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Abstract 

In this work, various carbon, metallic and semiconductor nanostructures were fabricated within 

collaborations and systematically investigated for potential field emission (FE) cathode applications.  

Various carbon-based cathodes were obtained by different chemical vapour deposition methods. 

Single-walled carbon nanotube (CNT) networks grown on n-Si substrates at ~150°C showed well-

homogeneous FE with ~104 emitting sites/cm2 at low onset field Eon (1nA) ~2.5 V/µm. During the 

local measurements Ø150 µm sites yielded stable currents up to 0.2 mA. Integral measurements of the 

whole cathodes revealed fairly homogeneous FE resulting in at least 10 mA/cm2. Arrays of entangled 

CNT bundles of ~2 µm height, 2-3 µm patch and 100, 10 and 5 µm pitch were grown on n-Si wafers 

with trimetallic Mo/Al/Ni layers. Highly efficient and well-aligned FE at Eon (1nA) ~15 V/µm was 

obtained from CNT arrays with a pitch of 100 µm, however, the highest current up to 0.5 mA at 400 V 

was achieved from a spot of 150 µm for cathodes with a pitch of 5 µm. Integral measurements of the 

whole cathodes showed fairly homogeneous FE at currents up to 4.4 A/cm2. CNT columns of Ø=250 

µm and different height (h = 70 or 350 µm) forming quadratic arrays with a pitch of 650 µm showed 

fairly aligned and efficient FE at comparatively low Eon (1nA) ~2 V/µm. Maximum current values up 

to 600 µA at 15 V/µm were achieved independently of the column height. The FE triode tests of 

single CNT columns yielded anode-cathode current ratio up to 97 % at a gate (anode) voltage of 247 

(2500) V. Structuring of carbon nanowall (CNW) films was successfully performed with a laser for 

the optimization of their FE properties. Such cathodes exhibited fairly aligned and efficient FE at Eon 

(1nA) = 10-20 V/µm. Local FE measurements of selected CNW patches revealed maximum current 

values up to ~100 µA. 

Mechanically stable and randomly distributed copper nanocones (Cu-NCs) were fabricated by 

ion-track template method. Depending on the process parameters, Cu-NCs of ~28 µm length, ~3 µm 

base, with different ~60-300 nm tip radius and number density were fabricated. The cathode with high 

number density of Cu-NCs (107 cm-2) yielded stable currents up to 280 µA at 100 V/µm from an 

emission spot of 30 µm. In contrast, the cathodes with a triangular patch array ( 150 µm, 320 µm 

pitch) of less Cu-NCs (105 cm-2) provided fairly homogeneous and well-aligned FE of all Cu-NC 

patches at much reduced Eon (1nA) <10 V/µm and demonstrated an average current of 30 µA/patch at 

32 V/µm. The FE performance of the Cu-NC cathode was improved by a thin Au coating resulting in 

an average current of 151 µA at 50 V/µm. Integral FE measurements on the whole Cu-NC cathode 

showed fairly homogeneous FE at 8 mA/cm2. 

Silicon technology is the most suitable for fabrication of highly-uniform arrays of bare p- and n-

type Si tips. Rather homogeneous and well-aligned FE from all tips and stable currents up to ~0.1 

(0.6) µA for p-(n-) type tips were achieved. In comparison, Au-coated n-type Si tips showed improved 

FE uniformity and at least 5 times higher current values (i.e. ~3 µA/tip), at ~30% higher extraction 

field though. P-Si tips showed a current saturation region of about 10 nA. In this region, emitters 

provide the highest current stability (<5%) and an optical current switching ratio of ~2.5. 

Potential applications of the described above materials are discussed.   
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1. Introduction 

Vacuum micro- and nanoelectronics attract much attention because of their several 

advantages compared with solid-state electronics [Dams11, Dams12, Boos11]. They offer a 

unique opportunity to build novel devices which are either not available or difficult to realize 

with semiconductor electronics and offer such advantages as high speed and low energy 

dissipation because of the ballistic electron transport in vacuum as well as performance 

unaffected by harsh environments.  

Potential applications include high-power millimetre-wave and terahertz sources 

[Boos08, Boos11, Qiu09, Kart04, Miln06a, Nati99], compact and fast-switching X-ray 

sources [Fili12, Jeon13a, Jeon13b], integrated sensor systems [Dams12, Serb13, Lee92], flat 

light sources [Obra13] and many others [Zhu01, Eich08, Brod94, Bust92, Sait10, Ren13]. For 

instance, the average power attained by solid-state devices at 30 GHz is about 1-10 W 

[Miln04, Miln06], whereas vacuum tubes are capable of providing hundreds of kilowatts of 

power at 35 GHz and at THz regime frequencies they provide power of about 1 mW instead 

of 1 µW for solid-state electronic devices [Koop12, Whal00, Boos08, Boos11, Qiu09, 

Whal09]. To obtain higher power levels in a THz regime, high current density of ~ 50-100 

A/cm2 is required [Boos11]. Development of high-power terahertz sources is a very 

challenging task and has many benefits such as higher-data-rate communication networks 

(internet, wireless, etc.). Moreover, the development of new security systems, new methods 

of biomedical diagnostics and many other applications are possible at THz frequencies 

[Kemp06, DARPA, DMRC]. 

The electron source is the main and most critical component of such vacuum micro- and 

nanoelectronic devices. Cold field emission (FE) cathodes offer significant advantages 

compared with thermionic and photoelectric sources in this respect [Nati99, Dams12, Eich08, 

Zhu01, Sait10]. The greatest advantages of cold cathodes are: low power consumption 

because thermal power is not required to produce the emission of electrons, therefore, FE-

based cathodes provide an opportunity to build compact and battery-powered electron sources 

or devices; fast response time and emission can be turned on with low gate voltages 

(< 100 V); high efficiency;  a narrow energy spread of the FE-emitted electrons (0.2-0.3 eV). 

Nevertheless, to compete with other methods, e.g., thermionic cathodes, current densities in 

the range of ~1-2 A/cm2 are required [Miln06a]. The development and investigation of 

different types of materials is needed, in order to achieve the required current values.    

Carbon-based, metallic and semiconducting nanostructures have mainly been discussed 

in the recent literature as base material for field emission cold cathodes [Eich08, Zhu01, 
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Sait10]. Carbon nanotubes (CNTs), since their discovery by Iijima in 1991[Iiji91], have been 

the most actively investigated material [Bona01a]. Because of their unique properties, a single 

CNT just a few nanometres in diameter can carry high FE current of ~ 2-8 µA [Dean00, 

Bona03], which is about 1000 times higher than for copper [Sait10]. Moreover, CNTs are more 

chemically stable than metals, i. e. CNTs are more robust and would have a longer lifetime in 

non-ultra high vacuum operation [Fili13], which is an additional advantage over metal field 

emitters. CNTs have some drawbacks, however, as high temperatures above 500°C are used 

for their synthesis [Ren13], and hence the use of flexible polymer substrates is not possible; the 

uniformity and  reproducibility of carbon nanotubes are still quite limited because the synthesis 

of CNTs with uniform chirality is a difficult task; CNT emitters suffer from poor contact to the 

substrate, which result in lifetime issues, high contact resistance and a limitation of the FE 

current; furthermore, varying alignment and positioning of single nanotubes [Navi10, Navi10a] 

often limit the FE homogeneity and cause low transmission efficiency of the triode structures.    

Metallic nanostructures could be good alternatives to CNTs in terms of higher 

controllability, reproducibility and better contact with the substrate. Promising FE results have 

been reported for unstructured cathodes with randomly distributed copper [Maur06], gold-

coated nickel [Dang07] and gold nanowires (NWs) [Dang08]. Patch arrays of multiple Au-

NWs obtained by a shadow mask during heavy-ion irradiation of the template [Toim12, 

Kari07] yielded high efficiency, good alignment and FE homogeneity at a suitable onset field 

[Navi09, Navi10]. The FE current limit of such patches, however, varied strongly because of 

random destruction of individual NWs caused by their insufficient substrate contact regarding 

both poly-crystalline [Dang08, Kari07, Navi09, Navi10d, Navi10c] and single-crystalline Au-

NWs [Navi10c]. 

Advanced Si-based semiconductor technology is the most suitable for fabricating uniform 

and sharp nanostructures in exactly the right position. Furthermore, the electric properties of 

silicon emitters can be controlled by doping over a wide range, which is not possible for 

metals [Sze07]. B-doped Si-tip arrays are most attractive because the field emission current 

can be extremely stable (< 1-5%) [Serb13, Teep05, Schr74,] and, in addition, the FE current 

can be switched by illumination with light [Serb13, Teep05, Sch74, Born12]. 

The goal of this thesis is a systematic investigation of various types of nanostructures as 

cold FE cathodes. For this purpose, different carbon-based, metallic and semiconducting 

nanostructures were fabricated by chemical-vapour deposition, ion-track template [Toim12, 

Serb12a] and anisotropic etching techniques, respectively [Dams12, Serb13]. The FE 

properties of these nanostructures were investigated. The possible application is also discussed. 
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2. Theoretical background of electron emission  

The escape of electrons from the surface of a condensed phase (e.g. metal) into another 

(classically a vacuum) is defined as electron emission [Lath95, Gome93, Zhu01]. There are 

several methods of obtaining electron emission from the surface of metal [Gome93, Furs05, 

Eich08, Zhu01]. The first way is to heat the metal up to high temperatures (above 1000°C); 

this method is known as thermionic emission [Dush23]. In this case, heat energy is 

transformed into kinetic energy and electrons get additional energy. If the obtained energy 

exceeds the work function of that metal, the electrons overcome the potential barrier on metal-

vacuum interface and leave the metal. The second method which does not require metal 

heating is known as cold or field electron emission. Field emission takes place when applied 

electric field is high enough to reduce the potential barrier on metal-vacuum interface. In this 

case electron can pass through this barrier due to quantum-mechanical tunnelling. Two other 

methods are associated with the bombardment of the metal surface with photons or beam of 

electrons and, respectively, these two methods are called photoelectron and secondary 

electron emission [Eich08]. It is also possible to combine these types of electron emission, for 

example, Schottky emission process in which the high electric field and temperature are 

applied to the metal. The comparison of these methods shows that FE has several advantages, 

resulting in its preferable use in vacuum electronics, such as low power consumption, fast 

response time, high brightness, compactness, high efficiency and the beam and the energy 

spread of the FE-emitted electrons are narrower.  

This chapter contains the basic theoretical material and background of electron emission 

under applied electric field. It will be described how the electrostatic field depends on the 

presence of nanostructures, their geometry, position on the metal surface and how the 

presence of adsorbates influence the stability of electron tunnelling. 

2.1. Electron emission from metals under applied electric field  

The field emission was first observed by R. Wood in 1897 [Wood97], while the first 

approximate explanation of the FE phenomenon was developed by W. H.  Schottky [Scho23]. 

Later however, the FE theory was considered in a different way by R. H. Fowler and L. W. 

Nordheim, in order to improve the theoretical explanation and its correlation with the 

experimental results [Fowl28]. The phenomenon of field emission is based on the effect of 

quantum-mechanical tunnelling [Schi68] of electrons via a thin potential barrier at an ideal 

clean and flat metal surface. For field emission to occur, the applied eclectic field E must be 

of about ~ 107 V/cm or 1 V/nm. In fig. 2.1 a schematic illustration of the FE is presented. 
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Under applied external electric field E, the vacuum level bends by the amount (-eEz) 

outside the metal, and when combined with the image charge effect [Nord28, Scho23, Eng85, 

Forb12a, Fan42] the potential energy barrier is reduced by ∆φ. The potential barrier is 

described by a function, which takes into account the image effect     

)0(,
16

)(
0

2

 zeEz
z

e
zV


,    (2.1) 

where -e2/16πε0z is the potential energy from the image charge effect, -eEz is the potential 

energy outside the metal, e is the electron charge, z is the coordinate perpendicular to the 

surface of metal and ε0 is the dielectric constant of the vacuum.  

At a high field value, the width of the barrier becomes small enough that the electrons 

from the metal have a non-zero probability to pass through the barrier to vacuum.  

 

Fig. 2.1. Schematic illustration of the electron tunnelling from Fermi level Ef through 
the potential barrier (V(z)) on metal-vacuum interface. Δφ is the reduction of the work 
function potential barrier height φ (Schottky lowering effect) due to image charge effects 
under applied electric field [Scho23, Eng85, Forb12a, Nord28, Oost66, Eng85, Nati99]. z - is 
the distance of electron from the metal surface.    

 
According to the Fowler-Nordheim (FN) theory, the field emission current density 

through the barrier is expressed by 
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where q is the electron charge; N(E) is the total number of electrons striking unit area of 

surface in unit time and having energy E; D(E) is the probability of electrons, which is 

depends on the barrier’s width and height.  

The simplified FN equation for an ideal flat and clean metal surface with constant 

electric field outside it is given as follows 
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with j(E) in A/cm2; E in V/cm; φ is the work function in eV and Fowler-Nordheim constants 

A = 1.541410-6 A eV V-2 and B = 6.8308107 eV-3/2 V nm-1; y is the Nordheim parameter, 

which is given by  /y , where Δφ is the Schottky barrier lowering 

EEe 2
0

3 1079.3)4/(   (in eV) [Scho23, Forb12a] and φ is the work function of 

the metal. t(y) and υ(y) are Nordheim functions that include the image charge effects. These 

parameters are tabulated and can be found in [Bur53] or in the ref. [Forb06].  

When the image charge effect is not taken into account, the equation (2.3) is given by 

            

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The electric field E between ideally clean and flat metallic electrodes is homogeneously 

distributed and can be calculated as E = V/d, where V is the applied voltage and d is the gap 

between the electrodes. In that case, to pull the electrons out of the metals (depends on the 

work function) a high electric field of about 2-4×107 V/cm is required [Fowl28]. However, it 

has been found experimentally that the field emission appears at much lower fields of about 

3-6×104 V/cm [Nied86, Dang07, Navi10]. An explanation for this effect was made by W. 

Schottky in 1923. He suggested the possible existence of a pointed microtip (or surface 

roughness) on the metal surface that can enhance the external electric field by factor β, so that 

Emax = β∙E [Scho23]. The apex of the microtip corresponds to an effective emitting area S and 

therefore I(E) = S∙J(E).   

In the presence of a pointed tip on the metal surface, the applied electric field is 

distributed non-uniformly as shown in Fig. 2.2. Numerical simulation of the electric field 

shows that the largest field of ~ 4 V/µm is at the tip of the emitter, while on the flat part of the 

cathode the field is ~1 V/µm. Hence, the original FN equation (2.4), which is correct for flat 

and clean emitter surface with constant electric field outside it, can not be used.     

 
Fig. 2.2. Results of a numerical simulation of electric field distribution between two planar 

electrodes (1 mm spacing) in the presence of a tip on the cathode surface shows the nonuniformity of 
the E; field enhancement at the apex of the tip achieves  4 V/µm compared to 1 V/µm on the flat part 
of the cathode [Navi10]. 
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Thus, Fowler-Nordheim equation (2.4) has to be modified as follows  
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where β is the so-called geometrical field-enhancement factor, which reflects the ability of the 

emitters to enhance the local electric field, S is an effective emitting area in cm2 through 

which the emission current flows. The β and S parameters can be found from the current-

voltage (field) curve plotted in the Fowler-Nordheim coordinates ln (I/E2) versus 1/E as 

follows  

K

B 2/3
   , 
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)exp(
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A

C
S


                                             (2.6) 

where K is the slope of the FN plot, and C is the crossing of the y-axis (or its liner fit). 

As can be seen from the equation 2.5 the field emission current depends strongly on the 

applied electric field and on the field enhancement factor β and on the work function value φ. 

Therefore, a slight change in the values of these parameters leads to significant changes of FE 

current. This standard Fowler-Nordheim-like equation is widely used to interpret of field 

emission from a single emitter or from large-area field emitters, for example, from Spindt 

arrays [Spin76]. Nevertheless, R. Forbes reported that the equation (2.5) may lead to 

erroneous conclusions on FE performance from large area arrays when experimental results 

are not clearly reported [Forb12a, Forb13]. As follows from equation 2.6, the variation in the 

slope of the FN plot (hence, the different value of the field enhancement), shows the change 

of the work function since the vacuum gap remains constant [You09].   

2.2. Field enhancement factor, mutual shielding and adsorbate effects  

Many different geometrical models of field emitters have been suggested to estimate the 

value of the field enhancement factor β. Utsumi et. al. concluded that the cylindrical tip with 

hemispherical end provided the highest β value [Utsu91, Giva95, Edgc01] and can be 

calculated as follows  

2
r

h
          (2.7) 

where h is a tip height and r is a tip radius of curvature.  

C. Edgcombe and U. Valdre combined computational and experimental investigations 

of the field enhancement factor as a function of aspect ratio h/r for a cylindrical tip of radius 

r = 10 nm between planar electrodes at a fixed gap of 100 µm and the anode voltage of 

1000 V [Edgc01, Bari11, Forb03]. The calculated β values were slightly lower than expected 

and did not follow to the equation 2.6 (if h/r is more than 10). The reason of such a result can 
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be explained by the different values of the gap and will be discussed below. A line in fig. 2.3 

represents the following approximations  

91.0)2(125.1 
r

h
           (2.7) 

While, the experimental results showed that the field enhancement factor in the range of 

h/r between 100 and 500 at the anode-cathode gap of 100 µm, can be approximated by 

      
r

h
 72.0                    (2.8) 

The achieved results are in good agreement with those suggested by others [Bari11, Groe99].  

 
Fig. 2.3. The field enhancement factor β as a function of aspect ratio h/r for a 

cylindrical tip of radius 10 nm for a fixed gap of 100 µm [Edgc01].  

 

Fig. 2.4. Simulation of the electric field for various half-angled field emitter shapes, h = 
10 nm, r = 1 nm, V = 1 V at a vacuum gap d = 100 nm [Bari11]. 
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In fig. 2.4 the simulation of the electric fields at the apexes of various cylindrical and 

conical emitters at a fixed tip radius, emitter height and vacuum gap is presented. The result 

shows the expected highest field enhancement of 11.78 from the cylindrical-shaped emitter 

and the resulting beta value corresponds to the equation 2.7. While the conical structures 

show a decrease in beta value from 11.46 to 9.96. It means the field enhancement factor 

depends on the base radius of the cones and decreases when their base area becomes larger.     

E. Givargizov et. al. reported that the field enhancement factor might be significantly 

higher than mentioned above when a small particle is sitting on the end of the tip (Fig. 2.5a) 

[Giva95].  In this case, the field enhancement factor is determined as the product of two β 

values (Fig. 2.5b, c) and, therefore, the FE current appears at much lower electric field.    

 
Fig. 2.5. SEM image of single-particle coated Si tip (a).Schematic diagram of an emitter 

without (b) and with (c) particles on the end of the tip. [Giva95]. 
 

Furthermore, Zhong et. al. and other researchers reported that the field enhancement 

factor also depends on the vacuum gap [Zhon02 , Dang08, Xue06]. When the vacuum gap is 

increased from 0.7 to 5.2 mm, the field enhancement factor extracted from the slop of the FN 

plot increases from 3700 to 15000 (Fig. 2.6). The result also shows that 1/β is linear to 1/d.  

 
Fig. 2.6. FN-plots of FE from CNTs on an iron tip with different vacuum gaps and 

relationship of the field enhancement factor β and vacuum gap d. The results show a linear 
dependence of the β vs. d [Zhon02].  
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Above, the dependence of the field enhancement factor on the tip shape, height and 

radius of curvature and inter-electrode distance was presented; however, there is another 

important parameter influencing the FE properties is the spacing between emitters. It has been 

shown that closely-spaced emitters reduce the field enhancement factor due to insufficient 

electric field penetration between parallel standing tubes of 1 µm height as shown in fig.2.7 

[Bona01b, Nils00, Miln04, Teo02]. The strongest emission was for the distance of 4 µm, 

while moderate and the lowest enhancement was at 1 µm and 0.5 µm, respectively. Hence, to 

minimize field-shielding effects and to optimize FE current density, the distance between 

vertically aligned emitters have to be by twice larger than their height [Miln04, Nils00, 

Hira08].         

 

Fig. 2.7. Simulation of the equipotential lines of the electrostatic field for field emitters 
of 1 µm height and 2 nm radius, for distances between them of 4, 1 and 0.5 µm [Nils00].  

 
Actually, the FE from a single emitter have been extensively studied experimentally and 

theoretically, while electron emission from a large area cathode is much more complicated 

due to non-uniformities of emitters and shielding of densely packed emitters. In order to 

analyze the nonuniformity in the FE arrays, F. Dall'Agnol and D. den Engelsen used 

COMSOL Multiphysics® simulation software. Fig. 2.8 shows the simulation results of a 3×3 

emitter array for four different situations:  

 in the first case only the heights of the emitters in a square structured array are varied. 

As can be seen, the maximum electric field is concentrated on the top of highest emitters, 

while the shorter tubes are shielded. Hence, the FE current will be provided by the highest 

CNTs.  

 in the second case, emitters have the same pitch and the same height, but different 

diameter. It means that the screening effect is nearly the same for all tubes, but the field 

enhancement factor is different for all emitters. Hence, the maximum electric field at the apex 

of the thinner tube and the FE current comes from individual sharper emitters.        
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 in case where only the position of the emitters is varied, some tubes are more shielded 

than the others, however, the electric field at the tips look more uniform than in the first and 

second cases. In this situation the total FE current depends less on location than on the 

diameter and the height of the emitters.  

 finally, all three parameters were taken into account. The result is nearly similar to the 

first case where the current is determined by the highest emitters, while the others are 

shielded.  

 

Fig.2.8. Simulation of a 3×3 tip array with different geometry and position of emitters: 
in (a-c) only one parameter, correspondingly, the height, radius and location is varied, while 
in (d) all three parameters are taken into account. The red color shows the highest field 
[Dall13]. 

 
These results can be taken into account in estimating of the efficiency and stability of 

the field emitters in the array. However, simulation of larger arrays and taking into account all 

the possible effects (variation of the tip geometry, the number density of emitters, shielding, 

heating and adsorbate effects, coating with other metals and etc.) is difficult to realise due to 

(a) Height 

(c) Position 

(b) Radius 

(d) All 3 parameters 
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insufficient computer memory and long simulation times. Thus, to build structured cold 

cathodes with optimal FE properties, experimental investigations are needed.  

Actually, interpretation of experimental results is based on the FN theory, which 

describes the field electron emission from perfectly clean and flat surfaces (see chapter 2.1). 

However, practically, field emission even at ultra high vacuum (10-9 mbar) is very sensitive to 

slight changes of the potential barrier due to the presence of gas atoms (adatoms) or 

molecules such as H2, N2, O2, H2O that can be adsorbed onto the cathode surfaces (i.e. W, Ni 

and CNTs). It was reported that  the presence of the gas molecules change the FE properties 

for a fixed electric field, i.e. the adsorption and desorption of the atoms produce instabilities, 

switching between electronic states, deviation from linearity of the FN plots and resulting in 

unrealistic values of the field amplification factor [Burc80, Ehrl61, Alfe67, Zeit88, Zeit91, 

Dong03].  

At first, such changes were associated only with the changing of the work function 

through the adsorbates [Ehrl61, Good56]. Nevertheless Duke and Alferieff reported that 

adsorption changes the field electron emission via the effective work-function to be used in 

the FN equation (2.2) is not correct, because the adsorbed atom changes the shape of the 

electrostatic potential seen by tunnelling electron and thus its tunnelling probability [Duke67, 

Gadz95]. The influence of gases on the emission currents from metallic emitters in ultra high 

vacuum can be found elsewhere [Luon95].  

Adatoms can be easily desorbed by heating of cathode surface. Dong and Gupta 

reported that the baking of the vacuum chamber and cathode under 150°C does not effectively 

clean the cathode surface and that the gas adsorption in the low current regimes and 

desorption under high currents results in different FN results (Fig. 2.9) [Dong03].  

 

Fig. 2.9. FN plots of multiwalled CNTs tested four times in 10-9 mbar vacuum after 
baking the chamber at 150°C. The anode-cathode gap is 100 µm. After several up and down 
voltage cycles the CNT surface was cleaned due to Joule heating at the high emission current 
resulting in a straight FN line [Dong03].   
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Changes in the FN-slope are mainly due to variation of the adsorption state in the low 

current region, while in the intermediate range, gas removal occurs due to the Joule heating. 

In the high FE current range electrons emit from the clean surface resulting in intrinsic 

emission and repeatable data. The third intrinsic regime may not occur if the surface contains 

many chemical and physical defects. A slight deviation between the third and second cycle is 

associated with a time gap (about 15 hours) between the measurements. This means that 

during this time the reoccupation of the emission sites by gases occurred. The fourth cycle, 

which was performed after the cleaning of the CNT surface by the FE current for 6 h, yielded 

a minimum deviation from the intrinsic line.                  

2.2. Field emission from semiconductors 

The initial theory of FE from semiconductors was developed by Margulis in 1947 and a 

few years later in 1955 supplemented by R. Stratton in the same way as employed by Fowler 

and Nordheim for metal [Marg47, Stra55, Zhu01, Modi84]. The total energy distribution of 

field emitted electrons from semiconductor was studied by Modinos in detail [Modi74, 

Modi84, Furs05, Huan97, Gome93, Sze07].  

Similar to metals, FE from semiconductors can also be described as having a free 

electron gas [Stra55]. Nevertheless, electron emission comes from both the conduction band 

Ec and the valence band Ev [Stra55, Furs05, Huan97], which are separated by a band gap Eg as 

shown in Fig. 2.10.  

 

Fig.2.10. The simplest model of field emission from n-type semiconductor (the same 
model is true for p-type). For tunnelling of electrons from top of the valance band at the same 
barrier width as for the conduction band, a higher applied electric field F is required. Please 
note that any image force, penetration effects and surface states are neglected [Stra55, 
Bari11].  
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The surface barrier height (the energy required to remove an electron) in the conduction 

band is denoted by χ, while for the valence band, the surface barrier height is χ+Eg. The 

corresponding FE current from both the conduction and the valence bands may also be 

defined by Eq. 2.4 by replacing of the work function φ by χ and χ+Eg, respectively. Field 

emission from the valence band is often ignored because the top of this band is about 5 eV 

below the vacuum level [Huan97]. Hence, if the surface states [Huan97] are also ignored, the 

electron emission comes from the conduction band and depends on both the tunnelling 

probability through the barrier and on the electron supply to the emitting surface [Liu06]. 

Nevertheless, proof of valence band electron emission from high receptivity n-type silicon 

field emitters was first reported by Ding et. al. in 1999 [Ding99].  

In contrast to metals, semiconductors have a much lower density of electrons that result 

in a deeper penetration of an applied electric field into the semiconductor than in metal. 

Theory indicates that in the metal the depth penetration is about 0.03 nm and, therefore, may 

be neglected [Stra55, Schr74]. However, in case of semiconductors the depth of field 

penetration is about 1 nm or less and depends on several parameters such as the cathode 

temperature, the doping level and the band gap [Tson79, Schr74].  

The field penetration into the semiconductor causes the bending of both conduction and 

valence bands at the emitter surface as shown in Fig. 2.11 [Stra55, Furs05, Gome93, Schr74, 

Huan97]. The field penetration is also results in the reduction of the field enhancement factor 

β [Schr74, Chia06], i.e. when the field penetrates into the emitter and its surface is no longer 

equipotential.        

 

Fig. 2.11. Field emission from the conduction band of an highly doped n-type 
semiconductor under applied electric field. The conduction bands have bent below the Fermi 
level [Stra55].    

Ev 

Ef  - V0 V0 

Valence 
band 

Conduction 
band 

χ - (Ef  - V0) 

Ec 
Ef 

Semiconductor Vacuum 

E 

Field, F 

 



___________________________________________________________________________ 
14 Chapter 2. Theoretical background of electron emission 

When an electric field F is applied to the surface, the conduction band is bent by energy 

V0 below the Fermi level, so that electrons collect in the dip. Obviously, the highest filled 

level of the collection coincides with the Fermi energy level. In this case, the height of the 

barrier is getting smaller by an amount 0VE f   and the effective barrier height is given 

by: )( 0VE feff   .  

Experimental data on p-type (or high resistivity n-type) and n-type semiconductor for 

gated and ungated emitters showed different FE properties [Liu06b, Chia09, Schr74, Teep05, 

Born12, Kane97, Serb13]. For p-type semiconductors the external field penetrates more 

deeply into the emitter forming a depleted space-charge layer of finite thickness. Some 

authors used the saturation of reverse current in a p-n junction to explain the formation of 

depletion layer [Kane97, Arth65, Sze77]. This region is free from carriers and the FE 

becomes limited by the supply of electrons resulting in a saturation region in the logarithm-

scaled plot of the emission current versus the inverse voltage (field). In contrast, n-type 

semiconductor yields a linear FN behaviour, indicating that the FE is limited only by the 

transparency of the surface barrier [Furs05].  

The FE results from p-type semiconductors were presented and discussed in detail by 

others [Arth65, Bask71, Yats70, Huan97, Liu06, Schr74, Borz66, Bask71, Born12]. General 

features of field emission are summarized in Fig. 2.12. Three different regions in the current 

voltage curve can be observed: (I) metal-like field emission, (II) current saturation, (III) 

avalanche breakdown or emission from both valence and conduction bands:  

  

Fig. 2.12. Current-voltage behaviour of a p-type semiconductor field emitter in FN 
coordinates.  The energy band diagrams correspond to regions I, II and III [Schr74, Ding99]. 

 
I. At low applied voltage, the concentration of electrons in the conduction band is 

sufficient, and the electron emission follows the FN theory for metal and, therefore, the plot in 
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II. As the applied voltage increases, the supply of emission from the conduction band is 

limited due to field penetration that creates a depletion region. As a result, the emission 

current is limited and the slope of the FN-behaviour remains constant. The end and the height 

of the plateau are dependent on the size of the depletion region and different for different 

doping level (resistivity of semiconductors) [Teep05]. The FE current can be increased by an 

external source, i.e. by photo- or thermal-excitation [Schr74, Liu06, Serb13, Born12, Ding99, 

Teep05].      

III. At higher voltage the FE current increases rapidly [Ding99, Schr74, Serb13]. In 

practice, this region often leads to destruction of the emitter and, hence, emission from this 

region is often not considered. Some authors attributed the phenomenon of rapid current rise 

to electron generation through impact ionization [Liu06, Schr74, Huan97b, Bask71], while 

the others argue that this is due to field electron emission from the valence band [Ding99, 

Borz66, Bask71]. In addition, they suggested that the electron emission comes from a two-

stage process: electron come from the valence band to the conduction band and then to the 

vacuum. Ding et al. also suggested that a further increase of the applied voltage might lead to 

the saturation of valence emission and the second change in the slope of the FN plot can occur 

[Ding99].  

P-type semiconductors are very interesting because they may provide a very economic 

and technically better solution for many applications where the presence (absence) of light or 

temperature is sensed.    
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3. Potential applications of cold field emission cathodes 

Despite the fact that the vacuum electronic devices can operate at a higher frequency 

than the best solid-state materials (Fig. 3.1), such as silicon Si, gallium arsenide GaAs and 

indium phosphide InP, vacuum electronics will not replace widely used silicon technology, 

but will fill many niches where it is difficult or impossible to use solid-state electronics 

[Boos08, Fish88]. For example, solid-state devices are very sensitive to ambient fluctuations 

of temperature and ionizing radiation, which can disrupt a semiconductor’s crystal structure. 

Therefore, vacuum technology might be very attractive for the commercial or military 

communication systems and NASA, which need to operate at frequencies approaching 1 THz 

and/or in harsh environment [Brod89, Sze07, Bari11].   

 

Fig. 3.1. The transit time of electrons across a gap of d = 500 nm as a function of an 
applied voltage in vacuum and solid-state materials [Brod89].  

 
Vertical vacuum diodes (two electrodes) and triodes (three electrodes) configurations 

are presented in fig. 3.2. In these configurations, electrons are extracted from the cathode and 

collected at the anode. The triodes have an additional control electrode, which allows fast (in 

the nano- or microsecond time range) and accurate control the emission current.  
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Fig. 3.2. The vacuum diode (a) and (b) triode configurations [Bari11]. 

Thermionic emission is the most widely used method of obtaining electron emission 

from the surface. However, due to the high temperature of the cathode (>1000°C), the 

miniaturization of thermionic-based devices is quite a challenge [Sait10]. In contrast, FE 

sources have several advantages such as [Miln04, Brod89, Nati99] 

1. The distance between the electrodes can be very small because heating is not required 

and therefore short electron transit times and miniaturization of vacuum devices 

possible.  

2. Low power consumption. That is an important parameter for compact devices. 

3. Quick response time to the variation of an applied electric field and a non-linear 

current-field relationship mean that a very high current density can be obtained in a 

short time from extremely small cathodes, e.g. 1000 electrons in 10-13 seconds from an 

area of 10-8 cm2 corresponds to a current density of 1.6×105 A/cm2. 

4. A high brightness electron beam and the narrow energy spread of electrons [Jong03].  

5. Direct modulation of electron beams at RF frequencies [Whal00, Miln06a, Nati99]. 

6. Manufacturing of FE emitters can be combined with Si technology [Han12, Serb13].  

7. Easy to program electronically.  

Therefore, the FE cathodes have potential for use in a wide variety of applications, such 

as compact vacuum amplifiers, such as travelling wave tubes [Boos11, Zhu01, Ren13, 

Bark05, Eich08, Boos08, Pier50, Whal00, Whal09, Kemp06, Ives04] and compact free 

electron lasers [Brau98, Patt10], miniature and battery-powered X-ray tubes [Fili13, Qian12, 

Zhan05, Sait10, Eich08], vacuum sensors [Bust92, Schr11, Eich08, Wen07], high brightness 

sources of light [Eich08, Zhang05, Obra13, Sait10], efficient field emission displays [Spin88, 

Brod94, Bust92, Song02, Cran12, Eich08, Sait10, Furs05], mass spectrometers [Han11], e-

beam lithography [Teep05, Mura00, Miln06], electron gun in microscopes and others [Zhu01, 

Eich08, Brod94, Bust92, Sait10, Ren13]. 

The main goal of this chapter is to give a brief overview of potential application areas of 

cold cathodes. The selected fields that have high potential are presented below.  
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3.1. Fast-switchable and miniaturized X-ray source  

Since the discovery of X-ray radiation in 1895 by W. Röntgen [Rönt96], it has been 

used in a wide variety of applications such as diagnostic medical imaging and therapy 

[Fili13], security and industrial inspection [Sait10]. The generation of x-rays is based on the 

principle of striking a metal target with high accelerated electrons. In 1913, W. Coolidge 

introduced a hot tungsten-filament cathode for the X-ray tube, which is suitable for use in 

nonultrahigh vacuum [Cool13, Day96, Eich08]. Since then, the design of the thermionic 

emission X-ray tube was changed, but the basic principle is still in use.  

In medicine portable and miniature X-ray tubes (tube diameters less than 10 mm) which 

can produce high resolution images in a short exposure time to avoid motion blur and/or to  

kill the cancer without damaging surrounding healthy tissues are required, i. e. such X-ray 

tubes have to be applicable for therapy and radiography [Send04, Fili13]. Traditional 

thermionic-based X-ray technology, however, has some limitations for developing of 

miniature tubes [Liu06c]: (a) short life-time: thermionic cathodes become thinner and thinner 

during a period of time due to tend to react with residual water molecules and an oxide and 

the sublimation of the oxides [Sugi01, Yue02]; (b) a high cathode operating temperature 

limits the miniaturization of advanced X-ray imaging systems [Fili13] and their 

programmability [Xin, Jeon13a, Jeon13b]; (c) slow response time and low temporal and 

spatial resolutions for imaging of rapidly moving objects (e.g. lung and heart) [Bade04, 

Liu06c, Qian12, Xin]. These limitations are possible to overcome by the generation of X-ray 

tubes by means of field emission [Dyke56]. Several types of miniature vacuum-sealed FE-

based X-ray tubes have been recently developed and one example is shown in fig. 3.3 [Fili13, 

Jeon13a, Jeon13b, Heo12, Send04].    

 

Fig. 3.3. (a) Optical image of the vacuum-sealed digital miniature X-ray tube. The 
diameter and the length of the X-ray tube are 6 mm and 32 mm, respectively; (b) schematic 
diagram of x-ray tube; (c) X-ray image of a computer mouse taken at the anode voltage of 
25 kV and the cathode current of 80 µA [Jeon13a]. 

(a) (c) (b) 
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FE-based X-ray tubes are also attractive for the development of multi-beam X-ray 

devices for imaging of objects from various viewing angles without any mechanical motion. 

That can significantly increase the scanning speed and the range of viewing angle and 

resolution of the current computed tomography scanners [Kale05, Qian12, Zhan05, Zhan06, 

Sait10]. At present, many researchers around the world are now actively developing this 

technology. For example, a 5-beam FE X-ray source was reported by Zhang et. al. in 2005 

(fig. 3.4) [Zhan05]. Since then, a linear 25-beam and 31-beam FE X-ray sources [Qian09, 

Qian12] as well as the curved X-ray source with 100 individual FE-based tubes [Xin, Sait10] 

have been demonstrated for digital breast tomosynthesis [Alak13]. In the future, due to the 

fast response time, FE-based X-ray tubes might provide real-time 4D (3D+time) image 

processing. 

 

 Fig. 3.4. (a, b) Schematic illustrations of a multi-beam X-ray source with 5 individual 
FE-based X-ray units (each pixel of about 1.5 mm in diameter, the distance between them is 
about 1.27 cm). The anode voltage is 40 kV, while the dc gate voltage of each X-ray tube is 
controlled independently by a transistor circuit. (c) Stability of the cathode current (100 µA) 
over a 30 min. (d) Five projection images of a blade from various viewing angles taken at 
anode voltage of 40 kV, 25 µA cathode current and 5 s exposure time. The resulting focal spot 
(the size of the anode that emits x-rays) is between 200-300 µm [Zhan05].  

  

3.2. Millimeter-wave and THz amplifiers  

The milimeter-wave and terahertz (THz) region (frequencies from 0.1 to 10 THz or 

wavelengths from 3 mm to 30 µm), which falls between the microwave and the infrared 

spectrum (Fig. 3.5), is very attractive for scientific, industrial and military applications 

(c) (d



___________________________________________________________________________ 
20 Chapter 3. Potential applications of cold field emission cathodes 

[Will06, Boos08, Fede10, Drag04, Drag11], because radiation at these frequencies is non-

ionizing (as compared to x-ray) and can penetrate through a lot of materials, reflect back as 

well as provides wide bandwidth and channels for the next-generation of communications 

systems.  

 

Fig. 3.5. Schematic of the electromagnetic spectrum showing the THz gap [Will06]. 

 
However, this region is almost undeveloped due to the difficulties associated with the 

lack of sufficient power. So far, various approaches have been proposed to solve this problem, 

but the maximum output power is still limited [Boos08, Boos11]. For instance, 

semiconductors devices such as diodes or transistors have a frequency limit below several 

hundred GHz, which is limited by the transient time, parasitic RC time constants and the 

smallest unit size that can be fabricated by lithography. The power range of these devices 

decreases with increasing of the frequency and scales as P ~ f -2 [Boos08]. The average power 

attained by solid-state devices at 30 GHz is about 1 W and close to 1 THz is only a few µW 

[Miln04, Boos08]. In contrast, photonic or quantum electronic devices (such as quantum 

cascade lasers) are not limited by the transient time or RC time constant, but can not operate 

at frequency less than 10 THz [Will07, Hu09, Boos08]. In addition, a solid-state electronic 

source has low threshold for voltage breakdown (e.g. 40 V for GaAs and ~100 V for GaN 

[Azam10]) and it is not able to remove heat generated by the electron current in the active 

area (where the kinetic energy from the electrons is converted into electromagnetic field 

energy) at high microwave electric field strengths. In contrast to solid-state devices, vacuum 

tubes are capable of providing hundreds of kilowatts of power at 35 GHz and at THz regime 

frequencies the output power is at least 1 mW [Koop12, Whal00, Boos08, Boos11 Qiu09, 

Whal09]. To obtain higher power levels at THz regime, the high current density ~ 50-100 

A/cm2 is required [Boos11]. Therefore, a possible approach, to increase the output power in 

the region from 0.1 to 10 THz, could be the use of vacuum amplifiers, e.g. a traveling wave 

tube (TWT) which is shown in fig. 3.6 and 3.7 [Ives04, Qiu09, Boos08, Pier50].  
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The most important part of this device is the electron gun that has to provide a high 

current in order to amplify an electromagnetic THz signal. Field emission-based electron 

guns, due to several reasons mentioned above, provide an opportunity to build relatively 

simple and compact high current electron gun for TWT. The simulation results also show that 

the FE-based cathode is a good candidate for the generation of millimeter and terahertz waves 

[Lin05, Lin07, Lin08]. Moreover, a cold cathode TWT developed at L-3 Communications 

Electron Devices in San Carlos (California, USA) yielded 100 W  (the cathode current was 

120 mA) output power at 5 GHz that demonstrates the practical feasibility of such TWTs for 

communication, data link and radar applications [Qiu09, Whal09].     

 Fig. 3.6. Schematic of the traveling-wave tube. The electron gun generates the electron 
beam, which travels in helical coil, where the electrons are velocity modulated by an input 
signal to form the bunches. Then, the energy from the electron bunches is extracted from the 
helix output. A collector, which is located at the other end of the tube, stops the electron beam 
[adapted from Brit, Miln06, Miln04, Pier50]. 

 

Fig. 3.7. Photograph of a cold cathode-based travelling-wave tube generating 100 W of 
RF output power at 5 GHz. The cathode current is 121 mA [Qiu09, Whal09]. 
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3.3. Vacuum sensors 

Vacuum is defined as an area that is filled with air or any other gases at pressure less 

than atmospheric pressure [Eich08, Laff98, Made84, Ohan98, Roth76, Redh68]. Depending 

on the types of vacuum pumps and their combinations [Eich08], different levels of vacuum 

can be obtained in the laboratory or industrial environments (Tab. 3.1). The instruments used 

for measuring the pressure are called vacuum sensors [Frad10]. There is no single sensor 

which could measure the full range of vacuum pressure. Therefore, different vacuum sensors 

such as Pirani sensor, friction sensor, capacitance sensor and ionization vacuum sensor are 

used [Wen07, Frad10].  

Table. 3.1. Vacuum ranges [Dyla06]. Note: 1 Torr is equal to 1.33 mbar or 133 Pa.  

 
Ionization vacuum sensors are able to measure the pressure between 10-2 and 10-10 Torr 

[Laff98]. A possibility of using FE cathodes as electron source in ionic sensors was 

investigated in detail by Alexandrov et. al. [Alex07], by Kendal [Kend97, Kend99] and by 

Peacock et. al. [Peac91]. Lee et. al. proposed another idea of FE-based pressure sensor and 

presented a detailed theoretical analysis [Lee91, Lee92]. The pressure sensor based on diode 

structure, which consists of a FE cathode and a thin diaphragm as a pressure sensitive element 

and an anode (fig. 3.8). The FE emission current is determined as a function of the pressure. 

Similar work has been done by Wen et. al. [Wen07]. In his work, at a fixed anode voltage, 

when the pressure changed from 37 kPa to 7.7 kPa, and, as a result of that, the FE current 

increased from 80.3 µA to 96.3 µA.     

 
Fig. 3.8. Schematic of a FE-array-based diode pressure sensor with a thin pressure-

sensitive silicon diaphragm. [Lee91, Lee92]  
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4. Experimental techniques for cold cathodes and surface analysis  

This chapter introduces and provides a brief description of the instruments and methods 

being used for study field emission and cathode surface properties. The design and operating 

features of field emission scanning microscope (FESM), integral measurement system with 

luminescent screen (IMLS), and scanning electron microscope (SEM) will be described. 

Despite the fact that all the methods were developed earlier [Mahn95, Pupe96, Habe98, 

Lyse05, Lyse06], some optimization of measurement procedures was needed for this research. 

4.1 Field emission scanning microscope (FESM) 

The FESM is a unique microscope being used for the localization of field emitters on 

cold cathodes of up to 25×25 mm² and measuring the FE properties of single emitters or a 

group of them (Fig. 4.1). The samples are installed by means of a linear transport system 

through a preparation chamber with a base pressure of 10-7 mbar onto the rotatable dock 

holder or scanning stage. The cathode is located in the UHV camber with a base pressure of 

10-9 mbar in the focus of the Ion gun, Auger Electron Spectroscopy (AES) and Scanning 

Electron Microscope (SEM) on the XYZ piezo translator stack, which can be tilted with 

respect to the anode.     

       

Fig. 4.1. Schematic illustration of the field emission scanning microscope (FESM) 
(left) and inner view into the UHV chamber of the FESM (right). The cathode is located in the 
focus of the Ion gun, AES and SEM (top) on the XYZ piezo translator stack (bottom) which 
can be tilted with respect to the anode.    

 
The power supply FUG HCN 100 M-10000 with a PID controller provides a highly-

stabilized DC voltage up to 10 kV (10 mA current) with manual or GPIB control. The FE 

current from 20 fA up to 20 mA can be measured with a picoammeter Keithley 6485 (at 

speeds up to 1000 reading per second) or from 10 fA to 0.3 A with an analog electrometer 

Keithley 610C. The gap between the cathode and the anode is controlled by an optical long-

distance microscope (Questar QM-100) or calculated by an U(z)-plot [Navi10, Lyse06]. 
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The resolution of the FE scans depends not only on the step of stepper motors 

(minimum step width is ca. 63.5 nm) and the anode-cathode distance, but also on the size of 

the anode. For the preparation of the anodes, an additional equipment, consisting of a voltage 

power supply and a wire holder, is needed (Fig. 4.2). The tip holder is mechanically held onto 

the setup and can be easily vertically moved by means of a screw. Applying the DC voltage 

between the two electrodes, anodes of different sizes in the freshly prepared solution of 

NaOH can be fabricated as shown in fig. 4.2.   

    

 Fig. 4.2. Layout of the electrochemical etching setup (left) and SEM images of the 
prepared tungsten anodes of different size and shape: truncated cone and tip-like (right). 
 

It should be noted that the electric field is almost homogeneous distributed for the 

truncated cone (flat) anode (see fig. 4.2right) [Song13], while the geometry of the tip-like 

anode and the electrode spacing has to be taken into account on the calculation of the electric 

field as can be seen from fig. 4.3. The electric field should be corrected with factor α, 

resulting in decreased electric field [Habe98].   

 
Fig. 4.3. Variation of the factor α vs. ratio of the gap d to the tip radius r. Inset shows 

the electric field distribution for a tip curvature of 5 µm [Habe98].  
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Why the FESM investigations of cold cathodes are so important? The FE properties of a 

cold cathode with a single emitter can be easily characterized in terms of its maximum current 

value, stability and field enhancement factor and for that it does not need special equipment. 

However, investigation of large cathodes (e.g. 1 cm2) with large number of emitters is more 

complex and more careful analysis is required. The reason for that is the variation of the 

geometry of the individual emitters (different field enhancement factor due to fabrication 

difficulties) and effect of the mutual shielding of closely spaced emitters. Presence of a few 

very strong emitters results in variation of the FE properties from one position to another 

within the cathode. Therefore, careful investigation of the surface of the cathodes and the 

detection of strong and weak emitters, which plays an important role in terms of current 

stability and lifetime of the whole cathode, is highly critical.  

The FESM can operate in two measurement modes: at the constant voltage mode 

(CVM) and at the constant current mode (CCM). In both cases the data (the FE current or the 

applied voltage) is measured as a function of tip position. The CVM is analogous to the FE 

monitored on a phosphorous screen, but with higher resolution and lower current (< 1×10-7 

A/cm2). However, the use of this method can destroy the emitters with a strong amplification 

factor and damage the picoammeter. In order to avoid emitter degradation, current saturation 

effects and to prevent instrument destruction, the PID-regulated V- scans are typically carried 

out at a fixed FE current [Nils01, Grön03, Lyse05]. Fig. 4.4. shows a medium resolution 

voltage map U(x,y) for 1 nA and the corresponding current map I(x,y) at 900 V. From the 

voltage map the potential number density of emitters of about 16×104 emitters/cm2 could be 

detected. However, the current map shows the actual number of about 4×104 emitters/cm2 at a 

given voltage value, that is more interesting from the point of view of applications. Therefore, 

analysis of the cathodes in both the CCM and CVM is necessary for a better understanding of 

the FE properties and further improvement and optimization of nanostructures. 

      

  Fig. 4.4. Medium resolution voltage map (left, scanned area ~ 300×300 µm2, Øa = 10 
µm, Δz < 20 µm) and corresponding current map (right) at a fixed FE current of 1nA and 900 
V, respectively. Potential emitter number density at low current is ~ 16×104 emitters/cm2; the 
actual number at 900 V is about 4×104 emitters/cm2.    
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4.2 Integral measurement system with luminescent screen (IMLS) 

Another important measurement technique is used for the investigation of the field 

emission properties from a whole cathode at 10-7 mbar (Fig. 4.5). The integral measurement 

system with the luminescent screen provides the information about the distribution of 

emission site over the cathode. Nevertheless, the resolution is limited by the grain size of the 

phosphors (usually, the grain size varies from 1 µm to 8 µm). The FE current from the 

cathode can be measured in dc or pulsed modes in a triode or diode configurations. In order to 

decrease the power load on the sensitive luminescent screen and to prevent its destruction 

(evaporation of the luminescent layer material is controlled by a quadrupole mass 

spectrometer QMG 112) at high applied voltages, pulsed mode is more preferable than dc 

[Lyse05]. Low-voltage ZnS based-phosphors have a minimum threshold for screen response 

of about 10-7 A/cm2 at 500 eV, while the maximum input beam power density to the screen  

(0.3-35 Watt/cm2) depends on the mode of operation [Prox, Kimb, Fitz98]. The maximum FE 

current from the cathode can be achieved by using a metallic anode.    

    

Fig. 4.5. A schematic view of the integral measurement system (IMLS) in triode (diode) 
configuration in DC mode and photo of the IMLS with installed luminescent screen. 
  

The triode measurements of a structured cathode or a single emitter can be performed at 

a fixed anode-gate distance (at a fixed cathode-gate distance), while the cathode-gate (anode-

gate) distance can be changed by using a stepping motor from 0.1 to 20 mm (Fig. 4.6).  

The circuit diagram of the IMLS is given in Fig. 4.7. Low voltage pulses (0.4-10 Vdc), 

that are generated by a pulse generator (Hewlett-Packard 8013A) and controlled by an 

oscilloscope, can be amplified by the high-voltage source (FUG HCN-250M 5000, 50 mA) up 

to 5000 Vdc within 2 ms. Due to the different rise-time required for a different value of the 

output voltage, a minimum pulse width for the correct measurements is 1-3 ms (table 4.1). 

The two-resistor voltage divider (1:500, 50 kΩ and 25 MΩ) is used to reduce a high voltage. 

A single ballast resistor (10 Ω or 100 kΩ or 2MΩ) can be plugged into the circuit to limit the 
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FE current and to protect the cathode against electrical discharges, while the other resistors 

(from 1 MΩ to 200 Ω) are needed for the FE current read-out. The gate voltage and the 

cathode current signals pass through impedance transformer and digitized by a Keithley 

KPCI-3102 12-bit analog-digital converter (ADC). The anode voltage can be increased 

manually up to 12.5 kV using a high voltage generator (FUG HCN 350-12500, 25 mA). The 

gate and the anode current are measured by HP 31401 A and Agilent 34301 A using the 

Keithley KPCI-488LPA GPIB/IEEE-488 interface. A ccd camera (Basler acA-1300-30gm/gc, 

1296×966 pixel, 3.75×3.75 µm pixel size) and attached the high-magnification manual focus 

zoom lens (OPTEM MVZL 18-108 mm, f/2.5) provide high resolution and a rapid readout of 

the luminescent screen images via a Intel Pro 100 GT GbE PCI card and LabVIEW 2010.      

  

Fig. 4.6. Images of the IMLS system in a triode configuration at a fixed anode-gate 
distance (left) and at a fixed cathode-gate distance (right). 

 
Fig. 4.7. A circuit diagram of the IMLS in the triode configuration. 
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Table 4.1. The high voltage output of the FUG HCN-250M 5000 in pulsed mode. 
Output 

voltage, kV 
Rise/fall 
times, 

ms 

Recommended 
minimum pulse 

width, ms 

O-scope image of the square-wave input 
voltage (upper) and a peak high output 

voltage (lower): 

0-0.5 0.4 

1-2 

 

0.5-1.0 0.4-0.6 

1.5-2.0 0.9-1.2 

2.5-3.0 1.3-1.5 2-3 

3.5-4.0 1.6-1.9 
3-5 

4.5-5.0 2.0-2.2 

 
The maximum bandwidth of the FE measurements in pulsed mode is limited by the 

capacitance of the IMLS and coaxial cables [Spin86, Wu09]. For typical coaxial cables RG 

58C/U the capacitance is about 100 pF per meter cable length that is much greater in 

comparison with the capacitance of the IMLS system (Fig. 4.8left). During the rise (fall) time 

of the anode voltage, charging (discharging) of the system occurs (Fig. 4.8right), and due to 

the minimum rise-time of the high voltage output signal is about 0.4 ms, short current pulses 

(faster than 1 ms) are detected incorrectly. Therefore, in order to minimize the capacitance 

value and unwanted signal, the length of the cables has to be as short as possible.  

   

Fig. 4.8. Left: partial capacitance of the IMLS system (coaxial cables are not connected 
to the vacuum chamber) between the air-separated (Δz = 200 µm) luminescent screen and the 
alumina holder (Ø=15 mm) is about 30 pF. Right: oscilloscope screen displays the anode 
voltage waveform (upper curve) and the corresponding FE current (bottom) versus time. 

 

In addition, the FE current stability and lifetime of emitters can be characterized at high 

and poor vacuum conditions. For this, different high-purity gases (99.5% or greater) such as 

nitrogen, oxygen or hydrogen can be used. At the same time, by means of a Balzers QMG-

112 mass spectrometer, evaporation of the luminescent layer at a high FE current can be 

controlled. Finally, the distance between the sample holder and the luminescent screen is 

measured with the Mitutoyo depth micrometer (Series 129-110, 0.01 mm resolution).       
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3.3. Scanning electron microscope with EDX 

The resolution of a traditional optical microscope is limited by the wavelength of the 

incident light. The most powerful optical microscope can provide observation of particles 

with 100-200 nm size. In order to observe smaller particles, a scanning electron microscope 

was developed in the early 1930’s. Scanning electron microscope (SEM) allows taking 

images of the surface of a sample with resolution less than 1 nm (mainly limited by the width 

of the electron beam and the interaction of electrons with specimen atoms) by scanning it 

(like electrons in CRT tube) with a narrow beam of electrons. The basic principle is that the 

electrons are produced in an electron gun and accelerated with a high voltage to high speeds, 

pass thought a system of focusing lenses and bombard the surface of the sample to produce 

feedback signals (Fig. 4.9). Depending on the type of signal, different information about the 

sample can be obtained. For example, to observe the morphology of the sample, secondary 

electrons can be collected by a secondary electron detector and the resulting signal is analyzed 

with the software and displayed on a screen.   

  
Fig. 4.9. Various signals are created during a collision of electrons with the surface 

(left); schematics of the electron penetration depth (right) [Reim98].    
 

In addition, it is possible to get the elemental analysis or chemical characterization of 

the samples. Thereto, an energy-dispersive X-ray (EDX) detector (attached to the SEM) is 

used. After irradiation with primary electrons, atoms of the sample are excited and generate x-

rays (Fig. 4.9). Since each chemical element has a specific set of X-ray energies (due to 

quantization of energy levels), nearly all elements can be detected. Light elements like H, He, 

Li cannot be analyzed because of no x-rays or extremely low X-ray energy [Reim98].   

These methods are non-destructive that gives the possibility to analyze the sample 

several times. However, there are some specimen requirements for testing. The samples must 

be clean, dry and, what is very important, electrically conductive and grounded to avoid 

electrostatic charge and image artefacts. In this work, SEM analysis of nanostructures before 

and after the measurements was performed using a Phillips XL30S with EDX or Jeol 6500 

scanning electron microscope with a resolution of 2 nm or 3 nm, respectively.  
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5. Field emission from carbon nanostructures 

Carbon nanotube (CNT), discovered by Iijima in 1991 [Iiji91], is a relatively new 

material that is intensively investigated by many researchers around the world and which has 

opened new opportunities for the development of new nanoelectronic devices [Sait10, 

Zhu01]. Due to high aspect ratio, which results in high FE currents at low electric fields, 

CNTs are considered as the most favourable material for electron field emission. Moreover, 

this material has unique electrical and physical properties [Ren13], e.g. CNTs are chemically 

inert for formation of undesired bondings; depending on their chirality and diameter, CNTs 

can be semiconducting or metallic; due to strong covalent bonding, CNTs possess extremely 

high mechanical strength and resistant to bending that make them very steadfast to the 

destruction under high FE currents and stable under ion bombardment at moderate vacuum 

conditions [Ha13]; they have higher thermal (up to 5800 W×m-1×K-1) and electrical 

conductivity than other conductive materials such as copper [Sait10]. In addition, CNTs can 

also carry a very high current density (up to 109 A/cm2) before the electromigration [Miln06].  

Nevertheless, carbon nanotubes have some disadvantages that need to be processed in 

order to fully exploit their potential in application as a material for FE cathodes. CNT emitters 

suffer from poor contact to the substrate, which result in lifetime issues, high contact 

resistance and a limitation of the FE current [Nils01, Purc02]. Furthermore, varying alignment 

and positioning of single carbon nanotubes often limit the FE homogeneity [Navi10, Navi10a] 

and cause low transmission efficiency of the triode structures. Other difficulties are associated 

with the reproducibility and uniformity of the CNT emitters, which is still quite poor and 

limited because the synthesis of CNTs with uniform diameter and chirality remains a difficult 

task.  

In this chapter, different approaches of improvement of the contact interface of CNTs as 

well as the field emission homogeneity, alignment and efficiency of the CNT cathodes for 

diode and triode applications will be presented. Moreover, based on electron trajectory 

calculations using COMSOL Multiphysics® software, a highly efficient triode structure was 

found. Finally, in order to optimize the densely grown carbon-based nanowall samples, laser-

structuring of the these films into arrays of square patches of different size was performed and 

their FE properties were investigated. For these approaches, however, the synthesis of 

different carbon-based samples was performed by various chemical vapor deposition methods 

in research cooperation with the Belarusian State University of Informatics and 

Radioelectronics (Minsk, Belarus), Technische Universität Darmstadt (Darmstadt, Germany), 

Ajou University (Suwon, South Korea) and with the University of Duisburg-Essen and 

CeNIDE (Essen, Germany).  
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5.1. CNT networks grown at ~ 150°C on Si substrates  

The FE homogeneity of most CNT cathodes is still limited by their rather fast and 

uncontrolled growth which usually leads to a strongly varying field enhancement and current 

carrying capability of the individual emitters. In addition, the maximum achievable current 

density of structured CNT cathodes is usually limited by their contact interface and the 

current supply through the substrate which can be much improved by a layer of surrounding 

CNTs [Navi10a]. It is well known that high quality CNT cathodes are usually fabricated by 

chemical vapour deposition (CVD) techniques at temperatures above 500°C which exclude 

their applicability to cheap low temperature substrate materials like polymer foils.  

Thin films of CNT networks due to their high conductivity, transparency and flexibility 

are considered as a promising material not only for the field emission but also for the 

fabrication of flexible electronic devices such as transparent transistors [Aika12, Sun11, 

Artu05], supercapacitors [Kaem13], solar cells [Rowe06], organic light-emitting diodes 

[Zhan06], field emission symbol displays or lamps [Sait10, Spin76, Rash00, Smit98] and 

others [Hu10, Yell11]. For such devices, at least two transparent and flexible conductive 

electrodes are required. The first electrode (anode) can be fabricated by using a phosphor, 

polymer substrate and indium-tin-oxide. However, for the fabrication of the second one 

(cathode) on a flexible polymeric substrate using CNTs as the electron source is rather 

complicated due to high temperature of the CVD process.  

Therefore, CNTs are usually produced in post-synthesis process by spin-coating, spray-

coating, wet-coating, microwave-welding, filtration, printing method or by separation of 

CNTs from the initial substrate and subsequent transfer onto another substrate using acids 

[Jeon11, Lyth07, Tsai09, Wang07, Hu10, Yell11].  

The direct growth of CNTs onto flexible polymer substrates (Kapton® foil) using 

plasma enhanced chemical vapour deposition (PECVD) at 200ºC was reported by Hofmann 

et. al. [Hofm03a, Hofm03b]. However, transmission electron microscopy (TEM) analysis of 

produced CNTs showed more defects than CNTs grown at 600ºC (or higher temperatures) 

and hence the FE measurements showed rather high onset electric fields. Therefore, new 

approaches are needed.    

This sub-chapter of the thesis reports on a new recently developed low-temperature 

CVD process based on a reactor with two temperature zones which can be independently 

controlled. Depending on the various process parameters, self-structured CNT networks with 

some outgrowth of vertically-oriented single-wall CNTs were achieved. The FE properties of 

these cathodes were systematically measured.   
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CNT networks were fabricated in the group of B. Shulitski and Prof. Dr. V. Labunov in 

the Laboratory of Integrated Micro- and Nano-systems at Belarusian State University of 

Informatics and Radioelectronics (Minsk, Belarus). The CVD growth procedure is reported in 

detail elsewhere [Labu12]. Briefly, the CNT networks were grown directly on n-type Si 

substrates (6×6 mm size, 0.01 Ω∙cm) using a new CVD process based on a reactor with two 

temperature zones (Fig. 5.1). Supported by a strong Ar carrier gas flow (100 см3/min), the 

catalytic pyrolysis of mixed hydrocarbons (solution of ferrocene (Fe(C5H5)2) in p-xylene 

(C8H10) and ethanol (C2H5OH)) was performed in the hot zone at 700-1100°C, while the 

growth of CNT onto Si wafers was carried out in another zone of the reactor at 100-150°C.  

 

   

Fig. 5.1. CVD equipment and the associated schematic drawing (more detailed 
disclosed in the Eurasian Patent № 015412 from 30.08.2011) and specification [Labu12].  
 

Depending on the temperature of both zones, the injection rate of the hydrocarbon 

mixture, and the carrier gas flow, self-structured networks of highly entangled CNTs were 

obtained after 10 minutes of deposition time. As shown in Fig. 5.2a-d, the CNTs agglomerate 

into well-separated hills of entangled CNT bundles. The clearly visible round particles are 

metal-catalyst and a low-crystalline carbon. High-resolution SEM images have also revealed 

sparse outgrowth of vertically-oriented СNTs (typical length ~1 µm) which should result in 

high field enhancement and low onset fields. In addition, their anchoring in the few µm thick 

CNT network might improve the current carrying capability of the emitters. Moreover, TEM 

images reveal the presence of the single-wall nanotubes in bundles (Fig. 5.2e,f).  
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Fig. 5.2. SEM (a-d) and TEM (e,f) images of the sparsely distributed and horizontally 
oriented single-walled CNT networks. The diameter of CNTs is about 0.8-1 nm [Labu12]. 

 
The Raman spectrum collected by using a laser with λ = 532 nm (Fig. 5.3).  Peak at 

1580 cm-1 (G-line) corresponds to the twice degenerated deformation oscillations of the 

hexamerous ring in E2g electronic configuration of D4
6h crystal symmetry. This peak testifies 

to the presence of carbon in the form of ordered hexagonal lattice. Second peak at 1320 cm-1 

(D-line) corresponds to the vibration state of the ruinous hexagonal lattice near the crystals 

boundary and witnesses the presence of the not fully ordered transition forms of carbon 

(milled graphite, soot, another carbonized substances). The ratio of the intensities IG/ID = 5,6 

characterizes high quality the structure of synthesized CNT networks. The peaks in the RBM 

region (at frequencies of 223 cm-1 and 263 cm-1) testifies to the presence of single-walled 

CNTs in the networks with diameters of 0.87-1 nm in the bundles. The CNTs diameter was 

calculated by means of the following expression: ν = 6.5+223.75/d, where ν, cm-1 is the 

frequency of the radial modes oscillations of the CNTs hexagonal lattice. The pick in the 

range of 1500 cm-1 (G-line) testifies to the considerable presence of single-walled CNTs with 
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Fig. 5.3. Raman spectrum at 532 nm exitation of single-walled CNTs [Labu12]. 
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In order to optimize the fabrication parameters of the CNT networks and to evaluate 

their suitability for FE devices, a row of cathodes with varying thickness has been produced 

on n-type Si substrates. Their systematic investigation started with the field emission 

scanning microscope at ~10-7 Pa using tungsten anodes of diameter Øa = 150 µm at fixed gap 

Δz of 50-100 µm, which was estimated by means of U(z)-plot [Lyse05]. The FE homogeneity 

and current stability off the whole cathode were tested in pulsed diode configuration (tilt-

corrected Δz ≈ 550 µm) of the integral measurement system with luminescent screen at a 

vacuum of ~10-5 Pa [Lyse05]. 

 The best FESM results have been obtained for the thinnest CNT network cathodes. 

PID-regulated voltage scans U(x,y) at a constant current of 1 nA revealed well-distributed FE 

with number of emitters Ne ~104 cm-2 at an electric onset field Eon(1 nA) ≈ 2.5 V/µm as 

shown in Fig. 5. 4. The position of the strongest emitters corresponds well to the gas flow 

conditions, i.e. nearly homogeneous FE along and a Gaussian-like FE profile (full width 

~3 mm) across the gas flow. Therefore, a homogeneous FE on large substrates could be 

achieved by their “scanning” or with a larger reactor. In comparison, the cathodes with a 

higher density of CNT hills showed similar results but at higher Eon(1 nA) = 3-6 V/µm.  

     

Fig. 5. 4.  Regulated voltage map (Øa = 150 µm, Δz = 50 µm for 1 nA, 3×3.5 mm2 area) 
of the same CNT network cathode as shown in Fig. 5. 2. 
 

The current carrying capability of the self-structured CNT networks was locally 

measured with the same anode size. After some initial current processing, a stable and 

reproducible current curve with a constant FN plot was achieved up to 100 µA for all 

cathodes. The best result yielded nearly stable current (fluctuations < 5%) up to 220 µA (j = 

1.25 A/cm2 at 8.5 V/µm) as shown in fig. 5.5. The corresponding FN plot shows a linear FN-

like behavior up to 160 µA, which corresponds to a current density of 0.9 A/cm2, while at 

higher FE current (> 0.9 A/cm2) the plot starts to deviate from the FN theory. Similar changes 
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in the FN plot were observed on individual single- and multi-wall nanotubes [Bona98, 

Dean00]. Bonard et. al. reported that the deviations from the FN behaviour point to the 

presence of a non-metallic density of states at the tip of the nanotubes [Bona98]. While others 

argued that the deviation associated with adsorbate [Dean00, Dong03, Murr13], space-charge 

effects [Barb53, Chen09, Jens10], high contact resistance [Chen12, Lugi96] or can be 

attributed to degradation of the high aspect-ratio CNTs [Bona98] or due to interaction 

between emitters at high field [Coll97, Nam07] or due to non-Shottky-Nordheim barrier 

[Buld03] and non-uniformity of emission sites [Obra03, Eda08].  

 

Fig. 5.5.  Typical I-V and FN (inset) curves locally measured with Øa = 150 µm at Δz ≈ 
72 µm on the same CNT network cathode as in Fig. 5.4.  

 
The field enhancement factor derived from the non-saturated region of the FN-plot 

assuming a work function value of about 4.9 eV for CNTs [Chen03] is 528 that is in good 

agreement with the aspect ratio of CNTs as shown in Fig. 5. 2. Increase in field enhancement 

factor at high field mainly attributed to the effects mentioned above.  

 

Fig. 5.6. SEM images of the self-structured CNT networks with sparsely (a) and densily 
(b) destributed hills processed up to I ~ 0.4 and 0.5 mA (Øa = 150 µm). 
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SEM images of the processed spots revealed only slight morphology changes for stable 

current but more severe ones in case of strong current jumps. Typical examples are given in 

Fig. 5.6 where some field alignment of the emitters can be seen for the thin CNT network but 

complete disruption and folding for the thick CNT network.  

IMLS measurements of the cathode with a thin CNT network yielded fairly 

homogeneous emission (Fig. 5.7) and revealed an achievable current density of at least 

10 mA/cm2 at 8.5 V/µm limited by the high power load on the luminescent screen which led 

to active layer evaporation and electrical discharges. For the full exploitation of optimized 

CNT network cathodes metallic anodes will be therefore required. The observed hysteresis in 

the current field curve is attributed to the degradation of the strong single emitters.  

    

 Fig. 5.7. Luminescent screen image of FE distribution from a self-structured thin CNT 
network cathode (similar as in Fig. 5.1.2) and the corresponding I-V curve (peak current ~2 
mA (or 10 mA/cm2)at 5.3 V/μm, pulse length 5 ms, duty cycle 1:4, Δz ≈ 550 µm).  

  
In conclusion, a new low temperature (below 150°С) method of direct formation of 

horizontally aligned CNT networks on Si substrates by thermal CVD using volatile catalyst 

was developed. Deposition on large area surfaces might be possible by having a larger 

reactor. The results of the local and integral measurements show rather promising FE 

properties. Samples with sparsely distributed hills of entangled CNTs showed lower onset and 

operation field as well as more stable FE current compared to the more dense ones. Integral 

and long-term stability tests with metallic anodes should fully exploit the applicability of 

these cathodes.  

This work was supported by the FP 7-INCO EU project Nr. 295043 BELERA. 
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5.2. CVD growth of CNT bundles using Mo/Al/Ni catalysts 

Structured FE arrays with CNT columns grown on patterned Si/SiO2 by atmospheric 

pressure CVD provide local (integral) current density values up to 25 A/cm2 (40 mA/cm2) 

above 2000 V [Navi10a]. It has also been shown that the field enhancement factor β is not 

determined by the column height, but by the CNT outgrowth [Serb11, Navi12]. However, 

shorter CNT columns grown on Si/SiO2 suffered from poor contact to the Si substrate. A 

well-known alternative for the fabrication of high current FE cathodes with groups of 

vertically aligned CNT [Teo02, Teo03a, Teo03b, Mele05] or bundles of entangled CNT 

[Mano05, Mano08, Navi12] of less height (< 5 µm) is based on their preferential growth on 

metallic catalyst patches. Such cathodes are often limited by FE current saturation due to high 

contact resistance to the Si substrate [Nils01].  

In this study, a novel approach to improve the contact interface by using trimetallic 

layer on the Si substrate is described. A thick uniform Mo layer is chosen to provide a current 

to the CNT, while the combination of a thin Al film and Ni catalyst lead to a suitable diameter 

and number of CNTs per bundle [Miln04]. Moreover, a systematic decrease of their height 

combined with an increase of the emitter number density might lead to high current density at 

moderate operating voltage.   

Highly-doped n-type Si substrates (3.2×1.2 mm2 size, 0.01 Ω∙cm) were first magnetron 

sputtered with a 300 nm thick Mo which serves as a diffusion barrier layer and have to 

provide good electrical contact to the CNT. The thickness of the Al underlayer and the active 

Ni catalyst layer are critical to nanotube growth and their good electrical contact to the 

substrate [Delz02, Delz01, Mele05]. A laser pattern generator was used for the maskless lift-

off photolithography of a bimetallic catalyst layer (10 nm Al and 1 nm Ni) in areas of 

1×0.25 mm2 size. Catalyst patches of 1×2 µm2 size and 5, 10 or 100 µm pitch were created to 

achieve structured cathodes with quadratic arrays of entangled CNT bundles. CNT bundles of 

2-3 µm width and up to 2 µm height were obtained by atmospheric pressure CVD based on 

the pyrolisis of decane or ethanol at 680-700°C for 3-5 minutes. SEM images of CNT bundles 

are given in Fig. 5.8.  

Low and high resolution SEM images of these arrays revealed the presence of hundreds 

entangled individual CNTs per bundle with free ends of typically 20-40 nm in diameter. 

Therefore, CNT bundles with well-separated multiple emitters can lead to highly efficient 

filed emission (i.e., high current density at low applied voltages) due to less screening effects 

[Bona01, Nils00].  
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Fig. 5.8. SEM of CNT-bundle arrays with a pitch of 5 µm (a), 10 µm (b) and 100 µm (c) 
grown on Mo/Al/Ni catalyst; cross-section view (d) and top view of a single bundle (e) and a single 
CNT (f). 

 
The FE homogeneity of the structured СNT bundle cathodes was investigated with the 

field emission scanning microscope at 10-7 Pa by means of PID-regulated voltage scans for 

constant current using W tip anodes of suitable diameter Øa. Arrays with large pitch showed 

high efficiency and clearly visible alignment of strong emitters at an onset field of about 15 

V/µm (Fig. 5.9 left) [Serb13a]. For a small pitch randomly but well-distributed emitters (Ne > 

2500/mm2) could be resolved at similar field levels (Fig. 5.9right). Nevertheless, the 

homogeneity of the CNT bundle arrays is limited by the variation of the diameter and length 

of the CNTs. 

 
Fig. 5.9. Regulated voltage maps (at a constant current of 1 nA, Øa = 5 µm) of 

structured CNT bundle cathodes with a pitch of 100 µm (left) and 5 µm (right). The actual 
gap ∆z of ~15±5 µm was estimated by means of a long-distance microscope.  

 
In order to investigate the current carrying capability of various CNT cathodes, local 

measurements were performed with a tungsten anode of truncated-cone shape of 150 µm in 
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top diameter after field calculation by means of the U(z)-plot [Lyse05]. After the first voltage 

rise, cathodes with small and medium number density of CNT bundles yielded nearly stable 

current up to ~50 µA (at 2450 V @ 18 µm gap) and  ~250 µA (at 2040 V @ 34 µm gap), 

respectively. Observed hysteresis for these cathodes might be associated with adsorbate 

effects [Chen11] and/or due to partial destruction/evaporation of taller CNTs at high FE 

current densities [Liu01]. For comparison, the cathode with smaller pitch (higher number 

density of CNT bundles) showed stable and reproducible current up to ~500 µA at a lower 

supply voltage of ~410 V @ 35 µm gap (Fig. 5.10).  

 
Fig. 5.10. Current-voltage curves (right) and corresponding Fowler-Nordheim plots 

(left) of the locally measured (Øa = 150 µm) CNT bundle cathodes for different pitch values. 
 
The field enhancement factors extracted from the FN plots at low currents (assuming 

work function of 4.9 eV for CNT [Grön01]) are 76, 104 and 91 for the cathodes with 100 µm, 

10 µm and 5 µm pitch, respectively. These values are in rather good agreement with the 

diameter (20-40 nm) and the length (up to 2 µm) of CNTs (Fig. 5.8).  

For several cathode spots, a slow mean current increase or a small current drop were 

observed at constant voltage. Such processing effects can be explained by destruction of 

individual dominant carbon nanotube emitters in the bundles [Bona03] (Fig.5.11left) and 

field-alignment of individual CNTs [Wei01] or by desorption of the adsorbates by FE current 

(Fig.5.11right) [Dean00, Purc02].  
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Fig. 5.11. Stability of a CNT bundle array (p = 5 µm, Øa = 150 µm) at moderate current. 

 
High current processing, however, often leads to strong degradation of the cathode. 

SEM analysis of measured spots revealed disruption of whole CNT bundles (Fig.5.12a). 

Melted a 300 nm thick Mo and Al/Ni catalyst layers (Fig. 5.12b) give a hint of high current 

(300 nA) that flow through a CNT and not sufficient electric contact between the CNTs and 

the substrate [Nils01]. A high contact resistance might limit the FE current and can lead to 

overheating of the substrate or even melt it. As can also be seen, some CNTs are detached 

from the substrate that might be due to a combination of resistive heating at the CNT-

Mo/Al/Ni interface and a strong electric field, which might peel the CNTs off the substrate 

[Ha13]. In addition, disruption of CNT bundles is inhomogeneous, perhaps, due to the 

unflatness of the used anode. Thus, the electric field under the anode was inhomogeneous and 

not all the bundles were involved in the FE. Hence, the effective emission area is much 

smaller than the Øa = 150 µm and the real potential of such CNTs might be very high.  

  
Fig. 5.12. Low- (a) and high-resolution (b) SEM images of CNT bundle cathode with 5 µm pitch 

after processing at Imax = 500 µA (j ~ 3 A/cm2), Øa = 150 µm.  
 

The FE performance of a selected CNT bundle cathode with p = 5 µm was tested in 

diode configuration of the integral measurement system with luminescent screen at 10-5 Pa 

[Lyse05]. Measurements in pulsed mode (duty cycle 1:10) showed stable and reproducible 

FN up to 250 µA (j = 100 mA/cm2) at 13.5 V/µm (Fig. 5.13a). Beside the strong 

(a) (b) 
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homogeneous FE in the CNT bundle array area, a slight emission also occurred at the sample 

edges due to parasitic CNT growth. At such values of power load (~ 0.7 W) the sensitive 

luminescent screen damages over several seconds. Using a solid Cu anode, maximum peak 

current values I = 11 mA (corresponding to j = 4.4 A/cm2) from the CNT bundle cathode 

were achieved at 23 V/µm but limited by strong fluctuations. Saturation of the field emission 

current at high field region (Fig. 5.13b) might be explained by space-charge effects [Barb53, 

Bona98, Chen09, Dean00, Jens10] or by the presence of high resistance at the nanotube-

substrate contact [Bona03, Lugi96]. In the last case, the voltage drop across a resistance 

would lead to decrease of the applied voltage (field) and therefore to a smoothing of FN-

curve. It is not a trivial task to take into account this effect and it is constantly being discussed 

at the International Vacuum Nanoelectronics Conferences [Forb12a, Forb12b, Forb13a, 

Forb13].  

 
Fig. 5.13. I-V curves and corresponding FN-plots (instes) of CNT cathode with p = 5 

µm measured in pulsed mode (2:20 ms) with luminescent screen (a) and metallic anode (b). 
Screen images (left, inset) taken at (a) I = 20 µA, (b) I = 100 µA, and (c) I = 250 µA. 
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Overall, the present study demonstrates that CNT bundle arrays of reduced height and 

small pitch grown on trimetallic Mo/Al-Ni catalyst films are well-suited to achieve high 

current densities (4.4 A/cm2) at rather low voltages/fields. The FE performance of the CNT 

bundle array cathodes is suitable for high current application, e.g. a focused spot X-ray 

source. Nevertheless, the FE homogeneity of the structures cathodes should be improved, e.g. 

by vertical aligned growth of CNT. Moreover, the contact and adhesion of the CNT bundles 

should be optimized to avoid their disruption. 

This work was supported by the FP 7-INCO EU Project Nr. 295043 BELERA. 

5.3. Catalytic water-assisted CVD synthesis of CNT bundles  

Previous pure and TiO2-coated CNT block arrays [Navi10, Josh11] showed the ability 

to reach high currents per single blocks, but the height of the blocks (150-300 µm) led to a 

limited FE homogeneity and alignment of the emitters due to significant outgrowth of single 

CNTs or bundles from the block surface. The blocks suffered from a limited mechanical 

stiffness and occasional bending too. The field enhancement factor β was determined rather 

by the outgrown CNTs than by the block geometry. Moreover, the often observed hysteresis 

at fields above 20 V/µm was mostly caused by an effective gap change due to reversible 

alignment of the outgrown CNTs [Wei01]. Most CNT blocks provided irreversible current 

instability (at 10-200 µA) due to stepwise destruction of loose CNT and complete block 

destruction at 200-800 µA.  

Therefore, regular arrays of much shorter CNT columns were considered in order to 

improve the homogeneity and alignment as well as stability of such structured FE cathodes. 

The origin of a local heating observed as glowing spots [Navi10] on CNTs as FE current 

limiting factor is under further investigation and discussion here too.  

The water-assisted CVD method of the CNT synthesis was introduced at Technical 

University of Darmstadt (TUD) [Tud] by the group of Prof. J. Schneider including J. Engstler 

and R. K. Joshi. 

The successive fabrication steps of the structured CNT cathodes are shown in Figure 

5.14. P-doped silicon (100) wafers with a thin dielectric SiO2 layer (600 nm) and a resistivity 

ρ of 10-20 Ω cm were used for the CNT bundles. The substrates were coated  by means of 

electron beam evaporation first with a thin aluminum buffer layer (10-12 nm) and then with a 

very thin patterned iron film (0.6-1.5 nm). Patterning of the iron film was achieved by 

fixation of a perforated metal or nylon foil on the aluminum layer as shadow mask. 

Thereafter, the samples were heated within a Ø 2.5 cm quartz tube oven up to 800°C under a 

flow of argon and hydrogen (Fig.5.15). At this temperature, according to the Rayleigh 
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instability theory [Rayl78, Kari06], the bimetallic films are supposed to crack and form small 

Fe-Al nanoparticles which served as catalyst for the following CNT growth [Josh11]. 

Aluminum film promoted the small particle formation [Delz02, Eres04]. In addition, 

depending on the thickness of aluminum, carbon nanotubes with different morphologies can 

be obtained [Delz01, Delz02, Mele05]. The CNTs were synthesized from a flow of ethylene 

and some water vapor which was picked up by argon through a water bubbler and acted as a 

catalyst activator. The resulting growth rate of the CNTs was typically 1-5 μm per minute. 

Columns with a diameter of about 20 µm consisting of entangled CNTs of 5 µm height were 

obtained in an asymmetric triangular array with 256 and 270 µm pitch as shown in Fig. 5.16. 

In contrast to other fabrication techniques [Navi10], relatively efficient selectivity of the CNT 

growth was achieved.   

 
Fig. 5.14.  Schematic of the structured cathode fabrication: (a) deposition of 10-12 nm 

thick Al buffer layer by electron beam evaporation on Si substrate, (b) deposition of 0.8-1.2 
nm thick Fe patches through a shadow mask by electron beam evaporation, (c) annealing of 
the metal films in a quartz tube under inert gas flow with formation of bimetallic Fe/Al 
nanoparticles serving as a catalyst for the CNT growth and (d) synthesis of CNTs. 
 

 
Fig. 5.15. Schematic sketch of the water assisted CVD setup at TUD. 

 

Fig. 5.16. SEM images of the arrays (a) and of a single column of entangled CNTs (b) 
(Ø = 20 µm, p = 256/270 µm, h = 5 µm). 

(a) (b) 

(a) 

(c) (d) 

(b) 
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The FE properties of these structured CNT cathodes were systematically investigated 

with the field emission scanning microscope at 10-7 Pa. The tilt of each cathode was corrected 

with respect to the truncated cone anode of diameter Øa to achieve a constant gap Δz within 

± 1 μm for the selected scan area. The emitter distribution was non-destructively imaged by 

means of a PID-regulated voltage supply (10 kV, FUG HCN 100M, 25 mA) controlled by the 

FE current (Keithley 610C) as described elsewhere [Lyse05]. Some emitting microstructures 

were arbitrarily chosen for local measurements to get their current-voltage characteristics and 

correlated SEM studies. The macroscopic electric field E was calculated as ratio of the 

applied voltage U to the effective distance d between the anode and the relevant emitter. For 

each microstructure, d was determined by the linear extrapolation of PID-regulated U(z) 

curve (for a fixed FE current of 1 nA) to 0 V, which corresponds to a contact between the 

anode and the emitter. The effective field enhancement factor β of the FE sites was derived 

from the measured I-V data using the modified Fowler-Nordheim equation (see chapter 2.1) 

and assuming a work function of 4.9 eV for CNTs [Grön01]. It should be mentioned that the 

obtained values of the applied field (voltage) are more relevant for the actual measurement 

geometry than for real triode devices, where the real shape of the gate and the gap has to be 

taken into account [Zhir01]. As suggested partially by the two-region FE model of Zhong et. 

al. [Zhon02], β and the required field (voltage) are influenced by the d value as well.  

The FE voltage map of the structured CNT cathodes demonstrates well-aligned and 

fairly homogeneous FE and about 100% efficiency was reproducibly achieved at onset field 

Eon (1 nA) ≈ 45 V/μm (Figure 5.17) [Navi11, Navi12]. Correlated SEM-FESM investigations 

indicate that the individual microstructure of the bundles (see Fig. 5.16) and the presence of 

some CNTs near the patches are responsible for the remaining slight FE inhomogeneity.  

 
Fig. 5.17. Voltage map (at constant current of 1 nA, Øa = 30 µm, Δz = 20 µm) of 

structured CNT column array. 
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Local FE measurements of single bundles revealed unusual current-voltage (I-V) 

dependence with four sections (Fig. 5.18). The first section starts at the initial Eon (1 nA) of 

about 11 V/μm and follows the FN-law up to a current level around 0.1 μA. Then a current 

saturation occurred at 1-2 μA in the field range 20-60 V/μm (Sect.2). In both sections the FE 

current was rather reproducible and stable (±10%). In contrast, an irreversible FE current 

increase of typically a factor 10 was usually observed at a constant field in Section 3. Such 

strong activation effects were often following soon after or combined with a visible light 

emission from hot spots at the top of the bundles (Fig.5.3.5 inset). In Section 4 stable FN-like 

I-V curves resulted in onset fields of about 30 V/μm and average β of 220, which are still 

determined by the sparsely outgrown CNTs. Maximum currents of about 40 μA at 65 V/μm 

were achieved finally, limited by irreversible strong current drops and severe destructions of 

the CNT bundles as confirmed by correlated SEM images. 

 
Fig. 5.18. Typical I-V and corresponding FN-plot (inset) measured with Øa = 30 µm at 

Δz = 14 µm. Inset: hot spot (b) between the anode (a) and its mirror image on cathode (c). 
 

The observed current saturation cannot be explained by a limited supply of electrons 

from the p-type Si substrate because this would not be changed after the emitter activation. 

Therefore, the silicon oxide layer SiO2 of the contact interface between the CNTs and the 

substrate is considered to be responsible for the phenomena. Moreover, the presence of water 

vapor at the elevated CVD process temperature [Josh11] may enhance the oxidation of Si as 

well as of the bimetallic catalyst, especially if a nanoparticulate structure of the annealed 

Al/Fe catalyst is taken into account. Therefore, the catalyst can hardly protect the underlying 

Si from oxidation.  

In order to understand the possible role of the oxide layer at the contact interface to the 

CNTs for the observed FE behavior, it is helpful to consider the energy band diagrams 
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resulting for such structure. These depend on the applied field and are very similar to the ones 

used for metal-insulator-metal (MIM) emitters [Lath95] or metal-oxide semiconductor (MOS) 

transistors [Ning78]. At low fields (Fig.5.19a), band bending and voltage drop V across the 

thin contact interface cause electron tunneling into the conduction band of the oxide where 

the limited electron supply leads to the observed current saturation. At high voltages 

(Fig.5.19b) the enhanced field penetration creates hot electron emission and avalanche 

multiplication in the Si conduction band which then leads to the electric breakdown of the 

oxide (typically 1-1.6 V/nm for SiO2 thin films) [Ning78]. Thermalization of the hot electrons 

leads most probably to enhanced energy dissipation in the poorly cooled CNT and to the 

observed glowing spots. Hot-electron-induced electroluminescence [Toya96] cannot be 

excluded yet. As a result of the breakdown, conducting channels are formed in the contact 

interface, which cause geometric field enhancement and usual FN-like behavior of well-

connected CNTs. The observed final current limits are governed, therefore, more by the 

intrinsic limits of the emitting CNTs [Dean01].  

  
Fig.5.19. Energy band diagrams for electron FE through the Si/SiO2/Me/CNT 

interface: (a) at low field band bending in Si and voltage drop over SiO2 lead to current 
saturation due to limited electron transport in the oxide; (b) at much higher voltage field 
penetration into Si cause hot electrons and avalanche multiplication which burn conducting 
channels into the oxide. 

 
In conclusion, these results prove that the contact interface plays an important role for 

the FE homogeneity of structured CNT columns on Si substrates. Moreover, it might be 

possible to stabilize or control the FE current by tuning the properties of the interface or using 

the oxide as a ballast resistor. The systematic FE investigations of structured CNT cathodes 

have depermined the main derection for the optimization of the cold cathode design for 

device applications. The arrays of short CNT columns demonstrated high efficiency and 

(a) (b) 
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alignment than previous long CNT block arrays. High current densities in the range of A/cm2 

could be expected from uniform CNT arrays in case of sufficient FE homogeneity as well as 

from optimized arrays of the short CNT bundles (e.g. smaller pitch). Slight increase of the 

height of the CNT or decrease of their diameter, however, might reduce the onset and 

operation fields. Current saturation and glowing spots just before electric breakdown have 

been observed. Band structure considerations indicate that the contact interface and hot 

electrons play an important role for these phenomena. It might be possible, however, to 

stabilize or control the FE current by tuning the properties of the interface or using the oxide 

as a ballast resistor.  

5.4. Vertically aligned CNT columns of different height and triode tests 

Structured cathodes with columns of entangled CNTs grown on patterned Si/SiO2 

substrates have shown to provide low Eon(1 nA) as well as high FE current [Navi10, 

Navi10a]. The emitter distribution and alignment of such cathodes, however, suffer from the 

despertion of the positions of actually emitting CNTs which are often located at the edge of 

columns or even between them due to the limited growth selectivity.  

Here another approach to obtain structured cathodes with CNT columns grown on 

highly-doped Si substrates with iron catalyst patches by hot-filament chemical-vapor-

deposition (HFCVD) is presented. Quadratic arrays of columns of diameter  = 250 µm, 

height h = 70 or 350 µm and 650 µm pitch were systematically investigated for their FE 

performance. Moreover, single columns of  1.5 mm and h = 250 µm were tested in triode 

configuration.  

The HFCVD growth procedure is reported in detail elsewhere [Hong09a, Hong09b]. 

Briefly, the fabrication steps of the structured vertically-aligned carbon nanotube (VA-CNT) 

column cathodes by HFCVD method are shown in Figure 5.20. Highly-doped n-Si (100) 

wafers (12×12 mm2 size) were coated with a 10 nm aluminum buffer and 1.5 nm iron catalyst 

layers, which were deposited in succession by magnetron sputtering. Patch structuring was 

realized by means of photolithography. Prior to HFCVD growth of CNTs, the silicon 

substrates with a catalyst layer were heat-treated at 500-700°C for 10-15 min in oder to form 

high-density catalyst particles. Such treatment provided necessary conditions for the CNTs 

growth. Synthesis of CNTs was performed from methane and hydrogen gas mixture in a 

HFCVD reactor at the filament and substrate temperatures of 700°C and 2000°C, 

respectively.  
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Fig. 5.20. Schematic of the cathode fabrication steps and a HFCVD reactor (not to scale). 

 
Large quadratic arrays of vertically aligned CNT columns of diameter  = 250 µm, 

height h = 70 or 350 µm and 650 µm pitch, and single columns of  1.5 mm and h = 250 µm 

were obtained as shown in fig. 5.21. However, such closely packed arrangement of CNTs in 

the column is not optimal for the field electron emission (see chapter 2.2) as the closely 

packed CNTs shield the applied electric field [Nils00, Bona01, Grön00]. Thus, the FE current 

will be provided by single CNTs located at the edges and/or at the top of the CNT columns. 

 

Fig. 5.21. SEM images of vertically aligned CNT-column arrays grown by HFCVD on 
patterned catalyst: columns of diameter  = 250 µm and different height h = 350 µm (a) 
and 70 µm (b) in quadratic arrays of 650 µm pitch, and single column of  = 1.5 mm and h 
= 250 µm (c). 
 
The FE properties of such cathodes were measured with a field emission scanning microscope 

at a vacuum of 10-9 mbar using tungsten anodes of truncated cone shape of adjustable 

diameter a [Lyse05]. Fairly aligned FE was obtained from nearly all short columns at 

Eon(1nA)  2-6 V/µm as shown in Fig. 5.22a. Comparable maps at about the same Eon(1nA) 

values resulted for the 5 times higher columns (Fig.5.22b).  

(a) (b) (c) 

1mm 500 µm 500 µm 
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Fig. 5.22. Voltage maps (at I=1nA, Øa = 100 µm, ∆z = 50 µm) of CNT arrays with 
70 µm (a) and 350 µm (b) height.  
 

By means of an in-situ optical imaging system, the alignment of individual CNTs under 

an applied electric field was observed (Fig.5.23). The influence of the applied electric field on 

CNT protruding from a surface was investigated in detail by Wei et. al. [Wei01]. As 

mentioned above (see chapter 2.2), in that case, the maximum electric field is concentrated on 

the top of the longest CNT emitters and hence the FE current is only provided by these CNTs. 

Moreover, during the scanning at a fixed FE current, the protruding CNTs from the column 

surface dragged by the anode due to the ponderomotor forces that lead to a limited FE 

homogeneity and alignment of the CNT columns. Moreover, if the length of the protruding 

CNTs is high enough to touch the anode, a short circuit will happen, that sometimes caused 

the partial or complete destruction of the CNT columns.      

 

   

Fig.5.23. Optical images of the CNT-columns during the voltage scans (I=1nA, Øa = 
100 µm). Alignment of CNTs under electric field was observed.   
 

In order to investigate the current carrying capability of the CNT columns, local 

current-voltage (I-V) measurements were performed with anodes of adjusted size. The local 

field was always calibrated by means of U(z) plots [Lyse05]. In Fig. 5.24 typical results for 

columns of different height are compared. Obviously, both I-V curves and Fowler-Nordheim 

plots nearly coincide in the high field region, thus revealing similar effective field 

enhancement β. Assuming a work function of 4.9 eV, the resulting β values extracted from 

(a) (b) 
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FN plots are 1112 (831) for the CNT-columns of 70 (350) µm height (Fig.5.24.a). Moreover, 

the rather high Imax values of about 600 µA at 15 V/µm did not depend on the column height 

(Fig. 5.24b). The excellent results for Imax suggest the existence of multiple CNT emitters per 

column, i.e. about 30-60 if the measured current limit of 10-20 µA for multiwall CNT is 

assumed. Nevertheless the mutual shielding effect will enforce a tradeoff between low 

operation fields and high current limits of optimized CNT columns. 

 
Fig. 5.24. Histograms of average field enhancement factor ß = 1112 (831) for CNT 

columns with h = 350 (70) µm for a work function of 4.9 eV (a). Typical current-field curves 
and corresponding FN plots (inset) of two CNT columns of different height (b).  
 

At high electric fields stepwise current jumps occurred which often accompanied by 

visible light spots at the top of the processed columns. The glow could be even seen through 

the color filters (red, yellow, green and violet) indicating thermal emission due to Joule 

heating along the CNTs above at least 1000°C [Purc02, Vinc02, Raga09, Dean01]. 

Comparable glow effects were also observed elsewhere [Navi12]. The heating limited the 

maximum current value and might cause the destruction of the CNT-column. [Dean01]. 

Typical results are shown in figure 5.25. The microscopic inspection revealed a partial 

destruction of the corresponding columns at about 205 µA. It can be seen that partial 

destruction led to splitting of the column at the edge and pollution of the substrate by CNT 

bundles. Debris of destructed CNT-column were found in some hundreds of µm away 

indicating µ-plasma discharge. 

(a) (b) 
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Fig. 5.25. Local measurements have shown a reproducible thermal glow effect (a), 
which precedes the partial destruction of the CNT-column (b, c). II – hot spot at the edge of 
the CNT column (Ø = 250 µm) at current of 205 µA; I, III – an anode and its mirror image.  
 

As a next step towards application of CNT columns in vacuum electronic devices, is the 

investigation of the single CNT column cathodes in an integral measurement system with the 

luminescent screen anode at a vacuum of 10-7 mbar [Lyse05]. A triode configuration with low 

gate and high anode voltages is mostly preferred for fast control of electron currents. 

Moreover, the proximity of the gate to the CNTs enhances the current extraction efficiency 

and protects the cathode from secondary effects. Therefore, in order to design suitable triode 

configuration, COMSOL Multiphysics® software was used to calculate the electron 

trajectories. The simulation results showed that the highest transmission efficiency 

(anode/cathode current ratio) can be achieved by using a planar gate with round cone-shaped 

hole at a certain cathode-gate and gate-anode distances [Rutk12, Serb11]. Based on the 

simulation results, a triode construction (planar copper gate with a conical hole of 2.5/3.5 mm 

in diameter, thickness 500 µm) for a single CNT column (see fig. 5.21c) at a fixed anode-gate 

distance of 6.5 mm was realized [Rutk12, Serb11].  

The cathode-gate distance was in situ varied by a stepping motor from 500-800 µm at 

anode voltage of 2500 V. In Fig. 5.26 the typical results for a single column are shown. As it 

can be seen, the transmission efficiency increased strongly up to 80 % at 500 µm. Further 

gate approach, however, often resulted in the destruction of CNT column, probably, due to 

strong field enhancement at the column edge. In addition, there was a sufficient rise of the 

gate current that limited the efficiency of the configuration in question. However, the 

measurements of similar single CNT column at the same cathode-gate gap and anode voltage 

showed the transmission efficiency of ~97%. Such differences can be explained by the fact 

that the fabricated procedures are hardly reproducible. By decreasing of the anode voltage 

from 2.5 kV to 1 kV the transmission efficiency dropped to 40% (Fig.5.27).      

 

I 

II 

III 

(a) (b) (c) 
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In all cases, the emission homogeneity was observed on the luminescent screen. The 

image, shown in Fig. 5.27 provides nearly uniform emission over the cathode with slightly 

enhanced edge current. The achievable current levels (< 40 µA) in dc mode were limited by 

the power load (100 mW) on the luminescent screen. 

 

 

Fig. 5.26. Cathode current vs. gate voltage at a constant anode voltage (Ua) of a single 
CNT column at four different cathode-gate distances (left). The mean efficiency values were 
determined from the measured anode current. Cathode current vs. gate voltage for a fixed 
gap 500 µm at different anode voltages Ua (right).The anode-gate distance is 6.5 mm. 
 

 

Fig. 5.27. Cathode-current vs. gate voltage (left) and corresponding emission image 
(right) at ∆z = 500 µm shows good emission uniformity over the cathode with slightly 
enhanced edge current. The achievable cathode current value (Ic = 34 µA) was limited by the 
power load on the luminescent screen.  

 
In conclusion, both the FESM and IMLS results of CNT columns on Si substrates 

presented here prove their suitability especially for high current FE applications. For the 

column arrays, however, matched gates have to be developed which might result in up-scaled 

current densities above 1 A/cm2. 
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5.5. Laser-structured CNWs on Si and stainless steel substrates 

For the last 20 years many carbon-based nanostructures were considered as one of the 

best cathode materials for vacuum nanoelectronic devices [Sait10]. Besides the various types 

of carbon nanotubes, nanographite crystallites or carbon nanowalls (CNWs) have shown to 

possess comparably low onset fields and homogeneous emitter distribution with large number 

densities [Obra03, Band13]. For instance, the high emission site density in the range of 107-

108 cm-2 at 5 V/µm was achieved by Obraztsov et al. [Obra00]. Microscopic field emission 

investigations suggested that a high electric field enhancement occurs at the conducting 

graphene layers between diamond crystallites [Kara01]. Despite their random growth, these 

vertically-oriented two-dimensional carbon nanostructures with high aspect ratio and 

sufficient electric conductivity might be useful for FE devices in diode configuration (e.g. for 

an energy-efficient cathodoluminescent light sources [Obra13]). For such devices, cold 

cathodes with high number of emission sites are required.  

Here an approach on how to reduce the shielding of densely grown CNWs by laser-

structuring is reported. The FE properties of such laser-modified cathodes were investigated. 

CNW-based samples were fabricated and laser-structured in the group of Prof. Dr. V. 

Buck at the faculty of Physics and Chemistry at the university of Duisburg-Essen and 

CeNIDE, Germany.  

Carbon nanowall films were grown on silicon and stainless steel substrates using 

inductively/capacitively coupled plasma-enhanced chemical vapor deposition (ICP/CCP-

PECVD) (Fig. 5.27). Aluminum acetylacetonate (Al(acac)3) was used as metalorganic 

precursor in the presence of argon without additional catalyst. The plasma was generated in a 

gaseous electronics conference radio-frequency reference cell reactor evacuated by a turbo-

molecular pump using a modified ICP antenna allowing high plasma densities even at low 

particle energies [Kade04]. The precursor was sublimated in a fluidized bed evaporator held 

at a constant temperature of 150°C and then transported to the reaction chamber using Ar as 

the carrier gas. The pressure was kept constant at 10-2 mbar. The following CVD process 

parameters were varied: Ar flow rate 28-55 sccm, plasma power 500 or 800 W and the 

substrate temperature from 200°C up to 665°C using a special substrate heater. 
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Fig. 5.27. Schematic diagram of the ICP/CCP-PECVD apparatus [Jain11, Neub11] . 
 

CNWs with a thickness of a few nm and adjustable number densities between 35 and 

300 µm-2 were obtained on Si and stainless steel substrates, respectively (Fig. 5.28). Al is 

embedded in the carbon matrix in form of Al4C3 crystals of about 30 nm size. The percentage 

of Al can be adjusted from nearly zero to about 10 at. %. The correlation of deposition 

parameters like Ar gas flow and substrate temperature with growth features and structure of 

the CNWs were systematically studied. Detailed results based on SEM, TEM, SIMS, XPS, 

NRA-technique and Raman spectroscopy are reported elsewhere [Jain11, Jain12, Neub11]. 

 
Fig. 5.28. (a) top-view and (b) side-view SEM images of CNW film on stainless steel 

substrate fabricated by ICP/CCP-PECVD. The inset image is taken at higher magnification.  
 

Afterwards, the CNW-coated Si and stainless steel samples were patterned with a 

diode-pumped solid-state laser (EdgeWave) using a galvano scanner (SCANLAB) and a theta 

objective (LINOS) for writing and focusing. The laser was operated at a wavelength of 

a 

top view 500 nm 

(b

side view 10 µm 

1 µm 
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532 nm, a pulse length of 10 ns and a pulse frequency of 50 kHz. During patterning the 

focused laser spot with a 1/e2 diameter of about 30 µm was moved across the sample surface 

at a writing speed of 30 cm/s. The average laser power was set to 1.15 W (Si) and 2.08 W 

(stainless steel), respectively. Quadratic grid patterns with a pitch of ~35-40 µm were 

fabricated over an area of 5×5 mm2 (Fig. 5.29). Resulting CNW-patches with a nominal size 

of ~20×20 µm2 show some variation of the effective shape. As can be seen from the HRSEM 

micrograph, the morphology of the CNWs was also changed (see also Fig. 5.28). Spherical 

CNW clusters of arbitrary shape and different sizes (larger on steel substrate, probably, due to 

the higher laser power) can be observed. The height of CNW patches after the laser 

structuring, however, was considerably reduced from 60 µm to ~20 µm (to a few µm) on Si 

(steel) substrates, indicating that the laser power was so high, that initiated the evaporation or 

burning of carbon material and heating of the substrates up to their melting points (Fig. 5.30).  

  
Fig. 5.29.  SEM images (30º tilt angle) of CNWs on Si (a) and on stainless steel (b) after 

the laser-structuring; laser power was set to 1.15 W (Si) and 2.08 W. 

100 µm 
 on Si 

 a 

1 µm 

on Steel 

 b 

20 µm 

1 µm 
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 Fig. 5.30 SEM images show that the height of CNW film on stainless steel substrate 
was considerably reduced after the laser-structuring. Laser power was set to 2.08 W.  

 
The FE properties of the laser-structured CNW cathodes were measured with the FESM 

at a vacuum of 10-9 mbar using a tungsten anode of truncated cone shape with adjusted 

diameter (a = 30 µm) [Lyse05]. As shown in Fig. 5.31, fairly-aligned FE was obtained from 

nearly all CNW patches at Eon (1nA) = 10-20 V/µm on both substrates. The homogeneity of 

the FE, however, appears rather limited due to the varying shape of the individual CNW 

patches (Fig. 5.29). One interesting value is the emitter number density Ne. The number of 

emitting sites Ne of about 9×103 emitters/cm2 and 20×103 emitters/cm2 at 10-20 V/µm has 

been obtained for CNWs on Si and steel, respectively. However, the resolution of the FESM 

is limited by the anode size and Δz value.  

 
Fig. 5.31. V-maps (for 1 nA FE current, Øanode = 30 µm, ∆z = 25 (18) µm on Si (steel)) 

show that nearly all CNW-patches of both cathodes emit fairly aligned at a field of 10-20 
V/µm, however, the homogeneity is limited due to the varying shape of the CNW-patches.  

 
In order to investigate the FE mechanism and achievble current limit of the CNWs, 

local current-voltage measurements were performed on selected patches with the same anode. 

The local field was always calibrated by means of U(z) plots [Lyse05]. Typical current-field 

curve of single CNW patches shows usual Fowler-Nordheim-like behavior with stable FE 

current up to 60 µA at 43 V/µm and 57 µA at 89 µm for Si and stainless steel substrates, 

on Si on Steel 18 µm gap 25 µm gap 

(a) 

on Steel on Steel 

(b) 

100 µm 20 µm 
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respectively (Fig. 5.32). The processing effects are correlated with partial destruction of the 

CNW patch. 

 
  

Fig. 5.32. Typical current-field curves of single CNW patches and corresponding FN-
behavior for Si (left) and steel (right) substrates. Øa = 30 µm, ∆z = 25 (18) µm on Si (steel).    

 
Hyperbolic correlations between Eon (1nA) and the field enhancement factor  

(assuming the work function of the CNTs to be 4.9 eV) are found for both types of cathodes 

(Fig. 5.33). The measured Eon (1nA) values for CNWs on stainless steel were on average 

somewhat higher and less correlated to the  values. Average β value of about 164 (180) was 

achieved for the CNWs cathode on Si (stainless steel) substrate.  

 
Fig. 5.33. Electric onset field (for 1nA) vs. field enhancement factor obtained from up 

and down cycle measurements of CNW patches on Si (left) and stainless steel (right).  

A large dispersion was also found for the maximum current values Imax (~1-100 µA) of 

the CNW patches on both substrate materials (Fig. 5.34). SEM analysis after the current 

processing showed strong modification of CNW patches on both substrates by the FE current 

(Fig. 5.34).   

on Steel on Si 

on Si on Steel 
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Fig. 5.34. Maximum achieved current Imax versus corresponding operation field for 

single CNW-patches on both types of substrates (left). SEM image of the single CNW-patch 
on Si after the current processing, which provided a current of about 50-70 µA.  

 In conclusion, the laser-structuring of extremely dense CNW-based cathodes have been 

successfully performed on both Si and stainless steel substrates. The FE results of first 

samples were encouraging, but further optimization of the laser power and the writing speed 

is required to exploit their full potential for device applications. FE measurements of different 

types of the laser-structured CNW cathodes are ongoing and the results will be presented in 

the near future.  

5.6. Conclusions and outlook  

For the first time, high-purity single-walled CNT networks were grown on Si substrates by 

chemical vapour deposition under rather low temperature. FESM and IMLS investigations 

revealed well-distributed FE with high number of emission sites and high FE current at low 

applied voltages. 

 The contact interface between CNT bundles and the substrate has been significantly 

improved by using trimetallic Mo/Al/Ni catalyst layer.  In addition, the optimization of the pitch 

size of CNT bundles led to the rise of current densities up to 4.4 A/cm2 at rather low 

voltages/fields. However, the FE homogeneity and current stability remain to be improved.  

  FE properties of CNT columns of different heights were studied. The experiments 

revealed that the field enhancement factor depends not only on the height of the CNT columns, 

but also on the CNTs outgrowth. It was shown that the protruding CNTs from the column 

surface limit the FE homogeneity and alignment of the CNT columns. 

Guided by the simulation results we have designed the most suitable triode configuration 

which provided high transmission efficiency. The advantages of the developed configuration can 

be used for different devices of vacuum electronics. 

on Si 
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The emission properties of CNW cathodes fabricated by ICP/CCP-PECVD were studied 

by FESM. It was shown that the laser-treatment can sufficiently improve the FE characteristics 

of this material.  

To sum, application-oriented study of various carbon-based cathodes were performed. It 

was shown that such materials can produce high current densities at low fields and most of them 

demonstrate well-aligned FE characteristics with uniform distribution of emission sites. Possible 

applications were proposed. 
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6. Metallic emitters grown in polymer ion-track membranes 

Noble metal nanowires (NWs) with high aspect ratio, good mechanical stability and 

conductivity fabricated by electrochemical deposition into etched ion-track membranes 

[Kohl97, Toim12, Vila04] are considered as interesting field emitters with controllable size 

and shape [Liu06]. Promising FE results were already reported on unstructured cathodes with 

randomly distributed copper [Maur06], gold-coated nickel [Dang07] and gold NWs 

[Dang08]. Patch arrays of multiple Au-NWs obtained by using a shadow mask during heavy-

ion irradiation of the template [Kari07] yielded high efficiency, good alignment and FE 

homogeneity at a suitable onset field [Navi09, Navi10]. The FE current limit of such patches, 

however, varied strongly due to random destruction of individual NWs caused by their 

insufficient substrate contact both for poly-crystalline [Dang08, Kari07, Navi09, Navi10d, 

Navi10c] and single-crystalline Au-NWs [Navi10c]. In order to improve the contact and 

achieve higher and more stable FE currents, the emitter shape from cylindrical to conical 

geometry was modified by changing the ion-track etching process from two-side to one-side 

etching of the ion-irradiated polymer foil. Thus, arrays of conical structures with a 

significantly enlarged base contact but still nanometer-sized tips are obtained [Alber11, 

Dobr01, Duan08]. Copper was chosen for deposition because of its fairly good conductivity 

and mechanical properties [Toim01]. Gold or silver, for instance, might be better, but the 

electrodeposition process of these metals is more complicated. 

In this chapter the synthesis procedure and FE properties of unstructured and patch-

structured cathodes with randomly distributed and vertically aligned bare and gold-coated 

copper nanocones (Cu-NCs) will be described. Based on the results of scanning electron 

microscope (SEM) and field emission scanning microscope (FESM) [Lyse05] investigations, 

the improved mechanical stability and FE properties of the bare and the gold-coated 

nanocones as compared to those of cylindrical nanowires will be shown and the further 

optimization potential will be discussed.  

The irradiation of polycarbonate foils with heavy ions was made in the group of Prof. 

Dr. Christina Trautmann at the GSI Helmholtz Centre for Heavy Ion Research (GSI) located 

in Darmstadt, Germany, while the electrochemical deposition process was performed at GSI 

by Dr. I. Alber and partially at the Bergische University of Wuppertal by F. Jordan [Jord12b]. 
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6.1. Fabrication of copper nanocones   

At first, by means of the linear accelerator (UNILAC) at GSI, Darmstadt, stacks of 

several 30 µm thick polycarbonate (PC) membranes (Makrofoil KG) were irradiated with 

heavy 136Xenon or 238Uranium ions at energy about 11.4 MeV/nucleon and ion fluence 106 – 

107 cm-2 (Fig.6.1a). Patch-structuring is usually obtained during irradiation through a shadow 

mask (Invar, 150 µm thick with a triangular array of round holes of 150 µm diameter and 320 

µm pitch). The produced ion tracks are randomly distributed but highly parallel oriented and 

represent nanometer-sized damage cylinders throughout the entire PC foil which are 

preferentially dissolved in a suitable chemical etchant [Toim12, Afra13].  

 

Fig. 6.1. Fabrication steps of Cu-NC cathode:  

(a) – irradiation of polycarbonate membrane of 
30 µm thick with heavy ions;  

(b) – chemical etching of PC membrane in a 
solution of 9 M sodium hydroxide and methanol in 
40:60 volume ratio;  

(c) – magnetron sputtering of a 50 nm gold film 
acting as a cathode during further 
electrochemical reinforcing with a 20 µm Cu 
layer;  

(d) - electrochemical deposition of Cu into the 
pore of PC using an electrolyte containing copper 
sulphate (0.95M CuSO4) and sulphuric acid 
(0.5M H2SO4);  

(e) – dissolution of PC membrane in 
dichloromethane solution resulting in free-
standing Cu-NCs. 

Conical pore shape requires asymmetric etching conditions, i.e., etching of the ion-

template from one side only. Accordingly, the irradiated PC foils were inserted in an 

electrolytic cell with two compartments. One side was filled with an etchant solution 

consisting of 9M sodium hydroxide (NaOH) and methanol in 60:40 or 40:60 volume ratios. 

The high methanol concentration increases the etching rate of undamaged bulk PC, thus 

leading to structures with enlarged apex angle [Duan08]. The other compartment was filled 

with distilled water that slows down the etching at the instant of pore breakthrough and thus 

also further pore growth.  

The etching process was performed at 30°C and was monitored by inserting Au 

electrodes in each of the two compartments, applying a voltage of 1V and measuring the 
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electrical current across the membrane [Apel01a]. A rapid current rise occurs when the first 

pore becomes opened and finally I(t) curves show a kink and slope changes when all pores 

are opened [Albe11]. The shape of the resulting I(t) curves reproducibly depends on the stack 

position (Fig. 6.2left) [Jord12a,b]. Due to the increasing energy loss of the ions [Fink04], less 

damaged material has to be removed for the first than the third foil. At the occurrence of the 

first hole, the conductivity of the etchant and thus the current is much higher for the first foil, 

and often  a peak results when all pores are opened due to the later increase of resistance. In 

contrast, the current for the third foil is always much lower because the etchant has dissolved 

more PC (~2 µm/15 min).  

 

Fig.6.2. Left: typical current vs. time curves during the conical pore etching of 
irradiated PC foils. Same time of first pore opening to1, but last pore toN  depends on stack 
position due to the increasing energy loss for deeper penetration of PC. Slope change and 
different I level due to etchant consumption and ion diffusion. Right: average Cu-NC tip 
diameter as function of the etching time for different stack positions. The dashed rectangle 
marks the data for 136Xe ion tracks. 

 
The size of the conical pores in the membranes and hence of the Cu-NCs mainly 

depends on the etching time but also on the stack position and ion type as shown in Fig. 

6.2right [Jord12a, Jord12b, Serb12a, Serb12b]. A systematic increase of the mean tip 

diameter with etching time is obvious up to 17 min, and the aging of the etchant is considered 

to be responsible for the rather low values for the 20 min etching which was performed one 

day later. Due to the different total energy loss, the complete pore opening required a longer 

etching time for 136Xe (~20 min) than for 238U ion tracks (~15 min). It is most remarkable that 

the sharpest Cu-NCs were grown in the 136Xe ion tracks. 
 
 
 

 

As next step, 20-50 nm Au film was deposited on the PC membrane side with large 

pore openings by means of a magnetron sputter coater (SC 7620). Accordingly, some gold 

atoms are deposited onto the side wall of the pores forming ring-like base structures (2.4 µm 

700 

500 

1.stack position 
2.stack position 
3.stack position 

1.stack position 

2.stack position 

3.stack position 

to1 toN 

300 

100 

    0 
 12          14          16          18          20 

Etching time, min     Time, min 
 0              5            10           15 

16 

12 

   8 

   4 

   0 

C
ur

re
nt

, 
µ

A
 

T
ip

 d
ia

m
et

er
, n

m
 



___________________________________________________________________________ 
63 Chapter 6. Metallic emitters grown in polymer ion-track membranes 

diameter) for the latter nanocones growth. The Au layer serves as an electrode for the 

following electrochemical deposition of copper which was performed at room temperature for 

~30 min and a potential difference of - 0.5 V to the copper anode. This results in a back-layer 

of ~20 µm thickness covering all pores completely. The cones were than electrochemically 

grown in a two-electrode arrangement through the small pore openings at 50°C using an 

electrolyte containing copper sulphate and sulphuric acid (Fig.6.1d).  

Two different deposition voltages were tested for unstructured membranes that were 

etched with the 60% methanol content solution. Fast growth at - 90 mV started preferentially 

at the ring-like base structures and led to a rough cone surface, significant scattering of the tip 

radius (> 120 nm) (Fig. 6.3a) and a tube-like Cu-NC contact region to the back-layer (Fig. 

6.3b). In contrast, slow growth at - 40 mV resulted in less surface roughness (Fig. 6.3c) and 

reduced scattering of the tip radius (> 190 nm). No broken cones were observed revealing 

excellent mechanical stability and improved substrate contact. For comparison, sharper Cu-

NCs grown in membranes etched with 40% methanol content solution were less mechanically 

stable and sometimes broken despite a better solid contact interface completely filled with Cu 

(Fig. 6.3d).  

 
 
 

Fig. 6.3. SEM images (top view) of 
the Cu-NCs grown at 50°C. The 
deposition voltage of -90 mV leads 
to (a) rough cone surfaces, 
scattering of the tip radius and (b) 
a tube-like contact region; while -
40 mV results in (c) cones with 
smoother surfaces, more uniform 
tip and (d) a completely filled base. 

 

 

After dissolution of the PC template in dichloromethane (CH2CI2) for 8 hours free-

standing, randomly distributed and vertically aligned Cu-NC of ~ 28 µm height were obtained 

as shown in Fig. 6.4. For the unstructured samples, their number density corresponds to the 

applied fluence (Fig. 6.4a, average distance ~3 µm). For the structured samples, however, the 

number density is smaller than the applied fluence (106 ions/cm²) since inhomogeneous filling 

of the channels resulted in some incompletely grown Cu-NCs (Fig. 6.4b). Finally, all Cu-NC 

samples of ~5×5 mm² were glued on flat aluminum holders of about 8 mm in diameter by 
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means of silver glue. The main parameters of the fabricated cathodes are summarized in 

Table 6.1.     

 

Fig. 6.4. SEM images at different viewing angle of freestanding and randomly 
distributed Cu-NCs with different number density and tip radius: (a) 107 cm-2, >190 nm 
(cathode A), (b) < 106 cm-2, >95 nm (cathode C)). 

 
Table. 6.1. Parameters of the fabricated cathodes. 

# 
Etching 
(min) 

Voltage 
(mV) 

Number 
density 

Tip radius 
(nm) 

Aspect 
ratio 

A 15 40 107 cm-2 

unstructured 
> 190 < 147 

B 15 90 > 120 < 233 

C 13 40 < 106 cm-2 

structured 
> 95 < 295 

D 15 40 > 220 < 127 

 
6.2. Role of the contact interface and number densities of nanocones 

 

The FE properties of the Cu-NC cathodes (see the table 6.1) were measured with the 

FESM under ultrahigh vacuum conditions (~10-9 mbar) using a freshly prepared tungsten 

anode of a truncated cone shape of diameter Øa = 30 µm. After the tilt correction of the 

cathode, the gap Δz between anode and Cu-NCs during the voltage scan was controlled with a 

long-distance microscope (Questar QM 100, 1 µm resolution) and the actual electric field for 

the voltage maps was calculated as ratio of the applied voltage U to ∆z. While the actual 

electric field E during the local measurement was estimated by means of U(z) plot [Lyse05]. 

In order to investigate the emitter distribution and homogeneity, regulated voltage maps 

U(x,y) at a constant FE current (I = 1 nA) were measured over selected flat parts of the 

cathodes of 1 mm² size. In figure 6.5a, the fairly distributed FE of the best unstructured 

cathode A with ~100 emitting spots at onset field Eon (1nA) = 25-80 V/µm is shown. The 

varying strength of these emitters is mainly caused by the random position and arbitrary 

mutual shielding of the rather closely packed Cu-NCs, what is resulting in a low emitter 

number density Ne of about 104 cm-2. In contrast, the best structured cathode C exhibit well-

aligned FE from nearly all patches, i.e. 90% efficiency at much lower Eon (1nA) = 8-20 V/µm 
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(Fig. 6.5b). Moreover, up to 10 emitters (five on average) per patch are obvious which 

improve the homogeneity and average Ne to 3×104 cm-2 what is close to the resolution limit of 

the chosen anode. These results support assumption that the optimum number density of Cu 

nanocones for low operation fields is lower than for the metallic cylindrical nanowires (i.e., 

the best FE result in term of efficiency and alignment was achieved from Au-NW cathode 

with number densities of 107 NW/cm² at Eon (1nA) > 30V/µm [Navi09]).  

 
Fig. 6.5. Typical regulated voltage maps V(x, y) for 1 nA FE current of: (a) cathode A 

(Øa = 30 µm, ∆z = 40 µm) and (b) the structured cathode C (Øa = 30 µm, ∆z = 25 µm). 
 

Guided by the U(x,y) maps, local measurements of strong emitters were performed with 

the same anode up to their current limit. The local field E was calibrated by means of U(z) 

plots [Lyse05]. Typical I-E curves and corresponding FN plots obtained for the four cathodes 

are shown in Fig. 6.6. At first sight, the shape of the curves of the measured spots appears 

similar despite different current and field levels. Small current fluctuations and hysteretic I-E 

curves (Fig. 6.6a, d) indicate stepwise (de-) activation of individual Cu-NCs, while strong 

current drops at the high field (Fig. 6.6b, c) hint at severe emitter destruction.  

The field enhancement factor β of the emitters was determined from the stable low-field 

slope of each FN plot assuming a work function of 4.65 eV [Lide08]. At higher fields, current 

fluctuation and saturation effects were always observed which might be caused by successive 

processing of the Cu-NCs contributing to the emitter current.    

4890 V 0 V 2013 V 0 V 

1 

0 

0.5 

0 0.5 

1 

1 

0 

0.5 
0 

0.5 

1  

 

(b) (a) 



___________________________________________________________________________ 
66 Chapter 6. Metallic emitters grown in polymer ion-track membranes 

 
Fig. 6.6. Typical I-E curves and FN plots (inset) measured with the Øa = 30 µm of 

cathodes A-D ((a)-(d), respectively). The arrows indicate up/down voltage cycles and strong 
current drops. Please note that cathodes A and D yield much higher currents (>10 µA) than 
cathodes B and C (<1 µA). 
 

In figure 6.7a, Eon and β values of all locally measured emitters are displayed. At first, 

the overall hyperbolic correlation indicates the intrinsic FE behavior of the Cu-NC emitters 

with characteristic ranges caused by their aspect ratio and mutual shielding. The unstructured 

cathodes A and B with high density of Cu-NCs provide high mean Eon values of 52 (53) 

V/µm and low mean β values of 84 (65), respectively. The structured cathode D with low 

density of Cu-NCs yields a mean Eon = 26 V/µm and β = 153, while C exhibits on average the 

lowest Eon = 22 V/µm and highest β = 237. The large scattering of these values for cathode C 

is attributed to the incomplete Cu-NC growth in the patches.  

The actual status of the Cu-NC cathodes for potential vacuum nanoelectronic devices is 

shown in Fig. 6.7b, where the maximum stable currents (~10% over some minutes from all 

measured spots of 30 µm in diameter) are plotted as a function of the applied field. For the 

unstructured cathodes with large number density (107 cm-2), rather high current levels up to 

280 µA are achieved from the slowly-grown cones (A) but only moderate ones (0.1-20 µA) 

from the fast-grown cones (B). This confirms the importance of a solid contact of the Cu-NC 

to the substrate for high current limits. In comparison, the structured cathodes with much less 

number density (<106 cm-2) provide rather low current levels of 20-700 nA from sharp 

tips (C) and fairly good ones (10-100 µA) from broad tips (D). The operating field levels, 

however, are much lower for the structured cathodes (~20-60 V/µm) than for the unstructured 
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ones (~80-140 V/µm). A clear average trade-off between low onset fields and high current 

limits is indicated by the wide spread of points in Fig. 6.7b.  

 

Fig. 6.7. (a )Eon(1 nA) vs. β values derived from the FN plots for all locally measured 
emitters of the four cathodes (A-D). (b) Maximum stable current values vs. applied electric 
field for all measured spots on the four Cu-NC cathodes (A-D). 

 
The improved mechanical stability and solid contact interface of the copper nanocones 

result in much higher current values as compared to all previously tested metallic cylindrical 

nanowires. Systematic variation of the number density emitters might lead to lower operating 

fields and to higher current values.  

 

6.3. Performance of Au-coated Cu-NCs of reduced number density 
 
In order to improve the FE properties of structured Cu-NCs cathodes, new series of Cu-

NC cathodes with reduced number density of emitters were fabricated. Moreover, to stabilize 

and get higher FE current, these cathodes were magnetron-sputtered with thin gold films. For 

a systematic study, one cathode was coated with a 10 nm Au layer, while the other one with 

60 nm. The main parameters of the fabricated patch-structured bare and Au-coated Cu-NC 

cathodes are summarized in table 6.2. The FE properties of the Cu-NC cathodes before and 

after coating were compared. 

Table. 6.2. Overview of parameters of the bare and Au-coated Cu-NC cathodes. 
       Parameters 
 
    Sample  

Type 
Etching 

time 
(min) 

Deposition 
voltage 
(mV) 

Ne, 
(cones/cm2) 

Øtip,  
(nm) 

Aspect 
ratio 

65.2 
(238U ions) 

bare 
15 50 4.4-8.7×105 

197 286 

10 nm 
Au film 

207±43 270 

52.3 
(136Xe ions) 

bare 
20 40 1.4-4.7×105 

186 301 

60 nm 
Au film 

246±64 227 

(a) (b) 
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Detailed SEM (Philips XL 30 S) investigations of fabricated Cu-NC patches show that 

not all Cu-NCs in the patch were grown completely. Investigations of 22 and 12 randomly 

chosen Cu-NC patches showed that the percentage of completely grown Cu-NCs per patch is 

about 788% and 6511% for the 65.2 and 52.3 cathodes, respectively (Figs. 6.8, 6.9). The 

fabrication difficulties can be explained, firstly, by non-simultaneous pore filling at high 

deposition voltages. A similar explanation was proposed in [Schu00, Toim01a]. Secondly, as 

was explained by Hama et. al. [Hama98] the reduction of Cu+2 ions takes place in two steps, 

i.e. Cu+2 + e- → Cu+1 and Cu+1 +e- → Cu. Oxidization of the Cu+1 ions during electrochemical 

deposition of copper into the pores by the air bubbles in the electrolyte again can produce 

Cu+2 ions. This process consumes current, but does not lead to any deposit [Bark01, 

Toim01a]. Finally, it can also be explained by the fact that not all the pores were completely 

opened after the chemical etching of PC membrane [Jord12b]. 

 

50 µm 

(a) 

   

(b) 

 
Fig. 6.8. Typical SEM image of a single 10 nm Au-coated patch shows 64 Cu-NC 

emitters, but only ~51 of them (or 79%) were grown completely (a). A percent histogram 
between the numbers of the fully grown nanocones and the total number of emitters per patch 
(b). The resulting mean value of completely grown NCs of 22 patches is about 78±8 %.    

(a) 

   

65±11%    (b) 

 

Fig. 6.9. Typical SEM image of a single 60 nm Au-coated Cu-NC patch shows about 
71% of successfully grown emitters (a). A percent histogram between the numbers of the fully 
grown nanocones and the total number of emitters per patch (b). The resulting mean value of 
completely grown NCs of 12 patches is about 65±11 %.    



___________________________________________________________________________ 
69 Chapter 6. Metallic emitters grown in polymer ion-track membranes 

Based on the fact that the deposited material replicates the shape of the pores, which 

increases almost linearly with the etching time [Flei75, Toim01b], the variation of the tip 

diameters for both types of cathodes (Fig. 6.10, 6.11) is due to different size and structure of 

ion tracks, that depends on the mass and energy of the impinging ions [Apel98, Trau95, 

Trau96] and on the position of the polycarbonate foil in the stack as mentioned above 

[Jord12a, Apel01b].    

 

200 nm 

(a) 

   

(b) 

 

 Fig. 6.10. SEM image of a 10 nm Au-coated Cu-NC tip at high magnification (a). Tip 
diameter distribution of 27 measured Au-coated NCs (b). The resulting mean value of tip 
diameter is 207±43 nm. 

(a) 

   

(b) 246±64    

 

 Fig. 6.11. SEM image of a 60 nm Au-coated Cu-NC tip at high magnification (a). Tip 
diameter distribution of 35 measured Au-coated NCs (b). The resulting mean value of tip 
diameter is 246±64 nm. 
 
 The HRSEM analysis, presented above, is very important for better interpretation of the 

FE results from the Cu-NC cathodes. The variation of number of the fully-grown nanocones 

and their diameter per patch will lead to the variation of the current carrying capability under 

certain voltage due to the shielding effect. Therefore, a fabrication procedure of such emitters 

has to be improved.     

 EDX (attached to the HRSEM) analysis has been performed on the bare and Au-coated 

Cu-NC cathodes to characterize the elemental distribution from the surface. From the spectral 
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EDX images we see two and three (Fig. 6.12a, b) basic spectral lines that correspond to the 

presence of Cu and both Au and Cu elements for the bare and the Au-coated cathode, 

respectively. Some other peaks in the spectra correspond to the elements of the setup 

(beryllium) and chemical agents (sulphur, chlorine).    

 
 
 

 
Energy (keV) 

(a) 

 
 

Energy (keV) 

(b) 

 

Fig. 6.12.  EDX spectra of the bare (a) and Au-coated (b) Cu-NCs. 
 

6.3.1. Properties of bare and 10 nm Au-coated Cu-NC cathode 65.2 

In order to investigate the homogeneity and distribution of emitters PID regulated raster 

voltage scans U(x,y) at a constant FE current of 1 nA at a fixed ∆z were performed. In 

measurements tungsten anodes of truncated-cone shape and diameter a were used in order to 

obtain low and high resolution voltage maps.      

Medium resolution voltage scan shows fairly homogeneous and well-aligned FE of all 

Cu-NC patches (Fig. 6.13a). The varying values of the Eon (1nA) are partially caused by the 

slightly tilted cathode or substrate unflatness and by different aspect ratio of emitters. High 

resolution voltage map prove the presence of at least 3 dominant emitters per patch (or 

1.7×10-4 cm-2) which start to emit at field below than 10 V/µm (Fig. 6.13b). Multiple emitters 

can play an important role in improvement of the stability of FE due to the replacement of 

destructed emitters with emitters which were shielded. 

       
Fig. 6.13. Medium (Øa = 60 µm, ∆z = 30 µm) and high (Øa = 12 µm, ∆z = 38 µm)  

resolution voltage maps for the bare (a) and 10 nm Au-coated (b) Cu-NC cathodes. 
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Local measurements of whole patches were performed with 150 µm anode, in order to 

determine the FE characteristics of Cu-NC emitters more precisely. For each local 

measurement the field was calibrated by means of U(z)-plots [Lyse05]. Typical I-F curves 

and corresponding FN-plots (inset) for the bare and 10 nm Au-coated Cu-NC cathodes are in 

Fig. 6.14. Current jumps at µA, 70 µA and ca. 260 µA levels for the bare cathode can be 

explained by the stepwise destruction of the dominant emitters (fig. 6.14left). In contrast, 

stable FE current up to 200 µA have been achieved for the 10 nm Au-coated emitters (fig. 

6.14right).    

   

Fig. 6.14. Typical I-V curves and corresponding FN-plot (inset) for the bare (left) and 
10 nm Au-coated (right) cathodes. 
 

The maximum achieved currents per Cu-NC patches are presented as function of beta 

values (Fig. 6.15a.) and an applied electric field (Fig. 6.15b). Variation of current values 

(from 1 µA to 350 µA and from a few µA to 260 µA for the bare and Au coated emitters, 

respectively) and beta values might be explained by strong variation of emitters per patch and 

different tip diameters as mentioned above (see figs. 6.8-6.11).  

 
Fig. 6.15. Maximum achieved FE currents vs. ß values (a) and applied field (b). On 

average the bare Cu-NCs yielded about 147 µA per patch (Øa = 150 µm) in comparison to 
128 µA for 10 nm Au-coated ones.  

(a) (b) 
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The field enhancement factor was extracted from the FN plots of all measured patches. The 

distribution of these factors is presented in semilogarithmic histogram in Fig. 6.16a. As it can 

be seen from the histograms the mean beta values are 333 and 595 for the bare and 10 nm Au-

coated cathode, respectively. Higher beta value for the 10 nm Au-coated cathode can be 

explained by presence of a few-nm sized gold clusters (islands) on the tip surface [Kaun09, 

Sieg11]. Similar explanation was suggested in ref. [Giva95], wherein the authors discussed in 

detail the FE from protrusions (nano-points) sitting on the tip surface of the silicon emitters 

(see also chapter 2.1). This also explains some of the differences among Eon of bare and Au-

coated cathodes, because of the higher beta factor leads to the lower Eon (Fig.6.16b).    

 

Fig. 6.16. Histograms of mean field amplification factor <ß> ln(5.81 (6.39)) = 333 
(595) (a) and  mean value of <Eon> = 12.85 (8.87) V/µm (b) for the bare (10 nm Au coated) 
cathode. 

A current stability test for a single bare and 10 nm Au-coated patch measured with Øa = 

150 µm over a time period of 1 hour was performed. The result yielded fluctuations in the 

range of 17-25 µA (~ 22.2%) and 98-124 µA (~ 18.2%), respectively (Fig. 6.17). Fluctuations 

in the emission current might be interpreted as the result of morphological changes of 

emitters and/or due to the adsorbates (see chapter 2.1). 

 
Fig. 6.17. Current stability of a single bare and 10 nm Au-coated patch. 

(a) (b)
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SEM images of tested 10 nm Au-coated Cu-NC patches showed that after the current 

processing (~1 hour) at least 6 NCs were partially melted by the FE current. From SEM 

images, it is also possible to estimate an average current from a single nanocone. Relative 

stable current of about 100 µA have been achieved from 36 emitters (see fig. 6.17 and 

corresponding SEM image in Fig. 6.18), that corresponds to the average current value of 

about 2.7 µA per nanocone. Achieved value is nearly close to the current threshold of an 

individual single-walled carbon nanotube [Dean01]. Probably, such high current value is 

attributed to the screening effect: more closely spaced emitters showed less degree of damage 

than the well-separated ones, and hence not all NC were involved in FE process. The reasons 

of spheroidization and partial destruction of emitters after the current processing will be 

discussed in chapter 6.3.2.     

 

1 µm 

Initial 

 

1 µm 

After 

I ~ 100 µA 

 

Fig. 6.18. SEM images of 10 nm Au-coated Cu-NC patch before and after the current 
processing (see fig. 6.18). Insets are Au-coated Cu-NCs at higher magnification. 
Spheroidization and partial destruction of emitters after the current processing were 
observed.   

 

6.3.2. Properties of bare and 60 nm Au-coated cathode 52.3 
 
The results of voltage scans U(x,y) over the cathodes at a constant FE current (I = 1 nA) 

show fairly distributed FE of the bare and 60 Au-coated Cu-NC cathodes at onset field Eon 

(for 1nA) = 8-23 V/µm and Eon = 7-33 V/µm, respectively (Fig. 6.19). The variations of the 

Eon can be explained by mutual shielding of randomly distributed Cu-NCs per patch (see fig. 

6.8, 6.9) and by different diameter of Cu-NCs (see fig. 6.10, 6.11). Concentrating only on the 

strongest emitters, that start to emit at Eon below 10 V/µm, one has to mention, that bare 

cathode yields a minimum of 4 dominant emitters per patch or 2.3×104 cm-2, while Au 

coating shows at least 12 emitters or  6.7×104 cm-2. These values are nearly close to the total 

number density of emitters mentioned above (see Tab.6.2). The results hint that the gold-
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coated Cu-NCs leads to the activation of the emitters probably due to less oxide, as well as, 

one can say that the optimal number density of such NCs is about 2-7×105 NC/cm2 [Dang07].  

 

Fig. 6.19. High resolution onset field maps (area  <1 mm2, for 1 nA FE current, Øanode 

= 12 µm, ∆z = 30 µm) of pure (a) and Au-coated (b) copper nanocones cathodes showing at 
least Ne ~ 2.2×104 cm-2 and ~ 6.7×104 cm-2 respectively.   
 

In order to investigate FE characteristics of both cathodes, local measurements of whole 

Cu-NC patches were performed with Øanode = 150 µm. The field was calibrated by means of 

U(z) plot. Typical I-V curves obtained from the bare and Au-coated Cu-NC patches are 

shown in Fig. 6.20. Both type of cathodes showed fairly stable FN behavior, however, with 

strong irreversible changes in the I-V curves that might be explained by changing of the tip 

geometry of dominant emitters or their partial destruction.         

 

 Fig. 6.20. Typical I-V curves and corresponding FN plots (insets) from a single bare (a) 
and 60 nm Au-coated (b) Cu-NC patch measured with Øa = 150 µm, showing a partial 
destruction of emitters at about 5 µA and 90 µA respectively. The arrows indicate up/down 
voltage cycles. 
 
 The field enhancement factors were extracted from the FN plots at low currents of all 

measured patches assuming the nominal values of work function for copper and gold of φCu = 

4.65 eV and φAu = 5.1 eV, respectively [Lide08]. The logarithms of these values are presented 

in Fig. 6.21. The resulting mean β values for the bare and for the 60 nm Au-coated cathodes 

(a) (b) 
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are 274 and 252 respectively. The result is nearly close to the aspect ratio estimated above. 

Decrease of the β value is associated with a higher φAu and larger tip diameter for the Au 

coated cathode.      

 
 Fig. 6.21. Histograms of the natural logarithm of the beta values for the bare (left) 
and 60 nm Au-coated (right) cathodes for increasing (UP) and decreasing (Down) applied 
field. The resulting mean β-values are 274 and 252 for the bare and coated cathodes, 
respectively.  

 
The large variation of β-values and Eon of measured bare and coated patches is 

presented in Fig. 6.22. It is visible, that the Eon (β) of the bare Cu-NCs after the current 

processing is getting higher (smaller). Such results indicate that the geometry of the emitters 

irreversibly changed irreversibly at high field (current). In contrast, measured 60 nm Au-

coated Cu-NC patches seem to be more stable. Mean values of Eon are 13 V/µm and 17 V/µm 

for the bare and 60 nm Au-coated patches, respectively.     

 

Fig. 6.22. Onset field Eon (1nA) vs. β-values for the bare (left) and 60 nm Au-coated 
(right) cathodes before ( UP) and after ( Down) current processing.   
 

The improved current capability of the gold-coated Cu-NC cathode in comparison to 

the bare cathode is also presented in fig. 6.23, where the maximum achieved stable currents 
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per patch are plotted as function of beta values (a) and an applied field (b). On average the 

bare Cu-NCs yielded about 30 µA at 32 V/µm in comparison to 151 µA at 50 V/µm for Au-

coated ones.  

 

Fig. 6.23. Maximum achieved FE currents vs. beta values (a) and applied field (b) per 
patch for the bare and the 60 nm gold-coated Cu-NC cathodes.  
 

Typical SEM images of the bare and 60 nm Au-coated patches before and after the 

current processing are presented in Fig. 6.24. SEM analysis of both types of cathodes showed 

that after the current processing (at current limits from 20 nA to 275 µA for bare and from 20 

µA to 400 µA for Au-coated cathodes), on average 50-70% of all emitters in the patch were  

completely destroyed or melted, while the remaining bare and Au-coated emitters were 

partially modified. The observed spheroidization on the top of emitters is caused by melting 

of the metallic tips at the temperature lower than the melting point of the material (Rayleigh 

instability) [Reil79, Toim04, Kari06, Kari07]. The morphological/geometrical changes of Cu-

NCs can be also explained by:  

1. resistive (Joule) heating effect [Ho89]; 

2. electromigration effect (motion of metal ions under an applied field) [Ho89, Stah07].  
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(a) 

(b) Initial 

After Initial 

After 

I ~ 20 µA 

I ~ 100 µA 

Bare 

Au-coated 
 

 Fig. 6.24. SEM images of bare (a) and Au-coated Cu-NC patches before (on the left 
side) and after (on the right side) current processing at ~ 20µA and 100 µA for the bare and 
Au-coated cathodes, respectively. Spheroidization and partial destruction of emitters after the 
current processing were observed.  

 

6.4. Current carrying capability of single bare copper nanocones 
 

In order to investigate the FE properties of individual bare copper nanocones, cathode 

with low number density of emitters Ne in the patches was used (Fig. 6.25left). The main 

parameters of the cathode are summarized in Tab. 6.3.     

Table. 6.3. Overview of parameters of the bare and Au-coated Cu-NC cathodes. 
       Parameters 
 
    Sample  

Type 
Etching 

time 
(min) 

Deposition 
voltage 
(mV) 

Ne, 
(cones/cm2) 

Øtip,  
(nm) 

Aspect 
ratio 

80.2 
(238U ions) 

bare 12 40 2.2-8.5×104 155±40 363 
 

 

 

 

 

 

 

 

At first, high-resolution voltage scan at constant FE current of 1 nA has been performed 

in order to determine the position of single emitters over the cathode. The result of the voltage 

scan over a certain area of the cathode shows a few well-defined single emitters and eight of 

them were tested (Fig. 6.25right). The maximum current carrying capability of the numbered 

emitters was measured. Onset electric field (for 1 nA FE current) as well as the field 

enhancement factors β assuming work function of 4.65 eV have been derived from 

corresponding I-E and FN plots. The results are summarized in Table 6.4. 
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 Fig. 6.25. Typical SEM image of a single patch on the left and voltage map on the right 

(at 1nA, Øa = 4 µm, Δz ~ 20 µm, area ~ 1 mm2). Not all cones were grown due to some 
fabrication difficulties, as mentioned above. Typical Ne per patch varied from 2 to 10 cones. 
The numbered points are corresponds to the position and order of local measurements listed 
in Tab. 6.4. 

 
 

 

Table. 6.4. FE measurement result for the eight single bare Cu-NCs.  
Emitter 
num. 

Δz, 
µm 

Eon(1nA), 
V/µm 

Imax, 
nA 

Umax, 
V 

Beta 
(φ = 4.65eV) 

1 20 19 64 610 541 
3 15 26 78 680 161 
4 6 34 190 960 31 
5 12 33 450 478 128 
6 39 22 470 1250 214 
7 49 22 11 1040 105 
8 36 31 260 1480 121 
 

The maximum FE current from a single Cu-NC varied between 11nA and 470 nA. 

Scattering of current value might be explained by the different geometry of Cu-NCs, i.e. the 

sharper tip, the lower the maximum FE current value. Typical current-voltage curve and the 

corresponding F-N plot of a single Cu-NC is in Fig. 6.26. 

 

Fig. 6.26. Current-voltage curve and corresponding FN-plot (inset) of a single bare 
Cu-NC (emitter num.5 in the table 6.4). The anode-cathode distance Δz was 12.35 µm. The 
arrows indicate up/down voltage cycles.    
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Small current fluctuations at low field values, can be explained by the variation of the shape 

of the potential barrier and thus by the different tunnelling probability of electrons due to the 

adsorbate [Luon95] or/and by presence of a native copper oxide layer [Kiel07, Zhu05]. A. 

Zeitoun-Fakiris et. al. [Zeit88] reported that the various gases creates adsorption and 

desorption events on the tip surface that result in a redistribution of the electron emission 

sites. Moreover, this occurs without change of the emitter tip geometry. Irreversible current 

drop occurs at a high filed value due to the partial destruction of the Cu-NC field emitter. The 

field enhancement factor beta (assuming a work function of φ = 4.65 eV for copper [Lide08, 

Kohl97]) was extracted from the linear part of the FN plot. The resulting β values for both up 

and down voltage cycles are 128 and 216, respectively. Higher beta after the current 

processing can be explained by presence of gold particles on the top of the Cu-NC, as 

mentioned above [Giva95, Kaun09, Sieg11].  

SEM analysis revealed some morphological changes of the processed emitters as shown 

in Fig. 6.27. Spheroidized ends of Cu-NCs can be observed that can be explained by Rayleigh 

instability - is the effect of the surface tension, above its thin metallic nanowires breaks into 

droplets at temperatures much lower than its melting point (i.e., at 400°C (600°C) for a Cu 

(Au) nanowire with a diameter of 100 nm (87 nm)) [Kara06, Kari07, Kohl97, Rayl78].     
 

 
 

 

 

 

 
 

 

 

 
 
 

 

 
 

 

 

 
 

 
 

 
 

 

 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6.27. SEM images at 30° tilted-view of a single bare Cu-NC before (a) and after 

(b) the current processing at ~450 nA. 
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6.5. Integral measurement results 

  
To demonstrate the application of such Cu-NC cathodes (Fig. 6.28), integral 

measurement of 10 nm Au coated structured Cu-NC cathode (the same cathode 65.2 was also 

investigated in the FESM, see the results above) has been performed in the IMLS in dc mode.   

  

Fig. 6.28. Optical microscope image of the structured bare Cu-NC array (about 20×23 
patches over ~ 5×5 mm², 270 µm pitch) and SEM image at 30° tilted-view of a single Cu-NC 
patch (Ø ~150 µm). The right hand cone is slightly not in the focus due to the unflatness of 
the cathode. The variation of the cathode height is up to 125 µm over 5 mm length.  

 

In order to see how homogeneous FE on the luminescent screen, the investigation of the 

cathode in the IMLS was performed. After a few up and down voltage cycles, nearly stable 

FE current up to 16 µA was achieved (Fig. 6.29). A nearly straight line of the current-voltage 

curve in the FN-coordinates suggests the presence of the FN tunnelling.  

     

Fig. 6.29. Left: I-V curve and corresponding FN-plot (inset); Right: corresponding 
luminescent screen image of Cu-NC cathode measured in dc mode. The anode-cathode gap is 
about 150 µm. Input power load to the screen is about 0.077 Watt. The size of the patch 
structured area is ~ 5×5 mm². 

 

 I ~16 µA 

1 mm 20 µm 
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From the luminescent screen, fairly homogeneous FE can be seen. Such result can be 

explained by the unflatness of the Cu-NC substrate (see fig. 6.29). Similar results were 

obtained during the FESM measurements (as presented in chapter 6.3.1). Actually, the 

fabrication of Cu-NC cathodes with a perfectly flat substrate is the difficult task and, 

unfortunately, still have not been solved. For instance, the surface of the actual Cu-NCs 

cathode (Fig. 6.29), investigated by an optical profilometer, yielded the height difference up 

to 125 µm over 5 mm length [Jord12b, Dzie12]. Therefore, the sample curvature results in the 

electric field difference over the whole cathode and explain the higher brightness at the edges 

of the patch structured area. A detailed study on the influence of the sample curvature on the 

FE characteristics is elsewhere [Lyse06]. In addition, ZnS based-phosphors have a minimum 

threshold for screen response of 100 nA at 500 V, hence, FE current below this value cannot 

be observed on the luminescent screen that resulting in a small black area. In this respect, 

FESM scans at a constant voltage would be more preferable.           

The maximum current value from the cathode was investigated by using of a copper 

screen. As shown in fig. 6.30, a cathode current up to 2 mA (corresponding to a current 

density of 8 mA/cm2) was obtained at the anode voltage of 1270 V. The observed hysteresis 

is attributed to a partial or complete destruction of individual Cu-NC emitters or due to 

adsorbate effects [Lion95, Zeit88].  

 

Fig. 6.30. I-V curve and corresponding FN-plot (inset) of Cu-NC cathode integrally 
measured in dc mode with metallic anode. The observed hysteresis is attributed to partial 
destruction of Cu-NC emitters and due to adsorbate effects. The gap is about 250 µm. 

 
In the conclusion, the results of local measurements of the same cathode (see chapter 

6.3.1) yielded on average about 128 µA per patch, while the IMLS measurement results 

yielded up to 2 mA from 20×23 patches which corresponds to the average current of about 

4.3 µA per patch. Such result indicates that there is still room for improvement in terms of the 
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flatness of the cathode substrate, uniformity and the number density of Cu-NCs. Different FE 

current values might be also explained by the different geometry of the anodes [Song13].   

 
6.6. Conclusions and outlook  
 
Sharp and mechanically stable metallic nanocones with solid contact interface were 

successfully fabricated by potentiostatic electrodeposition of copper in etched ion-track 

membranes. The sharp Cu-NCs can be grown using a polycarbonate foil irradiated with 136Xe 

ions. By varying the number density of emitters, the optimal current value at suitable applied 

voltage can be achieved. The current carrying capability of bare Cu-NCs can be improved by 

a 60 nm Au coating providing current values up to 400 µA/patch, though at the expense of 

higher applied fields of ~50 V/µm. SEM images of high-current processed patches revealed 

morphological or  geometrical changes of both bare and Au-coated Cu-NC emitters due to the 

limited thermal conductance. Rayleigh instability, Joule heating and the electromigration 

effects are the main mechanisms responsible for the destruction of nanostructures at high 

current densities.    

Ion-track etching and electrochemical filling conditions have been optimized to 

improve the uniformity of NCs and the flatness of the substrate. A possible option to get 

higher current densities is the coating of Cu-NC emitters by a carbonaceous layer [You10]. 

The second option is the fabrication of nanocones using other type of metal, for instance, 

gold. In terms of thermal stability, single-crystalline nanowires yield higher resistance to 

morphological changes than poly-crystalline metallic nanowires [Toim12, You10, Navi10c]. 

From the other side, poly-crystalline metallic emitters are easier and cheaper to fabricate. In 

spite of that, future work should focus on the fabrication of single-crystalline Au-nanocones. 

Moreover, electrothermal model calculations of nanocone-emitters are required for better 

understanding of the current limitations. Due to the randomly distributed arrays of NCs are 

not ideal for FE, fabrication of a regular array of individual uniform Au-NCs spaced apart by 

twice their height is required. With such further optimization, Au-NC field emitters might 

provide advantages over carbon-based ones. 
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7. Silicon tip arrays fabricated by anisotropic etching technology 

for FE device 

 
The homogeneity of most actual field emission cathodes, including carbon and metallic 

nanostructures, and the emission stability of their individual emitters are still limited by 

fabrication difficulties leading to great variations in the field enhancement and current 

carrying capability [Dall13, Dean01, Navi09, Navi10a, Seme02, Serb12].  

With respect to advanced cold cathode applications, the well-established silicon-based 

microelectronics technology still offers the best possibility for the reproducible fabrication of 

extended microstructure cathodes with highly controlled geometry and position [Wang04, 

Günt01, Günt03]. In addition, integration into micro- or nanoelectromechanical systems may 

lead to novel monolithic vacuum electronic devices [Schr11]. Furthermore, FE current out of 

p-doped silicon shows a current saturation region. This effect can be used for current 

stabilization and, due to the high photosensitivity, for fast optical modulation of the emission 

current too[Born12]. Si-based FE cathodes have been studied for many years. However, the 

previous fabrication methods did not allow overcoming the mentioned fabrication difficulties. 

Therefore, an improved microstructuring process applying modern silicon technology for the 

reliable fabrication of silicon-based cathodes with precisely shaped and aligned Si tips as field 

emitter arrays (FEAs) which might be applicable for miniaturized flat electron sources will be 

reported. Uniform arrays of p-doped, n-doped, and Au-coated Si tips with controlled heights 

and tip radii have been obtained. The FE properties and the current limits of these different 

cathodes are presented and discussed here with respect to some potential device applications, 

for instance, vacuum sensors. 

The Si tip arrays were fabricated in the group of Prof. Dr. R. Schreiner in the 

Microsensors Laboratory at the Regensburg University of Applied Sciences, Germany.  

 
7.1. Optimal tip shape considerations and silicon field emitter design 

 
The electric field enhancement factor β plays the key role for the design of FE cathodes 

because it defines the extraction voltage required for cathode operation. The extraction 

voltage is inversely proportional to the β value. In a simple approximation, the geometrical 

field enhancement factor β is mainly given as the ratio of the emitter height h to the radius of 

the tip curvature. In a more precise approach, the factor β depends on the tip shape too and 

decreases with increasing tip apex angle [Utsu91, Forb03, Marc90] (Fig. 7.1a,b,c). 
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Fig. 7.1. Emitter shapes formed by (a) orientation-dependent etching, (b) isotropic 

etching, (c) anisotropic etching, and (d) an ideal whisker-like structure. The arrow indicates 
the increase of the field enhancement factor β of the emitters [Dams12]. 

 

The optimal shape of a field emitter for high β factor would be whisker-like with a tip 

radius r much smaller than the height h (Fig. 7.1d). However, in order to get mechanically 

more stable structures and higher FE current limits, conical shapes are more preferable. A 

compromise solution is a shape like the Eiffel Tower (Fig. 7.1c). In the literature, several 

ways are described to form a structure out of bulk silicon getting close to such a tapered shape 

[Shaw02].  

The highest β factors are naturally found for extremely sharp tips (best in the atomic 

scale). However, a variation of the tip radii of some nanometers during fabrication is hardly to 

be avoided [Ding02]. In the case of atomically sharp tips, this has a strong influence on the 

variation of the field enhancement factor. Consequently, moderately sharpened tips (radii on 

the order of a few tens of nanometers) will lead to smaller relative deviations of the β factor, 

much more well working tips, and, therefore, a better uniformity of the FEAs. Furthermore, 

the larger allowable process windows during fabrication lead to a better reproducibility. 

The influence of the tip geometry (height H, apex radius R, and aperture angle α) on 

the field enhancement factor was investigated by finite element simulations using COMSOL 

multiphysics software® (Fig. 7.2) [Lang12]. For a given α, an almost linear dependence of β 

on the aspect ratio H/R was found. As expected, the highest β-values result for an aperture 

angle of 0°. For apex radii in the order of a few tens of nanometers, this might lead to 

undesirable shape variations due to the fabrication process and hence to inhomogeneous 

emission properties of individual tips on one side and on the other side to unwanted 

limitations of the emission current and extreme joule heating due to the narrow cross section 

of the tips. For our applications β values in the order of 100 are sufficient; therefore, conically 

shaped tips with an α ≈ 30° and H ≈ 1-3 µm are preferable, because longer etching times will 

usually result in greater process deviations and thus to greater variations of the tip geometry.  
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Fig. 7.2. Field enhancement factor of a single Si-tip as function of the aspect ratio υ for 
different aperture angles α with an anode-cathode distance of 5 H simulated by COMSOL 
multiphysics® [Lang12]. 

 

7.2. Fabrication  

Common fabrication techniques for Si microstructures are orientation-dependent 

etching, isotropic wet or dry etching, and anisotropic dry etching [Shaw02]. In order to 

achieve reproducible cathodes with both high β factor and sufficient FE current limits, a 

combination of an anisotropic dry etching step followed by sharpening of the tips by wet 

thermal oxidation were chosen [Dams11, Dams12]. As base material, 4-in p-type or 2-in n-

type silicon wafers (p-Si: (100) orientation, boron doped, and resistivity of 1-10 Ω∙cm; n-Si: 

(111) orientation, phosphorus doped, and resistivity of 150-250 Ω∙cm.) were used.  

In the first step, a thermal oxide of 750 nm was grown on the whole wafer surface. The 

lateral position of the tips was defined by structuring the oxide layer. The layout consists of a 

triangular array of disks (diameter d and spacing a; Fig.7.3). 

Very uniform structures over large areas were achieved by means of high-resolution 

laser beam lithography using image reversal photoresist AZ5214E. The pattern was 

transferred into the SiO2 film by reactive-ion etching (RIE) in an “Oxford Plasmalab 80 Plus” 

etching tool using CHF3 and O2 as process gases (Fig. 7.4a-c). 

 
Fig. 7.3. Cell of a photomask to define lateral positions of the tips with grid size a = 

20μm and disk diameter d = 2 μm [Dams12]. 

a 

d 

a 

a 
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The resulting disks have a diameter of 2 μm and are placed in a triangular array with 

20 μm or 10 µm pitch. The change of the disk diameter will influence the final tip height. 

After removal of the photoresist, the vertical shape of the tips is defined by a subsequent dry 

RIE process with SF6 and O2 as process gases using the SiO2 disks as etch mask (Fig. 7.3d). 

The anisotropy of the etching process can be widely controlled by adjusting the SF6 and O2 

flows, chamber pressure, and RF power [Legt95]. 

 
Fig.7.4. Schematic of the structured cathode fabrication process: (a) Thermal growth of 

the SiO2 layer. (b) Photolithography. (c) Transferring of the structures into SiO2. (d) 
Anisotropic dry RIE of the bulk Si. (e) Sharpening of the tips by wet thermal oxidation. (f) Wet 
chemical removal of SiO2 [Dams12]. 
 

We observed that most homogeneous results were attained by low chamber pressures 

(50-100 mtorr) and an RF power of 120 W, which are in agreement with previously reported 

results [Wang04].  

Thus, very uniform structures were achieved over the nearly complete etched surface. 

To prevent the disks from peeling off, the process parameters were adjusted to leave 1 μm of 

bulk silicon under the mask, i.e., to achieve around 0.5 μm mask undercut (Fig. 7.5). The 

vertical etch depth was chosen to be around four times the horizontal under etching, resulting 

in an anisotropy factor of 0.75 which is required to achieve the desired shape of the tips with 

α ~ 30°. The anisotropy factor needs to be adjusted by the RIE system-dependent process 

parameters depending on the substrate material, wafer size, mask geometry, and RIE chamber 

configuration. By adjusting the anisotropy of the RIE process, it is possible to vary the tip 

shape and, thereby, the opening angle of the tips. 
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 Fig. 7.5. SEM image of the silicon tips with SiO2 mask disks after the anisotropic RIE 
of bulk Si [Dams12]. 
 

In the next step, the remaining silicon under the disks is wet oxidized at 940 °C in order 

to sharpen the tips (Fig. 7.4e). This relatively low temperature allows growing around 1 μm 

SiO2 in a reasonable time and, on the other hand, keeping the oxidation rate as low as possible 

in order to make the process more controllable. The presence of the masking disks on the 

upper surface of the structures is most important at this step in order to decrease the vertical 

oxidation rate and, thus, to prevent blunting of the tips. The oxidation process needs to be 

stopped shortly after the merge of the oxidation fronts at the center of the tips. Too short 

oxidation times result in a circular plateau instead of a sharp tip, whereas longer oxidation 

times reduce the total height of the tips and, thus, the β factor. With an exact control of this 

step, it is possible to form sharp tips with upper curvature radius below 30 nm (Fig. 7.6). 

Finally, the silicon oxide layer (≈ 1 μm) is wet chemically removed by a HF-containing 

etchant (BOE 7:1). 

The resulting silicon FE cathodes (7×7mm2; top left of Fig. 7.6) contain about 3×105 Si 

tips/cm2 in a triangular array with 20 μm spacing. Inspections of the tip geometries were done 

by a JEOL JSM-6510 SEM. About 20 tips per array at randomly chosen positions within the 

whole area were measured concerning their height and radius (down right of Fig. 7.6). 
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Fig. 7.6. SEM images of (7×7) mm2 bare p-Si FEA and randomly chosen typical single 

tips [Dams12]. 

 
The tip heights were about 2.5 μm with a variation below 10%. The mean value of the 

tip radii over one array (p-type cathode) was 22 nm with a deviation of 15%; the deviation 

over a whole 4-in wafer was 25%. According to the aspect ratio h/r, the β factor is expected to 

be around 100 for this geometry. 

In order to study the possibility to improve the lifetime, the stability, and the current 

carrying capability, some FEA cathodes were coated with a protecting bimetallic layer. It 

consists of 5 nm Cr buffer layer and 10 nm Au both deposited by means of electron beam 

evaporation. The Au layer is also supposed to protect Si during FE against chemical reactions 

with the residual gas. 

Moreover, in order to systematically investigate and improve the field emission 

performance of p-type silicon tip arrays for pulsed sensor applications, two additional test 

chips which contain a series of hexagonal arrays of p-type Si-tips (wafers with a resistivity of 

4 Ω∙cm were used) of different shape in triangular array (Fig.7.7) were fabricated by the same 

method as mentioned above [Dams12, Serb13]. The main parameters of these cathodes are 

summarized in Table 7.1.  
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Fig. 7.7. Typical SEM images of fabricated p-Si arrays and single tips of types A and B. 

 
Table 7.1. Overview of fabricated p-type Si-tip arrays. 

Array 
types  

Density 
[cm-2] 

Øarray 

[µm] 
Num. 
of tips 

 Tip 
height 
[µm] 

Tip 
radius 
[nm] 

Aspect 
ratio 

Tip-to-tip 
distance 

[µm] 

β-factor 
(measured) 

A 3.5×105 
1 1 

~ 1 < 20 > 50 20 
85 

200 91 78 
520 547 127 

B 1.2×106 

1 1 

~ 2.5 < 20 > 120 10 

158 
40 19 208 

360 1027 258 
750 4447 415 

 

7.3 Field emission performance of highly uniform silicon emitters  
 
Well-aligned and homogeneous emission from all types of Si tips (i.e., 100% 

efficiency) was reproducibly achieved at about 100 (250) V for p (n)-type bare Si tips and 

350 V for metal-coated n-type Si tips as recorded by the regulated voltage scans at a fixed FE 

current of 1 nA using Øa = 3 μm tip anode at Δz of around 8 μm (Fig. 7.8) [Navi11a, 

Dams12]. The best result with amazingly homogeneous emission was achieved for bare p-

type and metal-coated n-type FEAs. Previously reported FEAs with similar fabrication 

processes showed efficiencies less than 70% even for much smaller arrays [Günt01, Günt03, 

Marc90]. The increase of the onset voltage Von (for 1-nA FE current) for the metal-coated 

Type B 

Ntips = 19 
10 µm  

Type A 

Ntips = 547 
20 µm  
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FEA can be explained by the higher work function of Au compared to that of Si and the 

rounding effects of the tips due to coating, resulting in a lower field enhancement factor β.  

 

 

 
Fig. 7.8. Typical voltage maps of (a) bare p-type, (b) bare n-type, and (c) metal-

coated n-type Si cathodes (Δz ≈ 8μm, 1-nA fixed FE current, and Øa = 3 μm). 
 

Local measurements of the p-doped Si cathodes exhibit the theoretically predicted 

current-voltage characteristics consisting of three sections (Fig.7.9):  

 a linear FN-like part at low voltages;  

 a current saturation regime starting at around 10 nA over a voltage range of about a 

factor of two with maximum stable currents of typically 100 nA; due to limited number of 

electrons or creating of a depletion area under the tip due to field penetration [Kane97]; 

 and, finally, a rapid current rise at high fields due to secondary charge effects (the 

black curve in Fig. 7.9) [Liu06b, Schr74, Navi11a]. 
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The non-FN behavior in the current saturation region is due to a limitation of the 

emission current by the supply of electrons from a depletion layer created by a field 

penetration under the emitter tip [Kane97]. The boundaries and the location of the plateau 

region are determined by the size of the depletion region, which is influenced by the doping 

concentration [Teep05]. The use of uniformly doped substrates facilitates the uniformity of 

the depletion region and, finally, the FE homogeneity along the cathode arrays. Moreover, a 

high photosensitivity of the FE current in the saturation region was observed on the p-Si FEA 

that provides a unique possibility to modulate or switch the emission current by ultra short 

light pulses for applications in novel integrated microsystems [Schr11, Jens01, Liu06b]. 

Some initial study of this effect on the same cathodes is presented in [Born12].  

 
 Fig. 7.9. Typical FN plots of bare p-type, bare n-type, and Au-coated n-type Si tips 
(integrally measured with Øa = 100 and 160 μm normalized to one tip, i.e., average of 30 and 
75 tips, respectively). 
 

In the case of bare and metal-coated n-type Si cathodes, the emission shows the usual 

FN behavior (the green and red curves in Fig. 7.9), and the current is limited only by severe 

tip destruction. Despite the remaining current fluctuations, maximum stable currents Imax of 

typically 0.1 μA for a single p-type Si tip and 0.6 μA for a single n-type Si tip were achieved. 

The current fluctuations can be explained by the native oxide, chemical reactions with 

residual gases, or changes in the tip geometry during operation.  

Most stable and reproducible FE currents were achieved for the p-Si cathodes in the 

saturation region. Whereas the current fluctuations in the linear range of the FN plot were 

from 25% to 40% standard deviation, the fluctuations in the saturation range remained below 

4% (Fig. 7.10a, b), i.e., the decrease of the noise level by one order of magnitude. This is in 

agreement with previously obtained results using similar p-Si FEAs [Teep05]. The FE current 

stability tests of the bare n-type FEA showed similar results as for the p-type ones in the 
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linear range with current fluctuations typically below 20% (Fig. 7.10c). The Au-coated Si tips 

exhibit an improved stability (< 10% standard deviation as compared to the average current; 

Fig. 7.10d) as well as for repeated I-V measurements.  

 
 Fig. 7.10. Results of the current stability tests of single tips of the FEAs locally 
measured with Øa = 3 μm at the given constant field (voltage). 
 

Moreover, the additional metallic coating of the n-type FEA cathodes resulted in at least 

five times higher average maximum FE current (≈ 3 μA) compared to the bare ones (Fig. 

7.11). The coating leads, however, to an increase of the onset voltage by about 30%. It was 

interesting to observe also the clear inverse correlation between the Imax and β factors of the 

three different types of FEAs (Fig. 7.11).  

 
Fig. 7.11. Maximum current capability of single tips of the FEAs as a function of the β 

factor locally measured with Øa = 3 μm without considering the field weakening due to the tip 
anode geometry. 

 
It shows the possibility to find a compromise between a low onset voltage with sharp 

tips and high Imax of conical-shaped or metal-coated tips. The higher field enhancement factor 



___________________________________________________________________________ 
93 Chapter 7. Silicon tip arrays fabricated by anisotropic etching technology for FE device 

of the p-type tips compared to that of the n-type tips can be explained by the smaller substrate 

diameter of the n-type wafers (2 in instead of 4 in). The same process parameters were used 

for both substrates, which results in different anisotropy factors and, hence, different tip 

shapes. The average β factors and deviations (58%5% for Au-coated Si, 80%8% for bare n-

type Si, and 137%15% for p-type Si tips) derived from the FN plots (assuming work 

functions of 4.5 (4.8) eV for p- (n-) type Si and 5.1 eV for Au) are in good agreement with the 

ones expected from the tip geometry. The scatter of the β factor can be explained by the 

aforementioned remaining slight variation of the tip geometry over the full area of the 

cathode. It should be mentioned that the obtained values of the applied field (voltage) and β 

factor are more relevant for the actual measurement geometry than for real triode devices, 

where the shape of the gate and the gap has to be taken into account too [Zhir01, Zhon02]. 

7.2. Properties of single p-Si tips, optical current modulation and  

current scaling 

 In order to check the FE properties of the different types of B-doped Si tips (see 

Tab. 7.1), local FESM measurements were performed with a suitable tungsten anode 

(diameter Øa = 3 µm for a gap Δz = 10 µm). At first, the dark current without light exposure 

was measured over the full voltage range. In Fig. 7.12, the measured current-voltage 

characteristics I-V and corresponding Fowler-Nordheim plots of the single p-type Si-tips are 

shown. For both types some unsteadiness effects were observed at low currents probably 

caused by the presence of adsorbates and native silicon oxide or a change of the tip shape.  

 

Fig. 7.12. I–V curves and corresponding FN-plots (insets) of single p-Si tip of different types. 
 

The field enhancement factor ß was derived from the resulting linear region of the FN 

plots assuming a work function of about 4.8 eV, which was determined by means of field 

emission spectroscopy [Born12]. As expected, lower average β values of 85 were obtained for 

Type A Type B 
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type A as compared to 158 for type B. Both values are in fair agreement with the calculated 

ones from Fig. 7.2. The current saturation which follows at field levels of about 50 V/µm 

(type A), respectively, 20 V/µm (type B) is caused by the occurrence of a charge depletion 

layer due to field penetration into emitter that is well known for p-type Si tips [Abou95, 

Liu06b, Qing97]. It is remarkable that the height and width of the current plateau depend on 

the tip geometry, too. The shorter tip A saturates at 10 nA until 65 V/µm, but the higher tip B 

at 3 nA until 25 V/µm. These different current values suggest that the depth to which the 

electric field penetrates into the silicon tip is larger for the higher tip. Accordingly, the 

following secondary charge generation [Schr74, Liu06b] is also more pronounced for the 

sharper tip. The maximum currents are limited by increasing current fluctuations for both 

types of tips at about 350 nA despite of the different field levels. 

For sensor applications, the current plateau range of both Si tips is most attractive. As 

obvious in Fig. 7.12, it provides a much higher current stability (< 5%) than the low (> 50%) 

and high current regimes (> 30%). The suppression of short-term current fluctuations due to 

carrier depletion is clearly demonstrated in Fig. 7.13.  

 

Fig. 7.13. Current stability of the single p-Si tip (type A) in three different current ranges. 
 

The limited number of electrons in the conduction band, however, can be significantly 

enhanced by visible light illumination. The resulting photosensitivity of the FE current in the 

plateau range was investigated by means of a halogen lamp (KL 1500 LCD) which provides a 

spot light from the side of the Sip tip as shown in Fig. 7.14.  

 

Fig. 7.14. Schematic of the experimental setup used for the illumination of the single tip. 
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Depending on the light intensity, a reproducible current switching from 5 up to 13 nA is 

obtained as shown in Fig. 7.15. The spectral dependence of this effect was further 

investigated with color filters in the halogen lamp and presented in Fig. 7.16. An optical 

current switching ratio of 2.28, 1.31, and 1.32 was reproducible achieved for red, green, and 

blue filters, respectively. By taking the different intensities for each color into account (see 

inset of Fig. 7.16), the resulting intensity-normalized values of 2.3, 2.7, and 12 confirm 

qualitatively the expected dependence on the quantum energy. 

 

Fig. 7.15. FE current for different light intensities (inset) on the single p-type Si tip (type A). 
 

 

Fig.7.16. FE current switching of the single p-Si tip (type B) under halogen-lamp 
illumination. Inset: spectrum of the halogen lamp (black line, Tcolor = 2750°C) and spectra 
for red, green, and blue filters. The relative intensity for each filter is denoted. 

 

The FE homogeneity and efficiency of the hexagonal Si tip arrays of both types were 

investigated by regulated voltage scans for a fixed current of 1 nA [Lyse06]. Typical voltage 

maps for arrays of 547 (type A) and 19 Si tips (type B) are shown in Fig. 7.17.  
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Fig. 7.17. Voltage maps (Øa = 3 µm, Δz = 8 µm) for 1 nA FE current of the arrays 
with (a) 547 Si tips of type A and (b) 19 Si tips of type B. The arrays are same as in fig. 7.7. 
 

Almost all tips emit in the voltage range 400-700 V for the larger array and 80-220 V 

for the smaller array. Similar results were obtained for the other arrays, which yielded 80%-

99% efficiency of the tips. The remaining spread of onset field, however, reflects a significant 

variation of the actual β factor (i.e., barrier width) and/or a varying influence of adsorbed 

gases and oxides on the tip surface (i.e., different barrier height).  

The total FE current of the complete arrays was determined with truncated-cone shaped 

anodes of adjusted size. The results obtained for several Si tip arrays of both types are given 

in Fig. 7.18.  

 

 Fig. 7.18. I–V curves and corresponding FN-plots (inset) of integral current from 
various p-Si-tip arrays. 
 

It is remarkable that the plateau range is still well defined despite of the varying onset 

field. The current plateau always starts at a field around 55 (16) V/µm for the arrays with 

short (long) tips, but its width strongly increases with the number N of tips. Moreover, the β 

factor derived from the FN-slope at low fields also increases with N as can be seen from 

Table 7.1. The increase of the β factor as well as the shift of the center of the plateau range 
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can be explained by the dominant FE of the sharpest tip in each array. The total FE current of 

the arrays was most stable in the plateau range, e.g. the current fluctuations stayed within 1% 

over 1 h for the array with 547 tips. This improved stability in comparison to the single tips is 

expected from statistical considerations.  

Finally, the increase of the height of the integral current plateau with the total number 

of tips N stays clearly below the predicted linear dependency due to the remaining 

inhomogeneities as can be seen from Fig. 7.19.  

  

Fig. 7.19. Total FE current as function of the number of tips for all arrays. 

Obviously higher total currents are achievable for the short Si tips (type A). Moreover, 

the resulting slope of the current scaling in the middle of the plateau region is 0.5 for the short 

tips (at 75 and 90 V/µm for 91 and 547 tips, respectively) but only 0.35 for the long tips (at 

20, 25, and 30 V/µm for arrays with 19, 1027, and 4447 tips, respectively). Therefore, a 

trade-off between large integral currents and low operation field of the p-type Si-tip arrays 

must be considered for actual device applications.  

 

7.3. Conclusions and outlook  
 

Well-aligned and homogeneous FE from three types of Si-based FEAs has been 

reproducibly achieved. The optimized fabrication process based on the well-characterized 

silicon microstructuring technology described here opens the possibility to build advanced 

vacuum microelectronic devices as well.  

Previously reported problems of Si FEAs like poor reproducibility, large relative 

deviation of tip geometry, and many nonworking tips [Wang04, Günt01, Günt03, Teep05, 

Ding02] could be partially solved by an improved tip geometry (moderately sharpened tips) 

and by the usage of the aforementioned optimized fabrication techniques.  
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Depending on the requirements of applications, it is possible to find a compromise 

between the low onset voltage of sharp whisker-like tips and the high maximum current 

capability of metal-coated or cone-shaped ones by tailoring the silicon tip geometry or by 

application of additional metal coating layers.  

The systematic variation of the shape of B-doped Si tips and the size of hexagonal tip 

arrays and detailed measurements of single tips and tip arrays have revealed a deeper 

understanding of their FE properties. It was found that the operation field decreases with the 

height of the emitters, but the achievable integral current of the arrays in the most stable and 

highly photosensitive plateau region is higher for the smaller tips. The observed dependency 

of the photosensitivity on the wavelength of the illuminated light is very promising effect 

which may lead to further applications. An extended experimental setup including a widely 

tunable laser and an electron spectrometer is now under preparation. 

Further investigation and improvement of the tip uniformity and FE homogeneity is 

required for the optimization of the Si-tip arrays for specific sensor applications. Moreover, 

the fabrication process should be extended to the integration of gate and focusing electrodes 

as well as of additional semiconductor components. 

  

 



___________________________________________________________________________ 
99 Chapter 8. Thesis summary and outlook 

8. Thesis summary and outlook 

The aim of this research was the fabrication of various types of nanostructures and their 

application-oriented investigation for using in vacuum electronics as field emission cathodes. 

Various techniques including scanning electron microscopy with energy-dispersive X-ray 

analysis, field emission scanning microscopy and integral measurement system with 

luminescent screen were used to study emission properties of nanomaterials and to reveal 

mechanisms accompanying this phenomenon.  

In this study, for the first time, high-purity single-walled CNT networks were grown on 

n-type Si substrates by using recently developed CVD process based on the designed reactor 

with high and low temperature zones. This CVD process separates the catalytic pyrolysis of 

hydrocarbons at typically ~700-800°C from the growth of CNTs on the substrates at ~100-

150°C. The method allows the growth of horizontally aligned networks of highly entangled 

CNTs. Above the rather dense and some µm thick CNT floor, a thin layer of sparsely 

distributed single wall CNTs is present which should results in much reduced mutual 

shielding and very high field enhancement. In order to optimize the fabrication parameters of 

the CNTs and to evaluate their suitability for cold cathode devices, a series of cathodes with 

varying thickness has been grown on n-Si substrates. The results show well-homogeneous FE 

with ~ 104 emitters/cm2 at an electric onset field of ~ 4 V/µm. The current carrying capability 

of the CNT networks was locally measured with a Ø150 µm anode which reproducibly 

yielded around 100-220 µA stable and up to 400-500 µA maximum current. The field 

enhancement factors derived from the non-saturated region of the FN-plot assuming a work 

function value of about 4.9 eV for carbon were more than 550. The integral measurements of 

the cathodes confirmed the emission homogeneity of the whole cathode area and revealed a 

maximum achievable current of at least 10 mA/cm2. Samples with sparsely distributed hills of 

entangled CNT demonstrated lower onset and operation field as well as more stable FE 

current compared to the more dense ones. Effective FE cathodes for various vacuum devices 

which require a low onset field, high number density, and high current capability but not well-

defined positioning of the emitters can be designed out of this material, e.g. flat cathode 

luminescent lamps.  

In order to get high FE current by increasing the number of CNTs and to improve the 

contact interface, arrays of entangled CNT bundles of 1×2 µm2 size and up to 2 µm height 

and 100, 10 or 5 µm pitch were grown onto highly-doped n-Si wafers with patterned 

trimetallic Mo/Al/Ni catalyst layers by chemical vapour deposition based on the pyrolysis of 

decane or ethanol at 680-700°C under atmospheric pressure. Arrays with large pitch showed 
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high efficiency and good alignment of strong emitters at an onset field of about 15 V/µm. For 

small pitch, however, randomly but well-distributed emitters (> 2500/mm2) could be resolved 

at similar field levels. During local measurements with an anode of Ø 150 µm, stable currents 

up to ~50 µA, ~250 µA and ~500 µA at 400 V were achieved for cathodes with a pitch of 100 

µm, 10 µm and 5 µm, respectively. Integral pulsed measurements of the whole selected 

cathode with p = 5 µm showed fairly homogeneous FE at 100 mA/cm2 on the luminescent 

screen and maximum current densities up to 4.4 A/cm2 with a Cu anode. Future work should 

be focused on the achievement of FE homogeneity and current stability from these cathodes, 

which might be improved by vertically-aligned CNTs grown using a plasma enhanced CVD 

method.   

Rounded CNT columns of about 20 µm diameter and 5 µm height in an asymmetric 

triangular array of 256 and 270 µm pitch were grown on p-Si substrates with bimetallic 

(aluminum and patterned iron) catalyst by chemical vapor deposition based on the pyrolysis 

of ethylene. The voltage maps yielded 100% efficiency and good alignment of the CNT 

emitters at Eon (1nA) ~ 11-18 V/µm. Local FE investigations of single columns revealed the 

current saturation above 1-2 µA at ~20 V/µm. Above 40-60 V/µm, however, irreversible 

current jumps up to 10-40 µA occurred reproducibly for all measured emitters. Finally, stable 

FN-like current-voltage curves up to the maximum current of ~40 µA were obtained. By 

using the energy band diagram, the observed current saturation and current jumps were 

explained not by the limited supply of electrons from the p-type substrate, but by the presence 

of a thin oxide layer between Si and Al/Ni/CNT interface and its electrical breakdown at high 

fields. 

 Vertically aligned CNT-columns of 250-µm-diameter and different height of 70 µm 

and 350 µm, which forms quadratic arrays with a pitch of 650 µm were grown on highly-

doped n-type silicon substrates by means of hot-filament chemical vapor deposition. Fairly-

aligned FE from both types of CNT arrays was obtained at Eon (1nA) = 2 V/µm. Local 

measurements on a single CNT column yielded maximum current values up to 600 µA, which 

were achieved independent of the column height. Assuming a work function of 4.9 eV, the 

resulting β values are 1112 (831) for the CNT-columns of 70 (350) µm height. Thus, the 

experiment revealed that the FE current does not depend on the CNT height, but is determined 

by the CNTs outgrowth. As a step towards application, investigation of single CNT columns 

of 1.5 mm diameter and 250 µm height, was performed. Based on the electron trajectory 

simulation results, a triode construction (planar copper gate with a conical hole of 2.5/3.5 mm 

in diameter, thickness 500 µm) at a fixed anode-gate distance of 6.5 mm was realized. By 
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varying the cathode-gate distance from 500 to 800 µm and the anode voltage from 1 kV to 

2.5 kV, the highest cathode-to-anode current ratio of ~97% at ~240 gate and 2.5 kV anode 

voltage and the cathode-gate distance of 500 µm was achieved. 

Highly-dense CNW films (35-300 µm-2) were grown on silicon and stainless steel 

substrates using inductively/capacitively coupled plasma-enhanced chemical vapor 

deposition. In order to decrease the shielding effect, structuring of the CNW films was 

successfully performed with a pulsed power laser. After the laser treatment CNW-patches 

with a nominal size of about 20×20 µm2 demonstrated the variation of the geometry. Medium 

resolution V-maps showed that nearly all CNW-patches of both cathodes emit fairly aligned at 

fields of 10 - 20 V/µm, however, the homogeneity is rather limited due to the varying shape of 

the CNW-patches. The number of emitting sites of about 9×103 emitters/cm2 and 20×103 

emitters/cm2 at 10-20 V/µm have been estimated for CNWs on Si and stainless steel, 

respectively. Stable current values per individual emission patch varied between 1 µA and 100 

µA for both types of cathodes. 

Sharp and mechanically stable metallic nanocones with high aspect ratio, good 

conductivity and solid contact interface were successfully fabricated by potentiostatic 

electrodeposition of copper in asymmetrically etched ion-track membranes. Depending on the 

fabrication parameters, randomly distributed and freestanding copper nanocones of ~ 28 µm 

length, ~ 2.2-3 µm base, with different ~ 60-300 nm tip radius and number density were 

fabricated. It was shown that depending on the conditions of the ion-track etching, 

electrochemical filling and position of the foils in the stack, the stability and uniformity of 

these Cu-NCs can be controlled. For instance, the electrodeposition voltage of 40 mV is 

favourable due to a slow growth rate, resulting in uniform and mechanically stable Cu-NCs 

with completely filled contact interface, while fast growth at 90 mV started preferentially at 

the ring-like base structures and led to a rough cone surface. It has also been shown that the 

size of the conical pores in the membranes and hence of the Cu-NCs depends not only on the 

etching time but also on the stack position. Sharper Cu-NCs for the foil in the first stack 

position can be obtained rather than for the third one, as well as the sharpest Cu-NCs might be 

grown using a polycarbonate foil irradiated with 136Xe ions rather than 238U ones. 

FE measurements of the unstructured cathodes with slowly-grown Cu-NCs of high 

number density (107 cm-2) and excellent mechanical stability yield stable currents between 1-

280 µA from an emission spot of 30 µm, while the other unstructured cathode with the same 

number density and applied fields, but with fast-grown Cu-NCs yield stable current between  

0.1 and 20 µA. This confirms the importance of a solid contact of the Cu-NC to the substrate 
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for high current limits. In comparison, the structured cathodes with slowly-grown Cu-NCs of 

less number density (<106 cm-2) provide rather low current levels of 10-100 µA, however, the 

operating field levels are also much lower (3-4 times) than for the cathode with 107 cm-2. In 

addition, a series of structured Cu-NC-based cathodes with reduced number density of about 

105 cm-2, demonstrated the average current of 30 µA per patch at 32 V/µm. The FE 

performance of that cathode was greatly improved by a thin Au coating resulting in the 

average current of 151 µA.  

Current carrying capability of single Cu-NC emitters was investigated. The maximum 

FE currents from a single bare Cu-NC varied between 11 nA and 470 nA. SEM analysis 

revealed some morphological changes of the Cu-NC tip ends, which are explained by 

Rayleigh instability. Integral FE measurements on 10 nm Au-coated Cu-NC cathode of 

25 mm2 showed fairly homogeneous FE at 64 µA/cm2 on the luminescent screen and 

maximum current densities up to 8 mA/cm2 with a Cu anode. 

Silicon-based cathodes with precisely aligned field emitter arrays applicable for 

miniaturized electron sources were successfully fabricated. Rather homogeneous and well-

aligned field emission from all tips (i.e. 100% efficiency) and maximum stable currents of 

typically 0.1 µA for p- and 0.6 µA for n-type Si were reproducibly achieved. Current-voltage 

characteristics of single p-type Si tips exhibit the expected saturation at around 10 nA due to 

the limited supply of electrons from the conduction band, while the n-type Si tips show the 

usual FN behaviour. Additional coating of the Si tips with Au layer resulted in at least 5 times 

higher average FE current levels but lead, however, to a 30% increase of the onset voltage. 

In order to improve the field emission homogeneity and stability of p-type silicon tip 

arrays for pulsed sensor applications, the influence of the fabrication parameters on the tip 

shape and on the specific operating conditions was investigated. Based on detailed design 

calculations of the field enhancement, two series of hexagonal arrays of B-doped Si-tips of 

different height (1 and 2.5 µm) and number density (3.5×105 and 1.2×106 cm-2) were 

fabricated. Local measurement results on single emitters showed that the current saturation 

value and onset field depend on the tip geometry: the onset field is lower; however, the 

saturation region is lower and narrower for higher tips. In the saturation region, due to the 

limited number of carriers in the depletion region, single tips provide the highest current 

stability (<5%) and optical current switching ratio (~2.5). The results of integral 

measurements on arrays with different number of p-Si emitters showed that the emission 

current is not linearly scaled and the width of plateau strongly increases with the number of 
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tips. From these results, a trade-off between large integral currents and low operation field of 

p-type Si arrays must be considered for device applications.     

 To sum up, the results presented here are important from both theoretical and practical 

points of view. New materials were fabricated and investigated, most of them showed better 

results than previously reported [Günt01, Günt03, Lyse06, Dang07, Navi10]. It was shown 

that CNT-based cathodes are suitable for high current applications, e.g. compact X-ray 

source, while particularly metal and semiconductor nanostructures require additional research 

and improvements, in order to become suitable for practical applications.  
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