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Abstract

In this work we define forward and off-forward quark-quark correlation functions
both in a spin and in a light-cone helicity basis. The properties of quark-quark
correlators, which play a crucial role in the investigation of the internal structure
of hadrons, are here examined. We derive constraints on forward and off-forward
quark-quark correlation functions, implementing the known properties of the funda-
mental fields of Quantumchromodynamics (QCD), quarks and gluons, under parity
and time reversal transformations and applying hermiticity.

We develop a new method to construct ansätze for these correlators both in a
spin and in a light-cone helicity basis. These ansätze are based on general principles
and are obtained as tensor products of the set of independent Dirac matrices with the
independent hadronic spinorial products. These are further saturated by tensors de-
pendent on the available vectors, which occur in the definition of the correlators. The
constraints obtained are applied to reduce the number of independent terms form-
ing the ans̈atze. Furthermore we express ordinary and skewed parton distributions
(SPDs) in terms of the independent amplitudes of which the ansätze for forward and
off-forward quark-quark correlators consist. Finally we present the complete leading
order analysis of ordinary and skewed parton distributions and we conclude that the
number of independent skewed parton helicity changing distributions is four.
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1 Introduction

One of the most important aims of high energy physics is to understand the structure of
hadrons, in particular of nucleons. Despite the many improvements in the knowledge of
the internal hadronic structure achieved in the last thirty years, it is essentially unknown
how this structure emerges dynamically. Though Quantum Chromo-dynamics (QCD)
offers a re-normalizable quantum field theory of colour interaction between quarks and
gluons, we do not know how to handle QCD rigorously in the non-perturbative regime
whereconfinementof quarks and gluons inside hadrons takes place.
Since 1969, when the first Deep Inelastic Scattering (DIS) experiments were carried out
at SLAC, the standard approach pursued to investigate hadrons has consisted in collecting
many experimental data on hard scattering processes. The findings from these experi-
ments were compared to the predictions of various models.
In quantum field theory the structure of complex particles like hadrons is described by
hadronic matrix elementsof all possible quark and gluon operators. Matrix elements of
quark and gluon operators are therefore fundamental and universal objects in understand-
ing the internal hadronic structure.
Forward matrix elements of quark and gluon operators, i.e. quark and gluon operators
evaluated between hadronic states of equal momenta, are investigated in inclusive pro-
cesses, for instance in deep inelastic scattering, as they enter in the definition ofparton
(quark and gluon) distributions. Forward hard processes have thus clarified only those
aspects of the hadronic dynamics where initial and final hadronic states are the same.
Recently non-forward high-energy processes, namely Compton scattering experiments in
the deeply virtual kinematical limit and hard diffractive vector-meson productions, have
shown to give access to a new type of nucleon quantities:the skewed parton distributions
(SPDs). These functions are defined as Dirac projections of off-forward quark and gluon
correlators and generalise the ordinary parton distributions. The matrix elements involved
in these processes arenon-diagonalin initial and final state, i.e. quark and gluon operators
are evaluated between hadronic states of unequal momenta.
Ordinary and skewed parton distributions are crucial objects in parametrising our “igno-
rance” about the long-distance physics, since they are related to the experimental observ-
ables in hard processes, but at the same time they can be expressed in QCD as matrix ele-
ments of non local quark and gluon operators within the hadron. Forward hard processes
like DIS have brought much enlightenment in the problem of understanding hadrons and
many researchers have great hope in the possibilities of the new non-forward high-energy
reactions like Deeply Virtual Compton Scattering (DVCS). Because of the partial similar-
ities of DVCS to DIS the same general methods can be applied, because of the differences
new aspects are to be explored.
A main task of this work is to carefully investigate the properties of the forward and off-
forward hadronic matrix elements and to carry out a so-calledtwist-analysisof SPDs.
Following and generalising the method developed for the conventional forward distribu-
tion functions by Mulders’ group in Amsterdam [MT96] we investigate the Dirac content
of the distribution functions in terms of different Dirac projections of the quark correla-
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tion functions. To this aim we first formulate the most generalansatzfor the quark-quark
correlation function, then we analyse its property and finally we trace it with the different
Dirac structures.
An important motivation is that a twist-analysis allows to determine the number of inde-
pendent Skewed Parton Distributions (SPDs) and their pre-factors. According to Hoodb-
hoy and Ji [HJ98], the number of independent chiral-odd SPDs should be two, whereas
Diehl recently argued that the independent leading order parton helicity flip SPDs are
four. [Die01]
The outline of the work is the following.
In the Chapter,“Hadronic structure in hard processes”, in order to introduce the reader
to definitions which we will need from the very beginning we briefly review the con-
cepts of hadronic matrix elements and we define both forward and off-forward distribu-
tion functions, the phenomenological objects which store up the information about non-
perturbative long-distance dynamics. All these concepts will be discussed further in sub-
sequent Chapters. Later on in the Chapter “Hadronic structure in hard processes” we in-
troduce the recent developments in Virtual Compton Scattering focusing on the properties
of this exclusive hard reaction in the Bjorken regime where Virtual Compton Scattering is
analogous to the well-known DIS. At last we mention the so called “spin crisis” and Ji’s
proposal to use the second moment of off-forward distribution functions to disantagle the
different contributions to the spin of the nucleon.[Ji99]
In the Chapter called “Definition of correlation functions” we define the forward and off-
forward quark-quark correlation functions, which are Fourier transforms of forward and
off-forward matrix elements of quark operators and are the fundamental objects whose
properties are investigated in this thesis.
In the Chapter called “Constraints on quark-quark correlators” we derive constraints on
the forward and off-forward quark-quark correlation functions, assuming that the elemen-
tary fields of QCD occurring in the definition of quark-quark correlations satisfy general
requirement of hermiticity and behave in a definite way under parity and time reversal
transformations. These constraints are implemented when building the ansätze for the
correlators.
In the Chapter “Choice of spinors and evaluation of spinorial products” we describe
spinors which are light-cone helicity eigenstates and we derive the corresponding co-
variant spin vectors. Later on it will be necessary to deduce many results in the basis of
light-cone helicity. At last we show how to evaluate spinorial products.
In the Chapter, named “Forward Quark-Quark Correlators”, we deduce the expressions of
the forward quark-quark correlators both in the basis of spin and in the basis of light-cone
helicity. Further we develop two methods to construct ansätze for the correlators.
Ansätze for the off-forward quark-quark correlators are obtained in the Chapter “Off-
forward Quark-Quark Correlators”.
Forward and off-forward distribution functions are briefly discussed in the Chapter “Def-
inition of distribution functions”.
In “Twist-analysis of quark-quark correlators”, we treat the twist-analysis of leading order
forward and off-forward distribution functions.
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Finally in the Appendix we briefly review DVCS kinematics and we show how to imple-
ment the constraints deriving from hermiticity, parity and time reversal on the ansätze for
the forward and off-forward correlators. Lastly we report the Dirac matrices in Weyl rep-
resentation, used to discuss the chiral properties of the forward quark-quark correlators.
This Ph.D. thesis was written partly during my stay at Universitá di Pavia and partly
during my stay at the Bergische Universität in Wuppertal.
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2 Hadronic structure in hard processes

2.1 Hadronic matrix elements of quark and gluon operators

From the point of view of quantum field theory all we can do in order to give a descrip-
tion of complex particles like hadrons is to evaluate the hadronic matrix elements of all
possible quark and gluon operators. Matrix elements of quark and gluon operators are
therefore fundamental objects in understanding the internal hadronic structure and have
the nice property that, once they have been measured in a hard process, the result can
be plugged into the calculation of observables for other hard processes. This property is
calleduniversality.
Factorization theorems state that in many hard scattering processes, when the hard scale
Q2 goes to infinity, it is possible to divide the process into two parts, one completely
described by perturbative theories and the other related to the non-perturbative nature
of hadrons. For finiteQ2 this factorization still holds approximately. It is the non-
perturbative soft hadronic part which can be described by hadronic matrix elements of
quark and gluon field operators. These are the objects whose properties are investigated
in this thesis.
A complete description of the hadron structure in terms of fundamental quanta of QCD
requires to consider matrix elements of quark and gluon operators, both diagonal and
non diagonal in the hadronic states. In particular we will consider quark operators that
contribute at leading order in appropriate hard processes. They are, in fact, relatively
simple to handle and are accessible in experimental measurements.
In inclusive DIS ( see Figures 2.1 and 2.2 ) one measuresstructure functionswhich are
observables derived fromparton (quark and gluon) distributions, which represent not
directly observable quantities.
Parton distribution functions (PDFs) are given by projections with Dirac matrix structures
of hadron state expectation values, i.e.,diagonalmatrix elements, ofbi-local combina-
tions of field operators at a light-like distancez, e.g. quarks described by the fieldsψ,

Φ[Γ](x) =
1

2

∫
dk− d2~kT Tr(Γ Φij(k, P, S)|k+=xP+ , (2.1)

whereΓ is one of the4× 4 Dirac matrices given in the Fierz decomposition and

Φij(k, P, S) =
1

(2π)4

∫
d4z ei k·z 〈P, S|ψj(−

z

2
) ψi(

z

2
) |P, S〉. (2.2)

is the quark-quark correlation function. In the following we will consider only quark-
quark correlation functions.
When tracing the quark-quark correlator withγ+ andγ+γ5 matrices and integrating over
three components of the quark momentum, for instance, one obtains the unpolarized and
polarized parton distributionsf1(x) andg1(x), respectively.
Another type of observable, related to nucleon structure, areelastic form factors, like the
Dirac and Pauli form factorsF1(Q

2) andF2(Q
2) of the nucleon. ( see Figures 2.3 and

2.4 )
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Form factors are defined from matrix elements oflocal combinations of quark field oper-
ators

〈P ′, S ′|ψj(0) γµψi(0) |P, S〉 = ū(P ′, S ′) [γµF1(Q
2) +

iσµνq
ν

2m
F2(Q

2)] u(P, S). (2.3)

In contrast to the above mentioned matrix elements of the inclusive processes, the matrix
elements involved in the definition of form factors arenon-diagonalin initial and final
state; initial and final states in the process are characterized by different momenta,P and
P ′, and in general different spin states, characterized by spin vectorsS andS ′.
These exclusive observables like SPDs provide information about moments ofoff-
forward matrix elements of quark and gluon operators.
The skewed parton distributions (SPDs) for the case of quarks are defined as Dirac pro-
jections ofnon-diagonalhadronic matrix elements ofbi-local quark field operators

Φ̃[Γ](x, ξ, t) =
1

2

∫
dk̄− d2~̄k⊥ Tr(Γ Φ̃ij(k, k′, P, P ′, S, S ′)|k̄+=xP̄+ , (2.4)

whereΦ̃ij(k, k′, P, P ′, S, S ′) is the off-forward quark-quark correlator

Φ̃ij(k, k′, P, P ′, S, S ′) =
1

(2π)4

∫
d4z ei k̄·z 〈P ′, S ′|ψj(−

z

2
) ψi(

z

2
) |P, S〉. (2.5)

The trace ofΦ̃ij(k, k′, P, P ′, S, S ′) with γ+ give a linear combination of the SPDs
H(x, ξ = 0, ∆ = 0) andH̃(x, ξ = 0, ∆ = 0). TracingΦ̃ij(k, k′, P, P ′, S, S ′) with γ+γ5

we have a linear combination of the SPDsE(x, ξ = 0, ∆ = 0) andẼ(x, ξ = 0, ∆ = 0).
We remind that in (2.5)k andk′ are the momenta of the initial and final quark, whilek̄
is defined as the average quark momentumk̄ = k+k′

2
. Since off-forward matrix elements

of quark-quark correlators are evaluated between initial and final states carrying different
momentaP and P ′, one introduces the average momentumP̄ = 1

2
(P + P ′) and the

variable∆ = P ′ − P , whose square∆2 coincides with the Mandelstam variablet.
Skewed parton distributions, as the forward ones, are phenomenological functions that
characterize certain properties of the nucleon exhibited in a class of high-energy scatter-
ing; they reflect the low-energy internal structure of hadrons; the long distance informa-
tion about nucleons’ structure is stored up in non-forward matrix elements of quark and
gluon light-cone operators.
The new distributions generalize and interpolate between the ordinary parton distributions
and elastic form factors and therefore contain a great deal of information on the nucleon
structure.
The following reduction formulae link SPDs to forward distribution functions and to elas-
tic form factors

1. SPDs in theforward limit are identical to the conventional PDFs

Hq(x, ξ = 0, ∆ = 0) = f q
1 (x) (2.6)

H̃q(x, ξ = 0, ∆ = 0) = gq
1(x) (2.7)
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2. the lowest momentsof SPD are the contributions from quarks of flavorq to the
nucleon elastic FF

∑
q

eq

∫ 1

−1

dx Hq(x, ξ, ∆) = F1(∆
2) (2.8)

∑
q

eq

∫ 1

−1

dx Eq(x, ξ, ∆) = F2(∆
2) . (2.9)

The exclusive process of Deeply Virtual Compton Scattering (DVCS), where one can
measure SPDs, thus provides a link between inclusive processes like DIS, where one
measures PDFs, and exclusive processes, where one measures form factors.

XH

γ∗

Figure 2.1:Deep inelastic Scattering. Lepton-hadron scattering via a virtual photon

There are also important differences between the forward distributions and off-forward
ones.
First of all usual parton distributions, besides a logarithmic scale dependence, depend only
on the momentum fractionx, while SPDs depend on three kinematical variables,x, ξ and
t, which characterize the non-forward nature of the new distributions. In particular, the
skewness parameterξ is defined through the ratio−2 ξ = ∆+/P̄+ between the light-cone
plus components of the vectors∆ andP̄ . ( for the definition of light-cone components of
a vector refer to the Appendix ).
Secondly, how one hadron is built up from the fundamental fields of QCD, quarks and
gluons, can be seen through the corresponding hadronic wave functions. If we represent
the partonic distributions in terms of hadronic wave functions, usual parton distributions
represent classical probabilities to find a parton with a specified momentum fractionx
within a hadron. They are obtained considering the wave functions for all configurations
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X

S SP P

pp

q q

Φ soft

hard

Figure 2.2: The square amplitude for the leading contribution to DIS can be factorized into hard
lepton-parton scattering and a soft part. Inclusive scattering allows summing over all
unobservable final statesX of the reaction.

containing this parton with given momentum fractionx, by squaring each wave function
and summing over all possible configurations of the spectator partons. In contrast, the
SPDs cannot be regarded as particle densities, but rather their physical interpretation is
given in terms of a probability amplitude. SPDs are, in fact, the interference of different
hadronic wave functions. One parton with momentum fractionx is extracted from the
hadron and re-inserted with different momentum fractionx′, while the spectator configu-
rations remain the same. What SPDs give access to is the interference between hadronic
states which differ only in the amount of hadron momentum fraction the parton carries,
that actually takes active part in the hard process. Additionally there is also the possibility
that the partonic content between the initial and final state changes , an option which will
not be further pursued here. In the forward limit, when initial and final hadronic states are
equal andx = x′, SPDs become the usual partonic distributions, providing then boundary
conditions for SPDs.
Compared to PDFs, SPDs give access to a great deal of information concerning partonic
and hadronic degrees of freedom. The different properties of PDFs and SPDs reflect the
differences in hard forward and off-forward processes.
The optical theorem (see Fig. 2.5) relates the hadronic part of DIS cross section,W µν , to
the imaginary part of forward virtual Compton scattering amplitudeT µν

2πW µν = ImT µν , (2.10)

where the forward Compton scattering amplitude is

T µν = i

∫
d4z eiq̄·z < P ′| [Jµ(−z

2
)Jν(

z

2
)] |P > , (2.11)

and the hadronic tensorW µν is defined as

W µν =
i

4π

∫
d4z eiq̄·z < P, S | T [ Jµ(−z

2
)Jν(

z

2
) ] | P, S > , (2.12)
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γ∗

H H’

Figure 2.3:Elastic nucleon form factors

hardsoft soft

Figure 2.4:Elastic nucleon form factors. Factorization of the process.

with q̄ = 1
2
(q + q′).

In the case of forward Compton scattering the helicity of the hadron is not flipped and the
statement (2.10) leads us to conclude that the flipping of the hadron helicity is likewise
forbidden in the case of inclusive DIS.
On the contrary DVCS, that represents in general an off-forward reaction, allows for
flipping of the hadron helicity and SPDs provide an exhaustive description of all possible
cases, where helicities of the initial and final hadron may be either equal or unequal.
SPDs contain rich information about hadronic and partonic spin degrees of freedom, as
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Figure 2.5:Diagrammatical representation of the optical theorem

these functions involve after all orbital momentum of the partons and this is the reason
why SPDs seem to play such a relevant role to understand how the spin carried by partons
contributes to built the total spin of the nucleon.

2.2 Deeply Virtual Compton Scattering

As already mentioned, the process where SPDs most naturally emerge is Compton scat-
tering in deeply virtual limit, analogous to the Bjorken limit of DIS.
Compton process, which is the elastic scattering of a photon off a charged object, is a
well-known reaction since it provided one of the first evidences that the electromagnetic
wave is quantized and has the nature of particles.
Compton process was used afterwards to investigate the structure of hadrons, although
this reaction on a composite particle is in general a complicated process.
When a point-like constituent inside the hadron absorbs the photon, the system becomes
excited and propagates in time. Indeed to determine quantum-mechanical propagation of
a composite particle is a difficult task.
Nevertheless in special kinematical regions Compton scattering can be relatively easily
described.
As Low showed, at sufficiently low energy the intermediate propagation is dominated by
the nucleon itself ( other resonances do not contribute ) and the spin dependent part of
Compton amplitude depends on the anomalous magnetic moment of the nucleon and, at
higher order terms in the low-energy expansion, on the electric and magnetic polarizabil-
ities [Low54].
Another region, where the process is relatively easy to handle, is where thet-channel
momentum transfer is large i.e. where the nucleon has a large recoil, and indeed in this
case only the valence Fock states contribute dominantly and one describes the propagation
of virtual quarks and gluons instead of the propagation of a composite system. This is
the well-known Brodsky-Lepage mechanism, where the soft physics, parameterized by
distribution amplitudes, factorizes from the hard physics.
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The description of DVCS reaction, in deep inelastic kinematics and at the leading order
in perturbative QCD, is also simplified since the process is dominated by the propagation
of only one quark as shown by the hand-bag diagram. ( see Fig.2.6 ).
In the Bjorken limit, where energy and momentum of the virtual photon go to infinity at
the same rate (s andQ2 are large butQ2/s is finite and the scattering angleθγ∗γ is close to
zero ), the reaction consists in the scattering of a highly virtual photon on a nucleon, close
to the forward direction. Inside the nucleon a quark absorbs the virtual photon, becomes
highly virtual and propagates perturbatively, then radiates a real photon.
Recently it has been shown that factorization holds for the DVCS amplitude in QCD, up
to power suppressed terms, to all orders in perturbation theory [CF99], [Ji98b]. It has also
been proven that factorization remains valid independent of the virtuality of the emitted
photon, so that it can be also applied to the production of a real photon like in DVCS.
On one side we consider the hard scattering on partons inside the nucleon -hard physics-
that can be calculated perturbatively. Higher-order (loop) corrections can also be included
in the perturbative series, at least in principal, to an arbitrary order in the strong coupling.
On the other side we describe the low energy internal structure of nucleon itself -soft
physics-, parameterizing it in terms of distribution functions. The amplitude of the pro-
cess depends then on few skewed parton distributions.
Discussing VCS it is also worthwhile remarking the principal difficulties the experimen-
talists have to cope with in order to make measurements of observables appearing in
DVCS.
In the( e, e′, γ) reaction on a proton

e + p −→ e′ + p′ + γ, (2.13)

the final photon can be emitted either by the proton, giving access to the VCS process, or
by the electrons, in the so called Bethe-Heitler process.
The BH amplitude can be calculated exactly in QED, if one knows the elastic form factors
of the proton. Light particles such as electrons radiate much more than the heavy proton.
For this reason BH process usually dominates or interferes strongly with the VCS process.
One way to overcome this difficulty is to find kinematical regions where the BH is sup-
pressed. Otherwise one could take advantage of the interference between BH and VCS,
as BH amplitude can be exactly calculated in QED.
Moreover the VCS cross-section is suppressed by a factorα ∼ 1/137 with respect to
the elastic FF case, as one needs to detect the out-coming photon. Another experimental
difficulty is related to the fact that a pion may be emitted in the process and this in turn
decays into two photons, that may jeopardize the VCS result.

2.3 Light-cone dominance of VCS in the Bjorken limit

One introduces SPDs to parameterize the soft physics part in the Compton scattering
amplitude.
The leading twist contribution to the DVCS amplitude in the forward direction is given
by the handbag diagram shown in 2.6.[Ji97b]
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Figure 2.6: Deeply virtual Compton scattering amplitude. The external process resembles the
one of the elastic nucleon form factors, its parton level description is a generalization
of the one for DIS.

In the hand-bag diagram a nucleon of momentumP µ absorbs a virtual photon of momen-
tum qµ, producing an outgoing real photon of momentumq′µ = qµ − ∆µ and a recoil
nucleon of momentumP ′µ = qµ + ∆µ.
To calculate the corresponding amplitude, it is convenient to use a frame where the virtual
photon momentumqµ and the average nucleon momentumP̄ µ are collinear and along the
z-axis.
In the Bjorken limit in the rest frame, theq− component of the virtual photon momentum
is of the orderQ2, whereas the componentq+ is of the order1. Therefore the operator
product in DVCS tensor

T µν = i

∫
d4zeiq̄·z < P ′|[ Jµ(−z

2
)Jν(

z

2
) ]|P > (2.14)

is dominated, as in DIS, by free quark currents separated by a light-like distance.
This is due on the one hand to the dominance of the 4-fold integral in (2.11) by the region
y+ ∼ 1/|q−| and on the other hand to causality which forcesy2 > 0 [Ell77].
In the Bjorken regime Eq.(2.14) reduces to a one dimensional integral along a light-like
line. DVCS in the Bjorken regime will therefore select the leading twist part of the matrix
element of the bi-local quark operator represented by the lower blob in Fig. (2.6).

T µν = i

∫
d4z

(2π)4

{
Tr[

iγµγν

k/− 1
2

∆/ + q/ + iε
+

iγνγµ

k/ + 1
2

∆/ + q/ + iε
]M(k)

}
(2.15)

where

M(k) =

∫
d4zeik̄z < P ′|ψ̄(−z

2
)ψ(

z

2
)|P > (2.16)

whereψ is the quark field.
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T µν(P̄ , q, ∆) =

1
2

(gµν − vνv
′µ − vµv

′ν)

∫ +1

−1

dx(
1

x− ξ/2 + iε
+

1

x + ξ/2− iε
)×

[Hq(x, ξ, t)ū(P ′)γ+u(P ) + Eq(x, ξ, t)ū(P ′)iσ+α ∆α

2m
u(P )] +

i

2
εµναβvαv′β

∫ +1

−1

dx(
1

x− ξ/2 + iε
+

1

x + ξ/2− iε
)×

[H̃q(x, ξ, t)ū(P ′)γ+γ5u(P ) + Ẽq(x, ξ, t)ū(P ′)γ5
∆+

2m
u(P )] (2.17)

where one introduces the two light-like vectorsvµ = (1, 0, 0, 1) andv
′µ = (1, 0, 0,−1).

The leading twist matrix element of (2.17) is parameterized in terms of four SPD
Hq(x, ξ, t), Eq(x, ξ, t), H̃q(x, ξ, t) and Ẽq(x, ξ, t), defined for each flavor (q =
u, d, s, · · ·) that depend upon the variablesx, ξ andt = ∆2.
The SPDsHq(x, ξ, t) andH̃q(x, ξ, t) conserve the helicity of the hadron, whileEq(x, ξ, t)
andẼq(x, ξ, t) allow for helicity flips.
The light-cone momentum fraction, defined asx = k̄+/P̄+ takes values in the interval
[−1, 1]. A negative momentum fraction corresponds to an anti-quark.ξ is the longitudinal
momentum transfer and is bounded by

0 < ξ <

√−∆2/2

m̄
< 1 , (2.18)

because the momentum fractions of the nucleons cannot be negative. In (2.18)m̄ is
defined by the following relation̄m2 = m2 − ∆2

4
.

The active quark with momentumk −∆/2 has longitudinal plus-component momentum
fractionx + ξ, whereas the one with momentumk + ∆/2 has longitudinal momentum
fractionx−ξ. Negative momentum fractions correspond to anti-quarks and for this reason
we can identify two different regions according to whether|x| > ξ or |x| < ξ. If x > ξ
both propagators in Fig.2.6 are quarks and whenx < −ξ they both represent anti-quarks.
In these regions SPD are generalizations of the usual parton distributions. In the region
−ξ < x < ξ one quark propagator represents a quark and the other one an anti-quark. In
this region the SPD behave like a meson distribution amplitude. [GV98]

2.4 Form factors of the QCD energy-momentum tensor and nucleon
spin structure

We have already mentioned how important is to measure observables related to matrix
elements of hadronic quark and gluon operators, since this seems to be the only way to
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understand the internal structure of hadrons. But SPDs turn out to be very useful also in
order to clarify the long-standing problem of the nucleon spin. Moments of the DVCS
skewed parton distributions are in fact related to form factors of the energy-momentum
tensor, from which one can extract the fractions of nuclear spin carried by quarks and
gluons. Since there is no fundamental probe (except the graviton) which couples directly
to the energy-momentum tensor, it appeared hopeless to measure this form factor.
The problem of understanding the spin of the nucleon arose when in 1987 the European
Muon Collaboration (EMC) measured with an unprecedented precision the proton’s spin
dependent structure functionG1(Q

2) in polarized deep-inelastic scattering.
Combining their data with the hyperon beta decay rates, augmented with the assumption
of the flavor SU(3) symmetry, EMC extracted the fraction of the spin nucleon carried in
the spin of quarks [Ji98b]

∆Σ(Q2 = 10GeV 2) = 0.12± 0.17. (2.19)

This result, in flat contradiction with the quark model prediction

∆Σ = 1 , (2.20)

gave rise to the so calledspin crisis.

To better understand the problem one considers the angular momentum operator in
QCD, that, following Ji’s proposal [Ji98b], can be written as the sum of the quark and
gluon contributions, respectivelyJq andJg

~JQCD = ~Jq + ~Jg (2.21)

where

~Jq =

∫
d3r ~r × ~Tq

=

∫
d3r [

1

2
ψ†~Σψ + ψ†~r × (−i ~D)ψ] (2.22)

and
~Jg =

∫
d3r ~r × ( ~E × ~B) (2.23)

The quark and gluon parts of the angular momentum are generated from the quark and
gluon momentum densities~Tq and ~E × ~B, respectively (~E and ~B are the fields).~Σ =
γ5γ0~γ represents the Dirac spin matrix and the corresponding term is clearly the quark
spin contribution.~D = ~∂ + ig ~A is the covariant derivative and the associated term can be
interpreted as the gauge invariant quark orbital angular momentum contribution.
Consider now a nucleon moving in thez direction and polarized in an helicity eigenstate
λ = 1/2. The expectation value ofJz in the nucleon state is

1

2
= Jg(µ) + Lq(µ) +

1

2
∆Σ(µ) (2.24)
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where the three contributions, depending on the scaleµ, denote the matrix elements of
three parts of the angular momentum operator in (2.22) and (2.23).
On the other hand by examining the definition ofJq,g

Jq,g(µ) =< P
1

2
|
∫

d3r(~r × ~tq,g)|P 1

2
> (2.25)

one realizes that the fractions of nucleon spin carried by quarks and gluons can be ex-
tracted from the form factors of the quark and gluon parts of the QCD energy-momentum
tensortµν

q,g.
Using Lorentz covariance and invariance under the discrete symmetries, one can expand
the matrix elements oftµν in terms of four form factors

< P ′|tµν
q,g|P > = ū(P ′)[Aq,g(t)γ

(µ)P̄ (ν) + Bq,g(t)P̄
(µiσν)α∆α/2m

+ Cq,g(t)(∆
µ∆ν − gµνt)/m + C̄q,g(t)g

µνM ]u(P )

Taking the forward limit in theµ = 0 component and integrating over3-space one finds
thatAq,g(0) give the momentum fractions of the nucleon carried by quarks and gluons.
Substituting the expression oftµν

q,g into the nucleon matrix element of (2.25), one finds

Jq,g =
1

2
(Aq,g(0) + Bq,g(0)) (2.26)

The matrix elements of the energy-momentum tensor provide the fractions of the nucleon
spin carried by quarks and gluons.
It is quite difficult to measure the form factors of the energy-momentum tensor, being the
graviton the only particle that could couple to it. Nevertheless, since the quark and gluon
energy-momentum tensors are just the twist two operators occurring in DVCS, one has
the following sum rules [Ji98b]

∫ 1

−1

dx xH(x, ξ, t) = A(t) + ξ2C(t)

∫ 1

−1

dx xE(x, ξ, t) = B(t)− ξ2C(t)

and combining the two preceding relations

∫ 1

−1

dx x(H(x, ξ, t) + E(x, ξ, t)) = A(t) + B(t). (2.27)

Provided one is able to extrapolate the sum rule tot = 0, the separate total quark and total
gluon contribution to the nucleon spin is obtained.
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3 Definition of correlation functions

Quark-quark (gluon-gluon) correlation functionsare the main objects of interest, which
encode complete information on the hadronic structure in terms of quark (gluon) degrees
of freedom.
From dimensional reasoning, the leading order contribution to a given hard process must
involve the minimum number of independent parton fields, which for QCD quantized on
the light-cone is two. Therefore to leading order, one needs to consider only the matrix
elements of bilinear operators at two different points on the light-cone.
In the following we will often refer to the operators which contribute at leading order in
hard processes astwist-twooperators.
Thiseffective definitionof twist, due to Jaffe [Jaf96b], denotes the leading order in1/Q2

(modulo logarithms) at which a particular effect is seen in a particular experiment. In
general, if one object behaves like(1/Q2)p, then it is said to have twistt = 2 + 2p.
We remark that this working definition of twist is not exactly the one used in the context
of operator product expansion, where twist refers to the difference between canonical
dimension and spin of local operators.
Quark-quark correlators are defined as Fourier transforms of the simplest connected diag-
onal and off-diagonal matrix elements of non-local operators, constructed from two quark
fields. Quark-quark correlators are thus4 × 4 matrices in the quark chirality space and
2×2 matrices in the Dirac hadronic space, since we take only nucleons into consideration.
Anti-nucleons can be described separately.
Within usual factorization schemes quark-quark correlators parameterize the contribution
from soft physics, that is a priori unknown. They describe how the fundamental quanta of
QCD can arrange themselves to build up the hadron.

3.1 Forward quark-quark correlation function

We consider the most general form of the forward quark-quark correlation function in
light-cone gaugeA+ = 0, i.e. the bi-local product of two quark fields

Φij(k, P, S) =
1

(2π)4

∫
d4z ei k·z 〈P, S|ψj(−

z

2
) ψi(

z

2
) |P, S〉, (3.28)

where a summation over color indices is implicit. The incoming and outgoing hadron have
equal four-momentaP and spin vectorS, while the momentum of the quark is denoted
by k.
The product of quark fieldsψ that appear in (3.28), is not gauge-invariant unless one
replaces it by

ψj(
z

2
) G(−z

2
−→ z

2
) ψi(

z

2
) (3.29)

where thelink operator is defined as

G(−z

2
−→ z

2
) = P exp(−ig

∫

C

dyµAµ(y) ) (3.30)



16 3 DEFINITION OF CORRELATION FUNCTIONS

andP is the path ordering.
In (3.30) the product in the path integral is evaluated along a curveC that links the two
points− z

2
and z

2
andAµ is the color gauge field.

Because of light-cone dominance of the hard processes we are interested in, we will al-
ways refer to the definition of the quark-quark correlatorΦij(k, P, S) on the light-cone.
On the light-cone it is possible to choose a convenient path in hyperplaney+ = 0,yT = 0
and a gauge where in each pointA+ = 0, such that the link operator reduces to identity.
We consider the trace of the light-cone correlation function with the Dirac matrixγ+,
f1(x), defined as

f1(x) =

∫
d2 ~k⊥ d k+ Tr(Φγ+)

=

∫
dz−

2π
eik+z− 〈P, S|ψ†(−z

2
)γ0 γ+ ψ(

z

2
) |P, S〉|z+=zT =0 . (3.31)

Introducing good components of the quark fields in the light-cone quantization,ψ+ ≡
P+ψ = 1

2
γ−γ+ψ , (3.31) becomes

f1(x) =

∫
dz−

2π
√

2
eik+z− 〈P, S|ψ+

†(−z

2
) ψ+(

z

2
) |P, S〉|z+=zT =0 (3.32)

In (3.32) one can insert a complete set of intermediate statesX and integrate over~k⊥ and
k+

f1(x) =

∫
dz−

2π
√

2

∑
X

< X | ψ+(−z−

2
) | P, S > < P, S | ψ+

†(
z−

2
) | X > (3.33)

obtaining finally with a translation of light-cone coordinates

f1(x) =
1√
2

∑
X

δ( P+ + q+ − P+
X )|< X | ψ+(0) | P, S >|2 (3.34)

that shows that DIS correlation functions have a natural interpretation as light-cone proba-
bility densities. The quantity in (3.34) represents the probability that a quark is annihilated
from | P > giving a state| X > with momentumP+

X − (1− x) P+.
The quark-quark correlation function for DIS is diagrammatically represented in Fig. 3.7.

Measurements of polarization observables, although quite complicated from the experi-
mental point of view, are a unique source of information on the nuclear structure and, in
this sense, the forward quark-quark correlation functions defined contain complete infor-
mation about polarization of the beams of incoming and outgoing particles.

3.2 Off-forward quark-quark correlation function

A complete parameterization of hadrons’ internal structure at leading order needs also
off-diagonal matrix elements of quark-quark operators, which occur in the description of
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Figure 3.7: Diagrammatic representation of the correlation functionΦ. Λ andΛ′ denote initial
and final helicity of the hadron andλ andλ′ the helicities of the parton extracted and
replaced.
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Figure 3.8:Diagrammatic representation of the correlation functionΦ̃

hard processes like DVCS or hard meson production where the initial and final hadron
have different momenta and spin vectors.
In complete analogy with the usual treatment [MT96] we define off-forward quark-quark
correlation functions as Fourier transform of bi-local product of quark fields at two dif-
ferent points.
Non-diagonal quark-quark correlation functions are then given by

Φ̃ij(k, k′, P, P ′, S, S ′) =
1

(2π)4

∫
d4z ei k̄·z 〈P ′, S ′|ψj(−

z

2
) G(−z

2
,
z

2
) ψi(

z

2
) |P, S〉,

(3.35)
where the incoming hadron has momentumP and spinS, the outgoing one has momen-
tum P ′ and spinS ′, while k̄ is the average parton momentum̄k = 1

2
(k + k′); in the

definition above note the presence of the link operatorsG(− z
2
, z

2
), which in light-cone

gauge (A+ = 0) reduces to unity.
The matrix elements of light-cone operators are evaluated between different final and
initial states, characterized by momenta which differ by a quantity∆µ = P ′µ − P µ

absorbed by the emitted real photon. The momenta for the parton extracted and for the
one re-inserted into the hadron, respectively denoted bykµ andk′µ, differ by the same
quantity∆µ = k′µ − kµ.
While diagonal correlators are expectation values of quark-quark operators, off-diagonal
correlators are transition matrix elements of the same operators and provide more general
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information about hadrons compared to usual quark-quark correlators, to which they re-
duce whenever one considers the forward limit ( all four components of the four-vector
∆µ identically equal to zero andS ′ = S ).
The quark-quark correlator is diagrammatically represented in 3.8.
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4 Constraints on quark-quark correlators

We discuss some constraints on the correlation functionsΦ andΦ̃ which appear if one
performs hermitian conjugation, parity and time reversal transformations.
The explicit proof of these constraints descends from properties of the Dirac quark fields
and of the hadronic states under these transformations. We know how the states behave
under such transformations, and we know how the fields transform. This gives con-
sistency conditions (we will use the following notation for momenta and spin vectors:
ã = (a0,−~a)).

4.1 Hermiticity constraint for quark-quark correlators

4.1.1 Hermiticity constraint for forward quark-quark correlators

Given the correlator

Φij(k, P, S) =
1

(2π)4

∫
d 4z ei k·z 〈P, S| ψ̄j(−z/2) ψi(z/2) |P, S〉 (4.36)

let us consider its adjoint(Φ†)ij, defined as

(Φ†)ij = Φ∗
ji =

1

(2π)4

∫
d 4z e−i k·z 〈P, S|ψ†k(−z/2) (γ0)ki ψj(z/2) |P, S〉∗

=
1

(2π)4

∫
d 4z e−i k·z 〈P, S|ψ†j(z/2) (γ0)ik ψk(−z/2) |P, S〉

=
1

(2π)4

∫
d 4z ei k·z 〈P, S|ψ†j(−z/2) (γ0)ik ψk(z/2) |P, S〉

=
1

(2π)4

∫
d 4z ei k·z 〈P, S| ψ̄l(−z/2) (γ0)lj (γ0)ik ψk(z/2) |P, S〉

= (γ0)ik Φkl (γ0)lj .

We end up with the following constraint for the quark-quark correlator

Φ†(k, P, S) = γ0 Φ(k, P, S) γ0 (4.37)

4.1.2 Hermiticity constraint for off-forward quark-quark correlators

Given the correlator

Φ̃ij(k, k′, P, P ′, S, S ′) =
1

(2π)4

∫
d 4z ei k̄·z 〈P ′, S ′| ψ̄j(−z/2) ψi(z/2) |P, S〉 (4.38)

its adjoint(Φ̃†)ij is given as

(Φ̃†)ij =
(
Φ̃†(k, k′, P, P ′, S, S ′)

)
ij

= Φ̃∗
ji (4.39)
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(
Φ̃†(k, k′, P, P ′, S, S ′)

)
ij

= Φ̃∗
ji

=
1

(2π)4

∫
d 4z e−i k̄·z 〈P ′, S ′|ψ†k(−z/2) (γ0)ki ψj(z/2) |P, S〉∗

=
1

(2π)4

∫
d 4z e−i k̄·z 〈P, S|ψ†j(z/2) (γ0)ik ψk(−z/2) |P ′, S ′〉

=
1

(2π)4

∫
d 4z ei k̄·z 〈P, S|ψ†j(−z/2) (γ0)ik ψk(z/2) |P ′, S ′〉

=
1

(2π)4

∫
d 4z ei k̄·z 〈P, S| ψ̄l(−z/2) (γ0)lj (γ0)ik ψk(z/2) |P ′, S ′〉

= (γ0)ik Φ̃kl(k
′, k, P ′, P, S ′, S) (γ0)lj .

We finally obtain the following symmetry relation

Φ̃†(k, k′, P, P ′, S, S ′) = γ0 Φ̃(k′, k, P ′, P, S ′, S) γ0 (4.40)

Note that the order of the arguments in (4.40) is the opposite of the one in (4.37).

4.2 Parity constraint

Parity operatorP transforms four-vectors according to the following rule

xµ = (t, ~r) −→ x̃µ ≡ xµ = (t,−~r). (4.41)

On the other hand three dimensional spin vectors~S, which are axial vectors, do not change

under parity transformation; this implies that helicity, defined asλ = ~S · ~̂P , with ~̂P =
~P

|~P | ,

changes sign under parity transformation since~P , the spatial component of a four vector,
transforms according to (4.41).
As far as the transformation property for a fermion fieldψ(x) is concerned, one looks for
a unitary operatorP satisfying

ψ(x) −→ P ψ(x) P−1 = ηP A ψP(x̃) (4.42)

whereηP is the intrinsic parity of the field andA is a4×4 matrix in Dirac space. Assuming
that bothψ(x) andψP(x̃) satisfy the Dirac equation, after some steps, one obtains that
the transformed field is

ψP(x) = γ0ψ(x̃) (4.43)

4.2.1 Parity constraint for the forward quark-quark correlator

Applying unitarity of the parity operatorP and implementing transformation properties
of quark fields and hadronic states
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Φij(k, P, S) =
1

(2π)4

∫
d 4z ei k·z 〈P, S| P†P ψ̄j(−z/2)P†P ψi(z/2)P†P |P, S〉

=
1

(2π)4

∫
d 4z ei k·z〈P̃ ,−S̃| ψ̄l(−z̃/2)(γ0)lj (γ0)ikψk(z̃/2) |P̃ ,−S̃〉

=
1

(2π)4

∫
d 4z ei k̃·z 〈P̃ ,−S̃| ψ̄l(−z/2)(γ0)lj (γ0)ikψk(z/2) |P̃ ,−S̃〉

= (γ0)ik Φkl(k̃, P̃ ,−S̃) (γ0)lj

whereP ψ(z)P† = γ0ψ(z̃) and from second to third linek · z = k̃ · z̃ andd 4z = d 4z̃ has
been used, one gets the following constraint for quark-quark correlator

Φ(k, P, S) = γ0 Φ(k̃, P̃ ,−S̃) γ0 (4.44)

4.2.2 Parity constraint for the off-forward quark-quark correlator

Let us make use of unitarity of the parity operator to off-forward quark-quark correlator

Φ̃ij(k, k′, P, P ′, S, S ′)

=
1

(2π)4

∫
d 4z ei k̄·z 〈P ′, S ′| P†P ψ̄j(−z/2)P†P ψi(z/2)P†P |P, S〉

=
1

(2π)4

∫
d 4z ei k̄·z〈P̃ ′,−S̃ ′| ψ̄l(−z̃/2)(γ0)lj (γ0)ikψk(z̃/2) |P̃ ,−S̃〉

=
1

(2π)4

∫
d 4z ei ˜̄k·z 〈P̃ ′,−S̃ ′| ψ̄l(−z/2)(γ0)lj (γ0)ikψk(z/2) |P̃ ,−S̃〉

= (γ0)ik Φ̃(k̃, k̃′, P̃ , P̃ ′,−S̃,−S̃ ′) (γ0)lj

whereP ψ(z)P† = γ0ψ(z̃) and from second to third linēk · z = ˜̄k · z̃ andd 4z = d 4z̃ has
been used,

Φ̃(k, k′, P, P ′, S, S ′) = γ0 Φ̃(k̃, k̃′, P̃ , P̃ ′,−S̃,−S̃ ′) γ0 (4.45)

4.3 Time reversal constraint

Time reversal operatorT transforms four-vectors according to the following rule

xµ = (t, ~r) −→ −x̃µ ≡ −xµ = (−t, ~r). (4.46)

Three dimensional spin vectors therefore change sign under this transformation, while
helicity does not. The transformed fermion field is

ψT (x) = i γ5 C ψ(−x̃) (4.47)

whereC = iγ2γ0.
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4.3.1 Time reversal constraint for the forward quark-quark correlator

Anti-unitarity 1 of time reversal operatorT means that

Φij(k, P, S) =
1

(2π)4

∫
d 4z ei k·z 〈P, S| ψ̄j(−z/2) ψi(z/2) |P, S〉

=
1

(2π)4

∫
d 4z ei k·z 〈P, S| T †T ψ̄j(−z/2) T †T ψi(z/2) T †T |P, S〉∗

Considering the complex conjugate of the correlatorΦij(k, P, S) and implementing trans-
formation properties of quark fields and hadronic states

Φ∗
ij(k, P, S) =

1

(2π)4

∫
d 4z e−i k·z 〈P, S| T †T ψ̄j(−z/2) T †T ψi(z/2) T †T |P, S〉

=
1

(2π)4

∫
d 4z e−i k·z 〈P̃ , S̃| (−iγ5Cψ)j(z̃/2) (−iγ5Cψ)i(−z̃/2) |P̃ , S̃〉

=
1

(2π)4

∫
d 4z ei k̃·z〈P̃ , S̃| (−iγ5Cψ)j(−z/2) (−iγ5Cψ)i(z/2) |P̃ , S̃〉

= (−iγ5C)ik Φkl(k̃, P̃ , S̃) (−iγ5C)lj,

whereT ψ(z)T † = −iγ5Cψ(−z̃) and from the second to the third linek · z = k̃ · z̃ and
d 4z = d 4z̃ has been used together with a renaming−z̃ → z, one obtains

Φ∗(k, P, S) = (−iγ5C) Φ(k̃, P̃ , S̃) (−iγ5C) (4.48)

4.3.2 Time reversal constraint for the off-forward quark-quark correlator

Φ̃ij(k, k′, P, P ′, S, S ′) =
1

(2π)4

∫
d 4z ei k̄·z 〈P ′, S ′| ψ̄j(−z/2) ψi(z/2) |P, S〉

=
1

(2π)4

∫
d 4z ei k̄·z 〈P ′, S ′| T †T ψ̄j(−z/2) T †T ψi(z/2) T †T |P, S〉∗

or

1A is anti-linear ifA(λ|φ〉+ µ|ψ〉) = λ∗A|φ〉+ µ∗A |ψ〉.
An anti-linear operator isanti-unitary if A† = A−1.

One thus has〈Aφ|Aψ〉 = 〈Aψ|Aφ〉∗ = 〈ψ|A†Aφ〉∗ = 〈ψ|φ〉 = 〈φ|ψ〉∗.



4.3 Time reversal constraint 23

Φ̃∗
ij(k, k′, P, P ′, S, S ′)

=
1

(2π)4

∫
d 4z e−i k̄·z 〈P ′, S ′| T †T ψ̄j(−z/2) T †T ψi(z/2) T †T |P, S〉

=
1

(2π)4

∫
d 4z e−i k̄·z 〈P̃ ′, S̃ ′| (−iγ5Cψ)j(z̃/2) (−iγ5Cψ)i(−z̃/2) |P̃ , S̃〉

=
1

(2π)4

∫
d 4z ei ˜̄k·z〈P̃ ′, S̃ ′| (−iγ5Cψ)j(−z/2) (−iγ5Cψ)i(z/2) |P̃ , S̃〉

= (−iγ5C)ik Φ̃kl(k̃, k̃′, P̃ , P̃ ′, S̃, S̃ ′) (−iγ5C)lj,

whereT ψ(z)T † = −iγ5Cψ(−z̃) andT |P, S〉 = 〈P̃ , S̃|, and from the second to the third
line k · z = k̃ · z̃ andd 4z = d 4z̃ has been used together with a renaming−z̃ → z. Note
that(−iγ5Cψ)j(z) = ψ̄l(z)(−iγ5C)lj.
Finally we obtain

Φ̃∗
ij(k, k′, P, P ′, S, S ′) = (−iγ5C) Φ̃ (k̃, k̃′, P̃ , P̃ ′, S̃, S̃ ′) (−iγ5C) (4.49)

We will make use of this constraints later on when building the ansätze for forward and
off-forward quark-quark correlators.
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5 Choice of spinors and evaluation of spinorial products

We review different possible choices for spin states and their corresponding spin vectors
in hard processes and introduce the concept oflight-cone helicity. Spin vectors for the
eigenstates of light-cone helicity ( LC helicity ) will be also defined.
We calculate moreover various spinorial products necessary to work out the form factor
decomposition of the vector, axial and tensor currents of the proton and to write down
ans̈atze for the forward and off-forward quark-quark correlation functions. We will per-
form many calculations in the basis of light-cone helicity since, as we will show, one can
easily build ans̈atze for the off-forward quark-quark correlators if the correlators are eval-
uated between eigenstates of LC hadron helicity. On the contrary ansätze for the forward
quark-quark correlation functions will be written both in the basis of eigenstates of LC
helicity and for generic spin states, characterized by a covariant spin vector.

5.1 Definition of spin and helicity states

In a relativistic covariant theory spin emerges automatically, as can be seen for instance
from the Dirac Equation for spin1/2; it is not an additional degree of freedom as in non-
relativistic quantum mechanics. Nevertheless the relativistic description of spin is non-
trivial and only in the rest frame of the particle one can identify a set of spin operators and
use the spin formalism developed for non-relativistic quantum mechanics[CJ80].
To this aim one introduces the Pauli-Lubanski operatorsW σ which are constructed in
terms of the generators of translationsP ρ and the generators of the homogeneous Lorentz
transformationsJµν

W σ = −1

2
εµνρσJ

µνP ρ , (5.50)

with

Jµν =
1

2
σµν + Pµxν − Pνxµ (5.51)

and the angular momentum operators are

J i = −1

2
εiµν Jµν . (5.52)

The Pauli-Lubanski operators satisfy the following commutation relations

[Wµ, Wν ] = i εµνρσ W ρP σ (5.53)

which do not generate the algebra one would expect for spin operators but thanks to the
Pauli-Lubanski operators in the particle rest frame one can defineŝi

ŝi =
1

m
W i (5.54)

which indeed satisfy the commutation relations[sj, sk] = iεjkl s
l.
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Thus one approaches the problem of defining spin vectors and spin states for particles of
arbitrary momentum by acting upon the state of a particle at rest with suitable Lorentz
transformations.
Starting from the particle rest frame, we now look for various solutions of the free Dirac
equation.
For instance we could seek solutions of the Dirac equation which are eigenstates of the
operators of the spin or of the helicityΛ =

~S·~P
|~P | .

The difference between eigenstates of spin and eigenstates of helicity lies in the different
choice of reference frame the observer of the particle adopts.

Let us assume that a particle is at rest in a given reference frame
◦
R in which the particle

momentum is called
◦
P . This frame is moving with momentumP with respect to the

observer’s frameR. There are many possible frames
◦
R which differ as they are rotated

from each other.
One can for instance decide to observe the particle from a reference frameR with re-
spect to which the particle state of motion is obtained by a pure Lorentz transformation
(”boost”). In this case the observer must have before rotated his reference frame in order
to have hisz axis aligned with the direction of motion of the particle. After the boost he
will be compelled to do an inverse rotation, applied to the boosted system, obtaining thus
a set of eigenstates of the spin operators.
Alternatively the observer can apply a boost with speedv to his reference frameR and
then apply a Jacob and Wick rotation such that the particle momentum appears as having
polar angles( θ, φ ). This is the choice usually adopted if one considers helicity eigen-
states.
Let us now explicity construct these states.
For any space-like four-vectorn ( n2 = −1 ), orthogonal to the particle momentumP ,
we have from ( 5.50 ) that

W · n = −1

4
εµνρσn

µP νσρσ = −1

2
γ5 n/ P/ . (5.55)

In the rest frame of the particle where
◦
P

µ

is given as

◦
P

µ

= ( m, 0, 0, 0 ) (5.56)

one can evaluateW · n obtaining

W 0 = 0
~W

m
=

1

2
γ5γ0~γ . (5.57)

If n is chosen along thez axis, then a set of four independent eigenvectors of the spin
projector with eigenvalues+1/2 for u1 andv1 ( spin up ) and−1/2 for u2 andv2 ( spin
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down ) is given by

u1 =




1

0

0

0




u2 =




0

1

0

0




v1 =




0

0

1

0




v2 =




0

0

0

1




(5.58)

wherev1 andv2 correspond to antiparticles solutions.
One can then boost these solutions up to a velocityv = |~P |/P 0 by a pure Lorentz trans-
formation obtaining eigenstates of−W · n′/m wheren′ is now the transform ofn with
respect to the boost

uS(P, +) =

√
1√
2

(P+ + P−) + M




1√
2
(P+ + P−) + M

0

1√
2
(P+ − P−)

P 1 + i P 2




(5.59)

and

uS(P,−) =

√
1√
2

(P+ + P−) + M




0

1√
2
(P+ + P−) + M

P 1 − i P 2

− 1√
2
(P+ − P−)




(5.60)

and similar foruS(P, +) anduS(P,−).
There is a special choice of the light-like vectorn such that its spatial part~n is proportional
to ~P in the reference frame. Such a choice leads to define states which are eigenstates of
helicity

uH(P, +) =

√
1√
2

(P+ + P−) + M




1√
2
(P+ + P−) + M

0

1√
2
(P+ + P−)−M

0




(5.61)

and

uH(P,−) =

√
1√
2

(P+ + P−) + M




0

1√
2
(P+ + P−) + M

0

− 1√
2
(P+ + P−)−M




(5.62)
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In the framework of light-cone quantization one usually considers states which are eigen-
states of light-cone helicity, as for example the spinors of Kogut and Soper [KS70] or
Brodsky and Lepage [LB80].
For the construction of ordinary helicity eigenstates the second step after the longitudinal
boost is a rotation in space which leaves the energy unchanged. For the construction
of LC helicity states instead a so called ”transverse boost” is employed, defined such
that the LC ”plus” component of the momentum is unchanged. Accordingly, ordinary
helicity eigenstates are invariant under spatial rotations, whereas LC helicity eigenstates
are invariant under transverse boosts.
We remark in passing that when speaking of helicity in the following we will always
refer to the light-cone helicity. In the target rest frame the light-cone helicity is thez-
component of the spin vector, while it coincides with the standard definition of helicity in
the infinite momentum frame (P+ →∞ ) or if the particle has zero massm = 0.
A particularly useful spinor basis is obtained from the eigenstates of the projection oper-
atorsP+ = 1

2
γ−γ+ andP− = 1

2
γ+γ−. In the standard representation of Dirac matrices

the eigenstates ofP+ are given by

u+ =
1√
2




1

0

1

0




u− =
1√
2




0

1

0

1




(5.63)

Then one performs a Lorentz boost and subsequently a transverse boost, that leaves the

plus components of vectors unchanged, which together carry the rest momentum
◦
P into

an arbitrary momentumP

uLC(P, +) =
1√
P+

( P+ + γ0m + γ0~γ⊥ ) u+

uLC(P,−) =
1√
P+

( P+ + γ0m + γ0~γ⊥ ) u−

obtaining

uLC(P, +) =
1

(2
√

2 P+)1/2




√
2 P+ + M

P 1 + i P 2

√
2 P+ −M

P 1 + i P 2




uLC(P,−) =
1

(2
√

2 P+)1/2




−P 1 + i P 2

√
2 P+ + M

P 1 − i P 2

−√2 P+ + M .




(5.64)
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Sinceū(p,±) = u†(p,±)γ0 it follows that

ū(P, +)LC =
1

(2
√

2 P+)1/2

(√
2 P+ + m , P1 − i P2 , −

√
2 P+ + m , −P1 + i P2

)

(5.65)

ū(P,−)LC =
1

(2
√

2 P+)1/2

(
−P1 − i P2 ,

√
2 P+ + m , −P1 − i P2 ,

√
2 P+ −m

)

(5.66)
which are normalized according to

ū(P, +) u(P, +) = ū(P,−) u(P,−) = 2 m

ū(P,−) u(P, +) = ū(P, +) u(P,−) = 0 . (5.67)

The spinors for the antiparticles are defined as

vLC(P, +) =
1√
P+

( P+ − γ0m + γ0~γ⊥ ) u−

vLC(P,−) =
1√
P+

( P+ − γ0m + γ0~γ⊥ ) u+

With respect to the eigenstates of ordinary helicity, Brodsky and Lepage’s spinor repre-
sentations are obtained without acting upon the rest frame states with a Wigner rotation.
For zero mass the light-cone helicity spinors are identical to the ordinary helicity spinors,
to which they are mapped by the following transformation

(
uH(P, +)

uH(P,−)

)
= U

(
uLC(P, +)

uLC(P,−)

)
(5.68)

where the unitaryU matrix, representing a rotation, in standard representation is given as

U =
1√

2 (P 0 + P 3)| ~P | (| ~P |+ P 3)



(| ~P |+ P 3)

√
P 0 + | ~P | (P 1 + iP 2)

√
P 0 − | ~P |

−(P 1 − iP 2)

√
P 0 − | ~P | (| ~P |+ P 3)

√
P 0 + | ~P |




In the ultra relativistic limit the difference between usual and light-cone helicity vanishes.
Taking the limitP −→ ∞ we find that the light-cone helicity eigenstates are helicity
eigenstates when viewed from the infinite-momentum frame.
We introduce now the spin vectors corresponding to the helicity eigenstates as introduced
by Brodsky and Lepage.

In the rest frame the particle four-momentum
◦
P

µ

in light-cone coordinates is

◦
P

µ

=

[
m√
2

,
m√
2

, ~0⊥

]
(5.69)
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and, assuming that the particle is polarized along thez axis, the spin vector is given by

Sµ = ( 0, 0, 0, Λ ) (5.70)

or in light-cone coordinates

Sµ =

[
Λ√
2

, − Λ√
2

, ~0⊥

]
(5.71)

where the light-cone helicityΛ can assume values+1 or−1.
Let us now boost the particle along thez direction with a speed equal tov. This produces
a change in the particle momentum

P µ =

[
meφ

√
2

,
me−φ

√
2

, ~0⊥

]
(5.72)

whereφ = 1
2
ln1+v

1−v
, so thatv = tanhφ.

As a consequence of the boost the spin vector becomes

Sµ =

[
Λ eφ

√
2

, −Λ e−φ

√
2

, ~0⊥

]
. (5.73)

One can therefore set a relation between the spin vector and the four-momentum vector
in any frame obtained by boosting the particle from the rest frame

Sµ =
Λ

m
( P µ − m2

P+
v′µ ) (5.74)

wherev′µ =
[

0 , 1 , ~0⊥
]
.

In order to obtain vectors for particles in any other frame related by a transverse boost,
one performs Lorentz transformations which leavev′µ invariant. For instance, to define
the spin vector in the average frame (see the Appendix), we still have to do a transverse
boost. Nevertheless one can easily show that such a transverse boost does not change the
relation between the spin and the momentum vectors.
Spin vectors for either generic pure states or for impure states, so called mixtures of states,

contain also a transverse component of the spin given
[

0 , 0 , ~S⊥
]
.

The complete spin vector will then be written as

Sµ =
Λ

m
(P µ − m2

P+
v
′µ) + Sµ

⊥ . (5.75)

The covariant spin vector in (5.75) satisfies

P µSµ = 0 (5.76)

and if the spin vectorSµ describes a pure state, it is also true thatSµ has length one

S2 = −( Λ2 + S⊥
2 ) = −1 , (5.77)

as it can be shown in the particle rest frame, whereSµ = (0, ~S⊥, Λ), thatS2 = Λ2 + ~S2
⊥ <

1 for a mixed state andΛ2 + ~S2
⊥ = 1 for a pure state.
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5.2 Spinorial products

We calculate the spinorial products

ū(P ′, S ′) Γαβ u(P, S) where Γ = 1, γα, γ5, γαγ5, σ
αβ , (5.78)

which we will need later on to build ansätze for forward and off-forward quark-quark
correlation functions.̄u(P ′, S ′) andu(P, S) are assumed to be eigenstates of light-cone
helicity whose corresponding covariant vectors are defined in (5.74).
Studying the form factor decomposition of the tensor current of the proton [Die01], we
will need additionally the Dirac bilinears formed by the followingΓ structures

Γ+j = σ+j

Γ+j = ε+jρσ ∆ρP̄σ

Γ+j = ε+jρσ ∆ργσ

Γ+j = ε+jρσ P̄ργσ , (5.79)

which will be also computed below.
We report two methods to calculate spinorial products.

5.2.1 Method via traces

With the method, which we name “via traces”, the spinorial products in (5.78) are derived
as

ū(P ′, S ′) Γ u(P, S) =
(ū(P ′, S ′)Γ u(P, S))(ū(P ′, S ′) u(P, S))∗

|ū(P ′, S ′) u(P, S)| × |ū(P ′, S ′) u(P, S)|
(ū(P ′, S ′) u(P, S))∗

=
Tr

[
( P/ + m)1

2
(1 + γ5 S/)( P/′ + m)1

2
(1 + γ5 S/′) Γ

]
√

Tr
[
( P/ + m)1

2
(1 + γ5 S/)( P/′ + m)1

2
(1 + γ5 S/′)

]

× |ū(P ′, S ′) u(P, S)|
(ū(P ′, S ′) u(P, S))∗

(5.80)

where the first term in (5.80) is calculated from the traces

Tr
[
( P/ + m)1

2
(1 + γ5 S/)( P/′ + m)1

2
(1 + γ5 S/′) Γ

]
√

Tr
[
( P/ + m)1

2
(1 + γ5 S/)( P/′ + m)1

2
(1 + γ5 S/′)

] (5.81)

obtained multiplyingū(P ′, S ′)u(P, S) by (ū(P ′, S ′) u(P, S))∗/
√
|ū(P ′, S ′) u(P, S)|2

and the second term in (5.80) is a phase given by

ū(P ′, S ′) u(P, S) = phase× |ū(P ′, S ′) u(P, S)| (5.82)

which depends upon the initial and final spinor, i.e. we need to know the result of
ū(P ′, S ′) u(P, S) for any combination of helicities in the initial and final spinor.
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The calculation of the phase

phase =
1

(phase)∗
(5.83)

is done by substituting the explicit spinors, quoted in (5.64), in the spinorial product
ū(P ′, S ′) u(P, S). Here we quote only the results

ū(P ′, S ′) Γ u(P, S) = |ū(P ′, S ′) Γ u(P, S)| × 1 for Λ′ = Λ = ±1

= |ū(P ′, S ′) Γ u(P, S)| ×



−η for Λ′ = −Λ = −1

η∗ for Λ′ = −Λ = +1

having defined the phase factorη as

η =
∆1 + i ∆2

|~∆⊥|
, (5.84)

where

|~∆⊥| =
√
−4ξ2m2

1− ξ2
+

4ξ2m2 + ~∆2
⊥

1− ξ2

√
1− ξ2 =

√
t0 − t

√
1− ξ2 . (5.85)

5.2.2 Spinor products evaluated with the trace for the forward case

With the parameterization (B.255), defined in the Appendix andP · P ′ = m2 − t/2 and
for LC helicity eigenstates with spin vector as in (5.74), the results for helicity non-flip,
i.e.,Λ′ = Λ are

scalar: | ū(P ′, S ′) u(P, S) | = 2 m√
1− ξ2

vector: | ū(P ′, S ′) γ+ u(P, S) | = 2 P̄+
√

1− ξ2

pseudo: | ū(P ′, S ′) γ5 u(P, S) | = Λ
2 mξ√
1− ξ2

axial : | ū(P ′, S ′) γ+γ5 u(P, S) | = Λ 2 P̄+
√

1− ξ2 (5.86)

and for helicity flip, i.e.,Λ′ = −Λ,

scalar: | ū(P ′, S ′) u(P, S) | =
(−4 ξ2 m2

1− ξ2
− t

)1/2

=
√

t0 − t

pseudo: | ū(P ′, S ′) γ5 u(P, S) | = Λ

(−4 ξ2 m2

1− ξ2
− t

)1/2

= Λ
√

t0 − t .

(5.87)
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The traces involvingγ+ (vector) andγ+γ5 (axial) vanish.

5.2.3 Spinor products evaluated with the trace method for the off-forward case

With the parameterization (B.255) andP ·P ′ = m2− t/2 the results for helicity non-flip,
i.e.,Λ′ = Λ are

scalar: | ū(P ′, Λ′) u(P, Λ) | = 2 m√
1− ξ2

vector: | ū(P ′, Λ′) γµ u(P, Λ) | = 2P̄ µ

√
1− ξ2

+
ξ∆µ

√
1− ξ2

+
t v′µ

2P̄+
√

1− ξ2

− Λ
i εµνρσP̄ν∆ρv

′
σ

P̄ +
√

1− ξ2

pseudo: | ū(P ′, Λ′) γ5 u(P, Λ) | = Λ
2 mξ√
1− ξ2

axial : ū(P ′, Λ′) γµγ5 u(P, Λ) =
Λ 2 P̄ µ

√
1− ξ2

+
Λξ∆µ

√
1− ξ2

+
Λ(t− 4m2) v′µ

2 P̄+
√

1− ξ2

− i εµνρσP̄ν∆ρv
′
σ

P̄ +
√

1− ξ2

tensor: | ū(P ′, Λ′) σµν u(P, Λ) | = im (∆µv′ν −∆νv′µ)

P̄+
√

1− ξ2

+ Λ
2mεµνρσP̄ρv

′
σ

P̄ +
√

1− ξ2
(5.88)

and for helicity flip, i.e.,Λ′ = −Λ,

scalar: | ū(P ′, Λ′) u(P, Λ) | = (
−4 ξ2 m2

1− ξ2
− t)

1/2

=
√

t0 − t

vector: | ū(P ′, Λ′) γµ u(P, Λ) | = 4mξ2P̄ µ

(1− ξ2)
√

t0 − t
− 2mξ∆µ

(1− ξ2)
√

t0 − t
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− mt v′µ

P̄+(1− ξ2)
√

t0 − t
+ Λ

i 2mξεµνρσP̄ν∆ρv
′
σ

P̄ + (1− ξ2)
√

t0 − t

pseudo: | ū(P ′, Λ′) γ5 u(P, Λ) | = Λ
√

t0 − t

axial : | ū(P ′, Λ′) γµγ5 u(P, Λ) | = − Λ 4mξ P̄ µ

(1− ξ2)
√

t0 − t
− Λ 2m∆µ

(1− ξ2)
√

t0 − t

− Λ mξ(t− 4m2) v′µ

P̄+ (1− ξ2)
√

t0 − t
− i 2mεµνρσP̄ν∆ρv

′
σ

P̄+ (1− ξ2)
√

t0 − t

tensor: | ū(P ′, Λ′) σµν u(P, Λ) | = − i 2
(
P̄ µ∆ν − P̄ ν∆µ

)
√

t0 − t

− i 2 m2 (∆µv′ν −∆νv′µ)

P̄+ (1− ξ2)
√

t0 − t
− Λ 4m2ξ εµνρσP̄ρv

′
σ

P̄+ (1− ξ2)
√

t0 − t

+
2Λ εµνρσP̄ρ∆σ√

t0 − t
(5.89)

Here we quote also the results for the bilinears mentioned in (5.79) which we will need
later on to expand the form factor decomposition of the tensor current of the proton.
Notice that latin indicesi, j = 1, 2, while greek ones run from0 to 3.
For the helicity non-flip case, i. e.,Λ′ = Λ, we have

| ū(P ′, S ′) ε+jρσP̄ργσ u(P, S) | =
−i P̄+ Λ∆j + ξ ε+jρσP̄ρ∆σ√

1− ξ2

| ū(P ′, S ′) σ+j γ5 u(P, S) | =
ε+jρσP̄ρ∆σ ξ

√
1− ξ2

(1 + ξ) m

| ū(P ′, S ′) ε+jρσP̄ρ∆σ u(P, S) | = −2mε+jρσP̄ρ∆σ

√
−1 + ξ2

| ū(P ′, S ′) ε+jρσ∆ργσ u(P, S) | =
2 (P̄+Λ∆ji ξ − ε+jρσP̄ρ∆σ)√

−1 + ξ2
(5.90)

The results for the helicity flip case, i.e.,Λ′ = −Λ, are

| ū(P ′, S ′)
ε+jρσP̄ργσ

m
u(P, S) | = −2

mξ(i P̄+ ∆jΛ− ε+jρσP̄ρ∆σ)√
−1 + ξ2

√
t0 − t

| ū(P ′, S ′) σ+j γ5 u(P, S) | = −2
iP̄+Λ∆j + ε+jρσP̄ρ∆σ√

t0 − t
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| ū(P ′, S ′) ε+jρσP̄ρ∆σ u(P, S) | = −ε+jρσP̄ρ∆σ (4m2ξ2 − ξ2 t + t)√
1− ξ2

√
t0 − t

| ū(P ′, S ′) ε+jρσ∆ργσ u(P, S) | = 4mξ2 P̄+Λ∆ji− ε+jρσP̄ρ∆σ√
−1 + ξ2

√
t0 − t

(5.91)

Notice that we assume thatε+1−2 = 1 sinceε0123 = 1.

5.2.4 Evaluation from explicit representation of LC-helicity spinors

The method “via traces” discussed above allows to determine spinorial products if the
factor

√
Tr

[
( P/ + m)

1

2
(1 + γ5 S/)( P/′ + m)

1

2
(1 + γ5 S/′)

]
=

√
|ū(P ′, S ′) u(P, S)|2 (5.92)

by which we divide the trace in (5.80) in order to normalize it is different from zero. This
factor is always different from zero except in the forward case when the initial and final
states carry opposite helicities. Indeed the factor in (5.92) corresponds to the probability
to find a spinor, carrying for instance helicity−, which spontaneously transforms to a
spinor having helicity+ and this probability is clearly zero. In this case we need an
alternative method to calculate the spinorial products which does not rely on calculating
traces.
Actually we can determine the spinorial products also by substituting directly the explicit
expressions of the spinors defined by Brodsky and Lepage [LB80], quoted in (5.64), di-
rectly in the definition of the various spinorial products (5.78). By evaluating the spinorial
products through this direct method we have also the correct phase information.



35

6 Forward quark-quark correlators

We discuss forward quark-quark correlators in both spin and light-cone helicity basis.
We then provide two methods to model ansätze for forward correlators. The first method
discussed below, based on a proposal of Daniel Boer [D.B], can be applied to build ansätze
for correlators defined only with respect to a spin basis. We develop further an alternative
method to construct ansätze for forward quark-quark correlators in both spin and light-
cone helicity basis. This alternative method will be easily generalized to build ansätze for
off-forward quark-quark correlators.
Applying the alternative method, we then provide ansätze for forward quark-quark helic-
ity correlators for the cases when the helicity of the hadron is flipped or not flipped.
Finally we show which constraints on forward quark-quark correlation functions are im-
plied by conservation of helicity.

6.1 Method to construct a general ansatz

In order to construct the most general ansatz for the DIS quark-quark correlation function

Φij(k, P, S) =
1

(2π)4

∫
d4z ei k·z 〈P, S|ψj(−

z

2
) ψi(

z

2
) |P, S〉, (6.93)

we propose a method that has the advantage of easily taking into account all possible
independent structures. We note that the quark-quark correlator in (6.93) is a4×4 matrix
in Dirac space, a scalar in Lorentz space and can only depend on the three independent
external (axial) vectors that appear in the process

[ k P S ] (6.94)

Let us thus consider all possible4 × 4 matrices which are not products of other4 × 4
matrices (since those will be generated automatically)

[ 1 γµ γ5 ] (6.95)

and multiply these matrices with the three vectorsk, P andS, requiring the following
two additional rules to be fulfilled

1. constraint derived from invariance under parity transformation (4.44)

2. linearity inS

We have already shown how the parity constraint arises.
Linearity inS follows from Lorentz invariance that demands the hadronic tensorW µν to
be linear in the initial and final nucleon spinorsū(P, S) andu(P, S). Tensors constructed
from the spinors are either spin independent (ū(P, S)γµu(P, S) = 2P µ) or linear inSµ

(ū(P, S)γµγ5u(P, S) = 2Sµ). ([Jaf96b])



36 6 FORWARD QUARK-QUARK CORRELATORS

Combining together Dirac matrices and the three vectors defines a set of basic elements

{1, k/, P/, S/γ5, γ5(k · S)} (6.96)

where we will treat the unit matrix separately, since multiplying any other matrix with it
does not produce a new structure.
We note that only one pseudo-scalar product is listed in (6.96). As a matter of fact one
should consider all possible scalar products which can be built fromk, P andS. We
will treat explicity the dependence on the scalar involving the spin vectorS, while the
pre-factorsAi, which multiply every structure, will depend onk · P andk2.
The most general ansatz is obtained by writing down all possible products of elements
of the above set which are in accordance with the rules and produce new structures. The
maximum number of the products is limited by the observation that self-products do not
result in new structures, since12 = 1, k/2 = k2 1, P/2 = P 2 1, ( S/γ5)

2 = −1 for pure
states and( S/γ5)

2 ∝ 1 for mixed states and(γ5(k · S))2 is forbidden by requirement of
linearity in S. Thus, the independent structures are obtained by products of 4 or less
elements of the basic set.
According to this procedure the most general ansatz for the quark-quark correlation func-
tion in DIS contains the following structures (we order according to the numbern of basic
elements multiplied in a product)

• n=1:
1 k/ P/ S/γ5 γ5(k · S)

• n=2:
k/ P/ k/ S/γ5 k/γ5(k · S) P/ S/γ5 P/γ5(k · S)

• n=3:
k/ P/ S/γ5 k/ P/γ5(k · S)

(6.97)

The method results in producing 12 independent structures. All other products are forbid-
den by virtue of the parity constraint or by the requirement of linearity inS.
Not all of those structures fulfill the constraints we obtained implementing hermiticity and
time-reversal transformations. We look for linear combinations, which obey the constraint
from hermiticity and have a symmetry under time reversal. We use the identity

γµγν = gµν − iσµν (6.98)

which can be used to rewrite any structurea/ b/ as

a/ b/ = a · b− iσµνaµbν (6.99)

from which we keep theσµνaµbν term only, since the first one is proportional to1. In
addition we make use of a second identity

γ5γµγνγρ = ieσµνργ
σ + gνργ5γµ − gµργ5γν + gνργ5γµ (6.100)
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which allows to re-express the structureγ5 a/ b/ c/ as

γ5 a/ b/ c/ = iεσµνργ
σaµbνcρ + gνρaνbργ

5 c/− gµρbµcργ
5 a/ + gνρcµaργ

5 b/ (6.101)

from which we keep theiεσµνργ
σaµbνcρ term only, since the other ones are either already

taken into account.
These are the linear combinations looked for. Finally we end up with the ansatz

Φ(k, P, S) = mA1 1 + A2 P/ + A3 k/ + mA6 S/γ5 + (A7/m) (k · S) P/γ5

+ (A8/m) (k · S) k/γ5 + i A9 σµνγ5 SµPν

+ i A10 σµνγ5 Sµkν + i (A11/m
2) (k · S) σµνγ5 kµPν , (6.102)

where factorsm andi have been added, such that all the amplitudesAi are real and have
the same mass dimension. If the constraint from time reversal invariance is not applicable
there are the additional terms

Φ(k, P, S) = . . . + (A4/m) σµνPµkν + i A5 (k · S)γ5

+ (A12/m) εµνρσγ
µP νkρSσ . (6.103)

This ansatz has been extensively used by Mulders’ group in Amsterdam to classify the
forward PDFs and to derive relations between them. [JMR97b, JMR97a, BM98, MR01,
Mul99, Mul97, MT96, Mula, BBHM00b]
By definition, the different parton distributions are obtained by tracing the forward quark-
quark correlator (3.28) with different Diracγ matrices ( see (2.2) ). If one traces the ansatz
given in (6.102) and (6.103) with the various Dirac structures, one expresses the PDFs in
terms of the amplitudes forming this ansatz and can thus set relations between them.

6.2 Alternative method to construct an ansatz

We introduce an alternative method that reproduces the ansatz given in (6.102) and in
(6.103) for the forward quark-quark correlator in the spin basis (3.28) and is easily gener-
alized to describe quark-quark correlators in an helicity basis.
With this alternative method the ansatz is written as a product of the partonic and the
hadronic sector separately and this leaves us the freedom to choose special initial and
final hadronic spin states. The hadronic sector is delineated by considering all possible
independent spinorial products evaluated between initial and final hadronic spin states. In
this way one can choose to build correlators between any initial or final spin state. We
consider the case of hadronic spin states which are eigenstates of light-cone helicity.
From (3.28) it is clear thatΦi,j(k, P, S) has to be a Lorentz scalar while it represents a
4⊗ 4 matrix in Dirac partonic space; the most general ansatz is thus obtained through the
following tensor product

Φi,j(k, P, S) = Γ̂
µ1···µp

i,j ⊗ ūα(P, S) Γαβ
ν1···νp uβ(P, S) tµ1···µpν1···νp( P, k ) , (6.104)
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where Γ̂i,j denote the 16 Fierz independent4 ⊗ 4 partonic Dirac matrices and
ūα(P, S) Γαβuβ(P, S) the independent hadronic spinor products;tµ1···µpν1···νp(P, k) rep-
resent all possible independent tensors, constructed from the kinematical variablesP , k,
the metric tensorgαβ and the antisymmetric tensorεαβρσ, which have rank equal to the
rank of the tensor formed by the partonic matrices and the spinorial products.
Moreover we require that the tensorstµ1···µpν1···νp(P, k) contain at most one Levi-Civita
symbol since tensors with more than one do not result in new structures. For instance
let us consider the case of a tensortµ1···µpν1···νp( P, k ) constructed from two Levi-Civita
tensors. Not more than two ( or less ) indices of each Levi-Civita tensors can be con-
tracted with the only two available vectorsP andk. Thus some or all indices of the
two Levi-Civita symbols have to be contracted between themselves; alternatively each
antisymmetric tensor could have one or at most two indices contracted with a structure
ū(P, S) σαβ u(P, S) deriving from the hadronic sector or with a partonicσµν .
If the Levi-Civita tensors are contracted between themselves, the following relations re-
duces the product of two Levi-Civita tensors to the product of Kronecker symbols from
which no new structure arise

εαβµν εαβµν = −4!

εαβµν εωβµν = −3!δω
α (6.105)

εαβµν εωτµν = −2!δω
αδτ

β + 2!δτ
αδω

β

εαβµν εωτσν = −δω
αδτ

βδσ
µ + δω

αδσ
βδτ

µ + δτ
αδω

β δσ
µ − δτ

αδσ
βδω

µ + δσ
αδω

β δσ
µ + δσ

αδσ
βδω

µ .

In case the Levi-Civita tensors are contracted with aσ matrix, from each contraction a
γ5σ structure derives

σµν εαβµρ = −iγ5( σαβ δν
ρ − σαρ δν

β + σβρ δν
α )

σµν εαβµν = −2iγ5σαβ . (6.106)

If both the Levi-Civita symbols are contracted with aσ, then the twoγ5σ reduce toσ
structures which are already present in the ansatz. The remaining possibility, i.e. one
Levi-Civita contracted with aσ and one with another Levi-Civita tensor, can be traced
back to the two previously discussed.
Similarly the case of tensorstµ1···µpν1···νp( P, k ) with more than two Levi-Civita symbols
can be excluded.
We remark also that in building the ansatz as indicated in (6.104) the kinematical variables
k andP are taken into account in the tensorstµ1···µpν1···νp(P, k), while the information
concerning the spin of the hadron is entirely contained in the spinor products listed below

ū(P, S) u(P, S) = 2 m

ū(P, S) γα u(P, S) = 2 Pα
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ū(P, S) γ5 u(P, S) = P · S = 0

ū(P, S) γαγ5 u(P, S) = 2m Sα

ū(P, S) σαβ u(P, S) = −2 εαβρσPρSσ (6.107)

Only two spinorial products are independent since applying Gordon identities the vector
product can be obtained from the scalar one

ū(P, S) u(P, S) Pα = M ū(P, S) γα u(P, S) (6.108)

and the axial spinor product from the tensor one whenσαβ is contracted with the vector
Pβ

m ū(P, S) γαγ5 u(P, S) = ū(P, S) i σαβ g5Pβu(P, S) . (6.109)

According to (6.104) we now write all possible products resulting from the multiplication
of any4× 4 partonic Dirac matrix

[ 1̂ γ̂µ γ̂5 γ̂µγ̂5 ˆσµν ] , (6.110)

with the two independent spinorial products

ū(P, S) u(P, S) ū(P, S) σαβ u(P, S) (6.111)

and contract the indices with tensorstµ1···µpν1···νp( P, k ) of the appropriate rank to obtain
a scalar

1̂ ⊗
{

ū(P, S) u(P, S) → ma1 1
ū(P, S)σαβu(P, S)εαβρσP

ρkσ → 4m2 (k · S)

γ̂5 ⊗
{

ū(P, S)u(P, S) → 2mγ5

ū(P, S)σαβu(P, S)εαβρσP
ρkσ → 4m2a5(k · S)γ5

γ̂µ ⊗ ū(P, S)u(P, S)

{
Pµ → 2ma2 P/
kµ → 2ma3 k/

γ̂µ ⊗ ū(P, S)σαβu(P, S)





gµαkβ → 2 a12 εµνρσγ
µP νkρSσ

εµαβρP
ρ → −4m2 S/

εµαβρk
ρ → 4 P/(k · S)− 4(P · k) S/

εαβρσP
ρkσPµ → 4m2 P/(k · S)

εαβρσP
ρkσkµ → 4m2 k/(k · S)

εµαρσP
ρkσkβ → −2 P/ (P · k)(k · S) + 2 k/(k · S)m2

→ +2 S/(P · k)2 − 2 S/(k · k)m2

γ̂µγ̂5 ⊗ ū(P, S)u(P, S)

{
Pµ → −2mγ5 P/
kµ → −2mγ5 k/
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γ̂µγ̂5⊗ū(P, S)σαβu(P, S)





gµαkβ → −2 γ5εµνρσγ
µP νkρSσ

εµαβρP
ρ → 4m2 γ5 a6 S/

εµαβρk
ρ → −4a7 P/ γ5(k · S) + 4a6 S/ γ5(P · k)

εαβρσP
ρkσPµ → −4a7m

2 γ5 P/(k · S)
εαβρσP

ρkσkµ → −4a8m
2 γ5 k/(k · S)

εµαρσP
ρkσkβ → 2a7 P/ γ5 (P · k)(k · S)−

→ 2a8 k/ γ5 (k · S)m2 − 2a6 S/ γ5 (P · k)2

→ +2a6 S/ γ5 (k · k)m2

σ̂µν ⊗ ū(P, S)u(P, S)

{
Pµkµ → 2m a4 σµνPµkν

εµνρσk
ρP σ → −4mi γ5 σµνPµkν

σ̂µν⊗ū(P, S)σαβu(P, S)





gµαgνβ → 4i a9 σµν PµSνγ5

gµαPνkβ → 2i a9 σµν PµSνγ5(k · P )−
→ 2i a10 σµνkµSνγ5m

2

gµαkνkβ → 2ia9 σµνγ5 kµPν (k · S)−
→ 2ia10 σµνSµPνγ5k.k+
→ 2ia11 σµνSµkνγ5(k · P )

εαβρσPµkνP
ρkσ → 4m2 (k · S)σµνPµkν

εµναβ → 8 σµνPµSν

gµαενβρσP
ρkσ → −2σµνPµSν(k · P ) + 2m2σµνkµSν

εµαβρP
ρPν → 4m2 σµνkµSν

εαµβρP
ρkν → 4m2 σµνSµkν + 4σµνPµSν(k · P )

εµαβρk
ρPν → −4 (k · P ) σµνSµPν

εµαβρk
ρkν → 4 σµνPµkν(k · S) + 4 σµνkµSν(k · P )

εµναρP
ρkβ → 4σµνPµSν(k · P )− 4σµνkµSνm

2

εµναρk
ρkβ → 4σµνkµPν(k · S) + 4σµνPµSνk.k−

→ 4σµνkµSν(k · P )

(6.112)

The structures which in the previous list are not multiplied by a coefficientai (i =
1, . . . , 12), are forbidden by the parity constraint (4.44) reducing the list of independent
structures to the 12 given in (6.102) and in (6.103). This guarantees that the two methods
developed to construct the ansatz for the quark-quark correlators are completely equiva-
lent. The advantage of the second method proposed is that it can be adapted to build the
ansatz for the off-forward quark-quark correlators. Indeed in the off-forward case we will
show that one needs to introduce the quark-quark correlators with respect to an helicity
basis, rather that in the usual spin basis.
Starting from the forward case we present now the concept of quark-quark correlators in
the helicity basis.
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6.3 Forward quark-quark correlators in the helicity basis

The forward quark-quark correlator is defined in a spin basis as

Φij(k, P, S) =
1

(2π)4

∫
d4z ei k·z 〈P, S|ψj(−

z

2
) ψi(

z

2
) |P, S〉 (6.113)

where the target hadron, a spin1
2

target, characterized by the spin vectorSµ ( see Ap-
pendix for the derivation )

Sµ =
Λ

m
(P µ − m2

P+
v
′µ) + Sµ

⊥ , (6.114)

can be either in a pure state or in an mixed state. Mixed states, likes beams or targets
which are incoherent mixtures of spin states, are described by spin densities.
As Φij can be either independent or linear dependent onS, in the target rest frame one
can then expand it as [Jaf96b]

Φij(S) = Φij0 + ΦijΛΛ + ΦijS1S
1
⊥ + ΦijS2S

2
⊥ (6.115)

where the coefficientsΦ0, ΦΛ, ΦS1 andΦS2, independent of the spin vector, multiply the
components ofSµ, that in the rest frame is given asS = (0, S1

⊥, S2
⊥, Λ), whereΛ coincides

with the third component of the spinS3. We remark that this decomposition is valid only
in the rest-frame of the particle.
We want now to transform the quark-quark correlatorΦ from the spin basis to the helicity
basis. We introduce a spin density matrixρ, built up, for instance, from eigenstates of the
light-cone helicity| Λ >

ρ =
∑

Λ

pΛ | Λ > < Λ | . (6.116)

ρΛΛ′(S) =
1

2m
ū(P, Λ′)

1

2
(1 + γ5γµS

µ) u(P, Λ) . (6.117)

Assuming that we consider only protons and not anti-protons and thus the two spinors
u(P, Λ) andu(P, Λ′) are the positive energy light-cone helicity eigenstates in the particle
rest frame which in the standard representation can be written as [BD65]

u+(P, Λ) =




√
2m
0
0
0


 for spin

1

2

u−(P, Λ) =




0√
2m
0
0


 for spin − 1

2
, (6.118)
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one can obtain the exact expression of the density matrixρΛΛ′ that reads

ρ++(S) = 1/2 (S3 + 1)

ρ+−(S) = −1/2 (−S1 + i S2)

ρ−+(S) = 1/2 (S1 + i S2)

ρ++(S) = −1/2 (S3 − 1) (6.119)

By consideringρΛΛ′

ρΛΛ′ =
1

2
(1 + ~σ · ~S)ΛΛ′ =

1

2

[
1 + Λ S1

⊥ − iS2
⊥

S1
⊥ + iS2

⊥ 1− Λ

]

ΛΛ′

(6.120)

we can then express the quark-quark correlation function as

Φij(S) = Tr [ ρΛΛ′(S)ΦΛ′i; Λj ] =
∑

ΛΛ′=±1

ρΛΛ′(S)ΦΛ′i; Λj =

=
1

2
(Φ+i; +j + Φ−i; −j) +

1

2
Λ (Φ+i; +j − Φ−i; −j)

+
1

2
S1
⊥(Φ+i; −j + Φ−i; +j)− i

2
S2
⊥(Φ+i; −j − Φ−i; +j) . (6.121)

Φij(S) is replaced by a set of correlatorsΦΛ′i; Λj evaluated between eigenstates of the
hadron light-cone helicity in the rest frame of the hadron ( see the definition of the hadron
helicity eigenstates in the Appendix )

ΦiΛ′,jΛ =
1

(2π)4

∫
d4z ei k·z 〈P, Λ′|ψj(−

z

2
) ψi(

z

2
) |P, Λ〉 . (6.122)

Since the indicesΛ andΛ′ in (6.122) can take values+1 or −1, the four quark-quark
correlators form a2× 2 matrix in the hadron helicity space is

ΦiΛ′,jΛ =

[
Φi+,j+ Φi−,j+

Φi+,j− Φi−,j−

]
, (6.123)

where initial and final hadron helicities are equal for the diagonal components of the
matrix, Φi+,j+ and Φi−,j−, while they are opposite for non-diagonal ones,Φi+,j− and
Φi−,j+.
The information contained in the quark-quark correlator (6.113), that explicity depends
on the spin vectorS, is now given by four quark-quark correlation functions describing all
possible transitions between eigenstates of helicity, as helicity eigenstates form a complete
basis.
Comparing (6.115) with (4.76) one can establish the following relations between the de-
scription of the quark-quark correlation function in a spin basis and the one in the helicity
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formalism

Φi+,j+ = Φij0 + ΦijΛ (6.124)

Φi−,j− = Φij0 − ΦijΛ

Φi+,j− = ΦijS1 − iΦijS2

Φi−,j+ = ΦijS1 + iΦijS2

From now on we do not display the indicesi, j. Furthermore, starting from the ansatz
in (6.102) and (6.103) for the quark-quark correlator in the spin basis, it is possible to
deduce how the four ansätze for the four correlatorsΦiΛ′,jΛ look like in the rest frame of
the hadron. We stress that the explicit expression of the four ansätzeΦiΛ′,jΛ are valid only
in the rest frame since the linear decomposition in (6.115) was deduced according to the
expression of the spin vector in the proton rest frame in (6.114). The correlatorsΦΛ′ Λ,
which will be obtained, in the helicity basis are therefore frame-dependent.
The termΦ0 of the correlator is given by

Φ0(k, P ) = mA1 + γµP
µA2 + γµk

µA3 + σµνP
µkνA4 , (6.125)

The part of the quark-quark correlator, that appears in (6.115) multiplied by the third
component of the spinS3 = Λ, is

ΦΛ(k, P ) = iA5γ5k3 + mγ5A6γ3 +
A7

m
γµP

µγ5k3 +
A8

m
γµk

µγ5k3

A9

m
σµ3P

µγ5 +
A10

m
σµ3k

µγ5 +
A11

m
iσµνP

µkνγ5k3

+
A12

m
εµνρ3γ

µP νkρ . (6.126)

The termΦS1 of the helicity correlators is

ΦS1(k, P ) = iA5γ5k1 + mγ5A6γ1 +
A7

m
γµP

µγ5k1 +
A8

m
γµk

µγ5k1

A9

m
σµ1P

µγ5 +
A10

m
σµ1k

µγ5 +
A11

m
iσµνP

µkνγ5k1

+
A12

m
εµνρ1γ

µP νkρ . (6.127)

The analogousΦS2(k, P ) can be obtained substituting the transverse direction2 wherever
1 appears.
Note also that the correlatorsΦΛ, ΦS1 andΦS2 contain only structures multiplied by the
γ5 matrix. In fact under parity transformation the spin quark-quark correlatorΦij(S) is
parity even and the spin vectorSµ, whose components multiply the correlatorsΦΛ, ΦS1

andΦS2, is, by definition, an axial vector.
The matrixΦΛ′,Λ being a unitary (A† = A−1 ) 2×2 matrix with determinant1, it belongs
to the 2-dimensional representation of theSU(2) group of three-dimensional rotation,
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whose infinitesimal generators are represented by the Pauli matrices

ΦΛ′Λ = Φ0 1Λ′Λ + ΦΛ σ3
Λ′Λ + Φ1 σ1

Λ′Λ + Φ2 σ2
Λ′Λ =

[
Φ0 + ΦΛ Φ1 − iΦ2

Φ1 + iΦ2 Φ0 − ΦΛ

]
(6.128)

The components of this matrix have not definite transformation properties under rotations
in 3 dimensions.
The diagonal entries are given by the linear combination of a scalar and the third compo-
nent of a vector, while the off-diagonal components are given by a linear combination of
the two transverse components of a vector.
The diagonal components of the matrixΦiΛ′,jΛ can thus be written as

Φ++(k, P ) = mA1 + γµP
µA2 + γµk

µA3 + σµνP
µkνA4 + iA5γ5k3 +

mγ5A6γ3 +
A7

m
γµP

µγ5k3 +
A8

m
γµk

µγ5k3 +
A9

m
σµ3P

µγ5

+
A10

m
σµ3k

µγ5 +
A11

m
iσµνP

µkνγ5k3 +
A12

m
εµνρ3γ

µP νkρ ,

(6.129)

while the off-diagonal components are

Φ+−(k, P ) = iA5γ5( k1 − ik2 ) + mγ5A6( γ1 − iγ2 ) +
A7

m
γµP

µγ5 ( k1 − ik2 )

+
A8

m
γµk

µγ5 ( k1 − ik2 ) +
A9

m
( σµ1 − iσµ2 ) P µγ5 +

A10

m
( σµ1 − iσµ2 )kµγ5 +

A11

m
iσµνP

µkνγ5( k1 − ik2 ) +

A12

m
( εµνρ1 − iεµνρ2 )γµP νkρ . (6.130)

While the explicit form of the helicity correlators depend on the specific frame of ref-
erence one chooses for the definition of the spin, the fact that the diagonal components,
Φ++ andΦ−−, transform like a linear combination of a scalar and the third component
of a vector and the non-diagonal entries,Φ+− andΦ−+, like a linear combination of the
transverse components of a vector under Lorentz transformations does not depend on the
particular frame of reference but it is instead a general property of the quark-quark corre-
lators in the helicity basis.
The reason for this behavior lies in the choice of quantization axis. When one defines
helicity hadron states as spinors whose spin can be aligned or anti-aligned with the particle
four-momentumP µ and fixes the vectorP µ to be along thez axis one performs also a
specific choice of the quantization axis. As a consequence the operator of the spin along
thez axis, the Pauli matrixσ3, is diagonal while the operators of the spin alongx andy,
the Pauli matricesσ1 andσ2, respectively, contain non-zero off-diagonal components and
they are then not-diagonalizable in the specific helicity basis chosen.
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The choice of quantization axis fixes thus the Pauli matrices and consequently the defi-
nition of the spin density matrix used to transform the spin quark-quark correlator to the
helicity basis. In (6.120) the operator of the spin along thez axis,σ3, is diagonal and the
operators of the spin along thex andy axis are not diagonal. A priori one could have
chosen a basis where the spin operator along thex or y axis are diagonal, obtaining in this
case a different set of relations (6.125).
In passing we note that, as already remarked, DIS does not allow for flipping of the hadron
helicity and the off-diagonal components cannot be accessed in a DIS process unless the
target particle has a transverse component of the spin and in the process there is a chiral-
odd partner for the chiral-odd off-diagonal correlator, like for instance in semi-inclusive
DIS. When writing the quark-quark correlator in the spin basis as in (6.115), the off-
diagonal correlators appear multiplied by the transverse components of the spin vector
Sµ
⊥ and they do not contribute in case the target particle is in an eigenstate of helicity.

Nevertheless even if in a particular process some informations about internal hadronic
structure cannot be accessed, we stress that the quark-quark correlators must store up the
complete knowledge about the hadron.
For further illustration we consider again the probabilistic interpretation of quark-quark
correlator which states that the soft part of the DIS cross sectiondσ can be parameterized
by the matrix elements of the quark-quark correlator

dσ ∝
∑
X

< P, S | ψ+(0) | X > < X | ψ+
†(0) | P, S > δ(P+

X − (1−x) P+) (6.131)

If in (6.131) we introduce the spin density matrixρ,

ρΛ′Λ =< Λ′ | S >< S | Λ > , (6.132)

we can re-write it as

dσ ∝
∑
X

∑

Λ′,Λ

< S | Λ′ >< Λ′ | ψ+(0) | X >< X | ψ+
†(0) | Λ >

< Λ | S > δ(P+
X − (1− x) P+)

∝
∑

Λ′,Λ

< S | Λ′ >< Λ′ | ψ+(0) ψ+
†(0) | Λ >< Λ | S > δ(P+

X − (1− x) P+)

∝
∑

Λ′,Λ

ρΛ′ΛΦΛ′Λ

∝ Tr[ ρΛ′ΛΦΛ′Λ ]. (6.133)

The spin density matrix formalism links the quark-quark correlatorsΦiΛ′,jΛ, which rep-
resent transitions amplitudes between eigenstates of helicity, with experimental measured
cross sections, expressed in terms of the target spin, where people have usually to handle
with ensembles of large number of identical particles, which represent impure states.
This reasoning was applied to our objects of interest, the quark-quark correlators, in order
to transform them from the spin basis to the helicity basis. Through the density matrix



46 6 FORWARD QUARK-QUARK CORRELATORS

formalism one shows that it provides the same kind of information about internal hadronic
structure to describe it either using explicitly the spin vector dependence in the spin quark-
quark correlatorΦi,j(P, k, S) or alternatively determining the set of helicity correlators
ΦiΛ′,jΛ.
The forward quark-quark spin correlator, obtained as a trace of the helicity correlators ma-
trix, which depend on the frame, and of the spin density matrix. The forward quark-quark
spin correlator is thus an average of the helicity correlators weighted by the spin density
matrix. We constructed the spin density matrix from the light-cone helicity eigenstates in
the rest frame of the hadron but a different choice of the basis, in which one builds the
spin density matrix, would have not changed the forward quark-quark spin correlator.

6.4 Ans̈atze for forward quark-quark correlators in helicity basis

The alternative method developed to build the ansatz for the quark-quark correlator in
the spin basis can be quite easily exported to determine the ansätze for the quark-quark
correlatorsΦiΛ′,jΛ(k, P ) in the light-cone helicity basis

ΦiΛ′,jΛ(k, P ) =
1

(2π)4

∫
d4z ei k·z 〈P, Λ′|ψj(−

z

2
) ψi(

z

2
) |P, Λ〉 . (6.134)

The correlatorsΦiΛ′,jΛ(k, P ) are4×4 partonic Dirac matriceŝΓi,j. In addition the helicity
correlators represent2 × 2 matrices in the nucleon helicity space, labeled byΛ′ andΛ.
We define then the ansatz for the correlators (6.134) from the tensor product of

• the set of independent partonic Fierz structures
{

1̂ γ̂5 γ̂µ γ̂µγ̂5 σ̂µν
}

(6.135)

• the independent hadronic spinor products which provide the information about the
spin degrees of freedom

{
u(P, Λ′) u(P, Λ) u(P, Λ′) σαβ u(P, Λ)

}
(6.136)

• a set of tensors which contain information about the kinematical variablesk andP
.

Altogether the ansatz reads

ΦiΛ,jΛ(k, P ) = Γ̂
µ1···µp

i,j ⊗ ūα(P, Λ) Γαβ
ν1···νp uβ(P, Λ) tµ1···µpν1···νp(P, k) . (6.137)

Since in building the ansatz as in (6.137) the spin dependence is kept explicitely in the
spinorial products, one has the possibility to evaluate the matrix elements between any
hadronic spin states, in particular between eigenstates of LC helicity by calculating dif-
ferent spinorial products. It is clear that the definition of the ansatz requires being able to
write down the hadronic spinor products, which are computable with two different meth-
ods ( refer to the Chapter ”‘Choice of spinors and evaluation of spinorial products”’ ):
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• via a trace method, involving the calculation of traces only

• via an evaluation from explicit representation of spinors by which one obtains each
spinor product separately component by component.

Let us regard the case of hadron helicity non-flip and the case of helicity flip separately.

6.4.1 Ans̈atze for the helicity non-flip case

In the helicity non-flip case one simply specializes the expression for the spinorial prod-
ucts given in ( 6.107 ) to the case of a spin vector corresponding to an eigenstate of LC
helicity

Sµ =
Λ

m
(P µ − m2

P+
v
′µ) (6.138)

and the two independent spinorial currents become

ū(P, Λ) u(P, Λ) = 2 M

ū(P, Λ) σαβ u(P, Λ) = −2εαβρσ PρSσ (6.139)

Structure by structure the contributions to the ansatz are

1̂ ⊗ ū(P, Λ)u(P, Λ) → a
(k)
1 m 1

1̂ ⊗ ū(P, Λ)σαβu(P, Λ) → a
(κ)
2 (k · S)

γ̂5 ⊗ ū(P, Λ)u(P, Λ) → a
(κ)
3 γ5 m

γ̂5 ⊗ ū(P, Λ)σαtau(P, Λ) → a
(κ)
4 γ5 (k · S)

γ̂µ ⊗ ū(P, Λ)u(P, Λ)

{
→ a

(κ)
5 γµ P µ

→ a
(κ)
6 γµ kµ

γ̂µ ⊗ ū(P, Λ)σαβu(P, Λ)





→ a
(κ)
7 /mγµ εαβµρS

αkβP ρ

→ a
(κ)
8 γµ Sµ m

→ a
(κ)
9 γµ P µ (k · S)/m

→ a
(κ)
10 γµ kµ (k · S)/m

γ̂µγ̂5 ⊗ ū(P, Λ)u(P, Λ)

{
→ a

(κ)
11 γ5γµP

µ

→ a
(κ)
12 γ5γµk

µ

γ̂µγ̂5 ⊗ ū(P, Λ)σαβu(P, Λ)





→ a
(κ)
13 /mγµ γ5 εαβµρS

αkβP ρ

→ a
(κ)
14 γµ γ5 Sµ m

→ a
(κ)
15 γµ γ5 P µ (k · S)/m

→ 4a
(κ)
16 γµ γ5 kµ (k · S)/m
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σ̂µν ⊗ ū(P, Λ)u(P, Λ)

{
→ a

(κ)
17 /mσµνP

µkν

→ a
(κ)
18 /mγ5 σµνP

µkν

σ̂µν ⊗ ū(P, Λ)σαβu(P, Λ)





→ a
(κ)
19 σµνP

µSν γ5

→ a
(κ)
20 /m2 σµνP

µkν γ5 (k · S)

→ a
(κ)
21 σµνP

µSν

→ a
(κ)
22 /m2 σµνP

µkν (k · S)

→ a
(κ)
23 σµνk

µSν γ5

→ a
(κ)
24 σµνk

µSν

(6.140)

We finally obtain the following ansatz for the diagonal correlatorsΦ+i ; +j andΦ−i ;−j

with κ = 1, 4

ΦΛΛ(k, P, S) = a
(κ)
1 m 1 + a

(κ)
2 (k · S) + ia

(κ)
3 γ5 m + ia

(κ)
4 γ5 (k · S) +

a
(κ)
5 γµ P µ + a

(κ)
6 γµ kµ + a

(κ)
7 /mγµ εαβµρS

αkβP ρ + a
(κ)
8 γµ Sµ m

+ a
(κ)
9 γµ P µ (k · S)/m + a

(κ)
10 γµ kµ (k · S)/m +

a
(κ)
11 γ5γµP

µ + a
(κ)
12 γ5γµk

µ + a
(κ)
13 /mγµ γ5 εαβµρS

αkβP ρ

+ a
(κ)
14 γµ γ5 Sµ m + a

(κ)
15 γµ γ5 P µ (k · S)/m

+ a
(κ)
16 γµ γ5 kµ (k · S)/m + a

(κ)
17 /mσµνP

µkν + ia
(κ)
18 /mγ5 σµνP

µkν +

a
(κ)
19 σµνP

µSν γ5 + a
(κ)
20 /m2 σµνP

µkν γ5 (k · S) + a
(κ)
21 σµνP

µSν

+ a
(κ)
22 /m2 σµνP

µkν (k · S) + a
(κ)
23 σµνk

µSν γ5 + a
(κ)
24 σµνk

µSν .

(6.141)

where the amplitudesa(κ)
i depend on the invariantsk · P andk2.

From now on we will indicate the four different helicity correlatorsΦ(κ) with κ = 1, 2, 3, 4
as

Φij++(k̄, P̄ , ∆) = Φ
(1)
ij (k̄, P̄ , ∆) Φij+−(k̄, P̄ , ∆) = Φ

(2)
ij (k̄, P̄ , ∆)

Φij−+(k̄, P̄ , ∆) = Φ
(3)
ij (k̄, P̄ , ∆) Φij−−(k̄, P̄ , ∆) = Φ

(4)
ij (k̄, P̄ , ∆)

(6.142)

We stress that in the quark-quark correlators (6.141) the dependence on the spin vector
S is, in reality, a dependence on the vectorv′, which enters in the definition of the spin
vector for the helicity state

Sµ =
Λ

m
(P µ − m2

P+
v
′µ) . (6.143)
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Instead of the2 × 24 independent amplitudes in (6.141) applying parity, hermiticity and
time reversal reduces the number of independent amplitudes to the following set ( see the
Appendix for the explicit proof )

a1
m = a4

m real m = 1, 5, 6, 14, 15, 16

a1
m = −a4

m real m = 2, 8, 9, 10, 11, 12

a1
m = a4

m imaginary m = 4, 19, 20, 23

a1
m = −a4

m imaginary m = 3, 18 (6.144)

If we want now to compare the diagonal helicity correlators in (6.141) with the one in
(6.112), we have to remark that the helicity correlators as obtained in (6.112) are valid in
the rest frame of the proton where the spin vector in usual coordinates equals(0, 0, 0, Λ).
Further assumingΛ = 1 for the correlatorΦ+,+, we can conclude that through a renaming
of the amplitudesai the correlators in (6.112) and (6.141) are equivalent.

6.4.2 Ans̈atze for the helicity flip case

In the helicity flip case it turns out that in order to calculate each spinor products via
the trace method one has always to divide by the densityūu, which is obviously equal
to zero. The densitȳuu corresponds to the probability to find a spinor, carrying for in-
stance helicity−, which spontaneously transforms to a spinor having helicity+ and this
probability is clearly zero. By the way with a direct evaluation one succeeds in finding a
finite solution for the spinor products; only one cannot cast the different components of
each spinorial product in the form of a unique tensorial expression. For instance let us
regard the case of the two independent forward spinorial currentsū(P, Λ′) u(P, Λ) and
ū(P, Λ′) σαβ u(P, Λ) with Λ′ = −1 andΛ = 1

ū(P,−) u(P, +) = 0

ū(P,−) σ+1 u(P, +) = i2P+

ū(P,−) σ+2 u(P, +) = −2P+

ū(P,−) σ−i u(P, +) = 0

ū(P,−) σ12 u(P, +) = 0

ū(P,−) σ+− u(P, +) = 0 . (6.145)

That the different components of each spinor product cannot be written in terms of a
unique tensor is due to the fact that the spinorsū(P,−) andu(P, +) carry also information
about their phase and in general these phases are different.
When calculating spinor products between states of equal spin or helicity the phase contri-
butions from each spinor cancel together and the net result is that the Lorentz behavior is
given directly by the Lorentz behavior of theΓ structure in the spinor product (1, γ5, γµ,
ect ). The diagonal components in (6.103) do not carry explicity this phase information
only because the phases ofū andu cancel, being these two phases equal and the phase
information for the diagonal spinorial products and therefore also for the correlators is
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hidden. If the helicity of the initial and final spinor are different, then the result for the
spinor product contains also the phase information carried by each spinor which do not
cancel with each other.
In no way the results for the spinorial currents, obtained component by component, can be
written in terms of a4-dimensional Lorentz tensor and one needs introduce an auxiliary
vectora defined asa = [0, 0, Λ, i] such that

ū(P, Λ′) u(P, Λ) = 2m δΛ′,Λ = 0

ū(P, Λ′) σαβu(P, Λ) = iΛ 2m (Sα aβ − Sβ aα) δ−Λ′,Λ , (6.146)

where

Sα =
Λ

m
(Pα − m2

P+
v′α). (6.147)

The off diagonal correlatorsΦ+i ;−j andΦ−i ; +j with κ = 2, 3 are

1̂ ⊗ ū(P, Λ′)u(P, Λ) = 0

1̂ ⊗ ū(P, Λ′)σαβu(P, Λ) → a
(κ)
1

m
εαβρσa

αSβP ρkσ Λ

γ̂5 ⊗ ū(P, Λ′)u(P, Λ) = 0

γ̂5 ⊗ ū(P, Λ′)σαβu(P, Λ) −→ a
(κ)
2

m
γ5 εαβρσa

αSβP ρkσ Λ

γ̂µ ⊗ ū(P, Λ′)u(P, Λ) = 0

γ̂µ ⊗ ū(P, Λ′)σαβu(P, Λ)





→ a
(κ)
3 /m2 P µγµ εαβρσa

αSβP ρkσ Λ

→ a
(κ)
4 /m2 kµγµ εαβρσa

αSβP ρkσ Λ

→ a
(κ)
5 Sµγµ Λ (k · a)

→ a
(κ)
6 aµγµ Λ (k · S)

→ a
(κ)
7 /m2 γµ εαβµσS

αkβP σ (k · a) Λ

→ a
(κ)
8 /m2 γµεαβµσa

αkβP σ Λ (k · S)

→ a
(κ)
9 γµεαβµσa

αSβP σ Λ

→ a
(κ)
10 γµεαβµσa

αSβkσ Λ

γ̂µγ5 ⊗ ū(P, Λ′)u(P, Λ) → δΛ′,Λ = 0

γ̂µγ5 ⊗ ū(P, Λ′)σαβu(P, Λ)





→ a
(κ)
11 /m2 P µγµ γ5 εαβρσa

αSβP ρkσ Λ

→ a
(κ)
12 /m2 kµγµ γ5 εαβρσa

αSβP ρkσ Λ

→ a
(κ)
13 Sµγµ γ5 Λ (k · a)

→ a
(κ)
14 aµγµ γ5 Λ (k · S)

→ a
(κ)
15 /m2 γµ γ5 εαβµσS

αkβP σ (k · a) Λ

→ a
(κ)
16 /m2 γµ γ5 εαβµσa

αkβP σ Λ (k · S)

→ a
(κ)
17 γµ γ5 εαβµσa

αSβP σ Λ

→ a
(κ)
18 γµ γ5 εαβµσa

αSβkσ Λ
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σ̂µν ⊗ ū(P, Λ′)σαβu(P, Λ)





→ a
(κ)
19 /mσµνP

µSν γ5Λ (k · a)

→ a
(κ)
20 /mσµνP

µSν Λ (k · a)

→ a
(κ)
21 /mσµνP

µaν γ5Λ (k · S)

→ a
(κ)
22 /mσµνP

µaν Λ (k · S)

→ a
(κ)
23 σµνk

µSν γ5Λ (k · a)

→ a
(κ)
24 /mσµνk

µSν Λ (k · a)

→ a
(κ)
25 /mσµνk

µaν γ5Λ (k · S)

→ a
(κ)
26 /mσµνk

µaν Λ (k · S)

→ a
(κ)
27 σµνS

µaν γ5Λ m

→ a
(κ)
28 σµνS

µaν Λ m

→ a
(κ)
29 /m3 σµνk

µP ν εαβρσa
αSβP ρkσ Λ

(6.148)

One has now to apply parity, hermiticity and time reversal to reduce the number of inde-
pendent amplitudes to the following ( see the Appendix for the explicit proof ).

a2
m = a3

m real m = 5, 11, 12, 14

a2
m = −a3

m real m = 3, 4, 6, 13, 21

a2
m = a3

m imaginary m = 25

a2
m = −a3

m imaginary m = 1, 3, 4, 19, 23, 27. (6.149)

Notice that besides the kinematical vectorsk and P , other two vectors,v′ and a, are
introduced to write the ansätze for the diagonal and off-diagonal forward correlators. Both
these vectors occur in the hadronic sector of (6.137);v′ enters in the definition of the
helicity eigenstate vectors while the auxiliary vectora, used to write down the spinorial
products in the helicity flip case, appears only in the off-diagonal correlators and carries
the information about the difference in phase between the initial and final helicity states.

6.5 Constraints on forward quark-quark correlators in the helicity
basis

We have shown the complete equivalence of the descriptions of the quark-quark correla-
tors in the spin and in the helicity formalisms. We constructed ansätze for the correlators
in the helicity basis as we did for the correlators in the spin basis.
Some constraints on forward quark-quark helicity correlators come from conservation of
total angular momentum. Let us then examine the implications of total angular momen-
tum conservation in DIS.
One can always choose a frame of reference where the two independent external vectors
of DIS,P andq, can be collinear; this means that conservation of total angular momentum
implies for DIS the conservation of the longitudinal component of angular momentum.
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For a pure collinear process there is, in fact, no preferred transverse direction; rotational
invariance around the collinear axis requires total helicity to be conserved (see Fig.3.7)

Λ + λ′ = Λ′ + λ . (6.150)

We remark that althoughΛ andλ′ are the incoming helicities, it is convenient to label the
amplitude in the sequence: initial hadron, struck quark, final hadron, returned quark, as
the correlator represents the u-channel elastic quark-hadron scattering.
Helicity conservation in (6.150) states then a link between the quark and nucleon helicity
degrees of freedom.
Let us see now which constraints on the the forward quark-quark correlatorsΦiΛ,jΛ′ can
be obtained from (6.150).
As already said, the correlatorsΦiΛ,jΛ′ in (6.123) carry two kinds of indices, one con-
cerning the helicity of the hadron; the other index indicates that these objects are4 × 4
matrices in the Dirac space of the quarks. These matrices provide information about the
process the quark extracted and re-inserted in the hadron undergoes in order to produce
the final hadronic state from the initial one.
For the diagonal components of matrixΦiΛ,jΛ′ the hadron helicity is not flipped and, by
virtue of helicity conservation, the quark helicity is as well not flippedλ = λ′. In order to
build an ansatz forΦi+,j+ andΦi−,j− we will then take into account only Dirac structures
which conserve parton helicity.
On the other hand in the off-diagonal correlators the hadron helicity is flipped and the
rule in (6.150) implies also flipping of the quark helicity. The off-diagonal ansätze will
therefore contain only Dirac structures which flip the quark helicity.
In the following we will develop a method to list all possible Dirac structures according
to chirality properties. The different4×4 Dirac matrices specify if during the process the
quark chirality is flipped; chirality of the quark is conserved or flipped according to the
properties of these matrices under projection with the chiral projectorsPR/L. Chiral even
structures conserve the chirality of the quark, while chiral odd ones flip it.
Helicity conservation rule states a selection rule for the parton helicities and not for the
parton chiralities. Nevertheless the relation between chiralities and helicities of a spinor
field is known and therefore we can derive a rule for the particles chirality from helicity
conservation.
Chirality and helicity for the good LC components of a spinor field are equal. On the
other hand, following Jaffe’s argument [Jaf96b], bad light-cone components of Dirac
fields haven’t equal helicity and chirality but rather the helicity of the state is always
the opposite of the chirality. Jaffe argues that Dirac equation for bad LC components of
fields represent constraints independent of LC time, by which the bad componentsψ− of
the fields are dependent fields, related to a good componentψ+ and a transverse gluon.
ψ− can be regarded as a composite. Since the gluon carries helicity1 but no chirality,
angular momentum conservation for the composite requires that the helicity and chirality
are equal for good components of fields and thus opposite for bad components.
As we know that:
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• at twist 2 we have structures containing 2 good LC components, then

– if a structure is chiral even it means also that the helicities of the initial and
final states are equal

– if a structure is chiral odd it means also that the helicities of the initial and
final states are flipped

• at twist 3 we have structures containing 1 good LC component and 1 bad one, then

– if a structure is chiral even it means also that the helicities of the initial and
final states are flipped

– if a structure is chiral odd it means also that the helicities of the initial and
final states are equal

• at twist 4 we have structures containing 2 bad LC components, then

– if a structure is chiral even it means also that the helicities of the initial and
final states are equal

– if a structure is chiral odd it means also that the helicities of the initial and
final states are flipped,

then in the diagonal components of the matrixΦ there can be

• chiral even twist-2 structures

• chiral odd twist-3 structures

• chiral even twist-4 structures,

while in the off-diagonal components of the matrixΦ there can be

• chiral odd twist-2 structures

• chiral even twist-3 structures

• chiral odd twist-4 structures.

The most general form of the matrixΦiΛ′,jΛ if ~k⊥ = 0 at twist 2 and twist 4

ΦΛ′i,Λj(P, k) =

[
(chiral even)ij (chiral odd)ij

(chiral odd)ij (chiral even)ij

]
,

(6.151)

and for twist 3

ΦΛ′i,Λj(P, k) =

[
(chiral odd)ij (chiral even)ij

(chiral even)ij (chiral odd)ij

]
.
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(6.152)

In order to implement these constraints, we must be able to recognize chiral even and
chiral odd Dirac structures. Following Jaffe’s convention [Jaf96b] an operator is chiral
even if bracketed between fields it connects states of equal initial and final chirality; on
the other hand an operator is chiral odd if it connects states of different initial and final
chirality.
Let us then consider

ψ̄Aψ = ψ†(γ0A)ψ (6.153)

In order to take into account chirality properties of the structure, what one has to inves-
tigate is the densityψ†ψ. The density actually counts the fields chiralities. Then for
instance for a chiral odd operator(γ0A)

ψ̄Aψ = ψR
†(γ0A)ψL + ψL

†(γ0A)ψR (6.154)

For a chiral even operator(γ0A)

ψ̄Aψ = ψR
†(γ0A)ψR + ψL

†(γ0A)ψL. (6.155)

In order to recognize chiral even and chiral odd structures we work out a method that
makes use of the Weyl or chiral representation of Diracγ matrices, where the chirality
properties of Dirac structures are evident.
We recall the explicit form of Dirac matrices in the the Weyl representation ( refer also to
the Appendix )

γ0 = ρ1 ⊗ 1 =

(
0 1
1 0

)
; ~γ = −iρ2 ⊗ ~σ =

(
0 −~σ
~σ 0

)
(6.156)

γ5 = ρ3 ⊗ 1 = i γ0γ1γ2γ3 =

(
1 0
0 −1

)
. (6.157)

From the block-diagonal form of the boostS0i ≡ σ0i and rotation generatorsSij ≡ σij of
the Dirac representations of Lorentz group it is clear that this representation is reducible.
We can form two 2-dimensional representations by considering each block separately.

The four spinorψ =




a
b
c
d


, solution of the Dirac equation, can then be written as

ψ =

(
ψR

ψL

)
(6.158)

where the two objectsψR =

(
Ra

Rb

)
andψL =

(
Lc

Ld

)
are called left-handed and

right-handed Weyl spinors. By setting the mass of the particle to zerom = 0 Dirac
equations in terms ofψR andψL actually decouple. [PS95]
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Defining chiral projectorsPR/L as

PR/L =
1

2
(1 + γ5) =

1

2

(
1 ± 1 0

0 1 ∓ 1

)
(6.159)

with

PR =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , PL =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , (6.160)

it is evident that the left-handed and right-handed Weyl spinors correspond to states of
definite chirality. Note that we will indicate right-handed components of the fields are
indicated withR and left-handed components withL.

PR




a
b
c
d


 = (a , b , 0 , 0) , PL




a
b
c
d


 = (0 , 0 , c , d) . (6.161)

Furthermore after obtaining the light-cone components of Weylγ matrices

γ± =
1√
2

(
γ0 ± γ3

)
=

1√
2

(
0 1 ∓ σz

1 ± σz 0

)
(6.162)

γ+ =
√

2




0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0


 γ− =

√
2




0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0


 (6.163)

with
(γ+)2 = (γ−)2 = 0 , (6.164)

we can define two projectorsP±

P+ =
1

2
γ−γ+ =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , P− =

1

2
γ+γ− =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (6.165)

which project out the so called “good” and “bad” components of Dirac fields

P+




a
b
c
d


 = (a , 0 , 0 , d) , P−




a
b
c
d


 = (0 , b , c , 0) . (6.166)
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The light-cone projections of the Dirac field,ψ+ ≡ P+ψ =




+
0
0
+


, in the context of

light-cone quantization can be regarded as independent propagating degrees of freedom;

the bad components,ψ− ≡ P−ψ =




0
−
−
0


, are dependent fields whose equations

represent constraints. [Jaf96b]

The classification of quark spin states depend on the Dirac matrices which commute with
P±.
One can show thatγ1, γ2, γ5 and the generator of spin-rotations along thez-direction,
S12 ≡ σ12 that measures the helicity of the particle, commute withP±.
This set of operators suggests two different maximal sets of commuting observables:

• in the helicity or chirality basis the operatorsγ5 andS12 are diagonalized ( Weyl
representation )

• in the transversity basis the operatorsγ1 andγ2 are diagonalized

In the chirality basis both good and bad components ofψ carry chirality labels, the eigen-
values ofPR/L, and the four-vector in Weyl representation has the following interpretation

ψ =




R+

R−
L−
L+


 . (6.167)

Good and bad components ofψ carry also helicity labels, the eigenvalues±1 of the gen-
erator of rotationsS12. Indicating withP the components of the spinor whose helicity
eigenvalue is+1 andM those components whose helicity eigenvalue is−1, the spinor
can be interpreted as

ψ =




P+

M−
P−
M+


 . (6.168)

We see that helicity and chirality are identical for the good components ofψ but opposite
for the bad components. In fact the bad light-cone quark components of the fields can be
regarded as composites of good light-cone component of a quark field and a gluon field.
[Ji95] Since the gluon carries helicity1 but no chirality, angular momentum conserva-
tion requires that the good quark field components have negative helicity and therefore
negative chirality.
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Analogously it is possible to show that the different blocks of an operator represented by a
4× 4 matrix have different symmetry properties. For instance, theR+R+ matrix element
connects a good right-handed LC component of a four spinor with a good right-handed
LC component of a four spinor, and so on




R+R+ R−R+ L−R+ L+R+

R+R− R−R− L−R− L+R−

R+L− R−L− L−L− L+L−

R+L+ R−L+ L−L+ L+L+




. (6.169)

Comparing a given Dirac matrix with (6.169) one can immediately decide if this matrix
has a definite chirality. If the matrix has non-zero entries in the diagonal blocks only,
the structure is chiral even. Vice versa, if the only non-zero components appear in the
off-diagonal blocks, the structure is chiral odd. Matrices showing non-zero components
in both diagonal and off-diagonal blocks have no definite symmetry. For instance the
operator(γ0 γ+) is block diagonal and therefore chiral even as it connects states with
equal even chirality while the operator(γ0 1), not block diagonal, it connects states with
different chiralities and it is thus chiral odd.
From the matrix in (6.169) one can also get complete information about the twist of the
structure counting the number of bad and good fields components indicated by the minus
sign and by a plus sign, respectively. Each minus sign reduces the twist by one.

Helicity conservation is obviously violated in deep inelastic reactions in case the
parton carries a transverse component of four-momentum~k⊥, since in this case only
the total angular momentum has to be conserved and then other structures have to be
considered when building the matrixΦiΛ,jΛ′

ΦΛ′i,Λj(P, k,~k⊥) =[
chiral even (~k⊥) + chiral odd (~k⊥) chiral even (~k⊥) + chiral odd (~k⊥)

chiral even (~k⊥) + chiral odd (~k⊥) chiral odd (~k⊥) + chiral even (~k⊥)

]

(6.170)

The new structures must depend on the transverse component of quark four-momentum
and have to be zero if~k⊥ = 0.
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7 Off-forward quark-quark correlators

7.1 Off-forward quark-quark correlators in spin basis

In order to build the most general ansatz for the off-forward quark-quark correlation func-
tion in the spin basis,

Φij(k, P, S, k′, P ′, S ′) =
1

(2π)4

∫
d4z ei k·z 〈P ′, S ′|ψj(−

z

2
) ψi(

z

2
) |P, S〉 , (7.171)

one could in principle repeat a procedure similar to the one used in the paragraph (6.1)
to write an ansatz for the forward spin correlator and consider all independent external
vectors occurring in a non-forward hard process

{
k̄ P̄ ∆ S + S ′ S − S ′

}
, (7.172)

wherek̄ is the average of the initial and final parton momenta,P̄ the average of the initial
and final hadron momenta,∆ = P ′ − P andS + S ′ andS − S ′ substitute the initial and
final spin vectorsS andS ′ in order to apply the hermiticity and time reversal constraints,
respectively (4.40) and (4.49). Contrary toS andS ′, the linear combinationsS + S ′ and
S − S ′ have indeed a definite symmetry with respect to these constraints.
Furthermore combining together Dirac matrices and the five independent vectors in
(7.172) defines a set of basic elements

{1, γµ k̄µ, γµ P̄ µ, γµ ∆µ, γµ(S ′ + S)
µ
γ5, γµ(S ′ − S)

µ
γ5,

P̄ · (S ′ + S) γ5, P̄ · (S ′ − S) γ5, k̄ · (S ′ + S) γ5, k̄ · (S ′ − S) γ5, S · S ′} .

(7.173)

The most general ansatz is obtained by writing down all possible products of elements of
the above set with Dirac structures, treating explicitly all invariants involving spin vectors
and leaving the dependence on other invariants implicit in the amplitudes.
Since scattering amplitudes contain spinorial productsū(P ′, S ′) Γ u(P, S) which are at
most linear dependent onS andS ′, the ansatz for the correlators can be either independent
or linear dependent on the spin vectorsS andS ′. i.e. we know the kind of dependence on
the spin degrees of freedomS andS ′ we may have for the correlators.
On the other hand we do not have such a linearity constraint for the vectorsS + S ′ and
S ′ − S.
Let us further examine the ansatz built from the set (7.172); it will necessarily contain the
following self products

γ5 P̄ · (S ′ ± S) γ5 P̄ · (S ′ ± S) = (P̄ · S ′)2 ± 2(P̄ · S ′)(P̄ · S) + (P̄ · S)2

γ5 k̄ · (S ′ ± S) γ5 k̄ · (S ′ ± S) = (k̄ · S ′)2 ± 2(k̄ · S ′)(k̄ · S) + (k̄ · S)2 .

(7.174)
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which both consist of terms in which the spin vectorsS andS ′ contribute at first and
second order. The first order contributions in the right side of the Equation (5.147) are
allowed according to the requirement of linearity inS andS ′, while the second order
ones are forbidden. That is enough to say that we cannot anymore predict which kind of
terms in the spin vectorsS andS ′ contribute in the ansatz if in order to implement the
hermiticity constraint (3.40) in constructing the ansatz we start from the vectorsS + S ′

andS ′ − S. For this reason we have to develop a different method to build the ansatz for
the off-forward quark-quark correlators.
The helicity formalism actually turns out to be helpful to write down an ansatz for the
off-forward correlators.

7.2 Ans̈atze for the off-forward quark-quark correlators in the
helicity basis.

The off-forward quark-quark correlators in the helicity basis

ΦiΛ, jΛ′
Γ(k, k′, P, P ′) =

1

(2π)4

∫
d4z ei k·z 〈P ′, Λ′|ψj(−

z

2
) ψi(

z

2
) |P, Λ〉 (7.175)

represent4⊗ 4 matrices in Dirac partonic space,labeled by the indicesi andj and2⊗ 2
matrices in hadronic helicity space, labeled by the indicesΛ′ andΛ; the most general
ansatz for these quark-quark correlators is thus obtained through the following tensor
product

Φi,jΛ′Λ( k̄, P̄ , ∆ ) = Γ̂
µ1···µp

i,j ⊗ ūα(P ′, Λ) Γαβ
ν1···νp uβ(P, Λ) tµ1···µpν1···νp( P̄ , k̄, ∆ ) ,

(7.176)
where Γ̂i,j denote the 16 Fierz independent4 ⊗ 4 partonic Dirac matrices and
ūα(P ′, Λ′) Γαβ uβ(P, Λ) the independent hadronic spinor products; as for the forward cor-
relators

tµ1···µpν1···νp = tµ1···µpν1···νp(P̄ , k̄, ∆) (7.177)

represent all possible independent tensors constructed from the kinematical variablesP̄ ,
k̄, ∆, the metric tensorgαβ and the antisymmetric tensorεαβρσ; the tensorstµ1···µpν1···νp

must have rank equal to the rank of the tensor formed by the partonic matrices and the
spinorial products.
Gordon identities and the relations (7.178), deriving from Dirac equations of motion,
allow to determine the independent spinor products. [Die01]
From

0 = ū(P ′, Λ′) u(P, Λ) ∆α + ū(P ′, Λ′) i σαβ 2P̄β u(P, Λ)

0 = ū(P ′, Λ′) γ5 u(P, Λ) 2P̄α + ū(P ′, Λ′) i σαβ γ5 ∆β u(P, Λ) (7.178)

we learn that the tensorial spinor product having one index contracted with the hadronic
average momentum reduces to the scalar spinor product, while the pseudo-tensorial spinor
product contracted with the∆ vector is proportional to the pseudo-scalar product.
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The Gordon identities

2 m ū(P ′, Λ′) γαγ5 u(P, Λ) = ū(P ′, Λ′) ∆αγ5 u(P, Λ) + 2 ū(P ′, Λ′)i σαβ γ5 P̄β u(P, Λ)
(7.179)

and

2 m ū(P ′, Λ′) γα u(P, Λ) = ū(P ′, Λ′) u(P, Λ)( 2P̄α ) + ū(P ′, Λ′)i σαβ ∆β u(P, Λ)
(7.180)

show that the vector and axial-vector currents are not independent since they can be ob-
tained from the scalar and tensor ones.
We finally remark that the pseudo-tensor currentū(P ′, Λ′) i σαβ γ5 u(P, Λ) does not repre-
sent any new independent spinor product. Indeed the Dirac matricesσαβγ5 do not appear
in the Fierz list of independent Dirac structures as they can be traced back to the Diracσ
matrices thanks to the following identity

i σαβ =
1

2
εαβρσ σρσγ

5. (7.181)

According to the rule stated in (7.176) in order to write down the most general ansatz for
the off-forward helicity quark-quark correlators we thus take into account the following
three independent spinorial products

[ ū(P, Λ′) u(P, Λ) ū(P, Λ′) γ5 u(P, Λ) ū(P, Λ′) σαβ u(P, Λ) ]. (7.182)

These spinor currents have different expressions for the helicity non-flip and for the he-
licity flip case and their expressions are quoted in the Appendix.
As already said in the forward case one cannot calculate the spinor products in the helicity
flip case via a trace method since they have different results for different components.
In the off-forward situation this becomes possible because the scalar spinor product, by
which one divides in the trace method to obtain the different spinor products, is also for
the helicity flip case different from zero. What one gets for each spinorial product is a
Lorentz tensor multiplied by a phase factor given in terms of the transverse components
of the∆ vector ( refer to the Appendix )

η =
∆1 + i∆2

|∆⊥| . (7.183)

All scalar products of the independent kinematical variablesK̄, P̄ and∆ will be implicitly
inserted in the ansatz as we assume that the amplitudesd

(κ)
m will implicitly contain the

dependence on all these scalar products

d(k)
m = d(k)

m (k̄ · P̄ , k̄2, k̄ ·∆, t) . (7.184)

Note thatP̄ ·∆ = 0 andP̄ 2 = m̄2 = m2+t/4
1−ξ2 is fixed.

In the ansatz we will indicate explicity the scalar products formed byK̄, P̄ and∆ with the
vectorv′ which occurs in the definition of the helicity eigenstates vectors and therefore as
any spin degree of freedom appears in the hadronic sector of the ansatz (7.176).
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For the helicity flip case the presented ansatz has to be multiplied by the additional factor
which reflects the difference in phase of the initial and final hadronic spins. In particular
we have to multiply by a factor−η in (7.183) the off-diagonal correlatorΦi−,j+ and by a
factorη∗ the off-diagonal correlatorΦi+,j− ( refer to the Appendix ).
We will indicate the four different helicity correlators̃ΦiΛ′,jΛ with an upper indexκ =
1, 2, 3, 4 such that

Φij++(k̄, P̄ , ∆) = Φ
(1)
ij (k̄, P̄ , ∆) Φij+−(k̄, P̄ , ∆) = Φ

(2)
ij (k̄, P̄ , ∆)

Φij−+(k̄, P̄ , ∆) = Φ
(3)
ij (k̄, P̄ , ∆) Φij−−(k̄, P̄ , ∆) = Φ

(4)
ij (k̄, P̄ , ∆)

(7.185)

The method results in producing the following ansatz

Φ̃
(κ)
ij ( k̄, P̄ , ∆ ) =

1 md
(κ)
1

+ Λ md
(κ)
2

+ (k̄ · v′)/P̄+ md
(κ)
3

+ (k̄ · v′)/P̄+ m Λ d
(κ)
4

+ (∆ · v′)/P̄+ md
(κ)
5

+ (∆ · v′)/P̄+ Λ md
(κ)
6

+ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/md

(κ)
7

+ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m d

(κ)
8

+ γµ P̄ µ d
(κ)
9

+ γµ P̄ µ Λ d
(κ)
10

+ γµ P̄ µ (k̄ · v′)/P̄+ d
(κ)
11

+ γµ P̄ µ (k̄ · v′)/P̄+ Λ d
(κ)
12

+ γµ P̄ µ (∆ · v′)/P̄+ d
(κ)
13

+ γµ P̄ µ (∆ · v′)/P̄+ Λ d
(κ)
14

+ γµ P̄ µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
15

+ γµ P̄ µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m2 d

(κ)
16

+ γµ k̄µ d
(κ)
17

+ γµ k̄µ Λ d
(κ)
18

+ γµ k̄µ (k̄ · v′)/P̄+ d
(κ)
19

+ γµ k̄µ (k̄ · v′)/P̄+ Λ d
(κ)
20

+ γµ k̄µ (∆ · v′)/P̄+ d
(κ)
21
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+ γµ k̄µ (∆ · v′)/P̄+ Λ d
(κ)
22

+ γµ k̄µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
23

+ γµ k̄µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m2 d

(κ)
24

+ γµ ∆µ d
(κ)
25

+ γµ ∆µ Λ d
(κ)
26

+ γµ ∆µ (k̄ · v′)/P̄+ d
(κ)
27

+ γµ ∆µ (k̄ · v′)/P̄+ Λ d
(κ)
28

+ γµ ∆µ (∆ · v′)/P̄+ d
(κ)
29

+ γµ ∆µ (∆ · v′)/P̄+ Λ d
(κ)
30

+ γµ ∆µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
31

+ γµ ∆µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m2 d

(κ)
32

+ γµ v′µ md
(κ)
33

+ γµ v′µ m Λ d
(κ)
34

+ γ5 md
(κ)
35

+ γ5 Λ md
(κ)
36

+ γ5 m (k̄ · v′)/P̄+ d
(κ)
37

+ γ5 m (k̄ · v′)/P̄+ Λ d
(κ)
38

+ γ5 m (∆ · v′)/P̄+ d
(κ)
39

+ γ5 m (∆ · v′)/P̄+ Λ d
(κ)
40

+ γ5 (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/md

(κ)
41

+ γ5 (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m Λ d

(κ)
42

+ γ5 γµ P̄ µ d
(κ)
43

+ γ5 γµ P̄ µ Λ d
(κ)
44

+ γ5 γµ P̄ µ (k̄ · v′)/P̄+ d
(κ)
45

+ γ5 γµ P̄ µ (k̄ · v′)/P̄+ Λ d
(κ)
46

+ γ5 γµ P̄ µ (∆ · v′)/P̄+ d
(κ)
47

+ γ5 γµ P̄ µ (∆ · v′)/P̄+ Λ d
(κ)
48

+ γ5 γµ P̄ µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
49

+ γ5 γµ P̄ µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 Λ d

(κ)
50

+ γ5 γµ k̄µ d
(κ)
51

+ γ5 γµ k̄µ Λ d
(κ)
52

+ γ5 γµ k̄µ (k̄ · v′)/P̄+ d
(κ)
53
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+ γ5 γµ k̄µ (k̄ · v′)/P̄+ Λ d
(κ)
54

+ γ5 γµ k̄µ (∆ · v′)/P̄+ d
(κ)
55

+ γ5 γµ k̄µ (∆ · v′)/P̄+ Λ d
(κ)
56

+ γ5 γµ k̄µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
57

+ γ5 γµ k̄µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m2 d

(κ)
58

+ γ5 γµ ∆µ d
(κ)
59

+ γ5 γµ ∆µ Λ d
(κ)
60

+ γ5 γµ ∆µ (k̄ · v′)/P̄+ d
(κ)
61

+ γ5 γµ ∆µ (k̄ · v′)/P̄+ Λ d
(κ)
62

+ γ5 γµ ∆µ (∆ · v′)/P̄+ d
(κ)
63

+ γ5 γµ ∆µ (∆ · v′)/P̄+ Λ d
(κ)
64

+ γ5 γµ ∆µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ 1/m2 d

(κ)
65

+ γ5 γµ ∆µ (εαβρσv
′α∆βP̄ ρk̄σ)/P̄+ Λ 1/m2 d

(κ)
66

+ γ5γµ mv′µ d
(κ)
67

+ γ5γµ v′µ m Λ d
(κ)
68

+ σµνP̄
µk̄ν A

(k)
69 /m

+ σµνP̄
µk̄ν Λ A

(k)
70 /m

+ σµνP̄
µk̄ν (k̄ · v′)/P̄+ A

(k)
71 /m

+ σµνP̄
µk̄ν (k̄ · v′)/P̄+ Λ A

(k)
72 /m

+ σµνP̄
µk̄ν (∆ · v′)/P̄+ A

(k)
73 /m

+ σµνP̄
µk̄ν (∆ · v′)/P̄+ Λ A

(k)
74 /m

+ σµνP̄
µk̄ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ A
(k)
75 /m3

+ σµνP̄
µk̄ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ Λ A
(k)
76 /m3

+ σµνP̄
µ∆ν A

(k)
77 /m

+ σµνP̄
µ∆ν Λ A

(k)
78 /m

+ σµνP̄
µ∆ν (k̄ · v′)/P̄+ d

(κ)
79 /m

+ σµνP̄
µ∆ν (k̄ · v′)/P̄+ Λ d

(κ)
80 /m

+ σµνP̄
µ∆ν (∆ · v′)/P̄+ d

(κ)
81 /m

+ σµνP̄
µ∆ν (∆ · v′)/P̄+ Λ d

(κ)
82 /m

+ σµνP̄
µ∆ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ d
(κ)
83 /m3

+ σµνP̄
µ∆ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ Λ d
(κ)
84 /m3

+ σµν∆
µk̄ν d

(κ)
85 /m
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+ σµν∆
µk̄ν Λ d

(κ)
86 /m

+ σµν∆
µk̄ν (k̄ · v′)/P̄+ d

(κ)
87 /m

+ σµν∆
µk̄ν (k̄ · v′)/P̄+ Λ d

(κ)
88 /m

+ σµν∆
µk̄ν (∆ · v′)/P̄+ d

(κ)
89 /m

+ σµν∆
µk̄ν (∆ · v′)/P̄+ Λ d

(κ)
90 /m

+ σµν∆
µk̄ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ d
(κ)
91 /m3

+ σµν∆
µk̄ν (εαβρσv

′α∆βP̄ ρk̄σ)/P̄+ Λ d
(κ)
92 /m3

+ σµνP̄
µv′ν d

(κ)
93

+ σµνP̄
µv′ν Λ d

(κ)
94

+ σµν k̄
µv′ν d

(κ)
95

+ σµν k̄
µv′ν Λ d

(κ)
96

+ σµν∆
µv′ν d

(κ)
97

+ σµν∆
µv′ν Λ d

(κ)
98

+ γ5 σµνP̄
µk̄ν d

(κ)
99 /m

+ γ5 σµνP̄
µk̄ν Λ d

(κ)
100/m

+ γ5 σµνP̄
µk̄ν (k̄ · v′)/P̄+ d

(κ)
101/m

+ γ5 σµνP̄
µk̄ν (k̄ · v′)/P̄+ Λ d

(κ)
102/m

+ γ5 σµνP̄
µk̄ν (∆ · v′)/P̄+ d

(κ)
103/m

+ γ5 σµνP̄
µk̄ν (∆ · v′)/P̄+ Λ d

(κ)
104/m

+ γ5 σµνP̄
µ∆ν d

(κ)
105/m

+ γ5 σµνP̄
µ∆ν Λ d

(κ)
106/m

+ γ5 σµνP̄
µ∆ν (k̄ · v′)/P̄+ d

(κ)
107/m

+ γ5 σµνP̄
µ∆ν (k̄ · v′)/P̄+ Λ d

(κ)
108/m

+ γ5 σµνP̄
µ∆ν (∆ · v′)/P̄+ d

(κ)
109/m

+ γ5 σµνP̄
µ∆ν (∆ · v′)/P̄+ Λ d

(κ)
110/m

+ γ5 σµν∆̄
µk̄ν d

(κ)
111/m

+ γ5 σµν∆̄
µk̄ν Λ d

(κ)
112/m

+ γ5 σµν∆̄
µk̄ν (k̄ · v′)/P̄+ d

(κ)
113/m

+ γ5 σµν∆̄
µk̄ν (∆ · v′)/P̄+ d

(κ)
114/m

+ γ5 σµνP̄
µv′ν d

(κ)
115

+ γ5 σµνP̄
µv′ν Λ d

(κ)
116

+ γ5 σµν k̄
µv′ν d

(κ)
117
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+ γ5 σµν k̄
µv′ν Λ d

(κ)
118

+ γ5 σµν∆
µv′ν d

(κ)
119

+ γ5 σµν∆
µv′ν Λ d

(κ)
120

+ γµ εαβµρ∆
αk̄βP̄ ρ d

(κ)
121/m

2

+ γµ εαβµρ∆
αk̄βP̄ ρ Λ d

(κ)
122/m

2

+ γµ εαβµρ∆
αk̄βP̄ ρ (k̄ · v′)/P̄+ d

(κ)
123/m

2

+ γµ εαβµρ∆
αk̄βP̄ ρ (∆ · v′)/P̄+ d

(κ)
124/m

2

+ γµ εαβµρv
′αk̄βP̄ ρ d

(κ)
125/P̄

+

+ γµ εαβµρv
′αk̄βP̄ ρ Λ d

(κ)
126/P̄

+

+ γµ εαβµρv
′α∆βP̄ ρ d

(κ)
127/P̄

+

+ γµ εαβµρv
′α∆βP̄ ρ Λ d

(κ)
128/P̄

+

+ γµ εαβµρv
′α∆βk̄ρ d

(κ)
129/P̄

+

+ γ5 γµ εαβµρ∆
αk̄βP̄ ρ d

(κ)
130/m

2

+ γ5 γµ εαβµρ∆
αk̄βP̄ ρ Λ d

(κ)
131/m

2

+ γ5 γµ εαβµρ∆
αk̄βP̄ ρ (k̄ · v′)/P̄+ d

(κ)
132/m

2

+ γ5 γµ εαβµρ∆
αk̄βP̄ ρ (∆ · v′)/P̄+ d

(κ)
133/m

2

+ γ5 γµ εαβµρv
′αk̄βP̄ ρ d

(κ)
134/P̄

+

+ γ5 γµ εαβµρv
′αk̄βP̄ ρ Λ d

(κ)
135/P̄

+

+ γ5 γµ εαβµρv
′α∆βP̄ ρ d

(κ)
136/P̄

+

+ γ5 γµ εαβµρv
′α∆βP̄ ρ Λ d

(κ)
137/P̄

+

+ γ5 γµ εαβµρv
′α∆βk̄ρ d

(κ)
138/P̄

+ . (7.186)

If we assume∆ = 0, namely we take the forward limit, we are lead to the ansatz given
in (6.141) for the forward helicity correlators. That the ansatz given has a correct limit in
the forward case provides a proof of the self consistence of the method applied to build
the ans̈atze.
Imposing parity, hermiticity and time reversal constraints ( see Appendix for the deriva-
tion ) reduces further the number of independent amplitudes in the ansätze. Instead of the
expected138 × 4 = 552 independent amplitudes combining the constraints from parity,
hermiticity and time reversal invariance results in the following independent amplitudes

• for the diagonal amplitudes:

d1
m = d4

m real m = 1, 3, 9, 11, 17, 19, 29, 33, 40, 44, 46, 49,

52, 54, 57, 64, 68, 83, 91
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d1
m = −d4

m real m = 2, 4, 10, 12, 18, 20, 30, 34, 39, 43, 45, 50,

51, 53, 58, 63, 67, 84, 92

d1
m = d4

m imaginary m = 8, 16, 24, 73, 77, 79, 85, 87, 97, 100, 102,

110, 116, 118, 122, 124, 128, 130, 132,

136, 138

d1
m = −d4

m imaginary m = 7, 15, 23, 74, 78, 80, 86, 88, 98, 99, 101,

109, 114, 115, 117, 121, 123, 127, 129,

131, 137

(7.187)

• for the off-diagonal amplitudes:

d2
m = d3

m real m = 1, 3, 9, 11, 17, 19, 29, 33, 41, 48, 56, 60,

62, 76

d2
m = −d3

m real m = 2, 4, 10, 12, 18, 20, 30, 34, 42, 47, 55,

59, 61, 75

d2
m = d3

m imaginary m = 40, 50, 58, 73, 77, 79, 85, 87, 97,

104, 106, 108, 112, 120, 124, 126, 130,

132, 136, 138

d2
m = −d3

m imaginary m = 39, 49, 57, 74, 78, 80, 86, 88, 98, 103,

105, 107, 111, 113, 119, 125, 131, 137 .

(7.188)

Applying constraint derived from hermiticity, parity and time reversal we reduced the
number of independent amplitudes in the ansätze. Notice that the requirement coming
from parity fixes relations between the two diagonal correlators and between the two off-
diagonal correlators. The helicity non-flip correlatorsΦi+,j+ andΦi−,j− can be expressed
in terms of the38 real amplitudes and42 imaginary amplitudes. The helicity flip corre-
latorsΦi−,j+ andΦi+,j− are given by28 real amplitudes and38 imaginary ones. In total
the number of independent amplitudes is reduced to146.
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8 Definition of distribution functions

A parton distribution, whether forward or off-forward, arises from removal of a parton
from a nucleon by a hard probe and its subsequent return to form the nucleon ground
state.
In hard scattering processes forward and non-forward distribution functions link the quark
and gluon lines to hadrons in the initial or final state and are defined as Dirac projections
of twist-two bilocal, hadronic matrix elements of fields operators, taken along a light-
cone direction in position space, which is related to the direction of the momentum of the
nucleon in the infinite momentum frame.
The transition from hadrons to quarks and gluons is described in terms of distribution
functions and the cross sections of these processes are written in terms of observables that
are directly derived from distribution functions when convoluted with the perturbative
hard part of the reaction.
One of the most important property of distribution functions is the independence from the
particular reaction where a given distribution is measured. This property, calleduniver-
sality, guarantees that any distribution function, evaluated in a particular experiment, can
be used without change to predict the results of another hard process.
Factorization theorems assure that distribution functions fulfill universality for some of
the hard processes [CF99], whereas for others factorization is used as a plausible assump-
tion.

8.1 Definition of forward distribution functions

In the light-cone gauge let us consider quark-quark matrix elements between states of
equal initial and final momenta. DIS distribution functions are obtained from the integrals
overdk− andd2~kT of the Dirac projections of the quark correlation functions,

Φ[Γ]
ij(xB) =

1

2

∫
dk− d2~kT Tr(Γ Φ(k, P, S))|k+=xBP+ , (8.189)

The projections depend on the fractional momentumxB = k+/P+, on ~kT and on the
hadron momentumP , i.e. they depend onP+ andM .
The different projections can therefore be ordered according to the power ofM/P+ mul-
tiplied for a function depending only onxB and~k2

T and each factor produces a suppression
in the cross section of the orderM/Q. According to Jaffe’s definition of ”effective twist”,
any projection is given a twistt related to the power(M/P+)

t−2 that appears in the pro-
jection itself. [Jaf96b]
In a particular hard process only some of the Dirac projections enter in the cross section.
At leading order in1/Q the cross section for unpolarized DIS is written in terms of few
structure functions

2F1(xB) = F2(xB)/xB =
∑

a

e2
af

a
1 (xB) (8.190)
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where the unpolarized quark distribution functionf1 is obtained fromΦ as

f1(xB) =
1

2

∫
dk− d2~kT Tr(Φγ+)|k+=xBP+

=

∫
dz−

4π
eiP+z− 〈P, S|ψj(0) γ+ ψi(z) |P, S〉|z+=zT=0

(8.191)

The case of unpolarized quarks inside protons requires the proton matrix element of the
plus component of a flavor-diagonal bi-local quark field operator (summed over colour).
For polarized DIS one introduces a polarized distribution function

Λg1(xB) =
1

2

∫
dk− d2~kT Tr(Φγ+γ5)|k+=xBP+

=

∫
dz−

4π
eiP+z− 〈P, S|ψj(−

z

2
) γ+γ5 ψi(

z

2
) |P, S〉|z+=zT=0

(8.192)

that is related to the probability of finding a longitudinally polarized quark in a polarized
hadron and contributes at leading order in the DIS cross section as the structure function
G1 =

∑
q e2

q gq
1(xB).

Apart from the unpolarized and polarized chiral even distribution functions,f1 andg1,
there is also one forward chirally odd twist-two proton distribution function, known as
δq(xB) = h1(xB) or transversity distribution, that changes the helicity of the active par-
ton, constructed from the operatorψ̄q σ+iγ5 ψq [HJ98] ( the latin indices denote always
the transverse directions in light-cone coordinates )

h1(xB) =
1

2

∫
dk− d2~kT Tr(Φσ+iγ5)|k+=xBP+

=

∫
dz−

4π
eip+z− 〈P, S|ψj(−

z

2
) σ+iγ5 ψi(

z

2
) |P, S〉|z+=z⊥=0

(8.193)

In case we consider a forward reaction where no transverse spin contribution is available,
the transversity distribution is not accessible. There is in fact no coupling of quark-quark
operators to the Dirac structureσ+iγ5 if the target is in an eigenstate of helicity. In a
transversity basish1 gets an easy probabilistic interpretation: it is the probability to find a
quark polarized along the transverse polarization of the nucleon minus the probability to
find the quark polarized in the opposite direction.
In case the integration over~kT is not performed, one is sensitive to transverse separation
between quarks

Φ
[Γ]
ij (xB, ~kT ) =

1

2

∫
dk− Tr(Γ Φ(k, P, S)|k+=xBP+ , ~kT
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=

∫
dz− d2~zT

2(2π)3
ei k·z 〈P, S|ψj(−

z

2
) Γ ψi(

z

2
) |P, S〉|z+=0

(8.194)

DIS is not sensitive to transverse momentum distribution functions; the observables re-
lated to these distributions are measured, for instance, in semi-inclusive hard processes.
The study of transverse momentum dependent distribution functions is essential for the
comprehension of the structure of hadrons.~kT dependent distribution functions, whose
study was extensively done by many groups, for instance by the group of Piet Mulders in
Amsterdam, give access to aspects of hadrons structure which cannot be investigated by
~kT independent distribution functions.
Aspects of hadronic internal structures, accessible if also~kT -dependent distribution func-
tions are investigated, can be reached in off-forward reactions thanks to the presence of
the transverse component∆T of the vector∆.

8.2 Definition of skewed distribution functions

Skewed parton distributions are defined from the off-forward matrix elements of quark
and gluon operators and are the non-perturbative input for Compton scattering in deep
virtual region of small−t but largeQ2 and s. Factorization of the process into hard
and soft physics garantuees that SPD, like distribution functions, are universal. [CF99],
[JO98], [Rad97a].
At the leading order, one needs to consider only the matrix elements of bilinear operators
at two different points on the light-cone, integrated over transverse momenta of partons.
For a collinear process rotational invariance requires that the helicity should be conserved
but in case a non-zero transverse momentum is present, helicity conservation does not
necessarily hold. Compared to forward processes like DIS additional distribution func-
tions then appear.

8.2.1 The unpolarized skewed quark distribution

In the following we will consider only quark SPDs. Let us consider the case of unpolar-
ized quarks inside protons. Thus, we investigate the proton matrix element of the plus
component of a flavor-diagonal bi-local quark field operator (summed over colour). Fol-
lowing Xi [Ji97b], we define the SPDsHq(x, ξ; t) andEq(x, ξ; t) for a quark of flavorq
by

Hq
Λ′Λ ≡ 1

2
√

1− ξ2

∫
d z−

2π
ei x P̄ +z− 〈P ′, Λ′| ψ̄q(−z/2) γ+ ψq(z/2) |P, Λ〉 |z+=0,z⊥=0

=
ū(P ′, Λ′)γ+u(P, Λ)

2P̄ +
√

1− ξ2
Hq(x, ξ; t) +

ū(P ′, Λ′)iσ+α∆αu(P, Λ)

4m P̄ +
√

1− ξ2
Eq(x, ξ; t)
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(8.195)

The link operator normally needed to render the definition gauge-invariant does not appear
because we choose the gaugeA+ = 0, which together with an integration path along
the minus direction reduces the link operator to unity. EvaluatingHq

Λ′Λ for both proton
helicity flip and non-flip, one obtains the usual SPDs for quark flavorq, Hq andEq from
the following set of two equations

Hq
++ = Hq

−− = Hq − ξ2

1− ξ2
Eq ,

Hq
−+ = −(Hq

+−)∗ = η

√
t0 − t

2m

1√
1− ξ2

Eq (8.196)

with t0 defined as

−t0 =
4ξ2m2

1− ξ2
, (8.197)

and the phaseη as before given by

η =
∆1 + i∆2

|∆⊥| . (8.198)

In a general reference frame∆α in Equation (8.195) is to be replaced with∆α −
(∆+/P̄+) P̄α. Note that the factors in (8.196), which are spinorial products, are frame-
dependent and here calculated in the parameterization (B.255). ( refer to the Chapter
“Choice of spinors and evaluation of spinorial products”).
EvaluatingHq

λ′λ for both proton helicity flip and non-flip, one obtains the usual SPDs for
quark flavorq, Hq andEq. Hλλ′ andH̃λλ′ provide linear combinations of the SPDsH,
E andH̃, Ẽ, respectively. EvaluatingHΛ′Λ for both proton helicity flip and non-flip, one
then obtains from Eq. (8.196) (or (8.200) in the polarized case) the SPDsH (H̃) andE
(Ẽ) separately for each quark flavorq or gluons.

8.2.2 The polarized skewed quark distribution

The polarized skewed quark distributions,H̃q(x̄, ξ; t) andẼq(x̄, ξ; t), are defined by the
Fourier transform of the axial vector matrix element

H̃q
Λ′Λ ≡ 1

2
√

1− ξ2

∫
d z−

2π
ei x P̄ +z− 〈P ′, Λ′| ψ̄q(−z

2
) γ+γ5 ψq(

z

2
) |P, Λ〉 |z+=0,z⊥=0

=
ū(P ′, Λ′)γ+γ5u(P, Λ)

2p̄+
√

1− ξ2
H̃q(x, ξ; t) +

ū(P ′, Λ′)∆+γ5u(P, Λ)

4mP̄ +
√

1− ξ2
Ẽq(x, ξ; t) .

(8.199)
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For the different proton helicity combinations we now find

H̃q
++ = − H̃q

−− = H̃q − ξ2

1− ξ2
Ẽq ,

H̃q
−+ = (H̃q

+−)∗ = η

√
t0 − t

2m

ξ√
1− ξ2

Ẽq . (8.200)

By solving (8.200)H̃q(x̄, ξ; t) andẼq(x̄, ξ; t) are obtained.

8.2.3 Parton helicity changing distributions

There are also twist-two skewed distributions that change the helicity of the active par-
ton [HJ98]. The corresponding quark distributions are constructed from the operator
ψ̄q σ+iγ5 ψq, and one of them becomes the ordinary quark transversity distributionδq(x)
in the forward limit.
In case we consider a forward reaction where no transverse spin contribution is available,
the transversity distribution is not accessible. Nevertheless DVCS transverse components
of hadronic momenta∆⊥ make it possible to have a flip of the hadron helicity and this
produces a distribution that resembles ordinary transversity distribution.

Gq
Λ′Λ

i ≡ 1

2
√

1− ξ2

∫
d z−

2π
ei x P̄ +z− 〈P ′, Λ′| ψ̄q(−z

2
) σ+i ψq(

z

2
) |P, Λ〉 |z+=0,z⊥=0

= ū(P ′, Λ′)σ+iu(P, Λ)Hq
T (x, ξ; t) + ū(P ′, Λ′)γ[+∆i]u(P, Λ)Eq(x, ξ; t)

(8.201)

By considering the implications of parity and time reversal invariance properties on the
number of independent amplitudes in a off-forward process like DVCS, Hoodboy and
Ji [HJ98] argue that there should be two parton helicity changing skewed distributions
(8.201).
In a recent paper [Die01] Diehl affirms that by implementing correctly the constraint
coming from time reversal invariance the number of independent parton helicity changing
skewed distributions is fixed to4, Hq

T (x, ξ; t), Ẽq
T (x, ξ; t) Hq

T (x, ξ; t) andẼq
T (x, ξ; t) such

that (8.201) reads

Gq
Λ′Λ

i ≡ 1

2
√

1− ξ2

∫
d z−

2π
ei x P̄ +z− 〈P ′, Λ′| ψ̄q(−z

2
) σ+i ψq(

z

2
) |P, Λ〉 |z+=0,z⊥=0

= ū(P ′, Λ′)σ+iu(P, Λ)Hq
T (x, ξ; t) + ū(P ′, Λ′)γ[+∆i]/mu(P, Λ)Ẽq

T (x, ξ; t)

= ū(P ′, Λ′)P̄ [+∆i]/m2u(P, Λ)Hq
T (x, ξ; t) + ū(P ′, Λ′)γ[+P̄ i]u(P, Λ)Ẽq

T (x, ξ; t) .

(8.202)
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In the Equations (8.195),(8.196) and (8.201) the first term survives in the forward limit (
helicity non-flip case ), the second term is, on the contrary, an amplitude that decouples
but does not vanish in the forward DIS limit. In Equation (8.202) only the first term which
multiplies the skewed distributionHq

T (x, ξ; t) survives if∆ = 0.
The forward limit represents indeed a kinematical check of the correct behavior of the
SPDs.

8.2.4 Interpretation of SPDs

We do not have a probabilistic interpretation for SPDs as they are interference amplitudes.
Nevertheless we can interpret them as follows.
The matrix elements in (8.195),(8.196) and (8.201) are different from zero for−1 ≤ x ≤
1. In the regionξ ≤ x ≤ 1 a quark is at the beginning emitted and one quark is at the end
re-absorbed.
If one reinterprets a quark with negative momentum fraction as an anti-quark with positive
fraction, one finds that in the region−1 ≤ x ≤ −ξ the matrix elements in (8.195),(8.196)
and (8.201) describe emission and reabsorption of an anti-quark. In the region−ξ ≤ x ≤
ξ the proton with momentumP emits a quark-anti-quark pair and is left as a proton with
momentumP ′ = P + ∆.
We remark in passing that one can define distributionsH q̄(x, ξ; t) ≡ −Hq(−x, ξ; t) and
E q̄(x, ξ; t) ≡ −Eq(−x, ξ; t), which in the regionξ < x̄ < 1 describe the emission and
reabsorption of anti-quarks and may thus be called “skewed anti-quark distributions”,
which will not be discussed in the following.
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9 Twist-analysis of quark-quark correlators

One of the main goals of this work consists in developing atwist-analysisof off-forward
quark-quark correlators following and generalizing the method worked out for the forward
correlators by Mulders’ group in Amsterdam [JMR97b, JMR97a, BM98, MR01, Mul99,
Mul97, MT96, Mula, BBHM00b].
Carrying out a twist-analysis consists in tracing the correlation functions with different
Dirac structures. We analyze the Dirac content of the correlation functions by tracing
them with various Dirac matrices, different Dirac structures probing different properties
of the hadrons. Furthermore the different traces correspond to the different distribution
functions and the twist-analysis determines which distribution functions occur in a process
at the different orders in1/P+ or 1/P̄+ for the off-forward case, whereP+ or P̄+ scale
with the hard scale in the process. Twist2 distribution functions are obtained by projecting
out the ans̈atze for the correlators with the Dirac matricesγ+, γ+γ5 andi σ+iγ5. We access
sub-leading order in1/P+ or in 1/P̄+ distribution functions by tracing our ansätze with
the Dirac matrices1, γi, γiγ5, i σijγ5, andi σ+−γ5. Finally twist 4 distribution functions
are obtained by tracing the ansätze withiγ5, γ−, γ−γ5 andi σi−γ5.
The advantage of having built ansätze for the quark-quark correlators is that by tracing
them with the differentΓ Dirac matrices, we gain the different quark-quark distributions
functions in terms of some of the amplitudes occurring in the ansätze and we are thus
able to predict the dependence of the quark-quark distribution functions upon the different
fundamental structures in terms of which we constructed the ansatz for the correlators.
We will consider only Dirac projections, also calledprofile functions, which do not depend

on the transverse momentum of the quarks~kT or ~̄kT , integrating over them as indicated
in (9.203) and in (9.204), respectively.
In principle having an ansatz for the quark-quark correlators one could extract the forward
and off-forward profile functions which depend additionally on the transverse momentum
~kT or ~̄kT , respectively. In this case these distributions are also sensitive to the difference
in the transverse distance between quarks.

Investigating~kT -dependent distribution functions or~̄kT -dependent skewed distributions
is beyond the scope of this work and therefore we will not pursue it. On one hand the
investigation of~kT -depending ordinary parton distributions has been extensively carried
out by many groups theoretically and experimental investigations are currently under way.
On the other hand for the non-forward processes no formalism for the systematic study of
~kT -dependence has been attempted yet and an experimental program on~kT effects seems
far beyond present abilities. In the foreseeable future we will be happy to acquire some
knowledge on SPDs depending on(x, ξ, t; Q2), not to speak of additional~kT -dependence
.

9.1 Dirac projections of the quark-quark correlators

In writing the cross sections of hard processes we need forward or off-forward quark-
quark correlation functions, integrated over the transverse and minus components of the
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quark momentum and traced with oneΓ Dirac matrix

Φ[Γ](x) =
1

2

∫
d2~kT dk− Tr[Φ Γ]

=

∫
d z−

4π
ei k·z〈P, Λ′|ψj(−

z

2
) Γ ψi(

z

2
) |P, Λ〉|z+=zT =0 (9.203)

Φ̃[Γ](x, ξ; t) =
1

2

∫
d2~̄kT dk− Tr[Φ̃ Γ]

=

∫
d z−

4π
ei k·z〈P ′, Λ′|ψj(−

z

2
) Γ ψi(

z

2
) |P, Λ〉|z+=zT =0 . (9.204)

These traces give thus the quark-quark distribution functions, which occur in the soft parts
of many hard processes.

Note that in (9.203) and in (9.204) one integrates overd k− d2 ~kT or d k̄− d2 ~̄kT , respec-
tively. In order to have covariant integration variables, one performs a change of variables
so that the integral overd k− d2 ~kT can be rewritten as follows [Mul97]

Φ[Γ](x) =

∫
d σ d τ θ(xσ − x2 m2 − τ)

Tr[Φ Γ]

4P+
, (9.205)

where we have introduced the two integration variablesσ = k · P andτ = k2, while the

integral overd k̄− d2 ~̄kT becomes

Φ̃[Γ](x, ξ; t) =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ̃)

Tr[Φ̃ Γ]

4P̄+
, (9.206)

where the new variables of integration areσ̃ = 2P̄ · k̄ andτ̃ = k̄2.

9.2 Leading order Dirac projections of the forward quark-quark
correlators

We take into account the leading order projections of the forward helicity correlators. We
trace the helicity non-flip quark-quark correlators in (6.141) with the matricesγ+, γ+γ5

and the helicity flip forward correlator (6.148) with the matrixi σ+iγ5.

9.2.1 Unpolarized ordinary parton distribution

Substituting the ansatz (6.141) for the forward quark-quark correlators in (9.205) and
tracing it with the matricesγ+ we obtain the unpolarized ordinary parton distribution
f1(x) as
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f1(x) = Φ
[γ+]
++ (x) = Φ

[γ+]
−− (x) =∫

d σ d τ θ(xσ − x2 m2 − τ) [
k · v′
P̄+

a
(1)
9 + x a

(1)
6 + x

k · v′
P̄+

a10 + (a
(1)
5 + a

(1)
8 )]

∫
d σ d τ θ(xσ − x2 m2 − τ) [x (a

(1)
9 + a

(1)
6 ) + x2 a

(1)
10 + (a

(1)
5 + a

(1)
8 )] ,

(9.207)

where(k̄ · v′)/(P̄+) = x. The distribution functionf1(x) is thus expressed in terms of
the amplitudesa(1)

i occurring in the ansatz (6.141).
Helicity conservation implies that tracing the ansatz (6.148) for the helicity flip correla-
tors with theγ+ gives identically zero. The Dirac structureγ+ indeed does not flip the
parton helicityλ = λ′ and as a consequence of the helicity conservation rule (6.150),
characteristic for the forward processes, which we report here

Λ + λ′ = Λ′ + λ , (9.208)

the hadron helicity as well cannot be flipped and then theγ+ trace of the correlatorsΦi+,j−
andΦi−,j+ is zero

Φ
[γ+]
+− (x) = −Φ

[γ+]
+− (x)

∗
= 0 . (9.209)

9.2.2 Polarized ordinary parton distribution

By tracingΦ++ andΦ−− with γ+γ5 and integrating overd σ d τ , we get the expression of
the leading order distribution functiong1(x) in terms of the amplitudesa(k)

m characterizing
the ans̈atze (6.141)

g1(x) = Φ
[γ+]
++ (x) = −Φ

[γ+γ5]
−− (x) =∫

d σ d τ θ(xσ − x2 m2 − τ) [
k · v′
P̄+

a
(1)
15 + x a

(1)
12 + x

k · v′
P̄+

a16 + (a
(1)
11 + a

(1)
14 )]

∫
d σ d τ θ(xσ − x2 m2 − τ) [x (a

(1)
12 + a

(1)
15 ) + x2 a

(1)
16 + (a

(1)
11 + a

(1)
14 )] ,

(9.210)

Because of helicity conservation tracing the correlatorsΦi+,j− andΦi−,j+ with γ+γ5 also
gives zero

Φ
[γ+γ5]
+− (x) = Φ

[γ+γ5]
+− (x)

∗
= 0 , (9.211)

as one can check by substituting the ansätze (6.148) forΦi+,j− andΦi−,j+ directly in
(9.205) and tracing with the Dirac structureγ+γ5.
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9.2.3 Transversity parton distribution

For~kT -integrated profile functions conservation of helicity (6.150) implies that the trace
of the helicity non flip correlatorsΦi+,j+ andΦi+,j+ with the matrixi σi−γ5 is identically
zero. Indeed

Φ
[i σi−γ5]
++ (x) = Φ

[i σi−γ5]
−− (x) = 0 . (9.212)

As we have already remarked, transversity distribution function is not accessible if the
hadron is in an eigenstate of helicity and the helicity correlators we built up just describe
the soft part of a hard process in which initial and final hadron states are eigenstates
of hadron helicity. One needs a transverse component of the hadron spin vector which
couples to the partonic transverse momentum~kT in order to be sensitive to transverse
separation between quarks. We know that helicity flip correlators link hadronic states
carrying opposite helicity and a transverse spin state can always be represented as linear
combinations of helicity eigenstates. Therefore also the matrix elements of non-diagonal
spin states, which are transverse spin states, can be re-expressed as an appropriate linear
combination of matrix elements evaluated between eigenstates of helicity. It follows that
the trace of the helicity flip correlators (6.148) with the matrixi σi−γ5 cannot not be zero
and indeed implementing the ansätze (6.148) forΦi+,j− andΦi−,j+ in (9.205) results in
the following

h1(x) = Φ
[i σi−γ5]
+− (x) = −Φ

[i σi−γ5]
−+ (x) =

h1(x) =

∫
d σ d τ θ(xσ − x2 m2 − τ) [~kT k · a a

(3)
21 + ε+iρσPρkσ k · a ia

(3)
27 ] ,(9.213)

As announced previously (see Eq. (6.151) at twist 2 we expect to produce chiral odd
distributions functions ash1(x) from the helicity flip correlators, namely off-diagonal
correlators. On the other hand the distribution functions asf1(x) andg1(x), obtained by
tracing helicity non-flip, namely diagonal, correlators, have to be chiral even. In the off-
forward case this restriction is not anymore valid since helicity conservation is violated
as in off-forward hard process a transverse component of the vector∆, the momentum
transfer of the process, is always available.

9.3 Leading order Dirac projections of the off-forward quark-quark
correlators

We analyze now the leading order Dirac projections of the off-forward quark-quark corre-
lators given in (7.186), namely we trace the correlators with the Dirac matricesγ+, γ+γ5

andi σ+iγ5.

9.3.1 Unpolarized skewed parton distributions

Substituting the explicit expression of the ansatz (7.186) for the helicity non-flip correla-
tors,Φ̃++ or Φ̃−−, in (9.206) and tracing withγ+ we find that
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Φ̃
[γ+]
++ (x, ξ; t) = Φ̃

[γ+]
−− (x, ξ; t) =∫

d σ̃ d τ̃ θ(xσ − x2 m2 − τ) [−2ξ
∆ · v′
P̄+

(d
(1)
29 + d

(1)
30 ) +

k̄ · v′
P̄+

(d
(1)
11 + d

(1)
12 )

+x (d
(1)
17 + d

(1)
18 ) + x

k̄ · v′
P̄+

(d
(1)
19 + d

(1)
20 ) + (d

(1)
9 + d

(1)
10 )] .

(9.214)

On the other hand from (8.196) we also know that

H++ =
Φ̃

[γ+]
++√

1− ξ2
= H−− =

Φ̃
[γ+]
−−√

1− ξ2
= Hq − ξ2

1− ξ2
Eq , (9.215)

and therefore

H++ = H−− =
1√

1− ξ2
[−2ξ

∆ · v′
P̄+

(d
(1)
29 + d

(1)
30 ) +

k̄ · v′
P̄+

(d
(1)
11 + d

(1)
12 )

+ x (d
(1)
17 + d

(1)
18 ) + x

k̄ · v′
P̄+

(d
(1)
19 + d

(1)
20 ) + (d

(1)
9 + d

(1)
10 )] . (9.216)

∆ · v′ andk̄ · v′ are given as

∆ · v′ = −2 ξP̄+

k̄ · v′ = x P̄+ . (9.217)

and thus (9.216) becomes

H++ = H−− =
1√

1− ξ2
[ 4ξ2 (d

(1)
29 + d

(1)
30 ) + x (d

(1)
11 + d

(1)
12

+d
(1)
17 + d

(1)
18 ) + x2 (d

(1)
19 + d

(1)
20 ) + (d

(1)
9 + d

(1)
10 ) ] . (9.218)

We remark in passing that by virtue of the relations (7.187) betweend
(1)
m andd

(4)
m we can

indeed verify that the traceH++ of Φ++ with the matrixγ+ is equal to the traceH−− of
Φ−− with the same Dirac matrix.
We can further insert the ansatz (6.148) for the off-diagonal correlatorsΦ−+ or Φ+− in
(9.206) obtaining

Φ̃
[γ+]
−+ (x, ξ; t) = −(Φ̃

[γ+]
+− (x, ξ; t))

∗

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ) (−η) [−2ξ

∆ · v′
P̄+

(d
(3)
29 + d

(3)
30 ) +

k̄ · v′
P̄+

(d
(3)
11 + d

(3)
12 )

+x (d
(3)
17 + d

(3)
18 ) + x

k̄ · v′
P̄+

(d
(3)
19 + d

(3)
20 ) + (d

(3)
9 + d

(3)
10 )] .

(9.219)
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whereη is defined as

η =
∆1 + i∆2

|∆⊥| . (9.220)

In the helicity flip case the trace of the correlators with the Dirac matrixγ+ in (8.196)
gives

H−+ = −(H+−)∗ = η

√
t0 − t

2m

1√
1− ξ2

Eq

=
−η√
1− ξ2

[−2ξ
∆ · v′
P̄+

(d
(3)
29 + d

(3)
30 )

+
k̄ · v′
P̄+

(d
(3)
11 + d

(3)
12 ) + x (d

(3)
17 + d

(3)
18 )

+ x
k̄ · v′
P̄+

(d
(3)
19 + d

(3)
20 ) + (d

(3)
9 + d

(3)
10 )] . (9.221)

We have now a set of two equations for the two unknown skewed distribution functions
Hq andEq, which is solvable

Hq − ξ2

1− ξ2
Eq =

1√
1− ξ2

[4ξ2 (d
(1)
29 + d

(1)
30 )

+ x (d
(1)
11 + d

(1)
12 + d

(1)
17 + d

(1)
18 )

+ x2 (d
(1)
19 + d

(1)
20 ) + (d

(1)
9 + d

(1)
10 )] (9.222)

η

√
t0 − t

2m

1√
1− ξ2

Eq = − η√
1− ξ2

[4ξ2 (d
(3)
29 + d

(3)
30 )

+ x (d
(3)
11 + d

(3)
12 + d

(3)
17 + d

(3)
18 )

+ x2 (d
(3)
19 + d

(3)
20 ) + (d

(3)
9 + d

(3)
10 )] . (9.223)

and gives the two unpolarized skewed parton distribution functionsHq andEq as

Hq =
1√

1− ξ2
[A(1)(x, ξ; t)− 2mξ2

√
1− ξ2

√
t0 − t

A(3)(x, ξ; t)]

Eq = − 2 m√
t0 − t

A(3)(x, ξ; t) , (9.224)

where we have introduced the functionA(1)(x, ξ; t) andA(3)(x, ξ; t) defined as

A(1)(x, ξ; t) =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ) [4ξ2 (d

(1)
29 + d

(1)
30 )

+ x (d
(1)
11 + d

(1)
12 + d

(1)
17 + d

(1)
18 ) + x2 (d

(1)
19 + d

(1)
20 ) + (d

(1)
9 + d

(1)
10 )]

(9.225)
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and

A(3)(x, ξ; t) =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ) [4ξ2 (d

(3)
29 + d

(3)
30 )

+ x (d
(3)
11 + d

(3)
12 + d

(3)
17 + d

(3)
18 ) + x2 (d

(3)
19 + d

(3)
20 ) + (d

(3)
9 + d

(3)
10 )]

(9.226)

respectively. As expected, the skewed parton distributionsEq decouples from the set
of equations in the forward limit and theHq function leads to the the ordinary parton
distributionf q

1

lim
ξ→0,t→0

Hq(x, ξ; t) = A(1)(x, ξ = 0; t = 0) =

(d
(1)
9 + d

(1)
10 ) + x (d

(1)
11 + d

(1)
12 + d

(1)
17 + d

(1)
18 ) + x2 (d

(1)
19 + d

(1)
20 ) (9.227)

By an appropriate renaming of the amplitudes the unpolarized skewed parton distribution
Hq(x, ξ; t) in the limit ξ → 0 andt → 0 is equal to the unpolarized parton distribution
f1(x) expressed in (9.207).

9.3.2 Polarized skewed parton distributions

By tracing the helicity non-flip quark-quark correlators (7.186),Φ++ or Φ−−, with γ+γ5

we have

Φ̃
[γ+γ5]
++ (x, ξ; t) = −Φ̃

[γ+γ5]
−− (x, ξ; t) =∫

d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)[−2ξ
∆ · v′
P̄+

(d
(1)
63 + d

(1)
64 ) +

k̄ · v′
P̄+

(d
(1)
45 + d

(1)
46 )

+x (d
(1)
51 + d

(1)
52 ) + (d

(1)
43 + d

(1)
44 ) + x

k̄ · v′
P̄+

( d
(1)
53 + d

(1)
54 )] . (9.228)

From (8.200) we also know that

H̃++ =
Φ̃

[γ+γ5]
++√
1− ξ2

= −H̃−− =
Φ̃

[γ+γ5]
−−√
1− ξ2

= H̃q − ξ2

1− ξ2
Ẽq , (9.229)

Furthermore the trace of the helicity flip correlators withγ+γ5 reads

Φ̃
[γ+γ5]
−+ (x, ξ; t) = (Φ̃

[γ+γ5]
+− (x, ξ; t))

∗
=∫

d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)(−η) [−2ξ
k̄ · v′
P̄+

(d
(3)
61 + d

(3)
62 )

+x
∆ · v′
P̄+

(d
(3)
55 + d

(3)
56 ) +

∆ · v′
P̄+

(d
(3)
47 + d

(3)
48 )− 2ξ (d

(3)
59 + d

(3)
60 )) ] , (9.230)

and from (8.200)

H̃−+ = (H̃q
+−)∗ = η

√
t0 − t

2m

ξ√
1− ξ2

Ẽq . (9.231)
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We obtain a set of two equations in the two unknown functionsH̃q andẼq which give

Ẽq = − 2 m

ξ
√

t0 − t
B(3)(x, ξ; t) (9.232)

H̃q =
1√

1− ξ2
[B(1)(x, ξ; t)− 2mξ√

1− ξ2
√

t0 − t
B(3)(x, ξ; t)] ,

where we have introduced the functionB(1)(x, ξ; t) andB(3)(x, ξ; t) defined as

B(1)(x, ξ; t) =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ) [4ξ2 (d

(1)
63 + d

(1)
64 ) + (d

(1)
43 + d

(1)
44 )

+ x (d
(1)
45 + d

(1)
46 + d

(1)
51 + d

(1)
52 ) + x2 (d

(1)
53 + d

(1)
54 )]
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and

B(3)(x, ξ; t) =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ) [4ξ2 (−2 ξ x d

(3)
61 + d

(3)
62

+d
(3)
56 + d

(3)
55 − 2 ξ (d

(3)
47 + d

(3)
48 + d

(3)
59 + d

(3)
60 )] ,

(9.234)

respectively. Note thatB(3)(x, ξ; t) is identically equal to zero in the forward limit and
H̃q coincides withg1(x) in the forward limit.

9.3.3 Parton helicity changing distributions

Since the number of independent parton helicity changing SPDs was subject to debate in
the literature, it is important that the present twist-analysis offers the opportunity of an
independent and unambiguous check of this number, which only relays on the general
principles used to construct the ansätze.
Tracing the ans̈atze (7.186) with the matrixi σi+γ5 we obtain

Φ̃
[i σi+γ5]
++ (x, ξ; t) = C(1) i + D(1) i

Φ̃
[i σi+γ5]
−− (x, ξ; t) = C(1) i −D(1) i

Φ̃
[i σi+γ5]
−+ (x, ξ; t) = C(3) i + D(3) i

Φ̃
[i σi+γ5]
+− (x, ξ; t) = C(3) i −D(3) i (9.235)

whereC(1), expressed in terms of the amplitudes occurring in the ansatz (7.186), reads

C(1) i =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)

{∆i [2 ξ(d
(1)
83 + d

(1)
84 ) (−x P̄ · k̄) + 2 ξ (d

(1)
91 + d

(1)
92 ) (x P̄ · k̄ − k̄2)]

+1/P+ ε+iρσ∆ρP̄σ (−d
(1)
77 − d

(1)
78 + d

(1)
85 + d

(1)
86 ) + x (d

(1)
87 + d

(1)
88 − d

(1)
79 − d

(1)
80 )]} ,

(9.236)
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D(1) i reads

D(1) i =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)

{
∆i [2 y (−x d

(1)
114 + i d

(1)
109 + i d

(1)
110)]

}
(9.237)

andC(3 i) can be written as

C(3) i =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)

{∆i [2 ξ (d
(3)
75 − d

(3)
76 )(x2 − P̄ · k̄ x2 − P̄ · k̄ x− k̄2 x)]
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(3)
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andD(3) i in terms of the amplitudesd(3)
m is

D(3) i =

∫
d σ̃ d τ̃ θ(x σ̃ − x2 m2 − τ)

[∆i (i x (d
(3)
111 − d

(3)
112 − d

(3)
107 + d

(3)
108)− i d

(3)
105 + i d

(3)
106) + x2 d

(3)
113)] (9.239)

We observe that only two tensor structures,∆i and ερσ+i∆ρP̄σ, occur inC(1) i, D(1) i,
C(3) i andD(3) i. The fact that the Eq. (9.235) constitutes a set of four linearly independent
equations unambiguously signals that one can define four independent SPDs from it. This
situation is different from the projections withγ+ andγ+γ5 where only two independent
equations arise from the different hadron helicity combinations.
From (9.235) we have freedom of choice for the definition of SPDs, like for the elastic
form factors which some define asF1,F2 and others asGE, GM . In the following we
adopt the choice of definitions for the parton helicity changing SPDs as given by Diehl.
From Equation (8.202) follows

Gq
Λ′Λ

i =
Φ̃

[iσi+γ5]
Λ′Λ√
1− ξ2

(9.240)

and inserting the results for the spinorial products in the average frame, defined in the
Appendix, one obtains up to a phase (−η for Gq

−+ andη∗ for Gq
+− )

Gq
++

i = Hq
T

ε+jρσP̄ρ∆σ ξ
√

1− ξ2

(1 + ξ) m

−H̃q
T 2mε+jρσP̄ρ∆σ

√
−1 + ξ2

+Eq
T

2 (P̄+∆ji ξ − ε+jρσP̄ρ∆σ)√
−1 + ξ2

+Ẽq
T

−i P̄+ ∆j + ξ ε+jρσP̄ρ∆σ√
1− ξ2

(9.241)
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Gq
−−

i = Hq
T

ε+jρσP̄ρ∆σ ξ
√

1− ξ2

(1 + ξ) m

−H̃q
T 2mε+jρσP̄ρ∆σ

√
−1 + ξ2

+Eq
T
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−1 + ξ2

+Ẽq
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(9.242)

Gq
−+

i = −2 Hq
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t0 − t
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(9.243)

Gq
+−

i = −2 Hq
T

iP̄+∆j + ε+jρσP̄ρ∆σ√
t0 − t

−H̃q
T

ε+jρσP̄ρ∆σ (4m2ξ2 − ξ2 t + t)√
1− ξ2

√
t0 − t

+Eq
T 4mξ2 P̄+∆ji− ε+jρσP̄ρ∆σ√
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t0 − t

−Ẽq
T 2

mξ(i P̄+ ∆j − ε+jρσP̄ρ∆σ√
−1 + ξ2

√
t0 − t

(9.244)

We have shown that the number of independent helicity changing skewed parton distribu-
tions is four as claimed in a recent paper by Markus Diehl.
Note that the two methods applied by Diehl and by us, respectively, to deduce the number
of helicity changing skewed parton distributions are completely independent. On one
hand starting from very general principles we wrote the most general ansatz which can
describe off-forward quark-quark correlation functions and then we traced this ansatz
with different Dirac matrices. On the other hand Diehl reached the same conclusion by
considering directly the skewed parton distributions and implementing correctly for them
the time reversal constraint. [Die01]
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10 Conclusion

In this work we presented a detailed analysis of forward and off-forward quark-quark
correlation functions. We stressed the physical significance of quark-quark correlators in
parametrising the long-distance physics, not describable by perturbative QCD.
We provided a definition of forward and off-forward quark-quark correlators with respect
to a spin basis and to a light-cone helicity basis, clarifying the relation between the two
representations. Moreover constraints on quark-quark correlation functions were obtained
from the transformation properties of the fundamental fields of QCD occurring in the
definition of the correlators. In particular, the constraints obtained for the off-forward
correlators were not yet in literature.
A further step of the work consisted in developing a method to construct ansätze for both
forward and off-forward quark-quark correlation functions in spin and light-cone helic-
ity basis. We provided motivations to build ansätze for the off-forward correlators in an
helicity basis. We stress that the method used to construct the ansatz in the helicity basis
is new. Ans̈atze for the forward quark-quark correlation functions were modelled in both
spin basis and helicity basis, while those for the off-forward case were built in the helic-
ity basis. The quark-quark correlators can be expressed in terms of tensorial structures
formed by the independent vectors and the Dirac matrices. The constraints previously
obtained for the correlators were implemented to reduce the number of independent am-
plitudes multiplying these tensorial structures in the ansätze.
Finally we projected out the leading order SPDs, i.e. we expressed the unpolarised, po-
larised and parton helicity flip distributions in terms of the amplitudes entering in the
ans̈atze we wrote for the forward and off-forward case. The formalism of twist-analysis
here adopted allowed to conclude that the number of independent parton helicity changing
distributions is four in agreement with Diehl’s argument. We want to stress that the result
about the number of these independent functions was obtained by Diehl in a completely
different way and this is a confirmation of both methods used to approach the problem.
On one hand we represented matrix elements of non-local quark-quark operators in terms
of tensorial structures built from the involved momenta on the basis of general properties
of invariance. Then we traced the correlators with different Dirac matrices and we could
read off which of these structures contribute to each SPD. On the other hand Diehl’s ap-
proach was to count the number of independent helicity amplitudes occurring in DVCS
cross section on the basis of time reversal and parity invariance which these amplitudes
have to fulfil.
We worked out a powerful method of analysis which in the present was applied com-
pletely to the leading twist level. The same method can be implemented to investigate
twist 3 and twist 4 skewed distribution functions. The analysis of twist 3 and twist 4
skewed distribution functions is beyond the scope of this work but it may be extremely
useful. For instance one could expect that useful relations between leading and next to
leading order skewed distributions could emerge as suggested by similar experience in
the forward case. In this sense the present work represents a valuable starting point for
further investigations.
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Appendix

A Light-cone components of a vector

We define the light-cone components of a vector, which will be used extensively through
the whole thesis.
In terms of the four light-cone components, an arbitrary four-vectoraµ = ( a0, a1, a2, a3 )
can be rewritten as

aµ = [ a+, a−,~a⊥ ] (A.245)

where

a± =
1√
2

( a0 ± a3 ) (A.246)

~a⊥ = ( a1, a2 ).

In this basis the metricgµν has non-zero componentsg+− = g−+ = 1 andgij = −δij,
where the indicesi andj can be either1 or 2.

B Kinematics and scalar products

B.1 Useful transformation

We define Lorentz transformation between different frames of reference which leave the
“+”-component unchanged i.e. involving a parameterb+ and a two-dimensional vector~b
such that

aµ =
[

a+ , a− , ~a
] −→ ãµ =

[
a+ , a− − ~a ·~b

b+
+

a+~b 2

2 (b+)2
, ~a− a+

b+
~b

]

(B.247)

with

ã2 = 2 a+a− − 2 a+~a ·~b
b+

+ 2 a+ a+~b 2

2(b+)2
− ~a 2 + 2

a+

b+
~a ·~b−

(
a+

b+

)2

~b 2

= 2 a+a− − ~a 2 = a2 . (B.248)

B.2 Frames of reference

We discuss two different frames of reference in which the description of DVCS reaction
is usually worked out.
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B.2.1 “Skewness frame”

In the frame of reference which we call “skewness frame”, one chooses the momentum
of the incoming protonP and of the virtual photonq to be collinear [RW01]

P µ =

[
P+ ,

M2

2 P+
, ~0⊥

]

∆µ =

[
−ζ P+ ,

ζM2 + ~∆2
⊥

2 P+(1− ζ)
, ~∆⊥

]

qµ =

[
−xN P+ ,

Q2

2 xN P+
, ~0⊥

]

P ′µ = P µ + ∆µ =

[
(1− ζ) P+ ,

M2 + ~∆2
⊥

2 P+ (1− ζ)
, ~∆⊥

]
(B.249)

Partons in the incoming proton have momenta

kµ
i =

[
Xi P

+ ,
k2

i + ~k2
i⊥

2 Xi P+
, ~ki⊥

]
(B.250)

and partons in the outgoing proton

k ′µi = kµ
i for i 6= j

k ′µj = kµ
j + ∆µ =

[
(Xi − ζ) P+ ,

k ′ 2j + (~kj⊥ + ~∆⊥)2

2 (Xi − ζ) P+
, ~kj⊥ + ~∆⊥

]
active

(B.251)

A transverse boost with~b = ~∆⊥ andb+ = (1 − ζ) p+ leads to a frame, where the
outgoing proton has no transverse momentum components

P ′µ −→ P̆ ′µ =

[
(1− ζ) P+ ,

M2

2 (1− ζ) P+
, ~0⊥

]
(B.252)

and

k′i −→ k̆′i =

[
Xi P

+ ,
k′ 2i + (~ki⊥ − Xi

1−ζ
~∆⊥)2

2 Xi P+
, ~ki⊥ − Xi

1− ζ
~∆⊥

]
for i 6= j

k′j −→ k̆′j =

[
(Xj − ζ) P+ ,

k′ 2j + (~kj⊥ +
1−Xj

1−ζ
~∆⊥)2

2 (Xj − ζ) P+
, ~kj⊥ +

1−Xj

1− ζ
~∆⊥

]

(B.253)

such that the arguments for the outgoing proton wave function read

ψout

(
Xi

1− ζ
,~ki⊥ − Xi

1− ζ
~∆⊥;

Xj − ζ

1− ζ
,~kj⊥ +

1−Xj

1− ζ
~∆⊥

)
(B.254)
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B.2.2 “Average frame”

Close to Ji’s conventions [Ji98b] we choose a frame where the longitudinal direction is
defined by the proton average momentum

²
±

¯
°��

�
��
�

��*
HHH
HHH
HHj

6
?

-

P = P −∆/2 P ′ = P + ∆
= P + ∆/2

q q′ = q −∆

R

µ
P 2 = P ′ 2 = M2

q2 = −Q2, q′ 2 = 0

⇓

P ·∆ = −∆2

2

q ·∆ =
∆2 −Q2

2

One defines the proton average momentum as:

P = (P + P ′)/2 such that





P = P −∆/2

and

P ′ = P + ∆/2

(B.255)

and the following light-like vectors:

vµ =
[

1 , 0 , ~0⊥
]

; v′µ =
[

0 , 1 , ~0⊥
]

. (B.256)

Partons in the incoming proton have momenta

kµ
i =

[
Xi P

+ ,
k2

i + ~k2
i⊥

2 Xi P+
, ~ki⊥

]
(B.257)

and partons in the outgoing proton

k ′µi = kµ
i for i 6= j

k ′µj = kµ
j + ∆µ =

[
(Xi − ζ) P+ ,

k ′ 2j + (~kj⊥ + ~∆⊥)2

2 (Xi − ζ) P+
, ~kj⊥ + ~∆⊥

]
active

(B.258)

The Sudakov decomposition of the external vectors reads: (choosep andq collinear)

P
µ

=

[
P

+
,

M
2

2P
+ , ~0⊥

]
(B.259)
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qµ =

[
−xN P

+
,

Q2

2 xN P
+ , ~0⊥

]
xN = − q+

P
+ (B.260)

∆µ =

[
−2ξ P

+
,

ξM
2

P
+ , ~∆⊥

]
ξ = − ∆+

2 P
+ (B.261)

with

M
2

= P
2

= (P + ∆/2)2 = M2 + P ·∆ + ∆2/4 = M2 −∆2/4 (B.262)

and

P · q =
Q2

2 xN

− xN M
2

2
=⇒ xN =

(
−P · q +

√
(P · q)2 + Q2M

2
)

/M
2

(B.263)

Note that

lim
M

2→0

xN =
Q2

2 P · q (de l’Hospital)

the component∆− is determined by

P ·∆ = (P + ∆/2) ·∆ = P ·∆ + ∆2/2 = 0

= P
+
∆− +

M
2

2P
+ ∆+

=⇒ ∆− = − M
2

2(P
+
)2

∆+ =
ξ M

2

P
+ (B.264)

The Mandelstam variablet reads

t = ∆2 = −4ξ2M
2 − ~∆2

⊥ (B.265)

from which we obtain (insert (B.265) in (B.262))

M
2
(1− ξ2) = M2 + ~∆2

⊥/4 (B.266)

or (insert (B.262) in (B.265))

∆2 =
−4 ξ2M2 − ~∆2

⊥
1− ξ2

. (B.267)

The momentum of the real photon is

q ′µ = (q −∆)µ =

[
(2ξ − xN) P

+
,

Q2 − 2 xNξM
2

2xNP
+ , −~∆⊥

]
. (B.268)
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We also show the explicit form of the incoming and outgoing proton momenta

P µ = (P −∆/2)µ =

[
(1 + ξ) P

+
,

M2 + ~∆2
⊥/4

2(1 + ξ)P
+ , −~∆⊥/2

]

P ′µ = (P + ∆/2)µ =

[
(1− ξ) P

+
,

M2 + ~∆2
⊥/4

2(1− ξ)P
+ , ~∆⊥/2

]
(B.269)

Note that the minus components can also be written as

P− =
M

2
(1− ξ)

2P
+ P ′ − =

M
2
(1 + ξ)

2P
+ (B.270)

B.3 Complete set of Mandelstam variables and Lorentz invariants

The Mandelstam variables for DVCS are the following

s = (P + q)2 = (P ′ + q′)2 = m2 + 2P ′ · q′
t = (P ′ − P )2 = ∆2

u = (P − q′)2 = (q − P ′)2 = m2 − 2P ′ · q′ . (B.271)

(B.272)

For later use we calculate also some Lorentz invariants of the process in the “average
frame”.

P · P ′ = m2 − t/2

P · P ′ = m̄2 − t/4

S · S ′ = λλ′ (− t

2m2
− 3ξ2 + 1

1− ξ2
)

P̄ · (S ′ + S) =
λ′ + λ

2m
P ′ · P − λm

2

1− ξ

1 + ξ
− λ′m

2

1 + ξ

1− ξ

P̄ · (S ′ + S) = − λt

2m
− 2mλξ2

1− ξ2
if λ = λ′

P̄ · (S ′ + S) =
2λξm

1− ξ2
if λ = −λ′

P̄ · (S ′ − S) =
λ′ − λ

2m
P ′ · P +

λm

2

1− ξ

1 + ξ
− λ′m

2

1 + ξ

1− ξ

P̄ · (S ′ − S) = − 2mλξ

1− ξ2
if λ = λ′

P̄ · (S ′ − S) =
λt

2m
+

2mλξ2

1− ξ2
if λ = −λ′

k̄ · (S ′ + S) =
k̄

m
· ( λ′P ′ + λP )− λ′mx̄

1− ξ
− λmx̄

1 + ξ
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k̄ · (S ′ + S) =
2λk̄ · P̄

m
− 2mλx̄

1− ξ2
if λ = λ′

P̄ · (S ′ + S) = −λk̄ ·∆
m

+
2mλx̄ξ

1− ξ2
if λ = −λ′

k̄ · (S ′ − S) =
k̄

m
· ( λ′P ′ − λP )− λ′mx̄

1− ξ
+

λmx̄

1 + ξ

k̄ · (S ′ − S) =
λk̄ ·∆

m
− 2mλx̄ξ

1− ξ2
if λ = λ′

k̄ · (S ′ − S) =
−2λP̄ · k̄

m
+

2mλx̄

1− ξ2
if λ = −λ′

∆ · (S ′ + S) = −P̄ (S ′ − S)

∆ · (S ′ − S) = −P̄ (S ′ + S) (B.273)
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C Constraints on the quark-quark correlators

C.1 Constraints on the forward quark-quark correlators in the he-
licity basis

C.1.1 Constraint from parity

The parity invariance constraint in (4.45), implemented for the helicity ansätze, reads

ΦΛ′i ; Λj(k, P ) = γ0 Φ−Λ′i ;−Λj(k̃, P̃ ) γ0 (C.274)

or

Φ
(1)
ij (k, P ) = γ0 Φ

(4)
ij (k̃, P̃ ) γ0 Φ

(2)
ij (k, P ) = γ0 Φ

(3)
ij (k̃, P̃ ) γ0

Φ
(3)
ij (k, P ) = γ0 Φ

(2)
ij (k̃, P̃ ) γ0 Φ

(4)
ij (k, P ) = γ0 Φ

(1)
ij (k̃, P̃ ) γ0

(C.275)

For the forward quark-quark correlators (6.141) and (6.148) in the helicity basis these
constraints imply

a(1)
m = a(4)

m , for m = 1, 4, 5, 6, 7, 14, 15, 16, 17, 19, 20, 23

a(1)
m = −a(4)

m , for m = 2, 3, 8, 9, 10, 11, 12, 13, 18, 21, 22, 24

a(2)
m = a(3)

m , for m = 2, 5, 6, 11, 12, 15, 16, 17, 18, 20, 22, 24, 26, 28

a(2)
m = −a(3)

m , for m = 1, 3, 4, 7, 8, 9, 10, 13, 14, 19, 21, 23, 25, 27, 29.

We report some of the proofs of the constraints on the amplitudesai of the forward cor-
relators for the helicity non-flip case. Note that the vectorS occurring in the following
equations represents the spin vector (5.74) corresponding to light-cone helicity eigen-
states. For the proofs we make use of the following relationγ0γµγ0 = γ†µ = γ̃µ.

a
(n′)
1 = a

(n)
1 γ0γ0

a
(n′)
2 (k · S) = −a

(n)
2 γ0 (k̃ · S̃) γ0 = −a

(n′)
2 (k · S)

a
(n′)
3 γ5 = a

(n)
3 γ0γ

5γ0 = −a
(n)
3 γ5

a
(n′)
4 γ5 (k · S) = a

(n)
4 γ0γ

5 (k̃ · S̃) γ0 = a
(n)
4 γ5 (k · S)

a
(n′)
5 P/ = a

(n)
5 P̃ µγ0γµγ0 = a

(n)
5 P̃ µγ̃µ = a

(n)
5 P/

a
(n′)
7 εµνρσγ

µP νkρSσ = a
(n)
7 γ0

(
εµνρσγ

µP̃ ν k̃ρSσ
)

γ0 = a
(n)
7 εµνρσγ̃

µP̃ ν k̃ρSσ

= a
(n)
7 εµνρσγ

µP νkρSσ

a
(n′)
8 S/ = −a

(n)
8 S̃µγ0γµγ0 = −a

(n)
8 S̃µγ̃µ = −a

(n)
8 S/

a
(n′)
9 P/ (k · S) = −a

(n)
9 P̃ µγ0γµγ0 (k · S) = −a

(n)
9 P̃ µγ̃µ (k · S)

= −a
(n)
9 P/ (k · S)
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a
(n′)
13 εµνρσγ

µP νkρSσ γ5 = −a
(n)
13 γ0

(
εµνρσγ

µP̃ ν k̃ρSσ
)

γ0 γ5

= −a
(n)
13 εµνρσγ̃

µP̃ ν k̃ρSσ γ5

= a
(n)
13 εµνρσγ

µP νkρSσ γ5

a
(n′)
15 γ5 P/ (k · S) = a

(n)
15 P̃ µ γ0γ5γµγ0 (k · S) = −a

(n)
15 γ5P̃

µγ̃µ (k · S)

= −a
(n)
15 γ5, P/ (k · S)

a
(n′)
17 σµνPµ kν = a

(n)
17 γ0

(
σµνP̃µk̃ν

)
γ0

= a
(n)
17 (i/2)[(γ0γµγ0)(γ0γνγ0)− (γ0γνγ0)(γ0γµγ0)] P̃

µk̃ν

= = a
(n)
17

1

2
[ γ̃µγ̃ν − γ̃ν γ̃µ] P̃ µk̃ν = a

(n)
17 σµνP̃µ k̃ν

a
(n′)
18 γ5σ

µνPµ kν = a
(n)
18 γ0γ5

(
σµνP̃µk̃ν

)
γ0 = −a

(n)
18 γ5γ0

(
σµνP̃µk̃ν

)
γ0

= −a
(n)
18 P̃ µk̃ν γ5(i/2) [(γ0γµγ0)(γ0γνγ0)− (γ0γνγ0)(γ0γµγ0)]

= −a
(n)
18 γ5σ

µνPµ kν (C.276)

C.1.2 Constraint from hermiticity

From the hermiticity constraint (4.48) implemented for the helicity quark-quark correla-
tors

ΦΛ′i ; Λj(k, P ) = γ0 Φ†
Λi ; Λ′j(k, P ) γ0 (C.277)

or

Φ
(1)
ij (k, P ) = γ0 Φ

(1) †
ij (k, P ) γ0 Φ

(2)
ij (k, P ) = γ0 Φ

(3) †
ij (k, P ) γ0

Φ
(3)
ij (k, P ) = γ0 Φ

(2) †
ij (k, P ) γ0 Φ

(4)
ij (k, P ) = γ0 Φ

(4) †
ij (k, P ) γ0 (C.278)

sinceγ†5 = γ5 andγ0γ
µ†γ0 = γµ it follows that

a(1)
m = a(4)

m , for m = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 21, 22, 24

a(1)
m = −a(4)

m , for m = 3, 4, 13, 18, 19, 20, 23 (C.279)

We report some of the proofs of the constraints on the amplitudesai of the forward cor-
relators for the helicity non-flip case.

a
(n′)
1 = a

(n)∗
1 γ0γ0

a
(n′)
2 (k · S) = a

(n)∗
2 γ0 γ0 (k · S) = a

(n)∗
2 (k · S)

a
(n′)
4 γ5 (k · S) = a

(n)∗
4 γ0 (γ5)

† γ0(k · S) = −a
(n)∗
4 γ5 (k · S)

= −a
(n)∗
5 γa γ5 = a

(n)∗
5 γ5 γa

a
(n′)
5 P/ = a

(n)∗
5 γ0γ

µ†γ0Pµ = a
(n)∗
5 P/
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a
(n′)
7 εµνρσγ

µP νkρSσ = γ0

(
a

(n)
7 εµνρσγ

µP νkρSσ
)†

γ0 = a
(n)
7

∗
εµνρσγ0γ

µ†γ0P
νkρSσ

= a
(n)
7

∗
εµνρσγ

µP νkρSσ

a
(n′)
9 γ5 k/ (k · S) = a

(n)∗
9 γ0γ

µ†γ†5γ0kµ (k · S) = −a
(n)∗
9 γ0γ

µ†γ0γ5kµ (k · S)

= −a
(n)∗
9 k/γ5 (k · S) = a

(n)∗
9 γ5 k/ (k · S)

a
(n′)
11 P/ γ5 = a

(n)∗
11 γ0γ

µ† γ5 γ0Pµ = a
(n)∗
2 P/

a
(n′)
17 σµνPµ kν = a

(n)∗
17 γ0 (σµνPµkν)

† γ0

= a
(n)∗
17 (−i/2)[(γ0 k/†γ0)(γ0 P/†γ0)− (γ0 P/†γ0)(γ0 k/†γ0)]

= a
(n)∗
17 (−i/2)[ k/ P/− P/ k/] = a

(n)∗
17 σµνPµ kν

a
(n′)
18 γ5σ

µν Pµkν = a
(n)∗
18 γ0 (σµνPµkν)

† γ†5γ0 = −a
(n)∗
18 γ0 (σµνPµkν)

† γ0γ5

= −a
(n)∗
18 σµνPµkνγ5 = −a

(n)∗
18 γ5σ

µνPµkν (C.280)

C.2 Constraints on off-forward quark-quark correlators in the he-
licity basis

C.2.1 Constraint from parity invariance

The parity invariance constraint in (4.45), implemented for the off-forward helicity
ans̈atze, reads

Φ̃Λ′i ; Λj(k̄, P̄ , ∆) = γ0 Φ̃−Λ′i ;−Λj(
˜̄k, ˜̄P , ∆̃) γ0 (C.281)

or

Φ̃
(1)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(4)
ij (˜̄k, ˜̄P, ∆̃) γ0 Φ̃

(2)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(3)
ij (˜̄k, ˜̄P, ∆̃) γ0

Φ̃
(3)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(2)
ij (˜̄k, ˜̄P, ∆̃) γ0 Φ̃

(4)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(1)
ij (˜̄k, ˜̄P, ∆̃) γ0

(C.282)

from which the following relations between amplitudes on diagonal and non-diagonal
components of the matrix̃ΦΛ′Λ(P̄ , k̄, ∆) derive

d(1)
m = d(4)

m , for m = 1, 3, 5, 8, 9, 11, 13, 16, 17, 19, 21, 24, 25, 27, 29, 32, 33,

36, 38, 39, 40, 41, 43, 46, 48, 49, 52, 54, 56, 57, 60, 62, 64, 65, 68, 69,

71, 73, 76, 77, 79, 81, 84, 85, 87, 89, 92, 93, 95, 97, 100, 102, 104, 106,

108, 110, 112, 116, 118, 120, 122, 126, 128, 130, 131, 133, 134, 135, 137;

(C.283)
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d(2)
m = d(3)

m , for m = 1, 3, 5, 8, 9, 11, 13, 16, 17, 19, 21, 24, 25, 27, 29, 32, 33,

36, 38, 39, 40, 41, 43, 46, 48, 49, 52, 54, 56, 57, 60, 62, 64, 65, 68, 69,

71, 73, 76, 77, 79, 81, 84, 85, 87, 89, 92, 93, 95, 97, 100, 102, 104, 106,

108, 110, 112, 116, 118, 120, 122, 126, 128, 130, 131, 133, 134, 135, 137;

(C.284)

d(1)
m = −d(4)

m , for m = 2, 4, 6, 7, 10, 12, 14, 15, 18, 19, 22, 23, 26, 28, 30, 31, 34,

36, 38, 40, 43, 44, 46, 48, 51, 52, 54, 56, 59, 60, 62, 64, 67, 68, 69, 71, 73, 75,

76, 79, 81, 83, 84, 87, 89, 91, 92, 95, 97, 99, 100, 102, 104, 106, 108, 110, 112,

114, 115, 116, 118, 120, 122, 124, 125, 126, 128, 130, 132, 136, 138;

(C.285)

d(2)
m = −d(3)

m , for m = 2, 4, 6, 7, 10, 12, 14, 15, 18, 19, 22, 23, 26, 28, 30, 31, 34,

36, 38, 40, 43, 44, 46, 48, 51, 52, 54, 56, 59, 60, 62, 64, 67, 68, 69, 71, 73, 75,

76, 79, 81, 83, 84, 87, 89, 91, 92, 95, 97, 99, 100, 102, 104, 106, 108, 110, 112,

114, 115, 116, 118, 120, 122, 124, 125, 126, 128, 130, 132, 136, 138;

(C.286)

sinceγ0γµγ0 = γ†µ = γ̃µ andΛ(n)′ = −Λ(n)

d
(n)
1 = d

(n′)
1 γ0γ0 = d

(n′)
1

d
(n)
2 Λ(n) = γ0d

(n′)
2 Λ(n′)γ0 = −d

(n)
2 Λ(n)γ0γ0 = −d

(n)
2 Λ

d
(n)
3 k · v′ = d

(n′)
3 k̃ · ṽ′γ0γ0 = d

(n′)
3 k · v′

d
(n)
4 Λ(n) k · v′ = γ0d

(n′)
4 Λ(n′)γ0 k̃ · ṽ′ = −d

(n)
4 Λ(n)γ0γ0 k · v′

= −d
(n)
4 Λ k · v′

d
(n)
5 ∆ · v′ = d

(n′)
5 ∆̃ · ṽ′γ0γ0 = d

(n′)
5 ∆ · v′

d
(n)
6 Λ(n) ∆ · v′ = γ0d

(n′)
6 Λ(n′)γ0 ∆̃ · ṽ′ = −d

(n)
6 Λ(n)γ0γ0 ∆ · v′

= −d
(n)
6 Λ ∆ · v′

d
(n)
7 εαβρσv

α∆βP ρkσ = d
(n′)
7 γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ γ0

= −d
(n′)
7 εαβρσv

α∆βP ρkσ

d
(n)
8 εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)
8 γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ γ0 Λ(n′)

= d
(n′)
8 εαβρσv

α∆βP ρkσ Λ(n)
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d
(n)
9 P/ = d

(n′)
9 P̃ µγ0γµγ0 = d

(n′)
9 P̃ µγ̃µ = d

(n′)
9 P/

d
(n)
10 P/ Λ = d

(n′)
10 P̃ µγ0γµγ0 Λ(n′) = −d

(n′)
10 P̃ µγ̃µΛ(n)

= −d
(n′)
10 P/Λ(n)

d
(n)
11 P/ k · v′ = d

(n′)
11 P̃ µγ0γµγ0 k̃ · ṽ′ = d

(n′)
11 P̃ µγ̃µ k · v′

= d
(n′)
11 P/ k · v′

d
(n)
12 P/ Λ k · v′ = d

(n′)
12 P̃ µγ0γµγ0 Λ(n′) k̃ · ṽ′

= −d
(n′)
12 P̃ µγ̃µΛ(n) k · v′

= −d
(n′)
12 P/Λ(n) k · v′

d
(n)
13 P/ ∆ · v′ = d

(n′)
13 P̃ µγ0γµγ0 ∆̃ · ṽ′ = d

(n′)
13 P̃ µγ̃µ ∆ · v′

= d
(n′)
13 P/ ∆ · v′

d
(n)
14 P/ Λ ∆ · v′ = d

(n′)
14 P̃ µγ0γµγ0 Λ(n′) ∆̃ · ṽ′

= −d
(n′)
14 P̃ µγ̃µΛ(n) ∆ · v′

= −d
(n′)
14 P/Λ(n) ∆ · v′

d
(n)
15 P/ εαβρσv

α∆βP ρkσ = d
(n′)
15 P̃ µγ0γµγ0εαβρσṽ

α∆̃βP̃ ρk̃σ

= −d
(n′)
15 P/ εαβρσv

α∆βP ρkσ

d
(n)
16 P/ εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)
16 P̃ µγ0γµγ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= d
(n′)
16 P/ εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
25 ∆/ = d

(n′)
25 ∆̃µγ0γµγ0 = d

(n′)
25 ∆̃µγ̃µ = d

(n′)
25 ∆/

d
(n)
26 ∆/ Λ(n) = d

(n′)
26 ∆̃µγ0γµγ0 Λ(n′) = −d

(n′)
26 ∆̃µγ̃µΛ(n)

= −d
(n′)
26 ∆/Λ(n)

d
(n)
31 ∆/ εαβρσv

α∆βP ρkσ = d
(n′)
31 ∆̃µγ0γµγ0εαβρσṽ

α∆̃βP̃ ρk̃σ

= −d
(n′)
31 ∆/ εαβρσv

α∆βP ρkσ

d
(n)
32 ∆/ εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)
32 ∆̃µγ0γµγ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= d
(n′)
32 ∆/ εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
35 γ5 = d

(n′)
35 γ0γ5γ0 = −d

(n′)
35 γ5

d
(n)
36 γ5Λ

(n) = d
(n′)
36 γ0γ5γ0 Λ(n′) = d

(n′)
36 γ5 Λ(n)

d
(n)
42 γ5 εαβρσv

α∆βP ρkσ = d
(n′)
42 γ0 γ5 εαβρσṽ

α∆̃βP̃ ρk̃σ γ0

= d
(n′)
42 γ5 εαβρσv

α∆βP ρkσ

d
(n)
43 γ5 εαβρσv

α∆βP ρkσΛ(n) = d
(n′)
43 γ0 γ5εαβρσṽ

α∆̃βP̃ ρk̃σγ0 Λ(n′)

= −d
(n′)
43 γ5 εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
44 γ5 P/ = d

(n′)
44 P̃ µγ0γ5γµγ0 = −d

(n′)
44 γ5P̃

µγ0γµγ0

= −d
(n′)
44 γ5 P/
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d
(n)
45 P/ γ5 Λ(n) = d

(n′)
45 P̃ µγ0 γ5 γµγ0 Λ(n′) = d

(n′)
45 P̃ µγ̃µ γ5 Λ(n)

= d
(n′)
45 P/ γ5 Λ(n)

d
(n)
50 P/ εαβρσv

α∆βP ρkσ γ5 = d
(n′)
50 P̃ µ γ0γµ γ5 γ0εαβρσṽ

α∆̃βP̃ ρk̃σ

= d
(n′)
50 P/ γ5 εαβρσv

α∆βP ρkσ

d
(n)
51 P/ εαβρσv

α∆βP ρkσ γ5 Λ(n) = d
(n′)
51 P̃ µγ0γµ γ5 γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= −d
(n′)
51 P/ εαβρσv

α∆βP ρkσ γ5 Λ(n)

d
(n)
60 γ5 ∆/ = d

(n′)
60 ∆̃µγ0γ5γµγ0 = −d

(n′)
60 γ5∆̃

µγ0γµγ0

= −d
(n′)
60 γ5 ∆/

d
(n)
61 ∆/ γ5 Λ(n) = d

(n′)
61 ∆̃µγ0 γ5 γµγ0 Λ(n′) = d

(n′)
61 ∆̃µγ̃µ γ5 Λ(n)

= d
(n′)
61 ∆/ γ5 Λ(n)

d
(n)
66 ∆/ εαβρσv

α∆βP ρkσ γ5 = d
(n′)
66 ∆̃µ γ0γµ γ5 γ0εαβρσṽ

α∆̃βP̃ ρk̃σ

= d
(n′)
66 ∆/ γ5 εαβρσv

α∆βP ρkσ

d
(n)
67 ∆/ εαβρσv

α∆βP ρkσ γ5 Λ = d
(n′)
67 ∆̃µγ0γµ γ5 γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= −d
(n′)
67 ∆/ εαβρσv

α∆βP ρkσ γ5 Λ(n)

d
(n)
69 σµνPµ kν = d

(n′)
69 γ0

(
σµνP̃µk̃ν

)
γ0

= d
(n′)
69 P̃ µk̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] = d
(n′)
69 σµνPµ kν

d
(n)
70 σµνPµ kν Λ(n) = d

(n′)
70 γ0

(
σµνP̃µk̃ν

)
γ0 Λ(n′)

= −d
(n′)
70 P̃ µk̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0) Λ(n′)

= −d
(n′)
70 σµνPµ kν Λ(n)

= d
(n′)
70 P̃ µk̃ν γ5(i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)]Λ
(n)

= d
(n)
70 γ5σ

µνPµ kν Λ(n)

d
(n)
75 σµνPµkν εαβρσv

α∆βP ρkσ = d
(n′)
75 γ0

(
σµνP̃µk̃ν

)
γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ

= −d
(n′)
75 P̃ µk̃ν(i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)]εαβρσṽ
α∆̃βP̃ ρk̃σ

= −d
(n′)
75 σµνPµ kν εαβρσv

α∆βP ρkσ

d
(n)
76 σµνPµ kν εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)
76 γ0

(
σµνP̃µk̃ν

)
γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= −d
(n′)
76 P̃ µk̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)]εαβρσṽ
α∆̃βP̃ ρk̃σ Λ(n)
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= d
(n′)
76 σµνPµ kν εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
77 σµνPµ∆ν = d

(n′)
77 γ0

(
σµνP̃µ∆̃ν

)
γ0

= d
(n′)
77 P̃ µ∆̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] = d
(n′)
77 σµνPµ ∆ν

d
(n)
78 σµνPµ ∆ν Λ(n) = d

(n′)
78 γ0

(
σµνP̃µ∆̃ν

)
γ0 Λ(n′)

= −d
(n′)
78 P̃ µ∆̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] Λ
(n)

= −d
(n′)
78 σµνPµ ∆ν Λ(n)

d
(n)
83 σµνPµ ∆ν εαβρσv

α∆βP ρkσ = d
(n′)
83 γ0

(
σµνP̃µ∆̃ν

)
γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ

= −d
(n′)
83 P̃ µ∆̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] εαβρσṽ
α∆̃βP̃ ρk̃σ

= −d
(n′)
83 σµνPµ ∆ν εαβρσv

α∆βP ρkσ

d
(n)
83 σµνPµ ∆ν εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)
83 γ0

(
σµνP̃µ∆̃ν

)
γ0 εαβρσṽ

α∆̃βP̃ ρk̃σ Λ(n′)

= −d
(n′)
83 P̃ µ∆̃ν (i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] εαβρσṽ
α∆̃βP̃ ρk̃σ Λ(n)

= d
(n′)
83 σµνPµ∆ν εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
100 γ5σ

µνPµ kν = d
(n′)
100 γ0γ5

(
σµνP̃µk̃ν

)
γ0

= −d
(n′)
100 γ5γ0

(
σµνP̃µk̃ν

)
γ0

= −d
(n′)
100 P̃ µk̃ν γ5(i/2)

[(γ0γµγ0)(γ0γνγ0)− (γ0γνγ0)(γ0γµγ0)]

= −d
(n)
100 γ5σ

µνPµ kν

d
(n)
101 γ5σ

µνPµ kν Λ(n) = d
(n′)
101 γ0γ5

(
σµνP̃µk̃ν

)
γ0 Λ(n′)

= d
(n′)
101 γ5γ0

(
σµνP̃µk̃ν

)
γ0 Λ(n)

d
(n)
105 γ5σ

µνPµ∆ν = d
(n′)
105 γ0γ5

(
σµνP̃µ∆̃ν

)
γ0 = −d

(n′)
105 γ5γ0

(
σµνP̃µ∆̃ν

)
γ0

= −d
(n′)
105 P̃ µ∆̃ν γ5(i/2)[(γ0γµγ0)(γ0γνγ0)

−(γ0γνγ0)(γ0γµγ0)] = −d
(n)
105 γ5σ

µνPµ ∆ν

d
(n)
106 γ5σ

µνPµ ∆ν Λ(n) = d
(n′)
106 γ0γ5

(
σµνP̃µ∆̃ν

)
γ0 Λ(n′)

= d
(n′)
106 γ5γ0

(
σµνP̃µ∆̃ν

)
γ0 Λ(n)

= d
(n′)
106 P̃ µ∆̃ν γ5(i/2)[(γ0γµγ0)(γ0γνγ0)
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−(γ0γνγ0)(γ0γµγ0)] Λ
(n)

= d
(n)
106 γ5σ

µνPµ ∆ν Λ(n)

d
(n)
121 εµνρσγ

µ∆νkρP σ = d
(n′)
121 γ0 εµνρσγ

µ∆̃ν k̃ρP̃ σγ0

= d
(n′)
121 εµνρσγ0γ

µγ0∆̃
ν k̃ρP̃ σ

= −d
(n′)
121 εµνρσγ

µ∆νkρP σ

d
(n)
122 εµνρσγ

µ∆νkρP σ Λ(n) = d
(n′)
122 γ0 εµνρσγ

µ∆̃ν k̃ρP̃ σγ0 Λ(n′)

= −d
(n′)
122 εµνρσγ0γ

µγ0∆̃
ν k̃ρP̃ σ Λ(n)

= d
(n′)
122 εµνρσγ

µ∆νkρP σ Λ(n)

d
(n)
125 εµνρσγ

µvνkρP σ = d
(n′)
125 γ0 εµνρσγ

µṽν k̃ρP̃ σγ0

= d
(n′)
125 εµνρσγ0γ

µγ0ṽ
ν k̃ρP̃ σ

= −d
(n′)
125 εµνρσγ

µvνkρP σ

d
(n)
126 εµνρσγ

µvνkρP σ Λ(n) = d
(n′)
126 γ0 εµνρσγ

µṽν k̃ρP̃ σγ0 Λ(n′)

= −d
(n′)
126 γ0 εµνρσγ

µṽν k̃ρP̃ σγ0 Λ(n)

= d
(n′)
126 εµνρσγ

µ∆νkρP σ Λ(n)

d
(n)
130 εµνρσγ

5 γµ∆νkρP σ = d
(n′)
130 γ0 εµνρσγ

5 γµ∆̃ν k̃ρP̃ σγ0

= d
(n′)
130 εµνρσγ0 γ5 γµγ0∆̃

ν k̃ρP̃ σ

= d
(n′)
130 εµνρσγ

5 γµ∆νkρP σ

d
(n)
131 εµνρσγ

5 γµ∆νkρP σ Λ(n) = d
(n′)
131 γ0 εµνρσγ

5 γµ∆̃ν k̃ρP̃ σγ0 Λ(n′)

= −d
(n′)
131 εµνρσγ0 γ5 γµγ0∆̃

ν k̃ρP̃ σ Λ(n)

= −d
(n′)
131 εµνρσ γ5 γµ∆νkρP σ Λ(n)

d
(n)
134 εµνρσ γ5 γµvνkρP σ = d

(n′)
134 γ0 εµνρσ γ5 γµṽν k̃ρP̃ σγ0

= d
(n′)
134 εµνρσγ0 γ5 γµγ0ṽ

ν k̃ρP̃ σ

= d
(n′)
134 εµνρσ γ5 γµvνkρP σ

d
(n)
135 εµνρσ γ5 γµvνkρP σ Λ(n) = d

(n′)
135 γ0 εµνρσ γ5 γµṽν k̃ρP̃ σγ0 Λ(n′)

= −d
(n′)
135 γ0 εµνρσ γ5 γµṽν k̃ρP̃ σγ0 Λ(n)

= −d
(n′)
135 εµνρσ γ5 γµ∆νkρP σ Λ(n)

(C.287)

C.2.2 Constraint from hermiticity invariance

The hermiticity constraint (4.40) implemented for the helicity correlators reads

Φ̃Λ′i,Λj(k̄, P̄ , ∆) = γ0 Φ̃†
Λi,Λ′j(k̄, P̄ ,−∆) γ0 (C.288)
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or

Φ̃
(1)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(1) †
ij (k̄, P̄ ,−∆) γ0 Φ̃

(2)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(3) †
ij (k̄, P̄ ,−∆) γ0

Φ̃
(3)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(2) †
ij (k̄, P̄ ,−∆) γ0 Φ̃

(4)
ij (k̄, P̄ , ∆) = γ0 Φ̃

(4) †
ij (k̄, P̄ ,−∆) γ0

(C.289)

from which follows

d(κ)
m = d(κ)∗

m , for m = 1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 22, 24, 26, 28, 29, 32, 33,

36, 38, 39, 41, 43, 45, 48, 50, 51, 53, 56, 58, 60, 62, 63, 65,

67, 69, 71, 74, 76, 78, 80, 81, 83, 86, 88, 89, 91, 93, 95, 98

100, 102, 103, 105, 107, 110, 111, 113, 116, 118, 119, 122,

124, 125, 128, 130, 132, 135, 137 (C.290)

whereκ = 1, 4 and

d(2)
m = d(3)∗

m , for m = 1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 22, 24, 26, 28, 29, 32, 33,(C.291)

36, 38, 39, 41, 43, 45, 48, 50, 51, 53, 56, 58, 60, 62, 63, 65,

67, 69, 71, 74, 76, 78, 80, 81, 83, 86, 88, 89, 91, 93, 95, 98

100, 102, 103, 105, 107, 110, 111, 113, 116, 118, 119, 122,

124, 125, 128, 130, 132, 135, 137

d(1)
m = −d(1)∗

m , for m = 2, 4, 5, 7, 10, 12, 13, 15, 18, 20, 21, 23, 25, 27, 30, 31, 34, 35,

37, 40, 42, 44, 46, 47, 49, 52, 54, 55, 57, 59, 61, 64, 66, 68, 70,

72, 73, 75, 77, 79, 82, 84, 85, 87, 90, 92, 94, 96, 97, 99, 101,

104, 106, 108, 109, 112, 114, 115, 117, 120, 121, 123, 126, 127,

129, 131, 133, 134, 136, 138 (C.292)

and

d(2)
m = −d(3)∗

m , for m = 2, 4, 5, 7, 10, 12, 13, 15, 18, 20, 21, 23, 25, 27, 30, 31, 34, 35,

37, 40, 42, 44, 46, 47, 49, 52, 54, 55, 57, 59, 61, 64, 66, 68, 70,

72, 73, 75, 77, 79, 82, 84, 85, 87, 90, 92, 94, 96, 97, 99, 101,

104, 106, 108, 109, 112, 114, 115, 117, 120, 121, 123, 126, 127,

129, 131, 133, 134, 136, 138 (C.293)

since (withγ†5 = γ5 andγ0γ
µ†γ0 = γµ andΛ(n′) = Λ(n) for n = 1, 4 andΛ(n′) = −Λ(n)

for n = 2, 3)

d
(n)
1 = d

(n′)∗
1 γ0γ0



108 C CONSTRAINTS ON THE QUARK-QUARK CORRELATORS

d
(n)
2 Λ(n) = d

(n′)∗
2 γ0γ0 Λ(n′) = d

(n)∗
2 Λ(n)

d
(n)
7 εαβρσv

α∆βP ρkσ = d
(n′)∗
7 γ0 εαβρσv

α(−∆β)P ρkσγ0

= −d
(n′)∗
7 εαβρσv

α∆βP ρkσ

d
(n)
8 εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)∗
8 γ0 εαβρσv

α(−∆β)P ρkσγ0 Λ(n′)

= −d
(n′)∗
8 εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
9 P/ = d

(n′)∗
9 γ0 P/†γ0 = d

(n′)∗
9 P/

d
(n)
10 P/ Λ(n) = d

(n′)∗
10 γ0 P/†γ0 Λ(n′) = d

(n′)∗
10 P/ Λ(n)

d
(n)
15 P/ εαβρσv

α∆βP ρkσ = d
(n′)∗
15 γ0 P/†γ0 εαβρσv

α(−∆β)P ρkσ

= −d
(n′)∗
15 P/ εαβρσv

α∆βP ρkσ

d
(n)
16 P/ εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)∗
16 γ0 P/†γ0 εαβρσv

α(−∆β)P ρkσ Λ(n′)

= −d
(n′)∗
16 P/ εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
25 ∆/ = d

(n′)∗
25 γ0(−∆/†)γ0 = −d

(n′)∗
25 ∆/

d
(n)
26 ∆/ Λ(n) = d

(n′)∗
26 γ0(−∆/†)γ0 Λ(n′) = −d

(n)∗
26 ∆/ Λ(n)

d
(n)
31 ∆/ εαβρσv

α∆βP ρkσ = d
(n′)∗
31 γ0(−∆/†)γ0 εαβρσv

α(−∆β)P ρkσ

= d
(n′)∗
31 ∆/ εαβρσv

α∆βP ρkσ

d
(n)
32 ∆/ εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)∗
32 γ0(−∆/†)γ0 εαβρσv

α(−∆β)P ρkσ Λ(n′)

= d
(n′)∗
32 ∆/ εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
35 γ5 = d

(n′)∗
35 γ0γ

†
5γ0 = −d

(n′)∗
35 γ5

d
(n)
36 γ5Λ

(n) = d
(n′)∗
36 γ0γ

†
5γ0 Λ(n′) = −d

(n)∗
36 γ5 Λ(n)

d
(n)
41 γ5 εαβρσv

α∆βP ρkσ = d
(n′)∗
41 γ0γ

†
5γ0 εαβρσv

α(−∆β)P ρkσ

= d
(n′)∗
41 γ5 εαβρσv

α∆βP ρkσ

d
(n)
42 γ5εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)∗
42 γ0γ

†
5γ0 εαβρσv

α(−∆β)P ρkσ Λ(n′)

= d
(n′)∗
42 γ5 εαβρσv

α∆βP ρkσ Λ(n)

d
(n)
43 P/ γ5 = d

(n′)∗
43 γ0 (γµγ5)

† γ0Pµ = d
(n′)∗
43 γ0γ5 γµ†γ0

= −d
(n′)∗
43 γ5γ0γ

µ†γ0Pµ = −d
(n′)∗
43 γ5γ

µPµ

= d
(n′)∗
43 P/ γ5

d
(n)
44 P/ γ5 Λ(n) = d

(n′)∗
44 γ0 (γµγ5)

† γ0 Λ(n′) = d
(n′)∗
44 γ0γ5γ

µ†γ0 Λ(n′)

= d
(n′)∗
44 γ0γ

µ†γ0γ5Pµ Λ(n′) = d
(n′)∗
44 P/ γ5 Λ(n)

d
(n)
49 P/ γ5 εαβρσv

α∆βP ρkσ = d
(n′)∗
49 γ0 (γµγ5)

† Pµγ0 εαβρσv
α(−∆β)P ρkσ

= d
(n′)∗
49 γ0γ

µ†γ5γ0Pµ εαβρσv
α∆βP ρkσ

= −d
(n′)∗
49 γ0γ

µ†γ0γ5Pµ εαβρσv
α∆βP ρkσ

= −d
(n′)∗
49 P/ γ5 εαβρσv

α∆βP ρkσ
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d
(n)
50 P/ γ5 εαβρσv

α∆βP ρkσΛ(n) = d
(n′)∗
50 γ0 (γµγ5)

† γ0 Λ(n′) εαβρσv
α(−∆β)P ρkσ

= d
(n′)∗
50 P/ γ5 Λ(n) εαβρσv

α∆βP ρkσ

d
(n)
59 ∆/ γ5 = d

(n′)∗
59 γ0 (γµγ5)

† γ0(−∆)µ = −d
(n′)∗
59 γ0γ5 γµ†γ0∆µ

= d
(n′)∗
59 γ5γ0γ

µ†γ0∆µ

= d
(n′)∗
59 γ5γ

µ∆µ = −d
(n′)∗
59 ∆/ γ5

d
(n)
60 ∆/ γ5 Λ(n) = d

(n′)∗
60 γ0 (γµγ5)

† γ0 (−∆µ)Λ(n′)

= −d
(n′)∗
60 γ0γ5γ

µ†γ0 ∆µΛ(n)

= −d
(n′)∗
60 γ0γ

µ†γ0γ5∆µ Λ(n)

= −d
(n′)∗
60 ∆/ γ5 Λ(n)

d
(n)
65 ∆/ γ5 εαβρσv

α∆βP ρkσ = d
(n′)∗
65 γ0 (γµγ5)

† (−∆)µγ0 εαβρσv
α(−∆β)P ρkσ

= −d
(n′)∗
65 γ0γ

µ†γ5γ0∆µ εαβρσv
α∆βP ρkσ

= d
(n′)∗
65 γ0γ

µ†γ0γ5∆µ εαβρσv
α∆βP ρkσ

= d
(n′)∗
65 ∆/ γ5 εαβρσv

α∆βP ρkσ

d
(n)
66 ∆/ γ5 εαβρσv

α∆βP ρkσΛ(n) = d
(n′)∗
66 γ0 (γµγ5)

† γ0 (−∆)µΛ(n′) εαβρσv
α(−∆β)P ρkσ

= d
(n′)∗
66 ∆/ γ5 Λ(n′) εαβρσv

α∆βP ρkσ

d
(n)
69 σµνPµ kν = d

(n′)∗
69 γ0 (σµνPµkν)

† γ0

= d
(n′)∗
69 (−i/2)[(γ0 k/†γ0)(γ0 P/†γ0)− (γ0 P/†γ0)(γ0 k/†γ0)]

= d
(n′)∗
69 (−i/2)[ k/ P/− P/ k/] = d

(n′)∗
69 σµνPµ kν

d
(n)
70 σµνPµ kνΛ

(n) = d
(n′)∗
70 γ0 (σµνPµkν)

† γ0Λ
(n′)

= d
(n′)∗
70 (−i/2)[(γ0 k/†γ0)(γ0 P/†γ0)− (γ0 P/†γ0)(γ0 k/†γ0)]Λ

(n′)

= d
(n′)∗
70 (−i/2)[ k/ P/− P/ k/]Λ(n′)

= d
(n′)∗
70 σµνPµ kνΛ

(n)

d
(n)
75 σµνPµ kν εαβρσv

α∆βP ρkσ = d
(n′)∗
75 γ0 (σµνPµkν)

† γ0 εαβρσv
α(−∆β)P ρkσ

= −d
(n′)∗
75 (−i/2)[(γ0 k/†γ0)(γ0 P/†γ0)− (γ0 P/†γ0)(γ0 k/†γ0)]

εαβρσv
α∆βP ρkσ

= −d
(n′)∗
75 (−i/2)[ k/ P/− P/ k/] εαβρσv

α∆βP ρkσ

= − d
(n′)∗
75 σµνPµ kν εαβρσv

α∆βP ρkσ

d
(n)
76 σµνPµ kν εαβρσv

α∆βP ρkσ Λ(n) = d
(n′)∗
76 γ0 (σµνPµkν)

† γ0 εαβρσv
α(−∆β)P ρkσ Λ(n′)

= −d
(n′)∗
76 (−i/2)[(γ0 k/†γ0)(γ0 P/†γ0)− (γ0 P/†γ0)(γ0 k/†γ0)]

Λ(n′)εαβρσv
α∆βP ρkσ

= −d
(n′)∗
76 (−i/2)[ k/ P/− P/ k/] εαβρσv

α∆βP ρkσ Λ(n′)

= d
(n′)∗
76 σµνPµ kν εαβρσ
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vα∆βP ρkσ Λ(n′)

d
(n)
99 γ5σ

µνPµ kν = d
(n′)∗
99 γ0 (σµνPµkν)

† γ†5γ0

= −d
(n′)∗
99 γ0 (σµνPµkν)

† γ0γ5

= −d
(n′)∗
99 σµνPµkνγ5 = −d

(n′)∗
99 γ5σ

µνPµ kν

d
(n)
100 γ5σ

µνPµkνΛ
(n) = d

(n′)∗
100 γ0 (σµνPµkν)

† γ†5γ0Λ
(n′)

= −d
(n)∗
100 γ0 (σµνPµkν)

† γ0γ5Λ
(n)

= −d
(n)∗
100 σµνPµ kνγ5Λ

(n) = −d
(n)∗
100 γ5σ

µνPµ kνΛ
(n)

d
(n)
122 εµνρσγ

µ∆νkρP σ = d
(n′)∗
122 γ0 εµνρσγ

µ†(−∆ν)kρP σγ0

= −d
(n′)∗
122 εµνρσγ

µ∆νkρP σ

d
(n)
123 εµνρσγ

µ∆νkρP σ Λ(n) = d
(n)∗
123 γ0 εµνρσγ

µ†(−∆ν)kρP σγ0 Λ(n′)

= −d
(n)∗
123 εµνρσγ

µ∆νkρP σ Λ(n)

d
(n)
126 εµνρσγ

µvνkρP σ = d
(n′)∗
126 γ0 εµνρσγ

µ†vνkρP σγ0 = d
(n′)∗
126 εµνρσγ

µvνkρP σ

d
(n)
127 εµνρσγ

µvνkρP σ Λ(n) = d
(n)∗
127 γ0 εµνρσγ

µ†vνkρP σγ0 Λ(n′)

= d
(n)∗
127 εµνρσγ

µvνkρP σ Λ(n)

d
(n)
131 εµνρσγ

5 γµ∆νkρP σ = d
(n′)∗
131 γ0 εµνρσγ

5 γµ†(−∆ν)kρP σγ0

= d
(n′)∗
131 εµνρaγ

5 γµ∆νkρP σ

d
(n)
132 εµνρσγ

5 γµ∆νkρP σ Λ(n) = d
(n′)∗
132 γ0 εµνρσ(γ5 γµ)†∆νkρP σγ0 Λ(n′)

= d
(n)∗
132 εµνρσγ0 γ5 γµγ0∆

νkρP σ Λ(n)

d
(n)
135 εµνρσ γ5 γµvνkρP σ = d

(n′)
135 γ0 εµνρσ (γ5 γµ)†vνkρP σγ0

= −d
(n′)
135 εµνρσγ

5 γµvνkρP σ

d
(n)
136 εµνρσ γ5 γµvνkρP σ Λ(n) = d

(n)
136 γ0 εµνρσ (γ5 γµ)†vνkρP σγ0 Λ(n′)

= −d
(n)
136 εµνρσ γ5 γµvν k̃ρP̃ σ Λ(n) (C.294)

C.2.3 Constraint from time reversal invariance

The time reversal constraint for helicity off-forward correlators reads

Φ̃Λi, Λ(n′),j(k̄, P̄ , ∆) = (−iγ5C) Φ̃Λi, Λ(n′),j(
˜̄k, ˜̄P , ∆̃)

∗
(−iγ5C) . (C.295)

Making use of the following properties of the operatorC = ( iγ2γ0 )

C∗ =
(
iγ2γ0

)∗
= (−i)( − γ2 )γ0 = iγ2γ0 = C

C† = (CT )
∗

=
(

iγ0T
γ2T

)∗
=

(
iγ0γ2

)∗
= (−C)∗ = −C

C C =
(
iγ2γ0

)(
iγ2γ0

)
= −γ2γ0γ2γ0 = −1
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from which it follows thatC C† = C† C1 the time reversal constraint for a given Dirac
structureX can be reformulated as

(−iγ5C) X∗ (−iγ5C) = −γ∗5C
∗X∗γ∗5C

∗ = −(γ5 C X γ5 C)∗ =
(
γ5 C X C†γ5

)∗
(C.296)

Thus we implement the time reversal constraint in the form

Φ̃Λi, Λ(n′),j(k̄, P̄ , ∆) = [ γ5C Φ̃Λi, Λ(n′),j(
˜̄k, ˜̄P , ∆)C†γ5 ]

∗
. (C.297)

obtaining fork = 1, 2, 3, 4

d(k)m = d(k)m
∗

m = 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14

17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 33, 34,

41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56

59, 60, 61, 62, 63, 64, 67, 68, 75, 76, 83, 84, 91, 92

d(k)m = −d(k)
m

∗
m = 7, 8, 15, 16, 23, 24, 31, 32, 35, 36,

37, 38, 39, 40, 49, 50, 57, 58, 65, 66, 69, 70, 71, 72

73, 74, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90,

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128, 129, 130, 131, 132, 133, 134,

135, 136, 137, 138

(C.298)

since (C γµC† = −γµT )

d
(n)
1 = ( γ5C C†γ5 )

∗
d

(n′)∗
1 = d

(n)∗
1

d
(n)
2 Λ = ( γ5C C†γ5 )

∗
d

(n)∗
1 Λ = d

(n)∗
2 Λ

d
(n)
7 εαβρσṽ

α∆̃βP̃ ρk̃σ = ( γ5C C†γ5 )
∗

= d
(n)∗
7 εαβρσṽ

α∆̃βP̃ ρk̃σ

= −d
(n)∗
7 εαβρσv

α∆βP ρkσ

d
(n)∗
8 εαβρσṽ

α∆̃βP̃ ρk̃σΛ = −d
(n)∗
8 εαβρσv

α∆βP ρkσΛ

d
(n′)
9 P/ = d

(n)∗
2 (γ5C γµ C†γ5)

∗
P̃µ = −d

(n)∗
9 (CγµC†)∗P̃µ

= d
(n)∗
9 (γµT )

∗
P̃µ = d

(n)∗
9 γµPµ

d
(n′)
17 k/ = d

(n)∗
3 (γ5C γµ C†γ5)

∗
k̃µ = −d

(n)∗
17 (CγµC†)∗k̃µ

= d
(n)∗
17 (γµT )

∗
k̃µ = d

(n)∗
17 γµkµ

d
(n′)
35 γ5 = d

(n)∗
35 (γ5C γ5 C†γ5)

∗
= d

(n)∗
35 γ5
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d
(n′)
43 γ5 P/ = d

(n)∗
43 (γ5C γµγ5 C†γ5)

∗
P̃µ

= −d
(n)∗
43 γ5(CγµC†)

∗
P̃µ

= d
(n)∗
43 γ5γ

µPµ

d
(n′)
69 σµνPµ kν = d

(n)∗
69 (γ5C σµν C†γ5)

∗
P̃µk̃ν

= d
(n)∗
69 (C σµν C†)

∗
P̃µk̃ν

= d
(n)∗
69 [

i

2
(CγµC† CγνC† − CγνC† CγµC†)]

∗
P̃µk̃ν

= −d
(n)∗
69

i

2
(γµ† γν† − γν† γµ†)Pµk̃ν = −d

(n)∗
69 σµνPµkν

d
(n′)
99 σµνγ5Pµ kν = d

(n)∗
99 (γ5C σµνγ5 C†γ5)

∗
P̃µk̃ν

= d
(n)∗
99 γ5 (C σµν C†)

∗
P̃µk̃ν

= −d
(n)∗
99 γ5 ˜σµνP̃µk̃ν

= −d
(n)∗
99 σµνγ5Pµkν

d
(n′)
125 εµνρσγ

µP νkρv
′σ = (γ5Cd

(n)
125 εµνρσγ

µC†γ5)
∗
P̃ ν k̃ρṽ′σ

= −d
(n)
125

∗
εµνρσ(CγµC†)

∗
P̃ ν k̃ρṽ′σ

= d
(n)
125

∗
εµνρσγ̃

µP̃ ν k̃ρṽ′σ

= −d
(n)
125

∗
εµνρσγ

µP νkρv′σ

d
(n′)
134 εµνρσγ5γ

µP νkρv
′σ = (γ5Cd

(n)
134 εµνρσγ5γ

µC†γ5)
∗
P̃ ν k̃ρṽ′σ

= −d
(n)
134

∗
γ5εµνρσ( CγµC† )∗P̃ ν k̃ρṽ′σ

= d
(n)
134

∗
γ5εµνρσγ̃

µP̃ ν k̃ρṽ′σ

= −d
(n)
134

∗
εµνρσγ5γ

µP νkρv′σ

D Dirac matrices in Weyl representation

γ0 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 γ1 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 (D.299)

γ2 =




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0


 γ3 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 (D.300)
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and

γ5 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (D.301)

with
(γ0)2 = 1 , (γ1)2 = (γ2)2 = (γ3)2 = −1 , (γ5)

2 = 1 (D.302)

and

(γµ) =

{
γµ for µ = 0, 1, 3

−γµ for µ = 2
(γµ)T =

{
γµ for µ = 0, 2

−γµ for µ = 1, 3
(D.303)

γ0† = γ0 , ~γ† = −~γ , γ5
† = γ5 (D.304)

γ̄µ = γ0γµ†γ0 = γµ , γ̄5 = −γ5 (D.305)

Theσ matrices, defined by

σµν =
i

2
(γµγν − γνγµ) , (D.306)

are explicitly given as
σ00 = σ11 = σ22 = σ33 = 0 (D.307)

and

σ01 = −σ10 =




0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0


 σ02 = −σ20 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 (D.308)

σ03 = −σ30 =




i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i


 σ12 = −σ21 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




(D.309)

σ13 = −σ31 =




0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0


 σ23 = −σ32 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




(D.310)
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or expressed in light-cone coordinates

σ+1

√
2

=
−σ1+

√
2

=




0 0 0 0
i 0 0 0
0 0 0 −i
0 0 0 0




σ+2

√
2

=
−σ2+

√
2

=




0 0 0 0
−1 0 0 0
0 0 0 −1
0 0 0 0




(D.311)

σ+− = −σ−+ =




−i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i


 σ12 = −σ21 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




(D.312)

σ−1 = −σ1− =




0 i 0 0
0 0 0 0
0 0 0 0
0 0 −i 0


 σ−2 = −σ2− =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0




(D.313)




