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Abstract

We address the problem of coping with non-stationarity in time series analysis. Very

often the non-stationarity is quite weak and can be ignored for many purposes. But

this is not the case here, since the systems generating the signals under analysis

contain information on the non-stationarity themselves. In other words the variabil-

ity of the dynamical regimes due to non-stationarity is the essential property and

cannot be cut out.

The work consists essentially of three parts: (i) A theoretical approach to non-

stationarity, showing that if one is interested in implicitly discovering the equations

of motion of the system, then under quite general hypothesis the over-embedding

allows one to solve this task, of fundamental relevance for prediction, noise reduction

and data classification. (ii) Applications to human voice, where the non-stationarity

is involved in the concatenation of consecutive phonemes, to be considered as sig-

nals with few degrees of freedom but non-constant parameters. In other words

non-stationarity here means that the instantaneous dynamics can differ very signif-

icantly from phoneme to phoneme. Three problems of technological relevance are

addressed, namely the noise reduction of human speech signals with a proper opti-

mization scheme, a classification of vocal disorders and a software correction of voice

patologies. (iii) Applications to financial markets, where the non-stationarity is re-

lated to the volatility of market prices, trends and seasonality. Primary tasks are the

analysis of correlations in the absolute value of price differences, very useful in risk

management, and the development of models where large numbers of units interact,

giving rise to empirical observed phenomena like panic selling, herding behaviour,

speculation.
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Preface

One of the most common critique about research involves the gap between abstract

and theoretical reasoning and the solution of practical problems. Very often there

is almost no interaction between scientists and people working in the industry, the

first being fashinated from the challenge of conceptual thinking, the second having

mostly to do with strong deadlines and heavy economical constraints. Looking

back at my education I can assert to belong to a strange class of researchers, since

I graduated on electronic engineering and automatic control at the University of

Technology of Florence to switch then to the study of non-linear time series analysis

at the Max Planck Institut for the Physics of Complex Systems in Dresden, also

called the Florence on the Elbe.

This work is the result of the evolution of my education and I think it will appear

quite often going through the text that I am neither a pure physicist nor anymore a

pure engineer. Working at the border of two such different worlds is very attractive

and fruitful but simultaneously quite dangerous, since one has to find the right

compromise and trying to be rigorous and practical. I have focused, in the framework

of non-linear dynamics and non-stationarity, on the complementary problems of

data analysis and system modelling. In order to maintain faith to the previously

mentioned challenge, I have chosen to cope with human voices and financial markets,

performing data classification, noise reduction, prediction, analysis and modelling

always trying to show the similarities and the differences that interplay among these

systems.

The goal is of course to obtain valuable results and performances that are compa-

rable with the state of the art in the field, but also the idea of testing the applicability

of concepts and tools derived from the theory of deterministic chaos has played a

fundamental role. When approaching the noise reduction problem, for instance, it is
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very satisfactory to get performance at least comparable, when not even better, to

famous schemes where several people have been working for several years and with

huge resources. But also the application of chaos theory outside the typical working

hypothesis is alone a good reason to invest time in this direction. The discovery of

an over-embedding that enables to perform an automatic separation of a sentence

into the constituent phonemes is a result that goes beyond the applicability itself.

The construction of a very realistic model for the stockmarket has not only the pur-

pose of reproducing empirical features, but it also offers some indications about the

collective behaviour of people competing for the same goal. This is again an exam-

ple of working at the borders between two different disciplines, namely stochastic

processes and psychology. Feature space analysis and software corrections of vocal

pathologies provide direct applications in biomedicine and has a great technological

impact.

In the following I am going to briefly focus on the perspectives and the limit

of this work and of modern science in general, then I will discuss the problem of

non-stationarity as an introduction for a better understanding of the two main parts

of this contribution, namely the extraction of the essential features from the human

voice and the analysis of up to which extent financial markets can be considered

not to be random and therefore to posses deterministic structures. I am indebted

to several people, but I would like to thank here Holger Kantz, Stefano Ruffo and

Roberto Genesio, who are mainly responsible of the foundation and the maintenance

of the link between Florence and Dresden, between physics and engineering.

Dresden, 2001
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Chapter 1

Dynamical systems and chaos

Prediction is difficult, especially of the future.

(Niels Bohr)

Nothing in nature is random, a thing appears random only through the

incompleteness of our knowledge.

(Spinoza)

The scientist does not study nature because it is useful; he studies it because he

delights in it, and he delights in it because it is beautiful. If nature were not

beautiful, it would not be worth knowing, and if nature were not worth knowing, life

would not be worth living.

(Henri Poincaré)

Nowadays’ science believes that if an accurate mathematical description of a

physical system can be found, then the potential for a deep understanding of the

system’s properties exists and therefore predictions of its evolution can be made.

These assertions have been proved and used for a wide variety of phenomena, ranging

from the motions of planetary bodies to the fundamental constituents of matter.

However, it is quite easy to show that these notions are generally not true when

dealing with non-linear phenomena and non-stationarity. This may sound as a

surprise for many people, since it is common experience that although the fine details

of the complete solutions of the full governing equations of any given system are not

1



2 CHAPTER 1. DYNAMICAL SYSTEMS AND CHAOS

known, approximate versions of the laws may be used to make robust predictions

about its behaviour, predictions that are very often experimentally confirmed.

1.1 Predictability

Let us consider, as an illustration of this simplified scientific approach, the laws of

planetary motion as formulated by Newton and Kepler. It is possible to predict

accurately the orbits of the moon around the earth, for example, when the influence

of other planets is ignored. Further, these predictions have been tested over centuries

and are found to be robust. They are based on the sound principles which Newton

established in his Principia over 300 years ago by considering the gravitational

interaction of two planetary bodies. In this case there is an analytical solution to

the mathematical formulation. Now, if a third smaller planet is introduced into

Newton’s mathematical description of the gravitational interaction of two massive

bodies, this gives rise to an intractable three-body problem. Newton solved various

restricted versions of the complete problem but he was unable to find a general

solution to it. Two centuries later, Poincaré hinted that the motion of the third

smaller planet orbiting in the gravitational field of two massive planets would, in

general, be highly complicated. With the actual computational power we can obtain

very precise numerical solutions of the three-body problem and it can be shown that

the orbit of the third planet is indeed unpredictable in practice: Every small error

in the initial condition settings would drastically reduce the time horizon of the

prediction.

With such a quite simple and very well established example one is able to pro-

vide a situation that can give rise to both predictable behaviour and complicated

unpredictable motions. It is of fundamental relevance to note that the appearance

of the complications is not due to a breakdown in the validity of the equations, but

rather it is just one of their properties. Indeed we can take the conceptually much

simpler system of an excited pendulum and show a systematic progression from one

type of behaviour to the other. Let us consider, for instance, a pendulum driven by

a sinusoidal force and subject to friction, giving rise to the following model:

ẍ = −ρẋ− ω2 sinx + a cosΩt. (1.1)

The plane of Fig. 1.1 is a two-dimensional section through the extended phase space,



1.1. PREDICTABILITY 3

Figure 1.1: Even a simple pendulum can show a chaotic behaviour. Here the pendulum

is driven by a sinusoidal force and it is subject to friction. The plane is a two-dimensional

section of the three-dimensional extended phase space, whose components are position and

velocity of the pendulum and the phase of the driving term. Taking the points as initial

conditions, different colors code different asymptotic behaviours of the pendulum, showing

a great variety of structures and fractal borders.
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whose components are the position x of the mass, its velocity ẋ and the phase Ω of the

driving force. Different colors are associated with different asymptotic behaviours

and very interestingly one can show that the borders between them present a fractal

structure. The point we want to stress here is that in order to understand the

appearance of the disordered behaviour we do not necessarily need to invent new

physical laws. Rather we have to recognize that the presence of non-linear terms in

the governing equations can give rise to qualitatively different types of behaviour,

which are not present in the solutions of the linearized versions of the equations.

Considering the linearized approximation can sometimes be of poor value, since it

is like studying a different model that is not able to capture the essential features of

the system.

The idea that nothing is really linear but almost everything can be quite easily

linearized has become very strong because of many great scientific breakthroughs

achieved using approximate, linear methods for a wide range of problems. However,

many natural processes across the whole spectrum of science are inherently strongly

non-linear and simple adaptation of known methods may not be sufficient to resolve

important issues, such as prediction of the weather or climate, for example. There-

fore, we need to develop a new way of dealing with non-linear processes and this

is the subject of much current research, including this small contribution. Many

of these new research ideas are of course reinventions of older concepts but equally

there are fresh outlooks on some classical problems and serious attempts to tackle

difficult issues which have been brushed aside in the past.

The first practical demonstration of the phenomenon can be found in a work of

Lorenz [61], where he carried out a numerical study of an extremely crude model

of atmospheric convection and found that when the integrations of the equations

were started with two slightly different initial conditions, very different outcomes

were realized. This observation is an example of sensitivity to initial condition

in that a change in the least significant digit of the starting conditions for the

calculation will eventually lead to completely different outcomes despite the fact that

the computations involve the representation of a deterministic law on a deterministic

calculating machine. In other words, if two calculations were started with the same

initial conditions to within the accuracy of the machine then there would be no

divergence of the outputs, i.e. the unpredictability is not an effect of the accumulation

of rounding errors, but rather something we cannot avoid.
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Sensitivity to initial conditions is the first recorded indication for the appearance

of a strange attractor in the solution space of the equations. One should anyway

note that chaotic systems can have strange attractors, but they can also have trivial

attractors, e.g. the tent map. In other words, strange is typically attributed to

fractality, but there are also cases where the motion on the attractor is strange in

view of the above introduced regular attractors. A simple physical analogy of an

attractor is the following: Let us put a ball inside a circular tube and consider a two-

dimensional cross-section of it. If we displace the ball to any point up the bottom

half of the tube it will always roll back to a uniquely defined point at the bottom

when it is released. If we now imagine that the motion of the ball is projected onto

a sheet of paper below the tube then we can see that all trajectories of the ball

will lead to a single point on the paper which we call the fixed point of the system.

What is more, here it is called an attracting fixed point since any trajectory within

the section of the tube will lead to this point. It is therefore the attractor for the

system in this stationary state.

Now suppose we lay our tube flat on a turntable which is rotating at a constant

speed. The ball will now run around the tube at some distance up its side which will

depend on the selected speed of the turntable. The projection down onto the paper

will now be a circle and we call this new attractor a limit cycle. If we again displace

the ball from its attracting orbit then it will quickly return to it. In fact, if the ball

is started at any point within the tube then it will eventually end up rotating on the

uniquely defined attracting cycle for this system. We can then say that the basin

of attraction for the cyclic attractor is the whole of the inner surface of the tube in

this case. If we now add to the turntable a large up and down sinusoidal motion

then the ball will orbit around the inside surface of the tube. If the frequency of

the up and down motion is not commensurate with that of the rotation then the

trajectory of the ball will eventually cover the whole of the inside of the tube. This

new attractor is called a torus.
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1.2 Strange attractor

We have now introduced all the necessary ingredients for the understanding of the

so-called strange attractor, where two competing effects are present: (i) Points

which are neighbourhood at some instant in time diverge exponentially fast due to

the sensitivity to initial conditions; (ii) Trajectories must remain in a finite region

of the solution space, otherwise the concept of an attractor has no meaning. An

immediate consequence of such a stretching and folding mechanism is that strange

attractor behaviour cannot exist in two dimensions or less for differential equations1.

If we tried to construct a deterministic model whose solutions were confined to a

plane then trajectories could diverge from each other but they could never remain

in a finite region without intersect each other because deterministic rules do not

allow any intersection. Poincaré suggested to consider a geometrical structure of the

solutions of the equations of motion of dynamical systems, leading to the idea of

Poincaré map (Fig. 1.2), where the intersections between the trajectory of a system

and an hyperplane are considered. Analysing the phase space of a system of m

autonomous equations, we find that locally the direction tangential to the flow does

not carry much interesting information. The position of the phase space point along

this direction can be changed by reparametrising time. Therefore it is clear that

it has no relationship to the geometry of the attractor and does not provide any

further information about the dynamics. As an immediate consequence, one can

reduce the phase space dimensionality by 1 and turning the continuous time flow

into a discrete time map.

In order to obtain a Poincaré map, the first step is to identify a suitable oriented

surface in phase space. Matematically it makes no difference which plane one uses,

provided it is not tangent to the trajectory. Then one can reconstruct an invertible

map on this plane simply by following the trajectory of the flow. The iterates of the

map are given by the points where the trajectory intersects the surface (only one

of the two possible intersections has to be considered; in Fig. 1.2 from above). The

relation between the discrete and the original time is not a proportionality, since

the time between two successive intersections depends on the actual path in the

reconstructed state space and on the chosen plane.

In the context of time series analysis, it has become clear that traditional linear

1Chaotic behaviour can however be represented by lower-dimensional discrete maps.
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A

B

Figure 1.2: Construction of the Poincaré map, given by the intersections between the

trajectory of the system and a given hyperplane (in this case just the points A and B). The

orientation of the latter is qualitatively not essential, giving rise to different Poincaré maps

having the same topological structure.

methods may give an unnecessarily complicated interpretation of the contents of a

relatively simple signal, whereas the geometrical representation immediately gives

a more informative description. This leads one to reconstruct a vector valued state

space and the attractor therein from a scalar time series, called embedding. Any

geometrical structure present in the reconstructed attractor from an apparently

irregular time series implies that there is some low-dimensional behaviour present

in the signal. This can be of enormous benefit when dealing with a signal from an

unknown system whose governing equations are either speculative or are known to

be high dimensional. In particular, if the reconstructed attractor has a geometry or

topology which is also found in a more well-understood problem, then predictions

about changes in the dynamics with variation in control parameters of the unknown

system can be made with some degree of confidence.

Next, both qualitative and quantitative descriptions of the underlying solution

structure which gave rise to the observed behaviour can be made. For example, un-

stable fixed points of a system can be identified and then quantitative estimates of

dynamical information near these fixed points can be used to make predictions about,
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as yet, unobserved behaviour. This feature is of immense value when investigating a

system governed by partial differential equations and thus where the solution space

is in principle infinite dimensional. The origins of observed highly complicated mo-

tions in one parameter range may be associated with the low-dimensional dynamical

behaviour observed in another. Thus, identifying critical points about which theo-

retical analysis can be performed is often crucial in determining the important terms

of the full equations which must be included in any model. In addition, quantitative

estimates of the nature of the attractor can be made to establish the validity of

finite-dimensional representation, the strength of the observed chaos and an upper

bound on the number of modes which would be required in a model representation

of the behaviour.

Last, but not least, it has been recognized in recent years that the limits of

prediction can be increased in deterministic dynamical systems when they are in a

chaotic regime. Such systems are of course predictable in principle since they are

deterministic, but because of sensitivity to initial conditions practical prediction is

delicate. However, we know that the reconstructed attractor has some geometrical

structure which we can hope to exploit. Thus the trajectories in the reconstructed

phase space must follow an approximately defined track and therefore there is a

physical limit to the divergence of trajectories. The range of prediction can be

extended beyond probabilistic correlations using the redundancy provided by the

analysis of past values of the signal. It is worth remarking that chaos is just one

feature of non-linear systems, albeit an important one. Another crucial property

is the existence of multiple states with qualitatively different dynamics: At some

prescribed value of the parameters of the system, there is the potential for several

steady states, various types of periodic and non-periodic motion and chaotic states.

The particular state which is realized in practice will depend on the history of

its creation, e.g. the initial conditions and the speed of change of parameter to

the preselected point or the variation of more than one parameter. Investigations

of the interactions of various steady states give insight into the more complicated

phenomena which are often found to be organized by the underlying steady solution

structure. It should also be noted that the dynamical solutions can exhibit certain

symmetry properties which are found in the steady regime such as the coexistence

of pairs of states which break a geometrical symmetry. Finally, highly complicated

motion can sometimes usefully be regarded as the manifestation of the presence of
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multiple states where the system does not settle into any particular attractor but

instead wanders through a range of them.

1.3 Limits and perspectives

The popularity of chaos theory, judged by the number of scientific publications and

by the attention of media, has a dangerous drawback in that it could be seen as

the answer to everything, something that it is obviously not. An example of this

oversimplification is to be found in the phenomenon of turbulence in fluid flows. Over

the past decade the words chaos and turbulence have become almost synonymous in

many popular accounts and yet the connection between the two is far from obvious

even today. Common opinion is that the ideas of chaos have thus far added very

little to the understanding of the phenomenon of turbulence. Also in the new field

of econophysics it is not clear whether the non-linear science could contribute to

discover new features or just introduce additional formalisms and complications [70].

However, chaos seems to have survived the fashionable phase and perhaps one reason

is that the natural world is inherently non-linear. Therefore, one should expect to

find chaos rather than order and perhaps we now have some tools for furthering our

understanding of what was previously thought of as random noise. There are many

deep mathematical ideas behind the dynamical systems approach to the study of

non-linear phenomena which are aimed at describing and understanding the origins

and structures of complicated behaviour.

Naturally, there has been a tendency to extend some of these ideas into fields

where there is no rigorous justification for doing so. These are often resolute efforts

to tackle very difficult problems with new scientific ideas. The very last that one can

say is that non-linearity should play a key role in natural phenomena and therefore

some of these modern concepts may well give a new insight into some unresolved

problems. On the other hand it is also worth noting that an irregular time series

formed from ice core samples or the monitoring of a bodily function for example

need not necessarily be describable in terms of low-dimensional chaos. Therefore

one must remain cautious about such studies for it is quite easy to misrepresent the

above ideas by an imprecise application of techniques which have thus far only been

successfully tested in well-controlled laboratory situations. However, if new insights

into difficult areas are obtained using this approach, which amount to more than
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putting common sense into fancy mathematical language, then a great deal has been

achieved.



Chapter 2

Non-stationarity

The art of asking the right questions in mathematics is more important than the

art of solving them.

(George Cantor)

In order to study an unknown system, one needs to get some information about

it. A very useful way to perform this task consists on measuring some quantities

related to the system, taking into account that a scientific measurement of any kind

is useful as far as it is reproducible, at least in principle. One has to be sure that

the numbers obtained from the measurement device correspond to properties of the

system. The concept of reproducibility and therefore of meaningfullness is strictly

related to the notion of stationarity.

In field measurements, non-stationarity is ubiquitous, but even in laboratory

experiments there are always small fluctuations of system parameters. In the sta-

tistical framework, stationarity is defined as the time independence of all thinkable

joint probabilities. In the framework of time delay embedding, it means that the

measure in an arbitrarily high dimensional embedding space has to be time invariant.

For a dynamical system the trajectory has to lie on an invariant set. In practice,

when dealing with a finite amount of data, the time series length has to be also

sufficient to cover the whole invariant set in an ergodic way, so that the invariant

measure can be estimated from the data. Of course, all system parameters have to

be constant during the measurement time.

Stationarity means that all the parameters of the system remain constant during

the measurement but unfortunately in most cases one has no direct access to the

11
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system and therefore it cannot be established with a good degree of confidence

that its parameters are indeed constant. A good definition of stationarity has to

be related to the available time series, which has to provide enough information in

order to determine the quantity of interest without any doubt. A process is called

stationary if all transition probabilities from one state of the system to another

are independent of time, at least within the observation period. This is a stronger

requirement than the constancy of parameters, including that phenomena belonging

to the dynamics were contained in the time series a number of times large enough in

order to infer properly all the transition probabilities. In the following sections we

will distinguish between three sources of non-stationarity, with different signatures

and requiring different tools:

• Drift of parameters. The control parameters of the dynamical system gener-

ating the time series are not constant. This situation, typical for the human

voice, can be treated using the idea of reconstructed phase space, phase space

average and over-embedding.

• Diffusive properties. The transition probabilities are constant, but the mar-

ginal probabilities spread out and therefore we get a lack of recurrence of the

process. The analysis of the Hurst exponent is very helpful in this case.

• Trends and seasonality. These are typical features of financial time series and

make the estimation of the Hurst exponent not reliable. If trends are additive,

they can be easily removed in order to correctly characterize the (eventual)

other type of non-stationarity. This idea is called detrended fluctuation analy-

sis.

Detecting non-stationarity can be a very difficult task. One could even say that

stationarity is a property which can never be positively established. The situation

is comparable to the linearity and the difficulty to assert that a given device has

a linear input-output behaviour. Due to non-stationarity all the tasks related to

data analysis and system modelling become more difficult or even meaningless. On

the other hand, in particular with the two specific case studies we are going to

treat, non-stationarity can be a relevant, essential property of a system, process,

signal: It is in fact responsible for the rich dynamics in financial markets and for

several features contributing to differentiate between human voices; a completely
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stationary voice would be empty of information and if no local dynamical difference

between consecutive phonemes were present, it would sound quite artificial and

maybe uncomfortable to hear.

As a first requirement in time series analysis, the data set should cover a stretch of

time which is much longer than the longest characteristic time scale that is relevant

for the evolution of the system. This quantity can be estimated as the inverse

of the lowest frequency in the power spectrum containing significant power. One

simple stationarity check consists in dividing the data set into several segments

and computing, say, correlations and transition probabilities for all of them, with

the requirement that they should not differ beyond their statistical fluctuations.

Unfortunately it can happen that a parameter drift is not able to produce any visible

drift in the measurements. In such cases one needs special non-linear dynamical

relations and the quantity to be compared along the different sets of data can be,

say, the prediction error with respect to a proper non-linear model.

We have said that in order to be considered stationary, the system producing

the time series has to satisfy at least two conditions, namely the parameters should

remain constant and the data set should be sufficiently sampled. The latter require-

ment may be tested observing the convergence of a given quantity when a larger

and larger portion of the time series is used for its computation. A typical quantity

used for this purpose is the correlation dimension, since it suffers considerably from

non-stationarity. A drift of one parameter results in the increasing of the correlation

dimension because it destroys all the fractal structures. On the other hand, almost

all the other types of non-stationarity and incorrect sampling produce values of the

correlation dimension smaller than the correct one.

2.1 Testing stationarity in time series

The power of non-linear signal processing has been already established during the

last decade. Quantities like entropy, mutual information, fractal dimension and

correlation integral provide very useful tools for modelling and predicting time series.

The main drawback of all of them and of most other time series analysis concepts,

however, is that they assume more or less implicitly the stationarity of the data set

under observation. It is well known that detecting stationarity in a time series is

not an obvious task. When dealing with natural systems the problem becomes even
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more subtle, since they are marked by influences of several external processes, which

might lead to non-stationarity and long-range correlations. Furthermore, in testing

stationarity in observations of natural systems, only realizations of the system under

study are known instead of the system itself, whereas stationarity is a property of

the process.

A review of several tests is provided by [111], where the time series is considered

as a set of random variables. Several attempts grasp the notion of stationarity from

the viewpoint of dynamical systems, with the drawback that no really quantitative

characterization of the data can be provided. Other tests have been developed in

the framework of mathematical statistics, but they require very strong assumptions

on the time series and therefore they are not perfectly suitable for natural systems

where these conditions are difficult to check or even evidently violated (e.g. the

condition of gaussianity of the random variables is not satisfied). Since the detection

of stationarity requires an observational length which should be large in comparison

to the typical time scales of the underlying process, the discussion about stationarity

cannot be carried out without addressing the question of long-range correlation.

A typical difficulty is that usually only a single realization {xt}n
t=1 of the system

is available. In order to get a set of data series for statistical tools, one can divide the

original sequence into several parts and proceed by testing, as reported by [111], the

independence of time of the one dimensional probability density and of the power

spectral density. One has to pay attention to the following aspect: In order to check

the stationarity of the data set, every subset has to be considered stationary. This

condition poses an upper limit to the length of every subsegment but on the other

hand they should be chosen to be long enough: Each of them should present all the

essential properties of the main time series, with particular regard to the long-range

correlations. The latter condition represents a lower limit to the size of subsets.

Furthermore, the number of them should be not so small in order to let significant

comparisons be possible. For more details about the problem of finding the best

choice of the window lengths see [111].

We want now to briefly review the stationarity test using the marginal distribu-

tions of the time series segments. The comparison of the probability distribution of

the window i and the window j is performed through a χ2 test [45]. The elements of

both windows are coarse grained with the same binning r, such that the kth bin of
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the ith windows contains the elements Xi
k = {xρ1 , xρ2 , ..., xρ

Ri
k

}. If the time series

elements were uncorrelated, Ri
k (number of elements belonging to the bin k with

respect to the window i) could be understood as a realization of a binomial random

variable with variance σ2 of the same order of magnitude as Ri
k. But in the general

case of correlated time series, Ri
k’s are not binomially distributed: This requires a

direct estimation from the time series of this variance.

Let us call the variance of the number of occurrences Ri
k of the time series in the

kth bin with respect to the ith window σ2(Ri
k); this quantity can be estimated from

the variance of the index number distances with respect to the elements of the kth

bin inside the ith window in the following way:

σ2(Ri
k) = cσ2[Di

k(m)Ri
k−1

m=1 ], (2.1)

where σ2[Di
k(m)Ri

k−1
m=1 ] is the variance of the index number distances Di

k(j) = ρj+1−
ρj . The autocorrelation function ρ(t, s) = 〈(Xt − µ)(Xs − µ)〉/σ2 (with 〈Xt〉 = µ,

〈(Xt − µ)(Xt − µ)〉 = σ2 and {Xt} with t ∈ N a stochastic process) has to depend

only on the relative time delay τ = t− s, i.e. ρ(t, s) = ρ(t− s) = ρ(τ), since we have

assumed the stationarity within a time series segment. The variable c depends on

the window length nw and on the number of elements in the bin Ri
k. In the case of

an uncorrelated time series the value of c can be evaluated analytically:

c =
σ2(XR)
σ2(XD)

=
nwp(1− p)
(1− p)/p2

= nwp3, (2.2)

where XR are binomially distributed random numbers characterized by the pa-

rameters (nw, p). The variance σ2(XR) of this random variable reads σ2(XR) =

nwp(1 − p). The random number XD of the distances of trials of XR falling in the

kth bin is geometrically distributed with the same parameters (nw, p) and therefore

σ2(XD) = (1 − p)/p2. p can be estimated from a realization by p̂ = Ri
k/nw. The

interesting aspect of this treatment is that also c can be estimated from a realization

thanks to the following relation:

ĉ = (Ri
k)

3/nw
2. (2.3)

It has been empirically checked in [45, 111] that Eq.(2.3) holds for several types

of correlated time series. The χ2 test statistic is then:

tA,l = ln2
w

r∑

k=1

nw∑

i=1

(Ri
k −Rk/li)2

(Rk + 1)3σ2[Dk(m)
Ri

k
−1

m=1 ]
, (2.4)
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where Rk denotes the number of elements in the kth bin and σ2(Dk) is the vari-

ance of their index number distances. The quantity tA,l is χ2 distributed with

r(nw − 1) degrees of freedom. By comparing the probability densities of the win-

dows theoretically one tests the time independence of all the central moments

M t1t2...tk
k = 〈(Xt+t1 − µ)(Xt+t2 − µ)...(Xt+tk − µ)〉. Of course practical problems

like finite-size effects and coarse graining may represent a severe limit for the correct

testing of high order moments.

Having tested the independence of time of the one dimensional probability den-

sity, the second test involves the independence of time of the power spectra density.

We transform now the data into samples of the spectral distribution densities, i.e. ,

with respect to each window we get a set of data fi
k
i=1 that are identically and inde-

pendently distributed with the spectral distribution. The autocorrelation functions

and the corresponding Fourier transformation are estimated (k = 0, ..., nρ) through:

ρj(k) =
∑nw−r

τ=1 (xj
τ − µj)(xj

τ+k − µj)
(nw − k)σj

(2.5)

P j(f) =
nρ∑

r=−nρ

ρj(r)cos(2πfr). (2.6)

Similarly to the previous case, a χ2 test statistic is applied introducing the fol-

lowing quantity:

tB,nw = l
l∑

i=1

r∑

k=1

(Ri
k −Rk/l)2

Rk
, (2.7)

which is χ2 distributed with (r − 1)(l− 1) degrees of freedom if Rk =
∑

i R
i
k. If the

hypothesis of time independence is rejected then the sequence can be considered non-

stationary. One can further compare mutually the samples f j
i i=1,...,nρ

with respect

to different windows. In this way it is possible to detect whether the structure of

the data series is generally inhomogeneous as in transient states or whether there

are only some parts (windows) with a special structure, like a burst.

It is also possible to consider a mixed statistic, given by the simple relation:

tl = tA,l + tB,l, (2.8)

where the addition is due to the introduction of χ2 statistics. tl is again χ2 dis-

tributed and the number of degrees of freedom is simply the sum of the degrees of

freedom of tA,l and of tB,l.



2.2. RECONSTRUCTED PHASE SPACE 17

The power of this statistical test, developed using the notion of stationarity used

in both matematical statistics and the theory of dynamical systems, is that it can

be applied to a time series consisting of a few thousand elements. The analysis of

several examples performed in [45] demonstrates clearly the necessity of both tests

for testing stationarity. Of course the method cannot be used in a black-box fashion,

since particularly the window length must be in accordance with the correlation

length.

2.2 Reconstructed phase space

The study of dynamical systems comprises the introduction of a phase space, where

the time evolution of the system can be defined. Since the determinism implies that

once fixed the present state, the states at all future times can be known, specifying

a point in the phase space is equivalent to specifying the state of the system. The

concept of state of a system is powerful even for non-deterministic systems, like

stochastic Markov processes for which the transition rules are given in the form of

a set of transition probabilities and the future state is randomly selected according

to these probabilities.

In time series analysis, most often only scalar measurements are performed,

i.e. not the full phase space vectors x are measured, but an observable s = g(x),

which is a (non-linear) projection of the phase space to the reals. Embedding tech-

niques are employed in order to reconstruct vector valued time series from scalar

time series. This sequence of vectors can be interpreted as a sample of a trajectory of

a dynamical system in a reconstructed phase space, which is related to the unknown

space of the underlying dynamical system by some smooth coordinate transform,

if the measurement function was smooth. Hence, its invariants such as attractor

dimension, Lyapunov exponents and entropies are the same. A scalar time series

{sn = g(xn)} is a sequence of measurements equidistant in time. The constancy of

the time intervals in between successive measurements is the precondition of Takens

theorem and its generalizations [79, 97, 106]: The Takens time delay embedding

method allows us to reconstruct a sequence of vectors, from the sequence of scalar

observables, which are topologically equivalent to the unobserved state vectors.

The theorem can be formulated in the following way. Given is a dynamical system

ẋ = f(x) in a phase space Γ ⊂ Rd, a measurement function h : Rd → R, and a
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sampling interval ∆t. Let the trajectory x(t) be confined to an f-invariant set A ⊂ Γ,

with the box-counting dimension Df . Denote the scalar measurements obtained

through the sampling by sn := h(x(t = n∆t)). Consider the delay embedding space

spanned by delay vectors:

sn = (sn, sn−τ , sn−2τ , ..., sn−(m−1)τ ). (2.9)

If:

m > 2Df , (2.10)

then there exists a unique smooth map from A into the delay embedding space,

which is invertible and has non-zero derivative on the image of A in Rm. A is then

said to be immersed in Rm. This holds for generic h, generic f , almost all ∆t, and

every τ ∈ N.

Takens’original version of the theorem did not require the trajectory to live in

an invariant set, but supported only the embedding of the full d-dimensional phase

space in an Rm with m ≥ (2d + 1). Sauer and collaborators [97] could not only

reduce the embedding dimension to m > 2Df but showed also the general validity

of the theorem in the sense of prevalence concerning the measurement function h.

Hence, the m-dimensional delay embedding space is equivalent to the original

unobserved phase space of the dynamical system, since in particular the dynamics

of s is deterministic. The trajectory at successive time steps can be written as

a sequence of non-linear transformations of the state vector x(t) at an arbitrary

time t = n∆t : x(t = (n + k)∆t) = Fk(x(n∆t)). The m successive measurements

sn+1, ..., sn+m define m different equations for the d unknowns in x(n∆t), which

one can formally solve, if m > 2d. The delay embedding theorem does not require

knowledge of neither the measurement function h nor the integrated dynamics F, but

the constancy of the sampling interval guarantees that the set of equations for every

n of the time series has exactly the same structure, and a one-to-one relationship

between {xn} and the series of embedding vectors exists.

The requirement of m > 2Df is related to geometry and guarantees that self

intersections of the reconstructed sets due to non-linearities are non-generic. When

dealing with time series, usually one does not know the underlying system and

therefore the dimension of the set in phase space Df and thus the correct embedding

dimension m are unknown. They have to be determined self-consistently from the



2.2. RECONSTRUCTED PHASE SPACE 19

 time t 
 signal s(t-1

) 

 s
ig

na
l s

(t
)

Figure 2.1: Sketch of the time delay embedding method for data from a physical laboratory

experiment, courtesy of Ralf-Peter Kapsch. The time series sn is plotted in the vertical and

the horizontal plane, with a relative time lag of unity. The sequence of 2-dimensional vectors

(sn, sn+1) is shown as a trajectory in the 3-d space. The projection of these (and many more

data from the same data set) onto the “x− z”-plane reveals non-trivial structure, showing

that the data are subject to complicated but evident dynamical constraints.

data. The time lag τ does not play a role in the mathematical theorem, which relies

on data with mathematical (infinite) precision, but its proper choice is essential for

noisy data with strong correlations.

Fig. 2.1 is a sketch of the embedding method for data from a physical laboratory

experiment (a non-linear electric resonance circuit) which represent an attractor of

dimension Df = 2.1. Evidently, for shorter time lags τ , the resulting structure in

embedding space would be more and more squeezed towards the bisectrix. Measure-

ment noise will then extinguish all structure perpendicular to the bisectrix. This

structure can be revealed even in the presence of noise when the extension in this

direction is enlarged by a larger time lag. Too large a time lag will combine almost

uncorrelated measurements such that visible (and algorithmically useful) structure

is much more complicated and on much smaller scales, which again are easily hid-
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den by noise. Unfortunately, there is no theoretical argument of how to determine

the optimal time lag, and only guidelines exist (see [1, 46, 52]). For a sinusoidal

oscillation, the optimal time lag for a two-dimensional embedding is one quarter of

the period, but already for higher embedding dimensions even this is unclear, such

that τ has to be optimized empirically for every single application.

For non-autonomous systems, the embedding theorem is not valid, except for

the case that the fluctuating driving terms are known [103]. If, however, the system

is periodically driven, the periodic driving can be interpreted as the limit cycle

solution of a deterministic system itself. Hence, the non-autonomous system can be

modelled autonomously by two sub-systems with a unidirectional coupling between

them. For instance, a sinusoidal driving force, p = a cosωt, can be created by

(ẏ1, ẏ2) = (y2,−ω2y1). The reconstruction of these two additional variables from the

time series requires at most 5 additional dimensions of the delay embedding space,

but since they are confined to the one-dimensional limit cycle solution, 2 additional

dimensions are generally sufficient. For fixed driving force p, the system creates an

attractor with dimension Dp which might be smaller than D, the dimensionality

of the phase space. When p oscillates periodically, in the worst case one has to

reconstruct D +1 variables by the time delay embedding, which means m > 2D +2.

In fact, for experimental data from a periodically driven electric resonance circuit,

both autonomous 4-dimensional maps and 2-dimensional periodically driven maps

were successfully constructed from the data [35].

2.3 Over-embedding

When the driving term varies in a non-deterministic way, there is no way to rewrite

the equations of motion in an autonomous form. However, in many applications the

knowledge of the instantaneous equations of motion, i.e. the equations with the ac-

tual parameter settings, is sufficient. In such a situation, under the assumption that

parameters vary on much longer time scales than those which rule the instantaneous

dynamics, and have only rare additional sudden changes, over-embedding solves the

problem. As an illustration, let us consider the Lozy map:

xn+1 = 1− a|xn|+ bxn−1 . (2.11)
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If a time series of xn itself is recorded, a two-dimensional embedding allows to

uniquely reconstruct the equation of motion, Eq.(2.11), from the data. If one pa-

rameter, say a, changes slowly in time, a two-dimensional embedding will be insuf-

ficient, since among the neighbours of a delay vector, sn = (xn, xn−1), there are in

general neighbours with different settings of a contained in the time series (at least

in regions of the R2 where the attractors for different a overlap), and uniqueness of

the image is lost. However, the knowledge of the triple (xn, xn−1, xn−2) allows in

principle to first solve for an−1 by:

an−1 =
xn − 1− bxn−2

|xn−1| , (2.12)

and, under the assumption that an ≈ an−1, to predict xn+1 as:

xn+1 = 1− xn − 1− bxn−2

|xn−1| xn − bxn−1 , (2.13)

such that close neighbours of (xn, xn−1, xn−2) can be used for the (local linear)

reconstruction of this equation from data. Eq.(2.12) proves that similar delay vectors

with m=3 are necessarily related to similar values of a. One can thus use the three-

dimensional embedding for a mere selection of neighbours and then use these in

an only 2-dimensional embedding, if desirable. Eq.(2.13), however, is a universal

model of the dynamics of Eq.(2.11), valid for all quadruples generated with fixed a,

irrespective of the actual value of a.

The above reasoning can be easily generalized for more than one fluctuating

parameter. The accuracy to which we want an instantaneous deterministic equation

of motion to hold delimits the tolerable speed of parameter variations. When we

reconstruct equations of motion from observed data, a residual error remains even for

stationary data, so that it appears to be sufficient for all practical purposes that the

parameter variation per time step is below the percent level. When a sudden change

of parameters occurs, there is, for a few time steps, no instantaneous deterministic

rule in the time delay embedding space, and in particular we will generally find

no neighbours for a delay vector covering the transition between two such different

episodes. However, before and after this parameter jump, the above reasoning again

applies, and we will show in the application to voice data (Sec. 3.3) that in fact

sudden parameter changes do not destroy the usefulness of this concept.

We can generalize Eq.(2.10) using the following proposition: If a D-dimensional

deterministic dynamical system depends on P parameters with slow time depen-
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dence, then delay vectors of sufficient embedding dimension are approximately con-

fined to a (Df + P )-dimensional manifold, which can be reconstructed (see [37]) in

a space of dimension:

m > 2(Df + P ). (2.14)

Approximately means that the confinement is violated on length scales of the order

of the standard deviation of the data times the average parameter change per time

step. It can be shown that the way in which parameters vary is irrelevant for the

embedding property: It holds irrespectively of whether the change is periodic, with

a drift or stochastic. The reason lies in the slowness of their change: When the

time lag of the delay embedding is adjusted according to the time scales of the

instantaneous dynamics, it is much too small for a reconstruction of the dynamics of

the varying parameters. Their attractor is not at all unfolded and they contribute

in high precision only with a P -dimensional subspace.

2.4 Recurrences

When thinking of geometry in phase space, non-stationarity introduces a tendency

according to which if points are close in space they are also close in time (in other

words, points far in time are typically not neighbours if a high-dimensional em-

bedding space is considered). A step into the direction of not just detecting but

also characterizing the kind of non-stationarity was successfully done by recurrence

analysis. In the spirit of determinism and phase space reconstruction, in [73] the

idea of time dependent driving forces and their recurrence is strongly used: Time

series are cut into segments and in the plane of segment indices a point is drawn

if the distance between time series segments is smaller than some threshold. These

meta-recurrence plots allow one to identify time series segments with similar or iden-

tical evolution equations and parameters. In [14] it has been shown that by help

of recurrence analysis, one can identify the time dependence of driving forces under

certain conditions.

After having pointed out the power of recurrence analysis, let us introduce the

basic graphical tool that evaluates temporal and phase space distance of states,

namely the classical recurrence plot (RP), firstly introduced in [18]. In the time-
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Figure 2.2: Upper left panel: The Hénon time series xn, 1000 samples. Upper right

panel: The two-dimensional embedding of the Hénon system. Lower panel: Section of a

recurrence plot for the Hénon map: In the plane of indices i, j a dot is printed, whenever

the two-dimensional delay vectors fulfill |si−sj | < ε. The presence of short but quantitative

significant lines is a clear signature of determinism.
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time plane of a RP, one represents the couple of time indices (i, j) by a dot, if:

|si − sj | < ε. (2.15)

A dot with coordinates (i, j) implies that the distance between the delay vector

centered in i and the delay vector centered in j is smaller than a given threshold ε.

A possible different way to define a RP is setting the number k of neighbours instead

of the threshold ε. According to this alternative definition, a pair (i, j) is called a

recurrence if si is one of the k-th nearest neighbours of sj , for some predefined value

of k. RPs obtained following a different definition are not identical, since not all

points have k neighbours contained in an ε-neighbourhood. On average, the relation

between ε and k is the following: For extremely small values of the threshold one

does not get any neighbour, while the number of the latters saturates if the value

of ε is comparable to the size of the reconstructed phase space. The role played

by k and by ε is qualitatively the same on average. Since si are delay embedding

vectors, the resulting RP depends strongly on the embedding parameters. A RP is

then generated by computing all recurrences at a given neighbourhood order k or

resolution ε. In the remaining we will always consider the definition through the

threshold ε.

In [109] different parameters for the statistical quantification of RPs have been

proposed, suggesting that they can be a useful starting point for the analysis of

non-stationary sequences if the relevant information is extracted in a suitable way.

The most detailed account of these techniques has been provided in [14, 18], where

it is shown by a scaling argument that for a dynamical system with time varying

parameters, the RP in the limit of small ε, large N and sufficient m approaches the

RP of the fluctuating parameter. However the task of extracting the time variation

of a parameter from its RP is in general very difficult.

As an example, let us consider the map given by Hénon in 1976:




xn+1 = a− xn
2 + byn

yn+1 = xn

(2.16)

It yields irregular solutions for many choices of the two parameters a and b. For

|b| ≤ 1 there exist initial conditions for which trajectories stay in a bounded region

but, for example, when a = 1.4 and b = 0.3, a typical sequence of xn will not

be periodic but chaotic. In Fig. 2.2 we can see a recurrence plot for the Hénon
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Figure 2.3: Section of a recurrence plot: In the plane of indices i, (j − i) a dot is printed,

whenever the delay vectors fulfill |si − sj | < ε. Different colors code different distances.

Upper panel: The speech signal underlying the RP.
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map. Due to the chaoticity of the system, trajectories originated by similar initial

conditions tend to diverge but since the phase space is limited and the rules are

fully deterministic, if two trajectories are similar (i.e. vector points are neighbours)

they tend to remain similar, at least for some points. Therefore the presence of

small lines in recurrence plots is a clear signature of determinism. One can further

investigate the reason for the given extension of the lines, having in mind the two

extreme cases: A periodic signal produces a RP where the lines are the longest

possible, uncorrelated noise has RPs with no line at all. We have already seen the

exponentially fast divergence of trajectories typical of chas. The properly averaged

exponent of this increase is characteristic for the system underlying the data and

quantifies the strength of chaos. It is called the Lyapunov exponent. Let βn1 and βn2

be two points in state space with distance δ0. Denote by δ∆n the distance at time

∆n between the two trajectories emerging from these points. Then the maximal

Lyapunov exponent λ is determined by:

δ∆n ≈ δ0e
λ∆n. (2.17)

If λ is positive, this means an exponential divergence of nearby trajectories, i.e. chaos.

It can be shown that the bigger λ is, the shorter are the lines in RPs [67, 113].

We want now to introduce a non-stationarity in the Hénon map and to show

its effect in a RP. To this purpose, we build a time series composed by 3 segments,

each one characterized by a different set of parameters a and b. The RP of such a

time series is reported in Fig. 2.4. For every single segment it is qualitatively the

same as in Fig. 2.2, in particular with respect to the line structures. If considered as

a whole, anyway, a new effect appears, namely the clusterization of the RP. There

is almost no point involving the first and the third segment and just a few cross-

recurrences between the first and the second. The second and the third segment

present a little bit more recurrences, but there is no line structure and therefore

they can be considered almost random (they do not reflect any determinism).

In Fig. 2.3 the RP of a human voice signal is plotted. In this case we have

used a slightly different version of RP: Along the x-axis we still have one time index

i, but along the y-axis we report the difference between the two indexes (j − i).

Geometrically this is equivalent to a 45 degree rotation, so that now the expected

lines should be horizontal. Furthermore, in Fig. 2.3 the ε is used as color coded

parameter: Instead of printing a dot whenever the delay vectors fulfill |si − sj | < ε,
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Figure 2.4: Section of a recurrence plot for the non-stationary Hénon map: A dot in

position (i, j) means that |si − sj | < ε. Along the 1000 points of the time series, 3 different

sets of parameters are used, giving rise to a non-stationary Hénon map. The effect is a lack

of cross-recurrences between two different segments, detectable as a clusterization of the

recurrence plot.
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Figure 2.5: Left panel: Spectrogram of a long word. Along the 3 seconds phonation,

only the fundamental frequency, related to the basic mechanism of speech, is always

present. This is not the case for higher frequencies, showing that even within a single

word different types of dynamics are present or, alternatively, the parameters of the

dynamics are non-stationary. Right panel: Spectrogram of an elongated phoneme.

The signal is almost stationary, apart the effects involving the higher frequency (U

shape), due to the concatenation with the previous and the following phonemes.

we have computed the distance |si− sj | and plotted a dot with a color that depends

on it.

The non-stationarity in a time series can also be revealed with the help of spectro-

grams, graphs where the time series index is reported along the x-axis and the power

spectrum along the y-axis. A time series is divided into overlapping segments (typ-

ical values are windows of 2048 points with an overlap of 1024 points) and for each

segment a symbol is plotted at the frequencies where the power spectrum assumes

a relative maximum. In Fig. 2.5 we can see the spectrogram of a word and of an

elongated phoneme. With the help of this tool one can identify the time scales that

are relevant in terms of the non-stationarity: A word, concatenation of phonemes,

is non-stationary, as the different frequency spectrum indicates; on the other hand a

single phoneme can be considered stationary, at least in its central part, where the

effects of the concatenation are not so evident.
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2.5 ARCH and GARCH models

In the last section we have discussed the analysis of deterministic systems with

slowly time dependent parameters. Here we introduce the opposite setting, namely

stochastic processes where the non-stationarity comes from a second time scale.

Over the last twenty years ARCH (Autoregressive Conditional Heteroskedasticity)

models have been widely applied in the financial literature and specifically in the

option pricing literature. They have been first proposed by Engle [20]; some years

later Bollerslev [8] has introduced a generalized version called GARCH (Generalized

ARCH). These models assume conditionally normally distributed price returns (see

Sec. 4.2) with a time-varying conditional variance, and appear to reconcile the typical

properties of financial time series better than more classic time series models, such

as ARMA models.

We suppose that our dependent variable yt is generated by:

yt = x
′
tγ + εt t = 1, 2..., T, (2.18)

where xt is a k-vector of lagged endogenous variables (state variables) and exogenous

variables (external driving inputs), and γ is a k-vector of parameters. The ARCH

model characterizes the distribution of the stochastic error term εt conditionally on

a set of lagged variables Ψt−1 = {yt−1, xt−1, yt−2, xt−2, ...}. In his original model,

Engle [20] assumes a conditional normal distribution of the error term,

εt|Ψt−1 ≈ N(0, ht)1, (2.19)

where

ht = α0 + α1ε
2
t−1 + α2ε

2
t−2 + ... + αqε

2
t−q, (2.20)

with α0 > 0 and αj ≥ 0 for j = 1, ..., q, in order to ensure a positive conditional

variance. Here, q is the order of the ARCH process.

The appeal of this model is that the conditional variance ht depends on the

past Ψt−1 and is a positive function of the size of past errors in absolute terms.

Thus a large positive or negative error tends to be followed by a large (in absolute

terms) error, and similarly a small error tends to be followed by a small error. The

order q determines the length of the period during which a disturbance persists in

1N(0, ht) is the Gaussian distribution with zero mean and variance h2
t .
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conditioning the variance of the following disturbances. The larger is q, the longer

the periods of volatility clustering (see Sec. 4.4). Another important property of

ARCH processes is that the mixing produced by the changing conditional variance

induces additional kurtosis in the unconditional distribution. In fact, the parame-

terization does not impose a priori the existence of unconditional moments, which

allows the model to be consistent with Mandelbrot [64], who found evidence that

the distribution of financial asset returns may well have infinite variance.

It rapidly became apparent in applied work that the specification of the con-

ditional variance as an ARCH(q) called for a large number of lags and therefore

the estimation of numerous parameters subject to inequality constraints. In conse-

quence, Bollerslev [8] proposed a generalization of the ARCH model, called GARCH,

that allows for a parsimonious representation of a high-order ARCH model. The

conditional variance function of a GARCH(p,q) model has the following form:

ht = α0 + α1ε
2
t−1 + ... + αqε

2
t−q + β1ht−1 + ... + βpht−p, (2.21)

with α0 > 0, αj ≥ 0 for j = 1, ..., q and βk ≥ 0 for k = 1, ..., p. The last constraints

about βk ensure a positive conditional variance. Engle and Bollerslev [9] introduced

the IGARCH process (Integrated GARCH), a GARCH process in which
q∑

j=1

αj +
p∑

k=1

βk = 1. (2.22)

In this case, a contemporaneous shock persists indefinitely in future conditional

variances. For agents in the options market, the degree of persistence of the shocks

on the variance is an essential element. In effect, they will be prepared to pay a

higher price for long-lived options if they perceive that the shocks are large and

sufficiently permanent relative to the life of the options.

The finding of a very high degree of persistence for financial data is not univer-

sal. Although Engle and Mustafa [22] obtained a very high degree of persistence for

several individual stocks of large firms on the US stock market and for the S&P500

index, the results of Engle and Gonzalez-Riviera [21] suggest that the degree of per-

sistence depends on the size of the firm, smaller firms exhibiting a lower degree of

persistence than larger ones. Furthermore, according to Lamoureux and Lastrapes

[55], the high degree of persistence that is observed could be due to a misspecification

of the conditional variance. They suggest that structural changes in the uncondi-

tional variance of the process produce volatility clusters that result in a high degree
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of persistence. Allowing the constant in the conditional variance function to vary

on different sub-periods of their sample, they obtain a lower degree of persistence as

compared to that of a model without structural changes.

2.6 Non-recurrent processes

The archetypical feature in the theory of stochastic processes is Brownian motion.

Already in 1827 the botanist R. Brown had reported the observation of a very ir-

regular motion displayed by a pollen particle immersed in a fluid. It was the kinetic

theory of gases, dating back to David Bernoulli (1700-1792) which would provide the

basis for Einstein’s (1879-1955) and Smoluchowski’s (1872-1917) successfull treat-

ment of the Brownian motion problem in 1905. Through the work of Maxwell

(1831-1879) and Boltzmann (1844-1906), statistical mechanics, as it grew out of the

kinetic theory of gases, was the main area of application of probabilistic concepts in

theoretical physics in the 19th century.

In the Brownian motion problem and all its variants, one deals with a phenom-

enon that is the outcome of many unpredictable and sometimes unobservable events,

which individually contribute a negligible amount to the observed phenomenon, but

collectively lead to an observable effect. The individual effects cannot sensibly be

treated in details, but their statistical properties may be known, and they determine

the observed macroscopic behaviour. A problem closely related to the Brownina mo-

tion is that of random walker, introduced into science by Karl Pearson in a letter to

Nature in 1905:

A man starts from a point 0 and walks l yards in a straight line: He

then turns through any angle whatever and walks another l yards in a

straight line. He repeats this process n times. I require the probability

that after these n stretches he is at a distance between r and (r + δr)

from his starting point 0.

The solution to this problem was provided in the same volume of Nature by Lord

Rayleigh (1842-1919), who told him that he had solved the problem 25 years earlier

when studying the superposition of sound waves of equal frequency and amplitude

but with random phases. Let us assume that a walker can sit at regularly spaced

positions along a line that are a distance ∆x apart. In this case one can label the
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positions by the set of integer numbers. Furthermore, we require the walker to be

at position 0 at time 0. After fixed time intervals ∆t the walker either jumps to the

right with probability p or to the left with probability (1−p). What is the probability

to find the walker at position n after N steps, with the obvious constraint n < N?

The computation is quite easy, since the probabilities are independent. One has just

to evaluate the probability to jump (N +n)/2 time to the right and (N−n)/2 times

to the left and to count how many such paths there are. One ends up with the result

that the probability of being at position n after N jumps is given by the following

binomial distribution:

p(n,N) =
N !

(N+n
2 )!(N−n

2 )!
p

1
2
(N+n)(1− p)

1
2
(N−n). (2.23)

Knowning this probability distribution, one can evaluate all the moments of n

at fixed time N . Let us denote the number of jumps to the right as r = (N + n)/2.

Simple computation lead to:

E[r] = Np, V ar[r] = Npq, (2.24)

with q = (1− p). Translating the results for the number of steps to the right r into

the position of the random walker, one gets:

E[n] = 2N

(
p− 1

2

)
, V ar[n] = 4Npq. (2.25)

If the probability of jumping to the right equals the probability of jumping to

the left, then Eq.(2.25) reduces to free diffusion:

E[n] = 0, V ar[n] = N. (2.26)

This is again a kind of non-stationarity, although quite different from the two pre-

viously presented situations. In this case, in general, there is no variation in the

control parameters of the system and no time dependence in the transition proba-

bilities. But the fact that the more data we get, the larger V ar[n] is (Eq.(2.26)), has

as consequence the lack of recurrences. As already said, many important phenomena

can be descrived as the compound effect of many small influences. The observable

quantities are most often the sum of a very large number of random events, like in

the case of the pressure exerted by a gas on a piston, which is a thermodynami-

cal (read macroscopic) variable made up from all the collisions of the gas particles

(microscopic scale) with the piston.
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Mandelbrot and Van Ness [65] have introduced fractional Brownian motion as

a generalization to processes which grow at different rates tH , where 0 ≤ H ≤ 1 is

called Hurst exponent (see Sect. 2.7):

V ar[n] = N2H . (2.27)

Successive increments of a fractional Brownian motion are called fractional Gaussian

noise and an important feature of them is that correlations decay slower than in

the standard case, so that the resulting fractional Brownian motion exhibits long

memory effects. Correlations are positive for H > 0.5 (persistence) and negative for

H < 0.5 (antipersistence) as shown in Fig. 2.6.

As for standard Brownian motion, all fractional Brownian motion series are self-

affine, meaning that the series appears statistically identical under rescaling the time

axis by some factor a and the displacement by aH . Hence, a fractional Brownian

motion lacks any characteristic time scale and when generating or sampling a series,

an arbitrary step length of one unit may be used without loss of generality [112].

Self-affine signals can be described by a fractal dimension D which is related to the

Hurst exponent through:

D = 2−H (2.28)

for fractional Brownian motion [94]. The fractal dimension D can be loosely inter-

preted as the number of dimensions the signal fills up. For example, notice that

in Fig. 2.6 the H = 0.1 signal fills in significantly more space than H = 0.9 and,

consequently, has a higher fractal dimension. For a detailed treatment of the in-

terconnections between fractal dimension, box-counting dimension and correlation

dimension see [46].

The power spectrum (defined as the amplitude-squared contributions from the

frequencies ±f , S(f) ≡ |FH(f)|2 + |FH(−f)|2 where FH is the Fourier transform

of the displacement [93]) of fractional Brownian motion also demonstrates scaling

behaviour. The exact spectrum is difficult to compute but for low frequencies it can

be approximated by a power law S(f) ∼ 1/f2H+1 (see Fig. 2.7) which corresponds

to long-term spatial correlations2. Fractional Brownian motion has been criticized

because it lacks a physical interpretation and because the process has an unrealistic

2Flicker or 1/fα noise with α ≈ 1 is ubiquitous in nature and some of it may be attributable to

long-memory fractional Brownian motion processes.
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H = 0.9

Figure 2.6: Sample fractional Brownian motion time series with different Hurst

exponents: Antipersistent H = 0.1 (top) has negative long-range correlations, un-

correlated H = 0.5 (center) is standard Brownian motion, and persistent H = 0.9

(bottom) has positive long-range correlations.
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Figure 2.7: Power spectral densities for the fractional Brownian motion time series

shown in Fig. 2.6. The points are from finite samples of 1000 points each and the

line represents the theoretical spectrum. For low frequencies the power spectrum is

well approximated by a power law 1/f 2H+1.
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infinite memory [65]. However, it is a mathematically elegant extension of standard

Brownian motion which introduces long-range memory effects and can be character-

ized by a single parameter H. Hence, it is an ideal experimental control for testing

procedures of measuring the Hurst coefficient in real data sets (see Sec. 2.7).

A very important question is what the distribution of a sum of random variables

will ultimately be. In other words, given N statistically independent and identically

distributed random variable xi with zero mean and variance σ2, one is interested on

knowning what is the probability distribution of:

SN =
1√
N

N∑

n=1

xn. (2.29)

Calculating the characteristic function of the sum variable and using the moment-

generating propertiy of it, as presented in [10], one is able to show that the proba-

bility distribution is Gaussian (Central Limit Theorem):

pN (z) N→∞−→ 1√
2πσ2

exp

[
− z2

2σ2

]
. (2.30)

This result gives a justification of the ubiquitous appearance of the Gaussian distri-

bution in statistical phenomena. Indipendently from the exact form of the underly-

ing distribution of the individual random variables, the sum of them always obeys

a Gaussian distribution in the large N limit, provided that the first two moments

exist. For more details, included the deviations from the asymptotic behaviour when

the sum is truncated to a finite number of random variables, see [30].

The restrictions on the first and second moment involved in the central limit

theorem are so mild that almost all distributions belong to the domain of attraction

of the Gaussian. There are, however, some exceptions, the most famous being the

Cauchy distribution3:

p(x) =
a

π

1
a2 + x2

, (2.31)

whose second moment is infinite. A natural question is therefore to check what

happens when considering the sum of several random variables distributed accord-

ing to Eq.(2.31). The Cauchy distribution belongs to the following class of stable

distributions (Lévy distributions):

p(x) ∼ 1
|x|1+α

, 0 < α < 2, (|x| → ∞), (2.32)

3The Cauchy distribution occurs in many physical situations, like in the theory of critical opales-

cence and in the lifetime broadening of spectral lines.
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which have long, inverse-power-law tails. A distribution is stable if it is invariant

under convolution. The interesting thing about the broad tails is that they are

responsible of the non-convergence to the Gaussian distribution, but at the same

time they do not preclude the existence of a limiting distribution.

The distinguishing property of Lévy distributions is the presence of long-range

power-law tails which may lead to a divergence of even the lowest-order moments.

For instance, both the first and second moments are infinite if in Eq.(2.32) we have

α < 1. Physically, these lower-order moments have a very important meaning,

since they set the pertinent scales. In Brownian motion, for instance, the time

scale was determined by the first moment of the waiting-time distribution, while the

second moment of the jump-length distribution defines the physically relevant length

scale. The divergence of the corresponding moments for certain Lévy distributions

implies the absence of underlying physical scales, provided that these distribution

are realizable in nature. A very interesting paradox arised from this concept is the

so-called St. Petersburg Paradox, sketched in Appendix: The absence of physical

scales could be interpreted as scale invariance, which in turn invokes the notion of

self-similarity and fractals. The intimate relation between Lévy distributions and

self-similar behaviour is the link that ties the mathematical properties to physical

applications.

From the viewpoint of practical applications, stable distributions, namely dis-

tributions which are invariant under convolution, have both appealing and non-

appealing features. Certainly a very attractive property is the scaling behaviour, a

typical feature of fractality, since the whole looks like its parts and no character-

istic scale can be found. On the other hand, Lévy distributions possess divergent

lower-order moments. The divergence of the variance, in particular, is a very dis-

turbing feature if a time series analysis gives rise to a Lévy distribution, although

the variance is a priori known to exist. A good example comes from an analysis of

the human heart beat in [90], where the probability of the difference between the

durations of successive beats was studied. This distribution could much better be

fitted with a symmetric Lévy distribution (with α = 1.7) than with a Gaussian,

since large differences occur more frequently than what a normal distribution would

predict. Physiologically, this is not unreasonable. The heart can respond more eas-

ily to changing external influences if successive beat durations may substantially

deviate one from the other. However, the deviation cannot be arbitraly large, since
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Figure 2.8: Schematic representation of relation between fractional Brownian motion and

Lévy flight. Traditional Brownian motion sits at the intersection (H = 1/2, α = 2). The

natural extension into the two-space is fractional Lévy motion which has correlated, non-

Gaussian increments.

the physiology of our body poses strong upper and lower limits to it, which in the

end cut off the tails of the Lévy distribution and impose a finite variance of the time

series.

Mantegna and Stanley have proposed a way [69] to reconcile Lévy distributions

with a finite variance, truncating the tails in what they call a truncated Lévy flight.

A Lévy flight is similar to a traditional Brownian motion in that it is a cumulated

series of independent, identically-distributed increments, but in this case the incre-

ments are Lévy distributed instead of normally distributed. This yields a probability

distribution p(∆x) ∝ ∆x−1/H with 0.5 ≤ H ≤ 1. A Lévy flight creates enhanced

diffusion. The idea of introducing the truncated Lévy flight was derived from the

observation that financial time series show an exponential fall-off, implying that the

second moment is finite. The central part of the price difference distribution shows

a robust Lévy scaling over more than three orders of magnitude. In [69] it is shown

that Lévy scaling may hold over a long period of time for the dynamics of quasi-

stable stochastic processes having a finite variance. Fig. 2.8 shows schematically the

relation between fractional Brownian motion (correlated with Gaussian increments)



2.7. THE HURST EXPONENT 39

and Lévy flight (uncorrelated with non-Gaussian increments). These two extensions

of Brownian motion are not exclusive, but they can be combined to produce frac-

tional Lévy motion with correlated, non-Gaussian increments. There is very little

literature on the subject but it may be a useful model for some natural phenomena

[49].

2.7 The Hurst exponent

The Hurst exponent gives a measure of whether a trend will persist or revert to

some historical average. It also indicates the presence of cycles, although these

are typically non-periodic. The interesting point of such an analysis is that no

assumption on the frequency distribution of the data is required. We have already

introduced the concept of Brownian motion, which provides the result that a particle

suspended in a liquid would increase its covered distance with the square root of the

time used to measure it. If R is the distance and N the time, we have the following

relation:

R ' N0.5. (2.33)

This result is very used within the economist community in that the standard

deviation of the price of a commodity over fifty days can be approximated with the

standard deviation over five days multiplied by the square root of ten. In order

to investigate the dynamical properties of a time series, we can proceed following

the R/S analysis proposed by Mandelbrot and Wallis [66] and based on a previous

hydrological analysis of Hurst [43]. When writing Eq.(2.33), we call H the unknown

exponent which can vary between 0 and 1, measuring the intensity of long-range

dependence in a time series. Defining {R/S}N as the range of cumulative deviations

from the mean divided by the standard deviation, as discussed below, and using a

constant c, we have: {
R

S

}

N
= (cN)H , (2.34)

where N is the length of the portion of the time series we are considering. Given

the time series rt, we define the average:

m(N, t0) =
1
N

t0+N∑

t=t0+1

rt, (2.35)
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the biased standard deviation:

S(N, t0) =





1
N

t0+N∑

t=t0+1

[rt −m(N, t0)]2




1
2

, (2.36)

the cumulative deviation from the mean:

X(N, t0, τ) =
t0+τ∑

t=t0+1

(rt −m(N, t0)), 1 ≤ τ ≤ N, (2.37)

and the maximum exursion:

R(N, t0) = maxτX(N, t0, τ)−minτX(N, t0, τ). (2.38)

For each subset of length N , beginning at each t0 in the time series:
{

R

S

}

N
=

∑
t0 R(N, t0)∑
t0 S(N, t0)

(2.39)

and finally: {
R

S

}

N
= (cN)H . (2.40)

A linear regression on ln({R
S }N ) and ln(N) is performed and the gradient of

the regression line is the Hurst exponent. According to this definition, H = 0.5

corresponds to a truly random time series (center panel of Fig. 2.6), 0.5 < H ≤
1 describes a dynamically persistent, or trend reinforcing series (bottom panel of

Fig. 2.6). As H approaches 1 the certainty increases as to the direction of change

that has been currently seen will continue. A straight line with non-zero gradient

will provide H = 1. Alternatively, the series has memory that increases with H.

Importantly, the values at the beginning of the time series are as important to the

dynamics as the most recently observed (infinite memory, as discussed in Sec. 2.6).

An exponent such that 0 ≤ H < 0.5 describes an anti-persistent, or mean-reverting

system (top panel of Fig. 2.6). At the limit of zero the time series must change

direction every sample, as in the case of flipping a coin. The correlation C between

disjoint increments of the time series is given by [107]:

C = 22H−1 − 1. (2.41)

Thus, once again, if H = 0.5 the disjoint intervals are uncorrelated. For H > 0.5 the

segments are correlated, exhibiting a memory effect which tends to amplify patterns.
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For H < 0.5 the time series is characterized by C < 0. A lack of robustness of the

R/S statistic in the presence of short memory or heteroskedasticity (see Sec. 2.5)

has been discussed by Lo [59], suggesting a modified rescaled range statistics, which

replaces the denominator S by a consistent estimator of the square root of the

variance of the partial sum of r. This modified rescaled range statistics is more

robust to short-range dependence.

2.8 Detrended fluctuation analysis

As already noted, the presence of trends and/or seasonality is a quite common source

of non-stationarity. We have furthermore seen that a straight line with non-zero gra-

dient results in an Hurst exponent H = 1. If one assumes trends to be additive, the

non-stationarity due to them can be removed and consequently the other (eventual)

type of non-stationarity originating from the lack of recurrences can be studied. One

method that is able to perform this task is the detrended fluctuation analysis (DFA)

[41, 91], which provides a simple quantitative parameter (the scaling exponent α of

Eq.(2.32)) to represent the correlation properties of a signal4. Thanks to DFA the

detection of long-range correlations embedded in non-stationary time series is possi-

ble; furthermore the spurious detection of apparent long-range correlations, artifact

of non-stationarity, is also avoided. DFA has been applied in several contexts, like

the study of cardiac dynamics, bioinformatics, economics, meteorology, geology and

ethology. A further advantage of DFA is its ability to identify different states of

the same system according to its different scaling behaviours. In the case of heart

interbeat intervals, for instance, there exists a case study where the authors have

found significant differences in the scaling exponent for healthy and sick patients

[90].

As usual, one aspect is the method itself, another is the correct interpretation

of the obtained scaling results, which is of crucial importance for the understanding

of the intrinsic dynamics of the system. Typically, in fact, the correlation exponent

is not always a constant (independent of scale) and crossovers often exist: Different

4The applicability of this concept is wider than just for directly observed diffusive processes:

Given a sequence of bounded, seemingly stationary state xt, their accumulation
∑T

xt = s(T )

follows a diffusive-like path. The characterization of this path in terms of Hurst exponents yields

insight into the nature of the increments xt.
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ranges of scales may result in different α, depending on a change in the correlation

properties of the signal at different scales, or from trends in the data. Trends are

the most common feature generated by natural systems, almost unavoidable. For

example, the number of particles emitted by a radiation source in a unit time has

a decreasing trend, since the source becomes weaker and weaker; the density of air

due to gravity has a trend at different altitude; the air temperature in different

geographic locations and the water flow of rivers have a periodic modulation due to

seasonal changes; the occurrence rate of earthquakes in certain area has trends in

different time periods. Most interestingly, as we will see in the next chapters, the

time evolution of every economic index, in the very large scales, gradually drifts to

larger values. Since trends are almost ubiquitous, the question whether they depend

on external conditions or they are intrinsic within the system arises. A possible

approach is to first recognize and filter out the trends before attempting to quantify

correlations. A drawback of such an approach is that careful justifications should

be given in order to allow this filtering, since an intrinsic trend is of course related

to local properties of signal fluctuations.

The idea of DFA consists in dividing the time series u(i) of length N into N/n

equal size non-overlapping segments, after that an integration has been performed:

y(j) =
j∑

i=1

(u(i)− ū), ū =
1
N

N∑

j=1

u(i). (2.42)

In each box, the integrated time series is fitted by means of a polynomial function,

yf (i), which is called the local trend. For order-` DFA (DFA-1 if ` = 1, DFA-2 if

` = 2 etc.), `-th order polynomial functions should be applied for the fitting. The

integrated time series y(i) is then detrended by subtracting the local trend yf (i) in

each box. This operation results in the following detrended fluctuation function:

Y (i) = y(i)− yfit(i). (2.43)

The computation of the root mean square fluctuation:

F (n) =

√√√√ 1
N

N∑

i=1

[Y (i)]2 (2.44)

is repeated for different box sizes n in order to cope with different scales and to get

a relationship between F (n) and n. A power-law relation:

F (n) ∝ nα (2.45)
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implies the presence of scaling. In case Eq.(2.45) holds, the parameter α is called the

scaling exponent or correlation exponent. It represents the correlation properties of

the signal, since if α = 0.5, the signal is uncorrelated like a white noise; if α < 0.5,

the signal is anti-correlated; if α > 0.5, positive correlations are present. In [41]

the effect of three different types of trends is studied in the framework of artificially

generated correlated noise. Linear, sinusoidal and power-law trends are used. The

crossover in the scaling of noisy signals with trends also follow scaling laws: There is

a long-range power-law dependence of the position of the crossover on the parameters

of the trends. The DFA result of noise with a trend can be exactly determined by

the superposition of the separate results of the DFA on the noise and on the trend,

assuming that the noise and the trend are not correlated. If this superposition rule

is not satisfied, this is an indication that the noise and the superimposed trend

are not independent. Removing the trend could lead to changes in the correlation

properties of the noise. DFA can also be used when wishing to minimize the effects

of trends, and in order to recognize if a crossover indicates a transition from one

type to a different type of underlying correlation, or it is just due to a trend without

any transition in the dynamical properties of the noise.

The DFA procedure leads to a local measurement of the degree of long-range

correlations, and consequently to the claim of the presence of local persistence or

not, in the sense already explained when introducing the Hurst exponent. In [3] this

concept has been applied to the exchange rate between the german mark and the

british pound. Very interestingly, a change in slope of the local α corresponds to

changes in the Bundesbank interest rate. Another interesting observation involves

the analysis of DNA: Coding and non-coding sequences can be sorted out by looking

at the local α value. It is α > 0.5 in non-coding regions, suggesting the interpreta-

tion that it could be considered as a measure of information, an entropy variation

indicating how information is managed by the system [91].
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2.9 Overview of the approaches

In this chapter, (very) different tools and concepts have been introduced. Which

one is applied to a particular time series depends on the nature of the data and

represents a quite delicate task. We can anyway suggest some general guidelines:

• For “dynamical” data one should try with the reconstructed phase space, recur-

rence plot analysis and over- embedding in order to recover the instantaneous

dynamics of the system.

• For “stochastic” data the best solution consists on the application of station-

arity tests and then on the use of fluctuation analysis in order to establish the

correlation properties of the process.

In the next chapters we will focus on human voice and financial markets as prominent

examples of these two different kinds of data. Thanks to the two-mass model of the

vocal folds (to be introduced in Sec. 3.6) and to a lot of other models quite successful

in describing human vocal apparatus, one can assert that the time series representing

a record of a voice registered with a microphone belongs to the first type depicted

above. The system generating the signal can be characterized by few degrees of

freedom and non-constant parameters.

About the second application, the situation is not so clear. It is commonly

accepted in financial theory that time series of asset prices are unpredictable and

hence price dynamics are usually described as stochastic processes. On the other

hand it is quite clear that unpredictable time series and stochastic processes are not

synonymous. As stressed in Sec. 1.1, chaos theory has shown that unpredictable time

series can arise from deterministic non-linear systems. The question of whether the

time evolution of asset prices in financial markets might be due to underlying non-

linear deterministic dynamics arises quite naturally. To establish that, one could try

to reconstruct the (hypothetical) strange attractor, as introduced in Sec. 1.2, present

in the chaotic time evolution. Of course the corresponding dimension D plays an

extremely important role, since for chaotic systems with D > 3 it is difficult to

distinguish between a chaotic time evolution and a random process. The more

reliable estimation of D, as reported in [71], is the inequality:

D > 6. (2.46)
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From an empirical viewpoint, it is therefore quite unlikely that financial markets

follow chaotic dynamics with a limited number of variable. Furthermore, it is a

widely accepted believe (see Sec. 4.1) that the time evolution of an asset price

depends on all the information affecting the investigated asset and is seems quite

difficult to describe this huge amount of data with a small number of non-linear

deterministic equations. Therefore financial data are considered to belong to the

second type depicted above.
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Chapter 3

Human Voice Signals

All the simple systems are simple in the same way, each complex system has its

own complexity.

(Lev Tolstoy, Anna Karenina)

Analysis of acoustic signals provides a lot of interesting reasons to be carried out.

First of all there is an ever-growing need to store, code, transmit and synthesize voice

signals, such that the telecomunications industry has dichotomized transmission of

information into either voice or data, suggesting that voice signals are a class of their

own. Typical investigations have been performed through the microphone signal in

order to understand speech production and perception, given that the acoustic signal

is the common link between them. From a health science viewpoint, the human voice

analysis is of fundamental importance, since it provides much information about the

general health and well-being of an individual. Our voice reveals who we are and

how we feel, giving considerable insight into the structure and function of certain

parts of the body.

Having to do with measured signals one has to develop methods to treat the

noise unavoidably present in the time series. Sometimes the noise reduction can be

a preprocessing of the signal for applications like voice recognition or data classifi-

cation, in some other circumstances it can be the final goal of the treatment. In the

following we will distinguish between two kinds of noise, namely the additive noise

due to a measurement process and the internal noise of the human body, reflected

in the always present small fluctuations in frequency, amplitude and waveshape of

voice signals [68]. Voice production can be thought of as the activation of an en-

47
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tire system of coupled oscillators. The intent to vocalize activates motor commands

that are responsible for the neural inputs to an array of biomechanical, neural and

acoustic oscillators. The vocal folds are the primary oscillating system that produce

the glottal airflow, what we might call the carrier signal. All other oscillators act

as modulators of the glottal airflow. Respiratory and heart beat modulations are

nearly sinusoidal; action potentials of muscles, air vortices and mucus in motion

are hugh dimensional; tracheal resonator, supraglottal vocal tract and sinuses are

passive oscillators that can strongly influence the primary oscillating system [6, 40].

3.1 Feasibility of iNoise Reduction

Essentially every recorded signal is contaminated by noise, which reduces the de-

tailed knowledge about it. Although generally one associates with noise specific

properties such as broad band power spectrum or a certain distribution, here we

want to be more general and denote by noise every source which is different from

the signal of interest. So, noise contamination can mean the effects of discretization

in a conversion from analogue to digital data, it can mean distortions of the mea-

surements due to fluctuations in the electronic equipment, due to impact of other

signals into the measurement device (such as 50 Hz noise from the electric power

supply), or it can be mixed into the signal in the transmission channel. One elim-

inates as much noise as possible from the recorded mixture of signal and noise by

filtering techniques, called noise reduction. More generally, one could call this signal

separation or demixing.

Every scheme for noise reduction requires criteria for distinguishing the desired

signal component and the noise component inside the recorded mixture. Typical

and often employed characteristics are spectral properties: If noise and signal have

distinct, well defined spectral contents, filters in the frequency domain can be suc-

cessfully used for their separation. The power spectrum is particularly useful for

studying the oscillations of a system. There will be sharper or broader peaks at

the dominant frequencies and their integer multiples, the harmonics. Purely pe-

riodic or quasi-periodic signals show sharp spectral lines and measurement noise

adds a continuous floor to the spectrum. Thus in the spectrum, signal and noise

are distinguished. Deterministic chaotic signals may also have sharp spectral lines

but even in the absence of noise there will be a continuous part of the spectrum.
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Without additional information it is impossible to infer from the spectrum whether

the continuous part is due to noise on top of a qusi-periodic signal or to chaoticity.

Human voice is a non-stationary signal, characterized by changes in the istanta-

neous dynamics during the speaking that usually should constitute undesired com-

plications of the analysis (see also Fig. 2.5). In this case, however, such changes

represent the most interesting structure in the recording and filtering them out

would produce a quite poor signal quality (the time average spectrum is very broad

band). In Fig. 3.1 the amplitude of a speech signal is shown at high time resolution.

One observes the oscillatory nature of the sound waves, but, more importantly, the

irregular change of the enveloping amplitude due to the non-stationarity. We will

later show that also the wave form changes considerably and that therefore the spec-

tral contents is time dependent; the severe unharmonicity requires a strong phase

relationality between different frequencies while moving from phoneme to phoneme.

There exist vowels with a rather pure harmonic spectrum, and there exist fricatives

which resemble quite closely white noise. Thus, simple filters such as low-pass filters

distort the voice signal more than they reduce noise. More sophisticated methods

have to be used, such as adaptive filters, still working in the frequency domain, but

on moving windows in time. Due to the huge technical relevance of noise reduc-

tion for human speech (telecommunication, electronic hearing aids, computer-based

speech recognition), extremely elaborate and sophisticated algorithms have been

developed. Examples of state-of-the-art methods are [32, 101].

The algorithm we want to present here is called Local Projections in Embedding

Spaces and it is based on a very different philosophy, namely on structures in the

reconstructed phase space. Its performance will be compared to a modern spectral

subtraction scheme which can be considered standard, the Ephraim-Malah filter [23],

and shows that already the application of the raw concept yields comparable gains in

the signal to noise ratio. The results can be improved by post-processing the denoised

signal with other filters which rely on properties different from those exploited by

our method to distinguish between signal and noise (e.g. spectral properties).

The local projections noise reduction scheme has been developed in the frame-

work of non-linear time series analysis, as a set of techniques for the analysis, ma-

nipulation, and understanding of aperiodic signals relying on the hypothesis of de-

terministic chaos [46]. This means that the signals reflect the complex dynamics

of a purely deterministic (often few-degree-of-freedom) system. Since such signals



50 CHAPTER 3. HUMAN VOICE SIGNALS

0.6

1

1.4

1.8

0.2 0.4 0.6 0.8 1 1.2

s(
t)

 [a
rb

itr
ar

y 
un

its
]

t [s]

alla s ta z ione

Figure 3.1: Time evolution of the italian sentence “alla stazione”. A separation into the

constituent phonemes is visualized.

represent a very limited class with most probably no relevance for time series data

coming from outside the physicist’s laboratory, it was of considerable interest to

explore how far these concepts could be applied more generally to aperiodic sig-

nals with non-deterministic origin and strong non-stationarity like the human voice.

Thus, one has to see the success of non-linear noise reduction of human voice not

only as a new and alternative method for the solution of a prominent problem, but

also as an outstanding example of the usefulness of phase-space methods for non-

deterministic signals. This and other examples will eventually allow to compile a list

of conditions when non-linear time series methods can be expected to be successful

for signals that are clearly not stemming from deterministic dynamical systems of

low dimension.

Although articulated human voice is, when considering full words, a highly non-

stationary complex phenomenon, where the concatenation of phonemes is due to the

arbitrariness of the speaker and thus largely unpredictable and in this sense non-

deterministic, there is ample evidence that the sound generation by humans is a very

deterministic dynamical phenomenon. Models of the sound generating mechanism

have been designed; essentially the vocal folds as the mechanical parts modulating

the sound generated by the vocal cords have been modelled. Both model simulations
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and time series analysis of real data show that stationary articulated human voice

such as the extended voweling (“aaa”) have a low-dimensional dynamical origin. In

[104], a two-mass model of vocal-fold vibrations is analyzed with methods from non-

linear dynamics, showning that a sufficiently large tension imbalance of the left and

right vocal fold induces bifurcations to subharmonic regimes, toroidal oscillations,

and chaos. The reconstruction of attractors and the estimation of their properties

indicate low dimensionality of the attractors generating the signal. Furthermore,

it was shown by means of empirical orthogonal functions that normal phonation is

well represented by only two eigenmodes. The simulation of disordered voice has

shown that the three strongest modes contain 90% of the variance [7]. In contrast

to stationary voice signals, the concatenation of different phonemes to full words

or sentences does not represent a low-dimensional system, since there are frequent

and arbitrary switches between different kinds of dynamical behaviour. Due to the

transition regions from one phoneme to the next, a phoneme inside a word even

differs from the same phoneme when it is spoken in an isolated and elongated way.

Hereby, the reconstruction of an embedding space allows us to efficiently cope

with the problem of non-stationarity because different phonemes are identified im-

plicitly if we provide a reconstructed embedding space of sufficiently large dimen-

sion, what we have called over-embedding in Sec. 2.2. The dynamics inside the single

phonemes is very close to low-dimensional deterministic, being in fact almost peri-

odic. The non-stationarity here plays the role of imposing different instantaneous

dynamics to different phonemes throught a different set of parameters.

For an illustration of the noise reduction method let us consider the following

task. We have to eliminate noise from a song stored on an old-fashioned vinyl disc,

where the noise could be induced, for example, by scratches on the black LP. The

task becomes almost trivial if we can retrieve several samples of this LP because if we

play them synchronously, the signal part of the different discs is identical, whereas

the noise part is independent, as depicted in Fig. 3.2. Already simple averaging will

enhance the signal, and more sophisticated rules will allow us to completely remove

the noise thanks to the availability of redundancy, a keyword in information theory.

When coping with (almost) deterministic signals we do not need several copies of

them. The deterministic dynamical constraints (as seen in Fig. 2.1) imply that

the redundancy is stored in the past. Since determinism means that similar initial

conditions will behave, at least for short periods, in a similar way, one solely has to
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Figure 3.2: Sketch of noise reduction of music stored on LPs: Playing synchronously

different samples of the identical piece of music, one can clearly identify noise due to its

independence, whereas the aperiodic signals have a cross-correlation of unity.

look for near repetitions of the present signal in the past. Based on this idea, several

approaches for noise reduction for deterministic chaotic data have been developed

[31, 51].

3.2 Local projective noise reduction scheme

Let a dynamical system be given by the map F : Γ → Γ in a state space Γ ⊂ <d. The

equation of motion thus reads xn+1 = F(xn). Not knowing F, one can determine it

in linear approximation from a long time series {xk}, k = 1, . . . , N , by determining

a set of neighbouring points Un of xn and minimizing

σ2
n =

∑

k:xk∈Un

(Anxk + bn − xk+1)2 , (3.1)

the one-step prediction error, with respect to An and bn (see [15, 26]). The implicit

relation Anxk + bn − xk+1 = 0 expresses that data are confined to a hyperplane in

the extended phase space. When the signal xk is superimposed by random noise,

yk = xk + ηk, the set Un will no longer be embedded in a manifold whose tangent

space is the hyperplane defined by An and bn, but will form a cloud scattered around
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it. Reducing noise now means to project the noisy yn onto this hyperplane. Also

in the noisy case, the unknowns An and bn can be determined by the least squares

problem (Eq.(3.1)), such we can gain all relevant information from the data.

As already noted, usually only scalar measurements are performed, i.e. not the

full phase space vectors x are measured, but an observable s = g(x), which is a

non-linear projection of the phase space to the reals. A scalar time series {sn =

g(xn)} is a sequence of measurements equidistant in time. The constancy of the

time intervals in between successive measurements in the precondition of Takens

theorem and generalizations thereof [37, 97, 106]: The Takens time delay embedding

method allows us to reconstruct a sequence of vectors, from the sequence of scalar

observables:

sn = (sn, sn−τ , . . . , sn−(m−1)τ ), (3.2)

which are equivalent to the unobserved state vectors, as already noted in Sec. 2.2.

The basic idea of the noise reduction, i.e. identification of the hyperplane con-

taining the unperturbed data and projecting the noisy data onto this manifold, can

be ported into the embedding space with very little modification [31, 38]. The local

linear equations of motion in delay embedding space reduce to:

sn+1 = ansn + bn , (3.3)

since all other components of the future delay vector sn+1 are copied from sn. Work-

ing in m-dimensional delay coordinates and assuming that the data are confined

locally to an (m − Q)-dimensional hyperplane, an is not uniquely defined and we

can find up to Q mutually independent linear subspaces aq, q = 1, . . . , Q fulfilling

sn+1 − ansn − bn = 0. For obvious reasons we will call the linear space spanned by

these Q vectors the nullspace at point xn. Since the noise free attractor does not

extend to this space, the component of sn we find in it must be due to noise. The

locally projective noise reduction algorithm tries to identify this nullspace and then

removes the corresponding component of sn.

When we assume that the nullspace has Q directions, we have to find Q ortho-

normal vectors aq such that the local projection onto these vectors is minimal. If

we use the notation zn = (sn − s) (s̄ is the average of sn on Un), the projection of

zn onto the nullspace (assuming normalised vectors aq) is
∑Q

q=1 aq · (aq · zn) and

we require
∑

n′∈Un
[
∑Q

q=1 aq · (aq · zn)]2 to be minimal for the correct choice of the
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Figure 3.3: Schematic representation of the noise reduction method for a signal from a

1-dimensional deterministic map in the time delay embedding space. Neighbourhoods in

embedding space exploit redundancy of the signal which is non-local in time. Upper left

panel: Clean data align on a graph (1-dimensional manifold) xn+1 = g(xn). Upper right

panel: Noisy data are scattered around it. Lower panel: Noise reduction can be performed

by projection.
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set of aq. If we introduce the constraint that the aq have unit length by means of

Lagrange multipliers λq and use that the aq are orthogonal1, aq · aq′ = 0, q 6= q′,

we have to minimize the Lagrangian:

L =
∑

n′∈Un




Q∑

q=1

aq · (aq · zn′)




2

−
Q∑

q=1

λq(aq · aq − 1) (3.4)

with respect to aq and λq. This can be done separately for each q and yields:

Caq − λqaq = 0, q = 1, . . . , Q , (3.5)

where C is the m×m covariance matrix of the vectors zn′ within the neighbourhood

Un:

Cij =
∑

n′∈Un

(zn′)i(zn′)j . (3.6)

Of course, the solutions of Eq.(3.5) are nothing but the orthogonal eigenvectors

aq and eigenvalues λq of C. These can be readily determined with standard software.

The global minimum of L is given by the eigenvectors to the Q smallest eigenvalues.

The noise component of the vector zn is thus removed by replacing it with:

ẑn = zn −
Q∑

q=1

aq · (aq · zn) . (3.7)

Finally, we write the result in terms of the original delay vectors sn:

ŝn = sn −∆sn = sn −
Q∑

q=1

aq · [aq · (sn − s)] . (3.8)

The noise reduction scheme outlined above is called local projective noise reduc-

tion. It is illustrated in Fig. 3.3. The conceptual steps for the implementation can

be riassumed in the following way:

• For every delay vector sn, all neighbours in the delay embedding space are

collected (i.e. Un is formed).

• The covariance matrix Cij =
∑
Un

(ẑk)i(ẑk)j is computed, and its singular

values are determined.
1We could also require orthogonality by additional Lagrange multipliers. This would complicate

the algebra but leads to the same result.
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• The vectors corresponding to the largest singular values are supposed to rep-

resent the directions spanning the hyperplane defined above by an and bn.

• To reduce noise, sn is projected onto these dominant directions.

• A suitable average over the m corrections of the same sn is performed.

The latter point is the most diffucult to treat complication arising from the fact

that we are working in a time delay embedding space: The minimization problem

given by Eq.(3.4) is local in the time index n, not global for the whole time series.

Solving it, we gain vector valued corrections for every delay vector, but we intend

to correct the scalar time series. Each time series element is member of m different

delay vectors, hence there are m different corrections for it. We usually employ an

arithmetic average over them. This cancels partly the corrections done and thus can

require to iterate the method a few times for convergence. On the other hand, this

enables us to reduce noise components which are inside the manifold at one time

instant. The choice of the parameters entering the algorithm (embedding window

((m−1)τ+1), embedding dimension m, time lag τ , diameter ε of the neighbourhoods

Un, number Q of singular vectors to project on) is the crucial problem and has to

respect the particular properties of the signal and of the noise. We will show in Sect.

3.5 a completely automated way to optimize ε, the most important parameter.

3.3 Structure and redundancy in human voice

The crucial aspect for the application of the non-linear noise reduction algorithm

is the choice of the correct embedding parameters and the dimension of the linear

subspace onto which we project in order to capture the structure we want to preserve.

However, even more relevant than the choice of the parameters is the issue whether

a given data set has at all enough deterministic structure to be used by the method.

The surprising result of this study is that structure in embedding space does in fact

exist in human voice signals and survive even for signal to noise ratios of unity or

less (see again Fig. 3.7). Human voice forms an aperiodic and highly non-stationary

signal. In Fig. 3.1 we show the trace of the italian words “alla stazione”. It is

composed of sub-units, called phonemes, which can be considered as different kinds of

limit-cycle-like dynamics. Zooming into such signals confirms the claims made in the
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Figure 3.4: Two different phonemes in high time resolution (equal scale, different off-set).

introduction, namely that the dynamics underlying individual and purified phonemes

is rather low-dimensional. Fig. 3.4 shows two different phonemes belonging to a

word: Inside them, on time scales of about 5ms, human voice is almost periodic.

Of course, the transitions from one phoneme to the next one and the fricatives are

aperiodic. Inside the transitions, still clear but time dependent patterns are present.

When we convert a finite sample of measurements of these waves into delay vectors,

then vectors representing the same wave form and the same phase of this wave are

close neighbours in the high dimensional space. Thus, searching for neighbours in

the embedding space means to identify redundant parts of the wave trains, a task

very close to pattern matching.

For a suitable delay reconstruction we now need the embedding dimension m and

the time lag τ . Due to the non-stationarity related to the presence of the very many

different instantaneous dynamical regimes we have to cover a full wave cycle by our

delay vectors (called over-embedding, as introduced in Sec. 2.2, since a reasonable

time delay embedding of a close-to-periodic signal would cover only one quarter of

the wave cycle), i.e. the embedding window:

((m− 1)τ + 1) (3.9)

should be about 5ms (or more, depending on the pitch of the voice). The large
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variety of existing phonemes forces us to use about 25 measurements per cycle for

the clean data to be able to distinguish between all of them. When noise is added,

we even have to increase the embedding dimension, since we have to compensate the

loss of neighbours by noise contamination (originally almost identical wave cycles

look different after distortion) by larger neighbourhood diameters, but we do not

want to accept false neighbours.

Recurrence plots [14, 18] are a suitable tool for the assessment of the quality of

an embedding. In the time-time plane, one represents the couple of time indices (i, j)

by a dot, if |si−sj | < ε, i.e. if the distance between the corresponding delay vectors is

less than some tolerance ε. Fig. 3.5 shows a slice around the diagonal of a recurrence

plot on clean data. As desired, there are recurrences for |i−j| ≈ 5ms, i.e. we identify

correctly the almost periodicity. More importantly, there are time intervals without

recurrences, and these are the transition regions between phonemes. Our method

thus implicitly identifies different phonemes and it locates the correct phases of the

waves cycle inside the same phoneme. As larger sections of the time-time plane

reveal (not shown in Fig. 3.5), there are almost no recurrences across phonemes in

different words. Thus our algorithm essentially relies on intra-phoneme redundancy,

computationally very fast to establish even if not always enough to garantee optimal

performances.

When the local projective noise reduction scheme is applied to low-dimensional

chaotic data, a quite critical problem consists on how to control the exponential

instability of the dynamics, which, among other aspects, led us to introduce a non-

trivial metric in the delay embedding space, as in [31]. For voice data, this is not an

issue, since intra-phoneme dynamics is limit cycle like and thus marginally stable.

The problem of noise reduction for voice lies in the fact that typical noise levels for

which the method should be employed are much higher and of the order of the signal

itself. Thus, it becomes a non-trivial problem to identify the correct neighbours (see

Fig. 3.6).

The reasons why a local projections noise reduction scheme can be successfull

have to found in the identification and exploration of quasi-deterministic structures

in the voice signal. This process is very robust against noise contamination, as shown

by Fig. 3.7: We consider a short word, lasting 0.5 s (≈ 10000 points), noisefree, and

we report with filled circles the number of neighbours along the time series. The 3

numbers in the legend of the figure have the following meaning: Embedding dimen-



3.3. STRUCTURE AND REDUNDANCY IN HUMAN VOICE 59

-2000

-1000

0

1000

2000

0 10000 20000 30000 40000

i-j

time index i

Figure 3.5: Main panel: Section of a recurrence plot: In the plane of indices i, j a dot is

printed, whenever the delay vectors fulfill |si−sj | < ε. It proves that our delay vectors really

represent meaningful states, where the line structure shows the approximate periodicity

inside the phonemes and the number of intra-phoneme neighbours. There are almost no

dots for |i − j| > 2000, reflecting the lack of inter-phoneme similarities (for this particular

ε). Upper panel: The speech signal underlying the recurrence plot.
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Figure 3.6: Part of the clean (top) and noisy (-4 dB SNR, bottom) signal “buon giorno”.

The difference in wave form of the left and the right part of this signal should be detected

even after noise contamination. As shown in the text, euclidean distances on delay vectors

with high dimensionality help to solve this problem.

sion m, delay τ and neighbourhood size ε. After the contamination with uncorrelated

noise, we note that using the same set of parameters all the neighbourhood relations

are destroyed. The reason, as explained in more details with the help of Fig. 3.14, is

that ε is now too small and due to noise all the neighbourhoods we are considering

are almost uniformly filled by points and therefore no precise identification of the

underlying structure can be performed (filled squares). The solution is simple and

powerful at the same time: We just have to consider a bigger ε (together with a

bigger m for stability reasons) in order to recover all the neighbourhood structures

(crosses in Fig. 3.7). We will address in Sect. 3.5 the trade-off between collecting as

many neighbours as possible and avoiding false ones.

Here, the choice of a suitable norm, sampling rate and time lag is essential. If we

denote the signal values by xi, the additive noise by ηi, then the euclidean distance

between two delay vectors sn and sk reads:

d2
noisy =

m∑

i

(xn+i + ηn+i − xk+i − ηk+i)2

=
m∑

i

(xn+i − xk+i)2 +
m∑

i

(ηn+i − ηk+i)2 (3.10)
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Figure 3.7: Number of neighbours as a function of the time index of a short word. Filled

circles indicate the case without noise using m = 25, τ = 5 and ε = 0.1. In order to afford

the contamination with noise, one has to consider a bigger ε (and also a bigger m for stability

reasons), as reported by crosses. Otherwise if we want to use the same set of parameters

as in the noisefree situation we do not recover any structure and therefore we do not get

any significant neighbour, as reported by filled squares. The main message here is that the

noise does not destroy completely the original redundancy and the filtering is then possible.

Of course one has to optimize ε in order to get as many real neighbours and as few false

neighbours as possible.
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+2
m∑

i

(xn+i − xk+i)(ηn+i − ηk+i)

≈ d2
clean + 2mσ2 + 〈xn+i − xk+i〉〈ηn+i − ηk+i〉

= d2
clean + 2mσ2, (3.11)

where σ2 is the variance of the noise. The rightmost term of the third line disappears

due to the fact that the noise differences should have zero mean, and the splitting

is due to the uncorrelatedness of signal and noise. The approximation becomes the

better the larger the number of summands m, i.e. the higher the dimension of the

delay vector. For given size of the embedding window (e.g. 5 ms) this requires a

high sampling rate and a time lag of τ = 1. For the 22.050kHz data this means that

a delay vector of dimension m = 100 with τ = 1 is reasonable. In summary, the

squares of euclidean distances between high dimensional delay vectors suffer from

a simple off-set by the variance of the (local) noise level. Numerically, euclidean

distances are more costly than L∞-distances (max-norm), and a lag of τ = 1 is more

costly than τ ≈ 5, which, in our example, would be completely sufficient for clean

data.

Fig. 3.8 shows how far these considerations are valid in practice. We computed

the distances between a large number of pairs of delay vectors from the time series

of “buon giorno” on embedding windows of length 100, for 4 different situations:

Euclidean norm for τ = 1, m = 100 (upper left panel), τ = 5, m = 20 (upper

right panel), max-norm for τ = 1, m = 100 (lower left panel), and τ = 5, m = 20

(lower right panel). Plotted are the distances between every given pair of delay

vectors, dij , computed on the clean data, versus the distances computed on the data

after numerically adding white noise. The upper left panel (euclidean with maximal

dimensionality) is close to ideal: The distances between noisy vectors and clean

vectors fulfill in reasonable approximation the law:

d2
noisy ≈ d2

clean + const. (3.12)

The deviation from this law is essentially due to the fact that on a “sample” of

m = 100 noise values,
∑m

i=1(ηn+i − ηk+i)2 6= 2mσ2 and
∑m

i=1 ηn+i − ηk+i 6= 0, but

that there are fluctuations of the order of
√

m.

Although the algorithm is usually implemented in a way such that the neigh-

bourhood size ε is increased until the desired number of neighbours is found, the
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Figure 3.8: Distances between pairs of delay vectors of clean data versus the distances of the

corresponding pairs after numerical contamination with additive white noise, for different

norms and embedding spaces (for more details see text). The upper left panel (euclidean

norm, m = 100, τ = 1) is optimal. Noise level: 80% (SNR: 2dB).

knowledge of the noise level can be used as an initial value ε0 to start with, and

thus speed up the neighbour search. The (instantaneous) noise level can be easily

estimated, if the noise is uncorrelated (otherwise it will be underestimated) by the

following procedure: We know that the highly sampled clean voice signal is smooth.

Thus, the distance between adjacent delay vectors of the clean signal, |sn − sn±1|,
is close to zero. Together with Eq.(3.10) and Eq.(3.12), respectively, it follows

that the distance between adjacent noisy delay vectors is in good approximation

|sn − sn±1| ≈
√

2mσ.

Even for 100% of noise one can thus reasonably recover the neighbourhood rela-

tions of the clean signal. Typically, we choose ε such that about 20 neighbours are

found. Based on these neighbourhoods, the noise reduction algorithm works with a

projection onto the dominant ≈5 dimensions which can be identified with at least as

many neighbours. This rather large subspace leaves enough degrees of freedom also

for the transition regions between phonemes. Every phoneme populates a different

region of the reconstructed space and there is almost no intersection since we are

considering an appropriate over-embedding that is able to perform and automatic

and implicit segmentation of the time series into constituent phonemes.
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All values reported here cannot be given in a systematic way since everything

depends slightly on the particular voice, the noise, the sampling rate and even the

words. In Sec. 3.5 we will develop more powerful tools for their instantaneous adap-

tation [83]. Although the number of neighbours used is undesirably small, it cannot

easily be increased. A single phoneme does not offer more than ≈20 almost rep-

etitions of a given wave. Searching for neighbours in other words (presumably in

identical phonemes) introduces large numerical effort, requires longer sentences and,

most importantly, does not improve the situation much, since changed amplitudes

and dilatation or compression of identical phonemes in different words destroy the

closeness in embedding space. Thus all results presented here were gained from

intra-phoneme neighbours, and the algorithm thus is semi-local in time: Only a

time window of about 200ms (the maximal duration of a phoneme) has to be stored

and is used as a data base for the construction of the neighbourhoods. In order to

find maximal redundancy for the identification of the signal, the algorithm works in

a non-causal way on the time span of a phoneme, i.e. a given time series element

will be denoised only after already the future of about 200ms is recorded. Thus even

if its processing speed is real-time, the output will be delayed with respect to the

input by these 200ms.

3.4 Performance of the noise reduction of human voice

A first demonstration of the method is done on a stationary phoneme, a recording

lasting 3 seconds of the vowel “a” (pronounced as in “far”). It is contaminated

numerically by 30 percent white noise, and afterwards filtered by the noise reduction

algorithm. The power spectrum before adding noise, after adding noise, and after

noise reduction is shown in Fig. 3.9. Obviously, we were able to restore significant

parts of the spectrum which are well below the noise level and thus invisible for any

global band-pass filter.

The voice signals studied in the following are taken from a language course on

CD ROM with a sampling rate of 22.050 kHz, sampled with 16 bit. The data were

converted to real numbers and numerically contaminated by different types and

amplitudes of noise and subjected to the noise reduction algorithm. Since we start



3.4. PERFORMANCE OF THE NOISE REDUCTION OF HUMAN VOICE 65

1e-05

0.0001

0.001

0.01

0.1

1

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

po
w

er

frequency [1/sampling interval]

original data

1e-05

0.0001

0.001

0.01

0.1

1

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

po
w

er

frequency [1/sampling interval]

noisy data

1e-05

0.0001

0.001

0.01

0.1

1

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

po
w

er

frequency [1/sampling interval]

data after noise reduction

Figure 3.9: The power spectrum of 3 seconds of the vowel “a”: Original recording, after

adding noise numerically, and after non-linear noise reduction. Most of the structure of the

original spectrum below the noise level could be reconstructed.
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Figure 3.10: The gain of the local projective noise reduction scheme as a function of the

noise level. The breakdown around SNR of 0 is due to the switching from the local linear to

the locally constant model in our algorithm. Comparison with performance of the Ephraim-

Malah adaptive filter [23].

from very clean signals, we can quantify the gain in dB, given by

gain = 10 log10

(∑
(yk − sk)2∑
(ŷk − sk)2

)
, (3.13)

where sk is the clean, yk the noisy and ŷk the signal after noise reduction, as a

measure of performance. Additionally, we reconvert noisy and denoised signals into

the wav-audio format and inspect the results accoustically.

The projection is done onto subspaces of dimension in the range from 3 to 7.

As will be discussed by the help of Fig. 3.10, noise-free signals are only marginally

distorted by our non-linear filtering technique. The fact that the voice signal passes

through this “dimension reduction filter” almost unperturbed confirms again that

the wave dynamics inside every phoneme represents only few degrees of freedom,

once it has been identified in the high-dimensional space. This result is in agreement

with the study presented in [40] and explains also why as few as 20 neighbouring

points are sufficient for the algorithm: Only the subspace onto which the projection

is done has to be identified, all the remaining directions are irrelevant. Thus only

the large singular values and the corresponding singular vectors of the covariance

matrix Cij in Eq.(3.6) are needed.

The high dimension of the embedding space helps to identify neighbours also for
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Figure 3.11: The clean signal of “Scusi, lei è Alessandra Janssen?”, the white noise with

time dependent amplitude added to the signal, and the remaining distortion after noise

reduction (same scale, different offsets). The amplitude of the remaining noise varies sys-

tematically, i.e. the success of the noise reduction depends partly on the signal.

rather high noise levels: Usually, neighbourhoods merge if all data are contaminated

by large amounts of noise. Here, due to the fact that the signal is rather sparsely

filling the 20 to 30-dimensional space, this is not a problem, and we find reasonable

results (Fig. 3.10). For noise levels bigger than ≈ 150% the computation of the

singular values of the covariance matrix gives unreliable results and the filtering

is instead performed via an averaging over the identified neighbours rather than a

projection into the approximated sub-manifold. However, this may be seen as a

degenerate projection onto a zero dimensional space and is fully contained in the

general algorithm.

An ideal filter would leave the unperturbed signal unaffected. Due to the viola-

tion of the basic assumptions about stationarity and determinism, this is not true

for the voice signal, but only below 5% of noise these distortions become larger than

the gain due to noise elimination. The results of our algorithm have been opposed to

the performance of a particular spectral subtraction scheme which as to some extent

become a benchmark filter, the Ephraim and Malah filter [23]. The Ephraim-Malah

adaptive filter is particularly powerful when applied to speech signals, which are

disturbed by additive noise with slowly varying spectral characteristics. Spectral

subtraction is performed by subtracting a mean magnitude of the noise spectrum
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from the disturbed spectrum to obtain an estimation of the magnitude of the noise-

free spectrum.

The method may be interpreted as spectral equalization of the noisy-speech sig-

nal by applying spectral weights to the transformed signal; the spectral analysis

(synthesis) is usually performed by a discrete Fourier (inverse) transformation with

overlap-add techniques and by analysis and synthesis filterbanks with non-uniform

frequency bands. The main difficulty involves the estimation of the mean magnitude

of the noise spectrum; there exist methods based on spectral-minima tracking of the

smoothed magnitude of the noisy-signal spectrum. The spectral minima are deter-

mined in a time window, the length of which is chosen such that in most practical

cases a speech pause is present within the actual window, and an estimation within

a sliding window is performed. Since we know the noise spectrum beforehand, we

can operate the algorithm under optimal conditions, and the comparison of Fig. 3.10

is absolutely fair.

A detailed description of the spectral subtraction rule due to Ephraim and Malah

is provided by [13]. Let us consider a signal with additive noise:

x(k) = s(k) + n(k), (3.14)

being x(k) the noisy signal, s(k) the speech signal and n(k) the noise. Let us define

X(ejΩ) and N(ejΩ) the Fourier transformations of x(k) and n(k). The estimation

of the spectrum of the filtered time series is obtained in the following way:

Ŝ(ejΩ) =
(
|X(ejΩ)| − |N(ejΩ)|

)
ejΦx(Ω), (3.15)

where Φx(Ω) is the phase of the disturbed speech signal. |N(ejΩ)| is an estimated

mean spectral magnitude of the noise from the spectral magnitude of the signal

containing speech plus noise. One can show that Eq.(3.15) may be interpreted as

spectral weighting of the noisy signal:

Ŝ(ejΩ) = G(ejΩ)X(ejΩ). (3.16)

The core of the Ephraim and Malah filter is really the estimation of the spectral

weights. It is performed after having divided the time series in blocks of a proper

length. First the a posteriori signal-to-noise ratio:

Rpost,b(ejΩ) =
|Xb(ejΩ)|2
|Nb(ejΩ)|2 − 1 (3.17)
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and the a priori signal-to-noise ratio:

Rprio,b(ejΩ) = (1−Θ)max(Rpost,b(ejΩ), 0) + Θ
|Gb−1(ejΩ)Xb(ejΩ)|2

|Nb(ejΩ)|2 (3.18)

are defined. Gb−1 denotes the spectral weightings of the previous signal block, being

b the counting index of the block. Θ is a parameter balancing the a posteriori signal-

to-noise ratio with an estimate of the a priori signal-to-noise ratio. Its optimization

is discussed in [13]. If we define the function:

M [u] = e−
u
2

[
(1 + u)I0(

u

2
) + uI1(

u

2
)
]
, (3.19)

with I0 and I1 Bessel functions of the first and second order, then the spectral

weights for the block b are:

Gb(ejΩ) =
√

π

2

√√√√
(

1
1 + Rpost,b(ejΩ)

) (
Rprio,b(ejΩ)

1 + Rprio,b(ejΩ)

)

×M

[
(1 + Rpost,b(ejΩ))

(
Rprio,b(ejΩ)

1 + Rprio,b(ejΩ)

)]
. (3.20)

More details and suggestions about the optimal tuning of the Ephraim and Malah

filter can be found in [13, 23]. As already said, the comparison between the local

projective noise reduction scheme and the Ephraim and Malah filter is really fair,

since we know the noise spectrum and therefore Eq.(3.18) gives the real a priori

signal-to-noise ratio instead of just an estimate. In other words, we are using the

Ephraim and Malah filter in its most favourable way.

Fig. 3.11 shows the result of our noise reduction scheme on white noise with

variable amplitude, where the numerically generated initial noise and the remaining

distortion after noise reduction are plotted together with the clean signal. As long

as the variation takes place on time scales which are of the order of or larger than

the duration of typical phonemes, the filter has no problem. However, this figure

clearly shows that lack of redundancy or deterministic structure in the signal leads

to reduced performance of the algorithm: Those instances where the remaining

distortion is particularly high correspond to fricatives in the speech signal. The

auditory impression of the denoised signal is much more homogeneus than the visual

one, since exactly these parts where noise reduction is less successful are noise-

like parts of articulated voice signals. Without any changes of the algorithm, also

non-random noises such as the 50Hz component of electronic equipment have been

succesfully suppressed.
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Figure 3.12: How the local projective noise reduction scheme works. Schematic represen-

tation. The original manifold (curved line) has been destroyed by the contamination with

noise, getting the resulting cloud of points. In order to remove noise from the point at the

base of the arrow, one has to collect neighbours of this point in a proper sub-region of the

embedding space (square box), then identify a local approximation of the original attractor

(straight line) and finally perform the projection onto this manifold (arrow).

3.5 Optimizing of Recurrence Plots for Noise Reduction

When looking for neighbours, we have to restrict our search to a subset of the

embedding space. The size of it plays a crucial role. In this section we want to

address an optimization problem, namely we want to provide a mechanism that is

able to automatically identify the best neighbourhood size, one of the most important

parameter of the filter. The two limit cases are trivial: (i) A very small value

will provide no neighbours but the point itself and therefore the filter will produce

no effect to the time series; (ii) A very big value will identify all the points as

possible neighbours and the algorithm will perform just a global averaging, destroing

completely the original voice.

From a computational point of view, the smaller the size of the neighbourhood

is, the faster runs the program. But there is a lower limit for the size of the subspace,

given by the noise level. As depicted in Fig. 3.12, the diameter of the neighbour-

hood has to be bigger of the size of the cloud of points contaminated by the noise.

The point at the base of the arrow represents the actual point to be filtered. The

square is the subset of the embedding space where we look for neighbours. The bold

curve represents the original attractor and the cloud of points is the effect of the

contamination with noise. The straight line is what the algorithm can identify as
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Figure 3.13: Effect of a too big neighbourhood. The algorithm is not able to correctly

identify the manifold because two different branches of the original attractor are erroneously

considered as neighbours. Therefore the quality of the filtering can only be bad because the

local approximation (dashed line) can be considered as a low pass filtered version of the

attractor. In this case one has collected too many neighbours, including false ones.
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Figure 3.14: Effect of a too small neighbourhood. The algorithm is not able to correctly

identify the original manifold because the distribution of points inside the considered sub-

space is almost uniform. Therefore the quality of the filtering is bad, again comparable to

a low-pass filtering.

the original manifold starting from the knowledge of this cloud. The arrow indicates

the effect of the filter, namely the projection of the actual point onto the local linear

reconstruction of the attractor.

The effect of a too big neighbourhood is reported in Fig. 3.13, where the iden-

tification of the original manifold cannot be correctly performed and therefore the

projection of the actual point does not act along the proper direction. This happens

because of the minimization procedure: We have to find a local linear approximation

of the attractor which minimizes the sum of distances from the noisy points. With

such a neighbourhood we consider too many points, included false ones (because

belonging to another branch of the attractor) and the resulting manifold is far away

from the correct one. Also in the case depicted in Fig. 3.14 a clear identification of

the original manifold is not possible. Here the solution of the problem is not unique,

due to the fact that the size of the neighbourhood is too small and the points are

distributed almost uniformly.

It is thus evident that one needs a mechanism to decide which is the best size of

the neighbourhood to be taken into consideration. As a further example let us have

a look at Fig. 3.15: Here we consider a whistle, one of the simplest acoustic signals

that an human being can generate. The signal is almost sinusoidal and therefore,
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Figure 3.15: Effect of a too small neighbourhood. Left panel: Attractor of a clean whistle.

Right panel: Attractor of the same whistle after the contamination with a 30% additive

noise and the filtering with a wrong set of parameters, namely with a too small value of

the neighbourhood size. The distribution of neighbours is almost uniform and therefore a

clear identification of the local projection to be performed is not possible. The result is the

creation of completely artificial structures due to averaging effects and low-pass filtering.

with the proper parameters, the attractor looks like a circle. The left panel of

Fig. 3.15 refers to the reconstructed embedding space related to this signal. We

proceed now adding a 30% noise to the whistle and filtering the new signal with a

wrong set of parameters, namely with a too small value of the neighbourhood size.

The right panel of Fig. 3.15 shows how the reconstructed attractor looks like. We

do not report the picture of the attractor after the correct filtering, since within the

resolution of this paper it would be almost indistinguishable from the original. The

reason of the strange shape of the right panel is the following: Once considered the

embedding space for the noisy signal, we look for neighbours in such small regions

that the distributions of points within them is almost uniform; therefore we are not

able to identify the original manifold and we perform local projections onto wrong

(because essentially random) directions.

In order to develop the optimized scheme, we proceed by adding noise to a

phoneme, as illustrated in Fig. 3.16. Starting from the upper panel we have the

original time series plus 0%, 30% and 50% of noise. The voice was recorded with

a 20 kHz sampling rate, so that the 2000 points correspond to 100 ms. Starting

from the recurrence plot of the noise-free time series (reported in the middle part of

Fig. 3.17), let us define the following quantities:
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Figure 3.16: Example of a single phoneme (2000 points ≈ 100 ms). Uppen panel: Original

time series, without noise. Middle panel: With 30% noise. Lower panel: With 50% noise.

Np(ε): We compute the histogram along the main diagonal direction

hi =
∑

k−j=i

rjk, (3.21)

where rjk is a point in the recurrence plot and hi the histogram we get after

this computation. We want to count the number of peaks and to be sure that

they are sharp. For this reason we compute the average height in the histogram

and we define a threshold in the histogram (dashed line in the lower panel of

Fig. 3.17) as the average value plus three times the standard deviation. The

number of peaks is then given by the number of non-consecutive hi such that

hi > threshold.

N⊥(ε): We compute the histogram along the other diagonal, perpendicular to the

previous one. Averaging over all the N points we get N⊥(ε). This quantity

can be very easily computed also through
∑

i,j rij/N and in fact it is given by

the correlation sum (Eq.(3.24)) times N . Just a technical note concerning the

fact that in order to compute N⊥(ε) we use a slightly different RP, namely a

RP where the main diagonal is not present. After having introduced β(ε), the

reason of such a choice will become clear.
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Figure 3.17: Estimation of the parameters entering the β index. Upper panel: Original

time series. Middle panel: Recurrence plot with parameters m=25, d=4 and r=0.14 (optimal

in this case). Upper part of the lower panel: Distribution of neighbours along the time series

and average of them. Lower part of the lower panel: Histogram along the main diagonal of

the recurrence plot. To avoid edge effects we have considered only the central part of the

time series.
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Figure 3.18: Identification of the best ε for the three cases of Fig. 3.16. It is very intuitive

that increasing the noise level one has to consider bigger and bigger neighbourhoods.

They are both depicted in the bottom-right panel of Fig. 3.17: Np(ε) is the

number of peaks above the threshold (dashed line); N⊥(ε) is the horizontal line in

the upper sub-panel. Of course these two quantities depend on ε: The best value

of it is the one that maximizes the number of peaks and produces a value of N⊥(ε)

as close as possible to Np(ε). We want to maximize the length of the lines without

making them fat, in order to avoid phase identification problems.

So the task is finding the value of ε that minimizes:

β(ε) =
|N⊥(ε)−Np(ε)|

N⊥(ε)
. (3.22)

The purpose of N⊥(ε) at the denominator of Eq.(3.22) is a normalization one and

its introduction is reflected in a different slope of the function β(ε). The automatic

identification of the best ε proceeds in the following way: We plot the index β(ε)

for different values of ε and we select the ε corresponding to the minimum β(ε). In

Fig. 3.18 we can see the result of such a computation for the three different noise

levels depicted in Fig. 3.16, namely 0%, 30% and 50%. Not surprisingly, a bigger

noise requires a bigger neighbourhood. For small values of ε we have almost no

point outside the main diagonal; therefore N⊥(ε) is close to zero (as already said,

for the computation of N⊥(ε) we use a RP without the main diagonal), but this is
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Figure 3.19: Comparison of the optimized local projective noise reduction scheme with the

Ephraim and Malah filter, state of the art.

not the case for Np(ε), since the few points are considered as isolated peaks: Hence

β(ε) is very big. Big values of ε are such that the recurrence plot is almost full of

points: N⊥(ε) is close to N (the length of the time series under observation) and

there is no isolated peak because the threshold becomes bigger than N and no line,

obviously, can be longer than N . Consequently β(ε) ≈ 1. The optimal situation

is when N⊥(ε) ≈ Np(ε), namely the lines are neither fragmented nor fat: All the

recurrence points belong to line structures and the number of them is maximized.

Being applied to segments of the time series, this gives a local estimator of

the optimal neighbourood diameters and hence the time dependent noise amplitude

can be optimally identified. In Fig. 3.19 we show the performance of the filter

compared to the Ephraim and Malah noise reduction scheme. Also the improvement

of this optimized ε (compared to the case where ε is kept constant) is visible. As a

measure of performance, we use again the gain in dB, given by Eq.(3.13). In this

example the recorded voice is very short (≈ 1 s) and the noise almost stationary; as

a consequence the improvement is not so surprising, provided one chooses the best

ε for the standard algorithm too. The difference becomes more evident if one wants

to filter a full sentence, where the noise may affect different words in a very different

fashion. Furthermore, the attractor may have branches with different curvature and
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where there is the risk of mixing distinct part of it, there the ε should be smaller

than where the attractor is completely unfolded and regular. It is therefore clear

that the use of a constant ε cannot be optimal even if the noise level is constant

because of the different instantaneous dynamics associated with every phoneme. The

new implemented tool contributes efficiently to the goal of getting the best possible

quality whithin the shortest possible computational time.

3.6 Analysis of Vocal Disorders in a Feature Space

Leon Glass and Michael Mackey [29] at McGill University in Montreal were among

the first to explore the possibility that many medical problems may have their roots

in some underlying dynamical effect, the so-calles dynamical diseases. Mathematical

models suggest that, when physiological parameters (such as CO2 transport rates

in the blood stream) are changed, processes that normally are rhythmical may be

replaced by erratic or chaotic fluctuations. For instance, in some blood diseases the

numbers of blood cells show large oscillations that are not normally present. Glass

and Mackey demonstrated that simple, but realistic, mathematical models [29] for

controlling blood cell production display similar periodic and chaotic oscillations as

a particular parameter is varied. The changes in the parameters have themselves a

physiological interpretation.

Neurophysiology also offers a wide range of phenomena that are candidates for

dynamical diseases, like abnormal oscillations and complex rhythms posing clinical

problems. Sometimes, there is a marked oscillation in a neurological control system

that does not normally have a rhythm. Examples are ankle tremor in patients with

corticospinal tract disease, various movement disorders like Parkinson’s tremors and

abnormal paroxysmal oscillations in the discharge of neurons that occur in many

seizures. Alternatively, there can be a qualitative change in the oscillations within

an already rhytmic process, as in abnormality in walking, altered sleep-wake cycles,

or rapidly cycling manic depression. Yet again, clinical events may recur in seemingly

random fashion, as in seizures in adult epileptics. Neural processes are however so

complex that it is not easy to see how models for these dynamical diseases can be

developed, tested and fully understood.

Here we want to restrict the analysis of dynamical diseases to vocal disorders

exhibited by humans. The normal phonation of the voicing source is basically char-
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acterized by almost periodic vibrations, but it can also produce a great variety of

complex signals. This is due to the fact that many sources of non-linearity are in-

volved in the air-flow production and in the laryngeal vibration processes, like the

pressure-flow relation in the glottis, the stress-strain curves of vocal fold tissues and

the vocal fold collisions. These features have been modelled successfully in the past

years by an asymmetric two-mass model of the vocal folds [44]. Standard methods of

voice analysis, such as the estimation of jitter and shimmer (to be defined later) and

the harmonics-to-noise ratio, are valuable for the characterization of regular phona-

tion. However, in the case of voice disorders abrupt changes to irregular regimes

occur and these measurements are of limited relevance [48].

The transitions to qualitatively new oscillatory behaviour indicate the suitability

of the methods from non-linear dynamics; e.g. in [40] it is shown that a sufficiently

large tension imbalance of the left and right vocal fold induces bifurcations to chaos.

Asymmetries due to paralysis, polyps, papilloma, cancer etc. produce the same ef-

fects and simulations of coupled oscillators [95] can provide insight into the sources

of such vocal instabilities and are, therefore, of potential use for diagnosis and treat-

ment of voice disorders. Furthermore, the reconstruction of attractors and the es-

timation of their properties indicate low dimensionality in the systems generating

the voice signals. Herzel et al. [39] have shown that indications of secondary Hopf

bifurcations can be found in pathological voices, as well as sudden jump from one

limit cycle to another one with different period and amplitude. Different attractors

may coexist in non-linear systems and, therefore, even extremely tiny changes of

parameters, like muscle tension, may lead to abrupt jumps to other regimes. The

occurrence of such a situation should be reflected in quantities like the entropy and

the fractal dimension of the (global) attractor.

In the two-mass model of the vocal folds, each fold is approximated by two

coupled oscillators of masses m1α and m2α respectively, arranged one upon the

other. Springs k1α, k2α and kcα and dampers r1α and r2α represent the viscoelastic

properties of vocal-fold tissue. The elongations x1α and x2α are the time-varying

variables of the model (i = 1, 2):

miαẍiα + riαẋiα + kiαxiα + Θ(−ai)ciα(ai/2l) + kcα(xiα − xjα) = Fi. (3.23)

Θ(x) is such that Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0. The forces Fi describe the

action of the pressure in the glottis, whose length is indicated with l, the parameters
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ai indicate the rest areas and c1α are additional spring constants during collision.

With this model one is able to analyze bifurcations which are closely related to

observations in voice pathology. The origin of the instabilities can be traced back

to the desynchronization of two oscillators, the left and right fold. For sufficiently

large effects of non-linearities related to large subglottal pressure and overcritical

detuning of the eigenfrequencies, complex oscillation patterns are found.

Qualitatively, the origin of bifurcations and low-dimensional attractors can be

understood as follows: Normal phonation corresponds to an essentially synchronized

motion of all vibratory modes. A change of parameters such as muscle tension or

localised vocal fold lesions may lead to a desynchronization of certain modes resulting

in bifurcations and chaos. The following modes are of particular relevance: Motion

of the left and right vocal fold, horizontal and vertical modes, interaction of the

ventricular and vocal folds, interaction of vocal fold vibrations with sub- and supra-

glottal acoustic resonances, and vortices generated at the glottis. Although normal

phonation and voice disorders can be distinguished qualitatively by human very

easily, a quantification scheme of the disease is highly desirable. This is motivated by

clinical interests, which lie in objectively evaluating the effort made by cordectomised

patients during an utterance, as it could be indicative of patient status, also as far

as post-operatoty functional recovery is concerned [47, 68].

Before going into the details of geometric signal separation and feature space and

therefore of the data classification performed on the voice, it is worth describing the

general phenomenon of irregularity in the human voice as it is known in medicin.

The following is just a descriptive terminology, without any precise mathematical

formulation. In particular, no numbers or physical units of measurement have been

attached to them, although in some cases they can be rated psychophysically.

• A perturbation is usually thought to be a minor disturbance, or a temporary

change, from an expected behaviour. Perturbations are usually such that they

do not alter the qualitative appearance of a visual or temporal pattern, at

least not indefinitely. They are small irregularities that are for the most part

overlooked. An expected circular orbit, which assumes a slightly elliptical

shape, is said to be perturbed [92].

• A fluctuation suggests a more severe deviation from a pattern. It reflects

an inherent instability in the system. Whereas a perturbed system usually
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returns to normal since it is attracted to a stable state, a fluctuating system

is somewhat out of control and cannot find a stable state. A vocal tremor

or vibrato may be described as a fluctuation in fundamental frequency and

amplitude; it is a pattern itself, rather than a small deviation from a pattern.

• Variability is the ability of someone or something to vary, intentionally or

not. In other words, it is the amount of variation as determined by a statis-

tical measure. The concept of variability is strictly related to the concept of

reproducibility and therefore of stationarity, since it may cause the final result

to be far from what expected.

• Jitter and shimmer refer to a short-term (cycle-to-cycle) perturbation in

the fundamental frequency and amplitude of the voice, respectively. Here the

problem of a precise definition arises, since there are many ways of quantifying

a deviation from an expected pattern or trend. Unfortunately a solution of

this problem has not yet been found, but a shimmering voice is quite easily

recognized, since it is percived as a crackling or buzzing sound.

• Tremor is a low-frequency fluctuation in amplitude and/or frequency. Its

origin is usually neurologic. Physiologic tremors in the body have fluctuation

rates in the 0 to 15 Hz range, but not all are perceived the same way auditorily

when they are part of the vocal signal. This term is also used by the recording

industry to describe variability in the speed of the tape drive of an audio

recorder. Anyway, without a small degree of tremor, steady vowel production

has a buzzy quality.

• Flutter describes the variability associated with tape contact on the recording

head. It has been used to describe neurologic fluctuations in the 9 to 15 Hz

range. It appears to be associated with rapid onset and offset of phonation,

reflecting the natural oscillating frequency of the control system in phonation.

There is something about a low frequency fluctuation in the voice that makes

it warm and acceptable.

• A creaky voice sounds like a creaking door, like two hard surfaces rubbing

against each other. Acoustically a complex pattern of subharmonics and mod-

ulations is observed that reflect a complexity of modes of vibration of the vocal

folds.
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• Biphonia is a phonation with two independent pitches. There are essentially

two non-commensurate fundamental frequencies, which can appear as non-

parallel harmonic lines in a spectrogram as either or both pitches change. The

lines may be parallel but not rationally dependent.

• Roughness is a kind of pathologic voice, which refers to an uneven and bumpy

quality. It results from irregularity in the energy contained in a critical band

of the auditory system. Periodic sounds like a vocal fry can have roughness,

but more often there is a lack of periodicity. Acoustically the waveform is

often aperiodic with the modes of vibration lacking synchrony, but voices with

subharmonics can also be perceived as rough.

• Breathiness is a vocal quality that contains the sound of breathing during

phonation, with particular reference to expiration. Acoustically there is a

significant component of noise in the signal due to glottal air turbulence. A

breathy voice has most of its energy in the fundamental. In hyperfunctional

breathiness, air leakage may occur in various places along the glottis, whereas

in normal voice air leakage is usually at the vocal processes.

• Hoarseness is a vocal pathology that combines the effect of roughness and

breathiness together. It is not clearly distinguishable from the previous two

cases, since the percentage of the two effects is variable.

After this small and incomplete list of some common irregularities in the human

voice, it is not hasty to assert that our voice reveals a lot of information about us, who

we are and how we feel, giving considerable insight into the structure and function

of certain parts of the body. This is the reason why it is worth now addressing the

problem of the classification of vocal disorders for clinical applications, introducing

a proper feature space. The idea guiding us in this purpose is the following [98]:

• Extract a significant quantity from the whole time series, somehow compressing

a very long vector into a scalar.

• Repeat it for N different quantities measuring different characteristics: From

a time series we get therefore N scalars = 1 feature (small) vector.

• Define a space having these quantities as components. In such a space a feature

vector is represented as a point.
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• Repeat it for M different time series (M time series → M points ∈ RN ).

This concept has been used for several purposes, mainly in order to identify the

dynamical state of a complex system, where for practical reasons the system itself

is connected to a simple measurement device which records a scalar time series.

Sufficiently long subsections of this series are transformed into feature vectors v

in a feature space V . The entries of v are chosen to be quantities which contain

the compressed information of the signal relevant for the task to be performed and

which can be estimated directly from the time series. Neighbourhood relations in

this space, based on the computation of distances between feature vectors, allow

for various classification and diagnosis tasks. It can be necessary to introduce a

local metric, since the variability of quantities may range over very different scales.

During a training period pre-classified (e.g. by human experts) data sets are collected

and each one is converted into a feature vector. This set of vectors is divided into

clusters, where each cluster represents a dynamical state of the system. In the data

classification period feature vectors are calculated and compared to the clusters in

V . The distance of each test vector to the closest cluster is thresholded to yield a

distinction between classes.

The basic idea of using a feature space for our purpose is therefore to eliminate

the short-time variability of the time series, extracting characteristic features. As a

first step for the classification of vocal disorders, one has to select suitable entries of

the feature vectors v. These have to contain extremely condensed information from

the time series, reflecting somehow a pseudo-state of the dynamical system that has

produced the sentence. In other words, healthy patients and sick ones should be

associated to feature vectors that populate different regions of the feature space.

We have already said about the local low dimensionality of the voice and the

bifurcation scenario leading to chaos as a consequence of an asymmetry in the two

mass model of vocal folds. The fractal dimension of the attractor is then a good

entry of the feature space, since healthy people should produce smaller dimension-

values than patients with some kind of disease. There are several ways to quantify

the self-similarity of a geometrical object by a dimension. From a computational

point of view it is convenient to proceed in the way illustrated in [46]. Let us define

the correlation sum for a collection of points xn in some vector space to be the

fraction of all possible pairs of points which are closer than a given distance ε in a
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particular norm. The basic formula is:

C(ε) =
2

N(N − 1)

N∑

i=1

N∑

j=i+1

Θ(ε− ||xi − xj ||), (3.24)

where Θ is the Heaviside step function. The sum just counts the pairs (xi, xj) whose

distance is smaller than ε. In the limit of an infinite amount of data (N →∞) and

for small ε, we expect C to scale like a power law, and we can define the correlation

dimension D by:

D = lim
ε→0

lim
N→∞

∂ ln C(ε,N)
∂ ln ε

. (3.25)

Since in the latter there are two limits involved, and both limits are not com-

putable in a closed form, one has to look very carefully to the results before claiming

some numbers as the value of the correlation dimension. It should be clear that one

needs a lot of points in order to estimate C(ε) over a large enough range of length

scales. A few hundred are definitely not enough to yield a statistically significant

result at the small length scales, where also the noise starts to play a noteworthy

role. With our time series a clear identification of a dimension was not always pos-

sible; this is essentially the reason why we will introduce a pseudo-dimension or

dimension-like quantity2. It is important to remember a result reported in [46]. In

theory, the maximum dimension DM that can be calculated for a data file of length

N is:

DM ≈ 2 log10(N). (3.26)

Therefore, approximately eight dimensions is the maximum which can be calculated

from a 22 KHz sampled sentence lasting one second.

One other candidate for the feature space is represented by the entropy, a fun-

damental concept in statistical mechanics and thermodynamics. Entropy describes

the amount of disorder in the system, but one can generalise this concept to char-

acterise the amount of information stored in more general probability distributions.

Let us introduce a partition Pε on the dynamical range of the observable, and the

joint probability pi1,i2,...,im that at an arbitrary time n the observable falls into the

interval Ii1 , at time (n + 1) it falls into interval Ii2 and so on. Then one defines

2In order to be correctly defined, the concept of dimension requires the stationarity of the data.

It is of course not the case for a human voice time series.
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block entropies of block size m and partition radius ε the quantity:

Hq(m, ε) =
1

1− q
ln

∑

i1,i2,...,im

pq
i1,i2,...,im

. (3.27)

The order-q entropies are then:

hq = sup
Pε

lim
m→∞

1
m

Hq(m, ε) = sup
Pε

lim
m→∞(Hq(m + 1, ε)−Hq(m, ε)). (3.28)

In the strict sense only h1 is called the Kolmogorov-Sinai entropy [50, 100], but in

fact all order-q entropies computed on the joint probabilities are entropies in the

spirit of Kolmogorov and Sinai, who were the first to consider correlations in time in

information theory. Due to the numerical problems encountered in the estimation

of the entropy from real data, namely the finite length of the time series and the

presence of noise, we will use a pseudo-entropy3 in the following. The full feature

vector contains the following quantities:

• Spectral Factor: It is the averaged ratio between the amplitude of frequen-

cies under 1 KHz and frequencies between 4 and 6 KHz; it is motivated by the

effort sick subjects have to face when they want to speak; this induces insta-

bilities such that sick subjects should present a smaller value of this quantity.

• Pseudo-Entropy: The quantity h2, as defined in Eq.(3.28), is averaged for

ε-values of 5% to 10% of the variance of the data for embedding dimensions

ranging between 2 and 8, upper limit suggested from Eq.(3.26). Sick subjects

should present a bigger value than healthy people.

• Pseudo-Correlation Dimension: The quantity D, as defined in Eq.(3.25),

is averaged for ε-value of 5% to 10% of the variance of data for embedding

dimensions ranging between 2 and 8. Sick subjects should present a bigger

value than healthy people.

• First zero-crossing of the Autocorrelation Function: This parameter

is related to the ability of the subject in correctly pronouncing a word. In

particular, dysphonic patients are not able to isolate every vowel, and the re-

sulting time series is more correlated than for healthy subjects. The estimation

method is the same as in [46].
3The concept of entropy requires the stationarity of the data in order to be correctly defined,

similarly to the correlation dimension.
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• First Lyapunov Exponent: This is a convenient indicator of the sensitiv-

ity to small orbit perturbations characteristic of chaotic attractors, as it gives

the average exponential rate of divergence of infinitesimally nearby initial con-

ditions (see Eq.(2.17)). Some sicknesses can induce sudden jumps from the

limit cycle (to which a zero maximum Lyapunov exponent is associated) to

another one with different period and amplitude (but again with zero maxi-

mum Lyapunov exponent); if the jump is due to a bifurcation one can see a

positive value. Estimating this quantity, anyway, one has to be careful because

Lyapunov exponents for speech data are subject of a great debate4.

• Prediction Error: We apply the idea presented in [26], namely we expect

to get a small error when an attractor is present. Normal phonations were

found indeed to lie with a good approximation on a limit cycle, while sick

people commonly produce more disordered time series that are therefore more

difficult to predict.

• Jitter: As in [58], to take into account the short-term (cycle-to-cycle) variation

in the fundamental frequency of the signal. It reflects the internal noises of the

human body. Sources of fundamental frequency micro-perturbation are biome-

chanical, aerodynamic and neurological [108]. Commonly, for healthy voices,

the jitter is lower than 1%, while higher values indicate disphonic phonation.

In order to compute it, the time series is divided into overlapping segments

(usually 2048 points with an overlap of 1024 points, so that the (k + 2)-th

segment starts exactly at the end of segment k) and for each segment the fun-

damental frequency is estimated. The jitter is the standard deviation of the

fundamental frequency distrubution.

• Shimmer: As in [40], to take into account the short-term (cycle-to-cycle)

variation in the amplitude of the signal. The entity of sickness is somehow
4Kumar and Mullik [53] found the maximum exponent to be positive, characteristic of chaos,

for normal vowel and consonant productions. In contrast, Narayanan and Alwan [87] calculated

a maximum exponent of zero, indicating a limit cycle, for normal vowel phonation and a positive

value for voiced and voiceless fricative productions. Herzel [40] found a maximum exponent of zero

for healthy vowel phonation, while a dysphonic vowel sample yielded a positive value. All authors

cautioned, however, that calculation of the exponent is highly sensitive to short data sets and non-

stationarity. In fact, critical sensitivity to noise [99] makes calculation of a Lyapunov exponent

highly suspect and inconclusive for voice data.
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proportional to the shimmer. The computation of the shimmer involves the

same segmentation used for the jitter, but instead of estimating the funda-

mental frequency, here the power carried out by the fundamental frequency is

computed. The shimmer is then estimated as standard deviation of this data

distribution.

• Peak in the Phoneme Transition: The transition between one phoneme

and the following shows a much longer transient for sick people, reflecting the

problems they encounter when having to switch from a dynamical regime to

a different one. Every phoneme contains a pitch that is repeated a number of

time variable between 10 and 20 (see [36, 37]). One has then to identify the

time length of such a pitch and to compare the distance between this pattern

and one of the same length coming from the same phoneme. Moving the second

pattern along the full phoneme, one gets a distribution of distances (with a

zero when the reference pitch is considered and saturation values close to the

end of the actual phoneme); the maximum peak of this distribution before

the saturation, i.e. before the end of the current phoneme, gives what we call

Phoneme Trasition. Altough comparable to the harmonics-to-noise ratio, we

prefer to estimate the Peak in the Phoneme Transition because it looks more

reliable and stable. Sick subjects present bigger values than healthy people.

• Residual Noise: The algorithm presented in [36] is applied to the time se-

ries. Noise can be easily removed if the series contains redundancy and, roughly

speaking, redundancy is a synonym of health5. After applying the noise reduc-

tion algorithm, we look at the variance of the difference between the original

and the processed signal. Healthy subjects are related with small values, sen-

tences spoken by sick people look very noisy and therefore present a bigger

value of the residual noise after the filtering.

This feature vector is redundant, but this is something somehow unavoidable,

since all the entries have to come from the same time series and in this meaning

they must be more or less correlated. Furthermore, working in a larger dimensional
5In [47, 68] the Normalized Noise Energy is introduced to measure the dysphonic component of

the voice spectrum related to the total signal energy. The deviation from periodicity in the sub-

phoneme structures, due to the dysphonia, can be interpreted as noise and then a way to quantify

this additive component is preposed.
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feature space helps to better identify the pathology, since the distances between

points become larger. The Principal Component Analysis method is very helpful in

detecting the trade-off between redundancy and robustness [42, 110].

We now proceed to collect male voice samples from three categories of subjects6:

• People suffering from dysphonia7 (12).

• Healthy people (17).

• People with pathologies under medical treatment8 (4).

All these subjects have been asked to say the italian word aiuole (flower-beds), as it

is made up with the five main Italian vowel sounds: ‘a’, ‘e’, ‘i’, ‘o’, ‘u’. Every time

the word was uttered in isolation. The use of a complete word instead of sustained

vowels is due to the clinical interest in evaluating the effort made by the patient

during the entire vocal emission, also as far as the glide between vowels (‘ai’, ‘iu’,

‘uo’) is concerned. The sentences have been recorded in a .wav mono, 16-bits linear,

22050 Hz format converted into sequences of real numbers9 and given to the feature

vector building algorithm, which always treats them as whole words.

A two-dimensional projection of the feature space is visible in Fig. 3.20, namely

onto the pseudo-correlation dimension and the first zero-crossing of the autocorre-

lation function. A principal component analysis has revealed it to be one of the

clearest bidimensional projections. Others provide slightly better separations, but

since they have combinations of features as axes we prefer to present the results as in

Fig. 3.20. As expected, a normal voice does not exceed the third dimension, while up

to 5 degrees of freedom are necessary to represent a pathologic phonation. A similar

sharp distinction is given by the autocorrelation function: Dysphonic subjects are

not able to well isolate every vowel and the resulting time series is more correlated,

i.e. the first zero-crossing is reached after 1.2 ms (typical values for healthy subjects

range between 0.2 ms and 0.4 ms). The benefit of the feature space analysis with re-

6These voice samples were recorded in a quiet room at the Phoniatric Section of the Otholaryn-

goiatric Institute, Careggi Hospital, Firenze.
7Adult subjects affected by T1A glottis cancer, a tumour confined to the glottis region with

mobility of the vocal cords.
8Subjects operated via endoscopic laser or traditional lancet technique.
9Every voice sample is slightly shorter than 1s; this means that the corresponding time series

contains about 20000 points
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Figure 3.20: Two-dimensional projection of the feature space onto the third and fourth

components of the feature vector.

spect to a simple classification by, say, the first zero of the autocorrelation function,

is also evident in Fig. 3.20: The chance for misclassification is much lower.

Similar results are readable through the entropy as far as sick people produce

more disordered series; the prediction error is smaller for normal phonations because

in the phase space they lie with a good approximation in a limit cycle. Also the fil-

tering of the time series is easier when no disease is there; the absence of bifurcations

facilitates the search of neighbours and improves the quality of the noise reduction

[36]. In order to check the classification ability of the method, we have collected two

more sets of data:

• Healthy people simulating a disease (17).

• Artificial voices (12).

In the first set, people have tried to say aiuole in the strangest possible way

(getting sometimes very impressive records!), simulating hoarseness. They could

listen as many time as they wanted to sentences spoken by diseased speakers and

they were given the instruction to imitate them as close as possible. In the second
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Figure 3.21: Two-dimensional projection of the feature space onto the pseudo-correlation

dimension and the first zero-crossing of the autocorrelation function.

set we have used a speech synthetizer with different languages and several voices

(man, gnat, raspy, woman, coffee drinker, ridiculous, child, big man). Fig. 3.21

shows the results. It is very interesting to note that, although the simulated and the

diseased sentences sound quite similar, they are correctly classified by the algorithm.

In particular nobody was able to exceed the dimension three, since the dysphonia is

something that one cannot directly control: Just think about the two mass model

and the impossibility to directly control and impose the asymmetry. Less amazingly,

artificial voices lie inside the healthy zone, but they also sound somehow less rich

and, so to say, artificial.

Fig. 3.20 shows also the results concerning the set of voices coming from cordec-

tomised patients. They lie between the healthy and the sick region, with small

pseudo-correlation dimension values but large first zero-crossing of the autocorrela-

tion ones. This result, though preliminary, shows that cordectomised subjects still

require more effort in speaking with respect to healthy people, due to the limited

extension of the produced scar fold. More results could be obtained if the long-time

path followed by patients after treatment were available.
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Figure 3.22: Distribution of healthy and sick people according to the healthy index.

In order to quantify the degree of illness, we define the following index. First,

the centre of mass of both the healthy (healthy) and pathologic clusters (sick) is

computed. Then the distances d(new, healthy) and d(new, sick) of the voice sample

under test from healthy and sick respectively are evaluated. Due to the different

range covered by the different components of the feature vector, a weighted distance

is considered, where the weights are the inverse of the standard deviations of the

distribution of the entries. The healthy index H is defined as:

H(new) = 20 log10

d(new, healthy)
d(new, sick)

. (3.29)

A strong negative value ofH indicates a healthy voice, while a big positive one reveals

the presence of some kind of pathology. Of course it is necessary to introduce some

thresholds to get a good classification, according to clinical considerations.

We have computed the healthy index H for the full set of data, getting the

distribution for healthy and sick people shown in Fig. 3.22. The peak on the left

is relative to normal phonation, while the right one regards only disphonic voices.

Cordectomised patients got an index value ranging between -7 and 4, artificially gen-

erated voices between -77 and -45, healthy people simulating a disease are situated
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between -53 and -5. It is again interesting to note how difficult (if not impossible)

it is for healthy people to simulate a real disease, since it operates directly into the

physiologic level.

Notice that the healthy index is based on all the entries of the feature vector.

Reducing the number of features causes a smoothed distribution of voices, with

a worse classification. Since in this application the computation time was not a

problem (the word aiuole is very short and the total number of samples is very

limited), we did not put too much effort in determining up to which extent we can

neglect some features. As already discussed, some of them play a more important

role than some other and this aspect needs to be considered in more details if the

speed of the classification becomes a crucial point.

3.7 Software Corrections of Vocal Disorders

We discuss now how vocal disorders can be post-corrected thanks to the local pro-

jective noise reduction scheme, with a twofold advantage: (i) Physicians can take

advantage when perform surgical interventions from the availability of a tool show-

ing graphically the result of their work; (ii) Researchers can try to build up devices

that can help to improve voice quality avoiding any surgigal treatment. The first

simple difference between dysphonic and healthy voices is shown in Fig. 3.23, where

the time evolution of the amplitude of a microphone-registered sound is represented.

The upper panel could be interpreted as a highly noisy time series, but careful in-

vestigations reveal that this is not the case [2]. Therefore the task is very sensitive

and delicate and of course applying a simple low-pass filter would only introduce

a distortion bigger than the original noise level. Some of the noise-like structures

belong to the time series and one has to be able to correctly identify what is worth

keeping and what has to be eliminated during the correction procedure [82].

We use the local projective noise reduction algorithm and tune the parameters

according to the recipes introduced in Sec. 3.5, the filtered signal sounds more normal

than the original, even if some characteristic aspect of the voice has been lost. The

desired corrections are reported in Fig. 3.24, where the dotted signal is the dysphonic

sample and the bold curve represents the time series after noise reduction (that was

able to perform what one would expect from a filter, namely correctly remove the

noise and keep the signal). In Fig. 3.25 we see a projection of the feature space onto
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Figure 3.23: Typical shapes of the investigated time series. Upper panel: Dysphonic voice.

Lower panel: Healthy sample. The difference looks like noise [2], but removing it completely

one deteriorates the signal quality and the voice sample sounds artificial. Part of the depicted

structures are due to the unicity of the speaker, other comes from the vocal pathology, one

further contribution is just noise.

7570 7610 7650 7690 7730 7770 7810 7850 7890
Time Series Index

0.1

0.6

1.1

A
m

pl
itu

de
 (

ar
bi

tr
ar

y 
un

its
)

Figure 3.24: Dotted line: Original dysphonic time series. Bold line: After noise reduction.

Although it may look like, the task cannot be performed with a low-pass filter, since it would

not be able to keep abrupt peaks that are part of the signal. This task is quite sensitive and

delicate.
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Figure 3.25: Two-dimensional projection of the feature space. Healthy patients are char-

acterized by a pseudo-entropy close to 0.5 and a spectral factor within the 10 to 60 range.

Sick patients populate a region of the feature space where the pseudo-entropy has a value

close to 2 and the spectral factor ranges between -30 and 30. A bold cross refers to a patient

after a surgical operation. The effect of this treatment is a drastic decrease of the pseudo-

entropy and a moderate increase in the value of the spectral factor. Dotted lines link the

points before the filtering to the same samples after the proposed software corrections. The

algorithm produces similar effects of a surgical treatment (indicated with crosses).
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Figure 3.26: Two-dimensional projection of the feature space. The path followed by the

bold crosses is the effect of corrections with increasing ε (ε increases along the direction

indicated by the arrow). ε = 0 coincides with the original sample, since no neighbour can

be identified and therefore no correction is performed. The last three points are the result

of a filtering with a too big neighbourhood size. Only for central values of ε the corrected

time series lies in the healthy region.
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the spectral factor and the pseudo-entropy dimension; dotted lines link the points

before the filtering to the points after the attenuation of the noise-like features,

using the following set of parameters: m = 30, ν = 4 and ε optimized according

to the previously introduced scheme. Dysphonic patients, in the (spectral factor,

pseudo-entropy) plane, are spread around the average point (5,1.8); the centre of

mass of the healthy cluster is (35,0.5). The surgical treatment produces an average

correction located in (20,0.6). Our software moves the centre of mass of sick patients

to (15,0.7). In getting these results the value of m and ν is not so crucial, provided

that mν > lp, being lp the extension of a pitch. The program is more sensitive to

the choice of ε, in the following way: The length of the dotted line of Fig. 3.25 is

somehow proportional to the value of ε. Unfortunately the angle is not constant:

This means that up to a certain value of ε all the corrections act along the same

direction, beyond that threshold they start to deteriorate the voice. In the extreme

case of ε as big as the full embedding space, the averaging procedure performed by

the filter destroyes almost completely the signal, producing a pseudo-entropy and a

spectral factor close to zero.

The sensitivity of the program to the choice of ε is illustrated in Fig. 3.26.

There we have filtered one sample with 8 different values of the neighbourhood size.

The original position is the one with the biggest value of the pseudo-entropy. ε

is increasing along the direction indicated by the arrow and only for two values

of it the corrected point lies in the healthy region. For the last three corrections

the neighbourhood size was absolutely too big. The other samples behave in a

qualitatively similar way.



Chapter 4

Financial Markets

In physics, you’re playing against God; in finance, you’re playing against people.

(Emanuel Derman)

The stock market is from a physicist’s point of view the largest, most well tuned,

efficient and well maintained emergence laboratory in the world. With the most

dense and precise measurementes performed, recorded, transmitted, stored and doc-

umented flawlessly on extremely reliable data bases. Add to this the potential

relevance to the most money-saturated human activity in the world and obtain a

very promising vast area to exercise our drives for understanding.

As opposed to field theory in which the microscopic ”bare” interactions are to

be inferred from the emerging dynamics, and to the cosmology where the emerg-

ing macroscopic features are unknown at the largest scales, in financial markets,

both the microscopic operations and the macroscopic trends are fully documented.

The old dream of Boltzmann and Maxwell of following in detail the emergence of

macroscopic irreversibility, generic universal laws and collective robust features from

microscopic simple elementary interactions can now be fully realized with the help

of this immense thermodynamic machine where the Maxwell demons are human size

and the (Adam Smith’s) invisible hand is more transparent then ever.

The approach carried out by physicists is not superior, just complementary to

the one performed by economists. Most of the economists treated the short time

fluctuations as noise. In fact when the Olsen Associates started to accumulate their

high density market data, some of the people in the finance field expressed surprise

at this unexpected interest in recording all that noise. For physicists, the tick-by-

97
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tick individual trade data are the very engine of the entire system, similarly to the

way in which the molecular collisions are ultimately the engine for all statistical

mechanics or thermodynamic phenomena1. The stock market is the ideal space for

the strategical opening to a new kind of science, since it offers a perfectly rigorous

experimental and theoretical research framework.

The possibility of accessing and processing rather easily huge quantities of data

on financial markets opens the path to new methodologies where systematic com-

parison between theories and real data not only becomes possible, but mandatory.

This perspective has spurred the interest of the statistical physics community, with

the hope that methods and ideas developed in the past decades to deal with complex

systems could also be relevant in Finance. However the existing literature roughly

falls into two categories: Either rather abstract books from the mathematical fi-

nance community, which are quite difficult to read for people trained in natural

science, or more professional books, where the scientific level is usually quite poor.

In particular, only few books in this context are discussing the physicists’ way of ap-

proaching scientific problems, in particular a systematic comparison between theory

and empirical results, the art of approximations and the use of intuition [10, 71].

The perception of the financial market as a complex many-body system offers an

interesting challenge for testing well-established physical concepts and methods in a

new field. If some of these tools can be successfully transferred, improved insight into

the underlying mechanisms of the market should be gained. The supporters of this

idea expect that this young branch of physics will soon mature into an independent

field, which they call econophysics.

4.1 Efficient Market Hypothesis

The market is the place where buyers and sellers meet in order to exchange products,

whose price at time t is called the spot price S(t). It is determined by the interplay

beetween buyers and sellers in a free-market economy. A special kind of market is

the financial one, where money is lent, borrowed and invested in commodities and

securities. Commodities are physical things like metal or corn, securities are more

virtual objects, like bonds or stocks. Traders are willing to accept a certain amount

1This point of view is obviously very optimistic: In statistical physics the microscopic collisions

can surely be assumed to have no hidden structure, but human decisions do have.
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of risk in order to get a greater return than the interest rate granted by banks. The

expected gain is the main driving force for the market participants to trade at all

and to deliberately tolerate a certain exposure to risk.

A market is called efficient if:

• The participants quickly and comprehensively obtain all information relevant

to trading.

• It is liquid. This means that an investor can easily buy or sell a financial

product at any time. The more liquid a market is, the more secure it is to

invest. The investor knows that he/she can always cash-in the assets. This

easy exchange between money and financial products raises the attractivity of

the market. On a mature liquid market, the myriad transactions efficiently

balance the decision of a single investor so that individual purchases or sales

are possible at any time without affecting substantially the asset prices.

• There is low market friction. Market friction is a collective expression for all

kinds of trading costs. These include trader provisions, transaction costs, taxes

and bid-ask spreads. The sum of these costs is negligible compared with the

transaction volume if the market friction is low.

The efficient market hypothesis states that a market with these properties digests

the new information so efficiently that all the current information about the market

development is at all times completely contained in the present prices. No advantage

is gained by taking into account all or part of the previous price evolution. This

amounts to a Markov assumption. The rationale behind this hypothesis rests on

the following argument: Imagine that a time series exhibits a structure from which

the rise of an asset price could be predicted in the near future. Certainly, investors

would buy the asset now and sell it later in order to pocket the difference. However,

an efficient market immediately responds to the increased demand by increasing the

price. The profitable opportunity vanishes due to competition between the many

active traders. This argument limits any correlations to a very short time range and

advocates the random nature of the time series. One could say even more stating

that an efficient financial market is unpredictable by construction and therefore there

is no periodically working financial process which generates a risk-free profit from

nothing.
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It is very interesting to follow the debate of whether a competitive market were

efficient or not, since academics, practitioners and general public are divided roughly

into two categories: Believers and non-believers of the efficient market hypothesis

[114]. Efficient markets are a natural consequence of neoclassical economics, whose

founding doctrine is that economics is about optimally allocating scarse resources

among competing uses. According to it every hypothetical market inefficiency would

be arbitraged away by competitive players whose greed assures that markets stay at

least closely to the perfect efficiency. On the other hand, the market, no matter how

big, is governed by a small group of people called market-makers, whose behaviour

influences the distribution laws of the entire market. According to this alternative

point of view, the so-called free economy is in fact predefined by properties of a

small group of people who are ready to do their best to support its spirit and first

principles. In social terminology they are called bureaucracy or government [5].

4.2 The Liquid Analogy

One of most famous conjecture about the behaviour of financial markets is the

Samuelson’s paradigm [96], according to which a financial market exhibits a random

character and consequently it is unpredictable. It has recently been proved, never-

theless, that a certain degree of correlation is still present on extremely short time

scales [60]. Despite that, the intermediate scales are dominated by random behaviour

with Lévy stable statistics of asset returns [24, 64]. The possibility to extract infor-

mation on the future evolution of a single asset by knowing a big enough ensemble

of its past values matters indeed institutional traders, who can generally intervene

on the market in real time, with delays smaller than few seconds. Their presence

reduces at minimum time correlations and consequently speculation possibilities in

a way such that the efficient market hypothesis almost holds.

Time dependence is however only one possible domain for surveying similar pat-

terns inside financial signals, another one being the spatial domain. In fact, albeit

much efforts are spent in studying correlations in the time dynamics of a single asset

(see [12] and [71] for a digest of the recent economist and physicist approach, re-

spectively), there are many applicative and fundamental reasons for understanding

deeply spatial, commonly referred as multivariate, correlations. A financial market

is not simply the juxtaposition of different prices which are organized on an inde-



4.2. THE LIQUID ANALOGY 101

pendent basis, but rather a complex system of interacting constituents [25]. The

latter are then monitored by sampling single prices with respect to an arbitrary

currency. Hence the study of correlations among different asset time signals is of

peculiar importance. By the way, this is also the case in many problems involved in

the modern risk management theory, where the composition of a certain portfolio

strongly depends on the movements of different underlying assets. On a more fun-

damental level, the interesting issue is the comprehension of how price changes can

be separated, with a sufficient degree of confidence, in single asset– and collective–

behaviour [17].

Since the Markowitz’s work on the theory of optimal portfolio [75], much effort

has been spent to characterize correlation matrices of financial assets [19]. In recent

contributions, different physics concepts have been adopted to endeavor this type

of problem, mainly because the study of correlations represents a paradigm of a

wide class of physical problems for which powerful tools have been developed. A

bivariate analysis of the futures on the German and Italian bonds showed that

despite the perfect uncorrelation of the single tracks, the crosscorrelation of the two

signals was significantly non-zero: The signals considered described two random,

but similar, processes [16]. This behaviour emerges quite generally in the stock

market, where certain asset clusters move in a particularly correlated way with

respect to remaining titles. Using equal time cross–correlation matrices and several

physics–borrowed tools such as the random matrix theory, these conjectures have

been quantified [54]. In a recent study, the structure of a N stock market has been

investigated as regarding the multivariate structure in a global window period [72].

We will investigate here asset correlations by interpreting asset growth rates as

observables of a particle system scenario. This idea is carried out by introducing

a formal map between the logarithmic returns and the distances among gas parti-

cles. The strength of this analogy resides in the possibility to separate collective

motion from the single asset dynamics through the investigation of mutual interac-

tions among titles. We can study the thermodynamics of the system and interprete

its temperature as a measure of spatial volatility, as compared with the more famil-

iar (temporal) volatility. The 2–asset interacting potential is then calculated on the

isothermal (isovolatile) market. Finally a time dependent asset–distance and a mov-

ing frame model are introduced. The implementation of this scheme is performed

on daily stock market data taken among the 30 most capitalized titles forming the
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Deutscher Aktien indeX (DAX30) in the period 30 Dec 1987 to 7 Mar 1995 (1800

trading days). To maintain a continuity of quotation, we have selected the maximal

subset of 23 assets which, in the above mentioned period, remained in the DAX30

basket and did not perfom any split2.

As a general starting point, we consider a collection of asset, which is a suitable

subpart of titles in a stock market (better if one representative for every economic

sector), a collection of currency prices, or any combination of them. The value of the

asset Ωi at time t, is expressed in unity of asset Ωj by means of conversion factors

Pij(t):

Ωi(t) = Pij(t)Ωj(t). (4.1)

The indices i and j span all N considered assets forming the market. By writing

Eq.(4.1) for another couple of indices, a no–arbitrage equation for a liquid market is

obtained Pij = PikPkj . Its multiplicative symmetry is reflected in a corresponding

additive symmetry of the logarithmic returns:

dα
ij(t) =

1
τα

log

(
Pij(t)

Pij (t− τα)

)
, (4.2)

where τα≤H is a collection of H time horizons. The rescaling of the log–returns to

the considered time horizon is solicited by its interpretation; in the idealized limit

of prices with (deterministic) growth laws, we get Pij(t) ∝ exp (dijt), so that the

quantity defined in Eq. (4.2) turns out to be the growth rate between asset i and

j, independently on the time horizon. The latter can be considered as a long term

limit when one refers —for example— to prices of stocks with respect to currencies.

In the opposite limit of extremely small returns (which eventually corresponds to

short time lags), dα is the rate of the absolute return, d = ∆P/(P∆t), obtained by

logarithmic expansion.

As Eq. (4.2) points out, the display of the time series Pij by arranging them in

the H dimensional variable ~dij , gives a natural embedding for a dynamical system

oriented analysis [97]. This is not difficult to understand when thinking that the log–

return on a certain time horizon τ∗ is proportional to the average of log–returns on

sub–multiples of τ∗. Thus the component dα∗ can be written as a linear combination

2When a company performs a split, the price X of the emitted shares becomes X/α and the

number of them changes from N to αN . Typical values of α range between 2 and 10.
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of delayed components dα<α∗ . The no–arbitrage symmetry of the log–returns hints

for the further identification of ~dij as an (oriented) distance vector between asset i

and j; in fact (a.) ~dii ≡ ~0, (b.) ~dij = −~dji, (c.) ~dij = ~dik + ~dkj for all k.

It is easy to see that any norm in a H dimensional euclidean space induces a

well defined distance ‖~dij‖ between asset i and asset j [28]. As an intrinsic character

of financial markets no asset can be regarded a priori as an absolute quantity, that

is why we ended up only with mutual distances among asset. Nevertheless some

truly single asset property can be extracted by the symmetry of the problem and

interpreted consequently. If we define:

~xi ≡ 1
N

N∑

j=1

~dij , (4.3)

we can observe that ~xi − ~xj = ~dij . We have introduced a frame in which every

single asset is assigned to an absolute position: The problem of the behaviour of

the N assets of the market is now translated to a physical problem of N interacting

particles (a liquid) in H dimensions, with coordinates ~x1, ~x2, . . . , ~xN . At time t, ~xi(t)

is the H dimensional position of particle i. Note that the distance between two assets,

expressed by Eq. (4.2), is zero when the price of one with respect to the other remains

constant. Furthermore, it is easy to check that the ~x’s vectors are centered, hence

the positions ~xi are referred to a coordinate frame which attributes to the center

of mass of our liquid a trivial dynamics. From the financial point of view, it states

the closure of our system: The N assets are watched as complementary, with zero

overall return. This does not mean that the applicability of the present construction

is restricted to those markets where this property is nearly fulfilled (as an example

in the foreign exchange). In stock markets, which experience escape and retention

events that is positive and negative return periods, the ~x are automatically selected

within a neutral frame which keeps track of the particle cloud. Of course nothing

prevents from starting the analysis of an extended market with a huge number of

constituent assets. Some of them would follow similar dynamics by evolving in a

closer cluster with respect to others.

Coming back to the map construction, it is easy to show that as a consequence

of the centered character of the ~x’s coordinates, the following quantity σ:

σ ≡ 1
N

√√√√
∑

1≤i<j≤N

∥∥∥~dij

∥∥∥
2

(4.4)
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Figure 4.1: Lower panel: Time dependence of the correlated volatility σ, and the

temperatures T (shifted as a visual aid) relative to the x– and r–coordinates. Upper

panel: The corresponding PDFs. All the calculations refer to four horizons (H = 4)

of 1, 5, 20, and 250 market days.
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Figure 4.2: Masses mi as calculated after Eq.(4.8) versus the asset label. Crosses

indicate x–frame calculations with mean 1.195, circles the r–frames with mean 1.184.

is exactly their standard deviation. Its Hth power is a measure of the volume of our

system. The financial counterpart of it is what we call correlated volatility, so to

stress that it is a quantity merely connected to the spatial interactions of the particles

at a certain time. As the usual volatility takes into account the temporal variability of

an analyzed fixed asset, we are here referring to a measure of a spatial variability of a

group of interacting assets at a fixed time. Moreover, even after the compensation of

the split discontinuities, the correlated volatility shows clusterization around bubble

and crash periods [85].

We proceed now rescaling the x coordinates to volume renormalized ones:

~ri ≡ ~xi

σ
. (4.5)

Their difference is obviously ~ri − ~rj = ~dij/σ. The r–frame is a volume preserving

frame. Once the volume of the system is stabilized, one may wonder which is the

dependence of the liquid temperature on time. Thus, by analyzing the empirical

behaviour of the ensembled averaged square (finite difference) velocities:

~vi(t) = (~ri(t)− ~ri(t− τ1))/τ1, (4.6)
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we found that the r–system is thermostated at a fix temperature:

T =

〈〈
v2
i (t)

〉
i

〉
t

H
. (4.7)

The correlated volatility is therefore a measure of the temperature of our system. A

similar concept has been also introduced by Lillo and Mantegna [57], addressing the

question whether the complexity of a financial market was limited to the statistical

behaviour of each financial time series or rather a complexity of the overall market

did exist.

Fig. 4.1 shows this fact: In the lower panel we have plotted the time dependence

of the correlated volatility σ and of the temperatures T [x] and T [r] calculated by

averaging the square velocities in the x– and r–frame, respectively. In order to

contrast the results, the time averages of σ and T [x] are rescaled to T (the time

average of T [r]). The scale of T is in fact fixed by the underlying assumption of an

unitary Boltzmann’s constant. To check possible ergodicity properties of the system

we have also analyzed the time averaged square velocities of the single assets and

extracted from them mass terms:

mi =
HT〈

v2
i (t)

〉
t

. (4.8)

Fig. 4.2 shows that the masses are only slightly affected by the reference frame

used to calculate them. This indicates that they are an intrinsic property of the

asset regardless of the kinetics details. To prove this statement, we have plotted, in

Fig. 4.1, the correction to the temperature due to the asset masses:

Tm[r] =
〈
miv

2
i (t)

〉
i

H
. (4.9)

In order to investigate the nature of the interaction of the particle system un-

der study, we have calculated the two point correlation function as expressed by

Eq. (3.24):

C(r) =
2

N(N − 1)

N∑

i=1

N∑

j=i+1

Θ(r − ‖~ri(t)− ~rj(t)‖) (4.10)

and the related pair potential:

u(r) ∝ − log C(r). (4.11)
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Figure 4.3: (a) Plot of the pair potential u(r) for the whole data set over four

horizons (H = 4) of 1, 5, 20, and 250 market days, and (b) the time distribution of

the inter–asset distances.
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In Fig. 4.3., the potential u(r) is shown. The great distance tail of u(r) is linear

(correlation coefficient= 0.9994, for a regression in the region 2 < r < 4 over 446

points giving the line u = ar + b, with a = 0.689 ± 0.001 and b = −1.101 ± 0.004)

indicating the strong long range attraction of the market liquid. On the other hand

at small distances two different behaviours emerge. By decreasing the asset–asset

distance an equilibrium point is reached. At smaller distances a barrier is presented,

followed by a region corresponding to less intense repulsive forces. We interpret it

as a signature of the inhomogeneity of the system, which allow at small distances

the formation of privileged pairs (clusters). As a consequence, we expect that in a

wider market (here we consider the quite diversified but small pool of the DAX30

assets) this tendency could even be more pronounced [57, 72].

The validity of a no–arbitrage condition is guaranteed by the assumed liquid

character of the market. By implementing the embedding, naturally prompted by

the structure of the returns, we have been able to map the financial signals in

positions of particles of an interacting gas (a liquid). One of the strength points of

this method is its easy generalizability to the case of great N , albeit here we have

restricted our analysis to a relative small asset market. On the other hand a word

of caution is needed in a great N market. The results presented here share the

plain assumptions of isotropy and homogeneity of the market liquid. Indeed they

should become weaker for very large and differentiated markets. There, the pair

potential introduced here is supposed to maintain the same great–distance properties

(linearity). At the low–distances (where clustering emerges), in analogy to what is

done in the study of ionic liquids [77], a generalized pair potential could be introduced

in order to include both anisotropy, cluster formation, and specie diversification [85].

Besides, this approach is straightforwardly employable for time dependent clustering.

A procedure similar to the one adopted to organize static distances between assets

in hierarchy trees, given in [72], could be generalized to the time dependent distance

matrix expressed by Eq. (4.2).
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4.3 Predictability of Foreign Exchange Markets

We want to test now a possible further application of the liquid analogy presented in

the previous section, combined with a Markov model, studying the foreign exchange

market data related to the three following currencies: American Dollar (USD), Ger-

man Marc (DEM) and Japanese Yen (YEN). The data we use cover the period from

9 Apr 1973 to 15 Nov 1997 with a daily tick and are shown in Fig. 4.4. In a foreign

exchange market the closure property (Eq.(4.3)) is by definition fulfilled. As clearly

observable in Fig. 4.4, it is in fact obvious that:

USD

DEM
=

Y EN

DEM
∗ USD

Y EN
. (4.12)

Let us consider the quantity si
t = sign(x1

i (t)) and compute the statistic:

P (si
t|sUSD

t−1 , sDEM
t−1 , sY EN

t−1 ), (4.13)

where i = USD,DEM, Y EN for all the three currencies. For i = USD, the quantity

P (+| + −+) indicates the probability to get a positive value for xUSD
i (t), given a

positive value for the USD at time (t−1), a negative value for the DEM at time (t−
1) and a positive value for the Y EN at time (t−1). Doing that we implicitly assume

the validity of a Markow model for the foreign exchange market system, namely a

model where P (si
t) only depends on 3 other values. Of course this may not be the

case, but we think it is worth trying this analysis if we end up with a satisfactory

statistical significance. According to the size of the data set we are using, we are

not allowed to consider a Markov model of bigger order. The different combinations

related to Eq. (4.13) are 16, but 2 of them, namely P (±t|+t−1, +t−1, +t−1), never

occur since
∑N

i=1 ~xi = ~0. The two P (±t|−t−1,−t−1,−t−1) are positive because in

the simbol “−” also the zero value is included.

The 14 probabilities are given from P (+|+ +−), P (+|+−+), to P (−| − −−).

As we can see in Fig. 4.5, the slight difference from the overall constant value of 0.5

reveals the presence of structures and redundancy. They behave in a synchronous

way that could not otherwise be explained only with the closure property. This

allows us to perform some kind of prediction of future exchange rates. The most

accentuated situation is the one related to the Y EN (right panel): One of the

probabilities goes down to 22.73 (with the corresponding going up, obviously, to

77.27). Altough this result clearly tells us that in principle one could get advantage
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Figure 4.4: Daily exchange rate of USD, DEM and YEN for the period of time 9 Apr 1973

to 15 Nov 1997.

speculating with the foreign exchange market, we get no quantification of the gain

since the quantity si
t = sign(x1

i (t)) takes into account only the direction of a currency

but no the amplitude of the step. So the good result of Fig. 4.5 could just mean

that we can predict with probability almost 80% that the YEN will become more

powerful tomorrow, but we cannot quantify this improvement. Maybe the YEN

will gain only a small fraction of a percent and if we consider transaction costs and

commissions this information becomes absolutely useless.

A better approach, therefore, consists in introducing some threshold in order to

differentiate between strong increase, moderate increase, almost no change, moder-

ate decrease and strong decrease situations. Once computed the quantity in Eq.(4.3),

we compare it with 4 values in order to get a better classification. The output of this

comparison can be one of the following: (i) x1
i (t) > s, namely we have a strong in-

crease (4), (ii) se < x1
i (t) < s, moderate increase (3), (iii) −se < x1

i (t) < se, almost

unchanged (2), (iv) −s < x1
i (t) < −se, moderate decrease (1) and (v) x1

i (t) < −s,

strong decrease (0). The numbers in brackets indicate the label associated to the

sistuation. Of course the condition 0 < se < s is fulfilled. In order to have an idea

of the proper value of s and se let us consider Fig. 4.6. There we plot the percentage

of values of x1
i (t) that falls into the interval [−se, se] with respect to se. We see that
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Figure 4.5: Statistic on the si
t = sign(x1

i (t)). Left panel: USD. Middle panel: DEM.

Right panel: YEN. Note a quite far behavior from constancy, leaving space for an

attempt to prediction. The sample size is big enough to guarantee us that everything

outside the 50± 1 % is statistically significant.

there is no value smaller than 0.1% and also no one bigger than 2%. The data set we

are using has a daily sampling rate and for an exchange market it is very uncommon

to get variations bigger than some percent.

Given the distribution of x1
i (t)s, we consider the following thresholds: se =

0.2% and s = 0.8%. Now we have 5 possibilities for each currency at each time

step. Therefore we have to cope with 625 cases when evaluating the statistics of

P (Xt+1|DEMt, USDt, Y ENt), where X stays for DEM, USD and YEN.

In Fig. 4.7 we show the situation we get for the DEM. The upper part of it refers

to the forecasted increase for the next time step, the middle part deals with the

almost unchanged case, the lower part reports on decreasing situations. Along the

X axes all the 125 possible combinations of DEM, USD and YEN at a given time are

reported, using a 5-based code: 0 refers to 0005 and 124 to 4445. Of course not all

the possible combinations are allowed, since
∑N

i=1 ~xi = ~0, as already discussed. This

conditions excludes almost half of the possibilities. In order to really take profit from

this speculation, one cannot use the middle part because the gain is so small (smaller

than se = 0.2%) that it would be completely compensated from commission costs.

Looking at the upper part, however, we note that in 4 situations the value of the

probability is bigger than 50%. The first peak, in position 1910 = 0345 means that:

P (se < xDEM (t+1) < s|xDEM (t) < −s, se < xUSD(t+1) < s, xY EN (t) > s) = 67%,

namely it is very probable that the day after a bad situation for the DEM (0) together

with a strong USD (3) and a very strong YEN (4), the DEM will recover part of its

losses (3). In other words, buying some DEM after such a situation has happened,
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Figure 4.8: Statistic for x1
USD(t), same considerations of Fig. 4.7.
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Figure 4.9: Statistic for x1
Y EN (t), same considerations of Fig. 4.7.
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should pay with some gain. Conceptually similar cases are depicted in Fig. 4.8 and

Fig. 4.9, dealing respectively with USD and YEN.

If willing to use the present approach in order to speculate in the foreign exchange

market, one has to keep in mind that it is convenient to operate only when falling in

a situation related to a next step probability bigger than 50%. This means that the

applicability of the present method is limited to some favourable cases: It is better

to do nothing when we do not get proper indications and to be active only when

suggested from Fig. 4.7, Fig. 4.8 and Fig. 4.9. We have already said that only one

half of all the combinations of labels for DEM, USD, YEN is effectively possible.

Counting the number of occurrence of the probability being bigger than 50% we

get 14 (as previously mentioned we cannot use the middle part of the last three

illustrations because they are related to the neighbourhood of zero case): Therefore

this speculation scheme is really applicable only in rougly the 20% of the situations

(that maybe do not happen the 20% of the trading days but much more rarely).

4.4 Financial Markets in a Book

Parallel to the analysis of empirical features exhibited by financial market, also the

development of models able to reproduce part of them is interesting, especially if

the parameters of the model have a clear meaning. Since stock markets resemble

the scaling laws characterizing physical systems in which large numbers of units

interact [34, 71], we introduce here a frustrated and disordered many-body system.

Frustration enters in that not all the individual inclinations can be satisfied simulta-

neously, whereas the model is disordered because interaction couplings are random

and traders have randomly chosen expectations and resources but they share the

same strategy. In contrast with previuos works we do introduce only one kind of

investor: In our opinion the usual distinction between fundamentalists and noise

traders is not necessary. Looking at both strategies, in fact, we note that funda-

mentalists follow the premise of the efficient market hypothesis in that they expect

the price to follow the fundamental value of the asset: A fundamentalist trading

strategy consists of buying when the actual market price is believed to be below

the fundamental value and selling in the opposite case. Noise traders, on the other

hand, do not believe in an immediate tendency of the price to revert to its underly-

ing fundamental value: They try to identify price trends and consider the behaviour
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of other traders as a source of information. This gives rise to the tendency towards

herding behaviour.

TABLE 1. Example of the first five levels of the book. No transaction can take place

because the highest buying price is smaller than the cheapest selling order. Entries are

ordered according to price and occurrence time in case of equal prices.

The model presented in [62, 63] relies on (artificial) movements of individuals

from one group to another together with the exogenous changes of the fundamental

value. However, as clearly stated in [4], a 20% of fundamentalists is enough to

confine the price within the range of the rational traders. We want to raise serious

doubts on the blind use of the fundamental price, expecially when assumed that

the relative changes are Gaussian random variables: Why should agents risk money

just believing in a random walk behaviour? A more realistic assumption is based

on the following wish: Gaining the maximum, taking the smallest possible risk.

Agents make decisions to buy or to sell, adjust prices, and so on according to the

information available at the time, as well as individual preferences such as tolerance

for risk and time deadlines. We therefore simulate the book for the ask and for the

bid. Every trader, when buying a share, has to identify a fair price and then put

an order keeping in mind a target price and a stop-loss price. These quantities are

the result of the interaction with other agents, the study of past values of the price

and the influence of incoming news. The decision to sell some shares is made on the

basis of the current price (to be compared with the personal target and stop-loss

price) and of the age of the shares: After a sufficently long period of time agents

start to ask themselves whether it is worth keeping the money invested in that way.
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The model leads to a kind of self-organized criticality which is responsible of the

alternation between laminar and turbulent trading [89].

We consider N traders and one stock with M shares on the market. Each trader

is characterized through the following information: (i) Initial amount of money.

(ii) Inclination towards investment: Usually traders tend to keep cash a part of

their resources, in order to be able to have money to exploit the market at special

time. (iii) Number of shares owned. (iv) List of friends with which he is sharing

information, to model the herding effect. (v) Invested money, to keep trace of the

average buying price. (vi) Desired gain. (vii) Maximum loss. (viii) Threshold:

Amount of time after which the trader may start to change idea about his/her

investment.

Every order is stored in the corresponding list, according to the type of it (buy

or sell), to the requested price and to the time at which it was submitted. A

transaction occurs whenever the cheapest price among the sell list matches with the

most expensive offer in the buyers’ list: This value defines the market price of the

stock at that particular instant and it will of course affect the future behaviour of the

traders. We provide a mechanism to produce news, whose purpose is to let all the

agents know some information about the overall behaviour of the market, namely

the unbalance of the two books and the actual volatility. It is very important to

note that these signals are endogenous: The information they provide was already

present in the system. In this way our model takes into account both a local and

global coupling, via shared information with neighbours and generation of news and

advertisements, respectively.

The simulation consists of two parts. At the beginning we assign all the shares

to one trader and we broadcast advertisements to induce people to put a buy order.

The purpose of this first step is to simulate the Initial Public Offer (IPO) and the

selected trader can be thought as the bank responsible of the initial selling of the

stock. This part ends when the number of shares owned by the IPO trader vanishes.

We then reset his amount of money and enter the second phase. At each update

step the algorithm performs the following operations:

• Select randomly a trader.

• If the trader has no pending order and no share then he/she is probably willing

to buy, formulating a limit price, a target price and a stop-loss price and
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inserting a buying order.

• In case of owning some shares, the trader may decide to sell, according to the

market price and the threshold.

• If the trader has a pending order, he/she may change some parameter because

the conditions that led to that decision may have changed.

We suppose that every trader can afford only one pending order. Every time a buyer

has got all the desired shares, he/she is immediately asked whether he/she wants to

place a selling order.

When formulating the prices, every trader makes the decision in a deterministic

way, computing a weighted average among the opinion of some acquaintance, the

indication of the news and some past values of the stock price. Every time that

two complementary orders match, we define it as the market price for that partic-

ular instant: Usually only one of the two orders disappears, namely the one with

the smallest amount of shares involved. The other cannot be removed from the

corresponding list, since only a part of the desired transaction has taken place.

So the main ingredients of the model are: (i) Disorder, since the interaction cou-

plings are random and some parameters characterizing the agents are randomly cho-

sen: The overall dynamic follows deterministic rules triggered by stochastic events.

(ii) Frustration, because not all the individual wishes can be satisfied at the same

time and traders have to change idea, i.e. insert a modified order in the book, quite

often, behaviour that resemble the typical multiplicity of states of frustrated sys-

tems. (iii) Delayed feedback, involving the use of past values of the market price and

volatility during the decision formation. (iv) Phase transition between the excess-

demand and the excess-supply phases [74]: The model presents a symmetry breaking

reflected in a discontinuity in such a global quantity like the market price.

Fig. 4.10 shows the result of a typical simulation on the market price and the

corresponding amount of exchanged shares. The model is able to reproduce all the

typical features observed in empirical data. At the beginning the price remains

constant due to the IPO’s phase, namely the bank offers the shares to the traders at

the fixed price, the IPO price. After that, one can see the typical pressure made by

agents who did not get enough shares during the initial public offer: The volumes

are high and the price tends to raise. Then, after a normal settlement, the price
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Figure 4.10: Typical time series segment from a simulation run. Upper panel: Development

with time of the market price. Lower panel: Development with time of the corresponding

volumes of exchange.
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Figure 4.11: Upper panel: Price returns, with the random series shifted for eye guide.

Lower panel: Returns distribution. The comparison with a best-fitted normal distribution

reveals the presence of fat tails.
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Figure 4.12: Estimation of the self-similarity parameter H. Upper panel: Absolute returns.

Lower panel: Raw returns. Average of many runs.

starts to oscillate with very low volumes: Traders with shares do not want to sell

because they hope to get more money if they wait a little bit more, agents without

shares do not buy because the price is too high and there is no evidence of a trend

on it. Then oscillations become bigger and bigger and when the volumes are big as

well, then a small crash occurs and the price comes back to a more interesting value

for potential buyers. As a consequence, volumes remain high and the price follows

a so called rally period, followed again by a crash, maybe due to the fact that the

bubble phase has been too optimistic.

The model makes use of the following parameters: (i) Number of traders N. (ii)

Threshold T: The critical age of the shares. It ranges among a decade in order to

take into account the differences between intraday speculators and long-time agents.

(iii) Number of shares S and IPO’s price I: Their product defines the initial value

of the company. (iv) Amount of money M initially distributed among the traders.

Inspired by [76, 88] we have decided to distribute the richness according to a Zipf’s

law: The 20% of the traders posses around the 80% of M and among the two groups

this rule is applied again, recursively. In this way we are able to model the difference
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between a normal agent and an institutional investor and the different effect they

produce when they decide to enter the market. A minimal value of money m is

provided to all the traders and added to the previous distribution. (v) Length of

the past values’ list MEM: Chartists look for trends and patterns in the historical

time series of the market price. (vi) Threshold B for the unbalance of the book. We

compute the ratio between the sum of all the shares people want to sell and the sum

of all the shares people want to buy. If this value does not belong to the interval

[1/B,B], then news and advertisements are generated.

As shown in Fig. 4.11, the probability density function of the returns of our

simulated stock shows a strong leptokurtic nature. For comparison, the Gaussian

with the same measured standard deviation is also reported. The time series of

returns exhibits a higher frequency of extreme events and clustering of volatility.

This aspect becomes clear thanks to Fig. 4.12: When considering absolute returns

as a measure of volatility, we see that the transformed price data behave differently

from their counterpart derived from the Gaussian distribution. The estimation of

the self-similarity parameter H, as introduced in Sec. 2.7, reveals a strong persistence

in volatility (H = 0.85).

One comment about demand and supply. It had been a common sense in eco-

nomics for a long time that demand and supply balance automatically, however,

it becomes evident that in reality such balances are hardly be realized for most of

popular commodities in our daily life [105]. The important point is that demand is

essentially a stochastic variable because human action can never be predicted per-

fectly, hence the balance of demand and supply should also be viewed in a probabilis-

tic way. If demand and supply are balanced on average the probability of finding an

arbitrarily chosen commodity on the shelves of a store should be 1/2, namely about

half of the shelves should be empty. Contrary to this theoretical estimation shelves

in any department store or supermarket is nearly always full of commodities. This

clearly demonstrates that supply is much in excess in such stores. In general the

stochastic properties of demand and supply can be well characterized by a phase

transition view which consists of two phases: The excess-demand and excess-supply

phases. It is a general property of a phase transition system that fluctuations are

largest at the phase transition point, and this property also holds in this demand-

supply system. In contrast to that, in the case of markets of ordinary commodities,

consumers and providers are independent and the averaged supply and demand are
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Figure 4.13: Simulation run with N = 1000. Upper panel: Market price evolution on time.

Middle panel: Volumes of exchanged shares on time. Lower panel: Evolution of the book.

Almost all the traders have placed an order and are waiting. Note the symmetry of the two

paths with respect to the half of the number of agents (N/2 = 500).

generally not equal. The resulting price fluctuactions are generally slow and small

in such market because the system is out of the critical point.

On the contrary in an open market of stocks or foreign exchanges, market is

governed by speculative dealers who frequently change their positions between buy-

ers and sellers. It is shown that such speculative actions make demand and supply

balance automatically on average by changing the market price, as Fig. 4.13 clearly

shows. Contrary to [4] we do not need to impose that the number of the shares

has to be half of the number of traders in order to get a balance between demand

and supply. The three circles in the upper panel indicate the most extreme events

taking place in the price evolution: There are corresponding movements in the book

and in the volumes, since they are the reason for such a sudden variation. As the

system is always at the critical point the resulting price fluctuations are generally

quick and large [105]. This result is in agreement with [102], where the authors

present an analogy between large stock market crashes and critical points with log-

periodic correction to scaling: Complex systems often reveal more of their structure

and organization in highly stressed situations than in equilibrium.
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Performing a correlation analysis on our simulations and comparing it to the

results presented in [71], we can associate a temporal scale to our tick by tick time:

Since the autocorrelation function vanishes after approximately 20 ticks and the

typical correlation length in financial time series is supposed to be around 20 minutes,

we can speculate that one of our tick corresponds to one real-life minute. Therefore

the involved time scales are the following: (i) Total number of iterations, namely

total number of ticks = 106 (10 years), (ii) threshold = 10000 (1 month), (iii)

threshold variability in the range between 0.1 and 1. This gives a time variable from

a minimum of 1 month to a maximum of 1 year to have second thoughts.

4.5 Spread-Volatility correlation

The key ideas here are the interplay between time and money and the risk aversion

represented by the stop loss mechanism. Every order is stored in the corresponding

list, according to its type (buy or sell), the requested price and the time at which

it was submitted. A transaction occurs whenever the lowest price in the sell list

matches with the highest offer in the buyers’ list: This value is defined as the market

price of the stock at that particular instant (tick).

When randomly selected, a trader usually tends to perform some operation if

he/she has not yet inserted an order. Since, as already mentioned, we want to avoid

any use of fundamental rules, there is no real recipe in our model to decide when

to enter the market. It is much more important to identify the right moment to

sell, because it is only when you sell that you get the extra money you have won

or you realize your loss. Let us have a look at Fig. 4.14 for a better understanding

of this concept. Suppose that a trader has bought shares at the price and the time

marked by the filled circle. The basic strategy is represented by the trading rectangle

[84], defined by the three following quantities: Target price (upper horizontal line),

stop-loss price (lower horizontal line) and threshold in time (rightmost vertical line).

As long as the market price is confined within the trading rectangle, the agent

does not feel the need to trade, but once this condition has been violated, it is very

likely for him/her to perform an operation. If the price goes beyond one of the

two horizontal lines, a market order to sell the shares is very probable (either to

cash the win or to limit the loss). If the price remains almost constant within the

trading rectangle, and therefore the time series ultimately crosses the rectangle at
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Figure 4.14: The trading rectangle. Reported is the market price versus trading time.

The filled circle indicates the moment in which the trader has bought shares. The dotted

line, constant at the buying price, is plotted only for eye guide. The upper line is the target

price (TP), the lower line refers to the stop loss price (SL) and the threshold in time (TH)

defines the right end of the trading rectangle.
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Figure 4.15: Temporal evolution of bid/ask spreads, volatility and market price. Bid/ask

spreads and volatility are strongly correlated.

its rightmost vertical line, the decision of the trader depends on a global condition,

which is given by the imbalance of the book, namely by the ratio between selling

and buying orders. If too many people want to sell, this is a good reason to leave

the market as soon as possible (therefore with a market order). If a lot of agents

are willing to buy, then it can be better to keep the shares because their value

could appreciate substantially in a near future. The cross at the right vertical line

is related to the constraints of real life and a sort of practical considerations which

must be considered in making a real gambling decision (see the Appendix).

The last consideration gives rise to a comment about minority games. It is almost

evident that the financial market is not in favour of minorities. The best strategy is

not acting as extravagant as possible, but doing exactly what the majority of people

wants to do although within (and this is of fundamental importance) a shorter time,

in advance. At the beginning of a crash, for example, the majority of traders wants

to sell: Being with the minority and buying in that moment would not be a good

idea. The same during a rally: The price is strongly increasing because there is a

big request to buy and if you sell at the beginning of such an event you lose an
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Figure 4.16: Scatter-plot of bid/ask spreads and volatility. Significant correlations between

these two quantities can clearly be observed.

opportunity to make money. Furthermore, minority games assume two outcomes

and it is unclear how to distinguish between buying and selling.

A relationship between dealers’ bid/ask spreads and price volatility is presented

in [86]. Dealers widen their spreads when volatility is higher in order to reduce their

risk of loss. Due to the high degree of realism in our model, we are able to test the

same relationship from a simulation run. Fig. 4.15 shows the temporal evolution of

the market price, the volatility and the bid/ask spreads, defined as the difference

between the lowest selling price and the highest buying request. A significant positive

correlation between bid/ask spreads and volatility is apparent from the temporal

evolution and from the scatter-plot of Fig. 4.16. Numerical analysis of the linear

cross-correlation (when defining volatility as the local average of the absolute value

of the price change) indicates a coefficient that ranges from 0.2 to 0.3, depending on

the window size. In fact, considering our simulated data at lower frequencies leads

to a higher cross-correlation coefficient, in agreement with the results reported in

[86].

Up to our knowledge, this is the first attempt to reproduce this correlation within

an artificial financial market. The availability of such a model is very fruitful when
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dealing with risk management and option pricing and a similar behaviour cannot

be shown by simpler models (like [78]). The main contribution to this result comes

from the threshold, since it allows the establishment of a strong relationship between

time and money: Traders do want to make money within a specific time when they

trade stocks.

4.6 Deriving the Optimal Strategy

We want now to check whether the common basic strategy of the trading rectangle

leaves place for the establishment of a kind of meta-strategy, a way to profit from

mistakes and good intuitions of agents [27]. As a first step, we have then to evaluate

the performance of every single trader. In order to simplify the task, we discard as

many of the last operations as necessary in order to come back to a point where

the agent is completely liquid (no invested money, just cash). We then consider the

difference between the money realized after having sold the shares and the originally

invested capital. This quantity, related to the initial amount of money, gives an

accurate estimation of the quality of the trading. In more details the absolute

performance (AP )i is defined as:

(AP )i =
j=mis∑

j=1

pisjsisj −
j=mib∑

j=1

pibjsibj , (4.14)

where mis is the total number of selling orders, mib the total number of buying

orders, pisj and sisj the selling price and the number of shares involved in the selling

orders, pibj and sibj the same quantities related to buying orders. The relative

performance (RP )i is obtained as:

(RP )i =
(AP )i

Ri
, (4.15)

with Ri indicating the initial resources of trader i.

The Fig. 4.17 shows clearly that not all the traders have been equally lucky

during the simulation. The straight line refers to the zero gain and it represents of

course the average amount of money won from the traders, since the market we are

simulating is a closed one, we have introduced only one stock, the trading activity

has no extra cost and no dividend is paid. To define a transaction one needs a buyer

and a seller, for every investor gaining money there must be one other who is losing
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Figure 4.17: Distribution of the gain obtained by each trader.

it. But the distribution depicted in Fig. 4.17 indicates the possibility to derive an

optimal strategy, since only few people are really getting money, while the majority

of the traders is in the red.

This fact suggests to take a closer look at the best performer in order to learn

something. In particular it is interesting to analyze the book and derive the strategy3

adopted by the best investor. In our model there is only one kind of trader, since

we do not make any distinction between chartists and fundamentalists, optimists

and pessimists, and so on (see [56] for a good insight on the effect of microscopic

diversity). All the investors want to get rich with the smallest possible risk and as

fast as possible. They have access to the price history, they can communicate with

a limited number of friends, they receive news and advertisements from the market.

Then they decide whether to join or not the market and define a price, since the

3As stressed in [81] all the traders in this model perform according to the same deterministic

rules. What makes the difference is the weight given to the opinion of media and acquaintances, the

interpretation of the trend in the market price, personal targets and so on. In other words, every

investor has a different set of parameters. Deriving the optimal strategy means therefore tuning in

a proper way all the degrees of freedom that a trader has still free in the model.
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only way to buy and sell some shares is through the book: One has to communicate

the quantity and the price of the involved commodity.

Of course in a stockmarket one cannot decide both the price and the time at

which to trade. If you specify the moment to buy or sell (performing a so-called

market order) you do not know exactly at which price you will trade the shares. On

the other hand, if you have a given price in mind and you insert a so-called limit

order you have to wait an amount of time that is not trivial to evaluate. Usually

in the first case the price is not so different from the last transaction and in the

second situation the time one has to wait grows with the difference between the

limit and the market price, namely the requested price and the price involved in the

last exchange of shares.

Let us consider the example reported in Fig. 4.18. Here we can see the evolution

of the price and the corresponding operations performed by the winner. Upper

triangles indicate a buy, lower triangles a sell. A dotted line connects two consecutive

operations and has no meaning but visual guide. Since in this example a buy is

always followed by a sell, the slope of the above mentioned line indicates the variation

of money: If the slope is positive the trader has got money and viceversa. The lower

panel reports on the involved volumes: It seems that this agent had a preferred

number of shares to be exchanged, namely all the orders involved 6 to 8 pieces.

The trader has performed 24 operations, 12 to buy shares and 12 to sell them. 10

times he has won money, twice he has lost something. It is interesting to comment

the two losing cases, since they indicate two different aspects of the adopted strategy.

The situation indicated with the letter A is a typical stop loss: The agent has bought

at a relatively high price in a moment characterized by a high volatility. After a

short period of time he has decided to cautionally sell the shares because the market

price went down and he wanted to limit the losses. In fact this was a good idea

because after that the trader could buy the shares again at a cheaper price. On

the other hand, the situation under the letter B indicates the intervention of the

threshold. Again the trader loses money (although this time a really small amount),

but it was a good choice once more. After a while, in fact, he could buy the shares

with a strong discount and sell immediately after, getting much more money than

he had previuosly lost due to the threshold.

In order to derive the optimal strategy we proceed in the following way. We

extract from the book all the transactions where the winner is involved and we
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Figure 4.18: Upper panel: Evolution of the market price and the corresponding operations

performed by the best trader. Upper triangles indicate buying shares, lower triangles selling

shares. Lines connect a buy with the relative sell. The two cases depicted by the letters A

and B are the situations when the agent has lost money. The former is due to a stop loss

order, the latter is due to the threshold in time. Lower panel: Number of shares involved in

the transactions.
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define a trading space. Coordinates of this space are price returns, age of the shares,

broadcasted information, remaining cash and so on. We need tens of iterations in

order to clearly identify the best performer and hundreds of runs in order to properly

populate the trading space with winners from several simulations. After this training

period we proceed with a clusterization as in [80] of the collected data in order to

get a lookup table to be used in the next step, when the new trader starts to play,

too.

A two-dimensional projection of the trading space is reported in Fig. 4.19. Here

only the price increment along the x-axis and the age of the share along the y-axis

are shown. The first quantity is defined as the logarithmic difference of the price at

time t1 and the price at time t2, where t1 and t2 refer to two consecutive transactions

involving the trader under observation. The quantity along the y-axis is just time,

here expressed in months due to the considerations reported in [81] about correlation

analysis. In Fig. 4.19, a circle is a suggestion to buy shares, a rectangle to sell them.

Apart the trivial idea to sell after a price increase and to buy in the complementary

case, we can observe some interesting situations. According to the upper big circle

(1), one should buy shares after a moderate price increment over a very long time.

The second upper ellipse (2) gives similar indications but for the opposite case: If

the market price is slowly falling down then it is better to sell before it is too late

(anyway between region 2 and region 4 one should buy as by default). The circle

labelled by 3 comes from the identification of an upper trend, since the price is

raising within a quite short amount of time, a good moment to catch the train and

buy shares. The fourth region is a consequence of the introduction of the stop loss

price and it suggests to sell before it is too late. The four ellipses are not simmetric

with respect to the zero price return and also the dimension and the shape are quite

different. This reflects typical asymmetries found in empirical data between positive

and negative returns (see [10, 11]).

The lookup table one derives from Fig. 4.19 contains very valuable information

beyond the trivial behaviour to buy when cheap, sell when expensive or just follow

trends. It is of fundamental importance during the tuning of the parameters char-

acterizing every trader. To show that, let us see the performance of the new agent,

whose strategy in nothing but consulting Fig. 4.19 when trading.

The results are shown in Fig. 4.20, where 4 distributions are reported. They have

been derived running 200 times the program and individuating, for each simulation,
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Figure 4.19: Behaviour of the best traders. Projection of the trading space over the (time,

return) plane. The trivial recipe ”buy when low, sell when high” is not enough in order to

get good results. One has also to identify slope and duration of trends. Small circles suggest

to buy shares, rectangles to sell them. When no clear indication is possible a small dot is

reported. There are regions where it is obvious what to do: They are labelled with BUY,
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Figure 4.20: Distribution of losers and winners, together with the index (difference between

the final and the initial market price) and the performance of the trader adopting the newly

developed strategy.

the RP of the worst and the best trader, together with the index performance and

the RP of the new agent trading with the help of the lookup table. It is necessary to

introduce the index because usually the final market price is bigger than the initial

value and one could ask wether it would be more profitable to buy at the beginning

a certain number of shares and just keep them till the end. It is clear from Fig. 4.20

that the strategy we have introduced and developed is really useful, since the new

trader is systematically able to get more money than the winner, namely than all

the other agents.

As a further proof of the efficiency of such a strategy, we consider now a real

time series. We have used one company belonging to the S&P500, whose temporal

evolution of the quoted value is reported in Fig. 4.21. Before being able to make use

of the lookup table, one has to tune it on the new time series. More precisely, one has

to correctly identify the time scales, namely to be sure that the time reported along

the y-axis of Fig. 4.19 corresponds to the time involved on the x-axis of Fig. 4.21.

This point is very crucial and unfortunately we do not have any garantee that we

manage to do it because of the non-stationarity of such a time series. In any case,

in order to apply our strategy to Fig. 4.21, we split the time series in two parts: The
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Figure 4.21: Evolution with time of the market price of the shares of a company belonging

to the S&P500 index.

first is used to tune the time with the lookup table, the second is given as input to

the lookup table itself. In other words, after the calibration we buy a certain amount

of shares (related to the initial resources in the model) and we scroll over the time

series to get indications on what to do. If the price increment dp after a time t is

such that (dp,t) on Fig. 4.19 belongs to a sell zone then we sell all the shares, if

(dp,t) is on a buy region we buy shares with respect to the resources, otherwise we

consider the next point of the time series.

The portion of the time series reported in Fig. 4.21 is the one really used for

the simulation, having performed the calibration of the lookup table on a previous

part of it. We have chosen this portion with the constraint that the final value is

identical to the initial because we want to avoid spurious effects due to the presence

of a trend. Our strategy, once applied on Fig. 4.21, pays with an RP of +7%. It

is not so much if we consider that the involved period of time is longer than three

years, but it is without any doubt better than the zero-performance of the index.

There are of course several limitations if one wants to apply such a strategy

to empirical situations. Some of them are due to the assumptions of the model

(no transaction costs, no arbitrage possibilities, zero execution time) and could be

overcome. But at least two others are quite crucial, namely the correct time tuning
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between the empirical series and the modelled time and the perturbing effect due

to a real trade on a real market. The first task has to be performed very accurately

because the use of the lookup table strictly depends on it: A mistake during the

real time - simulated tick translation reduces the potentially optimal strategy to a

nonsense. Unfortunately this point is quite far from being considered solved. The

second problem is inherent and it is a common limitation for all the attempts to get

a model of the stockmarket.

In conclusion one could say that if people lose money in a stock market, usually

they have sold the shares too late. You can buy whenever you want, but once you

have bought you should have a clear strategy in mind. Something like the trading

rectangle.



Chapter 5

Conclusions

We have presented several aspects related to the issue of how stochasticity and non-

stationarity can be included into the theoretical framework of non-linear time series

analysis and system modelling. On the basis of the classical deterministic viewpoint

of Laplace, it is in principle possible to predict the state of a system, at any time,

once the evolution laws and the initial conditions are known. However, they are never

known with arbitrary precision and if the system is chaotic the prediction of its state

is only possible up to a severly bounded time. The study of predictability can also be

seen as a way to characterize the complexity of a dynamical system, at least in the

sense of information theory, data compression and algorithmic complexity theory.

There are essentially three different kinds of non-stationarity, related to different

situations and different approaches to the problem. We have investigated them and

addressed related and challenging tasks from real situations.

• The control parameters of a dynamical system may be non-constant during

the measurement time. We have seen what happens to a recurrence plot when

the time series is generated from a deterministic system, the Hénon map, with

several sets of different parameters; how to use the powerful idea of Takens’ the-

orem and build an over-embedding in order to reconstruct an extended phase

space for a D-dimensional deterministic dynamical system depending on P

parameters with slow time dependence; and finally how to recover the instan-

taneous dynamics of the system and how to use its redundancy to perform

very challenging tasks like noise reduction, data classification and software

corrections of vocal pathologies.
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• The characteristic joint probabilities of a stochastic process can be time de-

pendent, although all underlying transition probabilities are fixed. This is a

typical feature of Brownian motion and its generalizations, processes charac-

terized by a lack of recurrence. We have introduced several tools, like the

analysis of the Hurst exponent, to cope with this situation, and analyzed the

relation between fractional Brownian motion and Lévy flight. The interactions

between stable distributions, scaling behaviour and the divergence of low-order

moments play a fundamental role in this context.

• Data may be characterized by trends and/or seasonality, which affect drasti-

cally the estimation of self-similarity parameters. Assuming the additivity of

trends, the detrended fluctuation analysis is able to remove them and conse-

quently to discover the other source of non-stationarity originating from the

lack of recurrence. This tool is very useful when studying financial time series,

where the seasonality provided by the high volatility at the begin and at the

end of a trading day contributes to the long range correlations expressed, say,

by the Hurst exponent.

We have also discussed some models reproducing further essential properties of

financial markets. These models (e.g. ARCH and GARCH models) are, by their set-

ting, equipped with time independent parameters, but nevertheless they show a kind

of non-stationarity by the fact that large time scales are involved and (anomalous)

diffusion drifts of some of their variables are possible. We have investigated asset

correlations by interpreting their growth rates as observables of a particle system

scenario, being able to separate the collective motion from the single dynamics. We

have also proposed a model of stock markets based on the notion of the book, namely

the data-base where all buying and selling orders are stored. Such a realistic model

may help to better understand the micro-macro relation in economics, in particular

the translation from single expectations of market participants to a global market

price.

Non-stationarity is almost ubiquitous in nature and introduces many complica-

tions in the analysis and modelling of real systems; on the other hand if nature were

stationary, it would not be as beautiful as it is.



Appendix A

The St. Petersburg Paradox

Risk is not knowing what you are doing.

The St. Petersburg game is played by flipping a fair coin until it comes up tails,

and the total number of flips n determines the prize, which equals $2n. Thus if the

coin comes up tails the first time, the prize is $21 = $2, and the game ends. If the

coin comes up heads the first time, it is flipped again. If it comes up tails the second

time, the prize is $22 = $4, and the game ends. If it comes up heads the second time,

it is flipped again. And so on. There are an infinite number of possible sequences

(runs of heads followed by one tail) possible. The probability of a sequence of n flips

is P (n) = 1/2n, and the expected payoff of each consequence is the prize times its

probability, namely it always equals $1.

The expected value of the game is the sum of the expected payoffs of all the

sequences. Since the expected payoff of all possible sequence is $1, and there are an

infinite number of them, this sum is an infinite number of dollars. A rational gambler

would enter a game if and only if the price of entry was less than the expected value.

In the St. Petersburg game, any finite price of entry is smaller than the expected

value of the game. Thus, the rational gambler would play no matter how large the

finite entry price was. But it seems obvious that some prices are too high for a

rational agent to pay to play. Many commentators agree with the estimation in

[33] that few people would pay even $25 to enter such a game. If this is correct,

then something has gone wrong with the standard decision-theory calculations of

expected value above.

Daniel Bernoulli answered to this problem with the observation that the calcu-
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lations make a mistake by adding expected payoffs in dollars, whereas what should

be added are the expected utilities of each consequence. He proposed the widely-

accepted principle that money has a decreasing marginal utility, and suggested that

a realistic measure of the utility of money might be given by the logarithm of the

money amount. In such a case the sum of expected utilities is not infinite: It reaches

a limit of about 0.60206 utiles (worth $4.00). The rational gambler, therefore, would

not pay more than $4 to play and the system would crash, because 25% of the players

should get more than $4 out.

This response to the paradox is, however, unsatisfactory. Let us agree that

money has a decreasing marginal utility, and accept that a reasonable calculation

of the utility of any dollar amount takes the logarithm of the amount in dollars.

The St. Petersburg game as proposed, then, presents no paradox, but it is easy to

construct another St. Petersburg game which is paradoxical, merely by altering the

dollar prizes. Suppose, for example, that instead of paying $2n for a run of n, the

prize were $102n
. The expected utility would be again 1. This version contains much

larger prizes than the original version, and one would presumably be willing to pay

more to play this version than the original. But the expected value of this game

is infinite, and the paradox returns. Of course, it is not clear how in fact dollar

values relate to utility, but we can imagine a generalized paradoxical St. Petersburg

game which offers prizes in utiles at the rate of 2n utiles for a run of n. This game

would have infinite expected value, and the rational gambler should pay any amount,

however large, to play. For simplicity, we continue to discuss the game in terms of

the original dollar prizes, recognizing, however, that the diminishing marginal utility

of dollars may make some revision of the prizes necessary to produce the paradoxical

result.

Consider the following argument. The St. Petersburg game offers the possibility

of huge prizes. A run of forty would, for example, pay a whopping $1.1 trillion. Of

course, this prize happens rarely: Only once in about 1.1 trillion times. Half the

time, the game pays only $2, and you’re 75% likely to wind up with a payment of $4

or less. Your chances of getting more than the entry price of $25 are less than 1/25.

Very low payments are very probable, and very high ones very rare. It’s a foolish

risk to invest more than $25 to play. Many of us are risk-averse, and unwilling to

gamble for a very small chance of a very large prize, because the chance is so small.

This sort of consideration could solve the St. Petersburg paradox.
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But there are objections to this approach. For one thing, a factor for risk-

aversion is not a generally applicable consideration in making rational decisions,

because some people are not risk averse. In fact, some people may enjoy risk. What

should we make, for example, of those people who routinely play state lotteries,

or who gamble at pure games of chance in casinos1? It’s possible to dismiss such

behaviour as merely irrational, but sometimes these players offer the explanation

that they enjoy the excitement of risk. In any case, it’s not at all clear that risk-

aversion can explain why the St. Petersburg game would be widely intuited to have

a fairly small maximum rational entry fee, while so many people at the same time

are not averse to the huge risk entailed by the very small expected probability of

large prizes in lotteries.

The St. Petersburg game is sometimes dismissed because it has infinite expected

value, which is thought not merely practically impossible, but theoretically objec-

tionable - beyond the reach even of thought-experiment. But is it? Imagine you were

offered the following deal. For a price to be negotiated, you will be given permanent

possession of a cash machine with the following property: Every time you punch in

a dollar amount, that amount is extruded. This is not a withdrawal from your ac-

count; neither will you later be billed for it. You can do this as often as you care to.

Now, how much would you offer to pay for this machine? Do you find it impossible

to perform this thought-experiment, or to come up with an answer? Perhaps you

don’t, and your answer is: Any price at all. Provided that you can defer payment

for a suitable time after receiving the machine, you can collect whatever you need

to pay for it from the machine itself.

Of course, there are practical considerations: How long would it take you to

collect, say, a trillion dollars from the machine, if this were its price? Would you

be worn out or dead by then? Any bank would be crazy to offer to sell you an

infinite cash machine, and unfortunately the address of the crazy bank which has

made this offer has been lost. Anyway, there appears to be nothing wrong with this

thought experiment: It imagines an action - buying the machine - with no upper

limit on expected value. We easily ignore practical considerations when calculat-

ing the expected value (in this case, merely potential withdrawals minus purchase

price), which is infinite. Do your intuitions tell you to offer, say, $25 at most for this

1In these games, the entry fee is greater than the expected utility.
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machine? But the only difference between this machine and a single-play St. Peters-

burg game is that this machine guarantees an indefinitely large number of payouts,

while the game offers a one-time lottery from among an indefinitely large number of

possible payouts, each with a certain probability. The only difference between them

is the probability factor : The same difference that exists between a game which gives

you a guaranteed prize of $5, and one which gives you half a chance of $10, and half

a chance of $0. The expected value of both the St. Petersburg game and the infinite

cash machine are both indefinitely large. You should offer any price at all for either.

It appears, then, that the notion of infinite expected value is perfectly reasonable.

There are all sorts of practical considerations which must be considered in making

a real gambling decision. For example, in deciding whether to raise, see, fold, or cash

in and go home, in a particular poker game, you must consider not only probability

and expected value, but also the facts that it’s 5 A.M. and you are cross-eyed from

fatigue and drink; but it’s not expected that classical decision theory has to deal

with these. The St. Petersburg game commits participants to doing what we know

they will not. The casino may have to pay out more than it has. The player may

have to flip a coin longer than physically possible. But this may not show a defect

with choice theory. Classical unrestricted theory is still serving its purpose, which

is modelling the abstract ideal rational agent. It tells us that no amount is too great

to pay as a ideally rationally acceptable entrance fee, and this may be right. What

it’s reasonable for real agents, limited in time, patience, bankroll, and imaginative

capacity to do, given the constraints of the real casino, the real economy, and the

real earth, is another matter, one that the theoretical core of decision theory can

be forgiven for not specifying. From this point of view, the St. Petersburg paradox

does not point out any defect with classical decision theory, and it is not a paradox

after all2.

Relating this game to Lévy distributions introduced in Sec. 2.6, we can observe

that here the rather unprobable tails are so long that even the mean is infinite. The

Lévy solution to the paradox arises from the idea of finite size regularization and

asserts that players should flip the coin up to nM times. In this case the fair entry

price would be exactly $nM and gamblers could even choose what the maximal gain

$2nM should be.

2One could say that the attempt to determine the entry price for the rational gambler is equiv-

alent to determine a characteristic scale for a problem that has no characteristic scale.
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