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Abstract

The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer), JClOOCl, is a crit-

ical parameter in catalytic cycles destroying ozone (O3) in the polar stratosphere. In the

atmospherically relevant wavelength region (310 – 500 nm), significant discrepancies be-

tween laboratory measurements of ClOOCl absorption cross sections and spectra cause a

large uncertainty in JClOOCl. Previous investigations of the consistency of published JClOOCl

with atmospheric observations of chlorine monoxide (ClO) and ClOOCl have focused on the

photochemical equilibrium between ClOOCl formation and photolysis, and thus could only

constrain the ratio of JClOOCl and the ClOOCl formation rate constant krec.

Here, the atmospherically effective JClOOCl was constrained independent of krec, using

ClO measured in the same air masses before and directly after sunrise during an aircraft

flight that was carried out as a part of the RECONCILE field campaign in winter 2010

over Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal

equilibrium, the influence of the ClO recombination reaction is negligible and the ClO con-

centration increase results from the photolysis of ClOOCl. JClOOCl values based on four

absorption cross sections and spectra were estimated for the atmospheric conditions on the

flight track and resulting ClO concentration increases were compared with the observed

ClO rise.

The analysis shows, that the increase in measured ClO concentrations was significantly

faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al.

(2007), but did not warrant cross sections larger than recently published values by Pa-

panastasiou et al. (2009). In particular, the existence of a significant ClOOCl absorption

band longwards of 420 nm is not supported by the observations. The observed night-time

ClO is not consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher
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than the one proposed by Plenge et al. (2005).

Another important uncertainty factor for JClOOCl, and for photolysis rates in general, is

the actinic flux, i.e. the radiation available to drive photochemical reactions. Comprehen-

sive sensitivity studies were carried out to investigate the influence of ozone, albedo, aerosol

and clouds on the UV/Vis actinic flux in the lower stratosphere using two different radiation

transfer models.

The sensitivity studies revealed that at high solar zenith angles albedo and tropospheric

clouds do not influence actinic flux and thus JClOOCl significantly. The impact of ozone and

aerosol is larger, but still less important than the differences between JClOOCl based on

various absorption cross sections and spectra.

The method used in this study enabled estimation of JClOOCl separately from krec. The

results of the analysis are consistent with previous studies and confirm our understanding

of processes governing ozone loss in polar regions.
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Zusammenfassung

Die Photolyserate von Dichlordioxid (ClOOCl, ClO-Dimer), JClOOCl, ist ein kritischer Pa-

rameter in katalytischen Zyklen, die das Ozon (O3) in der polaren Stratosphäre zerstören.

In dem atmosphärisch relevanten Wellenlängenbereich (310 bis 500 nm) führen die erhe-

blichen Diskrepanzen zwischen unterschiedlichen Labormessungen der ClOOCl Absorp-

tionsquerschnitte und -spektren zu einer großen Unsicherheit in JClOOCl. Vorherige Unter-

suchungen der Konsistenz der veröffentlichten JClOOCl-Werte mit atmosphärischen Beobach-

tungen von Chlormonoxid (ClO) und ClOOCl haben sich auf das photochemische Gleichgewicht

zwischen ClOOCl Bildung und Photolyse konzentriert. Diese konnten jedoch nur das Ver-

hältnis von JClOOCl zur ClOOCl Bildungsrate krec einschränken.

Hier wurde die atmosphärisch wirksame Photolyserate JClOOCl unabhängig von krec bes-

timmt, indem ClO in den gleichen Luftmassen jeweils vor und direkt nach Sonnenaufgang

während eines Flugs, im Rahmen der RECONCILE Messkampagne im Winter 2010 in

Kiruna, Schweden, gemessenen wurde. Während des Sonnenaufgangs, wenn das ClO/ClOOCl

System aus dem thermischen Gleichgewicht herauskommt, ist der Einfluss der ClO Rekom-

binationsreaktion vernachlässigbar und der ClO-Konzentrationsanstieg resultiert ausschließ-

lich aus der Photolyse von ClOOCl. JClOOCl-Werte, basierend auf vier Absorptionsquer-

schnitten und -spektren, wurden für die atmosphärischen Bedingungen auf dem Flug-

weg geschätzt und die daraus resultierenden ClO-Konzentrationsanstiege wurden mit dem

beobachteten ClO-Anstieg verglichen.

Die Analyse zeigt, dass die Zunahme der gemessenen ClO-Konzentrationen deutlich

schneller verläuft, als zum Beispiel das Absorptionsspektrum von den Pope et al. (2007)

erwarten lassen würde. Auf der anderen Seite würde das ClO früher und schneller als

beobachtet ansteigen, wenn die Querschnitte deutlich über den Werten von Papanasta-
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siou et al. (2009) lägen. Insbesondere die Existenz einer bedeutenden ClOOCl Absorp-

tionsbande oberhalb von 420 nm erscheint mit den Beobachtungen nicht vereinbar. Das

nachts beobachtete ClO ist nicht konsistent mit einer thermischen Gleichgewichtkonstante

ClO/ClOOCl oberhalb der von Plenge et al. (2005) publizierten.

Ein weiterer wichtiger Unsicherheitsfaktor für JClOOCl und die Photolyseraten im Allge-

meinen ist der aktinischen Fluss, das heißt, die für photochemische Reaktionen zur Ver-

fügung stehende Strahlung. Um den Einfluss von Ozon, Albedo, Aerosol und Wolken auf

den UV/Vis aktinischen Fluss in der unteren Stratosphäre zu untersuchen, wurden Sen-

sitivitätsstudien durchgeführt. Diese zeigen, dass bei hohen Zenitwinkeln Albedo und tro-

posphärische Wolken keinen Einfluss auf den aktinischen Fluss und damit auch auf JClOOCl

haben. Die Auswirkungen von Ozon und Aerosol sind größer, aber immer noch weniger

wichtig als die Unterschiede zwischen JClOOCl basierend auf verschiedenen Absorptions-

querschnitten und -spektren.

Die in dieser Studie verwentete Methode ermöglichte eine Schätzung von JClOOCl un-

abhängig von krec. Die Ergebnisse der Analyse stehen im Einklang mit früheren Studien

und bestätigen unser Verständnis der Prozesse, die den Ozon-Verlust in den Polargebieten

regulieren.
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1 Ozone in the stratosphere

Ozone (O3) is one of the most important species in the Fatmosphere. It governs the amount

of solar UV radiation reaching the Earth’s surface and influences strongly the temperature

profile of the atmosphere. The region of increased O3 concentrations located in the strato-

sphere between 20 and 30 km altitude is called the ozone layer. The altitude, thickness and

ozone concentrations in this layer depend on available solar radiation, chemical composition

of the air masses and on transport. It all results in longitudinal, latitudinal and seasonal

variability in the distribution of ozone. Figure 1.1 shows a comparison of vertical profiles

of ozone at two different equivalent latitudes1 calculated on the basis of a climatology de-

duced from Halogen Occultation Experiment (HALOE) satellite measurements (Grooß and

Russell, 2005).

During the last century, the concentrations of anthropogenically released gases strongly

increased. Gases emitted at the surface such as carbon dioxide (CO2), methane (CH4), ni-

trous oxide (N2O) and fluorinated gases like e.g. chlorofluorocarbons (CFCs) absorb the IR

radiation of the Earth and re-emit it in all directions increasing the temperature in the tro-

posphere and influencing the atmospheric transport and mixing. Increased concentrations

of CO2 and CFCs also result in cooling of the stratosphere (Thompson and Solomon, 2002).

The climate changes affect ozone leading to distortion in its distribution and hence also

in atmospheric temperatures, which influence the lower levels of the atmosphere down to

the surface (Gillett and Thompson, 2003). Due to the coupling between ozone and climate

change, the modelling of the future climate requires full understanding of the ozone pro-

duction and depletion under the changing conditions. First however, the chemical processes

1equivalent latitude is calculated from potential vorticity or from passive tracer simulations. Each isoline of

equivalent latitude corresponds to an isoline of an atmospheric tracer and encloses the same area as the

latitude line of equivalent value
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1 Ozone in the stratosphere

Figure 1.1: The vertical profile of the ozone mixing ratio for polar (equivalent latitude

72.5°N) and tropical (equivalent latitude 2.5°N) conditions in March. In the right corner,

the total ozone for this latitudes in Dobson units2 is given. The ozone data are deduced

from satellite measurements (Grooß and Russell, 2005). The figure is adopted from Müller

(2010).

governing ozone have to be well known. One of the processes that have to be investigated

is the catalytic ClO dimer (dichlorine peroxide, ClOOCl) cycle, in which the polar ozone is

intensely depleted during the winter/spring time. This cycle and its parametrisation are

the main issue of this thesis and are described in detail in Section 2.

2Dobson unit (DU) is a unit of measurement of atmospheric ozone columnar density. 1 DU is defined to be

0.01 mm thickness at standard atmospheric temperature (273.15 K) and pressure (100 kPa).
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1.1 Natural stratosphere

1.1 Natural stratosphere

1.1.1 Stratospheric ozone chemistry

The atmospheric ozone research started with the studies of Hartley (1881), who investi-

gated the spectroscopic properties of ozone and their influence on the solar radiation pene-

trating the Earth’s atmosphere. The beginning of the regular measurements of O3 is dated

to 1926, when the first column measurements were published by Dobson and Harrison.

At that time, the ozone formation mechanism was still unclear. First in 1930, Chapman

proposed the photochemical theory of the formation of ozone:

O2+hν
λ<242nm
−−−−−−→O+O R1

O+O2 +M→O3 +M R2

O3 +hν
λ<320nm
−−−−−−→O+O2 R3

O+O3 →O2 +O2 R4

The four reactions are today known as the Chapman reactions. In Reaction R1, an oxy-

gen molecule, O2, absorbs a photon or quantum of electromagnetic radiation. The energy

contained in the photon is sufficient to split the oxygen molecule into two highly reactive

oxygen atoms, O, called singlet oxygen. In the second reaction singlet oxygen spontaneously

combines with another oxygen molecule to create a molecule of ozone. M denotes a collision

partner (N2 or O2) that is not affected by the reaction. Since Reaction R1 generates 2 singlet

oxygen atoms, Reaction R2 generates 2 molecules of ozone for every photon of UV radiation

absorbed in Reaction R1. These ozone molecules can be split by UV radiation within a

wavelength between 200 and 320 nm into its constituent parts, a molecule of oxygen and a

singlet oxygen atom. Reaction R3 consumes a molecule of ozone while absorbing a photon of

UV, but because the reaction generates a singlet oxygen, there is no net loss of ozone, since

3



1 Ozone in the stratosphere

the singlet oxygen simply proceeds to generate more ozone via Reaction R2. In Reaction R4

the second ozone molecule combines with a singlet oxygen creating two oxygen molecules.

Up to 1960’, the Chapman cycle was accepted as sufficient to describe the observed verti-

cal distribution of ozone. However, the measurements of the rate constant of the Chapman

reactions (Benson and Axworthy, 1957; Jones and Davidson, 1962) demonstrated that ad-

ditional reactions are needed to explain the ozone destruction (Hunt, 1966; Schiff, 1969).

At the beginning, only the reactions involving OH and HO2 radicals were assumed to lead

to a significant catalytic ozone loss (Hampson, 1964). In 1970 Crutzen proposed that NO

catalysed reactions control the ozone concentrations in the middle stratosphere and a few

years later, in 1974, Stolarski and Cicerone suggested the possibility of chlorine catalysed

ozone loss.

The catalytic ozone loss cycles can be summarised in the form:

XO+O→X+O2 R5

X+O3 →XO+O2 R6

O+O3 →O2 +O2

where the net reaction is identical to Chapman Reaction R4. Depending on the cycle X = H,

OH, NO or Cl. The importance of every cycle increases strongly between 25 and 40 km due

to large increase of atomic oxygen with altitude. In this range, the NOx cycle dominates

O3 loss, below 25 km and above 45 km HOx is the strongest loss cycle. The loss through the

ClOx cycle depends on the stratospheric chlorine loading and peaks at about 40 km.

Hydrogen oxide radicals (HOx ≈HO2 +HO+H) in the stratosphere originate from oxida-

tion of water vapour, H2, and CH4 transported from the troposphere.

Most of the nitric oxide (NO) in atmosphere comes from nitrous oxide (N2O), which is a

byproduct of bacterial denitrification and nitrification processes occurring mainly in soils

below natural vegetation and in the oceans. The most important anthropogenic source
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1.1 Natural stratosphere

are agricultural activities. N2O is inert in the troposphere. In the stratosphere it is re-

moved by photolysis and reaction with excited oxygen atoms, providing the major input of

NOx(≈NO+NO2) to the stratosphere. NOx is also a result of lightening and oxidation of

atmospheric N2 at the high temperatures of aircraft engines. The influence of NO radical on

ozone was considered first at the beginning of 1970s when the United States and other coun-

tries considered the launch of a supersonic aircraft fleet flying in the stratosphere (Crutzen,

1970; Johnston, 1971).

The largest natural sources of chlorine in the atmosphere are evaporated ocean spray

as sea salt (sodium chloride NaCl) particles and volcanoes. Most of the species containing

chlorine, which are emitted at the Earth’s surface cannot reach the stratosphere due to their

high reactivity and high water solubility. Only chloromethane (CH3Cl) is stable enough to

be regarded as a natural source of stratospheric chlorine. It is produced by biomass burning,

marine algae and phytoplankton, polypore fungi involved in wood rotting and salt tolerant

plants (Studer, 2001). The dominant process for the removal of chloromethane from the

atmosphere is the reaction with tropospheric hydroxyl (OH) radicals. From the known

rate of this reaction, an average global lifetime for chloromethane of about one year was

estimated (WMO, 2010). Only a relatively small part of the tropospheric chloromethane is

transported to the stratosphere, where it is subsequently destroyed photolytically (Studer,

2001).

Even though, chloromethane contributed about 17% of the total chlorine in the strato-

sphere in 2008 (WMO, 2010), the influence of chlorine from natural chloromethane on the

stratospheric ozone is insignificant due to its small ozone depletion potential (e.g. 2% of the

potential of anthropogenic CFCl3; WMO, 2010). By far the most of the chlorine threaten-

ing ozone originates from anthropogenic chlorofluorocarbons (CFCs), which were used until

the 1990’ in essentially all refrigeration and air conditioning systems. A less significant

source of chlorine and a very important source of bromine in the stratosphere are halons3,

frequently used as fire extinguishing agents. The chemical processes involving CFCs are

described in Section 1.2.1.

3compounds consisting of bromine, fluorine, and carbon.
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1 Ozone in the stratosphere

In the next section, the dynamics of the stratosphere with a focus on the processes in-

fluencing ozone distribution is described. A comprehensive picture of the formation of the

ozone hole and differences between the ozone loss over the Antarctic and the Arctic are

given in Section 1.2.

1.1.2 Dynamics of the stratosphere

The largest production of ozone in the stratosphere takes place near the Equator, where the

energetic short-wave sun radiation necessary for oxygen photolysis (R1) is most intense.

From here ozone is transported poleward and downward by the so called Brewer-Dobson

(B-D) circulation as shown in Figure 1.2. In the high latitude regions ozone can accumulate

on the time scale of seasons. Transport due to the B-D circulation is the strongest during

the winter and spring resulting in the extra-tropical lower stratosphere during that period

(shown in Figure 1.2 with a black dashed line).

The maximum ozone mixing ratio occurs in the tropics in the altitude range between

∼ 30−40km (cf. Fig. 1.1). The total ozone over the tropics (Fig. 1.1 and Fig. 1.3) shows how-

ever very low values due to low ozone mixing ratios in the atmospheric layers below and

above the maximal mixing ratio region. In the tropics ozone has a short life time resulting

from the photochemical equilibrium between the production and destruction processes. For

this reason, the tropical upper-stratosphere cannot be a source of the extratropical strato-

spheric ozone. In the lower stratosphere (20 – 25 km), the photochemical life time is several

months and longer, what enables the transport of ozone to other regions of the Earth’s at-

mosphere. Variations in the ozone concentrations in this region control changes in total

column ozone abundance (Müller, 2010).

The difference in the total column of ozone over the poles shown in Figure 1.3 is connected

with the asymmetry in the Brewer-Dobson circulation. The topography of the Earth differs

strongly when comparing the hemispheres. This influences the planetary waves activity

(orange wiggly arrows in the Fig. 1.2), which regulates the circulation speed. The circula-

tion is stronger during the northern hemispheric winter than during southern hemispheric

winter resulting in larger extra-tropical total ozone columns in the northern hemisphere

than in the southern hemisphere.

6



1.1 Natural stratosphere

Figure 1.2: Brewer-Dobson circulation and stratospheric ozone. The black arrows show

schematically the Brewer-Dobson circulation. The ozone distribution as measured by the

OSIRIS satellite instrument in March 2004 is represented by colour scale. The circulation

is forced by waves propagating up from the troposphere (orange wiggly arrows), especially

in the winter hemisphere, and it strongly shapes the distribution of ozone by transporting

it from its source region in the tropical stratosphere to the high-latitude lower stratosphere.

The dashed line represents the tropopause, or the boundary between the troposphere and

stratosphere. The Figure is adopted from Shaw and Shepherd (2008).

The planetary waves activity contributes also to the breakdown of the northern and

southern polar vortex. The vortex is a planetary-scale cyclonic circulation, centred in the

polar winter regions. During the winter, the very cold air over Antarctic and Arctic is sur-

rounded by warmer air at lower latitudes. This creates a low pressure region with strong

winds blowing around the region at the boundary between warm and cold air. The rotat-

ing air, a strong polar vortex, isolates the stratosphere above the poles from the rest of the

stratosphere. The vortex is most powerful in the hemisphere’s winter, when the tempera-

ture gradient is steepest, and disappears in summer. Temperatures in the vortex can reach

below 195 K in the lower stratosphere. These low temperatures allow the formation of polar

stratospheric clouds, which are an important feature for ozone depletion (see Section 1.2.2).

Due to the differences in planetary waves activity in the hemispheres, the Arctic polar

7



1 Ozone in the stratosphere

Figure 1.3: Total ozone in 2009. The seasonal, zonal and meridional variations are demon-

strated with two-week averages of total ozone in 2009 asmeasured with the Ozone Monitor-

ing Instrument (OMI) placed on NASA’s Aura satellite. Figure taken from WMO 2010.

vortex is smaller and less persistent than the Antarctic polar vortex. In Section 1.2.4 the

ozone losses over the Antarctic and the Arctic are presented separately.

The polar vortex breaks down in spring, when the solar radiation is again available, the

temperatures of the vortex air rise and its segments drift equatorward. The final warming

usually occurs in early spring in the northern hemisphere, but it can be very late in the

season in the southern hemisphere.
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1.2 Anthropogenic perturbations to stratospheric ozone

1.2 Anthropogenic perturbations to stratospheric ozone

The idea, that the ozone layer can be threatened by anthropogenically produced gases was

formulated first in late fifties of the last century. At that point, the impact of nuclear

weapons on the ozone layer was discussed (a review of the history of ozone research is

given by Müller, 2009). In the seventies the influence of supersonic transport was inves-

tigated (Crutzen, 1971; Johnston, 1971). The research programmes greatly improved the

knowledge of ozone chemistry and indicated halogens as very important factor in the ozone

loss.

In 1974 Stolarski and Cicerone presented the catalytic chlorine cycle (R5-R6, X = Cl). In

the same year Molina and Rowland proposed anthropogenic CFCl3 (CFC-11) and CF2Cl2

(CFC-12) as possible sources of chlorine in the stratosphere and concluded ‘It seems quite

clear that the atmosphere has only a finite capacity for absorbing Cl atoms produced in the

stratosphere, and that important consequences may result. (...) More accurate estimates of

this absorptive capacity need to be made in the immediate future in order to ascertain the

levels of possible onset of environmental problems’. Early model studies on the stratospheric

chemistry (Crutzen, 1974; Rowland and Molina, 1975) confirmed the importance of chlorine

and predicted that enhanced levels of chlorine in the stratosphere would lead to a deple-

tion of upper stratospheric ozone via the catalytic chlorine cycle. In their article, Stolarski

and Cicerone indicated also that ‘nothing is known of possible heterogeneous reactions of Cl

atoms with particulate matter in the stratosphere’ pointing out another field of stratospheric

chemistry, that had to be studied: the heterogeneous chemistry. One year later, Cadle et al.

presented studies, in which they considered influence of heterogeneous reactions in the

stratosphere on ozone loss. The importance of this theory was not acknowledged until 1986,

when Solomon et al. suggested, that the heterogeneous reaction HCl+ClONO2 leads to lib-

eration of Cl2 from the stable reservoir gases and hence enhancement of the chlorine ability

to destroy ozone. The knowledge gathered in the studies presented in this paragraph en-

abled the understanding of the massive ozone depletion in the late winter/early spring in

polar regions described for the first time in 1985 by Farman et al..

Farman et al. reported that in the Antarctic spring strongly reduced total column ozone
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1 Ozone in the stratosphere

above the British Antarctic Survey research station at Halley. They suggested also the pos-

sible relationship between ozone loss and the rise in the tropospheric CFCs mixing ratios.

The plot from the original Farman et al. publication illustrating the O3 and CFCs data sets

is shown in Figure 1.4.

Figure 1.4: Ozone loss measured

by Farman et al. (1985) at Halley

Bay and Southern Hemisphere mix-

ing ratios of CFC-11 (F11) CFC-12

(F12). The full circles correspond

to CFC-11, the unfilled circles show

the CFC-12 mixing ratios. Both data

sets are given in parts per trillion

per volume (ppt). Note that the

CFC-11 and CFC-12 decrease up the

figure.

The discovery by Farman et al., which was based on a series of measurements by clas-

sical Dobson instruments was soon confirmed by satellite measurements showing that the

ozone depletion extended over roughly the entire Antarctic continent (Stolarski et al., 1986).

These findings reinforced the studies on the stratospheric ozone and led to the first inter-

national agreement to be signed, the Montreal Protocol (1987), regulating the use of CFCs

and halons.

In the next three Sections, the stratospheric chemistry of chlorine coming from anthro-

pogenic source gases and the ozone depletion processes in the polar region are described.

Sections 1.2.4 and 1.2.5 give an overview of the differences in the ozone loss on the southern

and northern hemisphere.

1.2.1 Chlorine in the stratosphere

83% of stratospheric chlorine comes from human-made source gases (WMO, 2010):
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1.2 Anthropogenic perturbations to stratospheric ozone

• chlorofluorocarbons (CFCs): CF2Cl2 (CFC-12), CFCl2 (CFC-11), CFCl2CF2Cl (CFC-

113)

• hydrochlorofluorocarbons (HCFCs): e.g. HCF2Cl (HCFC-22)

• carbon tetrachloride CCl4

• methyl chloroform CH3CCl3

• halons: e.g. CBrClF2 (Halon-1211) and

• other gases.

These gases are stable in the troposphere and are photolysed by UV solar radiation avail-

able in the stratosphere:

CFCl3 +hν→CFCl2 +Cl R7

CF2Cl2 +hν→CF2Cl+Cl R8

The highly reactive chlorine atoms released in this way react with methane, ozone or other

species and form so-called reservoir gases, the most important being HCl and ClONO2 :

Cl+CH4 →HCl R9

Cl+O3 →ClO+O2 R10

ClO+NO2 →ClONO2 R11

Chlorine trapped in those species can not react with ozone. The ozone depletion can start

after ‘activation’ of the Cl atoms, i.e. when Cl is liberated from the reservoir species. The

activation is normally done by photolysis, hence in the winter hemisphere, under lack of so-

lar radiation, the reservoir gases can be slowly removed from the stratosphere. In ‘normal’

stratospheric gas phase chemistry, only slight ozone depletion is therefore expected. How-

ever, the reservoir species are transported down into the lower stratosphere in the winter
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1 Ozone in the stratosphere

as a result of the Brewer-Dobson circulation pattern (cf. Section 1.1.2). Here they can be ac-

tivated by heterogeneous reaction on the surfaces of polar stratospheric clouds (PSCs) and

cold aerosol particles (cf. Section 1.2.2). Also bromine reservoir species such as BrONO2 can

be activated by heterogeneous reactions.

Atmospheric concentrations of CFCs and halons continued to increase until the past ten

years when the rise first slowed down and was then reversed (WMO, 2010). Today, although

production of practically all such substances has ceased because of the provisions of the

Montreal Protocol and its amendments and adjustments, halogen source gases are still

present in existing fire extinguishing equipment, chemical stockpiles, foams etc., so that

emissions continue.

In the next section, the heterogeneous chemistry as a necessary factor for the massive

ozone loss in the polar regions in winter-spring period is introduced. In Section 1.2.3, the

last step of the polar ozone depletion, the ClO dimer and ClO-BrO cycles, is described.

Sections 1.2.4 and 1.2.5 summarize the processes and give an overlook of the ozone loss

over the southern and northern poles.

1.2.2 Heterogeneous chemistry

The activation of chlorine tied in the reservoir gases HCl and ClONO2 occurs by photolysis

or by heterogeneous reactions. In the polar regions in winter, solar radiation is not avail-

able, so the liberation of the Cl2 is possible only in reactions on surfaces of liquid or solid

polar stratospheric clouds (PSCs) or binary H2SO4/H2O aerosols.

The main compound of PSCs is nitric acid (HNO3), for which the most important chemical

source in the stratosphere is the three-body gas-phase reaction between OH and NO2. In

midwinter, the downward flux of mesospheric air results in enhanced abundances of NOx

in the polar stratosphere. These conditions lead to the formation of nitric acid through a

height-dependent combination of water-ion cluster chemistry and heterogeneous conversion

on sulphate aerosols involving the night-time odd nitrogen reservoir N2O5 (Urban et al.,

2009).

The sulphuric acid (H2SO4) comes from carbonyl sulphide (COS) and sulphur dioxide

(SO2) carried into the stratosphere via tropical lifting by the Brewer-Dobson circulation,
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1.2 Anthropogenic perturbations to stratospheric ozone

or by direct injection into the stratosphere from volcanic eruptions. The largest sources of

COS are the oceans (Kettle et al., 2002), whereas SO2 is a product of burning of sulphur or

of burning of materials that contain sulphur.

Water in the stratosphere comes mostly from evaporation of moisture at the Earth’s sur-

face that enters the stratosphere in the tropics and is further distributed by the Brewer-

Dobson circulation. The stratospheric water vapour results also from methane oxidation in

the upper stratosphere coupled with subsequent downward transport (Rosenlof, 2003).

When the temperature in the stratospheric polar vortex drops below 195 K, HNO3, H2SO4

and water condense to form cold binary aerosol and Type I Polar Stratospheric Clouds. The

structure and composition of the Type I PSC have been the topic of extensive research

over the last few years. It is believed that Type I PSCs are composed of a supercooled

liquid ternary solution of nitric acid, sulfuric acid, and water ice, as well as frozen nitric

acid trihydrates (NAT). At temperatures below 188 K, H2O molecules condense to form ice

crystals building Type II Polar Stratospheric Clouds. Type II particles are large enough

(10 microns in diameter) to fall out of the stratosphere at about 1.5 kilometers per day,

causing dehydration (removal of HOx) of the stratosphere. Type I cloud particles are about

1 micron in diameter and remain longer in the stratosphere. Their sedimentation time is

approximately 10 meters per day. However, solid PSC built out of NAT particles can grow

to larger sizes (20 – 40 microns in diameter, so called ‘NAT rocks’) than liquid PSC particles

and finally sediment to the lower altitudes leading to a denitrification of the stratosphere.

The sedimentation of large HNO3 containing particles leads to an irreversible removal of

nitrogen and thus limits the chlorine deactivation (R11) in springtime allowing the ozone-

destroying catalytic cycle to last longer (Khosrawi et al., 2011).

Because the Antarctic stratosphere is much colder than the Arctic stratosphere, polar

stratospheric clouds are more abundant in the Antarctic. They form early in the winter,

and persist into the spring, enabling the ozone hole to build. Cold binary aerosol can exist

at temperatures near 195 K and is an important contributor to chlorine chemistry and polar

ozone loss specially in the Arctic, where the PSCs are not so frequent (Drdla and Müller,

2010).
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PSCs and aerosols provide surfaces for heterogeneous chemical reactions, which lead to

increased ozone depletion. After the reactant species make contact with the particles by

kinetic motion, the reactants are absorbed onto the surface of the particle by either phys-

ical or chemical bonding, where they diffuse into the body of the particle or remain on the

surface. When the reactants meet on (or in) the particle, different products can form. These

products will then diffuse into the particle, remain on the surface, or be desorbed (emitted)

from the particle. Since the studies of Solomon et al. (1986) heterogeneous reactions are one

of the main research topics in stratospheric chemistry, as they are very important factor be-

hind the Antarctic ozone hole phenomenon. The importance of these reactions results from

the liberation of chlorine from relatively benign chlorine forms into highly reactive forms

(Cl2):

ClONO2 +HCl→Cl2 +HNO3 R12

ClONO2 +H2O→HOCl+HNO3 R13

N2O5 +HCl→ClONO2 +HNO3 R14

N2O5 +H2O→ 2×HNO3 R15

HOCl+HCl→Cl2 +H2O R16

HNO3 remains on PSC/aerosol and is slowly removed from the stratosphere by sedimen-

tation, whereas Cl2 is released and its concentration rises through the polar winter. When

solar radiation is again available in late winter and spring, Cl2 is photolysed:

Cl2 +hν→ 2×Cl. R17

Like singlet oxygen, the chlorine radical is highly reactive. It combines spontaneously with

a molecule of ozone and has enough energy to split it. One oxygen atom from the ozone

molecule combines with the chlorine radical to form chlorine monoxide, ClO, leaving the
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1.2 Anthropogenic perturbations to stratospheric ozone

other two atoms as molecular oxygen, O2. The denitrification due to sedimentation of HNO3

hinders deactivation of chlorine (R11) and hence increases the ozone depleting potential of

ClOx(≈ClO+2ClOOCl). The ClOx chemistry leading to polar ozone loss is described in the

following section.

1.2.3 Stratospheric ClO/ClOOCl chemistry

Once chlorine is activated on PSCs (Solomon et al., 1986) or background aerosol (Drdla and

Müller, 2010) in the polar stratosphere and sunlight is available, photochemical ozone loss

occurs essentially via two catalytic cycles: the ClO dimer cycle (Molina and Molina, 1987),

where ClOOCl is the dimer:

ClO+ClO+M
krec
−−−*)−−−
kdiss

ClOOCl+M R18

ClOOCl+hν
JClOOCl
−−−−−→Cl+ClOO R19

ClOO+M→Cl+O2 +M R20

2× (Cl+O3 →ClO+O2) R21

2O3+hν→ 3O2

and the ClO-BrO cycle (McElroy et al., 1986):

BrO+ClO→Br+Cl+O2 R22

Br+O3 →BrO+O2 R23

Cl+O3 →ClO+O2 R21
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1 Ozone in the stratosphere

2O3+hν→ 3O2

The cycles are connected by ClO, which concentration influences the rate of the ClO-BrO

cycle and of the ClO dimer cycle. Figure 1.5 illustrates the two cycles schematically.
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Figure 1.5: Polar ozone destruction cycles. On the left hand side the ClO dimer cycle is

sketched, on the right hand side the ClO-BrO cycle. Black arrows indicate reactions tak-

ing place without sun radiation, photolysis and ozone depletion reactions are marked with

respectively orange and blue colour. krec, kdiss and JClOOCl correspond to recombination

constant of ClO, dissociation constant and photolysis rate of ClOOCl.

In the stratosphere, chlorine is approximately 150 times more abundant than bromine.

Nonetheless, the ClO-BrO cycle is important as bromine atoms are about 60 times more ef-

ficient than chlorine atoms in destroying ozone (WMO, 2010). Outside of the polar regions,

both cycles are of only minor importance due to low concentration of ClO. The ClO dimer

cycle is negligible also because it is only effective at the low temperatures in polar winter

and spring (ClOOCl is thermally unstable at typical stratospheric temperatures). Further-

more, outside of the polar regions, denitrification does not occur and ClO can be trapped in

ClONO2 reservoir.

To maintain a large ClO abundance through the photolysis of ClOOCl, sunlight is neces-

sary. However, in contrast to the short-wave UV radiation (wavelengths less than 242 nm)

required to produce atomic oxygen and hence to produce ozone, the photolysis of ClOOCl
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1.2 Anthropogenic perturbations to stratospheric ozone

proceeds at rather long UV wavelengths. The radiation between 200 and 450 nm needed

for photolysis of ClOOCl prevails under conditions of low sun at the poles, hence ClOOCl is

photolysed already in spring before the ozone production can be started. Therefore the two

presented cycles account for the majority of the ozone loss observed in late winter-spring

in the polar stratosphere (WMO, 2010). Despite a great number of studies on the cycles,

the kinetic parameters of the reactions constituting ClO dimer cycle still remain a matter

of scientific debate, so that it cannot be claimed that a full quantitative understanding of

polar ozone loss has been reached. In Section 2 the parameters and their influence on the

cycle are introduced.

The processes introduced in this chapter lead to massive ozone depletion over the Antarc-

tic and Arctic. However, due to differences in the topography of the southern and northern

hemisphere, the ozone loss is significantly greater over the Antarctic. The following sections

describe and compare the ozone losses over the two polar regions.

1.2.4 Antarctic: Ozone hole

The ozone hole as a term describing the phenomenon of low total ozone values in the Antarc-

tic spring was first used by Stolarski et al. (1986): ‘The deep minimum, or hole. . . ’. The

ozone hole is typically defined as the geographical region contained within the 220-Dobson

unit contour in total ozone maps. The maximum of such area reaches 25 millions square

kilometres, which is nearly twice the area of Antarctic. Minimum values of total ozone av-

eraged in late September/mid October period over Antarctic are near 100 DU, where normal

values for southern polar spring are equal approximately 350 DU (WMO, 2010). The maxi-

mal ozone loss over Antarctic occurs at 70 hPa (∼18 km) and reaches frequently more than

90% and ozone mixing ratios of less than 0.1 ppm. Figure 1.6 shows an overview of the total

ozone over Antarctic in October during the last 40 years.

1.2.5 Arctic: Ozone loss

The Arctic winter stratosphere is in three aspects similar to the Antarctic counterpart. In

both cases a cold polar vortex is separated from midlatitude air masses, the strong adiabatic

descent in winter transports air from upper stratosphere and partly from the mesosphere to
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1 Ozone in the stratosphere

Figure 1.6: Time series of minimum of daily average column ozone poleward 63° equivalent

latitude for March in the Arctic (upper panel) and October in the Antarctic (lower panel).

Winters in which the vortex broke up before March (1987, 1999, 2001, and 2009) are plotted

with dashed lines. Data were taken from version 2.7 of the NIWA (National Institute of

Water and Atmospheric Research) combined ozone database. Figure adapted from Müller

et al. (2008).

the lower stratosphere and the isolated air is rich with the reactive halogen gases. However,

due to the more extensive topography of the northern polar regions, the Arctic polar vortex

is warmer and much more variable than the Antarctic vortex (cf. Section 1.1.2). It results

in a stronger interannual variability in both chemical loss of ozone and in dynamical supply

of ozone-rich air to high latitudes. Therefore, the total ozone in the polar spring in Arctic

are approximately 200 DU larger than in Antarctic, as shown in Fig. 1.6. Nonetheless,

in particularly cold winters and in winters with an enhanced burden of volcanic aerosol,

substantial chemical loss of ozone has been observed in the Arctic and has led to Arctic

column ozone losses of up to 40% (winter 2010/2011). In typical, dynamically active warm

winters, the estimated chemical ozone loss is rather small.
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2 The ClO dimer cycle

The ClO dimer cycle starts with formation of ClOOCl by recombination of two ClO molecules:

ClO+ClO+M
krec
−−−*)−−−
kdiss

ClOOCl+M R18

The formation reaction is favoured by low temperature, high pressure (more collision part-

ners M) and high abundance of ClO. The reverse reaction, dissociation of ClOOCl also ben-

efits from high pressure, but is slowed by low temperatures. In darkness, without available

solar radiation, the recombination rate and the dissociation rate govern the relation be-

tween ClO and ClOOCl concentrations. The change in concentration of ClO ([ClO]) can

then be calculated with the formula:

0.5
d[ClO]

dt
= kdiss[M][ClOOCl]−krec[M][ClO]2 (2.1)

When the thermal equilibrium is established, the concentration of ClO does not change and

d[ClO]

dt
= 0 (2.2)

The situation changes under sunlit conditions, when the short-wave solar radiation reaches

the polar stratosphere and ClOOCl, sensitive to wavelengths between 200 – 450 nm gets

photolysed:

ClOOCl+hν
JClOOCl
−−−−−→Cl+ClOO R19

ClOO+M→Cl+O2 +M R20

The Cl atoms react with ozone creating new ClO molecules (R21), which restart the ClO
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2 The ClO dimer cycle

dimer or the ClO-BrO cycle. Photolysis provides a new element in Equation 2.1:

0.5
d[ClO]

dt
=kdiss[M][ClOOCl]−krec[M][ClO]2

+ JClOOCl[ClOOCl] (2.3)

and results in an additional production term. That makes the photolysis rate of ClOOCl an

extremely important parameter for both polar catalytic cycles. It is the rate-limiting step

in the ClO dimer cycle under twilight conditions, and also has a major influence on the rate

of the ClO-BrO cycle by governing the amount of active chlorine present as ClO.

The kinetic parameters controlling the night-time and day-time ClO dimer cycle are de-

scribed in the following sections. For each of these parameters, large discrepancies ex-

ist that often cannot be explained by the reported uncertainty limits of laboratory mea-

surements. Moreover, studies testing the consistency with atmospheric observations have

shown that some of the constants determined in the laboratory cannot be reconciled with

atmospheric ClO and ClOOCl measurements (Santee et al., 2003; Stimpfle et al., 2004; von

Hobe, 2007; Schofield et al., 2008; Kremser et al., 2011).

2.1 Recombination and dissociation constants

The self reaction of ClO molecules is a reaction of the A+B↔ [AB]∗
M
−→AB type ([AB]∗

denotes transition state) and is pressure and temperature dependent. The low-pressure-

limiting rate constants are given by NASA Jet Propulsion Laboratory (JPL) recommenda-

tion in the form:

krec,0= k300
0

(

T

300

)−n

cm6molecule−2s−1 (2.4)

(where k300
0 is adjusted for air as the third body at temperature equal 300 K). The high-

pressure-limiting rate constant is given in a similar form:

krec,∞= k300
∞

(

T

300

)−m

cm3molecule−1s−1 (2.5)

Troe (1977a,b, 1979) has developed a theoretical description of the ‘falloff ’ of termolecular

reactions between krec,0 and krec,∞ limits for given temperature and pressure:

krec([M],T)=





krec,0[M]

1+
krec,0[M]

krec,∞



×0.6

{

1+
[

log10

(

krec,0[M]

krec,∞

)]}−1

(2.6)
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2.1 Recombination and dissociation constants

The first term is the Lindemann-Hinshelwood factor, which establishes the basic shape of

the falloff from krec,0 to krec,∞. The second term has the effect of broadening the falloff

region.

Direct studies of Reaction R18 started first after development of the flash photolysis tech-

nique and the subsequent identification of the ultraviolet absorption spectrum of ClO. Since

these early studies, rate coefficients for Reaction R18 have been measured using several ki-

netic techniques such as flash photolysis-ultraviolet absorption, discharge flow-ultraviolet

absorption, discharge flow-mass spectrometry, and molecular modulation-ultraviolet ab-

sorption and have been obtained by Basco and Hunt (1979), Hayman et al. (1986), Sander

et al. (1989), Trolier et al. (1990), Nickolaisen et al. (1994), Bloss et al. (2001) and Boakes

et al. (2005). The constants krec,0 and krec,∞ resulting from these studies are presented in

Fig. 2.1 and Fig. 2.2 respectively.

First investigations of the termolecular process of Reaction R18 were made by Basco and

Hunt (1979). They estimated krec,0 at 298 K and noticed that the coefficient of Reaction R18

increases with decreasing temperature. Hayman et al. (1986) investigated the kinetics of

Reaction R18 between 268 and 338 K in a molecular modulation experiment, monitoring

ClO via absorption spectroscopy at 277.3 nm and derived rate constant with N2 used as the

third body. The obtained constant is equated to krec,0, the low-pressure limit for recombina-

tion constant and is significantly higher than the values estimated in other measurements.

Sander et al. (1989) employed broadband flash photolysis with UV absorption spectroscopy

and measured krec for temperatures between 195 – 247 K, reporting rate coefficients for

Reaction R18 in nitrogen, oxygen and argon. These values were considerably smaller than

those reported by Hayman et al. Trolier et al. (1990) also used the technique of flash pho-

tolysis/UV absorption, monitoring ClO principally through a single wavelength detection at

the peak at 282.65 nm, together with a limited number of measurements performed using a

diode array detection system to monitor the ClO spectrum between approximately 225 and

300 nm. The measurements were performed between 200 and 298 K. They found also that

the falloff curves obtained from fitting Eq. 2.6 to their kinetic data could not be computed,

because the measurements of krec were consistently higher than the fitted curves at low gas
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Figure 2.1: Temperature dependence of various krec,0 measurements. For Trolier et al.

(1990), the first set of krec,0 values (solid line) gives the data obtained excluding the x-

intercept from their analysis, in the second set (dashed line) the x-intercept was included

in the falloff fits. In case of Nickolaisen et al. (1994), the solid line represents the treatment

from Equation 2.4 with ( T
300 )n, whereas the dashed line the Eq. 2.4 with e−E�T. The dashed

line of Bloss et al. (2001) represents data corrected to air, the solid line the data corrected

to nitrogen. For Boakes et al. (2005), the two points at each temperature corresponds to

results with and without incorporating an intercept in the falloff curves. The yellow area

corresponds to uncertainty of JPL 2011 (Sander et al., 2011) recommendation.

pressure. As a result, they analysed the data a second time with an arbitrary x-intercept

added to Eq. 2.6. In 1994, Nickolaisen et al. obtained krec,0 with He, O2, Ar, N2, CF4, SF6

and Cl2 as the third body and indicated, that measured large value of krec,0 for [M]=Cl2 is

due to a mechanism in which a ClO-Cl2 intermediate catalyses the formation of ClOOCl.

This effect is assumed to be responsible for the nonzero intercept observed by Trolier et al.

Bloss et al. (2001) measured krec in nitrogen and air over the range of conditions relevant

to the polar stratosphere, the results showed good agreement with the previous studies at

the higher temperatures (T>200 K), but at lower temperatures the rate was obtained to be
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higher than extrapolation of the previous results. Boakes et al. (2005) studied Reaction R18

over the temperature range 206 – 298 K and the pressure range 1 – 1000 hPa in nitrogen

bath gas. Similarly to studies of Trolier et al. (1990), in their results an intercept was ob-

served in falloff curves obtained at low temperatures, but they suggest disregarding their

data at less than 130 hPa. krec,0 values published by Boakes et al. (2005) are significantly

larger than the previous studies’ results suggesting rapid ClO dimerisation.

�

Figure 2.2: Temperature dependence of various krec,∞ measurements. For Trolier et al.

(1990), similarly as in Fig. 2.1, the two lines correspond to the data obtained with excluding

(solid line) or including (dashed line) of the intercept in the analysis. JPL 2011 krec,∞

uncertainty is shown with yellow colour.

The JPL 2011 (Sander et al., 2011) recommendation for krec,0 plotted in Fig. 2.1 is based

on a fit to data from Sander et al. (1989) as quoted by Nickolaisen et al. (1994) (260 – 390 K),

Bloss et al. (2001) (183 – 245 K), Trolier et al. (1990) (200 – 263 K) and Boakes et al. (2005),

whereas the Trolier et al. (1990) data have been corrected for values at the zero pressure in-

tercept as suggested by Trolier et al.. With this adjustment all the data except the Hayman
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et al. (1986) and Boakes et al. (2005) values are in reasonable agreement. The recommended

values for krec,0 = 1.6×10−32(T/300)−4.5 and fits very well to the results of Bloss et al. (2001)

for measurements in nitrogen. krec,∞ equals 3.0×10−12(T/300)−2 (Fig. 2.2) and provides the

best agreement with data of Boakes et al. (2005). Error limits (yellow areas in both Figures)

represent an attempt to include all the data within the 95% uncertainty.

In the atmosphere, mostly the low pressure limits are observed as a result of the falloff

behaviour with increasing pressure. Below 150 hPa, variation of the high pressure limit,

krec,∞, by a factor of two changes the result of krec (Eq. 2.6) by less than 10% (von Hobe,

2007). The JPL recommendation for krec,∞ provides a good estimation at stratospheric

pressure and is often used for model calculations. The values of krec,0 however is based on

the data of Bloss et al. (2001), whereas the best agreement with atmospheric observations

and with unimolecular theory shows krec,0 published by Nickolaisen et al., as shown by

von Hobe (2007). Therefore, further measurements are necessary to determine the correct

values.

The dissociation constant, kdiss, indicates the strength of binding between two ClO molecules

in terms of how easy it is to separate the complex ClOOCl. Thermal decomposition rate con-

stants of ClOOCl have been deduced mostly from the thermal equilibrium relation krec/kdiss =

[ClOOCl]/[ClO]2. Direct determinations were made by Nickolaisen et al. (1994) and Bröske

and Zabel (2006). Nickolaisen et al. (1994) obtained kdiss,0 from fitting the observed decay

of ClO in the temperature range between 260 and 310 K to an overall reaction mechanism.

Bröske and Zabel (2006) observed the thermal first-order decay rate of ClOOCl in the tem-

perature range 242 – 261 K at total pressure between 2 and 480 mbar. The decay was then

used to determine the kdiss,0. Neither of the studies extended to stratospheric temperatures,

but the data derived by Bröske and Zabel (2006) are easier to interpret and the method used

is less sensitive to undesirable ClOOCl loss processes than the method adopted by Nicko-

laisen et al. (von Hobe, 2007). Comparison with the calculation using the unimolecular rate

theory (Troe, 1977a,b, 1979; Patrick and Golden, 1983) shows similar results with kdiss,0

published by Bröske and Zabel (2006). Von Hobe (2007) combined the theory calculations

and the measurements of Bröske and Zabel and proposed the following dissociation con-
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stant rate for the stratospheric temperatures:

kdiss,0 = 1.66×10−6e−7821/T (2.7)

Figure 2.3: Temperature dependence of various kdiss,0 measurements.

There are no reliable measurement of kdiss,∞ and therefore this parameter is calculated

from krec,∞ through relation with equilibrium constant Keq, which is described in the fol-

lowing section.

2.2 Equilibrium constant

The forward and backward reactions (R18) of the ClO dimer cycle i.e. the ClO recombination

and the ClO dimer (ClOOCl) thermal dissociation, govern the partitioning between ClO and

ClOOCl in darkness with a thermal equilibrium constant

Keq =
krec

kdiss
=

[ClOOCl]

[ClO]2
. (2.8)
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Keq is mostly expressed in the form:

Keq=Ae(B/T) moleculescm−3 (2.9)

where A and B are related to standard reaction enthalpy ∆rH◦ and entropy ∆rS◦:

A=
RT

NA
e∆rS

◦/R, B=−∆rH
◦/R (2.10)

where NA is the Avogadro constant and R is the universal gas constant. The factor RT/NA

converts Keq into units of molecules−1 cm3. The kinetic laboratory studies on Keq(T) are

interpreted either by Third Law analysis or by Second Law analysis.

In the first case ∆rS
◦ is calculated from standard entropies using the Third Law of ther-

modynamics for ClO dimerisation:

∆rS
◦
=S◦(ClOOCl)−2S◦(ClO) (2.11)

and ∆rH◦ can then be calculated by rearranging the van’t Hoff equation:

∆rH
◦(T)=−RTlnKeq(T)+T∆rS

◦(T) (2.12)

S◦(ClO) and S◦(ClOOCl) are calculated as the sum of the contributions to the total molecular

standard entropy from the translational, rotational, vibrational and electronic partition

functions. If the entropy is known (or can be calculated from molecular properties) as a

function of temperature, experimental values of Keq(T) can be used to extract a value for

∆rH
◦ and Keq(T) can be calculated over a wide temperature range. The parameters A and

B can then be determined from a linear fit.

In the Second Law analysis, ∆rS
◦ and ∆rH

◦ are obtained from a linear least squares

fit to the observed Keq values at different temperatures. The two methods provide signif-

icantly different values for the temperature dependence of equilibrium constant and the

first method is mostly preferred due to entropies of ClO and ClOOCl, which can be well con-

strained from spectroscopic data. Available Keq values from various studies are presented

in Fig. 2.4.

The first measurements of Keq were described by Basco and Hunt in 1979. They employed

26



2.2 Equilibrium constant

Figure 2.4: Temperature dependence of various Keq measurements. In panel a, the Keq

estimated for laboratory temperatures are plotted, in panel b the values valid for strato-

spheric conditions are shown. The yellow area represents the uncertainty for the JPL 2011

recommendation.

a flash-photolysis apparatus combined with UV spectroscopy to determine the UV ClOOCl

spectrum and obtained Keq(298K)= 5.1×10−15 cm3molecule−1. In 1988, Cox and Hayman

employed modulated photolysis of a static gas mixture to generate ClO radicals and their

dimerisation products and with UV absorption spectroscopy they monitored ClO radicals.

They determined Keq over the range 233 – 300 K. Horowitz et al. (1994) determined Keq

at 285 K. Nickolaisen et al. (1994) used flash photolysis with UV absorption spectroscopy

to obtain Keq over a temperature range between 260 and 310 K. In 1995, Ellermann et al.

produced ClO by pulse radiolysis Cl2O/Cl2 mixed with different bath gases and studied

kinetics by monitoring of absorption signals at 277.2 nm. Using the acquired experimental

curves and computer modelling, they estimated Keq(295K)= 6.4×10−15 cm3molecule−1.

The first derivation of Keq from field measurements was made by Avallone and Toohey

(2001) from in-situ aircraft experiments with resulting Keq= 1.99×10−30 ×T×exp(8854/T).

Atmospheric measurements from an airborne platform have also been used by von Hobe

et al. (2005), the deduced Keq parameters were A= 3.61×10−27 and B= 8167.

In 2005, Plenge et al. measured the bond strength of the ClO dimer (the enthalpy change

of ClO dimerisation) by photoionisation mass spectrometry and based their parameterisa-
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2 The ClO dimer cycle

tion of Keq(T) on the value of ∆rH
◦ from their own study and Third Law entropies ∆rS

◦

from statistical mechanics. Bröske and Zabel (2006) monitored ClOOCl decomposition at

four temperatures between 245 and 260 K by means of UV and IR spectroscopy to deter-

mine kdiss over the range 243 – 261 K and calculated Keq employing the at that time recom-

mended JPL values of krec. In the most recent study, Ferracci and Rowley (2010) generated

ClO radicals via laser flash photolysis of Cl2/Cl2O mixtures in synthetic air and monitored

the radicals with UV absorption spectroscopy. The equilibrium constant was determined

from the ratio of the rate constants of the forward and reverse Reaction R18 over the tem-

perature range 256.55 – 312.65 K. They used the Second Law and Third Law thermody-

namic methods to obtain the standard enthalpy and entropy changes of reaction from the

estimated Keq(T). The two methods provided significantly different results.

The recommended JPL 2011 values of the equilibrium constant and the thermochemical

parameters are from a third-law calculation based on the data from Cox and Hayman (1988)

and Nickolaisen et al. (1994). The 95% error limits were chosen to incorporate all the data

points in these two studies.

2.3 Photolysis rate

At daylight, reactions R19 - R21 shift the ClOx (=ClO+2ClOOCl) partitioning towards

the monomer and drive chemical ozone loss (R21). The ClOOCl photodissociation Reaction

R19 is the rate-limiting step of the ClO dimer cycle under twilight conditions that prevail

throughout most of the winter in the polar stratosphere. By governing the ClO concen-

tration, reaction R19 also limits the rate of reaction R22 in the ClO-BrO cycle, making the

ClOOCl photolysis frequency JClOOCl by far the most critical kinetic parameter for the over-

all ozone loss rate (von Hobe et al., 2007). The inability to tightly constrain JClOOCl is one

of the key issues preventing full quantitative understanding of the ozone depletion in the

winter/early spring polar atmosphere.

JClOOCl is a product of the ClOOCl photolysis cross section (plotted in Fig. 2.5a) and the

actinic flux I(λ) (Fig. 2.5b) integrated over wavelengths:

JClOOCl =

∫

σClOOCl(λ)·φ(λ)· I(λ) ·dλ (2.13)

28



2.3 Photolysis rate

The photolysis cross section in the formula is given as a multiplication of absorption

cross section σClOOCl(λ) and the photolysis quantum yield φ(λ), i.e. the fraction of absorbed

photons leading to photodissociation. The factors determining JClOOCl are introduced below.

2.3.1 Photolysis quantum yield

The measurements of φ(λ) were carried out by Cox and Hayman (1988); Molina et al. (1990);

Moore et al. (1999); Plenge et al. (2005) and most recently by Huang et al. (2011). They all

have shown, that excited states of ClOOCl are rapidly dissociative, what was also confirmed

by theoretical studies (Birk et al., 1989; Kaledin and Morokuma, 2000; Toniolo et al., 2001;

Peterson and Francisco, 2004). The determined φ(λ) values are usually between 0.9 and 1.

In Figure 2.5a, absorption cross sections and spectra are plotted under the assumption, that

the quantum yield φ(λ) ∼ 1 for the whole wavelength range, i.e. absorption and photolysis

cross sections are to be equivalent.

JPL 2011 recommends treatment of photolysis and absorption cross sections as equal

shifting the focus to the efficiency of direct formation of ClO via photolysis of ClOOCl, rather

than absorption versus photolysis. This focus affects ozone loss but not the partitioning of

ClO and ClOOCl.

2.3.2 Absorption/photolysis cross sections

Three kinds of absorption/photolysis data of ClOOCl can be distinguished:

• Photolysis cross sections, which are determined by monitoring the disappearance of

ClOOCl (Chen et al., 2009; Lien et al., 2009; Jin et al., 2010) or the appearance of Cl

atoms (Wilmouth et al., 2009) in photolysis experiments at discrete wavelengths.

• Absolute absorption cross sections measured by Cox and Hayman (1988), DeMore and

Tschuikow-Roux (1990), Burkholder et al. (1990), Bloss et al. (2001), Papanastasiou

et al. (2009) for the wavelength range relevant for ClOOCl photolysis in the strato-

sphere (λ>310 nm).

• Relative absorption cross spectra as determined by Huder and DeMore (1995), von

Hobe et al. (2009), Pope et al. (2007). Those laboratory studies are lacking the knowl-
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2 The ClO dimer cycle

edge of the amount of ClOOCl present in the absorption cell and have to be scaled to

absolute cross sections or photolysis cross sections from the above mentioned studies.

The available absorption spectra, absorption cross sections and photolysis cross sections

of ClOOCl from various studies are shown in Fig. 2.5 and summarised in Table 2.1.

The first study on σClOOCl(λ) was published by Molina and Molina (1987). The derived

UV absorption spectrum of ClOOCl was possibly affected by the presence of Cl2O3 and

other impurities, which significantly influenced the shape of the spectrum. The spectrum

is considered as incorrect and hence is not included in Fig. 2.5 and Table 2.1. In 1988, Cox

and Hayman reported a UV absorption spectrum of ClOOCl with a strong and broad fea-

ture with a maximum at approximately 245 nm and a tail extending to beyond 300 nm. In

1990, Burkholder et al. used three independent ClO source reactions, generated ClOOCl in

a flow tube and measured its absorption spectrum in the range between 212 and 410 nm.

The results presented by Burkholder et al. (1990) generally produced the best agreement

in a number of studies comparing modelled and observed ClOx partitioning (Stimpfle et al.,

2004; von Hobe, 2007; Schofield et al., 2008; Kremser et al., 2011) as well as ozone loss (San-

tee et al., 2003; Chipperfield et al., 2005; Frieler et al., 2006; Tripathi et al., 2006). In the

same year, DeMore and Tschuikow-Roux used a static photolysis cell containing Cl2/Cl2O

or Cl2/O3 mixtures or pure Cl2O to generate ClOOCl and recorded its absolute absorption

spectrum. In 1995, Huder and DeMore revisited the ClOOCl absorption spectrum with a

similar static photolysis cell and considered a logarithmic extrapolation as a better esti-

mate of the cross sections than the actual data for λ >310 nm. Bloss et al. (2001) studied

the dimerisation kinetics of ClO + ClO + M reaction using the technique of flash photolysis

with UV absorption spectroscopy and measured a value for σClOOCl at 210 nm.

In 2007, Pope et al. used an innovative method to prepare ClOOCl. They condensed

gaseous ClOOCl to a solid form at about 150 K and pumped out the precursor gases, then

they let solid ClOOCl sublimate, and measured its spectrum. This method offers a ClOOCl

sample of a high concentration and low impurities. During the measurements, signifi-

cant absorption due to Cl2, either from the co-condensed reactant or from decomposition

of ClOOCl was observed. To subtract the contribution of Cl2, which varied in concentration
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2.3 Photolysis rate

Figure 2.5: The upper panel presents a comparison of UV/Vis absorption spectra, absorp-

tion cross sections and photolysis cross sections of ClOOCl from various studies. The dashed

extensions show the exponential extrapolation of chosen spectra in the actinic region. The

orange line represents an artificial spectrum with ClOOCl absorption band in the visible.

The middle panel shows spectral actinic flux I(λ) calculated using a HALOE O3 climatology

(Grooß and Russell, 2005) and CLaMS photolysis code (Becker et al., 2000) for four solar

zenith angles (SZA) and an altitude of 18.4 km. The photolysis rate constants estimated for

chosen absorption cross sections and I(λ) at 91° (solid line) and 92° (dashed line) SZA are

shown in panel c. The overall JClOOCl effective in the atmosphere is obtained by integration

of the areas under the plotted curves.
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2 The ClO dimer cycle

during the sublimation process, Pope et al. (2007) used a least-squares fitting procedure that

assumed two Gaussian-like expressions representing the ClOOCl spectrum. In the analy-

sis, they overestimated the influence of Cl2, hence the reported σClOOCl(λ) is much smaller

than any published values and would result in unrealistic low ClOOCl values. Although,

the study of Pope et al. provided erroneous results, it developed a method for preparing

almost pure ClOOCl.

Von Hobe et al. (2009) followed the synthesis method of Pope et al. (2007) and prepared

a pure ClOOCl sample isolated in a neon matrix, the impurity of which was checked with

IR/Vis matrix spectroscopy and low-temperature Raman spectroscopy. Von Hobe et al. ex-

plained the observed differences to previously published spectra and indicated that the ear-

lier measurements of σClOOCl at the peak of ≈ 245 nm may be inaccurate. Because of likely

loss of chlorine atoms from the matrix during photolysis, absolute cross sections were not

estimated. They assumed however, that if there is no loss of Cl from the matrix, an upper

limit of σClOOCl at 245 nm is placed at about a factor of 3 higher than σClOOCl measured by

Cox and Hayman (1988).

Papanastasiou et al. (2009) measured ClOOCl absorption cross sections using diode array

spectroscopy and laser photolysis to generate ClO radicals. For their spectral analysis they

used reaction stoichiometry and three observed isosbestic points to account for chemical

species impurities which appear to represent an interference to a greater or lesser degree in

all pre-2009 studies. The isosbestic point observed at 408.5 nm shows that ClOOCl absorbs

measurably at wavelengths longer than 350 nm. Papanastasiou et al. (2009) confirmed

the spectrum measured in the same laboratory by Burkholder et al. (1990), but estimated

roughly 20% higher cross sections at the maximum. Results of Papanastasiou et al. (2009)

are recommended in JPL 2011.

Wilmouth et al. (2009) used flow-tube and atomic resonance fluorescence techniques to

measure Cl atom production during photolyzing of ClOOCl at 248, 308, and 352 nm. They

obtained the product of the ClOOCl absorption cross section at the three wavelengths by

scaling their signals to the known Cl atom yield in the photolysis of Cl2 or the literature

cross section at the peak of the ClOOCl absorption spectrum. The Cl2 concentration was
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2.3 Photolysis rate

monitored in-situ using fluorescence excited by the resonance lamp. By assuming φ(λ) = 1,

they obtain the lower limit to the absorption cross section.

Chen et al. (2009), Lien et al. (2009), Jin et al. (2010) measured photolysis cross sections,

σClOOClφ(λ), at specific wavelengths by a new experimental method involving pulsed laser

photolysis of ClOOCl in a molecular beam combined with mass spectrometric detection.

This new method is not sensitive to spectral interference from Cl2. Lien et al. (2009) carried

out the measurements for 248.4 nm at three temperatures and showed that the method is

the only one of which the error bars are small enough to reveal the temperature effect.

They indicated also a slightly negative temperature effect at 248.4 nm, whereas Chen et al.

(2009) and Jin et al. (2010) measured a positive and a quite significant temperature effect

of the ClOOCl cross section at 308, 351 and 330 nm (cf. Table 2.1). This Doppler broadening

effect is the modification of the perceived frequency of radiation due to the motion of the

molecule and may explain, at least in part, the differences between the spectra plotted in

Fig. 2.5.

The JPL 2011 recommended ClOOCl absorption cross sections are based on the measure-

ments of Papanastasiou et al. (2009) for the temperature range 190 – 250 K. Data at λ >

420 nm are estimated from the following formula σClOOCl(λ)= 9.5×10−16×exp(−0.0281×λ),

where λ is in nm and σClOOCl is in units of cm2molecule−1. A summary of ClOOCl absorp-

tion/photolysis cross sections studies is given in Table 2.1.

The laboratory studies, in which relative absorption spectra have been measured, have

to be scaled to one of the presented absolute absorption or photolysis cross sections. In

Figure 2.6, the possible scaling points at the absorption peak are plotted. The studies

of Cox and Hayman (1988), DeMore and Tschuikow-Roux (1990) and Burkholder et al.

(1990) indicated the absorption peak value of ClOOCl at 245 nm between 5.8×10−18 and

7.2×10−18cm2molecule−1. According to the results of Papanastasiou et al. (2009), the ab-

sorption peak is at 244.5 nm and has a value of 7.6×10−18cm2molecule−1, Wilmouth et al.

(2009) placed the absorption peak to 6.6×10−18cm2molecule−1 at 248.0 nm, whereas studies

of Lien et al. (2009) showed even higher photolysis cross section (8.85×10−18cm2molecule−1)

near to the assumed peak, at 248.4 nm. The relative absorption spectra plotted in Fig. 2.5a
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2 The ClO dimer cycle

are scaled to peak value reported by Lien et al. (2009) for two reasons:

• The method used by Lien et al. (2009) is insensitive to UV absorption interference by

impurities and does not require information on the absolute ClOOCl concentration,

• It seems unreasonable to scale a relative absorption spectrum to an absolute cross

section associated with a different spectral shape, because in this case we would ap-

prove the shape of the absolute spectrum as the correct one. That is why scaling of

e.g. von Hobe et al. (2009) spectrum to cross sections of Papanastasiou et al. (2009) is

incorrect.

Figure 2.6: Peak close-up for

Figure 2.5a. The colours of

lines and squares correspond

respectively to the absolute

cross sections and photolysis

cross sections plotted in Fig-

ure 2.5a.

The upper panel of Fig. 2.5 shows that the existing laboratory studies on σClOOCl agree

reasonably well at wavelengths below 310 nm, but display large uncertainties in the long

wavelength tail, i.e. in the region of most relevance in the atmosphere. These uncertain-

ties propagate directly into the atmospheric JClOOCl values derived from the cross section

measurements (Fig. 2.5c). Because the incoming sunlight at λ<310 nm is extremely weak

due to the absorption of ozone, it is the weak tail of the ClOOCl absorption spectrum at

λ>310 nm that is responsible for its photodissociation in the atmosphere.

2.3.3 Actinic �ux

Another factor that strongly influences atmospheric JClOOCl values is the actinic flux I(λ),

which is equal to the total number of photons incident at a point and is calculated by inte-
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Study Year Temperature (K) λ (nm) 1020σ(λ) (cm2) Type of data

Cox and Hayman 1988 200 – 300 220 – 360 640 ± 60 Absolute spectrum

Permien et al. 1988 235 211 – 290 — Relative spectrum

Burkholder et al. 1990 205 – 250 212 – 410 650 +80/-50 Absolute spectrum

DeMore & Tschuikow-Roux 1990 206 190 – 400 680 ± 80 Absolute spectrum

Vogt & Schindler 1990 230 204 – 350 — Relative spectrum

Huder & DeMore 1995 195 200 – 310 — Relative spectrum

Bloss et al. 2001 183 – 245 210 294 ± 86 Absorption cross section

McKeachie et al. 2004 223 235 – 400 — Relative spectrum

Pope et al. 2008 193 226 – 355 — Relative spectrum

von Hobe et al. 2009 10 220 – 400 — Relative spectrum

Chen et al. 2009 200 308 49 Photolysis cross

250 308 50.9 sections

200 351 11.2

250 351 12.6

Lien et al. 2009 160 248.4 890 Photolysis cross

200 248.4 885 sections

260 248.4 873

Wilmouth et al. 2009 240 ± 10 248 660 ± 100 Photolysis cross

308 39.3 ± 4.9 sections

352 8.6 ± 1.2

Papanastasiou et al. 2009 200 – 228 200 – 420 760 +80/-50 Absolute spectrum

Jin et al. 2010 200 330 23.1 Photolysis cross

250 330 24.7 sections

Table 2.1: Summary of ClOOCl absorption/photolysis cross sections studies. The earlier studies by Basco and Hunt (1979) and Molina

and Molina (1987) have been shown to have incorrectly identified the UV spectrum of ClOOCl (Burkholder et al., 1990) and are therefore

not included in the table. In case of absolute spectra, the values are given at the peak of the spectrum, ∼ 245 nm.
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2 The ClO dimer cycle

grating the solar radiance L(λ,θ,φ) over the zenith θ and azimuth φ angles:

I(λ)=

∫2π

0

∫π/2

0
L(λ,θ,φ) sin(θ)dθdφ= Idir(λ)+ Idi f f (λ) (2.14)

The actinic flux is the suitable radiation quantity for photolysis frequencies determina-

tion (Kazadzis et al., 2004). It includes the radiance L(λ,θ,φ) from all angular directions,

however in practice a distinction is often made for the contributions of the direct solar beam

(Idir(λ)), and the diffuse radiation down-welling (Idi f f ↓ (λ)) and up-welling (Idi f f ↑ (λ)) in-

cident respectively from the upper and lower layers. This diffuse radiation arises from

molecular (Rayleigh) scattering, reflections at the Earth’s surface (the albedo of land or sea

surface), and scattering by aerosols and clouds (Palancar et al., 2011). It is therefore de-

pendent on the wavelength, on the altitude and on specific local environmental conditions.

Up to now, models and field studies on JClOOCl did not pay proper attention to the impact of

I(λ) on ClOOCl chemistry. Here, the influence of ozone, albedo, clouds and aerosols on the

ClOOCl photolysis is determined from ClO in-situ measurements in the polar stratosphere

(described in Section 6).

Previous studies investigating the consistency of published JClOOCl with atmospheric

observations of ClO and ClOOCl have focused on the photochemical equilibrium between

ClOOCl formation and photolysis rate, so called steady state approximation:

JClOOCl

krec
≈

[ClO]2

[ClOOCl]
. (2.15)

Shindell and de Zafra (1995), Avallone and Toohey (2001) and Stimpfle et al. (2004) tested

different combinations of JClOOCl and krec through comparison of the resulting ClO and

ClOOCl with in-situ data. Stimpfle et al. (2004) proposed four possible parameter pairs

giving good agreement with the measured data and ruled out photolysis of ClOOCl long-

wards of 800 nm. Von Hobe (2007) analysed available laboratory and field data and esti-

mated limits for JClOOCl (JPL 2002, Burkholder et al. 1990), krec and Keq. The derivation

of JClOOCl/krec from ClO in-situ data was also described by Schofield et al. (2008). Here,

the term ‘self-match’ flight was used for a flight pattern, in which the aircraft encounters
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2.3 Photolysis rate

the same air masses twice. The pattern enabled observation of change in ClO mixing ratios

due to increasing solar zenith angle during sunset. Schofield et al. (2008) proposed wide

range of parameters fitting their data. JClOOCl/krec ratio depending on assumed Keq was

estimated also by Kremser et al. (2011) from ClO microwave radiometer data.

Derivation of JClOOCl or JClOOCl/krec from field data is difficult due to changing condi-

tions in the atmosphere and significant measurement uncertainties. An unambiguous de-

termination of kinetic parameters from the data acquired in the stratosphere is therefore

impossible and further laboratory measurements are necessary. To emphasise the impor-

tance of the issue, Figure 2.7 is presented. It shows ozone loss in the Antarctic winter 2003

along a single trajectory simulated with different values of JClOOCl and krec and compared

to measured data (von Hobe, 2007). The Figure demonstrates clearly, that the calculations

with JClOOCl basing on cross sections of Pope et al. (2007) cannot reproduce the field data.

It shows also the significance of JClOOCl in model ozone calculations.

In this thesis, in Section 5, an experiment is described, in which the self-match method

presented by Schofield et al. (2008) was followed, but the flight started in the night, when

the air masses were in thermal equilibrium and the observed change in ClO concentrations

was due to decreasing solar zenith angle during sunrise. To ensure that ClO was measured

twice in the same air masses, a detailed check of match quality was carried out. In Section

6 an analysis of influence of ozone column, albedo, clouds and aerosols on the actinic flux

and hence on the ClOOCl photolysis at the point of measurements is provided. From the

observed ClO concentration increase, JClOOCl was estimated and compared with ClO in-

creases resulting from four sets of ClOOCl absorption cross sections/scaled spectra (Section

7). The results shown in this thesis were published by Sumińska-Ebersoldt et al. (2011).

4improved Limb Atmospheric Spectrometer II developed by the Environment Agency of Japan is a sensor to

monitor the polar stratospheric ozone
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2 The ClO dimer cycle

Figure 2.7: JClOOCl and krec influence on simulated ozone values for the Antarctic winter

2003. The single trajectory simulation ending on the 450 K isentrope was initialised using

satellite observations and tracer correlations. For comparison, ozone sonde data and ILAS-

II4 observations within the Antarctic Vortex at 450 K potential temperature near the end of

the simulation are shown. Plot adopted from von Hobe (2007).
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3 The HALOX instrument

ClO measurements analysed in this thesis were made with the HALOX (HALOgen OXides)

instrument, which employs the chemical conversion resonance fluorescence (CCRF) tech-

nique. In this Section, the CCRF technique is described and the instrument set-up and

specifications as well as the calibration are presented.

3.1 The CCRF technique in ClO detection

The CCRF method is an adaptation of the fast flow reactor technique, which has found

extensive use in conjunction with resonance fluorescence detection for laboratory studies

of gas phase reaction kinetics. In experiments carried out by Clyne and Cruse (1972) and

Anderson and Kaufman (1972), a flowing gas sample was probed with a collimated beam of

radiation. The photons resonantly scattered out of the beam were counted photoelectrically

by a detector observing in a direction perpendicular to the source beam. In the 1970’, the

CCRF technique was adopted for stratospheric balloon-borne measurements of ground state

atomic oxygen O(3P) (Anderson, 1975) and hydroxyl radical OH(X2
Π) (Anderson, 1976) con-

centrations. First in-situ ClO measurements made with CCRF were reported by Anderson

et al. (1977). Brune et al. (1989) determined ClO and BrO concentrations in the Antarctic

polar vortex using a CCRF instrument employed aboard of ER-2 aircraft.

The CCRF technique is a chemical kinetic-spectroscopic technique in which the oxygen

atom is extracted from a radical (in this case ClO) in a reaction with a defined species (here

nitric oxide):

ClO+NO→Cl+NO2 R28

providing an atom (here Cl), which is detected by atomic resonance fluorescence.

For the detection of the Cl atoms a rectangular arrangement of an atomic emission lamp
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3 The HALOX instrument

and a photomultiplier detector located downstream of the NO injector is used (Brune et al.,

1989, see Fig. 3.1). The Cl-lamp emits the Cl signature at 118.9 nm (energy state diagram

in Figure 3.2), which originates from the doublet (118.875 and 118.774 nm) and gives the

best possibility for the resonance fluorescence due to its location in an oxygen absorption

minimum. To suppress other lines oxygen gas filters flushed with synthetic air are used.

A photon emitted from the lamp is absorbed by a Cl atom leading to its excitation. After a

delay, the Cl atom returns to its original state re-emitting the light in a random direction.

This mechanism is termed resonance fluorescence.
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Figure 3.1: HALOX instrument: Chemical conversion resonance fluorescence technique.

The Cl-lamp is a low pressure gas discharge lamp containing trace amounts of chlorine

in 5 hPa helium, its body is schematically shown in Fig. 3.1. A source of Cl in the lamp is

platinum chloride (PtCl2), which decomposes thermally giving chlorine in the gas phase:

PtCl2
T≈300◦C
−−−−−−→Pt+Cl2 R29

Via the temperature of the PtCl2 compartment, the partial pressure of chlorine and hence
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Figure 3.2: Diagram of relevant energy states of the chlorine atom. The wavelengths are

given in nm according to Radziemski Jr. and Kaufman (1969).

the emissive power of the lamp can be regulated. In the opposing lamp arm, a barium getter

is placed, which reduces the partial pressure of Cl2 via the following reaction:

Ba+Cl2 →BaCl2 R30

Barium reacts also with water and oxygen improving the purity of the lamp. The upper

panel of Figure 3.3 shows an emission spectrum of a Cl-lamp and provides a list of typical

chemical impurities. The contamination lines are absorbed within an air filter placed in

front of the lamp window, which is made from magnesium fluoride (MgF2) and cuts all lines

below about 115 nm. In the lower panel of Figure 3.3, the influence of the air filter on the

spectrum is presented.

The photomultiplier tube detects the re-emitted photons and the photons coming from

scattering of the lamp beam from the chamber walls Schamber and the pressure dependent

Rayleigh scatter signal SRayleigh, so that:

S = SCl +Schamber +SRayleigh (3.1)
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Figure 3.3: Emission spectrum of a chlorine lamp. In the upper panel, the unfiltered emis-

sion spectrum is shown. The spectrum measured with an air filter is plotted in the lower

panel. Note the two different ordinate scales.

To determine separately the background consisting of Rayleigh and chamber scatter and the

resonance fluorescence signal due to the Cl atoms, the NO addition is periodically switched

on and off. From the resulting signal difference and the data acquired during measure-

ment calibration (cf. Section 3.2), the Cl atom concentration in the investigated air can be

obtained. The efficiency of Reaction R28 in the air mass is calculated with FACSIMILE5

considering NO and O3 concentrations, flow rate, temperature and pressure and is typically

about 80 to 90%.

5a modeling tool designed by MCPA Software Ltd. to efficiently solve differential equations, with the focus on

modeling the kinetics of physical and chemical systems
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3.2 Calibration

3.2 Calibration

Before and after a field campaign, a calibration of the instrument is necessary, in which a

calibration factor Ccal is determined and compared with reference values (Avellone, 1993).

Ccal provides a ratio of the resonance fluorescence signal and the concentration of Cl atoms

and can be written as follows:

CCl
cal :=

SCl

[Cl]
(3.2)

As shown by Anderson (1978); Anderson et al. (1980), the resonance fluorescence signal

SCl resulting from the excitation of Cl atoms with a given lamp depends on the photon flux

of the lamp at 118.9 nm F118.9, concentration of the Cl atoms in the detection volume [Cl],

on the effective cross section of Cl σ118.9
Cl

and the parameters of the lamp and detector setup.

The detector setup parameters for the radiation at 118.9 nm (including the geometry of the

system and reflectivity of the walls of the flow tube) can be combined and treated as a con-

stant value K118.9. The photon flux F118.9 changes with the time due to e.g. degradation of

the MgF2 window and the density and has to be characterize by another quantity, that can

be easily observed. The photon flux from the lamp is proportional to the background signal

seen by the detector Sbgr, and therefore the background signal can be used for normaliza-

tion of the calibration factor.

The background signal Sbgr is a sum of Schamber and SRayleigh. Its change at 118.9 nm due

to change of [N2] is represented by the following equation:

(

∂Sbgr

∂[N2]

)118.9

N2

= F118.9K118.9σ118.9
N2,Ray, (3.3)

where σ118.9
N2,Ray

is a cross section of N2 for Rayleigh scattering.

The normalized calibration factor is defined by

(

CCl
cal

)norm

N2

=

(

CCl
cal

)

N2
(

∂Sbgr

∂[N2]

)118.9

N2

(3.4)

The quantity
(

∂Sbgr/∂[N2]
)118.9
N2

is estimated in the laboratory by observation of the signal

change with changing pressure of N2 in the flow tube.

Since not only the 118.9 nm line is emitted from a lamp, but also e.g. Lyman-α (121.6 nm)
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Figure 3.4: Schematic view of the HALOX calibration bench.

line is usually present in the lamp spectrum (see Fig. 3.3), Eq. 3.4 gets the form:

(

CCl
cal

)norm

N2

=

(

CCl
cal

)

N2

(1−Lyα)
(

∂Sbgr

∂[N2]

)118.9+121.6

N2

, (3.5)

where Lyα depends on the intensity of the Lyman-α line and Cl-line and equals to I121.6/F(I118.9+

I121.6), where F denotes a spectral correction factor for the monochromator and is equal

≈1.1.

Figure 3.4 shows schematically a setup used for the calibration. During a calibration,

the pressure in the flow tube are adjusted to conditions prevailing during a stratospheric

measurement flight. The composition of air is regulated by mass flow controllers and the

pressure by a butterfly-valve located just upstream of the vacuum pump.

The calibration starts, when the lamp emission is stable and 118.9 and 121.6 nm line

signals, S118.9 and S121.6, can be estimated with the monochromator/photomultiplier setup
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3.2 Calibration

(see Fig. 3.4). From these values Lyα is calculated.

By observing of the detector signal varying with changing [N2] in the flow tube, the quan-

tity (∂S/∂p)118.9+121.6
N2

is obtained. At constant temperature, the pressure p is proportional

to the number concentration and therefore (∂S/∂p) is proportional to (∂Sbgr/∂[M]), i.e. to

(∂Sbgr/∂[N2])118.9+121.6
N2

.

Afterwards, a defined pressure in the flow tube is set and the monochromator is adjusted

to 118.9 nm. Chlorine molecules mixed with nitrogen atoms are injected into a mixing tube

and directed over a red-hot tungsten filament, which enables thermal dissociation. The

counts of the photomultiplier attached to the monochromator change due to the absorption

of the lamp radiation by Cl atoms. The absorption is defined as follows:

A =
I0 − I

I0
(3.6)

with I0 and I standing respectively for the counts on the photomultiplier, when the tungsten

wire is turned off and on. The absorption A enables calculation of [Cl] in the flow tube as

shown by Schwab and Anderson (1982) and Woyke (1997).

Switching the tungsten filament off and on causes also a change in Cl mixing ratio in the

feeding tube from 0 up to several ppb and S0 and S are observed at the photomultiplier

placed perpendicular to the lamp. The difference of those two signals gives the resonance

fluorescence signal: S∆ = S−S0. During a calibration, the Cl concentration is significantly

higher than during stratospheric measurements and the resonance fluorescence radiation

is reabsorbed. Therefore SCl =
∆S

1−A
.

Knowing Lyα, (∂Sbgr/∂[N2])118.9+121.6
N2

, [Cl] and SCl, the normalized calibration factor

(CCl
cal

)norm
N2

can be estimated (Eq. 3.2 and Eq. 3.5). At the end of the calibration, the val-

ues of (∂S/∂p)118.9+121.6
N2

, S118.9 and S121.6 are measured again to ensure that the lamp flux

did not change during the calibration.

The calibration factor changes with pressure. Avellone (1993) estimated following depen-

dence, which here is defined as reference:

Ref :=









(

CCl
cal

)

N2
(

∂Sbgr

∂p

)118.9

N2









−1
[

105cm3

atoms ·hPa

]

= 10.3+0.134 · p[hPa]. (3.7)
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3 The HALOX instrument

The results of the calibration for different pressures are compared with the reference to

check, if the calibration was correct and if there were any possible wall losses in the feeding

tube.

For the measurements in the air, a relation between the calibration factor in nitrogen

and air is needed. The pressure dependence of the ratio was estimated by Woyke (1997):

(

CCl
cal

)

N2
(

CCl
cal

)

air

= 0.00171 · p[hPa]+1.094−0.094 · exp (−0.049 · p[hPa]) . (3.8)

3.3 The instrument con�guration

A schematic setup of the actual HALOX instrument designed for the left wing pod of the

M-55 Geophysica aircraft is shown in Fig. 3.5. It consists of two parallel measurement

ducts suspended under the instrument base plate and the gas supply and electronics units

mounted on top of the plate. The electronics box consists of the instrument power supply

units, the instrument control and data acquisition computer, control and interface electron-

ics, and signal distribution panel. The gas supply unit carries two 1 l bottles of synthetic air,

one 500 ml bottle of nitric oxide (NO), and several mechanical and electrical valves, gauges,

and gas flow controllers (von Hobe et al., 2005). NO is added to the sampled air via needle

arrays placed in each measurement duct in order to produce chlorine atoms via Reaction

R28.

There are two measurement ducts: one operating at ambient pressure (A) and one oper-

ating at reduced pressure (B). Both consist of an air inlet, two thermistor arrays for tem-

perature measurement within the air flow, the NO injector, and two detection modules. The

open duct A, in which the flow velocity is regulated in the range 10 – 20 ms−1 by a butterfly

valve, enables ClO measurements with a detection limit of 5 ppt and an accuracy of approx-

imately 15%. In measurement duct B, which is pumped to decrease the pressure inside

by about 40%, the sum of ClO and ClOOCl can be measured after thermal dissociation of

the dimer in a heated (approx. 370 K) inlet nozzle. To extract the ClOOCl concentration

measured in duct B, the ClO background has to be subtracted. This is done using the ClO

measurement of duct A, which is compared to the signal in duct B at regular intervals with-
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Figure 3.5: HALOX instrument configuration. Power supply, instrument control and data

acquisition computer, pressure sensors ect. are placed in the electronics unit. In the B

axis, a pressure reducing system was integrated to enable measurements of ClOOCl and

ClONO2.

out nozzle heating. The typical accuracy of the ClOOCl measurement is between 20 and

30%. It results from the propagation of the accuracies of A and B ducts and depends to

some extent on the relative amounts of ClO, ClOOCl and ClONO2 present. The minimum

time resolution of the ClO and ClOOCl measurements is given by the NO addition cycles

and is around 20 s or 10 s for the double duct operation (von Hobe et al., 2005).
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4 Chemistry transport and radiative transfer

models

To obtain the results presented in this thesis three models were used. The Chemical La-

grangian Model of the Stratosphere from Research Centre Jülich was employed for plan-

ning of the self-match flight (Section 5) and analysis of the acquired data (Section 7). To

estimate the influence of ozone column, albedo, aerosol and clouds on the ClOOCl photoly-

sis, two radiative transfer models were compared and used for the estimation of the actinic

flux I(λ) on the flight trajectory (Section 6). The first one, libRadtran, is a high resolu-

tion model created at Deutsches Zentrum für Luft- und Raumfahrt (DLR) and University

of Munich (Mayer and Kylling, 2005). The second one was written by Prather (1981) and

Salawitch et al. (1994) and was used in previous research (Salawitch et al., 1993; Stimpfle

et al., 2004; Schofield et al., 2008). The model is currently operated at the University of

Maryland (UMD) and therefore, in this thesis it is referred to as the UMD model.

4.1 The CLaMS Model

For preparation of the flight trajectory and the analysis presented in Sections 7, the Chem-

ical Lagrangian Model of the Stratosphere (CLaMS) (McKenna et al., 2002a,b; Grooß et al.,

2005, 2011) developed at the Research Centre Jülich was used. CLaMS is based on a La-

grangian approach, in which one considers an ensemble of air parcels following the wind

and, consequently, forming a time-dependent irregular grid moving with the wind elements.

The chemistry taking place can be calculated on this irregular grid. CLaMS enables inves-

tigation of small-scale features often observed in stratospheric flows and provides a tool

for chemistry calculations in single air parcels along their trajectories. Fig. 4.1 shows the

CLaMS model scheme with its most important components.
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Figure 4.1: Schematic diagram of CLaMS model.

The CLaMS module traj enables forward and backward trajectory calculations (i.e. for-

ward and reverse in the time direction) from a particular point or set of points in the strato-

sphere and upper troposphere. For initialization of a run, coordinates and altitude informa-

tion is needed. The calculations of the air parcel trajectories are based on meteorological

analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF, Simmons

et al., 1989). The ECMWF data used in the analysis presented in this thesis have a merid-

ional and zonal resolution of 1°, a temporal resolution of 6 hours and a vertical one of 10 K

in potential temperature coordinates. The numerical integration is based on the 4th order

Runge-Kutta scheme. The radiative transfer code inherent in CLaMS bases on studies of

Lary and Pyle (1991a,b) and Becker et al. (2000).

The vertical coordinate of CLaMS in the stratosphere is the potential temperature Θ,

below the tropopause, the model smoothly transforms from the isentropic to the ζ hybrid-
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4.1 The CLaMS Model

pressure coordinate proportional to pressure (Konopka et al., 2007). In this way, CLaMS

takes into account the effect of large-scale convective transport as implemented in the ver-

tical wind of the meteorological analysis. The stratosphere is stably stratified and therefore

the vertical winds can be neglected in many applications focusing on short time scales. For

polar regions, however, the diabatic descent of the air masses has to be taken into account.

For this purpose an improved version (Zhong and Haigh, 1995) of the Morcrette radiation

scheme (Morcrette, 1991) is employed in CLaMS.

CLaMS uses a comprehensive set of reactions occurring in the stratosphere including 42

species, 115 reactions and full chlorine chemistry. The chemistry package chem is a box

model running on multiple trajectories at the same time. It calculates the change of chem-

ical composition along each given trajectory. CLaMS enables usage of different solvers to

integrate the system of stiff ordinary differential equations resulting from the chemistry

(Carver et al., 1997; McKenna et al., 2002b). The calculations presented in this thesis were

carried out with the SVODE solver (Brown et al., 1989). The photolysis rates in CLaMS are

calculated in spherical geometry (Meier et al., 1982; Becker et al., 2000) using a climatolog-

ical ozone profile from HALOE (Grooß and Russell, 2005) or profiles from various satellite

data, e.g. from Microwave Limb Sounder (MLS).

Heterogeneous chemistry is based on the code of Carslaw et al. (1995) and is calculated

on ice, nitric acid trihydrate (NAT), and liquid ternary H2O/H2SO4/HNO3 (STS) particles.

The parameterisations of the uptake coefficient to model heterogeneous chemistry on liquid

aerosols and on NAT particles are derived from Hanson (1998) and Hanson and Ravis-

hankara (1993) respectively. Also, a Lagrangian denitrification scheme is implemented into

the three-dimensional version of CLaMS to calculate the growth and sedimentation of nitric

acid trihydrate particles along individual particle trajectories. NAT formation is assumed

to occur at a HNO3 supersaturation of a factor of 10 (Grooß et al., 2005).

In this thesis, the results of CLaMS box-model-mode runs are shown. This mode enables

chemistry calculations in an air parcel moving on a given forward or backward trajectory.

The results of such runs are presented in Sections 5 and 7.
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4 Chemistry transport and radiative transfer models

4.2 Radiative transfer models

Radiative transfer is one of the most important topics in atmospheric research. Solar ra-

diation drives weather and climate of the Earth, atmospheric dynamics is driven by the

differential heating by the sun, caused by the latitudinal gradient of the incident solar irra-

diance and the rotation of the Earth about its axis. In addition to being the driving force of

weather and climate, solar radiation controls atmospheric chemistry. The key reactions in

atmospheric chemistry like the photolysis of NO2, which is the only production mechanism

of ozone in the troposphere, and the photolysis of O3, which causes the formation of the OH

radical or the ClOOCl photolysis investigated here are driven by radiation and thus are

directly proportional to the available radiation in the ultraviolet spectral region. Therefore,

a detailed knowledge of the atmospheric radiative transfer and accurate calculation of the

photolysis rates are necessary to evaluate stratospheric models (Becker et al., 2000).

To estimate correct ClOOCl photolysis rates, information about actinic fluxes I(λ) in the

investigated air masses is necessary. In the analysis described in Section 6, two radiative

transfer models were compared and used for calculations of I(λ) and JClOOCl values.

4.2.1 libRadtran software package

The libRadtran software package of Deutsches Zentrum für Luft- und Raumfahrt (DLR)

and University of Munich is a free radiative transfer model (RTM) and is available from

http://www.libradtran.org. LibRadtran is a library of radiative transfer routines and pro-

grams. It is also often referred to as UVSPEC or DISORT, and is widely used and cited

(Bais et al., 2005; Bernhard et al., 2005; Antón et al., 2007), e.g. by the satellite communi-

ties (Arola et al., 2005, 2007; Bugliaro et al., 2010). It provides transparent input options

considering various atmospheric scenarios (haze, clouds, ect.), which can be implemented

in calculations in an easy and transparent way.

The central program of the libRadtran package is the radiative transfer tool uvspec,

which calculates the radiation field in the Earth’s atmosphere. A schematic structure of

uvspec is shown in Figure 4.2. The uvspec program includes the full solar and thermal

spectrum from 120 nm to 100 µm with a resolution up to 0.05 nm.
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4.2 Radiative transfer models

The uvspec program reads an input from standard input file containing the time and

coordinates as well as atmospheric properties like ozone profile, surface pressure, solar

zenith angles, various molecules, aerosol or cloud microphysics (Fig. 4.2). The absorption

and scattering properties of these constituents may either be taken from the algorithms and

databases provided with libRadtran or be provided by the user. The data are converted into

optical parameters with an atmospheric shell. Boundary conditions are the solar spectrum

at the top of the atmosphere and the reflecting surface at the bottom. LibRadtran provides

several extraterrestrial solar spectra and various surface models. Radiances, irradiances,

heating rates for the given optical properties and actinic flux are estimated with one of 10

available radiative transfer equation solvers. The uvspec program gives the user a choice

of various radiative transfer solvers, e.g. the widely-used discrete ordinate SDISORT code

by Stamnes et al. (1988) and Dahlback and Stamnes (1991) to accurately simulate radi-

ances, a fast two-stream code to calculate approximate irradiance (Kylling et al., 1995), or

a polarization-dependent code polRadtran (Evans and Stephens, 1991). Finally, the cor-

rection due to extraterrestrial solar irradiance, Earth-Sun distance, convolution with a slit

function ect. are computed (Mayer and Kylling, 2005).

In the analysis presented in Section 6 two solvers were used: the DIScrete ORdinate Ra-

diative Transfer solver (SDISORT) and a sophisticated three dimensional solver MYSTIC

(Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres)

code (Mayer, 2009; Emde et al., 2010) that cannot be currently downloaded with the free

package.

SDISORT

The discrete ordinate SDISORT method was developed by Chandrasekhar (1960), Stamnes

et al. (1988) and Dahlback and Stamnes (1991). It solves the radiative transfer in 1-D quasi-

spherical geometry and allows accurate calculations of radiance, irradiance, and actinic

flux. The standard version of SDISORT, the DISORT solver developed by Stamnes et al.

(1988) and Stamnes et al. (2000) is very well-tested and the mostly used 1-D radiative

transfer solver, however, at the high zenith angles analysed in this thesis, the 3-D MYSTIC

gives much more precise results.
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Figure 4.2: Structure of the libRadtran uvspec model. Diagram adopted from Mayer et al.

(2011)

The SDISORT considers the transfer of monochromatic unpolarized radiation in a scat-

tering, absorbing and pseudo-spheric medium, with a specified bidirectional reflectivity at

the lower boundary and is customized for airmass calculations. The medium can be forced

by a parallel beam and/or diffuse incidence and/or Planck emission at either boundary. It en-

ables the inclusion of 2-D density profiles of trace gases. Intensities at user-selected angles

and levels are the normal output. In addition to intensities, fluxes, flux divergences, and

mean intensities are available as byproducts (or, optionally, the only products). Strongly
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4.2 Radiative transfer models

forward-peaked scattering is treated by the δ–M method (Wiscombe, 1977) with corrections

of Nakajima and Tanaka (1988). Due to included thermal (Planck) emission, both inter-

nally and as a boundary condition, SDISORT is a suitable solver for thermal infrared and

microwave applications in addition to solar-spectrum applications (Stamnes et al., 2000).

MYSTIC

Monte Carlo radiative transfer is a technique where individual photons are traced on their

random paths through the atmosphere. The method enables a physically correct tracing of

photons in cloudy atmospheres. MYSTIC uses this approach to calculate solar and thermal

radiance, irradiance, and actinic flux. It has been used for remote sensing as well as for

climate and photochemistry applications. It allows the definition of arbitrarily complex 3-D

clouds, inhomogeneous surface albedo as well as topography.

In MYSTIC the photons are traced from a source, which can be either the sun or, in the

thermal spectral range, the surface or an atmospheric constituent (molecule, cloud droplet,

ice crystal, aerosol particle). The solar source is described by the extraterrestrial irradiance

of the sun, while thermal emission is defined by the emission coefficient and the temper-

ature. The end of the photon path is either absorption by an atmospheric constituent,

absorption by the surface, or when the photon leaves the atmosphere at the top of the at-

mosphere.

Each photon is assigned an initial location and direction. For a solar photon the location

will be at top of the atmosphere, at a random location in the x-y plane, assuming that

the model domain is illuminated homogeneously by the sun. The direction is defined by

the solar zenith and azimuth angles. In the thermal spectral range, the photon is emitted

somewhere in the atmosphere. The selection of the photon start locations is made according

to the emission coefficient and the temperature. The chosen coefficient and temperature

values have to ensure that after many photons the distribution of emitted photons will

follow the product of the emission coefficient and Planck function.

Photons are traced from scattering to scattering. Absorption is considered implicitly, by
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4 Chemistry transport and radiative transfer models

reducing the photon weight by the Lambert-Beer factor:

exp(−τabs)= exp

(

∑

cells

l i ·kabs,i

)

, (4.1)

where l i is the length which the photon travels in cell i – determined by geometry and

kabs,i is an absorption coefficient. Interaction with the surface is either treated by actually

absorbing the photon if it is not reflected, or by always reflecting the photon in a random

direction and reducing the photon weight by multiplying it with the Lambertian albedo or

bi-directional reflectance distribution function6 (Mayer, 2009). The MYSTIC runs can be

made for desired amount of photons. Increasing the number of photons results in longer

run time, but increases also the accuracy of a simulation.

MYSTIC is a forward/backward Monte Carlo code with model atmosphere consisting of

a 1-D background of molecules and aerosol particles and a 3-D grid of cloudy cells. A

schematic diagram of the algorithm is shown in Figure 4.3. The involved physics is sim-

ulated as closely as possible on the basis of the input atmosphere, without any further

simplifying assumptions. MYSTIC as well as SDISORT do not consider refraction of the

sun beams in the Earth’s atmosphere.

4.2.2 UMD radiative transfer model

The University of Maryland (UMD) Radiative Transfer Model is based on an early version

of the FastJX model (Wild et al., 2000; Bian and Prather, 2002) that was used in numerous

climate models and publications (Neu et al., 2007; Binkowski et al., 2007; Voulgarakis et al.,

2009).

In the UMD model the radiation field is calculated at each time step. The model includes

absorption by molecular oxygen, nitric oxide and ozone as well as first-order molecular scat-

tering, but does not consider clouds. The spectral resolution of the model equals 5 nm. The

incident light is assumed to be unpolarized. The attenuation of the direct solar flux is cal-

culated by integrating through the atmosphere in the direction of the sun. The calculation

takes into account both sphericity and changes in local solar time along the path. Refrac-

6a four-dimensional function defined by Nicodemus (1965) that specifies the directional reflectance and emis-

sivity of an opaque surface
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Figure 4.3: Schematic diagram

of the basic MYSTIC model for

surface irradiance calculation.

The blue-framed boxes include

a random number. TAO corre-

sponds to ‘top of the atmosphere’.

Adopted from Mayer (2009).

tion is not included. This direct solar flux is the source function used to calculate the diffuse

radiation in an inhomogeneous scattering atmosphere (Prather, 1981; Minschwaner et al.,

1993). Due to assumptions made in the routines of this model, the run time is short when

comparing with SDISORT and MYSTIC, but the accuracy is lower.
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5 The self-match �ight

The idea behind a self-match flight is to sample the same air masses twice during outbound

and inbound flight legs of the same flight as has been described by Schofield et al. (2008).

The analysis of the self-match flight described in this thesis was published by Sumińska-

Ebersoldt et al. (2011). Here, additional information (atmospheric conditions on the flight

track, temperature and solar zenith angle in the air masses prior to the flight ect.) and

more elaborated sensitivity studies (influence of clouds, aerosol, photolysis quantum yield,

ect.) are included. The impact of actinic flux on ClOOCl photolysis rates is discussed in

Section 6 and constraints on JClOOCl are investigated in Section 7.

The self-match flight was carried out on 30th January 2010 from Kiruna (67°49’N, 20°20’E),

Sweden, as part of the large aircraft field campaign within the European project RECON-

CILE, employing the Russian research aircraft M-55 Geophysica with a ceiling altitude of

20 km. 17 partners from 9 different countries took a part in the RECONCILE campaign,

information on the measurements and data acquired during the campaign is summarized

by von Hobe et al. (2011).

Location and timing of the self-match flight were planned as to direct the aircraft into a

region of elevated ClOx levels. This was identified prior to the flight using the chemistry-

transport model CLaMS (see Section 4.1) in the forecast mode. Coordinates and timing

of the match points were calculated by Ralph Lehmann from Alfred Wegener Institute for

Polar and Marine Research in Potsdam, Germany. Air mass trajectories for the motion

of individual air parcels between the two encounters were calculated based on data from

the European Centre for Medium-Range Weather Forecasts (ECMWF). Ninety-five match

trajectory start points were defined by the one-minute time intervals at which ClO was

measured on the outbound flight leg. Forward trajectories were calculated until 12:00 UTC
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5 The self-match flight

of 30th January with 1 minute time resolution. The points with the lowest distance to

the inbound flight track were then defined as pairing match points. The flight track and

match-pair trajectories, as well as solar zenith angle, pressure and potential temperature

prevailing on the track are shown in Fig. 5.1.

Figure 5.1: On the left hand side the flight path of the RECONCILE self-match flight on

30 January 2010 is plotted. The solar zenith angle on the track is represented by the colour

scale. The black lines between outbound and inbound parts of flight represent the trajecto-

ries of the match pairs fulfilling the strict match conditions (cf. Section 5.2). Atmospheric

parameters (solar zenith angle, pressure and potential temperature) on the outbound and

inbound self-match flight legs are plotted on the right hand side.

To enable the analysis of the SZA dependence of JClOOCl and put limits on the probable

JClOOCl values, the flight was carried out over sunrise, with the first measurements still in

darkness (i.e. with no active photolysis reactions and the chemical system expected to be

in thermal equilibrium), and the second (matching) measurement in daylight, moving from

higher to lower solar zenith angles (i.e. increasing solar radiation and photolysis rates) over

the course of the inbound flight leg as is shown in Fig. 5.1. This was achieved by a nearly

sun-synchronous flight pattern in westward direction for the outbound flight leg and the

inbound flight leg coming back in eastward direction.
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5.1 Measurements

5.1 Measurements

ClO was measured by the HALOX instrument (see Section 3) situated in a pod underneath

the left wing of the Geophysica aircraft (von Hobe et al., 2005). Nitric oxide (NO), converting

ClO to Cl atoms, was added to ambient air flowing through measurement ducts periodically

with 10 s cycles. In the study presented here, the differences between ClO measurements

on the outbound and inbound flight legs are investigated. Therefore, most critical for the

analysis is precision, which varies between 4% and 8% depending on the stability of the light

source (helium discharge lamps containing chlorine) and on the observed detector noise.

Random noise is reduced and signal-to-noise-ratio increased by integrating the signal over

six NO addition cycles, yielding a time resolution of 1 minute.

In the analysis below, the combined systematic (accuracy) and random (precision) er-

ror were used and fully propagated into calculations of differences between data from the

outbound and inbound flight legs. This is a conservative estimate, because some of the sys-

tematic errors will cancel out. However, there are parameters leading to such errors that

can potentially change over the course of a flight (e.g. lamp output and contribution from

different spectral lines), and the full consideration of all errors ensures the significance of

the results demonstrated in Section 7.

Temperature and pressure plotted in Fig. 5.1 were measured using commercial Rose-

mount sensors and geolocation data were provided by the Geophysica avionic system.

To examine the accuracy of matches (cf. Section 5.2), measurements of nitrous oxide

(N2O) were used. This trace gas is expected to be unaffected by chemical processes on

the time scale of the self-match flight and thus should show conserved mixing ratios. Ni-

trous oxide was measured by the 2-channel gas chromatograph HAGAR (High Altitude Gas

Analyser, Volk et al., 2000) with a time resolution of 90 s. Mean precision and accuracy are

better than 1% and 2% of the tropospheric background value, respectively.

Additionally, the data of COPAS (COndensation PArticle Counting System, Weigel et al.,

2009) enabled an identification on exhaust particles from the Geophysica engines on the in-

bound flight leg. COPAS consists of an aerosol inlet and two dual-channel continuous flow

Condensation Particle Counters (CPCs) and enables measurements of number concentra-
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5 The self-match flight

tions of the particles with diameters of 6 nm, 11 nm and 15 nm. The particles are detected in

three channels operated with distinct temperature differences between the saturator and

the condenser block. An other channel is operated with an aerosol heating line for a de-

termination of the number of non-volatile particles. In the COPAS data, the exhaust gases

of Geophysica were observed several times on the inbound flight leg confirming the good

performance of the self-match flight.

The ascent and descent data from the modified Forward Scattering SpectrometerProbe

(FSSP, with newer electronics; Dye and Baumgardner, 1984) and a Cloud Imaging Probe

(CIP, Baumgardner et al., 2001) from University of Mainz enabled the parameterisation of

the clouds layer below the flight track and thus the estimation of the actinic flux.

5.2 Matches

Match points on the inbound flight leg corresponding to those on the outbound leg were

found by minimising the horizontal radius around the coordinates of the Geophysica track

and finding the coordinates fitting in time on the CLaMS forward trajectories. As shown

in Fig. 5.2, the match radii Rmatch were always smaller than 8.5 km. To define a successful

match pair, the vertical difference, in terms of potential temperature (Θ) was also consid-

ered. Here, ∆Θ is defined as a difference between Θ measured in the matching locations of

observations on the out- and inbound flight legs and successful matches are considered for

∆Θ < 2.0 K. The vertical ClO gradient measured during descent was 15 ppt K−1 resulting

in a ClO gradient smaller than the measurement uncertainty for a 2 K change in potential

temperature.

To ensure good quality of the matches, observations of the long-lived tracer N2O by the

HAGAR instrument were used. Match pairs, with differences between N2O measured on

the outbound and inbound flight legs larger than the precision of HAGAR for the relevant

data points (~1.6 part per billion by volume, ppb), were rejected. With few exceptions, the

tracer measurements confirm an excellent match performance (Fig. 5.2, lower panel), as do

several encounters of the Geophysica exhaust on the inbound flight leg identified by COPAS

observations on the inbound flight leg.
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5.2 Matches

Figure 5.2: Performance of the match-flight. The upper panel and the middle panels show

the horizontal and the vertical match accuracy in form of match radii Rmatch (in km) and

potential temperature difference ∆Θ (in K), respectively. Differences in the mixing ratios of

N2O are shown in the lower panel. The dashed horizontal line corresponds to the HAGAR

N2O measurement precision of 1.6 ppb. The red, blue and green lines represent the COPAS

measurements. The increase of particle number concentrations indicates the Geophysica

exhaust trail encounters.

Forty-one out from 95 match pairs fulfilled the location (Rmatch < 8.5 km, ∆Θ < 2 K) and

trace gas (∆N2O < 1.6 ppb) conditions. Those are marked by large black circles in Fig. 5.2.
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5 The self-match flight

5.3 Equilibrium constant estimation

JClOOCl gives information on the rate of change of ClOOCl/ClO due to photolysis of ClOOCl.

Therefore, to estimate this parameter, ClO and ClOOCl concentrations have to be known.

Since during the self-match flight, the ClOOCl concentration ([ClOOCl]) was not mea-

sured, it has to be estimated from the equilibrium constant Keq, which equals the ratio

of [ClOOCl]/[ClO]2. However, as shown in Section 2.2, there exist large discrepancies in

published values of Keq.

The estimation of Keq from ClO measurements and Cly information is made in Section

5.3.2. In the following Section, the history of the investigated air masses is discussed to

identify the probability of the thermal equilibrium on the outbound flight leg.

5.3.1 Backward trajectories analysis

A state of equilibrium exists when the rate of the forward process equals the rate of the

reverse process. It means, when the [ClO] and [ClOOCl] at given conditions do not change

significantly. To reach this state, no heterogeneous chlorine activation and no photolysis

should occur in the investigated air mass for defined time. The relaxation time of the sys-

tem depends on the concentrations of ClOx(=ClO+2ClOOCl). Figures 5.3 and 5.4 show tem-

peratures and solar zenith angles calculated on the backward trajectories of the outbound

flight points. The simulation was made with CLaMS (Section 4.1), as input information,

the coordinates and atmospheric parameters measured aboard Geophysica were used. Air

mass trajectories for the motion of individual air parcels were calculated based on ECMWF

data.

Figures 5.3 and 5.4 reveal that the investigated air masses had been in darkness longer

than 15 hours prior to the flight and during the 15 hours temperature did not fall below

196.6 K on any of the trajectories. This finding rules out significant contributions to ClO

rise from photolysis of Cl2 released during very recent heterogeneous activation (see Section

1.2.2).

To asses if the time spend in the darkness is sufficient for the system to reach equi-

librium, one has to consider the relaxation time of the system depending on the reactive
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Figure 5.3: Temperature history of the air masses sampled on the outbound flight leg.

Figure 5.4: SZA history of the air masses sampled on the outbound flight leg.

chlorine ClOx mixing ratios. From the night-time ClO measurements and different Keq,

possible values of ClOx mixing ratios were estimated between 1500 and 2500 ppt. For three

ClOx values within those limits and pressure and temperature in the air masses on their

backward trajectories, the relaxation time was calculated. Figure 5.5 shows results of the

calculations and indicates that 15 hours are enough for the studied system to reach its equi-

librium state. This result justifies the assumption of thermal equilibrium for the outbound

flight leg (von Hobe et al., 2005).
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5 The self-match flight

Figure 5.5: Relaxation time of the ClO/ClOOCl system into thermal equilibrium

(ClOOCl/[ClO]2 > 0.8 Keq) for ClOx equal 1500, 2000, 2500 ppt. The blue lines show minima

and maxima of the pressure and temperature values observed on the backward trajectories.

The idea of the plot is taken from von Hobe et al. (2005).

5.3.2 Night-time ClOx chemistry

As shown above, the air masses on the outbound flight leg can almost certain be assumed

to be in thermal equilibrium state. Therefore, to estimate the ClO increase due to ClOOCl

photolysis, the concentration of ClOOCl during the night can be obtained using Eq. 2.8.

Figure 5.6 shows ClOx mixing ratios calculated from the night-time HALOX ClO measure-

ments and Keq by Plenge et al. (2005), Ferracci and Rowley (2010) and JPL 2011. An upper

limit for ClOx is given by the total inorganic chlorine Cly, which was obtained from the

tracer-tracer correlation with N2O valid for the year 2000 and published by Grooß et al.

(2002).

The N2O increase of 2.4% over the past 10 years was taken into account while no sig-

nificant change in stratospheric Cly was assumed. With this assumption, the formula was

estimated

Cly = 3.394+0.001648∗N2O−7.659×10−5
∗N2O2

+2.646×10−7
∗N2O3

−4.469×10−10
∗N2O4

(5.1)

N2O and Cly are given in ppb and the relation is valid for N2O values between 17 – 320 ppb.
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5.3 Equilibrium constant estimation

For the observed night-time ClO, only Keq from Plenge et al. (2005) seems plausible.

Values of Keq taken from studies of Ferracci and Rowley (2010) and JPL 2011 would result

in ClOx exceeding Cly. Therefore, in this study, Keq from Plenge et al. (2005) is used to

estimate ClOOCl (green circles in Fig. 5.6) for the further analysis described in Section 7.

Figure 5.6: ClOx mixing ratios derived from HALOX ClO night measurements (black cir-

cles) in combination with three chosen Keq. ClOOCl mixing ratios calculated with HALOX

ClO and Keq from Plenge et al. (2005) are represented by green circles. Grey areas show

the uncertainties propagated from the HALOX ClO observations. The red line corresponds

to Cly calculated from the correlation with N2O (Eq. 5.1) measured by HAGAR.
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Solar radiation is the driving force for many atmospheric processes. To obtain the photolysis

rate constant JClOOCl (Fig. 2.5c), the ClOOCl photolysis cross sections are multiplied by

the spectrally resolved actinic flux (Eq. 2.13). The actinic flux defines the total number of

photons incident at a given point of the atmosphere and is the sum of the direct flux Idir(λ)

and the diffuse flux Idiff(λ) (cf. Eq. 2.14). At very high solar zenith angles, the former is

often dominated by the latter (Zhang et al., 2010). Both of them depend on the atmospheric

radiation field, which changes with wavelength.

The radiation field is affected by scattering and absorption by molecules, aerosol particles,

cloud droplets and particles, and surface albedo. To assess, which of the photolysis cross

sections are realistic, it is crucial to minimise uncertainties in the actinic flux determined

for the RECONCILE self-match flight. In this Chapter, the sensitivity of the actinic flux as

function towards various atmospheric parameters is described (Sections 6.2.1-6.2.4).

First, however, the results of calculations for clear sky conditions made with libRad-

tran/MYSTIC and the UMD radiative transfer models described in Section 4.2 are com-

pared (Section 6.1). The UMD model was used by Stimpfle et al. (2004) and Schofield et al.

(2008) for estimation of the kinetic parameters of ClO dimer cycle (Section 2) from their

in-situ measurements. To be able to compare our result with those of previous studies, the

actinic flux has to be calculated in a similar way. The UMD model, however, does not take

into account cloud and aerosol particles and therefore, the more sophisticated libRadtran

model is used for further analysis.
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6 Actinic flux in the lower stratosphere

6.1 Model comparison for clear sky conditions

For the comparison, the same input data were used in both models according to the atmo-

spheric conditions on the flight track of Geophysica on 30 January 2010 (Figure 5.1). Since

not the whole flight was considered in the analysis, only the self-match part of the flight

data was used for the calculation of the actinic flux. The runs were made for a pressure of

63.75 hPa corresponding to the mean flight altitude of ≈ 18 km, the mean temperature at

the flight track of 198 K and solar zenith angles (SZA) between 88° and 94°. The albedo was

set to 0.2, which seems to be a good approximation for a sea surface below the flight track

(Jin et al., 2004).

The models were also constrained using temperature and ozone profiles taken from Mi-

crowave Limb Sounder (MLS) satellite observations from 30 Jan 2010 and averaged for the

area between 60° and 68° N and 0° and 20° E. Both profiles are plotted in Figure 6.1.

Figure 6.1: Temperature and ozone Microwave Limb Sounder (MLS) profiles from 30 Jan

2010 used for actinic flux calculations.

The UMD and libRadtran models determine the irradiance at the top of the atmosphere

using different sources, hence differences occur when calculating photon fluxes. Figure 6.2
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6.1 Model comparison for clear sky conditions

shows a comparison of photon fluxes at the top of the atmosphere employed in the two mod-

els. The extraterrestrial irradiance of libRadtran has a very high resolution and is a com-

bination of Atlas7 3 (200 – 407.8 nm, Woods et al. 1996), Atlas 2 (407.8 – 419.9 nm, Woods

et al. 1996), and Modtran 3.5 (419.9 – 800 nm, Christian and Gueymard 2004) spectra. The

spectrum used in UMD is taken from the WMO (1985) Assessment Report. The discrepan-

cies in photon flux are relatively small and result from the different spectral resolutions of

0.05 nm and 5 nm for UMD and libRadtran, respectively. When considering differences in

the models, like spectral resolution, integral equations or geometry used for calculations in

MYSTIC and UMD (cf. Section 4), the differences in the photon fluxes can be neglected.

Figure 6.2: Photon flux at the top of the atmosphere in the UMD and libRadtran model.

In libRadtran the combined ATLAS 3, ATLAS 2 and Modtran spectra are employed. UMD

model uses the spectrum recommended in the WMO (1985) Assessment Report.

The most important part of all radiative transfer models is the procedure calculating the

radiation field for a given distribution of optical properties. This procedure ranges from a

variety of parametrisations and approximations to sophisticated and accurate solutions of

7stands for ATmospheric Laboratory for Applications and Science shuttle mission, the cyphers give the mis-

sions numbers, 2 corresponds to the mission from April 1993, and 3 to the mission from November 1994
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6 Actinic flux in the lower stratosphere

the full three-dimensional radiative transfer equation. Once the radiative transfer equation

is solved, a number of radiative quantities like actinic fluxes can be calculated. The detailed

mathematical description of the derivation was described by e.g. Chandrasekhar (1960),

Meier et al. (1982) and Lary and Pyle (1991a,b).

The radiation quantities are scalar. Most of the solvers use plane-parallel atmospheres,

which means, that they neglect the Earth’s curvature and assume parallel homogeneous at-

mospheric layers. For solar zenith angles less than about 70° this is a good approximation

(Dahlback and Stamnes, 1991), but for higher SZA, a so-called pseudo-spherical correc-

tion, which treats the direct solar beam in spherical geometry and the multiple scattering

in plane-parallel geometry is needed. SDISORT and UMD model both include pseudo-

spherical corrections. The corrections, however, do not improve the results at sunset/sunrise

conditions significantly. Therefore, for the calculations at SZA 88° – 94° a fully-spherical

3-D solver is required as implemented in MYSTIC .

Figure 6.3 shows the actinic fluxes obtained for the flight track of Geophysica on 30 Jan-

uary 2010 with the UMD and libRadtran/MYSTIC model. For the runs the temperature

and ozone MLS profiles (cf. Fig. 6.1), albedo equal 0.2 and surface pressure of 1000 hPa

were used. No aerosol and clouds were taken into account. The figure shows that despite

differences in photon fluxes and molecular scattering implementation (first-order in UMD

and multiple in libRadtran/MYSTIC), at solar zenith angles between 92° and 88° the two

radiative transfer models give very similar results. However, at higher solar zenith angles,

significant differences appear and at SZA of 93° and 94°, the actinic fluxes calculated with

UMD are considerably lower than those from libRadtran reaching 30% difference at 500 nm

at 94°. During sunrise, only diffuse radiation reaches the air masses. That implies that the

discrepancies in models do not concern the direct actinic flux Idir(λ), but the diffuse flux

Idiff(λ), which depends on the molecular scattering.

To compare the influence of those differences on JClOOCl(λ), as an example, σClOOCl pub-

lished by Papanastasiou et al. (2009) was extrapolated to 500 nm (recommended in JPL

2011) and implemented into the two models. The spectra adopted for the UMD and libRad-

tran models are plotted in Figure 6.4. The curves represent the same data set, the only
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Figure 6.3: Actinic fluxes I(λ) at solar zenith angles between 88° and 94° obtained from

UMD (red lines) and libRadtran/MYSTIC (black lines) model runs.

difference is the spectral resolution.

The partial JClOOCl(λ) values presented in Figure 6.5 were calculated by multiplying the

actinic fluxes plotted in Figure 6.3 and the σClOOCl(λ) plotted in Figure 6.4 (Eq. 2.13 without

integration). The quantum yield was assumed to be φ= 1 independent of wavelength.

73



6 Actinic flux in the lower stratosphere

Figure 6.4: σClOOCl(λ) spectrum

taken from Papanastasiou et al.

(2009), extrapolated as recom-

mended by JPL 2011 and adopted

for UMD and libRadtran/MYSTIC

calculations. The resolution of

spectra is 5 nm in case of UMD and

0.05 nm for libRadtran/MYSTIC.

Figure 6.5 shows that at SZA of 88° – 91° the UMD model values are lower than those

from MYSTIC in all spectral regions, except in the range between 350 and 430 nm. The

discrepancies at λ < 350 nm are relatively small and disappear completely at higher solar

zenith angles. In this spectral region the relatively small differences are probably resulting

from the resolution of wavelengths. At SZA 93° and 94°, discrepancies of approximately

6% occur at wavelengths greater than 400 nm. Those are propagating directly from the

discrepancies in actinic flux observed in Figure 6.3 and are due to the molecular scattering

representation in the models.

To estimate the effective JClOOCl in the atmosphere, the partial JClOOCl(λ) plotted in Fig-

ure 6.5 has to be integrated over the atmospherically relevant wavelength region between

300 and 500 nm (Eq. 2.13). In Figure 6.6 JClOOCl is plotted versus solar zenith angles equal

88° – 94°. The figure indicates that due to the discrepancies in partial photolysis rates, the

effective photolysis rate is lower for UMD at investigated solar zenith angles. This would

result in slower ClO concentration increase during sunrise, when using the UMD values.

The calculations show that the choice of radiative transfer model may influence the re-

sults of chemistry model simulations. The inconsistency between UMD and libRadtran

models at high solar zenith angles are of similar significance as the impact of the imple-

mentation of aerosols (maritime clean atmosphere from the Online Public Access Catalog

(OPAC) database (Hess et al., 1998)) and low clouds (2.5 km) prevailing during the flight

into the calculations. The influence of those factors is significant especially at 93° and 94°

(cf. Fig. 6.6).
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Figure 6.5: Partial JClOOCl(λ) values resulting from UMD and libRadtran/MYSTIC runs

for SZA between 88° and 94°.

6.2 Sensitivity studies

In the following sections, the influence of albedo, ozone column, clouds and aerosol on the

actinic flux is investigated and the impact of refraction is discussed. Results were computed

with the libRadtran model (cf. Section 4.2.1) with the 3-D radiative transfer equation solver
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Figure 6.6: JClOOCl versus SZA estimated with UMD and libRadtran/MYSTIC. In the runs

plotted with solid lines, no clouds and aerosol were considered. The dashed line shows

results of MYSTIC run with considered cloud at 2.5 km and a maritime clean atmosphere

from the Online Public Access Catalog (OPAC) database (Hess et al., 1998).

MYSTIC with full spherical geometry (Emde and Mayer, 2007) and the ALIS (Absorption

Lines Importance Sampling) method to minimise the noise in high spectral resolution cal-

culations (Emde et al., 2011). As shown above (Fig. 6.5), libRadtran provides better spectral

resolution and the scattering routine is more sophisticated. Furthermore, the UMD model

does not enable studies including clouds and aerosols.

For calculations of the actinic fluxes and corresponding partial JClOOCl(λ) values, a ‘most

realistic case’ (MRC) was defined with:

• ozone profile taken from Microwave Limb Sounder (MLS) from 30th January 2010 and

averaged for the area between 60° and 68° N and 0° and 20° E (see Fig. 6.1)

• albedo fixed at 0.2 (seawater),

• a cloud layer at 2.5 km,

• a maritime clean atmosphere from the OPAC database (Hess et al., 1998) for the

aerosol loading.
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Additionally, for each of these atmospheric properties, upper and lower limits were esti-

mated. That gives 3 cases of 4 atmospheric properties (ozone, albedo, clouds, aerosol) and

thus 81 combinations. JClOOCl(λ) values were calculated with absorption cross sections

published by Papanastasiou et al. (2009) and quantum yield of unity. Figures 6.7, 6.8, 6.11

and 6.12 showing the sensitivity of actinic flux I(λ) and JClOOCl(λ) are plotted on the same

scales.

6.2.1 Ozone

The total number density of molecules in the middle atmosphere is significantly lower than

in the troposphere and the molecular scattering which occurs is strongly dependent of the

wavelength. Therefore, the diffuse radiation field at short wavelengths is important, even

if there are only a small number of scatterers in the stratosphere.

The MRC run was performed using the ozone profile plotted in Figure 6.1 and sensitivity

runs were carried out with the same profile scaled to 200 and 500 DU respectively. While

these values are unrealistically low and high, the results show that the sensitivity of the

actinic flux towards ozone at studied zenith angles is low in the relevant wavelength region

(Figure 6.7). The influence is visible only between 310 and 350 nm (Hartley and Huggins

bands) and above 450 nm (Chappuis bands), giving rise to a spectral window with essen-

tially no ozone absorption over a significant part of the ClOOCl spectrum.

The sensitivity propagates into JClOOCl(λ) providing a minor impact below 90° SZA due to

the Hartley and Huggins ozone bands and above this angle also due to the Chappuis bands.

The influence of ozone on JClOOCl at high solar zenith angles can therefore be neglected.

6.2.2 Albedo

The self-match portion of the flight was entirely over seawater, so the albedo was fixed at

0.2 for the MRC run (described at the beginning of Section 6.2). Again, extreme values of

0.05 and 0.8 were taken as lower and upper limits, and again, the sensitivity is very low

at the zenith angles considered here. Under these conditions, the bulk of the actinic flux

stands from diffuse downward radiation unaffected by the Earth surface. The sensitivity

toward albedo shown in Fig. 6.8 is calculated for clear sky conditions, since clouds would
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Figure 6.7: Actinic fluxes (left) and corresponding JClOOCl(λ) values (right) with ozone sen-

sitivity for seven different solar zenith angles.

significantly reduce the albedo influence.

Considering how unrealistic the chosen albedo limits for the presented runs are, it be-

78



6.2 Sensitivity studies

Figure 6.8: Actinic fluxes (left) and corresponding JClOOCl(λ) values (right) with albedo

sensitivity for seven different solar zenith angles. To avoid influence of the cloud coverage,

the sensitivity is calculated for clear sky conditions.
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comes obvious, that the changes I(λ) and JClOOCl(λ) due to increase in albedo of 0.1 are in-

significant, at least at the altitudes between 17 and 18 km, where the measurements were

carried out. The results confirm the studies of Anderson and Lloyd (1990), who wrote ‘sur-

face albedo variation can be important at solar zenith angles less than 60°, while in twilight

virtually no direct solar flux reaches the surface, so that its importance is diminished.’

6.2.3 Clouds

Numerical transfer of radiative transfer in clouds is a challenging task, due to their high

spatial and temporal variability. In a cloud-free atmosphere (Section 6.1) daytime photol-

ysis rates remain high down to the ground. Below optically thin clouds, photolysis rates

are mostly enhanced, but in the lower part of thick clouds and beneath them, photolysis

rates can be reduced several fold due to absorption. Above optically thick cloud decks, and

even within the upper part of these clouds, photolysis rates can be twice as large as the

corresponding clear-sky rates due to scattering (Chang et al., 1987; Madronich, 1987; Wild

et al., 2000; Kylling et al., 2005).

During the self-match flight the downward looking lidar instrument MAL aboard the

Geophysica indicated the presence of patchy clouds at altitudes up to 7 km. MODIS (Moder-

ate Resolution Imaging Spectroradiometer) satellite images (http://www.sat.dundee.ac.uk)

show that this cloud layer extended over a rather large region around the flight track (see

Figure 6.9). To estimate the characteristic of this cloud, observations of FSSP and CIP (Sec-

tion 5.1) from a flight on 2nd February were used, because there are no CIP data available

from the self-match flight.

On 2 February, two clouds at 2.5 and 6.5 km altitude were observed. They were param-

eterised based on FSSP and CIP observations. The cloud layer seen during the self-match

flight at 7 km altitude was patchy and broken and therefore for the MRC the compact lower

cloud at 2.5 km from 2 February was computed. The two clouds at 2.5 and 6.5 km were

considered as an upper limit case in the sensitivity calculation and a cloud free atmosphere

marked the lower limit case. The ice water content (IWC) and effective radius (Reff) of cloud

particles are listed in Table 6.1, the particle number size distributions dN/dlogD versus

their diameter in micrometers are plotted in Figure 6.10.

80



6.2 Sensitivity studies

������

Figure 6.9: Satellite Aqua image of northern Europe from 30th January 2010: cloud condi-

tions during the self-match flight. Photo from NERC Satellite Receiving Station, University

of Dundee, Channel 3.

Results of the sensitivity studies are shown in Figure 6.11. The actinic fluxes and ClOOCl

photolysis rates are not significantly affected at the altitude, zenith angles and wavelength

relevant to this study. The cloud influence is even smaller than the effect of albedo and

ozone.

6.2.4 Aerosol

The effect of aerosols on the Earth’s climate is considered as one of the largest uncertainties

in our understanding of climate change (IPCC, 2007). Aerosols scatter and absorb solar

and terrestrial radiation and alter cloud properties. To quantify the aerosol impact, precise

information is needed on aerosol microphysical properties such as size distribution, particle

shape, refractive index, and chemical composition and on the resulting optical properties
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6 Actinic flux in the lower stratosphere

Altitude, km IWC, g/m3 Reff, µm

7.000 0 0

6.500 0.000769 113.55

6.000 0.000769 113.55

3.000 0 0

2.500 0.00814 218.76

2.000 0.00814 218.76

1.000 0 0

Table 6.1: Clouds characteristics used in sensitivity calculations. IWC corresponds to ice

water content and Reff effective radius of cloud particles.

Figure 6.10: Particle number size distributions of the 2.5 and 6.5 km clouds taken from

FSSP and CIP observations respectively and used in the sensitivity studies with libRad-

tran/MYSTIC.

(Emde et al., 2010). Therefore, for the atmospheric aerosol loading in the MRC, a default

mixture of aerosol for a maritime clean atmosphere from the OPAC database (Hess et al.,

1998) provided with libRadtran was used for the MRC case (Emde et al., 2010). Sensitivity

runs were carried out with an aerosol free atmosphere and an aerosol profile with a higher

optical thickness from an aerosol model by Shettle (1990).

The results of this study indicate that at λ < 400 nm aerosol plays a role at SZA above

91°. The influence is however very small. Above 400 nm, the influence is more significant

and increases with increasing SZA. Starting at 91° SZA, the change in actinic flux becomes
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Figure 6.11: Actinic fluxes (left) and corresponding JClOOCl(λ) values (right) with clouds

sensitivity for seven different solar zenith angles. The MRC run was made with one cloud

at 2.5 km altitude. The ‘two clouds’ corresponds to the run with clouds at 2.5 km and 6.5 km

altitude.
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Figure 6.12: Actinic fluxes (left) and corresponding JClOOCl(λ) values (right) with aerosol

sensitivity for seven different solar zenith angles.

important, for JClOOCl(λ), however, the impact causes only a minor difference.
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The sensitivity studies showed that clouds and albedo had hardly any effect on I(λ) and

JClOOCl(λ) during the self-match flight. Ozone and aerosol influence is also not very signifi-

cant. The last factor that has to be investigated is refraction. None of the introduced models

implements refraction and only an approximate estimation of its impact can be discussed.

6.2.5 Refraction

Refraction in the atmosphere is the bending of a light ray as it passes through the atmo-

sphere due to the increase in the atmospheric density as the light ray travels downward

toward the observer (Figure 6.13). Refraction affects atmospheric photochemistry by modi-

fying the solar radiation field, i.e. is the amount of sunlight available in a given volume. The

overall effect of refraction is to decrease the optical path and thus increase the amount of

direct solar radiation for a given solar zenith angle (DeMajistre et al., 1995). Another very

important effect of refraction is the extension of the sunlit day. DeMajistre et al. (1995)

showed, that at 20 km, in the absence of refraction, the Sun rises at a solar zenith angle of

∼94.5°, if refraction is considered the Sun is still visible when it is below the true horizon

and rises at about 95.3°.

Figure 6.13: Refraction in the atmosphere. A refracted solar beam is drawn with solid black

line, the dashed line shows the path for the same position of the sun without considering of

the refraction. The solar zenith angle α (no refraction) is larger than β (with refraction).

Since in none of the libRadtran radiative solvers the refraction is implemented, the pre-

sented I(λ) and therefore also JClOOCl(λ) values are underestimated for SZA > 91°. DeMa-
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6 Actinic flux in the lower stratosphere

jistre et al. (1995) and Trentmann et al. (2003) showed, that if refraction is included in a

model, JClOOCl values will increase by 10 to 30% between 92° and 94° SZA.
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7 Constraints on the ClOOCl photolysis rate

7.1 Investigated ClOOCl cross sections/spectra

In the analysis we compare the measured increase in [ClO] with the simulated increases

resulting from JClOOCl based on the following four σClOOCl data sets:

i) Pope et al. (2007) presented a ClOOCl spectrum giving the lowest absorption in the

atmospherically relevant wavelength region (when scaled to any of the absorption

peak cross sections plotted in Fig. 2.6) resulting in relatively small JClOOCl values.

Pope et al. (2007) carried out an innovative experiment purifying ClOOCl prior to the

absorption measurement, thus removing all impurities other than Cl2. However, in

their spectral analysis they probably overcorrected for the Cl2 impurity as has been

shown by von Hobe et al. (2009) (see below). The spectrum is scaled to measurements

of Lien et al. (2009) to obtain cross sections (see Section 2.3.2).

ii) von Hobe et al. (2009) used the technique proposed by Pope et al. (2007) to prepare and

purify ClOOCl, but measured the spectrum of a sample isolated in a neon matrix. In

the atmospherically relevant region, their spectrum lies considerably higher than the

Pope et al. (2007) spectrum but compares rather well to a Pope et al. (2007) gas phase

spectrum uncorrected for Cl2. The von Hobe et al. (2009) spectrum is also scaled to

cross section obtained by Lien et al. (2009).

iii) Papanastasiou et al. (2009) measured absolute cross sections over a wavelength range

from 220 nm into the visible. The new measurement improves an earlier study from

the same laboratory (Burkholder et al., 1990). The two spectra have slightly dif-

ferent shapes but yield similar atmospheric JClOOCl values. The results presented by

Burkholder et al. (1990) generally produced the best agreement in a number of studies

87



7 Constraints on the ClOOCl photolysis rate

comparing modelled and observed ClOx partitioning (Stimpfle et al., 2004; von Hobe

et al., 2007; Schofield et al., 2008; Kremser et al., 2011) as well as ozone loss (Santee

et al., 2003; Chipperfield et al., 2005; Frieler et al., 2006; Tripathi et al., 2006; von

Hobe et al., 2007). Results of Papanastasiou et al. (2009) are recommended in JPL

2011 (Sander et al., 2011).

iv) An artificial spectrum based on Papanastasiou et al. (2009), but with a simulated

σClOOCl set constant to 7.12×10−21cm2molecule−1 (measurement by Papanastasiou

et al., 2009 at 420 nm) between 420 and 500 nm is used to test the possible existence

of an additional ClOOCl absorption band in the visible.

From the four cross sections/spectra and the actinic fluxes I(λ) taken from the calcula-

tions presented in Section 6, JClOOCl(λ) values are calculated and plotted in Figure 7.1. The

solid lines show calculations made with quantum yield φ(λ) = 1 and the dashed lines with

φ(λ)= 0.9. The differences between those lines are smaller than the uncertainty ranges due

to ozone, albedo, clouds, aerosol and refraction impact on the actinic fluxes. In the following

analysis, the highest possible φ(λ)= 1 is used.

7.2 Constraints on ClOOCl photolysis from the observed
increase in ClO

To compare the ClO mixing ratios resulting from the considered JClOOCl values with ClO

mixing ratios observed during the self-match flight, the integrated ClOOCl photolysis rate

constants effective in the atmosphere obtained by applying Eq. 2.13 with I(λ) calculated for

the MRC are used (cf. Section 6). The effective JClOOCl values with uncertainty resulting

from the presented actinic flux investigation are plotted in Fig. 7.2 versus SZA. Clearly

the differences resulting from the four different ClOOCl cross sections investigated in this

study are greater than the uncertainty propagating from the actinic flux calculations.

The overall rate of change in ClO concentration resulting from reactions R1 - R4 is given

by:

0.5
d[ClO]

dt
= JClOOCl[ClOOCl]+kdiss[M][ClOOCl]−krec[M][ClO]2 (7.1)
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Figure 7.1: Partial ClOOCl photolysis rate constants calculated for four examined σClOOCl

with actinic fluxes from Section 6 and φ(λ) = 1 (solid line) and 0.9 (dashed line). The grey

area present a sum of uncertainties propagating from the I(λ) uncertainties discussed in

Section 6.2.
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Figure 7.2: Photolysis rate constants based on cross sections i-iv versus solar zenith angle.

The green line shows the thermal dissociation rate kdiss[M] for comparison. The constant

kdiss was determined from the recombination constant taken from JPL 2011 and thermal

equilibrium constant of Plenge et al. (2005). The number density [M] was calculated for

the mean temperatures and pressure on the track of the Geophysica during the self-match

flight. The grey areas show uncertainties in JClOOCl resulting from uncertainties in the

actinic flux.

Fig. 7.2 illustrates the SZA dependence of JClOOCl for the σClOOCl i-iv for the conditions

encountered during the RECONCILE self-match flight. The ClOOCl photolysis term is

zero in darkness and rises more or less sharply, depending on the choice of σClOOCl, as

SZA decreases. Also shown is the ClOOCl thermal decomposition rate constant kdiss[M]

for the mean temperature and pressure observed during the flight. In thermal equilib-

rium, the rate of ClO production from thermal decomposition of ClOOCl is expected to

equal the removal rate via the ClO self-reaction, i.e. kdiss[M][ClOOCl] = krec[M][ClO]2 and

d[ClO]/dt = 0. Thus, when the sun rises, ClO mixing ratios are expected to increase as soon

as JClOOCl becomes large enough so that the photolysis reaction presents a significant addi-

tional ClO production term compared to the ClOOCl thermal decomposition. The photolysis
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becomes more significant than the decomposition at different SZA for the different σClOOCl

tested and can be compared to the SZA when a significant rise of ClO concentrations is

actually observed.

Fig. 7.3 shows that observed ClO starts to rise close to a SZA of 92°. Also shown is the

simulated rise in ClO expected for the photolysis rates i-iv. It was calculated using

∆[ClO]= 2×

∫t(SZA)

t(95◦)
JClOOCl· [ClOOCl]outbound ·dt (7.2)

under the assumption that the ClO removal from the self-reaction (R18) is ignored. Strictly,

this assumption holds true only at sunrise, i.e. when the first ClOOCl molecule is photoly-

sed. [ClOOCl]outbound was calculated from observed night-time [ClO] and Keq according to

Plenge et al., 2005 (cf. Section 5.3.2 and Fig. 5.6). As SZA decreases, [ClOOCl] will become

smaller and ClO removal via the self-reaction faster, both leading to a reduced overall rate

of [ClO] increase. Thus, at the threshold SZA (Fig. 7.2), the observed [ClO] is expected to

start rising simultaneously with the expected integrated [ClO] from ClOOCl photolysis and

then falling more and more below the calculated [ClO] rise as SZA decreases.

For the scaled cross sections of Pope et al. (2007) i), [ClO] starts to increase much later

and rises much slower than observed [ClO]. On the other hand, a significant ClOOCl ab-

sorption band in the visible (case iv, Papanastasiou et al., 2009 with Vis) would lead to an

even earlier increase in [ClO] and is not supported by our observations. JClOOCl values

based on scaled spectrum of von Hobe (2007) and spectrum of Papanastasiou et al., 2009

produce a reasonably good agreement between observed and expected [ClO] rise within the

given uncertainties. They can probably be regarded as maximum and minimum of plausible

photolysis cross sections effective in the atmosphere.

7.3 Chemistry simulations along match trajectories

For this analysis, CLaMS box model runs with full chemistry calculations were initialised

with the species taken from the Mainz 2-D model (Grooß et al., 1998) and measurements
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7 Constraints on the ClOOCl photolysis rate

Figure 7.3: Comparison of the observed rise of ClO concentrations (marked by the purple

symbols) with SZA to the integrated ClO produced by simulations employing photolysis

rates JClOOCl based on i-iv. The measured rise results from the subtraction of ClO measured

on the outbound flight leg (grey symbols) from ClO measured on the inbound flight leg

(shown as black symbols with the thicker ones representing strict match pairs). Grey and

yellow areas show the measurement uncertainties.

made on the outbound flight leg (von Hobe et al., 2011). For the calculation of the ClOOCl

mixing ratios, HALOX ClO and Keq from the publication of Plenge et al. (2005) were used

(cf. Section 5.3.2). The ClO mixing ratios resulting from the chemistry simulation runs

along the trajectories between the points on the outbound and the inbound flight leg are

here compared with values observed on the inbound flight leg. The results are shown in

Fig. 7.4.

Simulations were carried out for combinations of the four JClOOCl parameterisations dis-

cussed above and two parameterisations of krec: JPL 2011 and Nickolaisen et al., 1994. JPL
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7.3 Chemistry simulations along match trajectories

2011 krec was chosen as the current recommendation of the scientific community, whereas

krec published by Nickolaisen et al., 1994 due to its good agreement with both atmospheric

observations and unimolecular theory as shown by von Hobe et al. (2009).

Irrespective of the agreement between modelled and observed ClO, Fig. 7.4 illustrates

the point made earlier, that immediately after sunrise, ClO mixing ratios are much more

sensitive to JClOOCl than to krec. Only as the sun rises higher and ClO builds up, the

influence of krec becomes important. Clearly, at higher SZA at sunrise, the steady state

approximation JClOOCl/krec ≈ [ClO]2/[ClOOCl] is not valid.

In agreement with the results presented in Section 7.2, for the scaled spectrum of Pope

et al. (2007), simulated ClO falls below observed mixing ratios as soon as they start to rise.

In case of scaled spectrum of von Hobe et al. (2009), the model consistently follows the obser-

vations at very high SZA over sunrise, but predicts significantly smaller ClO mixing ratios

than observed as SZA decreases further and photochemical steady state is approached. At

SZA<89°, both simulations (iii and iv) using spectrum of Papanastasiou et al. (2009) show

relatively good agreement with the observations, but they overestimate ClO earlier, espe-

cially the spectrum with the artificial absorption band in the visible.

Provided that there are no additional reactions other than R18 - R21 governing the ClO

dimer cycle, the differences between model and observations for cases i) and iv) are too large

for the underlying cross sections to be realistic in the atmosphere. For cases ii) and iii), the

behaviour of the scaled von Hobe et al. (2009) parameterisation underestimating observed

ClO at SZA < 90° and Papanastasiou et al. (2009) overestimating ClO at SZA > 90°, suggests

ClOOCl cross sections within the range between those two. The HALOX measurements

indicate an SZA threshold of significant ClO increase due to ClOOCl photolysis near 92° (cf.

Fig. 7.3). The spectrum fully fitting our observed data is supposed to have the steep slope

and shape of the von Hobe et al. (2009) spectrum, but the scaling should be higher providing

larger photolysis at λ<350 nm.
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7 Constraints on the ClOOCl photolysis rate

Figure 7.4: Comparison of HALOX ClO mixing ratio with the results of CLaMS simula-

tions using various combinations of kinetic parameters. The black points show the data

measured on the inbound flight leg, the ‘good matches’ are marked with big black circles.

The grey areas represent the uncertainty of measurements. For the initialization of the

simulations, we used the HALOX data sampled on the outbound flight leg and calculated

the ClOOCl mixing ratios with Keq from the publication of Plenge et al. (2005). The used

rate constants krec were taken from JPL 2009 and from the studies of Nickolaisen et al.

(1994). Plotted data sets result from the chemistry simulation runs along the trajectories

between the points on the outbound and the inbound flight leg.
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8 Summary and outlook

ClO measurements during the RECONCILE self-match flight on 30th January 2010 were

used to examine the plausibility of published ClOOCl absorption cross sections measured in

the laboratory and to test the hypothesis of an additional ClOOCl absorption in the visible.

Ninety-five match pairs of dark measurements on the outbound leg and sunlit measure-

ments on the inbound leg were found. Forty-one of them passed the quality threshold based

on ECMWF data and tracer observations. ClO concentrations measured at matching out-

bound and inbound points were used to calculate the ClO increase due to ClOOCl photolysis.

The observed increase was compared to the increase expected for four different absorption

cross sections or spectra from laboratory measurements.

The second important factor for the atmospheric photolysis rate JClOOCl, the actinic flux,

was investigated with two radiative transfer models (UMD and libRadtran/MYSTIC). The

models were compared and sensitivity studies were carried out for ozone, albedo, clouds and

aerosol, and the influence of refraction was discussed.

8.1 Conclusions

From this work, the following conclusions are drawn:

1. HALOX ClO observations at nigh time are inconsistent with an equilibrium constant

higher than the Keq published by Plenge et al. (2005). This is in agreement with

results of e.g. Stimpfle et al. (2004), von Hobe et al. (2007) and Schofield et al. (2008).

2. The observed ClO concentration increase over sunrise is consistent with JClOOCl in

the range resulting from absorption cross sections published by Papanastasiou et al.

(2009) and a spectrum from von Hobe et al. (2009) scaled to Lien et al. (2009). The
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spectrum published by Pope et al. (2007) and scaled to Lien et al. (2009) is clearly in-

consistent with HALOX self-match observations unless there are additional unknown

processes converting ClOOCl to ClO in the atmosphere. The observation that ClO

mixing ratios only start to increase at SZA below 92° does not support an additional

absorption band of ClOOCl at wavelengths > 420 nm.

3. The results agree with previous studies based on ClO observations (e.g. Stimpfle et al.,

2004; von Hobe et al., 2007; Schofield et al., 2008; Kremser et al., 2011). While these

studies could only draw conclusions on the ratio JClOOCl/krec, the analysis of data

over sunrise makes our results independent of krec. The full chemistry simulations

revealed that at high SZA at sunrise, the steady state approximation JClOOCl/krec ≈

[ClO]2/[ClOOCl] is not valid.

4. The range of JClOOCl values consistent with this analysis would yield ozone loss in

stratospheric models consistent with observations (Santee et al., 2003; Chipperfield

et al., 2005; Frieler et al., 2006; Tripathi et al., 2006; von Hobe et al., 2007).

5. At high solar zenith angles observed during the self-match flight and prevailing in

January in most of the Arctic stratosphere, the albedo as well as tropospheric clouds

do not influence I(λ) and thus JClOOCl significantly. The impact of ozone and aerosol is

also moderate, so that the uncertainties in I(λ) propagating into JClOOCl are smaller

than the uncertainties resulting from different σClOOCl measured in the laboratory.

8.2 Outlook

The results of this thesis suggest that a further sunrise self-match flight would enable

to estimate Keq directly from the ClO and ClOOCl data. To estimate krec independently

of JClOOCl, a self-match flight pattern with the outbound flight leg starting directly after

sunset would be helpful.

Another improvement is related to more detailed transfer model calculations. Sensitivity

studies on the actinic flux should be extended to lower zenith angles, and to a wider range of

atmospheric conditions including for example polar stratospheric clouds. None of the mod-
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els used for the calculations presented in this thesis includes refraction. DeMajistre et al.

(1995) noticed that refraction has the effect of increasing the amount of solar flux available

for photodissociation in the atmosphere due to both the reduction of the optical path of the

direct solar beam and a significant lengthening of the sunlit day. The JClOOCl values exam-

ined in this thesis would rise, if refraction was included in the models. Unfortunately, there

is currently no suitable radiative transfer model that has refraction fully implemented for

both, the direct solar beam and diffuse radiation.

As shown here and in numerous other publications, none of the investigated σClOOCl

is unambiguously consistent with stratospheric observations, therefore further laboratory

experiments are necessary to determine the correct σClOOCl values, as well as krec, kdiss and

Keq. In 2012 results of new σClOOCl measurements are expected to be published by Young

et al. using an innovative method to monitor Cl2 impurities (Young et al., 2011). The ClO

self-match data should be compared with an expected ClO concentration increase due to the

new absorption spectrum.
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