Entwicklung neuer stereo-, regio- und chemoselektiver Methoden zur Synthese von bizyklischen Verbindungen, Heterozyklen und Aziden sowie deren Anwendung in der Totalsynthese.

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat)

Fachbereich C für Mathematik und Naturwissenschaften der Bergischen Universität Wuppertal

von **Philipp Klahn** geb. 07.04.1983 in Henstedt-Ulzburg Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20140206-094713-9 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20140206-094713-9] Vollständiger Abdruck der durch die Mitgleider der Prüfungskommsion des Fachbereiches C für Mathematik und Natuwissenschaften an der Bergischen Universität Wuppertal genehmigten Dissertation von Philipp Klahn (geb. 07.04.1983 in Henstedt-Ulzburg).

Eröffnung des Promotionsverfahrens am: 14.11.2013

Tag der Disputation: 22.01.2014

Vorsitzender der Prüfungskommision: Univ-Prof. Dr. Dr. Stefan F. Kirsch

Mitglieder der Prüfungskommision: Univ-Prof. Dr. Stefan F. Kirsch

Univ-Prof. Dr. Gela Preisfeld

Univ-Prof. Dr. Ulrich Scherf

Univ-Prof. Dr. Michael Tausch

1. Gutachter der Dissertation: Univ-Prof. Dr. Stefan F. Kirsch

2. Gutachter der Dissertation: Univ-Prof. Dr. Ulrich Scherf

3. Externer Gutachter der Dissertation: Univ-Prof. Dr. Peter Spiteller

Die vorliegende Arbeit wurde in der Zeit von Oktober 2010 bis Oktober 2013 unter der Leitung von *Prof. Dr. Stefan F. Kirsch* am Lehrstuhl für Organische Chemie I der Technischen Universität München (10/2010 – 09/2011) sowie am Lehrstuhl für organische Chemie der Bergischen Universität Wuppertal (09/2011 – 10/2013) angefertigt.

Teile dieser Arbeit wurden veröffentlicht:

Total Synthesis of (+)-Cyperolone, P. Klahn, A. Duschek, C. Liébert, S. F. Kirsch, Org. Lett. 2012, 14, 1250– 1253.

Practical Azidation of 1,3-Dicarbonyls, T. Harschneck, S. Hummel, S. F. Kirsch, P. Klahn, *Chem. Eur. J.* 2012, 18, 1178-1193.

Weitere Veröffentlichungen des Autors:

Kreativität und Ideenreichtum in der Katalyse, Buchrezension: Innovative Catalysis in Organic Synthesis, Ed. P. G. Anderson, Wiley-VCH, 2012, P. Klahn, S. F. Kirsch, *Nachrichten der Chemie* **2013**, *7/8*, 805.

The Use of COP-OAc in the Catalyst-controlled Syntheses of 1,3-Polyols, S. F. Kirsch, P. Klahn, H. Menz, *Synthesis* **2011**, 3592–3603.

Electronic Fine-Tuning of Carbene Ligands and its Impact on Gold Catalysis, P. Klahn, S. F. Kirsch, *ChemCatChem* **2011**, *3*, 649-652.

Thienopyrimidines as β3-adrenoreceptor agonists: Hit to lead optimization, S. Tasler, R. Baumgartner, A. Ammendola, J. Schachtner, T. Wieber, M. Blisse, S. Rath, M. Zaja, P. Klahn, U. Quotschalla, P.Ney, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6108-6115.

Gold-catalyzed reactivity of 3-silyloxy-1,5-enynes: a synthetic tool for the synthesis of complex structures and its limitations, H. Menz, J. T. Binder, B. Crone, A. Duschek, T. T. Haug, S. F. Kirsch, P. Klahn, C. Liébert, *Tetrahedron* 2009, *65*, *9*, 1880-1888.

Chemische Strukturen werden unter Einbindung der Kapitelnummer, die als nicht fette, römische Ziffer vor der eigentlichen Verbindungsnummer erscheint, gekennzeichnet. Die Nummerierung erfolgt bei Strukturen mit definierter Konstitution in Form von arabischen Ziffern (**1**, **2**, **3**, ...), bei allgemeinen Strukturen in Form von Großbuchstaben (**A**, **B**, **C**, ... jedoch ohne Einbindung der Kapitelnummer).

In dieser Arbeit wird von der Konvention Gebrauch gemacht, die Relativkonfiguration von Racematen durch gerade Balken (fett oder gestrichelt), die Absolut- und Relativkonfiguration enantiomerenreiner oder enantiomerenangereicherter Verbindungen in Keilform (fett oder gestrichelt) darzustellen.

Wissenschaft fängt eigentlich erst da an, interessant zu werden, wo sie aufhört.

Justus Freiherr von Liebig

Meinen Eltern

Danksagung

Mein ganz besonderer Dank gilt meinem Doktorvater und Mentor *Prof. Dr. Stefan Kirsch* für die Aufnahme in seine Arbeitsgruppe, die interessanten Themenstellungen und die stete Unterstützung. Das rege Interesse an meiner Arbeit, die vielen fachlichen Diskussion und sein uneingeschränktes Vertrauen in meine Arbeit, dass die Freiheit zur Umsetzung meiner eigenen Ideen mit sich brachte, trug maßgeblich zum Gelingen dieser Arbeit bei. Seine Begeisterung für chemische Fragestellungen und unkonventionellen Denkweisen war mir stets ein Quell der Inspiration und des Anspornes. Nicht zu Letzt möchte ich für seine Unterstützung und hilfreiche Beratung bezüglich meiner weiteren Karriere sowie das freundschaftliche Verhältnis danken.

Für die Anfertigung des Zweitgutachtens danke ich *Prof. Dr. Ulrich Scherf*. Für die Anfertigung eines externen Drittgutachtens danke ich *Prof. Dr. Peter Spiteller*.

Dem Fond der Chemischen Industrie danke ich für die Gewährung eines zweijährigen Vollstipendiums während meiner Promotion. Der TUM Graduate School sowie dem Center of Graduate Studies der Bergischen Universität Wuppertal danke ich für die finanzielle Unterstützung bei der Präsentation von Forschungsergebnissen auf internationalen Konferenzen sowie der Teilnahme an fachbezogenen und fachfremden Weiterbildungsmaßnahmen.

Ein besonderer Dank gilt *Christine Schneidereit* und *Kerstin Voigt* für die Unterstützung in organisatorischen Fragen im Dickicht der akademischen Bürokratie. Christine Schneidereit möchte ich zudem für belebende politische Diskussionen während der gemeinsamen Mittagpausen danken.

Ohne die Durchführung von Analytik wäre chemische Forschung nicht möglich: Daher eine großes Dankeschön an *Burghard Cordes, Helmut Krause, Simone Bettinger, Ilka Polanz* und *Jürgen Dönicke* für die Aufnahme unzähliger Massenspektren, *Andreas Sieber* für die Aufnahme diverser NMR-Spektren, *Anke Helfer* für die Durchführung von DSC- und TGA-Messungen, *Jürgen Dönicke* und *Olaf Ackermann* für die Unterstützung in Sachen präparative HPLC, Chirale HPLC und GC, *Prof. Dr. Fabian Mohr* für die Messung von rötgendiffraktometrischen Strukturanalysen sowie *Anke Helfer* für die Unterstützung bei UV/VIS-Messungen.

AOR Dr. Markus Roggel sowie AR Dr. Andreas Kotthaus danke ich für diverse fachliche Diskussionen, die Unterstützung im Bereich der Studentenausbildung im Rahmen der von mir geleiteten Lehrveranstaltungen und im Besonderen für die tatkräftige Unterstützung bei der Zusammenstellung geeigneter Apparaturen und der Suche von Chemikalien aus dem Fundus des Lehrstuhls. Vielen Dank an Luisa Münsterkötter, meine Eltern, Klaus-Daniel Umland , Florian Huber, Michael Wegener, Angela Bredenkamp, Sara Hummel und Andreas Häring die mit Adleraugen diese Arbeit nach Fehlern durchforstet haben.

Als ich im Mai 2007 im Grundpraktikum für organische Chemie an der Technischen Universität München zum ersten Mal auf Jörg T. Binder und Cleménce Liébert traf und die beiden mir nachdem sie erkannt hatten, dass ich auf Grund meiner abgeschlossenen Berufsausbildung als Chemielaborant im Grundpraktikum unterfordert war, die Möglichkeit gaben in der aktuelle Forschung des Arbeitskreises mitzuarbeiten, konnte ich nicht erahnen, dass dies ein wegweisender Schritt für meine weitere Laufbahn sein würde. Ich kann mich somit zu Recht als Urgestein des Arbeitskreises Kirsch bezeichnen und hatte das Vergnügen die Doktoranten aller bisheriger Generationen kennen zu lernen: Den Kirschen der 1. Generation (Jörg T. Binder, Cleménce Liébert, Helge Menz, Benedikt Crone, Timm T. Haug und Alex Duschek) – Danke ich für die Unterstützung und die Aufnahme in ihren erleuchteten Kreis, den Kirschen meiner Generation, der 2. Generation (Tobias Harschneck, Klaus-Daniel Umland, Adeline Pallise, Florian Huber, Michael Wegener und Angela Bredenkamp) sowie der 3. Generation (Sara Hummel, Andreas Häring, Christian Wagner und Hellmuth Erhardt) - Danke ich für den außerordentlichen Zusammenhalt und die vielen schönen Erlebnisse während und auch außerhalb der Laborzeit. Die Zeit mit euch war großartig und wird mir immer in guter Erinnerung bleiben. Ich werde euch alle vermissen. Auch den kurzzeitigen Weggefährten Chang-Uk Lee, Manuel Kretschmer, Wolfgang Heydenreuter, Alex Lange, Anna Zernickel, Sebastian Lackner, Max Flößer und Zhin-Bhin Zhu sei für die gute Zusammenarbeit gedankt.

Für eine angenehme Arbeitsatmosphäre und jede Menge Spaß danke ich auch dem AK *Bach* (TU München), dem AK *Heinrich* (TU München) und dem AK *Scherkenbeck* (Bergische Universität Wuppertal). Die Betreuung und Ausbildung von Forschungsstudenten war stets nicht nur Arbeit sondern hat auch jede Menge Spaß gemacht. Daher möchte ich mich ganz herzlich bei *Andreas Häring, Lisa Meixner, Alexander Böhme, Martin Jübermann, Andrj Vdovichenko, Michael Dlugosch* und *Kristina Holzschneider* für ihr Interesse und ihr Engagement bedanken.

Für diverse fachfremde Gespräche und allgemeine Aufheiterung während des Zusammenschreibens dieser Arbeit danke ich *Till Ruhkopf, Holger Janusch* und im besonderen *Niko Saßhoff,* dessen unerschütterliche Freundschaft für mich von besonderem Wert ist.

Von ganzen Herzen möchte ich mich bei meiner Familie bedanken: Meinen Eltern die immer an mich geglaubt haben, mich unterstützt haben und alles was zur Erfüllung meiner Ziele nötig war ermöglicht haben; meiner Schwester *Kathrin* und natürlich meiner großen Liebe *Luisa*. Ihr wart mir stets ein großer Rückhalt, ohne euch wäre dieser Weg nicht möglich gewesen. Vielen Dank.

Inhaltsverzeichnis

Methodenentwicklung in der organischen Chemie1
Methodenentwicklung - Innovationsmotor in der organischen Chemie
I Totalsynthese von (+)-Cyperolon
I-1. Einleitung11
I-1.1 Aktivierung von C-C-Dreifachbindungen durch π -azide, späte Übergangsmetalle
I-1.2 Kaskadenreaktionen – Der schnelle Weg zu molekularer Komplexität und synthetischer Diversität
I-1.3 Die Pinakol-Umlagerung – Eine alte Bekannte mit großem Potential
I-1.4 Dominoreaktionen aus Übergangsmetall-katalysierter Carbozyklisierung und subsequenter Pinakol-Umlagerung - Ein generelles Konzept zur diastereoselektiven Synthese von komplexen, carbozyklischen Fünfringsystemen
I-1.5 (+)-Cyperolon – Ein sterisch überladenes Sesquiterpen
I-2. Aufgabenstellung 41
I-2.1 Zielsetzung
I-2.2 Stand der Forschung 41
I-3. De novo Totalsynthese von (+)-Cyperolon
I-3.1 Retrosynthetische Analyse von (+)-Cyperolon - Die finale Strategie
I-3.2 Synthese der 3-Silyloxy-1,5-Enin Vorstufen
I-3.3 Platin(IV)-katalysierte Cycloisomerisations-Kaskadenreaktionen von 3-Silyloxy-1,5-Eninen mit tetrasubstituierten Doppelbindungen – Untersuchung des Schlüsselschrittes in der Totalsynthese von (+)-Cyperolon
I-3.4 Finale Schritte zum Naturstoff
I-4. Studien zur Schutzgruppen-freie, biomimetische Totalsynthese von (+)-Cyperolon
I-4.1 Die Kunst der Schutzgruppen-freien Synthese67
I-4.2 Synthese von <i>epi</i> -Cyperolon ausgehend von (+)-Cyperolon69
I-4.3 Auf den Spuren von Ferdinand Bohlmann - Entwicklung einer Biosynthesehypothese71
I-4.4 Retrosynthetische Analyse von (+)-Cyperolon unter Berücksichtigung der Biosynthesehypothese
I-4.5 Studien zur Totalsynthese von (+)-Cyperolon – Ein kurzer Weg
I-5. Zusammentassung und Ausblick
I-5.1 Zusammenfassung
I-5.2 Ausblick

Il Synthese von Isooxazolidin-3-onen	89
II-1. Einleitung	91
II-1.1 Isooxazolidin-3-one in der Natur und der Forschung	91
II-1.2 Methoden zur Erzeugung von Isooxazolodin-3-onen	92
II-2. Aufgabenstellung	97
II-2.1 Zielsetzung	97
II-2.2 Stand der Forschung	97
II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysi Heterozyklisierung von Alkinylhydroxamsäuren	ierte 99
II-3.1. Darstellung der Ausgangsmaterialien	99
II-3.2 Untersuchung der Übergangsmetall-katalysierten 5- <i>exo</i> -dig-Hetero-zyklisierung von β- Alkinylhydroxamsäuren zur Synthese von Isooxazolidin-3-onen	102
II-3.4 Studien zur Synthese weiterer Heterozyklen	108
II-4. Zusammenfassung und Ausblick	111
II-4.1 Zusammenfassung	111
II-4.2 Ausblick	112
III Diastereoselektive Dehydrogenierung von β-Oxonitrilen mittels IBX	115
III-1. Einleitung	117
III-1.1 Hypervalente Organoiodverbindungen	117
III-1.2 <i>ortho</i> -lodoxybenzoesäure - IBX und seine Derivate	118
III-1.3 IBX – Ein vielseitiges Oxidationsmittel für die organische Synthese	121
III-1.4 IBX-Derivate und Formulierungen	127
III-2. Aufgabenstellung	133
III-2.1 Zielsetzung	133
III-2.2 Stand der Forschung	133
III-3. Diastereoselektive Dehydrogenierung und Diversitäts-orientierte Synthese von Pyranen	137
III-3.1. Darstellung der Ausgangsmaterialien	137
III-3.2 Untersuchung der Dehydrogenierung von β-Oxonitrilen mittels IBX	138
III-3.4 Entwicklung einer Ein-Topf-Synthese zur diastereoselektiven Synthese von 3,4-Dihydro-2H- pyran-5-carbonitrilen	140
III-5. Zusammenfassung und Ausblick	143
III-5.1 Zusammenfassung	143
- III-5.2 Ausblick	144

IV Chemoselektive Azidierung von Carbonylverbindungen
IV-1. Einleitung
IV-1.1 Organische Azide – Multifunktionelle Bausteine in der organischen Synthese
IV-1.2 $lpha$ -Funktionalisierungen von Carbonylverbindungen in Gegenwart katalytischer Mengen Iod . 166
IV-2. Aufgabenstellung
IV-2.1 Zielsetzung
IV-2.2 Stand der Forschung
IV-3. Azidierung von 1,3-Dicarbonylen 177
IV-3.1. Oxidative Azidierung von 1,3-Dicarbonylen in Gegenwart stöchiometrischer Mengen Iod 177
IV-3.2. Oxidative Azidierung von 1,3-Dicarbonylen in Gegenwart katalytischer Mengen lodid 179
IV-3.3 Mechanistische Diskussion der oxidativen Azidierung von 1,3-Dicarbonylen
IV-3.4 Modifikation durch Kupfer(I)-katalysierte 1,3-Zykloaddition
IV-3.6 Weitere Studien
IV-3.8 Kürzliche Ergebnisse anderer Arbeitsgruppen191
IV-4. Decarboxylative Azidierung von Monoalkylmalonsäureestern
IV-4.1. Studien zur Azidierung von Monoalkylmalonaten und Optimierung der decarboxylativen
Azidierung
IV-4.2 Anwendungsbreite der Reaktion
IV-4.3 Untersuchungen zum Mechanismus der Reaktion 200
IV-4.4 Erste Studien zur decarboxylativen Azidierung von Cervimycin D
IV-4.6 Kürzliche Ergebnisse anderer Arbeitsgruppen 203
IV-5. Synthese von geminalen Di- und Triaziden 205
VI-5.1 Unerwartete Erzeugung eines geminalen Triazids aus 3-Oxo-3-phenylpropansäure durch decarboxylative Polyazidierung
IV-5.2 Mechanistische Untersuchungen der decarboxylativen Polyazidierung
IV-5.3 Synthese von geminalen $lpha$ -Keto-Di- und Triaziden ausgehend von 2-Iodacetophenonen 208
IV-5.4 Entwicklung eines Ein-Topf-Verfahrens zur Synthese von geminalen α-Keto-Di- und Triaziden ausgehend von Olefinen
IV-5.5 Charakterisierung, Nachweis und explosive Eigenschaften von $lpha$ -Keto-Di- und Triaziden 213
IV-5.6 Erste Reaktivitäten von $lpha$ -Keto-Di- und Triaziden
IV-5.7 Kürzliche Ergebnisse anderer Arbeitsgruppen 216
IV-6. Zusammenfassung und Ausblick
IV-6.1 Zusammenfassung

IV-6.2 Ausblick	221
V Experimenteller Teil	225
V-1. Allgemeine Arbeitstechniken	227
V-2. Synthesevorschriften	233
V-2.1 Synthese allgemeiner Reagenzien	233
V-2.2 Totalsynthese von (+)-Cyperolon	237
V-2.3 Synthese von Isooxazolidin-3-onen	277
V-2.4 Diastereoselektive Dehydrogenierung von β -Oxonitrilen mittels IBX	313
V-2.5 Chemoselektive Azidierung von 1,3-Dicarbonylen	335
V-2.6 Decarboxylative Azidierung von β -Oxocarbonsäuren	345
V-2.7 Synthese von geminalen Di- und Triaziden	
VI Verzeichnisse	395
VI-1. Abbrevationsverzeichnis	397
VI-2. Literaturverzeichnis	403

Methodenentwicklung in der organischen Chemie

Methodenentwicklung - Innovationsmotor in der organischen Chemie

Die Disziplin der Methodenentwicklung kann in der organischen Chemie als elementarer Grundpfeiler in der Entwicklung der organischen Synthese mit all ihren Anwendungsbereichen verstanden werden. Von den Anfängen in der organischen Chemie zu Beginn des 19. Jahrhunderts erfolgte, dank der Pionierarbeiten von *Liebig*^{1,2} und *Wöhler*^{3,4} sowie der nachfolgenden Erfindung immer neuer Methoden zur Synthese von chemischen Verbindungen, eine rasante Entwicklung hin zu einer für die Weiterentwicklung der Menschheit essentiellen Wissenschaft.⁵ Mit dem wachsenden Verständnis von chemischen Bindungen und Reaktivitäten, unter anderem durch die Arbeiten von *Erlenmeyer*,⁶ *Kekulé*⁷ und *von Baeyer*^{8,9} sowie durch das Erkennen von Mustern in den Reaktivitäten einander ähnelnder Verbindungen, konnten verlässliche Methoden entwickelt werden chemische Substanzen durch zielgerichtete Transformationen in gewünschte Produkte zu überführen.

Abbildung 1: Frühe Methodenentwicklung in der organischen Chemie.

Erste organisch-chemische Methoden wie die *Strecker*-Synthese zum Aufbau von Aminosäurederivaten (Abb. 1) (*Strecker*, **1854**)¹⁰, die *Friedel-Crafts*-Acylierung oder -Alkylierung von Aromaten (*Friedel* und *Crafts*, **1877**)¹¹, die *Fischer*-Indol-Synthese (*Fischer*, **1883**)¹², die *Knoevenagel*-Kondensation von Ketonen und Akzeptor-substituierten CH-aziden Nukleophilen in Gegenwart von Basen (*Knoevenagel*, **1898**)¹³ oder die *Mannich*-Reaktion zur Aminoalkylierung von Formaldehyd (*Mannich*, **1912**),¹⁴ um nur eine kleine willkürliche Auswahl zu nennen, gehören heute zum festen Methodenrepertoir für die Herstellung von organischen Verbindungen.

Synthetische Werkzeuge wie beispielsweise die *Fischer*-Indol-Synthese trugen in der Anwendung in der ersten Totalsynthese von Strychnin im Jahre 1954 durch *Woodward et al.*¹⁵ zu spektakulären Errungenschaften auf dem Gebiet der organischen Chemie bei.

Daneben dienten die aus der Methodenentwicklung gewonnenen Erkenntnisse über Reaktivitäten von chemischen Motiven auch immer wieder als Blaupause und Inspiration für die Entwicklung neuer Methoden.

Abbildung 2: Fischer-Indol-Synthese in der Totalsynthese von (-)-Strychnin nach Woodward et al..

Über die vergangenen 200 Jahre wurde so ein Verständnis der Reaktivität von organischen Molekülen geschaffen und durch die Entwicklung von synthetischen Methoden für definierte chemische Transformationen eine weitreichende *"Kartierung der Reaktivität"* organischer Moleküle erreicht.

Methoden wie beispielsweise die *Sharpless*-Epoxiderung zur stereoselektiven Epoxidierung von Allylalkoholen (*Sharpless*, **1980**)¹⁶ oder die Metathese von Olefinen (*Schrock, Grubbs* und *Chauvin*, **1970-1995**)^{17,18,19} haben ein Maß an Präzision erreicht, welches uns heutzutage in die Lage versetzt eine Vielzahl komplexer Moleküle in geeigneter Weise herzustellen (Abb. 3).

Die von *Corey* eingeführte Retrosynthese,²⁰ als Quintessenz der *"Kartierung der Reaktivität"* von Funktionalitäten, in ihrer heute angewandten Planbarkeit von Totalsynthesen komplexer Naturstoffe, wie beispielsweise der Totalsynthese von Taxol durch *Nicoalou et al.*,²¹ illustriert eindrucksvoll welche Entwicklung die organische Chemie durchlaufen hat. (Abb. 4).

Gleichzeitig sind auch die Anforderungen an die Methodenentwicklung gewachsen. Eine gute chemische Methode muss heute gleichermaßen die Anforderung möglichst hoher Ausbeute, möglichst exzellenter Regio-, Stereo-²² und Chemoselektivität²³ als auch Bedingungen der Nachhaltigkeit²⁴ wie Atom-²⁵ und Redoxökonomie²⁶ erfüllen oder konzeptionelle Ansätze zum Vorgehen im stereoselektiven Aufbau komplexerer Strukturen liefern.^{23,27}

Ein eindrucksvolles Beispiel einer solchen Methode ist die von *Waldmann et al.*²⁸ entwickelte 12-stufige Kaskadenreaktion zum Aufbau komplexer Tetrahydroindolo[2,3-a]quinolizine des Typs D (Abb. 5) als Wirkstoffe zur Modulation der Zentrosomintegrität.

Auch wenn die "Kartierung des chemischen Raumes" weit fortgeschritten ist gibt es nach wie vor synthetische Lücken, die mit geeigneten Methoden gefüllt werden wollen. Dabei gibt es zwei treibende Faktoren die maßgeblich zur Entwicklung neuer Synthesemethoden beitragen.

Sharpless-Epoxiderung von Allylalkoholen

Zweikerniger Komplex des Überganszustands der Epoxidierung nach Sharpless et al.

Abbildung 3: Metathese-Katalysatoren nach Grubbs und Schrock, Übergangszustand der Sharpless Epoxidierung.

Abbildung 4: Retrosynthetische Analyse von Taxol nach Nicolaou et al.^{21b}

Abbildung 5: 12-Stufige Kaskadenreaktion zum Aufbau komplexer, tetrazyklischer Tetrahydroindolo[2,3-a]quinolizine nach *H. Waldmann et al.*²⁸

Zum einen kann, dass Auftreten einer Notwendigkeit die Entwicklung einer neuen Methode forcieren. Beispielsweise die Notwendigkeit aus einem definierten, günstig erhältlichen Ausgangsmaterial ein gewünschtes Produkt zu generieren oder eine definierte biologisch aktive Struktur zugänglich zu machen.

"Neccesity is the mother of invention." (D. Seebach, 1990)²⁹

Zum anderen sind viele durchaus wertvolle Methoden aber auch einfach das Resultat zufälliger Beobachtungen, auch wenn diese ungeplanten Forschungsergebnisse vermeintlich weniger wissenschaftliches Charisma versprühen.

"One can certainly plan research, but not the results." (D. Seebach, 1990)²⁹

Die Entwicklung guter synthetischer Methoden als Werkzeuge für die Bereitstellung benötigter Strukturen und Funktionalitäten für die Materialwissenschaften, die Medizinalchemie oder biochemische Verfahren bleibt ein wichtiger Bestandteil der organischen Chemie und manchmal können sogar noch völlige neue, bis *dato* unbekannte Funktionalitäten wie beispielsweise geminale α -Ketotriazide entdeckt werden (*vide infra*).

"There are many new principles, strategies and methods of synthesis waiting to be discovered." (*E. J. Corey*, 1989)^{20b}

In den folgenden Kapiteln werde ich die Ergebnisse meiner Doktorarbeit vorstellen, die ich im Arbeitskreis von *Prof. Dr. Stefan F. Kirsch* in den Laboratorien an der Technischen Universität München und nachfolgend an der Bergischen Universität Wuppertal angefertigt habe. Die Arbeit ist in mehrere Themenbereiche untergliedert. Der Leser wird dabei jeweils durch eine ausführliche Einleitung eingeführt.

I Totalsynthese von (+)-Cyperolon

I-1. Einleitung

I-1.1 Aktivierung von C-C-Dreifachbindungen durch π -azide, späte Übergangsmetalle

Die Aktivierung von Alkinen durch Komplexe später Übergangsmetalle als Möglichkeit zur Initiierung von inter- und intramolekularen Reaktionen hat in den letzten Jahren deutlich an Bedeutung in der organischen Chemie gewonnen.^{30,31,32}

Nach frühen Beispielen der Aktivierung von C-C-Mehrfachbindungen durch späte Übergangsmetalle wie der Hydratisierung von Alkinen in Gegenwart von Quecksilber(II)-Katalysatoren in saurem Milieu³³ und der Palladium-katalysierten *Wacker*-Oxidation von Alkenen,^{34,35,36} sind in den letzten Jahren vor allem Gold- und Platin-katalysierte Reaktionen unter Aktivierung von Alkinen in den Fokus der Methodenentwicklung gerückt.^{31,32}

Insbesondere Gold, ein tief in der Menschheitsgeschichte verwurzeltes Element,³⁷ aber auch Platin waren zuvor lange Zeit als zu reaktionsträge betrachtet worden, als dass sie typische Redoxprozesse wie oxidative Additionen und reduktive Eliminierungen durchlaufen könnten. Sie galten als "katalytisch tot"³⁸ und als Katalysatoren aus synthetischer Sicht uninteressant.

Hydratisierung von 1-Octin nach Fukuda et al.

Hydroaminierung von Hex-5-inylamin nach Fukuda et al.

(Me₃P)Au⁺-vermittelte Addition von MeOH an Phenylacetylen nach *Teles et al.*

Abbildung I-1: Pionierarbeiten zur π -Aktivierung von Alkinen.

Erst mit der strukturellen Charakterisierung von Gold-Alkin-Komplexen³⁹ in den 1990er Jahren,⁴⁰ den Pionierarbeiten von *Fukuda et al.* aus den Jahren 1987 und 1991 zur Hydratisierung und

Hydroaminierung von Alkinen unter Gold-Katalyse⁴¹ (siehe Abb. I-1) sowie den bahnbrechenden Arbeiten von *Teles et al.*⁴² in den Laboratorien der BASF AG aus dem Jahr 1997 zur Hydroalkoxylierung von Alkinen in Gegenwart kationischer Gold(I)-Komplexe bewirkte grundlegendes Umschwenken in der allgemeinen Lehrmeinung innerhalb der organisch-chemischen Gemeinschaft.

Die entscheidende Neuerung in den Arbeiten von *Teles et al.* gegenüber den Arbeiten von *Fukuda et al.* war die Verwendung eines *in situ* aus dem Präkatalysator (Me₃P)AuMe und Methylsulfonsäure erzeugtem kationischen Gold(I)-Komplex (Me₃P)Au⁺ mit einem nur noch schwach nukleophilen Mesylat-Gegenion, welcher eine signifikant höherer Aktivität und TON aufweist.^{43,42b}

Das Prinzip der schwachkoordinierenden Gegenionen zur Aktivitätssteigerung zu nutzen, war bereits zuvor für Katalysen mit anderen Metallen (z. B. Ru, Cu, Pd) angewendet worden⁴⁴ und hat sich auch in der Gold-Katalyse durchgesetzt. Typische aktive Katalysatoren sind Verbindungen des Typs (L)AuX, wobei der L zu meist elektronisch einstellbare Phosphin- oder NHC-Liganden^{32f} sind und X schwachkoordinierende Gegenionen wie beispielsweise SbF₆⁻, BF₄⁻ oder OTf⁻ darstellen, die durch Reaktion der korrespondierenden Goldchloro-Komplexe mit den entsprechenden Silbersalzen generiert werden.⁴⁵

Abbildung I-2: Graphik zu Forschungspublikationen zu homogener Gold-Katalyse pro Jahr in den Jahren 1976 bis 2009.⁴³

Seit den Arbeiten von *Teles et al.* hat sich ein wahrer Goldrausch (siehe Abb. I-2) in der organischen Chemie entwickelt der eine unglaubliche Vielzahl an neuen Reaktionen hervorgebracht hat.^{31,32} *Toste et al.* demonstrierten beispielsweise, dass chirale Propargylvinylether in Gegenwart von Gold(I)-Komplexen eine Propargyl-*Claisen*-Umlagerung durchlaufen, die unter Chiralitätstransfer Allenaldehyde liefert, die sich nach reduktiver Folgereaktion in Form der korrespondierenden Alkohole isolieren lassen (Abb. I-3).⁴⁶ *Fürstner et al.* zeigten das 2-Arylphenylacetylene in Gegenwart von Platin(II)chlorid *Friedel-Crafts*-artige Hydroarylierungen eingehen unter Bildung von Phenantrenen.⁴⁷

Propargyl-Claisen-Umlagerung nach Toste et al.

Friedel-Crafts-artige Hydroarylierung nach Fürstner et al.

Nukleophile Zyklisierung von N-Propargylcarboxamiden nach Hashmi et al.

Asymmetrische Conia-En-Reaktion nach Toste et al.

Abbildung I-3: Auswahl einiger Gold- und Platin-katalysierter Reaktionen.

Ferner liefert die nukleophile Zyklisierung von *N*-Propargylcarboxmiden in Gegenwart von Gold(III)salzen 2,5-disustituierte 1,3-Oxazole.⁴⁸ Auch klassisch *Lewis*-Säure-katalysierte Reaktionen wie *Conia*-En-Zyklisierungen sind unter Gold-Katalyse durchführbar, wie ein Beispiel von *Toste et al.* zeigt.⁴⁹

Die zu Grunde liegende, initiale Reaktivität all dieser Reaktionen beruht dabei auf der π -Azidität später Übergangsmetalle, das heißt ihrer Fähigkeit C-C-Mehrfachbindungen zu koordinieren und diese dadurch elektrophil für einen Angriff interner oder externer Nukleophile zu aktivieren. Das Reaktionsprinzip ist in Abbildung I-4 in verallgemeinerter und vereinfachter Form veranschaulicht.

Abbildung I-4: Verallgemeinerte und vereinfachte Darstellung des Katalysezyklus für die Aktivierung eines Alkins durch späte Übergangsmetalle (links), qualitatives Orbitaldiagramm zur Wechselwirkung zwischen den Grenzorbitalen von Übergangsmetall und Alkin nach dem *Dewar-Chat-Duncanson-*Model (rechts).^{31a}

Nach der Aktivierung des Präkatalysators A (Abb. I-4) durch Abstraktion des Halogenliganden (oft durch Einwirkung von Silbersalzen schwach koordinierender Anionen (vide supra) koordiniert die aktive Spezies B das Alkin C unter Ausbildung des Alkin-Katalysator-Komplexes D, in dem der koordinierte Alkinligand Elektronendichte auf das Metallzentrum abgibt (vide infra) und dadurch für einen nukleophilen Angriff aktiviert wird. Das Nukleophil tritt dabei aus sterischen Gründen immer von der dem Metallzentrum entgegengesetzten Seite ein⁵⁰ und führt zur Ausbildung eines Vinyl-Metall-Komplexes E in dem Nukleophil und Metallfragment zueinander die jeweiligen trans-Positionen besetzen. Der Katalysezyklus wird im Anschluss durch die Protodemetallierung, also die Substitution des Metallfragments durch ein Proton (aus Lösungsmittel oder extern zugesetzter Protonenquelle), unter Dissoziation des Produkte F und Freigabe der aktiven Spezies B vervollständigt. Die Wechselwirkung zwischen dem Alkin-Liganden und dem Metallzentrum wird im Rahmen des Dewar-Chatt-Duncanson-Modells ⁵¹ als Donor-Akzeptorwechselwirkung zwischen zwei Fragmenten mit abgeschlossenen Valenzorbitalen beschrieben (Abb. 1-4, rechts).^{52,53} Es wird dabei angenommen, dass durch Überlappung des π -System des Alkin-Liganden mit einem leeren d-Orbital geeigneter Symmetrie des Metalls eine σ -Bindung ausgebildet wird, wodurch Elektronendichte vom Alkin-Liganden auf das Metallzentrum übergeht. Gleichzeitig resultiert aus der Rückdonierung von Elektronendichte aus besetzten d-Orbitalen des Metalls in unbesetzte,

antibindene π^* -Orbitale des Alkins eine π -Rückbindung. Auf Grund der beiden orthogonal aufeinanderliegenden π -Systeme in Alkinen liegen also vier Wechselwirkungskomponenten vor, die zur Bindung zwischen Alkin und Metallzentrum beitragen (Abb. I-4, rechts). Die in der Papierebene liegenden π_2 -Orbitale des Alkins sind verantwortlich für die Ausbildung der oben beschriebenen σ -symmetrischen $M \leftarrow$ L-Hinbindung sowie einer π -symmetrischen $M \rightarrow$ L-Rückbindung. Die orthogonal zur Papierebene liegenden π_1 -Orbitale des Alkins dagegen wechselwirken mit unbesetzten d-Orbitalen des Metalls, was zur Ausbildung einer π -symmetrischen M \leftarrow L-Hinbindung^a führt. Gleichzeitig entsteht aus dem schwachen δ-symmetrischen Überlapp besetzter d-Orbitale des Metalls mit dem unbesetzten, antibindenden π^*_1 -Orbital des orthogonalen π -Systems eine zusätzliche, allerdings nur schwache, δ -M→L-Rückbindung. Molekülorbital-theoretische Rechnungen legen zudem nahe, dass annähernd 50% gesamten Bindungsenergie in Alkin-Übergangsmetallkomplexen auf elektrostatischen der Wechselwirkungen zurück zu führen sind.⁵⁴ Zusätzliche Rechnungen zeigten, dass für d⁸- bzw. d¹⁰-Komplexe von Platin(II)- bzw. Gold(I)-Zentralatomen die σ -symmetrische M \leftarrow L-Hinbindung den weitaus größten Beitrag zu der Wechselwirkung zwischen Alkin und Metall liefert. Daneben spielt auch die π symmetrische M \rightarrow L-Rückbindung eine gewisse Rolle, während die Beiträge der π -symmetrischen M \leftarrow L-Hinbindung und δ -symmetrischen M \rightarrow L-Rückbindung, die aus der Wechselwirkung der Metall-Orbitale mit dem orthogonalen π -System des Alkins resultieren, mit zusammen nur <10%, als vernachlässigbar klein angesehen werden können.^{13a,c} Alkine verhalten sich gegenüber Gold(I)- und Platin(II)-Komplexen daher als starke σ -Donoren, aber zugleich schwache π -Akzeptoren. Die Aktivierung des Alkins gegen über nukleophilen Angriffen in Gegenwart von Gold(I)- und Platin(II)-Komplexen beruht also darauf, dass bei Koordination ein großer Anteil der Elektronendichte auf das Metallfragment übertragen wird und das Alkin dabei einen stark elektrophilen Charakter ausbildet.

Die hohe Selektivität für Alkine auch in Anwesenheit von Alkenen, die Gold-katalysierte Reaktionen auszeichnet,^b liegt dabei nicht in einer bevorzugten Koordination von Gold an Dreifachbindungen gegenüber Doppelbindungen begründet. Ganz im Gegensatz, es konnte sogar gezeigt werden, dass Gold-Alken-Komplexe geringfügig stabiler sind als Gold-Alkin-Komplexe.⁵⁵ Vielmehr verfügen an das Metall koordinierte Alkine über ein energetisch tiefer liegendes LUMO als die entsprechenden Olefinkomplexe, was sie empfänglicher für nukleophile Angriffe macht.⁵⁶

Ein weiterer enormer Vorteil der späten Übergangsmetalle als Katalysatoren im Gegensatz zu frühen Vertretern ist aus synthetischer Sicht ihre geringe Bindungsaffinität zu harten Heteroatom-Liganden wie Sauerstoff oder Stickstoff. Kationische Edelmetall-Spezies wie beispielsweise (Ph₃P)Au⁺ bevorzugen die

^a Alkine sind demnach als 4e⁻-Donor-Liganden zu betrachten.

^b Diese Eigenschaft wird auch als Alkinophilie bezeichnet.

Wechselwirkung mit weichen Liganden (HSAB-Prinzip),⁵⁷ wie den leicht polarisierbaren π-Systemen von C-C-Mehrfachbindungen und werden so nicht durch konkurrierende Wechselwirkungen der Metallzentren mit Heteroatomen inhibiert. Im Weiteren ermöglicht es ihre geringe Reaktivität gegenüber Wasser und Sauerstoff, ohne Verwendung einer Inertgasatmosphäre oder trockener Lösungsmittel unter experimentell sehr einfachen Reaktionsbedingungen zu arbeiten. Zusätzlich geht damit eine sehr große Toleranz gegenüber diversen funktionellen Gruppen einher. Besonders Gold-katalysierte, aber auch die Platin-katalysierte Reaktionen haben eine sehr breite Anwendung in der Totalsynthese von hochfunktionalen Naturstoffen gefunden.⁵⁸

Abbildung I- 5: Ausgewählte Beispiele für die Verwendung von Gold-Katalyse in der Totalsynthese.

Toste et al. nutzten beispielsweise eine Gold(I)-katalysierte Enin-Zyklisierung zum Aufbau eines sterisch anspruchsvollen funktionalisierten Bicyclo[4.3]nonangerüstes in ihrer Totalsynthese von (+)-Fawcettimin I-**18**⁵⁹ einem tetrazyklischen Naturstoff aus der Klasse der *Lycopodium* Alkaloide (Abb. I-5).⁶⁰ Ein weiteres sehr imposantes Beispiel ist die von *Ley et al.* in der Synthese des natürlichen Insektizids Azadirachtin verwendete Gold(I)-katalysierte Propargyl-*Claisen*-Umlagerung des hochfunktionalisierten Propargylvinylethers I-**19** in das Allen I-**20**.⁶¹

Abbildung I-6: Darstellung der berechneten⁶² relativistische Kontraktionen der 6s-Orbitale.⁶³

Die außergewöhnlichen Eigenschaften von Gold-Katalysatoren werden teilweise auf relativistische Effekte zurückgeführt.^{56, 64, 65} Die hohe Kernladung der späten Übergangsmetalle führt zu einer Kontraktion der s-Orbitale (Abb. I-6).^c Die daraus resultierende stärker elektronische Abschirmung des Kernes bedingt eine Expansion besonders der d- und f-Orbitale, deren diffuser Charakter maßgeblich zur leichten Polarisierbarkeit der weichen kationischen Übergangsmetall-Spezies beiträgt.^{31a} Gleichzeitig geht mit einer hohen Kernladung eine hohe Elektronegativität (Elektronegativität: $\chi = 2.54$ nach *Allred/Rochow*,⁶⁶ $\chi = 2.54$ nach *Pauling*⁶⁷) einher, wodurch Gold zu einer starken *Lewis*-Säure^{68,69} wird. Bei Gold sind diese Effekte am stärksten ausgeprägt, in abgeschwächter Form treten sie aber auch bei Platin und Quecksilber auf, die dem Gold im Periodensystem am nächsten stehen.⁷⁰

I-1.2 Kaskadenreaktionen – Der schnelle Weg zu molekularer Komplexität und synthetischer Diversität

Kaskadenreaktionen gehören wohl zu einem der faszinierendsten Bereiche der organischen Chemie und sind in den letzten Jahren Gegenstand intensiver Forschung gewesen.^{71,72,73,31b} Die Kombination von zwei oder mehr verschiedenen Reaktionen in einer einzigen Transformation ermöglicht dabei die Generierung enorm hoher struktureller Komplexität ausgehend von vergleichsweise einfachen Ausgangsmaterialien. Die Terminologie von Kaskadenreaktionen wird leider, trotz intensiver Bemühungen die Begrifflichkeiten

^c s-Orbitale besitzen quantentheoretisch eine endliche Aufenthaltswahrscheinlichkeit für die darin befindlichen Elektronen am Kern und werden daher durch eine steigende Kernladung stärker beeinflusst (kontrahiert) als beispielsweise p-, d- und f-Orbitale, die alle Knotenebenen im Kern aufweisen, wodurch hier die Aufenthaltswahrscheinlichkeit für Elektronen gegen null geht.

klar gegeneinander abzugrenzen,^{71b,c} in der Literatur wenig stringent angewandt. Die Begrifflichkeiten Kaskaden-, Domino-, Tandem-, Konsekutiv-, Multi-Stufenreaktion und sequentielle Reaktion werden hier in großzügiger Unbekümmertheit weitgehend pseudo-synonym verwandt. Daher zur Einleitung an dieser Stelle eine abschießende Definition die sich im Wesentlichen an der Einteilung nach *Tietze* orientiert,^{71b,c,74} und im weiteren Verlauf der Arbeit genutzt werden soll.

Generell differenziert man Kaskadenreaktion,^d deren Reaktionsschritte konsekutiv ablaufen von solchen, deren Reaktionsschritte parallel ablaufen, dass heißt im gleichen Substrat, aber an unterschiedlichen Funktionalitäten. Kaskadenreaktionen, deren Reaktionsschritte konsekutiv in Gegenwart gleichbleibender Reaktionsbedingungen ohne zusätzliche Zugabe von Reagenzien oder Katalysatoren ablaufen und in denen die nachfolgende Reaktion eine Konsequenz der im vorherigen Schritt gebildeten Funktionalität darstellt, werden als Dominoreaktionen bezeichnet.^{71b} Die Intermediate von Dominoreaktionen können in der Regel nicht als definierte Einzelverbindungen isoliert, sondern nur durch Zusatz von sogenannten Trapping-Molekülen abgefangen werden, um Mechanismen aufzuklären. Ein klassisches Beispiel für eine Dominoreaktion ist die von Tietze et al. entwickelte Knoevenagel-Hetero-Diels-Alder-Reaktion (Abb. I-7) bei der ausgehend von 7-Methyloct-6-enal I-22 und 1,3-Dimethylpyrimidin-2,4,6(1H,3H,5H)-trion I-23 in Gegenwart von Ethylendiammoniumdiacetat der Trizyklus I-25 diastereoselektiv in 58% Ausbeute in einem Schritt aufgebaut wird. Dabei reagiert das intermediär durch eine Knovenagel-Kondensation gebildete Dien I-24 instantan in einer Hetero-Diels-Alder-Reaktion intramolekular zum Produkt weiter.⁷⁵

Abbildung I-7: Ausgewählte Beispiele für Dominoreaktionen.

^d Kaskadenreaktion stellt den Sammelbegriff für Domino- und Tandemreaktion. Sequentielle Reaktion oder auch Konsekutivreaktion sind synonym zuverwenden.

Ein didaktisch sehr schönes Beispiel ist die Triple-Domino-Oxy-*Cope-Claisen*-Carbonyl-En-Reaktion von *Barriault et al.* (Abb I-7).⁷⁶ Darin wird der Enolether I-**26** bei 200°C in der Mikrowelle zunächst durch eine intramolekulare Oxy-*Cope*-Reaktion in den Allylvinylether I-**27** umgelagert, der in einer *Claisen*-Umlagerung direkt zu dem decazyklischen Keton I-**28** weiterreagiert. I-**28** durchläuft unter den Reaktionsbedingungen abschließend eine intramolekulare Carbonyl-En-Reaktion, welche das bizyklische Produkt I-**29** in guter Ausbeute und exzellentem Diastereomerenverhältnis liefert. Ein weiteres sehr elegantes Beispiel einer solchen Kaskadenreaktion ist die asymmetrische, organokatalytischen Quadrupel-Domino-Multi-Komponentenreaktion⁷⁷ von *Enders et al.* zum enantioselektiven Aufbau von 3,4,5,6-tetrasubstituierten Cyclohex-1-encarbaldehyden in Gegenwart des von Prolin abgeleiteten Organokatalysator I-**33**.⁷⁸

Abbildung I-8: Asymmetrische, organokatalytische Domino-Multi-Komponentenreaktion nach Enders et al..

In dieser Dominoreaktion werden unter Enamin- und Iminium-Katalyse drei neue C-C-Bindungen geknüpft und vier Stereozentren perfekter Stereoselektivität aufgebaut. Durch eine vielfältige Auswahl an möglichen Einzelkomponenten zeigt die Methode zusätzlich eine sehr breite Anwendungsmöglichkeit

zur Herstellung verschiedenster 3,4,5,6-tetrasubstituierter Cyclohex-1-encarbaldehyden und ist daher als Werkzeug zur Entwicklung von Wirkstoffen in der Medizinalchemie aus Gesichtspunkten der Diversitätsorientierten Synthese (DOS)⁷⁹ von großer Bedeutung.⁸⁰

Kaskadenreaktionen, deren Reaktionsschritte parallel an unterschiedlichen Funktionalitäten im Substrat unter gleichbleibenden Reaktionsbedingungen oder teilweise nach Zugabe von weiteren Reagenzien, aber unter der Notwendigkeit des initialen Reaktionsschrittes, ablaufen, werden als Tandem- oder Multi-Stufenreaktionen bezeichnet. Die Isolierung von Intermediaten ist hier nur in den Fällen möglich, in denen ein ausreichender Unterschied in den Reaktionsgeschwindigkeiten der Teilreaktionen unter den angelegten Reaktionsbedingungen vorliegt. Ein klassisches Beispiel für eine definitionsgetreue Tandemreaktion ist die von *Roush et al.⁸¹* in der Totalsynthese des polyketidischen *Spiro*tetronat-Antibiotikums⁸² Chlorotriolid I-**41** eingesetzte Tandem-*Diels-Alder*-Reaktion von I-**38** mit I-**39** (Abb. I-9). Neben der in rot markierten intermolekularen *Diels-Alder*-Reaktion, die zum Aufbau des Spirozyklus im oberen Teil des Produktes I-**40** genutzt wird, führt eine parallel verlaufende intermolekulare *Diels-Alder*-Reaktion (grün markiert) im unteren Teil des Substrates I-**40** zum Aufbau des Decalinsystems in I-**32**.

Abbildung I-9: Tandem-Diels-Alder-Reaktion nach Roush et al..

Sequentielle Reaktionen, oder auch Konsekutivreaktionen, sind Reaktionen bei denen ein Primärprodukt durch definiert chronologisch erfolgende Zugabe weiterer Reagenzien, Mediatoren oder Katalysatoren ohne Isolierung im Ein-Topf-Verfahren weiter umgesetzt wird.^{71a} Konsekutiv-Reaktionen zählen nicht zu Kaskadenreaktionen im eigentlichen Sinne. Die Intermediate von Konsekutivreaktion lassen sich oftmals problemlos isolieren, wenn nach den Umsetzungen der Teilschritte die Reaktion abgebrochen wird.

Die enormen Vorteile von Kaskadenreaktionen liegen auf der Hand: Zeit- und Arbeitsaufwand werden durch das Ausbleiben der Isolierung von Zwischenprodukten und die Reduzierung auf einen einzigen Aufarbeitungsschritt erheblich verringert. Gleichzeitig wird die Menge der anfallenden Abfallprodukte und zu verbrauchenden Ressourcen (beispielweise Lösungsmittel zur Durchführung der Reaktionen und zur Reinigung des Produktes durch chromatographische Methoden) deutlich vermindert. Kaskadenreaktionen sind daher aus Atom-,²⁵ Stufen-⁸³ und Redoxökonomischer²⁶ Perspektive⁸⁴ besonders nachhaltige und Ressourcen schonende Reaktionen und werden dem Bereich der nachhaltigen Chemie oder auch *Green Chemistry* zu geordnet.²⁴

Die Natur nutzt Kaskadenreaktionen ebenfalls als effiziente Methoden zur effektiven Generierung molekularer Komplexität. Ein gutes Beispiel dafür findet sich in der Biosynthese der Steroide.⁸⁵ Hierin wird das Triterpen Squalenoxid in einer Säure-katalysierten, kationischen Dominoreaktion zunächst zum Protosteryl-Kation zyklisiert, nachfolgend wird durch zwei konsekutive 1,2-Hydrid-Migrationen (*Wagner-Meerwein*-Umlagerung),⁸⁶ einen 1,3-Methylshift und eine abschließende Eliminierung eines Protons in den Cholesterol-Vorläufer Lanosterol überführt (Abb. I-10)

Abbildung I-10: Kationische Kaskadenreaktion in der Biosynthese von Lansterol aus Squalenoxid.

Aufgrund des schnellen Zugangs zu Molekülen mit beträchtlicher struktureller und stereochemischer Komplexität finden Kaskadenreaktionen in der Zielstruktur orientierten (TOS)^{79a,87,88} Totalsynthese von komplexen hochfunktionalisierten Naturstoffen immer mehr Anwendung,^{31,58,72,73, 89} obgleich die Entwicklung und das Design solcher Kaskadenreaktionen für spezifische Moleküle eine große intellektuelle Herausforderung darstellt.^{72a}

Eine der ersten Kaskadenreaktionen in der Totalsynthese ist der Schlüsselschritt in der Synthese von Tropinon I-**45** aus Succindialdehyd I-**46**, Methylamin I-**47** und Calciumacetondicarboxylat I-**48** durch *Robinson et al.* im Jahre 1917 (Abb. I-11).⁹⁰ Eine bahnbrechende Arbeit, besonders unter dem Gesichtspunkt der Zeit in der diese entstanden ist und ein erste Beleg für die Effizienz von Kaskadenreaktionen in der Totalsynthese.

Ein jüngeres Beispiel für den extrem schnellen und eleganten Aufbau molekularer Komplexität durch Kaskadenreaktionen ist die Totalsynthese von Vindorosin I-**54** durch *Boger et al.* (Abb. I-12).⁹¹ Vindorosin I-**54** ist ein hochfunktionalisiertes Alkaloid aus der Familie der *Vinca*-Alkaloide, die wegen ihres Potentials als Antitumor-Wirkstoffe im Fokus der Forschung stehen.⁹² In dem Schlüsselschritt der Synthese wurde ausgehend von dem Vorläufer I-**55** in einer intramolekularen Hetero-*Diels-Alder*-Reaktion mit inversem Elektronenbedarf zunächst das Intermediat I-**57** generiert, welches unter Bildung des 1,3-Dipols I-**58** in einer Retro-[3+2]-Zykloaddition, oder auch Zykloreversion, Stickstoff verliert. Im Anschluss wurde durch

eine intramolekulare dipolare [3+2]-Zykloaddition das pentazyklische Grundgerüst des alkaloiden Naturstoff aufbaut. In dieser beindruckend effizienten Dominoreaktion wurden vier C-C-Bindungen geknüpft, drei Ringe und sechs Stereozentren stereoselektiv in einem einzigen Schritt aufgebaut und I-**56** wurde als einziges Diastereomer in 86% Ausbeute erhalten.

Abbildung I-11: Biomimetische Totalsynthese von Tropinon nach Robinson.

Abbildung I-12: Domino-Hetero-Diels-Alder-Retro-[3+2]-Cycloaddition-[3+2]-Cycloaddition-Reaktion als Schlüsselschritt der Totalsynthese von Vindorosin nach *Boger et al.*.

Ein wahres Potpourri an verschiedenen Kaskadenreaktionen bietet auch die Totalsynthese des Naturstoffs Hirsutellon B I-**59**⁹³ durch *Nicolaou et al.* (Abb. I-13).⁹⁴ Hirsutellon B I-**59** zeigt vielversprechende antibiotische Wirkung gegen *Mycobacterium tubercolosis.*⁹⁵

Abbildung I-13: Dominoreaktion zum Aufbau des Dechadrofluoren-Grundgerüstes und Multi-Stufenreaktion aus der Totalsynthese von Hirsutellon B nach *Nicolaou et al*.

Das Molekül weist eine Vielzahl einzigartiger Strukturmotive auf, darunter ein hochfunktionalisiertes Decahydrofluoren-Grundgerüst, ein γ-Lactam sowie 13-gliedrigen *para*-Cyclophan-Ring welcher über ein Arylether-Linker in das Decahydrofluoren integriert ist. Diese hochkomplexen Strukturmerkmale wurden von *Nicolaou et al.* dabei konsequent durch elegante Kaskadenreaktionen konstruiert. Der Aufbau des Decahydrofluoren-Grundgerüstes wurde ausgehend von dem Vorläufer I-**60** bewerkstelligt. In einer Dominoreaktion lieferte eine *Lewis*-saure Epoxid-Öffnung in Gegenwart von Diethylaluminumchlorid zunächst das monozyklische Intermediat I-**63**, welches anschließend in einer intramolekularen *Diels-Alder*-Reaktion in 50% Ausbeute und perfekter Diasteroselektivität zum Trizyklus I-**61** abreagierte.

Im späteren Verlauf der Synthese nutzen *Nicolaou et al.* eine Multi-Stufenreaktion um eine formale Disubstitution zwei primärer Alkohole in Verbindung I-**64** in einem Reaktionsschritt Gegenwart von Zink(II)iodid und Thioessigsäure zu ermöglichen (Abb. I-13). Zunächst generierte die Eliminierung des benzylischen Alkohols ein 4-Methylencyclohexa-2,5-dien-1-yliden)oxoniumion I-**67** an das Thioessigsäure unter Bildung der Verbindung I-**67** addiert. In einer nachfolgenden Zink(II)-vermittelten Zyklisierung wurde das zyklische Oxoniumion I-**69** gebildet, welches durch nukleophile Substitution zum Iodthioacetat I-**65** geöffnet wurde.⁹⁶ Ausgehend von I-**65** wurde der 13-gliedrigen para-Cyclophan-Ring des Naturstoffs installiert.

Abbildung I-14: Domino-Amidierungs-Epimerisierungs-Zyklisierungsreaktion aus der Totalsynthese von Hirsutellon B nach Nicolaou et al.

Zum Schluss der Synthese wird zudem auch noch der γ-Lactamring in einer Dominoreaktion bestehend aus Amidierung, Epimerisierung und Zyklisierung ausgehend von dem Vorläufer I-**70** unter Erhalt des Naturstoffs Hirsutellon I-**59** konstruiert.

Die vorgestellten Kaskadenreaktionen in der Totalsynthese von hochkomplexen Naturstoffen demonstrieren, welche synthetische Effizienz in der instantan Kombination von Reaktivitäten liegt und welch großes Potential diese Methodik zum Aubau komplexer Strukturen besitzt.

"Target-oriented synthesis provides the ultimate test of reaction design and applicability. The design of cascades to provide specific targeted molecules of considerable structural and stereochemical complexity poses a significant intellectual challenge and can be one of the most impressive activities in natural product synthesis. Cascade reactions therefore contribute immeasurably to both the science and art of total synthesis, bringing not only improved practical efficiency but also enhanced aesthetic appeal to synthetic planning." (*K. C. Nicolaou*, 2006)^{72a}

"We need to set a time line, at which any natural products can be synthesized in less than 5 steps." (D. W. C. Macmillan, 2009)^e

I-1.2.1 Entwicklung von Übergangsmetal-katalysierten Kaskadenreaktionen zur Synthese von Heterozyklen in der Arbeitsgruppe *Kirsch*

Im Arbeitskreis von *Prof. Dr. Stefan F. Kirsch* werden Multi-Stufen- und Dominoreaktionen zur Synthese von Heterozyklen genutzt. Dabei wurden im Wesentlichen zwei Konzepte verwendet.

Ein erstes Konzept basiert auf der initialen Übergangsmetall-katalysierten Umlagerung von Propargylvinylether des Typs **A** in die korrespondierenden Ketoallene des Typs **F** (Abb. I-15).^{97,31b,98} Mit dieser Diversitäts-orientierte Synthesemethodik⁷⁹ wurden seit 2005 mehrere Reaktionen zur Synthese von einer ganzen Bandbreite von verschiedenen, hochfunktionalisierten Furanen, ⁹⁹ Pyranen, ¹⁰⁰ Dihydropyridinen¹⁰¹ und Pyrrolen¹⁰² entwickelt.

Die Ketoallene des Typs **F** können dabei je nach Reaktionsbedingungen in die verschiedenen Heterozyklen überführt werden. In Gegenwart von Au(PPh₃)SbF₆ beispielsweise erfolgt eine 5-*exo*-dig-Heterozyklisierung zu tetrasubstituierten Furanen des Typs **B**. Bei Verwendung von AgSbF₆ als Katalysator für die intiale Propargyl-*Claisen*-Umlagerung und anschließende Zugabe von DBU erfolgt zunächst eine Basen-vermittelte Isomerisierung zum Dienonen des Typs **G**, welche instantan in einer 6π -Elektrozyklisierung zu 2,3,4,6-tetrasubstituierten Pyranen abreagieren. Die Zugabe von primären Aminen zu Ketoallenen des Typs **F** führt zur Bildung von Iminoallenen des Typs **H**, welche durch Zugabe von Au(PPh₃)Cl in die korrespondierenden tetrasubstituierten Pyrrole überführt werden können. Eine initiale Reaktion in Gegenwart von AuCl, mit anschließender Zugabe von primären Aminen und Behandlung mit katalytischen Mengen *p*-Toluensulfonsäure führt hingegen zur Bildung der 2,3,4,6tetrasubstituierten Dihydropyridine des Typs **E**.

^e P. V. Pharm, MacMillan Group Meeting, 29.07.2009.

Abbildung I-15: Methode zur Synthese von hochfunktionalisierten Heterozyklen nach Kirsch et al..

Ein weitere Reaktion dieser Art ist die 2013 entwickelte Dominoreaktion zur Synthese diverser tetrasubstituierter Furane des Typs I-**C** (Abb. I-16).¹⁰³ Auch hier erfolgt zunächst durch eine initiale Propargyl-*Claisen*-Umlagerung von Propargylvinylethern des Typs **A**, die eine freie Hydroxyfunktion in

der zweiten propargylischen Position tragen, in Allene des Typs **D**. Diese reagieren instantan durch Acetalbildung und Eliminierung von Wasser zu den Intermediaten des Typs **F** weiter, die nach Protodemetallierung und Isomerisierung Vinylfurane des Typs **B** in schwankenden Doppelbindungsisomerenverhältnissen liefern. Nach hydrogenolytischer Folgereaktion konnten die tetrasubstituierten Furan des Typs **C** in guten Ausbeuten isoliert werden.

Abbildung I-16: Furan Synthese nach Kirsch et al..

Ein zweites Konzept basiert auf der Erzeugung kationischer Ladungen innerhalb heterozyklischer Grundgerüste durch nukleophile Heterozyklisierung von Alkinonen unter π -Aktivierung durch späte Übergangsmetalle und nachfolgender Überführung durch Umlagerungsreaktionen in hochsubstituierte Heterozyklen. ¹⁰⁴ Unter Verwendung dieses Konzeptes gelang 2006 die Synthese von Spirofuranen des Typs **B** aus 2-Hydroxyalk-2-in-1-onen des Typs **A** (Abb. I-17).¹⁰⁵ Dabei erfolgt zunächst eine Platin-katalysierte 5-*endo*-dig Heterozyklisierung des Carbonylsauerstoffs auf das aktivierte Alkin unter Ausbildung des zyklischen Oxoniumions **D**. Anschließend wird durch eine 1,2-Migration eines Alkylrestes das Produkt gebildet. Dieses Konzept konnte 2011 auch erfolgreich für die Umsetzung 2-Alkylalk-3-inone des Typs **A** (Abb. I-18) angewandt werden.¹⁰⁶ Dabei konnten je nach Reaktionsbedingungen 1,2,4-trisubstituierte Furane des Typs **B** oder *cis*-verknüpfte Oxabicyclo[3.3]-oct-2-en des Typs I-**C** mit einer Carbonsäure-Funktionalität am Brückenkopfatom erzeugt werden.

Abbildung I-17: Synthese von Spirofuranen unter π -Katalyse und 1,2-Migration nach Kirsch et al..

Abbildung I-18: Furanen durch eine Dominoreaktion aus 5-*endo*-Heterozyklisierung, 1,2-Migration und *Grob*-artiger Fragmentierung (links), Synthese von *cis*-verknüpfte Oxabicyclo[3.3]-oct-2-en mit Carbonsäure-Funktionalität am Brückenkopfatom durch eine Kaskadenreaktion aus 5-*endo*-Heterozyklisierung, Hydratation, Kupfer-katalysierter Oxidation und 1,2-Migration nach *Kirsch et al.* (rechts).

Die Reaktion bei 100°C in Gegenwart von PtCl₄ und Isopropanol als externer Protonenquelle führte über eine 5-*endo*-dig Heterozyklisierung des Carbonylsauerstoffs zur Bildung des Oxoniumions **E**, welches analog der zuvor (*vide supra*) beobachteten Reaktivität in einer 1,2-Migration zum Allylplatin-Komplex **F** weiter reagiert. Die gespannte Oxa*spiro*alken-Struktur von **F** sowie die benachbarte Hydroxylfunktion führen zu einer *Grob*-artigen Fragmentierung^{107,108}des Moleküls unter Bildung von **B**.

Alternativ war es möglich durch Umsetzung bei 80°C in nassem DMPU in Gegenwart von CuCl und unter Sauerstoff-haltiger Atmosphäre eine Redox-neutrale Dominoreaktion zur Bildung von **C** zu durchlaufen. Als initialer Schritt bildet eine Kupfer-katalysierte 5-*endo*-dig Heterozyklisierung, analog der Platinkatalysierten Reaktion, das korrespondierende Oxoniumion **E**, welches unter den wässrigen Reaktionsbedingungen jedoch zum Hemiacetal **G** equilibriert. Es folgt eine Kupfer-katalysierte Oxidation durch Luftsauerstoff des sekundären Alkohols zum Keto-Hemiacetal **H**, welches in das isomere Keto-Hydrat **J** umlagert, aus dem eine 1,2-Alkylmigration zum bizyklischen Produkt erfolgt.

I-1.3 Die Pinakol-Umlagerung – Eine alte Bekannte mit großem Potential

Die klassische Pinakol-Pinakolon-Umlagerung,¹⁰⁹ die 1859 *Rudolph Fittig*¹¹⁰entdeckt und 1874 von *Alexander Michailowitsch Butlerov*¹¹¹ weiterentwickelt wurde, bezeichnet eine Säure-katalysierte Umlagerung von Pinakol I-**93** unter 1,2-Migration einer Methylgruppe in Pinakolon I-**97** (Abb. I-19).¹¹²

Abbildung I-19: Pinakol-Pinakolon-Umlagerung

Die Umlagerung verläuft über ein Carbeniumion der allgemeinen Form **A**. Die dem Ladung tragenden Kohlenstoffatom benachbarte Hydroxylgruppe unterstützt dabei eine 1,2-Migration eines der Alkylreste durch Stabilisierung der positiven Ladung in einem Oxoniumion was zur Bildung des Ketons **B** führt.^f Pinakol-Umlagerungen bieten einen nicht zu unterschätzenden Vorteil: Neben der Tatsache, dass sie, auf Grund der strengen Bevorzugung des Reaktionsweg zu **B**, wenig Nebenreaktionen zeigen, lassen sich im Fall von Carbeniumionen des Typs **A**, die drei unterschiedliche Kohlenstoffsubstituenten tragen, sehr einfach quartäre Stereozentren aufbauen. Da die Umlagerung unter Retention der Stereochemie verläuft, erfolgt diese Bildung zusätzlich stereoselektiv, was die Pinakol-Umlagerung als Methode zum

^f In dieser Arbeit werden die Bezeichnungen Pinakol-Umlagerung und Pinakol-artige Umlagerung für jegliche Umlagerungen von Carbeniumionen des Typs I-**A** in die Korrespondierenden Ketone I-**B** verwendet, unabhängig von der Erzeugung des Carbeniumions.

Aufbau komplexer Naturstoffe mit quartären Stereozentren, die vier Kohlenstoffsubstituenten tragen, prädestiniert. Der asymmetrische Aufbau solcher Zentren in Naturstoffen stellt auf Grund der sterischen Repulsion der Kohlenstoffsubstituenten nach wie vor eine große synthetische Herausforderung dar,¹¹³ im Besonderen wenn diese Zentren im Molekül benachbart sind.¹¹⁴ Trotz deutlicher Fortschritte in der Methodenentwicklung¹¹³ werden in der Totalsynthese von Naturstoffen zur Konstruktion quartärer Stereozentren mit vier Kohlenstoffsubstituenten klassisch *Diels-Alder*-Reaktionen, ¹¹⁵ *Heck*-Kupplungen,^{116,117} Palladium-katalysierte Allylierungen^{117,118,113e} oder Umlagerungen^{119,120} wie die Pinakol-Umlagerung¹²¹ eingesetzt.

Für die Erzeugung der für eine Pinakol-Umlagerung notwenigen Carbeniumionen des Typs A (Abb. I-19) können dabei diverse Strategien angewandt werden.^{121,88} Eine sehr elegante Möglichkeit ist Pinakol-Umlagerungen direkt als integralen Terminationsschritt von Dominosequenzen, die mit Umlagerung von positiven Ladungen einhergehen, zu nutzen. Die Kombination von Prins-Zyklisierungen^{122,123}mit Pinakol-Umlagerungen¹²⁴ wurde bereits mehrfach erfolgreich zum Aufbau von *quartär*en Stereozentren auch in der Totalsynthese eingesetzt.^{125,88,121} Im Weiteren können *Prins*-Pinakol-Kaskadenreaktionen zum Aufbau 126 ,125b,g,i Tetrahvdropvranen^{124a} hochfunktionalisierten von Cyclobutanonen, und Tetrahydrofuranen^{127,124b} eingesetzt werden. Wenn dabei der neugebildete Ring keine Heteroatome enthält kann dies als Strategie zum Aufbau von hochfunktionalisierten, komplexen carbozyklischen Fünfringen genutzt werden.^{128,125k}

Abbildung I-20: *Prins*-Pinakol-Dominoreaktion in der Totalsynthese von Magellanin und Magellaninon nach *Overman et al.*.

Ein gutes Beispiel für die Konstruktion eines carbozyklischen Fünfringes mit einem quartären Stereozentrum mit vier Kohlenstoffsubstituenten durch eine Domino-*Prins*-Pinakol-Reaktion ist die

Totalsynthese der *Lycopodium*-Alkaloide Maggellanin I-**98** und Magellaninon I-**99** durch *Overman et al.*^{128a} (Abb. I-20). Darin wird in Gegenwart von der *Lewis*-Säure SnCl₄ zunächst das Dimethylacetal I-**100** unter Ausbildung des Oxoniumions I-**101** partiell gespalten. Dieses reagiert in einer *Prins*-Zyklisierung weiter zu dem Carbeniumion I-**102**, welches in einer nachfolgenden Pinakol-Umlagerung einen carbozyklischen Fünfring mit einem quartären Kohlenstoffatom als zentralen Strukturmerkmal des Naturstoffs aufbaut.

I-1.4 Dominoreaktionen aus Übergangsmetall-katalysierter Carbozyklisierung und subsequenter Pinakol-Umlagerung - Ein generelles Konzept zur diastereoselektiven Synthese von komplexen, carbozyklischen Fünfringsystemen

Motiviert durch ihre Arbeiten zum Aufbau von Heterozyklen (*vide supra*) durch Dominoreaktionen bestehend aus Übergangsmetall-katalysierte Heterozyklisierungen und anschließender 1,2-Alkyl-Migration^{104,105,106} entwickelten *Kirsch et al.* das Konzept Übergangsmetall-katalysierte Carbozyklisierungen von 3-Silyloxy-1,n-Eninen mit subsequenten Pinakol-Umlagerungen zum effektiven Aufbau von hochfunktionalisierten, komplexen carbozyklischen Fünfringsystemen zu kombinieren.^{129,130}

Übergangsmetall-katalysierte Carbozyklisierung

Abbildung I-21: Verknüpfung von Carbozyklisierung und Pinakol-Umlagerung in Dominoreaktionen.

Durch gezielte Wahl der Ausgangsmaterialien wurde ein Reaktionsdesign entwickelt, in dem die Übergangsmetall-katalysierte Carbozyklisierung von Eninen zur Bildung eines intermediären Carbeniumions in benachbarter Position zu einer Hydroxylfunktion führt, so dass eine Stabilisierung der positiven Ladung durch eine irreversible Pinakol-artige Umlagerung in einen carbozyklischen Fünfring ermöglicht wird.¹²⁹

I-1.4.1. Dominoreaktionen aus 6-*endo*-dig-Carbozyklisierung und Pinakol-Umlagerung ausgehend von 3-Silyloxy-1,5-eninen

Basierend auf der etablierten Reaktivität von 1,5-Eninen^{131,132,133,31c,32b} entwickelten *Kirsch et al.* eine Gold(I)-katalysierte Dominoreaktion von 3-Silyloxy-1,5-Eninen des Typs **A** (Abb. I-22) die hochfunktionalisierte Cyclopenten-Derivate des Typs **B** mit einem quartären Stereozentrum liefert.¹²⁹

Abbildung I-22: Dominoreaktion aus 6-*endo*-Carbozyklisierung und Pinakol-Umlagerung von 3-Silyloxy-1,5-Eninen nach *Kirsch et al.*

Kirsch et al. demonstrierten das große Potential der Methode im diastereoselektiven Aufbau von komplexen, hochfunktionalisierten carbozyklischen Fünfringsystemen durch die Synthese einer Vielzahl an verschiedenen Cyclopenten-Derivaten, darunter auch bizyklische und spirozyklische Systeme. Ferner zeigte sich, dass die Umsetzung von enantiomeren angereicherten 3-Sillyloxy-1,5-eninen unter vollständigem Chiralitätstransfer verlief (siehe Abb. I-22, Verbindung I-**107**).

Für die Reaktion wurde der Präkatalysator (Ph₃P)AuCl vor der Verwendung durch Reaktion mit 0.5 eq AgSbF₆ in CH₂Cl₂ aktiviert, über Celite[®] filtriert und das (Ph₃P)AuSbF₆-enthaltende Filtrat für die Reaktion verwendet.^{45, g} Es zeigte sich, dass der Gegenionenaustausch zum schwach-koordinierenden Hexafluoroantimonat-Anion essentiell war für die Reaktion. In Gegenwart von (Ph₃P)AuSbF₆ erfolgt eine

^g Spuren von Silbersalzen in der Reaktion führten zur schnellen Zersetzung von Ausgangsmaterial und Produkt.

Aktivierung der Alkinfunktionalität (Abb. I-23), sodass das Olefin als internes Nukleophil in einer 6endo-dig-Carbozyklisierung angreift und sich das Intermediat **E/D** bildet.

Abbildung I-23: Mechanismus der Dominoreaktion aus 6-*endo*-Carbozyklisierung und Pinakol-Umlagerung von 3-Silyloxy-1,5-Eninen nach *Kirsch et al.*

Dieses reagiert dann über den Reaktionsweg A in einer Pinakol-artigen 1,2-Migration unter Ringverengung zum Oxoniumion **F**, welches nach Protodemetallierung das Cyclopenten **B** liefert. Die Substratbreite der Reaktion zeigt sich streng limitiert auf 3-Silyloxy-1,5-enine mit einem zusätzlichen Alkylsubstituenten (R³) in C2-Position. 3-Silylox-1,5-enine ohne zusätzlichen Alkylsubstituenten in dieser Position zeigten entweder keine Reaktion unter den Reaktionsbedingungen oder reagierten über konkurrierende Sequenzen aus Alkinhydratisierung und anschließende Eliminierung (Abb. I-23, Kasten). Vermutlich ist die Stabilisierung des intermediären Carbeniumions durch den zusätzlichen Alkylsubstituenten entscheidend für die Reaktion. Dies unterstreicht zudem den stärker kationischen Charakter des Intermediates D/E im Sinne des Carbeniumions E. Obgleich Kirsch et al. einen Mechanismus über das carbenoide Intermediat D nicht vollständig ausschließen konnten, kann der signifikante Unterschied in der Reaktivität in Abhängigkeit zum Substitutionsgrad in der C2-Position am besten durch Betrachtung der 1,2-Migration als klassische Semi-Pinakol-Umlagerung aus einem einer Hydroxylfunktion benachbarten Carbeniumion des Typs E verstanden werden.^{129b} Studien zum Protodemetallierungsschritt zeigten, dass eine externe Protonenquelle essentiell für eine erfolgreiche Reaktion ist. Diese Beobachtung war konsistent mit der mechanistischen Vorstellung der Protodemetallierung als finalen Reaktionsschritt des Dominoprozesses. Versuche Substrate mit freien Hydroxylfunktionen als internen Protonenquelle einzusetzen schlugen auf Grund konkurrierender Heterozyklisierungen fehl.^{134,135} Im Weiteren konnte die Vinyl-Gold-Spezies **F** auch durch Reaktion mit NIS als Vinyliodid abgefangen werden,^{136,137} was die Option für weitere Modifizierung der Produkte durch Kreuz-Kupplungschemie eröffnet.

Ein alternativer Dominomechanismus in dem das Intermediat **E** unter Ausbildung des Allenes **G** kollabiert und anschließend in einer 5-*endo*-trig–Carbozyklisierung zur Vinyl-Gold-Spezies **F** weiter reagiert, wäre ebenso plausibel (Abb. I-23, Reaktionsweg B) und kann als formale [3.3]-sigmatrope Umlagerung innerhalb eines Gold-katalysierten Zyklisierungs initierten Umlagerungs-Mechanismus (CIR) verstanden werden.^{138,129b}

Abbildung I-24: Elektrophile Aktivierung durch Iodoniumionen.

In vielen Fällen können einfache Iod-Elektrophile analoge Prozesse wie späte Übergangsmetall-Katalysatoren durch Iodonium-Aktivierung begünstigen, dabei werden die Iod-analogen Produkte durch Einbau von Iodatomen in das Molekülgerüst erhalten.^{139,140} *Kirsch et al.* konnten zeigen, dass das Vinyliodid I-**107i** auch unter Metall-freien Bedingungen in Gegenwart von NIS bei 0°C in Dichlormethan erhalten werden konnte.¹⁴¹

I-1.4.2. Dominoreaktionen aus 6-*exo*-dig-Carbozyklisierung und Pinakol-Umlagerung aus gehend von 3-Silyloxy-1,6-eninen

In Analogie zu den 3-Silyloxy-1,5-Eninen, entwickelten *Kirsch et al.* nachfolgend in enger Kooperation mit der Forschungsgruppe von *Prof. Young Ho Rhee* (POSTECH, Korea), welche zuvor schon Dominoreaktion aus Heterozyklisierung und anschließender [3.3]-sigmatroper Umlagerung von entsprechenden 3-Methoxy-1,6-eninen untersucht hatten, ¹⁴² eine Dominoreaktion bestehend aus 6-*exo*-dig-Carbozyklisierung und anschließender Pinakol-Umlagerung ausgehend von 3-Silyloxy-1,6-Eninen des Typs **A** (Abb. I-25) die zur Bildung von Cyclopentan-Derivaten des Typs **B** mit *exo*-zyklischer Doppelbindung führten.¹³⁰

Abbildung I-25: Dominoreaktion aus 6-*exo*-Carbozyklisierung und Pinakol-Umlagerung von 3-Silyloxy-1,6-Eninen nach *Kirsch et al*

Unter gleichen Reaktionsbedingungen,^h wie zuvor bei der Umsetzung der 3-Silyloxy-1,5-enine, konnte eine ganze Bandbreite an verschiedenen 3-Silyloxy-1,6-eninen in die korrespondierenden bizyklischen Produkte in exzellenter *cis*-Diastereoselektivität überführt werden. Darunter auch vollständig *cis*verknüpfte trizyklische Strukturen wie I-**115a** und I-**116a**. Dabei wurde die *exo*zyklische Doppelbindung ausschließlich in Z-Konfiguration gebildet.ⁱ

Die Reaktion des 3-Silyloxy-1,6-enins I-**117** zeigte einen konkurrierenden Reaktionsweg unter den angewendeten Reaktionsbedingungen und führte schon bei 23°C zur schnellen Bildung einer 1:1-Mischung des gewünschten Carbozyklisierungs-Pinakol-Produktes I-**118**, welches als einzelnes Diastereomer erhalten wurde, und einem Produkt I-**119**, das aus einer Dominoreaktion von Heterozyklisierung und [3.3]-sigmatroper *Claisen*-artiger Umlagerung resultierte (Abb. I-26).^{130,143}

^h Die Reaktion lief bereits bei 23°C ab, wurde jedoch bei 40°C signifikant beschleunigt.

¹ Eine Ausnahme war Verbindung I-**114f** hier wurde eine Diasteromerenmischung von E:Z = 45:55 erhalten.

Ferner war es möglich durch Variation der am Gold-Komplex koordinierten Liganden einen der beiden Reaktionswege zu bevorzugen. Während elektronenreichere Katalysatoren wie $[(t-Bu)_2P(o-biphenyl)Au]SbF_6$ gute Selektivität für das Pinakol-Produkt I-**118** zeigten, führte der Einsatz elektronenärmerer Komplexe wie $[(C_6F_5)_3PAuCl]/AgSbF_6$ zur vermehrten Bildung des *Claisen*-Produktes I-**119**.

Abbildung I-26: Pinakol-Umlagerung vs. [3.3]-sigmatrope Claisen-Umlagerung.

Dieser Trend wurde in Untersuchungen zur Umsetzung von I-**117** unter Verwendung verschiedener NHC-Gold-Komplexe [(I-**120**)Au]SbF₆, [(I-**121**)Au]SbF₆ und [(I-**122**)Au]SbF₆] durch *Fürstner et al.* bestätigt.^{144,145} Elektronenreiche Gold-Komplexe wie [(I-**120**)Au]SbF₆ und [(I-**121**)Au]SbF₆ zeigten eine Aktivierung des Alkins für einen nukleophilen Angriff des internen Olefins (Abb. I-26, (rechts), Reaktionsweg A), während der elektronenarme Komplex [(I-**121**)Au]SbF₆ zu vermehrten Bildung von I-**119** führte. Der Ligand I-**122** weist erhöhte π -Akzeptoreigenschaften auf¹⁴⁴ und verringert dadurch die M-L-Rückbindungskapazität des elektronenärmeren Komplexes wodurch der initiale Alkin-Gold-Komplex I-**123** ein stärker elektrophil aktiviertes Alkin präsentiert, welches durch den schwächer nukleophilen Sauerstoff des Silylethers angegriffen werden kann.

Abbildung I-27: Substrate ohne C2-Substituenten.

3-Silyloxy-1,6-enine, die keinen für die Stabilisierung des intermediären Carbeniumions notwendigen zusätzlichen Alkylsubstituenten in der (R⁴) aufweisen, reagieren ausschließlich über den Reaktionsweg B zu den korrespondierenden *Claisen*-Produkten (Abb. I-27).

Abbildung I-28: Elektrophile Aktivierung durch Iodoniumionen.

Auch die Domino-Carbozyklisierungs-Pinakol-Reaktion der 3-Silyloxy-1,6-enine konnte, analog der Reaktion der 3-Silyloxy-1,5-enine, durch elektrophile Aktivierung in Gegenwart von NIS bei 30°C bewerkstelligt werden.¹⁴¹

I-1.4.3 Eine Anwendung der Domino-Methodik – Die Overman Synthese von (+)-Sieboldin A

2010 veröffentlichten *Overman et al.* die Totalsynthese von (+)-Sieboldin A I-**132** (Abb. I-29),¹⁴⁶ einem Alkaloid aus der *Lycopodium*-Familie,¹⁴⁷ welches 2003 von *Kobayashi et al.* aus dem japanischen Bärlappgewächs *Lycopodium sieboldii* isoliert worden war.¹⁴⁸

(+)-Sieboldin A I-132

NH₂

(-)-Huberzin A I-**133**

Abbildung I-29: Schlüsselschritt der Totalsynthese von (+)-Sieboldin A nach Overman et al.

(+)-Sieboldin A I-**132** inhibiert die elektrische eel-Acetylcholinesterase mit einem n IC₅₀-Wert von 2.0 μ M, vergleichbar mit (-)-Huberzin A I-**133** (IC₅₀ = 1.6 μ M), einer Substanz die momentan in der klinischen Evaluierung für die Behandlung von Alzheimer und Schizophrenie steht.^{149,150}

Inspiriert durch die Arbeiten von *Kirsch et al.*¹³⁰ verwendeten *Overman et al.* in ihrer Synthese einen Gold(I)-katalysierte Dominoreaktion bestehend aus einer 6-*exo*-Carbozyklisierung und einer Pinakol-Umlagerung eines 3-Silyloxy-1,6-enins als Schlüsselschritt zur Konstruktion des zentralen Fünfringes der Struktur von (+)-Sieboldin A I-**132**. Diese ist durch einen ungewöhnlichen Hydroxyazacyclononan-Ring, der in einen Bicyclo[5.2.1]decan-*N,O*-acetal-Ring eingebettet ist, charakterisiert.

Wie zuvor von *Kirsch et al.* beschrieben,¹³⁰ beobachteten auch *Overman et al.* zwei konkurrierende Reaktionswege bei der Umsetzung des 3-Silyloxy-1,6-enins I-**134.** Neben dem gewünschten 6-*exo*-Carbozyklisierungs-Pinakol-Produkt I-**135** wurde auch das Heterozyklisierungs-*Claisen*-Umlagerungs-Produkt I-**136** in einer 1:1-Mischung gebildet, wenn das Enin I-**134** in Gegenwart von 10 mol% PPh₃AuSbF₆ umgesetzt wurde.

Dem zuvor beobachteten Trend folgend konnten *Overman et al.* durch Einsatz des elektronenreichen 2-(Di-*tert*-butylphosphino)-biphenyl-Liganden die Produktverteilung zu Gunsten des Pinakol-Produktes verändern. Der Bizyklus I-**153** wurde anschließend weiter zum Naturstoff (+)-Sieboldin A I-**150** umgesetzt.

I-1.5 (+)-Cyperolon – Ein sterisch überladenes Sesquiterpen

Der terpenoide Naturstoff (+)-Cyperolon I-**137** (Abb. I-30) wurde 1966 von *Hikino et al.* aus den japanischen Nussgrass *Cyperus rotundus* isoliert¹⁵¹ und gehört zu einer kleinen Klasse von Eudesman-Sesquiterpenen,¹⁵² den Cyperanen, die alle in verschiedenen Teilen dieser und artverwandter Pflanzen als Sekundärmetaboliten vorkommen.¹⁵³

Die Struktur der Cyperane wird durch ein sterisch stark überladenes *cis*-verknüpftes Bicyclo[4.3]nonan Grundgerüst des Typs **A** (Abb. I-30) charakterisiert, in dem alle Substituenten auf dieselbe Seite des Moleküls gerichtet sind und zwei quartäre Stereozentren mit je vier Kohlenstoffsubstituenten in dem enthaltenen Fünfring direkt benachbart zu einander liegen. Die einzelnen Cyperane sind unterschiedlich stark oxidierte Derivate dieses allgemeinen Grundgerüstes **A**. (+)-Cyperolon I-**137** enthält trotz des sehr kleinen Molgewichtes von nur 236.35 g/mol vier definierte Stereozentren.

Das japanische Nussgrass, *Cyperus rotundus,* ist bekannt als ein extrem invasives Unkraut, das sich weltweit in unterschiedlichsten Klimazonen verbreitet hat.¹⁵⁴ Das Auftreten der Pflanze in Agrarflächen reduziert Ernteausbeuten signifikant. Die Pflanze bedient sich in der Konkurrenz um Lebensraum einem biologischen Phänomen, das als negative Allelopatie bezeichnet wird.¹⁵⁵ Das heißt, die Pflanze sondert über ihre Wurzeln sekundäre Metaboliten in den Boden ab, die das Wachstum von anderen Pflanzen hemmen.

Abbildung I-30: Die Cyperane - Ein kleine Sesquiterpen-Klasse.

Auch (+)-Cyperolon-enthaltende Extrakte der Pflanze zeigten diese herbizide Wirkung.¹⁵⁶ Des Weiteren wird *Cyperus rotundus* in der traditionellen chinesischen, orientalischen-ayurvedischen und arabischen Medizin zur Behandlung von diversen gynäkologischen und inflammatorischen Erkrankungen genutzt.¹⁵⁷ Die vielversprechenden biologischen Eigenschaften von (+)-Cyperolon I-**137** sind bisher noch nicht vollständig untersucht.

I-2. Aufgabenstellung

I-2.1 Zielsetzung

Die komplexe Struktur des Sesquiterpens (+)-Cyperolon I-**137** stellte eine geeignete Zielstruktur dar, um die Anwendbarkeit und den präparativen Nutzen der zuvor vorgestellten Methodik zum Aufbau von komplexen carbozyklischen Fünfringsystemen durch Dominoreaktionen aus Carbozyklisierung und Pinakol-Umlagerung in der Totalsynthese von Terpenen aus vergleichsweise einfachen 3-Silyloxy-1,5-eninen zu demonstrieren.

Abbildung I-31: Geplanter Schlüsselschritt für die *de novo* Totalsynthese von (+)-Cyperolon.

Die Methode soll daher als Schlüsselschritt zum Aufbau der bizyklischen, terpenoiden Grundstruktur von (+)-Cyperolon I-**137** ausgehend von einem geeigneten 3-Silyloxy-1,5-enins **A** mit tetrasubstituierter Doppelbindung im Rahmen einer Totalsynthese basierend auf den Vorarbeiten durch *Alexander Duschek*¹⁸¹ und *Cleménce Liebért*¹⁶⁴ genutzt werden (Abb. I-31). Zusätzlich soll die Anwendungsbreite dieser Reaktion an verschiedenen 3-Silyloxy-1,5-eninen differierender Grundgerüste untersucht werden.

I-2.2 Stand der Forschung

I-2.2.1 Semisynthese von (+)-Cyperolon durch Hikino et al.

Die erste Semi-Synthese von (+)-Cyperolon wurde bereits 1966 von *Hikino et al.* veröffentlicht.¹⁵⁸ Basierend auf der Hypothese, dass (+)-Cyperolon I-**137** biosynthetisch auf (+)- α -Cyperon I-**145** zurück zu führen ist, entwickelten *Hikino et al.* eine Synthese ausgehend von (+)- α -Cyperon I-**145** (Abb. I-31). Ihre Hypothese fußte auf der Beobachtungen, dass beide Substanzen in den selben Extrakten von *Cyperus rotundus Linne* gefunden wurden.¹⁵⁹

In der Synthese wurde α -Cyperon I-**145** zunächst in Gegenwart von Lithiumaluminiumhydrid quantitativ zum Eudesma-4,11-dien-3b-ol I-**146** reduziert, welches nachfolgend in einer gerichteten Epoxidierung in Gegenwart von 1.0 eq *m*-CPBA in 59% Ausbeute in das 4b,5b-Oxidoeudesma-11-en-3b-ol I-**147** überführt wurde. Durch die Oxidation des sekundären Alkohols gelang die Synthese von 4b,5b-Oxidoeudesm-11en-3-on I-**148** in 88% Ausbeute.

Abbildung I-32: Semi-Synthese von (+)-Cyperolon ausgehend von (+)- α -Cyperon durch Hikino et al..

Schlüsselschritt der Semi-Synthese war die *Lewis*-Säure-katalysierte Semi-Pinakol-Umlagerung von I-**148**, wodurch Cyper-11-en-3,4-dion I-1**49** in 25% Ausbeute erhalten werden konnten. Durch Reduktion in Gegenwart von Lithiumaluminiumhydrid wurden dann die beiden epimeren Diole I-**150** und Cyper-11-en-3b,4-diol I-**151** in 66% bzw. 34% Ausbeute erhalten. Die Reaktion mit Essigsäureanhydrid lieferte neben dem gewünschten 3-Acetoxycyper-11-en-4-ol I-**152** in 49% Ausbeute auch die diacetylierte Verbindung

I-**153**. Die Oxidation von I-**152** in Gegenwart Chromsäure lieferte Cyperolonacetat I-**154** in 88% Ausbeute. Der Naturstoff (+)-Cyperolon I-**137** konnte anschließend durch alkalische Verseifung des Essigsäureesters in 91% Ausbeute erhalten werden. *Hikino et al.* konnten durch ihre Semi-Synthese die früheren Strukturbestimmungen des Naturstoffs bestätigten.

Es gibt wenige weitere Zugänge zur Naturstoffklasse der Cyperane,^{160,161,162} deren Methodik im Wesentlichen auf der gleichen Semi-Pinakol-Umlagerung beruht, die auch *Hikino et al.* nutzten und auf deren eingehender Besprechung hier aus Gründen der Vermeidung von Redundanz verzichtet wird. Ein Ansatz, der eine differente Herangehensweise beschreitet wurden von *Srikrishna et al.* im Jahre 2005 veröffentlicht worden. Die Autoren nutzen hierin eine intramolekulare, photochemische Cyclopropanierungsreaktion mit anschließender regioselektiver Ringöffnung zum Aufbau des den Cyperanen zu Grunde liegenden bizyklischen Kohlenstoffgerüstes. Eine Überführung der Produkte in natürlich vorkommende Cyperane wurde jedoch nicht durchgeführt.¹⁶³

I-2.3.2 Frühere Studien zur Totalsynthese von (+)-Cyperolon in der Arbeitsgruppe Kirsch

Strategie A – Eine unerwartete Reaktion zu einem hochfunktionaliserten Aromaten

Die ersten Studien zur Totalsynthese von (+)-Cyperolon I-**137** im Arbeitskreis Kirsch begannen im Jahr 2007 und ich hatte die Möglichkeit als Forschungspraktikant im Arbeitskreis im Rahmen meines Studiums an der Technischen Universität München die ersten Arbeiten an diesem spannenden Thema unter Anleitung von *Cleménce Liebért* durchzuführen.¹⁶⁴ In einer ersten retrosynthetischen Analyse (Abb. I-33) von (+)-Cyperolon I-**137** sollte das 3-Silyloxy-1,5-enin I-**155** als Vorstufe für die erweiterte Domino-Carbozyklisierungs-Pinakol-Umlagerungs-Reaktion im Schlüsselschritt genutzt werden und zur Bildung des Bizyklus I-**137** führen, welcher bereits das richtige Substitutionsmuster trägt, um durch wenig FGI-Operationen in den Naturstoff überführt zu werden.

Abbildung I-33: Retrosyntheseplan einer ersten Strategie zur Totalsynthese von (+)-Cyperolon.

Das 3-Silyloxy-1,5-enin wurde dafür ausgehend von dem kommerziell erhältlichen Monoterpen (*R*)-Carvon I-**157**, welches den benötigten Isopropenylsubstituenten bereits in der richtigen Stereokonfiguration beinhaltet und als Stereoanker innerhalb der diasteroselektiven Schlüsselreaktion

dienen sollte, hergestellt (Abb. I-34).¹⁶⁴ Die 1,2-Addition von lithiiertem TMS-Acetylen an (*R*)-Carvon I-**157** ergab den tertiären Alkohol I-**158** in 80% Ausbeute als einziges Diastereomer. Anschließend wurde das Enon I-**159** durch PCC-vermittelte oxidative Umlagerung in 77% Ausbeute erhalten.¹⁶⁵ Die Abspaltung der TMS-Schutzgruppe in Gegenwart von Kaliumcarbonat in Methanol und eine nachfolgende *Lúche*-Reduktion des Enons I-**160** lieferte den sekundären Alkohol I-**161**.¹⁶⁶ Durch Behandlung mit verdünnter Schwefelsäure in Gegenwart von stöchiometrischen Mengen Quecksilber(II)oxid wurde die Alkinfunktion zum korrespondierenden Methylketon hydratisiert. Nach der Schützung des sekundären Alkohols als *tert*-Butyldimethylsilylether führte die Reaktion einem von Propargylbromid abgeleiteten *Grignard*-Reagenz in Gegenwart katalytischer Mengen Quecksilber(II)chlorid und Iod zu Bildung des tertiären Alkohols I-**164**.¹⁶⁷ Das 3-Silyloxy-1,5-enin I-**155** wurde durch weitere Schützung der tertiären Hydroxyfunktion als Triethylsilylether erhalten.

Abbildung I-34: Synthese des 3-Silyloxy-1,5-enins I-155.

Bei der Untersuchung des Schlüsselschrittes zeigte sich, dass 3-Silyloxy-1,5-enin I-**155** unter den zuvor verwendeten Reaktionsbedingungen ([AuCl(PPh₃) 10 mol%/AgSbF₆ 5 mol%, *i*-PrOH, CH₂Cl₂, 23°C)^{129,130} eine unerwartete Transformation zu dem Aldehyd I-**165** (Tab. I-1) einging, der einen hochfunktionaliserten Aromaten enthielt. Diverse andere Katalysatoren führten ebenfalls zur Bildung des Aldehyds I-**165** als Hauptprodukt. Lediglich in Gegenwart von AuCl₃ konnten Spuren des gewünschten Bizyklus I-**156** in 3% Ausbeute neben dem Aldehyd I-**165** als Hauptprodukt isoliert werden. Interessanterweise, war PtCl₂ der aktivste Katalysator für diese alternative Reaktion und führte zur Bildung des Aldehyds I-**165** in 67% Ausbeute. Dieses unerwartete Produkt kann durch eine initiale 6-*endo*-Carboyzyklisierung von I-**155** zum Intermediat I-**166** erklärt werden (Abb. I-35), welches dann anstatt eine Pinakol-artige 1,2-Migration einzugehen, eine *Grob*-artige Fragmentierung¹⁰⁷ bevorzugt,

gefolgt von einer Eliminierung und der Protodemetallierung die schließlich zur Bildung des Aldehyds I-165 führt.^{131c}

Et ₃ SiO			iMe₂t-Bu		
-155	∣-165	-156			
Fintrag	Katalusatar (mal%) Dadingungan	Au	sbeute [%]		
Ellitidg	Katalysator (mol%), Bedingungen		5 -156		
1	AuCl ₃ (10), A	51	3		
2	[AuCl(PPh ₃)] (10)/AgSbF ₆ (5)	12	0		
3	AuCl (10)	21	0		
4	KAuCl ₄ (10), A	11	0		
5	Cul (10), B	0	0		
6	PtCl ₂ (10), C	67	0		
[a] Bedingungen; A; <i>i</i> -PrOH, (1,1 eq), CH ₂ Cl ₂ , 23°C, B; , <i>i</i> -PrOH, (1,1 eq), [b] DMF, 80°C, C; CO					

Tabelle I-1: Optimierung der unerwarteten Transformation unter Bildung von Aldehyd I-165.

[a] Bedingungen: A: *i*-PrOH, (1.1 eq), CH₂Cl₂, 23°C. B: . *i*-PrOH, (1.1 eq). [b] DMF, 80°C. C: CO (1 atm), *i*-PrOH, (1.1 eq), Toluen, 80°C. [c] Isolierte Ausbeuten nach chromatographischer Reinigung. [d] Spuren von I-**156** wurden gefunden. [e] I-**155** wurde vollständig reisoliert.

Abbildung I-35: Mechanismus der Grob-artigen Fragmentierung von I-166.

Obgleich das gewünschte Pinakol-Produkt auf diesem Weg nicht in ausreichenden Mengen hergestellt werden konnte, schien die generelle 6-*endo*-Carbozyklisierung von Substraten mit tetrasubstituierten Doppelbindungssystemen möglich. Dass in diesem speziellen Fall eine *Grob*-artige Fragmentierung bevorzugt ist, scheint der strukturellen Besonderheit des Substrates geschuldet, in dem der sekundäre Silylether der Doppelbindung benachbart ist und so die Fragmentierungsreaktion durch die Möglichkeit der thermodynamisch günstigen Bildung der Carbonylfunktion unterstützt.

Aus diesem Grund rückten im weiteren Verlauf der Untersuchungen 3-Silyloxy-1,5-enine des Typs A (Abb. I-36) in den Fokus, die diese problematische Hydroxylfunktion in Nachbarschaft zur Doppelbindung nicht aufwiesen, wodurch eine *Grob*-artige Fragmentierung vermieden werden sollte.

Abbildung I-36: 3-Silyloxy-1,5-enine zur Vermeidung von *Grob*-artigen Fragmentierungen.

Der Substituent R wurde dabei so gewählt, dass eine einfache Überführung in das im Naturstoff vorliegende Methylketon möglich schien.

Strategie B – Ein Sauerstoffatom macht Probleme

In einer Strategie B sollte zunächst das 3-Silyloxy-1,5-enin I-**168**, das ein TMS-geschütztes Alkin als Vorstufe für das Methylketon enthielt, mittels der Domino-Methodik in den Bizyklus I-**169** überführt werden (Abb. I-37).¹⁶⁴

Abbildung I-37: Retrosynthesische Analyse der Strategie B.

Dieser sollte den Naturstoff durch eine Sequenz aus Deoxygenierung, doppelter Epoxidierung, anschließender regioselektiver Epoxidöffnung und finaler Eliminierung des tertiären Alkohols sowie der Hydratisierung der Alkinfunktion zugänglich machen. Das 3-Silyloxy-1,5-enin I-**168** wurde dazu ausgehend von dem zuvor synthetisierten Keton I-**160** durch Addition eines von Propargylbromid abgeleiteten *Grignard*-Reagenz in Gegenwart von katalytischen Mengen Quecksilber(II)chlorid und Iod sowie nachfolgender Schützung des tertiären Alkohols als Triethylsilylether hergestellt (Abb. I-38).¹⁶⁷

Abbildung I-38: Synthese des 3-Silyloxy-1,5-enins I-168.

Erneut zeigten die Gold(I)-katalysierten Reaktionsbedingungen^{129,130} zur Initiation der Domino-Carbozyklisierungs-Pinakol-Reaktion keinerlei Umsetzung zum gewünschten Bizyklus I-**169** (Tab. I-2). Durch Verwendung von 20 mol% $PtCl_4^{168}$ als Katalysator bei 50°C unter einer CO-Atmosphäre¹⁶⁹ in Toluen in Gegenwart von 6.0 eq Isopropanol als externer Protonenquelle konnte I-**160** schließlich in 48% Ausbeute erhalten werden.^{164,170}

Tabelle I-2: Optimierung der Schlüsselreaktion.

	TMS				
	I-168	TMŚ _{I-169}			
Eintrag	Katalysator (mol%)	Bedingungen	Ausbeute [%] ^a		
			I- 169		
1	[AuCl(PPh ₃)] (10)/ AgSbF ₆ (5)	<i>i</i> -PrOH, (1.1 eq), CH ₂ Cl ₂ , 23°C, 24 h	0 ^b		
2	PtCl ₂ (10)	Toluene, <i>i</i> -PrOH, (6.0 eq), 100°C, 24 h	15		
3	<i>cis</i> -PtCl ₂ (PPh ₃) ₂ (10)	Toluene <i>, i</i> -PrOH, (6.0 eq), 100°C, 24 h	0		
4	PtCl ₂ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm),100°C, 24 h	22		
5	PtCl ₂ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 80°C, 45 min	40		
6	PtCl ₄ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 80°C, 45 min	40		
7	PtCl ₄ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 80°C, 45 min	40		
8	PtCl ₄ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 50°C, 4 h	48		
9	PtCl ₄ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), O ₂ (1 atm), 50°C, 4 h	16		
a) Isolierte Ausbeuten nach chromatographischer Reinigung. [b] I- 168 wurde vollständig reisoliert.					

Mit praktikablen Bedingungen für die Bildung von Bizyklus I-**169** in den Händen wurde anschließend die Deoxygenierung des Moleküls untersucht. Es zeigte sich jedoch (Abb. I-39), dass weder klassische,¹⁷¹ noch modifizierte¹⁷² *Wollff-Kishner*-Bedingungen oder *Huang-Milon*-Bedingungen¹⁷³ in der Lage waren die Deoxygenierung zu I-**170** zu bewerkstelligen und das Ausgangsmaterial wurde in allen Fällen, vermutlich auf Grund der Instabilität der TMS-Alkin-Funktion unter diesen Bedingungen, zersetzt.

Abbildung I-39: Experimente zur Deoxygenierung von I-169.

Auch eine alternative *Barton-McCombie*-Deoxygenation¹⁷⁴ scheiterte bereits an der Synthese des benötigten Xanthogenates I-**176** aus dem Alkohol I-**175**, vermutlich auf Grund sterischer Hinderung im *cis*-verknüpften Bizyklus. Nachdem alle Bemühungen zur Deoxygenierung von I-**169** wenig zielführend verliefen, wurde entschieden sich strukturell von dem TMS-Alkin-Motiv zu entfernen, welches als Hauptgrund für die Instabilität der Verbindungen angesehen wurde.¹⁶⁴

Strategie C – Ein verpasstes Finale

Eine nachfolgende Strategie C wurde basierend auf der retrosynthetischen Analyse in Abbildung I-40 entwickelt.¹⁶⁴ Dabei sollte die bizyklische Verbindung I-**178** ausgehend von dem 3-Silyloxy-1,5-enin I-**177**, das einen 2-Hydroxylethylsubstituenten in C6-Position trägt, synthetisiert werden.

Abbildung I 40: Retrosynthetische Analyse der Strategie C.

Nach der Deoxygenierung, welche ohne die instabile TMS-Alkin-Funktion weniger Probleme bereiten sollte, sollte die gerichtete Epoxiderung das Epoxid I-**180** liefern. Die Eliminierung des primären Alkohols und nachfolgende regioselektive Öffnung des Epoxids sollte Verbindung I-**181** generieren. Des Weiteren war geplant, das terminale Olefin I-**181** durch eine *Wacker*-Oxidation^{35,175} in das Methylketon I-**182** zu überführen, aus dem die Eliminierung des tertiären Alkohols den Naturstoff (+)-Cyperolon I-**137** generieren sollte.

Abbildung I-41: Synthese des 3-Silyloxy-1,5-enins I-177.

Zunächst wurde das 3-Silyloxy-1,5-enin I-**177** wie zuvor ausgehend vom Monoterpen (*R*)-Carvon I-**157** synthetisiert (Abb. I-41). Eine Aldoladdition von Ethylacetat lieferte den Ester I-**183** in quantitativer Ausbeute. Die Reduktion in Gegenwart von Lithiumaluminiumhydrid generierte das Diol I-**184** und durch selektive Schützung der primären Hydroxyfunktion als Triisopropylsilylether wurde Verbindung I-**185** erhalten. Die PCC-vermittelte oxidative Umlagerung von I-**185** führte zur Bildung des Ketons I-**186** in 75% Ausbeute.¹⁶⁵ Die Addition des Standard-*Grignard*-Reagenzes lieferte den tertiären Alkohol I-**187**, der durch Schützung als Triethylsilylether in I-**177** überführt werden konnte.¹⁶⁷

Wiederum waren Gold(I)-Katalysatoren nicht in der Lage eine Umsetzung des 3-Silyloxy-1,5-enins in den korrespondieren Bizyklus I-**178** zu forcieren (Tab. I-3), im Gegensatz zu Platinsalzen, die sich erneut als gute Katalysatoren erwiesen.

Das beste Ergebnis mit 93% Ausbeute an I-**178** wurde in Gegenwart von 20 mol% PtCl₄ in Toluen mit 6.0 eq Isopropanol und unter Zugabe von 0.8 eq 1,5-Cyclooctadien bei 35°C über 30 min erreicht. Der Bizyklus I-**178** konnte anschließend problemlos unter modifizierten *Wolff-Kishner*-Bedingungen zunächst in das Tosylhydrazon I-**188** überführt und mit Natriumcyanoborhydrid in Gegenwart von ZnCl₂ in den deoxygenierten Bizyklus I-**179** umgewandelt werden (Abb. I-42).

Die anschließende Reaktion mit TBAF führte zur Abspaltung des Silylethers und eine gerichtete Epoxidierung mit 3.0 eq *m*-CPBA lieferte nachfolgend das Diepoxid I-**180** in guter Ausbeute. Anschließend konnte durch die Anwendung von *Grieco's* Dehydrierungs-Vorschrift das terminale Olefin I-**191** in 46% Ausbeute über zwei Stufen erhalten werden. ¹⁷⁶ Die Reaktion mit Lithiumaluminiumhydrid in refluxierendem Diethylether führte anschließend zur regioselektiven Öffnung der beiden Epoxide unter Erhalt der Verbindung I-**181** als einzelnes Diastereomer.¹⁷⁷

Tabelle I-3: Optimierung des Schlüsselschrittes.

	(iPr) ₃ SiO	$(iPr)_3SiO$	
Eintrag	Katalysator (mol%)	Bedingungen	Ausbeute [%] ^a
			I- 178
1	[AuCl(PPh ₃)] (10)/ AgSbF ₆ (5)	CH ₂ Cl ₂ , <i>i</i> -PrOH, (1.1 eq), 23°C, 24 h	0 ^b
2	PtCl ₂ (10)	Toluene <i>, i</i> -PrOH, (6.0 eq), 100°C, 24 h	44
3	PtCl ₂ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 100°C, 24 h	62
4	$PtCl_2(20)^{b}$	Toluene, <i>i</i> -PrOH, (6.0 eq), O ₂ (1 atm), 100°C, 24 h	57
5	PtCl ₂ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), cod (0.8 eq), 30°C, 1.5 h	76
6	$PtCl_4$ (20) ^b	Toluene, <i>i</i> -PrOH, (6.0 eq), CO (1 atm), 50°C, 45 min	25
7	$PtCl_4$ (20) ^b	Toluene, <i>i</i> -PrOH, (6.0 eq), O ₂ (1 atm), 50°C, 3.5 h	59
8	PtCl ₄ (20)	Toluene, <i>i</i> -PrOH, (6.0 eq), cod (0.8 eq), 35°C, 30 min	93

[a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] I-**177** wurde vollständig reisoliert. [c] Katalysator wurde vor der Verwendung bei 120°C für 30 min aktiviert.

Abbildung I-42: Synthese von I-181.

Nachdem die Synthese bis hierhin problemlos verlaufen war, bereitete der vorletzte Schritt, die *Wacker*-Oxidation von I-**181**, große Probleme (Abb. I-43). Weder katalytische noch stöchiometrische Varianten der Reaktion führten zur Bildung des gewünschten Methylketons I-**182**, sondern im Wesentlichen zur Zersetzung der Substanz. Das Diacetat I-**192** hingegen war völlig inert unter den angelegten Reaktionsbedingungen und lies keine Bildung des korrespondierenden Methylketons I-**193** beobachten.

Abbildung I-43: Verschiedene Versuche zur Wacker-Oxidation.

Auch die alternativ untersuchte Solvomercurierung¹⁷⁸ des Diacetates I-**192** zum sekundären Alkohol I-**194**, der durch Oxidation in das Methylketon I-**193** überführt werden könnte, gelang nicht, vermutlich auf Grund von sterischer Hinderung durch die zugewandte Methylgruppe des benachbarten quartären Stereozentrums. Um auszuschließen, das eine Labilität des tertiären Alkohols I-**181** unter den *Wacker*-Bedingungen ausschlaggebend für die Probleme war, wurde dieser zunächst durch selektive Acetylierung des sekundären Alkohols und nachfolgende Reaktion von I-**195** mit *Martin's Sulfuran¹⁷⁹* zum Olefin I-**196** eliminiert und anschließend versucht, die *Wacker*-Oxidation in Gegenwart des disubstitutierten terminalen Olefins durchzuführen.^{175a,e} I-**196** blieb unangetastet und wurde vollständig reisoliert. Der korrespondierende freie sekundäre Alkohol I-**198** hingegen reagierte unter *Wacker*-Bedingungen ausschließlich zu dem zyklischen Hemiactal I-**199** in 57% Ausbeute.¹⁸⁰

Alternativ zur *Wacker*-Oxidation, die zur Durchführung der gewünschten Transformation ungeeignet schien, wurde eine Sequenz aus Epoxidierung, regioselektiver Epoxidöffnung und nachfolgender Oxidation zum Abschluss der Synthese des Naturstoffs untersucht (Abb. I-44). Es zeigte sich jedoch, dass sowohl das Epoxid I-**200** als auch sein Derivat I-**202** nicht in den sekundären Alkohol I-**201** bzw. I-**203** überführt werden konnten. Während I-**200** in Gegenwart diverser starker Hydrid-Donoren keine

Reaktion zeigte und vollständig reisoliert wurde, konnte bei I-**202** lediglich eine partielle Entschützung des Silylethers beobachtet werden.¹⁶⁴

Abbildung I-44: Versuche zu einem alternativen Endgame.

Die Vinylgruppe in I-**181** hatte sich somit als ungeeigneter Vorläufer für das benötigte Methylketon erwiesen. Weder durch *Wacker*-Oxidation der terminalen Doppelbindung noch durch eine Sequenz aus Epoxidierung und Epoxidöffnung gelang es, das an dieser Position benötigte Sauerstoffatom einzuführen.
I-3. De novo Totalsynthese von (+)-Cyperolon

Nachfolgend werden die Ergebnisse meiner Doktorarbeit präsentiert. Die darin beschriebene Totalsynthese des Naturstoffs (+)-Cyperolon wurde zum ersten Mal von *Alexander Duschek* erreicht.¹⁸¹ Ich habe alle Reaktionen dieser Syntheseroute wiederholt und optimiert, sowie Studien zur Anwendungsbreite der Schlüsselreaktion durchgeführt. Vereinzelt werden Ergebnisse aus den Arbeiten von *Alexander Duschek* wiedergegeben um einen vollständigen Überblick über die Entwicklung der Totalsynthese zu ermöglichen. Ergebnisse nicht selbstständig durchgeführter Experimente werden explizit gekennzeichnet.

I-3.1 Retrosynthetische Analyse von (+)-Cyperolon - Die finale Strategie

Obgleich die zuvor beschriebenen Synthesestrategien nicht zum erfolgreichen Abschluss der Totalsynthese von (+)-Cyperolon I-137 geführt hatten, so konnten doch im Rahmen dieser Studien wertvolle Erkenntnisse zum reaktiven Grundverhalten an dem sterisch überladenen Grundgerüst der Cyperane gesammelt werden. Die synthetischen Schwierigkeiten in den vorherigen Synthesestrategien traten alle nach dem Schlüsselschritt in der weiteren Modifikation des Cyperan-Grundgerüstes auf dem Weg zum Naturstoff auf; geplant war daher, die Domino-Carbozyklisierungs-Pinakol-Umlagerung-Reaktion als Schlüsselschritt zum diastereoselektiven Aufbau des Cyperan-Gerüstes in einer neuen Strategie mit einem variierten Substitutionsmuster bei zu behalten. Es sollte ein alternativer struktureller Vorläufer für das Methylketon installiert werden, der sich einfach in den Naturstoff überführen lassen sollte. Im Rahmen dieser neuen Strategie sollte (+)-Cyperolon I-137 im finalen Schritt durch Hydratisierung des Alkins I-204 generiert werden (Abb. I-45). Die sekundäre Hydroxyfunktion sollte zuvor durch regioselektive Epoxidöffnung des Epoxids I-205 erreicht werden. Zur Installation der Alkinfunktion, als Vorläufer für das im Naturstoff präsente Methylketon, war geplant, den primären Alkohol I-206 durch eine Sequenz aus Oxidation und Alkinylierung des resultierenden Aldehyds in das Alkin I-205 zu überführen. Die gerichtete Epoxidierung des desoxygenierten Bizyklus I-207 sollte den primären Alkohol I-206 dazu liefern. Der Bizyklus I-208 sollte durch die Carbozyklisierungs-Pinakol-Dominoreaktion ausgehend von dem in 1-Postion mit einer Hydroxymethylfunktion modifizierten 3-Silyloxy-1,5-enin I-209 hergestellt werden und durch Deoxygenierung in Verbindung I-207 überführt werden. Das 3-Silyloxy-1,5enin I-209 sollte ausgehend vom kommerziell erhältlichen Monoterpen (R)-Carvon I-157 durch eine Sequenz aus Hydroxymethylierung, oxidativer Umlagerung des tertiären Alkohols I-211 und Grignard-Addition an das resultiere Keton I-210 zugänglich gemacht werden.

Abbildung I-45: Retrosynthetische Analyse der finalen Strategie.

I-3.2 Synthese der 3-Silyloxy-1,5-Enin Vorstufen

Zum Aufbau des 3-Silyloxy-1,5-enins I-**209** musste zunächst die Hydroxymethylierung von (*R*)-Carvon I-**155** zum Diol I-**214** (Abb. I-46) bewerkstelligt werden. Metallorganische Reagenzien, die eine direkte Hydroxymethylierung in einem Schritt durch nukleophile Addition von Methanol-d¹-Reagenzien ermöglichen würden, sind sehr schwer zugänglich und nur von geringem praktischen Nutzen.¹⁸² Daher wurden mehrstufige Zugänge zum Diol I-**214** favorisiert. Ein zweistufiger, literaturbekannter Zugang,¹⁸³ bestehend aus einer Sequenz aus *Corey-Chaykovsky*-Reaktion und anschließender Epoxid-Hydrolyse, konnte zuvor durch *Alexander Duschek* nicht reproduziert werden.¹⁸¹

Ein erster synthetisch nutzbarer Zugang gelang in Anlehnung an eine Vorschrift von *Tanis et al..*¹⁸⁴ Durch die Lithiierung von Dimethylsulfid mit *n*BuLi in Gegenwart von TMEDA wurde Methyl(thiomethyl)lithium generiert und quantitativ an (*R*)-Carvon I-**157** unter Bildung des Thiomethylallylalkohols I-**212** addiert. Dabei wurde I-**212** in einem Diasteromerenverhältnis von d.r. = 3:1 gebildet. Durch den bevorzugt *pseudo*-equatorial stehenden Isopropenylrest ist der Cyclohexenon-Halbsessel von (*R*)-Carvon konformationell fixiert und ein nukleophiler Angriff auf das Carbonyl-C-Atom erfolgt bevorzugt in *pseudo*-axialer Position an der *si*-Seite des Ketones,¹⁸⁵ was zur Bildung von I-**212** als Hauptdiastereomer führt. Die nachfolgende Reaktion mit Methyliodid ergab in 92% Ausbeute das Sulfoniumiodid I-**213**, welches durch Erhitzen in einem Gemisch aus Kalilauge und DMSO das Diol I-**214** in mäßigen Ausbeuten

von maximal 44% lieferte.¹⁸¹ Die Bildung des Diols I-**214** erfolgte dabei aller Wahrscheinlichkeit^j nach über einen Ringschluss zum labilen Spiroepoxid I-**215** (Abb. I-46), welches über einen nukleophilen Angriff eines Hydroxidions zum Diol geöffnet wurde.

Abbildung I-46: Erste dreistufige Synthese des Diols I-214.

Da diese Sequenz jedoch auf Grund der Notwendigkeit von drei Stufen zur Einführung eines Kohlenstoffatoms eine äußerst geringe atomökonomische Effizienz aufwies und zudem mit großen Mengen äußerst geruchsintensiver Schwefelverbindungen gearbeitet werden musste, wurde zunächst nach einer praktikableren Methode für die Hydroxymethylierung von (*R*)-Carvon I-**157** gesucht.

Diverse von *Alexander Duschek* durch geführte Experimente Chloroform¹⁸⁶ oder Dibrommethan¹⁸⁷ nach Deprotonierung als C₁-Baustein für die Addition an (*R*)-Carvon I-**157** zu nutzen, scheiterten entweder direkt an der Additionsreaktion oder an der nachfolgenden Umsetzung der Addukte zum Diol I-**214**.¹⁸¹

Der Durchbruch gelang hier durch die Addition von *in situ* erzeugtem Chlormethyllithium¹⁸⁸ an (*R*)-Carvon I-**155** unter Bildung des Chlorhydrins I-**216** (Abb. I-47). Durch Verwendung von *n*BuLi konnte I-**216** in sehr guter Ausbeute von 93% in einem diastereomeren Verhältnis von d.r. = 5:1 erhalten werden.

Ein zusätzlicher Vorteil ergab sich aus dem Einsatz von Methyllithium-Lithiumbromid-Komplex, neben einer fast quantitativen Ausbeute (99%, d.r. = 4:1)^k war auf Grund des niedrigsiedenden Nebenproduktes Methyliodid keine säulenchromatographische Abtrennung nötig und das so erhaltene Chlorhydrin I-**216** konnte direkt weiter umgesetzt werden. Das Chlorhydrin I-**216** konnte durch anschließendes Erhitzen in wässrigem Dioxan in Gegenwart von 10.0 eq Kaliumhydroxid in das Diol I-**214** überführt werden.¹⁸⁹

¹ In dem per Dünnschichtchromatographie überwachten Reaktionsverlauf war zunächst die Bildung eines sehr unpolaren Zwischenproduktes (vermutlich das Spiroepoxid) zu beobachten, welches nach und nach zu einem stark polaren Diol zersetzt wurde.

^k Das Diastereomerenverhältnis der Reaktion war für die weitere Synthese unerheblich, da diese Stereoinformation durch die spätere oxidative Umlagerung zerstört werden würde.

Abbildung I-47: Zweistufige Synthese des Diols I-214.

Auch in dieser Reaktion lassen Beobachtungen aus der Überwachung der Reaktion durch Dünnschichtchromatographie einen Ringschluss-Ringöffnungs-Mechanismus über das Spiroepoxid I-**215** vermuten, analog der Reaktion des Sulfoniumsalzes I-**213** unter basischen Bedingungen (*vide supra*). Diese zweistufige Sequenz zur Hydroxymethylierung lieferte auch bei größeren Ansätzen im Rahmen der Totalsynthese verlässliche Ausbeuten.

Abbildung I-48: Selektive Schützung des primären Alkohols und oxidative PCC-vermittelte Umlagerung.

Die selektive Schützung des primären Alkohols durch Umsetzung mit TIPSCI und Imidazol in Gegenwart der tertiären Hydroxyfunktion verlief problemlos und lieferte Verbindung I-**211** in 93% Ausbeute (Abb. I-48).¹⁹⁰ Der tertiäre Alkohol I-**211** wurde anschließend durch eine oxidative Umlagerung mit PCC in das korrespondierende α , β -ungesättigte Keton I-**210** überführt,¹⁶⁵ welches in 75% Ausbeute isoliert werden konnte.

Nachfolgend wurde der tertiäre Alkohol I-**210** durch Addition des von Propargylbromid abgeleiteten *Grignard*-Reagenz in Gegenwart katalytischer Mengen Quecksilber(II)chlorid und Iod an das Keton I-**210** in 97% Ausbeute.¹⁶⁷ Erneut verlief die Addition an das konformationell fixierte Cyclohexenonsystem I-**210** diastereoselektiv unter Bevorzugung des *pseudo*-axialen Additionsproduktes I-**217** als einziges beobachtetes Diastereomer.¹⁸⁵ Die Zusätze Quecksilber(II)chlorid sowie Iod haben dabei jeweils aktivierende Eigenschaften. Während Iod die Oberfläche der Magnesiumspäne unter Bildung von Magnesiumiodid anätzt, führt die Zugabe von geringen Mengen an Quecksilber(II)chlorid zur Bildung von

Magnesiumamalgan, dass eine schnellere Bildung der *Grignard*-Spezies bei niedrigerer Temperatur zulässt.¹⁶⁷

Abbildung I-49: Grignard-Addition und Schützung.

Abschließend wurde die Synthese des 3-Silyloxy-1,5-enins I-**209** durch Schützung des tertiären Alkohols I-**210** mit TESCI und Imidazol in 94% Ausbeute vervollständigt.

I-3.3 Platin(IV)-katalysierte Cycloisomerisations-Kaskadenreaktionen von 3-Silyloxy-1,5-Eninen mit tetrasubstituierten Doppelbindungen – Untersuchung des Schlüsselschrittes in der Totalsynthese von (+)-Cyperolon

Den zuvor beobachteten Ergebnissen^{164,129b} folgend, konnte das 3-Siylyloxy-1,5-enin I-**209** in Gegenwart kationischer Gold-Komplexe nicht zur Reaktion gebracht werden (Tab. I-4). In der Optimierung des Schlüsselschrittes duch *Alexander Duschek* erwiesen sich Platin(II)- und -(IV)salze als effektivere Katalysatoren für die Umsetzung von 3-Silyloxy-1,5-eninen mit tetrasubstituierten Doppelbindungen.¹⁸¹ Die Reaktivitätsunterschiede von Platin(II)- und -(IV)salzen gegenüber Gold(I)-Komplexen, wird im Allgemeinen auf eine höhere *Lewis*-Azidität auf Grund der höheren Oxidationsstufe zurückgeführt.^{168b,c,d} Die besten Ergebnisse wurden in Gegenwart von 20 mol% PtCl₄, substöchiometrischen Mengen 1,5-Cyclooctadien und in Toluen bei 23°C über 20 min erzielt, der Bizyklus I-**208** konnte so in 80% Ausbeute erhalten werden. Mechanistisch unterscheidet sich diese Transformation voraussichtlich im Wesentlichen Ablauf nicht von der bereits zuvor untersuchten Gold-katalysierten Reaktion entsprechender Enine mit einer di- oder trisubstituierten Doppelbindung (Abb. I-50). Ein geringfügiger Unterschied ist sicher die nicht zu unterschätzenden Oxidationskraft von Platin(IV) gegenüber diversen organischen Verbindungen und die daraus resultierende unklare katalytisch aktive Spezies.

Tabelle I-4: Optimierung des Schlüsselschrittes.¹⁸¹

Abbildung I-50: Katalysezyklus des Schlüsselschrittes.

Beispielsweise werden Ethanol¹⁹¹ und auch Isopropanol¹⁹² in Gegenwart von Platin(IV) zu den korrespondierenden Carbonylverbindungen oder sogar zu CO₂ oxidiert. Es muss daher angenommen werden, dass PtCl₄ in der Reaktion lediglich als Präkatalysator dient, der nach initialer Reaktion mit der externen Protonenquelle Isopropanol eine nicht näher definierte aktive Platin-Spezies bildet.

I-3.3.1 Anwendungsbreite des Schlüsselschrittes

Nachfolgend sollte die generelle Anwendungsbreite der Carbozyklisierungs-Pinakol-Dominoreaktion an 3-Silyloxy-1,5-eninen mit tetrasubstituierten Doppelbindungen eingehender untersucht werden. Zu diesem Zweck wurde zunächst eine Bandbreite an weiteren 3-Silyloxy-1,5-eninen mit tetrasubstituierten Doppelbindungen synthetisiert. Die 3-Siylyoxy-1,5-enine I-**221** und I-**222** mit interner Alkinfunktion konnten in einem Schritt durch Deprotonierung des terminal Alkins in Gegenwart von *n*BuLi und anschließendem Abfangen der lithiierten Spezies mit Elektrophilen ausgehend von I-**209** erzeugt werden (Abb. I-51). Die Modifikationen von I-**209** mittels *Sonogashira*-Kupplungen¹⁹³ mit 2-Iodthiophen bzw. Phenyliodid lieferten die Verbindungen I-**223** und I-**224**.

Abbildung I-51: Synthese der 3-Silyoxy-1,5-enine I-221, I-222, I-223 und I-224.

Weitere 3-Silyoxy-1,5-enine mit einem veränderten Kohlenstoffgrundgerüst wurden ausgehend vom kommerziell erhältlichen Monoterpen (R)-(+)-Pulegon I-**225** hergestellt (Abb. I-52).

Abbildung I-52: Synthese der 3-Siylyoxy-1,5-enine I-227 und I-228.

Die Addition des bereits zuvor verwendeten von Propargylbromid abgeleiteten *Grignard*-Reagenzes lieferte Verbindung I-**226** als einziges Diastereomer in 73% Ausbeute.¹⁶⁷ Die Reaktion mit Triethylsilylchlorid in Gegenwart von Imiazol ergab das terminale Alkin I-**227** in quantitativer Ausbeute. Ausgehend von I-**227** wurde durch *Sonogashira*-Kupplung¹⁹³ mit Phenyliodid zusätzlich noch das 3-Silyloxy-1,5-enin I-**228** erhalten. Im Weiteren wurden ausgehend von Cyclopentanon einige 3-Silyloxy-1,5-enine erzeugt deren tetrasubstituierte Doppelbindungen Teil eines 1,1'-Bi(cyclopentyliden)-Systems waren (Abb. I-53).

Abbildung I-53: Synthese der 3-Silyloxy-1,5-enine I-232, I-233 und I-234.

Dazu wurde Cyclopentanon in Gegenwart von einem großen Überschuss an wässriger Natronlauge bei 110°C durch Homokondensation in 49% Ausbeute in [1,1'-Bi(cyclopentyliden)]-2-on I-**230** überführt.¹⁹⁴ Durch nachfolgende *Grignard*-Addition und Schützung des resultierenden tertiären Alkohols I-**231** konnte das 3-Silyoxy-1,5-enin I-**232** synthetisiert werden. Durch Alkylierungen in Gegenwart von Methylchlorformiat bzw. Methyliodid konnten zudem die Verbindungen I-**233** bzw. I-**234** generiert werden.

Weitere 3-Silyloxy-1,5-enine mit sekundärer Hydroxylfuktion, deren tetrasubstituierte Doppelbindungssyteme in einen Cyclohexanring integriert waren, wurden ausgehend von Cyclohexanon I-**235** hergestellt (Abb. I-54). Zunächst wurde der α , β -ungesättigte Aldehyd I-**237** nach einer Vorschrift von *Courtin et al.* synthetisiert.¹⁹⁵ Hierzu wurde Cyclohexanon in Gegenwart Natriumhydrid und Ameisensäureethylester formyliert. Das intermediär gebildete β -Dicarbonylenolat wurde dann direkt durch Zugabe von Acetylchlorid und Methanol weiter zum Dimethoxyacetal I-**236** umgesetzt. Nach der Addition von Methylmagnesiumbromid an das Keton I-**236** wurde das resultierende Hydroxyacetal mittels einer Säure-katalysierten Hydrolyse und nachfolgenden Eliminierung des tertiären Alkohols in den α , β -ungesättigte Aldehyd I-**237** überführt. Die *Grignard*-Addition¹⁶⁷ und anschließende Silylierung

des sekundären homoallischen Alkohols lieferte Verbindung I-**239**, aus der durch Alkylierung und *Sonogashira*-Kupplung¹⁹³ mit verschiedenen Arylhalogeniden weitere 3-Silyloxy-1,5-enine generiert werden konnten.

Abbildung I-54: Synthese der 3-Silyloxy-1,5-enine I-240 bis I-244.

Die Anwendungsbreite (Tab. I-5) der Platin-katalysierten Carbozyklisierungs-Pinakol-Dominoreaktion zeigte sich im Wesentlichen stark limitiert auf Substrate des Typs **A** (Abb. I-55), wobei der Rest R^2 eine breite Variation an verschiedenen Substituenten erlaubt.

Abbildung I-55: Geeigneter Substrat Typ.

An der Position des Substituenten R¹ toleriert die Reaktion einen Methylsubstituenten (Tab. I-5, Eintrag 7) und auch eine Phenyleinheit (Tab. I-5, Eintrag 6), andere Aromaten, Heteroaromaten oder elektronenziehende Substituenten wie eine Methylestereinheit führten zur Zersetzung der Ausgangsmaterialen bereits bei Raumtemperatur. Generell ist der Trend ablesbar, dass interne Alkine zu geringeren Ausbeuten führen als terminale Alkine. Die vom Monoterpen (*R*)-(+)-Pulegon abgeleiteten 3-Silyloxy-1,5-enine des Typs **A** (Tab. I-5, Eintrag 9) sowie des Typs **C** (Tab. I-5, Eintrag 10) konnten in Gegenwart von PtCl₄ selbst bei Reaktionstemperaturen von 100°C über 48 h nicht zur Reaktion gebracht werden und wurden zumeist vollständig reisoliert. Vermutlich sind hier die *exo*-zyklischen tetrasubstituierten Doppelbindungen auf Grund sterischer Hinderung im Carbozyklisierungsschritt nicht ausreichend nukleophil für eine Initiation der Dominoreaktion. Tabelle I-5: Untersuchung der Anwendungsbreite der Carbozyklisierungs-Pinakol-Dominoreaktion von 3-Silyloxy-1,5-eninen mit tetrasubstituierter Doppelbindung.

Eintrag	3-Silyloxy-1,5-enin	Bedingungen	Produkt	Ausbeute [%] ^a
1 ^{129,164}	Et ₃ SiO, I-155 OSiMe ₂ t-Bu	AuCl ₃ (10 mol%), <i>i</i> PrOH, (1.1 eq), CH ₂ Cl ₂ , 23°C	O I-156 OSiMe ₂ t-Bu	3 ^{e,f}
2 ¹⁶⁴	TMS I-168	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH, (6.0 eq), CO (1 atm), 50°C, 4 h		48 ^f
3 ¹⁶⁴	(iPr) ₃ SiO	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH, (6.0 eq), cod (0.8 eq), 35°C, 30 min	(iPr) ₃ SiO	93 ^f
4	R (iPr) ₃ SiO R = H I-209	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH (6.0 eq), cod (0.8 eq), 23°C, 20 min	(iPr) ₃ SiO R = H I-208	80
5	R = 2-Thienyl I- 223	30 min	R = 2-Thienyl I- 245	0 ^d
6	R = Ph I- 224	5 h	R = Ph I- 246	43
7	R = Me I- 222	30 min	R = Me I- 247	65
8	R = CO ₂ Me I- 221	24 h	R = CO ₂ Me I- 248	0 ^d
9	R Et ₃ SiO	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH (6.0 eq), cod (0.8 eq), 23°C bis 100°C	O B R	0 ^{b,c}
10	Et ₃ SiO C	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH (6.0 eq), cod (0.8 eq), 23°C bis 100°C	R R	0 ^{b,c}
11	OSiEt ₃ I-240	PtCl₄ (20 mol%), Toluen, <i>i</i> PrOH (6.0 eq), cod (0.8 eq), 23°C, 30 min	J-249 0	41

[a] Isolierte Ausbeute nach chromatographischer Reinigung. [b] Keine Reaktion. [c] Das Ausgangsmaterial konnte reisoliert werden. [d] Zersetzung des Ausgangsmaterials. [e] *Grob*-artige Fragmentierung als dominierende Nebenreaktion. [f] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Das 3-Silyloxy-1,5-enin I-**240** hingegen zeigte in Gegenwart von 20 mol% PtCl₄, substöchiometrischen Mengen 1,5-Cyclooctadien und 6.0 eq Isopropanol in Toluen bei 23°C eine unerwartete Reaktivität; nach 6 h wurde das Dienon I-**249** in 41% Ausbeute isoliert (Tab. I-5, Eintrag 11). Auch einige andere 3-Silyloxy-1,5-enine desselben Kohlenstoffgerüstes reagierten in analoger Weise und führten zur Bildung weiterer Dienone in moderaten Ausbeuten (Tab. I-6). Lediglich das terminale Alkin und interne Alkin mit stark elektronenziehenden Arylsubstituenten am Alkin zersetzten sich nach kurzer Zeit unter den Reaktionsbedingungen.

Tabelle I-6: Unerwartete Bildung von Dienonen.

	Ç	OSiEt ₃ R A (Toluen), 2	hol%) 2 eq)) 2 3°C		
Eintrag	Α	R	Reaktionszeit	В	Ausbeute [%] ^a
1	I- 239	Н	30 min	I- 250	0 ^b
2	I- 240	Me	6 h	I- 249	41
3	I- 241	Ph	6 h	I- 251	46
4	I- 242	Thien-2-yl	6 h	I- 252	44
5	I- 243	3,4,5-trimethoxyphenyl	5 h	I- 253	20
6	I- 244	4-NO ₂ -Ph	3 h	I- 255	0 ^b
[a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Zersetzung.					

Für die Bildung der Dienon-Produkte kann nachfolgender Mechanismus angenommen werden: Durch die Koordination des Platin-Katalysators wird das Alkin aktiviert und der Sauerstoff des Silylethers greift in einer nukleophilen 5-*endo*-dig Heterozyklisierung unter Bildung des zyklischen Oxoniumions I-**256** an (Abb. I-56).

Abbildung I-56: Vermuteter Mechanismus für die Bildung von Dienonen.

Eine Ringöffnung erzeugt anschließend das Allylkation I-**257**, aus dem die Eliminierung eines Protons gefolgt von der Protodemetallierung und Hydrolyse des säurelabilen Vinylsilylethers zur Bildung des Dienons I-**249** führt. Sehr gut in dieses mechanistische Bild der Reaktion passen die Beobachtungen, dass die Umsetzung des analogen 3-Hydroxy-1,5-enin I-**258** in signifikant verkürzter Reaktionszeit zur Bildung des Dienons I-**249** sowie dem vermutlich aus der Reaktion des intermediären Allylkations I-**257** mit Isopropanol entstandenem Isopropylallylether I-**259** als Hauptprodukt führt (Abb. I-57).

Abbildung I-57: Bildung von I-259 und I-261.

Folgerichtig kann der analoge Triisopropylether, in dem auf Grund der sterisch anspruchsvolleren Schutzgruppe ein nukleophiler Angriff des Sauerstoffatoms des Silylethers unterbunden wird, durch die ursprünglich geplante Carbozyklisierungs-Pinakol-Dominoreaktion in moderater Ausbeute in den gewünschten Bizyklus I-**261** überführt werden.

I-3.4 Finale Schritte zum Naturstoff

Zur Vervollständigung der Totalsynthese von (+)-Cyperolon I-**137** musste zunächst der im Schlüsselschritt erhaltene Bizyklus I-**208** deoxygeniert werden. Klassische *Wolff-Kishner*-Varianten¹⁷¹ sowie die *Huang-Minlon*-Methode¹⁷³ erwiesen sich hierfür als ungeeignet. *Alexander Duschek* konnte zuvor zeigen, dass unter diesen harschen Bedingungen eine partielle Zersetzung des Bizyklus I-**208** einsetzte.¹⁸¹

Abbildung I-58: Zweistufige Deoxygenierung des Bizyklus I-208.

Erneut führte eine zweistufige Deoxygenierung über das Tosylhydrazon I-**262** zum Erfolg. I-**262** konnte durch säurekatalysierte Kondensation von I-**208** mit Tosylhydrazin unter Verwendung eines Wasserabscheiders in 92% Ausbeute synthetisiert werden (Abb. I-58). Die anschließende Reduktion gelang mit DiBAI-H in Dichlormethan bei 0°C und lieferte den deoxygenierten Bizyklus I-**263** in 77% Ausbeute.^{172a, 196} Der primäre Alkohol I-**207** wurde nachfolgend durch Reaktion mit TBAF in Tetrahydrofuran bei 23°C in quantitativer Ausbeute erhalten (Abb. I-59).¹⁹⁷

Abbildung I-59: Entschützung und gerichtete Epoxidierung nach Sharpless et al..

Während die Epoxiderung des Diens I-**207** mit *m*-CPBA entgegen der gewünschten Regioselektivität bevorzugt an der Isopropenylgruppe verlief und dabei Diastereomerengemische von Mono- und Diepoxiden erzeugte,¹⁸¹ lieferte die Vanadium-katalysierte, gerichtete Epoxidierung des homoallylischen Alkohols I-**207** nach *Sharpless et al.*^{198,199} in Gegenwart von katalytischen Mengen Vanadiumoxid-diacetylacetonat und 1.1 eq *tert*-Butylhydroperoxid bei 23°C das gewünschte Epoxid I-**206** in 86% Ausbeute und einem exzellentem Diastereomerenverhältnis von d.r. >95:5.

Der vollständige stereoselektive Aufbau aller vier Stereozentren war damit erfolgt und zur Komplettierung des Cyperan-Grundgerüstes stand nun die Überführung des primären Alkohols I-**206** in das Alkin I-**205** im Fokus der Synthese. Die Oxidation des primären Alkohols I-**206** unter *Parikh-Döhring*-Bedingungenlieferte in guter Ausbeute den Aldehyd I-**264** (Abb. I-60).²⁰⁰

Abbildung I-60: Oxidation und Homologisierung unter Verwendung des Seyfert-Gilbert-Reagenzes.

Die Homologisierung zum Alkin I-**205** gelang anschließend in 95% Ausbeute durch Reaktion mit dem *Seyfert-Gilbert*-Reagenz²⁰¹ in Gegenwart von Kalium-*tert*-butanolat als Base.

Die Öffnung des Epoxids I-**205** gelang durch Erhitzen in Gegenwart eines Überschusses von Lithiumaluminiumhydrid in THF in 91% Ausbeute.²⁰² Dabei verlief die Öffnung erwartungsgemäß vollständig regioselektiv von der weniger stark sterisch gehinderten Seite des Epoxids.

Abbildung I-61: Regioselektive Epoxidöffnung und Hydratisierung.

Das Alkin I-**204** konnte schließlich durch *in situ* aus rotem Quecksilber(II)oxid und verdünnter Schwefelsäure erzeugtem Quecksilber(II)sulfat in Aceton zum Methylketon hydratisiert werden und lieferte den Naturstoff (+)-Cyperolon I-**137** in 30% Ausbeute.²⁰³ Hauptprodukt dieser Reaktion war das trizyklische Lactone I-**265** welches in 44% Ausbeute isoliert und vermutlich durch eine 5-*endo*-dig Heterozyklisierung und anschließende Oxidation gebildet wurde. Daraufhin wurde eine Vielzahl weiterer Hydratisierungsmethoden untersucht, um das Produktverhältnis zu Gunsten des Naturstoffs zu verschieben. Wie zuvor durch *Alexander Duschek* beschrieben,¹⁸¹ wurde jedoch in keinem Fall eine Verbesserung der Ausbeute für (+)-Cyperolon I-**137** erreicht, im Wesentlichen führten die Versuche zur Zersetzung des Alkins I-**204** oder bevorzugt zu analogen Heterozyklisierungen.

Die *de novo* Totalsynthese des Sesquiterpens (+)-Cyperolon I-**137** wurde somit ausgehend von dem kommerziell erhältlichen (*R*)-Carvon I-**155** in 15 Stufen mit einer Gesamtausbeute von 4.3% erreicht.

Die physikalischen Eigenschaften des auf diesem Weg synthetisch hergestellten (+)-Cyperolons I-**137** stimmten mit den Literaturangaben des natürlich vorkommenden Naturstoffs vollständig überein.¹⁵¹

Die Bevorzugung intramolekularer Reaktionen im Hydratisierungsschritt ist vermutlich der sterischen und strukturellen Überladung des Naturstoffs zu zuschreiben und unterstreicht den synthetischen Anspruch der Synthese sowie das Potential der angewandten Dominomethodik zum Aufbau von derart komplexen carbozyklischen Fünfringsystemen.²⁰⁴

"(...) To demonstrate the utility of this remarkable new method in real-life total synthesis, Kirsch and his team devised a remarkably elegant new synthetic pathway to the naturally occurring herbicide, (+)-cyperolone, a molecule rendered daunting by the two vicinal quaternary carbon stereocenters that lie at the ring-junction which, in a *Cerberus*-like way, help guard against synthetic acquisition by the majority of contemporary synthetic methods."

(K. J. Hale, Mitherausgeber der Fachjournals Organic Letters, The Queen's University Belfast, 2013)^{204b}

I-4. Studien zur Schutzgruppen-freie, biomimetische Totalsynthese von (+)-Cyperolon

I-4.1 Die Kunst der Schutzgruppen-freien Synthese

Die stereoselektive Totalsynthese von biologisch aktiven Naturstoffen ist nach wie vor²⁰⁵ eine wichtige Quelle für die Identifizierung von Leitstrukturen für die Medizinalchemie.^{206,207} Wichtige Struktur-Wirkungs-Beziehungen können zu meist erst dann erstellt werden, wenn der entsprechende Naturstoff in signifikanter Menge chemisch synthetisiert werden kann und nicht mehr mühsam aus seiner natürlichen Quelle isoliert werden muss.²⁰⁸

(+)-Polyrhacitid A I-266

(+)-polyrha

(+)-polyrhacitide B I-267

(Sekundärmetabolit aus Ameisen der Gattung *Polyrhachis lamellidens*, ca. 19.2 mg/2 Kg Ameisen)

Artemisinin I-**268** (Antiprotozoika aus A*rtemisia annua,* Wildtyp der Pflanze enthält ca. 0.2w%)

Paclitaxel (Taxol) I-**269** (Cytostatikum aus *Taxus brevifolia*, Gehalt in der Rinde eines ausgewachsenen Baumes beträgt nur 0.02w%)

Abbildung I-62: Ausgewählte Beispiele für aufwendig isolierbare Naturstoffe.^{209,21}

Immer wichtiger wird Totalsynthese von biologisch aktiven Naturstoffen auch im Zusammenhang mit dem sogenannten Targeting,^{210,211} welches die Identifizierung von Angriffspunkten von biologisch aktiven Substanzen bezeichnet. Die Kenntnis dieser Angriffspunkte ist von immenser Bedeutung für die Entwicklung von neuen Medikamenten und gibt Aufschluss über fundamentale physiologische Zusammenhänge in der Pathologie.

Ferner stimuliert die Totalsynthese von komplexen Naturstoffen Chemiker immer wieder neue, effizientere Methoden zum Aufbau von Molekülfunktionen und -motiven zu entwickeln, die dann auch in anderen Bereichen der Chemie Anwendung finden. Die präzise Kontrolle der individuellen Reaktivitäten von funktionellen Gruppen innerhalb einer komplexen Molekülarchitektur ist dabei immer noch eine große Herausforderung. Historisch gewachsen ist die Standardlösung für dieses Problem, die Nutzung von Schutzgruppen, die eine Modifizierung auf individueller Basis erlauben. Mittlerweile hat die Verwendung dieser Funktionalitätsmasken die organische Synthese zu einem solchen Maß durchdrungen, dass Fachbücher Schutzgruppen für unabdingbar in der Totalsynthese erklären.²¹² Der Gebrauch von Schutzgruppen in der organischen Synthese ist Routine geworden, mittlerweile auch für Moleküle geringer Komplexität.²¹³

Idealerweise sollten Schutzgruppen einfach einführbar sein, die ursprüngliche beabsichtigte Transformation problemlos zulassen und anschließend problemlos ab zu spalten sein. In der Praxis zeigt sich jedoch, dass eine Schutzgruppe jede Synthesesequenz um mindestens zwei Stufen verlängert und oftmals die Effizienz einer Synthese auf Grund unvorhergesehener Probleme bei ihrer Entfernung oder unbeabsichtigter Nebenreaktionen, initiiert durch ihre Anwesenheit, dramatisch verringern kann.²¹⁴ Ironischerweise kann die Anwesenheit von funktionellen Gruppen sogar zusätzliche Ebenen der Chemoselektivität erzeugen bzw. im Rahmen einer Synthese die Orthogonalität von Schutzgruppen nötig werden. Überlegungen hierzu stellen häufig zentrale Fragen innerhalb der Planung und Durchführung von Totalsynthesen dar.²¹³

Die Fülle an möglichen Komplikationen durch das Verwenden von Schutzgruppenmanipulationen trägt zu der Wahrnehmung bei, dass Naturstoffe trotz ihres überwältigenden Nutzens in der Medizinalchemie zu komplex für eine effektive Synthese innerhalb einer Wirkstofffindung seien.²¹⁵

Über Jahrzehnte waren die maßgeblichen Ziele in der Totalsynthese von Naturstoffen ausschließlich auf höhere Ausbeuten, höhere Chemo-²³ und Stereoselektivitäten²² sowie höherer Konvergenz in der Synthese beschränkt. Obwohl dies gleichwohl zu einigen innovativen Erfolgen geführt hat, bestimmt seit Mitte der 1990er Jahre eine neue Philosophie der Nachhaltigkeit die Entwicklung von Totalsynthesen.⁸⁴ Es werden nun zusätzlich, limitierende Aspekte wie Stufen-,⁸³ Atom-²⁵ und Redoxökonomie²⁶ zur Beurteilung des Wertes und der Praktikabilität einer Synthese berücksichtigt.⁸⁴

In Zeiten der allgemeinen Ressourcenverknappung können Synthesen von Naturstoffen mit massiven Schutzgruppenmanipulationen, die mit einer stark verminderten Stufenökonomie, hohem Materialverlust, unbefriedigenden Atomökonomien und der Produktion von großen Mengen an vermeidbaren Abfallprodukten einhergehen, nicht länger allein durch den Wert des synthetisierten Produktes gerechtfertigt werden. Vielmehr muss es als Herausforderung verstanden werden neue Wege und Lösungen für effizientere Synthesen zu finden.

Dieser stimulierender Druck auf den Einfallsreichtum synthetischer Chemiker wurde bereits wahrgenommen^{216,213} und in den letzten Jahren haben sich diverse Forschungsgruppen den Regeln der

nachhaltigen Synthese^{24h,i} unterworfen und mittels neuer, chemoselektiverer Methoden, biomimetischer Ansätze²¹⁷ und unkonventionellen Syntheseplanungen durch Nutzung von Kaskadenreaktionen^{72,73} erfolgreich der Herausforderung der Schutzgruppen-freien Totalsynthese¹ von Naturstoffen gestellt.^{216b,218}

Abbildung I-63: Ausgewählte Beispiele für Schutzgruppen-freie Totalsynthesen.

Darunter kunstvolle Synthesen wie die Totalsynthese des (-)-Engerlin A I-**270** (Abb. I-63) von *Ma et al.*,^{218a} die biomimetische Totalsynthese des (-)-Fusarisetin A I-**271** von *Theodorakis et al.* ^{218e} oder die Totalsynthesen des marinen Oxylipins Hybridalacton I-**275** sowie der Ecklonialacton A I-**272**, B I-**273**, und C I-**274** durch *Fürstner et. al.*.^{218c}

I-4.2 Synthese von epi-Cyperolon ausgehend von (+)-Cyperolon

Im Anschluss an die Totalsynthese von (+)-Cyperolon I-**137** sollte *epi*-Cyperolon I-**276** ausgehend von dem zuvor erhaltenen Naturstoff hergestellt werden. Die einfach Inversion der 3-Hydroxygruppe durch ein von *Martin et al.*²¹⁹ modifiziertes Protokoll für *Mitsunobu*-Reaktionen an sterisch gehinderten sekundären Alkoholen führte zunächst selbst unter drastischen Bedingungen^m nicht zum Erfolg.¹⁸¹ Erst durch den Umweg über die dreistufige Sequenz über das Keton I-**277** gelang die Synthese von *epi*-

¹ Eine 100%ig Schutzgruppen-freie Synthese von komplexeren Naturstoffen gibt es dabei nicht. Funktionalitäten müssen teilweise maskiert oder geschützt werden um Selektivität zu ermöglichen. Mit Schutzgruppen-freier Totalsynthese ist hier die nicht-Verwendung von klassischen Schutzgruppen wie bspw. Silylether (TIPS, TES, TMS u. a.) und Ethern (PMB, Bn, MOM u. a.) für Hydroxyfunktionen gemeint.

^m *p*-O₂N-C₆H₄-CO₂H (4.0 Äq), PPh₃ (4.4 Äq), DIAD (4.4 Äq), C₆H₆; 48 h bei 23 °C, dann 18 h bei 80 °C.

Cyperolon I-**276** (Abb. I-64). Dazu wurde der sekundäre Alkohol I-**204**ⁿ mit IBX in DMSO in 74% Ausbeute zum korrespondierenden Keton I-**277** oxidiert. In einer nachfolgenden Reduktion mit einem geeigneten Hydrid-Donor sollte die Bildung des epimeren Alkohols I-**268** durch eine sterische Abschirmung der *si*-Seite des Ketons durch den benachbarten Sechsring erreicht werden.

Abbildung I-64: Synthese von epi-Cyperolon.

Während sich L-Selectride[®] hierbei als vollkommen unreaktiv erwies und zur vollständigen Rückgewinnung des eingesetzten Ketons führte, lieferte die Umsetzung mit LiAlH₄, NaBH₄ oder NaBH₄ Epimeren-Gemische von I-**204** und I-**278** ohne nennenswerte Stereodiffenzierung. Erst die Umsetzung mit 2.0 eq DiBAl-H zeigte eine Stereodifferenzierung zu Gunsten des gewünschten Epimers I-**278** im Verhältnis von ungefähr 9:1 und lieferte nach chromatographischer Reinigung I-**278** in 67% Ausbeute neben 7% seines Epimers I-**204**. Die nachfolgende Hydratisierung von I-**278** in Gegenwart von 1.0 eq rotem Quecksilberoxid und verdünnter Schwefelsäure lieferte in schlechter Ausbeute von 18% *epi*-Cyperolon I-**276**.

Interessanterweise war das erhaltene *epi*-Cyperolon I-**276** mit geringen Mengen (+)-Cyperolon I-**137** verunreinigt, obwohl der epimere Alkohol I-**204** zuvor laut ¹H- und ¹³C-NMR der Verbindung I-**278** vollständig abgetrennt worden war. Offensichtlich hatte unter den Reaktionsbedingungen, bei der chromatographischen Reinigung oder in Gegenwart des leicht aziden NMR-Lösungsmittels CDCl₃ eine teilweise Epimerisierung stattgefunden. Bei der Hydratisierung des epimeren Alkohols I-**204** waren keine Verunreinigungen mit *epi*-Cyperolon I-**276** beobachtet worden.

ⁿ I-**204** ist ein Zwischenprodukt aus der Totalsynthese von (+)-Cyperolon I-**137** (*vide supra*)

I-4.3 Auf den Spuren von *Ferdinand Bohlmann* - Entwicklung einer Biosynthesehypothese

Mechanistisch kann man sich eine solche Epimerisierung als Retro-Aldol-Aldol-Sequenz vorstellen, in welcher der intermediäre Aldehyd I-**279** durchlaufen wird (Abb. I-65). Der intermediäre Aldehyds I-**270** sollte demnach unter sauren oder basischen Bedingungen im Umkehrschluss den Naturstoff (+)-Cyperolon I-**137** liefern.

Abbildung I-65: Epimersierung von epi-Cyperolon zu (+)-Cyperolon.

Diese Beobachtung bzw. Schlussfolgerung motivierte uns zu einer Hypothese (Abb. I-66): Könnte es sein, dass der Aldehyd I-**279** ein Intermediat in der Biosynthese von (+)-Cyperolon I-**137** ist, der durch selektive oxidative Spaltung der innerzyklischen Doppelbindung des Naturstoffes α -Selinen I-**280** entsteht?

Abbildung I-66: Biosynthese-Hypothese.

Eine vergleichbare Vermutung hatten bereits 1987 *Bohlmann et al.* geäußert, nachdem sie ein xylulolysiertes Derivat des *epi*-Cyperolons I-**283**, zusammen mit xylulolysiertes Derivat des α -Selinens I-**284** aus einem Extrakt von *Iphiona Scabra* isoliert hatte (Abb. I-67).^{153b}

Abbildung I-67: epi-Cyperolon-Derivat aus einem Extrakt von Iphiona scarba.

Abbildung I-68: Aufbau des Eudesman-Sesquiterpen-Grundgerüst und Hypothesen zur Biosynthese von (+)-Cyperolon.

Die Biosynthese aller Sesquiterpene beginnt mit der Bildung von Farnesylpyrophosphat I-**288** durch iterative Verlängerung einer Dimethylallylpyrophosphat-Einheit I-**285** durch zwei Isoprenylpyrophosphat-Einheiten I-**286** (Abb. I-68).²²⁰

Farnesylpyrophosphat I-**288** wird dann von einer großen Vielfalt an verschiedenen Sesquiterpen-Synthasen und -Zyklasen in die verschiedenen Sesquiterpene Grundgerüste überführt. Im Falle der Eudesman-Sesquiterpene, zu denen auch (+)-Cyperolon I-**137** zählt, sorgt zunächst die Germacren-A-Synthase für die Zyklisierung des Farnesylpyrophosphat I-**288** erzeugten Farnesylkations I-**289** zum E,E-Germacradienylkation I-**291**, welches nach durch Eliminierung eines Protons Germacren A I-**292** ausbildet. Nachfolgend wird durch eine Germacren-A-Zykllase das Germacrydienylkation I-**293** erzeugt und zum Selinenylkation I-**294** zyklisiert.²²¹

Bisher ging man davon aus, dass sich (+)-Cyperolon I-**137**, auf Grund der Koexistenz mit α -Cyperon I-**145** (Abb. I-69) in denselben Pflanzenextrakten,^{151,153} aus α -Cyperon I-**297** als biosynthetischem Vorläufer durch eine Sequenz aus Epoxidierung, Semi-Pinakol-Umlagerung und Reduktion bildet. α -Cyperon I-**145** wird zuvor durch Eliminierung eines Protons aus dem Selinenylkation I-**294** Unterbildung von γ -Selinen I-**295** und nachfolgenden Oxidationsschritten generiert. Die Semisynthese durch *Hikino et al.* stützt diese Annahme.¹⁵⁸

Die Beobachtungen *Bohlmanns*, dass α -Selinen I-**280** und *epi*-Cyperolon I-**276** in denselben Pflanzenextrakten coexistieren^{153b} sowie meine Beobachtung zur möglichen synthetischen Retro-Aldol-Aldol-Konnektivität zwischen den C3-Epimeren des Naturstoffs, lassen eine weitere Möglichkeit für die Biosynthese von (+)-Cyperolon in den Fokus rücken. Diese könnte, statt über γ -Selinen I-**295**, über die Bildung des stabileren[°] α -Selinens I-**280** verlaufen.

Die formale Dihydroxylierung der innerzyklischen Doppelbindung und oxidative Spaltung des resultierenden Diols I-**300** würden dann über eine Aldol-Zyklisierung des intermediären Aldehyds I-**279** zur Bildung von (+)-Cyperolon I-**137** führen. Vermutlich ist (+)-Cyperolon I-**137** und nicht *epi*-Cyperolon das Hauptprodukt einer solchen Aldolzyklisierung. Es ist anzunehmen, dass (+)-Cyperolon I-**137** auf Grund der vorliegenden Wasserstoffbrückenbindung (Valenzschwingung für die Hydroxylbindung O-H: $\tilde{v} = 3436 \text{ cm}^{-1}$ (breit)) ²²² zwischen dem Proton der Hydroxylgruppe und der Carbonylgruppe (Abb. I-69),^{151a} welche in *epi*-Cyperolon I-**276** wegen der Stereoorientierung der beiden Gruppen nicht ausgebildet werden kann, die stabilere Verbindung ist und daher im Gleichgewicht einer Retro-Aldol-Aldol-Zyklisierung (+)-Cyperolon I-**137** bevorzugt gebildet würde.

 $^{^{\}circ}$ α-Selinen I-**280** hat im Gegensatz zu γ-Selinen I-**295** keine Doppelbindung an einem Brückenkopfatom liegen und dadurch weist es eine geringere Ringspannung auf.

Valenzschwingung der Hydroxylbindung O-H: 3436 cm⁻¹

Abbildung I-69: Intramolekulare Wasserstoffbrückenbindung in (+)-Cyperolon.

Möglich erscheint ebenso, dass beide Annahmen alternative Biosynthesewege darstellen und gegebenenfalls in verschiedenen Organismen unterschiedlich stark populiert sind.

I-4.4 Retrosynthetische Analyse von (+)-Cyperolon unter Berücksichtigung der Biosynthesehypothese

Auf Basis der vorgestellten Biosynthesehypothese wurde eine zweite retrosynthetische Analyse des Naturstoffs (+)-Cyperolon I-**137** unternommen, deren Ergebnisse in der Abbildung I-70 dargestellt sind. Der für den Schlüsselschritt der intramolekularen Aldolreaktion benötige Aldehyd I-**279** sollte darin biomimetisch aus dem Sesquiterpen α-Selinen I-**280** durch selektive oxidative Spaltung der innerzyklischen Doppelbindung erzeugt werden. Die Synthese von α-Selinen I-**280** aus (R,E)-3,9-dimethyl-6-(prop-1-en-2-yl)deca-1,3,9-trien I-**301** durch eine intramolekulare hochgradig diastereoselektive *Diels-Alder*-Reaktion ist bereits von *Caine et al.* beschrieben worden.²²³ I-**301** sollte durch eine Sequenz von chemoselektiver Olefinierung von I-**302** mit (α-Formylethyliden)triphenylphosphoran I-**303**²²⁴ und anschließender zweifacher *Wittig*-Methinylierung aus (R)-6-oxo-3-(prop-1-en-2-yl)heptanal I-**304**, dem Produkt der selektiven Ozonolyse von (R)-Limonen I-**305**, ²²⁵ einem kommerziell erhältlichen Monoterpen, erhalten werden.

Abbildung I-70: Retrosynthese von (+)-Cyperolon unter Berücksichtigung einer neuen Biosynthesehypothese.

Eine enantioselektive Totalsynthese von (+)-Cyperolon I-**137** auf dem vorgestellten Weg würde die aufgestellte Biosynthesehypothese stützen und einen Schutzgruppen-freien, biomimetischen, extrem kurzen und effektiven Zugang zum Cyperan-Grundgerüst aus einem günstigen, ^p chiralem Ausgangsmaterial ermöglichen. Zusätzlich wäre möglicherweise neben (+)-Cyperolon I-**137** auch die Synthese weiterer Vertreter der Cyperane im Multi-Gramm-Maßstab möglich, wodurch weitergehende Untersuchungen der weitgehend unerforschten biologischen Aktivitäten dieser Substanzklasse eingeleitet werden könnten.

I-4.5 Studien zur Totalsynthese von (+)-Cyperolon – Ein kurzer Weg

Erste Versuche ausgehend von (+)-Limonen I-**305** durch selektive Ozonolyse der innerzyklischen Doppelbindung bei -78°C in Dichlormethan zu erzeugen, verliefen überwiegend unselektiv und ergaben chromatographisch schwer trennbare Gemische mit überoxidierten Produkten.

Schließlich konnte der Ketoaldehyd I-**304** durch selektive Ozonolyse bei -78°C in einem Gemisch aus Dichlormethan:MeOH/5:1 und anschließender reduktiver Aufarbeitung mit Dimethylsulfid in 83% Ausbeute generiert werden (Abb. I-71).^{225b,q} Die Überoxidation der Isopropylidengruppe wurde hierbei durch Kontrolle des vollständigen Umsatzes an Limonen I-**305** mittels Dünnschichtchromatographie und rechtzeitigen Abbruch durch Begasen der Reaktionslösung mit Stickstoff vermieden.

Abbildung I-71: Selektive Ozonolyse von (+)-Limonen.

Der Ketoaldehyd I-**304** wurde nachfolgend mit dem Formylidentriphenylphosphoran I-**303** in Benzol in 80% Ausbeute zum Ketoaldehyd I-**302** umgesetzt.²²⁴ Die Bildung von I-**302** erfolgte dabei in perfekter Diastereoselektivität und die im Molekül enthaltene Ketogruppe blieb intakt. Es zeigte sich, dass das krebserregende Lösungsmittel Benzen ohne Probleme durch Toluen substituiert werden konnte (Abb.

^p Ca. 0.10 €/1 g (R)-(+)-Limonen bei Kleinmengenabnahme (bis 500 mL) bei Sigma-Aldrich

^q Das Ozon wurde mit Hilfe von elektrischen Ozonolysatoren erzeugt. An der TU München und der Bergischen Universität Wuppertal wurde hierfür unterschiedliche Ozonolysatoren verwendet. Bei den sehr alten Geräten wurden jeweils durch Ausprobieren die besten Einstellungen für die optimale Ozonmenge in dem die Reaktionslösung durchströmenden Gasgemisch ermittelt. Diese variert je nachdem durch welche Art von Fritte das Gasgemisch eingebracht wurde. Bei Fritten die sehr kleine Gasblasen und dadurch eine größere effektive Oberfläche erzeugten musste der Anteil des Ozons herunterreguliert werden um gute Ergebnisse zu erreichen.

I-72). Das hierfür benötigte Spezial-*Wittig*-Reagenz Formylidentriphenylphosphoran I-**303** wurde durch Deprotonierung von Ethyltriphenylphosphoniumiodid I-**306** mit der *Schlosser*-Base²²⁶ und anschließende Reaktion mit Ethylformiat und NaOH hergestellt.^{224b}

Abbildung I-72: Wittig-Reaktion mit Formylidentriphenylphosphoran und anschließende Doppel-Wittig-Methylinierung.

Um eine Decarbonylierung des Produktes während des letzten Reaktionsschrittes zu verhindern war es essentiell, dass der pH-Wert auf pH= 9 eingestellt wurde.^r Ketoaldehyd I-**302** konnte durch Reaktion mit 2.05 eq Methylidentriphenylphosphin bei 0°C in 85% Ausbeute in das korrespondierende Tetraen I-**301** überführt werden.

Die Reaktion intramolekulare *Diels-Alder*-Zyklisierung des Tetraenes I-**301** zum α -Selinen I-**280**^{223,227} bereitete einige Probleme (Tab. I-7). In ersten Versuchen (in der TU München) wurde (+)- α -Selinen I-**280** in Toluen gelöst in Gegenwart von 4-5 mol% Benzochinon I-**307** zunächst mittels FPT-Technik entgast und anschließend in abgeschmolzenen Glasampullen (Wandstärke ca. 3 mm, Durchmesser ca. 1.5 cm, Borosilikatglas) bei 240°C im Sandbad zur Reaktion gebracht. Nach 12 Tagen bei 240°C konnten 80% Ausbeute des gewünschten DAR-Produktes I-**280** in exzellenten Diastereomerenverhältnis 100:1 erhalten (Tab. I-7, Eintrag 3). Die physikalischen Eigenschaften des auf diesem Weg synthetisch hergestellten α -Selinens I-**280** stimmten mit den Literaturangaben des natürlich vorkommenden Naturstoffs vollständig überein.²²⁸ Nach dem Umzug des Arbeitskreises nach Wuppertal war es nicht möglich diese Ergebnisse zu reproduzieren. Alle Versuche unter analogen Bedingungen scheiterten, die abgeschmolzenen Glasampullen, die im Sandbad oder einem beheizten Bombenrohr auf 240°C erhitzt wurden platzten nach kurzer Zeit (Tab. I-7, Eintrag 19-23).

^r In der Literatur war hier ein pH-Wert von pH =8.0 angegeben. (Siehe Ref. 222b)

....

		$\begin{array}{c} \begin{array}{c} H_{3} \ CH_{3} \ CH_{3} \\ H_{3} \ CH_{3} \\ H_{4} \ H_{4} \\ H_{4} \\$	0 0 0 1-307		O CI CI CI CI CI
Eintrag	Additiv (mol%)	Lösungsmittel	Reaktions- zeit	Ausbeute [%] ^I	d.r. = I- 280 :I- 308
1 ^{a,g}	I- 307 , (4)	Toluen	36 h	45, (71 brsm)	100:10
2 ^{a,g}	I- 307 , (5)	Toluen	3 d	22, (79 brsm)	100:8
3 ^{a,g}	I- 307 , (5)	Toluen	12 d	80	100:10
4 ^{b,h}	I- 307 , (4)	Toluen	5 d	18	95:5
5 ^{b,h}	I- 307 , (4)	Toluen	2.5 d	16	92:8
6 ^{b,n}	I- 307 , (4)	Toluen	3.7 d	25	94:6
7 ^{b,k}	I- 307 , (4)	Diphenylether	2.9 d	17 ^c	93:7
8 ^{b,k}	I- 307 , (4)	Diphenylether	20 h	7 ^c	92:8
9 ^{b,i}	I- 307 , (4)	Diphenylether	20 h	15 [°]	95:5
10 ^{b,i}	I- 307 , (4)	Benzophenon	2.5 d	18 ^c	95:5
11 ^{b,i}	I- 307 , (4)	DMPU	20 h	10	94:6
12 ^{b,i}	I- 307 , (4)	DMPU	8 h	12	92:8
13 ^{b,i}	I- 307 , (4)	DMPU	22 h	54	94:6
14 ^{b,i}	I- 310 , (5)	DMPU	20 h	50 ^c	_d
15 ^{b,1}	I- 309 , (5)	DMPU	20 h	30 ^c	_d
16 ^{b,i}	I- 307 , (4)	DMPU	35 h	40	92:8
17 ^{b,1}	I- 307 , (4)	DMPU	22 h	53	9:1
18 ^{b,i}	I- 307 , (4)	DMPU	24	51	91:9
19 ^{b,g}	I- 307 , (4)	Toluen	- ^e	0	-
20 ^{b,j}	I- 307 , (4)	Toluen	_e	0	-
21 ^{b,j}	I- 307 , (4)	Toluen	_e	0	-
22 ^{b,j}	I- 307 , (4)	Toluen	- ^e	0	-
23 ^{b,j}	I- 307 , (4)	Toluen	_e	0	-
24 ^{b,i}	I- 307 , (4)	1,3,5-Triisopropylbenzen	20		-
25 ^{b,n}	I- 307 , (4)	1,3,5-Trichlorbenzen	20	-	-

Tabelle I-7: Studien zur intramolekularen Diels-Alder-Reaktion.

[a] Durchführung in den Laboren der TUM. [b] Durchführung in den Laboren der BUW. [c] Produkt verunreinigt. [d] d.r. nicht bestimmt. [e] Ampulle nach wenigen Minuten geplatzt. f) Lösungsmittel nicht vom Produkt abtrennbar. [g] Die Reaktion wurde in einer Glasampulle im Sandbad durchgeführt. [h] Die Reaktion wurde in einer Mikrowelle bei 300W durchgeführt. [i] Die Reaktion wurde in einem Duran Schott[®] Glas im Sandbad durchgeführt. [j] Die Reaktion wurde in einer einfachen Rückflussaparatur durchgeführt. [l] Isolierte Ausbeuten nach chromatographischer Reinigung.

Die Verwendung einer Synthesemikrowelle zur Erzeugung der benötigten Reaktionstemperatur (300 W, 240°C) erbrachte keine Ausbeutesteigerung. Neben schlechten Ausbeuten, wurden schlecht

reproduzierbare inkonsistente Ergebnisse erhalten (Tab. I-7, Eintrag 4-6). Auf Grund dieser Misserfolge wurden die Nutzung diverser hochsiedender Lösungsmittel (DMPU (Sp. 246°C), Diphenylether (Sp. 258°C), Benzophenon (Schmp. 49°C, Sp. 305°C), 1,3,5-Triisopropylbenzen (Sp. 232-263°C), 1,3,5-Trichlorbenzen (Sp. 209°C)) in verschiedenen Apparaturen untersucht. 1,3,5-Triisopropylbenzen sowie 1,3,5-Trichlorbenzen waren ungeeignete Lösungsmittel. Zum einen, weil sie bei 23°C als Feststoffe vorliegen, somit eine homogene Reaktionslösung erst ab Schmelzpunkt zustanden kommen kann, zum anderen, da sie nicht durch Chromatographie von den Produkten abgetrennt werden konnten. Auch Benzophenon und Diphenylether stellten sich als ungeeignete Lösungsmittel heraus. Sie lieferten zwar das Produkt in vergleichbaren Ausbeuten wie die Mikrowellen-Versuche, jedoch konnte dieses von seinen Verunreinigungen nicht abgetrennt werden (Tab. I-7, Eintrag 7-9). Die Verwendung von DMPU als Lösungsmittel in Gegenwart von 4 mol% Benzochinon lieferte nach 20 h bei 240°C (Heizband) im geschlossenen Duran Schott Glas[®] lieferte (+)-α-Selinen I-**280** in 53% Ausbeute und einem Diastereomerenverhältnis von I-280:I-308/100:10. DMPU als Lösungsmittel erleichterte die Aufarbeitung des Reaktionsgemisches, da es einfach in eine Wasserphase extrahiert werden kann. Eine geringere Reaktionstemperatur von 220°C²²⁹ in DMPU führte zu geringerer Ausbeute (Tab. I-7, Eintrag 16). Die Untersuchungen zeigten jedoch deutlich, dass größere Ansätze zu besseren Ausbeuten führten. Vermutlich liegt dies daran, dass bei kleineren Ansätzen prozentual ein größerer Anteil des Tetraenes I-**301** in die Gasphase^s über geht und nicht reagieren kann.

Im Folgenden sollte nun die innerzyklische Doppelbindung des α-Selinen I-**280** oxidativ gespalten werden um den Ketoaldehyd I-**279** zu generieren. Im günstigsten Fall würde dieser direkt zum Naturstoff (+)-Cyperolon I-**137** oder seinen Epimer *epi*-Cyperolon I-**276** zyklisieren. Versuche eine direkte selektive oxidative Spaltung durch Ozonolyse herbei zuführen schlugen fehl und führten zur vollständigen Zersetzung des Ausgangsmaterials. Daher wurde eine klassische Route aus Epoxidierung, Epoxidöffnung zum Diol und anschließende oxidative Spaltung gewählt um Ketoaldehyd I-**279** zu synthetisieren.

Abbildung I-73: Selektive Epoxidierung von α -Selinen.

Die Epoxiderung von α -Selinen I-**280** in Gegenwart von 1.0 eq *m*-CPBA bei -30°C lieferte selektiv das Epoxid der innerzyklischen Doppelbindung I-**299** in 66% Ausbeute und exzellenter Diastereoselektivität

^s Sdp. = 267.4±20 °C bei 760 torr, berechnet mit *Advanced Chemistry Development* (ACD/Labs) Software V11.02 (© 1994-2012 ACD/Labs)

(Abb. I-73).²³⁰ Die Reaktionsführung bei 0°C lieferte vergleichbare Ausbeuten für das Epoxid I-**299**; eine Reaktion bei Raumtemperatur hingegen führte zur signifikanten Ausbeuteverschlechterung. Zur Öffnung des Epoxids wurden diverse *Brønsted-* und *Lewis-*saure sowie basische Methoden

untersucht (Tab. I-8).

Tabelle I-8: Studien zur Epoxidhydrolyse.

$H \xrightarrow{CH_3} $					
	I- 2 99		I-300		
Eintrag	Reagenz	Lösungsmittel, c	Temp.	Reaktions	Ausbeute
		(mol/l)	[°C]	-zeit	[%] ^d
1	(xs) NaOH aq (5.0 M)	Dioxan (1.0)	60	70 h	0 ^a
2	0.5 mol% konz H ₂ SO ₄	THF:H ₂ O/1:1 (0.02)	23°C	2.5 h	65 [°]
3	H ₂ SO ₄ aq(1.0 %)	THF	23°C	20 h	0 ^b
4	6.0 mol% pTsOH H ₂ O ²³¹	Dioxan:H ₂ O/9:1 (0.15)	100	1.5 h	24 ^c
5	6.0 mol% pTsOH H₂O	Dioxan:H₂O/9:1 (0.15)	23°C	2.5 h	33 ^c
6	10 mol% BiCl ₃ ²³²	ACN:H ₂ O/1:1 (0.10)	0	4 h	31 ^c
7	_233	Dioxan:H ₂ O/1:1 (0.03)	100	3 h	60 ^c
8	-	Dioxan:H ₂ O/1:1 (0.03)	70	24	60 ^c
[a] Kein U	msatz. [b] Zersetzung. [c]	Bildung Eliminierungsproo	dukte. [d]	Isolierte Aus	peute nach
chromatographischer Reinigung.					

Während ein Überschuss an 5.0 M NaOH-Lösung über 70 h bei 60°C keinerlei Umsatz zum Diol I-**300** generierte (Tab. I-8, Eintrag 1), führten Versuche in Gegenwart von 6 mol% pTsOH H₂O in Dioxan:H₂O/9:1 zu schlechten Ausbeuten (Tab. I-8, Eintrag 5 und 6). Die besten Ergebnisse wurden bei Reaktion von Epoxid I-**299** in Gegenwart von 0.5 mol% konz. Schwefelsäure in THF: H₂O/1:1 bei Raumtemperatur (65%, Tab. I-8, Eintrag 2) sowie beim Erhitzen des Epoxids I-**299** in Dioxan:H₂O/1:1 auf 100°C über 3 h (60%, Tab. I-8, Eintrag 7) erzielt. Dabei wurde das Diol I-**300** jeweils als Mischung von vier Diastereomeren erhalten. Die Spaltung des Diols I-**300** wurde durch Reaktion mit Blei(IV)acetat in Benzen bei Raumtemperatur über 6 h erreicht, ²³⁴ dabei wurde der Ketoaldehyd entgegen der Erwartung I-**279** als stabile Verbindung nach chromatographischer Reinigung über Silicagel in 52% Ausbeute isoliert (Abb. I-74). Der Zusatz von Kaliumcarbonat führte zu vergleichbaren Ausbeuten von 51% des Ketoaldehyds I-**279**, ²³⁵ jedoch wurde kein vollständiger Umsatz erreicht (61% brsm). Eine Substitution des krebserregenden Lösungsmittels Benzen mit Toluol führte zu geringfügig schlechteren Ausbeuten von 40%. Bei Verwendung von H₄IO₅ als Oxidans bei 23°C in THF über 20 h konnten nur 20% des gewünschten

Produkts I-**279** isoliert werden. Die Reaktion des Diols I-**300** mit NaIO₄ in THF:H₂O-Gemischen²³⁰ führte zu gleichen Ausbeuten wie Blei(IV)acetat und ist diesem auf Grund der wesentlich geringeren Toxizität vorzuziehen.

Abbildung I-74: Oxidative Diolspaltung.

Da der Ketoaldehyd I-**279** nicht spontan zu (+)-Cyperolon I-**137** oder *epi*-Cyperolon I-**276** weiter reagierte sollte die Aldolzyklisierung Basen-, Säuren- oder Enamin-katalysiert eingeleitet werden.

Ein erster Versuch den Ketoaldehyd I-**279** in Gegenwart der Guanidinbase TBD I-**311**²³⁶ zu (+)-Cyperolon I-**137** bzw. *epi*-Cyperolon I-**276** zu zyklisieren lieferte widererwartend das Siebenring-enthaltende Aldolprodukt I-**312** in 63% Ausbeute, die Stereokonfiguration der Hydroxylgruppe wurde dabei nicht abschließend geklärt (Abb. I-75).

Abbildung I-75: Bildung des Aldolproduktes I-312.

Dieses Ergebnis war besonders ungewöhnlich, da TBD I-**311** in der Literatur als Reagenz beschrieben ist, welches die Bildung des thermodynamischen, höher substituierten Enolates forciert.²³⁷ Offensichtlich ist bei Verwendung der Guanidinbase TBD I-**311** der Übergangszustand **A** (Abb. I-75) gegenüber **B** bevorzugt.

Im Folgenden wurden intensive Studien zur Initiierung der gewünschten Reaktivität durch diverse *Brønsted*-azide, *Lewis*-azide, basische und organokatalytische Reaktionsbedingungen durchgeführt (Tab. I-9). Der Verlauf der Reaktionen und die Bildung der möglichen Aldolzyklisierungsprodukte I-**137**, I-**276** und I-**312** wurde hierbei per GC durch Vergleich der Retentionzeiten überwacht.

H ₃ C ⁻		► H ₃ C	н₃с		
	// н О		H	OHU	Ĥ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́
	-279	(+)-Cyperolon I- 137	(+)-3-epi-0	Cyperolon I-276	I-312
Exp.	Reagenz (eg)	Lösungsmittel (mol/l)	Temp.	Reaktions-	GC-Ergebnis
_,,p.			[°C]	zeit	00 1.800.00
1	-	CH_2CI_2 (1.0)	23	7 d	Kein Umsatz
2	-	THF(0.10)	50	30 h	nur I- 312
3	Piperidin (0.1), HOAc(0.15) ²³⁷	Benzen (0.02)	23	21 h	Zersetzung
4	Piperidin (1.0)	CH ₂ Cl ₂ (0.085)	23	5 d	Zersetzung
5	TBD (1.0) ^{48a}	THF (0.05)	23	2 h	nur I- 312
6	TMG (1.0) ²³⁸	THF (0.05)	23	72 h	Zersetzung, I-312
7	DBU (0.4) ²³⁹	THF(0.10)	23	3.75 d	Kein Umsatz
8	DBU (0.4)	THF(0.10)	40	8 h	Zersetzung, I-312
9	D/L-Prolin (1.0) ²⁴⁰	DMSO (0.15)	23	5 d	Zersetzung
10	Morpholin (1.0)	THF (0.07)	70	10 h	Zersetzung
11	pTSOH (0.05) ²⁴¹	Benzen (0.2)	23	20 h	Zersetzung
12	10% HCl aq. (20)	EtOH (0.03)	23	20 h	Zersetzung
13	BiCl ₃ (1.0)	H ₂ O:ACN/1:1 (0.2)	23	2 d	Zersetzung
14	K ₂ CO ₃ (15) ²⁴²	MeOH (0.075)	23	18 h	Zersetzung, I-312
15	DABCO (0.1)	THF (0.04)	23	72 h	Zersetzung
16	DiPEA (1.0)	THF (0.2)	23	2 d	Zersetzung
17	Et ₃ N (1.0)	DMF (0.2)	70	10 h	Zersetzung
18	Imidazol (1.0)	THF (0.07)	70	4 h	Zersetzung, I-312
19	KOtBu (1.0)	HOtBu (0.2)	50	4 h	Zersetzung
20	NaOMe (1.0)	MeOH (0.2)	50	4 h	Zersetzung
21	NaOH (1.0)	MeOH (0.2	70	7 h	Zersetzung, I-312
22	NaH (1.0)	THF (0.2)	70	12 h	Zersetzung, I- 312
23	SiO ₂	CycHex:EtOAc/9:1 (0.02)	23	72 h	einsetzende Zersetzung

Tabelle I-9: GC-Studien zur Aldolzyklisierung.

Dabei zeigte sich, dass bei Verwendung der Guanidinbase Tetramethylguanidine (TMG) neben diversen Nebenprodukten I-**312** als Hauptprodukt gebildet wurde. Auch thermisch, bei vergleichsweise geringer Temperatur (50°C) in THF, wurde Verbindung I-**312** als nahezu einziges Produkt gebildet (Tab. I-9, Eintrag 2). Versuche über das korrespondierende Enamin einen Ringschluss unter Bildung von (+)-Cyperolon I-**137** oder *epi*-Cyperolon I-**276** zu erreichen, führten zur Zersetzung des Ausgangsmaterials (Tab. I-9, Einträge 3,4,9 und 10). Die Reaktion in Gegenwart von DBU in THF bei 23°C ergab keinen Umsatz. Die Erhöhung der Reaktionstemperatur auf 40°C führte zur unselektiven Bildung diverser Produkte (Tab. I-9, Einträge 7 und 8), darunter ebenfalls wieder Verbindung I-**312**. Versuche über *Brønsted*-Säure-Katalyse die gewünschte Aldolzyklisierung einzuleiten, schlugen ebenfalls fehl. Wässrige HCI-Lösungen sowie katalytische Mengen pTSA führten zur Zersetzung des Ketoaldehydes I-**279**, ohne dass die Bildung irgendeines der möglichen Aldolprodukte beobachtet werden konnte.

Im Weiteren führten diverse unterschiedliche Reaktionsbedingungen zur unselektiven Bildung von I-**312.** Die Bildung von (+)-Cyperolon I-**137** oder auch *epi*-Cyperolon I-**276** konnte bei keinem der Versuche nachgewiesen werden.

1978 hatten *House et al.* gezeigt, dass Sie das Keto-Alkylbromid I-**313** in Abhängigkeit der angelegten Reaktionsbedingungen entweder zu Perhydroazulen I-**314** oder zum *cis*-verknüpften Bicyclo[3.3]octan I-**315** zyklisieren konnten (Abb. I-76).²⁴³ Während die sperrige Base LDA über eine Deprotonierung der leichter zugänglichen Acylgruppe zur Bildung von I-**314** führt, wird unter thermodynamischen Bedingungen mit 1.0 eq KOtBu als Base das höher substituierte Enolat gebildet, welches zur Verbindung I-**315** führt. Die analoge Verwendung dieser Reaktionsbedingungen zur Einleitung einer Aldolzyklisierung führte in schlechter Ausbeute zur Bildung des dehydratisierten Siebenring-enthaltenden Aldolprodukt I-**316**, einem durch Eliminierung von Wasser gebildeten Folgeprodukt von Verbindung I-**312**.

Abbildung I-76: Bedingungen zur selektiven Deprotonierung der höher substituierten Position nach House et al..

Unter Berücksichtigung der Ergebnisse während der Studien zur Einleitung einer Aldolzyklisierung zum Naturstoff (+)-Cyperolon I-**137** oder *epi*-Cyperolon I-**276**, im Besonderen, dass die Guanidinbasen TBD und TMG, sowie das bloße Erwärmen in Lösungsmittel, als auch die thermodynamischen Deprotonierungsbedingungen von *House et al.*²⁴³ zur Bildung des ungewünschten Aldolproduktes I-**312** führen, legen die Vermutung nahe, dass das Aldolprodukt I-**312** im vorliegendem System das kinetische sowie auch thermodynamische Produkt der Reaktion ist, wodurch eine Synthese des Naturstoffs auf diesem Weg nicht möglich wäre. Die Biosynthesehypothese bleibt davon zunächst unangetastet, da im aktiven Zentrum einer Aldolase zusätzliche Wechselwirkungen zum Tragen kommen können, die eine Reaktion ermöglichen, die im Kolben nicht durchführbar ist.

I-5. Zusammenfassung und Ausblick

I-5.1 Zusammenfassung

Im Rahmen der Untersuchungen zur Entwicklung von Kaskadenreaktionen durch π -Aktivierung von Alkinen¹⁰⁰⁻¹⁰⁶ wurde in der Arbeitsgruppe *Kirsch* ein Konzept zum Aufbau von komplexen carbozyklischen Fünfringsystemen durch die Übergangsmetall-katalysierte Dominoreaktionen bestehend aus initialer Carbozyklisierung von 3-Silyloxy-1,5-eninen und anschließender Pinakol-artiger Umlagerung entwickelt.^{129,130} Im Rahmen dieser Arbeit gelang eine Anwendung dieses Konzeptes in der Totalsynthese des sterisch überladenen Sesquiterpens (+)-Cyperolon I-**137** durch Erweiterung der Methodik für die Umsetzung von 3-Silyloxy-1,5-eninen mit tetrasubstituierten Doppelbindungssystemen. Die *de novo* Totalsynthese des Naturstoffs konnte ausgehend von dem kommerziell erhältlichen Monoterpen (*R*)-Carvon I-**157** in Zusammenarbeit mit *Alex Duschek* und aufbauend auf den Vorarbeiten von *Cleménce Liébert* in 15 Stufen und einer Gesamtausbeute von 4.3% verwirklicht werden (Abb. I-78).

Abbildung I-77: Totalsynthese von (+)-Cyperolon von Kirsch et al.

Darin konnte das 3-Silyloxy-1,5-enin I-**209** als Substrat für den Schlüsselschritt der Totalsynthese in 6 Stufen aus (R)-Carvon I-**157** hergestellt werden. Durch eine Platin-katalysierte Dominoreaktion konnte das cis-verknüpfte Bicyclo[4.3]nonen-Grundgerüst I-**208** in einem Schritt in 80% Ausbeute aus dem azyklischen Vorläufer aufgebaut werden. Aus diesem wurde in 3 Schritten der Alkohol I-**207** aufgebaut und durch eine Vanadium-katalysierte gerichtete Epoxidierung in exzellenter regio- und Stereoselektivität das Epoxid I-**206** erzeugt, welches in 3 Schritten zu dem Alkin I-**204** umgesetzt werden konnte. Die finale Hydratisierung des Alkin I-**204** lieferte den Naturstoff (+)-Cyperolon I-**137** in 30% Ausbeute, als Hauptprodukt entstand das trizyklische Lacton I-**265**. Die schlechte Ausbeute im letzten Schritt der Synthese ist der sterisch überladenen Struktur des Naturstoffs geschuldet und unterstreicht den synthetischen Anspruch der Synthese sowie das Potential der angewandten Dominomethodik zum Aufbau von derart komplexen carbozyklischen Fünfringsystemen.²⁴⁴

Im Weiteren wurde die Anwendungsbreite des Schlüsselschrittes untersucht. Dabei zeigte sich, dass dieser im Wesentlichen auf Substrate des Typs **A** (Abb. I-79) limitiert ist. Die Substituenten R^1 und R^2 waren dabei allerdings sehr variabele.

Abbildung I-78: Untersuchungen zur Substratbreite.

Lediglich ein weiteres 3-Silyloxy-1,5-enin-Grundgerüst konnte in den korrespondierenden Bizyklus I-**261** überführt werden. Die dazu analogen Triethylsilylether führten über einen konkurrierenden Reaktionspfad zur Bildung von Dienonen in moderaten Ausbeuten.

Abbildung I-79: Alternativer Reaktionspfad.

Zusätzlich wurde die Synthese von *epi*-Cyperolon I-**276** ausgehend von dem sekundären Alkohol I-**204**, einem Zwischenprodukt aus der Totalsynthese von Cyperolon I-**137**, in 3-Schritten durch eine Sequenz aus Oxidation, stereoselektiver Reduktion und nachfolgenden Hydratisierung der Alkinfunktion erreicht. Basierend auf der Beobachtung von Spuren von (+)-Cyperolon I-**137** in dem so erhaltenen *epi*-Cyperolon I-**276** und in Anlehnungen an Vermutungen von *Ferdinand Bohlmann*^{153b} wurde eine alternative Biosynthesehypothese für (+)-Cyperolon entwickelt, innerhalb derer das Sesquiterpen α -Selinen I-**280** direkter biosynthetischer Vorläufer der Cyperane ist und durch oxidative Spaltung der innerzyklischen Doppelbindung über den intermediären Aldehyd I-**279** in diese überführbar wird.

Abbildung I-80: Synthese von epi-Cyperolon und Entwicklung einer Biosynthesehypothese.

Zur Überprüfung dieser Biosynthesehypothese wurde eine kurze, Schutzgruppen-frei und biomimetische Totalsynthese geplant in der ausgehend von dem kommerziell erhältlichen Monoterpen Limonen I-**305** das Sequiterpen (+)-Cyperolon I-**137** über den aus α-Selinen I-**280** generierten intermediären Aldehyd I-**279** durch Aldolzyklisierung hergestellt werden sollte. Die Synthese des Aldehyds I-**279** wurde in den weiteren Untersuchungen in 7 Stufen aus Limonen I-**305** in einer Gesamtausbeute von 10% erreicht.

Abbildung I-81: Synthese des intermediären Aldehyd I-279.

Limonen I-**305** darin in 3 Stufen in das Tetraen I-**301** überführt, welches durch eine intramolekulare Hochtemperatur-*Diels-Alder*-Reaktion diastereoselektiv in den Naturstoff α -Selinen I-**280** überführt werden konnte. Über eine nachfolgende 3 stufige Sequenz zur oxidativen Spaltung der innerzyklischen Doppelbindung wurde der Aldehyd I-**279** erfolgreich hergestellt. Es zeigte sich jedoch, dass dieser entgegen der Erwartung stabil war und nicht wie gewünscht zum Naturstoff (+)-Cyperolon zyklisierte. Bisher schlugen alle Versuche eine Aldolzyklisierung zu initiieren fehl und führten entweder zur Zersetzung des Aldehyds oder zur offensichtlich konkurrierenden Aldolzyklisierung unter Bildung des Produktes I-**312**.

I-5.2 Ausblick

Der vorgestellte Zugang zum Cyperan-Gerüst über eine Dominoreaktion aus Carbozyklisierung und Pinakol-Umlagerung kann in weiteren Untersuchungen genutzt werden um ausgehend von (+)-Cyperolon I-**137** und *epi*-Cyperolon I-**276** weitere Vertreter der Cyperane zu synthetisieren. Eine Säure-katalysierte Wasseraddition an die Isopropylidengruppe von (+)Cyperolon I-**137** sollte zu dem tertiären Alkohol I-**137** führen.

Abbildung I-82: Synthese weiterer Cyperane ausgehend von (+)-Cyperolon und epi-Cyperolon.

Ferner könnten durch allylische Oxidation die epimeren Cyperansäuren I-**134** und I-**136** hergestellt werden.
II Synthese von Isooxazolidin-3-onen

II-1. Einleitung

II-1.1 Isooxazolidin-3-one in der Natur und der Forschung

Isooxazolidin-3-one, Isooxazol-3-(*2H*)-one und die korrespondierenden Tautomere sind allgegenwärtige Strukturmerkmale in der Natur.²⁴⁵ Sie finden sich beispielweise in den psychoaktiven Substanzen Muscimol II-**1**, Ibotensäure II-**2**²⁴⁶ oder dem Antibiotikum Lactivicin II-**3**²⁴⁷ und D-Cycloserin II-**4**²⁴⁸ (Abb. II-1).

Abbildung II-1: Isooxazolidin-3-one und Derivate in der Natur, der Medizinalchemie und dem Pflanzenschutz.

Ferner sind Isooxazolidin-3-one wichtige Pharmakophore in der Medizinalchemie und dem Pflanzenschutz. Einige Isooxazolidin-3-one wurden beispielsweise als effiziente Inhibitoren der α -D-Aminosäureoxidase (DAAO) identifiziert,²⁴⁹ einem Enzym welches mit diversen physiologischen Prozessen wie beispielsweise Hormonausschüttungen im Körper als auch der synaptischen Wahrnehmung und Übertragung von Reizen assoziiert ist und daher in der Behandlung von psychischen Störungen wie auch Schizophrenie adressiert wird.²⁵⁰

Im Weiteren ist bekannt, dass Isooxazolidin-3-one mit γ-Aminobuttersäureaminotransferase (GABA-AT) interagieren,²⁵¹ welche an der Kontrolle neuronaler Aktivität im zentralen Nervensystem von Säugetieren beteiligt ist.²⁵² Diverse weitere medizinische Applikationen von Isooxazolidin-3-onen sind in der Literatur beschrieben.^{253,254,255,256,257}

Darüberhinaus sind auch herbizide Aktivitäten von Isooxazolidin-3-onen bekannt.²⁵⁸ 2-(2-Chlorbenzyl)-4,4-dimethylisoxazolidin-3-on II-**5** (Abb. II-1) ist eines der effektivsten Herbizide weltweit und als Leitstruktur seit Langem im Fokus der Pflanzenschutzforschung.²⁵⁹

II-1.2 Methoden zur Erzeugung von Isooxazolodin-3-onen

Auf Grund der mannigfaltigen Anwendungen von Isooxazolidin-3-onen und Tautomeren in Medizin und Pflanzenschutz sind bereits eine ganze Bandbreite an Methoden zur Synthese von substituierten Isooxazolidin-3-onen entwickelt worden. Neben der lange bekannten Synthese von Benzo[d]isoxazol-3(2H)-onen aus den korrespondierenden 2-Hydroxybenzoehydroxamsäuren durch hygroskopische Reagenzien oder unter *Mitsonobu*-Bedingungen,²⁶⁰ ist eine klassische Syntheseoption für Isooxazolidin-3-one die nukleophile Zyklisierung von β -Halogen- und Pseudohalogenhydroxamsäuren in basischem Milieu,²⁶¹ die beispielweise von *Quin et al.* zur Synthese von D-Cycloserin II-**4** genutzt wurde (Abb. II-2).^{261b}

Abbildung II-2: Verschiedene Synthesen für Isooxazolidin-3-one.

Kim et al. zeigten, dass intramolekulare Halolactonisierungen von β-Alkenylhydroxamsäuren effektiv zum Aufbau einer Vielzahl von halogenierten Isooxazolidin-3-onen eingesetzt werden können (Abb. II-2).²⁶² Dieselbe Arbeitsgruppe präsentierte eine alternative Sequenz aus Epoxiderung und intramolekularer nukleophiler Epoxidöffnung durch den Sauerstoff der Hydroxamsäure, welche die korrespondierenden Hydroxy-substituierten Isooxazolidin-3-one liefert.

Im Weiteren können Isooxazoldin-3-one durch intermolekulare Zyklokondensation von β -Halogenund -Pseudohalogencarbonsäureestern, ²⁶³ α , β -ungesättigten Carbonsäureestern ²⁶⁴ oder 1,3-Dicarbonylen²⁶⁵ mit Hydroxylaminen erzeugt werden (Abb. II-3). Durch die Reaktion von Phenyl-4-(2-oxo-2-phenoxyethyliden)piperidin-1-carboxylat II-**13** mit Hydroxylaminharnstoff in Gegenwart von Natriummethanolat als Base konnten *Tsukamoto et al.* beispielsweise das Spiroisooxazolidin-3-on II-**14**, einen Muscarin-M1-Agonisten, herstellen.²⁶⁴

Abbildung II-3: Isooxazoldin-3-on-Synthese durch intermolekulare Zyklokondensation von β -Halogencarbonsäureestern und α , β -ungesättigten Carbonsäureestern mit Hydroxylaminen.

Eine häufig angewendete Methode zur Synthese von Isooxazolidin-3-onen ist die 1,3-dipolare Zykloaddition von Brom-²⁶⁶ und Pseudohalogencarbonitriloxiden²⁶⁷ an Alkene mit anschließender Hydrolyse der gebildeten 3-Halogen-4,5-dihydroisoxazole unter basischen oder sauren Bedingungen (Abb. II-4). Dabei werden die Brom- und Pseudohalogencarbonitriloxide *in situ* durch Reaktion der korrespondierenden Bromoxime mit schwachen Basen erzeugt.

Abbildung II-4: Isooxazolidin-3-on-Synthese durch 1,3-dipolare Zykloaddition von Brom- und Pseudohalogencarbonitriloxiden.

Piperno et al. demonstrierten, dass Isooxazolidin-3-one durch Ruthenium-katalysierte Oxidation in Gegenwart von NalO₄ aus den korrespondierenden Isooxazolidininen zugänglich sind (Abb. II-5).²⁶⁸

Abbildung II-5: Oxidation von Isooxazoldininen.

Auch intramolekulare Umlagerungen können zur Synthese von Isooxazolidin-3-onen eingesetzt werden. *Yang et al.* nutzten eine Silber(I)-katalysierte *Wolff*-Umlagerung²⁶⁹ von Alkyl-3-diazo-2oxopropoxycarbamaten zur Synthese von Isooxazolidinonen (Abb. II-6).²⁷⁰

Abbildung II-6: Isooxazolidin-3-on-Synthese durch intramolekulare Wolff-Umlagerung.

Im finalen Schritt der biomimetischen²⁷¹ Totalsynthese des Acinetobactin II-**27** durch *Takeuchi et al.* führt die nukleophile Umlagerung des hydrogenolytisch aus dem Vorläufer II-**26** freigesetzten *N*-Hydroxy-4,5- dihydrooxazol-4-carboxamids II-**28** zur Bildung des Isooxazolidin-3-on-Motivs des Naturstoffs.²⁷²

Abbildung II-7: Isooxazolidin-3-on-Synthese in der Totalsynthese von Acinetobactin nach Takeuchi et al..

Eichinger et al. stellten eine weitere nukleophil induzierte Umlagerung von Methyl-2-(3-Aryl-4,5dihydroisoxazol-5-yl)acetaten wie beispielsweise II-**29** in Gegenwart von einem Überschuss an Natriumcyclohexanolat vor, die zur Bildung von Isooxazolidin-3-onen führt (Abb. II-8).²⁷³ Dabei erfolgt zunächst ein nukleophiler Angriff des Alkoholats an der Iminfunktion. Das resultierende Stickstoffzentrierte Anion reagiert in einem Ringschluss mit dem Methylester zum *N,O*-Acetal-enthaltenden Bizyklus II-**32**, welcher während der wässrigen Aufarbeitung zum Isooxazolidin-3-on II-**30** hydrolysiert.

Abbildung II-8: Isooxazolidin-3-on-Synthese nach Eichinger et al..

Kürzlich zeigten *Sitim et al.* eine Synthese von Isooxazolidin-3-onen durch Ruthenium(II)-katalysierte 1,5-CH-Insertion ausgehend von *N*-Alkyl-2-diazo-*N*-(alk-2-yloxy)acetamiden in moderaten Ausbeuten (Abb. II-9).²⁷⁴

Abbildung II-9: Isooxazolidin-3-on-Synthese durch Ruthenium-katalysierte C-H-Insertion nach Sintim et al..

Ferner stellten *Alexian et al.* kürzlich eine sehr elegante metallfreie, aerobe Dioxygenierung von Alkenyl-*N*-arylhydroxamsäuren vor, die zur Bildung von 6-(Hydroxyalkyl)-2-aryl-1,2-oxazinan-3-onen und 5-(Hydroxyalkyl)-2-arylisoxazolidin-3-onen in moderaten bis guten Ausbeuten führt.²⁷⁵

Abbildung II-10: Dioxygenierung und Oxyaminierung von β-Alkenyl-*N*-arylhydroxamsäuren nach *Alexian et al.*. Die analoge Oxyamierung in Gegenwart von DIAD führt zur Bildung der korrespondierenden 5-(Aminoalkyl)-2-arylisoxazolidin-3-onen.²⁷⁶

II-2. Aufgabenstellung

II-2.1 Zielsetzung

Im Rahmen dieses Projektes sollte eine Methode entwickelt werden mit der β-Alkinylhydroxamsäuen des Typs **A** (Abb. II-11) durch Übergangsmetall-katalysierte Aktivierung der Dreifachbindungen in einer nukleophilen Heterozyklisierung in die korrespondierenden Isooxazolidin-3-one des Typs **B** überführt werden können.

Abbildung II-11: Geplante Übergangsmetall-katalysierte Isooxazolidin-3-on-Synthese.

Dabei wurde erwartet, dass die Bildung von Isooxazoldinonen des Typs **B** durch 5-*exo*-Heterozyklisierung gegenüber der Bildung von 2H-1,2-Oxazin-3(4H)-onen des Typs C durch 6-*endo*-Heterozyklisierung bevorzugt ist. Derartige Isooxazolidin-3-one zeigen eine große strukturelle Ähnlichkeit zu dem hochgradig wirksamen Herbizid II-**5** (Abb. II-1) auf und sollen daher im Anschluss mit einem Kooperationspartner auf ihre herbizide Wirkung untersucht werden.

II-2.2 Stand der Forschung

Während die intramolekulare Heterozyklisierung von Alkinen zur Bildung einer Vielzahl verschiedener Heterozyklen bereits eingehend untersucht wurde,^{277,278} sind <u>bisher keine</u> Übergangsmetall-katalysierten Methoden zur direkten Synthese von Isooxazolidin-3-onen aus β-Alkinylhydroxamsäuren bekannt.

Abbildung II-12: Gold-katalysierte Heterozyklisierung von N-Propargylhydroxylaminen.

Bis *dato* das einzige Beispiel für die Synthese von 2,3-Dihydroisooxazolen und Isooxazolidinen durch Übergangsmetall-katalysierte Heterozyklisierung von *N*-Propargylhydroxylaminen durch Einsatz von Gold(III)-Präkatalysatoren stammt von *Campange et al.* aus dem Jahre 2009 (Abb. II-12).²⁷⁹

Abbildung II-13: Kupfer(II)-katalysierte Isooxazolsynthese.

Miyata et al. haben zudem kürzlich eine Kupfer(II)-katalysierte Heterozyklisierung von *O*-benzylierten α -Alkinyloximen mit nachfolgender Benzylwanderung unter Bildung von trisubstituierten Isooxazolen veröffentlicht (Abb. II-13).²⁸⁰

Abbildung II-14: Iodzyklisierung zur Synthese von Isooxazolen nach Larock et al.

Larock et al. zeigten, dass sich *O*-methylierte α -Alkinyloxime auch elektrophil mit lodchlorid zur den iodanalogen Isooxazolen zyklisieren lassen.²⁸¹

Abbildung II-15: Iodzyklisierungen von O-Propargylaminen.

Ferner zeigten *Wada et al.*²⁸² als auch *Knight et al.*,²⁸³ dass *O*-Propargylhydroxylamine in Gegenwart verschiedener Iod-Elektrophile in 2,5-Dihydroisooxazole und Isooxazole überführt werden können (Abb. II-15).

II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysierte Heterozyklisierung von Alkinylhydroxamsäuren

II-3.1. Darstellung der Ausgangsmaterialien

Zunächst mussten *N*-Alkyl-β-Alkinylhydroxamsäuren des Typs **A** (Abb. II-16) als geeignete Ausgangsmaterialien hergestellt werden. Diese sollten aus den korrespondierenden Carbonsäuren des Typs **B** durch Kupplung mit *N*-Alkylhydroxylaminen zugänglich gemacht werden.

Abbildung II-16: Zugang zu N-Alkyl-β-Alkinylhydroxamsäuren aus den korrespondierenden Carbonsäuren.

Dazu wurden ausgehend von den Carbonsäureestern Methylisobutyrat II-**53** und Methylcyclohexancarboxylat II-**54** die Alkineinheit durch Alkinylierung mit Chlorphenylacetylen II-**55** eingeführt.²⁸⁴ Die nachfolgende basische Verseifung der resultierenden Ester II-**56** bzw. II-**57** lieferte die β -Alkinylcarbonsäuren II-**58** in 75% Ausbeute sowie II-**59** in 69% über zwei Stufen. Das eingesetzte Chlorphenylacetylen II-**55** wurde dafür aus Phenylacetylen durch Deprotonierung mit *n*BuLi und anschließendem Abfangen des lithiierten Alkins mit NCS als Elektrophil in 80% Ausbeute generiert.²⁸⁵

Abbildung II-17: Synthese der Carbonsäuren II-58 und II-59.

Zusätzlich wurden diverse *N*-Alkylhydroxylamine des Typs **C** (Abb. II-18) ausgehend von den korrespondierenden Aldehyden **A** durch eine zweistufige Sequenz aus Kondensation mit Hydroxylamin

und der nachfolgenden Reduktion der resultierenden Oxime **B** in Gegenwart von Natriumcyanoborhydrid und Salzsäure synthetisiert.²⁸⁶

Abbildung II-18: Zweistufige Synthese von N-Alkylhydroxylaminen.

Ferner wurden die beiden *O*-Allylhydroxylamine II-**78** und II-**81** nach einer Vorschrift von *High et al.* hergestellt.²⁸⁷ Dazu wurde *N*-Hydroxylphthalimid II-**76** zunächst nach Deprotonierung mit Natriumhydrid in Gegenwart von katalytischen Mengen Natriumiodid mit Allylbromid quantitativ allyliert und nachfolgend durch Hydrolyse mit verdünnter Salzsäure bei 100°C in 96% Ausbeute in II-**78** überführt.

Abbildung II-19: Synthese von O-Allyl-N-Methylhydroxylamin.

Eine Sequenz aus Carbamoylierung mit Di-*tert*butylcarbamoylanhydrid unter *Schotten-Baumann*-Bedingungen,²⁸⁸ Methylierung und Abspaltung der Boc-Schutzgruppe unter sauren Bedingungen führte zur Bildung von II-**81**.²⁸⁹

Die Synthese der Hydroxamsäure II-**82** durch Kupplung der Carbonsäuren II-**58** mit *N*-Methylhydroxylamin mit Hilfe von Kupplungsreagenzien wie DCC²⁹⁰ und EDCI in Gegenwart katalytischer Mengen DMAP gelang zunächst nur unselektiv in schlechten Ausbeuten, parallel wurde der korrespondierende Ester II-**83** isoliert. Eine zweistufige Ein-Topf-Kupplung lieferte die Hydroxamsäure II-**82** in einer Ausbeute von 68%. Dabei erfolgte nach der initialen Bildung des Carbonsäurechlorids in Gegenwart von Oxalylchlorid und katalytischen Mengen DMF, die nukleophile Substitution mit *N*-Methylhydroxylamin in Gegenwart katalytischer Mengen DMAP und einem Überschuss an Pyridin.

Abbildung II-20: Erste unselektive Synthesen der Hydroxamsäure II-82 durch DCC oder EDCI.

Durch Umsetzung der Carbonsäuren II-**58** und II-**59** mit diversen verschiedenen *N*-Alkylhydroxylaminen unter diesen Bedingungen wurde eine Vielzahl verschiedener Hydroxamsäuren synthetisiert (Abb. II-21).

Abbildung II-21: Synthese der Hydroxamsäuren.

Auf Grund langsamer Zersetzung der *N*-Alkylhydroxamsäuren in Gegenwart von Silicagel war es nötig eine sehr schnelle Chromatographie durchzuführen um weitestgehend saubere Verbindungen zu erhalten. Nachträgliche Versuche die Produkte durch Chromatographie über Silicagel aufzureinigen sowie die Verwendung andere stationäre Phasen (z.B. Aluminumoxid verschiedener Aziditäten) oder von Zusätzen wie Triethylamin zum Eluentengemisch schlugen fehl oder führten zur Zersetzung der Substanzen.

II-3.2 Untersuchung der Übergangsmetall-katalysierten 5-*exo*-dig-Heterozyklisierung von β-Alkinylhydroxamsäuren zur Synthese von Isooxazolidin-3onen

In einem ersten Versuch konnte die Hydroxamsäure II-**82** in Gegenwart von 5 mol% Au(PPh₃)SbF₆^t in Dichlormethan bei 23°C in 87% Ausbeute in das Isooxazolidin-3-on II-**97** überführt werden (Abb. II-22).

Abbildung II-22: 5-exo-dig-Heterozyklisierung von II-82.

Die Struktur von II-**97** konnte durch die röntgendiffraktometrische Strukturanalyse eines aus CDCl₃/Pentan kristallisierten Einkristalls vollständig aufgeklärt werden (Abb. II-23). Es zeigt sich, dass die Reaktion hochgradig diastereoselektiv war und nur das Z-Isomer der Verbindung gebildet wurde. Das olefinische Proton der Verbindung II-**97** weist eine chemische Verschiebung von 5.30 ppm im ¹H-NMR-Spektrum und das entsprechenden Kohlenstoffatom eine chemische Verschiebung von 98.9 ppm im ¹³C-NMR-Spektrum auf.

Abbildung II-23: Rötgendiffraktometrische Kristallstrukturanalyse von II-97.

Zur Optimierung der Reaktionsbedingungen wurden nachfolgend diverse Übergangsmetallkatalysatoren und Bedingungen untersucht (Tab. II-1). Während in Gegenwart von 10 mol% AuCl₃ nach 90 min kein vollständiger Umsatz erreicht wurde und zudem das Produkt geringfügige Verunreinigungen aufwies,

^t 10 mol% Au(PPh₃)Cl und 5 mol% AgSbF₆ wurden in Dichlormethan vorgemischt und zu einer Lösung des Ausgangsmaterials filtriert.

II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysierte Heterozyklisierung von Alkinylhydroxamsäuren

führte die Verwendung von $Au(PPh_3)N(SO_2Me)_2$ zu keinem Umsatz des Ausgangmaterials (Tab. II-1, Einträge 2 und 3).

Tabelle II-1: Optimierung der Reaktionsbedingungen.

		I -82		′`Ò ∥-97			
Eintrag	Katalysator [mol%]	Additiv [mol%]	Lösungs- mittel ^f	Reaktions- temperatur [°C]	Reaktions- zeit [min]	II- 82 [%] ⁱ	Ausbeute II- 97 [%] ^e
1	Au(PPh ₃)SbF ₆ [5] ^ª	-	CH ₂ Cl ₂	23	90	0	87
2	$Au(PPh_3)N(SO_2Me)_2$ [10]	-	CH_2CI_2	23	30	100	0 ^d
3	AuCl ₃ [10]	-	CH_2CI_2	23	90	10	80 ^g
4	AgSbF ₆ [10]	-	CH_2CI_2	23	30	0	93 ^h
5	AgOAc [10]	-	CH ₂ Cl ₂	23	90	0	100 ^h
6	AgOAc [5]	-	CH_2CI_2	23	30	33	47 ^h
7	AgBF ₄ [10]	-	CH_2CI_2	23	30	0	100^{h}
8	Ag ₃ PO ₄ [10]	-	CH_2CI_2	23	30	96	0 ^b
9	Ag [10]	-	CH_2CI_2	23	90	100	0 ^d
10	Cul [10]	-	ACN	23	30	95	0 ^b
11	PtCl ₂ [10]	COD [20]	Toluen	80	30	95	0 ^c
12	PtCl ₄ [10]	COD [20]	Toluen	80	30	95	0 ^{b,c}
13	Fel ₂ [10]	-	ACN	23	30	100	0 ^d
14	Ni(acac) ₂ [10]	-	ACN	23	30	100	0 ^d
14	HBF ₄ [10]	-	THF	23	90	60	0 ^c
15	pTsOH [10]	-	THF	23	30	80	0 ^c
16	HOAc [20]	-	CH_2CI_2	23	90	100	0 ^d
17	-	-	Xylen	120	30	70	0 ^c
18	-	-	Toluen	80	30	95	0 ^c

[a] Die Präkatalysatoren wurden vorgemischt und filtriert (Au(PPh₃)Cl 10mol% und AgSbF₆ 5mol%) [b] Laut DC wurden Spuren von II-**97** gebildet. [c] Zersetzung. [d] Kein Umsatz. [e] Isolierte Ausbeuten nach chromatographischer Reinigung. [f] 0.1 mol/L. [g] Produkt war verunreinigt. [h] Bildung eines Silberspiegels während der Reaktion. [i] Reisoliertes Ausgangsmaterial.

Es zeigte sich, dass neben Gold diverse Silber(I)salze in der Lage waren die Reaktion zu katalysieren. In Gegenwart von AgOAc, AgSbF₆ oder AgBF₄ in Dichlormethan wurde jeweils quantitativer Umsatz zum Produkt II-**97** erreicht (Tab. II-1, Einträge 4 bis 7). Ag₃PO₄ war weniger effizient und führte lediglich zur Bildung von Spuren des Produktes, wahrscheinlich auf Grund der schlechten Löslichkeit in Dichlormethan (Tab. II-1, Eintrag 8).

Da während der Verwendung von Silber(I)salzen die Bildung von Silberspiegeln an der Wandung der Glasreaktionsgefäße beobachtet wurde, wurde auch untersucht, ob elementares Silber in Pulverform ein geeigneter Katalysator ist, jedoch konnte auch nach 90 min in Dichlormethan kein Umsatz des Ausgangsmaterials beobachtet werden (Tab. II-1, Eintrag 9). Die Bildung eines Silberspiegels ist Teil eines Redoxprozesses, in dem Silber(I)-lonen zu elementarem Silber reduziert werden. Es kann jedoch nur gemutmaßt werden welche Reaktion im Rahmen des zugehörigen Oxidationsprozesses abläuft. Da das Produkt in quantitativer Ausbeute erhalten wurde, bleibt nur die mögliche Reaktion mit im Lösungsmittel enthaltenen Verunreinigungen wie dem Stabilisator Amylen oder das Lösungsmittel Dichlormethan selber als Reaktionspartner übrig. Da elementares Silberpulver selbst keine Reaktion initiiert ist davon auszugehen, dass die Bildung des Silberspiegels eine nachgelagerte oder simultan ablaufende Reaktion darstellt.

Die Verwendung von 10 mol% Cul in Acetonitril bei 23°C oder 10 mol% PtCl₄ in Gegenwart von 20 mol% 1,5-Cyclooctadien in Toluen bei 80°C führten nur zur Bildung von Spuren des Produktes II-**97**. Während der Einsatz von 10 mol% PtCl₂ in Gegenwart 20 mol% von 1,5-Cyclooctadien in Toluen bei 80°C zur vollständigen Zersetzung des Ausgangmaterials nach 30 min führte, konnte bei Verwendung von Fel₂ oder Ni(acac)₂ in Acetonitril bei 23°C keine Reaktion beobachtet werden (Tab. II-1 Einträge 11, 13 und 14). Schwache *Brønstedt*-Säuren wie Essigsäure ergaben keinen Umsatz, während stärkere wie HBF₄ oder pTsOH zur sofortigen Zersetzung der Hydroxamsäuren ohne Produktbildung führten (Tab. II-1, Einträge 14-16). Die Reaktion konnte zudem nicht thermisch durch Erhitzen in Toluen bzw. Xylen auf 80°C bzw. 120°C eingeleitet werden, bei diesen Temperaturen setzte lediglich eine langsame Zersetzung der Hydroxamsäuren ein.

Unter Berücksichtigung der Katalysatorpreise,^u wurde die Verwendung von 10 mol% Silberacetat in Dichlormethan als beste Bedingungen identifiziert und nachfolgend die Anwendungsbreite der Reaktion unter diesen Bedingungen untersucht (Tab. II-2). Die Umsetzung aller weiteren getesteten Hydroxamsäuren in Gegenwart von AgOAc als Katalysator führte jedoch zu signifikant niedrigeren Ausbeuten. Die Umsetzung der Hydroxamsäure II-**88**, welche keinen *N*-Alkylsubstituenten trägt, lieferte nach 6 h bei 23°C keinen weiteren Umsatz, sodass 27% des Ausgangsmaterials reisoliert und lediglich 42% des Isooxazolidin-3-ones II-**98** erhalten wurden (Tab. II-2, Eintrag 2). Vermutlich ist diese Beobachtung mit der beobachteten Bildung von Silberspiegeln während der Reaktion mit Silber(I)salzen assoziiert. Da gezeigt werden konnte, dass elementares Silber die Reaktion nicht katalysiert (*vide supra*), führt die vollständige Reduktion der Silber(I)-Ionen automatisch zum Stillstand der Reaktion. Die Reaktion der Hydroxamsäure II-**86** führte unter den AgOAc-katalysierten Reaktionsbedingungen nach 7 h

^u AgOAc ca. 5.24 €/g, AgBF₄ ca. 7.72 €/g und AgSbF₆ ca. 15.7 €/g bei Kleinmengenabnahme (bis 50 g) bei Sigma-Aldrich

II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysierte Heterozyklisierung von Alkinylhydroxamsäuren

zur Bildung beider möglicher Doppelbindungsisomere II-**101** und II-**102** in 26% (für das Z-Isomer) bzw. 43% Ausbeute (für das E-Isomer) (Tab II-2, Eintrag 6).

		₹ 2 AgC	Ac (10 mol%)	Ph O, N-R ²	Ph ~~ ^O			
		—Ph	(DCM) 23°C	$R^1 \rightarrow \begin{pmatrix} n \\ k \\ R^1 \end{pmatrix} = \begin{pmatrix} n \\ k \\ k \\ R^1 \end{pmatrix}$	$R^1 \rightarrow R^1$	þ		
Eintrag ^d	Hydroxam-	R ¹	R ²	Reaktions-	▲ [%] ^e	Ausbe	Ausbeute [%] ^a	
8	säure			zeit [h]	A [70]	В	С	
1	II- 82	Me	Me	1.5	0	100, II- 97	0	
2	II- 88	Me	н	6	27 ^b	42, II -98	0	
3	II- 89	Me	2-OMe-Bn	3.5	0	60, II- 99	0	
4	II- 85	Me	4-F-Bn	7	0	60, II -100	0	
5	II- 84	Me	4-Br-Bn	2.5	76	0	0	
6	II- 86	Me	2-Cl-Bn	7	0	26, II -101	43, II -102	
7	II- 87	Me	4-NO ₂ -Bn	1.5	0 ^c	0	0	
8	II- 90	-(CH ₂) ₃ -	Me	3	88 ^c	0	0	
9	II- 91	-(CH ₂) ₃ -	4-Br-Bn	3	0 ^c	0	58, II -103	
10	II- 92	-(CH ₂) ₃ -	4-F-Bn	3	75 [°]	0	0	
11	II- 93	-(CH ₂) ₃ -	2-Cl-Bn	3	80 ^c	0	0	

Tabelle II-2: Untersuchung der Anwendungsbreite der Reaktion in Gegenwart von AgOAc als Katalysator.

[a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Kein weiterer Umsatz. [c] Zersetzung. [d] Silberspiegelbildung. [e] Reisoliertes Ausgangsmaterial.

Erwartungsgemäß²²² sind die NMR-Signale des olefinischen Protons und des verknüpften Kohlenstoffatoms des E-Isomers II-**102** (¹H-NMR: 6.19 ppm und ¹³C-NMR: 103.7 ppm) dabei im Vergleich zu den analogen Signalen im Z-Isomers II-**101** (¹H-NMR: 5.30 ppm und ¹³C-NMR: 99.3 ppm) deutlich Tieffeld-verschoben.

Die Hydroxamsäuren II-**90**, II-**92** und II-**93**, von denen die Bildung *spiro*zyklischer Isooxazoldin-3-one erwartet wurde, konnten unter den Bedingungen nicht umgesetzt werden. Hier wurde lediglich eine langsame Zersetzung der Ausgangsmaterialien beobachtet. Nur Verbindung II-**91** reagierte unter Bildung des *Spiro*isooxazoldin-3-ones II-**103** in 58% Ausbeute, allerdings wurde hier ausschließlich das Z-Isomer gebildet.^v

Eine sinnvolle Erklärung für die Bildung der E-Isomere in Gegenwart von AgOAc als Katalysator konnte nicht gefunden werden. Die ausschließliche Bildung des Z-Isomers II-**91** bei der Umsetzung der Hydroxamsäure II-**82** in Gegenwart von (Ph₃P)AuSbF₆ sowie AgOAc als Katalysator lässt mechanistisch

^v Die Experimente 9 und 6 (Tab. II-2) wurden mit vergleichbarem Resultat wiederholt.

eine initiale *Anti*-Addition des internen Nukleophils nach Aktivierung der Dreifachbindung vermuten (Abb. II-24).

Anti-Addition des Heteronukleophils

Abbildung II-24: Vermutete initiale Anti-Addition.

Die nachfolgende Isomerisierung der Doppelbindung durch Silber(I)ionen wäre eine zum mindestens teilweise nachvollziehbare Erklärung für die Bildung der isolierten E-Isomere auch wenn dadurch immer noch unklar bleibt, warum nur bei den Brom- und Chlor-substituierten Verbindungen eine Isomerisierung erfolgt. Versuche eine Doppelbindungsisomerisierung der Isomere II-**101** und II-**102** jeweils in Gegenwart von 10 mol% AgOAc in Dichlormethan einzuleiten schlugen jedoch fehl, beide Isomere wurden nach 24 h bei 23°C jeweils nahezu vollständig reisoliert,^w womit eine Silber(I)ionen-katalysierte Doppelbindungs-isomerisierung weitgehend ausgeschlossen werden kann. Vermutlich führt ein komplexerer Mechanismus gegebenenfalls auch unter Beteiligung kolloidaler Silberpartikel während der Bildung des Silberspiegels zur Bildung der E-Isomere.

Auf Grund der inkonsistenten Ergebnisse bei der Verwendung von AgOAc als Katalysator wurde erneut die Verwendung von Au(PPh₃)SbF₆ als Katalysator untersucht (Tab. II-3). In Gegenwart von 5 mol% Au(PPh₃)SbF₆ verliefen die Umsetzungen aller getesteten Hydroxamsäuren in guten bis exzellenten Ausbeuten und exzellenter Diastereoselektivität ausschließlich zum Z-Isomer. Lediglich die Nitrosubstituierte Hydroxamsäure II-**87** zersetzte sich unter den Reaktionsbedingungen (Tab. II-3, Eintrag 8). Diverse Alkylsubstituenten am Stickstoffatom werden von der Reaktion toleriert. Hydroxamsäuren mit Fluor-, Chlor- und Bromsubstituenten (Tab. II-3, Einträge 5 bis 7 und 11 bis 13) konnten ebenso wie Methoxy-substituierte Hydroxamsäuren problemlos in die korrespondierenden Isooxazolidin-3-one überführt werden. Die Umsetzung der von Cyclohexancarbonsäure abgeleiteten Hydroxamsäuren II-**90**, II-**91**, II-**92** und II-**93** führte zur Bildung der jeweiligen spirozyklischen Isooxazolidin-3-one in guten Ausbeuten (Tab. II-3, Einträge 10 bis 13). Die *O*-alkylierten Hydroxamsäuren II-**96** und II-**94**, von deren Umsetzung eine mögliche Alkylwanderung der am Sauerstoff gebundenen Substituenten erhofft wurde,²⁸² reagierten auch bei höheren Reaktionstemperaturen von bis zu 80°C nicht unter den Reaktionsbedingungen und wurden vollständig reisoliert (Tab. II-3, Einträge 2 und 9).

^w Es wurde dabei keine Bildung eines Silberspiegels beobachtete.

II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysierte Heterozyklisierung von Alkinylhydroxamsäuren

	F	$ \begin{array}{c} $	Au(PPh ₃)SbF ₆ (5 m (CH ₂ Cl ₂) 23°C	nol%) R ¹ → R ¹ →	o N-R ² -o Ph B		
Eintrag	Hydroxam- säure	R^1	R ²	R ³	Reaktions- Zeit [h]	Ausb A	eute [%] ^a B
1	II- 82	Me	Me	Н	1.5	0	87 II- 97
2 ^c	II- 94	Me	Me	Me	6	100 ^b	0
3	II- 88	Me	Н	Н	4	0	89 II- 98
4	II- 89	Me	2-OMe-Bn	н	6	0	80 II- 99
5	II- 84	Me	4-Br-Bn	н	6	0	100 II- 104
6	II- 86	Me	2-Cl-Bn	Н	4	0	100 II- 102
7	II- 85	Me	4-F-Bn	н	4	0	80 II- 100
8	II- 87	Me	4-NO ₂ -Bn	н	6	0 ^d	0
9 ^c	II- 96	Me	Me	O-Allyl	6	100 ^b	0
10	II- 90	-(CH ₂) ₅ -	Me	н	4	0	80 II- 105
11	II- 91	-(CH ₂) ₅ -	4-Br-Bn	Н	5	0	76 II- 106
12	II- 93	-(CH ₂) ₅ -	2-Cl-Bn	Н	5	0	100 II- 107
13	II- 92	-(CH ₂) ₅ -	4-F-Bn	Н	5	0	50 II- 108

Tabelle II-3: Untersuchung der Anwendungsbreite der Reaktion in Gegenwart von Au(PPh₃)SbF₆ als Katalysator.

Während die Hydroxamsäure II-**88** ohne zusätzlichen Substituenten am Stickstoffatom das Isooxazolidin-3-on II-**98** in 89% Ausbeute ergab (Tab. II-3, Eintrag 3), führte die Umsetzung der Stickstoffunsubstituierten und O-allylierten Hydroxamsäure II-**95** zur Bildung des 1-(Allyloxy)-1H-pyrrol-2(3H)-ons II-**109** in 76% Ausbeute (Abb. II-25). Die Verbindung II-**109** ist dabei das Produkt einer 5-*endo*-dig-Heterozyklisierung.

Abbildung II-25: 5-endo-dig-Heterozyklisierung von II-86.

[[]a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Kein Umsatz. [c] Die Experimente wurden auch bei 40, 60 und 80°C in Chloroform in abgeschlossenen Gefäßen durchgeführt. [d] Zersetzung.

II-3.4 Studien zur Synthese weiterer Heterozyklen

II-3.4.1 Pyrazolidin-3-one

Im Weiteren wurde versucht analog zur Reaktion von β -Alkinylhydroxamsäuren die Zyklisierung von β -Alkinylcarbonsäurehydraziden des Typs **A** unter Bildung von Pyrazolidin-3-onen des Typs **B** zu erreichen.

Abbildung II-26: Geplante Synthese von Pyrazolidin-3-on.

Dazu wurden ausgehend von den zuvor eingesetzten β-Alkinylcarbonsäuren durch Bildung der Säurechloride in Gegenwart von Oxalylchlorid und katalytischen Mengen DMF gebildet und nachfolgender Substitution in Gegenwart von katalytischen Mengen DMAP und einem Überschuss an Pyridin einige Carbonsäurehydrazide synthetisiert (Abb. II-27).

Abbildung II-27: Synthese von Carbonsäurehydraziden.

Keines der β-Alkinylcarbonsäurehydrazide konnte in Gegenwart von 5 mol% Au(PPh₃)SbF₆ oder AgOAc in Dichlormethan bei 23°C zur Reaktion gebracht werden. Selbst Reaktionstemperaturen von 60°C oder 80°C führten nicht zu der angestrebten Heterozyklisierung und die Carbonsäurehydrazide wurden größtenteils reisoliert.

II-3.4.2 Pyrrolidin-2-one

Zusätzlich wurde ausgehend von *O*-allylierten γ-Alkinylhydroxamsäuren die Bildung von Pyrrolidin-2onen durch Gold(I)-Katalyse untersucht. Dafür wurden ausgehend von

II-3. Synthese von Stickstoff-haltigen Heterozyklen durch Übergangsmetall-katalysierte Heterozyklisierung von Alkinylhydroxamsäuren

Cyclohexancarbonsäuremethylester II-**58** die *O*-allylierten γ-Alkinylhydroxamsäuren II-**119** und II-**122** hergestellt (Abb. II-28). Die Allylierung von Cyclohexancarbonsäuremethylester II-**45** lieferte zunächst den Ester II-**117**. Durch eine *Sonogashir*a-Kupplung¹⁹³ mit Phenyliodid konnte der Phenyl-substituierte Ester II-**120** generiert werden. Beiden Estern II-**117** und II-**120** wurden anschließend durch eine alkalische Verseifung in die korrespondierenden Carbonsäuren und durch nachfolgende Kupplung unter den zuvor beschriebenen Bedingungen in die *O*-allylierten γ-Alkinylhydroxamsäuren II-**119** und II-**122** überführt.

Abbildung II-28: Synthese von *O*-allylierten γ-Alkinylhydroxamsäuren.

Die Reaktion der *O*-allylierten γ -Alkinylhydroxamsäuren II-**119** und II-**122** in Gegenwart von 5 mol% Au(PPh₃)SbF₆ in Dichlormethan bei 23°C lieferte nach 30 min die *Spiro*pyrrolidin-2-one II-**123** und II-**124** in 63% bzw. 60% Ausbeute (Abb. II-29).

Abbildung II-29: Synthese der Pyrrolidin-2-one II-114 und II-115.

II-3.4.3 Dihydroisoxazole

Ferner wurde das *N*-(But-3-inyl)-*N*-alkylhydroxalamin II-**128** ausgehend von Homopropargylalkhol II-**125** synthetisiert. Die *Sonogashira*-Kupplung¹⁹³ von II-**125** mit Phenyliodid ergab 4-Phenyl-but-3-in-1-ol II-**126**. Durch Reaktion mit Mesylchlorid in Gegenwart von Pyridin konnte das Mesylat II-**127** in 86% Ausbeute erhalten werden (Abb. II-30). Nachfolgend lieferte die nukleophile Substitution des Mesylats durch

N-Methylhydroxalamin in Gegenwart substöchiometrischer Mengen TBAI in DMPU bei 23°C *N*-Methyl-*N*-(4-phenylbut-3-in-1-yl)hydroxylamin II-**128** in 63% Ausbeute.

Abbildung II-30: Synthese von N-Methyl-N-(4-phenylbut-3-in-1-yl)hydroxylamin II-128.

Die Erwartung war, dass in Gegenwart von Gold(I)-Katalysatoren eine Heterozyklisierung zu 2,5disubstituierten Isooxazolidininen führen würde. Erstaunlicherweise wurde bei Reaktion mit 5 mol% Au(PPh₃)SbF₆ das Dihydroisooxazolidinin II-**129** in schlechter Ausbeute isoliert (Abb. II-31). Anhand der chemischen Verschiebung der olefinischen Protonen (¹H-NMR: 6.77 – 6.68 (m, 1H), 6.22 (dd, *J* = 3.5, 1.8 Hz, 1H) und 6.21 – 6.16 (m, 1H)) in II-**129** kann eine Z-Konfiguration der *exo*zyklischen Doppelbindung angenommen werden. [×] Die generelle 5-*exo*-dig-Heterozyklisierung von *N*-(But-3-inyl)-*N*alkylhydroxalaminen war demnach möglich, eine nachfolgende Oxidation des Heterozyklus führte aber offensichtlich zur Bildung der Dihydroisooxazolidinine.

Abbildung II-31: Unerwartete Bildung eines Dihydroisooxazolidinins.

Die Oxidation wirft, analog der Bildung von Silberspiegel in der Silber(I)-katalysierten Bildung von Isooxazolidin-3-onen (*vide supra*), die Frage auf welcher gegenläufige Redoxteilprozess Teil dieser Reaktion ist. Bisher konnte dafür keine sinnvolle Erklärung gefunden werden. Gold(I)-lonen sind zwar Oxidationsmittel (Redoxpotential $E_0(Au^+ + e^- -> Au^0 = +1.67 V$ bei 25°C, 101.3 kPa, pH = 0 und c=1.0 mol/L),²⁹¹ jedoch in der Reaktionslösung in nur 5 mol% vorhanden und damit nicht in der Lage 30% Ausbeute zu generieren Für eine Reoxidation von Gold⁰ zu Gold(I) durch Luftsauerstoff ist dessen Oxidationspotential (Redoxpotential $E_0(O_2 + 4 H^+ + 4 e^- -> 2 H_2O = +1.23 V$ bei 25°C, 101.3 kPa, pH = 0 und c=1.0 mol/L)²⁹¹ nicht ausreichend. Auf Grund der Verwendung trockener, hochreiner Lösungsmittel in HPLC-Qualität ist die Oxidation durch Verunreinigungen aus dem Lösungsmittel relativ unwahrscheinlich.

^{*} Diese Annahme muss noch durch weitere Untersuchungen bestätigt werden.

II-4. Zusammenfassung und Ausblick

II-4.1 Zusammenfassung

Im Rahmen dieser Arbeit konnte ein neues Konzept zum Aufbau von Stickstoff-haltigen Heterozyklen durch Gold(I)-katalysierte Heterozyklisierungen von β - und γ -Alkinylhydroxamsäuren entwickelt werden. Dabei führte die Umsetzung von β -Alkinylhydroxamsäuren des Typs **A** (Abb. II-32) in Gegenwart von 5 mol% Au(PPh₃)SbF₆ in Dichlormethan bei 23°C in einer 5-*exo*-dig-Heterozyklisierung zur Bildung von Isooxazolidin-3-onen und Spiroisooxazolidin-3-onen des Typs **B** in guten bis exzellenten Ausbeuten. Die Reaktion verlief hochgradig diastereoselektiv unter der ausschließlichen Bildung des Z-Isomers. Die β -Alkinylhydroxamsäuren des Typs **A** konnten ausgehend von kommerziell erhältlichen Estern in nur 3 Stufen zugänglich gemacht werden.

Abbildung II-32: Gold(I)-katalysierte 5-*exo*-dig-Heterozyklisierung von β-Alkinylhydroxamsäuren zur Synthese von Isooxazolidin-3-onen.

Die Reaktion der *O*-alkylierten und Stickstoff-unsubstituierten β -Alkinylhydroxamsäure II-**95** lieferte unter denselben Reaktionsbedingungen das 1H-Pyrrol-2(3H)-one II-**109** in 76% Ausbeute (Abb. II-33).

Abbildung II-33: Gold(I)-katalysierte 5-*endo*-dig-Heterozyklisierung von β-Alkinylhydroxamsäure zur Synthese von 1H-Pyrrol-2(3H)-onen.

Ferner lieferte die Reaktion von *O*-Alkyl- γ -Alkinylhydroxamsäuren in Gegenwart von 5 mol% Au(PPh₃)SbF₆ in Dichlormethan bei 23°C Pyrrolidin-2-one in guten Ausbeuten.

Abbildung II-34: Gold(I)-katalysierte 5-*exo*-dig-Heterozyklisierung zur Synthese von Pyrrolidin-2-onen.

Auch diese Reaktion verläuft unter perfekter Diastereoselektivität zum Z-Isomer der der exozyklischen Doppelbindung.

Abbildung II-35: Erzeugung eines Dihydroisooxazoles.

In einem ersten Versuch konnte bei der Umsetzung des *N*-(But-3-inyl)-*N*-alkylhydroxalamins II-**128** das Dihydroisooxazol I-**129** in 30% Ausbeute erhalten werden.

II-4.2 Ausblick

Das vorgestellte Konzept zur Synthese von Stickstoff-haltigen Heterozyklen durch Gold(I)-katalysierte Heterozyklisierungen von Alkinylhydroxamsäuren zeigt großes Potential für Anwendung in der Diversitäts-orientierten Synthese von Heterozyklen.⁷⁹

Durch eingehendere Untersuchungen zur Substratbreite der Gold(I)-katalysierten Heterozyklisierungen, insbesondere zur Bildung von 1H-Pyrrol-2-(3H)-onen und Pyrollidin-2-onen, sollte dieser Aspekt des Konzeptes deutlicher unterstrichen werden (Abb. II-36). Die hierfür benötigten β - und γ -Alkinylhydroxamsäuren können nach der vorgestellten Syntheseroute in 3 Stufen effizient aufgebaut werden. Alternativ könnte auch ein kürzlich von *Trost et al.*²⁹² vorgestellte Methode zur sequentiellen Difunktionalisierung von Isopropylacetylen I-**130** zur Synthese von β -Alkinylcarbonsäureestern des Typs **F** mit variablen substituenten R adaptiert werden.

Abbildung II-36: Eingehendere Untersuchung der Anwendungsbreite der Gold(I)-katalysierten Heterozyklisierungen zur Synthese von Isooxazolidin-3-onen, 1H-Pyrrol-2-(3H)-onen und Pyrollidin-2-onen.

Zusätzlich sollte die zur Bildung des Dihydroisooxazols II-**129** aus dem *N*-(But-3-inyl)-*N*alkylhydroxalamins II-**128** optimiert werden und als allgemeine Methode zur Synthese von Dihydroisooxazolen ausgearbeitet werden.

Während der Arbeiten an diesem Projekt zeigte sich, dass β -Alkinylhydroxamsäuren unter Gold(I)-Katalyse in einer 5-*exo*-dig Heterozyklisierung durch das Sauerstoffatom als internem Nukleophil reagieren, selbst bei *N*-unsubstituierten Verbindungen ist dies der Fall. *O*-Alkylierte γ -Alkinylhydroxamsäuren hingegen liefern die Produkte einer 5-*exo*-dig Heterozyklisierung in dem das Stickstoffatom der Hydroxamsäure als Nukleophil agiert.

Diese unterschiedlichen Reaktivitäten in Abhängigkeit von dem *O/N*-Substitutionsgrad könnte man sich in einer möglichen Gold(I)-katalysierten Tandem-*bis*-5-*exo*-dig-Heterozyklisierung von β , γ '-Dialkinylhydroxamsäuren des Typs **A** (Abb. II-37) zu Nutze machen. Dabei ist anzunehmen, dass eine 5-*exo*-dig-Heterozyklisierung des enthaltenen β-Alkinylhydroxamsäure-Motivs zur Bildung des Isooxazolidin-3-on-Intermediates **B** führt, welches dann in einer zweiten 5-*exo*-dig-Heterozyklisierung zum Methyl-3,6-dialkyliden-7-oxo-2-oxa-1-azabicyclo[2.2.1]heptan-4-carboxylaten **C** weiter reagiert. Das Ausgangsmaterial für eine solche Umsetzung wäre ebenfalls in wenigen Schritten ausgehend von Dimethylmalonat II-**121** zugänglich.

Mögliche Tandem-*bis*-5-*exo*-dig-Heterozyklisierung zum Aufbau von Methyl-3,6-dialkylidene-7-oxo-2-oxa-1-azabicyclo[2.2.1]heptan-4-carboxylaten

Abbildung II-37: Mögliche Tandem-*bis*-5-*exo*-dig-Heterozyklisierung zum Aufbau von Methyl-3,6-dialkyliden-7-oxo-2-oxa-1-azabicyclo[2.2.1]heptan-4-carboxylaten.

Ferner sollte eine mögliche Zyklisierung von β-Alkinylcarbonsäurehydraziden unter Bildung von Pyrrazolidin-3-onen erneut eingehender untersucht werden. Abschließend sollten alle synthetisierten Heterozyklen, insbesondere die Isooxazolidin-3-one einer Untersuchung ihrer biologischen Aktivität zugeführt werden.

III Diastereoselektive Dehydrogenierung von β-Oxonitrilen mittels IBX

III-1. Einleitung

III-1.1 Hypervalente Organoiodverbindungen

Als Hypervalenz wird die Fähigkeit eines Atoms bezeichnet, in einer molekularen Verbindung seine Valenzschale über die Grenzen der *Lewis*-Oktett-Regel hinweg zu erweitern und mehr als die möglichen acht Elektronen zur Besetzung der s- und p-Orbitale aufzunehmen.²⁹³ Diese Abweichung von der Valenzstrukturtheorie tritt bei schwereren Elementen der 3. bis 8. Hauptgruppe des Periodensystems auf. Klassische Beispiele für hypervalente Verbindungen sind das oktaedrische Schwefelhexafluorid III-**1**, das Phosphorpentachlorid III-**2**, in dem die fünf Chloratome die Ecken einer trigonalen Bipyramide mit dem Phosphoratom im Mittelpunkt besetzen, oder das lineare Xenondifluorid III-**3** (Abb. III-1).

Abbildung III-1: Beispiele für hypervalente Verbindungen (links), 3-Zentren-4-Elektronenbindungen im XeF₂ (rechts).²⁹⁶

Die Bindungsverhältnisse in einem hypervalenten Molekül können am besten durch das molekülorbitaltheoretische Konzept der 3-Zentren-4-Elektronenbindung, welches im Wesentlichen auf den Arbeiten von *Pimentel*²⁹⁴und *Rundle*²⁹⁵ beruht, beschrieben werden.²⁹⁶ Die lineare 3-Zentren-4-Elektronen-Bindung des Xenondifluorids III-**3** wird dabei als eine Linearkombination von p-Orbitalen des Zentralatoms und der Liganden betrachtet, in der nur eines der beiden Elektronenpaare ein bindendes Orbital besetzt und Elektronendichte vom hypervalenten Xe-Atom in nicht-bindende Molekülorbitale abgegeben wird.

Auch Iod als Element der 7. Hauptgruppe bildet hypervalente Verbindungen. Die erste hypervalente organische Iodverbindung, das Iodbenzoldichlorid III-**4** (Abb. III-2) wurde 1886 von *Willgeroth* durch Reaktion von Iodbenzol mit Chlorgas hergestellt.²⁹⁷ In den folgenden Jahren began eine Phase intensivster Forschung auf dem Gebiet der hypervalenten Iodverbindungen aus der über 500 weitere Vertreter dieses Verbindungstyps und unter anderem²⁹⁸ wegweisende Arbeiten von *Willgeroth*,²⁹⁹ *Meyer*, ³⁰⁰ *Thiele* ³⁰¹ und *Mascarelli* ³⁰² hervor gingen. ³⁰³ Anschließend nahm das Interesse an hypervalenten Iodverbindungen als Synthesewerkzeug in der organischen Chemie erkannt wurde. Dem

wiedererwachten Interesse folgten die Synthesen von einer Vielzahl (Abb. III-2) an neuen hypervalenten Iodverbindungen. Die anhaltende rapide Entwicklung dieses Forschungsgebietes hat zudem ein Potpourri an synthetischen Methoden zur Anwendung von hypervalenten Iodverbindungen in der organischen Synthese hervorgebracht.^{304,305,306,307,308,309}

Abbildung III-2: Ausgewählte hypervalente Iodverbindungen mit ihrer N-X-L-Notation.

Die Benennung von hypervalenten lodverbindungen kann auf verschiedene Weisen erfolgen. Nach der *International Union of Pure and Applied Chemistry* (IUPAC) werden dreiwertige lodverbindungen als λ^3 -lodane und fünfwertige lodverbindungen als λ^5 -lodane bezeichnet. *Martin et al.* prägten hingegen die Bezeichnung lodane für dreifach koordinierte lod(III)-Spezies und Periodinane für fünffach koordinierte lod(V)-Spezies.³¹⁰ Verbreitet ist zudem auch die sogenannte *N-X-L*- oder auch *Martin-Arduengo*-Notation (Abb. III-2);³¹¹ als allgemein gültige Nomenklatur für hypervalente Verbindungen werden hierin für *N* die Zahl der Valenzelektronen und für *L* die Zahl der Liganden angegeben, die das hypervalente Zentralatom *X* umgeben.

III-1.2 ortho-Iodoxybenzoesäure - IBX und seine Derivate

Hypervalente lodverbindungen, die auf einem heterozyklischen Benziodoxolsystem basieren, repräsentieren eine wichtige Klasse von lodanen mit einer breiten und synthetisch äußerst nützlichen Anwendbarkeit. Im Besonderen das heterozyklische λ^5 -Iodan, 1-Hydroxy-1-oxo-1H-1 λ^5 -

benzo[d][1,2]iodoxol-3-on III-**13** (Abb. III-3), im Allgemeinen als *o*-lodoxybenzoesäure oder auch IBX III-**13**³¹² bezeichnet, hat vielfältige Anwendungen als mildes Oxidationsmittel in der organischen Synthese gefunden.³⁰⁶ Die Synthese *o*-lodoxybenzoesäure III-**13** wurde zum ersten Mal 1893 durch *Meyer et al.* beschrieben.³¹³ Ausgehend von 2-lodbenzoesäure III-**14** lieferte die Oxidation mit Kaliumpermanganat im sauren Mileu zunächst das λ^3 -lodane lodosobenzoesäure III-**15**, welche dann durch erneute Oxidation mit Kaliumpermanganat im basischen Mileu in die *o*-lodoxybenzoesäure III-**13** überführt wurde.

Abbildung III-3: Synthesen von IBX nach Meyer et al. und Santagostino et al..

Nachfolgend wurden diverse weitere Verfahren zur Synthese von o-Iodoxybenzoesäure III-13 entwickelt,³¹⁴ praktische Bedeutung hat heute jedoch nur noch das einstufige, apparativ sehr einfache Protokoll von Santagostino et al..³¹⁵ Darin wird 2-lodbenzoesäure III-14 in Wasser in Gegenwart von Oxon[®] (2 KHSO₅ KHSO₄ K₂SO₄) bei 70°C in guten Ausbeuten in IBX III-**13** überführt. Für eine organische Verbindung ist IBX III-13 eine bemerkenswert starke Säure (pKs (H_2O) = 2.40, pKs (DMSO) = 6.65).³¹⁶ Die Struktur von IBX III-13 wurde mittels einer Rötgenstrukturanalyse von Einkristallen aufgeklärt (Abb. III-4).³¹⁷ Das Molekül ist flach; lediglich das O4-Sauerstoffatom steht senkrecht auf der vom Ringsystem aufgespannten Ebene. IBX ist damit ein chirales Molekül. Zudem wird durch zwei weitere I^{...}O-Kontakte zu benachbarten IBX-Molekülen eine oktaedrische Koordination des lodatoms erreicht. Intermolekular ist jedes IBX-Molekül an zwei weiteren I^{...}O-Kontakten zu benachbarten IBX-Molekülen als Sauerstoff-Donor beteiligt. Zudem werden über das O2-Sauerstoffatom sowie das an dem O3-Sauerstoffatom sitzende Proton zwei intermolekulare Wasserstoffbrückenbindungen aufgebaut. Diese starken intermolekularen Wechselwirkungen im Festkörper führen zu einem dreidimensionalen polymeren Netzwerk, welches von den meisten Lösungsmitteln nicht aufgebrochen werden kann, wodurch IBX III-13 nach seiner Entdeckung zunächst lange Zeit als weitestgehend unlösliche und unbrauchbare Verbindung galt. IBX III-13 wurde zudem als explosionsempfindlich bei Stoß und Hitzeeinwirkung von >200°C beschrieben.^{313,318} Zahlreiche Forschungsgruppen versuchten fortan diese sicherheitsrelevanten und anwendungsstörenden Eigenschaften von IBX III-13 durch strukturelle Modifikationen zu optimieren.

Abbildung III-4: Ausschnitt aus der Kristallstruktur von IBX III-**13**: I-O3 1.925 Å, I-O4 1.784 Å und O2-I-O3 163.43° (Einzelmolekül in rot markiert).^{317a}

Ein früher Erfolg dieser Bemühungen war die Synthese des *Dess-Martin*-Reagenz (DMP) III-**16** von *Martin et al.* 1983 (Abb. III-5).^{314f,g} Durch Erhitzen von IBX III-**13** in Gegenwart eines Gemisches von Essigsäure und Acetanhydrid konnte 1,1,-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-on III-**16** erhalten werden. Dieses war nicht nur unempfindlich gegen über Schlag- und Hitzeeinwirkung sondern zeigt auch eine signifikant verbesserte Löslichkeit in organischen Lösungsmitteln wie beispielsweise Dichlormethan, Chloroform oder Acetonitril.^{306g,307a} DMP III-**16** hat sich als eines der zweckdienlichsten Reagenzien für die selektive Oxidation von Alkoholen zu Carbonylen in empfindlichen, hochfunktionalisierten Molekülen bewiesen.^{306g,h}

Abbildung III-5: Synthese von DMP nach Martin et al..

Die geringe Azidität der Verbindung im Vergleich zu IBX III-**13**, aber auch zu anderen gebräuchlichen Chrom(VI)-basierten oder DMSO-basierten Oxidationsreagenzien sowie weitere Vorteile bezüglich Handhabung und Aufreinigung haben maßgeblich zum Siegeszug von DMP III-**16** in der organischen Chemie beigetragen.^{319c,306a} Ein entscheidender Nachteil von DMP III-**16** ist die ausgeprägte Hydrolysempfindlichkeit; Herstellung und Lagerung von DMP III-**16** sowie Reaktionen damit müssen unter striktem Wasserausschluss erfolgen.^{319,314f-j}

Nachdem *Santagostino et al.* 1994 berichteten,³²⁰ dass IBX III-**13**, entgegen früherer Behauptungen von *Katrizky et al.*,^{314m} hervorragend in DMSO löslich ist und Lösungen in DMSO oder Mischungen von DMSO mit anderen organischen Lösungsmitteln wie THF, Dioxan, Toluen oder auch Wasser analog wie DMP III-**16** für diverse Oxidationsprozesse bei Raumtemperatur genutzt werden können, stieg auch dessen Popularität schlagartig an.^{306a-f} Ein großer Faktor für den Erfog von IBX III-**13** als Oxidans in der organischen Chemie ist die Unempfindlichkeit von IBX III-**13** gegenüber Luft und Feuchtigkeit, was anders als bei vergleichbar milden Oxidationsverfahren wie der Verwendung von DMP oder der *Swern*-Oxidation³²¹ zu einer sehr bequemen Reaktionsführung führt.³²⁰

III-1.3 IBX - Ein vielseitiges Oxidationsmittel für die organische Synthese

Die vielseitigen Anwendungsmöglichkeiten von IBX III-**13** sind in Abbildung III-6 zusammenfassend veranschaulicht.^{306a-f}

Abbildung III-6: Diverse Anwendungsmöglichkeiten von IBX.

Neben der selektiven Oxidation von primären oder sekundären Alkoholen^{307a-f,320} und sekundären Benzylaminen³²² zu den korrespondierenden Carbonyl- bzw. Iminverbindungen, können durch den Einsatz von IBX III-**13** diverse Oxygenierungsreaktionen bewerkstelligt werden. Dabei findet ein Sauerstoffatomtransfer vom Reagenz IBX III-**13** auf eine aktivierte Position eines Substrates statt. So können beispielsweise Halogenalkane,³²³ Kohlenwasserstoffverbindungen mit benzylischen Positionen³²⁴ oder α -azide Carbonylverbindungen in die entsprechenden Alkohole bzw. Carbonylverbindungen überführt werden (*vide infra*).^{325,326,327} Auch die Oxidation von Thioethern zu Sulfonen,^{328,3070} die Synthese von *o*-Chinonen^{324b,329} aus Phenolen oder die Dearomatisierung von 2-Alkylnaphtolen^{329a,b} ist auf diese Weise möglich.^{307c-m}

Im Weiteren kann IBX auch zur Dehydrogenierung von Aldehyden und Ketonen unter Bildung von α,β ungesättigten Carbonylen ^{330,324b, 331} sowie zur Aromatisierung von Dihydronaphtholen ³³² oder verschiedenen Carbo-³³³ und Heterozyklen^{334,335} verwendet werden.

Ferner ist eine Vielzahl von SET-Oxidationen in Gegenwart von IBX III-**13** zur radikalischen Zyklisierung von *N*-Arylamiden oder –urethanen bekannt.³³⁶ Zusätzlich kann IBX III-**13** in Verbindung mit elementaren Halogenen, Halogenidsalzen oder NIS zur Halooxygenierung von Olefinen^{337,338,339} und Alkinen^{337b,338} oder oder Halogenierung von Aromaten^{337c} eingesetzt werden. Wie auch für DMP III-**16** ist die bei weitem häufigste Anwendung von IBX III-**13** die selektive Überführung von primären und sekundären Alkoholen in die entsprechenden Carbonylverbindungen.

Der Mechanismus dieser Reaktion (Abb. III-7) ist durch detaillierte experimentelle und theoretische Untersuchungen aufgeklärt worden.^{340,341,320c}

Abbildung III-7: Hypervalenter Twist im Mechanismus der Alkoholoxidation mit IBX.

Zunächst erfolgt ein reversibler Ligandenaustausch am elektrophilen Iodatom, in dessen Verlauf der Alkohol **A** als Alkoxyligand die Position der Hydroxygruppe einnimmt. Aus dem resultierenden Komplex **B**, kann die oxidative Eliminierung des Alkoxyliganden zum korrespondierenden Keton jedoch aus elektronischen Gründen nicht erfolgen. Hierzu muss ein sogenannter hypervalenter Twist über das Intermediat **C** durchlaufen werden, in dem durch Umordnung der Alkoxy- und Oxidoliganden die Vorraussetzungen für die oxidative Eliminierung und gleichzeitiger Bildung der 3-Zentren-4-Elektronenbindung (O-I-O) im IBA III-**15** geschaffen werden. Rechnungen zeigen, dass dieser hypervalente Twist den geschwindigkeitsbestimmenden Teilschritt der Reaktion darstellt.

2005 zeigten zunächst *Vinod et al.*³⁴² und später *Giannis et al.*,³⁴³ dass IBX III-**13** für die Oxidation von primären und sekundären Alkoholen in Gegenwart von stöchiometrischen Mengen Oxon[®] als Cooxidans³⁴⁴ auch katalytisch eingesetzt werden kann (Abb. III-8).^{309d-f} Die Oxidation von sekundären Alkoholen liefert dabei die entsprechenden Ketone, primäre Alkohole werden zur Carbonsäure oxidiert.

Abbildung III-8: Katalytische Verwendung von IBX zur Oxidation von Alkoholen in Gegenwart von Oxon als Cooxidans.

Das liegt daran, dass die durch IBX gebildeten Aldehyde durch Oxon[®] weiter oxidiert werden.³⁴⁵ Sicher bahnbrechende Arbeiten, mit denen die Tür zur Organokatalyse durch hypervalente Iodreagenzien aufgestoßen wurde.^{309d-f}

III-1. Einleitung

III-1.3.1 α -Oxygenierungen von α -aziden Carbonylverbindungen - Anwendung von IBX in der Arbeitsgruppe Kirsch

Die Arbeitsgruppe *Kirsch* lieferte die ersten Arbeiten zur α -Oxygenierung von α -aziden Carbonylverbindungen durch IBX III-**13**. 2005 zeigten *Kirsch et al.*, dass 2-Alkinylketone des Typs **A** (Abb. III-9) mit IBX III-13 in DMSO bei 23° in guten Ausbeuten in die 2-Hydroxy-2-alkinylketone des Typs **B** überführt werden konnten.³²⁶ Zusätzlich war es möglich ausgehend von den korrespondierenden Homopropargylalkoholen des Typs **C** (Abb. III-9) die Oxidation und α -Hydroxylierung in einem Schritt durchzuführen. Homopropargylalkohole des Typs **D** (Abb. III-9) ohne zusätzlichen Substituenten in der 2-Position führten zur hochgradig diastereoselektiven Bildung von (Z)-2-En-1,4-dionen des Typs **E** in moderaten Ausbeuten.³²⁷

Abbildung III-9: Oxygenierungen von 2-Alkinylketonen nach Kirsch et al..

Bei 50°C im DMSO:H₂O/3:1-Gemisch gelang zudem die α -Hydroxylierung von diversen 1,3-Dicarbonylsystemen des Typs A (Abb. III-10) in guten Ausbeuten.³²⁵ 1,3-Dicarbonyle ohne
zusätzlichen Substituenten in der 2-Position ließen sich unter diesen Bedingungen in hochreaktive Diund Triketone des Typs **E** (Abb. III-10) überführen.³²⁵

Abbildung III-10: α-Oxygenierungen von 1,3-Dicarbonylen nach Kirsch et al..

Mechanistisch lassen sich diese Reaktionen analog der, von *Pettus et al.* untersuchten,^{329a} Dearomatisierungen von 2-Alkylphenolen verstehen (Abb. III-11). Alkohole des Typs **A** werden zunächst zu den entsprechenden α -aziden Carbonylen **B** oxidiert, welche im Gleichgewicht mit ihren tautomeren Enolformen **C** vorliegen. Ausgehend von den IBX-Adukten des Typs **D** führt ein intramolekularer Sauerstofftransfer zur Bildung von Intermediaten des Typs **E**. Während die Reaktion von 1,3-Dicarbonylsubstraten und 2-Alkyl-2-alkinylketonen generell entlang des Reaktionspfad A unter Dissoziation von IBA III-**15** und Bildung von zunächst α -hydroxylierten Produkten verläuft, reagieren 2-Alkinylketone ohne zusätzlichen Substituenten in 2-Position in einer [3.3]-sigmatropen Umlagerung im Gleichgewicht weiter zu den entsprechenden Allen-Addukten des Typs **I**, welche nach Protonierung von der sterisch weniger gehinderten Seite die beobachteten (Z)-2-En-1,4-dione des Typs **J** liefern.³²⁷

Abbildung III-11: Mechanistische Vorstellung der Oxygenierung von α-aziden Carbonylverbindungen.

III-1.4 IBX-Derivate und Formulierungen

Trotz vielfältiger Einsatzmöglichkeiten von IBX III-**13** standen besonders einer stöchiometrischen großtechnischen Anwendung zunächst die berechtigten sicherheitsrelevanten Bedenken bezüglich der Explosionsneigung entgegen (*vide supra*). Als nicht-explosive Formulierung wurde 2003 ein Gemisch von 22% Benzoesäure, 29% Isophthalsäure und 49% IBX entwickelt.³⁴⁶ Das derart stabilisierte IBX, welches auch als SIBX bezeichnet wird, weist vergleichbare oxidative Eigenschaften auf und konnte bereits in verschiedenen Prozessen erfolgreich angewendet werden.^{347,348}

Neben der Entwicklung von DMP III-**16** sind besonders seit den bahnberechenden Arbeiten von *Santagostino et al.*³²⁰ viele weitere strukturelle Modifikationen von IBX III-**13** etwa durch Einführung von Substituenten am aromatischen Kern vorgenommen worden, mit zum Teil interessanten Veränderungen der chemischen und physikochemischen Eigenschaften.

Abbildung III-12: Frühe IBX Derivate.

Die ersten IBX-Derivate wurden bereits sehr früh im Jahre 1908 von *Willgerodt et al.*³⁴⁹ (III-**29**) und 1931 von *Goldstein et al.*³⁵⁰ (III-**30**) hergestellt (Abb. III-12). Diese eher zielosen Modifikationen durch Einführung von Nitrogruppen in unterschiedlichen Position am aromatischen Kern, im Rahmen der damals zur verfügungstehenden Methoden, führten zu einer verminderten Oxidationskraft gegenüber IBX III-**13** fanden, jedoch keinerlei Anwendung in der organischen Chemie.³⁵¹

Wesentlich interessanter waren zielgerichtetere Ansätze, durch die etwa die Löslichkeit in Wasser oder organischen Lösungsmitteln verbessert oder die Reaktivität für besondere Anwendungen durch Substitution mit geeigneten funktionellen Gruppen am aromatischen Kern variert werden sollte.

Abbildung III-13: Erste wasserlösliche IBX-Derivate mit elektronenziehenden Substituenten am aromatischen Kern.

Vinod et al. konnten beispielsweise durch Einführung von Carboxylatgruppen an dem aromatischen Kern die sehr gut wasserlöslichen Derivate mIBX III-**31**³⁵² und III-**32**³⁵³ synthetisieren (Abb. III-9). Zusätzlich zum veränderten Lösungsverhalten zeigt insbesondere mIBX III-**31** eine leicht verringerte Reaktivität und höherer Selektivität für die Oxidation von benzylischen gegenüber primären Alkoholen in Gegenwart exakt-stöchiometrischer Mengen des Reagenzes.³⁵² Trotz dieser durchaus verbesserten Eigenschaften sind bisher keine weiteren Anwendungen dieser Derivate bekannt.

Wirth et al. entwickelten 2007 FIBX III-**33** (Abb. III-14).³⁵⁴ Das perfluorierte IBX-Derivat ist in diversen organischen Lösungsmitteln löslich und kann auch in wässrigem Acetonitril eingesetzt werden. *Wirth et al.* demonstrierten in einigen Einzelreaktionen, dass FIBX III-**33** neben der Oxidation von Alkoholen zu Carbonylverbindungen auch noch einige weitere für IBX typische Reaktionen ermöglichte. Dabei zeigte FIBX III-**33** eine deutlich erhöhte Reaktivität im Vergleich zu IBX III-**13**. Ein Nachteil der Verbindung ist sicherlich, dass die Azidität deutlich erhöht wird, was bei der Umsetzung säureempfindlicher Substraten Probleme bereiten kann.³⁵⁵ Weitere Anwendungen von FIBX III-**33** sind trotz vielversprechender Reaktivität bisher nicht bekannt.

Abbildung III-14: Weitere IBX-Derivate mit elektronenziehenden Substituenten am aromatischen Kern.

2011 zeigten *Zhang et al.,* dass auch die Einführung einer Trimethylammoniumgruppe die Wasserlöslichkeit signifikant erhöht.³⁵⁶ Das synthetisierte Zwitterion AIBX III-**34** (Abb. III-14) zeigt gleichzeitig eine deutlich erniedrigte Reaktivität im Vergleich zu IBX III-**13**. *Zhang et al.* demonstrierten die Verwendung ihres IBX-Derivates zur Dehydrogenierung von 1-Oxo-1,2,3,4-tetrahydronaphthalen-2-carboxylaten unter Bildung von 1-Hydroxy-2-naphthoaten.

Kürzlich stellte die Arbeitsgruppe *Kirsch* das am aromatischen Kern sulfonierte Derivat IBX-SO₃K III-**35** (Abb. III-14) vor,^{181,357} welches sich neben einer moderaten Wasserlöslichkeit durch eine signifikant verminderte Oxidationskraft auszeichnet.⁹ *Kirsch et al.* demonstrierten eindrucksvoll, dass IBX-SO₃K III-**35** sich gerade auf Grund der verminderten Oxidationskraft als hochgeradig chemoselektives Oxidationsmittel für hochfunktionalisierte, komplexe Moleküle eignet.³⁵⁷ Neben Dehydrogenierungen,

⁹ Die Studien hierzu sind Teil dieser Arbeit, für genauere Informationen siehe Kapitel IV *Chemoselektive Azidierung*.

konnten Protokolle für die direkte Azidierung von 1,3-Dicarbonylen sowie zur Synthese von bisher unbekannten geminalen Triaziden unter Verwendung von IBX-SO₃K III-**35** verwirklicht werden.

Im Gegensatz zu den bisher vorgestellten Ansätzen, in denen Derivate durch Substitution mit elektronenziehenden Gruppen am aromatischen Kern erzeugt wurden, konzentrieren sich die Arbeiten von *Moorty et al.* auf die Modifikation durch Donorgruppen wie Methyl- und Methoxygruppen (Abb. III-15). Dabei zeigten alle von *Moorty et al.* synthetisierten Derivate III-**25** bis III-**29** eine deutlich verbesserte Löslichkeit in organischen Lösungsmitteln, die in der Reihe von Me-IBX III-**25** und DiMe-IBX III-**26**,³⁵⁸ die bereits über gute Löslichkeit in Dichlormethan verfügen hin zu MeOME-IBX III-**27**³⁵⁹ und TetMe-IBX III-**28**³⁵⁸ (Löslich in Aceton, ACN, THF, CHCl₃ oder EtOAc) stark ansteigt.

Moorthy et al., Me-IBX III-36 (2011), DiMe-IBX III-37 (2011), MeOMe-IBX III-38 (2008), TetMe-IBX III-39 (2011) und Bis-IBX III-40 (2013)

Abbildung III-15: IBX-Derivate nach Moorthy et al..

Das erst kürzlich vorgestellte *in situ* erzeugte Bis-IBX III-**40** zeigt zusätzlich zu einer guten Löslichkeit in organischen Lösungsmitteln, eine gute Wasserlöslichkeit.³⁶⁰ Paralell zur Löslichkeit steigt auch die Reaktivität der Verbindungen für die Oxidation von Alkoholen zu den korrespondierenden Carbonylen signifikant an.

Abbildung III-16: Abweichung von der Planarität durch repulsive Wechselwirkungen. α ist der Winkel, der zwischen der Ebene des Phenylringes und der von C2, I1, O2 und O3 aufgespannten Ebene.^{358,340}

Ausschlaggebend hierfür ist die von Me-IBX III-**36** hinzu Bis-IBX III-**40** stetig größere Abweichung der Strukturen von der Planarität der 1-Hydroxy-1-oxo-1H- $1\lambda^5$ -benzo[d][1,2]iodoxol-3-on-Grundsturktur

verursacht durch sterisch-repulsive Wechselwirkungen der Methylsubstituenten untereinander und zusätzlich im Besonderen des lodzentrums mit der direkt benachbarten Methylgruppe am Aromaten (Abb. III-16). Rechnungen zeigen, dass die durch die sterischen Wechselwirkungen verursachten verdrehten Strukturen, die Aktivierungsbarriere für den geschwindigkeitsbestimmenden hypervalenten Twist erniedrigen, wodurch die Reaktion maßgeblich beschleunigt wird.^{340,358} *Moorty et al.* zeigten zudem das alle ihre IBX-Derivate im Zusammenspiel mit Oxon[®] als Cooxidans auch katalytisch eingesetzt werden können.

Als Trends für die Auswirkungen von verschiedenen Substituenten am aromatischen Kern der 1-Hydroxy-1-oxo-1H-1 λ^5 -benzo[d][1,2]iodoxol-3-on-Grundstruktur lässt sich übereinstimmend mit den Ergebnissen aus Studien von *Ishihara et al.* festhalten, dass elektronenziehende Substituenten generell die Reaktivität bzw. Oxidationskraft erniedrigen, während Donorsubstituenten die Reaktivität erhöhen.^{361,341}

steigende Reaktivität

Abbildung III-17: Studien von *Ishihara et al.* zur Auswirkungen von verschiedenen Substituenten am aromatischen Kern.^{341,361}

Ein davon unabhängiger und teilweise auch gegenläufiger Effekt ist die Absenkung der Aktivierungsbarriere für den hypervalenten Twist durch Erzeugung verdrehter Grundgerüste, welcher vermutlich auch im FIBX III-**33** dafür verantwortlich ist, dass trotz der vier elektronenziehenden Fluorsubstitutenten eine erhöhte Reaktivität gegenüber IBX III-**13** zu beobachten ist.

Im Weiteren sind diverse Polymer-gestützte IBX-Derivate des Typs **A** (Abb. III-18) entwickelt worden.^{362,305v} Diese zeichnen sich zumeist durch eine einfache Anwendbarkeit und Rückgewinnung der korrespondierenden reduzierten Spezies aus, welche durch Reaktion mit Oxon[®] regeneriert werden kann, und erfreuen sich einer zunehmenden Beliebtheit.³⁶³

Einen konzeptionell ähnlichen Ansatz verfolgten *Miura et al.* mit ihrem durch einen perfluorierten Alkylrest modifiziertem IBX-Derivat III-**43**.³⁶⁴ Das Molekül ist nahezu unlöslich in Wasser und organischen Lösungsmitteln und kann durch einfache Filtration davon abgetrennt werden. *Miuara et al.* zeigten, dass Oxidationen von primären oder sekundären Alkoholen zu den entsprechenden Carbonylen mit III-**43** sogar katalytisch bewerkstelligt werden können und demostrierten fünf Wiederverwendungszyklen des Katalysators.

Abbildung III-18: Weitere Konzepte zur Modifikation von IBX.

Ferner stellten *Kumanyaev et al.* den Komplex PIBX III-**44** kürzlich als nicht-explosive Alternative zu IBX mit einer verbesserten Löslichkeit in THF vor.³⁶⁵ Ein Konzept, welches auf den Arbeiten von *Nicolaou et al.* zur Modifikation der Reaktivität durch Zugabe von *N*-Oxidliganden basiert.^{366,367} *Nicolaou et al.* demonstrierten darin die Dehydrogenierung von Aldehyden und Ketonen sowie korrespondierenden Enolsilylethern in Gegenwart von den Komplexen IBX-NMO III-**45** und IBX-MPO III-**46**. Dabei konnten auch problematische Substrate in guten Ausbeuten unter diesen besonders milden Bedingungen umgesetzt werden.

Abbildung III-19: Modifikation der Reaktivität von IBX durch Zugabe von Liganden.

Desweiteren zeigten *Nicolaou et al.,* dass das *in situ* aus der kontrollierten Zersetzung von DMP hergestellte Ac-IBX III-**47** ein effektives Reagenz für eine Vielzahl von Oxidationsprozessen ist. Neben der Oxidation von Alkoholen kann es zur Epoxidierung von Dienen und Synthese von Stickstoff-haltigen Quinonen genutzt werden.^{368,314i}

Abbildung III-20: Ac-IBX und *Martin's* Reagenzien.

Bereits früh zeigten *Martin et al.,* dass auch die Substitution der 3-Oxo-Gruppe im Iodoxolring mit perfluorierten Substituenten zu verbesserten Eigenschaften führen können (Abb. III-20). Die CF₃-IBX III-**48**^{314g} und III-**49**³⁶⁹ zeigen gute Löslichkeit in verschiedenen organischen Lösungsmitteln und besonders CF₃-IBX III-**48** hat sich bereits als mildes Oxidationsmittel in einigen Totalsynthesen bewährt.³⁷⁰

Abbildung III-21: IBX-Derivate ohne aromatischen Kern.

Auch ungewöhnliche Verbindungen wie III-**11**³⁷¹ und III-**50**³⁷² ohne aromatischen Kern mit vergleichbaren oxidativen Eigenschaften wie IBX III-**13** sind bekannt, jedoch ohne Anwendungsrelevanz. Daneben gibt es etliche Beispiele für zyklische oder pseudozyklische Iod(V)verbindungen des Typs **B** in denen der Carboxylsubstituent durch diverse Donorgruppierungen ausgetauscht wurde.^{373,374,375}

pseudozyklische Iod(V)Verbindungen **B**

Abbildung III-22: Austausch der Carboxyleinheit durch Donorsubstituenten.

Viele dieser Derivate erwiesen sich im Vergleich zu IBX III-**13** als besser löslich, zu meist waren es zudem weniger reaktive Oxidationsmittel gegenüber einfachen Alkoholen oder Sulfiden. Auf Grund der gleichzeitig deutlich aufwendigeren Synthesen dieser modifizierten Varianten haben Sie jedoch bisher kaum präparative Bedeutung erlangt.

Eine erwähnenswerte Ausnahme stellen hier die Sulfonsäureanaloga IBS III-**51**, Me-IBS III-**52** und DiMe-IBS III-**53** von *Ishihara et al.* dar (Abb. III-23),^{341,361,376} deren katalytischer Einsatz in Gegenwart von Oxon[®] als Cooxidans ausgiebig untersucht ist.

Ishihara et al, 2009 IBS III-**51,** Me-IBS III-**52** und DiMe-IBS III-**53**

Abbildung III-23: Sulfonsäure-Analoga nach Ishihara et al..

Die Oxidation von Alkoholen zu entsprechenden Carbonylverbindungen gelingt bereits in Gegenwart von 0.05 mol% IBS III-**51** in EtOAc bei 70°C. Bei geeigneter Reaktionsführung lassen sich zudem durch anschließende Dehydrogenierung die entsprechenden Enone erhalten³⁴¹ oder allylische Alkohole oxidativ umlagern.³⁷⁶

III-2. Aufgabenstellung

III-2.1 Zielsetzung

Während der Arbeiten zur α -Oxygenierung von 1,3-Dicarbonylen wurde auch das β -Oxonitril III-**54** umgesetzt. In Gegenwart von 1.5 eq IBX III-**13** in DMSO:H₂O/3:1 bei 23°C reagierte III-**54** jedoch über eine Dehydrogenierung zu dem α , β -ungesättigen Cyanoketon III-**55**, welches in 92% Ausbeute und einer perfekten Diastereoselektivität von >99:1 für das E-Isomer erhalten wurde.^{2,181,325}

Abbildung III-24: IBX-vermittelte Dehydrogenierung von β-Oxonitrilen.

Diese Reaktion in Gegenwart von IBX III-**13** wurde zuvor nur an Ketonen und Aldehyden^{330,324b,367,368} in Gegenwart höherer Temperaturen beobachtet und zeigt auf Grund der milden Bedingungen und der vielseitigen Reaktivitäten³⁷⁷ von α,β -ungesättigen Cyanoketonen als *Michael*-Akzeptor oder Heterodien großes Potential, in Kombination mit Folgereaktionen zur Diversitäts-orientierten⁷⁹ Heterozyklensynthese eingesetzt werden zu können. Im Rahmen der vorliegenden Arbeit sollte die Anwendungsbreite dieser Reaktion eingehender untersucht werden sowie Ansätze zur Nutzung innerhalb einer Diversitäts-orientierten⁷⁹ Heterozyklensynthese erarbeitet werden.

III-2.2 Stand der Forschung

Die direkte Dehydrogenierung von Carbonylverbindungen durch IBX III-**13** wurde von *Nicolaou et al.* entdeckt und eingehend untersucht.^{330,324b,367,368} Als Substrate können können hier Ketone, Aldehyde und bei Verwendung zusätzlicher Äquivalente an IBX auch die entsprechenden Alkohole dienen (Abb. III-25). Typischerweise benötigt die Dehydrogenierung Reaktionstemperaturen zwischen 65 und 85°C. In Abhändigkeit von der eingesetzten Mengen an IBX lassen sich Aldehyde in Gegenwart von Ketonen selektiv dehydrogenieren.

Obwohl ein ionischer Mechanismus nicht vollständig ausgeschlossen werden kann, legen detailierte mechanistische Untersuchungen der Reaktion einen radikalischen Mechanismus unter Beteiligung einer initialen SET-Oxidation am Iodatom koordinierten Enolform des Carbonyls nahe (Abb. III-26). Dadurch

² Die Stereochemie der Doppelbindung wurde dabei durch starke NOESY-Kontakte zwischen dem olefinischen Proton und der Methylengruppe neben der Ketofunktion bestätigt.

entsteht zunächst ein Radikalkation des Typs **D**, dessen Umlagerung zur Freisetzung von IBA III-**15** unter Bildung der α , β -ungesättigten Carbonylverbindung führt.^{324b}

Abbildung III-25: Ausgewählte Beispiele für die Dehydrogenierung von Carbonylverbindungen nach Nicolaou et al..

Abbildung III-26: Radikalischer Mechanismus der Dehydrogenierung von Carbonylverbindungen.

Nicolaou et al. untermauerten diese mechanistische Hypothese durch intramolekulares Abfangen der radikalischen Intermediate durch die gut untersuchte Fragmentierung von Cyclopropylmethylradikalen.³⁷⁸ Die Umsetzung des α -Cyclopropylaldehyds III-**63** unter den Reaktionsbedingungen führte durch Ringöffnung des benachbarten Cyclopropylringes zur Bildung des konjugierten Dienons III-**64**, ^{324b} einer Reaktion wie sie für das 2,2-Diphenylcyclopropylradikal III-**65** zu erwarten ist.³⁷⁹

Des Weiteren zeigten *Nicolaou et al.*, dass durch die Verwendung von stöchiometrischen IBX-*N*-Oxid Komplexen, wie IBX-MPO III-**45** und IBX-NMO III-**46** (siehe Abb. III-19), die Dehydrogenierung von Ketonen und Aldehyden und sogar der korrespondierenden Silylenolether bereits bei Raumtemperatur möglich ist.^{367,368}

Während andere Methoden zur Dehydrogenierung von Carbonylverbindungen (wie bspw. Selenoxid-Pyrrolyse oder Eliminierung von Halogenwasserstoff aus α-Halogencarbonylen) zumeist über mehrer Stufen verlaufen und zunächst der Einführung einer geeigneten Fluchtgruppe mit anschließender Eliminierung unter harschen basischen oder oxidativen Bedingungen benötigen, verläuft die IBXvermittelte Dehydrogenierung sehr selektiv unter milden Bedigungen, sodass auch besonders empfindliche Substrate umgesetzt werden können. Die enorme Bedeutung dieser Reaktion aus präparativer Sicht lässt sich an den zahlreichen Anwendungen in der Totalsynthese von Naturstoffen ablesen.^{331,380}

III-3. Diastereoselektive Dehydrogenierung und Diversitäts-orientierte **Synthese von Pyranen**

III-3.1. Darstellung der Ausgangsmaterialien

Zunächst wurden diverse β -Oxonitrile des Typs **E** mit unterschiedlichen Alkyl- und Arylsubstituenten durch eine *Thorpe*-Kondensation³⁸¹ der entsprechenden Nitrile **B** mit Carbonsäureestern **C** in Gegenwart eines Überschusses an Kalium-tert-butylat als Base hergestellt. Weitere β-Oxonitrile E waren nach Deprotonierung der Nitrile B mit LDA durch Substitutionsreaktion mit den korrespondierenden Carbonsäurehalogeniden **D** in guten Ausbeuten zugänglich.

a) KOtBu (3.0 eq), R²-CO₂Et C (4.0 eq), (THF), 23°C. b) 1) (*i*Pr)₂NH (1.1 eq), nBuLi (1.1 eq),(THF), 0°C, 30 min, 2) R²-COCI **D** (1.5 eq), -78°C

53%, III-75

Abbildung III-27: Synthese der β-Oxonitrile.

Die eingesetzten Nitrile B waren entweder kommerziell erhältlich oder wurden über eine Kolbe-Nitril-Synthese³⁸² ausgehend von den entsprechenden Alkylhalogeniden **A** generiert.

III-3.2 Untersuchung der Dehydrogenierung von β-Oxonitrilen mittels IBX

Anschließend wurde zunächst die Dehydrogenierungsreaktion am β -Oxonitril III-**65** eingehender untersucht und optimiert (Tab. III-1). Dabei zeigte sich, dass die Menge an Wasser im Lösungsmittel DMSO entscheident für die Reaktion war. Während DMSO als alleiniges Lösungsmittel für die Reaktion nur eine moderate Ausbeute von 46% ergab, führten Mischungen von DMSO:H₂O/3:1 zu schlecht reproduzierbaren Ergebnissen, da teilweise das Oxidans aus der Reaktionslösung ausfiel.

KO₃S IBX (DMSO/H₂O) C 23°C НÓ Ph IBX III-13 111-56 |||-77 IBX-SO₃K III-35 I(V) Lösungsmittel Reaktions Temp. Ausbeute Eintrag eq IBX-SO₃K eq (0.3 M) -zeit [h] [°C] $[\%]^{a}$ IBX III-13 111-35 65^b DMSO:THF/3:1 2.25 1 1.5 23 70^b 2 1.5 DMSO:THF/3:1 2.5 23 84^b 2 DMSO:H₂O/3.5:1 1.5 2.5 23 41^b DMSO:H₂O/3.5:1 3 1.5 2.5 23 46^b 4 1.5 DMSO 2.5 23 DMSO:H₂O/4:1 5 1.5 2.0 23 95 6 1.5 DMSO:H₂O/4:1 24 23 84 [a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Oxidationsmittel bereits vor Substratzugabe teilweise ausgefallen.

Tabelle III-1: Optimierung der Deyhdrogenierung von β-Oxonitrilen.

Die besten Ergebnisse wurden in Gegenwart von 1.5 eq IBX III-**13** in DMSO:H₂O/4:1-Mischungen bei 23°C erzielt. Das Cyanoenon III-**77** konnte so in 95% Ausbeute und einer perfekten Diasteroselektivität von >99:1 erhalten werden. Ferner zeigte sich, dass auch das mildere Oxidationsmittel IBX-SO₃K III-**35**^{357,181} die Reaktion in vergleichbaren Ausbeuten von 84% bewerkstelligt, was die Möglichkeit zur Umsetzung komplexerer oxidationsempfindlicher Substrate bietet.

Nachfolgend wurde die Anwendungsbreite der Reaktion untersucht (Tab. III-2). Diverse Substrate mit aromatischen, heteroaromatischen und aliphatischen Substituenten benachbart zur Carbonylgruppe

reagieren unter den Reaktionsbedingungen zu den entsprechenden β -Oxonitrilen in moderaten bis guten Ausbeuten. Das Cyanoenon III-**79** wurde zudem auch im Multigramm-Maßstab (4.56 g) erzeugt. Die Variationsbreite der α -Substituenten der eingesetzten β -Oxonitrile, blieb auf Substrate mit Benzylsubstituenten beschränkt. Bisher konnten keine Produkte von Dehdrogenierungen von Substraten mit Methyl, Ethyl oder Heptylsubstituenten in α -Position isoliert werden. Stattdessen führten diese Reaktionen zur vollsändigen Zersetzung der Ausgangsmaterialien.

			IBX (1.5 eq) (DMSO:H ₂ O/4:1) 23°C			
Eintrag	Substrat	R	R^1	Reaktions- zeit[h]	Produkt	Ausbeute [%] ^{a,b}
1	III- 65	Ph(CH ₂) ₂	Ph	2.0	- 77	95
2	III- 66	Ph	Ph	2.5	III- 78	70
3	III- 67	2-Furanyl	Ph	2.5	- 79	80 ^d
4	III- 68	<i>t</i> Bu	Ph	23.0	- 80	72
5	III- 69	Cyclopropyl	Ph	2.0	- 81	80
6	- 70	2-Naphthyl	Ph	12.0	III- 82	57
7	- 71	4-Br-Ph	Ph	2.0	III- 83	49
8	- 72	н	Ph	2.0	III- 84	44
10	III- 73	CO ₂ Me	Ph	2.0	- 85	0 ^c
11	- 74	2-Furanyl	н	2.0	III- 86	0 ^c
12	III- 75	2-Furanyl	Me	2.0	- 87	0 ^c
13	III- 76	2-Furanyl	n-Heptyl	2.0	- 88	0 ^c

Tabelle III-2: Anwendungsbreite der Dehydrogenierung von β-Oxonitrilen.

[a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Alle Produkte wurden in perfekter Diastereoselektivität E:Z> 99:1 erhalten. [c] Zersetzung. [d] Reaktion wurde auch im Multigramm-Maßstab durchgeführt.

Auch das Dehydrogenierungsprodukt des Substrates III-**73** welches einen Methylcarboxylatsubstituenten benachbart zur Carbonylgruppe trägt konnte nicht isoliert werden. Allerdings besteht Grund zur Annahme, dass auch in diesen Fällen die Dehydrogenierungsprodukte als initiale Produkte eines vermutlich radikalischen Mechanismus gebildet wurden,^{324b} jedoch im Anschluss unkontrolliert zerfielen (*vide infra*).

Abbildung III-28: Ein-Topf-Verfahren zur Oxidation und Dehydrogenierung von β-Hydroxynitrilen.

Im Weiteren war es möglich die Oxidation und Dehydrogenierung von β -Hydroxynitrilen in einer Ein-Topf-Synthese zu bewerkstelligen. Das β -Hydroxynitril III-**89** konnte in Gegenwart von 3.0 eq IBX III-**13** in 61% Ausbeute in das korrespondiernde α -Cyanaoenon III-**77** überführt werden. Allerdings benötigte diese Reaktion eine signifikant verlängerte Reaktionsdauer um vollständigen Umsatz zu erreichen.

III-3.4 Entwicklung einer Ein-Topf-Synthese zur diastereoselektiven Synthese von 3,4-Dihydro-2H-pyran-5-carbonitrilen

Basierend auf der bereits bekannten Reaktivität von α -Cyanonenonen als Heterodien innerhalb Hetero-*Diels-Alder*-Reaktionen mit inversem Elektronenbedarf zu fungieren^{377d,e} konnte anschließend eine präparativ sehr einfache Diversitäts-orientierte⁷⁹ Ein-Topf-Synthese von hochsubstituierten Dihydropyran-Derivaten entwicklet werden.

Durch einfache Zugabe von Überschüssen an Vinylalkylethern zum Reaktionsgemisch wurden die Dehydrogenierungsprodukte durch eine subsequente Hetero-*Diels-Alder*-Reaktion bei Raumtemperatur in die korrespondiernden Dihydropyran-Derivate überführt (Abb. III-28). Die Dihydropyrane wurden dabei in guten Ausbeuten isoliert und verliefen in zumeist exzellenter *cis*-Diastereoselektivität von d.r. > 99:1 für das *endo*-Produkt der *Diels-Alder*-Reaktion. Die Reaktion von β -Oxonitrilen mit Alkylsubstituenten benachbart zur Carbonyleinheit mit längerkettigen Alkylvinylethern wie *n*-Propyl und *n*-Butylvinylether führten zur Produktbildung mit significant erneidrigten Diastereomerenverhältnissen (Abb. III-28, Verbindung III-**91** und III-**101**). Zudem zeigte auch die Reaktion des β -Oxonitrils mit 4-Bromphenylsubstituenten benachbart zur Carbonyleinheit eine verringerte *endo*-Selektivität (Abb. III-28, Verbindung III-**91**). Nichtsdestotrotz konnten die Diastereomere problemlos durch Flash-Chromatographie über Silicagel getrennt werden. Das Dihydropyran III-**94** wurde zusätzlich auch im Multi-Gramm-Maßstab (3.5 g) ohne signifikante Ausbeuteverluste hergestellt.

Desweiteren ist es besonders erwähnenswert, dass auch die β -Oxonitrile III-**74**, III-**75** und III-**76** mit verschiedenen Alkylsubstituenten in der α -Position in moderaten bis guten Ausbeuten in die korrespondierenden Dihydropyrane III-**93**, III-**97** und III-**104** überführt werden konnten, was daraufhin deutet, dass auch hier die initialen Dehydrogenierungsprodukte gebildet werden (*vide supra*).

Reaktionen mit zyklischen Vinylethern wie 2,3-Dihydrofuran oder 3,4-Dihydro-2H-pyran führten auch bei Temperaturen bis 80°C nicht zur Bildung der entsprechenden Dihydropyranprodukte, es wurden lediglich die Dehydrogenierungsprodukte isoliert. Höhere Reaktionstemperaturen führten zur Zersetzung der Ausgangsmaterialien. Analog führten auch Reaktionen in Gegenwart von Vinylacetaten nicht zur Bildung der entsprechenden Dihydropyrane.

Abbildung III-29: Ein-Topf-Verfahren zur Synthese von Dihydropyranen.

Die Stereokonfiguration der Dihydropyrane wurde mittels ¹H-NMR-Spektroskopie bestimmt. Die relative Stereokonfiguration der Diastereomere III-**91a** und III-**91b** (Abb. III-29) kann beispielweise aus den chemischen Verschiebungen und Kopplungskonstanten der Protonen am C2- und C4-Kohlenstoffatom des Pyranringes, der in der Halbsesselkonformation vorliegt, rückgeschlossen werden^{.383,377e}

Das ¹H NMR-Spektrum von III-**91a** zeigt das Signal des C2-H Protons als Duplett von Duppletts bei δ = 4.98 ppm mit einer großen und einer kleinen Kopplungskonstante (³J_{HH} = 8.6 Hz and ³J_{HH} = 1.8 Hz)

jede bedingt durch die vicinale Kopplung mit den zwei Methylenprotonen am C3-Kohlenstoffs des Pyranringes. Unter Berücksichtigung der *Karplus*-Beziehung^{384,222} für die Kopplung vicinaler Protonen kann daher geschlussfolgert werden, dass das C2-H Proton in III-**91a** eine *pseudo*-axiale Postion im Ring besetzt.

Abbildung III-30: Bevorzugte Konformation der Diastereomere III-91a und III-91b.

Im Diastereomer III-**91b** weist das ¹H-NMR-Spektrum ebenfalls ein Dupplett von Dupletts für das Signal des C2-H Protons bei δ = 5.04 ppm auf, allerdings mit zwei kleinen Kopplungskonstanten (³J_{HH} = 2.4 Hz and ³J_{HH} = 4.0 Hz), ebenfalls bedingt durch die vicinale Kopplung mit den zwei Methylenprotonen am C3-Kohlenstoffs des Pyranringes. Unter Berücksichtigung der *Karplus*-Beziehung^{385,222} für die Kopplung vicinaler Protonen kann daher analog geschlussfolgert werden, dass das C2-H Proton in III-**91b** eine *pseudo*-equatoriale Postion und die Alkoxygruppe die *pseudo*-axiale Position im Ring besetzen. Die Konfiguration der Protonen am C4-Kohlenstoffatom kann auf analoge Weise bestimmt werden. In III-**91a** und III-**91b** erscheinen die Resonanzsignale für die C4-H Protonen als Dupplett von Duppletts jeweils mit zwei großen Kopplungskonstanten (III-**91a**: δ = 3.60 ppm, ³J_{HH} = 10.0 Hz and ³J_{HH} = 6.7 Hz, III-**91b**: δ = 3.66 ppm, ³J_{HH} = 8.8 Hz and ³J_{HH} = 6.5 Hz), verursacht durch die vincinale Kopplung zu den Protonen der Methylengruppe am C3-Kohlenstoffatom. Somit besetzen die Protonen am C4-Kohlenstoff in beiden Diastereomeren *pseudo*-axiale Positionen.

III-5. Zusammenfassung und Ausblick

III-5.1 Zusammenfassung

Im Rahmen dieser Arbeit wurde die Anwendungsbreite der IBX-vermittelten Dehydrogenierung von β -Oxonitrilen eingehend untersucht. Dabei zeigte sich, dass Substrate mit diversen Aryl-, Heteroaryl und Alkylsubstituenten benachbart zur Carbonylfunktion in die korrespondierenden α -Cyanoenone umgestezt werden konnten. Alle Deydrogenierungen lieferten ausnahmslos das E-Doppelbindungsisomer. Die α -Position blieb dabei auf Benzylsubstituenten beschränkt, andere Alkylsubstituenten führten zur Zersetzung des Ausgangsmaterials.

Abbildung III-31: Dehydrogenierung und Ein-Topf-Pyransynthese ausgehend von β -Oxonitrilen.

Die β -Oxonitrile konnten ausgehend von den entsprechenden Nitrilen durch *Thorpe*-Kondensation³⁸¹ mit Carbonsäureestern **B** oder nach Deprotonierung mit LDA durch Substitutionreaktion an Carbonsäurehalogeniden **C** einfach und schnell zugänglich gemacht werden. Ferner konnte durch Zusatz von Alkylvinylether zur Reaktionsmischung eine Diversitäts-orientierte⁷⁹ hoch gradig diastereoselektive Ein-Topf-Synthese von Dihydropyran-Derivaten entwickelt werden. Durch eine *endo*-selektive nachgelagerte Hetero-*Diels-Alder*-Reaktion konnten dabei diverse hochsubstituierte Dihydropyrane in zu meist perfekter Diasteroselektivität ausgehend von β -Oxonitrilen hergestellt werden. Dabei zeigte sich, dass auch β -Oxonitrilen mit Methyl-, Ethyl- oder Heptylsubstituenten in α -Position, deren Dehydrogenierungsprodukt nicht isoliert werden konnten, in moderaten bis guten Ausbeuten zu den entsprechenden Dihydropyranen reagierten.

III-5.2 Ausblick

Die vorgestellte IBX-vermittelte Dehydrogenierungsreaktion von β -Oxonitrilen als zentrales Element der Ein-Topf-Synthese von Dihydropyran-Derivaten zeigt großes Potential für Anwendung in der Diversitätsorientierten Synthese von Heterozyklen.⁷⁹

Abbildung III-32: Erweiterung der Dehydrogenierungs-Hetero-Diels-Alder-Strategie.

Zur Erweiterung der Anwendungsbreite sollte überprüft werden, ob auch andere Verbindungen des Typs **A** (Abb. III-32) mit einem elektronenziehenden Substituenten X eine analoge Dehydrogenierung zu den entsprechenden Enonen **B** zeigen und für die Synthese weiterer Dihydropyran-Derivate des Typs **C** herangezogen werden können.

Im Weiteren könnte das Konzept durch Dehydrogenierung von β-Oxonitrilen bestimmte Reaktivitäten erst *in situ* zu erzeugen gegebenenfalls zur Synthese von hochsubstituierten 2-Hydroxybenzonitrilen eingesetzt werden. Die Basen- oder Säuren-vermittelte Aldolkondensation von 1-(2-Acetylphenyl)propan-2-onen des Typs **A** (Abb. III-33) unter Aromatisierung zu substituierten 1-Naphtholen des Typs **B** ist eine schnelle Reaktionen zum Aufbau von Aromaten.³⁸⁶

Abbildung III-33: Bekannte Aromatisierungen von (Z)-Hept-3-en-2,6-dion-Motiven.

Auch die Natur macht sich die Reaktivität dieser (Z)-Hept-3-en-2,6-dion-Motive (rot markiert) zum Aufbau von hochsubstituierten Aromaten zu nutze. So führt beispielweise die Aldolkondensation des Tetraketids III-**105** zur Bildung der Orsellinsäure III-**106**, einem in Schimmelpilzen und Flechten vorkommenen Sekundärmetaboliten.³⁸⁷Analog sollte es möglich sein, β-Hydroxynitrile des Typs **A** (Abb. III-34) in Gegenwart von IBX durch eine Dehydrogenierungsreaktion in die α-Cyanoenone des Typs **B** zu überführen, die dann in einer Aldolkondensation zu hochsubstituierten 2-Hydroxybenzonitrilen des Typs **C** weiter reagieren. Alternativ könnten auch die entsprechend zyklischen β-Hydroxynitrile des Typs **D** eingesetzt werden.

Hochvariable Substratsynthese

Abbildung III-34: Mögliche Synthese von hoch substituierten 2-Hydroxybenzonitrilen.

Die β -Hydroxynitrile der Typen **A** und **D** könnten durch eine basenvermittelte 1,4-Addition³⁸⁸ bzw. Zykloaddtion³⁸⁹ von β -Oxonitrilen des Typs **E** mit Enonen des Typs **F** zugänglich gemacht werden. β -Oxonitrile des Typs **E** können dafür wahlweise durch *Thorpe*-Kondensation³⁸¹ ausgehend von den korrespondierenden Carbonsäureestern des Typs **G** oder durch *Kolbe*-Nitril-Synthese ausgehend von α -lodketonen des Typs **H** einfach und schnell aufgebaut werden. Enone des Typs **F** sind durch Aldolkondensation von Ketonen des Typs I mit Aldehyden synthetisierbar. Eine solche Methode würde einen extrem variablen und effektiven vierstufigen Zugang zur Synthese von hochsubstitituierten 2-Hydroxybenzonitrilen ermöglichen, in denen alle vier aromatischen Position beliebig variiert werden können.

IV Chemoselektive Azidierung von Carbonylverbindungen

IV-1. Einleitung

Nach erfolgreichen Arbeiten zur α -Oxygenierung von 1,3-Dicarbonylen in Gegenwart von IBX (siehe Kapitel III-1.3.1 α -Oxygenierungen von α -aziden Carbonylverbindungen - Anwendung von IBX in der Arbeitsgruppe Kirsch) rückten nachfolgend die Azidierung von 1,3-Dicarbonylen in den Fokus der Forschung.

IV-1.1 Organische Azide – Multifunktionelle Bausteine in der organischen Synthese

IV-1.1.1 Synthese von organischen Aziden

Im Jahre 1864 hatte *Grieß*, ein deutscher Azofarbstoff-Chemiker, zum ersten Mal ein organisches Azid, das Phenylazid IV-**2**, durch Reaktion von Benzendiazoniumperbromid IV-**1** mit Ammoniak hergestellt.³⁹⁰

Abbildung IV-1: Synthese von Phenylazid durch J. P. Grieß.

Nach weiteren Pionierarbeiten von *Thiemann*, ³⁹¹ *Curtius* ³⁹² und *Bertho* ³⁹³ hat die Synthese von organischen Aziden auf Grund der vielseitigen Anwendungsmöglichkeiten dieser Substanzklasse stetig an Bedeutung gewonnen.³⁹⁴

Heute gibt es eine enorme Vielzahl an Synthesekonzepten zur Herstellung von Aryl-, Vinyl-, Alkyl und Acylaziden, von denen die wichtigsten in Abbildung IV-2 veranschaulicht sind.

Generell können dabei in Abhängigkeit der Anzahl der im Bildungsschritt eingeführten Stickstoffatome drei verschiedene Aufbaukonzepte für die Azideinheit (Abb. IV-2, gelber Kasten) unterschieden werden. Zu den ältesten Methoden zum Aufbau von Aziden gehören die Diazotierung von funktionellen Gruppen als Azid-Vorläufern, die bereits zwei direkt gebundene Stickstoffatome enthalten (Abb. IV-2, blauer Kasten). Arylazide lassen sich beispielsweise durch Reaktionen von Aryldiazoniumsalzen mit Hydrazin,³⁹⁵ Hydroxylamin,³⁹⁶ Stickstoffwasserstoffsäure³⁹⁷ oder Ammoniak^{390,396,398} herstellen. Zusätzlich können auch Alkaliazide^{394f,399} oder Trimethylsilylazid⁴⁰⁰ als Reagenz zur Einführung des dritten Stickstoffatoms genutzt werden. Auch Ein-Topf-Verfahren zur Diazotierung von Aminen in Gegenwart von *tert*Butylnitrit und Trimethylsilylazid oder Natriumazid mit nachfolgender Diazotierung der resultierenden Diazoniumionen zur Bildung von Aziden sind bekannt.⁴⁰¹ Ferner können Hydrazine als Vorläufer zur Diazotierung dienen. ⁴⁰² Durch Reaktion mit Distickstofftetraoxid, ⁴⁰³ Mischungen von Distickstoffmonooxid und Sauerstoff,⁴⁰⁴ Nitrosylsalzen⁴⁰⁵ oder Natriumnitrit in Gegenwart von Säuren⁴⁰⁶

IV-1. Einleitung

können nicht nur aromatische sondern auch aliphatische Azide, Acylazide oder sogar Sulfonylazide hergestellt werden. Teilweise können auch Hydrazone als Vorläufer dienen.⁴⁰⁷

Wesentlich milder als die Diazotierung, die zu meist sehr harsche Bedingungen benötigt, ist die Methode des Diazotransfers (Abb. IV-2, grüner Kasten). Dabei wird das Azid durch Transfer einer Diazoeinheit auf ein Amin aufgebaut.⁴⁰⁸ Als Diazotransfer-Reagenzien haben sich im Wesentlichen eine ganze Bandbreite an Sulfonylaziden etabliert,⁴⁰⁹ die in Gegenwart von katalytischen Mengen von Kupfer(II)salzen und Base zumeist hohe und verlässliche Ausbeuten der entsprechenden Aryl-⁴¹⁰ und Alkylazide⁴¹¹ liefern. Teilweise kann Triflylazid als Diazotransferreagenz auch *in situ* aus Triflatanhydrid und Natriumazid generiert werden.^{411c,412} Besonders hervorzuheben sind die beiden Verbindungen IV-**4**⁴¹³ und ADMP IV-**3**,⁴¹⁴ welche sich als besonders milde Reagenzien mit großer Anwendungsbreite bewiesen haben.^{413,414,415,416}

Trotz der im Vergleich zur Diazotierung von Diazoniumsalzen oder Hydrazinen sehr milden Reaktionsbedingungen teilt auch der Diazotransfer auf Amine den Nachteil, dass bereits ein Stickstoff im Substrat vorhanden sein muss. Viel häufiger stellt sich jedoch die synthetische Herausforderung eine Azideinheit als komplette Einheit neu in ein Molekül einzuführen (Abb. IV-2, rote Kästen).

In den meisten Fällen ist hier die nukleophile Substitution von verschiedenen Abgangsgruppen durch das Azidanion das Mittel der Wahl, eine Reaktion die besonders durch die hohe Nukleophilie des Azidanion begünstigt wird. *Mayr et al.* konnten innerhalb ihres Konzeptes zur empirischen Einstufung von Nukleophilien und Elektrophilen verschiedener Teilchen und Moleküle zeigen,^{417,418} dass das Azidanion mit *N/S_N* =20.50/0.59 (DMSO) eine der höchsten je bestimmten Nukleophilien aufweist, weit höher als viele geladene Kohlenstoffnukleophile. Während Natrumazid in diesen Reaktionen die bei weitem am häufigsten genutzte Azidquelle darstellt, ist auch die Verwendung von anderen Alkaliaziden, Tetraalkylammoniumaziden, Polymer gebunden Aziden⁴¹⁹ oder sogar Silberazid³⁹² bekannt. So gelingt die nukleophile Substitution (S_N2) mit Azidanionen an Substraten mit einer Vielzahl unterschiedlicher Abgangsgruppen, wie beispielsweise Halogeniden,⁴²⁰ Carboxylaten,⁴²¹ zyklischen Sulfonaten,⁴²⁶ Auch regioselektive⁴²⁷ und stereoselektive⁴²⁸ Methoden zum Aufbau von Aziden sind so möglich. Letztere basieren auf der unter strenger Stereoinversion verlaufenden nukleophilen Substitution 2. Ordnung.⁴²⁹

Unter *Mitsunobu*-Bedingungen ⁴³⁰ können auch Alkohole direkt in Gegenwart von Stickstoffwasserstoffsäure, ⁴³¹ Diphenylphosphorylazid (DPPA) ^{432, 433, 434, 435} oder Zinkazid ⁴³⁶ zu den entsprechenden Alkylaziden durch Substitution unter Stereoinversion umgesetzt werden. Alkylazide können zudem ausgehend von Alkoholen unter *Appel*-artigen⁴³⁷ Reaktionsbedingungen in Gegenwart von Tetrabrommethan, Triphylphosphin und Natriumazid erzeugt werden. ⁴³⁸ Kürzlich zeigten *Kitamura et al.* das auch ADMP IV-**3** eine direkte Umsetzung von Alkoholen zu Aziden ermöglicht. ⁴³⁹

Abbildung IV-2: Übersicht zu den wichtigsten Azidsynthesen.

Des Weiteren eignen sich Epoxide⁴⁴⁰ und Aziridine^{440a-c,441} als gute Elektrophile zur Synthese von α -Amino- bzw. α -Hydroxyalkylaziden. Auch diese nukleophilen Ringöffnungen verlaufen zumeist unter S_N2-Bedingungen stereoselektiv zu den entsprechenden *anti*-subtituierten Verbindungen und wurden bereits in Gegenwart geeigneter Katalysatoren enantioselektiv durchgeführt.⁴⁴² Azetiniumsalze können durch nukleophile Ringöffnung mit Azidanionen zu den analogen β-Aminoaziden umgesetzt werden.⁴⁴³

De Meijere et al. zeigten, dass auch die Palladium-katalysierte $S_N 2'$ -Substituition von 1,1-disubstituierten Allylhalogeniden zur Azidsynthese genutzt werden kann.⁴⁴⁴ Kürzlich demonstrierten *Rüping et al.,* dass auch die direkte Azidierung von Allylalkoholen in Gegenwart von Silbertriflat als Katalysator möglich ist.⁴⁴⁵

An einigen aktivierten Fluor- und Chlornitroaromaten sowie einigen heteroaromatischen Systemen ist die Bildung von Aryl- bzw. Heteroarylaziden durch nukleophile aromatische Substitution möglich.⁴⁴⁶ Ferner können auch elektronenreiche Aromaten mit Thalliumsubstituenten in die korrespondierenden Arylazide umgestezt werden.⁴⁴⁷ Alternativ gelingt die Überführung von Arylhalogeniden in die Arylazide in Gegenwart von Kupfer(I)salzen und Natriumazid unter milden Bedingungen.⁴⁴⁸

Die Synthese von Acylaziden erfolgt in der Regel durch nukleophile Substitutionsreaktionen am sp²-hybridisierten Kohlenstoffatom von Carbonsäurechloriden⁴⁴⁹ oder Aktivestern⁴⁵⁰ durch Substitution mit Natriumazid oder alternativ durch die Umsetzung von Carbonsäuren in Gegenwart einer Vielzahl von Reagenzien, wie beispeilsweise DPPA IV-**5**⁴⁵¹ (Abb. IV-2) oder Gemischen aus Triphenylphosphin⁴⁵² oder Cyanurchlorid/Morpholin⁴⁵³ mit Natriumazid.

Die Azideinheit kann jedoch auch als Elektrophil im Rahmen einer nukleophilen Substitution eingeführt werden. Arylazide lassen sich beispielsweise durch Lithiierung von Arylhalogeniden und anschließende Reaktion mit Tosylazid generieren. ⁴⁵⁴ Analog können α -azide Carbonylverbindungen nach Deprotonierung mit einer geeigneten Base und Reaktion mit Tosylazid in die entsprechenden α -Azidocarbonyle überführt werden.⁴⁵⁵

Neben den zahlreichen Azidsynthesen durch Substitutionsreaktionen ist die Synthese diverser Alkylazide auch durch Additionsreaktionen möglich (Abb IV-3). Die konjugate 1,4-Addition von *in situ* aus Trimethylsilylazid und Essigsäure erzeugter Stickstoffwasserstoffsäure an Enonsysteme bietet beispielsweise einen Zugang zu β -Ketoaziden.⁴⁵⁶ Ferner liefert die Haloazidierung von Olefinen in Gegenwart elektrophiler Halogenspezies und Natriumazid in Abhängigkeit von den Reaktionsbedingungen vicinale Halogenazide in guten Regio- und Diasteroselektivitäten.⁴⁵⁷

Die ersten 1,2-Additionsreaktionen von Halogenaziden (IN₃ und BrN₃) an Olefine wurden bereits 1965 von *Hassner et al.*⁴⁵⁸ beschrieben (Abb IV-3). Diese verlaufen über einen radikalischen Mechanismus, in dem sich das Azidylradikal analog einem Pseudohalogenradikal verhält.⁴⁵⁹ *Kirschning et al.* entwickelten hierzu eine elegante Polymer unterstützte Variante der Iodazidierung von Olefinen durch IN₃.⁴⁶⁰ Auch radikalische Selenoazidierung von Olefinen in Gegenwart von Diphenyldiselen, Diacetoxyiodbenzen und Natriumazid sind bekannt. ⁴⁶¹, ⁴⁶² *Renaud et al.* zeigten 2001, dass radikalische C-C-

Bindungsbildungsreaktionen durch Zugabe von Sulfonylaziden als Radikalfänger unter Bildung von Alkylaziden abgebrochen werden können.⁴⁶³ *Snider et al.* demonstrierten, dass in Gegenwart von Mangandiacetat sogar Natriumazid als Radikalfänger dienen kann.⁴⁶⁴

Eine weitere Möglichkeit zur Synthese von Aziden ist die radikalische C-H-Aktivierung von stabilisierten Postitonen.⁴⁶⁵ Bols et al. konnten zeigen, dass IN₃ in der Lage ist benzylische Positionen in Benzylethern in hohen Ausbeuten zu azidieren.^{401b,466} Magnus et al. nutzten eine Mischung aus Iodosobenzen IV-7 (Abb. IV-2) und Trimethylsilylazid zur Azidierung von Silylenolethern und Aminen.⁴⁶⁷ Vergleichbare Reaktionen können zudem mit anderen hypervalenten Iod(II)-Verbindungen wie beispielsweise PIFA IV-8 (Abb. IV-2) bewerkstelligt werden.^{468,309c,f} Zhdankin et al. zeigten, dass durch radikalische C-H-Aktiverung in Gegenwart des hypervalenten Iod(II)azids IV-6 (Abb. IV-2) sowie katalytischer Mengen an Radikalstarter regioselektive Azidierungen an tertiären Positionen unaktivierter Alkane möglich sind.⁴⁶⁹ Kürzlich beschrieben Tang et al. zudem die hochgradig selektive ortho-Azidierung von Anilinen durch Kupfer(I)-Katalyse in Gegenwart stöchiometrischer Mengen Trimethylsilylazid und tert-Butylhydroperoxid.470

IV-1.1.2 Struktur und Reaktivität von organischen Aziden

Die Struktur organischer Azide entspricht einer nahezu linearen Anordnung von drei Stickstoffatomen. Das N1-Stickstoffatom (Abb. IV-3) ist darin sp²-hybridisiert, wodurch der Bindungswinkel α(R-N1-N2) = 115.2° hervorgerufen wird.⁴⁷¹ Das N2- und N3-Stickstoffatom ist jeweils sp-hybridisiert. Die Bindung zwischen dem N2- und dem N3-Stickstoffatom ist einhergehend mit der höheren Bindungsordnung BO(N2-N3) = 2.5 etwas kürzer als die Bindung zwischen dem N1- und dem N2-Stickstoffatom (BO(N1-N2) = 1.5). Die enorme chemische Diversität der organischen Azide basiert auf deren physikochemischen Eigenschaften, von denen einige an Hand der von *Pauling et al.*⁴⁷² postulierten polaren mesomeren Grenzstrukturen **A**, **B**, **C** und **D** erklärt werden können (Abb. IV-3).^{394k} Beispielsweise lässt sich die starke IR-Absorption^{aa} oder das nur schwache Dipolmoment^{bb} von organischen Aziden sehr gut durch die mesomeren Grenzformeln **B** und **C** verstehen. Weitergehend können auch die Grundreaktivitäten der Azideinheit an Hand der polaren mesomeren Grenzstrukturen **C** und **D**, wie beispielsweise die einfach Zersetzung in Nitrene **G** und elementaren Stickstoff oder die Reaktivität als 1,3-Dipol innerhalb von Zykloadditionsreaktionen zu fungieren plausibel nachvollzogen werden. Sogar die Regioselektivität der Reaktion mit Elektrophilen zu Nitreniumionen **F** und Nukleophilen zu Triazenylanionen **E** lässt sich auf Basis dieser Grenzstrukturen verstehen.

^{aa} Asymmertische Valenzstreckschwingung $\tilde{v} = 2114 \text{ cm}^{-1}$ für Phenylazid.

^{bb} $\vec{\rho}$ = 1.44 D für Phenylazid.

Abbildung IV-3: Mesomere Grenzstrukturen und Grundreaktivitäten organischer Azide.

Das Azidanion^{cc} wird zu den sogenannten Pseudohalogenen gezählt,^{473,474} und auch organische Azide zeigen viele vergleichbare Eigenschaften wie entsprechenden Halogenverbindungen. Beispielsweise zeigen aromatische Azide vergleichbare *Hammet*-Parameter⁴⁷⁵ wie Fluorarenen und dirigieren eine elektrophile aromatische Zweitsubstitution in *ortho*- oder *para*-Position. Auch die Substitution⁴⁷⁶ oder *anti*-selektive Eliminierung^{457a} von Alkylaziden ist unter geeigneten Bedingungen möglich.

Ein wesentlicher Unterschied zu Halogenverbindungen ist jedoch die oftmals hohe thermische Instabilität und teilweise vorliegende Schlag- und Stoßempfindlichkeit von organischen Aziden. Während ionische Azide wie Natriumazid als Feststoff^{dd} weitgehend unproblematisch sind, sind Schwermetallazide und kovalent gebundene organische Azide in Abhängigkeit der atomaren Zusammensetzung^{477,ee} der Verbindungen teils starke Explosivstoffe mit hoher Brisanz.

Für die Arbeit mit organischen Aziden im Generellen und im Besonderen für die Arbeit mit Polyaziden, wie einigen der in Abbildung IV-4 gezeigten Verbindungen, ist daher besondere Vorsicht geboten. Für den Umgang mit solchen Verbindungen sollten geeignete persönliche Schutausrüstungen (Gesichtsschild, Kevlar[®]-Weste, Sicherheitsscheiben etc..) genutzt werden. <u>In keinem Fall</u> sollten Destillation oder Sublimation zur Reinigung von Substanzen in Erwägung gezogen werden. Es ist in jedem Fall zu Bedenken, dass Hitze, Licht, Druck oder elektrische Entladungen eine Detonation verursachen

^{cc} Elektronegativitäten nach Mulliken: Cl (8.3 eV), Br (7.5 eV), N₃ (7.7 eV).

^{dd} In sauren, wässrigen Lösungen von NaN₃ entsteht allerdings das hochexplosive IN₃, welches selbst in wässrigen Lösungen nur unterhalb von 20% stabil und handhabbar ist.

^{ee} Als Fausregel gilt hier, dass in nicht-explosiven Verbindungen die Anzahl der Stickstoffatome die Anzahl der Kohlenstoffatome nicht überschreiten und zusätzlich der Quotient aus der Summe aller Sauertsoff- und Kohelenstoffatome geteilt durch die Summe aller Stickstoffatome größer oder gleich 3 ergeben sollte, $(N_{\rm C}+N_{\rm O})/N_{\rm N} \ge 3$.

können. Zusätzlich sollten die Ansatzgrößen bei Experimenten mit Aziden möglichst klein gehalten werden um das Risiko einer Detonation weitestgehend zu minimieren.⁴⁷⁸

Abbildung IV-4: Explosive organische Azide.

Trotzdessen aller Schutzmaßnahmen ist Wachsamkeit geboten. Während die Verbindung IV-**9** (Abb. IV-9) das Produkt einer zielgerichteten Synthese ist,⁴⁷⁹ können das hochexplosive Diazidomethan IV-**12** oder auch Triazidomethan IV-**13** bereits bei Einwirkung von Natriumazid auf Dichlormethan bzw. Chloroform erzeugt werden.^{480,481}Dabei können selbst Rückstände dieser Lösungsmittel im Ausgangsmaterial schwerwiegende Explosionen verursachen.⁴⁸²

Die Gefahr die von solchen Polyaziden ausgeht wird eindrucksvoll durch die Sicherheitsanweisungen verdeutlicht, die *Banert et al.* 2007 den Berichten über die *in situ* Synthese und Untersuchung der Reaktivität von Tetraazidomethan IV-**11** befügten.⁴⁸³

"Safety Precautions: Tetraazidomethane is extremely dangerous as a pure substance. It can explode at any time— without a recognizable cause. Less than a drop of this compound isolated by gas chromatography is able to destroy completely not only the glass trap but also the vacuum Dewar flask of the cooling bath. Therefore, the isolated substance should only be diluted by vapor deposition of a solvent behind a safety shield rather than by manual handling (with a pipette or syringe). However, solutions of Tetraazidomethane can also lead to an explosion after mechanical stress (swivel closure) or after evaporation of a volatile solvent, for example, in a pipette."

Im Folgenden sollen nun die wichtigsten Anwendungen aus den vier Grundreaktivitäten (Vgl. Abb. IV-3) von organischen Aziden diskutiert werden. Am Rande sei zudem noch auf die vielseitige Chemie von Stickstoff zentrierten Radikalen durch Addition von Radikalen an organische Azide verwiesen,⁴⁸⁴ auf deren Diskussion an dieser Stelle verzichtet wird.

IV-1.1.2.1 Nitrene aus Aziden – Hochreaktive Teilchen mit großer Schaffenskraft

Tiemann hatte 1891 als erster die Existenz von Nitrenen postuliert.³⁹¹ Nitrene können thermisch⁴⁸⁵ oder photochemisch⁴⁸⁶ aus Aziden erzeugt werden. Ähnlich wie Carbene^{487,488} können die auf diese Weise erzeugten hochreaktiven Nitrene Insertionsreaktionen, Zykloadditionen oder Umlagerungen unterlaufen.³⁹⁴ Beispielsweise führt die Nitrenbildung aus Aziden **A** in Gegenwart von Olefinen **B** zur intermolekularen Zykloaddition unter Bildung von Aziridinen des Typs **C** (Abb. IV-5).⁴⁸⁹ Diese Reaktion kann auch zur Funktionalisierung von Carbonanotubes,⁴⁹⁰ Fullerenen⁴⁹¹ oder Graphenoberflächen eingesetzt werden.⁴⁹² Analog können in Anwesenheit interner Doppelbindungen im Azid (vgl. **D**) auch intramolekulare Zykloadditionen zum Aufbau Stickstoff haltiger Bizyklen des Typs **E** durchgeführt werden.^{493,494}

Abbildung IV-5: Zykloadditionsreaktionen von Nitrenen an C=C- und Y=X-Doppelbindungen.

Die intramolekulare Zykloaddtionen von Alkenylaziden **F** sind ebenfalls bekannt und führen zur Bildung von Azirinen des Typs **G** (Abb. IV-5),⁴⁹⁵ die durch Folgereaktionen wie beispielweise Hetero-*Diels-Alder*-Reaktionen,⁴⁹⁶ thermische Dimerisierungen^{495h,497} oder Diaza-*Cope*-Umlagerungen⁴⁹⁸ Zugang zu Stickstoff haltigen Heterozyklen bieten. Arylazide mit geeigneter Y=X-Doppelbindung in *ortho*-Position unterlaufen nach thermischer oder photochemischer Nitren-Erzeugung Zykloadditionsreaktionen unter Bildung von entsprechenden Heterozyklen des Typs J (Abb. IV-5).^{499,500,501}

Ferner können aus Aziden der Typen **A** und **C** (Abb. IV-6) erzeugte Nitrene in intramolekularen Reaktionen in sp²-hydridisierte C-H-Bindungen insertieren. Diese Reaktion kann effektiv zum Aufbau einer Vielzahl von Stickstoff-haltigen Heterozyklen wie Indolen,^{502,503} Pyrrolen,⁵⁰⁴ Carbazolen⁵⁰⁵ oder Azepinen⁵⁰⁶ genutzt werden. Inter-⁵⁰⁷ und intramolekulare⁵⁰⁸ C-H-Insertionen können auch in sp³-

hydridisierte Bindungen erfolgen. Die Insertion weist dabei eine relativ gute Regioselektivität auf, die in der Reihe von C-H-Bindungen an tertiären, über sekundäre bis hin zu primären Positionen abnimmt.

Abbildung IV-6: C-H-Insertionsreaktionen von Nitrenen.

Weitreichende Anwendung hat zudem die X-H-Insertion (X= C, N) von Nitrenen in der Photoaffinitätsmarkierung von Biomolekülen erlangt.^{492,509} Die Phototaffinitätsmarkierung mit Aziden wird in der Biochemie zur Aufklärung von Wechselwirkungen von Wirkstoffen, sogenannten Ligandmolekülen, mit ihren biologischen Zielmolekülen⁵¹⁰ sowie Protein-Protein-⁵¹¹ oder Protein-Nukleinsäure-Interaktionen⁵¹² genutzt.

Abbildung IV-7: Funktionsprinzip der Photoaffinitätsmarkierung mit azidierten Liganden.

Dabei werden azidierte Ligandmoleküle mit einem UV-Vis-aktivem oder radioaktiv-markiertem Photomarker verknüpft und mit ihrem Zielmolekül inkubiert, wodurch eine reversible Bindung des Liganden an sein Traget unter Bildung des Ligand-Target-Komplex erfolgt. Durch Photolyse der Azideinheit und die Insertion des resultierenden Nitrens in eine X-H (zumeist NH-H) erfolgt eine kovalente, irreversible Bindung des Liganden samt Photomarkers an das Target, wodurch eine Isolierung des Target durch photometrische Dektektion des Biokonjugates möglich wird.^{492,509}

Aus Aziden erzeugte Nitrene können sich auch durch Umlagerungsreaktionen stabilisieren. Das wohl bekannteste Besipiel für eine solche Umlagerung ist die *Curtius*-Umlagerung^{392,513} (Abb. IV-8). Darin führt die photochemische oder thermische Zersetzung von Acylaziden **A** in die korrespondierenen Acylnitrene **B** zu einem 1,2-Shift des Substituenten R auf das Stickstoffatom unter Bildung von Isocyananten **C**. Diese können anschließend entweder isoliert^{514,401b} oder direkt mit verschiedenen Nukleophilen zu Ureaten **G**,⁵¹⁵ Carbamaten **F**,^{516,434} Amiden **H**⁵¹⁷ oder Aminen **E**⁵¹⁸ umgesetzt werden.⁵¹⁹

Abbildung IV-8: Umlagerungen aus Nitrenen.

Ein weiteres Beispiel für die Umlagerungen von Nitrenen ist die thermisch oder photochemisch induzierte *Schmidt*-Umlagerung⁵²⁰ von Alkylaziden, die zur Bildung von Iminen führt.^{521,408d, 522}

IV-1.1.2.2 Addition von Elektrophilen an Azide – Vielseitige Nitreniumionen

Die Reaktion von Elektrophilen mit Aziden erfolgt streng regioselektiv am N1-Stickstoffatom unter Ausbildung von Nitreniumionen **C** (Abb. IV-9), diese sind isoelektronisch mit Carbenen und reagieren zumeist unter 1,2-Alkylwanderungen weiter. In der Totalsynthese von Nicotin IV-**15** (Abb. IV-9) von *Andrieux et al.*⁵²³ erfolgt beispielweise in einer klassischen *Brønstedt*-Säure-vermittelten *Schmidt*-Umlagerung^{520,513} die Protonierung des N1-Stickstoffatoms des Azids IV-**17** und das resultierende Nitreniumion IV-**18** wird durch eine 1,2-Alkylmigration unter Stickstoffverlust in das Imin IV-**19** überführt.

Abbildung IV-9: Umlagerungen aus Nitreniumionen.

Aber auch andere Elektrophile wie Oxoniumionen,^{524,525,526,527} Iminiumionen,⁵²⁸ Epoxide,⁵²⁹ Alkine⁵³⁰ oder Carbeniumionen⁵³¹ können an das N1-Stickstoffatom von Aziden unter Bildung von Nitreniumionen addiert werden und *Schmidt*-artige Umlagerungen zu einer Vielzahl von Produkten induzieren.⁵¹³ Die *Schmidt*-Umlagerung lässt sich auf Grund ihrer elektrophilen Initiation auch als Terminationschritt kationischer Kaskadenreaktionen einsetzen.^{532,533}

IV-1.1.2.3 Addition von Nukleophilen an Azide – Ligation und Reduktion

Azide reagieren mit Nukleophilen ausnahmslos am N3-Stickstoffatom unter Ausbildung von Mesomerie stabilisierten Triazenylanionen (**C** und **D**, Abb. IV-10).⁵³⁴ Diese können auf unterschiedliche Weise weiter reagieren. Zum einen ist die Reaktion mit Elektrophilen unter Bildung der Addukte **E** oder **F** möglich (Abb. IV-10, Reaktionspfad A), zum anderen kann eine Umlagerung zum Triazenylanion **G** erfolgen, aus dem sich durch Abspaltung von elementarem Stickstoff die Amidspezies **H** bildet. Ein intramolekulares Beispiel für einen nukleophilen Angriff am Azid, der dem Reaktionspfad A folgt, ist die *Dimroth-*Zyklisierung von Phenylazid IV-**2** mit dem Ethyl-2-cyanoacetatanion IV-**20** (Abb. IV-11).⁵³⁵ Das initial

gebildete Triazenylanion IV-**21** reagiert mit der Cyanogruppe als internem Elektrophil zu dem 1-Phenyl-1H-1,2,3-triazol IV-**24**.

Abbildung IV-10: Addition von Nukleophilen an organische Azide.

Abbildung IV-11: Dimroth-Zyklisierung: Reaktion des Triazenylanions mit einem internen Elektrophil.

Die Reaktion von Aziden mit Metallorganylen wie *Grignard*-Reagenzien oder Indiumverbindungen hingegen verläuft ausschließlich nach dem Reaktionspfad B (aus Abb. IV-10) und liefert nach wässriger Aufarbeitung sekundäre Amine.⁵³⁶

Die mit Abstand wichtigsten Nukleophile in Verbindung mit Aziden sind Phosphane. Phosphane reagieren mit Aziden ebenfalls analog dem Reaktionspfad B (aus Abb. IV-10) und bilden unter Abspaltung von elementarem Stickstoff Iminophosphorane des Typs **D** (Abb. IV-12).⁵³⁷ Iminophosphorane des Typs **D** können mit Nukleophilen und Elektrophilen gleichermaßen reagieren und besitzen als Azaanaloga der *Wittig*-Phosphorylide eine sehr vielfältige Anwendbarkeit. Der Nobelpreisträger *Hermann Staudinger* hatte gezeigt, ⁵³⁸ dass Iminophosphorane mit Wasser als Nukleophil in der nach ihm benannten *Staudinger*-Reduktion zu Aminen und Triphenylphosphinoxid abreagieren.^{539, 540} Durch Verwendung von
Trimethylphopsphan als Phosphornukleophil bei tiefen Temperaturen können mit dieser Reaktion glycosidische Polyazide sogar chemoselektiv in die entsprechenden Amine überführt werden.⁵⁴¹

In Analogie zu *Wittig*-Phosphoryliden reagieren Iminophosphorane auch mit einer ganzen Bandbreite an elektrophilen Carbonylverbindungen in einer Aza-*Wittig*-Reaktion.^{394a,b,542} Dabei bildet sich analog der *Wittig*-Reaktion zunächst durch nukleophilen Angriff ein Addukt I welches zum Azaoxaphosphetan J zyklisiert. Durch Abspaltung von Triphenylphosphinoxid wird eine N=C-Doppelbindung generiert, wodruch sich intramolekulare Aza-*Wittig*-Varianten hervoragend zum Aufbau einer Vielzahl von Stickstoffhaltigen Heterozyklen eignet. ^{543 , 544 , 545} Bei Verwendung von Carbonsäurestern, freien Carbonsäuren oder Thiocarbonsäuren als Elektrophil findet anschließend eine Tautomerisierung zum Amid L statt.

Abbildung IV-12: Mechanismus der Iminophosphoranbildung und Folgereaktionen.

Die Aza-*Wittig*-Reaktion bietet somit auch eine Möglichkeit zum Aufbau von Peptidbindungen.⁵⁴⁶ *Bertozzi et al.* waren die ersten, die das enorme Potential dieser Reaktion für die Synthese von Biokonjugaten erkannten und entwickelten eine modifizierte Variante der Aza-*Wittig*-Reaktion für ihre bahnbrechenden Untersuchungen zu metabolischen Regulierungsprozessen an Zelloberflächen.⁵⁴⁷ Diese als *Staudinger*-Ligation ^{548, 549, 550} bekannte Reaktion verwendet 3-(Diphenylphosphino)-4-(methoxycarbonyl)benzosäure IV-**25** (Abb. IV-13) als sogenannte Sonde, die mit einem Reporter **A** verknüpft das Reporter-Sonde-Konjugat **B** bildet. Die Phosphaneinheit dieses Konjugates reagiert dann chemoselektiv mit azidierten Biomolekülen **C** zunächst zum Iminophosphoran **D**, aus dem Grund der räumlichen Nähe ein schneller intramolekularer nukleophiler Angriff unter Ausbildung des Phospha-Bizyklus **E** erfolgt.⁵⁵¹ Die Hydrolyse im Reaktionsmedium Wasser liefert abschließend das Biokonjugat **F**.

Reporter = Farbstoff, Spin-Label, Photosensitive Einheit, Biomolekül/Affinitätsmarker (Biotin/Streptavidin), Oberläche, etc..

Abbildung IV-13: Prinzip der "Non-Traceless" Staudinger-Ligation nach Bertozzi et al..

Da bei dieser Reaktion die Sonde IV-**25** im Biokonjugat **F** verbleibt, wird diese Ligation auch als "Non-Traceless"-Staudinger-Ligation bezeichnet.⁵⁴⁸ Eine Weiterentwicklung sind "Traceless"-Staudinger-Ligationen.⁵⁵² In diesen werden bifunktionale Phosphansonden des Typs **B** eingesetzt, die in Form eines Esters oder Thioesters mit dem Reporter **A** verknüpft werden. Die Reaktion mit dem azidierten Biomolekül verläuft analog zum Iminophosphoran **E**, aus dem eine intramolekulare Substitution des Esters über das tetraedrische Intermediat **F** zum Biokonjugat-*N*-Phosphonium-Komplex **G** führt. Die abschließende Hydrolyse spaltet das Phosphinoxid der Sonde **I** ab, wodurch Biokojugat **H** ohne Fremdsubstanzanteil erhalten wird.⁵⁵³ Diese Methode kann beispielsweise für die Totalsynthese von Proteinen aus kleineren Untereinheiten genutzt werden^{554,552c} und muss dabei nicht an *N*-terminalen Cysteinen als Schnittstellen orientiert werden, wie die native chemische Ligation nach *Wieland* und *Kent.*⁵⁵⁵

Abbildung IV-14: Prinzip der "Traceless" Staudinger-Ligation.

Abbildung IV-15: Staudinger-Phosphonit-Ligation nach Hackenberger et al..

2009 präsentierten Hackenberger et al. die Methode der Staudinger-Phosphite-Ligation zur Modifikation von Proteinen.^{556, 557} Als Reporter-Sonde-Konjugat wird dabei ein Trialkylphosphit **A** (Abb. IV-15) eingesetzt, welches mit einem azidierten Biolmolekül B zunächst analog das entsprechende Trialkylphosphorimidat **C** bildet. Dieses hydrolysiert jedoch in Gegenwart des Reaktionsmediums Wasser 558 nicht, sondern unterläuft eine Michaelis-Arbuzov-Reaktion unter Bildung eines Dialkylphosphoramidat-Biokonjugates E und Verlust eines der drei O-gebundenen Reportermoleküle. Alle Arten von Staudinger-Ligationen laufen unter sehr milden, physiologischen Bedingungen bei Raumtemperatur in Wasser als Lösungsmittel ab und sind zu dem hochgradig chemoselektiv in Gegenwart einer Vielzahl biologischer Funktionalitäten durchführbar. Staudinger-Ligationen zählen daher zu den bioorthogonalen Reaktionen⁵⁵⁰ und haben mannigfaltige Anwendung in der Biochemie gefunden.⁵⁵⁹ Sogar Reaktionen in lebenden Organismen sind möglich.^{560, 561} Die Entwicklung der Staudinger-Ligations-Methodik hat das Methoden-Portfolio der Biochemie maßgeblich erweitert und wegweisende Erkenntnisse im Bereich der Medizin⁵⁶² und Zellbiologie ermöglicht.^{548,549,550}

IV-1.1.2.3 1,3-Dipolare Zykloaddition – Eine Reaktion erobert die organische Chemie

Eine weitere Reaktivität organischer Azide ist die 1,3-dipolare Zykloaddtion an Mehrfachbindungssysteme (Abb. IV-16). Die unkatalysierte Zykloaddition an Alkine⁵⁶³ oder Alkene⁵⁶⁴ verläuft thermisch und liefert 1,4- sowie 1,5-disubtituierte 1*H*-1,2,3-Triazole (**B** und **C**) bzw. 1*H*-1,2,3-Triazoline (**D** und **E**).

Abbildung IV-16: 1,3-Dipolare Cycloaddition an Mehrfachbindungen.

Mit Nitrilen als Dipolarophil können in hoher Regioselektivität⁵⁶⁵ 1,5-disubtituierte 1*H*-Tetrazole erzeugt werden,^{566,567} die auf Grund ihrer bioisosteren⁵⁶⁸ zu Carbonsäuren⁵⁶⁹ bei gleichzeitig hoher metabolischer Stabilität^{570,571} und vergleichbarer Acidität^{572, ff} interessante Zielstrukturen und Bausteine⁵⁷³ in der Medizinalchemie sind.⁵⁷⁴ Die Zykloaddition mit strukturell gespannten Systemen wie Norbenen, Arinen oder auch Cyclooctin-Derivaten^{550b} sowie Akzeptor-substituierten Alkinen verlaufen zumeist bereits bei Raumtemperatur in hoher Chemoselektivität quantitativ. Diese Reationen werden zur sogenannten bioorthogonalen⁵⁵⁰ Click-Chemie gezählt^{575,576} und haben weitreichende Anwendung in der Modifikation von Biomolekülen gefunden haben.^{577,550,578,579,580}

Seit *Sharpless et al.⁵⁸¹* und *Medal et al.⁵⁸²* in unabhängigen Studien zeigen konnten, dass die Kupfer(I)katalysierte Zykloaddition von terminalen Alkinen mit Aziden ebenfalls bereits bei Raumtemperatur quantitativ abläuft und zudem noch eine exzelleten Regioselektivität für die Bildung der 1,4disubstituierten 1*H*-Triazole aufweist (Abb. IV-17) hat diese Reaktion fasst alle Bereiche der organischen Chemie im Sturm erobert.

Abbildung IV-17: Mechanismus der Kupfer(I)-katalysierten Zykloaddtion von Aziden mit terminalen Alkinen.⁵⁸³

Im Besonderen die hohe Anwendungsbreite durch einsatz terminaler, unaktivierter Alkine, die einfache Durchführbarkeit sowie die Unempfindlichkeit gegenüber Sauerstoff und Wasser haben wesentlich zum Erfolg dieser Reaktion beigetragen.

In der Medizinalchemie⁵⁸⁴ nimmt die Reaktion bei der Identifizierung von Zielmolekülen für neue Pharmazeutika eine tragende Rolle ein.^{585,586,550} Ferner hat die Kupfer(I)-katalysierte Zykloaddition von Aziden und Alkinen eine wichtige Funktion in der Materialforschung,⁵⁸⁷ etwa bei der Synthese von Dendrimeren und der Modifikation von Hydrogelen, Nanopartikeln und Matrialoberflächen erlangt.

^{ff} pK_a (Tetrazol) = 4.8 vs. pK_a (Essigsäure) = 4.76

Die unglaubliche vielfältigen Anwendungen von Aziden in der Synthese von Verbindungen sowie vor Allem in der Modifikation von komplexen Biomolekülen ist beispiellos und verdeutlicht die Relevanz von milden Synthesemethoden zur Aufbau dieser einzigartigen, multifunktionellen Bausteine.

IV-1.2 α-Funktionalisierungen von Carbonylverbindungen in Gegenwart katalytischer Mengen Iod

Molekulares Iod wird als Reagenz in diversen Reaktionen in der organischen Chemie eingesetzt.^{588,589} Es kann als mildes Oxidationsmittel zur Erzeugung von Carbonylverbindungen aus Alkoholen dienen,⁵⁹⁰ die Bildung von Disulfiden aus Thiolen bewerkstelligen oder zur Oxidation von Aldehyden zu Carbonsäureestern und Nitrilen eingesetzt werden.⁵⁹¹ Im Weiteren wird molekulares Iod in einer Vielzahl von Halozyklisierungsreaktionen ⁵⁹² eingesetzt und findet vielfach Anwendung als Katalysator für Veresterungen und Umesterungen⁵⁹³ sowie zur selektiven Spaltung und Einführung von Schutzgruppen in der organischen Synthese.^{212,594} Zusätzlich kann molekulares Iod auch zur Difunktionalisierungen von Doppelbindungen wie beispielsweise der *Prévost-*⁵⁹⁵ und *Prevost-Woodward*-Dihydroxylierung ⁵⁹⁶ eingesetzt werden. Besonders hervor zuheben ist sicherlich die Verwendung von molekularem Iod zur Synthese von α-Iodcarbonylen (Abb. IV-18).

Abbildung IV-18: α -Iodcarbonyle - Wichtige Bausteine für die Heterozyklensynthese.

In Verbindung mit verschienden Oxidationsmitteln^{337,597} kann molekulares Iod zur Iodoxygenierungen von Alkenen und Alkinen unter Bildung von α -Iodcarbonylen genutzt werden. Die direkte α -Iodierung von Ketonen in Gegenwart von molekularem Iod und verschiedenen Aktivatoren führt ebenfalls zur Bildung von α -Iodcarbonylen.⁵⁹⁸ Teilweise kann hierfür molekulares Iod in stöchometrischen Mengen auch *in situ* durch Oxidation von Iodiden erzeugt werden.^{599,337} α -Iodcarbonyle stellen als reaktive 1,2-Dielektrophile und auch in Verbindung mit der *Kornblum*-Oxidation⁶⁰⁰ zu 1,2-Dicarbonylen wichtige

Synthesebausteine für die Heterozyklensynthese^{601,339,602} und für die α -Funktionalisierung^{603,339,602} von Carbonyl-verbindungen durch Substitution dar.

Erst seit kurzem ist die Verwendung von katalytischen Mengen von Iod oder Iodidsalzen in Verbindung mit günstigen stöchiometrischen Cooxidantien wie beispielsweise TBHP, Wasserstoffperoxid oder Oxon[®] zum oxidativen Aufbau von C-X-Bindungen (X = O, N, S) in den Fokus der Methodenentwicklung gerückt (Abb. IV-19).⁶⁰⁴

$$C-H + H-X \xrightarrow{[l_2 \text{ oder }]} C-X$$

$$X = S, N, O$$

Abbildung IV-19: Katalytische Verwendung von Iod zum Aufbau von C-X-Bindungen.

Die Verwendung katalytischer Mengen von Iod scheint dabei eine grüne Alternative zur Verwendung von Metall-katalysierte Reaktionen zu bieten.

Das lod kann im Rahmen dieser Oxidationskatalysen auf zwei verschiedene Arten katalytisch interagieren: Zum einen können auf Grund der geringen Dissoziationsenergie von molekularem lod (151 kJ/mol) Ein-Elektronen-Oxidationsprozesse (SET-Oxidationen) initiert werden, die zu Radikal basierten Kupplungsreaktionen führen (Abb. IV-20, links). Auf die eingehende Diskussion dieser Reaktionen⁶⁰⁵ wird an dieser Stelle verzichtet.

Abbildung IV-20: Radikal-basierter SET-Mechanismus (links), *"in situ"*-Iodierungs-Substitutions-Mechanismen (rechts).

Zum anderen können Iodidanionen wie auch molekulares Iod auf Grund der geringen Elektronegativität sehr einfach *in situ* durch anorganische oder organische Peroxide zu verschiedenen elektrophilen Iodspezies wie bspw. I_2 , IO_2^- , IO_2^- oder IO_3^- oxidiert werden, durch die eine *"in situ"*-Iodierung eines

geeigneten Substrates eintritt. Nachfolgend können die eingeführten lodgruppen durch Heteroatomnukleophile substituiert werden oder durch Eliminierung reaktive Mehrfachbindungen erzeugt werden die zur Addition von Heteroatomnukleophilen führen. In diesen Prozessen wird das substituierte lodid durch das jeweilige Cooxidans wieder zur katalytisch aktiven Spezies reoxidiert (Abb. IV-20, rechts).⁶⁰⁶ Durch Verwendung katalytischer Mengen Iod lassen sich besonders chemoselektive Methoden entwicklen, da hochreaktive Spezies nur in geringen Mengen *in situ* erzeugt werden. Die α -Funktionlisierung von Carbonylverbindungen in Gegenwart von katalytischen Mengen Iod oder Iodidsalzen und stöchiometrisch eingesetzten Cooxidatien folgt einem solchen *"in situ"*-Iodierungs-Substitutions-Mechanismus. Analog zu den einleitend besprochenen stöchometrischen Reaktionen werden dabei *in situ* reaktive α -Iodcarbonylverbindungen erzeugt, die mit geeigneten Nukleophilen unter Freisetzung von Iodid abreagieren (Abb. IV-21). Das Iodid wird anschließend in die katalytisch aktive Spezies reoxidiert.

Abbildung IV-21: α-Funktionaliserung von Carbonylverbindungen durch katalytische Mengen Iod und stöchiometrische Cooxidantien.

Ishihara et al. demonstrierten 2011 die inter- und intramolekulare α -Oxyacylierungen von Carbonylverbindungen des Typs **A** bzw. **D** in Gegenwart katalytischer Mengen Tetrabutylammoniumiodids und TBHP als Cooxidans (Abb. IV-22).⁶⁰⁷

Abbildung IV-22: α-Oxyacylierung von Carbonylverbindungen nach Ishihara et al..

Ein besonders elegantes Beispiel zur intramolekularen, enantioselektiven α -Alkyloxylierung von Ketonen stammt aus der gleichen Arbeitsgruppe (Abb. IV-23).⁶⁰⁸ Darin setzen *Ishihara et al*. Ketone des Typs **A** mit einem speziellen 1-Phenyl-1H-imidazol-2-yl-Ankersubstituenten in Gegenwart des chiralen, quartären Alkylammoniumiodid-Phasentransferkatalysators IV-**36** und Wasserstoffperoxid als Cooxidans zu den 2,3-Dihydrobenzofuran-Derivaten des Typs **B** in guten Enantiomerenüberschüssen um.

Abbildung IV-23: Enantioselektive Synthese von 2,3-Dihydrobenzofuranen nach Ishihara et al..

Ein weiteres Beispiel zur intramolekularen α -Alkyloxylierung von Ketonen des Typs **A** in Gegenwart katalytischer Mengen TBAI unter Bildung von *spiro*-Ketalen des Typs **B** stammt von *Xue et al.* (Abb. IV-24).⁶⁰⁹ darin verwenden die Autoren *m*-CPBA als Cooxidans. Der Zusatz von 2.0 eq TBAF diente zur Erhöhung der Nukleophilie des Phenolsauerstoff durch starke Wasserstoffbrückenbindungen des Fluorids mt dem phenolischen Proton.

Abbildung IV-24: Oxidative Spiroketalisierung nach Xue et al..

Kürzlich zeigten *Loh et al.*, dass auch die α -Aminierung von Aldehyden unter gleichzeitiger Bildung des Methylacetals in Gegenwart von Wasserstoffperoxid als Cooxidans möglich ist (Abb. IV-25).⁶¹⁰

Abbildung IV-25: α-Aminierung von Aldehyden nach Loh et al..

Zudem konnten unabhängig von einander *Prabhu et al.*,⁶¹¹ *Wang et al.*⁶¹² und *Wan et al.*⁶¹³ 2012 zeigen das Acetophenone in Gegenwart katalytischer Mengen Iod oder NIS und TBHP als Cooxidans eine α -Aminierung mit nachfolgender SET-Oxidation unter Bildung von α -Oxocarbonsäureamiden eingehen (Abb. IV-26).

Abbildung IV-26: Synthese von α-Oxocarbonsäureamiden.

Basierend auf der *in situ* Erzeugung von α-lodcarbonylen wurden bereits eine kleine Anzahl an Iodkatalysierten Kaskadenreaktion zur Synthese verschiedener Heterozyklen entwickelt (Abb. IV-27). *Yu et al.* präsentierten 2011 eine Kaskadenreaktion zur Bildung von hochsubstituierten Oxazolen des Typs **C** in der Carbonylverbindungen des Typs **A** mit Benzylaminen **B** in Gegenwart katalytischer Mengen an TABI und TBHP als Cooxidans umgesetzt wurden.⁶¹⁴

Zhu et al. zeigten 2012 in einer analogen Reaktion, dass bei höheren Temperaturen auch 2-Aminopyridine **D** unter Bildung von Imidazo[1,2-a]pyridinen umgesetzt werden können.⁶¹⁵

Kürzlich demostrierten *Nachtsheim et al.* in einer Kaskadenreaktion mit einem Decarboxylierungsschritt, dass auch Aminosäuren geeignete Stickstoffnukleophile für die Synthese hochsubstituierter Oxazole sind (Abb. IV-27, rosa Kasten).⁶¹⁶

Abschließend lässt sich festhalten, dass die Forschung zur katalytischen Verwendung von Iod in der organischen Chemie eine noch sehr junge Disziplin ist, die trotz ihrer rasanten Entwicklung noch viel Raum für Innovationen hat.

•

Abbildung IV-27: Synthese von Oxazolen nach *Yu et al.* sowie nach *Nachtsheim et al.* und Synthese von Imidazo[1,2a]pyridinen nach *Zhu et al.*

IV-2. Aufgabenstellung

IV-2.1 Zielsetzung

Trotz vielfältiger Entwicklung im Bereich der Azidsynthese³⁹⁴ und im Anbetracht der umfangreichen Einsatzmöglichkeiten von Aziden zur Modifikation hochfunktionaler Moleküle im Rahmen von Forschungsansätzen zur Untersuchung biologischer Funktionen, ist es erstaunlich, dass Methoden zur direkten Azidierung von komplexen, hochfunktionalisierten Ausgangsmaterialien, kaum vorhanden sind. Im Rahmen der vorliegenden Arbeit sollte daher eine milde Methode zur direkten, oxidativen Azidierung von 1,3-Dicarbonylen des Typs **A** in der 2-Position unter Verwendung katalytischer Mengen lodids in Gegenwart eines geeigneten Cooxidans entwickelt werden (Abb. IV-28). Die geplante Methode sollte dabei unter milden Bedingungen die Oxidation der enolisierbaren Position durch *in situ* lodierung und nachfolgende Azideinführung durch Substitution unter Verwendung einer einfachen Azidquelle wie Natriumazid gewährleisten.

Abbildung IV-28: Konzept der oxidativen Azidierung durch Verwendung katalytischer Mengen Iod.

Das 1,3-Dicarbonyl-Strukturmotiv wurde ausgewählt, da es ubiquitär in polyketiden, terpenoiden und alkaloiden Naturstoffen und Naturstoffderivaten wie beispielsweise Telithromycin IV-**55**,⁶¹⁷ Chlorophyll a I-**56**,⁶¹⁸ Yohimbinon IV-**57**, Cervimycin D IV-**58**,⁶¹⁹ Candicidine IV-**59**,⁶²⁰ Temocillin IV-**60**,⁶²¹ Niphimycin IV-**61**,⁶²² Brasinolide B IV-**62**⁶²³ und Micromelones A IV-**63**⁶²⁴ vorhanden ist oder sehr einfach durch Aldolartige Methoden aufgebaut werden kann (Abb. IV-29).⁶²⁵ Durch den Einsatz katalytischer Mengen Iod und damit einhergehende geringe Konzentration an reaktiven elektrophilen Spezies in der Reaktion sollte eine möglichst hohe Chemoselektivität erreicht werden, um auch komplexe 1,3-Dicarbonyle direkt, ohne zusätzliche Schutzgruppenmanipulationen azidieren zu können. Zusätzlich sollte die Modifikation der azidierten 1,3-Dicarbonyle **B** durch Kupfer(I)-katalysierte 1,3-dipolare Zykloaddition mit terminalen Alkinen zu Triazolen **C** gezeigt werden.

Abbildung IV-29: Polyketide, terpenoide und alkaloide Naturstoffe und Derivate mit 1,3-Dicarbonylmotiv.

IV-2.2 Stand der Forschung

Die Azidierung von 1,3-Dicarbonylen ist auf Grund der mannigfaltigen Einsatzmöglichkeiten in der Synthese von Heterozyklen und generellen Bedeutung als Ausgangsmaterialien in der organischen Synthese von großem Interesse.⁶²⁶

Zum Start dieses Projektes im Oktober 2010 dominieren im Wesentlichen drei Herangehensweisen die bekannten Synthesemöglichkeiten für 2-Azido-1,3-dicarbonyle. Eine häufige Methode zum Aufbau von 1,3-Dicarbonylen ist die indirekte, zweistufige Synthese durch radikalische oder elektrophile Bromierung und nachfolgene Substitution der Bromide **B** (Abb. IV-30) durch Natriumazid in dipolar-aprotischen Lösungsmitteln.^{627,428b}

Abbildung IV-30: 2-Azido-1,3-dicarbonylsynthese aus Bromiden.

Ferner ist auf Grund der α -Azidität von 1,3-Dicarbonylen die direkte Azidierung der 2-Position in Gegenwart von Basen und Sulfonsäureaziden als elektrophilen Azidquellen möglich (Abb. IV-31).⁶²⁸

Abbildung IV-31: Synthese von 2-Azido-1,3-dicarbonylen mit Sulfonsäureaziden als elektrophilen Azidquellen.

Allerdings sind hier keine Beispiele an hochfunktionalisierten Molekülen bekannt und mehrfach werden schlechte Ausbeuten sowie oxidative C-C-Spaltungen unter Bildung von Diazoverbindungen als Nebenreaktionen beschrieben.^{628c-f}

Desweiteren wurden hypervalente Iod(III)reagenzien wie das *Kosher*-Reagenz IV-**64**⁶²⁹ und Iodosobenzen IV-**7** in Verbindung mit Trimethylsilylazid oder Natriumazid zur direkten oxidativen Azidierung von ausschließlich strukturell sehr einfachen 1,3-Dicarbonylen eingesetzt (Abb. IV-32).⁶³⁰ Es wurde zudem eher moderate Ausbeuten erreicht. Die Umsetzung von IV-**69** zu IV-**70** wurde dabei ohne Lösungsmittel durchgeführt. Das Substrat wurde laut Versuchsbeschreibung in Substanz mit allen Reagenzien in einer Reibschale mit einem Pistil verrieben,^{630a} in Anbetracht der möglichen Bildung von hochexplosiver Stickstoffwasserstoffsäure unter den sauren Reaktionsbedingungen eine höchst gefährliche, sicherheitstechnisch fragwürdige Vorgehensweise.

Abbildung IV-32: Oxidative Azidierung von 1,3-Dicarbonylen mit hypervalenten Iod(III)reagenzien.

Abbildung IV-33: Radikalische Azidierung nach Snider et al..

Zuletzt zeigten 2004 *Snider et al.* an zwei Beispielen, dass die radikalischen Azidierung von β -Ketoestern in Gegenwart von Mangan(III)acetat und Natriumazid in Methanol in moderaten Ausbeuten möglich ist (Abb. IV-33).⁶³¹

IV-3. Azidierung von 1,3-Dicarbonylen

Die Untersuchungen zur Azidierung von 1,3-Dicarbonylverbindungen wurden in Zusammenarbeit mit *Tobias Harschneck* durchgeführt. Um einen vollständigen Überblick über das Projekt geben zu können, werden hier alle gewonnenen Erkenntnisse dargestellt. Ergebnisse nicht selbststädig durchgeführter Experimente werden explizit gekennzeichnet.

IV-3.1. Oxidative Azidierung von 1,3-Dicarbonylen in Gegenwart stöchiometrischer Mengen Iod

IV-3.1.1 Optimierung der Reaktionsbedingungen

Zunächst wurde die oxidative Azidierung von 1,3-Dicarbonylen in Gegenwart stöchiometrischer Mengen Iod und Natriumazid an dem kommerziell erhältlichen β-Oxoester IV-**75** untersucht.

			it			
	IV-75	IV- 76				
Eintrag	Reaktionsbedingungen	Temperatur [°C]	Reaktions- zeit [h]	Ausbeute [%] ^ª		
1	I ₂ (1.1 eq), NaN ₃ (1.2 eq), (ACN)	60	24	64		
2	l₂ (1.1 eq), NaN₃ (1.2 eq), (DMSO)	60	24	62		
3	l ₂ (1.5 eq), (THF:Na N 3 aq. 1.0 M/2:1)	40	24	67 ^b		
4	l ₂ (1.5 eq), (ACN:Na <mark>N₃</mark> aq. 1.0 M/2:1)	40	24	57 ^b		
5	l₂ (1.5 eq), (DMSO:Na <mark>N₃</mark> aq. 1.0 M/2:1)	23	3	86		
[a] Isolierte Ausbeute nach chromatographischer Reinigung. [b] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.						

Tabelle IV-1: Oxidative Azidierung von IV-75 in Gegenwart stöchiometrischer Mengen Iod.

Die Reaktion von IV-**75** in Gegenwart von 1.1 eq lod und 1.2 eq festem Natriumazid in Acetonitril benötigte eine Reaktionstempratur von 60°C zur Generierung vollständigen Umsatzes und lieferte nach 24 h das Azid IV-**76** in moderater Ausbeute von 64%. DMSO als Lösungsmittel unter ansonsten gleichen Reaktionsbedingungen führte nach 24 h zu vergleichbaren Ausbeuten von 62%. Die Zugabe des Natriumazids in Form einer 1.0 M wässrigen Lösung (ca. 4 eq) in Gegenwart von 1.5 eq lod in THF oder Acetonitril führte zwar nicht zu signifikanten Ausbeuteverbesserungen, jedoch zeigte die Reaktion eine deutlich erhöhte Reaktionsgeschwindigkeit und lieferte bereits nach 24 h bei 40°C vollständigen Umsatz.

Die beste Ausbeute und nochmals eine erhebliche kürze Reaktionszeit erbrachte die Reaktion in DMSO als Lösungsmittel in Gegenwart von 1.5 eq lod und unter Zugabe von einer 1.0 M wässrigen Natriumazidlösung bei 23°C. Bereits nach 3 h konnte das Azid IV-**76** nach reduktiver Aufarbeitung mit gesättigter Natriumthiosulfatlösung und säulenchomatographischer Reinigung in 86% Ausbeute erhalten (Tab. IV-1, Eintrag 5).³⁵⁷

IV-3.1.2 Anwendungsbreite der Reaktion

Im Folgenden wurden einige β-Ketoester zur Demonstration der Anwendungsbreite in die korrespondierenden 2-Azido-3-Oxoester überführt (Abb. IV-34). Bereits die oxidative Azidierung in Gegenwart stöchiometrischer Mengen Iod zeigte eine respektable Substratbreite. Neben freien sekundären und tertiären Alkoholen wurden sogar elektronenreiche Doppelbindung und ein 1,3-Dithian von der Reaktion toleriert und lieferte die entsprechenden Azide in guten Ausbeuten.

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-34: Substratbreite der oxidativen Azidierung in Gegenwart stöchiometrischer Mengen lod.

Ferner ist diese Methode auf Grund der günstigen Reagenzien^{ge} ideal geeignet für die Anwendung im Multi-Gramm-Maßstab. Verbindung IV-**75** konnte in einem Maßstab von 2.0 g (11.75 mmol) in 76% Ausbeute in das Azid IV-**76** überführt werden.

^{gg} Ca. 0.16 €/1 g lod bei Kleinmengenabnahme (bis 12 kg), ca. 0.20 €/1 g NaN₃bei bei Kleinmengenabnahme (bis 2 kg) bei *Sigma-Aldrich*

IV-3.2. Oxidative Azidierung von 1,3-Dicarbonylen in Gegenwart katalytischer Mengen Iodid

IV-3.1.1 Optimierung der Reaktionsbedingungen

Da bei der Umsetzung komplexer, hochfunktionaliserter Moleküle in Gegenwart stöchiometrischer Iod unerwünschte Nebenreaktionen nicht ausgeschlossen werden können,^{588,212} wurde nachfolgend die oxidative Azidierung mit wässriger Natriumazidlösung in DMSO unter Verwendung katalytischer Mengen an Iodidsalzen in Gegenwart stöchiometrischer Cooxidantien untersucht.

Tabelle IV-2: Optimierung der oxidativen Azidierung in Gegenwart katalytischer Mengen Iodid.

Exp.	Reaktionsbedingungen	Temp.	Zeit	Ausbeute ^a
		[°C]	[h]	[%] ^a
1	TBHP (1.5 eq), NaI (20 mol%), (DMSO:NaN ₃ aq. 1.0 M/2:1)	23	3	_ ^{b,d}
2	H₂O₂ (1.5 eq), Nal (20 mol%), (DMSO:NaN₃ aq. 1.0 M/2:1)	23	3	_c
3	Oxon® (1.5 eq), Nal (20 mol%), (DMSO:NaN₃ aq. 1.0 M/2:1)	23	3	61
4	IBX (1.5 eq), NaI (20 mol%), (DMSO:NaN ₃ aq. 1.0 M/2:1)	23	0.5	91
5	IBX-SO₃K (1.5 eq), Nal (20 mol%), (DMSO:Na <mark>N₃</mark> aq. 1.0 M/2:1)	23	0.5	91
6	IBX-SO ₃ K (1.5 eq), NaI (20 mol%), (THF:Na <mark>N₃</mark> aq. 1.0 M/2:1)	40	24	70
7	IBX-SO₃K (1.5 eq), NaI (20 mol%), (THF:Na <mark>N₃</mark> aq. 1.0 M/2:1)	40	24	43
8	IBX-SO ₃ K (1.5 eq), Nal (20 mol%), Na <mark>N₃</mark> (1.1 eq), (DMSO:H ₂ O/2:1)	23	2	90 ^d
9	IBX-SO₃K (1.5 eq), NaBr (20 mol%), (DMSO:Na <mark>N₃</mark> aq. 1.0 M/2:1)	23	4	31 ^d
10	IBX-SO₃K (1.5 eq), (DMSO:NaN₃ aq. 1.0 M/2:1)	23	24	_b
11	Nal (20 mol%), (DMSO:Na <mark>N</mark> ₃ aq. 1.0 M/2:1)	23	24	_b
12	IBX-SO₃K (1.5 eq), TBAI (20 mol%), (EtOAc:NaN₃ aq. 1.0 M/2:1)	50	24	20
13	IBX-SO ₃ K (1.5 eq), Ph ₃ P(iPr)I (20 mol%), (EtOAc:NaN ₃ aq. 1.0 M/2:1)	50	72	60
14	IBX-SO ₃ K (1.5 eq), Ph ₃ PBnI (20 mol%), (EtOAc:Na N ₃ aq. 1.0 M/2:1)	50	3	74
15	IBX-SO ₃ K (1.5 eq), Ph ₃ PBnI (20 mol%), (EtOAc:Na N₃ aq. 1.0 M/2:1)	23	24	40
16	IBX-SO ₃ K (1.5 eq), Ph ₃ PBnBr (20 mol%), (EtOAc:NaN ₃ aq. 1.0 M/2:1)	50	72	44
17	IBX-SO ₃ K (1.5 eq), Ph ₃ PBnCl (20 mol%), (EtOAc:NaN ₃ aq. 1.0 M/2:1)	50	72	3

[a] Isolierte Ausbeuten nach chromatographischer Reinigung. [b] Kein Umsatz. [c] Zersetzung des Ausgangsmaterials. [d] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Während die Verwendung von TBHP als Cooxidans in Gegenwart von 20 mol% Natriumiodid keinerlei Umsatz erbrachte (Tab. IV-2, Eintrag 1), führte Wasserstoffperoxid zur vollständigen Zersetzung des Ausgangsmaterials (Tab. IV-2, Eintrag 2). Die Reaktion mit 1.5 eq Oxon[®] als Cooxidans lieferte in Gegenwart von 20 mol% Natriumiodid das gewünschte Azids IV-76 in moderater Ausbeute von 61% nach 3 h (Tab. IV-2, Eintrag 3). Die Verwendung von IBX war besonders erfolgreich, das Azid IV-76 wurde bereits nach 30 min in signifikant verbesserter Ausbeute von 91% erhalten (Tab. IV-2, Eintrag 3). Da IBX n jedoch ein sehr effizientes Oxidationsmittel für eine Vielzahl funktioneller Gruppen ist,^{306a-f} erschien es nicht das geeignete Reagenz für die Entwicklung der geplanten chemoselektiven Reaktion zur Azidierung komplexer hochfunktionaler Moleküle zu sein. Stattdessen rückte das sulfonierte IBX-Derivat IBX-SO₃K IV-82 (Abb. IV-35) in den Fokus der Untersuchungen.¹⁸¹ IBX-SO₃K IV-82 ist in einer dreistufigen Synthese ausgehend von Anthranilsäure IV-84 sehr effizient zugänglich und weist neben einer moderaten Wasserlöslichkeit (50mg/mL ca. 0.15 M) eine signifikant verminderte Oxidationskraft im Vergleich zu IBX IV-83 auf. Primäre, sekundäre und allylische Alkohole werden von IBX-SO₃K IV-82 in DMSO-Wasser-Gemischen selbst bei 60°C nicht oxidiert und können vollständig reisoliert werden. Nur propargylische und benzylische Alkohole werden bei 60°C über 24 h in eher moderaten Ausbeuten in die entsprechenden Carbonylverbindungen überführt (Abb. IV-35).

Durch Verwendung IBX-SO₃K IV-**82** als Cooxidans in Gegenwart von 20 mol% Nal in DMSO unter Zugabe von 1.0 M wässriger Natriumazidlösung wurde das gewünschte Azid IV-**76** ebenfalls in nur 30 min in exzellenten 91% Ausbeute erhalten (Tab. IV-2, Eintrag 5).

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-35: Synthese und Oxidationskraft von IBX-SO₃K IV-82.

Die Reaktion mit stöchiometrischen Mengen Natriumazid zeigte eine signifikant verlängerte Reaktionszeit lieferte aber vergleichbare Ausbeuten (Tab. IV-2, Eintrag 8). Die Verwendung von Natriumbromid an Stelle von Natriumiodid führte zu deutlich reduzierten Ausbeuten (Tab. IV-2, Eintrag 9). Wurde kein Halogenidsalz oder Cooxidans zugegeben wurde keine Produktbildung beobachtet (Tab. IV-2, Eintrag 10 und 11). Die Verwendung anderer Lösungsmittel wie THF oder Acetonitril führte zu schlechteren Ausbeuten (Tab. IV-2, Einträge 6 und 7).

Ferner konnte die Reaktion auch in zweiphasigen Reaktionsgemischen aus EtOAc/H₂O unter Verwendung von Phasentransferkatalysatoren mit Iodidgegenionen bei erhöhter Temperatur von 50°C durchgeführt werden (Tab. IV-2, Einträge 12 bis 17). In Gegenwart von 20 mol% Benzyltriphenylphosphoniumiodid konnte das Azid IV-**76** nach 3 h bei 50°C in 74% Ausbeute erhalten werden (Tab. IV-2, Eintrag 14). Andere Iodid-haltige Phasentransferkatalysatoren sowie auch Bromid- oder Chloridgegenionen führten zu signifikant verlängerten Reaktionszeiten und schlechteren Ausbeuten.

Die PTC-Variante der Reaktion bot zusätzlich den Vorteil einer stark erleichterten Aufreinigung des Produktes, da alle Reagenzien durch einfache wässrige Extraktion abgetrennt werden konnten und keine zusätzlich chromatographischen Reinigungschritte notwenig waren. Allerdings schränkt die erhöhte Reaktionstemperatur die Anwendung zur Modifikation komplexerer 1,3-Dicarbonyle auf grund sinkender Chemoselektivität (Vgl. Abb. IV-35) ein. Daher wurden für die nachfolgenden Untersuchungen zur Anwendungsbreite der Reaktion mit den in Tabelle IV-2 im Eintrag 5 beschriebenen Reaktionsbedingungen durchgeführt.

IV-3.1.2 Anwendungsbreite der Reaktion

Die für die Untersuchung der Anwendungbreite benötigten 1,3-Dicarbonyle waren teilweise kommerziell erhältlich oder wurden aus der reichhaltigen Substanzbibliothek an 1,3-Dicarbonylen, die aus vorherigen Studien an dieser Substanzklasse im Arbeitskreis existierte, entnommen. Ferner waren weitere 1,3-Dicarbonylverbindungen durch einfache literaturbekannte Reaktionen aus den zuvor genannten zugänglich. Auf die Darstellung der ausführlichen Synthesen wird an dieser Stelle verzichtet.

Die Reaktion zeigte dabei eine beeindruckende Substratbreite. IBX-SO₃K IV-**82** stellte sich gerade auf Grund seiner signifikant verminderten Oxidationskraft als hochgradig selektives Oxidationsmittel für die Generierung von elektrophilen Iodspezies in Gegenwart einer Vielzahl von funktionellen Gruppen heraus (Abb. IV-36).³⁵⁷ Die Umsetzung von 3-Oxoestern, 3-Oxoamiden, 3-Oxoketonen und Malonaten lieferte die entsprechenden azidierten Verbindungen in gleichbleibend hohen Ausbeuten. Ferner tolerierte die Reaktion Substrate mit terminalen und aktivierten internen Olefinen (IV-**89**, IV-**79** und IV-**97**), Silylethern

(IV-96), Lactonen (IV-90), Acetalen (IV-101) Dithianen (IV-81) und sogar Epoxiden (IV-88). Auch Heteroaromaten (IV-102) reagierten problemlos in hohen Ausbeuten.

Experimente wurde von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-36: Substratbreite der oxidativen Azidierung von 1,3-Dicarbonylen in Gegenwart katalytischer Mengen Iodid.

Zudem gelang die Umsetzung von Substraten mit primären, sekundären und tertiären und sogar benzylischen Alkoholen in hohen Ausbeuten ohne nachweisebare Mengen an oxidierten Nebenprdukten. Selbst die Umsetzung eines komplexeren, enantiomerenreinen 1,3-Polyolfragmentes in das korrespondierende Azid IX-100 gelang ohne nachweisbare Racemisierung der Stereozentren in moderater Ausbeute von 51%, was den Einsatz von Schutzgruppen weitgehend überflüssig macht. Ferner reagierte ein hochfunktionalisiertes von Strychnin abgeleitetes Alkaloidderivat mit internem, basischem tertiären Amin in guter Ausbeute von 76% zum Produkten IV-**91**. Die meisten Reaktionen lieferten bereits bei 23°C vollständige Umsätze, einige sterisch anspruchsvollere Substrate benötigten allerdings höhere Reaktionstemperaturen von 40°C (IV-**80**) oder 50°C (IV-**89** sowie Malonat IV-**94**) um vollständige Umsätze zu erreichen. Die β -Oxoester IV-**104** und IV-**105** mit sterisch anspruchsvollen Isopropyl- und Cyclohexylsubstituenten in der 2-Position (Abb. IV-37) konnten unter den Reaktionsbedingungen selbst bei höheren Temperaturen bis 60°C nicht azidiert werden und wurden nahezu quantitativ reisoliert. Das β -Oxonitril IV-**106** zersetzte sich unter den Reaktionsbedingungen bereits nach 1 h vollständig. Ein Resultat welches vermutlich einer konkurrierenden radikalischen Dehydrogenierungsreaktion geschuldet ist (Vgl. III-3.2 Untersuchungen zur Dehydrogenierung von β -Oxonitrilen, Tab. III-1, Eintrag 6).

Abbildung IV-37: Limitierungen der oxidativen Azidierung in Gegenwart katalytischer Mengen lodid.

Zudem scheiterten Versuche durch den Einsatz von den Auxiliar-gekoppelten Methylmalonaten IV-**107a** und IV-**107b** eine Auxiliar-kontrollierte Diastereoselektivität in der Azidierungsreaktion zu induzieren. In

beiden Fällen konnten keine Bildung der entsprechenden Azide beobachtet werden, allerdings besteht Grund zur Annahme, dass die entsprechenden 2-Iodo-1,3-dicarbonyle gebildet wurden.^{hh} Die Azidierung selbst zeigte keinerlei Diastereoselektivität und lieferte Produkte enantiomeren angereicherter Substrate (Vgl. Abb. IV-36, IV-**100**, IV-**91**) als 1:1-Gemisch beider Diastereomere.

1,3-Dicarbonylen ohne Substituenten in der 2-Position konnten unter leicht modifizierten Reaktionsbedingungen in moderaten bis guten Ausbeuten in geminale Diazide überführt werden (Abb. IV-38). Die Reaktion zeigt analog der Monoazidierung eine hohe Tolleranz gegenüber verschiedenen funktionellen Gruppen. 3-Oxoester und Malonate konnten gleichermaßen umgesetzt werden und auch oxidationsempfindliche Thiophene (IV-**111**) sowie auch ein von Estradiol abgeleitetes Steroidderivat (IV-**112**) konnten in guten Ausbeuten in die korrespondierenden 2,2-Bisazido-1,3-Dicarbonylverbindungen überführt werden.

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-38: Synthese von 2,2-Bisazido-1,3-Dicarbonylverbindungen.

Die Reaktivität der unsubstituierten 1,3-Dicarbonyle ist dabei gegenüber den 2-substituierten Dicarbonylen deutlich erhöht. Bereits nach 10 min waren vollständige Umsatze erreicht, nur minimal längere Reaktionszeiten führten zu signifikant schlechteren Ausbeuten bis hin zur völlständigen Zersetzung der Ausgangsmaterialien. Monoazidierte Produkte, wie *Moriaty et al.*^{630c} sie beschrieben hatten, wurden nicht beobachtet und Versuche durch weniger Äquivalente an IBX-SO₃K IV-**82** eine Bildung dieser Produkte zu ermöglichen, schlugen fehl. Versuche die Bis-Azidierung in Gegenwart stöchiometrischer Mengen Iod zu bewerkstellingen, waren ebenfalls nicht erfolgreich. Die Ausgangsmaterialien wurden nahezu vollständig reisoliert.

Abschließend konnte gezeigt werden, dass durch Verwendung von 3.0 eq IBX IV-**83** als Cooxidans in Gegenwart katalytischer Mengen Natriumiodid in DMSO unter Zugabe von 1.0 M Natriumazidlösung die

^{hh} Die Bildung der 2-Iod-1,3-Dicarbonyle ließ sich generell durch Photolyse der Substanzen durch UV-Licht als gelbe Anfärbung auf der DC-Platte nachweisen.

Oxidation und nachfolgende Azidierung von β -Hydroxyestern unter Erhalt von 2-Azido-1,3-Carbonylen in guten Ausbeuten möglich ist (Abb. IV-39).

Abbildung IV-39: Ein-Topf-Reaktion aus Oxidation und oxidativer Azidierung von β-Hydroxyestern.

Allerdings bleibt diese Ein-Topf-Reaktion auf Grund der bereits besprochenen Reaktivität von IBX IV-**83**^{306a-f} auf einfache, oxidationsunempfindliche Substrate beschränkt.

IV-3.3 Mechanistische Diskussion der oxidativen Azidierung von 1,3-Dicarbonylen

Untersuchungen zeigten, dass der β-Ketoester IV-**75** sowohl in Gegenwart stöchiometrischer Mengen Iod als auch in Gegenwart von IBX-SO₃K IV-**82** und stöchiometrischen Mengen Natriumiodid in wässrigem DMSO ohne Zusatz von Natriumazid bei 23°C in das Iodid IV-**115** überführt werden konnte (Abb. IV-40). Anschließend konnte das Iodid IV-**115** durch Reaktion mit 1.2 eq Natriumazid in wässrigem DMSO in 74% Ausbeute zum Azid IV-**76** umgesetzt werden.

Abbildung IV-40: Mechanistische Untersuchungen.

Zusätzlich konnte die oxidative Azidierung von IV-**75** in Gegenwart von 1.5 eq NIS als elektrophile Iodspezies bewerkstelligt werden. Auffällig hierbei war die enorm hohe Reaktionsgeschwindigkeit der Azidierung mit NIS, bereits nach 10 min wurde vollständiger Umsatz erreicht und das Azid konnte in 67% Ausbeute isoliert werden.

Zunächst lassen diese Experimente Rückschlüsse auf den Mechanismus der oxidativen Azidierung in Gegenwart von stöchiometrischen Mengen Iod zu, die höchstwahrscheinlich über einen zweistufigen Prozess mit dem Iodid IV-**115** als Zwischenprodukt verläuft. Das Iodid IV-**115** wird dabei durch eine Elektrophile Iodierung des Enols IV-**116** mit Iod generiert und reagiert in einer S_N2-artigen Substitution^{428b,627f} mit Natriumazid unter Bildung des Azids IV-**76** weiter (Abb. IV-41).

Abbildung IV-41: Mechanismus der oxidativen Azidierung von 1,3-Dicarbonylen in gegenwart stöchiometrischer Mengen Iod.

Die Bildung von IN₃ aus Iod und Natriumazid unter den Reaktionsbedingungen und Beteiligung als elektrophile Iodspezies in der Iodierung oder innerhalb einer radikalischen Substitution des Iodids IV-**115** wie in früheren Veröffentlichungen diskutiert,³⁵⁷ kann weitestgehend ausgeschlossen werden. Zum einen spricht die hohe Chemoselektivität und vor allem die problemlose Umsetzung von Substraten mit Doppelbindungen jeglicher Art (Vgl. Abb. IV-34, Verbindung IV-**79**) gegen eine Beteiligung von IN₃, da dieses bei Raumtemperatur instantan mit Doppelbindungen in quantitativ verlaufenden Additionsreaktionen reagiert;^{458,459,460} zum anderen sind in der Literatur keine Beispiele für die Bildung von IN₃ in wässrigen Systemen bekannt. Im Gegenteil, ein Blick in Versuchsvorschriften^{458,459,460} zur *in situ* Erzeugung verät, Lösungsmittel hierfür müssen sorgfältig getrocknet werden, da sich IN₃ in Wasser zersetzt.^{458b}

Für die oxidative Azidierung in Gegenwart katalytischer Mengen Iodid und IBX-SO₃K IV-**82** als Cooxidans sind die zu berücksichtigen Faktoren weit vielfältiger. Auch in diesem Fall ist auf Grund der gezeigten Reaktivität ein Aufreten von IN₃ weitgehend auszuschließen.

Möglich wäre im Rahmen einer plausiblen Arbeitshypothese (Abb. IV-42), dass das hypervalente lodreagenz IBX-SO₃K IV-**82** im Wesentlichen zwei Aufgaben erfüllt: Zum einen ist es ein hochgradig chemoselektives Oxidationsmittel für die *in situ* Erzeugung einer elektrophilen lodspezies in katalytischen Mengen, vermutlich Hypoiodit,ⁱⁱ zum anderen generiert die Oxidation gleichzeitig katalytische Mengen Base, die durch Deprotonierung des C-H-aziden β -Ketoesters ein geladenes Nukleophil für die *in situ*

ⁱⁱ Da die Bildung von geminalen 2,2-Bisazido-1,3-Dicarbonylen in Gegenwart stöchiometrischer Mengen Iod nicht durchführbar ist, ist vermutlich Hypoiodit als katalytisch-aktive Spezies an der Reaktion beteiligt.

lodierung erzeugen. Das würde unter der Annahme, dass die Bildung des lodids IV-**115** der Geschwindigkeit bestimmende Schritt im Gesamtprozess ist, auch die deutlich gesteigerte Reaktionsgeschwindigkeit der dieser Reaktion im Vergleich zur Reaktion mit stöchiometrischen Mengen lod erklären, in der keine geladenen Nukleophile für den lodierungschritt generiert werden.

Abbildung IV-42: Plausible Arbeitshypothese eines ionischen Mechanismus für die oxidative Azidierung in Gegenwart katalytischer Mengen Iodid und IBX-SO₃K als Cooxidans.

Dieser Mechanismus wird auch von der Beobachtung des Iodids IV-**115** in den DC-Kontrollen der Reaktion gestützt.^{hh} Zusätzlich stützen die Beobachtung, dass Substrate mit sterisch sehr anspruchsvollen Substituenten (siehe Abb. IV-37, Verbindungen IV-**104** und IV-**105**) nicht zur Reaktion gebracht werden konnten, sowie die vermutete diastereoselektive Bildung der Iodide Auxiliar-verknüpfter Substrate ohne weiter Weiterreaktion zu den entsprechenden Aziden (siehe Abb. IV-37, Verbindungen IV-**107a** und IV-**107b**), die Hypothese eines ionischen Mechanismus aus Iodierung und nachfolgender S_N2-artiger Substition.

Auch wenn diese Arbeitshypothese eine gute Grundlage zum Verständnis der Reaktion schafft, können alternative Reaktionspfade in Gegenwart von IBX-SO₃K nicht IV-**82** vollkommen ausgeschlossen werden. Unter den Reaktionsbedingungen wäre auch eine Bildung von der hypervalenten Azido-Iod(III)verbindung IV-**119** aus IBA-SO₃K IV-**117** und Natriumazid denkbar.

Abbildung IV-43: Azido-Iod(II)verbindungen als reaktive Intermediate.

Verbindungen dieses Typs (IV-**6**, IV-**120** und IV-**121**, Abb. IV-43) wurden bereits 1994 von *Zhdankin et al.* beschrieben^{469a} und zur radikalischen Azidierung von unaktivierten, Kohlenwasserstoffen bei hohen Temperaturen (>100°C) in nicht-wässrigen Systemen eingesetzt.^{469b,c} Allerdings zeigten *Zhadankin et al.* auch, dass Cyclohexen in Gegenwart IV-**6** bereits bei -20°C eine Azidooxygenierung zu 2-Azidocyclohexanon einging.

Kürzlich zeigten *Studer et al.* zudem eine radikalische initierte Azidohydroxylierung von Doppelbindungen in Gegenwart stöchiometrischer Mengen der hypervalenten Azido-lod(II)verbindung IV-**6** sowie Natriumtetramethylpiperidinyloxid bei Raumtemperatur in Dichlormethan.⁶³² Das sulfonierte Äquivalent IV-**119** ließe gegenüber IV-**6** eine verminderte Reaktivität und höhere Selektivität erwarten, ähnlich wie IBX-SO₃K IV-**82**, und könnte alternative, radikalische Reaktionspfade zum Iodierungs-Substitutions-Mechanismus eröffnen.

IV-3.4 Modifikation durch Kupfer(I)-katalysierte 1,3-Zykloaddition

Zur Untermauerung des synthetischen Wertes der oxidativen Azidierung in Gegenwart katalytischer Mengen lodid als Werkzeug zur Modifizierung einfacher und komplexer 1,3-Dicarbonyle und im Hinblick auf mögliche Anwendungen in der Biochemie zur Modifikation von 1,3-Dicarbonyl enthaltenden Biomolekülen wurde nachfolgend die Kupfer(I)-katalysierte 1,3-dipolar Zykloaddition der synthetisierten Azide untersucht. Beispiele zur Bildung von Triazolen aus 2-Azido-1,3-Dicarbonylen sind rar,⁶³³ Beispiele zur Bildung geminaler *Bis*-Triazole waren bis zur Veröffentlichung unserer Ergebnisse unbekannt.

Die Kupfer(I)-katalysierte 1,3-dipolare Zykloaddition ausgewählter 2-Azido-1,3-Dicarbonyle sowie 2,2-Bisazido-1,3-Dicarbonylen mit Phenylacetylen gelang in Gegenwart von 20 mol% CuSO₄ als Präkatalysator, welcher *in situ* durch Zusatz von 40 mol% Natriumascorbat zur aktiven Kupfer(I)-Spezies reduziert wurde, TBTA IV-**122**⁶³⁴ als Ligand in *tert*Butanol-Wasser-Gemischen bei Raumtemperatur in exzellenten Ausbeuten (Abb. IV-44).³⁵⁷

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-44: Kupfer(I)-katalysierte 1,3-dipolare Zykloaddition mit 2-Azido-1,3-Dicarbonylen und 2,2-*Bis*azido-1,3-dicarbonylen.

Darüberhinaus konnte ein anderes Arbeitsgruppenmitglied zeigen, dass ein Ein-Topf-Verfahren für die oxidative Azidierung in Gegenwart von katalytischen Mengen Iod mit nachfolgender Kupfer(I)-katalysierter 1,3-dipolarer Zykloaddition von Phenylacetylen für die Monoazide realisiert werden konnte (Abb. IV-45).³⁵⁷

Abbildung IV-45: Ein-Topf-Verfahren zur oxidativen Azidierung und nachfolgenden Kupfer(I)-katalysierten 1,3-dipolaren Zyklosddition mit Phenylacetylen.

Dafür war es jedoch notwenig nach Beendigung der Azidierungsreaktion nicht abreagiertes Oxidationsmittel durch Zugabe von einem Überschuss an Natriumascorbat zu reduzieren um eine Reduktion des Präkatalysators CuSO₄ *in situ* zu gewährleisten. Die Entwicklung eines Analogen Ein-Topf-Verfahrens für die direkte 1,3-dipolare Zykloaddition der 2,2-Bisazido-1,3-dicarbonyle gelang nicht.

IV-3.6 Weitere Studien

IV-3.6.1 Studien zur Einführung anderer Nukleophile

In ausgedehnten Studien zur Einführung anderer Nukleophile in die 2-Position von β -Oxoester IV-**75** wurde versucht eine oxidative Fluorierung, Cyanidierung bzw. Cyanosulfonierung (Abb. IV-46) nachdem Vorbild der Azidierungsreaktion zu erreichen.

Abbildung IV-46: Untersuchungen zur Einführung anderer Nukleophile.

Dabei wurden diverse zum Teil sehr ausgefallene Fluorid-, Cyanid- und Thiocyanat-Quellen bei verschiedenen Temperaturen in verschiedenen Lösungsmittelsystemen untersucht. Obgleich in den meisten Experimenten die partielle Bildung des lodids IV-**115** beobachtet wurde,^{hh} konnte leider in keinem Fall die Bildung der gewünschten Fluoride, Cyanide oder Thiocyanate beobachtet werden.

IV-3.6.2 Studien zur asymmetrischen Azidierung von 1,3-Dicarbonylen

Wie zuvor beschrieben war während der Optimierungsarbeiten zur oxidativen Azidierung eine PTC-Variante der Reaktion entwickelt worden. In ausgedehnten Studien wurde versucht, diese Variante durch den Einsatz einer Vielzahl verschiedener chiraler Alkaloid-basierter Phasentransferkatalysatoren⁶³⁵,⁶³⁶ (**C**-**G**) im Rahmen einer asymmetrischen Phasentransferkatalyse zum Aufbau von 2-Azido-1,3-Dicarbonylen zu Nutzen (Abb. IV-47). Wenn eine asymmetrische Iodierung möglich ist, sollte die S_N2-artige Substitution durch Natrumazid enantiomerenangereichte Azide generieren. In den Untersuchungen wurden verschiedene 1,3-Dicarbonyle der Typen **A1**, **A2** und **A3** mit unterschiedlichen Ankersubstituenten⁶⁰⁸ X eingesetzt. In allen Experimenten wurden die entsprechenden Azide gebildet, leider konnte jedoch in keinem der Experimente ein signifikanter Enantiomerenüberschuss (max. 3.3% ee) festgestellt werden.

LM = Toluen, Et₂O, EtOAc, CH₂Cl₂, CHCl₃, DCB, MTBE, DCE, Benzen, Ph-NO₂, CycHex Oxidationsmittel = IBX-SO3K IV-82, IBX IV-83, Oxon

Abbildung IV-47: Untersuchungen zur Asymmetrischen oxidativen Aziderung durch Phasentransferkatalyse.

IV-3.8 Kürzliche Ergebnisse anderer Arbeitsgruppen

Die direkte Azidierung von 1,3-Dicarbonylen ist ein wichtiges und heiß umkämpftes Forschungsfeld in der organischen Chemie. Paralell zu unseren Arbeiten veröffentlichten *Ibrahim et al.* 2012 die Synthese eines neuen chiralen, C₂-symmetrischen Aryliodinan IV-**136** mit einem *anti*-Dimethananthracen-Rückgrat (Abb. IV-48).⁶³⁷

Abbildung IV-48: Aziderung von IV-134 nach Ibrahim et al..

Die Autoren zeigten, dass Sie mit stöchiometrischer Mengen von IV-**136** in Gegenwart der ungewöhnlichen Azidquelle Ammoniumazid im Acetonitril-Wasser-Gemisch Benzyl-2-methyl-3oxobutanoat IV-**137** in moderater Ausbeute von 62% bei 23°C azidieren konnten. Das Azid IV-**138** wurde dabei als Racemat erhalten und weitere Aziderungsbeispiele wurden nicht unternommen.

2013 veröffentlichten *Gade et al.* eine Eisen-katalysierte direkte Azidierung von β -Oxoestern und Oxindolen in Gegenwart stöchiometrischer Mengen der hypervalenten Azido-Iod(III)verbindung IV-**121** sowie katalytischer Mengen von Silbersalzen (Abb IV-49).⁶³⁸

Abbildung IV-49: Asymmetrische Azidierung von β-Oxo-estern und Oxindolen nach Gade et al..

Die Reaktion liefert 2-Azido-3-Oxoester in guten Ausbeuten und Enantiomerenüberschüssen von 69% ee bis 93% ee. Die Arbeit bleibt im Wesentlichen auf die Umsetzung von 3-Oxoestern mit 2,3-Dihydro-1Hinden-1-on-Grundgerüst beschränkt. *Gade et al.* können allerdings mit einer leicht veränderten Methode auch Oxoindole in α -Position asymmetrisch azidieren .

Unabhängig zeigten *Waser et al.* nur einen Monat später,⁶³⁹ dass die oxidative Azidierung von 3-Oxoestern auch mit stöchiometrischen Mengen der hypervalenten Azidoiod(III)verbindung IV-**121** in Toluen bei 23°C möglich ist (Abb. IV-50).

Abbildung IV-50: Oxidative Azidierung von β-Oxoestern und Silylenolether nach *Waser et al.*.

Erneut zeigte sich die Reaktion im Wesentlichen auf 3-Oxoestern mit 2,3-Dihydro-1H-inden-1-on-Grundgerüst limitiert. *Waser et al.* demostrierten zusätzlich, dass auch die korrespondierenden Silylenolether in Gegenwart von katalytischen Mengen Zn(OTf)₂ als Lewis-Säure in Toluen bei 23°C in die 2-Azido-1,3-dicarbonyle überführt werden konnten.

IV-4. Decarboxylative Azidierung von Monoalkylmalonsäureestern

Nach dem bahnbrechenden Erfolg in der Azidierung von 1,3-Dicarbonylen erschien eine Erweiterung der Methodik auf das Monoalkylmalonsäuremotiv im Hinblick auch eine mögliche Verwendung der Methode zur Azidierung des Naturstoffs Cervimycin D IV-**58** (Abb. IV-51) erstrebenswert.

Abbildung IV-51: Struktur der Cervimycine.^{619b}

Cervimycin D IV-**58**, ist ein Antibiotikum, dass von *Herdtweck et al.* zusammen mit anderen Vertretern der Substanzklasse, der Cervimycine, als Sekundärmetabolit aus einer gentechnisch manipulierten Mutante eines Bakterienstammes isoliert hatten,⁶¹⁹ welche auf der Oberfläche einer 5000-Jahre alten Wandmalerei in der *Grotta di Cervi*, einer für die Öffentlichkeit lange Zeit unzugänglichen Höhle, gefunden worden war.⁶⁴⁰ Cervimycin D IV-**58** weist eine sehr hohe Aktivität gegenüber gram-positiven Pathogenen auf, im Besonderen gegenüber multi-antibiotika-resistenten *Staphylococcus aures* sowie Vancomycin-resistenten *Enterococcus faecalis*.^{641,642} Unter anderem sind diese Bakterien einer der Hauptgründe für schwere nosokomiale Infektionen. Die Resistenz dieser Pathogene gegenüber vielen gebräuchlichen Antibiotika, wie bspw. Penicillinen, Cephalosporinen, Methicillinen und Tetracyclinen ist dramatisch angestiegen.⁶⁴³ Bis vor kurzem galt das glycopeptidische Antibiotikum Vancomycin IV-**147** (Abb. IV-52) als Reserveantibiotikum zur Behandlung von ernsthaften Infektionen verursacht durch multi-antibiotika-resistente, gram-positive Bakterien. Während der vergangenen Dekade haben sich jedoch Vancomycin-resistente Enterokokken⁶⁴⁴ und kürzlich auch Staphylokokken⁶⁴⁵ weltweit mit unerwarteter Geschwindigkeit verbreitet.⁶⁴⁶ Die Häufigkeit des Auftretens dieser lebensbedrohlichen

Infektionen und der Mangel an wirksamen Antibiotika zur Bekämpfung solcher Pathogene verursacht ernsthafte Sorgen innerhalb der Medizin.⁶⁴⁷

Abbildung IV-52: Struktur von Vancomycin.

Die Struktur der Cervimycine wird daher als neue Leitstruktur und Hoffnungsträger in der Entwicklung von effektiven synthetischen Antibiotika betrachtet.^{642,641}

Bisher konnte der Wirkmechanismus der Cervimycine noch nicht aufgeklärt werden. Da jedoch die Monoalkylmalonsäureeinheit im Cervimycin D IV-**58** keine wirkungsspezifische Relevanz hat,^{jj,642,641} bietet dessen Azidierung eine Möglichkeit den Wirkmechanismus durch *in vivo* Markierung zu untersuchen und das biologische Target der Cervimycine zu identifizieren (Abb. IV-53).

Abbildung IV-53: Mögliche Azidierung von Cervimycin D IV-**58** zur Target-Identifizierung.

^{jj} Die höchsten biologischen Aktivitäten weisten die Cervimycine K1 IV-**145** und K2 IV-**146** (Abb. IV-52) auf, die keine Monoalkylmalonsäureeinheit tragen.
Dazu muss die beschriebene Azidierungsmethode zunächst für die Umsetzung von Methylmalonsäuremonoestern optimiert werden sowie die Durchführbarkeit der Kupfer(I)-katalysierten 1,3-dipolaren Zykloadditionen von Acetylenen überprüft werden.

IV-4.1. Studien zur Azidierung von Monoalkylmalonaten und Optimierung der decarboxylativen Azidierung

Zunächst wurde ein geeigneter Methylmalonsäuremonoester als Mimetikum synthetisiert. Ausgehend von Diethylmethylmalonat IV-**143** wurde der Monoethylmethylmalonsäureester **229** durch Verseifung mit 1.0 eq KOH in Ethanol bei 110°C hergestellt (Abb. IV-54). Die Reaktion in Gegenwart von 1.5 eq IBX-SO₃K IV-**82** und 20 mol% Natriumiodid im 2:1-Gemisch aus DMSO und 1.0 M Natriumazidlösung wurde per Dünnschichtchromatographie überwacht zeigte nach 2 h bei 50°C^{kk} vollständigen Umsatz des Ausgangsmaterials an.^{II} Jedoch war lediglich eine deutlich unpolarere Verbindung entstanden, die nicht isoliert werden konnte.

Abbildung IV-54: Decarboxylative Azidierung von IV-**149** in einer Ein-Topf-Synthese mit nachfolgender Kupfer(I)katalysierte 1,3-dipolarer Zykloaddition von Phenylacetylen.

Es wurde daher versucht das gegebenenfalls gebildete Azid IV-**150** mit Hilfe einer nachfolgenden Kupfer(I)-katalysierten 1,3-dipolaren Zykloaddition mit Phenylacetylen in einer Ein-Topf-Synthese direkt in das korrespondierende 1,2,3-Triazol IV-**151** zu überführen. Erstaunlicherweise wurde dabei jedoch nicht das 1,2,3-Triazol V-**151** isoliert, sondern das korrespondierende decarboxylierte Triazol V-**152** in 76% Ausbeute erhalten (Abb. IV-55). Allerdings war die Substanz mit nicht identifizierten

^{kk} Vergleichbar mit Dialkylmalonaten zeigte sich bei keine Reaktion unter den Reaktionsbedingungen.

^{II} Das Monoethyl-2-methylmalonat kann trotz fehlender UV-aktiver Chromophore durch Reaktion in einer lodkammer detektiert werden.

Verunreinigungen belegt, die nicht abgetrennt werden konnten. Die Erhöhung der Reaktionstemperatur während des decarboxylativen Azidierungsschrittes auf 60°C führte zur Bildung des Triazols IV-**152** in nahezu quantitativer Ausbeute und die Bildung der zur Verunreinigung führenden Nebenreaktionen wurde vollständig unterbunden. Höherere Temperaturen von 70°C und 80°C führten zu schlechteren Ausbeuten.

Abbildung IV-55: Optimierte Bedingungen für die decarboxylative Azidierung von Monoalkylmalonsäuren in Gegenwart katalytischer Mengen Iod und IBX-SO₃K IV-**82** als Cooxidans sowie ein Ein-Topf-Verfahren zur Synthese von entsprechenden Triazolen.

Ferner zeigte sich, dass bei sehr vorsichtiger Reaktionsführung und Aufarbeitung der Reaktionslösung und einem minimalen Unterdruck von 200 mbar während der Entfernung von Lösungsmitteln am Rotationsverdampfer auch das Azid I-**153** in 85% Ausbeute allerdings mit leichten Lösungsmittelrückständen erhalten werden konnte.

IV-4.2 Anwendungsbreite der Reaktion

Die entwickelte decarboxylative Azidierung bietet ausgehend von Malonaten einen sehr kurzen und einfachen Zugang zu α -Azidocarbonsäureestern, sehr nützlichen α -Aminosäurederivaten. α -Azidocarbonsäureester sind beliebte Bausteine für Totalsynthesen von Petid-basierten⁶⁴⁸ oder alkaloiden Naturstoffen, ⁶⁴⁹ medizinalchemisch relevanten Derivaten⁶⁵⁰ und Wirkstoffen⁶⁵¹ oder Biokonjugaten zur Untersuchung von Stoffwechselprozessen von Organismen.⁶⁵² Daher wurde beschlossen die Anwendungsbreite dieser Reaktion durch Synthese einiger Beispiele von α -Azidocarbonsäureester-Derivaten natürlicher und unnatürlicher Aminosäuren zu untersuchen.

Dafür wurden zunächst Monoalkylmalonsäuren des Typs **C** mit unterschiedlichen Substituenten in der 2-Position ausgehend von Dialkylmalonaten durch Alkylierung und anschließende Verseifung in Gegenwart von 1.0 eq KOH bei 23°C hergestellt (Abb. IV-56).

Diese konnten unter den Reaktionsbedingungen in guten bis sehr guten Ausbeuten in die korrespondierenden α -Azidocarbonsäureester **D** überführt werden.

Abbildung IV-56: Substratbreite der decarboxylativen Azidierung von Monoalkylmalonsäuren.

Dabei konnte die Synthese von Azido-Derivaten natürlicher Aminosäuren wie Alanin (IV-**153**), Phenylalanin (IV-**154** und IV-**158**), Valin (IV-**155**) und Isoleucin (IV-**156**) als auch unnatürlicher Aminosäure-Derivate (IV-**159**, IV-**160**, IV-**161** und IV-**157**) gezeigt werden.

Abbildung IV-57: Alternative Vorschrift zur decarboxylativen Azidierung in Gegenwart stöchiometrischer Mengen

199

Die decarboxylative Azidierung von Methyl-2-benzylmalonsäure IV-**162** konnte auch in Gegenwart stöchiometrischer Mengen Iod bei 60°C in 83% Ausbeute bewerkstelligt werden (Abb. IV-57). Allerdings war es nicht möglich Methyl-2-propargylmalonsäure IV-**163** unter diesen Bedingungen decarboxylativ zu azidieren. Das Ausgangsmaterial IV-**163** wurde vollständig zersetzt. Zusätzlich wurden alle 2-Azidocarbonsäurester zur massenpektrometrischen Analyse nachdem in Abbildung IV-56 vorgestellten Ein-Topf-Verfahren in die korrespondierenden Triazole überführt.

IV-4.3 Untersuchungen zum Mechanismus der Reaktion

In Analogie zum zuvor für die oxidative Azidierung von 1,3-Dicarbonylen auf gestellten Mechanismus (siehe Abb. IV-42) wurde auch für die decarboxylative Azidierung der Monoalkylmalonsäureester ein Mechnismus basierend auf einer elektrophilen Iodierung und nachfolgenden nukleophilen Substitution erwartet. Unklar war zunächst auf welcher Stufe die Decarboxylierung erfolgt. Zur Klärung dieses Sachverhalts wurden mechanistische Untersuchung unternommen (Abb. IV-58). Zunächst konnte gezeigt werden, dass eine Umsetzung bei 60°C ohne Zusatz von Natriumazid mit stöchiometrischen Mengen Natriumiodid zur Bildung des decarboxylierten Iodids IV-**164** führt welches in 47% Ausbeute isoliert werden konnte.⁶⁵³

Abbildung IV-58: Untersuchungen zum Mechanismus der decarboxylativen Azidierung.

Im Weiteren erfolgt keine Decarboxylierung von IV-**162** ohne Zusatz von Natriumiodid, das Ausgangsmaterial konnte hier zum größten Teil reisoliert werden und die Bildung von Dihydrozimtsäuremethylester IV-**165** wurde nicht beobachtet. Eine rein thermische Decarboxylierung kann somit ausgeschlossen werden. Schon für die wesentlich decarboxylierungsempfindlicheren Malonsäuredicarboxylate hierfür werden Reaktionstemperaturen oberhalb von 100°C benötigt.⁶⁵⁴ Ferner konnte gezeigt werden, dass das lodid IV-**168** durch Reaktion mit 1.1 eq KOH in MeOH bei 23°C und vorsichtiger Aufarbeitung^{mm} in 54% Ausbeute in das nicht-decarboxylierte lodid IV-**169** überführt werden kann, welches bei einer Reaktionstemperatur von 60°C zu Verbindnung IV-**164** decarboxyliert oder mit Natriumazid in einer decarboxylativen Substitution zum α -Azidocarbonsäureester IV-**158** abreagiert. In logischer Konsequenz dieser Ergebnisse lässt sich der in Abbildung IV-59 illustrierte Katalysezyklus ableiten.

Abbildung IV-59: Plausibler Katalysezyklus für die decarboxylative Azidierung in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K als Cooxidans.

Zunächst erfolgt bei Reaktionstemperatur eine elektrophile Iodierung der Monoalkylmalonsäure. Durch den Iodsubstituenten in 2-Position wird die Aktivierungsbarriere für die Decarboxylierung abgesenkt und Verbindung **B** decarboxyliert unter Bildung des Iodids **D**. Eine nachfolgende S_N 2-artige Substitution führt zur Bildung des Azids **E** unter gleichzeitiger Freisetzung des Iodidanions, welches durch IBX-SO₃K erneut zur katalytisch aktiven Iodspezies, vermutlich Hypoiodit, reoxidiert wird.

^{mm} Verbindung IV-**169** wurde in EtOAc extrahiert und die organische Phase anschließend im vorsichtig im Vakuum bei 23°C vom Lösungsmittel befreit.

IV-4.4 Erste Studien zur decarboxylativen Azidierung von Cervimycin D

Im Rahmen eines Kooperationsprojektes zur Azidierung von Cervimycin D IV-**58** erhielt ich 20 mg der Substanz von der Arbeitgruppe *Herdtweck* vom Hans-Knöll-Institut der Friedrich-Schiller-Universität Jena. Die Arbeitsgruppe Herdtweck ist in der Lage Cervimycine D IV-**58** mittels biotechnologischer Methoden auch in Mengen um einige Dutzend Milligramm zu produzieren. Zunächst konnte nachgewiesen werden, dass die decarboxylative Azidierung von IV-**149** auch in Gegenwart von 1.0 eq Tetracyclin IV-**170** generell ablief (Abb. IV-60). Das Azid IV-**152** konnte in 5% Ausbeute isoliert werden. Ein Ergebnis welches im Anbetracht der in Abbildung IV-**61** markierten reaktiven Position von Tetracyclin IV-**170** als deutlich positiv zu bewerten ist. Ein erster Versuch der direkten decarboxylativen Azidierung von Cervimycin D IV-**58** scheiterte trotz vielversprechendem Verlauf der Reaktion in der dünnschichtchromatographischen Kontrolle an der Isolierung der Reaktionsprodukte.

ggf. Azidierung in markierter Position.

a) IBX-SO₃K IV-**82** (1.5 eq), Nal (20 mol%), (DMSO: NaN₃ aq. 1.0 M/2:1), 60°C, 2 h b) Natriumascorbate (1.6 eq), Phenylacetylen (1.5 eq), CuSO₄ (20 mol%), TBTA (2 mol%), 23°C, 24 h

Abbildung IV-60: Tetracyclin IV-170 als Mimetikum für das zentrale, hochfunktionalisierte, tetracyclische Fragment

von Cervimycin D.

Abbildung IV-61: Bildung und Nachweis der von IV-171 per LC/MS.

Die geringen Ansatzgröße (10 mg, 8 µmol) begünstigten dabei den Verlust der stark polaren wasserlöslichen Substanzen. In einem zweiten Versuch sollte die Azidierung und die nachfolgende Kupfer(I)-katalysierte 1,3-dipolare Zykloaddition mit Phenylacetylen in einer Ein-Topf-Synthese erfolgen. Die Reaktion zeigte sich in der dünnschichtchromatographischen Kontrolle erneut sehr vielversprechend scheiterte jedoch wieder an der Isolierung. Nichtsdestotrotz konnte die Masse der Verbindung IV-**171** als Hauptkomponente (1313.6 m/z) nachgewiesen werden (Abb. IV-61). Weitere Versuche zur direkten decarboxylativen Azidierung von Cervimycin D IV-**58** konnten bisher aus Mangel an weiterem Ausgangsmaterial nicht unternommen werden.

IV-4.6 Kürzliche Ergebnisse anderer Arbeitsgruppen

Kürzlich präsentierten *Wan et al.* eine oxidative, decarboxylative Aminierung von Monoalkylmalonsäureestern mit sekundären Aminen in Gegenwart katalytischer Mengen TBAI und TBHP als stöchiometrischem Cooxidans als Strategie zum Aufbau von Aminosäurederivaten.⁶⁵⁵

Abbildung IV-62: Decarboxylative Aminierung von Monoalkylmalonsäureestern in Gegenwart katalytischer Mengen Iodid und TBHP als Cooxidans nach *Wan et al.*.

Die Reaktion die bei 90°C über 8 h im Acetonitril-Wasser-Gemisch durchgeführt wurde lieferte α -*N*,*N*-Dialkylaminosäureester in moderaten bis guten Ausbeuten. Die Methode ist jedoch zur Umsetzung wertvoller, komplexer Monoalkylmalonsäureester ungeeignet, neben den hohen Reaktionstemperaturen wird der Monoalkylmalonsäureester hierbei im Überschuss eingesetzt.

IV-5. Synthese von geminalen Di- und Triaziden

VI-5.1 Unerwartete Erzeugung eines geminalen Triazids aus 3-Oxo-3phenylpropansäure durch decarboxylative Polyazidierung

Im Rahmen der Untersuchungen zur Anwendungsbreite der decarboxylativen Azidierung wurde auch die in der 2-Position unsubstituierte 3-Oxocarbonsäure IV-**172** durch Verseifung des kommerziell erhältlichen 3-Oxoesters IV-**173** mit Natriumhydroxid bei 0°C hergestellt (Abb. IV-63).

Abbildung IV-63: Synthese von IV-172.

Die extrem decarboxylierungsempfindlicheⁿⁿ 3-Oxocarbonsäure IV-**172** wurde dabei in schlechter Ausbeute von 24% nebst 70% des Decarboxylierungsproduktes Acetophenon erhalten.

Die Umsetzung von IV-**172** bei Raumtemperatur in Gegenwart von katalytischen Mengen Natriumiodid und IBX-SO₃K IV-**82** als Cooxidans lieferte ein unerwartetes Ergebnis: Neben 27% des thermischen Decarboxylierungsproduktes Acetophenon IV-**174**, wurden 40% 2-Azidoacetophenon IV-**175** sowie 32% des sehr ungewöhnlichen geminalen Triazids IV-**176** erhalten (Abb. IV-64).

Abbildung IV-64: Synthese des ungewöhnlichen geminalen Triazids IV-**176** in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K IV-**82** als Cooxidans.

Die Reaktion zum Triazid IV-**176** konnte durch Verwendung von 50 mol% Natriumiodid, Erhöhung der Konzentration an Natriumazid (6.0 M wässrige Lösung) und anfänglicher Kühlung des Reaktionsgemisches bei Zugabe der wässrigen Natriumazidlösung⁰⁰ auf 70% optimiert werden. Allerdings

ⁿⁿ Die Carbonsäure decarboxylierte bereits bei Raumtemperatur in CDCl₃ teilweise und musst bei -20°C im Tiefkühler aufbewahrt werden.

^{°°} Mischungen von DMSO: Wasser/2:1 können beim zusammengeben über 60°C erreichen.

war die Reproduzierbarkeit der Reaktion problematisch und lieferte stark schwankende Ausbeuten, was sicherlich der hohen Decarboxylierungsneigung des Ausgangsmaterials geschuldet ist.

Abbildung IV-65: Bekannte geminale Triazide.

IV-**176** ist das erste Beispiel eines geminalen Triazids in α-Postion zu einem Keton, bisher waren solche Verbindungen nicht bekannt. Lediglich die hoch explosiven Verbindungen Triazidomethan IV-**12**⁴⁸³ und Tetraazidomethan IV-**13**^{480,482d} konnten *in situ* hergestellt und durch metall freie 1,3-dipolare Zykloaddition mit Alkinen nachgewiesen werden. Ferner sind einige Salze des Typs A (Abb. IV-65) des Triazidomethylcarbeniumions mit verschiedenen schwachkoordinierenden Anionen bekannt,⁶⁵⁶ die alle ebenfalls hochexplosive, teilweise extrem schlag- und hitzeempfindliche Explosivstoffe sind.

Auf Grund der Brisanz polyazidierter organischer Verbindungen (siehe IV-1.2 *Struktur und Reaktivität von organischen Aziden*) wurden für die weiteren Untersuchungen dieser Substanzklasse erhöhte Sicherheitsvorkehrungen (Gesichtsschild, Sprengscheibe, PMMA-Sicherheitsgehäuse für den Rotationsverdampfer) bei der Durchführung der Experimente getroffen. Parallel wurden die explosiven Eigenschaften aller neuen Substanzen untersucht. Die Ergebnisse hierzu sind in dem Unterkapitel IV-5.5 *Charakterisierung, Nachweis und explosive Eigenschaften von* α -*Keto-Di- und Triaziden* zusammen gefasst.

IV-5.2 Mechanistische Untersuchungen der decarboxylativen Polyazidierung

Um die Bildung des geminalen Triazids IV-**172** durch decarboxylative Polyazidierung aus IV-**173** besser zu verstehen wurden einige mechanistische Untersuchungen unternommen (Abb. IV-66). Zunächst konnte gezeigt werden, dass Acetophenon IV-**174** das Produkt einer Nebenreaktion der decarboxylativen Polyazidierung von 3-Oxo-3phenylpropansäure IV-**172** und kein Intermediat der Reaktion ist. Selbst nach 24 h konnte keine Bildung des Triazids IV-**176** ausgehend von IV-**174** beobachtet werden. Das 2-Azidoacetophenon IV-**175** sowie 2-Iodoacetophenon IV-**179** scheinen hingegen Intermediate der

Reaktion zu sein, beide konnten unter den Reaktionsbedingungen nach 15 min in das Triazid IV-**176** überführt werden.

Abbildung IV-66: Untersuchungen zum Mechanismus der decarboxylativen Polyazidierung.

Wurden die Azidierungsreaktionen ausgehend von IV-**175** oder IV-**179** vorzeitig abgebrochen, war das erhaltene Triazid mit einer Substanz verunreinigt, die chromatographisch nicht abgetrennt werden konnte und ein charakteristisches ¹³C-NMR Signal bei einer chemischen Verschiebung von δ = 85.5 ppm aufwies. Vermutlich ein spektroskopischer Hinweis auf das Diazidmonoiodid IV-**180** als Intermediat der Reaktion.^{pp} Zusätzlich zeigte sich, dass stöchiometrische Mengen Iod auch nach 24 h bei 23°C nicht in der Lage waren eine Bildung des Triazids IV-**176** zu forcieren, stattdessen wurde 2-Azidoacetophenon IV-**175** in geringer Ausbeute von 31% erhalten.

Unter Berücksichtigung dieser Resultate und in Anlehnung an den zuvor postulierten Mechanismus der decarboxylativen Azidierung von Monoalkylmalonsäureestern (Siehe Abb. IV-59) kann der in Abbildung IV-67 illustrierte Katalysezyklus für die decarboxylative Polyazidierung von 3-Oxo-3-phenylpropansäure in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K angenommen werden. Nach einer initialen ersten elektrophilen Iodierung von IV-**174** unter Bildung von IV-**181**, liefert eine nachfolgende Decarboxylierung 2-Iodoacetophenon IV-**179**, welches in einer S_N2-artigen Substitutionsreaktion mit Natriumazid zum 2-Azidoacetophenon IV-**175** abreagiert. Der spektroskopischen Hinweis auf das

^{pp} Inkrementberechnungen mit *Chem & Bio Draw Ultra 12.0* der chemischen Verschiebung für das markierte Kohlenstoffatom ergeben einen Wert von δ = 84 ppm.

Diazidmonoiodid IV-**180** legen eine anschließende Sequenz aus suksessiver elektrophiler Iodierung mit anschließender Substitution durch Azidanionen unter Bildung des Triazids IV-**176** nahe. Die Intermediate IV-**182** und IV-**183** konnten bisher nicht nachgewiesen werden.

Abbildung IV-67: Plausibler Katalysezylus der decarboxylativen Polyazidierung von 3-Oxo-3-phenylpropansäure in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K IV-**82** als Cooxidans.

Das wohl interessanteste Ergebnis der mechanistischen Untersuchungen ist die Erkenntnis, dass auch das bei Raumtemperatur relativ stabile 2-lodacetophenon IV-**179** als Ausgangsmaterial für die Synthese des Triazids IV-**176** anstatt der zur Decarboxylierung neigenden 3-Oxo-3-phenylpropansäure IV-**172** genutzt werden kann. Nachfolgend sollte daher die Anwendungsbreite der Synthese von geminalen α -Keto-Triaziden ausgehend von 2-lodacetophenonen durch einige Beispiele demonstriert werden.

IV-5.3 Synthese von geminalen α -Keto-Di- und Triaziden ausgehend von 2-Iodacetophenonen

2-Iodacetophenone sind ausgehend von den entsprechenden Bromverbindungen durch die operativ einfache *Finkelstein*-Reaktion⁶⁵⁷ mit Natriumiodid in Aceton in sehr schnellen Reaktionen (15 min) zugänglich (Abb. IV-68) und können nach wässriger Aufarbeitung mit Natriumthiosulfatlösung zumeist ohne Notwendigkeit von chromatographischen Reinigungsschritten direkt weiter eingesetzt werden.

Abbildung IV-68: Finkelstein-Reaktion zur Synthese von 2-Iodacetophenonen.

Die Reaktion der 2-Iodacetophenon in Gegenwart von 3.0 eq IBX-SO₃K IV-**82** in DMSO unter Zusatz von 6.0 M wässriger Natriumazidlösung führte in moderaten bis guten Ausbeuten zur Bildung der korrespondierenden geminalen Triazide des Typs **B** (Abb.IV-69).

[a] IBX-SO3K (1.5 eq), (DSMO:NaN3 aq. 6.0 M/2:1), 0°C-23°C

Abbildung IV-69: Substratbreite der Synthese von geminalen Triaziden ausgehend von 2-Iodacetophenonen.

Die Reaktion tollerierte Chlorsubstituenten, sowie Alkyl- und Arylsubtituenten am Aromaten. Umsetzung des oxidationsempfindlichen 3,5-Dimethoxy-2-iodacetophenons ergab das korrespondierende Triazid IV-**185** in geringer Ausbeute von nur 30%.

Die Umsetzung von 2-lodpropiophenon in Gegenwart von 1.5 eq IBX-SO3K IV-**82** unter ansonsten gleichen Reaktionsbedingungen lieferte das korrespondierende Diazids IV-**187** in 79% Ausbeute.

4-Nitro-2-iodacetophenon IV-**189** zersetzte sich unter den Reaktionsbedingungen. Die Reaktion blieb zunächst auf aromatische α -lodketone limitiert, aliphatische α -lodketone führten unter den Reaktionsbedingungen lediglich zur Bildung der korrespondierenden Monoazide in geringen Ausbeuten. Auch die Polyazidierung ausgehend von 2-lodacetophenon Derivaten kann als katalytische oder zu mindest als substöchiometrische Reaktion bezeichnet werden, da bezogen auf drei eingeführte Azideinheiten nur 33 mol% lodidäquivalente eingesetzt werden.

IV-5.4 Entwicklung eines Ein-Topf-Verfahrens zur Synthese von geminalen α-Keto-Di- und Triaziden ausgehend von Olefinen

Die lodoxygenierung von Olefinen in Gegenwart elektrophiler lodquellen und Oxidationsmitteln wurde bereits einleitend erwähnt (Siehe Kapitel IV-1.2 α -Funktionalisierungen von Carbonylverbindungen in Gegenwart katalytischer Mengen Iod) und bietet eine effektive Möglichkeit zur Synthese von 2-lodacetophenonderivaten.^{337,597} Daher sollte anschließend ein Ein-Topf-Verfahren entwickelt werden, welches die Erzeugung von 2-lodacetophenonen aus Olefinen mit der subsequenten Umsetzung zu geminalen Triaziden kombiniert.

Die lodoxygenierung von Styren IV-**192** zu 2-lodacetophenon wurde nach einer Vorschrift von *Moorthy et al.*^{337d} in Gegenwart von 2.0 eq IBX IV-**83** und 1.1 eq NIS in DMSO bei 23°C in 59% Ausbeute erreicht. Die direkte Zugabe von weiteren 3.0 eq IBX IV-**83** sowie das vorsichtige Eintropfen von 6.0 M wässriger Natriumazidlösung unter Kühlung nach erreichen von vollständigem Umsatz für die lodoxygenierung setzen allerdings eine stark exotherme, nicht kontrollierbare Reaktion in Gang, die unter starker Gasentwicklung zur vollständigen Zersetzung des Ausgangsmaterials führte (Abb. IV-70).

Abbildung IV-70: Experimente zur Auswahl eines geeigneten Oxidationsmittel für den Iodoxygenierungsschritt.

Der Einsatz von IBX-SO₃K für die Iodoxygenierung war nicht erfolgreich, bei Raumtemperatur konnte lediglich die Bildung des Iodhydrins IV-**193** erreicht werden. Auf Grund der geringeren Oxidationskraft von IBX-SO₃K IV-**82** werden benzylische Alkohole erst ab einer Temperatur von 60°C in die korrespondierenden Carbonylverbindungen oxidiert (siehe Kapitel IV-3.1.1 *Optimierung der Reaktionsbedingungen*, Abb. IV-35). Bei 60°C wurde das Ausgangsmaterial allerdings innerhalb von 1 h vollständig zersetzt. Auch andere Oxidationsmittel wie Oxon® oder der, in der *Parikh-Döring*-Oxidation eingesetzte, SO₃ Py-Komplex in Verbindung mit Triethylamin als Base führten in Gegenwart von NIS nicht zur erfolgreichen Iodoxygenierung, sondern in teilweise sehr heftigen Reaktion zur Zersetzung des Ausgangsmaterials. Versuche eine Ein-Topf-Synthese ausgehend von Phenylacetylen IV-**194** einzuleiten, scheiterten ebenfalls.

Es zeigte sich, dass eine Ein-Topf-Reaktion ausgehend von Styren IV-**192** möglich war, wenn nach einer Iodoxygenierung in Gegenwart von 2.0 eq IBX IV-**82** und 1.1 eq NIS bei 35°C, überschüssiges IBX IV-**82** durch Zugabe von wenig Wasser ausgefällt wurde und zusammen mit dem Nebenprodukt IBA durch Filtration über eine Glasfritte aus der Reaktionsmischung abgetrennt wurde, bevor weiteres DMSO, eine 6.0 M Natriumazidlösung sowie 3.0 eq IBX-SO₃K zugegeben wurden (Abb. IV-71).

Abbildung IV-71: Ein-Topf-Verfahres zur Synthese von geminalen Triaziden aus Olefinen.

Das Triazid IV-**176** konnte in 43% Ausbeute erhalten werden. Im Anbetracht der sieben Teilreaktionen die an der Umwandlung eines terminalen Olefins in die 2,2,2-Triazidoacetylgruppe beteiligt sind, eine immer noch als gut zu bewertende Ausbeute.

Um nachfolgend die Anwendungsbreite des entwickelten Ein-Topf-Verfahren zu untersuchen wurden verschiedene terminale und interne Olefine durch *Wittig*-Olefinierung⁶⁵⁸ von einigen kommerziell erhältlichen Aldehyden hergestellt. Mit Hilfe des Ein-Topf-Verfahrens (Abb. IV-72) konnten so verschiedene geminale Triazide des Typs **B** mit unterschiedlich substituierten Arylresten in moderaten Ausbeuten hergestellt werden. Neben Substituenten wie Halogenatomen (Chlor und Fluor), wurden auch Methoxygruppen und sogar Heterozyklen wie 5-Methylfurna-2-ylgruppen toleriert.

Auch die Synthese des Diazids IV-**187** gelang aushend vom einer 1:1-E:Z-Mischung von 1-Phenyl-1propen, allerdings benötigte die Reaktion für den Polyazidierungsschritt, wie bereits zuvor beobachtet, wesentlich längere Reaktionszeiten.

Andere interne Olefine mit sterisch anspruchsvolleren Substituenten konnten nicht umgesetzt werden. Zumeist wurden in diesen Fällen Gemische aus Monoazid und Monoazidmonoiodid erhalten, die sich bei höheren Reaktionstemperaturen zersetzten.

Abbildung IV-72: Substratbreite des Ein-Topf-Verfahrens zur Synthese von geminalen Di- und Triaziden aus Olefinen.

Zusätzlich gelang die Synthese des aliphatischen Triazids IV-**201** in 32% Ausbeute. Auch diese Reaktion benötigte eine Reaktionszeit von 24 h für den Polyazidierungschritt. IV-**201** blieb bisher das einzige aliphatische Beispiel. Vermutlich wurden auch andere aliphatische Triazide gebildet, jedoch konnten diese bisher auf Grund der schwierigen Detektion der Vebindungen und damit einhergehenden Überwachung des Reaktionsfortschritts nicht isoliert werden.^{qq} Nichtsdestotrotz, macht die Bildung von IV-**201** Hoffnung die Substratbreite der Reaktion noch erweitern zu können.

^{qq} Die Verbindung IV-**201** weist eine oxidierbare tertiäre C-H-Bidung in α-Position zur Carbonylgruppe auf, wodurch eine Detektion mit KMnO₄-Anfärbereagenz möglich wird, wenn auch nur eine sehr schwache. Andere Färbereagenzien wie CAM-Lösung oder eine Iodkammer waren nicht erfolgreich. Auf Grund der Temperaturempfindlichkeit der Triazide ist auch eine Reaktionskontrolle per GC nicht zielführend. Für weitere Untersuchungen sollte hier eine Reaktionskontrolle per HPLC in Betracht gezogen werden.

IV-5.5 Charakterisierung, Nachweis und explosive Eigenschaften von α -Keto-Di- und Triaziden

Stellvertretend für die entdeckte Substanzklasse der geminalen α -Ketotriazide wird nachfolgend Verbindung IV-**176** besprochen. Als besonderes analytisches Charakteristikum kann die chemische Verschiebung des Triazidkohlenstoffatoms bei δ = 93.0 ppm zur Identifikation der Substanzen herangezogen werden (Abb. IV-73). Im Weiteren zeigt die Substanz IV-**176** eine charakteristische Azidbande im IR-Spektrum bei \tilde{v} = 2112 cm⁻¹ mit besonders starker Intensität. Mit Hilfe von TGA- und DSC-Messungen konnten zudem ein thermischer Zersetzungspunkt von 77.24°C sowie ein Kristallisationsphasenübergang bei -76.04°C ermittelt werden. Ferner zeigte sich, dass sich Verbindung IV-**176** durch die Einwirkung von monochromatischem Laserlicht der Welllänge λ = 248 nm, vermutlich unter Bildung von Nitrenen, zersetzte.^{rr} Eindeutige Massenspektren der Triazide konnten bisher auch mit neusten Laserionisationstechniken nicht erhalten werden.

¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.11 (dt, J = 8.6, 1.5 Hz, 2H), 7.66 - 7.59 (m, 1H), 7.52 - 7.44 (m, 2H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 186.8, 134.8, 131.3, 131.1, 128.8, 93.0. IR (ATR): [cm⁻¹] 2112 (N₃), 1695 (C=O) Zersetzungspunkt (TGA): +77.24°C Kristallisationsphasenübergang (DSC): -76.04°C Zersetzung durch monochromatisches Laserlicht mit einer Wellenlänge λ = 248 nm

Abbildung IV-73: Analytische Charakteristika von IV-176.

Der Nachweis aller hergestellten Triazide erfolgte über die Bildung von geminalen Tristriazolen durch metall-freie Zykloaddition mit Oyclooctin IV-**202** in quantitativer Ausbeute (Abb. IV-74). Die ¹H- und ¹³C- NMR-Spektren der geminalen Tristriazole zeigten dabei eine temperaturabhängige Rotationsbarriere für die C_{gem}-N-Bindungen. Während bei 23°C drei chemisch nicht äquivalente Cycloocta[d][1,2,3]triazoleinheiten vorliegen, zeigen sich bei 80°C alle Cycloocta[d][1,2,3]triazoleinheiten chemisch äquivalent sind und führten zu einem Signalsatz.

^{rr} Beobachtung von *Prof. Dr. Thorsten Benter* und seinen Mitarbietern, die im Rahmen einer Kooperation innerhalb der Bergischen Universität Wuppertal versuchten einen direkten Mssenspektrometrischen Nachweis der Triazide zu ermöglichen.

Abbildung IV-74: Nachweis der geminalen Triazidstruktur durch metall-freie 1,3-dipolare Zykloaddition unter Bildung von geminalen Tritriazolen.

Ausnahmslos alle hergestellten geminalen Di- und Triazide wiesen explosive Eigenschaften auf.^{ss} Bei schnellem Erhitzen der Verbindungen auf Temperaturen oberhalb von 80°C durch Aufbringen von Mengen unterhalb von 0.5 mg auf temperierte Heizplatten detonierten diese unter gleißendem Feuerschein und lautem Knall. Zusätzlich wurde eine schlagempfindlichkeit der Substanzen festgestellt. In Verbindung mit Glaspipetten führten geringste Substanzbenetzungen an der Oberfläche beim Abwurf in Abfallbehälter aus bereits geringen Fallhöhen zu eindrucksvollen Detonation.

Langsames Erhitzen kleiner Mengen der Triazide in verdünnten Lösungen über den ermittelten thermischen Zersetzungspunkt hinaus zog keine Detonation nach sich. Die Aufkonzentration verdünnter Lösungen der Triazide in organischen Lösungsmitteln wurde in einem Rotationsverdampfer mit PMMA-Schutzgehäuse bei einer Wasserbadtemperatur von 35-40°C durchgeführt.

IV-5.6 Erste Reaktivitäten von α-Keto-Di- und Triaziden

Eingehendere Untersuchungen zur Reaktivität der geminalen Di- und Triazide wurden bisher noch nicht unternommen. Allerdings wurde während Versuchen durch Reaktion von den Aziden IV-**176** und IV-**186** mit Tosylhydrazin in Gegenwart katalytischer Mengen *para*-Toluensulfonsäure bei 60°C in THF unter Lichtausschluss kristallisationsfähige Tosylhydrazone zu erzeugen, die Bildung der 2-Tosyl-2H-1,2,3-triazole IV-**206** und IV-**207** in geringen Ausbeuten von 20% bzw. 30% beobachtet (Abb. IV-75).

Die absolute Struktur von IV-**206** konnte dabei durch röntgendiffraktometrische Kristallstrukturanalyse eines Einkristalls, der durch Kristallisation aus CDCl₃/Pentan erhalten wurde, bestätigt werden (Abb. IV-76).

^{ss} Für das Triazid IV-**199** wurden hinsichtlich der explosiven Eingenschaften auf Grund der möglichen Bildung von giftigem HF keine Untersuchungen unternommen. Die strukturelle Ähnlickeit lässt jedoch vergleichbare Eigenschaften wie bei den anderen Triaziden erwarten.

Abbildung IV-75: Bildung von 2-Tosyl-2H-1,2,3-triazolen.

Abbildung IV-76: Rötgendiffraktometrische Struturanalyse von IV-206.

Die Bildung von IV-**206** in Gegenwart katalytischer Mengen Säure kann im Sinne des in Abbildung IV-77 dargestellten Mechanismus verstanden werden.

Abbildung IV-77: Plausibler Mechanismus für die Bildung von IV-206.

Dabei wird zunächst das Tosylhydrazon IV-**204** gebildet, welches anschließend durch Protonierung einer Azidgruppe in das Nitreniumion IV-**208** überführt wird. Aus diesem erfolgt ein intramolekularer Ringschluss unter Stickstoffverlust und Bildung des geminalen Diazidodihydrotriazoles IV-**209** welches nach Eliminierung von Stickstoffwasserstoffsäure Verbindung IV-**206** bildet. Die entdeckte Reaktivität kann hier sicherlich als erster Schritt hin zum Einsatz in der Synthese azidierter Heterozyklen gesehen werden. Weitere Untersuchungen müssen hier folgen.

IV-5.7 Kürzliche Ergebnisse anderer Arbeitsgruppen

Kürzlich präsentierten *Sudalai et al.*⁶⁵⁹ eine Vorschrift zur Diazidierung von Arylketonen in Gegenwart von stöchiometrischen Mengen Natriumperiodat und Natriumazid in DMSO-HOAc-Gemischen bei 75°C.

Abbildung IV-78: Diazidierung von Sudalai et al..

Die Reaktion lieferte α -Keto-Diazide in sehr guten Ausbeuten und verläuft höchst wahrscheinlich über einen radikalischen Mechanismus.

IV-6. Zusammenfassung und Ausblick

IV-6.1 Zusammenfassung

Im Rahmen dieser Arbeit wurde eine sehr milde Methode zur chemoselektiven Azidierung von 1,3-Carbonylverbindungen in 2-Position in Gegenwart katalytischer Mengen Natriumiodid und dem stöchiometrisch eingesetzten neuartigen hypervalenten Iod(V)reagenz IBX-SO₃K IV-**82** als mildem Cooxidans entwickelt. (Abb. IV-79). Die Reaktion zeigte eine beeindruckende Substratbreite, sogar hochfunktionalisierte Naturstoffhybride konnten ohne Notwenigkeit von Schutzgruppenchemie in guten Ausbeuten umgesetzt werden. In 2-Position unsubstituierte 1,3-Dicarbonylen konnten unter leicht veränderten Reaktionsbedingungen in geminale 2,2-Bisazido-1,3-Dicarbonyle überführt werden.

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-79: Chemoselektive Azidierung von 1,3-Dicarbonylen in Gegenwart katalytischer Mengen Natriumiodid und Cooxidans IBX-SO₃K. Ferner wurde eine günstige Methode zur oxidativen Azidierung von 1,3-Dicarbonylen in Gegenwart stöchiometrischer Mengen Iod entwickelt, deren Anwendung allerdings auf einfache oxidationsunempfindliche Substrate beschränkt blieb (Abb. IV-80).

Abbildung IV-80: Oxidative Azidierung in Gegenwart stöchiometrischer Mengen Iod.

Zusätzlich wurden die synthetisierten 2-Azido- und 2,2-Bisazido-1,3-dicarbonyle durch Kupfer(I)katalysierte 1,3-dipolare Zykloaddition mit Phenylacetylen in die korrespondierenden Triazole und Bistriazole überführt um das Anwendungpotential der chemoselektiven Azidierung zur Modifikation von Biomolekülen zu unterstreichen (Abb. IV-81).

[a] Experimente wurden von anderen Mitgliedern des Arbeitskreises durchgeführt.

Abbildung IV-81: Modifizierung via Kupfer(I)-katalysierter 1,3-dipolarer Zykloaddition mit Phenylacetylen.

In weiteren Untersuchungen konnte eine Methode zur decarboxylativen Azidierung von Monoalkylmalonsäurestern unter Bildung 2-Azidocarbonsäreester in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K IV-**82** als Cooxidans entwickelt werden (Abb. IV-82). Ausgehend von Dialkylmalonaten bietet diese Methode sehr effektiven dreistufigen Zugang zu synthetisch sehr nützlichen Derivaten von natürlichen und unnatürlichen α-Aminosäuren.

Abbildung IV-82: Decarboxylative Azidierung von Monoalkylmalonaten in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K.

In ersten Studien wurde diese Methode zur Azidierung von dem polyketiden Naturstoff Cervimycin D I-**58**, einer potentiellen Leitstruktur zur Entwicklung neuer Antibiotika gegen multi-resistente Grampositive Keime genutzt. Bisher konnte das Produkt einer anschließenden Zykloaddition mit Phenylacetylen IV-**171** jedoch nicht isoliert, sondern lediglich massenspektrometrisch nachgewiesen werden (Abb. IV-83).

Abbildung IV-83: Studien zur Azidierung von Cervimycin D.

In weiteren Studien zur Substratbreite der decarboxylativen Azidierung zeigt sich, dass 3-Oxo-3phenylpropan IV-**172** schon bei Raumtemperatur eine deacarboxylative Polyazidierung unter Bildung eines bis *dato* unbekannten geminalen α -Ketotriazids IV-**176** einging (Abb. IV-84). Die geminale Triazidstruktur konnte durch metall-freie Zykloaddition mit Cyclooctin IV-**202** nachgewiesen werden. Durch mechanistische Untersuchungen der Reaktion konnte 2-Iodacetophenonen IV-**179** als Intermediat im Rahmen einer Reaktionskaskade aus elektrophiler lodierung und nachfolgenden nukleophilen Substitutionen durch Natriumazid identifiziert werden.

Abbildung IV-84: Decarboxylative Polyazidierung von 3-Oxo-3-phenylpropansäure, oxidative Polyazidierung von 2-lodacetophenonen und Ein-Topf-Verfahren zur Kombination von Iodoxygenierung von Olefinen und oxidativer Polyazidierung.

Basierend auf diesen Ergebnissen konnte nachfolgend eine oxidative Polyazidierung unter Bildung von α -Ketotriaziden des Typs **B** (Abb. 84) ausgehend von 2-Iodacetophenonen **A** entwickelt werden. Ferner konnte gezeigt werden, dass die Iodoxygenierung von Olefinen in einem Ein-Topf-Verfahren mit der oxidativen Polyazidierung zu Synthese von geminalen α -Ketotriaziden kombiniert werden kann. Die

synthetisierten neuartigen α -Ketotriazide wurden im Rahmen dieser Arbeit vollständig charakterisiert und hinsichtlich ihrer explosiven Eigenschaften untersucht. Ausnahmslos alle hergestellten geminalen Triazide wiesen explosive Eigenschaften auf und detonierten bei schnellem Erhitzen auf Temperaturen oberhalb von 80°C unter gleißendem Feuerschein und lautem Knall.

Abbildung IV-85: Ansatz zur Synthese von azidierten Heteroaromaten.

Zudem konnte ein erster Ansatz zur Nutzung der neuen Strukturen in der Synthese von azidierten Heteroaromaten durch Nitreniumionenbildung identifiziert werden.

IV-6.2 Ausblick

Die ersten Ergebnisse zur decarboxylativen Azidierung von Cervimycin D IV-**58** in Gegenwart von katalytischen Mengen Natriumiodid und IBX-SO₃K IV-**82** sind vielversprechend (siehe Kapitel IV-4.4 *Erste Studien zur decarboxylativen Azidierung von Cervimycin D*). In weiteren Untersuchungen sollte daher zielgerichtet darufhin gearbeitet werden azidiertes Cervimycin D zu isolieren und so für Targeting-Experimente verfügbar zu machen.

Im Weiteren sollte eine mögliche decarboxylative Azidierung 3-Oxo-2-alkylcarbonsäuren des Typs **A** (Abb. IV-86) zu α -Diazidoketonen des Typs **B** untersucht werden.

Abbildung IV-86: Decarboxylative Azidierung von 3-Oxo-2-alkylcarbonsäuren.

Eine weitere Anwendung könnte die decarboxylative Azidierung von Monoalkylmalonsäuren innerhalb einer möglichen Modifikations-Ligations-Strategie für Peptide finden. Monoalkylmalonsäureester des Typs **A** (Abb. IV-87) könnten darin als *N*-terminale Schutzgruppen von Peptiden für die Modifikation von Seitengruppen eingesetzt werden. Durch orthogonale Abspaltung des 2-Trimethylsilylethylester ist in Gegenwart von Fluoridquellen und nachfolgende decarboxylative Azidierung in Gegenwart katalytischer Mengen Natriumiodid und IBX-SO₃K IV-**82** könnte eine selektive Azidierung der am *N*-Terminus gebundenen Malonateinheit erreicht werden. Durch eine anschließende "Traceless"-*Staudinger*-Ligation wäre es dann möglich die vorherige Schutzgruppe in eine, in ein Peptid ungebundene, natürliche oder auch unnatürliche Aminosäure zu überführen.

Abbildung IV-87: Monoalkylmalonsäuren als *N*-terminale Schutzgruppen innerhalb einer Modifikations-Ligations-Strategie.

Die Synthese von fluorierten Aminosäuren ist seit langem ein ungelöstes Problem in der organischen Chemie. Einen neuen Ansatz zur Lösung des Problems könnte die Fluorierung von den synthetisierten α -Azidocarbonsäureester wie beispielsweise IV-**158** in Gegenwart von Basen und elektrophilen Fluorquellen wie bspw NFSI bieten (Abb. IV-88). Alternativ sollte untersucht werden, ob Verbindungen des Typs **A** oder **C** in Gegenwart von katalytischen Mengen Natriumiodid und IBX-SO₃K azidiert werden

können um fluorierte bzw. Trifluormethylsubstituierte Glycinderivate des Typs **B** zu erzeugen. Diese könnten wertvolle Bausteine für die Synthese anderer fluorierte Aminosäuren durch Alkylierung sein.

Abbildung IV-88: Strategien zur Synthese von fluorierten Aminosäurederivaten.

Die entwickelte Polyazidierung hingegen hat bereits vielversprechende Ansätze zur Synthese von azidierten Heterozyklen durch Reaktion der gebildeten Triazide in Gegenwart von Hydrazinen und katalytischen Mengen Säure hervorgebracht. In weiteren Untersuchungen sollte zuächst eine Optimierung der Reaktionsbedingungen vorgenommen werden und eine breitere Anwendbarkeit zur Synthese von Heterozyklen des Typs **B** (Abb. IV-89) überprüft werden.

Abbildung IV-89: Synthese von azidierten Heterozyklen.

Im Weiteren bietet die Polyazidierung vielfältige Möglichkeiten zur Synthese hochenergetischer Materialien ausgehend von 3-Oxocarbonsäuren und Iodiden oder im Rahmen des entwickelten Ein-Topf-Verfahrens zur Kombination von Iodoxygenierung und Polyazidierung ausgehend von Olefinen (Abb. IV-90). Ferner könnten die synthetisierten geminalen Triazide in Verbindung mit bifunktionalien Dialkinen zum Aufbau von neuartigen dreidimensionalen Polytriazolnetzwerken (z.B. IV-**218** oder IV-**220**) durch Kupfer-(I)-katalysierte dipolare Zykloaddition genutzt werden (Abb. IV-91). Solche Netzwerke könnten als immobilisierte Liganden für Metallatome dienen.

Abbildung IV-90: Polyazidierungen in Gegenwart von IBX-SO₃K zur Synthese von hochenergetischen Materialien.

Abbildung IV-91: Mögliche Synthese vom dreidimensionalen Polytriazolnetzwerken

Abschließend kann festgehalten werden, dass die Azidierung von Carbonylverbindungen mit Natriumazid in Gegenwart von IBX-SO₃K IV-**82** und katalytischen Mengen Iodid eine sehr milde, selektive Methode zur Herstellung verschiedener Mono-, Di- und Triazide darstellt und großes Potential für eine Vielzahl von innovativen Anwendungen zeigt. V Experimenteller Teil

V-1. Allgemeine Arbeitstechniken

Luft- und Sauerstoffempfindlichkeit

Alle Reaktionen mit sauerstoff- oder feuchtigkeitsempfindlichen Reagenzien wurden in mehrfach ausgeheizten Glasgeräten unter Argon- (Ar 4.8 *Linde AG*) oder Stickstoffatmosphäre (N₂ 5.0 *Linde AG*) durchgeführt.

Kühlen und Heizen

Reaktionen bei tiefen Temperaturen wurden in Dewar-Gefäßen durchgeführt, die mit geeigneten Kälte-Mischungen für die benötigten Temperaturen befüllt waren. (Aceton/Trockeneis: -78°C, Eiswasser: 0°C). Andere Reaktionstemperaturen wurden mit Kryostaten der Firma *Thermo Haake* (Modell EK 90) sowie *Jolabo Labortechnik* (Modell FT902) eingestellt. Als Heizbäder dienten Paraffin- oder Siliconölbäder, deren Temperaturen mittels Kontaktthermometern eingestellt wurden.

Mikrowellen

Mikrowellenreaktionen wurden in Geräten der Firma *Biotage* (Modell XY) und *CEM* (Modell XY) durchgeführt.

Hochtemperaturreaktionen

Reaktionen bei Temperaturen oberhalb von 200°C wurden in *Duran Schott*[®] Glaßgeräten in einem Sandbad mittels eines Heizrührers oder alternativ mit Hilfe einer Heizmanschette der Firma *Heraeus-Wittmann-Heidelberg* (Modell Pilz Typ F25/010) erhitzt.

V-1.1 Lösungsmittel und Chemikalien

Chemikalien

Chemikalien wurden sofern nicht gesondert beschrieben kommerziell erworben und ohne weitere Aufreinigung eingesetzt.

Lösungen und Reagenzien

Prozentwerte (%) beziehen sich, falls nicht näher spezifiziert, immer auf Massenprozente. Bei gesättigten Lösungen und Maßlösungen handelt es sich, falls nicht anders vermerkt, um wässrige Lösungen. Der Gehalt metallorganischer Reagenzien wurde durch Titration gegen (-)-Menthol mit 1,10-Phenantrolin als Indikator bestimmt.⁶⁶⁰ *n*BuLi wurde gegen 1,3-Diphenylaceton-p-tosylhydrazon titriert.⁶⁶¹ Die Messung von pH-Werten erfolgte mit pH-Papier (pH= 1-14) der Firma *Merck*.

Lösungsmittel

Lösungsmittel für Dünnschichtchromatographie, Flash-Chromatographie, für Aufarbeitungen oder Feuchtigkeit unempfindliche Reaktionen (CH₂Cl₂, Et₂O, THF, EtOAc, Toluen, CH, PE, Pentan, Hexan, MeOH, EtOH, *i*PrOH) wurden vor der Verwendung einfach destilliert. Triethylamin für feuchtigkeitsempfindliche Reaktionen wurde unter Stickstoffatmosphäre über Molsieb 4Å bei 90°C getrocknet, destilliert und direkt eingesetzt. Lösungsmittel für feuchtigkeitsempfindliche Reaktionen sowie Lösungsmittel höheren Reinheitsgrades wurden bei den Firmen *Sigma-Aldrich, Acros Organics, Fluka* und *Merck* kommerziell erworben und ohne weitere Reinigungsschritte eingesetzt.

- DMF: Sigma-Aldrich, puriss, 99.5%, über Molsieb, <0.01% Wasser
- DMF: Acros Organics, Extra Dry, 99.9%, über Molsieb, <0.005% Wasser
- Toluen: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser
- DCE: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser
- DiPEA: Sigma-Aldrich, puriss, 99.5%, über Molsieb, <0.05% Wasser
- Pyridin: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser
- Pyridin: Sigma-Aldrich, puriss, 99.8%, über Molsieb, <0.005% Wasser
- ACN: Acros Organics, Extra Dry, 99.9%, über Molsieb, <0.005% Wasser
- DMSO: Sigma-Aldrich, puriss, 99.9%, über Molsieb, <0.01% Wasser
- DMSO: Acros Organics, Extra Dry, 99.9%, über Molsieb, <0.005% Wasser
- MeOH: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser
- EtOH: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser
- ODCB: Acros Organics, Extra Dry, 99.8%, über Molsieb, <0.005% Wasser

Bestimmte Lösungsmittel (CH₂Cl₂, ACN, Et₂O, THF) wurden mit Hilfe eines Lösungsmittelreinigungssystems der Firma *M. Braun* (Modell SPS-800) nach *Grubbs et al.* ⁶⁶² getrocknet und unter Stickstoffatmosphäre entnommen. Für die Trocknung wurden die nachfolgend vermerkten Lösungsmittel Filtersäulen eingesetzt:

- CH₂Cl₂: *Merck Emsure*[®], p.a., 99.8%, <0.03% Wasser; Säule: 2x MB-KOL-A.
- Et₂O: *Merck Emsure*[®], p.a., 99.7%, <0.03% Wasser; Säule: 1x MB-KOL-A, 1x MB-KOL-M Typ 2.
- THF: *Merck Emsure*[®], p.a., 99.7%, <0.03% Wasser; Säule: 2x MB-KOL-M Typ 2.

V-1.2 Entgasung von Lösungsmitteln und Reaktionsmischungen

Das Entgasen von Lösungsmittel und Reaktionsmischungen wurde im Wesentlichen durch Verwendung der FTP-Technik erreicht. Teilweise wurden Lösungen mit Stickstoff oder Argon durchströmt um bspw. Sauerstoff zu entfernen.

V-1.3 Chromatographische Methoden

Dünnschichtchromatographie

Qualitative Dünnschichtchromatogramme (DC) wurden auf Fertigplatten (Glas) der Firma *Merck* (0.25 mm Kieselgel 60, F_{254}) entwickelt. Der Nachweis der Substanzen erfolgte durch Fluoreszenzdetektion in UV-Licht der Wellenlänge λ = 254 nm, λ = 366 nm oder durch Eintauchen in eine Anfärbelösung und anschließender Wärmebehandlung.

Als Anfärbelösung wurden verwendet:

- Cerammoniummolybdat-Lösung [CAM]: 2.00 g Cer(IV)sulfat, 50 g Ammoniummolybdat, 50 mL konzentrierte Schwefelsäure, 300 mL Wasser.
- Kaliumpermanganat-Lösung [KMnO₄]: 3.00 g, Kaliumpermanganat, 20 g, Kaliumcarbonat, 5 mL
 5%ige Natronlauge, 300 mL Wasser.
- Ninhydrin-Lösung: 300 mg [Ninhydrin], 3 mL konzentrierte Essigsäure, 100 g *n*-Butanol

Alternativ wurde eine lodkammer [I₂] zum Anfärben der Substanzen verwendet.

Flash-Chromatographie

Säulenchromatographische Reinigungen wurden unter mittlerem Druck (0.5-1 bar, Druckluft) in Glassäulen mit Kieselgel der Firma *Merck* (KG60, Korngröße 40-63 µm, 230-400 mesh ASTM) durchgeführt. Sowohl die Füllhöhe als auch der Durchmesser der verwendeten Säulen wurden in Anlehnung an die von *Still et al.* beschriebenen Empfehlungen gewählt. ⁶⁶³ Das benutzte Eluentenverhältnis ist bei den einzelnen Versuchsbeschreibungen angegeben. Teilweise wurden eine automatische Chromatographieanlage der Firma *Grace Discovery Sciences* (Model Reverleris® X1 Flash System mit DAD-Detektor und ELSD-Detektor) zur Durchführung der Chromatographien verwendet.

Präparative Hochleistungsflüssigkeitchromatographie

Präparative Hochleistungsflüssigkeitschromatographie (präp. HPLC) wurde an einer Anlage der Firma *Agilent Technologies* (Modell 1260 Infinity Series) durchgeführt. Die Datenverarbeitung erfolgte hier über *Chromeleon*-Software. Es wurden Chromatographiesäulen der Firma *Macherey-Nagel* (VP 250/21 NUCLEODUR 100-5 C18ec) verwendet. Als mobile Phase dienten Gemische aus ACN und Wasser genutzt. Lösungsmittelverhältnisse, Gradienten und Flussgeschwindigkeit sind in den jeweiligen Versuchsbeschreibungen angegeben.

V-1.4 Weitere Analytische Methoden

Schmelzpunktbestimmungen

Schmelzpunkte von Feststoffen wurden mit einer Apparatur nach *Gallenkamp* der Firma *Büchi* (Modell Melting Point Apparatus) oder einer Apparatur nach Thiele der Firma *Büchi* (Modell 510) gemessen und sind nicht korrigiert. Zur Messung wurden Schmelzpunktbestimmungsröhrchen der Firma *Marienfeld* (80-0.8-1mm, einseitig geschlossen, SODA-KALK-Glas) benutzt.

Hochleistungsflüssigkeitchromatographie

Qualitative Hochleistungsflüssigkeitschromatographie (HPLC) wurde an einer Anlage der Firma Merck (Modell Hitachi) durchgeführt. Als technische Komponenten dienten eine L-7100 Pumpe, ein Interface D-7000 und ein Diodenfelddetektor L-7455. Die Datenverarbeitung erfolgte mittels Chromeleon-Software. Es wurden Chromatographiesäulen der Firma Macherey-Nagel (EC 250/4.6 NUCLEODUR 100-5 C18ec) verwendet. Alternativ wurde eine Anlage der Firma Dionex genutzt. Als technische Komponenten dienten eine P580 A Pumpe, ein STH 585 Säulenofen, ein ASI100 Automated Sample Injector sowie ein UVD 240 U Diodenfelddetektor. Die Datenverarbeitung erfolgte mittels Chromeleon-Software. Es wurden Chromatographiesäulen der Firma Daicel (250x4.6mm, mit Vorsäule, mit Chiralpak® AD-Material, Durchmesser 5 µm oder YMC ODS-A-Material, Durchmesser 5 µm) verwendet. Des Weiteren wurde ein HPLC System der Firma Agilent Technologies (Modell 1200) mit Chiracel® OH-J-Säule (250x4.6 mm)verwendet. Als mobile Phase dienten Gemische aus n-Pentan, n-Heptan oder n-Hexan und iso-Propanol der Acetonitril und Wasser. Lösungsmittelverhältnisse, Gradienten und Flussgeschwindigkeit sind in den jeweiligen Versuchsbeschreibungen angegeben.

Infrarotspektroskopie

Die Aufnahme von Infrarotspektren erfolgte mit einem Spektrometer der Firma *Bruker* (Modell ALPHA) direkt in Substanz im Totalreflexionsverfahren (ATR). Weitere Infrarot-Spektren erfolgten mit einem Spektrometer der Firma *JASCO* (Modell IR-4100) ebenfalls direkt in Substanz im Totalreflexionsverfahren (ATR).

NMR-Spektroskopie

Kernspinresonanzspektren (NMR) wurden an den Geräten der Firma *Bruker* (Modelle AV-250, AV-360, AV-400, AV-500, AV-500cr und AV-600) aufgenommen. Die Spektren wurden sofern nicht anders vermerkt bei 300 K aufgenommen. Die chemischen Verschiebungen sind in δ-Werten (ppm) angegeben und beziehen sich auf die entsprechenden Restprotonensignale der verwendeten Lösungsmittels (z. B. Deuterochloroform ¹H-NMR: δ = 7.24 ppm).⁶⁶⁴ In ¹³C-NMR-Spektren dienen die Deuterium gekoppelten Multipletts der Lösungsmittel als Referenz (z. B. Deuterochloroform, ¹³C-NMR: 77.23 ppm).⁶⁶⁴ Für ¹³C-NMR-Spektren in D₂O wurde 2,2,3,3-Tetradeutero-3-trimethylsilylpopionsäure (TSP) als externer Standardverwendet. Bei der Zuordnung der Signale und für die Signalmultiplizitäten wurden die folgenden Abkürzungen verwendet: s - Singulett, d - Duplett, t – Triplett, q – Quartett, p – Pentett, sep – Septett, m – Multiplett, br – breit, etc. Die angegebenen Kopplungskonstanten *J* sind in Hz als Mittelwerte der experimentell gefundenen angegeben. Die Angabe des Verhältnisses von Produktgemischen (Diastereomerenverhältnis *d.r.*) bezieht sich jeweils auf die Integrale eindeutig identifizierbarer Signale im ¹H-NMR des Rohproduktes.

Massenspektrometrie

Niederaufgelöste Massenspektren (LRMS) und hochaufgelöste Massenspektren (HRMS) wurden mit Elektronenstoß-Ionisation (EI, 70 eV), Elektronenspray-Ionisation (ESI), Chemischer Ionisation (APCI) oder Laser-Ionisation (APLI) durchgeführt. Für EI-Messungen wurde entweder ein Gerät der Firma *Finnigan* (Modell MAT 8200), ein Massenselektiver Detektor der Firma *Agilent Technologies* (Modell MSD 5975C) oder ein Gerät der Firma *Agilent Technologies* (Model 1260 Infinity Series mit *Agilent Technologies* 6120 Quadropole LC/MS) verwendet. Für ESI-Messungen wurde entweder ein Gerät der Firma *Finnigan* (Modell LCQ classic), ein Gerät von *Thermo Scientific* (Modell LTQ Orbitrap XL) oder ein Gerät der Firma *Agilent Technologies*) verwendet. APCI und APLI-Ionisatoren enstammen der hauseigenen Institut für Massenanalytik der Bergischen Universität Wuppertal. Des Weiteren kam eine GC-MS-Kopplung der Firma *Agilent Technologies* (Modell GC-System: *Agilent Technologies* 7890 A mit einer HP-5MS Säule (30 m × 250 µm × 0.25 µm), Trägergas Helium; Massendetektion: *Agilent Technologies* 5975C) zum Einsatz.

Spezifische optische Rotation

Die spezifische optische Rotation wurde mit einem Polarimeter der Firma *Perkin-Elmer* (Modell 241 MC) in einer Küvette (1 dm) bei λ = 598 nm (Na-D-Linie) bei 20°C gemessen.

Differential Scanning Calorimetry

DSC-Messungen wurden in einem Gerät der Firma *Mettler Toledo* (Modell DSC1 STAR System) mit einer Probenmenge von ca. 10 mg in einem 40 µL Tiegel im Argonstrom (30 mL/min) bei einer Heizrate von 10K/min durchgeführt.

Thermogravimetrie

TGA-Messungen wurden in einem Gerät der Firma Mettler Toledo (Model DSC1 STAR System) mit einer Probenmenge von 4-10 mg in einem70 μL oder 120 μL Tiegel im Gasstrom (Argon/Druckluft (wahlweise oder kombiniert), 50ml/min) bei einer Heizrate von 10K/min durchgeführt.

Rötgendiffraktometrie von Einkristallen (Prof. Dr. Fabian Mohr)

Die Röntgenbeugungsanalyse wurde bei 150 K mit einem Diffraktometer der Firma *Oxford Diffraction* (Model Gemini E Ultra), ausgestattet mit einem EOS CCD Flächendetektor und einem Vier-Kreis-Kappa-Goniometer, durchgeführt. Datenintegration, Skalierung und empirische Absorptionkorrektur wurden mit dem Programm CrysAlis Pro⁶⁶⁵ durchgeführt. Die Strukturlösung erfolgte mit Direkten-Methoden gelöst und wurde nach der Methode der kleinsten Fehlerquadrate gegen F² verfeinert. Alle Atome außer den Wasserstoffatomen wurden anisotrop verfeinert. Die Wasserstoffatomlagen wurden aus der Geometrie der Umgebung berechnet und bei jedem Verfeinerungszyklus neu angepasst. Alle Berechnungen wurden mit dem Programm Olex2⁶⁶⁶ ausgeführt.
V-2. Synthesevorschriften

V-2.1 Synthese allgemeiner Reagenzien

TBTA

Tripropargylamin (1.475 g, 11.245 mmol) wurde zusammen mit Benzylazid (7.486 g, 56.223 mmol) und DiPEA (9.56 mL, 56.223 mmol) wurden unter Stickstoffatmosphäre in ACN (17 mL) gelöst und mittels FPT-Technik entgast. Anschließend wurden Kupfer(I)iodid (43 mg, 0.225 mmol) zugesetzt und die Reaktionsmischung wurde für 24 h bei 23°C gerührt, wobei sich eine schwerrührbare Suspension mit lachsfarbenem Präzipitat bildete. Der Niederschlag wurde abfiltriert und mit Diethylether (ca. 50 mL) gewaschen. Der Feststoff wurde aus CH_2Cl_2/Et_2O umkristallisiert und anschließend im HV getrocknet. TBTA wurde als weißer Feststoff (3.444 g, 6.49 mmol, 57%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten überein.⁶³⁴

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.62 (s, 1H), 7.35 – 7.28 (m, 1H), 7.23 (dd, *J* = 7.5, 1.5 Hz, 1H), 5.47 (s, 1H), 3.68 (s, 1H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 144.6, 135.0, 129.3, 128.9, 128.2, 123.9, 54.3, 47.4.

o-lodoxybenzoesäure (IBX)

2-lodbenzoesäure (25 g, 0.101 mol) wurden unter Rühren zu einer Lösung von Oxon[®] (186 g, 0.30 mol) in. Wasser (1 L) gegeben und für 1 h auf 70 °C erhitzt bis eine klare Lösung vorlag. Anschließend wurde die Lösung auf 0°C abgekühlt wobei ein weißer Feststoff präzipitierte, der abfiltriert mit Wasser (6x

50 mL) sowie Aceton (2x 50 mL) gewaschen und über Nacht *i. Vac.* getrocknet wurde. Es wurde ein weißer, kristalliner Feststoff (20.2 g, 72.5 mmol, 72 %) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten überein.³¹⁵

¹H-NMR (500 MHz, CDCl₃): δ [ppm] 8.16 – 8.13 (m, 1H), 8.03 (dd, ${}^{3}J_{HH} = 7.6$, ${}^{4}J_{HH} = 1.1$ Hz, 1H), 8.00 (td, ${}^{3}J_{HH} = 7.8$, ${}^{4}J_{HH} = 1.3$ Hz, 1H), 7.84 (td, ${}^{3}J_{HH} = 7.4$, ${}^{4}J_{HH} = 0.6$ Hz, 1H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 168.2, 140.6, 137.0, 132.5, 130.1, 128.2, 94.1.

Kalium-1-hydroxy-1,3-dioxo-1,3-dihydro-1λ5-benziodoxol-5-sulfonat (IBX-SO₃K)

KO₃S C7H4IKO7S 398,17 g/mol

Zu rauchender Schwefelsäure (30% SO₃, 23.0 mL) wird bei 0 °C portionsweise Anthranilsäure (15.0 g, 109 mmol) hinzugefügt. Das Kältebad wurde entfernt und die Reaktion für 2 h auf 180 °C erhitzt. Die warme Lösung wurde mittels Glaspipette unter Rühren in eisgekühltes Eiswasser (150 mL) gegeben. Der Niederschlag wurde abfiltriert und mit Eiswasser gewaschen. Der Rückstand wurde im Vakuum getrocknet. Das sulfonierte Produkt wird als gelber Feststoff isoliert (18.1 g, 83.3 mmol, 76%).⁶⁶⁷

Die Sulfonsäure (4.53 g, 20.9 mmol) wurde in einer Mischung von Wasser (45.3 mL) und wässriger NaOH-Lösung (10 M, 2.10 mL, 21.0 mmol) gelöst. Konzentrierte Schwefelsäure (22.7 mL, 425 mmol) wurde langsam bei 23°C zugetropft. Die Suspension wurde auf eine Innentemperatur von 0 °C abgekühlt und eine Lösung von NaNO₂ (2.88 g, 41.7 mmol) in Wasser (16.7 mL) wird so zugegeben, dass die Innentemperatur 5 °C nicht übersteigt. Die Reaktionsmischung wurde für 30 min bei 0 °C gerührt. Harnstoff (2.86 g, 47.6 mmol) wurde portionsweise zu gegeben (Gasentwicklung). Es wurde eine weitere Stunde bei 0 °C gerührt. Die Mischung wurde zu einer eisgekühlten Lösung von Nal (4.60 g, 30.7 mmol) in Wasser (13.8 mL) gegeben. Das Kältebad wurde entfernt und die braune Reaktionsmischung wurde für 30 min unter Rückfluss gerührt. Die Reaktion wurde auf 23°C abgekühlt und gesättigte, wässrige Natriumthiosulfatlösung wurde zugegeben, bis die Reaktionsmischung vollständig entfärbt war. Das Produkt wurde duch Zugabe von NaCl (16 g) ausgefällt. Der Überschuss an NaCl wurde in einer minimalen Menge Wasser gelöst (Das Produkt ist sehr wasserlöslich). Der Niederschlag wurde abfiltiert und mit wenig Eiswasser und Aceton gewaschen. Die Mutterlauge wurde ein weiteres Mal auf dieselbe Weise behandelt um erneut Produkt zu erhalten. Die vereinten Fraktionen wurden im Vakuum getrocknet. Das Arylhalogenid wurde als weißer Feststoff erhalten (5.74 g, 16.4 mmol, 78%). Das lodid (1.94 g, 5.54 mmol) wurde zu einer Lösung von Oxon (10.9 g, 17.7 mmol) in Wasser (40 mL) hinzugefügt. Die Reaktionsmischung wurde 3 h bei 70 °C gerührt. Die Reaktion wurde auf 5 °C abgekühlt und 30 min gerührt. Der Niederschlag wurde abfiltriert und mit Eiswasser und Aceton gewaschen. Der Rückstand wurde im Vakuum getrocknent und IBX-SO₃K **X** wurde als weißes Pulver isoliert (1.97 g, 4.95 mmol, 89%). Die analytischen Daten stimmten mit den zuvor veröffentlichten überein.^{357,181}

¹**H-NMR** (500 MHz, D₂O): δ [ppm] = 8.31 (d, *J* = 8.3 Hz, 1H), 8.36 (dd, *J* = 8.3, 1.7 Hz, 1H), 8.46 (d, *J* = 1.7 Hz, 1H). ¹³**C-NMR** (126 MHz, D₂O): δ [ppm] = 126.6, 130.5, 133.6, 134.5, 150.4, 151.8, 172.6. **IR** (ATR): \tilde{v} [cm-1] = 3649, 2956, 2931, 2868, 2492, 2441, 2159, 2029, 1975, 1268, 1219, 1195, 1099, 1061, 1039, 1012, 852, 804, 782, 677, 661. **LRMS** (ESI): [m/z] 397 (5%) [M⁺ –H], 359 (100%) [M⁺ –K], 381 (3%) [M⁺-Na –H, –K], 343 (24%), 327 (15%), 315 (4%), 298 (4%), 283 (3%), 231 (9%), 217 (5%), 193 (9%), 187 (10%), 175 (4%), 156 (10%). **HRMS** (EI): [m/z] berechnet für [C₇H₃O₇I₁K₁S₁⁺ (M⁺+H)] 396.8276, gefunden 396.8284.

2-(Triphenylphosphoranyliden)propanal

Ethyltriphenylphosphoniumiodid (10.0 g, 23.9 mmol) wurden in trockenem THF (90 mL) unter Stickstoffatmosphäre suspendiert und bei 23°C tropfenweise mit *n*Buli (10.5 mL, 26.3 mmol, 2.5 M in Hexan) versetzt und für 1 h bei 23°C gerührt. Anschließend wurden zu der roten Lösung bei 0 °C zunächst KOtBu (2951.1 mg, 26.3 mmol), sowie direkt im Anschluss Ethylformiat (4.5 mL, 59.7 mmol) gegeben und für 15 min bei 0 °C gerührt. Die Reaktion wurde durch Zugabe von 1M HCl (30 mL) abgebrochen und die Reaktionslösung mit CH₂Cl₂ (170 mL) versetzt. Der pH-Wert der wässrigen Phase wurde dann mit 10%iger NaOH auf pH = 9 eingestellt und für weitere 30 min bei 0 °C gerührt. Die Phasen wurden voneinander getrennt und die wässrige Phase mit CH₂Cl₂ (3 x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der gelbliche Rückstand wurde aus CH₂Cl₂ /Et₂O umkristallisiert. Es wurden (5.5 g, 17.3 mmol, 73%) eines gelblichen Feststoffes erhalten.

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.10 (d, ${}^{3}J_{HH} = 4.5$ Hz, 1H), 7.67 – 7.50 (m, 15H), 1.88 (d, ${}^{3}J_{HH} = 13.4$ Hz, 3H); 13 **C-NMR** (101 MHz, CDCl₃): δ [ppm] 179.5, 179.3, 133.9, 132.8, 129.1, 129.0, 125.0, 124.1, 10.8, 10.7; IR (ATR): \tilde{v} [cm⁻¹] = 3051 (w), 2796 (w), 1541 (s), 1435 (s), 1360 (m), 1315 (m), 1311 (m), 1160 (m), 1101 (s), 990 (m), 961 (s), 940 (m), 935 (m), 925 (m), 918 (m), 754 (s), 703 (vs); LRMS

(EI) [m/z]: 341 (10%), 277 (100%), 262 (30%), 207 (60%), 183 (50%), 151 (10%), 132 (10%), 107 (10%), 78 (20%), 50 (10%); **HRMS** (EI): berechnet für [C₂₁H₂₀O₁P₁] 319.1246, gefunden 319.1245.

V-2.2 Totalsynthese von (+)-Cyperolon

V-2.2.1 Synthese der 3-Silyloxy-1,5-enine I-209 und I-221 bis I-224

(5R)-1-(Chlormethyl)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enol (I-216)

Eine Lösung von (*R*)-(-)-Carvon I-**155** (1.00 mL, 6.38 mmol) und Chloriodmethan (600 μ L, 8.29 mmol) in trockenem THF (17.0 mL) unter Argonatmosphäre wurde auf -78 °C abgekühlt und tropfenweise über eine Zeitspanne von 25 min mit MeLi·LiBr (40.0 ml, 88.0 mmol, 2.2 M in Diethylether) versetzt. Anschließend wurde die Reaktionsmischung für 2 min bei -78 °C gerührt. Die Reaktion wurde bei -78 °C durch Zugabe von gesättigter Ammoniumchloridlösung (150 mL) abgebrochen, auf 23 °C erwärmt und mit Wasser (50 mL) verdünnt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (2 x 150 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchloridlösung (50 mL) sowie gesättigter Natriumchloridlösung gewaschen (1 x 200 mL), über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung I-**216** wurde als gelbes Öl (12.64 g, 63.0 mmol, 99 %, *d.r.* = 4:1) erhalten, welches ohne weitere Reinigungsschritte in nachfolgenden Reaktionen eingesetzt wurde.

Hauptdiastereoisomer: **DC**: $R_f = 0.37$ (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität**: $[\alpha]_D^{23} = -54.0^{\circ}$ (c = 5.7 mg/mL); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 1.52 (td, J = 12.6 Hz, J = 1.5 Hz, 1 H), 1.72–1.84 (m, 6 H), 1.91–2.07 (m, 1 H), 2.09–2.44 (m, 4 H), 3.66 (d, J = 11.4 Hz, 1 H), 3.74 (dd, J = 11.4 Hz, J = 1.5 Hz, 1 H), 4.74–4.83 (m, 2 H), 5.58-5.60 (m, 1 H); ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 17.2, 20.9, 31.2, 38.2, 39.3, 51.2, 73.5, 109.7, 127.3, 134.6, 148.4; **LRMS** (EI): , [m/z]: 202 (5%) [³⁷Cl-M⁺], 200 (15%) [³⁵Cl-M⁺], 184 (5%) [³⁷Cl-M⁺ -H₂O], 182 (15%) [³⁵Cl-M⁺ -H₂O], 164 (3%), 151 (48%), 147 (9%), 133 (15%), 123 (27%), 109 (100%). **HRMS** (EI): , [m/z] berechnet für [³⁵ClC₁₁H₁₅(³⁵Cl-M⁺ -H₂O)] 182.0857, gefunden 182.0857; berechnet für [³⁷ClC₁₁H₁₅(³⁷Cl-M⁺ -H₂O)] 184.0827, gefunden 184.0828.

Nebendiastereoisomer: **DC**: $R_f = 0.23$ (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität:** $[\alpha]_D^{23} = -34.010^\circ$ (c = 3.9 mg/mL),; ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 1.61–1.95 (m, 9 H), 1.99 (br s, 1 H), 2.11–2.22 (m, 1 H), 2.33–2.44 (m, 1 H), 3.57 (d, *J* = 10.8 Hz, 1 H), 3.64 (d, *J* = 10.8 Hz, 1 H), 4.73–4.79 (m, 2 H), 5.71–5.77

(m, 1 H).; ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 17.5, 21.0, 31.4, 37.1, 39.6, 51.7, 72.9, 129.4, 133.2, 109.5, 148.8.

(5R)-1-(Hydroxymethyl)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enol (I-214)

Das Chlohydrin I-**216** (98.5 mg, 0.491 mmol) wurde in 1,4-Dioxan (5.00 mL) gelöst und bei 23 °C mit einer wässrigen Lösung von Kaliumhydroxid (5.00 mL, 5.00 mmol, 1.0 M in H₂O) versetzt. Die Reaktionsmischung wurde für 140 min bei 23 °C, 160 min bei 50 °C und weitere 60 min bei 75 °C gerührt. Anschließend wurde die Reaktionsmischung auf 23 °C abgekühlt, die Reaktion durch Zugabe von gesättigter Natriumchloridlösung (30 mL) abgebrochen und mit Diethylether (5 x 25 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan: $Et_2O/1:1 - 1:3$) gereinigt. Verbindung I-**214** wurde als blass-gelber Feststoff (50.7 mg, 0.278 mmol, 57%, d.r. 10:1) erhalten. Die analytischen Daten stimmten dabei mit denen in der Literatur zuvor berichteten vollständig überein.¹⁸³

Hauptdiastereoisomer: **DC**: $R_f = 0.15$, (Pentan:Et₂O/1:1, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 1.59 (t, J = 13.3 Hz, 1 H), 1.75 (m, 6 H), 1.78–2.24 (m, 5 H), 2.25–2.42 (m, 1 H), 3.54 (d, J = 10.7 Hz, 1 H), 3.70 (d, J = 10.7 Hz, 1 H), 4.74 (m, 2 H), 5.66–5.75 (m, 1 H); ¹³**C-NMR** (62.9 MHz, CDCl₃): δ [ppm] = 18.0, 21.0, 31.4, 37.1, 39.3, 67.2, 68.8, 72.8, 109.4, 128.7, 134.3, 149.1.

Nebendiastereoisomer: **DC**: $R_f = 0.23$ (Pentan:Et₂O/1:1, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 1.44 (td, J = 12.4 Hz, J = 1.2 Hz, 1 H), 1.61–1.81 (m, 6 H), 1.88–2.17 (m, 4 H), 2.21–2.36 (m, 2 H), 3.55 (d, J = 10.1 Hz, 1 H), 3.65 (d, J = 11.1 Hz, 1 H), 4.74 (m, 2 H), 5.55-5.58 (m, 1 H). ¹³**C-NMR** (62.9 MHz, CDCl₃): δ [ppm] = 17.4, 20.6, 31.1, 37.7, 39.3, 65.9, 74.5, 109.3, 126.3, 135.2, 148.6.

Allgemeine Vorschrift **A 2.2** zur Schützung von primären, sekundären und tertiären Alkoholen als Trialkylsilylether: **(5R)-2-Methyl-5-(prop-1-en-2-yl)-1-(((triisopropylsilyl)oxy)methyl)-cyclohex-2-enol** (I-**211**)

Das Diol I-**214** (290 mg, 1.59 mmol) wurde zusammen mit Imidazol (217 mg, 3.19 mmol) unter Argonatmosphäre in absolutem DMF (1.80 mL) gelöst. Es wurden tropfenweise TIPSCI (0.510 mL, 2.39 mmol) zugegeben und die resultierende Lösung wurde für 24 h bei 23°C gerührt. Die Reaktionsmischung wurde in Wasser (25 mL) ausgegossen und mit Diethylether (3 x 20 mL). extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/98:2 – 95:5) gereinigt. Verbindung I-**211** wurde als farbloses Öl (500 mg, 1.48 mmol, 93%) erhalten.

Hauptdiastereoisomer: **DC**: $R_f = 0.30$, (Pentan:Et₂O/9:1, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.88–1.27 (m, 21 H), 1.54 (t, J = 13.2 Hz, 1 H), 1.67–1.96 (m, 5 H), 1.74 (s, 3 H), 2.10–2.21 (m, 1 H), 2.37–2.51 (m, 1 H), 2.45 (s, 1 H), 3.44–3.67 (m, 1 H), 3.71–3.87 (m, 1 H), 4.64–4.82 (m, 2 H), 5.58–5.73 (m, 1 H); ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 12.1, 18.2, 18.2, 21.0, 31.6, 37.1, 40.1, 69.7, 72.6, 108.9, 127.8, 134.5, 149.7, **LRMS** (EI): , [m/z] 338 (5%) [M⁺], 320 (1%) [M⁺ –H₂O], 295 (48%) [M⁺ –C₃H₇], 279 (4%), 261 (4%), 253 (2%), 239 (8%), 227 (2%), 201 (9%), 187 (3%), 174 (2%), 164 (14%), 151 (100%), 147 (96%), 131 (54%), 109 (49%), 105 (86%). **HRMS** (EI): , [m/z] berechnet für [³⁵ClC₁₁H₁₅(³⁵Cl-M⁺ –H₂O)] 182.0857, gefunden 182.0857; berechnet für [C₂₀H₃₈O₂Si (M⁺)] 338.2641, gefunden 338.2639.

Nebendiastereoisomer: **DC**: $R_f = 0.55$ (Pentan:Et₂O/9:1, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.95–1.27 (m, 21 H), 1.36–1.55 (m, 1 H), 1.72 (s, 3 H), 1.74 (m, 3 H), 1.88–2.14 (m, 2 H), 2.15–2.21 (m, 1 H), 2.22–2.32 (m, 1 H), 2.94 (br s, 1 H), 3.61–3.71 (m, 2 H), 4.72 (m, 2 H), 5.56 (m, 1 H). ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = δ [ppm] = 12.1, 17.7, 17.8, 18.1, 20.5, 31.1, 38.0, 39.8, 66.6, 74.2, 109.3, 126.3, 135.4, 148.9.

Allgemeine Vorschrift **B 2.2** zur PCC-vermittelten oxidativen Umlagerung von tertiären Alkoholen: **(S)-2-Methyl-5-(prop-1-en-2-yl)-3-(((triisopropylsilyl)oxy)methyl)cyclohex-2-enon** (I-**210**)

C₂₀H₃₆O₂Si 336.24 a/mol

Der tertiäre Alkohol I-**211** (526 mg, 1.55 mmol) wurde in CH₂Cl₂ (15.0 mL) bei 23 °C gelöst, mit PCC (836 mg, 3.88 mmol) versetzt und für 54 h bei 23 °C gerührt. Die rot-braune Suspension wurde durch Zugabe von Diethylether (40 mL) verdünnt und über eine Schicht aus Silicagel filtriert, wobei mit Diethylether nachgespült wurde (100 mL). Die vereinigten Filtrate wurden *i. vac.* vom Lösungsmittel befreit und der verbleibende ölige Rückstand durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung I-**210** wurde als blass-gelbes Öl (392 mg, 1.16 mmol, 75%) erhalten.

DC: $R_f = 0.24$ (Pentan:Et₂O/9:1, [CAM], [UV]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.88–1.27 (m, 21 H), 1.72 (d, J = 0.9 Hz, 3 H), 1.76 (s, 3 H), 2.21–2.43 (m, 2 H), 2.53–2.64 (m, 2 H), 2.74–2.88 (m, 1 H), 4.43–4.56 (m, 2 H), 4.76 (m, 1 H), 4.81 (m, 1 H). ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 149.7, 134.5, 127.8, 108.9, 72.6, 69.7, 40.1, 37.1, 31.6, 21.0, 18.2, 18.2, 12.1. **LRMS** (EI): , [m/z] 336 (2%) [M⁺], 309 (4%) [M⁺ –C₂H₃], 293 (100%) [M⁺ –C₃H₇], 275 (72%), 261 (8%), 249 (50%), 237 (10%), 221 (13%), 205 (14%), 173 (11%), 162 (11%), 145 (29%), 131 (38%), 103 (69%), 75 (100%). **HRMS** berechnet für [C₂₀H₃₆O₂Si (M⁺)] 336.2485, gefunden 336.2491.

Allgemeine Vorschrift C 2.2 für die Addition von Propargylbromid an Ketone und Aldehyde: (1*R*,5*S*)-2-Methyl-5-(prop-1-en-2-yl)-1-(prop-2-in-1-yl)-3-(((triisopropylsilyl)oxy)-methyl)-cyclohex-2-enol (I-217)

Magnesiumspäne (214 mg, 8.80 mmol) wurden unter Argonatmosphäre in trocknem Diethylether (3.8 mL) suspendiert, bei 23 °C mit katalytischen Mengen Quecksilber(II)chlorid (4.00 mg, 14.7 μmol) und lod (11.4 mg, 44.9 μmol) versetzt und die Bildung der *Grignard*-Spezies durch Zugabe von ein paar

Tropfen Propargylbromid initiiert. Die Reaktionssuspension wurde auf 0 °C abgekühlt und eine Lösung von Propargylbromid (880 μ L, 7.92 mmol, 80% in Toluen) und dem Keton I-**210** (1.48 g, 4.40 mmol) in trockenem Diethylether wurde tropfenweise zugegeben. Die Reaktionsmischung wurde 23 °C erwärmt und für 20 h gerührt. Die Reaktionsmischung wurde filtriert und das Filtrat mit gesättigter Ammoniumchloridlösung (40 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (2 x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1 – 4:1) gereinigt. Verbindung I-**217** wurde als blass-gelbes Öl (1.60 g, 4.25 mmol, 97%, *d.r.* > 95:5) erhalten.

DC: $R_f = 0.17$ (Pentan:Et₂O/9:1, [CAM]); **Optische Aktivität:** $[\alpha]_D^{23} = -7.6^{\circ}$ (c = 3.7 mg/mL, CH₂Cl₂) ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.87–1.27 (m, 21 H), 1.54–1.84 (m, 1 H), 1.70 (s, 3 H), 1.78 (s, 3 H), 1.94–2.17 (m, 3 H), 2.19–2.31 (m, 1 H), 2.32–2.50 (m, 3 H), 2.63 (ddd, J = 16.9 Hz, J = 2.5 Hz, J = 1.4 Hz, 1 H), 4.15–4.35 (m, 2 H), 4.74–4.83 (m, 2 H). ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 11.5, 12.2, 18.2, 21.1, 29.5, 32.3, 38.7, 40.3, 63.3, 71.7, 73.7, 80.5, 109.4, 129.8, 134.3, 149.0, **LRMS** (EI): , [m/z] 376 (2%) [M⁺], 358 (3%) [M⁺ –H₂O], 337 (50%) [M⁺ –H₂CC=CH], 315 (12%), 201 (5%), 185 (14%), 163 (100%), 143 (19%), 131 (45%), 119 (45%), 103 (57%). **HRMS** (EI): [m/z] berechnet für [C₂₃H₄₀O₂Si (M⁺)] 376.2800, gefunden 376.2806.

Triethyl(((1*R*,5*S*)-2-methyl-5-(prop-1-en-2-yl)-1-(prop-2-in-1-yl)-3-(((triisopropylsilyl)oxy)methyl)cyclohex-2-en-1-yl)oxy)silan (I-209)

Durch Silylierung von I-**217** nach der allgemeinen Vorschrift **A 2.2** wurde Verbindung I-**209** als gelbes Öl (1.92 g, 3.91 mmol, 94%, d.r. > 95:5) erhalten.

DC: $R_f = 0.62$ (Pentan:Et₂O/98:2, [CAM]); **Optische Aktivität:** $[\alpha]_D^{23} = +4.6^\circ$ (c = 3.2 mg/mL, CH₂Cl₂); ¹H- **NMR** (360 MHz, CDCl₃): δ [ppm] = 0.50–0.71 (m, 6 H), 0.95 (t, J = 7.9 Hz, 9 H), 0.99–1.18 (m, 21 H), 1.51–1.72 (m, 1 H), 1.66 (s, 3 H), 1.78 (s, 3 H), 1.90–2.02 (m, 1 H), 1.97 (t, J = 2.6 Hz, 1 H), 2.22–2.50 (m, 4 H), 2.59 (ddd, J = 16.8 Hz, J = 2.5 Hz, J = 1.4 Hz, 1 H), 4.22 (s, 2 H), 4.76 (m, 2 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 6.9, 7.3, 11.9, 12.3, 17.9, 18.2, 20.9, 31.4, 32.7, 39.3, 41.1, 63.7, 70.7, 81.7, 108.8, 131.9, 132.5, 149.3. **LRMS** (EI): [m/z] 461 (1%) $[M^+ -C_2H_5]$, 451 (10%) berechnet für $[C_{26}H_{51}O_2Si_2 (M^+ - H_2CC\equiv CH)]$ 451.3428, gefunden 451.3427.

Allgemeine Vorschrift D 2.2 zur Alkylierung von terminalen Alkinen: ((1R,5S)-1-(But-2-inyl)-2-methyl-5-(prop-1-en-2-yl)-3-((triisopropyl-silyloxy)methyl)-cyclohex-2-enyloxy)triethylsilan (I-122)

Das Alkin I-**209** (200 mg, 0.407 mmol) wurde in trocknem THF (1.6 mL) unter Argonatmosphäre gelöst und bei -78 °C tropfenweise mit *n*-BuLi (359 μ L, 0.896 mmol, 2.5 M in Hexan) versetzt. Anschließend wurde die Reaktionsmischung für 30 min bei -78 °C und für weitere 30 min bei 0 °C gerührt bevor erneut auf -78°C abgekühlt wurde. Es wurde Methyliodid (101 μ L, 1.630 mmol) tropfenweise zugegeben und die für 1 h bei -78°C °C gerührt. Die Reaktionsmischung wurde auf 23°C erwärmt, die Reaktion durch Zugabe von gesättigter Ammoniumchloridlösung abgebrochen (5 mL) und mit Diethylether (3 x 5 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/99:1) gereinigt. Verbindung I-**122** wurde als farbloses Öl (160 mg, 0.317 mmol, 78%) erhalten.

DC: $R_f = 0.69$, (Pentan:Et₂O/99:1, [CAM]), ¹H-NMR (250 MHz, CDCl₃): δ [ppm] 4.73 (s, 2H), 4.20 (s, 2H), 2.57 – 2.21 (m, 5H), 2.15 – 1.83 (m, 2H), 1.75 (d, ³J_{HH} = 2.4 Hz, 3H), 1.62 (s, 3H), 1.04 (s, 21H), 0.93 (t, ³J_{HH} = 7.8 Hz, 9H), 0.65 – 0.48 (m, 6H); ¹³C-NMR (63 MHz, CDCl₃): δ [ppm] 149.7, 132.3, 132.0, 108.7, 77.4, 76.5, 63.7, 41.0, 39.1, 32.7, 31.5, 21.0, 18.3, 17.9, 12.3, 12.0, 7.3, 7.0, 3.8. LRMS (EI): [m/z] 475 [M⁺-29] (5%), 453 (15%), 452 (35%), 451 (95%), 329 (20%), 277 (33%), 199 (5%), 145 (10%), 131 (17%), 103 (24%), 87 (19%), 75 (25%), 58 (13%). HRMS (EI): berechnet für [C₂₈H₅₁O₂²⁸Si₂ (M⁺-29)] 475.3422, gefunden 475.3410.

Allgemeine Vorschrift **E 2.2** für *Sonogashira*-Kupplungen von terminalen Alkinen mit Arylhalogeniden: **Triethyl((1R,5S)-2-methyl-1-(3-phenylprop-2-inyl)-5-(prop-1-en-2-yl)-3-((triisopropyl-silyloxy)methyl)cyclohex-2-enyloxy)silan** (I-224)

Das Alkine I-**209** (300 mg, 0.611 mmol) wurde unter Argonatmosphäre in trockenem Triethylamine (1.0 mL) gelöst, mittels FTP-Technik entgast und zu einer entgasten (FTP-Technik) Suspension von Kupfer(I)iodid (8.7 mg, 0.037 mmol), Pd(PPh₃)₂Cl₂ (17.2 mg, 0.024 mmol) und Phenyliodid (75.3 μ L, 0.672 mmol) in trockenem Triethylamine (1.0 mL) gegeben. Die Reaktionsmischung wurde für 24 h auf 50 °C erhitzt. Die Reaktion wurde anschließend durch Zugabe von gesättigter Ammoniumchloridlösung (20 mL) abgebrochen und mit Diethylether (3 x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/1:0 - 99:1) gereinigt. Verbindung I-**224** wurde als orangenes Öl (284 mg, 0.501 mmol, 82%) erhalten.

DC: $R_f = 0.71$, (Pentan:Et₂O/ 99:1, [CAM] [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 7.40 – 7.29 (m, 2H), 7.28 – 7.20 (m, 3H), 4.74 (s, 2H), 4.22 (s, 2H), 2.79 (d, ³J_{HH} = 16.9 Hz, 1H), 2.60 (d, ³J_{HH} = 16.9 Hz, 1H), 2.53 – 2.30 (m, 3H), 1.96 (dd, ³J_{HH} = 19.0, ³J_{HH} = 12.0 Hz, 1H), 1.76 (s, 3H), 1.68 (s, 3H), 1.59 (t, ³J_{HH} = 9.3 Hz, 1H), 1.08 – 0.98 (m, 21H), 0.93 (t, ³J_{HH} = 7.8 Hz, 9H), 0.59 (ddd, ³J_{HH} = 11.5, ³J_{HH} = 7.9, ³J_{HH} = 2.7 Hz, 6H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 149.4, 132.4, 132.1, 131.7, 128.4, 127.6, 124.5, 108.9, 87.8, 83.1, 77.5, 63.7, 41.5, 39.4, 32.6, 32.5, 21.1, 18.3, 12.3, 12.1, 7.4, 7.0. **LMRS**- und **HRMS**-Daten konnten von dieser Verbindung nicht erhalten werden.

Methyl-4-((1R,5S)-2-methyl-5-(prop-1-en-2-yl)-1-(triethylsilyloxy)-3-((triisopropylsilyloxy)methyl)cyclohex-2-enyl)but-2-inoat (I-221)

I-**209** (150 mg, 0.306 mmol) wurde in trockenem (THF 1.2 mL) unter Argonatmosphäre bei -78 °C gelöst und tropfenweise mit *n*BuLi (183 μL, 0.458 mmol, 2.5 m in Hexan) versetzt. Die Reaktionsmischung wurde für 15 min bei 0°C gerührt und anschließend wieder auf -78°C abgekühlt. Es wurden Methylchloroformat (70 μL, 0.917 mmol) zugegeben und für 3 h bei -78 °C gerührt. Anschließend wurde der Reaktionsmischung erlaubt auf 23°c zu erwärmen. Die Reaktionslösung wurde mit gesättigter Ammoniumchloridlösung (25 mL) versetzt und mit Diethylether (3x 25 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/1:0 - 98:2) gereinigt. Verbindung I-**221** wurde als orangenes Öl (138 mg, 0.251 mmol, 82%) erhalten.

DC: $R_f = 0.54$, (Pentan:Et₂O/ 95:5, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 4.74 (d, ³J_{HH} = 6.9 Hz, 2H), 4.19 (s, 2H), 3.72 (s, 3H), 2.78 – 2.44 (m, 2H), 2.43 – 2.28 (m, 2H), 2.26 – 2.13 (m, 1H), 2.03 – 1.86 (m, 1H), 1.75 (s, 3H), 1.64 (s, 3H), 1.33 – 1.18 (m, 1H), 1.11 – 1.00 (m, 21H), 0.92 (t, ³J_{HH} = 7.9 Hz, 9H), 0.66 – 0.48 (m, 6H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 148.9, 133.3, 131.2, 109.2, 87.6, 77.4, 77.0, 75.2, 63.6, 52.7, 41.2, 39.4, 32.6, 31.7, 21.0, 18.2, 12.2, 12.0, 7.3, 6.9; **LRMS (**El): [m/z] 542 [M⁺] (3%), 520 (5%), 519 (11%), 506 (26%), 505 (53%), 453 (14%), 452 (35%), 451 (95%), 277 (30%), 115 (14%), 87 (21%), 75 (22%), 58 (12%); **HRMS** (El): [m/z] berechnet für [C₂₈H₄₉O₄²⁸Si₂ (M⁺-43)] 505.3164, gefunden 505.3153.

Triethyl(((1R,5S)-2-methyl-5-(prop-1-en-2-yl)-1-(3-(thiophen-2-yl)prop-2-in-1-yl)-3-(((triisopropylsilyl)oxy)methyl)cyclohex-2-en-1-yl)oxy)silan (I-223)

Durch *Sonogashira*-Kupplung von I-**209** mit 2-lodothiophen nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**223** als farbloses Öl (88 mg, 0.154 mmol, 75%) erhalten.

DC: $R_f = 0.70$, (Pentan:Et₂O/ 99:1, [CAM]); ¹**H-NMR (250 MHz, CDCl₃):** δ [ppm] 7.14 (d, ³J_{HH} = 5.2 Hz, 1H), 7.07 (d, ³J_{HH} = 2.8 Hz, 1H), 6.91 (dd, ³J_{HH} = 5.1, ³J_{HH} = 3.6 Hz, 1H), 4.74 (s, 2H), 4.22 (s, 2H), 2.70 (dd, ³J_{HH} = 50.6, ³J_{HH} = 16.8 Hz, 2H), 2.51 – 2.23 (m, 3H), 2.08 – 1.85 (m, 1H), 1.76 (s, 6H), 1.73 – 1.57 (m, 1H), 1.12 – 0.98 (m, 21H), 0.93 (t, ³J_{HH} = 7.8 Hz, 9H), 0.71 – 0.50 (m, 6H); ¹³C-NMR (63 MHz, CDCl₃): δ [ppm] 149.4,

132.6, 132.0, 131.0, 126.9, 126.0, 124.7, 108.9, 92.0, 77.6, 76.3, 63.7, 41.4, 39.4, 32.7, 32.6, 21.1, 18.3, 17.9, 12.3, 12.0, 7.4, 7.33, 7.0, 6.9.

V-2.2.2 Synthese der 3-Silyloxy-1,5-enine I-240 bis I-244, I-259 und I-261.

2-(Dimethoxymethyl)cyclohexanon (I-236)

Natriumhydrid (7.97 g, 208 mmol, 60% in Paraffin) wurde in trockenem Diethylether (100 mL) unter Argonatmosphäre suspendiert und bei 0°C zunächst mit Cyclohexanon I-**235** (21.1 mL, 204 mmol) und anschließend über einen Zeitraum von 20 min mit einer Lösung von Methylformiat (32.8 mL, 408 mmol) in Diethylether (100 mL) versetzt. Die Reaktionslösung wurde für 1 h bei 23°C gerührt und für 1.5 h bei 40°C am Rückfluss erhitzt. Anschließend wurde die Reaktionsmischung auf 0°C herabgekühlt und nacheinander mit Methanol (8.90 mL, 153 mmol) und Acetylchlorid (29.0 mL, 408 mmol) versetzt. Die Mischung wurde für 45 min bei 0°C und für weitere 90 h bei 23°C gerührt. Die Reaktionsmischung wurde in eine 5%iger Natriumhydrogencarbonatlösung (800 mL) ausgegossen und mit Diethylether (2 x500 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (50 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac. vom* Lösungsmittel befreit. Der Ölige Rückstand wurde durch fraktionierte Destillation (*Vigreux* Kolonne) gereinigt. Verbindung I-**236** wurde als gelbes Öl (13.8 g, 80.1 mmol, 39%) erhalten. Die analytischen Daten stimmten dabei mit denen in der Literatur zuvor berichteten überein.¹⁹⁵

DC: $R_f = 0.43$, (Pentan:Et₂O/ 1:1, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 1.35–2.15 (m, 6 H), 2.22–2.44 (m, 2 H), 2.63 (m, 1 H), 3.40 (s, 3 H), 3.41 (s, 3 H), 4.68 (d, J = 6.0 Hz, 1 H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 24.2, 27.8, 28.2, 42.4, 54.1, 54.6, 55.6, 103.7, 210.8.

2-Methylcyclohex-1-en-carbaldehyd (I-237)

Magnesiumspäne (2.08 g, 85.4 mmol) wurden in trockenem Diethylether (8.50 mL) unter Argonatmosphäre suspendiert und bei 23°C wurde Methyliodid (0.270 mL, 4.34 mmol) solange tropfenweise unter ständigem Rühren zugegeben bis die stark exotherme Grignard-Bildung einsetzte. Die Reaktionsmischung wurde auf 0°C abgekühlt und eine Lösung von Methyliodid (5.05 mL, 81.1 mmol) in trockenem Diethylether (21.0 mL) wurde tropfenweise zugegeben. Anschließend wurde die Reaktionsmischung für 30 min bei 40°C am Rückfluss erhitzt bevor eine Lösung von I-236 (9.30 g, 54.0 mmol) in trockenem Diethylether (16.0 mL) tropfenweise zugegeben und die Reaktionsmischung für 40 min bei 0°C gerührt wurde. Die Reaktionsmischung wurde dann mit Diethylether (20 mL) verdünnt und für weitere 20 min bei 40°C am Rückfluss erhitzt. Nach dem Abkühlen auf 0°C wurde die Reaktion durch Zugabe von Wasser (60 mL) und wässriger 5 M HCl (20 mL) beendet. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (2 x 80 mL) extrahiert. Die vereinigten organischen Phasen wurden mit Wasser (250 mL) gewaschen, über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der verbleibende Rückstand (11.6 g) wurde in Aceton (60 mL) gelöst, mit Wasser (10 mL) und 5.0 M HCl (5.5 mL) versetzt und für 2 h am Rückfluss erhitzt. Die Reaktionslösung wurde auf 23°C abgekühlt, mit Wasser (100 mL) verdünnt und mit Diethylether (4 x 100 mL) extrahiert. Die vereinigten organischen Phasen wurden mit Wasser (150 mL) und gesättigter Natriumchloridlösung (150 mL) gewaschen, über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der Rückstand wurde durch fraktionierte Destillation i. vac. (Vigreux Kolonne, 84-86°C/13 mbar) gereinigt. Verbindung I-237 wurde als gelbes Öl (3.36 g, 27.1 mmol, 50%) erhalten. Die analytischen Daten stimmten dabei mit den in der Literatur zuvor berichteten überein.¹⁹⁵

DC: R_f = 0.68, (Pentan:Et₂O/ 1:1, [CAM] [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 1.56–1.65 (m, 4H), 2.13 (s, 3H), 2.14–2.26 (m, 4H), 10.1 (s, 1H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 191.2, 156.3, 133.9, 34.4, 22.3, 22.2, 21.9, 18.5.

1-(2-Methylcyclohex-1-en-1-yl)but-3-in-1-ol (I-238)

Durch Addition von Propargylbromid an I-237 nach der allgemeinen Vorschrift C 2.2 wurde Verbindung I-238 als blass-gelbes Öl (3.24 g, 19.7 mmol, 73%) erhalten.

DC: $R_f = 0.21$, (Pentan:Et₂O/ 8:2, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 1.45–1.65 (m, 4 H), 1.67 (s, 3 H), 1.81–2.01 (m, 4 H), 2.03 (t, J = 2.6 Hz, 1 H), 2.06–2.23 (m, 1 H), 2.32 (ddd, J = 16.7 Hz, J = 5.3 Hz, J = 2.7 Hz, 1 H), 2.51 (ddd, J = 16.6 Hz, J = 8.5 Hz, J = 2.6 Hz, 1 H), 4.80 (ddd, J = 8.1 Hz, J = 5.2 Hz, J = 2.6 Hz, 1 H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 130.7, 130.3, 100.1, 81.7, 70.3, 69.3, 32.4, 25.4, 23.0, 22.7, 19.1.

Triethyl((1-(2-methylcyclohex-1-en-1-yl)but-3-in-1-yl)oxy)silan (I-239)

Durch Silylierung von I-**238** nach der allgemeinen Vorschrift **A 2.2** wurde Verbindung I-**239** als farbloses Öl (5.11 g, 18.3 mmol, 96%). erhalten.

DC: $R_f = 0.20$ (Pentan, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 0.58 (q, J = 7.4 Hz, 6 H), 0.94 (t, J = 7.9 Hz, 9 H), 1.43–1.63 (m, 4 H), 1.66 (s, 3 H), 1.78–2.02 (m, 3 H), 1.90 (t, J = 2.7 Hz, 1 H), 2.16 (d, J = 17.6 Hz, 1 H), 2.31 (ddd, J = 16.6 Hz, J = 6.7 Hz, J = 2.7 Hz, 1 H), 2.44 (ddd, J = 16.6 Hz, J = 7.1 Hz, J = 2.6 Hz, 1 H), 4.78 (t, J = 6.9 Hz, 1 H); ¹³**C-NMR** (62.9 MHz, CDCl₃): δ [ppm] = 5.0, 7.0, 19.4, 22.5, 23.1, 23.2, 26.4, 32.4, 69.2, 69.9, 82.3, 128.2, 131.6

Triethyl(1-(2-methylcyclohex-1-enyl)pent-3-inyloxy)silan (I-240)

Durch Alkylierung von I-**239** nach der allgemeinen Vorschrift **D 2.2** wurde Verbindung I-**240** als gelbes Öl (133 mg, 0.455 mmol, 63%). erhalten.

DC: $R_f = 0.63$, (Pentan:Et₂O/ 99:1, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 4.75 – 4.62 (m, 1H), 2.41 – 2.29 (m, 1H), 2.25 – 2.15 (m, 1H), 2.13 (d, ³J_{HH} = 19.7 Hz, 1H), 1.91 (s, 2H), 1.83 (d, ³J_{HH} = 18.5 Hz, 1H), 1.73 (t, ⁴J_{HH} = 2.5 Hz, 3H), 1.63 (s, 3H), 1.59 – 1.46 (m, 21H), 0.93 (t, ³J_{HH} = 7.9 Hz, 9H), 0.61 – 0.51 (m, 6H); ¹³**C**-**NMR** (63 MHz, CDCl₃): δ [ppm] 132.1, 127.6, 77.6, 76.6, 70.6, 32.5, 26.8, 23.3, 23.2, 22.6, 19.3, 7.0, 5.0, 3.7. **LRMS** (ESI): [m/z] 293 [M⁺]; **HRMS** (EI): berechnet für [C₁₈H₃₂O²⁸Si [M⁺]] 292.2222, gefunden 292.22855.

Triisopropyl(1-(2-methylcyclohex-1-enyl)pent-3-inyloxy)silan (I-260)

Durch Alkylierung von I-**259** nach der allgemeinen Vorschrift **D 2.2** wurde Verbindung I-**260** als gelbes Öl (163 mg, 0.365 mmol, 59 %) erhalten.

DC: $R_f = 0.20$, (Pentan, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 4.86 – 4.79 (m, 1H), 2.46-2.25 (m, 2H), 2.17 – 1.79 (m, 4H), 1.73 (t, J = 2.6 Hz, 3H), 1.65 (s, 3H), 1.56 (d, J = 5.6 Hz, 4H), 1.05 (d, J = 3.1 Hz, 18H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] ⁼ 132.0, 127.8, 70.7, 32.5, 27.0, 23.4, 23.2, 22.7, 19.6, 18.3, 18.1, 12.6, 3.7; **LRMS** (EI): [m/z] 291 [M⁺-43] (12%), 281 [M⁺-53] (99%), 157 (5%), 131 (14%), 115 (15%), 103 (14%), 91 (6%); **HRMS** (EI): berechnet für [C₁₈H₃₁O²⁸Si (M⁺-iPr)] 291.2139, gefunden 291.2142.

1-(2-Methylcyclohex-1-enyl)pent-3-in-1-ol (I-258)

TBAF (0.364 mL, 0.364 mmol, 1.0 M in THF) wurde zu dem Silylether I-**240** (71 mg, 0.243 mmol) unter Argonatmosphäre gegeben und die Reaktionsmischung wurde für 2 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von Wasser (10 mL) abgebrochen, mit gesättigter Ammoniumchloridlösung (20 mL) versetzt und mit Diethylether (3x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung I-**258** wurde als gelbes Öl (39 mg, 0.219 mmol, 90 %) erhalten.

DC: $R_f = 0.21$, (Pentan:Et₂O/9:1, [CAM]); ¹H-NMR (250 MHz, CDCl₃): δ [ppm] 4.70 (ddd, J = 7.5, 4.3, 2.7 Hz, 1H), 2.42 (ddq, J = 16.5, 9.0, 2.5 Hz, 1H), 2.28 – 2.18 (m, 1H), 2.17 – 2.05 (m, 1H), 1.99 – 1.82 (m, 4H), 1.88 (d, J = 2.8 Hz, 1H), 1.79 (t, J = 2.5 Hz, 3H), 1.64 (s, 3H), 1.62 – 1.47 (m, 5H); ¹³C-NMR (63 MHz, CDCl₃): δ [ppm] 130.7, 130.2, 78.1, 77.6, 77.2, 76.9, 76.3, 69.8, 32.5, 26.0, 23.1, 23.1, 22.8, 19.2, 3.8; LRMS (EI): [m/z] 178 [M+] (1%), 160 (10%), 154 (24%), 125 (98%), 117 (10%), 107 (10%), 91 (21%), 81 (39%), 79

(17%), 66(14%), 54 (16%), 42 (14%); **HRMS** (EI): berechnet für $[C_{12}H_{18}O(M^{+})]$ 178.1352, gefunden 160.1247 (M⁺-H₂O).

Triethyl((1-(2-methylcyclohex-1-en-1-yl)-4-(thiophen-2-yl)but-3-in-1-yl)oxy)silan (I-242)

Durch *Sonogashira*-Kupplung von I-**240** mit 2-lodothiophen nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**242** als blass-gelbes Öl (80.9 mg, 0.224 mmol, 61%) erhalten.

DC: $R_f = 0.12$ (Pentan, [CAM],[UV]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.62 (q, J = 7.8 Hz, 6 H), 0.96 (t, J = 7.9 Hz, 9 H), 1.49–1.65 (m, 4 H), 1.69 (s, 3 H), 1.84–2.05 (m, 3 H), 2.19 (d, J = 17.5 Hz, 1 H), 2.54 (dd, J = 16.7 Hz, J = 6.5 Hz, 1 H), 2.67 (dd, J = 16.7 Hz, J = 7.4 Hz, 1 H), 4.85 (t, J = 6.9 Hz, 1 H), 6.93 (dd, J = 5.2 Hz, J = 3.6 Hz, 1 H), 7.08 (dd, J = 3.6 Hz, J = 0.9 Hz, 1 H), 7.16 (dd, J = 5.2 Hz, J = 1.1 Hz, 1 H); ¹³**C-NMR** (62.9 MHz, CDCl₃): δ [ppm] = 4.8, 6.8, 19.2, 22.4, 22.9, 23.1, 27.5, 32.3, 69.9, 74.6, 92.2, 124.3, 125.8, 126.7, 128.0, 130.7, 131.5. Es konnten keine LRMS- und HRMS-Daten für diese Verbindung erhalten werden.

Triethyl(1-(2-methylcyclohex-1-enyl)-4-phenylbut-3-inyloxy)silan (I-241)

Durch *Sonogashira*-Kupplung von I-**240** mit Phenyliodid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**241** als blass-orangenes Öl (105 mg, 0.296 mmol, 82%).erhalten.

DC: $R_f = 0.57$ (Pentan:Et₂O/ 99:1, [CAM],[UV]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 7.37 – 7.30 (m, 1H), 7.29 – 7.21 (m, 3H), 4.84 (t, ³J_{HH} = 7.1 Hz, 1H), 2.63 (dd, ³J_{HH} = 16.8, ³J_{HH} = 7.2 Hz, 1H), 2.53 (dd, ³J_{HH} = 16.7, ³J_{HH} = 6.8 Hz, 1H), 2.18 (d, ³J_{HH} = 18.4 Hz, 1H), 2.00 – 1.87 (m, 1H), 1.68 (s, 1H), 1.66 – 1.48 (m, 2H), 0.93 (t, ³J_{HH} = 7.9 Hz, 5H), 0.58 (dd, ³J_{HH} = 15.5, ³J_{HH} = 7.6 Hz, 3H). Es konnten keine LRMS- und HRMS-Daten für diese Verbindung erhalten werden.

Triethyl(1-(2-methylcyclohex-1-enyl)-4-(3,4,5-trimethoxyphenyl)but-3-inyloxy)silan (I-243)

Durch *Sonogashira*-Kupplung von I-**240** mit 3,4,5-Trimethoxyphenylbromid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**243** als braunes Öl (96 mg, 0.216 mmol, 60%) erhalten.

DC: $R_f = 0.05$ (Pentan:Et₂O/ 99:1, [CAM],[UV]); ¹H-NMR (250 MHz, CDCl₃): δ [ppm] = 6.69 (d, ³J_{HH} = 29.6 Hz, 2H), 4.88 (t, ³J_{HH} = 6.9 Hz, 1H), 3.87 (dd, ³J_{HH} = 5.0, ³J_{HH} = 1.8 Hz, 9H), 2.61 (ddd, ³J_{HH} = 23.2, ³J_{HH} = 16.7, ³J_{HH} = 7.0 Hz, 2H), 2.23 (d, ³J_{HH} = 15.8 Hz, 1H), 1.99 (s, 2H), 1.73 (s, 3H), 1.70 – 1.51 (m, 3H), 1.00 (t, ³J_{HH} = 7.8 Hz, 9H), 0.74 – 0.52 (m, 6H). **LRMS** (ESI): [m/z] 445 (100%) (M⁺). **HRMS** (EI): berechnet für [C₂₆H₄₀O₄²⁸Si (M⁺)] 445.2769, gefunden 445.2763.

Triethyl(1-(2-methylcyclohex-1-enyl)-4-(4-nitrophenyl)but-3-inyloxy)silan (I-244)

Durch *Sonogashira*-Kupplung von I-**240** mit 4-Nitrophenyliodid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**244** als gelbes Öl (137 mg, 0.224 mmol, 73%) erhalten.

DC: $R_f = 0.87$ (Pentan:Et₂O/ 95:5, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 8.21 – 8.04 (m, 2H), 7.59 – 7.40 (m, 2H), 4.75 (s, 2H), 4.22 (d, ³J_{HH} = 1.4 Hz, 2H), 2.73 (dd, ²J_{HH} = 51.5, ³J_{HH} = 17.0 Hz, 2H), 2.41 (d, ³J_{HH} = 13.5 Hz, 2H), 2.30 (d, ³J_{HH} = 14.0 Hz, 1H), 2.06 – 1.87 (m, 1H), 1.76 (s, 3H), 1.69 (s, 3H), 1.61 (d, ³J_{HH} = 11.6 Hz, 1H), 1.08 – 0.99 (m, 21H), 0.93 (t, ³J_{HH} = 7.9 Hz, 9H), 0.57 (dt, ³J_{HH} = 8.6, ³J_{HH} = 5.2 Hz, 6H). **LRMS** (ESI) : [m/z] 445 (100%) (M⁺); **HRMS**: berechnet für [C₂₆H₄₀O₄²⁸Si (M⁺)] 445.2769, gefunden 445.2763.

V-2.2.3 Synthese der 3-Silyloxy-1,5-enine I-227, I-228 und I-232 bis I-234.

(1S,5R)-5-Methyl-1-(prop-2-inyl)-2-(propan-2-yliden)cyclohexanol (I-226)

Durch Addition von Propargylbromid an I-**225** nach der allgemeinen Vorschrift **C 2.2** wurde Verbindung I-**226** als gelbes Öl (2.762 g, 14.363 mmol, 73%) erhalten.

DC: $R_f = 0.56$, (Pentan:Et₂O/ 8:2, [CAM]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 2.73 – 2.62 (m, 1H), 2.61 – 2.54 (m, 1H), 2.05 (dd, ³J_{HH} = 4.9, ³J_{HH} = 2.3 Hz, 1H), 2.01 (d, ³J_{HH} = 1.8 Hz, 2H), 1.95 (s, 1H), 1.78 – 1.50 (m, 6H), 1.16 (dd, ³J_{HH} = 18.5, ³J_{HH} = 6.7 Hz, 1H), 0.90 (d, ³J_{HH} = 6.4 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 132.4, 127.1, 81.0, 76.0, 71.4, 48.9, 34.6, 30.1, 30.0, 28.7, 23.7, 22.6, 22.3.

Triethyl((1S,5R)-5-methyl-1-(prop-2-inyl)-2-(propan-2-yliden)cyclohexyloxy)silan (I-227)

Durch Silylierung von I-**226** nach der allgemeinen Vorschrift **A 2.2** wurde Verbindung I-**227** als farbloses Öl (3.531 g, 11.52 mmol, 100%) erhalten.

DC: $R_f = 0.99$, (Pentan:Et₂O/ 9:1, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 2.66 (ddd, ³J_{HH} = 16.9, ³J_{HH} = 2.6, ³J_{HH} = 1.1 Hz, 1H), 2.63 – 2.55 (m, 1H), 2.37 (dd, ³J_{HH} = 16.9, ³J_{HH} = 2.6 Hz, 1H), 2.10 (ddd, ³J_{HH} = 12.4, ³J_{HH} = 3.4, ³J_{HH} = 2.1 Hz, 1H), 1.95 (d, ³J_{HH} = 1.6 Hz, 3H), 1.91 (t, ³J_{HH} = 2.6 Hz, 1H), 1.80 (t, ³J_{HH} = 13.7 Hz, 1H), 1.80 (s, 1H), 1.64 (d, ³J_{HH} = 0.9 Hz, 3H), 1.62 – 1.53 (m, 2H), 1.27 (t, ³J_{HH} = 12.2 Hz, 1H), 0.94 (t, ³J_{HH} = 7.9 Hz, 9H), 0.90 (d, ³J_{HH} = 6.3 Hz, 3H), 0.68 – 0.56 (m, 5H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 133.2, 127.4, 82.3, 78.7, 70.0, 48.3, 33.7, 31.4, 29.4, 28.2, 23.5, 23.0, 22.8, 7.4, 7.2; **LRMS** (EI): [m/z] 306 [M⁺] (1%), 282 (6%), 281 (31%), 267 (96%), 115 (23%), 103 (25%), 99 (10%), 87 (22%), 75 (26%), 58 (12%), 43 (16%), 39 (33%); **HRMS** (EI): [m/z] berechnet für [C₁₉H₃₄O₁²⁸Si (M⁺)] 306.2373, gefunden 306.2375.

Triethyl((1S,5R)-5-methyl-1-(3-phenylprop-2-inyl)-2-(propan-2-yliden)cyclohexyloxy)silan (I-228)

Durch *Sonogashira*-Kupplung von I-**227** mit Phenyliodid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung I-**228** als farbloses Öl (128 mg, 0.335 mmol, 68%) erhalten.

DC: $R_f = 0.67$, (Pentan:Et₂O/ 99:1, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 3.39 – 7.33 (m, 2H), 7.31 – 7.21 (m, 3H), 2.86 (s, 1H), 2.69 – 2.59 (m, 1H), 2.59 (d, ³J_{HH} = 17.0 Hz, 1H), 2.17 – 2.10 (m, 1H), 2.00 (d, ³J_{HH} = 1.7 Hz, 3H), 1.83 (t, ³J_{HH} = 13.9 Hz, 1H), 1.66 (d, ³J_{HH} = 0.9 Hz, 3H), 1.65 – 1.57 (m, 2H), 1.52 (s, 1H), 1.32 (t, ³J_{HH} = 12.1 Hz, 1H), 0.95 (t, ³J_{HH} = 7.9 Hz, 9H), 0.92 (d, ³J_{HH} = 6.3 Hz, 3H), 0.63 (dt, ³J_{HH} = 8.5, ³J_{HH} = 4.6 Hz, 6H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 133.2, 131.7, 128.4, 127.5, 127.3, 124.7, 88.4, 82.3, 79.3, 49.0, 33.9, 32.4, 29.7, 28.4, 23.6, 23.1, 22.8, 7.4, 7.2.

[1,1'-Bi(cyclopentyliden)]-2-on (I-230)

Cyclopentanon I-**229** (5.0 g, 59.4 mmol) wurde in 1 N Natronlauge (60 mL) gegeben und 12h unter Rückfluss gerührt. Die Reaktionslösung wurde auf 23°C abgekühlt, mit gesättigter Natriumchloridlösung (50 mL) versetzt und mit Diethylether (3x 50 mL extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der ölige Rückstand wurde durch fraktionierte Destillation *i. vac.* (40 mbar, 105 – 110 °C) gereinigt. Die Verbindung I-**230** wurde als farbloses Öl (2,207 g, 14.691 mmol, 49%)erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.¹⁹⁴

DC: $R_f = 0.78$, (Pentan:Et₂O / 8:2, [UV], [CAM]); ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 2.84 – 2.70 (m, 2H), 2.58 – 2.44 (m, 2H), 2.34 – 2.17 (m, 4H), 1.99 – 1.80 (m, 2H), 1.80 – 1.58 (m, 4H); ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 207.5, 158.7, 128.1, 40.0, 34.4, 32.7, 29.7, 27.1, 25.4, 20.2.

2-(Prop-2-in-1-yl)-[1,1'-bi(cyclopentyliden)]-2-ol (I-231)

Durch Addition von Propargylbromid an I-**230** nach der allgemeinen Vorschrift **C 2.2** wurde Verbindung I-**231** als gelbes Öl (266 mg, 1.397 mmol, 70%) erhalten.

DC: $R_f = 0.48$, (Pentan:Et₂O / 8:2, [CAM]); ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 2.76 (dd, ²J = 16.8, ⁴J = 2.6 Hz, 1H), 2.68 – 2.51 (m, 1H), 2.45 (dd, ²J = 16.8, ⁴J = 2.6 Hz, 1H), 2.39 – 2.23 (m, 2H), 2.21 – 2.03 (m, 4H), 1.99 (t, ⁴J = 2.6 Hz, 1H), 1.97 (s, 1H), 1.90 – 1.53 (m, 7H); ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 138.5, 134.6, 81.6, 80.4, 70.1, 41.8, 33.2, 32.3, 29.6, 29.1, 27.7, 25.7, 22.3.

Triethyl((2-(prop-2-in-1-yl)-[1,1'-bi(cyclopentyliden)]-2-yl)oxy)silan (I-232)

Durch Silylierung von I-**231** nach der allgemeinen Vorschrift **A 2.2** wurde Verbindung I-**232** als farbloses Öl (2,194 g, 7.204 mmol, 91%) erhalten.

DC: $R_f = 0.81$, (Pentan:Et₂O / 99:1, [CAM]); ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 2.61 (dd, ²J = 16.6, ⁴J = 2.4 Hz, 2H), 2.43 (dd, ²J = 16.6, ⁴J = 2.7 Hz, 1H), 2.34 - 1.94 (m, 6H), 1.87 (t, ⁴J = 2.6 Hz, 1H), 1.84 - 1.48 (m, 7H), 0.91 (t, ³J = 7.9 Hz, 9H), 0.62 - 0.49 (m, 6H); ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 137.1, 135.1, 82.7, 82.7, 69.0, 40.9, 32.9, 31.6, 30.4, 29.5, 27.7, 25.7, 22.4, 7.2, 6.7.

((2-(But-2-in-1-yl)-[1,1'-bi(cyclopentyliden)]-2-yl)oxy)triethylsilan (I-234)

Durch Alkylierung von I-**232** nach der allgemeinen Vorschrift **D 2.2** wurde Verbindung I-**234** als gelbes Öl (46 mg, 0.144 mmol, 90%) erhalten.

DC: $R_f = 0.42$, (Pentan, [UV], [CAM]); ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 2.70 – 2.46 (m, 3H), 2.44 – 1.98 (m, 7H), 1.77 (s, 3H), 1.73 – 1.46 (m, 6H), 1.04 – 0.86 (m, 9H), 0.67 – 0.50 (m, 6H); ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 136.7, 135.5, 83.3, 77.5, 76.3, 40.8, 32.9, 31.5, 30.5, 29.6, 27.8, 25.8, 22.4, 7.3, 6.8.

Methyl-4-(2-((triethylsilyl)oxy)-[1,1'-bi(cyclopentyliden)]-2-yl)but-2-inoat (I-233)

I-232 (150 mg, 0.493 mmol) wurde in trockenem (THF 1.9 mL) unter Argonatmosphäre bei -78 °C gelöst und tropfenweise mit *n*BuLi (183 μ L, 296 μ L, 0.739 mmol, 2.5 m in Hexan) versetzt. Die Reaktionsmischung wurde für 15 min bei 0°C gerührt und anschließend wieder auf -78°C abgekühlt. Es wurden Methylchloroformat (113 μ L, 1.478 mmol) zugegeben und für 3 h bei -78 °C gerührt. Anschließend wurde der Reaktionsmischung erlaubt auf 23°C zu erwärmen. Die Reaktionslösung wurde mit gesättigter Ammoniumchloridlösung (25 mL) versetzt und mit Diethylether (3x 25 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/1:0 - 98:2) gereinigt. Verbindung I-**233** wurde als orangenes Öl (158 mg,0.435 mmol, 88%) erhalten.

DC: $R_f = 0.54$, (Pentan:Et₂O/ 95:5, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 3.73 (s, 3H), 2.76 (d, J = 17.0 Hz, 1H), 2.53 (d, J = 17.1 Hz, 1H), 2.56 – 2.48 (m, 1H), 2.31 – 2.01 (m, 6H), 1.91 – 1.48 (m, 7H), 1.33 –

1.19 (m, 1H), 0.91 (t, *J* = 7.9 Hz, 9H), 0.65 – 0.45 (m, 6H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 152.4, 135.8, 132.6, 86.3, 80.4, 71.6, 50.5, 39.0, 30.8, 29.3, 28.7, 27.5, 25.6, 23.6, 20.3, 5.1, 4.5; **LRMS** (EI): [m/z] 333.22 [M⁺-29] (3%), 266.24 (20%), 265.24 (97%), 115.10 (11%), 87.07 (14%); **HRMS** (EI): [m/z] berechnet für [C₁₉H₂₉O₃Si (M⁺-29)] 333.1880, gefunden 333.1884.

V-2.2.4 Cycloisomerisierung von 3-Silyloxy-1,5-Eninen mit tetrasubstituierten Doppelbindungen

Allgemeine Vorschrift F 2.2 für die Cycloisomerisierung von 3-Silyloxy-1,5-Eninen: (3a*S*,5*S*,7*aS*)-7a-Methyl-5-(prop-1-en-2-yl)-3a-(((triisopropylsilyl)oxy)methyl)-3a,4,5,6-tetrahydro-1*H*-inden-7(7a*H*)-on (I-208)

Platinum(IV)chlorid (121 mg, 0.359 mmol, 20 mol%) wurden in Toluen (3.00 mL) bei 23°C suspendiert und mit 1,5-Cyclooctadien (180 μL, 1.44 mmol) sowie Isopropanol (830 μL, 10.8 mmol) versetzt. Eine Lösung von Enin I-**209** (881 mg, 1.79 mmol) in Toluen (6.00 mL) wurde zugegeben und die Reaktionsmischung wurde für 20 min bei 23°C gerührt. Die Reaktionslösung wurde in einen Mischung von Wasser (20 mL) und gesättigter Natriumchloridlösung (20 mL) gegeben und mit Diethylether (3 x 40 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/49:1) gereinigt. Verbindung I-**208** wurde als blass-gelbes Öl (538 mg, 1.43 mmol, 80%) erhalten.

DC: $R_f = 0.36$, (Pentan:Et₂O/95:5, [CAM]); **Optische Aktivität**: $[\alpha]_D^{23} = +4.6^\circ$ (c = 5.2 mg/mL, CH₂Cl₂); ¹**H**-NMR (250 MHz, CDCl₃): δ [ppm] = 0.94–1.13 (m, 21 H), 1.20 (s, 3 H), 1.67–1.80 (m, 4 H), 1.93–2.02 (m, 2 H), 2.11–2.46 (m, 4 H), 3.07–3.18 (m, 1 H), 3.61 (s, 2 H), 4.71–4.74 (m, 1 H), 4.76 (virt. t, *J* = 1.4 Hz, 1 H), 5.38–5.45 (m, 1 H), 5.79–5.85 (m, 1 H); ¹³C-NMR (62.9 MHz, CDCl₃): δ [ppm] 12.4, 18.5, 18.8, 20.9, 34.5, 39.6, 42.4, 44.2, 57.2, 57.4, 68.4, 109.9, 133.1, 137.0, 148.4, 216.2; **LRMS** (EI): [m/z] 376 (2%) [M⁺], 333 (100%) [M⁺ –C₃H₇], 291 (4%), 265 (4%), 239 (5%), 220 (14%), 205 (43%), 185 (15%), 157 (14%), 145 (28%), 131 (27%), 105 (20%), 93 (32%). **HRMS** (EI): berechnet für [C₂₀H₃₃O₂Si (M⁺ –C₃H₇)] 333.2250, gefunden 333.2249.

(3aS,5S,7aS)-3,7a-Dimethyl-5-(prop-1-en-2-yl)-3a-((triisopropylsilyloxy)-methyl)-3a,4,5,6-tetrahydro-1H-inden-7(7aH)-on (I-247)

Durch Cycloisomersierung von I-222 nach der allgemeinen Vorschrift F 2.2 wurde Verbindung I-247 als farbloses Öl (25 mg, 0.063 mmol, 65 %) erhalten.

DC: $R_f = 0.37$, (Pentan:Et₂O/95:5, [CAM]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 5.50 (s, 1H), 4.78 – 4.66 (m, 2H), 3.66 – 3.54 (m, 2H), 2.98 (d, ³J_{HH} = 15.6 Hz, 1H), 2.36 – 2.28 (m, 2H), 2.17 – 1.96 (m, 2H), 1.89 (dd, ³J_{HH} = 13.9, ³J_{HH} = 2.5 Hz, 1H), 1.73 (s, 3H), 1.78 – 1.65 (m, 4H), 1.63 – 1.56 (m, 3H), 1.20 (s, 3H), 1.09 – 0.98 (m, 21H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] ¹³C-NMR (63 MHz, CDCl₃) δ 216.1, 148.1, 141.6, 128.9, 109.7, 67.0, 58.5, 57.5, 44.0, 39.6, 39.2, 31.9, 20.6, 19.1, 18.3, 14.0, 12.2; **LRMS** (EI): [m/z] 348 [M⁺-42] (20%), 347 [M⁺-43] (82%), 199 (34%), 172 (26%), 157 (53%), 145 (60%), 131 (61%), 118 (75%), 107 (99%), 102 (48%), 90 (30%), 74 (47%), 58 (27%), 40 (14%). **HRMS** (EI): berechnet für [C₂₄H₄₂O₂²⁸Si (M⁺)] 390.2949, gefunden 390.2967.

(3aS,5S,7aS)-7a-Methyl-3-phenyl-5-(prop-1-en-2-yl)-3a-((triisopropyl-silyloxy)methyl)-3a,4,5,6tetrahydro-1H-inden-7(7aH)-on (I-246)

Durch Cycloisomersierung von I-**224** nach der allgemeinen Vorschrift **F 2.2** wurde Verbindung I-**246** als gelbes Öl (17 mg, 0.038 mmol, 43%) erhalten.

DC: $R_f = 0.40$, (Pentan:Et₂O/95:5, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 7.33 – 7.16 (m, 5H), 6.03 – 5.94 (m, 1H), 4.71 – 4.56 (m, 1H), 4.50 (s, 1H), 3.90 (s, 2H), 3.15 (dd, J = 16.3, 3.3 Hz, 1H), 2.42 – 2.32 (m, 2H), 2.28 (dd, J = 16.3, 1.9 Hz, 1H), 2.09 – 1.96 (m, 2H), 1.70 (d, J = 13.2 Hz, 1H), 1.43 (s, 3H), 1.31 (s, 3H), 1.23 (s, 1H) 1.13 – 0.98 (m, 21H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 215.8, 147.9, 146.4, 137.6,

133.4, 128.3, 127.8, 127.2, 109.4, 67.4, 59.6, 59.0, 43.7, 39.5, 39.2, 31.9, 20.4, 19.2, 18.3, 12.3; **LRMS** (EI): [m/z] 452 [M⁺] (2%), 410 (23%), 409 (77%), 334 (15%), 333 (57%), 278 (45%), 234 (34%), 180 (62%), 168 (54%), 145 (47%), 130 (90%), 102 (90%), 90 (40%), 78 (46%), 76 (56%), 74 (99%), 56 (56%), 42 (87%); **HRMS** (EI): berechnet für [C₁₉H₂₂O²⁸Si (M⁺)] 266.1671, gefunden 266.1669.

(3a*S*,5*S*,7a*S*)-7a-Methyl-5-(prop-1-en-2-yl)-3a-((trimethylsilyl)ethinyl)-3a,4,5,6-tetrahydro-1*H*-inden-3,3a-Dimethyl-3a,4,5,6,7,7a-hexahydro-1H-inden-7a-carbaldehyd (I-261)

Durch Cycloisomersierung von I-**260** nach der allgemeinen Vorschrift **F 2.2** (23°C, 3 h) wurde Verbindung I-**261** als farbloses Öl (30 mg, 0.168 mmol, 41%) erhalten.

DC: $R_f = 0.65$, (Pentan:Et₂O/95:5, [CAM]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 9.75 (s, 1H), 5.26 (d, ³J_{HH} = 1.6 Hz, 1H), 2.55 – 2.41 (m, 1H), 2.13 – 1.99 (m, 1H), 1.82 – 1.68 (m, 1H), 1.61 (dd, ³J_{HH} = 3.8, ³J_{HH} = 1.9 Hz, 3H), 1.57 – 1.21 (m, 7H), 0.93 (s, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 207.2, 147.5, 121.1, 58.6, 49.5, 36.6, 35.1, 28.4, 22.7, 22.1, 20.8, 12.6; **LRMS** (EI): [m/z] 194 [M⁺] (16%), 179 [M⁺-CH₃] (32%), 149 (35%), 133 (34%), 123 (99%), 109 (44%), 105 (20%), 91 (30%), 43 (59%); **HRMS** (EI): berechnet für [C₁₂H₁₈O (M⁺)] 178.1352, gefunden 178.1348.

V-2.2.5 Unerwartete 5-*endo*-dig Zyklisierungs-Eliminierungsreaktion von 3-Silyloxy-1,5eninen

(E)-5-(2-Methylcyclohex-2-enyliden)pentan-2-on (I-249)

Durch Anwendung der Bedingungen der allgemeinen Vorschrift **F 2.2** (23°C, 6 h) auf I-**240** wurde Verbindung I-**249** als farbloses Öl (5 mg, 0.028 mmol, 41%) erhalten.

DC: $R_f = 0.27$, (Pentan:Et₂O/95:5, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 5.60 (t, ³J_{HH} = 4.2 Hz, 1H), 5.29 (t, ³J_{HH} = 7.0 Hz, 1H), 2.61 - 2.43 (m, 2H), 2.42 - 2.34 (m, 4H), 2.34 - 2.24 (m, 2H), 2.13 (s, 3H),

2.07 (d, ${}^{3}J_{HH} = 4.1$ Hz, 2H), 1.74 (d, ${}^{3}J_{HH} = 1.4$ Hz, 3H), 1.64 (dt, ${}^{3}J_{HH} = 12.5$, ${}^{3}J_{HH} = 6.2$ Hz, 2H); 13 C-NMR (63 MHz, CDCl₃): δ [ppm] 208.8, 133.2, 127.0, 121.4, 43.9, 30.2, 26.2, 26.0, 23.2, 22.3, 20.3; LRMS (EI): [m/z] 178 [M+] (6%), 161 (6%), 149 (10%), 125 (13%), 121 (16%), 111 (39%), 109 (16%), 91 (21%), 83 (25%), 79 (20%), 66 (14%), 56 (24%), 54 (20%), 42 (100%). HRMS (EI): berechnet für [C₁₂H₁₈O (M⁺)] 178.1352, gefunden 178.1348.

(E)-4-(2-methylcyclohex-2-enyliden)-1-phenylbutan-1-one (I-251)

Durch Anwendung der Bedingungen der allgemeinen Vorschrift **F 2.2** (23°C, 6 h) auf I-**241** wurde Verbindung I-**251** als blass-gelbes Öl (6.5 mg, 0.027 mmol, 46%) erhalten

DC: $R_f = 0.33$, (Pentan:Et₂O/95:5, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 7.95 (dt, ³J_{HH} = 8.7, ³J_{HH} = 1.9 Hz, 2H), 7.59 – 7.49 (m, 1H), 7.49 – 7.39 (m, 2H), 5.60 (s, 1H), 5.40 (t, ³J_{HH} = 7.3 Hz, 1H), 3.14 – 2.93 (m, 2H), 2.54 (dd, ³J_{HH} = 14.9, ³J_{HH} = 7.4 Hz, 2H), 2.43 – 2.22 (m, 2H), 2.07 (d, ³J_{HH} = 4.3 Hz,2), 1.76 (d, ³J_{HH} = 1.4 Hz, 3H), 1.64 (dt, ³J_{HH} = 12.3, ³J_{HH} = 6.1 Hz, 2H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 200.0, 137.3, 137.2, 133.3, 133.2, 128.8, 128.3, 126.9, 121.7, 38.9, 26.2, 26.1, 23.2, 22.7, 20.3. **LRMS** (EI): [m/z] 240 [M⁺] (13%), 121 (15%), 120 (61%), 104 (99%), 90 (25%), 78 (38%), 76 (69%), 42 (18%); **HRMS** (EI): berechnet für [C₁₇H₂₀O (M⁺)] 240.1509, gefunden 240.1507.

(E)-4-(2-Methylcyclohex-2-enyliden)-1-(thiophen-2-yl)butan-1-on (I-252)

Durch Anwendung der Bedingungen der allgemeinen Vorschrift **F 2.2** (23°C, 6 h) auf I-**242** wurde Verbindung I-**252** als farbloses Öl (5.9 mg, 0.024 mmol, 44%) erhalten

DC: $R_f = 0.27$, (Pentan:Et₂O/95:5, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 7.69 (dd, ³J_{HH} = 3.8, ⁴J_{HH} = 1.1 Hz, 1H), 7.60 (dd, ³J_{HH} = 5.0, ⁴J_{HH} = 1.1 Hz, 1H), 7.11 (dd, ³J_{HH} = 4.9, ³J_{HH} = 3.8 Hz, 1H), 5.66 - 5.53 (m, 1H), 5.39 (t, ³J_{HH} = 7.4 Hz, 1H), 3.03 - 2.89 (m, 2H), 2.54 (dd, ³J_{HH} = 15.0, ³J_{HH} = 7.4 Hz, 2H), 2.38 - 2.26

(m, 2H), 2.07 (d, ${}^{3}J_{HH} = 3.9$ Hz, 2H), 1.75 (d, ${}^{3}J_{HH} = 1.4$ Hz, 3H), 1.64 (dt, ${}^{3}J_{HH} = 12.5$, ${}^{3}J_{HH} = 6.2$ Hz, 2H); 13 **C**-NMR (63 MHz, CDCl₃): δ [ppm] 193, 144.6, 137.3, 133.6, 133.2, 132.0, 128.3, 127.1, 121.4, 39.7, 26.2, 26.0, 23.2, 23.1, 20.3; LRMS (EI): [m/z] 246 [M⁺] (25%), 161 (5%), 138 (11%), 125 (26%), 120 (60%), 110 (100%), 105 (41%), 93 (36%), 91 (33%), 78 (26%), 76 (22%), 66 (10%), 54 (16%), 40 (18%), 38 (24%); HRMS (EI): berechnet für [C₁₅H₁₈O₁³²S₁ (M⁺)] 246.1073, gefunden 246.1070.

(E)-4-(2-Methylcyclohex-2-enyliden)-1-(3,4,5-trimethoxyphenyl)butan-1-on (I-253)

Durch Anwendung der Bedingungen der allgemeinen Vorschrift **F 2.2** (23°C, 5 h) auf I-**243** wurde Verbindung I-**253** als farbloses Öl (6 mg, 0.018 mmol, 20%) erhalten.

DC: $R_f = 0.71$, (Pentan:Et₂O/9:1, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 7.21 (s, 2H), 5.61 (t, ³J_{HH} = 3.5 Hz, 1H), 5.41 (t, ³J_{HH} = 7.2 Hz, 1H), 3.92 – 3.87 (m, 9H), 3.00 (t, ³J_{HH} = 7.5 Hz, 2H), 2.53 (q, ³J_{HH} = 7.4 Hz, 2H), 2.40 – 2.27 (m, 2H), 2.13 – 2.03 (m, 2H), 1.76 (d, ³J_{HH} = 1.3 Hz, 3H), 1.65 (dt, ³J_{HH} = 12.4, ³J_{HH} = 6.2 Hz, 2H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 198.8, 153.3, 142.8, 137.2, 133.2, 132.5, 127.1, 121.7, 105.9, 77.7, 77.4, 77.2, 76.7, 61.2, 56.5, 31.1, 26.2, 26.1, 23.2, 22.9, 20.3; **LRMS** (EI): [m/z] 330 [M⁺] (6%),. 247 (10%), 209 (10%), 194 (38%), 85 (81%), 83 (100%), 46 (17%); **HRMS** (EI): berechnet für [C₂₀H₂₆O₄ (M⁺]] 330.1826, gefunden 330.1825.

5-Isopropoxy-5-(2-methylcyclohex-2-enyl)pentan-2-on (I-259)

Durch Anwendung der Bedingungen der allgemeinen Vorschrift **F 2.2** (23°C, 1 h) auf I-**258** wurde Verbindung I-**259** als farbloses Öl (8 mg, 0.03358 mmol, 40%) zusammen mit Verbindung I-**249** als farbloses Öl (1 mg, 0.0056 mmol, 6%) erhalten.

DC: $R_f = 0.31$, (Pentan:Et₂O/9:1, [CAM], [UV]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 4.24 (dd, ³J_{HH} = 8.8, ³J_{HH} = 5.4 Hz, 1H), 3.55 – 3.28 (m, 1H), 2.60 – 2.27 (m, 2H), 2.11 (s, 3H), 2.04 – 1.72 (m, 5H), 1.61 (d, ³J_{HH} = 0.8 Hz, 3H), 1.70 – 1.42 (m, 5H), 1.07 (d, ³J_{HH} = 6.2 Hz, 3H), 1.05 (d, ³J_{HH} = 5.9 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 209.2, 130.9, 129.9, 74.2, 67.9, 40.6, 32.6, 30.1, 28.1, 23.7, 23.4, 23.2, 23.0, 21.6, 19.1; **LRMS** (EI): [m/z] 238 [M⁺] (1%), 220 (1%), 195 (5%), 178 (23%), 167 (25%), 125 (100%), 118 (15%), 105 (12%), 91 (15%), 81 (30%), 43 (39%); **HRMS** (EI): berechnet für [C₁₅H₂₆O₂ (M⁺)] 238.1927, gefunden 238.1921.

V-2.2.6 Finale Schritte zu (+)-Cyperolon

(*E*)-4-Methyl-N'-((3a*S*,5*S*,7a*S*)-7a-methyl-5-(prop-1-en-2-yl)-3a-((triisopropylsilyl)oxy-methyl-3a,4,5,6tetrahydro-1*H*-inden-7(7a*H*)-yliden)benzolsulfonohydrazid (I-262)

Ts

DC: $R_f = 0.64$, (Pentan:Et₂O/1:1, [CAM], [UV]); **Optische Aktivität:** $\alpha_D^{23} = +17.4$ (c = 0.843, CH₂Cl₂); **Schmp.** = 126°C; ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 8.14 – 7.82 (m, 2H), 7.52 – 7.31 (m, 2H), 5.79 (dd, J = 7.9, 2.2 Hz, 1H), 5.45 (d, J = 5.8 Hz, 1H), 4.81 (d, J = 20.9 Hz, 2H), 3.73 – 3.60 (m, 2H), 2.90 (d, J = 16.8 Hz, 1H), 2.57 – 2.47 (m, 4H), 2.27 (t, J = 12.3 Hz, 1H), 2.24 – 2.14 (m, 1H), 1.96 (dd, J = 16.4, 12.3 Hz, 1H), 1.79 (s, 3H), 1.72 (d, J = 12.6 Hz, 1H), 1.58 (t, J = 13.1 Hz, 1H), 1.27 (s, 3H), 1.09 – 0.99 (m, 21H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 164.4, 148.2, 143.8, 135.6, 135.5, 130.1, 129.3, 128.3, 109.8, 67.4, 57.1, 49.8, 47.2, 36.5, 36.3, 31.0, 21.7, 20.9, 20.6, 18.1, 12.0; LRMS (EI): [m/z] 544 (74%) [M⁺], 501 (40%) [M⁺ – $C_{3}H_{7}$], 389 (66%) [M⁺– $C_{7}H_{7}O_{2}S$], 357 (25%), 317 (24%), 269 (19%), 215 (41%), 187 (28%), 157 (31%), 145 (100%). **HRMS** (EI): berechnet für [$C_{30}H_{48}N_{2}O_{3}^{-32}S^{28}Si$ (M⁺)] 544.3155, gefunden 544.3156.

Triisopropyl(((3a*S*,5*R*,7a*S*)-7a-methyl-5-(prop-1-en-2-yl)-3a,4,5,6,7,7a-hexahydro-1*H*-inden-3ayl)methoxy)silan (I-263)

Hydrazon I-**262** (23.3 mg, 42.8 μ mol) wurde in CH₂Cl₂ (1.10 mL) unter Argn-Atmosphäre bei 0°C gelöst, tropfenweise mit DIBAL-H (150 μ L, 150 μ mol, 1 M in Hexan) versetzt und de resultierende gelbe Lösung wurde für 40 min bei 0°C gerührt. Die Reaktion wurde durch Zugabe von Kaliumnatriumtartratlösung (4.00 mL, 20%ig in H₂O) abgebrochen, mit Pentan (10 mL) verdünnt und auf 23°C erwärmt. Nach der Zugabe von Glycerin (0.2 mL/mmol) wurde die Mischung für 2 h gerührt bis eine vollständige Phasentrennung einsetzte. Die Phasen wurden getrennt und die wässrige Phase mit Pentan (2 x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan) gereinigt. Verbindung I-**263** wurde als farbloses Öl (11.9 mg, 32.8 μ mol, 77%).erhalten.

DC: $R_f = 0.64$, (Pentan, [CAM]); **Optische Aktivität:** $\alpha_D^{23} = +74.3$ (c = 5.4, CH_2Cl_2); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 0.91–1.10 (m, 21 H), 1.07 (s, 3 H), 1.12–1.27 (m, 3 H), 1.33 (dt, J = 13.2 Hz, J = 3.3 Hz, 1 H), 1.45–1.51 (m, 1 H), 1.54–1.61 (m, 1 H), 1.72 (s, 3 H), 1.80–1.92 (m, 3 H), 2.38 (dt, J = 15.8 Hz, J = 1.8 Hz, 1 H), 3.40 (d, J = 9.1 Hz, 1 H), 3.49 (d, J = 9.5 Hz, 1 H), 4.68 (s, 2 H), 5.50–5.55 (m, 1 H), 5.67–5.71 (m, 1 H); ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 151.6, 139.2, 130.5, 108.2, 70.0, 55.2, 48.4, 42.3, 42.3, 39.6, 34.6, 28.2, 21.4, 20.0, 18.5, 12.4; **LRMS** (EI): [m/z] 319 (79%) [M⁺ –C₃H₇], 301 (3%), 277 (12%), 175 (16%), 157 (12%), 145 (20%), 131 (100%); **HRMS** (EI): berechnet für [C₂₀H₃₅O²⁸Si (M⁺-iPr)] 319.2457, gefunden 319.2459.

((3aS,5R,7aS)-7a-Methyl-5-(prop-1-en-2-yl)-3a,4,5,6,7,7a-hexahydro-1H-inden-3a-yl)-methanol (I-207)

C₁₄H₂₂O 206,16 g/mol

TBAF (2.15 mL, 2.15 mmol, 1 M in THF) wurde bei 23°C zu dem Silylether I-**263** (520 mg, 1.43 mmol) gegeben und die resultierende Lösung wurde für 40 h bei 23°C gerührt. Wasser (10 mL) und gesättigte Ammoniumchloridlösung (20 mL) wurden beigesetzt und die Mischung wurde mit Diethylether (3 x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (90 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1 – 3:1) gereinigt. Verbindung I-**207** wurde als farbloses Öl (295 mg, 1.43 mmol, 100%) erhalten, welches im Kühlschrank zu einem farblosen Feststoff erstarrte.

DC: $R_f = 0.30$, (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität**: $\alpha_D^{23} = +58.9$ (c = 1.79, CH₂Cl₂); **Schmp.** = 68–69 °C; ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 0.99–1.29 (m, 3 H), 1.11 (s, 3 H), 1.39 (dt, J = 7.3 Hz, J = 3.3 Hz, 1 H), 1.45–1.58 (m, 3 H), 1.71 (s, 3 H), 1.75 (m, 1 H), 1.85–1.95 (m, 2 H), 2.37–2.44 (m, 1 H), 3.20 (d, J = 10.9 Hz, 1 H), 3.47 (d, J = 10.9 Hz, 1 H), 4.68 (m, 2 H), 5.49 (dd, J = 5.8 Hz, J = 2.5 Hz, 1 H), 5.91 (m, 1 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 150.7, 137.0, 132.8, 108.3, 69.1, 55.1, 48.8, 42.1, 41.8, 39.6, 34.2, 27.7, 21.1, 19.4; LRMS (EI): [m/z] 206 (8%) [M⁺], 175 (100%) [M⁺ –CH₂OH], 147 (8%), 133 (24%), 119 (31%), 105 (35%); HRMS (EI): berechnet für [C₁₄H₂₂O (M⁺)] 206.1671, gefunden 206.1670.

((1aR,1bS,3R,5aS,6aS)-5a-Methyl-3-(prop-1-en-2-yl)octahydro-1aH-indeno[1,2-b]oxiren-1byl)methanol (I-206)

VO(acac)₂ (3.70 mg, 14.1 µmol) wurde bei 23°C zu einer Lösung des Homoallylalkohols I-**207** (410 mg, 1.987 mmol) in CH₂Cl₂ (9.90 mL) gegeben und gerührt bis der Vanadium-Komplex vollständig gelöst war. Es wurde *t*-BuOOH (132 µL, 0.729 mmol, 5.5 M in Decan) tropfenweise zu der grünen Lösung zugegeben, welche sich daraufhin zunächst tief rot und schließlich nach 2 h bei 23°C orange-rot einfärbte. Weiteres *t*-BuOOH (132 µL, 0.729 mmol, 5.5 M in Decan) wurde zugegeben und die Lösung wurde für weitere 2 h bei 23 °C gerührt. Eine letzte Portion *t*-BuOOH (132 µL, 0.729 mmol, 5.5 M in Decan) wurde zugegeben und die Lösung wurde zugegeben und die Reaktionslösung wurde für 21 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Natriumthiosulfatlösung (50 mL) abgebrochen und mit CH₂Cl₂ (3 x 30 mL) extrahiert. Die vereinigten Organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel

(Pentan:Et₂O/9:1 - 1:1) gereinigt. Verbindung I-**206** wurde als blass-gelbes Öl (390 mg, 1.770 mmol, 89%, brsm. 92%, d.r.>99:1) erhalten.

DC: $R_f = 0.31$, (Pentan:Et₂O/1:1, [CAM]); **Optische Aktivität**: $\alpha_D^{23} = +6.9$ (c = 1.18, CH₂Cl₂); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 0.88 (s, 3 H), 1.16–1.31 (m, 2 H), 1.39–1.56 (m, 2 H), 1.59–1.79 (m, 3 H), 1.73 (s, 3 H), 1.88–2.03 (m, 2 H), 2.08–2.19 (m, 1 H), 3.36–3.45 (m, 2 H), 3.61 (t, J = 3.0 Hz, 1 H), 3.72 (dd, J = 10.8 Hz, J = 5.4 Hz, 1 H), 4.70 (s, 2 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 150.0, 108.8, 67.7, 66.7, 59.3, 47.7, 47.1, 42.1, 40.4, 38.6, 33.5, 27.1, 21.0, 20.9; **LRMS** (EI): [m/z] 222 (10%) [M⁺], 207 (5%), 204 (7%), 191 (48%) [M⁺ –CH₂OH], 175 (38%), 161 (31%), 149 (61%), 135 (70%), 109 (89%), 105 (100%); **HRMS** (EI): berechnet für [C₁₄H₂₂O₂ (M⁺)] 222.1620, gefunden 222.1615.

(1aR,1bR,3R,5aS,6aS)-5a-Methyl-3-(prop-1-en-2-yl)octahydro-1aH-indeno[1,2-b]oxiren-1b-carbaldehyd (I-264)

Alkohol I-207 (12.7 mg, 57.1 μmol) wurde in CH₂Cl₂ (480 μL) bei 23°C gelöst und mit *i*-Pr₂NEt (30.0 μL, 171 μ mol) versetzt. Eine Lösung von SO₃-Pyridin (27.2 mg, 171 μ mol) in DMSO (200 μ L) wurde tropfenweise zugegeben und die Mischung wurde für 4 h bei 23°C gerührt. Anschließend wurden erneut *i*-Pr₂NEt (30.0 μL, 171 μmol) und festes SO₃-Pyridin (27.2 mg, 171 μmol) zugegeben und die Reaktionsmischung wurde für weitere 23 h bei 23°C gerührt. Die Reaktionsmischung wurde mit Diethylether (25 mL) verdünnt und mit Wasser (25 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (1 x 25 mL) extrahiert. Die vereinigten organischen Phasen wurden nacheinander Ammoniumchloridlösung mit gesättigter (25 mL), gesättigter Natriumhydrogencarbonatlösung und gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung I-264 wurde als blass-gelbes Öl (11.6 mg, 52.7 µmol, 94%) erhalten.

DC: $R_f = 0.39$, (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität**: $\alpha_D^{23} = +164.8$ (*c* = 1.18, CH₂Cl₂); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 1.04 (s, 3 H), 1.33–1.54 (m, 4 H), 1.68–1.79 (m, 4 H), 1.83–2.08 (m, 4 H), 3.44 (d, *J* = 2.6 Hz, 1 H), 3.70 (t, *J* = 2.4 Hz, 1 H), 4.71 (m, 2 H), 9.87 (s, 1 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ

 $[ppm] = 204.9, 149.3, 109.4, 64.3, 58.9, 57.7, 45.5, 40.6, 37.2, 34.7, 28.6, 26.6, 25.5, 20.6. IR (ATR): \tilde{v}$ $[cm^{-1}] = 2928 \text{ (s)}, 2861 \text{ (m)}, 2739 \text{ (w)}, 1712 \text{ (s)}, 1645 \text{ (m)}, 1455 \text{ (m)}, 1436 \text{ (m)}, 1372 \text{ (m)}, 893 \text{ (m)}, 849 \text{ (m)}, 834 \text{ (m)}, 738 \text{ (m)}; LRMS (EI): [m/z] 220 (2%) [M⁺], 190 (57%) [M⁺ -CH₂O], 177 (35%), 159 (22%), 149 (46%), 135 (47%), 109 (100%); HRMS (EI): berechnet für [C₁₃H₁₈O (M⁺-CH₂O)] 190.1358, gefunden 190.1359.$

(1aR,1bS,3R,5aS,6aS)-1b-Ethinyl-5a-methyl-3-(prop-1-en-2-yl)-octahydro-1aH-indeno-[1,2-b]-oxiren (I-205)

Kalium-*tert*butylat (146 mg, 1.303 mmol) wurde in THF (3.8 mL) bei -78°C suspendiert und eine Lösung von *Seyfert-Gilbert* Reagenz (183 mg, 1.344 mmol) in THF (3.8 mL) wurde tropfenweise zugegeben. Die Reaktionsmischung wurde für 10 min bei -78°C gerührt bevor eine Lösung des Aldehyds I-**264** (148.0 mg, 0.672 mmol) in THF (3.8 mL) tropfenweise zugegeben wurde. Die Reaktionsmischung wurde für weitere 2 h bei -78°C gerührt und anschließend über einen Zeitraum von 6 h auf -20 °C erwärmt. Die Reaktion wurde durch Zugabe von Wasser (30 mL) abgebrochen und mit Diethylether (3 x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (30 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/8:2) gereinigt. Verbindung I-**205** wurde als farbloses Öl (138 mg, 0.6379 mmol, 95 %) erhalten.

DC: $R_f = 0.54$, (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität:** $\alpha_D^{23} = +49.3$ (c = 1.13, CH₂Cl₂); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 1.12 (s, 3 H), 1.33–1.48 (m, 2 H), 1.49–1.59 (m, 1 H), 1.62–1.83 (m, 4 H), 1.73 (s, 3 H), 1.89–2.05 (m, 2 H), 2.29 (m, 1 H), 3.41 (d, J = 2.6 Hz, 1 H), 3.57 (dd, J = 3.9, J = 1.8 Hz, 1 H), 4.71 (s, 2 H) ; ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 148.9, 109.3, 86.0, 72.2, 65.9, 59.0, 45.7, 45.5, 40.3, 38.6, 36.5, 34.4, 27.3, 25.8, 20.8; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3303 (m), 2933 (s), 2856 (m), 1644 (m), 1454 (s), 1373 (m), 1306 (w), 1234 (w), 887 (s), 850 (s); **LRMS** (EI): [m/z] 216 (1%) [M⁺], 215 (4%) [M⁺ –H], 201 (25%) [M⁺ –CH₃], 187 (27%), 183 (6%), 173 (31%), 159 (45%), 145 (79%), 133 (47%), 131 (75%), 117 (74%), 115 (32%), 105 (73%), 91 (100%); **HRMS** (EI): berechnet für [C₁₄H₁₇O (M⁺ –CH₃)] 201.1279, gefunden 201.1279.

(1S,3aS,6R,7aS)-7a-Ethinyl-3a-methyl-6-(prop-1-en-2-yl)octahydro-1H-inden-1-ol (I-204)

Das Epoxid I-**264** (108 mg, 0.499 mmol) wurde bei 23°C unter Argonatmosphäre in THF (6.50 mL) gelöst, mit LiAlH₄ (57.0 mg, 1.50 mmol) versetzt und die Rektionsmischung wurde für 24 h auf 60°C erhitzt. Die Reaktionsmischung wurde auf 23°C abgekühlt und konsekutiv mit Wasser (1.5 mL), 1 N NaOH-Lösung (1.5 mL) und Wasser (4.5mL) versetzt. Die überstehende Lösung wurde vom gebildeten Niederschlag ab dekantiert, mit Diethylether (40 mL) verdünnt und mit gesättigter Ammoniumchloridlösung (40 mL) gewaschen. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (2 x 40 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1 – 4:1) gereinigt. Verbindung I-**204** wurde als farbloses Öl (99.1 mg, 0.454 mmol, 91%) erhalten.

DC: $R_f = 0.24$, (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität:** $\alpha_D^{23} = +12.8$ (c = 1.07, CH_2Cl_2); **Schmp.** = 38– 39 °C; ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 1.18 (s, 3 H), 1.31–1.42 (m, 4 H), 1.46–1.64 (m, 3 H), 1.72 (s, 3 H), 1.83 (td, J = 12.7, J = 6.3 Hz, 1 H), 1.96 (d, J = 11.9 Hz, 1 H), 2.01 (ddd, J = 14.0 Hz, J = 3.8 Hz, J = 2.1 Hz, 1 H), 2.06–2.25 (m, 2 H), 2.36 (s, 1 H), 4.39 (dt, J = 11.6 Hz, J = 8.4 Hz, 1 H), 4.72 (s, 2 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 149.2, 109.2, 85.9, 74.9, 74.1, 52.2, 41.6, 39.4, 36.7, 35.3, 33.3, 30.4, 27.1, 23.1, 21.1; **IR** (neat): \tilde{v} [cm⁻¹] = 3450 (m), 3279 (m), 2931 (s), 2865 (s), 1646 (m), 1461 (s), 1435 (m), 1375 (m), 1132 (w), 1065 (w), 1081 (s), 1033 (w), 1008 (m), 884 (s), 689 (s), 668 (s); **LRMS** (EI): [m/z] 218 (2%) [M⁺], 203 (28%) [M⁺ –CH₃], 189 (38%), 175 (34%), 161 (43%), 147 (39%), 133 (53%), 119 (77%), 105 (100%), **HRMS** (EI): berechnet für [C₁₄H₁₉O (M⁺ –CH₃)] 203.1436, gefunden 203.1434.

(+)-Cyperolon (I-137)

Das Alkin I-**204** (5.50 mg, 25.2 µmol) wurde in Aceton (1.00 mL) gelöst und eine Lösung von rotem Quecksilber(II)oxid (5.46 mg, 25.2 µmol) in 0.73 M H₂SO₄ (0.230 mL) wurde tropfenweise zugefügt. Die resultierende graue Suspension wurde für 20 h bei 23°C gerührt. Die Reaktionsmischung wurde mit Diethylether (20 mL) verdünnt und mit Wasser (20 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (20 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung gewaschen (40 mL), über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1 – 4:1) gereinigt. (+)-Cyperolon I-**137** wurde als farbloser, hygroskopischer Feststoff 1.80 mg, 7.62 µmol, 30%) als Nebenprodukt erhalten und das Lacton I-**265** wurde als farbloses Öl (2.60 mg, 11.1 µmol, 44%) als Hauptprodukt erhalten. Die analytischen Daten für (+)-Cyperolon (¹H-NMR, ¹³C-NMR, LRMS, HRMS) waren mit den analytischen Daten, die für das natürlich vorkommende Material veröffentlicht sind, identisch.^{158,151a}

DC: $R_f = 0.10$, (Pentan:Et₂O/4:1, [CAM]); **Optische Aktivität:** $\alpha_D^{23} = +35.1$ (c = 3.7, CHCl₃) Lit:^{5a} $[\alpha]_D^{23} = +31.4$; **Schmp.** = 40 °C ; ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 0.98 (s, 3 H), 1.28–1.51 (m, 4 H), 1.55–1.66 (m, 1 H), 1.71–1.86 (m, 3 H), 1.78 (s, 3 H), 2.03–2.23 (m, 3 H), 2.16 (s, 3 H), 2.26–2.37 (m, 1 H), 4.48 (d, J = 6.4 Hz, 1 H), 4.77 (s, 2 H); ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 21.4 (q), 22.7 (q), 27.2 (t), 31.3 (t), 31.5 (q), 31.9 (t), 37.5 (t), 37.6 (t), 39.9 (d), 43.0 (s), 64.7 (s), 77.0 (d), 109.2 (t), 149.6 (s), 215.9 (s). IR (neat): $\tilde{\nu}$ [cm⁻¹] = 3436 (br), 3086 (w), 2936 (s), 1684 (s), 1643 (m), 1460 (s), 1439 (m), 1418 (m), 1376 (m), 1351 (s), 1234 (w), 1205 (s), 1129 (w), 1097 (m), 1079 (s), 1015 (s), 978 (w), 950 (w), 886 (s), 748 (w); LRMS (EI): [m/z] 236 (17%) [M⁺], 218 (10%) [M⁺ –H₂O], 208 (10%) [M⁺ –CO], 203 (7%) [M⁺ –H₂O, –CH₃], 193 (14%) [M⁺ –CH₃CO], 179 (72%), 175 (53%), 161 (60%), 147 (27%), 133 (100%), 123 (74%), 119 (45%), 107 (49%); HRMS (EI): berechnet für [C₁₅H₂₄O₂ (M⁺)] 236.1771, gefunden 236.1766.

(3aS,5aS,8R,9aR)-8-(Prop-1-en-2-yl)-5a-methyl-octahydro-indeno[1,7a-b]furan-2-on (I-265)

DC: R_f = 0.21, (Pentan:Et₂O/4:1, [CAM]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.03 (s, 3 H), 1.30–1.47 (m, 4 H), 1.51 (dd, *J* = 12.7 Hz, *J* = 8.9 Hz, 1 H), 1.60–1.69 (m, 1 H), 1.75 (s, 3 H), 1.77–1.91 (m, 3 H), 2.02 (d, *J* = 17.9 Hz, 1 H), 1.99–2.07 (m, 1 H), 2.31 (dq, *J* = 15.2 Hz, *J* = 9.1 Hz, 1 H), 2.70 (d, *J* = 17.9 Hz, 1 H), 4.74 (s, 1 H), 4.77 (s, 1 H), 4.91 (dd, *J* = 8.9 Hz, *J* = 2.1 Hz, 1 H); ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 20.8, 21.0,

26.8, 29.2, 35.1, 35.9, 38.1, 39.0, 40.9, 41.8, 53.6, 87.8, 109.2, 148.7, 177.2; **IR** (neat): $\tilde{\nu}$ [cm⁻¹] = 2929 (m), 1772 (s), 1644 (m), 1463 (m), 1415 (w), 1362 (m), 1240 (w), 1204 (m), 1176 (s), 1159 (s), 1035 (m), 1013 (m), 997 (m), 978 (m), 930 (w), 886 (s), 851 (w); **LRMS** (EI): [m/z] 234 (10%) [M⁺], 219 (2%) [M⁺ – CH₃], 206 (7%) [M⁺ –CO], 198 (13%), 191 (4%), 181 (89%), 176 (12%), 168 (64%), 163 (18%), 150 (11%), 140 (40%), 137 (23%), 124 (83%), 109 (100%).

V-2.2.7. Studien zur biomimetischen, Schutzgruppen-freien Totalsynthese von (+)-Cyperolon

(3aS,6R,7aS)-7a-Ethinyl-3a-methyl-6-(prop-1-en-2-yl)octahydro-1H-inden-1-on (I-277)

Der Alkohol I-**204** (30.0 mg, 0.137 mmol) wurde in DMSO (275 µL) gelöst, mit IBX (57.7 mg, 0.206 mmol) versetzt und für 4 h bei RT gerührt. Die Reaktion wurde durch Zugabe von DCM (20 mL) abgebrochen und die resultierende Mischung für 30 min bei 23°C gerührt, wobei ein weißer NS präzipitierte. Dieser wurde über einen Faltenfilter abfiltriert und das Filtrat mit gesättigter Natriumhydrogencarbonatlösung (10 mL), Wasser (20 mL) sowie gesättigter Natriumchloridlösung (5 mL) gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung I-**277** wurde als farbloses Öl (22 mg, 0.1017 mmol, 74 %) erhalten.

DC: $R_f = 0.70$ (Pentan:Et₂O/8:2, [CAM]); **Optische Aktivität**: $α_D^{25}$: -14.135 (3.3 mg/mL, CH₂Cl₂); ¹H-NMR (**360** MHz, **CDCl₃**): δ [ppm] 4.96 – 4.13 (m, 2H), 2.55 (ddd, ³J_{HH} = 19.7, ³J_{HH} = 10.2, ³J_{HH} = 1.6 Hz, 1H), 2.35 – 2.21 (m, 2H), 2.26 (s, 1H), 2.04 (dt, ³J_{HH} = 12.8, ³J_{HH} = 10.0 Hz, 1H), 1.70 (s, 3H), 1.67 – 1.55 (m, 2H), 1.48 (ddd, ³J_{HH} = 19.3, ³J_{HH} = 13.2, ³J_{HH} = 9.5 Hz, 3H), 1.30 (d, ³J_{HH} = 3.3 Hz, 1H), 1.26 (s, 3H), 1.21 – 1.13 (m, 1H).; ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 213.5, 149.0, 109.2, 82.8, 74.1, 53.9, 41.5, 41.0, 34.5, 33.6, 32.9, 32.75, 29.9, 26.4, 21.6, 21.2.; IR (ATR): [cm⁻¹] 3262, 2929,2851, 2453, 2157, 2036, 1745, 1644, 1450, 1434, 1405, 1381, 1270, 1208, 1182, 1135, 1109, 1056, 996, 902, 698, 678.

(1R,3aS,6R,7aS)-7a-Ethinyl-3a-methyl-6-(prop-1-en-2-yl)octahydro-1H-inden-1-ol (I-278)

Das Keton I-**277** (40 mg, 0.185 mmol) wurde bei -78°C unter Argonatmosphäre in CH_2Cl_2 (0.925 mL) gelöst und mit DiBAL-H (370 µg, 0.370 mmol, 1.0 M in Hexan) versetzt. Die Reaktionsmischung wurde für 1 h bei -78°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Kaliumnatriumtartratlösung (3 mL), Wasser (3 mL) sowie CH_2Cl_2 (5 mL) abgebrochen und bis zur Phasentrennung bei 23°C gerührt. Die Phasen wurden getrennt und die wässrige Phase mit CH_2Cl_2 (3x 10 mL) extrahiert. Die vereinigten organische Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan: $Et_2O/9:1$) gereinigt. Verbindung I-**278** wurde als farbloses Öl (27 mg, 0.124 mmol, 67%) als Hauptdiastereomer und Verbindung I-**204** als farbloses Öl (3 mg, 0.014 mmol, 7%) als Nebendiastereomer erhalten.

¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 4.77 – 4.63 (m, 2H), 4.55 – 4.40 (m, 1H), 2.52 (s, 1H), 2.42 – 2.20 (m, 1H), 2.15 (s, 1H), 1.99 (ddd, *J* = 14.3, 4.5, 1.4 Hz, 1H), 1.81 – 1.74 (m, 1H), 1.73 – 1.71 (m, 3H), 1.70 – 1.49 (m, 6H), 1.48 – 1.36 (m, 2H), 1.15 (s, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 150.3, 108.8, 90.6, 83.8, 71.1, 49.4, 42.8, 41.0, 37.4, 34.7, 34.5, 32.5, 26.1, 24.0, 21.2.

epi-Cyperolon (I-276)

Das Alkin I-**278** (20 mg, 0.119 mmol) wurde in Aceton (3.7 mL) gelöst, mit einer Lösung von rotem Quecksilber(II)oxid (4.5 mg, 0.119 mmol) in 0.73 M wässriger Schwefelsäure-Lösung (1.2 mL) versetzt und für 20 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Natriumchloridlösung (30 mL) abgebrochen und mit Diethylether (3x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1 – 8:2) gereinigt.
Verbindung I-**276** wurde als farbloses Öl (1 mg 0.004 mmol, 4%) erhalten. Die ¹H- und ¹³C-NMR-Spektren zeigten Verunreinigung mit (+)-Cyperolon I-**137**.

¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 4.77 – 4.70 (m, 2H), 4.50 – 4.44 (m, 1H), 2.63 – 2.53 (m, 1H), 2.38 – 2.30 (m, 1H), 2.15 (s, 3H), 1.97 – 1.91 (m, 1H), 1.86 (d, *J* = 12.1 Hz, 1H), 1.81 – 1.77 (m, 1H), 1.75 (s, 3H), 1.74 – 1.67 (m, 1H), 1.67 – 1.57 (m, 2H), 1.45 (dd, *J* = 12.7, 9.6 Hz, 1H), 1.39 (dd, *J* = 12.9, 3.4 Hz, 1H), 1.36 – 1.31 (m, 1H), 0.96 (s, *J* = 11.4 Hz, 3H).;¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 214.4, 150.7, 108.4, 79.4, 64.1, 43.5, 41.0, 37.3, 37.1, 33.8, 31.3, 30.2, 26.1, 23.1, 21.1.

(R)-6-Oxo-3-(prop-1-en-2-yl)heptanal (I-304)

(*R*)-Limonen I-**305** (5.0 g, 37.4 mmol) wurden in CH₂Cl₂:MeOH/5:1 (180 mL) gelöst und bei -78 °C mit Ozon begast (30 l/h, 0.15 A, 90 min). Nach Beendigung der Reaktion wurde die Reaktionslösung mit Stickstoff vom Ozon entgast, mit Dimethylsulfid (8.2 mL, 112.2 mmol) versetzt und für 3 h bei 23°C gerührt. Die Reaktionslösung wurde anschließend mit Wasser (500 mL) versetzt und mit CH₂Cl₂ (3x 120 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/8:2) gereinigt. Verbindung I-**304** wurde als farbloses Öl (5.3 g, 31.3 mmol, 83%) erhalten. Die analytischen Daten stimmen mit den in der Literatur angegebenen vollständig überein.²²⁵

DC: $R_f = 0.15$ (CH:EtOAc/9:1, [CAM]); **Optische Aktivität:** $\alpha_D^{20} = +20.603^{\circ}$ (c = 12.6 mg/mL); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 9.67 (t, ³J_{HH} = 2.4 Hz, 1H), 4.84 – 4.77 (m, 2H), 2.45 – 2.35 (m, 4H), 2.11 (s, 3H), 1.74 – 1.55 (m, 2H), 1.62 (dd, ³J_{HH} = 1.5 Hz, 0.8 Hz, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 208.14, 201.68, 145.09, 113.22, 47.43, 40.89, 40.78, 30.00, 26.46, 18.4; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3073 (w), 2940 (m), 2899 (w), 2895 (w), 2892 (w), 2719 (w), 1713 (vs), 1644 (m), 1437 (m), 1411 (m), 1366 (s), 1356 (s), 1240 (w), 1229 (w), 1188 (w) 1160 (m), 1082 (w), 1070 (w) 1011 (w), 1005 (w), 895 (s); **LRMS** (EI): [m/z] 168 (1%) [M⁺], 150 (10%) [M⁺-H₂O], 135 (10%), 122 (10%), 107 (100%), 95 (30%), 82 (30 %), 67 (50%), 55 (30%); **HRMS** (EI): berechnet für [C₁₀H₁₆O₂Na (M⁺)] 191.1043, gefunden 191.1043.

(S,E)-2-methyl-8-oxo-5-(prop-1-en-2-yl)non-2-enal (I-302)

Formylidentriphenylphosphoran I-**303** (4.5 g, 14.2 mmol) wurde zusammen mit dem Aldehyd I-**304** (2378.1 mg, 14.2 mmol) in Benzol (100 mL) suspendiert und für 45 h unter Rückfluss erhitzt. Die Reaktionslösung wurde *i. vac.* vom Lösungsmittel befreit, mit Et₂O (200 mL) versetzt und filtriert. Das Filtrat wurde *i. vac.* vom Lösungsmittel befreit und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/8:2) gereinigt. Der Verbindung I-**302** wurde als gelbes Öl (2.373 g, 11.36 mmol, 80%) erhalten.

DC: $R_f = 0.7$ (CH:EtOAc/1:1, [CAM]); **Optische Aktivität:** $\alpha_D^{20} = +11.461^\circ$ (c = 10.2 mg/mL, CH₂Cl₂); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 9.38 (s, 1H), 6.42 (td, ³J_{HH} =7 Hz, ⁴J_{HH} = 1.1 Hz, 1H), 4.84 (s, 1H), 4.74 (s, 1H), 2.43 – 2.38 (m, 4H), 2.26 (ddt, ³J_{HH} = 10.6 Hz, 7.2 Hz, 3.7 Hz, 1H), 2.13 (s, 3H), 1.79 – 1.76 (m, 1 H), 1.74 (s, 3H), 1.66 – 1.64 (m, 1H), 1.62 (s, 3 H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 208.3, 195.1, 152.5, 145.3, 139.8, 113.4, 46.1, 41.1, 32.9, 30.1, 26.5, 17.9, 9.3; **IR** (ATR): \tilde{v} [cm⁻¹] = 2927 (w), 2885 (w), 1710 (vs), 1683 (vs), 1643 (s), 1444 (m), 1416 (m), 1359 (s), 1236 (m), 1161 (s), 1068 (m), 999 (m), 893 (s); **LRMS** (EI): [m/z]: 190 (5%) [M⁺-H₂O], 175 (25%), 165 (100%), 157 (30%), 147 (25%), 135 (60%), 121 (55%), 109 (70%), 91 (50%), 79 (30%), 67 (30%), 55 (25%); **HRMS** (EI): berechnet für [C₁₃H₂₀O₂Na (M⁺)] 231.1356, gefunden 231.1356.

(R,E)-3,9-dimethyl-6-(prop-1-en-2-yl)deca-1,3,9-trien (I-301)

Methyltriphenylphosphoniumbromid (16.66 g, 46.7 mmol) wurde unter Stickstoffatmosphäre in THF (320 mL) suspendiert und bei 0 °C tropfenweise mit *n*BuLi (18.3 mL, 45.7 mmol, 2.5 M in Hexan) versetzt. Die Mischung wurde für 5 min bei 0 °C sowie für 2 h bei 23°C gerührt. Anschließend wurde sie bei 0 °C mit einer Lösung aus Ketoaldehyd I-**302** (4.42 g, 21.2 mmol) in THF (40 mL) versetzt und für weitere 2 h bei 0 °C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Ammoniumchloridlösung (400 mL) abgebrochen und mit Cyclohexan (3 x 200 mL) extrahiert. Die vereinigten organischen Phasen wurden

über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH) gereinigt. Der Verbindung I-**301** wurde als farbloses Öl (3.55 g, 17.3 mmol, 82 %) erhalten.

DC: $R_f = 0.88$ (CH:EtOAc/9:1, [CAM]); **Optische Aktivität:** $\alpha_D^{20} = -3.526^\circ$ (c = 15.2 mg/mL, CH₂Cl₂); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 6.38 (dd, ³J_{HH} = 17.3 Hz & 10.9 Hz, 1H), 5.45 (t, ³J_{HH} =7.2 Hz, 1H), 5.09 (d, ³J_{HH} =17.3 Hz, 1H), 4.93 (d, ³J_{HH} =10.5 Hz, 1H), 4.79 (s, 1H), 4.71 (s, 2H), 4.67 (s, 1H), 2.27 - 2.17 (m, 2H), 2.15 - 2.10 (m, 1H), 2.00 - 1.89 (m, 2H), 1.75 (s, 3 H), 1.72 (s, 3 H), 1.64 (s, 3 H), 1.57 - 1.46 (m, 2H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 147.1, 146.1, 141.6, 134.4, 131.6, 111.7, 110.7, 110.4, 109.7, 47.0, 35.5, 32.5, 30.9, 22.5, 18.5, 11.8, **IR** (ATR): \tilde{v} [cm⁻¹] = 3073 (w), 2967 (m), 2931 (m), 1786 (w), 1644 (s), 1606 (m), 1442 (s), 1373 (s), 1076 (w), 988 (s), 884 (vs); **LRMS** (EI): [m/z] 204 (5%) [M⁺], 189 (10%), 175 (5%), 161 (5%), 148 (20%), 133 (20%), 123 (10%), 107 (20%), 93 (30%), 81 (100%), 67 (20%), 55 (20%).

α-Selinen (I-280)

Methode A:

Tetraen I-**301** (125 mg, 0.611 mmol) wurde in Toluen (3.05 mL) gelöst, mit Benzochinon (7.5 mg, 0.030 mmol) versetzt und zu gleichen Teilen in vier Glasampullen gefüllt. Reaktionsmischungen wurde mit flüssigem Stickstoff eingefroren und die Glasampulle *i. vac.* abgeschmolzen. Anschließend wurde die Reaktionsmischung für 12 d auf 240°C erhitzt. Die Reaktionslösungen wurden *i. vac.* vom Lösungsmittel befreit und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan) gereinigt. Der Verbindung I-**280** wurde als farbloses Öl (100 mg, 0.488 mmol, 80%, d.r.: 100:1) erhalten.

Methode B:

Tetraen I-**301** (1300.0 mg, 6,4 mmol) wurde in einem Duran Schott[™] Gefäß in DMPU (40 mL) gelöst und mit Benzochinon (27.5 mg, 0.25 mmol) versetzt. Das Gemisch wurde mittels FPT-Technik entgast und für 22 h auf 240 °C erhitzt. Die Reaktionslösung mit Wasser (150 mL) versetzt und die Phasen getrennt. Die wässrige Phase wurde mit Cyclohexan (3x 75 mL) extrahiert, die vereinigten organischen Phasen über Natriumsulfat getrocknet und *i. vac.* Vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan) gereinigt. Der Verbindung I-**280** wurde als farbloses Öl (686.1 mg, 3.4 mmol, 53%, d.r.: 9:1) erhalten. Die analytischen Daten stimmten mit den in der Literatur berichteten vollständig überein.²²³

DC: $R_f = 0.8$ (CH, [CAM]); **Optische Aktivität**: $\alpha_D^{20} = -3.34^\circ$ (c = 9.6 mg/mL, CH₂Cl₂); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 5.33 – 5.32 (m, 1H), 4.74 – 4.70 (m, 2H), 2.18 – 2.07 (m, 1H), 2.02 – 1.92 (m, 3H), 1.81 – 1.78 (m, 1 H), 1.76 (s, 3 H), 1.74 (m, 1H), 1.70 (ddt, ³J_{HH} = 6.2 Hz & 2.8 Hz & 1.4 Hz, 1H), 1.67 (dt, ³J_{HH} = 2.7 Hz & 1.2 Hz, 1H), 1.62 (s, 3H), 1.60 – 1.57 (m, 1 H), 1.49 – 1.45 (m, 1H), 1.38 – 1.35 (m, 1H), 1.22 – 1.16 (m, 1H), 0.81 (s, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 151.0, 135.2, 121.0, 108.3, 46.9, 46.8, 40.3, 38.0, 32.3, 29.0, 26.9, 23.0, 21.1, 20.9, 15.6; IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2964 (m), 2927 (s), 2909 (s), 2843 (m), 1642 (m), 1452 (s), 1435 (s), 1374 (s), 1215 (w), 1152 (w), 1068 (w), 998 (w), 934 (w), 885 (vs), 848 (m), 793 (m), 711 (m); LRMS (EI): [m/z] 204 (50%) [M⁺], 189 (100%) [M⁺-CH₃], 175 (30%), 161 (40%), 147 (35%), 133 (55%), 121 (25%), 107 (60%), 93 (60%), 81 (40%), 67 (20%), 55 (20%),

(3aR,6S,7aS,7bR)-3a,7b-Dimethyl-6-(prop-1-en-2-yl)decahydronaphtho[1,2-b]oxiren (I-299)

α-Selinen I-**280** (622 mg,3.04 mmol) wurden in CH₂Cl₂ (20 mL) gelöst und bei 0°C nacheinander mit Natriumhydrogencarbonat (383 mg, 4.567 mmol) sowie *m*CPBA (524 mg, 3.04 mmol) versetzt. Die Reaktionslösung wurde für 7 h bei 0°C gerührt. Durch Zugabe von einer gesättigten Natriumhydrogencarbonatlösung (100 mL) wurde die Reaktion abgebrochen und mit CH₂Cl₂ (3 x 10 mL) extrahiert. Die vereinigten organischen-Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/95:5-9:1) gereinigt. Der Verbindung I-**299** wurde als farbloses Öl (459 mg, 2.01 mmol, 66 %, d.r. = 92:8) erhalten.

DC: $R_f = 0.75$ (CH:EtOAc/8:2) [CAM]:; **Optische Aktivität:** $\alpha_D^{20} = +11.097^\circ$ (c = 7.84 mg/mL, CH₂Cl₂); ¹**H**-**NMR** (600 MHz, CDCl₃): δ [ppm] 4.72 (d, ³J_{HH} = 6.8 Hz, 2H), 2.94 (d, ³J_{HH} = 2.3 Hz, 1H), 2.02 – 1.94 (m, 1H), 1.97 – 1.91 (m, 2H), 1.84 – 1.82 (m, 1H), 1.76 (s,3H), 1.74 (s, 1H), 1.61 (dt, ³J_{HH} = 9.9 Hz & 2.6, 1 H), 1.57 (dd, ³J_{HH} = 13.2 Hz & 3.4 Hz, 1H), 1.54 – 1.53 (m, 1H), 1.50 – 1.47 (m, 1H), 1.40 – 1.37 (m, 1H), 1.24 (s, 3H), 1.21 – 1.17 (m, 1H), 1.14 – 1.11 (m, 1H), 0.81 (s, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 150.4, 108.4, 60.9, 58.6, 47.9, 46.3, 39.6, 34.6, 31.4, 29.3, 26.6, 21.4, 21.0, 16.1; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3073 (w), 2963 (vs), 2926 (vs), 2864 (vs), 1723 (w), 1643 (m), 1450 (s), 1435 (s), 1377 (s), 1240 (m), 1159 (w), 1067 (m), 999 (w), 950 (w), 882 (s), 777 (m), 737 (w); LRMS (EI): [m/z] 220 (30%) [M⁺], 205 (100%) [M⁺-CH₃], 191 (30%), 177 (20%), 163 (15%), 149 (30%), 135 (35%), 121 (35), 107 (60%), 93 (50%), 79 (40%), 67 (35%), 55 (30%).

(1R,2S,4aR,7S,8aS)-1,4a-dimethyl-7-(prop-1-en-2-yl)decahydronaphthalen-1,2-diol (I-300)

Methode A:

Das Epoxid I-**299** (10.0 mg, 0.049 mmol) wurde in Dioxan:H₂O/1:1 (1.5 mL) gelöst und für 24 h auf 70°C erhitzt. Das Lösungsmittel wurde *i. vac.* vom Lösungsmittel befreit und der Rückstand mit EtOAc (3 x 5 mL) extrahiert. Die vereinigten organischen-Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/9:1 - 8:2) gereinigt. Der Verbindung I-**300** wurde als farbloses Öl (7.0 mg, 0.029 mmol, 60%) als Mischung von vier Diastereomeren erhalten.

Methode B:

Das Epoxid I-**299** (10.0 mg, 0.049 mmol) wurde in THF:Wasser/1:1 (2.269 mL) gelöst, mit konzentrierter Schwefelsäure (12 μ L) versetzt und bei 23°C für 2.5 h gerührt. Die Reaktion wurde durch Zugabe von gesättigter Natriumhydrogencarbonatlösung (10 mL) abgebrochen und mit CH₂Cl₂ (3x 10 mL) extrahiert. Die vereinten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/99:1 – 95:5 – 9:1 – 8:2) gereinigt. Der Verbindung I-**300** wurde als farbloses Öl (7.6 mg, 0.0318 mmol, 65%) als Mischung von vier Diastereomeren erhalten.

DC: $R_f = 0.15$ (CH:EtOAc/8:2, [CAM]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 4.74 – 4.70 (m, 2H), 3.62 (t, ³J_{HH} = 2.8 Hz, 1H), 2.05 – 1.95 (m, 2H), 1.83 – 1.78 (m, 3H), 1.76 (s, 3H), 1.68 – 1.63 (m, 1H), 1.62 – 1.56 (m, 4 H), 1.54 – 1.46 (m, 3H), 1.42 – 1.27 (m, 2H), 1.13 (s, 3H), 0.91 (s, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 14.5, 18.3, 18.6, 20.8, 21.1, 21. 8, 22.9, 24.7, 25.4, 25.5, 25.6, 25.8, 26.8, 26.9, 26.9, 43.8, 44.3, 45.7, 46.3, 46.7, 47.5, 73.2, 74.1, 74.5, 75.6, 108.2, 108.4, 121.4, 150. 6, 150.8; **IR** (ATR): \tilde{v} [cm⁻¹] = 3400 (s, br), 3073 (w), 2969 (s), 2925 (vs), 2861 (s), 1639 (m), 1452 (s), 1382 (s), 1228 (m), 1062 (s), 985 (m), 922 (m), 880 (s); **LRMS** (EI): [m/z] 238 (25%) [M⁺], 232 (30%) [M⁺-CH₃], 205 (20%), 191 (15%), 179 (100%), 163 (25%), 149 (20%), 135 (40%), 123 (85%), 107 (70%), 95 (70%), 81 (90%), 67 (45%), 55 (40%); **HRMS** (EI): berechnet für [C₁₅H₂₆O₂Na (M⁺)] 261.1825, gefunden 261.1825.

3-((1S,2R,4R)-2-Acetyl-1-methyl-4-(prop-1-en-2-yl)cyclohexyl)propanal (I-279)

Methode A:

Das Diol I-**300** (80.0 mg, 0.33 mmol) wurde in Benzen (5 mL) gelöst, bei 0 °C mit Blei(IV)acetat (443.3 mg, 0.50 mmol) versetzt und für 5 h bei 23°C gerührt. Das Reaktionsgemisch wurde *i. vac.* vom Lösungsmittel befreit und der Rückstand in Diethylether aufgenommen und filtriert. Das Filtrat wurde *i. vac.* vom Lösungsmittel befreit und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/10:0-9:1-8:2) gereinigt. Der Verbindung I-**279** wurde als farbloses Öl (41.5 mg, 0.175 mmol, 53 %) als einzelnes Diastereomer erhalten.

Methode B:

Das Diol I-**300** (9.8 mg, 0.041 mmol) wurde in THF (100 μ L) gelöst und tropfenweise mit einer Lösung aus NaIO₄ (13.2 mg, 0.062 mmol) in Wasser (100 μ L) versetzt. Das Gemisch wurde dann für 1 h Stunde bei 0 °C sowie für 50 h bei Raumtemperatur gerührt und anschließend filtriert. Das Filtrat wurde über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/10:0-9:1-8:2) gereinigt. Der Verbindung I-**279** wurde als farbloses Öl (5.0 mg 0.021 mmol, 52 %) als einzelnes Diastereomer erhalten.

DC: $R_f = 0.25$ (CH:EtOAc/8:2, [CAM]); $\alpha_D^{20} = -9.602^\circ$ (c = 8.30 mg/mL, CH₂Cl₂); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 9.78 (s, 1H), 4.72 (s, 2H), 2.53 – 2.40 (m, 3H), 2.17 (s, 3H), 1.91 (tt, ³J_{HH} = 11.7 Hz & 4.1 Hz, 1H), 1.73 (s, 3H), 1.71 – 1.59 (m, 5H), 1.48 – 1.38 (m, 2H), 1.26 – 1.21 (m, 1H), 1.03 (s, 3H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 211.7, 202.3, 149.2, 109.1, 58.3, 44.9, 38.5, 38.0, 35.4, 34.6, 31.8, 29.9, 26.7, 20.7, 18.5; **IR** (ATR): \tilde{v} [cm⁻¹] = 2969 (m), 2925 (s), 2850 (s), 1639 (m), 1449 (s), 1382 (s), 1225 (m), 1169 (m), 1131 (m), 1061 (s), 1046 (m), 995 (m), 983 (s), 936 (m), 921 (s), 883 8vs), 78 (m), 703 (m); **LRMS** (EI): [m/z] 236 (5%) [M⁺], 218 (20%) [M⁺-H₂O], 203 (10%) [M⁺-H₂O-CH₃], 189 (45%), 175 (60%), 161 (35%), 149 (35%), 133 (65%), 119 (60%), 107 (100%), 93 (100%), 81 (80%), 71 (80%), 55 (55%); **HRMS** (EI): berechnet für [C₁₅H₂₄O₂Na (M⁺)] 259.1669, gefunden 259.1669.

1-((3R,3aS,5S,7aR)-3-hydroxy-7a-methyl-5-(prop-1-en-2-yl)octahydro-1H-inden-3a-yl)ethanon (I-312)

Der Ketoaldehyd I-**279** (6.1 mg, 0.026 mmol) wurde in THF (516 μ L) gelöst und mit TBD I-**311** (3.6 mg, 0.026 mmol) versetzt. Die Reaktionsmischung wurde für 2 h bei 23°C gerührt. Die Reaktionslösung wurde mit Wasser (10 mL) versetzt und mit CH₂Cl₂ (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/7:3) gereinigt. Der Verbindung I-**312** wurde als farbloses Öl (3.99 mg, 0.0169 mmol, 65%) als einzelnes Diastereomer erhalten.

DC: $R_f = 0.16$ (CH:EtOAc/7:3, [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 4.72 (dt, ³J_{HH} = 1.9 Hz, 0.8 Hz, 1H), 4.71-4.70 (m, 1H), 4.24 (tdd, ³J_{HH} = 10.0 Hz, 5.7, 2.0 Hz, 1H), 2.96 (ddd, ³J_{HH} = 17.2 Hz, 5.8 Hz, 2.5 Hz, 1H), 2.51 (dd, ³J_{HH} = 12.0 Hz, 3.9 Hz, 1H), 2.45 (dd, ³J_{HH} = 17.2 Hz, 10.1 Hz, 1H), 1.92-1.68 (m, 1H), 1.82-1.74 (m, 2H), 1.73 (s, 3H), 1.67-1.63 (m, 2H), 1.61-1.60 (m, 1H), 1.57-1.53 (m, 3H), 1.50-1.46 (m, 2H), 1.37-1.35 (m, 1H), 0.80 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): 18.4, 20.8, 26.8, 28.8, 34.9, 35.5, 43.5, 44.2, 53.7, 57.1, 69.4, 100.0, 108.8, 149.7, 210.9; **IR** (ATR): \tilde{v} [cm⁻¹] = 3370 (m, br), 2961 (m), 2923 (s), 2860 (m), 1688 (vs), 1643 (m), 1452 (s), 1442 (s), 1384 (m), 1372 (m), 1325 (w), 1265 (m), 1248 (m), 1229 (m), 1189 (w), 1141 (m), 1083 (m), 1053 (vs), 1028 (s), 957 (w), 883 (vs), 859 (w); **LRMS** (EI): [m/z]: 281 (10%), 236 (30%) [M⁺], 218 (50%) [M⁺-H₂O], 203 (25%), 189 (20%), 175 (30%), 161 (30%), 147 (45%), 135 (65%), 121 (40%), 107 (90%), 93 (100%), 81 (65%), 67 (60%), 55 (60%). **HRMS** (ESI: [m/z] berechnet für [C₁₅H₂₄O₂Na (M⁺)] 259.1669, gefunden 259.1649.

1-((3aS,5S,7aR)-7a-Methyl-5-(prop-1-en-2-yl)-3a,4,5,6,7,7a-hexahydro-1H-inden-3a-yl)ethanon (I-316)

Der sekundäre Alkohol I-**312** (3.9 mg, 0.017 mmol) wurde in trockenem DCM (165 μL) gelöst, mit trockenem Triethylamin (11.4 μL, 0.083 mmol) versetzt und für 30 min bei 23°C gerührt. Anschließend

wurden *Martin's* Sulfuran (22.2 mg, 0.033 mmol) zugesetzt und für 48 h bei 23°C gerührt. Das Reaktionsgemisch wurde *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/7:3) gereinigt. Der Verbindung I-**316** wurde als farbloses Öl (1 mg, 0.0045 mmol, 27%) als einzelnes Diastereomer erhalten.

¹H-NMR (600 MHz, CDCl₃): δ [ppm] 6.75 (ddd, J = 11.5, 7.5, 3.9 Hz, 1H), 6.00 (dd, J = 11.6, 2.7 Hz, 1H), 4.71 (d, J = 23.4 Hz, 2H), 2.58 (dd, J = 11.7, 3.4 Hz, 1H), 2.50 – 2.42 (m, 1H), 2.40 – 2.33 (m, 1H), 1.90 – 1.84 (m, 1H), 1.77 – 1.73 (m, 1H), 1.73 (s, 3H), 1.67 – 1.53 (m, 4H), 1.24 (d, J = 1.3 Hz, 3H), 0.85 (s, 3H);
¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 204.5, 149.8, 148.5, 134.1, 108.8, 57.2, 44.6, 44.2, 39.7, 34.7, 27.4, 27.1, 25.9, 20.8, 20.3.

V-2.3 Synthese von Isooxazolidin-3-onen

V-2.3.1 Synthese der Carbonsäuren II-58 und II-59

Methylcyclohexancarboxylat (II-54)

Kaliumhydroxid (32.0 g, 117.03 mmol, 85%, techn.) wurde in DMSO (234 mL) und für 30 min bei 23°C gerührt. Eine Lösung von Cyclohexancarbonsäure (15.0 g, 117.03 mmol) in DMSO (234 mL) wurde zugegeben und für weitere 15 min bei 23°C gerührt, bevor die Reaktionslösung auf 0°c abgekühlt und Methyliodid (10.8 mL, 173.206 mmol) zugegeben wurde. Die Reaktionslösung wurde für 2 h bei 23°C gerührt und anschließend in 1.0 L Eiswasser gegossen. Die Mischung wurde mit EtOAc (3x 300 mL) extrahiert. Die vereinigten organischen Phasen wurden mit Wasser (5 x 1 L) und gesättigter Natriumchloridlösung (200 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/8:2) gereinigt. Verbindung II-**54** wurde als farbloses Öl (10.441 g, 73.476 mmol, 63%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁶⁸

DC: R_f = 0.70, (CH:EtOAc/ 8:2, [I₂]); ¹**H-NMR** (600 MHz, CDCI₃): δ [ppm] 3.62 (s, J = 1.9 Hz, 1H), 2.26 (tt, J = 11.3, 3.6 Hz, 1H), 1.85 (dd, J = 12.9, 1.8 Hz, 1H), 1.76 – 1.65 (m, 1H), 1.62 – 1.57 (m, 1H), 1.45 – 1.34 (m, 1H), 1.30 – 1.16 (m, 1H). ¹³**C-NMR** (151 MHz, CDCI₃): δ [ppm] 176.7, 51.6, 43.3, 29.2, 26.0, 25.6.

1-(2-Chlorethinyl)benzen (II-55)

Phenylacetylen II-**60** (16.13 mL, 146.86 mmol) wurde unter Argonatmosphäre in trockenem THF (300 mL) bei -78°C gelöst, tropfenweise mit *n*BuLi (64.6 mL, 161.543 mmol, 2.5 M in Hexan) versetzt und für 15 min bei -78°C und für weitere 15 min bei 0°C gerührt. Die braune Suspension wurde erneut auf -78°C abgekühlt und zügig mit festem NCS (21.6 g, 161.543 mmol) versetzt. Die Reaktion wurde für 1 h bei - 78°C und für 18 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter

Ammoniumchloridlösung (500 mL) abgebrochen und mit EtOAc (3 x 200 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch fraktionierte Destillation (1 mbar, 45°C) gereinigt. Verbindung II-**55** wurde als farbloses Öl (16.065 g, 117.625 mmol, 80%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.^{285a}

DC: R_f = 0.76, (CH:EtOAc/99:1, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.49 – 7.41 (m, 2H), 7.37 – 7.26 (m, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 132.2, 128.8, 128.6, 122.4, 69.6, 68.2.

Allgemeine Vorschrift **A 2.3** zur Alkinylierung Carbonsäureestern: **Methyl-1-(phenylethinyl)cyclohexancarboxylat** (II-**57**)

CO₂Me $C_{16}H_{18}O_2$ 242,31 g/mol

Diisopropylamin (2.07 mL, 14.78 mmol) wurde bei -78°C unter Stickstoffatmosphäre in trocknem THF (14 mL) gelöst und tropfenweise mit *n*BuLi (5.91 mL, 14.798 mmol, 2.5 M in Hexan) versetzt. Die Reaktionsmischung wurde für 15 min bei -78°C und für 15 min bei 0°C gerührt. Anschließend wurde die Reaktionsmischung erneut auf -78°C abgekühlt und eine Lösung von Methylcyclohexancarboxylat II-**54** (2.0 g, 14.075 mmol) in trockenem THF (7.0 mL). Die Reaktionsmischung wurde erneut auf -78°C ab gekühlt und zügig mit einer Lösung von Chloroethinylbenzen (2.30 g, 16.89 mmol, 1.2 eq) in trocknem THF (7.0 mL) versetzt. Die Reaktionsmischung wurde für 1 bei -78°C gerührt und anschließend über einen Zeitraum von 18 h auf 23°C erwärmt. Die Reaktion wurde durch Zugabe von Wasser (300 mL) abgebrochen und mit EtOAc (3 x 200 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/95:5) gereinigt. Der Verbindung II-**57** wurde als blass-gelbes Öl (3.058 g, 12.619 mmol, 89%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.²⁸⁴

DC: $R_f = 0.66$, (CH:EtOAc/ 8:2, $[I_2]$, [UV]); ¹**H-NMR** (600 MHz, CDCI₃): δ [ppm] 7.61 – 7.54 (m, 1H), 7.46 – 7.41 (m, 2H), 3.91 (s, 2H), 2.21 – 2.13 (m, 1H), 2.02 – 1.95 (m, 1H), 1.95 – 1.87 (m, 1H), 1.82 – 1.75 (m, 2H), 1.47 – 1.38 (m, 1H); ¹³**C-NMR** (151 MHz, CDCI₃): δ [ppm] 174.1, 131.9, 128.3, 128.1, 123.5, 90.0, 84.6, 52.8, 44.4, 35.1, 25.6, 22.7; **HRMS** (EI): [m/z] berechnet für [C₁₆H₁₈O₂Na₁] 265.1199, gefunden 265.1199.

Allgemeine Vorschrift **B 2.3** zur alkalischen Verseifung von Carbonsäureestern: 1-(Phenylethinyl)cyclohexancarbonsäure (II-59)

Methyl-1-(phenylethinyl)cyclohexancarboxylat II-**57** (1.891 g, 7.804 mmol) wurde in MeOH (2 mL) gelöst und mit 10 N NaOH-Lösung (7.8 mL) versetzt und die Reaktionmischung wurde für 30 min bei 100°C am Rückfluss erhitzt. Die Reaktionslösung wurde mit Wasser (50 mL) verdünnt und mit Diethylether (50 mL) extrahiert. Die wässrige Phase wurde mit 5.0 M HCl-Lösung (50 mL) azidifiziert und mit EtOAc (3 x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung II-**59** wurde ein gelbes Öl (1.660 g, 7.271 mmol, 93%) erhalten, welches rasch zu einem gelben Feststoff erstarrte.

DC: $R_f = 0.18$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 10.89 (s, 1H), 7.56 – 7.42 (m, 2H), 7.38 – 7.26 (m, 3H), 2.14 – 2.02 (m, 2H), 1.95 – 1.63 (m, 7H), 1.39 – 1.26 (m, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 179.4, 132.0, 128.4, 128.3, 123.3, 89.2, 85.1, 44.5, 35.0, 25.6, 22.7; **LRMS** (ESI): [m/z] 229 (M⁺+1); **HRMS** (ESI negative): [m/z] 227.1078 berechnet für [C₁₅H₁₇O₂ (M⁺-1)], gefunden 227.1078; **HRMS** (ESI): [m/z] 229.1223 berechnet für [C₁₅H₁₇O₂ (M⁺+1)], gefunden 229.1223.

Methyl-2,2-dimethyl-4-phenylbut-3-inoat (II-56)

Durch Alkinylierung von II-**53** nach der allgemeinen Vorschrift **A 2.3** wurde Verbindung II-**56** als blassgelbes Öl (5.72 g, 28.28 mmol, 78%) erhalten.

DC: $R_f = 0.55$, (CH:EtOAc/9:1, [CAM], [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.43 – 7.36 (m, 2H), 7.33 – 7.25 (m, 3H), 3.76 (s, 3H), 1.56 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 174.6, 132.0, 128.4, 128.2, 123.4, 91.9, 82.0, 53.0, 38.9, 29.8, 27.5; **HRMS** (ESI): [m/z] berechnet für [C₁₃H₁₄O₂Na₁] 225.0886, gefunden 225.0886.

1-(Phenylethinyl)cyclohexancarbonsäure (II-58)

Durch alkalische Verseifung von II-**56** nach der allgemeinen Vorschrift **B 2.3** (23°C, 4 h) wurde Verbindung II-**58** als hell-brauner, kristalliner Feststoff (1.951 g, 10.365 mmol, 96%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁶⁹

DC: R_f = 0.33, (CH:EtOAc/1:1, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.45 – 7.36 (m, 2H), 7.30 – 7.25 (m, 3H), 1.60 (s, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 179.2, 132.0, 128.4, 128.4, 123.1, 100.2, 91.0, 82.6, 38.9, 27.4; **LRMS** (ESI): [m/z] 189 (M⁺+1).

V-2.3.2 Allgemeine Vorschriften zur Synthese diverser N-Alkylhydroxylamine

Allgemeine Vorschrift **C 2.3** zur Bildung von Oximen aus Aldehyden mit Hydroxylaminhydrochlorid: **(E)-Benzaldehydoxim** (II-66)

Benzaldehyd II-**61** (5.0 g, 47.12 mmol) wurde in absolutem Ethanol (31.4 mL) gelöst und in einem Wasserbad bei 23°c gehalten während Hydroxylaminhydrochlorid (3.44 g, 49.47 mmol) und Pyridin (3.99 mL, 49.47 mmol) zugegeben wurden. Die Reaktionsmischung wurde für 1.5 h bei 23°C gerührt, bevor i. vac. vom Lösungsmittel befreit wurde. Der ölige Rückstand wurde in Wasser (30 mL) aufgenommen und mit CH₂Cl₂ (3 x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung II-**66** wurde als farbloses Öl (5.430 g, 44.825 mmol, 95%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁰

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 9.04 (s, 1H), 8.17 (s, J = 3.3 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.40 – 7.36 (m, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 150.5, 132.1, 130.3, 129.0, 127.3; **HRMS** (ESI): [m/z] berechnet für [C₇H₈O₁N₁ (M⁺+1)] 122.0600, gefunden 122.0600.

V-2. Synthesevorschriften

(E)-4-Bromobenzaldehydoxim (II-67)

Durch Reaktion von 4-Brombenzaldehyd II-**62** nach der allgemeinen Vorschrift **C 2.3** wurde Verbindung II-**67** als türkiser Feststoff (4.55 g, 22.76 mmol, 84%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷¹

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.43 (s, 1H), 8.09 (s, 2H), 7.53 – 7.46 (m, 3H), 7.44 – 7.39 (m, 3H); ¹³**C**-**NMR** (101 MHz, CDCl₃): δ [ppm] 149.6, 132.3, 131.1, 128.7, 124.5; **HRMS** (EI): m/ berechnet für $[C_7H_7Br_1O_1N_1]$ 199.9706, gefunden 199.9706.

(E)-4-Nitrobenzaldehydoxim(I-68)

Durch Reaktion von 4-Nitrobenzaldehyd II-**63** nach der allgemeinen Vorschrift **C 2.3** wurde Verbindung II-**68** als beiger Feststoff (4.93 g, 29.64 mmol, 69%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷²

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.26 – 8.20 (m, 2H), 8.18 (s, 1H), 7.79 (s, 1H), 7.75 – 7.70 (m, 2H).¹³**C**-**NMR** (101 MHz, CDCl₃): δ [ppm] 148.4, 138.2, 127.7, 124.0, 100.0.

(E)-4-Fluorbenzaldehydoxim (II-69)

Durch Reaktion von 4-Fluorbenzaldehyd II-**64** nach der allgemeinen Vorschrift **C 2.3** wurde Verbindung II-**69** als hell-grüner Feststoff (4.658 g, 33.480 mmol, 83%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷³

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.11 (s, 1H), 8.11 (s, 1H), 7.61 – 7.50 (m, 2H), 7.11 – 7.02 (m, 2H); ¹³**C**-**NMR** (101 MHz, CDCl₃): δ [ppm] 164.0 (d, J = 250.4 Hz), 149.5 (s), 129.1 (d, J = 8.4 Hz), 128.4 (d, J = 3.4 Hz), 116.2 (d, J = 22.1 Hz); **HRMS** (ESI): [m/z] berechnet für [C₇H₇F₁O₁N₁] 140.0505, gefunden 140.0505.

(E)-2-Methoxybenzaldehydoxim (II-76)

Durch Reaktion von 2-Methoxybenzaldehyd II-**65** nach der allgemeinen Vorschrift **C 2.3** wurde Verbindung II-**76** als weißer Feststoff (5.18 g; 34.29 mmol, 93%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷²

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.91 (s, 1H), 8.46 (s, 1H), 7.64 (dd, J = 7.7, 1.7 Hz, 1H), 7.34 (ddd, J = 8.4, 7.4, 1.7 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.92 – 6.89 (m, 1H), 3.85 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 157.9, 147.0, 131.4, 127.6, 121.0, 120.8, 111.4, 55.8. **LRMS** (ESI): [m/z] 152 [M⁺+1] **HRMS** (EI): [m/z] berechnet für [C₈H₁₀O₂N₁ (M⁺+1)] 152.0706, gefunden 152.0710.

Allgemeine Vorschrift **D 2.3** zur Reduktion von Oximen in Gegenwart von Natriumborhydrid: *N*-Benzylhydroxylamin (II-71)

(E)-Benzaldehydoxim II-**66** (5.43 g, 44.83 mmol) wurde bei 0°C in MeOH (68 mL) gelöst und portionsweise mit Natriumcyanoborhydrid (5.29 g, 76.20 mmol) versetzt. Dann wurden 12 N HCI-Lösung (7.47 mL, 89.65 mmol) eingetropft und die Reaktionsmischung wurde für 4 h bei 23°C gerührt. Anschließend wurde der pH-Wert der Reaktionsmischung mit 6 N NaOH-Lösung auf pH = 9 eingestellt und das Lösungsmittel *i. vac.* entfernt. Der verbleibende wässrige Rückstand wurde mit CH_2CI_2 (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (50 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. **Optional:** Der ölige Rückstand wurde in CH_2CI_2 (20 mL) aufgenommen und mit methanolischer HCl (100 mL) versetzt. Der gebildete Niederschlag wurde abfiltriert, mit Diethylethern (20 mL) und CH_2CI_2 (20 mL) gewaschen und im HV getrocknet. Verbindung II-**71** wurde als weißer, amorpher Feststoff (3.31 g, 20.736 mmol, 46%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁴

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] 11.86 (s, 2H), 10.99 (s, 1H), 7.60 – 7.47 (m, 2H), 7.46 – 7.21 (m, 3H), 4.30 (s, 2H); ¹³**C-NMR** (101 MHz, DMSO-d₆): δ [ppm] 130.8, 123.0, 129.0, 128.4, 53.7.

N-(4-Bromobenzyl)hydroxylamin (II-72)

Durch Reduktion von II-**67** nach der allgemeinen Vorschrift **D 2.3** (Umkristallisation aus CH₂Cl₂/CH) wurde Verbindung II-**72** als weißer, amorpher Feststoff (1.642 g, 8.126 mmol, 35%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁵ ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.50 – 7.38 (m, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 6.08 (s, 1H), 5.51 (s, 1H), 3.93 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 136.4, 131.8, 131.0, 121.8, 57.6.

N-(4-Nitrobenzyl)hydroxylamin (II-73)

Durch Reduktion von II-**68** nach der allgemeinen Vorschrift **D 2.3** (Umkristallisation aus CH_2Cl_2/CH) wurde Verbindung II-**73** als orangener, amorpher Feststoff (2.711 g, 16.122 mmol, 54%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁶

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.24 – 8.12 (m, 2H), 7.61 – 7.40 (m, 2H), 5.38 (s, 1H), 4.11 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 147.7, 145.4, 129.8, 123.9, 57.4; **LRMS** (ESI): [m/z] 169 (M⁺+1), **HRMS** (ESI): [m/z] berechnet für [C₇H₉O₃N₂ (M⁺+1)] 169.0608, gefunden 169.0608.

N-(4-Fluorbenzyl)hydroxylamin (II-74)

Durch Reduktion von II-**69** nach der allgemeinen Vorschrift **D 2.3** (Umkristallisation aus CH_2Cl_2/CH) wurde Verbindung II-**74** als weißer, amorpher Feststoff (2.60 g, 18.421 mmol, 55%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁷

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.55 – 7.47 (m, 1H), 7.31 – 7.20 (m, 1H), 4.17 (s, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 162.6 (d, *J* = 245.9 Hz), 133.0 (d, *J* = 3.2 Hz), 131.0 (d, *J* = 8.1 Hz), 115.5 (d, *J* = 21.4 Hz), 57.6 (s).

N-(2-Methoxybenzyl)hydroxylamin (II-75)

Durch Reduktion von II-**70** nach der allgemeinen Vorschrift **D 2.3** (Umkristallisation aus CH₂Cl₂/CH) wurde Verbindung II-**75** als weißer, amorpher Feststoff (3.877 g, 20.444 mmol, 59%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁷

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] 11.48 (s, 2H), 10.99 (s, 1H), 7.45 – 7.38 (m, 2H), 7.08 (d, J = 8.2 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 4.28 (s, 2H), 3.83 (s, 3H); ¹³**C-NMR** (101 MHz, DMSO-d₆): δ [ppm] 157.7, 132.2, 131.0, 120.2, 117.6, 111.0, 55.6, 49.2.

O-(2-Buten)-N-hydroyphthalimid (II-77)

Natriumhydrid (1.470 g, 36.8 mmol, 60% in Parafin) wurde unter Stickstoffatmosphäre mit Pentan gewaschen und in trockenem DMF (25 mL) suspendiert. Dann wurde tropfenweise eine Lösung von *N*-Hydroxyphthalimid (5.0 g, 30.7 mmol) in trockenem DMF (25 mL) zugegeben, gefolgt von einer Lösung von Allylbromid (5.3 mL, 61.3 mmol) und Natriumiodid (137.8 mg, 0.9 mmol, 0.03 eq) in trockenem DMF (25 mL), die über einen Zeitraum von 15 min eingetropft wurde. Die Reaktionslösung wurde für 22 h auf 70 °C erhitzt. Das Lösungsmittel wurde *i. vac.* entfernt, der ölige Rückstand wurde in Chloroform (70 mL) aufgenommen und mit Wasser (3 x 70 mL) gewaschen. Die vereinigten Waschlösungen wurden mit Chloroform (3 x 70 mL) reextrahiert. Die vereinigten organischen Phasen wurden auf ca. 70 mL aufkonzentriert und mit Wasser (70 mL), gesättigter Natriumhydrogencarbonatlösung (70 mL) und erneut Wasser (70 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung II-**77** wurde als gelb-brauner Feststoff (5.74 g, 28.2 mmol, 92%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.²⁸⁷

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] 7.85 (s, 4H), 6.03 (ddt, ${}^{3}J_{HH} = 17.1$ Hz & 10.4 Hz & 6.6 Hz, 1H), 5.41 (d, ${}^{3}J_{HH} = 16.9$ Hz, 1H), 5.32 (d, ${}^{3}J_{HH} = 10.2$ Hz, 1H), 4.65 (d, ${}^{3}J_{HH} = 6.4$ Hz, 2H); 13 C-NMR (100 MHz, DMSO-d₆): δ [ppm] 163.1, 134.7, 131.7, 128.3, 123.2, 121.6, 78.1.

O-Allylhydroxylaminhydrochlorid (II-78)

N-Allyloxyphthalimid II-**77** (5.36 g, 26.4 mmol, 1.0 eq) wurde in 6 N wässriger HCL-Lösung (60 mL) gelöst und für 2 h am Rückfluss erhitzt. Nach dem Abkühlen auf 23°C wurde der entstandene Niederschlag abgesaugt und verworfen (Phthalsäure). Das Filtrat wurde *i. vac.* vom Lösungsmittel befreit und im HV getrocknet. Verbindung II-**78** wurde als weißer Feststoff (2.554 g, 23.3 mmol, 88%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.²⁸⁷

¹**H-NMR** (400 MHz, DMSO-d₆): δ [ppm] 5.83 (ddt, ${}^{3}J_{HH}$ = 17.0 Hz & 10.6 Hz & 6.1 Hz, 1H), 5.38 (d, ${}^{3}J_{HH}$ = 17.3 Hz, 1H), 5.29 (d, ${}^{3}J_{HH}$ = 10.5 Hz, 1H), 4.55 (d, ${}^{3}J_{HH}$ = 6.4 Hz, 2H); ¹³**C-NMR** (100 MHz, DMSO-d₆): δ [ppm] 130.8, 121.2, 74.5.

tert-Butylallyloxycarbamat (II-79)

*O-A*llylhydroxylammoniumchlorid II-**78** (3.228 g, 29.46 mmol) wurde in einer Mischung aus CH₂Cl₂:Wasser/1:1 (96 mL) gelöst und nacheinander mit Di-*tert*-butyl dicarbonat (7.074 g, 32.41 mmol) und gemahlenem Natriumhydroxid (2.357 g, 58.93 mmol) versetzt. Die Mischung wurde für 24 h bei 23°C gerührt. Es wurden CH₂Cl₂ (49 mL) und Wasser (49 mL) zugegeben und die Phasen getrennt. Die organische Phase wurde über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung II-**79** wurde als farbloses Öl (5.096 g, 29.46 mmol, 100%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁸

DC: $R_f = 0.38$, (CH:EtOAc/8:2, [UV], [CAM]); ¹**H-NMR** (600 MHz, CDCl₃) δ [ppm] 7.12 (s, 1H), 5.96 (ddt, *J*=16.82, 10.37, 6.27, 1H), 5.38 – 5.25 (m, 2H), 4.34 (d, *J*=6.28, 2H), 1.48 (s, 9H); ¹³**C-NMR** (151 MHz, CDCl₃) δ [ppm] 156.9, 132.7, 120.0, 85.3, 81.9, 28.4.

tert-Butylallyloxy(methyl)carbamat (II-80)

 \neq_{o} $C_9H_{17}NO_3$

Natriumhydrid (1.389 g, 34.69 mmol, 60% in Parafin) wurde unter Stickstoffatmosphäre in trockenem THF (60 mL) suspendiert und bei 0°C tropfenweise mit einer Lösung von *tert*-Butylallyloxycarbamat II-**79** (5.096 g, 29.42 mmol) in THF (19 mL) versetzt. Die Suspension wurde für 15 min bei 23°C gerührt. Es wurde Methyliodid (2.4 mL, 37.84 mmol)zugegeben und die Reaktionsmischung wurde für 16 h bei 23°c gerührt. Die Reaktion wurde durch Zugabe von Wasser (50 mL) abgebrochen und mit CH₂Cl₂ (3 x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/9:1) gereinigt. Der Verbindung II-**80** wurde als farbloses Öl (2.788 g, 17.69 mmol, 51%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.

DC: R_f = 0.43, (CH: EtOAc/9:1, [CAM]); ¹**H-NMR** (600 MHz, CDCl₃) δ [ppm] 6.04 – 5.94 (m, 1H), 5.32 (d, J=17.30, 1H), 5.26 (d, J=10.28, 1H), 4.33 (d, J=6.39, 2H), 3.10 (s, J=9.80, 3H), 1.49 (s, 9H); ¹³**C-NMR** (151 MHz, CDCl₃) δ [ppm] 157.1, 132.9, 119.8, 83.8, 81.4, 37.1, 28.4.

O-Allyl-N-methylhydroxylaminhydrochlorid (II-81)

C₄H₁₀CINO 123,58 g/mol

Zu einer Lösung von *tert*-Butylallyloxy(methyl)carbamat II-**80** (2.782 g, 14.86 mmol) in CH_2CI_2 (37 mL) wurden bei 23°C nacheinander Triethylsilan (2.6 mL, 16.34 mmol) und TFA (11.4 mL, 148.58 mmol) zugegeben. und die Reaktionslösung wurde für 20 h gerührt. Anschließend wurde gesättigter Natriumhydrogencarbonatlösung (20 mL) zugegeben und die Mischung für 2 h bei 23°C gerührt. Die Mischung wurde mit CH_2CI_2 (3 x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* (600 mbar) vom Lösungsmittel befreit. Der verbleibende ölige

Rückstand wurde in CH_2Cl_2 (10 mL) aufgenommen, mit gesättigter methanolischer HCl-Lösung (20 mL) versetzt und *i. vac.* vom Lösungsmittel befreit. Die Verbindung II-**81** wurde als weißer Feststoff (0.710 g, 5.79 mmol, 39%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁸

¹**H-NMR** (600 MHz, DMSO) δ [ppm] 5.97 – 5.87 (m, 1H), 5.43 (dd, *J*=17.25, 1.32, 1H), 5.36 (d, *J*=10.40, 1H), 4.59 (s, 2H), 2.81 (s, 3H); ¹³**C-NMR** (101 MHz, DMSO) δ [ppm] 130.7, 121.5, 73.5, 34.8.

V-2.3.3.Allgemeine Vorschrift zur Synthese von N-Alkylhydroxamsäuren

Allgemeine Vorschrift **E 2.3** zur Synthese von N-Alkylhydroxamsäuren: *N*-Hydroxy-*N*,2,2-trimethyl-4phenylbut-3-inamid (II-82)

2,2-Dimethyl-4-phenylbut-3-insäure II-**58** (1.20 g, 6.38 mmol) wurde bei 0°C unter Stickstoffatmosphäre in trockenem CH₂Cl₂ gelöst, mit Oxalylchlorid (1.09 mL, 12.75 mmol) sowie einen Tropfen DMF versetzt und für 10 min bei 0°C und 1 h bei 23°C gerührt. Anschließend wurden alle flüchtigen Bestandteile der Mischung *i. vac.* entfernt, der ölige Rückstand in trockenem CH₂Cl₂ (30 mL) aufgenommen und in eine Lösung von *N*-Methylhydroxylaminhydrochlorid (1.07 g, 12.75 mmol), DMAP (13 mg, 0.064 mmol) sowie Pyridin (2.14 mL, 63.75 mmol) in CH₂Cl₂ (4 mL) über einen Zeitraum von 1 h bei 23°C eingetropft. Die Reaktionsmischung wurde für 4 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von Wasser (50 mL) abgebrochen und CH₂Cl₂ (3x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch zügige ^{tt} Flash-Chromatographie über Silicagel (CH:EtOAc/8:2 – 1:1) gereinigt. Der Verbindung II-**82** wurde als gelbes Öl (944 mg, 4.31 mmol, 68%) erhalten.

DC: $R_f = 0.48$, (CH:EtOAc/1:1, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.43 (s, breit, 1H), 7.44 – 7.39 (m, 2H), 7.36 – 7.30 (m, 3H), 3.60 (s, breit, 1H), 1.62 (s, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm]

^{tt} Auf Grund lagsamer Zersetzung der *N*-Alkylhydroxamsäuren in Gegenwart von Silicagel war es nötig eine sehr schnelle Chromatographie durchzuführen um weitestgehend saubere Verbindungen zu erhalten. Nachträgliche Versuche die Produkte durch Chromatographie über Silicagel aufzureinigen sowie die Verwendung andere stationäre Phasen (z.B. Aluminumoxid verschiedener Azidität) oder von Zusätzen wie Triethylamin zum Eluentengemisch schlugen fehl oder führten zur Zersetzung der Substanzen.

172.8, 158.5, 131.7, 129.6, 128.6, 128.6, 122.8, 103.3, 37.7, 27.4, 24.2; **LRMS** (EI): [m/z] 217 $[M^+]$ (10%), 202 $[M^+-CH_3](50\%)$, 190 (5%), 172 (10%), 160 (5%), 143 (100%), 128 (70%), 115 (25%), 103 (20%), 91 (15%), 77 (30%), 65 (10%), 63 (25%), 51 (15%); **HRMS** (ESI): [m/z] berechnet für $[C_{13}H_{15}O_2N_1Na_1]$ 240.0995, gefunden 240.0995.

N-(Allyloxy)-2,2-dimethyl-4-phenylbut-3-inamid (II-95)

Durch Reaktion von II-58 mit II-81 nach der allgemeinen Vorschrift E 2.3 wurde Verbindung II-95 als farbloses Öl (105 mg, 0.431 mmol, 81%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 9.13 (s, 1H), 7.41 – 7.38 (m, 2H), 7.34 – 7.29 (m, 3H), 5.98 (ddt, J = 16.8, 10.3, 6.5 Hz, 1H), 5.39 – 5.29 (m, 2H), 5.33 (dq, J = 1.6, 1.1 Hz, 1H), 4.47 – 4.37 (m, 2H), 1.53 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 171.1, 132.1, 131.9, 128.9, 128.6, 122.4, 121.3, 90.9, 85.1, 37.9, 27.9; LRMS (EI): [m/z] 228 (5%) [M⁺-CH₃], 207 (2%), 185 (5), 170 (10%), 143 (100%), 128 (36%), 115 (10%), 91 (5%), 77 (7%), 57 (8%); HRMS (ESI): [m/z] berechnet für [C₁₅H₁₇O₂N₁Na₁] 266.1151, gefunden 266.1115.

N-Hydroxy-2,2-dimethyl-4-phenylbut-3-inamid (II-88)

Durch Reaktion von II-**58** mit Hydroxylaminhydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**88** als weißer, amorpher Feststoff (94 mg, 0.432 mmol, 41%) erhalten.

DC: $R_f = 0.1$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 9.21 (s, 1H), 8.11 (s, 1H), 7.43 – 7.39 (m, 2H), 7.35 – 7.29 (m, 3H), 2.15 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 171.5, 131.9, 129.0, 128.7, 122.2, 90.0, 85.5, 31.1, 27.7; LRMS (ESI): [m/z] 203 [M⁺]; HRMS (ESI): [m/z] berechnet für [C₁₂H₁₃O₂N₁Na₁ (M⁺+23)] 226.0338, gefunden 226.0344.

N-(2-Chlorobenzyl)-N-hydroxy-2,2-dimethyl-4-phenylbut-3-inamid (II-86)

Durch Reaktion von II-**58** mit *N*-(2-Chlorbenzyl)Hydroxylamin nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**86** als orangener, amorpher Feststoff (102 mg, 0.331 mmol, 58%) erhalten.

DC: $R_f = 0.5$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.37 – 7.18 (m, 8H), 6.97 (td, J = 7.5, 0.8 Hz, 1H), 6.91 – 6.82 (m, 2H), 1.66 (s, 6H).¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.8, 131.9, 131.7, 131.5, 129.6, 128.8, 128.4, 128.3, 128.2, 122.9, 121.0, 120.5, 110.5, 91.0, 82.3, 55.5, 52.7, 49.4; LRMS (ESI): [m/z] 328.11 (M⁺+1); HRMS (ESI): [m/z] berechnet für [C₁₉H₁₈Cl₁N₁Na₁O₂] 350.0918, gefunden 350.0918.

N-(4-Brombenzyl)-*N*-hydroxy-2,2-dimethyl-4-phenylbut-3-inamid (II-84)

Durch Reaktion von II-**58** mit II-**72** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**84** als gelbes Öl (84 mg, 0.225 mmol, 42%) erhalten.

DC: $R_f = 0.73$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.53 – 7.34 (m, 3H), 7.31 – 7.22 (m, 3H), 7.21 – 7.15 (m, 3H), 4.98 (s, 2H), 1.60 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 171.3, 132.0, 131.7, 131.7, 131.5, 130.8, 130.7, 128.7, 128.6, 122.4, 121.9, 91.6, 86.2, 60.6, 21.2, 14.4; LRMS (ESI): [m/z] 373 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₉H₁₈Br₁N₁Na₁O₂] 394.0413, gefunden 394.0413.

Durch Reaktion von II-**58** mit II-**74** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**85** als gelbes Öl (98 mg, 0.314 mmol, 59%) erhalten.

DC: $R_f = 0.75$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.31 – 7.17 (m, 7H), 6.99 (t, J = 8.6 Hz, 2H), 5.01 (s, 2H), 1.61 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 171.1, 163.2, 131.5, 128.4 (d, J = 20.1 Hz), 122.3, 115.5 (d, J = 21.6 Hz), 91.4, 87.1, 60.4, 21.0, 14.2; **LRMS** (ESI): [m/z] 312 (M⁺+1). HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

N-(2-Methoxybenzyl)-*N*-hydroxy-2,2-dimethyl-4-phenylbut-3-inamid (II-89)

Durch Reaktion von II-**58** mit II-**75** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**89** als gelbes Öl (76 mg, 0.235 mmol, 44%) erhalten.

DC: $R_f = 0.75$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.37 – 7.18 (m, 8H), 6.97 (td, J = 7.5, 0.8 Hz, 1H), 6.91 – 6.82 (m, 2H), 5.19 (s, 3H), 1.66 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.8, 131.9, 131.7, 131.5, 129.6, 128.8, 128.4, 128.3, 128.2, 122.9, 121.0, 120.5, 110.5, 91.0, 82.3, 55.5, 52.7, 49.4, 27.4; LRMS (ESI): [m/z] 324 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₂₀H₂₁O₃N₁Na₁] 346.1414, gefunden 346.1414.

N-Hydroxy-2,2-dimethyl-N-(4-nitrobenzyl)-4-phenylbut-3-inamid (II-87)

Durch Reaktion von II-**58** mit II-**73** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**87** als orangenes Öl (77 mg, 0.227 mmol, 43%) erhalten.

DC: $R_f = 0.87$, (CH:EtOAc/1:1, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.01 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.34 – 7.19 (m, 5H), 5.08 (s, 2H), 1.41 (s, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.5, 142.8, 131.8, 131.8, 129.2, 128.8, 128.5, 128.4, 123.9, 91.2, 89.9, 38.1, 38.0, 27.1, 27.0, 14.4. LRMS- und HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

N-Methoxy-N,2,2-trimethyl-4-phenylbut-3-inamid (II-94)

Durch Reaktion von II-**58** mit *N,O*-Dimethylhydroxylaminhydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**94** als blass-gelbes Öl (1.046 g, 4.522 mmol, 85%) erhalten.

DC: $R_f = 0.48$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.41 – 7.36 (m, 2H), 7.29 – 7.25 (m, 3H), 3.76 (s, 3H), 3.23 (s, 3H), 1.55 (s, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.8, 131.2, 128.0, 128.4, 123.4, 93.4, 81.6, 61.0, 37.8, 34.0, 27.4; **LRMS** (ESI): [m/z] 232 [M⁺+1] **HRMS** (ESI): [m/z] Berechnet für [C₁₄H₁₇O₂Na₁] 254.1151, gefunden 254.1151.

N-(Allyloxy)-*N*,2,2-trimethyl-4-phenylbut-3-inamid (II-96)

Durch Reaktion von II-**58** mit II-**81** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**96** als blass-gelbes Öl (409 mg, 1.589 mmol, 74%) erhalten.

DC: $R_f = 0.68$, (PE:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.40 – 7.32 (m, 2H), 7.30 – 7.20 (m, 3H), 5.93 (ddt, J = 17.2, 10.5, 5.9 Hz, 1H), 5.27 (dq, J = 17.3, 1.5 Hz, 1H), 5.20 (ddd, J = 10.5, 2.6, 1.2 Hz, 1H), 4.52 (dt, J = 5.9, 1.3 Hz, 2H), 3.27 (s, 3H), 1.57 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 169.7, 132.1, 131.7, 128.5, 128.1, 123.7, 119.7, 93.4, 81.8, 74.5, 37.9, 35.6, 27.5; LRMS (EI): [m/z] 281 [M⁺+1] (1%), 189 (72%), 120 (100%), 118 (42%), 91 (10%), 70 (27%), 51 (5%). HRMS (ESI): [m/z] berechnet für [C₁₆H₁₉O₂N₁Na₁] 280.1308, gefunden 280.1308.

N-(4-Brombenzyl)-*N*-hydroxy-1-(phenylethinyl)cyclohexancarboxamid (II-91)

Durch Reaktion von II-**59** mit II-**72** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**91** als orangener Feststoff (96 mg, 0.233 mmol, 48%) erhalten.

DC: $R_f = 0.71$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.41 (dd, J = 10.0, 5.5 Hz, 2H), 7.33 – 7.23 (m, 5H), 7.18 (d, J = 8.4 Hz, 2H), 5.03 (s, 2H), 2.16 – 1.99 (m, 2H), 1.97 – 1.59 (m, 7H), 1.34 – 1.14 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.9, 132.2, 132.0, 131.9, 131.7, 129.6, 129.5, 128.7, 128.6, 122.7, 121.8, 93.4, 87.1, 53.6, 52.8, 34.6, 25.7, 22.6; LRMS (ESI): [m/z] 412 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂O₃N₁Na₁Br₁] 434.0726, gefunden 434.0726.

N-2-Chlorbenzyl-N-hydroxy-1-(phenylethinyl)cyclohexancarboxamid (II-93)

Durch Reaktion von II-**59** mit *N*-(2-Chlorbenzyl)hydroxylamin nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**93** als orangenes Öl (98 mg, 0.266 mmol, 55%) erhalten.

DC: $R_f = 0.88$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.48 – 7.09 (m, 9H), 5.27 (s, 2H), 2.07 (s, 1H), 1.90 (d, J = 12.1 Hz, 2H), 1.81 – 1.66 (m, 5H), 1.63 – 1.54 (m, 1H), 1.41 (s, 1H), 1.31 – 1.17 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.5, 147.6, 131.9, 131.6, 131.1, 130.1, 128.8, 128.5, 128.4, 127.2, 122.6, 88.9, 85.0, 54.2, 35.0, 25.6, 25.5, 22.6, 22.5; LRMS (ESI): [m/z] 368 [M⁺+1] HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂Cl₁N₁Na₁O₂] 390.1231, gefunden 390.1231.

N-(4-Fluorbenzyl)-*N*-hydroxy-1-(phenylethinyl)cyclohexancarboxamid (II-92)

Durch Reaktion von II-**59** mit II-**74** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**92** als gelber Feststoff (63 mg, 0.179 mmol, 41%) erhalten.

DC: $R_f = 0.86$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.35 – 7.19 (m, 7H), 7.04 – 6.88 (m, 2H), 5.05 (s, 2H), 2.18 – 2.01 (m, 2H), 1.88 – 1.58 (m, 7H), 1.37 – 1.14 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.7, 163.4 (d, *J* = 21.8 Hz), 131.9, 131.7, 131.0, 128.5, 128.4, 123.3, 115.6 (d, *J* = 21.5 Hz), 88.9, 85.0, 56.0, 43.8, 35.0, 25.4, , 22.5; HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂F₁N₁Na₁O₂] 374.1527, gefunden 374.1527.

N-Hydroxy-*N*-methyl-1-(phenylethinyl)cyclohexancarboxamid (II-90)

Durch Reaktion von II-**59** mit *N*-Methylhydroxylaminhydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**90** als farbloses Öl (60 mg, 0.233 mmol, 48%) erhalten.

DC: $R_f = 0.68$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.41 (s, 1H), 7.45 – 7.37 (m, 2H), 7.35 – 7.27 (m, 3H), 3.57 (s, 3H), 2.11 – 1.95 (m, 2H), 1.90 – 1.64 (m, 7H), 1.32 – 1.18 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 169.2, 131.7, 128.6, 123.0, 89.6, 83.5, 37.7, 34.7, 25.63, 22.6. LRMS- und HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

V-2.3.4 Synthese von *N*-(Allyloxy)-1-(prop-2-inyl)cyclohexancarboxamid und *N*-(Allyloxy)-1-(3-phenylprop-2-inyl)cyclohexancarboxamid

Methyl-1-(prop-2-inyl)cyclohexancarboxylat (II-117)

Diisopropylamin (2.08 mL, 14.78 mmol) wurde bei -78°C unter Stickstoffatmosphäre in trockenem THF (14 mL) gelöst und tropfenweise mit nBuLi (5.91 mL, 14.78 mmol, 2.5 M in Hexan) versetzt. Die Reaktionsmischung wurde für 15 min bei -78°C und für weitere 15 min bei 0°C gerührt, bevor die Reaktionsmischung auf -78°C herabgekühlt erneut und mit einer Lösung von Methylcyclohexancarboxylat II-54 (2.0 g, 14.08 mmol) in trockenem THF (7 mL) versetzt wurde. Die Reaktionsmischung wurde für 15 min bei -78°C und für weitere 15 min bei 0°C gerührt, bevor die Reaktionsmischung erneut auf -78°C herabgekühlt und mit einer Lösung von Propargylbromid (1.87 mL, 16.89 mmol) in trockenem THF (7 mL) versetzt wurde. Die Reaktionsmischung wurde für 1 h bei -78°C gerührt und anschließend über 16 h auf 23°C erwärmt. Die Reaktion wurde durch Zugabe von Wasser (100 mL) abgebrochen und mit EtOAc (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und i. vac. vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/9:1) gereinigt. Verbindung II-**117** wurde als blass-gelbes Öl (2.236 g, 12.405 mmol, 88%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁷⁹

DC: $R_f = 0.5$, (CH:EtOAc/9:1, [CAM]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 3.68 (s, 3H), 2.38 (d, J = 2.7 Hz, 2H), 2.08 – 2.02 (m, 2H), 1.98 (t, J = 2.7 Hz, 1H), 1.58 – 1.47 (m, 3H), 1.45 – 1.32 (m, 5H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 176.3, 80.5, 71.0, 52.0, 46.9, 33.3, 29.2, 25.8, 23.1.

Methyl-1-(3-phenylprop-2-inyl)cyclohexancarboxylat (II-120)

Durch *Sonogashira*-Kupplung von II-**117** mit Phenyliodid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung II-**120** als gelbes Öl (1.206 g, 4.704 mmol, 84%) erhalten.

DC: $R_f = 0.7$, (Pentan:Et₂O/95:5, [CAM], [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.43 – 7.32 (m, 2H), 7.31 – 7.20 (m, 3H), 3.71 (s, 3H), 2.59 (s, 2H), 2.20 – 2.06 (m, 2H), 1.63 – 1.53 (m, 3H), 1.50 – 1.38 (m, 4H), 1.33 – 1.22 (m, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 176.4, 131.8, 128.4, 127.9, 123.9, 86.2, 83.3, 52.0, 47.5, 33.5, 30.5, 25.8, 23.3; **LRMS** (EI): [m/z] 156 (15%) [M⁺], 241 (5%), 228 (99%), 2123 (40), 197 (38%), 185 (7%), 167 (11%), 141 (12%), 128 (10%), 115 (100%), 102 (5%), 81 (43%), 67 (5%), 53 (2%); **HRMS** (ESI): [m/z] berechnet für [C₁₇H₂₀O₂Na₁] 279.1356, gefunden 279.1356.

1-(Prop-2-inyl)cyclohexancarbonsäure (II-118)

Durch alkalische Verseifung von II-**117** nach der allgemeinen Vorschrift **B 2.3** (90°C, 1 h) wurde Verbindung II-**118** als hell-brauner, kristalliner Feststoff (863 mg, 5.192 mmol, 93%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁰

DC: $R_f = 0.33$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 2.44 (d, J = 2.7 Hz, 2H), 2.08 – 2.01 (m, 2H), 2.02 (t, J = 2.7 Hz, 1H), 1.62 – 1.50 (m, 3H), 1.50 – 1.40 (m, 4H), 1.34 – 1.21 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 182.3, 80.2, 71.3, 46.7, 33.0, 29.0, 25.7, 23.0.

N-(Allyloxy)-1-(prop-2-inyl)cyclohexancarboxamid (II-119)

Durch Reaktion von II-**118** mit II-**78** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**119** als farbloses Öl (104 mg, 0.469 mmol, 78%) erhalten.

DC: $R_f = 0.22$, (CH:EtOAc/8:2, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.54 (d, J = 8.5 Hz, 1H), 5.97 (ddt, J = 16.8, 10.3, 6.4 Hz, 1H), 5.33 (dd, J = 17.2, 1.3 Hz, 1H), 5.29 (d, J = 10.3 Hz, 1H), 4.37 (dd, J = 17.4, 5.8 Hz, 2H), 2.36 (d, J = 2.6 Hz, 2H), 2.09 (t, J = 2.6 Hz, 1H), 2.03 – 1.92 (m, 2H), 1.58 – 1.38 (m, 7H), 1.34 – 1.26 (m, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 173.3, 132.5, 120.7, 80.7, 77.4, 72.2, 45.3, 33.2, 28.8, 25.8, 25.7, 22.7; **LRMS** (EI): [m/z] 221 [M⁺] (20%), 207 [M⁺-CH₂](25%), 180 (20%), 166 (45%), 149 (38%), 121 (87%), 110 (40%), 93 (49%), 81 (100%), 67 (51%), 55 (55%); **HRMS** (ESI): [m/z] berechnet für [C₁₃H₁₉O₂N₁Na₁] 244.1308, gefunden 244.1308.

1-(3-Phenylprop-2-inyl)cyclohexancarbonsäure (II-121)

C₁₆H₁₈O₂ 242,31 g/mol

Durch alkalische Verseifung von II-**120** nach der allgemeinen Vorschrift **B 2.3** (90°C, 1 h) wurde Verbindung II-**121** als hell-brauner, kristalliner Feststoff (888 mg, 3.665 mmol, 78%) erhalten.

DC: $R_f = 0.4$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.48 – 7.29 (m, 2H), 7.29 – 7.16 (m, 3H), 2.65 (s, 2H), 2.14 (dd, J = 11.2, 5.7 Hz, 2H), 1.64 – 1.43 (m, 7H), 1.33 – 1.22 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 182.4, 131.9, 128.4, 128.0, 123.8, 85.8, 83.7, 47.3, 33.2, 30.3, 25.8, 23.2; HRMS (ESI negative): [m/z] berechnet für [C₁₆H₁₇O₂] 241.1234, gefunden 241.1234.

N-(Allyloxy)-1-(3-phenylprop-2-inyl)cyclohexancarboxamid (II-122)

Durch Reaktion von II-**121** mit II-**78** nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**122** als gelbes Öl (76 mg, 0.255 mmol, 62%) erhalten.

DC: $R_f = 0.33$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.69 (s, 1H), 7.41 (dd, J = 6.6, 3.0 Hz, 2H), 7.33 – 7.29 (m, 3H), 5.99 (ddt, J = 16.8, 10.3, 6.4 Hz, 1H), 5.33 (dd, J = 17.2, 1.3 Hz, 1H), 5.26 (d, J = 10.3 Hz, 1H), 4.43 (d, J = 6.4 Hz, 2H), 2.63 (s, 2H), 2.07 (dd, J = 15.1, 10.5 Hz, 2H), 1.64 – 1.47 (m, 7H), 1.36 (d, J = 6.9 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.6, 132.5, 131.8, 128.5, 128.3, 123.4, 120.7, 100.2, 86.2, 84.4, 45.9, 33.5, 29.9, 25.8, 22.9; HRMS (EI): [m/z] berechnet für [C₁₉H₂₃O₂N₁Na₁] 320.1621, gefunden 320.1621.

V-2.3.5 Synthese von N-Methyl-N-(4-phenylbut-3-in-1-yl)hydroxylamin

4-Phenylbut-3-in-1-ol (II-126)

Durch *Sonogashira*-Kupplung von II-**125** mit Phenyliodid nach der allgemeinen Vorschrift **E 2.2** wurde Verbindung II-**126** als rotbraunes Öl (1.950 g, 13.339 mmol, 93%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸¹

DC: R_f = 0.13, (CH:EtOAc/8:2, [CAM], [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.42 – 7.36 (m, 2H), 7.30 – 7.25 (m, 3H), 3.79 (t, *J* = 6.3 Hz, 2H), 2.67 (t, *J* = 6.3 Hz, 2H), 1.97 (d, *J* = 43.1 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 131.9, 128.5, 128.2, 123.5, 86.5, 82.7, 61.4, 24.0; **LRMS** (EI):[m/z] 147 [M+] (1%), 146 (42%), 115 (100%), 105 (26%), 77 (20%), 51 (10%); **HRMS** (ESI): [m/z] berechnet für [C₁₀H₁₁O] 147.0804, 147.0804.

4-Phenylbut-3-in-1-yl-methansulfonat (II-127)

4-Phenylbut-3-yin-1-ol II-**126** (1.95 g, 13.339 mmol) und Pyridin (2.15 mL, 26.679 mmol) wurden in trockenem CH_2Cl_2 (26.6 mL) unter Stickstoffatmosphäre gelöst und bei 0°C tropfenweise mit Mesylchlorid (1.548 mL, 20.009 mmol) versetzt und für 1.5 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe 0.1 M HCl-Lösung (30 mL) abgebrochen und mit CH_2Cl_2 (3x 50 mL). Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/8:2 + 1% Et₃N) gereinigt. Verbindung II-**127** wurde als gelbes Öl (2.576 g, 11.485 mmol, 86%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸²

DC: R_f = 0.23, (CH:EtOAc/8:2, [CAM], [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.43 – 7.34 (m, 2H), 7.32 – 7.25 (m, 3H), 4.37 (t, *J* = 6.8 Hz, 2H), 3.05 (s, 3H), 2.87 (t, *J* = 6.8 Hz, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 131.9, 128.5, 128.5, 123.1, 84.1, 83.1, 67.6, 38.0, 20.9.

N-Methyl-N-(4-phenylbut-3-in-1-yl)hydroxylamin (II-128)

Eine Lösung von *N*-Methylhydroxylaminhydrochlorid (81.9 mg, 0.981 mmol) und Tetraethylammoniumiodid (114.7 mg, 0.446 mmol) in DMPU (446 μ L) wurde zu einer Lösung von 4-Phenylbut-3-in-1-ylmethansulfonat II-**127** (200 mg, 0.892 mmol) in Triethylamin (271 μ L) und DMPU (446 μ L) gegeben und für 48 h bei 23°c gerührt. Die Reaktion wurde durch Zugabe von Wasser (10 mL) abgebrochen und mit CH₂Cl₂ (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/9:1 – 8:2 - 7:3 – 1:1) gereinigt. Verbindung II-**128** wurde als brauner Feststoff (98 mg, 0.559 mmol, 63%) erhalten. **DC:** $R_f = 0.5$, (PE:EtOAc/1:1, [CAM], [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.42 – 7.34 (m, 2H), 7.29 – 7.17 (m, 3H), 2.88 (t, J = 7.3 Hz, 2H), 2.73 – 2.70 (m, 2H), 2.69 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] δ 131.9, 128.4, 127.9, 123.9, 88.1, 81.58, 60.8, 48.9, 18.3; LRMS (EI):[m/z] 157 [M⁺-H₂O] (35%), 128 (24%), 115 (58%), 105 (10%), 77 (15%), 60 (100%), 51 (9%); HRMS (ESI): [m/z] berechnet für [C₁₁H₁₄O₁N₁ (M⁺+1)] 176.1070, gefunden 176.1070.

V-2.3.6 Synthese von N-Alkylcarbonsäurehydraziden

N'-Phenyl-2,2-dimethyl-4-phenylbut-3-inhydrazid (II-110)

Durch Reaktion von II-**58** mit Phenylhydrazin nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**110** als farbloses Öl (124 mg, 0.445 mmol, 83%) erhalten.

DC: $R_f = 0.21$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.40 (s, 1H), 7.47 – 7.43 (m, 2H), 7.36 – 7.30 (m, 3H), 7.27 – 7.20 (m, 2H), 6.93 – 6.88 (m, 1H), 6.87 – 6.84 (m, 2H), 1.59 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.7, 148.1, 131.9, 129.5, 128.9, 128.7, 122.4, 121.7, 113.8, 91.2, 85.4, 38.5, 27.9; LRMS (ESI): [m/z] 279.15 [M⁺+1]; HRMS (ESI) :[m/z] berechnet für [C₁₈H₁₈O₂N₁Na₁] 301.1311, gefunden 301.1311.

N'-Benzyl-2,2-dimethyl-4-phenylbut-3-inhydrazid (II-111)

Durch Reaktion von II-**58** mit Benzylhydrazindihydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**111** als farbloses Öl (71 mg, 0.242 mmol, 46%) erhalten.

DC: $R_f = 0.13$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.05 (s, 1H), 7.43 – 7.20 (m, 11H), 4.86 (s, 1H), 3.98 (s, 2H), 1.51 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.1, 137.5, 131.8,

129.3, 128.8, 128.7, 128.5, 127.9, 122.5, 91.3, 85.1, 56.1, 38.4, 27.7; **LRMS** (ESI): [m/z] 293.17 $[M^++1]$; **HRMS** (ESI): [m/z] berechnet für $[C_{19}H_{21}O_1N_2]$ 293.1648, gefunden 293.1648.

2,2-Dimethyl-4-phenylbut-3-inhydrazid (II-112)

Durch Reaktion von II-**58** mit Hydrazinhydrat nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**112** als blass-gelbes Öl (158 mg, 0.781 mmol, 73%) erhalten.

DC: $R_f = 0.18$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.94 (s, 1H), 7.43 – 7.36 (m, 3H), 7.34 – 7.26 (m, 4H), 3.87 (s, 1H), 1.53 (s, 7H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 174.4, 131.9, 128.8, 128.6, 122.5, 91.2, 85.2, 60.6, 27.8; LRMS (ESI): [m/z] 203.18 [M⁺+1]; HRMS (EI): [m/z] berechnet für [C₁₂H₁₅O₁N₂] 203.1179, gefunden 203.1179.

N'-Phenyl-1-(phenyletinyl)cyclohexancarbohydrazid (II-115)

Durch Reaktion von II-**59** mit Phenylhydrazin nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**115** als roter Feststoff (118 mg, 0.370 mmol, 76%) erhalten.

DC: $R_f = 0.84$, (CH:EtOAc/1:1, [UV], [CAM]);. ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.43 (s, 1H), 7.54 – 7.43 (m, 2H), 7.39 – 7.28 (m, 3H), 7.29 – 7.16 (m, 3H), 7.00 – 6.73 (m, 2H), 4.21 (s, 2H), 2.05 – 1.84 (m, 4H), 1.83 – 1.66 (m, 5H), 1.21-1.30 (m, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.6, 148.1, 132.0, 129.5, 128.9, 128.7, 121.6, 113.8, 89.3, 88.4, 45.0, 35.2, 25.5, 22.7; **LRMS** (ESI): [m/z] 319 [M⁺+1]; **HRMS** (ESI):[m/z] berechnet für [C₂₁H₂₂N₂Na₁O₁] 341.1624, gefunden 341.1624.

N'-Benzyl-1-(phenylethinyl)cyclohexancarbohydrazid (II-114)

Durch Reaktion von II-**59** mit Benzylhydrazindihydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**114** als gelbes Öl (58 mg, 0.174 mmol, 36%) erhalten.

DC: $R_f = 0.72$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 8.09 (s, 1H), 7.38 – 7.34 (m, 2H), 7.32 – 7.25 (m, 8H), 4.93 (s, 1H), 3.97 (s, 2H), 1.97 – 1.90 (m, 2H), 1.78 (d, J = 12.3 Hz, 2H), 1.73 – 1.66 (m, 5H), 1.29 – 1.22 (m, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 172.9, 137.5, 131.8, 129.3, 128.8, 128.6, 128.5, 127.8, 122.7, 89.4, 88.0, 56.2, 45.0, 35.1, 25.5, 22.7; LRMS (ESI): [m/z] 333 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₂₂H₂₅O₂N₁] 333.1961, gefunden 333.1961.

N'-tert-Butyl-1-(phenylethinyl)cyclohexancarbohydrazid (II-113)

Durch Reaktion von II-**59** mit *tert*-Butylhydrazinhydrochlorid nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**113** als farbloses Öl (65 mg, 0.217 mmol, 45%) erhalten.

DC: $R_f = 0.70$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.99 (s, 1H), 7.42 (s, 2H), 7.32 (s, 3H), 4.69 (s, 1H), 1.95 (s, 4H), 1.85 – 1.60 (m, 5H), 1.24 (s, 1H), 1.08 (s, 9 H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 172.4, 131.8, 128.7, 128.6, 122.8, 89.6, 88.2, 55.5, 45.3, 35.2, 27.2, 25.5, 22.8. LRMS (ESI): [m/z] 299 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₉H₂₇O₂N₁] 299.2118, gefunden 299.2118.

1-(Phenylethinyl)cyclohexancarbohydrazid (II-116)

Durch Reaktion von II-**59** mit Hydrazinhydrat nach der allgemeinen Vorschrift **E 2.3** wurde Verbindung II-**116** als farbloses Öl (55 mg, 0.226 mmol, 46%) erhalten.

DC: $R_f = 0.27$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.93 (s, 1H), 7.45 – 7.40 (m, 2H), 7.34 – 7.28 (m, 3H), 3.90 (s, 2H), 1.97 – 1.90 (m, 2H), 1.79 (d, J = 12.1 Hz, 2H), 1.75 – 1.66 (m, 5H), 1.30 – 1.25 (m, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 174.3, 131.9, 128.8, 128.6, 122.7, 89.4, 88.3, 45.0, 35.2, 25.5, 22.7; LRMS (EI): [m/z] 243 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₅H₁₉O₁N₂] 243.1492, gefunden 243.1492.

V-2.3.7 Allgemeine Vorschrift zur Gold(I)- und Silber(I)-katalysierten 5-*exo*-dig-Zyklisierung von Hydroxamsäuren zu Isooxazolidin-3-onen und weiteren Stickstoff-haltigen Heterozyklen

Allgemeine Vorschriften **F 2.3** und **G 2.3** zur Synthese von Isooxazolidin-3-onen aus *N*-Alkylhydroxamsäuren: **(Z)-5-Benzyliden-2,4,4-trimethylisoxazolidin-3-on** (II-**97**)

Allgemeine Vorschrift F 2.3:

Au(PPh₃)Cl (3.4 mg, 0.007 mmol, 10 mol%) und AgSbF₆ (1.2 mg, 0.0035 mmol, 5 mol%) wurden in CH₂Cl₂ (690 μL) suspendiert und für 10 min unter Lichtausschluss bei 23°C gerührt. Die entstandene Suspension wurde über Celite[®] filtriert und das Filtrat mit *N*-Hydroxy-*N*,2,2-trimethyl-4-phenylbut-3-inamid II-**82** (15 mg, 0.069 mmol) versetzt. Die resultierende Mischung wurde für 90 min bei 23°C gerührt. Das Lösungsmittel wurde *i. vac.* entfernt und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/95:5) gereinigt. Verbindung II-**97** wurde als gelbes Öl (13 mg, 0.0598 mmol, 87%) erhalten. Die Struktur und absolute Stereochemie der Verbindung konnte durch

rötgendiffraktometrische Untersuchung eines Einkristalls (Kristallisation aus CDCl₃/Pentan *i. vac.*) vollständig aufgeklärt werden.

Allgemeine Vorschrift G 2.3:

N-Hydroxy-*N*,2,2-trimethyl-4-phenylbut-3-inamid II-**82** (15 mg, 0.069 mmol) wurde in CH₂Cl₂ (690 μL) gelöst, mit AgOAc (1.2 mg, 0.007 mmol) versetzt und für 90 min bei 23°C gerührt. (Während der Reaktion bildete sich ein Silberspiegel auf der Innenseite der Reaktionsgefäße.) Das Lösungsmittel wurde *i. vac.* entfernt und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/95:5) gereinigt. Verbindung II-**97** wurde als gelbes Öl (15 mg, 0.069 mmol, 100%) erhalten.

DC: $R_f = 0.29$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.47 – 7.42 (m, 2H), 7.34 – 7.28 (m, 2H), 7.20 – 7.14 (m, 1H), 5.30 (s, 1H), 3.37 (s, 3H), 1.43 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 172.3, 158.5, 134.4, 128.7, 128.3, 126.5, 98.9, 45.3, 32.3, 26.1; **LRMS** (ESI): [m/z] 218 [M⁺+1]. **HRMS** (ESI): [m/z] berechnet für [C₁₃H₁₆O₂N₁ (M⁺+1)] 218.1181, gefunden 218.1176.

(Z)-5-Benzyliden-4,4-dimethylisoxazolidin-3-on (II-98)

Durch Zyklisierung von II-88 nach der allgemeinen Vorschrift F 2.3 wurde Verbindung II-98 als farbloses Öl (26.9 mg, 0.132 mmol, 89%) erhalten.

Durch Zyklisierung von II-**88** nach der allgemeinen Vorschrift **G 2.3** wurde Verbindung II-**98** als farbloses Öl (8 mg, 0.039 mmol, 27%, brsm. 42%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/1:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 8.07 (s, 1H), 7.69 – 7.58 (m, 2H), 7.40 – 7.30 (m, 3H), 5.63 (s, 1H), 1.40 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 164.5, 151.6, 129.4, 128.9, 128.7, 125.3, 109.4, 45.3, 27.6; **LRMS** (EI): [m/z] 204.1 [M⁺+1]; **HRMS** (ESI): [m/z] berechnet für [C₁₂H₁₃N₁Na₁O₂] 226.0838, gefunden 226.0838.
(Z)-5-Benzyliden-2-(2-methoxybenzyl)-4,4-dimethylisoxazolidin-3-on (II-99)

Durch Zyklisierung von II-**89** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**99** als gelbes Öl (15.8 mg, 0.053 mmol, 79%) erhalten.

Durch Zyklisierung von II-**89** nach der allgemeinen Vorschrift **G 2.3** wurde Verbindung II-**99** als gelbes Öl (18 mg, 0.061 mmol, 60%) erhalten.

DC: $R_f = 0.27$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.36 – 7.32 (m, 4H), 7.32 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 7.14 – 7.07 (m, 1H), 6.94 (td, J = 7.5, 1.0 Hz, 1H), 6.90 – 6.85 (m, 1H), 5.26 (s, 1H), 4.95 (s, 2H), 3.87 (s, 3H), 1.44 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 172.2, 158.6, 157.7, 134.5, 129.8, 129.7, 128.56, 128.2, 126.2, 123.0, 120.8, 110.6, 98.8, 55.6, 45.4, 44.5, 26.0; LRMS (ESI): [m/z] 324 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₉H₂₀N₁O₂] 294.1489, gefunden 294.149.

(Z)-5-Benzyliden-2-(4-brombenzyl)-4,4-dimethylisoxazolidin-3-on (II-104)

Durch Zyklisierung von II-**84** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**104** als gelbes Öl (30 mg, 0.081 mmol, 100%) erhalten.

DC: $R_f = 0.18$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.48 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.26 (dd, J = 14.0, 7.8 Hz, 4H), 7.15 (t, J = 7.4 Hz, 1H), 5.28 (s, 1H), 4.83 (s, 2H), 1.42 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 172.9, 158.2, 134.3, 133.9, 132.2, 130.2, 128.7, 128.3, 126.5, 122.6, 99.4, 49.0, 45.3, 25.9; LRMS (ESI): [m/z] 373.1 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₉H₁₉Br₁N₁O₂] 372.0594, gefunden 372.0594.

(Z)-5-Benzyliden-2-(2-chlorbenzyl)-4,4-dimethylisoxazolidin-3-on (II-101)

Durch Zyklisierung von II-**86** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**101** als farbloses Öl (30 mg, 0.092 mmol, 100%) erhalten.

Durch Zyklisierung von II-**86** nach der allgemeinen Vorschrift **G 2.3** wurde Verbindung II-**101** als farbloses Öl (8 mg, 0.024 mmol, 26%) als Nebenprodukt erhalten. Als Hauptprodukt wurde das korrespondierende E-Isomer II-**103** (13 mg, 0.040 mmol, 43%) erhalten.

DC: $R_f = 0.5$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.44 – 7.37 (m, 2H), 7.38 – 7.32 (m, 4H), 7.29 – 7.22 (m, 2H), 7.17 – 7.09 (m, 1H), 5.31 (s, 1H), 5.05 (s, 2H), 1.47 (s, 6H). ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.2, 158.3, 133.7, 133.4, 132.5, 129.9, 129.6, 129.6, 129.5, 128.4, 127.3, 127.2, 103.8, 46.8, 44.6, 24.3; LRMS (ESI): [m/z] 328.1 [M⁺+1]. HRMS (ESI): [m/z] berechnet für [C₁₉H₁₈ Cl₁N₁Na₁O₂] 350.0918, gefunden 350.0918.

(E)-5-Benzyliden-2-(2-chlorbenzyl)-4,4-dimethylisoxazolidin-3-on (II-102)

DC: $R_f = 0.4$, (CH:EtOAc/8:2, [UV], [CAM]; ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.41 – 7.35 (m, 2H), 7.33 – 7.24 (m, 4H), 7.24 – 7.16 (m, 2H), 6.19 (s, 1H), 4.97 (s, 2H), 1.37 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.2, 158.3, 133.7, 133.4, 132.5, 129.9, 129.6, 129.6, 129.5, 128.4, 127.3, 127.2, 103.8, 46.8, 44.6, 24.3; LRMS (ESI): [m/z] 328 [M⁺+1]. HRMS (ESI): [m/z] berechnet für [C₁₉H₁₈Cl₁N₁Na₁O₂] 350.0918, gefunden 350.0918

(Z)-5-Benzyliden-2-(4-fluorbenzyl)-4,4-dimethylisoxazolidin-3-on (II-100)

Durch Zyklisierung von II-**85** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**100** als weißer Feststoff (24 mg, 0.078 mmol, 80%) erhalten.

Durch Zyklisierung von II-**85** nach der allgemeinen Vorschrift **G 2.3** wurde Verbindung II-**100** als weißer Feststoff (18 mg, 0.058 mmol, 60%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/9:1, [UV], [CAM]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.38 – 7.32 (m, 4H), 7.29 – 7.25 (m, 2H), 7.19 – 7.12 (m, 1H), 7.09 – 6.96 (m, 2H), 5.28 (s, 1H), 4.84 (s, 2H), 1.41 (s, 6H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 172.8, 158.2, 134.3, 130.7, 130.7, 130.4, 130.3, 128.7, 128.4, 128.3, 126.5, 116.1, 115.8, 99.2, 48.9, 45.4, 25.9; **LRMS** (ESI): [m/z] 312 [M⁺+1]; **HRMS** (ESI): [m/z] berechnet für [C₁₉H₁₉F₁N₁O₂] 312.1394, gefunden 312.1394.

(Z)-1-Benzyliden-3-methyl-2-oxa-3-azaspiro[4.5]decan-4-on (II-106)

Durch Zyklisierung von II-**90** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**106** als weißer Feststoff (12 mg, 0.047 mmol, 80%) erhalten.

DC: $R_f = 0.62$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.46 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 5.41 (s, 1H), 3.34 (s, 3H), 2.05 – 1.92 (m, 4H), 1.70 – 1.56 (m, 5H), 1.50 – 1.41 (m, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 172.3, 158.7, 134.7, 128.7, 128.4, 126.4, 99.7, 47.1, 35.1, 32.2, 25.2, 21.2; LRMS (ESI): [m/z] 258 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₁₆H₂₀N₁O₂] 258.1489,gefunden 258.1489.

(Z)-1-Benzyliden-3-(4-brombenzyl)-2-oxa-3-azaspiro[4.5]decan-4-on (II-103)

Durch Zyklisierung von II-**91** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**103** als weißer Feststoff (23 mg, 0.055 mmol, 76%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/9:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.48 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 7.31 – 7.23 (m, 4H), 7.14 (t, J = 7.4 Hz, 1H), 5.39 (s, 1H), 4.80 (s, 2H), 2.02 – 1.91 (m, 4H), 1.70 – 1.55 (m, 5H), 1.50 – 1.42 (m, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 172.8, 158.4, 134.5, 134.1, 132.1, 130.2, 128.6, 128.4, 126.4, 122.4, 100.1, 48.9, 47.2, 34.9, 25.1, 21.1; LRMS (ESI): [m/z] 413 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂Br₁N₁Na₁O₂] 434.0726, gefunden 434.0726.

(E)-1-Benzyliden-3-(4-brombenzyl)-2-oxa-3-azaspiro[4.5]decan-4-on (II-106)

Durch Zyklisierung von II-**91** nach der allgemeinen Vorschrift **G 2.3** wurde Verbindung II-**106** als weißer Feststoff (18 mg, 0.058 mmol, 60%) erhalten.

DC: $R_f = 0.5$, (CH:EtOAc/9:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.49 (d, J = 8.1 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.25 – 7.18 (m, 4H), 6.13 (s, 1H), 4.71 (s, 2H), 1.98 (qt, J = 13.3, 3.7 Hz, 2H), 1.85 (d, J = 13.6 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.65 (s, 1H), 1.44 (d, J = 13.4 Hz, 2H), 0.96 (qt, J = 12.8, 3.4 Hz, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 173.15, 158.47, 134.36, 133.55, 132.07, 130.19, 130.07, 128.33, 127.13, 122.32, 103.19, 48.48, 46.70, 32.69, 25.08, 21.18; LRMS (ESI): [m/z] 413 [M⁺+1]; HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂Br₁N₁Na₁O₂] 434.0726, gefunden 434.0723.

(Z)-1-Benzyliden-3-(2-chlorbenzyl)-2-oxa-3-azaspiro[4.5]decan-4-on (II-107)

Durch Zyklisierung von II-**93** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**107** als gelber Feststoff (20 mg, 0.054 mmol, 100%) erhalten.

DC: $R_f = 0.29$, (CH:EtOAc/8:2, [UV], [CAM]), ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.43 – 7.32 (m, 5H), 7.29 – 7.25 (m, 3H), 7.23 – 7.18 (m, 1H), 7.15 – 7.08 (m, 1H), 5.40 (s, 1H), 5.02 (s, 2H), 2.09 – 1.89 (m, 4H), 1.77 – 1.58 (m, 5H), 1.53 – 1.40 (m, 1H), ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 172.3, 158.4, 134.5, 132.7, 129.9, 129.6, 128.6, 128.4, 127.4, 126.4, 100.1, 47.2, 46.9, 35.1, 25.2, 21.2;. LRMS (EI): [m/z] 332 [M⁺-Cl], 312 (5%), 280 (1%), 230 (10%), 207 (4%), 125 (20%), 91 (5%), 67 (8%), 51 (2%); HRMS (ESI): [m/z] berechnet für [C₂₂H₂₂Cl₁N₁Na₁O₂] 390.1231, gefunden 390.1231.

(Z)-1-Benzyliden-3-(4-fluorbenzyl)-2-oxa-3-azaspiro[4.5]decan-4-on (II-108)

Durch Zyklisierung von II-**92** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**108** als farbloser Feststoff (9 mg, 0.026 mmol, 50%) erhalten.

DC: $R_f = 0.29$, (CH:EtOAc/8:2, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.39 – 7.31 (m, 4H), 7.29 – 7.22 (m, 2H), 7.14 (t, J = 7.4 Hz, 1H), 7.06 – 7.00 (m, 2H), 5.38 (s, 1H), 4.82 (s, 2H), 2.01 – 1.91 (m, 4H), 1.87 – 1.50 (m, 5H), 1.50 – 1.38 (m, 1H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 172.5, 158.2, 134.3, 130.1, 130.1, 128.4, 128.1, 126.2, 115.7, 115.6, 99.8, 48.6, 47.0, 34.7, 24.9, 20.9; LRMS (EI): [m/z] 351 (43%) [M⁺], 296 (20%), 214 (34%), 109 (100%), 67 (33%), 51 (2%); HRMS (ESI): [m/z] berechnet für [C₂₂H₂₃F₁N₁O₂] 352.1707, gefunden 352.1707.

1-(Allyloxy)-3,3-dimethyl-5-phenyl-1H-pyrrol-2(3H)-on (II-109)

Durch Zyklisierung von II-**95** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**109** als weißer Feststoff (24 mg, 0.055 mmol, 76%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/9:1, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.63 – 7.59 (m, 2H), 7.38 – 7.29 (m, 3H), 6.06 (ddt, J = 17.2, 10.5, 5.8 Hz, 1H), 5.60 (s, 1H), 5.34 (dq, J = 17.3, 1.6 Hz, 1H), 5.22 (ddd, J = 10.5, 2.8, 1.2 Hz, 1H), 4.55 (dt, J = 5.7, 1.3 Hz, 2H), 1.53 (s, 1H), 1.38 (s, 6H); ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 163.2, 151.6, 134.5, 129.4, 128.7, 125.4, 117.8, 109.4, 75.6, 45.3, 27.8; HRMS (ESI): [m/z] berechnet für [C₁₅H₁₇O₂N₁Na₁] 266.1151, gefunden 266.1151.

(Z)-2-(Allyloxy)-3-benzyliden-2-azaspiro[4.5]decan-1-on (II-124)

Durch Zyklisierung von II-**122** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**124** als farbloses Öl (18 mg, 0.060 mmol, 60%) erhalten.

DC: $R_f = 0.75$, (PE:EtOAc/8:2, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.58 (dd, J = 8.2, 1.0 Hz, 2H), 7.35 – 7.25 (m, 2H), 7.18 – 7.10 (m, 1H), 6.05 (ddt, J = 17.3, 10.6, 5.6 Hz, 1H), 5.45 (t, J = 1.4 Hz, 1H), 5.35 (dq, J = 17.3, 1.7 Hz, 1H), 5.21 (ddd, J = 10.5, 3.0, 1.3 Hz, 1H), 4.54 (dt, J = 5.6, 1.4 Hz, 2H), 2.76 (d, J = 1.5 Hz, 2H), 1.80 – 1.51 (m, 7H), 1.40 – 1.26 (m, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 162.1, 150.7, 134.9, 134.5, 128.6, 128.4, 126.3, 117.4, 103.5, 75.4, 42.9, 40.3, 34.9, 25.5, 22.8; LRMS (EI):[m/z] 297 [M⁺] (100%), 242 (25%), 197 (26%), 118 (50%), 90 (48%), 67 (25%); HRMS (ESI): [m/z] berechnet für [C₁₉H₂₃O₂N₁Na₂] 320.1621, gefunden 320.1621.

2-(Allyloxy)-3-methylen-2-azaspiro[4.5]decan-1-on (II-123)

Durch Zyklisierung von II-**119** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**123** als farbloses Öl (19 mg, 0.058 mmol, 63%) erhalten.

DC: $R_f = 0.78$, (PE:EtOAc/8:2, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 6.01 (ddt, J = 16.3, 10.4, 5.9 Hz, 1H), 5.28 (dq, J = 17.3, 1.5 Hz, 1H), 5.18 (ddd, J = 10.4, 2.7, 1.1 Hz, 1H), 4.68 (dd, J = 4.1, 1.9 Hz, 1H), 4.48 (dt, J = 5.9, 1.3 Hz, 2H), 4.19 (dd, J = 3.9, 1.7 Hz, 1H), 2.59 (t, J = 1.7 Hz, 2H), 1.79 – 1.50 (m, 7H), 1.39 – 1.24 (m, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 162.0, 157.4, 134.4, 118.0, 87.5, 75.7, 43.9, 38.6, 34.9, 25.5, 22.8; **LRMS** (EI): [m/z] 221 [M⁺] (38%), 180 (10%), 166 (100%), 149 (62%), 121 (48%), 107 (9%), 93 (10%), 79 (15%), 67 (11%), 55 (10%); **HRMS** (ESI): [m/z] berechnet für [C₁₃H₂₀O₂N₁] 222.1489, gefunden 222.1489.

(Z)-5-Benzyliden-2-methyl-2,5-dihydroisoxazol (II-129)

Durch Zyklisierung von II-**118** nach der allgemeinen Vorschrift **F 2.3** wurde Verbindung II-**129** als farbloses Öl (9 mg, 0.0519 mmol, 30%) erhalten.

DC: $R_f = 0.90$, (PE:EtOAc/7:3, [UV], [CAM]); ¹H-NMR (600 MHz, CDCl₃): δ [ppm] 7.41 – 7.36 (m, 4H), 7.31 – 7.26 (m, 1H), 6.73 – 6.68 (m, 1H), 6.22 (dd, J = 3.5, 1.8 Hz, 1H), 6.20 – 6.18 (m, 1H), 3.65 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ [ppm] 134.9, 133.6, 128.9, 128.6, 126.9, 123.8, 108.9, 108.0, 35.3.

V-2.4 Diastereoselektive Dehydrogenierung von β-Oxonitrilen mittels IBX

V-2.4.1 Synthese von β -Oxonitrilen

Nonanitril

`CN $C_9H_{17}N$ 139,24 g/mol

Octyliodid (3.0 g, 12.493 mmol) und Kaliumcyanid (895 mg, 13.743 mmol) wurden in Ethylenglycol (25 mL) suspendiert und für 2 h auf 100°C erhitzt. Nach dem Abkühlen der Reaktionsmischung auf 23°C wurde Wasser (400 mL) zugegeben und die Mischung wurde mit CH₂Cl₂ (3x 100 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/95:5) gereinigt. Die Verbindung wurde als gelbes Öl (1.439 g, 10.335 mmol, 83%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.³⁸²

DC: $R_f = 0.42$, (Pentan:EtOAc/ 95:5, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 2.31 (t, J = 7.2 Hz, 2H), 1.63 (dt, J = 19.8, 7.3 Hz, 2H), 1.48 – 1.35 (m, 2H), 1.32 – 1.13 (m, 8H), 0.86 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 120.1, 31.9, 29.2, 28.9, 28.9, 25.6, 22.8, 17.3, 14.3.

Allgemeine Vorschrift A 2.4 zur *Thorpe*-Kondensation von Nitrilen und Carbonsäureestern: 2-Benzyl-3-(furan-2-yl)-3-oxopropanitril (III-67)

C₁₄H₁₁NO₂ 225,24 g/mol

3-Phenylpropanitril **X** (520 µL, 3.965 mmol) wurde unter Argonatmosphäre in trockenem THF (13.2 mL) gelöst, KOtBu (857 mg, 11.894 mmol) wurde zugegeben und die Mischung wurde für 5 min bei 23°c gerührt. Anschließend wurde Methyl-furan-2-carboxylat (1.696 mL, 15.860 mmol) Zugegeben und die Mischung wurde für 2.5 h bei 23°c gerührt. Die Reaktion wurde durch Zugabe von 1.0 M HCl-Lösung (50 mL) abgebrochen und mit EtOAc (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand

wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/9:1) gereinigt. Verbindung III-**67** wurde als gelbes Öl (641 mg, 2.8458 mmol, 72%) erhalten.

DC: $R_f = 0.1$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.64 (d, J = 0.7 Hz, 1H), 7.36 (d, J = 3.6 Hz, 1H), 7.33 – 7.25 (m, 5H), 6.60 (dd, J = 3.6, 1.6 Hz, 1H), 4.37 (dd, J = 8.8, 6.1 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.33 (dd, J = 13.9, 6.0 Hz, 1H), 3.22 (dd, J = 13.9, 8.9 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 178.8, 150.6, 148.0, 135.9, 129.2, 129.1, 127.9, 120.2, 116.7, 113.5, 42.3, 35.6; **IR** (ATR): \tilde{V} [cm⁻¹] = 3156, 3106, 3066, 3031, 2891, 2244, 2158, 2031, 1979, 1688, 1561, 1494, 1467, 1455, 1394, 1294, 1217, 1175, 1087, 1059, 1035, 1014, 958, 923, 877, 846, 780, 772, 743, 696; **LRMS** (EI): [m/z] 225 (30%) [M⁺], 208 (1%), 196 (5%), 130 (17%), 95 (100%), 91 (34%), 77 (4%), 65 (6%), 51 (4%). **HRMS** (EI): [m/z] berechnet für [C₁₄H₁₁N₁O₂Na₁ (M⁺)] 248.0682, gefunden 248.0682.

2-Benzyl-3-oxo-5-phenylpentanitril (III-65)

Durch *Thorpe*-Kondensation von 3-Phenylpropionitril mit Ethyldihydrozimtsäureester nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**65** als weißer Feststoff (1.643 g, 6.239 mmol, 72%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.³²⁵

DC: $R_f = 0.5$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹H-NMR (250 MHz, CDCl₃): δ [ppm] 7.36 – 7.24 (m, 5H), 7.22 – 7.06 (m, 5H), 3.55 (dd, J = 8.3, 5.6 Hz, 1H), 3.10 (qd, J = 13.9, 7.0 Hz, 2H), 2.96 – 2.73 (m, 4H); ¹³C-NMR (63 MHz, CDCl₃): δ [ppm] 199.9, 140.1, 135.7, 129.2, 129.2, 128.9, 128.5, 127.9, 126.7, 117.3, 46.1, 43.7, 35.1, 29.5; IR (ATR): \tilde{V} [cm⁻¹] = 3088, 3061, 3029, 2954, 2923, 2853, 2246, 1721, 1603, 1495, 1455, 1439, 1393, 1370, 1338, 1316, 1228, 1211, 1189, 1149, 1081, 1066, 1029, 991, 946, 936, 769, 749, 998, 676; LRMS (EI): [m/z] 263 (4%) [M⁺], 235 (25%) [M⁺ –CN], 133 (27%), 105 (93%), 91 (100%), 77 (8%), 65 (7%), 51 (4%); HRMS (ESI): [m/z] berechnet für [C₁₈H₁₇O₁N₁Na₁ (M⁺)] 286.1202, gefunden 286.1202.

2-Benzyl-3-(4-bromophenyl)-3-oxopropanitril (III-71)

Durch *Thorpe*-Kondensation von 3-Phenylpropionitril mit Ethyl-4-Brombenzoat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**71** als weißer Feststoff (484 mg, 1.5405 mmol, 67%) erhalten.

DC: $R_f = 0.45$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.90 – 7.71 (m, 1H), 7.70 – 7.52 (m, 1H), 7.38 – 7.16 (m, 2H), 4.43 (dd, J = 8.6, 6.0 Hz, 1H), 3.28 (ddd, J = 22.6, 14.0, 7.3 Hz, 1H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 189.3, 135.9, 133.04, 132.7, 130.4, 130.3, 129.2, 129.2, 128.0, 116.9, 42.0, 35.6; **IR** (ATR): \tilde{V} [cm⁻¹] = 3057, 2910, 2239, 1694, 1583, 1497, 1483, 1453, 1400, 1305, 1284, 1259, 1198, 1177, 1111, 10711030, 999, 959, 948, 868, 840, 814, 781, 755, 722, 701; **LRMS** (EI):[m/z] 314 [M+] (1%), 313 (1%), 183 (16%), 131 (20%), 91 (100%), 84 (41%), 77 (5%), 65 (10%), 51 (22%), 45 (53%); **HRMS** (EI): [m/z] berechnet für [C₁₆H₁₂O₁N₁⁷⁹Br₁ (M⁺)] 313.0097, gefunden 313.0097.

2-Benzyl-3-cyclopropyl-3-oxopropanitril (III-69)

Durch *Thorpe*-Kondensation von 3-Phenylpropionitril mit Ethylcyclopropancarboxylat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**69** als weißer Feststoff (260 mg, 1.3049 mmol, 57%) erhalten.

DC: $R_f = 0.63$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 8.22 – 6.22 (m, 5H), 3.77 (dd, J = 8.6, 5.6 Hz, 1H), 3.25 (dd, J = 13.9, 5.6 Hz, 1H), 3.11 (dd, J = 13.9, 8.6 Hz, 1H), 2.18 (tt, J = 7.7, 4.5 Hz, 1H), 1.23 – 1.09 (m, 2H), 1.10 – 0.99 (m, 2H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 200.8, 136.0, 129.3, 129.1, 127.9, 117.5, 47.0, 35.3, 20.0, 13.5, 13.3; **IR** (ATR): \tilde{V} [cm⁻¹] = 3010, 2910, 2247, 1740, 1620, 1498, 1455, 1448, 1385, 1326, 1292, 1240, 1192, 1159, 1103, 1089, 1069, 1041, 1011, 970, 928, 870, 822, 801,

759, 703, 678; LRMS (EI): [m/z] 199 [M+] (7%), 130 (3%), 91 (17%), 69 (100%), 44 (9%), 41 (25%); HRMS
(EI): [m/z] berechnet für [C₁₃H₁₃O₁N₁ (M⁺)] 199.0992, gefunden 199.0992.

Methyl-3-cyano-2-oxo-4-phenylbutanoat (III-73)

Durch *Thorpe*-Kondensation von 3-Phenylpropionitril mit Dimethyloxalat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**73** als farbloses Öl (240 mg, 1.104 mmol, 48%) als sein Enol-Tautomerens erhalten.

DC: $R_f = 0.12$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.43 – 7.16 (m, 5H), 5.85 (s, 1H, br), 3.98 (s, 2H), 3.95 (s, 3H); **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3216, 3026, 2960, 2226, 1708, 1642, 1602, 1494, 1438, 1355, 1339, 1326, 1264, 1227, 1166, 1153, 1077, 1009, 958, 917, 872, 805, 781, 722, 694, 674; **LRMS** (EI): [m/z] 217 [M+] (12%), 158 (55%), 130 (22%), 105 (31%), 91 (99%), 77 (17%), 60 (27%), 45 (41%), 44 (46%); **HRMS** (EI): [m/z] berechnet für [C₁₂H₁₁O₃N₁ (M⁺)] 217.0733, gefunden 217.0733.

2-Benzyl-3-oxopropanitril (III-72)

Durch *Thorpe*-Kondensation von 3-Phenylpropionitril mit Ethylformiat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**72** als blass-gelbes Öl (226 mg, 1.4197 mmol, 62%) als 1:1-Mischung von Keto-Enol-Tautomeren erhalten.

DC: $R_f = 0.11$, (Pentan:EtOAc/ 8:2, [KMnO₄]); Ketoform: ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 9.67 (d, J = 0.6 Hz, 1H), 7.47 – 7.21 (m, 5H), 3.74 (dd, J = 8.5, 5.7 Hz, 1H), 3.25 (ddd, J = 22.6, 14.1, 7.1 Hz, 2H); Enolform: ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.56 – 7.11 (m, 5H), 6.75 (s, 1H), 3.56 (s, 2H), 3.43 (s, 1H); **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3280, 3065, 3033, 2931, 2215, 1732, 1704, 1661, 1495, 1455, 1375, 1198, 1175, 1106, 1075, 1042, 1028, 914, 731; **LRMS** (EI): [m/z] 159 [M+] (18%), 130 (12%), 91 (100%), 78 (16%), 65

(10%), 51 (7%); **HRMS** (EI): [m/z] berechnet für $[C_9H_9N_1 (M^+-CO)]$ 159.0679, gefunden 159.0676; berechnet für $[C_{10}H_9O_1N_1 (M^+)]$ 187.0628, gefunden 187.0635.

3-(Furan-2-yl)-2-methyl-3-oxopropanitril (III-74)

Durch *Thorpe*-Kondensation von Propionitril mit Methylfuran-2-carboxylat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**74** als farbloses Öl (265 mg, 1.7767 mmol, 49%) erhalten.

DC: $R_f = 0.27$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.65 (dd, J = 1.7, 0.7 Hz, 1H), 7.39 (dd, J = 3.7, 0.7 Hz, 1H), 6.61 (dd, J = 3.7, 1.7 Hz, 1H), 4.19 (q, J = 7.3 Hz, 1H), 1.62 (d, J = 7.3 Hz, 3H). ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 179.7, 150.3, 147.9, 120.0, 117.9, 113.4, 34.2, 14.9; **LRMS** (EI): [m/z] 149 [M+] (17%), 96 (40%), 95 (100%), 67 (18%), 51 (21%), 40 (70%); **HRMS** (EI): [m/z] berechnet für [C₈H₇O₂N₁ (M⁺)] 149.0471, gefunden 149.0474.

3-(Furan-2-yl)-2-methyl-3-oxobutanitril (III-75)

Durch *Thorpe*-Kondensation von Butanitril mit Methylfuran-2-carboxylat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**75** als farbloses Öl (249 mg, 1.526 mmol, 53%) erhalten.

DC: $R_f = 0.32$, (Pentan:EtOAc/ 8:2; [KMnO₄]); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] 7.64 (dd, J = 1.7, 0.7 Hz, 1H), 7.38 (dd, J = 3.7, 0.7 Hz, 1H), 6.60 (dd, J = 3.7, 1.7 Hz, 1H), 4.12 (dd, J = 7.9, 6.1 Hz, 1H), 2.22 – 1.49 (m, 2H), 1.14 (t, J = 7.4 Hz, 3H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 179.7, 150.6, 147.2, 119.9, 117.0, 113.4, 41.9, 23.6, 11.7; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3143, 3125, 3099, 2974, 2939, 2253, 1713, 1864, 1630, 1464, 1396, 1345, 1326, 1296, 1259, 1215, 1168, 1111, 1085, 1049, 1031, 997, 942, 921, 880, 856, 794, 765, 729; **LRMS** (EI): [m/z] 163 [M+] (5%), 135 (7%), 96 (5%), 95 (100%), 40 (16%); **HRMS** (EI): [m/z] berechnet für [C₉H₉O₂N₁ (M⁺)] 163.0628, gefunden 163.0625.

3-(Furan-2-yl)-2-methyl-3-oxononanitril (III-76)

Durch *Thorpe*-Kondensation von Nonanitril mit Methylfuran-2-carboxylat nach der allgemeinen Vorschrift **A 2.4** wurde Verbindung III-**76** als farbloses Öl (373 mg, 1.598 mmol, 74%) erhalten.

DC: $R_f = 0.48$, (Pentan:EtOAc/ 8:2, [UV], [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.64 (dd, J = 1.7, 0.7 Hz, 1H), 7.38 (dd, J = 3.7, 0.7 Hz, 1H), 6.61 (dd, J = 3.7, 1.7 Hz, 1H), 4.33 – 3.97 (m, 1H), 1.97 (dd, J = 15.2, 7.8 Hz, 2H), 1.60 – 1.44 (m, 2H), 1.39 – 1.14 (m, 8H), 0.85 (t, J = 6.8 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 179.8, 150.6, 147.8, 119.9, 117.2, 113.4, 40.5, 31.8, 29.9, 29.5, 29.1, 27.3, 22.8, 14.3. IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3148, 3128, 3096, 2954, 2925, 2853, 2253, 1663, 1562, 1462, 1394, 1342, 1295, 1274, 1243, 1209, 1196, 1166, 1120, 1107, 1089, 1065, 1041, 1013, 981, 918, 886, 791, 767, 722, 700; **LRMS** (EI): [m/z] 233 [M+] (2%), 204 (2%), 180 (2%), 165 (2%), 148 (6%), 136 (10%), 135 (75%), 123 (6%), 110 (2%), 97 (3%), 96 (10%), 95 (99%), 55 (5%); **HRMS** (EI): [m/z] berechnet für [C₁₄H₁₉O₂N₁ (M⁺)] 233.1410, gefunden 233.1413.

Allgemeine Vorschrift **B 2.4** zur Substitution von Carbonsäurechloriden mit Nitrilen: **2-Benzyl-3-** (tertbutyl)-3-oxopropanitril (III-68)

N,*N*-Diisopropylamin (0.63 mL, 4.48 mmol) wurde unter Argonatmosphäre in trockenem THF (4 mL) gelöst und bei -78°C tropfenweise mit *n*BuLi (1.79 ml; 4.48 mmol, 2.5 M in Hexan) versetzt. Die Mischung wurde für 10 min bei -78°C und für weitere 15 min bei 0°C gerührt, bevor erneut auf -78°C abgekühlt und eine Lösung von Hydrocinnaminnitril (0.533 mL, 4.07 mmol) in trocknem THF (1.5 mL) langsam tropfenweise zugegeben wurde. Die Mischung wurde für 15 min bei -78°C und für weitere 15 min bei 0°C gerührt, bevor erneut auf -78°C abgekühlt und in bei -78°C und für weitere 15 min bei 0°C gerührt, bei -78°C und für weitere 15 min bei -78°C und für weitere 15 min bei 0°C gerührt, bei -78°C und für weitere 15 min bei 0°C gerührt, bei -78°C und für weitere 15 min bei -78°C und für weitere 15 min bei 0°C gerührt, bei -78°C und für weitere 15 min bei -78°C und für

trockenem THF (1.0 mL) tropfenweise zugegeben wurde. Die Mischung wurde für 2 h bei -78°C gerührt, durch Zugabe von gesättigter Ammoniumchloridlösung (20 mL) abgebrochen und mit CH₂Cl₂ (3x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/95:5 - 9:1) gereinigt. Verbindung III-**68** wurde als blass-gelber Feststoff (518 mg, 2.401 mmol, 59%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸³

DC: R_f = 0.44, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.43 – 7.22 (m, 5H), 4.03 (t, *J* = 7.5 Hz, 1H), 3.19 (qd, *J* = 13.6, 7.5 Hz, 2H), 1.11 (s, 9H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 204.8, 136.2, 129.1, 128.9, 127.6, 117.0, 45.5, 38.8, 36.0, 25.7.

2-Benzyl-3-(napth-2-yl)-3-oxopropanitril (III-70)

Durch Reaktion von 3-Phenylpropionitril Naphthoylchlorid nach der allgemeinen Vorschrift **B 2.4** wurde Verbindung III-**70** als farbloses Öl (345.8 mg, 1.91 mmol, 100%) erhalten.

DC: $R_f = 0.14$, (Pentan:EtOAc/ 9:1, [UV], [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.53 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.02 – 7.90 (m, 1H), 7.86 (dd, J = 7.3, 1.0 Hz, 1H), 7.63 (dddd, J = 19.1, 8.1, 6.9, 1.4 Hz, 2H), 7.54 (dd, J = 8.1, 7.4 Hz, 1H), 7.39 – 7.21 (m, 6H), 4.65 (dd, J = 8.5, 6.0 Hz, 1H), 3.39 (ddd, J = 22.4, 13.9, 7.2 Hz, 2H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 193.2, 136.1, 134.7, 134.3, 132.7, 130.7, 129.3, 129.2, 129.0, 128.9, 128.7, 127.9, 127.3, 125.6, 124.4, 117.3, 44.9, 36.1. LRMS- und HRMS-Daten konnten von dieser Verbindung nicht erhalten werden.

2-Benzyl-3-(phenyl)-3-oxopropanitril (III-66)

Durch Reaktion von 3-Phenylpropionitril Benzoylchlorid nach der allgemeinen Vorschrift **B 2.4** wurde Verbindung III-**66** als farbloses Öl (249 mg, 1.526 mmol, 70%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁴

DC: $R_f = 0.24$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] 7.98 (dt, J = 8.6, 1.7 Hz, 2H), 7.73 – 7.62 (m, 1H), 7.61 – 7.48 (m, 2H), 7.40 – 7.26 (m, 5H), 4.54 (dd, J = 8.8, 5.8 Hz, 1H), 3.33 (ddd, J = 22.8, 14.0, 7.3 Hz, 2H). **LRMS** (EI):[m/z] 235 [M+] (10%), 206 (7%), 105 (100%), 77 (31%), 40 (7%). **HRMS** (ESI): [m/z] berechnet für [C₁₆H₁₃N₁O₁Na₁ (M+)]258.0889, gefunden 258.0889.

V-2.4.2 Dehydrogenierung von β-Oxonitrilen mittels IBX

Allgemeine Vorschrift **C 2.4** zur Dehydrogenierung von β-Oxonitrilen in Gegenwart von IBX: **(E)-2-Benzyliden-3-oxo-5-phenylpentanitril (**III-**77)**

IBX (80.3 mg, 0.285 mmol) wurde in DMSO (506 μ L) gelöst und tropfenweise mit Wasser (126 μ L) versetzt. Die resultierende Lösung wurde direkt zu 2-Benzyl-3-oxo-5-phenylpentanitril (50 mg, 0.190 mmol) in Substanz gegeben und für 2 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von CH₂Cl₂ (10 mL) abgebrochen und für 20 min bei 23°C gerührt. Der entstandene Niederschlag wurde abfiltriert und mit (10 mL) gewaschen. Das Filtrat wurde mit Wasser (20 mL) versetzt, die Phasen wurden getrennt und die wässrige Phase mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* von Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/9:1) gereinigt. Verbindung III-**77** wurde als gelbes Öl (47 mg, 0.179 mmol, 95%, E:Z>99:1) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.³²⁵

DC: $R_f = 0.36$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃): 8.15 (s, 1H), 8.05 – 7.79 (m, 1H), 7.66 – 7.37 (m, 2H), 7.36 – 7.06 (m, 3H), 3.23 (t, ³J_{HH} = 7.2 Hz, 1H), 3.02 (t, ³J_{HH} = 7.4 Hz, 1H). ¹³**C-NMR** (63 MHz, CDCl₃): 192.5, 153.2, 140.2, 133.5, 131.6, 131.4, 129.3, 128.6, 128.4, 126.4, 117.2, 109.3, 42.2, 29.7. **IR** (ATR): \tilde{V} [cm⁻¹] = 2914, 2894, 2215, 1697, 1586, 1564, 1492, 1448, 1432, 1375, 1321, 1289, 1267, 1141, 1097, 1076, 1046, 1033, 1009, 992, 962, 787, 757, 722, 685. **LRMS** (EI): [m/z]: 261 (48%) [M+], 260 (60%), 170 (18%), 156 (10%), 133 (24%), 128 (22%), 105 (69%), 91 (100%); **HRMS** (EI): [m/z] berechnet für [C₁₈H₁₅N₁O₁ (M+)] 261.1154, gefunden 261.1152.

(E)-2-(Furan-2-carbonyl)-3-phenylacrylonitril (III-79)

Durch Dehydrogenierung von III-**67** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**79** als gelbes Öl (40 mg, 0.179 mmol, 80%, E:Z>99:1) erhalten. Dieses Experiment wurde auch im Multi-Gramm-Maßstab (2.719 g, 12.179 mmol, 77%, E:Z>99:1) durchgeführt.

DC: $R_f = 0.35$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] 8.36 (s, 1H), 8.04 (d, J = 7.0 Hz, 2H), 7.75 (dd, J = 5.6, 2.7 Hz, 2H), 7.65 – 7.42 (m, 3H), 6.63 (dd, J = 3.7, 1.7 Hz, 1H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 173.2, 156.1, 150.8, 148.3, 133.7, 132.1, 131.6, 129.5, 121.8, 117.5, 113.0, 107.8; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3143, 3055, 2321, 1643, 1564, 1553, 1496, 1454, 1445, 1384, 1354, 1298, 1235, 1208, 1195, 1171, 1111, 1090, 1033, 965, 895, 884, 784, 757, 733, 679; **LRMS** (EI): [m/z] 222 (42%) [M⁺], 214 (16%), 118 (12%), 105 (14%), 95 (99%), 91 (41%), 77 (16%), 43 (11%); **HRMS** (EI): [m/z] **berechnet für** [C₁₄H₈O₂N₁ (M⁺)] 222.0550, gefunden 222.0550.

(E)-2-(1-Naphthoyl)-3-phenylacrylonitril (III-82)

Durch Dehydrogenierung von III-**70** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**82** als blass-gelbes Öl (20 mg, 0.070 mmol, 57%, E:Z>99:1) erhalten.

DC: $R_f = 0.70$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.07 – 7.85 (m, 2H), 7.75 (dd, J = 8.1, 1.5 Hz, 2H), 7.68 – 7.59 (m, 1H), 7.57 – 7.49 (m, 4H), 7.39 – 7.24 (m, 3H), 6.27 (s, 1H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 195.0, 148.5, 134.2, 133.9, 133.9, 133.8, 131.5, 131.1, 130.7, 130.2, 129.1, 128.8, 128.7, 127.7, 127.3, 126.9, 125.5, 124.5, 120.0. LRMS- und HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

(E)-2-Benzoyl-3-phenylacrylonitril (III-78)

Durch Dehydrogenierung von III-**66** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**78** als gelbes Öl (35 mg, 0.150 mmol, 70%, E:Z>99:1) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁵

DC: $R_f = 0.29$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.04 (s, 1H), 8.01 (d, J = 7.5 Hz, 2H), 7.88 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.53 – 7.47 (m, 4H); ¹³**C**-**NMR** (63 MHz, CDCl₃): δ [ppm] 189.1, 155.7, 136.0, 133.6, 133.6, 132.0, 131.3, 129.5, 129.5, 128.9, 117.1, 110.4; **IR** (ATR): \tilde{V} [cm⁻¹] 3065, 3031, 2339, 1694, 1675, 1594, 1580, 1496, 1448, 1414, 1394, 1316, 1298, 1256, 1178, 1100, 689; **LRMS** (EI):[m/z] 233 [M+] (50%), 206 (7%), 105 (100%), 77 (54%), 51 (12%); **HRMS** (ESI) [m/z] berechnet für [C₁₆H₁₁O₁N₁Na₁ (M⁺)] 256.0733, gefunden 256.0733.

(E)-2-Benzyliden-4,4-dimethyl-3-oxopentanitril (III-80)

Durch Dehydrogenierung von III-**68** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**80** als weißer Feststoff (25 mg, 0.173 mmol, 72%, E:Z>99:1) erhalten.

DC: $R_f = 0.62$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.21 (s, 1H), 8.07 – 7.85 (m, 2H), 7.67 – 7.35 (m, 3H), 1.41 (s, 9H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 198.4, 156.4, 133.2, 132.3, 131.4, 129.4, 118.5, 107.6, 44.9, 26.7; **LRMS** (EI):[m/z] 213 [M+] (11%), 185 (17%), 157 (40%), 129 (87%), 102 (21%), 77 (16%), 57 (100%), 43 (41%); **HRMS** (EI): [m/z] berechnet für [C₁₄H₁₅O₁N₁] 213.1144, gefunden 213.1148.

(E)-2-(4-Bromobenzoyl)-3-phenylacrylonitril (III-83)

Durch Dehydrogenierung von III-**71** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**83** als gelber Feststoff (29 mg, 0.092 mmol, 49%, E:Z>99:1) erhalten.

DC: $R_f = 0.33$, (Pentan:EtOAc/ 95:5, [KMnO₄); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.06 (s, 1H), 8.02 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.83 – 7.71 (m, 2H), 7.71 – 7.62 (m, 2H), 7.60 – 7.44 (m, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 187.9, 156.1, 134.8, 133.8, 132.3, 132.0, 131.4 131.0, 129.6, 128.9, 117.0, 109.8. **IR** (ATR): \tilde{V} [cm⁻¹] = 3085, 3052, 3027, 2919, 2850, 2209, 1603, 1583, 1565, 1496, 1484, 1448, 1397, 1371, 1266, 1209, 1179, 1115, 1098, 1067, 1010, 961, 947, 842, 808, 768, 742, 689; **LRMS** (EI): [m/z] 312 [M+] (41%), 310 (45%), 283 (1%), 232 (39%), 184 (100%), 182 (99%), 156 (44%), 154 (40%), 127 (5%), 102 (7%), 76 (25%), 51 (10%); **HRMS** (ESI): [m/z] berechnet für [C₁₄H₈O₂N₁ (M⁺)] 333.9838, gefunden 333.9838.

(E)-2-(Cyclopropancarbonyl)-3-phenylacrylonitril (III-81)

Durch Dehydrogenierung von III-**69** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**81** als gelber Feststoff (30 mg, 0.152 mmol, 80%, E:Z>99:1) erhalten.

DC: $R_f = 0.63$, (Pentan:EtOAc/ 95:5, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 8.15 (s, 1H), 8.00 (dd, J = 7.9, 1.6 Hz, 2H), 7.69 - 7.37 (m, 3H), 2.68 (tt, J = 7.7, 4.5 Hz, 1H), 1.26 (tt, J = 4.6, 2.4 Hz, 2H), 1.22 - 1.06 (m, LRMS (ESI): [m/z] 198 [M+H⁺]; HRMS (ESI): [m/z] berechnet für [C₁₃H₁₁N₁O₁Na₁ (M⁺)] 220.0733, gefunden 220.0733.

(E)-2-Formyl-3-phenylacrylonitril (III-84)

Durch Dehydrogenierung von III-**72** nach der allgemeinen Vorschrift **C 2.4** wurde Verbindung III-**84** als weißer Feststoff (13 mg, 0.082 mmol, 44%, E:Z>99:1) erhalten.

DC: $R_f = 0.50$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR (360 MHz, CDCl₃):** δ [ppm] 9.59 (s, 1H), 8.15 – 7.93 (m, 2H), 7.89 (s, 1H), 7.73 – 7.40 (m, 3H); ¹³**C-NMR (91 MHz, CDCl₃):** δ [ppm] 201.0, 186.8, 158.9, 134.6, 131.6, 131.5, 129.8, 112.7; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 2923, 2851, 2219, 1687, 1602, 1590, 1572, 1452, 1406, 1322, 1299, 1220, 1189, 1168, 1153, 1100, 1001, 943, 849, 753, 674. LRMS- und HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

Dehydrogenierung von β-Oxonitrilen in Gegenwart von IBX-SO₃K: **(E)-2-Benzyliden-3-oxo-5**phenylpentanitril (III-77)

IBX-SO₃K (111 mg, 0.285 mmol) wurde in einer Mischung aus DMSO (506 μ L) und Wasser (126 μ L) suspendiert und mit 2-Benzyl-3-oxo-5-phenylpentanitril (50 mg, 0.190 mmol) versetzt. Die Reaktionsmischung wurde für 24 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von CH₂Cl₂ (10 mL) abgebrochen und für 20 min bei 23°C gerührt. Der entstandene Niederschlag wurde abfiltriert und mit (10 mL) gewaschen. Das Filtrat wurde mit Wasser (20 mL) versetzt, die Phasen wurden getrennt und die wässrige Phase mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* von Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde als gelbes Öl (42 mg, 0.160 mmol, 84%, E:Z>99:1) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.³²⁵

V-2.4.3 Ein-Topfsynthese von 3,4-Dihydro-2H-pyran-5-carbonitriln

Allgemeine Vorschrift **D 2.4** zur Ein-Topfsynthese von 3,4-Dihydro-2H-pyran-5-carbonitriln: *cis*-2-Ethoxy-6-phenethyl-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-90)

IBX (80.3 mg, 0.285 mmol) wurde in DMSO (506 μ L) gelöst und tropfenweise mit Wasser (126 μ L) versetzt. Die resultierende Lösung wurde direkt zu einer Lösung von 2-Benzyl-3-oxo-5-phenylpentanitril III-**65** (50 mg, 0.190 mmol) in Ethylvinylether (91.3 μ L, 0.945 mmol) gegeben und für 24 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von CH₂Cl₂ (10 mL) abgebrochen und für 20 min bei 23°C gerührt. Der entstandene Niederschlag wurde abfiltriert und mit (10 mL) gewaschen. Das Filtrat wurde mit Wasser (20 mL) versetzt, die Phasen wurden getrennt und die wässrige Phase mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* von Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/9:1) gereinigt. Verbindung III-**90** wurde als blass-gelber Feststoff (8 mg, 0.144 mmol, 76%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.36$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.35 – 7.17 (m, 10H), 7.02 – 6.95 (m, 2H), 4.99 (dd, ³J_{HH} = 8.7, ³J_{HH} = 2.1 Hz, 1H), 3.88 (dq, ³J_{HH} = 9.5, ³J_{HH} = 7.1 Hz, 1H), 3.60 (dd, ³J_{HH} = 10.2, ³J_{HH} = 6.6 Hz, 1H), 3.55 (dq, ³J_{HH} = 9.5, ³J_{HH} = 7.1 Hz, 1H), 3.02 – 2.90 (m, 2H), 2.89 – 2.76 (m, 2H), 2.20 (ddd, ³J_{HH} = 13.7, ³J_{HH} = 6.5, ³J_{HH} = 2.1 Hz, 1H), 1.82 (ddd, ³J_{HH} = 13.7, ³J_{HH} = 10.4, ³J_{HH} = 8.8 Hz, 1H), 1.21 (t, ³J_{HH} = 7.1 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 167.3, 140.7, 139.8, 128.7, 128.6, 128.5, 127.5, 127.4, 126.3, 118.5, 100.6, 88.6, 65.1, 39.2, 36.4, 35.2, 35.0, 32.9, 15.0; **IR:** [cm⁻¹] 3062, 3026, 2977, 2931, 2205, 1732, 1620, 1495, 1454, 1374, 1270, 1249, 1177, 1157, 1135, 1071, 1044, 1024, 1004, 945, 924, 873, 846, 763, 746, 697; **LRMS** (EI): [m/z] 333 (8%) [M⁺], 261 (15%), 260 (25%), 133 (20%), 105 (55%), 91 (100%), 77 (11%), 72 (21%); **HRMS** (EI): [m/z] berechnet für [C₂₂H₂₃O₂N₁ (M⁺)] 333.1723, gefunden 333.1719.

cis-2-Propoxy-6-phenethyl-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-91)

Durch Reaktion von III-**65** mit Propylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**91a** als farbloses Öl (46 mg, 0.132 mmol, 70%, *cis:trans*>99:1) zusammen mit dem korrespondieren Transdiastereomer III-**91b** (6 mg, 0.017 mmol, 9%, *trans:cis*>99:1) erhalten.

DC: $R_f = 0.18$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.32 (t, J = 7.5 Hz, 2H), 7.29 – 7.13 (m, 6H), 6.99 (d, J = 7.2 Hz, 2H), 4.98 (dd, J = 8.6, 1.8 Hz, 1H), 3.78 (dt, J = 9.1, 6.6 Hz, 1H), 3.60 (dd, J = 10.0, 6.7 Hz, 1H), 3.42 (dt, J = 9.2, 6.7 Hz, 1H), 2.97 (tt, J = 13.6, 6.8 Hz, 2H), 2.84 (ddd, J = 21.7, 13.8, 7.3 Hz, 2H), 2.21 (ddd, J = 13.7, 6.5, 1.8 Hz, 1H), 1.83 (ddd, J = 13.7, 10.1, 9.0 Hz, 1H), 1.58 (dd, J = 14.2, 7.1 Hz,2), 0.90 (t, J = 7.4 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] 167.6, 141.0, 140.0, 128.9, 128.9, 128.7, 127.7, 127.6, 126.6, 118.8, 101.0, 88.7, 71.5, 39.3, 36.5, 35.3, 33.1, 23.0, 10.7; **IR** (ATR): \tilde{V} [cm⁻¹] = 3062, 3027, 2964, 2930, 2881, 2205, 1733, 1621, 1495, 1454, 1435, 1373, 1269, 1242, 1176, 1157, 1134, 1071, 1039, 1027, 1002, 988, 953, 911, 880, 848, 731, 697; **LRMS** (EI):[m/z] 347 [M+] (0.5%), 260 (1%), 206 (1%), 177 (1%), 176 (9%), 150 (24%), 122 (24%), 105 (100%), 91 (93%), 77 (65%), 65 (15%), 51 (24%). **HRMS** (EI):[m/z] berechnet für [C₂₃H₂₅O₂N₁Na (M⁺ + Na)] 370.1778, gefunden 370.1778.

trans-2-Propoxy-6-phenethyl-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-91b)

DC: $R_f = 0.29$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.35 – 7.30 (m, 2H), 7.29 – 7.19 (m, 6H), 6.95 (d, J = 7.0 Hz, 2H), 5.04 (dd, J = 4.0, 2.4 Hz, 1H), 3.75 (dt, J = 9.2, 6.7 Hz, 1H), 3.66 (dd, J = 8.8, 6.5 Hz, 1H), 3.56 – 3.39 (m, 1H), 3.01 – 2.86 (m, 3H), 2.82 – 2.72 (m, 1H), 2.08 (ddd, J = 13.6, 5.9, 4.4 Hz, 1H), 1.76 (ddd, J = 13.5, 9.5, 2.4 Hz, 1H), 1.61 (dd, J = 14.2, 7.0 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H); ¹³**C**-**NMR** (125 MHz, CDCl₃): δ [ppm] 166.3, 141.6, 140.1, 129.0, 128.8, 128.8, 127.9, 127.5, 126.6, 119.0, 97.9, 88.6, 71.2, 36.0, 35.4, 33.3, 23.1, 10.7; **LRMS** (EI):[m/z] 347 [M+] (0.5%), 260 (1%), 206 (1%), 177

(1%), 176 (9%), 150 (24%), 122 (24%), 105 (100%), 91 (93%), 77 (65%), 65 (15%), 51 (24%); **HRMS** (EI):[m/z] berechnet für $[C_{23}H_{25}O_2N_1Na (M^+ + Na)]$ 370.1778, gefunden 370.1778.

cis-2-Butoxy-6-phenethyl-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-92a)

Durch Reaktion von III-**65** mit Butylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**92a** als farbloses Öl (47 mg, 0.130 mmol, 68.4%, *cis:trans*>99:1) zusammen mit dem korrespondieren Transdiastereomer III-**92b** (8 mg, 0.022 mmol, 11.6%, *trans:cis*>99:1) erhalten.

DC: R_f = 0.19, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.40 – 7.28 (m, 2H), 7.29 – 7.16 (m, 6H), 6.99 (d, *J* = 7.1 Hz, 2H), 4.98 (dd, *J* = 8.6, 2.0 Hz, 1H), 3.82 (dt, *J* = 9.4, 6.6 Hz, 1H), 3.60 (dd, *J* = 10.2, 6.5 Hz, 1H), 3.46 (dt, *J* = 9.4, 6.6 Hz, 1H), 3.02 – 2.90 (m, 2H), 2.83 (qd, *J* = 13.7, 7.4 Hz, 2H), 2.20 (ddd, *J* = 13.7, 6.5, 2.0 Hz, 1H), 1.82 (ddd, *J* = 13.7, 10.2, 8.8 Hz, 1H), 1.63 – 1.43 (m, 2H), 1.33 (dd, *J* = 15.0, 7.5 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] 167.6, 141.0, 140.0, 128.9, 128.9, 128.8, 127.7, 127.6, 126.6, 118.9, 101.0, 88.7, 69.6, 39.3, 36.6, 35.3, 33.2, 31.8, 19.4, 14.0; **IR** (ATR): \tilde{V} [cm⁻¹] = 3058, 3024, 2959, 2932, 2872, 2360, 2209, 1621, 1495, 1454, 1434, 1373, 1294, 1268, 1243, 1174, 1135, 1085, 1071, 1039, 1003, 950, 923, 912, 878, 846, 764, 746, 697; **LRMS** (EI):[m/z] 361 [M+] (18%), 287 (16%), 261 (38%), 260 (53%), 170 (12%), 105 (31%), 91 (100%), 85 (32%), 77 (16%), 57 (22%), 56 (42%), 41 (24%); **HRMS** (EI):[m/z] berechnet für [C₂₄H₂₇O₂N₁ (M⁺)] 361.2036, gefunden 361.2032.

cis-2-Butoxy-6-phenethyl-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-92b)

DC: R_f = 0.31, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] 7.37 – 7.29 (m, 2H), 7.30 – 7.16 (m, 6H), 6.96 (d, *J* = 7.1 Hz, 2H), 5.04 (dd, *J* = 3.8, 2.5 Hz, 1H), 3.80 (dt, *J* = 9.2, 6.7 Hz, 1H), 3.65 (dd, *J* = 8.8, 6.5 Hz, 1H), 3.53 (dt, *J* = 9.3, 6.6 Hz, 1H), 3.04 – 2.84 (m, 3H), 2.82 – 2.61 (m, 1H), 2.08 (ddd, *J* =

13.5, 5.9, 4.4 Hz, 1H), 1.75 (ddd, *J* = 13.4, 9.6, 2.3 Hz, 1H), 1.61 – 1.53 (m, 2H), 1.36 (dq, *J* = 14.9, 7.4 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] 166.3, 141.6, 140.1, 129.0, 128.8, 128.8, 127.9, 127.5, 126.6, 119.0, 98.0, 88.7, 69.3, 36.0, 35.4, 33.3, 31.8, 19.5, 14.1; **LRMS** (EI):[m/z] 361 [M+] (18%), 287 (16%), 261 (38%), 260 (53%), 170 (12%), 105 (31%), 91 (100%), 85 (32%), 77 (16%), 57 (22%), 56 (42%), 41 (24%); **HRMS** (EI):[m/z] berechnet für [C₂₄H₂₇O₂N₁(M⁺)] 361.2036, gefunden 361.2032.

cis-2-Ethoxy-6-(furan-2-yl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-94)

Durch Reaktion von III-**67** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**94** als farbloses Öl (49.2 mg, 0.1665 mmol, 75%, *cis:trans*>99:1) erhalten. Dieses Experiment wurde auch im Multi-Gramm-Maßstab (1.601 g, 5.421 mmol, 64%, *cis:trans*>99:1) durchgeführt.

DC: $R_f = 0.48$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.55 (dd, J = 1.7, 0.6 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.30 – 7.24 (m, 3H), 7.04 (d, J = 3.5 Hz, 1H), 6.50 (dd, J = 3.5, 1.8 Hz, 1H), 5.25 (dd, J = 8.1, 2.1 Hz, 1H), 4.03 (dq, J = 9.5, 7.0 Hz, 1H), 3.86 (dd, J = 9.7, 7.0 Hz, 1H), 3.69 (dq, J = 9.5, 7.1 Hz, 1H), 2.38 (ddd, J = 13.8, 7.0, 2.1 Hz, 1H), 2.08 (ddd, J = 13.8, 9.8, 8.2 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 153.7, 146.6, 144.7, 141.0, 129.0, 128.0, 127.8, 118.7, 113.8, 111.9, 101.0, 85.8, 65.6, 40.5, 36.6, 15.3; IR (ATR): \tilde{V} [cm⁻¹] = 3139, 2977, 2927, 2876, 2198, 1721, 1624, 1600, 1550, 1472, 1451, 1397, 1373, 1351, 1319, 1239, 1181, 1159, 1136, 1103, 1073, 1057, 1036, 1016, 973, 919, 881, 841, 749, 700; LRMS (EI):[m/z] 295 [M+] (8%), 249 (5%), 222 (10%), 214 (15%), 118 (20%), 95 (99%), 91 (80%), 77 (7%), 57 (34%), 43 (11%); HRMS (EI):[m/z] berechnet für [C₁₈H₁₇O₃N₁)] 295.1203, gefunden 295.1198.

cis-2-Propoxy-6-(furan-2-yl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-95)

Durch Reaktion von II-**67** mit Propylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**95** als farbloses Öl (47 mg, 0.151 mmol, 68%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.47$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.55 (dd, J = 1.7, 0.6 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 2H), 7.03 (d, J = 3.5 Hz, 1H), 6.50 (dd, J = 3.5, 1.8 Hz, 1H), 5.24 (dd, J = 8.0, 2.1 Hz, 1H), 3.93 (dt, J = 9.4, 6.6 Hz, 1H), 3.86 (dd, J = 9.6, 7.0 Hz, 1H), 3.56 (dt, J = 9.4, 6.7 Hz, 1H), 2.39 (ddd, J = 13.8, 7.0, 2.1 Hz, 1H), 2.09 (ddd, J = 13.8, 9.6, 8.0 Hz, 1H), 1.62 (dd, J = 14.1, 6.8 Hz, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 153.7, 146.7, 144.7, 141.0, 129.0, 128.0, 127.7, 118.8, 113.7, 111.9, 101.2, 85.7, 71.8, 40.4, 36.5, 23.0, 10.7; **IR** (ATR): \tilde{V} [cm⁻¹] = 3068, 3956, 2933, 2879, 2204, 1735, 1624, 1597, 1570, 1550, 1472, 1454, 1435, 1402, 1373, 1303, 1297, 1252, 1229, 1169, 1135, 1108, 1067, 1009, 986, 952, 898, 887, 833, 749, 700; **LRMS** (EI):[m/z] 309 [M+] (36%), 249 (23%), 222 (27%), 149 (10%), 118 (13%), 105 (11%), 95 (100%), 91 (58%), 86 (28%), 45 (26%); **HRMS** (EI): [m/z] berechnet für [C₁₉H₁₉O₃N₁] 309.1359,gefunden 309.1353.

cis-2-Butoxy-6-(furan-2-yl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-96)

Durch Reaktion von III-**67** mit Butylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**96** als farbloses Öl (52 mg, 0.160 mmol, 72%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.50$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] ¹H-NMR (360 MHz, CDCl₃) δ 7.55 (dd, J = 1.8, 0.7 Hz, 1H), 7.38 – 7.30 (m, 2H), 7.30 – 7.25 (m, 3H), 7.03 (d, J = 3.5 Hz, 1H), 6.50 (dd, J = 3.5, 1.8 Hz, 1H), 5.24 (dd, J = 8.0, 2.1 Hz, 1H), 3.97 (dt, J = 9.4, 6.5 Hz, 1H), 3.86 (dd, J = 9.5, 7.0 Hz, 1H), 3.60 (dt, J = 9.4, 6.6 Hz, 1H), 2.38 (ddd, J = 13.8, 7.0, 2.1 Hz, 1H), 2.08 (ddd, J = 13.8, 9.5, 8.0 Hz, 1H), 1.65 – 1.50 (m, 3H), 1.42 – 1.25 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 153.7, 146.7, 144.7, 141.0, 129.0, 128.0, 127.7, 118.8, 113.7, 111.9, 101.2, 85.7, 69.9, 40.4, 36.5, 31.8, 19.4, 14.0; IR (ATR): \tilde{V} [cm⁻¹] = 3031, 2957, 2933, 2873, 2204, 1621, 1604, 1546, 1478, 1457, 1436, 1397, 1375, 1319, 1306, 1225, 1184, 1159, 1132, 1108, 1073, 1009, 955, 901, 884, 830, 749, 698; LRMS (EI): [m/z] 323 [M+] (4%), 249 (3%), 214 (22%), 118 (20%), 105 (16%), 97 (100%), 95 (99%), 77 (13%), 41 (9%); HRMS (EI): [m/z] berechnet für [C₂₀H₂₁O₃N₁] 323.1516, gefunden 323.1517.

cis-2-Propoxy-6-(phenyl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-99)

Durch Reaktion von III-**66** mit Propylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**99** als gelbes Öl (37 mg, 0.117 mmol, 55%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.18$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] ¹H-NMR (250 MHz, CDCl₃) δ 7.91 – 7.76 (m, 2H), 7.57 – 7.42 (m, 3H), 7.43 – 7.31 (m, 5H), 5.34 (dd, J = 8.3, 2.1 Hz, 1H), 4.02 (dt, J = 9.3, 6.6 Hz, 1H), 3.92 (dd, J = 10.0, 6.9 Hz, 1H), 3.64 (dt, J = 9.3, 6.7 Hz, 1H), 2.47 (ddd, J = 13.7, 6.9, 2.1 Hz, 1H), 2.29 – 2.00 (m, 1H), 1.87 – 1.59 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 164.2, 141.2, 133.3, 131.1, 129.1, 128.6, 128.4, 128.0, 127.7, 119.6, 101.7, 88.3, 71.7, 40.7, 36.6, 23.1, 10.7; **LRMS** (EI): [m/z] 319 [M+] (11%), 259 (9%), 233 (6%), 156 (4%), 105 (100%), 77 (33%), 45 (14%); **HRMS** (EI):[m/z] berechnet für [C₂₁H₂₁O₂N₁] 319.1567, gefunden 319.1561.

cis-2-Butoxy-6-(phenyl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-100)

Durch Reaktion von II-**66** mit Butylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**100** als gelbes Öl (40 mg, 0.119 mmol, 56%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.19$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹H-NMR (250 MHz, CDCl₃): δ [ppm] 7.90 – 7.80 (m, 2H), 7.58 – 7.43 (m, 3H), 7.43 – 7.31 (m, 5H), 5.34 (dd, J = 8.3, 2.1 Hz, 1H), 4.07 (dt, J = 9.4, 6.5 Hz, 1H), 3.92 (dd, J = 10.0, 6.9 Hz, 1H), 3.69 (dt, J = 9.4, 6.5 Hz, 1H), 2.46 (ddd, J = 13.7, 6.9, 2.1 Hz, 1H), 2.29 – 1.97 (m, 1H), 1.64 (dd, J = 14.6, 6.5 Hz, 2H), 1.42 (dq, J = 14.2, 7.2 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C-NMR (63 MHz, CDCl₃): δ [ppm] 164.2, 141.2, 133.3, 131.1, 129.0, 128.6, 128.4, 127.9, 127.7, 119.6, 101.6, 88.3, 69.8, 40.6, 36.6, 31.8, 19.6, 14.0; LRMS (EI): [m/z] 333 [M+] (7%), 259 (9%), 235 (99%), 206 (6%), 193 (10%), 165 (10%), 105 (100%), 77 (45%); HRMS (EI): [m/z] berechnet für [C₂₂H₂₃O₂N₁] 333.1723, gefunden 333.1728.

cis-6-Cyclopropyl-2-ethoxy-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-103)

Durch Reaktion von III-**69** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**103** als farbloses Öl (45 mg, 0.167 mmol, 88%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.67$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.40 – 7.16 (m, 5H), 5.01 (dd, J = 8.5, 2.1 Hz, 1H), 3.83 (dq, J = 9.4, 7.1 Hz, 1H), 3.68 (dd, J = 10.3, 6.6 Hz, 1H), 3.62 – 3.41 (m, 1H), 2.25 (ddd, J = 13.7, 6.6, 2.1 Hz, 1H), 2.14 (tt, J = 8.1, 5.1 Hz, 1H), 1.91 (ddd, J = 13.7, 10.2, 8.6 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H), 1.12 – 0.98 (m, 1H), 0.97 – 0.72 (m, 3H); ¹³C-NMR (91 MHz, CDCl₃): δ [ppm] 168.0, 141.3, 129.0, 127.8, 127.6, 119.7, 101.0, 86.4, 65.3, 39.6, 36.8, 15.3, 14.0, 7.3, 6.4; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3016, 2977, 2953, 2891, 2203, 1607, 1495, 1454, 1382, 1360, 1347, 1305, 1275, 1244, 1204, 1171, 1128, 1090, 1077, 1038, 1024, 1001, 964, 898, 878, 849, 816,783, 763, 729, 699, 655; **LRMS** (EI): [m/z] 269 [M+] (20%), 223 (5%), 196 (17%), 156 (5%), 128 (6%), 91 (7%), 84 (11%), 72 (100%), 69 (42%), 44 (23%); **HRMS** (EI): [m/z] berechnet für [$C_{17}H_{19}O_2N_1$ (M⁺)] 269.1410, gefunden 269.1412.

cis-6-(4-Promophenyl)-2-ethoxy-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitril (III-101)

Durch Reaktion von III-**71** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**101** als farbloses Öl (37 mg, 0.096 mmol, 51%, *cis:trans*>4:1) erhalten.

DC: $R_f = 0.70$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.78 – 7.62 (m, 2.5H), 7.66 – 7.44 (m, 2.5H), 7.44 – 7.16 (m, 6.25H), 5.29 (dd, J = 8.5, 2.1 Hz, 1H), 4.43 (dd, J = 8.6, 6.0 Hz, 0.25H), 4.10 (q, J = 7.1 Hz, 1H), 4.11 – 3.99 (m, 1H), 3.84 (dd, J = 10.3, 6.8 Hz, 1.25H), 3.71 (dq, J = 9.4, 7.1 Hz, 1H), 2.40 (ddd, J = 13.8, 6.8, 2.1 Hz, 1.25H), 2.16 – 2.04 (m, 1H), 1.25 (td, J = 7.1, 5.8 Hz, 3.75H); ¹³**C**-**NMR** (91 MHz, CDCl₃): δ [ppm] 163.0, 140.8, 132.7, 132.0, 131.9, 130.4, 129.9, 129.2, 129.2, 127.9, 127.8, 125.6, 119.3, 101.6, 88.9, 65.6, 60.6, 40.8, 36.6, 21.3, 15.3; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3027, 2977, 2931, 2984, 2205, 1696, 1606, 1585, 1562, 1478, 1454, 1396, 1376, 1319, 1294, 1270, 1244, 1202, 1174, 1142, 1106, 1069, 1052, 1009, 970, 934, 911, 886, 840, 825, 762, 729, 698, 665; **LRMS** (EI): [m/z] 386 [M+] (11%), 385 (54%), 384 (15%), 383 (61%), 341 (16%), 340 (33%), 339 (93%), 338 (52%), 337 (85%), 314 (35%), 313 (96%), 312 (65%), 311 (62%), 310 (51%), 258 (35%), 233 (22%), 232 (79%); **HRMS** (EI): [m/z] berechnet für [C₂₀H₁₈O₂N₁⁷⁹Br₁ (M⁺)] 383.0515, gefunden 383.0523.

cis-Methyl-5-cyano-2-ethoxy-4-phenyl-3,4-dihydro-2H-pyran-6-carboxylat (III-102)

Durch Reaktion von III-**73** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**102** als farbloses Öl (10 mg, 0.034 mmol, 18%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.3$, (Pentan:EtOAc/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.53 – 7.07 (m, 5H), 5.24 (dd, J = 7.4, 2.3 Hz, 1H), 3.98 (ddd, J = 14.2, 9.4, 7.1 Hz, 1H), 3.91 (s, 3H), 3.81 (dd, J = 8.7, 7.1 Hz, 1H), 3.63 (dq, J = 9.5, 7.1 Hz, 1H), 2.36 (ddd, J = 14.0, 7.1, 2.3 Hz, 1H), 2.10 (ddd, J = 14.1, 8.8, 7.4 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 160.8, 152.6, 139.6, 129.1, 128.1, 128.0, 116.4, 101.1, 97.8, 65.8, 53.3, 40.6, 35.6, 15.1; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3027, 2978, 2933, 2214, 1733, 1614, 1584, 1495, 1437, 1368, 1282, 1247, 1217, 1163, 1113, 1083, 1062, 1039, 1024, 1001, 978, 948, 921, 882, 854, 826, 784, 756, 700; **LRMS** (EI):[m/z] 287 [M+] (10%),248 (7%), 231 (10%), 156 (25%), 128 (12%), 105 (9%), 91 (13%), 72 (100%), 44 (25%); **HRMS** (EI):[m/z] berechnet für [C₁₆H₁₇O₄N₁ (M⁺)] 287.1152, gefunden 287.1157

2-Ethoxy-6-(furan-2-yl)-3,4-dihydro-2H-pyran-5-carbonitril (III-93)

Durch Reaktion von III-**74** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**93** als farbloses Öl (29 mg,0.132 mmol, 69%) erhalten.

DC: $R_f = 0.73$, (Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.51 (s, 1H), 6.93 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.5, 1.8 Hz, 1H), 5.30 (t, J = 2.8 Hz, 1H), 3.88 (dq, J = 9.6, 7.1 Hz, 1H), 3.66 (dq, J = 9.7, 7.1 Hz, 1H), 2.60 (ddd, J = 17.2, 11.2, 6.4 Hz, 1H), 2.32 (ddd, J = 16.8, 6.3, 3.5 Hz, 1H), 1.99 (ddd, J = 9.8, 6.3, 3.1 Hz, 1H), 1.93 – 1.70 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H);¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 51.9, 147.2, 144.2, 119.9, 112.6, 111.7, 98.0, 81.9, 64.9, 25.6, 19.8, 15.3. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] = 3135, 2977, 2933, 2203, 1634, 1614, 1478, 1444, 1397, 1375, 1360, 1336, 1286, 1332, 1207, 1170, 1137, 1055, 1029, 1010, 973, 957, 934, 921, 907, 823, 797, 747, 699; **LRMS** (EI): [m/z] 219 [M+] (75%), 190 (10%), 175 (16%), 173 (20%), 148 (10%), 132 (7%), 95 (84%), 72 (99%), 44 (52%); **HRMS** (EI): [m/z] berechnet für [C₁₂H₁₃O₃N₁(M⁺)] 219.0890, gefunden 219.0888.

cis-2-Ethoxy-6-(furan-2-yl)-4-methyl-3,4-dihydro-2H-pyran-5-carbonitril (III-97)

Durch Reaktion von III-**75** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**97** als farbloses Öl (24 mg, 0.102 mmol, 54%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.72$,(Pentan:EtOAc/ 9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.63 – 7.37 (m, 1H), 6.95 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.5, 1.8 Hz, 1H), 5.18 (dd, J = 7.0, 2.4 Hz, 1H), 3.97 (dq, J = 9.5, 7.1 Hz, 1H), 3.65 (dq, J = 9.5, 7.1 Hz, 1H), 2.79 – 2.45 (m, 1H), 2.14 (ddd, J = 13.7, 6.7, 2.4 Hz, 1H), 1.71 (ddd, J = 13.7, 8.0, 7.0 Hz, 1H), 1.33 (d, J = 7.0 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H);¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 152.1, 146.9, 144.3, 119.1, 113.2, 111.7, 100.5, 87.4, 65.5, 34.7, 28.0, 20.3, 15.4; **LRMS** (EI): [m/z] 233 [M+] (45%), 218 (17%), 187 (13%), 95 (52%), 72 (100%), 44 (35%); **HRMS** (EI): [m/z] berechnet für [C₁₃H₁₅O₃N₁ (M⁺)] 233.1046, gefunden 233.1042.

cis-2-Ethoxy-6-(furan-2-yl)-4-heptyl-3,4-dihydro-2H-pyran-5-carbonitril (III-104)

334

Durch Reaktion von III-**76** mit Ethylvinylether nach der allgemeinen Vorschrift **D 2.4** wurde Verbindung III-**104** als farbloses Öl (37 mg, 0.121 mmol, 64%, *cis:trans*>99:1) erhalten.

DC: $R_f = 0.50$, (Pentan:EtOAc/ 9:1, [UV],[KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 7.51 (dd, J = 1.7, 0.7 Hz, 1H), 6.94 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.5, 1.8 Hz, 1H), 5.13 (dd, J = 7.6, 2.3 Hz, 1H), 3.99 (dq, J = 9.5, 7.1 Hz, 1H), 3.65 (tt, J = 9.5, 5.3 Hz, 1H), 2.68 – 2.40 (m, 1H), 2.11 (ddd, J = 13.6, 6.6, 2.3 Hz, 1H), 1.97 – 1.79 (m, 1H), 1.71 (ddd, J = 13.6, 8.8, 7.6 Hz, 2H), 1.51 – 1.02 (m, 8H), 0.96 – 0.76 (m, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 152.55, 146.9, 144.3, 119.1, 113.2, 111.7, 100.9, 86.9, 65.5, 33.9, 33.0, 32.0, 31.9, 29.3, 26.4, 22.8, 15.3, 14.3; **LRMS** (ESI): [m/z] 317.5 [M+]. HRMS-Daten konnten von dieser Verbindung nicht erhalten werden.

V-2.5 Chemoselektive Azidierung von 1,3-Dicarbonylen

Vorsicht, organische Azide können zur Schlagempfindlichkeit, spontanen oder durch elektrische, statische Aufladung induzierte Explosion neigen. Bei der Arbeit mit Aziden sollte geeignete Schutzausrüstung getragen werden (z.B. Gesichtsschild). Zudem sollten die Ansatzmengen möglichst klein gehalten werden. Bei den nachfolgend beschriebenen Experimenten wurde zwar nie eine Explosion beobachtet, jedoch sollte trotzdem vorsichtig mit den Substanzen hantiert werden.

V-2.5.1 Azidierung von 1,3-Dicarbonylen

Allgemeine Vorschrift **A 2.5** zur Azidierung von 1,3-Dicarbonylen in Gegenwart von IBX-SO₃K: **Ethyl-1**azido-2-oxocyclohexancarboxylat (IV-76)

Ethyl-2-oxocyclohexancarboxylat IV-**75** (25.0 mg, 147 µmol) wurde in DMSO (1 mL) gelöst und mit 1 M wässriger Natriumazid-Lösung (0.5 mL) versetzt, anschließend wurden nacheinander Natirumiodid (4.4 mg, 29.4 µmol, 20 mol%) und IBX-SO₃K (87.8 mg, 220 µmol) zugegeben und die Mischung wurde für 30 min bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Natriumthiosulfatlösung (10 mL) abgebrochen und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (10 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/95:5) gereinigt. Verbindung IV-**76** wurde als blass-gelbes Öl (28.1 mg, 133 µmol, 91%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten völlig überein.

DC: $R_f = 0.32$, (Pentan:Et₂O/9:1, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃) $\delta = 4.42 - 4.19$ (m, 2H), 2.67 - 2.58 (m, 1H), 2.52 - 2.36 (m, 2H), 2.01 - 1.89 (m, 1H), 1.86 - 1.70 (m, 4H), 1.31 (t, J = 7.1 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃) $\delta = 202.6$, 167.9, 62.9, 39.9, 35.7, 26.7, 21.6, 14.4; IR (ATR): $\tilde{\nu}$ [cm⁻¹] 2943, 2870, 2108, 1728, 1448, 1234, 1142, 1094, 1012, 855; **LRMS** (EI): [m/z] 183 (1%) [M⁺-N₂], 110 (68%), 82 (100%), 55 (70%); **HRMS** (EI): [m/z] berechnet für [C₉H₁₃O₃N (M⁺-N₂)] 183.0890, gefunden 183.0887.

Diethyl-2-azido-2-methylmalonat (IV-94)

Durch Azidierung von Diethyl-2-methylmalonat nach der allgemeinen Vorschrift **A 2.5** wurde Verbindung IV-**94** als farbloses Öl (26.3 mg, 122.0 μmol, 83%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten völlig überein.^{627a,b}

DC: $R_f = 0.55$, (Pentan:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃) $\delta = 1.30$ (t, J = 7.1 Hz, 6H), 1.55 (s, 3H), 4.29 (q, J = 7.1, 2H), 4.29 (q, J = 7.1, 2H); ¹³**C-NMR** (91 MHz, CDCl₃) $\delta = 14.1$, 20.6, 62.9, 68.4, 168.0; **IR** (ATR): \tilde{V} [cm⁻¹] 2986, 2360, 2116, 1743, 1466, 1448, 1380, 1367, 1271, 1229, 1173, 1146, 1108, 1014, 858; **LRMS** (EI): [m/z] 187 (1%) [M⁺-N₂], 141 (3%), 70 (6%), 42 (100%); **HRMS** (EI): [m/z] berechnet für [C₈H₁₃O₄N (M⁺-N₂)] 187.0839, gefunden 187.0835.

1-Azido-N-ethyl-2-oxocyclohexancarboxamid (IV-92)

Durch Azidierung von *N*-Ethyl-2-oxocyclohexancarboxamid nach der allgemeinen Vorschrift **A 2.5** wurde Verbindung IV-**92** als farbloses Öl (28.1 mg, 133.8 µmol, 91%) erhalten.

DC: $R_f = 0.50$, (Pentan/ Et₂O 7:3, [KMnO₄]; ¹H-NMR (360 MHz, CDCl₃) $\delta = 6.38$ (s, 1H), 3.36 – 3.19 (m, 2H), 2.90 (ddd, J = 14.0, 12.4, 6.0 Hz, 1H), 2.58 (dtd, J = 14.0, 4.2, 1.4 Hz, 1H), 2.50 – 2.37 (m, 1H), 2.29 – 2.16 (m, 1H), 2.06 (dddd, J = 16.4, 8.2, 4.0, 2.3 Hz, 1H), 1.89 (ddd, J = 13.2, 11.5, 4.2 Hz, 1H), 1.84 – 1.74 (m, 1H), 1.74 – 1.63 (m, 1H), 1.13 (t, J = 7.3 Hz, 3H); ¹³C-NMR (91 MHz, CDCl₃) $\delta = 204.3, 166.7, 75.2, 40.6, 37.2, 35.0, 26.8, 22.1, 14.8;$ **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] 3356 (br), 2938, 2870, 2101, 1720, 1652, 1520, 1448, 1377, 1353, 1243, 1151, 1121, 1110, 1029, 951, 830; **LRMS** (EI): [m/z] 182.14 [M⁺-N₂] (10%), 154 (13%), 111 (25%), 110 (42%), 83 (82%), 82 (97%), 72. (30%), 56 (35%), 55 (77%), 67 (14%), 54 (100%), 43 (64%); **HRMS** (EI): [m/z] berechnet für [C₉H₁₄O₂N₂ (M⁺-N₂)] 182.1050, gefunden 182.1050.

Ethyl-2-azido-2-methyl-3-oxo-3-phenylpropanoat (IV-103)

Durch Azidierung von Ethyl-2-methyl-3-oxo-3-phenylpropanoat nach der allgemeinen Vorschrift **A 2.5** wurde Verbindung IV-**103** als farbloses Öl (34.9 mg, 141.1 μmol, 99%) erhalten.

DC: $R_f = 0.79$, (Pentan:EtOAc/9:1, [UV], [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃) $\delta = 8.03 - 7.88$ (m, 2H), 7.70 - 7.50 (m, 1H), 7.46 - 7.35 (m, 2H), 4.32 - 4.03 (m, 2H), 1.79 (s, 3H), 1.10 (t, ³*J*_{HH} = 7.1 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃) $\delta = 191.2$, 170.0, 133.9, 133.8, 129.6, 128.8, 71.3, 63.0, 20.4, 14.0. **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] 2988, 2941, 2115, 1744, 1695, 1597, 1576, 1448, 1376, 1244, 1226, 1186, 1149, 1012, 967, 936, 862, 794, 708, 688, 672; **HRMS** (ESI)[m/z] berechnet für [C₁₂H₁₃O₃N₃Na₁] 270.0849, gefunden 270.0849.

Ethyl-2-azido-1-oxo-2,3-dihydro-1H-inden-2-carboxylat (IV-95)

Durch Azidierung von Ethyl-2-azido-1-oxo-2,3-dihydro-1H-inden-2-carboxylat nach der allgemeinen Vorschrift **A 2.5** wurde Verbindung IV-**95** als farbloses Öl (34.1 mg, 139.1 μmol, 78%) erhalten.

DC: $R_f = 0.44$, (Pentan:EtOAc/8:2, [UV], [KMnO₄]); ¹**H-NMR** (600 MHz, CDCl₃) $\delta = 7.81$ (d, J = 7.7 Hz, 1H), 7.66 (td, J = 7.7, 1.1 Hz, 1H), 7.49 – 7.38 (m, 2H), 4.31 – 4.20 (m, 2H), 3.65 (d, J = 17.2 Hz, 1H), 3.01 (d, J = 17.2 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H); ¹³**C-NMR** (151 MHz, CDCl₃) $\delta = 197.4$, 168.5, 152.1, 136.4, 133.1, 128.4, 126.4, 125.6, 70.2, 62.9, 38.5, 14.0. **HRMS** (ESI)[m/z] berechnet für [C₁₂H₁₁O₃N₃Na₁] 268.0693, gefunden 268.0693.

3-Azido-3-benzoyldihydrofuran-2(3H)-on (IV-90)

Durch Azidierung von 3-Azido-3-benzoyldihydrofuran-2(3H)-on nach der allgemeinen Vorschrift **A 2.5** wurde Verbindung IV-**90** als farbloses Öl (34.1 mg, 139.1 μmol, 78%) erhalten.

DC: $R_f = 0.33$, (Pentan:EtOAc/8:2, [UV], [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃) $\delta = 8.28 - 8.01$ (m, 2H), 7.76 - 7.56 (m, 1H), 7.56 - 7.46 (m, 2H), 4.49 (ddd, J = 9.1, 8.4, 3.6 Hz, 1H), 4.35 (td, J = 8.9, 6.8 Hz, 1H), 2.89 (ddd, J = 13.5, 6.8, 3.6 Hz, 1H), 2.52 (dt, J = 13.5, 8.4 Hz, 1H); ¹³**C-NMR** (63 MHz, CDCl₃) $\delta = 212.5$, 149.9, 134.5, 132.5, 129.8, 129.0, 65.5, 53.4, 34.1; **IR** (ATR): \tilde{V} [cm⁻¹] 2919, 2108, 1780, 1674, 1596, 1448, 1273, 1245, 1213, 1177, 1022, 954, 686; **LRMS** (EI): [m/z] 203 (1%) [M⁺-N₂], 105 (100%), 77 (80%), 51 (23%); **HRMS** (EI): [m/z] berechnet für [C₁₁H₉O₃N (M⁺-N₂)] 203.0577, gefunden 203.0580.

Allgemeine Vorschrift **B 2.5** zur Azidierung von 1,3-Dicarbonylen in Gegenwart von I₂: **Ethyl-1-azido-2**oxocyclohexancarboxylat (IV-76)

Ethyl-2-oxocyclohexancarboxylat IV-**75** (25.5 mg, 150 μ mol) wurde in DMSO (1 mL) gelöst, mit 1.0 M wässriger Natriumazid-Lösung (0.5 mL) und I₂ (41.9 mg, 165 μ mol) versetzt. Die Reaktionsmischung wurde für 4 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Natriumthiosulfatlösung (10 mL) abgebrochen und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (10 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. . Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/95:5) gereinigt. Verbindung IV-**76** wurde als blass-gelbes Öl (27.4 mg, 130 μ mol, 86%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen überein (*vide supra*). Dieses Experiment wurde auch im Multi-Gramm-Maßstab (23°C, 20 h; 1.90 g, 9.00 mmol, 76%) durchgeführt.

Allgemeine Vorschrift **C 2.5** zur Diazidierung von 1,3-Dicarbonylen in Gegenwart von IBX-SO₃K: **Dimethyl-2,2-diazidomalonat (**IV-**110**)

C₅H₆N₆O₄ 214,14 g/mol

Dimethylmalonat (20.0 mg, 151 μmol) wurde in DMSO (1 mL) gelöst, mit 1.0 M Natriumazid-Lösung (0.5 mL), IBX-SO₃K (176.6 mg, 454 μmol)und Natriumiodid (4.5 mg, 30.0 μmol, 20 mol%) versetzt und für 10 min bei 23°C gerührt. . Die Reaktion wurde durch Zugabe von gesättigter Natriumthiosulfatlösung (10 mL) abgebrochen und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (10 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/9:1) gereinigt. Verbindung IV-**110** wurde als blass-gelbes Öl (18.9 mg, 87.3 μmol, 59%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten völlig überein.⁶⁸⁷

DC: $R_f = 0.40$, (Pentan:EtOAc/8:2, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃) $\delta = 3.92$ (s, 6H); ¹³**C-NMR** (63 MHz, CDCl₃) $\delta = 54.7$, 80.1, 164.1; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] 2963, 2920, 2850, 2360, 2123, 1759, 1437, 1297, 1237, 1070, 1049, 790, 732. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden *Bis*-Triazols IV-**129** (*vide infra*) angegeben.

Ethyl-2,2-diazido-3-oxo-3-phenylpropanoate (IV-106)

Durch Diazidierung von Ethyl-3-oxo-3-phenylpropionat nach der allgemeinen Vorschrift **C 2.5** wurde Verbindung IV-**106** als farbloses Öl (31.0 mg, 113.1 μmol, 77%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten völlig überein.^{627d}

DC: $R_f = 0.66$, (Pentan:EtOAc/8:2, [UV], [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃) $\delta = 1.17$ (t, J = 7.1 Hz, 3H), 4.30 (q, J = 7.1 Hz, 2H), 7.43 – 7.52 (m, 2H), 7.59 – 7.66 (m, 1H), 7.99 – 8.06 (m, 2H); ¹³**C-NMR** (63 MHz, CDCl₃) $\delta = 14.0$, 64.2, 77.9, 128.9, 130.0, 132.1, 134.7, 165.2, 186.7; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] 2984 (br), 2116, 1754, 1704, 1598, 1580, 1448, 1394, 1366, 1217, 1044, 898, 851, 764, 740, 686. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden *Bis*-Triazols IV-**130** (*vide infra*) angegeben.

Methyl-2,2-diazido-5,5-dimethyl-3-oxohexanoat (IV-109)

Durch Diazidierung von Ethyl-5,5-dimethyl-3-oxohexanoat nach der allgemeinen Vorschrift **C 2.5** wurde Verbindung IV-**109** als farbloses Öl (31.2 mg, 116.1 µmol, 79%) erhalten.

DC: $R_f = 0.75$, (Pentan:EtOAc/8:2, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃) $\delta = 1.04$ (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 2.47 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H); ¹³**C-NMR** (63 MHz, CDCl₃) $\delta = 14.2$, 29.5, 31.2, 49.2, 64.2, 100.1, 164.6, 197.0; **IR** (ATR): $\tilde{\nu}$ [cm⁻¹] 2998 (br), 2115, 1744, 1367, 1349, 1265, 1224, 1054, 1021, 984, 902, 721. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ wurden die HRMS-Daten des korrespondierenden Bistriazols ermittelt.³⁵⁷

V-2.5.2 Modifizierung von 2-Azido-1,3-Dicarbonylen via Kupfer(I)-katalysierter 1,3dipolarer Zykloaddition

Allgemeine Vorschrift D 2.5 zur Bildung von Triazolen aus Monoaziden und Phenylacetylen: Ethyl-2-oxo-1-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-cyclohexancarboxylat (IV-123)

Das Azid IV-**76** (20.0 mg, 94.7 µmol) wurde in einer Mischung aus *t*BuOH:Wasser/2:1 (300 µL) gelöst, nacheinander mit Phenylacetylen (12.0 µL, 11.2 mg, 110 µmol), CuSO₄·5 H₂O (5.00 mg, 20.0 µmol, 20 mol%), Natriumascorbate (7.9 mg, 40 µmol, 40 mol%) und TBTA (0.5 mg, 1.00 µmol, 1 mol%) versetzt und für 3 h bei 23°C gerührt. Die Reaktionsmischung wurde durch Zugabe von Wasser (15 mL) verdünnt und mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/85:15) gereinigt. Verbindung IV-**123** wurde als farbloses Öl (26.6 mg, 84.9 µmol, 90%) erhalten.

DC: $R_f = 0.06$, (Pentan:EtOAc/9:1, [UV], [KMnO₄]; ¹**H-NMR** (500 MHz, CDCl₃) [ppm] $\delta = 7.83$ (d, J = 7.3 Hz, 3H), 7.40 (s, 2H), 7.31 (s, 1H), 4.29 (d, J = 6.6 Hz, 2H), 3.03 (s, 1H), 2.87 (s, 1H), 2.66 (d, J = 17.1 Hz, 2H),
1.95 (d, J = 91.1 Hz, 4H), 1.25 (d, J = 7.1 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃) [ppm] $\delta = 200.1$, 166.6, 147.6, 130.4, 128.8, 128.2, 125.8, 120.2, 76.4, 63.2, 39.9, 35.1, 26.9, 21.4, 13.9; **LRMS** (ESI) [m/z] 713 (30%) [2M⁺+2MeOH+Na], 659 (15%) [2M⁺+MeOH+H], 627 (7%) [2M⁺+H], 368 (20%), 346 (100%) [M⁺+MeOH+H], 314 (65%) [M⁺+H]; **HRMS** (ESI) [m/z] berechnet für[C₁₇H₂₀O₃N₃ (M⁺+H)] 314.1499, gefunden 314.1495.

Diethyl-2-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)malonat (IV-124)

Durch Reaktion von Diethyl-2-methylmalonat mit Phenylacetylen nach der allgemeinen Vorschrift **D 2.5** wurde Verbindung IV-**124** als weißer Feststoff (23.2 mg, 73 μmol, 99%) erhalten.

DC: $R_f = 0.27$, (Pentan:EtOAc/8:2, [UV], [KMnO₄];¹**H-NMR** (600 MHz, CDCl₃) [ppm] $\delta = 8.11$ (s, 1H), 7.86 – 7.82 (m, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 4.31 (q, J = 7.1 Hz, 4H), 2.26 (s, 3H), 1.34 – 1.27 (m, 6H). ¹³**C-NMR** (151 MHz, CDCl₃) [ppm] $\delta = 166.86$, 131.31, 129.02, 128.43, 126.07, 120.99, 120.78, 63.51, 55.81, 21.57, 14.10.

Ein-Topf-Synthese: Ethyl-2-oxo-1-(4-phenyl-1H-1,2,3-triazol-1-yl)-cyclohexancarboxylat (IV-123)

Ethyl-1-azido-2-oxocyclohexancarboxylat IV-**76** (25.5 mg, 150 μ mol) wurde in DMSO (1 mL) gelöst und mit 1 M wässriger Natriumazid-Lösung (0.5 mL) versetzt, anschließend wurden nacheinander Natirumiodid (4.4 mg, 29.4 μ mol, 20 mol%) und IBX-SO₃K (83.6 mg, 210 μ mol) zugegeben und die Mischung wurde für 30 min bei 23°C gerührt. Dann wurden Phenylacetylen (24.7 μ L, 23.0 mg, 225 μ mol), CuSO₄·5H₂O (7.50 mg, 30.0 μ mol, 20 mol%), Natriumascorbate (23.8 mg, 240 μ mol) und TBTA (1.60 mg, 3.00 μ mol, 2 mol%) zugegeben und die Mischung wurde für 24 h bei 23°C gerührt. Die Reaktionsmischung wurde durch Zugabe von Wasser (15 mL) verdünnt und mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/8:2) gereinigt. Verbindung IV-**123** wurde als weißer Feststoff (42.4 mg, 135 μmol, 90%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen überein (*vide supra*).

Allgemeine Vorschrift **E 2.5** zur Bildung von Bistriazolen aus Diaziden und Phenylacetylen: **Dimethyl-2,2bis(4-phenyl-1***H***-1,2,3-triazol-1-yl)-malonat (**IV-**129**)

Das Diazid IV-**110** (15.7 mg, 73.3 µmol) wurde in einer Mischung aus *t*BuOH:Wasser/2:1 (250 µL) gelöst, nacheinander mit Phenylacetylen (17.7 µL, 16.5 mg, 161 µmol), CuSO₄·5H₂O (3.7 mg, 14.7 µmol, 20 mol%), Natriumascorbate (5.8 mg, 29.3 µmol, 40 mol%) und TBTA (0.8 mg, 1.5 µmol, 2 mol%) versetzt und für 3 h bei 23°C gerührt. Die Reaktionsmischung wurde durch Zugabe von Wasser (15 mL) verdünnt und mit CH₂Cl₂ (3x 15 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/8:2) gereinigt. Verbindung IV-**129** wurde als farbloses Öl (30.7 mg, 73.4µmol, 100%) erhalten.

DC: $R_f = 0.27$, (Pentan:EtOAc/8:2, [UV], [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃) 8.43 (s, 2H), 7.87 – 7.72 (m, 3H), 7.42 – 7.36 (m, 3H), 7.35 – 7.29 (m, 2H), 4.07 (s, 6H); ¹³**C-NMR** (91 MHz, CDCl₃) δ = 161.3, 148.6, 129.6, 129.1, 129.0, 126.2, 120.7, 100.2, 55.5; **LRMS** (ESI) [m/z] 1081 (7%), 721 (19%), 361 (100%), 282 (70%); **HRMS** (ESI) [m/z] berechnet für [C₁₉H₁₇O₂N₆ (M⁺-CO₂Me + 2H)] 361.1402, gefunden 361.1402.

Ethyl-3-oxo-3-phenyl-2,2-bis(4-phenyl-1H-1,2,3-triazol-1-yl)-propanoat (IV-130)

Durch Reaktion von IV-**108** mit Phenylacetylen nach der allgemeinen Vorschrift **E 2.5** wurde Verbindung IV-**130** als weißer Feststoff (34.9 mg, 73 μmol, 100%) erhalten.

DC: $R_f = 0.04$, (Pentan:EtOAc/95:5, [UV], [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃) $\delta = 8.47$ (s, 2H), 7.84 – 7.79 (m, 4H), 7.73 – 7.69 (m, 2H), 7.61 – 7.54 (m, 1H), 7.43 – 7.36 (m, 6H), 7.35 – 7.29 (m, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.10 (t, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃) $\delta = 181.7$, 162.0, 158.8, 148.7, 134.6, 133.2, 129.6, 129.3, 129.1, 129.0, 126.1, 120.9, 100.2, 65.4, 13.5; **LRMS** (ESI) [m/z] 479 (1%) [M⁺+H], 439 (35%), 407 (20%), 361 (100%), 282 (5%); **HRMS** (ESI) [m/z] berechnet für [C₂₇H₂₃O₃N₆ (M⁺+H)] 479.1826, gefunden 479.1824.

V-2.5.3 Ein-Topf-Verfahren zur Oxidation und Azidierung von β-Hydroxycarbonylen

Allgemeine Vorschrift **F 2.5** für ein Ein-Topf-Verfahren zur Oxidation und Azidierung von β-Oxonitrilen: **Methyl-2-azido-2-methyl-3-oxopentanoat (**IV-**113)**

Ethyl-3-hydroxy-2-methylpentanoat (25 mg, 0.156 mg) wurden in DMSO (520 μ L) gelöst, mit IBX (132 mg, 0.468 mmol) versetzt und für 4.5 h bei 23°C gerührt. Anschließend wurde mit DMSO (520 μ L) verdünnt, mit Natriumiodid (4.7 mg, 0.031 mmol, 20 mol%) sowie 1.0 M Natriumazid-Lösung (520 μ L) zugegeben und für 2.5 h bei 23°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan: Et₂O/8:2) gereinigt. Verbindung IV-**113** wurde als blass-gelbes Öl (23 mg, 0.115 mmol, 74%) erhalten.

DC: $R_f = 0.71$, (Pentan:Et₂O/ 8:2, [KMnO₄]); ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] 4.26 (qd, ³J_{HH} = 7.2, ³J_{HH} = 1.0 Hz, 3H), 2.63 – 2.46 (m, 2H), 1.56 (s, 3H), 1.28 (t, ³J_{HH} = 7.1 Hz, 3H), 1.07 (t, ³J_{HH} = 7.2 Hz, 3H); ¹³**C-NMR** (91 MHz, CDCl₃): δ [ppm] 203.5, 168.8, 73.1, 63.0, 31.3, 19.6, 14.2, 8.0; **IR:** (ATR) [cm⁻¹] 2984, 2941, 2108, 1729, 1452, 1377, 1346, 1236, 1122, 1091, 1014, 970, 912, 856, 806, 702; **LRMS** (EI) [m/z] 171 (10%) [M⁺-N₂], 169 (8%), 168 (2%), 159 (47%), 157 (3%), 145 (2%), 141 (6%), 130 (3%), 129 (16%), 117 (3%), 116 (11%), 115 (16%), 113 (36%), 111 (40%), 105 (18%), 102 (33%), 98 (100%), 97 (11%), 91 (5%); **HRMS** (EI) [m/z] berechnet für [C₈H₁₃O₃N₁ (M⁺-N₂)] 171.0890, gefunden 171.0884.

Ethyl-2-azido-3-oxo-2-phenylpentanoat (IV-114)

Durch Reaktion von Ethyl-2-azido-3-hydroxy-2-phenylpentanoat nach der allgemeinen Vorschrift **F 2.5** wurde Verbindung IV-**114** als farbloses Öl (25 mg, 0.101 mmol, 60%) erhalten.

DC: R_f = 0.56, (Pentan:Et₂O/ 8:2, [KMnO₄]); ¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] 7.46 – 7.31 (m, 1H), 3.88 (s, 3H), 2.49 (qq, ³J_{HH} = 18.3, ³J_{HH} = 7.2 Hz, 2H), 1.03 (t, ³J_{HH} = 7.2 Hz, 3H); ¹³**C-NMR** (63 MHz, CDCl₃): δ [ppm] 202.8, 168.4, 133.6, 129.4, 129.3, 129.0, 127.9, 127.4, 56.4, 53.8, 32.4, 8.3. **IR:** (ATR) [cm⁻¹] 2981, 2955, 2108, 1731, 1594, 1584, 1493, 1449, 1434, 1407, 1387, 1341, 1234, 1205, 1130, 1073, 1014, 754, 730, 697.

Ethyl-2-azido-2-methyl-3-oxo-3-phenylpropanoat (IV-103)

Durch Azidierung von Ethyl-2-methyl-3-hydroxy-3-phenylpropanoat nach der allgemeinen Vorschrift **F 2.5** wurde Verbindung IV-**103** als farbloses Öl (24.7 mg, 100.1 μmol, 75%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen über ein (*vide supra*).

V-2.6 Decarboxylative Azidierung von β-Oxocarbonsäuren

V-2.6.1 Synthese der Ausgangsmaterialien

Allgemeine Vorschrift A 2.6 zur Alkylierung von Malonaten: Dimethyl-2-benzylmalonat (IV-167)

Natriumhydrid (605 mg, 15.138 mmol, 60% in Parafin) wurde bei 0°C in trockenem THF (20 mL) vorgelegt und tropfenweise mit einer Lösung von Dimethylmalonat (1730 µL 15.138 mmol) in trockenem THF (10 mL) versetzt, die Reaktionsmischung wurde für 30 min bei 23°C gerührt und anschließend mit einer Lösung von Benzylbromid (1618 µL, 13.625 mmol) in trockenem THF (20 mL) versetzt. Die Reaktionsmischung wurde für 2 h bei 23°C gerührt und die Reaktion wurde durch Zugabe von gesättigter Ammoniumchloridlösung (50 mL) abgebrochen und mit Diethylether (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Natriumchloridlösung (50 mL) gewaschen, über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/ 9:1) gereinigt. Verbindung IV-**167** wurde als farbloses Öl (2.18 g, 9.81 mmol, 72%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁸

DC: R_f = 0.11, (CH:EtOAc/ 9:1, [KMnO₄], [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.33 – 7.28 (m, 2H), 7.27 – 7.20 (m, 3H), 3.72 (s, 6H), 3.71 – 3.65 (m, 1H), 3.25 (d, *J* = 7.8 Hz, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.4, 138.0, 129.0, 128.8, 127.0, 53.8, 52.7, 35.0.

Dimethyl-2-isopropylmalonat

Durch Alkylierung von Dimethylmalonat mit 2-Iodpropan nach der allgemeinen Vorschrift **A 2.6** (Lösungsmittel: THF:DMF/3:1, 23°C, 24 h) wurde Dimethyl-2-isopropylmalonat als farbloses Öl (638 mg,

3.662 mmol, 53%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁹

DC: $R_f = 0.2$, (PE:EtOAc/ 95:5, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.70 (s, 6H), 3.18 – 3.10 (m, 1H), 2.37 (dhept, J = 8.7, 6.7 Hz, 1H), 0.97 (d, J = 6.7 Hz, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.5, 59.0, 52.4, 29.1, 20.6; **HRMS** (ESI): [m/z] berechnet für [C₈H₁₄O₄Na₁] 197.0784, gefunden 197.0784.

Dimethyl-2-(sec-butyl)malonat

Durch Alkylierung von Dimethylmalonat mit 2-lodbutan nach der allgemeinen Vorschrift **A 2.6** (Lösungsmittel: THF:DMF/3:1, 23°C, 24 h) wurde Verbindung Dimethyl-2-(*sec*-butyl)malonat als farbloses Öl (648 mg, 3.427 mmol, 50%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁰

DC: R_f = 0.11, (CH:EtOAc/ 9:1, [KMnO₄], [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.74 (s, 6H), 3.30 (d, J = 8.2 Hz, 1H), 2.26 – 2.15 (m, 1H), 1.54 – 1.40 (m, 1H), 1.33 – 1.16 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H).¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.6, 169.5, 57.5, 52.5, 52.4, 35.3, 27.3, 16.7, 11.4.

Dimethyl-2-octylmalonat

Durch Alkylierung von Dimethylmalonat mit Octyliodid nach der allgemeinen Vorschrift **A 2.6** (50°C, 6 h) wurde Dimethyl-2-octylmalonat als farbloses Öl (610 mg, 2.506 mmol, 37%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹¹

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.71 (s, 6H), 3.33 (t, *J* = 7.6 Hz, 1H), 1.87 (q, *J* = 7.4 Hz, 2H), 1.33 – 1.16 (m, 12H), 0.85 (t, *J* = 6.9 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.2, 52.6, 52.0, 32.0, 29.5, 29.4, 29.4, 29.1, 27.6, 22.9, 14.5.

Allgemeine Vorschrift B 2.6 zur Alkylierung von Malonaten: Dimethyl-2-allylmalonat

Dimethylmalonat (1.416 mL, 12.399 mmol) und Allylbromid (715 µL, 8.266 mmol) wurden zu einer Lösung von Kaliumcarbonat (5.711 g, 24.797 mmol) in Aceton (41 mL) gegeben und für 24 h bei 23°C gerührt. Die Reaktionsmischung wurde mit gesättigter Ammoniumchloridlösung (20 mL) verdünnt, und mit CH₂Cl₂ (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/95:5) gereinigt. Die Produktenthaltenden Fraktionen wurden vom Lösungsmittel *i. vac.* befreit und der Rückstand durch Destillation *i. vac.* (2 mbar, 45°C, Rotationsverdampfer/Heatgun) von überschüssigem Dimethylmalonat befreit. Dimethyl-2-allylmalonat wurde als farbloses Öl (1.225 g, 7.114 mmol, 86%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹²

DC: R_f = 0.30, (CH:EtOAc/95:5, [KMnO₄]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 5.74 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.09 (dt, *J* = 10.0, 5.0 Hz, 1H), 5.04 (t, *J* = 11.0 Hz, 1H), 3.71 (s, 7H), 3.44 (t, *J* = 7.6 Hz, 1H), 2.62 (t, *J* = 7.2 Hz, 2H). ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 169.5, 134.2, 117.9, 52.7, 51.6, 33.1.

Dimethyl-2-(3-methylbut-2-en-1-yl)malonat

Durch Alkylierung von Dimethylmalonat mit 3,3,-Dimethylallylbromid nach der allgemeinen Vorschrift **B 2.6** wurde Dimethyl-2-(3-methylbut-2-en-1-yl)malonat als farbloses Öl (1.374 mg, 7.980 mmol, 99%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹³

DC: R_f = 0.35, (CH:EtOAc/95:5, [KMnO₄]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 5.02 (t, *J* = 6.9 Hz, 1H), 3.70 (s, 7H), 3.34 (t, *J* = 7.7 Hz, 1H), 2.57 (t, *J* = 7.5 Hz, 2H), 1.65 (s, 3H), 1.60 (s, *J*, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 169.8, 135.3, 119.7, 52.6, 52.1, 27.8, 25.9, 17.9.

Dimethyl-2-(3-methylbut-2-en-1-yl)malonat

Durch Alkylierung von Dimethylmalonat mit Propargylbromid nach der allgemeinen Vorschrift **B 2.6** wurde Dimethyl-2-(3-methylbut-2-en-1-yl)malonat als farbloses Öl (1.193 g, 6.928 mmol, 86%) erhalten. Die Substanz war mit Dimethylmalonat und Propargylbromid verunreinigt, wurde trotzdessen direkt ohne weitere Aufreinigung weiter eingesetzt, da eine Abrennung der Verunreinigungen nach der nächsten Stufe problemlos möglich ist. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁴

DC: R_f = 0.33, (CH:EtOAc/8:2, [UV], [CAM]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 4.02 (d, *J* = 3.0 Hz, 6H), 3.25 (d, *J* = 2.6 Hz, 1H), 3.04 (dd, *J* = 7.7, 2.6 Hz, 2H), 2.27 (t, *J* = 2.6 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 168.5, 80.0, 70.7, 53.0, 51.1, 18.7.

Allgemeine Vorschrift C 2.6 zur alkalischen Mono-Verseifung von Malonaten: 2-Benzyl-3-methoxy-3oxopropansäure (IV-162)

Dimethyl-2-benzylmalonat IV-**167** (2.080 g, 9.359 mmol) wurden in MeOH (18.7 mL) gelöst und mit Kaliumhydroxid (617 mg, 9.359 mmol, techn. 85%) versetzt. Die Reaktionsmischung wurde für 4 h bei

23°C gerührt. Die Reaktionslösung wurde *i. vac.* vom Lösungsmittel befreit. Der Rückstand wurde in Wasser (20 mL) aufgenommen und mit Diethylether (2x 20 mL) extrahiert. Die wässrige Phase wurde mit 5 M HCl-Lösung (2.5 mL) azidifiziert und mit EtOAc (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung IV-**162** als farbloses Öl (1.912 g, 9.183 mmol, 98%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁵

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 10.53 (s, 1H), 7.30 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 3.70 (t, *J* = 7.7 Hz, 1H), 3.70 (s, 3H), 3.23 (dd, *J* = 7.7, 3.8 Hz, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.4, 169.3, 137.5, 129.0, 128.9, 127.2, 53.6, 53.0, 34.9; **HRMS** (ESI) [m/z] berechnet für [C₁₁H₁₂O₄Na₁] 231.0628, gefunden 231.0628.

2-Allyl-3-methoxy-3-oxopropansäure

Durch alkalische Verseifung von Dimethyl-2-allylmalonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-Allyl-3-methoxy-3-oxopropansäure als farbloses Öl (378 mg, 2.390 mmol, 82%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁶

¹H-NMR (400 MHz, CDCl₃): δ [ppm] 9.85 (s, J = 35.7 Hz, 1H), 5.76 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.12 (dd, J = 17.1, 1.5 Hz, 1H), 5.07 (dd, J = 10.2, 1.1 Hz, 1H), 3.74 (s, 3H), 3.52 – 3.38 (m, 1H), 2.74 – 2.55 (m, 2H).¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 174.6, 169.4, 133.7, 118.3, 52.9, 51.5, 33.0.

2-Dimethylallyl-3-methoxy-3-oxopropansäure

Durch alkalische Verseifung von Dimethyl-2-(3-methylbut-2-en-1-yl)malonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-Dimethylallyl-3-methoxy-3-oxopropansäure als farbloses Öl (375 mg, 2.013 mmol, 81%) erhalten.

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 9.47 (s, 1H), 5.15 – 4.92 (m, 1H), 3.74 (s, 3H), 3.38 (t, J = 7.5 Hz, 1H), 2.60 (t, J = 7.4 Hz, 2H), 1.67 (d, J = 0.7 Hz, 3H), 1.61 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.6, 169.9, 135.8, 119.3, 52.9, 51.8, 27.9, 26.0, 17.9; **HRMS** (ESI): [m/z] berechnet für [C₉H₁₄O₄Na₁] 209.0784, gefunden 209.0784.

2-Propargyl-3-methoxy-3-oxopropansäure

Durch alkalische Verseifung von Dimethyl-2-(3-methylbut-2-en-1-yl)malonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-Propargyl-3-methoxy-3-oxopropansäure als farbloses Öl (2.812 g, 18.009 mmol, 72%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁷

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 10.16 (s, 1H), 3.78 (s, 3H), 3.63 (t, *J* = 7.5 Hz, 1H), 2.81 – 2.79 (m, 1H), 2.78 (t, *J* = 2.5 Hz, 1H), 2.03 (dd, *J* = 2.9, 2.4 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 173.4, 168.2, 79.6, 71.0, 53.3, 51.0, 18.6; **HRMS** (ESI): [m/z] berechnet für [C₇H₉O₄] 157.0495, gefunden 157.0496.

2-Octyl-3-methoxy-3-oxopropansäure

Durch alkalische Verseifung von Dimethyl-2-octylmalonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-Octyl-3-methoxy-3-oxopropansäure als farbloses Öl (408 mg, 1.772 mmol, 87%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁸

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.74 (s, 3H), 3.37 (t, *J* = 7.4 Hz, 1H), 1.96 – 1.83 (m, 2H), 1.36 – 1.19 (m, 12H), 0.85 (t, *J* = 6.9 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.9, 170.2, 52.9, 51.7, 32.0, 29.4, 29.4, 29.2, 27.5, 22.8, 14.3; **HRMS** (ESI): [m/z] berechnet für [C₁₂H₂₂O₄Na₁] 253.1410, gefunden 253.1410.

2-Isopropyl-3-methoxy-3-oxopropansäure

Durch alkalische Verseifung von Dimethyl-2-isopropylmalonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-Isopropyl-3-methoxy-3-oxopropansäure als farbloses Öl (387 mg, 2.416 mmol, 84%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁸⁹

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 10.19 (s, 1H), 3.78 (s, J = 0.5 Hz, 3H), 3.23 (d, J = 8.2 Hz, 1H), 2.42 (dhept, J = 20.3, 6.8 Hz, 1H), 1.07 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.2, 169.8, 58.6, 52.7, 29.4, 20.5, 20.5; **HRMS** (ESI): [m/z] berechnet für [C₇H₁₂O₄Na₁] 183.0628, gefunden 183.0628.

2-(Methoxycarbonyl)-3-methylpentansäure

Durch alkalische Verseifung von Dimethyl-2-(*sec*-butyl)malonat nach der allgemeinen Vorschrift **C 2.6** wurde 2-(Methoxycarbonyl)-3-methylpentansäure als farbloses Öl (356 mg, 2.043 mmol, 77%, d.r. = 1:1) erhalten.

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 10.03 (s, 1H), 3.74 (d, J = 1.4 Hz, 3H), 3.36 – 3.23 (m, 1H), 2.19 – 2.11 (m, 1H), 1.54 – 1.43 (m, 1H), 1.29 – 1.19 (m, 1H), 0.99 (dd, J = 14.2, 6.8 Hz, 3H), 0.90 (td, J = 7.4, 3.4 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.3, 174.1, 170.1, 169.8, 57.0, 57.0, 52.7, 52.7, 35.7, 27.3, 27.3, 16.7, 16.6; **HRMS** (ESI): [m/z] berechnet für [C₈H₁₄O₄Na₁] 197.0784, gefunden 197.0784.

3-Ethoxy-2-methyl-3-oxopropansäure (IV-149)

Diethylmethylmalonat IV-**148** (2.0 g, 11.481 mmol) wurden in EtOH (22.9 mL) gelöst und mit (757 mg, 11.481 mmol) KOH versetzt. Die Reaktionsmischung wurde für 4 h bei 110°C am Rückfluss erhitzt. Die Reaktionslösung wurde auf 23°C abgekühlt und *i. vac.* vom Lösungsmittel befreit. Der Rückstand wurde in Wasser (20 mL) aufgenommen und mit Ether (2x 20 mL) extrahiert. Die wässrige Phase wurde mit 5 M HCI-Lösung (2.5 mL) azidifiziert und mit EtOAc (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Verbindung IV-**149** wurde als farbloses Öl (1.361 g, 9.312 mmol, 81%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁹⁹

¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 11.12 (s, 1H), 4.20 (dt, J = 8.4, 6.4 Hz, 2H), 3.46 (q, J = 7.3 Hz, 1H), 1.43 (dd, J = 7.3, 1.1 Hz, 4H), 1.26 (td, J = 7.1, 0.8 Hz, 4H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 176.1, 170.1, 62.0, 46.1, 14.2, 13.8.

Allgemeine Vorschrift D 2.6 zur Amidbildung: Methyl-2-benzyl-3-(cyclohexylamino)-3-oxopropanoat

2-Benzyl-3-methoxy-3-oxopropansäure IV-**162** (100 mg, 0.480 mmol) wurden unter Stickstoffatmosphäre in CH_2CI_2 (480 µL) vorgelegt, bei 0°C portionsweise mit CDI (85.7 mg, 0.528 mmol) versetzt und für 30 min bei 23°C gerührt. Anschließend wurden Cyclohexylamin (107 µL, 0.961 mmol,) zugegeben und für 7 h bei 23°C gerührt. Die Reaktionslösung wurde mit CH_2CI_2 (10 mL) verdünnt und mit gesättigter Natriumhydrogencarbonatlösung (20 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit CH_2CI_2 (10 mL) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchloridlösung (20 mL) gewaschen. Die Phasen wurden getrennt und die wässrige Phase mit DCM (10 mL) extrahiert. Die vereinigten organischen Phasen wurden äber Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/8:2) gereinigt. Methyl-2-benzyl-3-(cyclohexylamino)-3-oxopropanoat wurde als weißer Feststoff (121 mg, 0.418 mmol, 87%) erhalten.

DC: $R_f = 0.23$, (PE:EtOAc/8:2, [UV], [KMnO₄]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.25 (t, J = 7.4 Hz, 2H), 7.19 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 7.4 Hz, 2H), 6.14 (d, J = 6.7 Hz, 1H), 3.72 (pd, J = 7.9, 3.7 Hz, 1H), 3.63 (s, 3H), 3.41 (t, J = 7.5 Hz, 1H), 3.22 (dd, J = 13.8, 7.0 Hz, 1H), 3.16 (dd, J = 13.8, 8.0 Hz, 1H), 1.79 (ddd, J = 42.9, 12.6, 3.3 Hz, 2H), 1.67 – 1.51 (m, 4H), 1.37 – 1.26 (m, 2H), 1.17 – 0.97 (m, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 172.0, 166.7, 138.1, 129.1, 128.7, 127.0, 100.2, 55.1, 52.6, 48.5, 36.8, 32.9, 25.7, 24.8. **LRMS (EI):**[m/z] 289 [M+] (25%), 220 (100%), 207 (10%), 159 (20%), 131 (45%), 104 (80%), 82 20%), 67 (20%), 51 (10%); **HRMS** (ESI): [m/z] berechnet für [C₁₇H₂₃O₃N₁Na₁] 312.1570, gefunden 312.1562.

Methyl-3-(allylamino)-2-benzyl-3-oxopropanoat

Durch Reaktion von IV-**162** mit Allylamin nach der allgemeinen Vorschrift **D 2.6** wurde Methyl-3-(allylamino)-2-benzyl-3-oxopropanoat als weißer Feststoff (79 mg, 0.319 mmol, 67%) erhalten.

DC: $R_f = 0.20$, (PE:EtOAc/7:3, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.32 – 7.08 (m, 5H), 6.42 (s, 1H), 5.80 – 5.67 (m, 1H), 5.08 (dd, J = 2.6, 1.5 Hz, 1H), 5.04 (dq, J = 8.9, 1.5 Hz, 1H), 3.83 (tt, J = 5.7, 1.5 Hz, 2H), 3.63 (s, 3H), 3.48 (dd, J = 8.2, 6.8 Hz, 1H), 3.21 (qd, J = 13.7, 7.5 Hz, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 171.8, 167.6, 138.0, 133.9, 129.0, 128.7, 127.1, 116.6, 55.1, 52.6, 42.2, 36.7; **LRMS** (EI): [m/z] 247 [M⁺] (30%), 188 (100%), 164 (10%), 131 (90%), 91 (60%), 67 (15%), 56 (20%);**HRMS** (ESI): [m/z] berechnet für [C₁₄H₁₇O₃N₁Na₁] 270.1101, gefunden 270.1093.

2-Benzyl-3-(cyclohexylamino)-3-oxopropansäure

Durch alkalische Verseifung von Methyl-2-benzyl-3-(cyclohexylamino)-3-oxopropanoat nach der allgemeinen Vorschrift **C 2.6** wurde Verbindung 2-Benzyl-3-(cyclohexylamino)-3-oxopropansäure als weißer Feststoff (70 mg, 0.2542 mmol, 61%) erhalten.

¹**H-NMR** (400 MHz, CD₃OD): δ [ppm] 7.33 – 7.08 (m, 1H), 3.52 (dd, J = 9.5, 6.0 Hz, 1H), 3.21 – 3.01 (m, 1H), 1.83 – 1.75 (m, 1H), 1.74 – 1.66 (m, 1H), 1.65 – 1.49 (m, 1H), 1.37 – 1.06 (m, 1H), 0.93 (ddd, J = 14.6, 12.0, 3.3 Hz, 1H); ¹³**C-NMR** (101 MHz, CD₃OD): δ [ppm] 173.2, 170.4, 140.0, 130.2, 129.5, 127.6, 55.6, 49.9, 36.3, 33.6, 33.5, 26.7, 26.1, 26.0; **LRMS** (EI): [m/z] 231 [M⁺-CO₂] (100%), 150 (50%), 133 (25%), 105 (75%), 91 (70%), 77 (45%), 56 (40%); **HRMS** (ESI): [m/z] berechnet für [C₁₆H₂₁O₃N₁Na₁] 298.1414, gefunden 298.1407.

3-(Allylamino)-2-benzyl-3-oxopropansäure

Durch alkalische Verseifung von Methyl-3-(allylamino)-2-benzyl-3-oxopropanoat nach der allgemeinen Vorschrift **C 2.6** wurde 3-(Allylamino)-2-benzyl-3-oxopropansäure als weißer Feststoff (42 mg, 0.180 mmol, 56%) erhalten.

¹**H-NMR** (600 MHz, CD₃OD): δ [ppm] 7.27 – 7.23 (m, 2H), 7.21 (dd, J = 5.2, 3.1 Hz, 2H), 7.18 (ddd, J = 6.4, 2.8, 1.4 Hz, 1H), 5.73 – 5.61 (m, 1H), 4.99 (dq, J = 6.3, 1.5 Hz, 1H), 4.97 (dd, J = 5.8, 4.1 Hz, 1H), 3.71 (qdt, J = 16.0, 5.3, 1.6 Hz, 2H), 3.58 (dd, J = 9.4, 6.1 Hz, 1H), 3.14 (ddd, J = 23.2, 13.8, 7.7 Hz, 2H); ¹³**C-NMR** (151 MHz, CD₃OD): δ [ppm] 173.0, 171.2, 140.0, 135.1, 130.2, 129.6, 127.7, 116.2, 55.8, 42.9, 36.2. **LRMS** (EI): [m/z] 189 [M⁺-CO₂] (80%), 174 (10%), 146 (10%), 131 (15%), 105 (80%), 91 (100%), 77 (20%), 57 (81%); **HRMS** (ESI): [m/z] berechnet für [C₁₃H₁₅O₃N₁Na₁] 256.0944, gefunden 256.0937.

V-2.6.2 Decarboxylative Azidierung von β-Oxocarbonsäuren

Allgemeine Vorschrift **E 2.6** zur decarboxylativen Azidierung von β -Oxocarbonsäurederivaten in Gegenwart von IBX-SO₃K: **Methyl-2-azido-3-phenylpropanoat (**IV-**155)**

2-Benzyl-3-methoxy-3-oxopropansäure IV-**162** (40 mg, 0.192 mmol) wurden in DMSO (1.28 mL) gelöst und nacheinander <u>unter Kühlung mit einem ca. 10°C kaltem Wasserbad</u> mit einer 1.0 M Natriumazid-Lösung (0.640 mL), IBX-SO₃K (112 mg, 0.288 mmol) sowie Natriumiodid (5.8 mg, 0.038 mmol, 20 mol%) versetzt. Die Reaktionsmischung wurde für 2 h bei 60°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/9:1) gereinigt. Verbindung IV-**158** wurde als farbloses Öl (46 mg, 0.141 mmol, 73%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁰

DC: $R_f = 0.33$, (PE:EtOAc/9:1, [UV], [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.34 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H), 7.23 – 7.19 (m, 2H), 4.06 (dd, J = 8.7, 5.4 Hz, 1H), 3.76 (s, 3H), 3.16 (dd, J = 14.0, 5.4 Hz, 1H), 2.99 (dd, J = 14.0, 8.7 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.6, 136.1, 129.4, 128.9, 127.5, 63.5, 52.8, 37.9; **IR** (ATR): [cm⁻¹] 3064, 3030, 295, 2929, 2019, 1740, 1604, 1496, 1455, 1435, 1258, 1202, 1171, 1080, 1015, 908, 827, 729, 698. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Methyl-2-azido-3-methylbutanoat (IV-155)

`OMe C₆H₁₁N₃O₂ 157 17 a/mol

Durch decarboxylative Azidierung von 2-Isopropyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**155** als farbloses Öl (32.8 mg, 0.208 mmol, 83%) erhalten. (Vorsicht: Die Verbindung ist flüchtig.)

DC: $R_f = 0.33$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.78 (s, 3H), 3.65 (d, J = 6.3 Hz, 1H), 2.25 – 2.10 (m, 1H), 0.98 (d, J = 7.0 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.8, 68.4, 52.6, 31.2, 19.5, 18.2. **IR** (ATR): [cm⁻¹] 2966, 2931, 2877, 2850, 2100, 1741, 1465, 1435, 1389, 1371, 1261, 1200, 1178, 1130, 1003, 970, 823. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Methyl-2-azido-3-methylpentanoat (IV-156)

Durch decarboxylative Azidierung von 2-(Methoxycarbonyl)-3-methylpentansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**156** als farbloses Öl (32.7 mg, 0.188 mmol, 83%, d.r. = 1:1) erhalten. (Vorsicht: Die Verbindung ist flüchtig.) Die erhaltenen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰¹

DC: $R_f = 0.29$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.89 (dd, J = 4.8, 3.1 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.72 (d, J = 6.5 Hz, 1H), 2.02 – 1.90 (m, 2H), 1.57 – 1.40 (m, 2H), 1.38 – 1.18 (m, 4H), 0.98 – 0.93 (m, 6H), 0.93 – 0.89 (m, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 171.1, 170.9, 67.5, 66.6, 52.6, 52.6, 37.7, 37.4, 26.6, 25.3, 16.1, 15.0, 11.7, 11.3. **IR** (ATR): [cm⁻¹] 2956, 2953, 2879, 2102, 1741, 1457, 1435, 1382, 1345, 1321, 1258, 1229, 1199, 1176, 1130, 1100, 943, 771. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Durch decarboxylative Azidierung von Octyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**157** als farbloses Öl (27 mg, 0.1187 mmol, 68%) erhalten.

DC: $R_f = 0.52$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 3.87 – 3.70 (m, 1H), 3.77 (s, 3H), 1.87 – 1.67 (m, 2H), 1.45 – 1.18 (m, 12H), 0.86 (t, J = 6.9 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 171.4, 62.3, 52.7, 32.0, 31.6, 29.5, 29.4, 29.2, 25.9, 22.8, 14.3. **HRMS** (EI): [m/z] berechnet für [C₁₁H₂₁N₃O₂Na₁] 250.1526, gefunden 250.153. **IR** (ATR): [cm⁻¹] 2954, 2924, 2855, 2102, 1745, 1456, 1436, 1376, 1350, 1257, 1200, 1056, 1174, 998, 771, 723. LRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Methyl-2-azidodecanoat (IV-160)

Durch decarboxylative Azidierung von 2-Allyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**160** als farbloses Öl (51.5 mg, 0.2266 mmol, 84%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰²

DC: $R_f = 0.36$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 5.76 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.21 (q, J = 1.5 Hz, 1H), 5.16 (q, J = 1.7 Hz, 1H), 5.14 (dd, J = 2.6, 1.1 Hz, 1H), 3.89 (dd, J = 7.9, 5.6 Hz, 1H), 3.77 (s, 3H), 2.65 – 2.45 (m, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.4, 132.1, 119.2, 61.5, 52.6, 35.7. **IR** (ATR): [cm⁻¹] 3080, 3001, 2952, 2924, 2847, 2101, 1742, 1643, 1436, 1351, 1265, 1199, 1176, 1122, 992, 921, 836, 689. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten

werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (vide infra) angegeben.

Methyl-2-azido-5-methylhex-4-enoat (IV-159)

Durch decarboxylative Azidierung von 2-Dimethylallyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**159** als farbloses Öl (30.5 mg, 0.166 mmol, 78%) erhalten.

DC: $R_f = 0.36$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 5.09 (tdt, J = 7.3, 2.8, 1.4 Hz, 1H), 3.82 (dt, J = 8.2, 6.5 Hz, 1H), 3.77 (s, 3H), 2.61 – 2.41 (m, 2H), 1.71 (d, J = 1.0 Hz, 3H), 1.63 (s, 3H).¹³**C**-**NMR** (101 MHz, CDCl₃): δ [ppm] 171.0, 136.8, 117.8, 62.3, 52.7, 30.7, 26.0, 18.1. **IR** (ATR): [cm⁻¹] 2955, 2920, 2857, 2033, 1742, 1436, 1256, 1200, 1173, 1026, 912, 739. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Methyl-2-azidopent-4-inoat (IV-161)

Durch decarboxylative Azidierung von 2-Propargyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**161** als farbloses Öl (32.8 mg, 0.214 mmol, 83%) erhalten. Dieses Experiment wurde auch in größerem Maßstab (748 mg, 5.123 mmol, 80%) durchgeführt.

DC: $R_f = 0.33$, (PE:EtOAc/9:1, [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 4.04 (dd, J = 7.2, 5.5 Hz, 1H), 3.81 (s, 3H), 2.79 – 2.60 (m, 2H), 2.09 (t, J = 2.7 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.4, 78.4, 72.0, 60.6, 53.2, 22.4. **IR** (ATR): [cm⁻¹] 3297, 2956, 2927, 2106, 1741, 1436, 1320, 1266, 1208, 1176, 1035,

1020, 910, 731. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Ethyl-2-azido-propanoat (IV-153)

Durch decarboxylative Azidierung von IV-**149** nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**153** als farbloses Öl (33 mg, 0.134 mmol, 98%) erhalten. (Vorsicht: Die Verbindung ist stark flüchtig.)

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 4.26 (q, *J* = 7.1 Hz, 2H), 3.94 (q, *J* = 7.1 Hz, 1H), 1.48 (d, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 171.2, 62.0, 57.5, 16.9, 14.3. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Ethyl-2-azido-3-phenylpropanoat (IV-154)

Durch decarboxylative Azidierung von 2-Benzyl-3-ethoxy-3-oxopropansäure nach der allgemeinen Vorschrift **E 2.6** wurde Verbindung IV-**154** als farbloses Öl (46 mg, 0.209 mmol, 93%) erhalten.

DC: $R_f = 0.48$, (PE:EtOAc/9:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.35 – 7.26 (m, 3H), 7.24 – 7.18 (m, 2H), 4.05 (dd, J = 8.7, 5.4 Hz, 1H), 3.76 (s, 3H), 3.16 (dd, J = 14.0, 5.4 Hz, 1H), 2.99 (dd, J = 14.0, 8.7 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 170.6, 136.2, 129.2, 128.9, 127.5, 63.5, 52.9, 37.9. LRMS- und HRMS-Daten konnten von der Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Triazols (*vide infra*) angegeben.

Allgemeine Vorschrift **F 2.6** zur decarboxylativen Azidierung von β-Oxocarbonsäuren in Gegenwart von Iod: **Methyl-2-azido-3-phenylpropanoat (**IV-**158**)

2-Benzyl-3-methoxy-3-oxopropansäure IV-**162** (40 mg, 0.194 mg, 1.0 eq) wurden in DMSO (1.281 mL) gelöst und nacheinander mit einer 1.0 M Natriumazid-Lösung (0.640 mL) und Iod (73.1 mg, 0.288 mmol) versetzt. Die Reaktionsmischung wurde für 2 h bei 60°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/9:1) gereinigt. Verbindung IV-**158** wurde als farbloses Öl (33 mg, 0.160 mmol, 83%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

V-2.6.3 Modifizierung von α -Azido-1,3-carbonsäureestern via Kupfer(I)-katalysierter 1,3dipolarer Zykloaddition

Allgemeine Vorschrift **G 2.6** für ein Ein-Topf-Verfahren zur decarboxylativen Azidierung von β-Oxocarbonsäuren und anschließender Modifizierung durch Kupfer(I)-katalysierte Zykloaddition von Phenylacetylen: **Methyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoat**

2-Benzyl-3-methoxy-3-oxopropansäure IV-**162** (20 mg, 0.096 mg) wurden in DMSO (0.640 mL) gelöst und nacheinander mit einer 1.0 M Natriumazid-Lösung (0.320 mL), IBX-SO₃K (56.1 mg ,0.144 mmol) sowie Natriumiodid (2.9 mg, 0.019 mmol, 20 mol%) versetzt. Die Reaktionsmischung wurde für 2 h bei 60°C gerührt. Anschließend wurden nacheinander Phenylacetylen (15.8 μ L, 0.144 mmol), Kupfer(II)sulfat Pentahydrat (4.8 mg, 0.019 mmol, 20 mol%), Natriumascorbat (30.4 mg, 0.154 mmol) sowie TBTA

(1.0 mg, 0.002 mmol, 2 mol%) zugegeben und die Reaktionsmischung wurde für 24 h bei 23°C gerührt. Die Reaktionsmischung wurde mit Wasser (20 mL) versetzt und mit CH₂Cl₂ (3x 10 mL) und EtOAc (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (CH:EtOAc/8:2) gereinigt. Methyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoat wurde als farbloses Öl (18 mg, 0.058 mmol, 61%) erhalten.

DC: $R_f = 0.17$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.80 (d, J = 6.9 Hz, 1H), 7.78 (dt, J = 8.1, 1.6 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.28 (m, 1H), 7.25 – 7.19 (m, 3H), 7.07 – 7.00 (m, 2H), 5.61 (dd, J = 8.3, 6.6 Hz, 1H), 3.75 (s, 3H), 3.57 – 3.44 (m, 2H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 168.9, 147.9, 135.0, 130.7, 129.2, 129.0, 129.0, 128.4, 127.8, 126.0, 119.8, 64.3, 53.3, 39.2, 14.4; **LRMS** (ESI): [m/z] 308 [M⁺+1]; **HRMS** (ESI): [m/z] berechnet für [C₁₈H₁₈O₂N₃] 308.1394, gefunden 308.1403.

Methyl-5-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)hex-4-enoat

Durch Reaktion von 2-Dimethylallyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-5-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)hex-4-enoat als weißer Feststoff (15 mg, 0.0525 mmol, 24%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.96 (s, 1H), 7.85 – 7.81 (m, 2H), 7.44 – 7.38 (m, 2H), 7.34 – 7.29 (m, 1H), 5.41 (dd, J = 8.4, 6.0 Hz, 1H), 5.02 – 4.96 (m, 1H), 3.78 (s, 3H), 2.98 – 2.79 (m, 2H), 1.65 (d, J = 0.9 Hz, 4H), 1.53 (s, 3H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.4, 148.1, 137.8, 130.8, 129.0, 128.4, 126.0, 119.4, 116.7, 62.9, 53.2, 31.9, 26.0, 18.0, 1.2; **LRMS** (EI): [m/z] 285 [M⁺] (75%), 256 (10%), 198 (100%), 183 (25%), 156 (87%), 141 (22%), 118 (100%), 102, (75%), 81 (60%), 59 (30%); **HRMS** (ESI): [m/z] berechnet für [C₁₆H₂₀O₂N₃] 286.1550, gefunden 286.1551.

Methyl-3-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pentanoat

Durch Reaktion von 2-(Methoxycarbonyl)-3-methylpentansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-3-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pentanoat als farbloses Öl (29 mg, 0.106 mmol, 46%, d.r. = 1:1) erhalten.

DC: $R_f = 0.28$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.08 (d, J = 2.4 Hz, 2H), 7.85 (dt, J = 2.9, 1.7 Hz, 4H), 7.44 – 7.38 (m, 4H), 7.34 – 7.28 (m, 2H), 5.34 (d, J = 8.0 Hz, 1H), 5.24 (d, J = 9.1 Hz, 1H), 3.79 (d, J = 2.3 Hz, 6H), 2.38 – 2.20 (m, 2H), 1.49 – 1.04 (m, 4H), 1.04 – 0.95 (m, 6H), 0.87 (dd, J = 8.1, 5.7 Hz, 6H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.7, 169.6, 148.2, 148.1, 129.0, 128.4, 126.0, 119.2, 67.89, 67.5, 53.0, 53.0, 38.9, 38.8, 26.1, 25.2, 15.7, 15.3, 11.2, 10.9; **LRMS** (EI): [m/z] 273 [M⁺] (25%), 207 (5%), 188 (25%), 129 (30%), 116 (100%), 102 (30%), 89 (25%), 69, (75%), 55 (5%); **HRMS** (ESI): [m/z] berechnet für [C₁₅H₁₉O₂N₃Na₁] 296.1369, gefunden 296.1362.

Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pent-4-enoat

Durch Reaktion von 2-Allyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pent-4-enoat als gelber Feststoff (38 mg, 0.1476 mmol, 58%) erhalten.

DC: R_f = 0.20, (PE:EtOAc/ 8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.97 (s, 1H), 7.84 (dd, *J* = 5.2, 3.2 Hz, 2H), 7.45 – 7.37 (m, 2H), 7.37 – 7.28 (m, 1H), 5.68 (ddt, *J* = 17.1, 10.2, 7.0 Hz, 1H), 5.49 (dd, *J* = 8.7, 6.0

Hz, 1H), 5.20 - 5.11 (m, 1H), 5.11 - 5.08 (m, 1H), 3.78 (s, 3H), 3.04 - 2.86 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm].169.0, 148.2, 131.1, 131.1, 129.0, 128.5, 126.0, 120.4, 119.4, 62.5, 53.3, 37.2; LRMS (EI): [m/z] 257 [M⁺] (45%), 207 (5%), 188 (30%), 170 (100%), 143 (20%), 116 (100%), 89 (30%), 71, (31%), 53 (5%); HRMS (ESI): [m/z] berechnet für [C₁₄H₁₆O₂N₃] 258.1237, gefunden 258.1234.

Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pent-4-inoat

Durch Reaktion von 2-Propargyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pent-4-inoat als gelber Feststoff (34 mg, 0.1331 mmol, 52%) erhalten.

DC: $R_f = 0.15$, (PE:EtOAc/ 8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] .12 (s, 1H), 7.85 (dt, J = 8.2, 1.7 Hz, 2H), 7.45 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 5.60 (dd, J = 7.4, 5.2 Hz, 1H), 3.82 (s, 3H), 3.21 (ddd, J = 17.2, 7.4, 2.7 Hz, 1H), 3.07 (ddd, J = 17.2, 5.2, 2.7 Hz, 1H), 2.12 (t, J = 2.7 Hz, 1H); ¹³**C-NMR (101 MHz, CDCl₃)**: δ [ppm] 166.5, 127.9, 127.8, 127.3, 125.1, 124.8, 118.7, 82.4, 72.0, 60.0, 52.4, 22.2; **LRMS** (EI): [m/z] 255 [M⁺] (25%), 226 (10%), 207 (11%), 188 (9%), 168 (100%), 140 (30%), 116 (80%), 102 (30%), 79, (100%), 63 (10%), 51 (55%); **HRMS** (ESI): [m/z] berechnet für [C₁₄H₁₃O₂N₃Na₁] 278.0900, gefunden 278.0900.

Methyl-3-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)butanoat

Durch Reaktion von 2-Isopropyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-3-methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)butanoat als farbloses Öl (10 mg, 0.0385 mmol, 31%) erhalten.

DC: $R_f = 0.43$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 78.08 (d, J = 4.8 Hz, 1H), 7.85 (dd, J = 8.3, 1.2 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.35 – 7.29 (m, 1H), 5.16 (d, J = 8.9 Hz, 1H), 3.78 (d, J = 13.9 Hz, 3H), 2.55 – 2.43 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 169.5, 148.3, 130.8, 129.0, 128.4, 126.0, 119.2, 69.1, 53.0, 32.8, 19.4, 18.8; **LRMS** (EI): [m/z] 259 [M⁺] (30%), 207 (5%), 188 (25%), 172 (20%), 145 (10%), 115 (100%), 83 (30%), 59 (60%); **HRMS** (ESI): [m/z] berechnet für [C₁₄H₁₈O₂N₃] 260.1394, gefunden 260.1392.

Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)decanoat

Durch Reaktion von 2-Octyl-3-methoxy-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Methyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)decanoat als farbloses Öl (7.5 mg, 0.022 mmol, 25%) erhalten.

DC: $R_f = 0.17$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.97 (s, 1H), 7.85 (dd, J = 8.2, 1.1 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 5.39 (dd, J = 9.8, 5.6 Hz, 1H), 3.77 (s, 3H), 2.23 (ddd, J = 15.5, 10.8, 5.5 Hz, 1H), 2.11 (dtd, J = 14.1, 9.5, 4.9 Hz, 1H), 1.39 – 1.14 (m, 14H), 0.84 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.8, 148.3, 130.8, 129.1, 128.4, 126.0, 119.0, 63.1, 53.2, 33.2, 32.0, 29.4, 29.3, 29.0, 25.8, 22.8, 14.3; **LRMS** (EI): [m/z] 329 [M⁺] (15%), 273 (5%), 242 (25%), 207 (7%), 188 (245%), 153 (5%), 135 (25%), 115 (100%), 89 (30%), 69 (60%); **HRMS** (ESI): [m/z] berechnet für [C₁₉H₂₈O₂N₃] 330.2176, gefunden 330.2176.

Ethyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)propanoat (IV-152)

C₁₃H₁₅N₃O₂ 245,28 g/mol

Durch Reaktion von IV-**149** nach der allgemeinen Vorschrift **G 2.6** wurde Verbindung IV-**152** als farbloses Öl (33 mg, 0.134 mmol, 98%) erhalten.

DC: $R_f = 0.17$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.94 (s, 1H), 7.85 – 7.81 (m, 2H), 7.44 – 7.38 (m, 2H), 7.32 (dtt, J = 6.5, 2.6, 1.3 Hz, 1H), 5.49 (q, J = 7.4 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 1.86 (d, J = 7.4 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 169.3, 148.0, 130.5, 128.8, 128.2, 125.8, 118.7, 62.4, 58.3, 18.4, 14.0; **LRMS** (EI): [m/z] 245 [M⁺+1] (30%), 189 (20%), 144 (50%), 115 (100%), 102 (30%), 89 (28%), 73 (17%), 55 (10%); **HRMS** (ESI): [m/z] berechnet für [C₁₃H₁₅O₂N₃Na₁] 268.1056, gefunden 268.1056.

Benzyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoat

Durch Reaktion von 3-(Benzyloxy)-2-methyl-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde Benzyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoat als farbloses Öl (28 mg, 0.091 mmol, 76%) erhalten.

DC: $R_f = 0.28$, (CH:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.91 (s, 1H), 7.85 – 7.78 (m, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 – 7.31 (m, 5H), 7.30 – 7.27 (m, 2H), 5.53 (q, J = 7.4 Hz, 1H), 5.19 (d, J = 3.0 Hz, 2H), 1.86 (d, J = 7.4 Hz, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 169.3, 148.2, 134.9, 130.7, 129.0, 128.9, 128.9, 128.7, 128.5, 128.4, 127.8, 127.2, 126.0, 119.0, 68.1, 65.5, 58.5, 18.5; **HRMS** (ESI): [m/z] berechnet für [C₁₈H₁₇O₂N₃Na₁] 330.1213, gefunden 330.1213.

N-Cyclohexyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamid

Durch Reaktion von 2-Benzyl-3-(cyclohexylamino)-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde *N*-Cyclohexyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamid als weißer Feststoff (11 mg, 0.029 mmol, 40%) erhalten.

TLC: R_f = 0.29, (CH:EtOAc/8:2, [UV]). ¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] 7.85 (s, 1H), 7.78 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.29 (m, 1H), 7.23 – 7.17 (m, 3H), 7.12 – 7.06 (m, 2H), 6.17 (d, *J* = 7.8 Hz, 1H), 5.22 (dd, *J* = 8.6, 7.0 Hz, 1H), 3.70 (ttd, *J* = 11.8, 8.0, 3.9 Hz, 1H), 3.58 (dd, *J* = 13.7, 7.0 Hz, 1H), 3.41 (dd, *J* = 13.7, 8.6 Hz, 1H), 1.81 (dd, *J* = 12.5, 3.6 Hz, 1H), 1.69 (dd, *J* = 12.6, 3.8 Hz, 1H), 1.65 – 1.51 (m, 3H), 1.34 – 1.25 (m, 3H), 1.13 – 1.05 (m, 2H), 0.96 (ddd, *J* = 15.1, 12.1, 3.6 Hz, 1H); ¹³**C-NMR (101 MHz, CDCl₃)**: δ [ppm] 166.5, 148.1, 135.8, 130.5, 129.2, 129.1, 129.04 128.6, 127.6, 126.0, 120.3, 66.9, 49.0, 40.0, 32.7, 25.6, 24.8; **LRMS** (EI): [m/z] 374 [M⁺+1] (3%), 340 (2%), 281 (5%), 255 (65%), 229 (40%), 207 (30%), 173 (25%), 131 (100%), 103 (50%), 83 (30%), 55 (20%); **HRMS** (ESI): [m/z] berechnet für [C₂₃H₂₆O₁N₄Na₁] 397.1999, gefunden 397.1981.

N-Allyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamid

Durch Reaktion von 3-(Allylamino)-2-benzyl-3-oxopropansäure nach der allgemeinen Vorschrift **G 2.6** wurde *N*-Allyl-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamid als weißer Feststoff (5 mg, 0.015 mmol, 24%) erhalten.

DC: $R_f = 0.25$, (CH:EtOAc/8:2, [UV]). ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.76 (s, 1H), 7.76 (dd, J = 8.1, 1.1 Hz, 2H), 7.40 (dd, J = 10.6, 4.7 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.23 – 7.17 (m, 3H), 7.11 – 7.04 (m, 2H), 6.47 (s, 1H), 5.75 – 5.65 (m, 1H), 5.25 (dd, J = 9.2, 6.2 Hz, 1H), 5.07 (dd, J = 10.3, 1.2 Hz, 1H), 5.03 (ddd, J = 17.2, 2.7, 1.5 Hz, 1H), 3.85 (dd, J = 7.9, 3.5 Hz, 2H), 3.63 (dd, J = 13.9, 6.2 Hz, 1H), 3.47 (dd, J = 13.9, 9.3 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 167.4, 148.2, 135.7, 133.1, 129.1, 129.1, 128.7, 127.7, 126.0, 120.6, 117.2, 67.1, 42.4, 39.9; **LRMS** (EI): [m/z] 332 [M⁺+1] (10%), 291 (10%), 252 (5%), 213 (100%), 188 (40%), 171 (5%), 131 (35%), 116 (50%), 91 (30%), 76 (20%), 51 (10%); **HRMS** (ESI): [m/z] berechnet für [C₂₀H₂₀O₁N₄Na₁] 355.1529, gefunden 355.1527.

V-2.7 Synthese von geminalen Di- und Triaziden

V-2.7.1 Synthese der Ausgangsmaterialien

3-Oxo-3-phenylpropansäure⁷⁰³ (IV-172)

C₉H₈O₃ 64,16 g/mol

Natriumhydroxid (1.224 g, 26.013 mmol) wurde in Wasser (52.0 mL) gelöst und bei 0°C mit Ethylbenzoylacetat IV-**173** (5.0 g, 26.013 mmol) versetzt. Die Reaktionsmischung wurde für 16 h bei 23°C. gerührt. Die Reaktionslösung wurde bei 0°C langsam in konz. HCI-Lösung eingetropft (50 mL). Der entstandene weiße Niederschlag wurde abgesaugt und mit kaltem Wasser (ca. 100 mL) und kaltem CCI₄ (ca. 20 mL) gewaschen. Der Rückstand wurde im HV getrocknet. Verbindung IV-**172** wurde als weißer, amorpher Feststoff (1.045 mg, 6.365 mmol, 24%) erhalten. Analytische Daten konnten nur von Abbauprodukt Acetophenon erhalten werden, da die Verbindung beim Lösen in DMSO-D6 oder CDCI₃ umgehend deutlich ersichtlich unter Gasbildung decarboxylierte.

¹**H-NMR** (400 MHz, DMSO-d6): δ [ppm] 8.04 – 7.91 (m, 2H), 7.71 – 7.58 (m, 1H), 7.56 – 7.49 (m, 2H), 2.58 (s, 3H); ¹³**C-NMR** (101 MHz, DMSO-d6): δ [ppm] 197.9, 136.8, 133.1, 128.6, 128.1, 26.7.

Allgemeine Vorschrift A 2.7 zur Synthese von Aziden aus Bromiden: 2-Azido-1-phenylethanon (IV-175)

Zu einer Lösung von Natriumazid (1.959 g, 30.145 mmol) in DMSO (50 mL) wurde bei 0°C 2-Bromacetophenon (2.0 g, 10.048 mmol) gegebene und die Reaktionsmischung wurde für 10 min bei 23°C gerührt. Die Reaktionsmischung wurde auf Eiswasser (600 mL) ausgegossen und mit Diethylether (3x 100 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/9:1) gereinigt. Verbindung IV-**175** wurde als gelbes Öl (1.506 g, 9.344 mmol, 93%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁴ **DC:** R_f = 0.38, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.97 – 7.77 (m, 2H), 7.67 – 7.55 (m, 1H), 7.55 – 7.45 (m, 2H), 4.54 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 193.4, 134.6, 134.3, 129.2, 128.1, 55.1; **IR** (ATR): [cm⁻¹] 3062, 2903, 2094, 1692, 1596, 1580, 1449, 1421, 1348, 1283, 1213, 1181, 1160, 1100, 1075, 1001, 979, 907, 811, 752, 685, 659, 621, 564, 550, 465.

2-Azido-1-phenylethanon

Durch Reaktion von 2-Brompropiophenon nach der allgemeinen Vorschrift **A 2.7** wurde 2-Azido-1phenylethanon als gelbes Öl (1.447 g, 8.259 mmol, 82%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁵

DC: R_f = 0.52, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.92 (dt, *J* = 8.5, 1.6 Hz, 2H), 7.65 – 7.53 (m, 1H), 7.53 – 7.41 (m, 2H), 4.75 – 4.61 (m, 1H), 1.55 (d, *J* = 7.0 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 196.6, 134.2, 133.8, 128.8, 128.5, 58.3, 16.3; **IR** (ATR): [cm⁻¹] 3064, 2985, 2963, 2087, 1687, 1596, 1582, 1448, 1377, 1255, 1213, 1182, 1160, 1101, 1074, 1001, 962, 853, 790, 771, 696, 661, 619, 555, 491, 443.

2-Iodacetophenone (IV-179)

Styren IV-**192** (100 mg, 0.960 mmol) wurde bei 23°C in DMSO (3.2 mL) gelöst und nach einander mit NIS (237.6 mg, 1.056 mmol) sowie IBX (537.7 mg, 1.920 mmol) versetzt und für 1 h bei 23°C gerührt. Die Reaktionsmischung wurde mit CH₂Cl₂ (20 mL) sowie einem Tropfen Wasser versetzt. Der gebildete Niederschlag wurde abfiltriert und das Filtrat mit gesättigter Natriumthiosulfatlösung (30 mL) versetzt und mit CH₂Cl₂ (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/9:1) gereinigt. Verbindung IV-**179** wurde als rot-braunes Öl

(139 mg, 0.564 mmol, 59%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁶

DC: (PE:EtOAc/9:1) [UV, KMnO₄]: $R_f = 0.55$. ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.01 – 7.93 (m, 2H), 7.60 – 7.53 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 4.34 (s, 2H).¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 193.0, 134.0, 133.7, 129.2, 129.0, 1.9.

Allgemeine Vorschrift **B 2.7** zur Herstellung von Iodiden aus Bromiden nach *Finkelstein*: **2-Iodacetophenon (IV-179)**

2-Brom-1-phenylethanon (2.0 g, 10.048 mmol) wurde in Aceton (10 mL) gelöst und mit Natriumiodid (2.070 g, 11.053 mmol) versetzt. Die Reaktionsmischung wurde für 15 min bei 23°C unter Lichtausschluss gerührt. Die Reaktion wurde bei 23°C *i. vac.* vom Lösungsmittel befreit. Der Rückstand wurde in Diethylether (30 mL) aufgenommen und mit gesättigter Natriumthiosulfatlösung (50 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit Diethylether (3x 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. (Optional: Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:EtOAc/9:1) gereinigt.) Verbindung IV-**179** wurde als rot-braunes Öl (1.705 g, 6.929 mmol, 69%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

2-lodo-1-phenylpropan-1-on

Durch Reaktion von 2-Brompropiophenon nach der allgemeinen Vorschrift **B 2.7** wurde Verbindung 2-Iodo-1-phenylpropan-1-on als rot-braunes Öl (1.474 g, 5.667 mmol, 60%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁷

DC: $R_f = 0.55$, (PE:EtOAc/9:1, [UV], [KMnO₄]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.04 – 7.89 (m, 2H), 7.63 – 7.51 (m, 1H), 7.50 – 7.38 (m, 2H), 5.47 (q, J = 6.7 Hz, 1H), 2.05 (d, J = 6.7 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 194.9, 133.8, 133.7, 128.9, 128.8, 22.2, 18.3.

2-Iodo-1-(4-chlorophenyl)ethanon

Durch Reaktion von 2-Brom-1-(4-chlorophenyl)ethanon nach der allgemeinen Vorschrift **B 2.7** wurde 2-lodo-1-(4-chlorophenyl)ethanon als gelber Feststoff (426 mg, 1.518 mmol, 74%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁸

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] 7.93 – 7.85 (m, 2H), 7.47 – 7.38 (m, 2H), 4.30 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 191.8, 140.5, 132.0, 130.6, 129.4, 1.4; LRMS (EI): [m/z] 280 [M⁺] (2%), 154 [M⁺-I](20%), 139 (100%), 111 (40%), 75 (20%), 50 (15%). HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

1-(3-Bromphenyl)-2-iodoethanon

Durch Reaktion von 1-(3-Bromphenyl)-2-bromethanon nach der allgemeinen Vorschrift **B 2.7** wurde Verbindung 1-(3-Bromphenyl)-2-iodoethanon als rotes Öl (480 mg, 1.477 mmol, 72%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷⁰⁹

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.08 (t, J = 1.8 Hz, 1H), 7.94 – 7.80 (m, 1H), 7.76 – 7.61 (m, 1H), 7.41 – 7.28 (m, 1H), 4.30 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 191.6, 136.8, 135.4, 132.1, 130.5, 127.7, 123.3, 1.4; **LRMS** (EI): [m/z] 326 [M⁺+1] (10%), 200 [M⁺-I] (30%), 183 (100%), 155 (40%), 76 (30%), 50 (20%). HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

Durch Reaktion von 1-(4-Methylphenyl)-2-bromethanon nach der allgemeinen Vorschrift **B 2.7** wurde 1-(4-Methylphenyl)-2-iodethanon als orangenes Öl (559 mg, 2.049 mmol, 100%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.^{598a}

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.96 – 7.74 (m, 2H), 7.33 – 7.16 (m, 2H), 4.30 (s, 2H), 2.40 (s, 3H); ¹³**C**-**NMR** (101 MHz, CDCl₃): δ [ppm] 192.6, 145.0, 131.1, 129.7, 129.3, 21.9, 2.0; **LRMS** (EI): [m/z] 260 [M⁺] (2%), 134 [M⁺-I] (20%), 119 (100%), 91 (60%), 77 (10%), 65 (20%) 51 (10%).

1-([1,1'-Biphenyl]-4-yl)-2-iodethanon

Durch Reaktion von 1-([1,1'-Biphenyl]-4-yl)-2-bromethanon nach der allgemeinen Vorschrift **B 2.7** wurde Verbindung 1-([1,1'-Biphenyl]-4-yl)-2-iodethanon als gelber Feststoff (526 mg, 1.632 mmol, 79%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.^{598a}

¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.07 – 8.01 (m, 2H), 7.72 – 7.65 (m, 2H), 7.65 – 7.57 (m, 2H), 7.49 – 7.43 (m, 2H), 7.43 – 7.35 (m, 1H), 4.37 (s, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 192.6, 146.7, 139.8, 132.4, 129.9, 129.2, 128.7, 127.7, 127.5, 1.9; **LRMS** (EI): [m/z] 322 $[M^+]$ (2%), 196 $[M^+-I]$ (20%), 119 (100%), 91 (60%), 77 (10%), 65 (20%) 51 (10%); **HRMS** (ESI): [m/z] berechnet für $[C_{14}H_{11}I_1O_1Na_1]$ 344.9747, gefunden 344.9748.

Allgemeine Vorschrift C 2.7 zur Wittig-Olefinierung von Aldehyden: 1-Fluoro-4-vinylbenzen

Methyltriphenylphosphoniumbromid (3.534 g, 9.894 mmol) wurden in trocknem THF (78.5 mL) unter Stickstoffatmosphäre. gelöst, tropfenweise bei 23°C mit *n*BuLi (3.958 mL, 9.894 mmol, 2.5 M in Hexan) versetzt und für 15 min bei 23°C gerührt. Anschließend wurde eine Lösung von 4-Fluorbenzaldehyd (1.169 g, 9.423 mmol) in trocknem THF (5 mL) zu getropft. Die Reaktionsmischung wurde für 2 h bei 23°C gerührt. Die Reaktion wurde durch Zugabe von gesättigter Ammoniumchloridlösung (50 mL) abgebrochen und mit CH_2Cl_2 (3x 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (PE:Et₂O/99:1) gereinigt. Verbindung 1-Fluoro-4-vinylbenzen als farbloses Öl (994 mg, 8.137 mmol, 86%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹⁰

DC: $R_f = 0.8$, (PE:EtOAc/95:5, [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.46 – 7.31 (m, 2H), 7.10 – 6.90 (m, 2H), 6.67 (dd, J = 17.6, 10.9 Hz, 1H), 5.65 (d, J = 17.6 Hz, 1H), 5.21 (dt, J = 10.9, 0.7 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 162.7 (d, J = 246.8 Hz), 134.0 (d, J = 3.4 Hz), 128.0 (d, J = 8.0 Hz), 115.6 (d, J = 21.7 Hz), 113.7 (d, J = 2.2 Hz); LRMS (EI): [m/z] 122 [M⁺] (100%), 109 (95%), 96 (10%), 83 (15%), 75 (5%), 63 (5%), 51 (5%). HRMS-Daten konnten für diese Verbindung nicht erhalten werden.

1-Nitro-4-vinylbenzen

C₈H₇NO₂

Durch *Wittig*-Olefinierung von 4-Nitrobenzaldehyd mit Methyltriphenylphosphoniumbromid nach der allgemeinen Vorschrift **C 2.7** wurde 1-Nitro-4-vinylbenzen als orangenes Öl (963 mg, 6.372 mmol, 67%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹¹

DC: $R_f = 0.75$, (PE:EtOAc/95:5, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.23 – 8.13 (m, 2H), 7.58 – 7.47 (m, 2H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 5.91 (d, J = 17.6 Hz, 1H), 5.48 (d, J = 10.9 Hz, 1H). ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 143.8, 135.0, 128.7, 126.8, 123.9, 118.6.

Durch *Wittig*-Olefinierung von 2-Chlorbenzaldehyd mit Methyltriphenylphosphoniumbromid nach der allgemeinen Vorschrift **C 2.7** wurde 1-Chlor-2-vinylbenzen als farbloses Öl (1.116 g, 8.052 mmol, 85%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹¹

DC: R_f = 0.8, (PE:EtOAc/95:5, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.46 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.15 – 7.10 (m, 1H), 7.10 – 7.05 (m, 1H), 7.01 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.64 (dd, *J* = 17.5, 1.1 Hz, 1H), 5.28 (dd, *J* = 11.0, 1.1 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 136.0, 133.4, 133.4, 129.9, 129.0, 127.0, 126.8, 116.7. **LRMS** (EI): [m/z] 138 [M⁺] (100%), 103 (95%), 77 (30%), 63 (5%), 51 (15%).

1-Methoxy-2-vinylbenzen

Durch *Wittig*-Olefinierung von 2-Methoxybenzaldehyd mit Methyltriphenylphosphoniumbromid nach der allgemeinen Vorschrift **C 2.7** wurde Verbindung 1-Methoxy-2-vinylbenzen als farbloses Öl (553 mg, 4.121 mmo, 44%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹¹

DC: $R_f = 0.63$, (PE:EtOAc/95:5, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.47 (dd, J = 7.6, 1.7 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.06 (dd, J = 17.8, 11.2 Hz, 1H), 6.97 – 6.91 (m, 1H), 6.87 (dd, J = 8.3, 0.9 Hz, 1H), 5.74 (dd, J = 17.8, 1.6 Hz, 1H), 5.31 – 5.23 (m, 1H), 3.85 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 156.96, 131.91, 129.04, 127.01, 126.74, 120.83, 114.63, 111.07, 55.66; **LRMS** (EI): [m/z] 134 [M⁺] (65%), 119 (20%), 103 (10%), 91 (100%), 77 (10%), 65 (20%) 51 (10%).

2-Vinylnaphthalen

Durch *Wittig*-Olefinierung von 2-Naphthylcarbaldehyd mit Methyltriphenylphosphoniumbromid nach der allgemeinen Vorschrift **C 2.7** wurde 2-Vinylnaphthalen als weißer Feststoff (1.184 g, 7.677 mmol, 81%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹²

DC: $R_f = 0.75$, (PE:EtOAc/95:5, [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.84 – 7.77 (m, 3H), 7.75 (s, J = 7.7 Hz, 1H), 7.64 (dd, J = 8.5, 1.8 Hz, 1H), 7.49 – 7.41 (m, 2H), 6.93 – 6.84 (m, 1H), 5.88 (dd, J = 17.6, 0.6 Hz, 1H), 5.34 (dd, J = 10.9, 0.5 Hz, 1H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 137.2, 135.3, 133.8, 133.4, 128.4, 128.3, 127.9, 126.6, 126.5, 126.1, 123.4, 114.4; LRMS (EI): [m/z] 154 [M⁺] (100%), 128 (5%), 115 (2%), 102 (1%), 76 (10%), 63 (2%) 51 (1%).

2-Methyl-5-vinylfuran

C7H8O 108,14 g/mol

Durch *Wittig*-Olefinierung von 5-Methylfuran-2-carbaldehyd mit Methyltriphenylphosphoniumbromid nach der allgemeinen Vorschrift **C 2.7** wurde 2-Methyl-5-vinylfuran als orangenes Öl (348 mg, 3.218 mmol, 34%) erhalten. (Vorsicht: Substanz ist starkflüchtig.) Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁷¹³

DC: $R_f = 0.83$, (PE:EtOAc/95:5, [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 6.42 (dd, J = 17.5, 11.3 Hz, 1H), 6.12 (d, J = 3.2 Hz, 1H), 5.94 (ddd, J = 2.9, 1.9, 0.9 Hz, 1H), 5.56 (dd, J = 17.5, 1.3 Hz, 1H), 5.05 (dd, J = 11.3, 1.3 Hz, 1H), 2.29 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 152.0, 151.7, 125.1, 110.4, 109.1, 107.3, 13.6.

V-2.7.2 Synthese von geminalen Di- und Triaziden

Vorsicht: Die nachfolgend beschriebenen geminalen Di-und Triazide detonieren bei schnellem Erhitzen auf über 80°C, Schlageinwirkung oder Entladungen statischer Aufladungen unter gleißendem Feuerschein und lautem Knall. Bei der Arbeit mit Aziden sollte unbedingt geeignete Schutzausrüstung getragen werden (Gesichtsschild, Kevlar[®]-Schutzweste, Kevlar[®]-Handschuhe, Explosionsschutz am Rotationsverdampfer). Zudem sollten die Ansatzmengen möglichst klein gehalten werden.

Allgemeine Vorschrift **D 2.7 z**ur Synthese von geminalen Triaziden ausgehend von β-Oxocarbonsäuren in Gegenwart von IBX-SO₃K: **2,2,2-Triazido-1-phenylethanon (**IV-**176**)

 $C_8H_5N_9O$

3-Oxo-3-phenylpropansäure IV-**172** (100 mg, 0.609 mmol) wurde in einer vorgemischten und auf 20°C temperierten Lösung von DMSO (4.061 mL) gelöst und einer 6.0 M Natriumazid-Lösung (2.031 mL) gelöst und nacheinander mit (1.066 g, 2.741 mmol) IBX-SO₃K sowie Natriumiodid (45.7 mg, 0.305 mmol, 0.5 eq) versetzt. Die Reaktionsmischung wurde für 15 min bei 23°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung IV-**176** wurde als farbloses Öl (103 mg, 0.423 mmol, 70%) erhalten.

DC: $R_f = 0.72$, (PE:EtOAc/9:1, [UV]);. ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.11 (dt, J = 8.6, 1.5 Hz, 2H), 7.66 – 7.59 (m, 1H), 7.52 – 7.44 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 186.8, 134.8, 131.3, 131.1, 128.8, 93.0; **IR** (ATR): [cm⁻¹] 3065, 2957, 2926, 2112, 1695, 1597, 1449, 1226, 1182, 1128, 1102, 1072, 1000, 986, 885, 790, 684, 627, 550, 525, 491, 440; LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

Allgemeine Vorschrift **E 2.7 z**ur Synthese von geminalen Di-und Triaziden ausgehend von Monoaziden in Gegenwart von IBX-SO₃K: **2,2,2-Triazido-1-phenylethanon (**IV-**176**)

2-Azido-1-phenylethanon IV-**175** (100 mg, 0.621 mmol) wurden bei 23°C in einer vorgemischten Lösung von DMSO (4.137 mL) und einer 6.0 M Natriumazid-Lösung (2.068 mL) gelöst und nacheinander mit IBX-SO₃K (724 mg, 1.862 mmol, 1.5 eq/einzuführendes Azid) sowie Natriumiodid (46.5 mg, 0.610 mmol, 0.5 eq) versetzt. Die Reaktionsmischung wurde für 15 min bei 23°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan: Et_2O /9:1) gereinigt. Verbindung IV-**176** wurde als farbloses Öl (108 mg, 0.444 mmol, 72%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

2,2-Diazido-1-phenylpropan-1-on (IV-187)

Durch Azidierung von 2-Azidopropiophenon nach der allgemeinen Vorschrift **E 2.7** wurde Verbindung IV-**187** als farbloses Öl (110 mg, 0.509 mmol, 82%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁵⁹

DC: $R_f = 0.63$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.11 (ddd, J = 7.9, 2.9, 1.6 Hz, 2H), 7.66 – 7.53 (m, 1H), 7.53 – 7.41 (m, 2H), 1.84 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 192.1, 134.1, 132.9, 130.5, 128.8, 83.4, 22.7; **IR** (ATR): [cm⁻¹] 3066, 2930, 2099, 1691, 1596, 1576, 1447 1379, 1220, 1186, 1154, 1112, 1030, 1001, 965, 934, 876, 790, 763, 708, 687, 635, 556, 512, 446.; LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Bistriazols angegeben (*vide infra*).
Allgemeine Vorschrift **F 2.7** zur Synthese von geminalen Di-und Triaziden ausgehend von 2-Iodacetophenonen in Gegenwart von IBX-SO₃K: **2,2,2-Triazido-1-phenylethanon (**IV-**176**)

2-lodo-1-phenylethanon (200 mg, 0.813 mmol) wurden bei 23°C° in einer vorgemischten Lösung von DMSO (5.4 mL) und) einer 6.0 M Natriumazid-Lösung (2.7 mL) gelöst (ggf. Kühlung mit Eisbad, die Temperatur sollte hierbei 23°C nicht wesentlich überschreiten.) und mit IBX-SO₃K (949 mg, 2.439 mmol, 1.5 eq/einzuführendes Azid) versetzt. Die Reaktionsmischung wurde für 15 min bei 23°C. gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (20 mL) versetzt und mit Diethylether (3x 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung IV-**176** wurde als farbloses Öl (153.7 mg, 0.632 mmol, 77%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

Dieses Experiment wurde auch im Multi-Gramm-Maßstab (2.170 g, 8.923 mmol, 77%) durchgeführt. (Vorsicht Explosionsgefahr, unbedingt Sicherheitshinweise beachten.)

2,2-Diazido-1-phenylpropan-1-on (IV-187)

C_aH₈N₆O 216,20 g/mol

Durch Azidierung von 2-lodpropiophenon nach der allgemeinen Vorschrift **F 2.7** wurde Verbindung IV-**187** als farbloses Öl (98 mg, 0.453 mmol, 79%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

2,2,2-Triazido-1-(2,4-dimethoxyphenyl)ethanon (IV-185)

Durch Azidierung von 1-(2,4-Dimethoxyphenyl)-2-iodethanon nach der allgemeinen Vorschrift **F 2.7** wurde Verbindung IV-**185** als farbloses Öl (46.5 mg, 0.153 mmol, 30%) erhalten.

DC: $R_f = 0.2$; (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.02 (dd, J = 9.0, 3.1 Hz, 1H), 6.94 (d, J = 3.0 Hz, 1H), 6.89 (d, J = 9.1 Hz, 1H), 3.84 (s, 3H), 3.77 (s, J = 4.3 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 192.5, 153.5, 152.0, 125.2, 119.2, 114.4, 113.0, 91.9, 56.8, 56.2; **IR** (ATR): [cm⁻¹] 3006, 2942, 2837, 2110, 1705, 1610, 1584, 1495, 1462, 1442, 1409, 1309, 1281, 1224, 1175, 1038, 1018, 973, 921, 827, 762, 713, 656, 548, 492, 428. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(4-chlorophenyl)ethanon (IV-184)

Durch Azidierung von 1-(4-Chlorophenyl)-2-iodethanon nach der allgemeinen Vorschrift **F 2.7** wurde Verbindung IV-**184** als gelbes Öl (79.2 mg, 0.258 mmol, 58%) erhalten.

DC: $R_f = 0.76$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.09 – 8.01 (m, 2H), 7.47 – 7.43 (m, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 185.5, 141.4, 132.3, 129.3, 129.0, 92.6; **IR** (ATR): [cm⁻¹] 2958, 2928, 2857, 2111, 1698, 1586, 1567, 1486, 1403, 1307, 1220, 1179, 1090, 1014, 989, 946, 885, 837, 782, 743, 727, 707, 665, 626, 563, 548, 491, 478, 415. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(4-methylphenyl)ethanon (IV-188)

Durch Azidierung von 2-Iod-1-(p-tolyl)ethanon nach der allgemeinen Vorschrift **F 2.7** wurde Verbindung IV-**188** als gelbes Öl (78 mg, 0.303 mmol, 61%) erhalten.

DC: $R_f = 0.84$, (PE:EtOAc/9:1; [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.05 – 7.98 (m, 2H), 7.30 – 7.25 (m, 2H), 2.42 (s, J = 5.8 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 186.3, 146.2, 131.2, 129.5, 128.6, 93.0, 22.0; **IR** (ATR): [cm⁻¹] 3036, 2924, 2867, 2110, 1694, 1605, 1570, 1448, 1409, 1378, 1205, 1183, 1124, 1074, 1021, 995, 946, 886, 825, 771, 738, 707, 671, 637, 610, 550, 509, 491, 472, 418. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

1-([1,1'-Biphenyl]-4-yl)-2,2,2-triazidoethanon (IV-186)

Durch Azidierung von 1-([1,1'-Biphenyl]-4-yl)-2-iodethanon nach der allgemeinen Vorschrift **F 2.7** wurde Verbindung IV-**186** als gelbes Öl (93 mg, 0.291 mmol, 59%) erhalten.

Dieses Experiment wurde auch in größerem (980 mg, 3.070 mmol, 59%) Maßstab durchgeführt. (Vorsicht Explosionsgefahr, unbedingt Sicherheitshinweise beachten.)

DC: R_f = 0.82, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 8.21 – 8.16 (m, 2H), 7.72 – 7.67 (m, 2H), 7.64 – 7.60 (m, 2H), 7.50 – 7.44 (m, 2H), 7.44 – 7.37 (m, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 186.3, 147.6, 139.6, 131.7, 129.3, 128.9, 127.5, 127.4, 93.0; **IR** (ATR): [cm⁻¹] 3070, 3032, 2105, 1697, 1601, 1556, 1483, 1445, 1403, 1230, 1199, 1186, 1113, 1073, 1025, 1005, 975, 953, 883, 852, 774, 737, 699, 675, 652, 626, 558, 540, 502, 485, 411. LRMS- und HRMS-Daten konnten für die Verbindung nicht

erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

Allgemeine Vorschrift **G 2.7** für ein Ein-Topf-Verfahren zur Synthese von geminalen Di-und Triaziden ausgehend von Olefinen durch Iodoxygenierung und anschließende Azidierung in Gegenwart von IBX-SO₃K: **2,2,2-Triazido-1-phenylethanon (**IV-**176**)

Styren IV-**192** (50 mg, 0.480 mmol) wurde bei 35°C zu einer Lösung von IBX (269 mg, 0.960 mmol) in DMSO (1.6 mL) gegeben, mit NIS (118.8 mg, 0.528 mmol) versetzt und für 20 min bei 35°C gerührt. Die Reaktionsmischung wurde durch kurzes Schwenken in einem Eiswasserbad auf 23°C herabgekühlt und mit 300 μL destilliertem Wasser versetzt (Exotherm.) wobei sich ein weißer Niederschlag bildete. Dieser wurde abfiltriert und der Rückstand mit einer auf 23°C temperierten Mischung aus DMSO (1.6 mL)und 300 μL destilliertem Wasser gewaschen. Das Filtrat und die Waschlösung wurden vereint und nacheinander mit IBX-SO₃K (560 mg, 1.440 mmol, 1.5 eq/einzuführendes Azid) und 6.0 M wässriger Natriumazid-Lösung (1.6 mL) versetzt, wobei die Temperatur durch kurzes Schwenken in einem Eiswasserbad bei ca. 20°C gehalten wurde. Die Reaktionsmischung wurde für 30 min bei 23°C gerührt. Die Reaktionsmischung wurde mit gesättigter Natriumthiosulfatlösung (30 mL) versetzt und mit Diethylether (3x 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und *i. vac.* vom Lösungsmittel befreit. Der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung IV-**176** wurde als farbloses Öl (50 mg, 0.205 mmol, 43%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

2,2,2-Triazido-1-(5-methylfuran-2-yl)ethanon (IV-200)

C₇H₅N₉O₂ 247,17 g/mol

Durch Azidierung von 5-Methyl-2-vinylfuran nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**200** als gelbes Öl (63 mg, 0.230 mmol, 48%) erhalten.

DC: $R_f = 0.63$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.50 (dd, J = 3.6, 0.5 Hz, 1H), 6.29 – 6.20 (m, 1H), 2.43 (s, J = 0.6 Hz, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 174.4, 161.6, 146.2, 126.4, 110.3, 92.0, 14.4; **IR** (ATR): [cm⁻¹] 2961, 2928, 2110, 1673, 1580, 1500, 1445, 1368, 1296, 1116, 1025, 1005, 970, 944, 849, 797, 775, 742, 691, 652, 626, 598, 547, 492, 421. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(4-fluorophenyl)ethanon (IV-199)

Durch Azidierung von 4-Flourvinylbenzen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**199** als farbloses Öl (59 mg, 0.226 mmol, 47%) erhalten.

DC: $R_f = 0.75$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 8.19 – 8.13 (m, 2H), 7.19 – 7.11 (m, 2H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 185.3, 167.7, 165.9, 134.2, 134.1, 127.5, 116.2, 116.1, 92.9; **IR** (ATR): [cm⁻¹] 2929, 2111, 1699, 1596,1504, 1412, 1300, 1199, 1158, 1104, 1014, 996, 944, 888, 844, 814, 776, 750, 711, 670, 635, 607, 550, 500, 419. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(2-chlorophenyl)ethanon (IV-195)

Durch Azidierung von 2-Chlorvinylbenzen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**195** als gelbes Öl (64 mg, 0.231 mmol, 47%) erhalten.

DC $R_f = 0.61$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.53 (ddd, J = 7.7, 1.5, 0.6 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.33 (ddd, J = 7.7, 6.6, 2.1 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 190.5, 134.4, 132.6, 132.4, 130.7, 128.9, 126.7, 92.1; **IR** (ATR): [cm⁻¹] 2962, 2929, 2111, 1727, 1589, 1469, 1434, 1205, 1090, 1034, 971, 889, 861, 744, 711, 645, 627, 546, 498, 466, 437, 424. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(2-methoxyphenyl)ethanon (IV-196)

Durch Azidierung von 2-Methoxyvinylbenzen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**196** als gelbes Öl (49 mg, 0.179 mmol, 37%) erhalten.

DC: $R_f = 0.41$, (PE:EtOAc/9:1; [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.48 (ddd, J = 8.4, 7.5, 1.7 Hz, 1H), 7.41 (dd, J = 7.6, 1.7 Hz, 1H), 7.01 (td, J = 7.5, 0.9 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 192.7, 157.9, 133.7, 129.5, 124.9, 120.8, 111.7, 92.0, 77.4, 77.2, 77.0, 56.2; **IR** (ATR): [cm⁻¹] 2945, 2841, 2110, 1703, 1598, 1487, 1463, 1435, 1289, 1215, 1163, 1118, 1018, 973, 874, 797, 750, 637, 583, 546, 495, 428. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(naphthalen-2-yl)ethanon (IV-198)

Durch Azidierung von 2-Vinylnaphthalen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**198** als gelbes Öl (68 mg, 0.231 mmol, 48%) erhalten.

DC: R_f = 0.75, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 8.72 (d, J = 1.1 Hz, 1H), 8.08 (dd, J = 8.7, 1.8 Hz, 1H), 7.99 (dd, J = 8.2, 0.4 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.64 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H),

7.57 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 186.8, 136.3, 133.8, 132.4, 130.4, 129.8, 128.7, 128.5, 128.0, 127.4, 125.6, 93.2; **IR** (ATR): [cm⁻¹] 3060, 2960, 2109, 1692, 1625, 1595, 1572, 1507, 1464, 1436, 1387, 1355, 1215, 1186, 1129, 1067, 1016, 954, 917, 900, 863, 833, 820, 754, 686, 642, 630, 604, 586, 549, 470, 417. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2,2-Triazido-1-(3-methoxyphenyl)ethanon (IV-197)

Durch Azidierung von 3-Methoxyvinylbenzen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**197** als farbloses Öl (49 mg, 0.179 mmol, 37%) erhalten.

DC: $R_f = 0.45$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.72 (ddd, J = 7.8, 1.6, 0.9 Hz, 1H), 7.59 (dd, J = 2.6, 1.7 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.17 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), 3.85 (s, 3H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 186.6, 159.8, 132.4, 129.8, 123.6, 121.3, 115.4, 93.0, 55.7. **IR** (ATR): [cm⁻¹] 3007, 2941, 2873, 2110, 1698, 1596, 1579, 1486, 1463, 1428, 1323, 1291, 1268, 1203, 1095, 1020, 994, 918, 876, 828, 809, 795, 766, 739, 691, 632, 548, 489, 434, 415. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

2,2-Diazido-1-phenylpropan-1-on (IV-187)

Durch Azidierung von 1-Phenyl-1-propen (E:Z = 1:1) nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**187** als farbloses Öl (36 mg, 0.166 mmol, 35%) erhalten. Die analytischen Daten stimmten mit den zuvor erhaltenen vollständig überein (*vide supra*).

1,1,1-Triazido-3-methylhexan-2-on (IV-201)

Durch Azidierung von 3-Methyl-1-hexen nach der allgemeinen Vorschrift **G 2.7** wurde Verbindung IV-**201** als farbloses Öl (37 mg, 0.156 mmol, 32%) erhalten.

DC: $R_f = 0.73$, (PE:EtOAc/9:1, [KMnO₄]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 3.02 – 2.92 (m, 1H), 1.73 – 1.65 (m, 1H), 1.39 – 1.29 (m, 2H), 1.28 – 1.20 (m, 1H), 1.14 (d, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 201.6, 92.1, 40.6, 36.0, 20.6, 17.6, 14.1. LRMS- und HRMS-Daten konnten für die Verbindung nicht erhalten werden, alternativ sind die LRMS- und HRMS-Daten des korrespondierenden Tristriazols angegeben (*vide infra*).

V-2.7.3 Modifizierung von geminalen Di-und Triaziden via metall-freier 1,3-dipolarer Zykloaddition mit Cyclooctin

Die erhaltenen geminalen Tristriazole zeigten bei 23°C in CDCl₃ oder DMSO eine eingeschränkte Rotation um die drei C_{gem}-N-Bindungen, wodurch die korrespondierenden ¹H- und ¹³C-NMR-Spektren teilweise drei chemisch nicht äquivalente Cycloocta[d][1,2,3]triazoleinheiten zeigten teilweise schwer interpretierbar waren auf Grund stark verbreitter Signale. Bei 80°C in DMSO ist diese eingeschränkte Rotation aufgehoben und die korrespondierenden ¹H- und ¹³C-NMR-Spektren zeigten nur noch einen gemeinsamen Signalsatz für alle drei, nun chemisch äquivalenten, Cycloocta[d][1,2,3]triazoleinheiten.

Allgemeine Vorschrift **H 2.7** zur Bildung von geminalen Bis- und Tristriazolen ausgehend von Di- und Triaziden und Cyclooctin: **2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1phenylethanon (IV-203)**

C₃₂H₄₁N₉O 567,73 g/mol 2,2,2-Triazido-1-phenylethanon IV-**176** (15 mg 0.062 mmol) wurden bei 23°C in CDCl₃ (0.317mL) gelöst mit einer Lösung von Cyclooctin IV-**202** (85 mg, 0.191 mmol) versetzt und für 20 h bei 23°C gerührt. Das Lösungsmittel wurde *i. vac.* entfernt und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:EtOAc/8:2) gereinigt. Verbindung IV-**203** wurde als farbloses Öl (35.5 mg, 0.062 mmol, 100%) erhalten.

DC: $R_f = 0.22$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.51 (d, J = 7.4 Hz, 2H), 7.43 (tt, J = 7.6, 1.2 Hz, 1H), 7.23 (dd, J = 8.6, 7.6 Hz, 2H), 2.92 (d, J = 17.3 Hz, 4H), 2.82 (s, 2H), 2.64 (t, J = 22.1 Hz, 2H), 2.33 – 2.25 (m, 1H), 2.07 (dd, J = 16.8, 4.9 Hz, 1H), 1.91 – 1.16 (m, 24H), 1.04 (d, J = 8.0 Hz, 1H), 0.66 (d, J = 7.0 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 182.6, 147.2, 146.7, 146.1, 139.1, 137.3, 136.7, 134.1, 133.4, 130.5, 128.4, 91.0, 27.4, 27.0, 26.9, 26.0, 25.9, 25.8, 25.6, 25.4, 25.2, 24.8, 24.7, 24.5, 24.3, 24.2, 24.1, 24.0, 23.0, 22.0; **LRMS** (ESI): [m/z] 590 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₃₂H₄₁N₉O₁Na₁] 590.3326, gefunden 590.3327.

2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(3-methoxyphenyl)ethanon

Durch Reaktion von IV-**197** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift H 2.7 wurde 2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(3-methoxyphenyl)ethanon als farbloser Feststoff (21 mg, 0.035 mmol, 95%) erhalten.

DC: $R_f = 0.21$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.13 (t, J = 7.9 Hz, 1H), 7.11 – 7.06 (m, 1H), 7.01 (s, J = 6.6 Hz, 1H), 6.99 (ddd, J = 8.0, 2.6, 1.1 Hz, 1H), 3.61 (s, 3H), 3.02 – 2.79 (m, 6H), 2.74 – 2.57 (m, 2H), 2.36 – 2.25 (m, 1H), 2.16 – 2.06 (m, 1H), 1.92 – 1.19 (m, 24H), 1.12 – 1.02 (m, 1H), 0.71 (d, J = 8.0 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 182.6, 159.6, 147.4, 147.0, 146.3, 139.3, 137.7, 137.0, 134.8, 129.7, 123.5, 121.8, 114.2, 91.2, 55.6, 27.6, 27.3, 26.2, 26.2, 26.1, 25.9, 25.7, 25.5, 25.0, 25.0, 24.7, 24.5, 24.5, 24.3, 24.2, 23.2, 22.3; **LRMS** (ESI): [m/z] 620 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₃₃H₄₃N₉O₂Na₁] 620.3432, gefunden 620.3432.

1-(4-Fluorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon

Durch Reaktion von IV-**199** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1-(4-Fluorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon als farbloser Feststoff (22 mg, 0.037 mmol, 99%) erhalten.

DC: $R_f = 0.36$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 7.55 (dd, J = 8.8, 5.2 Hz, 2H), 6.92 (dd, J = 9.2, 8.2 Hz, 2H), 3.02 - 2.88 (m, 4H), 2.85 (dd, J = 14.5, 8.6 Hz, 2H), 2.71 – 2.54 (m, 2H), 2.29 (dd, J = 13.3, 9.1 Hz, 1H), 2.08 (dd, J = 12.5, 8.7 Hz, 1H), 1.91 - 1.21 (m, 24H), 1.09 (dd, J = 19.7, 9.6 Hz, 1H), 0.76 (d, J = 8.8 Hz, 1H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 181.5, 166.3 (d, J = 259.0 Hz), 147.5 (s, J = 40.0 Hz), 147.2, 146.4, 139.4, 137.5, 136.9, 133.7 (d, J = 9.7 Hz), 130.1, 116.0 (d, J = 22.0 Hz), 91.2, 27.6, 27.3, 27.2, 26.3, 26.1, 26.1, 26.1, 25.8, 25.7, 25.5, 25.1, 24.9, 24.7, 24.6, 24.5, 24.3, 23.2, 22.2; **HRMS** (ESI): [m/z] berechnet für [C₃₂H₄₀F₁N₉O₁Na₁] 608.3232, gefunden 608.3232.

1-(2-Chlorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon

Durch Reaktion von IV-**195** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1-(2-Chlorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon als farbloser Feststoff (21 mg, 0.035 mmol, 97%) erhalten.

DC: $R_f = 0.24$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, 80°C, DMSO-d6): δ [ppm] 7.65 (dd, J = 8.1, 1.1 Hz, 1H), 7.58 – 7.50 (m, 1H), 7.19 – 7.11 (m, 1H), 6.73 (dd, J = 8.2, 1.5 Hz, 1H), 2.90 – 2.86 (m, 6H), 2.24 (s, J = 27.8 Hz, 6H), 1.72 – 1.65 (m, 6H), 1.54 (s, 6H), 1.42 (d, J = 5.5 Hz, 6H), 1.34 (d, J = 1.5 Hz, 6H); ¹³**C-NMR** (151 MHz, 40°C, CDCl₃): δ [ppm] 180.9, 146.0, 136.9, 134.5, 134.0, 131.7, 130.4, 130.2, 126.1, 90.4, 26.2, 24.8, 24.7, 24.0, 23.3, 22.0; **HRMS** (ESI): [m/z] berechnet für [C₃₂H₄₀Cl₁N₉O₁Na₁] 624.2937, gefunden 624.2937.

2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(2-methoxyphenyl)ethanon

Durch Reaktion von IV-**196** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(2-methoxyphenyl)ethanon als farbloses Öl (22 mg, 0.037 mmol, 99%) erhalten.

DC: $R_f = 0.11$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, DMSO-D6, 80°C): δ [ppm] 7.55 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.22 – 7.05 (m, 2H), 6.91 – 6.78 (m, 1H), 3.68 (s, 3H), 2.90 – 2.86 (m, 6H), 2.26 – 2.16 (m, 6H), 1.73 – 1.67 (m, 6H), 1.55 – 1.50 (m, 6H), 1.42 (s, 6H), 1.35 (s, 6H); ¹³**C-NMR** (151 MHz, DMSO-D6, 80°C): δ [ppm] 180.6, 159.6, 145.5, 136.7, 135.1, 130.8, 121.8, 119.1, 112.7, 91.0, 55.5, 26.3, 24.8, 24.8, 24.0, 23.4, 22.0; **LRMS** (ESI): [m/z] 620 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₃₃H₄₃N₉O₂Na₁] 620.3432, gefunden 620.3432.

2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(naphthalen-2-yl)ethanon

Durch Reaktion von IV-**198** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(naphthalen-2-yl)ethanon als farbloses Öl (21 mg, 0.034 mmol, 100%) erhalten.

DC: $R_f = 0.22$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, CDCl₃): δ [ppm] 8.04 (s, 1H), 7.74 (dd, J = 8.1, 2.8 Hz, 2H), 7.65 (d, J = 8.9 Hz, 1H), 7.54 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.44 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 3.05 – 2.88 (m, 4H), 2.82 – 2.61 (m, 4H), 2.39 – 2.28 (m, 1H), 2.13 – 2.05 (m, 1H), 1.96 – 1.87 (m, 1H), 1.88 – 1.19 (m, 23H), 0.98 – 0.91 (m, 2H), 0.48 (d, J = 8.8 Hz, 1H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 82.9, 147.4, 147.0, 146.3, 139.4, 137.7, 137.0, 135.9, 133.5, 132.4, 130.9, 130.4, 129.7, 128.4, 127.9, 127.1, 125.2, 91.4, 27.7, 27.3, 27.1, 26.3, 26.2, 26.1, 25.8, 25.7, 25.4, 25.0, 24.8, 24.6, 24.5, 24.3, 24.1, 23.9, 23.3, 22.3; **HRMS** (ESI): [m/z] berechnet für [C₃₆H₄₃N₉O₁Na₁] 640.3483, gefunden 640.3488.

2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(5-methylfuran-2-yl)ethanon

Durch Reaktion von IV-**200** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(5-methylfuran-2-yl)ethanon als farbloses Öl (22 mg, 0.038 mmol, 96%) erhalten.

DC: $R_f = 0.09$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (600 MHz, DMSO-D6, 80°C): δ [ppm] 6.68 (d, J = 3.2 Hz, 1H), 6.34 (d, J = 3.7 Hz, 1H), 2.89 (t, J = 6.5 Hz, 6H), 2.21 (s, 3H), 1.70 (s, 6H), 1.58 – 1.15 (m, 24H); ¹³**C-NMR** (151 MHz, DMSO-D6, 80°C): δ [ppm] 169.7, 159.8, 147.5, 123.9, 110.0, 89.5, 26.4, 24.7, 24.6, 24.1, 23.3, 21.83 12.8; **LRMS** (ESI): [m/z] 594 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₃₁H₄₁N₉O₂Na₁] 594.3275, gefunden 594.3273.

1-(2,4-Dimethoxyphenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon

Durch Reaktion von IV-**185** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1-(2,4-Dimethoxyphenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon als blassgelber Feststoff (14 mg, 0.0223 mmol, 67%) erhalten.

DC: $R_f = 0.06$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (600 MHz, 80°C, DMSO-D6): [ppm] 7.16 (dd, J = 9.2, 3.1 Hz, 1H), 7.08 (d, J = 9.2 Hz, 1H), 6.57 (d, J = 3.1 Hz, 1H), 3.66 (s, 3H), 3.49 (s, 3H), 2.91 – 2.85 (m, 6H), 2.21 (s, 6H), 1.74 – 1.61 (m, 6H), 1.52 (s, 6H), 1.41 (s, 6H), 1.34 (s, 6H); ¹³**C-NMR** (151 MHz, 80°C, DMSO-D6): [ppm] 180.0, 154.3, 151.5, 145.6, 136.8, 122.1, 115.1, 114.3, 90.9, 56.0, 55.2, 26.3, 24.8, 24.7, 24.0, 23.3, 22.0; **LRMS** (ESI): [m/z] 650 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₃₄H₄₅N₉O₃Na₁] 650.3538, gefunden 650.3535.

1-(4-Chlorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon

Durch Reaktion von IV-**184** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1-(4-Chlorophenyl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon als weißer Feststoff (21 mg, 0.034 mmol, 97%) erhalten. **DC:** $R_f = 0.13$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (600 MHz, 80°C, DMSO-D6): [ppm] 7.57 – 7.51 (m, 2H), 7.48 (dd, J = 10.3, 4.8 Hz, 2H), 2.89 (t, J = 6.1 Hz, 6H), 2.48 – 1.90 (m, 6H), 1.73 – 1.22 (m, 24H).¹³**C-NMR** (151 MHz, 80°C, DMSO-D6): [ppm] 181.3, 146.1, 139.6, 131.4, 131.3, 128.4, 90.0, 26.3, 24.7, 23.9, 23.3, 22.0, 21.9; **HRMS** (ESI): [m/z] berechnet für [C₃₂H₄₀Cl₁N₉O₁Naa₁] 624.2937, gefunden 624.2938.

2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(p-tolyl)ethanon

Durch Reaktion von IV-**188** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 2,2,2-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-(p-tolyl)ethanon als weißer Feststoff (23 mg, 0.039 mmol, 100%) erhalten.

DC: $R_f = 0.08$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (600 MHz, 80°C, DMSO-D6): [ppm] 7.34 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 2.88 (t, J = 6.4 Hz, 6H), 2.26 (d, J = 50.7 Hz, 6H), 1.67 (s, 6H), 1.56 – 0.95 (m, 18H); ¹³**C-NMR** (151 MHz, 80°C, DMSO-D6): [ppm] 181.7, 145.9, 145.2, 136.9, 130.2, 129.7, 128.7, 90.2, 26.4, 24.7, 23.9, 23.3, 22.0, 22.0, 20.6; **HRMS** (ESI): [m/z] berechnet für [C₃₃H₄₃N₉O₁Na₁] 604.3483, gefunden 604.3486.

1-([1,1'-Biphenyl]-4-yl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon

Durch Reaktion von IV-**186** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1-([1,1'-Biphenyl]-4-yl)-2,2,2-tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)ethanon als weißer Feststoff (20 mg, 0.031 mmol, 100%) erhalten.

DC: $R_f = 0.12$, (PE:EtOAc/9:1, [UV]); ¹**H-NMR** (400 MHz, DMSO-D6, 80°C): δ [ppm] δ 7.55 – 7.33 (m, 4H), 2.89 (t, J = 6.4 Hz, 6H), 2.44 – 1.95 (m, 6H), 1.68 (s, 6H), 1.58 – 1.20 (m, 18H); ¹³**C-NMR** (101 MHz, DMSO-D6, 80°C): δ [ppm] 181.3, 158.2, 146.1, 139.6, 131.4, 131.3, 128.4, 90.0, 26.3, 24.7, 23.9, 23.3, 22.0, 21.9; **HRMS** (ESI): [m/z] berechnet für [C₃₈H₄₅N₉O₁Na₁] 666.3639, gefunden 666.3636.

1,1,1-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-methylhexan-2-on

Durch Reaktion von IV-**201** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 1,1,1-Tris(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-3-methylhexan-2-on als farbloses Öl (21.3 mg, 0.038 mmol, 32%) erhalten.

DC: $R_f = 0.14$, (PE:EtOAc/9:1, $[I_2]$, [KMnO₄]); ; ¹**H-NMR** (400 MHz, CDCI₃): δ [ppm] 4.09 (q, J = 7.1 Hz, 2H), 3.45 (q, J = 7.0 Hz, 2H), 2.99 – 2.75 (m, 4H), 2.75 – 2.05 (m, 6H), 1.86 – 1.23 (m, 26H), 1.26 – 1.20 (m, 4H), 1.20 – 1.13 (m, 3H); ¹³**C-NMR** (101 MHz, CDCI₃): δ [ppm] 171.1, 146.9, 135.3, 91.9, 65.8, 43.6, 41.9, 35.8, 28.4, 28.3, 27.2, 26.9, 26.0, 25.7, 25.5, 25.2, 24.9, 24.5, 24.3, 22.4, 21.0, 19.7, 16.8, 15.2, 14.2, 13.7; **HRMS** (ESI): [m/z] berechnet für [C₃₁H₄₇N₉O₁Na₁] 584.3796, gefunden 584.3796.

2,2-Bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-phenylpropan-1-on

Durch Reaktion von IV-**187** mit Cyclooctin IV-**202** nach der allgemeinen Vorschrift **H 2.7** wurde 2,2-Bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)-1-phenylpropan-1-on als farbloses Öl (19 mg, 0.044 mmol, 95%) erhalten. Die analytischen Daten stimmten mit den zuvor veröffentlichten vollständig überein.⁶⁵⁹

DC: $R_f = 0.09$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] 7.59 (dt, J = 8.6, 1.6 Hz, 2H), 7.55 – 7.47 (m, 1H), 7.41 – 7.33 (m, 2H), 2.97 – 2.80 (m, 4H), 2.74 (s, 3H), 2.37 (dd, J = 9.2, 3.5 Hz, 4H), 1.80 – 1.67 (m, 4H), 1.61 – 1.26 (m, 12H); ¹³**C-NMR** (101 MHz, CDCl₃): δ [ppm] 189.1, 147.1, 136.2, 134.5, 133.4, 130.7, 128.6, 83.9, 28.5, 26.8, 26.6, 26.1, 25.2, 24.8, 22.3; **LRMS** (ESI): [m/z] 455 [M⁺+Na]; **HRMS** (ESI): [m/z] berechnet für [C₂₅H₃₂N₆O₁Na₁] 455.2530, gefunden 455.2516.

V-2.7.4 Reaktivität von geminalen Di- und Triaziden

Allgemeine Vorschrift **I 2.7** zur Synthese von 2-Tosyl-2H-1,2,3-triazolen aus geminalen Di-und Triaziden: **4-Azido-5-phenyl-2-tosyl-2H-1,2,3-triazol (**IV-**206**)

2,2,2-Triazido-1-phenylethanon IV-**176** (116 mg, 0.477 mmol) wurde in trockenem THF (1.6 mL) gelöst und mit *p*-Toluensulfonylhydrazin (97.7 mg, 0.525 mmol) und pTsOH H₂O (9.1 mg, 0.048 mmol, 10 mol%) versetzt und für 4 d bei 60°C gerührt. Die Reaktionslösung wurde *i. vac.* vom Lösungsmittel befreit und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/9:1) gereinigt. Verbindung IV-**206** wurde als weißer Feststoff (31 mg, 0.091 mmol, 20%) erhalten. Die Struktur und absolute Stereochemie der Verbindung konnte durch rötgendiffraktometrische Untersuchung eines Einkristalls (Kristallisation aus CDCl₃/Pentan *i. vac.*) vollständig aufgeklärt werden.

DC: $R_f = 0.25$, (PE:EtOAc/9:1, [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 8.03 – 7.94 (m, 2H), 7.93 – 7.82 (m, 2H), 7.48 – 7.37 (m, 3H), 7.34 (dd, J = 8.6, 0.6 Hz, 2H), 2.41 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 146.94, 141.86, 133.02, 130.46, 130.15, 129.05, 128.97, 128.96, 128.64, 127.47, 22.02; **IR** (ATR): [cm⁻¹] 2921, 2137, 1592, 1504, 1465, 1444, 1395, 1341, 1310, 1295, 1279, 1214, 1191, 1180, 1162, 1120,

1085, 1038, 1020, 954, 918, 815, 774, 719, 701, 683, 666, 625, 609, 574, 537, 523, 504, 480, 405. **HRMS** (ESI): [m/z] berechnet für [C₁₅H₁₂N₆O₂S₁Na₁] 363.0635, gefunden 363.0635.

4-Methyl-5-phenyl-2-tosyl-2H-1,2,3-triazol (IV-207)

Durch Reaktion von IV-**187** mit pToluensulfonylhydrazin nach der allgemeinen Vorschrift **12.7** wurde Verbindung IV-**207** als weißer Feststoff (31 mg, 0.098 mmol, 25%; 30% brsm) erhalten.

DC: $R_f = 0.12$, (PE:EtOAc/9:1, [UV]); ¹H-NMR (400 MHz, CDCl₃): δ [ppm] 7.99 – 7.94 (m, 2H), 7.70 – 7.64 (m, 2H), 7.45 – 7.36 (m, 3H), 7.31 (dd, J = 8.6, 0.6 Hz, 2H), 2.48 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (101 MHz, CDCl₃): δ [ppm] 150.2, 146.8, 146.5, 133.5, 130.3, 129.6, 129.4, 129.0, 128.8, 128.0, 21.9, 12.4; Es konnten keine LRMS- und HRMS-Daten von dieser Verbindung erhalten werden.

1-(5-Phenyl-2-tosyl-2H-1,2,3-triazol-4-yl)-4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol

4-Azido-5-phenyl-2-tosyl-2H-1,2,3-triazol IV-**206** (10 mg, 0.029 mmol) wurden bei 23°C in CDCl₃ (0.146 mL) gelöst mit einer Lösung von Cyclooctin (3.5 mg, 0.032 mmol, 1.1 eq) in CDCl₃ (0.146 mL) versetzt und für 20 h bei23°C gerührt. Das Lösungsmittel wurde *i. vac.* entfernt und der verbleibende ölige Rückstand wurde durch Flash-Chromatographie über Silicagel (Pentan:Et₂O/8:2) gereinigt. **1-(5-** Phenyl-2-tosyl-2H-1,2,3-triazol-4-yl)-4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol wurde als farbloser Feststoff (12.9 mg, 0.0287 mmol, 99%) erhalten.

DC: $R_f = 0.25$, (PE:EtOAc/8:2, [UV]); ¹**H-NMR** (460 MHz, CDCl₃): δ [ppm] 8.05 - 8.00 (m, 2H), 7.42 - 7.33 (m, 5H), 7.32 - 7.28 (m, 2H), 2.98 - 2.94 (m, 2H), 2.55 - 2.51 (m, 2H), 2.44 (s, 3H), 1.79 (dt, *J* = 12.7, 6.4 Hz, 2H), 1.60 - 1.54 (m, 2H), 1.46 - 1.39 (m, 4H); ¹³**C-NMR** (151 MHz, CDCl₃): δ [ppm] 147.9, 146.6, 145.4,

141.6, 136.6, 132.4, 130.8, 130.7, 129.4, 129.2, 127.7, 126.7, 28.2, 26.5, 25.9, 25.1, 24.6, 22.1, 21.9; **IR** (ATR) [cm⁻¹] 2927, 2855, 1593, 1582, 1546, 1474, 1449, 1404, 1349, 1307, 1250, 1198, 1172, 1114, 1086, 1172, 1114, 1086, 1053, 1001, 984, 966, 813, 779, 735, 694, 665, 648, 581, 542. **HRMS** (ESI): [m/z] berechnet für [C₂₃H₂₄N₆O₂S₁Na₁] 471.1574, gefunden 471.1572.

VI Verzeichnisse

VI-1. Abbrevationsverzeichnis

Abb.	Abbildung	
Ac	Acetyl-	
ACN	Acetonitril	
ADMP	2-Azido-1,3-dimethyl-4,5-dihydro-1H-imidazol-3-iumhexafluorophosphat	
APLI	Atmospheric Pressure Laser Ionization, engl. für Atmosphärendruck-Laser-Ionization	
APCI	Atmospheric Pressure Chemical Ionization, engl. für Chemische Ionization bei Atmosphärendruck	
ATR	Attenuated Total Reflection, engl. für abgeschwächte Totalreflexion	
Bn	Benzyl-	
BHT	Butylhydroxytoluen	
brsm.	Based on recovered starting material, engl. für basierend auf reisoliertem Ausgangsmaterial	
Bt	N-Benzotriazoyl-	
С	Concentration, engl. für Konzentration	
CDI	Carbonyldimidazol	
СН	Cyclohexan	
CIR	Cyclization Induced Rearrangement, engl. für Zyklisierungs initiierte Umlagerung	
Су	Cyclohexyl-	
d	day, engl. für Tag	
d.r.	Diastereomeric ratio, engl. für Diastereomerenverhältnis	
DAD	Diode Array Detector, engl. für Diodenfelddetektor	
DBP	Dibenzoylperoxid	
DBU	1,8-Diazabicyclo[5.4.0]undec-7-en	
DC	Dünnschichtchromatographie	
DCB	1,2-Dichlorbenzen	
DCC	Dicyclohexylcarbodiimid	

DCE	1,2-Dichlorethan	
DiAD	Diazodiisopropylcarboxylat	
DiBAI-H	Diisobutylaluminiumhydrid	
DiPEA	N,N-Diisopropyl-N-ethylamin	
DMA	N,N-Dimethylacetamid	
DMAP	N,N-Dimethyl-4-Aminopyridin	
DMF	N,N-Dimethylformamid	
DMP	Dess-Martin-Periodinan	
DMPU	<i>N,N</i> -Dimethyl- <i>N,N</i> -propylenurea	
DMSO	Dimethylsulfoxid	
DPPA	Diphenylphosphorylazid	
DSC	Differantial Scanning Calorimetry, engl. für dynamische Differenzkalorimetrie	
EDCI	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid	
EDDA	Ethylendiammoniumdiacetat	
EI	Electron Impact Ionization, engl. für Elektronen-Stoß-Ionisierung	
ELSD	Electron Light Scattering Detector, engl. für Elektronen-Licht-Streu-Detektor	
eq.	equivalent, engl. für Äquivalent	
ESI	Electron Spray Ionization, engl. für Elektronen-Spray-Ionization	
et al.	et alia, lat. für und andere	
EtOAc	Ethylacetat	
FGI	Functional Group Interchange, engl. Funktioneller Gruppen-Austausch	
FTP-Technik	Freeze-Pump-Thaw-Technik	
h	<i>hour,</i> engl. für Stunde	
HPLC	High Performance Liquid Chromatography, engl. für Hochleistungsflüssigkeits- chromatographie	
НОМО	Highest Occupied Molecular Orbital, engl. für höchstes besetztes Molekülorbital	

HRMS	High Resolution Mass Spectrometry, engl. für hochaufgelöste Massenspektrometrie	
HV	Hochvakuum	
HTIB	Hydroxy(tosyloxy)iodbenzen	
Hz	Hertz	
IBS	2-lodoxybenzensulfonsäure	
IBX	2-lodoxybenzoesäure	
IBX-SO ₃ K	Kalium-1-hydroxy-1,3-dioxo-1,3-dihydro-1λ ⁵ -benziodoxol-5-sulfonat	
IR	Infrarot	
i. vac.	in vacuum, lat. für unter vermindertem Druck	
J	Kopplungskonstante	
KO <i>t</i> Bu	Kalium <i>tert</i> butylat	
LDA	Lithiumdiisopropylamid	
L-(+)-DET	L-(+)-Diethyltartrat	
LRMS	Low Resolution Mass Spectrometry, engl. für niederaufgelöste Massenspektrometrie	
LUMO	Lowest Unoccupied Molecular Orbital, engl. für niedrigstes unbesetztes Molekülorbital	
<i>т</i> СРВА	meta-chloroperbenzoic acid, engl. für meta-Chlorperbenzoesäure	
MeOH	Methanol	
Mes	Mesityl-	
MHz	Megahertz	
min	Minuten	
МОМ	Methoxymethyl-	
MS	Massenspektrometrie	
MTBE	Methyl <i>tert</i> butylether	
MW	Mikrowelle	
<i>n</i> BuLi	<i>n</i> -Butyllithium	

NCS	N-Chlorsuccinimid
NIS	<i>N</i> -lodsuccinimid
NMR	Nuclear Magnetic Resonance, engl. für Kernspinresonaz-Spektroskopie
ODCB	ortho-Dichlorbenzen
PCC	Pyridiniumchlorochromat
PE	Petrolether
PMMA	Polymethylmethacrylat (Plexiglas [®])
PMP	para-Methoxyphenyl-
РТС	Phase Trasfer Catalysis, engl. für Phasentransferkatalyse
R_{f}	Retentionsfaktor
Schmp.	Schmelzpunkt
Tab.	Tabelle
TBAF	Tetrabutylammoniumfluorid
TBAI	Tetrabutylammoniumiodid
TBD	1,5,7-Triazabicyclo[4.4.0]dec-5-en
ТВНР	<i>tert</i> Butylhydroperoxid
TBTA	N, N, N-Tris-(Benzyltriazoylmethyl) amin
TCD	Tricyclo[5.2.1.0 ^{2,6}]decn-1,8-dien
TEMPO	2,2,6,6-Tetramethylpiperidinyloxyl
TESCI	Triethylsilylchlorid
TGA	Thermogravimetric Analysis, engl. für thermogravimetrische Analyse
Tf	Triflyl-, Trifluormethansulfonyl-
TFA	2,2,2-Trifluoressigsäure
THF	Tetrahydrofuran
TIPSCI	Triisopropylchlorid
TMEDA	N,N,N',N'-Tetramethylethylendiamin

VI-1. Abbrevationsverzeichnis

TMS	Trimethylsilan
-----	----------------

TON Turn Over Number, engl. für Umsatzzyklen

Ts Tosyl-, para-Toluensulfonyl-

VI-2. Literaturverzeichnis

¹ a) J. Freiherr von Liebig, *Reden und Abhandlungen*, Nachdruck, Verlag Dr. Müller, **2006**. b) J. Freiherr von Liebig, *Chemische Briefe*, Nachdruck, Nabu Press, **2010**.

² a) F. P. Miller, A. F. Vandome, J. Mcbrewster, *Justus von Liebig*, Alphascript Publishing, **2010**. b) W.
 Brock, *Justus von Liebig: The Chemical Gatekeeper*, Cambridge University Press, **2002**. c) E. Erlenmeyer,
 Ueber Den Einfluss Des Freiherrn Justus Von Liebig Auf Die Entwicklung Der Reinen Chemie (1874),
 Nachdruck, Kessinger Pub Co, **2009**. d) G. Schendt, *Liebig und seine Schüler: Die neue Schule der Chemie*,
 Springer, **2002**.

³ F. Wöhler, *Praktische Übungen in der chemischen Analyse, 1853*, Nachruck, Verlag Dr. Müller, **2007**.

⁴ R. Kenn, *Life and Work of Friedrich Wöhler (1800-1882)*, Ebook, Bautz & Traugott, **2005**.

⁵ K. C. Nicolaou, Angew. Chem. **2013**, *125*, 141.

⁶ a) O. Krätz, *Chemie in unserer Zeit* 1972, *6*, 53. b) M. Conrad, *Ber. dtsch. chem. Ges.* 1910, *43*, 3645. c)
B. Lepsius, *Ber. dtsch. chem. Ges.* 1921, *54*, A107. d) O. N. Witt, *J. Chem. Soc.Transactions* 1911, *99*, 164.

⁷ a) R. Anschütz, Der Chemiker Friedrich August Kekulé, Bd. 1 Leben und Wirken (1929), Nachdruck, Severus, 2011. b) R. Anschütz, Der Chemiker Friedrich August Kekulé, Bd. 2 Abhandlungen, Berichte, Kritiken, Artikel, Reden (1929), Nachdruck, Severus, 2012, c) W. Ruske, Die Naturwissenschaften 1965, 52, 485.

⁸ a) A. von Baeyer, *Gesammelte Werke, Bd. 1 (1905)*, Nachdruck, Salzwasser-Verlags GmbH, **2010**. b) A. von Baeyer, *Gesammelte Werke, Bd. 2 (1905)*, Nachdruck, Salzwasser-Verlags GmbH, **2012**.

⁹ L. M. Surhone, T. M. Tennoe, S. F: Henssonow, *Aldolf von Baeyer*, Alphascript Publishing, **2010**.

¹⁰ A. Strecker, Ann. Chem. Pharm. **1854**, *91*, 349.

¹¹ a) C. Friedel, J. M. Crafts, *Compt. Rend.* **1877**, *84*, 1392. b) C. Friedel, J. M. Crafts, *Compt. Rend.* **1877**, *84*, 1450.

¹² E. Fischer, F. Jourdan, *Ber. dtsch. chem. Ges.* **1883**, *16*, 2241.

¹³ E. Knoevenagel, Ber. dtsch. chem. Ges. **1898**, 31, 2596.

¹⁴ C. Mannich, W. Krosche, Archiv der Pharmazie **1912**, 250, 647.

¹⁵ a) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, J. Am. Chem. Soc. **1954**, 76, 4749. b) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, *Tetrahedron* **1963**, *19*, 247.

¹⁶ a) T. Katsuki, K. B. Sharpless, *J. Am. Chem. Soc.* **1980**, *102*, 5979. b) Y. Gao, R. M. Hanson, J. M. Klunder,
 S. Y. Ko, H. Masamune, K. B. Sharpless, *J. Am.Chem. Soc.* **1987**, *109*, 5765.

¹⁷ a) R. R. Schrock, *Acc. Chem. Res.* 1990, *23*, 158. b) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins,
M. Di Mare, M. O'Regan, *J. Am. Chem. Soc.* 1990, *112*, 3875. c) R. R. Schrock, G. C. Bazan, E. Khosravi, W.
J. Feast, *J. Am. Chem. Soc.* 1990, *112*, 8378. d) R. R. Schrock, G. C. Bazan, J. H. Oskam, *J. Am. Chem. Soc.* 1991, *113*, 6899.

¹⁸ a) R. H. Grubbs., *Handbook of Metathesis*, Wiley-VCH, Germany, **2003**. b) R. H. Grubbs T. M. Trnka, *Ruthenium-Catalyzed Olefin Metathesis*, Ruthenium in Organic Synthesis (S.-I. Murahashi, Ed.), Wiley-VCH, Germany, **2004**. c) T. M. Trnka, R. H. Grubbs, *Acc. Chem. Res.* **2001**, *34*, 18. d) R. H. Grubbs, S. Chang, *Tetrahedron* **1998**, 54, 4413. e) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, *Org. Lett.* **1999**, *1*, 953.
f) P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, *Angew. Chem. Int. Ed.* **1995**, *34*, 2039. g) S.-B. T. Nguyen, R. H. Grubbs, *J. Am. Chem. Soc.* **1993**, *115*, 9858.

¹⁹ P. J.-L. Herisson, Y. Chauvin, *Makromol. Chem.* **1970**, *141*, 161.

²⁰ a) E. J. Corey, *Chem. Soc. Rev.* **1988**, *17*, 111. b) E. J. Corey, X-M. Cheng, *The Logic of Chemical Synthesis*, Wiley, New York, **1995**.

²¹ a) K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C: F. Claiborne, J. Reaud, E. A. Couladouros, K. Paulvannan, E. J. Sörensen, *Nature* **1994**, *367*, 630. b) K. C. Nicolaou, E. J. Sorensen, *Classics in Total Synthesis: Targets, Strategies, Methods*, c) K. C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen, *J. Am. Chem. Soc.* **1995**, 117, 624. d) K. C. Nicolaou, J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K. Hwang, M. Nakada, P. G. Nantermet, *J. Am. Chem. Soc.* **1995**, *117*, 634. e) K. C. Nicolaou, Z. Yang, J.-J. Liu, P. G. Nantermet, C. F. Claiborne, J. Renaud, R. K. Guy, K. Shibayama , *J. Am. Chem. Soc.* **1995**, *117*, 645. f) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G. Nantermet, Z. Yang, J. Renaud, K. Paulvannan, R. Chadha, *J. Am. Chem. Soc.* **1995**, *117*, 653.

²² a) D. Enders, R. W. Hoffmann, *Chemie in unserer Zeit* **1985**, *19*, 177. b) E. L. Eliel, S. H. Wilen, *Stereochemistry of Organic Compounds*; John Wiley & Sons, New York, **1994**. c) J. Clayden, N. Greeves, S. Warren, P. Wothers, *Organic Chemistry*; Oxford University Press, Oxford, **2001**.

²³ N. A. Afagh, A. K. Yudin, *Angew. Chem.* **2010**, *122*, 270.

²⁴ a) L.F. Tietze, G. Brasche, G. Gericke, *Domino Reactions in Organic Synthesis*, Wiley-VCH: Weinheim, **2006**. b) H. Pellisier, *Tetrahedron* **2006**, *62*, 2143. c) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazan, *Chem. Rev.* **2005**, *105*, 1001. d) D. M. D'Souza, T. J. J. Müller, *Chem. Soc. Rev.* **2007**, *36*, 1095. f) J. Zhou, *Chem. Asian J.* **2010**, *5*, 422. g) H. Pellisier, *Adv. Synth. Catal.* **2012**, *354*, 237. h) P. Anastas, J. Warner, *Green Chemistry: Theory and Practice*, Oxford Univ. Press, **1998**. i) C.-J. Li, B. M. Trost, *Proc. Natl. Acad. Sci. USA* **2008**, *105*, 13197. ²⁵ a) B. Trost, *Science* 1991, *254*, 1471. b) B. M. Trost, *Angew. Chem. Int. Ed. Engl.* 1995, *34*, 259. a) P. A. Wender, P. A., L. B. Miller, *Organic Synthesis: Theory and Applications* Vol. 2 (ed. Hudlicky, T.), Elsevier, 1993, 27. c) P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, *Acc. Chem. Res.* 2008, *41*, 40. d) M. Eissen, J. O. Metzger, *Chem. Eur. J.* 2002, *8*, 3580. e) M. Eissen, J. O. Metzger, E. Schmidt, U. Schneidewind, *Angew. Chem.* 2002, *114*, 402. f) R.W. Hoffmann, *Synthesis* 2006, 3531. g) I. S. Young, P. S. Baran, *Nature Chem.* 2009, *1*, 193.

²⁶ a) J. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T. Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. **2008**, 130, 17938. b) N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. Int. Ed. **2009**, 48, 2854.

²⁷ B. M. Trost, *Science* **1983**, *219*, 245.

²⁸ H. Dückert, V. Pries, V. Khedkar, S. Menninger, H.Bruss, A. W. Bird, Z. Maliga, A. Brockmeyer, P. Janning, A. Hyman, S. Grimme, M. Schürmann, H. Preut, K. Hübel, S. Ziegler, K. Kumar, H. Waldmann, *Nature Chem. Biol.* **2012**, *8*, 179.

²⁹ D. Seebach, Angew. Chem. Int.. Ed. **1990**, 29, 1320.

³⁰ a) P. W. Davies, *Annu. Rep. Prog. Chem., Sect. B* 2008, *104*, 68. b) Y. Yamamoto, *J. Org. Chem.* 2007, *72*, 7817. c) C. Nevado, A. M. Echavarren, *Synthesis* 2005, 167. d) S. I. Lee, N. Chatani, *Chem. Commun.* 2009, 371. e) B. M. Trost, M. U. Frederiksen, M.I T. Rudd, *Angew. Chem. Int. Ed.* 2005, *44*, 6630. f) N. T. Patil, Y. Yamamoto, *Chem. Rev.*, 2008, *108*, 3395. g) M. Alvarez-Corral, M. Munoz-Dorado, I. Rodríguez-García, *Chem. Rev.* 2008, *108*, 3174.

³¹ a) A. Fürstner, P. W. Davies, *Angew.Chem., Int. Ed.* 2007, *46*, 2. b) S. F. Kirsch, *Synthesis* 2008, 3183. c)
L. Zhang, J. Sun, S. A. Kozmin, *Adv. Synth. Catal.* 2006, *348*, 2271. d) F. Rodríguez, F. J. Fañanás, *Synlett* 2013, *24*, DOI: 10.1055/s-0033-1339331.

³² a) A. Arcadi, *Chem. Rev.* 2008, *108*, 3266. b) E. Jimenez-Nunez, A. M. Echavarren, *Chem. Rev.* 2008, *108*, 3326. c) Z. Li, C. Brouwer, C. He, *Chem. Rev.*, 2008, *108*, 3239. d) H. C. Shen, *Tetrahedron* 2008, *64*, 3885. e) H. C. Shen, *Tetrahedron* 2008, *64*, 7847. f) D. J. Gorin, B. D. Sherry, F. D. Toste, *Chem. Rev.* 2008, *108*, 3351. e) A. S. K. Hashmi, *Chem. Rev.* 2007, *107*, 3180. g) A. S. K. Hashmi, G. J. Hutchings, *Angew. Chem. Int. Ed.* 2006, *45*, 7896. h) N. T. Patil, Y. Yamamoto, *Arkivoc* 2007, *6*. i) N. Marion, S. P. Nolan, *Angew. Chem. Int. Ed.* 2007, *46*, 2750. j) A. S. K. Hashmi, *Catal. Today* 2007, *122*, 211. k) E. Jimenez-Nunez, A. M. Echavarren, *Chem. Commun.* 2007, 333. l) J. Marco-Contelles, E. Soriano, *Chem. Eur. J.* 2007, *13*, 1350. m) A. S. K. Hashmi, *Angew. Chem. Int. Ed.* 2005, *44*, 6990. n) A. Hoffmann-Röder, N. Krause, *Org. Biomol. Chem.* 2005, *3*, 387. o) M. Rudolph, A. S. K. Hashmi, Chem. Commun. 2011, *47*,

VI-2. Literaturverzeichnis

6536. p) H. A. Wegner, M. Auzias, *Angew. Chem. Int. Ed.* **2011**, *50*, 8236. q) R. A. Widenhoefer, *Chem. Eur. J.* **2008**, *14*, 5382.

³³ a) M. Kutscheroff, Chem. Ber. **1881**, *14*, 1540. b) M. Kutscheroff, Chem. Ber. **1884**, *17*, 13.

³⁴ a) F.C. Phillips, Am. Chem. J. 1894, 16, 255. b) F.C. Phillips, Z. Anorg. Chem. 1894, 6, 213.

³⁵ a) J. Smidt, W. Hafner, J. Sedlmeier, R. Jira, R. Rottinger, DE1049845, **1959**. b) J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Rüttinger, H. Kojer, *Angew. Chem.* **1959**, *71*, 176. c) W. Hafner, R. Jira, J. Sedlmeier, J. Smidt, *Chem. Ber.* **1962**, *95*, 1575. d) J. Smidt, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier, A. Sabel, *Angew. Chem. Int. Ed. Engl.*, **1962**, 1, 80. e) R. Jira, *Angew. Chem.* **2009**, *121*, 9196; *Angew. Chem. Int. Ed.* **2009**, *48*, 9034.

³⁶ W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan, J. Zhao, *Org. Lett.*, **2009**, *11*, 1841.

³⁷H. Schmidbaur, *Gold in Kultur, Kunst, Wirtschaft und Wissenschaft,* Sphinx, The Finnish Society of Sciences and Letters, **2004**.

³⁸ H. Schmidbaur, Naturwiss. Rundsch. **1995**, 48, 443.

³⁹ H. Schmidbaur, A. Schier, *Organometallics* **2010**, *29*, 2.

⁴⁰ a) D. M. P. Mingos, J. Yau, S. Menzer, D. J. Williams, *Angew. Chem. Int. Ed.* 1995, *34*, 1894. b) H. Lang,
K. Köhler, L. Zsolnai, *Chem. Commun.* 1996, 2043. c) K. Köhler, S. J. Silverio, I. Hyla-Kryspin, R. Gleiter, L.
Zsolnai, A. Driess, G. Huttner, H. Lang, *Organometallics* 1997, *16*, 4970. d) P. Schulte, U. Behrens, *Chem. Commun.* 1998, 1633.

⁴¹ a) Y. Fukuda, K. Ultimoto, H. Nozaki, *Heterocycles* **1987**, *25*, 297. b) Y. Fukuda, K. Ultimoto, *J. Org. Chem.* **1991**, *56*, 3729.

⁴²a) J. H. Teles, M. Schulz, WOA19721648, 1997. b) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998, 37, 1415.

⁴³ W. A. Nugent, Angew. Chem. Int. Ed. **2012**, *51*, 8936.

⁴⁴ a) R. R. Schrock, J. A. Osborn, *J. Am. Chem. Soc.* 1976, *98*, 2134. b) J. T. M. Evers, A. Mackor, Tetrahedron Lett. 1978, *19*, 2321. c) G. Oehme, H. Pracejus, Tetrahedron Lett. 1979, *20*, 343.

⁴⁵ D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, *J. Am. Chem. Soc.* **2012**, *134*, 9012.

⁴⁶ B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. **2004**, 126, 15987.

⁴⁷ A. Fürstner, V. Mamane, *Chem. Commun.* **2003**, 2112.

⁴⁸ A. S. K. Hashmi, J. P. Weyrauch, W. Frey, *Org. Lett.* **2004**, *6*, 4391.

⁴⁹ J. J. Kennedy-Smith, S. T. Staben, F. D. Toste, *J. Am. Chem. Soc.* **2004**, *126*, 4526.

- ⁵⁰ a) G. A. Olah, P. R. Clifford, *J. Am. Chem. Soc.* **1971**, *93*, 2320. b) S. Sakaki, K. Maruta, K. Ohkubo, *J. Chem. Soc. Dalton Trans.* 1987, 361.
- ⁵¹ M. J. S. Dewar, *Bull. Soc. Chim. Fr.* **1951**, *18*, C71. b) J. Chatt, L. A. Duncanson, *J. Chem. Soc.* **1953**, 2939.
- ⁵² a) D. M. P. Mingos in Comprehensive Organometallic Chemistry, Vol. 3 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, **1982**.
- ⁵³ a) G. Frenking, N. Fröhlich, *Chem. Rev.* **2000**, *100*, 717. b) A. Dedieu, *Chem. Rev.* **2000**, *100*, 543.
- ⁵⁴ a) R. H. Hertwig, W. Koch, D. Schröder, H. Schwarz, J. Hrusak, P. Schwerdtfeger, *J. Phys. Chem.* 1996, 100, 12 253. b) T. Ziegler, A. Rauk, Inorg. Chem. 1979, 18, 1558. c) M. S. Nechaev, V. M. Rayon, G. Frenking, *J. Phys. Chem. A* 2004, 108, 3134.
- ⁵⁵ a) M. S. Nechaev, V. M. Raywin, G. Frenking, *J. Phys. Chem. A* **2004**, *108*, 3134. b) D. Belli Dell'Amico, F. Calderazzo, R. Dantona, J. Strähle, H. Weiss, *Organometallics* **1987**, *6*, 1207
- ⁵⁶ D. J. Gorin, F. D. Toste, *Nature* **2007**, *446*, 395.
- ⁵⁷ a) R. G. Pearson, J. Am. Chem. Soc. **1963**, 85, 3533. b) R. G. Pearson, J. Chem. Educ. **1987**, 64, 561. c) T.-
- L. Ho, Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York, 1977; d)
- P. K. Chattaraj, H. Lee, R. G. Parr, J. Am. Chem. Soc. 1991, 113, 1855.
- ⁵⁸ a) A. S. K. Hashmi, M. Rudolph, *Chem. Soc. Rev.* **2008**, *37*, 1766. b) A. Fürstner, *Chem. Soc. Rev.* **2009**, *38*, 3208.
- ⁵⁹ X. Linghu, J. J. Kennedy-Smith, F. D. Toste, *Angew. Chem. Int. Ed.* **2007**, *46*, 7671.
- ⁶⁰ X. Ma, D. R. Gang, *Nat. Prod. Rep.* **2004**, *21*, 752.
- ⁶¹ G. E. Veicht, E. Beckmann, B. J. Burke, A. Boyer, S. L. Masle, S. V. Ley, *Angew. Chem. Int. Ed.* **2007**, *46*, 7629.
- ⁶² J. P. Desclaux, Atom. Data Nucl. Data Tables, **1973**, 12, 311.
- ⁶³ P. Pyykkö, J. P. Desclaux, Acc. Chem. Res. **1979**, *12*, 276.
- ⁶⁴ P. Pyykkö, Angew. Chem. Int. Ed. **2004**, 43, 4412.
- ⁶⁵ a) P. Pyykkö, Angew. Chem. Int. Ed. **2002**, 41, 3573. b) P. Pyykkö, Chem. Rev. **1988**, 88, 563.
- ⁶⁶ A. L. Allred, E. G. Rochow, *J. Inorg. Nucl. Chem.* **1958**, 5, 264.
- ⁶⁷ a) L. Pauling, J. Am. Chem. Soc. **1932**, 54, 3570. b) L. Pauling, The Nature of the Chemical Bond, 3rd Ed., Cornell University Press, **1960**.

⁶⁸ G. N. Lewis, *Valence and the Structure of Atoms and Molecules*, Chemical Catalogue Company, New York, **1923**.

⁶⁹ a) H. Yamamoto, *Lewis Acids in Organic Synthesis*, Wiley-VCH, Weinheim, **2000.** b) H. Yamamoto, *Lewis-Acid Reagents: A Practical Approach*, Oxford University Press, Oxford, **1999.** c) M. Santelli, J.-M. Pons, *Lewis Acids and Selectivity in Organic Synthesis*, CRC Press, Boca Raton, FL, **1996**.

⁷⁰ H. Schwarz, Angew. Chem. Int. Ed. **2003**, 42, 4442.

⁷¹ a) L. F. Tietze, G. Brasche, K. Gericke, *Domino Reactions in Organic Synthesis*, Wiley-VCH, Weinheim,
2006. b) L. F. Tietze, U. Beifuss, *Angew. Chem. Int. Ed. Engl.* 1993, *32*, 131. c) L. F. Tietze, *Chem. Rev.*1996, *96*, 115. d) H. Pellissier, *Tetrahedron* 2006, *62*, 1619. e) H. Pellissier, *Tetrahedron* 2006, *62*, 2143. f)
T.-L. Ho, *Tandem Organic Reactions*, Wiley, New York, 1992. g) R. A. Bunce, *Tetrahedron* 1995, *51*, 13103.
h) H. Pellissier, *Chem. Rev.* 2013, *113*, 442.

⁷² a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. **2006**, 45, 7134. b) K. C. Nicolaou,

T. Montagnon, S. A. Snyder, *Chem. Commun.* **2003**, 551.c) L. F. Tietze, A. Modi, *Med. Res. Rev.* **2000**, *20*, 304. d) L. F. Tietze, N. Rackelmann, *Pure Appl. Chem.* **2004**, *76*, 1967.

⁷³ C. Grondal, M. Jeanty, D Enders, *Nature* **2010**, *2*, 167.

⁷⁴ L. F. Tietze, *Heterocycl. Chem.* **1990**, *27*, 47.

⁷⁵ L. F. Tietze, T. Brumby. S. Brand, M. Bratz, *Chem. Ber.* **1987**, *121*, 499.

⁷⁶ E. L. O. Sauer, J. Hooper, T. Woo, L. Barriault, *J. Am. C hem. Soc.* 2007, 129, 212.

⁷⁷ a) D. J. Ramon, M. Yus, *Angew. Chem. Int. Ed.* 2005, *44*, 1602. b) J. Zhu, H. Benayme, *Multicomponent Reactions,* Wiley-VCH, Weinheim, 2005. c) D. M. D'Souza, T. J. J. Mueller, *Chem. Soc. Rev.* 2007, *36*, 1095.
 ⁷⁸ D. Enders, M. R. M. Hüttl, C. Grondal, G. Raabe, *Nature* 2006, *441*, 861.

⁷⁹ a) S. L. Schreiber, *Science* 2000, *287*, 1964. b) M. D. Burke, S. L. Schreiber, *Angew. Chem. Int. Ed.* 2004, *43*, 46. c) T. E. Nielsen, S. L. Schreiber, *Angew. Chem. Int. Ed.* 2008, *47*, 48. d) M. Kaiser, S. Wetzel, K. Kumar, H. Waldmann, *Cell. Mol. Life Sci.* 2008, *65*, 1186. e) C. G. Wermuth, *The Practice of Medicinal Chemistry*, *3rd Ed.*, Academic Press, 2008..

⁸⁰ M. Rueping, K.-L. Haack, W. Ieawsuwan, H. Sunden, M. Blanco, F. R. Schoepke, *Chem. Commun.* **2011**, *47*, 3828.

⁸¹ W. R. Roush, R. J. Sciotti, J. Am. Chem. Soc. **1998**, 120, 7411.

⁸² a) A. K. Mallams, M. S. Puar, R. R. Rossman, A. T. McPhail, R. D. Macfarlane, R. L. Stephens, J. Chem. Soc., Perkin Trans. 1 1983, 1497. b) N. Hirayama, M. Kasai, K. Shirahata, Y. Ohashi, Y. Sasada, Bull. Chem. Soc. Jpn. 1982, 55, 2984.

⁸³ a) P. A. Wender, M. P. Croatt, B. Witulski, *Tetrahedron* 2006, *62*, 7505. b) P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, *Acc. Chem. Res.* 2008, *41*, 40.

- ⁸⁴ a) T. Gaich, P.S. Baran, *J. Org. Chem.* **2010**, *75*, 4657. b) P. A. Wender, B. L. Miller, *Nature* **2009**, *460*, 197.
- ⁸⁵ G. E. Schulz, Angew. Chem. **2000**, 112, 2930.
- ⁸⁶ a) G. Wagner, J. Russ. Phys. Chem. Soc. **1899**, 31, 690. b) H. Meerwein, Liebigs Ann. Chem., **1941**, 405, 129.
- ⁸⁷ a) M. D. Burke, G. Lalic, *Chem. Biol.* **2002**, *9*, 535. b) C. R. Harris, S. J. Danishefsky, *J. Org. Chem.* **1999**, *64*, 8434.
- ⁸⁸ L. E. Overman, L. D. Pennington, *J. Org. Chem.* **2003**, *68*, 7143.
- ⁸⁹ K. C. Nicolaou, C. R. H. Hale, C. Nilewskia, H. A. Ioannidou, *Chem. Soc. Rev.* **2012**, *41*, 5185.
- ⁹⁰ R. Robinson, J. Chem. Soc. Trans. **1917**, 762.
- ⁹¹ a) G. I. Elliott, J. Velcicky, H. Ishikawa, Y.-K. Li, D. L. Boger, *Angew. Chem. Int. Ed.* **2006**, *45*, 620. b) Y. Sasaki, D. Kato, D. L. Boger, *J. Am. Chem. Soc.* **2010**, *132*, 13533.
- ⁹² R. L. Nobel, *Biochem. Cell Biol.* 1990, *68*, 1344. b) R. L. Nobel, C. T. Beer, J. H. Cutts, *Ann. N. Y. Aca. Sci.*1958, *76*, 882.
- ⁹³ a) M. Isaka, N. Rugseree, P. Maithip, P. Kongsaeree, S. Prabpai, Y. Thebtaranonth, *Tetrahedron* 2005, 61, 5577. b) M. Isaka, W. Prathumpai, P. Wongsa, M. Tanticharoen, *Org. Lett.* 2006, 8, 2815.
- ⁹⁴ K. C. Nicolaou, D. Sarlah, T. R. Wu, W. Zhan, *Angew. Chem.* **2009**, *121*, 7002.
- ⁹⁵ a) J. C. Sacchettini, E. J. Rubin, J. S. Freundlich, *Nat. Rev. Microbiol.* **2008**, *6*, 41. b) D. L. Cohn, F. Bustreo, M. C. Raviglione, *Clin. Infect. Dis.* **1997**, *24*, S121. c) R. P. Tripathi, N. Tewari, N. Dwivedi, V. K. Tiwari, *Med. Res. Rev.* **2005**, *25*, 93.
- ⁹⁶ J. Y. Gauthier, F. Bourdon, R. N. Young, *Tetrahedron Lett.* **1986**, *27*, 15.
- ⁹⁷ Z.-B. Zhu, S. F. Kirsch, *Chem. Commun.* **2013**, *49*, 2272.
- ⁹⁸ D. Tejedor, G.Mendez-Abt, L. Cotos, F. Garcıa-Tellado, *Chem. Soc. Rev.* **2013**, *42*, 458.
- ⁹⁹ M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett. **2005**, *7*, 3925.
- ¹⁰⁰ H. Menz, S. F. Kirsch, *Org. Lett.* **2006**, *8*, 4795.
- ¹⁰¹ T. Harschneck, S. F. Kirsch, *J. Org. Chem.*, **2011**, *76*, 2145.
- ¹⁰² J. T. Binder, S. F. Kirsch, *Org. Lett.* **2006**, *8*, 2151.

¹⁰³ A. Palisse, *Cascade Reactions Initiated by -Activation. A Flexible Way to Heterocycles and Studies toward the Total Synthesis of Melohenine B*, Dissertation Bergische Universität Wuppertal, **2013.**

- ¹⁰⁴ B. Crone, S. F. Kirsch, *Chem. Eur. J.* **2008**, *14*, 3514.
- ¹⁰⁵ a) S. F. Kirsch, J. T. Binder, C. Liébert, H. Menz, *Angew. Chem. Int. Ed.* 2006, 45, 5878.b) J. T. Binder, B.
 Crone, S. F. Kirsch, C. Liébert, H. Menz, *Eur. J. Org. Chem.* 2007, 1636.

- ¹⁰⁶ K.-D.Umland, A. Palisse, T. T. Haug, S. F. Kirsch, *Angew. Chem. Int. Ed.* **2011**, *50*, 9965.
- ¹⁰⁷ C. A. Grob, W. Baumann, *Helv. Chim. Acta* **1955**, *38*, 594.
- ¹⁰⁸ K. Prantz, J. Mulzer, *Chem. Rev.* **2010**, *110*, 3741.
- ¹⁰⁹ a) J. H. George, J. E. Baldwin, R. M. Adington, *Org. Lett.* **2010**, *12*, 2394. b) K. Suzuki, H. Takikawa, Y. Hachisu, J. W. Bode, *Angew. Chem., Int. Ed.* **2007**, *46*, 3252.
- ¹¹⁰ R. Fittig, Justus Liebigs Ann. Chem. **1859**, 110, 23.
- ¹¹¹ A. Butlerov, Justus Liebigs Ann. Chem. **1874**, 174, 125.
- ¹¹² S. F. Kirsch, *Nachr. Chem.* **2008**, *56*, 1228.
- ¹¹³: a) C. J. Douglas, L. E. Overman, *Proc. Natl. Acad. Sci.* **2004**, *101*, 5363. b) J. Christoffers, A. Baro, *Adv.*
- Synth. Catal. 2005, 347, 1473. c) E. J. Corey, A. Guzman-Perez, Angew. Chem. Int. Ed. 1998, 37, 388. d) J.
- Christoffers, A. Mann, Angew. Chem. Int. Ed. 2001, 40, 4591. e) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem.
- 2013, 2745. e) B. M. trost, C. Jiang, Synthesis 2006, 369. f) J. P. Das, I. Marek, Chem. Commun 2011, 4593.
- ¹¹⁴ E. A. Peterson, L. E. Overman, *Proc. Natl. Acad. Sci.* **2004**, *101*, 5363.
- ¹¹⁵ a) K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, *Angew. Chem. Int. Ed.* **2002**, *41*, 1668. b) E. Marsault, A. Toro, P. Nowak, P. Deslongchamps, *Tetrahedron* **2001**, *57*, 4243.
- ¹¹⁶ A. B. Dounay, L. E. Overman, *Chem. Rev.* **2003**, *103*, 2945.
- ¹¹⁷ K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem. Int. Ed.* **2005**, *44*, 4442.
- ¹¹⁸ B. M. Trost, D. L. Van Vraken, *Chem. Rev.* **1996**, *96*, 395.
- ¹¹⁹ S. Pereira, M. Srebnik, *Aldrichimica Acta* **1993**, *26*, 17.
- ¹²⁰ E. A. Ilardi, C. E. Stivala, A. Zakarian, *Chem. Soc. Rev.* **2009**, *38*, 3133.
- ¹²¹ a) Z.-L. Song, C.-A. Fan, Y.-Q Tu, *Chem. Rev.* **2011**, *111*, 7523. b) R. R. Naredla, D. A. Klumpp, *Chem. Rev.* **2013**, DOI: 10.1021/cr4001385.

¹²² a) P. C. Bloys van Treslong Prins, *Chem. Weekbl.* **1919**, 1510. b) P. C. Bloys van Treslong Prins, *Chem. Weekbl.* **1919**, 1072. c) E. Hanschke, *Chem. Ber.* **1955**, *88*, 1053. a) D. W. Custar, T. P. Zabawa, K. A. Scheidt, *J. Am. Chem. Soc.* **2008**, *130*, 804. b) E. A. Crane, K. A. Scheidt, *Angew. Chem. Int. Ed.* **2010**, *49*, 8316. c) M. R. Gesinski, K. Tadpetch, S. D. Rychnovsky, *Org. Lett.* **2009**, *11*, 5342. d) P. A. Wender, B. A. DeChristopher, A. J. Schrier, *J. Am. Chem. Soc.* **2008**, *130*, 6658. e) S. N. ChaverP. R. Ullapu, S. J. Min, K. J. Lee, A. N. Pae, Y. Kim, Y. S. Cho, *Org. Lett.* **2009**, *11*, 3834.

¹²³ a) J. E. Dalgard, S. D. Rychnovsky, *J. Am. Chem. Soc.* 2004, *126*, 15662. b) D. J. Kopecky, S. D. Rychnovsky, *J. Am. Chem. Soc.* 2001, *123*, 8420. c) M. L. Bolla, B. Patterson, S. D. Rychnovsky, *J. Am. Chem. Soc.* 2005, *127*, 16044. d) O. L. Epstein, T. Rovis, *J. Am. Chem. Soc.* 2006, *128*, 16480.

¹²⁴ a) M. J. Cloninger, L. E. Overman, *J. Am. Chem. Soc.* 1999, *121*, 1092. b) F. Cohen, D. W. C. MacMillan,
 A. Romero, L. E. Overman, *Org. Lett.* 2001, *3*, 1225.

¹²⁵ a) D. W. C. MacMillan, L. E. Overman, J. Am. Chem. Soc. **1995**, *117*, 10391. b) I. L. Lysenko, H.-S. Oh, J. K. Cha, J. Org. Chem. **2007**, *72*, 7903. c) K. Kim, J. K. Cha, Angew. Chem. Int. Ed. **2009**, *48*, 5334. d) S. N.Chavre, P. R. Ullapu, S. J. Min, J. K. Lee, A. N. Pae, Y. Kim, Y. S. Cho, Org. Lett. **2009**, *11*, 3834. e) M. Butters, M. C. Elliott, J. H. Hill-Cousins, J. S. Paine, A. W. J. Westwood, *Tetrahedron Lett.* **2008**, *49*, 4446. f)
L. E. Overman, E. J. Velthuisen, Org. Lett. **2004**, *6*, 3853. g) R. M. A. Lavigne, M. Riou, M. Girardin, L. Morency, L. Barriault, Org. Lett. **2005**, *7*, 5921. h) A. Armstrong, S. E. Shanahan, Org. Lett. **2005**, *7*, 1335. i) A. Armstrong, Y. Bhonoah, S. E. Shanahan, J. Org. Chem. **2007**, *72*, 8019. j) L. E. Overman, P. S. Tains, J. Org. Chem. **2010**, *75*, 455. k) L. E. Overman, E. J. Velthuisen, J. Org. Chem. **2006**, *71*, 1581.

¹²⁶ a) B. M. Trost, D. C: Lee, *J. Am. Chem. Soc.* **1988**, *110*, 6556. b) B. M. Trost, A. Brandi, *J. Am. Chem. Soc.* **1984**, *106*, 5041. c) M. Sworin, W. L. Neumann, *J. Org. Chem.* **1988**, *53*, 4892. d) T. Nakamura, T. Matsui,
K. Tanino, I. Kuwajima, *J. Org. Chem.* **1997**, *62*, 3032. e) J.-H. Youn, J. Lee, J. K. Cha, *Org. Lett.* **2001**, *3*,
2935. f) A. Frongia, C. Girard, J. Ollivier, P. P. Piras, F. Secci, *Synlett* **2008**, 2823.

¹²⁷ a) L. E. Overman, J. P. Wolfe, *J. Org. Chem.* 2002, *67*, 6421. b) A. D. Lebsack, L. E. Overmann, R. J. Valentekovich, *J. Am. Chem. Soc.* 2001, *123*, 4851. c) T. A. Grese, K. D. Hutchinson, L. E. Overman, *J. Org. Chem.* 1993, *58*, 2468.

¹²⁸ a) G. C. Hirst, T. O. Johnson, L. E. Overman, *J. Am. Chem. Soc.* 1993, *115*, 2992. b) M.-A.-Beaulieu, K. Guerard, G. Maertens, G. Sabot, S. Canesi, *J. Org. Chem.* 2011, *76*, 9460. c) G. C. Hirst, P. N. Howard, L. E. Overman, *J. Am. Chem.Soc.* 1989, *111*, 1514. d) T. C. Gahman, L. E. Overman, *Tetrahedron* 2002, *58*, 6473. e) K. P. Minor, L. E. Overman, *Tetrahedron* 1997, *53*, 8927.

¹²⁹ a) S. F. Kirsch, J. T. Binder, B. Crone, A. Duschek, T. T. Haug, C. Liébert, H. Menz, *Angew. Chem. Int. Ed.* **2007**, *46*, 2310. b) H. Menz, J. T. Binder, B. Crone, A. Duschek, T. T. Haug, S. F. Kirsch, P. Klahn, C. Liébert, *Tetrahedron* **2009**, *65*, 1880.

¹³⁰ B. Baskar, H. J. Bae, S. E. An, J. Y. Cheng, Y. H. Rhee, A. Duschek, S. F. Kirsch, *Org. Lett.*, **2008**, *10*, 2605.
¹³¹ a) S. Wang, L Zhang, *J. Am. Chem. Soc.* **2006**, *128*, 14247. b) N. Marion, P. de Fremont, G Lemiere, E. D. Stevens, L. Fensterbank, M. Malacria, S. P. Nolan, *Chem. Commun.* **2006**, 2048. c) F. Gagosz, *Org. Lett.* **2005**, *7*, 4129. d) L. Zhang, S. A. Kozmin, *J. Am. Chem. Soc.* **2004**, *126*, 11806. e) V. Mamane, T. Gress, H. Krause, A. Fürstner, *J. Am. Chem. Soc.* **2004**, *126*, 8654. f) A. K. Buzas, F. M. Istrate, F. Gagosz, *Angew. Chem. Int. Ed.* **2007**, *46*, 1141.

¹³² a) C. Nieto-Oberhuber, S. López, E. Jiménez-Núnez, A. M. Echavarren, *Chem. Eur. J.* 2006, *12*, 5916. c)
V. Michelet, P. Y. Toullec, J. P. Genét, *Angew. Chem. Int. Ed.* 2008, *47*, 4268.

¹³³ T. Fan, X. Chen, J. Sun, Z. Lin, *Organometallics*, **2012**, *31*, 4221.

¹³⁴ a) L. Zhang, S. A. Kozmin, *J. Am. Chem. Soc.* **2005**, *127*, 6962. b) M. R. Luzung, J. P. Markham, F. D. Toste, *J. Am. Chem. Soc.* **2004**, *126*, 10858.

¹³⁵ a) S. Antoniotti, E. Genin, V. Michelet, J.-P. Genét, *J. Am. Chem. Soc.* 2005, *127*, 9976. b) Y. Li, F. Zhou,
C. J. Forsyth, *Angew. Chem. Int. Ed.* 2007, *46*, 279. c) B. Liu, J. K. De Brabander, *Org. Lett.* 2006, *8*, 4907.
d) A. Diéguez-Vázquez, C. C. Tzchucke, W. Y. Lam, S. V. Ley, *Angew. Chem. Int. Ed.* 2008, *47*, 209. e) Y. Zhang, J. Xue, Z. Xin, Z. Xie, Y. Li, *Synlett* 2008, 940.

¹³⁶ L. E. Overman, *Angew. Chem. Int. Ed.* **1984**, *23*, 579.

¹³⁷ a) A. Buzas, F. Gagosz, Org. Lett. 2006, 8, 515. b) A. Buzas, F. Istrate, F. Gagosz, Org. Lett. 2006, 8, 1957. c) A. Buzas, F. Gagosz, Synlett 2006, 2727. d) M. Yu, G. Zhang, L. Zhang, Org. Lett. 2007, 9, 2147. e)
L. Ye, L. Zhang, Org. Lett. 2009, 11, 3646. f) J. P. Weyrauch, A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schettler, A. Littmann, M. Rudolph, M. Hamzis, J. Visus, F. Rominger, W. Frey, J. W. Bats, Chem. Eur. J. 2010, 19, 956. g) H.-H. Liao, R.-S. Liu, Chem. Commun. 2011, 47, 1339. h) W. Kong, C. Fu, S. Ma, Eur. J. Org. Chem. 2010, 6546.

¹³⁸ L. E. Overman, Angew. Chem. Int. Ed. **1984**, 23, 579.

¹³⁹ a) A. Palisse, S. F. Kirsch, *Org. Biomol. Chem.* **2012**, *10*, 8041. b) A. N. French S. Bissmire, T. Wirth, *Chem. Soc. Rev.* **2004**, *33*, 354. c) B. Godoi, R. Schumacher, G. Zeni, *Chem. Rev.* **2011**, *111*, 2937.

¹⁴⁰ a) Y. Yamamoto, I. D. Gridnev, N. T. Patil, T. Jin, *Chem. Commun.* **2009**, 5075. b) S. Hummel, S. F. Kirsch, *Beilstein J. Org. Chem.* **2011**, *7*, 847.

¹⁴¹ F. Huber, S. F. Kirsch, J. Org. Chem. **2013**, 78, 2780.

¹⁴² a) H. J. Bae, B. Baskar, S. E. An, J. Y. Cheong, D. T. Thangadurai, I.-C. Hwang, Y. H. Rhee, *Angew. Chem. Int. Ed.* 2008, 47, 2263. b) S. E. An, J. Jeong, B. Baskar, J. Lee, J. Seo, Y.H. Rhee, *Chem. Eur. J.* 2009, 15, 11837.

¹⁴³ F. M. Istrate, F. Gagosz, *Org. Lett.* **2007**, *9*, 3181.

¹⁴⁴ M. Alcarazo, T. Stork, A. Anoop, W. Thiel, A. Fürstner, *Angew. Chem. Int. Ed.* **2010**, *49*, 2542.

¹⁴⁵ P. Klahn, S. F. Kirsch, *ChemCatChem* **2011**, *3*, 649.

¹⁴⁶ a) S. M. Canham, D. J. France, L. E. Overman, *J. Am. Chem. Soc.* 2010, *132*, 7876. b) S. M. Canham, D. J.
 France, L. E. Overman, *J. Org. Chem.* 2013, *78*, 9.

¹⁴⁷ a) Y. Hirasawa, J. Kobayashi, H. Morita, *Heterocycles* **2009**, *77*, 679. b) J. Kobayashi, H. Morita, *The Alkaloids, G. A. E.* Cordell, Ed., Academic Press, New York, **2005**; Vol. *61*, 1. c) X. Ma, D.R. Gang, *Nat. Prod. Rep.* **2004**, *21*, 752.

¹⁴⁸ Y. Hirasawa, H. Morita, M. Shiro, J. Kobayashi, Org. Lett. **2003**, *5*, 3991.
¹⁴⁹ Klinische Untersuchungen: NCT01136551, NCT01030692, NCT01012830, NCT00963846, NCT01282619, NCT01194336 und NCT00083590.

¹⁵⁰ a) H. Jiang, X. Luo, D. Bai., *Curr. Med. Chem.* **2003**, *10*, 2231. b) A.P. Kozikowski, W. Tückmantel, *Acc. Chem. Res.* **1999**, *32*, 641.

¹⁵¹ a) H. Hikino, K. Aota, Y. Maebayashi, T. Takemoto, *Chem. Pharm. Bull.* 1966, *14*, 1439. b) H. Hikino, K. Aota, Y. Maebayashi, T. Takemoto, *Chem. Pharm. Bull.* 1967, *15*, 1349. c) V. H. Kapadia, V. G. Naik, M. S. Wadia, S. Dev, *Tetrahedron Lett.* 1967, *8*, 4661.

¹⁵² Q.-X. Wu, Y.-P. Shi, Z.-J. Jia, *Nat. Prod. Rep.* **2006**, *23*, 699.

¹⁵³ a) A. A. Ahmed, J. Jakupovic, *Phytochemistry* 1990, *29*, 3658. b) M. G. El-Ghazouly, N. A. El-Sebakhy, A.
A. S. El-Din, C. Zdero, F. Bohlmann, *Phytochemistry* 1987, *26*, 439. c) M. N. Todorova, E. T. Tsankova, *Phytochemistry* 1999, *52*, 1515. d) S. Ohira, T. Hasegawa, K.-I. Hayashi, T. Hoshino, D. Takaoka, H. Nozaki, *Phytochemistry* 1998, *47*, 1577. e) P. Ceccherelli, M. Curini, M. C. Marcotullio, *J. Nat. Prod.* 1988, *51*, 1006. f) A. Rustaiyan, J. Jakupovic, T. V. Chau-Thi, F. Bohlmann, A. Sadjadi, *Phytochemistry* 1987, *26*, 2603. g) M. M. Sonwa, W. A. König, *Phytochemistry* 2001, *58*, 799.

¹⁵⁴ L. G. Holm, D. L. Plucknett, J. V.Pancho, J. P. Herberger, *The World's Worst Weeds: Distribution and Biology*, University Press of Hawaii, **1977.**

¹⁵⁵ a) N. Stamp, *Q. Rev. Biol.* **2003**, *78*, 23-55. b) C.-H. Chou, *Allelopathy* **2006**, *1*, 1.

¹⁵⁶ K. Komai, N. Seto, K. Matsubayashi, M. Hamada, Zasso Kenkyu (Weed Res. Jp.) **1990**, *35*, 164.

¹⁵⁷ a) Y. Shi, W. Yang, J.-S. Zhang, T. C. H. Leung, K.K.L. Yung, *Neuroembryol. Aging* 2004, *3*, 123. b) S. Kilani, M. B. Sghaier, I. Limem, I. Bouhlel, J. Boubaker, W. Bhouri, I. Skandrani, A. Neffatti, R. B. Ammar, M. G. Dijoux-Franca, K. Ghedira, L. Chekir-Ghedira, *Bioresour. Technol.* 2008, *99*, 9004. c) A.G Jagtap, S. S Shirke, A. S Phadke, *J. Ethnopharmacology* 2004, *90*, 195. d) M. V Patel, K. B Patel, S. N Gupta, *Clin. Res.* 2010, *31*, 478.

¹⁵⁸ a) H. Hikino, N. Suzuki, T. Takemoto, *Chem. Pharm. Bull.* **1966**, *14*, 1441. b) H. Hikino, N. Suzuki, T. Takemoto, *Chem. Pharm. Bull.* **1967**, *15*, 1395.

¹⁵⁹ H. Hikino, K. Aota, T. Takemoto, *Chem. Pharm. Bull.* **1966**, *14*, 890.

¹⁶⁰ a) H. Hikino, T. Kohama, T. Takemoto, *Tetrahedron* **1969**, *25*, 1037. b) G. Mehta, G. L. Chetty, U. R. Nayak, S. Dev, *Tetrahedron* 1968, *24*, 3775.

¹⁶¹ P. Ceccherelli, M. Curini, M. C. Marcotullio, O. Rosati, *Tetrahedron* **1989**, *45*, 3809.

¹⁶² S. Ohira, T. Hasegawa, K.-I. Hayashi, T. Hoshino, D. Takaoka, H. Nozaki, *Phytochemistry* **1998**, 47, 1577.

¹⁶³ A. Srikrishna, C. Dinesh, *Tetrahedron: Asymmetry* **2005**, *16*, 2203.

- ¹⁶⁴ C. Liebért, *Neodymium(II)-mediated Reformatsky-type reactions and studies toward a de novo Synthesis of cyperane class sesquiterpeneoids*, Dissertation Technische Universität München, **2009**.
- ¹⁶⁵ a) A. Srikrishna, S. J. Gharpure, P. P. Kumar, *Tetrahedron Lett.* 2000, *41*, 3177. b) M. Dominguez, R. Alvarez, S. Martras, J. Farrés, X. Parés, A. R. de Lera, *Org. Biomol. Chem.* 2004, *2*, 3368. c) G. Piancatelli, A. Scettri, M. D'Auria, *Synthesis* 1982, 245.
- ¹⁶⁶ a) J.-L. Luche, J. Am. Chem. Soc. 1978, 100, 2226. b) J.-L. Luche, L. Rodriguez-Hahn, P. Crabbé, J. Chem. Soc., Chem. Commun. 1978, 601. c) A. L. Gemal, J.-L. Luche, J. Am. Chem. Soc. 1981, 103, 5454.
- ¹⁶⁷ a) M. Gaudemar, Ann. Chim. Fr. 1956, 13/1, 161. b) C. Prévost, M. Gaudemar, L. Miginiac, F. Bardone-Gaudemar, M. Andrac, Bull. Soc. Chim. Fr. 1959, 679. c) L. Miginiac-Groizeleau, Ann. Chim. Fr. 1961, 13/6, 1071. d) R. Couffignal, M. Gaudemar, Bull Soc. Chim. Fr. 1969, 3218. e) H. Hopf, Angew. Chem., Int. Ed. Engl. 1970, 9, 732. f) P. M. Greaves, S. R. Landor, M. M. Lwanga, Tetrahedron, 1975, 31, 3073. g) C. E. Teerlinck, W. J. J. Bowyer, J. Org. Chem., 1996, 61, 1059. h) J. A. Marschall, X.-j. Wang, J. Org Chem., 1991, 56, 960.
- ¹⁶⁸ a) W. Baidossi, M. Lahav, J. Blum, *J. Org. Chem.* **1997**, *62*, 669. b) S. J. Pastine, S. W. Youn, D. Sames, *Org. Lett.* **2003**, *5*, 1055. c) S. J. Pastine, S. W. Youn, D. Sames, *Tetrahedron* **2003**, *59*, 8859. d) S. J. Pastine, D. Sames, *Org. Lett.* **2003**, *5*, 4053. e) K. Hiroya, S. Matsumoto, M. Ashikawa, K. Ogiwara, T. Sakamoto, *Org. Lett.* **2006**, *8*, 5349. g) J. Marco-Contelles, N. Arroyo, S. Anjum, E. Mainetti, N. Marion, K. Cariou, G. Lemière, V. Mouriès, L. Fensterbank, M. Malacria, *Eur. J. Org. Chem.* **2006**, 4618.
- ¹⁶⁹ a) A. Fürstner, P. W. Davies, T. Gress, *J. Am. Chem. Soc.* 2005, *127*, 8244. b) A. Fürstner, P. W. Davies, *J. Am. Chem. Soc.* 2005, **127**, 15024. c) A. Fürstner, C. Aïssa, *J. Am. Chem. Soc.* 2006, *128*, 6306. d) E. J. Cho, M. Kim, D. Lee, *Org. Lett.* 2006, *8*, 5413.
- ¹⁷⁰ P. Klahn, A. Duschek, C. Liebért, S. F. Kirsch, Org. Lett. **2012**, *14*, 1250
- ¹⁷¹ a) R. K. Murray Jr., K. A. Babiak, *J. Org. Chem.* **1973**, *38*, 2556. b) M. Ando, S. Sayama, K. Takase, *J. Org. Chem.* **1985**, *50*, 251. c) M. Toyota, T. Wada, M. Ihara, *J. Org. Chem.* **2000**, *65*, 4565. d) F. J. C. Martins, A. M. Viljoen, H. G. Kruger, L. Fourie, J. Roscher, A. J. Joubert, P. L. Wessels, *Tetrahedron* **2001**, *57*, 1601. e) M. E. Furrow, A. G. Myers, *J. Am. Chem. Soc.* **2004**, *126*, 5436.
- ¹⁷² a) L. Caglioti, M. Magi, *Tetrahedron* 1963, 19, 1127. b) J. Hayashida, V. H. Rawal, *Angew. Chem. Int. Ed.*2008, 47, 4373.
- ¹⁷³ a) H. Minlon, J. Am. Chem. Soc. **1946**, 68, 2487. b) H. Minlon, J. Am. Chem. Soc. **1949**, 73, 3301.
- ¹⁷⁴ a) K. Ramesh, M. S. Wolfe, Y. Lee, D. V. Velde, R. T. Borchardt, *J. Org. Chem.* **1992**, *57*, 5831. b) S.-H.
 Chen, S. Huang, Q. Gao, J. Golik, V. Farina, *J. Org. Chem.* **1994**, *59*, 1475. c) H. Togo, S. Matsubayashi, O.
 Yamazaki, M. Yokoyama, *J. Org. Chem.* **2000**, *65*, 2816. d) M. Toyota, T. Wada, M. Ihara, *J. Org. Chem.*

2000, *65*, 4565. e) T. Horiguchi, C. D. Rithner, R. Croteau, R. M. Williams, *J. Org. Chem.* **2002**, *67*, 4901. f) J. S. Yadav, K. Vishweshwar Rao, A. R. Prasad, *Synthesis* **2006**, 3888. g) D. E. Ward, V. Jheengut, *J. Org. Chem.* **2006**, *71*, 8989.

¹⁷⁵ a) D. Kim, J. Lee, J. Chang, S. Kim, *Tetrahedron*, **2001**, *57*, 1247. b) D. R. Schmidt, P. K. Park, J. L. Leighton, *Org. Lett.* **2003**, *5*, 3535. c) G. Jeannotte, W. D. Lubell, *J. Org. Chem.* **2004**, *69*, 4656. d) M. T. Crimmins, B. H. Brownm *J. Am. Chem. Soc.* **2004**, *126*, 10264. e) P. K. Park, S. J. O'Malley, D. R. Schmidt, J. L. Leighton, *J. Am. Chem. Soc.* **2006**, *128*, 2796. f) M. Fleck, T. Bach, *Angew. Chem. Int. Ed.* **2008**, *47*, 6189. g) J. Tsuji, *Synthesis* **1984**, 369.

¹⁷⁶ a) P. A. Grieco, S. Gilma, M. Nishizawa, *J. Org. Chem.* **1976**, *41*, 1485. b) K. B. Sharpless, M. W. Young, *J. Org. Chem.* **1975**, *40*, 947.

¹⁷⁷ a) J. Zhu, J.-Y. Yang, A. J. H. Klunder, Z.-Y. Liu, B. Zwanenburg, *Tetrahedron* **1995**, *51*, 5847. b) R. M. Coates, J. Z. Ho, M. Klobus, L. Zhu, *J. Org. Chem.* **1998**, *63*, 9166. c) S. Kimura, R. Ehama, K. Inomata, *Synthesis* **2002**, *8*, 1027.

¹⁷⁸ a) H. C. Brown, P. J. Geoghean Jr., J. T. Kurek *,J. Org. Chem.* **1991**, *46*, 3810. b) K. Rama Rao, H. M. Sampathkumar, *Synth. Commun.* **1993**, *23*, 1877.

¹⁷⁹ K. C. Nicolaou, Q.-Y. Toh, D. Y.-K. Chen, J. Am. Chem. Soc. **2008**, 130, 11292.

¹⁸⁰ a) U. Sunay, B. Fraser-Reid, *Tetrahedron Lett.* **1986**, *27*, 5335. b) A. K. Bose, L. Krishnan, D. R. Wagle, M. S. Manhas, *Tetrahedron Lett.* **1986**, *27*, 5955. c) H. Pellissier, P.-Y. Michellys, M. Santelli, *Tetrahedron* **1997**, *53*, 7577.

¹⁸¹ A. Duschek, *Hypervalente Jodverbindungen für Oxygenierungen und Übergangsmetallkatalysierte Reaktionen von 3-Silyloxy-1,n-eninen*, Dissertation Technische Universität München, **2011**.

¹⁸² N. Meyer, D. Seebach, *Chem. Ber.* **1980**, *113*, 1290.

¹⁸³ M. A. Bergström, K. Luthman, J. L. G. Nilsson, A.-T. Karlberg, Chem. Res. Toxicol. 2006,

19, 760.

¹⁸⁴ S. P. Tanis, M. C. McMills, P. M. Herrinton, *J. Org. Chem.* **1985**, *50*, 5887.

¹⁸⁵ a) M. Cherest, H. Felkin, *Tetrahedron Lett.* **1968**, *9*, 2205. b) T. Imamoto, Y. Sugiura, N. Takiyami, *Tetrahedron Lett.* **1984**, *25*, 4233. c) H.-J. Liu, B.-Y. Zhu, *Can. J. Chem.* **1991**, *69*, 2008. d) G. Frenking, K. F. Köhler, M. T. Reetz, *Angew. Chem.* **1991**, *103*, 1167.

¹⁸⁶ a) E. Kaspar, R. Wiechert, *Chem. Ber.* **1958**, *91*, 2664. b) H. Rezaei, J. F. Normant, *Synthesis* **2000**, 109.
c) C. Pedregal, W. Prowse, *Bioorg. Med. Chem.* **2002**, *10*, 433. d) H. Taguchi, H. Yamamoto, H. Nozaki, *J. Am. Chem. Soc.* **1974**, *96*, 3010.

- ¹⁸⁷ a) H. Niwa, Y. Yoshida, T. Hasegawa, K. Yamada, *Tetrahedron* **1991**, *47*, 2155. b) G. A. Kraus, X. Wang, *Bioorg. Med. Chem. Lett.* **2000**, *10*, 895. c) P. Blumbergs, M. P. LaMontagne, J. I. Stevens, *J. Org. Chem.* **1972**, *37*, 1248.
- ¹⁸⁸ K. M. Sadhu, D. S. Matteson, *Tetrahedron Lett.* **1986**, *27*, 795.
- ¹⁸⁹ H. Paulsen, F. R. Heiker, *Liebigs Ann. Chem.* **1981**, *12*, 2180.
- ¹⁹⁰ R. F. Cunico, L. Bedell, *J. Org. Chem.* **1980**, *45*, 4797.
- ¹⁹¹ a) D. Hass, T. Hauthal, Z. Chem. **1975**, *15*, 33. b) D. Hass, T. Hauthal, Z. Chem. **1975**, *15*, 65.
- ¹⁹² J.. A. Labinger, A. M. Herring, D. K. Lyon, G. A. Luinstra, J. E. Bercaw, I. T. Horváth, K. Eller, *Organometallics* **1993**, *12*, 895.
- ¹⁹³ a) K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.***1975**, *16*, 4467. b) K. Sonogashira, *J. Organomet. Chem.* **2002**, *653*, 46.
- ¹⁹⁴ D. C. Ebner, J. T. Bagdanoff, E. M. Ferreira, R. M. McFadden, D. D. Caspi, R. M. Trend, B. M. Stoltz, *Chem. Eur. J.* **2009**, *15*, 12978.
- ¹⁹⁵ J. M. L. Courtin, L. Verhagen, P. L. Biesheuvel, J. Lugtenburg, R. L. van der Bend, K. van Dam, *Recl. Trav. Chim. Pays-Bas* **1987**, *106*, 112.
- ¹⁹⁶ D. A. Lightner, J. K. Gawroński, T. D. Bouman, *J. Am. Chem. Soc.* **1980**, *102*, 1983.
- ¹⁹⁷ E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. **1972**, *94*, 6190.
- ¹⁹⁸ K. B. Sharpless, R. C. Michaelson, *J. Am. Chem. Soc.*, **1973**, *95*, 6136. b) S. Tanaka, H. Yamamoto, H. Nozaki, K. B. Sharpless, R. C. Michaelson, J. D. Cutting, *J. Am. Chem. Soc.* **1974**, *96*, 5254.
- ¹⁹⁹ K. A. Jörgenson, *Chem. Rev.* **1989**, *89*, 431.
- ²⁰⁰ a) J. R. Parikh, W. v. E. Doering, J. Am. Chem. Soc. **1967**, 89, 5505. b) D. A. Evans, D. H. B. Ripin, D. P. Halstead, K. R. Campos, J. Am. Chem. Soc. **1999**, 121, 6816.
- ²⁰¹ J. C. Gilbert, U. Weerasooriya, J. Org. Chem. **1982**, 47, 1837.
- ²⁰² a) H. C. Brown, P. M. Weissman, N. M. Yoon, *J. Am. Chem. Soc.* **1966**, *88*, 1458. b) H. C. Brown, D. Krishnamurthy, *Tetrahedron* **1979**, *35*, 567.
- ²⁰³ L. Hintermann, A. Labonne, *Synthesis* **2007**, 1121.
- ²⁰⁴ a) S. V. Ley, J. R. Frost, *Synfacts* **2012**, 8, 479. b) K. J. Hale, *Org. Lett.* **2013**, *15*, 3181.
- ²⁰⁵ a) D. J. Newman, G. M. Cragg, K. M. Snader, *J. Nat. Prod.* 2003, *66*, 1022. b) D.J. Newman, G. M. Cragg,
 J. Nat. Prod. 2007, *70*, 461.
- ²⁰⁶ a) F. v. Nussbaum, S. Anlauf, C. Freiberg, J. Benet-Buchholz, J Schamberger, T. Henkel, G. Schiffer, D. Häbich, *ChemMedChem*. **2008**, *3*, 619. b) J. M. Rollinger, T. Langer, H. Stuppner, *Curr. Med. Chem.* **2006**, *13*, 1491. C) D. J. Newman, G. M. Cragg, K. M. Snader, *Nat. Prod. Rep.* **2000**, *17*, 215. d) J.W. Blunt, B. R.

Copp, M.H. G. Munro, P. T. Northcote, M. R. Prinsep, *Nat. Prod. Rep.* **2004**, *21*, 1. e) J. Clardy, C. Walsh, *Nature* **2004**, *432*, 829. f) D. Camp, R. A. Davis, M. Campitelli, J. Ebdon, R. J. Quinn, *J. Nat. Prod.* **2012**, *75*, 72. g) D. D. Baker, M. Chu, U. Oza, V. Rajgarhia, *Nat. Prod. Rep.* **2007**, *24*, 1225.

²⁰⁷ a) F. Feyen, F. Cachoux, J. Gertsch, M. Wartmann, K.-H. Altmann, *Acc. Chem. Res.*, **2008**, *41*, 21. b) C. Weidner, J. C. de Groot, A. Prasad, A. Freiwald, C. Quedenau, M. Kliem, A. Witzke, V. Kodelja, C.-T. Han, S. Giegold, M. Baumann, B. Klebl, K. Siems, L. Müller-Kuhrt, A. Schürmann, R. Schüler, A. F. H. Pfeiffer, F. C. Schroeder, K. Büssow, S. Sauer, *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 7257.

²⁰⁸ S. D. Sarker, Z. Latif, A. I. Gray, *Natural Product Isolation*, *Methods in Biotechnology* **2005**, *20*, 1.

²⁰⁹ a) H. Menz, S. F. Kirsch, *Org. Lett* **2009**, *11*, 5634. b) Z.-H. Jiang, Q.-X. Yang, T. Tanaka, I. Kouno, *J. Nat. Prod.* **2008**, *71*, 724. c) N. J. White, *Science* **2008**, *320*, 330.

²¹⁰ a) T. Böttcher, S. A. Sieber, *Angew Chem Int Ed Engl* 2008, *47*, 4600. b) T. Böttcher, Sieber, S.A., *J Am Chem Soc* 2008, *130*, 14400. c) J. Eirich, R. Orth, S. A. Sieber, *J. Am. Chem. Soc.* 2011, *133*, 12144. d) I. Staub, S. A. Sieber, *J Am Chem Soc* 2008, *130*, 13400. e) M. B. Nodwell, H. Menz, S. F. Kirsch, S. A. Sieber, *ChemBioChem* 2012, DOI: 10.1002/cbic.201200265.

²¹¹ a) M. B. Nodwell, S. A. Sieber, *Top.Curr. Chem.* 2011, 1. b) M. Gersch, J. Kreuzer, S.A. Sieber, *Nat. Prod. Rep.* 2012, 29, 659. c) M. J. Evans, B. F. Cravatt, *Chem Rev* 2006, 106, 3279. d) M. Fonovic, M. Bogyo, *Expert Rev Proteomics* 2008, 5, 721.

²¹² a) P. J. Kocienski, *Protecting Groups, 3rd Ed.*, Thieme, New York, **2005**. b) T. W. Green, P. G. Wuts, *Protective Groups in Organic Synthesis* 3rd Edn, Wiley, Hoboken, **1999**.

²¹³ a) R. W. Hoffmann, *Synthesis* **2006**, 3531. b) M. Schelhaas, H. Waldmann, *Angew. Chem Int. Ed.* **1996**, *35*, 2056.

²¹⁴ M. A. Sierra, M. C. de la Torre, *Dead Ends and Detours, Direct Ways to Successful Total Synthesis*, Wiley-VCH, Weinheim, **2004**.

²¹⁵a) M. S. Butler, J. Nat. Prod. **2004**, 67, 2141. b) R. M. Wilson, S. J. Danishefsky, J. Org. Chem. **2006**, 71, 8329.

²¹⁶ a) E. Roulland, *Angew. Chem. Int. Ed.* 2011, *50*, 1226. b) I. S. Young, P. S. Baran, *Nature Chem.* 2009, *1*, 193. c) P. S. Baran, T. J. Maimone, J. M. Richter, *Nature* 2007, *446*, 404. d) J. A. Porco, Jr., *Nature* 2007, 446, 383.

²¹⁷ a) R. M. Williams, *J. Org. Chem.* **2011**, 76, 4221. b) E. Poupon, B. Nay, (Eds.), *Biomimetic Organic Synthesis*, Wiley-VCH, Weinheim, **2011**.

²¹⁸ a) Q. Zhou, X. Chen, D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513. b) R. M. McFadden, B. M. Stoltz, J.
 Am. Chem. Soc. 2006, 128, 7738. c) V. Hickmann, A. Kondoh, B. Gabor, M. Alcarazo, A. Fürstner, J. Am.

Chem. Soc. 2011, 133, 13471. d) V. Hickmann, M. Alcarazo, A Fürstner, J. Am. Chem. Soc. 2010, 132, 11042. e) J. Xu, E. J. E. Caro-Diaz, L. Trzoss, E. A. Theodorakis, J. Am. Chem. Soc. 2012, 134, 5072. f) H.Qin, Z. Xu, Y. Cui, Y.Jia, Angew. Chem. 2011, 123, 4539. g) T. Gerfaud, C. Xie, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 2011, 50, 3954. h) R. P. Korivi, C.-H. Cheng, Chem. Eur. J. 2010, 16, 282. i) P. Chen, L. Cao, C. Li, J. Org. Chem. 2009, 74, 7533. j) M. Inoue, M. Nakada, J. Am. Chem. Soc, 2007, 129, 4164. k) P. S. Baran, J. M. Richter, J. Am. Chem. Soc. 2004, 126, 7450. l) P.S. Baran, J. M. Richter, J. Am. Chem. Soc. 2005, 127, 15394. m) Z. Gu, A. Zakarian, Angew. Chem. Int. Ed. 2010, 49, 9702.

²¹⁹ S. F. Martin, J. A. Dodge, *Tetrahedron Lett.* **1991**, *32*, 3017.

²²⁰ a) P. M. Dewick, *Medicinal Natural Products: A Biosynthetic Approach*, Wiley, New York, **2002**. b) E.
Oldfield, F.-Y. Lin, *Angew. Chem. Int. Ed.* **2012**, *51*, 1124. c) D. E. Cane, *Chem Rev.* **1990**, *90*, 1089. d) C. L.
Steele, J. Crock, J. Bohlmann, R. Croteau, *J. Biol. Chem.* **1998**, *273*, 2078.

²²¹ J.-W. de Kraker, M. C.R. Franssen, A. de Groot, W. A. König, H. J. Bouwmeester, *Plant Physiol.* **1998**, *117*, 1381.

²²² M. Hesse, H. Meier, B. Zeeh, *Spektroskopische Methoden in der organischen Chemie, 7. Aufl.*, Georg Thieme Verlag, Stuttgart, **2005**.

²²³ a) D. Caine, B. Stanhope, S. Fiddler, *J. Org. Chem.* **1988**, 53, 4124. b) D. F. Taber, S. A: Saleh, *Tetrahedron Lett.* **1982**, *23*, 2361.

²²⁴ a) R. H. Schlessinger, M. A. Poss, S. Richardson, P. Lin, *Tetrahedron Letters* 1985, *26*, 2392. b) S. Kiyooka, M. A. Hena, *J. Org. Chem.* 1999, *64*, 5511. c) B. Guay, P. Deslongchamps, *J. Org. Chem.* 2003, *68*, 6140.

²²⁵ a) J. Kula, J. Podlejski, *Liebigs Ann. Chem.* 1985, 2098. b) A. Srikrishna, G. Nagaraju, *Indian J. Chem. Sect. B* 2011, *50*, 73-76. c) A. Srikrishna , V. H. Pardeshi, *Tetrahedron* 2010, *66* 8160. d) A. Srikrishna, N. C.
Babu, *Tetrahedron Lett.* 2001, *42*, 4913.

²²⁶ a) M. Schlosser, *Pure Appl. Chem.* **1988**, *60*, 1627. b) M. Schlosser, *Angew. Chem. Int. Ed.* **2005**, *44*, 376.

²²⁷ a) D. F. Taber, *Intramolecular Diels-Alder and Alder Ene Reactions;* Spring-Verlag, New York, **1984**. b)
W. Oppolzer, *Angew. Chem., Int. Ed. Engl.* **1977**, *16*, 10. c) G. Brieger, J. N. Bennett, *Chem. Rev.* **1980**, *80*,
63. d) E. Ciganek, *Org. React.* **1984**, *32*, 1. e) A. G. Fallis, *Can. J. Chem.* **1984**, *62*, 183. e) L. A. Paquette, *Asymmetric Synthesis;* Ed.: J. E Morrison, Academic Press, New York, **1984**; Volume 3, Part B; Chapter 7.

²²⁸ a) B. Maurer, A. Grieder, *Helv. Chim. Acta* 1977, *60*, 2177. b) D. Caine, B. Stanhope, *Tetrahedron* 1987, *43*, 5545.

²²⁹ Y.-T. Lin, K. N. Houk, *Tetrahedron Letters* **1985**, 26, 2269.

²³⁰ H. Suemune, T. Kawahara, K. Sakai, *Chem. Pharm.Bull.* **1986**, *34*, 550.

- ²³¹ S. Stiver, P. D. Clark, P. Yates, *Can. J. Chem.* **1988**, *66*, 27.
- ²³² M. J. Fleming, H. A. McManus, A. Rudolph, W. H. Chan, J. Ruiz, C. Dockendorff, M. Lautens, *Chem. Eur. J.* 2008, 14, 2112.
- ²³³ X. Zhao Bing, Q. Jin, *Sci. China Chem.* **2011**, *54*, 27.
- ²³⁴ I. Hayakawa, Y. Miyazawa, T. Ohyoshi, Y. Asuma, K. Aoki, H. Kigoshi, *Synthesis* **2011**, *5*, 769.
- ²³⁵ J. English, G. W. Barbar, *J. Am. Chem. Soc.* **1949**, *71*, 3310.
- ²³⁶ a) C. Ghobril, C. Sabot, C. Mioskowski, R. Baati, *Eur. J. Org. Chem.* **2008**, 4104. b) A. Huczynski, A.

Mickiewicz, B. Brzezinski, *Encyclopedia of Reagents for Organic Synthesis* **2008**, DOI:10.1002/047084289X

- ²³⁷ J. Wolinsky, M. R. Slabaugh, T. Gibson, *J. Org. Chem.* **1964**, *29*, 3740.
- ²³⁸ T. Ishikawa, T. Kumamoto, *Synthesis* **2006**, 737.
- ²³⁹ M. Markert, M. Mulzer, B. Schetter, R. Mahrwald, J. Am. Chem. Soc. **2007**, 129, 7258.
- ²⁴⁰ D. Enders, O. Niemeier, L. Straver, *Synlett* **2006**, 3399.
- ²⁴¹ P. Hegarty, J. Mann, *Tetrahedron* **1995**, *51*, 9079.
- ²⁴² E. J. Corey, M. Ishiguro, *Tetrahedron Lett.* **1979**, *30*, 2745.
- ²⁴³ H. O. House, T. S. B. Sayer, C.-C. Yau, J. Org. Chem. **1978**, 43, 2153.
- ²⁴⁴ a) S. V. Ley, J. R. Frost, *Synfacts* **2012**, 8, 479. b) K. J. Hale, *Org. Lett.* **2013**, *15*, 3181.
- ²⁴⁵ Y. Tacheuchi, *Adv. Heterocycl. Chem.* **1977**, *21*, 207.
- ²⁴⁶ D. Michelot, L. M. Melendez-Howell, *Mycological Research* **2003**, *107*, 131.
- ²⁴⁷ S. Harada, S. Tsubotani, T. Hida, K. Koyama, M. Kondo, H. Ono, *Tetrahedron Lett.* **1988**, 44, 6589.
- ²⁴⁸ a) F. C. Neuhaus, *Antibiotics*, Vol. I (D. Gottlieb, P. D. Shaw, Eds.), Springer-Verlag, Berlin, New York,
- **1967**. b) C.H. Stammer, Chem. Biochem. Amino Acids Pept. Proteins **1971**, 1, 23.
- ²⁴⁹ a) Q. K. Fang, S. Hopkins, S. Jones, *US0143434A1*, **2005**. b) L. J. E. Kennis, G. C. P. van Hoof, J.-P. A. M. Bongartz, M. G. M. Luyckx, W. E. Minke, *WO089753A2*, **2005**. c) D. Ferraris, B. Duvall, Y.-S. Ko, A. G. Thomas, C. Rojas, P. Majer, K. Hashimoto, T.Tsukamoto, *J. Med. Chem.* **2008**, *51*, 3357.
- ²⁵⁰ S. M. Smith, J. M. Uslaner, P. H. Hutson, *Open Med. Chem. J.* **2010**, *4*, 3.
- ²⁵¹ a) P. Krogsgaard-Larsen, L. Nielsen, E. Falch, D. R. Curtis, *J. Med. Chem.* **1985**, *28*, 1612. b) R. B. Silverman, G. T. Olson, *Bioorg. Med. Chem.* **1995**, *3*, 11. c) P. Conti, M. De Amici, A. Pinto, L. Tamborini, G.
- Grazioso, B. Frølund, B. Nielsen, C. Thomsen, B. Ebert, C. De Micheli, Eur. J. Org. Chem. 2006, 5533.
- ²⁵² M. Watanabe, K. Maemura, K. Kanbara, T. Tamayama, H. Hayasaki, *Int. Rev. Cyctology*, **2002**, *213*, 1.
- ²⁵³ I. H. Hall, *EP0321090A2*, **1988**.

²⁵⁴ P. G. Milner, *WO24689A1*, **2002**.

²⁵⁵ S. H. Hobbs, *US5066665*, **1991**.

²⁵⁶ C. Dallanoce, P. Magrone, C. Matera, F. Frigerio, G. Grazioso, M. De Amici, S. Fucile, V. Piccari, K.
 Frydenvang, L. Pucci, C. Gotti, F. Clementi, C. De Michel, *ChemMedChem* **2011**, *6*, 889.

²⁵⁷ N. Hideaki, K. Yasuhiko, M. Akira, Y. Kouichi, *EP0219923A1*, **1986**.

²⁵⁸ a) J. H. Chang, US4405357, 1983. b) J. Y. Cassayre, P. Renold, M. El Qacemi, T. Pitterna, J. C. Toueg, WO067272A1, 2011. c) J. E. Boehmer, M. M. W. McLachlan, WO096576A1, 2007.

²⁵⁹ a) T. R. Warfield, D. B. Carlson, S. K. Bellman, H. L. Guscar, *Weed Sci. Abstr.* 1985, *25*, 105. b) T. R. Warfield, G. C. Halvorson, L. D. Dobbins, D. M. Hopper, *NCWCC Proceedings* 1985, *40*, 80. c) D. R. Baker, W. K. Fenyes, W. K. Morberg, B. Cross, Ed. *Synthesis and Chemistry of Agrochemicals, American Chemical Society*, Washington, DC 1987, 10-23. d) J. M. Konz, *US4302238*, 1981. f) S. Yun, K. Kim, *Tetrahedron Lett.* 2000, *41*, 1469. g) R. A. Zydore, U. H. Hall, *US4946963*, 1990.

²⁶⁰ a) U. R. Kalkote, D. D. Goswami, *Aust. J. Chem.* **1977**, *30*, 1847. b) F. J. Urban, R. Breitenbach, C. W. Murtiashaw, B. C. Vanderplas, *Tetrahedron: Asym.* **1995**, *6*, 321. c) G.-q. Shi, *Tetrahedron Lett.* **2000**, *41*, 2295.

²⁶¹ a) X. Li, X. Meng, H. Duan, L. Wang, S. Wang, Y. Zhang, D. Qin, *Arch. Pharm. Chem. Life Sci.* 2010, *8*, 473. b) H.-K. Kim, K.-J. J. Park, *Tetrahedron Lett.* 2012, *53*, 4090.

²⁶² H. R. Kim, S. I. Shin, H. J. Park, D. J. Jeon, E. K. Ryu, *Synlett* **1998**, 789.

²⁶³ a) K.-O. Westphalen, G. Hamprecht, P. Hettinger, *DE3540770A1*, **1987**. b) P.Caldirola, M.De Amici,
C.De Micheli, *Tetrahedron Lett.* **1986**, *27*, 4651.

²⁶⁴ S.-i. Tsukamoto, H. Nagaoka, S. Igarashi, F. Wanibuchi, K. Hidaka, T. Tamura, *Chem. Pharm. Bull.* **1995**, 43, 1523.

²⁶⁵ M. A. P. Martins, C. M. P. Pereira, N. E. K. Zimmermann, S. Moura, A. P. Sinhorin, W. Cunico, N. Zanatta, H. G. Bonacorso, A. C. F. Flores, *Synthesis* **2003**, 2353.

²⁶⁶ a) A. L. Castellhano, R. Billedeau, D. H. Pliura, B. J. Bonaventura, A. Krantz, *Bioorg.Chem.* 1988, *16*, 335.
b) P. Conti, M. De Amici, A. Pinto, L. Tamborini, G. Grazioso, B. Frølund, B. Nielsen, C. Thomsen, B. Ebert, C. De Micheli, *Eur. J. Org. Chem.* 2006, 5533. b) P. Conti, M. De Amici, G.Grazioso, G. Roda, T. B. Stensbøl, H. Bräuner-Osborne, U. Madsen, L. Toma, C. De Micheli, *Eur. J. Org. Chem.* 2003, 4455.d) A. Pinto, P Conti, M. De Amici, L. Tamborini, U. Madsen, B. Nielsen, T. Christesen, H.Bräuner-Osborne, C. De Micheli, *J. Med. Chem.* 2008, *51*, 2311. e) C. Dallanoce, M.Canovi, C. Matera, T. Mennini, M. De Amici, M. Gobbi, C. De Micheli, *Bioorg. Med. Chem.* 2012, *20*, 344. f) C. Dallanoce, F. Frigerio, G. Martelli, G. Grazioso, C.

Matera, D. Y. Pomè, L. Pucci, F. Clementi, C. Gotti, M. De Amici, *Bioorg. Med. Chem.* **2010**, *18*, 4498. g) P. Conti, A. Pinto, G Roda, L Tamborini, D. Arosio, C. De Micheli. Synthesis **2007**, 2145.

- ²⁶⁷ a) R. Nordmann, P. Graff, R. Maurer, B. H. Gahwiler, *J. Med. Chem.* **1985**, *28*, 1109. b) P. A. Wade, H.-
- K. Yen, S. A. Hardinger, M. K. Pillay, N. V. Amin, P. D. Vail, S. D. Morrow, J. Org. Chem. 1983, 48, 1796.
- ²⁶⁸ A. Piperno, U. Chiacchio, D. Iannazzo, S. V. Giofre, G. Romeo, R. Romeo, *J. Org. Chem.* **2007**, *72*, 3958.
- ²⁶⁹ a) L. Wolff, *Liebigs Ann. Chem.* **1902**, 325, 129. b) H. Meier, K.-P. Zeller, *Angew. Chem. Int. Ed.* **1975**, 14,
- 33. c) W. Kirmse, Eur. J. Org. Chem. 2002, 2193.
- ²⁷⁰ D.Yang, Y.-H. Zhang, B. Li, D.-W. Zhang, J. Org. Chem. **2004**, 69, 7577.
- ²⁷¹ E. S. Sattely, C. T. Walsh, J. Am. Chem. Soc. **2008**, 130, 12282.
- ²⁷² Y. Takeuchi, S. Ozaki, M. Satoh, K.-i. Mimura, S.-i. Hara, H. Abe, H. Nishikoka, T. Harayama, *Chem. Pharm. Bull.* **2010**, *58*, 1552.
- ²⁷³ K. Eichinger, M. R. Rostami, F. Sieder, *Synth. Commun.* **1998**, *28*, 2457.
- ²⁷⁴ J. Wang, B. Stefane, D. Jaber, J. A. I. Smith, C. Vickery, M. Diop, H. O. Sintim, *Angew. Chem. Int. Ed.* **2010**, *49*, 3964
- ²⁷⁵ V. A. Schmidt, E. J. Alexanian, *Angew. Chem. Int. Ed.* **2010**, *49*, 4491.
- ²⁷⁶ V. A. Schmidt, E. J. Alexanian, J. Am. Chem. Soc. **2011**, 133, 11402.
- ²⁷⁷ F. Alonso, I. P. Beletskaya, M. Yus, *Chem. Rev.* **2004**, *104*, 3079.
- ²⁷⁸ M. Alvarez-Corral, M. Munoz-Dorado, I. Rodriguez-Garcia, *Chem. Rev.* **2008**, *108*, 3174.
- ²⁷⁹ O. Debleds, C. D. Zotto, E. Vrancken, J.-M.Campagne, P. Retailleau, Adv. Synth. Catal. **2009**, 351, 1991.
- ²⁸⁰ M. Ueda, S. Sugita, A. Sato, T. Miyoshi, O. Miyata, *J. Org. Chem.* **2012**, *77*, 9344.
- ²⁸¹ a) J. P. Waldo, R. C. Larock, Org. Lett. **2005**, 23, 5203. b) J. P. Waldo, R. C. Larock, J. Org. Chem. **2007**,
- 72, 9643. c) J. P. Waldo, S. Mehta, B. Neuenswander, G. H. Lushington, R. C. Larock, *J. Comb. Chem.* **2008**, *10*, 658.
- ²⁸² T. Okitsu, K. Sato, T. M. Potewar, A. Wada, *J. Org. Chem.* **2011**, *76*, 3438.
- ²⁸³ O. F. Foot, D. W. Knight, A. C. L. Low, Y. Li, *Tetrahedron Lett.* **2007**, *48*, 647.
- ²⁸⁴ C.-Y. Yang, G.-Y. Lin, H.-Y. Liao, S. Datta, R.-S. Liu, J. Org. Chem. **2008**, 73, 4907.
- ²⁸⁵ a) G. Cahiez, O. Gager, J. Buendia, Angew. Chem. **2010**, 122, 1300; Angew. Chem. Int. Ed. **2010**, 49,
- 1278. b) D. Sud, T. J. Wigglesworth, N. R. Branda, Angew. Chem. Int. Ed. 2007, 46, 8017.
- ²⁸⁶ a) K. A. Ohemeng, B. L. Podlogar, V. N. Nguyen, J. I. Bernstein, H. M. Krause, J. J. Hilliard, J. F. Barret, J.
- Med. Chem. 1997, 40, 3292. b) M. Kawase, Y. Kikugawa, J. Chem. Soc. Perkin 1, 1979, 643.
- ²⁸⁷ A. High, T. Prior, R. A. Bell, P. K. Rangachari, *J. Pharm. Exp. Therp.* **1999**, *288*, 490.

- ²⁸⁸ a) C. Schotten, *Ber. dtsch. chem. Ges.*1884, 17, 2544. b) E. Baumann, *Ber. dtsch. chem. Ges.*1886, 19, 3218.
- ²⁸⁹ J. D. Eckelbarger, P. R. Schmitzer, C. N. Yerkes, T. A. Boebel, N. M. Satchivi, G. T. Whiteker, US222221A1, **2010**
- ²⁹⁰ V. Dupont, A. Lecoq, J. P. Mangeot, A. Aubry, G. Boussard, M. Marraud, *J. Am. Chem. Soc.* **1993**, *115*, 8898.
- ²⁹¹ W. M. Haynes, CRC Handbook of Chemistry and Physics, 93. Edn., Taylor & Francis, **2012.**
- ²⁹² B. M. Trost, D. J. Michaelis, S. Malhotra, *Org. Lett.* **2013**, *15*, 5274.
- ²⁹³ Hypervalenz, *IUPAC, Compendium of Chemical Terminoogy, 2nd Ed. The "Golden Book",* DOI:10.1351/goldbook.
- ²⁹⁴ G. C. Pimentel, J. Chem. Phys. **1951**, 19, 446.
- ²⁹⁵ R. E. Rundle, *J. Chem. Phys* **1949**, *17*, 671
- ²⁹⁶a) J. I. Musher, Angew. Chem. Int. Ed. **1969**, *8*, 54. b) W. F. Coleman, J. Chem. Educ. **2010**, *87*, 999. c) C.
 A. Ramsden, Chem. Soc. Rev. **1994**, *23*, 111.
- ²⁹⁷ C. Willgerodt, J. Prakt. Chem. **1886**, 33, 154.
- ²⁹⁸ a) E. H. Riesenfeld, *Chem. Ber.* **1931**, *64*, A5. b) T. E. Thorpe, *J. Chem. Soc. Trans.* **1900**, *77*, 169. c) G. Lunge, *Angew. Chem.* **1897**, *10*, 777. d) G. M. Richardson, *J. Am. Chem. Soc.* **1897**, *19*, 918.
- ²⁹⁹ C. Willgerodt, *Die Organischen Verbindungen mit Mehrwertigem Jod*, Ferdinand Enke Verlag, Stuttgart, **1914**.
- ³⁰⁰ R. Meyer, *Chem. Ber.* **1908**, *41*, 4504.
- ³⁰¹ Fritz Straus, *Ber. dtsch. chem. Ges.***1927**, 6, 75.
- ³⁰² L. Mascarelli, *Atti della R. Acc. dei Lincei. Rendiconti, cl. di scienze fisiche, mat. e naturali*, **1907**, 5, XVI, 2, 562.
- ³⁰³ A. Varvoglis, *Tetrahedron* **2010**, *66*, 5739.

³⁰⁴ a) R. B. Sandin, *Chem. Rev.* **1943**, *32*, 249. b) D. F. Banks, *Chem. Rev.* **1966**, *66*, 243. c) A. Varvoglis, *Chem. Soc. Rev.* **1981**, *10*, 377. d) G. F. Koser, *The Chemistry of Functional Groups, Supplement D* (Hrsg.: S. Patai, Z. Rappoport), Wiley-Interscience, Chichester, **1983**, 721 und 1265. e) T. T. Nguyen, J. C. Martin, *Comprehensive Heterocyclic Chemistry* (Hrsg.: A. R. Katritzky, C. W. Rees), Pergamon Press, Oxford, **1984**, 563. f) A. Varvoglis, *Synthesis* **1984**, 709. g) E. B. Merkushev, *Russ. Chem. Rev.* **1987**, *56*, 1444. h) A. Varvoglis, *The organic chemistry of polycoordinated iodine*, VCH, Weinheim, **1992**. i) G. F. Koser, *The Chemistry of Halides, Pseudo-Halides and Azides, Suppl. D2* (Hrsg.: S. Patai, Z. Rappoport), Wiley-Interscience, Chichester, **1995**, 1173. i) P. J. Stang, V. V. Zhdankin, *Chem. Rev.* **1996**, *96*, 1123. j) T.

Kitamura, Y. Fujiwara, *Org. Prep. Proced. Int.* **1997**, *29*, 409. k) A. Varvoglis, *Tetrahedron* **1997**, *53*, 1179. I) A. Varvoglis, *Hypervalent Iodine in Organic Synthesis*, Academic Press, London, **1997**. m) A. Varvoglis, S. Spyroudis, *Synlett* **1998**, 221. n) V. V. Zhdankin, P. J. Stang, *Chemistry of hypervalent compounds* (Hrsg.: K.-y. Akiba), Wiley-VCH, New York, **1999**, 327; M. Ochiai, *ibid.*, 359. o) T. Wirth, U. H. Hirt, *Synthesis* **1999**, 1271. p) L. Skulski, *Molecules* **2000**, *5*, 1331. q) V. V. Zhdankin, *Spec. Chem. Mag.* **2002**, *22*, 38. r) V. V. Zhdankin, P. Stang, *Chem. Rev.* **2002**, *102*, 2523. s) T. Wirth (Hrsg.), *Top. Curr. Chem.* **2003**, *224*, 1. t) T. Wirth, *Angew. Chem.* **2005**, *117*, 3722. u) E. D. Matveeva, M. V. Proskurnina, N. S. Zefirov, *Heteroatom Chem.* **2006**, *17*, 595. v) V. V. Zhdankin, *Science of Synthesis* **2007**, *31a*, 161. w) V. V. Zhdankin, P. J. Stang, *Chem. Rev.* **2008**, *108*, 5299. x) R. M. Moriarty, O. Prakash, *Hypervalent Iodine in Organic Chemistry: Chemical Transformations*, Wiley-Interscience, New York, **2008**.

³⁰⁵ a) A. Kirschning, J. Prakt. Chem. **1998**, 340, 184. b) G. Pohnert, J. Prakt. Chem. **2000**, 342, 731. c) R. M.
Moriarty, R. K. Vaid, G. F. Koser, Synlett **1990**, 365. d) O. Prakash, P. K. Sharma, Heterocycles **1994**, 38, 409. e) G. F. Koser, Aldrichim. Acta **2001**, 34, 89. f) P. J. Stang, Angew. Chem. **1992**, 104, 281; Angew. Chem. Int. Ed. **1992**, 31, 274. g) V. V. Gruzhin, Acc. Chem. Res. **1992**, 25, 529. h) V. V. Zhdankin, P. J.
Stang, Tetrahedron **1998**, 54, 10927. i) T. Okuyama, Rev. Heteroatom Chem. **1999**, 21, 257. j) N. S.
Pirkuliev, V. K. Brel, N. S. Zefirov, Russ. Chem. Rev. **2000**, 69, 105. k) V. V. Gruzhin, Chem. Soc. Rev. **2000**, 29, 315. l) M. Ochiai, J. Organomet. Chem. **2000**, 611, 494. m) T. Okuyama, Acc. Chem. Res. **2002**, 35, 12. n) P. J. Stang, J. Org. Chem. **2003**, 68, 2997. o) T. Okuyama, M. Fujita, Russ. J. Org. Chem. **2005**, 41, 1245. p) T. Okuyama, M. Fujita, ACS Symp. Ser. **2007**, 965, 68. q) E. A. Merritt, B. Olofsson, Angew. Chem. **2009**, 121, 9214. r) P. Dauban, R. H. Dodd, Synlett **2003**, 1571. s) W. Kirmse, Eur. J. Org. Chem. **2004**, 37, 243. v) H. Togo, K. Sakuratani, Synlett **2002**, 1966. w) M. Ochiai, Chem. Rec. **2007**, 7, 12. x) V. V. Zhdankin, ARKIVOC **2009**, (i), 1. y) N. Yoneda, J. Fluorine Chem. **2004**, 125, 7. z) H.-J. Frohn, M. E. Hirschberg, A. Wenda, V. V. Bardin, J. Fluorine Chem. **2008**, 129, 459.

³⁰⁶ a) S. S. Chaudhari, *Synlett* 2000, 278. b) T. Wirth, *Angew. Chem.* 2001, *113*, 2893. c) A. G. Fallis, P. E. Tessier, *Electronic Encyclopedia of Reagents for Organic Synthesis (e-EROS)*, Wiley-VCH, Weinheim, 2003;
K. C. Nicolaou, T. Montagnon, P. S. Baran, *ibid*. d) I. Kumar, *Synlett* 2005, 1488. e) V. Satam, A. Harad, R. Rajule, H. Pati, *Tetrahedron* 2010, *66*, 7659. f) A. Duschek, S. F. Kirsch, *Angew. Chem.* 2011, *123*, 1562. g)
D. D. Holsworth, *Name Reactions for Functional Group Transformations* (Hrsg.: J. J. Li, E. J. Corey), Wiley, Hoboken, 2007, 218. h) R. J. Boeckman, K. M. George, *Electronic Encyclopedia of Reagents for Organic Synthesis (e-EROS)*, Wiley-VCH, Weinheim, 2009. i) V. V. Zhdankin, *Rev. Heteroatom Chem.* 1997, *17*, 133. j) V. V. Zhdankin, *Curr. Org. Synth.* 2005, *2*, 121. *N*-(2-lodylphenyl)acylamide: k) U. Ladziata, V. V.

VI-2. Literaturverzeichnis

Zhdankin, Synlett **2007**, 527. l) U. Ladziata, V. V. Zhdankin, *ARKIVOC* **2006**, (*ix*), 26. m) V. V. Zhdankin, J. Org. Chem. **2011**, *76*, 1185.

³⁰⁷ a) H. Tohma, Y. Kita, Adv. Synth. Catal. **2004**, 346, 111. b) M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086. c) S. Akai, Y. Kita, Org. Prep. Proced. Int. 1998, 30, 603. d) S. Quideau, L. Pouységu, Org. Prep. Proced. Int. 1999, 31, 617. e) R. M. Moriarty, O. Prakash, Org. React. 2001, 57, 327. f) H. Tohma, H. Morioka, S. Takizawa, M. Arisawa, Y. Kita, Tetrahedron 2001, 57, 345. g) J. D. Moore, P. R. Hanson, Chemtracts 2002, 15, 74. h) I. Moreno, I. Tellitu, M. T. Herrero, R. San Martin, E. Dominguez, Curr. Org. Chem. 2002, 6, 1433. i) S. Quideau, L. Pouységu, D. Deffieux, Curr. Org. Chem. 2004, 8, 113. j) S. Rodríguez, P. Wipf, Synthesis 2004, 2767. k) M. A. Ciufolini, N. A. Braun, S. Canesi, M. Ousmer, J. Chang, D. Chai, Synthesis 2007, 3759. I) S. Quideau, L. Pouységu, D. Deffieux, Synlett 2008, 467. m) L. Pouységu, D. Deffieux, S. Quideau, Tetrahedron 2010, 66, 2235. n) A. Kotali, E. Kotali, I. S. Lafazanis, P. A. Harris, Curr. Org. Synth. 2010, 7, 62. o) P. Kowalski, K. Mitka, K. Ossowska, Z. Kolarska, Tetrahedron 2005, 61, 1933. p) R. M. Moriarty, R. K. Vaid, Synthesis 1990, 431. q) L. F. Silva, Molecules 2006, 11, 421. r) A. N. French, S. Bissmire, T. Wirth, Chem. Soc. Rev. 2004, 33, 354. s) O. Prakash, S. P. Singh, Aldrichim. Acta 1994, 27, 15. t) O. Prakash, N. Saini, P. K. Sharma, Synlett 1994, 221. u) R. M. Moriarty, O. Prakash, Adv. Heterocycl. Chem. 1998, 69, 1. v) G. F. Koser, Adv. Heterocycl. Chem. 2004, 86, 225. w) A. Kirschning, Eur. J. Org. Chem. 1998, 2267. x) K. S. Feldman, ARKIVOC 2003, (vi), 179. y) K. C. Nicolaou, T. Montagnon, S. A. Snyder, Chem. Commun. 2003, 551. z) L. F. Silva, Jr., B. Olofsson, Nat. Prod. Rep. 2011, 28, 1722.

³⁰⁸ a) R. M. Moriarty, O. Prakash, *Acc. Chem. Res.* **1986**, *19*, 244. b) O. Prakash, N. Saini, M. P. Tanwar, R. M. Moriarty, *Contemp. Org. Synth.* **1995**, *2*, 121. c) R. M. Moriarty, O. Prakash, *Org. React.* **1999**, *54*, 273.
d) R. M. Moriarty, *J. Org. Chem.* **2005**, *70*, 2893. e) E. A. Merritt, B. Olofsson, *Synthesis* **2011**, 517. f) J. P. Brand, D. F. González, S. Nicolai, J. Waser, *Chem. Commun.* **2011**, *47*, 102.

³⁰⁹ a) T. Muraki, H. Togo, M. Yokoyama, *Rev. Heteroatom Chem.* **1997**, *17*, 213. b) H. Togo, M. Katohgi, *Synlett* **2001**, 565. c) T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka, Y. Kita, *Tetrahedron* **2009**, *65*, 10797. d) R. D. Richardson, T. Wirth, *Angew. Chem.* **2006**, *118*, 4510. e) M. Ochiai, K. Miyamato, *Eur. J. Org. Chem.* **2008**, 4229. f) T. Dohi, Y. Kita, *Chem. Commun.* **2009**, 2073. j) N. R. Deprez, M. S. Sanford, *Inorg. Chem.* **2007**, *46*, 1924. k) A. J. Canty, T. Rodemann, J. H. Ryan, *Adv. Organomet. Chem.* **2008**, *55*, 279. l) M. Ochiai, *Coord. Chem. Rev.* **2006**, *250*, 2771.

³¹⁰ R. L. Amey, J. C. Martin, *J. Am. Chem. Soc.* **1978**, *100*, 300.

³¹¹ C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Lau, A. Alegria, J. K. Kochi, *J.Am. Chem. Soc.* **1980**, *102*, 7753.

³¹² A. R. Katritzky, B. L. Duell, H. D. Durst, B. Knier, *Tetrahedron Lett.* **1987**, *28*, 3899.

³¹³ a) V. Meyer, W. Wachter, *Chem. Ber.* **1892**, *25*, 2632. b) C. Hartmann, V. Meyer, *Ber. Dtsch. Chem. Ges.* **1893**, *26*, 1727. c) P. Askenasy, V. Meyer, *Ber. Dtsch. Chem. Ges.* **1893**, *26*, 1354.

³¹⁴ a) C. Hartmann, V. Meyer, *Chem. Ber.* 1894, *27*, 1600. b) A. S. Loevenhart, W. E. Grove, *J. Pharmacol. Exp. Ther.* 1911, *3*, 101. c) F. R. Greenbaum, *Am. J. Pharm.* 1936, *108*, 17. d) A. Banerjee, G. C. Banerjee, S. Dutt, S. Banerjee, H. Samaddar, *J. Ind. Chem. Soc.* 1980, *57*, 640. e) A. Banerjee, G. C. Banerjee, S. Bhattacharya, S. Banerjee, H. Samaddar, *J. Ind. Chem. Soc.* 1981, *58*, 605. f) D. B. Dess, J. C. Martin, *J. Org. Chem.* 1983, *48*, 4155. g) D. B. Dess, J. C. Martin, *J. Am. Chem. Soc.* 1991, *113*, 7277. h) R. E. Ireland, L. Liu, *J. Org. Chem.* 1993, *58*, 2899. i) S. D. Meyer, S. L. Schreiber, *J. Org. Chem.* 1994, *59*, 7549. j) R. K. Boeckman Jr., P. Shao, J. J. Mullins, *Org. Synth.* 2000, *77*, 141. k) P. Kazmierczak, L. Skulski, L. Kraszkiewicz, *Molecules* 2001, *6*, 881. m) A. R. Katritzky, B. L. Duell, J. K. Gallos, H. D. Durst, *Magn. Reson. Chem.* 1989, *27*, 1007.

³¹⁵ M Frigerio, M. Santagostino, S. Sputore, *J. Org. Chem.* **1999**, *64*, 4573.

³¹⁶ a) M. J. Gallen, R. Goumont, T. Clark, F. Terrier, C. M. Williams, *Angew. Chem.* 2006, *118*, 2995. b) T.
Waters, J. Boulton, T. Clark, M. J. Gallen, C. M.Williams, R. A. J. O'Hair, *Org. Biomol. Chem.* 2008, *6*, 2530.
c) R. A. J. O'Hair, C. M. Williams, T. Clark, *J. Mol. Model.* 2010, *16*, 559.

³¹⁷ a) P. J. Stevenson, A. B. Treacy, M. Nieuwenhuyzen, *J. Chem. Soc. Perkin Trans.* 2 **1997**, 589. b) J. Z. Gougoutas, *Cryst. Struct. Commun.* **1981**, *10*, 489.

³¹⁸ J. B. Plumb, D. J. Harper, *Chem. Eng. News* **1990**, *68*, 3.

³¹⁹ a) D. A. Evans, S. W. Kaldor, T. K. Jones, J. Clardy, T. J. Stout, *J. Am. Chem. Soc.* **1990**, *112*, 7001. b) S.
W. Bailey, R. Y. Chandrasekaran, J. E. Ayling, *J. Org. Chem.* **1992**, *57*, 4470. c) A. Speicher, V. Bomm, T. Eicher, *J. Prakt. Chem.* **1996**, *338*, 588.

³²⁰ a) M. Frigerio, M. Santagostino, *Tetrahedron Lett.* **1994**, *35*, 8019. b) M. Frigerio, M. Santagostino, S. Sputore, G. Palmisano, J. Org. Chem. **1995**, *60*, 7272. c) S. De Munari, M. Frigerio, M. Santagostino, J. Org. Chem. **1996**, *61*, 9272.

³²¹ a) K. Omura, D. Swern, *Tetrahedron* **1978**, *34*, 1651. b) K. Omura, A. K. Sharma, D. Swern, *J. Org. Chem.* **1976**, *41*, 957. c) S. L. Huang, K. Omura, D. Swern, *Synthesis* **1978**, 297.

³²² a) K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, *J. Am. Chem. Soc.* 2004, *126*, 5192. b) F. A. Aly, A. El-Brashy, F. Belal, *Anal. Chim. Acta* 1994, *291*, 141. c) K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, *Angew. Chem.* 2003, *115*, 4211. d) R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, *J. Am. Chem. Soc.* 2006, *128*, 7687.

³²³ a) J. N. Moorthy, N. Singhal, K. Senapati, *Tetrahedron Lett.* 2006, *47*, 1757. b) S. A. Dake, R. S. Kulkarni,
V. N. Kadam, S. S. Modani, J. J. Bhale, S. B. Tathe, R. P. Pawar, *Synth. Commun.* 2009, *39*, 3898. c) J. M.
Hooker, M. Schönberger, H. Schieferstein, J. S. Fowler, *Angew. Chem.* 2008, *120*, 6078.

³²⁴ a) K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, *J. Am. Chem. Soc.* **2001**, *123*, 3183. b) K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, *J. Am. Chem. Soc.* **2002**, *124*, 2245.

- ³²⁵ A. Duschek, S. F. Kirsch, *Chem. Eur. J.* **2009**, *15*, 10713.
- ³²⁶ S. F. Kirsch, J. Org. Chem. **2005**, 70, 10210.
- ³²⁷ B. Crone, S. F. Kirsch, *Chem. Commun.* **2006**, 764.

³²⁸ V. G. Shukla, P. D. Salgaonkar, K. G. Akamanchi, *J Org. Chem.* **2003**, *68*, 5422.

³²⁹ a) D. Magdziak, A. A. Rodriguez, R.W. Van DeWater, T. R. R. Pettus, *Org. Lett.* 2002, *4*, 285. b) R. W.
Van DeWater, C. Hoarau, T. R. R. Pettus, *Tetrahedron Lett.* 2003, *44*, 5109. c) A. Pezzella, L. Lista, A.
Napolitano, M. d'Ischia, *Tetrahedron Lett.* 2005, *46*, 3541.

³³⁰ K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, *J. Am. Chem. Soc.* **2000**, *122*, 7596.

³³¹ a) J.-Q. Dong, H. N. C. Wong, *Angew. Chem.* 2009, *121*, 2387. b) Y. Kitani, A. Morita, T. Kumamoto, T. Ishikawa, *Helv. Chim. Acta* 2002, *85*, 1186. c) G. Mehta, P. Ghosh, K. Sreenivas, *ARKIVOC* 2003, *iii*, 17. d) D.-H. Zhang, F. Cai, X.-D. Zhou, W.-S. Zhou, *Org. Lett.* 2003, *5*, 3257. e) K. C. Nicolaou, P. K. Sasmal, A. J. Roecker, X.-W. Sun, S. Mandal, A. Converso, *Angew. Chem.* 2005, *117*, 35098. f) N. D. Smith, J. Hayashida, V. H. Rawal, *Org. Lett.* 2005, *7*, 4309. g) M. Li, P. Zhou, A. Wu, *Tetrahedron Lett.* 2006, *47*, 3409. h) D. A. Evans, D. J. Adams, *J. Am. Chem. Soc.* 2007, *129*, 1048. i) F. Zhang, E. D. Moher, T. Y. Zhang, *Tetrahedron Lett.* 2007, *48*, 3277. j) J. Shiina, M. Oikawa, K. Nakamura, R. Obata, S. Nishiyama, *Eur. J. Org. Chem.* 2007, 5190. k) T. A. Reekie, K. A. B. Austin, M. G. Banwell, A. C. Willis, *Aust. J. Chem.* 2008, 61, 94. l) M. J. Gallen, C. M. Williams, *Org. Lett.* 2008, *10*, 713. m) Q. Wang, C. Chen, *Org. Lett.* 2008, *10*, 1223. n) M. J. Gallen, C. M. Williams, *Eur. J. Org. Chem.* 2008, 4697. o) A. B. Dounay, P. G. Humphreys, L. E. Overman, A. D. Wrobleski, *J. Am. Chem. Soc.* 2008, *130*, 5368. p) G. Barbe, A. B. Charette, *J. Am. Chem. Soc.* 2008, *130*, 13873.q) S. Hanessian, N. Boyer, G. J. Reddy, B. DeschTnes-Simard, Org. Lett. 2009, *11*, 4640. r) K. K. Larson, R. Sarpong, *J. Am. Chem. Soc.* 2009, *131*, 13244. s) Y. Hayashi, J. Yamaguchi, M. Shoji, *Tetrahedron* 2002, *58*, 9839. t) M. Movassaghi, D. K. Hunt, M. Tjandra, *J. Am. Chem. Soc.* 2006, *128*, 8126. u) R. S. Coleman, E. L. Campbell, D. J. Carper, *Org. Lett.* 2009, *11*, 2133.

³³² a) C.-L. Chen, S. F. Martin, Org. Lett. 2004, 6, 3581. b) C.-L. Chen, S. F. Martin, J. Org. Chem. 2006, 71, 4810.

³³³ S. Kotha, S. Banerjee, K. Mandal, *Synlett* **2004**, 2043.

³³⁴ K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, *J. Am. Chem. Soc.* 2004, *126*, 5192. b) J. S. Yadav, B. V.
S. Reddy, A. K. Basak, G. Baishya, A. V. Narsaiah, *Synthesis* 2006, 451. c) J.-M. Chen, X.-M. Zeng, *Synth. Commun.* 2009, *39*, 3521.

³³⁵ a) X. Guinchard, Y. Vallée, J.-N. Denis, Org. Lett. 2007, 9, 3761. b) X. Guinchard, Y. Vallée, J.-N. Denis, J. Org. Chem. 2007, 72, 3972. c) N. Ando, S. Terashima, Bioorg. Med. Chem. Lett. 2007, 17, 4495. d) N. Ando, S. Terahsima, Bioorg. Med. Chem. Lett. 2009, 19, 5461.

- ³³⁶ a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, *Angew. Chem.* 2000, *112*, 639. b) K. C. Nicolaou, P. S. Baran,
 Y.-L. Zhong, J. A. Vega, *Angew. Chem.* 2000, *112*, 2625. c) K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, S.
 Barluenga, K. W. Hunt, R. Kranich, J. A. Vega, *J. Am. Chem. Soc.* 2002, *124*, 2233. d) K. C. Nicolaou, P. S.
 Baran, R. Kranich, Y.-L. Zhong, K. Sugita, N. Zou, *Angew. Chem.* 2001, *113*, 208.
- ³³⁷ a) J. N. Moorthy, N. Singhal, K. Senapati, *Tetrahedron Lett.* 2006, *47*, 1757. b) J. S. Yadav, B. V. S. Reddy, A. P. Singh, A. K. Basak, *Tetrahedron Lett.* 2008, *49*, 5880. c) J. N. Moorthy, K. Senapati, S. Kumar, *J. Org. Chem.* 2009, *74*, 6287. d) J. N. Moorthy, K. Senapati, N. Singhal, *Tetrahedron Lett.* 2009, *50*, 2493.
 ³³⁸ Y. Zhu, F. Jia, M. Liu, A. Wu, *Org. Lett.* 2012, *14*, 4414.
- ³³⁹ M. Gao, Y. Yang, Y. Wu, C. Deng, L. Cao, X. Meng, A. Wu, *Org. Lett.* **2010**, *12*, 1856.
- ³⁴⁰ J. T. Su, W. A. Goddard III, *J. Am. Chem. Soc.* **2005**, *127*, 14146.
- ³⁴¹ M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc. **2009**, 131, 125.
- ³⁴² A. P. Thottumkara, M. S. Bowsher, T. K. Vinod, *Org. Lett.* **2005**, *7*, 2933.
- ³⁴³ A. Schulze, A. Giannis, *Synthesis* **2006**, 257.
- ³⁴⁴ H. Hussain, I. R. Green, I. Ahmed, *Chem. Rev.* **2013**, *113*, 3329.
- ³⁴⁵ B. R .Travis, M. Sivakumar, G. O. Hollist, B. Borhan, *Org. Lett.* **2003**, *5*, 1031.

³⁴⁶ A. Ozanne, L. Pouységu, D. Depernet, B. François, S.Quideau, Org. Lett. **2003**, 5. 2903.

³⁴⁷ a) M. Koprowski, D. Szymanska, A. Bodzioch, B. Marciniak, E. Rózycka-Sokolowska, P. Balczewski, *Tetrahedron* 2009, *65*, 4017. b) N. Lebrasseur, J. Gagnepain, A. Ozanne-Beaudenon, J.-M. Léger, S. Quideau, *J. Org. Chem.* 2007, *72*, 6280. c) S. Quideau, L. Pouységu, D. Deffieux, A. Ozanne, J. Gagnepain, I. Fabre, M. Oxoby, *ARKIVOC* 2003, *6*, 106. d) A. Ozanne-Beaudenon, S. Quideau, *Tetrahedron Lett.* 2006, *47*, 5869.

- ³⁴⁸ a) L. Pouységu, M. Marguerit, J. Gagnepain, G. Lyvinec, A. J. Eatherton, S. Quideau, *Org. Lett.* 2008, 10, 5211. b) C. Boglio, S. Stahlke, S. Thorimbert, M. Malacria, *Org. Lett.* 2005, 7, 4851. c) I. N. Lykakis, I.-P. Zaravinos, C. Raptis, M. Stratakis, *J. Org. Chem.* 2009, 74, 6339. d) W.-M. Dai, G. Feng, J. Wu, L. Sun, *Synlett* 2008, 1013.
- ³⁴⁹ C. Willgerodt, R. Gartner, *Ber. Dtsch. Chem. Ges.* **1908**, *41*, 2813.

- ³⁵⁰ H. Goldstein, A. V. Grampoloff, *Helv. Chim. Acta* **1932**, *15*, 1102.
- ³⁵¹ A. R. Katritzky, B. L. Duell, H. D. Durst, B. L. Knier, *J. Org. Chem.* **1988**, *53*, 3972.
- ³⁵² a) A. P. Thottumkara, T. K. Vinod, *Tetrahedron Lett.* **2002**, *43*, 569. b) T. K. Vinod, A. P. Thottumkara, *US0030187A1*, **2004**.
- ³⁵³ A. Kommreddy, M. S. Bowsher, M. R. Gunna, K. Botha, T. K. Vinod, *Tetrahedron Lett.* **2008**, *49*, 4378.
- ³⁵⁴ R. D. Richardson, J. M. Zayed, S. Altermann, D.Smith, T. Wirth, *Angew. Chem.* **2007**, *119*, 6649.
- ³⁵⁵ M. Narender, M. S. Reddy, V. P. Kumar, Y. V. D. Nageswar, K. R. Rao, *Tetrahedron Lett.* **2005**, *46*, 1971.
- ³⁵⁶ L.-Q. Cui, Z.-L. Dong, K. Liu, C. Zhang, *Org. Lett.* **2011**, *13*, 6488.
- ³⁵⁷ T. Harschneck, S. Hummel, S. F. Kirsch, P. Klahn, *Chem. Eur. J.* **2012**, *18*, 1178.
- ³⁵⁸ J. N. Moorthy, K. Senapati, K. N. Parida, S. Jhulki, K. Sooraj, N. N. Nair, *J. Org. Chem.* **2011**, *76*, 9593.
- ³⁵⁹ J. N. Moorthy, N.Singhal, K. Senapati, K. *Tetrahedron Lett.* **2008**, *49*, 80.
- ³⁶⁰ S. Seth, S. Jhulki, J. N. Moorthy, *Eur. J. Org. Chem.* **2013**, 2445.
- ³⁶¹ M. Uyanik, K. Ishihara, *Aldrichimica Acta* **2010**, *43*, 83.
- ³⁶² a) M. Mülbaier, A. Giannis, *Angew. Chem.* 2001, *113*, 4530. b) M. Mülbaier, A. Giannis, *ARKIVOC* 2003, *6*, 228. c) G. Sorg, A. Mengel, G. Jung, J. Rademann, *Angew. Chem.* 2001, *113*, 4532. d) Z. Lei, C. Denecker, S. Jegasothy, D. C. Sherrington, N. K. H. Slater, A. J. Sutherland, *Tetrahedron Lett.* 2003, *44*, 1635. e) R. Bernini, E. Mincione, F. Crisante, M. Barontini, G. Fabrizi, *Tetrahedron Lett.* 2009, *50*, 1307. f)
 Z. Q. Lei, H. C. Ma, Z. Zhang, Y. X. Yang, *React. Funct. Polym.* 2006, *66*, 840. g) N. N. Reed, M. Delgado, K. Hereford, B. Clapham, K. D. Janda, *Bioorg. Med. Chem. Lett.* 2002, *12*, 2047. h) S. Jegasothy, N. K. H. Slater, C. Denecker, D. C. Sherrington, Z. Lei, A. J. Sutherland, *Chem. Eng. J.* 2004, *105*, 1. i) L. Bromberg, H. Zhang, T. A. Hatton, *Chem. Mater.* 2008, *20*, 2001. j) R. R. Karimov, Z.-G. M. Kazhkenov, M. J. Modjewski, E. M. Peterson, V. V. Zhdankin, *J. Org. Chem.* 2007, *72*, 8149. k) U. Ladziata, J. Willging, V. V. Zhdankin, *Org. Lett.* 2006, *8*, 167. l) H.-S. Jang, W.-J. Chung, Y.-S. Lee, *Tetrahedron Lett.* 2007, *48*, 3731.
- ³⁶³ a) K. G. Gudmundsson, P. R. Sebahar, L. D'Aurora Richardson, J. F. Miller, E. M. Turner, J. G. Catalano,
 A. Spaltenstein, W. Lawrence, M. Thomson, S. Jenkinson, *Bioorg. Med. Chem. Lett.* 2009, 19, 5048. b) C.
 Cadot, D. Poirier, A. Philip, *Tetrahedron* 2006, *62*, 4384. c) G. Sorg, B. Thern, O. Mader, J. Rademann, G.
 Jung, *J. Pept. Sci.* 2005, 11, 142. d) R. S. Senaiar, J. A. Teske, D. D. Young, A. Deiters, *J. Org. Chem.* 2007, *72*, 7801. e) T. Hofmann, K.-H. Altmann, *Synlett* 2008, 1500. f) T. Zöllner, P. Gebhardt, R. Beckert, C.
 Hertweck, *J. Nat. Prod.* 2005, *68*, 112.
- ³⁶⁴ T.Miura, K. Nakashima, N. Tada, A. Itoh, *Chem. Commun.* **2011**, *47*, 1875.
- ³⁶⁵ I. M. Kumanyaev, M. A. Lapitskaya, L. L. Vasiljeva, K. K. Pivnitsky, *Mendeleev Commun.* 2012, 22, 129.
 ³⁶⁶ K. C. Nicolaou, T.Montagnon, P. S. Baran, *Angew. Chem. Int. Ed.* 2002, 41, 993.

³⁶⁷ K. C. Nicolaou, D. L. F. Gray, T. Montagnon, S. T. Harrison, *Angew. Chem. Int. Ed.* **2002**, *41*, 996.

³⁶⁸ a) K. C. Nicolaou, P. S. Baran ,Y.-L. Zhong, K. Sugita, *J. Am. Chem. Soc.* **2002**, *124*, 2212. b) K. C.

Nicolaou, K. Sugita, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002, 124, 2221.

³⁶⁹ S. H. Stickley, J. C. Martin, *Tetrahedron Lett*. **1995**, *36*, 9117.

³⁷⁰ a) J. M. VanderRoest, P. A. Grieco, *J. Am. Chem. Soc.* **1993**, *115*, 5841. b) P. A. Grieco, J. L. Collins, E. D. Moher, T. J. Fleck, R. S. Gross, *J. Am. Chem. Soc.* **1993**, *115*, 6078. c) P. A. Grieco, J. D. Speake, *J. Org. Chem.* **1998**, *63*, 5929. d) J. M. VanderRoest, P. A. Grieco, *J. Org. Chem.* **1996**, *61*, 5316. e) P. A. Grieco, M. M. Pineiro-Nunez, *J. Am. Chem. Soc.* **1994**, 116, 7606. f) F. Lach, C. J. Moody, *Tetrahedron Lett.* **2000**, *41*, 6893. g) F. N. Palmer, F. Lach, C. Poriel, A. G. Pepper, M. C. Bagley, A. M. Z. Slawin, C. J. Moody, *Org. Biomol. Chem.* **2005**, *3*, 3805.

³⁷¹ N. Kano, M. Ohashi, K. Hoshiba, T. Kawashima, *Tetrahedron Lett.* **2004**, *45*, 8173.

³⁷² R. A. Moss, B. Wilk, K. Krogh-Jespersen, J. D. Westbrook, J. Am. Chem. Soc. **1989**, 111, 6729.

³⁷³ a) C. Willgerodt, M. Simonis, Chem. Ber. 1906, 39, 269. b) D. Vorlander, Recl. Trav. Chim. Pays-Bas 1929, 48, 912. c) C. Furlani, G. Sartori, Ann. Chim. (Rome) 1957, 47, 124. d) R. Barret, F. Pautet, P. Bordat, B. Tinland, M. Daudon, Phosphorous Sulfur Silicon Relat. Elem. 1989, 45, 31. e) V. A. Nikiforov, V. S. Karavan, S. A. Miltsov, S. I. Selivanov, E. Kolehmainen, E. Wegelius, M. Nissinen, ARKIVOC 2003, 6, 191. f) V. V. Zhdankin, V. N. Nemykin, R. R. Karimov, Z.-G. Kazhkenov, Chem. Commun. 2008, 6131. g) V. V. Zhdankin, A. Y. Koposov, B. C. Netzel, N. V. Yashin, B. P. Rempel, M. J. Ferguson, R. R. Tykwinski, Angew. Chem. 2003, 115, 2244. h) W.-J. Chung, D.-K. Kim, Y.-S. Lee, Tetrahedron Lett. 2003, 44, 9251. i) C. Kuhakarn, K. Kittigowittana, M. Pohmakotr, V. Reutrakul, ARKIVOC 2005, (i), 143. j) D.-K. Kim, W.-J. Chung, Y.-S. Lee, Synlett 2005, 279. k) W.-J. Chung, D.-K. Kim, Y.-S. Lee, Synlett 2005, 2175. I) Z. Lei, P. Yan, Y. Yang, Catal. Lett. 2007, 118, 69. m) H.-S. Jang, W.-J. Chung, Y.-S. Lee, Tetrahedron Lett. 2007, 48, 3731. n) U. Ladziata, A. Y. Koposov, K. Y. Lo, J. Willging, V. N. Nemykin, V. V. Zhdankin, Angew. Chem. 2005, 117, 7289. o) U. Ladziata, J. Carlson, V. V. Zhdankin, Tetrahedron Lett. 2006, 47, 6301. p) U. Ladziata, J. Willging, V. V. Zhdankin, Org. Lett. 2006, 8, 167. q) V. V. Zhdankin, J. T. Smart, P. Zhao, P. Kiprof, Tetrahedron Lett. 2000, 41, 5299. r) V. V. Zhdankin, A. Y. Koposov, B. C. Netzel, N. V. Yashin, B. P. Rempel, M. J. Ferguson, R. R. Tykwinski, Angew. Chem. 2003, 115, 2244. s) W.-J. Chung, D.-K. Kim, Y.-S. Lee, Tetrahedron Lett. 2003, 44, 9251. t) C. Kuhakarn, K. Kittigowittana, M. Pohmakotr, V. Reutrakul, ARKIVOC 2005, (i), 143. u) D.-K. Kim, W.-J. Chung, Y.-S. Lee, Synlett 2005, 279. e) W.-J. Chung, D.-K. Kim, Y.-S. Lee, Synlett 2005, 2175. v) Z. Lei, P. Yan, Y. Yang, Catal. Lett. 2007, 118, 69. f) H.-S. Jang, W.-J. Chung, Y.-S. Lee, Tetrahedron Lett. 2007, 48, 3731. w) U. Ladziata, A. Y. Koposov, K. Y. Lo, J. Willging, V. N. Nemykin, V. V. Zhdankin, Angew. Chem. 2005, 117, 7289. x) U. Ladziata, J. Carlson, V. V. Zhdankin,

VI-2. Literaturverzeichnis

Tetrahedron Lett. **2006**, *47*, 6301. y) U. Ladziata, J. Willging, V. V. Zhdankin, *Org. Lett.* **2006**, *8*, 167. z) V. V. Zhdankin, J. T. Smart, P. Zhao, P. Kiprof, *Tetrahedron Lett.* **2000**, *41*, 5299

³⁷⁴ a) A. K. Mailyan, I. M. Geraskin, V. N. Nemykin, V. V. Zhdankin, *J. Org. Chem.* **2009**, *74*, 8444. b) D. Macikenas, E. Skrzypczak-Jankun, J. D. Protasiewicz, J. Am. Chem. Soc. 1999, 121, 7164. c) D. Macikenas, E. Skrzypczak-Jankun, J. D. Protasiewicz, Angew. Chem. 2000, 112, 2063. d) B. V. Meprathu, J. D. Protasiewicz, ARKIVOC 2003, (vi), 83. e) B. V. Meprathu, J. D. Protasiewicz, Tetrahedron 2010, 66, 5768. f) A. Y. Koposov, D. N. Litvinov, V. V. Zhdankin, Tetrahedron Lett. 2004, 45, 2719. g) A. Y. Koposov, V. N. Nemykin, V. V. Zhdankin, New J. Chem. 2005, 29, 998. h) V. V. Zhdankin, R. N. Goncharenko, D. N. Litvinov, A. Y. Koposov, ARKIVOC 2005, (ix), 8. i) A. Y. Koposov, D. N. Litvinov, V. V. Zhdankin, M. J. Ferguson, R. McDonald, R. R. Tykwinski, Eur. J. Org. Chem. 2006, 4791. j) M. S. Yusubov, A. A. Zagulyaeva, V. V. Zhdankin, Chem. Eur. J. 2009, 15, 11091. k) B. V. Meprathu, M. W. Justik, J. D. Protasiewicz, Tetrahedron Lett. 2005, 46, 5187. I) K. W. K. Leung, B. I. Posner, G. Just, Bioorg. Med. Chem. Lett. 1999, 9, 353. m) P. Jannasch, W. Hinterskirch, Chem. Ber. 1898, 31, 1710. m) C. Willgerodt, K. Burkhard, Liebigs Ann. 1912, 389, 292. o) F. Mastropaolo, A. Ricardo, An. Asoc. Quim. Argent. 1940, 28, 101. p) J. G. Sharefkin, H. Saltzman, Anal. Chem. 1963, 35, 1428. q) A. Y. Koposov, R. R. Karimov, I. M. Geraskin, V. N. Nemykin, V. V. Zhdankin, J. Org. Chem. 2006, 71, 8452. r) R. R. Karimov, Z.-G. M. Kazhkenov, M. J. Modjewski, E. M. Peterson, V. V. Zhdankin, J. Org. Chem. 2007, 72, 8149. s) V. V. Zhdankin, D. N. Litvinov, A. Y. Koposov, T. Luu, M. J. Ferguson, R. McDonald, R. R. Tykwinski, Chem. Commun. 2004, 106. t) A. Y. Koposov, V. V. Zhdankin, Synthesis 2005, 22. u) V. V. Zhdankin, A. Y. Koposov, D. N. Litvinov, M. J. Ferguson, R. McDonald, T. Luu, R. R. Tykwinski, J. Org. Chem. 2005, 70, 6484. v) I. M. Geraskin, M. W. Luedtke, H. M. Neu, V. N. Nemykin, V. V. Zhdankin, Tetrahedron Lett. 2008, 49, 7410. w) I. M. Geraskin, O. Pavlova, H. M. Neu, M. S. Yusubov, V. N. Nemykin, V. V. Zhdankin, Adv. Synth. Catal. 2009, 351, 733. x) S. M. Altermann, S. Schäfer, T. Wirth, Tetrahedron 2010, 66, 5902. y) R. L. Amey, J. C. Martin, J. Am. Chem. Soc. 1979, 101, 5294. z) L. Weclas-Henderson, T. T. Nguyen, R. A. Hayes, J. C. Martin, J. Org. Chem. **1991**, *56*, 6565.

³⁷⁵ a) P. Lecarpentier, S. Crosignani, B. Linclau, *Mol. Divers.* 2005, *9*, 341. b) J. N. Moorthy, K. Senapati, K.
N. Parida, *J. Org. Chem.* 2010, *75*, 8416. c) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat, A. Chénedé, *Angew. Chem.* 2009, *121*, 4675.

³⁷⁶ M. Uyanik, R. Fukatsu, K. Ishihara, Org. Lett. **2009**, *11*, 3470.

³⁷⁷ a) V. J. Aran, J. L. Soto, Synthesis **1982**, 513. b) Q. Zhang, T. Fang, X. Tong, *Tetrahedron* **2010**, *66*, 8095.
c) P. K. Amancha, Y.-C. Lai, I-C. Chen, H.-J. Liu, J.-L. Zhu, *Tetrahedron* **2010**, *66*, 871. d) W. Liu, J. Zhou, C. Zheng, X. Chen, H. Xiao, Y. Yang, Y. Guo, G. Zhao, *Tetrahedron* **2011**, *67*, 1768. e) K. Bogdanowicz-Szwed,

A. Palasz, *Monatshefte für Chemie* **1997**, *128*, 1157. f) J. S. Clark, A.Boyer, A. Aimon, P. E. Garcia, D. M. Lindsay, A. D. F. Symington, Y. Danoy, *Angew. Chem. Int. Ed.* **2012**, *51*, 12128.

³⁷⁸ a) B. Maillard, D. Forrest, K. U. Ingold, *J. Am. Chem. Soc.* **1976**, *98*, 7024. b) L. Mathew, J. Warkentin, *J. Am. Chem. Soc.* **1986**, *108*, 7981.

³⁷⁹ M. Newcomb, C. C. Johnson, M. Beata Manek, T. R. Varick, *J. Am. Chem. Soc.* **1992**, *114*, 10915.

³⁸⁰ a) E. Quesada, M. Stockley, J. P. Ragot, M. E. Prime, A. C. Whitwood, R. J. K. Taylor, *Org. Biomol. Chem.* **2004**, *2*, 2483. b) E. Quesada, M. Stockley, R. J. K. Taylor, *Tetrahedron Lett.* **2004**, *45*, 4877. c) N. Cramer, S. Laschat, A. Baro, H. Schwalbe, C. Richter, *Angew. Chem.* **2005**, *117*, 831. d) N. Cramer, M. Buchweitz, S. Laschat, W. Frey, A. Baro, D. Mathieu, C. Richter, H. Schwalbe, *Chem. Eur. J.* **2006**, *12*, 2488. e) D. B. Gotchev, D. L. Comins, *J. Org. Chem.* **2006**, *71*, 9393. f) K. C. Nicolaou, Y. Tang, J. Wang, *Chem. Commun.* **2007**, 1922. g) K. C. Nicolaou, D. J. Edmonds, A. Li, G. S. Tria, *Angew. Chem.* **2007**, *119*, 4016. h) G. Lalic, E. J. Corey, *Org. Lett.* **2007**, *9*, 4921. i) K. C. Nicolaou, D. Pappo, K. Y. Tsang, R. Gibe, D. Y.-K. Chen, *Angew. Chem.* **2008**, *120*, 958. j) K. A. B. Austin, M. G. Banwell, A. C. Willis, *Org. Lett.* **2008**, *120*, 6681. m) K. C. Nicolaou, A. F. Stepan, T. Lister, A. Li, A. Montero, G. S. Tria, C. I. Turner, Y. Tang, J. Wang, R. M. Denton, D. J. Edmonds, *J. Am. Chem. Soc.* **2008**, *130*, 13110. n) M. Turks, P. Vogel, *J. Org. Chem.* **2009**, *74*, 435. o) K. C. Nicolaou, A. Li, D. J. Edmonds, G. S. Tria, S. P. Ellery, *J. Am. Chem. Soc.* **2009**, *131*, 16905.

³⁸¹ a) J. L. Barkin, M. D. Faust Jr., W. C. Trenkle, *Org. Lett.*, **2003**, *5*, 3333. b) S. Arseniyadis, K. S. Kyler, D.
S. Watt, *Addition and Substitution Reactions of Nitrile-Stabilized Carbanions, Organic Reactions* **2005**, 1.
c) U. J. Vogelbacher, P. Otoo, M. Rack, *WO107397A1*, **2008**.

³⁸² a) D. V. Gribkov, K.C. Hultzsch, F. Hampel, *J. Am. Chem. Soc.* **2006**, *128*, 3748-3759. b) F. Orsini, *Synthesis* **1985**, 500. c) A. Toshimitsu, K. Terao, S. Uemura, *J. Org. Chem.* **1986**, *51*, 172.

³⁸³C. H. Bushweller, J. W. O'Neil, *Tetrahedron Lett.* **1969**, *53*, *4713*.

³⁸⁴ a) M. Karplus, J. Chem. Phys. **1959**, 30, 11. b) M. Karplus, J. Am. Chem. Soc. **1963**, 85, 2870.

³⁸⁵ a) M. Karplus, J. Chem. Phys. **1959**, 30, 11. b) M. Karplus, J. Am. Chem. Soc. **1963**, 85, 2870.

³⁸⁶ a) J. F. Hooper, A. B. Chaplin, C. González-Rodríguez, A. L. Thompson, A. S. Weller, M. C. Willis, *J. Am. Chem. Soc.* 2012, *134*, 2906. b) T. M. Harris, C. M. Harris, T. A. Oster, L. E. Brown, Jr., J. Y.-C. Lee, *J. Am. Chem. Soc.* 1988, *110*, 6180. c) M. Yamaguchi, T. Okuma, A. Horiguchi, C. Ikeura, T. Minami, *J. Org. Chem.* 1992, *57*, 1647. d) Z. Fei, F. E. McDonald, *Org. Lett.* 2005, *7*, 3617. e) S. Mahalingam, P. C. Kuzma, J. Y.-C. Lee, T. M. Harris, *J. Am. Chem. Soc.* 1985, *107*,1761. f) W.-W. Chan, S.-F. Lo, Z. Zhou, W.-Y. Yu, *J. Am. Chem. Soc.* 2012, *134*, 13565. g) S. Akai, K. Kakiguchi, Y. Nakamura, I. Kuriwaki, T. Dohi, S. Harada, O.

Kubo, N. Morita, Y. Kita, *Angew. Chem. Int. Ed.* **2007**, *46*, 7458. h) B. W. Bycroft, John C. Roberts, *J. Chem. Soc.* **1963**, 4868.

- ³⁸⁷ a) K. Mosbach, Acta Chem. Scand. **1960**, 14, 457. b) K. Mosbach, Naturwissenschaften **1961**, 48, 525.
- ³⁸⁸ T. Zimmermann, R. Radeglia, *J. Prakt. Chemie* **1994**, *336*, 623.
- ³⁸⁹ B. Milenkov, M. Hesse, *Helv. Chimica Acta* **1989**, *70*, 308.
- ³⁹⁰ a) P. Grieß, *Philos. Trans. R. Soc. London* **1864**, *13*, 377. b) P. Grieß, *Justus Liebigs Ann. Chem.* **1865**, *135*, 131.
- ³⁹¹ F. Tiemann, Ber. Dtseh. Chem. Ges. **1891**, 24, 4162.
- ³⁹² a) T. Curtius, Chem. Ber. **1890**, 23, 3023. b) T. Curtius, J. Prakt.Chem. **1894**,50, 275.
- ³⁹³ A. Bertho, J. Prakt. Chem. **1928**, 120, 89.

³⁹⁴ a) S. Bräse, C. Gil, K. Knepper, V. Zimmermann, *Angew. Chem.* **2005**, *117*, 5320. b) T. M. V. D. Pinho e Melo, *Organic Azides: Syntheses and Applications* (Hrsg: S. Bräse, K. Banert), John Wiley & Sons, Chichester, USA, **2009**, 53. c) E. F. V. Scriven, K. Turnbull, *Chem. Rev.* **1988**, *88*, 297. d) S. Patai, Z. Rapoport, (Eds.) *The Chemistry of Functional Groups. Supplement D, The Chemistry of Halides, Pseudo-Halides and Azides,* Wiley, New York, **1982**. e) E. F. V. Scriven, (Ed.) *Azides and Nitrenes,* Academic, Orlando, **1984**. f) S. Patai, (Ed.) *The Chemistry of the Azido Group,* Wiley, New York, **1971**. g) G. L'abbé, *Chem. Rev.* **1969**, *69*, 345. h) R. A. Apamovitch, B. A. Davis, *Chem. Rev.* **1964**, *64*, 149. i) L. Horner, A. Christmann, *Angew. Chem.* **1963**, *75*, 707. j) W. Kirmse, *Angew. Chem.* **1959**, *71*, 537. k) P. A. S. Smith, *Org. React.* N.Y. **1946**, *3*, 337. I) J. H. Boyer, F. C. Canter, *Chem. Rev.* **1954**, *54*, 1.

³⁹⁵ a) E. Noelting, O. Michel, *Ber. Dtsch. Chem. Ges.* **1893**, *26*, 86. b) E. Noelting, O. Michel, *Ber. Dtsch. Chem. Ges.* **1893**, *26*, 88.

- ³⁹⁶ E. Noelting, E. Grandmougin, O. Michel, Ber. Dtsch. Chem. Ges. 1892, 25, 3328
- ³⁹⁷ S. Maffei, A. M. Rivolta, *Gazz. Chim. Ital.* **1954**, *84*, 750.
- ³⁹⁸ T. Zincke, P. Schwarz, *Justus Liebigs Ann.Chem.* **1899**, *307*, 28.

³⁹⁹ a) J. C. Kauer, R. A. Carboni, *J. Am. Chem. Soc.* **1967**, *89*, 2633. b) M. Takahashi, D. Suga, *Synthesis* **1998**, 986. c) S. M. Capitosti, T. P. Hansen, M. L. Brown, *Org. Lett.* **2003**, *5*, 2865

⁴⁰⁰ a) T. Keumi, T. Umeda, Y. Inoue, H. Kitajima, *Bull. Chem. Soc. Jpn.* **1989**, *62*, 89. b) A. Hubbard, T. Okazaki, K. K. Laali, *J. Org. Chem.*, **2008**, *73*, 316.

- ⁴⁰² M. de Rosa, P. Haberfield, *J. Org. Chem.* **1981**, *46*, 2639.
- ⁴⁰³ Y. H. Kim, K. Kim, S. B. Shim, *Tetrahedron Lett.* **1986**, *27*, 4749.

⁴⁰¹ a) K. Barral, A. D. Moorhouse, J. E. Moses, *Org. Lett.* **2007**, *9*, 1809. b) L. Marinescu, J. Thinggaard, I. B. Thomsen, M. Bols, *J. Org. Chem.* **2003**, *68*, 9453.

⁴⁰⁴ Y. I. T. Matsuya, K. Nagata, A. Ohsawa, *Tetrahedron* **1997**, *53*, 15701.

⁴⁰⁵ V. Pozsgay, H. Jennings, *Tetrahedron Lett.* **1987**, *28*, 5091.

⁴⁰⁶ a) H. Wamhoff, W. Wambach, *Chem.-Ztg.* **1989**, *113*, 11. b) O. Dimroth, *Justus Liebigs Ann. Chem.* **1909**, *364*, 183.

⁴⁰⁷ a) L. Caglioti, F. Gasparrini, D. Misiti, G. Palmieri, *Synthesis* **1979**, 207. b) J. Barluenga, M.Tomás-Gamasa, C. Valdés, *Angew. Chem.* **2012**, *124*, 6052.

⁴⁰⁸ a) C. J. Caveander, V. J. Shiner, *J. Org. Chem.* **1972**, *37*, 3567. b) J. R. Zaloom, C. David, *J. Org. Chem.* **1981**, *46*, 5173. c) P. E. Eaton, A. M. Fisher, R. E. Hormann, *Synlett* **1990**, 737. d) P. E. Eaton, R. E. Hormann, *J. Am. Chem. Soc.* **1987**, *109*, 1268.

⁴⁰⁹ a) G. Laus, V. Adamer, M. Hummel, V. Kahlenberg, K. Wurst, S. Nerdinger, H. Schottenberger, *Crystals* **2012**, *2*, 118. b) G. G. Hazen, L. M. Weinstock, R. Connell, F. W. Bollinger, *Synth. Commun.* **1981**, *11*, 947.
c) J. Raushel, S. M. Pitram, V. V. Fokin, *Org. Lett.*, **2008**, *10*, 3385. d) N. Fischer, E. D. Goddard-Borger, R.Greiner, T. M. Klapötke, B. W. Skelton, J. Stierstorfer, *J. Org. Chem.* **2012**, *77*, 1760.

⁴¹⁰ Q. Liu, Y. Tor, *Org. Lett.* **2003**, *5*, 2571.

⁴¹¹: a) P. B. Alper, S.-C. Hung, C.-H. Wong, *Tetrahedron Lett.* **1996**, *37*, 6029. b) J. T. Lundquist, J. C. Pelletier, *Org. Lett.* **2001**, *3*, 781. c) W. S. Horne, C. S. Stout, M. R. Ghadiri, *J. Am. Chem. Soc.* **2003**, *125*, 9372. d) Y. Ding, E. E. Swayze, S. A. Hofstadler, R. H. Griffey, *Tetrahedron Lett.* **2000**, *41*, 4049. e) W. A. Greenberg, E. S. Priestley, P. S. Sears, P. B. Alper, C. Rosenbohm, M. Hendrix, S.-C. Hung, C.-H. Wong, *J. Am. Chem. Soc.* **1999**, *121*, 6527. f) A. K. Oyelere, P. C. Chen, L. P. Yao, N. Boguslavsky, *J. Org. Chem.* **2006**, *71*, 9791.

⁴¹² a) J. T. Lundquist, IV, J. C. Pelletie, *Org. Lett.* 2001, *3*, 781. b) P. T. Nyffeler, C.-H. Liang, K. M. Koeller,
C.-H. Wong, *J. Am. Chem. Soc.* 2002, *124*, 1077.

⁴¹³ E. D. Goddard-Borger, R. V. Stick, *Org. Lett.*, **2007**, *9*, 3797.

⁴¹⁴ M. Kitamura, M. Yano, N. Tashiro, S. Miyagawa, M. Sando, T. Okauchi, *Eur. J. Org. Chem.* **2011**, 458.

⁴¹⁵ a) V. Castro, J. B. Blanco-Canosa, H. Rodriguez, F. Albericio, *ACS Comb. Sci.* **2013**, *15*, 331. b) S. F. M. van Dongen, R. L. M. Teeuwen, M. Nallani, S. S. van Berkel, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, *Bioconjugate Chem.* **2009**, *20*, 20. c) A. A. Bastian, E. M. Warszawik, P. Panduru, C. Arenz, A. Herrmann, *Chem. Eur. J.* **2013**, *19*, 9151. d) A. J. Rhodes, T. J. Deming, *ACS Macro Lett.* **2013**, *2*, 351.

⁴¹⁶K. Kitamura, M. Shigeta, Y. Maezawa, Y. Watanabe, D.-S. Hsu, Y. Ando, T. Matsumoto, K. Suzuki, *J. Antibiotics* **2013**, *66*, 131.

⁴¹⁷ a) H. Mayr, A. R. Ofial, *J. Phys. Org. Chem.* 2008, *21*, 584. b) H. Mayr, A. R. Ofial, *Nachr. Chem.* 2008, *56*, 871. c) H.Mayr, A. R. Ofial, *Pure Appl. Chem.* 2005, *77*, 1807. d) H. Mayr, A. R. Ofial, *Carbocation Chemistry*, (Eds: G. A. Olah, G. K. S. Prakash) Wiley, Hoboken, NJ, 2004, 331.

⁴¹⁸ a) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, *J. Am. Chem. Soc.* 2001, *123*, 9500. b) R. Lucius, R. Loos, H. Mayr, *Angew. Chem.* 2002, *114*, 97. c) R. Lucius, R. Loos, H. Mayr, *Angew. Chem. Int. Ed.* 2002, *41*, 91. d) H. Mayr, M. Patz, *Angew. Chem.* 1994, *106*, 990. e) H. Mayr, M. Patz, *Angew. Chem. Int. Ed. Engl.* 1994, *33*, 938. f) H. Mayr, M. Patz, M. Patz, M. F. Gotta, A. R. Ofial, *Pure Appl. Chem.* 1998, *70*, 1993.

⁴¹⁹ B. E. Blass, K. R. Coburn, A. L. Faulkner, W. L. Seibela, A. Srivastava, *Tetrahedron Lett.* **2003**, *44*, 2153.

⁴²⁰ a) G. Righi, C. D'Achille, G. Pescatore, C. Bonini, *Tetrahedron Lett.* 2003, *44*, 6999.b) N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, *J. Am. Chem. Soc.* 2004, *126*, 4790. c) G. P. Miller, E. T. Kool, *J. Org. Chem.* 2004, *69*, 2404. d) Y. Ju, D. Kumar, R. S. Varma, *J. Org. Chem.*, 2006, *71*, 6697. e) O. N. Yuadina, A. A. Sherman, N. E. Nifantiev, *Carbohydr. Res.* 2001, *332*, 363. f) C. Chiappe, D. Pieraccini, P. Saullo, *J. Org. Chem.* 2003, *68*, 6710. g) A. Loris, A. Perosa, M. Selva, P. Tundo, *J. Org. Chem.* 2003, *68*, 4046. h) R. S. Murthy, R. F. Klima, S. M. Mandel, M. Hawk, N. Yarbrough, A. D. Gudmundsdóttir, *Tetrahedron Lett.* 2003, *44*, 9169.

⁴²¹ W. Kurosawa, T. Kan, T. Fukuyama, *J. Am. Chem. Soc.* **2003**, *125*, 8112. f) C. Mazzini, L. Sambri, H. Regeling, B. Zwanenburg, G. J. F. Chittenden, *J. Chem. Soc. Perkin Trans.* **1 1997**, 3351.

⁴²² a) A. Avenoza, J. H. Busto, F. Corzana, J. I. Garcia, J. M. Peregrina, *J. Org. Chem.* **2003**, *68*, 4506. b) I. A. Sayyed, A. Sudali, *Tetrahedron: Asym.* **2004**, *15*, 3111.

⁴²³ P. S. Bara, A. L. Zografos, D. O'Malley, J. Am. Chem. Soc. **2004**, 126, 3726.

⁴²⁴ K. S. Feldmann, A. G. Karatjas, *Org. Lett.* **2004**, *6*, 2849.

⁴²⁵ a) G. J. Sanjayan, A. Stewart, S. Hachisu, R. Gonzalez, M. P. Watterson, G.W. J. Fleet, *Tetrahedron Lett.* **2003**, *44*, 5847. b) H. Tanaka, A. M. Sawayama, T. J. Wandless, *J. Am. Chem. Soc.* **2003**, *125*, 6864

⁴²⁶ M. Gibson, J. M. Goodman, L. J. Farrugia, R. C. Hartley, *Tetrahedron Lett.* **2003**, *44*, 2841.

⁴²⁷ a) L. He, H. S. Byun, R. Bittman, *J. Org. Chem.* 2000, *65*, 7627. b) L. Alvarez de Cienfuegos, C. Rodriguez, A. J. Mota, R. Robles, *Org. Lett.* 2003, *5*, 274.

⁴²⁸ a) D. Enders, D. Klein, Synlett **1999**, 719. b) K. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S. Iwasa, J.
 Am. Chem. Soc. **2012**, 134, 9836.

⁴²⁹ P. Walden, Ber. dtsch. chem. Ges. **1896**, 29, 133.

⁴³⁰ O. Mitsunobu, *Bull. Chem. Soc. Jpn.* **1967**, *40*, 4235.

⁴³¹ a) D. L. Hughes, *Org. React.* 1992, *42*, 335. b) H. Loibner, E. Zibral, *Helv. Chim. Acta* 1976, *59*, 2100. c)
S.-H. Lee, J. Yoon, S.-H. Chung, Y.-S. Lee, *Tetrahedron* 2001, *57*, 2139.

⁴³² R. J. W. Cremlyn, *Austr. J. Chem.* **1973**, *26*, 1591.

⁴³³ a) C. Simon, S. Hosztafi, S. Makleit, *Tetrahedron Lett.* 1993, *34*, 6475. b) Y. Yoshimura, K. Kitano, K. Yamada, H. Satoh, M. Watanabe, S. Miura, S. Sakata, T. Sasaki, A. Matsuda, *J. Org. Chem.* 1997, *62*, 3140.
c) M. E. Maier, C. Hermann, *Tetrahedron* 2000, *56*, 557. d) T. Watanabe, Y. Tanaka, R. Shoda, R. Sakamoto, K. Kamikawa, M. Uemura, *J. Org. Chem.* 2004, *69*, 4152. e) J. A. Gómez-Vidal, R. B. Silverman, *Org. Lett.* 2001, *3*, 2481. f) B. Jiang, C.-G. Yang, J. Wang, *J. Org. Chem.* 2002, *67*, 1396. g) K. C. Nicolaou, N. Winssinger, D. Vourloumis, T. Ohshima, S. Kim, J. Pfefferkorn, J. Y. Xu, T. Li, *J. Am. Chem. Soc.* 1998, *120*, 10814

⁴³⁴ a) Y. Lu, R. T. Taylor, *Tetrahedron Lett.* **2003**, *44*, 9267. b) Y. Lu, R. T. Taylor, *Heterocycles* **2004**, *62*, 869.

⁴³⁵ a) T. Shioiri, Y. Hamada, Synlett **2001**, 184. b) M. D. Fletcher, M. M. Campbell, *Chem. Rev.* **1998**, *98*, 763. c) S. Hanessian, F. Xie, *Tetrahedron Lett.* **1998**, *39*, 737.

⁴³⁶ a) S. Czernecki, S. Horms, J. M. Valery, *J. Org. Chem.* **1995**, *60*, 650. b) A. S. Thompson, G. R. Humphrey, A. M. De-Marco, D. J. Mathre, E. J. J. Grabowski, *J. Org. Chem.* **1993**, *58*, 5886.c) S.-I. Murahashi, Y. Taniguchi, Y. Imada, Y. Tanigawa, *J. Org. Chem.* **1989**, *54*, 3292. d) M. C. Viaud, P. Rollin, *Synthesis* **1990**, 130. e) M. Safi, R. Fahrang, D. Sinou, *Tetrahedron Lett.* **1990**, *31*, 527. f) B. M. Trost, S. R. Pulley, *Tetrahedron Lett.* **1995**, *36*, 8737.

⁴³⁷ R. Appel, *Angew. Chem. Int. Ed.* **1975**, *14*, 801.

⁴³⁸ M. Toyota, C. Komori, M. Ihara, *J. Org. Chem.* **2000**, *65*, 7110.

⁴³⁹ M. Kitamura, T. Koga, M. Yano, T. Okauchi, *Synlett*, **2012**, 1335.

⁴⁴⁰ a) B. Das, V. S. Reddy, F. Tehseen, M. Krishnaiah, *Synthesis*, **2007**, 666. b) G. Sabitha, S. R. Babu, M. S.
K. Reddy, J. S. Yadav, *Synthesis*, **2002**, 2254. c) G. Sabitha, R. S. Babu, M. Rajkumar, J. S. Vadav, *Org. Lett.*, **2002**, *4*, 343. d) A. Breuning, R. Vicik, T. Schirmeister, *Tetrahedron: Asymmetry* **2003**, *14*, 3301

⁴⁴¹ a) S. Yadav, B. V. S. Reddy, G. Parimala, P. Venkatram Reddy, *Synthesis*, **2002**, 2383. b) S. Minakata, Y. Okada, Y. Oderaotoshi, M. Komatsu, *Org. Lett.*, **2005**, *7*, 3509.

⁴⁴² a) L. E. Martínez, J. L. Leighton, D. H. Carsten, E. N. Jacobsen, *J. Am. Chem. Soc.* 1995, *117*, 5897. b) D.
M. Hodgson, A. R. Gibbs, G. P. Lee, *Tetrahedron* 1996, *52*, 14361. c) A. C. Rondon, J. S. Panek, *Chemtracts* 1997, *10*, 1058. d) N. C. Gianneschi, P. A. Bertin, S. T. Nguyen, C. A. Mirkin, L. N. Zakharov, A. L. Rheingold, *J. Am. Chem. Soc.* 2003, *125*, 10508. e) B. M. L. Dioos, P. A. Jacobs, *Tetrahedron Lett.* 2003, *44*, 4715. e) B. M. L. Dioos, P. A. Jacobs, *Tetrahedron Lett.* 2003, *44*, 4715. f) B. M. L. Dioos, P. A. Jacobs, *Tetrahedron Lett.* 2003, *44*, 4715. f) B. M. L. Dioos, P. A. Jacobs, *Tetrahedron Lett.* 2003, *44*, 4715. f) B. M. L. Dioos, P. A. Jacobs, *Neuropercenter and the section of the*

Tetrahedron Lett. 2003, 44, 8815. g) E. N. Jacobsen, Acc. Chem. Res. 2000, 33, 421. h) K. B. Hansen, J. L. Leighton, E. N. Jacobsen, J. Am. Chem. Soc. 1996, 118, 10924. i) R. G. Konsler, J. Karl, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 10780. j) J. M. Ready, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 2687. k) J. M. Ready, E. N. Jacobsen, Angew. Chem. 2002, 114, 1432. l) J. H. Spelberg, J. E. T. van Hylckama Vlieg, L. Tang, D. B. Janssen, R. M. Kellog, Org. Lett. 2001, 3, 41. m) S. E. Sen, S. M. Smith, K. A. Sullivan, Tetrahedron 1999, 55, 12657. n) J. Boruwa, J. C. Borah, B. Kalita, N. C. Barua, Tetrahedron Lett. 2004, 45, 7355. o) M. Caron, P. R. Carlier, K. B. Sharpless, J. Org. Chem. 1988, 53, 5185. p) X. Ginesta, M. Pastó, M. A. Pericás, A. Riera, Org. Lett. 2003, 5, 3001.

⁴⁴³ F. Couty, O. David, F. Durrat, G. Evano, S. Lakhdar, J. Marrot, M. Vargas-Sanchez, *Eur. J. Org. Chem.*, **2006**, 3479.

⁴⁴⁴ a) V. Atlan, S. Racouchot, M. Rubin, C. Bremer, J. Ollivier, A. de Meijere, J. Salaün, *Tetrahedron: Asym*.**1998**, *9*, 1131.b) A. Stolle, J. Ollivier, P. P. Piras, J. Salaün, A. de Meijere, J. Am. Chem. Soc.**1992**, *114*, 4051.

⁴⁴⁵ M. Rueping, C. Vila, U. Uria, *Org. Lett.*, **2012**, *14*, 768.

⁴⁴⁶ a) K. A. H. Chehade, H. P. Spielmann, *J. Org. Chem.* 2000, *65*, 4949. b) D. R. Miller, D. C. Svenson, E. G. Gillan, *J. Am. Chem. Soc.* 2004, *126*, 5372. c) C. K. Lowe-Ma, R. A. Nissan, W. S. Wilson, *J. Org. Chem.* 1990, *55*, 3755. d)W. Stadlbauer,W. Fiala, M. Fischer, G. Hojas, *J. Heterocycl. Chem.* 2000, *37*, 1253. e) C. L. Gibson, S. La Rosa, C. J. Suckling, *Tetrahedron Lett.* 2003, *44*, 1267.

⁴⁴⁷ T. P. Kogan, T. C. Somers, M. C. Venuti, *Tetrahedron* **1990**, *46*, 6623.

⁴⁴⁸ a) W. Zhu, D. Ma, *Chem. Commun.* **2004**, 888. b) K. D. Grimes, A. Gupte, C. C. Aldrich, *Synthesis*, **2010**, 1441.

⁴⁴⁹ A. Padwa, M. A. Brodney, B. Liu, K. Satake, T. Wu, J. Org. Chem. 1999, 64, 3595.

⁴⁵⁰ A. R. Katritzky, K. Widyan, K. Kirichenko, *J. Org. Chem.*, **2007**, *72*, 5802.

⁴⁵¹ a) K. Sparrow, D. Barker, M. A. Brimblen *Tetrahedron* 2011, *67*, 7989. b) J.H. Rigby, M. Qabar, Synth. *Commun.* 1990, *20*, 2699. c) C. Galvez, F. Garcia, J. Garcia, J. Soldevila, *J. Heterocycl. Chem.* 1986, *23*, 1103.

⁴⁵² J.-G. Kim, D. O. Jang, *Synlett*, **2008**, 2072.

⁴⁵³ B. P. Banddgar, S. S. Pandit, Tetrahedron Lett. 2002, 43, 3413.

⁴⁵⁴ a) P. A. S. Smith, C. D. Rowe, L. B. Bruner, J. Org. Chem. **1969**, 34, 3430. b) P. A. S. Smith, G. F. Budde,

S.-S. P. Chou, J. Org. Chem. 1985, 50, 2062. c) J. Gavenonis, T. D. Tilley, Organometallics 2002, 21, 5549.

d) W. Fisher, J.-P. Anselme, J. Am. Chem. Soc. 1967, 89, 5284.

⁴⁵⁵ J. S. D. Kumar, F.-Y. Dupradeau, M. J. Strouse, M. E. Phelps, T. Toyokuni, *J. Org. Chem.* **2001**, *66*, 3220.

⁴⁵⁶ a) D. J. Guerin, T. E. Horstmann, S. J. Miller, *Org. Lett.* **1999**, *1*, 1107. b) L.-W. Xu, X.-G. Xia, J.-W. Li, S.-L. Xhou, *Synlett* **2003**, 2246. c) X. Huang, R. Shen, T. Zhang, *J. Org. Chem.* **2007**, *72*, 1534. d) C. R. Alonso-Cruz, A. R. Kennedy, M. S. Rodriguez, E. Suarez, *Org. Lett.* **2003**, *5*, 3729. e) E. A. Couladouros, Z. F. Plyta, S. A. Haroutounian, V. P. Papageorgiou, J. Org. Chem. **1997**, *62*, 6.

⁴⁵⁷ a) L. Chabaud, Y. Landais, *Tetrahedron Lett.* 2003, *44*, 6995. b) A. R. Bassindale, P. A. Kyle, M. Soobramanien, P. G. Taylor, *J. Chem. Soc. Perkin Trans.* 1 2000, 1173. c) P. V. Chouthaiwale, P. U. Karabal, G. Suryavanshi, A. Sudalai, *Synthesis*, 2010, 3879.

⁴⁵⁸ a) A. Hassner, L. A. Levy, *J. Am. Chem. Soc.* 1965, *87*, 4203. b) F. W. Fowler, A. Hassner, L. A. Levy, *J. Am. Chem. Soc.* 1967, *89*, 2077. c) A. Hassner, F.W. Fowler, *J. Org. Chem.* 1968, *33*, 2686. d) A. Hassner, F. P. Boerwinkle, A. B. Levy, *J. Am. Chem. Soc.* 1970, *92*, 4879.

⁴⁵⁹ a) A. Hassner, Acc. Chem. Res. **1971**, 4, 9. b) G. L'Abbe, A. Hassner, J. Org. Chem. **1971**, 36, 258.

⁴⁶⁰ a) A. Kirschning, H. Monenschein, C. Schmeck, *Angew. Chem.* **1999**, *111*, 2720. b) A. Kirschning, M. Jesberger, H. Monenschein, *Tetrahedron Lett.* **1999**, *40*, 8999.

⁴⁶¹ P. Renaud, *Top. Curr. Chem.* **2000**, *208*, 81.

⁴⁶² a) S. Czernecki, E. Ayadi, D. Randriamandimby, *J. Org. Chem.* **1994**, *59*, 8256. b) M. Tingoli, M. Tiecco,
D. Chianelli, R. Balducci, A. Temperini, *J. Org. Chem.* **1991**, *56*, 6809.

⁴⁶³ a) C. Ollivier, P. Renaud, J. Am. Chem. Soc. 2001, 123, 4717. b) P. Renaud, C. Ollivier, P. Panchaud, Angew. Chem. 2002, 114, 3610. c) P. Panchaud, C. Ollivier, P. Renaud, S. Zigmantas, J. Org. Chem. 2004, 69, 2755.

⁴⁶⁴ B. B. Snider, J. R. Duvall, *Org. Lett.* **2004**, *6*, 1265.

⁴⁶⁵ W. Song, S. I. Kozhushkov, L. Ackermann, *Angew. Chem.* **2013**, *125*, 6706.

⁴⁶⁶ L. G. Marinescu, C. M. Pedersen, M. Bols, *Tetrahedron* **2005**, *61*, 123.

⁴⁶⁷ a) P. Magnus, C. Hulme, W. Weber, J. Am. Chem. Soc. 1994, 116, 4501. b) P. Magnus, J. Lacour, J. Am. Chem. Soc. 1992, 114, 767. c) P. Magnus, J. Lacour, P. A. Evans, M. B. Roe, C. Hulme, J. Am. Chem. Soc. 1996, 118, 3406. d) P. Magnus, M. B. Roe, Tetrahedron Lett. 1996, 37, 303. e) P. Magnus, J. Lacour, P. A. Evans, P. Rigollier, H. Tobler, J. Am. Chem. Soc. 1998, 120, 12486. f) H. Tohma, M. Egi, M. Ohtsubo, H. Watanabe, S. Takizawa, Y. Kita, Chem. Commun. 1998, 173. g) D.-J. Chen, Z.-C. Chen, Tetrahedron Lett. 2000, 41, 7361. h) P. Magnus, J. Lacour, W. Weber, Synthesis 1998, 547.

⁴⁶⁸ a) H. Tohma, M. Egi, M. Ohtsubo, H. Watanabe, S. Takizawa, Y. Kita, *Chem. Commun.* **1998**, 173. b) Y.
Kita, H. Tohma, T. Takada, S. Mitoh, S. Fujita, M. Gyoten, *Synlett* **1994**, 427.c) P. Magnus, J. Lacour,
W.Weber, *J. Am. Chem. Soc.* **1993**, *115*, 9347.

⁴⁶⁹ a) V.V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, M. S. Formaneck, J. T. Bolz, *Tetrahedron Lett.* **1994**, 35,

967. b) A. P. Krasutsky, C. J. Kuehl, V. V. Zhdankin, Synlett 1995, 1081.c) V. V. Zhdankin, A. P. Krasutsky, C.

- J. Kuehl, A. J. Simonsen, J. K.Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc. 1996, 118, 5192.
- ⁴⁷⁰ C. Tang, N. Jiao, J. Am. Chem. Soc. **2012**, 134, 18924.
- ⁴⁷¹ M. T. Nguyen, D. Sengupta, T.-K. Ha, J. Phys. Chem. **1996**, 100, 6499.
- ⁴⁷² a) L. Pauling, L. O. Brockway, *J. Am. Chem. Soc.* **1937**, *59*, 13. b) L. O. Brockway, L. Pauling, *Proc. Natl. Acad. Sci. USA* **1933**, *19*, 860.
- ⁴⁷³ Pseudohalogens, *IUPAC, Compendium of Chemical Terminoogy, 2nd Ed. The "Golden Book"*, DOI: 10.1351/goldbook.
- ⁴⁷⁴I. C. Tornieporth-Oetting, T. M. Klapötke, Angew. Chem. **1995**, 107, 559.
- ⁴⁷⁵ P. L. Hammett, J. Am. Chem. Soc. **1937**, 59, 96.
- ⁴⁷⁶ D. S. Hays, G. C. Fu, J. Org. Chem. **1998**, 63, 2796.
- ⁴⁷⁷ a) P. A. S. Smith, *Open-Chain Nitrogen Compounds, Bd. 2*, Benjamin, New York, **1966**, 211. b) J. H. Boyer, R. Moriarty, B. de Darwent, P. A. S. Smith, *Chem. Eng. News* **1964**, *42*, 6.
- ⁴⁷⁸ a) P. G. Urben (Ed.), *Bretherick's Handbook of Reactive Chemical Hazards*, 7th Ed., Elsevier, Amsterdam, **2007**. b) R. J. Lewis (Ed.), *Sax's Dangerous Properties of Industrial Materials*, 10th Ed., Wiley, New York, **2000**.
- ⁴⁷⁹ D. Raja, D. Paritosh, D. Reddy, S. Rao, US8153786B1, **2012**.
- ⁴⁸⁰ A. Hassner, M. Stern, H. E. Gottlieb, F. Frolow, J. Org. Chem. **1990**, 55, 2304.
- ⁴⁸¹ D. G. Churchill, *J. Chem. Educ.* **2006**, *83*, 1798.
- ⁴⁸² a) R. E. Conrow, W. D. Dean, *Org. Process Res. Dev.* **2008**, *12*, 1285. b) N. P. Peet, P. M. Weintraub, *Chem. Eng. News* **1993**, *71*, 4. c) N. P. Peet, P. M. Weintraub, *Chem. Eng. News* **1994**, *72*, 4. c) D. J. am Ende, P. F. Vogt, *Org. Process Res. Dev.* **2004**, *8*, 1045. d) L. Bretherick, *Chem. Eng. News* **1986**, *64*, 2.
- ⁴⁸³ K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, H. Lang, *Angew. Chem. Int. Ed.* **2007**, *46*, 1168.
- ⁴⁸⁴ M. Minozzi, D. Nanni, P. Spagnolo, *Chem. Eur. J.* **2009**, *15*, 7830.
- ⁴⁸⁵ a) N. P. Gritsan, E. A. Pritchina, *Russ. Chem. Rev.* **1992**, *61*, 500. b) M. F. Budyka, M. M. Kantor, M. V. Alfimov, *Russ. Chem. Rev.* **1992**, *61*, 25.
- ⁴⁸⁶ a) G. B. Schuster, M. S. Platz, *Adv. Photochem.* **1992**, *18*, 69. b) G. Bucher in *CRC Handbook of Organic Photochemistry and Photobiology* (Hrsg.: W. Horspool, F. Lenci), 2. Aufl., CRC, Boca Raton, **2004**, 44/1.
 ⁴⁸⁷ M. S. Platz, *Acc. Chem. Res.* **1995**, *28*, 487.
- ⁴⁸⁸ I. Flemming, *Molecular Orbitals and Organic Chemical Reactions*, John Wiley & sons, New York, **2010**.

⁴⁸⁹ a) J. Averdung, J. Mattay, D. Jacobi, W. Abraham, *Tetrahedron* **1995**, *51*, 2543. b) K. R. Henery-Logan,
R. A. Clark, *Tetrahedron Lett.* **1968**, *9*, 801. c) P. P. Nicholas, *J. Org. Chem.* **1975**, *40*, 3396.

⁴⁹⁰ M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A. Hirsch, *J. Am. Chem. Soc.* **2003**, *125*, 8566.

⁴⁹¹ G.-X. Dong, J.-S.Li, T.-H. Chan, J. Chem. Soc. Chem. Commun., **1995**, 1725.

⁴⁹² L.-H. Liu, M. Yan, Acc. Chem. Res. **2010**, 43, 1434.

⁴⁹³ a) S. C. Bergmeier, D. M. Stanchina, *J. Org. Chem.* **1999**, *64*, 2852. b) Y. Naruta, N. Nagai, K. Maruyama,
 J. Chem. Soc. Perkin Trans. 1 **1988**, 1143.

⁴⁹⁴ a) T. Hudlicky, J. O. Frazier, G. Seoane, M. Tiedje, A. Seoane, L.W. Kwart, C. Beal, *J. Am. Chem. Soc.* **1986**, *108*, 3755. b) A. Nakagawa, Y. Iwai, H. Hashimoto, N. Miyazaki, R. Oiwa, Y. Takahashi, A. Hirano, N. Shibukawa, Y. Kojima, S.Omura, *J. Antibiot.* **1981**, *34*, 1408. c) S. Omura, A. Nakagawa, H. Hashimoto, R. Oiwa, Y. Iwai, A. Hirano, N. Shibukawa, Y. Kojima, *J. Antibiot.* **1981**, *34*, 1408. c) S. Omura, A. Nakagawa, H. Hashimoto, R. Oiwa, Y. Iwai, A. Hirano, N. Shibukawa, Y. Kojima, *J. Antibiot.* **1980**, *33*, 1395. d) S. Omura, A. Nakagawa, *Tetrahedron Lett.* **1981**, *22*, 2199. e) Y. Morimoto, F. Matsuda, H. Shirahama, *Tetrahedron Lett.* **1990**, *31*, 6031. f) Y. Morimoto, H. Shirahama, *Tetrahedron* **1996**, *52*, 1063. g) Y. Morimoto, F. Matsuda, H. Shirahama, *Tetrahedron* **1996**, *52*, 10609.

⁴⁹⁵ a) G. L'Abbé, A. Hassner, *Angew. Chem.* **1971**, *83*, 103. b) G. L'Abbé, Angew. Chem. **1975**, 87, 831. c) T.
L. Gilchrist, *Aldrichimica Acta* **2001**, *34*, 51. d) B. C. G. Soderberg, *Curr. Org. Chem.* **2000**, *4*, 727. e) K.
Banert, *Justus Liebigs Ann. Chem.* **1997**, 2005. f) G. Smolinsky, *J. Org. Chem.* **1962**, *27*, 3557. g) N. D. P.
Singh, C. L. Carter, A. D. Gudmundsdóttir, *Tetrahedron Lett.* **2003**, *44*, 6763. h) T. M. V. D. Pinho e Melo,
C. S. J. Lopes, A. L. Cardoso, A. M. d'A. Rocha Gonsalves, *Tetrahedron* **2001**, *57*, 6203. i) A. Hassner, N. H.
Wiegand, H. E. Gottlieb, *J. Org. Chem.* **1986**, *51*, 3176.

⁴⁹⁶ a) Y. S. P. Alvarez, M. J. Alves, N. Z. Azoia, J. F. Bickley, T. L. Gilchrist, *J. Chem. Soc. Perkin Trans.* 1 2002, 1911. b) A. S. Timen, P. Somfai, *J. Org. Chem.* 2003, *68*, 9958.

⁴⁹⁷ D. Knittel, *Synthesis* **1985**, 186.

⁴⁹⁸ K. Banert, F. Köhler, *Angew. Chem.* **2001**, *113*, 173.

⁴⁹⁹ a) V. V. Rozhkov, A. M. Kuvshinov, S. A. Shevelev, *Org. Prep. Proced. Int.* 2000, *32*, 94. b) V. V. Rozhkov,
A. M. Kuvshinov, V. I. Gulevskaya, I. I. Chervin, S. A. Shevelev, *Synthesis* 1999, 2065. c) B. J. Clark, R. J.
Grayshan, *J. Chem. Res. Miniprint* 1981, 3786.

⁵⁰⁰ a) E. Noelting, O. Kohn, *Chem.-Ztg.* 1894, 18, 1095; b) P. A. S. Smith, J. H. Boyer, *Org. Synth.* 1951, 31, 14. c) M. Chaykovsky, H. G. Adolph, J. *Heterocycl. Chem.* 1991, 28, 1491. d) G. Rauhut, F. Eckert, *J. Phys. Chem. A* 1999, 103, 9086. e) M. R. Kamal, M. M. El-Abadelah, A. A. Mohammad, *Heterocycles* 1999, 50, 819.

VI-2. Literaturverzeichnis

⁵⁰¹ a) R. K. Smalley, *Sci. Synth.* 2002, *11*, 337. b) L. K. Dyall, G. J. Karpa, *Aust. J. Chem.* 1988, *41*, 1231. c) A. Schaarschmidt, *Ber. Dtsch. Chem. Ges.* 1916, *49*, 1635. d) S. L. Klimenko, E. A. Pritchina, N. P. Gritsan, *Chem. Eur. J.* 2003, *9*, 1639. e) L. K. Dyall, J. A. Ferguson, T. B. Jarman, *Aust. J. Chem.* 1996, *49*, 1197. f) P. Molina, A. Tárraga, J. L. López, J. C. Martínez, *J. Organomet. Chem.* 1999, *584*, 147.

⁵⁰² a) K. Isomura, S. Kobayashi, H. Taniguchi, *Tetrahedron Lett.* **1968**, *9*, 3499. b) H. Hemetsberger, D. Knittel, H. Weidmann, *Monatsh. Chem.* **1970**, *101*, 161. c) H. Hemetsberger, D. Knittel, H. Weidmann, Monatsh. Chem. **1969**, *100*, 1599. d) A. R. MacKenzie, C. J. Moody, C.W. Rees, *J. Chem. Soc. Chem. Commun.* **1983**, *22*, 1372. e) I. Borza, S. Kolok, A. Gere, E. Agai-Csongor, B. Agai, G. Tarkanyi, C. Horvath, G. Barta-Szalai, E.Bozo, C. Kiss, A. Bielik, J. Nagy, S. Farkas, G. Domany, *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3859. f) F. Hong, J. Zaidi, B. Cusack, E. Richelson, *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3849. g) K. L. Milkiewicz, D. J. Parks, T. Lu, *Tetrahedron Lett.* **2003**, *44*, 4257. h) F. A. F. da Rosa, R. A. Rebelo, M. G. Nascimento, *J. Braz. Chem. Soc.* **2003**, *14*, 11. i) R. J. Sundberg, H. F. Russell,W. V. Ligon, Jr., L.-S. Lin, *J. Org. Chem.* **1972**, *37*, 719. j) P. A. S. Smith, C. D. Rowe, D.W. Hansen, *Tetrahedron Lett.* **1983**, *24*, 5169. k) A. Tarraga, P. Molina, J. L. López, M. D. Velasco, D. Bautista, P. G. Jones, *Organometallics* **2002**, *21*, 2055. l) S. Kar, S. Lahiri, *J. Indian Chem. Soc.* **1999**, *76*, 607. m) E. T. Pelkey, G. W. Gribble, *Tetrahedron Lett.* **1997**, *38*, 5603.

⁵⁰³ a) T. Martin, C. J. Moody, *J. Chem. Soc. Chem. Commun.* **1985**, 1391. b) T. Martin, C. J. Moody, *J. Chem. Soc. Perkin Trans.* **1 1988**, 241. c) E. V. Sadanandan, S. K. Pillai, M. V. Lakshmikantham, A. D. Billimoria, J. S. Culpepper, M. P. Cava, *J. Org. Chem.* **1995**, *60*, 1800. d) P. Molina, P. M. Fresneda, S. Delgado, *J. Org. Chem.* **2003**, *68*, 489. e) D. L. Boger, R. S. Coleman, *J. Am. Chem. Soc.* **1987**, *109*, 2717. f) R. E. Bolton, C. J. Moody, C. W. Rees, G. Tojo, *J. Chem. Soc. Perkin Trans.* **1 1987**, 931. g) P. M. Fresneda, P. Molina, S. M. Angeles Saez, *Synlett* **1999**, 1651. h) P. M. Fresneda, P. Molina, J. A. Bleda, *Tetrahedron* **2001**, *57*, 2355. i) J. K. MacLeod, L. C. Monahan, *Aust. J. Chem.* **1990**, *43*, 329.

⁵⁰⁴ H. Hemetsberger, I. Spira, W. Schoenfelder, J. Chem. Res. Synop. **1977**, 247.

⁵⁰⁵ a) E. J. Forbes, J. C. Tatlow, R. T. Wragg, *Tetrahedron* **1960**, *16*, 73.b) J. S. Swenton, T. J. Ikeler, B. H.
Williams, *J. Am. Chem. Soc.* **1970**, *92*, 3103.c) O. Meth-Cohn, *Heterocycles* **1980**, *14*, 1497.d) D. G.
Hawkins, O. Meth-Cohn, *J. Chem. Res. Miniprint* **1982**, 1218. e) A. Albini, G. Bettinetti, G. Minoli, *J. Chem. Soc. Perkin Trans. 2* **1999**, 2803.

⁵⁰⁶ C. J. Moody, G. J.Warrellow, *J. Chem. Soc. Perkin Trans.* 1 **1990**, 2929.

⁵⁰⁷ a) F. Ragaini, A. Penoni, E. Gallo, S. Tollari, C. Li Gotti, M. Lapadula, E. Mangioni, S. Sergio, *Chem. Eur. J.* **2003**, *9*, 249. b) a) H. Nozaki, S. Fujita, H. Takaya, R. Noyori, *Tetrahedron* **1967**, *23*, 45. b) N. Torimoto, T.

Shingaki, T. Nagai, Bull. Chem. Soc. Jpn. **1976**, 49, 2572. c) A. G. Anastassiou, H. E. Simmons, F. D. Marsh, J. Am. Chem. Soc. **1965**, 87, 2296.

⁵⁰⁸ a) D. F. Berndt, P. Norris, *Tetrahedron Lett.* 2002, *43*, 3961. b) S. Murata, R. Yoshidome, Y. Satoh, N. Kato, H. Tomioka, *J. Org. Chem.* 1995, *60*, 1428. c) C. J. Moody, J. G. Ward, *J. Chem. Soc. Perkin Trans.* 1
 1984, 2895. d) D. M. B. Hickey, C. J. Moody, C.W. Rees, *J. Chem. Soc. Chem. Commun.* 1982, 3.

⁵⁰⁹ a) F. Kotzyba-Hibert, I. Kapfer, M. Goeldner, *Angew. Chem.* **1995**, *107*. 3391. b) C. A. Gartner, Curr. *Med. Chem.* **2003**, *10*, 671. c) Y. Hatanaka, Y. Sadakane, *Curr. Top. Med. Chem* **2002**, *2*, 271.

- ⁵¹⁰ a) K. G. Pinney, M. P. Mejia, V. M. Villalobos, B. E. Rosenquist, G. R. Pettit, P. Verdier-Pinard, E. Hamel, *Bioorg. Med. Chem. Lett.* 2000, *10*, 2417. b) K. A. H. Chehade, K. Kiegiel, R. J. Isaacs, J. S. Pickett, K. E. Bowers, C. A. Fierke, D. A. Andres, H. P. Spielmann, *J. Am. Chem. Soc.* 2002, *124*, 8206. c) F. Mesange, M. Sebbar, J. Capdevielle, J.-C. Guillemot, P. Ferrara, F. Bayard, M. Poirot, J.-C. Faye, *Bioconjugate Chem.* 2002, *13*, 766. d) P. Maienfisch, J. Haettenschwiler, A. Rindlisbacher, A. Decock, H. Wellmann, H. Kayser, *Chimia* 2003, *57*, 710. e) S. Kagabu, P. Maienfisch, A. Zhang, J. Granda-Minones, J. Haettenschwiler, H. Kayser, T. Maetzke, J. E. Casida, *J. Med. Chem.* 2000, *43*, 5003. f) a) E. Mappus, C. Chambon, B. Fenet, M. Rolland de Ravel, C. Grenot, C. Y. Cuilleron, *Steroids* 2000, *65*, 459. g) J. J. Chambers, H. Gouda, D. M. Young, I. D. Kuntz, P. M. England, *J. Am. Chem. Soc.* 2004, *126*, 13 886. h) F. Teixeira-Clerc, S. Michalet, A. Menez, P. Kessler, *Bioconjugate Chem.* 2003, *14*, 554. i) S. C. Alley, F. T. Ishmael, A. D. Jones, S. J. Benkovic, *J. Am. Chem. Soc.* 2000, *122*, 6126. j) D. Hu, M. Crist, X. Duan, F. A. Quiocho, F. S. Gimble, *J. Biol. Chem.* 2000, *275*, 2705.
- ⁵¹¹ a) F. Teixeira-Clerc, S. Michalet, A. Menez, P. Kessler, *Bioconjugate Chem.* 2003, *14*, 554. b) S. C. Alley,
 F. T. Ishmael, A. D. Jones, S. J. Benkovic, *J. Am. Chem. Soc.* 2000, *122*, 6126.

⁵¹² D. Hu, M. Crist, X. Duan, F. A. Quiocho, F. S. Gimble, J. Biol. Chem. **2000**, 275, 2705.

⁵¹³ S. Langa, J. A. Murphy, *Chem. Soc. Rev.* **2006**, *35*, 146.

⁵¹⁴ a) A. Rauk, P. Alewood, *Can. J. Chem.* **1977**, *55*, 1498. b) E. A. Englund, H. N. Gopi, D. H. Appella, *Org. Lett.*, **2004**, *6*, 213.

⁵¹⁵ H. P. Hemantha, G. Chennakrishnareddy, T. M. Vishwanatha, V. V. Sureshbabu, *Synlett*, **2009**, 407.

⁵¹⁶ a) J. K. Augustine, A. Bombrun, A. B. Mandal, P. Alagarsamy, R. N. Atta, P. Selvam, *Synthesis*, **2011**, 1477. b) H. Lebel, O. Leogane, *Org. Lett.*, **2005**, *7*, 4107. c) H. Lebel, O. Leogane, *Org. Lett.*, **2006**, *8*, 5717.
 ⁵¹⁷ N. A. Le Bel, R. M. Cherluck, E. A. Curtis, *Synthesis* **1973**, 678.

⁵¹⁸ a) C. Bolm, I. Schiffers, I. Atodiresei, C. Hackenberger, *Tetrahedron: Asym.* 2003, 14, 3455.b) C. Bolm, I.
Schiffers, C. L. Dinter, L. Defrére, A. Gerlach, G. Raabe, *Synthesis* 2001, 1719. c) C. Bolm, C. L. Dinter, I.

Schiffers, L. Defrére, Synlett 2001, 1875. d) F. M. Menger, J. Bian, V. A. Azov, Angew. Chem. 2002, 114, 2693.

⁵¹⁹ a) J. B. Hendrickson, T. L. Bogard, M. E. Fisch, S. Grossert, N. Yoshimura, *J. Am. Chem. Soc.* 1974, *96*, 7781. b) F. Z. Basha, S. Hibino, D. Kim, W. E. Pye, T.-T. Wu, S. M. Weinreb, *J. Am. Chem. Soc.* 1980, *102*, 3962.c) E. E. Van Tamelen, J. P. Demers, E. G. Taylor, K. Koller, *J. Am. Chem. Soc.* 1980, *102*, 5424. d) A. S. Kende, D. P. Lorah, R. J. Boatman, *J. Am. Chem. Soc.* 1981, *103*, 1271. e) R. A. Earl, K. P. C. Vollhardt, *J. Am. Chem. Soc.* 1983, *105*, 6991. f) Y. Xia, A. P. Kozikowski, *J. Am. Chem. Soc.* 1989, *111*, 4116. g) D. L. Boger, K. C. Cassidy, S. Nakahara, *J. Am. Chem. Soc.* 1993, *115*, 10733. h) A. B. Charette, B. Cote, Bernard, *J. Am. Chem. Soc.* 1995, *117*, 12721. i) A. B. Smith, I. G. Safonov, R. M. Corbett, *J. Am. Chem. Soc.* 2002, *124*, 11102.

⁵²⁰ H. Wollf, *The Schmidt Reaction, Organic Reactions* **2011**, 307.

⁵²¹ H. Bock, R. Dammel, J. Am. Chem. Soc. **1988**, 110, 5261.

⁵²² a) M. Mascal, C. J. Moody, J. Chem. Soc. Chem. Commun. 1988, 589. c) M. Mascal, C. J. Moody, A. M.
 Z. Slawin, D. J. Williams, J. Chem. Soc. Perkin Trans. 1 1992, 823.

⁵²³ G. F. Alberici, J. Andrieux, G. Adam, M. M. Plat, *Tetrahedron Lett.* **1983**, *24*, 1937.

⁵²⁴ J. H. Boyer, J. Am. Chem. Soc. **1955**, 77, 951.

⁵²⁵ a) J. Aubé, G. L. Milligan, *J. Am. Chem. Soc.* 1991, *113*, 8965. b) J. Aubé, G. L. Milligan, C. J. Mossman, *J. Org. Chem.* 1992, *57*, 1635. c) A.-L. Dhimane, L. Fensterbank, M. Malacria, V. Gracias, G. L. Milligan, J. Aubé, *J. Am. Chem. Soc.* 1995, *117*, 8047. d) G. L. Milligan, C. J. Mossman, J. Aubé, *J. Am. Chem. Soc.* 1995, *117*, 10449.e) J. A. Wendt, J. A Aubé, *Tetrahedron Lett.* 1996, *37*, 1531. f) J. E. Forsee, J. Aubé, *J. Org. Chem.* 1999, *64*, 4381. g) P. Desai, K. Schildknegt, K. A. Agrios, C. Mossman, G. L. Milligan, J. Aubé, *J. Am. Chem. Soc.* 2000, *122*, 7226. h) R. Iyengar, K. Schildknegt, J. Aubé, *Org. Lett.* 2000, *2*, 1625. i) A. Wrobleski, J. Aubé, *J. Org. Chem.* 2001, *66*, 886. j) R. Liu, O. Gutierrez, D. J. Tantillo, J. Aubé, *J. Am. Chem. Soc.* 2012, *134*, 652.

⁵²⁶ K. Sahasrabudhe, V. Gracias, K. Furness, B. T. Smith, C. E. Katz, S. D. Reddy, J. Aubé, *J. Am. Chem. Soc.* **2003**, *125*, 7914. b) C. E. Katz, J.Aubé, *J. Am. Chem. Soc.* **2003**, *125*, 13948.

⁵²⁷ a) J. E. Golden, J. Aubé, Angew. Chem. 2002, 114, 4492. b) A. Wrobleski, K. Sahasrabudhe, J. Aubé, J.
 Am. Chem. Soc. 2004, 126, 5475.

⁵²⁸ N. Kumagai, S. Matsunaga, M. Shibasaki, *Angew. Chem.* **2004**, *116*, 484.

⁵²⁹ a) P. Reddy, B. Varghese, S. Baskaran, Org. Lett. 2003, 5, 583. b) S. Lang, A. R. Kennedy, J. A. Murphy,
 A. H. Payne, Org. Lett. 2003, 5, 3655. c) P. Magnus, K. S. Matthews, V. Lynch, Org. Lett. 2003, 5, 2181.

⁵³⁰ D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. **2005**, 127, 11260.

⁵³¹ a) W. H. Pearson, J. M. Schkeryantz, *Tetrahedron Lett.* 1992, *33*, 5291. b) W. H. Pearson, R. Walavalkar, J. M. Schkeryantz, W.-K. Fang, J. D. Blickensdorf, *J. Am. Chem. Soc.* 1993, *115*, 10183. c) W. H. Pearson, W.-K. Fang, *J. Org. Chem.* 1995, *60*, 4960. d) W. H. Pearson, B. M. Gallagher, *Tetrahedron* 1996, *52*, 12039. e) W. H. Pearson, *J. Heterocycl. Chem.* 1996, *33*, 1489. f) W. H. Pearson, W.-K. Fang, *J. Org. Chem.* 2000, *65*, 7158. g) W. H. Pearson, W.-K. Fang, *J. Org. Chem.* 2001, *66*, 6838. h) W. H. Pearson, R. Walavalkar, Tetrahedron 2001, 57, 5081. i) W. H. Pearson, D. A. Hutta, W.-K. Fang, *J. Org. Chem.* 2000, *65*, 8326.

⁵³² a) P. Gu, Y.-M. Zhao, Y. Q. Tu, Y. Ma, F. Zhang, *Org. Lett.* **2006**, *8*, 5271. b) M. Puppala, A. Murali, S. Baskaran, *Chem. Commun.* **2012**, *48*, 5778.

⁵³³ a) Z.-H.Chen, Y.-Q. Tu, S.-Y. Zhang, F.-M. Zhang, *Org. Lett.* 2011, *13*, 724. b) A. M. Meyer, C. E. Katz, S.-W. Li, D. V. Velde, J. Aubé, *Org. Lett.* 2010, *12*, 1244.

⁵³⁴ a) P. Dembech, G. Seconi, A. Ricci, *Chem. Eur. J.* **2000**, *6*, 1281. b) B. M. Trost, W. H. Pearson, *J. Am. Chem. Soc.* **1983**, *105*, 1054.c) G.W. Kabalka, G. Li, *Tetrahedron Lett.* **1997**, *38*, 5777.

⁵³⁵ a) H. Wamhoff, W. Wambach, *Chem.-Ztg.* **1989**, *113*, 11. b) O. Dimroth, *Justus Liebigs Ann. Chem.* **1909**, *364*, 183.

⁵³⁶ a) H. M. S. Kumar, B. V. S. Reddy, S. Anjaneyulu, J. S. Yadav, *Tetrahedron Lett.* 1999, *40*, 8305. b) J. S.
 Yadav, C. Madhuri, B. V. S. Reddy, G. S. K. K. Reddy, G. Sabitha, *Synth. Commun.* 2002, *32*, 2771.

⁵³⁷ a) W. Q. Tian, Y. A. Wang, *J. Org. Chem.* **2004**, *69*, 4299. b) F. L. Lin, H. M. Hoyt, H. v. Halbeek, R. G. Bergman, C. R. Bertozzi, *J. Am. Chem. Soc*, **2005**, *127*, 2686.

⁵³⁸ H. Staudinger, J. Meyer, *Helv. Chim. Acta* **1919**, *2*, 635.

⁵³⁹ a) H. A. van Kalkeren, J. J. Bruins, F. P. J. T. Rutjes, F. L. van Delft, *Adv. Synth. Catal.* 2012, *354*, 1417. b)
c) Y. G. Gololobov, L. F. Kasukhin, Tetrahedron 1992, 48, 1353.

⁵⁴⁰ a) E. Arstad, A. G. M. Barrett, B. T. Hopkins, J. Koebberling, *Org. Lett.*, **2002**, 1975. b) S. Ayesa, B. Samuelsson, B. Classon, *Synlett*, **2008**, 89. c) B. Chen, A. K. Mapp, *J. Am. Chem. Soc.* **2004**, *126*, 5364. d) V. Maraval, R. Laurent, B. Donnadieu, M. Mauzac, A.-M. Caminade, J.-P. Majoral, *J. Am. Chem. Soc.* **2000**, *122*, 2499. e) M. S. Balakrishna, R. M. Abhyankar, M. G. Walawalker, *Tetrahedron Lett.* **2001**, *42*, 2733. f) N. G. Andersen, P. D. Ramsden, D. Che, M. Parvez, B. A. Keay, *J. Org. Chem.* **2001**, *66*, 7478. h) J. R. Fuchs, R. L. Funk, *J. Am. Chem. Soc.* **2004**, *126*, 5068. i) F. Palacios, A. M. Ochoa de Retana, J. Pagalday, *Eur. J. Org. Chem.* **2003**, 913. j) Y. He, R. J. Hinklin, J. Chang, L. L. Kiessling, *Org. Lett.* **2004**, *6*, 4479. k) S. K. Rastogi, G. K. Srivastava, S. K. Singh, R. K. Grover, R. Roy, B. Kundu, *Tetrahedron Lett.* **2002**, *43*, 8327.
⁵⁴¹ P. T. Nyffeler, C.-H. Liang, K. M. Koeller, C.-H. Wong, *J. Am. Chem. Soc.* **2002**, *124*, 10773.

⁵⁴² a) P. M. Fresneda, P. Molina, *Synlett* **2004**, 1. b) H. Wamhoff, G. Richardt, S. Stölben, *Adv.Heterocycl. Chem.* **1995**, *33*, 159

⁵⁴³ a) P. Monilia, M. J. Vilaplana, *Synthesis* 1994, 1197. b) F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, J.
M. de los Santos, *Tetrahedron* 2007, *63*, 523. c) S. Eguchi, Y. Matsushita, K. Yamashita, *Org. Prep.Proc. Int.* 1992, *24*, 209.

⁵⁴⁴ S. P. Marsden, A. E. McGonagle, B. McKeever-Abbas, *Org. Lett.* **2008**, *10*, 2589.

⁵⁴⁵ a) S. Eguchi, T. Suzuki, T. Okawa, Y. Matsushita, E. Yashima, Y. Okamoto, *J. Org. Chem.* 1996, *61*, 7316.
b) S. Eguchi, H. Takeuchi, Y. Matsushita, *Heterocycles* 1992, *33*, 153. c) S. Eguchi, K. Yamashita, Y. Matsushita, A. Kakehi, *J. Org. Chem.* 1995, *60*, 4006. d) P. Molina, I. Díaz, A. Tarraga, *Tetrahedron* 1995, *51*, 5617. e) A. Kamal, K. Laxma Reddy, V. Devaiah, N. Shankaraiah, *Synlett* 2004, 2533. f) P. Cledera, C. Avendabo, J. C. Menúndez, *J. Org. Chem.* 2000, *65*, 1743. g) D. R.Williams, M. G. Fromhold, J. D. Earley, *Org. Lett.* 2001, *3*, 2721.

⁵⁴⁶ a) I. Bosch, A. Gonzalez, F. Urpi, J. Vilarrasa, *J. Org. Chem.* **1996**, *61*, 5638. b) S.-D. Park, J.-H. Oh, D.
Lim, *Tetrahedron Lett.* **2002**, *43*, 6309. c) J. Burés, M. Martín, F. Urpí, J. Vilarrasa, *J. Org. Chem.*, **2009**, *74*, 2203.

⁵⁴⁷ a) E. Saxon, C. R. Bertozzi, *Science* **2000**, *287*, 2007. b) K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 19.

⁵⁴⁸ a) S. S. van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angew. Chem. Int. Ed. 2011, 50, 8806. b) M.
Köhn, R. Breinbauer, Angew. Chem. Int. Ed. 2004, 43, 3106. c) C. I. Schilling, N. Jung, M. Biskup, U.
Schepers, S. Bräse, Chem. Soc. Rev. 2011, 40, 4840.

⁵⁴⁹ a) P. Farkaš, S.Bystrický, *Chemical Papers* **2010**, *64*, 683. b) G. T. Hermanson, *Bioconjugate Techniques*, Academic Press, San Diego, **1996**.

⁵⁵⁰ a) E. M. Sletten, C. R. Bertozzi, *Angew. Chem.* **2009**, *121*, 7108. b) M. F. Debets, C. W. J. van der Doelen, F. P. J. T. Rutjes, F. L. van Delft, *ChemBioChem* **2010**, *11*, 1168. c) L.I. Willens, W. A. van der Linden, N. Li, K.-Y. Li, N. Liu, S. Hoogendoorn, G. A. van der Marel, B. I. Florea, H. S. Overkleeft, *Acc. Chem. Res.* **2011**, *44*, 718. d) C. P. R. Hackenberger, D. Schwarzer, *Angew. Chem.* **2008**, *120*, 10182.

⁵⁵¹ E. Saxon, S. Luchansky, H. C. Hang, C. Yu, S. C. Lee, C. R. Bertozzi, *J. Am. Chem. Soc.* **2002**, *124*, 14893.

⁵⁵² a) E. Saxon, J. I. Armstrong, C. R. Bertozzi, *Org. Lett.* 2000, *2*, 2141. b) B. L. Nilsson, L. L. Kiessling, R. T. Raines, *Org. Lett.* 2000, *2*, 1939. c) B. L. Nilsson, L. L. Kiessling, R. T. Raines, *Org. Lett.* 2001, *3*, 9. d) M. B. Soellner, B. L. Nilsson, R. T. Raines, *J. Org. Chem.* 2002, *67*, 4993.

⁵⁵³ M. B. Soellner, B. L. Nilsson, R. T. Raines, J. Am. Chem. Soc. **2006**, 128, 8820.

⁵⁵⁴ a) G. J. Cotton, T.W. Muir, *Chem. Biol.* 1999, *6*, R247. b) B. L. Nilsson, R. J. Hondal, M. B. Soellner, R. T. Raines, *J. Am. Chem. Soc.* 2003, *125*, 5268. c) R. Merkx, D. T. S. Rijkers, J. Kemmink, R. M. J. Liskamp, *Tetrahedron Lett.* 2003, *44*, 4515. d) O. David, W. J. N. Meester, H. BierNugel, H. E. Schoemaker, H. Hiemstra, J. H. van Maarseveen, *Angew. Chem.* 2003, *115*, 4509.

⁵⁵⁵ a) T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau, *Justus Liebigs Ann. Chem.* **1953**, *583*, 129. b)
P. E. Dawson, T.W. Muir, I. Clark-Lewis, S. B. H. Kent, *Science* **1994**, *266*, 776.

⁵⁵⁶ a) R. Serwa, I. Wilkening, G. Del Signore, M. Mühlberg, I. Claussnitzer, C. Weise, M. Gerrits, C. P. Hackenberger, *Angew. Chem. Int. Ed.* 2009, *48*, 8234. b) V. Böhrsch, R. Serwa, P. Majkut, E. Krause, C. P. Hackenberger, *Chem. Commun.* 2010, *46*, 3176. c) R. Serwa, P. Majkut, B. Horstmann, J.-M. Swiecicki, M. Gerrits, E. Krause, C. P. R. Hackenberger, *Chem. Sci.* 2010, *1*, 596. d) M. R. J. Valleé, P. Majkut, I. Wilkening, C. Weise, G. Müller, C. P. R. Hackenberger, *Org. Lett.* 2011, *13*, 5440.

⁵⁵⁷ M. Robert J. Valleé, Lukas M. Artner, J. Dernedde, C. P. R. Hackenberger, Angew. Chem. 2013, 125, 9682.

⁵⁵⁸ a) A. Michaelis, R. Kaehne, *Chem. Ber.* 1898, *31*, 1048. b) A. E. Arbuzov, *J. Russ. Phys. Chem. Soc.* 1906, *38*, 687. c) A. E. Arbuzov, *Chem. Zentr.* 1906, *II*, 1639. d) A. K. Bhatacharya, G. Thyagarman, *Chem. Rev.* 1981, *81*,415.

⁵⁵⁹ a) K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 19. b) P. V. Chang, J. A. Prescher, M. J. Hangauer, C. R. Bertozzi, J. Am. Chem. Soc. 2007, 129, 8400. c) C. C.-Y. Wang, T. S. Seo, Z. Li, H. Ruparel, J. Ju, Bioconjugate Chem. 2003, 14, 697. d) A. E. Speers, B. F. Cravatt, ChemBioChem 2004, 5, 41. e) H. Ovaa, P. F. van Swieten, B. M. Kessler, M. A. Leeuwenburgh, E. Fiebiger, A. M. C. H. van den Nieuwendijk, P. J. Galardy, G. A. van der Marel, H. L. Ploegh, H. S. Overkleeft, Angew. Chem. 2003, 115, 3754. f) H. C. Hang, C. Yu, D. L. Kato, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2003, 100, 14846. g) H. C. Hang, C. Yu, M. R. Pratt, C. R. Bertozzi, J. Am. Chem. Soc. 2004, 126, 6. h) M. B. Soellner, K. A. Dickson, B. L. Nilsson, R. T. Raines, J. Am. Chem. Soc. 2003, 125, 11790. i) M. Köhn, R. Wacker, C. Peters, H. Schröder, L. Soulere, R. Breinbauer, C. M. Niemeyer, H. Waldmann, Angew. Chem. 2003, 115, 6010. j) M. L. Tsao, F. Tian, P. G. Schultz, ChemBioChem 2005, 6, 2147. k) C. C. Wang, T. S. Seo, Z. Li, H. Ruparel, J. Ju, Bioconjugate Chem. 2003, 14, 697. m) L. R. Comstock, S. R. Rajski, J. Am. Chem. Soc. 2005, 127, 14136. n) D. J. Vocadlo, G. J. Davies, R. Laine, S. G. Withers, Nature 2001, 412, 835. o) N. Nepomniaschiy, V. Grimminger, A. Cohen, S. DiGiovanni, H. A. Lashuel, A. Brik, Org. Lett. 2008, 10, 5243. p) N. Umezawa, N.Matsumoto, S. Iwama, N. Kato, T. Higuchi, Bioorg. Med. Chem. 2010, 18, 6340. q) D. M. M. Jaradat, H. Hamouda, C. P. R. Hackenberger, Eur. J. Org. Chem. 2010, 5004. r) K. K. Hall, K. M. Gattas-Asfura, C. L. Stabler, Acta Biomater. 2011, 7, 614.

VI-2. Literaturverzeichnis

⁵⁶⁰ a) J. A Prescher, C. R Bertozzi, *Nature Chem. Biol.* **2005**, *1*, 13. b) E. M. Sletten, C. R. Bertozzi, *Acc. Chem. Res.* **2011**, *44*, 666.

⁵⁶¹ a) S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi, *Science* **2008**, *320*, 664. b) H. C. Hang, J. Loureiro, E. Spooner, A. W. van der Velden, Y. M. Kim, A. M. Pollington, R. Maehr, M. N. Starnbach, H. L. Ploegh, *ACS Chem. Biol.* **2006**, *1*, 713. c) G. A. Lemieux, C. L. De Graffenried, C. R. Bertozzi, *J. Am. Chem. Soc.* **2003**, *125*, 4708 d) M. J. Hangauer, C. R. Bertozzi, *Angew. Chem. Int. Ed.* **2008**, *47*, 2394. e) A. Watzke, M. Gutierrez-Rodriguez, M. Kohn, R. Wacker, H. Schroeder, R. Breinbauer, J. Kuhlmann, K. Alexandrov, C. M. Niemeyer, R. S. Goody, H. Waldmann, *Bioorg. Med. Chem.* **2006**, *14*, 6288. f) J. A. Prescher, D. H. Dube, C. R. Bertozzi, *Nature* **2004**, *430*, 873. g) D. H. Dube, J. A. Prescher, C. N. Quang, C. R. Bertozzi, *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103*, 4819.

⁵⁶² J. Condeelis, R. Weissleder, *Cold Spring Harb Perspect Biol.* **2010**, *2*, a003848.

⁵⁶³ a) R. Huisgen, Angew. Chem. **1963**, 75, 604. b) A. Michael, J. Prakt. Chem. **1893**, 48, 94.

⁵⁶⁴ a) R. Huisgen, R. Grashey, J. Sauer, *Chemistry of Alkenes* (Hrsg.: S. Patai), Wiley-Interscience, New York, **1964**, 806. b) C.-K. Sha, A. K. Mohanakrishnan, *Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products* (Hrsg.: A. Padwa, W. H. Pearson), Wiley, New York, **2003**, 623. c) P. Schneider, J. H. Schomaker, S. Deming, W. J. Libbey, G. P. Nowack, *J. Am. Chem. Soc.* **1965**, *87*, 306. d) P. P. Nicholas, *J. Org. Chem.* **1975**, *40*, 3396. e) A. Krasinski, V. V. Fokin, K. B. Sharpless, *Org. Lett.* **2004**, *6*, 1237. f) K. Harju, M. Vahermo, I. Mutikainen, J. Yli-Kauhaluoma, *J. Comb. Chem.* **2003**, *5*, 826. g) F. Z. Dörwald, *Chem. Abstr.* **1997**, *128*, 13278.

⁵⁶⁵ W. R. Carpenter, J. Org. Chem. **1962**, 27, 2085.

⁵⁶⁶ a) R. Huisgen, J. Org. Chem. 1968, 33, 2291. b) a) H. Quast, L. Bieber, *Tetrahedron Lett.* 1976, *17*, 1485.
c) M. M. Krayushkin, A. M. Beskopyl'nyi, S. G. Zlotin, O. A. Luk'yanov, V. M. Zhulin, *Izv. Akad. Nauk SSSR Ser. Khim.* 1980, *11*, 2668; c) Z. P. Demko, K. B. Sharpless, *Angew. Chem.* 2002, *114*, 2214. d) Z. P. Demko, K. B. Sharpless, *Angew. Chem.* 2002, *114*, 2214. d) Z. P. Demko, K. B. Sharpless, *Angew. Chem.* 2002, *114*, 2214. d) Z. P. Demko, K. B. Sharpless, *Angew. Chem.* 2002, *114*, 2217. e) Z. Rappoport, (Ed.) *The Chemistry of the Cyano Group* Interscience, London, 1970, 351. f) R. Fusco, L. Garanti, G. Zecchi, *J. Org. Chem.* 1975, *40*, 1906. g) L. Garanti, G. Zecchi, *J. Org. Chem.* 1980, *45*, 4767. h) B. Davis, T.W. Brandstetter, C. Smith, L. Hackett, B. G. Winchester, G. W. J. Fleet, *Tetrahedron Lett.* 1995, *36*, 7507. i) T. C. Porter, R. K. Smalley, M. Teguiche, B. Purwono, *Synthesis* 1997, 773. j) F. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, *J. Am. Chem. Soc.* 2002, *124*, 12210.

⁵⁶⁷ a) S. J. Wittenberge, Org. Prep. Proc. Int. **1994**, 26, 499.

⁵⁶⁸ a) G. A. Patani, E. J. LaVoie, *Chem. Rev.* **1996**, *96*, 3147. b) C. D. Siebert, *Chemie in unserer Zeit*, **2004**, *38*, 320. c) H. Offermanns, *Nach. Chem.* **2011**, *59*, 115.

⁵⁶⁹ a) R. J. Herr, *Bioorg. Med. Chem.* 2002, *10*, 3379. b) A. J. A. Cobb, D. A. Longbottom, D. M. Shaw, S. V. Ley, *Chem. Commun.* 2004, 1808. c) C. Biot, H. Bauer, R. H. Schirmer, E. Davioud-Charvet, *J. Med. Chem.* 2004, *47*, 5972. d) W.-H. Song, M.-M.Liu, D.-W. Zhong, Y.-I. Zhu, M. Bosscher, L. Zhou, D.-Y. Ye, Z.-H. Yuan, *Bioorg. Med. Chem. Lett.* 2013, *23*, 4528.

- ⁵⁷⁰ R. N. Butler, *Comprehensive Heterocyclic Chemistry II*, Bd. 4 (Hrsg.: R. C. Storr), Pergamon, Oxford, **1996**, 621 und 905.
- ⁵⁷¹ K. Banert, M. Hagedorn, *Angew. Chem.* **1989**, *101*, 1710.
- ⁵⁷² a) T. Eicher, S. Hauptmann, *The Chemistry of Heterocycles*, 2nd Ed. Wiley-VCH, Weinheim, **2008**. b) J. A. Joule, K. Mills, *Heterocyclic Chemistry*, 5th Ed., Wiley and Sons, Susexx, **2010**.
- ⁵⁷³ F. R. Benson, *Heterocyclic Compounds*, Bd. 8 (Hrsg.: R. C. Elderfield), Wiley, New York, **1966**.
- ⁵⁷⁴ L. V. Myznikov, A. Hrabalek, G. I. Koldobskii, *Chem. Heterocycl. Comp.* **2007**, *43*, 1.
- ⁵⁷⁵ M. V. Gil, M. J. Arévalo, Ó.López, *Synthesis* **2007**, 11, 1589.
- ⁵⁷⁶ H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* **2001**, *40*, 2004.
- ⁵⁷⁷ C. R. Becer, R. Hoogenboom, U. S. Schubert, *Angew. Chem.* **2009**, *121*, 4998.
- ⁵⁷⁸ a) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, *Proc. Natl. Acad. Sci. USA* 2007, *104*, 16793. b) J. A. Johnson, J. M. Baskin, C. R. Bertozzi, J. F. Koberstein, N. J. Turro, *Chem. Commun.* 2008, 3064. c) J. A. Codelli, J. M. Baskin, N. J. Agard, C. R. Bertozzi, *J. Am. Chem. Soc.* 2008, *130*, 11486. d) E. M. Sletten, C. R. Bertozzi, *Org. Lett.* 2008, *10*, 3097. e) J. M. Baskin, C. R. Bertozzi, *QSAR Comb. Sci.* 2007, *26*, 1211.
- ⁵⁷⁹ a) F. Shi, J. P. Waldo, Y. Chen, R. C. Larock, *Org. Lett.* **2008**, *10*, 2409. b) L. Campbell-Verduyn, P. H. Elsinga, L. Mirfeizi, R. A. Dierckx, B. L. Feringa, *Org. Biomol. Chem.* **2008**, *6*, 3461.
- ⁵⁸⁰: a) Z. Li, T. S. Seo, J. Ju, *Tetrahedron Lett.* 2004, 45, 3143. b) S. S. van Berkel, A. J. Dirkes, M. F. Debets,
 F. L. van Delft, J. J. L. Cornelissen, R. J. M. Nolte, F. P. J. Rutjes, *ChemBioChem* 2007, 8, 1504. c) S. S. van Berkel, A. J. Dirks, S. A. Meeuwissen, D. L. L. Pingen, O. C. Boerman, P. Laverman, F. L. van Delft, J. J. L. Cornelissen, F. P. J. Rutjes, *ChemBioChem* 2008, 9, 1805. d) S. Sawoo, P. Dutta, A. Chakraborty, R. Mukhopadhyay, O. Bouloussa, A. Sarkar, *Chem. Commun.* 2008, 5957
- ⁵⁸¹ V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, *Angew. Chem.* **2002**, *114*, 2708.
- ⁵⁸² C. W. Tornøe, C. Christensen, M. Meldal, *J. Org. Chem.* **2002**, *67*, 3057.
- ⁵⁸³ F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, *J. Am. Chem. Soc.*, **2005**, *127*, 210.
- ⁵⁸⁴ S. G. Agalave, S. R. Maujan, V. S. Pore, *Chem. Asian J.* **2011**, *6*, 2696.

⁵⁸⁵ a) P. Thirumurugan, D. Matosiuk, K. Jozwiak, *Chem. Rev.* 2013, *113*, 4905. b) E. Lallana, F. Fernandez-Trillo, A. Sousa-Herves, R. Riguera, E. Fernandez-Megia, *Pharm. Res.* 2012, *29*, 902. c) J. Hou, X. Liu, J. Shen, G.Zhao, P. G. Wang, *Expert Opinion in Drug Discovery* 2012, *7*, 489. d) X. Zhang, Y. Zhang, *Molecules* 2013, *18*, 7145. e) H P. K. Avti, D. Maysinger, A. Kakkar, *Molecules* 2013, *18*, 9531. f) H. Li, R. Aneja, I. Chaiken, *Molecules* 2013, *18*, 9797. g) S. K. Mamidyala, M. G. Finn, *Chem. Soc. Rev.* 2010, *39*, 1252. h) C. Le Droumaguet, C. Wang, Q. Wang, *Chem. Soc. Rev.* 2010, *39*, 1233. i) H. C. Kolb, K. B. Sharpless, *Drug Discovery Today* 2003, *8*, 1128. j) J. Thunimadathil, *Chimica Oggi - Chemistry Today*, 2013, *31*, 34. k) C. D. Hein, X.-M. Liu, D. Wan, *Pharm. Res.* 2008, *25*, 2216. l) E. Lallana, A. Sousa-Herves, F. Fernandez-Trillo, R. Riguera, E. Fernandez-Megia, *Pharm. Res.* 2012, *29*, 1. m) G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, A. A. Genazzani, *Med. Res. Rev.* 2008, *28*, 278.

⁵⁸⁶ A. James Link, Mandy K. S. Vink, David A. Tirrell, *J. Am. Chem. Soc.* **2004**, *126*, 10598.

⁵⁸⁷ a) N. Li, W. H. Binder, *J. Mater. Chem.* **2011**, *21*, 16717. b) A. Uliniuc, M. Popa, T. Hamaide, M. Dobromir, *Cellulose Chem. Technol.* **2012**, *46*, 1. c) J.-F. Lutz, *Angew. Chem. Int. Ed.* **2007**, *46*, 1018.

⁵⁸⁸ a) H. Togo, S. Iida, *Synlett* **2006**, 2159. b) A. K. Banerjee, W. Vera, H. Mora, M. S. Laya, L. Bedoya, E. V. Cabrera, *J. Sci. Ind. Res.* **2006**, *65*, 299. c) A. N. French, S. Bissmire, T. Wirth, *Chem. Soc. Rev.* **2004**, *33*, 354.

⁵⁸⁹ F. C. Kupper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. L. Lu, M. Jonsson, L. Kloo, *Angew. Chem. Int. Ed.* 2011, *50*, 11598.

⁵⁹⁰ a) F. R.Cruickshank, S. W. Benson, J. Phys. Chem. **1969**, 73, 733. b) R. A. Miller, R. S. Hoerrner, Org. Lett. **2003**, 5, 285. c) N. Mori, H. Togo, Synlett **2004**, 880. d) N. Mori, H. Togo, Tetrahedron **2005**, 61, 5915. e) P. Gogoi, D. Konwar, Org. Biomol. Chem. **2005**, 3, 3473. f) F. R. Cruickshank, S. W. Benson, J. Phys. Chem. **1969**, 73, 733. g) N. Mori, H. Togo, Synlett **2005**, 1456.

⁵⁹¹ a) T. D. Inch, R. V. Ley, P. Rich, J. Chem. Soc. C 1968, 1693. b) S. Yamada, D. Morizono, K. Yamamoto, *Tetrahedron Lett.* 1992, *33*, 4329. c) K. Yamamoto, M. Shimizu, S. Yamada, J. Org. Chem. 1992, *57*, 33. d)
A. Misono, T. Osa, S. Koda, *Bull. Chem. Soc. Jpn.* 1966, *39*, 854. e) M. Misono, T. Osa, S. Koda, *Bull. Chem. Soc. Jpn.* 1967, *40*, 2875. f) S. Talukdar, J. Hsu, T. Chou, S. Fang, *Tetrahedron Lett.* 2001, *42*, 1103. g) J. Shie, J. Fang, *J. Org. Chem.* 2003, *68*, 1158.

⁵⁹² a) A. K. Banerjee, M. S. Laya, E. V. Cabrera, *Curr. Org. Chem.* **2011**, *15*, 1058. b) B. Godoi, R. F. Schumacher, G. Zeni, *Chem. Rev.* **2011**, *111*, 2937.

⁵⁹³ a) K. Ramalinga, P. Vijayalakshmi, T. N. B. Kaimal, *Tetrahedron Lett.* 2002, *43*, 879. b) S. P. Chavan, R.
Kale, K. Shivasankar, S. I. Chandake, S. B. Benjamin, *Synthesis* 2003, 2695.
⁵⁹⁴ a) N. Deka, D. J. Kalita, R. Borah, J. C. Sarma, *J. Org. Chem.* **1997**, *62*, 1563. b) N. Deka, J. C. Sarma, *J. Org. Chem.* **2001**, *66*, 1947. c) B. Mukhopadhyay, K. P. R. Kartha, D. A. Russell, R. A. Field, *J. Org. Chem.* **2004**, *69*, 7758.

⁵⁹⁵ a) C. Prévost, *Compt. Rend.* **1933**, *196*, 1129. b) C. V. Wilson, *Org. React.* **1950**, *9*, 350.

⁵⁹⁶ R. B. Woodward, F. V. Brutcher, *J. Am. Chem. Soc.* **1958**, *80*, 209.

⁵⁹⁷ a) A. D. Evans, J. H. Schauble, *Synthesis* 1986, 727. b) T. Nobuta, S.-i. Hirashima, N. Tada, T.Miura, A. Itoh, *Synlett* 2010, 2335. c) T. Nobuta, S.-i. Hirashima, N. Tada, T. Miura, A. Itoh, *Org. Lett.* 2011, *13*, 2576. d) J. C. Lee, J. Kim, H. J. Park, B. Kwag, S. B. Lee, *Bull. Korean Chem. Soc.* 2010, *31*, 1385. e) G. Cardillo, M. Shimizu, *J. Org. Chem.* 1977, *42*, 4268.

⁵⁹⁸ a) D. Yin, M. Gao, N. She, S.Hu, A. Wu, Y. Pan, *Synthesis* **2007**, 3113. b) Z. Wang, G. Yin, J. Qin, M. Gao,
L. Cao, A. Wu, *Synthesis*, **2008**, 3565. c) J. Barluenga, J. M. Martinez-Gallo, C. Najera, M. Yus, *Synthesis* **1986**, 678. d) S. D. Higgins, C. B. Thomas, *J. Chem. Soc. Perkin Trans.1* **1982**, 235. e) C. A. Horiuchi, J. Y. Satoh, *Synthesis* **1981**, 312. f) C. A. Horiuchi, S. Kiji, *Bull. Chem. Soc. Jpn.* **1997**, *70*, 421. g) C. A. Horiuchi,
S. Kiji, *Chem. Lett.* **1988**, 31. h) J. Pavlinac, S. Stavber, M. Zupan, *Synthesis* **2006**, 2603. i) J. Pavlinac, S. Stavber, M. Zupan, *J. Org. Chem.* **2006**, *71*, 1027. j) M. Jereb, S. Stavber, M. Zupan, *Synthesis* **2003**, 853. k) S. Stavber, M. Jereb, M. Zupan, *Chem. Commun.* **2002**, 488. l) A. Bekaert, O. Barberan, M. Gervais, J. D. Brion, *Tetrahedron Lett.* **2000**, *41*, 2903. m) J. P. Whang, S. G. Yang, Y. H. Kim, *Chem. Commun.* **1997**, 1355. n) J. M. Kim, J. E. Na, J. N. Kim, *Tetrahedron Lett.* **2003**, *44*, 6317. o) C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P. M. Wovkulich, M. R. Uskoković, *Tetrahedron Lett.* **1992**, *33*, 917. p) M. E. Krafft, J. W. Cran, *Synlett* **2005**, 1263. q) R. Benhida, P. Blanchard, J. L. Fourrey, *Tetrahedron Lett.* **1998**, *39*, 6849.

⁵⁹⁹ a) T. Okamoto, T. Kakinami, T. Nishimura, I. Hermawan, S. Kajigaeshi, *Bull. Chem. Soc. Jpn.* 1992, 65, 1731. b) J. Barluenga, M. Marco-Arias, F. González-Bobes, A. Ballesteros, J. M. González, *Chem. Commun.* 2004, 2616. c) M. M. Reddy, M. A. Kumar, P. Swamy, N. Narender, *Tetrahedron Lett.* 2011, 52, 6554.

⁶⁰⁰ a) N. Kornblum, W. J. Jones, G. J. Anderson, *J. Am.Chem. Soc.* **1959**, *81*, 4113. b) N. Kornblum, J. W.
Powers, G. J. Anderson, W. J. Jones, H. O. Larson, O. Levand, W. M. Weaver, *J. Am.Chem. Soc.* **1957**, *79*, 6562.

⁶⁰¹ a) M. Gao, Y. Yang, Y.. Wu, C. Deng, W. Shu, D. Zhang, L. Cao, N. She, A. Wu, *Org. Lett.* 2010, *12*, 4026.
b) W. Xue, Y. Guo, F.Gao, H. Li, A. Wu, *Org. Lett.* 2013, *15*, 890. c) G. Yin, Z. Wang, A. Chen, M. Gao, A. Wu, Y. Pan, *J. Org. Chem.* 2008, *73*, 3377. d) Q.Gao, Z. Fei, Y. Zhu, M. Lian, F. Jia, M. Liu, N. She, A. Wu, *Tetrahedron* 2013, *69*, 22.

VI-2. Literaturverzeichnis

⁶⁰² a) A. W. Erian, S. M. Sherif, H. M. Gaber, *Molecules* **2003**, *8*, 793. b) N. De Kimpe, R. Verhé, *The Chemistry of* α-*Haloketones*, α-*Haloaldehydes and* α-*Haloimines*; (Patai, S.; Rapporot, Z., Eds.) Interscience, New York, **1988**. c) K.i Takami, S.-i. Usugi, H. Yorimitsu, K. Oshima, *Synthesis* **2005**, 824.

⁶⁰³ a) Y. Zhu, M. Liu, F. Jia, J. Yuan, Q. Gao, M. Lian, A. Wu, Org. Lett. **2012**, *14*, 3392. b) G. Yin, B. Zhou, X.
Meng, A. Wu, Y.Pan, Org. Lett. **2006**, *8*, 2245.

⁶⁰⁴ P. Finkenbeiner, B. J. Nachtsheim, *Synthesis* **2013**, *45*, 979.

⁶⁰⁵ a) Z. Q. Lao, W. H. Zhong, Q. H. Lou, Z. J. Li, X. B. Meng, *Org. Biomol. Chem.* **2012**, *10*, 7869. b) Z. J. Liu, J. Zhang, S. L. Chen, E. B. Shi, Y. Xu, X. B. Wan, B. Angew. Chem. Int. Ed. 2012, 51, 3231. c) H. M. Li, J. Xie, Q. C. Xue, Y. X. Cheng, C. J. Zhu, Tetrahedron Lett. 2012, 53, 6479. d) B. Tan, N. Toda, C. F. Barbas, Angew. Chem. Int. Ed. 2012,51, 12538. e) K. R. Reddy, M. Venkateshwar, C. U. Maheswari, S. Prashanthi, Synth. Commun. 2009, 40, 186. f) K. R. Reddy, C. U. Maheswari, M. Venkateshwar, M. L. Kantam, Eur. J. Org. Chem. 2008, 3619. g) K. R. Reddy, C. U. Maheswari, M. Venkateshwar, S. Prashanthi, M. L. Kantam, Tetrahedron Lett. 2009, 50, 2050. h) K. R. Reddy, C. U. Maheswari, M. Venkateshwar, M. L.Kantam, Adv. Synth. Catal. 2009, 351, 93. i) R. A. Kumar, C. U. Maheswari, S. Ghantasala, C. Jyothi, K. R. Reddy, Adv. Synth. Catal. 2011, 353, 401. j) M. Lamani, P. Devadig, K. R. Prabhu, Org. Biomol. Chem. 2012, 10, 2753. k) J. Huang, L.-T. Li, H.-Y. Li, E. Husan, P. Wang, B. Wang, Chem. Commun. 2012, 48, 10204. I) H. Zaimoku, T. Hatta, T. Taniguchi, H. Ishibashi, Org. Lett. 2012, 14, 6088. m) W. Ge, Y. Wei, Green Chem. 2012, 14, 2066. n) J. Feng, S. Liang, S.-Y. Chen, J. Zhang, S.-S. Fu, X.-Q. Yu, Adv. Synth. Catal. 2012, 354, 1287. o) X. Li, X. Xu, C. Zhou, Chem. Commun. 2012, 48, 12240. p) E. Shi, Y. Shao, S. Chen, H. Hu, Z. Liu, J. Zhang, X. Wan, Org. Lett. 2012, 14, 3384. q) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu, X.Wan, Chem. Eur. J. 2011, 17, 4085. r) Q. Wang, C. Wan, Y. Gu, J. Zhang, L. Gao, Z. Wang, Green Chem. 2011, 13, 578. s) Y. Yan, Z. Wang, Chem. Commun. 2011, 47, 9513. t) Y. Yan, Y. Zhang, C. Feng, Z. Zha, Z. Wang, Angew. Chem. Int. Ed. 2012, 51, 8077. u) C. Wan, L. Gao, Q. Wang, J. Zhang, Z. Wang, Org. Lett. 2010, 12, 3902 ⁶⁰⁶ a) A. Rodriguez, W. J. Moran, Org. Lett. **2011**, *13*, 2220. b) Y.-C- Wong, C.-T. Tseng, T.-T. Kao, Y.-C. Yeh, K.-S. Shia, Org. Lett. 2012, 14, 6024. c) L.-T. Li, J. Huang, H.-Y. Li, L.-J. Wen, P. Wang, B. Wang, B. Chem. Commun. 2012, 48, 5187. d) L.-T. Li, H.-Y. Li, L.-J. Xing, L.-J. Wen, P. Wang, B. Wang, Org. Biomol. Chem. 2012, 10, 9519. e) Z. Jia, T. Nagano, X. Li, A. S. C. Chan, Eur. J. Org. Chem. 2013, 858. f) U. Kloeckner, P. Finkbeiner, Boris J. Nachtsheim, J. Org. Chem. 2013, 78, 2751.

⁶⁰⁷ M. Uyanik, D. Suzuki, T. Yasui, K. Ishihara, Angew. Chem. Int. Ed. **2011**, 50, 5331.

⁶⁰⁸ a) M. Uyanik, H. Okamoto, T. Yasui, K. Ishihara, *Science* **2010**, *328*, 1376. b) M. Uyanik, K. Ishihara, *Chimica oggi – Chemistry Today* **2011**, *29*, 18. c) M. Uyanik, K. Ishihara, *ChemCatChem* **2012**, *4*, 177.
 ⁶⁰⁹ W. Wei, L. Li, X. Lin, H. Li, J. Xue, Y. Li, Org. Biomol. Chem. **2012**, *10*, 3494

- ⁶¹⁰ J.-S. Tian, K. W. Ng, J. R. Wong, T.-P. Loh, *Angew. Chem. Int. Ed.* **2012**, *51*, 9105.
- ⁶¹¹ K. R. Prabhu, M. Lamani, *Chem. Eur. J.* **2012**, *18*, 14638.
- ⁶¹² X. B. Zhang, L. Wang, *Green Chem.* **2012**, *14*, 2141.
- ⁶¹³ W. Wie, Y. Shao, H. Hu, F. Zhang, C. Zhang, Y. Xu, X. Wan, J. Org. Chem. **2012**, 77, 7157.
- ⁶¹⁴ L. Ma, X. Wang, W. Yu, B. Han, *Chem. Commun.* **2011**, *47*, 11333.
- ⁶¹⁵ J. Xie, H. Jiang, Y. Cheng, C. Zhu, *Chem. Commun.* **2012**, *48*, 979.
- ⁶¹⁶ W. Xu, U. Kloeckner, B. J. Nachtsheim, J. Org. Chem. **2013**, 78, 6065.
- ⁶¹⁷ a) *A. Raja, J. Lebbos, P. Kirkpatrick, Nature Rev. Drug Discovery* **2004**, *3*, 733. b) G. Ackermann, A.C. Rodloff, *J. Antimicrobial Chemotherapy* **2003**, 51, 497.
- ⁶¹⁸ a) I. Fleming, *Nature* 1967, *216*, 151. b) H. Scheer (Ed.), *Chlorophylls*, CRC Press, **1991**.
- ⁶¹⁹ a) K.Herold, F. A. Gollmick, I. Groth, M. Roth, K.-D. Menzel, U. Möllmann, U. Gräfe, C. Hertweck, *Chem. Eur. J.* 2005, *11*, 5523. b) K. Herold, Z. Xu, F. A. Gollmick, U. Gräfe, C. Hertweck, *Org. Biomol. Chem.* 2004, *2*, 2411. c) T. Bretschneider, G. Zocher, M. Unger, K. Scherlach, T. Stehle, C. Hertweck, *Nature Chem. Biol.* 2012, *8*, 154.
- ⁶²⁰ S. Header, R. Wirth, H. Herz, D. Spiteller, *Proc. Natl. Acd. Sci. USA* **2009**, *106*, 4742.
- ⁶²¹ H. W. Van Landuyt, M. Pyckavet, A. Lambert, J. Boelaert, *Antimicrob. Agents Chemother.* **1982**, *22*, 535.
- ⁶²² a) P. Gassmann, L. Hagmann, W. Keller-Schierlein, *Helv. Chim. Acta* 1984, *67*, 696. b) L. Bassi, B. Joos,
 P. Gassmann, H.-P. Kaiser, H. Leuenberger, W. Keller-Schierlein, *Helv. Chim. Acta* 1983, *66*, 92. c) K.
 Nakayama, T. Yamaguchi, T. Doi, Y. Usuki, M. Taniguchi, T. Tanaka, *J. Biosci. Bioeng.* 2002, *94*, 207.
- ⁶²³ Y. Mikami, H. Komaki, T. Imai, K. Yazawa, *J. Antibiotics* **2002**, *53*, 70.
- ⁶²⁴ J. G. Napolitano, M. L. Souto, J. J. Fernández, M. Norte, *J. Nat. Prod.* **2008**, *71*, 281.
- ⁶²⁵ a) C. Hertweck, Angew. Chem. 2009, 121, 4782. b) B. Schetter, R. Mahrwald, Angew. Chem. 2006, 118, 7668.
- 626 T. Patonay, K. Kónya, E. Juhász-Tóth, Chem. Soc. Rev. 2011, 40, 2797.
- ⁶²⁷ a) M. O. Forster, R. Müller, J. Chem. Soc. Trans. 1910, 97, 126. b) M. O. Forster, R. Müller, J. Chem. Soc. Trans. 1910, 97, 1360. c) J. E. M. Booker, A. Boto, G. H. Churchill, C. P. Green, M. Ling, G. Meek, J. Prabhakaran, D. Sinclair, A. J. Blake, G. Pattenden, Org. Biomol. Chem. 2006, 4, 4193. d) W. Ogilvie, W. Rank, Can. J. Chem. 1987, 65, 166. e) J. Delacotte, J. Chem. Res. Synopses 1991, 3, 64. f) O. E. Edwards, C. Grieco, Can. J. Chem. 1974, 52, 3561.
- ⁶²⁸ a) A. J. Kasabe, P. J. Kasabe, Int. J. Pharm. Pharm. Sci. 2010, 2, 132. b) G. H. Hakimelahi, G. Just, Synth.
 Commun. 1980, 10, 429. c) L. Benati, D. Nanni, P. Spagnolo, J. Chem. Soc. Perkin Trans. 1 1997, 457. d) D.

Kashinath, G. Budin, R. Baati, S. Meunier, A. Wagner, *Tetrahedron Lett.* 2009, *50*, 5379. d) L. Benati, D. Nanni, P. Spagnolo, *J. Org. Chem.* 1999, *64*, 5132. f) L. Benati, G. Calestani, D. Nanni, P. Spagnolo, *J. Org. Chem.* 1998, *63*, 4679. g) J. Isaad, F. Malek, A. El Achari, *Dyes and Pigments* 2012, *92*, 1212. h) A. Ursini, A. M. Capelli, R. A. E. Carr, P. Cassara, M. Corsi, O. Curcuruto, G. Curotto, M. Dal Cin, S. Davalli, D.Donati, A. Feriani, H. Finch, G. Finizia, G. Gaviraghi, M. Marien, G. Pentassuglia, S. Polinelli, E. Ratti, A. Reggiani, G. Tarzia, G. Tedesco, M. E. Tranquillini, D. G. Trist, F. T. M. Van Amsterdam, *J. Med. Chem.* 2000, *43*, 3596.

⁶²⁹ G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Rebrovic, R. H. Wettach, *J. Org. Chem.* **1982**, *47*, 2487.

⁶³⁰ a) D. Kumar, S. Sundaree, V. S. Rao, *Synth. Commun.* 2006, *36*, 1893. b) N. W. Fadnavis, S. K.Vadivel, M. Sharfuddin, U. T. Bhalerao, *Tetrahedron: Asymmetry* 1997, *8*, 4003. c) R. M. Moriarty, R. K. Vaid, V. T. Ravikumar, B. K. Vaid, T. E. Hopkins, *Tetrahedron* 1988, *44*, 1603.

- ⁶³¹ B. B. Snider, J. R. Duvall, *Org. Lett.* **2004**, *6*, 1265.
- ⁶³² B.Zhang, A. Studer, *Org. Lett.* **2013**, *15*, 4568.
- ⁶³³ K. Shibatomi, A. Narayama, Y. Soga, T. Muto, S. Iwasa, Org. Lett. **2011**, *13*, 2944.

⁶³⁴ a) T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, *Org. Lett.* **2004**, *6*, 2853. b) J. E. Hein, L. B. Krasnova, M. Iwasaki, V. V. Fokin, *Org. Synth.* **2011**, *88*, 238.

⁶³⁵ a) H.-G. Park, M.-J. Kim, M.-K. Park, H.-J. Jung, J. Lee, S.-H. Choi, Y.-J. Lee, B.-S. Jeong, J.-H. Lee, M.-S.
Yoo, J.-M. Ku, S.-S. Jew, J. Org. Chem. 2005, 70, 1904. b) T.-S. Kim, Y.-J. Lee, B.-S. Jeong, H.-G. Park, S.-S.
Jew, J. Org. Chem. 2006, 71, 8276. c) D. Y. Kim, E. J. Park, Org. Lett. 2002, 4, 545. d) T. C. Cook, M. B.
Andrus, D. H. Ess, Org. Lett. 2012, 14, 5836. e) T. Perrard, J.-C. Plaquevent, J.-R. Desmurs, D. Hébrault,
Org. Lett. 2000, 2, 2959. f) E. J. Park, M. H. Kim, D. Y. Kim, J. Org. Chem. 2004, 69, 6897. g) H.Sugimoto, D.
T. Sawyer, J. Org. Chem. 1985, 50, 1786.

⁶³⁷ S. J. Murray, H. Müller-Bunz, H. Ibrahim, *Chem. Commun.* **2012**, *48*, 6268.

⁶³⁸ Q.-H. Deng, T. Bleith, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc. **2013**, 135, 5356.

⁶³⁹ M. V.Vita, J. Waser Org. Lett. **2013**, 15, 3246.

⁶³⁶ a) K. Maruoka (Ed.), *Asymmetric Phase Transfer Catalysis*, Wiley-VCH, Weinheim, **2008**. b) T. Ooi, K.i Maruoka, *Angew. Chem*. **2007**, *119*, 4300.

⁶⁴⁰ I. Groth, P. Schumann, L. Laiz, S. Sanchez-Moral, J. C. Canaveras, C. Saiz-Jimenez, *Geomicrobiol. J.* **2001**, *18*, 241.

⁶⁴¹ K.Herold, F. A. Gollmick, I. Groth, M. Roth, K.-D. Menzel, U. Möllmann, U. Gräfe, C. Hertweck, *Chem. Eur. J.* **2005**, *11*, 5523.

⁶⁴² K. Herold, Untersuchungen zur Struktur, Wirkungsweise und Biosynthese der Cervimycine als Verbindungen einer besonderen Klasse aromatischer Polyketide aus Streptomyceten, Dissertation Friedrich-Schiller-Universität Jena, **2005**.

⁶⁴³ L. B. Rice, *Emerging Infect. Dis.* **2001**, *7*, 183.

⁶⁴⁴ a) B. E. Murray, *N. Engl. J. Med.* 2000, 342, 710. b) C. Torres-Viera, L.-M. Dembry, *Curr. Opin. Infect. Dis.* 2004, 17, 541. c) D. Inan, F. Gunseren, D. Colak, R. Saba, S. Kazan, L. Mamikoglu, *J. Chemother.* 2004, 16, 608.

⁶⁴⁵ a) S. Chang, D. M. Sievert, J. C. Hageman, M. L. Boulton, F. C. Tenover, F. P. Downes, S. Shah, J. T. Rudrik, G. R. Pupp, W. J. Brown, D. Cardo, S. K. Fridkin, *N. Engl. J. Med.* 2003, *348*, 1342. b) J. H. Song, K. Hiramatsu, J. Y. Suh, K. S. Ko, T. Ito, M. Kapi, S. Kiem, Y. S. Kim, W. S. Oh, K. R. Peck, N. Y. Lee, *Antimicrob. Agents Chemother.* 2004, *48*, 4926. c) R. F. Pfeltz, B. J. Wilkinson, *Curr. Drug Targets Infect. Disord.* 2004, *4*, 273.

⁶⁴⁶ R. R. Muder, *Curr. Treat. Options Infect. Dis.* **2003**, *5*, 431.

⁶⁴⁷ A. E. Waters, T. Contente-Cuomo, J. Buchhagen, C. M. Liu, L. Watson, K. Pearce, J. T. Foster, J. Bowers,
E. M. Driebe, D. M. Engelthaler, P. S. Keim, L. B. Price, *Clinical Infectious Diseases* 2011; *52*, 1227.

⁶⁴⁸ a) B. Long, S. Tang, L. Chen, S. Qu, Bo Chen, J. Liu, A. R. Maguire, Z. Wang, Y. Liu, H. Zhang, Z.Xu, T. Ye *Chem. Commun* **2013**, *49*, 2977. b) F. Messik, M. Oberthür, *Angew. Chem. Int. Ed.* **2013**, *52*, 5871.

⁶⁴⁹ W. Lee, J.-H. Youn, S. H. Kang, *Chem. Commun* **2013**, *49*, 5231.

⁶⁵⁰ a) A. P. Spork, C. Ducho, *Synlett* **2013**, *24*, 0343. b) V. N. Thota, J. Gervay-Hague, S.S. Kulkarni, *Org. Biomol. Chem.* **2012**, *10*, 8132

⁶⁵¹ L. Cui, X.-P. He, L.-X. Gao, J. Li, G.-R. Che, *J. Heterocyclic Chem.* **2013**, *50*, 684.

⁶⁵² a) P.J. Jervis, P. Polzella, J. Wojno, J.-P. Jukes, H. Ghadbane, Y. R. G. Diaz, G. S. Besra, V. Cerundolo, L. R. Cox, *Bioconjugate Chem.* 2013, *24*, 586. b) W. Zhang, M. Lee, D. Hesek, E. Lastochkin, B. Boggess, S. Mobashery, *J. Am. Chem. Soc.* 2013, *135*, 4950.

⁶⁵³ J. R. Dice, J. N. Bow Den, J. Am. Chem. Soc. **1949**, 71, 3107.

⁶⁵⁴ a) C.-L. Huang, C.-C. Wu, M.-H. Lien, *J. Phys. Chem. A* **1997**, *101*, 7867. b) C. L. Zara, T. Jin, R. J. Giguere, *Synth. Commun.* **2000**, *30*, 2099. c) V. B. Helavi, S. B. Solabannavar, U. V.Desai, R. B.Mane, *J. Chem. Research* **2003**, 174. d) R. D. Bach, C. Canepa, *J. Org. Chem.* **1996**, *61*, 6346. e) C. G. Swain, R. F. W. Bader, R. M. Esteve, R. N. Griffin, *J. Am. Chem. Soc.* **1961**, *83*, 1951. f) M. W. Logue, R. M. Pollack, V. P. Vitullo, *J. Am. Chem. Soc.* **1975**, *97*, 6868.

⁶⁵⁵ J. Zhang, J. Jiang, Y. Li, Y. Zhao, X. Wan, *Org. Lett.* **2013**, *15*, 3222.

⁶⁵⁶ a) W. Müller, K. Dehnicke, *Angew. Chem.* **1966**, *78*, 825. b) U. Müller, H. Bärnigenhausen, *Acta Cryst.* **1970**, *B26*, 1671. c) M. A. Petrie, J. A. Sheehy, J. A. Boatz, G. Rasul, G. K. S.Prakash, G. A. Olah, K. O. Christe, *J. Am. Chem. Soc.* **1997**, *119*, 8802. d) U. Müller, F. Schmock, *Z. Anorg. allg. Chem.* **1980**, *468*, 166. e) W. Kolitsch, U. Müller, *Z. Anorg. allg. Chem.* **1974**, *410*, 21. f) U. Müller, I. Lorenz, F. Schmock, *Angew. Chem.* **1979**, *91*, 735.

⁶⁵⁷ H. Finkelstein, Ber. Dtsch. Chem. Ges. **1910**, 43, 1528.

- ⁶⁵⁸ a) G. Wittig, U. Schöllkopf, *Chem. Ber.* **1954**, *87*, 1318. b) G. Wittig, W. Haag, *Chem. Ber.* **1955**, *88*, 1654.
- ⁶⁵⁹ D. A. Kamble, P. U. Karabal, P. V. Chouthaiwale, A. Sudalai, *Tetrahedron* **2012**, *53*, 4195.
- ⁶⁶⁰ S. C. Watson, J. F. Eastham, *J. Organomet. Chem.* **1978**, *9*, 165.
- ⁶⁶¹ M. F. Lipton, C. M. Sorensen, A. C. Sadler, R. H. Sharpiro, J. Organomet. Chem. **1980**, 186, 155.
- ⁶⁶² A. B. Pangborn, M. A. Giradello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **1996**, *15*, 1518.

⁶⁶³W. C. Still, M. Kahn, A. Mitra, *J. Org. Chem.* **1978**, 43, 2923.

⁶⁶⁴ S. Budavari, M. J. O'Neil, A. Smith, P. E. Heckelman, *The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals,11th Ed.,* Merck Co. Inc., Rahway, NJ, **1989**.

⁶⁶⁵ CrysAlis Pro version 171.33.42, Oxford Diffraction Ltd., **2009**.

- ⁶⁶⁶ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. **2009**, 42, 339.
- ⁶⁶⁷ M. J. Betts, M. L. Swain (Zeneca Ltd.), *US5541178*, **1996**.
- ⁶⁶⁸ J. G. Avila-Zárraga, R. Martínez, *Synth. Commun.* **2001**, *31*, 2177.
- ⁶⁶⁹ Y.-S. Feng, Z.-Q. Xu, L. Mao, F.-F. Zhang, H.-J. Xu, Org. Lett. **2013**, 15, 1472.
- ⁶⁷⁰ H. Sharghi, M. Hosseini, Synthesis **2002**, 1057.
- ⁶⁷¹ S. H. Yang, S. Chang, *Org. Lett.* **2001**, *3*, 4209.
- ⁶⁷² S. O. Baumann, M. Bendova, M. Puchberger, U. Schubert, *Eur. J. Inorg. Chem.* **2011**, 573.
- ⁶⁷³ L. Hi, R. Hu, Y. Wei, Y. Liang, Z. Yang, S. Ke, *Eur. J. Med. Chem.* **2012**, *54*, 549.
- ⁶⁷⁴ N. Coskun, A. Parlar, *Synth. Commun.* **2005**, *35*, 2445.
- ⁶⁷⁵ A. Heydari, H. Tavakol, S. Aslanzadeh, J. Azarnia, N. Ahmadi, *Synthesis* **2005**, 627.
- ⁶⁷⁶ O. L. Brady, C. L. Bennett, *J. Chem. Soc.*, **1927**, 894.

⁶⁷⁷ M. Gopalakrishnan, T. Anandabaskaran, P Sureshkumar, J. Thanusu, A. K. Kumaran, V. Kanagarajan, *Mendeleev Commun.* **2006**, *16*, 50.

⁶⁷⁸ J. D. Eckelbarger, P. R. Schmitzer, C. N. Yerkes, T. A. Boebel, N. M. Satchivi, G. T. Whiteker, US222221A1, **2010**.

⁶⁷⁹ C. Yiyun, L. Chulbom, J. Am. Chem. Soc. **2006**, *128*, 15598.

⁶⁸⁰ K. Cheoljae, J. B. Hyo, H. L. Ji, J. Wook, K. Haejin, V. Sampath, H. R. Young, *J. Am. Chem. Soc.* **2009**, *131*, 14660.

- ⁶⁸¹ H. Wu, Y.-P. He, L.-Z- Gong, *Adv. Syn. Cat.* **2012**, *354*, 975.
- ⁶⁸² L. W. Page, M. Bailey, P. J. Beswick, S. Frydrych, R. J. Gleave, *Tetrahedron Lett.* **2010**, *51*, 3388.
- ⁶⁸³ D. B. Ramachary, M. S. Prasad, *Tetrahedron Lett.* **2010**, *51*, 5246.
- ⁶⁸⁴ Y. Ji, W. C. Trenkle, J. V. Vowles, *Org. Lett.* **2006**, *8*, 1161.
- ⁶⁸⁵ T. Inokuma, S. Sakamoto, Y. Takemoto, *Synlett* **2009**, 1627.
- ⁶⁸⁶ L. Benati, D. Nanni, C. Sangiorgi, P. Spagnolo, J. Org. Chem. **1999**, 64, 7836.
- ⁶⁸⁷ R. M. Moriarty, B. R. Bailey III, I. Prakash, R. S. Miller J. Org. Chem. **1985**, 50, 3710.
- ⁶⁸⁸ K. Khumtaveeporn, A. Ullmann, K. Matsumoto, B. G. Davis, J. B. Jones, *Tetrahedron Asym.* **2012**, *12*, 249.
- ⁶⁸⁹ F. W. Nader, A. Brecht, S. Kreis, *Chem. Ber.* **1986**, *119*, 1196.
- ⁶⁹⁰ J. M. Lassaletta, J. Vázquez, A. Prieto, R. Fernández, G. Raabe, D. Enders, J. Org. Chem. **2003**, 68, 2698.
- ⁶⁹¹ N. Kolb, M. A. R. Meier, *Green Chem*. **2012**, *14*, 2429.
- ⁶⁹² S. T. Madrahimov, D. Markovic, J. F. Hartwig, J. Am. Chme. Soc. **2009**, 131, 7228.
- ⁶⁹³ A. Millan, L. A. de Cienfuegos, D. Miguel, A. G. Campana, J. M. Cuerva, *Org. Lett.* **2012**, *14*, 5984.
- ⁶⁹⁴ R. G. Iafe, J. L. Kuo, D. G. Hochstatter, T. Saga, J.W. Turner, C. A. Merlic, Org. Lett. **2013**, *15*, 582.
- ⁶⁹⁵ P. S. Anderluh, M. Anderluh, J. Ilas, J.Mravljak, M. S. Dolenc, M. Stegnar, D. Kikelj, *J. Med. Chem.* **2005**, *48*, 3110.
- ⁶⁹⁶ D. C Harrowven, P. J May, M.Bradley, *Tetrahedron Lett.* **2003**, 44, 503.
- ⁶⁹⁷ J. Aleman, V. del Solar, C. Martín-Santos, L. Cubo, C. N.Ranninger, J. Org. Chem. **2011**, 76, 7287.
- ⁶⁹⁸ K.-W. Yang, F. C. Golich, T. K. Sigdel, M. W. Crowder, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 5150.
- ⁶⁹⁹ A. Volonterio, M. Zanda, J. Org. Chem. **2008**, 73, 7486.
- ⁷⁰⁰ N. T. Reynolds, T. Rovis, *J. Am. Chem. Soc.* **2005**, *127*, 16406.
- ⁷⁰¹ U. Schmidt, M. Kroner, H. Griesser, *Synthesis* **1989**, 832.
- ⁷⁰² T. Spangenberg, B. Breit, A. Mann, *Org. Lett.* **2009**, *11*, 261.
- ⁷⁰³ T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee,
- J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen, Y. Y. Zhang, P. C. Isakson, *J. Med. Chem.* **1997**, *40*, 1347.
- ⁷⁰⁴ A. Dos Santos, L. El Kaïm, L. Grimaud, C. Ronsseray, *Chem. Commun.* **2009**, *26*, 3907.

- ⁷⁰⁵ H. Takeuchi, S.-i. Yanagida, T. Ozaki, S. Hagiwara, S. Eguchi, J. Org. Chem. **1989**, *54*, 431.
- ⁷⁰⁶ J. N. Moorthy, K. Senapati, N. Singhal, *Tetrahedron Lett.* **2009**, *50*, 2493.
- ⁷⁰⁷ M. L. N. Rao, D. N. Jadhav, *Tetrahedron Lett.* **2006**, *47*, 6883.
- ⁷⁰⁸ G. Stavber, J.Iskra, M.Zupan, S. Stavber. *Adv. Syn. Catal.* **2008**, *350*, 2921.
- ⁷⁰⁹ M. R. Marri, A. K. Macharla, S. Peraka, N. Nama, *Tetrahedron Lett.* **2011**, *52*, 6554.
- ⁷¹⁰ T. Mitsudome, A. Noujima, Y. Mikami, T. Mizugaki, K. Jitsukawa, K. Kaneda, *Chem. Eur. J.* **2010**, 16, 11818.
- ⁷¹¹ P. Das, D. McLeod, J. McNulty, *Tetrahedron Lett.* **2011**, *52*, 199.
- ⁷¹² J.-C. Poupon, D. Marcoux, J.-M. Cloarec, A. B. Charette, *Org. Lett.* **2007**, *9*, 3591.
- ⁷¹³ H. Bouda, M. E. Borredon, M. Delmas, A. Gaset, *Synth. Commun.* **1989**, *19*, 491.