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Abstract

A measurement of the inclusive D∗+ single and double differential cross sections in deep
inelastic electron-proton scattering is presented in the kinematic range 1 GeV2 < Q2 <
100 GeV2 and 0.05 < y < 0.7. Additionally, the D∗+ cross sections are restricted to
the visible range of the analysis given by −1.5 < ηD∗ < 1.5 and p⊥D∗ > 1.5 GeV/c.
The measurement is based on the data collected at HERA by the H1 detector in 1996
and 1997. The D∗+ mesons are reconstructed in the D∗+ → D0π+

s → (K−π+)π+
s decay

channel, where the charged decay particles are measured in the central jet chambers of
the H1 detector. In the studied kinematic range the scattered electron is detected in the
new backward calorimeter SpaCal.

In Quantum Chromodynamics (QCD) the production of D∗+ mesons in deep inelastic
electron-proton scattering originate from the fragmentation of charm quarks which are
the outgoing particles of the boson-gluon fusion perturbative process. The presented
measurement allows therefore to test our understanding of QCD within the frame of
charm production by the confrontation with perturbative QCD calculations combined
with charm fragmentation models.

In addition the extraction of the gluon density in the proton within the leading order
DGLAP formalism was attempted and reveals the necessity of taking into account the
QCD next-to-leading order terms for the feasibility of this measurement.

Zusammenfassung

In der vorliegenden Arbeit werden inklusive D∗+ einfach und doppelt differenzielle Wir-
kungsquerschnitte in tiefinelastischer Elektron-Proton Streuung präsentiert. Der kinema-
tische Bereich der Messung erstreckt sich auf 1 GeV2 < Q2 < 100 GeV2, 0.05 < y < 0.7
und beschränkt sich auf den zugänglichen Bereich der Datenanalyse, welche durch −1.5 <
ηD∗ < 1.5 und p⊥D∗ > 1.5 GeV/c gegeben ist. Die Daten für die durchgeführte Messung
wurden am H1 Experiment des Beschleunigers HERA in den Jahren 1996 und 1997 gesam-
melt. Die D∗+ Mesonen werden dabei über den Zerfallskanal D∗+ → D0π+

s → (K−π+)π+
s

rekonstruiert, wobei der Nachweis der auftretenden geladenen Zerfallsteilchen in der zen-
tralen Jetkammer des H1 Detektors stattfindet. Das im betrachteten kinematischen Be-
reich gestreute Elektron wird im neuartigen, rückwärtsgerichteten Kalorimeter SpaCal
detektiert.

Im Rahmen der Quantenchromodynamik (QCD) wird die Produktion von D∗+ Meso-
nen in tiefinelastischer Elektron-Proton Streuung durch die Fragmentation von Charm
Quarks beschrieben, welche die auslaufenden Teilchen des QCD störungstheoretischen
Boson-Gluon Fusionsprozesses sind. Die vorliegenden Messungen erlauben deshalb, das
bisherige Verständnis der Quantenchromodynamik zu überprüfen. Dies wird durch die
Gegenüberstellung von den Messungen mit den störungstheoretischen QCD Berechnungen
zusammen mit verschiedenen Fragmentationsmodellen erreicht.

Weiterhin wurde versucht, die Gluondichte im Proton mit Hilfe der ersten Ordnung
der DGLAP QCD Störungsrechnung zu extrahieren. Die Analyse zeigt die Notwendigkeit,
die zweite Ordnung der QCD Störungstheorie mit einzubeziehen, um die Extraktion der
Gluondichte durchführen zu können.



Résumé

La mesure des sections efficaces différentielles de la production inclusive de mésons
D∗+ auprès des collisions électron-proton profondément inélastiques est présentée dans
le domaine de cinématique 1 GeV2 < Q2 < 100 GeV2 et 0.05 < y < 0.7. Les sections
efficaces sont de plus réstreintes dans le domaine accesible à la sélection de mésons D∗+

qui est donné par −1.5 < ηD∗ < 1.5 et p⊥D∗ > 1.5 GeV/c. La mesure se base sur
les données collectées à HERA par le détecteur H1 en 1996 et 1997. Les mésons D∗+

sont reconstruits dans le mode de désintégration D∗+ → D0π+
s → (K−π+)π+

s à partir
des particules chargées mesurées dans les chambres centrales à jets. Dans le domaines
de cinématique étudié, l’électron diffusé est detecté dans le nouveau calorimètre SpaCal
situé dans la partie arière du détecteur H1.

Dans la chromodynamique quantique (QCD) la production de mésons D∗+ auprès
des collisions électron-proton profondément inélastiques a pour origine la fragmentation
des quarks charmés qui sont les particules sortantes du processus perturbatif de la fusion
d’un boson (ici un photon) et d’un gluon. La mesure présentée permet donc de tester
notre compréhension de la QCD dans le cadre de la production de quarks charmés par
la confrontation avec les calculs de la QCD perturbative combinés avec des modèles de
fragmentation.

Pour finir, l’extraction de la densité de gluons dans le proton a été tentée dans le cadre
du formalisme DGLAP au premier ordre. Cette étude a révélé la nécéssité de prendre en
compte les termes du second ordre dans les développements perturbatifs de la QCD afin
de pouvoir évaluer la densité de gluons dans le proton à partir de la mesure des mésons
D∗+.
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Introduction

Until now the so-called Standard Model is the most successful theory in describing
the fundamental constituents of matter and their interactions. This Model has been
intensively tested during the course of the last decade. Nevertheless, the Standard Model
describes the strong interaction only in part because of a rising strong coupling constant
with decreasing momentum transfer. This in turn restricts the validity of the perturbative
calculations only when the strong coupling constant is small.

The HERA electron(positron)-proton collider was built for the purposes of studying
the structure of the proton. Indeed, the electron with its point-like structure at the HERA
energy level acts as an ideal probe. On the other hand, the proton, which is composed
of partons - the quarks and the strong force mediators called gluons, represents a very
complex system. The measurements of the ep collision products at HERA provide a very
interesting and precise insight into the partonic composition of the proton, and at the
same time allow the intimately coupled Quantum Chromodynamics (QCD) theory of the
interaction between partons to be tested. Due to the high HERA centre of mass energy
the proton components are resolved and the type of interactions which are taking place
are described by perturbative QCD (pQCD).

The study of heavy quark production is an especially interesting means to demonstrate
both the success achieved and the complications encountered when applying pQCD in
order to predict production dynamics [1, 2]. This thesis focuses on the study of charm
production in Deep Inelastic Scattering (DIS) because the charm quark, being the lighter
of the heavy quarks, is the most abundantly produced heavy quark. In QCD, charm
production in DIS near threshold takes place at the first order via the Boson-Gluon Fusion
(BGF) perturbative process where the charm is regarded as a massive particle. This is
the basic reason why pQCD can be tested using charm production measurement. Another
apparent advantage of testing pQCD using charm production is that charm quarks must
appear in the detector as charmed hadrons. However, in order to delve deeper into charm
production processes one must understand the fragmentation which describes the soft
processes by which the charm quark develops into a charmed hadron.

In pQCD the charm cross section is directly proportional to the gluon density as the
charm is produced at the perturbative level via the BGF process. The D∗+ measurement
thus provides the opportunity to extract the gluon density within the pQCD theory. This
is a very interesting subject as it opens up the the possibility of testing the factorisation
scheme and the universality of the non pQCD parton density.

The thesis presented here deals with the identification of DIS charm events in the data
collected by the H1 experiment during the years 1996 and 1997 by means of reconstructing
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D∗+ mesons in the D∗+ → D0π+
s → (K−π+)π+

s decay channel1. The charged decay
particles are measured in the central jet chambers of the H1 detector and the scattered
electron in the backward calorimeter. In order to confront the measurement and the theory
predictions, two different approaches are possible. Firstly, one can rely on fragmentation
models in order to calculate the total charm cross section from the measured D∗+ events.
In this case the reconstruction efficiency within the D∗+ visible range and the purely
theoretical extrapolation from the visible to the total range have to be taken into account.
The D∗+ visible range corresponds to the detector acceptance (−1.5 < ηD∗ < 1.5) and a
minimum transverse D∗+ momentum (p⊥D∗ > 1.5 GeV/c). The second possibility is to
rely on fragmentation models to predict the D∗+ cross section within the visible range
from the theoretical charm cross section. The latter has been chosen here since the D∗+

measured cross section is less prone to theoretical uncertainties. Moreover, it leaves the
possibility open to later comparisons with future predictions probably using improved
fragmentation models.

Although the first results on D∗+ production in DIS at HERA were based on fairly
modest event samples [3, 4], they already demonstrated the dominance of the BGF process
in charm production. The statistics and the quality of the data used in this work were
considerably improved by the increase of the HERA luminosity together with the better
performances of the central tracker and of the backward region of H1. Therefore, the D∗+

cross sections presented here permit a closer and finer comparison, in a larger kinematic
range, with the predictions of available pQCD calculations combined with fragmentation
models. At the leading order in αs (LO), the predictions of the AROMA and the new
coming CASCADE event generators using the DGLAP and CCFM formalism respectively
were studied. In addition, the next to leading order (NLO) predictions carried out within
the DGLAP and provided by the HVQDIS programme formalism were also confronted to
the presented measurement.

After a general description of electron-proton scattering at HERA in chapter 1 and of
the H1 detector in chapter 2, the theoretical framework will be discussed in chapter 3. The
complete D∗+ analysis, ranging from the online selection to the final D∗+ reconstruction,
is dealt with in chapter 4. The D∗+ total cross section within the visible range as well
as single and double differential cross sections are presented in chapter 5 together with a
comparison with the three above-mentioned theoretical predictions. Finally, in chapter 6
the different ways to determine the gluon density at HERA are described. With the D∗+

events selected in this analysis, the attempt has been made to extract the gluon density in
the proton by means of LO pQCD calculations. The encountered difficulties and possible
explanations are discussed.

1Charge conjugate states are always implicitly included.
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Chapter 1

Electron-Proton Scattering at HERA

1.1 The Electron-Proton Ring HERA

The HERA (Hadron Electron Ring Anlage) particle collider at the research institute
DESY (Hamburg) is the first ever constructed electron-proton storage ring. Since 1992,
two independent accelerators housing in the same tunnel have provided counter circulating
proton and electron1 beams with energies of 820 GeV and 27.5 GeV respectively2. The
accelerating complex DESY and the former storage ring PETRA were modified to serve
as pre-accelerators. They provide HERA injection energies of 12 GeV for electrons and 40
GeV for protons. Both rings of HERA show a four fold symmetry and have a circumference
of 6.3 km. Four high energy physics experiments are carried out in the four straight
sections. The H1 and ZEUS detectors are located in the North and South Halls where
the electron and proton beams are brought to head on collisions with a centre of mass
energy of

√
s ≈ 300 GeV (318 GeV in case of a 920 GeV proton beam). The HERMES

detector (East Hall) studies the scattering of the polarised electron beam on polarised
gas targets. In the fourth hall, the HERA-B experiment where the HERA protons collide
on several possible wire targets, was originally dedicated to CP violation measurement
in the decay of neutral B particles. However, the tremendous effort necessary to reach
the required radiation hard detector and the difficulty to face background 12 orders of
magnitude larger than the investigated signal forced the HERA-B physicists to revise
the research programme toward general questions in strong interaction physics and rare
decays of charm quarks.

The maximum reachable energy of the stored beams is given by two different means.
The electron energy is limited by the available accelerating power which has to compensate
the strong increase of synchrotron radiation losses, while the proton energy is limited by
the strength of the magnetic field which is required to keep the heavy particles on their
orbit. In the years 1996 and 1997, when the data were taken for this analysis, 175
colliding bunches were filled into each HERA rings. A few non colliding electron and
proton bunches were additionally injected as so-called pilot bunches. Those are used to

1Electrons have been replaced by positrons in August 1994 since electron beams showed a much shorter
lifetime. In 1998 till mid 1999 HERA switched back to electrons. Positron running was resumed from
mid 1999 on.

2From 1998 on the proton beam energy was risen to 920 GeV.
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determine background processes like interactions with residual gas and with the beam
pipe. The time lapse between two bunch crossings at the collision points totals 96 ns
(≈ 10.4 MHz). The above mentioned background processes normally occur with rates
of more than 10 kHz while the rate of genuine ep events is in the order of below 1 kHz.
Therefore, it is necessary to operate detectors like H1 with sophisticated trigger systems
to suppress the high background rates.

1.2 Kinematic Quantities in Electron-Proton Scat-

tering

The inclusive electron-proton scattering process ep → lX (l = e or ν) is taking place
at the lowest order via the exchange of a gauge boson between the electron and a quark
in the proton (see figure 1.1). One generally distinguishes two different classes of events.
The first one - ep → eX- where the exchanged boson is neutral (a virtual photon or a Z0

boson) is called Neutral Current (NC). The second event class called Charged Current
(CC) - ep → νX- has the particularity to have a neutrino as outgoing lepton and the W±

boson mediates the exchange. Most physical processes and quantities studied at HERA
are functions of the event kinematics x, y and Q2 (Lorentz invariant quantities) and it is
therefore important to define them here:

Q2 = −q2c2 = (k − k′)2c2

x =
Q2

2 P · q c2

y =
P · q
P · k .

(1.1)

The four-momentum of the exchanged boson is noted q and its invariant mass squared
is given by −Q2. The value of Q2 represents the degree of the boson virtuality. At the
lepton vertex the variable Q2 can be described in terms of the difference of the incoming
lepton momentum (k) and the outgoing lepton momentum (k′). In a frame where the
proton mass is very small compared to the proton energy (called infinite momentum
frame) the Bjorken scaling variable x is interpreted as the fraction of proton momentum
carried by the struck quark within the assumption of the Quark Parton Model (QPM,
see subsection 3.1.1). The four-momentum of the incoming proton is denoted by P . In
the incident proton rest frame y represents the fraction of the incident electron energy
transfered to the proton.

It is also important to notice that for fixed beam energies there are only two indepen-
dent variables among the three defined in equation 1.1. The variables x, y and Q2 are
related via the centre of mass energy

√
s of the ep collision as follows:

Q2 = xys, (1.2)

where:
s = (k + P )2c2. (1.3)

4
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Figure 1.1: Representation of the inclusive electron-proton scattering process ep → lX
(l = e or ν) in the Quark Parton Model.

Equation 1.2 is valid when the electron and proton masses are neglected because in this
case s is given by:

s = 2 k · P c2 = 4EeEp, (1.4)

where Ee = 27.6 GeV and Ep = 820 GeV are the electron and proton beam energy
respectively.

Another important quantity is the energy of the boson-proton centre of mass W which
is equal to the invariant mass of the hadronic final state:

W 2 = (q + P )2c2 = Q2
(

1

x
− 1

)
+ m2

pc
4 = ys−Q2 + m2

pc
4. (1.5)

1.3 Accessible Kinematic Range at HERA

In figure 1.2 the (x,Q2) domains reached by HERA experiments and previous experi-
ments are shown. In NC process the cross section decreases rapidly with Q2 because the
value zero for Q2 corresponds to the pole of the photon propagator. In the Quark Parton
Model, for a given moderate Q2 value a struck quark with large x will stay in the proton
direction (forward). A smaller x struck quark will loose its initial direction and therefore
be more deviated from the proton direction. Usually three different kinematic domains
are defined by the virtuality of the exchanged boson.

• The commonly named photoproduction domain for Q2 ≈ 0 GeV2 corresponds to
an exchanged photon almost on-shell. The very small virtuality allows the photon
to fluctuate into a hadronic state. Those resolved processes are distinguished from
the direct case where the photon is point like. They are important for light quark
production.

• For 0.35 GeV2 < Q2 < 100 GeV2 one enters already the Deep Inelastic Scattering
regime (DIS). This Q2 range is called DIS at low and moderate Q2 and is
dominated by NC photon exchange events. Smaller values of x are accessed which

5



allows extensive tests of QCD. The present analysis is done in a subregion of this
domain which can be seen in figure 1.2.

• The so called DIS at high Q2 domain for Q2 > 100 GeV2 corresponds to events
where in most of the case the quark involved in the process is a valence quark.
For Q2 above 5000 GeV2 cross sections for NN and CC are of comparable size.
Moreover in NC process where Q2 ≈ m2

Zc4 the contributions due to Z0 exchange
become important. Therefore in this domain it is possible to evaluate the effect of
the electroweak sector of the Standard Model and to pin down any indication of
physics beyond the Standard Model.

1.4 Heavy Quark Production at HERA

Charm quarks are revealed by identifying their fragmentated hadrons. The D∗+ and
D0 mesons or the Λc baryon are representatives of open charm production whereas J/ψ
mesons allow to tag charmonium production3. Generally the hadrons are reconstructed
from their decay particles measured in tracker devices.

Open charm photoproduction in NC is accessible with the H1 detector (see figure 2.1)
by identifying the scattered electron in calorimeters situated far down-stream4 and very
close to the beam direction. Different Q2, y, W ranges are accessible depending how far
the device is situated from the interaction point. They deliver detailed information about
the production mechanism.

In DIS open charm production the electrons are scattered at larger angles than in
photoproduction and are identified in the backward region of the main body of H1. First
measurement at HERA [3] has confirmed the EMC collaboration results on muon nucleon
scattering [5], showing that charm production is dominated by the boson-gluon fusion
process (see figure 3.3).

The object of the present analysis is to study open charm production in DIS where the
scattered electron is identified in the new backward components of H1 (see section 2.3). In
figure 1.2 the parallelogram shows the domain in which the cross sections are be measured
(1 GeV2 < Q2 < 100 GeV2 and 0.05 < y < 0.7). The points correspond to the 1996
selected D∗+ candidates (see chapter 4). The D∗+ candidates can only be reconstructed
in the so-called visible range which corresponds to the detector acceptance (-1.5 < ηD∗ <
1.5) and to the way of extracting the D∗+ signal which requires p⊥D∗ > 1.5 GeV/c. The
accessible W range, which is essentially given by the y range, goes from 70 to 250 GeV. The
steeply falling cross section with Q2 together with a small reconstruction efficiency restricts
the accessible kinematics to Q2 < 100 GeV2. The accessible larger kinematic range as well
as the improvement of the scattered electron selection and kinematics resolution allows a
better confrontation between the data and the available theories.

Up to now it was not possible to identify charm within CC events. At moderate Q2

the CC cross section is suppressed due to the high mass of the W± boson. At very high
Q2 both NC and CC cross sections are small though of the same order of magnitude.

3Charge conjugate states are always implicitly included.
4Backward with respect to the centre of mass direction.
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At HERA, beauty production, which is two order of magnitude smaller than charm
production, is enhanced in events containing two jets where one of the jet is accompanied
by a muon. The contribution of bb̄ events is determined from a simultaneous fit of the
impact parameter δ and the transverse momentum prel

⊥ relative to the jet axis. Within
the detector muon acceptance, p⊥µ > 2 GeV/c and 35◦ < θµ < 130◦, the H1 collaboration
has already given preliminary results for bb̄ cross sections:
- σbb̄

vis(ep → eµX) = (170± 25(stat)± 29(syst)) pb
for Q2 < 1 GeV2 and 0.1 < y < 0.8 [6],

- σbb̄
vis(ep → eµX) = (39± 8(stat)± 10(syst)) pb
for 2 GeV2 < Q2 < 100 GeV2 and 0.05 < y < 0.7 [7].

For Q2 < 1 GeV2 the predicted cross section based on the NLO calculations by Frixione
et al. [8] is 104 ± 17 pb. This prediction undershoots clearly the data. In deep inelastic
scattering (2 GeV2 < Q2 < 100 GeV2), the measured bb̄ cross section is roughly three
times larger than the prediction of the HVQDIS NLO calculations (see subsection 3.3.5)
which amounts only (11 ± 2)pb.

Studying charm production at HERA with improved experimental conditions can
therefore significantly contribute to the understanding of heavy quark physics. Beauty
measurements are also very important as they show large discrepancies with the available
theories.
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Figure 1.2: x,Q2 range covered by fixed target experiments (SLAC, BCDMS, NMC,
CCFR and E665) and collider deep inelastic scattering experiments (H1 and ZEUS) car-
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presented in this analysis are measured and the points correspond to the 1996 selected
D∗+ candidates (after selection described in chapter 4).
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Chapter 2

The Detector H1

2.1 Overview of the Experimental Setup

The H1 spectrometer [9], one of the two devices built to study the electron-proton
collisions provided by HERA, is schematised in figure 2.1. A cut along the beam axis
is shown in figure 2.2. Although H1 is composed like all modern collider experiments, it
presents the specificity of an enhanced instrumentation in the proton direction (frequently
called the forward direction). This is the consequence of the fact that the centre of mass of
the collision is not at rest in the laboratory frame but progressing in the proton direction
(with a velocity βCMc = 0.935c) due to highly asymmetric beam energies (see chapter
1.1). For the understanding of all the figures in this chapter, one has to know that the
coordinate system attributed to H1 has the z-axis parallel and in the same direction as
the proton momentum. The origin is at the nominal interaction point inside H1 and
the x-axis is pointing towards the centre of the accelerator ring. Emphasise has been
put on basic requirements in order to fully exploit the physics available at the HERA ep
collider. Indeed, the measurement of the proton structure functions (F2, FL, F3, F

c
2 ) in

deep inelastic scattering requires a clean identification of the scattered electron as well
as a good resolution in the measurement of its energy and scattering angle (see equation
4.4). To attain this, an adequate segmentation of the calorimeters in depth, θ and ϕ over
the full kinematic range has been achieved. In the case when the event kinematics are
determined via the E−pz measurement (see subsection 4.3.2), a high degree of hermiticity
as well as a good reconstruction of the hadronic final state are necessary. The previous
requirements are also important to identify missing transverse momentum resulting in a
positive E − pz value, a usual signature of events involving energetic neutrinos. A highly
efficient central tracking system and a good muon identification are essential to heavy
flavour physics and search for new particles.

The H1 detector is summing up approximately 270,000 channels coming from a number
of complex, highly-segmented subdetectors. It is composed as follows.

• A tracking system is providing track triggering, momentum reconstruction and par-
ticle identification, adequate to the event topology particular to HERA electron-
proton collisions. It is mechanically distinct into the central and forward tracking
devices (CTD, FTD) in order to maintain a good efficiency for triggering and re-
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construction over the whole polar angle. This is necessary because of the event
topology when colliding two beams asymmetric in energy (high density of particles
at small polar angle). The central tracking device is described in details in section
2.2.

The forward tracking device consists of a dense assembly of three nearly identical
super-modules and was designed to provide an accurate measurement of charged
particle momenta in the forward direction (momentum resolution σp/p

2 < 0.003
GeV−1c and track angular resolution σθ,ϕ < 1 mrad). Each super-module is com-
posed of the following devices (starting from the device closest to the vertex):

– Three planar drift chambers are composed respectively of 32 cells. Within one
chamber the wires are strung in the (x, y) plane parallel with one another and
with four layers of sense wires deep in z. The wires in one chamber are tilted
by 60◦ in azimuthal angle with respect to the wires of the neighbouring planar
chamber. The drift velocity lies as well in the (x, y) plane but perpendicular to
the wires (in case of no magnetic field). The drift time coordinate is determined
from the pulse profile (Q, t) analysis (described in appendix A.1).

– One multi-wire proportional chamber (FWPC) is a sandwich in z of three
layers of concentric cathodes separated by two layers of dense parallel wires
perpendicular to the beam line (dense y orientated wires). The bad space
resolution is compensated by a very small time response (≈ 20 ns) which turns
the FWPC into the forward device used in the general track triggering.

– A transition radiator (TR) consisting of 400 polypropylene foils is enclosed in
his own helium-ethane mixture gas envelope and provides an adequate number
of dielectric interfaces to enhance the X-ray emission of crossing electrons. To
allow the transition radiation photons to pass through, a thin mylar window is
making the separation between the TR and the radial chamber.

– The radial chamber produces up to 12 accurate space points determined by
the drift coordinates perpendicular to the sense wire (using pulse profile (Q, t)
analysis) and by the radial position (using charge division method). The radial
chamber gas is optimised for efficient X-ray detection of the TR photons. This
allows an electron-pion discrimination at the level of 90% electron acceptance
with less than 10% pion contamination for tracks up to 80 GeV passing through
all three super-modules of the FTD.

• Two Silicon detectors were installed between the beam pipe and the central tracker
device. The central silicon tracker (CST) implemented partially in 1996 and com-
pleted in in 1997 consists of two concentric cylindrical layers of silicon sensors. It
will be of use in the determination of the heavy meson secondary vertices and in the
improvement of the central track measurement. A backward silicon tracker (BST)
has been mounted in 1996 downstream in the electron direction and before the BDC
in order to improve the measurement of the scattered electron. The BDC consists
of four planes of silicon wafers with p-type strips concentric around the beam axis.
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Figure 2.1: The main body of the H1 detector.
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Figure 2.2: Longitudinal cut through the H1 detector along the beam axis.
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• A central calorimeter is surrounding the central and forward tracking devices. The
liquid argon (LAr) technique has been chosen in order to profit from its excellent
stability, its good resistance to radiation and its relatively well off calibration as well
as its fine granularity necessary to separate electrons from pions. The homogeneity
in its response as well as the best hermiticity have been sought after in order to
achieve a precise measurement of the energy flux and thus of the missing energy.
The calorimeter is divided into two functional parts. Right after the central trackers
stands the electromagnetic part which will be used to detect the electrons while the
hadronic part is dedicated to the hadron energy measurement.

• The backward region is hermetically covered by a thin drift chamber (BDC) and
a spaghetti calorimeter (SpaCal) with an electromagnetic and a hadronic section.
More details on the SpaCal and on the BDC are given in sections 2.3 and 2.4
respectively.

• Encircling the LAr calorimeter a superconducting solenoid produces a uniform and
longitudinal magnetic field of 1.15 T which allows the measurement of the transverse
momentum in the trackers.

• An iron yoke consisting of an octagonal barrel around the solenoid plus two flat
end caps ensures the guidance of the returning magnetic flux and the uniformity of
the internal field. The iron yoke is instrumented with limited streamer tubes (LST)
which are placed in gaps between alternate layers of iron. Two additional muon
chambers are situated at the inside and outside of the iron yoke. This so called
instrumented iron serves a dual purpose. At first, it is used as a tail catcher (TC)
calorimeter to detect and measure the hadronic energy leaking from the LAr and
backward calorimeters. At second, it acts as a detector of penetrating muon tracks.

• The forward muon detector is situated outside of the iron yoke in the forward
direction and consists of six layers of muon chambers, three either side of a toroidal
magnet.

• Electron and photon taggers are placed well downstream in the electron direction.
They are used to measure the luminosity and in addition, in the case of the electron
tagger, to tag photoproduction. A precise description of the luminosity system is
given in section 2.5

• Time of flight (ToF) counters and two double scintillator veto walls have been in-
stalled to reject proton-beam associated background at the first trigger level with
the help of the SpaCal calorimeter. The Forward ToF (FToF) is situated at z ≈ 7.0
m in between the forward muon system. The Plug ToF (PToF) is installed in the
region of the Plug calorimeter at z ≈ 5.3 m. The Backward ToF (BToF) is mounted
at z ≈ −3.3 m. The veto wall system consists out of two devices: the big veto wall
or outer veto wall (seen in figure 2.2) covering nearly the entire surface of H1 and
installed at z ≈ −6.5 m; the small veto wall or inner veto wall located very close to
the beam line in between some HERA magnets at z ≈ −8.1 m. An event is rejected
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when activity arrives out of time with respect to the bunch crossing or when the
determined z position of the ep interaction (determined with 30 cm precision) is not
in the expected region.

• The supression of the high background due to the non point-like characteristic of
the proton and the restriction to keep only dedicated physics is realised through a
very sophisticated trigger system described in section 2.6.

In the following a detailed description of the H1 detector components which are
particularly relevant to this analysis is given.

2.2 The Central Tracking System

The Central Tracking System, centred at the nominal interaction point in the region
of z between -1.25 and 1.25 m, covers the polar angular range between 15◦ and 165◦. It
is composed of two concentric cylindrical drift chambers - the central jet chamber 1 and
2 (CJC1 and CJC2) - which provide the trajectory measurement in the transverse plane
(x, y). The trajectory along the z-axis is measured by two supplementary drift chambers
named central inner (CIZ) and central outer (COZ) z-chambers. Despite of the very
good spacial resolution these chambers with their large time response (≈ 1 µs) are not
adequate to provide time resolution better than the separation of two successive bunch
crossings. Therefore two proportional chambers, the central inner proportional (CIP) and
the central outer proportional (COP) chamber, with a very small time response have been
implemented. They provide in combination with the forward and backward multiwire pro-
portional chambers a fast trigger decision which is used to distinguish between successive
bunch crossings. A particle created at the interaction point will cross the elements of the
central tracking system in the order CIP, CIZ, CJC1, COZ, COP, CJC2 as seen in figure
2.3.

2.2.1 The Central Jet Chambers

The two concentric central jet chambers are the main devices used in the track re-
construction. They allow the measurement of particle transverse momenta as well as
particle identification. The latter is accomplished via the measurement of dE

dx
, the loss of

energy with distance travelled. The large time response (≈ 1 µs) requires a fast algorithm
based on the recognition of special track configurations to allow the use of the CJC at
the first trigger level. The CJC1 chamber consists of 30 cells, each containing 24 sense
wires, whilst the CJC2 chamber consists of 60 cells of 32 sense wires each. The cells are
separated by cathode planes, made of wires, shaping the drift field. The anode sense wire
direction is parallel to the z-axis so that the drift velocity (being around 50 mm·µs−1)
is in the (x, y) plane. The drift time information is used to determine the rϕ-coordinate
with a resolution of approximately 170 µm. A rough estimation of the z-coordinate (25
mm resolution) is available from the charge division (see appendix A.2). To account for
the magnetic field all drift cells are tilted by 30◦ to the radial direction. The electric drift
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Figure 2.3: r-ϕ view of the Central Tracking System.

field compensates the effect of magnetic field on the ionising electrons so that, for a stiff
track originating at the z-axis, the ionising electron will drift perpendicular to the track
direction. This configuration gives an optimum track resolution. The usual drift chamber
ambiguity (mirror track) is resolved by combining track segments from different cells.

2.2.2 Complementary Trackers

The Central z-Chambers

The central inner and outer z-chambers (CIZ and COZ) complement the measurement
of the CJC chambers by a precise measurement of z. Their wires are perpendicular to
the radial direction with a drift velocity parallel to z. Both chambers give a z-resolution
of typically 300 µm. Whenever CIZ and COZ track elements can be linked to a CJC
track an additional fit will be performed including the CIZ and COZ track elements and
resulting in an improved track momentum measurement. This treatment is limited by the
low linking efficiency. Therefore the z-chambers do not improve the detector performance
considerably.
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Figure 2.4: Schema of the CIP and COP geometry.

The Central Proportional Chambers

The central inner and outer proportional chambers (CIP and COP) are also comple-
mentary trackers but have no impact on the final track measurement. Their main role is
to provide, in combination with the FWPC (see section 2.1), a fast information on the
primary vertex z-position usable at the first trigger level. Like for the CJC trackers the
CIP and COP have their wire parallel to the z-axis. Both detectors consist of 2 layers
(chambers) delimited by three concentric cylinders. The CIP (COP) chambers are seg-
mented in z by 60 (18) pads of 36 (120) mm for each of the 8 (16) ϕ sectors. The wires
are running over the pads along the z-axis. The two CIP chambers are rotated by π/8 in
ϕ thus both CIP and COP are providing a 16-fold segmentation in ϕ. An overview of the
central proportional chambers is shown in figure 2.4.

2.2.3 Track Reconstruction

The presence of an external longitudinal magnetic field in the area of the CJC results in
Lorentz forces on charged particles. The trajectory of a charged particle can be described
by a helix which is determined by a set of five parameters.

• The signed curvature κ = ±r−1.

• The signed closest distance from the z-axis in the (x, y)-plane dca.

• The azimuth angle Φ at the point of the closest approach: angle between x-direction
and the transverse momentum (tangent to the helix in the r, φ-plane) at the closest
approach.

• The polar angle θ at the point of the closest approach: angle between z-direction
and the momentum at the closest approach.

• The z-position zca at the point of the closest approach.
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The sign of κ is positive if the propagation of the particle from the closest approach
is counter-clockwise. The transverse momentum of the track is directly parametrised
through the curvature of the helix in the (x, y)-plane, κ ∝ 1/p⊥. The distance dca is
chosen positive if the vectors (dca, p⊥) build up a right-handed system. The first three
parameters are determined by projecting the trajectory into the (x, y)-plane and fitting
the resulting circle. The polar angle θ and the z-position zca are then the result of a
linear least-square fit in the (r, z)-plane. The track reconstruction is implemented in two
different versions. A fast version, on the trigger Level 4, is the input for an online event
classification and background rejection. It only reconstructs tracks origin from a primary
vertex. The second version, the so called standard version, reconstructs all kind of tracks
on trigger level 5 (offline reconstruction).

The Fast Track Reconstruction on L4

The reconstruction is carried out in different phases. In the first phase, the algorithm
looks for short track elements in each angular drift cell independently. For this the time
of the interaction T0 of the event is determined from the threshold in the so-called drift
time histogram where all first electrons arival times from all wire signals (see appendix
A.1) are added. Then the algorithm calculates the drift distances (including mirror hits
since the drift distance is ambiguous) for each wire signal. It searches for triple hits (short
track elements) which belong together. Here, only wires with a wire distance of two are
taken into account. This limits the search to tracks with negligible curvature. Regions
with many hits are not analysed at this reconstruction stage. Based on the three hits, a
circle fit is done with the preliminary assumption dca = 0 and the parameters κ and Φ are
determined. Thus parameters of triplets belonging to the same track cluster in the plane
(κ, Φ). A first track definition is achieved. In the next phase a circle is fitted again with
all triplets of one track but now allowing dca 6= 0. Mirror triple hits are usually excluded
at this stage since tracks based on those hits are not continuous across neighbouring drift
cells. After the track reconstruction is finished in the r, φ-plane the hits are fitted in the
r, z-plane where zca was obtained by the charge division method (see appendix A.2).

The Standard Track Reconstruction on L5

The standard track reconstruction on trigger level 5 uses the results which are obtained
with the fast reconstruction method. First of all, it tries to improve the value of the
interaction time T0. This is achieved by calculating the differences between the measured
and expected drift lengths of long tracks. An expression is fitted to these differences and
results in a much more accurate determination of T0 than obtained on Level 4. After this
the standard track finding searches for triple hits as before but now on all adjacent wires.
An iterative merging algorithm combines track elements with similar helix parameters
and builds up new longer track elements. New fits are then performed to these longer
track elements and lead to more accurate helix parameters if the fit was accepted. Up to
now all reconstructed tracks are not vertex fitted. The run vertex coordinates (xvtx, yvtx),
which can vary over a few hundred µm from run to run, is determined by minimising the
rms value of the distances between run vertex and several hundred long tracks with high
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momentum. The zvtx value of the primary interaction vertex is determined for each event
from all tracks fitting to the (xvtx, yvtx) vertex. Finally, the standard track reconstruction
algorithm also looks for secondary vertices coming from the decay of neutral particles.
Here, simple geometrical cuts and kinematic constraints are applied for the search of
two oppositely charged particles. The reconstruction programme provides a list of track
properties. It collects the parameters of the helix, the reconstructed momentum but also
a set of quality criteria:

• the number of hits used in the fit in the CJC1 and in CJC2

• the so called track length which represents the total length of the track measured
segment.

• The radius at the first hit used in the fits, track starting radius.

• The energy loss due to ionisation, dE
dx

.

2.3 The Backward Detector SpaCal

Under the constant worry of improving the performance of the H1 detector, it had
been decided to use the winter shutdown 1994/95 to accomplish heavy changes in the
structure of H1. The implementation of a new backward Spaghetti Calorimeter, the
SpaCal [10], fronted by a new drift chamber (BDC) was the major change. This was
motivated by the interest in the physics at low Q2 where the gluon density dramatically
increases. To compare with the previous backward calorimeter (BEMC [9]), the SpaCal
increases the polar angular range from 176◦ to 177.5◦ which allows to access Q2 values
down to 0.4 GeV2 and x values down to 10−5. It also provides a better granularity as
well as a big improvement in the resolution of the electromagnetic and hadronic energy
measurements. In photoproduction, a process several order of magnitude more abundant
than DIS scattering, the scattered electron often escapes in the beam pipe. In this case
the SpaCal, with an excellent electrons to charged hadrons separation, is able to suppress
fake electron which could be considered as the scattered one. The overall calibration
uncertainty of less than 1% allows to reduce the already dominant systematic error on the
kinematic variables relevant in the determination of the proton structure function. Finally
a time resolution of less than 1 ns gives the possibility to reject upstream beam-induced
background events which have a time-of-flight delay of approximately 10 ns compared to
ep scattering events.

The SpaCal calorimeter consists of an inner electromagnetic and an outer hadronic
section covering the polar angle range from 153◦ to 177.5◦. The 1192 electromagnetic cells
and the 136 hadronic cells provide an extremely fine granularity. Both electromagnetic and
hadronic parts use the same spaghetti type technology. For the electromagnetic section a
2-cell module, represented in figure 2.5, is composed of 52 lead matrices where a total of
4680 fibres are embedded. The cross section of one cell is 40.5×40.5 mm2 and contains
2340 fibres which are bundled at the cell end and read by a single photomultiplier after
mixing the scintillation light with the help of an acrylic light mixer. Eight 2-cell modules
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are grouped to form a 16-cell module. The orientation of the 2-cell modules within a
16-cell module is either horizontal or vertical (figure 2.6) to minimise channelling1. The
electromagnetic cells are less dense and smaller than the hadronic ones as represented
in figure 2.6. The section of a hadronic cell is 119.3×119.3 mm2 and consists of 65
lead plates, each filled with 54 fibres. As in the electromagnetic section, the fibres of
one hadronic cell are bundled and coupled via an 80 mm long acrylic light mixer to a
photomultiplier. Both electromagnetic and hadronic parts have an active length of 25 cm
which corresponds to 27.8 radiation lengths for the electromagnetic section and 29.4 for
the hadronic section. The two sections, each representing approximately one interaction
length, provide a longitudinal calorimetry which is the key point of a good electron-hadron
separation. The main SpaCal parameters are summarised in table 2.1.

Electromagnetic Section Hadronic section

Total length of the section 500 mm 500 mm
Active length 250 mm 250 mm

Number of cells 1192 136
Fibre type Bicron BCF-12 Bicron BCF-12

Fibre diameter 0.5 mm 1.0 mm
Lead to fibre ratio 2.3 : 1 3.4 : 1
Standard cell size 40.5×40.5 mm2 119.3×119.3 mm2

Number of lead plates/cell 52 65
Number of fibres/plate 45 54

Total number of fibres/cell 2340 3510
Radiation length X0 9.0 mm 8.5 mm
Active length in X0 27.8 29.4
Interaction length Λ 250 mm 246 mm
Active length in Λ 1.00 1.02

Table 2.1: Design parameters of the backward calorimeter SpaCal.

The test realised with the PS and SPS beam at CERN and at DESY [11] have allowed
to measure the energy resolution of the electromagnetic section:

σE

E
=

(7.1± 0.2)%√
E/GeV

⊕ (1.0± 0.1)% (2.1)

where the term in
√

E/GeV comes from the fluctuation of the number of generated
electron in the photomultipliers. This resolution was one of the main requirements for a
new backward calorimeter in order to improve the x resolution at small values of y.
Later, when SpaCal was operated within H1, studies of the scattered electron energy
spectrum at the kinematic peak have been performed [12] using both electron and double

1The channelling effect is a degradation of the energy resolution which occurs if fibres or lead sheets
are aligned with the particle trajectory.
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angle methods (see equations 4.4 and 4.15). They resulted in a 1% energy resolution for
27.5 GeV electrons. QED Compton events were used to measure a 2.5% energy resolution
for scattered electrons of 7 GeV [13]. Finally, since a straight line can well describe the
behaviour of the equation 2.1 , the SpaCal energy resolution can be taken as linear from
2.5% at 7 GeV to 1% at 27.5 GeV.

Lead-Fibre Matrix
Fibre

Bundles

Light Mixers

Bounding Frame

Figure 2.5: SpaCal Electromagnetic 2-cell module.

a) b)

Figure 2.6: r-φ view of the SpaCal a) electromagnetic section with its 16-cells delimited
by bold lines and b) the hadronic section where the circle represents cells read out by a
photomultiplier.
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For the hadronic part, measurements were performed at the ITEP proton synchrotron
at Moscow [14] and result in a hadronic resolution of

σE

E
=

(56.0± 3.0)%√
E/GeV

(2.2)

compared to the 100%√
E/GeV

obtained with the previous BEMC calorimeter.

The fine granularity of the electromagnetic section gives a polar angle resolution of:

σθ = 2 mrad (2.3)

which corresponds to a few mm resolution in the position measurement. Such a good
resolution is essential to achieve a precise measurement of Q2 at large scattering angle.

2.4 The Backward Drift Chamber

The Backward Drift Chamber (BDC) [15] is mounted in front of the SpaCal. Thanks
to its similar angular acceptance it provides an accurate measurement of the scattered
electron polar and azimuthal angles. The BDC is subdivided in eight octants. One octant
consists of four double layers of drift chambers which are superposed along the z direction.
The sens wires (2048) are strung perpendicular to the beam pipe and in a way that an
almost radial drift direction is produced. This geometry optimises the spacial resolution
in the polar angle. Moreover, the wire spacing decreases towards the inner region of the
chamber, such that a uniform resolution in the polar angle is obtained. The left and right
ambiguity on the ionisation point is solved by shifting each double layer by half a cell
width. In addition, the double layers are rotated by 11.5◦ with respect to one another
which allows to measure the azimuthal angle.

2.5 The Luminosity System

The luminosity system is forseen to provide a fast online luminosity measurement
necessary for the HERA machine group to steer the electron beam and to detect prob-
lems. Offline, it gives an accurate luminosity measurement used to calculate precise cross
sections at H1. The luminosity is determined from the rate of the Bethe-Heitler pro-
cess, ep → epγ, because this process is insensitive to the internal proton structure. The
Bethe-Heitler events represent the dominant part of the bremsstrahlung process which
corresponds to the poles in both the virtual electron and photon propagators. The out-
going electron and photon leave the central detector collinear to the incoming electron.
The Bethe-Heitler cross section is large and precisely calculable within the quantum elec-
trodynamics theory. It amounts to 70 nb in the visible range of the luminosity system
[16].

The luminosity system is based on two dedicated detectors: the Electron Tagger (ET)
for detecting the scattered electron and the Photon Detector (PD) for detecting the out-
going photon. The kinematic of the Bethe-Heitler process favours scattered electrons
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Figure 2.7: Layout of the luminosity system.

staying inside the beam pipe. Therefore the ET is situated very close to the beam pipe
and far from the interaction point (z = −33 cm) in order to access electrons with scat-
tered polar angles close to 180◦. Like for the electron of the beam the scattered electron
is deflected by the system of magnets used to isolate the electron beam from the proton
beam. On the contrary, the outgoing photon will continue straight and will reach the PD
which is centred on the proton beam axis at z = −103 m. Figure 2.7 shows the layout of
the luminosity system.

A two radiation length long lead filter, followed by a one radiation length long water
Čerenkov counter is located in front of the PD and protects the PD against low energetic
synchrotron radiations. The water Čerenkov counter serves as a veto counter to tag
and reject early photons and events with photons interacting already in the filter. Total
absorption KRS-15 cristal Čerenkov counters have been chosen for both the ET and PD
detectors to reach high radiation resistance, good energy, coordinates and time resolutions.
The high energy resolution of the ET and PD is essential for the determination of the
event rate within a given energy window.
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The instantaneous luminosity is determined from the total rate of bremsstrahlung
events Rtot, the rate of bremsstrahlung events coming from electron pilot bunches R0 (see
subsection 1.1), the corresponding electron currents Itot, I0 and the visible part of the
Bethe-Heitler cross section σvis taking into account acceptance and trigger efficiency. The
instantaneous luminosity is then given by:

L =
Rtot − (Itot/I0)R0

σvis

. (2.4)

The event rate from the electron pilot bunches allows a good estimation of the amount of
bremsstrahlung events coming from electron interactions with residual gas in the beam
pipe (eA → eAγ), the main background source affecting the Bethe-Heitler rate determi-
nation. More details on the luminosity measurement in the H1 experiment can be found
in [16] and [17].

2.6 The Trigger System and Data Acquisition

The H1 detectors like most of the particle physics collider experiments has a very
sophisticated trigger system. This is mandatory to reduce the large total interaction rate
which exceeds the data readout and storage capabilities. Initially the raw data size per
event is approximately 3 MBytes and is reduced at the front end to 50-100 KBytes per
event. Only a small fraction of events coming from physics processes with high rate should
be kept whereas events coming from rare or hitherto unobserved physics processes should
be recorded with maximum possible efficiency.

The H1 trigger system consists of four levels out of which three are extensively used
for the online event selection. An event is written to tape after having passed with success
all three trigger levels.

With the increasing luminosity delivered by HERA over the years 1994 to 1999 the
H1 trigger system was continuously improved and refined. This section gives an overview
of the three trigger levels for the years 1996 and 1997.

2.6.1 Trigger Level 1

The HERA ep collider is providing one bunch crossing every 96 ns. Although an ep
interaction is not expected at every bunch crossing it is necessary to be able to detect a
genuine ep collision for each of the bunch crossings. Therefore the first trigger level has
been designed to provide a trigger decision according to the HERA clock signal of 10.4
MHz without causing deadtime. This is performed by feeding all subdetector data into
front-end pipelines for the time of 2.4 µs (25 bunch crossings) during which fast informa-
tions about the general properties of the event will be generated. These informations are
delivered under the form of trigger elements to the central trigger logic (CTL). Each sub-
detector is approximatively producing 8 trigger elements.The CTL builds up 128 logical
combinations of these trigger elements called subtriggers. At this level the subtrigger bits
are named raw subtrigger bits. For a better reduction of the L1 keep rate all subtriggers
can be downscaled by a so called prescale factor. If a subtrigger i is downscaled by a
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prescale factor di, only one event out of di events which have been fired by this subtrigger
will keep the subtrigger i bit set. The subtrigger bits after downscaling are named actual
subtrigger bits. A logical OR of the actual subtrigger bits will form the L1 keep signal.
After a positive L1 keep no data is taken from H1, all front end-pipelines are stopped, the
data of the event which has produced the positive L1 keep will be read and transferred
to the memories of the readout processors. When all front-end buffers have been read the
CTL resets the L1 keep signal and news events can feed again the pipelines. Due to the
deadtime introduced by the pipelines readout (1-2 ms) the subtriggers have to be enough
performant in order to keep the L1 keep rate under 50-100 Hz. In this case the primary
deadtime will stay under 5-10%.

2.6.2 Trigger Level 2

The second level of the H1 triggering is based on the output of two independent sys-
tems. The L2 Topological Trigger (L2TT) and the L2 Neural Net (L2NN) are producing
in parallel L2 trigger elements (L2TE) in a time of 20 µs. Each non set L2 TE is resetting
one or several defined Subtriggers. L1 raw subtriggers with L2 condition can therefore
run with rates up to few hundred Hertz without affecting the primary dead time. Many
of the subtriggers however, are not affected by the L2 TE. The L1 subtrigger bits after
the Level 2 are named final subtrigger bits. If none of the final subtrigger are set then
the readout is aborted and the data taking starts immediately after.

2.6.3 Trigger Level 4

A farm of RISC processors is running at the fourth trigger level parallel to the data
taking. The events arriving with a rate of 30 to 40 Hz will be distributed among the
processors, each running a reduced version of the offline reconstruction. An event will be
written to tape as soon as one of the Level 4 condition is satisfied. A final logged event
rate of 5-10 Hz is reached. Until the year 1996 the trigger Level 4 was only used to select
genuine ep collisions. Since beginning of 1997, because of the higher luminosity delivered
by HERA, the use of the trigger Level 4 was compulsory to reduce the rate of recorded
ep collisions. All physics interests have to be explicitely saved as well as corner of phase
space with potential of underlying unknown physics.

In addition the trigger Level 4 has the double feature of monitoring the performance
of all subdetectors necessary to detect problems during H1 operation.
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Chapter 3

Theoretical Framework

3.1 Quantum Chromodynamics in Electron-Proton

Scattering

Quantum Chromodynamics (QCD) is the field theory of strong interaction. Quarks
and gluons, which are the components of the hadrons, get an additional non classical
internal degree of freedom, the so called colour. There are only three fundamental colours
(red = r, green = g and blue = b). Quarks carry only one type of colour whereas gluons
are “bicoloured” (br̄ for example). The strong force between two quarks is mediated by
the exchange of a gluon. Since the gluons themselves carry colours they can also couple
to other gluons. This is a fundamental difference from QED where photon self-coupling
cannot occur (photons are electrically neutral). A consequence of the gluon self-coupling
is the logarithmic increase of the strong coupling constant αs with decreasing momentum
transfer. It is therefore difficult to apply the Feynman procedure to QCD. But experience
has shown that for many, if not all high energy processes involving a large momentum
transfer, it is possible to factorise the process into one part which only includes the hard
interaction and a second part characterised by smaller momentum transfers. The hard
interaction part can then be treated in perturbative QCD theory (pQCD) when αs is small
enough. The second part requires detailed non perturbative information like how hadrons
are built up out of quarks and gluons. Nevertheless, this part is not energy dependant
and can be applied to all interation processes after having been measured in simple cases.
Electron-proton scattering is a very fine method to test QCD because the electron is a
well known electromagnetic probe.

3.1.1 ep Scattering and the Proton Structure Functions

In deep inelastic ep scattering the general expression of the differential cross section
for the reaction ep → eX at the Born approximation in QED can be written in function
of the structure functions F1(x,Q2) and F2(x,Q2):

d2σep
NC

dxdQ2
=

4πα2
em

xQ4

(
xy2F1(x,Q2) + (1− y)F2(x,Q2)

)
, (3.1)
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where αem is the electromagnetic coupling constant. The quantities x, y and Q2 are
defined in subsection 1.2. The contributions from Z0 exchange and from the interference
terms between photon exchange and Z0 exchange yield an additional structure function
F3. However, for Q2 < 1000 GeV2 those contributions are negligible (m2

Zc4 ≈ 8100 GeV2)
and are therefore neglected in equation 3.1.
The differential cross section can also be written in function of the structure function
F2(x,Q2) and the longitudinal structure function FL(x,Q2):

d2σep
NC

dxdQ2
=

4πα2
em

xQ4

(
(1− y +

y2

2
)F2(x, Q2)− y2

2
FL(x, Q2)

)
, (3.2)

where FL(x,Q2) is defined as:

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2). (3.3)

The structure functions is related to the cross section of the virtual photon with the
proton σγ∗p and the separated cross section σγp

⊥ and σγp
‖ corresponding to a transversely

and longitudinally polarised photon:

FL(x,Q2) =
Q2

4π2αem

σγp
‖ (3.4)

2xF1(x,Q2) =
Q2

4π2αem

σγp
⊥ (3.5)

F2(x,Q2) =
Q2

4π2αem

(σγp
⊥ + σγp

‖ ) =
Q2

4π2αem

σγp. (3.6)

The differential cross section then takes the following form:

d2σep
NC

dxdQ2
=

αem

xQ2π

(
(1− y +

y2

2
)σγp
⊥ + (1− y)σγp

‖

)
. (3.7)

In ep interaction, QCD factorisation leads to the decomposition of the proton structure
functions F1 and F2.

The simplest factorisation is done in the Quark Parton Model (QPM) where no QCD
hard scale process is considered. The quarks are point-like and defined as quasi free
in the proton (all gluon initiated processes are neglected) and are represented by quark
and antiquark distribution functions qi(x) and q̄i(x) respectively. In this formalism the
function F2 is written as:

F2(x) =
nf∑

i=1

e2
i x

(
qi(x) + q̄i(x)

)
, (3.8)

where the sum i = 1, ..., nf runs over all active quark flavours ordered by increasing quark
masses. The idea of F2 scaling behaviour (i.e. F2 depends only on x) was proposed by
Bjorken in the limit of Q2 and ν = (Ee − E ′

e)
γp approaching infinity [19]. It was first

observed in deep inelastic electron-proton scattering experiments at SLAC [20].
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In the QPM model the virtual photon is exchanged between the electron and an on-
shell massless spin 1/2 quark. This results in a vanishing cross section for longitudinally
polarised photon σγp

‖ = 0 and is expressed in the Callan-Cross relationship:

FL(x) = F2(x)− 2xF1(x) = 0. (3.9)

The evidence of non free quarks in the proton is modelled in the DIS scheme where all
QCD orders are contained in the long range quark distribution functions qi(x,Q2) and
where F2 keeps the same form as in the Quark Parton Model:

F2(x,Q2) =
nf∑

i=1

e2
i x

(
qi(x,Q2) + q̄i(x,Q2)

)
. (3.10)

Experimentally at a fixed value of x the Q2 dependence of F2 can be observed by increasing
Q2. Indeed, when Q2 rises, the electron probe can distinguish finer and finer fluctuations
within the proton. From the F2 measurement at HERA it can be seen that the smaller
the fractional proton momentum x the earlier the Q2 dependence appears.

As soon as the leading order is considered in pQCD, each quark is no longer considered
as free but surrounded by a cloud of partons. F2 will therefore also be directly connected
to the gluon density in the proton. The structure function F2 is then the sum over all
quarks, antiquarks and gluon of the convolution of the coefficient functions CV,i and the
parton distribution functions fi (fi = qi for quarks and fnf+1 = g for gluon):

F2(x, Q2) =
nf+1∑

i=1

∫ 1

x
CV,i(x/x′, Q2/µ2

R, µ2
F , αs)fi(x

′, µ2
R, µ2

F , αs)dx′. (3.11)

The scale µF is known as the factorisation scale and defines the boundary between the
perturbative (αs(µ

2
F ) ¿ 1) and the non-perturbative QCD regimes. For Q2 ≥ µ2

F , pQCD
can be applied. The hard interaction part is factorised in the coefficient function CV,i.
The function CV,i describes how a parton i with fractional proton momentum x evolves
from pQCD radiative processes (via the exchange of virtual partons) out of the initial
parton with fractional proton momentum x′. Nowadays most of the pQCD calculations
are performed at the leading order (LO) or at the next to leading order (NLO). All non
calculated higher orders are absorbed in the parton density functions. When Q2 ≤ µ2

F

pQCD does not hold and all QCD orders are then absorbed in the parton density functions.
The renormalisation scale µR is present in every perturbative theory [21]. In pQCD, when
calculating the (αs)

n coefficients, various divergencies arise. These divergencies must be
regulated via a particular renormalisation scheme which requests the introduction of the
mass scale µR. The renormalisation scale depends on the chosen renormalisation scheme.
The renormalisation procedure also affects our way to look at the strong coupling constant.
Here we deal with the effective QCD coupling constant, a renormalised running coupling
constant with scale dependence controlled by the renormalisation group equation:

µ
∂αs

∂µ
= αs(− β0

2π
αs − β1

4π2
α2

s −
β2

64π3
α3

s − ...). (3.12)
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Only the first two coefficients (β0, β1) are independent of the choice of the renormalisation
scheme as shown below:

β0 = 11− 2/3 nf (3.13)

β1 = 51− 19/3 nf , (3.14)

where nf is the number of active flavours (number of quarks with mass smaller than µ).
Usually µ is chosen to be the typical energy scale of the hard process.
To completely solve the differential equation of αs a constant of integration is introduced.
This constant is determined from experiment and is chosen to be the value of αs at a fixed
reference scale. The preferred reference scale is the Z0 boson mass mZ . For example, at
the leading order this gives:

αs(µ
2) =

αs(m
2
Zc4)

1− β0
αs(m

2
Zc4)

4π
ln

(
µ2

m2
Zc4

) . (3.15)

An other way to take into account the integration constant is to introduce the dimensional

parameter Λ
(nf )
QCD. The parameter Λ

(nf )
QCD always depends on nf and for higher order also on

the renormalisation scheme. One of the most used way is to write a solution of equation
3.12 as an expansion of inverse power of ln(µ2) as shown in the following equation:

αs(µ
2) =

4π

β0 ln(µ2/Λ
(nf ) 2
QCD )


1− 2β1

β2
0

ln[ln(µ2/Λ
(nf ) 2
QCD )]

ln(µ2/Λ
(nf ) 2
QCD )

+
4β2

1

β4
0 ln2(µ2/Λ

(nf ) 2
QCD )

×
(

(ln[ln(µ2/Λ
(nf ) 2
QCD )]− 1

2
)2 +

β2β0

8β2
1

− 5

4

)]
. (3.16)

Here Λ
(nf )
QCD can be interpreted as the strength of the strong coupling constant (αs increases

to infinity when Q2 approaches Λ
(nf )
QCD). This solution nicely illustrates the asymptotic

freedom property of QCD.
At the leading order it reduces to:

αs(µ
2) =

4π

β0 ln (µ2/Λ
(nf ) 2
QCD )

(3.17)

ln(Λ
(nf ) 2
QCD ) = ln(m2

Zc4)− 4π

β0αs(m2
Zc4)

. (3.18)

3.1.2 The DGLAP Equations

The first calculation of the structure function in equation were done in the begin-
ning of the seventies by V.N. Gribov, L.N. Lipatov, G. Altarelli and G. Parisi (GLAP).
The non perturbative part in equation 3.11 is represented by the parton densities noted
fi(x

′, µ2
R, µ2

F , αs(Q
2)). The pQCD part is treated like a power series in αs which is justified

when αs(Q
2) ¿ 1. Unfortunately the LO QCD calculation shows an ln(Q2) dependence
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in the αs(Q
2) coefficient term. This rules out the use of power series in αs(Q

2) because
the smallness of αs(Q

2) is compensated by the large size of ln(Q2) (αs(Q
2) ln(Q2) ≈ 1).

To solve this problem, the ln(Q2) can be absorbed (factorised) into modified parton dis-
tributions:

CV,i(x/x′, Q2/µ2
R, µ2

F , αs) = CV,i(x/x′, ln

(
Q2

µ2
R

)
, µ2

F , αs) → CV,i
γq→q(x/x′) (3.19)

fi(x
′, µ2

R, µ2
F , αs) → qi(x

′, ln

(
Q2

µ2
R

)
, αs). (3.20)

The factorisation is possible because the ln(Q2) divergency (also known as collinear sin-
gularity) has a universal character in the way that it is independent of the high energy
interactions. This procedure is in fact similar to the renormalisation procedure of the
strong coupling constant since finally not only the LO collinear singularity is absorbed
but also all (αs(Q

2) ln(Q2))n. At the LO in αs the same formalism is kept as it is in
the simple Quark Parton Model. But the parton distributions have now a dynamical be-
haviour also called parton evolution which is determined by the pQCD calculations. The
Q2 dependence of F2 at fixed x, also known as F2 scaling violation, is entirely contained
in the parton density function. This gives a better understanding of what happens when
Q2 increases, namely the quark densities are shifted to lower x because of the coupling
g → qq̄. The first signs of F2 scaling violation were observed in the middle of the seventies
in muon-hadron and neutrino hadron scattering at Fermilab [22] and in electron-proton
scattering at SLAC [23]. The Q2 evolution of the parton density functions is then fixed
by the DGLAP1 evolution equations [24] at the LO in αs:

qi(x,Q2, αs(Q
2)) = qi(x,Q2

0) +

αs(Q
2)

2π

1∫

x

dx′

x′


 qi(x

′, Q2
0) Pqq

(
x

x′

)
+ g(x′, Q2

0)Pqg

(
x

x′

)
 ln

(
Q2

Q2
0

)

g(x,Q2, αs(Q
2) = g(x,Q2

0) +

αs(Q
2)

2π

1∫

x

dx′

x′




nf∑

i=1

(qi(x
′, Q2

0) + q̄i(x
′, Q2

0))Pgq

(
x

x′

)
+ g(x′, Q2

0)Pgg

(
x

x′

)
 ln

(
Q2

Q2
0

)
.

(3.21)

These equations relate the parton distribution at the scale Q2 to the parton distribution
at the scale Q2

0 where αs(Q
2
0) < 1. To get a prediction of F2 one needs to parametrise

the parton densities at the single input scale Q2
0. The scale Q2

0 can be considered as the
final factorisation scale. When Q2 ≈ Q2

0 the quark are quasi free. When Q2 is larger than
Q2

0, pQCD can be applied and appears in the ln(Q2) dependence of the parton density
functions.
The splitting functions Pab give the probability that a parton a with fractional proton
longitudinal momentum x′ will radiate a parton b with fractional proton longitudinal
momentum x. The ratio x/x′ is the fraction of the longitudinal momentum of the parton
a carried by the parton b. The splitting functions are the results of the pQCD calculations

1Dokshitzer, Gribov, Lipatov, Altarelli, Parisi.
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and so far they have been determined up to the NLO in αs [25].
However, a hidden problem appears for very small x where Pgg grows as x′/x. This brings
a second dominant term of the form ln(1/x) in the coefficient of αs. Therefore, in the
DGLAP approach x must be sufficiently large to ensure that ln(Q2) remains the only
dominant term in the coefficient of αs and thus represents the only divergency which
needs to be “resummed” in the parton densities. This condition is known as the collinear
Leading Logarithmic Approximation (LLA) or LLA in ln(Q2) and is represented by the
following relations:

αs(Q
2) ¿ 1

αs(Q
2) ln(Q2) ≈ 1

αs(Q
2) ln(1/x) ¿ 1.

(3.22)

With the increase of the centre of mass energy available at high energy colliders a new
perturbative regime opens up where the leading ln(Q2) approximation might show its
limits. However, up to now the NLO DGLAP evolution formalism is able to describe the
F2 data down to the smallest x value observed (x ≈ 5 · 10−5 for Q2 ≈ 2 GeV2, see figure
1.2) with an appropriate choice of the input parton distributions [26] [27] .
The DGLAP formalism at the LO is equivalent to “resumming” ladder diagrams (figure
3.1) whose rungs are strongly ordered in transverse momenta [28]:

Q2/c2 À k2
⊥n À ... À k2

⊥2 À k2
⊥1

x < xn < ... < x2 < x1,
(3.23)

where ki = (~k‖i + ~k⊥i, E
int
i /c) is the four-momentum of the intermediary parton i in the

ladder and the scalar k⊥i represents the norm of its transverse momentum k⊥i = |~k⊥i|.

3.1.3 The BFKL Equations

At very low x and low Q2 the ln(Q2) term is no longer the divergent part in the
coefficient of αs. In this case the divergency comes from the ln(1/x) term and (3.22)
becomes:

αs(Q
2) ¿ 1

αs(Q
2) ln(Q2) ¿ 1

αs(Q
2) ln(1/x) ≈ 1.

(3.24)

The “resummation” of the (αs ln(1/x))n terms independently of Q2 was developed in the
BFKL2 theory [29]. Gluon ladders are considered with strong ordering in longitudinal
momenta and soft ordering in transverse momenta:

Q2/c2 > k2
⊥n > ... > k2

⊥2 > k2
⊥1

x ¿ xn ¿ ... ¿ x2 ¿ x1.
(3.25)

2Balitsky, Fadin, Kuraev, Lipatov.
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~k‖i = xi
~P

= zi
~k‖i−1 = zixi−1

~P

→ xi = zixi−1

~p‖i = yi
~P

= ~k‖i−1 − ~k‖i = xi−1
~P − zixi−1

~P

→ yi = (1− zi)xi−1

Figure 3.1: Schematic representation of a ladder diagram for ep scattering. The t-channel
intermediary gluon i carries the momentum ki = (~k‖i +~k⊥i, E

int
i /c) and the emitted gluon

i carries the momentum pi = (~p‖i + ~p⊥i, E
emi
i /c). The parameter xi is the fraction of

longitudinal proton momentum carried by the exchanged gluon i and yi is the fraction of
longitudinal proton momentum carried by the emitted gluon i. The longitudinal momen-
tum transfer between the exchange gluons i− 1 and i is given by zi.

This results in the BFKL evolution equation [29] which fixes the x evolution of the the
unintegrated gluon distribution F(x, k2

⊥, Q2
0). The unintegrated gluon distribution can be

related to the conventional DGLAP gluon distribution as follow:

xg(x, Q2) =

Q2∫

0

F(x, k2
⊥, Q2

0)
dk2

⊥
k2
⊥

. (3.26)

The region of very low x and low Q2 could be reached for the first time at HERA exper-
iments ZEUS and H1 (see figure 1.2). Although there exists some reasonable agreement
with the F2 data [30], the BFKL approach results in a diffusion phenomena on the trans-
verse momentum transfer k⊥ which turns out in an unreliable description of inclusive
quantities like the structure function F2 [31]. Moreover recent work on BFKL in the
NLO approximation has shown that the corrections to the LO are large [32], reducing
the predicted rise of F2. The stability of the BFKL perturbative expansion is still under
study.

31

p

(P)

(k0)
(p1)

(ki-1)
(pi)

(ki)

(pn)

(kn)

q

q

q

γ*, Zo, W± þ þ þ þ þ þ(q)

e
(k)

e, ν

(k’)

s



3.1.4 The CCFM Equations

In the intermediary region where

αs(Q
2) ¿ 1

αs(Q
2) ln(Q2) ≈ 1

αs(Q
2) ln(1/x) ≈ 1

(3.27)

both logarithms yield divergencies and have therefore to be taken into account. This
approach is called double leading logarithmic approximation (DLLA). A general treatment
of the gluon ladder within the DLLA is given by the CCFM3 equation [33] which is based
on an angular ordering of the gluon emission:

ξ0 < ξ1 < ... < ξn, (3.28)

where ξi is connected to the angle of the emitted gluon i with respect to the incoming
proton. The definition of ξi comes from the Sudakov decomposition of the four-vector pi

of the emitted gluon:

pi = (~p‖i + ~p⊥i, E
emi
i /c) = ỹi(P + ξik) + p̄⊥i, (3.29)

where P and k are the four-vectors of the incident proton and electron respectively and
p̄⊥i = (~p⊥i, 0). The emitted gluons are considered to be massless therefore:

p2
i = 2ỹ2

i ξiP · k + p̄ 2
⊥i = ỹ2

i ξis− ~p 2
⊥i = 0 which gives ξi =

~p 2
⊥ic

2

ỹ2
i s

=
p2
⊥ic

2

ỹ2
i s

, (3.30)

where the proton and electron masses are neglected. The scalar p⊥i is defined as follows:

p⊥i = −
√

p̄ 2
⊥i = |~p⊥i|. (3.31)

The scalar ỹi is related to the fraction of the longitudinal proton momentum yi carried
by the emitted parton i:

ỹi =
yi

1 +
p2
⊥ic

2

y2
i 4E

2
p

. (3.32)

When p⊥i → 0 the scalar ỹi becomes equal to yi.
Usually the angular ordering (see equation 3.28) is equivalent to the following condition
on the rescaled transverse momentum q⊥i:

zi−1q⊥i−1 < q⊥i, (3.33)

where zi is defined in figure 3.1 and q⊥i is given by:

q⊥i = xi−1

√
sξi =

p⊥i

1− zi

. (3.34)

3Ciafaloni, Catani, Fiorani, Marchesini.
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In the CCFM formalism the ln(Q2) and ln(1/x) are “resummed” in the parton densities
therefore it is forseen to be valid for all values of x and Q2. Indeed, when one of the two
logarithms become negligible one can still take all its power into account. For x → 0 the
CCFM evolution equation is equivalent to the BFKL evolution equation and for large x
it reproduces the standard DGLAP equations. Finally the CCFM evolution equation of
the non integrated gluon distribution A(x, k2

⊥, q⊥) are written in an integral form as:

A(x, k⊥, q⊥max) = A0(x, k⊥, q⊥max) +
1∫

x

dx′

x′

q⊥max∫

0

dq2
⊥

πq2
⊥

Θ(q⊥max − x

x′
q⊥)∆s(q⊥max,

x

x′
q⊥)P̃ (

x

x′
, q⊥, k⊥)A(x′, k′⊥, q⊥),

(3.35)

where k′⊥ = |~k′⊥| = |~k⊥ + ~p⊥| = |~k⊥ + (1 − z)~q⊥| and where q⊥max corresponds to the
maximum angle allowed for any emission. The latter is in fact the angle at the photon
side end of the ladder because of the equivalent orderings:

ξmax > ξn > ... > ξ1

q⊥max > znq⊥n, ... , q⊥2 > z1q⊥1.

The CCFM evolution equation, depending on the choice of ∆s and P̃ , allows several
solutions for the unintegrated gluon density A(x, k⊥, q⊥max). There exist succesfull fits to
a wide range of F2 data using the CCFM formalism [35].

3.2 Charm in Electron-Proton Scattering

The discovery of the charm quark played an important role in the elaboration and in the
consolidation of the Standard Model. Since then, charm physics continues to contribute
in the understanding of the physics of elementary particles. Experimentally only charmed
hadrons can be observed via their decay particles. The observation of charm is therefore
split in three different steps, first the production of charm quarks, then the transition from
charm quarks to charmed hadrons known as charm fragmentation and finally the decay
of charmed hadrons. Studying one of those steps requires a perfect knowledge of the two
others. This section will highlight how charm production in electron-proton scattering is
described within pQCD. A second part will give an overview on charm fragmentation.

3.2.1 Charm Production

Four main approaches exist to answer the question: how is charm production in
electron-proton scattering considered within QCD?

The Massive Approach

In the massive approach there are three active flavours (u, d, s) in the proton. The
charm quark is considered as massive and is produced at the perturbative level in QCD.
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In this approach the dominant pQCD process is the boson-gluon fusion (BGF) in which a
cc̄ pair is produced (see figure 3.3). The proton structure function is then split as follow:

F2(x,Q2) =
nf=3∑

i=1

e2
i x

(
qi(x,Q2) + q̄i(x,Q2)

)
+ F c

2 , (3.36)

where at the LO in αs:

F c
2 =

Q2αs

4πm2
cc

4

1∫

xmin

dx′

x′
e2

cg(xg, µ
2)C0

2,g(
x

x′
, Q2,m2

c , µ
2). (3.37)

The charm contribution F c
2 to the structure function F2 is the convolution of the gluon

density g(xg, µ
2) and the coefficient function C0

2,g. This later corresponds to the cross
section of the BGF process in the photon-gluon system. The lower boundary of the inte-
gration xmin is given by x(Q2 +4m2

cc
4)/Q2. The massive approach is valid for Q2 ≈ m2

cc
4.

It breaks down for Q2 À m2
cc

4 where the term ln(Q2/m2
cc

4) is not anymore negligible. As
the number of active flavours is fixed, the massive approach is defined as Fixed Flavour
Number Scheme.

The Massless Approach

In the massless approach or Flavour Excitation approach, four active flavours (u, d, s, c)
are considered in the proton. Like for the light quarks, the charm mass is neglected. The
charm quark is then treated as the fourth active flavour in the proton. As a consequence,
charm will be described by a parton density and it can initiate a hard scattering. The
decomposition of the proton structure function is then quite obvious:

F2(x, Q2) =
nf=4∑

i=1

e2
i x

(
qi(x, Q2) + q̄i(x,Q2)

)
=

3∑

i=1

e2
i x

(
qi(x,Q2) + q̄i(x,Q2)

)
+F c

2 . (3.38)

This approach is also done in the Fixed Flavour Number Scheme and is appropriate for
Q2 À m2

cc
4.

The Variable Flavour Number Scheme Approach

The Variable Flavour Number Scheme approach does the matching between the two
previous approaches. Until now only the total cross section and inclusive F c

2 are predicted
by calculations within the Variable Flavour Number Scheme approach [34]. Recently also
differential charm cross section predictions were published [36].

Intrinsic Charm

An alternative mechanism for charm production is intrinsic charm production [37]
which is introduced to explain some special features of charm at large x. In this approach
a cc̄ pair is considered as a non perturbative component in the proton bound state. The
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proton wave function |uucc̄〉 contains a small, but finite probability for a quantum fluc-
tuation into two valence charm quarks.

The kinematic range of the present analysis (1 GeV2 < Q2 < 100 GeV2) lies within
the massive approach validity scope.

3.2.2 Charm Fragmentation

The final hadron formation, starting with partons and usually after taking into account
initial and final state QED and QCD radiations, is called fragmentation. The fragmen-
tation processes are characterised by small momentum transfers ensuing the failure of
perturbative QCD. These processes are usually described with the help of the fragmenta-
tion function Dh

q (Zh) which represents the unnormalised probability density for a quark
q to produce a hadron h where the variable Zh is defined as:

Zh =
Eh + |~ph‖q|c
Eq + |~pq|c . (3.39)

The variable Zh has the advantage to be invariant under any boost parallel to the initial
quark direction. There exist several parametrisations of the fragmentation function.

Only rarely do the light hadrons in a jet contain the primary quark. Therefore, the
differential hadron production cross section is related to the fragmentation functions of
all quarks through a set of rather complicated equations (ref). In the case of hadron
production containing a heavy quark Q, the heavy quark is necessarily the primary quark
because the probability of extracting a QQ̄ pair during the fragmentation is very small.
Therefore, the cross section of heavy-flavoured particles is directly related to the unique
fragmentation function Dh

Q(Zh) [38].

Electron-Positron Collision

A short overview of charm fragmentation observed at electron-positron colliders is
given below because the data allow a detailed and direct experimental investigation of
the fragmentation process and a decisive confrontation with models. In electron-positron
collision, charm production via s-channel (the boson mediator momentum squared is
(pe− + pe+)2c2 = s = 4E2

beam) results in the ideal case where at the leading order the
laboratory frame is the centre of mass of the cc̄ system (see figure 3.2). In other words,
at the leading order, both charm quarks have the energy of the beam Ebeam =

√
s/2

respectively. When D mesons are observed in e+e− the quantity ZD (see equation 3.39)
is then approximated by the experimentally accessible quantity xpD or xED defined as:

xpD =
|~pD|
|~pDmax| , (3.40)

xED =
ED

Ebeam

, (3.41)
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where ED is the D meson energy, ~pD its momentum and |~pDmax|c =
√

E2
beam −m2

Dc4.
The inclusive differential D meson cross section (1/σ)·dσ/dZD measured in the laboratory
frame, after correction for higher states cascades and QED and QCD radiative effects,
describes the genuine fragmentation function DD

c (ZD) of the charm in a D meson.

(a) (b)

e

e γ*, Zo

c

c

e+ e-s

c

c

Figure 3.2: (a) Generic Feynman diagram and (b) configuration in the laboratory rest
frame of charm production in the case of electron-positron collisions.

At CLEO and ARGUS experiments the D meson cross sections have been measured
as a function of the heavy quark fragmentation variable xpD at

√
s ≈ 10 GeV for inclusive

D0 and D∗+. The experimental data were fitted with the Peterson fragmentation function
[39]:

DD
c (ZD) =

1

ZD

[
1− 1

ZD

− ε

1− ZD

]2 . (3.42)

Here ε is a free parameter. The combined fit of the two experiments gives [40]:

ε(D0) = 0.135± 0.010
ε(D∗+) = 0.078± 0.008.

The fits have been performed within the Monte Carlo scheme in which the charm quarks
are first subject to parton showers in order to take into account QCD radiation before
applying the fragmentation function. No corrections for higher states were performed,
thus the direct fit of the D0 spectrum results in a higher value of ε.
The experiments DELPHI [41] and ALEPH [42] at LEP have performed the same mea-
surement for

√
s = 90 GeV:

〈xED∗〉 = 0.504± 0.009, ε(D∗+) = 0.0372± 0.0014 (DELPHI)
〈xED∗〉 = 0.488± 0.008, ε(D∗+) = 0.0339± 0.0037 (ALEPH).

However, the value of ε(D∗+) has to be taken cautiously as it depends on the choice
of the Monte Carlo scheme for the parton shower, on the choice of ΛQCD and on the
beauty contribution (b → c → D∗+). Therefore, the lower 〈xED∗〉 value measured at
ALEPH does not correspond to a higher value of ε. The fits performed by the DELPHI
collaboration shows that the value of ε is stable against different models of the QCD
radiative corrections.
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Figure 3.3: (a) Feynman diagram for ep scattering in case of boson-gluon fusion (BGF),
(b) configuration of the BGF process in the γg rest frame and (c) configuration of the
photon-proton interaction in the γp rest frame.

Electron-Proton Scattering

In electron-proton scattering, charm production occurs via t-channel (the boson medi-
ator momentum squared is (pe′ −pe)

2c2 = t = −Q2) and is dominated by the boson-gluon
fusion process (see figure 3.3). In this representation the most appropriate frame is the
boson-proton centre of mass system noted by γp (figure 3.3.(c)) which is also commonly
called hadronic system. The boson-gluon frame stays inaccessible to the experiment al-
though it is the frame where the kinematics is the simplest (figure 3.3.(b)). There the two
quarks are back to back and both carry half of the boson-gluon centre of mass energy ŝ.
The sum of the two quarks momenta is obviously zero:

~p γg
c + ~p γg

c̄ = 0. (3.43)

This is also verified in the boson-proton frame (part c), figure 3.3) but only for the
transverse quark momenta with respect to the γp axis:

~p γp
⊥c + ~p γp

⊥c̄ = 0. (3.44)

This holds because the boost from the boson-gluon frame to the boson-proton frame is
parallel to the gluon momentum, assuming ~pg = xg · ~pp. Therefore, the transverse mo-
menta of the two quarks are conserved.
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Moreover, in this frame, the two cc̄ quarks share only half of the centre of mass energy
W , the other half is taken by the proton remnant (see appendix B).
In a similar way as in electron-positron collision the variable xD is defined by:

xD =
|~p γp

D |c
W/2

, (3.45)

where ~p γp
D is the momentum of the D meson in the γp frame.

The energy squared of the γp system is given by:

W 2 = (q + P )2c2 = −Q2 + 2Eγp
γ · Eγp

p + 2
√

(Eγp
γ )2 + Q2 · Eγp

p . (3.46)

In the case where Q2 can be neglected (for example 10 GeV2 < Q2 < 100 GeV2 results in
(Q2)mean ≈ 25 GeV2, (Eγp

γ )2
mean ≈ 3745 GeV2 and (Eγp

p )2
mean ≈ 3720 GeV2), the quanti-

ties W and xD can be approximated by:

W ≈ 2Eγp
p = 2|~P γp|c, xD ≈ |~p γp

D |
|~P γp| . (3.47)

In appendix B it is shown that mcc̄ and mX are negligible in the γp system and therefore
half of the γp energy is distributed among the two charm quarks. Thus it makes sense to
define xc and xc̄:

xc =
|~p γp

c |c
W/2

, xc̄ =
|~p γp

c̄ |c
W/2

, (3.48)

so that xc (xc̄) represents the fraction of W/2 carried by the c (c̄) quark and satisfies:

xc + xc̄ ≈ 1. (3.49)

The D∗ inclusive normalised differential cross section 1/σ dσ/dxD measured in the γp
frame is then the convolution integral of the charm production spectrum Φγp(xc) with the
genuine fragmentation function Dc(ZD):

1/σ dσ/dxD =
∫ 1

xD

Φγp(xc)Dc(ZD) dxc, (3.50)

where ZD ≈ xD/xc is the fraction of the charm energy carried by the meson D. At HERA
the average momentum in the γp frame of the quark and of the fragmentated D meson
amounts to 10 GeV/c and the D meson transverse momentum with respect to the charm
direction is negligible, therefore:

ZD =
E γp

D + |~p γp
D‖c|c

E γp
c + |~p γp

c |c ≈ E γp
D

E γp
c

≈ |~p γp
D |

|~p γp
c | =

xD

xc

. (3.51)

The value of ZD varies from xD (when xc = 1) to 1 (when xc = xD). Note that the

quantity ZD is different from zD =
P · pD

P · q =
ED − pD‖c

2yEe

≈ xD which is often used instead

of xD. The charm production spectrum Φγp(xc) is given by the differential cross section
in the γp frame dσ(γg → cc̄)/dxc.
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Unlike electron-positron collision where monochromatic charm quarks are produced,
the charm quarks produced in electron-proton scattering have a broad energy spectrum
which is moreover inaccessible to the experiment. Therefore, the modelisation of the
fragmentation in ep scattering is one of the biggest theoretical systematic error in the
estimation of the measured absolute D∗ cross section via efficiency calculations. Moreover
the uncertainty in the fragmentation process brings an uncertainty in the theoretical
predictions which will be confronted to the measurement. This makes difficult a direct
study of charm production in QCD.

Theoretical calculations are linked to experimental measurements with the help of
Monte Carlo generators. In the next section the generators which were used in this work
are briefly described.

3.3 Monte Carlo Generators for Charm Production

Monte Carlo generators are important tools which allow to calculate the efficiencies
of the detector and of the cuts necessary to identify a given physical process. A direct
confrontation between the data and the theory is then possible.

In the kinematic region of this analysis, charm in electron-proton scattering is produced
at the perturbative level in QCD. Leading order and also next to leading order calculations
in the massive approach are available. The longitudinal structure function F c

L becomes
sizeable at high y and is estimated to contribute to less than 2 percent for the whole
range 0.05 < y < 0.7 and 1 GeV2 < Q2 < 100 GeV2 [44] so that all calculations are
based on the evaluation of the transverse cross section σγp

⊥ . Perturbative fixed order
calculations can give reliable quantitative predictions of observables for which multiple
emission effects and non-perturbative contributions are small. Unfortunately they fail to
predict details of the structure of multi-particle final states as observed experimentally,
in particular in the case of D meson production. A complementary approach to the
perturbative calculations which allow to describe the properties of the hadronic final
state is performed via parton shower models (QCD radiative corrections) matched to
phenomenological models of fragmentation together with the decay of the non stable
particles. Up to now only the LO calculations allow the implementation of the complete
chain of hadronisation and thus the input to the detector simulation programme. In the
case of charm production in electron-proton scattering, the corresponding available LO
generators are AROMA [45], HERWIG [43], RAPGAP [46] and CASCADE [35] which
are used in this work.

Two different approaches describe parton showers. The first uses a coherent LLA
parton shower model (AROMA, HERWIG, RAPGAP and CASCADE) while the second
is based on colour dipoles cascade (RAPGAP and ARIADNE [47]).

Fragmentation can be performed with the cluster fragmentation model [48] (HER-
WIG) or with the Lund string model [49] (AROMA, RAPGAP, CASCADE). Both models
perform the hadronisation locally in phase space. In addition, the charm in D meson frag-
mentation function can be either the Lund string fragmentation function or the Peterson
fragmentation parametrisation.

Higher order QED processes are not negligible at HERA. They influence the cross
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sections, the kinematics and the boost in the γp rest frame. Real photon emissions from
the incoming lepton and virtual contributions at the leptonic vertex are included in the
HERACLES [50] programme which is directly interfaced in the RAPGAP generator.

The following subsections are devoted to a brief description of the Monte Carlo event
generators AROMA, HERWIG, RAPGAP and CASCADE in the context of our analysis
for charm production. The HVQDIS Monte Carlo integration package which is the only
available NLO DGLAP calculation of charm and beauty production is also described.

3.3.1 AROMA

AROMA [45] is a programme to simulate the production of heavy quarks (charm and
bottom) in ep collisions. The boson-gluon fusion hard process is calculated including the
full electroweak structure and the heavy quark masses. The heavy quark cross section is
obtained by the convolution of the gluon density and the pQCD subprocess. The value

of Λ
(nf )
QCD is fixed to the value used in the chosen set of parton densities. The number of

active flavour is set to three. Both mass scales for the gluon density and for αs are set
to ŝ which is the invariant mass square of the quark antiquark system. It is possible to
choose other hard scales.

In AROMA the parton showers and fragmentation is performed using the JETSET
package [38]. Parton showers evolution in initial and final states approximates higher
order QCD radiations. The algorithm used is a coherent Leading Log Approximation
(LLA) where the probability for a parton to branch is given by the DGLAP evolution
equation. A strict angular ordering is required in order to avoid that branching at the end
of the iteration give partons at large angles. The shower evolves in the parton centre of
mass frame and satisfies energy and momentum conservation at each step. The evolution
is stopped at a mass scale Q0 where the fragmentation takes over.

The fragmentation is performed using the Lund string scheme implemented in the
JETSET package. This is an iterative procedure where strings stretch between quark and
antiquark via gluon colour charges. The string model is “infrared” and collinear safe4.
The latter is achieved by merging the collinear emitted gluon and the the initial parton to
the parton carrying their total momentum. In the case of charm production in electron-
proton scattering via the BGF process a string is built between each charm quark and
the proton resulting in two independent jets. Moreover, the long evolution of the string
leads to a charmed hadron nearly independent of the proton.
The transverse momenta of the hadrons are determined from the p⊥ values of their con-
stituents which are chosen from a tunnelling process. This leads to a Gaussian p2

⊥ be-
haviour. The longitudinal momentum fraction Z of a hadron is determined by the Lund
symmetric fragmentation function:

f(Z) =
(1− Z)a

Z
· exp

−
(

b·m2
⊥

Z

)

(3.52)

where m⊥ is the transverse mass of the hadron (m2
⊥c4 = m2c4 + p2

⊥c2 = E2 − p2
‖c

2). The
parameter b is universal and a can depend on the quark flavour. For heavy quark it is

4No soft gluon and collinear gluon divergencies.

40



possible to use the Peterson fragmentation function (see equation 3.42) which depends
only on the parameter ε. The quark flavour fragmentation dependency is reflected by
different values of ε.

3.3.2 RAPGAP

The Monte Carlo generator RAPGAP [46] was written to generate diffractive events5

with an elastic proton (ep → eXY with mY = mp). The developements of this generator
ended up with a general-purpose Monte Carlo programme. In this work RAPGAP is used
to investigate the change in the efficiencies due to the QED radiative effects calculated by
the HERACLES programme which is directly interfaced in RAPGAP. For this investiga-
tion charm is produced like in AROMA via the LO boson-gluon fusion process (without
any diffractive process contributions) but QED radiations are additionally taken into ac-
count. QCD radiative effects are simulated by a LLA parton shower model. Higher order
QCD corrections can also be taken into account using the colour dipole model. This lets
possible systematic studies due to QCD corrections in the future. In RAPGAP the final
fragmentation is performed using the Lund string fragmentation model implemented in
the JETSET programme [38].

3.3.3 HERWIG

HERWIG (Hadron Emission Reaction With Interfering Gluons) [43] is a general-
purpose event generator for high energy hadronic processes. It suits particularly high
momentum transfer processes giving rise to hadron jets emission. Hard pQCD processes
are calculated from the exact matrix element. Heavy quarks are produced via the dom-
inant photon-gluon fusion mechanism. Colour coherence of partons (initial and final) in
hard subprocesses is respected.

The parton showers are generated using a branching formalism based on an exten-
sion of the coherent Leading Log Approximation. The parton shower is based on the
“resummation” of the pQCD expansion taking into account all leading logarithmic terms
and the dominant part of sub-leading contributions arising from soft and collinear gluon
emission. The parameters which play the biggest role in the parton shower algorithm

are the strength of the strong coupling constant Λ
(nf )
QCD and the shower cut-off Qi for the

parton i: Qi = mic
2 +Q0 where mi is the mass of the parton i and Q0 the quark or gluon

virtualily cut-off. At the end of the parton shower non perturbative gluon splitting into
qq̄ is performed.

Hadronisation of parton jets is calculated via a cluster fragmentation model based on
the preconfinement characteristic of QCD. The colour charge of a quark or diquark is
compensated by the colour of a antiquark or antidiquark which is nearby in phase space.
Low mass colour-neutral clusters are in this way constructed. Hadrons are formed in
two-body cluster decay according to phase space and spin factors. The hadron transverse
momenta are thus produced dynamically as a consequence of the cluster mass spectrum.

5Diffractive events are events characterised by a large rapidity gap which contained no final state
hadrons.
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For the decay of a cluster containing a quark from the perturbative phase, the quark
direction is remembered but a Gaussian smearing is applied to this direction. Finally,
QCD coherence effects are taken into account for the production and decay of heavy
hadrons.

3.3.4 CASCADE

The Monte Carlo generator CASCADE [35] is a backward evolution scheme with
respect to the hard QCD process based on the CCFM formalism (see subsection 3.1.4).
The solution of the unintegrated gluon density was determined with a modified version of
the parton-level forward evolution scheme programme SMALLX [51]. The unintegrated
gluon density was fixed by requiring a good description of both the structure function F2

and the cross section of the forward jet prodution as measured by the HERA experiments
[52]-[55]. In the kinematic region studied in this work the CCFM formalism is equivalent
to the DGLAP formalism but for the boson-gluon fusion process both the photon and the
gluon are virtual. In the CASCADE code the package JETSET [38] is used to perform
the parton showers and the quark fragmentation like in AROMA. CASCADE is therefore
a complete hadron level event generator.

3.3.5 HVQDIS

The HVQDIS programme [56] calculates charm and beauty production in the massive
approach up to the NLO in αs. This is a fixed order pQCD calculation (FOPT) where
the heavy quark mass is not neglected. Only the three light quarks are considered as
active flavours in the proton. The heavy quarks are produced at the perturbative level
where the BGF process is dominant. In addition a very small contribution of light quark
induced processes with an emitted gluon splitting into a charm and anticharm quark
appears via the NLO calculations. The imprecisely determined charm quark mass and the
renormalisation and factorisation scales lead to the primary sources of uncertainty. Since
the calculation is fully differential, the four-momenta of the partons involved in the pQCD
hard process are available. Charm quarks can therefore be hadronised in D∗+ mesons as
an independent process according to the Peterson fragmentation function (see equation
3.42). This is done by scaling the charm three-momentum by ZD. The D∗+ meson
predicted differential cross sections depends on the frame in which the fragmentation
function is applied. We performed the fragmentation in the γp rest frame which seems
to be the most appropriate choice (see subsection 3.3.6). The charmed hadron acquires a
transverse momentum with respect to the charm quark direction following an exponential
αp2

⊥ behaviour. In this work the parameter α was fixed to 6. This value corresponds to
an average transverse momentum in the γp rest frame of 350 MeV/c (see figure 3.6) as
observed in electron-positron data. The smearing of the D∗+ meson transverse momentum
is also performed in the hadronic centre of mass frame which allows the same drag effect
in the proton direction as observed in the laboratory frame in the case of JETSET based
Monte Carlo programmes. This effect arises due to the boost from the hadronic frame
to the laboratory. Finally the energy componment is fixed such that the D∗+ rest mass
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amounts the experimentally measured mass of 2.01 GeV/c2. Introducing this simple
fragmentation algorithm in the HVQDIS programme allows us to predict NLO differential
cross sections in any final state variable depending on the D∗+ meson and scattered
electron momenta. Particularly it allows to study the predicted cross sections in the D∗+

meson transverse momentum and angular ranges accessible with the H1 detector.

3.3.6 Predicted Charm Production in DIS

To close this chapter we explore the kinematics of charm production in electron-proton
deep inelastic scattering predicted by several Monte Carlos within the kinematic range:
1 GeV2 < Q2 < 100 GeV2 and 0.05 < y < 0.7.

In this work charm production will be studied by measuring the D∗+ meson cross
sections from the reconstruction of D∗+ mesons in the decay channel D∗+ → D0π+

s →
(K−π+)π+

s . Thus, in this section, we will directly present the predicted D∗+ cross sections.
This is achieved by converting the charm cross section into the D∗+ cross section using
the measured probability P (c → D∗+) that a charm quark fragments in a D∗+ meson:

σ(ep → eD∗+X) = 2 · P (c → D∗+) · σ(ep → ecc̄X), (3.53)

with P (c → D∗+) = (23.3 ± 1.5)% [57]. From the branching ratio point of view the
studied channel allows to observe only 1.2% of the produced charm events. This fraction
is described by the following probability relation:

P (c → (K−π+)π+
s )) = 2 · P (c → D∗+) ·BR(D∗+ → D0π+

s ) ·BR(D0 → K−π+) = 1.2%,
(3.54)

where the branching ratios are given in table 3.1.

Particle Data Book
1998

Particle Data Book
2000

D∗+ → D0π+
s 0.683 ± 0.014 0.677 ± 0.005

D0 → K−π+ 0.0385 ± 0.009 0.0383 ± 0.009

Table 3.1: Charm and D meson branching ratios from the Particle Data Book edited in
1998 and 2000 [58] [40].

Additionally to the total D∗+ cross sections, the predicted cross sections in the D∗+

visible range will also be presented. The visible range is given by the detector acceptance
(-1.5 < ηD∗ < 1.5) and by the minimum D∗+ transverse momentum necessary to extract
the D∗+ signal (p⊥D∗ > 1.5 GeV/c). These limits bring an additional loss of 69% estimated
with the MC generator HVQDIS.

Finally, within the visible range, an efficiency of approximately 25% (see chapter 4)
to reconstruct D∗+ mesons reduces the ratio of the observed D∗+ events to the produced
charm events down to 0.1%. This is indeed a very small fraction of the total charm cross
section. However, the biggest difficulty to extract the cross sections from the observed
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D∗+ mesons is not due to the fact that they represent such a small fraction of the charm
events but comes from the large uncertainty on the extrapolation from the D∗+ visible
range to the total range. This extrapolation, which is evaluated from the theoretical cal-
culations, depends on the predicted D∗+ transverse momentum spectrum and the D∗+

pseudorapidity distribution. Moreover, the uncertainty on the extrapolation increases
when Q2 decreases. It amount ±8% at Q2 = 65 GeV2 and ±20% at Q2 = 1.5 GeV2.
These errors were calculated by taking into account:
- the difference from the two main approaches HVQDIS and CASCADE,
- the factorisation and renormalisation scale,
- the uncertainty on the charm quark mass,
- the uncertainty on the gluon density,
- the poor knowledge on the charm fragmentation in ep scattering.
The present analysis is extended down to Q2 = 1 GeV2 in comparison to previous pub-
lished measurements [3] which started only at Q2 = 10 GeV2. Therefore the measured
cross section will be given in the D∗+ visible range in order to minimise the theoretical
uncertainties coming from the extrapolation. This justifies why not only the predicted
cross sections are presented here but also the cross sections within the D∗+ visible range.

Figures 3.4 and 3.5 show the inclusive D∗+ differential cross sections versus W , logx,
Q2, logxg, p⊥c, ηc (θc in the icon), ηD∗ (θD∗ in the icon) and ŝ predicted by the HVQDIS
and CASCADE Monte Carlo generators respectively. The full line histograms show the
cross sections in the total D∗+ range while the dashed line histograms indicate what is
left within the visible range.

The W distributions in figures 3.4.(a) and 3.5.(a) are limited by the y range because
W 2 is nearly proportional to y for 1 GeV2 < Q2 < 100 GeV2. It is interesting to note
that the full W range is accessible within the visible range.

Figures 3.4.(c) and 3.5.(c) show clearly the steep rise of the cross section when Q2

decreases. Therefore the model uncertainties, which occur when the measured cross sec-
tion is extrapolate from the visible range to the total range, is dominated by the large
uncertainties at low Q2.

Most of the charm is produced backward as seen in the differential cross sections versus
θc (figures 3.4.(f) and 3.5.(f)). This is due to the strong boost, when xg is small, from the
γg frame to the γp frame. In the γg frame both charm quarks are produced back to
back isotropically. After boosting in the γp frame, the charm quarks are collimated in the
proton oposit direction. Both charm quarks stay close one to another because their total
invariant mass

√
ŝ (〈√ŝ〉 ≈ 6 GeV, see figures 3.4.(a) and 3.5.(a)) is negligible in front of

the γp invariant mass W which ranges from 66 to 251 GeV (see figures 3.4.(h), 3.5.(h)). In
the laboratory frame, the charm quarks approximatively keep the direction of the photon
which is emmited backward when xg is small. However, the enhancement of charm in the
backward direction is smoother for the CASCADE prediction. Indeed in the CASCADE
code the gluon involved in the BGF process can be highly virtual and this results in an
increase of the cc̄ invariant mass. This can be observed in the differential cross section as
a function of ŝ where CASCADE shows a harder ŝ spectrum.

On figures 3.4 and 3.5 it can be seen that the loss from the total range to the visible
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range of (69% for HVQDIS and 61% for CASCADE) is mainly due to the p⊥D∗ cut of
1.5 GeV/c because of a relatively soft p⊥c spectrum resulting in a soft p⊥D∗ spectrum. It
is now clear that the predicted p⊥c spectrum as well the fragmentation of charm in D∗+

mesons influence the predicted D∗+ cross section within the visible range. For the same
reason the θc distribution and the correlation between the charm and the D∗+ meson
resulting in the θD∗ distribution (figures 3.4.(g) and 3.5.(g)) determine what remains after
the angular cut: -1.5 < ηD∗ < 1.5.

The differential cross section as a function of xg calculated with HVQDIS and shown in
figure 3.4.(d) is more shifted toward lower xg than the CASCADE predicted distribution
shown in figure 3.5.(d). This occurs despite the fact that for the HVQDIS prediction an
NLO gluon density is used (GRV 98 HO). However, the quantity xg doesn’t play the same
important role in CASCADE as in the DGLAP formalism used in the HVQDIS code (see
subsections 3.1.2 and 3.1.4). The visible range, mainly the p⊥D∗ cut, produced a cross
section loss which increases when xg decreases. This effects is more pronounced in the
case of HVQDIS precisely because it predicts more cross section at low xg. Within the
visible range the two models give quite similar prediction for the xg distribution. For both
model the xg distribution leads to a broader x distribution shifted towards larger values
(figures 3.4.(b) and 3.5.(b)).

Some clear differences in the differential cross sections appear for the prediction of the
two models studied which are however softened within the visible range except for D∗+

angular distribution. However, the CASCADE prediction which is 27% larger than the
HVQDIS prediction in the total D∗+ range becomes 56% larger in the visible range (see
table 3.2). This is due to the difference in the parton distributions predictions, but can
also be the consequence of the different correlations between the charm quark and the
D∗+ meson. Indeed the HVQDIS programme allows only for a very simple fragmentation
algorithm which is less complete than the JETSET hadronisation used in CASCADE.
The end of this section will give more details on how well the HVQDIS fragmentation
algorithm is able to reproduced the hadronisation used in CASCADE.

Model Parton Density σ(ep → eD∗+X) σvis(ep → eD∗+X)

HVQDIS GRV 98 HO 17.22 nb 5.40 nb
CASCADE H1 fit 21.85 nb 8.42 nb

Table 3.2: Predicted inclusive D∗+ total cross sections in the electron kinematics 1 GeV2

< Q2 < 100 GeV2 and 0.05 < y < 0.7 for mc = 1.5 GeV/c2 and ε(Peterson) = 0.078. The
scale has been fixed to Q2 + 4m2

cc
4. The D∗+ visible range is given by -1.5 < ηD∗ < 1.5

and p⊥D∗ > 1.5 GeV/c.
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Figure 3.4: Predicted inclusive D∗+ differential cross sections versus W , x, Q2, xg, p⊥c, ηc

(θc in the icon), ηD∗ (θD∗ in the icon) and ŝ using the HVQDIS NLO DGLAP calculations
with mc = 1.5 GeV/c2 and ε(Peterson) = 0.078. The dashed histograms represent the
predicted cross sections in the visible range -1.5 < ηD∗ < 1.5 and p⊥D∗ > 1.5 GeV/c.
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Figure 3.5: Predicted inclusive D∗+ single differential cross sections versus W , x, Q2, xg,
p⊥c, ηc (θc in the icon), ηD∗ (θD∗ in the icon) and ŝ using the CASCADE LO CCFM
calculations with mc = 1.5 GeV/c2 and ε(Peterson) = 0.078. The dashed histograms
represent the predicted cross sections in the visible range -1.5 < ηD∗ < 1.5 and p⊥D∗ >
1.5 GeV/c.

47



The Monte Carlo CASCADE is used to study how different manners of considering
the charm fragmentation can influence the D∗+ transverse momentum and angular dis-
tributions. In the CASCADE code the parton showers and the charm fragmentation are
performed with the JETSET package. This package produces a fairly realistic description
of the hadronisation.

Figure 3.6 shows the predicted CASCADE D∗+ differential cross sections versus ηc

(doted histograms), ηD∗ , p⊥D∗ , Zγp
D∗ and pγp

⊥D∗ . Here pγp
⊥D∗ is the D∗+ transverse momentum

with respect to the charm direction in the γp frame. Each row represents a different way
to perform the charm fragmentation in a D∗+ meson. All approaches use the Peterson
fragmentation function with ε(Peterson) = 0.078.

In the case of figure 3.6.(a) the fragmentation function is applied within the Lund string
scheme of JETSET. This is the standard way used in CASCADE. In all other approaches
the D∗+ three-momentum is calculated by simply scaling the charm momentum by ZD

according to the fragmentation function as done in HVQDIS. A transverse momentum
with respect to the charm direction following an exponential αp2

⊥ behaviour is added to
the D∗+ momentum and results in the predicted cross sections of figure 3.6.(c) and 3.6.(e).
In this case, the value of α is fixed to 6 which corresponds to an average transverse
momentum with respect to the charm direction of 350 MeV/c. Figures 3.6.(b) and 3.6.(c)

show the predicted cross sections when the D∗+ momentum is made up in the γp frame
whereas for figures 3.6.(d) and 3.6.(e) this was performed in the laboratory frame.

For standard JETSET fragmentation (figure 3.6.(a)) a clear positive shift from the ηc to
the ηD∗ distribution is observed. The same effect is also produced when the fragmentation
is performed in the γp frame (figures 3.6.(b)) and 3.6.(c)) whereas the charm and D∗+

angular distributions are the same when the fragmentation is performed in the laboratory
frame (figures 3.6.(d)) and 3.6.(e)). The differential cross sections as a function of ηD∗ ,
p⊥D∗ and Zγp

D∗ in figures 3.6.(b) and 3.6.(c) are very similar to the standard JETSET
fragmentation predictions of figure 3.6.(a). However, the distribution of the D∗+ transverse
momentum with respect to the charm direction in the γp frame in figure 3.6.(a) is better
reproduced by the fragmentation approach used in figure 3.6.(c). Consequently this latter
has been chosen to produce D∗+ mesons from the charm quarks generated by the NLO
programme HVQDIS.

To conclude it is important to note that the prediction of the D∗+ visible cross sec-
tion changes only by ± 3% for the different studied fragmentation approaches despite
of fairly different predicted angular distributions. The increasing difference between the
CASCADE and HVQDIS cross section predictions when restricting the cross section to
the visible range is therefore not due to the different fragmentation approaches but is
only due to the different charm predictions as a function of p⊥c and ηc. However, if the
value of ε(Peterson) is changed from 0.078 to 0.035 like measured in e+e− experiments,
the prediction for the visible cross section increases by 10% for both models CASCADE
and HVQDIS.
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Figure 3.6: Predicted inclusive D∗+ differential cross sections versus ηc (doted histograms),
ηD∗ , p⊥D∗ , Zγp

D∗ and pγp
⊥D∗ using the LO CCFM calculation CASCADE with mc = 1.5

GeV/c2 and ε(Peterson) = 0.078. Here pγp
⊥D∗ is the D∗+ transverse momentum with re-

spect to the charm direction in the γp frame. Each row represents the predicted cross
sections with the following different ways of performing the charm fragmentation:

(a) within the Lund string scheme but using the Peterson fragmentation function,
(b) Peterson fragmentation function applied in the γp frame,
(c) Peterson fragmentation function applied in the γp frame and 〈pγp

⊥D∗〉 ≈ 350 MeV/c,
(d) Peterson fragmentation function applied in the laboratory frame,
(e) Peterson fragmentation function applied in the laboratory frame and 〈p⊥D∗

w.r.t. charm
〉

≈ 350 MeV/c.
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Chapter 4

D∗+ Analysis

The objective of the present analysis is to tag charm events from ep collisions with D∗+

mesons in the decay D∗+ → D0π+
s → (K−π+)π+

s . The D∗+ decay particles are measured
in the central tracker of H1. This chapter will describe the complete D∗+ analysis. The
first section will give an overview of the online selection which was performed by the
use of a dedicated subtrigger and a rough selection of (K−π+)π+

s events using online
reconstructed tracks. Then the complex offline selection will be presented. The quality
criteria which allow to build the considered data sample will be explained together with the
resulting luminosity measurement. Special emphasis will be placed on the DIS selection
and on the kinematic reconstruction as they are of big importance for the reconstruction
of xg. Finally the D∗+ selection resulting in the D∗+ rate is given in section 4.4.

4.1 Online Selection

The continuous luminosity increase of the HERA machine as well as the wish to record
all physics processes independently of their rates were the reasons to constantly improve
the online trigger system throughout the running years. The D∗+ in DIS events were also
affected by the HERA luminosity increase and therefore had to be saved online by more
and more highly efficient means. Refining the dedicated Level 1 subtrigger as well as
performing a rough online D∗+ selection at the last trigger level (Level 4) was the obvious
way to follow. Nowadays, a D∗+ neural net at the second trigger level has been added
in order to continue the investigation of charm physics using one of its best servant, the
D∗+ meson.

4.1.1 Subtrigger Selection

The D∗+ analysis in the DIS regime makes use of one single dedicated Level 1 subtrigger
(ST 2 replaced by ST 61 from beginning of July 1997 onwards). The concerned subtrigger
is a combination of information coming from several essential subdetectors. It has been
completed and refined between the 1995 and 1996 data taking. During the 1995 running
period, the D∗+ in DIS subtrigger was mainly requiring a minimum energy deposition
in the SpaCal together with a veto on the out of time trigger elements and the weak
zVtx t0 condition of the z-vertex trigger system. In 1996 the DCr-ϕ trigger system was
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used to require at least one track with a minimum transverse momentum. The stronger
zVtx sig condition was used in order to guarantee a significant z-vertex determination.
Later during the 1997 running period, the subtrigger has been completed by limiting
the number of track candidates found by the DCr-ϕ trigger system and by rising the
SpaCal energy threshold. The time evolution, in terms of trigger elements, of the D∗+ in
DIS subtrigger is summarised in appendix A.3. At that point it should be noticed that
the Monte Carlo simulation has to follow as closely as possible this evolution in order
to describe the trigger behaviour for the whole running period. The description of the
different trigger subsystems as well as the definition of the trigger elements necessary to
build ST 2 and ST 61 is given in the following.

• The so called DCrφ trigger subsystem makes use of the CJC answer. The signals
of 10 out of 56 wire layers are digitised. The obtained drift time information is
compared with 10000 different masks. Those masks contain the bit pattern of
tracks with transverse momentum range larger than 400 MeV/c. Two different
kinds of masks are defined for positive or negative low transverse momentum tracks
(p⊥ <1 GeV/c). A special class of masks (t0 masks) is defined by synchronising
and shifting the first seven layer signals. This allows to improve the time resolution
which is usually spoiled by a layer per layer drift time comparison. Several trigger
elements are available. A short description can be found in table 4.1.

DCrφ Trigger Element DCrφ Trigger Condition

DCRPh T0 at least one validated t0 mask fired
DCRPh Ta at least one mask fired
DCRPh Tb at least b (=2) masks fired
DCRPh Tc at least c (=3) masks fired

DCRPh TPos at least x (=1) positive masks
DCRPh TNeg at least x (=1) negative masks
DCRPh THig at least x (=1) p⊥ > 800 MeV/c masks fired
DCRPh TLow at least x (=1) 400 MeV/c < p⊥ < 800 MeV/c masks fired

DCRPh NL many at least 20 negative low momentum track candidates
DCRPh NH many at least 20 negative high momentum track candidates
DCRPh PL many at least 20 positive low momentum track candidates
DCRPh PH many at least 20 positive high momentum track candidates

Table 4.1: Description of the trigger elements delivered by the DCrφ trigger subsystem.
The number of masks b, c and x are programmable.

• The z-vertex trigger subsystem is built from the answers of the the MWPC (CIP,
COP and the first two layers of the FWPC). Thanks to the good time resolution
of these components (≈ 20 ns) it is possible to know which HERA bunch crossings
an event belongs to. This allows to stop all pipelines at the front-end electronics
at the right time. The z-vertex trigger reconstructs all possible tracks from all
combinations of 2x2 signals. Nevertheless, these tracks must have a transverse
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momentum larger than 150 MeV/c in order to cross both CIP and COP or CIP
and FWPC. The z coordinate of each track will cluster for a collision event. The
z-vertex trigger element zVtx sig will be set as soon as a significant peak is found
and is used to fight against proton beam induced background.

• The rz trigger subsystem can reconstruct track segments found in the CIZ and
COZ. It provides two trigger informations. RZ sig1 trigger element corresponds to
a significant peak in the rz vertex histogram. RZ non vtx trigger element indicates
the accumulation of track segments far from the nominal interaction region and is
used as a veto condition. Here, the veto is effective only if at the same time no
significant peak in the rz vertex histogram is found (see table A.1 and A.2). Thus
upstream proton background is rejected.

• The SpaCal Inclusive Electron-Trigger subsystem (IET) is the trigger system used
to detect scattered electron events with high efficiency in the backward region of
H1.
The first step of this trigger system is to determine all cluster bits. The compar-
ison of the summed deposited energy of 4x4 electromagnetic cells (trigger tower)
with three defined thresholds results in three cluster bits for one trigger tower. The
trigger towers overlap each other by half size in both directions x and y, thus avoid-
ing trigger inefficiencies as a function of the impact point. For each level (energy
threshold) the Local IETs (LIET) are calculated by a logical OR of 4x4 cluster bits.
In addition, a central IET named LIET CENT is the result of a logical OR of 5x5
cluster bits. The electromagnetic SpaCal is divided in 5x5 LIET plus the central
one. Finally, a logical OR of the LIET bits (excluding the LIET CENT), which
is calculated for the three energy levels separately, will give three electromagnetic
SpaCal trigger elements (SPCLe IET>0, SPCLe IET>1, SPCLe IET>2). The SP-
CLe IET Cen trigger element is simply the LIET CENT.
Till August 1996 only the level 3 of the SPCLe IET Cen bit was available as trig-
ger element. Then the three energy levels were defined as trigger elements (SP-
CLe IET Cen 1, SPCLe IET Cen 2, SPCLe IET Cen 3) and the level 2 was imple-
mented for ST2. The IET energy thresholds are given in table 4.2.

all SpaCal Central SpaCal Energy Threshold

level 1 SPCLe IET>0 SPCLe IET Cen 1 0.5 GeV
level 2 SPCLe IET>1 SPCLe IET Cen 2 2.0 GeV
level 3 SPCLe IET>2 SPCLe IET Cen 3 6.0 GeV

Table 4.2: IET energy thresholds for the SpaCal trigger elements in 1996 and 1997

• The time of flight trigger subsystem provides trigger elements which are used to
get rid of non genuine ep collision events. In general two time slots are defined and
correspond to two trigger elements. The first trigger element (noted BG) is set
when a subdetector answer is coming outside of the ep interaction time. The second
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trigger element (noted IA) indicates subdetector answers within the interaction
time. The devices contributing to the time of flight trigger system are the Forward
ToF (FToF), Backward ToF (BToF), the big inner veto wall (VETO inner), the
outer veto wall (VETO Outer), the Plug ToF (PToF) and the hadronic SpaCal
(SPCLh).

4.1.2 Subtrigger Efficiencies

For both years 1996 and 1997, the SpaCal IET thresholds used by the D∗+ in DIS
subtrigger were checked using events triggered by lower IET thresholds. The efficiency of
the SpaCal IET thresholds is given by:

ε(D∗−ST IET) =
N(lower IET & E ′

e > 8 GeV & D∗−ST IET)

N(lower IET & E ′
e > 8 GeV)

. (4.1)

A total efficiency of 100% has been found for the events considered in this work. This
reveals the full efficiency of the IET for scattered electrons with energy greater than 8
GeV as required in this analysis. A remaining uncertainty of 1.5% has to be quoted here
to take in account events which might be lost for all SpaCal IET thresholds.

The tracker components efficiency of the D∗+ in DIS subtrigger is checked with a set
of events triggered by all available subtriggers using any SpaCal IET thresholds (SpaCal
subtriggers) on which the full D∗+ analysis was performed. This was done in order to
improve statistics after checking consistency when only events triggered by the subtrigger
ST1 (same SpaCal IET as the D∗+ subtrigger but no track requirements) were considered.
The tracker components efficiency is therefore given by:

ε(D∗−ST track) =
N(ref & D∗analysis & D∗−ST track)

N(ref & D∗analysis)
. (4.2)

Here “ref” represents the reference sample which can be either events triggered by all
SpaCal subtriggers or events triggered by ST1. The efficiencies are summarised in table
4.3. The harder track requirements of the D∗+ analysis applied to the 1997 data (see table
4.7) result in a higher efficiency of the subtrigger track conditions. The detector simulation
describes the data efficiency fairly well. The bin wise description of the efficiency was
also checked. The few bins which show indication of a wrong description will carry an
additional systematic error. The simulated subtrigger efficiencies can therefore be used
bin wise in all relevant quantities of the D∗+ analysis.

4.1.3 Online D∗+ Selection

In 1997 an open charm finder (HQSEL for Heavy Quark SELection) was implemented
at the fourth level of the H1 trigger system. However, the Level 4 kept all events with
online reconstructed Q2 larger than 6 GeV2 so that the open charm finder finder was
effective only for online reconstructed Q2 smaller than 6 GeV2. Several decay channels
were analysed with up to 5 decay particles. Two different sets of cuts were defined for the
photoproduction and the DIS regime. Two track qualities were available: Normal and
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Subtrigger ST1 all SpaCal Subtriggers

Data 1996 (83.9± 2.2)% (85.4± 1.6)%
Aroma D∗+ MC 1996 (85.4± 0.6)%

Data 1997 (90.0± 1.7)% (92.4± 1.5)%
Aroma D∗+ MC 1997 (92.0± 0.5)%

Table 4.3: Efficiencies due to the tracker requirements of the D∗+ in DIS subtrigger. The
first column uses the subtrigger ST1 as reference sample. The SpaCal IET conditions of
ST1 are very similar to the one of the D∗+ subtrigger but ST1 has no track requirements.
To improve statistics the second column gives the efficiencies calculated from a reference
sample defined by all subtriggers with SpaCal IETs conditions.

High. The corresponding cuts are summarised in table 4.4. During the 1997 run period
it has been necessary to require softer track qualities because of two unfortunate holes
(very low efficiency cells) in the CJC detector.
For the particular D∗+ → D0π+

s → (K−π+)π+
s channel in DIS the following was required:

• a π+
s and π+ candidate with “HQSEL Normal Quality” (see table 4.4)

• a K− candidate with “HQSEL High Quality” (see table 4.4)

• Reconstructed masses from the satisfying K−π+π+
s candidates:

|mKπ −mD0| < 100 MeV/c2 and mKππ+
s
−mKπ < 0.17 GeV/c2

• a built D∗+ candidate with p⊥D∗± > 1.0 GeV/c

• an electron cluster in the SpaCal with energy greater than 5.5 GeV and with a linear
cluster radius smaller than 4 cm.

4.2 Run Selection, Event Selection and Luminosity

Determination

From all H1 recorded data, only runs which fulfil precise quality criteria are selected in
order to have a good quality data sample and to avoid an overestimation of the integrated
luminosity. The sum of the integrated luminosity of these runs, corrected for HV status
and subtrigger prescale factors, represents the total integrated luminosity of the selected
data sample.

4.2.1 Run Selection

Each run is subject to a severe control before being accepted as a good quality run.
This control consists of the following run condition requirements:
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HQSEL Normal Quality

Transverse Momentum > 120 GeV/c, > 100 GeV/c if π+
s

Track Length > 10 cm
Track Starting Radius < 30 cm (run<199078), < 35 cm

dca < 2.0 cm
|zca − zvtx| < 20 cm

HQSEL High Quality

Transverse Momentum > 200 GeV/c
Track Length > 25 cm

Track Starting Radius < 25 cm (run<199078), < 75 cm
dca < 0.5 cm

|zca − zvtx| < 10 cm (run<183000), < 12 cm

Table 4.4: Track quality definitions used by the online heavy quark finder HQSEL in the
1997 running period.

• The electron and proton beam energies as well as the magnetic field have to lie in
a reasonable range.

|Ee − 27.5| GeV < 0.5 GeV
|Ep − 820| GeV < 5.0 GeV
|B − 11.5| T < 0.5 T

(4.3)

• The run phase (which characterises how far the run is taken in the luminosity fill)
has to be larger than one. A run phase larger than one generally means good
background conditions allowing to have the trackers on and not too large subtrigger
prescale factors (for each phase a specific set of subtrigger prescale factors is defined).

• The run quality flag, determined online with respect to the amount of operational
devices, has to be in the class good or medium.

• The luminosity related informations (like run time for example) have to be present
and coherent among the H1 banks.

• The luminosity fraction carried by the satellite bunches has to be less than 20% of
the integrated run luminosity.

• The integrated run luminosity, coming from colliding bunches, corrected for HV
status, has to sum up more than 0.1 nb−1.

• During the 1996 running time a certain period was affected by problems at the
trigger Level 4. The corresponding runs have been rejected for this analysis. In
addition, runs taken with SpaCal problems which are not simulated in the Monte
Carlo and runs with too poor dE

dx
measurement, have not been considered in order

to guarantee the best agreement between the data and the Monte Carlo simulation.
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The main problem affecting the SpaCal appears for runs where the HERA clock
(T0) does not correspond to the interaction time (Tint): Tint < T0. In this case
the SpaCal answers at TSpaCal ≈ Tint + 14 ns will occur earlier than the defined
SpaCal time window [T0 + 5 ns, T0 + 25 ns] and no IET trigger elements will be
fired. Those runs have a very low SpaCal IET efficiency which is not reproduced by
the simulation, therefore they are not considered here.

4.2.2 General Event Selection

Within one run only events coming from colliding bunches are accepted (no pilot-
gas interaction, no satellite interaction). During data taking, a run is not stopped when
minor problems occur for any of the devices. Therefore it is also required, for each event,
that the vital devices for this analysis are operational (Trackers, Luminosity system and
SpaCal, BDC). This is done by checking all alarms affecting these devices as well as the
high voltage status (all high voltages set to operational values) which is coded in the so
called slow control bits. The considered devices are not only the ones directly used in the
analysis (CJC, Luminosity system, SpaCal, BDC) but also those necessary to build up the
D∗+ in DIS subtrigger. Despite the fact that only tracks measured in the CJC are used
in this analysis, it is required that the forward proportional chambers are operational.
This is necessary because the D∗+ in DIS subtrigger is based on a good quality vertex
reconstruction which uses information of both central and forward proportional chambers
(see subsection 2.2.2).

4.2.3 Luminosity Determination

The integrated luminosity is determined for each run by the H1 luminosity system
described in section 2.5. The principle of the measurement can be found in references [16]
and [17]. A layout of the luminosity system is shown in figure 2.7. The luminosity has to
be corrected for the amount of time in the run where slow control bits indicate a problem
in one of the devices used directly or indirectly in this analysis (see 4.2.2). The integrated
luminosity is also corrected for subtrigger prescale factors as described in appendix C.
The integrated luminosity for the 1996 and 1997 running period respectively is given in
table 4.5.

year 1996 year 1997

Integrated Luminosity 6.48 pb−1 12.07 pb−1

Table 4.5: Integrated Luminosity corrected for HV status and subtrigger prescale factors
for the 1996 and 1997 selected data.
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4.3 DIS Sample

In the elaboration of the DIS sample the scattered electron has to be identified in
the detector. Within the Q2 range considered in this analysis, the incident electron is
scattered at small angles in the backward calorimeter SpaCal.

In this section the scattered electron selection will be presented as well as three
different methods to reconstruct the kinematic variables which all require knowledge of
the scattered electron. The offline calibration of the SpaCal is performed with the help
of one of these methods and control plots are presented here. The efficiency of the BDC
tracker in front of the SpaCal is studied in detail in subsection 4.3.3. Finally, the QED
radiation contributions are explained together with the manner they are treated in this
analysis.

4.3.1 Scattered Electron Selection

The DIS sample is selected using the backward SpaCal calorimeter where the scattered
electron is detected. The SpaCal energy and angle resolution allows a very precise mea-
surement of the kinematics. But above all, it has the power to select the true scattered
electron and therefore rejects photoproduction background. The high cross section of
photoproduction interaction brings a non negligible number of events where a hadron can
be miss-identified as the scattered electron. The main criteria of the scattered electron
candidate can be found in table 4.6.

Most of these requirements fight against photoproduction background. Very few
hadrons which move backwards have an energy larger than 8 GeV. This is mainly due
to the fact that for y < 0.5 the scattered electron energy and angle are larger than the
hadronic jet energy and angle. Indeed, tan θe

2
is equal to 1−y

y
tan θjet

2
. Moreover, a true

electron is seldom showering in the hadronic SpaCal. It has a more condense electro-
magnetic shower than a hadron and therefore a smaller cluster radius. By asking for a
track in the BDC with a small projected distance from the centre of the SpaCal cluster,
background coming from π0 decay photons is rejected. Before the collision, the quantity
E − pz (defined in equation 4.8) is equal to 2 · Ee. A lost scattered electron close to the
beam pipe will result in a small total reconstructed E − pz value after the interaction.
Therefore the cut on E − pz increases the purity of the scattered electron sample by re-
jecting photoproduction background events. Moreover, it reduces as well the contribution
of QED radiative events.

Independently of the trouble to get rid of photoproduction background, some addi-
tional care is necessary. In order to have a fully contained shower, part of the inner most
SpaCal region has to be suppressed. For this the variable rθ = (zcluster− zvtx) · tan(θ) was
used instead of simple geometrical cuts because it allows beam displacements between

data and Monte Carlo simulation. Events with high value of ρcluster =
√

x2
cluster + y2

cluster

have to be rejected because the detector simulation results in too large a BDC inefficiency.
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Scattered Electron Candidate

Energy E ′
e > 8 GeV

Hadronic SpaCal Energy < 0.5 GeV
Hadronic SpaCal Energy/Ee < 0.03

Linear Cluster Radius < 4 cm
Reweighted Cluster Radius < 4 cm

Number of BDC hits > 3
Distance Cluster-BDCtrack < 1.5 cm

E − pz > 35 GeV
SpaCal Acceptance Cut rθ > 8.9 cm

ρcluster < 74 cm

Table 4.6: Scattered electron selection criteria applied to the highest energetic cluster in
the electromagnetic SpaCal.

4.3.2 Reconstruction of the Kinematics

There are several empirical methods to determine the kinematics of the ep collision
[59]. The accuracy of the kinematic measurement over the entire kinematic range is of
importance for the precise measurement of single and double differential cross sections
and for the determination of xg. For the final cross sections presented in this work
the kinematic variables are calculated with the so called electron method. The double
angle method allows us to check the SpaCal energy calibration. The full analysis is
also performed with the sigma method to estimate systematic errors due to the event
kinematic determination but also to QED radiations. The three methods are described
and discussed below.

The Electron Method

The energy E ′
e and the polar angle θe of the scattered electron allow to fully determine

the event kinematics. After neglecting the electron and proton masses the kinematic
variables are given by:

Q2
e = 4EeE

′
e cos2

(
θe

2

)
ye = 1− E ′

e

Ee

sin2

(
θe

2

)

xe =
Q2

e

yes
=

cos2

(
θe

2

)

1− E ′
e

Ee

sin2

(
θe

2

) E ′
e

Ep

.

(4.4)

The advantage of the electron method comes from its simplicity. Moreover, for relative
small Q2 it is based exclusively on the SpaCal detector. Nevertheless, it requires a very
good resolution of the scattered electron energy and polar angle measurements. As a
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matter of fact, The Q2 resolution is identical to the scattered electron energy resolution
for small polar angle:

dQ2
e =

Q2
e

E ′
e

dE ′
e + Q2

e tan(θe/2)dθe → dQ2
e

Q2
e

≈ dE ′
e

E ′
e

for small θe. (4.5)

The x and y resolutions degrade towards lower y where the calibration of the energy scale
becomes essential as shown by the relations:

dxe

xe

=
1

ye

dE ′
e

E ′
e

, (4.6)

dye

ye

=
1

ye

E ′
e

Ee

sin2

(
θe

2

)
dE ′

e

E ′
e

, (4.7)

for θe constant. However, this effect is restricted in this analysis since y is asked to be
larger than 0.05.

In addition, contributions from collinear QED radiation of the incident electron get
large at high y and low x. This results in migrations in the kinematic variables when they
are calculated with the electron method. Usually QED radiative corrections are applied
to the data to take this effect into account (see subsection 4.3.5).

The Sigma Method

The sigma method takes care of the possible QED radiations emitted by the incoming
electron. To account for these radiations, the electron beam energy Ee is replaced by the
energy of the electron at the photon vertex. This energy is measured as (E−pz)/2 where:

E − pz =
∑

h=hadrons

(Eh − pz,h) + E ′
e(1− cos θe) = (E − pz)had + E ′

e(1− cos θe). (4.8)

Technically, to get yΣ and Q2
Σ with the sigma method, the beam energy Ee has to be

replaced by (E − pz)/2 in equation 4.4:

yΣ = 1− E ′
e

E − pz

2

sin2

(
θe

2

)
=

E − pz − E ′
e(1− cos θe)

E − pz

=
(E − pz)had

E − pz

(4.9)

Q2
Σ = 4

E − pz

2
E ′

e cos2

(
θe

2

)
= (E − pz)E

′
e(1 + cos θe)

=
(E ′

e sin θe)
2

E ′
e(1− cos θe)

E − pz

=
(E ′

e sin θe)
2

1− yΣ

. (4.10)

The choice for x is more ambiguous. Using equation 1.2 the purist way would be to take
s = 2(E − pz)Ep. However, the E − pz measurement relies on quantities with relative
large systematic errors. Thus, it is more appropriate to choose s = 4EeEp. In this work
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the second case has been used. Finally, the following definitions are obtained:

Q2
Σ =

(E ′
e sin θe)

2

1− yΣ

yΣ =
(E − pz)had

E − pz

xΣ =
Q2

Σ

yΣs
=

Q2
Σ

yΣ4EeEp

.

(4.11)

Here appears another physical interpretation of Q2. The variable Q2 represents here how
much transverse momentum phad

t is involved in the process scaled by the inverse of the
incident electron energy carried by the scattered electron in the proton rest frame as
expressed in the following equation:

Q2 =
phad

t

(E ′
e/Ee)

proton
rest frame

. (4.12)

In this work (E − pz)had is obtained experimentally with the simultaneous use of the
trackers and the calorimeters. The quantitiy (E−pz)had is built up from all well measured
tracks found in the central and forward tracking system and from all clusters without any
corresponding tracks. The energy measured in the calorimeter cells around the impact
point of a good track is ignored thus avoiding double counting. The yΣ resolution is better
than the one obtained with the electron method especially for very small values of y, as
given by:

dyΣ

yΣ

= (1− yΣ)

√√√√
(

dE ′
e

E ′
e

)2

+

(
d(E − pz)had

(E − pz)had

)2

for θe constant. (4.13)

Moreover, the sigma method does not suffer from kinematic migration due to QED ra-
diations. However, the resolution for Q2 is poorer than the one obtain with the electron
method. This latter is confronted to the sigma method by looking at the ratio ye/yΣ in
different ye ranges as presented in figure 4.1. The figure shows that in the low ye region,
the data ye/yΣ distribution reveals the energy resolution of the scattered electron which
degrades the ye resolution by a factor 1/ye (see equation 4.7). At large ye the two methods
show better agreement as the r.m.s. of the ye/yΣ distribution decreases. The tail at high
ye/yΣ shows an enhancement of events with ye > yΣ and is more pronounced at high ye.
From the Monte Carlo studies, this corresponds to a reconstructed yΣ smaller than the
true y. A very good agreement between the data and the Monte Carlo is observed in
figure 4.1 with however a small shift for 0.05 < ye < 0.25 in the case of the 1997 data.

The sigma method allows us to estimate the systematic error coming from the use of
the electron method in the calculation of the final cross section given in this work. This is
done by performing the complete analysis with the sigma method instead of the electron
method (see section 5.2). The small shift in figure 4.1 between data and Monte Carlo for
the 1997 sample is far below the error due to the energy scale. The difference between the
cross sections where the kinematic variables are determined with one or the other method
thus correctly describes the kinematic method dependency.
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Figure 4.1: Ratio ye/yΣ in different ye ranges for the two running periods 1996 and 1997
after the complete electron selection. Data is represented by points and the detector
simulation using the AROMA Monte Carlo generator by open histograms.

The Double Angle Method

The double angle method is based on the angle measurements of the hadrons and of
the scattered electron. This method is at first order independent of the hadron energy
resolution and not in the least dependent on the scattered electron energy measurement.
Therefore the double angle method is be used to improve the energy calibration of the
scattered electron in the SpaCal (see subsection 4.3.3).

The hadronic final state polar angle γ is defined as:

cos γ =
(
∑
h

px,h)
2 + (

∑
h

py,h)
2 − (

∑
h
(Eh − pz,h))

2

(
∑
h

px,h)2 + (
∑
h

py,h)2 + (
∑
h
(Eh − pz,h))2

. (4.14)

In the quark parton model the angle γ represents the polar angle of the struck quark. The
definitions of the double angle kinematics can be derived by using the four-momentum
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conservation, they are given by:

Q2
DA =

4E2
e sin γ · (1 + cos θe)

sin γ + sin θe − sin(γ + θe)
yDA =

sin θe · (1− cos γ)

sin γ + sin θe − sin(θe + γ)

xDA =
Q2

DA

yDAs

(4.15)

For scattered electrons within the SpaCal acceptance (153◦ < θe < 177.5◦) the double
angle method gives good results at intermediate y (0.05< y <0.3) and x > 0.01. For very
low y the hadronic final state polar angle approaches zero degree (1−y

y
tan γ

2
= tan θe

2
) and

therefore the fraction of undetected transverse momentum increases. This results in a
bad resolution of γ. In the SpaCal acceptance for θe the hadronic final state polar angle
gets close to 180◦ already for y > 0.3 leading to a bad resolution of γ again.

4.3.3 Energy Calibration

Various calibration methods provide multiplicative calibration constants for each
SpaCal cell [60]. Within the frame of this analysis the scattered electron energy car-
ries an additive calibration. It consists of a cell dependent calibration [61] determined
when the measured cluster energy differs of more than a few percent from the scattered
electron energy E ′

DA deduced from the double angle method:

E ′
DA =

Ee(1− yDA)

sin2

(
θe

2

) . (4.16)

The improvement of the energy scale when using this additive calibration is checked
within a kinematic range where the double angle method gives good results:

0.05 < y < 0.2. (4.17)

This is illustrated in figure 4.2 where the ratio of E ′
DA over the measured energy of

the scattered electron E ′
e is plotted with and without the calibration for both data and

Monte Carlo simulation. The ratio is shown for three radial regions of the SpaCal. An
improvement in the SpaCal energy resolution is observed as well as a good agreement in
the behaviour of the simulation.
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Figure 4.2: Ratio of the deduced scattered electron energy E ′
DA using the Double Angle

method (DA) over the scattered electron energy E ′
e measured in the SpaCal for 1996 and

1997 data (points) and detector simulations using the AROMA Monte Carlo generator
(open histograms). A: without DA SpaCal energy calibration, B: with DA SpaCal energy
calibration.
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4.3.4 BDC Efficiency

The BDC algorithm to find the BDC electron track is quite elaborated [62] because
up to thirty BDC tracks can be reconstructed in a cylinder of 1.5 cm around the electron
impact point. The main reason for this is the electron pre-shower where the scattered
electron interacts with the dead material between the interaction point and the BDC. In
the following the BDC efficiency is defined as the probability of finding the BDC electron
track with 1.5 cm around the electromagnetic cluster in the SpaCal. The left plots of figure
4.3 show the BDC inefficiency as a function of the radial position ρcluster of the SpaCal
cluster centre of gravity. For the 1996 and 1997 data an inefficiency of 2% is found. At
ρcluster ≈ 27cm, region between small and large BDC cells, the inefficiency reaches 8% for
the 1996 data and 10% for the 1997 data. This behaviour is not described by the Monte
Carlo simulation therefore it has been tuned to reproduce the data behaviour. This can
be appreciated in the right plots of figure 4.3.
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Figure 4.3: BDC inefficiency as a function of the radial position of the SpaCal cluster
centre of gravity in 1996 and 1997 for data (points) and the detector simulations using
the AROMA generator (open histograms). On the left plots (A) the standard detector
simulation is shown. On the right plots (B) the simulation is tuned to reproduce the data.
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4.3.5 QED Radiative Corrections

The experimentally measured cross sections can be fully described by perturbative
theory only when all orders are included. Higher orders of the electroweak interaction
are seldomly included within calculations. Therefore, in order to compare the measure-
ment with the Born cross section predicted by theory, it is necessary to subtract to the
measurement contributions from higher order processes. This is also compulsory for the
extraction of the gluon density (see chapter 6).

Within the Q2 range considered in this work (1 GeV2 < Q2 < 100 GeV2) the weak
interaction processes can be neglected since their matrix elements are suppressed by the
inverse of the squared boson mediator mass. The quarkonic QED radiations are also
negligible (matrix element ∝ q2

q/m
2
q).

The QED radiative events at HERA are usually classified in three categories:

• The bremsstrahlung process corresponds to the poles in both the virtual electron and
photon propagators. It is dominated by the Bethe-Heitler process ep → epγ where
the proton remains intact (elastic scattering). This process does not contribute to
the D∗+ cross section for Q2 > 1 GeV2.

• Process where Q2 is close to zero and where the invariant mass squared of the
virtual electron is large can be assimilated as a quasi real QED Compton process.
The corresponding events are characterised by an empty detector except for two
electromagnetic clusters in the backward region. Since a track reconstructed vertex
is required in this analysis no QED Compton events enter the selected sample.

• Radiative DIS events are defined as events with large Q2 and with small virtual
electron invariant mass. Those events contribute to the measured D∗+ cross section
so that a correction is necessary to be able to quote the Born cross section.

QED Radiative Corrections in DIS

To come back to the Born cross section only radiative DIS events have to be consid-
ered. Moreover for final state radiations the radiated photon is collinear to the scattered
electron so that they contribute to the same electromagnetic cluster. In this case the
kinematics are not affected. The QED initial state radiations in DIS are characterised by
a radiated photon collinear to the incoming electron. When calculating the kinematics at
the exchange photon vertex with the electron method an error is introduced. This results
in migration in the kinematics.

In this work radiative corrections are applied by reweighting the data depending on the
reconstructed Q2

e and ye. However, no weight is applied when the kinematic variables are
determined with the sigma method which in a good approximation already take into ac-
count the QED radiation effects. The weighting function is obtained from the programme
HECTOR [63].
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4.4 D∗+ Offline Selection

For the reconstruction of the D∗+ meson using the D∗+ → D0π+
s → (K−π+)π+

s

channel, particle mass assumptions were applied to all combinations of three tracks taken
from a selected sample of tracks measured in the CJC. This restricts the analysis to the
central rapidity region from the start. When the hypothetic K− and π+ result in a D0

meson with reconstructed invariant mass mKπ close to the mass of the D0 meson mD0 all
possible π+

s candidates will be considered to reconstruct the D∗+ meson. In the studied
channel one takes advantage of the fact that the mass of the D∗+ meson is nearly the sum
of the D0 meson and pion mass. The D0 and π+

s direct daughters of the D∗+ are therefore
produced nearly at rest in the D∗+ rest frame. Boosting from the D∗+ rest frame to the
laboratory frame will give to the D0 meson most of the D∗+ momentum because of its
larger mass compared to the pion mass. The pion π+

s coming directly from the D∗+ has
consequently the smallest momentum among the three decay particles (K−π+π+

s ). The
best resolution can be achieved in a mass distribution dominated by the π+

s momentum
resolution (∆p⊥/p⊥ ∝ p⊥). This is the case of the ∆m distribution:

∆m = mKππs −mKπ. (4.18)

The number of reconstructed D∗+ is the result of a fit in the ∆m distribution.

4.4.1 Tracks Selection

In order to reach a good mass resolution as well as a good signal to background ratio,
a selection of well measured tracks has to be considered as input for K−π+π+

s candidates.
The analysis is performed on the vertex fitted track bank. Thus, only tracks which can
be linked to a vertex within the nominal interaction in z are considered. The detailed
list of the track requirements can be found in table 4.7. They are different for the three
candidates and for the two year measurements because of different detector behaviour.
The quantities which characterise a track are described in subsection 2.2.3. A good
combination of track segments in the inner and outer chambers of the CJC is achieved
by asking a maximum track length and a minimum starting radius. A minimum number
of hits, used in the final fit of a track, is required in order to reduce the probability that
some very short track segments are linked together by chance. Both the cuts on the
track length and the number of hits allow to select tracks with accurate measurement
of the helix parameters. Cuts on the dca reject tracks coming from proton beam pipe
interactions, cosmics or tracks resulting from random fits.

Some other important points have to be considered and result in the motivation of the
transverse momentum cut values and in an additional weight for the Monte Carlo tracks.
The CJC simulation is suffering from a simplified description of the energy loss in the
chambers. Only an energy loss as a whole is generated per cell and the drift distance to
the wire is simply smeared with a Gaussian. Moreover, no dependence either on particle
type, track angle with respect to the cell or momentum and gas amplification is taken
into account. As a consequence, the CJC simulation results in perfectly fitted tracks
even when track efficiency is low. The simplified CJC simulation leads also in a wrong
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description of bad CJC regions and of low p⊥ tracks in general. In this work the Monte
Carlo tracks have been subject to an additional weight which improve the description of
the bad regions of the CJC [64]. Recent studies have shown that in 1997 the φ region
where the data revealed an abnormal lower number of reconstructed tracks was in fact
suffering of a readout problem. The consequence was that part of the readout information
was mixed with the next event. The ad hoc correction performed by applying an empirical
weight to the Monte Carlo tracks remains adequate as long as the track selection criteria
are stronger than those required on the trigger Level 4 which has been carefully done here
(see table 4.4 and table 4.7 1 ).

Year 1996 Kaon Pion Slow Pion

Transverse Momentum > 250 GeV/c > 250 GeV/c > 120 GeV/c
Track Length > 10 cm > 10 cm > 10 cm

Track Starting Radius < 30 cm < 30 cm < 30 cm
Number of Hits in CJC1 >= 5 >= 5 >= 5

Number of Hits used for dE
dx

>= 10 >= 10 no cut
dca < 1 cm < 1 cm < 1 cm

|zca − zvtx| < 20 cm < 20 cm < 20 cm
|dca ∗ sin(θ)| < 0.5 cm < 0.5 cm < 0.7 cm

Particle Identification K1 π1 no cut

Year 1997 Kaon Pion Slow Pion

Transverse Momentum > 250 GeV/c > 250 GeV/c > 120 GeV/c
Track Length > 25 cm > 10 cm > 10 cm

Track Starting Radius run≤199078: run≤199078: run≤199078:
< 25 cm < 30 cm < 30 cm

run>199078: run>199078: run>199078:
< 50 cm < 35 cm < 35 cm

Number of Hits in CJC1+CJC2 >= 10 >= 10 >= 10
Number of Hits used for dE

dx
>= 10 >= 10 no cut

dca <0.45 cm < 1.8 cm < 1.8 cm
|zca − zvtx| run≤183000: < 18 cm < 18 cm

< 9 cm
run>183000:

< 11 cm
|dca ∗ sin(θ)| no cut no cut no cut

Particle Identification K2 π2 no cut

Table 4.7: Track selection cuts for 1996 and 1997. The cuts on the normalised dE
dx

likelihood probability defining the particle identification criteria (K1, K2, π1, π2) are
given in the text.

1The cuts on the track length and the track starting radius are identical at the Level 4 and in
this analysis. This is justified because the CJC hits are the same at the Level 4 and after the offline
reconstruction so that the track length and the track starting radius keep unchanged.
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Another problem is the track efficiency for the low p⊥ momentum which is quite
difficult to be determined in the data (the track efficiency is 100% for tracks with p⊥ > 200
MeV/c). To avoid this as well as the wrong description of low p⊥ tracks in the simulation
a minimum transverse momentum of 250 MeV/c for the kaon and the pion coming from
the D0 is required. Unfortunately the soft spectrum of the slow pion does not allow such
a cut. The difference between the data and the Monte Carlo will be taken into account
in the systematics.

The Likelihood probability, LHi, of a particle hypothesis i is calculated from an im-
proved dE

dx
measurement based on an extensive study on the systematic dependencies of

the dE
dx

measurement [65]. For a standard track selection the corrected dE
dx

value as a
function of the track momentum is shown in figure 4.4 for the data and the Monte Carlo
simulation. The normalised test variable LNi for the particle hypothesis i is:

LNi =
LHi∑

i=p,K,π
LHi

. (4.19)

It allows particle identification in some given momentum range. For this analysis two
particle identification criteria were defined for the two particle types K and π:
K1: for p ≤ 0.7 GeV/c, LNK > 10% and LNK > 5 ∗ LNπ

for 0.7 GeV/c < p ≤ 1.2 GeV/c, LNK > 20%
for p > 1.2 GeV/c, LNK > 10%

K2: for p ≤ 1.2 GeV/c, LNK > 5%
for p > 1.2 GeV/c LNK > 1%

π1: for p ≤ 0.7 GeV/c, LNπ > 80%
for 0.7 GeV/c < p ≤ 1.2 GeV/c, LNπ > 20%

π2: for p ≤ 1.2 GeV/c, LNπ > 1%
The strong criteria (K1, π1) were used for the 1996 data whereas the softer criteria (K2,
π2) were used for the 1997 data. This was motivated by a worse dE

dx
description in the

simulation for the 1997 detector conditions. Nevertheless, the softer particle identification
requirements still allow to have a reasonable signal to background ratio while reducing
systematics. The particle identification is of a big help to enhance the D∗+ signal.

4.4.2 D∗+ Requirements

Due to the geometrical acceptance of the detector D∗+ candidates are limited to the
pseudorapidity range:

−1.5 < ηD∗ < 1.5. (4.20)

Combinatorial background of low p⊥ tracks is suppressed by asking

p⊥D∗ > 1.5 GeV/c and p⊥K + p⊥π > 2 GeV/c. (4.21)

For previous analysis in H1 the improved dE
dx

measurement did not exist and it was com-
pulsory to cut the low xD∗ region in order to reach an acceptable signal to background
ratio. The present analysis is free of this cut and can therefore probe the D∗+ cross section
at low xD∗ , precisely were models seem to move away from the data (see figure D.16 in
appendix D).
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Figure 4.4: Corrected dE
dx

values as a function of the track momentum for standard tracks
with number of hits used for the dE

dx
determination greater than 40. The two years are

represented for both data and the AROMA Monte Carlo. The curves show the new dE
dx

parameterisation for different mass hypotheses (K, π, p)

4.4.3 Mass Reconstruction

The number of reconstructed D∗+, ND∗ , is obtained from a fit in the ∆m distribution
of all D∗+ candidates within the D0 mass window:

|mKπ −mD0| < 70 MeV/c2. (4.22)

The ∆m distribution for the D∗+ candidates selected in this analysis is shown in the
right plots in figure ?? (upper: 1996, middle: 1997, lower: 1996 and 1997 combined).
The shaded histogram represents the wrong charge (K−π−)π+

s candidates giving a good
description of the combinatorial background. The fit function is composed of a Gaussian
centred at the nominal ∆m mass plus the two-body phase space background:

f(∆m) =
P4√

2π · P5 ·B · e−
1
2

(
∆m−P6

P5

)2

+ P1 ·
(√

[(mD0+∆m)2−(mD0+mπ)2]·[(mD0+∆m)2−(mD0−mπ)2]

(mD0+∆m)3

)P3
. (4.23)
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The free parameters of the fit are P1 to P6 and B is a bin size scaling factor so that P4
is the number of D∗+ events in the Gaussian.

To constrain the background parameter P3, the wrong charge background given by
D∗+ → (K−π−)π+

s is simultaneously fitted using the same two-body decay formula with
parameter P2 instead of P1. The resulting parameters of the ∆m fit are summarised in
table 4.8 for 1996 and 1997 separately and combined. The fit yields in 952± 46 D∗+ for the
combined years with the peak position at ∆m = 145.50±0.04 MeV/c2 and the width of the
Gaussian of σ = 1.05±0.06 MeV/c2. The peak position agrees well with the Monte Carlo
expectation and with the nominal value ∆m = 145.436±0.016 MeV/c2 [40].

∆m fit
Data
1996

Data
1997

Data
1996 & 1997

P1 Background Normalisation 749 ± 120 1217 ± 134 1756 ± 155

P2 Background Normalisation 756 ± 125 1272 ± 141 1804 ± 163

P3 Background Exponent 0.84 ± 0.05 0.84 ± 0.03 0.80 ± 0.03

P4 ND∗ 423 ± 30 547 ± 36 952± 46

P5 Width [MeV/c2] 1.02 ± 0.08 1.09± 0.08 1.05± 0.06

P6 Mean [GeV/c2] 0.14560 ± 0.00006 0.14542± 0.00006 0.14550± 0.00004

c∆m

Fraction
in

∆m Window
0.966 0.956 0.964

Table 4.8: Results of the ∆m fit after the D∗+ selection for 1996 and 1997 separately and
combined. The factor c∆m is the fraction of D∗+ in the fitted Gaussian which is left when
the ∆m cut of equation 4.24 is performed.

The mD0 window cut of equation 4.22 represents a loss cmD0 of the number of D∗+

contributing to the ∆m peak. This loss is determined by evaluating the width of the peak
in the D0 mass distribution. The left plots in figure 4.5 (upper: 1996, middle: 1997, lower:
1996 and 1997 combined) represent the D0 mass distribution for (K−π−)π+

s candidates
which satisfy:

|mKππs −mKπ − (mD∗ −mD0)| < 2.2 MeV/c2. (4.24)

The shaded histogram shows the (K−π+)π+
s candidates from the high ∆m distribution

(0.16 GeV/c2 < ∆m <0.17 GeV/c2) and indicates the background expectation for mD0 >
2.05 GeV/c2. Two signals can be observed. One from the decay D0 → K−π+ and the so
called “S0” signal corresponding to the decay D0 → K−π+π0 where the π0 is not detected.
At low mD0 the high ∆m background does not describe the mD0 distribution. The
difference indicates the background produced by D0 decays different from D0 → K−π+.
The peak width in the D0 mass distribution is determined from a fit taking into account
the two signal contributions plus an exponentially falling background. The results of the
fit (ND∗ , mean and width of the D0 → K−π+ signal) as well as the fraction of the total
signal left in the mD0 window are listed in table 4.9. The differences between the data
and the Monte Carlo are taken into account in the calculation of the D∗+ cross section
(see section 5.1).
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After considering the loss due to the mD0 and ∆m windows, the D∗+ rate obtained
from the fit of the ∆m distribution (988± 48) agrees well with the rate from the mD0 fit
(947± 49).

The ∆m fits in bins of all quantities which are used for the differential cross sections
presented in this work, are given in appendix D.1.

mD0 Fit
Data
1996

MC
1996

Data
1997

MC
1997

Data
1996 & 1997

ND∗ 414± 31 5210± 93 499± 37 5788± 98 913± 47

Mean [GeV/c2] 1.862± 0.003 1.8704± 0.0004 1.860± 0.003 1.8696± 0.0003 1.861± 0.002

Width [GeV/c2] 0.035± 0.003 0.025± 0.001 0.032± 0.003 0.023± 0.001 0.033± 0.002

cmD0

Fraction in
mD0 Window

0.956 0.995 0.970 0.997 0.963

Table 4.9: Results of the mD0 fit after the D∗+ selection for 1996 and 1997 separately and
combined and for the year dependent Monte Carlo simulations. The D0 nominal mass is
1.8645 ± 0.0005 GeV/c2 [40]. The factor cmD0 is the fraction of D∗+ in the fitted Gaussian
which is left when the mD0 cut of equation 4.22 is performed.

4.5 Reflections Contribution

To determine the number of D∗+ decaying in the channel D∗+ → D0π+
s → (K−π+)π+

s

from the ∆m distribution within a given D0 mass window the contributions due to other
D0 decay modes (reflections) have to be subtracted. Theses contributions are estimated
with the help of Monte Carlo generator events.

All D0 decay modes different from D0 → K−π+ will result in a D0 reconstructed mass
shifted from the nominal mass of the D0 meson due to the kaon and pion mass assumption.
Because of the D0 mass window cut, the D0 mass resolution affects the number of D∗+ →
(K−π+)π+

s and the amount of reflections entering the ∆m histogram. When fitting the
∆m distribution with one Gaussian the amount of reflections contributing to the Gaussian
depends on the ∆m resolution. The reflections contribution depends on these two effects,
therefore both the D0 mass and ∆m data mass resolution have to be described by the
Monte Carlo generator.

The reflections have been studied using Monte Carlo events at the generator level.
The amount of events necessary to have a statistical significant result is such that the
simulation and reconstruction steps of the H1 detector cannot be envisaged. Since the
number of reflections events (as well as the number of signal events) entering the D0 mass
window depends on the resolution achieved in the D0 mass distribution, a smearing of the
generated track momentum is necessary to reach a similar resolution as the one which is
found with the simulation and reconstruction steps.

The smearing is carried out by taking into account the CJC momentum resolution and
the multiple scattering which takes place at the beam pipe and at the detector walls.
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The resolution in the transverse momentum p⊥is given by:

σp⊥

p⊥
= αp⊥ +

β

p⊥ ∗ (Rlength + 21.8 cm)2
, (4.25)

where Rlength is the expected track length in cm. The multiple scattering is reproduced
by applying a smearing in the polar and azimuthal angle in the following form:

σθ = σϕ = γ
E

p2

1√
sin θ

. (4.26)

This results in a crude simulation of the momentum resolution achieved with the CJC.
The parameters α, β, γ in equations 4.25 and 4.26 have been adjusted in order to have

the best description of the momentum resolution and of the ∆m and mD0 mass resolution.
This results in α = 0.0105 GeV−1·c, β = 20.0 GeV·c−1·cm2, γ = 0.0021 GeV/c2. With
these sets of parameters the D0 decay modes entering the mD0 window were identified.
They are listed in table 4.10.

Branching Ratios
JETSET

7.41

Branching Ratios
Particle Data Book

2000

Contribution
in the ∆m peak

K−π+ 0.03650 0.0383 ± 0.0009 97.0%
K−K+ 0.00410 0.00425 ± 0.00016 1.2%
π−π+ 0.00160 0.00152 ± 0.00009 0.4%

π−π+π0 0.01500 0.0160 ± 0.0110 0.3%
π−π+π−π+ 0.00750 0.0073 ± 0.0005 < 0.1%

K−e+νe 0.034 0.0364 ± 0.0018 0.3%
K−µ−νµ 0.034 0.0322 ± 0.0017 0.7%
π−e+νe 0.002 0.0037 ± 0.0006 < 0.1%
π−µ+νµ 0.002 not measured < 0.1%

Table 4.10: Differences between branching ratios of the D0 decay modes entering the D0

window given by the JETSET programme and the Particle Data Book [40]. Contributions
(predicted by the AROMA Monte Carlo after detector simulation and 1996 selection cuts)
in the ∆m peak after cutting in the D0 mass window are given in the third column. This
yields to a 3% contribution in the ∆m peak from D0 decays other than K−π+.

Restricting the Monte Carlo generator to those decay modes it was then possible to run
the detector simulation. The third column of table 4.10 gives the contribution (predicted
by the AROMA Monte Carlo generator after detector simulation and 1996 selection cuts)
in the ∆m peak after cutting in the D0 mass window. This yields to a 3% contribution
in the ∆m peak from D0 decays other than K−π+. The difference in the branching
ratios between the Monte Carlo and the Particle Data Book [40] are not relevant for
the decay modes which contribute significantly to the reflections number (K−K+, π−π+,
K−µ−νµ). The amount of reflections after the 1997 selection cuts are not significantly
different within the fits accuracy. This as well as the differences in the branching ratios
is taken into account in the error on the reflections contribution: r = (3± 1.5)%.
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Figure 4.5: mD0 (left) and ∆m (right) distributions for the D∗+ candidates selected in this
analysis (upper: 1996, middle: 1997, lower: 1996 and 1997 combined). The description
of the shaded histograms as well as the fit functions are given in the text.
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Chapter 5

Inclusive D∗+ Cross Sections
Measurement

This chapter will present inclusive D∗+ total, single differential and double differen-
tial cross sections deduced from the D∗+ → (K−π+)π+

s analysis. The cross sections are
measured in the kinematic region 1 GeV2 < Q2 < 100 GeV2 and 0.05 < y < 0.7 and in
the accessible range of the D∗+ analysis −1.5 < ηD∗ < 1.5 and p⊥D∗ > 1.5 GeV/c. After
determination of the systematics errors due to detector effects and theoretical uncertain-
ties the cross sections measurement is compared to the NLO QCD calculations and to
two differrent LO QCD Monte Carlo generators.

5.1 D∗+ Cross Sections Calculations

The inclusive D∗+ cross section, in the kinematic region and in the D∗+ visible ranges,
is deduced from the following quantities.

• The integrated luminosity of the two considered years L = 18.55 pb−1.

• The number of fitted D∗+ in the data ND∗ corrected for QED radiation (see subsec-
tion 4.3.5). The radiative corrections δrad are estimated to 3% for the total visible
cross section.

• The fraction cexp
mD0

and cMC
mD0

of D∗+ mesons which are left when the mD0 window

cut is performed, for data and Monte Carlo respectively (see subsection 4.4.3).

• The amount of reflections r contributing to ND∗ (see section 4.5).

• The branching ratio BR(K−π+π+
s )=2.59% of the decay channel D∗+ → D0π+

s →
(K−π+)π+

s [40].

• The Monte Carlo efficiency εvis, in the kinematic and visible ranges, is the sum of
the efficiencies for the two considered years scaled by the data luminosities:

εvis =
L96ε96

vis/c
MC96
mD0

+ L97ε97
vis/c

MC97
mD0

L96 + L97
. (5.1)
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For one year measurements, the efficiency is the number of fitted D∗+ events in the
reconstructed ranges after subtrigger requirements and analysis cuts over the total
number of D∗+ in the generated ranges. This yields to an efficiency of (27.8±0.3)%
and (21.2 ± 0.2)% in 1996 and 1997 respectively, based on the AROMA Monte
Carlo with mc = 1.5 GeV/c2, ε(Peterson) = 0.078, µ2

R = µ2
F = ŝ and GRV 94 LO

for the gluon density. The lower efficiency in 1997 is due to harder track quality
requirements (dca and track length) and to the partly inefficient CJC.

In the kinematic region and D∗+ visible ranges the inclusive D∗+ cross section is calculated
using:

σvis(ep → eD∗+X) =
ND∗ · (1− r)/cexp

mD0

L · BR(K−π+π+
s ) · εvis

(5.2)

vis : −1.5 < ηD∗ < 1.5 , p⊥D∗ > 1.5 GeV/c . (5.3)

5.2 D∗+ Systematic Errors

The sources of systematics on the cross sections measurement are separated in two cat-
egories. The experimental systematics sum up all systematics related to the understanding
of the detector and related to the D∗+ rate determination. The model uncertainties which
change the value of the efficiency represent the theoretical systematics.

5.2.1 Experimental Systematics

• After checking the agreement for the subtrigger efficiencies between the data and
the detector simulation (see subsection 4.1.2) the simulated subtrigger efficiencies
are used. An overall error of 2% takes into account the errors coming from the
SpaCal trigger efficiency uncertainties and the systematics when using the detector
simulation subtrigger efficiencies. For the 1st and 4th p⊥D∗ bins the systematics is
risen to 5% and 4% respectively because of an only relative agreement between the
data and the detector simulation.

• Track reconstruction for the detector simulation has been checked with K0 decays
on the 1994 data [66]. A similar analysis was performed on the 1996 data [64].
Using the results from the first analysis and the knowledge gained in the second
analysis, an error of +7.5% − 3.4% is estimated for the systematics related to the
track reconstruction including the errors introduced by the weighting procedure
described in subsection 4.4.1.

• The error on the number of D∗+ resulting from the ∆m fit is determined by chang-
ing the ∆m fit procedure. The reference fit uses the wrong charge background to
constrain the background parameter (see subsection 4.4.3). The fit has also been
performed first without any background constraint and second using the high mD0

mass background as a constraint. This results in an error of ±5%. The same treat-
ment has been performed in all differential distributions. Within the accuracy of
the fit no bin dependency effects were found.
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• An additional error on the number of D∗+ results from the mD0 mass cut (see
subsection 4.4.3). The ∆m fit is performed for a larger mD0 window (|mKπ −
mD0| < 80 MeV/c2) and for a smaller mD0 window (|mKπ − mD0| < 60 MeV/c2)
resulting in an error of +4% − 2.5%. The reflections contribution has been taken
into account when closing the mD0 window (r = 2.5%) or opening it (r = 4.0%).
No bin dependency effects were found except in the ηD∗ distribution which reveals
a polar angle dependency of the mD0 resolution.

• The wrong description of the low p⊥ track behaviour is quantified by applying a
stronger p⊥ cut to the slow pion (p⊥π+

s
> 0.14 GeV/c). The total cross section is

then 4% larger. This systematics is applied bin wise since significant effects are
observed in all distributions.

• Using the results found in [12] and [13] (see section 2.3) the scattered electron
energy has been changed in the data by ±1% at 27.5 GeV to ±3.0% at 8 GeV
assuming a linear behaviour of the energy uncertainty. Differences in the cross
section (+1.2% − 4.0%) are attributed to the absolute energy scale uncertainty.
Changing θe by ±1 mrad shows that the resolution of the polar angle induces no
relevant systematics on the total cross section. Only in bins where the systematics
due to the θe resolution approach the energy scale systematics they will be taken
into account. No year dependency was observed which allows a precise estimation
of the systematics after combining the two years. Finally, the systematics were
estimated bin wise except in the p⊥D∗ , ηD∗ bins where no significant changes could
be observed.

• The systematics due to the event kinematic determination, here the electron method,
were estimated by performing the complete analysis using the sigma method. This
results in an increase of the total cross section by 4.7%. Thus, an asymmetric error
of +4.7% is attributed to the systematics due to the event kinematic determination.
The changes in the cross section were also taken into account bin wise except in the
p⊥D∗ , ηD∗ distributions.

• The uncertainties in the QED radiation corrections yield to a 2% systematic error
for Q2 >1 GeV2 [67].

• The contribution from photoproduction background amounts to 0.4%. This was
estimated from a 132 pb−1 sample generated with the AROMA Monte Carlo for
generated Q2 smaller than 1 GeV2. The photoproduction background is taken into
account in the systematics.

• A systematics of ±1.5% reveals the luminosity measurement error [68].

• The subtraction of the reflections leads to a ±1.5% systematics (see subsection 4.5).

• The uncertainty in the branching ratio of the D∗+ to (K−π+)π+
s from other exper-

iments reaches ±4% [40].
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The different contributions are added in quadrature which leads to a total relative error of
+13.2%−9.8%. Main contributions come from the track efficiency systematics and in the
extraction of the D∗+ signal systematics. All experimental systematics are summarised
in table 5.1.

Experimental
Systematics in %

Special Treatment for
Differential Cross Sections

Trigger +2.0− 2.0
1st p⊥D∗ bin: +5.0% −5.0%
4th p⊥D∗ bin: +4.0% −4.0%

Track Efficiency and MC Weight +7.5− 3.4
∆m Fit +5.0− 5.0

mD0 Window +4.0− 2.5
1st ηD∗ bin: +0.06% −0.0%
4th ηD∗ bin: +0.06% −0.0%

dE
dx

Measurement +3.0− 3.0
p⊥π+

s
Cut +4.0− 0.0 bin wise

E ′
e, θe Resolution +1.2− 4.0 bin wise except p⊥D∗ , ηD∗ bins

Event Kinematics +4.7− 0.0 bin wise except p⊥D∗ , ηD∗ bins
Radiative Corrections +2.0− 2.0

γp Contribution +0.0− 0.4
Luminosity +1.5− 1.5

Reflection Contribution +1.5− 1.5
Branching Ratios +4.0− 4.0

Total +13.2− 9.8

Table 5.1: Experimental systematics in % for the inclusive D∗+ total cross section within
the visible range. Details on the systematics determination are given in the text. The third
column indicates how the systematics are treated in the case of the D∗+ differential cross
sections, see text for details. Where nothing is stated the total cross section systematics
is used.

5.2.2 Theoretical Systematics

In order to determine the D∗+ cross sections, the efficiencies of the analysis are estimated
with a Monte Carlo generator. Presently several Monte Carlo generators are available (see
section 3.3) giving different estimations of the efficiencies. Indeed, different theoretical
D∗+ production dynamics result in different efficiencies because the efficiencies depend
on p⊥D∗ , ηD∗ etc. distributions. For the same reason, some input parameters of the
generators which have an influence on the predicted cross section (see subsection 3.3.6),
have also an influence on the analysis efficiencies. The theoretical systematics on the D∗+

cross sections are given by the uncertainties on the efficiencies. Four independent sources
of theoretical systematics were studied in this work.
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• The D∗+ rate in the x∗D distribution reveals an insufficient understanding of the
charm fragmentation (see figure D.16 in appendix D). The fragmentation represents
the pure non perturbative part of the transition from the partons at the hard level
to the final hadrons. It is described with the help of phenomenological models (see
subsection 3.2.2 and section 3.3). The analysis efficiencies whithin the visible range
for the different distributions were calculated for different Peterson fragmentation
parameter (ε(Peterson) = 0.035 and 0.100) or using the standard Lund fragmenta-
tion or the HERWIG Monte Carlo instead of AROMA. The changes in the efficiency
with respect to the reference (ε(Peterson) = 0.078) are assigned as systematics if a
significant effect is observed.

• With the same procedure the systematics due to the charm mass uncertainty are
estimated using mc = 1.3 or 1.7 GeV/c2.

• The factorisation and renormalisation scales in the AROMA Monte Carlo used as
reference are fixed to the invariant mass of the cc̄ system. This was changed to
Q2 + 4m2

cc
4 to estimate systematics due to the scale needed in the theory.

• The effect on the efficiency when including QED radiations on the lepton side, leads
to a decrease of the cross section of 2.6%.

All model uncertainties are summarised in table 5.2. The model dependencies are added
in quadrature which leads to a total relative error of +7.6%−4.9%. A charm mass smaller
than 1.5 GeV/c2 brings the biggest contribution to the model uncertainties (+6.7%). The
second biggest contribution to the model uncertainties comes from the sensitivity of the
cross section to the charm fragmentation. The last model uncertainties are of the same
order.

Model
Uncertainties in %

Fragmentation +3.5− 3.1
Charm Mass +6.7− 2.3

Factorisation and Renormalisation Scale +0.0− 1.1
QED Radiations +0.0− 2.6

Total +7.6− 4.9

Table 5.2: Model uncertainties in % for the inclusive D∗+ total cross section. The different
theoretical models considered as well as the variations of the theoretical parameters are
described in the text.

Finally, the comparison of the experimental and theoretical systematics shows that the
cross section measurement is predominated by the experimental systematics. However,
the systematics coming from the uncetainties on the branching ratios are not depending
on the performance of the H1 detector. Taking this into account, the H1 experimental
systematics are comparable to the remaining systematics.
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5.3 D∗+ Cross Sections Results

In the following, the D∗+ total, single and double differential cross sections are given
in the kinematic and visible ranges:

0.05 < y < 0.7 Q2 > 1 GeV2 (5.4)

−1.5 < ηD∗ < 1.5 p⊥D∗ > 1.5 GeV/c. (5.5)

The D∗+ visible range corresponds to the detector acceptance (-1.5 < ηD∗ < 1.5) and to
the way of extracting the D∗+ signal which requires p⊥D∗ > 1.5 GeV/c.

The measurement is confronted with the predictions of the NLO DGLAP calculations
implemented in the HVQDIS programme and with the predictions of two LO Monte Carlo
event generators. One of them, AROMA, is based on the DGLAP QCD approach whereas
in the other, CASCADE, the CCFM formalism is applied.

5.3.1 Total D∗+ Cross Sections

The inclusive D∗+ total cross section in the kinematic and visible ranges based on
the AROMA Monte Carlo to determine the efficiency (with main parameters as given in
section 5.1) is found to be:

σvis(ep → eD∗+X) =

(
8.44± 0.42(stat.)

+1.12
−0.83

(exp. syst.)
+0.64
−0.41

(theo. syst.)

)
nb

(5.6)
The D∗+ visible cross section is compared to several theoretical models in table 5.3. All
programmes generate cc̄ events but they use different values for the probability P (c →
D∗+) that a charm quark fragments in a D∗+ meson. Therefore correction factors have
been applied so that the resulting probability agrees with the most recent value measured
in electron-positron collisions at LEP: P (c → D∗+) = (23.3 ± 1.5)% [57]. Prediction
ranges are given by using different scales, charm mass and values of ε(Peterson).

The predictions of the NLO DGLAP calculations performed in the HVQDIS pro-
gramme (see subsection 3.3.5) are systematically lower than the measured cross section
(roughly 30%) even when assuming an extrem value for the charm mass. In the most
recent publication [69] using the 1995 and 1996 H1 data a better agreement was found.
This better agreement is mainly due to the fact that the predicted HVQDIS D∗+ cross
section was calculated with 27% for P (c → D∗+) instead of the 23.3% taken here. Also
the former use of a cut at low xD∗ supressed the corner of phase space where the data
are systematically above all predictions (see subsection 5.3.2). Moreover, the analysis was
performed for Q2 > 2 GeV2 instead of for Q2 > 1 GeV2 for the present analysis.

Recently the CASCADE programme based on the LO CCFM evolution equation was
released (see subsection 3.3.4). Here the unintegrated gluon density is a solution of the
CCFM evolution equation describing both the structure function F2 and the cross section
of forward jet production as measured by the HERA experiments. The resulting D∗+

predicted cross sections for mc = 1.3 GeV/c2 and mc = 1.5 GeV/c2 particularly well
enclose the measurement.
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Like for the HVQDIS predictions the LO DGLAP AROMA Monte Carlo (see subsec-
tion 3.3.1) underestimates the D∗+ total cross section in the visible range. For a fixed
value of ε(Peterson), scales and charm mass, a larger cross section is predicted when the
set GRV 94 LO instead of GRV 98 HO is used for the gluon density. The cross section pre-
diction is not affected by using ŝ or Q2 + 4m2

cc
4 for the factorisation and renormalisation

scales. It is interesting to note that the AROMA cross section is close to the HVQDIS
prediction when using the same value of ε(Peterson), the same scales and the same gluon
density.

The predictions of the D∗+ visible cross section from the two DGLAP programmes
HVQDIS and AROMA undershoot the data cross section whereas the CASCADE predic-
tion agrees well with the data. The different fragmentation approaches cannot affect the
predicted visible cross section as it was shown in subsection 3.3.6. Therefore, the HVQDIS
and AROMA underestimation of the data can be due to an overall normalisation problem.
A wrong estimation of the loss coming from the visible cuts when the predicted p⊥c and ηc

distributions are too far from the reality is also possible. Both effects certainly contribute,
because the CASCADE prediction which is 27% larger than the HVQDIS prediction in
the total D∗+ range becomes 56% larger in the visible range.

σvis(ep → eD∗+X)

Data
H1

1996 & 1997

(
8.44

+1.36
−1.01

)
nb

Model scales ε(Peterson) mc g(xg, Q
2)

AROMA ŝ 0.078 1.3 GeV/c2 GRV 94 LO 7.44 nb
AROMA ŝ 0.078 1.5 GeV/c2 GRV 94 LO 6.34 nb
AROMA Q2+4m2

cc
4 0.078 1.5 GeV/c2 GRV 94 LO 6.44 nb

AROMA Q2+4m2
cc

4 0.078 1.3 GeV/c2 GRV 98 HO 5.66 nb
AROMA Q2+4m2

cc
4 0.078 1.5 GeV/c2 GRV 98 HO 4.85 nb

HVQDIS Q2+4m2
cc

4 0.078 1.3 GeV/c2 GRV 98 HO 6.29 nb
HVQDIS Q2+4m2

cc
4 0.078 1.5 GeV/c2 GRV 98 HO 5.40 nb

HVQDIS Q2+4m2
cc

4 0.035 1.3 GeV/c2 GRV 98 HO 7.01 nb
HVQDIS Q2+4m2

cc
4 0.100 1.5 GeV/c2 GRV 98 HO 5.17 nb

CASCADE Q2+4m2
cc

4 0.078 1.3 GeV/c2 H1 fit 9.86 nb
CASCADE Q2+4m2

cc
4 0.078 1.5 GeV/c2 H1 fit 8.42 nb

Table 5.3: Measured inclusive D∗+ total cross sections in the kinematic range and D∗+

visible range compared to different choices of theoretical models together with different
factorisation and renormalisation scales, values of ε(Peterson), charm masses and gluon
densities.
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5.3.2 Single and Double Differential D∗+ Cross Sections

The measured inclusive D∗+ single differential cross sections in the visible range versus
W , x, Q2 and p⊥D∗ , ηD∗ , xD∗ are shown in figure 5.1. The following double differential
cross sections1

d2σvis(ep → eD∗+X)/(dp⊥D∗dηD∗)
d2σvis(ep → eD∗+X)/(dp⊥D∗dxD∗)

are shown in figure 5.2 and

d2σvis(ep → eD∗+X)/(dxD∗dηD∗)
d2σvis(ep → eD∗+X)/(dηD∗dQ2)
d2σvis(ep → eD∗+X)/(dp⊥D∗dQ2)

in figure 5.3.

In these series of figures the predictions of the HVQDIS and CASCADE generators
are also indicated. The same measured cross sections are compared to the predictions
of the AROMA generator for two gluon density hypotheses in figures 5.4 to 5.6. The
derivative of dσvis(ep → eD∗+X)/dlogxobs

g with respect to the variables ŝobs, x, ηD∗ and
xD∗ are shown appart in chapter 6 in the context of the extraction of the gluon density.

The effects due to the detector resolution are small with respect to the chosen bin
sizes in the considered distributions and are taken into account in the Monte Carlo effi-
ciencies. The innermost error bars correspond to the statistical error. The experimental
systematical errors are added in quadrature for the middle error bars. The total error
bars additionally take the model systematics into account.

For the presented differential cross sections, the efficiency is determined bin wise with
the AROMA Monte Carlo where the main parameters are given in section 5.1. As a check
of the efficiency estimation validity the number of D∗+ predicted by this Monte Carlo
generator at the detector level and after the analysis cuts is compared, in appendix D.2,
to the number of D∗+ found in the data. A reasonable description of the D∗+ rate is
found in all distributions. However, too few D∗+ candidates are predicted at positive ηD∗

and low xD∗ and too many at negative ηD∗ and high xD∗ . The corresponding efficiencies
are shown in appendix D.3. The discrepancy in the rates of the ηD∗ and xD∗ distributions
together with a non constant efficiency could bias the cross section differentiated in the
other quantities. This is controlled by the model dependency systematics.

In figure 5.1 the measured cross section within the kinematic and visible range versus
x shows that the variable x is accessible between 1.6 · 10−5 and 0.01. This corresponds to
xobs

g values between 6.3 · 10−4 and 0.025 as seen in chapter 6. The cross section versus ηD∗

has a broad structure centred at positive ηD∗ values (D∗+ in forward direction). It is more
pronounced for low xD∗ values which indicates a relative soft fragmentation function.

1Single and double differential cross sections dσ/dX and d2σ/(dXdY ) are always meant to be partial
differential cross sections ∂σ/∂X and ∂2σ/(∂X∂Y ).
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The double differential cross section d2σvis(ep → eD∗+X)/(dp⊥D∗dηD∗) in figure 5.2.(a)

indicates a nearly flat behaviour in ηD∗ at low p⊥D∗ with a slight increase in the positive
ηD∗ region. For intermediate p⊥D∗ the maximum of the cross section versus ηD∗ is more
centred. For high p⊥D∗ this maximum is shifted to positive ηD∗ values. Figure 5.2.(b)

shows that at low p⊥D∗ the data increase with decreasing xD∗ . For p⊥D∗ > 2.5 GeV/c
the xD∗ distribution is more pronounced at intermediate xD∗ and is independent of p⊥D∗ .
In figure 5.2.(c) the cross section in the lowest xD∗ bin rises with increasing ηD∗ whereas
it decreases slightly for higher xD∗ . This confirms the intuitive relation between low xD∗

and D∗+ mesons emitted in the forward direction.

In figure 5.3.(a) the decreasing of the cross section as a function of Q2 is nearly the same
for the three ηD∗ bins. The larger cross section for positive values of ηD∗ in figure 5.1 is re-
flected in figure 5.3.(a) by a Q2 independent rise of the double differential cross section with
increasing ηD∗ . The double differential cross section d2σvis(ep → eD∗+X)/(dp⊥D∗dQ2) in
figure 5.3.(b) is two order of magnitude higher at low Q2 than at high Q2 when p⊥D∗ is
small. For large p⊥D∗ values only a factor three remains between the two extreme Q2 bins.
The steep rise of the double differential cross section in figure 5.3.(b) with decreasing p⊥D∗

is strongly attenuated when Q2 increases.

The experimental data are compared to the prediction of the NLO DGLAP calcu-
lations from the HVQDIS programme in figures 5.1 to 5.3 (dark shaded band). In this
calculation the GRV 98 HO parton density parametrisation was used with mc = 1.3
GeV/c2, ε(Peterson) = 0.035 (upper limit) and mc = 1.5 GeV/c2, ε(Peterson) = 0.10
(lower limit). In figure 5.1 a reasonable agreement with the data is observed in the shape
of the different single differential cross sections, taking into acount additional uncertainties
in the other parameters of the theory (gluon density, QCD scales). However, an overall
normalisation problem remains as already discussed in subsection 5.3.1. The shapes of
the distributions are easier to compare in the figures of appendix E where the normalised
differential cross sections are presented. Despite the good agreement with the data the
HVQDIS predictions poorly describe the ηD∗ and xD∗ distributions. The experimental
cross section is more important in the forward direction (positive ηD∗) which corresponds
to a softer distribution in xD∗ .

With a closer look on the double differential cross sections in figures 5.2.(a) and 5.2.(c)

it gets clearer that the larger amount of experimental cross section at large ηD∗ compared
to the HVQDIS predictions corresponds to small p⊥D∗ and small xD∗ . In figure 5.3.(a)

the HVQDIS predictions are roughly 5% and 10% lower than the data for the low and
intermediate ηD∗ bin respectively and this independently of Q2. For the highest ηD∗ bin,
the HVQDIS predictions only explain 50% of the measured cross section with a slight
better agreement at high Q2 than at low Q2. Indeed, the HVQDIS cross section gets
shifted to higher ηD∗ when Q2 increases. At low p⊥D∗ the Q2 distribution predicted by
HVQDIS (see figure 5.3.(b)) is systematically too low but with a sligth different Q2 slope
as observed in figure E.3.(b) of appendix E, which stays however within the data uncer-
tainties. At high p⊥D∗ the HVQDIS prediction band nearly covers the data for all Q2 bins.
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The light shaded band in figures 5.1 to 5.3 is the prediction of the LO CCFM calcula-
tions implemented in the CASCADE event generator for mc = 1.3 GeV/c2 (upper limit)
and mc = 1.5 GeV/c2 (lower limit). The value of ε(Peterson) has been fixed to 0.078.
The solution of the CCFM evolution equation for the unintegrated gluon density which is
used here is described in subsection 3.3.4. The predictions of CASCADE agree in shape
and normalisation with the data in all the single differential cross sections shown in figure
5.1, with, however, an overestimation of the cross section at large p⊥D∗ .

From the double differential cross sections in figure 5.2 it can be observed that the
overestimation of the predicted CASCADE cross section at large p⊥D∗ is concentrated
at low ηD∗ and high xD∗ . Appart this small difference, the prediction of the CASACDE
generator nicely follows the data behaviour in all distributions of figure 5.2.

Figure 5.3.(a) shows that already at low Q2 the CASCADE cross section is more shifted
towards larger ηD∗ than the HVQDIS cross section. This results in an overall better de-
scription of the double differential cross section as a function of ηD∗ and Q2. The CAS-
CADE prediction seems, however, to overshoot the data at large Q2 but independently of
ηD∗ . A good agreement in the cross section versus Q2 for the low p⊥D∗ can be observed in
figure 5.3.(b) with a slight shift towards larger Q2 (see also figure E.3.(b)). When p⊥D∗ is
large the CASCADE predictions are systematically higher for all Q2. Moreover, the differ-
ence between the CASCADE p⊥D∗ slope and data seems to be more pronounced at low Q2.

In figures 5.4 to 5.6 the cross sections measurement is compared to the LO DGLAP
AROMA generator predictions. They are represented by the light and dark shaded bands
when using the GRV 94 LO and the GRV 98 HO gluon density parametrisations respec-
tively. For both shaded bands the lower limit corresponds to mc = 1.5 GeV/c2 while
the upper limit corresponds to mc = 1.3 GeV/c2. The factorisation and renormalisation
scales were set to Q2 + 4m2

cc
4 and ε(Peterson) has been fixed to 0.078.

The AROMA D∗+ cross sections in the visible range are larger when using the GRV
94 LO parametrisation instead of the GRV 98 HO parametrisation (see table 5.3). This is
the consequence of a steeper rising gluon density with decreasing xg in the case of the LO
DGLAP GRV 94 LO gluon density as seen in figure 6.1 in chapter 6. The predicted cross
section is larger at high W , low x, Q2, p⊥D∗ and ηD∗ values when using the LO DGLAP
gluon density instead of the NLO DGLAP density. In the xD∗ distribution this effect
is spread over the intermediate region from 0.1 to 0.5. The cross section enhancement
when using the GRV 94 LO parametrisation brings a better agreement in the W , x, Q2

distributions but a worse agreement is observed in the p⊥D∗ and ηD∗ distributions (see also
the normalised cross sections in figure E.5). This indicates that the LO DGLAP formalism
used in AROMA is not able to describe simultaneously both the kinematic dependence
of the cross section and the charm production mechanism occurring predominantly in the
p⊥D∗ and ηD∗ distributions.

The same effect is also observed for the double differential cross sections in figure
5.5. Indeed, at low p⊥D∗ the change in the gluon density from the GRV 98 HO to the
GRV 94 LO parametrisation increases the predicted cross section independently of ηD∗

(figure 5.5.(a)) which does not improve the agreement with the exceeding data at the high
ηD∗ values. At high p⊥D∗ the change of the cross sections when using the LO density
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is more pronounced at low ηD∗ values which even more deteriorates the agreement with
the shape of the data. The predicted xD∗ distributions in figure 5.5.(b) for the two gluon
densities are nearly the same for the high p⊥D∗ bins. Indeed, Most of the high p⊥D∗

events correspond to large xg values where the two gluon densities are nearly indentical.
At smaller p⊥D∗ values no improvement in the xD∗ distributions is observed. The cross
section d2σvis(ep → eD∗+X)/(dxD∗dηD∗) in figure 5.5.(c) shows that the difference between
the two bands systematically increases when ηD∗ decreases. Therefore none of the two
AROMA bands describe well the large cross section measured at high ηD∗ and low xD∗ .
The prediction of AROMA when using the GRV 94 LO parametrisation better describes,
independently of ηD∗ , the Q2 dependency of the measurement as shown in figure 5.6.(a),
however only at low p⊥D∗ (figure 5.6.(b)).

From the comparison of figures 5.1 to 5.3 with figures 5.4 to 5.6 a better agreement
with the data is found for the HVQDIS predictions than for the AROMA predictions
when both were calculated with the GRV 98 HO parametrisation. As a matter of fact,
the NLO calculations implemented in the HVQDIS programme lead to a higher cross
section than the LO calculations at high W , low x and Q2 (figures 5.1 and 5.4). The
same ηD∗ dependency is however predicted at low Q2 (see figure 5.3.(a) and 5.6.(a)). In
all p⊥D∗ bins the HVQDIS predictions are above the AROMA predictions. This effect is
even more pronounced at high p⊥D∗ resulting in a better description of the data. These
differences at high p⊥D∗ do not affect the ηD∗ dependency (see figures 5.2.(a) and 5.5.(a))
but a clear improvement of the Q2 slope predicted by the HVQDIS programme compared
to the AROMA results is observed in figures 5.3.(b) and 5.6.(b). The NLO calculations as
a function of xD∗ also describe the data better than the LO calculations, independently
of the D∗+ emitted angle (figures 5.3.(c) and 5.6.(c)). The agreement is even better with
increasing p⊥D∗ as seen in figures 5.3.(b) and 5.6.(b).

To conclude, the experimental results presented here are extended down to Q2 of 1
GeV2 thanks to the detection of the scattered electron at smaller angles. This was achieved
with the new backward components of the H1 setup. A better selection of the scattered
electron and a higher precision in the kinematic variables were thus also obtained. Com-
pared to first measurement relying on the hundred D∗+ mesons reconstructed in the 1994
H1 data, the present work deals with one order of magnitude more D∗+ events. The
rather high number of D∗+ mesons is the result of the increase of the luminosity delivered
by HERA in 1996 and 1997 and obviously by two years measurements time. The rising
cross section with decreasing Q2 also improve the statistics. In the selection of the D∗+

candidates further improvement was achieved by entirely suppressing the xD∗ cut. This
was possible because of extensive use of the improved dE

dx
measurement delivered by the

H1 central jet chamber.

The improvements in the experimental measurements allow for a very fine confronta-
tion with the available theories. In parallel, progress were done in the theoretical calcu-
lations in particular the establisment of new calculations based on the CCFM formalism.
The overall comparison with the three studied theoretical models shows a reasonable
agreement for all of them. However, one should emphasise that the CCFM CASCADE
predictions, with the settings used here, describe particularly well both the absolute cross
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section measurement and its behaviour as a function of the studied variables. The re-
sults of the LO and NLO DGLAP calculations in AROMA and HVQDIS generators
respectively, underestimate the measurement systematically. Moreover, the AROMA cal-
culations indicate that the use of a steep gluon density brings a better agreement in the
absolute predicted cross section and on the kinematic dependencies but does not allow to
correctly reproduce the charm production mechanism.
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Figure 5.1: Inclusive D∗+ single differential cross sections in the visible range versus W ,
x, Q2 and p⊥D∗ , ηD∗ , xD∗ . The innermost error bars correspond to the statistical error.
The experimental systematical errors are added in quadrature for the middle error bars
and the total error bars additionally take the Monte Carlo systematics into account. The
dark shaded band is the prediction of the HVQDIS NLO DGLAP calculations for mc

= 1.3 GeV/c2, ε(Peterson) = 0.035 (upper limit) and mc = 1.5 GeV/c2, ε(Peterson) =
0.10 (lower limit). The light shaded band is the prediction of the CASCADE LO CCFM
calculations for mc = 1.3 GeV/c2 (upper limit) and mc = 1.5 GeV/c2 (lower limit);
ε(Peterson) has been fixed to 0.078.
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Figure 5.2: Inclusive D∗+ double differential cross sections in the visible range for
D∗+ quantities d2σvis(ep → eD∗+X)/(dp⊥D∗dηD∗), d2σvis(ep → eD∗+X)/(dp⊥D∗dxD∗),
d2σvis(ep → eD∗+X)/(dxD∗dηD∗). The dark and light shaded bands are described in the
caption of figure 5.1.
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Figure 5.3: Inclusive D∗+ double differential cross sections in the visible range d2σvis(ep →
eD∗+X)/(dηD∗dQ2) and d2σvis(ep → eD∗+X)/(dp⊥D∗dQ2). The dark and light shaded
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Figure 5.4: Inclusive D∗+ single differential cross sections in the visible range versus W ,
x, Q2 and p⊥D∗ , ηD∗ , xD∗ . The innermost error bars correspond to the statistical error.
The experimental systematical errors are added in quadrature for the middle error bars
and the total error bars additionally take the Monte Carlo systematics into account. The
dark shaded band is the prediction of the LO DGLAP AROMA event generator for mc

= 1.3 GeV/c2 (upper limit) and mc = 1.5 GeV/c2 (lower limit) with GRV 98 HO for the
parton density set. The light shaded band is the prediction of the LO DGLAP AROMA
event generator for mc = 1.3 GeV/c2 (upper limit) and mc = 1.5 GeV/c2 (lower limit)
with GRV 94 LO for the parton density set. In both cases ε(Peterson) has been fixed to
0.078.
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Figure 5.5: Inclusive D∗+ double differential cross sections in the visible range for
D∗+ quantities d2σvis(ep → eD∗+X)/(dp⊥D∗dηD∗), d2σvis(ep → eD∗+X)/(dp⊥D∗dxD∗),
d2σvis(ep → eD∗+X)/(dxD∗dηD∗). The dark and light shaded bands are described in the
caption of figure 5.4.
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Figure 5.6: Inclusive D∗+ double differential cross sections in the visible range d2σvis(ep →
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Chapter 6

Extraction of the Gluon Density at
HERA

One of the main goals of HERA was to study the gluon density in the proton. The
most evident and accommodating way to reach it is to measure precisely the scaling vi-
olation behaviour of the structure function F2 as shortly described in section 6.1. In a
complementary approach the gluon density can also be obtained by directly reconstruct-
ing the fraction xg of the proton momentum carried by the gluon in events which are
dominated by the boson-gluon fusion process. Experimentally, jet or tagged charm events
lend themselves to this measurement. In section 6.2 the different ways to measure xg are
presented together with the features of both jet and D∗+ meson analysis. The initial aim
of this work was to extract the gluon density from the sample of D∗+ events selected in
the 1996 and 1997 H1 data. The principle of the chosen method and the encountered
difficulties are given in section 6.3.

6.1 F2 Indirect Measurement

In the DGLAP QCD formalism the Q2 dependency of the structure function F2(x,Q2)
is determined by the evolution equations of the parton densities. Especially for Q2 > m2

pc
4

and low x the scaling violation behaviour of F2(x,Q2) given by ∂F2(x,Q2)/∂Q2 is governed
by the dominance of gluons in the proton (see subsection 3.1.2). The NLO DGLAP
QCD fit performed in reference [27] to the H1 ep and BCDMS µp inclusive cross sections,
assuming heavy flavour production within the massive scheme, allows to extract the gluon
density xg g(xg, Q

2) for different values of Q2 as shown in figure 6.1. Simultaneously the
strong coupling constant which also occurs in the formalism is obtained. The Q2 range
provided by H1 data extends from 3.5 GeV2 to 3000 GeV2. The low Q2 data constrain
the gluon density parametrisation whereas the high Q2 data together with the BCDMS
data constrain the quark densities parametrisation. In the QCD fit no data were included
above 3000 GeV2 in order to avoid the region where the electroweak interference gets large.
Figure 6.1 shows that the gluon density is extracted with an impressive precision with only
a few percent experimental uncertainty at low xg. The final error bands take into account
the uncertainty coming from the simultaneous fit of αs, from the fit parameters Q2

min,
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Q2
0, mc and from the choice of the parton distribution parametrisation at the initial scale

Q2
0. In the error the dependency of the fit on the theoretical description for heavy quark

production (massive or massless formalism) has also been taken into account. Indeed,
the relative contribution of charm is large (approximatively 25% at Q2 = 60 GeV2 and
x < 0.01 [64]) and therefore influences the results. The fit was also performed with the H1
data alone and after fixing the strong coupling constant. The resulting gluon distribution
is shown in figure 6.1 as solid lines inside the given bands.
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Figure 6.1: Gluon distributions xg g(xg, Q
2) as a function of xg resulting from the NLO

DGLAP fit to the H1 ep and BCDMS µp inclusive cross section assuming heavy flavour
production within the massive scheme. The innermost error bands represent the experi-
mental error when αs(m

2
Z) was set to 0.115 while the middle error bands take into account

the simultaneous fit of αs. The outer error bands include the uncertainties related to the
theory. The results are compared to the GRV parametrisations for (a) Q2 = 5 GeV2 and
(b) Q2 = 20 GeV2.

6.2 Direct Measurements

In deep inelastic electron-proton scattering, the main hard processes up to order αemαs

are the Quark Parton Model (QPM), the QCD-Compton (QCDC) and the boson-gluon
fusion (BGF) processes, which are represented in figure 6.2. Experimentally the fraction
of proton momentum carried by the gluon xg can be directly measured in events where
the hard interaction between the electron and the proton is taking place via the BGF
process. This is the case of events containing at least two jets or a D∗+ meson.
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In the following subsection the different ways to calculate the quantity xg are presented.
Next the frames of the multi-jet and D∗+ analysis are discussed. In the last section special
emphasis on the D∗+ analysis which was performed in this work is given.
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Figure 6.2: Generic Feynman diagrams for deep inelastic ep scattering up to order αemαs:
(a) ep interaction of the virtual probe (γ, Z0) with a valence or a sea quark in the proton
according to the Quark Parton Model (QPM), (b) corrections to process (a) due to gluon
radiation of the struck quark before or after interacting with the probe (QCD-Compton
scattering), and (c) Boson-Gluon Fusion process (BGF).

6.2.1 Direct Reconstruction of xg

In this part we describe how to reconstruct xg from the outgoing quarks of the BGF
process. However, it should be noticed that as soon as higher order are taken into account
the formulas developed here are not valid anymore. For better understanding of the
formulas the quark and antiquark involved in the BGF process are taken with charm
flavour but it should be kept in mind that the beauty flavour is also possible. In the BGF
hard sub-process the momentum conservation is given by:

xgP + q = pc + pc̄, (6.1)

where P, q, pc and pc̄ denote the proton, photon, c quark and c̄ quark momenta respectively.
Squaring equation (6.1) gives the following equation when the proton mass is neglected:

2xgP ·q + q2 = (pc + pc̄)
2. (6.2)

From the definitions of the kinematic variable Q2 and the Bjorken scaling variable x
(Q2 = −q2, x = −q2/2P ·q) the quantity xg is then given by:

xg = x(1 + ŝ/Q2), (6.3)

where ŝ = (pc + pc̄)
2 is the squared invariant mass of the cc̄ system. Experimentally x

and Q2 are determined with one of the methods described in section 4.3.
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The reconstruction of the variable xg thus requires to have access to the quantity ŝ.
Three different ways to calculate ŝ from the two charm quark quantities are presented
below.

Invariant Mass Method

The squared invariant mass of the cc̄ system can be trivially computed from the
four-momenta of the two quarks. Since in the detector only hadrons are accessible, the
quantity ŝ can be reconstructed by identifying the four-momenta of the two quarks with
the four-momenta of the two main hadron jets.

Pseudorapidity Method

In the hadronic centre of mass system, ŝ can be directly reconstructed from the
pseudorapidities η γp

c and η γp
c̄ of the charm quarks and the squared γp invariant mass W 2

via:
ŝ = W 2e−(η γp

c + η γp
c̄ ), (6.4)

where W 2 is defined in equation 1.5 and depends only on the kinematic variables.

Four-Momentum Method

Another method to reconstruct xg uses the four-momentum of a single charm quark
produced by the BGF process. In this case ŝ is reconstructed by the following relations:

ŝ =
(p γp
⊥c )

2c2 + m2
cc

4

zc(1− zc)
and zc =

P · pc

P · q =
Ec − p‖c ·c

2yEe

, (6.5)

where p γp
⊥c is the transverse charm momentum in the γp rest frame; Ec and p‖c are the

charm energy and longitudinal momentum in the laboratory system respectively. The
quantity y is the fractional energy loss of the lepton in the proton rest frame as defined
in equation 1.1.

6.2.2 Jet Analysis

The multi-jet cross sections in DIS give the possibility to test our understanding of
perturbative QCD and provide a direct determination of the gluon density and the strong
coupling constant αs. The hard process involved in multi-jet events is either the QCD-
Compton process or the BGF process. These events are therefore directly sensitive to
both the quark and gluon content in the proton.

In a former H1 analysis [70] the pseudorapidity method combined with the invariant
mass method has been applied to reconstruct xg. This was done by replacing in formula
6.4 the quantities η γp

c and η γp
c̄ by η γp

jet1 and η γp
jet2 in case of the pseudorapidity method.

The invariant mass of the two quarks in the BGF process was calculated from the four-
momentum of the two jets. The analysis was performed for 12.5 GeV2 < Q2 < 80 GeV2

leading to the extracion of the gluon density at a scale of 30 GeV2. The disadvantage of
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Figure 6.3: Gluon distribution xg g(xg, µ
2
F =200GeV2) as a function of xg obtained from

the NLO DGLAP fit to the H1 inclusive DIS cross section together with d2σdijet/dξdQ2

and d2σjet/dET dQ2, is displayed in part (a). Part (b) shows the correlation between
xg g(xg, µ

2
F =200GeV2) and αs as the result of a combined fit.

the two jet analysis is the large contamination of QCDC events (30%) and the explicit
cut on ŝ at 100 GeV2, which is needed to identify the jets. The latter restricts such
an analysis to a relatively large xg: 0.002 < xg < 0.2. Nevertheless, the well achieved
statistics already allowed an estimation of the gluon density with 35% total error which
was a good achievement in view of the complexity of the involved theoretical processes.

The most recent measurements of inclusive jet and inclusive dijet cross sections in DIS
by H1 [71] were performed in a higher Q2 range. Hard QCD processes with at least one
order in αs always involve at least two jets and lead to events with high transverse jet ener-
gies in the Breit frame1. Therefore, even the inclusive jet cross section for high transverse
jet energy is also a multi-jet cross section. The gluon density together with the quark
densities in the proton are determined in [71] with a simultaneous fit of d2σdijet/dξdQ2,
d2σjet/dET dQ2 within 150 GeV2 < Q2 < 5000 GeV2 and inclusive DIS data within 150
GeV2 < Q2 < 1000 GeV2 [72]. The inclusive DIS data give strong direct constraints on
the quark densities. In the LO αs picture, ξ is the fraction of the proton momentum
carried by the parton. The parton can be either a quark in case of QCD-Compton hard
processes or a gluon for boson-gluon hard processes. In the inclusive dijet analysis, ξ is
reconstructed from the invariant mass method using the four-momenta pjet1 and pjet2 of
the two jets with high transverse jet energies in the Breit frame. The quantity ξ is then
given by:

ξ = x(1 + ŝobs/Q2) with ŝobs = (pjet1 + pjet2)
2c2. (6.6)

1The Breit frame is defined by 2x~P + ~q = 0, where ~P and ~q are the momenta of the incident proton
and exchange boson respectively. In the QPM model the struck quark is back-scattered in the negative
zBF direction.
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Figure 6.3.(a) shows the extracted gluon density while fixing αs(m
2
Z) to the world average

value: αs(m
2
Z) = 0.1184 ± 0.0031. Like in the former analysis, the jet finding algorithm

and the need of relative high transverse jet energies in the Breit frame allow to have access
to the gluon density only at large xg (0.01 < xg < 0.1) in comparison with the values of
xg reached via the indirect F2 measurement which extend down to 2 · 10−3 at the scale
of 200 GeV2 (see figure 6.1). A simultaneous fit of αs and the parton densities was also
performed and indicates that the data are sensitive to the product αs · xg g(xg, µ

2
F ) as

displayed in figure 6.3.(b).

6.2.3 D∗+ Analysis

As a confirmation of EMC collaboration measurements [5] on muon-nucleon scattering,
the 1994 data taken by the H1 detector at HERA electron-proton collider have also shown
a clear dominance of the BGF process in charm production. Additional contributions
where the charm quarks may come from fragmentation or gluon splitting are suppressed
by heavy quark mass effects. The easiest way to tag charm events in electron-proton
scattering is to reconstruct D∗+ mesons via the decay channel D∗+ → D0π+

s → (K−π+)π+
s

as done in this work. In this case the gluon density can be extracted directly by explicit
reconstruction of the quantity xg from the measurement of the four-momentum of the D∗+

meson. No indirect cut on ŝ is present in the D∗+ analysis thus allowing the measurement
of xg · g(xg, µ

2
F ) at smaller xg than in the multi-jet analysis. Moreover, no assumption on

the gluon and quark density shapes at an input scale is needed, contrary to the indirect
measurement based on the F2 scaling violation. Therefore tagged charm events are a
unique way of probing the gluon density in the proton.

In the following section the problematic of the unfolding of the gluon density within
the LO DGLAP formalism using D∗+ meson events will be discussed.

6.3 Unfolding of the Gluon Density within the D∗+

Analysis

Within the the D∗+ analysis performed in this work, the variable xg is reconstructed
with the four-momentum method. In this case the charm momentum is approximated by
the D∗+ momentum which result in the observable quantities xobs

g and ŝobs:

xobs
g = x(1 + ŝobs/Q2), (6.7)

ŝobs =
(p γp
⊥D∗)

2c2 + m2
cc

4

zD∗(1− zD∗)
. (6.8)

A good precision of the measured quantity xobs
g is obtained with the H1 detector as

shown in figure 6.4.(a). However, the correlation between xobs
g and the true xg makes

it impossible to directly measure dσvis(ep → eD∗+X)/dlogxg. Figure 6.4.(b) gives the
correlation between logxobs

g and the true logxg predicted by the LO DGLAP calculations
in the AROMA generator. A resolution of roughly 50% is predicted together with large
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bin migration at xobs
g < xg (the accessible range for xg from 6.3 · 10−4 to 0.1 corresponds

to values of xobs
g from 6.3 · 10−4 to 0.025). An unfolding of the measured distribution

dσvis(ep → eD∗+X)/dlogxobs
g is therefore compulsory.
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Figure 6.4: (a) correlation between the measured quantity xobs
g and the generated quantity

xobs,gen
g , (b) correlation between the measured quantity xobs

g and the generated xg for LO
AROMA BGF D∗+ candidates (mc = 1.5 GeV/c2, GRV 94 LO).

In the frame of this work, the unfolding is performed with the programme RUN
[73]. The data, background if any and Monte Carlo samples are given under the form
of event ntuples. In our case an event is a D∗+ candidate within the mass windows
|mKπ − mD0| < 70 MeV/c2 and |mKππs − mKπ − (mD∗ − mD0)| < 2.2 MeV/c2. Both
data and Monte Carlo simulation samples are corrected for the mass window cuts using
the values of c∆m and cmD0 determined from the ∆m and mD0 fit results (see subsection

4.4.3). Each ntuple contains the measured quantity logxobs
g and several other measured

quantities which are used for the control of the unfolding result. Each Monte Carlo ntuple
has to contain the corresponding true quantity logxg as well. Mathematically, the original
distribution dσvis(ep → eD∗+X)/dlogxg of the true variable xg is related to the measured
distribution2 dσ∗vis(ep → eD∗+X)/dlogxobs

g of the measured variable xobs
g as follows:

dσ∗vis(ep → eD∗+X)

dlogxobs
g

=
∫

A(logxobs
g , logxg)

dσvis(ep → eD∗+X)

dlogxg

dlogxg + B(logxobs
g ). (6.9)

The function B(logxobs
g ) represents the background contribution to the measured distri-

bution and the function A(logxobs
g , logxg) represents the smearing and bin migration due

to the charm fragmentation but also to the pQCD processes from the gluon to the quark
when processes of higher order than the BGF process are taken into account. The detector
effects, though non dominant here, are also taken into account in A(logxobs

g , logxg).

2For the measured distribution dσ∗vis(ep → eD∗+X)/dlogxobs
g the asterisk stands for non-background-

substracted cross section.
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The unfolding programme RUN defines internally a weighting function fmult for the
Monte Carlo ntuples which is parametrised by orthogonal B-spline functions. The function
fmult is determined by a fit to the experimentally measured differential cross section:

dσ∗exp
vis (ep → eD∗+X)

dlogxobs
g

≈
∫

AMC(logxobs
g , logxg) fmult(logxg)

dσMC
vis (ep → eD∗+X)

dlogxg

dlogxg

+Bexp(logxobs
g ). (6.10)

The background function is determined by the unfolding programme from a sample of
D∗+ with a wrong charge reconstructed D0 candidates (K−π−) lying in the mD0 window.
The background sample is scaled down to the background contribution in the ∆m window
by the background normalisation factor. This number is determined from the results of
the ∆m fit (see section 4.4.3). The result of the unfolding is then given by:

dσexp
vis (ep → eD∗+X)

dlogxg

= fmult(logxg)
dσMC

vis (ep → eD∗+X)

dlogxg

. (6.11)

In this analysis the AROMA LO DGLAP Monte Carlo is used to performe the un-
folding. Since the NLO DGLAP calculations were not yet available under the form of an
event generator, it was not possible to use them as an input of the unfolding programme.
The result of the unfolding are presented in figure 6.5 together with the non unfolded
distribution. Both the HVQDIS and CASCADE predictions agree in shape with the ex-
perimental cross sections as a function of logxobs

g . The AROMA prediction using the GRV
94 LO gluon density clearly show that this parametrisation has too steep an increase for
decreasing logxg. This is also observed in the result from the F2 scaling violation in figure
6.1. After the unfolding, the D∗+ cross section as a function of logxg shows the same
behaviour. This already indicates the difficulty of extracting the gluon density from the
D∗+ analysis, at least when using LO QCD calculations.

To extract the gluon density from the cross section as a function of logxg, the following
proportionality within one logxg bin is used:

dσ(ep → eD∗+X)

dlogxg

∝ xgg(xg, µ
2
F ). (6.12)

This proportionality is valid only for the total cross section. Therefore, it is necessary to
extrapolate the cross section which is measured in the D∗+ visible range to the full range.
Both the extrapolation factor and the proportionality factor are taken from the AROMA
Monte Carlo prediction, which gives:

xgg
exp(xg, µ

2
F ) = xgg

MC(xg, µ
2
F )

dσexp
vis (ep → eD∗+X)

dlogxg

dσMC
vis (ep → eD∗+X)

dlogxg

. (6.13)

Again with the help of the Monte Carlo prediction, the extracted gluon density is addition-
ally bin-centre corrected and given at the scale of 20 GeV2. For heavy quark production
the factorisation and normalisation scales are generally set to ŝ or Q2 +4m2

cc
4. The mean

values of these quantities within the full D∗+ range amount 25 GeV2 and 17 GeV2 for the
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Figure 6.5: Inclusive D∗+ single differential cross sections in the visible range as a function
of xobs

g (points) compared to (a) the HVQDIS and CASCADE predictions as described in
the caption of figure 5.1 and compared to (c) the AROMA predictions using two different
gluon densities as described in the caption of figure 5.4. The figures (b) and (d) give the
normalised cross sections. The result of the unfolding is shown in figure (e) which gives
the D∗+ cross section as a function of xg. In figure (e) the data error bars indicate the
error given by the unfolding programme. On the same figure the AROMA predicted cross
section is also shown as a function of xg.
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version of the AROMA generator used here. The gluon density is therefore given at the
scale of 20 GeV2 which also allows easy comparison with the indirect F2 measurement.
The resulting gluon density is shown in figure 6.6 together with the GRV 94 LO and
GRV 98 HO parametrisation. The excess of experimental cross section compared to the
AROMA prediction at large xg appears clearly in an abnormal rather flat extracted gluon
density.
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Figure 6.6: Measured xg g(xg, µ
2
F =20GeV2) as a result of the D∗+ analysis. The error

bars on the data points represent the error given by the unfolding programme. The line
with the squares shows the GRV 94 LO parametrisation, and the line with the triangles
the GRV 98 HO parametrisation.

In order to verify that the unfolding procedure as well as the data quality are not
implicated, the following checks have been performed.

• The dependency of the unfolding result on the estimation of the background func-
tion was tested by performing the unfolding procedure with two other background
samples:
- D∗+ candidates satisfying the mD0 window cut but lying in the high ∆m region
0.16 GeV/c2 < ∆m <0.17 GeV/c2.
- D∗+ candidates lying in the high mD0 region 2.05 GeV/c2 < mD0 <2.35 GeV/c2.
As shown in figure 6.7(a), the difference in the final results stays systematically
bellow the error given by the unfolding programme.

• The signal to background ratio NS/NB in the mD0 and ∆m windows3 varies with
increasing xobs

g from 1.0 to 3.2 for the combined 1996 and 1997 data. However, the

3The quantities NS and NB stand for the signal and background number of D∗+ in the mD0 and ∆m
mass windows.
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result of the unfolding is not directly affected since the background is defined and
subtracted for each xobs

g bin. It has been checked that the normalisation factor be-
tween the background sample and the contribution in the ∆m window can be taken
as constant for the four xg bins. For this, the error on the background contribution
in the ∆m window for the different xg bins is estimated and given in table 6.1. The
error on the total cross section due to the use of a constant background normalisa-
tion factor is lowered by the good signal to background ratio. Indeed, the relative
error ∆NS/NS on the signal coming from the background estimation is given by:

∆NS/NS = −∆NB/NB

(NS/NB)
. (6.14)

After a simple parametrisation of the error on the estimation of the background
contribution, each background event was reweighted. The resulting differences on
the unfolded distribution are shown in figure 6.7.(b).

logxobs
g [-3.2;-2.9] [-2.9;-2.5] [-2.5;-2.1] [-2.1;-1.6]

NS/NB: Signal to
Background Ratio

1.0 1.3 1.3 3.2

∆NB/NB Error on the
Background Contribution

+12% -3% -6% +36%

Table 6.1: Signal to background ratio (NS/NB) and error on the estimation of the back-
ground contribution (∆NB/NB) for the four xobs

g bins of the combined 1996 and 1997 data.
For each xobs

g bin, the error on the background contribution is given by the difference of
the number of background events estimated from the fit of the ∆m distribution for D∗+

candidates within the concerned xobs
g bin and the number of background events estimated

from the fit of the ∆m distribution for all D∗+ candidates with respect to the latter.

• The most relevant experimental precision in the reconstruction of the quantity xobs
g

is the precision on the kinematic variables. Therefore the unfolding programme
was run using a data sample (signal and background) where the scattered electron
energy was changed by ±1% at 27.5 GeV to ±3.0% at 8 GeV assuming a linear
behaviour of the energy uncertainty (see section 2.3). The relative differences with
respect to the reference measurement are shown in figure 6.7(c). The procedure
was also performed with the sigma method instead of the electron method for the
kinematics determination and the resulting differences are shown in figure 6.7(d). In
both cases the changes in the unfolded cross section cannot be responsible for the
cross section excess at large xg.

• Using reconstructed D∗+, the four-momentum of the charm quark may be approxi-
mated by applying a correction factor 〈ZD〉=1.2 to the D∗+ momentum in formula
6.8 in order to take into account the effect of fragmentation, i.e. ~pc = ~pD∗/〈ZD〉 (the
charm quark mass is fixed to 1.5 GeV/c2). Running the unfolding with this other
way of calculating xobs

g changes the unfolded cross section. The relative difference is
shown in figure 6.8(a). Again the effect stays within the error on the unfolded cross
section.
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Figure 6.7: Relative difference for the unfolded D∗+ visible cross section with regard to
the reference result displayed in figure 6.5 as a function of xg produced by:
- (a) the choice of different background samples
- (b) the normalisation of each background event with a weight depending of xobs

g instead
of an overall background normalisation factor
- (c) changing the measured scattered energy within the energy scale precision (see sub-
section 5.2.1)
- (d) the use of the sigma method instead of the electron method to reconstruct the kine-
matics.
In all figures the light shaded band indicates the error given by the unfolding programme
in case of the reference result.

• In order to be sure that the result of the unfolding is not dependent of the Monte
Carlo distristribution dσMC

vis (ep → eD∗+X)/dlogxg the unfolding was run with the
AROMA Monte Carlo events reweighted to the GRV 94 HO parametrisation. No
changes in the unfolded cross section are observed in figure 6.8(b).
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Figure 6.8: Relative difference for the unfolded D∗+ visible cross section with regard to
the reference result displayed in figure 6.5 as a function of xg produced by:
- (a) the use of a correction factor 〈ZD〉=1.2 instead of 〈ZD〉=1.0 for the D∗+ momentum
when calculating xobs

g (see text)
- (b) the use of GRV 94 HO instead of GRV 94 LO for the gluon density in AROMA.
In all figures the light shaded band indicates the error given by the unfolding programme
in case of the reference result.

The results of the previous checks have demonstrated a very good data quality as
well as the feasibility of the unfolding. However, the result of the unfolding is relevant
only if the correlation matrix is understood. If the unfolding programme is used to
deconvoluate detector effects the knowledge of the correlation matrix can be guaranteed.
But in the present case the correlation matrix is dominated by the perturbative process
and the charm fragmentation. The correctness of the unfolding result therefore requires a
complete understanding of the evolution from the gluon to the measured D∗+ meson. The
results on the differential D∗+ cross sections presented in chapter 5 have shown that the
AROMA generator seems to prefer a steeper gluon density with respect to the kinematics
behaviour and a flatter gluon density with respect to the behaviour in the D∗+ quantities.
This indicates that the AROMA generator is limited in the understanding of the physics
processes taking place between the gluon and the D∗+ meson which actually determines
the correlation matrix A(logxobs

g , logxg).
Another way to test the ability of the AROMA correlation matrix to describe the

real correlation matrix which rules the measurement is to study the shape of the AROMA
distributions after the unfolding. Indeed each D∗+ candidate with given xg, xobs

g , E ′
e, θe, x,

Q2, W , p⊥D∗ , ηD∗ , xD∗ and ŝobs carries, after the unfolding, a weight equals to fmult(logxg).
If the AROMA correlation is correct, its reweighted distributions should describe the
measurement at least as good as the original distributions. Kolmogorov tests have been
performed to compare, firstly the agreement between the AROMA original distributions
and the measurement and secondly the agreement between the reweighted distributions
after the unfolding and the measurement. The shapes of the AROMA distributions as
a function of p⊥D∗ , ηD∗ , and ŝobs after the unfolding better agree with the measurement
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than before the unfolding. The contrary is observed for the distributions as a function
of E ′

e, θe, x,Q2,W and xD∗ . This indicates again that the AROMA generator provides a
wrong understanding of the correlation matrix A(logxobs

g , logxg).
In figure 6.10 the relative differences due to the theoretical uncertainties for the un-

folded cross section and for the extracted gluon density are displayed. The uncertainty on
the charm fragmentation was studied by changing the value of ε(Peterson) between 0.035
and 0.100. The uncertainty on the charm mass was studied by changing its value between
1.3 GeV/c2 and 1.7 GeV/c2. Finally, the effects due to the next to leading order terms
were studied by reweighting the AROMA correlation matrix A(logxobs

g , logxg) in order to
reproduce the correlation matrix predicted by the HVQDIS NLO calculations (see part
(b) of figure 6.9). With respect to the three theoretical systematics studied, the differences
for the unfolded cross section come from the changes in the correlation matrices used to
perform the unfolding. The differences for the extracted gluon density come from:
- the changes in the predicted extrapolations from the D∗+ visible range to the total range,
- the changes in the predicted ratios from the total cross section to the gluon density,
- the changes in the predicted bin centre corrections and scale corrections.
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Figure 6.9: Correlation between the generated quantity xobs,gen
g and the generated xg for

(a) the LO AROMA D∗+ events (mc = 1.5 GeV/c2, GRV 94 LO) and for (b) the NLO
HVQDIS D∗+ events (mc = 1.5 GeV/c2, GRV 98 HO). In both cases the D∗+ events lay
within the visible range

The influence of ε(Peterson) parameter is not negligible especially at large xg. More-
over it seems that a more reasonable gluon density is extracted when ε(Peterson) is set
to 0.035 which corresponds to a harder fragmentation. However, this effect is the result
of a wrong description of the correlation between xobs

g and xD∗ . This can be observed in
figure 6.13 where the cross section is differentiated with respect to xobs

g and xD∗ .
The systematics errors due to the charm mass on the gluon density extracted with the

help of the AROMA generator is large but no tendency in the slope of the gluon density
can be observed.
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Figure 6.10: Relative differences for the unfolded D∗+ visible cross section ((a), (c) and
(e)) and for the extracted gluon density ((b), (d) and (f)) with regard to the reference result
displayed in figure 6.5 and 6.6 as a function of xg produced by :
- the use of different ε(Peterson) values
- the use of different charm mass
- the change in the correlation matrix A(logxobs

g , logxg) to the one predicted by the
HVQDIS NLO calculations. The extraction of the gluon density is done with the NLO
prediction.
In all figures the light shaded band indicates the error given by the unfolding programme
in case of the reference result.

107



A clear improvement in the unfolded cross section is observed when the unfolding is
performed with the AROMA generator reweighted according to the correlation matrix
A(logxobs

g , logxg) predicted by the HVQDIS NLO calculations. As a consequence, the
slope of the gluon density is definitely steeper when it is extracted from the cross section
dσvis(ep → D∗+X)/dlogxg unfolded with the NLO correlation matrix as observed in figure
6.11. In this figure the points represent the gluon density extracted with the prediction of
the LO caculations whereas the prediction of the NLO caculations is used for the triangles.
Both show the same tendency. However, a normalisation problem remains. This problems
has its origin in the fact that both predictions underestimate the D∗+ visible cross section
as seen in chapter 5. Assuming the normalisation problem to be independent of the gluon
dynamics, the extracted gluon density is scaled by the difference in the D∗+ visible cross
section between the measurement and the two predictions respectively (see table 5.3).
This is displayed in the right plot of figure 6.11. In the same figure the result of the F2

indirect measurement is shown. A good agreement is observed. The extraction of the
gluon density using the D∗+ cross section seems therefore to be feasible only if the NLO
terms are taken into account in the correlation matrix A(logxobs

g , logxg).
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Figure 6.11: Measured xg g(xg, µ
2
F =20GeV2) as a result of the D∗+ analysis where the

unfolding is performed with the correlation matrix A(logxobs
g , logxg) reweighted to the

one predicted by the HVQDIS NLO calculations. On both plots, the points represent
the gluon density extracted from the unfolded cross section dσvis(ep → eD∗+X)/dlogxg

using the LO prediction whereas for the open triangles the NLO prediction was used.
The thick error bars represent the error given by the unfolding programme. The line
with the squares (triangles) shows the GRV 94 LO (GRV 98 HO) parametrisation. On
the right plot the extracted gluon density was scaled to the difference in the D∗+ total
cross section between the data and the two predictions respectively. The total error bars
additionally take into account the experimental systematics and theoretical systematics
due to the fragmentation and the charm mass. In addition the results of the F2 indirect
measurement (bands) are shown.
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The double differential cross sections displayed in figures 6.12 and 6.13 allow to have a
better understanding of the success and weakness of the different calculations considered
in this work. For three different ranges of the observed quantity xobs

g the behaviours in
logŝobs (where the quantity ŝobs is given in GeV2 and is implicitly divided by 1 GeV2),
x, ηD∗ and xD∗ are displayed. Among the three different calculations, the predictions of
the CASCADE generator describe the measurement at best. However, the predictions of
the CASCADE generator seem to overestimate the cross section at large xobs

g and large
logŝobs. CASCADE also shows an excess at low ηD∗ for middle and large xobs

g . The
predictions of the HVQDIS NLO calculations are fairly good despite that they seem to
prefer lower values of logŝobs than the measurement especially for intermediary values of
xobs

g . Moreover the agreement with the measurement for the ηD∗ behaviour is deteriorated
with increasing xobs

g . The same effect is observed in the xD∗ distribution. The predictions
of the AROMA event generator are the most apart from the measurement.

Like in the case of the HVQDIS predictions, the AROMA predictions favour lower
values of logŝobs than the measurement but the effect is stronger and observed for the
whole xobs

g range. Moreover, the AROMA predictions are peaking at higher x than the
measurement and this independently of xobs

g . As a consequence, the use of the GRV
94 LO density parametrisation results in a better agreement in the x behaviour after
integration over xobs

g . The ηD∗ and xD∗ distributions predicted by AROMA show the same
behaviour than the HVQDIS prediction. The better agreement using the GRV 94 HO in
the single differential cross section as a function of ηD∗ comes from the fact that a flatter
gluon density suppresses the cross section at negative ηD∗ (backward D∗+). However, the
correlation is softer in the predictions of AROMA than for the measurement. To conclude,
the measurement has allowed to establish the weakness of the LO DGLAP calculations in
describing the measured double differential cross sections. An improvement is observed
in the predictions of the NLO DGLAP calculations. The CCFM formalism used in the
CASCADE generator seems to be the most successful which indicates either the need of
a better understanding on how to apply the DGLAP formalism or the need of NNLO
DGLAP calculations.
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−3.2 < logxobs
g < −2.7 −2.7 < logxobs

g < −2.3 −2.3 < logxobs
g < −1.6

logs
∧obs

0

2.5

5

7.5

10

1 1.5 2 2.5
0

2.5

5

7.5

10

1 1.5 2 2.5
0

2.5

5

7.5

10

1 1.5 2 2.5
0

2.5

5

7.5

10

1 1.5 2 2.5

[n
b]

d2 σ vi
s(

ep
→

D
* X

)/
dl

og
xob

s
gþ

þþþ
þþdl

og
s∧ o

bs
þ þ

 þ 
þ

0

2.5

5

7.5

10

1 1.5 2 2.5
0

2.5

5

7.5

10

1 1.5 2 2.5

CASCADE

HVQDIS

0

2

4

6

8

10

0 2 4 6 8 10

logx

0

2

4

6

8

-4 -3
0

2

4

6

8

-4 -3
0

2

4

6

8

-4 -3
0

2

4

6

8

-4 -3

[n
b]

d2 σ vi
s(

ep
→

D
* X

)/
dl

og
xob

s
gþ

þþþ
þþdl

og
x 

þ þ
 þ 

þ

0

2

4

6

8

-4 -3
0

2

4

6

8

-4 -3

ηD*

0

2

4

6

-1 0 1
0

2

4

6

-1 0 1
0

2

4

6

-1 0 1
0

2

4

6

-1 0 1

[n
b]

d2 σ vi
s(

ep
→

D
* X

)/
dl

og
xob

s
gþ

þþþ
þþdη

D
* 

þ þ
 þ 

þ

0

2

4

6

-1 0 1
0

2

4

6

-1 0 1

xD*

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

[n
b]

d2 σ vi
s(

ep
→

D
* X

)/
dl

og
xob

s
gþ

þþþ
þþdx

D
* 

þ þ
 þ 

þ

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

log ŝobs
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Figure 6.12: Inclusive D∗+ double differential cross sections in the visible range:
d2σvis(ep → eD∗+X)/(dlogxobs

g dlogŝobs/[GeV2]), d2σvis(ep → eD∗+X)/(dlogxobs
g dlogx),

d2σvis(ep → eD∗+X)/(dlogxobs
g dηD∗), d2σvis(ep → eD∗+X)/(dlogxobs

g dxD∗). The dark
and light shaded bands are described in the caption of figure 5.1
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Figure 6.13: Inclusive D∗+ double differential cross sections in the visible range:
d2σvis(ep → eD∗+X)/(dlogxobs

g dlogŝobs/[GeV2]), d2σvis(ep → eD∗+X)/(dlogxobs
g dlogx),

d2σvis(ep → eD∗+X)/(dlogxobs
g dηD∗), d2σvis(ep → eD∗+X)/(dlogxobs

g dxD∗). The dark
and light shaded bands are described in the caption of figure 5.4
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Conclusion

This thesis has been based on the data collected by the H1 experiment during the
years 1996 and 1997. The selected event sample corresponds to an integrated luminosity
of 18.55 pb−1. Nearly one thousand D∗+ events in the D0π+

s → (K−π+)π+
s decay channel

have been reconstructed within the kinematic range 1 GeV2 < Q2 < 100 GeV2 and
0.05 < y < 0.7 and within the visible range of the D∗+ analysis −1.5 < ηD∗ < 1.5
and p⊥D∗ > 1.5 GeV/c. Within the given ranges, the total D∗+ cross section mea-

sured amounts to 8.44±0.42(stat.) +1.12
−0.83

(exp. syst.) +0.64
−0.41

(theo.syst.) nb. The CASCADE

generator predictions, based on the LO CCFM formalism, well agree in normalisation
whereas both LO and NLO predictions based on the DGLAP formalism from the AROMA
generator and HVQDIS programme respectively underestimate the measurement. The
achieved statistics allows a precise measurement of single differential cross sections and
- for the first time - a measurement of double differential cross sections. The CASCADE
generator, with the setting as used here, predicts the measured single and double dif-
ferential cross sections fairly well, especially the D∗+ pseudorapidity behaviour which
is hardly described by the predictions of the AROMA generator and the HVQDIS pro-
gramme. The CASCADE predictions, however, seem to overestimate the cross section
at high p⊥D∗ especially when the D∗+ meson is emitted into the backward region. The
data xD∗ distribution, which is very sensible with regard to both the hard process and
the charm fragmentation, reveals a softer behaviour than all the studied predictions. The
double differential cross sections show that the excess of experimental cross section at
large ηD∗ with respect to the HVQDIS predictions corresponds to small p⊥D∗ and small
xD∗ . This excess is independent of Q2 within the measurement uncertainties. At high
p⊥D∗ , the HVQDIS predictions are nearly in line with the measurement and describe
the Q2 behaviour whereas the CASCADE predictions systematically overestimate the
measurement.

In addition to the cross sections measurement, the gluon density within the LO
DGLAP formalism was extracted after unfolding the cross section as a function of xg, the
fraction of proton momentum carried by the gluon. An abnormal, rather flat extracted
gluon density shows that the LO pQCD calculations are not able to describe the rela-
tion between the behaviour at hard scattering and the final state behaviour. Indeed, the
LO AROMA generator predictions cannot describe the Bjorken x behaviour in different
regions of the observed variable xobs

g . After reweighting the AROMA predictions with the
NLO correlation between xobs

g and xg a clear improvement with regard to the extracted
gluon density is observed, however with a persistent normalisation problem.
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The presented results have demonstrated the need for a refined understanding of ap-
plying pQCD in charm quark production together with a better knowledge on charm
fragmentation. The data taken between the years 1998 and 2000 will bring the experi-
mental errors smaller than the theoretical uncertainties. Moreover HERA II, the second
running period of HERA, with its accelerator and detector upgrades will allow even more
precise measurements and maybe the challenging measurement in the forward direction.
These improvements will require the need of a NLO Monte Carlo event generator in order
to reduce the theoretical uncertainties on the cross sections measurement.
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Appendix A

Detector

A.1 Pulse Profile (Q, t) Analysis

The pulse integral Q and the signal timing t are the relevant parameters of a drift
chamber. The pulse profile (Q, t) analysis is performed to have access to the pulse integral
and the drift time from the ionisation point1 to the avalanche point on a wire.

The pulse integrals QL and QR are the results of the sum of a defined part of the
digitalised signals coming from the left end and from the right end of the wire respectively
as shown in figure A.1.

t

t

t = T0

t = t       +  Tdrift 0

q
L

q
R

Q
R

Q
L

Figure A.1: Schematic view of a sense wire and the signals collected at both ends with
the pulse integral QL and QR.

The determination of the drift time is more complicated. In the following the algorithm
which is used for the H1 drift chambers is described. A schematic view is displayed in
figure A.2. At a first step the times at half full amplitude tL 1/2 and tR 1/2 are determined

1The ionisation point or hit is the point on the particle trajectory with the shortest distance to the
wire along the drift direction.
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by linear interpolation of both left and right signals. The average of tL 1/2 and tR 1/2

represents the time at half maximum of the two signals as if they had been induced at
the position on the wire which corresponds to equal travelling time ttot of the left and
right signals to reach the digitising electronic (to a good approximation, in case of equal
cabling length, this position is at half of the wire). The average rise time of the left and
right signal is used to extrapolate from (tL 1/2 + tR 1/2)/2 to the arrival time of the first
electrons te. The time te is obtained by subtracting ttot to the time (tL + tR)/2 taken
at 10% of the pulse amplitude. Finally the drift time tdrift is given by tdrift = te − T0,
where T0 is the collision time defined in subsection 2.2.3. From the drift time and the
drift velocity the closest approach of the track trajectory in the (x, y) plane is deduced.

The z coordinate of the closest approach zca is determined with the charge division
method.

t0

10%

50%

(t       + t      )/2R1/2 L1/2

(t   + t  )/2LR

q

q max

T0

te ttot

tdrift

t0

10%

50%

q

t L1/2

tL

q L,max

L

t0

10%

50%

q

t R

t R1/2

q R,max

R

Figure A.2: Determination of tdrift from (Q, t) analysis.

A.2 Charge Division

In H1 the z coordinate of the closest approach zca is given with respect to the origin
at the middle of the wire. The left end of the wire is in the positive z direction. From the
pulse integral QL and QR the value of zca is determined as follows:

zca = L/2
QL −QR

QL + QR

, (A.1)

where L represents the total wire length.

A.3 Time Evolution of the D∗+ in DIS Subtrigger

The time evolution, in terms of trigger elements, of the D∗+ in DIS subtrigger for the
1996 and 1997 data taking are given in tables A.1 and A.2. The definitions of the trigger
elements are given in subsection 4.1.1.
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Table A.1: Time evolution of subtrigger ST2 in 1996.
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Table A.2: Time evolution of subtrigger ST2 and ST61 in 1997.
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Appendix B

Charm Configuration in the
Boson-Proton System

The c and c̄ quarks which are back to back in the γg system have a very small opening
angle in the γp system because of the strong boost between the two systems (on average
~pg = 10−4~pp). For this reason the charm mass is negligible in the γ∗p system. The
invariant mass of the two quarks can be written as follows:

m2
cc̄c

4 = (pc + pc̄)
2c2 = (Eγ∗p

c + Eγ∗p
c̄ )2 − (~p γ∗p

c + ~p γ∗p
c̄ )2c2

≈ 2Eγ∗p
c Eγ∗p

c̄ − 2Eγ∗p
c ∗ Eγ∗p

c̄ ∗ cos(θγ∗p
cc̄ ) mc ≈ mc̄ ≈ 0

≈ 0 in the γ∗p system θγ∗p
cc̄ ≈ 0. (B.1)

This means that the invariant mass of the cc̄ pair can be neglected in the γp system.
Using the same arguments, the particles in the proton remnant also have a negligible

total invariant mass in the hadronic final state system.
The hadronic centre of mass energy W is then only depending on the cc̄ energy (or

the proton remnant energy):

W = (pcc̄ + pX)2c2

= Eγ∗p 2
cc̄ + Eγ∗p 2

X + 2Eγ∗p
cc̄ Eγ∗p

X − |~p γ∗p
cc̄ |2c2 − |~p γ∗p

X |2c2 − 2~p γ∗p
cc̄ · ~p γ∗p

X c2

= m2
cc̄c

4 + m2
Xc4 + 2Eγ∗p

cc̄ Eγ∗p
X − 2~p γ∗p

cc̄ · ~p γ∗p
X c2

≈ 4Eγ∗p
cc̄ Eγ∗p

X ≈ 4Eγ∗p 2
cc̄ ≈ 4Eγ∗p 2

X m2
cc̄ ≈ m2

X ≈ 0 and ~p γ∗p
cc̄ + ~p γ∗p

X = 0. (B.2)

Therefore both the cc̄ pair and the proton remnant are carrying half of the centre of mass
energy W .
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Appendix C

Correction for Downscaling of
Subtriggers

In most of the cases the problem of the subtriggers downscaling is solved in two possible
straightforward ways:

• only one subtrigger (for example the subtrigger i) is used and for each run k, the
integrated luminosity Lk is corrected by the corresponding prescale factor dik ac-
cording to:

Lcor
k =

Lk

dik

. (C.1)

• a set of subtriggers is used but only runs where none of these subtriggers were
downscaled.

The most general case, where several subtriggers with possible downscaling factors are
requested, is precisely described in reference [18]. In this case each event j which is kept
after the downscaling procedure has to carry a weight wj in order to correctly estimate
the cross section:

wj =

Nruns∑

k=1

Lk

Nruns∑

k=1

LkPjk

. (C.2)

The averaging over all runs is done to minimise the statistical error in case of prescale
factors which are varying from run to run. Pjk represents the probability that at least
one of the Nsubtr subtriggers triggers the event j in a run k and is given by:

Pjk = 1− (1−
Nsubtr∏

k=1

rij

dik

) (C.3)

where dik is the prescale factor of the subtrigger i in the run k and rij is one if the raw
subtrigger i is set in the event j. The raw subtrigger bit is set as soon as the subtrigger
condition is satisfied whereas the actual subtrigger bit is set only for subtriggers surviving
the downscaling.

One should be aware that the correction of the integrated luminosity (like in equation
C.1) is not possible as soon as more than one subtrigger is used.
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Appendix D

Mass Fits, D∗+ Rates and Efficiencies

D.1 ∆m Fits

The number of reconstructed D∗+ is obtained from the fit of the ∆m distribution. The
function is composed of a Gaussian distribution centred at the nominal ∆m mass plus
the two-body phase space background. The width and the mean value of the Gaussian
distribution are determined from the fit to the total sample of D∗+ candidates. The
obtained values were used as constants for all ∆m fits performed bin wise.

The fitted ∆m distributions in bins of W , x, Q2, p⊥D∗ , ηD∗ , xD∗ , (p⊥D∗ ; ηD∗), (p⊥D∗ ;
xD∗), (xD∗ ; ηD∗), (ηD∗ ; Q2), (p⊥D∗ ; Q2), (xobs

g ; ŝobs), (xobs
g ; x), (xobs

g ; ηD∗) and (xobs
g ; xD∗)

are shown in figures D.1 to D.15. The wrong charge background is displayed for ∆m+0.4
GeV/c2. The results of the fits are given in the upper box where the number of D∗+

is given by the parameter P4 (definition of the other free parameters can be found in
equation 4.23). In the upper corner a χ2 indicates that a χ2 fit is performed. When the
statistics are too poor a likelihood fitting procedure is applied.

D.2 D∗+ Rates

The D∗+ rates as a function of W , x, Q2, p⊥D∗ , ηD∗ , xD∗ are presented in figure D.16.
The D∗+ rates in bins of (p⊥D∗ ; ηD∗), (p⊥D∗ ; xD∗), (xD∗ ; ηD∗) are shown in figure D.17
and in bins of (ηD∗ ; Q2), (p⊥D∗ ; Q2) in figure D.18. Finally, the D∗+ rates as a function of
ŝobs, x, ηD∗ , xD∗ are displayed in figure D.19 for three different ranges of xobs

g . The H1 data
D∗+ rates (points) are compared to the D∗+ rates from the simulation (histograms). For
the simulation the number of D∗+ within one bin NMC

D∗ (bin) is the luminosity normalised
number of fitted D∗+ expected by the Monte Carlo and scaled by the total number of
D∗+ found in the data Ndata

D∗ :

NMC
D∗ (bin) =

L96NMC96
D∗ (bin) + L97NMC97

D∗ (bin)

L96 + L97
· Ndata

D∗

NMC
D∗

. (D.1)
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The Monte Carlo generator used for the simulation is AROMA 2.21 with µR = µF = ŝ,
ε(Peterson) = 0.078, mc = 1.5 GeV/c2 and GRV 94 LO for the gluon density. The
AROMA generator with these sets of parameters was used to get the efficiencies in the
kinematic and visible ranges.

D.3 Efficiencies

The analysis efficiency εyear
vis for one year is given by:

ε
year
vis =

N
MC,year
D∗ (rec)

N
MC,year
D∗ (gen)

. (D.2)

The number N
MC,year
D∗ (rec) is the number of fitted D∗+ events after subtrigger require-

ments and analysis cuts in the reconstructed kinematic, visible and bin ranges. The
number N

MC,year
D∗ (gen) is the total number of D∗+ in the generated kinematic, visible

and bin ranges. In figures D.20 to D.23 the efficiency in bins of W , x, Q2, p⊥D∗ , ηD∗ , xD∗ ,
(p⊥D∗ ; ηD∗), (p⊥D∗ ; xD∗), (xD∗ ; ηD∗), (ηD∗ ; Q2), (p⊥D∗ ; Q2), (xobs

g ; ŝobs), (xobs
g ; x), (xobs

g ;
ηD∗) and (xobs

g ; xD∗) are presented.
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Figure D.1: ∆m distributions with fits (curves) in bins of W . For details on the fit see
text.
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Figure D.2: ∆m distributions with fits (curves) in bins of x. For details on the fit see
text.
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text.
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text.
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Figure D.5: ∆m distributions with fits (curves) in bins of ηD∗ . For details on the fit see
text.
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Figure D.6: ∆m distributions with fits (curves) in bins of xD∗ . For details on the fit see
text.
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Figure D.7: ∆m distributions with fits (curves) in bins of (p⊥D∗ ; ηD∗). For details on the
fit see text.
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Figure D.8: ∆m distributions with fits (curves) in bins of (p⊥D∗ ; xD∗). For details on the
fit see text.
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Figure D.9: ∆m distributions with fits (curves) in bins of (xD∗ ; ηD∗). For details on the
fit see text.
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Figure D.10: ∆m distributions with fits (curves) in bins of (ηD∗ ; Q2). For details on the
fit see text.
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Figure D.11: ∆m distributions with fits (curves) in bins of (p⊥D∗ ; Q2). For details on the
fit see text.
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Figure D.12: ∆m distributions with fits (curves) in bins of (xobs
g ; ŝobs), where ŝobs is given

in GeV2 and is implicitly divided by 1 GeV2. For details on the fit see text.
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Figure D.13: ∆m distributions with fits (curves) in bins of (xobs
g ; x). For details on the

fit see text.
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Figure D.14: ∆m distributions with fits (curves) in bins of xobs
g ; ηD∗). For details on the

fit see text.
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Figure D.15: ∆m distributions with fits (curves) in bins of (xobs
g ; xD∗). For details on the

fit see text.
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Figure D.16: Number of fitted D∗+ for the 1996 and 1997 data as a function of W , x, Q2,
p⊥D∗ , ηD∗ and xD∗ . The data (points) are compared to the luminosity normalised number
of fitted D∗+ expected by the Monte Carlo (histograms) scaled by the total number of
D∗+ found in the data according to equation D.1.
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Figure D.17: Number of fitted D∗+ for the 1996 and 1997 data as a function of (p⊥D∗ ;
ηD∗), (p⊥D∗ ; xD∗) and (xD∗ ; ηD∗). The data (points) are compared to the luminosity
normalised number of fitted D∗+ expected by the Monte Carlo (histograms) scaled by the
total number of D∗+ found in the data according to equation D.1.
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Figure D.18: Number of fitted D∗+ for the 1996 and 1997 data as a function of (ηD∗ ; Q2)
and (p⊥D∗ ; Q2). The data (points) are compared to the luminosity normalised number of
fitted D∗+ expected by the Monte Carlo (histograms) scaled by the total number of D∗+

found in the data according to equation D.1.
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Figure D.19: Number of fitted D∗+ for the 1996 and 1997 data as a function of (xobs
g ; ŝobs),

(xobs
g ; x), (xobs

g ; ηD∗) and (xobs
g ; xD∗). The data (points) are compared to the luminosity

normalised number of fitted D∗+ expected by the Monte Carlo (histograms) scaled by the
total number of D∗+ found in the data according to equation D.1.
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Figure D.20: Efficiencies of the D∗+ selection cuts within the visible rangle predicted
by the AROMA Monte Carlo generator and after detector simulation for the year 1996
(triangles) and 1997 (squares) as a function of W , x, Q2, p⊥D∗ , ηD∗ and xD∗ .
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Figure D.21: Efficiencies of the D∗+ selection cuts within the visible rangle predicted
by the AROMA Monte Carlo generator and after detector simulation for the years 1996
(triangles) and 1997 (squares) in bins of (p⊥D∗ ; ηD∗), (p⊥D∗ ; xD∗), (xD∗ ; ηD∗) and (ηD∗ ;
Q2).
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Figure D.22: Efficiencies of the D∗+ selection cuts within the visible rangle predicted
by the AROMA Monte Carlo generator and after detector simulation for the years 1996
(triangles) and 1997 (squares) in bins of (ηD∗ ; Q2) and (p⊥D∗ ; Q2).
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Figure D.23: Efficiencies of the D∗+ selection cuts within the visible rangle predicted
by the AROMA Monte Carlo generator and after detector simulation for the years 1996
(triangles) and 1997 (squares) in bins of (xobs

g ; ŝobs), (xobs
g ; x), (xobs

g ; ηD∗) and (xobs
g ; xD∗).
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Appendix E

Normalised D∗+ Cross Sections

In order to confront the shapes of the D∗+ differential cross sections measured in the
data and those predicted by models, the normalised cross sections are more appropriate.
To achieve this, the data differential cross sections are normalised to the D∗+ total cross
section measured in the kinematic and D∗+ visible range. The predicted differential cross
sections for each model are also normalised to their respective predicted total D∗+ cross
sections. The D∗+ total cross sections which are used for the normalisation can be found
in section 5.3.1.

The inclusive normalised D∗+ single differential cross sections in the visible range
versus W , x, Q2 and p⊥D∗ , ηD∗ , xD∗ are shown in figure E.1 (together with the HVQDIS
and CASCADE predictions) and in figure E.5 (together with the AROMA predictions).
The normalised double differential cross sections

d2σN
vis(ep → eD∗+X)/(dp⊥D∗dηD∗)

d2σN
vis(ep → eD∗+X)/(dp⊥D∗dxD∗)

are shown in figure E.2 (together with the HVQDIS and CASCADE predictions) and in
figure E.6 (together with the AROMA predictions). The normalised double differential
cross sections

d2σN
vis(ep → eD∗+X)/(dxD∗dηD∗)

d2σN
vis(ep → eD∗+X)/(dηD∗dQ2)

d2σN
vis(ep → eD∗+X)/(dp⊥D∗dQ2)

are shown in figure E.3 (together with the HVQDIS and CASCADE predictions) and in
figure E.7 (together with the AROMA predictions).

The double differential cross sections in terms of xobs
g presented in chapter 6 are shown

in figure E.4 (together with the HVQDIS and CASCADE predictions) and in figure E.8
(together with the AROMA predictions) after normalisation:

d2σN
vis(ep → eD∗+X)/(dlogxobs

g dlogŝobs/[GeV2])
d2σN

vis(ep → eD∗+X)/(dlogxobs
g dlogx)

d2σN
vis(ep → eD∗+X)/(dlogxobs

g dηD∗)
d2σN

vis(ep → eD∗+X)/(dlogxobs
g dxD∗).
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Figure E.1: Inclusive D∗+ normalised single differential cross sections in the visible range
versus W , x , Q2 and p⊥D∗ , ηD∗ , xD∗ . The innermost error bars correspond to the
statistical error. The experimental systematical errors are added in quadrature for the
middle error bars and the total error bars additionally take the Monte Carlo systematics
into account. The dark shaded band is the prediction of the HVQDIS NLO DGLAP
calculations for mc = 1.3 GeV/c2, ε(Peterson) = 0.035 (upper limit) and mc = 1.5 GeV/c2,
ε(Peterson) = 0.10 (lower limit). The light shaded band is the prediction of the CASCADE
LO CCFM calculations for mc = 1.3 GeV/c2 (upper limit) and mc = 1.5 GeV/c2 (lower
limit); ε(Peterson) has been fixed to 0.078.
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Figure E.2: Inclusive D∗+ normalised double differential cross sections in the visible range
for D∗+ quantities d2σN

vis(ep → eD∗+X)/(dp⊥D∗dηD∗), d2σN
vis(ep → eD∗+X)/(dp⊥D∗dxD∗),

d2σN
vis(ep → eD∗+X)/(dxD∗dηD∗). The dark and light shaded bands are described in the

caption of figure E.1.
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Figure E.3: Inclusive D∗+ normalised double differential cross sections in the visible range
d2σN

vis(ep → eD∗+X)/(dηD∗dQ2) and d2σN
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Figure E.4: Inclusive D∗+ normalised double differential cross sections in the visible range:
d2σN

vis(ep → eD∗+X)/(dlogxobs
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Figure E.5: Inclusive D∗+ normalised single differential cross sections in the visible range
versus W , x , Q2 and p⊥D∗ , ηD∗ , xD∗ . The innermost error bars correspond to the
statistical error. The experimental systematical errors are added in quadrature for the
middle error bars and the total error bars additionally take the Monte Carlo systematics
into account. The dark shaded band is the prediction of the LO DGLAP AROMA event
generator for mc = 1.3 GeV/c2 (upper limit) and mc = 1.5 GeV/c2 (lower limit) with
GRV 98 HO for the parton density set. The light shaded band is the prediction of the
LO DGLAP AROMA event generator for mc = 1.3 GeV/c2 (upper limit) and mc = 1.5
GeV/c2 (lower limit) with GRV 94 LO for the parton density set. In both cases ε(Peterson)
has been fixed to 0.078.
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Figure E.6: Inclusive D∗+ normalised double differential cross sections in the visible range
for D∗+ quantities d2σN

vis(ep → eD∗+X)/(dp⊥D∗dηD∗), d2σN
vis(ep → eD∗+X)/(dp⊥D∗dxD∗),

d2σN
vis(ep → eD∗+X)/(dxD∗dηD∗). The dark and light shaded bands are described in the

caption of figure E.5.
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Figure E.7: Inclusive D∗+ normalised double differential cross sections in the visible range
d2σN

vis(ep → eD∗+X)/(dηD∗dQ2) and d2σN
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Figure E.8: Inclusive D∗+ normalised double differential cross sections in the visible range:
d2σN

vis(ep → eD∗+X)/(dlogxobs
g dlogŝobs/[GeV2]), d2σN

vis(ep → eD∗+X)/(dlogxobs
g dlogx),

d2σN
vis(ep → eD∗+X)/(dlogxobs

g dηD∗), d2σN
vis(ep → eD∗+X)/(dlogxobs

g dxD∗). The dark
and light shaded bands are described in the caption of figure E.5
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Abbreviations

ALEPH . .: Apparatus for LEP Physics
ARGUS . : ARGUS, magnetic detector installed at the storage ring DORIS II at

DESY
AROMA .: A R O M A, a Monte Carlo Generator for Heavy Flavour Events in ep

collisions
BDC . . . . : Backward Drift Chamber
BEMC . . . : Backward ElectroMagnetic Calorimeter
BGF . . . . . : Boson-Gluon Fusion
BST . . . . . : Backward Silicon Tracker
CC . . . . . . : Charged Current
CERN . . . : Conseil Européen pour la Recherche Nucléaire
CIP . . . . . : Central Inner Proportional Chamber
CIZ . . . . . . : Central Inner z-Chamber
CJC . . . . . : Central Jet Chamber
COP . . . . .: Central Outer Proportional Chamber
COZ . . . . . : Central Outer z-Chamber
CST . . . . . : Central Silicon Tracker
CTD . . . . : Central Tracking Device
CTL . . . . . : Central Trigger Logic
DELPHI . : DEtector for Lepton, Photon and Hadron Identification
DESY . . . : Deutsches Elektronen-Synchrotron
DORIS . . : DOppel-RIng-Speicher, the alleged mother country of the Dorian con-

querors of the Peloponnese
DIS . . . . . . : Deep Inelastic Scattering
EMC . . . . : European Muon Collaboration
ET . . . . . . : Electron Tracker
FTD . . . . . : Forward Tracking Device
FWPC . . : Forward Multi-Wire Proportional Chamber
HECTOR : H E C T O R, a programme for the calculation of QED, QCD and

electroweak corrections to ep, and l±N deep inelastic neutral and charged
current scattering, in greek legend HECTOR was the eldest son of the
Troyan king Priam.

HERA . . . : Hadron-Elektron-Ring-Anlage, in greek religion queen of the Olympian
gods

HERWIG : Hadron Emission Reactions With Interfering Gluons
HQSEL . . : Heavy Quark Selection
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IET . . . . . : Inclusive Electron-Trigger
ITEP . . . : Institute of Theoretical and Experimental Physics
JETSET : J E T S E T, a programme for event generation in high energy physics

assuming “jet universality”.
LEP . . . . : Large Electron Positron Collider
LO . . . . . : Leading Order
LST . . . . : Limited Streamer Tube
MC . . . . . : Monte Carlo
MWPC . : Multi Wire Proportional Chamber
NC . . . . . : Neutral Current
NLO . . . . : Next to Leading Order
NMC . . . : New to Muon Collaboration
PD . . . . . : Photon Detector
PETRA .: Positron-Elektron-Tandem-Ring-Anlage, an ancient city which was the

centre of an Arab kingdom in Hellenistic and Roman times. Nowadays
its ruins are in southwest Jordan.

PHYTIA : P Y T H I A, a programme to generate hadronic physics at very high
energy, an ancient Greek medium who delivered oracles at Delphi.

PS . . . . . . : Proton Synchrotron
QCD . . . : Quantum Chromo Dynamic
QED . . . . : Quantum Electro Dynamic
QPM . . . : Quark Parton Model
RISC . . . : Reduced Instruction Set Computer
SpaCal . : Spaghetti Calorimeter
SPS . . . . . : Super Proton Synchrotron
ST . . . . . . : SubTrigger
TC . . . . . : Tail Catcher
ToF . . . . . : Time of Flight
TR . . . . . : Transition Radiator
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