Nachweis instabiler Moleküle durch Schwingungs- und Rotationsspektroskopie

Darstellung, Charakterisierung und Reaktionen der Fluorethine FCCX (X = F, Cl, Br) und von Silaethen $H_2Si=CH_2$

Vom Fachbereich Chemie der Bergischen Universität-Gesamthochschule Wuppertal zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.genehmigte Dissertation von

> Michael Senzlober aus Köln

Wuppertal, April 1998

Eingereicht am: Tag der mündlichen Prüfung:

Gutachter:
 Gutachter:

3. Gutachter:

07.04.1998 20.05.1998

Prof. Dr. H. Bürger Prof. Dr. P. Jensen Prof. Dr. H.-J. Altenbach Meinen Eltern und Großeltern in Dankbarkeit

Die vorliegende Arbeit wurde in der Zeit von August 1993 bis April 1998 im Fachbereich Chemie, Anorganische Chemie, der Bergischen Universität-Gesamthochschule Wuppertal unter Anleitung von Herrn Prof. Dr. H. Bürger angefertigt.

Herrn Prof. Dr. H. Bürger danke ich für das stete Interesse an den Untersuchungen, für zahlreiche Anregungen und die mir gewährte Möglichkeit zu selbständigem wissenschaftlichen Arbeiten.

Für die Registrierung der hochaufgelösten IR-Spektren danke ich den Herren F. Lücker und Dipl. Chem. H. Ruland.

Herrn Dr. G. Pawelke sei für die Aufnahme der Raman-Spektren gedankt.

Für die Aufnahme der Hochfeld-NMR-Spektren danke ich Herrn Prof. Dr. R. Eujen und Frau I. Moeller.

Herrn Prof. Dr. W. Thiel und Herrn Dr. J. Breidung vom Organisch-chemischen Institut der Universität Zürich danke ich für die Unterstützung bei den Untersuchungen zu den Fluorethinen, Fluorvinyliden und Silaethen.

Den Herren Prof. Dr. H. Willner und Dr. R. Kopitzky vom Institut für Anorganische Chemie der Universität Hannover sowie den Herren Prof. Dr. W. Sander und Dipl. Chem. C. Kötting vom Lehrstuhl für Organische Chemie II der Ruhr-Universität Bochum danke ich für die Zusammenarbeit bei den Untersuchungen zu Difluorvinyliden.

Den Herren Dr. M. Bogey und Dr. S. Bailleux vom Laboratoire de Spectroscopie Hertzienne der Universität Lille danke ich für die Zusammenarbeit bei den Untersuchungen zu Silaethen.

Herrn Dr. J. Pola und Herrn Dr. R. Fajgar vom Institute of Chemical Process Fundamentals in Prag sei für die Unterstützung bei den Untersuchungen zur Erzeugung Si/Chaltiger Schichten gedankt.

Teile dieser Arbeit stellen geförderte Projekte der VW-Stiftung und der Deutschen Forschungsgemeinschaft dar; die zur Verfügung gestellten Sach- und Reisemittel waren eine wesentliche Hilfe.

Schließlich danke ich allen Mitarbeitern des Faches Anorganische Chemie, die zum Gelingen dieser Arbeit beigetragen haben, insbesondere Herrn Priv. Doz. Dr. H. Beckers für seine Unterstützung und Diskussionsbereitschaft.

ABSTRACT

The aims of the present work are to synthesize, characterize and investigate reactions of $FC \equiv CX$ (X = F, Cl, Br) and silaethene H₂Si=CH₂. Particular interest was focussed on rotational, rovibrational and vibrational spectra and their analyses. The major results of these studies can be summarized as follows:

- 1. The thermolysis of the compounds 4,6,5-difluorochloro-1,2,3-triazine and 4,6,5-difluorobromo-1,2,3-triazine yield FCCCl and FCCBr. Unexpectedly FCCCN was obtained from 4,6,5-difluoroiodo-1,2,3-triazine.
- 2. The thermolysis of the dihalogeno derivatives of squaric acid $X^1X^2C_4O_2$ ($X^1 = Cl$, Br; $X^2 = Cl$, Br) yields the ethynes $X^1C \equiv CX^2$. The main objective, i.e. generating difluoroethyne could not be achieved. However, difluorosquaric acid could be synthezised and characterized for the first time. Its thermolysis leads to the products tetrafluoroallene, tetrafluorocyclopropene and tetrafluoropropyne, which were also found in the gas phase decomposition of difluoroethyne. Moreover, unstable difluoropropadienone could be identified.
- 3. High resolution FTIR spectra of FCCCl und FCCBr in the region from 170 2600 cm⁻¹ were recorded for the first time, as well as those of FCCF in the 4000 6000 cm⁻¹ region. The ν_2 + $3\nu_3$ band of FCCF was identified. For FCC^{35/37}Cl, parameters of the bending level $v_4 = 1$ have been obtained from combination differences and by direct observation. The analyses of the spectra in the region 170 700 cm⁻¹ provided the molecular parameters of the vibrational states ν_5 , $2\nu_5$, $\nu_4+\nu_5$, ν_3 und $2\nu_4$. These are involved in strong Fermi and/or ℓ -type resonances, which were deperturbed using ab initio interaction parameters. The results demonstrate that the employed models describe the situation of the vibrational levels in a realistic way. The regions of the C-F streching (ν_2 , 1180 1240 cm⁻¹), C=C streching (ν_1 , 2290 2340 cm⁻¹) and overtone band $2\nu_2$ (2390 2450 cm⁻¹) are severely perturbed and consist of several interacting vibrational levels. So far it has not been possible to explain these pertubations in detail.

For the ^{79/81}Br isotopomers of FCCBr the parameters of the levels ν_5 , ν_3 , $2\nu_5$, $\nu_4+\nu_5$, $2\nu_4$, ν_2 , ν_1 and $2\nu_2$ were determined from analyses of the high resolution IR spectra.

- 4. On irradiation with monochromatic light of a pulsed ArF-laser, matrix isolated difluoroethyne was transformed into difluorovinylidene, F₂C=C:. According to ab initio studies, an energy barrier of 35 kcal/mol protects difluorovinylidene to isomerisation into difluorovinylidene. This can, however, be achieved by photolysis with $\lambda > 230$ nm. The high reactivity of difluorovinylidene is demonstrated by the reactions with CO and N₂ at 35 42 K to give F₂CCCO and F₂CCN₂. Difluorovinylidene was identified by comparison of the experimental with the ab initio infrared spectra, and five of the six vibrational modes were observed directly. Moreover, the combination band $\nu_2 + \nu_5$, which is in Fermi resonance with ν_4 , has been detected. Depertubation of the Fermi doublet, with W₂₄₅ = 10,24 cm⁻¹, furnished the $\nu_2 + \nu_5$, ν_4 and the ν_5 level.
- 5. Prop-1-ynylisocyanide, CH₃CCNC, was obtained by thermolysis of pentacarbonyl(1,2-dichlorprop-1-enylisocyanide)-chromium. Its high resolution IR spectra were recorded. The parallel bands $\nu_1 - \nu_3$ and the perpendicular bands $\nu_7 - \nu_9$ were identified and analyzed in detail.
- 6. Silaethene, $H_2Si=CH_2$, generated by thermolysis of 5,6-bis(trifluoromethyl)-2-silabicyclo[2.2.2]octa-5,7-diene (SBO), was identified in the gas phase by millimeter wave spectroscopy. Rotational spectra of the isotopomeric molecules $H_2^{28}Si=^{12}CH_2$, $H_2^{29}Si=^{12}CH_2$, $D_2^{28}Si=^{12}CH_2$, $D_2^{29}Si=^{12}CH_2$, $HD^{28}Si=^{12}CH_2$, $H_2^{28}Si=^{12}CD_2$ and $H_2^{29}Si=^{12}CD_2$ in the region from 185 - 473 GHz were obtained. Their analyses provided accurate rotational and distortion constants. The planarity of this molecule was proved by the smallness of the inertial defect Δ . From the rotational parameters of these seven isotopomers the equilibrium structure of $H_2Si=CH_2$: r_e (SiC) = 1,703 9(18) Å, r_e (SiH) = 1,467 1(9) Å, r_e (CH) = 1,081 9(12) Å, \angle_e (HSiC) = 122,39(3) ° and \angle_e (SiCH) = 122,00(4) ° was derived. The exponential decay enabled to determine the lifetime of photochemically generated silaethene, 30 \pm 2 ms. Silacyclobutane (SCB) and 1,3-disilacyclobutane (DSB) are less suitable sources for silaethene than SBO.
- 7. It was not yet possible to detect silaethene by high resolution infrared spectroscopy.
- 8. SCB, DSB and SBO were decomposed with continous and pulsed IR-lasers to study their suitability as precursors of SiC phases. Depending on the energy of the laser, SCB and DSB revealed phases with high SiC or Si/C/H content. The composition of the phases was studied by FTIR spectroscopy, in some cases also by the ESCA method. These phases were found to be highly sensitive to oxygen.

Inhaltsverzeichnis

1	EINLEITUNG UND THEMENSTELLUNG	1
2	THEORETISCHE UND EXPERIMENTELLE ASPEKTE DER ROTATION UND SCHWINGUNGSSPEKTROSKOPIE	/S4
	2.1 Quantenmechanische Betrachtung	4
	2.2 Klassifizierung der verschiedenen Molekültypen nach ihrer Symmetrie	5
	2.3 Lineare Moleküle	6
	2.3.1 Symmetrien der Rotationsniveaus	7
	2.3.2 Rotations-Schwingungsenergien linearer Moleküle	8
	2.3.3 Fermi-Resonanz	14
	2.3.4 Intensitäten und Auswahlregeln	15
	2.3.5 Kernspinstatistik	16
	2.3.6 Gestalt der Spektren	16
	2.4 Symmetrische Kreisel	17
	2.4.1 Rotations-Schwingungsenergie symmetrischer Kreiselmoleküle	18
	2.4.2 Symmetrie der Rotationsniveaus und Spingewichte	20
	2.4.3 Auswahlregeln und Intensitäten	21
	2.4.4 Gestalt der Banden	22
	2.4.4.1 Parallelbanden	22
	2.4.4.2 Senkrechtbanden	24
	2.4.5 Grundzustandskombinationsdifferenzen	26
	2.5 Asymmetrische Kreisel	27
	2.5.1 Der Hamiltonoperator des starren Rotators	27
	2.5.2 Repräsentation asymmetrischer Kreiselmoleküle	28
	2.5.3 Symmetrieklassifizierung der Rotationsniveaus	29
	2.5.4 Bezeichnung der Rotationsniveaus	30
	2.5.5 Kernspinstatistik	30
	2.5.6 Rotationsenergien unter Berücksichtigung von Zentrifugaldehnungskonstanten	31
	2.5.7 Auswahlregeln und Intensitäten bei Rotationsübergängen	33
	2.5.8 Trägheitsdefekt	34
	2.6 Das Fourier-Transform-Infrarot-Spektrometer	35
	2.6.1 Aufbau und Funktionsweise des IFS 120 HR	35
	2.6.2 Zellentypen	37

3.2	Dihalogenethine aus Trihalogentriazinen
3.	2.1 Darstellung von 4,5,6-Trihalogen-1,2,3-triazinen $C_3N_3X_3$ (X = F, Cl, Br) und 4,6,5
	Difluorhalogen-1,2,3-triazinen $C_3N_3F_2X$ (X = Cl, Br, I)
3.	2.2 Thermolyse von 4,5,6-Trihalogen-1,2,3-triazinen $C_3N_3X_3$ (X = F, Cl, Br) und 4,6,5
	Difluorhalogen-1,2,3-triazinen $C_3N_3F_2X$ (X = Cl, Br, I)
3.	2.3 Experimentelles
	3.2.3.1 Triazinderivate
	3.2.3.2 1-Brom-2,2-difluor-1-trimethylstannylethen
	3.2.3.3 ClCCCl, XCCCN (X = Br, F) und FCCX (X = F, Cl, Br)
3.	2.4 Eigenschaften der Fluorethine FC≡CX (X = F, Cl, Br)
3.3	Dihalogenethine aus Quadratsäurederivaten
3.	3.1 Darstellung von Dichlor-, Bromchlor- und Dibromethin aus Quadratsäurederivaten
3.	3.2 Versuch der Darstellung von Difluorethin aus Difluorquadratsäure
	3.3.2.1 Darstellung von Difluorquadratsäure
	3.3.2.2 Thermolyse von Difluorquadratsäure
3.	3.3 Experimentelles
	3.3.3 Dihalogenderivate der Quadratsäure
	3.3.3.2 Thermolyse von Dichlor-, Dibrom- Bromchlor- und Difluorquadratsäure
	Service state and Communications and the Ethics ECHOV (V. E. Cl. D.)
3.4	Symmetrie und Grundschwingungen der Etnine $FC = CX (X=F, CI, BF)$
3.4 3.4	Symmetrie und Grundschwingungen der Ethine $FC \equiv CX (X = F, CI, BF)$ 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX (X = CI, Br)$
3.4 3. 3.5 3.6	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br)
3.4 3.5 3.6 3.1	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten
3.4 3. 3.5 3.6 3. 3.	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande $\nu_2+3\nu_3$
3.4 3.5 3.6 3.1 3.1 3.1	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von FCCCI
3.4 3.5 3.6 3. 3. 3.	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von FCCC1 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 2.6.2 Der Bernich zwischen 400 und 700 em ⁻¹
 3.4 3.5 3.6 3.4 3.4 3.4 	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ (X=F, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von FCCC1 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹
3.4 3.5 3.6 3. 3. 3.	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ ($X = F$, CI, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ ($X = CI$, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ ($X=F$, C Beschreibung der registrierten Bandensysteme von $FCCX$ ($X=F$, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von $FCCCI$ 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹ 3.6.3.3 Der Bereich der C-F-Streckschwingung v_2 3.6.3.4 Die Bandenbereiche der v_4 und $2v_5$ Schwingungs
3.4 3.5 3.6 3.4 3.4 3.4	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ ($X = F$, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ ($X = Cl$, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ ($X=F$, C Beschreibung der registrierten Bandensysteme von $FCCX$ ($X=F$, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von $FCCCl$ 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹ 3.6.3.3 Der Bereich der C-F-Streckschwingung v_2 3.6.3.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung
3.4 3.5 3.6 3. 3. 3.	Symmetrie und Grundschwingungen der Etnine $FC = CX$ ($X = F$, Cl, Br) 4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ ($X = Cl$, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ ($X=F$, C Beschreibung der registrierten Bandensysteme von $FCCX$ ($X=F$, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von $FCCC1$ 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹ 3.6.3.3 Der Bereich der C-F-Streckschwingung v_2 3.6.3.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung 3.6.3.5 Der Kombinationston v_1+v_5 5.4 Bandenbeschreibung von $FCCBr$
3.4 3.5 3.6 3. 3. 3.	Symmetrie und Grundschwingungen der Etnine $FC \equiv CX$ ($X = F$, Cl, Br) A.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX$ ($X = Cl$, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine $FC \equiv CX$ ($X=F$, C Beschreibung der registrierten Bandensysteme von $FCCX$ ($X=F$, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von $FCCC1$ 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹ 3.6.3.3 Der Bereich der C-F-Streckschwingung v_2 3.6.3.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung 3.6.3.5 Der Kombinationston v_1+v_5 5.4 Bandenbeschreibung von FCCBr 3.6.4 1 Die Knickschwingungsbande v_5
3.4 3.5 3.6 3. 3. 3.	Symmetrie und Grundschwingungen der Etnine FC=CX (X=F, Cl, Br) A.1 Niedrigaufgelöste Übersichtsspektren der Ethine FC=CX (X = Cl, Br) Aufnahme der hochaufgelösten FTIR-Spektren der Ethine FC=CX (X=F, C Beschreibung der registrierten Bandensysteme von FCCX (X=F, Cl, Br) 5.1 Intensitäten 5.2 Difluorethin: die Bande v_2+3v_3 5.3 Beschreibung der Banden von FCCCl 3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5 3.6.3.2 Der Bereich zwischen 400 und 700 cm ⁻¹ 3.6.3.3 Der Bereich der C-F-Streckschwingung v_2 3.6.3.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung 3.6.3.5 Der Kombinationston v_1+v_5 5.4 Bandenbeschreibung von FCCBr 3.6.4.1 Die Knickschwingungsbande v_5 3.6.4.2 Der Bereich zwischen 400 und 700 cm ⁻¹

3.6.4.4 Die Bandenbereiche der ν_1 - und $2\nu_2$ -Schwingung	1
3.7 Zuordnung der Spektren	1
3.8 Bestimmung der Molekülparameter	1
3.8.1 Grundzustandsparameter von FCCF, FCCCl und FCCBr	1
3.8.2 Die Zustände $v_4 = 1$ und $v_5 = 1$ von FCCCl und $v_5 = 1$ von FCCBr	1
3.8.3 Störung der oberen Zustände	1
3.8.4 Fit der Daten	1
3.8.5 Diskussion der Ergebnisse	1
3.9 Difluorethin als Quelle für Difluorvinyliden: Eine photochemische	
Isomerisierungsreaktion	1
3.9.1 Experimentelles	1
3.9.2 IR-Matrixspektren]
3.9.2.1 Symmetrie und Grundschwingungen von Difluorvinyliden]
3.9.2.2 Nachweis von Difluorvinyliden	
3.9.3 Matrix UV/Vis-Spektren von Difluorvinyliden	
3.9.4 Reaktionen von Difluorvinyliden	
3.9.5 Diskussion der Ergebnisse	
3.10 Synthese und Rotations-Schwingungsanalyse von Prop-1-inylisocyanid	1
3.10.1 Darstellung von Prop-1-inylisocyanid	·
3.10.2 Das IR-Spektrum von Prop-1-inylisocyanid	
3.10.2.1 Symmetrie und Grundschwingungen von Prop-1-inylisocyanid	·
3.10.2.2 Das niedrigaufgelöste IR-Spektrum von Prop-1-inylisocyanid	·
3.10.3 Hochaufgelöste IR-Spektren von Prop-1-inylisocyanid	·
3.10.3.1 Spektrenaufnahme	·
3.10.3.2 Spektrenbeschreibung und Analyse	
3.10.3.3 Der Grundzustand von Prop-1-inylisocyanid	
3.10.3.4 Die Parallelbanden ν_1 - ν_3	
3.10.3.5 Die Senkrechtbanden $\nu_7 - \nu_9$	
3.10.4 Vergleich der Parameter mit experimentellen und theoretischen Ergebnissen	
NACHWEIS, CHARAKTERISIERUNG UND REAKTIONEN VON SIL	AETHI
$H_2Si = CH_2$	1
4.1 Einleitung	1
4.2 Grundsätzliche Überlegungen zu Silaethen	1
4.3 Darstellungsmethoden für Silaethen nach der Literatur	1
4.3.1 Thermische Verfahren	
4.3.2 Photochemische Verfahren	

	4.4 Auswahl und Darstellung der Ausgangsverbindungen	
	4.4.1 Darstellung von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien und dessen	
	deuterierten Derivaten	
	4.4.2 Darstellung von Silacyclobutan	
	4.4.3 Darstellung von 1,3-Disilacyclobutan	
	4.5 Nachweis von Silaethen H ₂ Si=CH ₂ in der Gasphase durch Millimeter-und	
	Submillimeterwellenspektroskopie	
	4.5.1 Experimentelles	
	4.5.2 Identifizierung von Silaethen	
	4.5.3 Optimierung der Silaethen-Generierung aus SBO, SCB und DSB	
	4.5.4 Meßbereiche und Rotationsparameter von Silaethen	
	4.5.5 Bestimmung der Lebensdauer von Silaethen	
	4.5.6 Diskussion der Ergebnisse	
	4.6 Versuch des FT-IR-spektroskopischen Nachweises von Silaethen	
	4.6.1 Optimierung der White-Zelle	
	4.6.2 Thermolyse von SBO im IR-Strahlengang	
	4.6.3 Ausblick	
	4.7 Versuche zur Erzeugung von SiC-Schichten aus Silaethenvorstufen	
	4.7.1 Funktionsweise eines CO ₂ -Lasers und Mechanismus der Energieübertragung	
	4.7.2 Experimentelles	
	4.7.3 Ergebnisse der Untersuchungen	
	4.7.3.1 Silacyclobutan (SCB)	
	4.7.3.2 1,3-Disilacyclobutan (DSB)	
	4.7.3.3 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien (SBO)	
	4.7.4 Fazit	
5	ZUSAMMENFASSUNG	
5	ANHANG	
	6.1 Liste der verwendeten Abkürzungen	
	6.2 Tabellen zugeordneter Schwingungs-Rotationslinien (separat)	
	6.2.1 FCCF	

- 6.2.2 FCCCl
- 6.2.3 FCCBr
- 6.2.4 CH₃CCNC
- 6.2.5 H₂Si=CH₂

Abbildungsverzeichnis

Abb. 2-1:	Symmetrieverhalten der Rotationsniveaus linearer Moleküle	_ 8
Abb. 2-2:	Übergänge in einer Parallelbande	23
Abb. 2-3:	Zusammensetzung einer Parallelbande	. 24
Abb. 2-4:	Übergänge in einer Senkrechtbande	25
Abb. 2-5:	Zusammensetzung einer Senkrechtbande	. 25
Abb. 2-6:	Prinzip der Kombinationsdifferenzen	26
Abb. 2-7:	Aufbau des Bruker IFS 120 HR Fourier-Transform-Infrarotspektrometers	. 37
Abb. 2-8:	Aufbau und Strahlverlauf in einer White-Zelle	. 38
Abb. 2-9:	Schematischer Aufbau der neukonstruierten White-Zelle mit externer Vakuumkammer für	
	den Anschluß an das Bruker IFS 120 HR Fourier-Transform-Infrarotspektrometer	40
Abb. 3-1:	Literaturverfahren zur Darstellung von Fluorhalogenethinen	43
Abb. 3-2:	Synthesewege zu Trihalogen-1,2,3-triazinen	. 46
Abb. 3-3:	Gasphasen-FT-IR-Spektrum von Fluorcyanethin (FCCCN) aus der Thermolyse von 4,6,5-	-
	Difluoriod-1,2,3-triazin	48
Abb. 3-4:	Thermolyse der Triazinderivate $C_3N_3X_3$ (X = Cl, Br)	48
Abb. 3-5:	Gasphasen-FT-IR-Spektren von a: Dichlorethin und b: Bromcyanethin	. 49
Abb. 3-6:	Thermolyse der Triazinderivate $C_3N_3F_2X$ (X = F, Cl, Br, I)	50
Abb. 3-7:	TOF-Massenspektrum des rötlichen Polymers aus der Zersetzung von Difluorethin	60
Abb. 3-8:	Raman-Spektrum des rötlichen Polymers aus der Zersetzung von Difluorethin	60
Abb. 3-9:	UV/Vis-Spektrum des rötlichen Polymers aus der Zersetzung von Difluorethin	61
Abb. 3-10:	Darstellung von ClCCCl, ClCCBr und BrCCBr aus halogenierten	
	Quadratsäurederivaten	. 64
Abb. 3-11:	Gasphasen FT-IR-Spektren von a: Dichlorethin, b: Bromchlorethin und c: Dibromethin_	65
Abb. 3-12:	Reaktionsschema der Thermolyse von Difluorquadratsäure	67
Abb. 3-13:	Postulierter Zerfallsweg von Difluorquadratsäure	68
Abb. 3-14:	Massenspektrum von Difluorquadratsäure	71
Abb. 3-15:	¹³ C-NMR-Spektrum von Difluorquadratsäure	. 72
Abb. 3-16:	¹⁹ F-NMR-Spektrum von Difluorquadratsäure mit ¹³ C-Satellitenspektrum.	. 74
Abb. 3-17:	Gasphasen FT-IR-Spektrum von Difluorquadratsäure	. 75
Abb. 3-18:	Schwingungsbewegungen von $FC \equiv CF$ und $FC \equiv CX$ (X = Cl, Br)	81
Abb. 3-19:	Gasphasen FT-IR-Spektrum von FCCCl im Vergleich zum Raman-Spektrum bei -196°C _	. 82
Abb. 3-20:	Gasphasen FT-IR-Spektrum von FCCBr (aus 4,6,5-Difluorbrom-1,2,3-triazin)	. 83
Abb. 3-21:	Übersichtsspektrum der Bande v2+3v3	. 86
Abb. 3-22:	Übersichtsspektrum der Bande v5	. 87
Abb. 3-23:	Q -Zweig-Region der Bande v_5 mit Zuordnung	88
Abb. 3-24:	Übersichtsspektrum der Bande v4	88
Abb. 3-25:	\ddot{U} bersichtsspektrum der Bande $v_4 + v_5$. 89

Abb. 3-26:	Übersichtsspektrum der Bande 2v₄ mit Detail in der R-Zweig-Region	90
Abb. 3-27:	Bereich der Bande v_2 von FCC ³⁵ Cl (1A, 1B, 1C) und FCC ³⁷ Cl (1A', 1B', 1C')	92
Abb. 3-28:	Übersichtsspektrum des Bereichs der Bande v_1 von FCCCl	93
Abb. 3-29:	Bereich der Bande 2v2	94
Abb. 3-30:	\ddot{U} bersichtsspektrum der Bande $v_1 + v_5$	96
Abb. 3-31:	Übersichtsspektrum der Bande v5	97
Abb. 3-32:	Übersichtsspektrum der Bande v4+v5	98
Abb. 3-33:	Übersichtsspektrum der Bande 2v4	99
Abb. 3-34:	\ddot{U} bersichtsspektrum der Bande v_3 mit Zuordnung	100
Abb. 3-35:	Übersichtsspektrum der Bande v2	101
Abb. 3-36:	Übersichtsspektren des Fermi-Paars $v_1/2v_2$	102
Abb. 3-37:	Einfluß der ℓ -typ-Resonanz auf die Linienpositionen am Beispiel der $v_4 + v_5$ -Bande v FCC ³⁵ Cl	on 109
Abb. 3-38:	<i>Einfluß lokaler Störungen auf die Linienpositionen am Beispiel der</i> v_2+3v_3 -Bande vor	ı
	FCCF	110
Abb. 3-39:	Schwingungszustände von FCCCl	112
Abb. 3-40:	Wechselwirkungsmodell für die Schwingungsniveaus $2v_5$, v_4+v_5 , v_3 und $2v_4$	122
Abb. 3-41:	Vergleich der Isomerisierungsbarrieren für die Vinylidene $HRC=C$: und $F_2C=C$:	128
Abb. 3-42:	Difluorvinyliden im gewählten Koordinatensystem	130
Abb. 3-43:	Normalschwingungen von Difluorvinyliden	131
Abb. 3-44:	Zeitlicher Verlauf der Photolyse von Difluorethin	132
Abb. 3-45:	Gasphasen-UV-Spektrum von Difluorethin	133
Abb. 3-46:	Matrix-IR-Spektren, Ar, 10 K	135
Abb. 3-47:	Matrix UV/Vis-Spektren der photochemischen Umwandlung von Difluorethin und	
	Difluorvinyliden	137
Abb. 3-48:	IR-spektroskopischer Nachweis von Difluorazoethen	139
Abb. 3-49:	Reaktionen von Difluorethin und Difluorvinyliden in einer Ar-Matrix	141
Abb. 3-50:	Grundschwingungen von CH ₃ CCNC	146
Abb. 3-51:	FT-IR Spektrum von CH ₃ CCNC	147
Abb. 3-52:	Hochaufgelöste Übersichtsspektren der drei Parallelbanden v_1 - v_3	152
Abb. 3-53:	Störung der Subbandenlagen der v8-Bande	157
Abb. 3-54:	Übersichtspektrum der v9-Senkrechtbande	158
Abb. 4-1:	Beispiele für das unterschiedliche Verhalten homologer Verbindungen von C und Si	
	bezüglich der Ausbildung von Doppelbindungen	161
Abb. 4-2:	Ungesättigte Kohlenstoff- und Siliciumverbindungen	164
Abb. 4-3:	Relative Energien [kcal/mol] von Singulett- und Triplett-Silaethen und der isomeren	
	Moleküle Methylsilylen und Silylmethylen	166
Abb. 4-4:	Syntheseschema von SBO, SCB und DSB	171
Abb. 4-5:	Synthese der Vorstufenmoleküle für die Erzeugung von H ₂ Si=CD ₂	173

Abb. 4-6:	Experimenteller Aufbau des Millimeter- und Submillimeterwellenspektrometers mit				
	Thermolyseofen zur Erzeugung von Silaethen	183			
Abb. 4-7:	Vorgehensweise bei der Suche des Rotationsspektrums von Silaethen	185			
Abb. 4-8:	Vergleich der MMW-Spektren im Bereich des Rotationsübergangs $7_{1,6} \leftarrow 6_{1,5}$ von				
	Silaethen	187			
Abb. 4-9:	Experimenteller Aufbau des Millimeter- und Submillimeterwellenspektrometers für die				
	photochemische Erzeugung von Silaethen	193			
Abb. 4-10	Exponentielle Abnahme der Intensität des Rotationsübergangs $7_{1,6} \leftarrow 6_{1,5}$	195			
Abb. 4-11:	Linien der Q-Zweig-Übergänge ($K = 3, 4, 5$) in der Nähe des Bandenzentrums der v_1 -				
	Schwingung von :CF ₂	199			
Abb. 4-12:	Ab initio-Spektrum von Silaethen im Bereich der sym. (v_2) und asym. (v_{10}) Si-H-				
	Streckschwingungen	201			
Abb. 4-13:	Mögliche Erzeugungswege von Si/C/H oder SiC-Schichten aus Silaethen-Vorstufen	204			
Abb. 4-14:	Beteiligte Energieniveaus beim CO2-Laser	205			
Abb. 4-15:	Prinzip der LPD- und IRMPD-Verfahren	206			
Abb. 4-16:	P/Q/R-Kontinuum-Modell	207			
Abb. 4-17:	Experimenteller Versuchsaufbau für die CO_2 -Laser-induzierte Zersetzung von SCB, DSB				
	und SBO	209			
Abb. 4-18:	Hochaufgelöste FTIR-Spektren von SCB und DSB im Bereich der δ (SiH ₂)-Schwingung.	211			
Abb. 4-19:	Niedrigaufgelöstes FTIR-Spektrum von SBO im Bereich der δ (SiH ₂)-Schwingung mit				
	Position der verwendeten Laserlinie des Emissionsübergangs 00°1 ← 10°0	212			
Abb. 4-20:	Gaschromatogramm der Zersetzungsprodukte aus der Bestrahlung von SCB mit einem				
	gepulsten TEA CO2-Laser	214			
Abb. 4-21:	Postulierte Zersetzungmechanismen von SCB nach Bestrahlung mit einem gepulsten TE.	A			
	CO ₂ -Laser	216			
Abb. 4-22:	Repräsentative FTIR-Spektren der aus der IR-laserinduzierten Zersetzung von SCB				
	erhaltenen Schichten	217			
Abb. 4-23:	ESCA-Spektren der aus der Zersetzung von SCB erhaltenen Schichten	221			
Abb. 4-24:	Postulierte Reaktionsmechanismen der Zersetzung von DSB	223			
Abb. 4-25:	FTIR-Spektren der aus der IR-laserinduzierten Zersetzung von DSB erhaltenen				
	Schichten	224			
Abb. 4-26:	ESCA-Spektren der aus der Zersetzung von DSB erhaltenen Schichten	227			
Abb. 4-27:	Differenzspektrum der laserinduzierten Zersetzung von SBO	_228			

Tabellenverzeichnis

Tabelle 2-1:	Molekültypen in Abhängigkeit der Hauptträgheitsmomente	_ 6
Tabelle 2-2:	Irreduzible Darstellung der Submatrizen	28
Tabelle 2-3:	Identifizierung der Hauptträgheitachsen a, b, c mit den molekülfesten Achsen x, y, z_	29
Tabelle 2-4:	Darstellung der Rotationsniveaus in der Rotationsuntergruppe D ₂	29
Tabelle 2-5:	Kernspinfaktoren der Rotationsniveaus von $H_2Si=CH_2$, $D_2Si=CH_2$ und $H_2Si=CD_2$	31
Tabelle 2-6:	Auswahlregeln für Rotationsübergänge asymmetrischer Kreisel	34
Tabelle 3-1:	Charakteristische Molekülfragmente von Difluorquadratsäure	70
Tabelle 3-2:	NMR-Daten von Difluorquadratsäure	73
Tabelle 3-3:	IR- und Raman-Wellenzahlen von Difluorquadratsäure	76
Tabelle 3-4:	Wellenzahlen der Thermolyseprodukte von Difluorquadratsäure	79
Tabelle 3-5	Charaktertafel der Punktgruppe $D_{\infty h}$	80
Tabelle 3-6:	Charaktertafel der Punktgruppe $C_{\infty^{v}}$	80
Tabelle 3-7:	Meßbedingungen von FCCF, FCCCl und FCCBr	84
Tabelle 3-8:	Kernspinfaktoren für v_2+3v_3 von $F^{l_2}C \equiv {}^{l_2}CF$	85
Tabelle 3-9:	Grundzustandsparameter [cm ⁻¹] von FCCF	103
Tabelle 3-10:	Grundzustandsparameter [cm ⁻¹] von FCC ^{35/37} Cl und FCC ^{79/81} Br	104
Tabelle 3-11	Molekülparameter [cm^{-1}] des Schwingungszustands $v_4 = 1$ von $FCC^{35/37}Cl$	106
Tabelle 3-12:	Molekülparameter [cm^{-1}] des Schwingungszustands $v_5=1$ von FCC ^{35/37} Cl und FCC ^{79/81} Br	107
Tabelle 3-13:	Molekülparameter des Schwingungszustands $v_4 = 2$ von $FCC^{35}Cl$	108
Tabelle 3-14:	Störungen der oberen Niveaus von FCC ³⁵ Cl	111
Tabelle 3-15:	Störungen der oberen Niveaus von FCC ³⁷ Cl	111
Tabelle 3-16:	Störungen der oberen Niveaus von FCC ^{79/81} Br	111
Tabelle 3-17:	Effektive Molekülparameter [cm ⁻¹] aus der Rotations-Schwingungsanalyse von FCCF	, 113
Tabelle 3-18:	Effektive Molekülparameter [cm ⁻¹] aus der Rotations-Schwingungsanalyse von FCC ³⁵	i 13 i Cl
Tabelle 3-19:	Effektive Molekülparameter [cm ⁻¹] aus der Rotations-Schwingungsanalyse von FCC ³⁷	'Cl
Tabelle 3-20:	Effektive Molekülparameter [cm ⁻¹] aus der Rotations-Schwingungsanalyse von FCC ⁷⁵	'Br
Tabelle 3-21:	Effektive Molekülparameter [cm ⁻¹] aus der Rotations-Schwingungsanalyse von FCC ⁸¹	'Br 116
Tabelle 3-22:	Parameter der angeregten Zustände [cm ⁻¹] von FCC ³⁵ Cl	117
Tabelle 3-23:	Parameter der angeregten Zustände [cm ⁻¹] von FCC ³⁷ Cl	118
Tabelle 3-24:	Parameter der angeregten Zustände [cm ⁻¹] von FCC ⁷⁹ Br	118
Tabelle 3-25:	Parameter der angeregten Zustände [cm ⁻¹] von FCC ⁸¹ Br	118

Tabelle 3-26:	Molekül-Parameter von FCC ³⁵ Cl im Bereich von 400 - 700 cm ⁻¹	_ 121		
Tabelle 3-27:	Molekülparmeter [cm ⁻¹] des 2A-Niveaus unter Verwendung von Daten mit J' \leq 20 _	_ 124		
Tabelle 3-28:	Molekülparameter [cm ⁻¹] von FCCBr im Vergleich mit ab initio-Daten	_ 126		
Tabelle 3-29:	Charaktertafel C _{2v}	_ 131		
Tabelle 3-30:	Wellenzahlen der Infrarotspektren von F2C=C: und F2C=S	_ 136		
Tabelle 3-31:	Wellenzahlen der Infrarotspektren von Difluorpropadienon und Difluordiazoethen	_ 140		
Tabelle 3-32:	In interstellaren Wolken vorkommende Cyanide und Isocyanide	_ 143		
Tabelle 3-33:	Charaktertafel der Punktgruppe C _{3v}	_ 144		
Tabelle 3-34:	Meßbereiche von CH3CCNC	_ 148		
Tabelle 3-35:	Grundzustandsparameter [cm ⁻¹] von CH ₃ CCNC	_ 150		
Tabelle 3-36:	Effektive Parameter [cm ⁻¹] von CH ₃ CCNC für v_1 - v_3	_ 153		
Tabelle 3-37:	Subbandenfits $[cm^{-1}]$ der v_7 und v_8 - Banden	_ 155		
Tabelle 3-38:	Polynomfits der Subbandenursprünge v_k [cm ⁻¹] der v_7 und v_8 - Banden	_ 156		
Tabelle 3-39:	Ergebnisse des Fits der Senkrechtbande v ₉ [cm ⁻¹]	_ 158		
Tabelle 3-40:	Vergleich der Wellenzahlen [cm ⁻¹], Intensitäten und der A ζ^z - Werte der			
	Grundschwingungen von CH_3CCNC mit ab initio-Rechnungen sowie mit Wellenzah	len		
	des konstitutionsisomeren CH ₃ CCCN	_ 160		
Tabelle 4-1:	Gemessene Frequenzbereiche und Rotationsübergänge von verschiedenen Isotopon	neren		
	von Silaethen	_ 189		
Tabelle 4-2:	Experimentell ermittelte Rotationsparameter und Trägheitsdefekte verschiedener			
	isotopomerer Silaethene	_ 190		
Tabelle 4-3:	Ab initio berechnete Rotationskonstanten und Trägheitsdefekte verschiedener			
	isotopomerer Silaethene	_ 191		
Tabelle 4-4:	Wellenzahlen der Infrarotspektren von H ₂ Si=CH ₂ [cm ⁻¹]	_ 197		
Tabelle 4-5:	Berechnete Rotations-Schwingungs-Wechselwirkungsparameter [cm ⁻¹] für			
	$H_2^{28}Si = {}^{12}CH_2,, MP2/TZ2Pf$	_ 200		
Tabelle 4-6:	Meßbedingungen für die Aufnahme der IR-Spektren von SCB und DSB	_ 208		
Tabelle 4-7:	Experimentelle Bedingungen für die Zersetzungsreaktionen von SCB und			
	Zusammensetzung des resultierenden Gasgemisches nach GC-Untersuchung	_ 213		
Tabelle 4-8:	IR-Absorptionen der aus der Zersetzung von SCB gebildeten Schichten	_ 218		
Tabelle 4-9:	Ergebnisse der ESCA-Untersuchungen	_ 220		
Tabelle 4-10:	Experimentelle Bedingungen für die Zersetzungsreaktionen von DSB und			
	Zusammensetzung des resultierenden Gasgemisches nach GC-Untersuchung	_ 222		
Tabelle 4-11:	IR-Absorptionen der aus der Zersetzung von DSB gebildeten Schichten	_ 225		
Tabelle 4-12:	Ergebnisse der ESCA-Untersuchungen	_226		

1 EINLEITUNG UND THEMENSTELLUNG

Reaktive, kurzlebige Moleküle stellen eine Herausforderung für den experimentell arbeitenden Chemiker dar, da sie vielfach als Zwischenstufen bei chemischen Reaktionen postuliert werden. Eine systematische Untersuchung einfacher Moleküle und ihrer Reaktionen ist wünschenswert, da die Ergebnisse zum generellen Verständnis der chemischen und physikalischen Eigenschaften ganzer Verbindungsklassen beitragen können. Gerade die unsubstituierten Muttermoleküle größerer Stoffklassen sind oft kurzlebig, da nicht kinetisch stabilisiert, und sie erfordern spezielle Synthesen.

Die Darstellung kurzlebiger Spezies kann auf verschiedenen Wegen erfolgen. Konventionellen chemischen Reaktionen in der Gasphase oder in Lösung steht eine Generierung mit Hilfe physikalischer Methoden wie z.B. elektrische Entladung, Mikrowellenentladung, Thermolyse oder Photolyse von geeigneten Vorstufen gegenüber. Während die beiden erstgenannten Methoden nur selten zu einheitlichen Produkten führen, stellen die thermischen sowie photochemischen Reaktionen wesentlich selektivere Möglichkeiten der Erzeugung kurzlebiger Spezies dar. Herauszustellen ist hierbei die ausgereifte Lasertechnologie, die fast im gesamten elektromagnetischen Spektrum monochromatische Lichtquellen zur Verfügung stellt und somit eine selektive Energieübertragung ermöglicht. Als treibende Kraft der thermisch und photochemisch induzierten Zersetzungsreaktionen können in vielen Fällen [2+2]- und [4+2]-Cycloreversions-Reaktionen angesehen werden, die allerdings "maßgeschneiderte" Vorstufen erfordern.

Für den Nachweis reaktiver Moleküle stehen eine Vielzahl spektroskopischer Verfahren bereit. Matrix-Isolation, kombiniert mit UV-Vis/IR-Spektroskopie, erscheint zum Nachweis instabiler Spezies besonders geeignet. So werden in vielen Fällen durch diese Technik überhaupt erst experimentelle Daten über reaktive Moleküle zugänglich. Den Molekülspektroskopiker interessieren vor allem energetische und geometrische Informationen. Hierfür besser geeignet sind die hochauflösenden Verfahren wie Mikrowellen-, Millimeterwellen- und hochauflösende IR-Spektroskopie an der Gasphase. Mikrowellen- sowie Millimeterwellenspektroskopie vereinigen große Empfindlichkeit und Spezifität und besitzen dadurch ein hohes Potential, um kurzlebige Moleküle nachzuweisen. Durch diese Technik erhält man sehr genaue Molekülparameter, die eine akkurate Strukturbestimmung eines Moleküls ermöglichen. Die weniger empfindliche hochauflösende IR-Spektroskopie bietet gegenüber der Mikrowellen- und Millimeterwellenspektroskopie bietet gegenüber der Mikrowellen- und Millimeterwellenktroskopie den Vorteil, daß auch Moleküle untersucht werden können, die kein oder nur ein kleines permanentes Dipolmoment besitzen. Darüber hinaus können aus der Analyse hochaufgelöster IR-Spektren auch Parameter angeregter Schwingungszustände abgeleitet werden, die eine Beschreibung der Potentialfunktion eines Moleküls ermöglichen. Auch werden Informationen über Geometrie, Bindungslängen und Bindungsstärken zugänglich.

Die moderne theoretische Chemie stellt mit ihren ab initio-Methoden ein sehr wichtiges Werkzeug bei der Suche und Charakterisierung von neuen, instabilen Spezies dar. Die aus diesen Berechnungen resultierenden Molekülparameter erlauben heutzutage eine hinreichend exakte Vorhersage von Erwartungsspektren, die eine experimentelle Suche nach unbekannten Molekülen stark vereinfacht.

Im Rahmen dieser Arbeit sollten vorwiegend kleine, hochreaktive Moleküle synthetisiert und durch Rotations- und Schwingungsspektroskopie untersucht werden. Hierbei wurde folgenden Fragestellungen - teilweise auch im Hinblick auf eine Weiterführung der während meiner Diplomarbeit begonnenen Untersuchungen [1] - nachgegangen:

- 1. Fluorhalogenethine des Typs FCCX (X = F, Cl, Br, I) sind aufgrund ihrer schwierigen Handhabbarkeit bisher nur wenig untersucht worden. Es sollte die Eignung des Trihalogen-1,2,3-triazingerüstes für die Darstellung von Fluorchlor-, Fluorbrom- und Fluoriodethin $FC \equiv CX$ (X = Cl, Br, I) in Anlehnung an das von Bürger und Sommer entwickelte Verfahren der Darstellung von Difluorethin FC≡CF durch Thermolyse von 4,5,6-Trifluor-1,2,3-triazin untersucht werden [2]. Daneben bestand eine weitere Aufgabe darin, für die Synthese von Difluorethin ein präparativ einfacheres Verfahren zu entwickeln, das gleichzeitig auch die Möglichkeit der Isotopenmarkierung mit ¹³C bietet. sollten durch Fluorbromethin hochauflösende Fluorchlorund IR-Spektroskopie charakterisiert werden. Aufbauend auf den Ergebnissen aus meiner Diplomarbeit sollten die Untersuchungen an den Molekülen Difluorethin und Prop-1-inylisocyanid durch hochauflösende IR-Spektroskopie abgeschlossen werden. Ein weiteres Ziel war auch die experimentelle Verifizierung der theoretisch vorausgesagten Isomerisierung von Difluorethin zu Difluorvinyliden [3].
- 2. Eine Vielzahl von substituierten Silaethenen R¹R²Si=CR³R⁴ sind synthetisiert und ausgiebig untersucht worden [4,5,6]. Silaethene mit sperrigen organischen Resten sind durch Abschirmung der polaren Si=C-Doppelbindung selbst bei Raumtemperatur bemerkenswert stabil. Demgegenüber ist das Muttermolekül Silaethen H₂Si=CH₂, außerordentlich instabil. Die Eigenschaften von Silaethen H₂Si=CH₂ werden in der Literatur sehr unterschiedlich beschrieben. Während Auner und Grobe bei 77 K keine Zersetzung von Silaethen feststellen [7], ist nach Maier et al. bei 35 K die vollständige Dimerisierung von Silaethen zu

1,3-Disilacyclobutan zu beobachten [8]. In der Literatur ist über Untersuchungen in der Gasphase, die zum einen den eindeutigen Nachweis von Silaethen und zum anderen die Strukturbestimmung ermöglichen, bisher nicht berichtet worden. Hinweise auf die experimentelle Bindungslänge der Si=C-Doppelbindungen konnte bisher nur aus der Mikrowellenuntersuchung von Dimethylsilaethen (H₃C)₂Si=CH₂ abgeschätzt werden [9]. Ein Ziel dieser Arbeit war der Nachweis von Silaethen durch Rotations- und Schwingungsspektroskopie. Daneben sollte die photochemisch induzierte Zersetzung von potentiellen Silaethenvorstufen untersucht werden.

2 THEORETISCHE UND EXPERIMENTELLE ASPEKTE DER ROTATIONS- UND SCHWINGUNGSSPEKTROSKOPIE

2.1 Quantenmechanische Betrachtung

Ein Atom bzw. Molekül stellt ein Mehrteilchensystem dar, welches durch einen Hamiltonoperator \hat{H} beschrieben werden kann und durch dessen Eigenwert E und die Eigenfunktion ψ (q₁, ...q_N, t) charakterisiert wird.

$$\hat{H}\psi = E\psi \tag{2.1}$$

Der stationäre Zustand des Mehrteilchensystems wird durch die zeitunabhängige Schrödingergleichung beschrieben. Dies kann durch einen Separationsansatz erreicht werden.

$$\psi(\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{z}_N, \mathbf{t}) = \psi(\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{z}_N) \exp\left(\frac{\mathbf{E}}{\mathbf{i}\hbar}\mathbf{t}\right)$$
(2.2)

mit

 $x_i, y_i, z_i = Ortskoordinaten$

Der Hamiltonoperator setzt sich zusammen aus Beiträgen der kinetischen Energie der Atomkerne und Elektronen und der potentiellen Energie des Moleküls. Die potentielle Energie setzt sich zusammen aus der Elektron-Elektron-, Elektron-Kern- und Kern-Kern-Wechselwirkung. Selbst für kleine Moleküle ist eine geschlossene Lösung der Schrödingergleichung mit dem Hamiltonoperator nicht möglich. Aufgrund des großen Massenunterschiedes zwischen Atomkern und Elektronen können die Kern- und Elektronenbewegungen voneinander separiert werden. Dieses ist die wesentliche Aussage der Born-Oppenheimer-Näherung [10]. Das bedeutet, daß der elektronische Teil der Wellenfunktion von der Kernbewegung kaum beeinflußt wird, weshalb die Gesamtenergie eines Moleküls in Elektronen- und Rotations-Schwingungsenergie zerlegt werden kann:

$$E_{ges} = E_{el} + E_{rotvib}$$
(2.3)

In einem bestimmten elektronischen Zustand eines Moleküls werden nur die Rotationen und Schwingungsbewegungen betrachtet. Deshalb wird bei der Rotations-Schwingungsspektroskopie nur der Term E_{rotvib} berücksichtigt. Die Eigenwerte der Rotations-Schwingungsenergie ergeben sich dann durch die Lösung der zeitunabhängigen Schrödingergleichung in der Form:

$$H_{\text{rotvib}} \psi_{\text{rotvib}} = E_{\text{rotvib}} \psi_{\text{rotvib}}$$
(2.4)

Der Ausdruck für den Hamiltonoperator H_{rotvib} wurde von Darling und Dennison abgeleitet [11],

$$\hat{H}_{\text{rotvib}} = \frac{1}{2} \sum_{\alpha,\beta} \mu^{\frac{1}{4}} (J_{\alpha} - p_{\alpha}) \mu_{\alpha,\beta}^{-\frac{1}{2}} (J_{\beta} - p_{\beta}) \mu^{\frac{1}{4}} + \frac{1}{2} \sum_{s} \mu^{\frac{1}{4}} p_{s} \mu^{-\frac{1}{2}} p_{s} \mu^{\frac{1}{4}} + V \qquad (2.5)$$

$$\alpha, \beta = \text{Summation über die molekülfesten Achsen x, y und z}$$

$$J_{\alpha} = \text{Komponente des Gesamtdrehimpulses in Richtung der Achse } \alpha$$

$$p_{\alpha} = \text{Komponente des internen Drehimpulses in Richtung der Achse } \alpha$$

$$\mu_{\alpha,\beta} = \text{Element der Matrix } (\mu) = (\Gamma)^{-1}, \text{ das von den Trägheitsmomenten des}$$

$$Moleküls abhängt$$

$$\mu = \text{Determinate der Matrix } (\mu)$$

p_s = Impuls der Normalkoordinate
 V = Operator der potentiellen Energie

Eine direkte Lösung von Gl. (2.5) ist nicht möglich. Man verwendet deshalb eine Reihenentwicklung des Operators, welche die Anwendung der Störungstheorie zur Berechnung von Eigenwerten höherer Ordnung erlaubt.

$$\hat{H}_{\text{rotvib}} = \hat{H}_0 + \hat{H}_1 a + \hat{H}_2 a^2 + \hat{H}_3 a^3 + \dots$$
(2.6)

Bei der Berechnung der Energieterme treten jedoch schon im Energieterm 2. Ordnung nicht diagonale Terme aus H_1 auf, weshalb das Verfahren der Kontakttransformation angewandt wird. Dabei wird die Hamiltonmatrix in Bezug auf die Schwingungsquanten v_s diagonalisiert.

$$\hat{H}' = T \hat{H} T^{-1} = \hat{H}_0 + \hat{h}_1' + \hat{h}_2' + \hat{h}_3' + \dots$$
(2.7)

$$\hat{H}^{+} = \tau \hat{H} \tau^{-1} = \hat{H}_{0} + \hat{h}_{1}^{+} + \hat{h}_{2}^{+} + \hat{h}_{3}^{+} + \dots$$
(2.8)

Dies erlaubt unter Vernachlässigung zufälliger Resonanzen die Berechnung der Rotations-Schwingungsenergie bis zur 5. Ordnung. Die Berechnung höherer Terme wurde für verschiedene Molekültypen von Amat, Nielsen und Tarrago abgeleitet [12].

2.2 Klassifizierung der verschiedenen Molekültypen nach ihrer Symmetrie

In der Rotations- und Rotations-Schwingungsspektroskopie ist die Betrachtung der Molekülsymmetrie für die Spektrenauswertung von großer Bedeutung. Ein Molekül kann je nach Anzahl und Art der beteiligten Atome eine bestimmte räumliche Konfiguration annehmen, die eine bestimmte Symmetrie besitzt. Die Symmetrie eines Moleküls wird durch seine Symmetrieelemente und die dazugehörigen Symmetrieoperationen beschrieben. Durch eine Symmetrieoperation wird ein Körper (z.B. ein Molekül) in eine Orientierung gebracht, die von der ursprünglichen nicht mehr zu unterscheiden ist. Man unterscheidet hier Translation, Rotation, Spiegelung, Inversion und Drehinversion. Die Orientierung der vorhandenen Symmetrieelemente bezieht man auf ein kartesisches Koordinatensystem, dessen z-Achse vertikal steht. Da die Symmetrieachsen auch gleichzeitig Hauptträgheitsachsen darstellen, kann man eine Einteilung der Moleküle anhand ihrer Trägheitsmomente vornehmen.

Molekültyp	Trägheitsmomente	
lineares Molekül	$I_a = 0, I_b = I_c$	
Kugelkreisel	$I_a = I_b = I_c$	
abgeplatteter symmetrischer Kreisel	$I_a = I_b < I_c$	
verlängerter symmetrischer Kreisel	$I_a < I_b = I_c$	
asymmetrischer Kreisel	$I_a \neq I_b \neq I_c$	

Tabelle 2-1: Molekültypen in Abhängigkeit der Hauptträgheitsmomente

Für asymmetrische Kreisel wird der Ray'sche Parameter κ eingeführt, der den Grad der Asymmetrie in einem Molekül wiedergibt [13]. Es gilt:

$$\kappa = \frac{(2B - A - C)}{(A - C)} \tag{2.9}$$

und ist mit Trägheitsmomenten (Ia, Ib und Ic) über die Rotationskonstanten

$$A = \frac{\hbar^2}{2I_a}, \qquad B = \frac{\hbar^2}{2I_b}, \qquad C = \frac{\hbar^2}{2I_c}$$
 (2.10)

verknüpft. Für abgeplattete symmetrische Kreisel beträgt $\kappa = 1$, für verlängerte -1.

2.3 Lineare Moleküle

Bezüglich ihrer Symmetrie unterscheidet man zwei Typen linearer Moleküle: $D_{\infty h}$ und $C_{\infty v}$. Moleküle der Punktgruppe $D_{\infty h}$ besitzen ein Symmetriezentrum. Konsequenz des Symmetriezentrums ist die Gültigkeit des Alternativverbotes, d.h. nur asymmetrische (ungerade) Schwingungen sind IR-aktiv, wogegen symmetrische Schwingungen nur Raman-aktiv sein können. Beispiel für ein Molekül dieser Punktgruppe ist das in dieser Arbeit untersuchte Difluorethin. Demgegenüber bestehen solche Beschränkungen für Moleküle der Punktgruppe $C_{\infty v}$ nicht; hier sind alle Schwingungen sowohl IR- als auch Raman-aktiv. Die in dieser Arbeit untersuchten Moleküle Fluorchlorethin und Fluorbromethin gehören zu dieser Punktgruppe.

2.3.1 Symmetrien der Rotationsniveaus

Die Rotationsniveaus linearer Moleküle werden durch zwei Quantenzahlen, die Gesamtdrehimpulsquantenzahl J und die Schwingungsdrehimpulsquantenzahl ℓ gekennzeichnet.

Es gilt:
$$J \ge \ell$$
 (2.11)

Der Zusammenhang zwischen ℓ und v wird weiter unten beschrieben. Die Rotations-Schwingungsniveaus werden mit (+) bzw. (-) bei symmetrischem bzw. antisymmetrischem Verhalten gegenüber der Symmetrieoperation σ_v bezeichnet. Bei den Schwingungsniveaus der Rasse Σ^+ bei Molekülen mit $C_{\infty v}$ -Symmetrie bzw. bei Schwingungsniveaus der Rasse Σ^+_g und Σ^+_u bei Molekülen mit $D_{\infty h}$ -Symmetrie besitzt die Gesamtwellenfunktion bei gerader J-Quantenzahl (+)-Parität und (-)-Parität bei ungerader J-Quantenzahl. Im Falle der Schwingungsniveaus der Rasse Σ^- bei Molekülen mit $C_{\infty v}$ bzw. Σ^-_g und Σ^-_u bei Molekülen mit $D_{\infty h}$ -Symmetrie ist es umgekehrt.

In Π , Δ , ... Schwingungsniveaus gibt es für jede J-Quantenzahl je ein Rotationsniveau mit positiver (+) und negativer (-) Parität. Konventionsgemäß werden diese Niveaus mit e und f bezeichnet [14], wobei gilt:

- e: Niveau mit der Parität $+(-1)^{J}$ (2.12)
- f: Niveau mit der Parität $-(-1)^{J}$ (2.13)

Für Moleküle der Symmetrie $D_{\infty h}$ muß wegen der Kernspinstatistik das Verhalten der Rotations-Schwingungswellenfunktion gegenüber einer Vertauschung der gleichen Kerne berücksichtigt werden. Bei geraden Schwingungsniveaus sind die (+)-Niveaus symmetrisch (s) und bei ungeraden Schwingungsniveaus antisymmetrisch (as) bezüglich der Vertauschung gleicher Kerne. Bei ungeraden Vibrationsniveaus ist es umgekehrt.

Abb. 2-1: Symmetrieverhalten der Rotationsniveaus linearer Moleküle nach Lit. [15]

2.3.2 Rotations-Schwingungsenergien linearer Moleküle

Nach Amat und Nielsen [16] kann die ungestörte Rotations-Schwingungsenergie eines linearen Moleküls in der folgenden Form ausgedrückt werden:

$$\begin{split} E_{\text{rotvib}} &= E_{\text{rot}} + E_{\text{vib}}, \end{split}$$
(2.14)
$$\begin{split} E_{\text{vib}} &= \left[\sum_{i} \omega_{i} \left(v_{i} + \frac{d_{i}}{2} \right) + \sum_{i,j} x_{ij} \left(v_{i} + \frac{d_{i}}{2} \right) + \left(v_{j} + \frac{d_{j}}{2} \right) \right] + \sum_{i,j,k} y_{ijk} \left(v_{i} + \frac{d_{i}}{2} \right) + \left(v_{j} + \frac{d_{j}}{2} \right) + \left(v_{j} + \frac{d_{j}}{2} \right) + \left(v_{k} + \frac{d_{k}}{2} \right) + \sum_{t,t'} g_{\ell_{t}\ell_{t'}} \ell_{t} \ell_{t'}, \end{aligned}$$
(2.15)
$$\begin{split} E_{\text{rot}} &= \left[B_{v} + \gamma_{\ell_{t}\ell_{t'}} \ell_{t} \ell_{t'} \right] \left[J(J+1) - \ell^{2} \right] - D_{v} \left[J(J+1) - \ell^{2} \right]^{2} + H_{v} \left[J(J+1) - \ell^{2} \right]^{3}, \end{split}$$

mit

$$B_{v} = B_{e} - \sum_{i} \alpha_{i} \left(v_{i} + \frac{d_{i}}{2} \right) + \sum_{i,j} \gamma_{ij} \left(v_{i} + \frac{d_{i}}{2} \right) + \left(v_{j} + \frac{d_{j}}{2} \right), \qquad (2.17)$$

(2.16)

und

$$D_{v} = D_{e} + \sum_{i} \beta_{i} \left(v_{i} + \frac{d_{i}}{2} \right), \qquad (2.18)$$

wobei

ω_{i}	=	harmonische Schwingungsfrequenzen der i-ten Normalschwingung
$X_{i,j}, Y_{i,j,k}$	=	Anharmonizitätskonstanten
$g\ell_t\ell_{t'}$	=	Anharmonizitätskonstanten, welche den Beitrag des Schwingungs-
		drehimpulses ℓ_t und/oder ℓ_t , für die Schwingungsenergie darstellen;
		t und t' kennzeichnen die entarteten Knickschwingungen
Be	=	Rotationskonstante des Moleküls im Gleichgewicht
$\alpha_{\rm i}, \gamma_{\rm ij}$	=	Rotations-Schwingungs-Wechselwirkungskonstanten für die i-te
		Normalschwingung, $\alpha_i = B_0 - B_i$,
$B_{\rm v}$	=	Rotationskonstante des Moleküls für einen bestimmten Schwing-
		ungszustand
$\gamma_{\ell_t\ell_{t'}}$	=	Rotations-Schwingungs-Wechselwirkungskonstanten
D_v, H_v	=	Zentrifugaldehnungskonstanten
ℓ	=	Summe der Schwingungs-Drehimpulsquantenzahlen ℓ_t und $\ell_{t'}$

sind.

Für lineare Moleküle, die aus mehr als zwei Atomen bestehen, resultieren eine oder mehrere Knickschwingungen, die durch die Quantenzahl ℓ beschrieben werden, wobei ℓ die Quantenzahl des Drehimpulses um die Molekülachse darstellt. Jeder Schwingungszustand einer Knickschwingung ist (v+1)-fach in ℓ entartet. ℓ kann die Werte

$$\ell = -v_t, (-v_t+2), \dots, (v_t-2), v_t$$
(2.19)

 $v_t =$ Schwingungsquantenzahl der Knickschwingung

annehmen. Somit resultieren Rotations-Schwingungsniveaus, die in $\pm \ell$ entartet sind. Die Schwingungsniveaus mit $\ell = 0, 1, 2, 3$ werden als Σ , Π , Δ , Φ bezeichnet. Die unterschiedlichen ℓ -Zustände sind untereinander durch verschiedene Arten von Rotations-Schwingungs-Wechselwirkungen gekoppelt, die als ℓ -Typ-Resonanzen bezeichnet werden. Man unterscheidet drei Arten von ℓ - Typ-Resonanzen [17].

Die Matrixelemente lauten:

• A.
$$\Delta \ell = \pm 2$$

 $\langle \mathbf{v}_t, \ell_t | \hat{\mathbf{h}}_2 | \mathbf{v}_t, \ell_t \pm 2 \rangle$
 $= \frac{q_t}{4} \sqrt{(\mathbf{v}_t \mp \ell_t)(\mathbf{v}_t \pm \ell_t + 2)} \sqrt{J(J+1) - \ell(\ell \pm 1)} \sqrt{J(J+1) - (\ell \pm 1)(\ell \pm 2)}$ (2.20)

Diese ℓ -Resonanz kommt in jedem angeregten Schwingungsniveau mit $\ell \neq 0$ vor.

• B. $\Delta \ell = \pm 4$

$$\left\langle \mathbf{v}_{t}, \ell_{t} \middle| \hat{\mathbf{h}}_{2}^{'} \middle| \mathbf{v}_{t}, \ell_{t} \pm 4 \right\rangle = \sum_{\mathbf{v}_{t}^{'}, \ell^{'}, \mathbf{v}_{t}^{'} \neq \mathbf{v}_{t}} \left(\left\langle \mathbf{v}_{t}, \ell_{t} \middle| \hat{\mathbf{h}}_{2}^{'} \middle| \mathbf{v}_{t}^{'}, \ell^{'} \middle| \hat{\mathbf{h}}_{2}^{'} \middle| \mathbf{v}_{t}, \ell_{t} \pm 4 \right\rangle \right) \left\{ \frac{1}{\mathbf{E}_{\mathbf{v}_{t}}^{(0)} - \mathbf{E}_{\mathbf{v}_{t}}^{(0)}} \right\}$$

$$(2.21)$$

oder

$$\left\langle \mathbf{v}_{t}, \ell_{t}; \mathbf{v}_{t'}, \ell_{t'}; \ell | \hat{\mathbf{h}}_{2}^{'} | \mathbf{v}_{t}, \ell_{t} \pm 2; \mathbf{v}_{t'}, \ell_{t'} \pm 2; \ell \pm 4 \right\rangle$$

$$= \sum_{\mathbf{v}_{t}^{'}, \mathbf{v}_{t'}^{'}, \ell_{t'}^{'}, \ell_{t}^{'}; \ell_{t}^{'}, \ell_{t'}^{'}; \ell | \hat{\mathbf{h}}_{2}^{'} | \mathbf{v}_{t}^{'}, \ell_{t}^{'}; \mathbf{v}_{t'}^{'}, \ell_{t'}^{'}; \ell \pm 2 \right\rangle$$

$$\cdot \left\langle \mathbf{v}_{t}^{'}, \ell_{t}^{'}; \mathbf{v}_{t'}^{'}, \ell_{t'}^{'}; \ell \pm 2 | \hat{\mathbf{h}}_{2}^{'} | \mathbf{v}_{t}, \ell_{t} \pm 2; \mathbf{v}_{t'}, \ell_{t'}^{'} \pm 2; \ell \pm 4 \right\rangle \left\{ \frac{1}{\mathbf{E}_{\mathbf{v}_{t}\mathbf{v}_{t'}} - \mathbf{E}_{\mathbf{v}_{t'}^{'}, \mathbf{v}_{t'}^{'}}} \right\}$$

$$(2.22)$$

Typ B beschreibt Effekte höherer Ordnung in Zuständen mit $v_t \ge 2$ oder Kombinationstönen.

• C.
$$\Delta \ell_{t} = \pm 2, \Delta \ell_{t'} = \mp 2$$

 $\langle \mathbf{v}_{t}, \ell_{t}; \mathbf{v}_{t'}, \ell_{t'} | \hat{\mathbf{h}}_{2}^{'} | \mathbf{v}_{t}, \ell_{t} \pm 2; \mathbf{v}_{t'}, \ell_{t'} \mp 2 \rangle$
 $= \frac{\mathbf{r}_{tt'}}{4} \sqrt{(\mathbf{v}_{t} \pm \ell_{t} + 2)(\mathbf{v}_{t} \mp \ell_{t})(\mathbf{v}_{t'} \mp \ell_{t'} + 2)(\mathbf{v}_{t'} \pm \ell_{t'})}$
(2.23)

Typ C tritt als rein vibronische *l*-Typ Verdopplung auf.

Für die verschiedenen entarteten Schwingungszustände, die durch die Quantenzahlen v_t , ℓ_t und $v_{t'}$, $\ell_{t'}$ gegeben sind, lassen sich daraus die Matrixelemente ableiten. Es werden nachfolgend die in dieser Arbeit näher betrachteten Fälle $v_t = 1$, $v_t = 2$ und ($v_t = 1$, $v_{t'} = 1$) aufgeführt.

a) $v_t = 1$

Die ℓ -Resonanz führt zur Aufspaltung des Π -Zustands in ein e- und f-Unterniveau. Die Aufspaltung wird durch ein Matrixelement vom Typ A beschrieben und lautet:

$$\langle \mathbf{v}_{t} = 1; \ell_{t} = -1 | \hat{\mathbf{h}}_{2} | \mathbf{v}_{t} = 1; \ell_{t} = 1 \rangle = \mathbf{W}_{11}^{(1)} = \frac{1}{2} \mathbf{q}_{t} \mathbf{J} (\mathbf{J} + 1)$$
 (2.24)

b) $v_t = 2$

Der Oberton $v_t = 2$ besteht aus einem Σ -Zustand und einem entarteten Δ -Zustand. Die Wechselwirkung zwischen dem Σ - und Δ - Zustand wird beschrieben durch ein Matrixelement vom Typ A:

$$\left\langle \mathbf{v}_{t} = 2; \ell_{t} = -2 \left| \hat{\mathbf{h}}_{2} \right| \mathbf{v}_{t} = 2; \ell_{t} = 0 \right\rangle = \left\langle \mathbf{v}_{t} = 2; \ell_{t} = 0 \left| \hat{\mathbf{h}}_{2} \right| \mathbf{v}_{t} = 2; \ell_{t} = 2 \right\rangle$$

$$= \mathbf{W}_{02} = \frac{1}{\sqrt{2}} \mathbf{q}_{t} \sqrt{\mathbf{J}(\mathbf{J}+1)[\mathbf{J}(\mathbf{J}+1)-2]}$$

$$(2.25)$$

Die Aufspaltung zwischen den e- und f-Unterniveaus des Δ -Zustands wird beschrieben durch ein Matrixelement des Typs B:

$$\langle \mathbf{v}_{t} = 2; \ell_{t} = -2 | \hat{\mathbf{h}}_{2} | \mathbf{v}_{t} = 2; \ell_{t} = 2 \rangle = W_{22}^{(2)} = \frac{1}{2} \rho_{t} \mathbf{J} (\mathbf{J} + 1) [\mathbf{J} (\mathbf{J} + 1) - 2]$$
 (2.26)

c) $(v_t = 1, v_{t'} = 1)$

Der Zustand ($v_t = 1$, $v_{t'} = 1$) besteht aus einem Paar von Σ -Zuständen und einem entarteten Δ -Zustand. Die Wechselwirkung zwischen dem Σ - und Δ -Zustand wird durch ein Matrixelement vom Typ A beschrieben:

$$\left\langle \mathbf{v}_{t} = \mathbf{1}, \ell_{t} = -1; \mathbf{v}_{t'} = \mathbf{1}, \ell_{t'} = \mathbf{1} \middle| \hat{\mathbf{h}}_{2} \middle| \mathbf{v}_{t} = \mathbf{1}, \ell_{t} = \mathbf{1}; \mathbf{v}_{t'} = \mathbf{1}, \ell_{t'} = \mathbf{1} \right\rangle$$

$$= \mathbf{W}_{11}^{(t)} = \frac{1}{2} \mathbf{q}_{t} \sqrt{\mathbf{J}(\mathbf{J}+1) [\mathbf{J}(\mathbf{J}+1)-2]}$$

$$(2.27)$$

Die Aufspaltung zwischen den e- und f-Unterniveaus des Δ -Zustands wird beschrieben durch ein Matrixelement des Typs B:

$$\left\langle \mathbf{v}_{t} = \mathbf{1}, \ell_{t} = -1; \mathbf{v}_{t'} = \mathbf{1}, \ell_{t'} = -1; \ell = -2 \left| \hat{\mathbf{h}}_{2} \right| \mathbf{v}_{t} = \mathbf{1}, \ell_{t} = 1; \mathbf{v}_{t'} = \mathbf{1}, \ell_{t'} = 1; \ell = 2 \right\rangle$$

= $\mathbf{W}_{22}^{(11)} = \rho_{tt'} [\mathbf{J}(\mathbf{J}+1)] [\mathbf{J}(\mathbf{J}+1) - 2]$ (2.28)

Das Matrixelement, das die Aufspaltung der beiden Σ -Zustände bedingt, wird beschrieben durch:

$$\langle \mathbf{v}_{t} = 1, \ell_{t} = -1; \mathbf{v}_{t'} = 1, \ell_{t'} = 1 | \hat{\mathbf{h}}_{2} | \mathbf{v}_{t} = 1, \ell_{t} = 1; \mathbf{v}_{t'} = 1, \ell_{t'} = -1 \rangle = \mathbf{W}_{00} = \mathbf{r}_{tt'}$$
 (2.29)

Aus den oben angegebenen Matrixelementen lassen sich Säkulardeterminanten bilden, die durch Linearkombination der ursprünglichen Wellenfunktionen faktorisiert werden können. Die Rotations-Schwingungszustände können bezüglich ihrers Verhaltens gegenüber der Symmetrieoperation σ_v klassifiziert werden.

Demnach kann jede Matrix in zwei Blöcke faktorisiert werden, wovon einer die symmetrischen Zustände Σ^+ , Π^e , Δ^e , Φ^e usw. und der andere die antisymmetrischen Zustände Σ^- , Π^f , Δ^f , Φ^f usw. enthält.

• für $v_t = 1$

Die Säkulardeterminante lautet:

$$\ell = +1 \qquad \ell = -1$$

$$\ell = +1 \qquad E_1 - \varepsilon \qquad W_{11}^{(1)}$$

$$\ell = -1 \qquad W_{11}^{(1)} \qquad E_1 - \varepsilon$$

$$(2.30)$$

und nach der Faktorisierung:

Nach Linearkombination der Wellenfunktionen resultiert für die Eigenwerte:

$$\varepsilon_{s} = E_{1} - \frac{1}{2}q_{t}J(J+1)$$
(2.32)

$$\varepsilon_{a} \quad E \quad \frac{1}{2} \quad {}_{t}J(J \quad 1) \tag{2.33}$$

• für $v_t = 2$

Die Säkulardeterminate lautet:

$$\ell = +2 \qquad \ell = 0 \qquad \ell = -2$$

$$\ell = +2 \qquad E_2 - \varepsilon \qquad W_{02} \qquad W_{22}^{(2)}$$

$$\ell = 0 \qquad W_{02} \qquad E_0 - \varepsilon \qquad W_{02}$$

$$\ell = -2 \qquad W_{22}^{(2)} \qquad W_{02} \qquad E_2 - \varepsilon$$
(2.34)

Für J \ge 2 gilt nach der Faktorisierung:

	Ψ_2^+	Ψ_0^+	Ψ_2^-		
Ψ_2^+	$\mathbf{E}_2 + \mathbf{W}_{22}^{(2)} + \varepsilon$	$\sqrt{2}W_{02}$	0		
Ψ_0^+	$\sqrt{2}W_{02}$	$E_0 - \varepsilon$	0	= 0	(2.35)
Ψ_2^-	0	0	$\mathbf{E}_2 - \mathbf{W}_{22}^{(2)} - \boldsymbol{\varepsilon}$		

Für die Eigenwerte resultiert:

$$\varepsilon_{a} = E_{2} - W_{22}^{(2)} \tag{2.36}$$

$$\varepsilon_{s}^{\pm} = \frac{E_{2} + W_{22}^{(2)} + E_{0}}{2} \pm \frac{1}{2} \sqrt{\left(E_{2} + W_{22}^{(2)} - E_{0}\right)^{2} + 8\left(W_{02}\right)^{2}}$$
(2.37)

• für $v_t = 1$; $v_{t'} = 1$

Die Säkulardeterminante lautet:

ℓ		2	0	0	-2		
	$\ell_t; \ell_{t'}$	1;1	1;-1	-1;1	-1;-1		
2	1;1	$E_2 - \varepsilon$	W ₁₁ (t')	W ₁₁ (t)	$W_{22}^{(11)}$		
0	1;-1	$W_{11}(t')$	$E_0 - \varepsilon$	$r_{tt'}$	W ₁₁ (t)		
0	- 1;1	W ₁₁ (t)	$r_{tt'}$	$E_0 - \varepsilon$	W ₁₁ (t')	= 0	(2.38)
-2	-1;-1	$W_{22}^{(11)}$	W ₁₁ (t)	W ₁₁ (t')	$E_2 - \varepsilon$		

Für $J \ge 2$ gilt nach der Faktorisierung:

	Ψ_2^+	Ψ_0^+	Ψ_0^-	Ψ_2^-	
Ψ_2^+	$E_2 + W_{22}^{(11)} - \varepsilon$	$W_{11}(t) + W_{11}(t')$	0	0	
Ψ_0^+	$W_{11}(t) + W_{11}(t')$	$\mathbf{E}_0 + \mathbf{r}_{tt'} - \boldsymbol{\varepsilon}$	0	0	
Ψ_0^-	0	0	$\mathbf{E}_0 - \mathbf{r}_{tt'} - \boldsymbol{\varepsilon}$	$W_{11}(t) - W_{11}(t')$	= 0
Ψ_2^-	0	0	$W_{11}(t) - W_{11}(t')$	$E_2 - W_{22}^{(11)} - \varepsilon$	
					(2.39)

Für die Eigenwerte resultiert:

$$\varepsilon_{s}^{\pm} = \frac{E_{2} + E_{0} + r_{tt'} + W_{22}^{(11)}}{2} \pm \frac{1}{2} \sqrt{\left(\Delta_{11} + W_{22}^{(11)} - r_{tt'}\right)^{2} + 4\left(W_{11}(t) + W_{11}(t')\right)^{2}}$$
(2.40)

$$\varepsilon_{a}^{\pm} = \frac{E_{2} + E_{0} - r_{tt'} - W_{22}^{(11)}}{2} \pm \frac{1}{2} \sqrt{\left(\Delta_{11} - W_{22}^{(11)} + r_{tt'}\right)^{2} + 4\left(W_{11}(t) - W_{11}(t')\right)^{2}}$$
(2.41)

$$\min \,\Delta_{11} = E_2 - E_0 \tag{2.42}$$

und
$$\mathbf{r}_{tt'} = \mathbf{r}_{tt'}^{(0)} + \mathbf{r}_{tt'}^{(1)} \mathbf{J} (\mathbf{J} + 1)$$
 (2.43)

2.3.3 Fermi-Resonanz

Die Fermi-Resonanz ist eine anharmonische Resonanz und wurde erstmals im Raman-Spektrum von Kohlendioxid beobachtet [18]. Diese Art von Resonanz tritt immer dann auf, wenn zwei Schwingungsniveaus gleicher Symmetrie und mit $\Delta \ell = 0$ ungefähr die gleiche Energie besitzen. Sehr häufig werden Fermi-Resonanzen zwischen Grundschwingungen und Kombinations- oder Obertönen beobachtet. Fermi-Resonanzen zwischen zwei Grundschwingungen treten relativ selten in Erscheinung, da diese in der Regel energetisch stärker separiert sind und somit nur schwach wechselwirken können. Die Behandlung von Fermi-Resonanzen erfolgt in der Art, daß die involvierten Schwingungsniveaus in einer Resonanz-Polyade gruppiert werden. Die gestörten Energieniveaus stellen die Eigenwerte der Matrizen dar. Die Matrix lautet für den einfachsten Fall der Resonanz zweier Niveaus, wie die in dieser Arbeit besprochene Resonanz zwischen (00100) und (00020)^{0e} bei Fluorchlorethin:

$$E_{gestört} = \begin{vmatrix} E(00100) & W_F \\ W_F & E(00020)^{0e} \end{vmatrix}$$
(2.44)

Die Terme E(00100) und E(00020)^{0e} stellen hierbei die ungestörten Energieniveaus dar, während W_F als Fermi-Resonanzkonstante bezeichnet wird. W_F hängt von der kubischen Kraftkonstanten ab, wobei der Zusammenhang in diesem Fall durch -k₃₄₄(2)^{-1/2} = W_F ausgedrückt wird.

Das Auftreten einer Fermi-Resonanz wird durch verschiedene Merkmale angezeigt. Die miteinander in Resonanz stehenden Niveaus stoßen sich gegenseitig ab, wodurch sich die ungestörten Bandenlagen (oftmals nur aus ab initio-Rechnungen bekannt) verändern. Stehen eine Grundschwingung und ein Kombinations- oder Oberton in Resonanz, so verteilt sich die Intensität der intensitätsstärkeren Bande auf beide Banden. Die Fermi-Resonanz ist eine globale Störung und führt auch zur Änderung der Rotationskonstanten (B_v und D_v) der jeweils betroffenen Schwingungsniveaus. Die Größe dieses Effektes kann allerdings nur dann richtig eingeschätzt werden, wenn die ungefähre Größe von B_v und D_v der ungestörten Niveaus bekannt sind oder extrapoliert werden können. Hier sind vor allem die Vorhersagen der ab initio-Rechnung für die α_B -Werte von großem Nutzen.

2.3.4 Intensitäten und Auswahlregeln

Die Intensität eines Übergangs zwischen zwei Rotations-Schwingungsniveaus ist proportional dem Quadrat des Übergangsmomentes [19]. Ist das Übergangsmoment R_i von Null verschieden, kann ein Übergang beobachtet werden.

$$R_{i} = \int_{\tau} \psi''_{\text{rotvib}} \mu_{i} \psi'_{\text{rotvib}} d\tau \neq 0$$

$$\mu_{i} = \text{elektrisches Dipolmoment}$$

$$i = \text{Satz raumfester Koordinatenachsen}$$

$$d\tau = \text{Volumenelement}$$
(2.45)

Durch Separation der Gesamtwellenfunktion in einen Schwingungs- und einen Rotationsanteil können die Auswahlregeln für Schwingungen und Rotation getrennt ermittelt werden.

$$\langle \mathbf{v}^{"}, \mathbf{r}^{"} | \boldsymbol{\mu}_{z} | \mathbf{v}^{'}, \mathbf{r}^{'} \rangle = \langle \mathbf{v}^{"} | \boldsymbol{\mu}_{\alpha} | \mathbf{v}^{'} \rangle \langle \mathbf{r}^{"} | \cos(\mathbf{i}, \alpha) | \mathbf{r}^{'} \rangle$$
 (2.46)

 α = Satz molekülfester Koordinatenachsen

Für den Schwingungsanteil ergibt sich hieraus, daß ein Schwingungsübergang nur dann erlaubt ist, wenn sich das Dipolmoment während der Schwingung verändert:

$$\frac{\partial \mu}{\partial \mathbf{r}} \neq \mathbf{0} \tag{2.47}$$

Es gelten die Auswahlregeln:

$$\Delta v = \pm 1 \tag{2.48}$$

$$\Delta \ell = 0, \pm 1 \tag{2.49}$$

Aufgrund der Anharmonizität gilt die Auswahlregel $\Delta v = \pm 1$ nicht streng, so daß auch Obertöne mit $\Delta v = \pm 2, \pm 3,...$ beobachtet werden können. Allerdings sind die Intensitäten dieser Schwingungsübergänge meist, aber nicht immer, weitaus schwächer als die der Grundschwingungen.

Für Moleküle der Punktgruppe $D_{\infty h}$ gilt weiterhin die strenge Auswahlregel, daß nur Übergänge von $g \rightarrow u$ erlaubt sind. Die Paritäten g und u geben das Verhalten der Schwingungswellenfunktion gegenüber der Symmetrieoperation Inversion an.

$$g \leftrightarrow u \qquad g \leftarrow g \quad u \leftarrow u$$
 (2.50)

Für Moleküle der Punktgruppe $C_{\infty v}$ gilt weiterhin:

$$\Sigma^+ \leftarrow \to \Sigma^- \tag{2.51}$$

$\Delta J = 0, \pm$	1		(2.52)
+ ←→ - +	+ ← /→ +	- ←/→ -	(2.53)

Weiterhin gilt:

e ←→ e	und	$f \leftarrow \rightarrow f$	für den P- und R-Zweig	(2.54)
--------	-----	------------------------------	------------------------	--------

$$e \leftrightarrow f$$
 für den Q-Zweig (2.55)

Für Moleküle der Punktgruppe $D_{\infty h}$ gilt noch:

Für den Rotationsanteil gelten die Auswahlregeln:

 $as \leftrightarrow as \qquad s \leftrightarrow s \qquad as \leftarrow / \rightarrow s \qquad (2.56)$

2.3.5 Kernspinstatistik

Besitzt ein Molekül mehrere identische, durch eine Symmetrieoperation vertauschbare Atomkerne, bestimmt, neben der J(J+1)-Entartung und der Boltzmann-Verteilung, die Kernspinstatistik die relative Besetzung der Rotationsniveaus. Ursache hierfür ist das Pauli-Prinzip, nach dem die Gesamtwellenfunktion bezüglich des Vertauschens der Kerne symmetrisch (Bose-Einstein-Statistik) bzw. antisymmetrisch (Fermi-Dirac-Statistik) sein muß. Die Anzahl der antisymmetrischen Kernspinfunktionen beträgt $g^a = I_k(2I_k+1)$, die der symmetrischen Kernspinfunktionen g^{s} (I_k+1)(2I_k+1). I_k ist hierbei der Kernspin der vertauschbaren Kerne. Für das in dieser Arbeit untersuchte Molekül FCCF ist die Fermi-Dirac-Statistik anzuwenden, da durch den Austausch der beiden Fluoratome (Fermionen, $I_F = \frac{1}{2}$) es zu einem Vorzeichenwechsel der Gesamtwellenfunktion kommt. Die resultierende Gesamtwellenfunktion ist gegenüber einem Austausch der identischen Kerne antisymmetrisch. Somit sind die antisymmetrischen Rotationswellenfunktionen mit den symmetrischen Kernspinfunktionen und die symmetrischen Rotationswellenfunktionen mit den antisymmetrischen Kernspinfaktoren verknüpft. Die von antisymmetrischen Rotationsniveaus ausgehenden Übergänge besitzen somit eine dreifach höhere Intensität. So besitzen beispielsweise für einen Schwingungsübergang $\Sigma_u^+ \leftarrow \Sigma_g^+$ die von ungeraden J-Werten ausgehenden Niveaus dreifache Intensität im Gegensatz zu den von geraden J-Werten ausgehenden Ubergängen.

2.3.6 Gestalt der Spektren

Nach Herzberg [15] werden drei verschieden Bandentypen bei linearen Molekülen unterschieden. $\Sigma \leftarrow \Sigma$ -Übergänge stellen Parallelbanden dar. Der Schwingungsdrehimpuls ℓ beträgt für beide Schwingungsniveaus Null. Es resultiert jeweils ein P- und R-Zweig, deren Frequenzen durch folgende Formel wiedergegeben werden können:

$$\nu = \nu_0 + (B'-B'')m + [(B'+B'') - (B''-D'')]m^2 - 2(D'+D'')m^3 - (D'-D'')m^4,$$
(2.57)

wobei m = J+1 für den R-Zweig und m = -J für den P-Zweig zu setzen ist.

 $\Sigma \leftarrow \Pi$ -, $\Delta \leftarrow \Pi$ -,...-Übergänge stellen Senkrechtbanden dar. Aufgrund der Auswahlregeln $\Delta \ell = \pm 1$ und $\Delta J = 0$, ± 1 treten Banden mit P,R-Zweig sowie einem starken Q-Zweig auf.

Die Frequenz des Q-Zweiges ist gegeben durch:

$$v_0 = v_0 + (B'-B'')J + (B'-B'')J^2$$
 (2.58)

Übergänge des Typs $\Pi \leftarrow \Pi$, $\Delta \leftarrow \Delta$, ... stellen Parallelbanden mit P,R-Struktur und einem sehr schwachen Q-Zweig dar. Durch die ℓ -Typ-Verdopplung findet man für jeden J-Wert zum Dublett aufgespaltene Linien.

2.4 Symmetrische Kreisel

2.4.1 Rotations-Schwingungsenergie symmetrischer Kreiselmoleküle

Die Rotations-Schwingungsenergie eines symmetrischen Kreisels kann in nullter Näherung in Beiträge der Rotationsenergie und Vibrationsenergie zerlegt werden.

$$E_{ges} = E_{rot} + E_{vib}$$
(2.59)

Die reine Schwingungsenergie einer Normalschwingung wird in guter Näherung durch den Ansatz des anharmonischen Oszillators beschrieben. Bei der quantenmechanischen Betrachtung des Morse-Potentials ergibt sich die Schwingungsenergie zu [20]:

$$G(v,l) = \sum_{i} \omega_{i} \left(v_{i} + \frac{d_{i}}{2} \right) + \sum_{i} \sum_{k} x_{ik} \left(v_{i} + \frac{d_{i}}{2} \right) \left(v_{k} + \frac{d_{k}}{2} \right) + \sum_{i} \sum_{k} g_{ik} \ell_{i} \ell_{k}$$
(2.60)

Der letzte Term tritt nur bei entarteten Schwingungen auf. ℓ stellt die Quantenzahl für den Drehimpuls dar, der durch zwei phasenverschobene, senkrecht zueinander stehende Knickschwingungen induziert wird. Die Schwingungs-Drehimpulsquantenzahl nimmt die Werte $\ell_i = v_i, v_i - 2, ..., -v_i$ an.

Die Rotationsenergie eines Körpers, der frei um seine drei Achsen rotieren kann, wird aus der klassischen Mechanik durch den Ausdruck

$$E_{\rm rot} = \frac{1}{2} I_{\rm x} \,\omega_{\rm x}^2 + \frac{1}{2} I_{\rm y} \,\omega_{\rm y}^2 + \frac{1}{2} I_{\rm z} \,\omega_{\rm z}^2 \tag{2.61}$$

gegeben. Mit dem klassischen Drehimpuls $J = I\omega$ folgt

$$E_{\rm rot} = \frac{J_x^2}{I_x} + \frac{J_y^2}{I_y} + \frac{J_z^2}{I_z}.$$
 (2.62)

Im Falle des verlängerten symmetrischen Kreisels ($I_x = I_y = I_b < I_z = I_a$) ist die Rotationsenergie unter Verwendung der Beziehung $J^2 = J^2_x + J^2_y + J^2_z$ durch folgenden Ausdruck gegeben

$$E = \frac{1}{2I_{b}}J^{2} + \left(\frac{1}{2I_{a}} - \frac{1}{2I_{b}}\right)J_{z}^{2}$$
(2.63)

J_z stellt die Projektion des Gesamtdrehimpulses J auf die Symmetrieachse dar.

Die quantenmechanische Energieformel der Rotation erhält man durch die Einführung der Quantelung der Drehimpulse $J^2 = J(J+1)\hbar^2$ und $J^2_z = k^2\hbar^2$. Hierbei ist |k| = K und $k^2 = K^2$, wobei K die Werte von

$$K = 0, \pm 1, \pm 2, \pm 3, \pm 4, ..., \pm J$$
(2.64)

annehmen kann. In erster Näherung ergibt sich die Rotationsenergie zu

$$\frac{E_{rot}}{hc} = BJ(J+1) + (A-B)K^2,$$
(2.65)

wobei

$$A = \frac{h}{8\pi^{2}I_{a}c} \text{ und } B = \frac{h}{8\pi^{2}I_{b}c}$$
(2.66)

die Rotationskonstanten darstellen. Werden noch Zentrifugaldehnungsterme berücksichtigt, läßt sich die Rotationsenergie eines verlängerten symmetrischen Kreisels in guter Näherung durch

$$F(J,K) = BJ(J+1) + (A-B)K^{2} - D_{J}J^{2}(J+1)^{2} - D_{JK}J(J+1)K^{2} - D_{K}K^{4} + H_{J}J^{3}(J+1)^{3} + H_{JK}J^{2}(J+1)^{2}K^{2} + H_{KJ}J(J+1)K^{4} + H_{K}K^{6}$$
(2.67)

wiedergeben.

Für jeden K-Wert erhält man eine Serie von Rotationsniveaus mit steigendem J-Wert, wobei die Werte K > J fehlen. Da im Falle des verlängerten symmetrischen Kreisels $I_a < I_b$ ist, wird die Differenz A - B immer positiv, wodurch die Energie mit wachsendem K stetig ansteigt.

Unter Berücksichtigung der Schwingungsabhängigkeit der Rotationskonstanten folgt nun für die Rotations-Schwingungsenergie

$$F(v,J,K) = v_v^0 + B_v J(J+1) + (A_v - B_v) K^2 - D_J J^2 (J+1)^2 - D_{JK} J(J+1) K^2 - D_K K^4 + H_J J^3 (J+1)^3 + H_{JK} J^2 (J+1)^2 K^2 + H_{KJ} J(J+1) K^4 + H_K K^6$$
(2.68)

Führt ein symmetrisches Kreiselmolekül eine entartete Schwingung aus, so tritt mit wachsender Rotation um die Symmetrieachse eine Aufspaltung als Folge der Corioliskräfte auf. Die Kopplung zwischen Rotation und Schwingung wird durch den Ausdruck

$$-2Ak\zeta_{t}^{z}\ell$$
(2.69)

wiedergeben und als Corioliskorrektur erster Ordnung bezeichnet. ζ_t ist die Kopplungskonstante der Corioliswechselwirkung und kann Werte von $-1 \leq \zeta_t \leq 1$ annehmen. ζ_t ist für jede entartete Schwingung des jeweilig betrachteten Moleküls verschieden. Der Zusammenhang zwischen der Summe aller ζ_t und den Hauptträgheitsmomenten wird durch die Zeta-Summenregel [21] wiedergegeben:

$$\sum_{t} \xi_{t} = \frac{B}{2A} + \text{Anzahl der Atome auf der Figurenachse.}$$
(2.70)

Die Berechnung der Rotations-Schwingungsenergien entarteter Schwingungen kann nun - unter Berücksichtigung weiterer Korrekturterme für die Corioliswechselwirkung - durch

$$F(v, J, K, \ell) = v_{t}^{0} + B_{t}J(J+1) + (A_{t} - B_{t})K^{2} - D_{J}^{t}J^{2}(J+1)^{2} - D_{JK}^{t}J(J+1)K^{2} - D_{K}^{t}K^{4} + H_{J}^{t}J^{3}(J+1)^{3} + H_{JK}^{t}J^{2}(J+1)^{2}K^{2} + H_{KJ}^{t}J(J+1)K^{4} + H_{K}^{t}K^{6} - - [2A\zeta_{t}^{z} - \eta_{tJ}J(J+1) - \eta_{tK}k^{2} - \eta_{tJJ}J^{2}(J+1)^{2} - \eta_{tJK}J(J+1)k^{2} - \eta_{tKK}K^{4}]k\ell$$

$$(2.71)$$

erfolgen. Da die Quantenzahl ℓ beide Vorzeichen annehmen kann, sind alle Rotationsniveaus mit K $\neq 0$ in zwei Komponenten aufgespalten.

 A_v , B_v , D_v und $A\zeta_v^z$ stellen die Konstanten im jeweiligen Schwingungsniveau dar und sind mit den Konstanten im Gleichgewicht über die Beziehungen

$$A_{v} = A_{e} - \sum_{i} \alpha_{i}^{A} \left(v_{i} + \frac{d_{i}}{2} \right)$$
(2.72)

$$B_{v} = B_{e} - \sum_{i} \alpha_{i}^{B} \left(v_{i} + \frac{d_{i}}{2} \right)$$
(2.73)

$$D_{v} = D_{e} + \sum_{i} \beta_{i} \left(v_{i} + \frac{d_{i}}{2} \right)$$

$$A \xi_{v}^{z} = A \xi_{e}^{z} - \sum_{i} \alpha_{i}^{A\zeta} \left(v_{i} + \frac{d_{i}}{2} \right)$$
(2.74)
(2.75)

verknüpft [22].

2.4.2 Symmetrie der Rotationsniveaus und Spingewichte

Die relative Intensität der Übergänge ist durch die Symmetrie der Gesamtwellenfunktion gegeben.

$$\Psi_{\rm ges} = \Psi_{\rm rot} \Psi_{\rm vib} \Psi_{\rm spin} \tag{2.76}$$

Die Symmetrien der Rotations- und Schwingungswellenfunktionen lassen sich durch die Hougen-Quantenzahl g [23] bestimmen.

$$g = \pm \sum_{t} \ell_t - k \tag{2.77}$$

Für die Punktgruppe C_{3v} resultiert [24]:

$$g = 3n \qquad \Gamma_{rotvib} = A_1 + A_2 \qquad (k \neq 0)$$

$$\Gamma_{rotvib} = A_1 \text{ oder } A_2 \qquad (k = 0) \qquad (2.78)$$

$$g \neq 3n \qquad \Gamma_{rotvib} = E$$

Das in dieser Arbeit untersuchte symmetrische Kreiselmolekül CH₃CCNC besitzt vertauschbare Wasserstoff-Kerne mit dem Kernspin $I_H = \frac{1}{2}$, die bei Permutation zu einem Vorzeichenwechsel der Gesamtwellenfunktion führen (Fermion). Der Charakter der Kernspinwellenfunktion ergibt sich zu

$$\Gamma_{\rm spin} = 4A_1 + 4A_2 + 2E. \tag{2.79}$$

Für den Charakter der Gesamtwellenfunktion sowie das relative Spingewicht eines Rotationsübergangs erhält man:

$$g = 3n \qquad \Gamma_{ges} = 2A_1 + 2A_2 + 2E \qquad (k \neq 0)$$

$$\Gamma_{ges} = 4A_1 + 4A_2 + 8E \qquad (k = 0) \qquad (2.80)$$

$$g \neq 3n \qquad \Gamma_{ges} = 2A_1 + 2A_2 + 6E$$

Alle Rotationslinien, die von g = 3n ausgehen, besitzen demnach doppelte Intensität im Vergleich zu Linien, die von $g \neq 3n$ ausgehen.

2.4.3 Auswahlregeln und Intensitäten

Ein Übergang zwischen zwei Niveaus v"r" und v'r' ist, wie im Falle der linearen Moleküle, dann erlaubt, wenn für das Übergangsmoment die Beziehung

$$\left\langle \psi_{\text{rotvib}}^{*} \middle| \mu_{A} \middle| \psi_{\text{rotvib}}^{*} \right\rangle \neq 0$$
mit $\mu_{A} = \sum_{a} \cos(A, a) \mu_{A}$
(2.81)

erfüllt ist.

Die Gesamtwellenfunktion läßt sich auch als Produkt des Rotations- und Schwingungsanteils beschreiben. Aus diesem Grund können diese separiert werden. Somit können die Auswahlregeln für die Rotations- und Schwingungsübergänge getrennt voneinander ermittelt werden.

$$\left\langle \psi_{\text{rot}}^{"} | \cos(\mathbf{A}, \mathbf{a}) | \psi_{\text{rot}}^{'} \right\rangle \left\langle \psi_{\text{vib}}^{"} | \cos(\mathbf{A}, \mathbf{a}) | \psi_{\text{vib}}^{'} \right\rangle \neq 0$$
 (2.82)

Für den Vibrationsanteil gilt

$$\frac{\mathrm{d}\mu}{\mathrm{d}r} \neq 0. \tag{2.83}$$

Im Infrarotbereich können also nur Schwingungsübergänge beobachtet werden, die mit einer Dipolmomentsänderung verknüpft sind. Aufgrund der Anharmonizität gilt die Auswahlregel $\Delta v = \pm 1$ nicht mehr streng, sondern es sind neben den Grundschwingungen auch Kombinations- und Obertöne erlaubt.

$$\Delta v = \pm 1, \pm 2, \pm 3, \dots \tag{2.84}$$

Bei symmetrischen Kreiseln führt

$$\left\langle \psi_{\text{vib}}^{'} | \mu_z | \psi_{\text{vib}}^{'} \right\rangle \neq 0$$
 (2.85)

zu Parallelbanden, d. h. das Dipolmoment ändert sich parallel zur Figurenachse, während

$$\left\langle \psi_{\text{vib}}^{'} \middle| \mu_{x,y} \middle| \psi_{\text{vib}}^{'} \right\rangle \neq 0$$
 (2.86)

zu Senkrechtbanden führt, d. h. das Dipolmoment ändert sich senkrecht zur Figurenachse.

Für die Rotationsübergänge gelten die Auswahlregeln:

Parallelbanden
$$\Delta K = 0$$
 $\Delta J = 0, \pm 1$ für $K \neq 0$
 $\Delta J = \pm 1$ für $K = 0$ (2.87)

Senkrechtbanden

$$\Delta \mathbf{K} = \pm 1 \qquad \Delta \mathbf{J} = \mathbf{0}, \pm 1$$

$$\Delta \ell = \pm 1, \mp 2 \qquad (2.88)$$

Für einen Rotations-Schwingungsübergang eines C_{3v} Moleküls gilt weiterhin noch die Amat-Regel [25]:

$$\Delta g = \Delta K - \Delta \ell \qquad \Delta g = 3n \qquad (2.89)$$

mit n = 0, 1, 2, 3, ...

Es sind nur Übergänge zwischen den Niveaus

$$A_1 \leftrightarrow A_2$$
 und $E \leftarrow \rightarrow E$ (2.90)

erlaubt. Rotations-Schwingungsübergänge werden konventionsgemäß durch

$$\Delta K_{\Delta J K''}(J'') \tag{2.91}$$

ausgedrückt.

Die Intensitäten werden durch die Hönl-London-Gleichung beschrieben [26].

$$I \propto A_{KJ} \nu g_{s} e^{\left(-F(JK)\frac{hc}{kT}\right)}$$

$$A_{KJ} = \text{Quadrate der Matrixelemente } \left\langle \psi_{\text{rot}}^{'} |\cos(i,\alpha)|\psi_{\text{rot}}^{'} \right\rangle$$

$$gs = \text{Spingewicht}$$

$$kT = 207 \text{ cm}^{-1}$$

$$(2.92)$$

2.4.4 Gestalt der Banden

2.4.4.1 Parallelbanden

Bei Anregung symmetrischer Schwingungen treten Parallelbanden auf, da sich das Dipolmoment in Richtung der Figurenachse ändert. Die in Kap. 2.4.3 beschriebenen Auswahlregeln führen zu den in Abb. 2-2 dargestellten Übergängen.

Die Linienlagen werden nach Gl. (2.67) und Gl. (2.68) durch einen K- und J abhängigen Teil beschrieben. Für die Frequenzen der jeweilig betrachteten Subbanden gilt:

$$\nu = \nu_{0} + [(A'-A'') - (B'-B'')]K^{2} - (D'_{K} - D'_{K})K^{4} + (B'-D'_{JK}K^{2})J'(J'+1) - D'_{J}J'^{2}(J'+1)^{2} - (B''-D'_{JK}K^{2})J''(J''+1) + D'_{J}J''^{2}(J''+1)^{2}.$$
(2.93)

Abb. 2-2: Übergänge in einer Parallelbande

Aus dieser Gleichung folgt, daß eine Parallelbande durch die Überlagerung von Subbanden mit unterschiedlichen K-Werten aufgebaut wird (Abb. 2-3). Die einzelnen Subbanden besitzen einen P-, Q- und R-Zweig mit Ausnahme für K=0. Da Übergänge $A_1 \leftarrow \to A_1$ bzw. $A_2 \leftarrow \to A_2$ verboten sind, fehlt in dieser Subbande der Q_0 -Zweig. Das Aussehen der Bande wird in erster Linie durch die Größe des Terms (A' - A'') - (B' - B'') bestimmt. Ist dieser Term klein gegenüber den J-abhängigen Termen, resultieren im P- und R-Zweig J-Cluster, und die Q-Zweige liegen in der Nähe des Bandenzentrums sehr eng beieinander. Die Linienintensitäten werden durch die Hönl-London-Gleichung berechnet, Gl. (2.92). Für das Übergangsdipolmoment gilt:

$$\Delta J = +1 \qquad A_{KJ} = \frac{(J+1)^2 - K^2}{J+1}$$

$$\Delta J = 0 \qquad A_{KJ} = \frac{(2J+1)^2 K^2}{J(J+1)}$$

$$\Delta J = -1 \qquad A_{KJ} = \frac{J^2 - K^2}{J}$$
(2.94)

Da nur für $K \neq 0$ eine 2(J+1)-fache Entartung der Rotationsniveaus vorliegt, müssen für K=0 diese Werte durch 2 dividiert werden.

Abb. 2-3: Zusammensetzung einer Parallelbande nach Lit. [15].

2.4.4.2 Senkrechtbanden

Aufgrund der Auswahlregeln sind für jeden Wert von K die Übergänge $\Delta K = \pm 1$ erlaubt. Weiterhin gilt für jede Kombination von K und ΔK die Auswahlregel $\Delta J = 0, \pm 1$ (Abb. 2-4). Somit wird eine Senkrechtbande aus der Überlagerung von jeweils zwei Subbanden eines K-Wertes mit PQR-Struktur aufgebaut. Die Frequenzen der Linien ergeben sich in dem Fall, daß der untere Schwingungszustand nicht entartet ist ($\ell = 0$), nach Gl. (2.67) und Gl. (2.71) zu:

$$\nu = \nu_{sub} + (B'-D'_{JK} K'^{2})J'(J'+1) - D'_{J} J'^{2} (J'+1)^{2} - (B''-D''_{JK} K''^{2})J''(J''+1) + D''_{J} J''^{2} (J''+1)^{2}$$
(2.95)

mit

$$\nu_{sub} = \nu_0 + A'(1 - 2\zeta') - B' - D'_K + 2(A'(1 - \zeta') - B' - D'_K)K'' + (A' - A'' - B' + B'' - 6D'_K)K''^2 - 4D'_K K''^3 + (D'_K - D'_K)K''^4$$
(2.96)

Abb. 2-4: Übergänge in einer Senkrechtbande. Für K = 3 sind nur die von A_2 ausgehenden Übergänge eingezeichnet.

Abb. 2-5 stellt den Aufbau einer Senkrechtbande dar. Demnach treten hier als charakteristisches Merkmal Q-Zweige im Abstand von $2(A(1 - \zeta_{eff}) - B)$ auf. Analog zu Parallelbanden fehlen in den einzelnen Subbanden alle Linien mit J<K.

Abb. 2-5: Zusammensetzung einer Senkrechtbande nach Lit. [15].

Die Intensitäten werden nach Gl. (2.92) berechnet, wobei für die Übergangsmomente gilt:

$$\Delta J = +1 \qquad A_{KJ} = \frac{(J + 2 + K\Delta K)(J + 1 + K\Delta K)}{J + 1}$$

$$\Delta J = 0 \qquad A_{KJ} = \frac{(J + 1 + K\Delta K)(J - K\Delta K)(2J + 1)}{J(J + 1)} \qquad (2.97)$$

$$\Delta J = -1 \qquad A_{KJ} = \frac{(J - 1 + K\Delta K)(J - K\Delta K)}{J}.$$

J

2.4.5 Grundzustandskombinationsdifferenzen

Die Zuordnung bzw. die Identifizierung von Rotations-Schwingungsübergängen wird durch das Prinzip der Kombinationsdifferenzen ermöglicht. Führen zwei Übergänge eines unteren Schwingungsniveaus in das gleiche Niveau des oberen Zustands, so sind die Frequenzen nur von den Konstanten des unteren Zustands abhängig. Diese sind oftmals aus der Analyse von Mikro- bzw. Millimeterwellenspektren mit sehr großer Genauigkeit bekannt. Je nachdem, ob es sich bei dem betrachteten unteren Schwingungsniveau um den Grundzustand oder um einen energetisch tiefliegenden angeregten Schwingungszustand handelt, spricht man von gscd's (ground state combination differences) oder lscd's (lower state combination differences).

Abb. 2-6: Prinzip der Kombinationsdifferenzen

Die Bildung von gscd's bzw. lscd's erlaubt somit auch eine Ableitung der Parameter des jeweilig untersuchten unteren Schwingungsniveaus (B_0 , D_{J0} , D_{JK0} , B_v , D_{Jv} , D_{JKv}) bei symmetrischen Kreiseln und bei linearen Molekülen (B_0 , D_{J0} , B_v , D_{Jv} , q_v).

2.5 Asymmetrische Kreisel

2.5.1 Der Hamiltonoperator des starren Rotators

Der Hamiltonoperator der Rotation eines starren Rotators lautet:

$$\hat{H}_{rot} = B_x J_x^2 + B_y J_y^2 + B_z J_z^2.$$
(2.98)

 B_x , B_y , B_z sind die Rotationskonstanten in Richtung der molekülfesten Achsen x, y, z, während J_x , J_y , J_z die Drehimpulskomponenten entlang der Achsen x, y, z darstellen.

Anders als im Falle der symmetrischen Kreisel als auch linearer Moleküle, läßt sich für das asymmetrische Kreiselmolekül keine geschlossene Energieformel für die Berechnung der Rotationsniveaus angeben. Der Grund hierfür ist, daß der Hamiltonoperator nicht mit dem Drehimpulsoperator in Richtung der molekülfesten z-Achse (J_z) kommutiert, d.h. k stellt - anders als im Falle des symmetrischen Kreisels - keine gute Quantenzahl mehr dar. Konsequenz hieraus ist, daß Matrixelemente auftreten, die in Bezug auf k nicht diagonal sind.

Gl. (2.98) kann zu

$$\hat{H}_{rot} = \frac{1}{2} (B_x + B_y) J^2 + \left[B_z - \frac{1}{2} (B_x + B_y) \right] J_z^2 + \frac{1}{4} (B_x - B_y) \left[(J_x + iJ_y)^2 + (J_x + iJ_y)^2 \right]$$
(2.99)

umgeschrieben werden.

Die nicht verschwindenden Matrixelemente für den starren Rotator lauten:

$$\langle \mathbf{J}, \mathbf{k}, \mathbf{m} | \hat{\mathbf{H}}_{\text{rot}} | \mathbf{J}, \mathbf{k}, \mathbf{m} \rangle = \frac{1}{2} (\mathbf{B}_{x} + \mathbf{B}_{y}) \mathbf{J} (\mathbf{J} + 1) + \left[\mathbf{B}_{z} - \frac{1}{2} (\mathbf{B}_{x} + \mathbf{B}_{y}) \right] \mathbf{k}^{2}$$
 (2.100)

und

$$\langle \mathbf{J}, \mathbf{k}, \mathbf{m} | \hat{\mathbf{H}}_{\text{rot}} | \mathbf{J}, \mathbf{k} \pm 2, \mathbf{m} \rangle = \frac{1}{4} (\mathbf{B}_{x} - \mathbf{B}_{y}) \sqrt{\mathbf{J}(\mathbf{J}+1) - \mathbf{k}(\mathbf{k} \pm 1)} \sqrt{\mathbf{J}(\mathbf{J}+1) - (\mathbf{k} \pm 1)(\mathbf{k} \pm 2)}$$

(2.101)

mit

k = Quantenzahl des Drehimpulses in Richtung der molekülfesten z-Achse m = Quantenzahl des Drehimpulses in Richtung der raumfesten z-Achse

Zur Berechnung der Energien der Rotationsniveaus wird die Hamiltonmatrix anhand von Symmetrieüberlegungen diagonalisiert, was durch die Einführung eines neuen Satzes von Basisfunktionen mit Hilfe der Wang-Transformation geschieht. Hierbei werden die Basiswellenfunktionen linear kombiniert.

$$\left|\mathbf{J},0^{+}\right\rangle = \left|\mathbf{J},0\right\rangle \tag{2.102}$$

$$|\mathbf{J},\mathbf{k}^{+},\mathbf{m}\rangle = \frac{1}{\sqrt{2}} \{|\mathbf{J},\mathbf{k},\mathbf{m}\rangle + |\mathbf{J},-\mathbf{k},\mathbf{m}\rangle\}, (\mathbf{k} > 0)$$
 (2.103)

$$\left|\mathbf{J},\mathbf{k}^{-},\mathbf{m}\right\rangle = \frac{1}{\sqrt{2}}\left\{\left|\mathbf{J},\mathbf{k},\mathbf{m}\right\rangle + \left|\mathbf{J},-\mathbf{k},\mathbf{m}\right\rangle\right\}, (\mathbf{k}>0)$$
(2.104)

Der Hamiltonoperator der Rotation wird immer durch die D₂-Punktgruppe charakterisiert. Er ist somit invariant gegenüber den Drehungen um die zweizähligen Achsen C_2^x , C_2^y , C_2^z . Für die Eigenfunktionen gilt:

$$C_{2}^{x} |J,k^{\pm},m\rangle = \pm (-1)^{J} |J,k^{\pm},m\rangle$$
(2.105)

$$C_2^{y} |J,k^{\pm},m\rangle = \pm (-1)^{J+k} |J,k^{\pm},m\rangle$$
(2.106)

$$C_2^{z} |\mathbf{J}, \mathbf{k}^{\pm}, \mathbf{m}\rangle = \pm (-1)^{J} |\mathbf{J}, \mathbf{k}^{\pm}, \mathbf{m}\rangle$$
(2.107)

Wendet man diese Operatoren auf die Matrixelemente des Hamiltonoperators an, stellt man fest, daß solche, die Funktionen mit k^+ und k^- oder mit geradem und ungeradem k verbinden, gleich Null werden. Die Hamiltonmatrix kann für jeden J-Wert in vier unabhängige, tridiagonale Submatrizen - E⁺, E⁻, O⁺ und O⁻ - zerlegt werden. E und O steht für gerade (even) und ungerade (odd) k-Werte, + und steht für k⁺ und k⁻. Aus den Gleichungen (2.105) - (2.107) und der Punktgruppe D₂ ermittelt man die irreduziblen Darstellungen der Submatrizen. Für gerade J-Werte gilt:

	D_2	Е	C_2^x	C_2^{y}	C_2^{z}	
•	E^+	1	1	1	1	А
	\mathbf{E}^{-}	1	-1	-1	1	$\mathbf{B}_{\mathbf{z}}$
	\mathbf{O}^+	1	1	-1	-1	$\mathbf{B}_{\mathbf{x}}$
	O	1	-1	1	-1	$\mathbf{B}_{\mathbf{y}}$
Für ungerade J-Werte gilt: $\Gamma(E^+) = B_z$ $\Gamma(O^+) = B_v$						

Tabelle 2-2: Irreduzible Darstellung der Submatrizen

 Γ (E⁻) = A , Γ (O⁺) = B_x

2.5.2 Repräsentation asymmetrischer Kreiselmoleküle

Um die Eigenwerte der Hamiltonoperatoren berechnen zu können, müssen die Hauptträgheitsachsen a,b,c mit den molekülfesten Achsen identifiziert werden. Konventionsgemäß gilt hierbei: $I_a < I_b < I_c$

Bei einem asymmetrischen Kreiselmolekül bestehen insgesamt 3! Möglichkeiten der Orientierung, die nach King, Hainer und Cross wie folgt bezeichnet werden:

Tabelle 2-3: Identifizierung der Hauptträgheitachsen a, b, c mit den molekülfesten Achsen x, y, z nach Lit. [27]

	I ^r	Π^{r}	${\rm III}^{\rm r}$	\mathbf{I}^{l}	II^{l}	$\mathrm{III}^{\mathrm{l}}$
X	b	с	а	с	а	b
У	с	а	b	b	С	а
Z	а	b	с	а	b	c

r = rechtshändig

¹ = linkshändig

2.5.3 Symmetrieklassifizierung der Rotationsniveaus

Die Symmetrieeigenschaften der Rotationsniveaus resultieren aus der Untersuchung des Verhaltens der Rotationswellenfunktion gegenüber 180°-Drehung um die Achsen a, b und c. Diese stellen somit die Symmetrieoperationen C_2^{a} , C_2^{b} und C_2^{c} dar.

Nach Dennison [28] werden die verschiedenen Symmetrietypen mit ++, -+, +und -- (+- steht für symmetrisches/antisymmetrisches Verhalten bezogen auf C_2^{a} und C_2^{c}) bezeichnet. Nach King, Hainer und Cross [27] werden die Niveaus mit ee, eo, oe und oo bezeichnet (e/o steht für gerade/ungerade Quantenzahlen K_a und K_c).

K _a K _c	D_2	Е	$C_2^{\ a}$	$C_2^{\ b}$	$C_2^{\ c}$
ee	А	1	1	1	1
eo	B _a	1	1	-1	-1
00	B _b	1	-1	1	-1
oe	B _c	1	-1	-1	1

Tabelle 2-4: Darstellung der Rotationsniveaus in der Rotationsuntergruppe D₂

(2.108)

2.5.4 Bezeichnung der Rotationsniveaus

Die Energieniveaus asymmetrischer Kreisel werden bezeichnet mit:

$$J_{K_a,K_c}$$
 (2.109)

 K_a entspricht der Quantenzahl K eines verlängerten symmetrischen Kreisels, K_c der eines abgeplatteten symmetrischen Kreisels. Es gilt:

$$K_a, K_c \le J \text{ und} \tag{2.110}$$

$$K_a + K_c = J \text{ oder } K_a + K_c = J + 1$$
 (2.111)

Jedes Niveau mit $K \neq 0$ spaltet auf. Die Energie steigt mit größer werdendem K_a und fällt mit größer werdendem K_c . Die Asymmetrieaufspaltung ist für kleine K-Werte am größten und steigt mit zunehmenden J-Werten.

2.5.5 Kernspinstatistik

Die relative Besetzung der Rotationsniveaus wird wie im Falle der linearen und symmetrischen Kreiselmoleküle durch das Verhalten der Gesamt-Wellenfunktion bezüglich der Vertauschung identischer Kerne bestimmt. Für die in dieser Arbeit untersuchten Moleküle H₂Si=CH₂, D₂Si=CH₂ und H₂Si=CD₂ besteht die Besonderheit, daß zwei Paare zweier vertauschbarer Wasserstoff- (I_H = ¹/₂) bzw. Deuteriumkerne (I_D = 1) vorliegen. Die Anzahl symmetrischer Kernspinfunktionen wird durch

$$g^{s} = (2I_{1} + 1)(2I_{2} + 1)(2I_{1}I_{2} + I_{1} + I_{2} + 1)$$
(2.112)

berechnet. Hieraus ergibt sich mit $I_1 = I_2 = \frac{1}{2}$ (H₂Si=CH₂) und $I_1 = \frac{1}{2}$ und $I_2 = 1$ (D₂Si=CH₂ und H₂Si=CD₂):

$$g^{s} = 10$$
 bzw. $g^{s} = 21$.

Die Anzahl antisymmetrischer Kernspinfunktionen wird durch nachfolgende Formel berechnet:

$$g^{a} = (2I_{1} + 1)(2I_{2} + 1)(2I_{1}I_{2} + I_{1} + I_{2}).$$
(2.113)

Hieraus ergibt sich mit $I_1 = I_2 = \frac{1}{2}$ (H₂Si=CH₂) und $I_1 = \frac{1}{2}$ und $I_2 = 1$ (D₂Si=CH₂ u. H₂Si=CD₂):

$$g^a = 6$$
 bzw. $g^a = 15$.

Für $H_2Si=CH_2$ ist die Bose-Einstein-Statistik anzuwenden, da der Austausch der beiden Paare von Wasserstoffatomen (Fermionen) das Vorzeichen der Gesamtwellenfunktion nicht ändert. Die resultierende Gesamtwellenfunktion ist gegenüber einem Austausch der identischen Kerne symmetrisch. Somit sind die symmetrischen Rotationswellenfunktionen mit den symmetrischen Kernspinfunktionen und die antisymmetrischen Rotationswellenfunktionen mit den antisymmetrischen Kernspinfaktoren verknüpft. Entgegengesetzte Verhältnisse liegen bei $D_2Si=CH_2$ und $H_2Si=CD_2$ vor. Der Austausch der Paare von Wasserstoffatomen und Deuteriumatomen (Bosonen) ändert das Vorzeichen der Gesamtwellenfunktion und es ist die Fermi-Dirac-Statistik anzuwenden. Die antisymmetrischen Rotationswellenfunktionen sind mit den symmetrischen Wellenfunktionen und die symmetrischen Rotationswellenfunktionen mit den antisymmetrischen Rotationswellenfunktionen sind mit den symmetrischen Wellenfunktionen und die symmetrischen Rotationswellenfunktionen mit den antisymmetrischen Wellenfunktionen verknüpft.

Die Permutation der beiden Paare identischer Kerne um die C_2^{a} -Achse unter Verwendung der Punktgruppe D₂ der Rotation führt zu folgenden Kernspinfaktoren:

		H ₂ Si=CH ₂		D ₂ Si=CH ₂ u. H ₂ Si=CD ₂	
	Γ in D_2	Bezeichnung	Kernspin- faktor	Bezeichnung	Kernspin- faktor
Ψ _{rot} sym.	А	ee	10	ee	15
bezüglich C_2^{a}	Bz	eo	10	eo	15
Ψ_{rot} antisym.	B_x	00	6	00	21
bezüglich C ₂ ^a	\mathbf{B}_{y}	oe	6	oe	21

Tabelle 2-5: Kernspinfaktoren der Rotationsniveaus von H₂Si=CH₂, D₂Si=CH₂ und H₂Si=CD₂

2.5.6 Rotationsenergien unter Berücksichtigung von Zentrifugaldehnungskonstanten

Der in Kap. 2.5.1 beschriebene Hamiltonoperator der Rotation ging davon aus, daß Zentrifugaldehnungs-Effekte nicht berücksichtigt werden. Diese treten mit wachsender Rotation des Moleküls auf, da die Zentrifugaldehnungskräfte zunehmen und somit das Molekül aufgrund der Bindungslängenänderung nicht mehr in seiner Gleichgewichtskonfiguration vorliegt. Der Effekt ist insbesondere bei leichten Molekülen und in hohen J-Zuständen von großer Bedeutung. Der Hamiltonoperator eines nichtstarren asymmetrischen Kreiselmoleküls muß sich demnach aus der Rotationsenergie des starren Rotators sowie aus einem Beitrag der Zentrifugaldehnung zusammensetzen.

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_{\rm rot} + \hat{\mathbf{H}}_{\rm d} \tag{2.114}$$

mit

$$\hat{H}_{rot} = A\hat{J}_{a}^{2} + B\hat{J}_{b}^{2} + C\hat{J}_{c}^{2}$$
(2.115)

und

$$\hat{\mathbf{H}}_{d} = \frac{\hbar^{4}}{4} \sum_{\alpha,\beta,\gamma,\delta} \tau_{\alpha\beta\gamma\delta} \hat{\mathbf{J}}_{\alpha} \hat{\mathbf{J}}_{\beta} \hat{\mathbf{J}}_{\gamma} \hat{\mathbf{J}}_{\delta}.$$
(2.116)

Der erste Term stellt den Hamiltonoperator des starren Rotators dar, während der letzte Term die Beiträge der Zentrifugalkräfte enthält. $\tau_{\alpha\beta\gamma\delta}$ sind die Zentrifugaldehnungskonstanten für ein bestimmtes Schwingungsniveau, die von der Geometrie, den Atommassen und von den Kraftkonstanten des Moleküls abhängen. Diese müssen genau wie die Rotationskonstanten als effektive Werte aufgefaßt werden, da sie vom betrachteten Schwingungsniveau nicht unabhängig sind. Die Dehnungskonstanten sind voneinander abhängig. Da aus Rotationsübergängen nur voneinander unabhängige Kombinationen von Zentrifugaldehnungskonstanten bestimmbar sind, wurde von Watson [29] eine Reduktion der Parameter durchgeführt. Das erfolgt über die Reduktion des Hamiltonoperators mit Hilfe von Kontakttransformationen.

$$\hat{H}_{rot} = U^{-1}\hat{H}U$$
(2.117)

mit

 $U = e^{iS}$ und S = Transformationsparameter

Durch Wahl des Transformationsparameters kann aus dem Hamiltonoperator ein reduzierter Hamiltonoperator gebildet werden. Dies geschieht für asymmetrische Moleküle durch zwei verschiedene Methoden, die A-Reduktion und die S-Reduktion. Welche Methode verwendet wird, hängt in erster Linie vom Grad der Asymmetrie ab. Die A-Reduktion wird bei stark asymmetrischen Molekülen angewendet. Bei zufällig symmetrischen Kreiseln ($\kappa \approx \pm 1$) versagt die A-Reduktion. In diesem Fall wird die S-Reduktion angewendet.

• A-Reduktion

Nach Reduktion hat der Hamiltonoperator der Rotation folgendes Aussehen:

$$\begin{split} \hat{H}_{rot}^{A} &= \sum_{\alpha} B_{\alpha}^{(A)} \hat{J}_{\alpha}^{2} - \Delta_{J} (\hat{J}^{2})^{2} - \Delta_{Jk} \hat{J}^{2} \hat{J}_{z}^{2} - \Delta_{k} \hat{J}_{z}^{4} - \frac{1}{2} \Big[\Big(\delta_{J} \hat{J}^{2} + \delta_{k} \hat{J}_{z}^{2} \Big), \Big(\hat{J}_{+}^{2} + \hat{J}_{-}^{2} \Big) \Big]_{+} + \\ &+ \Phi_{J} (\hat{J}^{2})^{3} + \Phi_{Jk} (\hat{J}^{2})^{2} \hat{J}_{z}^{2} + \Phi_{kJ} \hat{J}^{2} \hat{J}_{z}^{4} + \Phi_{k} \hat{J}_{z}^{6} + \\ &+ \frac{1}{2} \Big[\Big(\varphi_{J} (\hat{J}^{2})^{2} + \varphi_{Jk} \hat{J}^{2} \hat{J}_{z}^{2} + \varphi_{k} \hat{J}_{z}^{4} \Big), \Big(\hat{J}_{+}^{2} + \hat{J}_{-}^{2} \Big) \Big]_{+}. \end{split}$$

$$(2.118)$$

Die nicht verschwindenden Matrixelemente lauten:

$$\left\langle \mathbf{J}, \mathbf{k}, \left| \hat{\mathbf{H}}_{\text{rot}}^{\text{A}} \right| \mathbf{J}, \mathbf{k} \right\rangle = \frac{1}{2} \left[\mathbf{B}_{x}^{\text{A}} + \mathbf{B}_{y}^{\text{A}} \right] \mathbf{J} (\mathbf{J}+1) + \left[\mathbf{B}_{z}^{\text{A}} - \frac{1}{2} \left(\mathbf{B}_{x}^{\text{A}} + \mathbf{B}_{y}^{\text{A}} \right) \right] \mathbf{k}^{2} - \Delta_{J} \mathbf{J}^{2} (\mathbf{J}+1)^{2} - \Delta_{JK} \mathbf{J} (\mathbf{J}+1) \mathbf{k}^{2} - \Delta_{K} \mathbf{k}^{4} + \Phi_{J} \mathbf{J}^{3} (\mathbf{J}+1)^{3} + \Phi_{JK} \mathbf{J}^{2} (\mathbf{J}+1)^{2} \mathbf{k}^{2} + \Phi_{KJ} \mathbf{J} (\mathbf{J}+1) \mathbf{k}^{4} + \Phi_{K} \mathbf{k}^{6},$$
 (2.119)

$$\left\langle \mathbf{J}, \mathbf{k} \pm 2, \left| \hat{\mathbf{H}}_{\text{rot}}^{A} \right| \mathbf{J}, \mathbf{k} \right\rangle = \left\{ \frac{1}{4} \left[\mathbf{B}_{\mathbf{x}}^{A} - \mathbf{B}_{\mathbf{y}}^{A} \right] - \delta_{J} \mathbf{J} (\mathbf{J} + 1) - \frac{1}{2} \delta_{K} \left[(\mathbf{k} \pm 2) + \mathbf{k}^{2} \right] + \varphi_{J} \mathbf{J}^{2} (\mathbf{J} + 1)^{2} \right. \\ \left. + \frac{1}{2} \varphi_{JK} \mathbf{J} (\mathbf{J} + 1) \left[(\mathbf{k} \pm 2)^{2} + \mathbf{k}^{2} \right] + \frac{1}{2} \varphi_{K} \left[(\mathbf{k} \pm 2)^{4} + \mathbf{k}^{4} \right] \right\} \\ \left. \cdot \sqrt{\left[\mathbf{J} (\mathbf{J} + 1) - \mathbf{k} (\mathbf{k} \pm 1) \right] \left[\mathbf{J} (\mathbf{J} + 1) - (\mathbf{k} \pm 1) (\mathbf{k} \pm 2) \right]} \right]$$

$$(2.120)$$

mit

$$\begin{array}{ll} B_x, B_y, B_z & = \mbox{ Rotationskonstanten bezüglich der} \\ \Delta_J, \Delta_{JK}, \Delta_K, \delta_J, \delta_K & = \mbox{ quartische Zentrifugaldehnungskoeffizienten} \end{array}$$

 $\Phi_{J}, \Phi_{JK}, \Phi_{KJ}, \Phi_{K}, \varphi_{J}, \varphi_{JK}, \varphi_{K} =$ sextische Zentrifugaldehnungskoeffizienten

Im Rahmen dieser Arbeit wurde ausschließlich die A-Reduktion des Hamiltonoperators nach Watson verwendet.

2.5.7 Auswahlregeln und Intensitäten bei Rotationsübergängen

Die Auswahlregeln und Intensitäten von Rotationsübergängen ergeben sich allgemein aus der Berechnung der Übergangsmomente. Die Intensität eines Rotationsübergangs ist proportional dem Quadrat des Übergangsmomentes, das durch die Beziehung

$$\mathbf{R}_{\rm rot} = \int_{\tau} \psi''_{\rm rot} \,\mu \psi'_{\rm rot} \,\mathrm{d}\tau \neq 0 \tag{2.121}$$

gegeben ist. μ stellt das elektrische Dipolmoment dar. Hieraus folgt, daß bei der Rotationsspektroskopie nur Moleküle untersucht werden können, die über ein permanentes Dipolmoment verfügen ($\mu \neq 0$). Für asymmetrische Kreiselmoleküle gilt die Auswahlregel:

$$\Delta \mathbf{J} = \mathbf{0}, \, \pm 1 \tag{2.122}$$

Übergänge mit $\Delta J = -1$ und +1 werden im Rotationsspektrum als P- und R-Zweige beobachtet, solche mit $\Delta J = 0$ als Q-Zweige. Zusätzlich müssen noch die Pseudo-Quantenzahlen K_aK_c berücksichtigt werden.

Die Auswahlregeln für die erlaubten Übergänge hängen von der jeweiligen Lage der elektrischen Dipolkomponenten ab. Für die Fälle $\mu_a \neq 0$, $\mu_b = \mu_c = 0$, $\mu_b \neq 0$, $\mu_a = \mu_c = 0$ und $\mu_c \neq 0$, $\mu_a = \mu_b = 0$ ergeben sich die in Tabelle 2-6 angegebenen Auswahlregeln.

Tabelle 2-6: Auswahlregeln für Rotationsübergänge asymmetrischer Kreisel

Dipolkomponente	Symmetrien erlaubter Übergänge	ΔK_a	ΔK_{c}
$\mu_a \neq 0$ (a-Typ)	ee←→e0, 0e←→00	0, ±2	$\pm 1, \pm 3$
$\mu_{\rm b} \neq 0$ (b-Typ)	ee←→00, 0e←→e0	±1, ±3	$\pm 1, \pm 3$
<i>μ</i> _c ≠0 (c-Typ)	ee←→0e, e0←→00	±1, ±3	0, ±2

Liegt das ganze Dipolmoment eines Moleküls nur in Richtung einer der Hauptträgheitsachsen, so resultieren in Abhängigkeit von der Ausrichtung des Trägheitsmomentes reine a, b oder c-Typ-Rotationsübergänge, die den zuvor angegeben Auswahlregeln des jeweiligen Typs gehorchen.

2.5.8 Trägheitsdefekt

Für ein planares Molekül im Gleichgewicht gilt:

$$I_{c}^{e} - I_{a}^{e} - I_{b}^{e} = 0$$
 (2.123)

Diese Bedingung ist im Schwingungsgrundzustand sowie in angeregten Schwingungszuständen nicht mehr gültig, da vibronische Effekte unterschiedliche Auswirkungen auf die Haupträgheitsachsen haben. Es gilt:

$$I_{c}^{v} - I_{a}^{v} - I_{b}^{v} = \Delta_{v}$$
(2.124)

 Δ_v wird als Trägheitsdefekt bezeichnet.

2.6 Das Fourier-Transform-Infrarot-Spektrometer

2.6.1 Aufbau und Funktionsweise des IFS 120 HR

Der schematische Aufbau des IFS 120 HR FT-IR Spektrometers ist in Abb. 2-7 skizziert. Als Strahlungsquelle wird in der Regel ein Globar aus SiC (100 - 5000 cm⁻¹) verwendet, der mit elektrischem Strom auf Temperaturen von bis zu ca. 1500°C aufgeheizt wird. Daneben kommen standardmäßig noch andere Lichtquellen wie Quecksilberlampe (FIR, 5 - 400 cm⁻¹) und Wolfram-Lampe (NIR/Vis, 3000 - 25000 cm⁻¹) zum Einsatz.

Die Zerlegung des polychromatischen Lichtes erfolgt im Gegensatz zu den dispersiven Verfahren (Gitter, Prisma) interferometrisch (Michelson, Fabry-Perot). Basis des Bruker IFS 120 HR FT-IR-Spektrometers ist das Michelson Interferometer [30]. In diesem fällt das parallelisierte, polychromatische IR-Licht auf einen Strahlteiler (BS), der ca. 50 % der Strahlung durchläßt und 50 % der Strahlung reflektiert. Beide Teilstrahlen fallen auf einen festen (S1) und auf einen beweglichen Spiegel (S2), der entlang der festen Achse x mit konstanter Geschwindigkeit von Meßpunkt zu Meßpunkt verschoben wird. An beiden Spiegeln wird die Strahlung reflektiert und am Strahlteiler wiedervereinigt, wo sie interferieren. Der optische Gangunterschied beträgt

$$\delta = 2(a+b) - 2a.$$
 (2.125)

Ein Teil der rekombinierten Strahlung läuft zur Strahlenquelle zurück, der andere Teil trifft - nach Durchlaufen der Absorptionszelle in der Probenkammer - auf einen Detektor, der die Intensität der Strahlung mißt. Die Intensität ist somit eine Funktion der Distanz (b) des beweglichen Spiegels. Die Funktion I(δ) wird als Interferogramm (IFG) bezeichnet.

Parallel zum polychromatischen IR-Strahl verläuft ein monochromatischer Lichtstrahl eines He-Ne-Lasers, dessen IFG eine Kosinusfunktion darstellt.

$$I(\delta) = S(\nu) \times \cos(2\pi\nu\delta)$$
(2.126)

S(v) = Intensität der He-Ne-Linie bei der Wellenzahl v

Die rekombinierten Strahlen interferieren konstruktiv, wenn der Gangunterschied

$$2b = n\lambda;$$
 $n = 0, 1, 2, 3, ...$ (2.127)

ist, d.h. die vom Detektor gemessene Intensität nimmt ein Maximum an.

Wenn der Gangunterschied

$$b = \frac{2n+1}{4}\lambda;$$
 $n = 0, 1, 2, 3, ...$ (2.128)

ist, interferieren die beiden Teilstrahlen destruktiv, d.h. die Intensität nimmt ein Minimum an. Das Interferenzmuster des He-Ne-Lasers dient in erster Linie der Kontrolle der Position des beweglichen Spiegels nach (2.141). Für eine polychromatische Welle hat man nur noch bei einem optischen Gangunterschied von $\delta = 0$ konstruktive Interferenz. Entfernt man den Spiegel von diesem Punkt, nimmt die Intensität kontinuierlich ab. Folglich tritt bei I(0) im IFG ein Maximum auf, das als Interferogrammpeak (Nullpunktdurchgang) bezeichnet wird.

Mathematisch besteht ein direkter Zusammenhang zwischen IFG und Spektrum über eine Fourier-Transformation.

$$S(\nu) = \int_{\delta}^{\delta = +\infty} \int I(\delta) \cos(2\pi\nu\delta) d\delta = 2 \int_{\delta}^{\delta = +\infty} I(\delta) \cos(2\pi\nu\delta) d\delta$$
(2.129)
$$\delta = -\infty \qquad \delta = 0$$

Diese Fourier-Transformation muß von einem leistungsfähigen Computer ausgeführt werden.

Die Vorteile der Fourier-Transform-Spektroskopie lassen sich wie folgt zusammenfassen. Es resultieren Spektren mit einem sehr guten Signal-zu-Rausch-Verhältnis, was im wesentlichen darauf zurückzuführen ist, daß alle Wellenzahlen gleichzeitig gemessen werden. Das bedeutet einen Zeitvorteil im Vergleich zu den herkömmlichen continous-wave Spektrometern, denn es können im gleichen Zeitintervall mehr Spektren durch rechnergestüzte Akkumulation erhalten werden (Felgett-Vorteil). Da bei den Fourier-Transform-Spektrometern keine Spalte wie bei Gittergeräten benötigt werden, steht immer eine größere Lichtleistung zur Verfügung (Jaquinot-Vorteil). Darüber hinaus wird eine hohe Wellenzahlengenauigkeit (ca. 0,01 cm⁻¹) durch interne Kalibration mit dem He-Ne-Laser erreicht. Allerdings ist im Falle der hochauflösenden Spektroskopie (0,002 cm⁻¹) eine zusätzliche Kalibration erforderlich, mit der sich dann eine Genauigkeit von 0,01 - 1 × 10⁻³ cm⁻¹ erreichen läßt.

Abb. 2-7: Aufbau des Bruker IFS 120 HR Fourier-Transform-Infrarotspektrometers, entnommen aus Lit. [31]. Das in Wuppertal verfügbare Gerät besitzt einen ähnlichen Aufbau, der auch die Erzeugung doppelseitiger Interferogramme ermöglicht.

2.6.2 Zellentypen

Je nach untersuchtem Molekültyp stehen im Hause verschiedene Zellentypen zur Verfügung, die eine Anpassung auf die experimentellen Erfordernisse ermöglichen. Für Standardmessungen, beispielsweise an stabilen Molekülen mit großen Absorptionsquerschnitten, werden in der Regel Glas- oder Metallzellen mit einem auf die Größe der internen Probenkammer des Bruker IFS 120 HR abgestimmten Absorptionsweg von jeweils 28 cm benutzt. Die hierbei verwendete Metallzelle besitzt die Besonderheit, daß sie mit dem Gehäusedeckel eine Einheit bildet, wodurch die Möglichkeit der Kühlung der Zelle besteht. Dieser Zellentyp wurde für die Messungen am Prop-1-inylisocyanid verwendet.

Zum Nachweis relativ instabiler oder nur in geringen Mengen verfügbarer Molekülverbindungen oder bei geringen Intensitäten sind lange Absorptionswege nötig, wie sie beispielsweise durch Langwegzellen ermöglicht werden. Im Rahmen dieser Arbeit wurden die FT-IR-Messungen an den Molekülen Difluorethin, Fluorchlorethin und Fluorbromethin in Langwegzellen (bis 150 cm) durchgeführt, wobei diese durch einen Kühlmantel auf Temperaturen von -78°C gekühlt werden konnten.

Zum Nachweis schwacher IR-Linien von Schwingungen mit kleiner Dipolmomentsänderung oder bei geringer Konzentration von kurzlebigen Molekülen finden Vielfachreflexionszellen Verwendung. Die bekannteste ist die White-Zelle [32], die aus einer Anordnung von drei Spiegeln besteht. Abb. 2-8 zeigt den prinzipiellen Aufbau und Strahlengang einer White-Zelle. Ein- und Austrittsöffnung im Feldspiegel sind getrennt. Nach mindestens vier Durchläufen verläßt der Strahl die Zelle. Durch Verkippen der Gegenspiegel kann die Zahl der Durchläufe um Vielfache von 4 erhöht werden. Der Strahl leuchtet die Gegenspiegel großflächig aus und wird auf den Feldspiegel fokussiert. Die Reflexe auf dem Feldspiegel sind in zwei parallelen Reihen angeordnet, deren Abstand von der Stellung der Spiegel abhängt. Die Qualität der Foki auf dem Feldspiegel begrenzt die Zahl von Reflexen zwischen Ein- und Austrittsöffnung. White-Zellen sind kommerziell erhältlich und stehen im Hause zur Verfügung.

Abb. 2-8: Aufbau und Strahlverlauf in einer White-Zelle, entnommen aus Lit. [33]

Der Versuch des IR-spektroskopischen Nachweises von Silaethen in der Gasphase machte jedoch eine Neukonstruktion einer Vielfachreflexionszelle vom Typ White erforderlich, die folgende Kriterien erfüllen sollte:

a) Möglichkeit der in-situ-Darstellung von instabilen Spezies im IR-Strahlengang,

b) kleines Zellenvolumen,

c) externer Anschluß an die Probenkammer des Bruker IFS 120 HR.

Zu a) Die Möglichkeit der in-situ-Darstellung von instabilen Spezies wurde an die Zersetzungsmethoden angepaßt. Zum Einsatz kamen ein cw-CO₂-Laser sowie ein Kurzwegofen. Die Zelle sollte auch die Möglichkeit bieten, entsprechende Apparaturen für eine elektrische Entladung zu integrieren. Für die in-situ-Darstellung von instabilen Spezies im IR-Strahlengang wurde deshalb ein kreuz-förmiger Glaskörper verwendet, dessen senkrecht zum IR-Strahl angeordneten Flansche (\emptyset 110 mm) sowohl für eine Laserstrahldurchführung als auch für die Aufnahme eines speziell konstruierten Kurzwegofens geeignet sind. Der schematische Aufbau ist in Abb. 2-9 dargestellt.

Zu b) Kleine Zellenvolumen sind für die Untersuchung von Gasproben erforderlich, die nur in begrenzter Menge zur Verfügung stehen. Darüber hinaus war geplant, eine kontinuierliche Generierung der instabilen Spezies im Strömungssystem durchzuführen. Bei Zellen mit kleinen Volumina läßt sich der Zelleninhalt schneller austauschen. Die konstruierte White-Zelle hat ein Volumen von ca. 31.

Zu c) Das Bruker IFS 120 HR FT-IR-Spektrometer besitzt für diesen Zweck einen externen Zellenanschluß. Der austretende parallele Lichtstrahl ist jedoch mit einem Durchmesser von ca. 60 mm nur bedingt geeignet. Es wurde deshalb eine externe, vibrationsgedämpfte Vakuumkammer konstruiert, die seitlich an die eigentliche Probenkammer für interne Messungen angeschlossen werden kann. Der IR-Strahl wird mit einem off-axis Parabol-Spiegel parallelisiert und aus der Probenkammer ausgelenkt. Die eigentliche White-Zelle ist senkrecht zum Eingangsstrahl auf die Vakuumkammer aufgesetzt und in der Weise angeordnet, daß der austretende IR-Strahl parallel durch die Zelle läuft. Nach Verlassen der Zelle wird der Strahl durch einen weiteren off-axis Spiegel auf den Detektor gelenkt. Vorteil dieser Anordnung ist die einfache Handhabung der White-Zelle (Ein- und Ausbau der Spiegel, Justage, Fensterwechsel, etc.).

Als Basis für die Konstruktion, die in Zusammenarbeit mit Priv. Doz. Dr. H. Beckers durchgeführt wurde, diente in erster Linie eine Bruker 8 m Zelle. Alle mechanischen Arbeiten wurden von der Feinmechanischen Werkstatt (Brakelmann) des FB 9 übernommen.

Abb. 2-9: Schematischer Aufbau der neukonstruierten White-Zelle mit externer Vakuumkammer für den Anschluß an das Bruker IFS 120 HR Fourier-Transform-Infrarotspektrometer (Abb. 2-7).

3 DARSTELLUNG, CHARAKTERISIERUNG UND REAKTIO-NEN DER FLUORETHINE FCCX (X=F, Cl, Br)

3.1 Einleitung

Ethine stellen wichtige Bausteine in der modernen präparativen Chemie dar. Weiterhin sind sie seit ihrer Entdeckung in interstellaren Wolken in Form langkettiger Polycyanine von radioastronomischem Interesse. Erhebliche Bedeutung im Bereich der Molekülphysik besitzen neben dem Grundkörper auch die Monohalogenethine HCCX (X = F, Cl, Br, I) und Dihalogenethine des Typs $X^{1}C \equiv CX^{2}$ $(X^1, X^2 = F, Cl, Br, I)$. Das liegt darin begründet, daß diese Moleküle die einfachsten Fälle vieratomiger, linearer Moleküle darstellen. Die Untersuchung dieser Moleküle durch hochauflösende Rotations- und/oder Rotations-Schwingungsspektroskopie hilft bestehende Modelle zu überprüfen und gegebenenfalls zu verfeinern. Sie sind damit auch für den theoretisch arbeitenden Chemiker von hohem Interesse. Allerdings sind sowohl die Monohalogenethine als auch die Dihalogenethine empfindlich und reagieren in Kontakt mit Luftsauerstoff mitunter explosiv. Als Grund hierfür können generell die ungünstigen Bindungsverhältnisse zwischen einem elektronegativen Halogenatom und einem elektronegativen sp-hybridisierten Kohlenstoffatom angesehen werden. Somit sind für die Synthese dieser Moleküle spezielle Apparaturen nötig, die eine gefahrlose Handhabung ermöglichen.

Erste Hinweise auf die Existenz von Difluorethin wurde 1958 durch die von Middelton beschriebene Thermolyse von Difluormaleinsäureanhydrid erhalten [34]. Der Nachweis von Difluorethin gelang jedoch nur massenspektrometrisch. Diese Ergebnisse wurden 1989 durch Arbeiten von Brahms und Dailey bestätigt, die Difluorethin - neben einer Vielzahl anderer Produkte - durch Photolyse von Difluormaleinsäureanhydrid in einer Ar-Matrix bei 10 K nachweisen konnten. Der eindeutige Nachweis von Difluorethin gelang jedoch erst 1991 Bürger und Sommer durch die Vakuumthermolyse von 4,5,6-Trifluor-1,2,3-triazin bei Temperaturen von 700°C [2].

Difluorethin konnte durch verschiedene Verfahren wie Matrix-IR-Spektroskopie [35], hochauflösende IR-Spektroskopie [36], Massenspektrometrie und Tieftemperatur-NMR-Spektroskopie umfassend charakterisiert werden. Kurze Zeit später gelang McNaughton und Elmes, Difluorethin durch die Thermolyse von 3-Brom-3,3-difluorpropionsäuretrifluoressigsäureanhydrid darzustellen und durch IR-Spektroskopie zu untersuchen [37]. In einer 1993 erschienenen Arbeit von Burton et al. wurde über die Darstellung von Difluorethin durch Bestrahlen von 1,2-Difluor-1,2-diiodethen mit einem KrF-Excimer-Laser (248 nm) berichtet [38].

Difluorethin FCCF ist im wesentlichen in unserer Arbeitsgruppe durch Rotations-Schwingungsspektroskopie untersucht worden und wurde in zwei Doktorarbeiten von Sommer [39] und Ma [40] behandelt. Ergebnisse der ersten Arbeit waren hauptsächlich die umfassende Analyse der beiden intensivsten Schwingungen (v_3 und $\nu_2 + \nu_3$), während sich letztere mit der Analyse der bis heute einzigen detektierten reinen Knickschwingung ($\nu_4 + \nu_5$) befaßte. Im Rahmen meiner Diplomarbeit [1] wurde das hochaufgelöste Schwingungsspektrum von Difluorethin im Bereich von 2500 - 4500 cm⁻¹ untersucht. Aus der Analyse sind eine Vielzahl neuer Bandensysteme hervorgegangen. Im Bereich der intensivsten Schwingungen (v_3 und v_2+v_3) gelang es, die Banden des in natürlicher Häufigkeit von ca. 2,2 % auftretenden isotopomeren $F^{13}C \equiv {}^{12}CF$ zu identifizieren. Aus der Analyse konnte eine Gleichgewichtsstruktur abgeschätzt werden. Die Werte betragen re $(CC) = 1,197 \ 3(30) \ \text{Å} \ \text{und} \ r_e \ (CF) = 1,276 \ 7(15) \ \text{Å} \ [41].$ Neuere, hochkorrelierte ab initio-Rechnungen von Thiel et al. empfehlen dagegen für die Gleichgewichtsgeometrie: r_e (CC) = 1,186 0(6) Å und r_e (CF) = 1,283 5(4) Å [42]. Die Diskrepanz zwischen experimenteller und theoretisch berechneter Struktur ist vermutlich auf die für die experimentelle Strukturbestimmung gemachte empirische Näherung zur Berechnung von B_e für $F^{13}C \equiv {}^{12}CF$ zurückzuführen.

Fluorchlorethin FCCCl ist erstmals 1970 in einer Arbeit von Viehe et al. beschrieben worden [43]. Die Darstellung erfolgte durch HCl-Eliminierung aus 1,1-Dichlor-2-fluorethen mit KOH. Die IR-spektroskopische Charakterisierung von Fluorchlorethin beschränkte sich auf die Aufnahme eines niedrigaufgelösten Gasphasenspektrums, aus der die Schwingungswellenzahlen der CC- bzw. der CF-Streckschwingung zugänglich wurden. 1981 nutzen Guarnieri et al. diesen Syntheseweg zur Darstellung von Fluorchlorethin für millimeter- bzw. mikrowellenspektroskopische Untersuchungen [44].

Analog hierzu berichteten 1982 Guarnieri et al. über die Synthese von Fluorbromethin FCCBr durch HBr-Eliminierung aus 1,2-Dibrom-2-fluorethen mit KOH [45]. Fluorbromethin konnte durch Millimeter- bzw. Mikrowellenspektroskopie erstmals charakterisiert werden. 1991 wurde von Sander et al. gezeigt, daß

Fluorbromethin Fluorchlorethin und aus Trimethylstannyl-1-halogen-2,2difluorethenen durch Vakuumthermolyse bei 800°C zugänglich sind [46]. In der gleichen Publikation stellen die Autoren einen weiteren Zugang zu den Ethinen über eine Gasphasenreaktion von 1,1-Dihalogendifluorethenen mit festem Methyllithium oder Li-, Na- oder K-Dampf vor. Die Identifizierung der gebildeten Ethine erfolgte IR-spektroskopisch in einer Ar-Matrix bei 11 K. Hieraus konnten die IR-Schwingungswellenzahlen der CC- und der CF-Streckschwingung von Fluorchlor- und Fluorbromethin festgelegt werden. 1992 berichteten Okabayashi et al. über die Darstellung von Fluorchlor- und Fluorbromethin aus der Zersetzung von 1-Halogen-pentafluorbenzol durch elektrische Entladung [47]. Die Mikrowellen-spektroskopische Untersuchung ermöglichte die Bestimmung der Rotationsparameter der Knickschwingungszustände (ν_4 und ν_5) von Fluorbromethin und (v_5) von Fluorchlorethin. Später gelang den Autoren durch Mikrowellenspektroskopie der Nachweis von Fluoriodethin [48]. Die nachfolgende Abbildung faßt alle literaturbekannten Synthesen für die Ethine $FC \equiv CX$ (X = Cl, Br, I) zusammen.

Abb. 3-1: Literaturverfahren zur Darstellung von Fluorhalogenethinen.

Der erste Teil dieses Kapitels behandelt die Darstellung der Ethine $FC \equiv CX$ (X = F, Cl, Br, I). Hierfür bot es sich an, die Übertragbarkeit der Synthese von FCCF nach Gl. (3.1) auf die Ethine $FC \equiv CX$ (X = Cl, Br, I) auszuloten. Daneben wird über die Untersuchung der Eignung von Quadratsäurederivaten als Halogenethinquellen berichtet, die mit dem Ziel aufgenommen wurde, ¹³C-markiertes FCCF zu synthetisieren.

Der zweite Teil behandelt die Charakterisierung der Fluorethine FCCF, FCCCl und FCCBr durch hochauflösende Rotations-Schwingungsspektroskopie. Während Fluorchlorethin und Fluorbromethin noch nicht untersucht sind, bestanden für Difluorethin nur noch Defizite im Nachweis der IR-aktiven Deformationsschwingung ν_5 bei ca. 270 cm⁻¹ sowie die Untersuchung des Wellenzahlbereichs oberhalb von 4500 cm⁻¹. Danach folgt die Beschreibung der erfolgreich durchgeführten Matrix-spektroskopischen Untersuchungen der Isomerisierung von Difluorethin zu Difluorvinyliden. Diesem Kapitel ist ein weiteres nachgestellt, das über die Rotations-Schwingungsanalyse eines weiteren Ethin-Derivates, des Prop-1-inylisocyanids, berichtet.

3.2 Dihalogenethine aus Trihalogentriazinen

3.2.1 Darstellung von 4,5,6-Trihalogen-1,2,3-triazinen $C_3N_3X_3$ (X = F, Cl, Br) und 4,6,5-Difluorhalogen-1,2,3-triazinen $C_3N_3F_2X$ (X = Cl, Br, I)

Zentraler Ausgangspunkt für die Synthese aller im Rahmen dieser Arbeit dargestellten Trihalogentriazine ist Tetrachlorcyclopropen. Der Aufbau des C₃-Ringkörpers gelingt durch Dichlorcarbenaddition an Trichlorethylen [49]. Aus dem resultierenden Pentachlorcyclopropan wird durch HCl-Eliminierung mit KOH Tetrachlorcyclopropen gewonnen [50]. 4,5,6-Trichlor-1,2,3-triazin wird durch Cycloaddition von Trimethylsilylazid an Tetrachlorcyclopropen nach Schönafinger et al. dargestellt [51]. Die Darstellung von 4,5,6-Tribrom-1,2,3triazin gelingt in analoger Weise durch Cycloaddition von Trimethylsilylazid an Tetrabromcyclopropen [51], das durch Bromierung von Tetrachlorcyclopropen mit Bortribromid leicht zugänglich ist [52]. Über 4,5,6-Triiod-1,2,3-triazin ist in der Literatur nicht berichtet worden.

Bei der von Chambers et al. beschriebenen Gasphasenfluorierung von 4,5,6-Trichlor-1,2,3-triazin mit KF bei 550°C erfolgt die Bildung von 4,5,6-Trifluor-1,2,3-triazin über mehrere Stufen [53]. In Anlehnung an dieses Verfahren wurde der Einfluß der verwendeten Menge von KF auf den Fluorierungsgrad von 4,5,6-Trichlor-1,2,3-triazin bzw. 4,5,6-Tribrom-1,2,3-triazin untersucht. In einem typischen Experiment wurden ca. 1,5 g des Trichlor- bzw. Tribromtriazins für die Gasphasenfluorierung im Hochvakuum bei 10⁻³ mbar über heißes KF (550°C) sublimiert. Bei der Verwendung von etwa 30 g KF führte dies fast ausschließlich zur Bildung von 4,5,6-Trifluor-1,2,3-triazin. Bei Verwendung von 10 g ist ein Produktgemisch erhalten worden, das aus ca. 50 % 4,5,6-Trifluor-1,2,3-triazin und 50 % 4,6,5-Difluorhalogen-1,2,3-triazin bestand. Auf diese Weise konnte die bis dahin nicht bekannte Verbindung 4,6,5-Difluorbrom-1,2,3-triazin dargestellt und durch NMR-Spektroskopie charakterisiert werden. Die erstmalige Darstellung von 4,6,5-Difluoriod-1,2,3-triazin gelang durch Umsetzung von 4,5,6-Trifluor-1,2,3-triazin mit Iodsilan (H₃SiI) oder Diiodsilan (H₂SiI₂). Als reaktionstreibender Schritt kann die starke Bildungstendenz von Si-F-Bindungen angesehen werden, was durch den IR-spektroskopischen Nachweis von Fluorsilan H₃SiF bzw. Difluorsilan H₂SiF₂ bestätigt wird. Versuche, 4,6,5-Difluorchlor-1,2,3-triazin oder 4,6,5-Difluorbrom-1,2,3-triazin in gleicher Weise durch Reaktion von 4,5,6-Trifluor-1,2,3-triazin mit Chlorsilan (H₃SiCl) bzw. Bromsilan (H₃SiBr) darzustellen, scheiterten. Es trat keine Reaktion ein. Nachfolgende Abbildung faßt alle vorher besprochenen Reaktionen zusammen.

Abb. 3-2: Synthesewege zu Trihalogen-1,2,3-triazinen

3.2.2 Thermolyse von 4,5,6-Trihalogen-1,2,3-triazinen $C_3N_3X_3$ (X = F, Cl, Br) und 4,6,5-Difluorhalogen-1,2,3-triazinen $C_3N_3F_2X$ (X = Cl, Br, I)

Um die prinzipielle Eignung des Triazinweges für die Darstellung von Halogenethinen nach Gl. (3.1) auszuloten, wurde die Thermolyse der in Kapitel 3.2.1 beschriebenen Trihalogen-1,2,3-triazinderivate untersucht.

Die Thermolyse von 4,6,5-Difluorchlor-1,2,3-triazin und 4,6,5-Difluorbrom-1,2,3-triazin resultierte in der Spaltung der Triazingerüste unter Stickstoffeliminierung zu Fluorchlor- bzw. Fluorbromethin und Fluorcyan. Die Identifizierung war durch Vergleich mit den literaturbekannten IR-Wellenzahlen der C-F bzw. CC- Schwingungen möglich. Darüber hinaus folgt aus der IR-Analyse, daß bei der Thermolyse von 4,6,5-Difluorbrom-1,2,3-triazin auch geringe Mengen von Fluorcyanethin FCCCN [54] entstehen. Als besonders problematisch erwies sich die Abtrennung von Fluorcyan, und im Falle von Fluorbromethin auch Fluorcyanethin, die aufgrund ihrer ähnlichen Schmelzpunkte und Dampfdrucke eine Reindarstellung der gewünschten Ethinderivate praktisch unmöglich machte. Nur Fluorchlorethin konnte durch mehrmalige fraktionierte Kondensation über eine auf -152°C gekühlte Falle von Fluorcyan weitgehend befreit werden. Im Falle von Fluorbromethin war eine Trennung durch fraktionierte Kondensation nicht möglich, es konnte lediglich eine Anreicherung erzielt werden. Das war im Hinblick auf die geplante IR-spektroskopische Untersuchung von Fluorbromethin nicht akzeptabel, da dessen Banden erheblich mit den IR-Banden von Fluorcyan bzw. Fluorcyanethin überlappen. Aufgrund dieser Beobachtungen wurde für die Darstellung von Fluorbromethin auch das in Lit. [46] beschriebene Verfahren der Vakuumthermolyse von 1-Brom-2,2-difluor-1-trimethylstannylethen (Abb. 3-1, unten links) herangezogen, dessen Synthese in Kapitel 3.2.3.2 beschrieben ist.

Die Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin nimmt mit dem IRspektroskopischen Nachweis von Fluorcyanethin (Abb. 3-3), das durch Vergleich mit dem literaturbekannten IR-Spektrum [54] identifiziert werden konnte, einen unerwarteten Verlauf. Während bei der Thermolyse von 4,6,5-Difluorbrom-1,2,3-triazin größtenteils Fluorbromethin neben wenig Fluorcyanethin gebildet wird, spaltet in diesem Fall das Triazingerüst unter Erhalt der C₃-Baueinheit vermutlich Iodfluorid und Stickstoff ab, wobei ausschließlich die Bildung von Fluorcyanethin beobachtet wird. Iodfluorid konnte allerdings nicht nachgewiesen werden. Als Nebenprodukt der Reaktion wurde CF₃I anhand seiner charakteristischen IR-Banden identifiziert. Somit muß das eigentliche Ziel der Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin, nämlich die Synthese von Fluoriodethin, als vorerst gescheitert betrachtet werden. Andererseits wird durch diese Synthesevariante das bis jetzt noch wenig untersuchte Fluorcyanethin für die hochauflösende IR-Spektroskopie zugänglich.

Abb. 3-3: Gasphasen-FT-IR-Spektrum von Fluorcyanethin (FCCCN) aus der Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin

Interessant war in diesem Zusammenhang die Untersuchung der Thermolyse von Trichlortriazin und Tribromtriazin. Die Thermolyse von 4,5,6-Trichlor-1,2,3-triazin resultierte unter Stickstoffeliminierung erwartungsgemäß in der Bildung von Dichlorethin und Chlorcyan. Im Gegensatz dazu wurde bei der Thermolyse von 4,5,6-Tribrom-1,2,3-triazin Bromcyanethin und elementares Brom nachgewiesen. Die Identifizierung erfolgte durch den Vergleich mit den literaturbekannten IR-Spektren von Dichlorethin [55,56,57] und Bromcyanethin [58] (Abb. 3-5).

Abb. 3-4: Thermolyse der Triazinderivate $C_3N_3X_3$ (X = Cl, Br)

Abb. 3-5: Gasphasen-FT-IR-Spektren von a: Dichlorethin und b: Bromcyanethin

Der Verlauf der Thermolyse von 4,5,6-Tribrom-1,2,3-triazin ähnelt dem der Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin. Offensichtlich ist in diesen Fällen die labile C-Br- bzw. C-I-Bindung für die bevorzugte Bildung von Bromcyanethin und Fluorcyanethin verantwortlich.

Nachfolgende Abbildung faßt die Thermolysereaktion der Triazinderivate $C_3N_3F_2X$ (X = F, Cl, Br, I) zusammen.

Abb. 3-6: Thermolyse der Triazinderivate $C_3N_3F_2X$ (X = F, Cl, Br, I)

3.2.3 Experimentelles

3.2.3.1 Triazinderivate

• Darstellung von Pentachlorcyclopropan

In einem 2-1-Rundkolben mit Wasserabnehmer und Rückflußkühler werden 350 g (1,89 mol) Natriumtrichloracetat in 1,3 l (14,45 mol) Trichlorethen suspendiert und einen Tag unter Rückfluß gekocht, wobei sich im Wasserabnehmer ca. 1 g Wasser ansammelt. Nach Entfernen des Wasserabnehmers gibt man 250 ml getrockneten Ethylenglykoldimethylether (Glyme) zu der Suspension und erhitzt diese für 5 - 6 Tage auf ca. 100°C. Im Verlauf der Reaktion verfärbt sich die anfangs farblose Suspension nach dunkelbraun. Nach Ablauf der Reaktionszeit wird die Mischung dreimal mit je 250 ml Wasser, einmal mit 250 ml einer ca. 5 %igen Salzsäurelösung und nochmals dreimal mit je 250 ml Wasser ausgeschüttelt. Die organische Phase wird über MgSO₄ getrocknet, filtriert und am Rotati-

onsverdampfer von überschüssigem Lösungsmittel befreit. Der Rückstand wird bei 32 mbar über eine Vigreux-Kolonne fraktioniert destilliert, wobei Pentachlorcyclopropan bei 72°C als wasserklare Flüssigkeit übergeht.

Ausbeute: 172 g (0,80 mol, 42 % d. Th.) Pentachlorcyclopropan

IR (Film, Perkin-Elmer 580 B): 3040(s), 2930(w), 2880(w), 2820(w), 2160(w), 1960(w), 1890(w), 1765(w), 1600(w), 1290(m), 1260(w), 1200(m), 1160(m), 1100(w), 1090(m), 1050(m), 950(s), 925(s), 900(s), 890(s), 825(w), 770(s), 650(w), 615(s), 530(s), 525(s) cm⁻¹, Referenz s. Lit. [49].

• Darstellung von Tetrachlorcyclopropen

Die Ansatzgröße dieser Reaktion ist auf maximal 50 g Pentachlorcyclopropan limitiert, da sonst die Ausbeute der Reaktion drastisch sinkt.

In einem 100-ml-Dreihalskolben mit Rückflußkühler, Tropftrichter und Innenthermometer legt man eine Lösung aus 18 g (0,32 mol) Kaliumhydroxid in 20 ml destilliertem Wasser vor. Dann tropft man 25 g (0,117 mol) Pentachlorcyclopropan bei schwacher Erwärmung langsam zu. Das Zweiphasengemisch wird dann innerhalb von ca. 30 Minuten auf ca. 70°C erhitzt, wobei sich die Mischung schwach gelblich färbt. Hierbei ist darauf zu achten, daß nur schwach gerührt wird, da es sonst zu einer sehr stark exothermen Reaktion kommt. Bei weiterem Erhitzen auf ca. 85°C springt die Reaktion an und es kann auf weiteres Erhitzen der Mischung verzichtet werden. Die Temperatur darf nicht auf > 95°C ansteigen, da es sonst zu unerwünschten Nebenreaktionen kommt. Kurzes Aufschäumen (nach ca. 30 min.) zeigt das Ende der Reaktion an. Die bräunliche Lösung, die in der Regel mit einem weißen Feststoff durchsetzt ist, wird nach Abkühlen auf Raumtemperatur mit 25 ml Eiswasser und anschließend mit 12,5 ml kalter konzentrierter Salzsäure versetzt. Um eine genügend große Menge für die anschließende destillative Aufarbeitung zu erhalten, werden acht Ansätze in einen Scheidetrichter überführt, die organische Phase abgetrennt und über MgSO₄ getrocknet. Fraktionierte Destillation bei Normaldruck in einer Stickstoffatmosphäre ergibt Tetrachlorcyclopropen (Kp.: 129°C) als farblose Flüssigkeit.

Ausbeute: 80,5 g (0,45 mol, 48 % d. Th.) Tetrachlorcyclopropen

IR (Film, Bruker IFS 25): 1810(w), 1360(w), 1320(w), 1200(w), 1155(s), 1055(s), 880(w), 820(w), 755(s), 685(m), 615(s) cm⁻¹, Referenz s. Lit. [50].

• Darstellung von Tetrabromcyclopropen

In einem mehrfach ausgeheizten 50-ml-Zweihalskolben mit Rückflußkühler und einer Schraubampulle werden unter Stickstoffatmosphäre 10 g (56,3 mmol) Tetrachlorcyclopropen vorgelegt. 18,75 g (75 mmol) Bortribromid, das sich in der Schraubampulle befindet, werden in Portionen von ca. 2 ml zugegeben, wobei eine stark exotherme Reaktion eintritt. Das bei dieser Reaktion entstehende Bortrichlorid wird über ein Gasableitungsrohr aus dem Reaktionsgefäß entfernt. Flüchtige Bestandteile wie gelöstes Bortrichlorid oder überschüssiges Bortribromid werden bei ca. 1 mbar abgezogen. Die verbleibende gelbliche Lösung wird im Hochvakuum bei 10⁻³ mbar fraktioniert destilliert, wobei Tetrabromcyclopropen als farblose, an der Luft stark rauchende Flüssigkeit bei 28-30°C, 10⁻³ mbar übergeht.

Ausbeute: 18,2 g (51 mmol, 90 % d. Th.) Tetrabromcyclopropen

IR (Film, Bruker IFS 25): 1764(m), 1119(s), 1078(m), 1002(s), 710(m), 668(s), 584(w), 534(w), 492(s) cm⁻¹, Referenz s. Lit. [52].

• Darstellung von 4,5,6-Trichlor-1,2,3-triazin

In einem mehrfach ausgeheizten 100-ml-Schlenkkolben werden unter Stickstoffatmosphäre 7,9 g (44,5 mmol) Tetrachlorcyclopropen und 5,89 g (51,2 mmol) frisch destilliertes Trimethylsilylazid gegeben und für ca. 7 h auf 85°C erhitzt. Die anfangs farblose Mischung färbt sich im Verlauf der Reaktion je nach Reinheit des verwendeten Azids nach rubinrot bis dunkelbraun. Nach Ablauf der Reaktion kühlt man die Lösung für ca. 1 h auf ca. -15°C ab, wobei hellbraune Kristalle ausfallen. Diese werden unter Stickstoffatmosphäre abfiltriert und mehrmals sublimiert (60°C, 10⁻³ mbar), wobei 4,5,6-Trichlor-1,2,3-triazin in Form von farblosen Kristallen erhalten wird.

Ausbeute: 1,03 g (5,58 mmol, 12,6 % d. Th.) 4,5,6-Trichlor-1,2,3-triazin

IR (KBr, Perkin-Elmer 580 B): 1450(s), 1310(w), 1280(m), 1220(m), 1050(m), 830(s) cm⁻¹, Referenz s. Lit. [51].

• Darstellung von 4,5,6-Tribrom-1,2,3-triazin

Eine Mischung aus 3,55 g (10 mmol) frisch destilliertem Tetrabromcyclopropen und 1,26 g (11 mmol) frisch destilliertem Trimethylsilylazid wird unter Stickstoffatmosphäre in einem 100-ml-Schlenkkolben für 3 h auf 85°C erhitzt. Schon während dieses Zeitraumes kann die Bildung eines weißes Niederschlages beobachtet werden. Zur Vervollständigung der Ausfällung wird die Reaktionslösung für 1 h auf ca. -15°C abgekühlt. Der Niederschlag wird abgesaugt und im Hochvakuum bei 10⁻³ mbar bei 100°C sublimiert, wodurch Tribromtriazin als farbloser, luftbeständiger Feststoff erhalten wird.

Ausbeute: 0,3 g (0,8 mmol, 9,3 % d. Th.) 4,5,6-Tribrom-1,2,3-triazin

IR (KBr, Perkin-Elmer 580 B): 1432(s), 1292(w), 1253(m), 1212(m), 1021(m), 770(s) cm⁻¹, Referenz s. Lit. [51].

• Darstellung von 4,6,5-Difluorchlor-1,2,3-triazin

Ein 50 cm langes Aluminiumoxidrohr wird mit ca. 10 g Kaliumfluorid auf seiner ganzen Länge gleichmäßig befüllt. Das Rohr wird an einer Seite mit einer Hochvakuumapparatur verbunden, die andere Seite wird mit einer kleinen Schraubampulle, befüllt mit 1,0 g (5,4 mmol) 4,5,6-Trichlor-1,2,3-triazin, verschlossen. Bei geschlossener Schraubampulle wird das Aluminiumoxidrohr im Hochvakuum bei 10⁻³ mbar eine Nacht lang auf 550°C erhitzt. Danach wird das 4,5,6-Trichlor-1,2,3-triazin innerhalb 8 h über das 550°C heiße Kaliumfluoridbett geleitet, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. 50°C erwärmt wird. Die Fluorierungsprodukte werden in den Kühlfallen der Hochvakuumapparatur bei -78°C und -196°C aufgefangen, wobei in der ersten Kühlfalle ein Gemisch aus 4,6,5-Difluorchlor-1,2,3-triazin und 4,5,6-Trifluor-1,2,3-triazin (1:1) erhalten wird. Die Trennung beider Triazine erfolgt durch mehrmalige fraktionierte Kondensation über eine auf -22°C gekühlte Falle im Hochvakuum, in der 4,6,5-Difluorchlor-1,2,3-triazin als schwererflüchtige Verbindung kondensiert.

Ausbeute: 320 mg (2,16 mmol, 40 % d. Th.) 4,6,5-Difluorchlor-1,2,3-triazin

¹⁹F-NMR, (ext. C₆D₆): δ = -82,5 ppm (F-4, 6, s), Referenz s. Lit. [53].

¹³C-NMR, (ext. C₆D₆): $\delta = 107,38$ (C-5, t, ²J_{CF} = 25,59 Hz), 164,74 ppm (C-4,6, dd, ¹J_{CF} = 262,55 Hz, ³J_{CF} = 8,33 Hz), Referenz s. Lit. [53].

• Darstellung 4,6,5-Difluorbrom-1,2,3-triazin

580 mg (1,8 mmol) 4,5,6-Tribrom-1,2,3-triazin werden in vorher beschriebener Weise im Hochvakuum bei 10^{-3} mbar fluoriert. Es wird ein Gemisch aus 4,6,5-Difluorbrom-1,2,3-triazin und 4,5,6-Trifluor-1,2,3-triazin (1 : 1) erhalten, das durch mehrmalige fraktionierte Kondensation über eine auf -12°C gekühlte Falle im Hochvakuum getrennt wird. 4,6,5-Difluorbrom-1,2,3-triazin kondensiert hierbei als schwererflüchtige Verbindung.

Ausbeute: 120 mg (0,6 mmol, 32 % d. Th.) 4,6,5-Difluorbrom-1,2,3-triazin

¹⁹F-NMR, (CDCl₃): δ = -72,2 ppm (F-4, 6, s).

¹³C-NMR, (CDCl₃): δ = 96,3 (C-5, t, ²J_{CF} = 29,4 Hz), 166,3 ppm (C-4,6, dd, ¹J_{CF} = 263,2 Hz, ³J_{CF} = 8,8 Hz).

IR (1 mbar, Bruker IFS 25): 1532(s), 1432(m), 1320(m), 1220(w), 1047(w), 1002(m), 768(w), 679(w), 595(w), 545(w) cm⁻¹.

• Darstellung 4,6,5-Difluoriod-1,2,3-triazin

In eine 50-ml-Schraubampulle werden 350 mg (2,6 mmol) 4,5,6-Trifluor-1,2,3triazin und 410 mg (2,6 mmol) Iodsilan einkondensiert und langsam auf Raumtemperatur erwärmt, wobei neben einem dunklen Feststoff farblose Kristalle erhalten werden. Zur Vervollständigung der Reaktion wird noch ca. 2 h stehengelassen. Die flüchtigen Produkte - im wesentlichen H₃SiF - werden im Hochvakuum bei 10⁻³ mbar abgepumpt. Der verbleibende Rückstand wird in 5 ml getrocknetem Diethylether gelöst und filtriert. Nach Abdampfen des Lösungsmittels verbleibt ein schwach rötlicher Feststoff, der bei mehrmaliger Sublimation (60°C, 10⁻³ mbar) 4,6,5-Difluoriod-1,2,3-triazin in Form farbloser Kristalle ergibt.

Alternativ kann zur Darstellung von 4,6,5-Difluoriod-1,2,3-triazin auch Diiodsilan verwendet werden.

Ausbeute: 320 mg (1,3 mmol, 51 % d. Th.) 4,6,5-Difluoriod-1,2,3-triazin

¹⁹F-NMR, (CDCl₃): δ = -61,68 ppm (F-4, 6, s).

¹³C-NMR, (CDCl₃): $\delta = 100,38$ (C-5, t, ²J_{CF} = 25,59 Hz), 170,14 ppm (C-4,6, dd, ¹J_{CF} = 261,11 Hz, ³J_{CF} = 10,03 Hz).

IR (KBr, Bruker IFS 25): 1518(s), 1410(m), 1318(s), 1284(m), 1064(m), 1039(s), 1010(s), 771(s), 669(w), 586(w), 542(s) cm⁻¹.

• Darstellung von 4,5,6-Trifluor-1,2,3-triazin

1,0 g (5,4 mmol) 4,5,6-Trichlor-1,2,3-triazin werden in vorher beschriebener Weise im Hochvakuum bei 10⁻³ mbar unter Verwendung von ca. 30 g Kaliumfluorid fluoriert. Es wird ein Gemisch aus 4,6,5-Difluorchlor-1,2,3-triazin und 4,5,6-Trifluor-1,2,3-triazin im Verhältnis von ca. 1:9 erhalten. Die Abtrennung erfolgt durch mehrmalige Kondensation über eine auf -30°C gekühlte Falle, in der Trifluortriazin als leichterflüchtige Verbindung nicht kondensiert. Die Fraktion bei -30°C kann zur Vervollständigung der Fluorierung nochmals über 10 g Kaliumfluorid geleitet werden.

Ausbeute: 0,99 g (8,4 mmol, 72 % d. Th.) 4,5,6-Trifluor-1,2,3-triazin

¹⁹F-NMR, (ext. C₆D₆): δ = -96,3 (F-5, d, ³J_{FF} = 21 Hz), -168,7 ppm (F-4, 6, t, ³J_{FF} = 21 Hz), Referenz s. Lit. [2,39,53].

¹³C-NMR, (ext. C₆D₆): $\delta = 133,46$ (C-5, dt, ¹J_{*CF*} = 296,84 Hz, ²J_{*CF*} = 19,57 Hz), 158,15 ppm (C-4,6, dq, ¹J_{*CF*} = 266,35 Hz, ³J_{*CF*} = 6,24 Hz), Referenz s. Lit. [2,39,53].

IR (1 mbar, Bruker IFS 25): 1673(w), 1620(w), 1611(w), 1577(s), 1493(w), 1481(w), 1460(m), 1343(m), 1149(m), 1083(m), 1010(m), 771(w), 710(w), 471(w) cm⁻¹, Referenz s. Lit. [39].

3.2.3.2 1-Brom-2,2-difluor-1-trimethylstannylethen

1,60 g (7,21 mmol) 1,1-Dibromdifluorethen werden in 5 ml getrocknetem n-Pentan unter Stickstoffatmosphäre gelöst und die Lösung auf -95°C abgekühlt. Dann gibt man unter ständigem Rühren in kleinen Portionen 4,35 ml (21,1 mmol) einer 5 %igen n-Butyllithium-Lösung in n-Pentan hinzu. Während der Zugabe ist dafür Sorge zu tragen, daß die Reaktionsmischung Temperaturen von -85° nicht übersteigt, da es sonst zur Zersetzung des lithiierten Bromdifluorethens kommt, die sich durch eine dunkle bis schwarze Verfärbung bemerkbar macht. Nach der Zugabe gibt man zu der farblosen bis hellbraunen Reaktionsmischung in kleinen Portionen 1,44 g (7,22 mmol) Trimethylzinnchlorid, gelöst in 10 ml getrocknetem n-Pentan. Anschließend rührt man für jeweils 1 h bei -95°C und -78°C und läßt dann langsam, innerhalb von 4 h, auf RT auftauen. Man erhält eine gelbe Lösung mit braunem Niederschlag. Alle flüchtigen Bestandteile werden im Hochvakuum bei 10⁻³ mbar abgepumpt und in einer Vakuumapparatur bei -196°C aufgefangen. Die Abtrennung des Reaktionsproduktes von n-Pentan, Butylbromid und den Lithiumsalzen erfolgt durch fraktionierte Kondensation durch drei hintereinandergeschaltete Fallen mit den Temperaturen von -10°C, -60°C und -196°C. 1-Brom-2,2-difluor-1-trimethylstannylethen wird in der mittleren Falle als farblose Flüssigkeit aufgefangen.

Ausbeute: 890 mg (2,9 mmol, 40 % d. Th.) 1-Brom-2,2-difluor-1-trimethylstannylethen

¹H-NMR, (ext. CDCl₃): $\delta = 0,18$ ppm (CH₃, s), Referenz s. Lit. [46].

¹⁹F-NMR, (ext. CDCl₃): δ = -61,68 (d, ²J_{FF} = 39,4 Hz), -65,7 ppm (d, ²J_{FF} = 39,4 Hz), Referenz s. Lit. [46].

¹¹⁹Sn-NMR, (CDCl₃): $\delta = 6,21$ (C-5, t, ²J_{*CF*} = 25,59 Hz), 170,14 ppm (C-4,6, dd, ¹J_{*CF*} = 261,11 Hz, ³J_{*CF*} = 10,03 Hz), Referenz s. Lit. [46].

3.2.3.3 CICCCl, XCCCN (X = Br, F) und FCCX (X = F, Cl, Br)

• Thermolyse von 4,5,6-Trichlor-1,2,3-triazin, Synthese von Dichlorethin

Ein Quarzrohr, das auf einer Seite mit einer Hochvakuumapparatur und auf der anderen Seite mit einer Schraubampulle verbunden ist, wird durch einen Ofen (l = 50 cm) auf 700°C erhitzt. Die Schraubampulle, in der sich ca. 50 mg (0,27 mmol) 4,5,6-Trichlor-1,2,3-triazin befinden, wird für eine konstante Verdampfungsrate auf ca. 50°C erhitzt. Die Thermolyseprodukte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -78°C, -126°C und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 4,5,6-Trichlor-1,2,3-triazin, in der mittleren Kühlfalle kondensiert Dichlorethin zusammen mit Chlorcyan. Die Trennung von Dichlorethin und Chlorcyan gelingt durch mehrmalige Kondensation über eine auf -102°C gekühlte Falle, in der Chlorcyan als schwererflüchtige Komponente kondensiert.

Ausbeute: 15 mg (0,16 mmol, 60 % d. Th.) Dichlorethin

IR (10 mbar, Bruker IFS 25): 3231 (w), 2242 (w), 2186 (w), 2067 (w), 1829 (w), 1763 (w), 1455 (w), 1193 (w), 1111 (w), 987 (s), 783 (w), cm⁻¹, Referenz s. Lit. [55,56,57].

• Thermolyse von 4,5,6-Tribrom-1,2,3-triazin, Synthese von Bromcyanethin

300 mg (0,94 mmol) 4,5,6-Tribrom-1,2,3-triazin werden in vorher beschriebener Weise bei 700°C im Hochvakuum bei 10⁻³ mbar thermolysiert, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. 70°C erhitzt wird. Die Thermolyseprodukte werden durch zwei hintereinandergeschaltete Kühlfallen mit den Temperaturen -78°C und -196°C geleitet. In der ersten Kühlfalle kondensiert neben nicht umgesetztem 4,5,6-Tribrom-1,2,3-triazin Bromcyanethin, in der zweiten Kühlfalle kondensiert elementares Brom zusammen mit Spuren eines nicht identifizierten Reaktionsproduktes. Die Trennung von Bromcyanethin und 4,5,6-Tribrom-1,2,3-triazin erfolgt durch fraktionierte Kondensation über eine auf ca. 0°C gekühlte Falle, in der Bromcyanethin nicht kondensiert.

Ausbeute: 70 mg (0,53 mmol, 60 % d. Th.) Bromcyanethin

IR (10 mbar, Bruker IFS 25): 2290(s), 2149(m), 1097(w), 962(w), 674(w), 606(w), 484(m) cm⁻¹, Referenz s. Lit. [58].

• Thermolyse von 4,6,5-Difluorchlor-1,2,3-triazin, Synthese von Fluorchlorethin

100 mg (0,66 mmol) 4,6,5-Difluorchlor-1,2,3-triazin werden in vorher beschriebener Weise bei 700°C im Hochvakuum bei 10⁻³ mbar thermolysiert, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. -5°C gekühlt wird. Die anfallenden Produkte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -126°C, -160°C und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 4,6,5-Difluorchlor-1,2,3-triazin, in der mittleren Kühlfalle kondensiert Fluorchlorethin zusammen mit Fluorcyan. In der auf -196°C gekühlten Falle kondensiert neben SiF₄ auch CF₃Cl. Die Trennung von Fluorchlorethin und Fluorcyan gelingt durch mehrmalige Kondensation über eine auf -152°C gekühlte Falle, in der Fluorcyan als schwererflüchtige Komponente kondensiert.

IR (10 mbar, Bruker IFS 25): 2430(m), 2330(m), 1205(s) cm⁻¹, Referenz s. Lit. [43,46].

• Synthese von Fluorbromethin

Über die Thermolyse von 4,6,5-Difluorbrom-1,2,3-triazin

100 mg (0,51 mmol) 4,6,5-Difluorbrom-1,2,3-triazin werden in vorher beschriebener Weise bei 700°C im Hochvakuum bei 10^{-3} mbar thermolysiert, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. 5°C gekühlt wird. Die anfallenden Produkte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -126°C, -160°C und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 4,6,5-Difluorbrom-1,2,3-triazin, in der mittleren Kühlfalle kondensiert Fluorbromethin zusammen mit Fluorcyan und sehr wenig Fluorcyanethin. In der auf -196°C gekühlten Falle kondensiert neben SiF₄ auch CF₃Br. Fraktionierte Kondensation des Gemisches über eine auf -145°C gekühlte Falle führt nur zu einer minimalen Anreicherung von Fluorbromethin. Für spektroskopische Zwecke wurde deshalb auf eine weitere Aufreinigung verzichtet.

Über die Thermolyse von 1-Brom-2,2-difluor-1-trimethylstannylethen

Ein Quarzrohr, das auf einer Seite mit einer Hochvakuumapparatur und auf der anderen Seite mit einer Schraubampulle verbunden ist, wird auf 800° C (Heizzone = 10 cm) erhitzt. Die Schraubampulle, in der sich 110 mg (3,60 mmol) 1-Brom-2,2-difluor-1-trimethylstannylethen befinden, wird für eine konstante Verdampfungsrate auf -10°C abgekühlt. Kurz nach dem ersten Verdampfen wird an der Innenseite des Ofens ein farbloser Niederschlag beobachtet, der auf die Bildung von schwerflüchtigem Trimethylstannylfluorid (Me₃SnF) zurückzuführen ist. Die anfallenden Produkte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -126°C, -160°C und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 1-Brom-2,2-difluor-1-trimethylstannylethen, in der mittleren Kühlfalle kondensiert Fluorbromethin zusammen mit einem nicht identifizierten Kohlenwasserstoff (IR: 2960, 1230, 1100, 918, 617 cm⁻¹), dessen Bildung aus der Reaktion von Methylradikalen erklärt werden kann. Eine weitere Auftrennung gelingt nicht.

IR (10 mbar, Bruker IFS 25): 2370(m), 2310(m), 1177(s) cm⁻¹, Referenz s. Lit. [46].

• Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin, Synthese von Fluorcyanethin

100 mg (0,41 mmol) 4,6,5-Difluoriod-1,2,3-triazin werden in der bei der Thermolyse von 4,5,6-Trichlor-1,2,3-triazin beschriebenen Weise bei 700°C im Hochvakuum bei 10^{-3} mbar thermolysiert, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. 25°C erwärmt wird. Die anfallenden Produkte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -78°C, -160°C und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 4,6,5-Difluoriod-1,2,3-triazin. In der mittleren Kühlfalle schlagen sich zwei weiße Kondensate nieder. Nach Analyse besteht dieses Gasgemisch aus Fluorcyanethin neben wenig CF₃I. In der letzten Falle kondensiert wenig SiF₄.

IR (5 mbar, Bruker IFS 25): 3081(w), 2579(m), 2354(s), 2204(m), 1295(s), 945 (w), 738(m), 660(w), 611(w), 470(m) cm⁻¹, Referenz s. Lit. [54].

• Thermolyse von 4,5,6-Trifluor-1,2,3-triazin, Synthese von Difluorethin

Maximal 100 mg (0,74 mmol) 4,5,6-Trifluor-1,2,3-triazin werden bei 700°C im Hochvakuum bei 10^{-3} mbar thermolysiert, wobei die Schraubampulle für eine konstante Verdampfungsrate auf ca. -18°C gekühlt wird. Die anfallenden Produkte werden durch drei hintereinandergeschaltete Kühlfallen mit den Temperaturen -78°C (CFCl₃/Trockeneis), -182°C (fl. Sauerstoff) und -196°C geleitet. In der ersten Kühlfalle kondensiert nicht umgesetztes 4,5,6-Trifluor-1,2,3-triazin, in der mittleren Kühlfalle kondensiert neben Fluorcyan auch SiF₄, das durch Reaktion von fluorhaltigen Fragmenten mit der Quarzglasoberfläche entsteht. Difluorethin wird in der auf -196°C gekühlten Falle als hochflüchtiges, weißes Kondensat erhalten, das im Verlauf von ca. 30 min. eine kirschrote Färbung annimmt.

IR (2 mbar, Bruker IFS 25): 2130(w), 1350(s) cm⁻¹, Referenz s. Lit. [2,39].
3.2.4 Eigenschaften der Fluorethine $FC \equiv CX (X = F, Cl, Br)$

Die Fluorethine FCCX (X = F, Cl, Br) stellen reaktive, hochflüchtige Moleküle dar. Besonders Difluorethin, das im Hochvakuum nur bei -196°C ausgefroren werden kann, ist selbst bei tiefer Temperatur noch außerordentlich reaktiv. Das macht sich vor allem durch die Farbänderung des anfänglich farblosen Kondensats nach tiefrot hin bemerkbar. Nach Abpumpen von Difluorethin verbleibt ein durchsichtiger, rötlicher Rückstand, der in gängigen organischen Lösungsmitteln (Benzol, Trichlormethan etc.) nicht löslich ist. Bei der Zersetzung von Difluorethin in kondensierter Phase konnte IR-spektroskopisch die Bildung von Tetrafluorethen nachgewiesen werden [2,39]. In der Gasphase ist Difluorethin bei Drucken < 1 mbar für mehrere Stunden haltbar und es tritt nur eine leichte Zersetzung ein. Dagegen ist die Halbwertslebensdauer von Difluorethin bei 2,5 mbar zu $t_{1/2}$ = 13,5 min bestimmt worden [2,39]. Die Zersetzung von Difluorethin führt in der Gasphase zur Bildung der C₃F₄-Isomeren Tetrafluorallen, Tetrafluorpropin und Tetrafluorcyclopropen. Sommer postulierte für die Bildung der Zersetzungsprodukte in kondensierter Phase und Gasphase folgende Reaktionssequenz [2,39]:

$$F \longrightarrow C \equiv C \longrightarrow \{ \text{Zwischenstufe} \} \longrightarrow "C" + CF_2 \quad (3.2)$$

$$F_2C = CF_2 \xleftarrow{-196^{\circ}C}_{CF_2} \quad CF_2 \xrightarrow{\text{Gasphase}}_{FCCF} \quad F_2C \equiv C \equiv CF_2 + F_3C \longrightarrow C \equiv CF$$

$$+ \bigvee_{F \longrightarrow F} F$$

$$(3.3)$$

Demnach zerfällt Difluorethin in das oben erwähnte rötliche kohlenstoffhaltige Polymer und Difluorcarben. Die Annahme, daß das gebildete Polymer vorwiegend aus Kohlenstoff aufgebaut ist, wird durch die im Rahmen dieser Arbeit durchgeführten Untersuchungen gestützt. Besonders aussagekräftig ist hierbei das Time-Of-Flight-Massenspektrum (Abb. 3-7) [59]. Dieses zeigt eine Serie von Fragmenten im Bereich von 300 bis 750 m/e, die sich um jeweils zwölf Masseneinheiten unterscheiden (Kohlenstoff). Der Massenbereich m/e <100 (hier nicht im Detail abgebildet) liefert darüber hinaus Hinweise auf Anteile von Sauerstoff und Fluor. Der Nachweis sauerstoffhaltiger Fragmente läßt den Schluß zu, daß die Schichten Luftsauerstoff aufnehmen, ggf. kommt auch eine Reaktion mit Glasoberflächen hierfür in Frage.

Abb. 3-7: TOF-Massenspektrum des rötlichen Polymers aus der Zersetzung von Difluorethin

Das wird ebenfalls durch Raman- und UV/Vis-Untersuchungen an den Schichten vor und nach Einwirkung von Luftsauerstoff gestützt. Die Banden verschwinden nach ca. 3 Tagen. Die Lage der Raman-Peaks bei 1326 cm⁻¹ und 1555 cm⁻¹, die mit einem relativen Intensitätsverhältnis von ca. 10 : 1 auftreten, deuten auf eine tetraedrische bzw. trigonale Koordination der Kohlenstoffatome in den Schichten hin, wie sie für Diamant und Graphit gefunden werden. Diese Annahme wird durch die nahezu identische Lage der Raman-Wellenzahlen der in dieser Arbeit untersuchten Schichten mit denen von reinem Diamant (1331 cm⁻¹, [60]) und reinem Graphit (1581 cm⁻¹, [60]) belegt.

Abb. 3-8: Raman-Spektrum des rötlichen Polymers aus der Zersetzung von Difluorethin

Im UV/Vis-Spektrum im Bereich von 200-800 nm ist eine starke Absorptionsbande mit einem Maximum bei 445 \pm 10 nm zu erkennen. Aufgrund der asymmetrischen Kurvenform kann eine Aufspaltung jedoch nicht ausgeschlossen werden. Die Lage ist typisch für $\Pi \rightarrow \Pi^*$ Übergänge durchkonjugierter Systeme. Möglicherweise ist die Bande mit dem Träger des Raman-Peaks bei 1555 cm⁻¹ verknüpft.

Abb. 3-9: UV/Vis-Spektrum des rötlichen Polymers aus der Zersetzung von Difluorethin

Zur Ermittlung der Zusammensetzung der Schichten sind ESCA-Untersuchungen geplant.

Fluorchlorethin und Fluorbromethin sind - im Gegensatz zu Difluorethin - in kondensierter Phase als auch in der Gasphase deutlich stabiler. Beide Verbindungen sind bei -196°C unbegrenzt haltbar und können in einer Vakuum-Apparatur ohne Zersetzung gehandhabt werden. Auch bei Drucken < 5 mbar sind sie praktisch stabil. Die im Rahmen dieser Arbeit in wenigen Fällen festgestellte Zersetzung von Fluorchlor- und Fluorbromethin in der Gasphase ist eher auf unsaubere oder undichte Apparaturen zurückzuführen. Das ist vermutlich auch der Grund für die in der Literatur angegebene kurze Lebensdauer bei Drucken von 4 ×10⁻² mbar (FCCCl < 15 min [44], FCCBr < 20 min [45]).

3.3 Dihalogenethine aus Quadratsäurederivaten

Die in Kapitel 3.2.2 beschriebene Synthese von Fluorhalogenethinen durch Thermolyse von 1,2,3-Triazinderivaten stellt eine effiziente Methode dar. Als Nachteil können der relativ hohe zeitliche und präparative Aufwand sowie die schlechte Gesamtausbeute der Reaktionsfolge angesehen werden. Im Rahmen dieser Arbeit sollte untersucht werden, ob halogenierte Ethinderivate, speziell Difluorethin, durch ein präparativ einfacheres Verfahren dargestellt werden können. Besonderes Augenmerk sollte hierbei auch auf die Möglichkeit der Synthese von ¹³C-substituierten Vorstufenmolekülen gelegt werden, die eine isotope Markierung der Kohlenstoffatome im Ethingerüst ermöglichen. Auf der Suche nach geeigneten Molekülen, in der die Ethineinheit schon vorgegeben ist, erschien besonders das Grundgerüst der Quadratsäure (3,4-Dihydroxy-3-cyclobuten-1,2dion) [61] als aussichtsreich, da aus photoelektronenspektroskopischen Untersuchungen von Bock et al. bekannt war, daß Dichlorquadratsäure (3,4-Dichlor-3cyclobuten-1,2-dion), das in einer Einstufenreaktion aus Thionylchlorid und Quadratsäure sehr leicht dargestellt werden kann [62], bei der Thermolyse Dichlorethin und Kohlenmonoxid liefert [63].

Der Grundkörper ist auch im Hinblick auf die Möglichkeit der Einführung von ¹³C-Kohlenstoff sehr interessant, da Quadratsäure durch Elektrolyse von Kohlenmonoxid gewonnen werden kann [64]. ¹³CO ist kommerziell erhältlich, wodurch Quadratsäure auch als ¹³C-markiertes Derivat darstellbar und für weitere Syntheseschritte einsetzbar wäre.

Während neben Dichlorquadratsäure auch Dibrom-, Diiod- sowie die gemischt halogenierten Quadratsäurederivate in der Literatur beschrieben und teilweise durch Verfahren wie IR- [65,66], Mikrowellenspektroskopie [67] und Elektronenbeugung [68,69] ausgiebig untersucht worden sind, wird über den möglichen Difluorethin-Vorläufer, Difluorquadratsäure (3,4-Difluor-3-cyclobuten-1,2-dion), in der Literatur nur sehr wenig berichtet. Erste experimentelle Hinweise finden sich in einer japanischen Patentschrift [70], in der allerdings keine Angaben über Synthese sowie physikalische und chemische Eigenschaften angegeben sind. In einer weiteren Arbeit wird neben der theoretischen Berechnung des IR-Spektrums und der Struktur von Difluorquadratsäure auf MNDO-Niveau auch über zahlreiche Syntheseversuche berichtet [71]. Eine erfolgreiche Isolierung der Verbindung gelang jedoch nicht. Weiterhin wurde die Ringöffnung von Difluorquadratsäure zu cis oder trans 2,3-Difluor-1,3-Butadien-1,4-dion O=C=C(F)-C(F)=C=O auf theoretischer Basis untersucht [72]. Kürzlich wurde über die Geometrieoptimierung auf MP2-Niveau [73] und über die theoretisch berechnete ¹⁷O-NMR-spektroskopische chemische Verschiebung berichtet [74].

Der folgende Teil der Arbeit behandelt die Untersuchung der Eignung von halogenierten Quadratsäurederivaten der Zusammensetzung $Cl_2C_4O_2$, $Br_2C_4O_2$, $BrClC_4O_2$ und $F_2C_4O_2$ als Dihalogenethinquellen. Da in der Literatur keine Angaben über Synthese und Charakterisierung von Difluorquadratsäure $F_2C_4O_2$ vorliegen, wird nachfolgend auch eine einfache Synthese für Difluorquadratsäure sowie deren vollständige Charakterisierung vorgestellt.

3.3.1 Darstellung von Dichlor-, Bromchlor- und Dibromethin aus Quadratsäurederivaten

Der von Bock et al. beschriebene photoelektronenspektroskopische Nachweis von Dichlorethin durch Thermolyse von Dichlorquadratsäure führte zu der Überlegung, ob sich diese Synthesevariante prinzipiell zur Synthese von Dihalogenethinen in präparativen Mengen eignet. Diese Fragestellung erschien nicht uninteressant, da die Darstellung von Dihalogenethinen zwar literaturbekannt, aber nicht immer unkritisch ist, was vor allem auf die Labilität der Ethine gegenüber Luftsauerstoff zurückzuführen ist. Die Thermolyse von Dichlorquadratsäure bei 600°C im Hochvakuum führte erwartungsgemäß zur Bildung von Dichlorethin und Kohlenmonoxid und bestätigt somit die Arbeiten von Bock et al.. Dichlorethin konnte in hochreiner Form in guten Ausbeuten isoliert werden. Analoge Untersuchungen an den Derivaten Dibrom- und Bromchlorquadratsäure, die durch Umsetzung von Dichlorquadratsäure mit Trimethylsilylbromid leicht dargestellt werden können [75], sind nicht beschrieben worden. Um die prinzipielle Eignung von Quadratsäurederivaten für die Halogenethinsynthese auszuloten, wurden beide Verbindungen im Hochvakuum bei 600°C thermolysiert. Die Umsetzung verläuft in beiden Fällen mit hohen Ausbeuten und liefert als Spaltprodukte der Thermolyse Dibrom- bzw. Bromchlorethin neben Kohlenmonoxid. Als Nebenprodukte der Reaktionen konnten Dibrom- und Bromchlorphosgen identifiziert werden. Abb. 3-10 faßt die Reaktionen zusammen.

Abb. 3-10: Darstellung von ClCCCl, ClCCBr und BrCCBr aus halogenierten Quadratsäurederivaten

Die Halogenethine konnten durch Vergleich ihrer IR-Spektren mit literaturbekannten identifiziert werden. Abb. 3-11 zeigt die IR-Spektren aller drei Dihalogenethine.

Abb. 3-11: Gasphasen FT-IR-Spektren von **a**: Dichlorethin, **b**: Bromchlorethin und **c**: Dibromethin

3.3.2 Versuch der Darstellung von Difluorethin aus Difluorquadratsäure

3.3.2.1 Darstellung von Difluorquadratsäure

Die Synthese der bis jetzt noch nicht beschriebenen Verbindung Difluorquadratsäure gelang durch Gasphasenfluorierung von Dichlorquadratsäure mit Kaliumfluorid bei Temperaturen von 250°C im Hochvakuum.

Diese Methode besitzt gegenüber den in der Literatur beschriebenen erfolglosen Darstellungsversuchen den Vorteil, daß Difluorquadratsäure nach Bildung sofort aus der Reaktionszone entfernt wird und somit an einer Weiterreaktion gehindert wird. Difluorquadratsäure ist ein farbloser, im Vakuum leicht flüchtiger Feststoff mit einem Schmelzpunkt von ca. 40°C. Sowohl in Stickstoffatmosphäre als auch im Vakuum bilden sich bei Raumtemperatur spontan große, stark lichtbrechende Kristalle. Die Verbindung ist extrem hydrolyseempfindlich. Mit Spuren von Feuchtigkeit (im Lösungsmittel oder an der Gefäßwandung) reagiert sie sofort zu Quadratsäure.

Als einziges Nebenprodukt der Umsetzung konnte 1,4-Difluor-1,4-dioxo-2-butin, $FC(O)-C \equiv C-C(O)F$ [76] durch IR-, NMR-spektroskopische sowie massenspektrometrische Untersuchungen identifiziert werden. Diese Beobachtung ist überraschend. Die Verbindung besitzt die gleiche Molmasse und ist somit ein Strukturisomeres der Difluorquadratsäure.

3.3.2.2 Thermolyse von Difluorquadratsäure

Die Möglichkeit, Difluorethin durch Thermolyse von Difluorquadratsäure zu erzeugen, erschien sehr aussichtsreich, da im Massenspektrum der Difluorquadratsäure als Hauptsignal die C_2F_2 -Einheit bei m/e = 62 auftritt (s. Kap. 3.3.3.1). Dem widersprechend führte die Thermolyse von Difluorquadratsäure bei 700°C im Hochvakuum nicht zur gewünschten Bildung von Difluorethin, was sich schon dadurch bemerkbar machte, daß die charakteristische rötliche Verfärbung des Difluorethinkondensats bei -196°C (Kap.3.2.4) ausblieb. Die IRspektroskopische Untersuchung der bei der Thermolyse erhaltenen Kondensate (-126°C, -160°C und -196°C Fraktionen) ergab, daß diese aus mehreren Komponenten bestehen. Zweifelsfrei identifiziert werden konnten Difluorpropadienon,

Siliciumtetrafluorid und drei C_3F_4 -Isomere Tetrafluorallen, Tetrafluorcyclopropen und Tetrafluorpropin. Daneben treten im IR-Spektrum weitere Banden auf, deren Herkunft bisher noch ungeklärt ist. Bei Erhöhung der Thermolysetemperatur auf ca. 1000°C konnte bei ansonsten gleicher Zusammensetzung des Gasgemisches kein Difluorpropadienon mehr nachgewiesen werden.

Abb. 3-12: Reaktionsschema der Thermolyse von Difluorquadratsäure

Die C_3F_4 -Isomere stellen auffälliger Weise die Zerfallsprodukte von Difluorethin dar (Kap. 3.2.4). Diese Beobachtung legt die Vermutung nahe, daß Difluorethin zwar gebildet wird, sich jedoch im Thermolyseofen zersetzt. Der Nachweis des extrem instabilen Difluorpropadienons, dessen Bildung durch Kohlenmonoxidabspaltung und 1,2-Fluoratom-Verschiebung erklärt werden kann, steht im Einklang mit Untersuchungen von Brahms et al. [77] sowie McNaughton et al. [37], die bei der Thermolyse des strukturell verwandten Difluormaleinsäureanhydrids ebenfalls Difluorpropadienon nachweisen konnten. Den Autoren zufolge zerfällt das primär gebildete Difluorpropadienon unter Kohlenmonoxidabspaltung zu Difluorethin. Auf Difluorquadratsäure übertragen kann folgender Reaktionsmechanismus postuliert werden:

Abb. 3-13: Postulierter Zerfallsweg von Difluorquadratsäure

3.3.3 Experimentelles

3.3.3.1 Dihalogenderivate der Quadratsäure

• Dichlorquadratsäure (3,4-Dichlor-3-cyclobuten-1,2-dion)

11,4 g (0,10 mol) Quadratsäure werden unter Stickstoffatmosphäre in einem 250ml-Dreihalskolben, versehen mit Rückflußkühler und Septum, vorgelegt und in 100 ml getrocknetem Benzol suspendiert. Über das Septum werden 17,0 ml (0,24 mol) frisch destilliertes Thionylchlorid und ca. 5 Tropfen getrocknetes Dimethylformamid als Katalysator zugegeben. Anschließend kocht man vier Stunden unter Rückfluß, wobei sich die überstehende Lösung stark gelb färbt. Nach Abkühlen auf Raumtemperatur wird die Reaktionsmischung unter Stickstoffatmosphäre filtriert. Das dunkelgelbe Filtrat engt man im Vakuum bis zur Trockne ein und überführt den zurückbleibenden dunkelgelben Feststoff in eine Sublimationsapparatur. Anschließende Sublimation bei 60°C im Hochvakuum bei 10⁻³ mbar ergibt Dichlorquadratsäure in Form von hellgelben, hydrolyseempfindlichen Kristallen.

Ausbeute: 9,4 g (62,3 mmol, 62 % d. Th.) Dichlorquadratsäure

IR (KBr, Bruker IFS 25): 2214 (w), 2093 (w), 2060 (w), 2036 (w), 1933 (w), 1809 (s), 1773 (s), 1533 (s), 1472 (m), 1382 (w), 1262 (w), 1174 (s), 1044 (s), 991 (w), 970 (m), 884 (s), 856 (m), 734 (m), 724 (w), 506 (s) cm⁻¹, Referenz s. Lit. [62].

¹³C-NMR (CDCl₃): δ = 187,9 (s), 189,4 (s) ppm.

• Dibromquadratsäure (3,4-Dibrom-3-cyclobuten-1,2-dion)

In einer Schraubampulle werden ca. 150 mg (1 mmol) Dichlorquadratsäure vorgelegt und innerhalb ca. 10 min mit 500 mg (3,3 mmol) Trimethylsilylbromid versetzt. Anschließend wird 30 min bei 70°C gerührt, wobei gebildetes Trimethylsilylchlorid aus dem Reaktionsgemisch laufend abdestilliert wird. Der Rückstand wird im trockenen Stickstoffstrom in eine Sublimationsapparatur überführt und bei ca. 50°C im Hochvakuum bei 10⁻³ mbar sublimiert, wobei hellgelbe hydrolyseempfindliche Kristalle von Dibromquadratsäure erhalten werden.

Ausbeute: 140 mg (0,58 mmol, 58 % d. Th.) Dibromquadratsäure

IR (KBr, Bruker IFS 25): 1810 (s), 1510 (s), 1125 (m), 1045 (m), 1011 (w), 843 (w), 839(w), 712 (w), 490 (w), Referenz s. Lit. [75].

• Bromchlorquadratsäure (3-Brom-4-chlor-3-cyclobuten-1,2-dion)

In einer Schraubampulle werden ca. 200 mg (2,0 mmol) Dichlorquadratsäure vorgelegt und innerhalb ca. 10 min mit 300 mg (2,0 mmol) Trimethylsilylbromid versetzt. Anschließend wird 30 min bei 70°C gerührt, wobei gebildetes Trime-thylsilylchlorid aus dem Reaktionsgemisch laufend abdestilliert wird. Der Rückstand wird im trockenen Stickstoffstrom in eine Sublimationsapparatur überführt und bei ca. 50°C im Hochvakuum bei 10⁻³ mbar sublimiert, wobei nach der IR-spektroskopischen Untersuchung Bromchlorquadratsäure im Gemisch mit jeweils ca. 25 % Dichlorquadratsäure und Dibromquadratsäure erhalten werden.

Ausbeute: 350 mg (1,5 mmol, 60 % d. Th.) Gemisch aus ca. 25 % Dichlorquadratsäure, ca. 25 % Dibromquadratsäure und ca. 50 % Bromchlorquadratsäure

IR (KBr, Bruker IFS 25): 1524 (s), 1155 (m). Ermittlung der ungefähren prozentualen Zusammensetzung des Gemischs erfolgte am IR-Peak bei 1155 cm⁻¹. Eine direkte weitere Zuordnung anderer Signale war nicht möglich, da diese mit Banden von Dichlorquadratsäure und Dibromquadratsäure stark überlappt sind, Referenz s. Lit. [65].

• Difluorquadratsäure (3,4-Difluor-3-cyclobuten-1,2-dion)

Ein 50 cm langes Aluminiumoxidrohr wird auf seiner ganzen Länge mit ca. 30 g Kaliumfluorid gleichmäßig befüllt. Das Rohr wird an einer Seite mit einer Hochvakuumapparatur verbunden, die andere Seite wird mit einer kleinen Schraubampulle, befüllt mit 1,77 g (11,8 mmol) Dichlorquadratsäure, verschlossen. Bei geschlossener Schraubampulle wird das Aluminiumoxidrohr im Hochvakuum bei 10⁻³ mbar ca. 12 h auf 600°C erhitzt. Anschließend wird Dichlorquadratsäure bei Raumtemperatur innerhalb von 8 h verdampft und im Hochvakuum (10⁻³ mbar) bei 250°C über das Kaliumfluoridbett geleitet. Die Fluorierungsprodukte werden in den Kühlfallen der Hochvakuumapparatur bei -60°C, -126°C und -196°C aufgefangen. In der ersten Kühlfalle kondensiert Difluorquadratsäure (3,4-Difluor-3cyclobuten-1,2-dion) in Form hellbeiger Kristalle, die bei Handwärme zu einer klaren hellgelben Flüssigkeit schmelzen. In der zweiten Kühlfalle kondensiert 1,4-Difluor-1,4-dioxo-2-butin FC(O)-C=C-C(O)F als farbloser Feststoff. In der mit fl. Stickstoff gekühlten Falle fallen kleine Mengen von Difluorphosgen an, dessen Bildung durch die Reaktion von Kohlenmonoxid mit Kaliumfluorid erklärt werden kann. Zur weiteren Aufreinigung wird zweimal über eine auf -30°C gekühlte Falle umkondensiert, in der Difluorquadratsäure als farbloser Feststoff kondensiert.

Ausbeute: 0,99 g (8,4 mmol, 72 % d. Th.) stark lichtbrechende Kristalle von Difluorquadratsäure

Massenspektrum

Das Massenspektrum (Abb. 3-14) wird in charakteristischer Weise durch Fragmente geprägt, die durch Kohlenmonoxidverlust entstehen. Der Basispeak ist dem Fragment $FC \equiv CF^+$ (m/e = 62) zuzuordnen, das durch Abspaltung von zwei Kohlenmonoxidmolekülen gebildet wird. Daneben tritt ein $F_2C_3O^+$ (m/e = 90) Fragment mit hoher Intensität auf, dessen Entstehung durch einfachen Kohlenmonoxidverlust erklärt werden kann. Hierbei kann es sich um das cyclische Difluorcyclopropen- oder um das Difluorpropadienon-Kation handeln. Das Molekülfragment $F(CO)C=C^+$ (m/e = 71) resultiert aus weiterer Fluorabspaltung. Die hohe Intensität des Molekülpeaks bei m/e = 118 deutet auf eine hohe Skelettstabilität von Difluorquadratsäure hin.

m/e	Intensität [%]	Molekülfragment
118	52	$C_4O_2F_2^{+}$
90	78	$C_3OF_2^+$
71	16	C_3OF^+
62	100	$C_2 F_2^{+}$
43	13	C_2F^+

Tabelle 3-1: Charakteristische Molekülfragmente von Difluorquadratsäure

Abb. 3-14: Massenspektrum von Difluorquadratsäure

¹³C-NMR- und ¹⁹F-NMR-Spektrum

Im ¹³C-NMR-Spektrum werden jeweils X-Teile von ABX-Spektren für die Olefin und Carbonyl ¹³C-Atome erwartet. Das Signal der olefinischen Kohlenstoffatome läßt sich jedoch näherungsweise als Spektrum 1. Ordnung, mit einer ¹J_{CF}- und ²J_{CF}-Kopplung, interpretieren. Die ¹J_{CF}-Kopplungskonstante ist mit 364 Hz ungewöhnlich groß während die ²J_{CF}-Kopplungskonstante mit 2,7 Hz ungewöhnlich klein ist. Allerdings findet man beispielsweise bei dem strukturell verwandten Difluorcyclopropenon C₃F₂O ähnliche Werte (¹J_{CF} = 520 Hz, ²J_{CF} = 8,7 Hz, [78]). Die ¹J_{CF}-Kopplungskonstante dieser Verbindung ist der größte bekannte Wert. Aus den ¹³C-Satelliten im ¹⁹F-NMR-Spektrum (Abb. 3-16) läßt sich neben der ¹J_{CF}- und ²J_{CF}-Kopplungskonstanten auch die ³J_{FF}-Kopplungskonstante entnehmen. Sie beträgt 1,0 Hz und ist ähnlich der ³J_{FF}-Kopplungskonstanten von Difluorethin FC≡CF (2,1 Hz, [2,39]) sehr klein.

Abb. 3-15: ¹³C-NMR-Spektrum von reiner Difluorquadratsäure, gemessen bei einer Meßfrequenz von 62,86 MHz, (C_6D_6 extern). Ausschnitt: in C_6D_6 gelöste Difluorquadratsäure, gemessen bei einer Meßfrequenz von 100,63 MHz.

Das Signal der Carbonyl-Kohlenstoffatome im ¹³C-NMR-Spektrum, gemessen bei einer Meßfrequenz von 62,86 MHz, erscheint als Pseudo-Dublett von Dubletts, Abb. 3-15. Bei einer Meßfrequenz von 100,63 MHz zeigen die beiden inneren Linien dieser Signalgruppe eine weitere Aufspaltung (s. Ausschnitt, Abb. 3-15). Es treten die erwarteten sechs Linien im X-Teil dieses ABX-Spektrums auf. Die Simulation ergab (g-NMR, [79]) die in Tabelle 3-2 aufgeführten Kopplungskonstanten und chemischen Verschiebungen. Die äußeren Linien besitzen die relative Intensität 1 und die Frequenzen $\nu_x \pm (J_{AX} + J_{BX})$. Für die ¹³C-Satelliten im ¹⁹F-NMR-Spektrum werden zwei AB-Teilspektren erwartet (AB¹ und AB², Abb. 3-16). Die inneren Linien eines der beiden AB-Teilspektren (AB²) fallen bei einer Meßfrequenz von 376,5 MHz zu einem Singulett zusammen. Die äußeren Linien können - in Übereinstimmung mit der Simulation - experimentell nicht beobachtet werden. Die chemischen Verschiebungen der ¹⁹F-Kerne betragen δ ¹⁹F_{AB}1 = -79,256 und δ ¹⁹F_{AB}2 = -79,294 ppm mit den Kopplungskonstanten J_{AX} = 37,2 und J_{BX} = 8,1 Hz. Die chemische Verschiebung des ¹⁹F-Hauptsignals δ (¹⁹F-¹²C) beträgt -79,261 ppm. Es liegt somit in einem ähnlichen Bereich wie das von Difluorcyclopropenon C₃F₂O (-82,3 ppm, [78]).

¹³ C-NMR		¹⁹ F-NMR				
		$\delta(^{19}F^{-12}C)$	-79,261			
$\delta(^{13}C=C)$	186,8	$\delta({}^{19}F^{12}C) - \delta({}^{19}F^{-13}C)$	-0,123			
		$\delta({}^{19}F^{12}C) - \delta({}^{19}F - C^{13}C)$	-0,031			
${}^{1}\mathbf{J}_{CF}$	364,0	${}^{1}\mathbf{J}_{CF}$	364,0			
$^{2}\mathbf{J}_{CF}$	2,7	${}^{3}\mathbf{J}_{FF}$	1,0			
$\delta(^{13}C=0)$	186,0	$\delta({}^{19}F^{12}{ m C})$ - $\delta^{19}{ m F_{AB}}$ 1	0,005			
		$\delta({}^{19}F^{12}{ m C})$ - $\delta^{19}{ m F_{AB}2}$	-0,033			
\mathbf{J}_{AX}	37,2	\mathbf{J}_{AX}	37,2			
\mathbf{J}_{BX}	8,1	\mathbf{J}_{BX}	8,1			
		${}^{3}\mathbf{J}_{FF}$	1,0			

 Tabelle 3-2:
 NMR-Daten von Difluorquadratsäure [a]

[a] Messungen in C_6D_6 (intern), δ in [ppm], J in [Hz]; Werte aus Simulation des experimentellen Spektrums.

Abb. 3-16: ¹⁹F-NMR-Spektrum von Difluorquadratsäure mit ¹³C-Satelliten, gemessen bei einer Meßfrequenz von 376,5 MHz.

Die sp²-Natur aller vier Kohlenstoffatome des Ringgerüsts macht plausibel, daß für Difluorquadratsäure eine planare Struktur mit C_{2v} -Symmetrie angenommen werden kann. Diese Vermutung wird auch durch die Elektronenbeugungs-Untersuchungen an Dichlor- und Dibromquadratsäure [68,69] sowie durch die mikrowellenspektroskopischen Untersuchungen an Dichlorquadratsäure [67] gestützt.

Für Difluorquadratsäure erwartet man als 8-atomiges Molekül nach der 3N-6-Regel 18 Normalschwingungen, die sich für ein Molekül mit C_{2v} -Symmetrie auf folgende Schwingungsrassen verteilen:

 $\Gamma_{vib} = 7a_1 + 6b_2 + 3a_2 + 2b_1$

Mit Ausnahme der a₂-Schwingungen, die nur Raman-aktiv sind, sollten sowohl im IR- als auch im Ramanexperiment alle übrigen Schwingungen beobachtbar sein. Die Zuordnung der Schwingungen wurde im wesentlichen durch Vergleich des experimentellen IR-Spektrums mit den literaturbekannten IR-Spektren von Dichlor- und Dibromquadratsäure durchgeführt, die aufgrund ihrer engen strukturellen Verwandschaft einige IR-spektroskopische Analogien aufweisen [65]. Besonders hilfreich bei der Zuordnung war das von Dr. A. Gelessus (Arbeitsgruppe Prof. W. Thiel, Zürich) auf MP2-Niveau berechnete IR-Spektrum [80], aus dem neben den Schwingungswellenzahlen auch Intensitäten hervorgehen. Eine eindeutige Identifizierung der a₁-Schwingungen ermöglichte das Raman-Spektrum von in CDCl₃ gelöster Difluorquadratsäure über die Bestimmung des Polarisationsgrades (Tabelle 3-3, Spalte 2).

Abb. 3-17: Gasphasen FT-IR-Spektrum von Difluorquadratsäure

Von den 7 totalsymmetrischen a_1 -Schwingungen wurden im IR-Experiment (Tabelle 3-3, Spalte 1) alle im Meßbereich > 400 cm⁻¹ erwarteten Schwingungen $v_1 - v_5$ gefunden. Zusätzlich konnte noch die Lage der v_6 -Schwingung aus dem Raman-Spektrum festgelegt werden. Wie im Falle von Dichlor- und Dibromquadratsäure ist v_2 , welche die v(C=C)-Schwingung beschreibt, die intensivste Linie. v_1 und v_4 ist nicht zweifelsfrei zuzuordnen, da im Erwartungsbereich sowohl im IR- als auch im Raman-Spektrum ein Bandenpaar mit a_1 -Symmetrie auftritt. Möglicherweise liegt hier eine Fermi-Resonanz vor. Von den b_2 -Schwingungen konnten v_{13} bis v_{17} zugeordnet werden. Die intensitätsstarke v_{13} liegt in der Nähe von v_1 und beide fallen in den Erwartungsbereich der sym. und asym. v(C=O)-Schwingung. v_{14} weist für eine asym. v(C-F)-Schwingung eine ungewöhnlich hohe Lage auf. Diese Beobachtung kann darauf zurückgeführt werden, daß starke Kopplungen mit Gerüstschwingungen auftreten. Insgesamt wird für alle beobachteten Schwingung mit dem berechneten Spektrum gefunden.

		Experin	Theorie	
		1[a]	2[b]	3[c]
a_1	ν_1	1893/1873 [17]	1885[9]/1855 [12], 0	1885 [43]
a_1	ν_2	1694 [100]	1685 [100], 0,1	1740 [364]
a_1	ν_3	1139 [3]	1152 [10], 0,4	1170 [4]
a_1	$ u_4$	941 [13]/ 910 [11]	960 [5], 0,5/ 940 [5], 0,5	950 [72]
a_1	ν_5	644 [7]	655 [d]	652 [27]
a_1	ν_6	-	296 [12], 0,5	286 [6]
a_1	${m u}_7$	-	-	219 [0]
b_2	v_{13}	1836 [59]	1815 [42], 0,7	1855 [151]
b_2	v_{14}	1389 [86]	-	1444 [272]
b_2	ν_{15}	1018 [9]	1028 [3]	1035 [29]
b_2	v_{16}	-	785 [7], 0,7	785 [2]
b_2	${m u}_{17}$	-	598 [16], 0,7	587 [3]
b_2	${m u}_{18}$	-	-	270 [5]
a_2	${m u}_8$	-	-	682 [0]
a_2	ν_9	-	565 [9], 0,7	546 [1]
a_2	ν_{10}	-	-	99 [0]
b_1	ν_{11}	-	-	494 [0]
b_1	ν_{12}	-	230 [38], 0,7	223 [15]

Tabelle 3-3: IR- und Raman Wellenzahlen von Difluorquadratsäure

[a] IR-Gasphasen-Wellenzahlen. Relative Intensitäten in eckigen Klammern.

[b] Raman-Wellenzahlen, gemessen in CDCl₃. Relative Intensitäten in eckigen Klammern. Der Depolarisationgrad wurde nach $\rho = I / I$ berechnet.

[c] Lit. [80], MP2/TZ2Pf. Intensitäten in eckigen Klammern [km/mol].

[d] Überlagert von der ν_s CCl₃.

3.3.3.2 Thermolyse von Dichlor-, Dibrom- Bromchlor- und Difluorquadratsäure

• Dichlorquadratsäure, Darstellung von Dichlorethin

Ein Quarzrohr, das an einem Ende mit einer Hochvakuumapparatur und am anderen Ende mit einer Schraubampulle verbunden ist, wird auf 600°C erhitzt. Innerhalb ca. 1 h leitet man 130 mg (0,87 mmol) Dichlorquadratsäure, die sich in der Schraubampulle befindet, durch das aufgeheizte Rohr und fängt die Thermolyseprodukte in drei hintereinandergeschalteten Kühlfallen der Hochvakuumapparatur bei Temperaturen von -78°C, -126°C und -196°C auf. In der ersten Kühlfalle befinden sich, neben nichtumgesetzter Dichlorquadratsäure, Spuren einer nicht eindeutig identifizierten Flüssigkeit. In der mittleren Kühlfalle wird als Hauptprodukt der Thermolysereaktion Dichlorethin aufgefangen.

Ausbeute: 45 mg (0,47 mmol, 55 % d. Th.) Dichlorethin

IR (15 mbar, Bruker IFS 25): 3231 (w), 2242 (w), 2186 (w), 2067 (w), 1829 (w), 1763 (w), 1455 (w), 1193 (w), 1111 (w), 987 (s), 783 (w), 506 (m) cm⁻¹, Referenz s. Lit. [55,56,57].

• Dibromquadratsäure, Darstellung von Dibromethin

100 mg (0,42 mmol) Dibromquadratsäure werden in gleicher Weise wie für die Thermolyse von Dichlorquadratsäure beschrieben, thermolysiert. Dibromethin schlägt sich in Form eines farblosen Niederschlags in der auf -78°C gekühlten Falle ab. Fraktionierte Kondensation über eine auf -30°C gekühlte Falle, in der nicht umgesetzte Dibromquadratsäure kondensiert, ergibt Dibromethin als luftempfindliche Flüssigkeit.

Ausbeute: 42 mg (0,17 mmol, 40 % d. Th.) Dibromethin

IR (5 mbar, Bruker IFS 25): 832 (s), 446 (s) cm⁻¹, Referenz s. Lit. [55,56].

• Bromchlorquadratsäure, Darstellung von Bromchlorethin

300 mg eines Gemisches aus Dichlor-, Dibrom-, und Bromchlorquadratsäure im Verhältnis 1:1:2 (0,77 mmol bezogen auf Bromchlorquadratsäure) werden in gleicher Weise wie für die Thermolyse von Dichlorquadratsäure beschrieben, thermolysiert. In der auf -78°C gekühlten Falle kondensiert, neben sehr wenig nicht umgesetzter Dichlor-, Dibrom-, und Bromchlorquadratsäure, Dibromethin. In der auf -126°C gekühlten Falle kondensieren Bromchlorethin neben Dichlor- ethin. Die Trennung beider Komponenten erfolgt durch zweimalige Kondensati-

on über eine auf -95 bis -102°C gekühlte Falle. Bromchlorethin kondensiert in ersterer Falle als schwererflüchtige Verbindung.

Ausbeute: 67 mg (0,34 mmol, 44 % d. Th.) Bromchlorethin

IR (4 mbar, Bruker IFS 25): 3145 (w), 2245 (m), 2224 (m), 2215 (m), 2190 (m), 918 (s), 475 (m), Referenz s. Lit. [55,56].

• Difluorquadratsäure

Im Hochvakuum (10^{-3} mbar) werden 50 mg (0,43 mmol) Difluorquadratsäure bei 700°C thermolysiert. Die Verbindung wird innerhalb einer halben Stunde aus einer Schraubampulle mit Young-Hahn, die auf -15°C gekühlt wird, durch das heiße Quarzrohr verdampft. Die bei der Thermolyse entstehenden Produkte werden in den Kühlfallen einer Hochvakuumapparatur bei -126°C, -160°C und -196°C aufgefangen. In der ersten Kühlfalle findet sich ein gelbes Polymer und Spuren eines Gases, welches nicht identifiziert werden konnte. In der zweiten Kühlfalle kondensieren neben einem gelben Polymer, das sich bei Kontakt mit Luft über orange und rot nach schwarz färbt, ein Gasgemisch, das neben einem nicht identifizierten Gas im wesentlichen aus Difluorpropadienon [82] besteht. Daneben sind auch IR-Banden von Tetrafluorcyclopropen [81] zu erkennen. Die Polymerbildung ist auf die Zersetzung von Difluorpropadienon zurückzuführen und ist schon in der Literatur beschrieben [82]. Die Instabilität der Verbindung wird auch durch die langsame Zersetzung in der Gasphase deutlich, die mit der Bildung eines gelben Niederschlags einhergeht. Die letzte Kühlfalle enthält ein komplexes Gasgemisch, dessen Komponenten IR-spektroskopisch und teilweise massenspektrometrisch als Tetrafluorallen [83], Tetrafluorpropin [84], Tetrafluorcyclopropen [81], sowie Spuren von Siliciumtetrafluorid identifiziert werden können. Die beobachteten IR-Absorptionen sind in Tabelle 3-4 aufgeführt.

Diese Arbeit	Literatur	Zuordnung
536(w)	523	Difluorpropadienon [82]
604(w)	611	Difluorpropadienon
650(w)	656	Difluorpropadienon
821(w)	822	Difluorpropadienon
890(w)	892	Tetrafluorcyclopropen [81]
930 (m)	929	Tetrafluorcyclopropen
940(s)	-	?
980(m)	-	?
1037(m)	1040	Tetrafluorallen [83]
1067(s)	-	?
1100(m)	1100	Tetrafluorpropin [84]
1127(m)	-	?
1179(m)	1177	Tetrafluorpropin
1193(m)	1194	Difluorpropadienon
1197(w)	-	?
1248(m)	1248	Difluorpropadienon
1278(s)	-	?
1328(s)	1331	Tetrafluorcyclopropen
1365(m)	1367	Tetrafluorcyclopropen
1735(s)	-	?
1764(s)	1764	Difluorpropadienon
1841(m)	-	?
2052(m)	2052	Tetrafluorallen
2165(s)	2169	Difluorpropadienon
2258(s)	-	?
2333(s)	-	?
2370(m)	2370	Tetrafluorpropin

Tabelle 3-4: Wellenzahlen der Thermolyseprodukte von Difluorquadratsäure

Wird die Thermolyse dagegen bei 1000°C durchgeführt, läßt sich kein Difluorpropadienon mehr nachweisen. Die übrigen Produkte werden in nahezu gleicher Verteilung wieder gefunden.

3.4 Symmetrie und Grundschwingungen der Ethine $FC \equiv CX$ (X = F, Cl, Br)

Trotz ihrer engen Verwandtschaft unterscheiden sich die IR-Spektren der Ethine des Typs FC \equiv CX (X = F, Cl, Br) erheblich. FCCF gehört aufgrund seiner horizontalen Spiegelebene zur Punktgruppe D_{∞h}, während FCCCl und FCCBr der Punktgruppe C_{∞v} zugeordnet werden. FCCF besitzt die Symmetrieoperationen:

E,
$$2C_{\Phi}$$
, C'₂, i, $2i C_{\Phi}$, i C'₂ (3.6)

Man findet folgende Charaktertafel:

(3.7)

$D_{\infty h}$	Е	$2C_{\Phi}$	C'2	i	$2iC_{\Phi}$	C'2	$h = \infty$	
$\Sigma^+_{\ g}$	1	1	1	1	1	1	z^2, x^2+y^2	
Σ^+_{u}	1	1	1	-1	-1	-1		
Σ_{g}^{-}	1	1	-1	1	1	-1		R _z
Σ_u	1	1	-1	-1	-1	1	Z	
$\Pi_{ m g}$	2	$2\cos\Phi$	0	0	$-2\cos\Phi$	0	(xz,yz)	(R_z, R_y)
Π_{u}	2	$2\cos\Phi$	0	0	$2\cos\Phi$	0	(x,y)	
$\Delta_{ m g}$	2	$2\cos 2\Phi$	0	0	$2\cos 2\Phi$	0	(xy,x^2-y^2)	
Δ_{u}	2	$2\cos 2\Phi$	0	0	$-2\cos 2\Phi$	0		

Tabelle 3-5: Charaktertafel der Punktgruppe D_{∞h}

Die Ethine $FC \equiv CX$ (X = Cl, Br) besitzen die Symmetrieoperationen:

E, C₂, 2C_{Φ}, σ_v

Man findet folgende Charaktertafel:

Tabelle 3-6: Charaktertafel der Punktgruppe $C_{\infty v}$

$C_{\infty v}$	E	C_2	$2C_{\Phi}$	$\sigma_{ m v}$	$h=\infty$	
Σ^+	1	1	1	1	z, z^2, x^2+y^2	
Σ^{-}	1	1	1	-1		$\mathbf{R}_{\mathbf{z}}$
П	2	-2	$2\cos\Phi$	0	(x,y)(xz,yz)	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$
Δ	2	2	$2\cos 2\Phi$	0	(xy, x^2-y^2)	
		•	•			

Nach Ausreduzieren und Abzug der Rotations- bzw. Translationstransformationen ergibt sich für die Anzahl der Grundschwingungen:

FC=CF:
$$\Gamma_{\rm vib} = 2 \Sigma_{\rm g}^{+} + \Sigma_{\rm u}^{+} + \Pi_{\rm g} + \Pi_{\rm u}$$
(3.8)

und

FC=CX (X = Cl, Br): $\Gamma_{vib} = 3 \Sigma^+ + 2 \Pi.$ (3.9)

Im Falle von Difluorethin sind nur die Schwingungen der Rasse Σ_u^+ und Π_u infrarotaktiv, da nur diese mit einer periodischen Änderung des Dipolmomentes verknüpft sind. Gleichzeitig gilt das Alternativverbot, d. h. die Schwingungen der Rasse Σ_g^+ und Π_g sind nur im Ramanexperiment beobachtbar. Demgegenüber gelten für die unsymmetrisch substituierten Ethine FC=CX (X = Cl, Br) keinerlei Einschränkungen; alle Schwingungen sind sowohl IR- als auch Raman-aktiv.

Abb. 3-18: Schwingungsbewegungen von $FC \equiv CF$ und $FC \equiv CX$ (X = Cl, Br)

3.4.1 Niedrigaufgelöste Übersichtsspektren der Ethine $FC \equiv CX (X = Cl, Br)$

Die niedrigaufgelösten IR-Spektren der Ethine $FC \equiv CX$ (X = Cl, Br), die durch Thermolyse der 4,6,5 Difluorhalogen-1,2,3-triazine synthetisiert wurden, sind in Abb. 3-19 und Abb. 3-20 dargestellt. Hieraus ist ersichtlich, daß die vorher angesprochene Abtrennung von Fluorcyan sehr problematisch ist, da in beiden Spektren Banden dieses Moleküls identifiziert werden können. Das Spektrum von FCCBr weist darüber hinaus noch einige Banden von Fluorcyanethin und eines anderen, nicht identifizierten Produktes auf. Die Spektren von Fluorchlorethin und Fluorbromethin zeigen sehr ähnliche Muster, in denen als intensivste Bande die C-F-Streckschwingung ν_2 bei 1209 bzw. 1177 cm⁻¹ auftritt. Die gefundene Lage stimmt gut mit den Literaturwerten überein (FCCCl, 1205 und 1194 cm⁻¹ [43], 1201,9 cm⁻¹ [46]; FCCBr, 1172 cm⁻¹ [46]). Die Niveaus sind im Vergleich zur asymmetrischen C-F-Streckschwingung von Difluorethin ($\nu_3 = 1349$ cm⁻¹) deutlich zu kleineren Wellenzahlen abgesenkt. Im Bereich der C≡C-Streckschwingung sind zwei Banden mittlerer Intensität zu erkennen, die jeweils das Fermi-Dublett aus ν_1 und $2\nu_2$ bilden (FCCCl, 2330 und 2438 cm⁻¹; FCCBr, 2296 und 2364 cm⁻¹). Diese Beobachtung ist für FCCBr schon in der Literatur beschrieben worden [46].

Abb. 3-19: Gasphasen FT-IR-Spektrum von FCCCl im Vergleich zum Raman-Spektrum bei -196°C

Die v_3 -Streckschwingung und die beiden Deformationsschwingungen v_4 und v_5 sind in den niedrigaufgelösten IR-Spektren nicht zu erkennen, da sie im Einklang mit den theoretischen Rechnungen sehr intensitätsschwach sind [85,86]. Um erste Informationen über die Lage von v_3 , v_4 und v_5 zu erhalten, wurde für FCCCl zusätzlich ein Tieftemperatur-Raman-Spektrum aufgenommen, (Abb. 3-19). Die Zuordnung der Schwingungen erfolgte durch Vergleich mit dem theoretisch berechneten Schwingungsspektrum [85]. Der intensitätsstärkste Peak bei 316 cm⁻¹ ist der v_4 -Deformationsschwingung zuzuordnen. Daneben ist eine sehr schwache, aber reproduzierbare Raman-Linie bei 222 cm⁻¹ zu erkennen, die der v_5 -Deformationschwingung tritt im Raman-Spektrum bei 574 cm⁻¹ deutlich auf. Daneben ist bei 659 cm⁻¹ eine weitere Raman-Linie zu beobachten, die auf den Kombinationston $2v_4$ zurückgeht und die mit der IR-Absorption bei 664 cm⁻¹ koinzidiert.

Abb. 3-20: Gasphasen FT-IR-Spektrum von FCCBr (aus 4,6,5-Difluorbrom-1,2,3-triazin).

3.5 Aufnahme der hochaufgelösten FTIR-Spektren der Ethine FC≡CX (X = F, Cl, Br)

Die Aufnahme der hochaufgelösten IR-Spektren erfolgte mit dem Bruker IFS 120 HR-Interferometer in Wuppertal. Die Messungen am Difluorethin, Fluorchlorethin und am Fluorbromethin wurden in einer 1,2 m langen, kühlbaren externen Zelle durchgeführt. In einigen Fällen kamen auch ungekühlte Zellen von 28 cm und 1,5 m Länge zum Einsatz. Der Druck in der Küvette wurde bei den Messungen mit der Langwegzelle direkt durch ein an die Zelle angeflanschtes Baratron gemessen. Difluorethin ist selbst bei einem Druck von ca. 1 mbar und bei -78°C instabil und baut sich innerhalb mehrerer Stunden kontinuierlich ab. FCCCl und FCCBr sind demgegenüber wesentlich stabiler und können, dichte und saubere Zellen vorausgesetzt, mehrere Stunden ohne Zersetzung vermessen werden. Lediglich bei der Messung im fernen Infrarot baute sich FCCCl kontinuierlich innerhalb mehrerer Stunden ab. Allerdings war der Gesamtdruck mit 6 mbar im Vergleich zu anderen Messungen deutlich größer.

Die Kalibrierung der Spektren wurde mit H₂O-Linien in den Bereichen 150 - 250, 500 - 600 und 1300 - 1400 cm⁻¹, oder mit CO₂-Linien im Bereich 600 - 700 und 2300 - 2360 cm⁻¹ durchgeführt [87].

	FCCF	FCCCl					FCCBr				
Spektrum Nr.	1	2	3	4	5	6	7	8	9	10	11
Wellenzahlbereich [cm ⁻¹]	4000-6000	80-350	400-750	360-840	880-1500	1980-2950	2000-2950	100-340	400-850	750-1420	1980-2800
Analyse der Bande(n)	$\nu_2 + 3\nu_3$	ν_5, ν_4	$2\nu_5, \nu_3$	$\nu_4 + \nu_5, 2\nu_4$	ν_2	$\nu_1, 2\nu_2$	$\nu_1 + \nu_5$	ν_5	$\nu_3, \nu_4 + \nu_5, 2\nu_4$	ν_2	$\nu_1, 2\nu_2$
Zellenlänge [mm]	1200	1500	1200	280	257	1200	1200	1200	1200	274	1200
Druck [mbar]	1,2	6	2	6	1,5	0,15	3,5	6	1,7	0,1	0,2
Temperatur [°C]	-78	20	-15	20	20	-40	20	20	-40	20	-40
Fenster	Glas	PE	KBr	KBr	NaCl	CaF_2	CaF ₂	PE	KBr	KBr	KBr
Strahlteiler	CaF ₂	6μm Mylar	3,5µm Mylar	3,5 μm Mylar	KBr	CaF ₂	CaF ₂	6μm Mylar	3,5 μm Mylar	KBr	CaF ₂
Detektor	InSb	Si Bolometer	CuGe	CuGe	MCT 800	InSb	InSb	Si Bolometer	CuGe	MCT 800	InSb
Auflösung 1/MOPD 10 ⁻³ cm ⁻¹	7,7	5,5	4,4	3,4	2,3	3,3	3,9	5,5	4,4	2,2	4,0
Scanzahl	140	50	112	160	100	40	70	23	10	76	4
Signal/Rausch Verhältnis	200:1	50:1	100:1	100:1	200:1	150:1	250:1	70:1	60:1	200:1	80:1

Tabelle 3-7: Meßbedingungen von FCCF, FCCCl und FCCBr

3.6 Beschreibung der registrierten Bandensysteme von FCCX (X= F, Cl, Br)

3.6.1 Intensitäten

Im Spektrum der in dieser Arbeit untersuchten Bande $\nu_2+3\nu_3$ von F¹²C \equiv ¹²CF tritt die Kernspinstatistik deutlich hervor. Alle Übergänge, die von ungeraden J-Werten ausgehen, besitzen dreifach stärkere Intensität im Vergleich zu den von geraden J-Werten ausgehenden Übergängen.

ÜbergangJ"geradeJ"ungerade $\nu_2 + 3\nu_3$ $\Sigma_u^+ \leftarrow \Sigma_g^+$ 13

Tabelle 3-8: Kernspinfaktoren für $\nu_2 + 3\nu_3$ von $F^{12}C \equiv {}^{12}CF$

Als charakteristisch für die Spektren von FC=CCl und FC=CBr ist die in allen Spektren zu beobachtende Isotopie. Im Falle der Chlorverbindung werden demnach aufgrund der natürlichen Isotopie Spektren der Isotope ³⁵Cl (75,77 %)/³⁷Cl (24,23 %) mit einem Intensitätsverhältnis von 3:1 beobachtet. Für die Bromverbindung resultieren aufgrund der natürlichen Isotopie von ⁷⁹Br (50,69 %)/⁸¹Br (49,31 %) Spektren, in der beide Isotope mit einem Intensitätsverhältnis von 1:1 auftreten. Darüber hinaus besitzen beide Moleküle energetisch tiefliegende Deformationsschwingungen, woraus intensitätsstarke heiße Banden resultieren, die angesichts der Kleinheit von B für sehr linienreiche Spektren verantwortlich sind.

3.6.2 Difluorethin: die Bande v_2+3v_3

Oberhalb von 4600 cm⁻¹, der bisherigen Obergrenze der spektroskopischen Untersuchungen, konnte lediglich eine weitere, sehr intensitätsschwache Bande mit P,R-Zweigen und Q-Lücke bei 4821 cm⁻¹ identifiziert werden. Sehr auffällig ist die Kompression der Linien auf der kurzwelligen Seite, was einen sehr kleinen B-Wert des angeregten Schwingungsniveaus belegt. Aufgrund des $\alpha_{\rm B}$ -Wertes und der Lage kann es sich hierbei nur um den Kombinationston $\nu_2+3\nu_3$ handeln. Es treten zwei starke lokale Störungen im Bereich der J'-Werte 28/29 und 32/33 auf.

Abb. 3-21: Übersichtsspektrum der Bande $\nu_2+3\nu_3$

3.6.3 Beschreibung der Banden von FCCCl

3.6.3.1 Die Knickschwingungsbandensysteme v_4 und v_5

Die beobachteten v_4 und v_5 Knickschwingungen von FCCCl weisen die für Knickschwingungen typische PQR-Struktur auf, die aus $\Pi^{e,f} \leftarrow \Sigma^+$ -Übergängen resultiert. Daneben treten noch heiße Banden auf, die sich aus Übergängen aus den $v_4 = 1$ und $v_5 = 1$ Niveaus ergeben. Diese besitzen ebenfalls PQR-Struktur. Die Q-Zweige der kalten und heißen Systeme laufen aufgrund des negativen (α -1/2q')-Wertes bei v_4 und v_5 mit größer werdendem J zu größeren Wellenzahlen. Die Isotopie führt zu einer starken Überlagerung der einzelnen Systeme, die sich besonders im Zentrum der Bande bemerkbar macht. Hierdurch werden die Spektren sehr dicht, was besonders für die Analyse der Q-Zweige sehr problematisch ist. Das intensitätsstärkste System ist dem ³⁵Chlorisotop zuzuordnen. Es besitzt bei v_5 sein Zentrum bei 210,50 cm⁻¹. Der zugehörige Q-Zweig ist ab J = 15 aufgelöst und läßt sich bis J = 93 verfolgen. Das ³⁷Chlorisotop tritt mit einer Verschiebung von -0,62 cm⁻¹ und ca. 1/3 der Intensität des Hauptisotops auf. Auch hier ist der Q-Zweig ab J = 15 aufgelöst, läuft allerdings bei J = 54 in den Q-Zweig des Hauptisotops hinein und kann dementsprechend nicht mehr zugeordnet werden. Von den möglichen heißen Banden ist der intensitätsstarke Q-Zweig des Übergangs $(00002)^{0e} \leftarrow (00001)^{1e,f}$ des ³⁵Cl-Isotops zu kleinen Wellenzahlen verschoben.

Abb. 3-22: Übersichtsspektrum der Bande v_5

Die Q-Zweige der dazugehörigen Subbanden aus den Übergängen $(00002)^{2e,f} \leftarrow (00001)^{1e,f}$ fallen mit denen des Hauptisotops zusammen. Die Niveaus $(00002)^{2e}$ und $(00002)^{0e}$ stehen in ℓ -Typ-Resonanz, die für die Aufspaltung der $\Delta^{e,f}$ -Komponenten verantwortlich ist. Eine weitere Zuordnung, beispielsweise der von $v_4 = 1$ ausgehenden heißen Banden gelang nicht.

Für ν_4 ist aufgrund der schlechten Qualität des registrierten Spektrums bislang nur das ³⁵Cl-Isotop eindeutig zuzuordnen. Der Q-Zweig ist ab J \geq 17 aufgelöst und läßt sich bis J = 85 verfolgen. Der Q-Zweig-Bereich ist - ähnlich wie zuvor bei der ν_5 beschrieben - durch weitere Q-Zweige überlagert, die aus heißen Banden resultieren. Die eindeutige Zuordnung ist jedoch nicht möglich, da in keinem Fall entsprechende P,R-Linien zu identifizieren sind.

Abb. 3-23: Q-Zweig-Region der Bande ν_5 mit Zuordnung

Abb. 3-24: Übersichtsspektrum der Bande v_4

3.6.3.2 Der Bereich zwischen 400 und 700 cm⁻¹

Für FCCCl ist dieser Bereich von besonderem Interesse, da hier die Kombinations- und Obertöne reiner Knickschwingungen $(2\nu_5, \nu_4 + \nu_5 \text{ und } 2\nu_4)$ sowie die C-Cl-Streckschwingung (v_3) auftreten. Für die Knickschwingungen $2v_5$ und $2v_4$ besteht der angeregte Schwingungszustand aus einem Σ^+ -Niveau und einem entarteten $\Delta^{e,f}$ -Niveau. Demgegenüber besitzt der Kombinationston $\nu_4 + \nu_5$ drei Komponenten, die nicht entarteten Σ^+ - und Σ^- -Niveaus und ein entartetes $\Delta^{e,f}$ -Niveau. Aufgrund der Auswahlregeln $\Delta \ell = 0$ und $\Sigma^+ \leftarrow \Sigma^+$ sollten jedoch nur der Übergang $\Sigma^+ \leftarrow \Sigma^+$ -im IR-Experiment beobachtbar sein. Die im Rahmen dieser Arbeit untersuchten Systeme von Kombinationstönen reiner Knickschwingungen weisen alle dieses Muster auf; Hinweise auf $\Delta^{e} \leftarrow \Sigma^{+}$ -Übergänge finden sich nicht. Alle Banden von FCCCl besitzen P,R-Struktur ohne Q-Zweig. Die Systeme zeigen eine Zunahme der Linienabstände im R-Zweig bzw. Abnahme im P-Zweig, das eindeutig auf eine größere Rotationskonstante im angeregten Schwingungszustand hindeutet (B"- B' ist negativ). Dieses Verhalten ist besonders für die hier angesprochenen Kombinationstöne charakteristisch. Für FCC³⁵Cl liegen die Bandenzentren bei 416,84 cm⁻¹ (2 ν_5 , nicht abgebildet), 531,49 cm⁻¹ ($\nu_4 + \nu_5$, Abb. 3-25) und 664,62 cm⁻¹ ($2\nu_4$, Abb. 3-26). Das ³⁷Chlorisotop tritt mit einer Verschiebung von -1,40 cm⁻¹, -0,85 cm⁻¹ und -1,69 cm⁻¹ auf.

Abb. 3-25: Übersichtsspektrum der Bande $\nu_4 + \nu_5$

Abb. 3-26: Übersichtsspektrum der Bande $2\nu_4$ mit Detail in der R-Zweig-Region

Für die Niveaus v_4+v_5 und $2v_4$ konnten die von $v_5 = 1$ ausgehenden heißen Banden nur für das ³⁵Cl-Isotop beobachtet werden. Für diese Systeme ist nur einer der zwei möglichen $\Pi \leftarrow \Pi$ -Übergange zu beobachten. Für das Niveau $2v_4$ finden sich für beide Isotope zusätzlich noch die von $v_4 = 1$ ausgehenden heißen Banden. Diese sind zu höheren Wellenzahlen verschoben. Die Separation von den kalten Systemen beträgt 16,4 cm⁻¹ (³⁵Cl) und 16,0 (³⁷Cl) cm⁻¹. Daneben tritt eine weitere Bande bei ca. 694,98 cm⁻¹ auf. Hierbei handelt es sich um den Übergang (00040)^{2e,f} \leftarrow (00020)^{2e,f}. Die P,R-Linien sind nicht aufgespalten, was auf einen sehr ähnlichen q-Wert des unteren und des oberen Niveaus zurückzuführen ist.

Zwischen $2\nu_4$ und $\nu_4+\nu_5$ liegt das Schwingungsniveau ν_3 (nicht abgebildet) bei 574,3 cm⁻¹. Die Bande besitzt die für einen $\Sigma^+ \leftarrow \Sigma^+$ -Übergang typische P,R-Struktur ohne Q-Zweig. Die Intensität beträgt nur ca. 0,1 % in Bezug zur $\nu_4+\nu_5$ -Bande. Dementsprechend konnte bislang nur die Lage des ³⁵Cl-Isotop festgelegt werden.

3.6.3.3 Der Bereich der C-F-Streckschwingung ν_2

Im Bereich der "pseudo" Streckschwingung ν_2 von FCCCl sind für beide Isotope jeweils drei Banden mit P,R-Struktur ohne Q-Zweig zu beobachten. Im Übersichtsspektrum (Abb. 3-27) sind diese in Richtung abnehmender Intensität als 1A, 1B, 1C (³⁵Cl) und 1A', 1B', 1C' (³⁷Cl) gekennzeichnet. Das relative Intensitätsverhältnis (I) der kalten Systeme beträgt 1A (1,0), 1B (0,8), 1C (0,35) bzw. 1A' (1,0), 1B' (0,8), 1C' (0,25). Die Systeme 1B und 1C sind gegenüber 1A um 8,9 bzw. 27,6 cm⁻¹ verschoben. Die Verschiebungen sind mit 9,0 bzw. 27,6 cm⁻¹ für 1B' und 1C' sehr ähnlich. Alle Systeme weisen mehr oder weniger starke globale Störungen auf. Für 1A und 1A' ist diese besonders bei hohen J-Werten (1A J > 100 bzw. 1A' J > 117) sehr ausgeprägt. In beiden Fällen kommt es zu starken Abweichungen der normalen Linienpositionen. Dieses Verhalten weist auch die zum 1A-System gehörende heiße Bande auf, die von v₅ = 1 (1A5) ausgeht. Dagegen ist die heiße Bande, die von v₄ = 1 (1A4) ausgeht, ungestört.

Im Bereich kleinerer Wellenzahlen bei 1142,6 cm⁻¹ (nicht abgebildet) tritt noch eine weitere Bande mit P,R-Struktur ohne Q-Zweig von $FCC^{35}Cl$ auf, die nur ca. 0,1 % Intensität bezogen auf die 1A-Bande besitzt. Die genaue Herkunft dieser Bande, die vorerst mit Z bezeichnet wird, ist noch nicht zweifelsfrei geklärt. Hierauf wird in der Diskussion noch eingegangen.

Abb. 3-27: Bereich der Bande v_2 von FCC³⁵Cl (1A, 1B, 1C) und FCC³⁷Cl (1A', 1B', 1C').

3.6.3.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung

Der Wellenzahlenbereich von 2300 - 2450 cm⁻¹ von Fluorchlorethin ist durch den Bereich von ν_1 (2300 - 2345 cm⁻¹) sowie des Obertons $2\nu_2$ (2400 - 2450 cm⁻¹) geprägt. Allerdings treten hier, wie für den v_2 -Bereich ebenfalls beobachtet, mehrere Bandensysteme auf. Für FCC³⁵Cl konnten im ν_1 -Bereich zwei Systeme mit P.R-Struktur und Q-Zweiglücke bei 2329,6 cm⁻¹ (2A) und 2333,6 cm⁻¹ (2B) gefunden werden. Das relative Intensitätsverhältnis 2A : 2B beträgt ca. 1.0 : 0,35. Die Banden sind stark durch die von Fremdgasen Kohlendioxid (2345 cm⁻¹) und Fluorcyan (2317 cm⁻¹) überlagert. Das war für die Auswertung der Banden nicht problematisch, da beide Moleküle im Vergleich zu FCCCl große Rotationskonstanten besitzen und es somit nur zu relativ wenigen Linienüberlappungen kommt. Für das System 2A, das stark global gestört ist, sind die dazugehörigen heißen Banden nach 2327,2 cm⁻¹ ($v_5 = 1$, 2A5) und 2307,3 cm⁻¹ ($v_4 = 1$, 2A4) verschoben. Die Zuordnung erfolgte im wesentlichen durch den aus dem Fit der Linien erhaltenen $\alpha_{\rm B}$ -Wert. Darüber hinaus besitzen die heißen Banden im Vergleich zu System 2B eine zu große Intensität. Während die von $v_5 = 1$ ausgehende heiße Bande (2A5) praktisch ungestört vorliegt, ist die von $v_4 = 1$ ausgehende heiße Bande (2A4) besonders im Bereich des Bandenzentrums sehr stark gestört. Das wird auch im Spektrum sichtbar, da die Linien stark intensitätsgestört sind.

Abb. 3-28: Übersichtsspektrum des Bereichs der Bande ν_1 von FCCCl

Abb. 3-29 zeigt den Bereich der Kombinationsschwingung $2\nu_2$. Es konnten für das ³⁵Cl-Isotop drei Systeme mit P,R-Struktur ohne Q-Zweig bei 2439,4 cm⁻¹ (3A), 2424,0 cm⁻¹ (3B) und 2409,0 cm⁻¹ (3C) beobachtet werden. Das Intensitätsverhältnis beträgt 3A : 3B : 3C ca. 1 : 0,8 : 0,35. Für 3A konnte auch das analoge System (3A') des ³⁷Cl-Isotops beobachtet werden. Der Isotopenshift beträgt 5,66 cm⁻¹. Für die intensitätsstärkste Bande 3A ist die von v₅ = 1 ausgehende heiße Bande (3A5) zu höheren Wellenzahlen verschoben.

Abb. 3-29: Bereich der Bande $2\nu_2$. Untere Abbildung zeigt Details im Bereich der Überlappung der Systeme 3A und 3B.
3.6.3.5 Der Kombinationston v_1+v_5

Der Kombinationston $\nu_1 + \nu_5$ (Abb. 3-30) zeigt die typische Senkrechtbandenstrukur mit PQR-Zweig, die aus einem $\Pi^{e,f} \leftarrow \Sigma^+$ -Übergang resultiert. Der gleiche Kombinationston wurde auch schon für FCCF beobachtet [1]. Die Bande des ³⁵Cl-Isotops besitzt ihr Zentrum bei 2537,68 cm⁻¹. Der zugehörige, intensitätsstärkste Q-Zweig ist ab J = 17 aufgelöst und läßt sich bis J = 80 verfolgen. Die Struktur der Bande ähnelt der der reinen Knickschwingungen v_4 und v_5 . Allerdings läuft im Falle des Kombinationstons der Q-Zweig aufgrund des positiven $(\alpha - 1/2q')$ -Wertes mit größer werdendem J zu kleineren Wellenzahlen. Dies trifft auch für alle anderen Q-Zweige zu, die bezüglich des Q-Zweiges des kalten Systems zu kleineren Wellenzahlen verschoben sind. Von diesen stellen zwei Q-Zweige die Zentren der Übergänge $(10002)^{0e} \leftarrow (00001)^{1e,f}$ (2529 cm⁻¹) und $(10002)^{2e,f} \leftarrow (00001)^{1e,f} (2533 \text{ cm}^{-1})$ dar. Die Identifizierung dieser Niveaus ist durch die Zuordnung entsprechender P- und R-Zweiglinien abgesichert. Daneben sind noch weitere Q-Zweige zu beobachten (A, 2532,92; B, 2531,03; C, 2527,64; D, 2527,23; E, 2525,67; F, 2522,98 cm⁻¹) deren Herkunft nicht zweifelsfrei zu klären ist, da zugehörige P,R-Linien aufgrund der hohen Liniendichte nicht aufzufinden sind. Die große Anzahl weiterer Q-Zweige erklärt sich zum einen aus der Anwesenheit der heißen Bande ($\nu_1 + \nu_4 + \nu_5$)- ν_4 , für die drei Q-Zweige ($\Sigma^- \leftarrow$ $\Pi^{e,f}, \Sigma^+ \leftarrow \Pi^{e,f}, \Delta^{e,f} \leftarrow \Pi^{e,f}$) resultieren sollten. Zum anderen treten noch entsprechende Übergänge für das ³⁵Cl-Isotop auf.

Abb. 3-30: Übersichtsspektrum der Bande $\nu_1 + \nu_5$. Untere Abbildung zeigt Details in der R-Zweig-Region mit Zuordnung für das ³⁵Cl-Isotop.

3.6.4 Bandenbeschreibung von FCCBr

3.6.4.1 Die Knickschwingungsbande v_5

Die ν_5 -Bande des ⁷⁹Br-Isotops von FCCBr besitzt ihr Zentrum bei 182,93 cm⁻¹. Das ⁸¹Br-Isotop ist gegenüber dem leichteren Isotop um -0,10 cm⁻¹ verschoben. Die Q-Zweige, die somit von beiden Isotopen stark überlappen, sind nur stellenweise aufgelöst und deren Linien können nicht sicher zugeordnet werden. Somit Π^{e} -Niveau ist nur das eindeutig festgelegt. Wie bei der v_{5} -Knickschwingungsbande laufen die Q-Zweige der kalten Systeme aufgrund des negativen (α -1/2q')-Wertes mit größer werdendem J zu größeren Wellenzahlen. Die schlechte Qualität des Spektrums läßt bislang die Zuordnung der P- und R-Zweig Linien nur im Bereich der J'-Werte 16 - 90 für das ⁷⁹Br-Isotop sowie 21 -82 für das ⁸¹Br-Isotop zu. Allerdings konnten nur wenige Linien gewichtet werden.

Das ν_4 -Niveau ist aufgrund des bisher registrierten schlechten Spektrums noch nicht festzulegen. Die ungefähre Lage kann jedoch mit Hilfe der später diskutierten Banden $\nu_4 + \nu_5$ und $2\nu_4$ von FCCBr auf 330 - 320 cm⁻¹ abgeschätzt werden.

Abb. 3-31: Übersichtsspektrum der Bande v_5

3.6.4.2 Der Bereich zwischen 400 und 700 cm⁻¹

Für FCCBr sind bislang nur die Kombinationstöne $\nu_4+\nu_5$ und $2\nu_4$ gefunden worden. Der Oberton $2\nu_5$ war nicht Gegenstand dieser Arbeit. Die Bandenzentren des ⁷⁹Br-Iostops liegen bei 514,53 cm⁻¹ ($\nu_4+\nu_5$) und bei 664,07 cm⁻¹ ($2\nu_4$). Das Zentrum des ⁸¹Bromisotops ist um -0,15 cm⁻¹ bzw. -0,05 cm⁻¹ verschoben.

Abb. 3-32: Übersichtsspektrum der Bande $\nu_4 + \nu_5$

Die kalten Banden werden von den heißen Banden $(\nu_4+2\nu_5)-\nu_5$ bzw. $(2\nu_4+\nu_5)-\nu_5$ begleitet. Für beide Systeme ist nur einer der zwei möglichen $\Pi \leftarrow \Pi$ -Übergange zu beobachten. Die Banden weisen P,R-Struktur ohne Q-Zweig auf. Die heißen Banden sind in Bezug auf die kalten Banden zu höheren Wellenzahlen verschoben. Die ν_3 -Bande von FCCBr erfährt im Vergleich zur entsprechenden Bande von FCCCl eine energetische Absenkung um etwa 116 cm⁻¹. Sie liegt damit zwischen $\nu_4+\nu_5$ und $2\nu_5$. Die Bande beider Isotope besitzt die für einen $\Sigma^+ \leftarrow \Sigma^+$ -Übergang typische P,R-Struktur ohne Q-Zweig. Das ⁷⁹Br-Isotopomer besitzt sein Zentrum bei 460,25 cm⁻¹. Das ⁸¹Br-Isotop ist um -1,71 cm⁻¹ verschoben. Die kalten Systeme werden von heißen Banden begleitet, die von $v_5=1$ ausgehen. Sie sind zu höheren Wellenzahlen verschoben.

Abb. 3-33: Übersichtsspektrum der Bande $2\nu_4$

Abb. 3-34: Übersichtsspektrum der Bande ν_3 mit Zuordnung

3.6.4.3 Der Bereich der C-F-Streckschwingung v_2

Der Bereich der ν_2 -Streckschwingung von FCCBr weist im Gegensatz zum ν_2 -Bereich von FCCCl nur eine kalte Bande für beide Isotope mit P,R-Struktur ohne Q-Zweig auf. Beide Banden sind stark global gestört. J' läßt sich bis 148 (⁷⁹Br) bzw. bis 147 (⁸¹Br) verfolgen. Die dazugehörigen heißen Banden werden zum Zeitpunkt der Fertigstellung dieser Arbeit von Prof. McNaughton analysiert und sind nicht Inhalt dieser Arbeit.

Abb. 3-35: Übersichtsspektrum der Bande v_2

3.6.4.4 Die Bandenbereiche der v_1 - und $2v_2$ -Schwingung

Im Vergleich zu FCCCl zeichnet FCCBr im Bereich der v_1 und $2v_2$ ein sehr ähnliches Bild. Allerdings findet sich in beiden Bereichen jeweils nur ein kaltes System von FCCBr mit P,R-Struktur ohne Q-Zweig. Die beiden Systeme besitzen annähernd gleiche Intensität. Im Bereich bei 2969 cm⁻¹ konnte auch die im niedrigaufgelösten Spektrum erkennbare v_1 -Bande von FCCCN identifiziert werden.

Die Separation der beiden kalten Banden ist mit ca. 76 cm⁻¹ kleiner, im Vergleich zu den intensitätsstärksten Banden von FCCCl (110 cm⁻¹). Die dazugehörigen heißen Banden werden zum Zeitpunkt der Fertigstellung dieser Arbeit von Prof. McNaughton analysiert und sind nicht Inhalt dieser Arbeit.

Abb. 3-36: Übersichtsspektren des Fermi-Paars $v_1/2v_2$

3.7 Zuordnung der Spektren

Die Zuordnung der P- und R-Zweig-Linien aller im Rahmen dieser Arbeit untersuchten Banden erfolgte unter Verwendung des Loomis-Wood Computerprogramms (LW51) [88], durch Bildung von gscd's (kalte Banden) und lscd's (heiße Banden), durch Berücksichtigung relativer Intensitäten der Rotations-Schwingungsübergänge als Folge der Kernspinstatistik (FCCF) und unter Berücksichtigung der natürlichen Isotopenhäufigkeiten (FCC^{35/37}Cl und FCC^{79/81}Br).

3.8 Bestimmung der Molekülparameter

3.8.1 Grundzustandsparameter von FCCF, FCCCl und FCCBr

Die Parameter des Schwingungsgrundzustandes sind für FCCF durch Schwingungs-Rotationsanalyse bestimmt worden [35,39]. Für FCC^{35/37}Cl [44] und FCC^{79/81}Br [45] standen die Parameter aus der Analyse der Millimeterwellenspektren zur Verfügung. Die Bestimmung der Grundzustandsparameter der in dieser Arbeit untersuchten Systeme erfolgte durch die Bildung von gscd's unter Verwendung der Kleinsten-Fehler-Quadrate Programme DIFFMIL [89] und GSMIL [90]. Letzteres, das ausschließlich für den Fit der Linien von FCCBr benutzt wurde, erlaubt neben der Implementierung von Rotationsübergängen auch eine unterschiedliche Wichtung der zu einem Niveau führenden Übergänge P(J+1) und R(J-1).

Die Grundzustandsenergie ist gegeben durch:

$$E_0 = B_0 J (J+1) - D_0 J^2 (J+1)^2.$$
(3.10)

Für FCC^{35/37}Cl und FCC^{79/81}Br wurden aus mehreren Bandensystemen gscd's gebildet. Für FCC^{79/81}Br wurden die Linien von insgesamt 6 Banden unterschiedlich gewichtet. Die Wichtung ist proportional $1/\sigma^2$, wobei σ die Meßgenauigkeit darstellt, die sich aus der Auflösung und dem Signal-zu-Rausch Verhältnis ableitet. Es ergeben sich daraus für die Wichtung: ν_3 , w = 1; $\nu_4+\nu_5$, w = 0,5; $2\nu_4$, w = 1; ν_2 , w = 4; $\nu_1/2\nu_2$, w = 1. Für den kombinierten Fit aus IR- und MMW-Daten wurden die reinen Rotationsübergänge [45] mit w = 100 000 gewichtet.

Die Ergebnisse sind in nachfolgenden Tabellen im Vergleich mit entsprechenden experimentellen Literaturdaten, für FCCCl und FCCBr zusätzlich noch mit ab initio-Daten, zusammengefaßt.

	Lit. [35,39]	gscd's von $3\nu_1 + \nu_2$
B ₀	0,118 568 57(11)	0,118 568 5(11)
$D_0 \times 10^8$	1,150 4(7)	1,145(24)
J' _{max} [b]		60
Anzahl der gscd [b]	222	36
$\sigma \times 10^4$	1,4	3,8

Tabelle 3-9: Grundzustandsparameter [cm⁻¹] von FCCF [a]

[a] In Klammern jeweils eine Standardabweichung.

[b] Dimensionslos.

Quelle		FCC ³⁵ Cl	FCC ³⁷ Cl	FCC ⁷⁹ Br	FCC ⁸¹ Br
	\mathbf{B}_0	0,074 212 87(6)	0,072 438 91(17)	0,050 414 37(6)	0,050 035 16(7)
	$D_0 \times 10^9$	4,814(5)	4,597(16)	2,465 0(29)	2,413(3)
IR gscd [b]	J' _{max} [g]	114	95	146	138
	Anzahl der gscd, [g]	791	251	498	502
	$\sigma \times 10^5$	18	24	19	19
	gscd von [g]	ν ₄ +ν ₅ , 2ν ₄ , 1A, 1B, 1C, Z, 2A, 3A, 3B, 3C	ν ₄ +ν ₅ , 2ν ₄ , 1Β',1C', 2Α	$\nu_3, \nu_4 + \nu_5, 2\nu_4, \nu_2, 1A, 2A$	$\nu_3, \nu_4 + \nu_5, 2\nu_4, \nu_2, $ 1A', 2A'
	\mathbf{B}_0	0,074 212 81(1)	0,072 438 92(1)	0,050 414 178(18)	0,050 035 173(10)
	$D_0 \times 10^9$	4,820(7)	4,593(7)	2,456(5)	2,417 6(27)
MMW [c,d]	J' _{max} [g]	40	41	48	48
	Anzahl der Daten [g]	16	12	14	14
	$\sigma \times 10^5$	0,1	0,07	0,13	0,08
Kombinierter	\mathbf{B}_0	-	-	0,050 414 184(6)	0,050 035 160(7)
Fit aus	$D_0 \times 10^9$	-	-	2,457 6(15)	2,414 0(16)
IR und MMW	J' _{max} [g]	-	-	146	138
Daten	Anzahl der Daten [g]	-	-	512	516
	$\sigma \times 10^5$	-	-	5,2	5,1
Ab initio [e,f]	\mathbf{B}_0	0,07385 [e]	-	0,05029 [f]	-
	$D_e \times 10^9$	4,425 [e]	-	2,215 [f]	-

Tabelle 3-10: Grundzustandsparameter [cm⁻¹] von FCC^{35/37}Cl und FCC^{79/81}Br [a]

[a] In Klammern jeweils eine Standardabweichung. [b] Diese Arbeit. Für FCC^{35/37}Cl siehe auch Lit. [85]. [c] FCC^{35/37}Cl, Lit. [44]
[d] FCC^{79/81}Br, Fit der Linien aus Lit. [45]. [e] FCCCl, MP2/TZ2Pf, Lit. [85]. [f] FCCBr, MP2/TZ2Pf Lit. [86]. [g] Dimensionslos.

Alle im Rahmen dieser Untersuchung ermittelten Rotationskonstanten des Grundzustands stimmen sehr gut mit den Literaturdaten überein und bestätigen die richtige Zuordnung. Für FCCCl und FCCBr resultieren aus dem gscd-Fit der reinen IR-Übergänge Parameter, die etwa vergleichbare Genauigkeiten für D_0 aufweisen; allerdings sind die aus reinen Rotationsübergängen erhaltenen B_0 -Werte deutlich besser determiniert worden. Der kombinierte Fit aus reinen Rotationslinien und IR-Linien, der nur für FCCBr durchgeführt wurde, resultiert hingegen in einer deutlichen Verbesserung des Fits, was sich besonders im Fehler für B_0 und D_0 widerspiegelt.

3.8.2 Die Zustände $v_4 = 1$ und $v_5 = 1$ von FCCCl und $v_5 = 1$ von FCCBr

Die Rotationsparameter der Knickschwingungszustände von $FCC^{35/37}Cl$ und $FCC^{79/81}Br$ waren aus den mikrowellenspektroskopischen Untersuchungen, mit Ausnahme von $v_4 = 1$ für $FCC^{35/37}Cl$, bekannt. Durch lscd's wurden die Konstanten der unteren Zustände aller heißen Banden ermittelt, die von $v_4 = 1$ und $v_5 = 1$ ausgehen, wobei nur aufgespaltene Dubletts gewichtet wurden.

Die Rotationsenergie der Π -Zustände v_i (i = 4,5) ist gegeben durch:

$$E_v / hc = (B_v \pm q / 2)J(J+1) - D_v J^2 (J+1)^2.$$
(3.11)

Das Vorzeichen von qv wird konventionsgemäß durch

$$q_v = B_v(\Pi_f) - B_v(\Pi_e)$$
(3.12)

wiedergegeben.

Hierbei wurden jeweils aus mehreren Bandensystemen, die von vergleichbarer Qualität waren, lscd's gebildet. Zusätzlich konnten die Parameter dieser Niveaus durch die direkte Beobachtung der Knickschwingungen ν_4 (FCC³⁵Cl) und ν_5 (FCC^{35/37}Cl und FCC^{79/81}Br) bestätigt werden. Lediglich das Niveau v₄ = 1 von FCC^{79/81}Br konnte im Rahmen dieser Arbeit nicht beobachtet werden. Alle Ergebnisse sind in Tabelle 3-11 und Tabelle 3-12 zusammengefaßt.

Quelle		FCC ³⁵ Cl	FCC ³⁷ Cl
	\mathbf{B}_4	0,074 409 8(4)	0,072 632 2(18)
	$D_4 \times 10^9$	4,96(2)	5,02(22)
	$q_4 \times 10^5$	3,67(2)	3,60(7)
lscd [b]	J' _{max} [d]	97	59
	Anzahl der lscd [d]	212	45
	$\sigma \times 10^5$	27	37
	lscd von [d]	$3\nu_4 - \nu_4, 1A4$	3v ₄ -v ₄
	B ₄	0,074 409 64(7)	-
	$D_4 \times 10^9$	4,967(7)	-
IR	$q_4 \times 10^5$	3,713 8(16)	-
	J' _{max} [d]	82	-
	Anzahl der Daten [d]	183	-
	$\sigma \times 10^5$	35	-
	B ₄	0,074 411	-
Ab initio [c]	$D_4 \times 10^9$	-	-
	$q_4 \times 10^5$	3,583	-

Tabelle 3-11:	Molekülparameter	$[cm^{-1}]$	des	Schwingungszustands	v_4	=	1	von
	FCC ^{35/37} Cl [a]							

[a] In Klammern eine Standardabweichung.

[b] Diese Arbeit, siehe auch Lit. [85].
[c] FCC³⁵Cl, MP2/TZ2Pf, Lit. [85].

[d] Dimensionslos.

Quelle		FCC ³⁵ Cl	FCC ³⁷ Cl	FCC ⁷⁹ Br	FCC ⁸¹ Br
	B ₅	0,074 386 7(2)	-	0,050 543 8(6)	0,050 164 1(6)
	$D_5 \times 10^9$	4,92(2)	-	2,54(4)	2,53(4)
	$q_5 \times 10^5$	5,90(1)	-	3,065(28)	3,019(27)
lscd [b]	J' _{max} [g]	101	-	89	83
	Anzahl der lscd [g]	410	-	133	125
	$\sigma \times 10^5$	26	-	3,5	3,3
	lscd von [g]	$\nu_4 + \nu_5 - \nu_5, 2\nu_4 + \nu_5 - \nu_5,$	-	$\nu_3 + \nu_5 - \nu_5, 2\nu_5 + \nu_4 - \nu_5,$	$\nu_3 + \nu_5 - \nu_5, \ 2\nu_5 + \nu_4 - \nu_5,$
		$\nu_2 + \nu_5 - \nu_5$, 1C5, 3A5		$2\nu_4 + \nu_5 - \nu_5$	$2\nu_4 + \nu_5 - \nu_5$
	B_5	0,074 386 84(4)	0,072 608 89(8)	0,050 543 75(9)	0,050 163 41(14)
	$D_5 \times 10^9$	4,947(4)	4,730(10)	2,519(9) [h]	2,450(17) [h]
	$q_5 \times 10^5$	5,915 8(11)	5,638(6)	-	-
IR [b]	J' _{max} [g]	94	89	90	82
	Anzahl der Daten [g]	220	106	73	35
	$\sigma \times 10^5$	33	43	29	26
	B ₅	0,074 386 97(5)	0,072 608 95(8)	0,050 543 70(4)	0,050 163 780(22)
	$D_5 \times 10^9$	4,99(9)	4,61(12)	2,49(4)	2,496 (17)
	$q_5 \times 10^5$	5,950(2)	5,689(2)	3,109 5(10)	3,063 6(14)
MW [c,d]	J' _{max} [g]	19	19	26	28
	Anzahl der Daten [g]	12	8	36	48
	$\sigma \times 10^5$	0,07	0,07		
	B ₅	0,074 384	-	0,050 541	-
Ab initio [e,f]	$D_5 \times 10^9$	-	-	-	-
	$q_e \times 10^5$	5,719	-	2,981	-

Tabelle 3-12: Molekülparameter $[cm^{-1}]$ des Schwingungszustands $v_5=1$ von FCC^{35/37}Cl und FCC^{79/81}Br [a]

[a] In Klammern eine Standardabweichung. [b] Diese Arbeit. Für FCC^{35/37}Cl siehe auch Lit. [85]. Für FCC^{79/81}Br wurde B₅ berechnet nach $B_v(\Pi^e) + \frac{1}{2} q_5$. [c] FCC^{35/37}Cl, Lit. [47]. [d] FCC^{79/81}Br, Lit. [47]. [e] FCC^{35/37}Cl, MP2/TZ2Pf, Lit. [85]. [f] FCC⁷⁹Br, MP2/TZ2Pf, Lit. [86]. [g] Dimensionslos. [h] D₅^e.

Die Literaturdaten für die Zustände $v_5 = 1$ von FCC^{35/37}Cl und FCC^{79/81}Br konnten durch die Bildung von lscd's und durch die Analyse der reinen Knickschwingungen mit vergleichbarer Genauigkeit der Parameter bestimmt werden. Die Werte B₄, D₄ und q₄ für das Niveau v₄ = 1 von FCC^{35/37}Cl wurden erstmals bestimmt. Sie stimmen ausgezeichnet mit den Werten aus ab initio-Rechnungen überein.

Zusätzlich konnten für FCC³⁵Cl die Parameter B und D für das Niveau (00020)^{2e,f} aus einem lscd-Fit der Linien des Übergangs (00040)^{2e,f} \leftarrow (00020)^{2e,f} bestimmt werden. Die Zuordnung dieses Niveaus erfolgte unter der Annahme, daß der B_v-Wert von (00020)^{2e,f} ca. B₀ - 2 × (B₀ - B₄) beträgt. Hierbei wurde vorausgesetzt, daß das $\Delta^{e,f}$ -Niveau mit dem Σ^+ -Niveau nicht bzw. in sehr schwacher ℓ -Typ-Resonanz steht, da letzteres, wie in Kap. 3.8.5 beschrieben, durch die Fermi-Resonanz mit ν_3 zu größeren Wellenzahlen verschoben wird.

Tabelle 3-13: Molekülparameter des Schwingungszustands (00020)^{2e,f} von FCC³⁵Cl aus einem lscd Fit [a]

	(00020) ^{2e,f}
B _v ^{eff} [b]	0,074 602 3(8)
$\mathrm{D_v}^{\mathrm{eff}} imes 10^9 \mathrm{[b]}$	4,92(15)
J' _{max} [c]	62
Anzahl d. gscd's [c]	46
$\sigma \times 10^4$	3,3

[a] In Klammern jeweils eine Standardabweichung.

[b] Aus Fit der nicht aufgespaltenen Linien. q konnte nicht ermittelt werden.

[c] Dimensionslos.

Hieraus ergibt sich: $(B_0 - B_v^{eff}) = -3,894 \ 9(14) \times 10^{-4} \ cm^{-1}$. Dieser Wert stimmt gut mit dem Wert 2 × $(B_0 - B_4) = -3,935 \ 7 \ cm^{-1}$ (B₀ und B₄, s.Tabelle 3-10 und Tabelle 3-11) überein.

3.8.3 Störung der oberen Zustände

Einige der untersuchten Bandensysteme von FCCBr und FCCCl weisen mehr oder weniger ausgeprägte Störungen auf. Alle davon betroffenen Niveaus sind in den Tabellen 3.14 - 3.16 aufgeführt. Neben der Fermi-Resonanz (Kap. 2.3.3), führt auch die ℓ -Typ-Resonanz (Kap. 2.3.2) zu einer globalen Störung. Im Fit kann dies zum einen durch die systematische Verschiebung der normalen Linienpositionen erkannt werden. Es werden, je nach Stärke, abwechselnd positive und negative Änderungen von ν_{obs} - ν_{cal} beobachtet (Abb. 3-37). Zum anderen nehmen die D_v -Konstanten physikalisch "sinnlose" Werte an. Gegebenenfalls muß die Störung durch Freigabe von H_v kompensiert werden.

Abb. 3-37: Einfluß der ℓ -typ-Resonanz auf die Linienpositionen am Beispiel der $\nu_4 + \nu_5$ -Bande von FCC³⁵Cl. In diesem Fall wurde für den Fit der Linien H_v freigegeben.

Die lokalen Störungen machen sich durch Verschiebung der normalen Linienpositionen um bis zu 10×10^{-3} cm⁻¹ bemerkbar und weisen für alle hier untersuchten Fälle ein charakteristisches Muster auf. Mit steigendem J-Wert beobachtet man zuerst eine positive Abweichung ν_{obs} - ν_{cal} , die dann oberhalb des Kreuzungspunktes ihr Vorzeichen ändert. Abb. 3-38 verdeutlicht die Zusammenhänge am Beispiel der ν_2 +3 ν_3 -Bande von FCCF, die eine zweifache Störung zeigt.

Abb. 3-38: Einfluß lokaler Störungen auf die Linienpositionen am Beispiel der $\nu_2+3\nu_3$ -Bande von FCCF. Kreuzungen bei J'=28/29 und J'=32/33.

Die lokale Störung beschränkt sich immer auf nur wenige J'-Werte. Aus der Größe der Verschiebungen v_{obs} - v_{cal} ist zu schließen, daß sich das Störniveau bei der Kreuzung energetisch immer unterhalb des gestörten Niveaus befindet. Eine Kreuzung der beiden Niveaus kann nur dann stattfinden, wenn der B_v-Wert des Störniveaus deutlich anders als der des gestörten Niveaus ist. Da für die Knickschwingungen v₄ und v₅ der α -Wert negativ ist, kann gefolgert werden, daß die Störer Kombinationsniveaus beinhalten, die mehrere Knickschwingungsquanten enthalten. Die genaue Natur der Störers ist in der Regel nicht zu ermitteln, da die energetisch niedrig liegenden Knickschwingungen von FCCF, FCCC1 und FCCBr in fast allen Energiebereichen ein Raster einer Vielzahl von Kombinationsniveaus aufbauen. Das wird durch Abb. 3-39 deutlich, in der neben den direkt beobachteten Schwingungsniveaus von FCC³⁵Cl die möglichen Kombinationsund Obertöne der reinen Knickschwingungen abgebildet sind. Darüber hinaus sind auch die Kombinationstöne der Knickschwingungen mit dem Schwingungsniveau v₃ aufgeführt. Viele weitere Störniveaus sind möglich.

	FCC ³⁵ Cl				
Niveau	globale Störung	lokale Störung			
$(v_1v_2v_3v_4v_5)^{\ell e,f}$		-			
$(00002)^{0e}$	ja	-			
$(00011)^{0e}_{1}$	ja	-			
$(00012)^{1e,f}$	ja	-			
$(00021)^{1e,t}$	ja	-			
ν_2 -Bereich					
1A4	ja	-			
1A	ja	-			
1A5	ja				
1B	ja	-			
1C	-	J'=70/71-			
v_1 -Bereich					
2A4	ja	-			
2A	ja	-			
2B	ja	-			
$2\nu_2$ -Bereich					
3A	ja				
3B	ja	-			
3C	-	J'=51/52			
3A5	ja	-			

Tabelle 3-14: Störungen der oberen Niveaus von FCC³⁵Cl

Tabelle 3-15: Störungen der oberen Niveaus von FCC³⁷Cl

	FCC ³⁷ Cl				
Niveau	globale Störung	lokale Störung			
$(v_1v_2v_3v_4v_5)^{\ell e,f}$		_			
$(00002)^{0e}$	ja	-			
$(00011)^{0e}$	ja	-			
v_2 -Bereich					
1A'	ja	-			
1B'	ja	-			
1C'	-	J'=50/51-			
$2\nu_2$ -Bereich					
3A'	-	42/43 u. 68/69			

Tabelle 3-16: Störungen der oberen Niveaus von FCC^{79/81}Br

	FCC ⁷	^{/9} Br	FCC ⁸¹ Br		
Niveau	globale Störung	lokale Störung	globale Störung	lokale Störung	
$(v_1v_2v_3v_4v_5)^{\ell e,f}$					
(01000)	ja	-	ja	-	
1A bzw. 1A'	ja	-	ja	-	
2A bzw. 2A'	-	J'=63/64 u. 102/103	-	J'=80/81 u. 107/108	

Abb. 3-39: Schwingungszustände von FCCCl

Die Parameter der angeregten Zustände wurden mittels des Computerprogramms MILLI [91] bestimmt. Das Programm arbeitet nach dem Prinzip der Kleinsten-Fehlerquadrate und ermöglicht eine Auswertung der zugeordneten Linien. Die Parameter des Grundzustands wurden für FCCF auf die Literaturwerte nach Tabelle 3-9, für FCC^{35/37}Cl auf die Literaturwerte aus den millimeterwellenspektroskopischen Untersuchungen nach Tabelle 3-10 und für FCC79/81Br auf die Werte aus dem gemeinsamen Fit der IR und Mikrowellen- bzw. Millimeterwellendaten nach Tabelle 3-10 festgelegt. Für den Fit der von $v_5 = 1$ ausgehenden Banden von FCC³⁵Cl und FCC^{79/81}Br wurden die Parameter der unteren Niveaus auf die Literaturwerte aus den mikrowellenspektroskopischen Untersuchungen nach Tabelle 3-12 festgehalten. Für den Fit der von $v_4 = 1$ ausgehenden Banden von FCC35Cl wurden die Parameter aus der IR-Analyse der Knickschwingung nach Tabelle 3-11, für $4\nu_4$ - $2\nu_4$ wurden die Parametern aus Tabelle 3-13 verwendet. Der Fit der Bande $3\nu_4$ - ν_4 von FCC³⁷Cl wurde mit den Parameter aus der lscd-Analyse durchgeführt (Tabelle 3-11). Alle Linien erhielten ein Gewicht von null, wenn ihre Abweichung vom berechneten Wert mehr als 3σ betrug. Linien, die durch lokale Störung um mehr als 1×10^{-3} cm⁻¹ von ihrem Sollwert abwichen, wurden für den Fit ebenfalls nicht berücksichtigt. Bei $\Pi \leftarrow \Pi$ -Übergängen wurden Komponeten nicht aufgespaltener Dubletts mit 0,5 gewichtet. Die Ergebnisse der Fits sind in den Tabellen 3.17 - 3.25 zusammengefaßt.

Tabelle 3-17: Effektive Molekülparameter [cm⁻¹] aus der Rotations-Schwingungsanalyse von FCCF [a]

	$\nu_{ m BC}$	(B"-B') ×10 ⁴	(D"-D') ×10 ⁸	$H_v \times 10^{12}$	J' _{max}	Anzahl d.Daten	$\sigma \times 10^4$
(01300)←(00000)	4820,857 43(12)	16,648(4)	0,125(29)	1,45(5)	61	102	4,6

[a] In Klammern eine Standardabweichung.

	$ u_{ m BC}$	$(B''-B') \times 10^4$	(D"-D')×10 ⁹	$H_v \times 10^{13}$	J' _{max}	Anzahl d. Daten	$\sigma \times 10^4$
$(00002)^{0e} \leftarrow (00001)^{1e,f}$	206.339 55(7)	-1.689 8(6)	-0.964(4)	_	102	125	3.5
$(00002)^{2e} \leftarrow (00001)^{1e}$	210,496 69(14)	-2,044 09(9)	0,616(12)	-	87	85	4,5
$(00002)^{2f} \leftarrow (00001)^{1f}$	210,497 37(16)	-1,444 2(10)	-0,101(13)	-	87	98	4,5
$(00001)^{1e,f} \leftarrow (00000)$	210,502 45(5)	-1,740 3(4)	-0,127(4)	-	94	220	3,3
$(00010)^{1e,f} \leftarrow (00000)$	321,270 24(6)	-1,968 3(6)	-0,147(7)	-	85	183	3,5
$(00002)^{0e} \leftarrow (00000)$	416,841 33(6)	-3,433 2(4)	-1,118(5)	-	93	139	2,9
$(00012)^{1e} \leftarrow (00001)^{1e}$	531,076 80(6)	-3,823 4(4)	0,194(5)	-	93	143	3,0
$(00012)^{1f} \leftarrow (00001)^{1f}$	531,076 28(6)	-3,421 2(3)	-0,499(4)	-	102	162	3,4
$(00011)^{0e} \leftarrow (00000)$	531,489 51(5)	-3,591 4(6)	-3,857(17)	1,257(12)	101	193	3,3
(00100)←(00000)	574,274 63(9)	-0,135 1(10)	-0,503(23)	-	69	77	3,1
$(00021)^{1e} \leftarrow (00001)^{1e}$	663,928 98(4)	-2,178 28(28)	0,141(4)	-	94	145	2,4
$(00021)^{1f} \leftarrow (00001)^{1f}$	663,928 89(6)	-2,098 5(3)	-0,179(3)	-	101	164	3,1
$(00020)^{0e} \leftarrow (00000)$	664,618 969(22)	-2,497 17(10)	0,429 2(8)	-	118	229	1,8
$(00030)^{1e} \leftarrow (00010)^{1e}$	681,045 37(4)	-1,893 21(25)	0,343(4)	-	93	154	2,1
$(00030)^{1f} \leftarrow (00010)^{1f}$	681,045 28(4)	-2,154 47(24)	0,378 3(26)	-	102	167	2,6
$(00040)^{2e,f} \leftarrow (00020)^{2e,f}$	694,983 31(5)	-1,740 3(7)	0,231(16)	-	67	110	2,5
Z ← (00000)	1142,623 93(4)	-0,731 55(24)	-1,341 4(28)	-	100	174	2,6
1A ← (00000)	1205,962 10(8)	0,189 5(9)	-13,242(25)	4,127 (18)	100	199	5,0
$(1A5)^{1e} \leftarrow (00001)^{1e}$	1205,589 19(18)	0,417(4)	-10,50(27)	34,9(4)	64	116	6,5
$(1A5)^{1f} \leftarrow (00001)^{1f}$	1205,588 84(29)	0,548(6)	-13,7(4)	31,1(5)	68	125	10,5
$(1A4)^{1e} \leftarrow (00010)^{1e}$	1206,165 46(6)	2,411 5(4)	-0,600(5)	-	88	143	2,8
$(1A4)^{1f} \leftarrow (00010)^{1f}$	1206,165 58(7)	2,380 5(4)	-0,642(5)	-	91	143	3,4
1B ← (00000)	1213,891 21(10)	-2,951 1(11)	9,600(29)	-2,916(20)	104	194	6,4
1C←(00000)	1233,560 13(8)	-1,957 1(11)	2,22(4)	0,260(29)	96	166	5,3
$(1C5)^{1e} \leftarrow (00001)^{1e}$	1241,809 70(6)	-1,869 2(8)	0,867(22)	-	60	71	1,7
$(1C5)^{1f} \leftarrow (00001)^{1f}$	1241,809 45(7)	-2,041 1(11)	0,93(4)	-	51	71	1,8
$(2A4)^{1e} \leftarrow (00010)^{1e}$	2307,215 0(9)	3,192(8)	-1,24(29)	3,80(16)	88	80	10,2
$(2A4)^{1f} \leftarrow (00010)^{1f}$	2307,222 6(18)	3,270(14)	1,1(4)	0,43(25)	86	70	8,2
$(2A5)^{1e} \leftarrow (00001)^{1e}$	2327,179 15(10)	3,773 6(6)	-0,026(8)	_	89	124	4,1
$(2A5)^{1f} \leftarrow (00001)^{1f}$	2327,179 43(8)	3,773 1(5)	-0,014(6)	-	90	123	3,4

Tabelle 3-18: Effektive Molekülparameter [cm⁻¹] aus der Rotations-Schwingungsanalyse von FCC³⁵Cl [a]

	$ u_{ m BC}$	$(B"-B') \times 10^4$	(D"-D')×10 ⁹	$H_v \times 10^{13}$	J' _{max}	Anzahl d. Daten	$\sigma \times 10^4$
2A ← (00000)	2329,569 7(17)	1,484(27)	-43,5(10)	33,6(10)	86	169	99,4
2B ← (00000)	2333,636 63(7)	-1,395 0(3)	8,3(4)	8,87(10)	50	72	2,7
3C ← (00000)	2408,986 58(6)	-1,564 0(6)	-3,783(9)	-	85	134	3,8
3B ← (00000)	2423,972 179(29)	0,510 6(4)	-1,170(10)	0,452(8)	98	171	1,7
3A ← (00000)	2439,419 446(18)	2,875 08(23)	2,753(7)	-0,996(5)	99	181	1,2
$(3A5)^{1e} \leftarrow (00001)^{1e}$	2442,201 98(8)	1,440 0(8)	2,242(16)	-	74	91	3,1
$(3A5)^{1f} \leftarrow (00001)^{1f}$	2442,201 10(6)	1,332 9(6)	2,669(14)	-	68	85	2,1
$(10002)^{0e} \leftarrow (00001)^{1e}$	2530,200 3(4)	2,054 6(4)	-0,52(7)	-	65	46	4,3
$(10002)^{2e} \leftarrow (00001)^{1e}$	2534,356 01(28)	1,685(4)	0,84(11)	-	56	24	4,6
$(10002)^{2f} \leftarrow (00001)^{1f}$	2534,354 7(3)	2,266(4)	-0,31(11)	-	56	30	4,0
$(1000^{0}1)^{1e,f} \leftarrow (00000)$	2537,681 85(7)	2,029 8(10)	-0,248(11)	-	75	125	3,5

Fortsetzung Tabelle 3-18

[a] In Klammern eine Standardabweichung.

	*						
	$\nu_{ m BC}$	$(B''-B') \times 10^4$	(D"-D')×10 ⁹	$H_v \times 10^{13}$	J' _{max}	Anzahl d. Daten	$\sigma \times 10^4$
$(00001)^{1e,f} \leftarrow (00000)$	209,886 20(12)	-1,699 7(8)	-0,137(10)	-	89	103	4,3
$(00002)^{0e} \leftarrow (00000)$	415,444 99(14)	-3,350 8(12)	-1,065(22)	-	75	72	4,2
$(00011)^{0e} \leftarrow (00000)$	530,640 28(8)	-3,464 0(8)	-2,204(14)	-	81	126	4,4
$(00020)^{0e} \leftarrow (00000)$	662,929 44(3)	-2,584 86(19)	0,349 4(21)	-	102	168	2,1
$(00030)^{1e} \leftarrow (00010)^{1e}$	678,905 84(10)	-1,979 3(8)	0,299(13)	-	79	87	3,4
$(00030)^{1f} \leftarrow (00010)^{1f}$	678,905 76(15)	-2,238 8(17)	0,27(4)	-	63	66	3,5
1A'←(00000)	1202,33489(5)	-0,990 8(5)	-13,010(13)	2,346(8)	105	186	2,9
1B'←(00000)	1211,339 67(7)	-1,782 9(7)	8,832(18)	-1,77(8)	103	167	3,4
1C'←(00000)	1226,882 52(15)	-2,156 5(28)	2,85(11)	1,25(12)	81	109	7,0
2A'←(00000)	2433,763 80(8)	2,882 9(15)	-2,49(5)	2,45(5)	87	154	4,5

Tabelle 3-19: Effektive Molekülparameter [cm⁻¹] aus der Rotations-Schwingungsanalyse von FCC³⁷Cl [a]

[a] In Klammern eine Standardabweichung.

	$ u_{ m BC}$	(B "- B ')×10 ⁴	(D"-D')×10 ⁹	$H_v \times 10^{13}$	J' _{max}	Anzahl der Daten	$\sigma \times 10^4$
$(0000^01)^{1e} \leftarrow (00000)$	182,940 20(9)	-1,140 2(7)	-0,061(7)	-	90	73	2,9
(00100)←(00000)	460,248 535(20)	0,502 80(9)	-0,058 5(8)	-	116	204	1,4
$(00101)^{1e} \leftarrow (00001)^{1e}$	465,689 45(5)	0,364 8(4)	-0,106(4)	-	90	122	2,2
$(00101)^{1f} \leftarrow (00001)^{1f}$	465,689 43(7)	0,327 9(4)	-0,101(5)	-	90	126	2,9
$(00011)^{0e} \leftarrow (00000)$	514,533 7(3)	-2,307 96(22)	0,221 8(26)	-	100	162	2,1
$(00012)^{1e} \leftarrow (00001)^{1e}$	514,908 97(12)	-2,251 8(9)	0,180(15)	-	76	74	3,5
$(00012)^{1f} \leftarrow (00001)^{1f}$	514,909 27(9)	-2,188 5(8)	0,155(13)	-	81	98	3,2
$(00020)^{0e} \leftarrow (00000)$	664,070 112(18)	-2,158 53(4)	0,0 fix	-	114	173	1,6
$(00021)^{1e} \leftarrow (00001)^{1e}$	666,202 16(7)	-2,000 0(5)	0,046(7)	-	87	104	2,8
$(00021)^{1f} \leftarrow (00001)^{1f}$	666,201 85(9)	-2,117 2(8)	0,022(14)	-	76	74	2,9
(01000)←(00000)	1176,684 43(4)	1,669 04(23)	-0,339 7(29)	0,065 9(10)	148	273	3,1
1A←(00000)	2300,978 06(4)	2,134 2(4)	0,904(9)	0,243(5)	109	185	2,4
2A←(00000)	2377,132 34(5)	2,974 6(5)	0,058(9)	0,176(5)	120	184	2,9

Tabelle 3-20: Effektive Molekülparameter [cm⁻¹] aus der Rotations-Schwingungsanalyse von FCC⁷⁹Br [a]

[a] In Klammern eine Standardabweichung.

Tabelle 3-21: Effektive Molekülparameter [cm⁻¹] aus der Rotations-Schwingungsanalyse von FCC⁸¹Br [a]

	$ u_{ m BC}$	(B"-B')×10 ⁴	(D"-D')×10 ⁹	$H_v \times 10^{13}$	J' _{max}	Anzahl der Daten	$\sigma \times 10^4$
$(0000^{0}1)^{1e} \leftarrow (00000)$	182,835 43(18)	-1,129 2(13)	-0,036(16)	-	82	35	2,6
(00100)←(00000)	458,543 027(21)	0,499 59(10)	-0,051 5(9)	-	117	191	1,5
$(00101)^{1e} \leftarrow (00001)^{1e}$	464,095 86(6)	0,366 9(4)	-0,081(7)	-	79	106	2,2
$(00101)^{1f} \leftarrow (00001)^{1f}$	464,095 72(6)	0,329 1(4)	-0,092(4)	-	94	114	2,5
$(00011)^{0e} \leftarrow (00000)$	514,381 12(4)	-2,296 41(27)	0,215(4)	-	89	161	2,3
$(00012)^{1e} \leftarrow (00001)^{1e}$	514,720 13(9)	-2,251 1(9)	0,110(20)	-	72	73	2,9
$(00012)^{1f} \leftarrow (00001)^{1f}$	514,720 53(10)	-2,183 5(9)	0,082(16)	-	75	72	2,9
$(00020)^{0e} \leftarrow (00000)$	664,016 343(18)	-2,143 02(4)	0,0 fix	-	110	158	1,5
$(00021)^{1e} \leftarrow (00001)^{1e}$	666,124 80(10)	-1,990 3(7)	0,031(9)	-	86	84	3,2
$(00021)^{1f} \leftarrow (00001)^{1f}$	666,124 81(10)	-2,103 1(3)	0,045(11)	-	80	86	2,8
(01000)←(00000)	1176,486 76(6)	1,649 4(3)	-0,391(4)	0,077 3(14)	147	271	4,3
1A ← (00000)	2300,549 59(4)	2,240 8(4)	0,630(9)	0,228(6)	107	182	2,2
2A ← (00000)	2376,887 27(6)	2,948 4(4)	0,028(8)	0,165(4)	126	190	3,1

[a] In Klammern eine Standardabweichung.

	$ u_{ m BC}$	B _v	$D_v \times 10^9$	$H_v \times 10^{13}$	q'×10 ⁵
$(00001)^{1e,f}$	210,502 45(5)	0,074 386 84(5)	4,947(4)	-	5,915 8(11)
$(00010)^{1e,f}$	321,270 24(6)	0,074 409 64(7)	4,967(7)	-	3,713 8(16)
$(00002)^{0e}$ [b]	416,841 33(6)	0,074 556 15(5)	5,938(12)	-	-
$(00002)^{0e}$ [c]	416,842 00(12)	0,074 555 94(11)	5,96(9)	-	-
$(00002)^{2e}$	420,999 14(20)	0,074 561 63(15)	4,37(10)	-	-
$(00002)^{2f}$	420,999 82(20)	0,074 561 14(17)	5,09(10)	-	-
$(00011)^{0e}$	531,489 51(5)	0,074 571 95(7)	8,677(24)	1,257(12)	-
(00100)	574,274 63(9)	0,074 226 33(11)	5,32(3)	-	-
$(00020)^{0e}$	664,618 969(22)	0,074 462 531(20)	4,391(8)	-	-
$(00012)^{1e}$	741,579 25(10)	0,074 739 56(8)	4,80(10)	-	
$(00012)^{1f}$	741,578 73(10)	0,074 758 84(8)	5,49(9)	-	-
$(00021)^{1e}$	874,431 43(9)	0,074 575 05(8)	4,85(9)	-	-
$(00021)^{1f}$	874,431 34(10)	0,074 626 57(8)	5,17(9)	-	-
$(00030)^{1e,f}$	1002,315 55(10)	0,074 612 00(10)	4,600(10)	-	6,349(4)
Z	1142,623 93(4)	0,074 285 97(3)	6,161(10)	-	-
1A	1205,962 10(8)	0,074 193 87(10)	18,06(3)	4,127(18)	-
1 B	1213,891 21(10)	0,074 507 92(12)	-4,78(4)	-2,916(20)	-
1C	1233,560 13(8)	0,074 408 52(12)	2,60(4)	0,260(89)	-
$(1A5)^{1e}$	1416,091 64(23)	0,074 315 5(5)	15,5(4)	34,9	
$(1A5)^{1f}$	1416,091 3(4)	0,074 361 9(7)	18,7(5)	31,1	-
$(1C5)^{1e,f}$	1452,312 04(12)	0,074 582 49(12)	4,09(11)	-	7,669(3)
$(1A4)^{1e,f}$	1527,435 66(12)	0,074 170 07(9)	5,592(10)	-	4,001(3)
2A	2329,569 7(17)	0,074 064 4(27)	48,3(10)	33,6(10)	-
2B	2333,636 63(7)	0,074 352 31(4)	-3,5(4)	8,87(10)	-
3C	2408,986 58(6)	0,074 369 22(7)	8,603(16)	-	-
3B	2423,972 179(29)	0,074 161 75(5)	5,990(12)	0,452(8)	-
3A	2439,419 446(18)	0,073 925 31(3)	2,067(14)	0,996(5)	-
$(10001)^{1e,f}$ [d]	2537,681 84(11)	0,074 009 83(11)	5,068(9)	-	5,960(13)
$(2A5)^{1e,f}[e]$	2537,681 72(12)	0,074 009 65(12)	5,01(10)	-	5,967(14)
$(2A4)^{1e}$	2628,485 2(10)	0,074 071 1(9)	6,20(4)	3,80(16)	-
$(2A4)^{1f}$	2628,492 8(18)	0,074 100 6(15)	3,86(5)	0,43(25)	-
$(3A5)^{1e}$	2652,704 43(13)	0,074 213 2(14)	2,75(9)	-	-
$(3A5)^{1f}$	2652,703 55(11)	0,074 283 4(11)	2,31(9)	-	-
$(10002)^{0e}$	2740,702 8(5)	0,074 181 51(9)	5,51(16)	-	-
$(10002)^{2e}$	2744,858 5(4)	0,074 188 7(5)	4,15(20)	-	-
$(10002)^{2f}$	2744,857 2(4)	0,074 190 2(5)	5,30(20)	-	-

Tabelle 3-22: Parameter der angeregten Zustände [cm⁻¹] von FCC³⁵Cl, [a]

[a] In Klammern eine Standardabweichung. [b] Aus $(00002)^{0e} \leftarrow (00000)$. [c] Aus $[(00002)^{0e} \leftarrow (00001)^{1e,f}] + (00001)^{1e,f}$. [d] Aus $(10001)^{1e,f} \leftarrow (00000)$. [e] Aus $[(2A5)^{1e,f} \leftarrow (00001)^{1e,f}] + (00001)^{1e,f}$.

	$ u_{ m BC}$	\mathbf{B}_{v}	$D_v \times 10^9$	$H_v \times 10^{13}$	q' $\times 10^{5}$
$(00001)^{1e,f}$	209,886 20(11)	0,072 608 89(9)	4,730(17)	-	5,638(6)
$(00002)^{0e}$	415,444 99(14)	0,072 774 00(13)	5,658(28)	-	-
$(00011)^{0e}$	530,640 28(8)	0,072 785 32(8)	6,797(21)	-	-
$(00020)^{0e}$	662,929 44(3)	0,072 697 406(29)	4,244(9)	-	-
1A'	1202,334 89(5)	0,072 538 00(8)	17,60(20)	2,346(8)	-
1B'	1211,339 67(7)	0,072 617 21(8)	-4,239(25)	-1,77(12)	-
1C'	1226,882 52(15)	0,072 654 57(29)	1,75(11)	1,25(12)	-
2A'	2433,763 80(8)	0,072 150 63(14)	7,09(6)	2,45(5)	-

Tabelle 3-23: Parameter der angeregten Zustände [cm⁻¹] von FCC³⁷Cl, [a]

[a] In Klammern eine Standardabweichung.

Tabelle 3-24: Parameter der angeregten Zustände [cm⁻¹] von FCC⁷⁹Br, [a]

	$ u_{ m BC}$	B_v	$D_v \times 10^9$	$H_v \times 10^{13}$	q' $\times 10^{5}$
$(00001)^{1e}$	182,940 20(9)	0,050 528 20(8)	2,519(9)	-	-
(00100)	460,248 535(20)	0,050 363 904(15)	2,516(3)	-	-
$(00011)^{0e}$	514,533 7(3)	0,050 644 98(3)	2,236(4)	-	-
$(00101)^{1e,f}$	648,629 64(15)	0,050 509 07(9)	2,59(4)	-	3,479(10)
$(00020)^{0e}$	664,070 112(18)	0,050 630 037(11)	2,457 6[b]	-	-
$(00012)^{1e,f}$	697,849 32(20)	0,050 765 72(12)	2,32(5)	-	2,476(13)
$(00021)^{1e,f}$	849,142 21(17)	0,050 749 56(11)	2,46(5)	-	4,282(12)
(01000)	1176,684 43(4)	0,050 247 280(3)	2,797(4)	0,065 9(10)	-
1A	2300,978 06(4)	0,050 200 76(6)	1,554(12)	0,243(5)	-
2A	2377,132 34(5)	0,050 116 72(7)	2,400(11)	0,176(5)	-

[a] In Klammern eine Standardabweichung. [b] Grundzustandsparameter.

Tabelle 3-25: Parameter der angeregten Zustände [cm⁻1] von FCC⁸¹Br, [a]

	$ u_{ m BC}$	B_v	$D_v \times 10^9$	$H_v \times 10^{13}$	q' $\times 10^{5}$
$(00001)^{1e}$	182,835 43(18)	0,050 148 08(14)	2,450(17)	-	-
(00100)	458,543 026(21)	0,049 985 201(17)	2,466(25)	-	-
$(00011)^{0e}$	514,381 12(4)	0,050 264 80(4)	2,199(5)	-	-
$(00101)^{1e,f}$	646,931 22(24)	0,050 128 98(6)	2,582(23)	-	3,442(7)
$(00020)^{0e}$	664,016 343(18)	0,050 249 462(11)	2,414 0[b]	-	-
$(00012)^{1e,f}$	697,555 76(28)	0,050 385 51(11)	2,40(4)	-	2,387(12)
$(00021)^{1e,f}$	848,960 23(28)	0,050 368 45(9)	2,458(28)	-	4,165(10)
(01000)	1176,486 76(6)	0,049 870 22(4)	2,805(5)	0,077 3(14)	-
1A	2300,549 59(4)	0,049 811 08(5)	1,784(10)	0,228(6)	-
2A	2376,887 27(6)	0,049 740 34(5)	2,386(9)	0,165(4)	-

[a] In Klammern eine Standardabweichung. [b] Grundzustandsparameter.

3.8.5 Diskussion der Ergebnisse

• FCCF

Aus dem Fit der Linien der in dieser Arbeit untersuchten Bande von FCCF bei 4820 cm⁻¹ kann abgeleitet werden, daß es sich hierbei um den Kombinationston $\nu_2+3\nu_3$ handelt. Das wird durch Vergleich des effektiven α_B -Wertes mit den bekannten α_2 - bzw. α_3 -Wert von Difluorethin deutlich. Diese betragen $\alpha_2 = 1,788(10) \times 10^{-4}$ cm⁻¹ und $\alpha_3 = 5,390$ 89(10) $\times 10^{-4}$ cm⁻¹ [35,39]. Additivität vorausgesetzt, ergibt sich für $\alpha_2+3\alpha_3$:

 $\alpha_2 + 3\alpha_3 = 1,788 \times 10^{-4} \text{ cm}^{-1} + 3 \times 5,391 \times 10^{-4} \text{ cm}^{-1} = 17,961 \times 10^{-4} \text{ cm}^{-1}.$

Dieser Wert für v_2+3v_3 korreliert gut mit dem in dieser Arbeit ermittelten Wert (B"-B') = 16,648(4) × 10⁻⁴ cm⁻¹. Das aus den Grundschwingungen v_2 und v_3 errechnete Bandenzentrum von v_2+3v_3 beträgt, ohne Berücksichtigung der Anharmonizitäten, 4840 cm⁻¹. Die Abweichung von 20 cm⁻¹ gegenüber der analysierten Bande erscheint für die Summe der Anharmonizitätskonstanten, $3x_{23}$ + $6x_{33}$, sinnvoll. Diese beträgt nach ab initio-Rechnungen 12,33 cm⁻¹ (MP2/TZ2Pf, [42]). Eine geringe Beimischung eines Störniveaus ist nicht auszuschließen.

• FCCCl

Linien der Knickschwingungen von v_4 und v_5 für das ³⁵Cl-Isotop sowie von v_4 für das ³⁷Cl-Isotop konnten gut gefittet werden. Die richtige Zuordnung der P,R- und Q-Zweiglinien spiegelt sich in den Parametern α_4 , α_5 , q_4 und q_5 wider, die in sehr guter Übereinstimmung mit den Parametern aus Mikrowellenuntersuchungen, ab initio-Rechnungen und den in Tabelle 3-11 und Tabelle 3-12 aufgeführten Parametern, die durch Bildung von lscd's erhalten wurden, stehen. Die einzelnen Niveaus der heißen Bande $2v_5$ - v_5 , die getrennt gefittet wurden, zeigen durchweg sinnvolle (B"-B')-Werte. Die Wechselwirkung zwischen den Niveaus (00002)^{2e} und (00002)^{0e} wird durch die systematische Veränderung der B_v- und D_v-Werte angezeigt.

Die Rotations-Schwingungsanalyse von FCCCl im Bereich von 400 und 700 cm⁻¹ wird durch die Anwesenheit der Fermi-Resonanz zwischen den Niveaus $v_3 = 1$ und $v_4 = 2$, $\ell = 0$, der ℓ -Typ-Resonanz für die Niveaus $v_5 = 2$, $v_4 = v_5 = 1$, sowie anharmonischen Resonanzen (z.B. zwischen $v_3 = 1$ und $v_4 = v_5 = 1$, $v_3 = 1$ und $v_5 = 2$, ...) stark erschwert. Das Vorliegen der Fermi-Resonanz zwischen $v_3/2v_4$ wird durch die Lage der Schwingungsniveaus und im besonderen Maße durch deren (B"-B')-Werte belegt. Nach ab initio-Rechnungen liegt das ungestörte v_3 -Schwingungsniveau bei 596 cm⁻¹. Aus dem $v_4 = 1$ -Niveau extrapoliert man die Lage von $2\nu_4$ zu 643 cm⁻¹. Der Vergleich mit den effektiven Parametern ($\nu_3 = 574$ cm⁻¹ und $2\nu_4$, $\ell = 0$, 664 cm⁻¹) zeigt, daß ν_3 abgesenkt und $2\nu_4$, $\ell = 0$ erhöht wird. Besonders diagnostisch ist der effektive (B"-B')-Wert beider Niveaus, der für $2\nu_4, \ell = 0, = -2.40 \times 10^{-4}$ und $\nu_3 = -0.14 \times 10^{-4}$ cm⁻¹ beträgt. Gegenüber $\alpha_4 + \alpha_4 =$ -3.94×10^{-4} cm⁻¹ (2 × (B"-B'), ν_{4}) und $\alpha_{3} = 1.22 \times 10^{-4}$ (ab initio, Tabelle 3-26) wird für $2v_4$ der B'-Wert kleiner, für v_3 um annähernd den gleichen Betrag größer. Auffällig ist der Vorzeichenwechsel für das Niveau ν_3 , der zweifelsfrei das Vorliegen einer Fermi-Resonanz belegt, da der (B"-B')-Wert für ungestörte Streckschwingungen immer positiv ist. Für $2\nu_4$ ergibt sich durch die Fermi-Resonanz, daß das Σ - und Δ -Niveau aufgrund ihrer starken Separation nicht miteinander wechselwirken (*l*-Typ-Resonanz). Das wird auch durch den (D"-D')-Wert deutlich, der klein ist. Desweiteren mußte kein H-Parameter freigegeben werden. Im Gegensatz sind die Niveaus v_4+v_5 und $2v_5$ durch ℓ -Typ-Resonanz stark beeinflußt. Das wird durch die (D"-D')-Werte deutlich, die viel zu groß sind, als daß sie physikalisch sinnvoll wären. Für v_4+v_5 mußte zusätzlich ein H-Parameter freigegeben werden. Alle diese Beobachtungen machen plausibel, daß die Niveaus zwischen 400 - 700 cm⁻¹ nicht unabhängig betrachtet werden können.

Um den gegenseitigen Einfluß der Niveaus $2\nu_5$, $\nu_4+\nu_5$, ν_3 , $2\nu_4$ untereinander zu untersuchen, wurden 3 verschiedene Modelle mit steigender Komplexität aufgestellt (Tabelle 3-26). Hierfür wurden die effektiven, anharmonischen kubischen (W_{ijk}, [85]) und quartischen (W_{ijkl}, [86]) Wechselwirkungskonstanten aus ab initio-Rechnungen verwendet. Modell 1 behandelt den Fall des Fermi-Paars $\nu_3/2\nu_4$, unabhängig von den anderen Niveaus. Modell 2 berücksichtigt zusätzlich zu Modell 1 noch die Wechselwirkung zwischen v_3 und v_4+v_5 , sowie die ℓ -Typ-Resonanz zwischen $(00011)^{0e}$ und $(00011)^{2e}$. Das Niveau $2\nu_5$ bleibt zunächst unberücksichtigt, da der effektive (B"-B')-Wert sehr nahe am Erwartungswert $(\alpha_5 + \alpha_5 - 3.48 \times 10^{-4} \text{ cm}^{-1})$ liegt. Modell 3 schließt alle vier Niveaus unter Verwendung von 2 kubischen und 3 quartischen Wechselwirkungskonstanten ein. Aus Modell 1 wird der Einfluß der Wechselwirkungskonstante (W_{344} 37,3 cm⁻¹) deutlich. Die Störung wird größtenteils resorbiert. Die Schwingungswellenzahlen sowie (B"-B')-Werte ändern sich in Richtung der Erwartungswerte aus ab initio-Rechnungen und den aus der Rotations-Schwingungsanalyse der reinen Knickschwingungen ableitbaren Parametern. In Modell 2 erfahren nur die Niveaus v_3 und v_4+v_5 eine signifikante Änderung, die sich in der Änderung der (B"-B')-Werte bemerkbar macht. Besonders (B"-B') von $\nu_4 + \nu_5$ nähert sich dem Wert der Addition von α_4 und α_5 an. Der Vergleich der α_B -Werte und Schwingungswellenzahlen aus den ab initio-Rechnungen mit denen aus Modell 3 macht plausibel, daß letzteres die Schwingungsniveaus $2\nu_5$, $\nu_4+\nu_5$, ν_3 , $2\nu_4$ sehr realistisch beschreibt.

	Effektiv	Modell 1	Modell 2	Modell 3	Ab initio [a]
$2\nu_5$					
$ u_{ m BC}, \Sigma^+$	416,84133(6)			424,64522(5)	421
$(B"-B') \times 10^4, \Sigma^+$	-3,4332(4)			-3,6440(3)	-3,43
$(D"-D') \times 10^9, \Sigma^+$	-1,118(5)			-0,25 [b]	
$ u_{ m BC}, \Delta$	420,9995(20)			420,9995 [c]	
$(B''-B') \times 10^4, \Delta$	-3,4857(18)			-3,48 [c]	
$(D''-D') \times 10^9, \Delta$	-0,27(9)			-0,25 [b]	
$W_{55} \times 10^{5}$	-			6,054(15)	
$\nu_4 + \nu_5$					
$ u_{ m BC},\Sigma^{\scriptscriptstyle +}$	531,48951(5)		532,43156(4)	532,04804(4)	531
$(B"-B') \times 10^4, \Sigma^+$	-3,5914(6)		-3,6853(5)	-3,63976(5)	-3,70
$(D"-D') \times 10^9, \Sigma^+$	-3,857(17)		-0,25 [d]	-0,27 [d]	
$ u_{ m BC}, \Delta$	-		532,092(4)	532,095(5)	
$(B''-B') \times 10^4, \Delta$	-		-3,71 [e]	-3,71 [e]	
$(D''-D') \times 10^9, \Delta$	-		-0,25 [d]	-0,25 [d]	
$W_{45} \times 10^5$	-		4,799(7)	4,796(8)	
ν_3					

Tabelle 3-26: Molekülparameter von FCC³⁵Cl im Bereich von 400 -700 cm⁻¹. [a]

574,27463(9)	593,96678(9)	592,79910(9)	587,39350(10)	596
-0,1351(10)	0,7789(10)	0,8676(9)	1,1819(12)	1,22
-0,503(23)	-0,239(22)	-0,335(21)	-0,239(25)	
664,618969(22)	644,92689(4)	645,15223(4)	643,13739(5)	645
-2,49717(19)	-3,41005(29	-3,41271(27	-3,5626(3)	-3,97
0,429 2(8)	0,197(6)	-0,209(5)	0,104(7)	
14,4	2,11	1,99	2,18	
	574,27463(9) -0,1351(10) -0,503(23) 664,618969(22) -2,49717(19) 0,429 2(8) 14,4	574,27463(9)593,96678(9)-0,1351(10)0,7789(10)-0,503(23)-0,239(22)664,618969(22)644,92689(4)-2,49717(19)-3,41005(29)0,429 2(8)0,197(6)14,42,11	574,27463(9)593,96678(9)592,79910(9)-0,1351(10)0,7789(10)0,8676(9)-0,503(23)-0,239(22)-0,335(21)664,618969(22)644,92689(4)645,15223(4)-2,49717(19)-3,41005(29)-3,41271(27)0,429 2(8)0,197(6)-0,209(5)14,42,111,99	574,27463(9)593,96678(9)592,79910(9)587,39350(10)-0,1351(10)0,7789(10)0,8676(9)1,1819(12)-0,503(23)-0,239(22)-0,335(21)-0,239(25)664,618969(22)644,92689(4)645,15223(4)643,13739(5)-2,49717(19)-3,41005(29)-3,41271(27)-3,5626(3)0,429 2(8)0,197(6)-0,209(5)0,104(7)14,42,111,992,18

[a] Unter Verwendung der anharmonischen Wechselwirkungskonstanten W_{iik} [85] und W_{iikl} [86] [cm⁻¹]. MP2/TZ2Pf: W₃₄₄ 37,3, W₃₄₅ -6.8, W₃₅₅ 36,3, W_{4455} 8,6, W_{4555} 1,5, W_{4445} -3,8. Modell 1 enthält W₃₄₄, Modell 2 W₃₄₄ und W₃₄₅, und Modell 3 enthält alle sechs Konstanten.

[b] Festgehalten auf 2 × (D" - D') ν_5 nach Tabelle 18.

[c] Aus 2 × (B" - B') ν_5 nach Tabelle 18.

[d] Festgehalten auf (D" - D') v_4 + (D" - D') v_5 nach Tabelle 18.

[e] Festgehalten auf (B" - B') v_4 + (B" - B') v_5 nach Tabelle 18.

Abb. 3-40: Wechselwirkungsmodell für die Schwingungsniveaus $2\nu_5$, $\nu_4+\nu_5$, ν_3 und $2\nu_4$ nach Tabelle 3-26. ν_{BC} - und (B"-B')-Werte der einzelnen Niveaus sind angegeben. Die anharmonischen Wechselwirkungsparameter sind kursiv angegeben.

Der Bereich der v_2 -Schwingung ist durch die darin enthaltenen mindestens drei Bandensysteme für beide Isotope (1A, 1B, 1C bzw. 1A', 1B', 1C') sehr ungewöhnlich. Problematisch ist dadurch die eindeutige Identifizierung der Schwingungsniveaus, da hier offensichtlich alle drei Banden aufgrund ihrer Σ^+ -Symmetrie miteinander in Fermi-Resonanz stehen. Weiterhin muß berücksichtigt werden, daß die Bande (Z) bei 1142 cm⁻¹ möglicherweise ebenfalls in Wechselwirkung mit den darüberliegenden Niveaus steht. Alle Systeme konnten zwar mit Standardabweichnungen von $< 1 \times 10^{-3}$ cm⁻¹ sehr gut gefittet werden. Allerdings mußten in allen Fällen H-Parameter freigegeben werden, um die sehr starken Störungen aufgrund beteiligter Komponenten mit zu kompensieren. Ebenso sind die (D"-D')-Werte der kalten Systeme viel zu groß. Mit Ausnahme des 1A-Niveaus von FCC³⁵Cl sind die (B"-B')-Werte aller Niveaus (1A', 1B, 1B', 1C u. 1C') negativ. Es gilt festzustellen, daß die Bezeichnung 1A und 1A' sowie 1A5 nicht gleiche oder ähnliche Zusammensetzung von Niveaus impliziert. Die Bezeichnungen A, B, C signalisieren im Vergleich miteinander nur den gleichen unteren Zustand, hier FCC³⁵Cl, (00000) und sinkende Intensität A > B > C. Es kann geschlossen werden, daß all diese Banden Kombinations- oder Obertöne darstellen, die mehrere Knickschwingungsquanten enthalten. Nur in diesen Fällen kann (B"-B') negativ sein. Hierfür kommen beispielsweise die Niveaus v_3+2v_4 (ca. 1239 cm⁻¹) und $3\nu_4 + \nu_5$ (ca. 1210 cm⁻¹) in Frage. Das intensitätsstärkste Niveau A stellt somit noch am ehesten die gestörte ν_2 -Schwingung dar. Der α_2 -Wert aus ab initio-Rechnungen ist gegenüber dem effektiven (B"-B')-Wert um ca. $2,649 \times 10^{-4}$ cm⁻¹ größer. Das belegt die starke, im Ausmaß variable Wechselwirkung des Niveaus mit den anderen Zuständen.

Ähnlich ist dieser Effekt auch für das Niveau 1A' von $FCC^{37}Cl$. Hier bewirkt die Fermi-Resonanz allerdings eine stärkere Absenkung des B_v-Wertes, weshalb der effektive (B"-B')-Wert der intensivsten Komponente negativ ist. Der Isotopenshift beträgt 3,5 cm⁻¹ und ist deutlich größer als der theoretisch berechnete Wert von 1,65 cm⁻¹. Das macht plausibel, daß beide Niveaus zumindest quantitativ unterschiedlich gestört sind.

Die dem intensitätsstärksten Niveau 1A zugehörigen heißen Banden von FCC³⁵Cl zeigen unterschiedliches Verhalten, das besonders durch die effektiven (B"-B')-Werte und (D"-D')-Werte diagnostiziert wird. Während die vom $v_5 = 1$ Niveau ausgehende heiße Bande 1A5 ähnlichen Störungen ausgesetzt ist wie das kalte System 1A, scheint die von $v_4 = 1$ ausgehende heiße Bande 1A4 davon unbeeinflußt. Der effektive (B"-B')-Wert (2,39 × 10⁻⁴ cm⁻¹) ist überraschend ähnlich dem ungestörten ab initio-Wert $\alpha_2 = 2,84 \times 10^{-4}$ cm⁻¹. Offensichtlich ist das obere Niveau (1A4)^{1e,f} zufällig nicht wesentlich beeinflußt, oder Streck- und Deformationsschwingungseffekte kompensieren sich.

Die kalten Banden in den Bereichen $\nu_1/2\nu_2$ konnten - mit Ausnahme des Niveaus 2A bei 2329,6 cm⁻¹ - alle mit guten bis sehr guten Standardabweichungen gefittet werden. Allerdings mußten in allen Fällen H-Parameter freigegeben werden, was wiederum auf die Beteiligung ℓ -Resonanz belasteter Niveaus spricht. Da sowohl α_1 und α_2 aus dem Experiment nicht zugänglich sind, müssen für den Vergleich der effektiven (B"-B')-Werte die entsprechenden ab-initio Parameter verwendet werden. Hierfür wurden die ungestörten α_1 - und α_2 -Werte der ab initio-Rechnungen durch die Fermi-Resonanzkonstante $W_{122} = 43,1$ cm⁻¹ gestört. Unter Voraussetzung der Additivität von α_2 erhält man:

 $2\nu_2$: (B"-B') ungestört 5,68 × 10⁻⁴ cm⁻¹; (B"-B') gestört 5,44 × 10⁻⁴ cm⁻¹;

$$\nu_1$$
: (B"-B') ungestört 3,68 × 10⁻⁴ cm⁻¹ (B"-B') gestört 3,92 × 10⁻⁴ cm⁻¹

Der Vergleich mit den effektiven (B"-B')-Werten in Tabelle 3-18 zeigt deutlich, daß keine Übereinstimmung besteht. Die (B"-B')-Werte sind entweder sehr viel kleiner oder negativ. Letzteres läßt den Schluß zu, daß die Niveaus mit starker Beteiligung von Knickschwingungsquanten aufgebaut sind. Ein weiteres Indiz sind auch die sehr großen (D"-D')- und H_v-Werte, die physikalisch nicht sinnvoll erscheinen. Besonders drastisch macht sich das bei Niveau 2A bei 2329,6 cm⁻¹ bemerkbar. In diesem Fall wurde versucht, die Störung durch einen Fit der ersten Linien bis J' = 20 zu kompensieren. Hieraus resultiert zwar ein Fit mit einer guten Standardabweichung. Allerdings lassen die erhaltenen Parameter keine weiteren Schlüße auf die Natur des Niveaus zu.

Tabelle 3-27: Molekülparmeter [cm⁻¹] des 2A-Niveaus unter Verwendung von Daten mit J' ≤ 20

	$ u_{ m BC}$	(B"-B')×10 ⁴	(D"-D')×10 ⁹	$\sigma \times 10^{-4}$
$(2A) \leftarrow (00000)$	2329,548 50(8)	0,037(12)	-195,6(27)	2,5

Aussagekräftiger ist die von $v_5 = 1$ ausgehende heiße Bande 2A5 bei 2327,2 cm⁻¹, für deren Fit keine H-Parameter freigegeben werden mußten. Der (B"-B')-Wert beträgt 3,773 × 10⁻⁴ cm⁻¹ und kann mit dem gestörten ab initio-Wert verglichen werden. Offensichtlich wird das obere Niveau (2A5)^{1e,f} nicht wesentlich über die Fermi-Resonanz hinaus beeinflußt. Diese Annahme wird durch die direkte Beobachtung von v_1+v_5 bestätigt, dessen Parameter alle mit hoher Signifikanz bestimmt wurden. Der D_v-Wert weicht nur um ca. 5% von D₀ ab. Der q'-Wert steht in sehr guter Übereinstimmung mit dem q₅-Wert aus Tabelle 3-12. Unter der Annahme, daß (B"-B') gleich $\alpha_{1gest.} + \alpha_5$ ist, kann unter Verwendung von α_5 der Parameter $\alpha_{1gest.}$ zu 3,77 × 10⁻⁴ cm⁻¹ berechnet werden. Dieser Wert stimmt exakt mit dem Parameter aus der Analyse der vorher beschriebenen heißen Bande (B"-B') = 3,773 2(5) × 10⁻⁴ cm⁻¹, überein. Die heiße Bande ($\nu_1+2\nu_5$)- ν_5 , deren e,f-Niveaus getrennt gefittet wurden, zeigen, wie im Falle der vorher diskutierten Bande $2\nu_5$ - ν_5 , durchweg sinnvolle (B"-B')-Werte. Allerdings ist die Qualität der Fits, bedingt durch die geringe Anzahl der erkennbaren Linien, relativ schlecht. Besonders die D_v-Werte der Niveaus (10002)^{2e} und (10002)^{2f} konnten nur mit großen Fehlern behaftet bestimmt werden. Hier sind bessere Spektren, besonders im Hinblick auf die noch nicht identifizierten Q-Zweige, notwendig.

• FCCBr

Für die Bande ν_5 beider Isotope von FCCBr konnten nur wenige Linien gefittet werden. Da der Q-Zweig nur stellenweise aufgelöst ist, sind vorerst keine verlässlichen Daten über das f-Subniveau zugänglich. Allerdings läßt sich aus dem Parameter (B"-B'-¹/₂q) mit Hilfe des bekannten q₅-Wertes aus den Mikrowellenuntersuchungen α_5 gut abschätzen. Die gute Übereinstimmung von α_5 mit dem Mikrowellen- und ab initio-Wert bestätigt die richtige Zuordnung.

Für die Schwingungsniveaus ν_3 , $\nu_4 + \nu_5$ und $2\nu_4$ von FCCBr liegen ähnliche Verhältnisse wie bei FCCCl vor. Alle untersuchten Systeme konnten sehr gut gefittet werden und weisen physikalisch vernünftige D_v -Werte auf. Für $2\nu_4$ konnte D_v auf dem Wert des Grundzustandes festgehalten werden. Das deutet darauf hin, daß für $2\nu_4$ und $\nu_4+\nu_5$ die ℓ -Typ-Resonanz keine größeren Effekte verursacht. Der Vergleich der effektiven (B"-B')-Werte mit den aus ab initio-Rechnungen ableitbaren Werten macht jedoch deutlich, daß diese etwas zu klein sind. So ist der $\alpha_{\rm B}$ -Wert für ν_3 40 %-kleiner als der ab initio-Wert. Allerdings stimmt die Schwingungswellenzahl nahezu perfekt überein. Hierbei muß berücksichtigt werden, daß v_3 zwischen v_4+v_5 und dem im Rahmen dieser Arbeit nicht untersuchten Oberton $2\nu_5$ liegt. Letzterer sollte im ungestörten Fall bei ca. 365 cm⁻¹ auftreten. Es kann abgeleitet werden, daß ν_3 von $\nu_4 + \nu_5$ zu niedrigeren Energien abgesenkt wird. Offensichtlich wird dieser Effekt durch die Wechselwirkung mit dem $2\nu_5$ -Niveau nahezu kompensiert. Gestützt wird diese Annahme durch die Lage des v_4+v_5 -Niveaus, das im Vergleich zum ab initio-Wert (506 cm⁻¹) deutlich zu höheren Energien verschoben ist. Hiermit im Einklang steht auch das Fehlen von l-Resonanz-Effekten zwischen den Σ - und Δ -Komponenten von $\nu_4 + \nu_5$, da die Δ -Komponente durch v_3 nicht verschoben wird und hierdurch Σ - und Δ -Niveaus weit auseinanderreichen. Für die Zukunft sind die direkte Registrierung der ν_4 und $2\nu_5$ -Schwingungen sehr wichtig.

Die ν_2 -Schwingung von FCCBr erweist sich in Analogie zu FCCCl als global stark gestört. Die Linien beider Isotope konnten mit sehr niedrigen Standardabweichungen gefittet werden, allerdings unter Verwendung von H-Parametern. Der Vergleich des effektiven (B"-B')-Wertes sowie der Schwingungswellenzahlen beider Isotope mit entsprechenden Parametern aus ab initio-Rechnungen belegt, daß für das ν_2 -Niveau eine starke anharmonische Störung besteht. Als Störer kommt möglicherweise das Niveau $\nu_3+2\nu_4$ (ca. 1120 cm⁻¹) in Frage.

Die Linien des Fermi-Paars $\nu_1/2\nu_2$ (1A und 2A bzw. 1A' und 2A') von FCCBr konnten angesichts der globalen und der lokalen Resonanzen mit sehr guten Standardabweichungen gefittet werden. Aus dem Intensitätsverhältnis (1:1) kann abgeleitet werden, daß die Wechselwirkungskonstante gleich oder etwas kleiner ist, als die Hälfte der effektiven Separation der Bandenzentren (38,1 cm⁻¹).

	FCC ⁷⁹ Br [a]	FCC ⁸¹ Br [a]	Ab initio [b]
$\nu_5 \ \nu_{BC} \ (B"-B') \times 10^{-4}, \Pi \ q_5$	182,940 20(9) -1,293(29) [c] 3,065(28) [d]	182,835 43(18) -1,280(28) [c] 3,019(27) [d]	183 -1,27 2,98
ν_{3} ν_{BC} (B"-B')×10 ⁻⁴ , Σ^{+}	460,248 535 (20) 0,502 80(9)	458,543 027(21) 0,499 59(10)	458 0,79
$\nu_4 + \nu_5$ $\nu_{\rm BC}$ (B"-B')×10 ⁻⁴ , Σ^+	514,533 73(34) -2,307 96(22)	514,381 12(4) -2,296 41(27)	506 -2,47
$2\nu_4$ $\nu_{\rm BC}$ (B"-B')×10 ⁻⁴ , Σ^+	664,070 112(18) -2,158 53(4)	664,016 343(18) -2,143 02(4)	653 -2,41
$ \nu_2 \nu_{\rm BC} (B"-B') \times 10^{-4}, \Sigma^+ $	1176,684 43(4) 1,669 04(23)	1176,486 76(6) 1,649 37(33)	1174 1,77
1A (79) und 1A'(81) $\nu_{\rm BC}$ (B"-B')×10 ⁻⁴ , Σ^+	2300,978 06(4) 2,134 2(4)	2300,549 59(4) 2,240 8(4)	2302 3,45
2A (79) und 2A' (81) $\nu_{\rm BC}$ (B"-B')×10 ⁻⁴ , Σ^+	2377,132 34(5) 2,974 6(5)	2376,887 27(6) 2,948 4(4)	2368 2,37

 Tabelle 3-28:
 Experimentelle Molekülparameter [cm⁻¹] von FCCBr im Vergleich mit ab initio-Daten

[a] Diese Arbeit.

[c] Berechnet aus $(B"-B')^e - 1/2q_5^{(79/81)}$.

[d] aus lscd - Fit, Tabelle 3-12.

[[]b] FCC⁷⁹Br, ν_{BC} = anharmonische Wellenzahlen, (B"-B') = MP2/TZ2Pf, Lit. [86].

3.9 Difluorethin als Quelle für Difluorvinyliden: Eine photochemische Isomerisierungsreaktion

Ungesättigte Carbene $R_2C=C$: stellen im Gegensatz zu den stabilen isomeren Ethinen äußerst kurzlebige und hochreaktive Verbindungen dar. Die Kurzlebigkeit der wasserstoffsubstituierten Vinylidene wird durch die sehr niedrige Isomerisierungsbarriere begründet, die zu ca. 2-4 kcal/mol berechnet worden ist [92,93]. Trotz ihrer Kurzlebigkeit und der damit verbundenen Schwierigkeiten des direkten Nachweises konnte die Stammverbindung Vinyliden H₂C=C: experimentell untersucht werden. Erste Hinweise auf Vinyliden im Singulett-Grundzustand wurden 1983 von Lineberger et al. durch die Aufnahme der 488 nm Photoelektronenspektren der Vinyliden-Anionen H₂C=C:⁻, HDC=C:⁻ und D₂C=C:⁻ gefunden [94]. Später gelang den Autoren auch die Registrierung von 351 nm Photoelektronenspektren von neutralem Vinyliden im Grundzustand sowie in zwei energetisch niedrigliegenden angeregten Zuständen [95]. Demnach stellt Vinyliden ein schwaches Minimum auf der Singulett-Grundzustandspotentialfläche dar, wobei die Lebensdauer von Vinyliden gegenüber Isomerisierung zum Ethin im Einklang mit theoretischen Vorhersagen zu 0,04-0,2 ps bestimmt worden ist [93].

Über die matrixspektroskopische Isolierung von ungesättigten Carbenen ist bis heute praktisch nichts bekannt. Lediglich das verwandte Vinylvinyliden $H_2C=C=C$; welches das photochemische Produkt des in interstellaren Wolken sehr häufig vorkommenden Kohlenwasserstoffs Cyclopropenyliden darstellt [96], konnte in einer Ar-Matrix bei 10 K IR-spektroskopisch untersucht werden [97]. Vor kurzer Zeit ist auch der photoelektronenspektroskopische Nachweis von Vinylvinyliden gelungen [98].

Für die Isomerisierung von Difluorvinyliden zum energetisch um ca. 30 kcal/mol stabileren Difluorethin wird nach theoretischen Rechnungen eine Energiebarriere von 30 - 35 kcal/mol [3] vorhergesagt, die hoch genug ist, um eine direkte spektroskopische Untersuchung von Difluorvinyliden zu ermöglichen. Als Grund für die im Vergleich zum Stammkörper Vinyliden erhöhte Isomerisierungsbarriere wird der antiaromatische Charakter des cyclischen 4π -Übergangszustands angenommen [99].

Abb. 3-41: Vergleich der Isomerisierungsbarrieren für die Vinylidene HRC=C: und $F_2C=C$:

Untersuchungen, die sich sowohl mit der Isomerisierungsreaktion des Systems Difluorvinyliden-Difluorethin als auch mit den allgemeinen spektroskopischen Eigenschaften von Difluorvinyliden beschäftigen, sind in der Literatur nur sehr wenig beschrieben worden.

Erstmals sind Difluorvinyliden sowie Monofluorvinyliden kürzlich über die Schwingungsprogression im Photoelektronenspektrum der Anionen F₂C=C: sowie HFC=C: direkt beobachtet worden [100]. Für Difluorvinyliden konnten hieraus erste experimentelle Schwingungswellenzahlen der drei totalsymmetrischen a₁-Grundschwingungen abgeleitet werden, die allerdings Unsicherheiten von \pm 25 cm⁻¹ aufweisen. Die Zuordnung der Schwingungen basierte auf dem ab initio berechneten IR-Spektrum [101].

Difluorvinyliden wird in einer Vielzahl von Reaktionen als kurzlebiges, hochreaktives Intermediat postuliert. Schon 1976 berichteten Norstrom et al. über die Reaktion von Trifluorethen mit angeregten Hg (${}^{3}P_{1}$)-Atomen, was zur geminalen HF-Eliminierung führte [102]. Die Reaktionsprodukte lassen den Schluß zu, daß intermediär gebildetes Difluorvinyliden mit überschüssigem Trifluorethen zu Trifluorallen und :CF₂ abreagiert. Gleiche Ergebnisse wurden von Stachnik et al. erhalten, die durch IR-Multiphotonenanregung (IRMPD) von Trifluorethen ebenfalls Trifluorallen nachweisen konnten [103]. Über die Bestrahlung von 1-Chlor-2,2-difluorethen mit einem TEA-CO₂-Laser in Gegenwart von H₂S oder CH₃OH als Abfangreagenzien berichteten Reiser et al. [104]. In beiden Fällen konnte die Bildung von 1,1-Difluorethen als Hauptprodukt beobachtet werden, was auf das Auftreten von Difluorvinyliden als Intermediat hinweist. Diese Reaktion wurde auch bei Abfangversuchen an polymeren Oberflächen untersucht [105]. Versuche, Difluorvinyliden aufgrund seiner hoher Reaktivität in einem Argonkäfig bei tiefen Temperaturen nachzuweisen, gelangen nicht. So berichteten Brahms und Dailey 1989 über die Bestrahlung von Difluorpropadienon mit UV-Licht ($\lambda > 185$ nm) in einer Argon-Matrix bei 11 K [106]. Evidenz für Difluorvinyliden konnte jedoch nicht erhalten werden. Erst analoge Versuche unter Verwendung von (1)¹³C-markiertem Difluorpropadienon in einer mit natürlichem CO dotierten Ar-Matrix ließ aufgrund des Nachweises von F₂CC¹²CO, F₂CC¹³CO und ¹³CO vermuten, daß Difluorvinyliden zwar gebildet wird, jedoch direkt mit CO abreagiert. Die von den gleichen Autoren beschriebene UV-Photolyse ($\lambda > 240$ nm) von Difluorpropadienon in einer Stickstoffmatrix resultierte im Nachweis von Spuren Difluordiazoethen (2 %), das aus der Reaktion von Difluorvinyliden mit molekularem Stickstoff gebildet wird. Bestrahlung mit UV-Licht ($\lambda > 180$ nm) führte zur Umwandlung von Difluordiazoethen in Difluorpropadienon.

$$F = C = C + N_2 + N_2 + N_2 + C = C + N_2 + C$$

$$F = C = C + N_2 + C$$

$$F = C = C + N_2 + C$$

$$F = C = C + N_2 + C$$

$$F = C = C + N_2 + C$$

$$F = C = C + N_2 + C$$

$$(3.13)$$

Die Arbeiten von Brahms und Dailey legen nahe, daß Difluorvinyliden in einer Matrix nur in Abwesenheit möglicher Reaktionspartner nachgewiesen und charakterisiert werden kann. Grundidee der aktuellen Untersuchung war es, Difluorethin durch Energiezufuhr in Difluorvinyliden umzuwandeln. Hierbei sollten die thermische sowie vor allem photochemische Reaktion von Difluorethin systematisch untersucht werden. Als geeignetes Nachweisverfahren kam aufgrund der hohen Reaktivität von Difluorvinyliden die Matrix-Isolationstechnik zum Einsatz. Im folgenden wird über diese Untersuchungen berichtet, die in Kooperation mit den Arbeitsgruppen von Prof. Willner (Hannover), Prof. Sander (Bochum) und Prof. Thiel (Zürich) durchgeführt wurden [107].

3.9.1 Experimentelles

Ausgangsmaterial für die Untersuchungen war Difluorethin, das wie vorher in Kap. 3.2.3.3 beschrieben durch Vakuumthermolyse von 4,5,6-Trifluor-1,2,3-triazin bei Temperaturen von 700°C im mmol Maßstab erhalten wurde.

Für die Herstellung der Edelgasmatrizen wurde Difluorethin im 10 mg Maßstab in ein U-Rohr einkondensiert, das mit der Matrixapparatur verbunden wurde. Die Matrixapparatur ist im Detail in [108] (Bochum) beschrieben. Die Deposition von Difluorethin auf den Matrixträgern (Kupferblock in Hannover, CsI-Fenster/IR bzw. Suprasil/UV-Vis in Bochum) erfolgte in der Weise, daß Argon mit einer Durchflußrate von ca. 9 mmol/h durch das auf -196°C gekühlte U-Rohr gespült wurde. Der Dampfdruck von Difluorethin beträgt bei der Temperatur von fl. Stickstoff noch ca. 10⁻² - 10⁻³ mbar, wodurch Konzentrationen von Difluorethin von ca. 1 : 200 - 1 : 2000 bezogen auf Argon erzielt werden konnten. Die IR-Matrix-Spektren wurden mit einem Bruker 113v (Hannover, Reflexionsmessung) und einem Bruker IFS 66 FT-IR-Spektrometer (Bochum, Absorptionsmessung) unter Verwendung von MCT-Detektoren registriert. Die Auflösung betrug jeweils bis zu 0,5 cm⁻¹. Um ein gutes Signal/Rausch-Verhältnis zu erzielen, wurden 128 (Hannover) bzw. 1000 Scans (Bochum) aufaddiert.

Im Falle der Thermolyseversuche wurde Difluorethin im Gemisch mit Argon durch ein bis auf ca. 1200°C beheizbares Quarzrohr geleitet, das zur Vergrößerung der effektiven Thermolysefläche auch mit Platinwolle gefüllt werden konnte. Die mit Kohlenmonoxid und Stickstoff dotierten Matrizes wurden durch 1 %ige Beimischung zum Trägergas hergestellt. Als Photolysequellen standen Hg-Hochdrucklampen (Hannover; Fa. Heraeus, Modell TQ 150, $\lambda > 230$ nm); (Bochum; Fa. Osram, Modell HBO 500 W, $\lambda > 230$ nm), Hg-Niederdrucklampen (Bochum; Fa. Gräntzel, $\lambda = 254$ nm) und ein Excimer-Laser (Bochum; Lambda-Physik, Modell COMPex 100, $\lambda = 193$ nm) zur Verfügung.

3.9.2 IR-Matrixspektren

3.9.2.1 Symmetrie und Grundschwingungen von Difluorvinyliden

Nach theoretischen Rechnungen besitzt Difluorvinyliden im Singulett-Grundzustand C_{2v} -Symmetrie. Das gewählte Koordinatensystem sowie die zugehörige Charaktertafel sind nachfolgend aufgeführt.

Abb. 3-42: Difluorvinyliden im gewählten Koordinatensystem
C_{2v}	Е	C_2	$\sigma_{ m v}$	σ'_{v}	h=4	
a_1	1	1	1	1	z, z^2, x^2, y^2	
a_2	1	1	-1	-1	xy	\mathbf{R}_{z}
b_1	1	-1	1	-1	X, XZ	$\mathbf{R}_{\mathbf{y}}$
b ₂	1	-1	-1	1	y, yz	$\mathbf{R}_{\mathbf{x}}$

Tabelle 3-29: Charaktertafel C_{2v}

Nach Ausreduzieren und Abzug der Rotations- bzw. Translationstransformationen ergibt sich für die Anzahl der Grundschwingungen für das vieratomige Difluorvinyliden:

 $\Gamma_{vib} = 3a_1 + 2b_1 + 1b_2$

Alle Schwingungen sind infrarotaktiv, da alle mit einer periodischen Änderung des Dipolmomentes verknüpft sind.

Abb. 3-43: Normalschwingungen von Difluorvinyliden

3.9.2.2 Nachweis von Difluorvinyliden

Erste Thermolyseversuche von Difluorethin bei Temperaturen von bis zu 1100°C ergaben keine Hinweise auf eine Isomerisierung zu Difluorvinyliden. Vielmehr wurde Difluorethin unzersetzt im Argon-Käfig ausgefroren. Auch die Verwendung von heißer Platinwolle als möglichem Katalysator führte nicht zur Isomerisierung. Die Photolyse von Difluorethin im Argonkäfig bei 15 K mit einer Hg-Hochdrucklampe führte demgegenüber zum langsamen Abbau von Difluorethin, der mit der Bildung einer Vielzahl neuer IR-Signale einherging (Abb. 3-44).

Abb. 3-44: Zeitlicher Verlauf der Photolyse von Difluorethin

- A: Matrixisoliertes Difluorethin
- B: nach 30 min UV-Photolyse
- C: nach 60 min UV-Photolyse

Auffällig sind die Absorptionen bei 1672, 1267 und 918 cm⁻¹ (①), da diese schon nach wenigen Minuten gebildet werden, aber sich ihre Intensität im weiteren Verlauf der Photolyse nicht ändert. Aufgrund der sehr guten Übereinstimmung mit den theoretisch berechneten Schwingungswellenzahlen und relativen Intensitäten können diese Signale Difluorvinyliden zugeordnet werden. Das Intensitätsverhalten bei fortschreitender Bestrahlung kann dadurch erklärt werden, daß Difluorvinyliden selbst UV-Licht der Photolysewellenlänge absorbiert und sekundäre Photoreaktionen eingeht, was sich durch die Bildung von Peaks bei 1938, 1909,5, 1770, 1737, 1330, 1273, 1236, 1166, 1101, 1024, 1005, 963 und 940 cm⁻¹ bemerkbar macht. Die Ausbeute an Difluorvinyliden durch photochemische Reaktion unter Verwendung einer Hg-Hochdrucklampe ist sehr gering, was durch die ν_3 -Bande des F-¹³C=¹²C-F illustriert wird (Abb. 3-44, ¹³C). Dieser Befund kann damit begründet werden, daß Difluorethin bei der verwendeten Photolysewellenlänge nur schwach absorbiert. Diese Schlußfolgerung wird durch das erstmals registrierte Gasphasen-UV-Spektrum von Difluorethin gestützt.

Abb. 3-45:Gasphasen-UV-Spektrum von Difluorethin, p = 2,71 mbar

Demnach liegt das Absorptionsmaximum von Difluorethin bei Wellenlängen < 200 nm, während es im Bereich der verwendeten UV-Strahlung (> 230 nm) nur sehr schwach absorbiert. Es läßt sich vermuten, daß das Einstrahlen von monochromatischem Licht im Bereich von λ < 200 nm zur Anreicherung der Träger der IR-Banden bzw. zur Abnahme der Produktbanden aus Sekundärreaktionen führen wird. Da in Hannover keine < 200 nm arbeitende Photolysequelle zur Verfügung stand, wurden weitere Experimente in Bochum unter Verwendung eines gepulsten ArF-Lasers ($\lambda = 193$ nm) durchgeführt. Erste Photolyseversuche mit hohen Repetitionsraten (bis 10 Hz) führten zur Bildung identischer Produktbanden wie vorher beschrieben, jedoch konnte die Ausbeute an Difluorvinyliden stark gesteigert werden. Die Optimierung der Ausbeute von Difluorvinyliden erfolgte im wesentlichen durch Herabsetzen der Repetitionsraten (1 Hz), da davon ausgegangen wurde, daß eine schnelle Pulsfrequenz des Lasers die Matrix lokal aufheizt und so Nebenreaktionen auslöst. So führte die Bestrahlung von matrixisoliertem Difluorethin nach etwa 5000 Laserpulsen (ca. 80 mJ/Puls) zur Bildung eines photostationären Gleichgewichtes, in dem Difluorvinyliden und Difluorethin im Verhältnis von etwa 10:1 vorliegen (Abb. 3-46). Insgesamt wurden sechs neue Absorptionen beobachtet, deren Wellenzahlen und relative Intensitäten in Tabelle 3-30, Spalte 4 aufgeführt sind. Die Zuordnung von fünf dieser Absorptionen zu den Grundschwingungen $v_1 - v_4$ und v_6 ergibt sich durch den Vergleich mit den ab initio-Vorhersagen der Schwingungswellenzahlen und Intensitäten, Tabelle 3-30, Spalte 2. Die hervorragende Übereinstimmung von Beobachtung und Vorhersage des Schwingungsspektrums sowie die weiter unten beschriebenen Folgereaktionen stellen sicher, daß Difluorvinyliden das ausschließliche Produkt der Photolyse von Difluorethin bei 193 nm ist. Die zweitstärkste Absorption bei 1245 cm⁻¹ gehört zu keiner Grundschwingung, sondern geht auf den Kombinationston v_2 + v_5 zurück, der mit v_4 bei $v_{eff} = 1267$ cm⁻¹ gleichrassig (Rasse b₁) ist und mit dieser in einer anharmonischen Resonanz steht. Genau die gleiche Situation findet man beim strukturanalogen, spektroskopisch nahe verwandten F₂CS, Tabelle 3-30, Spalte 5 [109]. Hier tritt das Paar $v_4/v_2 + v_5$ bei 1190 und 1219 cm⁻¹ (Gasphase) auf; das Intensitätsverhältnis beträgt ca. 3:2, und im Vergleich zu Difluorvinyliden ist die relative Bandenlage von ν_4 und $\nu_2 + \nu_5$ umgekehrt.

Unter der Voraussetzung, daß das Übergangsmoment von v_4 sehr groß im Vergleich zu dem von $v_2 + v_5$ ist, kann man die anharmonische Resonanz zwischen v_4 und $v_2 + v_5$ mit Hilfe der beobachteten relativen Intensitäten, 100 : 46, entstören. Man erhält für das Kopplungselement W₂₄₅ einen Wert von 10,25 cm⁻¹ (analog für F₂CS 13 cm⁻¹), in ausgezeichneter Übereinstimmung mit der ab initio-Vorhersage von 10,81 cm⁻¹. Die entstörten Schwingungswellenzahlen v^* betragen $v_4^* = 1260$ cm⁻¹ und $(v_2 + v_5)^* = 1252$ cm⁻¹ (ab initio: 1284 und 1249). Mit $v_2 =$ 918 cm⁻¹ und einer angenommenen Anharmonizitätskonstanten x₂₅ = 0 (ab initio: -0,34 cm⁻¹) errechnet sich die aus experimentellen Gründen nicht direkt beobachtbare Grundschwingungswellenzahl $v_5 = (1252 - 918 \text{ cm}^{-1}) = 334 \text{ cm}^{-1}$.

Abb. 3-46: Matrix-IR-Spektren, Ar, 10 K

- **a**: Differenzspektrum einer bestrahlten, mit 1 % N_2 dotierten Matrix von Difluorethin (O) gemessen gegen die Ausgangsmatrix. Banden bei der Photolyse gebildeter Produkte zeigen nach oben, Banden abnehmender Edukte zeigen nach unten.
- **b**: Spektrum des quasistationären Gleichgewichts der Umwandlung von Difluorethin (②) in Difluorvinyliden (①) nach 5000 ArF-Laserpulsen, ca. 80 mJ/Puls, 1 Hz.

Die Aufspaltung der Absorption bei 1245 cm⁻¹ ist matrixabhängig, vgl (**a**) und (**b**), und verschwindet beim Tempern.

		Theorie		Experiment		SCF ₂
		1 [a]	2 [b]	3 [c]	4 [d]	5 [e]
a_1	$\nu_1, \nu(CC)$	1640	1693 [67]	1670(25)	1672 [20]	1365
a_1	$\nu_2, \nu_s (CF_2)$	893	927 [67]	905(25)	918 [22]	789
a_1	ν_3, δ (CF ₂)	486	512 [5]	510(25)	511 [3]	526
b_1	$\nu_4, \nu_{as} (CF_2)$	1260	1287 [277]		1267 [100]	1190
b_1	$\nu_2 + \nu_5$		1247 [f]		1245 [46]	1219
b_1	$\nu_5, \rho (CF_2)$	322	323 [31]		(334)	420
b_2	$ u_6, \gamma$	513	560 [4]		551 [3]	623

Tabelle 3-30: Wellenzahlen der Infrarotspektren von $F_2C=C$: und $F_2C=S$ [cm⁻¹]

[a] Lit. [101], CCSD/DZP, Skalierfaktor 0,95.

 [b] Lit. [107], ω_i: CCSD(T)/ cc-pVQZ; ω_i-ν_i: MP2/TZ2Pf. In eckigen Klammern: Intensitäten [km mol⁻¹], CCSD(T)/TZ2Pf.

[c] Lit. [100]. Aus Schwingungsfeinstruktur im Photoelektronenspektrum von F_2CC^- . Unsicherheit in runden Klammern.

[d] Diese Arbeit, Ar-Matrix, 10 K. Relative Intensität in eckigen Klammern. Aus ungestörtem Kombinationston $\nu_2+\nu_5$ berechnete Grundschwingungswellenzahl von ν_5 in runden Klammern, s. Text.

[e] Lit. [109], Gasphase.

[f] In harmonischer Näherung ist die Intensität von $\nu_2+\nu_5$ gleich Null. Die "Fermi"-Resonanz verteilt die Intensität von ν_4 auf beide Resonanzpartner.

3.9.3 Matrix UV/Vis-Spektren von Difluorvinyliden

Die photochemische Umwandlung von Difluorethin in Difluorvinyliden läßt sich auch im UV/Vis Spektrum verfolgen, Abb. 3-47. Bestrahlt man Difluorethin mit dem ArF-Laser bei 193 nm in einer höherkonzentrierten Ar-Matrix als für das IR-Experiment eingesetzt, so verschwindet die UV-Absorption von Difluorethin und es entstehen neue Maxima bei $\lambda = 228$ und 254 nm, die Difluorvinyliden zugeordnet werden können. Daneben bildeten sich unter den gewählten experimentellen Bedingungen bei $\lambda = 380$ nm absorbierende Folgeprodukte, die erhalten blieben, als Difluorvinyliden durch Bestrahlung mit $\lambda > 230$ nm zu Difluorethin zurückverwandelt wurde. Aus diesem Verhalten wird verständlich, weshalb eine Bestrahlung mit $\lambda > 230$ nm nur zu geringen Konzentrationen von Difluorvinyliden im photostationären Gleichgewicht führt.

Abb. 3-47: Matrix UV/Vis-Spektren der photochemischen Umwandlung von Difluorethin und Difluorvinyliden.

- 1: Nach λ = 193 nm Bestrahlung von Difluorethin
- 2: Difluorethin vor der Bestrahlung
- 3: Nach Bestrahlen des Trägers von Spektrum 1 mit $\lambda > 230$ nm

3.9.4 Reaktionen von Difluorvinyliden

Um die Identifizierung von matrixisoliertem Difluorvinyliden weiter abzusichern, wurden Photolyseexperimente durchgeführt, die den Nachweis der Rückumwandlung von Difluorvinyliden in Difluorethin zum Ziel hatten. Desweiteren wurden Temperexperimente bei 35 - 42 K in mit N₂- bzw. CO-dotierten Matrizes durchgeführt, da die früheren Versuche von Brahms und Dailey gezeigt hatten, daß Difluorvinyliden bereits unter Matrixbedingungen mit CO bzw. N₂ reagiert. Diese Reaktionen wurden durch IR-Spektroskopie verfolgt.

Die Photolyse von Difluorvinyliden in einer Ar-Matrix mit einer Hg-Niederdrucklampe bei $\lambda = 254$ nm führte nur teilweise zur Rückbildung von Difluorethin. Dagegen wurde Difluorvinyliden schon nach 15 minütiger Bestrahlung mit einer Hg-Hochdrucklampe $\lambda > 230$ nm quantitativ in Difluorethin übergeführt. Dieses Verhalten ist auch schon bei den UV/Vis-spektroskopischen Untersuchungen beobachtet worden (Kap. 3.9.3).

$$F = C = C = \frac{h\nu, \lambda > 230 \text{ nm}}{h\nu, \lambda = 193 \text{ nm}} F = C = C = F$$
(3.14)

Für die Temperversuche wurde Difluorvinyliden in einer mit jeweils ca. 1 % N₂und CO-dotierten Argon Matrix in der vorher beschriebenen Weise hergestellt. Im Gegensatz zu den von Brahms und Dailey beschriebenen Experimenten sind die CO- bzw. N₂-Moleküle noch soweit von den Difluorvinyliden-Molekülen entfernt, daß unter diesen Bedingungen keine Reaktion erfolgen kann. Erst Tempern der Matrix auf Temperaturen von 35 - 42 K führte zu einer synchronen Abnahme der Vinylidenbanden sowie zur Bildung der Banden von Difluorpropadienon bzw. Difluordiazoethen (Abb. 3-48, b, ③), die durch die vollständig bekannten Schwingungsspektren nach Lit. [82,106] zweifelsfrei identifiziert werden konnten (Tabelle 3-31). Während Difluorpropadienon gegenüber Bestrahlung mit $\lambda = 254$ nm pseudo-inert ist, läßt sich Difluordiazoethen unter diesen Bedingungen quantitativ wieder zu Difluorethin und Stickstoff abbauen (Abb. 3-48, c). Erneute Bestrahlung der Matrix mit dem ArF-Laser resultierte nicht in der Bildung von Difluorvinyliden. Offensichtlich wird neu gebildetes Difluorvinyliden sofort von den im Matrixkäfig benachbarten N2-Molekülen zu Difluordiazoethen abgefangen.

Abb. 3-48: IR-spektroskopischer Nachweis von Difluorazoethen

- a: Differenzspektrum der Photoreaktion von Difluorethin in einer mit 1 % N_2 dotierten Argonmatrix bei 10 K; nach unten gerichtete Banden von Difluorethin @ nehmen ab, nach oben gerichtete Banden von Difluorvinyliden ①nehmen zu.
- b: Differenzspektrum der thermischen Reaktion von Difluorvinyliden ① mit N₂
 bei 35 K; nach unten gerichtete Banden von Difluorvinyliden ① nehmen ab, nach oben gerichtete Banden von Difluordiazoethen ③ nehmen zu.
- c: Differenzspektrum der photochemischen Reaktion von Difluordiazoethen ③; nach unten gerichtete Banden von Difluordiazoethen ③ nehmen ab, nach oben gerichtete Banden von Difluorethin ① nehmen zu.

XX 7 11	1 1	1	тс	1.	

Difluorpropa	dienon	Difluordia	zoethen
1 [a]	2 [b]	3 [c]	4 [d]
2169,1 [54,5]	2160 [100]	2104,7	2105 [21]
1763,6 [19,3]	1763 [31]	2085,2	2085 [26]
1248,4 [16,2]	1251 [23]	1672,7	1674 [22]
1194,4 [6,2]	1189 [14]	1650,7	1646 [100]
		1262,8	1268 [16]
		1143,9	1143 [5]
		834,9	837 [18]

Tabelle 3-31: Wellenzahlen der Infrarotspektren von Difluorpropadienon und Difluordiazoethen [cm⁻¹]

[a] Gasphasenwellenzahlen, Lit. [82]. Relative Intensitäten in eckigen Klammern.

[b] Diese Arbeit, Ar-Matrix, 10 K. Relative Intensitäten in eckigen Klammern.

[c] Lit. [106]. Keine Intensitätsangaben.

[d] Diese Arbeit, Ar-Matrix, 10 K. Relative Intensitäten in eckigen Klammern.

3.9.5 Diskussion der Ergebnisse

Difluorvinyliden kann matrixisoliert durch Bestrahlung von Difluorethin mit einem Excimer-Laser bei $\lambda = 193$ nm dargestellt werden. Die Isomerisierung von Difluorvinyliden zu Difluorethin ist durch die hohe Energiebarriere von ca. 30 kcal/mol geschützt. Die Rückreaktion kann jedoch durch Bestrahlung mit einer Niederdruck Hg-Lampe mit $\lambda > 230$ nm erzwungen werden. Die außerordentliche Reaktivität von Difluorvinyliden wird durch die Reaktion mit CO und N₂ demonstriert, die bei Temperaturen von 35 - 42 K (vermutlich noch niedriger) angelagert werden. Abbildung 3.49 faßt die untersuchten Reaktionen zusammen.

Alle Schwingungswellenzahlen von Difluorvinyliden konnten im Rahmen dieser Arbeit bestimmt werden. Die beobachtete Fermi-Resonanz ist in analoger Weise schon für das strukturell und IR-spektroskopisch sehr ähnliche $F_2C=S$ gefunden worden. Die Gegenüberstellung der experimentellen Wellenzahlen und Intensitäten mit theoretischen Parametern zeigt eine ausgezeichnete Übereinstimmung.

Abb. 3-49: Reaktionen von Difluorethin und Difluorvinyliden in einer Ar-Matrix

Mit der in dieser Arbeit vorgestellten Methode zur Darstellung von Difluorvinyliden liegt ein einfaches und leicht reproduzierbares Verfahren für weitere Untersuchungen am Difluorvinyliden vor. Neben den in Bochum geplanten und teilweise schon durchgeführten Matrixexperimenten, die sich vor allem mit der Reaktion von Difluorvinyliden mit geeigneten Molekülen/Atomen befassen werden (z.B. Xe [110], O₂, CO₂, CH₄, BF₃), dürfte auch die Fragestellung, ob sich die photochemische Umwandlung auch auf andere Fluorhalogenverbindungen wie die in Kap. 3.2.3.3 beschriebenen Moleküle Fluorchlor- oder Fluorbromethin übertragen läßt, von großem Interesse sein.

Der Schwerpunkt zukünftiger Untersuchungen der Arbeitsgruppe wird aber die millimeterwellenspektrokopische Suche von Difluorvinyliden in der Gasphase sein, unter Verwendung des in dieser Arbeit beschriebenen experimentellen Aufbaus zur Lebensdauerbestimmung von Silaethen (Kap. 4.5.5). Da das theoretische Rotationsspektrum durch die von Thiel et al. auf CCSD/TZ2Pf-Niveau berechneten Rotationskonstanten bekannt ist, Difluorethin als Reaktionsedukt wegen eines fehlenden permanenten Dipolmoments nicht stört und darüber hinaus Difluorvinyliden über ein relativ großes Dipolmoment verfügt, liegen hier günstige Voraussetzungen für den millimeterwellenspektroskopischen Nachweis vor.

3.10 Synthese und Rotations-Schwingungsanalyse von Prop-1-inylisocyanid

Während die Verbindungsklasse der Isocyanine R-C \equiv C-N \equiv C lange Zeit unerforscht blieb, war der experimentelle Zugang zu den konstitutionsisomeren Cyaninen R-C \equiv C-C \equiv N und Cyanpolyinen R-(C \equiv C)_n-C \equiv N schon seit längerer Zeit bekannt. Die beiden einfachsten Vertreter der Cyanine, Ethinylcyanid H-C \equiv C-C \equiv N [111] und Prop-1-inylcyanid CH₃CCCN [112] lassen sich durch eine Grignard-Reaktion darstellen.

$$R-C\equiv C-Br + Cl-CN \xrightarrow{Mg} R-C\equiv C-CN \quad (R = H, CH_3)$$
(3.15)

Die Gruppe der Isocyanine konnte erst 1990 von Lentz et al. durch die Darstellung von Ethinylisocyanid aus der Vakuumblitz-Thermolyse von partiell halogenierten (Ethylisocyanid)- bzw. (Ethenylisocyanid)-pentacarbonylchrom-Komplexen zugänglich gemacht werden [113].

$$Cr(CO)_{5}CN - CCl_{2} - CHCl_{2} \xrightarrow{\Delta} CN - C \equiv C - H \qquad (3.16)$$

$$Cr(CO)_{5}CN - CCl \equiv CHCl \xrightarrow{\Delta}$$

Mikrowellen- [114], niedrig- und hochauflösende IR- [115], sowie photoelektronenspektroskopische Untersuchungen [116] belegen die Existenz des Isocyanid-Isomers von Ethinylcyanid. Kurze Zeit später gelang Lentz et al. die Darstellung des bis dahin ebenfalls unbekannten Prop-1-inylisocyanids, das in Analogie zu dem in Gl. (3-16) beschriebenen Synthesekonzept erhalten werden konnte.

$$Cr(CO)_5CN-CCI=CCI-CH_3 \xrightarrow{\Delta} CN-C\equiv C-CH_3$$
 (3.17)

Der besondere Reiz der Substanzklassen der Cyanine, Polycyanine und Isocyanine liegt in deren Vorkommen in interstellaren Wolken begründet. So konnte der einfachste Vertreter der Cyanine, Ethinylcyanid, erstmals 1970 radioastronomisch in der galaktischen Quelle SGR B2 [117] und später im Orion-Nebel sowie in der interstellaren Wolke TMC-1 (Taurus Molecular Cloud - 1) [118] nachgewiesen werden. Die während des Vorbeifluges am Saturnmond Titan von der Raumsonde Voyager 1 aufgenommenen IR-Spektren führten 1982 zum Nachweis von Ethinylcyanid neben Kohlenwasserstoffen und anderen, stickstoffhaltigen organischen Verbindungen wie Blausäure (HCN) und Dicyan (NC-CN) [119]. Von den linearen Cyanpolyinen H-(C \equiv C)_n-CN sind mittlerweile Alkine bis hin zum 2,4,6,8,10-Undecapentainnitril (n=5) in interstellaren Wolken bekannt [120]. Erwähnenswert an dieser Stelle ist, daß die Suche nach der Kohlenstoffquelle für die Cyanpolyine zur Entdeckung von C₆₀ (Fulleren) geführt haben [121]. Nachdem 1991 das konstitutionsisomere Ethinylisocyanid zugänglich wurde, konnte dieses auf der Grundlage der durch die Mikrowellenspektroskopie erhaltenen Rotationskonstanten sehr schnell in der interstellaren Wolke TMC-1 nachgewiesen werden [122]. Damit ist, neben HCN/HNC und CH₃CN/CH₃NC, nun die Existenz eines weiteren Isomerenpaars HCCCN/HCCNC als Bestandteile interstellarer Wolken bewiesen. Die in Gl. (3.17) beschriebene Synthese von Prop-1inylisocyanid macht ein weiteres Molekül von radioastronomischem Interesse zugänglich, da das konstitutionsisomere Prop-1-inylcyanid (CH₃CCCN) 1983 auf der Basis der aus Mikrowellen- und Millimeterwellenspektren bekannten Rotationskonstanten [112,123] ebenfalls in der interstellaren Wolke TMC-1 nachgewiesen wurde [124]. Der IR-spektroskopische Nachweis in der Atmosphäre des Saturn-Mondes Titan durch Vergleich mit dem Labor IR-Spektrum [125] gelang bisher nicht, da im Bereich der Schwingungsbanden von Prop-1-inylcyanid Absorptionen von Propin und Ethinylcyanid auftraten [126].

Cyanide	Isocyanide
H-C≡N	H-N≡C
H ₃ C-C≡N	H ₃ C-N≡C
H-C≡C-C≡N	H-C≡C-N≡C
$H_3C-C\equiv C-C\equiv N$	$H_3C-C\equiv C-N\equiv C$?
$H-(C \equiv C)_n-C \equiv N (n=2-5)$?

Tabelle 3-32: In interstellaren Wolken vorkommende Cyanide und Isocyanide

In der vorliegenden Arbeit wurde Prop-1-inylisocyanid in Anlehnung an das in Gl. (3.17) beschriebene Syntheseverfahren dargestellt und durch die Aufnahme niedrig- sowie hochaufgelöster IR-Spektren untersucht. Diese Arbeit ist Teil einer Kooperation, die NMR-, Millimeterwellen-, IR-, sowie theoretische Untersuchungen von Prop-1-inylisocyanid zum Inhalt haben [127]. In Analogie zum radioastronomischen Nachweis von Ethinylisocyanid sollen die Ergebnisse dieser Untersuchungen die Grundlage für den möglichen radioastronomischen Nachweis von Prop-1-inylisocyanid bilden.

3.10.1 Darstellung von Prop-1-inylisocyanid

Für seine Darstellung liegt Prop-1-inylisocyanid vorgeformt als Ligand in seiner chlorierten Form im Komplex Pentacarbonyl-(1,2-dichlorprop-1-enylisocyanid)- chrom gebunden vor. Nach Gl. (3.17) führen die hohen Thermolyse-Temperaturen zur Abspaltung von Chlor, und Prop-1-inylisocyanid wird freigesetzt.

Zur Synthese von Prop-1-inylisocyanid wurde die Vorstufe Pentacarbonyl-(1,2dichlorprop-1-enylisocyanid)-chrom von Herrn Prof. Dr. Lentz (Universität Berlin) zur Verfügung gestellt.

• Darstellung von Prop-1-inylisocyanid

150 mg (0,45 mmol) frisch sublimiertes Pentacarbonyl-(1,2-dichlorprop-1enylisocyanid)-chrom wird aus einem Vorlagekölbchen, das über ein auf 240°C erhitztes, ca. 50 cm langes Quarzrohr mit einer Hochvakuumapparatur (10⁻³ mbar) verbunden ist, geleitet. Die bei diesem Prozeß anfallenden flüchtigen Produkte fängt man in zwei hintereinandergeschalteten Kühlfallen mit den Temperaturen -78°C und -196°C auf, wobei in letzterer Prop-1-inylisocyanid in Form eines weißen Kondensats erhalten wird. Das noch verunreinigte Rohprodukt wird durch fraktionierte Kondensation über eine auf -126°C gekühlte Falle aufgereinigt.

Ausbeute: ca. 10 mg (0,15 mmol, 30 % d. Th.) Prop-1-inylisocyanid

3.10.2 Das IR-Spektrum von Prop-1-inylisocyanid

3.10.2.1 Symmetrie und Grundschwingungen von Prop-1-inylisocyanid

Das achtatomige Molekül H₃C-C \equiv C-N \equiv C stellt einen verlängerten symmetrischen Kreisel der Punktgruppe C_{3v} dar. Es besitzt die Symmetrieoperationen:

E, 2C₃, $3\sigma_v$.

(3.18)

In Tabelle 3-33 ist die dazugehörige Charaktertafel wiedergegeben.

C _{3v}	E	2C ₃	$3\sigma_{\rm v}$	h = 6	
A_1	1	1	1	z, z^2, x^2+y^2	
A_2	1	1	-1		Rz
E	2	-1	0	$(x+y), (xy, x^2-y^2)(xz, yz)$	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$

Tabelle 3-33: Charaktertafel der Punktgruppe C_{3v}

Nach Ausreduzieren und Abzug der Rotations- und Translationstransformationen ergibt sich für die Anzahl der Grundschwingungen:

$$\Gamma_{\rm vib} = 6A_1 + 6E \tag{3.19}$$

Demnach resultieren 6 totalsymmetrische Schwingungen der Rasse A1 und 6 zweifach entartete Schwingungen der Rasse E. Abb. 3-50 illustriert die einzelnen Schwingungsbewegungen des Moleküls. ν_1 und ν_7 können als reine symmetrische bzw. asymmetrische CH-Streckschwingung aufgefaßt werden. v_2 und v_3 können nicht mehr als isolierte Schwingungen betrachtet werden, da sie miteinander gekoppelt sind. ν_2 stellt vorwiegend die Streckschwingung der C=C-Dreifachbindung dar, während ν_3 überwiegend der N=C-Streckschwingung zugeordnet werden kann. Die Streckschwingungen der C-C-und C-N-Einfachbindung gehören zu ν_5 und ν_6 . Während die CH₃-Winkelschwingungen ν_4 , ν_8 und ν_9 zugeordnet werden können, ist die exakte Beschreibung der zweifach entarteten Schwingungen v_{10} , v_{11} und v_{12} problematisch, da es sich hierbei um die Biegeschwingungen der C-C≡C-N≡C-Kette handelt. Die für diese Schwingungen in Abb. 3-50 angedeuteten Amplituden stellen qualitativ die Auslenkung der Molekülkette dar, die unter Verwendung des Programms Hyperchem [128] erhalten wurden. Da alle Schwingungen mit einer Dipolmomentsänderung verknüpft sind, sollten diese im IR-Spektrum beobachtbar sein.

Abb. 3-50: Grundschwingungen von CH₃CCNC

3.10.2.2 Das niedrigaufgelöste IR-Spektrum von Prop-1-inylisocyanid

Das niedrigaufgelöste IR-Spektrum von Prop-1-inylisocyanid wurde in einer 18 cm Glasküvette mit KBr-Fenstern an einem Bruker FT-IR-IFS25 Spektrometer mit einer Auflösung von 2 cm⁻¹ aufgenommen. Der Druck in der Küvette betrug ca. 1,5 mbar.

Abb. 3-51: Gasphasen FT-IR-Spektrum von CH₃CCNC

Das IR-Spektrum wird durch eine starke Bande mit P,R-Struktur bei 2080 cm⁻¹ dominiert, welche auf die ν_3 N=C-Streckschwingung zurückgeht. Es treten weitere Banden mit P.R-Struktur auf, die um den Faktor 20 geringere Intensität besitzen. Die Absorptionen bei 2280 und 2940 cm⁻¹ können aufgrund ihrer typischen energetischen Lage der C \equiv C-Streckschwingung v_2 und der symmetrischen C-H-Streckschwingung v_1 zugeordnet werden. Der v_1 -Bereich wird von einer Serie von Q-Zweigen begleitet, die einen Abstand von ca. 10 cm⁻¹ besitzen. Diese Senkrechtbandenstruktur deutet auf die asymmetrische C-Htypische Streckschwingung ν_7 hin. Im Bereich der Wasser-Absorptionen bei 1500 cm⁻¹ tritt weitere Serie mit scharfen Q-Zweigen auf, eine die der ν_8 CH₃-Winkelschwingung zugeordnet werden kann. Diese findet sich als Oberton bei 2840 cm⁻¹ wieder. Daneben kann noch die ν_9 -Schwingung mit schwacher Intensität identifiziert werden. Als einziges Zersetzungsprodukt tritt Blausäure (HCN) auf.

3.10.3 Hochaufgelöste IR-Spektren von Prop-1-inylisocyanid

3.10.3.1 Spektrenaufnahme

Hochaufgelöste IR-Spektren wurden mit einem Bruker IFS 120 HR-Interferometer im Bereich von 450 - 3340 cm⁻¹ aufgenommen. Als Zelle diente in allen Fällen eine Metallküvette, die auf Temperaturen bis zu ca. -25°C abgekühlt werden konnte. Für die Eichung der aufgenommenen Spektralbereiche wurden Standard-CO₂ oder H₂O-Linien verwendet [87].

Spektrum Nr.	1	2	3	4	5
Wellenzahlbereich [cm ⁻¹]	450-1150	970-1670	1750-2400	2000-2950	2500-3340
Analyse der Bande(n)	$ u_9$	${m u}_8$	ν_3	ν_2	$ u_1, u_7 $
Zellenlänge [cm]	28	28	28	28	28
Druck [mbar]	10	10	3	10	10
Temperatur [°C]	-25	-23	+22	-20	-23
Fenster	CsBr	CsBr	KBr	CsBr	CsBr
Strahlteiler	KBr	KBr	KBr	KBr	CaF_2
Detektor	Cu:Ge	MCT 800	InSb	InSb	InSb
Auflösung/10 ⁻³ cm ⁻¹	3,8	2,7	3,3	4,4	4,4
Scanzahl	500	30	150	80	130
Signal/Rausch Verhältnis	200	80	700	500	100

Tabelle 3-34: Meßbereiche von CH₃CCNC

3.10.3.2 Spektrenbeschreibung und Analyse

Aus den hochaufgelösten Spektren konnten von den totalsymmetrischen A₁-Schwingungen $v_1 - v_3$ anhand ihrer typischen P,Q,R-Struktur identifiziert werden, während v_4 , v_5 und v_6 in Übereinstimmung mit der von Botschwina et al. auf ab initio-Basis berechneten sehr niedrigen Intensitäten angesichts der geringen Mengen an Material nicht beobachtet werden konnten. Das Aussehen der E-Typ Banden $v_7 - v_9$ wird durch weit separierte ^{P,R}Q_K -Zweige bestimmt. Die Bereiche $v_{10} - v_{12}$ sind im Rahmen dieser Arbeit nicht untersucht worden.

Die Gestalt der Banden wird in starker Weise durch das Verhältnis der Rotationskonstanten A : B beeinflußt, das ca. 74 beträgt. Das kann zur Folge haben, daß Energieniveaus von E-Typ-Schwingungen, die unterschiedliche $A\xi^z$ -Werte besitzen, K-abhängig in Wechselwirkung treten können und es somit zu anharmonischen Störungen kommt. Weiterhin sind die Q-Zweige der Parallelbanden sehr schwach und somit nicht immer zu erkennen. Aus ab initio-Untersuchungen ist die energetische Lage der Schwingungen ν_{11} und ν_{12} zu 285 und 143 cm⁻¹ berechnet worden. Das bedeutet eine Verkomplizierung der Spektren, da die resultierenden heißen Banden mit hoher Intensität auftreten sollten. Die Boltzmann Faktoren betragen für ν_{11} 0,25 und für ν_{12} 0,5. Somit besitzen - unter Berücksichtigung der E-Symmetrie - die von ν_{12} ausgehenden heißen Banden eine ähnliche Intensität wie die der kalten Banden.

3.10.3.3 Der Grundzustand von Prop-1-inylisocyanid

Für eine eindeutige Unterscheidung zwischen kalten und heißen Banden ist die genaue Kenntnis des Grundzustandes sehr wichtig. Aus Grundzustandskombinationsdifferenzen (gscd) der hier untersuchten Bandensysteme kann der Grundzustand nicht zuverlässig ermittelt werden, da nur sehr wenige Linien aufgelöst sind, die mit anderen ein gemeinsames oberes Niveau besitzen. Hier ist es sehr von Vorteil, daß neben den hier vorgestellten IR-spektroskopischen Untersuchungen auch millimeterwellenspektroskopische Experimente am Prop-1inylisocyanid zeitgleich durchgeführt wurden, die erste genaue Grundzustandsparameter für CH₃CCNC sowie für isotopomere Verbindungen liefern. Dies sind die Rotationskonstante B₀ sowie die Zentrifugaldehnungskonstanten D_{J0}, D_{JK0} und H_{JK0} für das Hauptisotop $H_3^{12}C^{-12}C \equiv {}^{12}C^{-14}N \equiv {}^{12}C$. Da B_0 alleine nicht die Molekülgeometrie festlegt, war die Kenntnis der axialen Rotationskonstanten A₀ sehr wichtig, die aus ab initio-Berechnungen von Botschwina et al. verfügbar war. Um die Richtigkeit der Zuordnungen zu überprüfen und um unabhängig von den Resultaten der millimeterwellenspektroskopischen Untersuchungen die Rotationskonstanten des Grundzustandes zu erhalten, wurden Kombinationsdifferenzen aus einem gemeinsamen Datensatz der Banden ν_1 - ν_3 , gebildet, unter Verwendung des Kleinsten-Fehlerquadrate-Programms DIFFMIL [89]. In nachfolgender Tabelle sind die Grundzustandsparameter von CH₃CCNC aufgeführt.

	Ab initio [a]	Millimeterwellen-	IR-Untersuchung
		Untersuchung [b]	[c]
A ₀	5,297	-	-
B ₀	0,073 22(10)	0,073 261 826(3)	0,073 260 9(5) [d]
$D_{J0} \times 10^{9}$	-	3,486 7(13)	3,44(3) [d]
$D_{JK0} \times 10^7$	-	7,216 7(13)	-
$H_{JK0} \times 10^{12}$	-	1,13(3)	-
Anzahl der Daten [e]	-	46	106
σ (Fit) $\times 10^4$	-	-	5,0
J _{max} /K _{max} [e]	-	21/10	107/-

Tabelle 3-35: Grundzustandsparameter [cm⁻¹] von CH₃CCNC

[a] Nach Lit. [127], CEPA-1-Methode.

[b] Nach Lit. [127].

[c] Aus der Bildung von gscd's der nicht aufgelösten J-Cluster-Maxima der Parallelbanden $\nu_1 - \nu_3$.

 $[d] B_0^{\text{eff}}, D_J 0^{\text{eff}}.$

[e] Dimensionslos.

Die Ergebnisse des gemeinsamen Fits der $\nu_1 - \nu_3$ Parallelbanden bestätigen die Parameter der millimeterwellenspektroskopischen Untersuchung. Da die Parameter aus den Millimeterwellenspektren mit einer wesentlich höheren Genauigkeit bestimmt worden sind, wurden diese für die Fits der Parallelbanden $\nu_1 - \nu_3$ und der Senkrechtbande ν_9 verwendet.

3.10.3.4 Die Parallelbanden $v_1 - v_3$

Die hochaufgelösten Übersichtsspektren der drei Parallelbanden $v_1 - v_3$ (Abb. 3-52) weisen die erwartete P,R-Struktur mit einem schwachen Q-Zweig auf. Die Pund R-Zweige können in relativ scharfe J-Cluster aufgelöst werden, die K-Struktur ist demgegenüber in keinem Fall aufgelöst. Die kalte Bande der CH-Streckschwingung v_1 , die durch die ${}^{P}Q_{4}$ -, ${}^{P}Q_{5}$ - und ${}^{P}Q_{6}$ -Zweige der Senkrechtbande v_7 überlagert ist, besitzt ihr Zentrum bei 2941,01 cm⁻¹. Daneben befindet sich bei 2840 cm⁻¹ ein weiteres System mit P,R-Struktur und einem schwachen Q-Zweig. Aufgrund der energetischen Lage handelt es sich hierbei um den Oberton $2v_8$. Eine Analyse wurde im Rahmen dieser Arbeit nicht durchgeführt, da im Spektrum keine zusammenhängenden J-Cluster-Serien identifiziert werden konnten.

Nach den ab initio-Rechnungen sollten im CO₂-Bereich bei 2377 und 2302 cm⁻¹ zwei Banden mit etwa gleicher Intensität beobachtbar sein, die das Fermi-Paar $v_2/2v_5$ bilden. Im Rahmen dieser Untersuchung konnte in diesem Bereich jedoch nur eine Komponente bei 2289,01 cm⁻¹ gefunden werden, die aufgrund ihrer Lage die v_2 -Parallelbande darstellt. Diese tritt mit sehr geringer Intensität auf und ist von Linien von ¹³CO₂ überlagert. Der relativ scharfe Q-Zweig der Bande hat geringe Intensität und läuft zu niedrigeren Wellenzahlen. Bei tieferen Wellenzahlen tritt ein weiterer, intensitätsschwacher Q-Zweig auf, welcher der heißen Bande (v_2+v_{12})- v_{12} zugeordnet werden kann. Hieraus resultiert die Anharmonizitätskonstante $x_{2,12} = -1,10$ cm⁻¹. Als intensitätsstärkste Bande tritt die v_3 -Parallelbande bei 2082,99 cm⁻¹ auf. Es werden zwei P-, R-Serien mit aufgelösten J-Clustern beobachtet, die der kalten Bande sowie der heißen Bande (v_3+v_{12})- v_{12} zugeordnet werden kann. Aus der Lage der scharfen Q-Zweige läßt sich die Anharmonizitätskonstante $x_{3,12} = -0,90$ cm⁻¹ ableiten.

In allen drei Spektren der Parallelbanden konnten nur die ^QR- und ^QP-Peaks aufgelöst werden, die Auflösung in K-Cluster gelang nicht. Für eine erste Zuordnung wurden unter der Annahme, daß das Peak-Maximum immer dem gleichen K-Wert entspricht, Polynomfits der Form

$$v_{obs} = a + bm + cm^2 + dm^3$$
 (3.20)
mit
 $a = v_0$ (3.21)
 $b = (B' + B'')$ (3.22)
 $c = (B' - B'')$ (3.23)
 $d \approx -4D_J''$ (3.24)
 $m = -J \text{ im P-Zweig und } m = J+1 \text{ im R-Zweig}$

durchgeführt. Weitere Fits, unter Verwendung des Kleinsten-Fehlerquadrate-Programms MILLI [91], führten zu äquivalenten Ergebnissen und gleicher Standardabweichung. Hierbei wurden die relativ scharfen Peaks als ^QR - und ^QP -Peaks mit K = 0 zugeordnet, da der exakte K-Wert nicht bekannt ist. Die Grundzustandsenergien sowie die Energien der angeregten Zustände sind durch Gl. (2.68) gegeben, wobei für den Fit der in Tabelle 3-35 aufgeführte Grundzustand verwendet wurde. D_Jv und D_{JK}v für die angeregten Zustände wurden auf den Parametern des Grundzustands festgehalten, A₀ und D_K0 sind für den Fit ohne Bedeutung. Die Ergebnisse der Fits sind in Tabelle 3-36 aufgeführt.

Abb. 3-52: Hochaufgelöste Übersichtsspektren der drei Parallelbanden $v_1 - v_3$. In Spektrum B ist die v_2 -Bande von Linien des ¹³CO₂ überlagert.

17.	N m	$(\mathbf{B}_{a}, \mathbf{B})^{\text{eff}} \times 10^4$	Anzahl der	J/K _{max}	σ(Fit)
<i>v</i> ₁	✓ eff	$(\mathbf{D}_0 \mathbf{D}_v) \times 10$	Daten [b]	[b]	$\times 10^3$
ν_1	2941,012 2(4)	-0,027(3)	68	52/[a]	1,7
ν_2	2289,148 53(18)	3,324 7(4)	122	99/[a]	1,3
ν_3	2082,987 85(5)	1,836 29(9)	179	107/[a]	0,45

Tabelle 3-36: Effektive Parameter [cm⁻¹] von CH₃CCNC für $\nu_1 - \nu_3$

[a] K-Struktur ist nicht aufgelöst.

[b] Dimensionslos.

Erwartungsgemäß ist die Größe von $(B_0-B_v)^{eff}$ für v_1 im Vergleich zu den Werten von v_2 und v_3 um zwei Zehnerpotenzen kleiner, da die Schwingungsbewegung der Wasserstoffatome nur zu einer sehr geringen Änderung des Trägheitsmomentes des oberen Schwingungszustandes führt. Die Größe des α_2 Wertes für die v_2 -Bande kann das Vorliegen einer Fermi-Resonanz nicht zweifelsfrei belegen, da über α_2 keine anderen Informationen vorliegen. Hier wären entsprechende ab initio-Rechnungen von Vorteil, da sich der α_B -Wert einer Bande bei Vorliegen einer Fermi-Resonanz signifikant ändert.

3.10.3.5 Die Senkrechtbanden $\nu_7 - \nu_9$

Die drei untersuchten Senkrechtbanden zeigen scharfe Q-Zweige mit Intensitätsalternanz von stark-schwach-schwach für die K = 3p und K = 3p ± 1 Q-Zweige mit p = 0, 1, 2, ... Alle Q-Zweige, die bei den drei untersuchten Systemen einen Bereich von ca. 100 cm⁻¹ überspannen, bestehen neben den intensitätsstärksten Q-Zweigen der kalten Banden aus solchen mit geringerer Intensität, die auf heiße Banden zurückgehen. Alle Q-Zweige können durch Kreuzung der oberen Niveaus mit nicht identifizierbaren Störern aufgespalten sein. Die Separation der verschiedenen Komponenten ist mit < 1 cm⁻¹ sehr klein im Vergleich zur K-Aufspaltung der Q-Zweige, die sich aus 2(A - A ζ^z - B) zu ca. 10 cm⁻¹ ergibt.

Die Zuordnung der intensitätsstärksten Q-Zweige der kalten Banden ist durch Bildung von gscd's nicht möglich. Für einige K Δ K-Serien der Banden v_7 und v_8 sowie für die ^RR₃-Serie der v_9 -Bande finden sich Linien, die mit der Lage der zugehörigen Q-Zweige im Einklang stehen, was die Bestimmung des Parameters (B₀-B_{t,K}) ermöglichte. In allen anderen Fällen konnten nur die Q-Zweig Maxima für einen Fit verwendet werden, der auf der in Gl. (2.71) aufgeführten Energieformel basiert. Die Zuordnung des richtigen K-Wertes der Q-Zweige erfolgte unter Berücksichtigung der Intensitätsalternanz, also der symmetrischen Intensitätsverteilung innerhalb der Bande, der etwas unterschiedlichen Kontur des ${}^{R}Q_{0}$ -Zweigs bedingt durch $\ell(2,2)$ -Resonanz und in anderen Fällen durch die Beobachtung von ersten ${}^{R}R$ - und ${}^{P}P$ -Linien mit J = K.

Für die ν_7 -Bande, die im Bereich von 2930 - 2950 cm⁻¹ von der ν_1 -Bande überlagert ist, konnten die Q-Zweige von K $\Delta K = -9$ bis +9 beobachtet werden. Auffällig ist die irreguläre Lage von ^PQ₅ nahe dem Bandenzentrum von ν_1 , die im Gegensatz zu den anderen Q-Zweigen unterschiedliche Abstände zu den nächsten benachbarten Q-Zweigen aufweist. Für ^PQ₁, ^RQ₀, ^RQ₁, ^RQ₃, ^RQ₄, ^RQ₅ und ^RQ₆ konnten $\Delta J = \pm 1$ -Serien gefunden werden, deren Fit die Positionen der zugehörigen Q-Zweige exakt wiedergibt. Die Ergebnisse dieser Fits sind in Tabelle 3-37 aufgeführt. Um erste Aussagen über die Rotations-Schwingungsparameter der ν_7 -Bande machen zu können, wurde unter der Voraussetzung, daß die Q-Zweig Maxima den Subbandenursprüngen ^PQ_K(J=K) und ^RQ_K(J=K+1) entsprechen, ein Polynomfit der Form

$$\nu_{\rm K} = a + b({\rm K}\Delta{\rm K}) + c({\rm K}\Delta{\rm K})^2$$
(3.25)

$$a = v_0 + (A' - B') - 2A' \zeta^z$$
(3.26)

$$b = 2(A' - A'\zeta^{z} - B')$$
(3.27)

$$\mathbf{c} = (\mathbf{A}' - \mathbf{A}_0) - (\mathbf{B}' - \mathbf{B}_0) \tag{3.28}$$

durchgeführt. Wellenzahlen von Subbanden, die nur durch die Lage der Q-Zweig Maxima bestimmt worden sind, wurden für den Fit mit 0,1 gewichtet. ${}^{P}Q_{5}$ wurde nicht gewichtet, da die Lage des Q-Zweiges mit einer Verschiebung von 1,84 cm⁻¹ zu kleineren Wellenzahlen deutlich aus dem Rahmen fällt. Die Ergebnisse des Fits sind in Tabelle 3-38 aufgelistet und zeigen die systematischen Verschiebungen der Subbandenursprünge, welche die Anwesenheit von Störungen belegen.

Der ν_8 -Bereich, in den auch die symmetrische Winkelschwingung ν_4 fällt, erstreckt sich über den Bereich von 1330 - 1570 cm⁻¹. Die teilweise sehr breiten Q-Zweige können von K $\Delta K = -9$ bis +8 zugeordnet werden. Von diesen Q-Zweigen fehlt PQ_5 völlig, während RQ_2 und RQ_5 in mehrere Komponenten aufgespalten sind. RQ_0 stellt den intensitätsstärksten Q-Zweig dar. PQ_9 und PQ_6 laufen zu niedrigeren Wellenzahlen, während PQ_4 und PQ_6 im Gegensatz dazu zu höheren Wellenzahlen laufen. Diese Beobachtungen sprechen für das Auftreten einer Coriolis x, y Rotationsresonanz, die durch die Wechselwirkung des $k\ell = -4$ Niveaus des ν_8 - Zustandes mit einem Niveau k = 5 einer A₁-Typ Bande verursacht wird. Dies erklärt auch das Fehlen des PQ_5 - Zweiges. Aufgrund der energetischen Lage kommt als möglicher Störer nur ν_4 (δ_8 - CH₃-Schwingung) in Betracht, der im niedrigaufgelösten Spektrum deutlicher als Parallelbande identifiziert werden kann (Abb. 3-51). Demnach liegt v_4 bei 1395(5) cm⁻¹. Für einige Q-Zweige konnten $\Delta J = \pm 1$ -Serien zugeordnet werden, die ihren Ursprung in den dazugehörigen Q-Zweigen besitzen: ^PP₆, ^PP₃, ^RP₀, ^RR₀, ^RR₃ und ^RR₆. Die Ergebnisse des Fits von einigen dieser Serien sind in Tabelle 3-37 aufgeführt.

Subbande	Bandenursprung	$(B_0-B_v)^{eff}$	J' _{max} [a]	Anzahl der	$\sigma(\text{Fit}) \times 10^3$
κΔκ [å]		×10		Daten [a]	
ν ₇ -1	2979,978 3 (8)	0,333(17)	30	24	2,2
0	2989,180 6(24)	-0,06(10)	19	11	2,3
+1	2999,022 8(12)	0,218(24)	30	22	2,8
+3	3017,965 9(6)	-0,148(12)	31	25	1,8
+4	3027,698 2(16)	-0,073(34)	29	18	3,2
+5	3037,231 2(16)	-0,04(5)	23	13	2,4
+6	3046,564 2(22)	1,22(20)	14	8	3,1
ν ₈ -6	1373,223 1(8)	1,441(7)	46	40	3,0
-3	1417,922 9(10)	-1,180(21)	29	24	2,9
0	1455,311 0(5)	-1,023(4)	59	82	2,8
+3	1496,922 4(7)	-0,512(6)	49	40	2,8

Tabelle 3-37: Subbandenfits $[cm^{-1}]$ der ν_7 und ν_8 - Banden

[a] Dimensionslos

Die Abstände der Subbandenursprünge der ν_8 - Bande variieren in ungewöhnlicher Weise von 8 bis zu 14 cm⁻¹, was, zusätzlich zur vorher beschriebenen Coriolis-Resonanz, auf das Auftreten einer anharmonischen Störung hinweist. Ein Polynomfit der Subbandenursprünge ν_K (Tabelle 3-38) ist physikalisch nicht aussagekräftig, läßt jedoch aufgrund der Differenzen der berechneten zu den beobachteten Frequenzen ν_K weitere Schlüsse über die auftretenden Störungen zu.

ΚΔΚ	ν_7, ν_K	obscalc.	Gewicht	ΚΔΚ	$\nu_8, \nu_{ m K}$	obscalc.	Gewicht
-9	2901,04	0,38	0,1	-9	1330,45	-1,63	0,1
-8	2910,58	-0,11	0,1	-8	1344,62	-1,37	0,1
-7	2920,44	-0,24	0,1	-7	1358,90	-0,97	0,1
-6	2930,31	-0,32	0,1	-6	1373,22	-0,52	1,0
-5	2938,69	-1,84	0,0	-5	(1387,57)	-	0,0
-4	2950,24	-0,14	0,1	-4	1402,11	0,72	0,1
-3	2960,03	-0,16	0,1	-3	1417,92	2,74	1,0
-2	2969,80	-0,16	0,1	-2	1425,96	-2,99	0,1
-1	2979,98	0,29	1,0	-1	1441,13	-1,56	0,1
0	2989,18	-0,19	1,0	0	1455,31	-1,09	1,0
1	2999,02	0,01	1,0	1	1469,16	-0,94	0,1
2	3008,56	-0,04	0,1	2	1481,56	-2,20	0,1
				2	1484,67	0,91	0,1
3	3017,97	-0,18	1,0	3	1496,92	-0,49	1,0
4	3027,70	0,04	1,0	4	1509,14	-1,89	0,1
5	3037,23	0,11	1,0	5	1523,23	-1,39	0,1
6	3046,56	0,02	1,0	6	1541,26	3,07	0,1
7	3055,79	0,12	0,1	7	1553,83	2,09	0,1
8	3065,26	0,02	0,1	8	1566,99	1,73	0,1
9	3074,24	0,28	0,1				

Tabelle 3-38: Polynomfits der Subbandenursprünge ν_k [cm⁻¹] der ν_7 und ν_8 - Banden

 $v_{\rm K} = a + b(K\Delta K) + c(K\Delta K)^2$

a =	2989,37(10)	1456,4(14)
b =	9,659(21)	13,70(27)
c =	-0,022(4)	-0,01(6)
$\sigma =$	0,17	1,6

In Abb. 3-53 lassen sich zwei Kreuzungen der Niveaus bei $k\ell = -2$ (Beeinflußung von ^P(PQR)₃) und $k\ell = +6$ (Beeinflussung von ^R(PQR)₅) erkennen. Somit sollten die anharmonischen Wechselwirkungskonstanten in der Größenordnung von 3 - 4 cm⁻¹ für den ersten Fall und 2 - 3 cm⁻¹ für den zweiten Fall betragen. Über die Natur des Störers kann jedoch keine Aussage gemacht werden. Die Störungen der $k\ell = 3$ und 5 Niveaus scheinen demgegenüber nur lokal aufzutreten.

Abb. 3-53: Störung der Subbandenlagen der v_8 -Bande

Die ν_9 - Schwingung liegt bei 1032,5 cm⁻¹ (Abb. 3-54) und weist ebenfalls die erwartete Intensitätsalternanz auf. Hieraus ist ersichtlich, daß dieses Niveau vergleichsweise sehr viel weniger durch Störungen beeinflußt wird, als die beiden eben diskutierten Senkrechtbanden ν_7 und ν_8 . Q-Zweige können von -9 < K Δ K < +9 verfolgt werden, für ^RQ₃ ist die Zuordnung der dazugehörigen ^RR₃-Linien bis zu J" = 28 möglich. Die Breiten der beobachteten Q-Zweige übersteigen den Wert von 0,5 cm⁻¹ nicht und laufen in der Regel zu kleineren Wellenzahlen.

Abb. 3-54: Übersichtspektrum der v₉-Senkrechtbande

^RQ₅ besitzt eine irreguläre Form, was in Übereinstimmung mit der um +0,2 cm⁻¹ verschobenen Lage steht. Auch ^PQ₈ ist mit +0,1 cm⁻¹ aus der erwarteten Position verschoben. Da die meisten Q-Zweige ungestört auftreten, konnte unter Verwendung der ^RR₃ - Linien ein Fit für die Bestimmung von ν_0 , (A₀ - A_v), (B₀ - B_v) und A ζ^z unter Verwendung des Programms MILLI [91] durchgeführt werden. Die Ergebnisse sind in nachfolgender Tabelle aufgeführt.

Tabelle 3-39: Ergebnisse des Fits der Senkrechtbande ν_9 [cm⁻¹]

ν_0	$(A_0 - A_v) \times 10^2$	$(B_0 - B_v) \times 10^4$	Aζ ^z	J" _{max} [a]	Anzahl der Daten [a]	$\sigma \times 10^3$
1032,499 1(16)	-3,138(29)	0,262(26)	2,150 8(5)	28	35	4,3

[a] Dimensionslos

3.10.4 Vergleich der Parameter mit experimentellen und theoretischen Ergebnissen

Die aus den gscd's der Parallelbanden $v_1 - v_3$ erhaltenen Grundzustandsparameter B_0 und D_{J0} stimmen gut mit den aus Millimeterwellenexperimenten und ab initio-Rechnungen resultierenden Werten überein und bestätigen die richtige Zuordnung. B_0 ist im Vergleich zur Rotationskonstanten des konstitutionsisomeren Prop-1-inylcyanids ($B_0 = 0,068$ 905 614(6) [123]) um ca. 6 % größer, was im wesentlichen auf die kürzere Bindung zwischen der Ethin- und der Isocyanidgruppe zurückzuführen ist [127,129]. Die Überprüfung von D_{JK0} durch Bildung von gscd's gelang nicht, da die J-Cluster nicht in K-Komponenten aufgelöst sind.

Die Senkrechtbanden v_7 - v_8 konnten durch ihr typisches Erscheinungsbild und durch die im Falle der ν_9 -Bande besonders deutlich auftretende Intensitätsalternanz als solche erkannt und zugeordnet werden. Aus der Analyse der hochaufgelösten Spektren sind erstmals Schwingungsparameter für die Niveaus $v_7 - v_9$ von Prop-1-inylisocyanid zugänglich. Die Richtigkeit aller hier getroffenen Zuordnungen kann durch Vergleich mit dem theoretisch berechneten Schwingungsspektrum von Prop-1-inylisocyanid sowie durch Vergleich mit dem experimentellen IR-Spektrum des konstitutionsisomeren Prop-1-inylcyanids überprüft werden. Die experimentellen Werte für die Wellenzahlen sowie die Intensitäten der Grundschwingungen weisen eine sehr gute Übereinstimmung mit den ab initio-Werten für Prop-1-inylisocyanid auf. Allerdings tritt eine Diskrepanz im Bereich der ν_2 -(C=C)-Streckschwingung auf, die nach der ab initio-Vorhersage mit dem ersten Oberton der v_5 -Schwingung in Fermi-Resonanz stehen sollte (Tabelle 3-40). Dieser Fall ist auch schon beim Prop-1-inylcyanid beobachtet worden, in dem das Fermi-Paar ($\nu_2/2\nu_5$) die beiden intensivsten Banden ausbildet. Allerdings ist dieses Paar nur aufgrund der Nomenklatur gleichartig, da es sich bei v_2 um die sehr intensive (C≡N)-Streckschwingung handelt. Evidenz für ein analoges Verhalten ist im Rahmen dieser Untersuchung nicht gefunden worden. Als Grund hierfür kann die um den Faktor 20 geringere Intensität der ν_2 -Schwingung im Vergleich zur stärksten Schwingung (v_3) herangezogen werden. Der Vergleich mit den Schwingungswellenzahlen von CH₃CCCN ist sinnvoll, da lediglich die Isocyanid-Gruppe nun als Cyanid-Gruppe vorliegt. Demzufolge sollten alle Schwingungen mit Ausnahme der Isocyanid/Cyanid-Schwingung (ν_3 bzw. ν_2) sehr ähnliche Schwingungsfrequenzen besitzen, wobei diese Analogie umso größer sein sollte, je weiter die jeweils betrachtete Schwingung von der Isocyanid/Cyanid-Gruppe entfernt ist. So findet man im Cyanid für ν_1 , ν_7 , ν_8 und ν_9 sehr ähnliche Bandenlagen sowie Konturen wie im Isocyanid. Von besonderem Interesse ist der Vergleich der A ζ^z -Werte der Senkrechtbanden, die alle die gleiche Größenordnung besitzen. Dieser Effekt ist nicht überraschend, wenn berücksichtigt wird, daß es sich bei den untersuchten Senkrechtbanden um die Schwingungen der CH₃-Gruppe handelt. Der Einfluß des Isocyanid/Cyanid-Substituenten auf diese Gruppe erscheint hier aufgrund der weiten Entfernung nur minimal. Eine Vermutung, daß es sich bei den in dieser Arbeit untersuchten Bandensystemen um solche von CH₃CCCN handelt, kann ausgeschlossen werden, da speziell im Bereich des Fermi-Paares $\nu_2/2\nu_5$ und von ν_3 signifikante Unterschiede der energetischen Lage sowie Intensitäten auftreten.

Tabelle 3-40:	Vergleich der Wellenzahlen [cm ⁻¹], Intensitäten und der $A\zeta^{z}$ -
	Werte der Grundschwingungen von CH3CCNC mit ab initio-
	Rechnungen sowie mit Wellenzahlen des konstitutionsisomeren
	CH ₃ CCCN

	Ab initio [a]		CH ₃ CCNC [b]			CH ₃ CCCN		
$ u_{\mathrm{i}}$	ν_0	Ι	$ u_{ m BC}^{ m eff}$	Aζ ^z	Ι	ν	$A\zeta^{z}[c]$	I [d]
1	3042	10,7	2941,012 2(4)	-	9	2909-2944 [d]	-	3,7
(2/55) ^I	2377	5,93	-	-	-	2332-2341 [d]	-	28,1
(2/55) ^{II}	2302	4,57	2289,148 47(18)	-	5	2268-2279 [d]	-	23,6
3	2088	116,7	2082,987 88(5)	-	100	2164 [d]	-	1,2
4	1434	1,02	1395(5)	-		-	-	-
5	1169	0,02	-	-	-	(1950?) [d]	-	2,5
6	669	2,09	-	-	-	637-648 [d]	-	2,8
7	3138	-	2984,93(10)	0,394(21)	4	2986,53 [c]	0,246	3,7
8	1509	-	1454,4(14)	-1,6(4)	3	1453,08 [c]	-1,943	15,3
9	1077	-	1032,499 1(16)	2,150 8(4)	2	1029,76 [c]	2,142	2,1
10	418	-	-	-	-	500 [c]	0,921	4,9
11	285	-	-	-	-	338 [c]	0,921	8,4
12	143	-	-	-	-	140-149,5 [d]	0,921	0,5

[a] Lit. [127], CEPA-1-Methode, Intensitäten [km mol⁻¹].

[b] Diese Arbeit, $\nu_{BC}^{eff}_{(7,8)}$ und A ζ^{z} nach Gl. (3.25), relative Intensitäten I.

[c] Lit. [125], Gasphase.

[d] Lit. [126], Gasphase, Intensitäten [km mol⁻¹].

4 NACHWEIS, CHARAKTERISIERUNG UND REAKTIONEN VON SILAETHEN H₂Si=CH₂

4.1 Einleitung

Die Chemie der Elemente Kohlenstoff und Silicium wird in besonderem Maße durch ihre unterschiedliche Neigung zur Ausbildung von Doppelbindungen gekennzeichnet. Nach der klassischen Doppelbindungsregel [130] sollte es Elementen ab der zweiten Periode nicht mehr möglich sein, unter Normalbedingungen stabile Verbindungen mit p π -p π -Bindungen auszubilden. Das hat zur Folge, daß für Kohlenstoff eine Vielzahl von Verbindungen existieren, die Doppelbindungen aufweisen, während entsprechende Siliciumverbindungen demgegenüber bevorzugt in doppelbindungsfreien Systemen auftreten.

Abb. 4-1: Beispiele für das unterschiedliche Verhalten homologer Verbindungen von C und Si bezüglich der Ausbildung von Doppelbindungen, entnommen aus Lit. [130].

Über ungesättigte Siliciumverbindungen ist in der Literatur dennoch schon sehr früh berichtet worden. Schon 1912 beschrieben Schlenk et al. die Synthese von 1,1-Diphenylsilaethen durch Wasserabspaltung aus Diphenylmethylsilanol [131]. Spätere Untersuchungen von Kipping widerlegten jedoch die Existenz dieser Verbindung [132]. Auch die 1961 von Fritz und Grobe vorgestellte Synthese von (CH₃)₃SiHC=SiMe₂ [133] konnte kurze Zeit später widerlegt werden [134]. Durch die vielen vergeblichen Darstellungsversuche wurde deutlich, daß nicht kinetisch stabilisierte ungesättigte Siliciumverbindungen lediglich als kurzlebige Intermediate auf dem Weg zu stabileren Reaktionsprodukten auftreten können. Demzufolge beschäftigten sich spätere Arbeiten vor allem mit der Analyse der bei der Synthese von Silaethenen entstehenden Folgeprodukte. So berichteten Gusel'nikov et al. 1966 über die Bildung von 1,1,3,3-Tetramethyl-1,3disilacyclobutan aus der Thermolyse von 1,1-Dimethylsilacyclobutan [135]. Die Bildung von 1,1,3,3-Tetramethyl-1,3-disilacyclobutan erklären die Autoren mit der Dimerisierung von intermediär gebildetem 1,1-Dimethylsilaethen. Die Richtigkeit der Annahme wird durch den direkten Nachweis von Dimethylsilaethen durch IR-Matrixspektroskopie [136] und Mikrowellenspektroskopie [9] gestützt. Einen Quantensprung in der Chemie der ungesättigten Siliciumverbindungen stellte das 1981 von Brook et al. [137] entdeckte, bei Normalbedingungen stabile 1,1-Bis(trimethylsilyl)-2-adamantyl-2-trimethylsiloxy-1-silaethen dar, das durch die photochemisch induzierte [1,3]-sigmatrope Umlagerung einer Trimethylsilyl-Gruppe in Tris(trimethylsilyl)silyladamantylketon als kristalliner Feststoff erhalten werden konnte.

Die $p\pi$ - $p\pi$ -Bindung vom Kohlenstoff zum Silicium wird in diesem Fall durch voluminöse Substituenten kinetisch stabilisiert und an einer Dimerisierungsreaktion gehindert; allerdings wandelt sich das erhaltene Silaethen langsam wieder in das ursprüngliche Keton um. Mittlerweile sind eine Vielzahl kinetisch stabilisierter Silaethene in der Literatur beschrieben worden. Umfassende Übersichten zum Themenbereich "Ungesättigte Siliciumverbindungen" sind in [4,5,6] gegeben.

Auch am Grundkörper der Silaethene, $H_2Si=CH_2$, sind viele Untersuchungen durchgeführt worden, die sich mit einem indirekten Nachweis, z. B. durch Abfangversuche, oder aber mit einem direkten Nachweis befaßten. Als direkte Nachweismethoden spielten die matrixspektroskopischen sowie photoelektronenspektroskopischen Untersuchungen eine wichtige Rolle. Die Resultate zu diesem Thema werden in der Literatur zum Teil sehr kontrovers diskutiert. Nach Auner und Grobe [7] stellt Silaethen eine bei 77 K haltbare, unter vermindertem Druck verlustfrei umkondensierbare Substanz dar. Diese Beobachtung steht jedoch in krassem Widerspruch zu späteren Untersuchungen von Maier et al., die eine vollständige Dimerisierung von Silaethen zu 1,3-Disilacyclobutan bereits bei 35 K beobachteten [8].

Den vielen theoretischen Berechnungen zufolge wird für Silaethen eine dem Ethen analoge, klassisch-planare Struktur mit C_{2v}-Symmetrie erwartet, im Gegensatz zum Disilen, das eine trans gewinkelte Struktur aufweisen sollte. Eine eindeutige Identifizierung und Untersuchung von Silaethen in der Gasphase, die beispielsweise auch die Strukturermittlung ermöglicht, gelang bisher nicht. Das verwundert im Hinblick auf den Kenntnisstand über andere, einfache ungesättigte Siliciumverbindungen. So konnte 2-Silavinyliden H₂C=Si:, das nach theoretischen Rechnungen [138] das energetisch günstigste Minimum auf der CH₂Si Potentialfläche besitzt, experimentell durch Aufnahme eines Absorptionsspektrums im Bereich von 29 000 - 32000 cm⁻¹ [139], sowie kürzlich durch Millimeterwellenspektrokopie nachgewiesen werden [140]. Hieraus leiten sich erstmals Strukturparameter ab, welche die nichtklassische Struktur H₂C=Si: gegenüber dem klassischen HSi≡CH bestätigen. Für H₂Si₂, das durch die Zersetzung von Silan in einer Glimmentladung dargestellt werden konnte, wurde als energetisch stabilste Form eine zweifach verbrückte Struktur gefunden [141], neben einem energetisch ungünstigerem Isomer mit nur einer Wasserstoffbrücke [142]. Die Darstellung und der millimeterwellenspektroskopische Nachweis von Silanon, H₂SiO, gelang in analoger Weise durch Reaktion von Silan und Sauerstoff in einer Glimmentladung [143]. Hieraus ließ sich eine dem Formaldehyd analoge Struktur ableiten, die den IR-Matrix-spektroskopischen Nachweis von Silanon [144] bestätigt. Aus theoretischen Rechnungen leiten sich noch zwei weitere Isomere ab, die vergleichbare Stabilität aufweisen sollten, trans und cis-Hydroxysilylen, HSiOH. Es existieren lediglich Hinweise auf die Existenz von trans-HSiOH aus IR-matrixspektroskopischen Untersuchungen [145], die allerdings nicht unumstritten sind [146].

Abb. 4-2: Ungesättigte Kohlenstoff- und Siliciumverbindungen

Demnach stellt Silaethen, neben Disilen, das in dieser Reihe letzte Molekül dar, dessen Struktur experimentell noch nicht verifiziert werden konnte.

Ziel dieser Arbeit war es, Silaethen durch Zersetzung potentieller Vorstufen zu erzeugen und durch geeignete experimentelle Verfahren nachzuweisen. Die aufgrund der Literaturangaben zu erwartende Kurzlebigkeit des Moleküls erfordert empfindliche und sehr spezifische Meßmethoden. Diese Voraussetzungen sind besonders bei der Mikrowellen- und Millimeterwellenspektroskopie erfüllt, die ideale Werkzeuge für die Strukturaufklärung instabiler Moleküle darstellen. Vielfältige Erfahrungen auf dem Gebiet der Millimeterwellenspektroskopie existieren in der Arbeitsgruppe von Dr. M. Bogey (Universität Lille), die erstmals den experimentellen Nachweis der Moleküle H2Si2 und H2SiO führen konnten. Es erschien sehr aussichtsreich, im Rahmen einer Kooperation das instabile Teilchen Silaethen durch millimeterwellenspektroskopische Untersuchungen nachzuweisen, da in Wuppertal große Erfahrungen bei der Präparation empfindlicher Silanderivate bestehen, die für die zum Teil aufwendigen Synthesen der Silaethenvorstufen erforderlich waren. Unterstützt wurde die Suche nach Silaethen durch ab initio-Rechnungen von Prof. W. Thiel und Dr. J. Breidung (Universität Zürich), die für das Auffinden von Rotationslinien von Silaethen von großer Wichtigkeit waren.

Für das Verständnis der Si=C-Doppelbindung spielt die quantenmechanische Behandlung von Silaethen eine große Rolle. Daher betrachtet der erste Teil dieses Kapitels einige theoretische Erkenntnisse über Silaethen im Vergleich zu experimentellen Untersuchungen. Nach einer Zusammenfassung der Arbeiten über die Darstellungmethoden und Charakterisierung von Silaethenen folgt die Beschreibung der Synthesen der für die millimeterwellenspektroskopischen Experimente nötigen Vorstufen. Im zweiten Teil wird der erfolgreiche Nachweis von Silaethen durch Millimeterwellenspektroskopie beschrieben. Der dritte Teil behandelt den Versuch des Nachweises von Silaethen durch hochauflösende IR-Spektroskopie.

Der letzte Teil berichtet über den Versuch der CO₂-laserinduzierten Erzeugung von SiC-Schichten aus Silaethenvorstufen, da ein direkter Zusammenhang zwischen Silaethen und den SiC-Schichten vermutet wird.

4.2 Grundsätzliche Überlegungen zu Silaethen

Eine Vielzahl von theoretischen Arbeiten beschäftigt sich mit den Basiseigenschaften von Silaethen, wie Geometrien im Singulett- oder Triplett-Zustand, Stärke und Polarität der Si=C-Doppelbindung. Sehr ausgiebig ist auch die energetische Lage des Isomeren Methylsilylen CH₃(H)Si: bzw. die Höhe der Isomerisierungsenergie berechnet worden. Weitere Arbeiten beschäftigen sich mit der Problematik der Silaethen-Dimerisierung.

Die energetisch günstigste Elektronenanordnung von Silaethen ist der Singulett-Zustand, in dem eine planare Si=C-Einheit vorliegt. Die Bindungslänge der Si=C-Einheit im Gleichgewicht beträgt nach Rechnungen im Mittel 170 pm. Demgegenüber unterscheidet sich die Geometrie von Silaethen im Triplett-Zustand, der bezüglich des Singulett-Zustands ca. 36 kcal/mol höher liegt, durch eine Verdrillung der CH₂-Gruppe gegenüber der H₂Si-Gruppe um 90° [147]. Als Maß für die Stärke der π -Bindung ist der Prozeß der cis-trans Isomerisierung berechnet worden. Die Energiebarriere hierfür beträgt 40 - 50 kcal/mol [148], womit Silaethen also stabil sein sollte. Rechnungen für die Dimerisierungsreaktion haben jedoch gezeigt, daß die Aktivierungsenergie für diesen Prozeß nur ca. 11 kcal/mol beträgt [149]. Die hohe Reaktivität der Si=C-Doppelbindung kann auf die hohe Polarität der Si=C-Bindung zurückgeführt werden und nicht auf die Instabilität der Verbindung selbst. Für die Silaethen-Dimerisierung werden zwei Wege diskutiert. Aus experimentellen Untersuchungen ist bekannt, daß stabile Silaethene, d. h. solche, die durch sperrige Reste stabilisiert sind, bevorzugt Kopf-Kopf Dimerisierungsreaktion eingehen, die zu 1,2-Disilacyclobutan-Derivaten führen [150]. Die Dimerisierung verläuft über einen mehrstufigen Diradikal-Mechanismus. Demgegenüber ist aus experimentellen Untersuchungen bekannt,

daß kurzlebige Silaethene in einer Kopf-Schwanz-Reaktion zu 1,3-Disilacyclobutan-Derivaten dimerisieren. Für den Prozeß der Dimerisierung bestehen in der Literatur unterschiedliche Auffassungen. Schäfer III et al. diskutieren eine konzertierte $[2\pi_s+2\pi_s]$ -Cycloaddition für die Kopf-Schwanz-Addition [151], die jedoch nach den Woodward-Hofmann Regeln thermisch nicht erlaubt ist [152]. Dagegen führt, nach Berechnungen von Bernardi et al., die Dimerisierung über einen mehrstufigen, diradikalischen Prozeß [153].

Die Umwandlung von Silaethen in die Konstitutionsisomeren Methylsilylen und Silylmethylen ist ausgiebig theoretisch untersucht worden [154]. Silylmethylen SiH₃(H)C: ist demnach für die Singulett-Zustände die energetisch ungünstigste Form und liegt 69 kcal/mol über Singulett-Silaethen. Nur unwesentlich stabiler sollte nach diesen Rechnungen das dritte Isomere, Methylsilylen CH₃(H)Si:, sein. Die Energiedifferenz beträgt nur ca. 0,4 kcal/mol. Für die Triplett-Zustände werden ähnliche Ergebnisse erhalten, jedoch unterscheiden sich die relativen Energien von Triplett-Silaethen und Triplett-Methylsilylen sehr deutlich voneinander. Als Grund hierfür wird der Verlust der π -Bindungskomponente im Triplett-Silaethen in Singulett-Methylsilylen ist sehr eingehend untersucht worden und beträgt ca. 40 kcal/mol. Nachfolgende Abbildung stellt die Ergebnisse von DZ+d CI-Rechungen dar.

Abb. 4-3: Relative Energien [kcal/mol] von Singulett- und Triplett-Silaethen und der isomeren Moleküle Methylsilylen und Silylmethylen nach [154]
4.3 Darstellungsmethoden für Silaethen nach der Literatur

Die Erzeugung von Silaethen und seinen Derivaten erfolgt durch photochemische und thermische Verfahren. In den folgenden Unterkapiteln sollen einige, meiner Meinung nach wichtige Verfahren erläutert werden, die entweder zu einem direkten Nachweis von Silaethen-(Derivaten) geführt haben, oder aber aufgrund der Reaktionsprodukte die Beteiligung von Silaethen-(Derivaten) als reaktive Zwischenstufen vermuten lassen.

4.3.1 Thermische Verfahren

• Silaethen durch [2+2]-Cycloreversion

Die klassische Darstellungsvariante für Silaethen ist die thermisch induzierte [2+2]-Cycloreversion von Silacyclobutan. Während die Bildung von Dimethylsilaethen durch Thermolyse von 1,1-Dimethylsilacyclobutan direkt durch IR-Matrixspektroskopie [136] sowie in der Gasphase durch Massenspektrometrie [155] und Mikrowellenspektroskopie [9] belegt werden konnte, ist die Übertragbarkeit dieser Reaktion auf das unsubstituierte Silacyclobutan umstritten. Aus mechanistischen Studien ist bekannt, daß die Thermolyse 1,1-disubstituierter Silacyclobutane im ersten Schritt die Spaltung der C-C-Bindung bedingt [156], die von der Dissoziation der SiC-Bindung und somit der Bildung eines Silaethens gefolgt wird. Dagegen scheinen die hohen Temperaturen zur reduktiven Eliminierung der Methylengruppe im unsubstituierten Silacyclobutan zu führen, woraus ein Silylen entsteht [157].

H—Si
$$(4.2)$$

Dies wird durch die Untersuchung der Co-Thermolyse von Disilacyclobutan mit Butadien als Abfangreagenz bestätigt, da hauptsächlich Methylsilylen neben wenig Silaethen nachgewiesen werden konnte [158].

Dieser Unterschied ist von besonderem Interesse, da der von Auner und Grobe beschriebene IR-spektroskopische und massenspektrometrische Nachweis von Silaethen, das aus der Thermolyse von Silacyclobutan und 1,3-Disilacyclobutan erhalten wurde [7], sehr umstritten ist. Den Autoren zufolge stellt Silaethen eine bei -196°C für einige Wochen stabile, in einer Vakuumapparatur ohne größere Zersetzung umkondensierbare Substanz dar.

2
$$H_2Si = CH_2 \quad \underbrace{\Delta}_{M=Si} \quad \underbrace{Si}_{M} \quad \underbrace{\Delta}_{M=C} \quad H_2Si = CH_2 + H_2C = CH_2$$

$$(4.3)$$

Diese Beobachtungen stehen im klaren Gegensatz zu Ergebnissen, die von anderen Arbeitsgruppen gefunden wurden [159].

• Silaethene durch [2+4]-Cycloreversion

Die effektivste Methode zur Darstellung von Silaethenen ist die von Barton 1972 vorgeschlagene Retrodienspaltung von Silabicyclo[2.2.2]octadien-Derivaten, die den experimentellen Zugang zu Dimethyl-, Methyl-, Dichlor- und Monochlorsilaethen ermöglichten. So gelang Maier et al. 1981 der experimentelle Nachweis von Silaethen H₂Si=CH₂ [8]. Die UV- und IR-Spektren der Produkte, die in einer Argon-Matrix bei 10 K aus der Thermolyse von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octadien isoliert wurden, belegen zweifelsfrei die Existenz von Silaethen.

$$\underset{CF_3}{\overset{\text{Si}}{\longrightarrow}} CF_3 \xrightarrow{650^{\circ}\text{C}} H_2\text{Si} \longrightarrow H_2\text{Si} \xrightarrow{CF_2} + \underset{CF_3}{\overset{\text{CF}_3}{\longrightarrow}} (4.4)$$

Bestätigung findet diese Untersuchung durch Vergleich mit dem theoretisch berechneten IR-Spektrum [160], durch Deuterierungsexperimente sowie die reversible, photochemische Isomerisierung von Silaethen zu Methylsilylen [161]. Bock et al. nutzten dieses Darstellungsverfahren zum photoelektronenspektroskopischen Nachweis von Silaethen [162].

4.3.2 Photochemische Verfahren

• Silaethene durch 1,2-Substituentenshift in Silylcarbenen und Alkylsilylenen

Ein effizientes Verfahren zur Darstellung von methylsubstituiertem Silaethen ist die von Chapmann et al. 1976 beschriebene photochemisch induzierte Abspaltung von Stickstoff aus silylierten Diazomethanderivaten [163]. Das hierbei entstehende Silylmethylen wird durch 1,2-Wanderung eines Substituenten in ein Silaethen übergeführt. Auf diesem Weg wurde erstmals die Bildung von 1,1,2-Trimethylsilaethen aus der UV-Photolyse von Trimethylsilyldiazomethan IR- Matrix-spektroskopisch nachgewiesen. Sander et al. griffen die Idee wieder auf und nutzten dieses Verfahren zur Darstellung von Methylsilaethen, 1,1-Dimethylsilaethen und Trimethylsilaethen für Untersuchungen der Reaktion mit molekularem Sauerstoff [164].

Den Autoren zufolge entsteht bei Bestrahlung der Diazomethan-Derivate mit UV-Licht ($\lambda > 360$ nm) in einer Ar-Matrix bei 10 K neben dem entsprechend substituierten Silaethen auch ein Diaziridinderivat, das aber bei Bestrahlung mit UV-Licht ($\lambda > 305$ nm) ebenfalls das entsprechende Silaethen liefert. Die Synthese bietet für IR-spektroskopische Untersuchungen den Vorteil, daß hier als Nebenprodukt nur IR-inaktiver Stickstoff gebildet wird.

Die 1,2-Wanderung eines Wasserstoff-Atoms in Alkylsilylenen stellt prinzipiell den analogen Prozeß dar und ist erstmals von Michl et al. experimentell untersucht worden [165]. Die Bestrahlung von Dodecamethylcyclohexasilan in einer Ar-Matrix bei 10 K mit UV-Licht ($\lambda = 254$ nm) führte zur Bildung von Dimethylsilylen, das bei weiterer Bestrahlung ($\lambda = 450$ nm) zu 1-Methylsilaethen reagiert.

Analog hierzu gelang Maier et al. die Untersuchung des photochemischen Gleichgewichts von Methylsilylen und Silaethen durch UV-Bestrahlung [161].

• Silaethene durch [2+2]-Cycloreversion

Arbeiten von Pola et al. berichten über die zeitaufgelöste UV-spektroskopische Untersuchung der kurzlebigen Spezies, die bei der durch ArF- und CO₂-laserinduzierten Zersetzung von Silacyclobutan und 1,3-Disilacyclobutan entstehen [166]. In beiden Fällen führt die Bestrahlung mit einem gepulsten ArF-Laser ($\lambda =$ 193 nm) oder einem TEA CO₂-Laser (10P(20)) zur Bildung eines kurzlebigen Moleküls mit einem Absorptionsmaximum bei 260 nm, das Silaethen zugeordnet wird. Aus dem unimolekularen Zerfall konnte die Reaktionsgeschwindigkeitskonstante k = 2,3 ± 0,7 × 10⁴ s⁻¹ abgeleitet werden. Demnach beträgt die Halb-wertslebensdauer t_{1/2} = 0,03 (1) ms.

4.4 Auswahl und Darstellung der Ausgangsverbindungen

Aufgrund der in der Literatur vorhandenen Hinweise zur Erzeugung von Silaethen erschienen für die millimeterwellenspektroskopischen Untersuchung nur die drei potentiellen Silaethenvorstufen Silacyclobutan (SCB), 1,3-Disilacyclobutan (DSB) und 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien (SBO) als Ausgangsverbindungen geeignet.

Die Synthese von SBO startet mit der Darstellung von 1,1-Dichlor-1-sila-2,4cyclohexadien [167], das durch die Reaktion von Hexachlordisilan mit Dicyclopentadien bei 550°C in einer Durchfluß-Thermolyseapparatur erhalten wird. Die hohen Temperaturen bewirken die Spaltung von Hexachlordisilan in Siliciumtetrachlorid und Dichlorsilylen sowie die Spaltung von Dicyclopentadien in Cyclopentadien. Die Insertion von Dichlorsilylen in Cyclopentadien liefert 1,1-Dichlor-1-sila-2,4-cyclohexadien als hydrolyseempfindliche Flüssigkeit. Die Hydrierung der Chlorfunktionen von 1,1-Dichlor-1-sila-2,4-cyclohexadien führt zur Bildung von 1-Sila-2,4-cyclohexadien [168]. Der letzte Syntheseschritt besteht aus der [4+2]-Cycloaddition von 1-Sila-2,4-cyclohexadien mit Hexafluor-2butin zu Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien (SBO). Nach Literaturvorschrift wird diese Reaktion bei Drucken von ca. 50 bar in einem Autoklaven durchgeführt. Da die apparativen Voraussetzungen hierfür in Wuppertal nicht gegeben sind, wurde die Synthese bei kleineren Drucken (ca. 8 - 10 bar) unter Verlängerung der Reaktionszeiten in Glasampullen durchgeführt. SBO wird als farblose, hydrolyseempfindliche Flüssigkeit erhalten. Hexafluor-2-butin, das in dieser Reaktion als Dienophil fungiert, wird durch Enthalogenierung von 2,3-Dichlor-hexafluor-2-buten mittels Zink bei hohen Temperaturen dargestellt [169].

Die Synthese von Silacyclobutan (SCB) und 1,3-Disilacyclobutan (DSB) startet mit der durch H_2PtCl_6 katalysierten Reaktion von Silicochloroform (HSiCl₃) mit Allylbromid [170]. Das aus dieser Reaktion gewonnene 3-Brompropyltrichlorsilan wird in einer Grignard-Reaktion mit Magnesium zu 1,1-Dichlorsilacyclobutan umgesetzt [170].

Abb. 4-4: Syntheseschema von SBO, SCB und DSB

Während die Hydrierung von 1,1-Dichlorsilacyclobutan mit LiAlH₄ zu SCB führt [170], wird 1,1-Dichlorsilacyclobutan auch für die Synthese von 1,1,3,3-Tetrachlor-1,3-disilacyclobutan verwendet. Die Thermolyse von 1,1-Dichlorsilacyclobutan bei 550°C unter Normaldruck führt zur Bildung von 1,1,3,3-Tetrachlor-1,3-disilacyclobutan [171], woraus durch Hydrierung mit LiAlH₄ 1,3-Disilacyclobutan (DSB) erhalten wird.

Für die millimeterwellenspektroskopischen Untersuchungen war die Synthese von deuterierten Vorstufen für die Darstellung von isotop markierten Silaethenen sehr wichtig, da nur auf diesem Weg die experimentelle Strukturbestimmung von Silaethen möglich ist. Während die Deuterierung am Siliciumatom sehr einfach durch Verwendung von LiAlD₄ als Deuterierungsreagenz erreicht werden kann, stellt die Deuterierung am Kohlenstoffatom eine größere experimentelle Herausforderung dar. Die Darstellung von entsprechend deuteriertem SBO als Vorstufe für das am Kohlenstoffatom deuterierte Silaethen muß von Dicyclopentadien-d₆ ausgehen, da für monomeres Cyclopentadien - das eines der Reaktionsedukte bei der Darstellung von 1,1-Dichlor-1-silacyclopentadien ist - ein schneller Austausch der Wasserstoffatome innerhalb des Rings beobachtet wird [172]. Das hat zur Folge, daß eine nicht vollständige Deuterierung von Cyclopentadien zu einem Gemisch von verschiedenen Dideuterocyclopentadienen führen würde, was die Ausbeute von Cyclopentadien, welches am sp³-Kohlenstoff deuteriert ist, drastisch absenkt. Die Darstellung von Cyclopentadien-d₆ erfolgt über die Reaktion von Cyclopentadien mit einem großen Überschuß von D₂O in Hexamethylphosphorsäuretriamid (HMPT) unter der katalytischen Wirkung von NaOD [173]. Mehrstündiges Erwärmen von Cyclopentadien-d₆ auf 60°C führt in einer Dimerisierungsreaktion zu Dicyclopentadien-d₁₂, das in analoger Weise für die Synthese von entsprechend deuteriertem SBO verwendet werden kann. Alternativ hierzu kann in einer mehrstufigen Reaktion 2,2,3,4,4-Pentadeutero-silacyclobutan dargestellt werden. Ausgangspunkt ist Propinsäure, die durch Reaktion mit D₂O/Na₂CO₃ und anschließende Aufarbeitung mit einer D₂SO₄/D₂O-Lösung in Propinsäure-d₂ übergeführt wird [174]. Reduktion mit LiAlD₄ führt zu Allylalkohol-d₆, der in einer Bromierungsreaktion mit HBr zu Allylbromid-d₅ reagiert. Die Darstellung von 2,2,3,4,4-Pentadeutero-silacyclobutan erfolgt in der vorher für SCB beschriebenen Weise und wurde in der Arbeitsgruppe Pola in Prag durchgeführt.

Abb. 4-5: Synthese der Vorstufenmoleküle für die Erzeugung von H₂Si=CD₂

4.4.1 Darstellung von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7dien und dessen deuterierten Derivaten

• Darstellung von Cyclopentadien-d₆

25 g (0,38 mol) frisch destilliertes Cyclopentadien, 66 g (3,3 mol) D₂O und 0,75 g (18 mmol) NaOD werden in 250 ml Hexamethylphosphorsäuretriamid (HMPT) gelöst, das vorher über Calciumoxid getrocknet und destilliert wurde. Die Mischung nimmt hierbei eine tiefblaue Farbe an. Anschließend rührt man für 1,5 h bei Raumtemperatur. Danach destilliert man bei Normaldruck unter Stickstoffatmosphäre über eine ca. 25 cm lange Vigreux-Kolonne, wobei Cyclopentadien mit einer kleinen Menge Wasser bei 37°C übergeht. Um Dimerisierung zu vermeiden, wird das Destillat in einer auf -78°C gekühlten Vorlage aufgefangen. Die Synthese wird zur Vervollständigung der Deuterierung dreimal wiederholt, wobei der Deuterierungsgrad durch Aufnahme von Ramanspektren im Bereich der C-H und C-D-Streckschwingungen bestimmt wird. Danach beträgt der Deuterierungsgrad ca. 97 %.

Ausbeute: 8,5 g (0,12 mol, 31 % d. Th.) Cyclopentadien-d₆

Sdp.: 37°C/Normaldruck

Raman, nur C-D Bereich, (flüssig in 4 mm Rohr, Cary 82 dispersives Spektrometer, Kr 647,1 nm): 2465 (w), 2360 (m), 2330 (s), 2290 (m), 2180 (m), 2130 (s), 2080 (m) cm⁻¹, Referenz s. Lit. [173].

¹³C-NMR (CDCl₃): $\delta = 40,87$ (CD₂, quintett, ¹J_{CD} = 17,4 Hz), 132,10 (CD, t, ¹J_{CD} = 25,1 Hz), 132,84 ppm (CD, t, ¹J_{CD} = 25,8 Hz).

• Darstellung von Dicyclopentadien-d₁₂

17 g (0,24 mol) Cyclopentadien- d_6 werden in einem 50-ml-Einhalskolben mit Rückflußkühler unter Stickstoffatmosphäre für 8 h auf 60°C erhitzt. Der Verlauf der Dimerisierung wird durch Aufnahme von ¹³C-NMR-Spektren kontrolliert.

Ausbeute: 17 g (0,12 mol, 100 % d. Th.) Dicyclopentadien-d₁₂

¹³C-NMR (CDCl₃): δ = 33,95 (CD₂, quintett, ¹J_{CD} = 17,4 Hz), 40,65 (CD, t, ¹J_{CD} = 17,4 Hz), 44,75 (CD, t, ¹J_{CD} = 17,4 Hz), 45,69 (CD, t, ¹J_{CD} = 17,4 Hz), 49,70 (CD₂, quintett, ¹J_{CD} = 17,4 Hz), 54,33 (CD, t, ¹J_{CD} = 17,4 Hz), 131,4 - 132,9 (m), 135,59 ppm (CD, t, ¹J_{CD} = 17,4 Hz).

• Darstellung von Hexafluor-2-butin

In einem 250-ml-Dreihalskolben mit Magnetrührer, Tropftrichter mit Druckausgleich und einem Trockeneis/Ethanol Rückflußkühler (-15°C), der mit einer Kühlfalle verbunden ist, werden 45 g (0,68 mol) frisch aktiviertes Zink in 50 ml Essigsäureanhydrid vorgelegt. Der Kolben wird auf 140°C erhitzt und tropfenweise mit einer Lösung aus 50 g (0,21 mol) 2,3-Dichlor-hexafluor-2-buten (cistrans-Gemisch) und 50 ml Essigsäureanhydrid innerhalb von ca. 45 min. versetzt. Nach der Zugabe wird die Reaktionsmischung für weitere 8 h bei 140°C gerührt, wobei alle flüchtigen Bestandteile in der auf -78°C gekühlten Falle aufgefangen werden. Die flüchtigen Produkte werden durch Tieftemperaturdestillation gereinigt, wobei Hexafluor-2-butin als farblose Flüssigkeit bei -32°C/900 mbar übergeht.

Ausbeute: 12,3 g (76 mmol, 36 % d. Th.) Hexafluor-2-butin

Sdp.: -32°C/900 mbar

IR (Bruker IFS 25, 17 cm Glaszelle, 3 mbar): 1289 (s), 1150 (s) cm⁻¹.

• Darstellung von 1,1-Dichlor-1-sila-2,4-cyclohexadien

Ein Gemisch aus 25 g (93 mmol) Hexachlordisilan und 12 g (91 mmol) Dicyclopentadien wird in den Tropftrichter einer Durchflußthermolyseapparatur übergeführt. Die Lösung wird nun unter Stickstoffatmosphäre in die heiße Zone des auf 550°C erhitzten Quarzrohr getropft, wobei der Sickstoffstrom so geregelt wird, daß die Verweildauer des Eduktgemisches in der heißen Ofenzone zwischen 5 und 8 s beträgt. Die am Ende des Thermolyserohres austretenden weißen Dämpfe fängt man in zwei hintereinandergeschalteten Kühlfallen mit den Temperaturen 0°C und -196°C auf, wobei in der ersten Falle das Produkt 1,1-Dichlor-1-sila-2,4-cyclohexadien neben nicht umgesetztem Hexachlordisilan und anderen siliciumhaltigen Verbindungen erhalten wird. In der zweiten Falle kondensieren hauptsächlich Siliciumtetrachlorid und Cyclopentadien. Der Inhalt der ersten Falle besteht aus einer braun-roten Flüssigkeit, deren flüchtige Bestandteile bei 30 bis 130 mbar/0 bis 20°C abgezogen werden. In der Regel werden für die spätere Aufarbeitung mehrere Ansätze gesammelt. Bei der anschließenden fraktionierten Destillation über eine Vigreux-Kolonne (25 cm), gehen als erste Fraktion nicht umgesetztes Hexachlordisilan (80 bis 130 mbar, Ölbad 100°C) und andere siliciumhaltige Verbindungen über. Die zweite Fraktion besteht hauptsächlich aus 1,1-Dichlor-1-sila-2,4-cyclohexadien (13 bis 80 mbar; Ölbad 100°C), das zur weiteren Aufreinigung mehrmals über eine Vigreux-Kolonne fraktioniert destilliert wird. Man erhält 1,1-Dichlor-1-sila-2,4-cyclohexadien als farblose, luftempfindliche Flüssigkeit.

Ausbeute: 2,3 g (14 mmol, 30 % d. Th.) 1,1-Dichlor-1-sila-2,4-cyclohexadien

Sdp.: 65°C/27 mbar

¹H-NMR (CDCl₃): $\delta = 2,15$ (d, 2H), 5,92 - 6,15 (m, 3H), 6,75 - 6,95 ppm (m, 1H), Referenz s. Lit. [161].

• Darstellung von 1,1-Dichlor-2,2,3,4,5,6-hexadeutero-1-sila-2,4-cyclohexadien

Ein Gemisch aus 25 g (93 mmol) Hexachlordisilan und 13 g (90 mmol) Dicyclopentadien- d_{12} wird in den Tropftrichter einer Durchflußthermolyseapparatur übergeführt. Die weitere Reaktionsführung sowie Aufarbeitung erfolgt wie vorher beschrieben.

Ausbeute: 3,0 g (18 mmol, 39 % d. Th.) 1,1-Dichlor-2,2,3,4,5,6-hexadeutero-1-sila-2,4-cyclohexadien

• Darstellung von 1-Sila-2,4-cyclohexadien

In einem 100-ml-Dreihalskolben mit Metallkühler, Tropftrichter und Innenthermometer werden 1,17 g (31 mmol) Lithiumaluminiumhydrid in 20 ml getrocknetem Diethylether suspendiert. Innerhalb ca. 2 h werden 8,0 g (49 mmol) 1,1-Dichlor-1-sila-2,4-cyclohexadien in 20 ml getrocknetem Diethylether zu der auf ca. -5°C gekühlten Suspension gegeben. Nach der Zugabe und einer Nachreaktionszeit von ca. 1 h werden alle flüchtigen Bestandteile bei 10⁻³ mbar in eine auf -196°C gekühlte Falle übergeführt. Diese Prozedur muß unter absolut sauerstoffreien Bedingungen durchgeführt werden, da es sonst zur Explosion der Reaktionsapparatur kommen kann. Nach Auftauen der Lösung wird der Diethylether abdestilliert und der verbleibende Rückstand durch fraktionierte Kondensation über zwei hintereinandergeschaltete Fallen mit den Temperaturen -50°C und -196°C aufgereinigt. In der ersten Falle kondensiert 1-Sila-2,4-cyclohexadien als farblose Flüssigkeit, die bei Abkühlung auf -196°C glasartig erstarrt.

Ausbeute: 2,9 g (30 mmol, 61 % d. Th.) 1-Sila-2,4-cyclohexadien

¹H-NMR (ext. CDCl₃): $\delta = 2,3$ (d, 2H), 4,8 (t, 2H), 6,35 - 6,75 (m, 3H), 7,3 - 7,5 ppm (m, 1H), Referenz s. Lit. [161].

• Darstellung von 1,1-Dideutero-1-sila-2,4-cyclohexadien

In einem 100-ml-Dreihalskolben mit Metallkühler, Tropftrichter und Innenthermometer werden 1,9 g (45,2 mmol) Lithiumaluminiumdeuterid in 20 ml getrocknetem Diethylether suspendiert. Innerhalb ca. 2 h werden 7,0 g (42,4 mmol) 1,1-Dichlor-1-sila-2,4-cyclohexadien in 20 ml getrocknetem Diethylether zu der auf ca. -5°C gekühlten Suspension gegeben. Die Aufarbeitung erfolgt wie vorher bei der Synthese von 1-Sila-2,4-cyclohexadien beschrieben.

Ausbeute: 2,1 g (21 mmol, 50 % d. Th.) 1,1-Dideutero-1-sila-2,4-cyclohexadien

¹H-NMR (ext. CDCl₃): $\delta = 2,28$ (s, 2H), 6,35 - 6,75 (m, 3H), 7,3 - 7,5 ppm (m, 1H), Referenz s. Lit. [161].

• Darstellung von 1-Deutero-1-sila-2,4-cyclohexadien

In einem 100-ml-Dreihalskolben mit Metallkühler, Tropftrichter und Innenthermometer wird ein Gemisch aus 0,95 g (25,0 mmol) Lithiumaluminiumhydrid und 1,05 g (25,0 mmol) Lithiumaluminiumdeuterid in 20 ml getrocknetem Diethylether suspendiert. Innerhalb ca. 2h werden 7,0 g (42,4 mmol) 1,1-Dichlor-1-sila-2,4-cyclohexadien in 20 ml getrocknetem Diethylether zu der auf ca. -5°C gekühlten Suspension gegeben. Die Aufarbeitung erfolgt wie vorher bei der Synthese von 1-Sila-2,4-cyclohexadien beschrieben.

Ausbeute: 1,5 g eines Gemisches, das nach der ¹H-NMR-spektroskopischen Untersuchung aus 1-Sila-2,4-cyclohexadien, 1,1-Dideutero-1-sila-2,4-cyclohexadien und 1-Deutero-1-sila-2,4-cyclohexadien im Verhältnis von 1:1:2 besteht.

¹H-NMR (ext. CDCl₃): $\delta = 2,28$ (s, 2H), 6,35 - 6,75 (m, 3H), 7,3 - 7,5 ppm (m, 1H), Referenz s. Lit. [161].

• Darstellung von 2,2,3,4,5,6-Hexadeutero-1-sila-2,4-cyclohexadien

In einem 100-ml-Dreihalskolben mit Metallkühler, Tropftrichter und Innenthermometer werden 0,46 g (12 mmol) Lithiumaluminiumhydrid in 15 ml getrocknetem Diethylether suspendiert. Innerhalb ca. 2 h werden 2,9 g (17 mmol) 1,1-Dichlor-2,2,3,4,5,6-hexadeutero-1-sila-2,4-cyclohexadien in 15 ml getrocknetem Diethylether zu der auf ca. -5°C gekühlten Suspension gegeben. Die Aufarbeitung erfolgt wie vorher bei der Synthese von 1-Sila-2,4-cyclohexadien beschrieben.

Ausbeute: 0,70 g (7 mmol, 58 % d. Th.) 2,2,3,4,5-Hexadeutero-1-sila-2,4-cyclo-hexadien

¹H-NMR (ext. CDCl₃): δ = 2,28 (s, 2H), 6,35 - 6,75 (m, 3H), 7,3 - 7,5 ppm (m, 1H).

¹³C-NMR (ext. CDCl₃): δ = 5,73 (CD₂, quintett, ¹J_{CD} = 17,4 Hz), 117,69 (CD, t, ¹J_{CD} = 23,4 Hz), 126,59 (CD, t, ¹J_{CD} = 24,2 Hz), 127,63 (CD, t, ¹J_{CD} = 23,8 Hz), 144,53 ppm (CD, t, ¹J_{CD} = 23,3 Hz).

• Darstellung von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien

0,6 g (6,3 mmol) 1-Sila-2,4-cyclohexadien und 1,5 g (9,3 mmol) Hexafluor-2butin werden im Hochvakuum bei 10^{-3} mbar in eine auf -196°C gekühlte Ampulle (V = 30 ml) kondensiert und abgeschmolzen. Nach 14-stündigem Erhitzen auf 90°C werden alle Bestandteile der Reaktionsmischung durch fraktionierte Kondensation über zwei Kühlfallen mit den Temperaturen -30°C und -196°C aufgereinigt. 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien kondensiert in der ersten Kühlfalle als farblose Flüssigkeit, die im Hochvakuum trotz ihres niedrigen Dampfdruckes gerade noch verdampfbar ist.

Ausbeute: 0,65 g (2,5 mmol, 40 % d. Th.) 5,6-Bis(trifluormethyl)-2-silabicyclo-[2.2.2]octa-5,7-dien

Atomnumerierung der nachfolgend zugeordneten NMR-Spektren siehe Abb. 4-4.

¹H-NMR (ext. CDCl₃): δ = C-3-*H*_AH_B, 0,81 (d, J = 3,1 Hz), C-3-H_AH_B, 0,84 (d, J = 3,1 Hz), Si-2-*H*_AH_B, 3,54 (d, J = 16,5 Hz), Si-2-H_AH_B, 3,65 (d, J = 16,5 Hz), C-1-*H*, 4,0 (d, J = 6,7 Hz, 2 H), C-4-*H*, 4,32 (m, 2 H), C-7,8-*H*, 6,19 ppm (dt, J = 35,7 und 6,4 Hz), Referenz s. Lit. [8].

¹³C-NMR (ext. CDCl₃): δ = C-3, 6,0, C-1, 28,84 (q, ³J_{CF} = 2,9 Hz), C-4, 34,84 (q, ³J_{CF} = 2,9 Hz), C-9, 10, 121,68 (q, ¹J_{CF} = 273,9 Hz), C-7, 129,3, C-8, 129,88, C-5,6, 133 - 137 ppm (q von m, ²J_{CF} = 29,8 Hz), Referenz s. Lit. [8].

²⁹Si-NMR (ext. CDCl₃): δ = Si-2, -43,0 ppm (t, ¹J_{Si-H} = 212,7 Hz).

IR (1 mbar, 10 cm): 2160 (s), 1670 (w), 1301 (s), 1265 (m), 1196 (s), 1172 (s), 980 (m), 947 (w), 821 (w), 723 (w), 692 (w), 505 (s), Referenz s. Lit. [8].

MS, m/e (I): 258 (4,0), 195 (100), 145 (26,5), 66 (43,7), Referenz s. Lit. [8].

• Darstellung von 5,6-Bis(trifluormethyl)-2,2-dideutero-2-silabicyclo[2.2.2]octa-5,7-dien

0,6 g (6,1 mmol) 1,1-Dideutero-1-sila-2,4-cyclohexadien und 1,48 g (9,12 mmol) Hexafluor-2-butin werden im Hochvakuum bei 10^{-3} mbar in eine auf -196°C gekühlte Ampulle (V = 30 ml) kondensiert und abgeschmolzen. Die weitere Reaktionsführung und Aufarbeitung erfolgt analog der vorher beschriebenen Synthese von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien.

Ausbeute: 0,71 g (2,7 mmol, 44 % d. Th.) 5,6-Bis(trifluormethyl)-2,2-dideutero-2-silabicyclo[2.2.2]octa-5,7-dien

¹H-NMR: δ = 0,8 (d, J = 4 Hz, 2H), 3,9 (d, J = 8 Hz, 1H), 4,0 - 4,3 (m, 1H), 5,9 - 6,3 (m, 2H), Lit. [8].

 Darstellung von 5,6-Bis(trifluormethyl)-2-deutero-2-silabicyclo[2.2.2]octa-5,7-dien

0,6 g (6,2 mmol) eines Gemisches aus 1-Sila-2,4-cyclohexadien, 1,1-Dideutero-1-sila-2,4-cyclohexadien und 1-Deutero-1-sila-2,4-cyclohexadien im Verhältnis von 1:1:2 und 1,5 g (9,26 mmol) Hexafluor-2-butin werden im Hochvakuum bei 10^{-3} mbar in eine auf -196°C gekühlte Ampulle (V = 30 ml) einkondensiert und abgeschmolzen. Die weitere Reaktionsführung und Aufarbeitung erfolgt analog der vorher beschriebenen Synthese von 5,6-Bis(trifluormethyl)-2-silabicyclo-[2.2.2] octa-5,7-dien.

Ausbeute: 0,48 g (1,8 mmol, 29 % d. Th.) davon ca. 50 % 5,6-Bis(trifluormethyl)-2-deutero-2-silabicyclo[2.2.2]octa-5,7-dien

¹H-NMR (ext. CDCl₃): $\delta = 0.8$ (q, J = 4 Hz, 2H), 3,5 (d, J = 4 Hz, 2H), 3,9 (d, J = 8 Hz, 1H), 4,1 - 4,3 (m, 1H), 5,9 - 6,3 ppm (m, 2H), Lit. [8].

• Darstellung von 5,6-Bis(trifluormethyl)-1,3,3,4,7,8-hexadeutero-2-silabicyclo-[2.2.2]octa-5,7-dien

0,45 g (6,5 mmol) 2,2,3,4,5-Hexadeutero-1-sila-2,4-cyclohexadien und 1,30 g (8 mmol) Hexafluor-2-butin werden im Hochvakuum bei 10^{-3} mbar in eine auf -196°C gekühlte Ampulle (V = 30 ml) kondensiert und abgeschmolzen. Die weitere Reaktionsführung und Aufarbeitung erfolgt analog der vorher beschriebenen Synthese von 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien.

Ausbeute: 0,56 g (2,1 mmol, 32 % d. Th.) 5,6-Bis(trifluormethyl)-1,3,3,4,7,8-hexadeutero-2-silabicyclo[2.2.2]octa-5,7-dien

Atomnumerierung der nachfolgend zugeordneten NMR-Spektren siehe Abb. 4-5.

¹H-NMR (ext. C₆D₆): δ = Si-2-*H*_AH_B, 3,64, (d, J = 16,25 Hz), Si-2-H_AH_B, 3,77 ppm, (d, J = 16,25 Hz).

²D-NMR (ext. C₆D₆): δ = C-3-*D*, 0,91, C-1-*D*, 4,10, C-4-*D*, 4,40, C-7-*D*, 6,25, C-8-*D*, 6,42 ppm.

¹³C-NMR (ext. C₆D₆): δ = C-9, 10, 121,5, (q, ¹J_{CF} = 270,5 Hz), C-7, 128,7, C-8, 129,0, C-5, 134,4, C-6, 136,4 ppm. ¹⁹F-NMR (ext. C₆D₆): δ = -61,44 ppm, (m). ²⁹Si-NMR (ext. C₆D₆): δ = Si-2, -43,37 ppm, (t, ¹J_{SiH} = 212,7 Hz).

4.4.2 Darstellung von Silacyclobutan

• Darstellung von 3-Brompropyltrichlorsilan

In einem 1-l-Dreihalskolben mit Rückflußkühler, Tropftrichter und Thermometer werden 340 g (2,8 mol) frisch destilliertes Allylbromid und ca. 10 mg H_2PtCl_6 unter Stickstoffatmosphäre vorgelegt und bis zum Sieden erhitzt. Hierzu werden innerhalb ca. 24 h 390 g (2,9 mol) Trichlorsilan so zugegeben, daß die Temperatur der Lösung nicht unter 65°C fällt. Danach wird noch weitere 48 h unter Rückfluß gekocht. Destillation ergibt 3-Brompropyltrichlorsilan als farblose Flüssigkeit.

Ausbeute: 353 g (1,38 mol, 49 % d. Th.) 3-Brompropyltrichlorsilan

Sdp.: 80°C/16 mbar

¹H-NMR (CDCl₃): $\delta = 1,55 - 1,57$ (s, 2H), 2,11 (s, 2H), 3,43 ppm (2H), Referenz s. Lit. [170].

• Darstellung von 1,1-Dichlor-1-silacyclobutan

In einem 2-1-Dreihalskolben mit Rückflußkühler werden unter Stickstoffatmosphäre 63 g (2,6 mol) Magnesiumpulver in 600 ml getrocknetem Diethylether vorgelegt. Zu dieser Suspension wird innerhalb von 3 h eine Lösung aus 350 g (1,37 mol) 3-Brompropyltrichlorsilan und 350 ml getrocknetem Diethylether zugetropft. Zur Vervollständigung der Reaktion wird noch 24 h unter Rückfluß gekocht. Die Magnesiumsalze werden abfiltriert und der Diethylether abgedampft. Destillation des verbleibenden Rückstandes liefert 1,1-Dichlor-1silacyclobutan als farblose Flüssigkeit.

Ausbeute: 134 g (0,95 mol, 70 % d. Th.) 1,1-Dichlor-1-silacyclobutan

Sdp.: 80°C/16 mbar

¹H-NMR (CDCl₃): $\delta = 1,95$ (t, 4H), 2,15 ppm (m, 2H), Referenz s. Lit. [170].

• Darstellung von Silacyclobutan

In einem 500-ml-Dreihalskolben mit Tropftrichter, Rührwerk und Trockeneis/Ethanol Rückflußkühler werden unter Stickstoffatmosphäre 7,0 g (0,18 mol) LiAlH₄ in 100 ml n-Dibutylether vorgelegt, auf -5°C abgekühlt und tropfenweise mit einer Lösung von 50 g (0,36 mol) 1,1-Dichlor-1-silacyclobutan in 30 ml n-Dibutylether versetzt. Während der Zugabe ist darauf zu achten, daß die Reaktionstemperatur zwischen -5°C und 5°C gehalten wird. Nach Beendigung der Zugabe wird noch 10 h bei 0°C und 24 h bei Raumtemperatur nachgerührt. Anschließende Destillation ergibt Silacyclobutan als farblose Flüssigkeit.

Ausbeute: 17 g (0,24 mol, 67 % d. Th.) Silacyclobutan

Sdp.: 46°C/Normaldruck

¹H-NMR (CDCl₃): δ = 1,1 (CH₂, m, 4H), 2,15 (CH₂, m, 2H), 4,9 ppm (SiH₂, m, 2 H), Referenz s. Lit. [170].

4.4.3 Darstellung von 1,3-Disilacyclobutan

• Darstellung von 1,1,3,3-Tetrachlor-1,3-disilacyclobutan

In einem 100-ml-Zweihalskolben mit Gaseinleitungsrohr und angeschlossener Thermolyseapparatur (T=700°C), werden 25 g (0,18 mol) 1,1-Dichlor-1silacyclobutan unter Stickstoffatmosphäre vorgelegt. Das Quarzrohr der Thermolyseapparatur wird zum besseren Temperaturaustausch auf seiner ganzen Länge (50 cm) mit Porzellanstücken (Aldrich, ca. 5 mm Kantenlänge) befüllt. Durch das Gaseinleitungsrohr wird ein Stickstoffstrom so eingestellt, daß ca. 5 ml/h des Eduktes durch die Thermolyseapparatur geleitet werden. Alle Bestandteile der Thermolysereaktion werden in einer auf -78°C gekühlten Falle aufgefangen. Destillation des Reaktionsgemisches bei Normaldruck ergibt 1,1,3,3-Tetrachlor-1,3-disilacyclobutan als hydrolyseempfindlichen Feststoff.

Ausbeute: 31 g (0,14 mol, 78 % d. Th.) 1,1,3,3-Tetrachlor-1,3-disilacyclobutan

Sdp.: 167°C/Normaldruck

• Darstellung von 1,3-Disilacyclobutan

In einem 250-ml-Dreihalskolben mit Thermometer, Tropftrichter und Metallkühler wird eine Suspension aus 5,0 g (0,13 mol) LiAlH₄ und 100 ml n-Butylether vorgelegt und auf -5°C abgekühlt. Hierzu wird eine Lösung von 25 g (0,11 mol) 1,1,3,3-Tetrachlor-1,3-disilacyclobutan und 25 ml n-Butylether tropfenweise zugegeben. Während des Zutropfens ist darauf zu achten, daß die Temperatur der Reaktionslösung < 0°C beträgt. Danach wird für ca. 2 h bei Raumtemperatur nachgerührt. Anschließend werden alle flüchtigen Bestandteile bei ca. 0,1 mbar in eine auf -78°C gekühlte Falle geleitet. Destillation der Fraktion mit einer Spaltrohrkolonne ergibt 1,3-Disilacyclobutan als farblose, hydrolyseempfindliche Flüssigkeit.

Ausbeute: 5,1 g (58 mmol, 53 % d. Th.) 1,3-Disilacyclobutan

Sdp.: 60°C/Normaldruck

¹H-NMR (CDCl₃): $\delta = 1,45$ (CH₂, quintett, ³J_{*HH*} = 6,76 Hz), 4,99 ppm (SiH₂, quintett, ³J_{*HH*} = 6,76 Hz), Referenz s. Lit. [171].

4.5 Nachweis von Silaethen H₂Si=CH₂ in der Gasphase durch Millimeterund Submillimeterwellenspektroskopie

Das elektromagnetische Spektrum wird durch die niedrigenergetischen Radiowellen und die hochenergetische γ -Strahlung eingegrenzt. Von besonderer Bedeutung für die Molekülspektroskopie ist die Region von 1 -1000 GHz, die allgemein den Bereich der Mikrowellen darstellt. Für eine weitere Unterscheidung wird dieser Bereich in Abhängigkeit von der Frequenz in drei weitere Bereiche unterteilt:

- 1) Mikrowellenbereich, MW, 1 100 GHz,
- 2) Millimeterwellen, MMW, 100 300 GHz,
- 3) Submillimeterwellen, subMMW, 300 1000 GHz.

Das hohe Potential der Mikrowellen-, Millimeterwellen- und Submillimeterwellenspektroskopie wird durch folgende Punkte begründet:

- diese Methoden sind schnell, empfindlich und sehr spezifisch, vorausgesetzt $\mu \neq 0$;
- sie liefern extrem genaue Rotationsparameter, die eine akkurate Strukturbestimmung zulassen;
- die erhaltenen Informationen stehen im direkten Zusammenhang mit radioastronomischen Beobachtungen.

4.5.1 Experimentelles

Der experimentelle Aufbau ist in Abb. 4-6 schematisch dargestellt. Als Quelle für die Erzeugung der Millimeterwellen bis 300 GHz wurde ein Varian Klystron verwendet, das an einen kommerziellen Multiplier angeschlossen war. In der Submillimeterregion (340 - 475 GHz) wurde ein Thomson CSF Karcinotron mit hoher Empfindlichkeit verwendet. Als Detektor kam ein mit flüssigem Helium gekühlter InSb-Detektor (QMC Instruments) zum Einsatz.

Abb. 4-6: Experimenteller Aufbau des Millimeter- und Submillimeterwellenspektrometers mit Thermolyseofen zur Erzeugung von Silaethen

Die Zelle besteht aus einem 1 m langen Pyrex Rohr, dessen eines Ende mit einer Pumpe verbunden ist, während das andere Ende an ein kreuzförmiges Glas-T-Stück (Duran) angeflanscht ist. Ein Ofen ragt von einer Seite des T-Stücks in die Zellenmitte hinein. Der Ofen besteht aus einem Quarz-Rohr (2 cm lang, 0,8 cm Ø), das mit einem umwickelten Wolfram-Draht durch Anlegen einer Spannung auf Temperaturen bis ca. 1200°C beheizt werden kann. Der kreuzförmige Glaskörper wird durch einen umwickelten Gummi-Schlauch, durch den flüssiger Stickstoff geleitet wird, abgekühlt. Die Versuchsanordnung ermöglicht die Synthese der reaktiven Spezies in unmittelbarer Nähe des Millimeterwellenstrahls, wobei die Vorstufen mit Argon als Puffer- und Trägergas dem Ofen zugeführt werden. Die Temperatur-Eichung wird vor jeder Messung mit einem Thermoelement durchgeführt, wobei auch der Einfluß des Puffergases Argon berücksichtigt werden muß.

4.5.2 Identifizierung von Silaethen

Silaethen ist nach den theoretischen Vorhersagen ein schwach asymmetrisches, verlängertes Kreiselmolekül der Symmetrie C_{2v}, dessen Rotationsspektrum demnach ein charakteristisches a-Typ Muster aufweisen sollte. Da Silaethen zwei Paare von zwei identischen H-Kernen besitzt, wird die relative Intensität der Rotationslinien durch die in Kap. 2.5.5 beschriebene Kernspinstatistik beeinflußt, die für das Hauptisotop $H_2^{28}Si^{=12}CH_2$ 10 für K_aK_c = oo und oe und 6 für ee und eo beträgt. Die allgemeine Vorgehensweise für die Suche nach Rotationslinien von Silaethen soll durch Abb. 4.7 zum Ausdruck gebracht werden. Die auf verschiedenen theoretischen Niveaus berechneten Rotations- sowie Zentrifugaldehnungskonstanten erlaubten eine erste gute Abschätzung der für die Messungen in Frage kommenden Frequenzbereiche sowie die ungefähren Linienpositionen der Rotationsübergänge. Die Frequenzen des Übergangs $K_a = 0$; $J = 7 \leftarrow 6$ sind zu 191575 (MP2), 191508 (CCSD) und 190012 MHz (CCSD(T)) berechnet worden. Da im Bereich von ca. 185 - 210 GHz eine gute Millimeterwellenquelle bereitstand, wurden erste Thermolyseversuche von SBO, SCB und DSB unter Verwendung eines 10 cm langen Quarzofens, ($\emptyset = 1,4$ cm, T = 650° - 700°C) und Drucken im Bereich von 1 - 3 mbar durchgeführt, wobei auf Kühlung der Meßzelle sowie auf Puffergas verzichtet wurde. In allen drei Experimenten erhielt man sehr linienreiche Spektren, die teilweise charakteristische Linienmuster symmetrischer Kreiselmoleküle aufzeigten. So konnte, unabhängig von der verwendeten Vorstufe, Methylsilan (CH₃SiH₃) nachgewiesen werden.

Abb. 4-7: Vorgehensweise bei der Suche des Rotationsspektrums von Silaethen

Bei der Thermolyse von SBO tritt daneben Trifluormethan (CHF₃) und Fluorsilan (SiH₃F) auf. Die Bildung dieser Spezies kann durch die Abspaltung bzw. durch die Fragmentierung der CF₃-Gruppen aus SBO erklärt werden. Evidenz für die Bildung von Silaethen wurde jedoch in keinem der drei Experimente gefunden. Drei entscheidende experimentelle Veränderungen haben den erfolgreichen Nachweis von Silaethen ermöglicht:

- Verwendung von Argon als Puffergas
- Kühlung der Zelle mit flüssigem Stickstoff
- Verwendung eines Kurzwegofens

Der Einfluß von Argon als Puffergas auf die Lebensdauer ist schon von Bock et al. [162] bei den photoelektronenspektroskopischen Untersuchungen am Silaethen beobachtet worden, die feststellten, daß die Beimischung von Argon zu einer Abnahme von Folgereaktion von Silaethen führt. Die Kühlung der Zelle hat den Effekt, daß Reaktionsprodukte mit niedrigem Dampfdruck sofort an den Zellenwänden ausgefroren werden und somit das Rotationsspektrum stark vereinfacht wird. Weiterhin sollte die tiefe Temperatur der Zellwände die Lebensdauer von Silaethen begünstigen. Die Verwendung eines Kurzwegofens führt zu sehr kurzen Kontaktzeiten von reaktivem Silaethen mit den heißen Ofenwänden. Die Optimierung des Puffergasdrucks, Druck der Vorstufe, sowie Temperatur des Ofens wurde an Rotationslinien von Methylsilan durchgeführt, da davon ausgegangen wurde, daß ein direkter Zusammenhang zwischen der Bildung von Silaethen und Methylsilan besteht. Die Idee bestand hierbei darin, durch Verändern von Temperatur und Druck die Bildung von Methylsilan möglichst zu unterdrükken, was eine Erhöhung der Ausbeute von Silaethen zur Folge haben sollte. Die ersten Messungen wurden demnach bei $p_{(Ar)} = 8 \times 10^{-3}$ mbar, $p_{(SBO)} = 7 \times 10^{-3}$ mbar bei einer Ofentemperatur von ca. 650°C durchgeführt. Es resultierten Spektren einer Serie von wenigen Linien, welche die erwartete relative Intensität aufwiesen. Die dabei auftretende $K_a = 0$ Komponente bei 192484 MHz steht in sehr guter Übereinstimmung mit dem auf MP2-Niveau berechneten Wert (191575 MHz). Ein Vergleich der aus dem Fit der K_a -Komponenten des Übergangs J = 7 ← 6 erhaltenen Rotationskonstanten mit den aus ab initio-Rechnungen erhaltenen Parametern konnte zweifelsfrei den millimeterwellenspektroskopischen Nachweis von Silaethen belegen [175]. Das Auffinden weiterer Rotationsübergänge erfolgte unter Verwendung der aus dem ersten Fit bestimmten Grundzustandsparameter, die wiederum zu einer Verbesserung des nächsten Fits führten.

4.5.3 Optimierung der Silaethen-Generierung aus SBO, SCB und DSB

Für die Optimierung der Silaethen-Generierung aus SBO wurde der Rotationsübergang $7_{1,6} \leftarrow 6_{1,5}$ verwendet, da dieser eine sehr starke Intensität besitzt. Der Einfluß von Puffergas und Temperatur der Meßzelle auf die Signalintensität wird in Abb. 4-8 demonstriert. Spektrum ① zeigt einen Ausschnitt aus dem Rotationsspektrum bei ca. 200 GHz, das aus der Thermolyse von SBO ohne Puffergas bei Raumtemperatur erhalten wurde. Es lassen sich aufgrund der Vielzahl von Rotationslinien keine weiteren Zuordnungen vornehmen. Vermutlich handelt es sich hierbei unter anderem auch um Linien des Ausgangsmoleküls sowie um Linien der Reaktionsprodukte.

Abb. 4-8: Vergleich der MMW-Spektren im Bereich des Rotationsübergangs $7_{1,6} \leftarrow 6_{1,5}$ von Silaethen

Die Zumischung von Argon als Puffergas (Spektrum O) führte lediglich zu einer Abnahme der Signalintensitäten, die Liniendichte bleibt jedoch weitgehend erhalten. In Spektrum O, das den Einfluß der Zelltemperatur verdeutlicht, ist nur noch ein schwaches Signal des $7_{1,6} \leftarrow 6_{1,5}$ -Rotationsübergangs von Silaethen zu erkennen, das erst beim Zumischen von Argon wesentlich an Intensität gewinnt (Spektrum ④). Als optimaler Druck von SBO und Ar sowie Thermolyse-Temperatur erwiesen sich die Werte nach Gl. (4.8).

Die genaue Kenntnis der Rotationsübergänge von Silaethen ermöglichte die Untersuchung zweier möglicher Silaethenquellen, SCB und DSB. Diese Fragestellung erschien sehr interessant, besonders in Hinblick auf die in der Literatur kontrovers geführten Diskussionen, ob Silaethen überhaupt aus diesen Vorstufen durch Thermolyse darstellbar ist. Für eine erste Kontrolle wurden die Temperatur- und Druckbedingungen verwendet, die in Lit. [7] für die Darstellung von Silaethen angegeben sind. Weder für SCB noch für DSB konnten Rotationslinien beobachtet werden; erst die Erhöhung des Partialdrucks der verwendeten Vorstufe und der Ofentemperatur (SCB $\approx 1000^{\circ}$ C, DSB $\approx 1100^{\circ}$ C) sowie Zumischung von Argon als Puffergas ließ den Nachweis der im Vergleich zu SBO wesentlich intensitätsschwächeren Rotationslinien zu. Unter diesen Bedingungen stellt SCB im Vergleich zu DSB eine um den Faktor 10 bessere Vorstufe dar. Im Vergleich zu SBO sind beide deutlich schlechter für die Synthese von Silaethen geeignet.

4.5.4 Meßbereiche und Rotationsparameter von Silaethen

Im Bereich von 180 - 473 GHz konnten insgesamt 142 Rotationsübergänge mit 6 $\leq J'' \leq 16$ und $K_a \leq 11$ des Hauptisotopomeren H₂²⁸Si¹²CH₂ beobachtet werden. Die Frequenzen der Rotationsübergänge wurden in I^r-Repräsentation unter Verwendung eines A-reduzierten Watson Hamiltonians [29] gefittet. Die Abweichungen betragen weniger als 50 kHz und liegen somit im Bereich der geschätzten Meßgenauigkeit. Zwei experimentell unaufgelöste K_a - Dubletts, J = 7 $\leftarrow 6$, K_a = 4 und J = 13 $\leftarrow 12$, $K_a = 5$ wurden für den Fit nicht berücksichtigt. Gestützt werden diese Ergebnisse durch die Aufnahme von Rotationslinien des mit Intensitäten von ca. 5 % natürlich vorkommenden ²⁹Si-Isotopomers. Die ungefähre Lage der Rotationslinien dieser Spezies wurde unter Verwendung skalierter Werte für die Rotationskonstanten A, B und C berechnet, die unter Verwendung der ab initio-Struktur von Silaethen über die nachfolgende empirische Beziehung bestimmt wurden:

$$\frac{X(^{29}\text{Si})_{\text{scal}}}{X(^{29}\text{Si})_{ab \text{ in}}} = \frac{X(^{28}\text{Si})_{exp}}{X(^{28}\text{Si})_{ab \text{ in}}} \qquad (X = A, B, C)$$
(4.9)

Für Schweratomsubstitution ergibt diese Beziehung sehr genaue Werte für die Rotationskonstanten. So weichen die auf diese Weise ermittelten Frequenzen von der tatsächlichen Lage des ²⁹Si-Isotopomers nicht mehr als ca. 30 MHz ab. Gl. (4.9) fand weitere Anwendung bei der Suche nach Rotationslinien der Isotopmere D₂²⁸Si¹²CH₂, D₂²⁹Si¹²CH₂, HD²⁸Si¹²CH₂, H₂²⁸Si¹²CD₂ und H₂²⁹Si¹²CD₂, die für die Ermittlung der experimentellen Struktur von Silaethen benötigt wurden. Obige Gleichung liefert, wie vorher erwähnt, nur für Schweratomsubstitution sehr genaue Rotationskonstanten. Im Falle der deuterierten Silaethen-Derivate treten in Folge der, relativ betrachtet, großen Massenunterschiede zwischen Wasserstoff und Deuterium größere Abweichungen zwischen skalierten und experimentellen Rotationskonstanten auf. Die Vorherrechnungen der Rotationslinien unter Verwendung dieser skalierten Rotationskonstanten führte jedoch in keinem Fall zu einer größeren Abweichung als 500 MHz, was die Suche bzw. Zuordnung der Rotationslinien stark vereinfachte. Hilfreich für die Zuordnung der Rotationslinien war auch die für alle im Rahmen dieser Arbeit untersuchten dideuterierten Silaethenderivate auftretende Kernspinstatistik, die nach Gl. (2.112) 21 für $K_a K_c$ = oo und oe und nach Gl. (2.113) 15 für ee und eo beträgt. Lediglich $HD^{28}Si^{12}CH_2$ besitzt aufgrund seiner C_s-Symmetrie keine vertauschbaren Kerne, wodurch die Besetzung der Rotationsniveaus keine statistische Verteilung aufweist. Alle im Rahmen dieser Arbeit untersuchten Frequenzbereiche und Rotationsübergänge sind in nachfolgender Tabelle zusammengefaßt.

Molekül	Bereich [GHz]	$J"_{min}$	J" _{max}	Ka	Anzahl der Daten
${\rm H_2}^{28}{\rm Si}^{12}{\rm CH_2}$	180 - 473	6	16	≤ 11	142
${\rm H_2}^{29}{\rm Si}^{12}{\rm CH_2}$	345 - 470	12	17	≤ 4	27
$HD^{28}Si^{12}CH_2 \\$	339 - 467	12	18	≤ 11	70
${\rm D_2}^{28}{\rm Si}^{12}{\rm CH_2}$	344 - 456	13	19	≤ 10	73
${\rm D_2}^{29}{\rm Si}^{12}{\rm CH_2}$	355 - 455	13	19	≤ 6	32
${\rm H_2}^{28}{\rm Si}^{12}{\rm CD}_2$	422 - 473	17	20	≤ 10	48
$H_2^{29}Si^{12}CD_2$	419 - 467	17	20	≤ 5	20

Tabelle 4-1: Gemessene Frequenzbereiche und Rotationsübergänge von verschiedenen Isotopomeren von Silaethen

Die aus den Fits resultierenden Rotations- sowie Zentrifugaldehnungskonstanten sind in Tabelle 4.2 aufgeführt. Dazu im Vergleich stehen die aus ab initio-Rechnungen ermittelten Parameter (Tabelle 4.3).

[a,b]	$H_2^{28}Si^{12}CH_2$	$H_2^{29}Si^{12}CH_2$	$HD^{28}Si^{12}CH_2$	$D_2^{\ 28}Si^{12}CH_2$	$D_2^{29}Si^{12}CH_2$	$H_2^{28}Si^{12}CD_2$	$H_2^{29}Si^{12}CD_2$
Α	104 716,60(18)	104 716,54(24)	80 865,836(79)	63 852,718(38)	63 852,88(12)	77 446,609(85)	77 446,17(21)
В	14 786,702 0(12)	14 667,236 4(21)	14 051,044 3(11)	13 471,860 83(94)	13 392,844 7(38)	12 623,776 9(18)	12 510,013 1(51)
С	12 936,285 4(12)	12 844,743 9(20)	11 949,052 47(85)	11 103,152 24(53)	11 049,425 5(16)	10 837,654 6(14)	10 753,696 3(39)
Δ_J	12,639 5(11)	12,461 5(19)	11,440 08(98)	9,999 60(84)	9,875 7(38)	9,033 66(98)	8,885 3(30)
Δ_{JK}	160,858 1(94)	159,750(35)	129,101(13)	142,982(15)	142,956(19)	94,832(15)	93,783(18)
Δ_K	1 908(70)	1 917(77)	1 607(15)	806,9(46)	829(18)	952(11)	951(31)
δ_J	1,733 6(10)	1,695 6(19)	2,026 84(73)	2,027 68(54)	1,987 2(22)	1,451 77(92)	1,413 1(27)
$\delta_{\scriptscriptstyle K}$	128,91(44)	127,77(49)	119,86(15)	111,951(61)	111,78(26)	84,795(94)	83,52(31)
$\Phi_{KJ} \times 10^3$	-0,741(67)	-0,741(fix)	-7,49(10)	-1,30(12)	-1,30(fix)	1,54(9)	1,54(fix)
Φ_K	7,04(15)	7,04(fix)	3,538(85)	1,442(50)	1,442(fix)	2,83(11)	2,83(fix)
Anzahl Daten	142	27	70	73	32	48	20
σ	16,9	15,1	12,2	9,3	20,2	8,5	16,0
Δ [c]	0,062 7	0,062 7	0,077 5	0,088 3	0,088 3	0,072 0	0,072 0

Tabelle 4-2: Experimentell ermittelte Rotationsparameter und Trägheitsdefekte verschiedener isotopomerer Silaethene

[a] Grundzustandsrotationskonstanten (A, B, C) (MHz), quartische (Δ, δ), sextische (Φ) Zentrifugaldehnungskonstanten und Standardabweichung der Fits σ (kHz).

[b] In Klammern jeweils eine Standardabweichung.

[c] Trägheitsdefekt $\Delta = I_C - I_A - I_B (u \text{ Å}^2)$.

[a]	$H_2^{28}Si^{12}CH_2$	$H_2^{29}Si^{12}CH_2$	HD ²⁸ Si ¹² CH ₂	$D_2^{28}Si^{12}CH_2$	$D_2^{29}Si^{12}CH_2$	$H_2^{\ 28}Si^{12}CD_2$	$H_2^{29}Si^{12}CD_2$
A_0	104 945	104 945	81 046	63 984	63 984	77 552	77 552
B_0	14 773	14 653	14 036	13 456	13 377	12 610	12 497
C_0	12 928	12 836	11 941	11 095	11 042	10 829	10 745
Δ_J	12,035	11,865	10,898	9,499	9,380	8,579	8,444
Δ_{JK}	161,98	160,89	133,23	148,96	148,98	90,36	89,34
Δ_K	1737,8	1739,1	1493,5	718,62	718,71	835,18	836,33
δ_J	1,603	1,566	1,892	1,889	1,852	1,343	1,310
$\delta_{\scriptscriptstyle K}$	120,84	119,47	113,70	108,05	107,42	77,08	76,04
Δ_0 [b]	0,066 0	0,066 1	0,081 2	0,092 8	0,092 8	0,076 2	0,076 3

Tabelle 4-3: Ab initio berechnete Rotationskonstanten und Trägheitsdefekte verschiedener isotopomerer Silaethene [176]

[a] Grundzustandsrotationskonstanten (A_0 , B_0 , C_0) (MHz), quartische (Δ , δ) Zentrifugaldehnungskonstanten (kHz).

[b] Trägheitsdefekt Δ_0 (u Å²).

Die sehr guten Fitergebnisse der Rotationslinien aller in dieser Arbeit untersuchten Isotopomere von Silaethen spiegeln die Richtigkeit der Zuordnung der Rotationsspektren wider und lassen somit zweifelsfrei den Schluß zu, daß erstmalig das reine Rotationsspektrum von Silaethen registriert wurde. Aus den Rotationskonstanten für das Hauptisotop berechnet sich der Ray'sche Asymmetrieparameter zu $\kappa = -0,959$ 9, wonach Silaethen ein nur schwach asymmetrisches Kreiselmolekül ist. Die Trägheitsdefekte Δ sind für alle Isotopomere sehr klein und bestätigen die Planarität des Moleküls. Die ausgezeichnete Übereinstimmung zwischen Theorie und Experiment wird durch Vergleich der Rotationsparameter illustriert. Der relative Unterschied variiert für A zwischen 0,14 % und 0,22 %, für B zwischen 0,09 % und 0,12 % und für C zwischen 0,06 % und 0,08 %. Ähnlich gute Übereinstimmung wird bei den Zentrifugaldehnungskonstanten gefunden. Die maximale Abweichung beträgt ca. 5%. Lediglich Δ_K fällt mit einer Abweichung von 10 % etwas aus dem Rahmen.

4.5.5 Bestimmung der Lebensdauer von Silaethen

In der Literatur finden sich zum Thema der Lebensdauer von Silaethen verschiedene Hinweise, die nicht unumstritten sind. So berichteten Auner und Grobe [7] über die monatelange Lagerung von reinem Silaethen bei 77 K in Glasampullen. Den Autoren zufolge ist auch die verlustfreie Umkondensation in einer Hochvakuumapparatur möglich. Diese Ergebnisse überraschen im Hinblick auf die IRmatrixspektroskopischen Untersuchungen bei 10 K von Maier et al., die feststellten, daß bei Tempern der Ar-Matrix auf 35 K eine sofortige Dimerisierung von Silaethen zu 1,3-Disilacyclobutan stattfindet. Arbeiten von Pola et al. [166] über die zeitaufgelöste UV-spektroskopische Untersuchung von Silaethen, das bei der durch ArF- und CO₂-laserinduzierten Zersetzung von Silaethen neben einem Zerfall zweiter Ordnung auch ein unimolekularer Zerfall beobachtet wird. Hieraus konnte die Reaktionsgeschwindigkeitskonstante k = $2,3 \pm 0,7 \times 10^4$ s⁻¹ abgeleitet werden, woraus die Halbwertslebensdauer von t_{1/2} = 0,03 (1) ms berechnet werden kann.

Die Lebensdaueruntersuchungen in dieser Arbeit wurden durch die nun genaue Kenntnis der Frequenzen der Rotationsübergänge von Silaethen ermöglicht. Hierfür stand prinzipell der gleiche experimentelle Aufbau wie in Abb. 4-6 beschrieben zur Verfügung, allerdings mit dem Unterschied, daß versucht wurde, Silaethen photochemisch durch Bestrahlung von SBO mit einem gepulsten ArF-Laser (193 nm, Lumonics PM848) zu generieren.

Abb. 4-9: Experimenteller Aufbau des Millimeter- und Submillimeterwellenspektrometers für die photochemische Erzeugung von Silaethen

Die Verwendung eines gepulsten Lasers ist für die zeitaufgelöste spektroskopische Untersuchung unabdingbar, da unter diesen Bedingungen eine "steady state" Konzentration erzeugt wird. Als bestgeeignete Rotationslinie bot sich der Übergang $7_{1,6} \leftarrow 6_{1,5}$ an, da dieser hohe Intensität besitzt. Erste Photolyseversuche wurden an SBO bei einem Druck von 8×10^{-3} mbar bei Raumtemperatur durchgeführt, wobei ein schwaches Signal des Rotationsübergangs beobachtet werden konnte. Demnach läßt sich Silaethen außer durch Thermolyse auch gemäß nachfolgender Reaktionsgleichung photochemisch erzeugen.

Aus dem Abklingen des Signals der $7_{1,6} \leftarrow 6_{1,5}$ -Linie (Abb. 4-10) ist es möglich, die Lebensdauer [177] von Silaethen zu bestimmen. Eine Anpassung des experimentellen Signals mit der Methode kleinster Fehlerquadrate ergibt eine 1/*e*-Lebensdauer von 30 ± 2 ms. Im Vergleich zur Lebensdauer von Silanon ($\tau = 1,2$ ms), die unter ähnlichen Bedingungen untersucht wurde [143], ist Silaethen wesentlich langlebiger. In Anbetracht der Druckabhängigkeit der Lebensdauer reaktiver Teilchen ist ein Vergleich mit der von Pola bestimmten Halbwertslebendauer nicht sinnvoll, da diese bei einem wesentlich höheren Gesamtdruck (ca. 5 mbar) ermittelt worden ist.

Abb. 4-10: Exponentielle Abnahme der Intensität des Rotationsübergangs $7_{1,6} \leftarrow 6_{1,5}$

4.5.6 Diskussion der Ergebnisse

Silaethen, H₂Si=CH₂, konnte im Rahmen dieser Arbeit durch Thermolyse von SBO erzeugt und erstmals mittels hochauflösender Millimeterwellenspektroskopie nachgewiesen werden. Für die Untersuchung verschiedener Isotopomerer wurden gezielte Synthesen der benötigten Vorstufenmoleküle durchgeführt. Die aus dem Fit der Rotationslinien von H₂²⁸Si¹²CH₂, H₂²⁹Si¹²CH₂, D₂²⁸Si¹²CH₂, D₂²⁸Si¹²CH₂, HD²⁸Si¹²CH₂, HD²⁸Si

Die 1/e-Lebensdauer von Silaethen, die zu 30 ± 2 ms bestimmt worden ist, stellt ein weiteres wesentliches Ergebnis dieser Untersuchung dar. Hieraus kann geschlossen werden, daß Silaethen bei 77 K keinesfalls faßbar und unter diesen Bedingungen haltbar ist. Allerdings berichtete Auner kürzlich über die Isolierung von Silaethen bei 77 K und die Aufnahme von Tieftemperatur-NMR-Spektren, wobei Silaethen durch den als Lösungsmittel fungierenden Dimethylether komplex stabilisiert wird [178]. Die in dieser Arbeit vorgestellten Rotationsparameter der insgesamt 7 Isotopomeren von Silaethen haben inzwischen zur experimentellen Gleichgewichtsstruktur geführt, die im wesentlichen von Dr. J. Demaison (Universität Lille) bestimmt wurde. Die Ergebnisse sind zusammen mit den Ergebnissen der ab initio-Rechnungen zur Vervollständigung dieser Arbeit an dieser Stelle aufgeführt und demonstrieren die hervorragende Übereinstimmung zwischen Experiment und Theorie:

Strukturparameter	experimentell [a]	Ab initio [b]
r _e SiC [Å]	1,703 9(18)	1,704 3
r _e SiH [Å]	1,467 1(9)	1,467 0
r _e CH [Å]	1,081 9(12)	1,082 4
∠ _e HSiC [°]	122,39(3)	122,49
∠ _e SiCH [°]	122,00(4)	122,06

 Tabelle 4-4:
 Experimentelle und ab initio Gleichgewichts-Strukturparameter von Silaethen, [176]

[a] In Klammern 15 Standardabweichungen.

[b] CCSD(T)/cc-pV(Q,T)Z.

Wichtigstes Strukturelement ist die Si=C-Doppelbindung, da nun die Frage der experimentellen Bindungslänge abschließend geklärt ist. Demnach führt die Doppelbindung zu einer Verkürzung des Si-C-Bindungsabstands von 1,864(1) Å für die Si-C-Einfachbindung in H₃Si-CH₃ auf 1,704 Å für die Si=C-Doppelbindung. Als Vergleich mit literaturbekannten Daten für die Si=C-Doppelbindung kann der r₀ Si=C-Abstand von Dimethylsilaethen (CH₃)₂Si=CH₂ herangezogen werden, der durch Anpassung von drei experimentellen Grundzustandsrotationskonstanten zu 1,692 Å bestimmt werden konnte [9]. Obwohl die Bindungslänge mit der des Grundkörpers Silaethen übereinstimmt, kann dieser nicht als Referenz dienen, da die Struktur von Dimethylsilaethen wesentlich mehr geometrische Parameter beinhaltet, als für deren Bestimmung Daten verfügbar sind. Somit enthält die experimentell bestimmte Bindungslänge von Dimethylsilaethen zwangsweise Näherungen, basierend auf ab initio-Rechnungen, deren Einfluß auf die Bindungslänge nicht unterschätzt werden darf. Die aus dem Elektronenbeugungsspektrum von Dimethylsilaethen abgeleitete Si=C-Bindungslänge von 1,83 (4) Å [179] ist offensichtlich auf eine Fehlinterpretation zurückzuführen. Aus dem kürzlich durch Millimeterwellenspektroskopie untersuchten Silavinyliden H₂C=Si: ist die Si=C-Bindungslänge zu 1,695(9) Å berechnet worden [140] und stimmt damit gut mit der für Silaethen ermittelten überein.

4.6 Versuch des FT-IR-spektroskopischen Nachweises von Silaethen

Der in Kapitel 4.5 beschriebene millimeterwellenspektroskopische Nachweis von Silaethen macht auch einen IR-spektroskopischen Nachweis chancenreich. Die Ausgangsvoraussetzungen erschienen gut, da mit der in Kapitel 2.6.2 beschriebenen, neukonstruierten White-Zelle ein speziell auf die experimentellen Erfordernisse angepaßtes Nachweisinstrument zur Verfügung stand. Darüber hinaus ist das Matrix-IR-Spektrum von Silaethen bekannt und konnte für eine Abschätzung des Erwartungsbereiches der IR-Banden herangezogen werden. Unterstützt wurde die Suche durch Simulation des hochaufgelösten IR-Spektrums mit Hilfe der von Thiel et al. bereitgestellten ab initio-Vorhersagen der anharmonischen Grundschwingungswellenzahlen und Rotations-Schwingungs-Wechselwirkungskonstanten von Silaethen [86].

		Experiment [a]	Theorie [b]
a ₁	ν_1, ν_s (CH)	-	3038 [1]
	ν_2, ν_s (SiH)	2219	2225 [29]
	ν_3, δ (CH ₂)	1350	1358 [5]
	ν_4, ν (SiC)	985	969 [24]
	ν_5, δ (SiH ₂)	927	923 [21]
a ₂	ν_6, τ (SiC)	-	713 [-]
b_1	ν_7, ω (CH ₂)	741	746 [36]
	ν_8, ω (CH ₂)	-	421 [17]
b ₂	$\nu_9, \nu_{\rm as}$ (CH)	-	3110 [0]
	ν_{10}, ν_{as} (SiH)	2239	2246 [69]
	v_{11}, ρ (CH ₂)	817	822 [56]
	$\nu_{12}, \rho \text{ (SiH}_2)$	-	477 [6]

Tabelle 4-4:	Wellenzahlen	der Infrarotsp	ektren von H	2Si=CH ₂ [cm ⁻	¹]
				2 2 L	_

[a] Lit. [8], Ar-Matrix, 10 K.

[[]b] Lit. [86], CCSD(T)/TZ2Pf, anharmonisch korrigiert. In eckigen Klammern: Intensitäten [km mol⁻¹].

4.6.1 Optimierung der White-Zelle

Die prinzipielle Tauglichkeit der neukonstruierten White-Zelle wurde am Difluorcarben : CF_2 getestet. Dieses Molekül erschien hierfür besonders geeignet zu sein, da es

- a) vermutlich eine ähnliche Lebensdauer wie Silaethen aufweist,
- b) unter anderem durch Thermolyse von Trifluormethyltrifluorsilan leicht hergestellt werden kann,
- c) bereits früher durch hochauflösende FT-IR-Spektroskopie untersucht wurde.

Zu a) Die Angaben bezüglich der Lebensdauer von : CF_2 variieren in Abhängigkeit der Darstellungsbedingungen von 2 ms - 100 ms [180,181].

Zu b) Die Synthese von Difluorcarben durch thermische Zersetzung von Trifluormethyltrifluorsilan ist als sehr effizient beschrieben worden [182] und wurde im Hause entwickelt. CF_3SiF_3 wurde zur Darstellung von Difluormethylsilanen durch Insertion von : CF_2 in Si-H-Bindungen verwendet.

$$HCF_{2}SiR_{3} \xleftarrow{\Delta HSiR_{3}}_{-SiF_{4}} F_{3}Si \xleftarrow{C}_{F_{2}} \xrightarrow{\Delta}_{-SiF_{4}} \{:CF_{2}\} \longrightarrow 1/2 C_{2}F_{4}$$

$$(4.11)$$

Zu c) Durch die vollständig bekannten hochaufgelösten FT-IR-Spektren der beiden intensivsten Schwingungen (ν_1 , ν_3 , symmetrische und asymmetrsiche C-F-Streckschwingung) [181] sowie des Diodenlaser-Infrarot-Spektrums der ν_1 -Schwingung [183] war neben einer einfachen Zuordnung auch eine Abschätzung der Empfindlichkeit des Systems möglich.

Der Versuchsaufbau entsprach dem in Abb. 2-9 dargestellten. Als Ofen kam eine Eigenkonstruktion zum Einsatz, die im wesentlichen dem in Kapitel 4.5.1 beschriebenen Ofens entspricht. Es wurde lediglich ein Tantal-Draht ($\emptyset = 1$ mm) als Heizdraht verwendet. Der Ofen-Ausgang wurde in unmittelbarer Nähe des IR-Strahlenverlaufs (Abstand ca. 1 cm) positioniert. Die Zufuhr von Trifluormethylsilan wurde durch ein Feinregulierventil gesteuert. Der Gasstrom wurde für die ersten Experimente so eingestellt, daß keine Absorptionsbanden des Vorstufenmoleküls mehr erkennbar waren. Schon nach wenigen IR-Scans konnten schwache Linien der intensitätsstärksten ν_1 -Schwingung gefunden werden, neben den starken Banden von Tetrafluorethen und Siliciumtetrafluorid. Um eine möglichst große und gleichbleibende Konzentration des kurzlebigen Moleküls zu gewährleisten, wurde im Strömungssytem gearbeitet. Anschließende Optimierung des Systems (Zumischung von Argon als Puffergas, Temperatur, Abpumpgeschwindigkeit) erlaubten die Aufnahme eines FT-IR-Spektrums von : CF_2 im Bereich von 1000 - 1300 cm⁻¹, von dem ein Ausschnitt nachfolgend dargestellt ist.

Abb. 4-11: Linien der Q-Zweig-Übergänge (K = 3, 4, 5) in der Nähe des Bandenzentrums der ν_1 -Schwingung von :CF₂

- a: FT-IR-Spektrum nach Lit. [181] bei einer optischen Weglänge von 100 m. Dargestellt durch MW-Entladung in einer 0,1 %igen CF_4/He oder CF_2HCl/He Mischung, $p_{(ges.)} = 0,66$ mbar.
- b: Diese Arbeit, bei einer optischen Weglänge von 4,8 m. Dargestellt durch Thermolyse einer CF_3SiF_3/Ar -Mischung, $p_{(Ar)} = 0,05$ mbar, $p_{(Silan)} = 0,025$ mbar, $T = 400^{\circ}C$.

4.6.2 Thermolyse von SBO im IR-Strahlengang

Für einen ersten Nachweis von Silaethen sollte nicht das gesamte Spektrum registriert werden, sondern nur ein Ausschnitt. Dieser ist so gewählt worden, daß zum einen möglichst intensive Schwingungen von Silaethen auftreten und zum anderen diese nicht von denen des Bis(trifluormethyl)benzols überlagert sind. Das ist nur für die intensitätsstarken symmetrischen und asymmetrischen Si-H-Streckschwingungen v_2 und v_{10} bei ca. 2225 und 2246 cm⁻¹ der Fall. Vorteilhafterweise steht in diesem Wellenzahlenbereich ein sehr empfindlicher InSb-Detektor zur Verfügung. Als experimenteller Aufbau wurde der für den Nachweis von Difluorcarben beschriebene verwendet. Der kreuzförmige Glaskörper wurde durch einen umwickelten Gummi-Schlauch, durch den flüssiger Stickstoff geleitet wurde, abgekühlt. Dadurch konnte die Zelle auf Temperaturen von ca. -116°C (gemessen an der äußeren Glasoberfläche) gekühlt werden. Um einen möglichst effektiven Gasaustausch zu gewährleisten, kamen eine zweistufige Drehschieberpumpe mit vorgeschalteter Turbopumpe zum Einsatz.

Als Ausgangspunkt für die Untersuchungen wurden jene Druckverhältnisse bzw. Thermolysetemperatur gewählt, die sich als Optimum für die Generierung von Silaethen beim millimeterwellenspektroskopischen Nachweis nach Gl. (4.8) erwiesen hatten. Druck und Temperatur wurden im Verlauf der Experimente variert. Die Simulation des Erwartungsspektrums wurde auf der Grundlage der experimentellen Grundzustandsparameter von Silaethen (H₂²⁸Si=¹²CH₂, Tabelle 4.2) unter Verwendung der Programme SIMIR und INTEGN [184] durchgeführt. Hierbei wurden die von Thiel et al. berechneten Rotations-Schwingungs-Wechselwirkungskonstanten verwendet.

ν_{i}	a-Achse $\alpha \times 10^2$	b-Achse $\alpha \times 10^4$	c-Achse $\alpha \times 10^4$
i = 2	2,6482	3,554	6,591
i = 10	2,0032	4,568	5,458

Tabelle 4-5: Berechnete Rotations-Schwingungs-Wechselwirkungsparameter $[cm^{-1}]$ für $H_2^{28}Si=^{12}CH_2$, MP2/TZ2Pf, Lit. [86]

Abb. 4-12: Ab initio-Spektrum von Silaethen im Bereich der sym. (ν_2) und asym. (ν_{10}) Si-H-Streckschwingungen

Hieraus ist erkennbar, das sich beide Banden in der Simulation in einem großen Wellenzahlbereich überlappen, in dem in regelmäßigen Abständen charakteristische Linienserien auftreten. Besonderes Augenmerk bei der Suche wurde auf den intensitätsstarken Q-Zweig-Bereich der v_2 -Schwingung gelegt. Der Vergleich der experimentellen Spektren mit dem simulierten Spektrum ergab jedoch keine Hinweise auf Linien von Silaethen. Vielmehr konnten die schon bei den millimeterwellenspektroskopischen Untersuchungen gefundenen Moleküle CH₃SiH₃ und H₃SiF identifiziert werden. Daneben fanden sich auch schwache Linien von CO und H₂SiF₂. Auch Versuche, Silaethen durch CO₂-laserinduzierte Zersetzung von SBO zu erzeugen, schlugen bisher fehl. Hierbei konnten nur die bei der konventionellen Thermolyse erhaltenen Produkte CH₃SiH₃, H₃SiF und H₂SiF₂ nachgewiesen werden.

4.6.3 Ausblick

Obwohl die millimeterwellenspektroskopische Untersuchung der Thermolyse von SBO zweifelsfrei die Bildung von Silaethen belegt, ist es bislang nicht gelungen, das Experiment auf den IR-spektroskopischen Nachweis in der Gasphase zu übertragen. Als Grund hierfür muß in der Hauptsache die im Vergleich zur Mikrowellen-/Millimeterwellenspektroskopie um den Faktor 1000 geringere Empfindlichkeit der IR-Spektroskopie angesehen werden. Das bedeutet, daß zum Nachweis von Silaethen wesentlich größere Teilchenzahldichten im IR-Strahlengang vorhanden sein müssen oder aber der Strahlengang muß verlängert werden. Um diesen Bedingungen Rechnung zu tragen, muß bei größeren Gesamtdrucken gearbeitet werden als die im Millimeterwellenexperiment verwendeten. Der Nachweis von Difluorcarben belegt zwar die prinzipielle Eignung des Systems für den Nachweis kurzlebiger Moleküle. Allerdings dürfte :CF₂ bei ähnlichen Darstellungsbedingungen um einige Größenordnungen langlebiger als Silaethen sein. Hier macht es Sinn, erst einmal längerlebige Si=C-Derivate zu untersuchen. Hierfür ist Methylsilaethen geeignet, das sich analog zu Silaethen aus methyliertem SBO darstellen läßt. Die Methylgruppe sollte einen kinetisch stabilisierenden Einfluß auf die Si=C-Doppelbindung besitzen und somit die Lebensdauer im Vergleich zu Silaethen erhöhen. Darüber hinaus besitzt es eine intensive SiH-Schwingung, die nicht durch störende Absorptionen des Nebenproduktes Bis(trifluormethyl)-benzols überlagert wird.
4.7 Versuche zur Erzeugung von SiC-Schichten aus Silaethenvorstufen

Chemische Gasphasenabscheidung (CVD), die entweder durch Einwirkung von Hitze, im Plasma oder auch durch IR- oder UV-Laserbestrahlung einer geeigneten Vorstufe erreicht werden kann, ist eine gängige Methode zur Erzeugung von SiC und Si/C/H Materialien, die Anwendung als Keramiken oder als Bauteile in der Elektrotechnik finden [185]. Als Vorstufen für die Abscheidung von SiC-Schichten erscheinen solche, die als Quellen für Silaethen (H₂Si=CH₂) oder das isomere Methylsilylen gelten, besonders geeignet, da Silicium und Kohlenstoff schon als Moleküleinheit im Verhältnis 1:1 vorliegen. Während Methylsilylen durch Photolyse [186,187] oder Thermolyse [188,189,190] aus Methylsilan erzeugt werden kann, stellt die Thermolyse von 5,6-Bis(trifluormethyl)-2silabicyclo[2.2.2]octa-5,7-dien (SBO) den effektivsten Zugang zu Silaethen dar [8], siehe auch Kap. 4.5.3. Die Silanderivate Silacyclobutan (SCB) und 1,3-Disilacyclobutan (DSB) sind als Silaethenquellen signifikant schlechter geeignet. Die Ergebnisse der vorher beschrieben millimeterwellenspektroskopischen Untersuchungen belegen, daß grundsätzlich Silaethen aus diesen Vorstufen durch konventionelle Thermolyse erzeugt werden kann. Die thermische Zersetzung von SBO, SCB [191,192] und DSB [193] ist bisher nur unter Bedingungen untersucht worden, bei denen heterogene Reaktionen stattfinden können, z. B. durch Reaktion mit der heißen Oberfläche eines Ofens. Solche Prozesse sind im Hinblick auf eine einheitliche Abscheidung aus der Gasphase störend, da die Zersetzung von Nebenreaktionen begleitet wird. So wird für die thermische Zersetzung von SCB und DSB ein sehr komplexer Abscheidungsmechanismus beschrieben, der zu einer Vielzahl von Nebenprodukten führt.

Der folgende Teil der Arbeit beschreibt Versuche mit dem Ziel, die IR-laserinduzierte Zersetzung der Silanderivate SCB, DSB und SBO zu untersuchen. Die Idee hierbei bestand darin, daß die Bestrahlung der jeweiligen Vorstufen mit CO₂-Laserlicht in einer homogenen Reaktion zu Silaethen führt, woraus entweder durch Wasserstoffabgabe oder durch Polymerisation/Wasserstoffabgabe SiC oder Si/C/H-Schichten gebildet werden. Die Isomerisierung von Silaethen zu Methylsilylen sollte in analoger Weise unter Wasserstoffabgabe oder durch Polymerisation/Wasserstoffabgabe zu SiC oder Si/C/H-Schichten führen. Die für die Wasserstoffabspaltung benötigte Energie kann entweder durch die beim Zersetzungsprozeß der Vorstufenmoleküle freiwerdende Energie oder durch direkte Absorption der Laserstrahlung bereitgestellt werden.

Abb. 4-13: Mögliche Erzeugungswege von Si/C/H oder SiC-Schichten aus Silaethen-Vorstufen

Die getroffenen Annahmen werden durch folgende experimentellen Beobachtungen gestützt:

- Aus den zeitaufgelösten Untersuchungen der Erzeugung von Silaethen durch Bestrahlung von SCB und DSB mit CO₂-Laserstrahlung ist bekannt, das Silaethen als kurzlebiges Intermediat auftritt [166].
- Das IR-Matrix-Spektrum von Silaethen weist im Bereich der CO₂-Laserstrahlung (00°1 ← 10°0) eine Schwingungsbande auf [8]. Wird Silaethen bei der Bestrahlung der Vorstufen gebildet, so kann weitere Absorption von CO₂-Laserlicht zur Wasserstoffabspaltung aus Silaethen führen.
- Alkylierte Silaethene, die durch CO₂-laserinduzierte Zersetzung aus Silacyclobutanderivaten RR'SiCH₂CH₂CH₂ (R=H, R'=CH₃ [194], CH₂=CH [195], HC≡C [196]) als kurzlebige Intermediate postuliert werden, polymerisieren bevorzugt. Eine entsprechende Erzeugung alkylierter Silaethene durch Thermolyse führt hingegen bevorzugt zur Cyclodimerisierung [197].
- Lineare Polymethylsilane/Polysilaethene können bei geeigneten Temperaturen in hohen Ausbeuten in keramische Materialien übergeführt werden [198,199].

4.7.1 Funktionsweise eines CO₂-Lasers und Mechanismus der Energieübertragung

Das Prinzip des CO₂-Lasers wird durch nachfolgende Abbildung verdeutlicht. 3000 -

Abb. 4-14: Beteiligte Energieniveaus beim CO₂-Laser, entnommen aus Lit. [200].

N₂-Moleküle werden durch Elektronenstoßanregung vom Grundzustand (v=0) in das erste angeregte Schwingungsniveau (v=1) angehoben. Die aufgenommene Energie ist zufällig nahezu so groß wie die des (00⁰1)-Schwingungszustands von Kohlendioxid, so daß ein Kohlendioxid-Molekül beim Stoß mit einem angeregten Stickstoff-Molekül Energie aufnehmen kann. Die Kohlendioxid-Moleküle kehren über die (10⁰0)- sowie (02⁰0)- und (01¹0)-Schwingungsniveaus in den Grundzustand (00⁰0) zurück. Neben dem 9,6 μ m Übergang findet am häufigsten der mit einer Emission von 10,6 μ m verknüpfte Übergang statt.

Als CO₂-Laserquellen stehen mit dem cw- (*c*ontinous *w*ave) und dem gepulsten TEA (*T*ransversely *E*xcited *A*tmospheric) CO₂-Laser zwei verschiedene Gerätetypen zur Verfügung, die sich vor allem in der Energieausbeute unterscheiden. Die Energie von cw-Lasern kann bis zu einigen kW/cm² betragen, liegt aber typischerweise deutlich darunter (10 - 200 W/cm²). Demgegenüber beträgt die Energie eines TEA CO₂-Laser ca. 1 J/cm² pro Puls. Die Pulsdauer liegt im Bereich von ca. 0,2 - 1 μ s, woraus eine durchschnittliche Energie von ca. 1 - 5 MW/cm² abgeleitet werden kann. Die Energiedichte kann durch Verwendung von Linsen bei beiden Lasertypen erheblich gesteigert werden. Für gepulste TEA CO₂-Laser sind somit Energien im Gigawattbereich möglich. In der Laserchemie unterscheidet man prinzipiell zwei verschiedene Zersetzungsverfahren, die sich hinsichtlich der Übertragung der Laserenergie unterscheiden [201]:

• IRMPD-Verfahren (InfraRed Multiple Photon Decomposition)

Dieses Verfahren findet dann Anwendung, wenn das Molekül im Bereich der CO₂-Laseremissionen starke Absorptionsbanden besitzt. Die Laserenergie wird unter Aufnahme von mehreren IR-Photonen direkt auf das Molekül übertragen. Anschließende Verteilung der aufgenommenen Laserenergie über alle Freiheitsgrade führt - in Abhängigkeit von der übertragenen Energie - im Absorbermole-kül zu thermisch induzierten Reaktionen.

• LPD-Verfahren (Laser Photosensitized Decomposition)

Besitzt das Molekül im Bereich der Laseremissionen keine oder nur sehr schwache Absorptionen, kommt das LPD-Verfahren zum Einsatz. In diesem Fall benutzt man chemisch inerte Moleküle wie Schwefelhexafluorid (SF_6) oder Siliciumtetrafluorid (SiF_4), die im Bereich der Laseremissionen selbst starke Absorber sind. Die Laserenergie wird durch diese sogenannten Photosensitizer absorbiert und über Relaxationsprozesse schnell in Translationsenergie umgewandelt. Die Energie kann dann über Stoßprozesse an ein Absorbermolekül übertragen werden.

Abb. 4-15: Prinzip der LPD- und IRMPD-Verfahren

Für den Prozeß der Ubertragung der Laserenergie auf das zu zersetzende Vorstufen- bzw. Photosensitizermolekül werden in der Literatur mehrere Modelle beschrieben, von denen das P/Q/R-Kontinuum-Modell als das realistischste angesehen wird [202]. Dieses geht davon aus, daß die Schwingungs-Rotationsniveaus des Absorbermoleküls bis v = 3 diskret sind. Für Schwingungs-Rotationsniveaus $v \ge 4$ (12 kcal/mol) wird eine große Energieniveaudichte angenommen, so daß ein Quasi-Kontinuum vorliegt. Das bedeutet, daß nach erfolgter Anregung des Absorbermoleküls in Schwingungs-Rotationsniveaus mit $v \ge 4$ die weitere Anregung in einem Quasi-Kontinuum stattfindet, die nicht mehr quantenmechanischen Auswahlregeln für erlaubte Übergänge unterliegt. Eine Konsequenz hieraus ist, daß eine effiziente Absorption der Laserenergie nur dann stattfinden kann, wenn die energetische Lücke zwischen v = 0 und v = 4 für $\Delta v = 1$ überwunden wird. Das ist wegen der Anharmonizität nach dem P/Q/R-Kontinuum-Modell dann der Fall, wenn der Laser möglichst auf die P-Zweig-Region des $(1 \leftarrow 0)$ - Übergangs des Absorber-Moleküls eingestellt wird. Die Anharmonizität bedingt einen Frequenzshift für eine weitere Anregung des Moleküls, der dazu führt, daß die Einstrahlung der Laserenergie, je nach Anharmonizität, in angeregten Zuständen in der Q-Zweig- oder R-Zweig-Region erfolgt. Der Zusammenhang wird durch nachfolgende Abbildung verdeutlicht.

Abb. 4-16: P/Q/R-Kontinuum-Modell, entnommen aus Lit. [203].

Der Vorteil der laserinduzierten Zersetzung (sowohl des IRMPD- als auch des LPD-Verfahrens) gegenüber der konventionellen Thermolyse ist darin zu sehen,

daß im Falle der Laserverfahren die Energie in der Gasphase übertragen wird, was zu homogenen Reaktionen führt. Dadurch werden heterogene Prozesse, wie z.B. Reaktionen mit den heißen Ofenwänden, weitgehend eliminiert.

Die IRMPD-Experimente wurden von mir unter Verwendung eines gepulsten TEA CO₂-Lasers durchgeführt, während die LPD-Experimente von Fr. M. Urbanová aus der Arbeitsgruppe von Dr. J. Pola (Institue of chemical Process fundamentals, Prag) unter Verwendung eines cw CO₂-Lasers durchgeführt wurden [204]. Die Ergebnisse beider Untersuchungen werden im folgenden vorgestellt.

4.7.2 Experimentelles

Hochaufgelöste IR-Spektren von SCB und DSB wurden mit einem Bruker 120 HR Interferometer in Wuppertal aufgenommen. Experimentelle Details sind in Tabelle 4-6 aufgeführt. Die Linieneichung erfolgte mit Referenzlinien von H_2O [87].

	SCB	DSB
Zellenlänge [cm]	28	28
Druck [mbar]	1	1
Temperatur [°C]	RT	RT
Fenster	KBr	KBr
Strahlteiler	KBr	KBr
Detektor	MCT 600	MCT 800
Auflösung (1/MOPD)/10 ⁻³ cm ⁻¹	3,1	2,2
Scanzahl	360	205
Signal/Rausch Verhältnis	300:1	100:1

Tabelle 4-6: Meßbedingungen für die Aufnahme der IR-Spektren von SCB und DSB

Die IRMPD-Experimente wurden mit einem auf verschiedene Linienpositionen einstellbaren TEA CO₂-Laser (P. Hilendarski Plovdiv University, Modell 1300 M) durchgeführt. Die Einstellung der benötigten verschiedenen Linienpositionen des CO₂-Lasers erfolgte durch einen Spektrumanalysator (Optical Engineering Co., Modell 16-A). Der austretende Laserstrahl konnte durch Vorsetzen einer NaCl-Linse (Fokuslänge = 8 cm) fokussiert werden. Die Energie des Laserstrahls wurde durch einen pyrokeramischen Detektor (Charles University, Modell m1-1JU) gemessen und betrug durchschnittlich 1 J/cm².

Die Bestrahlung der gasförmigen Proben von SCB, DSB und SBO wurde in einer zylindrischen Pyrex-Glaszelle ($\emptyset = 3,6$ cm, 1 = 10 cm) mit KBr oder NaCl Fenstern durchgeführt. Die Befüllung der Glaszelle erfolgte über eine Standard-Vakuumapparatur. Nachfolgende Abbildung zeigt schematisch den verwendeten Versuchsaufbau.

Abb. 4-17: Experimenteller Versuchsaufbau für die CO₂-Laser-induzierte Zersetzung von SCB, DSB und SBO

Die Bestimmung der Energie, welche von den Vorstufen während des Prozesses der Bestrahlung aufgenommen wurde, erfolgte durch Messung der Energiedifferenz zwischen leerer und befüllter Zelle.

Die LPD-Experimente wurden in einer einfachen Glaszelle unter Verwendung eines cw CO₂-Lasers durchgeführt, der mit der P(20)-Linie des Emissionsübergangs $00^{\circ}1 \leftarrow 10^{\circ}0$ arbeitete. Vorschalten einer Germanium-Linse erlaubte die Fokussierung der Strahlung, wodurch Energien von ca. 30 W/cm² erreicht wurden.

Der Verlauf der Zersetzung und damit die Abnahme der Absorptionsbanden der Vorstufen wurde durch Aufnahme der FTIR-Spektren (Nicolet, Modell Impact 400) untersucht, wobei der Grad der Zersetzung anhand diagnostischer Banden bei 1120 und 2950 cm⁻¹ für SCB, 642, 650 und 1365 cm⁻¹ für DSB sowie 2170 cm⁻¹ für SBO bestimmt wurde. Die Analyse der Zusammensetzung des nach der Zersetzung resultierenden Gasgemisches erfolgte durch Gaschromatographie (GC Shimadzu, Modell 14A) und durch Gaschromatographie/Massenspektrometrie (GC-MS Shimadzu, Modell QP 1000 Quadrupol Spektrometer), wobei die Identifizierung der Produkte durch Vergleich der Retentionszeiten sowie durch charakteristische Ionisierungsmuster im Massenspektrum erfolgte. Die chromatographische Auftrennung der bei der Zersetzung entstehenden gasförmigen Produkte wurde unter Verwendung von GC-Säulen, befüllt mit Porapak P (1,3 m) oder mit einem Siliciumelastomer des Typs OV-1 (3 m), durchgeführt. Für die Untersuchung der bei der Zersetzung entstehenden Schichten durch FTIR-Spektroskopie, und Röntgenphotoelektronenspektroskopie (ESCA o. XPS) wurden in der Glaszelle vor der Bestrahlung kleine NaCl-Stücke (3 \times 3 mm) sowie Cu-Bleche (3 \times 3 mm) aufgeklebt. FTIR-Spektren wurden entweder von den aufgeklebten NaCl-Fenstern oder direkt von den Zellfenstern nach Evakuieren der Glaszelle aufgenommen. Die für die ESCA-Untersuchungen benötigten Cu-Bleche konnten erst nach einer Exponierung an Luftsauerstoff untersucht werden. Diese Messungen wurden im Institut für Anorganische Chemie in Prag unter Verwendung eines ESCA 3 Mk II Elektronenspektrometers durchgeführt.

4.7.3 Ergebnisse der Untersuchungen

SCB, DSB und SBO zeigen im Bereich der CO₂-Laser Emission des Übergangs $00^{\circ}1 \leftarrow 10^{\circ}0$ relativ starke Absorptionsbanden der $\delta(SiH_2)$ -Schwingung, weshalb diese Vorstufen in idealer Weise für die IR-laserinduzierte Zersetzung geeignet sind. Um Bereiche mit maximaler Überlappung von Rotations-Schwingungsübergängen des jeweiligen Vorstufenmoleküls mit CO₂-Laserlinien zu ermitteln, wurden die hochaufgelösten IR-Spektren von SCB und DSB registriert (Abb. 4-18). Im Falle von SBO wurde aufgrund der hohen Molekülmasse und dem daraus resultierenden großen Trägheitsmoment auf die Aufnahme hochaufgelöster IR-Spektren verzichtet. Die Auswahl der jeweils verwendeten Laserlinien erfolgte unter Berücksichtigung der Überlappung der Laserlinien mit Rotationsschwingungsübergängen des Vorstufenmoleküls sowie der Intensität der Laserlinien, da diese je nach Übergang starke Unterschiede aufweist. Als intensivste Laserlinen des Übergangs $00^{\circ}1 \leftarrow 10^{\circ}0$ werden in der Literatur [203] die Linien P(30) - P (12) und R(14) - R(26) genannt.

Abb. 4-18: Hochaufgelöste FTIR-Spektren von SCB und DSB im Bereich der δ (SiH₂)-Schwingung. Die untere Abbildung zeigt Spektrendetails im Bereich der jeweils verwendeten Laserlinie.

Im Falle der Bestrahlung von SCB und DSB in Gegenwart von SF₆ als Photosensitizer kann davon ausgegangen werden, daß die Laserenergie größtenteils von SF₆ aufgenommen wird [205], da die Absorptivität (in kPa⁻¹ cm⁻¹) von SF₆ (2,2) im Bereich der IR-Laserstrahlung sehr viel größer ist als für SCB (0,0034) und DSB (0,020).

Abb. 4-19: Niedrigaufgelöstes FTIR-Spektrum von SBO im Bereich der δ (SiH₂)-Schwingung mit Position der verwendeten Laserlinie des Emissionsübergangs $00^{\circ}1 \leftarrow 10^{\circ}0$

4.7.3.1 Silacyclobutan (SCB)

Die IRMPD-Experimente wurden bei Drucken im Bereich von 3 - 40 mbar unter Verwendung der CO_2 -Laserlinien 10P(14), 10P(20) und 10P(28) durchgeführt. Die Bestrahlung der gasförmigen Probe führte unabhängig von der jeweilig verwendeten Laserlinie zu einer starken Zersetzung der Probe, die sich durch Chemilumineszenz und durch Abscheidung eines weißen bis leicht gräulichen Belags auf den Fenstern bzw. den Zellenwänden bemerkbar machte.

• GC und GC/MS-Untersuchungen

Die Untersuchung der gasförmigen Produkte erfolgte durch GC, GC/MS, in einigen Fällen auch zusätzlich durch Aufnahme von FTIR-Spektren. Demnach besteht nach der Bestrahlung die Gasmischung aus Ethen als Hauptprodukt, Propen, Methan, Methylsilan und sehr wenig n-Propylsilan, neben nicht umgesetztem SCB. Die experimentellen Bedingungen sowie die Ergebnisse der gaschromatographischen Untersuchungen sind in nachfolgender Tabelle zusammengefaßt.

							gasförmige Produkte [mol/mol zersetztes SCB]					
Exp. Nr.	Laser- linie	Fokus	Energie [a] [J]	Anzahl Pulse	Druck [mbar]	Zersetz- ung [%]	CH ₄	C_2H_4	C_2H_2	CH ₃ CH=CH ₂	CH ₃ SiH ₃	n-C ₃ H ₇ SiH ₃
1	P(14)	nein	0,60	1500	40	40	0,007	0,85	-	0,12	0,12	0,010
2	P(28)	nein	1,0	2000	30	58	0,007	0,83	-	0,16	0,12	0,020
3	P(14)	ja	0,9	35	40	42	0,004	0,60	0,35	0,10	-	-
4	P(28)	ja	0,75	30	30	48	0,09	0,65	0,25	0,06	0,02	0,017
5	P(20)	ja	1,0	30	30	48	0,1	0,70	0,30	0,07	0,02	-
6	P(20)	nein	0,25	2000	3	44	0,005	0,85	-	0,13	0,05	0,010
7	P(28)	ja	0,25	30	3	29	0,06	0,70	0,13	0,01	0,03	0,003
8	P(14)	nein	0,40	4500	7	60	-	0,75	-	0,10	-	-

Tabelle 4-7:	Experimentelle Bedingungen für die Zersetzungsreaktionen von SCB und Zusammensetzung
	des resultierenden Gasgemisches nach GC-Untersuchung

[a] Energie, die von der gasförmigen Probe absorbiert wurde.

Auffällig ist, daß bei Bestrahlung der Probe mit einem fokussierten Laserstrahl eine wesentlich stärkere Zersetzung von SCB stattfindet. Zusätzlich zu den vorher beschriebenen Produkten wird auch Ethin nachgewiesen, was mit einer Abnahme der Ausbeute an Propen verbunden ist.

Abb. 4-20: Gaschromatogramm der Zersetzungsprodukte aus der Bestrahlung von SCB mit einem gepulsten TEA CO₂-Laser, fokussierte Strahlung

LPD-Experimente mit SCB, die unter Verwendung von äquimolaren Mengen von SCB und SF₆ (8 - 24 mbar) in einem Überschuß von Argon (340 - 380 mbar) durchgeführt wurden, führen zu den gleichen gasförmigen Produkten. Auch hier ist das Hauptprodukt der Bestrahlung Ethen, neben Propen, Methan und Methylsilan. Ethin kann nicht nachgewiesen werden. Grund hierfür kann die im Vergleich zu den IRMPD-Experimenten geringere effektive Temperatur der Zersetzung sein.

Die Bildung der bei der Bestrahlung erhaltenen Produkte läßt sich durch Vergleich mit der in der Literatur beschriebenen thermischen Zersetzung durch konventionelle Thermolyse von SCB interpretieren (Abb. 4-21). Für die IRMPDund LPD-Experimente ist der dominante Reaktionsschritt die Bildung von Ethen (1). Das Verhältnis von C_2H_4/CH_3CHCH_2 beträgt ca. 6 : 1, was bedeutet, daß die Eliminierung von Propen (3) im Vergleich zur Thermolyse von SCB bei niedrigen Drucken (C_2H_4/CH_3CHCH_2 ca. 3 : 1) oder bei der Oberflächenzersetzung von SCB eine weniger wichtige Rolle spielt. Offensichtlich ist dieser Unterschied auf das Fehlen von heißen Oberflächen bei den IRMPD- und LPD-Experimenten zurückzuführen und hat somit eine Favorisierung von Reaktion (1) zur Folge. Die sehr kleinen Mengen von gebildetem Methylsilan und n-Propylsilan deuten an, daß Reaktionen von Silaethen und n-Propylsilylen mit Wasserstoff eine eher untergeordnete Rolle spielen. Als Wasserstoffquelle dient im Falle der mit fokussiertem Strahl durchgeführten IRMPD-Experimente eine zweite Dehydrogenierung von Ethen zu Ethin. Da bei den LPD-Experimenten kein Ethin nachgewiesen werden konnte, muß die Bildung von Wasserstoff über einen anderen Weg erfolgen. Als Wasserstoffquelle kommt die bei der Oberflächenzersetzung von SCB auftretende direkte Wasserstoffabspaltung aus SCB in Frage, die von einer Eliminierung von Propen und Abscheidung von elementarem Silicium gefolgt wird (4). Die Bildung von Silaethen und Ethin aus Silylencyclobutan ist weniger wahrscheinlich, würde jedoch das Fehlen von elementarem Silicium in den gebildeten Schichten erklären. Die hohen Ausbeuten an Ethen lassen erkennen, daß Silaethen oder das isomere Methylsilylen als Hauptquelle für die Bildung von Wasserstoff auftreten (6). Die Zusammensetzung der gebildeten Schichten, die später diskutiert wird, deutet darauf hin, daß Silaethen oder das isomere Methylsilylen intermediär gebildet werden und unter Wasserstoffabspaltung zu Si/C/H und SiC-Schichten reagieren. Die Energie für die Wasserstoffabspaltung kann entweder durch überschüssige Energie aus der exothermen Ethen-Eliminierung oder durch direkte Absorption von Laserenergie bereitgestellt werden. Die Abwesenheit von elementarem Silicium erklärt das Auftreten von Reaktionen, in denen Silylen durch Reaktion mit Intermediaten in die SiC und Si/C/H-Schichten eingearbeitet wird (7). Allerdings gelang der Nachweis von Silaethen (oder des isomeren Methylsilylens) bei Durchführung der Bestrahlung von SCB unter Verwendung eines Überschußes von 1,3-Butadien als Abfangreagenz nicht. Vielmehr konnten nur die vorher beschriebenen Produkte identifiziert werden. An dieser Stelle sei erwähnt, daß auch das Dimerisierungsprodukt von Silaethen, DSB, nicht beobachtet werden konnte.

Abb. 4-21: Postulierte Zersetzungmechanismen von SCB nach Bestrahlung mit einem gepulsten TEA CO₂-Laser

• FTIR-Spektroskopische Untersuchung der gebildeten Schichten

Repräsentative FTIR-Spektren der durch IRMPD- und LPD-Experimente gebildeten Schichten weisen alle das typische Muster von Si/C/H-Schichten [206,207,208] auf und sind nachfolgend abgebildet.

Abb. 4-22: Repräsentative FTIR-Spektren der aus der IR-laserinduzierten Zersetzung von SCB erhaltenen Schichten.

Die für die Ermittlung der Zusammensetzung der Schichten relevanten Banden sind in Tabelle 4-8 aufgeführt. Der Vergleich der IR-Spektren **a-d** (Abb. 4-22) mit dem IR-Spektrum von Poly-(silaethen), das aus sehr scharfen Banden mit etwa gleicher Absorption bei 760, 851, 950 und 1046 cm⁻¹ besteht [209], läßt den Schluß zu, daß die gebildeten Schichten wesentlich weniger Wasserstoff enthalten als im Falle von Poly-(silaethen). Die Spektren **a-d** weisen in Abhängigkeit von der jeweiligen Bildungsmethode signifikante Unterschiede auf. Spektren von Schichten, die durch IRMPD von SCB unter Verwendung nicht fokussierter Strahlung (**a**) oder durch LPD (**d**) erhalten wurden, weisen als intensitätsstärkste Banden die Absorptionen der ν (Si-C)- und ν (Si-H)-Schwingungen auf. Demgegenüber zeigen die IR-Spektren der Schichten, die durch IRMPD unter Verwendung fokussierter Strahlung erhalten worden sind (**b** und **c**), als intensitätsstärkste Bande die der ν (Si-C)-Schwingung auf; die Intensität der ν (Si-H)-Schwingung ist gegenüber der Spektren **a** und **d** wesentlich kleiner. Der Unterschied macht deutlich, daß bei der Bestrahlung von SCB mit fokussiertem Laserlicht Schichten erhalten werden, die sehr viel weniger Wasserstoff enthalten als bei Verwendung nicht fokussierter Strahlung.

		Wellenzahl [cm	⁻¹]/Absorptivität	[a]
-	Exp. 1 [b]	Exp. 4 [b]	Exp. 5 [b]	LPD
	Spektrum a	Spektrum D	Spektrum c	Spektrum a
ν (Si-C) [c]	820/0,71	808/17,6	825/4,7	831/1,0
ρ und ω (CH _x)	910/0,36	-	-	-
v(SiCH ₂ Si)	1025/0,32	1049/8,9	1070/0,9	1018/0,18
$\delta_{s}(CH_{3}Si)$	1250/0,10	1263/2,2	1265/0,18	1248/0,14
ν (Si-H)	2115/1,0	2135/1,0	2149/1,0	2115/1,0
<i>v</i> (C-H)	2920/0,21	2932/1,2	2927/0,20	-
ν (C-H)	-	2964/1,3	2960/0,30	2951/0,15

 Tabelle 4-8:
 IR-Absorptionen der aus der Zersetzung von SCB gebildeten Schichten

[a] Normalisiert auf die Absorptivität von ν (Si-H) = 1,0.

[b] Experiment Nr. nach Tabelle 4-7.

[c] Bereich von ρ (CH₃).

Aus der Untersuchung von ähnlichen Schichten, die aus Si-Si-Gerüsten bestehen, ist bekannt, daß der Einbau von Kohlenstoff die Lage der ν (Si-H)-Schwingung zu höheren Wellenzahlen verschiebt und daß Werte für die ν (Si-H)-Schwingung oberhalb von 2110 cm⁻¹ für entsprechende Si_{1-x}C_x:H -Schichten (x < 0,8) gefunden wurden [210]. Die energetische Lage der ν (Si-H)-Schwingung bei > 2130 cm⁻¹ der durch energiereichere Strahlung erhaltenen Schichten zeigt an, daß diese einen ähnlichen Gehalt an Silicium und Kohlenstoff aufweisen.

Der relative Gehalt von C-H und Si-H der Schichten kann auf der Grundlage der C-H und Si-H Oszillatorenstärken in CH₄ und SiH₄ (oder in (CH₃)_nSiH_{4-n} : n=1, 2) berechnet werden [211]. Die Absorptivität der ν (C-H)-Schwingung ist im Vergleich zu der ν (Si-H)-Schwingung der Spektren **a**, **c** und **d** ungefähr um den Faktor 5 kleiner, was bedeutet, daß ungefähr gleiche Mengen von Wasserstoff an Kohlenstoff sowie an Silicium gebunden sind. In Spektrum **b** werden gleiche Werte für die Absorption von ν (C-H) und ν (Si-H) gefunden, woraus geschlossen werden kann, daß in diesem Fall mehr Wasserstoff an Kohlenstoff gebunden ist. Da sowohl die Peaks für ν (C-H)- und δ_s (CH₃Si)-Schwingung in Spektrum **b** im Vergleich zu Spektrum **c** deutlich ansteigen, kann hieraus abgeleitet werden, daß der höhere Gehalt von Wasserstoff in **b** im direktem Zusammenhang mit einer höheren Beteiligung von CH₃-Gruppen steht. Diese Beobachtung ist möglicherweise ein Indiz dafür, daß bei der Verwendung der fokussierten 10P(28)-Laser-Linie die Isomerisierung von Silaethen in Methylsilylen eine größere Rolle spielt.

Um den Einfluß hoher Temperaturen auf die gebildeten Schichten zu untersuchen, wurden diese auf bis zu 400°C erhitzt. Während die Peaks für die ν (C-H)und δ_s (CH₃Si)-Schwingung davon unbeeinflußt bleiben, verliert der Peak der ν (Si-H)-Schwingung ca. 50 % an Intensität. Parallel hierzu wird die Bildung einer neuen Bande bei 1035 cm⁻¹ beobachtet, die entweder zu den ρ und ω (CH_x)-Schwingungen oder, was wahrscheinlicher erscheint, einer ν (Si-O)-Schwingung zugeordnet werden kann. Der Effekt hoher Temperaturen auf die gebildeten Schichten ist also mit einer Abnahme des Wasserstoffgehaltes sowie mit einer vermuteten Absorption von Sauerstoff verbunden.

• ESCA-Untersuchungen

Um weitere Informationen über die gebildeten Schichten zu erhalten, wurden diese mit der ESCA-Methode untersucht, die sich besonders für die Analyse der Zusammensetzung bzw. den Aufbau dünner Schichten und Oberflächen bewährt hat. Die Ergebnisse der Untersuchungen sind in Tabelle 4-9 zusammengefaßt. Betrachtet man die stöchiometrische Zusammensetzung aller in dieser Arbeit untersuchten Schichten, so enthalten diese große Mengen Sauerstoff. Hieraus kann gefolgert werden, daß die gebildeten Schichten extrem empfindlich gegenüber Sauerstoff sind, da die ESCA-Spektren nach einer Exponierung der Schichten an Luftsauerstoff registriert wurden. Möglicherweise beruht die Empfindlichkeit auf dem Vorhandensein von Si=C- [212] oder Si=Si-Doppelbindungen [213]. Versuche, die äußerste Oberfläche (5 nm) durch Beschuß mit Ionen abzufräsen, führte nicht zu einer signifikanten Änderung der Stöchiometrie. Hieraus kann geschlossen werden, daß die freigesetzte Oberfläche wieder mit Luftsauerstoff reagiert und somit die gleiche Zusammensetzung, d.h. hohe Sauerstoffanteile, resultiert. Wegen der Unmöglichkeit, bei den Untersuchungen der Schichten Sauerstoff auszuschließen, ist die ESCA-Methode deshalb im vorliegenden Fall wenig aussagekräftig. Die Bindungsenergien der Kernelektronen sowie die Form der Si(2p)- sowie C(1s)-Spektralbanden der Schichten (Abb. 4-23) zeigen allerdings deutlich, daß die durch IRMPD unter Verwendung nicht fokussierter Strahlung (Exp. 2 und 10) oder durch LPD erhalten Schichten größtenteils aus einer Modifikation bestehen. Dagegen sind die Schichten, die durch IRMPD unter Verwendung von fokussierter Strahlung erhalten wurden (Exp. 5 und 4) aus inäquivalenten Formen aufgebaut, die in Tabelle 4-9 in Reihenfolge aufsteigender Bindungsenergien mit Si^{α}, Si^{β}, C^{α} und C^{β} aufgeführt sind. Für Si^{β} und C^{β} resultieren sehr ähnliche Werte für die Bindunsenergien, im Vergleich zu denen, die aus den Experimenten 2, 10 und LPD erhalten wurden. Allerdings überwiegt für die Schichten aus den Experimenten 5 und 4 die Anteile aus Si^{α} und C^{α}. Der Vergleich der gemessenen Si(2p)- und C(1s)-Kernbindungsenergien, der Si(KL₂₃L₂₃) kinetischen Energien und den daraus resultierenden Werten der Auger-Parameter mit tabellierten Daten [214,215] gibt Hinweise darauf, daß im Falle der Experimente 2, 10 und des LPD-Experimentes ein sauerstoffhaltiges Si/C/H-Polymer vorliegt, das möglicherweise auch in den Schichten aus den Experimenten 4 und 5 auftritt (Si^{β} und C^{β}). Der Vergleich der Bindungsenergien von Si^{α} und C^{α} mit den tabellierten Daten gibt Hinweise darauf, das es sich hierbei um SiC handelt. Allerdings ist diese Zuordnung aufgrund der Anwesenheit von Sauerstoff vorerst nicht zwingend.

		Bindungs	energien	[eV]	Auger-
					Parameter
Exp. [a]	Stöchiometrie	Si(2p)	C(1s)	O(1s)	[eV]
2	$Si_{1,0}C_{1,6}O_{0,8}$	102,0	284,4	532,7	1712,2
		102,2 ^a	284,8 ^a	532,8 ^a	1712,3 [b]
9 [c]	$Si_{1,07}C_{1,6}O_{0,8}$	102,1	284,8	532,7	
			287,1		
5	${\rm Si}^{\alpha}_{1,07} {\rm Si}^{\beta}_{1,07} {\rm C}^{\alpha}_{0,77} {\rm C}^{\beta}_{0,5} {\rm O}_{0,6}$	100,1	282,5	531,8	1714,6
		102,2	284,8		1712,1
4	${\rm Si}^{\alpha}_{0,7} {\rm Si}^{\beta}_{0,3} {\rm C}^{\alpha}_{0,64} {\rm C}^{\beta}_{0,38} {\rm C}^{\gamma}_{0,1} {\rm O}_{0,7}$	100,4	282,8	532,3	1714,8
		102,4	284,8		1711,9
			289,0		
10 [d]	$Si_{1,0}C_{1,6}O_{0,48}$	102,0	284,8	532,7	1712,0 [b]
			286,0		
LPD	$Si_{1,0}C_{1,7}O_{0,82}$	102,2	284,8	532,8	1712,6
			287,6		

 Tabelle 4-9:
 Ergebnisse der ESCA-Untersuchungen

[a] Experiment Nr. nach Tabelle 4-7.

- [b] Nach ion sputtering (5 min, E = 4,5 keV, I = 15 μ A (Exper. 9); 4 min. E = 4 keV, I = 40 μ A (Exper. 10).
- [c] 30 mbar, absorbierte Energie 1 J, nicht fokussierte Bestrahlung mit 10P(20)-Linie, 2000 Pulse, 66 % Zersetzung.
- [d] 40 mbar, absorbierte Energie 0,6 J, nicht fokussierte Bestrahlung mit 10P(20)-Linie, 1500 Pulse.

Abb. 4-23: ESCA-Spektren der aus der Zersetzung von SCB erhaltenen Schichten

4.7.3.2 1,3-Disilacyclobutan (DSB)

Die IRMPD-Experimente wurden bei Drucken im Bereich von 8 - 33 mbar unter Verwendung der CO₂-Laserlinien 10R(18), 10R(20) und 10R(26) (Abb. 4-18) durchgeführt. Wie im Falle der CO₂-laserinduzierten Zersetzung von SCB führt auch die Bestrahlung von DSB unabhängig von der verwendeten Laserlinie zur Zersetzung der gasförmigen Probe, was sich durch Chemilumineszenz und Abscheidung eines weißen Niederschlags auf den Fenstern bzw. Zellwänden bemerkbar macht.

• GC-Untersuchungen

Durch GC- bzw. GC-MS Analyse der gasförmigen Produkte der Bestrahlung konnten Methan, Ethen, Ethin, Propen, Methylsilan und Dimethylsilan identifiziert werden. Interessant ist die Beobachtung, daß die Gesamtausbeute an Methylsilan und Dimethylsilan bezogen auf die Menge an zersetztem DSB nur ca. 10 % beträgt. Hieraus kann geschlossen werden, daß die Bestrahlung von DSB zur Bildung eines kurzlebigen Intermediates führt, das zu einem Niederschlag weiterreagiert bzw. zerfällt.

								gasförmi [mol/mo	ige Produ 1 zersetzte	kte em SCB]		
Exp.	Laser- linie	Fokus	Energie [a] [J]	Anzahl Pulse	Druck [kPa]	Zersetz- ung [%]	CH ₄	C_2H_4	C_2H_2	CH ₃ CH=CH ₂	CH ₃ SiH ₃	(CH ₃) ₂ SiH ₂
1	R(26)	nein	1,0	2000	33	65	0,012	0,006	0,002	0,0001	0,051	0,082
2	R(20)	nein	0,90	2000	33	74	0,015	0,007	0,002	0,0010	0,047	0,07
3	R(18)	nein	1,0	300	27	62	0,01	0,01	0,03	0,020	0,028	-
4	R(20)	ja	0,75	30	33	56	0,03	0,01	0,017	0,0001	0,01	0,011
5	R(26)	ja	0,75	30	33	53	0,07	0,003	0,05	0,0003	0,03	0,028
6	R(18)	ja	1,0	30	23	64	0,010	0,06	0,08	-	0,03	-
7	R(18)	nein	1,0	100	8	50	0,027	0,08	0,04	0,01	0,10	-
8	R(26)	nein	0,25	2000	3	62	0,009	0,01	0,003	-	0,08	0,08
9	R(26)	ja	0,25	30	3	48	0,05	0,05	0,10	-	0,06	0,06

Tabelle 4-10:Experimentelle Bedingungen f
ür die Zersetzungsreaktionen von DSB und Zusammensetzung
des resultierenden Gasgemisches nach GC-Untersuchung

[a] Energie, die von der gasförmigen Probe absorbiert wurde.

Ein Hinweis auf die Bildung von kurzlebigen Intermediaten kann durch den massenspektrometrischen Nachweis kleiner Mengen des Additionsproduktes von Butadien, das vor der Bestrahlung zu DSB zugemischt wurde, mit Silaethen bzw. Methylsilylen gefunden werden (m/e, relative Intensität): 98 (44), 97 (100), 96 (26) 83 (53), 81 (19), 71 (12), 70 (31), 55 (14), 53 (12), 43 (16).

LPD-Experimente wurden unter Verwendung äquimolarer Mengen (23 mbar) von DSB und SF₆ durchgeführt und resultierten in der Bildung gleicher Produkte in ähnlicher quantitativer Zusammensetzung. Gleiche Produkte wurden auch bei der Thermolyse von DSB von Davidson et al. beobachtet [193]. Die Bildung von Methylsilan und Dimethylsilan wird den Autoren zufolge in einer Reaktionssequenz angenommen, in der DSB gespalten wird. Anschließende Wasserstoffwanderung würde zur Bildung eines Diradikals führen, das entweder weiter gespalten wird und Wasserstoff addiert (Abb. 4-24), oder in ein Silylen :Si(H)SiH(CH₃)₂ umgewandelt wird, das unter Bildung eines Trisilans in DSB insertiert.

Abb. 4-24: Postulierte Reaktionsmechanismen der Zersetzung von DSB nach Lit. [193]

Für das Trisilan werden verschiedene, komplizierte Zersetzungsreaktionen angenommen. Daß solche Reaktionen bei der Laser-Thermolyse auftreten, kann durch den Nachweis von Methylsilan bzw. Dimethylsilan bestätigt werden. Allerdings sind die Ausbeuten verglichen mit denen, die bei der normalen Thermolyse erhalten wurden, sehr klein. Hieraus kann der Schluß gezogen werden, daß die Reaktion von Silaethen oder Methylsilaethen mit Wasserstoff eine eher untergeordnete Rolle spielt, verglichen mit der direkten Dehydrogenierung der SiCH₄-Spezies unter Polymerisation.

• FTIR-Spektroskopische Untersuchung der gebildeten Schichten

Nachfolgende Abbildung zeigt einige charakteristische FTIR-Spektren $(\mathbf{a} - \mathbf{c})$ der gebildeten Schichten, aus denen deutlich die Bildung von polymerem Si/C/H oder SiC hervorgeht. Die für die Ermittlung der Zusammensetzung der Schichten relevanten Banden sind in Tabelle 4-11 zusammengefaßt.

Abb. 4-25: FTIR-Spektren der aus der IR-laserinduzierten Zersetzung von DSB erhaltenen Schichten

Ähnlich wie im Falle der Schichten, die aus der Zersetzung von SCB erhalten worden waren, zeigen die Spektren einen sehr starken Unterschied im Bereich der SiH- bzw. SiC-Schwingungen. Demnach führt IRMPD unter Verwendung nicht fokussierter Strahlung (a) oder durch LPD (c) bevorzugt zur Bildung von Si/C/H-Schichten, was durch die etwa intensitätsgleichen Absorptionsbanden von ν (SiC) und ν (SiH) angezeigt wird. Dagegen resultieren bei IRMPD unter Verwendung fokussierter Strahlung Schichten, deren IR-Spektren nur eine Bande im Bereich der ν (SiC)-Schwingung (b) aufweisen. Die relativen Intensitäten der ν (SiC)- und ν (SiH)-Schwingungen betragen 1 : 1 (a und c) bzw. 12 : 1 (b). In Analogie zu SCB führt offensichtlich die Verwendung energiereicherer Strahlung zur Dehydrogenierung der SiCH₄-Spezies. Höhere effektive Intensitäten der δ_s (SiCH₃)- und ν (SiH)-Schwingungen der Experimente 5 und 6 (Tabelle 4-11) zeigen an, daß der steigende Wasserstoffgehalt in den gebildeten Schichten auf einen höheren Gehalt von CH₃-Gruppen zurückzuführen ist. In diesen Fällen scheint möglicherweise die Isomerisierung von Silaethen in Methylsilylen von größerer Bedeutung zu sein.

	Wellenzahlen [cm ⁻¹]/Absorptivität [a]					
	Exp. 1 [b] Spektrum a	Exp. 2 [b]	Exp. 5 [b] Spektrum b	Exp. 6 [b]	LPD Spektrum c	
ν (Si-C) [c]	829/1,10	824/1,40	812/12,7	818/12,4	833/1,30	
$\rho, \omega(CH_x)$	953/0,59	950/0,63	-	-	950/0,30	
v(SiCH ₂ Si)	1030/0,40	997/0,24	1058/0,70	1047/1,2	1020/0,45	
		1030/0,18	1105/0,70	-	-	
$\delta_{s}(CH_{3}Si)$	1248/0,1	1248/0,16	1263/0,70	1261/0,40	1250/0,10	
$\delta_{as}(CH_3Si)$	1352/0,09	1350/0,05	-	-	1361/0,08	
ν (Si-H)	2114/1,0	2110/1,0	2154/1,0	2137/1,0	2112/1,0	
ν(C-H)	2885/0,05	2923/0,11	-	2926/0,5	2923/0,09	
ν (C-H)	2955/0,03	2952/0,08	2964/0,20	-	2951/0,08	

 Tabelle 4-11:
 IR-Absorptionen der aus der Zersetzung von DSB gebildeten Schichten

[a] Normalisiert auf die Absorptivität von ν (Si-H) = 1,0.

[b] Experiment Nr. nach Tabelle 4-10.

[c] Bereich von ρ (CH₃).

Erhitzen der Schichten auf ca. 400°C führt zur Abnahme der Intensität der ν (SiH)-Bande, die mit einem gleichzeitgen Anwachsen einer Bande bei 1035 cm⁻¹ einhergeht. Wie im Falle der Schichten, die aus der Zersetzung von SCB erhalten wurden, kann diese Beobachtung auf die Einarbeitung von Sauerstoff in das SiC-Netzwerk zurückgeführt werden.

• ESCA-Untersuchungen

Die Ergebnisse der ESCA-Untersuchungen sind in Tabelle 4-12 zusammengefaßt.

		Bindungsenergien [eV]			Auger-
					Parameter
Exp. [a]	Stöchiometrie	Si(2p)	C(1s)	O(1s)	[eV]
1	$Si_{1,0}C_{1,4}O_{0,7}$	102,1	284,8	532,9	1712,3
	$Si_{1,0}C_{1,0}O^{a}_{1,0}$	102,2 ^a	$284,8^{a}$	533,4	1714,3
2	$Si_{1,00}C_{1,8}O_{0,9}$	101,9	284,8	532,7	1712,1
	$Si_{1,0}C_{1,2}O^{a}_{0,7}$	102,2 ^a	284,8	532,8	1714,5 [b]
3	$Si_{1,0}C_{1,01}O_{0,43}$	101,7	284,8	533,0	
4	${\rm Si}^{\alpha}_{0,86} {\rm Si}^{\beta}_{0,15} {\rm C}^{\alpha}_{0,68} {\rm C}^{\beta}_{0,33} {\rm C}^{\gamma}_{0,21} {\rm O}_{0,5}$	100,9	283,1		1714,2
		102,8	284,9	532,6	1711,1
			286,4		
5	$Si^{\alpha}_{0,85}Si^{\beta}_{0,14}C^{\alpha}_{0,62}C^{\beta}_{0,34}C^{\gamma}_{0,07}O_{0,4}$	100,8	283,1	532,5	1714,2
		102,7	284,8		1711,1
			286,2		
8	$Si_{1,0}C_{1,8}O_{1,0}$	102,2	284,8	532,6	1711,7
9	${\rm Si}^{lpha}_{0,77} { m Si}^{eta}_{0,25} { m C}^{lpha}_{0,64} { m C}^{eta}_{0,55} { m O}_{0,7}$	100,6	282,9	532,1	1714,5
		102,3	284,8		1712,1
LPD	$Si_{1,0}C_{1,30}O_{0,82}$	102,1	284,8	532,3	1712,9
	$Si_{1,0}C_{1,05}O_{0,69}$	102,4	284,9	533,4	1712,8

Tabelle 4-12: Ergebnisse der ESCA-Untersuchungen

[a] Exp. Nr. nach Tabelle 4-10

[b] Nach ion sputtering (5 min, E = 4.5 keV, $I = 15 \mu A$

Aus der Form sowie aus den Bindungsenergien der Kohlenstoff- sowie Silicium-ESCA-Spektren (Abb. 4-26) wird deutlich, daß wie im Falle von SCB, in Abhängigkeit der Zersetzungsbedingungen Schichten erhalten werden, in denen verschiedene Formen der Elemente vorliegen. Die durch IRMPD unter Verwendung nicht fokussierter Strahlung (Exp. 1, 2, 3 und 8) oder durch LPD erhaltenen Schichten bestehen größtenteils aus einer Modifikation. Dagegen sind die Schichten, die durch IRMPD unter Verwendung von fokussierter Strahlung erhalten wurden (Exp. 4, 5 und 9), aus inäquivalenten Formen aufgebaut. In Tabelle 4-12 sind diese in Reihenfolge aufsteigender Bindungsenergien mit Si^{α}, Si^{β}, C^{α} und C^{β} aufgeführt. Der Vergleich der gemessenen Si(2p)- und C(1s)-Kernbindungsenergien aus Tabelle 4-12 mit denen aus Tabelle 4-9, läßt den Schluß zu, daß hier ähnliche Verhältnisse vorliegen.

Abb. 4-26: ESCA-Spektren der aus der Zersetzung von DSB erhaltenen Schichten

4.7.3.3 5,6-Bis(trifluormethyl)-2-silabicyclo[2.2.2]octa-5,7-dien (SBO)

Als problematisch für die Untersuchungen am SBO erwies sich der nur sehr geringe Dampfdruck der Verbindung, der eine Umkondensation mit der in Prag zur Verfügung stehenden Hochvakuumapparatur erschwerte. SBO kondensierte größtenteils innerhalb der Apparatur und zersetzte sich aufgrund seiner Empfindlichkeit, weshalb jeweils nur wenige Experimente mit fokussierter Strahlung sowie nicht fokussierter Strahlung durchgeführt wurden. Die IRMPD-Experimente wurden bei einem Druck von 1 - 2 mbar unter Verwendung der CO₂-Laserlinie 10R(26) durchgeführt, da SBO in diesem Bereich eine Schwingung mit geringer Intensität besitzt. Wie im Falle der CO₂-laserinduzierten Zersetzung von SCB und DSB führte auch die Bestrahlung von SBO mit fokussierter Strahlung zur Chemilumineszenz innerhalb der Zelle. Eine sichtbare Abscheidung eines Polymers konnte jedoch nicht beobachtet werden.

• GC, GC/MS und FTIR-Untersuchung der gasförmigen Produkte

Als Hauptprodukt konnte nach GC-und GC-MS Analyse - neben nicht zersetztem SBO - das [4+2]-Cycloreversions-Produkt Bis(trifluormethyl)-benzol nachgewiesen werden. Daneben treten einige weitere Peaks geringer Intensität auf, deren Herkunft jedoch nicht sicher geklärt ist. SBO ist sehr empfindlich und zersetzt sich unter den Bedingungen der gaschromatographischen Untersuchung in eine

Reihe von Produkten und erschwert so eine Unterscheidung zwischen Reaktionsprodukt und Zersetzungsprodukt. Evidenz für die Bildung von Methylsilan, das nach Zersetzung von SCB und DSB ein wesentliches, siliciumhaltiges Produkt darstellt, ist nicht gefunden worden.

Die FTIR-spektroskopischen Untersuchungen bestätigen die gaschromatographischen Befunde.

Abb. 4-27: Differenzspektrum der laserinduzierten Zersetzung von SBO **a**: SBO vor der Bestrahlung; **b**: nach 150 Laserpulsen

Demnach wird bei voranschreitender Zersetzung der Probe die Bildung der Produktbanden des Bis(trifluormethyl)-benzols beobachtet, dessen charakteristische Banden teilweise von Banden des SBO verdeckt sind. Diese Beobachtung legt die Vermutung nahe, daß die laserinduzierte Zersetzung von SBO zur Spaltung in Silaethen und Bis(trifluormethyl)-benzol führt.

Die Bildung eines Polymers konnte allerdings nicht beobachtet werden, wofür der nur sehr geringe Dampfdruck und somit eine sehr geringe Konzentration von SBO verantwortlich zu machen ist.

4.7.4 Fazit

Wesentliches Ergebnis dieser Untersuchung ist, daß die laserinduzierte Zersetzung von SCB und DSB eine effiziente Methode zur Erzeugung von SiC-Schichten und Si/C/H-Polymeren darstellt. Die Zusammensetzung der gebildeten Schichten wird signifikant durch die verwendete Art der Energiezufuhr beeinflußt. Fokussierte Strahlung führt bevorzugt zur Bildung von SiC-Schichten, während nicht fokussierte Strahlung zu Si/C/H-Polymeren führt. Die gebildeten Schichten sind sehr empfindlich gegenüber Sauerstoff. Für die Abscheidung der Schichten aus der Gasphase scheinen die kurzlebigen Spezies Silaethen und Methylsilylen eine wichtige Rolle zu spielen. Besonders wird dies durch die Bildung von Ethen als Hauptprodukt der Zersetzung von SCB sowie der indirekte Nachweis von Silaethen oder Methylsilylen durch Butadien als Abfangreagenz belegt. Die Zersetzung von SBO führt in einer glatten Reaktion zur Bildung von Bis(trifluormethyl)-benzol, was indirekt die Bildung von Silaethen andeutet. Hier sind vor allem weitere Experimente wünschenwert, deren Ziele die Erzeugung von Silaethen durch CO₂-laserinduzierte Zersetzung und der direkte spektroskopische Nachweis durch Millimeterwellen- und FTIR-Spektroskopie ist.

5 ZUSAMMENFASSUNG

Ziele der vorliegenden Arbeit waren die Darstellung, Charakterisierung und Untersuchung der Reaktionen der Moleküle FCCX (X = F, Cl, Br) und von Silaethen $H_2Si=CH_2$. Insbesondere sollten die Rotations-, Rotations-Schwingungsund Schwingungsspektren dieser Moleküle bearbeitet werden. Folgende wesentliche Einzelergebnisse wurden erhalten.

- Die Thermolyse der Verbindungen 4,6,5-Difluorchlor-1,2,3-triazin und 4,6,5-Difluorbrom-1,2,3-triazin eignet sich für die Darstellung von FCCCl und FCCBr. Das dabei gebildete FCN ist allerdings nur schwer abzutrennen. Die Thermolyse von 4,6,5-Difluoriod-1,2,3-triazin führt unerwartet zu FCCCN.
- 2. Die Eignung von Quadratsäure als Ethinquelle konnte durch die Thermolyse der halogenierten Derivate $X^1X^2C_4O_2$ ($X^1 = Cl$, Br; $X^2 = Cl$, Br) bestätigt werden. Das eigentliche Ziel, Difluorethin durch Thermolyse von Difluorquadratsäure, $F_2C_4O_2$, zu erhalten, wurde nicht erreicht. **Difluorquadratsäure**, die im Rahmen dieser Arbeit erstmals synthetisiert und vollständig charakterisiert werden konnte, ergab bei der Thermolyse im wesentlichen die aus dem Gasphasenzerfall von Difluorethin bekannten Produkte Tetrafluorallen, Tetrafluorpropin und Tetrafluorcyclopropen. Auch das instabile Difluorpropadienon konnte identifiziert werden.
- 3. Es gelang, **FTIR-Spektren** mit einer Auflösung von 2,0 $5,0 \times 10^{-3}$ cm⁻¹ der Moleküle **FCCCl und FCCBr** im Bereich von 170 - 2600 cm⁻¹ aufzunehmen. sowie für FCCF, im Bereich von 4000 - 6000 cm⁻¹. Der Kombinationston v_2+3v_3 bei 4820,9 cm⁻¹ von FCCF konnte anhand des charakteristischen B_v-Wertes identifiziert werden. Für die ^{35/37}Cl-Isotopomere von FCCCl wurden insgesamt 27/9 Bandensysteme gefunden. Die bislang unbeobachteten Parameter des Knickschwingungsniveaus $v_4 = 1$ von FCC^{35/37}Cl wurden durch Bildung von Kombinationsdifferenzen sowie für das 35 Cl-Isotop direkt aus ν_4 bestimmt. B₄, q₄ und D₄ stimmen sehr gut mit den ab initio-Vorhersagen überein. Die Analyse der Spektren im Bereich von 180 - 700 cm⁻¹ ergab darüber hinaus die Parameter der Niveaus ν_5 , $2\nu_5$, $\nu_4+\nu_5$, ν_3 und $2\nu_4$. Die Niveaus $2\nu_5$, $\nu_4+\nu_5$, v_3 und $2v_4$ stehen miteinander in starker Fermi- und/oder ℓ -Typ-Wechselwirkung. Unter Verwendung von ab initio-Wechselwirkungsparametern wurden diese Niveaus entstört. Die Ergebnisse beschreiben die Schwingungsniveaus von FCC³⁵Cl im Bereich von 400 - 700 cm⁻¹ realistisch. Die Bereiche der C-F- (ν_2 , 1180 - 1240 cm⁻¹), der C=C-Streckschwingung (ν_1 , 2290 - 2340

– 231 –

cm⁻¹) und des Obertons $2\nu_2$ (2390 - 2450 cm⁻¹) erwiesen sich als komplex gestörte Systeme mehrerer Niveaus, die miteinander in Wechselwirkung stehen. Die Deutung der quantitativ beschriebenen Niveaus gelang bisher nicht. Für die Isotopomeren ^{79/81}Br von FCCBr wurden Parameter der Niveaus ν_5 , ν_3 , $\nu_4+\nu_5$, $2\nu_4$, ν_2 , ν_1 und $2\nu_2$ bestimmt.

- 4. Matrixisoliertes Difluorethin, FCCF, wurde durch Bestrahlen mit monochromatischem Licht eines gepulsten ArF-Excimer-Lasers ($\lambda = 193$ nm) photochemisch in **Difluorvinyliden**, $F_2C=C$:, umgewandelt. Nach ab initioist Difluorvinyliden gegenüber einer Isomerisierung Rechnungen in Difluorethin durch eine Energiebarriere von ca. 35 kcal/mol geschützt. Die Rückreaktion kann jedoch durch Bestrahlen mit $\lambda > 230$ nm erzwungen werden. Die außerordentliche Reaktivität von Difluorvinyliden wurde durch die Reaktion mit CO und N₂ bei 35 - 42 K zu F₂CCCO und F₂CCN₂ demonstriert. Difluorvinyliden wurde durch Vergleich des vollständigen experimentellen mit dem auf hohem Niveau berechneten ab initio IR-Spektrum identifiziert. Fünf der sechs Grundschwingungen konnten direkt beobachtet werden, daneben der Kombinationston $\nu_2 + \nu_5$ im Fermi-Paar $\nu_4/\nu_2 + \nu_5$. Eine Entstörung des Dubletts, $W_{245} = 10,25$ cm⁻¹, ergab das ν_5 -Schwingungsniveau.
- 5. **Prop-1-inylisocyanid, CH₃CCNC**, wurde durch Gasphasenthermolyse von Pentacarbonyl-(1,2-dichlorprop-1-enylisocyanid)-chrom synthetisiert. Aus den registrierten hochaufgelösten IR-Spektren konnten die Parallelbanden $v_1 - v_3$ und die Senkrechtbanden $v_7 - v_9$ identifiziert und analysiert werden. Die Ergebnisse der Fits wurden mit denen der Mikrowellen- und Millimeterwellenspektroskopie sowie ab initio-Rechnungen verglichen und stimmen gut miteinander überein.
- 6. **Silaethen, H₂Si=CH₂**, durch Thermolyse von 5,6-Bis(trifluormethyl)-2silabicyclo[2.2.2]octa-5,7-dien (SBO) erzeugt, konnte erstmalig in der Gasphase durch Millimeterwellenspektroskopie nachgewiesen werden. Es gelang, die Rotationsspektren der Isotopomeren H₂²⁸Si=¹²CH₂, H₂²⁹Si=¹²CH₂, D₂²⁸Si=¹²CH₂, D₂²⁹Si=¹²CH₂, HD²⁸Si=¹²CH₂, H₂²⁸Si=¹²CD₂ und H₂²⁹Si=¹²CD₂ im Bereich von 185 - 473 GHz zu erhalten. Ihre Auswertung ergab sehr genaue Rotations- und Zentrifugaldehnungskonstanten. Die hieraus berechneten Trägheitsdefekte bestätigen die Planarität des Moleküls. Alle experimentellen Rotationsparameter stimmen mit ab initio-Berechnungen ausgezeichnet überein. Aus den Rotationsparametern aller sieben Isotopomere konnte eine genaue Gleichgewichtsstruktur abgeleitet werden: r_e (SiC) = 1,703 9(18) Å, r_e (SiH) = 1,467 1(9) Å, r_e (CH) = 1,081 9(12) Å, \angle_e (HSiC) = 122,39(3) ° und \angle_e (SiCH) = 122,00(4) °. Diese stimmt mit den ab initio-Werten perfekt überein.

Aus der exponentiellen Abklingrate des Übergangs $7_{1,6} \leftarrow 6_{1,5}$ konnte die 1/e Lebensdauer von photochemisch generiertem Silaethen zu 30 ± 2 ms bestimmt werden. Silacyclobutan (SCB) und 1,3-Disilacyclobutan (DSB) sind als Silaethenquellen wesentlich schlechter als SBO geeignet.

- 7. Der Nachweis von Silaethen durch hochauflösende IR-Spektroskopie gelang bisher noch nicht. Aus der Thermolyse von SBO konnten lediglich die Moleküle CH₃SiH₃, H₃SiF, H₂SiF₂ und CO anhand charakteristischer IR-Banden identifiziert werden. Die prinzipielle Eignung der für den Nachweis von Silaethen konstruierten White-Zelle konnte durch den Nachweis von instabilem Difluorcarben bewiesen werden.
- 8. SCB, DSB und SBO wurden auf ihre Eignung als Vorstufenmoleküle für die Erzeugung von SiC-Schichten untersucht. Als Zersetzungsverfahren kamen gepulste sowie kontinuierliche IR-Laser-Photolyse zum Einsatz. Für SCB und DSB resultierten in Abhängigkeit von der Energiestärke der verwendeten Laserstrahlung Schichten mit hohen SiC oder Si/C/H-Gehalten. Die Zusammensetzung der Schichten wurde durch FTIR-Spektroskopie, in vielen Fällen auch durch die ESCA-Methode, ermittelt. Letztere Methode konnte den Nachweis erbringen, daß die Schichten hochempfindlich gegenüber Sauerstoff sind.

6 ANHANG

6.1 Liste der verwendeten Abkürzungen

Ĥ,ĥ	Hamiltonoperatoren
ψ	Wellenfunktion
V	Schwingungsquantenzahl
E, G, F	Energie-, Schwingungs- und Rotationsterm
Index t	numeriert entartete Schwingungen
Index ' bzw."	bezeichnet oberes und unteres Energieniveau
Index 0	bezeichnet den Schwingungsgrundzustand
Index e	bezeichnet den Gleichgewichtszustand
α	Rotations-Schwingungs-Wechselwirkungskonstante
x_{ik}, g_{ik}, y_{ik}	Anharmonizitätskonstanten
K	Rotationsquantenzahl in Richtung der Symmetrieachse
J	Rotationsquantenzahl des Gesamtdrehimpulses
ℓ	Schwingungsdrehimpulsquantenzahl
$I_{a,} I_{b}, I_{c}$	Trägheitsmomente
κ	Ray'scher Asymmetrieparameter
A, B, C	Rotationskonstanten
D_J, D_{JK}, D_K	Zentrifugaldehnungskonstanten
ζ_t^z	Corioliskopplungskonstante
gscd	Grundzustandskombinationsdifferenzen
$\Delta_{ m J}, \Delta_{ m JK}, \Delta_{ m K}, \delta_{ m J}, \delta_{ m K}$	quartische Zentrifugaldehnungskoeffizienten für asymme-
	trische Kreisel
$\Phi_{\mathrm{J}}, \Phi_{\mathrm{JK}}, \Phi_{\mathrm{KJ}}, \Phi_{\mathrm{K}},$	sextische Zentrifugaldehnungskoeffizienten für asymmetri-
$arphi_{ m J}, arphi_{ m JK}, arphi_{ m K}$	sche Kreisel
K _a , K _c	Quantenzahlen für den Drehimpuls in Richtung der a- bzw.
	c-Achse bei asymmetrischen Kreiselmolekülen
IRMPD	InfraRed Multiple Photon Decomposition
LPD	Laser Photosensitized Decomposition

- [1] M. Senzlober, Diplomarbeit, Wuppertal (1993)
- [2] H. Bürger und S. Sommer, J. Chem. Soc., Chem. Commun. 456 (1991)
- [3] J.D. Goddard, *Chem. Phys. Lett.* 83, 312 (1981)
 M.J. Frisch, R. Krishnan, J.A. Pople und P.R. von Schleyer, *Chem. Phys. Lett.* 81, 421 (1981)
- [4] L.E. Guselni'kov und N.S. Nametkin, *Chem. Rev.* **79**, 529 (1979)
- [5] G. Raabe und J. Michl, *Chem. Rev.* **85**, 419 (1985)
- [6] G. Raabe und J. Michl, in *"The Chemistry of Organic Silicon Compounds"*, Herausgeber S. Patai und Z. Rappoport, S. 1015-1142, Wiley, New York (1989)
- [7] N. Auner und J. Grobe, Z. Anorg. Allg. Chem. 459, 15 (1979)
- [8] G. Maier, G. Mihm und H.P. Reisenauer, *Angew. Chem.* 93, 615 (1981)
 G. Maier, G. Mihm und H.P. Reisenauer, *Chem. Ber.* 117, 2351 (1984)
- [9] H.S. Gutowsky, J. Chen, P.J. Hajduk, J.D. Keen, C. Chuang und T. Emilson, J. Am. Chem. Soc. 113, 4747 (1991)
- [10] M. Born und J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)
- [11] B.T. Darling und D.M. Dennison, Phys. Rev. 57, 128 (1940)
- [12] G. Amat, H.H. Nielsen und G. Tarrago, "Rotation-Vibration of Polyatomic Molecules", Marcel Dekker, New York (1971)
- [13] B.S. Ray, Z. Physik 78, 74 (1932)
- [14] J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I.Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas und R.N. Zare, *J. Mol. Spectrosc.* 55, 500 (1975)
- [15] G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", Van Nostrand, New York (1945)
- [16] G. Amat und H.H. Nielsen, J. Mol. Spectrosc. 2, 152, 163 (1958)
- [17] M. Winnewisser und B.P. Winnewisser, J. Mol. Spectrosc. 41, 143 (1972)
- [18] E. Fermi, Z. Physik **71**, 250 (1931)
- [19] J.M. Hollas, "Modern Spectroscopy", John Wiley & Sons, New York (1992)
- [20] D. Papousek und M.R. Aliev, "*Molecular Vibrational-Rotational* Spectra", Elsevier, Amsterdam (1982)
- [21] D.R.J. Boyd und H.C. Longuet-Higgins, Proc. Roy. Soc. A231, 55 (1952)
- [22] J.M. Hollas, *"High Resolution Spectroscopy"*, Butterworth, London (1982)
- [23] J.T.H. Hougen, J. Chem. Phys. 37, 1433 (1962)

- [24] H.C. Allen und P.C. Cross, "Molecular Vib-Rotors", John Wiley & Sons, New York (1963)
- [25] G. Amat, C. R. Acad. Sci. 250, 1439 (1960)
- [26] D.M. Dennison, *Phys. Rev.* 28, 318 (1926)
- [27] G.W. King, R.M. Hainer und P.C. Cross, J. Chem. Phys. 11, 27 (1943)
- [28] D.M. Dennison, Rev. Mod. Phys. 3, 280 (1931)
- [29] J.K.G. Watson, in *"Vibrational Spectra und Structure"*, Vol. 6, S. 2-89, Herausgegeber J.R. Durig, Elsevier, Amsterdam (1977)
- [30] A.A. Michelson und E.W. Morley, *Phil. Mag.* 24, 463 (1887)
- [31] Fa. Bruker, "IFS 120 HR Instrument Manual"
- [32] J.U. White, J. Opt. Soc. Am. 32, 285 (1942)
- [33] K.H. Becker und K.J. Brockmann, Universität Wuppertal, Physikalische Chemie, "*Bericht Nr. 25*", S. 38 (1993)
- [34] W.J. Middleton, U.S.P. 2 831 835 (1958)
- [35] H. Bürger, W. Schneider, S. Sommer, W. Thiel und H. Willner, J. Chem. Phys. 95, 5660 (1991)
- [36] H. Bürger und S. Sommer, J. Mol. Spectrosc. 151, 148 (1992)
- [37] D. McNaughton und P. Elmes, *Spectrochim. Acta* **48A**, 605 (1992)
- [38] H.B. Friedrich, D.C. Tardy und D. J. Burton, J. Fluor. Chem. 65, 53 (1993)
- [39] S. Sommer, Dissertation, Wuppertal (1992)
- [40] S. Ma, Dissertation, Wuppertal (1995)
- [41] H. Bürger, M. Senzlober und S. Sommer, *J. Mol. Spectrosc.* **151**, 148 (1992)
- [42] J. Breidung, T. Hansen und W. Thiel, J. Mol. Spectrosc. 179, 73 (1996)
- [43] S.Y. Delavarenne und H.G. Viehe, Chem. Ber. 103, 1198 (1970)
- [44] A. Guarnieri und M. Andolfatto, Z. Naturforsch. 36a, 899 (1981)
- [45] M. Andolfatto, B. Kleibömer und A. Guarnieri Z. Naturforsch. 37a, 1449 (1982)
- [46] A. Runge und W.W. Sander, *Tetrahedron Lett.* **31**, 5453 (1990)
- [47] T. Okabayashi und M. Tanimoto, J. Mol. Spectrosc. 154, 201 (1992)
- [48] T. Hirao, T. Okabayashi und M. Tanimoto, J. Mol. Spectrosc. 162, 358 (1993)
- [49] S.W. Tobey und R. West, J. Am. Chem. Soc. 88, 2478 (1966)
- [50] S.W. Tobey und R. West, *Tetrahedron Lett.* **18**, 1179 (1963)
- [51] R. Gompper und K. Schönafinger, Chem. Ber. 112, 1529 (1979)
- [52] S.W. Tobey und R. West, J. Am. Chem. Soc. 88, 2481 (1966)
- [53] R.D. Chambers, T. Shepherd und T. Tamura, *Tetrahedron* 44, 2583 (1988)

- [54] G. Bieri, J.-P. Stadelmann, F. Thommen und J. Vogt, *Helv. Chim. Acta* 61, 357 (1978)
 M. Niedenhoff, K.M.T. Yamada, G. Winnewisser, K. Tanaka und T. Okabayashi, *J. Mol. Spectrosc.* 145, 290 (1991)
- [55] P. Klaboe, E. Kloster-Jensen, D.H. Christensen und I. Johnsen, Spectrochim. Acta 26A, 1567 (1970)
- [56] D.H. Christensen, T. Stroyer-Hansen, P. Klaboe, E. Kloster-Jensen und E.E. Tucker, *Spectrochim. Acta* 28A, 939 (1972)
- [57] D. McNaughton, Struct. Chem. 3, 245 (1993)
- [58] J. Vogt und E. Kloster-Jensen, Acta Chem. Scan. **19**, 903 (1965)
- [59] H. Luftmann, Universität Münster, persönliche Mitteilung, (1997)
- [60] P.V. Huong, Spectrosc. Eur. 9, 24 (1997)
- [61] G. Maahs und P. Hegenberg, *Angew. Chem.* 78, 927 (1966)A.H. Schmidt und W. Ried, *Synthesis* 869 (1978)
- [62] R.C. De Selms, C.J. Fox und R.C. Riordan, *Tetrahedron Lett.* 781 (1970)
- [63] H. Bock, W. Ried und U. Stein, *Chem. Ber.* **114**, 673 (1981)
- [64] G. Silvestri, *Gazz. Chim. Ital.* 102, 818 (1972)
 J.J. Barber, U.S.P. 4 523 980, (1985)
- [65] B. Lunelli und M.G. Giorgini, Spectrochim. Acta 43A, 829 (1987)
- [66] B. Lunelli und M.G. Giorgini, Spectrochim. Acta 44A, 1153 (1988)
- [67] W. Caminati, A.C. Fantoni, B. Lunelli und F. Scappini, J. Mol. Spectrosc. 131, 154 (1988)
- [68] K. Hagen, K. Hedberg, B. Lunelli und M.G. Giorgini, J. Phys. Chem. 92, 313 (1988)
- [69] K. Hagen und B. Lunelli, J. Phys. Chem. 93, 1326 (1989)
- [70] Nippon Electric Co., Ltd. Jpn. Kokai Tokkyo Koho 80 161 377 (1980)
- [71] B. Lunelli, G. Orlandi, F. Zerbetto und M.G. Giorgini, J. Mol. Struct. (*Theochem*) **201**, 307 (1989)
- [72] M.A. McAllister und T.T. Tidwell, J. Am. Chem. Soc. 116, 7233 (1994)
- [73] L. Zhou, J. Gu und A. Tian, J. Mol. Struct. (Theochem) 363, 333 (1996)
- [74] G. Cerioni, R. Janoschek, Z. Rappoport und T. Tidwell, *J. Org. Chem.* 61, 6212 (1996)
- [75] A.H. Schmidt, M. Russ und D. Grosse, *Synthesis* 216 (1981)
- [76] F.E. Herkes und H.E. Simmons, J. Org. Chem. 40, 420 (1975)
 F.E. Herkes und H.E. Simmons, Synthesis 166 (1973)
- [77] J.C. Brahms und W.P. Dailey, J. Am. Chem. Soc. 111, 8940 (1989)
- [78] C.A. Jacobs, J.C. Brahms, W.P. Dailey, K. Beran und M.D. Harmony, J. Am. Chem. Soc. 114, 115 (1989)
- [79] Programmbeschreibung g-NMR, v3.6, Demo-Version

- [80] A. Gelessus, Universität Zürich, persönliche Mitteilung, (1996)
- [81] N.C. Craig, G.F. Fleming und J. Pranata, J. Phys. Chem. 89, 100 (1985)
- [82] J.C. Brahms und W.P. Dailey, J. Am. Chem. Soc. 111, 3071 (1989)
- [83] J.R. Durig, Y.S. Li, J.D. Witt, A.P. Zens und P.D.Ellis, *Spectrochim. Acta* 33A, 529 (1977)
- [84] H.B. Friedrich, D.J. Burton und P.A. Schemmer, *Spectrochim. Acta* **45**A, 181 (1989)
- [85] J. Breidung, H. Bürger, M. Senzlober, und W. Thiel, *Ber. Bunsenges. Phys. Chem.* **99**, 282 (1995)
- [86] J. Breidung und W. Thiel, Universität Zürich, persönliche Mitteilung, (1996)
- [87] G. Guelachvili und K.N. Rao, "Handbook of Infrared Standards", Academic Press, Orlando (1986)
- [88] B.P. Winnewisser, J. Reinstädler, K.M.T. Yamada und J. Behrend, *J. Mol. Spectrosc.* **136**, 12 (1989)
- [89] Programmbeschreibung DIFFMIL
- [90] Programmbeschreibung GSMIL, Version vom 17. Oktober 1997
- [91] Programmbeschreibung MILLI
- [92] T. Carrington, L. M. Hubbard, H. F. Schaefer III und W. H. Miller, *J. Chem. Phys.* 80, 4347 (1984)
- [93] M.M. Gallo, T.P. Hamilton und H.F. Schaefer III, *J. Am. Chem. Soc.* **112**, 8714 (1990)
- [94] M.S. Burnett, A.E. Stevens, C.S. Feigerle und W.C. Lineberger, *Chem. Phys. Lett.* **100**, 124 (1983)
- [95] K.M. Ervin, J. Ho und W.C. Lineberger, J. Chem. Phys. 91, 5974 (1989)
- [96] P.T. Thaddeus, J.M. Vrtilek und C.A. Gottlieb, *Astrophys. J.* 299, L63 (1985)
- [97] G. Maier, H.P. Reisenauer, W. Schab, P. Carsky, B.A. Hess Jr. und L.J. Schadd, J. Am. Chem. Soc. 109, 5183 (1987)
- [98] R.F. Gunion, H. Koppel, G.W. Leach und W.C. Lineberger, J. Chem. Phys. 103, 1250 (1995)
- [99] J.A. Pople, *Pure Appl. Chem.* **55**, 343 (1983)
- [100] M.K. Gilles, W.C. Lineberger und K.M. Ervin, J. Am. Chem. Soc. 115, 1031 (1993)
- [101] M.M. Gallo und H.F. Schaefer III, J. Chem. Phys. 93, 865 (1990)
- [102] R.J. Norstrom, H.E. Gunning und O.P. Strausz, J. Am. Chem. Soc. 98, 1454 (1976)
- [103] R.A. Stachnik und G.C. Pimentel, J. Chem. Phys. 88, 2205 (1984)
- [104] C. Reiser und J.I. Steinfeld, J. Phys, Chem. 84, 680 (1980)

- [105] M.W. Thomsen und B.F. Kimmich, *Macromolecules* **24**, 6343 (1991)
- [106] J.C. Brahms und W.P. Dailey, J. Am. Chem. Soc. 112, 4046 (1990)
- [107] J. Breidung, H. Bürger, C. Kötting, R. Kopitzky, W. Sander, M. Senzlober, W. Thiel und H. Willner, *Angew. Chemie* 109, 2072 (1997)
- [108] W. Sander, J. Org. Chem. 54, 333, (1989)
- [109] A.J. Downs, *Spectrochim. Acta* 19, 1165 (1963)W. Jerzembeck, Diplomarbeit, Wuppertal (1994)
- [110] C. Kötting, W. Sander, J. Breidung, W. Thiel, M. Senzlober und H. Bürger J. Am. Chem. Soc. 120, 219 (1998)
- [111] C. Moureu und J.C. Bongrand, Ann. Chim. (Paris) 14, 14 (1920)
- [112] J. Sheridan und L.F. Thomas, Nature 174, 798 (1954)
- [113] M.K. Krüger, H. Dreizler, D. Preugschat und D. Lentz, *Angew. Chemie* 103, 1674 (1991)
- [114] L. Zanathy, H. Bock, D. Lentz, D. Preugschat und P. Botschwina, J. Chem. Soc., Chem. Commun. 403 (1992)
- [115] A. Guarnieri, R. Hinze, M. Krüger, H. Zerbe-Foese, D. Lentz und D. Preugschat, J. Mol. Spectrosc. 156, 39 (1992)
- [116] H. Bürger, S. Sommer, D. Lentz und D. Preugschat, J. Mol. Spectrosc. 156, 360 (1992)
- [117] B.E. Turner, Astrophys. J. 163, L35 (1971)
- [118] M. Winnewisser, *Chem. unserer Zeit* **1**, 1 (1984)
- [119] V.G. Kunde, A.C. Aikin, R.A. Hanel, D.E. Jennings, W.C. Maguire und R.E. Samuelson, *Nature* 292, 686 (1981)
- [120] M.B. Bell und H.E. Mathews, Astrophys. J. Lett. 291, L63 (1985)
- [121] H.W.Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl und R.E.Smalley, *Nature* 318, 162 (1985)
- [122] K. Kawaguchi, M. Ohishi, S.I. Ishikawa und N. Kaifu, Astrophys. J. 386 L51 (1992)
- [123] A. Moïses, D. Boucher, J. Burie, J. Demaison und A. Dubrulle, *J. Mol. Spectrosc.* 92, 497 (1982)
 M. Bester, M. Tanimoto, B. Vowinkel, G. Winnewisser und K. Yamada, *Z. Naturforsch.* 38 a, 64 (1982)
- [124] N.W.Broten, J.M. MacLeod, L.W. Avery, W.M. Irvine, B. Höglung, P. Friberg und Å. Hjalmarson, *Astrophys. J.* 276, L25 (1984)
- [125] R. Tubino, G. Dellepiane und G. Zerbi, J. Chem. Phys. 50, 621 (1969)
- [126] M.Khlifi und F. Raulin, Spectrochim. Acta 47a, 171 (1991)
- [127] P. Botschwina, H. Bürger, J. Flügge, J. Gripp, A. Guarnieri, M. Horn, D. Lentz, B. Meisner, N. Nickelt, S. Seeger, M. Senzlober und W. Stahl, zur Veröffentlichung vorgesehen
- [128] Hyperchem 3.0, Molecular-Modelling-Programm (1989)
- [129] L.F. Thomas, J.S. Heeks und J. Sheridan, Arch. Sci. 10, 180 (1957)
- [130] P. Jutzi, Chem. unserer Zeit 5, 149 (1981)
- [131] W. Schlenk und J. Renning, Justus Liebigs Ann. Chem. 394, 221 (1912)
- [132] F.S. Kipping, J. Chem. Soc. 104 (1927)
- [133] G. Fritz und J. Grobe, Z. Anorg. Chem. **311**, 325 (1961)
- [134] R. Müller, R. Köhne und H. Beyer, *Ber.* **95**, 3030 (1962)
- [135] N.S. Nametkin, V.M. Vdovin, L.E.Gusel'nikov und V.I. Zav'yalow, *Izv. Akad. Nauk SSR, Ser. Khim.* 589 (1966)
 N.S. Nametkin, L.E.Gusel'nikov, V.M. Vdovin, P.L. Grinberg, V.I. Zav'yalov und V.D. Oppengeim, *Dokl. Akad. Nauk SSSR* 171, 630 (1966)
- [136] A.K. Malt'sev, V.N. Khabashesku und O.M. Nefedov, *Izv. Akad. Nauk.* SSSR, Ser. Khim. 1193 (1976)
- [137] A.G. Brook, F. Abdesaken, B. Gutekunst und R.K. Kallury, J. Chem. Soc., Chem. Commun. 191 (1981)
- [138] R. Stegmann und G. Frenking, J. Comput. Chem. 17, 781 (1996)
- [139] H. Leclercq und I. Dubois, J. Mol. Spectrosc. 76, 39 (1979)
- [140] M. Izuha, S. Yamamoto und S. Saito, J. Chem. Phys. 105, 4923 (1996)
- [141] M. Bogey, H. Bolvin, C. Demuynck und J.L. Destombes, *Phys. Rev. Lett.* 66, 413 (1991)
- [142] M. Cordonnier, M. Bogey, C. Demuynck und J.L. Destombes, J. Chem. Phys. 97, 7984 (1992)
- [143] S. Bailleux, M. Bogey, C. Demuynck, J.L. Destombes und A. Walters, J. Chem. Phys. 101, 2729 (1994)
- [144] R. Withnall und L. Andrews, J. Am. Chem. Soc. 107, 2567 (1985)
 R. Withnall und L. Andrews, J. Phys. Chem. 89, 3261 (1985)
- [145] Z.K. Ismail, R.H. Hague, L. Fredin, J.W. Kaufmann und J.L. Margrave, J. Chem. Phys. 77, 1617 (1982)
- [146] B. Ma und H.F. Schaefer III, J. Chem. Phys. 101, 2734 (1994)
- [147] D.M. Hood und H.F. Schaefer III, J. Chem. Phys. 68, 2985 (1978)
 J.D. Goddard, Y. Yoshioka und H.F. Schaefer III, J. Am. Chem. Soc. 102, 7644 (1980)
- [148] M.W. Schmidt, M.S. Gordon und M.J. Dupuis, J. Am. Chem. Soc. 107, 2585 (1985)

H. Jacobsen und T. Ziegler, J. Am. Chem. Soc. 116, 3667 (1994)

- [149] R. Ahlrichs und R. Heinzmann, J. Am. Chem. Soc. 99, 7452 (1977)
- [150] A.G. Brook, S.C. Nyburg, F. Abdesaken, B. Gutekunst, G. Gutekunst, R. Krishna, M.R. Kallury, Y.C. Poon, Y.M. Chang und W. Wong-Ng, *J. Am. Chem. Soc.* 104, 5667 (1982)

K.M. Baines, A.G. Brook, R.R. Ford, P.D. Lickiss, A.K. Saxena, W.J.

Chatterton, J.F. Sawyer und B.A. Behnam, *Organometallics* **8**, 693 (1989)

- [151] E.T. Seidl, R.S. Grev und H.F.Schaefer III, J. Am. Chem. Soc. 114, 3643 (1992)
- [152] R.B. Woodward und R. Hoffmann, *Angew. Chem., Int. Ed. Engl.* 8, 781 (1969)
- [153] F. Bernardi, A. Bottoni, M. Olivucci, M.A. Robb und A. Venturini, J. Am. Chem. Soc. 115, 3322 (1993)
- [154] J.D. Goddard, Y. Yoshioka und H.F. Schaefer III, J. Am. Chem. Soc. 102, 7644 (1980)
- [155] S. Basu, I.M.T. Davidson, R. Laupert und P. Potzinger, Ber. Bunsenges. Phys. Chem. 83, 1282 (1979)
- [156] I.M.T. Davidson, P. Potzinger und B. Reimann, Ber. Bunsenges. Phys. Chem. 86, 13 (1982)
- [157] I.M.T. Davidson. A. Fenton, S. Ijadi-Maghsoodi, R.J. Scampton,N. Auner, J. Grobe und N. Tillmann, *Organometallics* 1, 210 (1982)
- [158] R.S. Gill und R.T. Conlin, J. Am. Chem. Soc. 105, 618 (1983)
- [159] A.K. Maltsev, V.N. Khabashesku und O.M. Nefedow, *Dokl. Akad. Nauk.* SSSR 247, 383 (1979)
- [160] M. E. Colvin, J. Kobayashi, J. Bicerano und H.F. Schaefer III, J. Chem. Phys. 85, 4563 (1986)
- [161] G. Maier, G. Mihm, H.P. Reisenauer und D. Littmann, *Chem. Ber.* 117, 2369 (1984)
- [162] P. Rosmus, H. Bock, B. Solouki, G. Maier und G. Mihm, *Angew. Chem.* 93, 616 (1981)
- [163] O.L. Chapmann, C.C. Chang, J. Kolc, M.E. Jung, J.A. Lowe, T.J. Barton und M.L. Tumey, J. Am. Chem. Soc. 98, 7846 (1976)
- [164] M. Trommer, W. Sander und A. Patyk, J. Am. Chem. Soc. 115, 11775 (1993)
- [165] T.J. Dranak, J. Michl und R. West, J. Am. Chem. Soc. 101, 5427 (1979)
- [166] S. Dhanya, K. Awadhesh, R.K. Vasta, R.D. Saini, J.P. Mittal, J. Pola, J. Chem. Soc. Farday Trans. 92, 179 (1996)
- [167] E.A. Chernyshew, N.G. Kowalenkowa und S.A. Baskirova, *Dokl. Akad. Nauk SSSR (Engl.)* 205, 642 (1972)
- [168] G. Maier, G. Mihm, R.O.W. Baumgärtner und H.P. Reisenauer, *Chem. Ber.* 117, 2337 (1984)
- [169] H.N.C. Wong, Y.D. Xing, Y.F. Zhou, Q.W. Gong und C. Zhang, Synthesis 789 (1984)
- [170] J. Laane, J. Am. Chem. Soc. 89, 1144 (1967)

- [171] R.M. Irwin, J.M. Cooke und J. Laane, J. Am. Chem. Soc. 99, 3273 (1977)
- [172] V.A. Mironov, E.V. Sobolev und A.N. Elizarova, *Doklady Akad. Nauk SSSR* 143, 1112 (1962)
 B. Fortunato, E. Gallinella und P. Mirone, *Gazz. Chim. Ital.* 101, 543 (1971)
- [173] E. Gallinella und P. Mirone, J. Labelled Compounds 7, 183 (1971)
- [174] J. Thiem, H. Mohn und A. Heesing, Synthesis 775 (1985)
- [175] S. Bailleux, M. Bogey, J. Breidung, H. Bürger, R. Fajgar, Y. Liu, J. Pola, M. Senzlober und W. Thiel, *Angew. Chem.* 108, 2683 (1996)
- [176] S. Bailleux, M. Bogey, J. Breidung, H. Bürger, J. Demaison, R. Fajgar, J. Pola, M. Senzlober und W. Thiel, J. Chem. Phys. 106, 10016 (1997)
- [177] H. Kanamori, J.E. Butler, K. Kawaguchi, C. Yamada und E. Hirota, J. Chem. Phys. 83, 611 (1985)
- [178] N. Auner, "International Symposium of Organosilicon Chemistry", Montpellier, September (1996)
- [179] P.G. Mahaffy, G. Gutowsky und L.K. Montgomery, J. Am. Chem. Soc. 102, 2854 (1980)
- [180] J.J. Orlando, J. Reid und D.R. Smith, Chem. Phys. Lett. 141, 423 (1987)
- [181] J.B. Burkholder, C.J. Howard und P.A. Hamilton, J. Mol. Spectrosc., 127, 362 (1988)
- [182] H. Bürger, R. Eujen und P. Moritz, J. Organomet. Chem. 401, 249 (1991)
- [183] P.B. Davies, W. Lewis-Bevan und D.K. Russell, J. Chem. Phys. 75, 5602 (1981)
- [184] Martin Paplewski, BUGH-Wuppertal, 1993
- [185] W. Böcker und H. Hausner, Ber. Dt. Keram. Ges. 223 (1978)
- [186] O.P. Strausz, K. Obi und W.K. Duholke, J. Am. Chem. Soc. 90, 1359 (1968)
- [187] K. Obi, A. Clement, H.E. Gunning und O.P. Strausz, J. Am Chem. Soc. 91, 1622 (1969)
- [188] A.D. Johnson, J. Perrin, J.A. Mucha und D.E. Ibbotson, J. Phys. Chem. 97, 12937 (1993)
- [189] M.A. Ring, H.E. O'Neal, S.F. Rickborn und B.A. Sawrey, Organometallics 2, 1891 (1983)
- [190] P.S. Neudorfl, E.M. Lown, I. Safarik, A. Jodhan und O.P. Strausz, J. Am. Chem. Soc. 109, 5780 (1987)
- [191] I.M.T. Davidson, A. Fenton, S. Ijadi-Maghsoodi, R.J. Scampton, N. Auner, J. Grobe, N. Tillmann und T.J. Barton, *Organometallics* 3, 1593 (1984)

- [192] C.M. Golino, R.D. Bush und L.H. Sommer, J. Am. Chem. Soc. 97, 7371 (1975)
- [193] N. Auner, I.M.T. Davidson, S. Ijadi-Maghsoodi und F.T. Lawrence, Organometallics 5, 431 (1986)
- [194] J. Pola, V. Chvalovsky, E.A. Volnina und L.E. Gusel'nikov, J. Organomet. Chem. 341, C13 (1988)
- [195] J. Pola, E.A. Volnina und L.E. Gusel'nikov, J. Organomet. Chem. 391, 275 (1990)
- [196] D. Cukanova und J. Pola, J. Organomet. Chem. 453, 17 (1993)
- [197] N. Auner und J. Grobe, J. Organomet. Chem. 188, 151 (1980)
- [198] T.L. Smith, US Patent 4 631 179, 23 Dez. (1986)
- [199] L.V. Interrante, C.K. Withmarsh, T.K. Trout und W.R. Schmidt, in *"Inorganic and Organometallic Polymers with special Properties"*, Herausgegeber R.M. Laine, S. 243, Kluwer Academic, Amsterdam (1992)
- [200] W.J. Moore und D.O. Hummel, "*Physikalische Chemie"*, S. 917, Walter de Gruyter Verlag, Berlin-New York (1983)
- [201] D.K. Russell, Chem. Soc. Rev. 19, 407 (1990)
- [202] R.V. Ambartzumian und V.S. Letokhov, Acc. Chem. Res. 10, 61 (1977)
 S. Mukamel und J. Jortner, J. Chem. Phys. 65, 3735 (1976)
- [203] E. Grunwald, D.F. Dever und P.M. Keehn, "Megawatt Infrared Laser Chemistry", S. 34, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1978)
- [204] Z. Bastl, H. Bürger, R. Fajgar, D. Pokorna, J. Pola, M. Senzlober, J. Subrt und M. Urbanova, *Appl. Organometal. Chem.* **10**, 83 (1996)
- [205] J. Pola, Spectrochim. Acta, Part A 46, 407 (1990)
- [206] S. Ray, D. Das und A.K. Barna, *Solar Energ. Mat.* **15**, 45 (1987)
- [207] H. Rübel, B. Schröder, W. Fuhs, J. Krauskopf, T. Rupp und K. Bethge, *Phys. Stat. Sol.* **139**, 131 (1987)
- [208] H. Bürger, Organomet. Chem. Rev. A 3, 425 (1968)
- [209] H.J. Wu und L.V. Interrante, *Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)* 32 (1991)
- [210] D.M. Bhusari und S.T. Kshirsagar, Mater. Lett. 11, 348 (1991)
- [211] H.C. Low und P. John, J. Organomet. Chem. 201, 363 (1980)
- [212] I.M.T. Davidson, C.E. Dean und F.T. Lawrence, J. Chem. Soc., Chem. Commun. 52 (1981)
- [213] R. West, H.B. Yokelson, G.R. Gilette und A.J. Millevolte, in "*Silicon Chemistry*", Herausgegeber E.R. Corey, J.Y. Corey und P.P. Gaspar S. 269, Horwood, Chichester (1988)

- [214] C.D. Wagner, "*NIST X-ray Photoelectron Spectroscopy Database*", Nist Std. Ref. Database 20, US Dept. Of Commerce, Gaithersburg (1991)
- [215] D. Briggs und M.P. Seah, "*Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy*", S. 488, Wiley, Chichester (1983)