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Chapter1
Introduction

The theory of evolution equations in infinite dimensional spaces plays an impor-
tant role in mathematics. In fact, frequently a partial differential equation, like
the Schrödinger equation, wave equation and heat equation can be transformed
into an evolution equation

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (1.1)

in a Banach space X, where A(t) are some unbounded linear operators.

The asymptotic behavior of this equation was studied by several authors.
The most extensively studied cases are the autonomous case A(t) = A and the
periodic case A(t + T ) = A(t), see [8, 12, 21, 58, 59, 100, 116] for the almost
periodicity and [32, 47, 56, 63, 93, 94, 95] for the almost automorphy. In the
almost periodic case, the authors of [86] proved that the unique bounded mild
solution of

u′(t) = A(t)u(t) + g(t), t ∈ R, (1.2)

given by

u(t) =

∫
R
Γ(t, τ)g(τ) dτ, t ∈ R, (1.3)

is almost periodic in X if some resolvent R(ω,A(·)) of A(·) and g are almost
periodic, and the evolution family U(t, s), solution of the homogeneous equation
g = 0, has an exponential dichotomy. In Chapter 3, we consider the semilinear
equation (1.1). Since, in general the semilinear term f is defined only on some

small spaces Y of X, e.g. the interpolation spaces Xt
α := X

A(t)
α of A(t), we show

first that the bounded mild solution of (1.2) is also almost periodic in some
time-invariant interpolation space Xα. Finally, if the function f : R ×Xα −→
X is continuous, almost periodic and globally Lipschitz, by the fixed point
principle we obtain the existence of a unique almost periodic mild solution
to the semilinear evolution equation (1.1) in the interpolation space Xα. To
illustrate these results, we study the existence and uniqueness of an almost

1



2 Introduction 1.0

periodic solution to the thermoelastic plate systems
utt(t, x) + ∆2u(t, x) + a(t)∆θ(t, x) = f1(t,∇u(t, x),∇θ(t, x)),
θt(t, x)− b(t)∆θ(t, x)− a(t)∆ut(t, x) = f2(t,∇u(t, x),∇θ(t, x)),
θ = u = ∆u = 0,

where t ∈ R, x ∈ Ω (open set of Rn); a, b are positive functions on R, and
u, θ denote the vertical deflection and the variation of temperature of the plate
respectively; the function fi, i = 1, 2 are continuous and globally Lipschitz.
Assuming that the coefficients a, b and the nonlinear functions f1, f2 are almost
periodic, we get the claim.

In the second part of Chapter 3, we study the almost automorphy of solu-
tions of (1.1). Following the arguments of [86], by assuming the exponential
dichotomy of U and the almost automorphy of the functions t 7→ R(ω,A(·)), g
and f , we show the almost automorphy of the Green’s function corresponding
to U . This yields the almost automorphy in X of the unique bounded mild
solution of (1.2). Using an interpolation argument, we show the almost auto-
morphy of u in every time-invariant interpolation space Xα. The aim now will
be obtained through a fixed-point theorem.

In many systems, the boundary conditions are inhomogeneous, e.g. dy-
namic population equations, boundary control systems and delay differential
equations. These systems can be abstractly written as the following boundary
evolution equation{

u′(t) = Am(t)u(t) + g(t, u(t)), t ∈ R,
B(t)u(t) = h(t, u(t)), t ∈ R, (1.4)

for linear operators Am(t) : Z → X and B(t) : Z → Y on Banach spaces
Z ↪→ X and Y . Typically, Am(t) is an elliptic partial differential operator acting
in, say, X = Lp(Ω), and B(t) is a boundary operator mapping Z =W 2

p (Ω) into

a ‘boundary space’ like W
1−1/p
p (∂Ω), where p ∈ (1,∞), see Example 5.3.6.

If h = 0, the boundary evolution equation (1.4) is just the evolution equation
(1.1). In the general case, h ̸= 0, to study the wellposedness and the asymptotic
behavior of the equation (1.4), the standard way is to write it as an evolution
equation

u′(t) = Aα−1(t)u(t) + f(t, u(t)), t ∈ R, (1.5)

in the continuous extrapolation spaces Xt
α−1, α ∈ (0, 1), for the operators

A(t) := Am(t)| kerB(t), where

f(t, u(t)) = g(t, u(t)) + (ωI −Aα−1(t))D(t)h(t, u(t))

for the solution operator D(t) : φ 7→ v of the corresponding abstract Dirichlet
problem (ωI−Am(t))v = 0 and B(t)v = φ, where ω ∈ R is large enough. Then
(1.4) and (1.5) have the same classical solutions, see e.g. [87].

It is shown in [87] that the evolution family U(t, s) generated by A(t), t ∈ R,
can be extended to operators Uα−1(t, s) : X

s
α−1 → X, see Chapter 2. So we can

define mild solutions of (1.5) as the functions u ∈ C(R, X) satisfying

u(t) = U(t, s)u(s) +

∫ t

s
Uα−1(t, τ)f(τ, u(τ)) dτ (1.6)
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for all t ≥ s, where f(τ, u(τ)) belongs to Xτ
α−1.

In Chapter 4, we study the almost periodicity and automorphy of the semi-
linear autonomous parabolic boundary evolution equation{

u′(t) = Amu(t) + g(t, u(t)), t ∈ R,
Bu(t) = h(t, u(t)), t ∈ R,

(1.7)

by the ones of its corresponding extrapolated evolution equation

u′(t) = Aα−1u(t) + f(t, u(t)), t ∈ R. (1.8)

In [32], the authors considered this question for a hyperbolic differential equa-
tion, when g and the boundary term h are defined on the whole space X. In this
chapter, we continue this study in the general case where g and h are defined
only on some interpolation space Xβ, 0 ≤ β < 1, with respect to the sectorial
operator A := Am| kerB.

In Chapter 5, these results are generalized to the nonautonomous boundary
evolution equations (1.4) with inhomogeneous terms, i.e. g(t, u(t)) = g(t) and
h(t, u(t)) = h(t). We show that the solutions u : R → X of (1.4) inherit
the (asymptotic) almost periodicity of the inhomogeneities g : R → X and
h : R → Y . Our basic assumptions say that Am(·) and B(·) are (asymptotically)
almost periodic in time and that A(t) satisfy ‘Acquistapace-Terreni’ conditions.
In particular, the operators A(t) are sectorial and they generate a parabolic
evolution family U(t, s), t ≥ s, which solves the homogeneous problem (1.4)
with g = h = 0. If U has an exponential dichotomy on R, then we show that
for each almost periodic g and h there is a unique almost periodic solution of
(1.4), see Proposition 5.3.2.

Our main results in this chapter concern the more complicated case where
the evolution family U has exponential dichotomies on (possibly disjoint) time
intervals (−∞,−T ] and [T,+∞). Theorem 5.3.5 then gives a Fredholm alter-
native for (mild) solutions u of (1.4) with inhomogeneous terms in the space
AAP±(R, X) of continuous functions u : R → X being asymptotically almost
periodic on R+ and on R−, separately. In fact we prove more detailed results
on the Fredholm properties of (5.1), see Theorem 5.2.7, and we also treat the
corresponding inhomogeneous initial/final value problems on R±, see Proposi-
tions 5.3.3 and 5.3.4.

When treating (1.5), it is crucial to identify suitable function spaces for
the inhomogeneity f . To that purpose we consider the multiplication opera-
tor A(·) in the space AAP±(R, X) endowed with the sup–norm. This space
possesses the extrapolation spaces AAP±

α−1 corresponding to A(·). It is shown
that the functions in these spaces can be characterized as limits of functions in
AAP±(R, X). Moreover, if the operators A(t) possess constant extrapolation
spaces Xt

α−1
∼= Xα−1, we have AAP±

α−1 = AAP±(R, Xα−1).
One obtains exponential dichotomies on intervals (−∞,−T ] and [T,+∞)

in the asymptotically hyperbolic case where the operators Am(t) and B(t) con-
verge as t → ±∞ and the resulting limit operators A±∞ have no spectrum on
iR, see [20], [107], [109]. It should be noted that if the limits at +∞ and −∞
differ, then the operators in (5.1) are asymptotically almost periodic only on
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R+ and R− separately, so that the space AAP±(R, X) seems to be a natural
setting for our investigations. The asymptotically hyperbolic case can occur
if one linearizes a nonlinear problem along an orbit connecting two hyperbolic
equilibria, see e.g. [105], and also the references in [76], [87].

For f ∈ AAP±
α−1 we then set Gα−1u = f if u ∈ AAP±(R, X) satisfies (1.6),

thus defining a closed operator Gα−1 in AAP±
α−1. Its Fredholm properties yield

the desired Fredholm alternative for the mild solutions to (1.5) described in
Theorems 5.2.7 and 5.2.9.

The second part of this thesis treats the semilinear observation system

u̇(t) = Au(t) + F (u(t)), u(0) = x ∈ X, t ≥ 0, (1.9)

y(t) = C(u(t)), (1.10)

where A is assumed to be the generator of a linear C0-semigroup T on a
Banach space X, C is a linear (resp. nonlinear) unbounded operator from a
domain D(C) to another Banach space Y and F is a globally Lipschitz contin-
uous nonlinear operator from X into itself or locally Lipschitz continuous and
has a linear growth.

It is well known, see e.g. [97], that the state equation (1.9) has a global
unique mild solution given by u(·;x) for every x ∈ X. Moreover, by S(t)x =
u(t;x) one defines a semigroup S of globally (resp. locally) Lipschitz continuous
operators. One now looks for sufficient conditions for the admissibility of C for
S.

The theory of admissible observation operators and abstract observation
systems is well developed for linear systems, see [39], [66], [104] and [118]. In
case where C is an admissible linear output operator for T and F is globally
Lipschitz, we extend the definition of admissibility of the observation operator
C to semilinear systems or with respect to the nonlinear semigroup S. We
develop conditions guaranteeing that the set of admissible observation opera-
tors for the semilinear problem coincides with the set of admissible observation
operators for the linearized system. In another case, where C is a nonlinear
unbounded operator and F is locally Lipschitz, we extend the successful linear
theory to general nonlinear locally Lipschitz semigroups S = (S(t))t≥0 (see Def-
inition 7.1.3) and densely defined nonlinear output operators C. In particular,
for such semigroups S we define locally Lipschitz observation systems Ψ and
locally Lipschitz admissible observation operators. We further prove that such
observation systems Ψ can be represented by Ψx = C̃(S(·)x) for a (possibly
nonlinear) admissible observation operator C̃, see Theorem 7.2.6.

As an important special case, we assume that C is an admissible linear
output operator for T . In this situation one can in fact construct a nonlinear
observation system (S,ΨF ) given by (7.15), which is the integrated version
of (1.9)–(1.10). Moreover, the system (S,ΨF ) is represented by the Lebesgue
extension CL of C with respect to T , see Theorem 7.2.7.

We also define and study global (resp. local) exact observability of globally
(resp. locally ) Lipschitz observation systems. Again, in the case of the semi-
linear system (1.9)–(1.10) with a linear admissible operator C, it is desirable
to have criteria of the observability of the system in terms of the linear system
given by T and C.
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If the system is linear and X is a reflexive Banach space (e.g. Hilbert space),
then the concept of controllability is dual to the concept of observability. For
semilinear systems the situation is more involved. Consequently, most publica-
tions study exact controllability and exact observability separately. There are
various publications in the literature on the controllability of specific semilinear
systems. We refer the reader to [13, 30, 37, 73, 129] and the references therein.
On the other side, to our knowledge, there are only few results on observabil-
ity of semilinear systems with linear (or nonlinear) observation operators. In
particular, Mangnusson established in [84] a robustness result for exact observ-
ability near an equilibrium. He allowed for a larger class of nonlinearities in
(1.9), but considered only (nonlinear) observation operators defined on X. In
contrast, we focus on observation operators defined only on dense subspaces.

Overview of thesis

This thesis is arranged as follows:

In Chapter 1 we give a general introduction of this work.

Chapter 2 introduces mathematical concepts used in this thesis. We will
give basic definitions of the strongly continuous semigroups of linear operators,
sectorial operators and hyperbolic semigroups and introduce their most impor-
tant properties. We will also introduce interpolation and extrapolation spaces
and some basic notions of parabolic evolution operators. In the last part of the
chapter, we recall some definitions and facts concerning the concept of almost
periodicity and almost automorphy. Some new results are also given here with
their proofs.

Chapter 3 studies the existence and uniqueness of almost periodic and
almost automorphic solutions to semilinear parabolic evolution equations. Un-
der some reasonable assumptions and an interpolation argument we show the
existence of a unique almost periodic (almost automorphic) solution in real in-
terpolation spaces of the homogeneous problem. These results will be obtained
through studying the inhomogeneous evolution equations and a fixed-point ar-
gument. This chapter gave two publications [14, 15].

Chapter 4 investigates the existence and uniqueness of almost periodic and
almost automorphic solutions to the semilinear parabolic boundary evolution
equations. The idea to achieve this aim is to transform the boundary equation
into an equivalent semilinear evolution equation. We show first that the inho-
mogeneous evolution equation has a unique almost periodic and automorphic
mild solution on a real interpolation space for each almost periodic and auto-
morphic inhomogeneous function. The contraction fixed point theorem yields
then the unique almost periodic and automorphic mild solution for the semilin-
ear evolution equation and then to the semilinear parabolic boundary evolution
equations. The fruits of this chapter are published in [18]

In Chapter 5, we show the existence and uniqueness of the (asymptoti-
cally) almost periodic solution to parabolic evolution equations with inhomo-
geneous boundary values on R and R±, if the data are (asymptotically) almost
periodic. We assume that the underlying homogeneous problem satisfies the
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Acquistapace-Terreni conditions and has an exponential dichotomy on R. If
there is an exponential dichotomy only on half intervals (−∞,−T ] and [T,∞),
then we obtain a Fredholm alternative of the equation on R in the space of
functions being asymptotically almost periodic on R+ and R−. These results
are published in [19].

Chapter 6 deals with semilinear evolution equations with unbounded ob-
servation operators. The first part of the chapter introduces the definition of
admissible observation operators for semilinear systems and develops conditions
on the nonlinearity guaranteeing that the set of admissible observation opera-
tors for the semilinear problem coincide with the set of admissible observation
operators the linearized system. In the second part, we study the invariance
of the Lebesgue extension under globally Lipschitz continuous perturbations of
the original generator. The rest of the chapter is used to study the concept of
exact observability for semilinear systems and to prove that the exact observ-
ability is not changed under small Lipschitz perturbations. The results of this
chapter are published in [16].

Chapter 7 introduces locally Lipschitz observation systems for nonlinear
semigroups and show that they can be represented by an admissible nonlinear
output operator defined on a suitable subspace. In the semilinear case, this con-
cept fits well to the Lebesgue extension known from linear system theory. Also
in the semilinear case, we show robustness of exact observability near equilibria
under locally small Lipschitz perturbations. These results are submitted, see
[17].



Chapter2
Mathematical background

In this preliminary chapter, we present some notations, basic definitions and
results needed for the next chapters. We also give some new results with their
proofs produced in this work.

2.1 Some notations

The symbols N, R, C shall denote the sets of natural, real and complex num-
bers, respectively, and R+ := [0,∞). Throughout this thesis, X, Y shall be
Banach spaces with norms ∥·∥X , ∥·∥Y and the Banach space of bounded linear
operators between Banach spaces X and Y , shall be denoted by L(X,Y ) and
L(X) := L(X,X). We denote by D(A), N(A), R(A), σ(A), ρ(A) the domain,
kernel, range, spectrum and resolvent set of a linear operator A. Moreover,
we set R(λ,A) := (λI − A)−1 = (λ − A)−1 for λ ∈ ρ(A). We say that the
Banach space X is continuously embedded in the Banach space Y if X ⊂ Y
and || · ||Y ≤ C|| · ||X and write X ↪→ Y .

Let J =]a, b[, where −∞ ≤ a < b ≤ +∞, and 1 ≤ p < ∞. Then Lp(J ;X)
denotes the space of all Bochner-measurable functions f : J → X, such that
∥f(t)∥pX is integrable for t ∈ J . It is a Banach space when normed by

∥f∥Lp(J ;X) :=

(∫
J
∥f(s)∥pXds

)1/p

.

If p = ∞ the space Lp(J ;X) consists of all a measurable functions with a finite
norm

∥f∥L∞(J ;X) := ess sup
t∈J

∥f(t)∥X .

Let Ω be an open set of Rn and X = R or C. The Sobolev spaces W k,p(Ω),
where k is any positive integer and 1 ≤ p <∞, consist of all the functions f in
Lp(Ω) which admit weak derivatives Dαf for |α| ≤ k belonging to Lp(Ω). They
are endowed with the norm

∥f∥Wk,p(Ω) =
∑
|α|≤k

∥Dαf∥p.

7



8 Mathematical background 2.2

If p = 2, we write Hk(Ω) for W k,2(Ω).
We denote by C(J ;X), resp. Ck(J ;X), k ∈ N, the space of functions

f : J → X, which are continuous, resp. k-times continuously differentiable.
For a unbounded closed interval J , the space of bounded continuous functions
f : J → X (vanishing at ±∞) is denoted by BC(J,X) (by C0(J,X)). Note
that BC(J,X) is a Banach space equipped with the supremum norm:

∥f∥BC(J,X) := sup
t∈J

∥f(t)∥X .

Similarly, BC(J ×X,Y ) denotes the space of all bounded continuous functions
f : J ×X → Y .

2.2 Semigroups of linear operators

Let X be a Banach space and A : D(A) ⊂ X → X be a closed linear densely
defined operator in X. In the sequel we suppose that D(A) is equipped with
the graph norm of A, i.e. ∥x∥D(A) := ∥x∥X + ∥Ax∥X ; since A is closed, D(A)
is a Banach space, continuously and densely embedded into X.

2.2.1 Strongly continuous semigroups

In this subsection we will define strongly continuous semigroups and their gen-
erators and introduce their most important properties. For more theory about
strongly continuous semigroups see for example the monographs of Engel and
Nagel [52] and [89], van Neerven [92] and Pazy [99].

Definition 2.2.1. The family T = (T (t))t≥0 of bounded linear operators on X
is said to be a strongly continuous semigroups if

(i) T (t+ s) = T (t)T (s) for all t, s ≥ 0 (the semigroup property),

(ii) T (0) = I, (I is the identity operator on X),

(iii) lim
t→0+

∥T (t)x− x∥X = 0 for every x ∈ X.

The term strongly continuous semigroup is often abbreviated as C0-semigroup.

Definition 2.2.2. The infinitesimal generator (or generator in short) A of a
C0-semigroup T on a Banach space X is defined by

Ax = lim
t→0+

T (t)x− x

t

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x

t
exists

}
.

Example 2.2.3. If A is a bounded operator, then A is the generator of the
semigroup

T (t) = eAt :=

∞∑
n=0

tn

n!
An, t ≥ 0.
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We will now give some fundamental properties of C0-semigroups and their
infinitesimal generators.

Proposition 2.2.4. Let T = (T (t))t≥0 be a C0-semigroup on a Banach space
X with generator A. The following results hold:

(i) ∥T (t)∥L(X) is bounded on every finite subinterval of [0,∞).

(ii) A is a closed linear operator and its domain D(A) is dense in X.

(iii) For all x ∈ D(A) and t ≥ 0, T (t)x ∈ D(A), t 7→ T (t)x is continuously
differentiable in X, and

d

dt
(T (t)x) = AT (t)x = T (t)Ax, t ≥ 0.

Exponential stability will be of use in this thesis.

Proposition 2.2.5. [52, Prop. I.5.5] If T = (T (t))t≥0 is a C0-semigroup, then
it is exponentially bounded, this means, that there exist real constants M > 0
and ω such that

||T (t)||L(X) ≤Meωt, for all t ≥ 0.

If ω < 0, we say that T is exponentially stable.

The importance of C0-semigroups is that they provide solutions to the ab-
stract Cauchy problem

x′(t) = Ax(t), t ≥ 0; x(0) = x0 ∈ X

Indeed, if x0 ∈ D(A) and A generates a C0-semigroup (T (t))t≥0, then the map
t 7→ T (t)x0 ∈ C1(R+;X) and the solution x(t) := T (t)x0 satisfies x(t) ∈ D(A)
and x′(t) = Ax(t) for all t ≥ 0. However, for x0 /∈ D(A), the map t 7→ T (t)x0 is
not continuously differentiable and in order to define solutions for these initial
values, a weaker notion of solution is required. A mild solution x(t) of the
Cauchy problem is a function x(t) ∈ C(R+;X) satisfying∫ t

0
x(s)ds ∈ D(A) and x(t) = x0 +A

∫ t

0
x(s)ds

for each t ≥ 0. Moreover, if A generates a C0-semigroup (T (t))t≥0, then t 7→
T (t)x0 ∈ C(R+;X) is the unique mild solution of the Cauchy problem.

2.2.2 Sectorial operators and analytic semigroups

We will start with the study of a special kind of closed, linear operators so
called sectorial operators. All the results of this section can you founded in
Engel-Nagel [52], D. Henry [61], A. Lunardi [83] and Pazy [99].

For this purpose, let us denote by Sω, θ, where ω ∈ R and θ ∈]π2 , π[, an open
sector of the complex plane given by the relation

Sω, θ := {λ ∈ C : λ ̸= ω, | arg(λ− ω)| < θ},

and Sθ := S0, θ for short. We recall the definition of a sectorial operator in
a Banach space X, see Figure 2.1.
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Definition 2.2.6. Let A : D(A) ⊆ X → X be a linear, closed and densely
defined operator on a Banach space X. Then A is a sectorial operator in X if
and only if there exist the constants ω ∈ R, θ ∈]π2 , π[ and M > 0 such that{

(a) the resolvent set ρ(A) contains the sector Sω, θ,

(b) ||R(λ,A)||L(X) ≤ M
|λ−ω| , ∀ λ ∈ Sω, θ.

(2.1)

where ρ (A) is the resolvent set of A.

Figure 2.1: Sectorial operator A with sector Sω, θ.

Example 2.2.7. Let p ≥ 1 and let Ω ⊂ Rn be an open bounded subset such that
its boundary ∂Ω is of class C2. Let X := Lp(Ω) be the Lebesgue space equipped
with the norm ∥ · ∥p . Define the operator A as follows:

D(A) =W 2,p(Ω) ∩W 1,p
0 (Ω), A(φ) = ∆φ, ∀φ ∈ D(A),

where ∆ =
∑d

k=1
∂2

∂x2
k
is the Laplace operator. The operator A is sectorial on

X, with θ ∈]π2 , π[.

In the case of a sectorial operator, it is possible to define for every t > 0 a
linear bounded operator etA in X, by the mean of the Dunford integral

etA :=
1

2πi

∫
ω+γr,η

etλR(λ,A)dλ, t > 0, e0A := I,

where r > 0, η ∈]π2 , θ[, are properly chosen, and γr,η is the curve

{λ ∈ C : |argλ| = η, |λ| ≥ r} ∪ {λ ∈ C : |argλ| ≤ η, |λ| = r},
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oriented counterclockwise, for more precisions see [83, 126].
Since the operator A is sectorial, this integral converges in L(X). By Cauchy’s
Theorem, the definition of (T (t))t≥0 is independent of the choice of η and r.
Moreover, we will see that the operator families (T (t))t≥0 are analytic semi-
groups in the following sense

Definition 2.2.8. ([52, Definition II.4.5]) A family of bounded linear operators
(T (z))z∈Sδ∪0 is called analytic semigroup of angle δ ∈]0, π2 ] if
(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ Sδ.

(ii) The map z 7→ T (z) is analytic in Sδ.

(iii) For all x ∈ X and 0 < δ′ < δ

lim
Sδ′∋z→0

T (z)x = x.

A semigroup (T (t))t≥0 of bounded linear operators on X is called analytic,
if the mapping

]0;∞) → X : t 7→ T (t)x

has an analytic extension to a sector Sδ for some δ > 0 and for all x ∈ X.
Remark that the semigroup property holds then automatically in the whole
sector Sδ and that (T (z))z∈Sδ∪0 is strongly continuous. If z 7→ T (z) is also
strongly continuous in Sδ ∪ 0 and lim

z→0
T (z)x = x for all x ∈ X then (T (t))t≥0 is

an analytic C0-semigroup.
Then we obtain the following result.

Theorem 2.2.9. Let X be a Banach space. Then a densely defined linear
operator A is a generator of an analytic semigroup (T (t))t≥0 of bounded linear
operators T (t) : X → X, t > 0, if and only if A is a sectorial operator in X.

Remark 2.2.10. We point out that in most of the above results the density
of the domain of A is not needed. However, some authors consider sectorial
operators without assumption that A is densely defined. In this case semigroups
are known which are analytic but not strongly continuous. This is treated in
detail in [83].

In the following, we state some interesting properties concerning analytic
operators (see [83]):

Theorem 2.2.11. Let A be a sectorial operator in a Banach space X and let
(T (t))t≥0 be its analytic semigroup. Then, the following statements hold.

(i) T (t)x ∈ D(A) for all t > 0, x ∈ X. If x ∈ D(A), then

AT (t)x = T (t)Ax, t ≥ 0.

(ii) There are positive constants M0, M1, such that

∥T (t)∥L(X) < M0 e
ωt, t ≥ 0,

∥AT (t)∥L(X) <
M1

t
eωt, t > 0,

where ω is the number in (2.1).
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2.2.3 Hyperbolic semigroups

Next, we introduce and study hyperbolic semigroups.

Definition 2.2.12. A semigroup (T (t))t≥0 on a Banach space X is said to be
hyperbolic if it satisfies the condition (H):

(i) There exist two subspaces Xs (the stable space) and Xu (the unstable
space) of X such that X = Xs ⊕Xu;

(ii) T (t)Xu ⊂ Xu, and T (t)Xs ⊂ Xs for all t ≥ 0;

(iii) There exist constants M, δ > 0 such that

∥T (t)Ps∥ ≤Me−δt, t ≥ 0, ∥T (t)Pu∥ ≤Meδt, t ≤ 0, (2.2)

where Ps and Pu are, respectively, the projections onto Xs and Xu.

The most important example of hyperbolic semigroups are the exponentially
stable semigroups. In the parabolic case, one obtains regularity properties of
the exponential dichotomy, see [8]. For instance, A|Pu : Pu(X) −→ Pu(X) is
bounded, it follows that ||APu|| ≤ c.

Recall that an analytic semigroup (T (t))t≥0 associated with the linear op-
erator A is hyperbolic if and only if

σ(A) ∩ iR = ∅.

For details, see, e.g. [52, Prop 1.15, p. 305].

2.3 Interpolation and extrapolation spaces

We begin in this section, by fixing some notations and recalling a few basic re-
sults on interpolation and extrapolation spaces of generators. For more details,
we refer the reader to [5, 52, 83, 90]. Let A be sectorial operator on X (i.e.,
(2.1) is satisfied) and α ∈ (0, 1). We introduce the real interpolation spaces

XA
α,∞ := {x ∈ X : sup

λ>0
∥λα(A− ω)R(λ,A− ω)x∥ <∞}, XA

α := D(A)
||·||α

,

with
||x||α := sup

λ>0
||λα(A− ω)R(λ,A− ω)x||.

They are Banach spaces when endowed with the norm || · ||α.
For convenience we further write XA

0 := X, XA
1 := D(A) and ||x||0 =

||x||, ||x||1 = ||(A − ω)x||. We also define on the closed subspace X̂A := D(A)
of X a new norm by

∥x∥−1 =
∥∥(ω −A)−1x

∥∥ , x ∈ X.

The completion of
(
X̂A, ∥·∥−1

)
is called the extrapolation space of X asso-

ciated to A and will be denoted by XA
−1. Then A has a unique continuous
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extension A−1 : X̂A −→ XA
−1. Since T (t) commutes with the operator resol-

vent R(ω,A) := (ωI −A)−1, the extension of T (t) to XA
−1 exists and defines an

analytic semigroup (T−1(t))t≥0 which is generated by A−1 with D(A−1) = X̂.
As above, we can then define the space

XA
α−1 := (X−1)

A−1
α = X̂A

||·||α−1

with
||x||α−1 = sup

λ>0
||λαR(λ,A−1 − ω)x||.

The restriction Aα−1 : XA
α −→ XA

α−1 of A−1 generates the analytic semigroup
Tα−1(t))t≥0 on XA

α−1 which is the extension of T (t) to XA
α−1. Observe that

ω − Aα−1 : XA
α −→ XA

α−1 is an isometric isomorphism. We will frequently use
the continuous embedding

D(A) ↪→ XA
β ↪→ D((ω −A)α) ↪→ XA

α ↪→ X̂A ⊂ X,

X ↪→ XA
β−1 ↪→ D((ω −A−1)

α) ↪→ XA
α−1 ↪→ XA

−1

(2.3)

for all 0 < α < β < 1, where the fractional powers are defined as usually.
The real and continuous interpolation and fractional power spaces are in

the class of spaces Y satisfying D(A) ↪→ Y ↪→ X, and there is a constant c > 0
such that

||x||Y ≤ c||x||1−α||x||αA, x ∈ D(A),

called intermediate spaces between D(A) and X or of class Jα. For more details
about intermediate spaces, see [52, Chap. II, Section 5.b] and [83].

We give an embedding result of extrapolation spaces needed for Chapter 5.
Here, we give the proof in the more general C0-semigroups context, see [19].

Lemma 2.3.1. Let A be the generator of a C0-semigroup T (·) on a Banach
space Z. Let Y be an T (·)-invariant closed subspace of Z. Endow Y with the
norm of Z and consider the restriction AY of A to Y . Then the space Y AY

−1 is
canonically embedded into ZA

−1 as a closed subspace.

Proof. The operator AY generates the semigroup of the restrictions TY (t) ∈
L(Y ) of T (t). By rescaling we may assume that ∥TY (t)∥ ≤ ∥T (t)∥ ≤ ce−ϵt for
some ϵ > 0 and all t ≥ 0. Observe that then A and AY are invertible and that

A−1
Y =

∫ ∞

0
TY (t)y dt =

∫ ∞

0
T (t)y dt = A−1y

for each y ∈ Y . We mostly write A instead of AY , and we endow the extrap-
olation spaces of A and AY with the norm ∥x∥−1 = ∥A−1

−1x∥. By definition, it
holds

Y A
−1 = {y = (yn) +NY : (yn) = (yn)n∈N ⊂ Y is Cauchy for ∥ · ∥−1},

where NY = {(yn) ⊂ Y : yn → 0 for ∥ · ∥−1}. We identify y ∈ Y with the
element (y)n∈N + NY of Y A

−1, thus considering Y as a dense subspace of Y A
−1.

We define the operator

Φ : Y A
−1 −→ ZA

−1, Φy = (yn) +NZ , where yn ∈ Y, yn → y in Y A
−1.
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If (yn), (ỹn) ⊂ Y converge to y in Y A
−1, then yn − ỹn → 0 as n→ ∞ for ∥ · ∥−1.

Hence, (yn− ỹn) ∈ NZ , and so Φ is well defined. Let y ∈ Y A
−1 such that Φy = 0.

This means that (yn) ∈ NZ , and hence yn → 0 in ∥ · ∥−1. Therefore (yn) ∈ NY ,
and thus y = 0. It is clear that Φ is linear. It is also bounded since

∥Φy∥ZA
−1

= inf
(zn)∈NZ

∥(yn − zn)∥∞ ≤ inf
(zn)∈NY

∥(yn − zn)∥∞ = ∥y∥Y A
−1
.

We have shown that Y A
−1 ↪→ ZA

−1 with the canonical embedding Φ. To prove
that the range R(Φ) is closed in ZA

−1, we take zj = Φyj ∈ R(Φ) ⊆ ZA
−1 such

that zj → z in ZA
−1 as j → ∞. Then A−1

−1zj =: wj converges in Z to w := A−1
−1z.

We further claim that

A−1
−1Φ = (AY )

−1
−1. (2.4)

Indeed, for x ∈ Y one has A−1
−1Φx = A−1x = A−1

Y x = (AY )
−1
−1x. So assertion

(2.4) follows from the density of Y in Y A
−1. Equation (2.4) then yields

(AY )
−1
−1yj = A−1

−1zj → w (inZ).

Since Y is closed in Z and (AY )
−1
−1yj ∈ Y , we obtain (AY )

−1
−1yj → w in Y .

As a consequence, yj converges in Y A
−1 to y := (AY )−1w. We conclude that

zj = Φyj → Φy in ZA
−1 which means that R(Φ) is closed.

In the sequel of this thesis, we omit the exponent A in the definition of the
interpolation and extrapolation spaces.

In the following proposition, we give some estimates of C0-semigroups on
interpolation and extrapolation spaces, needed to obtain results of Chapter 4,
see [18].

Proposition 2.3.2. Assume that 0 < α ≤ 1 and 0 ≤ β ≤ 1. Then the following
assertions hold for 0 < t ≤ t0, t0 > 0 and ε̃ > 0 such that 0 < α − ε̃ < 1 with
constants possibly depending on t0.

(i) The operator T (t) has continuous extensions Tα−1(t) : Xα−1 −→ X sat-
isfying

||Tα−1(t)||L(Xα−1,X) ≤ c tα−1−ε̃. (2.5)

(ii) For x ∈ Xα−1 we have

||Tα−1(t)x||β ≤ c tα−β−1−ε̃||x||α−1. (2.6)

Proof. Let 0 < t ≤ t0, 0 < α − ε̃ < 1 and x ∈ Xα−1 ↪→ D((ω − A−1)
α−ε̃). We



2.4 Parabolic evolution operators 15

have

||Tα−1(t)x|| = ||T−1(t)(ω −A−1)
−α+ε̃(ω −A−1)

α−ε̃x||

= ||(ω −A)−α+ε̃T (
t

2
)T−1(

t

2
)(ω −A−1)

α−ε̃x||

= ||(ω −A)−α+ε̃+1T (
t

2
)A−1

−1T−1(
t

2
)(ω −A−1)

α−ε̃x||

≤ (
t

2
)α−ε̃−1||T−1(

t

2
)(ω −A−1)

α−ε̃x||−1

≤ (
t

2
)α−1−ε̃||T−1(

t

2
)||L(X−1) ||(ω −A−1)

α−ε̃x||−1

≤ 21−α+ε̃ sup
0≤s≤t0

||T−1(s)||L(X−1)t
α−1−ε̃||x||D((ω−A−1)α−ε̃).

Hence by (2.3) we obtain

||Tα−1(t)x|| ≤ c tα−1−ε̃||x||α−1.

Finally, by (2.5) we have

||Tα−1(t)x||β ≤ c ||Tα−1(t)x||1−β||AT ( t
2
)Tα−1(

t

2
)x||β

≤ c t(α−1−ε̃)(1−β)(
t

2
)−β(

t

2
)(α−1−ε̃)β||x||α−1

≤ c tα−1−ε̃−β∥x∥α−1.

Remark 2.3.3. We can remove ε̃ in Proposition 2.3.2 by extending T (t) to
operators from D((ω − A−1)

α±ε̃) to X, with norms bounded by tα−1±ε̃, where
0 < α ± ε̃ < 1, and therefore, by employing the reiteration theorem and the
interpolation property, the inequality in the assertion (i) can be obtained without
ε̃.

2.4 Parabolic evolution operators

We investigate a family of linear operators A(t), t ∈ R, on a Banach space X
subject to the following hypotheses:
(H1) There are constants ω ∈ R, θ ∈ (π/2, π), K > 0 and µ, ν ∈ (0, 1] such
that µ+ ν > 1 and

λ ∈ ρ(A(t)− ω), ∥R(λ,A(t)− ω)∥ ≤ K

1 + |λ|
, (2.7)

∥(A(t)− ω)R(λ,A(t)− ω) [R(ω,A(t))−R(ω,A(s))]∥ ≤ K
|t− s|µ

|λ|ν
(2.8)

for all t, s ∈ R and λ ∈ Σθ := {λ ∈ C\{0}with | arg(λ)| ≤ θ}. (Observe that
the domains D(A(t)) are not required to be dense.)
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Remark 2.4.1. In the case of a constant domain D(A(t)), one can replace
assumption (2.8) (see e.g. [5, 97]) with the following
(H1)’ There exist constants L and 0 < µ ≤ 1 such that

∥(A(t)−A(s))A(r)−1∥ ≤ L|t− s|µ, s, t, r ∈ R.

Let us mention that assumption (H1) was introduced in the literature by
P. Acquistapace and B. Terreni in [3, 2] for ω = 0. Among other things, it
ensures that there exists a unique evolution family U on X such that:

(a) U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ≥ s ≥ r;

(b) (t, s) 7→ U(t, s) ∈ L(X) is continuous for t > s;

(c) U(·, s) ∈ C1((s,∞),L(X)),
∂U

∂t
(t, s) = A(t)U(t, s) and

∥A(t)kU(t, s)∥ ≤ C (t− s)−k (2.9)

for 0 < t − s ≤ 1, k = 0, 1, x ∈ D((ω − A(s))α), and a constant C
depending only on the constants appearing in (H1);

(d) ∂+s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈
D(A(s)).

We define the following interpolation and extrapolation spaces as above

Xt
α := XA(t)

α , X̂t := X̂A(t), Xt
α−1 := X

A(t)
α−1

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding
in (2.3) hold with constants independent of t ∈ R, and there is a constant c(α)
such that

∥y∥tα ≤ c(α)∥y∥1−α∥(A(t)− ω)y∥α, y ∈ D(A(t)), t ∈ R. (2.10)

For a closed interval J , we define on E = E(J) := BC(J,X), the multiplication
operator A(·) by

(A(·)f)(t) := A(t)f(t) for all t ∈ J,

D(A(·)) := {f ∈ E : f(t) ∈ D(A(t)) for all t ∈ J, A(·)f ∈ E}.

We can thus introduce the spaces

Eα := EA(·)
α , Eα−1 := E

A(·)
α−1 , and Ê := D(A(·))

for α ∈ [0, 1], where E0 := E and E1 := D(A(·)). We observe that E−1 ⊆∏
t∈J X

t
−1 and that the extrapolated operator A(·)−1 : Ê −→ E−1 is given by

(A(·)−1f)(t) := A−1(t)f(t) for t ∈ J and f ∈ E. Further, Eα−1 has the norm

∥f∥α−1 := sup
r>0

sup
s∈J

∥rαR(r,A−1(s)− ω)f(s)∥,
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and we have f(t) ∈ Xt
α−1 for each t ∈ J if f ∈ Eα−1. Since R(n,Aα−1(·))

is the resolvent of the densely defined sectorial operator Aα−1(·), we have
nR(n,Aα−1(·))f → f in Eα−1 as n→ ∞, for each f ∈ Eα−1 and 0 ≤ α < 1.

The next lemma allows to extend the evolution family U(t, s) to the ex-
trapolated spaces Xt

α−1, see Proposition 2.1 and Remark 3.12 of [87] for the
proof.

Lemma 2.4.2. Assume that (2.7) and (2.8) hold and let 1−µ < α < 1. Then
the following assertions hold for s < t ≤ s+ t0 and t0 > 0.
(a) The operators U(t, s) have continuous extensions Uα−1(t, s) : X

s
α−1 → Xβt

satisfying
∥Uα−1(t, s)∥L(Xs

α−1,X
t
β)

≤ c(α, t0)(t− s)α−β−1 , (2.11)

and Uα−1(t, s)x = Uγ−1(t, s)x for 1− µ < γ < α < 1, β ∈ [0, 1], and x ∈ Xs
α−1.

(b) The map {(t, s) : t > s} ∋ (t, s) 7−→ Uα−1(t, s)f(s) ∈ X is continuous for
f ∈ Eα−1.

Exponential dichotomy is another important tool in our study, cf. [34], [83],
[109]. We recall that an evolution family U(·, ·) has an exponential dichotomy
on an interval J if there exists a family of projections P (t) ∈ L(X), t ∈ J , being
strongly continuous with respect to t, and constants δ,N > 0 such that

(a) U(t, s)P (s) = P (t)U(t, s),

(b) U(t, s) : Q(s)(X) → Q(t)(X) is invertible with the inverse Ũ(s, t),

(c) ∥U(t, s)P (s)∥ ≤ Ne−δ(t−s) and ∥Ũ(s, t)Q(t)∥ ≤ Ne−δ(t−s)

for all s, t ∈ J with s ≤ t, where Q(t) := I − P (t) is the ‘unstable projection’.
One further defines Green’s function by

Γ(t, s) =

{
U(t, s)P (s), t ≥ s, t, s ∈ J,

−Ũ(t, s)Q(s), t < s, t, s ∈ J.

In the parabolic case one easily obtains regularity results for Green’s function
and the dichotomy projections, see e.g. [109, Proposition 3.18]. For instance, if
J is bounded from below, then we have ∥A(t)Q(t)∥ ≤ c(η) for all t > η + inf J
and each η > 0 since A(t)Q(t) = A(t)U(t, t−η)Ũ(t−η, t)Q(t). Similarly, it holds
∥A(t)Q(t)∥ ≤ c for all t ∈ J if J is unbounded from below. As a consequence
P (t) = I−Q(t) leaves invariant X̂t andXt

α for each α ∈ [0, 1] and t ∈ J\{inf J}.
In the next proposition (shown in Proposition 2.2 and Remark 3.12 of [87]) we
state some properties of Γ(t, s) and Q(t) in extrapolation spaces. We use the
convention ±∞+r = ±∞ for r ∈ R, and we set J ′ = J\{sup J}, i.e., J = J ′ if J
is unbounded from above. Moreover, we write U0(t, s) := U(t, s), P0(t) := P (t),
and Q0(t) := Q(t), where Xt

0 = X by definition.
In the following proposition, we state a result from [87] concerning the

exponential dichotomy of the extrapolated evolution family Uα−1.

Proposition 2.4.3. Assume that (2.7) and (2.8) hold and that U(t, s) has an
exponential dichotomy on an interval J . Let η > 0 and 1−µ < α ≤ 1. Then the
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operators P (t) and Q(t) have continuous extensions Pα−1(t) : Xt
α−1 → Xt

α−1

and Qα−1(t) : Xt
α−1 → X, respectively, for every t ∈ J ′; which are uniformly

bounded for t < sup J − η. Moreover, the following assertions hold for t, s ∈ J ′

with t ≥ s.

(a) Qα−1(t)X
t
α−1 = Q(t)X;

(b) Uα−1(t, s)Pα−1(s) = Pα−1(t)Uα−1(t, s);

(c) Uα−1(t, s) : Qα−1(s)(X
s
α−1) → Qα−1(t)(X

t
α−1) is invertible with the in-

verse Ũα−1(s, t);

(d) ∥Uα−1(t, s)Pα−1(s)x∥ ≤ N(α, η)max{(t−s)α−1, 1}e−δ(t−s)∥x∥sα−1 for x ∈
Xs

α−1 and s < t < sup J − η;

(e) ∥Ũα−1(s, t)Qα−1(t)x∥ ≤ N(α, η)e−δ(t−s)∥x∥tα−1 for x ∈ Xt
α−1 and s ≤ t <

sup J − η;

(f) let J0 ⊂ J ′ be a closed interval and f ∈ Eα−1(J0). Then P (·)f ∈ Eα−1(J0)
and Q(·)f ∈ BC(J0, X).

Using this proposition, we define

Γα−1(t, s) =

{
Uα−1(t, s)Pα−1(s), t ≥ s, t, s ∈ J,

−Ũ(t, s)Qα−1(s), t < s, t, s ∈ J.

2.5 Almost periodic and almost automorphic func-
tions

In this section, we recall some definitions and properties concerning almost
periodic and almost automorphic functions that we will use later in this thesis.

2.5.1 Almost periodic functions

Next, we give the definition of almost periodic functions due to H. Bohr [28].
The theory of almost periodicity has been generalized in various directions
especially by Favard [53, 54], Bochner [26, 27], Levitan [79], Besicovitc [25],
Fink [55], and Corduneanu [36]. Recently, motivated by applications, important
extensions have been given to the study of almost periodic functions (partial
differential equations) see [6, 80, 97] and references therein.

A set P ⊂ R is said to be relatively dense in R if there exists a number l > 0
such that any interval [a, a+ l], a ∈ R of length l contains at least one number
from P .

Definition 2.5.1. A continuous function f : R → X is called almost periodic
if for every ε > 0 there exist a relative dense set P (ε) ⊆ R, that is, if there is a
number ℓ(ε) > 0 such that each interval (a, a+ ℓ(ε)), a ∈ R, contains an almost
period τ = τε ∈ P (ε) and the estimate

∥g(t+ τ)− g(t)∥ ≤ ε



2.5 Almost periodic and almost automorphic functions 19

holds for all t ∈ R and τ ∈ P (ε). The space of almost periodic functions is
denoted by AP (R, X).

Every periodic function is also almost periodic. On the other hand, the
inverse is not true, we cite as counterexample the function f(t) = cos(t) +
cos(t

√
2); t ∈ R. (see Figure: 5.1.3).

Figure 2.2: An example of almost periodic function.

Let us recall that AP (R, X) is a closed subspace of BC(R, X) and hence it
is itself a Banach space, see [80, Chapter 1].

For a closed unbounded interval J , we also define the space

AP (J,X) := {g : J → X : ∃ g̃ ∈ AP (R, X) s.t. g̃|J = g}

of almost periodic functions on J . We remark that the function g̃ in the above
definition is uniquely determined, cf. [12, Proposition 4.7.1]. The following
notion is important for our investigations.

Definition 2.5.2. Let J = [t0,∞), t0 ∈ R. A continuous function g : J → X
is called asymptotically almost periodic if for every ε > 0 there exists a set
P (ε) ⊆ J and numbers s(ε), ℓ(ε) > 0 such that each interval (a, a+ℓ(ε)), a ≥ 0,
contains an almost period τ = τε ∈ P (ε) and the estimate ∥g(t+ τ)− g(t)∥ ≤ ε
holds for all t ≥ s(ε) and τ ∈ P (ε). The space of asymptotically almost periodic
functions is denoted by AAP (J, Y ).

Due to [12, Theorem 4.7.5], these spaces are related by the equality

AAP ([t0,+∞), X) = AP ([t0,+∞), X)⊕ C0([t0,+∞), X). (2.12)

Analogously, we define the asymptotic almost periodicity on J = (−∞, t0], and
one also has

AAP ((−∞, t0], X) = AP ((−∞, t0], X)⊕ C0((−∞, t0], X). (2.13)
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We recall that M(·)f ∈ (A)AP (J,X) if f ∈ (A)AP (J,X) and
M(·) ∈ (A)AP (J,L(X)). This follows from the above definitions if one takes
into account that we can find common almost periods for f andM , cf. [80, p.6].

Definition 2.5.3. A function f ∈ BC(R × X,Y ) is called almost periodic if
for every ε > 0 and every compact set K ⊂ X there exists l(ε,K) > 0 such that
every interval I of length l(ε,K) contains a number τ and for t ∈ R, x ∈ K

∥f(t+ τ, x)− f(t, x)∥Y < ε

Finally, we mention the following important result.

Lemma 2.5.4. [55] Let f : R×X 7→ Y be (uniformly) almost periodic, globally
Lipschitzian and y : R 7→ X be an almost periodic function, then the function
t 7→ f(t, y(t)) is also almost periodic.

2.5.2 Almost automorphic functions

In this subsection, we introduce a class of functions which are more general
than the almost periodic ones. Named almost automorphic functions, they were
first introduced by S. Bochner [26] in 1955. For more information on almost
automorphic functions, we refer the reader to W. A. Veech [113, 114, 115] and
others [93, 95, 111, 128].

Definition 2.5.5. (S. Bochner) A continuous function f : R → X is called
almost automorphic if for every sequence (σn)n∈N there exists a subsequence
(sn)n∈N ⊂ (σn)n∈N such that

lim
n,m→+∞

f(t+ sn − sm) = f(t) for each t ∈ R.

This is equivalent to the fact that the limits

g(t) := lim
n→+∞

f(t+ sn) and f(t) = lim
n→+∞

g(t− sn)

exist for each t ∈ R.

The set of all almost automorphic functions with values in X is denoted by
AA(X). With the supremum norm

∥f∥AA(X) = sup
t∈R

∥f(t)∥,

this space turns out to be a Banach space (see [93], page 20).

Remark 2.5.6. 1) It is easy to see that an almost automorphic function is
always bounded.

2) By the pointwise convergence, the function g in Definition 2.5.5 is just
measurable, but not necessarily continuous (need not be continuous in
general). Moreover, if g is continuous, then f is uniformly continuous
(cf. [96] Theorem 2.6).
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3) If the convergence in both limits in the definition above is uniform in
t ∈ R, then f is almost periodic (in the sense of Bochner [27]).

4) Clearly from the definition above follows that every almost periodic func-
tion (in the sense of Bochner) is necessarily almost automorphic. Thus
we have

AP (X) ⊂ AA(X) ⊂ BC(X).

The converse of the last assertion in Remark 2.5.6 is not true, as shown in
the following example due to Levitan (see also [23, Example 3.3]).

Example 2.5.7. Let p(t) = 2 + cos t + cos
√
2t and f : R → R such that

f = sin 1
p . Then f is almost automorphic, but f is not uniformly continuous

on R. It follows that f is not almost periodic.

Definition 2.5.8. A function f : R×X → Y is said to be almost automorphic
if f(·, x) is almost automorphic for every x ∈ X and f is continuous jointly in
(t, x). We note f ∈ AA(R×X,Y ).

Moreover, we refer to [47, 93, 94, 111] for some new and significant devel-
opments on the study of almost automorphic problems.
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Chapter3
Asymptotic behavior of semilinear
evolution equations

The aim of this chapter is to study the almost periodicity and the almost
automorphicity of solutions of the parabolic semilinear evolution equations

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (3.1)

in a Banach space X, where the linear operators A(t) satisfy the Acquistapace-
Terreni conditions, the evolution family U generated by A(·) has an exponential
dichotomy and f : R×Xα → X. We apply these results to thermoelastic plate
systems and the reaction diffusion equation with time-varying coefficients. We
show that, if the coefficients and the semilinear term f are almost periodic resp.
automorphic, then the solutions are almost periodic resp. automorphic.

3.1 Assumptions and preliminary results

Let (X, ∥·∥) be a Banach space and let A(t) for t ∈ R be closed linear operators
on X with domain D(A(t)) (possibly not densely defined). Throughout this
chapter, we assume that A(t) satisfies the Aquistapace-Terreni conditions (H1),
see Chapter 2, and

(H2) The evolution family U generated by A(·) has an exponential dichotomy
with constants N, δ > 0 and dichotomy projections P (t) for t ∈ R and
Green’s function Γ.

(H3) There exist 0 ≤ α < β < 1 such that

Xt
α = Xα and Xt

β = Xβ

for all t ∈ R, with uniformly equivalent norms.

For the sequel, we need the following fundamental estimates for the evolution
family U := U(t, s) generated by A(·).

23
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Proposition 3.1.1. For x ∈ X, 0 ≤ α ≤ 1 and t > s, the following hold:

(i) There is a constant c(α), such that

∥U(t, s)P (s)x∥tα ≤ c(α)e−
δ
2
(t−s)(t− s)−α∥x∥. (3.2)

(ii) There is a constant m(α), such that

∥ŨQ(s, t)Q(t)x∥sα ≤ m(α)e−δ(t−s)∥x∥. (3.3)

Proof. (i) Using (2.10) we obtain

∥U(t, s)P (s)x∥tα ≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t, s)P (s)x∥α

≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t, t− 1)U(t− 1, s)P (s)x∥α

≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t, t− 1)∥α∥U(t− 1, s)P (s)x∥α

≤ c(α)Nc e−δ2(t−s)(1−α)e−δ(t−s−1)α∥x∥
≤ c(α)(t− s)−αe−

δ
2
(t−s)(t− s)αe−

δ
2
(t−s)∥x∥

for t− s ≥ 1 and x ∈ X. Since (t− s)αe−
δ
2
(t−s) → 0 as t→ +∞ it easily follows

that

∥U(t, s)P (s)x∥tα ≤ c(α)(t− s)−αe−
δ
2
(t−s)∥x∥.

If 0 < t− s ≤ 1, we have

∥U(t, s)P (s)x∥tα ≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t, s)P (s)x∥α

≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t,
t+ s

2
)U(

t+ s

2
, s)P (s)x∥α

≤ c(α)∥U(t, s)P (s)x∥1−α∥A(t)U(t,
t+ s

2
)∥α∥U(

t+ s

2
, s)P (s)x∥α

≤ c(α)Ne−δ(t−s)(1−α)2α(t− s)−αe−
δα
2
(t−s)∥x∥

≤ c(α)Ne−
δ
2
(t−s)(1−α)2α(t− s)−αe−

δα
2
(t−s)∥x∥

≤ c(α)e−
δ
2
(t−s)(t− s)−α∥x∥,

and hence

∥U(t, s)P (s)x∥tα ≤ c(α)(t− s)−αe−
δ
2
(t−s)∥x∥ for t > s.

(ii)

∥ŨQ(s, t)Q(t)x∥sα ≤ c(α)∥ŨQ(s, t)Q(t)x∥1−α∥A(s)ŨQ(s, t)Q(t)x∥α

≤ c(α)∥ŨQ(s, t)Q(t)x∥1−α∥A(s)Q(s)ŨQ(s, t)Q(t)x∥α

≤ c(α)∥ŨQ(s, t)Q(t)x∥1−α∥A(s)Q(s)∥α∥ŨQ(s, t)Q(t)x∥α

≤ c(α)Ne−δ(t−s)(1−α)∥A(s)Q(s)∥αe−δ(t−s)α∥x∥
≤ m(α)e−δ(t−s)∥x∥.
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3.2 The almost periodicity

Consider the semilinear evolution equation

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ R, (3.4)

where the function f : R × Xα 7→ X is continuous and globally Lipschitzian,
i.e., there is k > 0 such that

∥f(t, x)− f(t, y)∥ ≤ k ∥x− y∥α for all t ∈ R and x, y ∈ Xα. (3.5)

To study the almost periodicity of the solutions of (3.4), we assume again
the following :

(H4) R(ω,A(·)) ∈ AP (R,L(X)) with pseudo periods τ = τϵ belonging to sets
P(ϵ, A).

(H5) f ∈ AP (R×Xα, X).

By a mild solution of (3.4) we mean every continuous function x : R 7→ Xα,
which satisfies the following variation of constants formula

x(t) = U(t, s)x(s) +

∫ t

s
U(t, σ)f(σ, x(σ))dσ for all t ≥ s, t, s ∈ R. (3.6)

We first study the existence of a unique almost periodic mild solution for
the inhomogeneous evolution equation

x′(t) = A(t)x(t) + g(t), t ∈ R. (3.7)

We have the following main result.

Theorem 3.2.1. Assume that assumptions (H1)-(H4) hold. Let g ∈ BC(R, X).
Then the following properties hold.

(i) The equation (3.7) has a unique bounded mild solution x : R 7→ Xα given
by

x(t) =

∫ t

−∞
U(t, s)P (s)g(s)ds−

∫ +∞

t
UQ(t, s)Q(s)g(s)ds. (3.8)

(ii) If g ∈ AP (R, X), then x ∈ AP (R, Xα).

Proof. Since g is bounded, we know from [34] that the function x given by (3.8)
is the unique bounded mild solution in X. For the boundedness in Xα, using
Proposition 3.1.1, we have

∥x(t)∥α ≤ c ∥x(t)∥β

≤ c

∫ t

−∞
∥U(t, s)P (s)g(s)∥β ds+ c

∫ +∞

t
∥UQ(t, s)Q(s)g(s)∥β ds

≤ cc(β)

∫ t

−∞
e−

δ
2
(t−s)(t− s)−β ∥g(s)∥ ds+ cm(β)

∫ +∞

t
e−δ(s−t) ∥g(s)∥ ds

≤ cc(β) ∥g∥∞
∫ +∞

0
e−σ

(
2σ

δ

)−β 2dσ

δ
+ cm(β) ∥g∥∞

∫ +∞

0
e−δσdσ

≤ cc(β)δαΓ(1− β) ∥g∥∞ + cm(β)δ−1 ∥g∥∞ ,
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and hence

∥x(t)∥α ≤ c ∥x(t)∥β ≤ c[c(β)δβΓ(1− β) +m(β)δ−1] ∥g∥∞ . (3.9)

For (ii), let ϵ > 0 and P(ϵ, A, f) be the set of pseudo periods for the almost
periodic function t 7→ (f(t), R(ω,A(t))), see details in [80, p.6]. We know, from
[86, Theorem 4.5] that x, as an X-valued function is almost periodic. Hence,

there exists a number τ ∈ P(
(
ε
c′

) β
β−α , A, f) such that

∥x(t+ τ)− x(t)∥ ≤
( ε
c′

) β
β−α

for all t ∈ R.

For θ = α
β , the reiteration theorem implies that Xα = (X,Xβ)θ,∞. Using the

property of interpolation and (3.9), we obtain

∥x(t+ τ)− x(t)∥α ≤ c(α, β)∥x(t+ τ)− x(t)∥
β−α
β ∥x(t+ τ)− x(t)∥

α
β

β

≤ c(α, β)2
α
β

(
c[c(β)δβΓ(1− β) +m(β)δ−1] ∥g∥∞

)α
β

∥x(t+ τ)− x(t)∥
β−α
β

:= c′∥x(t+ τ)− x(t)∥
β−α
β ,

and hence

∥x(t+ τ)− x(t)∥α ≤ ε

for t ∈ R.

To show the existence of almost periodic solutions for the semilinear evo-
lution equation (3.4), let y ∈ AP (R, Xα). By (H5) and Lemma 2.5.4, the
function g(·) := f(·, y(·)) ∈ AP (R, X), and from Theorem 3.2.1, the inhomoge-
neous equation (3.7) has a unique mild solution x ∈ AP (R, Xα) given by

x(t) =

∫ t

−∞
U(t, s)P (s)f(s, y(s))ds−

∫ +∞

t
UQ(t, s)Q(s)f(s, y(s))ds, t ∈ R.

Define the nonlinear operator F : AP (R, Xα) 7→ AP (R, Xα) by

(Fy)(t) :=

∫ t

−∞
U(t, s)P (s)f(s, y(s))ds−

∫ +∞

t
UQ(t, s)Q(s)f(s, y(s))ds, t ∈ R.

For x, y ∈ AP (R, Xα), one has

∥Fx(t)− Fy(t)∥α ≤ c(α)

∫ t

−∞
e−δ(t−s)(t− s)−α ∥f(s, y(s))− f(s, x(s))∥ ds

+ c(α)

∫ +∞

t
e−δ(t−s) ∥f(s, y(s))− f(s, x(s))∥ ds.

≤ k[c(α)δ−αΓ(1− α) +m(α)δ−1] ∥x− y∥∞ for all t ∈ R.
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By taking k small enough, more precisely k < (c(α)δαΓ(1− α) +m(α)δ−1)−1,
the operator F becomes a contraction on AP (R, Xα) and hence has a unique
fixed point in AP (R, Xα), which obviously is the unique Xα-valued almost
periodic solution to (3.4).

The previous discussion can be formulated as follows:

Theorem 3.2.2. Let α ∈ (0, 1). Suppose that assumptions (H1)-(H5) hold
and k < (c(α)δ−αΓ(1−α)+m(α)δ−1)−1. Then (3.4) has a unique mild solution
x in AP (R, Xα) .

3.3 Application : thermoelastic plate systems

Let a, b be positive functions and let Ω ⊂ RN (N ≥ 1) be a bounded sub-
set, which is sufficiently regular. In this section we study the existence and
uniqueness of almost periodic solutions to the thermoelastic plate systems

∂2u

∂t2
+∆2u+ a(t)∆θ = f1(t,∇u,∇θ), t ∈ R, x ∈ Ω,

∂θ

∂t
− b(t)∆θ − a(t)∆

∂u

∂t
= f2(t,∇u,∇θ), t ∈ R, x ∈ Ω,

θ = u = ∆u = 0, on R× ∂Ω,

(3.10)

where u, θ are the vertical deflection and the variation of temperature of the
plate and the functions f1, f2 are continuous and (globally) Lipschitz.

Assuming the almost periodicity of the functions a, b, f1, f2, we show that
(3.10) has a unique almost periodic solution. It is worth mentioning that this
question was recently studied by H. Leiva et al. [78] in the case when not only
the coefficients a, b were constant but also there was no gradient terms in the
semilinear terms f1 and f2.

To study almost periodic solutions to (3.10), our strategy consists of seeing
such a system as an abstract evolution equation. For that, let H = L2(Ω) and
take A to be the (unbounded) linear operator

D(A) = H2(Ω) ∩H1
0 (Ω) and Aφ = −∆φ for each φ ∈ D(A).

Setting x :=


u

∂u

∂t
θ

, the problem (3.10) can be rewritten inX := D(A)×H×H

in the following form

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ R, (3.11)

where A(t) is the linear operator defined by

A(t) =

 0 IH 0
−A2 0 a(t)A
0 −a(t)A −b(t)A

 (3.12)
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and whose domain is

D(A(t)) = D(A2)×D(A)×D(A), t ∈ R.

Moreover, the semilinear term f is defined only on R×Xα for some 1
2 < α < 1 by

f(t, u, v, θ) =

( 0

f1(t,∇u,∇θ)

f2(t,∇u,∇θ)

)
, where Xα is the real interpolation space between

X and D(A(t)) given by Xα = H1+α × Hα × Hα, with Hα = L2(Ω)Aα,∞, and
H1+α is the domain of the part of A in Hα, see Section 2.2 for definitions and
properties of these spaces.

We shall assume that the positive real functions a, b are bounded under-
valued respectively by a0, b0 and a, b ∈ Cµ

b (R) ∩ AP (R) (Cµ
b is the space

of bounded, globally Hölder continuous functions) and the functions f1, f2 :
R×H1

0 (Ω)×H1
0 (Ω) → L2(Ω) are defined by

fi(t, u, θ)(x) = fi(t,∇u(x),∇θ(x)) =
Kdi(t)

1 + |∇u(x)|+ |∇θ(x)|

for x ∈ Ω, t ∈ R, i = 1, 2, where di are almost periodic real functions.

It is not hard to check that the functions fi (i = 1, 2) are continuous in
R ×H1

0 (Ω) ×H1
0 (Ω) and globally Lipschitz functions, with Lipschitz constant

L > 0 i.e.,

∥fi(t, u, θ)− fi(t, v, η)∥ ≤ L(∥u− v∥2H1
0(Ω) + ∥θ − η∥2H1

0 (Ω))
1
2

for all t ∈ R, u, v, η and θ ∈ H1
0 (Ω).

In order to apply the results of Section 2, we need to check that assumptions
(H1), (H1’), (H2) and (H4) hold.

To show (2.7) appearing in (H1), we follow along the same lines as in [78].
For that, let 0 < λ1 < λ2 < · · · < λn → ∞ be the eigenvalues of A with the
finite multiplicity γn equal to the dimension of the corresponding eigenspace and
{ϕn,k} is a complete orthonormal set of eigenvectors for A. For all x ∈ D(A)
we have

Ax =
∞∑
n=1

λn

γn∑
k=1

⟨x, ϕn,k⟩ϕn,k :=
∞∑
n=1

λnEnx,

with ⟨·, ·⟩ being the inner product in H. So, En is a complete family of orthog-
onal projections in H and so each x ∈ H can be written as

x =
∞∑
n=1

γn∑
k=1

⟨x, ϕn,k⟩ϕn,k =
∞∑
n=1

Enx.

Hence, for z :=

(
w

v

θ

)
∈ D(A(t)), we have
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A(t)z =

 0 IH 0
−A2 0 a(t)A
0 −a(t)A −b(t)A

wv
θ



=

 v
−A2w + a(t)Aθ
−a(t)Av − b(t)Aθ

 =



∞∑
n=1

Env

−
∞∑
n=1

λ2nEnw + a(t)

∞∑
n=1

λnEnθ

−a(t)
∞∑
n=1

λnEnv − b(t)
∞∑
n=1

λnEnθ


=

∞∑
n=1

 0 1 0
−λ2n 0 a(t)λn
0 −a(t)λn −b(t)λn

En 0 0
0 En 0
0 0 En

wv
θ


=

∞∑
n=1

An(t)Pnz,

where

Pn :=

En 0 0
0 En 0
0 0 En

 , n ≥ 1,

and

An(t) :=

 0 1 0
−λ2n 0 a(t)λn
0 −a(t)λn −b(t)λn

 , n ≥ 1. (3.13)

It is clear that the characteristic equation of the matrix An(t) is

λ3 + b(t)λnλ
2 + (1 + a(t)2)λ2nλ+ b(t)λ3n = 0. (3.14)

Setting λ/λn = −ρ, this equation takes the form

ρ3 − b(t)ρ2 + (1 + a(t)2)ρ− b(t) = 0. (3.15)

From Routh-Hurwitz theorem we obtain that the real part of the roots ρ1(t),
ρ2(t), ρ3(t) of (3.15) are positive. Hence the eigenvalues of An(t) are simple
and given by σi(t) = −λnρi(t), i = 1, 2, 3. Therefore, the matrix An(t) is
diagonalizable and then can be written as

An(t) = Kn(t)
−1Jn(t)Kn(t), n ≥ 1,

with

Kn(t) =


1 1 1

λnρ1(t) λnρ2(t) λnρ3(t)
a(t)ρ1(t)

ρ1(t)− b(t)
λn

a(t)ρ2(t)

ρ2(t)− b(t)
λn

a(t)ρ3(t)

ρ3(t)− b(t)
λn

 ,
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Jn(t) =

−λnρ1(t) 0 0
0 −λnρ2(t) 0
0 0 −λnρ3(t)


and

Kn(t)
−1 =

1

a(a(t), b(t))λn

 a11(t) −a12(t) a13(t)
−a21(t) a22(t) −a23(t)
a31(t) −a32(t) a33(t)

 ,

where

a11(t) =
a(t)ρ3(t)ρ2(t)(ρ2(t)− ρ3(t))

(ρ3(t)− b(t))(ρ2(t)− b(t))
, a12(t) =

a(t)ρ3(t)ρ1(t)(ρ1(t)− ρ3(t))

(ρ3(t)− b(t))(ρ1(t)− b(t))
,

a13(t) =
a(t)ρ2(t)ρ1(t)(ρ1(t)− ρ2(t))

(ρ2(t)− b(t))(ρ1(t)− b(t))
, a21(t) =

a(t)b(t)(ρ2(t)− ρ3(t))

(ρ3(t)− b(t))(ρ2(t)− b(t))
,

a22(t) =
a(t)b(t)(ρ1(t)− ρ3(t))

(ρ3(t)− b(t))(ρ1(t)− b(t))
, a23(t) =

a(t)b(t)(ρ1(t)− ρ2(t))

(ρ2(t)− b(t))(ρ1(t)− b(t))
,

a31 = (ρ3(t)− ρ2(t)), a32 = (ρ3(t)− ρ1(t)),

a33 = (ρ2(t)− ρ1(t)),

a(a(t), b(t)) =
a(t)ρ3(t)ρ2(t)

(ρ3(t)− b(t))
+
a(t)ρ1(t)ρ3(t)

(ρ1(t)− b(t))
+
a(t)ρ2(t)ρ1(t)

(ρ2(t)− b(t))

− a(t)ρ1(t)ρ2(t)

(ρ1(t)− b(t))
− a(t)ρ3(t)ρ1(t)

(ρ3(t)− b(t))
− a(t)ρ2(t)ρ3(t)

(ρ2(t)− b(t))
.

Since b(·) is not a solution of (3.15), one can show that the matrix operators
Kn(t) and K−1

n (t) are well defined and Kn(t)Pn(t) : Z := H × H × H 7→
X, K−1

n (t)Pn(t) : X 7→ Z.
The roots ρi(t), i = 1, 2, 3, of (3.15) are bounded. Indeed, setting l(t) =

ρ(t)− b(t)
3 , then (3.15) becomes

l(t)3 + p(t)l(t) + q(t) = 0,

where p(t) := (1 + a(t)2)− b(t)2

3 , q(t) := − 2
27b(t)

3 + (2− a(t)2) b(t)3 .
Since q is bounded and

|q(t)| = |l(t)∥l(t)2 + p(t)| ≥ |l(t)||l(t)|2 − |p(t)∥,

then l is also bounded. Thus the boundedness of b yields the claim.
Now, define the sector Sθ as

Sθ = {λ ∈ C : | arg(λ)| ≤ θ, λ ̸= 0},

where 0 ≤ sup
t∈R

| arg(ρi(t))| <
π

2
, i = 1, 2, 3 and

π

2
< θ < π− max

i=1,2,3
sup
t∈R

{| arg(ρi(t))|}.

For λ ∈ Sθ and z ∈ X, one has

R(λ,A(t))z =

∞∑
n=1

(λ−An(t))
−1Pnz

=

∞∑
n=1

Kn(t)(λ− Jn(t)Pn)
−1K−1

n (t)Pnz.
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Hence,

∥R(λ,A(t))z∥2

≤
∞∑
n=1

∥Kn(t)Pn(λ− Jn(t)Pn)
−1K−1

n (t)Pn∥2L(X)∥Pnz∥2

≤
∞∑
n=1

∥Kn(t)Pn∥2L(Z,X)∥(λ− Jn(t)Pn)
−1∥2L(Z)∥K

−1
n (t)Pn∥2L(X,Z)∥Pnz∥2.

Now, from (3.3) and b > b0, we have

|ρ(t)− b(t)| ≥ a(t)2|ρ(t)|
1 + |ρ(t)|2

, inf
t∈R

|ρ(t)| > 0. (3.16)

Therefore from a(t) > a0 it follows that

inf
t∈R

|ρ(t)− b(t)| > 0. (3.17)

Moreover, for z :=

(
z1

z2

z3

)
∈ Z, we have

∥Kn(t)Pnz∥2 =λ2n∥Enz1 + Enz2 + Enz3∥2 + λ2n∥ρ1(t)Enz1 + ρ2(t)Enz2 + ρ3(t)Enz3∥2

+ λ2n

∥∥∥∥ a(t)ρ1(t)

ρ1(t)− b(t)
Enz1 +

a(t)ρ2(t)

ρ2(t)− b(t)
Enz2 +

a(t)ρ3(t)

ρ3(t)− b(t)
Enz3

∥∥∥∥2 .
Thus, there is C1 > 0 such that

∥Kn(t)Pnz∥H ≤ C1λn∥z∥Z for all n ≥ 1 and t ∈ R.

Similarly, for z :=

(
z1

z2

z3

)
∈ X, one can show

∥K−1
n (t)Pnz∥ ≤ C2

λn
∥z∥ for all n ≥ 1 and t ∈ R.

Now, for z ∈ Z, we have

∥(λ− JnPn)
−1z∥2Z =

∥∥∥∥∥∥∥


1
λ+λnρ1(t)

0 0

0 1
λ+λnρ2(t)

0

0 0 1
λ+λnρ3(t)


z1z2
z3


∥∥∥∥∥∥∥
2

Z

≤ 1

(λ+ λnρ1(t))2
∥z1∥2 +

1

(λ+ λnρ2(t))2
∥z2∥2 +

1

(λ+ λnρ3(t))2
∥z3∥2.

Let λ0 > 0. The function η(λ) := 1+|λ|
|λ+λnρi(t)| is continuous and bounded on the

closed set Σ := {λ ∈ C/|λ| ≤ λ0, | arg λ| ≤ θ}. On the other hand, it is clear
that η is bounded for |λ| > λ0. Thus η is bounded on Sθ. If one takes

N = sup

{
1 + |λ|

|λ+ λnρi(t)|
: λ ∈ Sθ, n ≥ 1 ; i = 1, 2, 3, t ∈ R

}
.
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Therefore,

∥(λ− JnPn)
−1z∥Z ≤ N

1 + |λ|
∥z∥Z , λ ∈ Sθ.

Consequently,

∥R(λ,A(t))∥ ≤ K

1 + |λ|

for all λ ∈ Sθ and t ∈ R.
Since the domain D(A(t)) is independent of t, we have only to check (H1’).

The operator A(t) is invertible and

A(t)−1 =

−a(t)2b(t)−1A−1 −A−2 −a(t)b(t)−1A−2

IX 0 0
−a(t)b(t)−1 0 −b(t)−1A−1

 , t ∈ R.

Hence, for t, s, r ∈ R, one has

(A(t)−A(s))A(r)−1

=

 0 0 0
−a(r)b(r)−1(a(t)− a(s))A 0 −b(r)−1(a(t)− a(s))

−(a(t)− a(s))A+ a(r)b(r)−1(b(t)− b(s))A 0 −b(r)−1(b(t)− b(s))

 ,

and hence

∥(A(t)−A(s))A(r)−1z∥
≤

√
3(∥a(r)b(r)−1(a(t)− a(s))Az1∥+ ∥b(r)−1(a(t)− a(s))z3∥

+ ∥(a(t)− a(s))Az1∥+ ∥a(r)b(r)−1(b(t)− b(s))Az1∥+ ∥b(r)−1(b(t)− b(s))z3∥)
≤

√
3(|a(r)b(r)−1∥t− s|µ∥Az1∥+ |b(r)−1|∥t− s|µ∥z3∥+ |t− s|µ∥Az1∥

+ ∥a(r)b(r)−1||t− s|µ∥Az1∥+ |b(r)−1∥t− s|µ∥z3∥)
≤ (2

√
3|a(r)b(r)−1|+ 1)|t− s|µ∥Az1∥+ 2

√
3|a(r)b(r)−1|∥t− s|µ∥z3∥.

Consequently,

∥(A(t)−A(s))A(r)−1z∥ ≤ C|t− s|µ∥z∥.

Let us now check assumption (H2). For every t ∈ R, A(t) generates an analytic
semigroup (eτA(t))τ≥0 on X given by

eτA(t)z =

∞∑
n=0

Kn(t)
−1Pne

τJnPnKn(t)Pnz, z ∈ X.

On the other hand, we have

∥eτA(t)z∥ =
∞∑
n=0

∥Kn(t)
−1Pn∥L(X,Z)∥eτJnPn∥L(Z)∥Kn(t)Pn∥L(Z,X)∥Pnz∥,
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with for each z =

(
z1

z2

z3

)
∈ Z

∥eτJnPnz∥2Z =

∥∥∥∥∥∥
e−λnρ1(t)τEn 0 0

0 e−λnρ2(t)τEn 0

0 0 e−λnρ3(t)τEn

z1z2
z3

∥∥∥∥∥∥
2

Z

≤ ∥e−λnρ1(t)τEnz1∥2 + ∥e−λnρ2(t)τEnz2∥2 + ∥e−λnρ3(t)τEnz3∥2

≤ e−2δτ∥z∥2Z ,

where δ = λ1 inf
t∈R

{Re(ρ1(t)), Re(ρ2(t)), Re(ρ3(t))}.
Therefore

∥eτA(t)∥ ≤ Ce−δτ , τ ≥ 0. (3.18)

Using the continuity of a, b and the equality

R(λ,A(t))−R(λ,A(s)) = R(λ,A(t))(A(t)−A(s))R(λ,A(s)),

it follows that the mapping J ∋ t 7−→ R(λ,A(t)) is strongly continuous for λ ∈
Sθ where J ⊂ R is an arbitrary compact interval. Therefore, A(t) satisfies the
assumptions of [106, Corollary 2.3], and thus the evolution family (U(t, s))t≥s

is exponentially stable.
Finally, to check (H4), we show that (A(·))−1 ∈ AP (R,L(X)). Let ε > 0,

and τ = τε ∈ P (ε, a, b). We have

A(t+ τ)−1 −A(t)−1 = A(t+ τ)−1(A(t+ τ)−A(t))A(t)−1, (3.19)

and,

A(t+ τ)−A(t) =

0 0 0
0 0 (a(t+ τ)− a(t))A
0 −(a(t+ τ)− a(t))A −(b(t+ τ)− b(t))A

 .

Therefore, for z :=

(
z1

z2

z3

)
∈ D, one has

∥(A(t+ τ)−A(t))z∥ ≤ ∥(a(t+ τ)− a(t))Az3∥+ ∥(a(t+ τ)− a(t))Az2∥
+ ∥(b(t+ τ)− b(t))Az3∥
≤ ε∥Az2∥+ ε∥Az3∥
≤ ε∥z∥D,

and using (3.19), we obtain

∥A(t+ τ)−1y −A(t)−1y∥ ≤ ∥A(t+ τ)−1(A(t+ τ)−A(t))A(t)−1y∥
≤ ∥A(t+ τ)−1∥L(X)

+ ∥(A(t+ τ)−A(t))∥L(D,X)∥A(t)−1y∥D, y ∈ X.

Since ∥A(t)−1y∥D ≤ c∥y∥, then

∥A(t+ τ)−1y −A(t)−1y∥ ≤ c′ε∥y∥.
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Consequently, A(t)−1 is almost periodic.
Finally, for a small constant K, all assumptions of Theorem 3.2.2 are sat-

isfied and thus the thermoelastic system (3.10) has a unique almost periodic

mild solution
(

u

θ

)
with values in H1+α ×Hα.

3.4 The almost automorphy

In this section, we study the existence of almost automorphic solutions of the
semilinear evolution equations

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (3.20)

where A(t), t ∈ R, satisfy (H1) and (H2).
To this purpose, define the Yosida approximations An(t) = nA(t)R(n,A(t))

of A(t) for n > ω and t ∈ R. These operators generate an evolution family Un

on X. It has been shown in [86, Lemma 3.1, Proposition 3.3, Corollary 3.4] that
assumptions (H1) and (H2) are satisfied by An(·) with the same constants for
n ≥ n0.

We assume also that

(H4)’ R(ω,A(·)) ∈ AA(R,L(X)),

(H5)’ the function f : R × Xα −→ X is continuous and globally small Lips-
chitzian, i.e., there is a small Kf > 0 such that

∥f(t, u)− f(t, v)∥ ≤ Kf ∥u− v∥α for all t ∈ R and u, v ∈ Xα,

and f ∈ AA(R×Xα, X).

The Yosida approximations An(·) satisfy also this last assumption. More
precisely, the following lemma follows. We adopt the same proof of [86] in the
almost periodic case.

Lemma 3.4.1. If (H1) and (H4)’ hold, then there is a number n1 ≥ n0 such
that R(ω,An(·)) ∈ AA(R,L(X)) for n ≥ n1.

Proof. Let t ∈ R and a sequence (s′l)l∈N of real numbers, as R(w,A(·)) is almost
automorphic, there is a subsequence (sl)n∈N such that

lim
l, k→+∞

∥R(w,A(t+ sl − sk))−R(w,A(t))∥ = 0.

If n ≥ n0 and | arg(λ− ω)| ≤ ϕ we have that

R(ω,An(t+ sl − sk))−R(ω,An(t)) (3.21)

=
n2

(ω + n)2

(
R
( ωn

ω + n
,A(t+ sl − sk)

)
−R

( ωn

ω + n
,A(t)

))
=

n2

(ω + n)2
R(ω,A(t+ sl − sk))

[
1− ω2

ω + n
R(ω,A(t+ sl − sk))

]−1

− n2

(ω + n)2
R(ω,A(t))

[
1− ω2

ω + n
R(ω,A(t))

]−1
. (3.22)
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We can also see that∥∥∥ ω2

ω + n
R(ω,A(s))

∥∥∥ ≤ ω2

ω + n

K

1 + ω
≤ ωK

n
≤ 1

2

for n ≥ n1 := max{n0, 2ωK} and s ∈ R. In particular,∥∥∥[1− ω2

ω + n
R(ω,A(s))

]−1∥∥∥ ≤ 2. (3.23)

Hence, (3.22) implies

∥R(ω,An(t+ sl − sk))−R(ω,An(t))∥
≤ 2 ∥R(ω,A(t+ sl − sk))−R(ω,A(t))∥

+
K

1 + ω

∥∥∥[1− ω2

ω + n
R(ω,A(t+ sl − sk))

]−1
−
[
1− ω2

(ω + n)2
R(ω,A(t))

]−1∥∥∥.
Employing (3.23) again, we obtain∥∥∥[1− ω2

ω + n
R(ω,A(t+ sl − sk))

]−1
−
[
1− ω2

ω + n
R(ω,A(t))

]−1∥∥∥
≤ 4

∥∥∥[1− ω2

ω + n
R(ω,A(t+ sl − sk))

]
−
[
1− ω2

ω + n
R(ω,A(t))

]∥∥∥
≤ 4ω ∥R(ω,A(t+ sl − sk))−R(ω,A(t))∥.

Therefore,

∥R(ω,An(t+ sl − sk))−R(ω,An(t))∥ ≤ (2 + 4K)∥R(ω,A(t+ sl − sk))−R(ω,A(t))∥
(3.24)

for n ≥ n1 and t ∈ R. The assertion thus follows from (H4)’.

To obtain the aim of this section, we need the following technical lemma.

Lemma 3.4.2. Assume that (H1),(H2) and (H4)’ hold. For every sequence
(s′l)l∈N ∈ R, there is a subsequence (sl)l∈N such that for every η > 0, and
t, s ∈ R there is l(η, t, s) > 0 such that

∥Γn(t+ sl − sk, s+ sl − sk)− Γn(t, s)∥ ≤ cn2η (3.25)

for a large n and l, k ≥ l(η, t, s).

Proof. Let a sequence (s′l)l∈N ∈ R. Since R(ω,A(·)) ∈ AA(R, X) then we can
extract a subsequence (sl) such that

∥R(ω,A(σ + sl − sk))−R(ω,A(σ))∥ → 0, k, l → ∞. (3.26)

From [86], we have

Γn(t+ sl − sk, s+ sl − sk)− Γn(t, s)

=

∫
R
Γn(t, σ)(An(σ)− ω) [R(ω,An(σ + sl − sk))−R(ω,An(σ))]

· (An(σ + sl − sk)− ω)Γn(σ + sl − sk, s+ sl − sk) dσ



36 Asymptotic behavior of semilinear equations 3.4

for s, t ∈ R and l, k,∈ N and large n. This formula with the estimate (3.24)
and [86, Corollary 3.4] imply that

∥Γn(t+ sl − sk, s+ sl − sk)− Γn(t, s)∥

≤ cn2
∫
R
e−

3δ
4
|t−σ| e−

3δ
4
|σ−s|∥R(ω,An(σ + sl − sk))−R(ω,An(σ))∥ dσ

≤ cn2(2 + 4K)

∫
R
e−

3δ
4
|t−σ| e−

3δ
4
|σ−s|∥R(ω,A(σ + sl − sk)) (3.27)

−R(ω,A(σ))∥ dσ∥ → 0, k, l → ∞,

by (3.26) and Lebesgue’s convergence dominated theorem. Hence, for η > 0
there is l(η, t, s) > 0

∥Γn(t+ sl − sk, s+ sl − sk)− Γn(t, s)∥ < cn2η

for large n and l, k ≥ l(η, t, s).

We need also this fundamental result. An analogous result for the almost
periodicity is shown in [86].

Proposition 3.4.3. Assume that (H1), (H2) and (H4)’ hold. Let a sequence
(s′l)l∈N ∈ R there is a subsequence (sl)l∈N such that for every h > 0

∥Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s)∥ −→ 0, k, l → ∞

for |t− s| ≥ h.

Proof. Let a sequence (s′l)l∈N ∈ R, and consider the subsequence (sl) given by
Lemma 3.4.2. Let ε > 0 and h > 0. There is tε > h such that

∥Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s)∥ ≤ ε

for |t− s| ≥ tε and l, k ∈ N. For h ≤ |t− s| ≤ tε, by [86, Lemma 4.2] we have

∥Γ(t+ sl − sk, s+ sl − sk)− Γn(t+ sl − sk, s+ sl − sk)∥ ≤ c(tε)n
−θ, (3.28)

∥Γ(t, s)− Γn(t, s)∥ ≤ c(tε)n
−θ (3.29)

for all k, l and large n. Let nε > 0 large enough such that n−θ < ε
4c(tε)

for

n ≥ nε. Take 0 < η < ε
2cn2

ε
. Hence, by (3.28), (3.29) and Lemma 3.4.2, one has

∥Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s)∥ ≤ 2c(tε)n
−θ
ε + cn2εη ≤ ε

for all k, l ≥ l(ε, t, s). Consequently, ∥Γ(t + sl − sk, s + sl − sk) − Γ(t, s)∥ → 0
as l, k → +∞ for |t− s| > h > 0.

These preliminary results will serve to prove the existence of a unique almost
automorphic solution of the semilinear evolution equation (3.20).

For this purpose, we show first the existence of a unique almost automorphic
mild solution to the inhomogeneous evolution equation

u′(t) = A(t)u(t) + g(t), t ∈ R. (3.30)

More precisely, we state the following main result.
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Theorem 3.4.4. Assume that (H1)-(H3) and (H4)’ hold. Then, for every
g ∈ AA(R, X), the unique bounded mild solution u(·) =

∫
R Γ(·, s)g(s) ds of

(3.30) belongs to AA(R, Xα).

Proof. First we prove that the mild solution u is almost automorphic in X. Let
a sequence (s′l)l∈N and h > 0. As g ∈ AA(R, X) there exists a subsequence
(sl)l∈N such that lim

l, k→+∞
∥g(t+ sl − sk)− g(t)∥ → 0. Now, we write

u(t+ sl − sk)− u(t)

=

∫
R
Γ(t+ sl − sk, s+ sl − sk)g(s+ sl − sk) ds−

∫
R
Γ(t, s)g(s) ds

=

∫
R
Γ(t+ sl − sk, s+ sl − sk)(g(s+ sl − sk)− g(s)) ds

+

∫
|t−s|≥h

(Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s))g(s) ds

+

∫
|t−s|≤h

(Γ(t+ sl − sk, s+ sl − sk)− Γ(t, s))g(s) ds.

For ε′ > 0, we deduce from Proposition 3.4.3 and (H2) that

∥u(t+ sl − sk)− u(t)∥

≤ 2N

∫
R
e−δ|t−s|∥g(s+ sl − sk)− g(s)∥ ds + (4δ ε

′ + 4Nh)∥g∥∞

for t ∈ R and l, k > l(ε, h) > 0. Now, for ε > 0, take h small and then ε′ > 0
small such that

∥u(t+ sl − sk)− u(t)∥ ≤ 2N

∫
R
e−δ|t−s|∥g(s+ sl − sk)− g(s)∥ ds + ε

2

for t ∈ R and l, k > l(ε) > 0. Finally, by Lebesgue dominated convergence
theorem, u is almost automorphic in X.

Using the reiteration theorem and the interpolation property, we have

||u(t+ sl − sk)− u(t)||α ≤ c(α, β)||u(t+ sl − sk)− u(t)||
β−α
β ||u(t+ sl − sk)− u(t)||

α
β

β .

Using estimates in Proposition 4.1.2, we can show that u is bounded in Xβ.
Hence,

||u(t+ sl − sk)− u(t)||α ≤ c(α, β)c
β
α ||u(t+ sl − sk)− u(t)||

β−α
β

≤ c′||u(t+ sl − sk)− u(t)||
β−α
β . (3.31)

Since u is almost automorphic in X, u(t + sl − sk) −→ u(t), as l, k → ∞, for
t ∈ R, and thus u ∈ AA(R, Xα).

As a consequence of Theorem 3.4.4, we obtain the aim of this section.

Theorem 3.4.5. Assume that (H1)-(H3), (H4)’ and (H5)’ hold. Then, for
small Kf , (3.20) admits a unique mild solution u in AA (R, Xα) .
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Proof. Consider v ∈ AA(R, Xα) and f ∈ AA(R×Xα, X). Then, by [95, Theo-
rem 2.2.4, p. 21], the function g(·) := f(·, v(·)) ∈ AA(R, X), and from Theorem
3.4.4, the inhomogeneous evolution equation

u′(t) = A(t)u(t) + g(t), t ∈ R,

admits a unique mild solution u ∈ AA (R, X) given by

u(t) =

∫
R
Γ(t, s)f(s, v(s))ds, t ∈ R.

Let the operator F : AA(R, Xα) −→ AA(R, Xα) be defined by

(Fv)(t) :=

∫
R
Γ(t, s)f(s, v(s))ds for all t ∈ R.

Now we prove that F has a unique fixed point. For any x, y ∈ AA (R, Xα), we
have

∥Fx(t)− Fy(t)∥α ≤ c(α)

∫ t

−∞
e−δ(t−s)(t− s)−α ∥f(s, y(s))− f(s, x(s))∥ ds

+ c(α)

∫ +∞

t
e−δ(t−s) ∥f(s, y(s))− f(s, x(s))∥ ds.

≤ Kfc
′(α) ∥x− y∥∞ for all t ∈ R.

If we assume thatKfc
′(α) < 1, then F has a unique fixed poind u ∈ AA (R, Xα).

Thus u is the unique almost automorphic solution to equation (3.20).

Example 3.4.6. Consider the parabolic problem

∂t u(t, x) = A(t, x,D)u(t, x) + h(t,∇u(t, x)), t ∈ R, x ∈ Ω,

B(x,D)u(t, x) = 0, t ∈ R, x ∈ ∂Ω,
(3.32)

on a bounded domain Ω ⊆ Rn with boundary ∂Ω of class C2 and outer unit
normal vector ν(x), employing the differential expressions

A(t, x,D) =
∑

k,l
akl(t, x)∂k∂l +

∑
k
ak(t, x) ∂k + a0(t, x),

B(t, x,D) =
∑

k
bk(x) ∂k + b0(x).

We require that akl = alk and bk are real–valued, akl, ak, a0 ∈ Cµ
b (R, C(Ω)),

bk, b0 ∈ C1(∂Ω)),

n∑
k,l=1

akl(t, x)Xik Xil ≥ η |Xi|2 , and
n∑

k=1

bk(x)νk(x) ≥ β

for constants µ ∈ (1/2, 1), β, η > 0 and all Xi ∈ Rn, k, l = 1, · · · , n, t ∈ R,
x ∈ Ω resp. x ∈ ∂Ω. We set X = C(Ω),

D(A(t)) = {u ∈
∩

p>1
W 2

p (Ω) : A(t, ·, D)u ∈ C(Ω), B(t, ·, D)u = 0 on ∂Ω},
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for t ∈ R. It is known that the operators A(t), t ∈ R, satisfy (H1), see [1, 83],
or [107, Exa.2.9]. Thus A(·) generates an evolution family U(·, ·) on X. Let us
fix numbers α ∈ (1/2, 1) and p > n

2(1−α) . Then

Xt
α = Xα = {f ∈ C2α(Ω) : B(·, D)u = 0}

with uniformly equivalent constants due to Theorem 3.1.30 in [83], and Xα ↪→
W 2

p (Ω). It is clear that the function f(t, u)(x) := h(t,∇u(x)), x ∈ Ω, is contin-
uous from R×Xα to X if h is continuous from R×Rn, and if h is small Lips-
chitzian and almost automorphic then f is. Under the exponential dichotomy of
U(·, ·) and almost automorphy of R(ω,A(·)), the parabolic equation (3.32) has
a unique almost automorphic solution.
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Chapter4
Asymptotic behavior of semilinear
autonomous boundary evolution
equations

In this chapter, we study the existence and uniqueness of the almost periodic
and almost automorphic solutions of the semilinear boundary evolution equa-
tion

{
u′(t) = Amu(t) + h(t, u(t)), t ∈ R,
Lu(t) = ϕ(t, u(t)), t ∈ R, (4.1)

where Am ∈ L(D(Am), X), L ∈ L(D(Am), ∂X), t ∈ R, where D(Am), X, and
∂X are Banach spaces such that D(Am) is dense and continuously embedded in
X. The function h is defined from R×X into X, and ϕ is defined from R×X
into ∂X.

In Section 4.3, we show how to transform the semilinear boundary evolution
equation to a semilinear evolution equation in an extrapolated space

u′(t) = Aα−1u(t) + f(t, u(t)), t ∈ R, (4.2)

where Aα−1 is the extrapolated extension of the generator A of a hyperbolic
analytic semigroup (T (t))t≥0 on a Banach space X. The semilinear term f is
defined on R × Xβ with values in the extrapolated spaces Xα−1 for 0 ≤ β <
α < 1.

In Section 4.1, we prove that the exponential dichotomy is inherited by the
extrapolated semigroup generated by Aα−1 in Xα−1.

In Section 4.2, we show the almost periodicity and automorphy of (4.2). As
usual, by a fixed point argument, it is enough to show that the inhomogeneous
evolution equation

u′(t) = Aα−1u(t) + g(t), t ∈ R, (4.3)

has a unique almost periodic (resp. almost automorphic) mild solution on Xα

for each almost periodic (resp. almost automorphic) function g : R −→ Xα−1.

41
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4.1 Hyperbolicity of an extrapolated semigroup

We consider a sectorial operator A on a Banach spaceX such that σ(A)∩iR = ∅,
which is equivalent to the fact that A generates a hyperbolic analytic semigroup
(T (t))t≥0 on X. Let (Tα−1(t))t≥0 be its extrapolated semigroup with generator
Aα−1. To show the main result of this chapter, we need the following results.

Proposition 4.1.1. Assume that 0 < α ≤ 1 and that T (·) is hyperbolic. Then
the operators Pu and Ps admit continuous extensions Pu,α−1 : Xα−1 −→ X and
Ps,α−1 : Xα−1 −→ Xα−1 respectively. Moreover we have the following asser-
tions.
(i) Pu,α−1Xα−1 = PuX;
(ii) Tα−1(t)Ps,α−1 = Ps,α−1Tα−1(t);
(iii) Tα−1(t) : Pu,α−1(Xα−1) −→ Pu,α−1(Xα−1) is invertible with inverse
Tα−1(−t);
(iv) for 0 < α− ε̃ < 1, we have

||Tα−1(t)Ps,α−1x|| ≤ mtα−1−ε̃e−γt||x||α−1 for x ∈ Xα−1 and t ≥ 0, (4.4)

||Tα−1(t)Pu,α−1x|| ≤ c eδt||x||α−1 for x ∈ Xα−1 and t ≤ 0. (4.5)

Proof. By applying (i) and (ii) of Condition (H) in Definition 2.2.12, we show
that T (t) and R(ω,A) commute with Ps and Pu, and hence

||Pux|| =
1

ωα
||(2ω −A)ωαR(ω,A− ω)Pux||

=
1

ωα
||(2ω −A−1)Puω

αR(ω,A− ω)x||

≤ 1

ωα
||(2ω −A−1)||L(X̂,X−1)

||Pu||L(X)||ωαR(ω,A− ω)x||

≤ c||x||α−1 (4.6)

for all x ∈ X. Hence Pu can be extended to a bounded operator Pu,α−1 ∈
L(Xα−1, X). Then the operator Ps,α−1 = I−Pu,α−1 ∈ L(Xα−1) is the bounded
extension of Ps.

Assertion (i) is a consequence of the fact that Pu,α−1 has values in X and
that it is a projection. Since Ps commute with T (t) and by approximation using
(2.5), we can see immediately the assertion (ii). To show (iii), we use the fact
that T (t) : PuX −→ PuX is invertible with inverse T (−t) and (i). To show
(iv), let t ≥ 1 and x ∈ Xα−1. Using the estimates (2.2) and (2.5), we obtain

||Tα−1(t)Ps,α−1x|| = ||T (t− 1)PsTα−1(1)x||
≤ c e−δt||x||α−1

≤ c tα−1−ε̃.e−δ t
2 t−α+1+ε̃e−δ t

2 ||x||α−1.

Since t−α+1+ε̃e−δ t
2 → 0 as t→ +∞, one obtains

||Tα−1(t)Ps,α−1x|| = c tα−1e
−
t

2 ||x||α−1.
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If 0 ≤ t ≤ 1, by assertion (ii) and (2.5), we have

||Tα−1(t)Ps,α−1x|| = ||PsTα−1(t)x|| ≤ c tα−1−a||x||α−1

≤ c tα−1−ae
−
t

2 e

t

2 ||x||α−1.

Hence, there exist constants m > 0 and γ := δ/2 such that

||Tα−1(t)Ps,α−1x|| ≤ m tα−1−ε̃e−γt||x||α−1.

Let t ≤ 0 and x ∈ Xα−1. From the equality (i), (2.2) and (4.6), we have

||Tα−1(t)Pu,α−1x|| = ||T (t)Pu,α−1x|| ≤M ||Pu,α−1||L(Xα−1,X)e
−δt||x||α−1

= c e−δt||x||α−1.

The following exponential dichotomy estimates in the interpolation and ex-
trapolation spaces are needed.

Proposition 4.1.2. For x ∈ Xα−1 and 0 ≤ β ≤ 1, 0 < α < 1, we have the
following assertions:
(i) there is a constant c(α, β), such that

||Tα−1(t)Pu,α−1x||β ≤ c(α, β)eδt||x||α−1 for t ≤ 0, (4.7)

(ii) there is a constant m(α, β), such that for t ≥ 0 and 0 < α− ε̃ < 1.

||Tα−1(t)Ps,α−1x||β ≤ m(α, β)e−γttα−β−ε̃−1||x||α−1. (4.8)

Proof. (i) As Xβ is a space of class Jβ, see [83, Definition 1.1.1 ], there is a
constant c(β) such that

||x||β ≤ c(β)||x||1−β||Ax||β, x ∈ D(A).

As the part of A in Pu is a bounded operator, from (4.5) one obtains

||Tα−1(t)Pu,α−1x||β ≤ c(β)||T (t)Pu,α−1x||1−β||AT (t)Pu,α−1x||β

≤ c(β)||T (t)Pu,α−1x||1−β||APu||β||T (t)Pu,α−1x||β

≤ c(β)||APu||β||T (t)Pu,α−1x||
≤ c(β)||APu||βc eδt||x||α−1

≤ c(α, β)eδt||x||α−1.

(ii) For t ≥ 1, we have

||Tα−1(t)Ps,α−1x||β ≤ ||T (1)||L(X,Xβ)||Tα−1(t− 1)Ps,α−1x||,
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and hence from (4.4), one obtains

||Tα−1(t)Ps,α−1x||β ≤ m(α, β)tα−1−ε̃e−δt||x||α−1

≤ m(α, β)tα−1−β−ε̃e−δ t
2 tβe−δ t

2 ||x||α−1.

≤ m(α, β)tα−1−β−ε̃e−δ t
2 ||x||α−1.

For t ∈ [0, 1], it follows from (2.6) that

||Tα−1(t)Ps,α−1x||β ≤ c tα−1−β−ε̃||Ps,α−1x||α−1

≤ c tα−1−β−ε̃e−δ t
2 eδ

t
2 ||x||α−1.

Hence

||Tα−1(t)Ps,α−1x||β ≤ m(α, β)tα−1−β−ε̃e−γt||x||α−1 for t ≥ 0.

4.2 Semilinear evolution equations

Consider the semilinear evolution equation

u′(t) = Aα−1u(t) + f(t, u(t)), t ∈ R, (4.9)

where the function f : R×Xβ −→ Xα−1 is continuous and globally Lipschitzian,
i.e., there is k > 0 such that

∥f(t, x)− f(t, y)∥α−1 ≤ k ∥x− y∥β for all t ∈ R and x, y ∈ Xβ. (4.10)

By a mild solution of (4.9) we will understand a continuous function x : R −→
Xβ, which satisfies the following variation of constants formula

u(t) = T (t− s)u(s) +

∫ t

s
Tα−1(t− σ)f(σ, u(σ))dσ for all t ≥ s, t, s ∈ R.

(4.11)

We study first the existence of almost periodic and almost automorphic mild
solutions for the inhomogeneous evolution equation

u′(t) = Aα−1u(t) + g(t), t ∈ R. (4.12)

We have the following main result.

Theorem 4.2.1. Let g ∈ BC(R, Xα−1) and 0 ≤ β < α ≤ 1. Then, the
following properties hold.
(i) The equation (4.12) admits a unique bounded mild solution u : R −→ Xβ

given by
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u(t) =

∫ t

−∞
Tα−1(t− σ)Ps,α−1g(σ)dσ −

∫ +∞

t
Tα−1(t− σ)Pu,α−1g(σ)dσ, t ∈ R.

(4.13)

(ii) If g ∈ F(R, Xα−1), where F is one of the following abbreviations:
AP, AA then u ∈ F(R, Xβ).

Proof. (i) Since g is bounded, one can show as in [32] that u(·) given by (4.13)
is well defined in X for all t ∈ R. Moreover, one can see easily that u(·) satisfies
the variation of constants formula

u(t) = T (t− s)u(s) +

∫ t

s
Tα−1(t− σ)g(σ)dσ for all t ≥ s, t, s ∈ R.

Using Proposition 4.1.2 and a characterization of the continuous interpolation
spaces Xβ, see [83, Proposition 2.2.8], we show that the function u is continuous
from R to Xβ. Hence, u is a mild solution of (4.12). The uniqueness can be
shown as in [32]. For the boundedness, let 0 < ε̃ + β < α and 0 < α − ε̃ < 1.
By Proposition 4.1.2, we have

∥u(t)∥β

≤
∥∥∥∥∫ t

−∞
Tα−1(t− σ)Ps,α−1g(σ)dσ

∥∥∥∥
β

+

∥∥∥∥∫ +∞

t
Tα−1(t− σ)Pu,α−1g(σ)dσ

∥∥∥∥
β

≤
∫ t

−∞
∥Tα−1(t− σ)Ps,α−1g(σ)∥β dσ +

∫ +∞

t
∥Tα−1(t− σ)Pu,α−1g(σ)∥β dσ

≤ m(α, β)

∫ t

−∞
e−γ(t−σ)(t− σ)−(β−α+ε̃+1) ∥g(σ)∥α−1 dσ

+ c(α, β)

∫ +∞

t
e−δ(t−σ) ∥g(σ)∥α−1 dσ

≤ m(α, β)

∫ +∞

0
e−σ

(
σ

γ

)−(β−α+ε̃+1) dσ

γ
∥g∥∞ + c(α, β)

∫ +∞

t
e−δ(t−s)dσ ∥g∥∞

≤ m(α, β)γβ−α+ε̃Γ(α− β − ε̃) ∥g∥∞ + c(α, β)δ−1 ∥g∥∞ ,

where Γ(α) =
∫ +∞
0 tα−1e−tdt is the function gamma.

(ii) To show that the mild solution u is almost periodic, let g ∈ AP (Xα−1).
From Definition 2.5.1, for each ε > 0 there exists l(ε) > 0 such that for every
a ∈ R, there exists a number τ ∈ [a, a+ l(ε)] satisfy ∥g(t+ τ)− g(t)∥α−1 ≤ ηε

for all t ∈ R, where η−1 = m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1.
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Then,

∥u(t+ τ)− u(t)∥β

≤
∫ t

−∞
∥Tα−1(t− σ)Ps,α−1[g(σ + τ)− g(σ)]∥β dσ

+

∫ +∞

t
∥Tα−1(t− σ)Pu,α−1[g(σ + τ)− g(σ)]∥β

≤ m(α, β)

∫ t

−∞
e−γ(t−σ)(t− σ)−(β−α+ε̃+1) ∥g(σ + τ)− g(σ)∥α−1 dσ

+ c(α, β)

∫ +∞

t
e−δ(t−σ) ∥g(σ + τ)− g(σ)∥α−1 dσ

≤ [m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1]ηε = ε.

Thus, u ∈ AP (Xβ).
To prove that the mild solution u is almost automorphic, let us take a

sequence (s′n) of real numbers. As g ∈ AA(Xα−1), there is a subsequence
(sn)n∈N such that

lim
n,m→∞

∥g(t+ sn − sm)− g(t)∥α−1 = 0, (4.14)

for every t ∈ R. Then,

u(t+ sn − sm)− u(t)

=

∫ t+sn−sm

−∞
Tα−1(t+ sn − sm − σ)Ps,α−1g(σ)dσ −

∫ t

−∞
Tα−1(t− σ)Ps,α−1g(σ)dσ

−
∫ +∞

t+sn−sm

Tα−1(t+ sn − sm − σ)Pu,α−1g(σ)dσ +

∫ +∞

t
Tα−1(t− σ)Pu,α−1g(σ)dσ

=

∫ t

−∞
Tα−1(t− σ)Ps,α−1[g(σ + sn − sm)− g(σ)]dσ

−
∫ +∞

t
Tα−1(t− σ)Pu,α−1[g(σ + sn − sm)− g(σ)]dσ.

Hence, from Proposition 4.1.2, we have

∥u(t+ sn − sm)− u(t)∥β

≤ m(α, β)

∫ t

−∞
e−γ(t−σ)(t− σ)−(β−α+ε̃+1) ∥g(σ + sn − sm)− g(σ)∥α−1 dσ

+ (α, β)

∫ +∞

t
e−δ(t−σ) ∥g(σ + sn − sm)− g(σ)∥α−1 dσ.

Finally, the equation (4.14) and the Lebesgue’s dominated convergence theorem,
yield lim

n,m→∞
∥u(t+ sn − sm)− u(t)∥β = 0 for each t ∈ R.

To obtain the same results for the semilinear evolution equation, consider
y ∈ F(Xβ) and f ∈ F(R × Xβ, Xα−1). Then, by Lemma 2.5.4, the function
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g(·) := f(·, y(·)) ∈ F(Xα−1). Thus, from Theorem 4.2.1, the inhomogeneous
evolution equation

u′(t) = Aα−1u(t) + g(t), t ∈ R,

admits a unique mild solution u ∈ F (Xβ) given by

u(t) =

∫ t

−∞
Tα−1(t−σ)Ps,α−1f(σ, y(σ))dσ−

∫ +∞

t
Tα−1(t−σ)Pu,α−1f(σ, y(σ))dσ,

for all t ∈ R. Let the operator F : F (Xβ) −→ F (Xβ) be defined by

(Fy)(t) :

∫ t

−∞
Tα−1(t− σ)Ps,α−1f(σ, y(σ))dσ −

∫ +∞

t
Tα−1(t− σ)Pu,α−1f(σ, y(σ))dσ

for all t ∈ R and assume that k <
1

m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1
,

where ε̃ is any constant such that 0 < α − ε̃ < 1, 0 < β + ε̃ < α . Then, we
have for any x, y ∈ F (Xβ)

∥Fx(t)− Fy(t)∥β

≤ m(α, β)

∫ t

−∞
e−γ(t−σ)(t− σ)−(β−α+ε̃+1) ∥f(σ, y(σ))− f(σ, x(σ))∥α−1 dσ

+ c(α, β)

∫ +∞

t
e−δ(t−σ) ∥f(σ, y(σ))− f(σ, x(σ))∥α−1 dσ.

≤ K[m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1] ∥x− y∥∞ for all t ∈ R.

This shows that F has a unique fixed point in F (Xβ) , and consequently we
have the following theorem.

Theorem 4.2.2. Let 0 ≤ β < α and ε̃ > 0 such that 0 < α − ε̃ < 1 and
0 < β + ε̃ < α. Assume that k < (m(α, β)γβ−α+ε̃Γ(α− β − ε̃) + c(α, β)δ−1)−1

and f ∈ F (R×Xβ, Xα−1).

Then (4.9) admits a unique mild solution u in F (Xβ), which satisfies the
variation of constants formula for t ∈ R

u(t) =

∫ t

−∞
Tα−1(t−σ)Ps,α−1f(σ, u(σ))dσ−

∫ +∞

t
Tα−1(t−σ)Pu,α−1f(σ, u(σ))dσ.

4.3 Semilinear boundary evolution equations

Consider the semilinear autonomous boundary evolution equation

{
u′(t) = Amx(t) + h(t, u(t)), t ∈ R,
Lu(t) = ϕ(t, u(t)), t ∈ R.

(4.15)
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Here (Am, D(Am)) is a densely defined linear operator on a Banach space
X, L : D(Am) −→ ∂X, the boundary Banach space and the functions h :
R×Xm −→ X, ϕ : R×Xm −→ ∂X are continuous.

Throughout this section, we assume that the following hypotheses hold.

(A1) There exists a norm | · | on D(Am) such that Xm := (D(Am), | · |) is
complete. The space Xm is continuously embedded in X and Am ∈
L(Xm, X).

(A2) The restriction A := Am | ker(L) is a sectorial operator such that
σ(A) ∩ iR = ∅.

(A3) The operator L : Xm −→ ∂X is bounded and surjective.

(A4) Xm ↪→ Xα, for some 0 < α < 1 .

(A5) h : R×Xβ −→ X and ϕ : R×Xβ −→ ∂X are continuous for 0 ≤ β < α.

Under the assumptions (A1)-(A3) the following properties have been shown
by G. Greiner [57, Lemma 1.2, 1.3].

Lemma 4.3.1. For some λ ∈ ρ(A), the following assertions are true:

(i) Xm = D(A)⊕ ker(λ−Am).

(ii) The restriction L : ker(λ−Am) → ∂X is invertible and its inverse is the
so-called Dirichlet operator Lλ ∈ L(∂X,X).

(iii) Pλ := LλL is a projection from D(A) = kerL onto ker(λ−Am).

(iv) R(µ,A)Lλ = R(λ,A)Lµ for all λ, µ ∈ ρ(A).

(v) (λ−Am)Lλ = LR(λ,A) = 0, LLλ = Id∂X .

We know that the assumption (A4) is equivalent to the fact that the oper-
ator

Lλ : ∂X −→ Xα is bounded for all λ > λ0. (4.16)

Recall here that u : R −→ Xβ is a mild solution of (4.15) if for all t ≥ s, t, s ∈ R,
we have :

(i)

∫ t

s
u(τ)dτ ∈ Xm, (ii)u(t)− u(s) = Am

∫ t

s
u(τ)dτ +

∫ t

s
h(τ, u(τ))dτ,

(iii)L

∫ t

s
u(τ)dτ =

∫ t

s
ϕ(τ, u(τ))dτ.

In the following lemma we show the equivalence between the boundary equation
(4.15) and a semilinear evolution equation
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Lemma 4.3.2. Assume that (A1)-(A3) are satisfied. A function u is a mild
solution of the boundary equation (4.15) if and only if u is a mild solution of
the semilinear evolution equation on Xβ

u′(t) = Aα−1u(t) + h(t, u(t))−Aα−1L0ϕ(t, u(t)), t ∈ R, (4.17)

where L0 := (L|Ker(Am))−1.

Proof. Let u be a mild solution of (4.15). Then, since Range(L0L) ⊂ ker(Am),
Range(I − L0L) = D(A) and from Lemma 4.3.1(i), we can decompose∫ t

s
u(τ)dτ = (Id− L0L)

∫ t

s
u(τ)dτ + L0L

∫ t

s
u(τ)dτ

Then by (ii)− (iii) and (A4) we have

u(t)− u(s) = Am

∫ t

s
u(τ)dτ −AmL0L

∫ t

s
u(τ)dτ +

∫ t

s
h(τ, u(τ))dτ

= A

(∫ t

s
u(τ)dτ − L0L

∫ t

s
u(τ)dτ

)
+

∫ t

s
h(τ, u(τ))dτ

= Aα−1

∫ t

s
u(τ)dτ +

∫ t

s
h(τ, u(τ))dτ −Aα−1L0

∫ t

s
ϕ(τ, u(τ))dτ,

for all t ≥ s, t, s ∈ R. The last equation is equivalent to the fact that u satisfies
the variation of constants formula (4.11), and thus it is a mild solution of (4.17).
Let now u be a mild solution of (4.17), that is, u satisfies

u(t) = T (t−s)u(s)+
∫ t

s
T (t−τ)h(τ, u(τ))dτ−

∫ t

s
Tα−1(t−τ)Aα−1L0ϕ(τ, u(τ))dτ

for all t ≥ s, t, s ∈ R. Since u is a X-valued function, then
∫ t
s Tα−1(t −

τ)Aα−1L0ϕ(τ, u(τ))dτ ∈ X, and then
∫ t
s T (t− τ)L0ϕ(τ, u(τ))dτ ∈ D(A), and

u(t) = T (t− s)u(s) +

∫ t

s
T (t− τ)h(τ, u(τ))dτ −A

∫ t

s
T (t− τ)L0ϕ(τ, u(τ))dτ.

Hence,∫ t

s
u(τ)dτ

=

∫ t

s
T (τ − s)u(s)dτ +

∫ t

s

∫ τ

s
T (τ − σ)h(σ, u(σ))dσdτ

−
∫ t

s

∫ τ

s
Tα−1(τ − σ)Aα−1L0ϕ(σ, u(σ))dσdτ

= A−1[T (t− s)u(s)− u(s)] +A−1

∫ t

s
T (t− σ)h(σ, u(σ))dσ

+A−1

∫ t

s
h(σ, u(σ))dσ −

∫ t

s
T (t− σ)L0ϕ(σ, u(σ))dσ − L0

∫ t

s
ϕ(σ, u(σ))dσ.

This implies easily that u satisfies (i)−(iii) above. This completes the proof.
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We can now announce the main result of this section.

Theorem 4.3.3. Assume that (A1)-(A5) are satisfied, and that the functions
ϕ ∈ F(R×Xβ, ∂X), h ∈ F(R×Xβ, X) are globally Lipschitzian with small con-
stants. Then, the semilinear boundary evolution equation (4.15) has a unique
mild solution u ∈ F(Xβ) satisfying, for all t ∈ R,

u(t) =

∫ t

−∞
T (t− s)Psh(s, u(s))ds−

∫ +∞

t
T (t− s)Puh(s, u(s))ds

−A

[∫ t

−∞
T (t− s)PsL0ϕ(s, u(s))ds−

∫ +∞

t
T (t− s)PuL0ϕ(s, u(s))ds

]
.

(4.18)

Proof. One knows that Aα−1L0 is a bounded operator from ∂X to Xα−1.
Hence, since ϕ ∈ F(R × Xβ, ∂X) and h ∈ F(R × Xβ, X) and from the in-
jection X ↪→ Xα−1, the function f(t, u) := h(t, u) − Aα−1L0ϕ(t, u) belongs to
F(R×Xβ, Xα−1). This function is also globally Lipschitzian with a small con-
stant. Hence, by Theorem 4.2.2 there is a unique mild solution u ∈ F(Xβ) of
the equation (4.17), satisfying

u(t) =

∫ t

−∞
Ps,α−1Tα−1(t−s)f(s, u(s))ds−

∫ +∞

t
Pu,α−1Tα−1(t−s)f(s, u(s))ds,

from which we deduce the variation of constants formula (4.18) and that u ∈
F(Xβ) is the unique mild solution.

We conclude this section with the following example.

Example 4.3.4.

Consider the following partial differential equation
∂

∂t
u(t, x) = ∆u(t, x) + au(t, x), t ∈ R, x ∈ Ω

∂

∂n
u(t, x) = Γ(t,m(x)u(t, x)), t ∈ R, x ∈ ∂Ω,

(4.19)

where a ∈ R+ and m is a C1-function. We assume that Ω is a bounded open
subset of Rn with smooth boundary ∂Ω. Let X = L2(Ω), Xm = H2(Ω) and the

boundary space ∂X = H
1
2 (∂Ω). Consider the operator Am : Xm → X, Amφ =

∆φ+ aφ and

L : Xm → ∂X, Lφ =
∂φ

∂n
. From [112, Section 4.7.1], the operator L is

bounded and surjective. It is known also that the operator A = Am | ker(L)
generates an analytic semigroup. It follows also from [112, Sections 4.3.3,

4.6.1] that for α <
3

4
, Xm ⊂ Xα. The eigenvalues of Neumann Laplacian

A form a decreasing sequence (λn) with λ0 = 0 and λ1 < 0. If one takes

a = −1

2
λ1 then σ(A) ∩ iR = ∅. Hence, the analytic semigroup generated
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by A is hyperbolic. Consider the function ϕ(t, φ)(x) = Γ(t,m(x)φ(x)) =
k b(t)

1 + |m(x)φ(x)|
, t ∈ R, x ∈ ∂Ω and b(t) is an almost automorphic (resp. al-

most periodic) real function. One can see that ϕ is continuous on R×H2β′
(Ω)

for some
1

2
< β < β′ < α <

3

4
, which is embedded in R×Xβ (see e.g [112]). By

using the definition of fractional Sobolev space, we have ϕ(t, φ)(·) ∈ H
1
2 (∂Ω)

for all φ ∈ H2β′
(Ω) ↪→ H1(Ω). Moreover φ is almost automorphic (resp. almost

periodic ) in t ∈ R for each u ∈ Xβ, and globally Lipshitizian. Now for a small
constant k, all assumptions of Theorem 4.3.3 are satisfied and hence (4.19) ad-
mits a unique almost automorphic (resp. almost periodic) mild solution u with
values in Xβ.
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Chapter5
Asymptotic behavior of
inhomogeneous non-autonomous
boundary evolution equations

The principal aim of this chapter is to study the almost periodicity of the
solutions to the parabolic inhomogeneous boundary value problem{

u′(t) = Am(t)u(t) + g(t), t ∈ R,
B(t)u(t) = h(t), t ∈ R, (5.1)

for linear operators Am(t) : Z → X and B(t) : Z → Y on Banach spaces
Z ↪→ X and Y . We want to show that the solutions u : R → X of (5.1) inherit
the (asymptotic) almost periodicity of the inhomogeneities g : R → X and
h : R → Y .

As in the previous chapter, we transform our boundary evolution equation
to the inhomogeneous evolution equation

u′(t) = Aα−1(t)u(t) + f(t), t ∈ J,

in Xt
α−1. We study first the asymptotic behavior of this last equation and

deduce at the end the same result for (5.1).

5.1 Almost periodicity of evolution equations

Consider a family of linear operators A(t), t ∈ R, on a Banach spaceX satisfying
the Acquistapace-Terreni hypothesis (H1).

In this section, we study the parabolic evolution equation

u′(t) = Aα−1(t)u(t) + f(t), t ∈ J, (5.2)

where J is an unbounded closed interval, f ∈ Eα−1(J).

Let U(t, s), t ≥ s, be the evolution family generated by A(t), t ∈ R, and
be Uα−1(t, s), t ≥ s, its extrapolated evolution family defined in Proposition

53
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2.4.2 for each α ∈ (1− µ, 1]. A mild solution of (5.2) is a function u ∈ C(J,X)
satisfying

u(t) = U(t, s)u(s) +

∫ t

s
Uα−1(t, τ)f(τ) dτ, ∀ t ≥ s in J. (5.3)

In Proposition 2.6 of [87], we showed that a mild solution actually satisfies
(5.2) pointwise in Xt

β−1 for each β ∈ [0,min{ν, α}) and t ∈ J . Conversely, if

u ∈ C1(J,X) solves (5.2) (and thus u ∈ Eα(J)), then Proposition 2.1(iv) of [88]
implies that

∂+τ U(t, τ)u(τ) = −Uα−1(t, τ)Aα−1(τ)u(τ) + U(t, τ)u′(τ) = Uα−1(t, τ)f(τ)

in X for all t > τ . As a result,

U(t, t− ε)u(t− ε)− U(t, s)u(s) =

∫ t−ε

s
Uα−1(t, τ)f(τ) dτ

for t > t− ε > s. Letting ε→ 0, we conclude that u is a mild solution of (5.2).

5.1.1 Evolution equations on R

In this subsection we study the almost periodicity of the solutions to (5.2) on
J = R under the following assumptions.

(H1) The operators A(t), t ∈ R, satisfy the assumptions (2.7) and (2.8).

(H2) The evolution family U generated by A(·) has an exponential dichotomy
on R with constants N, δ > 0, projections P (t), t ∈ R, and Green’s
function Γ.

(H3) R(ω,A(·)) ∈ AP (J,L(X)).

It is not difficult to verify that then R(λ,A(·)) ∈ AP (J,L(X)) for λ ∈ ω+Σθ ∪
{0}. We want to solve (5.3) for f belonging to the space APα−1(R) which is
defined by

APα−1(R) := {f ∈ Eα−1(R) : ∃ (fn) ∈ AP (R, X) converging to f in Eα−1(R)}
= {f ∈ E−1(R) : ∃ (fn) ∈ AP (R, X) converging to f in Eα−1(R)}

for α ∈ [0, 1]. This space is endowed with the norm of Eα−1(R). Note that
AP0(R) = AP (R, X).

We first characterize the space APα−1(R). On F := AP (R, X), we define
the multiplication operator

(A(·)v)(t) := A(t)v(t), t ∈ R,
D(A(·)) := {v ∈ F : f(t) ∈ D(A(t)) for all t ∈ R, A(·)v ∈ F}.

Assumptions (H3) and (2.7) imply that the function R(λ,A(·))v belongs to
F for every v ∈ F and λ ∈ ω + Σθ ∪ {0}. Therefore, the operator A(·) is
sectorial on F with the resolvent R(λ,A(·)). We can thus introduce the spaces

Fα−1 := F
A(·)
α−1 for each α ∈ [0, 1), where we set F0 := F and F1 := D(A(·)).
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Proposition 5.1.1. Let (2.7) and (H3) hold. We then have Fα−1
∼= APα−1(R)

for each α ∈ [0, 1].

Proof. We first note that

∥f∥Fα−1 = ∥f∥Eα−1 for all f ∈ F and α ∈ [0, 1]. (5.4)

The embedding F−1 ↪→ E−1 holds due to Lemma 2.3.1. Therefore we obtain

Fα−1 = {f ∈ F−1 : ∃ fn ∈ AP (R, X), fn → f in ∥ · ∥Fα−1 = ∥ · ∥Eα−1}
↪→ {f ∈ E−1 : ∃ fn ∈ AP (R, X), fn → f in ∥ · ∥Fα−1 = ∥ · ∥Eα−1}
= APα−1(R).

The asserted isomorphy now follows from (5.4).

These spaces are much simpler in the case of constant extrapolation spaces.

Proposition 5.1.2. Let (2.7) and (H3) hold. Assume that Xt
α−1

∼= X0
α−1 =:

Xα−1 for some α ∈ [0, 1] and every t ∈ R with uniformly equivalent norms.
Then it holds Fα−1

∼= APα−1(R) ∼= AP (R, Xα−1).

Proof. Due to the assumptions, the norms of Eα−1 and of Cb(R, Xα−1) are
equivalent on E, so that Eα−1

∼= Cb(R, Xα−1). Take f ∈ AP (R, Xα−1) ↪→ Eα−1

and the sequence fn := nR(n,Aα−1(·))f for n > ω. We first show that
fn ∈ AP (R, X). For that purpose, let x ∈ Xα−1 and take xk ∈ X converg-
ing to x in Xα−1. Due to (H3), we have nR(n,A(·))xk ∈ AP (R, X). Since
R(n,Aα−1(t)) is bounded from Xt

α−1 to X uniformly in t (see e.g. [88, (2.8)],
we derive that nR(n,Aα−1(·))x ∈ AP (R, X). The same is true for functions
f = ϕ(·)x, with scalar almost periodic function ϕ and x ∈ Xα−1. Since the
span of those functions is dense in AP (R, Xα−1) by [12, Theorem 4.5.7], it fol-
lows that fn ∈ AP (R, X). Observing that fn → f in Eα−1, we conclude that
f ∈ APα−1(R). For the converse, let f ∈ APα−1(R) and AP (R, X) ∋ fn → f
in Eα−1

∼= Cb(R, Xα−1). The continuous embedding X ↪→ Xα−1 implies that
fn ∈ AP (R, Xα−1), and hence f ∈ AP (R, Xα−1).

We state the main result of this subsection.

Theorem 5.1.3. Assume that (H1), (H2) and (H3) hold. Let f ∈ APα−1(R)
for some α ∈ (1 − µ, 1]. Then the evolution equation (5.2) has a unique mild
solution u ∈ AP (R, X) given by

u(t) =

∫
R
Γα−1(t, τ)f(τ) dτ, t ∈ R. (5.5)

Proof. For f ∈ Eα−1, one can show that the function u given by (5.5) is a
bounded mild solution of (5.2), and that every bounded mild solution is given
by (5.5). (See e.g. the remarks after Theorem 3.10 in [87].) This fact shows
the uniqueness of bounded mild solutions to (5.2). Take a sequence (fn) ⊂
AP (R, X) converging to f in Eα−1. In Theorem 4.5 of [86] we have shown that
the functions
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un(t) =

∫
R
Γ(t, τ)fn(τ) dτ, t ∈ R, (5.6)

belongs to AP (R, X). Proposition 2.4.3 further yields

∥u(t)− un(t)∥ ≤
∫
R
∥Γα−1(t, τ)∥L(Xτ

α−1,X)∥fn(τ)− f(τ)∥τα−1 dτ

≤ c ∥fn − f∥Eα−1 , t ∈ R.

Therefore un → u in Cb(R, X) as n→ ∞, and so u ∈ AP (R, X).

5.1.2 Forward evolution equations

We investigate the parabolic initial value problem

u′(t) = Aα−1(t)u(t) + f(t), t ≥ t0,

u(t0) = x,
(5.7)

under the following assumptions.

(H1’) The operators A(t), t > a, satisfy the assumptions (2.7) and (2.8) for
t, s > a.

(H2’) The evolution family U generated by A(·) has an exponential dichotomy
on (a,∞) with projections P (t), t > a, constants N, δ > 0, and Green’s
function Γ.

(H3’) R(ω,A(·)) ∈ AAP ([t0,∞),L(X)) for some t0 > a.

Let now t0 > a, 1 − µ < α ≤ 1, x ∈ D(A(t0)) and f ∈ Eα−1([t0,∞)).
Assume that (H1’) and (H2’) hold. Then a mild solution of (5.7) is a function
u ∈ C([t0,∞), X) being a mild solution of the evolution equation in the first
line of (5.7) and satisfying u(t0) = x. We have shown in [87, Proposition 2.7]
that there is a bounded mild function u of (5.7) if and only if

Q(t0)x = −
∫ ∞

t0

Ũ(t0, s)Qα−1(s)f(s) ds. (5.8)

In this case the mild solution of (5.7) is uniquely given by

u(t) = U(t, t0)P (t0)x+

∫ t

t0

Uα−1(t, s)Pα−1(s)f(s) ds

−
∫ +∞

t
Ũα−1(t, s)Qα−1(s)f(s) ds

= U(t, t0)P (t0)x+

∫ +∞

t0

Γα−1(t, s)f(s) ds, t ≥ t0. (5.9)

We want to study the asymptotic almost periodicity of this solution in the
case of an asymptotically almost periodic f . For a close unbounded interval
J ̸= R, we introduce the space

AAPα−1(J) := {f ∈ Eα−1(J) : ∃ (fn) ⊆ AAP (J,X), fn → f in Eα−1(J)},
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endowed with the norm of Eα−1(J).
We define the multiplication operator A(·) on AAP (J,X) by

(A(·)v)(t) := A(t)v(t), t ∈ J,

D(A(·)) := {v ∈ AAP (J,X) : v(t) ∈ D(A(t)) ∀ t ∈ J, A(·)v ∈ AAP (J,X)}.

Assumption (H3’) and (2.7) imply that the function R(λ,A(·))v belongs to
AAP ([t0,∞), X) for every v ∈ AAP ([t0,∞), X) and λ ∈ ω +Σθ ∪ {0}. There-
fore, the operator A(·) is sectorial on AAP ([t0,∞), X). We can thus introduce

also the spaces AAP ([t0,∞), X)
A(·)
α−1 for α ∈ [0, 1]. These spaces can be charac-

terized as in the previous subsection.

Proposition 5.1.4. Let (2.7) and (H3’) hold. Then we have

AAPα−1([t0,∞)) ∼= AAP ([t0,∞), X)
A(·)
α−1.

for each α ∈ [0, 1]. If, in addition, Xt
α−1

∼= Xα−1 with uniform equivalent
norms for some 1− µ < α ≤ 1 and a Banach space Xα−1, then we obtain

AAPα−1([t0,∞)) ∼= AAP ([t0,∞), Xα−1).

We can now prove the main result of this subsection.

Theorem 5.1.5. Let 1 − µ < α ≤ 1. Assume that (H1’), (H2’), and (H3’)
hold and that x ∈ D(A(t0)) and f ∈ AAPα−1([t0,∞)) satisfy (5.8). Then the
unique bounded mild solution u of (5.7) is asymptotically almost periodic.

Proof. Let f ∈ AAPα−1([t0,∞)) and x ∈ X satisfy (5.8). Take a sequence
(fn) ⊂ AAP ([t0,∞), X) converging to f in Eα−1([t0,∞)). Due to [86, Theorem
5.4], the functions

un(t) = U(t, t0)P (t0)x+

∫ ∞

t0

Γ(t, s)fn(s) ds, t ≥ t0, n ∈ N

are asymptotically almost periodic in X (and they are mild solutions of
(5.7) for the inhomogeneities fn and the initial values xn = un(t0)). As in the
proof of Theorem 5.1.3, we see that un → u in Cb([t0,∞), X). So we conclude
that u ∈ AAP ([t0,∞), X).

5.1.3 Backward evolution equations

As a counterpart to the previous subsection, we now study the parabolic final
value problem

u′(t) = Aα−1(t)u(t) + f(t), t ≤ t0,

u(t0) = x.
(5.10)

Mild solutions of (5.10) are defined as in the forward case. We make the fol-
lowing assumptions.

(H1”) The operators A(t), t < b, satisfy (2.7) and (2.8) for t, s < b.



58 Asymptotic behavior of inhomogeneous non-autonomous boundary equations 5.2

(H2”) The evolution family U has an exponential dichotomy on (−∞, b) with
projections P (t), t < b, constants N, δ > 0, and Green’s function Γ.

(H3”) R(ω,A(·)) ∈ AAP ((−∞, t0],L(X)) for some t0 < b.

Let 1 − µ < α ≤ 1, x ∈ X, and f ∈ Eα−1((−∞, t0]). We have shown
in [87, Proposition 2.8] that there is a unique bounded mild solution u ∈
C((−∞, t0], X) of (5.10) on (−∞, t0] if and only if

P (t0)x =

∫ t0

−∞
Uα−1(t0, s)Pα−1(s)f(s)ds, (5.11)

in which case u is given by

u(t) = Ũ(t, t0)Q(t0)x+

∫ t

−∞
Uα−1(t, s)Pα−1(s)f(s) ds

−
∫ t0

t
Ũα−1(t, s)Qα−1(s)f(s) ds (5.12)

for t ≤ t0.
As before, we obtain the asymptotic almost periodicity of this function if f

belongs to AAPα−1((−∞, t0]). We note that the space AAPα−1((−∞, t0]) can
de described as in Proposition 5.1.4.

Theorem 5.1.6. Assume that (H1”), (H2”), and (H3”) hold. Let x ∈ X and
f ∈ AAPα−1((−∞, t0]) satisfy (5.11). Then the unique bounded mild solution
u of (5.10) given by (5.12) belongs to AAP ((−∞, t0], X).

Proof. Let x and f be as in the assertion. Take a sequence (fn) inAAP ((−∞, t0], X)
converging to f in Eα−1((−∞, t0]). Define the function

un(t) = Ũ(t, t0)Q(t0)x+

∫ t0

−∞
Γα−1(t, s)Qα−1(s)fn(s) ds

for t ≤ t0 and n ∈ N. Using the same arguments as in [86, Theorem 5.4], we can
show that un ∈ AAP ((−∞, t0], X) for all n ∈ N. Finally, as in Theorem 5.1.3
we see that un → u in Cb((−∞, t0], X), so that u ∈ AAP ((−∞, t0], X).

5.2 Fredholm properties of almost periodic evolution
equations on R

Consider a family of operators A(t), t ∈ R, on X satisfying the hypothesis
(H1). We assume that

U(·, ·) has exponential dichotomies on [T ′,+∞) and (−∞,−T ′]

for some T ′ ∈ R. We fix a number T ≥ 0 such that T > T ′.
(5.13)

In some results we shall assume that A(·) is asymptotically hyperbolic, i.e.,
there are two operators A−∞ : D(A−∞) → X and A+∞ : D(A+∞) → X which
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satisfy (2.7) and

lim
t→±∞

R(ω,A(t)) = R(ω,A±∞) (in L(X)); (5.14)

σ(A+∞) ∩ iR = σ(A−∞) ∩ iR = ∅. (5.15)

Under assumptions (H1), (5.14), (5.15), implies that the condition (5.13) is
satisfied, see [109, Theorem 2.3], as well as [20] and [107] for earlier results
under additional assumptions.

We further assume that

(H4) Let T be the number T from (5.13). Then we assume thatR(ω,A(·))|[T,∞) ∈
AAP ([T,∞),L(X)) and R(ω,A(·))|(−∞,−T ] ∈ AAP ((−∞,−T ],L(X)).

We will work on the space

AAP± = AAP±(R, X) := {f ∈ Cb(R, X) : f |R± ∈ AAP (R±, X)}.

of functions being asymptotically almost periodic on R− and R+, separately.
This space is endowed with the sup–norm. The following description of this
space turns out to be crucial for our work.

Lemma 5.2.1. Let (2.7) and (H4) hold. We then have AAP± = {f ∈
Cb(R, X) : f |(−∞,−a] ∈ AAP ((−∞,−a], X), f |[a,∞) ∈ AAP ([a,∞), X)} =:
F a for each a ≥ 0.

Proof. Let a ≥ 0 and f ∈ Cb(R, X) such that

f+ := f |[a,∞) = g+ + h+ ∈ C0([a,∞), X)⊕AP ([a,∞), X);

f− := f |(−∞,−a] = g− + h− ∈ C0((−∞,−a], X)⊕AP ((−∞,−a], X).

It is clear that h+ and h− can be extended to functions in AP (R+, X) and
AP (R−, X) respectively. The functions g̃± := f |R± − h± then belong to
C0(R±, X), i.e, f |R± = g̃± + h± ∈ AAP (R±, X). So we have shown the inclu-
sion F a ⊂ AAP±. The other inclusion is clear.

As in the previous sections we define the multiplication operator A(·) on
AAP±(R, X) by

(A(·)v)(t) := A(t)v(t), t ∈ R,
D(A(·)) := {v ∈ AAP±(R, X) : f(t) ∈ D(A(t)) ∀ t ∈ R, A(·)v ∈ AAP±}.

Assumption (H4) shows that function R(λ,A(·))f belongs to AAP± for every
f ∈ AAP± and λ ∈ ω + Σθ ∪ {0}, and thus the operator A(·) is sectorial in
AAP± with the resolvent R(λ,A(·)). So we can define the extrapolation spaces

AAP±
α−1 = AAP±

α−1(R) := (AAP±(R, X))
A(·)
α−1 for α ∈ [0, 1],

which are characterized in the following proposition.
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Proposition 5.2.2. Let (2.7) and (H4) hold, and let α ∈ [0, 1]. Then we have

AAP±
α−1

∼= {f ∈ Eα−1(R) : f |[T,∞) ∈ AAPα−1([T,∞)),

f |(−∞,−T ] ∈ AAPα−1((−∞,−T ])}.

Assume that, in addition, Xt
α−1

∼= Xα−1 with uniformly equivalent norms for
some Banach space Xα−1 and some α ∈ [0, 1]. Then we have

AAP±
α−1

∼= {f ∈ Cb(R, Xα−1) : f |[T,∞) ∈ AAP ([T,∞), Xα−1),

f |(−∞,−T ] ∈ AAP ((−∞,−T ], Xα−1)}.

Proof. Due to Lemma 5.2.1 the space AAP±
−1 is embedded into E−1(R). Let

f ∈ AAP±
α−1. Then there are fn ∈ AAP± converging to f in Eα−1. The re-

strictions of fn to (−∞,−T ] and to [T,+∞) converge to the corresponding re-
strictions of f in Eα−1((−∞,−T ]) and Eα−1([T,+∞)), respectively. Therefore
the restrictions of f belong to AAPα−1((−∞,−T ]) and to AAPα−1([T,+∞)),
respectively, which shows the inclusion ‘⊂’. Let f belong to the space on the
right side in the first assertion. The functions fn = nR(n,Aα−1(·))f then belong
to BC(R, X) for n ≥ ω, and their restrictions belong to AAP ((−∞,−T ], X)
and to AAP ([T,+∞), X) (since R(n,Aα−1(·)) is the resolvent of the respective
multiplication operator Aα−1(·)). Lemma 5.2.1 thus yields fn ∈ AAP±. Since
fn → f in Eα−1 as n→ ∞, the first assertion holds. The second assertion now
follows from the results of the previous section.

As in [87], we define the operator Gα−1 on AAP±
α−1(R, X) in the following

way. A function u ∈ AAP±(R, X) belongs to D(Gα−1) and Gα−1u = f if there
is a function f ∈ AAP±

α−1 such that (5.3) holds; i.e.,

u(t) = U(t, s)u(s) +

∫ t

s
Uα−1(t, τ)f(τ) dτ

for all t, s ∈ R with t ≥ s. In particular, G0 is defined on AAP±(R, X) by
(5.3), replacing Uα−1 by U .

To study the operator Gα−1, we introduce the stable and unstable subspaces
of Uα−1(·, ·).

Definition 5.2.3. Let t0 ∈ R. We define the stable space at t0 by

Xs(t0) := {x ∈ Xt0
α−1 : lim

t→+∞
∥Uα−1(t, t0)x∥ = 0},

and the unstable space at t0 by

Xu(t0) := {x ∈ X : ∃ a mild solution u ∈ C0((−∞, t0], X) of (5.10) with f = 0}.

Observe that the function u in the definition of Xu(t0) satisfies u(t) =
U(t, s)u(s) for s ≤ t ≤ t0 and u(t0) = x, so that Xu(t0) ⊂ D(A(t0)). The
following result was shown in [87, Lemma 3.2].

Lemma 5.2.4. Assume that the assumptions (2.7), (2.8), and (5.13) are sat-
isfied and that 1− µ < α ≤ 1. Then the following assertions hold.
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(a) Xs(t0) = Pα−1(t0)X
t0
α−1 for t0 ≥ T ;

(b) Xu(t0) = Q(t0)X for t0 ≤ −T ;

(c) Uα−1(t, t0)Xs(t0) ⊆ Xs(t) for t ≥ t0 in R;

(d) U(t, t0)Xu(t0) = Xu(t) for t ≥ t0 in R;

(e) Xs(t0) is closed in Xt0
α−1 for t0 ∈ R.

Finally, for technical purposes we introduce the space

F T := {f : Cb((−∞, T ], X) : f |(−∞,−T ] ∈ AAP ((−∞,−T ], X)}

and endow it with the sup norm. The corresponding extrapolation spaces F T
α−1

for A(·) are defined as above for α ∈ [0, 1].
The restrictions G+

α−1 and G−
α−1 of Gα−1 to the halflines [T,+∞) and

(−∞, T ] are given in a similar way: A function u ∈ AAP ([T,+∞), X) (resp.,
u ∈ F T ) belongs to D(G+

α−1) (resp., D(G−
α−1)) if there is a function f ∈

AAPα−1([T,+∞)) (resp., f ∈ F T
α−1) such that

u(t) = U(t, s)u(s) +

∫ t

s
Uα−1(t, σ)f(σ)dσ

holds for all t ≥ s ≥ T (resp., for all s ≤ t ≤ T ). Then we set G+
α−1u = f and

G−
α−1u = f , respectively. The operators Gα−1 and G±

α−1 are single valued and
closed due to Remarks 2.5 and 3.12 of [87]. As in [50], [51] and [87], we obtain
right inverses R+

α−1 and R−
α−1 on AAP ([T,+∞), X) and on F T for G+

α−1 and
G−

α−1, respectively, by setting

(R+
α−1h)(t) = −

∫ ∞

t
Ũα−1(t, s)Qα−1(s)h(s) ds+

∫ t

T
Uα−1(t, s)Pα−1(s)h(s) ds

for h ∈ AAPα−1([T,+∞), X) and t ≥ T , and

(R−
α−1h)(t)=


∫ T

−∞
Γα−1(t, s)h(s) ds, t ≤ −T,∫ −T

−∞
Uα−1(t, s)Pα−1(s)h(s) ds+

∫ t

−T
Uα−1(t, s)h(s) ds, |t| ≤ T,

for h ∈ F T
α−1.

Proposition 5.2.5. Assume that the assumptions (2.7), (2.8), (5.13) and (H4)
are satisfied and that 1− µ < α ≤ 1. Then the following assertions hold.

(a) The operator R+
α−1 : AAPα−1([T,+∞)) → AAP ([T,+∞), X) is bounded

and G+
α−1R

+
α−1h = h for each h ∈ AAPα−1([T,+∞)).

(b) The operator R−
α−1 : F T

α−1 → F T is bounded and G−
α−1R

−
α−1h = h for

each h ∈ F T
α−1.

(c) We have R±
α−1h(T ) ∈ XT

ε for all 0 ≤ ε < α.
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Proof. Let h ∈ AAPα−1([T,+∞)). In Proposition 3.3 and Remark 3.12 of
[87] it was shown that R+

α−1h is a mild solution of the equation (5.7) for

the inhomogeneity h and the initial value x := −
∫∞
T Ũ(T, s)Qα−1(s)h(s) ds

at t0 = T . Since (5.8) holds for h and x, Theorem 5.1.5 gives the asymptotic
almost periodicity of R+

α−1h. So the operator R+
α−1 maps AAPα−1([T,+∞))

into AAP ([T,+∞), X), and its boundedness follows from Proposition 2.4.3
d), e) as in the proof of [87, Proposition 3.3]. Assertion (a) is thus estab-
lished. To show (b), let h ∈ F T

α−1((−∞, T ]). Proposition 3.3 and Remark 3.12
of [87] also yield that R−

α−1h is a mild solution of the equation (5.10) with
t0 = T and the inhomogeneity h. It is clear that h|(−∞,−T ] satisfies (5.12)

for x :=
∫ −T
−∞ Uα−1(−T, s)Pα−1(s)f(s) ds. Theorem 5.1.5 then implies that

R−
α−1h|(−∞,−T ] ∈ AAP ((−∞,−T ], X) and consequently R−

α−1 maps F T
α−1

into F T . The boundedness of R−
α−1 follows again from Proposition 2.4.3 d), e).

The last assertion is a consequence of Propositions 2.4.2 a) and 2.4.3 d), e).

We can now describe the range and the kernel of Gα−1.

Proposition 5.2.6. Assume that (2.7), (2.8), (5.13) and (H4) are satisfied
and that 1 − µ < α ≤ 1. For f ∈ AAP±

α−1 we set f+ = f |[T,+∞) and
f− = f |(−∞, T ]. Then the following assertions hold for Gα−1.

(a) N(G+
α−1) = {u ∈ C0([T,+∞), X)) : u(t) = U(t, T )x (∀ t ≥ T ), x ∈

P (T )X̂T };

(b) N(G−
α−1) = {u ∈ C0((−∞, T ], X) : u(t) = U(t, s)u(s) (∀ s ≤ t ≤

T ), u(T ) ∈ Xu(T )};

(c) N(Gα−1) = {u ∈ C0(R, X) : u(t) = U(t, s)u(s) (∀ t ≥ s), u(T ) ∈
P (T )X ∩Xu(T )};

(d) R(Gα−1)={f ∈ AAP±
α−1 :R

+
α−1f

+(T )− R−
α−1f

−(T )∈P (T )X +Xu(T )},
where for f ∈ R(Gα−1) a function u ∈ D(Gα−1) with Gα−1u = f is given
by (5.16) below;

(e) R(Gα−1)={f ∈ AAP±
α−1 :R

+
α−1f

+(T ) − R−
α−1f

−(T )∈P (T )X +Xu(T )},
where the closure on the left (right) side is taken in AAP±

α−1 (in X).

Proof. The assertions (a), (b) and (c) follow from Proposition 3.5 and Re-
mark 3.12 of [87]. We note that P (T )X ∩ Xu(T ) = P (T )X̂T ∩ Xu(T ) since
Xu(T ) ⊆ D(A(T )). To show (d), let Gα−1u = f ∈ AAP±

α−1(R) for some
u ∈ D(Gα−1). Then the functions f± belong to R(G+

α−1) and to R(G−
α−1),

respectively, because of Proposition 5.2.2 and (5.3). Proposition 5.2.5 shows
that the functions

v+ = u|[T,+∞)−R+
α−1f

+ and v− = u|(−∞, T ]−R−
α−1f

−

are contained in the kernels of G+
α−1 and of G−

α−1, respectively. So we obtain

(R+
α−1f

+)(T )− (R−
α−1f

−)(T ) = v−(T )− v+(T ) ∈ Xu(T ) + P (T )X
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by (a) and (b). Conversely, let f ∈ AAP±
α−1(R) with

(R+
α−1f

+)(T )− (R−
α−1f

−)(T ) = ys + yu ∈ P (T )X +Xu(T ).

Set x0 := (R+
α−1f

+)(T )− ys = yu + (R−
α−1f

−)(T ) and

u(t) :=

{
u+(t) := −U(t, T )ys + (R+

α−1f
+)(t), t ≥ T,

u−(t) := ṽ(t) + (R−
α−1f

−)(t), t ≤ T,
(5.16)

where ṽ ∈ N(G−
α−1) such that ṽ(T ) = yu. Observe that u+(T ) = u−(T ). From

Proposition 5.2.5(c) we deduce ys ∈ P (T )X̂T , so that U(·, T )ys ∈ C0([T,∞), X).
Proposition 5.2.5 shows that R+

α−1f
+ ∈ AAP ([T,∞), X), and hence u|[T,∞) ∈

AAP ([T,∞), X). We also know from assertion (c) that ṽ ∈ C0((−∞, T ], X)
and from Proposition 5.2.5 that R−

α−1f
− ∈ F T . Using also Lemma 5.2.1, we

deduce that u belongs to AAP±(R, X). Finally, one can check as in the proof
of Proposition 3.5 of [87] that Gα−1u = f . The last assertion can be shown
exactly as Proposition 3.5(e) of [87].

Using the above results, we are able to describe the Fredholm properties of
the operator Gα−1 in terms of properties of the subspaces Xs(T ) and Xu(T ).
The proofs are similar to ones of Theorems 3.6 and 3.10 and Proposition 3.8 of
[87] and therefore omitted. Recall that subspaces V and W of a Banach space
E are called a semi-Fredholm couple if V +W is closed and if at least one of
the dimensions dim(V ∩W ) and codim(V +W ) is finite. The index of (V,W )
is defined by ind(V,W ) := dim(V ∩W )− codim(V +W ). If the index is finite,
then (V,W ) is a Fredholm couple.

Theorem 5.2.7. Assume that (2.7), (2.8), and (5.13) are satisfied and that 1−
µ < α ≤ 1. Then the following assertions hold for Gα−1 defined on AAP±

α−1(R).

(a) R(Gα−1) is closed in AAP±
α−1 if and only if P (T )X +Xu(T ) is closed in

X.

(b) If Gα−1 is injective, then P (T )X ∩Xu(T ) = {0}. The converse is true if
U(T,−T )|Q(−T )(X) is injective, in addition.

(c) If Gα−1 is invertible, then P (T )X ⊕Xu(T ) = X. The converse is true if
U(T,−T )|Q(−T )(X) is injective in addition.

(d) dimN(Gα−1) = dim(P (T )X ∩Xu(T )) + dimN(U(T,−T )|Q(−T )(X)).
We have codim(P (T )X+Xu(T )) = codimR(Gα−1), if R(Gα−1) is closed
in AAP±

α−1. In particular, Gα−1 is surjective if and only if P (T )X +
Xu(T ) = X.

(e) If Gα−1 is a semi-Fredholm operator, then (P (T )X,Xu(T )) is a semi-
Fredholm couple, and ind(P (T )X,Xu(T )) ≤ indGα−1. If in addition the
kernel of U(T,−T )|Q(−T )(X) is finite dimensional, then

ind(P (T )X,Xu(T )) = indGα−1 − dimN(U(T,−T )|Q(−T )(X)). (5.17)



64 Asymptotic behavior of inhomogeneous non-autonomous boundary equations 5.3

Conversely, if (P (T )X,Xu(T )) is a semi-Fredholm couple and the kernel
of U(T,−T )|Q(−T )(X) is finite dimensional, then Gα−1 is a semi-Fredholm
operator and (5.17) holds.

Proposition 5.2.8. Assume that (2.7), (2.8), and (5.13) hold and that 1−µ <
α ≤ 1. Then the closure of R(Gα−1) is equal to the space

F := {f ∈ AAP±
α−1 :

∫
R
⟨f(s), v(s)⟩Xs

α−1
ds = 0 for all v ∈ V},

where V is the space of those v ∈ L1(R, X∗) such that v(s) = Uα−1(t, s)
∗v(t)

for all t ≥ s in R.

In the following Fredholm alternative, we restrict ourselves to the asymp-
totically hyperbolic case. The projections Q±∞ have finite rank if, for instance,
the domains D(A±∞) are compactly embedded in X.

Theorem 5.2.9. Assume that (2.7), (2.8), (5.14) and (5.15) are true, that
dimQ±∞X < ∞, and that 1 − µ < α ≤ 1. Let f ∈ AAP±

α−1. Then there is a
mild solution u ∈ AAP±(R, X) of (5.2) if and only if∫

R
⟨f(s), w(s)⟩Xs

α−1
ds = 0

for each w ∈ L1(R, X∗) with w(s) = Uα−1(t, s)
∗w(t) for all t ≥ s in R. The

mild solutions u are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−
α−1f)(t), t ≤ T,

where R±
α−1 was defined before Proposition 5.2.5, (R+

α−1f)(T )−(R−
α−1f)(T ) =

ys + yu ∈ P (T )X + Xu(T ), ṽ ∈ C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) =
U(t, s)ṽ(s) for all T ≥ t ≥ s, and v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all
t ≥ s.

5.3 Almost periodicity of boundary evolution equa-
tions

In this section we study the non–autonomous forward (resp. backward) parabolic
boundary evolution equation

u′(t) = Am(t)u(t) + g(t), t ≥ t0 (resp. t ≤ t0),
B(t)u(t) = h(t), t ≥ t0 (resp. t ≤ t0),
u(t0) = u0,

and their variant on the line{
u′(t) = Am(t)u(t) + g(t), t ∈ R,
B(t)u(t) = h(t), t ∈ R. (5.18)

Here t0 ∈ R, u0 ∈ X, and the inhomogeneities g and h take values in Banach
spaces X and Y , respectively.

We assume that the following conditions hold.
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(B1) There are Banach spaces Z ↪→ X and Y such that the operators Am(t) ∈
L(Z,X) and B(t) ∈ L(Z, Y ) are uniformly bounded for t ∈ R and that
B(t) : Z → Y is surjective for each t ∈ R.

(B2) The operators A(t)u := Am(t)u with domains D(A(t)) := {u ∈ Z :
B(t)u = 0}, t ∈ R, satisfy (2.7) and (2.8) with constants ω, θ,K,L, µ, ν.
Moreover, the graph norm of A(t) and the norm of Z are equivalent with
constants being uniform in t ∈ R.

In the typical applications Am(t) is a differential operator with ’maximal’
domain not containing boundary conditions and B(t) are boundary operators.
Under the hypotheses (B1) and (B2), there is an evolution family (U(t, s))t≥s

solving the problem with homogeneous conditions g = h = 0. Moreover, by [57,
Lemma 1.2] there exists the Dirichlet map D(t) for ω − Am(t); i.e., v = D(t)y
is the unique solution of the abstract boundary value problem

(ω −Am(t))v = 0, B(t)v = y,

for each y ∈ Y . (In [57] the density of Z in X was assumed, but this does not
play a role in the cited Lemma 1.2.) Let x ∈ X and y ∈ Y be given. The
problem

(ω −Am(t))v = x, B(t)v = y,

has the solution v = R(ω,A(t))x + D(t)y. This solution is unique in Z since
ω −Am(t) is injective on D(A(t)) = N(B(t)). We further assume that

(B3) there is a β ∈ (1 − µ, 1] such that Z ↪→ Xt
β for t ∈ R with uniformly

bounded embedding constants and supt∈R ∥D(t)∥L(Y,Z) <∞.

Lemma 5.3.1. Assume that assumptions (B1), (B2) and (B3) without (2.8)
hold. For a closed unbounded interval J , let Am(·) ∈ AP (J,L(Z,X)) and B(·) ∈
AP (J,L(Z, Y )). Then we have
(a) D(·) ∈ AP (J,L(Y,Z)),
(b) R(ω,A(·)) ∈ AP (J,L(X,Z)),
(c) (ω−A−1(·))D(·)h ∈ APα−1(J) for every h ∈ AP (J, Y ) and α ∈ (1− µ, β).

The same results hold if one replaces throughout AP by AAP (if J ̸= R) or
by AAP± (if J = R).

Proof. (a) Let y ∈ Y and t, t+ τ ∈ J . By the definition of D(t), we have

(ω −Am(t))(D(t+ τ)y −D(t)y) = (Am(t+ τ)−Am(t))D(t+ τ)y =: φ(t),

B(t)(D(t+ τ)y −D(t)y) = −(B(t+ τ)−B(t))D(t+ τ)y =: ψ(t),

and thus

D(t+ τ)y −D(t)y = R(ω,A(t))φ(t) +D(t)ψ(t).

The assumptions now imply that

∥D(t+ τ)y −D(t)y∥Z ≤ c (∥φ(t)∥X + ∥ψ(t)∥Y )
≤ c (∥Am(t+ τ)−Am(t)∥L(Z,X) + ∥B(t+ τ)−B(t)∥L(Z,Y )) ∥y∥Y .
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So the almost periodicity of D(·) follows from that of Am(·) and B(·).
(b) For x ∈ X and t, t+ τ ∈ J , set y = R(ω,A(t+ τ))x−R(ω,A(t))x ∈ Z.

Then we obtain

(ω −Am(t))y = (Am(t+ τ)−Am(t))R(ω,A(t+ τ))x =: φ1(t),

B(t)y = (B(t)−B(t+ τ))R(ω,A(t+ τ))x =: ψ1(t).

Hence y = R(ω,A(t))φ1(t)+D(t)ψ1(t), and assertion (b) can now be shown
as in (a).

(c) Due to (a) and (b), the functions D(·)h and fn := nR(n,A(·))D(·)h are
almost periodic in Z, and hence inX, for n > ω. Then A(·)fn = (n2R(n,A(·))−
n)D(·)h belongs to AP (J,X). Assumptions (2.7) and (A3) imply that fn is
uniformly bounded in the norm of Eβ. Since fn → D(·)h in Cb(J,X), we
conclude by interpolation that fn → D(·)h in Eα. As a consequence, (ω −
A(·))fn → (ω −Aα−1(·))D(·)h in Eα−1, whence (c) follows.

Similarly one establishes the assertions concerning AAP and AAP±.

In order to apply the results from the previous sections to the boundary
forward (resp. backward) evolution equation (5.18), we write it as the inhomo-
geneous Cauchy problem

u′(t) = A−1(t)u(t) + f(t), t ≥ t0 (resp. t ≤ t0),

u(t0) = u0,
(5.19)

setting f := g+(ω−A−1(·))D(·)h. We also consider the evolution equation

u′(t) = A−1(t)u(t) + f(t), t ∈ R. (5.20)

In the following we will have f ∈ Eα−1(J), where we fix the number α ∈
(1 − µ, β) from Lemma 5.3.1. We note that a function u ∈ C1(J,X) with
u(t) ∈ Z satisfies (5.18), resp. (5.18), if and only if it satisfies (5.19), resp.
(5.20). These facts can be shown as in Proposition 4.2 of [44]. This motivates
the following definition. We call a function u ∈ C(J,X) a mild solution of
(5.18) and (5.20) on J if the equation

u(t) = U(t, s)u(s) +

∫ t

s
Uα−1(t, σ)[g(σ) + (ω −A−1(σ))D(σ)h(σ)] dσ (5.21)

holds for all t ≥ s in J . The function u is called a mild solution of (5.18) (resp.
(5.19) if in addition u(t0) = u0 and J = [t0,∞) (resp. J = (−∞, t0]).

Theorems 5.1.3, 5.1.5 and 5.1.6 and Lemma 5.3.1 immediately imply three
results on the existence of almost periodic mild solutions for (5.18) and (5.18).

Proposition 5.3.2. Assume that (B1–(B3) hold, that Am(·) ∈ AP (R,L(Z,X))
and B(·) ∈ AP (R,L(Z, Y )), and that U(t, s) has an exponential dichotomy on
R. Let g ∈ AP (R, X) and h ∈ AP (R, Y ). Then there is a unique mild solution
u ∈ AP (R, X) of the boundary equation (5.18) given by

u(t) =

∫
R
Γα−1(t, s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ∈ R.
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Proposition 5.3.3. Assume that (B1)–(B3) hold, that Am(·) ∈
AAP ([a,∞),L(Z,X)), and B(·) ∈ AAP ([a,∞),L(Z, Y )), and that U(t, s) has
an exponential dichotomy on [a,∞). Let t0 > a, g ∈ AAP ([a,∞), X), h ∈
AAP ([a,∞), Y ), and u0 ∈ D(A(t0)). Then the mild solution u of the equation
(5.18) belongs to AAP ([t0,+∞), X) if and only if

Q(t0)u0 = −
∫ +∞

t0

Ũα−1(t0, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = U(t, t0)P (t0)u0 +

∫ t

t0

Uα−1(t, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds

−
∫ ∞

t
Ũα−1(t, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ≥ t0.

Proposition 5.3.4. Let (B1)–(B3) hold, Am(·) ∈ AAP ((−∞, b],L(Z,X))
B(·) ∈ AAP ((−∞, b],L(Z, Y )), and assume that U(t, s) has an exponential di-
chotomy on (−∞, b]. Let t0 < b, g ∈ AAP ((−∞, b], X), h ∈ AAP ((−∞, b], Y ),
and u0 ∈ X. Then there is a mild solution u ∈ AAP ((−∞, t0], X) of the
equation (5.18) if and only if

P (t0)u0 =

∫ t0

−∞
Uα−1(t0, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = Ũ(t, t0)Q(t0)u0 −
∫ t0

t
Ũα−1(t, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds

+

∫ t

−∞
Uα−1(t, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ≤ t0.

Moreover, Theorem 5.2.9 implies the following Fredholm alternative for the
mild solutions of (5.18), where we focus on the asymptotically hyperbolic case.

Theorem 5.3.5. Assume that assumptions (B1)–(B3) hold and that Am(t) →
Am(±∞) in L(Z,X) and B(t) → B(±∞) in L(Z, Y ) as t→ ±∞. Set A±∞ :=
Am(±∞)|N(B(±∞)). We suppose that σ(A±∞) ∩ iR = ∅ and that the corre-
sponding unstable projections Q±∞X have finite rank. Let g ∈ AAP±(R, X)
and h ∈ AAP±(R, Y ). Then there is a mild solution u ∈ AAP±(R, X) of
(5.18) if and only if ∫

R
⟨f(s), w(s)⟩Xs

α−1
ds = 0

for f := g+(ω−A−1(·))D(·)h and all w ∈ L1(R, X∗) with w(s) = Uα−1(t, s)
∗w(t)

for all t ≥ s in R. The mild solutions u are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f

+)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−
α−1f

−)(t), t ≤ T,
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where R±
α−1 was defined before Proposition 5.2.5, f+ = f |[T,+∞), f− =

f |(−∞,−T ], (R+
α−1f

+)(T ) − (R−
α−1f

−)(T ) = ys + yu ∈ P (T )X +Xu(T ), ṽ ∈
C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) = U(t, s)ṽ(s) for all T ≥ t ≥ s, and
v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all t ≥ s.

Proof. Observe that functions converging at ±∞ belong to AAP±. So it re-
mains to show that R(ω,A(t)) → R(ω,A±∞) in L(X) as t→ ±∞. This can be
established as Lemma 5.3.1(b).

We conclude with a pde example. One could treat more general problems,
in particular systems, cf. [51], and one could weaken the regularity assumptions;
but we prefer to keep the example simple.

Example 5.3.6. We study the boundary value problem

∂t u(t, x) = A(t, x,D)u(t, x) + g(t, x), t ∈ R, x ∈ Ω,

B(t, x,D)u(t, x) = h(t, x), t ∈ R, x ∈ ∂Ω,
(5.22)

on a bounded domain Ω ⊆ Rn with boundary ∂Ω of class C2, employing the
differential expressions

A(t, x,D) =
∑

k,l
akl(t, x)∂k∂l +

∑
k
ak(t, x) ∂k + a0(t, x),

B(t, x,D) =
∑

k
bk(t, x) ∂k + b0(t, x),

where B(t) is understood in the sense of traces. We require that akl = alk
and bk are real–valued, akl, ak, a0 ∈ Cµ

b (R, C(Ω)), bk, b0 ∈ Cµ
b (R, C

1(∂Ω)),

n∑
k,l=1

akl(t, x) ξk ξl ≥ η |ξ|2 , and

n∑
k=1

bk(t, x)νk(x) ≥ β

for constants µ ∈ (1/2, 1), β, η > 0 and all ξ ∈ Rn, k, l = 1, · · · , n, t ∈ R,
x ∈ Ω resp. x ∈ ∂Ω. (Cµ

b is the space of bounded, globally Hölder continuous

functions.) Let p ∈ (1,∞). We set X = Lp(Ω), Z = W 2
p (Ω), Y = W

1−1/p
p (Ω)

(a Slobodeckij space), Am(t)u = A(t, ·, D)u and B(t)u = B(t, ·, D)u for u ∈ Z
(in the sense of traces), and A(t) = Am(t)|N(B(t)). The operators A(t), t ∈ R,
satisfy (2.7) and (2.8), see [1], [5], [83], or [109, Example 2.9]. Thus A(·)
generates an evolution family U(·, ·) on X. It is known that the graph norm of
A(t) is uniformly equivalent to the norm of Z, that B(t) : Z → Y is surjective,
that Xt

α = W 2α
p (Ω) with uniformly equivalent norms for α ∈ (1 − µ, 1/2), and

that the Dirichlet map D(t) : Z → Y is uniformly bounded for t ∈ R, see e.g.
[5, Example IV.2.6.3].

Further let g ∈ AAP±(R, X) and h ∈ AAP±(R, Y ). We define mild solu-
tions of (5.22) again by (5.21). We further assume that

aα(t, ·) → aα(±∞, ·) in C(Ω) and bj(t, ·) → bj(±∞, ·) in C1(∂Ω)

as t→ ±∞, where α = (k, l) or α = j for k, l = 1, · · · , n and j = 0, · · · , n. As a
result, Am(·) ∈ AAP±(R,L(Z,X)) and B(·) ∈ AAP±(R,L(Z, Y )). We define
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the sectorial operators A±∞ in the same way as A(t). As in [51, Example 5.1]
one can check that (5.14) holds.

Finally we assume that iR ⊂ ρ(A±∞). Then the Fredholm alternative stated
in Theorem 5.3.5 holds for mild solutions of (5.22) on X = Lp(Ω) for g ∈
AAP±(R, X) and h ∈ AAP±(R, Y ).
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Chapter6
Admissibility and observability of
observation operators for semilinear
problems

In this chapter we are concerned with abstract semilinear evolution equation
with output equation{

u′(t) = Au(t) + F (u(t)), u(0) = x, t ≥ 0, x ∈ X,

y(t) = Cu(t),
(6.1)

whereA is assumed to be the infinitesimal generator of a C0-semigroup (T (t))t≥0

in a Banach space X and F is a nonlinear continuous function on X. Further,
it is assumed that C, the observation operator, is a linear bounded operator
from D(A), the domain of A, to another Banach space Y .

It is well-known that global Lipschitz continuity of the nonlinearity F implies
that the problem (6.1) admits a unique mild solution given by the variation of
parameters formula

u(t, x) = T (t)x+

∫ t

0
T (t− σ)F (u(σ, x))dσ, t ≥ 0, x ∈ X.

We define a nonlinear semigroup (S(t))t≥0 associated to the solution of (6.1)
by

S(t)x = u(t, x).

Hence the output function is formally given by

y(t) = CS(t)x.

The output function is only well-defined if C is bounded, i.e. if the operator C
can be extended to a linear bounded operator from X to Y . However, in case
of unbounded observation operators, even if x ∈ D(A) it might happen that
u(t, x) is not in D(A), so that Cu(t, x) is not defined. We call the operator

71
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C admissible for the nonlinear semigroup (S(t))t≥0 if the output function y is
well-defined as locally square integrable function with values in Y .

The problem of admissibility has been studied by many authors, e.g., [38,
39, 66, 118], but in their works they are interested in linear systems only. In
this chapter we extend the definition of admissibility of observation operator C
for semilinear systems and we develop conditions guaranteeing that the set of
admissible observation operators for the semilinear problem coincide with the
set of admissible observation operators for the linearized system.

In applications, it is often required that the system is exactly observable,
that is, the initial state x ∈ X can be recovered from the output function
y by a bounded operator. This problem is well studied for linear systems,
see e.g. [67, 68, 98, 103, 122]. Last results of this chapter is to generalize the
concept of exact observability to semilinear problems and we develop conditions
guaranteeing that the semilinear system is exact observable if and only if the
linearized system has this property.

6.1 Nonlinear semigroups

Throughout this paper, we suppose that

(L) F : X → X is globally Lipschitz continuous, i.e,

||F (x)− F (y)|| ≤ L||x− y||, for all x, y ∈ X,

where L is a positive constant and F (0) = 0.

Under the assumption (L), Equation (6.1) admits an unique mild solution
u(·, x) given by the variation of parameters formula

u(t;x) =T (t)x+

∫ t

0
T (t− σ)F (u(σ;x))dσ, t ≥ 0 (6.2)

y(t) =Cu(t;x). (6.3)

Let (S(t))t≥0 be the family of nonlinear operators defined in X by

S(t)x = u(t;x), for t ≥ 0, x ∈ X. (6.4)

The operators S(t) map X into itself and they satisfy the two properties below:

(P1) S(0)x = x, S(t+ s)x = S(t)S(s)x for s, t ≥ 0 and x ∈ X.

(P2) For each x ∈ X, the X-valued function S(·)x is continuous over [0,+∞).

The first property is obtained through the uniqueness of mild solutions, and
the second property follows from the fact that the solution u(t;x) to (6.2) is
continuous.

By a nonlinear semigroup on X we mean a family (S(t))t≥0 of nonlinear
operators on X with the above mentioned properties (P1) and (P2). If in
particular a semigroup on X provides mild solutions of (6.1) in the sense of
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(6.4), we call it the nonlinear semigroup on X associated with the semilinear
evolution equation (6.1) and we have

S(t)x = T (t)x+

∫ t

0
T (t− σ)F (S(σ)x)dσ, t ≥ 0, x ∈ X. (6.5)

Since (T (t))t≥0 is a C0-semigroup, there exists the constants M ≥ 1, ω ∈ R,
such that

||T (t)|| ≤Meωt for all t ≥ 0.

Moreover, we have the following property

Proposition 6.1.1. For every x, y ∈ X and t ≥ 0, we have

||S(t)x|| ≤Me(ω+ML)t||x||, (6.6)

||S(t)x− S(t)y|| ≤Me(ω+ML)t||x− y||. (6.7)

Proof. Let x, y ∈ X. Since F is globally Lipschitz continuous, it follows that
for t ≥ 0,

||S(t)x− S(t)y|| ≤ ||T (t)x− T (t)y||+
∫ t

0
||T (t− σ)[F (S(σ)x)− F (S(σ)y)]||dσ

≤Meωt||x− y||+
∫ t

0
MLeω(t−σ)||S(σ)x− S(σ)y||dσ.

By Gronwall’s lemma, we obtain the assertion (6.7). Writing y = 0 in (6.7), we
get the assertion (6.6).

Corollary 6.1.2. If ω < −ML, then (T (t))t≥0 and (S(t))t≥0 are exponentially
stable.

6.2 Admissibility of observation operators for semi-
linear systems

We start this section with the definition of finite-time (resp. infinite-time)
admissibility of output operators C for linear semigroups.

Definition 6.2.1. Let C ∈ L(D(A), Y ). We say that C is a finite-time ad-
missible observation operator for (T (t))t≥0, if for every t0 > 0, there is some
Kt0 > 0 such that ∫ t0

0
||CT (t)x||2Y dt ≤ Kt0 ||x||2, (6.8)

for any x ∈ D(A).

Definition 6.2.2. Let C ∈ L(D(A), Y ). Then C is called an infinite-time
admissible observation operator for (T (t))t≥0, if there is some K > 0 such that∫ ∞

0
||CT (t)x||2Y dt ≤ K||x||2, (6.9)

for any x ∈ D(A).



74 Admissibility and observability 6.2

Note that the admissibility of C guarantees that we can extend the mapping
x 7→ CT (·)x to a bounded linear operator from X to L2([0, t0];Y ) for every
t0 > 0. Similarly, if C is an infinite-time admissible observation operator, we
can extend this mapping to a bounded linear operator from X to L2([0,∞);Y ).
The reader is referred to see [66, 118, 119, 120] for more details on this concept
of admissibility. Next, we introduce the concept of finite-time (resp. infinite-
time) admissibility of output operators C for the nonlinear semigroup (S(t))t≥0

given by (6.5) as follows:

Definition 6.2.3. Let C ∈ L(D(A), Y ) with S(t)D(A) ⊂ D(A) for every t ≥ 0.
We say that C is a finite-time admissible observation operator for (S(t))t≥0, if
for every t0 > 0, there is some Kt0 > 0 such that∫ t0

0
||CS(t)x− CS(t)y||2Y dt ≤ Kt0 ||x− y||2, (6.10)

for any x, y ∈ D(A).

Definition 6.2.4. Let C ∈ L(D(A), Y ) with S(t)D(A) ⊂ D(A) for every t ≥ 0.
Then C is called an infinite-time admissible observation operator for (S(t))t≥0,
if there is some K > 0 such that∫ ∞

0
||CS(t)x− CS(t)y||2Y dt ≤ K||x− y||2, (6.11)

for any x, y ∈ D(A).

Equation (6.10) ( resp. (6.11)) implies that the mapping x 7→ CS(·)x
has a continuous extension from X to L2([0, t0];Y ) for every t0 > 0 (resp.
L2([0,∞);Y )).

Remark 6.2.5. (i) It is immediately clear that for linear semigroup equation
(6.10) (resp.(6.11)) is equivalent to equation (6.8) (resp.(6.9)).

(ii) It is not difficult to verify that C is a finite-time admissible observation
operator for (T (t))t≥0 ( resp. (S(t))t≥0) if (6.8) (resp.(6.10)) holds for
one t0 > 0.

(iii) If (T (t))t≥0 (resp. (S(t))t≥0) is exponentially stable, then the notion of
finite-time admissibility and infinite-time admissibility are equivalent.

The objective of this section is to find sufficient conditions guaranteeing
that the output function y of the system (6.1) is in L2([0, t0];Y ).
To begin with, we introduce another Banach space that contains the range of
F and has the following properties:

Definition 6.2.6. (Desch, Schappacher [45, Definition 4]) Let A be the in-
finitesimal generator of a linear C0-semigroup (T (t))t≥0 on X. A Banach space
(Z, | · |Z) is said to satisfy assumption (AS) with respect to A if and only if

(Z1) Z is continuously embedded in X.
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(Z2) For all continuous functions φ : [0,∞) → Z we have∫ t

0
T (t− s)φ(s)ds ∈ D(A) for all t > 0,

and there exists a continuous nondecreasing function γ : [0,∞) → [0,∞)
such that γ(0) = 0 and∥∥∥∥A∫ t

0
T (t− s)φ(s)ds

∥∥∥∥ ≤ γ(t) sup
0≤s≤t

|φ(s)|Z .

Important examples of Banach spaces that satisfy assumption (AS) with
respect to A are provided by :

(1) XA = (D(A), || · ||A) with || · ||A the graph norm of A.

(2) The Favard class of A (see [89]), given by

Z = FA =

{
x ∈ X| sup

0<t≤1

1

t
∥T (t)x− x∥ <∞

}
,

|x|Z = ||x||+ sup
0<t≤1

1

t
∥T (t)x− x∥ .

(3) If A generates an analytic semigroup we may take either Z = D((−A)α),
Z = XA

α,∞ or Z = XA
α , α ∈ (0, 1) (see [83, 89]).

One main result concerning admissibility is

Theorem 6.2.7. Let (Z, | · |Z) satisfy assumption (AS) with respect to A and
C ∈ L(D(A), Y ). We assume additionally that F maps X to Z and that F :
X → Z is globally Lipschitz continuous. Then the following assertions are
equivalent:

(i) C is finite-time admissible for (T (t))t≥0.

(ii) C is finite-time admissible for (S(t))t≥0.

Proof. To begin with, we show that (i) implies (ii). Let x, y ∈ D(A) and t0 ≥ 0.
We have, for 0 ≤ t ≤ t0,∥∥∥∥∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥
XA

=

∥∥∥∥A∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥+∥∥∥∥∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥
≤ γ(t) sup

0≤s≤t
|F (S(s)x− F (S(s)y)|Z +MR

∫ t

0
eω(t−s)|F (S(s)x− F (S(s)y)|Zds

≤ γ(t)L sup
0≤s≤t

||S(s)x− S(s)y||+MLR

∫ t

0
eω(t−s)||S(s)x− S(s)y||ds

≤ γ(t)LM max{1, e(ω+ML)t0}||x− y||+M2LR

∫ t

0
eω(t−s)e(ω+ML)s||x− y||ds

≤
(
γ(t)LM max{1, e(ω+ML)t0}+MRe(ω+ML)t

)
||x− y||.
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Since γ is nondecreasing and positive, we obtain∥∥∥∥∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥2
XA

≤ 2
(
γ(t0)

2L2M2max{1, e2(ω+ML)t0}+M2R2e2(ω+ML)t
)
||x− y||2

≤ 2M2max{γ(t0)2L2, R2} max{1, e2(ω+ML)t0}||x− y||2.

On the other hand, we have∫ t0

0
||CS(t)x− CS(t)y||2Y dt

≤ 2

∫ t0

0
||CT (t)x− CT (t)y||2Y dt+

2

∫ t0

0

∥∥∥∥C ∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥2
Y

dt

≤ 2

∫ t0

0
||CT (t)x− CT (t)y||2Y dt+

2

∫ t0

0
||C||2L(XA,Y )

∥∥∥∥∫ t

0
T (t− s)[F (S(s)x− F (S(s)y)]ds

∥∥∥∥2
XA

dt

≤ 2Kt0 ||x− y||2+
4M2||C||2L(XA,Y )max{γ(t0)2L2, R2} max{1, e2(ω+ML)t0}t0||x− y||2.

DefiningK ′
t0 := 2Kt0+4M2||C||2L(XA,Y )max{γ(t0)2L2, R2} max{1, e2(ω+ML)t0}t0,

this implies that ∫ t0

0
||CS(t)x− CS(t)y||2Y dt ≤ K ′

t0∥x− y∥2.

Conversely, suppose that (ii) holds. Using the formula,

CT (t)x = CS(t)x− C

∫ t

0
T (t− s)F (S(s)x)ds, x ∈ D(A),

and by similar calculations as above, we have∫ t0

0
||CT (t)x− CT (t)y||2Y dt ≤ Kt0 ||x− y||2 x, y ∈ D(A). (6.12)

Therefore C is finite-time admissible for (T (t))t≥0 by Remark 6.2.5 (i).

The same result holds for infinite-time admissibility. The proof follows
immediately from Remark 6.2.5 (iii).

Theorem 6.2.8. Suppose that the assumptions of Theorem 6.2.7 are satisfied.
If (T (t))t≥0 and (S(t))t≥0 are exponentially stable, then the following statement
are equivalent

(i) C is infinite-time admissible for (T (t))t≥0.

(ii) C is infinite-time admissible for (S(t))t≥0.
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Note that by Corollary 6.1.2 the exponential stability of both semigroup is
for example satisfied if ω < −ML.

Another main result of this section is the following theorem.

Theorem 6.2.9. Assume that A generates an analytic semigroup (T (t))t≥0 and
that C ∈ L(Z1, Y ), where Z1 is any space of class Jα, 0 < α < 1. Then the
following assertions are equivalent:

(i) C is finite-time admissible for (T (t))t≥0.

(ii) C is finite-time admissible for (S(t))t≥0.

Proof. We may assume without loss of generality that 0 ∈ ρ(A). Then the
graph norm on D(A) is equivalent to the norm x 7→ ||Ax||, which will be used
here. Let t0 ≥ 0. For x ∈ Z1 and 0 ≤ t ≤ t0, we have T (t)x ∈ D(A) ↪→ Z1 and
||T (t− s)||L(X,Z1) ≤ cM1−αmax{1, eω(1−α)t0} (t− s)−α. We set

sup
0≤t≤t0

||S(t)|| ≤M1 :=M max{1, e(ω+ML)t0},

and
c1 := cM1−αmax{1, eω(1−α)t0}.

So that

||v(t)||Z1 =

∥∥∥∥∫ t

0
T (t− s)F (S(s)x)ds

∥∥∥∥
Z1

≤
∫ t

0
||T (t− s)F (S(s)x)||Z1ds

≤
∫ t

0
||T (t− s)||L(X,Z1)||F (S(s)x)|| ds

≤ c1L

∫ t

0
(t− s)−α||S(s)x||ds.

Therefore

||v(t)||Z1 =

∥∥∥∥∫ t

0
T (t− s)F (S(s)x)ds

∥∥∥∥
Z1

≤ c1LM1
t1−α
0

1− α
||x||, 0 ≤ t ≤ t0.

(6.13)

Then S(t)x ∈ Z1. Moreover we have for every x, y ∈ Z1∫ t0

0
||CS(t)x− CS(t)y||2Y dt

≤ 2

∫ t0

0
||CT (t)x− CT (t)y||2Y dt+

2

∫ t0

0
||C||2L(Z1,Y )

∥∥∥∥∫ t

0
T (t− s)[F (S(s)x)− F (S(s)y)]ds

∥∥∥∥2
Z1

dt

≤ 2Kt0 ||x− y||2 + 2||C||2L(Z1,Y )

∫ t0

0

(
c1LM1

t1−α
0

1− α

)2

dt||x− y||2

≤

[
2Kt0 + ||C||2L(Z1,Y )

(
c1LM1

t1−α
0

1− α

)2

t0

]
||x− y||2.

The converse can be obtain by the same procedure as above and the same way
as in the second part of the proof of Theorem 6.2.7 . �
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Theorem 6.2.10. Suppose that the assumptions of Theorem 6.2.9 are satisfied.
If (T (t))t≥0 and (S(t))t≥0 are exponentially stable, then the following statement
are equivalent:

(i) C is infinite-time admissible for (T (t))t≥0.

(ii) C is infinite-time admissible for (S(t))t≥0.

Proof.
The proof follows immediately from Remark 6.2.5 (iii).

We conclude this section by two examples to illustrate our theory.

Example 6.2.11. Let Ω be a bounded domain with smooth boundary ∂Ω in R2

and let Γ be an open subset of ∂Ω. Consider the following nonlinear initial and
boundary value problem

wtt(x, t) = −∆2w(x, t) + f(
∫
Ω | ∇w(x, t) |2 dx)g(x), t ≥ 0, x ∈ Ω,

w(x, t) = ∆w(x, t) = 0, t ≥ 0, x ∈ ∂Ω
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω,

(6.14)

with the output function

y(t) =
∂wt(x, t)

∂ν
|Γ. (6.15)

We take H = L2(Ω) and A : D(A) ⊂ H → H the linear unbounded operator
defined by Aφ = ∆2φ, where D(A) = {ϕ ∈ H4(Ω) ∩H1

0 (Ω)| ∆ϕ = 0 on ∂Ω},

D(A
1
2 ) = H2(Ω) ∩H1

0 (Ω).

Setting W := (w,wt)
⊥, the problem (6.14) can be rewritten as an abstract

semilinear equation in the Hilbert space X = D(A
1
2 )×H of the form

Wt(t) = AW (t) + F (W (t)),

where A :=

(
0 IH
−A 0

)
defined on a domain D(A) = D(A)×D(A

1
2 ). Then A

is the generator of a C0 group on X. If we assume that g ∈ H2(Ω)∩H1
0 (Ω) and

f : [0,∞) → R is globally Lipschitz continuous. Then the nonlinear mapping
F (W ) = (0, f(

∫
Ω | ∇w |2 dx)g)⊥ maps X into D(A) and is globally Lipschitz

continuous in D(A).
Next, we define the output space Y = L2(Γ) and we can rewrite (6.15) as
following

y(t) = Cx(t),

where

C = (0 C0), C0w =
∂w

∂ν
|Γ ∀w ∈ D(A

1
2 ).
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In [81, p. 287], the author proved that C0 ∈ L(D(A
1
2 ), Y ) is an admissible

observation operator, for the linear problem, i.e for all T ≥ 0 there exist a
constant KT > 0 such that∫ T

0

∫
Γ
||y(t)||2dΓdt ≤ K2

T (||w0||2H2(Ω) + ||w1||2L2(Ω)),

for all (w0, w1) ∈ D(A)×D(A
1
2 ).

Moreover, one deduced from Theorem 6.2.7 that C ∈ L(D(A), Y ) is an admis-
sible observation operator for the problem (6.14).

Example 6.2.12. Let Ω be a bounded domain with smooth boundary ∂Ω in Rn.
We consider the following nonlinear initial value problem

ẇ(x, t) = ∆w(x, t) + sin(w(x, t)), x ∈ Ω, t ≥ 0,
w(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
w(x, 0) = w0(x), x ∈ Ω,

(6.16)

with the output function

y(t) =
∂w(x, t)

∂ν
|∂Ω. (6.17)

Let X = L2(Ω), Y = L2(∂Ω). Consider the operator A : D(A) → X, Aφ = ∆φ,
with D(A) = H2(Ω) ∩ H1

0 (Ω). Recall that A generates an analytic semigroup

(T (t))t≥0. Consider Cφ =
∂φ

∂ν
|∂Ω ∈ Y. Since C : Xε+ 3

4
:= D((−A)ε+

3
4 ) → Y,

for every ε > 0, is bounded, see [75, Section 3.1], and by Theorem 2.6.13 of
[97] we have

||C(−A)1−γT (t)||2 = ||C(−A)−ε− 3
4 (−A)−γ+ε+ 7

4T (t)|| ≤ ct2γ−2ε− 7
2

is integrable near 0 for every γ > 5
4 . This means that C ∈ L(X1−γ , Y ) is

admissible for γ >
5

4
. Consider the function F : X −→ X, F (x) = sin(x), it is

easy to see that F is globally Lipschitz. Now Theorem 6.2.9 guarantees that C
is an admissible observation operator for the problem (6.16)-(6.17).

6.3 Invariance of admissibility of observations under
perturbations

In this section we show that the Lebesgue extension of C is invariant under Lip-
schitz perturbation and we give relations between the Λ-extension of admissible
operators with respect to the semigroup (T (t))t≥0 and the nonlinear semigroup
(S(t))t≥0.

Definition 6.3.1. Let X, Y be Banach spaces, (T (t))t≥0 a C0-semigroup on X
with generator A and C ∈ L(D(A), Y ). We define the operator CL : D(CL) →
Y, the Lebesgue extension of C with respect to (T (t))t≥0 by

CLx = lim
τ↓0

C
1

τ

∫ τ

0
T (t)xdt, (6.18)

where D(CL) = {x ∈ X| the limit in (6.18) exists} .
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On the domain D(CL) we define the norm

||x||D(CL) = ||x||+ sup
0<τ≤1

∥∥∥∥1τ
∫ τ

0
T (t)xdt

∥∥∥∥ .
Then (D(CL), || · ||D(CL)) is a Banach space. We then have

D(A) ⊂ D(CL) ⊂ X

with continuous injections, and CL ∈ L(D(CL), Y ). For this definition and
further properties we refer the reader to [118, Section 4]. In a similar manner
we define the Lebesgue extension of C with respect to a nonlinear semigroup
(S(t))t≥0

Definition 6.3.2. Let X, Y be Banach spaces, (S(t))t≥0 a nonlinear semi-
group on X given by (6.5) and C ∈ L(D(A), Y ). We define the operator
C ′
L : D(C ′

L) → Y, the Lebesgue extension of C with respect to (S(t))t≥0

by

C ′
Lx = lim

τ↓0
C
1

τ

∫ τ

0
S(t)xdt, (6.19)

where D(C ′
L) = {x ∈ X| the limit in (6.19) exists} .

Theorem 6.3.3. Let (T (t))t≥0 be a C0-semigroup with generator A. Let (S(t))t≥0

be the nonlinear semigroup given by (6.5) and C ∈ L(D(A), Y ). Then, the
Lebesgue extensions CL and C ′

L coincide.

Proof. Let x ∈ X, τ > 0. The Lebesgue extension C ′
L satisfies

C ′
Lx = lim

τ↓0

{
C
1

τ

∫ τ

0
T (t)xdt+ C

1

τ

∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt

}
, (6.20)

if this limit exists. If we can prove that

lim
τ↓0

∥∥∥∥1τ
∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt

∥∥∥∥
A

= 0, (6.21)

then, the second term on the right-hand side of (6.20) tends to 0. Therefore,
the limit in (6.20) exists if and only if the limit in (6.18) exists, and the two
limits are equal. Now, we have to show (6.21).
By Fubini’s theorem we have∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt =

∫ τ

0

∫ τ

σ
T (t− σ)F (S(σ)x)dtdσ.

The integral

∫ τ

σ
T (t−σ)F (S(σ)x)dt =

∫ τ−σ

0
T (t)F (S(σ)x)dt belongs to D(A)

and A

∫ τ

σ
T (t− σ)F (S(σ)x)dt = (T (τ − σ)− I)F (S(σ)x). It follows that

∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt ∈ D(A),
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and

A

∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt =

∫ τ

0
A

∫ τ−σ

0
T (t)F (S(σ)x)dtdσ

=

∫ τ

0
(T (τ − σ)− I)F (S(σ)x)dσ.

Hence,

1

τ
A

∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt =

1

τ

∫ τ

0
(T (τ − σ)− I)F (S(σ)x)dσ.

We decompose

T (τ − σ)F (S(σ)x)− F (S(σ)x)
= T (τ − σ) [F (S(σ)x)− F (x)] + (T (τ − σ)− I)F (x)− [F (S(σ)x)− F (x)] ,

and we denote

M := max
t∈[0,1]

||T (t)||.

Fix x ∈ X and let ε > 0. Then there exists δε ∈ (0, 1], such that for t ∈ [0, δε]

||S(t)x− x|| ≤ ε

3ML
, ||(T (t)− I)F (x)|| ≤ ε

3
and ||F (S(t)x)− F (x)|| ≤ ε

3
.

Then for τ ∈ (0, δε] and σ ∈ [0, τ ] we obtain

||T (τ − σ)F (S(σ)x)− F (S(σ)x)|| ≤ ε,

which implies ∥∥∥∥1τ A
∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt

∥∥∥∥ ≤ ε.

On the other hand, it not difficult to verify that

lim
τ↓0

1

τ

∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt = 0.

Consequently

lim
τ↓0

∥∥∥∥1τ
∫ τ

0

∫ t

0
T (t− σ)F (S(σ)x)dσdt

∥∥∥∥
A

= 0.

Remark 6.3.4. This result coincides with Weiss’ result (see [118, Theorem
5.2]), if one considers F ∈ L(X).

In [119, 120], Weiss introduced another extension of C, the Λ-extension.
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Definition 6.3.5. Let (T (t))t≥0 a C0-semigroup with generator A and C ∈
L(D(A), Y ). We define the Λ-extension CΛ of C by

D(CΛ) :=

{
x ∈ X| lim

λ→+∞
CλR(λ,A)x exists

}
,

CΛx := lim
λ→+∞

CλR(λ,A)x, x ∈ D(CΛ).
(6.22)

D(CΛ) endowed with the norm

||x||D(CΛ) = ||x||+ sup
λ≥λ0

∥CλR(λ,A)x∥Y ,

for λ0 ∈ C such that [λ0,+∞) ⊂ ρ(A), is a Banach space satisfying the contin-
uous embedding

D(A) ↪→ D(CΛ) ↪→ X,

and CΛ ∈ L(D(CΛ), Y ).
The following result is due to Weiss. The proof was given for Lebesgue

extension CL of C, see [118, Theorem 4.5]. Since D(CΛ) contains D(CL) (see
[120, Remark 5.7]) we obtain the following.

Theorem 6.3.6. Let x ∈ X. Assume that C is an admissible observation
operator for (T (t))t≥0 . Then, T (t)x ∈ D(CΛ) for all t ≥ 0, and CΛT (·)x ∈
L2([0, τ ], Y ) for all τ > 0.

The following proposition is proved in [60, Proposition 3.3]

Proposition 6.3.7. Let f ∈ L2
loc(R+, X). Suppose that C is an admissible

observation operator for (T (t))t≥0. Then, (T ∗ f)(t) :=

∫ t

0
T (t − s)f(s)ds ∈

D(CΛ) for all t ≥ 0 and

||CΛ(T ∗ f)||L2([0,τ ],Y ) ≤ c(τ)||f ||L2([0,τ ],Y ),

for all τ > 0 with c(τ) > 0 is independent of f. Moreover, lim
τ↓0

c(τ) = 0.

Theorem 6.3.8. Let C be an admissible observation operator for (T (t)t≥0 and
let (S(t))t≥0 be the nonlinear semigroup given by (6.5). Then S(t)x, S(t)y ∈
D(CΛ) for all x, y ∈ X and

||CΛS(t)x− CΛS(t)y||L2([0,τ ],Y ) ≤ Kτ ||x− y||

for τ, Kτ > 0.

Proof. Let x, y ∈ X. From Theorem 6.3.6 and Proposition 6.3.7, we deduced
that S(t)x, S(t)y ∈ D(CΛ) and

||CΛ(T ∗ F (S(·)x))− CΛ(T ∗ F (S(·)y))||L2([0,τ ],Y )

≤ c(τ)||F (S(·)x)− F (S(·)y)||L2([0,τ ],X)
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for τ > 0. On the other hand, we have

||F (S(·)x)− F (S(·)y)||2L2([0,τ ],X)

=

∫ τ

0
||F (S(t)x)− F (S(y)x)||2dt

≤
∫ τ

0
L2||S(t)x− S(t)y||2dt

≤ L2M2

∫ τ

0
e2(ω+ML)tdt||x− y||2 =: η(τ)||x− y||2.

Using formula (6.5), we can write

||CΛS(t)x− CΛS(t)y||L2([0,τ ],Y )

≤ ||CΛT (t)x− CΛT (t)y||L2([0,τ ],Y ) +

||CΛ(T ∗ F (S(·)x))− CΛ(T ∗ F (S(·)y))||L2([0,τ ],Y )

≤ c′(τ)||x− y||+ c(τ)η(τ)||x− y||
≤ Kτ ||x− y||.

6.4 Exact observability of semilinear systems

The object of this section is to prove that exact observability is not changed
under small Lipschitz perturbations. We start by giving the definition of exact
observability of linear systems described by the equation

u′(t) = Au(t), u(0) = x, y(t) = Cu(t), t ≥ 0, (6.23)

and of the semilinear system (6.1), respectively.

Definition 6.4.1. Let C ∈ L(D(A), Y ) an admissible observation operator for
the linear C0- semigroup (T (t))t≥0 and let τ > 0. Then, the system (6.23) is
exactly observable if there is some K > 0 such that

||CT (·)x||L2([0, ∞);Y ) ≥ K||x||, x ∈ D(A), (6.24)

and (6.23) is τ -exactly observable if there is some Kτ > 0 such that

||CT (·)x||L2([0, τ ];Y ) ≥ Kτ ||x||, x ∈ D(A). (6.25)

Definition 6.4.2. Let C ∈ L(D(A), Y ) an admissible observation operator for
the nonlinear semigroup (S(t))t≥0 given by (6.5) and let τ > 0. Then, the
system (6.1) is exactly observable if there is some K ′ > 0 such that

||CS(·)x− CS(·)y||L2([0, ∞);Y ) ≥ K ′||x− y||, x, y ∈ D(A), (6.26)

and (6.1) is τ -exactly observable if there is some K ′
τ > 0 such that

||CS(·)x− CS(·)y||L2([0, τ ];Y ) ≥ K ′
τ ||x− y||, x, y ∈ D(A). (6.27)
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Remark 6.4.3. i) It is well-known that the notion of τ -exactly observable
may depend on τ , see [98, section 5].

ii) If (T (t))t≥0 (resp. (S(t))t≥0) is exponentially stable then for the system
(6.23) (resp. (6.1) ) there exist equivalence between exact observability
and τ -exact observability for some τ > 0, see [103].

Throughout this section, we suppose that we have the following condition
(D):

(i) For all τ > 0 and φ ∈ C([0, τ ];X)∫ τ

0
T (τ − s)φ(s)ds ∈ D(A) (6.28)

(ii) There exists τ0 > 0 and a constant α > 0 such that∥∥∥∥A∫ τ0

0
T (τ0 − s)φ(s)ds

∥∥∥∥ ≤ α sup
s∈[0, τ0]

||φ(s)||, (6.29)

for all φ ∈ C([0, τ ];X).

Remark 6.4.4. (a) It is easy to see that (D) holds if X satisfies assumption
(AS).

(b) If there exists τ > 0 and p ∈ [1,∞) such (6.28) holds for all φ ∈
Lp([0, τ ];X), then, (D) is satisfied. Indeed, by [45, Proposition 8], one
can see that X satisfies the assumption (AS) and as a consequence of
(a), we obtain our result.

Here we give a useful exponential estimate of the inequality (6.29).

Lemma 6.4.5. Let φ satisfied (D), let τ0 > 0 and M ≥ 1, ω ∈ R such that
||T (t)|| ≤Meωt for all t ≥ 0. Then, for all τ > 0, we have∥∥∥∥A∫ τ

0
T (τ − s)φ(s)ds

∥∥∥∥ ≤ N(ω, τ, τ0)α sup
s∈[0, t]

||φ(s)||, (6.30)

where

N(ω, τ, τ0) :=



M
e|ω|τ0

|eωτ0 − 1|
eωτ , ω > 0,

M

(
1 +

τ

τ0

)
, ω = 0,

M

|eωτ0 − 1|
ω < 0.

(6.31)

Proof. We set (V Aφ)(t) := A

∫ t

0
T (t− s)φ(s)ds for all φ ∈ C([0,∞);X) and let

t ≥ τ ≥ 0. One first has to verify the following equality

(V Aφ)(t) = T (t− τ)(V Aφ)(τ) + (V Aφτ )(t− τ), (6.32)
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where φτ := φ(·+ τ). Indeed, using integration by part of (V Aφ)(t) and (6.28)
we obtain

(V Aφ)(t) = A

∫ τ

0
T (t− s)φ(s)ds+A

∫ t

τ
T (t− s)φ(s)ds

= AT (t− τ)

∫ τ

0
T (τ − s)φ(s)ds+A

∫ t−τ

0
T (t− τ − s)φ(τ + s)ds

= T (t− τ)A

∫ τ

0
T (τ − s)φ(s)ds+A

∫ t−τ

0
T (t− τ − s)φ(τ + s)ds

= T (t− τ)(V Aφ)(τ) + (V Aφτ )(t− τ).

The remaining of the proof follows the proof of Boulite et al. [30, Proposition
4].

Now, we can state the main result of this section as follows.

Theorem 6.4.6. Let L be the Lipschitz constant of F and τ > 0. Then we
have:

(a) There exists a constant L0 > 0 such that:
If L < L0 and system (6.23) is τ -exactly observable, then the system (6.1)
is τ -exactly observable.

(b) There exists a constant L1 > 0 such that:
If L < L1 and system (6.1) is τ -exactly observable, then the system (6.23)
is τ -exactly observable.

Proof. (a) We assume that system (6.23) is exactly observable on [0, τ ] for τ > 0.
Let x, y ∈ D(A), we have

CT (τ)x− CT (τ)y =

CS(τ)x− CS(τ)y − C

∫ τ

0
T (τ − σ)[F (S(σ)x)− F (S(σ)y)]dσ.

Using the hypotheses (D), we obtain

||CT (τ)x− CT (τ)y||2Y

≤ 2||CS(τ)x− CS(τ)y||2Y + 2

∥∥∥∥C ∫ τ

0
T (τ − σ)[F (S(σ)x)− F (S(σ)y)]dσ

∥∥∥∥2
Y

≤ 2||CS(τ)x− CS(τ)y||2Y +

2||C||2L(D(A),Y )

∥∥∥∥∫ τ

0
T (τ − σ)[F (S(σ)x)− F (S(σ)y)]dσ

∥∥∥∥2
A

≤ 2||CS(τ)x− CS(τ)y||2Y +

2||C||2L(D(A),Y )

(∥∥∥∥A∫ τ

0
T (τ − σ)[F (S(σ)x)− F (S(σ)y)]dσ

∥∥∥∥+∥∥∥∥∫ τ

0
T (τ − σ)[F (S(σ)x)− F (S(σ)y)]dσ

∥∥∥∥)2

.

Hence,
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||CT (τ)x− CT (τ)y||2Y ≤ 2||CS(τ)x− CS(τ)y||2Y
+ 2||C||2L(D(A),Y )(

α N(ω, τ, τ0) sup
0≤σ≤τ

||F (S(σ)x)− F (S(σ)y)||+M2Leωτ
∫ τ

0
eMLs||x− y||ds

)2

≤ 2||CS(τ)x− CS(τ)y||2Y + 4||C||2L(D(A),Y )(
α N(ω, τ, τ0)MLmax{1, e(ω+ML)τ}

)2
||x− y||2+

4||C||2L(D(A),Y )M
4L2τ2e2(ω+ML)τ ||x− y||2

≤ 2||CS(τ)x− CS(τ)y||2Y +

8||C||2L(D(A),Y )

(
α N(ω, τ, τ0)M

2Lτ
)2

max{1, e2(ω+ML)τ}||x− y||2.

Set M2 := ||C||2L(D(A),Y )M
4τ2, Therefore,∫ τ

0
||CS(r)x− CS(r)x||2Y dr

≥ 1

2

∫ τ

0
||CT (r)x− CT (r)x||2Y dr−

4α2M2L
2

∫ τ

0
N2(ω, r, τ0)max{1, e2(ω+ML)r}||x− y||2dr

≥ 1

2

∫ τ

0
||CT (r)x− CT (r)y||2Y dr−

4α2M2L
2max{1, e2(ω+ML)τ}

∫ τ

0
N2(ω, r, τ0)dr||x− y||2.

Consequently,∫ τ

0
||CS(r)x− CS(r)y||2Y dr ≥

(
1

2
Kτ − 4η(L)α2L2

)
||x− y||2,

where η(L) :=M2max{1, e2(ω+ML)τ}
∫ τ

0
N2(ω, r, τ0)dr.

Set f(L) =
1

2
Kτ − 4η(L)α2L2. The function f is continuous from [0,+∞) to

(−∞,
1

2
Kτ ] and strictly decreasing, hence it is bijective. Then there exists a

unique L0 > 0 such that f(L0) = 0. The parenthesis above becomes positive
for L < L0, which implies that system (6.1) is τ -exact observable. The proof of
(b) is easy since we use same procedure as above.

Corollary 6.4.7. Let L be the Lipschitz constant of F . If the semigroups
(T (t))t≥0 and (S(t))t≥0 are exponentially stable then we have:

(a) There exists a constant L0 > 0 such that:
If L < L0 and System (6.23) is exactly observable, then the system (6.1)
is exactly observable.



6.4 Exact observability of semilinear systems 87

(b) There exists a constant L1 > 0 such that:
If L < L1 and System (6.1) is exactly observable, then the system (6.23)
is exactly observable.

The statements of the Theorem 6.4.6 and the Corollary 6.4.7 still hold if
we drop the assumption (D) and instead it is just assumed that A generates
an analytic semigroup (T (t))t≥0, F : X → X is globally Lipschitz and C ∈
L(Xα, Y ). The proof is similar to the Theorem 6.4.6 using ( 6.13).

Example 6.4.8. Let Ω = (0, π) × (0, π) and let Γ = ([0, π] × 0) ∪ (0 × [0, π])
be a subset of ∂Ω. We consider the following semilinear problem for the wave
equation with Neumann boundary observation:

ẅ(x, t) = ∆w(x, t) +
λ

1 + |w(x, t)|
, x ∈ Ω, t ≥ 0,

w(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x) x ∈ Ω,

(6.33)

with the output function

y(t) =
∂w(x, t)

∂ν
|Γ, (6.34)

where λ > 0. Let X = L2(Ω), Y = L2(Γ), we set x := (w, ẇ). System (6.33)-

(6.34) can be written in form (7.3)-(7.4) in the Hilbert space H = D(A
1
2
0 )×X,

where

A :=

(
0 IX
−A0 0

)
, D(A) = D(A0)×D(A

1
2
0 ),

A0ϕ = −∆ϕ ∀ϕ ∈ D(A0), D(A0) = H2(Ω) ∩H1
0 (Ω),

D(A
1
2
0 ) = H1

0 (Ω), C = (C0, 0), C0ϕ =
∂ϕ

∂ν
|Γ ∀ϕ ∈ D(A0).

It is know that the operator A generates a C0 group on H and the nonlinear

mapping F (x) = (0,
λ

1 + |w|
) is globally Lipschitz continuous from H to D(A)

as in Example 6.2.11. From [81, p. 44], it follows that C ∈ L(D(A), Y ) is
an admissible observation operator for the linearized problem (6.33)-(6.34) and
in [101, Theorem 6.2] it is shown that the linearized system of (6.33)-(6.34) is
exactly observable in some time τ . Now for a small constant λ, all assumptions
of Theorem 6.4.6 are satisfied and hence the semilinear problem (6.33)-(6.34)
is exactly observable in some time τ .
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Chapter7
Semilinear observation systems

The concepts of admissible observation operators and of observation systems
have been introduced in the linear case by Salamon and Weiss in [104] and
[118]. An operator C ∈ L(D(A), Y ) is called admissible for a C0-semigroup
T = (T (t))t≥0 with generator A if the output map x 7→ C(T (·)x), initially
defined onD(A), can be extended to a continuous map Ψ fromX to L2

loc(R+, Y ).
The pair (T, ψ) is then an observation system; i.e., it holds (Ψx)(·+τ) = ΨT (τ)x
for all x ∈ X and τ ≥ 0. Conversely, for any observation system (T,Ψ) there
is an admissible output operator C ∈ L(D(A), Y ) such that Ψx = CT (·)x
for every x ∈ D(A). Moreover, there exists the ‘Lebesgue extension’ CL of C
satisfying T (t)x ∈ D(CL) for a.e. t ≥ 0 and Ψx = CLT (·)x for all x ∈ X, see
[118] and also [39, 66, 104].

In this chapter we extend this successful linear theory to general nonlinear
locally Lipschitz semigroups S = (S(t))t≥0 (see Definition 7.1.3) and densely
defined nonlinear output operators C. In particular, for such semigroups S we
define locally Lipschitz observation systems Ψ and locally Lipschitz admissible
observation operators in Section 3. We further prove that such observation
systems Ψ can be represented by Ψx = C̃(S(·)x) for a (possibly nonlinear)
admissible observation operator C̃, see Theorem 7.2.6.

We consider the linear observation system

u̇(t) = Au(t), u(0) = x ∈ X, t ≥ 0, (7.1)

y(t) = C(u(t)), (7.2)

and focus on the semilinear observation system

u̇(t) = Au(t) + F (u(t)), u(0) = x ∈ X, t ≥ 0, (7.3)

y(t) = C(u(t)), (7.4)

where A is assumed to be the generator of a linear C0-semigroup T on a Banach
space X, C is a nonlinear unbounded operator from a domain D(C) to another
Banach space Y and F is a locally Lipschitz continuous nonlinear operator from
X into itself. Throughout we assume that F has linear growth.

It is well known, see e.g. [97], that the state equation (7.3) has a global
unique mild solution given by u(·;x) for every x ∈ X. Moreover, by S(t)x =

89
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u(t;x) one defines a semigroup S of locally Lipschitz continuous operators. One
now looks for sufficient conditions for the admissibility of C for S. As an im-
portant special case, we assume that C is an admissible linear output operators
for T . In this situation one can in fact construct a nonlinear observation system
(S,ΨF ) given by (7.15), which is the integrated version of (7.3)–(7.4). More-
over, the system is (S,ΨF ) represented by the Lebesgue extension CL of C with
respect to T , see Theorem 7.2.7.

Similar robustness results for admissibility and exact observability were
shown for globally Lipschitz F in Chapter 6. In this chapter also additional
regularity properties of F or T were assumed which were needed to treat the
variation of constants formula related to (7.3). In the present we could discard
these extra assumptions by using an estimate for the convolution f 7→ CLT ∗ f
established in [108] for admissible C, see (7.16).

7.1 Background

In this section we give some results about semilinear evolution equations and
linear observation systems. Let X and Y be Banach spaces (the state and the
observation space, respectively) and the family T = (T (t))t≥0 of linear operators
be a C0-semigroup onX with generator (A,D(A)). We can fix constantsM,ω >
0 such that

∥T (t)∥ ≤Meωt (7.5)

holds for all t ≥ 0. We denote by L(X,Y ) the space of bounded linear operators
between two Banach spaces X and Y . Moreover, the (nonlinear) operator
F : X −→ X is always assumed to be locally Lipschitz continuous; that is, for
each r > 0 there exists a constant L(r) ≥ 0 such that

∥F (x)− F (y)∥ ≤ L(r)∥x− y∥,

for all x, y ∈ X with ∥x∥ ≤ r and ∥y∥ ≤ r.

It is well-known (see e.g. Theorem 6.1.4 in [97]) that, under the above as-
sumptions, for every x ∈ X there is a maximal t(x) ∈ (0,∞] such that the
problem (7.3) admits a unique mild solution u = u(·;x) ∈ C([0, t(x)), X) given
by the variation of constant formula

u(t) = T (t)x+

∫ t

0
T (t− σ)F (u(σ))dσ. (7.6)

Moreover, if t(x) <∞ then limt→t(x) ∥u(t)∥ = ∞. For our investigations it suf-
fices to consider mild solutions. The question whether they are in fact classical
solutions of (7.3) is discussed, e.g., in [97, Chapter 6]. In this chapter we work
in the situation of global solvability assuming that

(G) ∥F (x)∥ ≤ a∥x∥+ b holds for all x ∈ X and some constants a, b ≥ 0.

Under this condition of linear growth, the formula (7.6) and Gronwall’s inequal-
ity easily yield the next result.
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Proposition 7.1.1. Let A generate a C0-semigroup T satisfying (7.5) and
F : X → X be locally Lipschitz such that (G) holds. Then the problem (7.3)
has a unique global mild solution in C([0,∞), X) for each x ∈ X. Moreover, u
is exponentially bounded in the sense that

∥u(t)∥ ≤ Mb

ω
eωt +Me(ω+aM)t∥x∥ for all t ≥ 0. (7.7)

Remark 7.1.2. If we assume that F is globally Lipschitz continuous, then it
has linear growth and thus (7.3) has a unique global mild solution for each
x ∈ X.

Definition 7.1.3. A family S = (S(t))t≥0 of locally Lipschitz operators from X
into itself is called a semigroup of locally Lipschitz operators on X if it satisfies
the following conditions:

(a) S(t+ s)x = S(t)S(s)x and S(0)x = 0 for all t, s ≥ 0 and x ∈ X.

(b) For each x ∈ X, the X-valued function S(·)x is continuous on [0,∞).

(c) For every r > 0 and t0 > 0 there exists a constant L(t0, r) > 0 such that
for all x, y ∈ X with ∥x∥, ∥y∥ ≤ r we have

∥S(t)x− S(t)y∥ ≤ L(t0, r)∥x− y∥ for all t ∈ [0, t0]. (7.8)

Let u(·;x) be the solution of (7.3) for a given x ∈ X, where we assume that
(G) holds. We define S(t)x := u(t;x) for all x ∈ X and t ≥ 0. The operators
S(t) then map X into itself and satisfy the properties stated in Definition 7.1.3.
In fact, the first property follows from the uniqueness of mild solutions. The
second one is an immediate consequence of the continuity of t 7→ u(t;x). The
last property can be shown using (7.6), (7.7), the local Lipschitz continuity of
F and Gronwall’s inequality. Hence, the output function in (7.4) is formally
given by

y(t) = C(S(t)x).

Of course, this expression only makes sense if S(t)x belongs to the domain
D(C) of C. We note that, in general, D(C) is not invariant under S(t). Such
problems already occur in the linear case.

7.2 Locally Lipschitz observation systems

We start with our basic definitions.

Definition 7.2.1. A locally Lipschitz observation system on the Banach spaces
X and Y is a pair (S,Ψ) (resp. (T,Ψ)), where S := (S(t))t≥0 (resp. T :=
(T (t))t≥0) is a semigroup of locally Lipschitz operators (resp. a linear C0-
semigroup) on X and Ψ is a family of (possibly nonlinear) operators from X to
L2
loc([0,∞), Y ) such that for every t0, r > 0 there exists a constant k(r, t0) > 0

such that

(Ψx)(·+ τ) = ΨS(τ)x (resp. (Ψx)(·+ τ) = ΨT (τ)x) on R+,
∥Ψx−Ψy∥L2([0,t0],Y ) ≤ k(r, t0)∥x− y∥, (7.9)

for all τ ≥ 0 and x, y ∈ X with ∥x∥, ∥y∥ ≤ r.
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Definition 7.2.2. Let S (resp. T ) be a semigroup of locally Lipschitz operators
(resp. a linear C0-semigroup) on X and let C : D(C) → Y be a (possibly
nonlinear) operator with dense domain D(C) in X. We say that C is a locally
Lipschitz admissible observation operator for S (resp. T ) if, for every x ∈
D(C), it holds S(t)x ∈ D(C) (resp. T (t)x ∈ D(C)) for a.e. t ≥ 0, the function
C(S(·)x) : R+ → Y (resp. CT (·)x : R+ → Y ) is strongly measurable and if for
every t0 > 0 and every r > 0 there is a constant γ(r, t0) > 0 such that∫ t0

0
∥CS(t)x− CS(t)y)∥2Y dt ≤ γ(r, t0)

2∥x− y∥2, (7.10)

(resp.

∫ t0

0
∥CT (t)x− CT (t)y)∥2Y dt ≤ γ(r, t0)

2∥x− y∥2) (7.11)

for all x, y ∈ D(C) with ∥x∥, ∥y∥ < r.

Remark 7.2.3. In case of a linear operator C with D(C) = D(A), and a global
Lipshitz F , the above concepts coincide with those of the the previous chapter.

Let C be locally Lipschitz admissible for S (resp. T ). Then the map Ψ :
D(C) → L2

loc(R+, Y ), x 7→ CS(·)x (resp. x 7→ CT (·)x), possesses a locally
Lipschitz continuous extension from X to L2

loc(R+, Y ). In fact, let x ∈ X and
t0 > 0. Since D(C) is dense, there exist xn ∈ D(C) converging to x in X as
n → ∞. Estimate (7.10) (resp. (7.11)) implies that Ψxn is a Cauchy sequence
which therefore converges to some z in the complete metric space L2

loc(R+, Y ).
If x′n ∈ D(C) converges to x in X, then Ψx′n also converges to z in L2

loc(R+, Y )
thanks to (7.10) and (7.11). So we can extend Ψ to a map fromX to L2

loc(R+, X)
denoted by the same symbol. Let t0, r > 0 and x, y ∈ X with ∥x∥, ∥y∥ < r.
There are xn ∈ D(C) and yn ∈ D(C) converging to x and y, respectively. Using
(7.10) and (7.11) we can then estimate

∥Ψx−Ψy∥L2([0,t0],Y ) = lim
n→∞

∥Ψxn −Ψyn∥L2([0,t0],Y ) (7.12)

≤ γ(r, t0) lim
n→∞

∥xn − yn∥ = γ(r, t0)∥x− y∥. (7.13)

Hence, Ψ is locally Lipschitz continuous on X. We further obtain

Ψx(τ + ·) = lim
n→∞

Ψxn(τ + ·) = lim
n→∞

ΨS(τ)xn = ΨS(τ)x

in L2
loc(R+, X). We state this result in the following lemma.

Lemma 7.2.4. Let C be a locally Lipschitz admissible observation operator for
S (resp. T ). There exists a locally Lipschitz continuous extension Ψ : X −→
L2
loc([0,∞), Y ) of the map x 7→ CS(·)x (resp. x 7→ CT (·)x) defined on D(C).

Moreover, (S,Ψ) (resp. (T,Ψ)) is a locally Lipschitz observation system.

For a given locally Lipschitz observation system we can now construct a
pointwise representation in terms of an observation operator.
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Definition 7.2.5. For a locally Lipschitz observation system (S,Ψ) (resp. (T,Ψ))
we define

C̃x = lim
τ↓0

1

τ

∫ τ

0
(Ψx)(t)dt, (7.14)

for x ∈ D(C̃) := {x ∈ X : the limit in (7.14) exists in Y }.

The next representation result extends Theorem 4.5 of [118] to locally Lip-
schitz observation systems.

Theorem 7.2.6. Let (S,Ψ) (resp. (T,Ψ)) be a locally Lipschitz observation
system, and let C̃ : D(C̃) → Y be the nonlinear operator defined by (7.14).
Then, for all x ∈ X and t ≥ 0 we have S(t)x ∈ D(C̃) (resp. T (t)x ∈ D(C̃)) if
and only if

1

τ

∫ τ

0
(Ψx)(t+ s) ds converges as τ ↘ 0.

If this is the case, then the limit equals C̃S(t)x (resp. C̃T (t)x). We thus obtain
(Ψx)(t) = C̃S(t)x (resp. (Ψx)(t) = C̃T (t)x) for almost every t ≥ 0, namely for
all Lebesgue points t ≥ 0 of Ψx.

Proof. The theorem follows from the identity

1

τ

∫ τ

0
(ΨS(t)x)(r) dr =

1

τ

∫ τ

0
(Ψx)(t+ r)dr

and the fact that this limit exists for almost every t ≥ 0 since Ψx is locally
integrable.

In particular, C̃ is an locally Lipschitz admissible observation operator for S
(resp. T ). According to Lemma 7.2.4, C̃ and S (resp. T ) generate an observation
system (S, Ψ̃) (resp. (T, Ψ̃)). It is easy to see that, in fact, Ψ = Ψ̃. We say that
the operator C̃ represents the observation system (S,Ψ) (resp. (T,Ψ)).

In a second step we now consider the special case of the semilinear system
(7.3) and (7.4), and assume that C is linear. So let (T,Ψ) be a linear observation
system with observation operator C and Lebesgue extension CL and (S(t))t≥0

the semigroup of locally Lipschitz operators solving (7.3) in the mild sense.
Recall from Section 2 that Ψx = CLT (·)x.

In order to describe the output of (7.3) and (7.4), we define

ΨFx = Ψx+ CLKF (S(·)x) (7.15)

for all x ∈ X, where Kf(t) :=
∫ t
0 T (t− s)f(s)ds for f ∈ L1

loc(R+, X) and t ≥ 0.
Observe that F (S(·)x) is locally bounded due to (G) and (7.7). We recall from
Proposition 2.11 in [108] (and its proof) that Kf(t) ∈ D(CL) for a.e. t ≥ 0,
CLKf : R+ → Y is strongly measurable and

∥CLKf∥L2([0,t0],Y ) ≤ c(t0)t
1
2
0 ∥f∥L2([0,t0],X) (7.16)

for all f ∈ L2
loc(R+, X) and t0 > 0, where c(t0) = γ(t0 + 1) and γ is given by

(7.11). (Hence, c : R+ → R+ is locally bounded.) We now show that (ΨF , S)
is a locally Lipschitz observation system represented by CL.



94 Semilinear observation systems 7.3

Theorem 7.2.7. Let (T,Ψ) be a linear observation system with observation
operator C ∈ L(D(A), Y ), F : X → X be locally Lipschitz, and S(·) solve
(7.3). Assume that (G) holds. Define ΨF as in (7.15). Then, (ΨF , S) is a
locally Lipschitz observation system represented by the Lebesgue extension CL.

Proof. Let t0 > 0 and r > 0, and take x, y ∈ X with ∥x∥, ∥y∥ ≤ r. Using the
assumptions, (7.16) and (7.8), we can estimate

∥ΨFx−ΨF y∥L2([0,t0],Y ) ≤ ∥Ψ(x− y)∥L2([0,t0],Y )

+∥CLK[F (S(·)x)− F (S(·)y)]∥L2([0,t0],X)

≤ c∥x− y∥+ c(t0)t
1
2
0 ∥F (S(·)x)− F (S(·)y)∥L2([0,t0],X)

≤ c∥x− y∥+ c(r, t0)t
1
2
0 ∥S(·)x− S(·)y∥L2([0,t0],X)

≤ c(r, t0)∥x− y∥.

Let t ≥ 0. For a.e. τ ≥ 0, the formulas (7.15) and (7.6) lead to

(ΨFx)(t+ τ) = CLT (τ)T (t)x+ CL

∫ t+τ
t T (t+ τ − s)F (S(s)x)) ds

+CLT (τ)
∫ t
0 T (t− s)F (S(s)x)) ds

= CLT (τ)S(t)x+ CL

∫ τ
0 T (τ − s)F (S(s)S(t)x)) ds

= (ΨF (S(t)x))(τ).

So we have shown that (ΨF , S) is a locally Lipschitz observation system. For
the second assertion, let x ∈ X and t ∈ (0, 1]. Equation (7.15) yields

1

t

∫ t

0
(ΨFx)(s) ds =

1

t

∫ t

0
(Ψx)(s) ds+

1

t

∫ t

0
CLKF (S(·)x)(s) ds.

The second integral on the right hand side is denoted by J(t). From Hölder’s
inequality and estimate (7.16) we deduce that

∥J(t)∥ ≤ t−
1
2 ∥CLKF (S(·)x)∥L2([0,t],Y ) ≤ c ∥F (S(·)x)∥L2([0,t],X) −→ 0

as t → 0. We then conclude that D(C̃) = D(CL) and C̃x = CLx, where C̃
represents ΨF .

7.3 Local exact observability

As the previous chapter, we give the following definitions in the linear and the
nonlinear systems.

Definition 7.3.1. Let C ∈ L(D(A), Y ) be an admissible observation operator
for the linear C0-semigroup (T (t))t≥0 with generator A. The system (7.2) is
called exactly observable in time τ > 0 if there is a constant κ > 0 such that

∥CT (·)x∥L2([0, τ ],Y ) ≥ κ∥x∥ for all x ∈ D(A). (7.17)

Definition 7.3.2. Let C : D(C) → Y be an locally Lipschitz admissible obser-
vation operator for the semigroup S solving (7.3). The system (7.3) and (7.4)
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is called locally exact observable in time τ > 0 at x0 ∈ D(C) (or on B(x0, r0))
if there are numbers r0, κ > 0 such that

∥CS(·)x− CS(·)y∥L2([0,τ ],Y ) ≥ κ∥x− y∥ (7.18)

for all x, y ∈ D(C) with ∥x0 − x∥ ≤ r0 and ∥x0 − y∥ ≤ r0.

Remark 7.3.3. One can see that the linear system (7.2) is exactly observable if
and only if is locally exact observable at some x0, see the proof of Theorem 7.3.4
below.

We now establish a robustness result for exact observability in the semilinear
case. Observe that x0 is fixed point for the semilinear problem (7.3), i.e.,
S(t)x0 = x0 holds for all ≥ 0, if and only if x0 ∈ D(A0) and Ax0 = −F (x0). In
particular, x0 = 0 is a fixed point for (7.3) if and only if F (0) = 0.

Theorem 7.3.4. Let C ∈ L(D(A), Y ) be an admissible linear observation op-
erator for the C0-semigroup T with generator A. Let F : X → X be locally
Lipschitz and S be the nonlinear semigroup solving (7.3).Let x0 ∈ D(A) satisfy
Ax0 = −F (x0) and denote by L0(r) the Lipschitz constant of F on the ball
B(x0, r) in X. Then there are constants L1, L2 > 0 such that the following
assertions hold.

(a) If the linear system (7.2) is exactly observable in time τ > 0 and if there
is an r̃ > 0 with L0(r̃) < L1, then the nonlinear system (7.3) and (7.4) is
locally exact observable in time τ .

(b) If the nonlinear system (7.3) and (7.4) is locally exact observable in time
τ > 0 on the ball B(x0, r0) and there is an r̃ ∈ (0, r0) with L0(r̃) < L2,
then the linear system (7.2) is exactly observable in time τ .

Proof. We first establish certain Lipschitz estimates for S near x0. Fix an R > 0
and take any r ∈ (0, R). Let ρ ∈ (0, r), x, y ∈ B(x0, ρ), and t ∈ [0, τ ]. Let
t1 > 0 be the supremum of t ∈ [0, τ ] such that ∥S(s)x−x0∥ < r for all s ∈ [0, t].
The formula (7.6) and estimate (7.5) then imply the inequality

∥S(t)x−x0∥ = ∥S(t)x−S(t)x0∥ ≤Meωτ∥x−x0∥+Meωτ
∫ t

0
L0(r)∥S(s)x−x0∥ ds

for all 0 ≤ t < t1. From Gronwall’s inequality it follows that

∥S(t)x− x0∥ ≤Meωτ exp(MeωτL0(r)τ)ρ

for all 0 ≤ t < t1. Choosing a sufficiently small ρ = ρ(r) > 0 we thus obtain
∥S(t1)x − x0∥ < r so that t1 = τ and S(t)x ∈ B(x0, r) for all t ∈ [0, τ ]. Using
again (7.6), we can now deduce the Lipschitz estimate

∥S(t)x− S(t)y∥ ≤Meωτ exp(MeωτL0(r)τ)∥x− y∥ =: k(R)∥x− y∥

if ∥x− x0∥, ∥y − x0∥ ≤ ρ(r) < r and t ∈ [0, τ ].
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We now assume that the system (7.2) is exactly observable in time τ > 0
with constant κ > 0. Formula (7.15) yields

CLT (t)(x−y) = CLS(t)x−CLS(t)y−CL

∫ t

0
T (t−σ)[F (S(σ)x)−F (S(σ)y)] dσ.

Using (7.16) and the above estimates, we then deduce that

∥CL T (·)x− CLT (·)y∥L2([0,τ ],Y )

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + c(τ) ∥F (S(·)x)− F (S(·)y)∥L2([0,τ ],X)

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + c(τ)L0(r) ∥S(·)x− S(·)y∥L2([0,τ ],X)

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + L0(r)c1(τ)k(R)∥x− y∥X

for x, y ∈ B(x0, ρ(r)) and t ∈ [0, τ ]. Thus, if L0(r̃)c1(τ)k(R) ≤ κ/2 for some
r̃ > 0, the observability of C and T yields

∥CL S(·)x− CLS(·)y∥L2([0,τ ],Y )

≥ ∥CLT (·)x− CLT (·)y∥L2([0,τ ],Y ) − c1(τ)k(R)L0(r̃)∥x− y∥ ≥ κ
2∥x− y∥

for all x, y ∈ X with ∥x− x0∥, ∥y − x0∥ ≤ ρ(r̃).
To prove part (b) we proceed in the same way, but we require in addition

that 0 < ρ < r0 and take y = x0. We thus obtain

∥CLT (·)(x− x0)∥L2([0,τ ],Y ) ≥ κ
2∥x− x0∥

for all x in a ball around x0. By linearity, this estimate implies the exact
observability of the linear system (7.2).

7.4 Applications

In this section we give examples for the main theorems of this chapter.

Example 7.4.1. Let Ω ⊂ RN be a bounded domain with boundary ∂Ω ∈ C4 and
let Γ be an open subset of ∂Ω. Consider the damped nonlinear beam equation

utt +∆2u− 2β∆ut − f
(∫

Ω |∇u|2dx
)
∆u = 0, x ∈ Ω, t > 0,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
∆u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω

(7.19)

with β > 0 and the output function

y(t) = ut|Γ. (7.20)

Equation (7.19) arise in the mathematical study of structural damped nonlinear
vibrations of a string or a beam and was considered in [42, 110] and references
therein.
Let H = L2(Ω) and Aϕ = ∆2ϕ with D(A) = H4(Ω) : u = ∆u = 0 on ∂Ω}. It is
known that A is a self adjoint, positive, boundedly invertible operator and that

H 1
2
:= D(A

1
2 ) = H2(Ω) ∩H1

0 (Ω).
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Let H− 1
2
be the dual space of H 1

2
for the pivot space H.

Set v = ut and Z(t) =

(
u(t)
v(t)

)
. We can then rewrite the problem (7.19)–

(7.20) as the abstract first order ordinary differential equation in the Hilbert
space X = H 1

2
×H

{
d

dt
Z(t) = AZ(t) + F (Z(t)), Z(0) = Z0,

y(t) = CZ(t).
(7.21)

Here the linear operator

A : D(A) ⊂ H 1
2
×H → H 1

2
×H

is given by

A =

(
0 I

−A −D

)
, D(A) = D(A)×D(A

1
2 ),

where the damping operator D : H 1
2
→ H defined by D = 2βA

1
2 is bounded and

positive. Furthermore, we set

Cϕ = ϕ|Γ for ϕ ∈ H 1
2

and C = (0, C)

and define F : H 1
2
×H → H 1

2
×H by

F

((
u
v

))
=

(
0

f
(∫

Ω |∇u|2dx
)
∆u

)
.

For z ∈ H 1
2
, we have

⟨Dz, z⟩H− 1
2
×H 1

2

= ⟨2βA
1
2 z, z⟩H = 2β∥z∥H1

0 (Ω) ≥
2β

c
∥z∥L2(Γ),

for some c > 0 by the trace theorem (see e.g. Theorem 2.5.4 in [82]). Hence,
the assumptions (A1)-(A3) of [65, Proposition 4.1] are satisfied, and thus the
observation operator C is infinite-time admissible for the semigroup generated
by A.

Assuming f : [0,∞) → R locally Lipschitz and bounded, the mapping F
is locally Lipschitz continuous on H 1

2
×H and satisfies the condition of linear

growth. Theorem 7.2.7 now implies that the Lebesgue extension of C with respect
to the semigroup generated by A is an admissible observation operator for the
problem (7.19)-(7.20).

Example 7.4.2. Let Ω be a bounded open subset of RN with boundary ∂Ω ∈ C4.
We consider the following semilinear thermo-elastic system{

wtt +∆2w + α∆θ = f
(∫

Ω |∇w|2dx
)
∆w, x ∈ Ω, t > 0,

θt −∆θ + σθ − α∆wt = 0, x ∈ Ω, t > 0,
(7.22)
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with the boundary and initial conditions{
θ(t, x) = w(t, x) =

∂w

∂ν
(t, x) = 0, x ∈ ∂Ω, t ≥ 0

w(0, x) = w0(x), wt(0, x) = w1(x), θ(0, x) = θ1(x), x ∈ Ω
(7.23)

and the output function

y(t, x) = −∇θ(t, x), t ≥ 0, x ∈ Ω. (7.24)

Here, the coupling parameter α is positive and the constant σ is non nega-
tive. Controllability of corresponding linear system of (7.22)–(7.23) with vari-
ous boundary conditions and controls are well studied, see [11, 43, 74].

We define the linear operators A0 = ∆2 and AD = −∆ on L2(Ω) → L2(Ω)
with the domains

D(A0) = H4(Ω) ∩H2
0 (Ω) and D(AD) = H2(Ω) ∩H1

0 (Ω).

It is well known that A0 and AD are selfadjoint positive operators and that

D(A0
1
2 ) = H2

0 (Ω) and D(A
1
2
D) = H1

0 (Ω).

We introduce the Hilbert space H := D(A0
1
2 ) × L2(Ω) × L2(Ω), equipped with

its natural inner product. Set v = wt and

z(t) =

 w(t)
v(t)
θ(t)

 , z0 =

 w0

v0
θ0

 .

The system (7.22)-(7.23) can be rewritten as an abstract semilinear evolution
equation in H of the form

zt = Az + F (z), z(0) = z0 ∈ H,

with the output function

y(t) = Cz(t),

where A is the linear operator defined by

A =

 0 I 0
−A0 0 αAD

0 −αAD −AD − σI


with domain D(A) = D(A0)×D(A0

1
2 )×D(AD), and the observation operator

C : D(A) → Y = 0× 0× (L2(Ω))N , C = (0, 0,−∇). Further F : H → H is the
nonlinear operator given by

F

 w
v
θ

 =

 0
f
(∫

Ω |∇w|2dx
)
∆w

0

 .
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In Proposition 2.1 of [11], it was shown that A generates a C0 semigroup of
contractions on the Hilbert space H. Proposition 2.7 of [11] also implies that C
is admissible with respect to A. Finally, in Section 3 of [13] the pair (A,C) was
proved to be exactly observable. If we assume that f : [0,+∞) → R is bounded
and locally Lipschitz continuous, then F is locally Lipschitz on H and satisfies
assumption (G). Moreover, F (0) = 0. Using Theorem 7.3.4 we deduce that the
problem (7.22)–(7.24) is locally exactly observable at w0 = θ0 = 0.
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automorphic solutions to semilinear parabolic boundary differential equa-
tions, Nonlinear Anal. 69 (2008), 2114-2124.

[19] M. Baroun, L. Maniar, R. Schnaubelt, Almost periodicity of parabolic evo-
lution equations with inhomogeneous boundary values, Integral Equations
Operator Theory 65 (2009), 169-193.

[20] C.J.K. Batty, R. Chill, Approximation and asymptotic behaviour of evo-
lution families, Differential Integral Equations 15 (2002), 477-512.

[21] C. J. K. Batty, W. Hutter and F. Räbiger, Almost periodicity of mild
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tions for hyperbolic semilinear evolution equations, Semigroup Forum 71
(2005), 231-240.

[33] S. Boulite, L. Maniar, G. M. N’Guérékata, Almost automorphic solutions
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1993.

[101] K. Ramdani, T. Takahashi, G. Tenenbaum, M. Tucsnak, A spectral ap-
proach for the exact observability of infinite-dimensional systems with
skew-adjoint generator, J. Funct. Anal. 226 (2005), 193-229.

[102] W.M. Ruess and W.H. Summers, Weak almost periodicity and the strong
ergodic limit theorem for periodic evolution systems, J. Funct. Anal. 94
(1990), 177-195.

[103] D. L. Russell, G. Weiss, A general necessary condition for exact observ-
ability, SIAM J. Control Optimization 32 (1994), 1-23.

[104] D. Salamon, Infinite-dimensional linear systems with unbounded control
and observation: a functional analytic approach, Trans. Amer. Math. Soc.
300 (1987), 383-431.

[105] B. Sandstede, Stability of travelling waves,Handbook of dynamical systems
2, 9831055, North-Holland, Amsterdam, 2002.

[106] R. Schnaubelt, Sufficient conditions for exponential stability and di-
chotomy of evolution equations, Forum Math. 11 (1999), 543-566.

[107] R. Schnaubelt, Asymptotically autonomous parabolic evolution equa-
tions, J. Evol. Equ. 1 (2001), 19-37.

[108] R. Schnaubelt, Feedbacks for nonautonomous regular linear systems,
SIAM J. Control Optim. 41 (2002), 1141-1165.

[109] R. Schnaubelt, Asymptotic behaviour of parabolic nonautonomous evo-
lution equations, Functional Analytic Methods for Evolution Equations,
Lecture Notes in Mathematics 1855, Springer-Verlag, Berlin, 2004.

[110] D. Sevicovic, Existence and limiting behaviour for damped nonlinear evo-
lution equations with nonlocal term, Comment. Math. Univ. Carolinae bf
31 (1990), 283-293.

[111] W. Shen and Y. Yi, Almost automorphic and almsot periodic dynamics in
skew-product semiflows, Memoirs Amer. Math. Soc. 647 (1998), no. 647.

[112] H. Triebel, Interpolation theory, function spaces, differential operators,
North-Holland, Amsterdam, 1978.

[113] W. A. Veech, Almost Automorphic Functions, Thesis, Princetoni, March
1963.

[114] W. A. Veech, Almost automorphic functions, Proceedings of the National
Academy of Sciences, U.S.A. 49 (1963), 462-464.

[115] W.A. Veech, Almost automorphic functions on groups, Amer. J. Math.
87 (1965), 719-751.



7.4 BIBLIOGRAPHY 109
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