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Abstract

The aim of the particle physics is to reveal fundamental particles and their

interactions. The Standard Model (SM) of particle physics explains the inter-

actions between fundamental particles well and is consistent with experimental

results so far. However, more fundamental theory is considered to exist because

SM still have some problems. A variety of theories such as String theory, Super

Symmetric theory, Extra-dimensional theory so on are studied as beyond the

SM. In this thesis, I explain a study of 5-dimensional theory which is one of

the Extra-dimensional theories. The goal of this study is to find out whether

there is Spontaneous Symmetry Breaking (SSB) and dimensional reduction in

non-perturbative region of 5-dimensional pure SU(2) lattice gauge theory for

orbifold. This study has done by Mean-Field expansion and Monte Calro simu-

lation.

5-dimensional gauge theories are being studied well as a extension of SM.

5-dimensional theories here means the theory of one time dimension and four

spatial dimensions. We can only perceive one time dimension and three spatial

dimensions and still we can consider one extra dimension existing in a way we

cannot recognize. The motivations of considering 5-dimensional theory are that

the quadratic divergence of Higgs mass which is one of the problem of SM can

be avoided and that the origin of Higgs field is explained by identifying Higgs

field with some of the 5th components of gauge field. This identification is called

Gauge-Higgs Unification (GHU). Higgs field can cause SSB and particles obtain

masses. Many perturbative studies of GHU model have been done. However the

perturbative study can deal with only weak coupling region. Therefore, I have

done the non-perturbative study by using lattice gauge theory in the case that

the 5th dimension has orbifold boundary conditions. Mean-Field study indicates

that SSB occurs with orbifold but not with torus boundary conditions. The
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parameters of the model are the size of 5th-dimension N , the lattice coupling β

and anisotropy parameter γ. The parameter γ shows the difference of the scale

size (lattice spacing) between 5th dimension and other dimensions. When γ > 1,

the scale along 5th dimension is larger than other dimensions.

The lattice gauge theory is the gauge theory defined on discretized space-

time. The physical observables are obtained by taking continuum limit if it

exist. Otherwise an effective theory for finite lattice spacing might exist. The

advantage of the lattice gauge theory is that it can study large parameter region

and can introduce gauge invariant cut-off.

From the Mean-Field study, I will show that the static potential along 4-

dimensional hyperplane on the orbifold boundary is 4-dimensional Yukawa po-

tential and gauge boson mass can be extracted from the potential. This means

there is SSB and the result is different from the one of perturbative study in

which fermions are needed for SSB. I also found that there is dimensional re-

duction to 4-dimensional gauge-scalar theory near the phase transition. Higgs

mass which is consistent with the experimental result is easily obtained. This

is also the difference with perturbative study where Higgs mass tends to be too

small. Moreover, there is 2nd order phase transition lines for γ < 0.6 and one

can take a continuum limit which does not depend on ultraviolet cut-off in this

region. I show that taking the continuum limit around γ = 0.5 I can get the 1st

excited Z boson mass around 1 TeV. Although the convergence of Mean-Field

expansion has to be verified, the Monte Calro study also shows that there is SSB

and confirms Mean-Field study.

The advantage of this model is that it has only three parameters and at leas

in the Mean-Field has the parameter region in which renormalisable continuum

limit exists and one can have a physical Higgs mass. Also because the 1st excited

Z boson mass is around 1 TeV, it is possible to be verified by experiments.
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概要

素粒子物理学は物質の最も基本的な構成要素素粒子が従う物理法則の探求を目的

としている．現在までに提唱されている素粒子標準模型は粒子の相互作用を良く説

明し，素粒子実験との矛盾もない．しかしながら，この素粒子標準模型はいくつかの

問題を含んでおり，より根本的な素粒子理論が存在すると考えられている．より根

本的な素粒子理論として，弦理論，超対称性理論，余剰次元理論など様々な理論が研

究されているが，本研究では余剰次元理論である 5次元ゲージ理論を扱った．本研

究の目的はオービフォールド境界条件をもつ 5次元純粋 SU(2)格子ゲージ理論の非

摂動領域における自発的対称性の破れと次元低減の有無を平均場展開とモンテカル

ロシミュレーションを用いて調べることである．

5次元ゲージ理論は素粒子標準模型の拡張として広く研究されている．ここでの 5

次元理論とは時間 1次元，空間 4次元からなる 5次元理論である．我々は通常時間

1次元，空間 3次元を認識するが，もう一つの空間次元が通常認識できない形で存在

していると考えることができる．5次元理論を研究する動機としては主に，1)標準

模型にはヒッグスポテンシャルが 2次発散してしまう問題があるが，5次元理論では

この 2次発散を回避できることと，2)標準模型ではヒッグスの起源についての説明

がないが，5次元理論ではゲージ場の第 5次元成分をヒッグス場と見なすことができ

る (ゲージ・ヒッグス統一)ことが挙げられる．このヒッグス場によって自発的対称

性の破れ (SSB)が起こるとゲージ場やフェルミオン (物質を構成する場)が質量を持

つ．ゲージ・ヒッグス統一模型の摂動論的研究は数多く行われているが，摂動論的研

究ではゲージ結合定数が非常に小さい場合，つまり相互作用が非常に小さい場合し

か扱うことができない．そこで本研究では第 5次元がオービフォールド境界条件を

もつ場合について格子ゲージ理論を用いた非摂動論的研究を行った．平均場を用い

た研究によって SSBがトーラス境界条件下では起こらず，オービフォールド条件下

では起こりうることが示唆されている．このモデルのパラメータは第 5次元の大き

さ N，格子結合定数 β，非等方パラメータ γ の 3つである．γ は第 5次元とその他

の縮尺の違いを表し，γ > 1では第 5次元がその他の次元より大きい場合を表す．
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格子ゲージ理論とは格子状に離散化した時空で定義される理論であり，連続極限

が存在する場合には，連続極限をとることで実際の連続空間における物理量などを

求めることができる．また，連続極限が存在しない場合には有限格子間隔を持つ有

効理論となることが期待される．格子ゲージ理論を用いることの利点としては，広

いパラメータ領域を検証することが可能であることに加え，紫外カットオフをゲー

ジ対称性を保った形で導入できることが挙げられる．

本研究では平均場を用いた研究により，オービフォールド境界上の 4次元超平面

に沿う静電ポテンシャルが 4 次元超平面上の静電ポテンシャルが 4 次元湯川型ポ

テンシャルであり，この静電ポテンシャルからゲージボソンの質量が導けることを

示した．このことは SSB の存在を意味し，この結果はフェルミオンの存在無しに

SSBが起こるという点で摂動論的研究結果と異なる．さらに，相転移付近でモデル

が 4次元ゲージスカラー理論に帰着する傾向があること，つまり 4次元理論への次

元低減を確認した．また，このモデルでは γ < 1のパラメータ領域で実験結果に合

うヒッグス質量を得ることができた．さらに，γ < 0.6 で二次相転移線の存在を確

認し，γ = 0.5付近で連続極限をとると Z ボソンの一次励起状態が約 1 TeVとなる

ことを示した．平均場の収束性については保証されていないため，モンテカルロシ

ミュレーションを用いた計算で SSBの存在を確認することにより平均場近似による

結果の妥当性を確かめた．

このモデルの優れた点としては，パラメータが 3つと少ないこと，少なくとも平

均場ではくり込み可能な連続極限が存在し，実験に合うようなヒッグス質量が得ら

れることが挙げられる．また，一次励起状態の Z ボソン質量が約 1TeV であること

から実験による検証も期待できる．
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Chapter 1

Introduction

The aim of the particle physics is to reveal the fundamental particle of the

matter and describe their interactions. Currently, the fundamental particles

which construct matter are considered as quarks and leptons. It is known that

there are four kind of forces between the particles which are gravity, weak force,

strong force, and electro magnetic force. The Standard Model is the theory which

describes three kinds of interactions without gravity by using gauge symmetry

assuming the quarks and lepton as point particles. Most of the experimental

results have been explained by the Standard Model. In this chapter, I explain

the Standard Model shortly [1, 2, 3] and discuss some problem of the model.

1.1 Standard Model

6 quarks and 6 leptons are discovered up to now. Table 1.1 is the summary

of the particles. The quarks and leptons has three generation and the indices

i represent the generations. The Higgs is a scalar field and it gives masses to

quarks and leptons. The standard model explains the interactions between these

particles by gauge theory.
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1st generation 2nd generation 3rd generation

ui up quark u charm quark c top quark t

di down quark d strange quark s botom quark b

νi electron neutrino νe muon neutrino νµ tauon neutrino ντ

ei electron e muon µ tauon τ

Table1.1 Generations of quarks and leptons

field SU(3)c, SU(2)L, U(1)Y

quark Qi = (uLi, dLi) (3, 2, 1
6 )

uRi (3, 1, 2
3 )

dRi (3, 1,− 1
3 )

lepton Li = (νLi, eLi) (1, 2,− 1
2 )

eRi ( 1, 1,−1)

Higgs H = (H+,H0) (1, 2, 1
2 )

Table1.2 Matter fields and Higgs. The electric charge is Qel = L3 + Y

1.1.1 SU(2) × U(1) gauge symmetry

Table 1.2 shows that only left handed quarks and leptons have SU(2) funda-

mental representations and right handed quarks and leptons do not have SU(2)

charge. The SU(2) charge is called isospin charge. The upper component of

the fundamental representation has isospin 1/2 and the lower component have

isospin −1/2. The U(1) charge is called hyper charge.

The gauge transformations are

Li(x) → L′
i(x) = exp(−iLaθa − iY θ)Li(x) (1.1)

eRi(x) → e′Ri(x) = exp(−iY θ)eRi(x), (1.2)
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where
La =

1
2
σa (a = 1, 2, 3), (1.3)

σ is Pauli matrix, Y is hyper charge and θa(a = 1, 2, 3) and θ are the functions

of x. Qi transform same as Li and uRi and dRi transform same as eRi. When we

write gauge fields of SU(2) and U(1) as W a
µ and Bµ respectively, the Lagrangian

having SU(2) × U(1) symmetry is written as

L = −1
4
W a

µνW aµν − 1
4
BµνBµν

+ L̄iiγµ(∂µ − igLaW a
µ − ig′Y Bµ)Li + Q̄iiγµ(∂µ − igLaWµ − ig′Y Bµ)Qi

+ ēRiiγµ(∂µ − ig′Y Bµ)eRi + ūRiiγµ(∂µ − ig′Y Bµ)uRi

+ d̄Riiγµ(∂µ − ig′Y Bµ)dRi (1.4)

where Wµν and Bµν are field strength which written as

W a
µν = ∂µW a

ν − ∂νW a
µ + gϵbcaW b

µW c
ν (1.5)

Bµν = ∂µBν − ∂νBµ (1.6)

where ϵabc is the completely antisymmetric tensor.

1.1.2 Higgs mechanism

Here I explain Higgs in the Standard Model. The Lagrangian of SU(2)×U(1)

symmetry with Higgs is

Lhiggs = (DµH)†(DµH) − V (H†H) + Lyukawa (1.7)

Dµ = ∂µ − igLaW a
µ − ig′Y Bµ (1.8)

Lyukawa = −GeiL̄iHeRi − GdiQ̄LiHdRi − GuiQ̄LiH
†uRi + h.c (1.9)

where Ge, Gd, Gu are free paremeters. V (H†H) is the potential of Higgs scalar

field, and we assume it as

V = µ2H†H + λ(H†H)2. (1.10)
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with µ2 < 0, λ > 0. Then the potential has minimum when

√
H†H =

√
−µ2

λ
≡ v√

2
. (1.11)

This is the true vacuum. Now the HIggs field can be expanded around v as,

H =
1√
2

(
(ξ2 + iξ1)/2
v + h − iξ3/2

)
, (1.12)

where ξ1, ξ2, ξ3, h are real fields. When we assume ξ1, ξ2, ξ3, h << v it is written

as

H =
(
1 + i

ξkτk

2v

) (
0

v+h√
2

)
≅ exp

(
i
ξkτk

2v

) (
0

v+h√
2

)
. (1.13)

This is an SU(2) gauge transformation. Therefore, we can write Higgs field as

H =

(
0

v+h√
2

)
(1.14)

Now we replace W a
µ , Bµ with W+

µ ,W−
µ , Zµ, Aµ as follows,

W+
µ =

1√
2
(W 1

µ − iW 2
µ) (1.15)

W−
µ =

1√
2
(W 1

µ + iW 2
µ) (1.16)

Zµ =
1√

g2 + g′2
(−gW 3

µ + g′Bµ) (1.17)

Aµ =
1√

g2 + g′2
(gW 3µ + g′Bµ) (1.18)

Because W 3
µ and Bµ have same quantum numbers they can be mixed. The

mixing is done so that Aµ represent the photon field. Inserting (1.14) - (1.18),

to (1.7) we get

Lhiggs =
1
2
∂µh∂µh − µ2h2 +

v2

8
(g2 + g′2)ZµZµ +

v2g2

4
W+

µ W−µ

+(higher order terms) + Lyukawa. (1.19)
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We can see that h,W±, Z have masses.

mh =
√
−2µ2, mW± =

1
2
vg, mZ =

1
2
v
√

g2 + g′2 (1.20)

Next, let us see Yukawa term which is the interaction term between leptons,

quarks and Higgs. Inserting (1.7) the Lagrangian is

Lyukawa = −Gev√
2

(ēLeR + ēReL) − Gev√
2

(ūLuR + ūRuL) − Gev√
2

(d̄LdR + d̄RdL)

+ (higher order terms) (1.21)

This is same for 2nd and 3rd generations. Therefore, the masses of electrons and

quarks are

me =
Gev√

2
, mu =

Guv√
2

, md =
Gdv√

2
. (1.22)

In this way, leptons, quarks and gauge bosons W±
µ and Zµ obtain masses because

Higgs field has vacuum expectation value. This is the mechanism of Spontaneous

Symmetry Breaking (SSB).

1.2 Hierarchy problem

The Standard Model seems explaining the behavior of the particles well, how-

ever it contains some problems. In this section I explain the Hierarchy problem.

The typical energy scale of the Standard Model is about 100GeV. The model

explains the phenomena of the fundamental particles very well around this scale.

The Standard Model has a limit for energy scale, and we need another theory

for higher energy scale. One of the candidate of the higher energy theory is

Grand Unification Theory (GUT). However, there is a problem when we assume

the Standard Model is applicable up to the GUT scale (1016GeV). This is the

fine-tuning problem originating from the correction to Higgs mass term. The 1

loop correction to Higgs mass term has fermion loop and self energy.
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H

fermion

Considering the contribution of fermion and scalar loops, the correction to the

mass is

∆m2
h =

| λf |2

16π

[
−2Λ2 + 6m2

f log
Λ

mf

]
+

λh

16π2

[
Λ2 − 6m2

hlog
Λ

mh

]
+ ..., (1.23)

where mf is fermion masses and Λ is cut-off scale.

Higgs mass is mh = 126.5GeV because of the results from experiments [4]. The

correction becomes very big if we assume the cut-off scale is around 1016GeV

which is the GUT scale. In order to have m2
h ∼ (100GeV)2 we should obtain

(100GeV)2 from sums and subtraction of the (1016)2 order terms That is we need

28 order fine-tuning and it seems unnatural. It means that there are phenomena

which can not be explained by the Standard Model in that scale.
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1.3 Beyond the Standard Model

There are many attempts to solve the hierarchy problem introducing new the-

ories such as extra-dimensional theories and supersymmetric theories. In this

study I worked on Gauge-Higgs Unification model which is one of the extra di-

mensional theories. I explain Gauge Higgs Unification model In chapter 2. The

Gauge-Higgs Unification model has been studied in perturbative region very well.

In this time I focused on non-perturbative region applying Lattice gauge theory

(chapter 3). First, I used mean-field expansion to calculate physical quantities

(chapter 4 and 5) and also applied the Monte Carlo simulation (chapter 6).
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Chapter 2

Gauge-Higgs Unification model

(Continuum)

2.1 Higgs field as extra dimensional gauge field

In this section I explain the Gauge-Higgs Unification model which identifies

the Higgs field as the extra dimensional Gauge field. In this case the Higgs mass

is protected by 5-dimensional gauge symmetry. Thus it can be a solution of

hierarchy problem explaining the origin of the Higgs. When the extra dimen-

sion has torus boundary conditions (S1) Higgs is adjoint representation. To get

fundamental Higgs one can consider orbifold boundary conditions (S1/Z2).

2.2 Orbifold Projection

In this section I explain ”orbifold projection” along 5th dimension [5, 6]. First

we start with the torus boundary condition. The SU(N) gauge field on torus

require two open charts. And different SU(N) gauge fields (A(−)
M and A

(+)
M ) are

defined on each of these charts . And also a transition function G ∈ SU(N) is

required on the overlaps of these charts.

A
(−)
M = GA

(+)
M G−1 + G∂MG−1 (2.1)
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Then we impose the orbifold projection

RA
(+)
M = A

(−)
M . (2.2)

Here reflection R is

z = (xµ, x5) → z̄ = (xµ,−x5)

AM (z) → αMAM (z̄), αµ = 1, α5 = −1. (2.3)

On the overlaps of these charts, the orbifold projection is written as

RA
(+)
M = GA

(+)
M G−1 + G∂MG−1 (2.4)

because of the relation between A
(+)
M and A

(−)
M in the regions Eq. (2.1). I write

A
(+)
M as AM from now on. Gauge-covariance under gauge transformation Ω

require

G → (RΩ)GΩ−1. (2.5)

For ϵ → 0 at the boundary, we impose

G|x5=0,πR = g (2.6)

where g is constant. AM have Dirichlet boundary condition αMAM = gAMg−1

and ∂5AM have Neumann boundary conditions −αM∂5AM = g∂5AMg−1. G = g

constant implies [g, Ω] = 0 on the boundary for gauge transformations Ω. g

should be a inner automorphism which assigns parities to group generator T a

which transform as

gT ag−1 = T a

gT âg−1 = −T â,

where T a are unbroken generators and T â are broken generators [7]. Then the

gauge symmetry G = SU(N) is broken on the boundary to it’s subgroup de-

pending on g.

G = SU(p + q) → H = SU(p) × SU(q) × U(1)
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The boundary Higgs mass term is

m2
Htr

{
[A5, g][A5, g]

}∣∣∣∣∣
x5=0,πR

≡ 0. (2.7)

This Higgs mass term is zero because

(D5G)(D5G) ≡ 0 (2.8)

from (2.4) [5].

For the SU(2) case the gauge symmetry can be broken to U(1) on the bound-

ary. If we choose g = diag(−i, i), the unbroken fields on the boundaries are A3
µ,

A1
5 and A2

5. We can assume this A3
µ as U(1) vector boson and A1,2

5 as complex

Higgs.

2.3 Hosotani Mechanism

The Gauge-Higgs Unification model has been studied perturbatively [8]. The

simplest case is 5-dimensional SU(2) gauge theory with orbifolded extra dimen-

sion S1/Z2 [9].

5th dimension is small enough to be dimensional reduction and the cut-off

of this theory is 1/R, where R is the radius of 5th dimension. The fields are

expanded with Fourier expansion along 5th dimension because of S1.

φ(xM ) =
1√
2πR

∞∑
n

φ(n)(xµ)ei n
R x5 (2.9)

Then, with orbifold projection R : φ(xµ,−x5) = Rφ(xµ, x5), even and odd field

is written as

R = +1 :

φ+(xM ) =
1√
2πR

φ(0)(xµ) +
1√
πR

∞∑
n=1

φ(n)(xµ) cos(nx5/R) , (2.10)

R = −1 :

φ−(xM ) =
1√
πR

∞∑
n=1

φ(n)(xµ) cos(nx5/R). (2.11)



12 Chapter 2 Gauge-Higgs Unification model (Continuum)

This expansion is called Kaluza-Klein (KK) expansion. The 4 dimensional KK

masses mn are

(mnR)2 = n2 (2.12)

Now we consider vacuum expectation value of higgs field < H >=< A5 >. If α

is defined as

α = g5 < A1
5 > R. (2.13)

KK mass is shifted as

(mnR)2 = n2, (n ± α)2 for n ̸= 0 (2.14)

The effective potential is written as [9, 10]

V (α) = −3 · 2 · P
64π6R4

∞∑
m=1

cos(2πmα)
m5

(2.15)

where P = 3− 4Nf and Nf is the number of adjoint fermions. Higgs mass from

the potential is

(mHR)2 = Rg2
4

d2V

dα2

∣∣∣∣∣
α=αmin

, g2
4 =

g2
5

2πR
(2.16)

where αmin is the α value which minimizes the effective potential. The dynamical

gauge boson masses is

mZ =
αmin

R
(2.17)

When Nf < 3/4, there is no SSB (αmin = 0) and mf = mZ = 0. On the other

hand, when Nf > 3/4, there is SSB. There is no SSB for pure gauge field and

more than one fermion is needed to gain SSB.

In this perturbative study of GHU, it says that experimental value of ρ =

mH/mZ = 1.38 is hard to get [11]. And because it is the 5-dimensional theory,

it is non-renormalizable. Thus the theory is low energy effective theory.
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2.4 Non-perturbative Gauge-Higgs Unification

I previous section we saw how GHU theory look like in perturbative study.

How the GHU theory look like in non-perturbative region? We study GHU non-

perturbatively by Lattice gauge theory. Lattice gauge theory is the calculation

method of gauge theory by discretizing the space time on a Euclidean lattice.

The advantage of using the lattice theory is that it is possible to introduce UV

cut-off in gauge invariant form as well as it is possible to study non-perturbative

region. We also apply Mean-Field expansion. Mean-Field expansion is expected

to work well for higher dimension although it doesn’t work well for 4-dimensions.

We study the structure of phase diagram and whether there can be SSB for

pure gauge theory. We also study whether there is dimensional reduction or not

and, if it is, what is the way of dimensional reduction. Is it compactification like

perturbative region or localization? (cf. [12, 13, 14, 15])
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Chapter 3

Lattice formulation of pure gauge

theory

3.1 Continuum gauge theory

Lagrangian for continuum pure SU(N) gauge theory is written as

L =
1

2g2
tr(FMNFMN ) (3.1)

where FMN is strength of the gauge fields AM = iAa
MT a ∈ su(N).

FMN = ∂MAN − ∂NAM + [AM , AN ] (3.2)

su(N) is Lie algebra of the group SU(N) and A†
M = −AM , tr(AM ) = 0. Eq. (3.1)

is invariant under the following gauge transformations.

A′
N = Ω(x)∂MΩ(x)† + Ω(x)ANΩ(x)† (3.3)

Where Ω(x) ∈ SU(N) is local gauge transformation．Under the gauge transfor-

mation the field strength FMN transform covariantly as

FMN = Ω(x)FMNΩ(x)† (3.4)

Then it is obvious that the Lagrangian Eq. (3.1) is invariant under the gauge

transformation. [16, 17]
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3.2 Lattice gauge theory

Now we consider the definition of the gauge field on lattice. Gauge field is

defined on the links of the lattice because the gauge field is vector field. However,

we cant define AM directly on the links because AM is not covariant under the

gauge transformation. So we consider covariant variable U(x,M) which is defined

as

U(x,M) ≡ Pexp{
∫ 1

0

dsAM (x + aM̂ · s)} (3.5)

= Pexp{
∫ x+aM̂

x

dxAM (x)}. (3.6)

Where M is the direction of the gauge field, n is the position of the lattice

points and U(x,M) ∈ SU(N). The variables for opposite direction is defined as

U(x + aM̂,−M) ≡ U(x, M)†. The link gauge variables transform as follows.

U(x,M)′ → Ω(x)U(x,M)Ω(x + aM)†

and the product of the link line transform as

Uline = U(x,M1)U(x + aM̂1,M2)U(x + aM̂1 + aM̂2, M3) · · ·U(xn, Mn)

→ Ω(x)UlineΩ(xn + aM̂n)†.

Then closed line transform as

Uloop = U(x,M1)U(x + aM̂1,M2)U(x + aM̂1 + aM̂2,M3) · · ·U(x − aM̂n,Mn)

→ Ω(x)UloopΩ(x)†.

It means that tr {Uloop } is gauge invariant. The smallest closed loop is called

plaquette. A plaquette is a product of four links and it is written as follows.

UM,N (x) = U(x,M)U(x + aM̂,N)U†(x + aN̂,M)U†(x,N) (3.7)
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Using this plaquette, the Wilson plaquette action [16, 17] is defined as

SW [U ] =
β

2N

∑
p

Re tr{1 − U(p)}. (3.8)

Where β is a lattice coupling and means sum over all plaquettes:∑
p

=
∑

x

∑
M ̸=N

(3.9)

3.3 Continuum limit

Here I show that the Wilson plaquette action corresponds to continuum action

for a → 0.

UMN (x) = Pexp{
∫ x+aM̂

x

dx′AM (x′)} · Pexp{
∫ x+aM̂+aN̂

x+aM̂

dx′AN (x′)}

·Pexp{−
∫ x+aN̂+aM̂

x+aN̂

dx′AM (x′)} · Pexp{−
∫ x+aN̂

x

dx′AN (x′)}

= exp{a2
(
(∂MAN (x) − ∂NAM (x)) + [AM (x), AN (x)] + a3X3 + a4X4 + O(a5)

)
= 1 + a2FMN + a3X3 + a4X4 + a4F 2

MN + O(a5). (3.10)

where X3 and X4 are a3 and a4 term. Because tr{T a} = 0, tr{FMN} =

tr{X3} = tr{X4} = 0. Then Wilson plaquette action is

SW [U ] =
β

2N

∑
p

Re tr{1 − U(p)}　

=
β

4N

∑
x,M ̸=N

tr{1 − 1
2
(UMN (x) + U†

MN (x))}

=
β

4N

∑
x,M ̸=N

tr{a4g2FMN (x)2 + O(a5)}.

(3.11)

It follows

lim
a→0

SW [U ] = lim
a→0

βg2

4N
a4

∑
x

∑
M ̸=N

tr{FMN (x)2}.

(3.12)
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On the other hand the continuum action is

lim
a→0

SY M [U ] =
1
2

∫
dx4

∑
x

∑
M ̸=N

tr{FMN (x)2}.

(3.13)

Thus, Wilson plaquette action is consistent with continuum action when β = 2N
g2 .

[16, 17]

3.4 Lagrangian for orbifold

Now we consider anisotropic 5-dimensional pure SU(2) gauge theory where

5th dimension is orbifolded. The Wilson plaquette is

SW = −β4

2

∑
nM

N5−1∑
n5=1

[ ∑
M<N

Re tr Up/∈bound(n;M,N)

]

−β5

2

∑
nM

N5−1∑
n5=0

[∑
M

Re tr Up/∈bound(n;M, 5)

]

−β4

4

∑
nM

[ ∑
M<N

∑
n5=0,N5

Re tr Up∈bound(n; M,N)

]
.

(3.14)

The lattice coupling is defined as

β4 =
2Na5

g2
5

, β5 =
2Na2

4

g2
5a5

. (3.15)

In this study we parameterized the anisotropic lattice by β and γ where β4 = β/γ

and β5 = βγ. Then γ = a4/a5 at classical limit. The gauge transformation of

the bulk links are

U(n,M) −→ Ω(SU(2))(n)U(n,M)Ω(SU(2))†(n + M̂), (3.16)

links on the boundaries are

U(n,M) −→ Ω(U(1))(n)U(n,M)Ω(U(1))†(n + M̂) (3.17)
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and the links which one end is in the bulk and the other touch the boundary are

U(n,M) −→ Ω(U(1))(n)U(n,M)Ω(SU(2))†(n + M̂) . (3.18)

In this set up, general links satisfy following orbifold projection condition

Γ U(n,M) = U(n,M), Γ = TgR (3.19)

where the reflection property about the origin of the fifth dimension is

R U(n,M) = U(n,M)

R U(n, 5) = U†(n − 5̂, 5) (3.20)

with
n = (nM , n5), n = (nM ,−n5). (3.21)

The transformation under the group conjugation is

TgU(n,M) = g U(n,M) g−1 (3.22)

where g = −iσ3.

3.5 Observables for pure SU(2) lattice gauge theory on

the orbifold

3.5.1 Higgs Operators

Polyakov loop along 5th dimension can be Higgs operator. I order to con-

struct Higgs operator for orbifold, I start from the Polyakov loop for torus

P (nµ)(torus)which is parametrized by the coordinates n5 = 0, 1, · · · 2N5 − 1.

P (nµ)(torus) = U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, 2N5 − 1), 5) (3.23)

Then the Polyakov loop for orbifold P (nµ) is obtained by applying orbifold pro-

jection.

Orbifold projection : U(n,M) = ΓU(n,M) (3.24)
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Where Γ = RTg. The link U((nµ, n5), 5) transforms under Γ as

ΓU((nµ, n5), 5) = gU†((nµ,−n5 − 1), 5)g−1 = gU†((nµ, 2N5 − n5 − 1), 5)g−1.

Then, the Polyakov loop for torus is

P (nµ) = U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, N5 − 1), 5)

·U((nµ, N5), 5)U((nµ, N5 + 1), 5) · · ·U((nµ, N5 + 1), 5)

= U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, N5 − 1), 5)

·ΓU((nµ, N5), 5)ΓU((nµ, N5 + 1), 5) · · ·ΓU((nµ, N5 + 1), 5)

= U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, N5 − 1), 5)

·gU((nµ, N5 − 1), 5)U((nµ, N5 − 2), 5) · · ·U((nµ, 0), 5)g†

= l(nµ)gl†(nµ)g†, (3.25)

where l(nµ) is the line l(nµ) = U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, N5 − 1), 5).

Then we obtain two Higgs operators with the Polyakov loop

O1
H(t) =

1
L3

∑
nk

tr(P (t, nk)). (3.26)

and

O2
H(t) =

1
L3

∑
nk

tr(Φ(nµ)Φ†(nµ)), (3.27)

where Φ(nµ) = 1
4N5

[P (nµ) − P †(nµ), g]. If we chose gauge transformation as

Ω(nµ, 0) = V

Ω(nµ, 1) = U((nµ, 0), 5)

Ω(nµ, 2) = V †U((nµ, 0), 5)U((nµ, 1), 5)

Ω(nµ, 3) = (V †)2U((nµ, 0), 5)U((nµ, 1), 5)U((nµ, 2), 5)

.

.

.

Ω(nµ, n5) = (V †)n5−1U((nµ, 0), 5)U((nµ, 1), 5) · · ·U((nµ, n5 − 1), 5) (3.28)
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where V = eaAlat
5 , the gauge links along 5th dimension transform as

U((nµ, 0), 5) → Ω(nµ, 0)U((nµ, 0), 5)Ω(nµ, 1)† = V

U((nµ, 1), 5) → Ω(nµ, 1)U((nµ, 1), 5)Ω(nµ, 2)† = V

.

.

.

U((nµ, 2N5 − 1), 5) → Ω(nµ, 2N5 − 1)U((nµ, 2N5 − 1), 5)Ω(nµ, 0)† = V.

Thus, Polyakov loop P (nµ) can be written as P (nµ) = V 2N5 . Then we see that

Φ(nµ) =
1

4N5
[P (nµ) − P †(nµ), g]

= a[Alat
5 , g] + O(a3) (3.29)

Φ(nµ) has components only for broken generators σ1 and σ2. Because of the

orbifold projection, gauge component of A5 which commute with g vanish. Here,

O1
H(t) and O1

H(t) have spin J = 0, 3-dimensional parity P = 0 and charge

conjugation C = 1. [18, 19]

3.5.2 Z boson Operators

First we consider 4-dimensional SU(2) Higgs Model. We write the complex

SU(2) Higgs doublet as

Φ =

(
φ1

φ2

)

Then the gauge invariant gauge boson operators can be written as [20]

WB
k = −i tr{σBϕ†(x + ak̂)U(x, k̂)ϕ(x)},

where

Φ̃ = iσ3Φ, ϕ =
(
Φ̃ Φ

)
=

(
φ̃1 φ1

φ̃2 φ2

)
= constant · SU(2) matrix,
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k = 1, 2, 3 is Lorentz index and B = 1, 2, 3 is adjoint gauge index. Under the

isospin transformation Λ ∈ SU(2) (global transformation) ϕ and U transform as

follows.

ϕ → ΛϕΛ−1

U → ΛUΛ−1

The action is invariant under the transformation but WB
k transform as isospin

triplet(adjoint representation of SU(2)). On the other hand, their gauge trans-

formations Ω (local transformation) are as follows.

ϕ(x) → Ω(x)ϕ(x)

U(x) → Ω(x + aµ̂)U(x, µ)Ω(x)

Then, the action and WB
k are both invariant under the gauge transformation.

We can make following replacement for 5-d.

¤£ ¡¢4-dimensions §̈ ¥¦5-dimensions for orbifold on the boundary

ϕ → [P (x)−P †(x),g]√
det([P (x)−P †(x),g])

≡ α(x)

Ω(x)ϕ(x) → Ω(x)α(x)Ω−1(x)

−i tr{σBϕ†(x + ak̂)U(x, k)ϕ(x)} → tr{gU(x, k)α(x + ak̂)U†(x, k)α(x)}

We have Z operators for 5-dimensional SU(2) orbifold.

O1
Z(t) =

1
L3

∑
x1,x2,x3

{
tr{gU(x, k)α(x + ak̂)U†(x, k)α(x)} − tr{k → −k}

}
/2

(3.30)

O2
Z(t) =

1
L3

∑
x1,x2,x3

{
tr{U(x, k)|n5=0l(x + ak̂)U†(x, k)|n5=N5gl†(x)} − tr{k → −k}

}
/2

=
1
L3

∑
x1,x2,x3

{
tr{gl†(x)U(x, k)|n5=0l(x + ak̂)U†(x, k)|n5=N5} − tr{k → −k}

}
/2

(3.31)
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O1
Z(t) and O2

Z(t) are defined at n5 = 0 and are gauge invariant because [Ω, g] = 0

on the boundaries. O(1,2)
Z (t) have J = 1, P = −1 and C = −1.[18, 19]

3.5.3 Static potential

Static potential is the energy of a pair of infinitely heavy quark and anti quark.

It is extracted from Wilson loop.

< W (r, t) >=
∞∑

n=1

dne−Vn(r)·t (3.32)

where V1(r) is the ground state static potential and Vn(r), n > 1 are its excita-

tions.

3.6 Determination of energies

3.6.1 Correlation function

We denote operators projected to −→p = 0 by O(t). Then the connected time

correlation function is written as

C(t) = < O(t)O(0)∗ > − < O(t) >< O(0)∗ >

=
∞∑

n=1

cne−En·t, (3.33)

where E1, E2, · · · are energies of states created by the operator O. Since −→p = 0,

energies are the masses (E1, E2, · · · = m1, m2 · · · ).

3.6.2 Generalized eigenvalue problem

We construct basis of the operator. We can use more than one operators

to calculate the masses. For example, we have Higgs operators O1 = tr(P )

and O2 = tr(ΦΦ†) and we can have more operators by using fat links, See

6.1. We require that these operators Oi, i = 1, 2, · · ·N have the same quantum
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numbers (Parity(P), Charge(C), Spin(J)). Then the matrix correlation function

is constructed with these operators as

Cij(t) = < Oi(t)Oj(0)∗ > − < Oi(t) >< Oj(0)∗ >

=
∞∑

n=1

c(i,j)
n e−En·t (3.34)

For a given time t, Cij(t) is a N ×N matrix. The generalized eigenvalue problem

is defined as

C(t)v = λC(t0)v. (3.35)

λn(t, t0), n = 1, 2, · · · , N are the generalized eigenvalues which are the eigenval-

ues of C(t0)1/2C(t)C(t0)1/2. They are related to the energies En by [21]

λn(t, t0) = e−En(t−t0)(1 + corrections) (3.36)

Then, the effective masses Eeff
n are

aEeff
n (t, t0) = − ln

λn(t + a, t0)
λn(t, t0)

∼ − ln
e−En(t+a−t0)

e−En(t−t0)

−−−−→
t large

− ln e−En·a = En · a (3.37)

with corrections ∼ e−∆·t where ∆ = minn ̸=m |En − Em|. If 2t0 > t it can be

shown that corrections ∼ e−(EN+1−En)·t. [22]
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Chapter 4

Mean-Field formulation

The partition function of the gauge theory on lattice is

Z =
∫

DUe−SW [U ] , (4.1)

where SW [U ] is Wilson plaquette action.

Using the Fourier representation of delta function

δ(f(x)) =
∫ i∞

−i∞

dα(x)
2πi

e−α(x)f(x), (4.2)

link variables U are replaced by complex matrices V and Lagrange multiplier H.

Z =
∫

DU

∫
DV δ(V − U)e−SW [U ]

=
∫

DU

∫
DV

∫
DH e(1/2)Re tr{H(U−V )}e−SW [V ] (4.3)

After carry out the integration of original links U , the partition function [23] is

written as

Z =
∫

DV

∫
DH e−Seff [V,H] , Seff [V,H] = SW [V ] + u(H) + (1/N)Re tr{HV } ,

(4.4)

where
e−u(H) ≡

∫
DUe(1/2)Re tr{UH}. (4.5)
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Then, the action Eq. (3.11) is written as

Seff = −β4

2

∑
nµ

N5−1∑
n5=1

[∑
µ<ν

Re tr Vp/∈bound(n; µ, ν)

]

−β5

2

∑
nµ

N5−1∑
n5=0

[∑
µ

Re tr Vp/∈bound(n; µ, 5)

]

−β4

4

∑
nµ

[∑
µ<ν

∑
n5=0,N5

Re tr Vp∈bound(n;µ, ν)

]

+
∑
nµ

N5−1∑
n5=1

∑
µ

[
u2(ρ(n, µ)) +

∑
α

hα(n, µ)vα(n, µ)

]

+
∑
nµ

N5−1∑
n5=0

[
u2(ρ(n, 5)) +

∑
α

hα(n, 5)vα(n, 5)

]

+
∑
nµ

∑
µ

∑
n5=0,N5

[
u1(ρ(n, mu)) +

∑
α

hα(n, µ)vα(n, µ)

]
. (4.6)

In this study the fluctuating fields in the bulk are parametrized as

V (n, M) = v0(n, M) + i
3∑

A=1

vA(n,M)σA ,

H(n, M) = h0(n,M) − i
3∑

A=1

hA(n,M)σA , (4.7)

and on the boundaries are parametrized as

V (n, M) = v0(n, M) + iv3(n,M)σ3 ,

H(n, M) = h0(n,M) − ih3(n,M)σ3 , (4.8)

where σA is the Pauli matrices and v0,A ∈ C. The effective mean-field actions
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u1 and u2 are defined as

e−u2(H) =
∫

SU(2)

DU e
1
2Re{tr(UH)} =

2
ρ
I1(ρ), ρ =

√∑
µ

(Re hµ)2, (4.9)

e−u1(H) =
∫

U(1)⊂SU(2)

DU e
1
2Re{tr(UH)} = I0(ρ), ρ =

√
(Re h0)2 + (Re h3)2.

(4.10)

The mean-field is the field which makes the effective action minimal. We can

choose the mean-field proportional to the identity. Considering translational

invariance in direction µ = 0, 1, 2, 3, we parameterize the mean-field as follows:

for n5 = 0, 1, . . . , N5 (4-dimensional links)

H(n, µ) = h0(n5)1 , V (n, µ) = v0(n5)1 , ∀nµ , µ , (4.11)

for n5 = 0, 1, . . . , N5 − 1 (5th dimensional links)

H(n, 5) = h0(n5 + 1/2)1 , V (n, 5) = v0(n5 + 1/2)1 , ∀nµ . (4.12)

Mean-field background can be obtained by taking derivatives of Eq. (4.6) with

respect to V and H and require them to vanish.

∂Seff

∂H

∣∣∣∣∣
H,V

= 0 ,
∂Seff

∂V

∣∣∣∣∣
H,V

= 0 . (4.13)

→ V = − ∂u

∂H

∣∣∣∣∣
H

, H = −∂SW [V ]
∂V

∣∣∣∣∣
V

. (4.14)

From these minimization equations lead to the following relations [6]: for n5 =

0

v0(0) = −u′
1(h0(0)) =

I1(h0(0))
I0(h0(0))

, (4.15)

h0(0) = β4

[
(d − 2)(v0(0))3 + γ2(v0(1/2))2v0(1)

]
. (4.16)
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A prime on u1 or u2 denotes differentiation with respect to its argument. Simi-

larly, for n5 = N5 we have

v0(N5) = −u′
1(h0(N5)) =

I1(h0(N5))
I0(h0(N5))

, (4.17)

h0(N5) = β4

[
(d − 2)(v0(N5))3 + γ2v0(N5 − 1)(v0(N5 − 1/2))2

]
. (4.18)

For n5 = 1, . . . , N5 − 1 (four-dimensional links)

v0(n5) = −u′
2(h0(n5)) =

I2(h0(n5))
I1(h0(n5))

, (4.19)

h0(n5) = β4

[
2(d − 2)(v0(n5))3 + γ2

(
(v0(n5 + 1/2))2v0(n5 + 1)

+v0(n5 − 1)(v0(n5 − 1/2))2
)]

. (4.20)

For n5 = 0, . . . , N5 − 1 (extra-dimensional links)

v0(n5 + 1/2) = −u′
2(h0(n5 + 1/2)) =

I2(h0(n5 + 1/2))
I1(h0(n5 + 1/2))

, (4.21)

h0(n5 + 1/2) = 2β5(d − 1)v0(n5)v0(n5 + 1/2)v0(n5 + 1) . (4.22)

The mean-field is obtained by solving these equations iteratively.

4.1 Mean-Field expansion in 1st order

Here, we introduce Gauss fluctuation around the mean-field.

H = H̄ + h and V = V̄ + v . (4.23)

Gauge fixing is necessary for computing fluctuations. It has been discussed in

[24, 25, 26]. We write the second derivative of the effective action as follows.
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δ2Seff

δH2

∣∣∣∣
V ,H

h2 = hiK
(hh)
ij hj = hT K(hh)h

δ2Seff

δV δH

∣∣∣∣
V ,H

vh = viK
(vh)
ij hj = vT K(vh)h

δ2Seff

δV 2

∣∣∣∣
V ,H

v2 = viK
(vv)
ij vj = vT K(vv)v (4.24)

Then, mean-field expansion up to second derivative is

Seff = Seff [V , H] +
1
2

( δ2Seff

δH2

∣∣∣∣
V ,H

h2 +
δ2Seff

δV δH

∣∣∣∣
V ,H

vh +
δ2Seff

δV 2

∣∣∣∣
V ,H

v2
)

= Seff [V , H] +
1
2
(hT K(hh)h + 2vT K(vh)h + vT K(vv)v)　

= Seff [V , H] + S(2)[v, h], (4.25)

where S(2)[v, h] ≡ 1
2 (hT K(hh)h+2vT K(vh)h+vT K(vv)v). The partition function

is also expanded as

Z =
∫

Dv

∫
Dh e−(Seff [V ,H]+S(2)[v,h])

= Z[V , H] · z, (4.26)

where

z =
∫

Dv

∫
Dh e−S(2)[v,h] (4.27)

=
∫

Dv

∫
Dh e−

1
2 hT K(hh)h−vT K(vh)h− 1

2 vT K(vv)v (4.28)

=
(2π)|h|/2√
det[K(hh)]

∫
Dv e−

1
2 vT (−K(vh)K(hh)−1

K(vh)+K(vv))v (4.29)

=
(2π)|h|/2(2π)|v|/2√

det[(−1 + K(hh)(−K(vh)K(hh)−1
K(vh) + K(vv))]

.

(4.30)

Using Eq. (4.25) and Eq. (4.26), the expectation value of an observable

〈O〉 =
1
Z

∫
DU O[U ]e−SW [U ] (4.31)

=
1
Z

∫
DV DH O[V ]e−Seff [V,H]. (4.32)
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is expanded as

〈O〉 =
1

Z[V , H] · z

∫
Dv

∫
Dh

(
O[V ] +

δO
δV

∣∣∣∣
V

v +
δ2O
δV 2

∣∣∣∣
V

v2
)
e−(Seff [V ,H]+S(2)[v,h])

= O[V ] +
1
2

δ2O
δV 2

∣∣∣∣
V

1
z

∫
Dv

∫
Dh v2 e−S(2)[v,h].

The link 2-point function can be integrated to

〈vivj〉 =
1
z

∫
Dv

∫
Dh v2 e−S(2)[v,h]

=
1
z

(2π)|h|/2√
det[K(hh)]

∫
Dv vivje−

1
2 vT (−K(vh)K(hh)−1

K(vh)+K(vv))v

= (K)−1
ij , (4.33)

where K is the propagator K = −K(vh)K(hh)−1
K(vh) + K(vv). Then 〈O〉 is

expanded as

〈O〉 = O[V ] +
1
2
tr

{
δ2O
δV 2

∣∣∣∣∣
V

(K)−1

}
, (4.34)

In order to extract the mass associated with an operator O(t), we need mean-

field expansion of the connected correlator

C(t) = < O(t0 + t)O(t0) > − < O(t0 + t) >< O(t0) >

= C(0)(t) + C(1)(t) + · · · . (4.35)

The mean-field expansion of each part of C(t) are

< O(t0 + t)O(t0) > = O(0)(t0 + t)O(0)(t0) +
1
2
tr

{
δ2(O(t0 + t)O(t0))

δ2v
K−1

}
+ · · ·

< O(t0 + t) > = O(0)(t0 + t) +
1
2
tr

{
δ2O(t0 + t)

δ2v
K−1

}
+ · · ·

< O(t0) > = O(0)(t0) +
1
2
tr

{
δ2O(t0)

δ2v
K−1

}
+ · · · .

Then 0th order and 1st order correction of the mean-field of C(t) are the follow-
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ing.

C(0)(t) = 0

C(1)(t) =
1
2
tr

{
δ2(O(t0 + t)O(t0))

δ2v
K−1

}
− 1

2
O(0)(t0 + t)tr

{
δ2O(t0)

δ2v
K−1

}
−1

2
O(0)(t0)tr

{
δ2O(t0 + t)

δ2v
K−1

}
= tr

{
δO(t0 + t)

δv

δO(t0)
δv

K−1

}
(4.36)

A gauge invariant correlator can be expanded in terms of the energy eigenvalues

of the states as
C(t) =

∑
λ

e−Eλt (4.37)

where E0 = m, E1 = m∗, · · · . Then, the mass is obtained for t → ∞ as,

m ≅ lim
t→∞

ln
C(1)(t)

C(1)(t − 1)
. (4.38)

4.2 Mean-Field expansion in 2nd order

In order to extract gauge boson masses, we need 2nd order mean-field expan-

sion. The effective action is expanded as

Seff = Seff [V , H] +
1
2

( δ2Seff

δH2

∣∣∣∣
V ,H

h2 +
δ2Seff

δV δH

∣∣∣∣
V ,H

vh +
δ2Seff

δV 2

∣∣∣∣
V ,H

v2
)

+
1
6

( δ3Seff

δH3

∣∣∣∣
V ,H

h3 +
δ3Seff

δV 3

∣∣∣∣
V ,H

v3
)

+
1
24

( δ4Seff

δH4

∣∣∣∣
V ,H

h4 +
δ4Seff

δV 4

∣∣∣∣
V ,H

v4
)

+ · · ·

The cross terms in the cubic and quartic terms vanish because of the special

form of Seff . The observables are also expanded as

O[V ] = O[V ] +
δO
δV

∣∣∣∣
V

v +
1
2

δ2O
δV 2

∣∣∣∣
V

v2 +
1
6

δ3O
δV 3

∣∣∣∣
V

v3 +
1
24

δ4O
δV 4

∣∣∣∣
V

v4 + · · · .

(4.39)
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Then, tadpole-free contributions to the expectation values of an observable are

〈O〉 =
1

Z[V , H] · z

∫
Dv

∫
Dh

(
O[V ] +

1
2

δ2O
δV 2

∣∣∣∣
V

v2

+
1
24

δ4O
δV 4

∣∣∣∣
V

v4
)
· e−(Seff [V ,H]+S(2)[v,h])

= O[V ] +
1
2

δ2O
δV 2

∣∣∣∣
V

1
z

∫
Dv

∫
Dh v2 e−S(2)[v,h]

+
1
24

δ4O
δV 4

∣∣∣∣
V

1
z

∫
Dv

∫
Dh v4 e−S(2)[v,h].

The link 4-point function can be integrated to

〈vivjvlvm〉 =
1
z

∫
Dv

∫
Dh vivjvlvm e−S(2)[v,h]

= (K)−1
ij (K)−1

lm + (K)−1
il (K)−1

jm + (K)−1
im(K)−1

lj . (4.40)

Finally we obtain 2nd order correction

〈O〉 = O[V ] +
1
2

(
δ2O
δV 2

∣∣∣∣∣
V

)
ij

(K−1)ij

+
1
24

∑
i,j,l,m

(
δ4O
δV 4

∣∣∣∣∣
V

)
ijlm

·
(
(K−1)ij(K−1)lm + (K−1)il(K−1)jm + (K−1)im(K−1)jl

)
.

(4.41)

The 2nd order correction of the connected correlation function is

C(2)(t) =
1
24

∑
i,j,l,m

(
δ2O(t0 + t)

δv2

)
ij

(
δ2O(t0)

δv2

)
lm

·
(
(K−1)ij(K−1)lm + (K−1)il(K−1)jm + (K−1)im(K−1)jl

)
.(4.42)

The extracted mass is

m ≅ lim
t→∞

ln
C(1)(t) + C(2)(t)

C(1)(t − 1) + C(2)(t − 1)
. (4.43)
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4.3 Observables

4.3.1 Higgs and Z boson mass

In order to construct observables, we define the line

l(n5)(t0, m⃗) =
n5−1∏
m5=0

V ((t0, m⃗,m5); 5) (4.44)

and introduce the matrices

σα = {1, iσA}, σα = {1, −iσA}, A = 1, 2, 3 . (4.45)

The orbifold projected Polyakov loop is writen as

P (0)(t, m⃗) = l(N5)(t, m⃗) g l(N5)†(t, m⃗) g† , (4.46)

And we define the displaced Polyakov loop

Z
(0),A
k (t, m⃗) = σA V ((t, m⃗, 0); k)Φ(0)†(t, m⃗ + k̂)V ((t, m⃗, 0); k)† Φ(0)(t, m⃗) ,

(4.47)

which assigns a vector and a gauge index to the observable appropriate to a

gauge boson where Φ(0)(t, m⃗) = P (0)(t, m⃗) − P (0)†(t, m⃗). The Higgs observable

is derived from the averaged over space and time location connected correlator

OH(t0 + t)OH(t0) =
1

L6T

∑
t0

∑
m⃗′,m⃗′′

tr{P (0)(t0, m⃗′)}tr{P (0)(t0 + t, m⃗′′)} (4.48)

and the Z-boson from the correlator

OZ(t0 + t)OZ(t0) =
1

L6T

∑
t0

∑
m⃗′,m⃗′′

∑
k

tr{Z(0),3
k (t0, m⃗′)} tr{Z(0),3

k (t0 + t, m⃗′′)} .

(4.49)

From Eq. (4.36), 1sr order correlation function of higgs mass is

C
(1)
H (t) =

8
N (4)

(P (0)
0 )2Π(1)

〈1,1〉(0, 0) , (4.50)
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where

Π(1)
〈1,1〉(α, β)

= 2
∑
p′
0

cos p′0t
∑

n′
5,n′′

5

∆(N5)
1 (n′

5)K
(−1)(p′0, 0⃗, n′

5, 5, α; p′0, 0⃗, n′′
5 , 5, β)∆(N5)

1 (n′′
5)

(4.51)

and

∆(N5)
1 (n5) =

N5−1∑
r=0

δn5,r

v0(r + 1/2)
= (1 − δn5,N5)

1
v0(n5 + 1

2 )
. (4.52)

This correlation function doesn’t contain torons. Because the 1st order mean-

field expansion of the correlation function is zero, we need 2nd order expansion

for Z mass. From Eq. (4.42),

C
(2)
Z (t) =

4096
(N (4))2

(P (0)
0 )4(v0(0))4

∑
p⃗′

∑
k

sin2 p′kΠ(2)
〈1,1〉(1, 1)2 , (4.53)

where

Π(2)
〈1,1〉(α, β)

=
∑
p′
0

eip′
0t

∑
n′

5,n′′
5

∆(N5)
1 (n′

5)K
(−1)(p′0, p⃗

′, n′
5, 5, α; p′0, p⃗

′, n′′
5 , 5, β)∆(N5)

1 (n′′
5) .

(4.54)

This correlation function contains regularizable torons, whose contribution van-

ish in the infinite lattice volume limit.

4.3.2 The static potential

There are three types of potential for orbifold boundary conditions. Here we

are interested in the potential along 4 dimensional hyper plane on the boundary.

We consider the Wilson loops with size r in one direction and take average over
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all directions. The exchange contribution (δ2Oc/δV 2) is

Oex ≡ t2

L3T
2(v0(0))2(t+n3)−2δM ′0δM ′′0

δn50(δα′0δα′′0 + δα′3δα′′3)δp′
00

δp′′
0 0

 ∏
M=1,2,3

δp′
M p′′

M

 1
3

3∑
k=1

2 cos (pkr) δn′
50

δn′′
5 0

(4.55)

The Self energy contribution is

Ose ≡
t2

L3T
2(v0(0))2(t+n3)−2δM ′0δM ′′0

δn50(δα′0δα′′0 − δα′3δα′′3)δp′
00

δp′′
0 0

 ∏
M=1,2,3

δp′
M p′′

M

 2 δn′
50

δn′′
5 0 . (4.56)

The first order correlation function is written as

C
(1)
W =

1
2

∑
α′,α′′

∑
p′

k

∑
n′

5,n′′
5

O
(
0, p′k, n′

5, 0, α′; 0, p′k, n′′
5 , 0, α′′

)
K−1

(
0, p′k, n′

5, 0, α′; 0, p′k, n′′
5 , 0, α′′

)
,

(4.57)

where O = Oex+Ose. Then, the potential is writen with the correlation function

as

V = const. − lim
t→∞

1
t

C
(1)
W

O[V ]
. (4.58)

Therefore, the potential along 4-dimensional hyper plane on boundary is

V4(0) = − log(v0(0)2) − 1
2

1
L3T

1
(v0(0))2

∑
p′

k{
1
3

∑
k

[
2 cos (p′kr) + 2

]
K−1 (0, p′k, 0, 0, 0; 0, p′k, 0, 0, 0)

+
1
3

∑
k

[
2 cos (p′kr) − 2

]
K−1 (0, p′k, 0, 0, 3; 0, p′k, 0, 0, 3)

}
. (4.59)
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Chapter 5

Results from Mean-Field calculation

5.1 The phase diagram and phase transition

Fig. 5.1 is the phase diagram which is based on the value of the mean-field.

We can see there are three phases. The red region is the confined phase where

v0(n5) = v0(n5 + 1/2) = 0 for all n5, the blue region is the layered phase where

v0(n5) ̸= 0 and v0(n5 + 1/2) = 0 for all n5 and the white region is Coulamb

phase (or deconfined phase) where v0(n5) ̸= 0 and v0(n5 + 1/2) ̸= 0 for all n5.

The green region is a kind of cross over phase. We can analyze only for the

Coulomb phase by mean-field expansion, because when the background is zero,

we can not obtain any information. Now, we are interested in the order of the

phase transition between Coulomb phase and the other two phases. We can find

out the order of the phase transition by the critical exponent ν which can be

obtain as follows

a4mH = A
(β − βc

β

)ν

, (5.1)

where mH is the higgs mass obtained from C
(1)
H . We see that the critical exponent

ν ≅ 1/2 for γ ≤ 0.6 and ν ≅ 1/4 for γ ≥ 0.65. It means that phase transition

for γ ≥ 0.65 is 1st order and for γ ≤ 0.6 is 2nd order. It means that the phase

transition between Coulomb phase and layerd phase is 2nd order and between
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Figure5.1 The mean-field phase diagram of the SU(2) orbifold theory in

the (β, γ, N5) space. The color code is explained in the text.

Coulomb phase and confined phase is 1st order. When the bulk phase transition

is first order, the four-dimensional lattice spacing a4 does not go to zero and it

is impossible to take a continuum limit. In this case the theory could be a low

energy effective theory that must be defined with a finite cut-off in the effective

action. When the phase transition is second order, one expects that the lattice

spacing goes to zero at the phase boundary. In this case a cut-off doesn’t need in

the effective action and the theory could be non-perturbatively renormalizable.

5.2 The masses

5.2.1 Higgs mass

The Higgs mass in units of the lattice spacing MH = a4mH is extracted from

C
(1)
H in Eq. (4.50). The Higgs mass is depends on the parameters β, γ and N5.

Using MH , we can get the Higgs mass in units of the radius of the fifth dimension

F1.

F1 = mH R = MH
N5

γ π
. (5.2)



5.3 Spontaneous Symmetry Breaking 39

The left plot in Fig. 5.2 is the N5-dependence of MH for γ = 1(isotropic lattice)

at β = 1.677. I choose β = 1.677 to be near the phase transition. The line in the

left plot in Fig. 5.2 is a quadratic fit. On the other hand in perturbation theory,

the Higgs mass from the one-loop result [27] for SU(N) is expressed as

Mpert.
H =

c γ π

N
3/2
5 β1/2

, c =
3

4π2

√
N ζ(3)C2(N) (5.3)

where C2(N) = (N2−1)/(2N). This plot also shows that MH cannot be lowered

to zero but approaches a nonzero values around 0.7. Therefore we can see that

the phase transition is the first order.

5.2.2 Direct Z boson mass

The Z boson mass in units of the lattice spacing Mdir.
Z = a4m

dir.
Z is extracted

from the correlator C
(2)
Z in Eq. (4.53). Mdir.

Z does not depend on β, γ or N5.

This means that the masses from the correlator C
(2)
Z is always infinite N5 limit

value.

The dependence on L is

Mdir.
Z =

4π

L
. (5.4)

This expression shows that this observable describes two non interacting gluons.

5.3 Spontaneous Symmetry Breaking

We can find out whether there is SSB by calculating the wilson loop. We expect

that the boundary gauge theory can be describe in four-dimensional term. So, if

the boundary U(1) symmetry is spontaneously broken the corresponding static

potential extracted from C
(1)
W should be fitted by a 4-dimensional Yukawa form.

The 4-dimenaional Yukawa potential is

V4(r) = −b
e−mZr

r
+ const. , (5.5)
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Figure5.2 The left plot is Higgs mass MH as a function of 1/N5 at γ = 1

for β = 1.677 with the line of a quadratic fit. The right plot is direct Z

boson mass Mdir.
Z as a function of 1/L at γ = 0.55 with the line of a linear

fit.

where b is a constant. The corresponding static force is

F4(r) =
dV4(r)

d r
= b

e−mZr

r
(m +

1
r
). (5.6)

To extract the Yukawa mass, we define the quantity y(r) = log(r2F4(r)) from

which we form the combination

a4y
′(r) = −MZ +

MZ

mZr + 1
, (5.7)

where MZ is the Z mass in lattice units defined as MZ = a4m4. Then we

determine MZ iteratively so that the plot −a4y
′(r)+MZ/(mZr +1) has plateau

at MZ . The plateaus do not depend on L if L is large enough. So MZ depends

only on β, γ and N5 for infinite L.

5.3.1 Isotropic lattice

The left plot of Fig. 5.3 is the plots of −a4y
′(r) + MZ/(mZr + 1) for various

N5 at fixed β = 1.677 and γ = 1 near the bulk phase transition. The plateau

values do not depend on L for L ≥ 200. The right plot of Fig. 5.3 is the plateau
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values of MZ from the right plot of Fig. 5.3 as a function of 1/N5. The blue line

is a linear fit with slope 3.32, which is very close to π and it describes the data

very well. These plot shows that gauge boson is massive on the boundary and it

means that there is the dynamical spontaneous breaking of the U(1) symmetry.

Note that, since β and γ are kept fixed and the location of the phase transition

βc depends on N5, the masses in Fig. 5.3 correspond to different lattice spacings.

In Fig. 5.4, the blue squares are plot of Higgs and Z boson mass ratio

ρHZ =
mH

mZ
, (5.8)

for N5 = 4, 6, 8 and L = 200. The ratio do not depend on N5 for these parame-

ters. We can see that the Higgs and the Z boson masses are almost same so that

ρHZ ≅ 1 for γ = 1 and F1 in the range [0.08, 0.4] In Fig. 5.4, the results from

Monte Carlo simulations at N5 = 4(diamonds) and at N5 = 6(circle) for L = 12

and T = 96 are also plotted. There is good agreement between the mean-field

data and the Monte Carlo data on isotropic lattice.
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Figure5.3 The left plot is the combination −a4y
′(r) + MZ/(mZr + 1), cf.

Eq. (5.7) plotted for different values of N5 at γ = 1 for β = 1.677. The right

plot is the Z boson mass MZ extracted from the left plot as a function of

1/N5.
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Figure5.4 The ratio of the Higgs to the Z boson mass Eq. (5.8). Compar-

ison of Monte Carlo (diamonds [18, 28] and circles [29, 30]) and mean-field

data (squares) at γ = 1.

5.3.2 Anisotropic lattice (γ = 0.55)

We are interested in the parameter region where there is 2nd order phase

transition(γ ≤ 0.6). So, I study static potential on the boundary and in the

middle of the orbifold at γ = 0.55 to find out whether there is SSB or not. In

this calculation, I set β to keep F1 = 0.2 constant, which means that MH ∝ 1/N5,

cf. Eq. (5.2). Fig. 5.5 is the plots of −a4y
′(r) + MZ/(mZr + 1) (see Eq. (5.7))

extracted from the boundary potential (left plot) and the potential in the middle

of the bulk (right plot). in the left plot, there are two plateaus for N5 ≥ 6 These

plateaus correspond to masses MZ′ > MZ which do not depend on N5 and Z ′ is

the first excited vector boson state. We also checked that the Yukawa masses are

independent of L for L ≥ 200. It means that there is SSB and the boundary U(1)

gauge symmetry is broken. We checked that the Yukawa masses are independent

of L for L ≥ 200. These data says that the boundary U(1) gauge symmetry is

broken.

The left plot of Fig. 5.6 is the plots of ρHZ corresponding the plateaus in the
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left plot of Fig. 5.5. It shows that we get ρHZ < 1 for that parameter region.

In in the left plot of Fig. 5.6(potential in the middle), there are only one plateau

for each N5. These plateau correspond Z boson mass MZ . The MZ is decreasing

as N5 increases and do not depend on L for L ≥ 200. It means that there is SSB

also in the bulk. This result is completely different from it is for the torus where

there is no SSB. We also observe a difference between the Yukawa masses in

the bulk as compared to those on the boundary. This situation is different from

the one of the isotropic lattice, where we found the boundary and bulk Yukawa

masses to be the same.
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Figure5.5 The combination −a4y
′(r) + MZ/(mZr + 1), cf. Eq. (5.7) is

plotted for different values of N5 at γ = 0.55 and F1 = 0.2 (for the boundary

potential at N5 = 4 we use MZ′). Boundary potential (left plot) and bulk

potential (right plot).
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Figure5.6 The ratio of the Higgs to the Z boson mass Eq. (5.8) in the

mean-field extracted from the static potential. On the boundary (left plot)

and in the bulk (right plot).

5.4 Dimensional reduction

Here I defined the ratio of the Higgs mass to the mass of the first excited vector

boson state
ρHZ′ =

mH

mZ′
. (5.9)

In the previous section the static potential is fitted by 4-dimensional Yukawa

potential. Such a fit makes sense if the spectrum can be interpreted as an effective

four-dimensional theory. However, it is not a precise definition of the dimensional

reduction. More constrained criteria for dimensional reduction are the following.

The definition of the dimensional reduction

• The static potential along 4-dimensional hyperplane can be fitted by the

4-dimensional Yukawa potential Eq. (5.5) with mZ ̸= 0.

This ensures that there is SSB, signaled by the presence of the massive

U(1) gauge boson. Otherwise the gauge boson is massless and only a
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Coulomb fit is possible.

• the quantities MH = a4mH and MZ = a4mZ are < 1.

This ensures that the observables are not dominated by the cut off.

• we have mHR < 1 and ρHZ > 1.

These two conditions ensure that the Higgs and the Z mass are lighter

than the Kaluza-Klein scale 1/R and Higgs is heavier than the Z. we will

target the value
ρHZ = 1.38 , (5.10)

which is (approximately) the currently favored value of the analogous

quantity in the SM, based on recent LHC data [4].

Here I have three observables F1, ρHZ and ρHZ′ and all three observables de-

pend on the three dimensionless parameters β, γ and N5. I consider to taking

continuum limit satisfying above criteria and keeping physical value same.

The procedure is the followings. First, I fixed F1 to a given value and ρHZ

to the value Eq. (5.10). With these two condition the value ρHZ′ become a

function of one parameter which I choose to be N5. Then we obtain the value of

the second excited Z boson mass m′
Z for each N5. We call such a trajectory on

the phase diagram a Line of Constant Physics (LCP) [31, 32]. In this calculation

I inserted the SM experimental value for mH and mZ . I checked that both MH

and MZ decrease as approaching phase transition. So, to obtain MH , MZ < 1,

we need to stay near the phase transition. I check also only for small γ regime we

can get ρHZ > 1. Thus I calculated LCP for small γ near the phase transition.

5.5 Lines of Constant Physics and the Z ′

The first LCP I construct is one where

F1 = mHR = 0.61 , ρHZ = 1.38 (5.11)
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F1 N5 γ∗ β∗

0.61 12 0.5460(33) 1.343501425

14 0.5320(10) 1.34442190

16 0.5228(7) 1.34664820

20 0.5028(18) 1.35582290

24 0.4844(32) 1.36940695

0.20 6 0.5113(15) 1.351160631

Table5.1 Bare parameters of the LCP defined by ρHZ = mH/mZ = 1.38

and F1 = mHR = 0.61, together with one point for a LCP with ρHZ = 1.38

and F1 = 0.20. The lattice gauge couplings β∗ correspond to the central

values γ∗ and are computed for future reference.

are kept fixed. On Fig. 5.7 I plot the corresponding points on the phase diagram,

which are listed in Table 5.1.

Along this LCP, I computed ρHZ′ for N5 = 12, 14, 16, 20, 24. On Fig. 5.7 we

plot the corresponding points interpolated by a black line on the phase diagram,

which are listed in Table 5.1. As I mentioned above the LCP is is constructed

for small γ near the phase boundary. This region of γ, the phase transition is of

second order.

For each value of N5 I constructed LCP, I also computed the Z and Z ′ masses.

for various values of the parameter γ.

The detailed calculation of the LCP is the following. First, I decided the

starting point of N5. After fixed N5, I determined β = β(γ,N5) so that F1 =

0.61. The value of L should be large enough to get clear plateaus so we set

L = 400 for all N5 values. Then I calculated the static potential on the boundary

for several γ values end extracted Z masses and Z ′ masses. The gauge boson

masses are extracted by identifying them as Yukawa masses as in Section 5.3.
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Figure5.7 LCP (black line) defined in Eq. (5.11) near the (tricritical point

of the) bulk phase transition. Red: Confined phase. Blue: Layered phase.

White: Deconfined phase. The magenta point (star) is on a different LCP

with F1 = 0.2, ρHZ = 1.38.

For instance, the left Fig. 5.8 is the plot of − [a4y
′(r) − MZ/(MZr/a4 + 1)] for

N5 = 24 and γ = 0.485. There are two plateaus. I defined MZ averaging the

smaller (red points) plateau points and MZ′ averaging the larger (blue points)

ones. The ranges of r values defining the plateaus are defined around the minima

of the derivative of − [a4y
′(r) − MZ/(MZr/a4 + 1)]. The errors of the masses

are the standard deviation of the plateau points. Then I computed ρHZ and

ρHZ′ with the known values of MZ and MH for several γ and plotted these on

the right plot of Fig. 5.8 as a function of γ. The upper red points is the values

ρHZ and the red line is it’s linear fit and the lower blue points and line is of ρHZ′ .
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Figure5.8 Left plot: plateaus of the quantity defined in Eq. (5.7) corre-

sponding to the Z (red points) and Z′ (blue points) masses. Right plot: the

ρHZ data (upper red circles) are lineraly interpolated (red line) to the value

of γ corresponding to ρHZ = 1.38 (marked by the dashed horizontal line).

The lower blue circles show the data for ρHZ′ with a linear fit (blue line).

The both data are fitted very well linearly. So, we can determine the γ = γ∗(N5)

such that ρHZ = 1.38 from the fit. In this case we get γ∗(24) = 0.4844(32) for

N5 = 24. And also we get ρHZ′ from the linear fit (the blue line on the left

Fig. 5.8) for γ∗(24) = 0.4844(32). I have done these calculation for each N5 and

the summary of the LCP parameters for all N5 values is given in Table 5.1.

Fig. 5.9 is the plot of ρHZ′ on the LCP line against a4mH for N5 =

12, 14, 16, 20, 24. Since, F1 = mHR = (a4mH)N5/(γ∗π), a4mH is proportional

to γ∗/N5 along the LCP. So, a4mH presents the physical distance to the

continuum limit. The straight line is the linear fit of the data. In principle it

wound be fitted with a quadratic curve because of the Symanzik analysis of

cut-off effects. The dominant contribution is expected to be from the dimension

5 boundary operator
π

4
(
F 1

5µF 1
5µ + F 2

5µF 2
5µ

)
δn5,0 (5.12)

multiplied by one power of the lattice spacing and from the dimension 7 bulk
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operator
1

2g2
5

1
24

∑
M,N

tr
{
FMN

(
D2

M + D2
N

)
FMN

}
(5.13)

multiplied by two powers of the lattice spacing [29]. In this study, we are very

close to the phase transition that is we are in a regime where the effect of the

dimension five boundary operator dominates. Therefore the data on Fig. 5.9 is

fitted lineary. By extrapolating to a4mH → 0 we get non-zero value of ρHZ′ .

ρHZ′ = 0.1272 . (5.14)

Inserting mZ = 91.19GeV, this implies mZ′ = 989GeV in the continuum limit.

Here, the χ2 per degree of freedom of the fit is 0.025/3.
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Chapter 6

Results from Monte Carlo

simulation

In this chapter I will show the result from Monte Carlo simulation. In the MC

simulation, I applied Hyper cubic (HYP) smearing [33] to obtain large number

operators to improve the generalized eigenvalues problem. HYP smearing is

briefly explained in the next section.

6.1 Hypercubic(HYP) smearing on the orbifold

The fat links are constructed by adding staples around the links. We only

add the staples in direction of 3 spacial dimensions and not in time and 5th

dimension. The fat links along 3 spacial dimension are constructed in two steps.

The fat links Vi,k is written with decorated links V̄i,k;l as

Vi,k = ProjSU(2)[(1 − α2)Ui,k

+
α1

4

∑
l ̸=m̸=k

{V̄i,l;mV̄i+l̂,k;mV̄ †
i+k̂,l;m

+ V̄ †
i,l;mV̄i−l̂,k;mV̄i+k̂,l;m}],

(6.1)
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where Ui,k is the original thin link. The decorated link V̄i,k:l is constructed with

the original thin link as

V̄i,k;l = ProjSU(2)[(1 − α2)Ui,k +
α3

2
{Ui,lUi+l̂,kU†

i+k̂,l
+ U†

i,lUi−l̂,kUi+k̂,l}],

(6.2)

where k, l,m = 1, 2, 3. V̄i,k:l represents the link at location i in direction k which

with is decorated with staples in direction l.

The fat links along 5th dimension is constructed in three steps. The fat links

Vi,5 is written with the decorated links Ṽi,5;k and Ṽi,k;5 as

Vi,5 = ProjSU(2)[(1 − α1)Ui,5

+
α1

6

∑
k

{Ṽi,k;5Ṽi+k̂,5;kṼ †
i+5̂,k;5

+ Ṽ †
i,k;5Ṽi−k̂,5;kṼi+5̂,k;5}].

(6.3)

Where Ṽi,5;k and Ṽi,k;5 are constructed with other set of decorated links V̄i,M ;k

as

Ṽi,5;k = ProjSU(2)[(1 − α2)Ui,5

+
α2

4

∑
l ̸=m̸=k

{V̄i,l;mV̄i+l̂,5;mV̄ †
i+5̂,l;m

+ V̄ †
i,l;mV̄i−l̂,5;mV̄i+5̂,l;m}].

(6.4)

Ṽi,k;5 = ProjSU(2)[(1 − α2)Ui,k

+
α2

4

∑
l ̸=m̸=k

{V̄i,l;mV̄i+l̂,k;mV̄ †
i+k̂,l;m

+ V̄ †
i,l;mV̄i−l̂,k;mV̄i+k̂,l;m}].

(6.5)

Ṽi,5;k is the link in direction 5 and Ṽi,k;5 is the link in direction k both at location

i and decorated in two spatial dimensions different than k. V̄i,M ;k are constructed

with original thin link Ui,M as

V̄i,M ;k = ProjSU(2)[(1 − α3)Ui,M +
α3

2
{Ui,kUi+k̂,MU†

i+M̂,k
+ U†

i,kUi−k̂,MUi+M̂,k}],

(6.6)
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where M = 1, 2, 3, 5. We chose the parameters α1 = 0.5, α2 = 0.4 and α3 = 0.2

for SU(2) orbifold.

6.2 Spectrum

Higgs masses and Z boson masses are obtained by applying generalized eigen-

value problem to operators calculated in MC simulation. I use two sets of Higgs

operators, see Eq. (3.26) and Eq. (3.27), and two sets of Z boson operators,

see Eq. (3.30) and Eq. (3.31) in section 3.5. The operators are calculated with

certain levels of smeared fields specified later. Applying Generalized eigenvalue

problem we get masses form these operators. I used two operator sets for each

Higgs and Z boson to improve the mass determination. I checked that the masses

extracted from individual set of operators are the same as the masses from two

sets of operators.

Higgs masses and Z boson masses obtained from MC simulation are plotted

on the Fig. 6.1. I have 5000 measurements and three levels of smearing between

15-45 for each operator. The blue points are the masses for L = 32, N5 = 4,

γ = 1 and β = 1.66, 1.68, 1.9 and the red points are the excited states. We

can’t get excited state for β = 1.9. The green points are the masses for L = 24,

N5 = 4, γ = 1 and β = 1.9 where again we cannot get excited state. A summary

of the data is in the Table 6.1.

From these data we see that the Z boson has nonzero finite mass. Also com-

paring L = 24 with L = 32 we see that the masses do not go zero as L → ∞.

This means there is SSB like we found in the Mean-Field calculation. On the

contrary the perturbative calculation gives zero Z boson mass. For L = 32,

N5 = 4, γ = 1 and β = 1.66 the Yukawa mass extracted from the boundary

static potential agrees well with Z boson mass in Table 6.1 [34].

In the right plot of Fig. 6.1, the magenta dashed line is the Higgs mass from
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perturbative formula Eq. (5.3). We see the non-perturbative Higgs masses are

bigger than perturbative one and they seem to approach to the perturbative

value as β → ∞.
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Figure6.1 Z boson mass and Higgs mass from Monte Carlo simulation

L N5 γ β mH mZ m∗
H m∗

Z

32 5 1.0 1.66 0.217(35) 0.466(34) 0.598(99) 0.616(84)

1.68 0.302(48) 0.551(44) 0.73(12) 0.76(11)

1.9 0.242(16) 0.340(20)

24 5 1.0 1.9 0.202(13) 0.271(14)

Table6.1 The Higgs and Z boson spectrum from Monte Carlo simulation
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Conclusion

I have done the non-perturbative study of GHU using Mean-Field expansion

and MC simulation. I worked on the pure SU(2) gauge theory with orbifold

boundary conditions and found out there is SSB even if there is no fermions.

The most interesting parameter region in the Mean-Field is where the anisotropy

parameter is γ < 0.6 near the phase transition. In this parameter region Higgs

can have the mass which is consistent with the experimental Standard Model

mass and we can take continuum limit along LCPs. Usually, 5-dimensional

theory is non-renormalizable, so the theory is dependent on the cut-off, however,

it is possible in the Mean-Field to take cut-off independent continuum limit in

this model because there is 2nd order transition line in small γ regime. Also,

there is possibility to verify the model by experiments because 1st exited state of

the Z boson is around 1TeV in continuum limit. The spectrum computed from

MC simulation confirms SSB as found in the Mean-Field.
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