm, 1 J(CF) 337.0 Hz). Auffällig dagegen ist die recht kleine 2 J(SiF)-Kopplungskonstante mit einem Wert von 39.8 Hz und die leicht tieffeldverschobene 19 F-Resonanz (δ^{19} F -57.9 ppm), während die Lage der CF₃-Gruppe in den 13 C-NMR-Spektren den in Kap. 6.1.1 und 6.1.2 beschriebenen Komplexen gleicht (δ^{13} C(CF₃) 132.4 ppm).

Tabelle 6.8: ¹³C-Resonanzen der Ringkohlenstoffatome von (**58**)

ъ.	
K ₁ n	$\sigma_{-}($
1/111	\sim

C_1	142.4	142.7	143.4	144.7
C_3	147.6	148.0	148.4	149.0
C_4	125.4	125.7	126.3	126.8
C_5	130.7	130.9	131.2	131.4
C_6	144.0	145.4	145.7	146.3

 δ in [ppm], NMP, C_6D_6 ext.

6.3 1-Trifluormethyl-silatran CF₃-Si(OCH₂CH₂)₃N und –germatran, CF₃-Ge(OCH₂CH₂)₃N

Besonderes Interesse haben die Verbindungsklassen der Silatrane und Germatrane neben ihrer physiologischen Wirksamkeit vor allem wegen ihren besonderen strukturellen Eigenschaften erlangt. In allen Atran-Gerüsten XE(OCH₂CH₂)₃N (E = Si, Ge) liegt eine pentakoordinierte Umgebung des Zentralatoms E vor, wobei der EN-Abstand sowie die Geometrie des EO₃-Gerüstes die elektronischen Eigenschaften des Substituenten X widerspiegeln.

In neutralen Verbindungen wurden die kürzesten SiN-Abstände mit ca. 200 ppm in Chlor- [121], Fluor- [122] sowie in Isothiocyanatosilatran [123] gefunden, während Organylsilatrane wie 1-Methylsilatran deutliche größere Abstände aufweisen [124]. Der bisher kürzeste SiN-Abstand wurde jedoch in der kationischen Verbindung 1-(Dimethyloxonium)-silatran mit 196.5 ppm gemessen [125]. Die GeN-Abstände der Germatrane variieren zwischen 216 und 224 pm für Alkyl- und Arylgermatrane [126 - 129], während über Sauerstoff substituierte Derivate (210-215 pm [130, 131]), 1-Bromgermatran (209 pm [129]) und 1-Isothiocyanatogermatran (208 pm [132]) kürzere Abstände aufweisen. Über einen überraschend kurzen GeN-Abstand wurde kürzlich für das 1-Fluorgermatran mit 201 pm berichtet [133], der jedoch durch eigene Untersuchungen nicht bestätigt werden konnte, sondern vielmehr einen Wert von 209 pm aufweist [134]. 1-Trifluormethyl-Germatran wurde erstmals von *Haas et al.* dargestellt [135], jedoch liegen keine Strukturdaten zu dieser Verbindung vor.

Die Darstellung des CF₃-Silatrans bzw. -Germatrans erfolgt durch Umsetzung von CF₃Si(OMe)₃ bzw. CF₃Ge(OMe)₃ (**60**) mit Triethanolamin in THF:

$$CF_3E(OCH_3)_3 + N(CH_2CH_2OH)_3 \xrightarrow{THF/RT} CF_3E(OCH_2CH_2)_3N$$
 (6-9)
 $E = Si (59), Ge (61)$

Die Verbindungen fallen als farblose pulvrige Feststoffe an, die zur Reinigung aus Methanol oder Aceton umkristallisiert werden können. Die Atrane sind stabil gegenüber Luftfeuchtigkeit und nur in stark polaren Medien wie DMF, DMSO oder NMP gut löslich. Einkristalle können durch Umkristallisation mit Alkoholen gewonnen werden.

Die NMR-Daten des 1-Trifluormethyl-silatrans (Tabelle 6.9) entsprechen in der Tendenz den Werten der bisher beobachteten Koordinationsverbindungen trifluormethylierter Silane. Gegenüber den Bipyridyl-Komplexen ist die ¹J(CF)-Kopplung nur geringfügig vergrößert, ²J(SiF)-Kopplungskonstante jedoch verkleinert. Ebenfalls auf eine starke Donorwechselwirkung des freien Elektronenpaars am Stickstoff mit dem Siliciumatom läßt die Hochfeldverschiebung des ²⁹Si-Signals mit δ^{29} Si = -95.4 ppm schließen. Die des NMR-Daten Germatrans stehen Übereinstimmung mit dem bekannten Datenmaterial [135] und weisen ebenfalls auf eine starke Ge-N-Wechselwirkung hin.

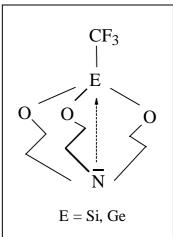


Tabelle 6.9: NMR-Parameter von 1-Trifluormethylsilatran (59) und -germatran (61)

	Si	Ge	Ge [135] ^a
$\delta^1 H(OCH_2)$	3.81	3.71	3.79
δ^1 H(NCH ₂)	3.09	2.97	3.08
3 J(HH)	6.0	5.7	5.7
δ^{13} C(OCH ₂)	56.6	56.1	57.2
δ^{13} C(NCH ₂)	50.5	50.6	52.1
δ^{13} C(CF ₃)	131.2	131.2	132.0
¹ J(CF)	325.8	341.8	339.5
δ^{19} F	-65.1	-60.5	-60.6
δ^{29} Si	-95.4	-	-
² J(SiF)	40.8	-	-

DMSO- d_6 , a) Aceton, C_6D_6

Die Infrarot- und Ramanspektren des 1-Trifluormethylsilatrans (Tabelle 6.10) zeigen neben den für Silatrane typischen Gerüstschwingungen zusätzlich die CF₃-Gruppenschwingungen. Für die 15 Gerüstatome (ohne Wasserstoff) werden 10 a₁-, 3 a₂- und 12 e- Schwingungen erwartet, wobei sowohl die a₁- als auch die e-Schwingungen Infrarot- und Raman-aktiv sind. Die Zuordnung der Schwingungen erfolgt auf der Basis bekannter Daten von Silatran und 1-Methylsilatran [136] (Tabelle 6.10).

Im Vergleich zu tetravalenten CF_3 -Silanen sind sowohl die $\nu_s(CF_3)$ - als auch die $\delta_s(CF_3)$ -Schwingungen als Folge der starken Wechselwirkung des Siliciums mit dem Stickstoff rotverschoben. Dies äußert sich auch in einer schwachen SiC-Bindung, die mit einer mittelstarken Ramanbande bei 297 cm⁻¹ verbunden ist und damit deutlich zu kleineren Wellenzahlen verschoben ist als beispielsweise in CF_3SiMe_3 (386 cm⁻¹) [43d] oder CF_3SiH_3 (402 cm⁻¹) [43e]. Dagegen liegen die Gerüstschwingungen des CF_3 -Derivates zwischen 350 und 700 cm⁻¹ höher als im H- bzw. Methyl-substituierten Derivat.

Die Deformationsschwingungen der CF₃-Gruppe, $\delta_s(CF_3)$ und $\delta_{as}(CF_3)$, sind wie auch bei tetravalenten CF₃-Silanen sehr lagestabil und werden kaum durch Koordinationszahl des Siliciums beeinflußt. Die CF₃-Gruppenschwingungen des Germatrans sind gegenüber den Schwingungen des Silatrans nur leicht verschoben (ν_sCF_3 1067 cm⁻¹, $\nu_{as}CF_3$ 1023 cm⁻¹, δ_sCF_3 716 cm⁻¹, $\delta_{as}CF_3$ 520 cm⁻¹), wohingegen die a_1 -Gerüstschwingungen um ca. 10 - 50 cm⁻¹ erniedrigt sind.

Tabelle 6.10: Schwingungsspektren von R-Si(OCH_2CH_2)₃N, R = CF_3 , H, Me

Raman	IR	Raman	Zuordnung
	$R = CF_3 (59)$	$R = H / CH_3 [136]$	
203 m		184 m / 182 m	
233 m-s		(-/242 w)	e (ρ CF ₃)
297 m-s		(- / 288 m)	a_1 (v Si-CF ₃)
362 m		348 w / 354 m, p	a_1^{a}
	442 s	- / 455 w	e ^a
497 m	492 m	490 w / 471 m, p	a_1^{a}
526 m			e (δ_{as} CF ₃)
596 s	596 s	593 s / 580 vs, p	a_1^{a}
		- / 619 vs, p	a_1 (v Si-CH ₃)
625 w	625 w		
648 s	648/652 s	630 m / 696 m	$a_1 (v_s SiO_3)$
716 m	716 m	-/(718 w)	$a_1 (\delta_s CF_3)$
767 w	767 w		ρ CH $_2$
813 w	805/811 vs	760 m / 769 m	$e (v_{as} SiO_3)$
877 w	871/877 w	864 w / 873 w	e ^a
916 m	913 m	911 s / 908 m, p	a_1^{a}
944 m	938/946 m	942 s / 944 m, p	a_1^{a}
1028 m	1029 vs		e (v_{as} CF ₃)
1043 m	1048 m	1043 w / 1050 m	
1079 m	1086 vs		$a_1 (v_s CF_3)$
1110 m	1115/1118 s	1104 w / 1113 m	a_1^{a}
1170 m	1167 w	1165 w / 1171 m	e ^a
1228 w	1225 m		
1248 m	1245 w	1240 m / 1237 w	} CH ₂ Twist-
1274 s	1277 m	1267 m / 1278 s	und wagging-
1353 w		- / 1350 w	
4.000		/ 4 0 0 4	Schwingungen
1390 w	4.55	- / 1381 w	
1460 m-s	1455 m	1455 m / 1452 s, p	$a_1 (\delta_s CH_2)$
1490 s	1489 m	1486 m / 1487 s, p	
2898 s	2891 s	2876 s / 2875	$\nu_{\rm s} {\rm CH_2}$
2904 s	2897 s	2020 / 2010	GT.
2963 s	2958 m	2928 s / 2948	v_{as} CH ₂
3002 s	2998 m	2967 m / 2975	$v_{as} CH_2$

^a Gerüstschwingungen, IR-Spektren von (**59**) als KBr-Preßling

In den Kristallstrukturen der Trifluormethyl-Atrane (Abb. 6.6 und 6.7, Tab. 6.11 und 6.12) zeigen die Moleküle zwar keine kristallographische Symmetrie, besitzen aber annähernd eine lokale C_3 -Symmetrie. Die CF $_3$ -Gruppe weicht mit einer Rotation von $9.4(2)^\circ$ um die SiC-Bindung bzw. $12.3(6)^\circ$ um die GeC-Bindung nur geringfügig von einer gestaffelten Konformation zur EO $_3$ -Einheit ab.

Wie in vielen anderen Atranen nehmen die 3 heterocyclischen Fünf-Ringe "Briefumschlag"-Konformation ein, wobei die Kohlenstoffatome des Silatrans C(2), C(4) und C(6) im Mittel um 51(1) pm von der Ebene abweichen, die durch die anderen 4 Ringatome aufgespannt wird.

Abb. 6.6: Kristallstruktur von CF₃-Si(OCH₂CH₂)₃N (**59**)

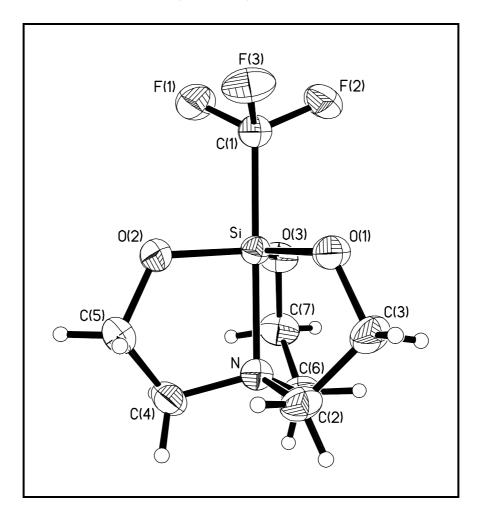


Tabelle 6.11: Bindungsabstände [pm] und -winkel [°] von 1-Trifluormethyl-silatran (59)

Monocline Raumgruppe P2₁/n, a = 777.2(1), b = 1236.9(2), c = 1002.8(1) $\beta = 91.33(1)^{\circ}$, Z = 4, $D_{calc} = 1.677$ g cm⁻¹

Si-O (1)	165.17(8)	O(1)-C(3)	142.66(14)
Si-O (2)	165.29(8)	O(2)- $C(5)$	142.65(13)
Si-O (3)	165.42(8)	O(3)-C(7)	142.78(13)
Si-C (1)	194.61(10)	N-C (2)	148.18(13)
Si-N	202.42(9)	N-C (4)	148.27(14)
C(1)-F(1)	135.70(12)	N-C (6)	147.90(14)
C(1)-F(2)	136.48(13)	C (2)-C (3)	151.3(2)
C(1)-F(3)	135.55(12)	C (4)-C (5)	151.2(2)
		C (6)-C (7)	151.6(2)
O (1)-Si-O (2)	119.96(5)	Si-N-C (6)	105.09(6)
O (1)-Si-O (3)	120.44(5)	Si-N-C (2)	105.12(6)
O (2)-Si-O (3)	118.85(5)	Si-N-C (4)	105.04(6)
C (1)-Si-O (1)	92.49(4)	F (1)-C (1)-F (2)	104.30(8)
C (1)-Si-O (2)	93.16(4)	F (1)-C (1)-F (3)	104.35(8)
C (1)-Si-O (3)	92.94(4)	F (2)-C (1)-F (3)	104.06(8)
O (1)-Si-N	87.12(4)	Si-C (1)-F (1)	114.71(7)
O (2)-Si-N	87.25(4)	Si-C (1)-F (2)	113.48(7)
O (3)-Si-N	87.03(4)	Si-C (1)-F (3)	114.70(7)
C (1)-Si-N	179.54(4)	N-C (2)-C (3)	105.91(9)
Si-O (1)-C (3)	119.53(7)	N-C (4)-C (5)	106.07(8)
Si-O (2)-C (5)	119.33(7)	N-C (6)-C (7)	105.77(9)
Si-O (3)-C (7)	119.42(7)	O(1)-C(3)-C(2)	108.27(9)
C (2)-N-C (4)	113.01(9)	O (2)-C (5)-C (4)	108.21(9)
C (2)-N-C (6)	113.80(9)	O (3)-C (7)-C (6)	107.94(8)
C (4)-N-C (6)	113.62(8)		` '
`,' `,'	` '		

Der Vergleich mit 1-Methyl-silatran zeigt, daß durch Fluorierung der Methylgruppe die SiC-Bindung um 7.6(6) pm verlängert wird bei gleichzeitiger Verkürzung der SiO-Bindungen um ca. 1.3(3) pm [14]. Eine deutliche Kontraktion erfährt der SiN-Abstand, der um 15.1(4) pm signifikant kürzer ist. Beide Effekte, die Längung der SiC-Bindung und die starke Kürzung des SiN-Abstandes, führen zu einer Abflachung der SiO₃-Pyramide im Molekül. Dies äußert sich auch in den gemittelten O-Si-O- sowie den O-Si-N-Winkeln, die um 4.4(6)° näher an den idealen Winkel von 90° heranreichen als beim Methylderivat. Mit einem Wert von 194.6(1) pm ist die Si-CF₃-Bindung nur unwesentlich größer als für CF₃SiPh₃ im Festkörper (193.3(4) pm) [137] und CF₃SiF₃ (191.0(2) pm) bzw. CF₃SiH₃ (190.0(7) pm) in der Gasphase[43c, 43a].

Der sehr kurze transannulare SiN-Abstand von 202.4 pm korrespondiert mit der hohen Lewis-Acidität des Siliciumatoms, hervorgerufen durch die Elektronegativität der CF₃-Gruppe. Vergleichbare Abstände findet man in dem 1-Chlor- bzw. 1-Fluor-silatran mit 202.3 bzw. 204.2 pm. Der GeN-Abstand des Germatrans (**61**) ist mit 210.8(2) pm (Tabelle 6.12) entsprechend länger als der SiN-Abstand, jedoch deutlich kürzer als für Organyl-Germatrane.

Abb. 6.7: Kristallstruktur von CF_3 -Ge $(OCH_2CH_2)_3N$ (61)

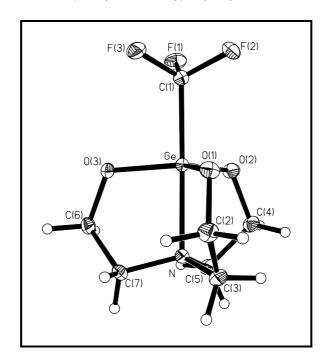


Tabelle 6.12: Bindungsabstände [pm] und -winkel [°] von 1-Trifluormethyl-germatran (**61**) Monocline Raumgruppe P2₁/n, a = 785.7(1), b = 1257.8(1), c = 999.9(1) $\beta = 90.87(1)$ °, Z = 4, $D_{calc} = 1.934$ g cm⁻¹

$\beta = 90.87(1)^{\circ}, Z =$	$4, D_{\text{calc}} = 1.934 \text{ g c}$	m ⁻¹	
Ge-O (1)	178.6(1)	O(1)-C(2)	142.2(2)
Ge-O (2)	179.0(1)	O(2)-C(4)	142.8(2)
Ge-O (3)	178.5(1)	O(3)-C(6)	142.6(2)
Ge-C (1)	200.6(2)	N-C (3)	147.7(3)
Ge-N	210.8(2)	N-C(5)	147.9(3)
C(1)-F(1)	135.6(2)	N-C (7)	147.8(3)
C(1)- $F(2)$	135.5(2)	C(2)-C(3)	152.0(3)
C(1)-F(3)	134.6(2)	C(4)-C(5)	151.6(3)
		C(6)-C(7)	151.2(3)
O (1)-Ge-O (2)	118.16(7)	Ge-N-C (3)	104.55(12)
O (1)-Ge-O (3)	120.24(7)	Ge-N-C (5)	104.21(12)
O (2)-Ge-O (3)	120.02(7)	Ge-N-C (7)	104.40(11)
C(1)-Ge- $O(1)$	94.63(7)	F(1)-C(1)-F(2)	105.00(16)
C (1)-Ge-O (2)	94.44(7)	F(1)-C(1)-F(3)	105.06(15)
C(1)-Ge- $O(3)$	93.50(7)	F(2)-C(1)-F(3)	104.93(17)
O (1)-Ge-N	85.84(6)	Ge-C (1) -F (1)	112.92(14)
O (2)-Ge-N	85.93(6)	Ge-C (1)-F (2)	113.92(12)
O (3)-Ge-N	85.68(6)	Ge-C (1) -F (3)	114.09(13)
C (1)-Ge-N	179.18(7)	N-C(3)-C(2)	107.70(16)
Ge-O (1)-C (2)	115.99(13)	N-C(5)-C(4)	107.66(17)
Ge-O (2)-C (4)	115.75(12)	N-C(7)-C(6)	107.81(16)
Ge-O (3)-C (6)	116.26(11)	O (1)-C (2)-C (3)	109.94(17)
C(3)-N-C(5)	113.94(16)	O(2)-C(4)-C(5)	109.89(16)
C (3)-N-C (7)	113.71(16)	O (3)-C (6)-C (7)	109.92(17)
C (5)-N-C (7)	114.47(17)		

Kapitel 7 Experimenteller Teil

7.1 Allgemeine Arbeitstechniken und Charakterisierung

Alle Arbeiten wurden unter einer N_2 - oder Argon-Schutzgasatmosphäre sowie an einer Standardhochvakuumapparatur durchgeführt. Lösungsmittel wurden vor der Verwendung nach üblichen Standardmethoden getrocknet bzw. frisch destilliert.

Die Substanzen wurden mit folgenden Geräten charakterisiert:

1) NMR-Spektroskopie

¹ H-NMR-Spektren:	Varian EM 390,	Meßfrequenz	90.00	MHz
	Bruker AC 250,	Meßfrequenz	250.13	MHz
	Bruker ARX 400,	Meßfrequenz	400.13	MHz
¹³ C-NMR-Spektren	Bruker AC 250,	Meßfrequenz	62.90	MHz
	Bruker ARX 400,	Meßfrequenz	100.63	MHz
¹⁹ F-NMR-Spektren	Varian EM 390,	Meßfrequenz	84.67	MHz
	Bruker AC 250,	Meßfrequenz	235.36	MHz
	Bruker ARX 400,	Meßfrequenz	376.50	MHz
²⁹ Si-NMR-Spektren	Bruker AC 250,	Meßfrequenz	49.69	MHz
³¹ P-NMR-Spektren	Bruker ARX 400,	Meßfrequenz	161.98	MHz
¹⁹⁹ Hg-NMR-Spektren	Bruker AC 250,	Meßfrequenz	44.80	MHz

2) Schwingungs-Spektroskopie

IR-Spektren: Bruker IFS 25 im Bereich von 400 cm⁻¹ bis 4000 cm⁻¹,

Perkin Elmer 580B im Bereich von 200 cm⁻¹ bis 400 cm⁻¹, entweder als KBr-Preßling oder als Film auf KBr-Platten, leichtflüchtige Substanzen in 10 cm oder 15 cm KBr (PE)-

Gasküvetten.

Raman-Spektren: Cary 82 mit Kr⁺-Laseranregung bei 647.1 nm im Bereich von 40

cm⁻¹ bis 4000 cm⁻¹, als Feststoffe oder Flüssigkeiten in 4mm-

Glasampullen oder Raman-Kapillaren

3) Massenspektren Varian MAT 311 A, 70 eV Ionisierungsenergie

4) DSC/TGA-Analysen Netzsch STA 409

5) Elementaranalysen C, H, N Perkin Elmer 240B

C, H, F Fa. Beller, Theaterstr. 23, 37004 Göttingen

7.2 Ausgangsverbindungen

Folgende verwendete Silane sind kommerziell erhältlich:

SiCl₄, MeSiCl₃, MeSi(H)Cl₂, Me₂SiCl₂, Me₆Si₂ Si₂Cl₆, Si₂Cl₆O, [ClMe₂Si]₂O, [ClMe(Ph)Si]₂O

 CF_3Br ist ebenfalls kommerziell erhältlich und wird vor Gebrauch durch fraktionierte Kondensation im Hochvakuum von Sauerstoff gereinigt. $P(NEt_2)_3$ wird durch Aminierung von PCl_3 mit $HNEt_2$ dargestellt [138]. $[ClMe_2Si]_2$ und $ClMe_2SiSiMe_3$ werden aus der Umsetzung von Me_6Si_2 mit $H_2SO_4/$ NH_4Cl [56] erhalten, $[Cl_2MeSi]_2$, sowie $[ClMe_2Si]_2SiMe_2$, $[ClMe_2Si]_2SiMeCl$, $ClSi(SiMe_3)_3$, $MeSi(SiMe_2Cl)_3$, $[ClMe_2Si]_2(SiMe)_2[SiMe_2Cl]_2$ können entweder durch Reaktion der permethylierten Oligosilane mit PhCOCl/ $AlCl_3$ oder durch Umsetzung der Phenylderivate mit HCl erhalten werden [139]. Die Darstellung der Trifluormethylsilane CF_3SiX_3 (X = Cl, H, OMe_3) erfolgte nach [23]. Die Einführung und Abspaltung der Schutzgruppenfunktionen wurde, wenn nicht anders erwähnt, nach Standardmethoden durchgeführt.

7.3 Darstellung und Reaktionen der Trifluormethylsilane

7.3.1 Benkeser-Reaktion von Si-H-funktionellen Silanen

Reaktion von HSiCl₃ mit Basen in Gegenwart von CF₃Br: In einem 250 ml Dreihalskolben mit Trockeneis-Kühler wird 1 Equivalent HSiCl₃ in 50 bis 100 ml Diglyme vorgelegt und die Lösung auf -50°C abgekühlt. Danach wird CF₃Br bis zur Sättigung der Lösung durchgeleitet und die Temperatur der Reaktionsmischung wieder auf ca. 25°C gebracht. Unter einem starken CF₃Br-Strom werden 2 Equivalente der Base langsam zugetropft und nach beendeter Zugabe noch 20 min unter der CF₃Br-Atmosphäre gerührt. Durch fraktionierte Kondensation (-30°C, -100°C, -196°C) werden dann CF₃SiCl₃ und SiCl₄ von den restlichen Bestandteilen abgetrennt und destillativ über eine Spaltrohrkolonne getrennt.

Reaktion von MeSi(H)Cl₂ und (CF₃)SiH₂Cl mit Basen in Gegenwart von CF₃Br:

8 mmol des Silans werden in einer Glasampulle mit Younghahn in 5 ml Diglyme vorgelegt, mit 2 Equivalenten der Base und einem Überschuß an CF₃Br versetzt. Nach Auftauen der Mischung auf RT wird für 30 min gerührt und die Silane durch fraktionierte Kondensation (-30°C, -100°C, -196°C) von den übrigen Bestandteilen abgetrennt.

7.3.2 Allgemeine Vorschrift für Trifluormethylierungen

Die Reaktionsbedingungen für die Trifluormethylierung halogenfunktioneller Silane richten sich sowohl nach den Siedepunkten der Produkte wie auch nach der sterischen Belastung der Ausgangsverbindungen.

Allgemeine Vorschriften:

A) Silane mit geringer sterischer Belastung

Hochsiedende Silane (Sdp. > 150°C) werden in CH_2Cl_2 , niedriger siedende Silane in PhCN oder Sulfolan umgesetzt. Das Halogensilan wird in dem Lösungsmittel bei 0°C vorgelegt und das Reaktionsgefäß mehrere Minuten mit CF_3Br gespült. Während der tropfenweise Zugabe von $P(NEt_2)_3$ wird dabei ein geringer Überdruck an CF_3Br eingestellt und der Verbrauch kontrolliert. Nach beendeter Zugabe wird noch für ca. 1h bei RT gerührt, anschließend fraktioniert kondensiert. Hochsiedende Produkte werden durch Vakuumdestillation oder durch Extraktion mit Hexan (Pentan) aus dem Reaktionsgemisch entfernt.

B) Silane mit hoher sterischer Belastung

Die Wahl des Lösungsmittels erfolgt entsprechend A). Das Silan wird zusammen mit dem Lösungsmittel in einer Schraubampulle mit Young-Hahn vorgelegt und auf ca. -50°C abgekühlt (Sulfolan, PhCN -10°C - 0°C). Danach wird die Mischung langsam mit P(NEt₂)₃ versetzt und anschließend ein 1,5 bis 2,5facher Überschuß an CF₃Br aufkondensiert. Nach langsamen Auftauen wird für ca. 2 bis 3h bei RT gerührt, anschließend wie unter A) aufgearbeitet.

7.3.3 Trifluormethyl-Monosilane

Dimethyl -tolyl-(trifluormethyl)silan, CF_3Me_2SiTol (7a)

45,5 mmol TolMe₂SiCl werden mit 49 mmol $P(NEt_2)_3$ in 25 ml CH_2Cl_2 bei 0°C nach A) umgesetzt. Nach 1.5h bei RT werden alle flüchtigen Bestandteile (Vorlage 60°C) abgezogen und der Rückstand im Vakuum destilliert. Man erhält 34 mmol farblose Flüssigkeit (75 %).

IR/ Raman [cm⁻¹]:

3074 (m)/ 3062 (m, dp) vCH, 3040 (m)/ 3033 (w, dp) vCH, - / 3031 (w, dp) vCH, 3016 (m)/ - vCH, 2972 (s)/ 2980 (m, dp) ν_{as} CH₃, 2924 (m)/ 2918 (s, p) ν_{s} CH₃,

 $2869 \ (m)/\ 2879 \ (m,\ dp)\ \nu CH_3,\ 1605 \ (s)/\ 1608 \ (s,\ dp)\ \nu CC,\ -/\ 1563 \ (w,\ dp)\ \nu CC,\ 1504 \ (w)/\ 1509 \ (w,\ dp)\ \nu CC,\ 1451/\ 1454 \ (w,\ dp)\ \nu CC,\ 1407 \ (w)/\ -\ \delta_{as}CH_3,\ 1395 \ (m)/\ -\ ,\ 1379 \ (w)/\ 1382 \ (m,\ dp)\ ,\ 1316 \ (w)/\ 1318 \ (w,\ dp)\ ,\ 1261 \ (s)/\ 1264 \ (w,\ dp)\ \delta_s CH_3,\ -/1224 \ (m,\ dp)\ ,\ 1211 \ (s)/\ -\ \nu_s CF_3,\ 1194 \ (m)/\ 1197 \ (m,\ dp)\ ,\ 1114 \ (s)/\ 1116 \ (vs,\ p)\ ,\ 1062 \ (vs,\ b)/\ 1062 \ (w,\ b,\ dp)\ \nu_{as}CF_3,\ 843 \ (s)/\ 844 \ (w,\ dp)\ ,\ 821 \ (s)/\ -\ ,\ 792 \ (vs)/\ 803 \ (vs,\ p),\ 712 \ (w)/\ 720 \ (w,\ dp)\ \delta_s CF_3,\ 683 \ (s)/\ 684 \ (vs,\ p)\ ,\ 639 \ (w)/\ 640 \ (m,\ dp)\ ,\ 605 \ (m)/\ 606 \ (m,\ p)\ ,\ 521 \ (m)/\ 523 \ (w,\ dp)\ \delta_{as}CF_3,\ 492 \ (s)/\ 494 \ (w,\ dp)\ ,\ 422 \ (s)/\ 422 \ (w,\ dp)\ ,\ -/\ 370 \ (s,\ p)\ ,\ -/\ 316 \ (w,\ dp)\ ,\ -/\ 289 \ (m,\ dp)\ ,\ 237 \ (s,\ dp)\ ,\ 206 \ (m,\ dp)\ ,\ -/\ 189 \ (w,\ sh,\ dp),\ -/\ 133 \ (m,\ dp).$

MS:

 $\begin{array}{l} m/\ z = 218\ (57.1)\ m^+,\ 175\ (11.2)\ ,\ 153\ (45.0)\ FMeSiTol^+,\ 150\ (96.8)\ HMe_2SiTol^+,\ 149\ (100) \\ Me_2SiTol^+,\ 133\ (11.9)\ C_8H_9Si^+,\ 121\ (14.4)\ H_2MeSiC_6H_4^+,\ 119\ (22.4)\ MeSiC_6H_4^+,\ 105\ (42.8) \\ HSiC_6H_4^+,\ 104\ (32.0)\ SiC_6H_4^+,\ 103\ (20.0)\ SiC_6H_3^+,\ 91\ (47.9)\ Tol^+,\ 77\ (25.3)\ C_6H_5^+,\ 47\ (38.0)\ SiF^+,\ 43\ (22.0)\ SiMe^+. \end{array}$

Dimethyl-phenyl-(trifluormethyl)silan, CF_3Me_2SiPh (**7b**)

46 mmol PhMe₂SiCl werden mit 46,5 mmol P(NEt₂)₃ in 15 ml CH₂Cl₂ bei 0°C nach A) umgesetzt. Nach fraktionierter Kondensation (-45°C, -196°C, Vorlage 60°C) werden 36,7 mmol CF₃Me₂SiPh (79,3%) als farblose Flüssigkeit erhalten.

IR/ Raman [cm⁻¹]:

3074~(w)/ - vCH, 3055~(w)/ - vCH, 3019~(w)/ 3013~(m, dp) vCH, 2968~(w)/ 2976~(w, dp) v $_{as}$ CH $_3$, 2907~(w)/ 2913~(s, p) v $_{s}$ CH $_3$, 1594~(w)/ 1596~(m, dp) vCC, - / (1575(w, dp) vCC, 1430(m)/ 1422(w, b, dp) vCC, 1407(w)/ 1410(w, b, dp) δ_{as} CH $_3$, 1263(m)/ 1267(w, dp) δ_{s} CH $_3$, 1214(s)/ 1214(w, dp) v $_{s}$ CF $_3$, - / 1198(w, dp) CH, - / 1164(w, dp) CH, 1118(s)/ 1120(m, p) , 1062(vs)/ 1062(w, dp) v $_{as}$ CF $_3$, - / 1034(s, p) , 999(w) / 1003(vs, p) CH/ Ring, - / 855(w, dp) pCH $_3$, 843(s) / - pCH $_3$, 819(s)/ - pCH $_3$, 796(s)/ 796(w, dp) , 736(m)/ - , 709(m)/ 709(w, dp) , 656(m)/ 659(vs, p) , - / 623(w, dp) , 522(w)/ 525(w, dp) δ_{as} CF $_3$, 468(m)/ - , 427(m)/ - , - / 370(s, p) , - / 325(w, dp) , - / 251(s, dp) , - / 211(m, dp).

MS:

 $m/z = 204 (6.5) m^+, 165 (20.7), 135 (100) Me_2SiPh^+, 121 (11.5), 105 (9.2) SiPh^+, 91 (20.3) SiC_5H_3^+, 77 (8.6) Ph^+, 69 (2.8) CF_3^+, 51 (6.6) HCF_2^+, 47 (24.9) SiF^+, 43 (17.4) SiMe^+.$

Dimethyl-diethylamino-(trifluormethyl)silan, $CF_3Me_2SiNEt_2$ (8)

8 mmol (NEt₂)Me₂SiCl werden in 10 ml CH_2Cl_2 mit 9 mmol $P(NEt_2)_3$ nach A) umgesetzt. Nach 2h Rühren bei RT wird fraktioniert kondensiert und das Produkt in einer auf -35°C gehaltenen Kühlfalle aufgefangen. Es werden 5,8 mmol klare Flüssigkeit erhalten (73 %).

IR/ Raman [cm⁻¹]:

 $2972 \; (s)/\ 2975 \; (s,\,p) \; \nu_{as} CH_3, \; 2937 \; (m)/\ 2940 \; (s,\,sh,\,p) \; \nu_{as} CH_3 (NEt_2), \; -/\ (2916 \; (vs,\,p) \; \nu_s CH_3, \\ 2876 \; (m)/\ 2879 \; (s) \; \nu_s CH_3, \; 2821 \; (w)/ \; - \; \nu CH_3, \; 2232 \; (w)/\ 2236 \; (s,\,dp) \; , \; -/\ 1604 \; (m,\,dp) \; , \\ 1493 \; (w)/ \; - \; \; , \; 1469 \; (w)/ \; - \; \; , \; 1453 \; (w)/\ 1457 \; (s,\,dp) \; , \; -/\ 1418 \; (w,\,dp) \; \delta_{as} CH_3, \; 1380 \; (m)/\ 1383 \; (w,\,dp) \; , \; 1346 \; (w)/\ 1350 \; (w,\,dp) \; , \; 1295 \; (w)/\ 1298 \; (w,\,dp) \; , \; 1262 \; (s)/\ 1266 \; (w,\,dp) \; \delta_s CH_3, \; 1220 \; (s)/\ 1222 \; (m,\,dp) \; \nu_s CF_3, \; 1206 \; (s)/\ 1206 \; (w,\,dp) \; , \; -/\ 1197 \; (m,\,dp) \; , \\ -/\ 1182 \; (m) \; , \; 1171 \; (s)/\ 1165 \; (w,\,dp) \; , \; 1103 \; (m)/\ - \; , \; -/\ 1079 \; (s,\,p) \; , \; 1056 \; (vs)/\ - \; \nu_{as} CF_3, \; (vs)/\ - \; \nu_{a$

 $^-$ / 1034 (m, dp) , - / 1004 (s, p) , 942 (m)/ 938 (m, dp) , 915 (w)/ 917 (m, dp) , 836 (s)/ - ρCH_3 , 818 (s)/ - ρCH_3 , 799 (s)/ 798 (w, dp) , - / 768 (w) , 760 (w)/ 753 (w) , 716 (w)/ 716 (m, dp) , 700 (w)/ 702 (m, dp) , 619 (w)/ 621 (vs, p) vSiC, 548 (w)/ 552 (w, dp) , 520 (w)/ 523 (m, dp) $\delta_{as} CF_3$, 494 (w)/ - , - / 462 (m, dp) , 417 (w)/ - , - / 377 (s, p) vSiC F , - / 340 (w, dp) , - / 272 (m, dp) , - / 238 (m, dp) , - / 214 (m, dp) , - / 170 (w, dp).

Die Trifluormethyl-halogensilane CF_3Me_2SiX (X = Cl, Br, I)

Dimethyl-(trifluormethyl)-chlorsilan, CF_3Me_2SiCl (**9a**)

19 mmol Me₂Si(Cl)NEt₂ werden in 12 ml PhCN mit 19.5 mmol P(NEt₂)₃ bei 0°C nach A) umgesetzt. Die Mischung wird auf RT erwärmt und für weitere 30 min gerührt, anschließend wird wieder auf 0°C abgekühlt und 22 mmol PhCOCl tropfenweise hinzugegeben. Nach 15 min bei RT wird fraktioniert kondensiert (-35°C, -110°C, -196°C), woraus 14.6 mmol CF₃Me₂SiCl erhalten werden (77.5 %).

IR/ Raman [cm⁻¹]:

2981 (w)/ 2988 (m, dp) $\nu_{as}CH_3$, 2923 (w)/ 2920 (s, p) ν_sCH_3 , 1413 (w)/ 1408 (w, dp) $\delta_{as}CH_3$, 1268 (m)/ 1272 (w, dp) δ_sCH_3 , 1228 (s)/ 1226 (w, dp) ν_sCF_3 , 1111 (s), 1086 (s)/ 1084 (w, dp) $\nu_{as}CF_3$, 847 (m)/ 850 (w) ρCH_3 , 815 (s)/ 813 (w, dp) ρCH_3 , 809 (s)/ ρCH_3 , 729 (w)/ 723 (m, p) $\delta_s CF_3$, 688 (m)/ 689 (vs, p) νSiC , 533 (m)/ 530 (s, p) νSiC , - / 524 (s, p) $\delta_{as}CF_3$, - / 470 (w), - / 392 (vs, p) νSiC^F , - / 304 (m, dp), - / 279 (m, dp) ρCF_3 , - / 202 (s, dp), - / 136 (m, dp) $\delta C^H SiC^F$, - / 120 (m, dp).

MS:

m/ z = 115 (13.9), 113 (20.2), 99 (9.2) $MeSiF^{37}Cl^{+}$, 97 (28.5) $MeSiF^{35}Cl^{+}$, 95 (43.4) $Me_2Si^{37}Cl^{+}$, 93 (100) $Me_2Si^{35}Cl^{+}$, 77 (52.7) Me_2SiF^{+} , 65 (25.6) H_2SiCl^{+} , 63 (15.6) $SiCl^{+}$, 47 (17.9) SiF^{+} , 43 (5.4) $SiMe^{+}$.

Dimethyl-(trifluormethyl)-bromsilan, CF_3Me_2SiBr (**9b**)

In einer Glasampulle mit Younghahn werden 11 mmol CF₃Me₂SiTol vorgelegt und auf -20°C abgekühlt, anschließend werden innerhalb von 30 min 11.5 mmol Br₂ hinzugefügt und die Mischung für 45 min auf 60°C erwärmt. Fraktionierte Kondensation (-40°C, -196°C) liefert 9.5 mmol CF₃Me₂SiBr (87.5 %). Überschüssiges Br₂ wird durch Schütteln mit Hg entfernt.

IR/ Raman [cm-1]:

2981 (vw)/ 2983 (m, dp) $\nu_{as}CH_3$, - / 2918 (s, p) ν_sCH_3 , 1409 (vw)/ 1407 (w, dp) $\delta_{as}CH_3$, 1266 (m)/ 1271 (w, dp) δ_sCH_3 , 1223 (s)/ 1220 (w, dp) ν_sCF_3 , 1111 (s), 1087 (s)/ 1080 (w, dp) $\nu_{as}CF_3$, 845 (m)/ - ρCH_3 , 812 (m)/ 809 (w, dp) ρCH_3 , 732 (w)/ 735 (m, p) $\delta_s CF_3$, 682 (w)/ 683 (vs, p) ν_sSiC_2 , - / 524 (w, dp) $\delta_{as}CF_3$, 451 (m)/ 444 (m, p) $\nu SiBr$, - / 372 (vs, p) νSiC^F , - / 299 (w, dp) ρCF_3 , - / 248 (s, p) ρCF_3 , - / 202 (m, dp) δSiC_2 , - / 177 (m, dp) $\delta C^H SiX$, - / 138 (w, dp) $\delta C^H SiX$, - / 100 (m, dp) $\delta C^F SiX$.

Dimethyl-(trifluormethyl)-iodsilan, CF_3Me_2SiI (**9c**)

7 mmol $CF_3Me_2SiNEt_2$ werden in 10 ml Dekalin gelöst und auf -20°C abgekühlt. Anschließend werden 7 mmol BI_3 in 15 ml Dekalin langsam zu der Lösung gegeben und die Mischung innerhalb von 1h auf RT erwärmt. Fraktionierte Kondensation (-40°C, -196°C) ergibt CF_3Me_2SiI , das mit ca. 15 % CF_3Me_2SiF (**9d**) verunreinigt ist.

Dimethyl-(trifluormethyl)silan, CF_3Me_2SiH (**10**)

3,2 mmol CF_3Me_2SiX (X = Cl, Br) werden auf 1.6 mmol LiAlH₄ in 3 ml Di-n-buthylether kondensiert und 15 min bei 0°C gerührt. Anschließende fraktionierte Kondensation (-50°C, -196°C) liefert 2,8 mmol CF_3Me_2SiH (89%).

67 mmol Me₂Si(H)Cl werden in 15 ml Sulfolan mit 70 mmol P(NEt₂)₃ nach B) umgesetzt, nach 2h bei RT die flüchtigen Bestandteile fraktioniert kondensiert (- 65°C, -196°C) und die Silan-Fraktion in einer 30 cm Spaltrohrkolonne destilliert. Sdp.: 31,8 °C, Ausbeute 25,6 mmol (38%). **IR/ Raman** [cm⁻¹]:

 $2979 \text{ (m)} / 2980 \text{ (w, dp) } \nu_{as} \text{CH}_3, \ 2921 \text{ (w)} / \ 2929 \text{ (s, p) } \nu_s \text{CH}_3, \ 2182 \text{ (s)} / \ 2183 \text{ (s, p)} / \ \nu \text{SiH}, \\ 1413 \text{ (w)} / \ 1410 \text{ (w, dp) } \delta_{as} \text{CH}_3, \ 1354 \text{ (w)} / - \ , 1270 \text{ (m)} / \ 1270 \text{ (w, dp) } \delta_s \text{CH}_3, \ 1222 \text{ (m)} / \ 1222 \text{ (w, dp) } \nu_s \text{CF}_3, \ 1210 \text{ (m)} / - \ , 1093 \text{ (vs)}, \ 1088 \text{ (vs)} / \ 1080 \text{ (w, dp) } \nu_{as} \text{CF}_3, \ 933 \text{ (s)} / - \ , 922 \text{ (s)} / - \\ , \ - / \ 903 \text{ (w) } , \ 878 \text{ (s)} / \ 874 \text{ (w, dp) } \rho \text{CH}_3, \ 851 \text{ (m)} / \ 850 \text{ (w) } \rho \text{CH}_3, \ 778 \text{ (m)} / \ 781 \text{ (w, dp) } \rho \text{CH}_3, \ 727 \text{ (m)} / \ - \nu_{as} \text{SiC}_2, \ 720 \text{ (m)} / \ 721 \text{ (s, p) } \delta_s \text{CF}_3, \ - / \ 662 \text{ (vs, p) } \nu_s \text{SiC}_2, \ 637 \text{ (w)} / - \ , - / \ 517 \text{ (w, dp) } \delta_{as} \text{CF}_3, \ - / \ 395 \text{ (s, p) } \nu \text{SiC}_5, \ - / \ 293 \text{ (w, dp) } \rho \text{CF}_3, \ - / \ 207 \text{ (w, dp) } \delta \text{SiC}_2, \ - / \ 160 \text{ (w, dp) } \delta \text{C}^H \text{SiC}^F, \ - / \ 138 \text{ (w, dp) } \delta \text{C}^H \text{SiC}^F.$

Diphenyl-(trifluormethyl)-chlorsilan, CF_3Ph_2SiCl ($\bf{11a}$) und Phenyl-(trifluormethyl)-dichlorsilan, $CF_3PhSiCl_2$ ($\bf{11b}$)

37 mmol CF₃SiCl₃ werden in 60 ml Et₂O vorgelegt und auf -78°C abgekühlt. Anschließend wird die Mischung tropfenweise mit 23 ml einer 1.6 m Lösung von PhLi in Et₂O/ Cyclohexan (37 mmol) versetzt. Nach Erwärmen auf RT rührt die Mischung noch für 12h weiter, anschließend werden die Salze abgetrennt, überschüssiges CF₃SiCl₃, Et₂O und Cyclohexan bei Normaldruck abdestilliert. Vakuumdestillation des Rückstandes liefert 10.0 mmol CF₃PhSiCl₂ (Sdp 43°C, 10⁻³ Torr) (27 %) und 4.6 mmol CF₃Ph₂SiCl (Sdp 75°C, 10⁻³ Torr) (12.4 %). *CF₃Ph₂SiCl*

IR/ Raman [cm⁻¹]:

 $3077\ (m)/-vCH,\ 3059\ (m)/\ 3064\ (s,\ dp)\ vCH,\ 3033\ (m)/-vCH,\ 3020\ (m)/-vCH,\ 3007\ (w)/-vCH,\ -/\ 1612\ (s,\ dp)\ vCC,\ 1592\ (m)/\ 1593\ (s,\ dp)\ vCC,\ 1570\ (w)/\ 1570\ (w,\ dp)\ vCC,\ -/\ 1508\ (w,\ dp)\ vCC,\ 1484\ (m)/-vCC,\ 1431\ (s)/-vCC,\ 1383\ (w)/-vCC,\ 1308\ (w)/-vCC,\ 1287\ (s,\ dp)\ ,\ 1210\ (s)/-v_sCF_3,\ -/\ 1191\ (w,\ dp)\ CH,\ -/\ 1164\ (m,\ dp)\ CH,\ 1121\ (s)/-\ ,\ 1109\ (s)/\ 1110\ (m,\ p)\ ,\ 1081\ (vs,\ b)/-\ v_asCF_3/\ CH,\ -/\ 1032\ (s,\ p)\ ,\ 1010\ (m)/-\ ,\ 998\ (m)/\ 1001\ (vs,\ p)\ Ring,\ 922\ (w)/-\ ,\ 905\ (w)/-\ ,\ 782\ (m)/-\ ,\ 739\ (s)/\ 742\ (m,\ p)\ ,\ 722\ (s)/-\ ,\ 698\ (s)/\ 698\ (m,\ p)\ ,\ 621\ (m)/\ 619\ (m,\ dp)\ ,\ 610\ (m)/-\ ,\ 575\ (s)/\ 576\ (m,\ p)\ vSiCl,\ 531\ (s)/-\ ,\ 521\ (s)/-\ ,\ 506\ (s)/-\ ,\ 479\ (s)/-\ ,\ 432\ (m)/-\ ,\ -/\ 409\ (w)\ ,\ -/\ 313\ (m,\ p)\ ,\ 245\ (m,\ p)\ \delta SiCl,\ -/\ 212\ (w,\ dp)\ ,\ -/\ 178\ (w,\ dp).$

MS:

m/ z = 288 (5.0) m⁺ (35 Cl/ 37 Cl), 286 (14.7) m⁺ (35 Cl), 236 (2.8) FPh₂SiCl⁺, 219 (74.3) Ph₂Si³⁷Cl⁺, 217 (71.3) Ph₂Si³⁵Cl⁺, 201 (12.1) FPh₂Si⁺, 181 (18.4) PhSiC₆H₄⁺, 159 (15.1) FPhSiCl⁺, 153 (100) C₈H₁₀SiF⁺, 139 (13.8) ClSiC₆H₄⁺, 128 (26.6), 115 (39.0), 105 (59.4) SiPh⁺, 77 (78.7) Ph⁺, 63 (21.4) Si³⁵Cl⁺, 51 (43.6) HCF₂⁺, 39 (24.1) C₃H₃⁺, 36 (42.8) H³⁵Cl.

$CF_3PhSiCl_2$

IR/ Raman [cm⁻¹]:

 $3081~(w)/\ 3074~(m,\ dp)\ vCH,\ 3062~(w)/\ -\ vCH,\ 3036~(w)/\ -\ vCH,\ 1594~(m)/\ 1600~(m,\ dp)\ vCC,\ -\ /\ 1597~(w,\ dp)\ vCC,\ 1491~(w)/\ -\ vCC,\ 1434~(s)/\ -\ vCC,\ 1384~(w)/\ -\ vCC,\ 1342~(w)/\ -\ vCC,\ 1214~(s)/\ 1218~(w,\ dp)\ v_sCF_3,\ -\ /\ 1201~(w,\ dp)\ CH,\ -\ /\ 1170~(w,\ dp)\ CH,\ 1120~(s)/\ 1123~(m,\ p)\ ,\ 1096~(vs,\ b)/\ -\ v_{as}CF_3,\ -\ /\ 1038~(vs,\ p)\ ,\ 998~(m)/\ 1003~(vvs,\ p)\ Ring,\ 741~(m)/\ 740~(w,\ dp)\ ,\ 718~(s)/\ 721~(m,\ p)\ ,\ 694~(s)/\ -\ ,\ 630~(s)/\ -\ ,\ 610~(s)/\ 619~(w,\ dp)\ v_{as}SiCl_2,\ 560~(s)/\ 567~(m,\ p)\ v_sSiCl_2,\ 521~(m)/\ 528~(w,\ dp)\ \delta_{as}CF_3,\ 488~(s)/\ 490~(w)\ ,\ 442~(m)/\ 446~(w)\ ,\ -\ /\ 330~(s,\ p)\ ,\ -\ /\ 302~(w,\ dp)\ ,\ -\ /\ 258~(m,\ p)\ ,\ -\ /\ 217~(m,\ dp)\ ,\ -\ /\ 173~(m,\ dp)\ ,\ -\ /\ 142~(m,\ dp).$

MS:

m/ z = 246 (6.3) m⁺ (^{35}Cl / ^{37}Cl), 244 (9.3) m⁺ (^{35}Cl), 194 (4.5) FPhSiCl₂⁺, 177 (37.8) PhSiCl₂⁺ (^{35}Cl), 175 (63.6) PhSiCl₂⁺ (^{35}Cl), 159 (8.6) FPhSiCl⁺, 105 (6.8) SiPh, 91 (4.0) C₅H₃Si⁺, 77 (32.7) Ph⁺, 63 (9.8) SiCl⁺, 51 (31.4) HCF₂⁺, 38 (100) C₃H₂⁺, 37 (14.5) ^{37}Cl +, 36 (100) H³⁵Cl⁺, 35 (66.8) ^{35}Cl +.

 $Methyl-dimethoxy-(trifluormethyl)silan, CF_3MeSi(OMe)_2$ (12)

156 mmol MeSi(OMe)₂Cl werden in 60 ml PhCN mit 170 mmol P(NEt₂)₃ bei 0°C nach A) umgesetzt, anschließende fraktionierte Kondensation (-35°C, -110°C, -196°C) und Destillation über eine 30 cm Spaltrohrkolonne (Sdp.: 92,5 - 92,8°C) liefert 112 mmol CF₃MeSi(OMe)₂ (72%).

IR/ Raman [cm⁻¹]:

 $2982 \text{ (m)/} - \nu_{as}\text{CH}_3, \ 2961 \text{ (s)/} \ 2960 \text{ (s, p)} \ \nu_{as}\text{CH}_3(\text{OMe)}, \ - / \ 2920 \text{ (s, p)} \ \nu_{s}\text{CH}_3, \ 2860 \text{ (s)/} \ 2859 \text{ (s, p)} \ \nu_{s}\text{CH}_3(\text{OMe)}, \ - / \ 1498 \text{ (m, dp)} \ \delta_{as}\text{CH}_3, \ 1472 \text{ (w)/} \ 1467 \text{ (m, dp)} \ \delta_{as}\text{CH}_3, \ 1414 \text{ (w)/} \ 1410 \text{ (w, dp)} \ \delta_{as}\text{CH}_3, \ 1272 \text{ (s)/} - \delta_{as}\text{CH}_3, \ 1243 \text{ (s)/} \ 1242 \text{ (w)} \ \nu_{s}\text{CF}_3, \ 1198 \text{ (s)/} \ 1202 \text{ (w)} \ \rho\text{CH}_3, \ 1117 \text{ (vs)/} \ 1104 \text{ (m)} \ \nu_{as}\text{CF}_3, \ 1086 \text{ (vs)/} - \nu\text{CO}, \ - / \ 1003 \text{ (m)} \ , \ 862 \text{ (s)/} \ 862 \text{ (w)} \ \rho\text{CH}_3, \ 819 \text{ (s)/} \ 821 \text{ (w)} \ \rho\text{CH}_3/ \ \nu_{as}\text{SiO}_2, \ 786 \text{ (s)/} \ 786 \text{ (w)} \ \rho\text{CH}_3, \ 742 \text{ (w)/} - \ , \ - / \ 723 \text{ (s, p)} \ \delta_{s}\text{CF}_3, \ 711 \text{ (w)/} - \ , \ 661 \text{ (m)/} \ 662 \text{ (vvs, p)} \ \nu_{s}\text{SiO}_2, \ - / \ 630 \text{ (s, p)} \ \nu\text{SiC}, \ 544 \text{ (w)/} - \ , \ 526 \text{ (w)/} \ 523 \text{ (m, dp)} \ \delta_{as}\text{CF}_3, \ 496 \text{ (w)/} \ 492 \text{ (m, p)} \ , \ 429 \text{ (m)/} \ 430 \text{ (s, p)} \ \nu\text{SiC}^F, \ - / \ 266 \text{ (s, dp)} \ , \ - / \ 245 \text{ (s, dp)}. \$

MS:

EA:

ber.: H 5.21, C 27.58, F 32.72; gef.: H 5.65, C 28.24, F 32.83.

 $Methyl-(trifluormethyl)-dichlorsilan, CF_3MeSiCl_2$ (**14a**)

45 mmol $TiCl_4$ werden in einer Schraubampulle mit Young-Hahn vorgelegt und 22 mmol $CF_3MeSi(OMe)_2$ aufkondensiert. Die Mischung rührt für 24 h bei RT, anschließend wird mehrfach fraktioniert kondensiert (- 50°C, -196°C). Man erhält 20.2 mmol klare Flüssigkeit (91%). Sdp.: 64.5 °C.

IR/ Raman [cm⁻¹]:

 $2990 \ (vw)/\ 2990 \ (w)\ \nu_{as}CH_3,\ -\ /\ 2920 \ (m)\ \nu_sCH_3,\ 1419 \ (w)/\ 1415 \ (w,\ dp)\ \delta_{as}CH_3,\ -\ /\ 1387 \ (w,\ dp)\ ,\ 1271 \ (m)/\ -\ \delta_sCH_3,\ 1227 \ (s)/\ 1225 \ (w,\ dp)\ \nu_sCF_3,\ 1109 \ (vs)/\ 1105 \ (w,\ dp)\ \nu_{as}CF_3,\ 842 \ (w)/\ -\ \rho CH_3,\ 802 \ (s)/\ -\ \rho CH_3,\ 766 \ (s)/\ 768 \ (w,\ dp)\ \nu SiC,\ 731 \ (w)/\ 730 \ (m,\ p)\ \delta_sCF_3,\ 601 \ (s)/\ 596 \ (w)\ \nu_{as}SiCl_2,\ 561 \ (w)/\ -\ ,\ 528 \ (s)/\ 524 \ (s,\ p)\ \nu_sSiCl_2,\ -\ /\ 472 \ (w,\ dp)\ ,\ -\ /\ 388 \ (vs,\ p)\ \nu SiC^F,\ -\ /\ 288 \ (m,\ dp)\ \rho CF_3,\ -\ /\ 277 \ (w,\ dp)\ \rho CF_3,\ -\ /\ 196 \ (m,\ dp)\ \delta CSiCl,\ -\ /\ 183 \ (m,\ sh,\ dp)\ \delta SiCl_2,\ -\ /\ 118 \ (m,\ dp)\ \delta C^FSiX.$

 $Methyl-(trifluormethyl)-diiodsilan, CF_3MeSiI_2$ (**14b**)

7.5 mmol CF₃MeSi(NMe₂)₂ werden in einer Glasampulle mit Young-Hahn in 15 ml Hexan vorgelegt, anschließend werden 30 mmol HI aufkondensiert. Die Mischung wird auf -60°C erwärmt und für ca. 3d bei dieser Temperatur belassen. Danach wird langsam auf RT erwärmt und fraktioniert kondensiert (-40°C, -196°C). Man erhält 4.8 mmol einer schwach rot gefärbten Flüssigkeit (63%). Zur Beseitigung der Iod-Spuren wird das Silan auf Hg kondensiert und 30 min bei RT geschüttelt.

Die Aminosilane *Methyl-diethylamino-(trifluormethyl)silan*, CF₃MeSi(NEt₂)₂ (**15**), und *Methyl-dimethylamino-(trifluormethyl)silan*, CF₃MeSi(NMe₂)₂ (**16**)

15 mmol CF₃MeSiCl₂ werden in 25 ml Hexan vorgelegt, die Mischung auf -50°C abgekühlt und tropfenweise mit 60 mmol HNMe₂, bzw. HNEt₂ versetzt. Nach weiterem Rühren für 10h bei RT werden die Salze abfiltriert und die Lösung fraktioniert kondensiert (-45°C, -196°C). Man erhält 8.1 mmol bzw. 10.1 mmol klare Flüssigkeit (54 % (**15**), 67 % (**16**)).

Diphenyl-methyl-(trifluormethyl)silan, $CF_3MeSiPh_2$ (17)

12.3 mmol CF₃MeSiCl₂ werden in 15 ml Et₂O vorgelegt, auf -40°C abgekühlt und tropfenweise mit 14 ml einer 1.8m Lösung von PhLi in Et₂O/ Cyclohexan (25 mmol) versetzt. Nach der Zugabe wird auf RT erwärmt und für weitere 3h gerührt. Überschüssiges PhLi wird mit 1-2 ml MeOH beseitigt, anschließend werden alle flüchtigen Bestandteile abgezogen. Nach einer Kurzweg-Destillation des Rückstandes erhält man 5 mmol einer klaren Flüssigkeit (41%).

IR/ Raman [cm⁻¹]:

3075 (m)/ - ν CH, 3054 (m)/ 3058 (m, p) ν CH, 3031 (m)/ - ν CH, 3004 (w)/ - ν CH, 2971 (w)/ 2972 (w, dp) ν _{as}CH₃, -/ 2910 (m, p) ν _sCH₃, -/ 1611 (m, dp) ν CC, 1592 (m)/ 1592 (m, dp) ν CC, 1484 (m)/ - ν CC, 1430 (s)/ - ν CC, 1408 (w)/ - δ _{as}CH₃, 1385 (w)/ - ν CC, 1335 (vw)/ - ν CC, -/ 1288 (m, p) , 1263 (m)/ - δ _sCH₃, 1208 (s)/ 1198 (w, dp) ν _sCF₃,

 $1161 \text{ (w)} / 1161 \text{ (w, dp) CH, } 1119 \text{ (s)} / 1113 \text{ (w, dp) CH, } 1062 \text{ (vs)} / - v_{as} CF_3, \\ 1030 \text{ (w)} / 1032 \text{ (m, p)} , 998 \text{ (w)} / 1002 \text{ (s, p) Ring, } 799 \text{ (s)} / - , 754 \text{ (m)} / - , 736 \text{ (s)} / 741 \text{ (w)} , -/ 720 \text{ (w)} \\ \delta_s CF_3, \\ 698 \text{ (s)} / - , 671 \text{ (w)} / 671 \text{ (m, p)} , 610 \text{ (w)} / 621 \text{ (w, dp)} , 526 \text{ (w)} / 522 \text{ (vw)} \\ \delta_{as} CF_3, \\ 491 \text{ (s)} / - , 470 \text{ (m)} / - , 453 \text{ (m)} / - , 426 \text{ (m)} / - , -/ 362 \text{ (w)} , -/ 248 \text{ (m, p)} , -/ 180 \text{ (w, dp)} , -/ 141 \text{ (m, dp)}.$

MS:

 $m/z = 266 (24.6) m^+, 216 (4.0) FSiMePh_2^+, 201 (15.1) FSiPh_2^+, 197 (100) MeSiPh_2^+, 181 (20.4) PhSiC_6H_4^+, 165 (23.0), 154 (39.8), 139 (17.8) FPhSiMe^+, 119 (9.2) SiC_7H_7^+, 105 (26.6) SiPh_+^+, 91 (19.8) SiC_5H_3^+, 77 (11.7) Ph_+^+, 47 (40.3) SiF_+^+, 43 (13.6) SiMe_+^+.$

 $Methyl-(trifluormethyl)silan, CF_3MeSiH_2$ (18)

In einer Glasampulle mit Young-Hahn werden 7.5 mmol CF₃MeSiCl₂ auf 7.5 mmol LiAlH₄ in 5 ml Bu₂O kondensiert und bei -15°C aufgetaut. Innerhalb 1h wird auf RT erwärmt, anschließend fraktioniert kondensiert (-65°C, -196°C). Man erhält 7.2 mmol klare Flüssigkeit (96%).

IR/ Raman [cm⁻¹]:

2985 (w)/ 2990 (w, dp) $\nu_{as}CH_3$, 2928 (w)/ 2927 (m, p) ν_sCH_3 , 2200 (s)/ 2199 (vs, p) ν_sCH_3 , 1431 (w)/ 1427 (w, dp) $\delta_{as}CH_3$, 1276 (m)/ - , 1269 (m)/ 1268 (w) δ_sCH_3 , 1227 (s)/ 1223 (w, dp) ν_sCF_3 , 1153 (m)/ - , 1100 (s)/ 1082 (w, dp) $\nu_{as}CF_3$, 946 (s)/ 945 (m, dp) δ_sCH_2 , 888 (s)/ 877 (w, dp) ρ_sCH_3 , 752 (m)/ 753 (s, dp) , 721 (w)/ 727 (s, p) δ_sCF_3 , -/ 697 (vs, p) ν_sCG_3 , 674 (m)/ 680 (m, sh, dp) τ_sCH_2 , 523 (w)/ 526 (m, dp) $\delta_{as}CF_3$, 489 (w)/ - , 408 (m)/ 398 (vs, dp) $\nu_sCG_3^F$, --/ 278 (m, dp) ρ_sCH_3 , -/ 141 (m, dp) $\delta_sCH_3^F$.

 $Methyl-diethylamino-(trifluormethyl)silan, CF_3MeSi(H)NEt_2$ (19)

33 mmol MeSi(H)NEt₂Cl werden in 10 ml Sulfolan mit 34 mmol P(NEt₂)₃ nach B) umgesetzt, nach 2h bei RT wird fraktioniert kondensiert (-60°C, -196°C). Man erhält 28,5 mmol klare Flüssigkeit (87%).

IR/ Raman [cm⁻¹]:

2968 (s)/ 2973 (m, dp) vCH₃, 2938 (s)/ 2938 (s, p) vCH₃, - / 2924 (s, p) vCH₃, 2880 (m)/ 2882 (s, p) vCH₃, 2183 (m)/ 2185 (s, p) vSiH, 1467 (w)/ 1476 (w, dp) δ_{as} CH₃, - / 1459 (s, dp) , 1378 (m)/ 1380 (w) , 1269 (w)/ 1267 (w) δ_{s} CH₃, 1227 (w)/ 1226 (w) , 1210 (m)/ 1211 (w, dp) , 1154 (vs)/ - , 1084 (s)/ 1082 (s, p) v_{as}CF₃, 1040 (w)/ 1040 (m, dp) , 944 (w)/ 945 (w, dp) , - / 923 (w, dp) , 879 (w)/ 878 (w, dp) pCH₃, 852 (m)/ 854 (w, dp) pCH₃, 753 (w)/ 757 (m, dp) vSiC, - / 720 (s, p) , - / 690 (w, dp) , - / 644 (vs, p) , - / 523 (w, dp) , - / 460 (w) , - / 395 (m, p) , - / 338 (m, p) , - / 263 (m, dp) , - / 221 (w, dp).

Die Trifluormethyl-halogensilane $CF_3MeSi(H)X$ (X = Cl (20a), Br (20b), I (20c))

CF₃MeSi(H)NEt₂ wird in Triglyme (X = Cl) oder in Dodecan (X = Br, I) vorgelegt, die Mischung auf ca. 0°C abgekühlt und langsam mit der Lewis-Säure versetzt (HCl, BBr₃ in Dodecan, BI₃ in Dodecan). Nach weiterem Rühren für 1h bei RT wird fraktioniert kondensiert (X = Cl (-60°C), Br (-45°C), I (-35°C); -196°C). Die Ausbeuten betragen: X = Cl (ca. 80 %(verunreinigt)), Br (89 %), I (86 %).

Methyl-(trifluormethyl)-bromsilan, CF₃MeSi(H)Br

IR/ Raman [cm⁻¹]:

2980 (w)/ 2985 (w, dp) vCH₃, 2966 (w)/ - ν_s CH₃, 2944 (w)/ - vCH₃, - / 2921 (m, p) vCH₃, 2881 (w)/ - vCH₃, 2216 (s)/ 2200 (vs, p) vSiH, 1406 (w)/ 1405 (w, dp) δ_{as} CH₃, 1271 (m)/ 1270 (w, dp) δ_s CH₃, 1222 (s)/ 1221 (w, dp) ν_s CF₃, 1185 (w)/ - , 1116 (vs)/ - , 1098 (vs)/ 1090 (w, dp) ν_{as} CF₃, 882 (m)/ 882 (w, dp) ρ CH₃, 829 (s)/ 825 (w, dp) ρ CH₃, 758 (m)/ 758 (m, p) vSiC, 731 (m)/ 727 (s, p) δ_s CF₃, 673 (w)/ 680 (m, dp) δ HSiMe, 549 (w)/ 546 (w) δ HSiBr/ CF₃, 520 (w)/ 524 (w, dp) δ_{as} CF₃, 457 (m)/ 450 (s, p) vSiBr, - / 393 (vs, p) vSiCF, - / 291 (m, p) , - / 244 (s, p) , - / 181 (m, dp) δ CHSiBr, - / 155 (w, dp) δ CHSiCF, - / 100 (m, dp) δ CFSiBr.

Methyl-(trifluormethyl)-iodsilan, CF₃MeSi(H)I

IR/ Raman [cm⁻¹]:

 $\begin{array}{l} -\ /\ 2985\ (w,\,dp)\ vCH_3,\ 2964\ (m)/\ -\ vCH_3,\ 2941\ (w)/\ -\ vCH_3,\ -\ /\ 2917\ (m,\,p)\ vCH_3,\ 2878\ (w)/\ 2880\ (w)\ vCH_3,\ 2215\ (m)\ 2208\ (m)/\ 2208\ (s,\,p)\ vSiH,\ -\ /\ 1410\ (w,\,dp)\ \delta_{as}CH_3,\ 1377\ (w)/\ -\ ,\ 1271\ (w)/\ 1265\ (w)\ \delta_sCH_3,\ 1220\ (m)/\ 1213\ (w,\,dp)\ v_sCF_3,\ 1152\ (m)/\ -\ ,\ 1114\ (s),\ 1098\ (s)/\ 1090\ (w,\,dp)\ v_{as}CF_3,\ 981\ (w)/\ -\ ,\ 932\ (m)/\ -\ ,\ 884\ (m)/\ 878\ (w,\,dp)\ \rho CH_3,\ 831\ (m)/\ 823\ (w,\,dp)\ \rho CH_3,\ 758\ (m)/\ 752\ (w,\,dp)\ vSiC,\ 725\ (m)/\ 725\ (s,\,p)\ \delta_sCF_3,\ 679\ (w)/\ 670\ (w,\,dp)\ ,\ 550\ (w)/\ 546\ (w)\ ,\ 523\ (w)/\ 523\ (w,\,dp)\ \delta_{as}CF_3,\ 456\ (m)/\ 450\ (w)\ ,\ 420\ (m)/\ 418\ (m,\,dp)\ ,\ 407\ (m)/\ -\ ,\ -\ /\ 368\ (vs,\,p)\ vSiC^F,\ -\ /\ 286\ (m,\,dp)\ \rho CF_3,\ -\ /\ 224\ (s,\,p)\ vSiI,\ -\ /\ 167\ (m,\,dp)\ \delta C^HSiC^F,\ -\ /\ 89\ (m,\,dp)\ \delta CSiI. \end{array}$

Phenyl-(trifluormethyl)silan, CF_3PhSiH_2 (21)

10.3 mmol CF₃PhSiCl₂ werden in 15 ml Et₂O vorgelegt, auf 0°C abgekühlt und mit 5.5 mmol LiBH₄ versetzt. Anschließend wird auf RT erwärmt und für 30 min gerührt. Fraktionierte Kondensation (-55°C, -196 °C) liefert 6.1 mmol CF₃PhSiH₂ (59 %).

IR/ Raman [cm⁻¹]:

 $3078~(m)/\ 3076~(w, sh, dp) \ vCH, 3059~(m)/\ 3065~(m, p) \ vCH, 3024~(w)/\ - \ vCH, 3008~(w)/\ - \ vCH, 2193~(s)/\ 2195~(vs, p) \ vSiH, 1591~(m)/\ 1596~(m, dp) \ vCC, -/\ 1575~(m, dp) \ vCC, 1488~(w)/\ 1492~(w) \ vCC, 1432~(s)/\ 1437~(w, dp) \ vCC, 1385~(w)/\ - \ vCC, 1337~(w)/\ 1342~(w, dp) \ vCC, 1308~(w)/\ - \ vCC, 1213~(s)/\ 1215~(w, dp) \ v_sCF_3, 1192~(w)/\ 1197~(w, dp) \ , -/\ 1165~(m, dp) \ , 1131~(s)/\ 1132~(m, p) \ , 1116~(s)/\ 1118~(m, p) \ , 1078~(vs)/\ 1080~(w, dp) \ v_{as}CF_3, -/\ 1033~(s, p) \ , 998~(vw)/\ 1002~(vs, p) \ Ring, 923~(s)/\ 928~(m, dp) \ \delta SiH_2, 827~(vs)/\ 831~(m, dp) \ , 741~(s)/\ 745~(w, sh, dp) \ , 726~(m)/\ 726~(s, p) \ \delta_sCF_3, 698~(s)/\ 700~(vs, p) \ , 621~(w)/\ 622~(m, dp) \ , 597~(s)/\ 600~(w, dp) \ , 544~(w)/\ - \ , 525~(w)/\ 525~(w, dp) \ \delta_{as}CF_3, 500~(w)/\ 507~(w, dp), 459~(m)/\ 459~(w, dp) \ , 427~(s)/\ 430~(m, dp) \ , -/\ 385~(vs, p) \ , -/\ 247~(vs, p) \ , -/\ 176~(s, dp).$

Phenyl-diethylamino-(trifluormethyl)silan, $CF_3PhSi(H)NEt_2$ (22)

5 mmol CF₃PhSiH₂ werden in 7 ml Hexan bei 0°C vorgelegt und tropfenweise mit 5 mmol HNEt₂ in 2 ml Hexan versetzt. Die Mischung wird langsam auf RT gebracht und bis zur Beendigung der Gasentwicklung (H₂) gerührt. Das Hexan wird dann durch Destillation von dem Aminosilan getrennt.

Bis(dimethylamino)-bis(trifluormethyl)silan, (CF₃)₂Si(NMe₂)₂ (24)

20 mmol Si₂Cl₆ werden in 15 ml CH₂Cl₂ mit 42 mmol P(NEt₂)₃ nach B) umgesetzt und für 2h bei RT gerührt. Anschließend werden alle flüchtigen Bestandteile im Vakuum abgezogen und der Rückstand in je 10 ml CHCl₃ und Hexan gelöst. Die Mischung wird auf -70°C abgekühlt und tropfenweise mit 85 mmol HNMe₂ versetzt. Man läßt langsam auf RT erwärmen und für weitere 10h rühren. Fraktionierte Kondensation (-45°C, -196°C) liefert 11,3 mmol (CF₃)₂Si(NMe₂)₂ (56%), das nach NMR-spektroskopischer Analyse bis zu 3% CF₃Si(NMe₂)₃ enthalten kann. **IR** [cm⁻¹]:

2972 (s) vCH₃, 2901 (s) vCH₃, 2879 (s) vCH₃, 2853 (s) vCH₃, 2806 (s) vCH₃, 1487 (w) δ CH₃, 1466 (m) δ CH₃, 1453 (m) δ CH₃, 1414 (w) δ CH₃, 1297 (s) δ CH₃, 1263 (m) δ CH₃, 1215 (s) v_sCF₃, 1170 (s) , 1052 (vs) v_{as}CF₃, 994 (s) , 808 (m) , 786 (m) , 758 (m) , 693 (w) , 613 (m) , 521 (w) δ _{as}CF₃, 448 (m) , 408 (m).

Bis(trifluormethyl)-dibromsilan, $(CF_3)_2SiBr_2$ (**26**)

20 mmol $(CF_3)_2Si(NMe_2)_2$ werden in 15 ml Dekalin vorgelegt und auf -40°C abgekühlt. Die Lösung wird dann tropfenweise mit 40 mmol BBr₃ in 20 ml Dekalin versetzt und die Temperatur langsam innerhalb 2.5h auf RT gebracht. Fraktionierte Kondensation (-40°C, -196°C) liefert 16.7 mmol $(CF_3)_2SiBr_2$ (83.5 %).

7.3.4 Trifluormethylierte Disilane

Die Disilane $CF_3Me_2SiSiMe_2CF_3$, $CF_3Me_2SiSiMe_3$, $[CF_3(NMe_2)MeSi]_2$ und $[CF_3(NEt_2)MeSi]_2$

[ClMe₂Si]₂ und ClMe₂SiSiMe₃ werden mit einem 5%-igen Überschuß an P(NEt₂)₃ nach A), [Cl(NMe₂)MeSi]₂ und [Cl(NEt₂)MeSi]₂ nach Methode B) umgesetzt.

1,2-Bis(trifluormethyl)-tetramethyldisilan, CF₃Me₂SiSiMe₂CF₃ (**28**) Ausbeute 75%, Smp.: 42°C - 43°C, Sdp.: 132°C IR/ Raman: siehe Kap. 4.1 MS:

 $m/z = 127 (1.8) CF_3Me_2Si^+, 108 (4.0) Me_2SiCF_2^+, 93 (10.2) MeSiCF_2^+, 81 (25.1) F_2SiMe^+, 77 (100) FSiMe_2^+, 73 (21.6) SiMe_3^+, 63 (12.1) FHSiMe^+, 58 (3.1) SiMe_2^+, 49 (18.2) FSiH_2^+, 47 (9.8) SiF^+, 45 (5.8) MeSiH_2^+, 44 (3.3) MeSiH^+, 43 (10.0) MeSi^+.$

```
EA:
```

ber.: H 4.76, C 28.34, F 44.82; gef.: H 4.85, C 28.47, F 44.73.

1-Trifluormethyl-pentamethyldisilan, CF₃Me₂SiSiMe₃ (29)

Ausbeute 75%, Sdp.: 126°C **IR/ Raman**: siehe Kap. 4.1

MS:

EA:

ber.: H 7.55, C 35.97, F 28.45; gef.: H 7.71, C 35.75, F 28.57.

Die Halogendisilane $[CF_3(X)MeSi]_2$ (34, 35) und $CF_3(X)MeSiSiMeX_2$ (X = Cl, Br) (36)

Ca. 5 - 8 mmol [(CF₃)Me(NMe₂)Si]₂ werden in 15 ml Pentan vorgelegt und die Mischung auf -50°C abgekühlt. Anschließend wird wasserfreie HCl bzw. HBr für 15 - 20 min durch die Lösung geleitet und dann die Mischung auf RT erwärmt. Nach weiterem Rühren für 30 min wird fraktioniert kondensiert (-50°C, -196°C), wobei die Halogen-Disilane in Ausbeuten zwischen 60 und 70 % anfallen. Je nach Reinheit des eingesetzten Aminodisilans werden auch die Halogendisilane CF₃(X)MeSiSiMeX₂ in der Fraktion der -50°C-Kühlfalle erhalten.

Reaktion von Si₂Cl₆ und [ClMe₂Si]₂ in Gegenwart von Basen und CF₃Br

Ca. 10 mmol des Disilans werden auf zwei Equivalente der Base (in 5 ml Lösungsmittel) kondensiert, anschließend wird CF₃Br in mindestens 4fachen Überschuß aufkondensiert. Die Mischung wird bei -40°C aufgetaut und langsam auf RT erwärmt. Nach 30 min Rühren werden die flüchtigen Bestandteile fraktioniert kondensiert (-110°C, -196°C) und die Silan-Fraktion NMR-spektroskopisch untersucht.

7.3.5 Trifluormethylierte Oligosilane

Die Darstellung der Trifluormethyl-Oligosilane erfolgt aus den entsprechenden Chlor-Silanen durch Trifluormethylierung nach Methode B) unter Verwendung eines 10%-igen Überschuß an P(NEt₂)₃.

1,3-Bis(trifluormethyl)-hexamethyltrisilan, [(CF3)Me2Si]2SiMe2 ($\bf 38$) Ausbeute 55 %

```
IR/ Raman [cm<sup>-1</sup>]:
```

2966 (m)/ 2971 (m, dp) $\nu_{as}CH_3$, 2903 (m)/ 2907 (vs, p) ν_sCH_3 , 1409 (m)/ 1408 (m, dp) $\delta_{as}CH_3$, 1259 (m)/ 1260 (w, dp) δ_sCH_3 , 1199 (s)/ 1197 (w, dp) ν_sCF_3 , 1057 (vs)/ 1060

 $\begin{array}{l} (w,\,dp)\; \nu_{as} CF_3,\; 840\;(m)/\; 844\;(w,\,dp)\; \rho CH_3,\; 811\;(m)/\; -\; \rho CH_3,\; 790\;(s)/\; -\; \rho CH_3,\; 775\;(m,\,sh)/\; 776\;(w,\,dp)\; \rho CH_3,\; 741\;(w)/\; -\; ,\; 718\;(w)/\; 715\;(m,\,dp)\; \delta_s CF_3,\; 700\;(w)/\; 698\;(m,\,dp)\;\; ,\; 667\;(w)/\; 674\;(vs,\,p)\; \nu_s SiC_2,\; 644\;(w)/\; 644\;(w,\,dp)\;\; ,\; -\; /\; 621\;(w,\,dp)\;\; ,\; -\; /\; 520\;(w,\,dp)\; \delta_{as} CF_3,\; 479\;(w)/\; 475\;(w,\,dp)\;\; ,\; 434\;(w)/\; 430\;(m,\,p)\; \nu SiSi,\; -\; /\; 369\;(vs,\,p)\; \nu SiC^F,\; -\; /\; 297\;(m,\,dp)\;\; ,\; -\; /\; 260\;(m,\,p)\;\; ,\; -\; /\; 173\;(vs,\,p)\;\; ,\; -\; /\; 136\;(m,\,dp)\;\; ,\; -\; /\; 90\;(m,\,dp). \end{array}$

MS:

 $m/z = 226 (1.7), 153 (3.7) C_2H_7F_2Si_3^+, 149 (8.5) C_3H_{10}FSi_3^+, 135 (2.4) FMe_4Si_2^+, 108 (2.3) CF_2MeSi^+, 93 (3.7) CF_2MeSi^+, 81 (8.4) F_2SiMe^+, 77 (100) FSiMe_2^+, 73 (19.4) SiMe_3^+, 63 (15.7) HMeSiF^+, 59 (19.0) HSiMe_2^+, 49 (9.7) H_2SiF^+, 47 (3.3) SiF^+, 45 (6.2) H_2SiMe^+, 43 (9.1) SiMe^+.$

EA:

ber.: H 5.81, C 30.75, F 36.48; gef.: H 5.80, C 30.58, F 36.34.

1,1',1''-Tris(trifluormethyl)-heptamethyltetrasilan, $MeSi[SiMe_2(CF_3)]_3$ (**40**) Ausbeute 35 %.

IR/ Raman [cm⁻¹]:

2967 (m)/ 2971 (w, dp) v_{as} CH₃, 2907 (m)/ 2905 (m, p) v_{s} CH₃, 1409 (m)/ - δ_{as} CH₃, 1262 (s)/ 1263 (w, dp) δ_{s} CH₃, 1196 (s)/ 1198 (w, dp) v_{s} CF₃, 1164 (w)/ - , 1057 (s)/ - v_{as} CF₃, 847 (s)/ - ρ CH₃, 821 (s)/ 820 (w) ρ CH₃, 791 (s)/ - , 719 (m)/ 719 (m, dp) δ_{s} CF₃, - / 686 (s, p) ν SiC, 669 (s)/ 667 (m, p) ν SiC, 522 (w)/ 521 (w, dp) δ_{as} CF₃, 476 (s)/ - , 431 (w)/ 426 (w, dp) , - / 349 (s, p) , - / 295 (w, dp) , - / 243 (m, p) , - / 208 (m, dp) , - / 169 (s, p) , - / 98 (m, dp).

MS:

m/ z = 424 (3.7) m⁺, 213 (25.2) HMe₂Si(SiMe₂F)₂⁺, 178 (3.7) MeSi(SiMe₂)SiMe₂F⁺, 169 (9.1), 153 (11.0), 131 (17.6) $C_5H_{15}Si_3^+$, 125 (20.5), 108 (9.9) $CF_2Me_2Si^+$, 105 (9.3), 101 (21.7) $C_3H_9Si_2^+$, 93 (33.0) CF_2MeSi^+ , 89 (44.0), 87 (43.0), 85 (57.9), 81 (87.6) F_2SiMe^+ , 77 (100) $FSiMe_2^+$, 73 (91.4) $SiMe_3^+$, 69 (31.7) CF_3^+ , 59 (99.2) $HSiMe_2^+$, 49 (64.8) H_2SiF^+ , 47 (65.3) SiF^+ , 45 (64.3) H_2SiMe^+ , 43 (85.3) $SiMe^+$.

EA:

ber.: H 4.99, C 28.29, F 40.27; gef.: H 4.70, C 27.42, F 40.10.

Tris(trimethylsilyl)-(trifluormethyl)silan, CF₃Si(SiMe₃)₃ (41) Ausbeute 14 %.

IR/ Raman [cm⁻¹]:

 $2956~(m)/~2956~(w)~\nu_{as}CH_3,~2898~(m)/~2898~(m)~\nu_sCH_3,~1445~(m)/~1440~(vw)~~,~1402~(m)/~1410~(w)~\delta_{as}CH_3,~1262~(s)/~-~\delta_sCH_3,~1249~(s)/~1246~(w)~\nu_sCF_3,~1173~(s)/~-~,~1050~(s)/~1051~(w)~\nu_{as}CF_3,~842~(vs)/~840~(w)~\rho CH_3,~-/~830~(w)~\rho CH_3,~749~(m)/~750~(w)~\nu_{as}SiC_3,~-/~718~(w)~\delta_sCF_3,~694~(s)/~692~(m)~vSiC,~626~(s)/~628~(s)~,~527~(w)/~525~(w)~\delta_{as}CF_3,~-/~467~(w)~,~455~(m)/~452~(w)~\nu_{as}SiSi_3,~-/~314~(m)~,~-/~210~(m)~,~-/~119~(s)~,~-/~90~(m)~,~-/~68~(m).$

MS:

 $\begin{array}{l} m/\ z = 316\ (9.7)\ m^{+},\ 232\ (2.1)\ Si_{4}Me_{8}^{+},\ 209\ (70.1)\ Si_{4}C_{5}H_{18}F^{+},\ 193\ (4.1)\ FSi(SiMe_{3})_{2}^{+}, \\ 174\ (4.6)\ Si(SiMe_{3})_{2}^{+},\ 147\ (10.0),\ 131\ (12.3)\ Si_{2}Me_{5}^{+},\ 117\ (15.9)\ Si_{2}C_{4}H_{13}^{+},\ 103\ (6.9)\\ Si_{2}C_{3}H_{11}^{+},\ 85\ (30.9),\ 83\ (31.7),\ 77\ (46.0)\ FSiMe_{2}^{+},\ 73\ (94.1)\ SiMe_{3}^{+},\ 59\ (100)\ HSiMe_{2}^{+}, \\ 45\ (50.1) \end{array}$

```
1,1',4,4'-Tetrakis(trifluormethyl)-decamethylhexasilan, [(CF_3)Me_2Si]_2(SiMe)_2[SiMe_2(CF_3)]_2 ( 42 ) Ausbeute 18 %.
```

IR [cm⁻¹]:

2971 (m) $\nu_{as}CH_3$, 2905 (w) ν_sCH_3 , 1408 (m) $\delta_{as}CH_3$, 1386 (w) , 1260 (s) δ_sCH_3 , 1196 (s) ν_sCF_3 , 1058 (vs) $\nu_{as}CF_3$, 846 (s) ρCH_3 , 819 (s) ρCH_3 , 786 (s) , 718 (w) $\delta_s CF_3$, 699 (w) , 668 (m) , 521 (w) $\delta_{as}CF_3$, 468 (w) , 437 (w).

MS:

 $\begin{array}{l} m/\ z=298\ (1.1)\ HMeSi(SiMe_2CF_3)_2^+,\ 284\ (1.2)\ H_2Si(SiMe_2CF_3)_2^+,\ 269\ (1.5)\ C_5H_{11}F_6Si_3^+, \\ 213\ (7.0)\ C_6H_{19}F_2Si_3^+,\ 151\ (4.5)\ C_3H_{12}FSi_3^+,\ 93\ (6.9)\ CF_2SiMe^+,\ 81\ (16.6)\ MeSiF_2^+,\ 77\ (100)\ FSiMe_2^+,\ 73\ (82.1)\ SiMe_3^+,\ 63\ (19.4)\ FSiHMe^+,\ 59\ (58.9)\ HSiMe_2^+,\ 47\ (9.2)\ SiF^+,\ 45\ (9.6)\ H_2SiMe^+,\ 43\ (20.2)\ SiMe^+. \end{array}$

7.3.6 SiSi-Aufbaureaktionen ausgehend von Trifluormethyl-monosilanen

Reduktive Enthalogenierung: 7 mmol CF₃Me₂SiCl in 5 ml Et₂O werden langsam zu einer Suspension von 7.5 mmol Li in 10 ml Et₂O und 7 mmol HMPA bei 0°C getropft. Anschließend wird die Mischung auf RT erwärmt und für 24h gerührt. NMR-spektroskopische Untersuchung der flüchtigen Bestandteile ergab 40% CF₃Me₂SiSiMe₂CF₃, 53 % CF₃Me₂SiOSiMe₂CF₃ sowie nicht umgesetztes CF₃Me₂SiCl.

5.5 mmol CF₃Me₂SiBr in 3 ml THF werden langsam zu einer Suspension von 5.5 mmol Na in 5 ml THF getropft, anschließend wird die Mischung für 1h auf 60°C erwärmt. Fraktionierte Kondensation der Lösung (-40°C, -196°C) ergibt 2.3 mmol $CF_3Me_2SiO(CH_2)_3CH_2Br$ (**43**). NMR: $\delta^{19}F$ -68.1 ppm, $^2J(SiF)$ 41.4 Hz, $^{13}C(CF_3)$ 129.5 ppm, $^1J(CF)$ 321.8 Hz, $\delta^{29}Si + 2.1$ ppm.

Übergangsmetall-katalysierte Dehydrogenierung: Die Silane CF₃RSiH₂ und CF₃R₂SiH (R = Me, Ph) werden auf ca. 10 mol% des Katalysators in Et₂O oder Toluol kondensiert und langsam auf RT erwärmt. Anschließend werden alle flüchtigen Bestandteile abgezogen und der Rückstand sowie die flüchtigen Anteile NMR-spektroskopisch untersucht. Die Reaktionen oberhalb RT oder mit CF₃SiH₃ werden in 4mm Glasampullen durchgeführt und der Reaktionsverlauf NMR-spektroskopisch verfolgt.

Photolyse von HgSi-Verbindungen: In einer 4mm Quarzampulle werden 1 mmol CF₃Me₂SiH bzw. CF₃MeSiH₂ auf 1.5 (2.2) mmol HgR₂ (R = Me, Et, Ph) kondensiert und die Mischung für mehrere Minuten geschüttelt. Anschließend wird der Inhalt mit einer Hg-Hochdrucklampe (254 nm) bestrahlt, wobei der Reaktionsverlauf NMR-spektroskopisch beobachtet wird.

7.3.7 Trifluormethylierte Disiloxane

1,2-Bis(trifluormethyl)-tetramethyldisiloxan, $CF_3Me_2SiOSiMe_2CF_3$ (46)

35 mmol [ClMe₂Si]₂O werden in 20 ml Sulfolan mit 75 mmol P(NEt₂)₃ bei 0°C nach A) umgesetzt. Nach 2h bei RT liefert fraktionierte Kondensation (-45°C, -196°C) 26.3 mmol CF₃Me₂SiOSiMe₂CF₃ (75%).

Sdp.: 124°C

IR/ Raman: siehe Kap. 5.4.2

MS:

m/z = 205 (1.0) $FMeSiOSiMe_2CF_3^+$, 201 (1.3) $Me_2SiOSiMe_2CF_3^+$, 155 (41.0) $FMeSiOSiMe_2F^+$, 151 (100) $Me_2SiOSiMe_2F^+$, 135 (5.0), 81 (3.8) CF_2MeSi^+ 77 (16.5) Me_2SiF^+ , 73 (13.1) $SiMe_3^+$, 69 (8.5) CF_3^+ , 51 (8.8) HCF_2^+ , 49 (3.8) H_2SiF^+ , 47 (2.4) SiF^+ , 45 (2.7) H_2SiMe^+ .

EA:

ber.: H 4.47, C 26.66, F 42.17; gef.: H 4.67, C 26.79, F 42.25.

1,2-Diphenyl-1,2-bis(trifluormethyl)-dimethyldisiloxan, $CF_3(Ph)$ MeSiOSiMe(Ph) CF_3 (47)

9 mmol [Cl(Ph)MeSi]₂O werden mit 24 mmol P(NEt₂)₃ nach B) umgesetzt, anschließend werden alle flüchtigen Bestandteile im Vakuum abgezogen und der Rückstand mit Hexan extrahiert. Das Hexan wird im Vakuum abdestilliert und [CF₃(Ph)MeSi]₂O durch Vakuum-Kurzwegdestillation abgezogen. Man erhält 2.7 mmol farblose Flüssigkeit (30%).

IR/ Raman [cm⁻¹]:

 $3077 \ (m)/ - \nu CH, \ 3055 \ (m)/ \ 3062 \ (m, \ dp) \ \nu CH, \ 3031 \ (m)/ - \nu CH, \ 3008 \ (w)/ - \nu CH, \ 2972 \ (m)/ \ 2978 \ (w, \ dp) \ \nu_{as} CH_3, \ 2915 \ (w)/ \ 2912 \ (m, \ p) \ \nu_s CH_3, \ 1593 \ (w)/ \ 1594 \ (m, \ dp) \ \nu CC, \ -/ \ 1572 \ \nu CC, \ 1431 \ (s)/ - \nu CC, \ 1410 \ (m)/ \ 1408 \ (w, \ dp) \ \delta_{as} CH_3, \ 1384 \ (m)/ - \nu CC, \ 1268 \ (s)/ - \delta_s CH_3, \ 1226 \ (s)/ - \nu_s CF_3, \ 1196 \ (m)/ \ 1193 \ (w, \ dp) \ CH, \ -/ \ 1161 \ (w, \ dp) \ CH, \ 1125 \ (s)/ \ 1122 \ (m, \ p), \ 1071 \ (vs, \ b)/ \ 1072 \ (w, \ dp) \ \nu_{as} SiOSi, \ \nu_{as} CF_3, \ 1031 \ (m)/ \ 1029 \ (s, \ p) \ , \ 998 \ (m)/ \ 1001 \ (vs, \ p) \ Ring, \ 794 \ (s)/ - \ , \ -/ \ 769 \ (w, \ dp) \ , \ 737 \ (s)/ - \ , \ 720 \ (m)/ \ 719 \ (m, \ p) \ , \ 697 \ (s)/ \ 699 \ (m, \ p) \ , \ -/ \ 618 \ (m, \ dp) \ , \ 595 \ (w)/ \ 598 \ (m, \ p) \ \nu_s SiOSi, \ 524 \ (m)/ \ 520 \ (w, \ dp) \ \delta_{as} CF_3, \ 482 \ (s)/ - \ , \ 445 \ (s)/ - \ , \ -/ \ 378 \ (m, \ p) \ \nu SiC^F, \ -/ \ 273 \ (w) \ , \ -/ \ 244 \ (m, \ p) \ , \ -/ \ 211 \ (m, \ dp) \ , \ -/ \ 142 \ (m, \ dp).$

MS:

m/ z = 394 (2.5) m⁺, 294 (1.2) [FMePhSi]₂O⁺, 275 (49.5) MePhSiOSiPhMeF⁺, 259 (6.9), 247 (2.5) $C_9H_{10}F_3Si_2O^+$, 227 (5.7) $C_{12}H_{11}Si_2O^+$, 221 (26.5), 205 (4.5) $C_7MePhSiO^+$, 197 (74.0) $C_6H_4MeSiOSiMeF^+$, 175 (15.9), 165 (89.0) $C_7H_9Si_2O^+$, 159 (100), 149 (10.9), 139 (9.8) PhMeSiF⁺, 129 (1.4) $C_6H_4SiMe^+$, 122 (7.6) PhSiOH⁺, 104 (46.4) $C_6H_4Si^+$, 91 (15.7), 78 (5.5) $MeSiOF^+$, 72 (15.5), 43 (8.6) $SiMe^+$.

1-Trifluormethyl-pentachlordisiloxan, CF₃Cl₂SiOSiCl₃ (48)

4.5 mmol Si₂Cl₆O werden in 10 ml CH₂Cl₂ mit 4.5 mmol P(NEt₂)₃ nach B) umgesetzt. Nach fraktionierter Kondensation wird das Produkt in einer auf -35°C gehaltenen Kühlfalle aufgefangen, in der sich (je nach Stöchiometrie der Reaktion) auch unterschiedlich große

Mengen der (Trifluormethyl)aminophosphane befinden (A] (CF₃)PX₂: δ^{19} F -68.1 ppm, δ^{31} P 99.7 ppm, 2 J(PF) 68.7 Hz; B] (CF₃)PX₂: δ^{19} F -66.2 ppm, δ^{31} P 98.4 ppm, 2 J(PF) 83.2 Hz; C] (CF₃)₂PX: δ^{19} F -60.0 ppm, δ^{31} P 44.6 ppm, 2 J(PF) 86.0 Hz, 1 J(CF) 323.9 Hz, 4 J(FF) 8.3 Hz; X = NEt₂, Halogen).

1,2-Bis(trifluormethyl)-tetraphenyldisiloxan, $CF_3Ph_2SiOSiPh_2CF_3$ (49)

3 mmol CF_3Ph_2SiCl in 2 ml $CHCl_3$ werden langsam zu einer Mischung von 8 ml $CHCl_3$ und 2 ml H_2O (+ 0.1 ml 2m HCl) gegeben und 24h bei RT gerührt. Anschließend wird die wäßrige Phase abgetrennt und die organische Phase über $MgSO_4$ getrocknet. $CHCl_3$ wird schließlich im Vakuum entfernt, wobei eine ölige Substanz verbleibt, die zu 87 % aus $[CF_3Ph_2Si]_2O$ neben nicht umgesetzten Edukt besteht.

1,2-Bis(trifluormethyl)-1,2-dimethyldisiloxan, CF₃Me(H)SiOSi(H)MeCF₃ (50)

7.5 mmol CF₃MeSi(H)Br werden auf eine Suspension von 10 mmol ZnO in 15 ml Dodecan kondensiert und für 5d bei RT gerührt. Anschließend wird fraktioniert kondensiert (-10°C, -196°C), Der Inhalt der -196°C-Kühlfalle ergab nach NMR-spektroskopischer Auswertung einen Umsatz von 23 %. Verlängerung der Reaktionszeit oder Erhöhung der Temperatur führt zum Abbau der SiH-Funktionen.

7.3.8 Trifluormethylierte Oligo-, Polysiloxane

Hydrolyse von CF_3RSiCl_2 (R = Me, Ph): Ca. 20 mmol des Silans in 5 ml CHCl₃ (Et₂O) werden langsam zu einem 2-Phasengemisch aus 100 ml CHCl₃ (Et₂O) und 15 ml H₂O (+ 4 ml 2m HCl) gegeben. Die Mischung rührt für 24h bis 72h bei RT, danach wird die organische Phase abgetrennt, über MgSO₄ getrocknet und alle flüchtigen Bestandteile im Vakuum abgezogen bzw. fraktioniert kondensiert.

 $[(CF_3)MeSiO]_3[MeSiO_{1.5}]_4$ (**51**) wird aus der Hydrolyse in Et₂O erhalten. Einkristalle wurden aus der Sublimation des Rückstandes bei 80°C im Hochvakuum gewonnen.

 $[(CF_3)MeSiO]_4$ (**52**) wird durch Hydrolyse in CHCl₃ dargestellt und kann in einer -40°C-Kühlfalle aufgefangen werden. In dieser Fraktion befinden sich noch weitere Siloxane, die sowohl Massenspektroskpisch wie auch über NMR-Spektroskopie beobachtet werden können. Einkristalle des all-trans-Isomers werden durch Sublimation bei RT im Hochvakuum gewonnen. $[(CF_3)RSiO]_{\infty}$ (R = Me, Ph) besteht je nach Reaktionsbedingungen aus großen cyclischen oder linearen Verbindungen, die entweder als farblose Feststoffe oder zähe Öle.

Reaktion von CF_3RSiCl_2 (R = Me, Ph) mit Metalloxiden: 1.2 Equivalente des Metalloxids (ZnO, Ag₂O) werden in ca. 10 ml Et₂O vorgelegt und tropfenweise mit einer Lösung des Silans in Et₂O versetzt. Die Mischung rührt für 24h bei RT, anschließend werden allen flüchtigen Bestandteile im Vakuum abgezogen und NMR-spektroskopisch untersucht.

Reaktion von CF₃MeSiCl₂ mit DMSO: 5 mmol DMSO werden in 3 ml Et₂O vorgelegt und tropfenweise mit einer Lösung von 5 mmol CF₃MeSiCl₂ in 3 ml Et₂O bei RT versetzt. Nach 15 min werden alle flüchtigen Bestandteile im Vakuum abgezogen und der Rückstand sowie die flüchtigen Komponenten NMR-spektroskopisch untersucht.

7.3.9 Komplexverbindungen

Die Bipyrdiyl-Komplexe $(CF_3)_2SiX_2 \leftarrow Bipy$ (X = Cl (53), Br (54))

2,2'-Bipyrdiyl-bis(trifluormethyl)-dichlorsilan, $(CF_3)_2SiCl_2 \leftarrow Bipy$

- 1) Aus der Reaktion von Si₂Cl₆ mit P(NEt₂)₃/ CF₃Br: 18 mmol Si₂Cl₆ werden in 6 ml CH₂Cl₂ gelöst und mit 40 mmol P(NEt₂)₃ nach B) umgesetzt. Nach 2h bei RT werden alle flüchtigen Bestandteile abgezogen und der Rückstand wieder in 10 ml CHCl₃ gelöst. Die Lösung wird auf 0°C abgekühlt und mit 20 mmol 2,2'-Bipyridyl in 15 ml CHCl₃ versetzt. Nach der Zugabe wird noch für ca. 1h bei RT gerührt, danach der Niederschlag abfiltriert, mit CH₂Cl₂ gewaschen und im Vakuum getrocknet. Man erhält 6.5 mmol farbloses Pulver (36%).
- 2) Aus (CF₃)₂SiCl₂ und Bipyridyl: 4.5 mmol (CF₃)₂SiCl₂ werden in 8 ml THF vorgelegt, die Lösung auf -30°C abgekühlt und langsam mit 4.5 mmol 2,2'-Bipyridyl in 5 ml THF versetzt. Nach Aufwärmen auf RT wird noch für 2h gerührt, anschließend alle flüchtigen Bestandteile im Vakuum abgezogen. Der Rückstand wird mit THF gewaschen und im Vakuum von den Lösungsmittelresten befreit. Man erhält 4.3 mmol (95 %) eines farblosen Feststoffes.

2,2'-Bipyrdiyl-bis(trifluormethyl)-dibromsilan, $(CF_3)_2SiBr_2 \leftarrow Bipy$

3 mmol (CF₃)₂SiBr₂ werden in 4 ml THF vorgelegt, die Lösung auf -30°C abgekühlt und tropfenweise mit einer Lösung von 3 mmol 2,2'-Bipyridyl in 5 ml THF versetzt. Nach langsamen Erwärmen auf RT wird noch für 2h gerührt und alle flüchtigen Bestandteile im Vakuum abgezogen. Der Rückstand wird mit THF gewaschen und im Vakuum von Lösungsmittelresten befreit. Man erhält 2.8 mmol des Komplexes (93 %) als schwach braun gefärbtes Pulver.

Die Komplexe $CF_3SiCl_3 \leftarrow D$ und $SiCl_4 \leftarrow D$ (D = Bipy (55), Phen (56))

Ca. 5 - 10 mmol des Silans werden in 10 ml THF vorgelegt und tropfenweise mit einer equimolaren Lösung des Komplexbildners in THF versetzt. Nach 2h Rühren bei RT werden die Niederschläge abfiltriert, mit THF gewaschen und im Vakuum von Lösungsmittelresten befreit.

In allen Fällen wird nahezu quantitativer Umsatz erzielt. Zu NMR-spektroskopischen Untersuchungen werden die farblosen Feststoffe mit DMSO oder NMP wieder in Lösung gebracht.

$SiCl_4 \leftarrow Bipy$, NM	R (NMP,	C_6D_6	int., 8	in ([ppm]):
-------------------------------	---------	----------	---------	------	---------

	C_1	C_3	C_4	C_5	C_6
Sym					
δ^{13} C	141.4	147.7	128.9	144.5	124.1
$\delta^{1}H$		10.05	8.04	8.66	9.17
Asym					
δ^{13} C	140.7	145.3	129.6	143.8	124.5
	141.2	145.5	129.8	145.3	124.8
$\delta^{1}H$		9.76	7.54	8.57	9.32
		9.86	8.14	8.61	9.34

Bis(2,2'-bipyridyl)-methyl-(trifluormethyl)silan-diiodid, $[CF_3MeSi(Bipy)_2]I_2$ (58)

2.8 mmol CF₃MeSiI₂ werden in 4 ml Et₂O vorgelegt und tropfenweise mit einer Lösung von 6 mmol 2,2'-Bipyridyl in 10 ml Et₂O versetzt. Die Mischung rührt für ca. 1h bei RT, anschließend wird der Niederschlag abgetrennt und mit wenig CHCl₃ gewaschen. Zu NMR-spektroskopischen Untersuchungen wird der Komplex in NMP gelöst.

1-Trifluormethylsilatran, CF_3 -Si(OCH_2CH_2)₃N (**59**)

10 mmol $CF_3Si(OMe)_3$ werden in 8 ml THF vorgelegt und tropfenweise mit 10 mmol $N(CH_2CH_2OH)_3$ in 3 ml THF versetzt. Nach weiterem Rühren für 2h wird der Niederschlag abfiltriert, mit THF gewaschen und im Vakuum getrocknet. Kristallisation aus Methanol liefert 4.4 mmol farblose Kristalle (44%).

IR/ Raman: siehe Kap. 6.3

MS:

 $m/z = 243 (9.1) m^+, 193 (67.5) FSi(OCH_2CH_2)_3N^+, 174 (100) Si(OCH_2CH_2)_3N^+, 150 (85.0) C_4H_9FNO_2Si^+.$

DSC/ TGA:

201°C (-33 %, Zersetzung, exo.), 285°C (-18 %, exo.)

Trimethoxy-trifluormethylgerman, $CF_3Ge(OMe)_3$ (**60**)

 CF_3GeCl_3 wird bei -30°C tropfenweise mit drei Equivalenten Methanol versetzt, anschließend wird die Mischung langsam auf RT erwärmt. Nach dreistündigem Rühren wird $CF_3Ge(OMe)_3$ durch fraktionierte Kondensation gereinigt. ($\delta^1H(OMe)$ 4.78 ppm, $\delta^{13}C(OMe)$ 52.5 ppm, $\delta^{13}C(CF_3)$ 125.2 ppm, $\delta^{19}F$ -61.4 ppm, $\delta^1G(CF)$ 335.7 Hz)

1-Trifluormethylgermatran, CF_3 -Ge(OCH_2CH_2)₃N (**61**)

5 mmol CF₃Ge(OMe)₃ werden in 5 ml THF vorgelegt und tropfenweise mit einer Lösung von 5 mmol N(CH₂CH₂OH)₃ in 3 ml THF versetzt. Die Mischung rührt für 2h bei RT, danach wird der Niederschlag abfiltriert und aus Methanol umkristallisiert. Man erhält 2.75 mmol (55 %) CF₃Ge(OCH₂CH₂)₃N als farblose Kristalle.

IR/ Raman:

2993 (m)/ 2996 (m) ν_{as} CH₂, 2947 (m)/ 2951 (s) ν_{as} CH₂, 2885, 2876 (s)/ 2890 (s) ν_{s} CH₂, 1489 (m)/ 1486 (s) δ_{s} CH₂, 1451 (s)/ 1456 (m) δ_{s} CH₂, 1280, 1270 (m)/ 1277 (s) CH₂, 1246 (m)/ 1249 (m) CH₂, 1196 (s)/ 1197 (m), 1163 (w)/ 1167 (w) Gerüst(*e*), 1105 (s)/ 1098 (w) Gerüst(*a*₁), 1067 (vs)/ 1067 (m) ν_{s} CF₃, 1039, 1023 (s)/ 1042 (w) ν_{as} CF₃, 933 (m)/ 933 (m) Gerüst(*a*₁), 905, 896 (m)/ 900 (w) Gerüst(*a*₁), 871, 864 (w)/ 870 (w) Gerüst(*e*), - / 716 (m) δ_{s} CF₃, 646, 637 (s)/ - , 614 (s)/ 613 (s), 600(s)/ 600 (sh) Gerüst(*a*₁), 545 (m)/ 546 (s), - / 522 (w) δ_{as} CF₃, 419 (w)/ 421 (w) Gerüst(*e*), - / 327 (m) Gerüst(*a*₁), - / 270 (s) vGeCF₃), - / 245 (vw) ρCF₃, - / 220 (s), - / 178 (s).

MS:

 $m/z = 289 (50.0) m^+, 259 (40.0) C_6H_{10}NO_2F_3Ge^+, 220 (100) C_6H_{12}NO_3Ge^+, 190 (94.0) C_5H_{10}NO_2Ge^+, 160 (84.0) C_4H_8NOGe^+.$

DSC/ TGA:

245°C (-19 %, exo.), 335°C (Zersetzung, exo.)

Kapitel 8 Zusammenfassung

Das Ziel der Arbeit, die Darstellung CF₃-substituierter SiSi- bzw. SiOSi-Bindungssysteme, konnte einerseits durch Bindungsknüpfung ausgehend von trifluormethylierten Monosilanen, andererseits durch Trifluormethylierung bestehender SiSi- und SiOSi-Gerüste erreicht werden. Bei vergleichenden Untersuchungen zur Synthese trifluormethylierter Monosilane erwies sich die Reagenzkombination P(NEt₂)₃/ CF₃Br als funktionellste Methode. Limitierende Faktoren bei der Übertragung der CF₃-Gruppe, wie z.B. unerwünschte mehrfache Trifluormethylierung oder hohe Lewis-Acidität der Silane, konnten durch Einführung von Schutzgruppen (-Ar, -NR₂, -OAlkyl) umgangen werden, so daß letztlich nur die sterische Belastung der Edukte zu einer Verringerung oder gar Unterdrückung der Übertragung führt. Mit der Reaktion von HSiCl₃ mit NR₃ in Gegenwart von CF₃Br wurde ein neuer Weg zur Darstellung von CF₃SiCl₃ gefunden, der sich vor allem durch einfache Reaktionsführung auszeichnet.

Als Vorstufen für den Aufbau zweidimensionaler oligomerer Systeme wurden Trifluormethylsilane des Typs CF_3R_2SiX , CF_3RSiX_2 (X = Halogen, H, OMe, NR_2 ; R = Me, Ph) und $(CF_3)_2SiX_2$ (X = Br, NMe_2) dargestellt und spektroskopisch charakterisiert. Mit der Synthese des Disilans $CF_3Me_2SiSiMe_2CF_3$ durch reduktive Enthalogenierung von CF_3Me_2SiCl oder durch Trifluormethylierung von $[ClMe_2Si]_2$ konnte gezeigt werden, daß die Darstellung CF_3 -substituierter Disilane zwar prinzipiell auf beiden Wegen möglich ist, jedoch die Trifluormethylierung des bestehenden SiSi-Gerüstes präparative Vorteile besitzt. Auf diese Weise wurden neben $[CF_3Me_2Si]_2$ auch die Disilane $CF_3Me_2SiSiMe_3$ und $[CF_3Me(NR_2)Si]_2$ (R = Me, Et) sowie erste CF_3 -substituierte Oligosilane dargestellt und NMR- sowie z.T. schwingungsspektroskopisch charakterisiert. Während einfache Systeme wie Trifluormethyldisilane oder $[CF_3Me_2Si]_2SiMe_2$ noch in Ausbeuten von ET_3 -Gruppen (ET_3 - ET_3 - ET_4 - ET_5 -

Der Aufbau von CF_3 -substituierten SiSi-Systemen ließ sich nur für das Disilan $CF_3Me_2SiSiMe_2CF_3$ realisieren. Neben der reduktiven Enthalogenierung von CF_3Me_2SiCl war die photochemische Reaktion des CF_3Me_2SiH mit HgR_2 (R=Me, Et) erfolgreich, bei der $Hg(SiMe_2CF_3)_2$ und CF_3Me_2SiHgR als Zwischenstufen NMR-spektroskopisch charakterisiert werden konnten. Die dargestellten Trifluormethyl-Oligosilane sind thermisch bis ca. 150°C belastbar. Das SiSi-Gerüst ist gegenüber basischen Reagenzien stabil; Abbaureaktionen werden in erster Linie durch nucleophilen Angriff an der CF_3 -Gruppierung ausgelöst.

Die Umsetzung der lewis-aciden Disilane [MeCl₂Si]₂ bzw. Si₂Cl₆ mit $P(NEt_2)_3$ / CF_3 Br führt unter Halogenübertragung und SiSi-Bindungsspaltung zur intermediären Ausbildung von donorstabilisierten Silylenen, die durch Insertion in SiCl-Bindungen (MeSiCl) zu Oligosilanen mit partieller CF_3 -Substitution bzw. durch Addition von CF_3 Br (CF_3 SiCl) zu komplexiertem Bis(trifluormethyl)silan, (CF_3)₂SiCl₂ \leftarrow P(NEt_2)₃, abreagieren. Über die Aminierung zu dem noch flüchtigen (CF_3)₂Si(NMe_2)₂ mit nachfolgender Abspaltung der Aminogruppen durch HBr oder BBr₃ konnte Bis(trifluormethyl)-dibromsilan aus dem Produktgemisch abgetrennt werden, so daß eine einfache Methode zur Darstellung von difunktionellen Bis(trifluormethyl)silanen zur Verfügung steht.

In Tieftemperatur-NMR-Experimenten konnte im Fall der Reaktion des $[Cl_2MeSi]_2$ durch Nachweis des $CF_3Me(Cl)Si\text{-}SiCl_2Me\leftarrow P(NEt_2)_3$ gezeigt werden, daß zunächst die Trifluormethylierung des Disilans vor der SiSi-Bindungsspaltung erfolgt. Trifluormethylierte Disilane des Typs $CF_3Me(X)SiSi(X)MeCF_3$ bzw. $CF_3Me(X)SiSiX_2Me$ (X=Cl,Br), die über die entsprechenden Amin-geschützten Halogendisilane dargestellt wurden, zeigen bei Anwesenheit von katalytischen Mengen Halogenidionen den für lewis-acide SiSi-Systeme typischen intramolekularen Halogenaustausch. NMR-spektroskopisch konnte nachgewiesen werden, daß die Austauschgeschwindigkeit durch CF_3 -Substitution erhöht wird. Die bei höheren Temperaturen erfolgende Spaltung der SiSi-Bindung konnte zum Aufbau von CF_3 -substituierten Oligosilanen genutzt werden.

Die Synthese CF₃-substituierter Siloxane wurde erfolgreich sowohl ausgehend von Trifluormethyl-Monosilanen wie auch durch Trifluormethylierung von bestehenden SiOSi-Gerüsten durchgeführt. Einfache Disiloxane des Typs CF₃R₂SiOSiR₂CF₃ (R = Me, Ph) konnten durch Hydrolyse von CF₃R₂SiX oder durch Umsetzung mit Metalloxiden gewonnen werden. Im Fall der sterisch anspruchslosen Disilane CF₃Me₂SiOSiMe₂CF₃ und CF₃Me(Ph)SiOSi(Ph)MeCF₃ ist auch die CF₃-Übertragung auf die Chlor-funktionalisierten Edukte möglich. Für den Aufbau oligomerer Systeme erwies sich vor allem die Hydrolyse als präparativ nützlich. Unter sorgfältiger Kontrolle der Reaktionsbedingungen werden Oligo- bzw. Polysiloxane der Zusammensetzung [CF₃RSiO]_n (R = Me, Ph) erhalten, wobei mit [CF₃MeSiO]₄ das erste CF₃substituierte Siloxan durch eine Kristallstrukturanalyse charakterisiert werden konnte. Abbaureaktionen der CF₃-Gruppierung treten vor allem bei Anwesenheit von Nucleophilen auf, die Isolierung und strukturelle Charakterisierung des Silsesquioxans [CF₃MeSiO]₃[MeSiO_{1.5}]₄ belegt werden konnte. Unter hydrolytischen Bedingungen wurden neben linearen Polysiloxanen auch cyclische Verbindungen gewonnen, während die Umsetzung von CF₃MeSiCl₂ mit Ag₂O überwiegend zu linearen [CF₃MeSiO]-Einheiten, die Umsetzung von CF₃PhSiCl₂ mit Ag₂O zum Abbau der CF₃-Gruppen führte. Ebenso führte die zunehmende Destabilisierung der SiC-Bindung in den lewis-aciden Halogensilanen (CF₃)₂SiX₂ bzw. CF₃SiX₃ bei der Hydrolyse ausschließlich zum Abbau der CF₃-Gruppe.

Der Einfluß der CF_3 -Substitution auf die Acidität des Siliciums wurde an den Komplexverbindungen $(CF_3)_2SiX_2\leftarrow D$, $CF_3SiCl_3\leftarrow D$ (X=Cl, Br; D=Bipy, Phen, DMSO) sowie an $[CF_3MeSi(bipy)_2]I_2$ und 1-Trifluormethylsilatran untersucht. Durch NMR-spektroskopische Analyse der Komplexe des $(CF_3)_2SiX_2$ konnten gleichzeitig wertvolle Hinweise auf den Mechanismus der basenkatalysierten SiSi-Spaltung von Si_2Cl_6 mit $P(NEt_2)_3$ erhalten werden. Die Komplexverbindungen zeichnen sich durch eine hohe thermische und chemische Stabilität aus, eine Derivatisierung der SiX-Funktionen des $(CF_3)_2SiX_2\leftarrow D$ durch Alkoholyse oder Aminierung war unter Erhalt der CF_3 -Gruppen nicht realisierbar.

Mit der Synthese und Strukturanalyse von 1-Trifluormethylsilatran, $CF_3Si(OCH_2CH_2)_3N$ bzw. 1-Trifluormethylgermatran, $CF_3Ge(OCH_2CH_2)_3N$, konnte der elektronenziehende Charakter der CF_3 -Gruppe über den kurzen transannularen SiN-Abstand belegt werden.

Die Charakterisierung der Verbindungen erfolgte überwiegend mittels NMR-spektroskopischer Methoden. Insbesondere die Strukturen CF₃-substituierter SiSi-Systeme ließen sich anhand von weitreichenden Kopplungen (z.B. ³J(SiF)-, ⁴J(CF)-Kopplungen) identifizieren.

Des weiteren konnten charakteristische Trends der chemischen Verschiebungen und Kopplungskonstanten erfaßt werden. Aus dem Datenmaterial der CF₃-substituierten Siloxane lassen sich Erwartungswerte für weitere Trifluormethylsiloxane ableiten, die vor allem bei der Identifizierung polymerer Systeme genutzt werden können. Für CF₃-substituierte Komplexverbindungen konnten erstmals NMR-spektroskopische Parameter erhalten werden, deren charakteristische Tendenzen in Einklang mit den Ergebnissen für homologe Zinn- bzw. Germaniumkomplexe stehen.

Verzeichnis der Abkürzungen

Abb. Abbildung

Ar Aryl, aromatischer Rest

Bipy 2,2'-Bipyridyl
Bu Buthyl
D Donor
d Tage

Diglyme Diethylenglycoldimethylether

DMF Dimethylformamid DMSO Dimethylsulfoxid

Et Ethyl
exo Exotherm
ext. Extern
Gl. Gleichung
h Stunden

HMPA Hexamethylphosphorsäuretriamid

int. Intern

LDA Lithium-diisopropylamid

Me Methyl min Minuten

NMP N-Methylpyrrolidinon

Ph Phenyl

phen 1,10-Phenanthrolin

Pr Propyl

R organischer Rest

R_F perfluorierter organischer Rest

RT Raumtemperatur
Sdp. Siedepunkt
Smp. Schmelzpunkt
T Temperatur
Tab. Tabelle

THF Tetrahydrofuran

Tol Tolyl

Triglyme Triethylenglycoldimethylether

X Halogen z.B. zum Beispiel

Spektroskopie

δ chemische Verschiebung

J Kopplungskonstante

ppm parts per million

b breit
s stark
m mittel
w schwach
v sehr
sh Schulter

ν	Valenzschwingung
δ	Deformationsschwingung
ρ	Rockingschwingung
ω	Wagging-Schwingung
as	asymmetrisch
s	symmetrisch
p	polarisiert
dp	depolarisiert
m/z	Masse-Ladungsverhältnis
\mathbf{m}^{+}	Molpeak

Liste der Verbindungen

Monosilane SiSi-Systeme

(1) (2) (3) (4) (5a/b) (6) (7a/b) (8) (9a-d) (10) (11a/b) (12)	CF ₃ SiCl ₃ CF ₃ SiCl ₂ Br CF ₃ Si(H)X ₂ (X = Br, Cl) CF ₃ MeSiCl ₂ a) CF ₃ Si(H)Cl ₂ , b) CF ₃ Si(H) ₂ Cl (ClCF ₂)SiCl ₃ a) CF ₃ Me ₂ SiTol, b) Ph CF ₃ Me ₂ SiNEt ₂ a) CF ₃ Me ₂ SiCl, b) Br, c) I, d) F CF ₃ Me ₂ SiH a) CF ₃ PhSiCl ₂ , b) CF ₃ Ph ₂ SiCl CF ₃ MeSi(OMe) ₂	(28) (29) (30) (31) (32) (33) (34) (34a) (35) (36a-f) (37a-f) (38)	
(15) (16) (17) (18) (19) (20a-c) (21) (22) (23)	a) $CF_3MeSiCl_2$, b) I $CF_3MeSi(NEt_2)_2$ $CF_3MeSi(NMe_2)_2$ $CF_3MeSiPh_2$ CF_3MeSiH_2 $CF_3MeSi(H)NEt_2$ a) $CF_3MeSi(H)Cl$, b) Br , c) I CF_3PhSiH_2 $CF_3PhSi(H)NEt_2$ $(CF_3PhSi(H)NEt_2)_3$	(39) (40) (41) (42) (43) (44) (45a/b)	[CF ₃ Me ₂ Si] ₂ SiMeCF ₃ [CF ₃ Me ₂ Si] ₃ SiMe CF ₃ Si(SiMe ₃) ₃ [CF ₃ Me ₂ Si] ₂ (SiMe) ₂ [SiMe ₂ CF ₃] ₂ CF ₃ Me ₂ SiO(CH ₂) ₃ CH ₂ Br (CF ₃ Me ₂ Si) ₂ Hg a) CF ₃ Me ₂ SiHgMe, b) Et
(24) (25) (26) (27)	$ \begin{array}{l} (CF_3)_2Si(NMe_2)_2 \\ CF_3Si(NMe_2)_3 \\ (CF_3)_2SiBr_2 \\ CF_3SiBr_3 \end{array} $		

SiOSi-Systeme

Komplexverbindungen

(46)	CF ₃ Me ₂ SiOSiMe ₂ CF ₃	(53)	(CF ₃) ₂ SiCl ₂ ←Bipy
(47)	$CF_3Me(Ph)SiOSi(Ph)MeCF_3$	(54)	$(CF_3)_2SiBr_2 \leftarrow Bipy$
(48)	CF ₃ Cl ₂ SiOSiCl ₃	(55)	CF ₃ SiCl ₃ ←Bipy
(49)	CF ₃ Ph ₂ SiOSiPh ₂ CF ₃	(56)	$CF_3SiCl_3\leftarrow phen$
(50)	$CF_3Me(H)SiOSi(H)MeCF_3$	(57)	CF ₃ SiCl ₃ ←2 DMSO
(51)	$[CF_3MeSiO]_3[MeSiO_{1.5}]_4$	(58)	$[CF_3MeSi \leftarrow 2Bipy]I_2$
(52)	[CF ₃ MeSiO] ₄	(59)	$CF_3Si(OCH_2CH_2)_3N$
		(60)	$CF_3Ge(OMe)_3$
		(61)	$CF_3Ge(OCH_2CH_2)_3N$

Literaturverzeichnis

- a) R. A. Sinclair, Ultrastructure Processing of Ceramics, Glasses and Composites, Vol. 1, Wiley Interscience, New York, S. 256 (1984)
 - b) W. P. Weber, *Trends Polym. Sci.*, 1 (1993) 356
 - c) P. Sartori, W. Habel, B. van Aefferden, L. Mayer, Chem. Ind., 113 (1990) 54
- 2] T. Kawaga, M. Fujino, K. Takeda, N. Matsumoto, Solid State Commun., 5 (1986) 635
- 3] M. Fujino, Chem. Phys. Lett., 136 (1987) 451
- 4] F. Kajzar, J. Messier, C. Rosilio, J. Appl. Phys., 60 (1986) 3040
- 5] a) R. West, E. Carberry, *Science*, Vol. 189 (1975) 179b) R. West, *Pure Appl. Chem.*, 5 (1982) 1041
- 6] R. West, Comprehensive Organometallic Chemistry, Vol. 2, S. 365 f, Pergamon Press 1982
- 7] F. O. Stark, J. R. Falender, A. P. Wright, Comprehensive Organometallic Chemistry, Vol. 2 (1982) Pergamon Press, S. 305 f
- 8] S. Pawlenko, Organosilicon Chem., Walter de Gruyter, New York/Berlin (1986)
- 9] W. Noll, Chemie und Technologie der Silicone, VCH Weinheim, (1968)
- 10] H. R. Allcock, Advanced Materials, 6 (1994) 106
- 11] R. E. Banks, Preparation, Properties and Industrial Applications of Organofluorine Chem., Ellis Horwood, Chichester (1982) S. 272
- 12] N. Yoshino, Y. Yamamoto, K. Hamano, T. Kawase, *Bull. Chem. Soc. Jpn*, 66 (1993) 742
- 13] N. Yoshino, Y. Kondo, T. Yamauchi, J. Fluorine Chem., 79 (1996) 87
- 14] B. Boutevin, F. Guida-Pietrasanta, A. Ratsimihety, G. Caporiccio, *J. Fluorine Chem.*, 75 (1995) 75
- 15] Y. K. Kim, A. G. Smith, O. R. Pierce, J. Org. Chem., 38 (1973) 1615
- 16] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Angew. Chem., 109 (1997) 1042
- 17] K. G. Sharp, T. D. Doyle, *Inorg. Chem.*, 11 (1972) 1259
- 18] K. G. Sharp, *Inorg. Chem.*, 14 (1974) 1241
- 19] K. G. Sharp, T. D. Coyle, J. Fluorine Chem., 1 (1971/72) 249
- 20] H. Beckers, Diplomarbeit, Bergische Universität Wuppertal GH, (1984)
- 21] I. Ruppert, K. Schlich, W. Volbach, Tetrahedron Lett., 25 (1984) 2195
- 22] H. Beckers, H. Bürger, P. Bursch, I. Ruppert, J. Organomet. Chem., 329 (1987) 313
- 23] H. Beckers, Dissertation, Bergische Universität Wuppertal GH, (1987)
- 24] P. M. Spaziante, V. Gutmann, *Inorg. Chim. Acta*, 5 (1971) 273
- 25] N. F. Cheetham, I. J. McNaught, A. D. E. Pullin, Aust. J. Chem., 27 (9174) 973
- 26] G. Pawelke, J. Fluorine Chem., 42 (1989) 429
- 27] G. K. S. Prakash, D. Deffieux, A. K. Yudin, G. A. Olah, *Synlett*, (1994) 1057
- 28] J. Grobe, J. Hegge, Synlett, (1995) 641
- 29] G. K. S. Prakash, A. K. Yudin, D. Deffieux, G. A. Olah, Synlett, (1995) 151

- 30] a) J. A. Morrison, L. L. Gerchmann, R. Eujen, R. J. Lagow, *J. Fluorine Chem.*, 10 (1977) 333
 - b) R. J. Lagow, R. Eujen, L. L. Gerchmann, J. A. Morrison, *J. Am. Chem. Soc.*, 100 (1978) 1722
- 31] a) L. J. Krause, J. A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995
 - b) R. Eujen, U. Thurmann, J. Organomet. Chem., 433 (1992) 63
 - c) H. Lange, D. Naumann, J. Fluorine Chem., 27 (1985) 309
 - d) R. Eujen, A. Patorra, J. Organomet. Chem., 438 (1992) 57
- 32] R. Eujen, B. Hoge, J. Organomet. Chem., 503 (1995) C51
- 33] D. Naumann, M. Finke, H. Lange, W. Dukat, W. Tyrra, *J. Fluorine Chem.*, 56 (1992) 215
- a)S. Pawlenko, in Houben-Weyl, Methoden der organischen Chemie, Thieme Verlag Stuttgart (1980), Band VIII/ 5, S.1ff
 - b) Z. Rappoport, S. Patai, The chemistry of organosilicon compounds, John Wiley & sons (1989), Part 1/2
 - c) V. Bazant, V. Chvalovsky, J. Rathousky, Organosilicon compounds, Academic Press, New York, London (1965) Vol. 1
- 35] R. A. Benkeser, Acc. Chem. Res., Vol. 4 (1970) 94
- 36] L. Müller, A. Zanin, W. W. duMont, J. Jeske, R. Martens, P. G. Jones, *Chem. Ber.*, 130 (1997) 377
- 37] R. A. Benkeser, J. M. Gaul, W. E. Smith, J. Am. Chem. Soc., 91 (1969) 3666
- 38] R. Josten, I. Ruppert, J. Organomet. Chem., 329 (1987) 313
- 39] H. Söllradl, E. Hengge, J. Organomet. Chem., 243 (1983) 257
- 40] M. Schmeisser, P. Voss, Z. Anorg. Allg. Chem., 334 (1964) 50
- 41] D. R. Weyenberg, A. E. Bey, P. J. Ellison, J. Organomet. Chem., 3 (1965) 489
- 42] R. B. Johannesen, J. Chem. Phys., 47 (1967) 955
- 43] a) H. Beckers, H. Bürger, R. Eujen, J. Fluorine Chem., 27 (1985) 461
 - b) J. R. Durig, G. Attia, P. Groner, H. Beckers, H. Bürger,
 - J. Chem. Phys., 88 (1985) 545
 - c) B. Rempfer, G. Pfafferott, H. Oberhammer, H. Beckers, H. Bürger, R. Eujen,
 - J. E. Boggs, Rev. Chim. Miner., 23 (1986) 551
 - d) R. Eujen, Spectrochim. Acta, 43A (1987) 1165
 - e) H. Beckers, H. Bürger, R. Eujen, B. Rempfer, H. Oberhammer,
 - J. Mol. Struct., 140 (1986) 281
 - f) H. Beckers, H. Bürger, R. Eujen, Z. Anorg. Allg. Chem., 563 (1988) 38
- 44] J. A. Hawkins, M. K. Wilson, J. Chem. Phys., 21 (1953) 360
- 45] E. A. V. Ebsworth, M. Onyszchuk, N. Sheppard, J. Chem. Soc., (1958) 1453
- 46] G. Kessler, H. Kriegsmann, Z. Anorg. Allg. Chem., 342 (1966) 53
- 47] D. F. Ball, P. L. Goggin, D. C. McKean, L.A. Woodward, *Spectrochim. Acta*, 16 (1960) 1358

- 48] a) M. Tanaka, H. Yamashita, Bull. Chem. Soc. Jpn., 68 (1995) 409
 - b) L. S. Chang, J. Y. Corey, Organometallics, 8 (1989) 1885
 - c) K. A. Brown-Wensley, *Organometallics*, 6 (1987) 1590 und Referenzen
- 49] J. Y. Corey, S. M. Rooney, J. Organomet. Chem., 521 (1996) 75
- 50] I. N. Jung, W. Weber, J. Organomet. Chem., 114 (1976) 257
- 51] M. Lehnig, F. Werner, W.P. Neumann, J. Organomet. Chem., 97 (1975) 375
- 52] K. Tamao, A. Kawachi, Y. Ito, J. Am. Chem. Soc., 114 (1992) 3989
- 53] T. Y. Gu, W. P. Weber, J. Organomet. Chem., 195 (1980) 29
- 54] a) E. Hengge, H. Firgo, *J. Organomet. Chem.*, 212 (1981) 155
 b) E. Hengge, S. Graschy, Ch. Jammegg, *Organometallics*, 13 (1994) 2397
- 55] G. Fritz, B. Grunert, Z. Anorg. Allg. Chem., 473 (1981) 59
- 56] M. Kumada, M. Yamaguchi, Y. Yamamoto, J.-I. Nakajima, K. Shiina, J. Org. Chem., Vol 21 (1956) 1264
- 57] K. G. Sharp, P. A. Sutor, E. A. Williams, J. Am. Chem. Soc., 98 (1976) 1977
- 58] E. A. Williams, J. D. Cargioli, P. E. Donahue, *J. Organomet. Chem.*, 217 (1981) 19
- 59] J. V. Urenovitch, A. G. MacDiarmid, E. R. Nixon, Appl. Spectry., 19 (1965) 80
- 60] U. G. Stolberg, H. P. Fritz, Z. Anorg. Allg. Chem., 1 (1964) 330
- 61] E. Hengge, S. Waldhör, Monatsh. Chem., 105 (1974) 671
- 62] R. Zink, K. Hassler, TU Graz, Österreich, private Mitteilung
- 63] G. Urry, Acc. Chem. Res., 3 (1970) 306
- 64] C. J. Wilkins, J. Chem. Soc., (1953) 3409
- 65] H. J. Emeléus, M. Tufail, *Inorg. Nucl. Chem.*, Vol 29 (1967) 2081
- 66] U. Herzog, R. Richter, G. Roewer, J. Organomet. Chem., 507 (1996) 221
- 67] T. A. Bamford, A. G. MacDiarmid, Inorg. Nucl. Chem. Letters, Vol 8 (1972) 733
- 68] R. H. Baney, J. H. Gaul, T. K. Hilty, *Organometallics*, 2 (1983) 859
- 69] U. Thurmann, Dissertation, Bergische Univers. GHS Wuppertal, 1989
- 70] D. Kummer, A. Balkir, H. Köster, J. Organomet. Chem., 178 (1979) 29
- 71] H. Hildebrandt, B. Engels, Universität Bonn, private Mitteilung
- 72] C. Liu, T. Hwang, Adv. Inorg. Chem. Radiochem., Vol 29 (1985) 1, Review
- 73] E. A. Chernyshev, N. G. Komalenkova, *J. Organomet. Chem.*, 271 (1984) 129
- 74] J. Heinicke, B. Gehrhus, J. Organomet. Chem., 423 (1992) 13
- 75] H. Schmölzer, E. Hengge, J. Organomet. Chem., 225 (1982) 171
- 76] H. Schmölzer, E. Hengge, Monatsh. Chem., 115 (1984) 1125
- 77] E. A. Williams, J. D. Cargioli, P. E. Donahue, *J. Organomet. Chem.*, 192 (1980) 319
- 78] U. Krüerke, Chem. Ber., 95 (1962) 174
- 79] H. Sakurai, A. Okada, J. Organomet. Chem., 36 (1972) C13
- 80] B. B. Snyder, J. Org. Chem., Vol 41 (1976) 3062
- 81] M. Richter, Dissertation, Bergische Univers. GHS Wuppertal, 1986
- 82] a) M. Ishikawa, A. Nakamura, M. Kumada, J. Organomet. Chem., 59 (1973) C11
 - b) D. Ready, G. Urry, *Inorg. Chem.*, 11 (1967) 2117
 - c) M. A. Nay, G. N. C. Wodall, H. E. Gunning, J. Am. Chem. Soc., 87 (1965) 179

- a) M. Ishikawa, A. Nakamura, M. Kumada, *J. Organomet. Chem.*, 59 (1973) C11
 b) H. Sakurai, A. Hosomi, M. Kumada, *Bull. Chem. Soc. Jpn.*, 40 (1967) 1551
- 84] T. N. Mitchell, J. Organomet. Chem., 71 (1974) 27
- 85] L. Rösch, G. Altenau, E. Hahn, Z. Naturforsch. B, 36 (1981) 1234
- 86] L. Rösch, G. Altenau, Angew. Chem., 91 (1979) 62
- 87] M. G. Voronkov, V. I. Lavrent'yev, Top. Curr. Chem., 102 (1982) 199
- 88] D. A. Armitage, R. J. P. Corriu, T. C. Kendrick, B. Parbhoo, T. D. Tilley, J. W. White, J. C. Young, The Silicon-Heteroatombond, Biddles Ltd. (1991) S. 67 f
- a) J. F. Hyde, C. A., 47 (1953) 5720b) C. Straw, W. E. Smith, H. G. Emblem, C. A., 46 (1952) 3327
- 90] T. Takiguchi, M. Sakurai, J. Ichimurra, Y. Iizuka, J. Org. Chem., 25 (1960) 310
- 91] C. Le Roux, H. Yang, S. Wenzel, S. Grigoras, M. A. Brook, *Organometallics*, 17 (1998) 556
- 92] M. Veith, A. Rammo, M. Gießelmann, Z. Anorg. Allg. Chem., 624 (1998) 419
- 93] W. Patnode, D. F. Wilcock, J. Am. Chem. Soc., Vol 68 (1946) 358
- 94] F. Feher, T. Budzichowski, *Polyhedron*, 14 (1995) 3239
- 95] G. C. Levy, J. D. Cargioli, Nuclear Magnetic Resonance Spectroscopy of Nuclei Other than Protons, Wiley, New York, (1974)
- 96] G. Engelhardt, M. Mägi, E. Lippmaa, J. Organomet. Chem., 54 (1973) 115
- 97] R. K. Harris, J. D. Kennedy, W. Macfarlane, NMR and the periodic table, Academic Press, London, (1979)
- 98] G. Engelhardt, H. Jancke, M. Mägi, T. Pehk, E. Lippmaa, J. Organomet. Chem., 28 (1971) 293
- 99] H. Jancke, G. Engelhardt, J. Organomet. Chem., 247 (1983) 139
- 100] R. K. Harris, B. J. Kimber, M.D. Wood, J. Organomet. Chem., 116 (1976) 291
- 101] P. Voss, C. Meinecke, E. Popowski, H. Kelling, Z. Anorg. Allg. Chem., 439 (1978) 219
- 102] G. Engelhardt, H. Kriegsmann, Spectrochim. Acta, 19 (1963) 849
- 103] H. Kriegsmann, Z. Anorg. Allg. Chem., 299 (1959) 78
- 104] H. Kriegsmann, Z. Elektrochem., 61 (1957) 1088
- 105] H. Kriegsmann, Z. Elektrochem., 64 (1960) 541
- 106] A. J. Barry, W. H. Daudt, J. J. Domicone, J. W. Gilkey, *J. Am. Chem. Soc.*, 77 (1955) 4248
- 107] J. F. Brown, J. Am. Chem. Soc., 87 (1965) 4317
- 108] M. G. Voronkov, V. I. Lavrent'ev, V. M. Kovrigin, *J. Organomet. Chem.*, 285 (1981) 285
- 109] F. J. Feher, D. A. Newman, J. F. Walzer, J. Am. Chem. Soc., 111 (1989) 1741
- 110] H. Beckers, D. J. Brauer, H. Bürger, R. Gielen, P. Moritz, J. Organomet. Chem. 511 (1996) 293
- 111] H. Steinfink, B. Post, I. Fankuchen, *Acta Cryst.*, 8 (1955) 420
- a) I. R. Beattie, G. J. Leigh, *J. Inorg. Nucl. Chem.*, 23 (1961) 55b) D. Kummer, H. Köster, M. Speck, *Angew. Chem.*, 15 (1969) 574
- 113] P. Bursch, Diplomarbeit, Universität Bonn, 1985

- 114] D. Kummer, T. Seshadri, Chem. Ber., 110 (1977) 2335
- 115] D. Kummer, K. Gaißer, T. Seshadri, Chem. Ber., 110 (1977) 1950
- 116] S. Herzog, F. Krebs, Z. Chem., 4 (1968) 149
- 117] D. Kummer, H. Köster, Angew. Chem., 22 (1969) 897
- 118] a) M. G. Voronkov, Pure Appl. Chem., 13 (1966) 35
 - b) M. G. Voronkov, Top. Curr. Chem., 84 (1979) 77
 - c) S. N. Tandura, M. G. Voronkov, N. V. Alekseev, *Top. Curr. Chem.*, 131 (1986) 99
 - d) E. Lukevics, O. Pudova, R. Sturkovich, Molecular Structure of Organosilicon Compounds (1989), Ellis Horwood, Chichester
 - e) C. Chiut, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev., 93 (1993) 1371
 - f) A. Grennberg, G. Wu, Struct. Chem., 1 (1990) 79
 - g) P. Hencsei, Struct. Chem., 2 (1991) 21
- 119] M. G. Voronkov, V. P. Baryshok, L. P. Petukhov, *J. Organomet. Chem.*, 358 (1988) 39
- 120] D. A. Stanislawski, R. West, J. Organomet. Chem., 204 (1981) 295
- 121] L. Párkány, P. Hencsei, L. Bihátsi, T. Müller, J. Organomet. Chem., 269 (1984) 1
- 122] A. A. Kemme, V. Y. Pestunovich, M. G. Voronkov, V. P. Baryshok, *Dokl. Akad. Nauk. SSSR*, 243 (1978) 688
- 123] S.P. Narula, R. Shankar, M. Kumar, C. Janaik, *Inorg. Chem.*, 36 (1997) 1268
- 124] L. Párkány, P. Hencsei, L. Bihátsi, Cryst. Struct. Commun., 7 (1978) 435
- 125] E. Lukevics, Organosilicon Derivates of Aminoalcohols, Zinate, Riga (1987) 7
- 126] G. S. Zaitseva, S. S. Karlov, E. S. Alekseyeva, L. A. Aslanov, E. V. Avtomonov, J. Lorberth, *Z. Naturforsch.*, 52B (1997) 30
- 127] G. S. Zaitseva, S. S. Karlov, Z. Anorg. Allg. Chem., 623 (1997) 1144
- 128] G. S. Zaitseva, L. I. Livantsova, M. Nasim, S. S. Karlov, A. V. Churakov, J. A. K. Howard, E. V. Avtomonov, J. Loberth, *Chem. Ber.*, 130 (1997) 739
- 129] S.N. Gurkova, T. K. Gar, V. A. Sharapov, J. Organomet. Chem., 268 (9184) 119
- 130] E. Lukevics, S. Belyakov, L. Ignatovich, N. Shilina, *Bull. Soc. Chim. Fr.*, 132 (1995) 545
- 131] G. S. Zaitseva, M. Nasim, L. I. Livantsova, V. A. Tafeenko, L. A. Aslanov, V. S. Petrosyan, *Heteroatom. Chem.*, 1 (1990) 439
- 132] S. P. Narula, S. Soni, R. Shankar, R. K. Chadha, *J. Chem. Soc. Dalton Trans.* (1992) 3055
- 133] E. Lukevics, S. Belyakov, P. Arsenyan, J. Popelis, *J. Organomet. Chem.*, 549 (1997) 163
- 134] R. Eujen, in Vorbereitung
- 135] A. Haas, H. J. Kutsch, C. Krüger, Chem. Ber., 122 (1988) 271
- 136] M. Imbenotte, G. Palavit, P. Legrand, J. Raman Spectrosc., 14 (1983) 135
- 137] H. Beckers, D. J. Brauer, H. Bürger, C. J. Wilke, J. Organomet. Chem., 356 (1988) 31
- 138] C. Stuebe, H. P. Lankelma, J. Am. Chem. Soc. 78 (1956) 976
- 139] M. Kumada, K. Tamao, Adv. Organomet. Chem., 6 (1968) 19