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Abstract

Nonlinear dynamics is a vast field complementary to classical mechanics
and statistical physics. Inside this field we have chosen to study dynamical
systems with time delayed feedback. Such systems appear as models in the
sciences like physics, biology, economy and have at the same time interesting
theoretical properties being good candidates to present high dimensional at-
tractors. In this work delayed systems are studied mainly in the limit of large
delay were the scaling properties of the attractors are observed. In chap-
ter 2 we describe general properties of periodic orbits of dynamical systems
with feedback delay. In chapter 3 it is shown that the marginal invariant
density of chaotic attractors of scalar systems with time delayed feedback
has an asymptotic form in the limit of large delay. We present general con-
siderations, detailed analytical results in low order perturbation theory for
a particular model, and numerics for the understanding of the asymptotic
behaviour of the projections of the invariant density. Our approach clarifies
how the analytical properties of the model determine the behaviour of the
marginal invariant densities for large delay times. In chapter 4 properties
of the topological and metric entropies are discussed and arguments for the
boundedness of both are given on the basis of periodic orbits and of the
asymptotic behavior of the invariant density. In chapter 5 we analyse the
representation of maps with time delayed feedback as coupled map lattices.
We show that when the delayed map has an anomalous exponent, this rep-
resentation gives rise to infinitely large comoving Lyapunov exponents of
the spatially extended system. Additionally, we present a short discussion
regarding the anomalous error propagation in the case of continuous time,
i.e. delayed differential equations.
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Chapter 1

Introduction

Nonlinear dynamics is a fascinating research field due to the scope of prob-
lems that can be treated with theoretical concepts and tools related to it.
The theory of dynamical systems dates back to the end of the 19th century
with the problems like the three body, the ergodic hypothesis and nonlin-
ear oscillators. These three problems brought the necessity of a theoreti-
cal framework complementary to classical mechanics and statistical physics.
During the last 40 years there have been considerable developments in this
field motivated by numerical and real experiments showing complex motion.
It is possible to say that the field of dynamical systems has been growing in
the interface between sciences (e.g. physics, chemistry, geology, physiology,
biology, ecology, engineering, economy) and mathematics. Nowadays one
counts with a consistent theoretical framework which combines statistical
and geometrical/topological concepts providing a variety of tools to describe
and understand the irregular motion and the complex patterns observed in
nonlinear systems in numerical and real experiments.

Inside this vast universe, we have decided to study a special class of non-
linear dynamical systems: systems with a delayed feedback. The dynamics
of these systems depends not only on the present but also on the past values
of the dynamical variables. They appear as models for control process in a
variety of fields. Moreover, these systems present interesting scaling proper-
ties at large delay: The dimension of attractors may scale linearly with the
delay value while the entropy remains bounded. In this work we treat some
issues related to systems with time delayed feedback. Before we enter in this
subject some definitions about dynamical systems in general are discussed
in the next section.

11



Chapter 1. Introduction 12

1.1 Dynamical systems and nonlinear phenomena

Differential equations of the form

ẋ(t) = Fµ(x(t)) x ∈ Rd (1.1)

which induce the mapping x(t) = Φt
µ(x(0)) in Rd are called dynamical sys-

tems. Here x(0) is the initial condition and µ is some parameter or set of
parameters. The mapping produces unique solutions on a set A i.e. the solu-
tions depend uniquely on x(0) under general conditions for Fµ(x) (Lipshitz
condition in A, see e.g. [3]).

Fµ(x) may have solutions of a simple form like diverging to infinity, fixed
points, periodic points and coexistence of such solutions. If the map is vol-
ume contracting than the solutions may converge to a compact set called
attractor which might be a fixed point, a periodic orbit or a more complex
set like homoclinic orbits or a chaotic attractor. When fixed points and
periodic orbits are considered, a local theory can be developed and bifurca-
tions of these solutions might be studied as in [4]. For the characterisation of
chaotic attractors statistical aspects such as the invariant density, Lyapunov
exponents and entropies [5, 1] must be taken into account.

1.2 Dynamical systems with delayed feedback

There are situations in which some additional dependence on the past states
is required, i.e. some memory must be taken into account. Such models
appear in physiology [6, 7], biology [8], laser physics (see e.g. [9, 10, 11, 12]),
economy [13], and other examples that can be found in [14]. One example is
the so-called Mackey-Glass [6] equation constructed to model the production
of red blood cells

ẋ = −bx(t) +
ax(t− τ)

(1 + x(t− τ)10)
(1.2)

All these models can be classified as belonging to a special class of differ-
ential equations, the so called [14] differential difference equations (DDE):

ẋ(t) = F (x(t), x(t− τ)) (1.3)

where x ∈ Rd. More generally, one may also consider the case of several de-
lay values. The solutions of Eq.(1.3) are unique when a function φ(t) with
t ∈ [−τ, 0] is specified as initial condition. Therefore Φt

µ(φ) is a mapping
from the space of functions into this space, and the solutions of Eq. (1.3)
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live on a phase space that is infinite dimensional. As a consequence, Eq.
(1.3) may have attractors of arbitrary high dimension being one of the pos-
sible prototypes for high dimensional chaos. A detailed description of the
mathematical properties of Eq. (1.3) is given in [14].

A discretized version of Eq.(1.3) gives what is called in [14] a difference
equation and we call in this work delayed map:

xn+1 = F (xn, xn−T ) (1.4)

with x ∈ Rd in general but we restrict here to the case x ∈ R1 which shows
the phenomenology we are interested in. Eq. (1.4) can be written in a
vectorial variable x with components x(i) = xn−i:

x
(0)
n+1 = F (x(1)

n , x(T )
n )

x
(i)
n+1 = x(i−1)

n , 1 6 i 6 T (1.5)

i.e. we have a map
xn+1 = G(xn). (1.6)

with x ∈ RT+1, i.e. changing the delay value we change the dimensionality of
the phase space. Important properties of these maps will be discussed in this
work. Unfortunately, delayed maps and delayed differential equations cannot
be related to each other using the technique of Poincarè surface section as
in ordinary differential equations 1. A relation between delayed maps and
delayed differential equations does not exist formally, but it is possible to
observe that they share essentially all properties we are interested in.

1.2.1 Routes to chaos in delayed systems

A whole theory on linear delayed differential equations exist already for four
decades (see e.g. [16, 3, 8]) and is essential in discussing the stability of
fixed points. Such theory shows in a general way that the number of unsta-
ble directions increases as the delay increases, pointing out the mechanisms
for increasing dimensionality of the solutions. Indeed, in many works about
specific DDE’s, authors make use of such a theory to discuss the Hopf bi-
furcation [6, 17, 15]: The way in which a stable fixed point loses stability as
delay increases. Many works concentrate in the study of routes to chaos in
their models of interest. A classical example is the laser system discussed

1There is a method proposed in [15] to obtain such surface section, but it does not
reduce the dimensionality of the phase space
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by Ikeda [9] where new odd harmonics appear as the delay increases, which
are unstable and coexist in the limit of large delay when high dimensional
chaotic solutions exist. Other examples report routes resembling period
doubling cascades with hysteresis (coexistence of attractors), boundary cri-
sis [18], or appearance and breakdown of tori and intermittency [10]. More
generally, bifurcations of solutions of these equations were discussed in [15].
Some works, where an analytical treatment is accomplished are restricted
to delay values near a Hopf bifurcation where some reduction to the central
manifold can be performed and the delayed equation can be approximated
by an ODE (see [17] for an example applied to enzyme dynamics and [19]
for a more general formulation). At large delay the same techniques ap-
plied to spatially extended systems might be used to treat the problem of
bifurcations of fixed points [11, 12].

1.2.2 Asymptotic behavior of attractors

When chaotic behavior is observed, it is typical that changing the delay
value changes the dimension of attractors. High dimensional attractors are
observed numerically in [20, 9, 21, 22]. The Lyapunov exponents and the
estimations of the dimension and entropy based on them show that these
attractors have an asymptotic behavior for delay values large enough as
illustrated in figure 1.1 and 1.2 for a specific example.

Although the technique of the Poincaré surface of section does not yield,
in general, a direct relationship between delayed maps and delayed differen-
tial equations, Eqs. (1.3) and (1.4), attractors of time continuous and time
discrete delayed systems share the same asymptotic properties (figures 1.1
and 1.2 are obtained for a delayed map while in references [20, 9, 21, 22]
delayed differential equations are considered). This is the reason why in
chapters 3 and 4 only delayed maps are studied in detail.

1.3 Outline of the work

In this work four issues related to delayed systems are treated in detail. In
chapter 2 periodic orbits of Eq.(1.4) and Eq.(1.3) are discussed. Chapters
3 and 4 are devoted to the study of asymptotic properties of attractors in
the large delay limit. In chapter 3 the scalar induced invariant density is
discussed, namely it is observed numerically that an asymptotic form of
this density exists and for an specific map its analytical form is derived
using perturbation treatment of the Frobenius-Perron operator. In chapter
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Figure 1.1: Spectrum of Lyapunov exponents for the delayed Hénon map -
Eq. (2.16) with a = 1.0, b = 0.3. The exponents are multiplied by T and its
index is divided by the delay value in order to see the superposition of the
spectra (there exist T + 1 exponents).

4 the asymptotic behavior of the entropy of the attractor is considered in an
attempt to explain the mechanisms responsible for the asymptotic behavior
depicted in figure 1.2 beside the behaviour of the spectrum of Lyapunov
exponents. Chapter 5 treats the comoving Lyapunv exponents in coupled
map lattices derived from delayed maps, and hence is related to the relevant
issue of a spatial representation of DDE’s.
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Figure 1.2: Upper panel: Dependence of the Kaplan-Yorke dimension dKY

and the number of unstable Lyapunov exponents on the delay T for the map
(2.16) with a = 1.0, b = 0.3. Middle and lower panel: maximal Lyapunov
exponent λmax and Kolmogorov-Sinai entropy hKS estimated with Pesin’s
identity [1].



Chapter 2

Periodic orbits

2.1 Why studying periodic solutions?

Studying the fixed points, periodic orbits and their stability is usually in
dynamical systems theory the first step to understand the structure of the
manifolds where solutions of such system exist. Through the so called bi-
furcation theory [4, 23] one can analyse how existence and stability of these
regular solutions are affected as parameters change and at which parameter
values important qualitative changes happen (i.e. solutions are created or
disappear; there are dramatic changes in their stability). One may observe
for instance a route to chaos through a period doubling cascade, breaking
tori, crisis or other forms classified in the literature [5].

Additionally, when chaotic solutions are present, they coexist with a set
of unstable periodic orbits which is dense in the manifold where such solu-
tions live. Having this statement as a basis, a whole theory was developed
making use of unstable periodic orbits to construct an approximation of the
invariant density [24, 25] and to obtain ergodic averages in a thermodynamic
formulation of the theory of dynamical systems.

These two branches of nonlinear dynamics have motivated the study of
periodic solutions of delayed systems and to investigate how their existence
and stability are affected by changes in the delay value (the parameter we
want to investigate). In this chapter we present some results about periodic
orbits of delayed systems. We have tried to keep the treatment general and
concentrate on how the set of periodic orbits and their stability change as
the delay increases. First we have treated the case of delayed maps: Since
their phase space is finite dimensional they behave like conventional maps

17
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in this vectorial phase space. We have made use of the theory existent for
conventional maps to study the orbits and their stability and employed a
trick in order to make the bifurcation parameter - the delay - a continuous
variable. The main results are presented in section 2.2. The orbits of DDE’s
are discussed in section 2.3 where we present a general result about the
existence of orbits at different delay values.

2.2 Periodic solutions of delayed maps

We have decided to investigate periodic solutions of maps of the form Eq.
(1.4). From these studies we cannot draw any conclusion about the delayed
differential equations, but through it we have gained intuition that was useful
in the continuous case. Furthermore, we derived a property about the orbits
that will be useful in chapter 4 when we discuss the topological entropy of
these maps.

2.2.1 Periodic orbits at different delays

The first result of this work concerns the existence of periodic orbits of
Eq.(1.4) at different delay values. Let us first define a p-periodic orbit by a
sequence of points

{x0, x1, x2, ..., xp−1} (2.1)

(later called periodic points), which repeats in time as Eq.(1.4) is iterated.
These points obey the equations:

xi+1 = F (xi, xi−T ) (2.2)

for 0 6 i 6 p− 1, with the boundary condition

x0 = F (xp−1, xp−1−T ) (2.3)

where the indices are understood modulo the period p.
Inspecting Eqs. (2.2) and (2.3) one can find the following property about

the existence of periodic orbits at different delays: Eqs. (2.2), (2.3) are
invariant under the transformation T 7→ T + np, n ∈ Z of the delay value.
Every period-p orbit found for a delay value T will be also a period-p orbit
for T̃ = T + np, as long as T̃ and T are both positive.

As a consequence, one has the following relation for the p-periodic points
of the map:

N(p, T ) = N(p, T + np), (2.4)
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where N(p, T ) denotes the number of p-periodic points for a delay T . Eqs.(2.2)
and (2.3) can be also written for a map with x ∈ Rd and therefore the prop-
erty about the orbit is also valid for such systems.

2.2.2 Stability of orbits at different delays

The stability properties of periodic orbits are studied analysing how small
perturbations around the orbit, say δxn, evolve in time. Such evolution is
given by the linearisation of the map around a point under consideration
(map in the tangent space), i.e. the evolution equation of the perturbations
is given by:

δxn+1 = J(xn)δxn (2.5)

where J(xn) = ∂F(xn)
∂xn

is the Jacobi matrix at the point xn, which in the
case of Eq. (1.6) assumes the form:

J(x) =




∂F (x(0),x(T ))

∂x(0) 0 ... 0 ∂F (x(0),x(T ))

∂x(T )

1 0 ... 0 0
0 1 ... 0 0
. . .
0 0 ... 1 0




. (2.6)

In order to study the stability of a periodic orbit one has to study the
evolution of the perturbation during a full period, i.e. how is δxn+p as a
function of δxn. From Eq.(2.5) one can see that:

δxn+p = [
∏

i

J(xi)]δxn. (2.7)

The eigenvalues µi of the matrix
∏

i J(xi) are the characteristic multipliers,
i.e. the roots of the characteristic equation

det[
n+p−1∏

i=n

J(xi)− µI] = 0 (2.8)

are associated with the Lyapunov exponents λi of the orbit defined by:

λi =
1
2p

lnµ∗i µi (2.9)

ordered such that λi > λi+1. The orbit is stable if λi 6 0 ∀i. Unstable
orbits have one or more positive exponents and their number corresponds
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to the dimension of the unstable manifold [23] - here denoted dum- of the
orbit.

Using the property that p–periodic orbits do not change if we increase
the delay by T 7→ T +np, one can study how the stability of the orbits change
when the delay increases according to this rule. Of particular interest is the
behaviour of the dimension of their unstable manifolds as the delay increases.
Due to the form of the Jacobi matrix of delayed maps, the characteristic
equation (2.8) is a polynomial equation of degree T + 1. At large delays
(more precisely if the delay is larger than the period) Eq. (2.8) assumes an
asymptotic form whose coefficients depend on the periodic points, but not
on the delay value T , while the exponents depend on the delay value. More
explicitly, at large T Eq.(2.8) assumes the form:

g(µ) = µT+1 + C1µ
a1T+b1 + C2µ

a2T+b2 + ... + Cp+1 = 0 (2.10)

where Ci are coefficients that depend on the periodic points and ai, bi are
constants (usually rational numbers).

With this knowledge, it is possible, for each orbit, to investigate how the
spectrum of Lyapunov exponents changes as the delay increases. One can
compute all the spectrum looking for the roots of Eq.(2.10) at different de-
lays. Alternatively, one might obtain the dimension of the unstable manifold
counting the number of roots of g(µ−1) within |µ−1| < 1 . Using the same
procedure as in [26], one can obtain the number of such roots counting the
number of times the path traced by g(µ−1) winds around the origin as µ−1

is varied one full time around the unit circle. In the next paragraphs we dis-
cuss two examples of orbits and their corresponding characteristic equation
to clarify these ideas.

First let us consider p = 1, i.e. the fixed point. Since the fixed points
are not affected by the delay value, this is the simplest periodic solution one
could investigate. The characteristic equation has the form:

µT+1 + C1(x0)µT + C2(x0) = 0 (2.11)

where we have defined: C1(x0) = ∂F (x,y)
∂x |x=y=x0 and C2 = ∂F (x,y)

∂y |x=y=x0 .
The fixed points are the same for all delay values T . Now it is possible to
analyse the solutions of such an equation in different situations, for different
conditions of C1 and C2, but a case of interest here is that of an unstable fixed
point. As T increases the number of multipliers increases but for large delay
their spectrum relaxes to an asymptotic form as discussed in [27] where
most exponents scale like T−1. The main argument for this asymptotic
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behaviour is the following: since C1 and C2 are finite, if the multipliers are
such that some µ > 1.0 (unstable fixed point), these must obey the Ansatz
µ ∝ e1/T . It is possible also that one of the multipliers is independent of T
(the anomalous exponent pointed out in [27]), and this happens in the cases
when C2 << 1.0 and C1 > 1.0.

In order to have an idea of how Eq.(2.10) may look like in a more general
case, let us consider a periodic orbit with p = 3, existent at T = 3 + 3n
with n = 0, 1, 2, .... If a delayed map allows such orbit, the corresponding
characteristic equation reads:

µ(T+1) − µT C1(x1, x2, x3) + µ
2T
3 C2(x1, x2, x3) +

µ
T
3 C3(x1, x2, x3) + C4(x1, x2, x3) = 0.

(2.12)

Here:

C1(x1, x2, x3) = ∂1F (x1, x1)∂1F (x2, x2)∂1F (x3, x3)
C2(x1, x2, x3) = ∂1F (x2, x2)[∂1F (x1, x1) +

∂1F (x3, x3)∂2F (x1, x1) + ∂1F (x1, x1)∂2F (x3, x3)]
C3(x1, x2, x3) = ∂1F (x3, x3)∂2F (x1, x1)∂2F (x2, x2)

+∂2F (x3, x3)[∂1F (x2, x2)∂2F (x1, x1) +
∂1F (x1, x1)∂2F (x2, x2)]

C4(x1, x2, x3) = ∂2F (x1, x1)∂2F (x2, x2)∂2F (x3, x3)
(2.13)

where we have defined ∂1F = ∂F (x,y)
∂x and ∂2F = ∂F (x,y)

∂y , for convenience.
This equation is valid at all delay values T = 3 + 3n, and each of its zeroes
yields one of the 3 + 3n Lyapunov exponents of this orbit.

2.2.3 Bifurcation analysis

Besides the question of how many unstable directions one orbit has and
how this number grows as the delay increases, one could ask which kind of
bifurcations are associated with this growth. In other words, considering
the delay value as parameter we ask which kind of bifurcation takes place
as the delay value increases. Bifurcations are related to changes in topology
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(appearance and disappearance of fixed points) or in the stability of periodic
orbits.

This analysis would be very natural if the delay value were a real number
which is not the case of delayed maps. We tackle this problem constructing
another kind of map, where two delay values are involved (T1 and T2 =
T1 +1) and which has a real parameter τ ∈ [0, 1] that controls the weight of
each contribution:

xn+1 = f1(xn) + a1(τ)f2(xn−T1) + a2(τ)f2(xn−T2) (2.14)

where:
a1/2(τ) = cos2[

π

2
(τ − T1/2)]. (2.15)

We have chosen this function because it has the properties: a1(τ) +
a2(τ) = 1.0 and we have only one delay value at τ = 0/1, i.e. at these
extrema values the map has only one of these two delays and corresponds
to Eq. (1.4).

With this method, it is possible to see which kind of bifurcation takes
place, but it has two disadvantages: First it is only possible to analyse
delayed maps where the instantaneous and delayed contribution appear as
a sum; second the type of bifurcation found might depend on the specific
form of a1/2(τ). In despite of these disadvantages, we apply this method in
a specific example to be discussed in the following section.

2.2.4 The Hénon map with delay : an example

Let us consider now a special map in order to clarify all the ideas presented
in the former sections, the version with time delay of the Hénon map:

xn+1 = a− x2
n + bxn−T (2.16)

which corresponds to usual the Hénon map if T = 1.

Stability of fixed points

There are two fixed points for the map (2.16):

x+,− = 0.5(b− 1±
√

(b− 1)2 − 4a). (2.17)

If a > −0.25(1−b)2 the fixed points are real and we can study their stability
and how it depends on a and b. In this case, the parameters of equation
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(2.11) are C1 = 2x+,− and C2 = b. The stability depends indirectly on the
parameter a since it determines the value of the fixed point.

The asymptotic spectra at T →∞ of these two fixed points will be differ-
ent, since the Jacobian of the map has not the same value. One interesting
question to ask is if the spectra possess an anomalous exponent or not, and
the condition for existence of such exponent is that 2x+,− > 1.0. In words,
this condition will divide the parameter plane {a, b} into regions where one
of the two fixed points will have an anomalous exponent, or both, or none
of them.

We specify now the parameter values a = 1.0 and b = 0.3, such values
that will be used in subsequent analysis when chaotic motion will be investi-
gated. Investigating the stability of both fixed points as the delay increases,
we obtain the results illustrated in figures 2.1 and 2.2. For these parameter
values, both fixed points have an anomalous exponent at large delay. The
corresponding spectra are shown in figure 2.2. As the delay increases new
exponents become positive but their absolute value is reduced, this is true
for the whole spectrum except the anomalous exponent. A closed form for
these quasicontinuous part of the spectrum in the limit T →∞ can be found
in [27].

Some periodic orbits with short period

Now we apply the ideas of sections 2.2.1 and 2.2.2 to study the periodic
orbits of Eq. (2.16). First let us consider the period two orbits existent at
T = 2k + 2. The corresponding characteristic equation reads:

µT+1 − 4x1x2µ
T + 2b(x1 + x2)µT/2 − b2 = 0 (2.18)

with T > 2.
We obtain numerically the solutions of Eq. (2.18), and consequently the

spectrum of Lyapunov exponents at different delay values. The maximal
eigenvalue λ1 = 1

2 log(|µ1|2) is independent of the delay value at large delays
as can be seen in figure 2.3, i.e. using the nomenclature of [27] one might say
that this orbit has an anomalous exponent. The appearant discontinuity of
the curve at delay T = 38 is related to a pair of complex eigenvalues that
split giving rise to the anomalous eigenvalue. This orbit is stable for T = 2
and unstable for all other delay values.

An overview of how the spectrum depends on the delay can be seen
in figure 2.4 where the dimension of the unstable manifold dum and the
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Figure 2.1: Maximal Lyapunov exponent of the fixed points of Hénon map
with a = 1.0 and b = 0.3. (a) for x+ and (b) of x−.
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Figure 2.2: Spectrum of Lyapunov exponents of the fixed points of Hénon
map with a = 1.0 and b = 0.3. (a) for x+ and (b) of x−.
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Figure 2.3: First and second maximal Lyapunov exponents of the period
two orbit of (2.16) with a = 1.0 and b = 0.3 existent for T = 2k + 2 as a
function of the delay value.
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Figure 2.4: Dimensions related to periodic orbits of the Hénon map with
a = 1.0 and b = 0.3.

Kaplan-Yorke dimension dKY (see e.g. [1] for the statement of the Kaplan-
York conjecture). of this orbit is depicted. We have obtained the same result
for the dimension of the unstable manifold (dum) from the winding number
of g(z) = z−(T+1) − 4x1x2z

−T + 2b(x1 + x2)z−T/2 − b2 along unit circle, i.e.
along the path z = e(iφ) with 0 6 φ 6 2π.

One can investigate which kind of bifurcations are associated with the
steps of dum in figure 2.4, using the method pointed out in section 2.2.3. We
investigate the bifurcations for 1 6 T 6 5 and depict the results in figure
2.5. As the delay increases and also the dimensionality of the phase space,
new eigenvalues become finite growing from −∞ (note this in the figure near
τ = 1 and τ = 2). The orbit existent for odd delay values is always unstable
and does not suffer bifurcation in the interval considered in the figure 2.5.
On the other hand the period two orbit, is stable for T = 2 but unstable
for T = 4. Let us have a closer look at the kind of bifurcation suffered by
the “even” orbit, which makes it unstable at T = 4. A pair of eigenvalues
crosses the unitary circle at the point τ ≈ 3.833..., the period two orbit
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Figure 2.5: Lyapunov exponents of the period two orbits of Hénon map
with a = 1.0 and b = 0.3. As the parameter τ is varied the orbit changes
smoothly from that existent at even delay value to that corresponding to
odd delay value.

becomes unstable and two stable invariant circles appear around it, i.e. a
Neimarck-Sacker bifurcation occurs [4] - the equivalent for maps to the Hopf
bifurcation (see figures 2.6 and 2.7 for details).

It is also interesting to investigate how the dimension increases when
the delay has large value, i.e. which kind of bifurcation is associated with
the increasing of dimensionality at T = 24 in figure 2.4. This is shown in
figure 2.8 where it can be observed that the dimensionality of the unstable
manifold increases because a pair of complex eigenvalues crosses the unit
circle i.e., the bifurcation that takes place is of the same kind of that at low
delay (see figure 2.5). From figure 2.4 (a) one sees that for this orbit this
mechanism repeats for any delay value since the dimension of the unstable
manifold increases always by two (at least up to the delay value we have
observed numerically). Perhaps it is possible to find the normal form of this
bifurcation (at all delay values it takes place), applying the central manifold
theorem, but we have not done this procedure.

Higher periods - general orbits of Hénon map

In this subsection I focus on unstable periodic orbits of the Hénon map with
parameter values corresponding to high dimensional chaotic motion. The
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Figure 2.6: Period two orbits (white lines) and solutions (black lines) of
Hénon map (2.16) modified according to Eq. (2.14), with a = 1.0 , b = 0.3
Hénon map.
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Figure 2.7: Period two orbit and invariant circle slightly beyond the
Naimark-Sacker bifurcation point. Hénon map (2.16) modified according
to Eq. (2.14), with a = 1.0 , b = 0.3, τ ≈ 3.833....
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Figure 2.8: Eigenvalues of the period two orbit at delay around 22, where
a second complex pair of eigenvalues crosses the unit circle: a bifurcation
takes place. Hénon with a = 1.0 and b = 0.3.

first step is to recover all these cycles and the second to study their stability.
We have used the method proposed in [28] to compute the periodic orbits

of the map (2.16), which was shown to be valid for the normal Hénon map
for low values of the parameter b in [29]. The method is originally proposed
for the two dimensional map, but was easily extended to be applied in this
system. Although we have no proof that a binary partition1 exists for the
high dimensional case - which is one of the requirements for this method
to work- we have evidence that most of the orbits can be recovered by the
modified method.

After obtaining all the orbits and counting the number of periodic points
N(p, T ) of each period at different delays we observe a pattern: at p = T +1
there is a global maximum in N(p) which is followed by local maxima at
p = n(T + 1) (results for T = 6, 15 are shown in figure 2.9).

In fact, N(p = T + 1, T ) equals 2p as can be evaluated from Eqs.(2.2)
and (2.3) with F of Eq.(2.16), which with this special period reduces to

(1− b)xi+1 = a− x2
i . (2.19)

After linear rescaling, Eq.(2.19) can be cast into the form of a single logistic
map with parameter a/(1 − b)2. As long as a/(1 − b)2 > 2 this map has a
full set of periodic points giving rise to the just mentioned phenomenon. At
p = n(T + 1) the number of periodic points is much smaller than 2n(T+1)

and we could not find a simple general rule for them.
1See section 4.2 for an explanation about partitions.
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p Np(p) N2

1 2 0
2 1 1

11 186 0
15 6 0
22 128 6

Table 2.1: Total number of prime orbits of period p (Np(p)) and number
of orbits with two–dimensional unstable manifold (N2) for the Hénon map
with a = 1.0, b = 0.3 and T = 10. (Prime orbits are those which do not
consist on repetitions of cycles of shorter period).
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Figure 2.9: Number of p-periodic points for T = 6 (filled circles) and T = 15
(empty circles) of (2.16) with a = 1.0, b = 0.3 .
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Let us now have a closer look on the stability properties of the periodic
orbits of the map (2.16). The main result is that we can divide the orbits in
two categories according to the behaviour of the dimension of their unstable
manifolds as a function of the delay: those for which dum grows as the delay
increases and those which have a dum = 1 (i.e. only the anomalous exponent
is positive) regardless of the delay value. In table 2.1 we show the periodic
orbits detected by the Biham-Wenzel method up to period p = 29 for T = 10.
We have observed that in this case, the orbits whose unstable manifolds have
dimension equal to one are the vast majority of the computed orbits. For
many of these orbits the dimension of the unstable manifold does not change
if the delay is increased, the corresponding positive Lyapunov exponent stays
isolated, and the remaining part of their spectrum is negative.

There exist also orbits for which the dimension of the unstable manifold
increases with the delay. These orbits show up at a = 1.0, b = 0.3 and T = 10
with a two–dimensional unstable manifold. Although their number is very
small compared to the orbits with one dimensional unstable manifold, the
second kind of orbits constitute in general the less unstable. In particular we
find an increasing unstable dimension as the delay increases. For instance,
figure 2.4 displays this increase for the period 2 orbit of table 2.1 which
exists for all even values of the delay (and was already discussed in the
former section).

2.3 Periodic orbits of DDE’s

In this section we describe some properties of periodic orbits of delayed
difference equations of type Eq. (1.3) and its stability. Before we focus on
periodic orbits, we present very briefly some properties of the stability of
fixed points of Eq. (1.3), as they share many properties and the analysis of
fixed point is more intuitive.

2.3.1 The stability of fixed points

The fixed points x∗ of a scalar differential-difference equation of the form of
Eq. (1.3) are simply the solutions of F (x∗, x∗) = 0 and therefore independent
from the delay value τ . In this sense the problem of finding such fixed points
is not different from the case of ODE’s and this can be generalised to the
case when x is a vector ∈ RN . One can then proceed in the analysis like in
the case of an ODE and ask about the stability of such fixed points against
some infinitesimal perturbation δx(t) = x(t) − x∗. Expanding Eq. (??)
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around the fixed point and truncating in first order (this is allowed since
one wants to consider only evolution of microscopic perturbations), one gets
the equation for the evolution of δx(t):

δ̇x(t) = C0δx(t) + C1δx(t− τ) (2.20)

where

C0 =
∂f(xt, xτ )

∂xt
|xt=xτ=x∗ (2.21)

C1 =
∂f(xt, xτ )

∂xτ
|xt=xτ=x∗ .

As solutions of the linear equation (2.20) the Ansatz δx(t) = e(λt)δx(0) can
be used which leads to the characteristic equation for λ:

λ = C0 + C1e
−λτ . (2.22)

Such equation has an infinite number of complex solutions 2. The stability
of the linear equation (2.20) and also of other differential-difference equation
with more than one delay and with a exponential distribution of delays was
treated extensively in [16, 8] and also in [14] and [3]. Here, we do not enter
in details but only mention some results that will assure some properties
of the stability as the delay increases [16, 14] : the solutions with positive
real part are isolated and their number is finite, as the delay increases it
is proven that the number of such positive solutions may increase or not
change in number but never decrease.

In the case of more than one delay the possible behaviours don’t change
much [8] and also in the case of x ∈ RN with N > 1. The situation is
different in equations with kernel [14].

Periodic orbits

The problem of finding the orbits and studying their stability is more subtle
in the time continuous case than in the case of maps 3. Despite of that

2When the delay is small, one could propose to expand eλτ in its polynomial series in
τ and truncate at some finite degree. This procedure was tried already and it turns out
not to be a good one [8] in general

3Although we should stress that the general problem of finding periodic orbits of non-
linear mappings is not a trivial one and only methods that rely on numerics can tackle it
as in e.g. [28].
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difficulties there are many results in the literature treating orbits of Eq.(1.3)
in the special form:

ẋ(t) = −γx(t) + g(x(t− τ)) (2.23)

with g(x) piecewise constant. This paradigm has been extensively investi-
gated in [30] and later works of the same authors.

2.3.2 Periodic orbits at different delays

Remembering that our objective is studying the behaviour of periodic orbits
as delay changes, we suppose that periodic orbits of Eq. (1.3) exist, which
seems to be the case for many systems studied in the literature and derive
their properties at different delays as it was done for the maps.

A bounded periodic orbit γ(t) of period θ can be decomposed in Fourier
series, i.e. we can write:

γ(t) =
∑

k

Ake
ikωt (2.24)

with ω = 2π/θ and Ak ∈ C. The coefficients Ak must be such that

γ̇(t) = f(γ(t), γ(t− τ)), (2.25)

and therefore we can conclude that the orbit is invariant under the trans-
formation

τ → τ + nθ, n ∈ Z. (2.26)

Hence, we expect to find the same orbit (with the same period and the same
coefficients Ak) at different delays as long as the delays obey relation (2.26).

Now it remains to investigate how the stability of the orbits may change
as the delay increases. Following the usual procedure developed for ODE’s
we write the equation of the perturbation δx(t) = x(t) − γ(t) around the
orbit. One can use the Floquet theorem and propose the usual Ansatz for
the perturbation: A periodic function times exponential dependence in time
δ(t) = q(t)eλt. The evolution equation reads:

˙δx(t) = [q̇(t) + λq(t)]eλt = [C0(t)q(t) + C1(t)e−λτq(t− τ)]eλt (2.27)

where

C0(t) =
∂f(xt, xτ )

∂xt
|xt,xτ∈γ(t) (2.28)

C1(t) =
∂f(xt, xτ )

∂xτ
|xt,xτ∈γ(t)
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The most general formulation of the Floquet eigenmodes in delayed sys-
tems is presented in [31]. Here we don’t discuss this issue but only point out
that since the orbit is the same, so does the function q(t) and consequently
the coefficients C0(t) , C1(t) i.e. the delay enters only in the exponential
resembling the case of the fixed points. The equation is however more com-
plicated and we could not find out if an asymptotic form of the spectrum of
eigenvectors also exists in this case as in that of maps.

2.3.3 Analysis of orbits with period θ = p
q
τ

In the special case when θ = p
q τ the Eq.(2.25) reduces to a set of ODE’s:

ẋ(i)(t) = f(x(i)(t), x(i+1)(t)), 0 6 i < p− 1 (2.29)
ẋ(p−1)(t) = f(x(p−1)(t), x(0)(t))

with x(i)(t) = x(t−iτ). As a consequence, one can apply methods developed
for ODE’s to detect the periodic orbits with these special periods. To be
precise, however, one has to prove that all periodic orbits of the system of
Eqs.(2.29) correspond of orbits of Eq.(1.3). Although we have not done this
analytically nor investigated numerically the validity of this scheme, we pro-
ceed in the formulation and write the equation of stability (the differential
equation in the tangent space) using these ideas.

As pointed out in [31] the stability equation for this case can be ex-
pressed as a set of ODE’s constructing perturbation vector δx(t) ∈ Rp with
components δx(i)(t) = δx(t− iτ) and using the Floquet Ansatz, we have:

δx(i)(t) = e−λiτeλtq(i)(t) (2.30)
q(i)(t) = q(t− iτ)

and the evolution equation of each component:

˙δx
(i)

(t) = C
(i)
0 (t)δx(i)(t) + C

(i)
1 (t)δx(i+1)(t) (2.31)

which can be written as

˙δx
(i)

(t) = [C(i)
0 (t)q(i)(t)e−λiτ + C

(i)
1 (t)e−λ(i+1)τq(i+1)(t)]eλt (2.32)

with

C
(i)
0 (t) =

∂f(xt, xτ )
∂xt

|xt=x(i)(t),xτ=x(i+1)(t) (2.33)

C
(i)
1 (t) =

∂f(xt, xτ )
∂xτ

|xt=x(i)(t),xτ=x(i+1)(t)
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Making the transformation δx(i)(t) → δx(i)(t)eλiτ , the evolution equa-
tion for the vector δx, reads

˙δx(t) = J(t, λ)δx(t) (2.34)

where the matrix J(t, λ) has the form:

J(t, λ) =




C
(0)
0 (t) C

(0)
1 (t)e−λτ 0 ... 0

0 C
(1)
0 (t) C

(1)
1 (t)e−λτ ... 0

. . .

C
(p−1)
1 (t)e−λτ 0 ... 0 C

(p−1)
0 (t)




We may also write:

δx(t) = U(t, λ)δx(0) (2.35)

where the matrix obeys the linear evolution equation

U̇(t, λ) = J(t, λ)U(t, λ) (2.36)

and therefore U(t, λ) = T [e
R t
0 J(s,λ)ds] with T indicating the time ordering

product.
Using the initial Ansatz, we may write δx(θ) = eλθδx(θ) and combining

with Eq.(2.35) we arrive at the characteristic equation

det[U(θ, z−
τ
θ )− zI] = 0 (2.37)

where we have made z = eλθ. Making z = µ−p and remembering that
τ/θ = p/q such equation can be written as

det[µpU(θ, µq)− I] = g(µ) = 0 (2.38)

and one can obtain the dimension of the unstable manifold of the orbtis
from the winding number of g(µ) as described in [26] (in the context of
chaos control).

Knowing that every orbit is conserved under the transformation (2.26),
one might wonder what happens to its stability as the delay increases. In
the case of special orbits treated here, Eq.(2.26) corresponds to a change in
the value of q, but not on p. The structure of Eq. (2.38) is maintained as the
delay increases by multiples of the orbit, only the value of q is transformed
like q → q + n.
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2.3.4 Summary

To sumarize we have seen that it is rather difficult to get detailed infor-
mation about all periodic orbits of Eqs.(1.3) and (1.4). Nonetheless, some
important properties under change of delay value have been discussed in
this chapter. The two most relevant restults are the existence of the same
orbit at different delay values, and for the case of maps the existence of an
asymptotic spectrum of Lyapunov exponents due to an asymptotic form of
the characteristic equation for delayed maps.



Chapter 3

All trajectories: Invariant
densities

3.1 Scalar densities at large delay

In this chapter we will leave the individual periodic solutions and focus on
the behavior of chaotic attractors of delayed systems, in the regime of the
feedback time τ where the asymptotics of the Kaplan Yorke dimension and
of the information entropy can be observed. In fact, these scaling properties
are a consequence of the asymptotic behaviour of the Lyapunov spectrum
in the limit τ → ∞. Being ergodic averages, Lyapunov exponents reflect
two important aspects of the dynamics: the linear (in-)stability and the
statistical properties. The latter depend directly on the invariant density of
a system. In order to gain some insight in this “universal” regime of high
dimensional chaos of delayed systems, the understanding of the properties
of invariant densities of delayed systems in the limit of large delay is an
essential and nontrivial starting point.

The investigation carried out here, is motivated by the following numer-
ically observed phenomenon: By ergodicity, a single solution x(t) creates
a natural invariant density called ρτ (x), if transients are discarded. This
marginal density is one particular projection of the full phase space den-
sity as it is observed to possess a well defined asymptotic form ρ∞(x) in
the limit of large delay (see figure 3.1 for an example, where an asymptotic
form exists in a range of delay values). The main issue of this chapter is to
study under which conditions and how this density ρτ (x) converges to an
asymptotic form ρ∞(x) in the limit of large τ , and what are the underlying

37
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mechanisms for this convergence.
One could argue that this behaviour is not surprising: As the dimensions

of the attractors grow and more degrees of freedom become relevant one
could expect that the projection of the measures onto any space with much
smaller dimension than the attractor itself will be smooth and not depend
on the delay. This would be a consequence of the central limit theorem. But
this is far from being the correct explanation: the degrees of freedom are
correlated and the one dimensional distribution is typically not Gaussian (as
the argument would predict) but strongly dependent on the system. The
idea of using the central limit theorem was, however, successfully explored
in [22], when treating equations of the type (I):

ẋ = −x(t) + kg(x(t− τ)). (3.1)

Therein the authors are able to construct a version of the central limit
theorem to derive the invariant density of uncorrelated points. Although
this treatment is very illustrative it is not general, and its success will depend
strongly on the value of k and on the properties of g(x), i.e. only for large
k and oscillating g(x) the loss of memory is achieved which allows treating
the equation above in the same way as a Langevin equation, where the role
of noisy perturbation is played by the delayed feedback. In this limit, x has
Gaussian invariant density.

The concrete treatment of problems related to the invariant density of
(1.3) will at some point require discretisation of time as done in [32, 22].
Therefore one will be treating the problem of a map that in some limit will
describe very well the behaviour of the continuous time system. Since we are
interested in fundamental issues and not in the behaviour of a special system,
we decided to treat directly scalar delayed maps of the form of Eq.(1.4) for
which we have observed that the probability density ρT (x) of xn induced
by a stationary invariant density in the finite (T + 1) -dimensional phase
space will have an asymptotic form for large delay - ρ∞(x). Therefore, in
this sense delayed maps and DDE’s show similar behaviours.

Before entering in details on the invariant density of delayed maps, we
describe briefly the conventional formalism adopted to investigate invariant
densities of maps. We introduce the Frobenius-Perron operator and other
concepts which will be important in our analysis in a non-rigorous fashion,
following the descriptions in [33] and [34]. More formal considerations can
be found in [35].
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Figure 3.1: Some properties of the Mackey-Glass equation ẋ = −bx(t) +
ax(t−τ)

(1+x(t−τ)10)
with a = 0.2 and b = 0.1. Upper panel: Dimension, entropy

as a function of the delay τ . Lower panel: probability densities constructed
from the time series of x(n∆t) with ∆t = 0.001τ (integration step).
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3.2 Evolving densitities

Trajectories of chaotic dynamical systems diverge exponentially and an ini-
tial condition known with a limited precision gives rise to unpredictable
behavior after finite time. Writing an equation for each individual possible
trajectory of such a system is an unimaginable task: Due to sensitivity to
initial conditions two infinitely close initial conditions will lead to completely
different outcomes in the long term. Hence, more meaningful than following
individual trajectories, is to investigate how densities (smooth distributions
of initial conditions) evolve in time under a chaotic mapping.

3.2.1 Frobenius-Perron operator

In order to formulate the evolution of densities in a proper way we must
describe a measure dµ(x) = ρ(x)dx, whose mass over a subset Xi of the
whole phase space X:

∆µi =
∫

Xi

dµ(x) =
∫

Xi

ρ(x)dx (3.2)

where ρ(x) is the density of representative points in the phase space. The
density ρ(x) must be such that integrals of type (3.2) are positive and finite,
and that it can be normalised:

∫

X
ρ(x)dx = 1. (3.3)

Apart from these restrictions, the densities might be ill defined and be con-
fined to a fractal support, i.e. can contain distribution-like components such
as Dirac deltas. The measure, on the contrary, is a better behaved function
of sets.

Given an initial density ρn(x) with support on a region Xi and a map
M : xn+1 = f(xn) where x ∈ Rd, the question is how this density evolves in
time under this map. Iterating once the map, the region Xi is carried into
f(Xi) and due to conservation of representative points one has:

∫

f(Xi)
ρn+1(x)dx =

∫

Xi

ρn(y)dy. (3.4)

Since we want to obtain the expression for ρn+1(x) as a function of ρn(x),
we transform the integration variable from x to y = f−1(x) in the R.H.S of
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Eq.(3.4): ∫

Xi

ρn+1(y)|detJ(y)|dy =
∫

Xi

ρn(y)dy (3.5)

where J(y) = ∂f(y)
∂y is the Jacobian matrix of the map. The density ρn+1(x)

can be written as:

ρn+1(x) = Lfρn(x) =
∑

yi=f−1(x)

ρn(yi)
|detJ(yi)| (3.6)

or as:
ρn+1(x) = Lfρn(x) =

∫

X
δ(x− f(y))ρn(y)dy. (3.7)

and Lf is the so called Perron-Frobenius operator which is a linear operator
that acts on the space of integrable functions. By working with densities
instead of trajectories one exchanges a finite dimensional nonlinear mapping
by a linear operator acting on an infinite dimensional function space.

3.2.2 Invariant densities, ergodicity and mixing

Particularly important in the theory of dynamical systems are the so called
invariant densities: They are simply fixed points of the operator Lf , i.e. an
invariant density ρ(x) fulfils the condition:

ρ(x) = Lfρ(x) =
∫

X
δ(x− f(y))ρ(y)dy. (3.8)

Finding these fixed points rigorously is not a trivial task, there are many
results for one dimensional maps [34], but usually the invariant densities do
exist and might be more than one for a given map 1.

Having an invariant density, it is possible to introduce the expectation
value, or ensemble average of an arbitrary test function g(x) with respect
to it:

< g >=
∫

X
g(x)ρ(x)dx. (3.9)

Due to the invariance property, the same result for < g > is obtained if
one replaces x by f(x) in Eq. (3.25), i.e. expectation values of the variables
in the invariant ensemble are invariant under the action of f .

1E.g. each periodic orbit of f is associated with an invariant density : ρ(x) =
1
p

Pp
i δ(x− xi).
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In the same way, one can define the time average of g with respect to a
trajectory:

g = lim
N→∞

1
N

N∑

n=0

g(xn) (3.10)

which is different from < g > and depends on the initial condition x0.
Knowing these two averages it is possible to define ergodicity of a map (in

a non rigorous way): A map together with an invariant density is said to be
ergodic if for any integrable function g the time average is equal to the phase
space average with respect to ρ(x), i.e. for any x0, up to a set of measure
zero one has g =< g >. Ergodicity implies that time averages do not depend
on the initial condition x0 up to some exceptional values. Alternatively one
might say that a map is ergodic on one particular support, since similarly
as there might coexist several invariant measures, there might coexist also
several ergodic components of the phase space.

An ergodic map might possess many invariant densities, but only one is
meaningful from the physical point of view: The so called natural invari-
ant density which is obtained almost surely if a random initial condition is
iterated, i.e. it can be described by:

ρ(x) = lim
N→∞

1
N

N∑

n=0

δ(x− xn). (3.11)

An even stronger property than ergodicity is the mixing property. A map
is called mixing if an arbitrary smooth initial probability density ρ0(x) con-
verges to the natural invariant density ρ(x) under successive interactions of
the map:

lim
n→∞ ρn(x) = ρ(x) ∀ smooth ρ0(x). (3.12)

This property can be described more precisely considering two subsets of
the phase space, say A and B, saying that a map mixing if:

lim
n→∞µ(fn(A) ∧B) = µ(A)µ(B). (3.13)

Through this formulation it becomes clear that the generalised correlation
function asymptotically decays to zero, i.e. mixing means asymptotic sta-
tistical independence in its most strict sense. Although mixing implies er-
godicity the reverse is not true.
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Constructing measures from trajectories

An ergodic map has an interesting property: Its natural invariant measure
can be recovered just iterating a single initial condition and producing a
histogram, i.e. counting the relative frequency of iterates in a certain subset
Xi of the phase space. This can be easily seen if we choose for g(x) = ΘXi(x)
in Eq. (3.10) a function that is 1 if x ∈ Xi and zero otherwise. Then from
Eqs.(3.10) and (3.25) one gets:

lim
N→∞

1
N

N∑

n=0

ΘXi(x) =
∫

Xi

ΘXi(x)ρ(x)dx = µ(Xi). (3.14)

Exactly this method will be used in the next section to estimate the
invariant measure of the delayed maps.

3.3 Formulating the problem

3.3.1 The issue in detail: numerics for a simple map

In many different delayed systems we have observed an asymptotic behaviour
of the projections of the invariant measure at large delays. As an example
consider the map:

xn+1 = (1− ε)f(xn) + εf(xn−T ), (3.15)

where f(x) = 2x− sgn(x), x ∈ [−1, 1]. In figure 3.2 we present the numer-
ical results on how the density of the variable x converges to an asymptotic
form as the delay increases. The densities were obtained by dividing the in-
terval [−1, 1] in cells Ix of equal size centred at a point x. The density µ(x)
is computed from a normalised histogram (relative visiting frequency of cell
Ix). We have defined a quantity to characterise the difference between these
invariant densities at low and large delay:

∑
Ix
|µT (x)− µ∞(x)|. Its depen-

dence on the delay value is depicted in figure 3.3. This quantity converges
to zero (at least within the numerical error) as T → ∞. The convergence
behavior depends on details of the system (here the parameter ε). In the
special case of ε = 0.5, the measure has the form µ(x) ∝ 2x − sgn(x) and
is independent of T . As the densities are non Gaussian, we do not expect
that the simple central limit theorem will supply justification for the con-
vergence. In fact, as it will be seen later, the variables are not completely
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Figure 3.2: The invariant density of equation (3.15) for a definite T and
ε = 0.3. µ(x) is estimated by a normalised histogram. The interval [−1, 1]
is divided into 200 cells and we have used a time series of 106 points.

uncorrelated. Moreover, the arguments applied in [22] to study the density
of Eq.(3.1), cannot be applied here even in the limits ε → 0 and ε → 1.

In order to observe if there is some decoupling of the degrees of freedom
we define a quantity

∆(j) =< |µ(xn, xn−j)− µ(xn)µ(xn−j)| > (3.16)

where the two dimensional density µ(xn, xn−j) is estimated dividing the
plane in square cells centred at {xn, xn−j} and constructing the correspond-
ing histogram from a time series. The average in (3.16) is computed over
the cells. This quantity has similar meaning as the mutual information: It
describes the distance between two densities. The nearer the quantity is to
zero, the more uncorrelated are xn and xn−j . This is a stronger test for
uncorrelation than the linear correlation would provide. In figure 3.4 the
dependence of ∆ on j is depicted for different values of ε. Due to statisti-
cal errors existent on the measure at every box, the value ∆ = 0 is never
achieved. We could instead identify a finite minimum value for ∆ at every
simulation (the plateau in figure 3.4). We consider that the variables are
uncorrelated when ∆ assumes this minimum value, what is justified through
the following simple consideration: Taking two different initial conditions,
x and y, we compute < µ(xn, yn)−µ(xn)µ(yn) >≈ ∆, since by construction
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Figure 3.3: Difference between the measures µT and µ200 (representing µ∞)
as a function of T . The measure is estimated in the same way as in figure
3.2. The sum is performed over the cells as described in the text.

x and y are independent we hence check the value of the systematic finite
sample error.

By comparing the figures 3.3 and 3.4 one might wonder if the convergence
of the one-dimensional projection of the measure is a consequence of the loss
of correlations at short time scales. This seems not to be true as it will be
seen later on.

Another way to look at the map of Eq. (3.15) is considering it acting on
a T + 1 dimensional space, defining the components of the vector x ∈ RT+1

by x(j) = xn−j . One might then ask if other low dimensional projections
of the invariant density, e.g. two dimensional projections ρ(x(i), x(j)), will
also possess an asymptotic form in the limit of large delay. Investigating
numerically two dimensional densities of the map Eq.(3.15), we could find
similar results as those observed for one dimensional densities. This gives
us some reasons to believe that other low dimensional projections should
exhibit the same behavior.

3.3.2 Transporting densities of delayed maps

In order to investigate formally the invariant measures, we have to construct
the Frobenius-Perron equation and try to understand the observed numerical
facts from it. There are two different approaches to construct these equations
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Figure 3.4: ∆(xn, xn−j) for the map (3.15) with delay T = 10. The measures
are estimated from the relative frequencies at cells on a plane and the average
is performed over the cells. A time series of 107 point is used.

in the case of delayed maps.
One way (proposed in [27]) is to consider the T–time distributions

ρ(1)(x) = 〈δ(x− xn)〉
ρ(2)(x, y) = 〈δ(x− xn)δ(y − xn−T )〉

ρ(3)(x, y, z) = 〈δ(x− xn)δ(y − xn−T )δ(z − xn−2T )〉
... (3.17)

where 〈. . .〉 denotes the average over xn with respect to the natural invari-
ant density (i.e. a long time average), then invariance yields the system of
equations for a map like Eq. (3.1):

ρ(1)(x) =
∫

dx′
∫

dy′ δ(x− f(x′, y′))ρ(2)(x′, y′)

ρ(2)(x, y) =
∫

dx′
∫

dy′
∫

dz′ δ(x− f(x′, y′))

×δ(y − f(y′, z′))ρ(3)(x′, y′, z′)
... (3.18)

which corresponds to an open hierarchy of equations, that cannot be solved
unless some simple Ansatz is assumed, e.g. assuming that ρ(2)(x, y) =
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ρ(1)(x)ρ(1)(y). An interesting feature of the system (3.18) is that it does not
depend explicitly on the delay value, while one expects that the invariant
density does. The dependence comes implicitly in the fact that correlations
e.g. between x and y would depend on the delay value.

Another approach consists in considering the vectorial form of Eq. (3.1),
whose Frobenius-Perron equation reads

ρ(x(0), . . . , x(T )) =
∫

dzδ(x(0) − f(x(1), z))ρ(x(1), . . . , x(T ), z) (3.19)

=
∑

zi/x(0)=f(x(1),zi)

ρ(x(1), . . . , x(T ), zi)
∂f(x(1), zi)/∂z

.

Its solution determines the two time density

ρ(2)(x, y) =
∫

dx(1) . . .

∫
dx(T−1)ρ(x, x(1), . . . , x(T−1), y). (3.20)

Hence, one quantity in the system (3.18) is fixed, and by condition (3.20)
the delay time enters explicitly. Therefore, an analysis which is based solely
on Eqs.(3.18) does not seem to be consistent.

Before we continue with the analysis it is worth to highlight some features
of Eq. (3.19). First it is possible to see that the structure of Eq.(3.19) does
not change as the delay increases, e.g. the number of pre-images of a given
point is conserved and this will allow us to make a statement about the
entropy in chapter 4. On the other hand, the structure does not assure that
the solutions will be identical: As the dimensionality of the vector changes,
the function ρ(x) must assume different forms.

Returning now to our analysis, consider equations (3.18): We see that
ρ(1) is fully determined if ρ(2) is known. If ρ(2) has a definite asymptotic
form in the limit T →∞ so does ρ(1), according to (3.18). Determining ρ(2)

seems to be only possible by solving the Frobenius-Perron equation (3.19),
which is a difficult task particularly at the limit of large T . In order to
investigate further this problem we have chosen a special case of a delayed
system where the invariant measure can be investigated analytically.

3.4 Perturbation theory for shifts on a torus

Since a general approach seems to be too ambitious in this case, we have
chosen a map on a torus, i.e. we consider its variable ϕ as an angle, in order
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to perform some analytical investigations. Such maps are known to have
nice properties from the analytical point of view, e.g. they are hyperbolic if
local expansion rates are positive and allow for perturbation expansions (cf.
e.g. [36] for an application in the context of coupled map lattices). Since we
will base part of our analysis on such expansions we consider the following
map defined on the circle:

ϕn+1 = 2ϕn + εg(ϕn) + εg(ϕn−T ) (3.21)

where the variable ϕ is considered modulo 2π and ε will later on be a
small parameter giving rise to a perturbation theory. We may also ex-
press this map in a vector space considering φ as vector with components
φ(0), φ(1), ..., φ(T ) where φ

(i)
n = ϕn−i :

φ
(0)
n+1 = 2φ(0)

n + εg(φ(0)
n ) + εg(φ(T )

n ) = f(φ(0), φ(T ))

φ
(i)
n+1 = φ(i−1)

n 1 6 i 6 T (3.22)

i.e. φn+1=F (φn). We can write the Frobenius-Perron equation for this
system in this (T + 1)-dimensional space as:

ρn+1(φ) =
∫

dφ0 δ(φ− F (φ0)ρn(φ0) (3.23)

Switching now to the Fourier decomposition

ρn(φ) =
∑

k

cn(k)eik·φ, cn(k) =
1

(2π)T+1

∫
dφe−ik·φρn(φ) (3.24)

Eq. (3.23) reads:
cn+1(k) =

∑

k′
Lk,k′cn(k′) (3.25)

where

Lk,k′ = Γ(k′(0) − 2k(0) − k(1), k(0))Γ(k′(T ), k(0))
T−1∏

j=1

δk′(j),k(j+1) (3.26)

and the abbreviation

Γ(k′, k) =
1
2π

∫
dφeik′φ−ikεg(φ) (3.27)

has been introduced taking the delay into account.
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3.4.1 Approximation for small ε

We expand Eq. (3.27) in terms of ε:

Γ(k′, k) = δk′,0 − ikεGk′ +O(ε2) (3.28)

where Gk′ are the Fourier coefficients of g.
Evaluating Eq.(3.25) for ε = 0 we have

cn+1(k(0), k(1), k(3), ..., k(T−1), k(T )) = cn(2k(0) + k(1), k(2), k(3), ..., k(T ), 0)
(3.29)

and thus

cn+T (k(0), k(1), k(3), ..., k(T−1), k(T )) = cn(NT (k), 0, ..., 0, 0, 0) (3.30)

where the notation

Nν(k) = 2νk(0) + 2ν−1k(1) + ... + k(ν) (3.31)

for the argument of the Fourier coefficients has been used. If we consider
an analytic density at time n = 0, then its Fourier coefficients decay expo-
nentially. Thus, iterating the system (3.29) we recognise that all coefficients
but a few become exponentially small and we end up with the stationary
solution

c
(0)
∗ (k) = δN(k),0. (3.32)

The form of the invariant density in the whole phase space is the following:

ρ(φ)|ε=0 =
∑

k

δN(k),0e
ik·φ (3.33)

and it consists of one dimensional strips with uniform density. The projec-
tion of this invariant density on one dimension is uniform. The picture of
the strips can be seen easily in two dimensions. For instance considering the
projections on the planes (φ(0), φ(j)) one has:

ρ(0)(φ(0), φ(j))
∣∣∣
ε=0

= δ(φ(0) − 2−jφ(j)) (3.34)

and for large j the strips practically fill the plane. These results of course
follow from analysing the map without the delayed term.

We use the series expansion

cn(k) = c(0)
n (k) + εc(1)

n (k) +O(ε2) (3.35)
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to determine the stationary solution for non vanishing ε. Combining Eqs.
(3.25), (3.28) and (3.35) we obtain

c
(1)
n+1(k) = c(1)

n (2k(0) + k(1), k(2), ..., k(T ), 0) (3.36)

− ik(0)
∑

k′
[δk′(T ),0δN(k′),0Gk′(0)−k(1)−2k(0) +

Gk′(T )δN(k′),0δk′(0),2k(0)+k(1) ]
T−1∏

j=1

δk′(j),k(j+1)

Using similar arguments as before, we obtain a stationary solution for the
first order coefficients that reads

c
(1)
∗ (k) = −i

∞∑

ν=0

2νNT (k)
∑

k′
[δk′(T ),0δNT (k′),0Gk′(0)−2k(0)−k(1) + (3.37)

Gk′(T )δNT (k′),0δk′(0),2k(0)+k(1) ]×
T−1∏

j=1

δk′(j),0

− i

T−1∑

ν=0

Nν(k)
∑

k′
[δk′(T ),0δN(k′),0Gk′(0)−2k(0)−k(1) + Gk′(T )δN(k′),0δk′(0),2k(0)+k(1) ]

×
T−ν−1∏

j=1

δk′(j),kj+ν+1

T−1∏

j=T−ν

δk′(j),0 (3.38)

Now, we have an approximation for the invariant density up to first order.
We are interested in the behaviour of the low dimensional projections of
this invariant density and their dependence on the delay time T . Let us
first consider the one variable distribution: its expression is obtained con-
sidering k(1) = k(2) = ... = k(T ) = 0 in Eq.(3.24). We therefore make this
substitution in Eq. (3.37) to obtain the form of the corresponding Fourier
coefficients:

c(k(0)) = δk(0),0 + εc(1)(k(0)) + O(ε2) (3.39)

from which one can see that ε = 0 the measure coincides with a uniform
measure what is expected looking at Eq. (3.21). The first order contribution
in Eq. (3.39) is given by

c(1)(k(0)) = −ik(0)
∞∑

ν=0

2νG−2ν+1k(0) − ik(0)
∞∑

ν=0

2νG−2T+ν+1k(0) (3.40)
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and we can see that if g is a smooth function, this contribution will aquire
an asymptotic form in the limit T →∞.

The same procedure can be applied to obtain two–dimensional projec-
tions. Considering for instance k(i) = 0, for any i 6= 0 and i 6= j we may
obtain the coefficients

c(k(0), k(j)) = δ2T k(0)+2T−jk(j),0 + εc(1)(k(0), k(j)) + O(ε2) (3.41)

where

c(1)(k(0), k(j)) = −i(2jk(0) + k(j))
∞∑

ν=0

2ν [G2ν+1(2jk(0)+k(j)) + G2T+ν+1(2jk(0)+k(j))]

− i2(j−1)[G(2jk(0)+k(j)) + G2T (2jk(0)+k(j))] (3.42)

− ik(0)
j−2∑

ν=0

2ν [G2ν+1(k(0)+2−jk(j))δk(j),2j−ν−1m + G−2T+ν+1(k(0)+2−jk(j))]

One should also expect that the two dimensional projections converge to-
wards an asymptotic form in the limit of large delay.

3.4.2 Results for a particular form of feedback

For ease of presentation and in order to clarify our ideas let us first consider
a particular choice for the function g in Eq. (3.21), namely

g(ϕ) = ϕ(π − ϕ) for ϕ ∈ [0, π], g(ϕ) = g(ϕ + π) . (3.43)

The Fourier coefficients of this function are

G2k =
−2

(2k)2
, G2k+1 = 0 ∀ k. (3.44)

With Eq. (3.44) in Eqs. (3.40) and (3.39), we have the first order approxi-
mation for the coefficients

c(1)(k(0)) =
i

k(0)
(1 +

1
22T

) (3.45)

and for the one dimensional projection of the invariant measure:

ρ(φ(0)) = 1− ε(1 +
1

22T
)(π − φ) + O(ε2). (3.46)
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Figure 3.5: Above: < φ(0) > as function of ε for T = 2; open circles
correspond to the first order approximation and the closed ones to numerics.
Below: difference between first order and numerics; the dashed line is a fit
to a parabola, showing that the error is of second order in ε.

It is easy to see that this projection converges smoothly towards an asymp-
totic form.

We can check numerically the range of validity of our approximation
observing the behaviour of the averages with respect to the invariant measure
< φ(0) >,< cos(φ(0)) >,< sin(φ(0)) >. In order to give the average of the
angle a definite meaning we have restricted the values of the angle to the
interval [0, 2π). In figures 3.5 and 3.6 some numerical results are compared
to the first order approximation as a function of the coupling ε. All the
numerical results clearly confirm that our approximations correctly describe
the lowest order effects, and that the neglected higher order corrections lead
to less than 10% effects for ε < 0.01. In order to demonstrate that our
results are to some extent uniform in the delay time we investigate the error
for finite coupling ε in dependence on the delay time. The result displayed
in figure 3.7 shows that the difference stays finite even if the delay becomes
large. Such finding demonstrates that our expansion can be used even for
large delay times.

Also the specific expressions for the two dimensional projections may be
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Figure 3.6: Similar to figure 3.5, with averages of < sin(mφ(0)) >, which
are related to the values of the coefficients c(m). In the upper panel the
closed symbols correspond to the first order approximation and the open
ones to numerics. In the lower panel the difference between the first oder
approximation and the numerics is depicted. The fit to a parabola shows
that the error is of second order.

obtained.

ρ(φ(0), φ(j)) = δ(φ(0) − 2−jφ(j)) + ε
∑

k(0),k(j)

c(1)(k(0), k(j))e(k(0)φ(0)+k(j)φ(j))

(3.47)
with j:

c(1)(k(0), k(j)) =
i

2(k(0) + 2−jk(j))
(1 +

1
22T

) +
2jik(0)

(2jk(0) + k(j))2
(δk(j),2m +

1
22T

)

+
2ik(0)

4(k(0) + 2−jk(j))2

j−2∑

ν=0

2−ν(δk(j),2j−νn +
1

22T
) (3.48)

where m and n are integers.
We can see that also the two dimensional projections of the invariant

density will have an asymptotic form for large T and that the convergence
rate in this limit will also be proportional to 4−T . In figures 3.8–3.9 we
show some comparison between this approximation and numerical results.
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Figure 3.7: Above: < φ(0) > as function of T for ε = 0.002, open closed
circles have same meaning as in previous figures. Below: the difference
between the first order approximation and numerics is depicted.

Because of numerical fluctuations of the averages the quadratic dependence
of the error on ε is hardly visible here.

In order to check if the arguments of section 3.3 apply here, we should
investigate the correlation function for small ε. A superficial inspection of
Eq. (3.47) suggests that to leading nonvanishing order correlations between
φ(0) and φ(T ) decay as 2−T . That rate apparently differs from the conver-
gence rate of the one particle density which according to Eq. (3.46) is given
by 4−T . Thus one has to clarify how the decay of correlations is related to
the convergence properties for large delays. For that purpose let us have a
look at perturbative result (3.40). If the delay term is Hölder continuous
of order ` then its Fourier coefficients decay like Gk ∼ k−`−1 and Eq.(3.40)
tells us that the one particle density converges according to a power law
2−(`+1)T . If g is analytic then Fourier coefficients decay even faster, namely
exponentially Gk ∼ exp(−αk) and the convergence of the one particle den-
sity is hyperexponential exp(−α2−T ). Thus the mixing rate of the map
together with the analytical properties of the delay term determine the con-
vergence rate of the projected measure. In fact the correct convergence rate
is reflected by a suitable correlation function, namely the pair correlation
of g(φ) itself, which can be easily computed taking the Fourier series into
account.
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Figure 3.10: Part of projection of the attractor of Eq.(3.21) with ε = 0.01
and T = 5, on the plane {x(0), x(2)}. Part of one strip is shown while in the
inset the whole projection can be seen. At larger delays (and small enough
ε) the strips are preserved but the structure inside them smooths out. The
thickness of the strips is observed to be of the order of ε.

Although we have restricted our analysis to first order in ε we expect
that higher order contributions will have the same qualitative behaviour, at
least regarding the one dimensional projection. In order to make this study
more complete, we have reproduced the numerical analysis of figures 3.3
and 3.4 in the case of map (3.21). As it can be seen from the lower panel of
figure 3.11, the one dimensional projection converges also when ε is large.
The convergence is smooth and the discrepancy between the measure at
low and large delays depends on ε similarly as the first order approximation
suggests.

3.5 What have we learned about the densities?

We have analysed the limit of large delay in a particular time discrete system
by an analytical perturbation expansion. The validity of the expansion has
been confirmed by numerical simulations. Our result shows that projected
measures converge in the limit of large delay, where the rate of convergence
is determined by the mixing rate of the chaotic map and by analytic prop-
erties of the delay term. Chaos plays of course an important role for the
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measures at low and large delay (lower panel) for the map (3.21).

convergence since otherwise correlations would not decay and smooth den-
sities would not exist in general. However, it is not the plain mixing rate
which is responsible for the rate of the convergence but a particular pair
correlation which involves the analytical properties of the delay term.

Our treatment was confined to a first order expansion. But we have
good indications that our results are valid beyond such an order and we
suppose that one might even be able to perform a formal proof of our state-
ments along these lines. In addition, using e.g. diagrammatic or projection
techniques it should be possible to go beyond our simple perturbative treat-
ment. But such advanced approaches go far beyond the scope of this present
work. Analytic approaches so far are restricted to hyperbolic systems, i.e.
essentially to maps on the torus. Maps on intervals, e.g. even the simple
Bernoulli shift (3.15) lacks such a treatment till today. Nevertheless numer-
ical simulations indicate that qualitatively such models behave similarly.



Chapter 4

Why entropy does not grow?

4.1 Entropies of delayed systems

An intriguing fact observed numerically in many different scalar delayed sys-
tems is that in the large delay limit, when the dimension (estimated using
the Kaplan-Yorke conjecture [37, 21]) of the attractors grow almost linearly
as the delay increases, the entropy (estimated from Pesin’s identity (see e.g.
in [38]) remains practically unchanged (see figure 1.2 for an example). At
a first glance this fact is counterintuitive: From one side as the delay in-
creases, more degrees of freedom become unstable what is to be associated
with more disordered motion, but the entropy does not grow, approaching
an asymptotic value. This observation is even more puzzling if one con-
siders that delayed maps can be represented as spatially extended systems
as we will discuss in chapter 5. For spatially extended systems, it is well
known that both dimensions and entropies are extensive quantities, i.e. they
grow linearly with the size of the system, which in case of delayed systems
corresponds to the delay value. The figure 4.1 illustrates this appearant
contradiction.

Looking at the Lyapunov spectra one may have a quick answer to the
question above: As the delay T increases more exponents become positive,
but their absolute values decay like T−1(c.f. figure 1.1 for an example). The
two effects compensate each other and the entropy, which is estimated by
the sum of positive Lyapunov exponents, does not grow. If one is satisfied
with this answer it is not necessary to read further this chapter.

This chapter treats the issue above in a deeper way. What was sought
here was to understand better the reasons why the entropy remains bounded

58
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Figure 4.1: Projection of the attractor and the unstable periodic orbits on
the subspace ({xn+1, xn, xn−T }). When T = 5 (upper panel) dKY = 2.11,
hKS = 0.153 while and when T = 10 (lower panel) dKY = 3.32 and hKS =
0.119.

at large delay. We have asked first if the topological entropy is also bounded
at large delay and second what mechanism is responsible for bounded en-
tropies from an information theory point of view. By investigating these
aspects some intuition was gained about the large delay limit and the com-
plexity of the system in that limit.

4.2 Some concepts on entropies

Before treating entropies of delayed maps, we make a small detour and
present briefly some definitions and concepts related to the thermodynamic
formalism of dynamical systems. This section is thus not necessary to further
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understand this chapter if there is familiarity with the concepts presented.

Symbolic dynamics

The statistical description of mappings requires a partition of the phase
space into subsets. Given an appropriate partition, one can analyse the
chaotic motion through symbol sequences in a course-grained way.

The easiest way to partition a d-dimensional phase space X is to choose
d-dimensional cubes of equal edge size δ. These cubes, usually called boxes
in the literature, are labelled by an index i running from 1 to R where R
is the total number of boxes. The boxes are non overlapping and cover the
entire phase space. More generally, a partition {A} is defined through cells
Ai of different sizes and different shapes that are disjoint and cover the whole
phase space, i.e.:

Ai

⋂
Aj = 0 ∀i, j i 6= j

and
R⋃

i=1

Ai = X.

A partition containing a fixed number of cells R of fixed size is generating
if the infinite symbol sequence i0, i1, i2... uniquely determines the initial
value x0. To prove the existence and finding a generating partition is a very
difficult task, with construction methods only known for one dimensional [39]
or two dimensional [29] maps . Hence, for practical purposes, the partition
in boxes is used. In the limit δ → 0 (R → ∞), such a partition mimics a
generating one.

Iterating a dynamical system, say a map f with initial condition x0

belonging to a cell i0 will produce a sequence of points x1, x2, ... belonging
respectively to cells i1, i2, .... By this method it is possible to attribute
to each initial value x0 a symbol sequence that describes the trajectory in
a coarse grained way. Each initial value x0 generates an infinite symbol
sequence and for a given finite symbol sequence i0, i1, i2, ... of length N one
can identify a set o initial values denoted by J [i0, i1, .., im−1] that generate
this sequence. This set is called m − cylinder. The volume of such sets
diminishes exponentially as m increases, i.e. the longer the sequence, the
more precision on has in identifying the region to which the corresponding
initial condition belongs. If the sequence is forbidden the corresponding
cylinder is empty. The rules that determine the forbidden sequences are
known as pruning rules and determine a ”grammar” of a dynamical system.
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These rules will define the topological properties and therefore are intimately
related to periodic orbits (see e.g. in [33]).

Some sequences will appear more frequently than others. Hence it is
possible to attribute to each sequence, a probability p(i0, i1, i2, ..., im) to be
observed. This probability is related to a probability density ρ(x0) of initial
conditions:

p(i0, i1, i2, ..., iN ) = µ(J [i0, i1, ..., im]) (4.1)

where
µ(J [i0, i1, ...]) =

∫

J [i0,i1,...,im]
dx0ρ(x0). (4.2)

A natural choice for this distribution is the invariant density of the systems
(consequently µ(J [i0, i1, ..., im]) is the natural invariant measure) which pro-
duces stationary probabilities. Other choices could be made however (for
instance a density based in the unstable periodic orbits [34]).

The hierarchy of all probabilities p(i0, i1, i2, ..., iN ) with N = 0, 1, 2, ...
defines a stochastic process and one can always write the probability of a
given sequence as:

p(i0, i1, i2, ..., im) = p(im|i0, i1, i2, ..., im−1)p(i0, i1, i2, ..., im−1) (4.3)

where the conditional probability

p(im|i0, i1, i2, ..., im−1) =
p(i0, i1, i2, ..., im−1)
p(i0, i1, i2, ..., im)

(4.4)

is the probability of im provided that the history i0, i1, i2, ..., im−1 has hap-
pened. The symbolic stochastic process will define a Markov chain if

p(im|i0, i1, i2, ..., im−1) = p(im|im−1) (4.5)

i.e., the conditional probability only depends on the last event and not on
all past history. Another simple stochastic process is a topological Markov
chain, defined by the property:

p(im|i0, i1, i2, ..., im−1) = 0 (4.6)

if and only if p(im|im−1) = 0 or p(im−1|i0, i1, i2, ..., im−2) = 0. Special
dynamical systems may possess the properties (4.5) or (4.6) if the partition
is chosen properly (if a Markov partition can be found), but in general the
stochastic process related to a dynamical system will be a complex non
Markovian process.
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The Rényi entropies

The Rényi entropies, like the Shannon entropy, characterise a probability
density pi. They are defined by:

Hβ =
1

1− β
ln

∑
pβ

i (4.7)

and are information measures like the Shannon entropy (in fact the Shannon
entropy is recovered in the limit β → 1). This definition can be applied to
dynamical systems and in this case, pi are the probabilities of the different
sequences to occur.

From now on we will make statistics on sequences and therefore, it is
useful to limit ourselves to allowed sequences, i.e. sequences whose proba-
bility is nonzero. We denote the total number of allowed sequences of size
m , ω(m) and label the probability of a particular sequence of this size as
p
(m)
j (the index j runs therefore from 1 to ω(m).

In the context of dynamical systems, the Rényi entropies are defined by

hβ = sup
{A}

lim
m→∞

1
m

1
1− β

lnZm(β) (4.8)

where Zm(β) is the dynamical partition function:

Zm(β) = Σω(m)
j=1 (p(m)

j )β. (4.9)

The exponent β is the order of the entropy and will control the emphasis
that is given to sequences with small or large probabilities: the larger the
value of β the more weight have the sequences with large probability. By
varying β one can span a whole spectrum of entropies. Here, this will not
be discussed further, but instead we concentrate on the three integer values
of β giving rise to the entropies studied in this work.

The idea of finding all possible partitions and then looking for the one
that maximises (4.8) is rather cumbersome. The situation becomes better
if a generating partition is known but since this is true only for very special
cases the usual procedure is to construct a partition using boxes and making
their sizes tend to zero. In this context, the Rényi entropies are defined as:

hβ = lim
δ→0

lim
m→∞

1
m

1
1− β

ln Zm(β) (4.10)
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Topological entropy.

The zeta function for for β = 0 just gives the total number of allowed symbol
sequences of length m. For very large m it is possible to write:

ω(m) ∼ emh0 (4.11)

and therefore, h0 describes the growth rate of the number of allowed symbol
sequences with m, also known as the topological entropy (to be denoted
hTOP in the rest of this work).

From the concept of partitions it is possible to define a transition matrix
T such that Tij is 1 if the transition from cell Ai to Aj is allowed and 0
otherwise. Thus, the product Tm is related to all possible symbol sequences
of length m. The sum of all elements of Tm gives, therefore, ω(m), and the
logarithm of the largest eigenvalue of Tm gives the topological entropy in
the limit m → ∞ [33]. In the case of some expanding maps, it is usually
possible to find a partition, such that a finite dimensional matrix T describes
the dynamics and the topological entropy might be obtained analytically as
described above. Such cases correspond to subschifts of finite type, i.e.
mappings whose pruning rules can be truncated at a finite period. This is
not at all the general case and an alternative way to estimate the topological
entropy is necessary.

The growing rate of ln[ω(m)]/m is well approximated by the growing rate
ln[TrTm]/m, i.e. one can use the trace of Tm to estimate the topological
entropy. Since the trace gives the number of sequences that return to the
same element after m interactions, it is exactly the number of periodic points
of period m 1. Hence, in the limit m →∞, the the topological entropy can
be estimated by [40],[39]:

htop = lim sup
m→∞

ln N(m)
m

. (4.12)

This is only an estimate if the pruning rules are not known for all periods.
For one dimensional mappings (xn+1 = f(xn)) another way to estimate

the topological entropy exists using the number of pre-images of y = fm(x).
Calling this number N(m), Eq. (4.12) is recovered for the entropy [39]. This
method is also based on the idea of a transition matrix.

1A periodic orbit of period p as defined in chapter 2 has p periodic points.
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Kolmogorov-Sinai entropy

In the limit β → 1 the Kolmogorov-Sinai entropy is obtained from Eq.
(4.10). Considering the partition given by boxes of size δ, the Kolmogorov-
Sinai entropy is defined as:

hKS = h1 = lim
δ→0

lim
m→∞

1
m

Σω(m)
j=1 p

(m)
j ln p

(m)
j (4.13)

if a general partition {A} is to be considered, the supremum must be taken
just as in 4.8.

The KS entropy is a measure of how much information is gained (or lost)
as the chaotic system evolves in time. This meaning becomes clearer when
the block entropies are considered:

Hm = Σω(m)
j=1 p

(m)
j ln p

(m)
j (4.14)

Hm+1 = Σω(m+1)
j=1 p

(m+1)
j ln(p(m+1)

j )
(4.15)

According to Shannon’s ideas [41] Hm is a measure of the amount of infor-
mation in the set of sequences with length m. The metric entropy measures
how much information is gained in one step if all m past steps are known,
in the limit of very long sequences, i.e. it can be defined by:

hKS = limδ→0limm→∞h(m) (4.16)

with
h(m) = Hm+1 −Hm. (4.17)

The convergence of Eq. (4.16) is uniform from above, i.e.

h(m + 1) 6 h(m) (4.18)

what can be easily proved with the help of Eqs. (4.4) and (4.14).
Speaking more intuitively, chaotic systems create information in the fol-

lowing way: suppose a set of initial conditions is confined in one box of size δ
and cannot be distinguished from each other (i.e. the resolution is restricted
to δ). After one iterate, due to the expanding property, many boxes will
be occupied and it will be possible to distinguish among initial conditions,
without improving the resolution. This local expansion of initial conditions
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is measured by the Lyapunov exponents and indeed, there is a relation be-
tween the Kolmogorv Sinai entropy and the Lyapunov exponents. It is the
well know Pesin’s inequality (see e.g. [38] for a formal statement):

hKS 6 Σiλ
(+)
i (4.19)

the equality holds if the invariant measure is smooth along the expanding
directions.

A last important remark regarding the KS entropy is that it is a measure
of ”chaos” and unpredictability: The larger its value the more difficult it
will be to guess, on the basis of the past history, the next outcome.

The correlation entropy

Another important quantity, is obtained with β = 2 in Eq. (4.10), the corre-
lation entropy. This entropy is a lower bound to the metric and topological
entropies, i.e.

h2 6 h1 6 h0 (4.20)

what follows from the more general consideration:

hβ′ 6 hβ if β′ > β. (4.21)

The correlation entropy and the corresponding correlation dimension are
the quantities usually computed when one wants to characterise chaotic mo-
tion from a time series. Thanks to a method derived in [21] it provides better
statistics and requires less computational effort than computing the KS en-
tropy from the invariant density. Having a time series with N state vectors
{~vm

n }, obtained by a m-dimensional delay embedding, the then correlation
sum is given by:

C2(m, δ) =
1

N(N − 1)
Σi6=jΘ(δ − |~vm

i − ~vm
j |). (4.22)

from which the correlation dimension can be estimated by

D2(m, δ) =
∂ ln C2(m, δ)

∂ ln δ
(4.23)

as long as the embedding dimension m is large enough. To be strict one
should consider Eq. (4.23) in the limit N → ∞ and δ → 0 [21] in order to
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recover a dimension. This is not possible in practice and instead of perform-
ing the limit, one looks for a region such that D2(m, δ) is independent from
δ.

Inside this scaling range, where the dimension is independent from δ, the
correlation entropy can be obtained from:

h2(m, δ) = ln
C2(m, δ)

C2(m + 1, δ)
(4.24)

which should converge to a constant if m is large enough. The length of the
scaling range and how large must m be depends strongly on the system as
discussed in [42]. This method will be used later, when we will estimate the
correlation entropy of a time series generated by delayed systems.

4.3 Is the topological entropy bounded?

This section is devoted to discuss the behavior of topological entropy of de-
layed maps in the large delay limit. Addressing this issue was motivated by
two facts: knowledge of the metric entropy estimated from Lyapunov expo-
nents does not allow to make any inference about the topological entropy;
and it would be interesting to investigate which topological properties are
behind the boundedness of the entropy (if exists).

4.3.1 An answer from the cycles

Our first aim was to investigate the issues above for a general delayed map
given by Eq. (1.4). The only approach that allowed this generality was to
investigate the behavior of periodic orbits in the large delay limit, an issue
already discussed in chapter 2. From section 2.2.1 we know that for any p,
Eqs. (2.2), (2.3) are invariant under the transformation T 7→ T + np, n ∈ Z
of the delay value. Period-p orbits found for a delay value T will be exactly
the same as those for T̃ = T + np, as long as T̃ and T are both positive.
As a consequence, one has the following relation for the p-periodic points of
the map:

N(p, T ) = N(p, T + np), (4.25)

where N(p, T ) denotes the number of p-periodic points for a delay T .
We are going to use this relation to estimate the topological entropy of

the map (1.4). As a consequence of Eqs. (4.25) and (4.12), we derive an
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heuristic argument, why the topological entropy should be bounded in the
limit of large delay. For a finite period p, we have the relation

N(p, T ) = C(p, T ) exp[ph(T )] (4.26)

where in view of Eq.(4.12) the pre-factor obeys the constraint

lim sup
p→∞

ln C(p, T )
p

= 0 (4.27)

i.e. it depends on p weaker than exponentially. If we combine Eq.(4.26) and
Eq.(4.25) we get the exact equations

C(p, T ) exp[ph(T )] = N(p, T ) = N(p, T + 2p) = (4.28)
C(p, T + 2p) exp[ph(T + 2p)].

and

C(2p, T ) exp[2ph(T )] = N(2p, T ) = N(2p, T + 2p) = (4.29)
C(2p, T + 2p) exp[2ph(T + 2p)].

Therefore our final result can be written as:

h(T + 2p) = h(T ) +
ln C(2p, T )− ln C(p, T )

p
− (4.30)

ln C(2p, T + 2p)− ln C(p, T + 2p)
p

.

If the third term in the R.H.S of Eq. (4.28) is bounded one should expect
that in the limit p → ∞, the entropy h(∞) is finite 2. The figure 4.2
illustrates the argument in a more intuitive way.

All our previous expressions are valid for arbitrary T and p. In our final
argument we have used the assumption that to some extent the limit (4.29)
is uniform in the delay time. Such an assumption cannot be proven in the
general case and we will have a closer look on this issue within the discussion
of our examples. Nevertheless, under such a quite general assumption the
topological entropy remains bounded in the limit of large delay time.

2The second therm in the R.H.S of Eq. (4.28) vanishes due to (4.29).
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points where p is a sub-multiple of K. If K is large and not prime (i.e.
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Figure 4.3: As a concrete example: For the Bernoulli map with ε = 0.2 the
number of periodic points for two different delay values.
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4.3.2 An answer from partitions

Investigating the periodic orbits we have gained an argument for the bound-
edness of topological entropy, but could not obtain more illuminating details,
e.g. an upper bound for it or know the mechanism responsible for this
boundedness. Such details are difficult to be obtained in a general way and
therefore we restrict to a special type of delayed map [27]:

M : xn+1 = (1− ε)F1(xn) + εF2(xn−T ), (4.31)

which mimics to some extend the coupling known from unidirectional cou-
pled map lattices. Here the parameter ε governs the strength of the delay
term. The special structure of Eq.(4.31) ensures that the dynamics is well
defined irrespectively of the type of the particular map.

There are two simple cases where the topological entropy can be eval-
uated by inspection. First considering ε = 0 the system turns out to be
a one-dimensional map and the topological entropy is equal to that of the
map F1. In the opposite case, ε = 1, Eq.(4.31) reduces to T +1 independent
copies of the map F2 acting on the time scale T +1. Hence, if N(k, 0) denotes
the number of period–k points of the map F , then by combinatorics (4.31)
with ε = 1 has N(p, T ) = N(k, 0)T+1 periodic points of period p = k(T +1).
Taking the limit k →∞ equation (4.12) yields again the topological entropy,
per unit time, of the single map F1 or F2.

For intermediate values of ε no general reasoning seems to be available
but we can speculate :

htop(M) 6 sup{h(F1), h(F2)} (4.32)

on the basis of the reasoning that for ε 6= 0 or 1 one has more severe pruning
rules. This idea is supported by numerical results of [27], showing that the
metric entropy has a minimum for some ε ∈ (0, 1), and by our computations
of the topological entropy to be shown in the next section.

One can establish a rigorous upper bound for the topological entropy
if the functions F1 and F2 are piecewise linear. Consider that they satisfy
this condition, act on an interval I and are linear in R sub-intervals. This
property defines automatically a generating partition with R elements, and
therefore, the maximal allowed value for the topological entropy will be

htop 6 ln(R). (4.33)

This situation gives a more insightful understanding: the number of ele-
ments of the generating partition, in this case, is not affected by changing
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the delay value 3. This argument gives naturally an upper bound for the
topological entropy, namely the logarithm of the number of elements of the
partition. One should be aware, however, that the grammar (the pruning
rules governing the existence or not of a given sequence) changes as the delay
varies. The pruning always reduces the entropy and we cannot estimate its
value from these arguments.

4.3.3 Examples: Some specific maps.

Bernoulli shift

As a first example, we consider the map of Eq. (4.31) with

F (x) = 2x− sgn(x), x ∈ [−1, 1]. (4.34)

Since the map is piecewise linear its periodic points can be easily estimated
as consequence of the existence of generating partition. Consider an orbit of
period p, x0, x1, . . ., xp−1. Then by σk := sgn(xk) we can assign a period–p
symbol sequence to this orbit. This assignment is injective, i.e. there exists
at most one period–p orbit for each period–p symbol sequence: Combining
Eq.(4.31) and Eq.(4.34) the periodic orbit is determined by

xn+1 = 2(1− ε)xn + εxn−T − (1− ε)σn − εσn−T (4.35)

and such a linear inhomogeneous equation has at most one solution which
satisfies the self consistency condition sgn(xk) = σk for a given symbol
sequence σ0, σ1, . . ., σp−1. Hence the number of period–p points obeys

N(p, T ) 6 2p (4.36)

and the topological entropy of the single map F yields an upper bound for
the entropy of the map.

In the figure 4.4 we compare numerically obtained values of the topo-
logical entropy and the Kolmogorov Sinai entropy for T = 1 and different
values of ε. For this particular model the exact values of both entropies
coincide since the Jacobian is constant. A proof for this statement is based
on the absence of multifractality in the system i.e. all the Rényi entropies
can be shown to have the same value. Thus the difference visible in figure

3Another way to see this is remembering that the number of pre-images of a given
point is not affected by the delay value. In this sense, some arguments of 1 dimensional
maps [39] apply here although the maps are higher dimensional.
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4.4 yields the accuracy for the method by which the topological entropy
was estimated. Apart from deviations near the minimum the topological
entropy was accurately recovered. In fact near such a minimum we expect
quite dramatic topological changes that prevent a good convergence of the
estimates of htop based on Eq. (4). This minimum appears also for higher
delay values (see figure 4.5). The exact location of the minimum approaches
ε = 0.5 in the limit T →∞ [27], when the curve of the entropy is symmetric
in respect to this point, although the one for the dimension is similar to that
shown in 4.5.
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Figure 4.4: Estimated topological and metric entropies (htop and hks re-
spectively) for the Bernoulli shift with T = 1. Metric entropies have been
estimated from the Lyapunov spectrum using Pesin’s identity and topolog-
ical entropy by lnN(p, 1)/p with p = 25. The inset shows the estimates of
topological entropy as a function of the period for ε = 0.2 (solid line) and
ε = 0.75 (dashed line).

A slightly more detailed analysis is possible based on a numerical eval-
uation of Eq.(4.35). Here a severe kind of pruning can be detected which is
related to the time scale set by the delay T . First of all, if we consider pe-
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Figure 4.5: Dimension and entropies for the Bernoulli map with T = 10 as a
function of ε. The topological entropy was estimated with lnN(p, 10)/p with
p = 27. The difference between hKS estimated from Pesin’s identity and
the topological entropy estimated from the orbits is due to lack of precision
in the second one.

riodic points of period p = T , then because of xn−T = xn Eq.(4.31) reduces
to the single map F . Hence the delayed system admits the same number of
periodic points of order p = T as the single map F . A similar feature occurs
for periods p = T + 1. Here because of xn−T = xn+1 Eq.(4.35) reduces to

0 6 |xn| = 1
2
(1 + σnσn+1) +

1− 2ε

2(1− ε)
(−σnσn+1)(1− |xn+1|). (4.37)

Except for the fixed points the product σnσn+1 takes the value −1 for at
least one n and the condition (4.37) is violated if ε > 1/2. Otherwise,
if ε < 1/2 then Eq.(4.37) yields a contraction on [0, 1] so that all symbol
sequences are allowed. Hence if p is a prime factor of T + 1 then no prime
orbit of period p appears if ε > 1/2 but all prime orbits of period p appear
if ε < 1/2. Therefore, pruning rules depend sensitively on the fine tuning of
the coefficients of the delay term. Fortunately these features do not corrupt
the upper bound for the topological entropy, but an accurate estimation of
the entropy from counting periodic orbits seems to be difficult. In the figure
4.6 these pruning rules can be seen in the case of T = 11.

The analysis carried out above shows that, just like in the delayed Hénon
map, the Bernoulli shift has special periods of the order of T and which will
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Figure 4.6: Number of prime orbits as a function of the period - N(p, T ) -
for the map with Bernoulli shift for T = 11, ε = 0.45 and ε = 0.5 (empty
and filled circles respectively).

have an impact in the convergence properties of the topological entropy,
i.e. we should not expect a good estimate the topological entropy using Eq.
(4.12) with period p < T . Details about this convergence is shown in figure
4.7.

Lozi

Another example of piecewise linear map we have chosen is similar to the
Lozi map:

xn+1 = (1− ε)(2− 2xnσn) + εxn−T (4.38)

with σn := sgn(xn).
We perform the same calculations described for the Bernoulli shift in

order to estimate the topological entropy of Eq. (4.38) from its periodic or-
bits. In this case, there is no minimum but the entropy decays as ε increases
from 0 to 1 (c.f. figure 4.8)

Also for this map, special pruning rules are obtained for orbits with
periods around the delay value. First, if p = T one has xk−T = xk and these
orbits are given by the equations:

xk+1 = (1− ε)(1− 2xksgn(xk)) + εxk. (4.39)
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Figure 4.7: Estimates of topological entropy from periodic orbits for the
Bernoulli map with T = 4. Convergence is reached only if p > T and for
ε ≈ 0 or 1.

A more interesting situation happens for p = T +1, in this case xk−T = xk+1,
the orbits are solutions of:

xk+1 = 1− 2xksgn(xk) (4.40)

and N(p, T ) = 2p. In figures 4.9 it is possible to observe that the existence
of these special periods will influence the convergence of the topological
entropy also in this case, and good estimates are only obtained if p > T + 1
as in the other examples discussed here.

As long as conditions for convergence are satisfied, it is possible to ob-
tain good estimates for the topological entropy for different delay values as
depicted in figure 4.10. We see that the topological entropy estimated from
the orbits is more or less constant with delay variation for a given ε value.

Hénon

Using the Biham-Wenzel method [28] to obtain the periodic orbtis and
Eq.(4.12) we were able to obtain estimates of the topological entropy for
the delayed Hénon map (Eq.(2.16)), which we show in figure 4.11 for differ-
ent delay values. Comparing the estimated topological entropies with the
metric entropies calculated from the Lyapunov exponents we observe that
the values agree within the error bars. Although these results are limited
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Figure 4.8: Dependency of the entropies on ε for the map (4.38) with T = 5.
At the extrema of the interval ε = 0, 1, the entropies are equal the one
corresponding to the maps F1 and F2. Topological entropy was estimated
with lnN(p, 1)/p with p = 20.

to relatively low delay values, they show an important property: the topo-
logical entropy agreed with the value of the corresponding metric entropy
and moreover, its value does not grow as the delay grows but seems to be
bounded. In that respect the model seems to share the properties of the
Bernoulli system and Lozi map already discussed. It shows that our argu-
ments can be valid also for a nonlinear map.

The error bars in figure 4.11 increase with the delay due to the conver-
gence properties of the topological entropy. Estimates for the the topological
entropy (full circles in figure 4.11) were obtained using the data sets contain-
ing the periods and the respective number of periodic points. Truncating
the set at a given p, and fitting the data to Eq.(4.26), we obtained estimates
for the entropy. Figure 4.12 shows how these estimates depend on p.

For the delay value T = 6 in figure 4.12 one can see a large peak for p =
T + 1 oscillations around an average value for p > T + 1. The same pattern
was observed for other low delay values as a consequence of the special
periods discussed in section 2.2.4 c.f. Eq. (2.19). Therefore we can expect
satisfactory convergence of the topological entropy only for p > T + 1. The
results in figure 4.11 were obtained by the average of all values h(T, p) such
that p > T + 1 and the error bars indicate the amplitude of the oscillations.
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Figure 4.9: Estimates of the topological entropy of Eq. (4.38) with ε =
0.2.The fluctuations with p are small, and the estimates of the entropy reach
a nearly constant value only for for p > T + 1.

4.4 Why is there an asymptotic value?

This study would not be complete without a direct analysis of the met-
ric entropy, without the need of Pesin’s identity, and an explanation of its
asymptotic behavior on the basis of metric properties. This section is de-
voted to this analysis. We present here the discussion of how the metric
entropy could be estimated using a projection of the invariant density in a
low dimensional subspace and how, as a consequence, this entropy has an
asymptotic limit value.

4.4.1 First step: Estimating the entropies.

Following a logical thread from section 4.3, one would think that the periodic
orbits would be the key to understand the behavior of any ergodic average in
the large delay limit: Since the low period orbits reappear again and again
as the delay increases, one could naively think that the measure obtained
from them through cycle expansion methods (see e.g. [33]) would allow one
to obtain also the metric entropy. The problem with this reasoning is that
for such methods to converge (i.e. in order to obtain good estimates of
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Figure 4.10: KS entropy estimated with Pesin’s identity and estimates of
topological entropy for the Lozi delayed map with ε = 0.2. As the delay grow
the estimates of the topological entropy become poorer (convergence is not
achieved for periods p = 26, 27) but it is possible to see that the behavior of
the two entropies are essentially the same with respect to increase of delay
value.

the entropies) one needs to go to periods of the order of the delay value.
Some hope would exist if one considers only periods of order kT , but even
in simple cases, pruning rules for such periods are not evident and obtaining
these rules numerically is very hard as the computation time to find the
orbits grows exponentially with the period.

On the other hand, if one tries to construct the measure directly from
a long trajectory and apply the definition (4.13) one realises that a huge
numerical effort is necessary since Eq. (4.16) has bad convergence proper-
ties in the limit of large T , and the amount of data necessary to compute
the probabilities is expected to grow exponentially as the dimension grows.
Therefore, we have used an alternative way to estimate the metric entropies:
Inspired by a method developed for coupled map lattices [43], we concen-
trate on subspaces of interest and use the projection on theses subspaces to
estimate the entropy.



Chapter 4. Why entropy does not grow? 79

0 5 10 15
T

0

0.1

0.2

0.3

E
st

im
at

e 
of

 e
nt

ro
pi

es
Estimate of hTOP

ln(Np)/p ; p=30
hKS

Figure 4.11: Estimates of topological and metric entropies of the model
(2.16) with parameters a = 1.0 and b = 0.3. Metric entropies have been
estimated from the Lyapunov spectrum using Pesin’s identity. See text for
a description of how htop, denoted with full circles were obtained.

The central idea of the method consists in considering only a subspace of
the high dimensional phase space X~s, spanned by a state vector ~s partitioned
in boxes of edge δ. Using the projection of the invariant measure on this
subspace, one can assign a probability pi to every box and define the entropy:

H(~s, δ) = −Σipi ln pi. (4.41)

A second subspace X~t spanned by vectors ~t is then chosen such that ~t = ~F (~s),
and therefore must be related to the dynamical constraints of the system.
In this framework the joint probability pij for the system being in cell i of
X~s and cell j of X~t is associated to the entropy,

H(~t, ~s, δ) = −Σijpij ln pij . (4.42)

The conditional entropy

h(~t|~s, δ) = H(~t, ~s, δ)−H(~s, δ) (4.43)
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Figure 4.12: Convergence of estimates the topological entropy with finite
values of period for T = 6 (solid line) and T = 15 (dashed line) for the
Hénon map with a = 1.0, b = 0.3.

is independent of δ for δ small enough, in the the same as in section 4.2 the
supremum over all partitions was replaced by a suitably fine partition.

In order to apply these ideas to the delayed maps, we define the subspaces
mentioned above as:

~sn = {xn, xn−T } (4.44)
~tn = {xn+1}. (4.45)

while conventionally one would choose ~sn = {xn, xn−1, ..., xn−T } but in the
case of a scalar delayed map, the choice of (4.44) is more appropriate since
X~s and X~t are related by a dynamical constraint. The conditional entropy
given in Eq. (4.43) gives an upper bound for the metric entropy h1 defined
by Eq. (4.16). Better estimates of hKS are based on a longer history:

hm(~t|~S(m), δ) = H(~t, ~S(m), δ)−H(~S(m), δ) (4.46)

with m > 1 and ~S(m) = {~sn, ~sn−1, ..., ~sn−m}. And since we are using the
Shannon entropy it is valid that:

h1(δ) > hm(δ) with m > 1 (4.47)

In order to verify these ideas we have calculated the correlation entropy
of time series generated by delayed maps. The choice of correlation entropy



Chapter 4. Why entropy does not grow? 81

instead of the Shannon entropy has practical reasons as explained at the end
of section 4.2. Before we present the results of the correlation entropy two
important points must be made: The inequality (4.47) does not hold for the
correlation entropies (this can easily be seen from Eq. (4.8) with β = 2)
and this entropy is a lower bound of the Shannon entropy, i.e. we cannot
really expect to estimate upper bounds for the metric entropy. Keeping
this in mind we proceed calculating the correlation entropy for some model
systems.

First consider the Bernoulli map as in section 4.3.3. The correlation sum
is calculated from Eq. (4.22) using state vectors constructed in the following
way:

~v2m
n = S(m) (4.48)

for even embedding dimension and

~v2m+1
n = {~tn, ~S(m)} (4.49)

for odd embedding dimension. The corresponding results for correlation
sum and dimension are shown in figure 4.13. Thus, with these state vectors,
the correlation entropy that we are interested in (the counterparts of Eq.
(4.46)) are given by

h2(m, δ) = ln
C2(2m, δ)

C2(2m + 1, δ)
(4.50)

If m is large enough and in the limit of small δ, this entropy can be well
recovered from the time series as shown in figure 4.14. In this example
(using this embedding) the entropy can be recovered for m = 1 as long as
δ is small enough (figure 4.14). The results shown in figures 4.13 and 4.14
show a surprising behavior: even without a saturation of the scaling with
δ (leading to the embedding dependent dimensions), the entropy could be
determined by comparing pairs of subspaces whose relation is completely
deterministic.

The same ideas can be applied to estimate entropy of a continuous time
delayed system but in this case two potential problems set in: The necessary
discretisation and the mathematical definition (since phase space of delayed
systems has infinite dimension cells to calculate the entropies have volume
zero for any δ < 1.0). The first problem is overcomed choosing a sampling
intervals of equal but arbitrary length (of course the estimated entropy will
depend on this length) and the second seems not to be an important one,
as the dimension of the attractor is always finite [14]. In figure 4.15 the
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Figure 4.13: Correlation sum and correlation dimension for Bernoulli map
with T = 10, ε = 0.3 using a time series with N = 109 data points calculated
using TISEAN package [2]. The slopes of the correlation sum are the corre-
lation dimensions estimated with Eqs. (4.23). While the difference between
two curves 2m + 1 and 2m give the entropy of Eq. 4.50: Note that such
difference tends to a definite value, even for small embedding dimensions,
when the correlation dimension has not saturated.

correlation dimension and entropy of time series generated integrating the
Mackey-Glass equation are shown. Also in this case, it was possible to obtain
the entropy and to observe the same effect in the correlation dimension as
in figure 4.13.

4.4.2 Metric entropies at large delay

The results presented in the former section, togehter with the existence of an
asymptotic invariant measure on low dimensional projections of the phase
space (see chapter 3) imply in an asymptotic value of metric entropy in the
large delay limit. In fact, it is sufficient that the projection of the invariant
density on the two dimensional space xn, xn−τ has an asymptotic form in
the limit of large delay, in order that the upper bound obtained from Eq.
(4.43) has an asymptotic value in this limit. We believe that this condition
is fullfiled in general by delayed maps and present the behavior of the two
point density ρ(xn, xn−τ ) of the Hénon map (see figure 4.16) as an example.

One could use the densities of figure 4.16 to obtain the estimate for the
metric entropy using Eq. (4.43). However, by the same reasons and follow-
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Figure 4.14: Estimating the correlation entropy for Bernoulli map using the
same time series and the same procedure as in figure 4.13.

ing the same procedure as in the former section, we compute the correlation
entropy for different delay values. The results shown in Fig. 4.17 demon-
strate that in this case h1

c seems indeed to be a good upper bound for the
metric entropy, and second that this entropy tends to an asymptotic value
as the delay increases (as expected inspecting the densities in figure 4.16).
In figure 1.2 it is possible to see how the value of the entropy flucutates
around an asymptotic value: at low delay the fluctuations are larger since
the measure has quite different properties at each delay value, at larger de-
lay the fluctuations are smaller and related to the statistics in determining
the Lyapunov exponents.

4.5 A simple stochastic process with delay.

The statistical description of dynamical systems provides a nice bridge be-
tween determinism and stochasticity. Until this point, we have only explored
one side of this bridge, i.e. looked at deterministc dynamical systems with
the toos developed to explore their statistical aspects. In this section, we
will change the side for a while and investigate the entropy of a stochastic
process with delay.

Entropies defined by (4.10) do not have a definite limit if the process has
a continous phase space, they scale exponentially with e−δ. For us it is not
very illuminating to investigate entropies of such processes and we focus on
a process with a finite partition (with K elements), i.e. a Markov chain. We
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define a special Markov chain fufilling the following property:

p(im+1|i0, i1, ..., im) = p(im+1|im, im−T ). (4.51)

and the condition probabilites do not change in time (stationary process).
This ”Markov chain with delay” is a simple stochastic counterpart of our
delayed maps. To this process we can associate a transition matrix of di-
mension K2 as in the case of two steps conventional Markov chains [44].

The process obeying Eq. (4.51) has some intersting features. First,
having only the definition Eq. (4.51) it is not possible to calculate block
entropies (4.14) for blocks shorter than T + 1: All the entropies pj(m) must
be specifiyed. Nevertheless, due to property (4.51) all the block entropies
with m > T + 1 are given by:

HT+k = k
∑

ω(T+1)

p(i0, i1, ..., iT )p(iT+1|iT , i0) ln p(iT+1|iT , i0) + HT (4.52)

what follows from

p(i0, i1, ..., iT+k) =
k∏

l=1

p(iT+l|iT+l−1, il−1)p(i0, ..., iT ) (4.53)

and from Eq.(4.14). Consequentelly, the KS entropy given by Eq. (4.16) is
equal to

hKS =
∑

ω(T+1)

p(i0, ..., iT )p(iT+1|iT , i0) ln p(iT+1|iT , i0). (4.54)

Hence, the entropy is not solely determined by the conditional probabilities
p(iT+1|iT , i0) but all the probabilities p(i0, ..., iT ) must be known. In fact
these probabilities are the invariant probabilities of sequences of length T +1
for the process under consideration and its value depends on the values of
the transition probability. If the memory is longer, i.e. the future state does
not depend only on one pair im, im−T but on q steps in the past such that:

p(im+1|i0, ..., im) = p(im+1|im, im−T , ..., im−q, im−T−q). (4.55)

The process is specifyed by a matrix of dimension K2q [44] and the entropy
is given by:

hKS =
∑

ω(T+q)

p(i0, ..., iT+q−1)p(iT+q|iT+q−1, iq−1, ..., iT , i0) (4.56)

× ln p(iT+q|iT+q−1, iq−1, ..., iT , i0).
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Thus, the longer the memory, the longer the sequence that must known in
addition to Eq. (4.55) in order calculate the entropy.

As an example, let us consider that p(i0, ..., iT ) = 1/ω(T ), i.e. all se-
quences are equally probable. In this case the entropy of the chain of Eq.
(4.51) is

hKS =
∑

i0,iT ,iT+1

η(i0, iT )
ω(T )

p(iT+1|iT , i0)lnp(iT+1|iT , i0). (4.57)

where η(i0, iT ) is the number of sequences of length T such that the first
symbol is i0 and the last iT . Since η(i0, iT ) ∝ ω(T ) the entropy hKS is inde-
pendent from T and completelly determined by the transition probabilities,
in this case.

We may ask what happens if the probabilities p(i0, ..., im) with m 6 T
are themselves defined through a one step Markov chain, e.g.

p(im|io, ..., im−1) = p̃(im|im−1) (4.58)

with m < T . In this case, the KS entropy is given by:

hKS =
∑

i0,iT ,iT+1

p̃(i0)p̃(iT )p(iT+1|iT , i0) ln p(iT+1|iT , i0). (4.59)

what is expected due to the lack of correlation between symbols i0 and iT .
Thus, as long as the marginal probability distributions p(i) are fixed, the
entropy is independent from the delay value. Similarly, p(im|io, ..., im−1) =
p̃(im|im−1, im−2) it is possible to determine hKS only with the knowledge of
the two symbol probabilities p(ij). And the same is true for q step process
with q < T .

Defining a simpler process such that:

p(im+1|i0, i1, ..., im−1) = p(im+1|im−T ). (4.60)

one could think this is exactly a Markov chain of Eq. (4.58) with the time
step equal to T +1 instead of 1. This is not the whole truth when sequences
of symbols are to be considered and we end up with the same situation as
in Eq. (4.51): In order to obtain the hKS we need information about all
sequences of length T , since

hKS =
∑

ω(T+1)

p(i0, ..., iT )p(iT+1|i0) ln p(iT+1|i0). (4.61)
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for Eq. (4.60). If p(i0, ..., iT ) are defined according Eq. (4.58) the KS
entropy of (4.60) is given by:

∑

i0,iT+1

p̃(i0)p(iT+1|i0) ln p(iT+1|i0). (4.62)

what corresponds exactly to the KS entropy of a conventional one step
Markov chain.
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Figure 4.15: Correlation entropy and dimension for Mackey-Glass equation
with a = 0.2 ,b = 0.1, τ = 50. Samples are taken with a time interval τ/20.0.
The hKS = 0.09 estimated from Pesin’s identity.
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Figure 4.16: The two point density ρ(xn, xn−τ ) of the Hénon map with
T = 5, 10 in the upper panel and T = 20, 30 in the lower panel . The
densities are estimated from atime series with 107 points, partition the plane
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Chapter 4. Why entropy does not grow? 89

2 4 6 8 10 12
T

0

0.1

0.2

0.3

0.4

0.5

hKS

h2(1,δc)
h2(2,δc)

Figure 4.17: Correlation entropy estimated with m = 1 and m = 2
in Eq.(4.50) i.e. the counterpart of the Shannon entropy obtained with
Eq.(4.43). And the KS entropy hKS obtained from the Pesin’s identity.



Chapter 5

Coupled map lattice from
delayed maps

5.1 The representation

The idea of representing delayed differential equations of type Eq.(1.3) as
spatially extended systems was firstly proposed by Ikeda and Matsumoto
[45] by giving the time variable two different meanings: as a continuous
variable θ bounded to a range of size τ , θ = t mod τ , and as an indepen-
dent discrete variable n that counts how many delay units τ have run in
the course of system evolution, t = nτ + θ. In this framework the delay-
differential equation (1.3) is regarded as a discretized mapping rule from a
spatial pattern at time n to a pattern at a time n + 1 (corresponding to an
interval of τ in the real time). Later on, a similar representation was em-
ployed to organise data provided by an experimental system with delayed
feedback, namely a single mode CO2 laser [46], and it was observed that
the trajectories in this representation produced patterns resembling those
observed in real spatially extended systems. More recently, a more rigorous
analysis has been carried out by introducing and computing the comoving
Lyapunov exponents for a DDE and even deriving the amplitude equations
for a suitable DDE near a Hopf bifurcation [11]. All known studies relating
systems with delayed feedback to spatially extended systems consider only
so called class-I systems as defined in [27] and hence all Lyapunov exponents
scale like τ−1. But also for class II DDE’s (where the instantaneous dynam-
ics itself is chaotic and hence at least one positive Lypaunov exponent does
not scale with τ) it seems that the analogy is completely valid.

90
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5.2 Error propagation : comoving Lyapunov ex-
ponents

In this section we will discuss the representation of delayed maps as coupled
map lattices (CML) proposed in [27]. We show that the existence of an
anomalous Lyapunov exponent in type II systems gives rise to infinite error
propagation rates in the CML. The reason for this unphysical behaviour lies
in the fact that the CML is unconventional in that it has an asynchronous,
sequential updating rule in order to represent the delayed map. In order to
eliminate the asynchronous updating we propose to represent the system in
a rotated frame and discuss the dynamics in this frame.

We observe that in this case boundary conditions are crucial and we
do not recover the original Lyapunov exponents. In each representation,
the invariant density related to each site is the same, but the Lyapunov
exponents and the comoving Lyapunov exponents are extremely dependent
on the system representation.

For the sake of simplicity we will analyse a delayed map (DM) of the
form:

xn+1 = (1− ε)F (xn) + εF (xn−T ) (5.1)

where T is the delay time. We are interested in the thermodynamic limit,
namely T → ∞. This model contains all the phenomenology we want to
discuss since through the parameter ε we can control the strength of the
interactions of the delayed and instantaneous coupling, and hence it repro-
duces dynamics in all ranges from class-I to class-II maps as long as f(x) is
expanding, i.e. as long as the map f(.) has chaotic dynamics.

In the representation of the system as a CML following [27] we have:

yi
k = (1− ε)F (yi−1

k ) + εF (yi
k−1) (5.2)

with the spatial index i and the temporal index k. The conversion rule
from Eq.(5.1) to Eq.(5.2) is i = n mod T (hence, 0 6 i 6 T ), and n =
k(T + 1) + i, such that one time step of Eq.(5.2) corresponds to T + 1 time
steps of (5.1). The two representations are equivalent, if we impose “spiral”
boundary conditions on Eq.(5.2), i.e., x−1

k = xT
k−1.

We have studied the propagation of disturbances on this lattice for the
simple case of F (x) given by Eq.(4.34) i.e. the Bernoulli shift. It is known
from [27] that the corresponding delayed map has an anomalous exponent
for ε < 0.5 (which will be a diverging quantity for the CML) while for ε > 0.5
all exponents scale like T−1.
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Concentrating on the spatial representation, we let the system evolve
from a random initial condition until transients decay and introduce a dis-
turbance at a site i0 in a moment that we call k = 0. The disturbance ui

k

will evolve according to the following equation (and with the corresponding
“spiral” boundary condition)

ui
k = 2(1− ε)ui−1

k + 2εui
k−1 (5.3)

and after some time steps will spread over other sites different from i0. In
the case of ε > 0.5 the phenomenology resembles that of regular CML with
unidirectional coupling: the perturbation evolves keeping an exponential
profile in space while growing exponentially in time. For ε < 0.5 there is
no well behaved profile. Instead, in a single time step, the disturbance will
be spread over all sites and be macroscopic everywhere (for the large T we
are interested in). In the thermodynamic limit (T → ∞) the system turns
a localised infinitesimal fluctuation into a global macroscopic event in one
time step. See figure 5.1 for examples of both situations.

Propagation and growth of disturbances on a CML are well characterised
by the comoving Lyapunov exponents [47], λ(v), where 0 6 v 6 T in our
lattices. The definition is the following:

λ(v) = lim
k→∞

log(
|u[vk]

k |
|u0

0|
) (5.4)

where [vk] denotes the integer part of vk. Analysing (5.3) one can see that
in the interval 0 < ε < 1

2 there will be no error growth at zero velocity as
λ(0) = log(2ε). However, propagation of disturbances with infinite velocity
will take place as λ(T ) ≈ T log(2 − 2ε). Therefore, in the thermodynamic
limit an unconventional kind of error propagation appears. In this range of
ε < 1

2 there is no correspondence between the comoving Lyapunov exponent
at zero velocity and the conventional maximal Lyapunov exponent observed
in a usual CML. Instead, the maximal Lyapunov exponent has the same
value as λ(T ).

On the other hand in the interval 1
2 < ε < 1.0 there will be error growth

at zero velocity and the value of the corresponding comoving Lyapunov
exponent will be approximately equal to the maximal Lyapunov exponent
of the system. The approximation will be better the nearer is ε to 1.0 or the
larger the delay value is, i.e. in a range of parameters where the perturbation
reentering through the boundary rule u−1

k+1 = uT
k is negligible. Under this
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Figure 5.1: Propagation of disturbances in CML representations of a delayed
map for T = 100. At k = 0 a disturbance |u(0)| = 10−15 was introduced at
site i0 = 0. (a) ε = 0.4 (class II, one anomalous Lyapunov exponent), the
disturbance becomes macroscopic after two time steps. (b) ε = 0.8 (class I),
the disturbance grows smoothly and remains localised.
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conditions, an initial perturbation of the form ui
0 = δi,0 will evolve to the

following form after k time steps:

ui
k = Ci

k(2− 2ε)i(2ε)k (5.5)

where the coefficients Ci
k obey the recurrence rule:

Ci
k = Ci−1

k + Ci
k−1 (5.6)

with initial condition Ci
0 = δi=0 and boundary condition C−1

k = 0 and Eq.
(5.6) is then translated to

Ci
k = Σk

j=1C
i−1
j (5.7)

from which one obtains the closed form for the coefficients:

Ci
k =

1
i!

Πi−1
j=0(k + j) (5.8)

Hence, using the definition (5.4) and the Stirling’s formula we obtain the
spectrum of comoving Lyapunov exponents of the map (5.3):

λ(v) = v log(
2(1− ε)

v
) + (v + 1) log(v + 1) + log(2ε) (5.9)

for ε > 1
2 (see Fig. 5.2). These spectra display a nontrivial maximum, which

corresponds to a nontrivial velocity of maximal amplification of disturbances
(vmax), whose value obtained from Eq. (5.9) is given by:

vmax =
2(1− ε)
2ε− 1

(5.10)

In Fig.5.3 we present numerical and analytical results for vmax as a func-
tion of ε. For ε → 1, vmax approaches zero, and this is the only velocity
at which amplification of disturbances takes place, i.e. the profile has zero
width. As ε approaches the critical value of 1

2 , this velocity diverges, and
we find the scenario described in the former paragraph.

The instantaneous spread of a localised infinitesimal perturbation and
its infinite amplification factor ≈ T log(2 − 2ε) with T → ∞ is unphysi-
cal. It might have its explanation in the as well unphysical updating rule
for the CML Eq.(5.2). This updating requires to run through one spatial
layer sequentially (in order to know the value xi−1

k ), but at the same time
assumes that this happens in a single time step. In order to gain a better
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Figure 5.2: Spectra of comoving Lyapunov exponents calculated with Eq.
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Figure 5.3: (a): Position i of the maximum of a disturbance profile after
k time steps. The slope corresponds to vmax. (b): Velocity vmax of the
maximal co-moving Lapunov exponent as a function of ε.
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understanding, we have introduced a representation of the dynamics in a
rotated frame as shown in figure 5.4. After rotation of the space-time axes
by 45 degrees, we have two sub-lattices, where each two lattice sites on one
sub-lattice uniquely determine the state at the enclosed site in the next sub-
lattice. In order to arrive at a conventional CML, we consider the second
iterate of the system, e.g., we focus on only the white sub-lattice of figure
5.4, where now every state is a function of three states in the past temporal
layer. The dynamics is governed by a map of the form:

zi′
k′ = F (zi′

k′−1, z
i′−1
k′−1, z

i′+1
k′−1) (5.11)

In the case of the Bernoulli shift, disturbances evolve in this lattice according
to the equation

ui′
k′ = 4(1− ε)2ui′

k′−1 + 8ε(1− ε)ui′−1
k′−1 + 4ε2ui′+1

k′−1 (5.12)

and the comoving exponents behave exactly as in the case of a diffusive CML
with asymmetric coupling. Therefore, we expect that in this representation,
in the limit of T → ∞ the existence of an anomalous exponent will not be
related to infinite error growth. Indeed, if we repeat the study of distur-
bances already mentioned, we see that in the whole range of 0 6 ε 6 1,
disturbances propagate with a finite velocity. In figure 5.5 we depict how
the velocity of maximal amplification depends on ε.

By analysing the spectrum of Lyapunov exponents in this representation
(which coincides with the comoving Lyapunov exponents at zero velocity in
this case) one can see that in the limits ε = 0 and ε = 1.0 the whole
spectrum of Lyapunov exponents is negative (tends to −∞) but there is
propagation of disturbances at nonzero velocities (v = +0.5 and v = −0.5
respectively). At these velocities the maximal comoving Lyapunov exponent
will be equal to 2 log(2). Therefore the system behaves like an open flow with
convective instabilities where the perturbations will propagate and grow
until they reach the boundaries and disappear. The growth rate is finite
and independent from the chain length (for very long chains).

A first important conclusion at which we arise analysing the system
is that the Lyapunov exponents seem not to be invariant under rotation
of the space and time axes. The main reason for this lack of invariance
lies in the modification of the boundary conditions: We have deliberately
refrained from discussing them for Eq.(5.11). In fact, when the goal is to
equip Eq.(5.11) with conditions such that its space-time pattern exactly
reproduces the corresponding section of a space time pattern of Eq.(5.1),
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Figure 5.4: The representation of the DM as a CML in the 45o rotated
frame. The white circles represent the sites whose dynamics is governed by
equation (5.11). Vertical/horizontal arrows correspond to the instantaneous
and delayed coupling respectively.

these boundary conditions cannot be written in a simple closed form, but
have to be copied from a full solution of Eq.(5.1). Any simple, closed form
boundary condition for Eq.(5.11) is arbitrary and does not reproduce the
details of the original dynamics. The surprising result here is that as long
as ε > 1

2 , the two systems, Eq.(5.1) and Eq.(5.11), behave equivalently,
whereas for ε < 1

2 there is a dramatic difference. Of course, the explanation
is not striking: The unphysical behaviour of Eq.(5.1) is generated by a
combined effect of boundary condition and asynchronous updating rule. The
error propagates and is amplified along a single spatial layer (this is the
asynchronous updating) and is fed back through the left boundary after this
huge amplification. In the rotated frame, this growth along a spatial layer
corresponds to velocity 1/2 and creates hence a conventional exponential
instability in time, and no re-insertion of an already huge error from the left
exists.

Although at first sight this looks like a very particular situation in some
rather artificial CML, it should serve as a warning that in spatially extended
systems, an unphysical boundary condition can create unphysical effects
even in the thermodynamic limit, where one would naively assume that
boundary conditions are negligible.
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Figure 5.5: Dependency of the velocity of maximal propagation on ε in the
rotated representation. In this plot T = 100, the dimension of lattice equal
to 50 and the perturbation was introduced at the site i0 = 25.

5.3 Time continuous case

The effect discussed above regarding the role of the anomalous exponent
can be discussed also in the case of delayed differential equations (DDE).
Following [11], we consider a simple linear DDE governing the dynamics of
perturbations (e.g. near to a fixed point):

u̇(t) = µu(t) + ηu(t− τ) (5.13)

Using the same notation as in [11] the corresponding spatially extended
system is given by:

u̇(σ, θ) = µu(σ, θ) + ηu(σ, θ − 1) (5.14)

Integrating Eq. (5.13) we find the following solution of this equation , with
initial condition u(σ, θ) = δ(σ):

u(σ, θ) = e(µσ)
θ+1∑

i=1

Ciη
ie(θ−i+1)µτσi−1

(i− 1)!
(5.15)

where Ci are some integer coefficients, that will be not be important here
(its only worth to mention that C1 = Cθ = 1) . The solution given in [11]:

u(σ, θ) =
η(θ+1)eµσσθ

θ!
(5.16)
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is recovered naturally when µ < 0 in the limit of very large delay (or less
naturally if one imposes that u(θ, τ) = 0 for any θ, i.e. one imposes fixed
boundary condition). This would correspond to the case without an anoma-
lous exponent.

When µ > 0, the assumption of vanishing perturbation for σ = τ cannot
be used, as exponentially growing perturbations appear just as in the case
of maps and return to the system through the boundary. In the case µ > 0
and η << 1 - this would correspond to ε < 0.5 in (5.3) - making the
approximation ηi ≈ 0 if i > 1 we get:

u(σ, θ) = ηeµ(σ+τ) (5.17)

and using the same definition of comoving Lyapunov exponents proposed in
[11] we get:

Λ(α) = µ[τcos(α) + sin(α)] (5.18)

where tan(α) = θ/σ, and therefore α = 0 will correspond to zero velocity.
Hence, also in the case of DDE’s one may find the unphysical error propa-
gation discussed above in the case of large delay when the parameters value
correspond to a regime where an anomalous Lyapunov exponent exists. The
difference between this case and that of the maps is that here, one has finite
growth rate at infinite velocity (Λ(π/2) = µ).

5.4 Some conclusions

In summary we observed that in the most intuitive representation of a de-
layed map as a CML, the error propagation can happen with infinite rate
when an anomalous exponent exists. This fact is associated with the asyn-
chronous updating along with the boundary conditions. In the absence of
such an exponent, however, all the phenomena observed in normal CML
is recovered (perturbations decay exponentially in space and grow in time
with a finite exponential rate). In a rotated reference frame, where the asyn-
chronous updating is eliminated, the error propagation is physical. Indeed,
in this rotated representation all comoving Lyapunov exponents are finite
even in the presence of an anomalous exponent and in the cases ε ≈ 0 or 1
the entropy of the rotated system will be zero if no entropy is introduced
through the boundary. Beyond the results for DDE’s, this serves as a warn-
ing that for spatially extended systems boundary 1conditions might influence
strongly the behaviour of dynamical invariants even in the thermodynamic
limit.



Chapter 6

Summary

The main conclusions of this work are the following:

1. Delayed differential equations of the form Eq.(1.3) and delayed maps
of the form Eq.(1.4) have periodic orbits that reappear as the delay
is varied. Such property is general and does not depend on the form
of the map or differential equation. This property allowed us to study
the stability of the orbits at different delays. In the case of maps an
asymptotic form of the characteristic equation is obtained for orbits
at different delay values which is related to an asymptotic form of the
spectrum of Lyapunov exponents.

2. Low dimensional projections of the invariant density of delayed maps
have an asymptotic form at large delay values. This fact is observed
numerically. Some analytical treatment is performed up to first order
in perturbation expansion for a map on a torus what shows that the
convergence rate of the averages with the delay depends not only on
the mixing rate of the instantaneous coupling but also on analytical
properties of the function of the delayed coupling.

3. The topological entropy of delayed maps is bounded even in the limit
of large delay. This fact can be observed from periodic orbits and
their reappearance at different delay values. The estimates of the
topological entropy from the orbits can only be obtained if the period
is larger than the delay value.

4. An upper bound for the metric entropy can be obtained from the time
series using a special embedding and this leads to the conclusion that
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the asymptotic form of the low dimensional projection of invariant
density is responsible for the asymptotic value of the metric entropies.

5. The representation of delayed maps or delayed differential equations
as extended systems lead to unphysical error propagation rates when
the system has an anomalous exponent.
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