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Abstract

3D Polarized Light Imaging (PLI) is a method to measure the nerve fiber

orientation in thin sections of human post-mortem brains. The birefringence

of the myelin sheaths allows the derivation of the in-section direction angle as

well as the absolute value of the out-of-section inclination angle. In this thesis,

the reconstruction of fiber tracts based on PLI measurements is approached.

The development of a suitable simulation framework forms a central point of

this work. Furthermore, the inclination sign ambiguity is investigated with

additional tilted measurements and the solution is optimized in a Markov

Random Field framework. At last, a suitable tractography algorithm is

developed for PLI. The results illustrate that random errors in the direction

angle can be compensated by a particle filter. The simulation of complex

fiber arrangements is able to reproduce important sources of errors, which

are approached in the future development of 3D Polarized Light Imaging.
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Zusammenfassung

3D Polarized Light Imaging (PLI) ist eine Methode zur Messung der Nerven-

faserorientierung in histologischen Schnitten des menschlichen Gehirns. Durch

die Doppelbrechung der Myelinscheiden kann die Richtung in der Ebene

(Direktion) und die Richtung aus der Ebene heraus (Inklination), welche ohne

Vorzeichen bestimmt wird, abgeleitet werden. Diese Arbeit beschäftigt sich mit

der Rekonstruktion von Nervenfasertrakten basierend auf PLI-Messungen. Ein

Schwerpunkt besteht in der Entwicklung eines Simulationsprogramms. Wei-

terhin wird die Vorzeichenambiguität des Inklinationswinkels mit zusätzlichen

gekippten Messungen untersucht und eine Lösung mit Hilfe eines Markov Ran-

dom Fields optimiert. Zuletzt wird ein geeignetes Traktographie-Verfahren für

PLI entwickelt. Die Ergebnisse zeigen, dass zufällige Fehler des Direktionswin-

kels durch ein Partikelfilter ausgeglichen werden können. Die Simulation von

komplexen Faseranordnungen kann wichtige Fehlerquellen reproduzieren, wel-

che bei der zukünftigen Entwicklung der PLI Methode in Angriff genommen

werden.
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PLI-Projekts möchte ich mich ganz herzlich bei Dr. Markus Axer für die
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für die Möglichkeit mein Thema vorzustellen und für wichtige Anregungen.

Meinen PLI-Kollegen im Forschungszentrum Jülich danke ich für die kritischen
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Chapter 1

Introduction

The human brain is of special interest for both fundamental and clinical

researchers. Understanding its structure and function is connected with many

expectations. From a clinical point of view, the investigation of brain con-

nectivity is very promising. For many neurological and psychiatric diseases,

the exact cause is unknown, e.g. depression, and for most neurodegenera-

tive diseases, there is no cure, e.g. for Parkinson’s disease. Often, there

are only very limited therapeutic options, e.g. for Alzheimer’s disease. An

essential aspect of brain structure is the connectivity of cells, which process

and transmit information in the brain. In neurosurgery, the knowledge of

connecting fiber tracts is extremely important for surgical planning. For these

reasons, the idea has been raised to construct a complete network model,

to describe the connections in the human brain [51], [15]. This model was

named the connectome [121], analogously to the full genetic information, the

genome. The investigation of the human connectome is also interesting from

a methodological point of view. Fundamental research aims to decode one of

the most complex phenomena of nature. New concepts for building effective

networks in computer technology could be discovered. The exact knowledge

of brain connections could enable simulations of the human brain, that could

inspire artificial intelligence.

Currently, the information about the connections in the human brain is

limited by the available imaging modalities. Therefore, structural, functional

and effective connectivity are differentiated [120]. Structural connectivity

1
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describes the shape and location of connecting fibers, the fiber architecture.

Functional connectivity is defined by temporarily correlated brain activity.

The description of directed influences is referred to as effective connectivity. In

addition to different modes of connectivity, the connectome must be assessed

on different scales.

On the smallest scale, electron microscopy is able to show cell structures

below 1µm. Thereby, the locations and the structure of single synapses,

where neural information is transmitted, can be examined. This allows the

tracking of each axon separately [72]. However, the construction of a whole

connectome on the scale of single neurons and synapses seems unfeasible to

date [36], because there are approximately 10 billion neurons and 60 trillion

synaptic connections [116].

Histological sections can be viewed with light microscopy on a scale of

1 − 100µm. Staining of myelin, which surrounds nerve fibers, allows the

delineation of major fiber tracts [25]. Myelin staining is the most popular

anatomical approach for the validation of other methods, such as magnetic

resonance imaging (MRI), today. The compilation of a structure tensor from

the image contrast of digitized, myelin stained brain sections allows the auto-

matic derivation of the in-plane fiber direction [85], [24]. For tracking fibers

along the determined orientation, the missing out-of-plane fiber orientation is

a clear disadvantage.

The tracking of axons beyond single brain sections is possible by dying

fiber tracts before sectioning. Suitable substances, called tracers, are injected

into the brain and are then transported along fibers [76]. The transport is

best in the living brain. Therefore, neuroanatomical tract tracing has been

extensively applied in non-humans, for example in the macaque monkey [123],

[31], which can be sacrificed in a defined period of time after tracer injection.

Apparently, tract tracing cannot be applied to humans in vivo. Only a few

studies have applied tract tracing in human post-mortem brains limited by

the distance of axonal transport [125], [95]. The resulting histology provides

a comparable scale as myelin stains.

On a more course scale, fiber tracts in post-mortem brains can be ex-

amined by dissection. Klingler [75] introduced a method, that simplifies

the preparation of white matter by freezing. With this technique, which is



3

commonly referred to as Klingler dissection, major fiber tracts have been

described [129], [103]. A major advantage is the conservation of the three-

dimensional relationships [105]. However, fiber dissection is not suitable for

the study of very thin fiber tracts, also due to the limited number of available

human brains. Another disadvantage is the lack of quantitative information.

The only method to assess the orientation of nerve fibers in vivo is

diffusion weighted MRI (DW-MRI). By applying a gradient magnetic field,

the diffusion of water molecules can be tracked [122]. Even though increasing

magnetic field gradients are becoming available, the spatial resolution of

DW-MRI in vivo hardly reaches 1 mm [61]. Post mortem, higher resolutions

can be achieved, but on small tissue samples only [16]. DW-MRI allows to

measure the orientation of water diffusion in biological tissues. In regions

with homogeneously orientated nerve fibers, the main direction of water

diffusion corresponds to the fiber orientation [12]. However, the diffusion

directions provide little validated information about the fiber orientation in

case of complex fiber constellations. The most simple approach to describe

the measured diffusion orientations is a three-dimensional tensor, which is

able to represent a three-dimensional Gaussian distribution [10], [9]. Diffusion

Tensor Imaging (DTI) is the most frequently used technique for clinical

applications, because the measurement is fast and the tensor representation is

simple to process. However, a single tensor is not able to adequately describe

mixtures of multiple fiber orientations. Therefore, extended measurement

protocols and extended descriptions of fiber orientations have been developed

[52]. Orientation distribution functions (ODFs) have become a common

representation of mixed fiber orientations, although the measurement and

reconstruction methods in the neuroscientific research environment remain

heterogeneous. The resolution of DW-MRI is relatively low compared to the

investigated structures, which leads to strong partial volume effects. The

high availability of MR scanners, also in the clinical environment, have put

DW-MRI and thereby the macroscopic scale into the focus of connectome

research [15], [51]. However, for the correct interpretation of complex fiber

architectures, and the investigation of very small fiber paths, post-mortem

methods are needed.

The present work is focussed on 3D-Polarized Light Imaging (3D-PLI),
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which is able to reveal the fiber architecture on a microscopic scale (1−100µm).

The value of polarized light for the examination of nervous tissue was dis-

covered already a century ago. The inclusion of colored paper in the optical

path of polarizing microscopes allowed to color fibers by their orientation

[47]. The method was advanced significantly, when the relation between

the transmitted light amplitude and the out-of-plane fiber orientation was

discovered [5]. The current method of 3D-PLI, that requires histological

unstained brain sections and is therefore limited to post-mortem brains, al-

lows the quantitative measurement of fiber orientations in three dimensions

on a scale of micrometers [6]. There is a clear potential of 3D-PLI as a

bridging technology between microscopic and macroscopic scale. Both scales

are needed for a complete understanding of the connectome and it is even

more important to find methods to link both scales. It is a major benefit of

3D-PLI, that the in-plane resolution of fiber orientations covers a large range

of scales. This opens up the possibility to compare fiber orientations with

DW-MRI, as well as to investigate fiber orientations on a scale, that is not

accessible by DW-MRI. The reconstruction of a series of brain sections into a

three-dimensional volume remains one of the main challenges.

The reconstruction of fiber tracts based on 3D-PLI was first examined by

Lindemeyer as a matter of feasibility [87]. The present work aims to improve

the reliability and accuracy of reconstructed fiber tracts. The basic setup and

analysis concepts are introduced in Chapter 2. In order to identify potentials

for improvements, the orientational information needed to be examined closely.

This is done by simulation of two representative data sets, which are analyzed

extensively in Chapter 3.

The reliability of the measured orientational data is limited by the unknown

sign of one vector component. This inclination sign ambiguity has not

been treated systematically with a tiltable specimen stage before. The

disambiguation is a prerequisite for the reliable reconstruction of fiber tracts.

Therefore, the inclination sign ambiguity is approached in Chapter 4.

Finally, fiber tracts are reconstructed in Chapter 5. For DW-MRI, a huge

variety of tractography algorithms has been developed. Existing algorithms

are reviewed regarding their suitability for transfer to PLI, and a strategy
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for reconstruction is suggested. The selected approach is able to use the

information about accuracy and reliability, that was gathered by simulation

in Chapter 3. The results show improved fiber reconstruction, but open issues

remain, which are discussed comprehensively. A conclusion and outlook is

given in Chapter 6. The progress that this work has achieved is stressed, and

several challenges for the future are discussed.
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Chapter 2

Fundamentals of 3D Polarized

Light Imaging (3D-PLI)

3D Polarized Light Imaging (3D-PLI) is based on the birefringence of nervous

tissue. The myelin sheaths, which surround most of the axons of neurons,

consist of different kinds of lipids (cholesterol and phospholipids). The

anisotropic chemical and molecular constitution of myelin is the reason for its

birefringence, which is characterized by an optical axis. This axis is aligned

with the orientation of the axon [26]. The birefringent property of nervous

tissue was already examined by Göthlin in 1913 [47], later by Schmidt [113],

Schnabel [114] and Axer [5]. The polarization state of light is defined by the

orientation of the electric field vector. Birefringent materials, such as myelin,

change the polarization state of passing light depending on the orientation

of the optical axis relative to the incidence of the light. This change can be

quantified by the Jones calculus ([70], see Section 2.3) and allows the derivation

of the optical axis and thereby the determination of the three-dimensional

fiber orientation. For a complete and comprehensive introduction into the

physics of birefringence, the reader is referred to textbooks on optics [60].

Polarized light is also used for the examination of collagen in histopathologic

tissue samples by polarization microscopy [131] or the examination of skin by

optical coherence tomography [112].

In the following, the processing chain will be described (Fig. 2.1). It

begins with the preparation and sectioning of a human post-mortem brain

7
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brain

preparation
measurement analysis registration vector field

Figure 2.1: Overview of the workflow

(Section 2.1). The brain sections are then measured with a polarimeter

(Section 2.2), and analyzed with the Jones calculus (Section 2.3). The

inclination angle is calculated (Section 2.5), and the brain sections are aligned.

The process of aligning differently transformed images is also called image

registration (Section 2.6). The resulting 3D vector field of fiber orientations is

the basis for the reconstruction of fiber tracts (Section 2.7). Since polarized

light imaging is a continuously evolving neuroimaging technique, the workflow

presented here is a snap-shot of the current status, which will certainly

continue to improve in the future. However, the presented workflow will be

termed standard PLI measurement and standard PLI analysis as a point of

reference. When tissue or data is processed differently, this will be indicated

in the following chapters.

2.1 Preparation of Brain Tissue

3D-PLI has been developed to analyze the light transmitted through a tissue

sample. This demands for sectioning of the tissue into thin slices. Therefore,

the current methodology is restricted to the tissue of post-mortem brains and

begins with the preparation and sectioning of the post-mortem brain into

very thin slices.

In order to conserve birefringence and prevent decay, brain tissue must
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be fixated as soon as possible after death. Within 24 hours maximum, the

brain is extracted and immersed in formalin (4% formaldehyde solution).

Due to the size of human brains, the fixation time should be at least three

months. Before sectioning in a cryotome, the brain is immersed in glycerin

for cryoprotection or embedded into gelatine. It is frozen to −80 ◦C, which

allows the cryotome to cut sections with a thickness of 50− 150µm. Each

section is melted in water, mounted on a glass slide and dried.

2.2 Polarimeter

The polarimeter consists of a green LED (light emitting diode) grid with

a diffusor as a light source, a linear polarizer, a tiltable specimen stage

containing the tissue to be measured, a quarter-wave retarder, another linear

polarizer and the camera (Fig. 2.2). The direction of polarization of the second

polarizer is perpendicular to the direction of the first one and is therefore called

analyzer. The retarder allows a disambiguation of the fiber in-plane direction

[82], [6]. The polarizing filters, i.e. the polarizer, the quarter-wave retarder

and the analyzer can be rotated simultaneously. This allows the acquisition of

a series of images for different rotation angles ρ. Additionally, the specimen

stage is tiltable in two axes, i.e. in four directions ψ ∈ {N,W, S,E}. Tilting

changes the fiber orientation in order to solve the inclination sign ambiguity

[81], [7], which is elaborated in Chapter 4. The standard PLI measurement

acquires 18 images for ρi ∈ {0◦, 10◦, 20◦, . . . , 170◦}∗ in each tilting position,

which results in 5 · 18 = 90 images. Filter inhomogeneities are compensated

by calibration with a large series of blank images (measurements without

specimen stage). The calibrated series of 18 measurements will be referred to

as PLI image series.

∗Although the sine and cosine function are typically defined on angles given in radians,

angles will be given in degrees in most cases, because this seems to simplify spatial

understanding.
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camera

analyzer

retarder

polarizer

tiltable
specimen stage

light source

N
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Figure 2.2: Polarimeter setup
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2.3 Application of the Jones Calculus

The Jones calculus [70] describes the influence of linear polarizing filters on the

electric field vector by expressing each optical element along the optical path

as a matrix. The Jones calculus requires fully polarized light. The polarizing

filters fulfill this requirement on a very high level. As a simplification, the

biological tissue is assumed to act as a single retarder. The formulation of

the PLI measurement setup in the Jones calculus is

E1 = A ·Rλ
4
·M · P ·E0 (2.1)

where E0 and E1 are the incoming and outgoing electric field vectors, P and

A are orthogonal linear polarizers denoted as polarizer and analyzer, Rλ
4

is a

quarter-wave retarder and M is a retarder element, that models an in-plane

rotated birefringent tissue sample. M is composed as

M = R(−(ρ− ϕ)) ·
(
e
j
2
δ 0

0 e−
j
2
δ

)
·R(ρ− ϕ) , (2.2)

with j as imaginary unit. The in-plane rotation is defined by the rotation

matrix R(ρ− ϕ), depending on the in-plane fiber direction denoted by ϕ.

R(ρ− ϕ) =

(
cos(ρ− ϕ) sin(ρ− ϕ)

− sin(ρ− ϕ) cos(ρ− ϕ)

)
(2.3)

The phase difference δ depends on the section thickness d, the uniaxial

birefringence ∆n, the wavelength λ and the out-of-plane fiber inclination α.

The following approximation was shown by Larsen [82]:

δ ≈ 2π · d ·∆n
λ
· cos2 α (2.4)

The relation of the electric field vectors in the Jones calculus can be transferred

to the transmitted light intensity [82]:

I(ρ) = It · (
1

2
+ r · sin(2ρ− 2ϕ)) , (2.5)

where It
† is called transmittance and r = sin(δ) is called retardation. The fiber

in-plane direction ϕ can be derived directly from (2.5). The fiber out-of-plane

†In previous publications ([6], [7]), the transmittance was denoted by I0, which was

replaced here by It. In Chapter 3, I0 will be needed to refer to the incoming light intensity.



12 CHAPTER 2. PLI BASICS

inclination α is correlated with the retardation r [5], following (2.4), which

can be rearranged to

r = | sin δ| = | sin(
π

2
· drel · cos2(α))| . (2.6)

The parameter drel is an aggregation of the section thickness d, the birefrin-

gence ∆n and the wavelength λ:

drel =
4 ·∆n · d

λ
(2.7)

By modeling multiple layers of tissue as multiple retarder elements with the

Jones calculus, the PLI signal is simulated in Chapter 3.

2.4 Fourier Analysis of the PLI Signal

The transmitted light intensity I(ρ) can be expressed by a Fourier series [6]:

I(ρ) = a0 + a1 sin(2ρ) + b1 cos(2ρ) (2.8)

Then, the Fourier coefficients a0, a1 and b1 can be calculated from the

standard PLI image series with N = 18 and ρi ∈ {0◦, 10◦, . . . , 170◦} as a

discrete approximation.

a0 =
1

N

N∑
i=1

I(ρi) (2.9)

a1 =
2

N

N∑
i=1

sin(2ρi)I(ρi) (2.10)

b1 =
2

N

N∑
i=1

cos(2ρi)I(ρi) (2.11)

Given the Fourier coefficients and (2.5), the retardation r (Fig. 2.3b), the

transmittance It (Fig. 2.3c), and the fiber in-plane direction ϕ (Fig. 2.3a) can

be obtained:

It = 2 · a0 (2.12)

ϕ =
1

2
atan2(−b1, a1) (2.13)

r =

√
a2

1 + b2
1

a0

(2.14)
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180°0° 90°30° 60° 120° 150°

(a) Direction ϕ
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(b) Retardation r
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(c) Transmittance It
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(d) Inclination α

Figure 2.3: Standard modalities, which are generated by standard PLI analysis
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Figure 2.4: Relation between retardation r and inclination α

2.5 Calculation of the Inclination Angle

The fiber out-of-plane inclination angle α (Fig. 2.3d) can be derived from

r by (2.6), if drel is known. In standard PLI analysis, drel is determined by

finding a retardation reference value rref for flat fibers (α = 0◦). In a tissue

sample that contains a complete distribution of all possible fiber inclination

angles, flat fibers can be identified by their maximum retardation. However,

the absolute maximum value in the retardation histogram is not a robust

reference value, because it is easily distorted by an outlier. Therefore, a

special logistic function,

f(x) =
a+ bx

e
x−c
d + 1

, (2.15)

which models a symmetric decrease, is fitted into the tail of the retardation

histogram [6]. This fit allows the objective and reproducible estimation of

a retardation reference value rref = c, and thereby determines the relating

function between retardation and inclination depending on drel (see (2.6)).

drel =
2 arcsin(rref)

π
(2.16)

The non-linear relation between retardation and inclination is strictly de-

creasing for drel ≤ 1.0 (Fig. 2.4, see also [6] Fig. 4a). When the inclination
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angle is very low or very high, the retardation value corresponding to different

inclination angles is almost the same. Therefore, very small errors in the

retardation value are amplified, when the inclination angle is derived from

the retardation. This motivates the following excursus on error propagation

regarding the inclination angle.

Error propagation When performing experiments, the measurement de-

vice naturally introduces random errors into the measured quantities. Typi-

cally, these errors are distributed according to the normal distribution, and

the uncertainty of the measured variable can be estimated by the empirical

standard deviation. If the variable of interest is not measured directly, but

derived from a measured variable by a non-linear function, then the uncer-

tainty of the measured variable must be propagated to the derived variable

of interest [48].

The retardation r is measured with an approximately normal distributed

random error ∆r = 0.006, which was determined in 30 repeated measurements.

But the inclination angle α is derived from r by (2.6), and therefore, the

uncertainty of α must be propagated from r ±∆r to α±∆α. A linearized

approximation of ∆α is

∆α =

√(
∂α

∂r
∆r

)2

(2.17)

The differentiation of (2.6) yields

∂α

∂r
=

−1

(arcsin(rref)− arcsin(r)) · arcsin(r) · (1− r2)
. (2.18)

In Section 3.2, the uncertainty of the inclination angle α will be examined in

detail by simulations (see Fig. 3.11a).

2.6 Registration

During the sectioning process, each section is mounted onto a specimen

stage. The position and rotation of consecutive sections on their specimen

stages is variable. Additionally, the tissue may be deformed. In order to

reconstruct the series of sections into a consistent three-dimensional volume,
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these transformations and distortions must be corrected. This is a typical

task in medical image registration [62]. For the registration of histological

sections such as PLI images, it is advantageous to take photos of the brain

block surface before sectioning. Blockfaces can be registered onto their

consecutive sections more easily, because there are no sectioning distortions.

The registered blockface images then serve as references for the registration

of the histological sections [30]. The simultaneous registration of histological

and blockface images seems to be superior to sequential registration [99], [38],

but has not been implemented for PLI images, yet [98]. Special care must be

taken when applying the determined transformations to PLI images, since

they contain directional information. The directional information must be

adjusted accordingly.

2.7 Vector Fields and Tractography

Currently, the registration is applied to pairs of fiber angles (ϕ, α), which are

then converted to unit vectors.

x = cosα · cosϕ (2.19)

y = cosα · sinϕ
z = sinα

The fiber orientation is ambiguous in respect to 180◦, i.e. the direction of

signal transport in a fiber cannot be detected. Therefore, the unit vectors are

normalized such that y > 0. For visualization, two types of color-coded fiber

orientation maps (FOMs) have established themselves (Fig. 2.5). The RGB

(x = red, y = green, z = blue) FOM is a common colored representation of

diffusion tensor data [59]. The HSV (ϕ = hue, α = saturation, 1 = value)

FOM is used in addition, because it shows a very good contrast on single

sections and is able to distinguish symmetric orientations on the x-y-plane

with respect to the x- and the y-axis.

By composing all registered sections of unit vectors to a three-dimensional

vector field, the basis for the reconstruction of fiber tracts in the human

brain is provided. The generation of fiber paths from a fiber orientation
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(a) RGB FOM (b) HSV FOM

Figure 2.5: The unit vectors, that are derived from fiber in-plane direction

ϕ and out-of-plane inclination α determined by standard PLI analysis, are

presented as color coded fiber orientation maps (FOMs). There are two

common color-codings, RGB (red, green, blue) and HSV (hue, saturation,

value).
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vector field is dealt with in Chapter 5. There is no standard approach to

PLI tractography, however the first tractography results of PLI made use of

streamline methods [87], [7].



Chapter 3

PLI Simulation

As explained in the previous chapter, 3D-Polarized Light Imaging is based

on some simplifications regarding the tissue sample. The potential eerrors

and limitations that arise thereby have not been investigated before. This

is also due to the lack of an alternative method, that can quantify the fiber

orientation of nervous tissue in a similar scale. Moreover, human and animal

nervous tissue is very complex and an appropriate phantom serving as a

standard for PLI is not available, yet. Thus, the only possibility to compare

the fiber orientations measured by PLI with a known underlying fiber model

is by implementation of a simulation framework. This is a popular approach

to assess errors, also in diffusion weighted magnetic resonance imaging (DW-

MRI) [84].

There are three sources of errors, that can be derived directly from the

simplifications made for PLI analysis. First, errors are expected to appear

when fiber orientations are mixed inside one measured pixel. Second, errors

are expected from assuming the wrong tissue properties, i.e. the imprecise

determination of the relative section thickness drel. Third, the camera sensors

are noisy. This might seem insignificant, but there are certain tissue properties

and fiber arrangements that severely decrease the PLI signal. Thereby the

derived fiber orientations become sensitive to this noise. The influence of

these sources of errors will be evaluated systematically by simulation in this

chapter.

Another major issue, that is approached by simulation, is the validation

19
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of software tools and algorithms of PLI analysis. The previously presented

analysis pipeline is very complex and every bug or failure may introduce

errors into the final vector field. The correct interpretation of the resulting

vector field crucially relies both on the knowledge about measurement errors

and the elimination of potential bugs in the analysis pipeline.

In this chapter, a simulation framework for PLI is presented, that repro-

duces the main parts of the PLI measurement process. It consists of the

generation of synthetic fibers, the sampling of a vector field, the tilting of

the vector field, the computation of a synthetic PLI image series, and the

simulation of blurring, resampling effects and sensor noise. The simulation

tool is explained in detail in Section 3.1. Two fiber arrangements were realized

to investigate the aforementioned sources of errors. In Section 3.2, a homoge-

neous tissue sample was simulated, consisting of uniformly distributed fiber

orientations. In this data set, the influence of sensor noise and estimation

of tissue properties can be examined for all possible fiber orientations. The

second data set, which is presented in Section 3.3, consists of a crossing fiber

arrangement. This demonstrates the effects mixed fiber orientations. The

synthetic fiber crossing arrangement is compared with real measurements of

fiber crossings in the optic chiasm of a hooded seal (Cystophora cristata).

The true fiber arrangement of the optic chiasm in this species is not known

precisely. The interpretation of the measurements is discussed by comparison

with simulations.

3.1 Simulation Components

The concept of simulation for PLI was first described in a master’s thesis by

Lindemeyer [87]. The core of his simulation scheme was a rebinning procedure,

that allowed the mixture of more than one fiber orientation. The idea of

sampling a synthetic fiber at a higher resolution to mix fiber orientations is

conserved here, but the mixture of fiber orientations is now transferred to

the simulation of the optical path. An overview of the four main simulation

components is shown in Fig. 3.1. The simulation of a fiber arrangement

begins with the generation of synthetic fibers in a three-dimensional volume.

These fibers must be transformed into a three-dimensional vector field. For



3.1. SIMULATION COMPONENTS 21

homogeneous fiber orientations, that are not produced by single fibers, the

vector field may be generated directly as a starting point. The tilting pro-

cess is simulated optionally by tilting each vector without moving it. The

Jones calculus is the theoretical basis for the calculation of a PLI signal of

birefringent, homogeneous tissue sections. For simulation of inhomogeneous

tissue, a section is modeled as a series of homogeneous sections with different

birefringence properties. In this way, tissue with mixed fiber orientations

can be simulated. Similar approaches for the simulation of the interaction

of polarized light in biological tissues have been presented [130], [43]. As

a last step, the measurement of the PLI signal with a camera is simulated

by blurring, resampling and adding noise. These four main steps will be

described in more detail in the following sections.

3.1.1 Generation of Synthetic Fibers

The simulation tool is able to construct synthetic fibers in a fixed three-

dimensional volume. The image size s = (sx × sy × sz) is defined in pixels,

with sz restricted to 1. This represents the size of a measured tissue section.

The spacing m = (mx ×my ×mz) can be chosen freely in physical units. For

a typical brain section captured by the camera of a large-area polarimeter

this yields s = (2776× 2080× 1) pixels and m = (64µm× 64 µm× 100µm).

Synthetic fibers are represented as a series of consecutive coordinates. The

fiber radius rf is chosen globally for the complete fiber arrangement, which

currently restricts the simulated fiber arrangements to those with equally

thick fibers.

3.1.2 Sampling of a Vector Field from Fibers

In order to generate a vector field from synthetic fibers, the aforementioned

image size is upsampled to a spacing of m′ = (m′x ×m′y ×m′z). This implies

m′x ≤ mx, m
′
y ≤ my, and m′z ≤ mz and leads to an increased image size

s′ = (s′x × s′y × s′z). The fiber radius rf defines the neighborhood of voxels

that is assigned with this fiber’s orientation. The fiber orientation of a pixel i

is determined by a fiber path segment f 1
i f

2
i , if either the distance between
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(1) synthetic
fibers

(2) vector field (2b) tilted vector field

(3/3b) synthetic
PLI image series

(4/4b) simulated
PLI image series
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y z
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Figure 3.1: Four main steps of the PLI measurement process are reproduced

by the simulation. (1) Synthetic fibers are created in a given volume. (2)

A vector field is sampled with high resolution. (2-4b) Optionally, a tilted

vector field is created and processed. (3) The orientations are mixed along

the z-axis to obtain a synthetic PLI image series, which consists of a series of

18 gray images. (4) The measurement is simulated by resampling, blurring

and addition of noise.
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Figure 3.2: The vector field at pixel i with center pi is derived from the

synthetic fiber path coordinates f 1
i and f 2

i that are located the closest to pi.

Only pixels with pi located inside the fiber radius rf are assigned with a fiber

orientation parallel to f 1
i f

2
i .

the center pi of i and the line segment f 1
i f

2
i or the distance to one of the fiber

path coordinates is lower than the fiber radius rf as illustrated in Fig. 3.2.

3.1.3 Simulation of the Tilting Process

The tiltable specimen stage in the PLI measurement setup, which is introduced

in Chapter 2, enables the measurement of the tissue sample in four tilted

positions in addition to the flat, untilted position. Therefore, the orientation

of the fiber is changed by the performed tilting. This change can be calculated

analytically by knowledge of the tilting axis and the tilting angle. This is

further elaborated in Section 4.1.2. Tilting causes two changes to the PLI

measurement, that occur simultaneously. First, the position of the tissue

sample changes such that a specific point on the tissue sample is imaged

in a different position in the flat and each tilted image. Second, the fiber

orientation changes such that a specific point on the tissue sample produces

a different PLI signal, i.e. the measured light intensity is changed. In the

simulation presented here, only the latter kind of change has been reproduced.

In standard PLI analysis, tilted images are untilted by back-transformation

of the perspective transform. The application of a perspective transformation
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is not realized in the scope of this work, but would allow the observation

of errors that arise in the determination and application of the perspective

transformation. Therefore, the untilting step must be omitted in the analysis

of simulated PLI measurements. Tilting is simulated optionally, generating

four additional simulated PLI image series.

3.1.4 Simulation of the PLI Signal from a Vector Field

The PLI signal is a sequence of light intensity values, which is generated

by rotating the polarizing filters in the polarimeter. The standard PLI

measurement generates a series of 18 gray images, one for each rotation

angle ρ ∈ {0◦, 10◦, 20◦, . . . , 170◦}. The relation between the incoming electric

field vector E0, the assumed fiber orientation expressed as a pair of angles

(ϕ, α), and the resulting electric field vector E1 can be derived from the Jones

Calculus as shown in Section 2.3. To model the experimental situation, the

simulation has been extended in order to create an optical path through a

series of fiber orientations. When traversing the upsampled, synthetic vector

field along the z-axis, multiple fiber orientations are passed. Therefore, the

single retarder, that models the fiber orientation of a homogeneous tissue

sample, is replaced by a series of retarders, that models the optical path

through an inhomogeneous tissue sample. This can be formulated by the

Jones calculus as

E1 = A ·M i1 ·M i2 · . . . ·M i3 · . . . ·M 1/mz ·Rλ
4
· P ·E0 , (3.1)

where E1 and E0 are the outgoing and incoming electric field vectors, and

M i is the retarder resembling the ith fiber. The quarter-wave Rλ
4
, and the

analyzer A, which is a linear polarizer orthogonal to the linear polarizer

P , correspond to the polarimeter in Section 2.2. This simulation setup is

illustrated in Fig. 3.3. Each retarder M i is defined by the in-plane direction

ϕi and out-of-plane inclination αi of the fiber i. This leads to

M i = R(−(ρ− ϕi)) ·
(
e
j
2
δi 0

0 e−
j
2
δi

)
·R(ρ− ϕi) (3.2)

with

R(ρ− ϕi) =

(
cos(ρ− ϕi) sin(ρ− ϕi)
− sin(ρ− ϕi) cos(ρ− ϕi)

)
(3.3)
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analyzer quarter-wave
retarder

polarizerbirefringent tissue as
series of retarders

incoming
light

outgoing
light

z-axis

Figure 3.3: The simulation combines different fiber orientations along the

z-axis of the synthetic vector field to a PLI signal by modeling each fiber

orientation as an optical retarder element.

and

δi = 2π · d ·∆ni
λ

· cos2 αi (3.4)

The incoming electric field vector is defined by the incoming light intensity

I0
∗.

E0 =

( √
I0

0

)
(3.5)

The outgoing light intensity I1 is calculated from the outgoing electric field

vector E1 and the attenuation, which depends on the attenuation coefficient

µ, the upsampled z-spacing m′z and the number of voxels n in the z-axis,

which contain a fiber. The size m′z ·n represents the thickness of the complete

simulated tissue section.

I1 = e−
1
2
µ·m′z ·n · 〈E1,E

∗
1〉 (3.6)

In accordance with the standard PLI measurement, the simulation generates

a series of 18 light intensities for each rotation angle ρ ∈ {0◦, 10◦, . . . , 170◦}
and each pixel i ∈ (s′x × s′y) in the x-y-plane of the upsampled volume of the

vector field.

∗In previous publications [6], [7], the transmittance was denoted by I0. However, I0 is

typically used to denote the incident light in the Beer-Lambert law, which is applied in

(3.6). To avoid confusions, the transmittance is denoted by It.
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3.1.5 Simulation of Noise and Artifacts

In order to obtain realistic measurement data, noise and blurring must be

scaled correctly. In a preliminary study, the optical resolution was determined

as approx. 128µm opposed to a pixel size of 64µm in a large-scale polarimeter.

This reflects a blurring effect, which can be modeled by convolution with

a Gaussian filter. A radius of σr = 128µm corresponds to the determined

resolution. After blurring, resampling to the final pixel spacing m is performed.

In addition to blurring, the camera sensors add white noise to the resulting

image intensities. The level of noise σc = 150 a.u. was detected by repeated

measurements of a typical specimen stage. For simulations, the standard

normal distribution N (0, σc) was sampled and added to each pixel.

3.2 Simulation of Homogeneous Tissue with

Uniformly Distributed Orientations

For the simulation of homogeneous tissue, the generation of synthetic fibers

is not necessary, because each voxel is supposed to contain exactly one

fiber population. Instead of creating a synthetic fiber arrangement, the

fiber orientations were assigned directly to a vector field with a size of one

pixel along the z-axis (sz = s′z = 1). In this way, there is no mixture of fiber

orientations. This simulation allows to investigate the effect of sensor noise and

imprecise estimation of the retardation reference value rref (Section 2.5). The

simulated homogeneous tissue data set contains all possible fiber orientations.

The fiber orientations were not sampled uniformly along the surface of a

sphere, but uniformly in terms of their in-plane direction ϕ and out-of-plane

inclination α. The direction ϕ was varied along the circumference of a circle,

and the inclination α was varied along the square of the radius from −90◦ to

90◦ (Fig. 3.4). This resulting vector field is smooth (Fig. 3.5). The vector

field was upsampled by two in the x-y-plane but not along the z-axis. This

complies with the assumption of homogeneous tissue properties and fiber

orientations. The image spacing and the incident light were chosen according

to a large-area polarimeter. The retardation reference value rref was set to

0.6. The incident light I0 was set to 15700. Both values can be derived from
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180°0° 90°30° 60° 120° 150°

(a) Synthetic fiber direction ϕ

90°-90° 0°-60° -30° 30° 60°

(b) Synthetic fiber inclination α

90°0° 45°15° 30° 60° 75°

(c) Synthetic absolute fiber inclination |α|

Figure 3.4: The distribution of fiber orientations was chosen uniformly along

the circumference and uniformly along the square of the radius of a circle for

in-plane direction ϕ and out-of-plane inclination α respectively.
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Figure 3.5: The continuous change of the fiber orientation is shown more

clearly in a vector visualization with a reduced number of vectors.
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Table 3.1: Simulation parameters of homogeneous tissue sample with uniformly

distributed fiber orientations

parameter name symbol value unit

image size x sx 500 px

image size y sy 500 px

image size z sz 1 px

pixel spacing x mx 64 µm

pixel spacing y my 64 µm

pixel spacing z mz 100 µm

upsampled pixel spacing x m′x 32 µm

upsampled pixel spacing y m′y 32 µm

upsampled pixel spacing z m′z 32 µm

incident light I0 15 700 a.u.

reference retardation rref 0.6

attenuation µ 1.5 1
mm

blurring radius σr 128 µm

sensor noise σc 150 a.u.

measurements of typical brain sections (Fig. 3.6). A list of all parameters

used for the simulation of the homogeneous tissue sample with uniformly

distributed orientations is summarized in Table 3.1. The simulation generates

a PLI image series, which was processed by standard PLI analysis. The

derived fiber orientations can be compared to the synthetic fiber orientations

used for simulation.

3.2.1 Results

In the first step, a PLI images series was simulated from the synthetic vector

field as described in Section 3.1.2 and Section 3.1.4. The change of light

intensities follows the fiber in-plane orientation, as shown for a selection of

rotation angles ρ ∈ {0◦, 40◦, 80◦, 120◦} in Fig. 3.7. The PLI image series

was analyzed as described in Chapter 2. The parameters transmittance It,
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Figure 3.6: The histograms show the distribution of retardation and transmit-

tance values in the brain sections shown in Fig. 2.3. A retardation reference

value rref = 0.6 is typical. The incident light should be chosen higher than

typical transmittance values. For simulation, I0 = 15700 was chosen.
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(a) ρ = 0◦ (b) ρ = 40◦

(c) ρ = 80◦ (d) ρ = 120◦

150002500 100005000 7500 12500

Figure 3.7: The simulation generates a PLI image series of 18 gray images for

a series of rotation angles ρ of the polarizing filters. A selected set is shown

here. The light intensity changes along the circular fiber direction.
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retardation r, and direction ϕ were obtained and are shown in Fig. 3.8(a)-(c).

The retardation reference value rref = 0.602418 is determined as described

in Section 2.5. Thereby, the absolute inclination angle |α| can be derived

(Fig. 3.8d). The comparison of true and simulated fiber orientations reveals

very small differences for a large majority of fiber orientations. The images

in Figs. 3.4(a), (c) and 3.8(c),(d) resemble each other strongly. A numerical

comparison of the true and simulated fiber orientation angles is illustrated

in Figure 3.9. This comparison reveals large discrepancies where the fiber

inclination is steep. This is especially striking for the fiber direction, which

shows deviations no larger than 5◦ in combination with inclination angles

|α| < 60◦, but turns out to be assigned arbitrary values for |α| > 80◦. However,

the deviation of the in-plane fiber direction ϕ does not depend on the value

of ϕ itself, which is not shown here. The fiber inclination is disturbed no

more than 2◦ for intermediate values, but up to 10◦ at both edges of the

range of absolute inclination values. In these regions, the simulated absolute

inclination values are not distributed normally around the true absolute

inclination values. Low inclination values are systematically overestimated by

the simulation. There is a diagonal cluster of low inclination values, that are

assigned 0◦ in the simulation. The same applies inversely to high inclination

values. They are systematically underestimated. There is no diagonal cluster,

but analogously all simulated inclination angles are limited to values below

90◦.

The determination of a retardation reference value rref in order to derive

drel is a crucial step for the analysis of the inclination angle. As explained in

Section 2.5, the automatic fit assumes a certain distribution of retardation

values. Therefore, the retardation reference value must be determined man-

ually, if a different distribution is found. This is the case, if the examined

brain section is not complete, or does not contain a sufficient number of

in-plane fibers. In the sample examined here, blurring and sensor noise gave

rise to retardation values of up to 0.63. Before simulation, the retardation

was limited to 0.6. Therefore, a maximum deviation of ±0.03 in the choice of

the reference value seems realistic. The simulated inclination angles analyzed

with biased retardation reference values are compared to the true inclination

angles in Fig. 3.10. With a biased retardation reference value rref , there are
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150002500 100005000 7500 12500

(a) Transmittance It

1.00.0 0.4 0.60.2 0.8

(b) Retardation r

180°0° 90°30° 60° 120° 150°

(c) Direction ϕ

90°0° 45°15° 30° 60° 75°

(d) Absolute inclination |α|

Figure 3.8: The above parameters were obtained by standard PLI analysis.

The reference value rref needed for the calculation of the absolute inclination

|α| was obtained automatically from the histogram of the retardation image

as described in Section 2.5.
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(a) Reliability of the in-plane direction ϕ
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(b) Reliability of the absolute out-of-plane inclination |α| with automatically determined

retardation reference value rref = 0.602418

Figure 3.9: The fiber orientations that were determined from the simulated

data set are compared with the true orientation angles, that the simulated

data set based on. The reliability of both fiber orientation angles strongly

depends on the absolute inclination angle |α|.
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(a) Retardation reference value rref = 0.63
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(b) Retardation reference value rref = 0.57

Figure 3.10: The choice of the correct retardation reference value is crucial

for the correct interpretation of the inclination angle. The true reference

value, which was chosen for simulation was 0.6. If the reference value is

chosen too high, the absolute inclination angles below 50◦ are systematically

overestimated. The simulation yields inclination angles of approx. 12◦ for

actually flat fibers. The errors are also systematically biased by a reference

value that is chosen too low. Then, fibers below 50◦ are underestimated.

Practically all fibers that are inclined by less than 10◦ are assigned a simulated

absolute inclination angle |α|sim = 0◦. This is visible as a diagonal cluster.
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considerable deviations between the true and the simulated inclination angle

of up to almost 20◦. In particular, the mean of the simulated inclination

values systematically deviates from the true value, such that practically none

of the true inclination angles |α| < 40◦ is conserved through the simulated

measurement. The empirical standard deviation can be calculated from the

simulated data set by evaluating small intercepts of the inclination angles.

This empirical error is comparable to the propagated error determined in

Section 2.5. A mutual plot of the propagated error and the empirical error are

shown in Fig. 3.11a. In the calculation of the propagated error in Section 2.5,

the uncertain choice of a reference value rref was not considered. Therefore,

the calculation of the propagated error ∆α(r, rref) is adjusted here. The

absolute inclination angle |α| is derived from the retardation reference value

rref as

|α| = arccos

(√
arcsin(r)

arcsin(rref)

)
. (3.7)

The propagated error ∆α(r, rref) is then calculated as

∆α =

√(
∂α

∂r

)2

·∆r +

(
∂α

∂rref

)2

·∆rref (3.8)

with

∂α

∂rref

=
1√(

1− arcsin(r)
arcsin(rref)

)
· (1− r2

ref) · 2 arcsin(rref)

. (3.9)

For comparison with the empirical errors for rref = 0.57 and rref = 0.63,

∆rref was set to 0.015, and ∆r = 0.006 was chosen as in Section 2.5. The

results of both approaches of error analysis are illustrated in Fig. 3.11b.

The empirical error shows a stronger increase towards flat fibers, but then

falls below the propagated error for inclinations angles below approx. 15◦ and

10◦ respectively. There is a very abrupt decrease of the empirical error for a

reference value rref = 0.57, which cannot be observed for a reference value

rref = 0.63.
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3.2.2 Discussion

The errors introduced by sensor noise and blurring were investigated by

simulation of a homogeneous tissue sample covering the full range of possible

fiber directions. The results allow the estimation of errors by comparison of

the true underlying orientation and the orientation computed by simulation of

the measurement process and standard PLI analysis. In conclusion, the errors

strongly depend on the out-of-plane fiber inclination and therefore are very

sensitive to the choice of an appropriate retardation reference value rref . The

errors of the simulated inclination angles are not distributed symmetrically

around the true value, if the reference value is biased. If rref is chosen correctly,

at the edges of the range of inclination angles, the errors are not distributed

symmetrically either. These systematic errors seem to be caused by the

non-linear relation between the retardation r and the absolute inclination

angle |α| (see (2.6)). In particular, the inclination angle is not defined for

retardation values larger than the retardation reference value due to the arc

cosine function. In standard PLI analysis, these retardation values are set

to the retardation reference value rref , and thereby the inclination angle is

artificially set to 0◦. This obviously causes the empirical error to decrease for

very low inclination angles. Similarly, the absolute inclination angle is limited

to angles of maximally 90◦, because the range of retardation values is positive

by definition (see (2.14)). These boundary conditions are not and can not be

included in the error propagation approach. This seems to be the reason why

the error predicted by error propagation does not fully agree with the results

of simulation, especially towards the edges of the range of inclination values.

However, the error propagation approach provides a description of the error

in a closed-form expression. This could be convenient for the development of

stochastic tractography algorithms (see Chapter 5).

3.3 Simulation of a Crossing Fiber

Arrangement

In this section, a crossing fiber arrangement is simulated in order to observe the

mixture of two defined fiber orientations (Fig. 3.12a). This fiber arrangement
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Figure 3.11: The standard deviation of the absolute inclination angle can

be predicted by error propagation analysis (∆α), and can be determined

empirically from simulations (σα). For intermediate inclinations, the error is

estimated on an equal level by both methods. At the edges, the theoretically

propagated error is considerably larger.
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occurs in many regions of the human brain. A very prominent example

is the optic chiasm, the crossing of the optic nerves, which is found in

many animal species. In this simulation, the crossing fiber arrangement

was designed to compare with a real tissue sample, the optic chiasm of a

hooded seal (Cystophora cristata) (Fig. 3.15d). The fiber orientations of

the synthetic fiber crossing were chosen to run orthogonally to each other.

The in-plane orientation was sampled from a normal distribution in order to

add a realistic variance. The investigation of the optic chiasm of the hooded

seal is particularly interesting, because it is not known whether all fibers

actually cross to the other side, or if fibers exist, that continue ipsilaterally.

In the optic chiasm, the majority of fibers cross from one optic nerve to the

contralateral optic tract, but the portion of fibers, that does not cross is very

diverse in different species [67], [102]. In mammals, a correlation between the

degree of the binocular field of view and the degree of non-crossing fibers has

been proposed [49], [107]. However, the binocular view field has not been

investigated for the hooded seal. For a close relative of the hooded seal, the

harbor seal [55], the binocular view field suggests a fraction of crossing fibers

of approx. 50 %. In addition to the crossing fiber arrangement, a so-called

kissing fiber arrangement was created (Fig. 3.12b), which demonstrates the

possible course of ipsilateral running fibers. A combined fiber arrangement

was also created (Fig. 3.12c). A conclusion about the structure of the optic

chiasm must be supported by comparison of all data sets.

The synthetic crossing fibers were generated by randomly placing starting

seeds in the center of the simulation volume. Alternately, the fiber direction

was sampled normally around 45◦ and 135◦ respectively. The chosen fiber

direction was continued in both directions up to the border of the simulation

volume to constitute a synthetic fiber path.

The crossing fiber arrangement was selected for simulation, because the

mixture of different fiber orientations in one pixel clearly violates the assump-

tion of homogeneous tissue in standard PLI analysis. In order to ensure correct

interpretation, the effect of fiber orientation mixture must be investigated.

The evaluation of mixed fiber orientations was performed on fibers with two

groups of direction angles (ϕ ≈ 45◦ and ϕ ≈ 135◦), while the out-of-plane

inclination angle α of the synthetic fibers was set to 0◦. This allows the
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(a) Crossing fibers (b) Kissing fibers

(c) Crossing and laterally non-crossing fibers

Figure 3.12: These synthetic fiber arrangements were designed to investigate

the mixture of crossing fibers and to reproduce typical fiber arrangements

in the optic chiasm. This is rendered visualization with a view onto the

x-y-plane.
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description of fiber mixture by relating the number of fibers of one orientation

to the number of total fibers inside one pixel. For example, a relative mixture

of 40 % describes the situation of ten mixed fibers, consisting of four fibers in

the first group and six fibers in the second group.

The evaluation of the simulated crossing fiber arrangement was performed

in two steps. First, in-plane resampling, blurring and sensor noise were

omitted. This allows to examine the mixing fiber orientations without any

additional sources of errors. Second, the crossing fiber arrangement was

compared to the real data set. In this case, in-plane resampling, blurring

and sensor noise were added such that a realistic data set was generated. In

particular, the final size and spacing of the simulated data set was chosen

in accordance with the optic chiasm of the hooded seal. The retardation

reference value rref was set to 0.6 as before, but the attenuation µ = 4.4 mm−1

was adapted to the light intensity, that was observed in the real data set.

Also, the blurring radius was enlarged to improve the visual similarity to the

real data set. A summary of all parameters is found in Tab. 3.2.

3.3.1 Results

The effects of fiber orientation mixture were examined for the in-plane direction

ϕ and the out-of-plane inclination α separately. The direction angles derived

from the simulated PLI signal were evaluated in sets of equal relative mixtures.

Figure 3.13 shows the mean values and standard deviations of each relative

mixture class. The simulated mixture of directions yields arbitrary direction

angles, where perpendicular fiber directions are mixed in equal parts. However,

if one of the relative mixture lies above 60 % or below 40 %, then the simulated

mixed direction matches the underlying majority at average. This behavior

of mixing fiber orientations considerably differs from the intuitive idea of a

mixed fiber orientation, that lies in between underlying fiber orientations.

Instead, the orientation of the majority of the underlying fibers is conserved.

The fiber inclination is also influenced strongly by fiber mixture (Fig. 3.14).

The true fiber inclination in the crossed fiber arrangement is 0◦, but the

simulation and subsequent analysis results in quite steep inclination angles

in the crossing region. The measured inclination angle obviously correlates
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Table 3.2: Simulation parameters of crossing fiber arrangement

parameter name symbol value unit

image size x sx 100 px

image size y sy 100 px

image size z sz 1 px

pixel spacing x mx 64 µm

pixel spacing y my 64 µm

pixel spacing z mz 70 µm

upsampled pixel spacing x m′x 5 µm

upsampled pixel spacing y m′y 5 µm

upsampled pixel spacing z m′z 5 µm

# of fibers n 450

fiber radius rf 20 µm

incident light I0 15 700 a.u.

reference retardation rref 0.6

attenuation µ 4.4 1
mm

blurring radius σr 256 µm

sensor noise σc 150 a.u.
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Figure 3.13: The simulation of PLI measurements yields a fiber direction

ϕsim, that reflects the mixture of different fiber orientations in one pixel.

This simulated resulting fiber direction does not correspond to an intuitive

arithmetic mean. The simulated fiber direction corresponds to the direction

of the majority of the underlying fiber directions with growing uncertainty

when underlying fiber orientations are more balanced.
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with the relative mixture, such that mixtures of equal parts create the highest

inclination angles. The inclination angles further increase with a lower tissue

density, i.e. with a lower number of total fibers.

For comparison with the measured fiber orientations in the optic chiasm

(Fig. 3.15d), three fiber arrangements were simulated and the orientation

were extracted by standard PLI analysis (Fig. 3.15(a)-(b)). The orientations

in the crossing fiber arrangement generally resemble the orientations in the

optic chiasm. The kissing fiber arrangement contains many vertical fiber

orientations, that are not found in the real tissue sample. However, the lateral

edges of the measured optic chiasm are also similar to the edges in the crossing

fiber arrangement. There is a slight impression of fiber transitions between

the left and right optic nerve in real data.

3.3.2 Discussion

The fiber orientations in the optic chiasm of a hooded seal must be inter-

preted with care. The transitions between both optic nerves are anatomically

impossible. The analysis of fiber mixtures in a fiber crossing shows, that

even in mixed fiber arrangements, the measured fiber directions originate

from a majority of fibers with the measured direction. Therefore, the mea-

sured directions, that show a transition between both optic tracts, that is

not assumed to exist, can hardly be explained by errors of fiber mixtures.

Possibly, other birefringent tissue components fulfill the observed smooth

bend of orientations.

The lateral regions of the real optic chiasm are similar to the corresponding

regions in all synthetic fiber arrangements. The analysis of mixed direction

angles demonstrated, that a majority of fiber orientations that is mixed with

a minority of different orientations along the z-axis, is hardly biased. This

suggests, that if there are ipsilateral fibers in the optic chiasm of the hooded

seal, then intermediate fiber orientations, that occur in bending fibers, should

be visible although they are mixed with other directions. Clearly, the kissing

fiber arrangement contains these intermediate fiber directions, but the optic

chiasm does not. This argues for a complete crossing of the optic nerves to the

contralateral tracts. Non-crossing fibers in the lateral regions are still possible
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Figure 3.14: The true inclination in this fiber arrangement is 0◦. However,

the mixture of fibers attenuates the measured signal, such that the simulated

inclination angle is much higher than the true inclination angle. The effect is

the strongest for balanced mixtures. The tissue density describes the fraction

of tissue in the examined volume. The simulated data set has a thickness of

70µm and the synthetic fibers were sampled with a resolution of 5µm. The

tissue density is 100 %, if the complete thickness is filled with synthetic fibers

and 0 %, if this part of the data set does not contain any synthetic fibers. A

low tissue density also strongly overestimates the inclination angle.
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though as shown by the combined fiber arrangement, which is also quite

similar to the real data set. It is known, that non-crossing fibers typically

pass the optic chiasm in the lateral region [67].

The analysis of the fiber course could be supported by results of tractogra-

phy. However, the problems, that arise from the mixture of fiber orientations

have also become obvious. The fiber inclination, that is derived by standard

PLI analysis, is heavily biased by signal extinction of perpendicular orien-

tations. The actually flat fibers are determined with inclination angles that

strongly correlate with the relative mixture of fiber orientations. Therefore,

tracking out-of-plane fiber orientations in this vector field will result in ar-

tifacts rather than realistic fiber tracts. This signal attenuation also affects

the fiber direction. The fiber direction in equally balanced fiber mixtures

is determined with arbitrary errors. This is in line with the observation of

direction angles at high inclination angles (Fig. 3.9a). The determination

of the in-plane fiber direction is strongly affected by high inclination angles.

This is the case both for truly high inclination angles, or for overestimated

inclination angles due to fiber mixture or low tissue density. It is likely that,

if the amplitude of the PLI signal falls below a specific limit, then the phase,

i.e. the direction angle, cannot be determined anymore by Fourier analysis

(see Section 2.4). This must be examined in future studies. Possibly, the

accuracy of the direction angle can be improved in these cases, by a more

robust derivation of the direction angle from the PLI image series.

The varying number of fibers, that also influences the inclination angle,

again reflects the problem to find the correct retardation reference value rref .

The birefringence of a single fiber differs, of course, from that of two fibers, if

all fibers have equal properties. Probably, the fiber density does not vary as

strong as it does in this synthetic fiber arrangement, but the consequences of

different fiber densities in real tissue must be kept in mind for interpretation.

In this chapter, the simulations of two fiber arrangements have been

analyzed with respect to many details. Three main sources of errors, i.e. fiber

mixture, imprecise knowledge about tissue properties, and sensor noise, were

observed and quantified. The presented fiber arrangements are examples

of the broad set of possibilities that are now available to simulate PLI

measurements. The simulation framework can be easily extended by any other
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(a) Simulation of crossing fibers (b) Simulation of kissing fibers

(c) Simulation of crossing and laterally non-

crossing fibers
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1µm
optic tracts

optic nerves

(d) Optic chiasm of a hooded seal

optic tracts

optic nerves

(e) Scheme of the optic chiasm

Figure 3.15: The comparison of the synthetic fiber arrangements (a)-(c) to

the optic chiasm of the hooded seal (d), suggests that most fibers of the optic

nerves cross to the contralateral optic tract. It is not known exactly how

many fibers pass the optic chiasm on the ipsilateral side. The measured fiber

orientations must be interpreted with care. There seems to be a transition of

fibers between both optical nerves (arrow), which contradicts to anatomical

knowledge (e).
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fiber arrangement. Further developments could allow a different fiber radius

for each synthetic fiber. The application of a perspective transform is under

development and could reproduce another source of potential measurement

errors. The simulation of fiber arrangements is an important contribution to

the interpretation of measured fiber orientations. The simulation has also

demonstrated, which limitations and problems arise for the reconstruction of

nerve fibers from fiber orientations measured by PLI.



Chapter 4

PLI Inclination Sign Ambiguity

The measurement setup presented in Section 2.2 allows the derivation of the

absolute inclination angle |α| but not the derivation of the inclination sign

l ∈ {+1,−1}. This leads to an ambiguity, that must be treated in order to

reconstruct a fiber orientation correctly. The unambiguous fiber orientation

is of specific interest, when fiber tractography across neighboring sections is

envisaged. Larsen et al. [81] presented an optimization approach to overcome

the inclination sign ambiguity in PLI by minimizing the difference between

neighboring fiber orientations with simulated annealing. Unfortunately, this

approach relies on a set of pixels, where the inclination sign must be known.

In regions, where neighboring fiber tracts only differ by their inclination sign,

one of these fiber tracts tends to be assigned with the wrong inclination

sign to minimize their difference. Therefore, it is necessary to measure

additional information about the inclination sign at each pixel. For a polarizing

microscope, Pajdzik [97] presented a tilting stage to differentiate positive

and negative inclination signs of crystal orientations. Similarly, a tilting

setup was developed for PLI. The tiltable setup, which allows to derive the

inclination sign, is presented in Section 4.1 in detail. In Section 4.1.3, the

reliability of the derived inclination sign is investigated, and it is shown, that

the derived inclination sign is very sensitive to noise. This motivates the

further enhancement of the reliability of the inclination sign in Section 4.2.

For this purpose, a Markov Random Field optimization approach is presented

(see also [74]).

53
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Figure 4.1: The tiltable specimen stage is tiltable in two axes, i.e. in four

directions. The tilting direction ψ is given as a geographic direction or in

degrees alternatively. The nomenclature in degrees is a common reference

for the filter rotation angle ρ, the fiber in-plane direction ϕ and the tilting

direction ψ.

4.1 Tilting Setup

In order to derive unambiguous information about the inclination sign at each

image pixel, the polarimeter (see Section 2.2) contains a tiltable specimen

stage.

There are two tilting axes, which are aligned with the orthogonal image

axes of the camera. The specimen stage can be tilted clockwise and counter-

clockwise by an angle τ ≈ 4.0◦ around both axes, which leads to four tilting

positions in addition to the flat, untilted position. The tilting position is

denoted by ψ expressed as an angle. The four directions, that are currently

available for tilting, are also named by geographic directions (N = 90◦,

W = 180◦, S = 270◦, E = 0◦) as an intuitive nomenclature, meaning that the

edge of the specimen in the specified direction ψ is tilted down towards the

light source. The tilting direction angle ψ refers to the same coordinate system

as the in-plane fiber direction ϕ and the filter rotation angle ρ (Fig. 4.1).
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4.1.1 Comparison of Tilted Images

The tilted positions of the two-dimensional specimen plane represent small

rotations in three-dimensional space, which result in perspective transforma-

tions of the two-dimensional images. In order to compare the same point

of tissue in different tilting positions, the perspective transformation, a ho-

mography, must be determined. This can be done by automatic detection of

characteristic features, for example by Scale Invariant Feature Transforms

(SIFT) [88], and their correct mapping in different images. The estimation

of the homography matrix becomes robust by applying RANdom SAmple

Consensus (RANSAC) [41] on all feature mappings.

The modalities retardation r and direction ϕ are not suitable for feature

detection, because their intensities change noticeably by tilting. This violates

the basic assumptions of standard image feature matching techniques. The

transmittance It changes only slightly for different tilting positions due to

the elongated optical path, but these changes are below the sensitivity of

the camera. Therefore, It is used to detect corresponding landmarks in the

images of all tilting positions in order to determine and invert the perspective

transformation.

4.1.2 Derivation of the Inclination Sign by Tilted

Measurements

The parameters that were measured in tilting position ψ are specified by a

superscript, e.g. αψ and rψ in contrast to α and r on a flat specimen stage.

For each tilting direction ψ, the opposite direction is ψ ± 180◦. To achieve a

reasonable effect, the tilting direction must be aligned to the fiber direction

as well as possible. In other words, the difference |ϕ− ψ| should be as small

as possible. In the current setup with four directions, in the worst case, the

difference between fiber direction and tilting direction is 45◦. If the fiber

in-plane direction and the tilting direction are aligned well, fibers with positive

inclination can be distinguished from those with negative inclination by their

decrease in absolute inclination after tilting (Fig. 4.2). The closer the fiber

in-plane direction is aligned to the tilting direction, the larger is the effect

of tilting on the fiber inclination. If the fiber direction is perpendicular to
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Figure 4.2: The tilting process is shown for fibers with ϕ = ψ. The absolute

inclination, i.e. steepness, of fibers with a positive inclination sign (top row)

decreases when tilting to ψ. If the inclination sign is negative (bottom row),

the steepness increases.

the tilting direction, the fiber inclination is not changed at all. If the fiber

direction deviates from the tilting direction by more than 90◦, the change is

inverted. The signum function formalizes this relation to

sgn(α) = sgn(|αψ±180◦| − |αψ|) · sgn(cos(ϕ− ψ)) . (4.1)

In order to derive the inclination sign from retardation values, the strictly

decreasing relation between inclination and retardation (for 0 < drel < 1 as

shown in (2.6)) may be applied as

sgn(α) = sgn(rψ − rψ±180◦) · sgn(cos(ϕ− ψ)) . (4.2)

Note, that the change of retardation already takes place, when comparing a

tilted measurement with the flat measurement. The change is more effective

though, if the retardation of opposite tilting positions are compared. Therefore,

the inclination sign is derived from opposite tilting positions as a standard.

However the statement (4.2) would be correct as well, if either rψ or rψ±180◦

were replaced by r. The same applies for (4.1) and αψ, αψ±180◦ , and α.

Description of Tilting as Rotation The exact change of α and ϕ can

be calculated by multiplying the corresponding rotation matrices with the
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v =

 cos(α) cos(ϕ− ψ)

cos(α) sin(ϕ− ψ)

sin(α)



Figure 4.3: The tilting transformation in direction ψ, which is applied to

vector v = (x, y, z)T , is a clock-wise rotation around the y-axis.

derived vector (4.3). If ψ is related to ϕ, the rotation can be expressed by

clock-wise rotation around the y-axis (Fig. 4.3).

Ry · v =

 cos(τ) 0 − sin(τ)

0 1 0

sin(τ) 0 cos(τ)

 ·
 cos(α) cos(ϕ− ψ)

cos(α) sin(ϕ− ψ)

sin(α)


=

 cos(α) cos(ϕ− ψ) cos(τ)− sin(α) sin(τ)

cos(α) sin(ϕ− ψ)

cos(α) cos(ϕ− ψ) sin(τ) + sin(α) cos(τ)

 (4.3)

4.1.3 Reliability of the Derived Inclination Sign

The standard PLI measurement acquires PLI images series in four tilted posi-

tions in addition to the flat position. As mentioned above, only two oppositely

tilted measurements or one tilted and the flat measurement are necessary

to derive an inclination sign according to (4.2). This produces redundant

information about the inclination sign. In the following experiments, the

inclination signs derived from various combinations of tilted measurements

are compared. It is expected, that the derived inclination signs are consistent.

A high consistency of independently derived inclination signs would argue for

a high reliability of the derived inclination sign and a high reproducibility of

the tilted measurements.
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Experiments The white matter of four human brain sections was manually

segmented and examined (Fig. 4.4).

First, the inclination sign was derived from one tilted and the flat measure-

ment. This was compared to the inclination sign derived from the oppositely

tilted and the flat measurement (see N-flat-S and W-flat-E in Fig. 4.4). Only

pixels with a fiber in-plane direction ϕ = ψ ± 10◦ were considered to assure a

good alignment between ϕ and ψ and thereby a large effect.

Second, the inclination sign was derived according to (4.2) with ψ = N

and then compared to the derived inclination sign with ψ = W (see NS-WE

in Fig. 4.4). Thereby, both signs are derived independently. To ensure a

similar alignment between fiber direction and tilting direction for both tilting

axes, only fibers that run near the bisecting line in between both axes were

considered (ϕ = 45◦ ± 10◦, ϕ = 135◦ ± 10◦).

Results and Discussion The derived sign from combined flat and single

tilted measurement is inconsistent in 42.05 % to 75.52 % of all considered

pixels. The tilting amplitude τ ≈ 4◦ seems to be too small to observe changes

between flat and tilted measurements reliably. The largest sample even

shows the most significant inconsistency between both derived signs. This

suggests, that there are additional influences, which disturb the derivation

of the inclination sign by observing the retardation change between a flat

and tilted measurements. These influences could include differing scatter and

reflection properties. As a consequence, the inclination sign must be derived

from opposite tilting positions with a tilting amplitude τ ≥ 4◦. Otherwise,

the derivation of the inclination sign is random.

The inclination sign derived from tilting in N and S compared to tilting

in W and E are consistent for 56.78 % to 64.23 % of all considered pixels. For

the majority of these pixels, the inclination sign is derived equally from both

tilting axes, however a large part of the examined pixels received inconsistent

inclination signs. Probably, the true error rate of the derived inclination

sign is lower than the rate of inconsistent pixels, because the alignment

between the fiber direction and the tilting direction is not equal for both

derived signs. The better aligned tilting axes should be used to solve these

inconsistencies. However, the true inclination sign is not known and the
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relatively high inconsistencies for fiber orientations, that are not well aligned

to the tilting axes, suggest that the derivation of the inclination sign in these

pixels is not very reliable. The correction of the derived sign in such pixels

with image restoration methods is reasonable. Further sources of errors,

such as interpolation errors from the inverted perspective transformation

or the influence of very high and very low inclination angles, which are not

resolved well by the non-linear relation between retardation and inclination

(see (2.6)), have not been investigated quantitatively, but support the need

for post-processing.
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Figure 4.4: The white matter of four human brain sections was segmented

manually as shown by the black contours in the transmittance images on

the left side. The consistency of the inclination signs derived from different

subsets of the tilted measurements was evaluated. The derived inclination sign

from tilting to N to flat is expected to agree with the derived sign from flat

to S (N-flat-S) for fibers that are aligned with the N-S axes (ϕ− ψ = ±10◦).

Analogously, the consistency was evaluated for tilting positions E and W

compared to the flat position (W-flat-E). Finally, the inclination sign was

derived from changes between N to S and from changes between W to E

(NS-WE) for fibers that are oriented between both axes (ϕ ∈ {45◦±10◦, 135◦±
10◦}).
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4.2 Inclination Sign Enhancement

The inclination sign ambiguity can be regarded as a labeling problem. The

tilted measurements provide information about the inclination sign to make a

binary decision between positive (+) and negative (−) inclination sign. This

is very similar to other typical image labeling problems in the domain of image

processing, e.g. segmentation or denoising. Markov random fields (MRFs)

were first introduced in computer vision by Geman and Geman [44] and allow

the formulation of a labeling problem in terms of an energy optimization

problem. The development of efficient energy optimization algorithms on

MRFs [22], has made MRFs a powerful tool [27]. Similar ambiguity problems,

e.g. with interferometric fields, have been solved successfully with MRFs

[136, 18].

4.2.1 Markov Random Fields for Image Enhancement

A random field is defined as an undirected graph G = (Ω,N ) with a set

of random variables Ω and a set of dependencies N between them. The

stochastic event x = l is the assignment of a label l ∈ L to a random variable

x ∈ Ω with a probability p(x = l). The joint labeling of all random variables

in Ω is a configuration L = {x0 = l0, x1 = l1, . . . , xn = ln}. In general, the

random variables xi ∈ Ω are not conditionally independent from each other.

However, when the set of random variables to be labeled represents the set of

pixels in an image, it is commonly assumed, that a stochastic event xi = li

does not depend on the labeling of the entire image, but that there is a limited

set of neighbored pixels, whose labels may influence xi = li. For a set of

random variables Ω, a configuration L, and a neighborhood relation N , the

Markov property states

p(xi = li | L \ {xi = li}) = p(xi = li | {xj = lj | (xi, xj) ∈ N}). (4.4)

The Markov property simplifies the calculation of the joint probability of a

configuration. According to Hammersley and Clifford [54], the joint probability

can be expressed as

p(L) =
1

Z
· e

∑
c Ec(Lc) , (4.5)
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where a clique c is a maximal set of random variables, that is completely

connected by the neighborhood relation N , and Ec : Ω → R+ is a positive

energy function. The partial configuration Lc is the subset of L defining the

labeling of the random variables in c only. In order to find a configuration

L∗, that maximizes the joint probability p(L), (4.5) is logarithmized.

L∗ = argmax
L

p(L) = argmin
L

∑
c

Ec(Lc) (4.6)

In this way, the joint probability is transferred to a sum of independent energy

functions for each clique. There are two types of relevant cliques, unary

cliques, consisting of one random variable, and binary cliques, consisting of

two random variables. The energy of a unary clique penalizes the label of the

respective random variable. Typically, the unary energy functions are chosen

according to some kind of observation or measurement for index i, and such

a function is then denoted as data energy Ei. The energy of binary cliques

defines the interaction between neighbored random variables. The smoothness

of labels in neighbored random variables can be imposed by binary energy

functions. In this case, the energy of binary cliques is denoted as smoothness

energy Ei,j. The reference to indices i, j points out, that smoothness can be

defined locally. In summary, the total energy is defined as a trade-off between

data energies and smoothness energies, that can be controlled by a weighting

factor λ.

E(L) =
∑
i

Ei(xi = li) + λ ·
∑

(i,j)∈N
Ei,j(xi = li, xj = lj) . (4.7)

For PLI, the set of labels L = {−,+} is binary and the set of random variables

represents the pixels of the inclination image. Then, a configuration L assigns

one of two signs to each image pixel and thereby gives a solution to the

inclination sign ambiguity.

4.2.2 Design of Data and Smoothness Energy

Functions

The definition of the data and the smoothness energy functions determines

the quality of the resulting labeling. Therefore, the desired properties of the
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solution must be defined in these functions. Generally, the set of possible

energy functions is only limited to the class of positive functions. In this

section, the data energy will be designed to express the relation between the

tilted measurements and the inclination sign. For the smoothness energy,

two alternatives will be presented. Both of them aim for a smoothing of the

three-dimensional fiber orientation and therefore depend on the local in-plane

fiber direction.

Data Energy The data energy is thought to include observations about the

label at a certain image index. Here, these observations are PLI measurements

in different tilting positions. Equation (4.1) shows how the inclination sign

sgn(α) can be derived from oppositely tilted, unsigned inclination angles |αψ|,
|αψ±180◦|, the fiber direction ϕ, and the tilting direction ψ. A large absolute

difference between oppositely tilted inclination angles |αψ±180◦ − αψ| argues

for a large tilting effect and a high reliability of the derived sign. We therefore

require the data energy to be proportional to the sum of these differences for

all tilting directions ψ ∈ {N, W, S, E}.

Ei ∝
∑
ψ

|αψ±180◦

i − αψi | . (4.8)

The data energy is minimal, when the label li corresponds to the true incli-

nation sign sgn(α). It is maximal, when the label li and the true inclination

sign are inconsistent.

Ei(xi = li) ∝ −li ·
∑
ψ

|αψ±180◦

i − αψi | · sgn(αi) (4.9)

As discussed in Section 2.5, and examined in simulations in Section 3.2, the

inclination angle α is obtained with limited accuracy. This is due to the

strong dependency of α on a possibly biased choice of drel, as well as the high

sensitivity of α to noise for very steep and very flat fibers. However, there

is an approximation of |αψ±180◦ − αψ| that does not require drel, for small

|τ |, which is satisfied by τ = 4◦. The details are presented in the appendix.
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Together with (4.2), this leads to the data potential

Ei(xi = li) ∝ −li
∑
ψ

(
| − 2 sin(τ)| · (4.10)

sgn(rψi − rψ±180◦

i ) · cos(ϕi − ψ) sgn(cos(ϕi − ψ))

)
By inserting ψ ∈ {N = 90◦, E = 0◦}, and omitting constant factors, the data

energy is further simplified.

Ei(xi = li) ∝ −li ·
(

cos(ϕi − 90◦) · sgn(rNi − rSi ) + (4.11)

cos(ϕi − 0◦) · sgn(rEi − rWi )

)
For symmetry reasons, the insertion of ψ ∈ {W = 180◦, S = 270◦} is not

necessary. Finally, the data energy is normalized to values between 0 and 1.

Ei(xi = li) =
1

2
− li ·

sin(ϕi) · sgn(rNi − rSi ) + cos(ϕi) · sgn(rEi − rWi )

2
√

2
(4.12)

The intuitive idea of the data energy is to derive the inclination sign from

both tilting axes (sgn(rN − rS), sgn(rE − rW )), and to weight the resulting

signs according to the alignment of the fiber direction ϕ with the tilting axis

(cos(ϕ−ψ)). If both derived inclination signs agree and this sign corresponds

to the assigned label, then the data energy becomes minimal. If both signs

agree, but do not correspond to the assigned label, then the data energy

becomes maximal. If both signs contradict, the sign derived from the better

aligned axis is weighted stronger. If both signs contradict and both axes are

aligned equally to the fiber orientation (ϕ − ψ ∈ {−135◦,−45◦, 45◦, 135◦}),
then the tilted measurements do not contain any information about the

inclination sign. Consequently, in this case, the data energy has the same

value (0.5) for both possible labels, i.e. the data energy does not contribute

to the optimal labeling (see Fig. 4.5).

Smoothness Energy It is assumed that neighboring pixels tend to belong

to the same anatomical structure. It follows, that neighboring pixels tend

to contain a similar fiber orientation, because the anatomical structure is
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Figure 4.5: The data energy depends on the relation of ϕ to ψ. The incli-

nation sign can be derived from the tilted measurements of two tilting axes

independently (sgn(rN − rS) and sgn(rE − rW )). These plots show the data

energy for the case, that both derived signs are positive, and for the case

that both derived signs contradict. The corresponding signs push the data

energy towards the minimum and maximum, respectively, while contradicting

inclination signs yield intermediate energy values.
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continued. Therefore, it is reasonable to impose smooth fiber orientations,

especially to compensate for uncertain information. The smoothness energy

has great influence on the computational complexity of the optimization. In

general, the optimization of the joint probability in a Markov random field

is NP-hard. According to Kolmogorov et al. [79], there is a class of energy

functions, that can be solved in polynomial time. These functions are called

graph-representable [79, Theorem 4.1]:

Theorem 4.2.1 (Submodularity Constraint) Let E be a function of n

binary variables, i.e.

E(x1 = l1, x2 = l2, . . . , xn = ln) =
∑
i

Ei(xi = li) +
∑
i<j

Ei,j(xi = li, xj = lj).

Then, E is graph-representable if and only if each term Ei,j satisfies the

inequality

Ei,j(xi = 0, xj = 0) + Ei,j(xi = 1, xj = 1) ≤
Ei,j(xi = 0, xj = 1) + Ei,j(xi = 1, xj = 0)

This means, that the exact optimization of a smoothness energy function

is not computable in practice, if the submodularity constraint is not ful-

filled. Therefore, two alternative definitions of the smoothness energy will

be presented and discussed. The first approach will impose smoothness in

the complete three-dimensional fiber orientation, but is not submodular. The

second approach is submodular, but only considers the in-plane fiber direction

for the smoothness constraint.

To impose smoothness on the complete fiber orientation, the deviation δ

of neighboring fiber orientations must be measured, e.g. by calculating the

smallest enclosed angle.

δ(vi,vj) = min(arccos(vi · vj), 180◦ − arccos(vi,vj)) (4.13)
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The first smoothness term automatically follows this difference measure for

two neighboring fiber orientations vi, vj at indices i and j.

Ei,j(xi = li, xj = lj) ∝ δ(li · vTi , lj · vj) (4.14)

=
1

90◦
· δ(li · vTi , lj · vj) ,

In this definition, Ei,j is normalized to values between 0 and 1. A plot of

the smoothness energy function (Fig. 4.6a) illustrates that it is not sub-

modular for ∆ϕ ≥ 90◦. Therefore, the minimization of (4.14) cannot be

computed efficiently. Additionally, the energy function in (4.14) requires

the inclination to be known. The reliability of the inclination was discussed

in Sections 2.5 and 3.2.2. Considering the possible error in the inclination

angle, an alternative graph-representable energy function, that refrains from

including the inclination angle can be defined.

Ei,j(xi = li, xj = lj) =

(
1− |ϕi − ϕj|

180◦

)
·

1 , if li 6= lj

0 , else
(4.15)

This function corresponds to a contrast-sensitive Potts model [23, Eq. 3],

where the contrast is defined as the absolute difference of neighboring in-plane

fiber directions. The illustration in Fig. 4.6b confirms that this smoothness

energy function is graph-representable according to Theorem 4.2.1.

Energy Optimization Various algorithms have been developed for the

optimization of submodular and non-submodular energy functions in Markov

random fields. Szeliski et al. have presented and compared some of them [124].

For the following experiments, the quadratic pseudo-boolean optimization

(QPBO) described by Kolmogorov [78] based on ideas in [53] and [20] was

used. It supports the optimization of submodular and non-submodular energy

functions using the same interface. The implementation includes the min-

cut/max-flow algorithm by Boykov [21]. The QPBO algorithm returns the

optimal configuration for submodular energy functions, and a partial optimal

configuration with possibly unlabeled pixels in case of non-submodular energy

functions.
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(b) This is the submodular smoothness energy based on a Potts model with a
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Figure 4.6: Two alternative smoothness energy functions for the optimization

of the joint probability in a Markov random field. For submodularity, see

Theorem 4.2.1.
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4.2.3 Experiments

The inclination sign and the resulting vector fields are evaluated on synthetic

data and real data. The evaluation of synthetic data allows the comparison of

the reconstructed inclination sign to the true inclination sign. For comparison,

the derived inclination sign maps were also smoothed by application of a

median filter. On binary images, the median filter replaces each pixel by the

most frequently occurring binary value in its neighborhood. For a simple and

clear reference to the applied methods, the following notation is used:

AllPos (+): The inclination sign is assumed to be positive

at all pixels.

DataOnly (DO): The inclination sign is directly derived from

tilted measurements, as presented in (4.2), with

ψ = N for 45◦ < ϕ < 135◦ and ψ = E for

ϕ ≤ 45◦ or ϕ ≥ 135◦.

DataMedian (DM): The inclination sign is derived from tilted mea-

surements and smoothed by a median filter.

GlobalOptPotts (GOP): The MRF is equipped with a Pottsmodel sen-

sitive to the contrast of the in-plane fiber di-

rection according to (4.15) to enhance smooth-

ness.

GlobalOptFull (GOF): The MRF is equipped with a smoothness

model, which computes the angular deviation

between three-dimensional fiber orientations

of neighboring pixels according to (4.14). This

results in a non-submodular model.

Synthetic Data As a synthetic data set, the homogeneous tissue arrange-

ment presented in Section 3.2 was used again. Additionally, the vector field

was tilted, such that four additional simulated PLI image series were created.

From each PLI image series, the retardation images r, r0◦ , r90◦ , r180◦ and r270◦

were computed. The reference value rref was determined with the standard fit

procedure as described in Section 2.5, and the absolute inclination |αsim| was
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calculated from r. According to DataOnly, DataMedian, AllPos, Glob-

alOptPotts and GlobalOptFull, the inclination signs sDO, sDM(R),

s+, sGOP (λ) and sGOF (λ), in general ssim, were determined with weighting

factor λ or radius R as indicated. For evaluation, the true orientation vector

v was composed from the synthetic orientation angles ϕ and α (Fig. 3.4).

Accordingly, the simulated orientation vectors vGOP (λ), vGOF (λ), vDM(R),

v+ and vDO, in general vsim, were composed from the simulated orientation

angles ϕsim and αsim = |αsim| · ssim. The difference between the true and the

simulated vectors was measured by the root mean squared deviation (RMSD)

of the enclosed angles (see (4.13)):

RMSD =

√√√√ 1

N

N∑
i=1

(δ(v,vsim))2 (4.16)

Background pixels displayed in black in Fig. 3.4 are not considered.

Additionally, the sensitivity was determined as the fraction of pixels that

were assigned the wrong sign in DataOnly, but corrected by GlobalOpt-

Potts or GlobalOptFull respectively.

Human Brain Data The different approaches were applied to sections of

human post-mortem brains without pathological findings. Three regions of in-

terest, that represent the diversity of the results, were selected (Fig. 4.10-4.12).

The inclination signs were determined by AllPos, DataOnly, DataMe-

dian, GlobalOptPotts and GlobalOptFull for R = 1 and three values

of λ. In human brain data, there is no alternative method to reliably deter-

mine the inclination sign. Therefore, the human brain data presented here

cannot be objectively compared to ground truth. In order to evaluate the

computed inclination signs, an appropriate visualization of the vector field

is necessary. Inconsistencies in the resulting fiber orientation must become

visible. The resulting 3D orientations were visualized in a special HSV color

space. The hue and saturation represent the fiber in-plane direction and

the absolute inclination respectively. The brightness component was used

to emphasize local differences, which were obtained in terms of the mean



4.2. INCLINATION SIGN ENHANCEMENT 73

absolute deviation δ̄ in the 8-neighborhood of each pixel i.

Hue(ϕ) = 2ϕ (4.17)

Saturation(α) = 1− |α|/90◦ (4.18)

Value(δ̄) = 1− δ̄ (4.19)

The color coding highlights abrupt changes in the vector field by dark pixels

or edges. Accordingly, unexpected changes in the vector fields, which could

be caused by wrong inclination signs, are made visible.

Apart from the comparison of different methods, it is also crucial to

determine a reasonable value for the weighting factor λ. This is a common

problem in image restoration and regularization [32]. A natural approach is

to plot data and smoothness energy after optimization with different values

for λ, and to look for a good trade-off between both constraints. This plot

is also known as the L-curve [57]. According to the L-curve criterion [56],

the point on the corner of the L-curve is a good choice for the regularization

parameter. The L-curve was calculated for the complete human brain section

shown in Fig. 4.11.

4.2.4 Results

Synthetic Data The resulting vector fields were also colored with the HSV

color coding defined in (4.17)-(4.19) (Fig. 4.7). In v+ and vDM, undesired

vertical edges arise, where the fiber direction changes from 0◦ to 180◦ and

the inclination sign changes simultaneously (compare to Fig. 3.4(a)-(b)).

In vDO, vGOP and vGOF, the vector field closely resembles ground truth.

Only very modest noise can be found in the center. There is no visible

difference between vDO, vGOP and vGOF. The RMSD values, that measure

the difference between the reconstructed and true vector field are plotted

in Fig. 4.8. GlobalOptFull achieves the lowest value of all methods

(1.490◦) at λ = 5.3. GlobalOptPotts reduces the RMSD to 1.497◦ at

λ = 0.26. DataOnly achieves an error of 1.613◦, which is the same as

GlobalOptPotts and GlobalOptFull for λ = 0. DataMedian does
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(a) Ground truth (b) Fiber orientation vDO

(c) Fiber orientation vDM(R = 1) (d) Fiber orientation v+
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(e) Fiber orientation vGOP(λ = 0.2) (f) Fiber orientation vGOF(λ = 0.4)

fiber direction

90°0° 45°15° 30° 60° 75°

fiber inclination

90°0° 45°15° 30° 60° 75°

local difference

Figure 4.7: The fiber orientation is colored in the HSV color coding defined in

(4.17)-(4.19). The fiber orientations v+ and vDM show an undesired vertical

edge. This corresponds to the transition of the direction angle from 0◦ to

180◦ and the simultaneous change of the inclination sign in the true vector

field (compare to Fig. 3.4). The fiber orientations vDO, vGOP and vGOF do

not show visible differences. There is a very modest noise in the center region

compared to ground truth.
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Figure 4.8: The root mean squared deviation (RMSD) measures the difference

between the true synthetic vector field and the vector field reconstructed from

simulated measurements. The minimal values are achieved by GlobalOpt-

Potts at λ = 0.26 and GlobalOptFull at λ = 5.3.

not show any improvements compared to DataOnly with increasing errors

for increasing radius R.

The sensitivity of both GlobalOpts to determine the correct inclination

sign at pixels, that are not classified correctly by DataOnly, is examined in

Fig. 4.9. GlobalOptPotts achieves a sensitivity of 50% at λ = 0.35 and

almost 60% at λ = 1.0 (Fig. 4.9a), whereas GlobalOptFull hardly reaches

only 25% at λ = 3.9 and stays under 50% even at λ = 10 (Fig. 4.9b).

The optimization of GlobalOptFull left less than 0.01% unlabeled in

the synthetic data set (for λ ≤ 6).

Human Brain Data DataMedian introduces undesired artifacts into

the vector field at 0◦ − 180◦ transitions of the fiber direction, that also occur

in AllPos (Fig. 4.10). Both GlobalOptPotts, GlobalOptFull, and
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(a) Sensitivity of GlobalOptPotts
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(b) Sensitivity of GlobalOptFull

Figure 4.9: The sensitivity of GlobalOptPotts to detect pixels with wrong

inclination signs in the resulting sign map of DataOnly is clearly higher

than for GlobalOptFull, which hardly reaches 60%, even for values of λ

of up to 10.0. However, the sensitivity does not differentiate pixels according

to the size of the error they produce in the vector field.
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DataMedian are able to smooth regions that appear very inhomogeneous in

DataOnly (Figs. 4.11, 4.12 ). The weighting factors 0.1− 0.3 and 0.2− 0.6

were selected manually. GlobalOptPotts with λ = 0.2 and analogously

GlobalOptFull eliminate noise on an equal and reasonable level. Higher

smoothness weighting factors, such as λ = 0.3 and λ = 0.6 respectively,

remove important details of the vector field by smoothing. Lower smoothing

weighting factors, such as λ = 0.1 and λ = 0.2 respectively, leave more noise

in the vector field.

The L-curve, which plots the smoothness energy against the data energy,

is shown in Fig. 4.13. It does not show a clear corner, but there are ranges

of λ, where the curvature seems higher than in the rest of the curve. The

estimated regions are marked at 0.15 ≤ λ ≤ 0.25 for GlobalOptPotts and

at 0.3 ≤ λ ≤ 0.5 for GlobalOptFull.

The optimization of GlobalOptFull left an increasing number of pixels

unlabeled for increasing values of λ as shown in Fig. 4.14.

4.3 Discussion

The results show that the inclination sign derived from the tilted measurements

can be further improved by optimizing energy functions defined on a Markov

random field. The data energy, that controls the agreement with the tilted

measurements is balanced against the smoothness energy, that removes noise

in regions where tilting yields only small changes. However, this balance

must be done carefully. In real human brain data, the optimal result is not

obvious, because the true inclination sign cannot be determined. However,

the subjective evaluation of human real data, and the observation of the

L-curve, come to similar conclusions for the weighting factor λ. The L-curve

on real data suggests a value of 0.15 − 0.25 and 0.3 − 0.5 respectively, the

manual inspection of the selected regions of interest suggest a value around

0.2. The results on synthetic data suggest a weighting factor of λ = 0.26 for

GlobalOptPotts. The best weighting factor of GlobalOptFull is λ =

5.3, but the curve of the RMSD values shows, that the error becomes volatile

for λ > 2. This underlines, that the weighting factor must be chosen with

care and controlled by manual inspection. In doubt, a lower weighting factor
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should be preferred. A smoothness weighting value of λ = 0.2 and λ = 0.3

respectively ensures high influence of the measured data opposed to the degree

of necessary smoothing. The regularization parameter is known to vary with

the level of noise in the data [32]. Therefore, if the measurement environment

changes, the level of noise and the choice of the regularization parameter λ

will have to be reviewed. For the current experimental situation, a smoothness

weighting factor of λ = 0.2 is recommended with GlobalOptPotts.

The differences between both proposed smoothness energy functions used

in GlobalOptPotts and GlobalOptFull do not seem relevant in real

data. In order to achieve similar results, the weighting factor is chosen twice

as high in GlobalOptFull as in GlobalOptPotts. The relation of

both weighting factors, which were chosen manually, also seem to fit for the

course of the L-curve. The disadvantage of GlobalOptFull to leave pixels

unlabeled is negligible for λ ≤ 1.0, i.e. in the reasonable range for human

brain data. Although GlobalOptFull is more sophisticated and includes

more knowledge about the kind of desired smoothness, it hardly achieves

better results on synthetic data. Additionally, the results achieved with

GlobalOptFull are less stable for increasing weighting factors and the

sensitivity of GlobalOptFull to detect wrong pixels is not satisfactory in

comparison to the sensitivity of GlobalOptPotts. However, the sensitivity

does not differentiate pixels according to the size of their error. Therefore,

the sensitivity is less meaningful than the RMSD.

In Sections 2.5 and 3.2.2, the accuracy of the absolute inclination angle

is discussed. The overestimated or underestimated inclination angle should

be kept in mind, when interpreting three-dimensional fiber orientations. The

HSV visualization of the corpus callosum shows a strong edge of local dif-

ferences for smoothed results, also for the results of GlobalOptFull. In

the corpus callosum, the exact angle of the incoming fiber tracts from both

hemispheres to each other is not known, but the shape of the corpus callosum

suggests that the connecting fibers are not inclined in the median plane.

However, the overestimated inclination angle explains the high inhomogeneity

in this region. Until the biased absolute inclination values are not corrected

effectively, GlobalOptPotts should clearly be preferred to GlobalOpt-

Full. However, there are approaches to compensate for this bias (Chapter 6),



80 CHAPTER 4. PLI INCLINATION SIGN AMBIGUITY

5
m

m

DataOnly DataMedian R=1 AllPos

G
l
o
b
a
l
O
p
t
P
o
t
t
s

λ = 0.1 λ = 0.2 λ = 0.3

G
l
o
b
a
l
O
p
t
F
u
l
l

λ = 0.2 λ = 0.4 λ = 0.6



4.3. DISCUSSION 81

optic radiation

fiber direction
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fiber inclination
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local difference

Figure 4.10: The optic radiation shows that DataMedian and AllPos

show strong inhomogeneities in the vector field at 0◦− 180◦ transitions (white

arrow). The results of the energy minimization approaches are smooth in

these regions. A stronger weighting of the smoothness energy smoothes the

background (black arrow).
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corpus callosum

fiber direction

90°0° 45°15° 30° 60° 75°

fiber inclination

90°0° 45°15° 30° 60° 75°

local difference

Figure 4.11: The resulting vector fields in the corpus callosum demonstrate the

benefit of global optimization. Reasonable values for λ seem to be λ = 0.2 for

GlobalOptPotts and λ = 0.4 for GlobalOptFull. Smoothing becomes

too dominant for λ = 0.3 and λ = 0.6 respectively. Although AllPos shows

the most homogeneous vector field, the correctness of the underlying, strictly

positive inclination signs must be in doubt.
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temporal lobe

fiber direction

90°0° 45°15° 30° 60° 75°

fiber inclination

90°0° 45°15° 30° 60° 75°

local difference

Figure 4.12: In this region in the temporal lobe, there are obvious differences

between the different methods. There are artifacts in AllPos and Data-

Median in 0◦ − 180◦ transitions as in the optic radiation in Fig. 4.10 (black

arrows). And there is a smoothing of strong discontinuities in the vector fields

such as in the corpus callosum (Fig. 4.11) (white arrows).
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Figure 4.13: The L-curve visualizes the trade-off between the data energy

and smoothness energy function for different values of the regularization

parameter λ. A good choice for λ is where there is a high curvature.
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Figure 4.14: The efficient optimization of a non-submodular function does

not guarantee to provide a complete result. In the examined human brain

section, an increasing number of pixels is left unlabeled by the quadratic

pseudo-boolean optimization (QPBO) algorithm.

and then GlobalOptFull should be reconsidered.

In human brain data, the most obvious errors of DataMedian appear,

where the fiber direction ϕ flips from 180◦ to 0◦ or vice versa inside a continuous

fiber structure. DataMedian does not consider the fiber direction. This is

obviously the source of the artifacts, that are observed in the optic radiation

and the selected region in the temporal lobe. Artifacts also appear for

AllPos in these 180◦-0◦-transition regions. GlobalOptPotts uses the

fiber direction to control smoothing and thereby is able to guarantee a good

solution in 180◦-0◦-transition regions.

The terms smoothing and regularization have been used synonymously.

The term regularization is frequently used in the context of optimization

problems, while the term smoothing is often associated with blurring and

information loss. Here, smoothing is applied in a very constrained and distinct

way, that improves the resulting inclination sign by considering knowledge

about the data and suppressing noise.

The improvement of GlobalOptPotts compared to DataOnly is

very small on synthetic data. This poses the question, whether the intricate
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optimization step is really necessary. On real data, the improvement is

more obvious. A number of influences on the data during tilting, such as

modified reflection angles and interpolation errors during the perspective

back-transformation, have not been modelled in the simulation, yet. In a

previous study [74], a different synthetic data set was evaluated, showing

larger improvements in terms of the RMSD. The application of noise was

performed to the retardation and direction images directly, which possibly

yields more noise, than the more realistic application of noise to the PLI

image series, which was implemented here. All of these influences must be

examined in future to reevaluate the quality of the derived and optimized

inclination sign.



Chapter 5

PLI Tractography

The term tractography, also referred to as fiber tracking, denotes a group of

algorithms that reconstruct nerve fibers from orientational measurements.

Since the measurement of the diffusion orientation has become possible with

diffusion-weighted magnetic resonance imaging (DW-MRI), a considerable

number of tractography algorithms has been developed. The existing al-

gorithms are reviewed in Section 5.1. Tractography algorithms based on

Bayesian inference are a convenient approach to consider measurement un-

certainties during tractography. Therefore, this approach is also promising

for 3D-PLI and is described with more detail, including an introduction

into the methodology. In Section 5.2, a tractography algorithm based on

Bayesian inference is developed for PLI. This includes the formalization of

a fiber propagation model and a measurement model. Bayesian inference is

performed by particle filtering, a Monte Carlo type method. In Section 5.3,

the developed tractography algorithm is evaluated on a synthetic data set in

comparison to a standard streamline algorithm.

5.1 Tractography Algorithms for DW-MRI

A large and heterogeneous set of tractography algorithms for DW-MRI has

been published until today. When DW-MRI was in its infancy, only a few

gradient measurements were composed to a diffusion tensor. The simplicity

of the measurement has made diffusion tensor imaging (DTI) to the most

89
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widely applied method for the reconstruction of DW-MRI measurements.

However, a diffusion tensor only resolves one principal direction [11]. During

the past years, new measurement protocols, such as high angular resolution

diffusion imaging (HARDI) [127] and diffusion spectrum imaging (DSI) [133]

have pushed the use of more complex diffusion models, such as the partial

volume model [13], the composite hindered and restricted diffusion model

[3], multiple tensor models [50], or the orientation distribution functions

(ODFs) [52], which are typically expressed with spherical harmonics as basis

functions. There are numerous methods that reconstruct ODFs from diffusion

measurements [4], and various basis functions have been used [108], which

are not discussed here.

The quantitative evaluation of tractography algorithms based on DW-

MRI is difficult, because there is no alternative method to assess the nerve

fiber orientation in vivo. Therefore, evaluation is commonly done by visual

inspection, which may be subjective or misleading, or on synthetic data, which

may not be realistic. In many cases, it is not decidable, which algorithms

produce the most correct fiber reconstructions. The most useful comparison

of tractography algorithms, has been performed on a phantom in the context

of a competition, the Fiber Cup 2009 [39].

5.1.1 Classification of Tractography Algorithms

Traditionally, tractography algorithms have been classified either as determin-

istic (Table 5.1) or probabilistic (Table 5.2). The first tractography algorithms

were deterministic [93], [29]. These algorithms are also called line propagation

or streamline algorithms, because a line is constructed beginning at a seed

point by following the local fiber orientation. In DTI [11], the fiber orientation

is determined as the principal direction of the diffusion tensor. There are

algorithms that step through the vector field continuously and those that

step from voxel to voxel, limiting the number of possible orientations by

the number of neighbors [35]. Tensor deflection [84] and tensor advection

[134] take the shape of the diffusion tensor and the previously tracked fiber

direction into account, when determining the next local fiber orientation.

Recently, deterministic tractography algorithms were extended by the use
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of more complex diffusion models such as two tensor models [50], [106] and

multiple mixture models [119], higher order tensors [63], or by the use of

orientation distribution functions [133], [33]. Especially, the method to extract

single fiber orientations from fiber mixtures has been varied [115], [119].

The first probabilistic tractography algorithms were presented by Parker

[100] and Behrens [13]. Kang [73] propagated a diffusion front. Perrin [101],

Descoteaux [33] and Koch [77], beginning at a seed point, tracked multiple

orientations simultaneously according to the fiber orientation probability.

These tracts are often called particle trajectories. By counting the number of

arriving particle trajectories, probabilistic tractography algorithms are able to

construct connectivity matrices, defining a probability of connectivity between

the seed point and all other voxels. However, there are also probabilistic trac-

tography algorithms, that construct a single fiber path instead of connectivity

matrices. The term probabilistic or stochastic is then used, because each path

is assigned with a measure of uncertainty, but not necessarily all possible

fiber paths are explored. Uncertainty can be estimated by bootstrapping of

repeated diffusion measurements [83], [69], [58], [17], [68], [132]. Complex

fiber models have also been used in probabilistic tractography algorithms [14],

[17], [68].

Further probabilistic tractography algorithms estimate the fiber orientation

as a dynamic state, with a prior probability distribution and an observation

likelihood, which describes the agreement of the estimated state with the

measured fiber orientations. The estimation is inferred from these probability

distributions with Bayes’ Theorem. The approach is also called state-space-

modeling and will be explained in more detail in Section 5.1.2. Although

Behrens also used Bayesian inference [13], [14], his tractography approach

is not classified there, because a non-informative prior is used, i.e. the prior

distribution does not influence the estimated state.

Besides deterministic and probabilistic algorithms, further classes of algo-

rithms have emerged (Table 5.3). Optimization algorithms find the optimal

path between two given points, e. g. [117], [37]. These approaches are very

closely related to global tractography algorithms, that optimize an arrange-

ment of fiber tracts in the complete orientation field at once [28], [80], [128],

[40], [1], [109], [137]. The global optimization algorithms clearly have the
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Table 5.1: Local deterministic tractography approaches

(HO-tensor = higher order tensor, m-tensor = multiple tensor)

author [Ref] diffusion comment

model

Mori 1999 [93] tensor streamline

Conturo 1999 [29] tensor streamline

Weinstein 1999 [134] tensor tensor advection

Basser 2000 [11] tensor streamline

Zhukov 2002 [140] tensor previous regularization

Lazar 2003 [84] tensor tensor deflection

Hlawitschka 2005 [63] HO-tensor HO-tensor lines

Guo 2006 [50] 2-tensor multiple tensor deflection with

branching

Duru 2007 [35] tensor stack algorithm

Wedeen 2008 [133] ODF based on DSI

Qazi 2009 [106] 2-tensor streamline

Singh 2010 [119] m-tensor separate fibers with ICA

highest potential to achieve the best tractography results, because they can

consider the entire orientation information at once. In the Fiber Cup 2009

[39], the global tractography method outperformed all other algorithms. This

advantage is gained by enormous computational challenges. For DW-MRI

data, these have been overcome, such that computation time is reduced to

hours on a standard PC [109].

The classification of 48 approaches to tractography (Tables 5.1-5.4) gives

a broad overview of the variety of algorithms that have been developed. It is

an attempt to find best practices. In some cases, algorithms could be assigned

to another class as well, because aspects of multiple classes are found. There

are other possibilities to classify tractography algorithms, but classifications

similar to the one here have been proved useful in previous reviews [94], [8],

[96], [65], [126].
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Table 5.2: Local probabilistic tractography approaches

(2-comp = two compartment model, m-tensor = multiple tensor)

author [Ref] diffusion comment

model

Parker 2001 [100] tensor front propagation

Koch 2002 [77] tensor particle trajectories

Behrens 2003 [13] 2-comp Bayesian inference

Kang 2005 [73] tensor front propagation

Jones 2005 [69] tensor bootstrap

Lazar 2005 [83] tensor BOOT-TRAC

Perrin 2005 [101] ODF particle trajectories

Behrens 2007 [14] m-tensor Bayesian inference

Haroon 2007 [58] ODF wild bootstrap

Berman 2008 [17] ODF residual bootstrap

Descoteaux 2009 [33] ODF particle trajectories

Jeurissen 2011 [68] ODF residual bootstrap

Vorburger 2013 [132] tensor BootGraph
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Table 5.3: Global tractography approaches (m-tensor = multiple tensor,

CHARMED = composite hindered and restricted model of diffusion)

author [Ref] diffusion comment

model

Sherbondy 2008 [117] tensor ConTrack

Feng 2011 [37] tensor ant colony optimization

Tuch 2001 [128] ODF connectivity matrix, based on

DSI

Cointepas 2002 [28] 2-tensor spin-glass model

Kreher 2008 [80] m-tensor Gibbs tracking

Fillard 2009 [40] ODF spin-glass model

Wu 2009 [137] tensor GeneTrack

Sherbondy 2010 [118] CHARMED MicroTrack

Aganj 2011 [1] ODF Hough transform

Reisert 2011 [109] m-tensor line segments
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5.1.2 Tractography Based on Bayesian Inference

An increasing number of tractography algorithms use stochastic models to

estimate the fiber orientation from measurements and prior knowledge. The

combination of both measurement and prior knowledge can be expressed as a

special form of Bayes’ Theorem ([34, p. 6], [2]).

Theorem 5.1.1 (Bayes’ Theorem) Given the previous state xk−1 and a

new measurement yk, the probability of the next state xk can be inferred as

p(xk | yk,xk−1) =
p(yk | xk) · p(xk | xk−1)∫
p(yk | xk) · p(xk | xk−1) dxk

The probability p(xk | xk−1) is called prior distribution, p(yk | xk) is called

observation likelihood, and the resulting probability p(xk | yk,xk−1) is denoted

as the posterior distribution. The random variables are indexed with a time

index k, that allows to repeatedly calculate the posterior probability for

new incoming measurements yk at time point k. The maximum a posteriori

(MAP) denotes an optimal estimation for state xk by maximizing the posterior

distribution.

Generally, p(xk | yk,xk−1) cannot be computed exactly because of the

integral in the marginal distribution
∫
p(yk | xk) · p(xk | xk−1) dxk. This can

be overcome either by approximation or by limitation to specific types of

distributions.

The repeated estimation of dynamic states xk by Bayesian inference is also

known as state-space-modeling. The prior distribution is generally derived

from a process model with noise vk.

xk = f(xk−1,vk) (5.1)

The observation likelihood is derived from a measurement model with noise

wk.

yk = h(xk,wk) (5.2)

The most common state-space model is the Kalman filter, which requires

f and h to be linear, and vk and wk to be normally distributed. A simple

recursive algorithm directly provides the exact MAP solution for each time

point k [135]. The Kalman filter has been extended for non-linear functions
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Table 5.4: Probabilistic tractography algorithms based on Bayesian inference

(Watson = Watson distribution function, m-tensor = multiple tensor,

2-comp = two compartment model)

author [Ref] diffusion comment

model

Friman 2006 [42] tensor Bayesian inference

Gössl 2002 [46] tensor Kalman filter

Imperati 2009 [64] tensor Extended Kalman filter

Malcolm 2009 [91] 2-tensor Unscented Kalman filter

Malcolm 2010 [89] Watson Unscented Kalman filter

Lienhard 2011 [86] m-tensor Unscented Kalman filter

Björnemo 2002 [19] tensor particle filter

Jbabdi 2007 [66] 2-comp particle filter, fMRI as prior

Zhang 2009 [139] tensor particle filter

Savadjiev 2010 [111] ODF particle filter, helicoid model

Yap 2011 [138] Watson particle filter

Pontabry 2011 [104] ODF particle filter

f and h by local linearization (extended Kalman filter) [2], or by non-linear

transformation of sample points (unscented Kalman filter) [71]. In case of

non-linear transformations and non-Gaussian distributions, the marginal

distribution can be discretized by Monte Carlo methods. A set of particles is

used to represent the probability distributions. Therefore, this discretization

approach is also called particle filtering [34]. A particle filter does not only

provide an MAP estimation in each step, but it also provides an estimate of

the complete posterior distribution. Therefore, tractography with particle

filters can provide probabilities for each generated particle trajectory.

Various tractography algorithms based on Bayesian inference have been

published. In 2002, Gössl [46] introduced the Kalman filter to white mat-

ter tractography. The extended Kalman filter by Imperati [64] includes a

non-linear measurement model. Malcolm et al. published numerous trac-

tography approaches with an unscented Kalman filter [89, 90, 91, 92], that
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use increasingly complex probability distributions. The use of a particle

filter for tractography was first presented by Björnemo [19]. Savadjiev [111]

implemented a particle filter with a geometrical fiber model based on helicoids

[110]. Zhang et al. [139] presented a particle filter, which classifies the diffu-

sion tensor and uses Mises von Fisher distributions. Friman [42] performed

Bayesian inference by discretely sampling the complete state space.

5.2 Tractography Based on 3D-PLI

There are some important differences between 3D-PLI and DW-MRI that must

be considered when a tractography algorithm is transferred from DW-MRI to

3D-PLI.

First, the orientational data, that is collected, is in a different format,

has a slightly different meaning, and hence must be interpreted differently.

DW-MRI signals provide the distance of diffusion in the given directions.

3D-PLI provides a single, unscaled direction per voxel. There is work in

progress to combine the directional information of several 3D-PLI voxels into

one larger voxel in order to create an ODF. This could simplify the transfer

of tractography algorithms. However, many DW-MRI based tractography

algorithms reduce the acquired orientational information to the normalized

principal eigenvector of the diffusion tensor. In this case, the data format can

be transferred more easily.

Second, the measurement uncertainty is very different. In DW-MRI

measurements, there is also diffusion orthogonal to the fiber axis, which

generates a kind of background noise. In complex fiber constellations, diffusion

takes place along multiple directions, which are measured as a mixed diffusion

profile. In 3D-PLI, there is more measurement uncertainty in the out-of-plane

angle, than in the in-plane angle.

Third, 3D-PLI operates on a scale of micrometers instead of millime-

ters. This considerably increases the size of data, that must be processed.

Therefore, algorithms with a high complexity, such as global tractography

algorithms, that run in acceptable time on DW-MRI data, exceed run time

and memory limits on PLI data. The reduced voxel size in 3D-PLI leads to

a reduced amount of voxels that contain multiple fiber populations. This
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applies especially for the in-plane resolution of up to 1.6µm provided by a

polarizing microscope. Currently, the thickness of gross histological human

brain sections is limited by tissue preparation for cryosectioning to approx.

60µm. Smaller tissue samples, such as mouse or rat brains, can be sectioned

even with a thickness of 30µm providing acceptable quality. Consequently,

mixed fiber orientations also appear in 3D-PLI, but fiber orientations are

primarily mixed along the z-axis.

In the present work, a tractography algorithm based on a particle filter is

developed for 3D-PLI. As all Bayesian approaches, the particle filter is able

to combine measurements (observation likelihood) with regularity constraints

(prior knowledge about fiber tracts) in order to track plausible fibers. Be-

cause of the differences between DW-MRI and 3D-PLI measurements, the

observation likelihood must be adapted. In this way, prior knowledge can be

used effectively to compensate for uncertainties in the measured 3D-PLI data.

The simulated measurement of synthetic fiber structures in Chapter 3

has shown, that the derived inclination angle is biased considerably by fiber

orientation mixture and inhomogeneous myelination. Until now, neither

the degree of fiber mixture nor the degree of myelination can be assessed

reliably in real tissue. Without additional knowledge about fiber mixture

and myelination, the errors of the inclination angle cannot be controlled.

Therefore, the tractography algorithm presented here is restricted to two

dimensions. Possibilities to assess the missing information are discussed in

Chapter 6. The particle filter can be extended easily to three dimensions

as soon as further information about fiber mixture and fiber myelination

becomes available.

As discussed in Chapter 3, the uncertainty of the direction angle depends on

the measured inclination angle α, which is accessible during tractography. The

aim of the developed tractography approach is to account for this uncertainty

and to find plausible fiber tracts.

The central part of a state-space model is the definition of the state

space. For tractography, the essential information to be estimated is the fiber

orientation. In this work, the estimated state consists of the in-plane fiber

direction ϕ.
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5.2.1 Prior Knowledge About Fiber Tracts

With very few exceptions, the prior density for tractography algorithms has

been chosen to continue the previous fiber orientation [42, 64, 104, 139].

Tractography approaches with Kalman filters assume normal distributions as

priors [46, 91, 89, 86]. However, this is a heuristic choice, which cannot be

inferred from observations of real fiber tracts. It is commonly argued, that

the prior density is used to enforce smoothness, which is observed in real fiber

tracts. In this work, the prior density p(ϕk | ϕk−1) is also chosen as a normal

distribution with zero mean and standard deviation σϕ:

p(ϕk | ϕk−1) = N (0, σϕ) (5.3)

However, as will be discussed in Section 5.3.2, such a prior density is at most

a rough approximation of the true fiber course. The standard deviation σϕ

must be chosen according to the step length, because larger step lengths

must allow larger deviations and smaller step lengths must restrict deviations

further. The step length must not be chosen too large, because then small

variations of the fiber orientation could be missed. If the step length is chosen

too small, this may create artificial fiber tracts inside a single voxel. For

this reason, the step length was chosen as 0.3 times the pixel size, which is

0.3 · 64µm ≈ 20µm for a large-scale polarimeter. The standard deviation σϕ

was varied in the experiments between 2◦ and 0.2◦.

5.2.2 Observation Likelihood in PLI Data

The measurement model describes the relation between the measurement

yk = (ϕmk , αmk ) and the state xk = (ϕk, αk) to be estimated, expressed as

an observation likelihood function p(ϕmk , α
m
k | ϕk, αk). In Chapter 3, the

experimental setup was simulated and the relation between the true fiber

orientation and the measured fiber orientation was examined. The observation

likelihood can be directly derived from the results of the simulation. The

fiber in-plane direction angle ϕ and the out-of-plane inclination angle α are

derived differently and with different accuracy. Therefore, the observation

probability must be considered separately for both components.
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In this work, the observation likelihood is restricted to the estimated fiber

direction angle. The density p(ϕm, αm | ϕ) is approximated piecewise by

normal distributions N (0, σ) with zero mean and standard deviation σ and a

uniform distribution U [a, b] in the interval [a, b]:

p(ϕmk , α
m
k | ϕk) =



N (0, 0.3◦ + 1.0
60
· |αmk |) , 0◦ ≤ |αmk | ≤ 60◦

N (0, 1.3◦ + 1.4
70
· |αmk |) , 60◦ < |αmk | ≤ 70◦

N (0, 2.7◦ + 1.5
75
· |αmk |) , 70◦ < |αmk | ≤ 75◦

N (0, 4.2◦ + 5.4
80
· |αmk |) , 75◦ < |αmk | ≤ 80◦

N (0, 9.6◦ + 24
85
· |αmk |) , 80◦ < |αmk | ≤ 85◦

U [−90◦, 90◦] , 85◦ < |αmk | ≤ 90◦

. (5.4)

The standard deviation is increased piecewise linearly from 0.3◦ to 33.6◦.

This corresponds to the empirical standard deviations determined from the

simulations (Fig. 3.9a). The approximated observation likelihood function is

illustrated together with the simulated measurements in Fig. 5.1.

5.2.3 Particle Filtering

The particle filter denotes a class of methods that are also known as sequential

Monte Carlo methods. The general idea is that a set of particles represents

a probability distribution. The process model transforms the particle set,

while the observation likelihood is used for weighting the particles. The filter

starts with a set of N particles, that are sampled from an initial distribution

at a given seed point. Each particle is initialized with a weight 1/N . Here,

the initial distribution was chosen to be derived from the measured fiber

orientation at that starting point. Then, in each time step k, all particles are

propagated by the linear process model. In the next step, the particles are

reweighted according to their observation likelihood. After a few iterations,

the particle weights may degenerate, such that a single particle has the

maximum weight and all other particles have a minimum weight. Degeneracy

cannot be avoided, because reweighting automatically increases the variance

of the weights. Therefore, resampling must be performed regularly. The

resampling scheme shown in Algorithm 2, which is applied here, was taken
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Figure 5.1: The observation likelihood of the in-plane fiber direction ϕ was

approximated piecewise by normal distributions (for |α| ≤ 85◦) and a uniform

distribution (for |α| > 85◦) from simulations (see Fig. 3.9a). The red line

represents standard deviations of the approximating normal distributions,

and the 68.2-%-quantile in case of the uniform distribution.
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over from Arulampalam et al. [2]. It relies on the estimated effective sample

size Neff , a measure for degeneration. If it falls below a fixed threshold NT , all

particles are resampled with a probability according to their current weight.

This implies, that particles with a very low weight are probably replaced by

duplicates of particles with a very high weight. The complete particle filter

algorithm is given in Algorithm 1.

Algorithm 1 Particle filter

for i← 1, N do

xi0 ← y0 //initialize particle xi0
wi0 ← N−1 //initialize weight wi0

end for

while fiber is not at end do

xik ∼ p(xik|xik−1) //propagate particles by sampling from the prior

distribution

yk ← fiber orientation at current position //get measurement

wik ← wik−1 · p(xik|yk) //propagate weight

wik ← wik/
∑N

i=1w
i
k //normalize weight

Neff ← 1∑N
i=1(wik)2

//approximate effective sample size

if Neff < NT then

resample( {xik, wik}Ni=1) //perform systematic resampling

end if

end while

5.3 Evaluation on Synthetic Data

The crossing and kissing fiber arrangements, which were simulated in Sec-

tion 3.3, are used again here to evaluate tractography. 500 seed points were

randomly placed inside the vector field (Fig. 5.2) and used as starting points

for tractography. The tracts reconstructed by the particle filter were compared

to those reconstructed by a streamline algorithm. Tracking was restricted to

two dimensions in order to simplify the assessment of errors of the direction

angle. As argued before, the inclination angle is biased by unknown fiber
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Algorithm 2 Systematic resampling algorithm

c0 ← w0
k //construct cumulative distribution function (cdf)

for i← 1, N do

ci ← ci−1 + wi0
end for

i← 1

u0 ∼ U [0, N−1] //draw a sample from a uniform distribution

for j ← 1, N do

uj ← u0 + j · (N−1)

while uj > ci do //keep particle i, if cdf at index i

//is higher than uniform probability

i← i+ 1

end while

xjk ← xik //replace particle j by particle i

wjk ← N−1 //set weight to N−1

end for

mixture and unknown myelination. The restriction to two dimensions also

simplifies visualization. The streamline algorithm interpolates the fiber orien-

tation at the current position of the vector field, ignoring the inclination angle,

and steps forward in this direction. The particle filter determines direction

and inclination angle at each position, but the steps are projected onto the

two-dimensional plane. Streamline and particle tracking were performed with

the same set of 500 seed points and the same step length (0.3 ·64µm ≈ 20µm).

Particle filtering was performed with 100 particles and a threshold of the

approximated effective sample size NT = 2
3
N = 67. The standard deviation

σϕ of the prior density was varied between 2◦ and 0.2◦. Accordingly, the max-

imum angular deviation ∆ϕ was varied between 5◦ and 20◦ for the streamline

algorithm, which seems to comprise the most dynamic changes. For objective

evaluation, four target areas (Fig. 5.3) at the endings of the fiber branches

were defined, and the combinations of reached target areas were determined

for each fiber. In this way, the number of fibers that crossed, bended and did

not reach more than one target area were determined. The particle filter relies

on random samples, which causes the resulting fiber tracts to vary slightly
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Figure 5.2: The 500 seed points that were used for tractography, are shown

on the fiber orientation map of the crossed fiber arrangement (see Fig. 3.15a).

The seed points were sampled from a uniform distribution. Local tractography

algorithms such as streamline algorithms or particle filters need a starting

point for each fiber to be tracked.

between repeated calls. Therefore, the number of crossed, bended and too

short fibers was averaged over multiple repeated calls.

5.3.1 Results

In the crossing fiber arrangement, the fibers reconstructed by the particle

filter algorithm generally appear less bended than the fibers reconstructed

by the streamline algorithm (Fig. 5.4(a)-(b)). The streamline algorithm also

created several degenerated fiber paths (Fig. 5.4c), i.e. fibers, that run into

the center of the crossing and return to the same branch that they came

from, or fibers that take a zig-zag path through the crossing. With decreasing

standard deviation σϕ for the particle filter and decreasing maximum ∆ϕ for

the streamline algorithm, less fibers bended inconsistently to the neighboring

target regions (Fig. 5.5). However, streamline tracking always created more

bended fibers than crossing ones. Particle tracking yielded more crossing than

bending fibers for σϕ < 1◦. The results in Fig. 5.4 are shown for σϕ = 1◦ and
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Figure 5.3: The target areas are used to evaluate the course of the tracked

fibers. If two diagonal target areas are reached, the fibers are assumed to

cross (green). If two neighboring target areas are reached, then the fibers are

assumed to bend (red). If less than one target area is reached, the fiber is

assumed to end too early (yellow).



106 CHAPTER 5. PLI TRACTOGRAPHY

(a) Streamline with maximum ∆ϕ = 10◦ (b) Particle filter with σϕ = 1◦

(c) Degenerated streamline

Figure 5.4: The fiber tracts of a synthetic fiber crossing arrangement ap-

pear less bended, when reconstructed by a particle filter, compared to the

reconstruction with a streamline tractography algorithm. The streamline

tractography algorithm creates several degenerated fiber tracts, that strongly

diverge from the true fibers, two of them are highlighted.



5.3. EVALUATION ON SYNTHETIC DATA 107

∆ϕ = 10◦. These parameters give a good trade-off between bended, too short

and crossed fibers for each case.

In the kissing fiber arrangement, the results of streamline tractography

and particle filter appear very similar (Fig. 5.6). The results are shown for

σϕ = 1◦ and ∆ϕ = 10◦ as before. The evaluation of reached target regions

on the synthetic kissing fiber arrangement does not show large differences,

neither between both tracking approaches, nor between different values of σϕ

or maximum ∆ϕ (Fig. 5.7). Particle tracking with σϕ = 1◦ reconstructed 5%

less bending fibers, than streamline tractography.

5.3.2 Discussion

In the crossing fiber arrangement, a considerable reduction of bended and

therefore incorrect fibers was achieved by tractography with a particle filter.

The additional specifications of a fiber model improved the trade-off between

correctly crossing fibers, incorrectly bending fibers and too short fibers.

A good choice seems to be σϕ = 1◦. In the kissing fiber arrangement,

streamline tractography and particle filter tractography perform very similar.

The streamline tractography achieves slightly more correctly bending fibers

compared to the particle filter tractography. The choice of σϕ = 1◦ is also

suitable for the kissing fiber arrangement.

As noted before, the prior density is a heuristic choice, commonly utilized

to ensure smoothness of the reconstructed fiber tracts. In the course of

real fibers, the distribution of fiber orientation changes is difficult to assess.

A fiber was tracked manually on a histologic section to find a plausible

fiber model (Fig. 5.8). The histologic section was imaged with a polarizing

microscope, with an in-plane resolution of 1.6µm. At this scale, the fiber

architecture becomes visible in the image contrast. The manually tracked

fiber was interpolated by line segments of a constant step length (30µm).

The sequence of direction changes was analyzed in the manually tracked fiber.

The histogram of direction changes does not display a normal distribution

(Fig. 5.9), which was also tested and rejected by a Shapiro Wilk test. In

addition, the sequence of direction changes is highly autocorrelated (Fig. 5.10).

Probably, this example fiber is not representative for all fibers in the human
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(b) Particle filter

Figure 5.5: The results of tractography were evaluated by counting the reached

target regions. In the crossing fiber arrangement, the reconstructed fibers

should rather cross than bend. This is achieved with a particle filter with

σϕ < 1◦, but not by the streamline algorithm. The results for σϕ = 1◦ and

∆ϕ = 10◦ are shown in Fig. 5.4.
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(a) Streamline with maximum ∆ϕ = 10◦ (b) Particle filter with σϕ = 1◦

Figure 5.6: The fiber tracts of a synthetic fiber kissing arrangement appear

very similar, when reconstructed by a particle filter, and by streamline

tractography.

brain, but it shows, that the heuristic choice of the fiber model cannot be

validated easily and should be reconsidered.

The synthetic fiber crossing consists of 450 crossing fibers. Both tracking

algorithms only reconstruct a small set of fibers that completely cross to the

opposite side. As shown in Chapter 3, multiple fiber orientations interfere

with each other. Fiber orientations, that compose the minority of the mixed

fiber orientations are occluded by other fiber orientations and are therefore

lost. This problem increases with decreasing resolution in z-direction, i.e.

with increasing section thickness.

The streamline algorithm can be parametrized by a maximum ∆ϕ as a

stop criterion. A very strict stop criterion can prevent sharp turns, which arise

when the tracking algorithm leaves a fiber tract and accidentally jumps to a

different one. However, this does not allow to continue fiber tracts through

regions with increased measurement uncertainty. In this point, the particle

filter is clearly superior to the streamline tracking algorithm.

Although tractography algorithms can overcome random errors in the
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Figure 5.7: The results of tractography were evaluated by recording the

reached target regions. In the kissing fiber arrangement, the reconstructed

fibers should bend to a neighboring target region. Both tracking approaches

created less than 1% crossing fibers. The particle filter created slightly more

fibers, that ended too early and did not reach a second target region. The

results for σϕ = 1◦ and ∆ϕ = 10◦ are shown in Fig. 5.6.
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(a) Manually tracked fiber

(b) 1 step = 30µm

Figure 5.8: (a) An image was acquired with a polarizing microscope and a

fiber course was defined by manual placed points and an interpolating spline

curve. (b) This is a magnification of the yellow box in (a). The manually

placed curve was approximated by linear segments with a fixed step length

(20 px ≈ 30µm). The sequence of fiber direction changes ∆ϕk was analyzed

to validate a linear fiber propagation model with normal distribution.
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Figure 5.9: The histogram of fiber direction changes is symmetric with a

single peak, but it is not normally distributed. This was also rejected by a

Shapiro Wilk test for normality.
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Figure 5.10: The autocorrelation plot displays significant autocorrelation of

the fiber direction change for lags up to 206 and between 313 and 642. This

suggests, that a linear model is not sufficient to model fiber propagation.
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vector field, systematic errors of the inclination sign cannot be solved thereby.

Systematic errors must be minimized beforehand. Additional measurements

of the fiber mixture and the specific tissue birefringence would be needed for

this, and these corrections are critical for three-dimensional tracking on PLI

data in the future.

The evaluation presented here is limited. The synthetic data set, although

simulated with many details, may not reflect all measurement errors correctly.

For better evaluation, a phantom is needed, or a tissue sample with a well

known fiber architecture. The presented particle filter algorithm as well as

the evaluation was restricted to two dimensions and therefore does not allow

any conclusions about a suitable measurement model for the inclination angle.

The fiber model, if it is found justifiable for the in-plane direction angle, can

be of course transferred to the out-of-plane inclination angle, because the

course of a fiber does not depend on the sectioning plane. Another open issue

for three-dimensional tractography based on PLI data are potential errors

in the vector field by insufficient registration. The sectioning process applies

strong deformations or even damage to the brain tissue, which cannot be

completely compensated by image registration. The errors, that arise thereby

have not been analyzed here.

The advantages and disadvantages of particle filter tractography compared

to streamline tractography based on DW-MRI are generally the same when

transferred to PLI data. The resulting fiber tracts are associated with a degree

of certainty and tracts with high uncertainty are not continued. This prevents

or at least reduces the detection of incorrect fiber tracts. Furthermore, the

particle filter is able to track multiple deviating fiber tracts simultaneously. In

the current implementation, the most probable fiber tract is selected when a

stop criterion is met, but the intermediate particle states allow the derivation

of a connectivity matrix, which describes the probability of a connection

between any seed point and any voxel. The computational demand of particle

filter tractography compared to streamline tractography is noticeable. The

computation time was increased by factor 83. If this increase is acceptable,

this raises the question, whether the expected further increase in computation

time needed for global tractography would also be acceptable. This should

be explored in future studies.
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Clearly, the presented tractography algorithm based on particle filter-

ing, is not able to handle all problems that arise with 3D-PLI data. The

reconstructed fiber tracts often do not correspond to the true fiber tracts.

However, the improvement in comparison to streamline tractography is visible.

Especially seriously degenerated tracts are avoided by use of the particle

filter. Considering the wide range of algorithmic ideas for fiber tracking on

DW-MRI data, there is quite a chance, that another tractography approach

could achieve further improvements.
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Chapter 6

Conclusions and Outlook

Until now, PLI tractography was restricted to streamline methods without

awareness of the reliability of the reconstructed fiber tracts. In this work,

sources of errors and uncertainties were systematically investigated by simula-

tion of typical fiber arrangements. The simulation demonstrated the influence

of fiber mixture on the out-of-plane fiber inclination, which cannot be handled

without further sources of information. It demonstrated the influence of

inhomogeneous myelination on very steep and very flat inclination angles. It

was shown that the reliability of the in-plane fiber direction angle is influenced

by the signal amplitude, i.e. the measured inclination angle.

For the first time, the derivation of the inclination sign from tilted mea-

surements has been evaluated. On real data, this derivation does not seem

to be robust for all pixels. The tilting process was simulated on a synthetic

data set in order to identify potential sources of errors. A Markov random

field approach improved the derivation of the correct sign by including prior

knowledge about spatial continuity and the relation between in-plane and

out-of-plane angles. The approach for determining the inclination sign was

the first one to combine measurements and coherence constraints, while both

of these approaches have been pursued separately before. An alternative

smoothness weighting was evaluated, but it did not yield better results. Other

smoothness weighting functions or optimization schemes could be examined

in the future.

The influence of the inclination angle on the direction angle, which was

117
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shown by simulation, was used to improve tractography. Direction angles

that were found with high inclination angles were considered as uncertain

and were complemented by prior knowledge about fiber continuity. The

implementation of a particle filter propagating uncertainty during tractography

clearly improved the results in a crossing fiber arrangement. Besides the

particle filter, many alternatives for tractography exist. The particle filter is

an advantageous choice, because it is able to propagate uncertainty without

restrictions to normal distributions. However, other probabilistic algorithms

may need less resources and should be evaluated as alternatives. Especially

interesting is the applicability of global tractography algorithms to large

3D-PLI data sets.

The accurate and reliable determination of the out-of-plane fiber inclina-

tion seems to be the most critical aspect in 3D-PLI at the moment. Several

ideas exist to approach this issue. The transmittance modality contains

information about the myelination of the examined tissue. The inclusion

of the transmittance value in the calculation of the inclination angle could

correct the resulting inclination angle considerably.

Another source of error in the inclination angle is the unknown degree

of fiber mixture. By using the more general Müller Stokes formalism for

polarimetry instead of the Jones calculus [45], more information about the

tissue sample could be inferred. The Stokes parameters are known to contain

information about parallelism in a birefringent sample. This could provide

the needed information to distinguish steep fibers from mixed fibers, which

both possess low retardation values.

Extended measurements of tilted specimen could also supply additional

information about the absolute inclination angle. A higher tilting amplitude

could yield observable changes in the in-plane fiber direction and provide

an independent source of estimation of the inclination angle. However, the

tilting amplitude is limited by the degree of interpolation that is needed when

transforming the tilted image onto the flat position. By increasing the number

of tilting directions, the derivation of the inclination sign could become more

robust. Slight inaccuracies in the back-projection could also cause problems

with the derivation of the inclination sign. This effect must be evaluated more

closely in order to justify the use of smoothing in favor of measured data at
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critical pixels. The second most critical issue in PLI is section registration.

This problem was not analyzed in the scope of this work, but it is obvious

that misregistered brain sections will introduce significant errors to the results

of tractography. The study of registration errors will become more important,

as soon as the inclination angle becomes more accurate. Tractography over

long distances, across multiple sections, is not reasonable until then.

Until now, PLI tractography has been limited to small data sets of a few

millimeters or a few megabyte. When the regions of interest are expanded and

the measurements are carried out on the high resolving polarizing microscope,

the availability of high performance computing is crucial. This affects data

storage, data access and computation time. Typical data sets easily exceed the

main memory of a standard PC. Further developments of PLI tractography

must consider data management as an essential challenge. Whether an

algorithm can stay below reasonable time limits or not will depend on whether

it can be parallelized. So far, this is an aspect that has not received much

attention in the DW-MRI community, but it must be approached in PLI now.

This work exclusively investigated white matter. In gray matter, the

myelination is substantially lower, which strongly influences the determination

of the inclination angle. Especially, the transition region of white to gray

matter, where the myelination gradually changes, poses new challenges to the

determination of the correct reference value rref .

The advantages of 3D-PLI for mapping the connectome is the intermediate

scale between DW-MRI and electron microscopy, and the availability of a

three-dimensional fiber orientation. Especially in gray matter, where DW-MRI

is not able to resolve fiber orientations reliably, 3D-PLI can provide unique

information. 3D-PLI also has the potential to support the interpretation of

DW-MRI measurements. Due to the reasons mentioned above, 3D-PLI is not

able to serve as a gold standard for DW-MRI, yet. However, both modalities

can benefit from a comprehensive comparison of common tissue samples.

The present work shows an important analysis of the reliability and

accuracy of the fiber orientation determined by 3D-PLI and considerably

improved the PLI inclination sign ambiguity and the quality of reconstructed

fiber tracts. This is the basis for the further development of PLI tractography,

which aims for the reliable reconstruction of fiber tracts in the human brain.
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Appendix

Derivation of the Data Energy

The absolute difference between oppositely tilted inclination angles can be

expressed as

αψ±180◦ − αψ
= 2 · αψ±180◦−αψ

2
/ |αψ±180◦−αψ

2
| ≤ |τ |

for small |τ | :
τ ≈ sin(τ)

≈ 2 · sin
(
αψ±180◦−αψ

2

)
/ cos(α) 6= 0

= 2
cos(α)

· sin
(
αψ±180◦−αψ

2

)
· cos(α) / αψ±180◦ − α = α− αψ

(changes in opposite

tilts are symmetric)

= 2
cos(α)

· sin
(
αψ±180◦−αψ

2

)
· cos(α

ψ±180◦+αψ

2
) / sinx− sin y =

2 · sin
(
x−y

2

)
· cos

(
x+y

2

)
(addition theorem)

= 1
cos(α)

· [sin(αψ±180◦)− sin(αψ)] / αψ = arcsin(

sin(τ) cos(α) cos(ϕ− ψ)+

cos(τ) sin(α))

= 1
cos(α)

· [sin(τ) cos(α) cos(ϕ− ψ ∓ 180◦) + cos(τ) sin(α)−
sin(τ) cos(α) cos(ϕ− ψ)− cos(τ) sin(α)]

= 1
cos(α)

· [−2 · sin(τ) · cos(α) · cos(ϕ− ψ)]

= −2 · sin(τ) · cos(ϕ− ψ)
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