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Introduction

The study of algebraic group actions on affine varieties, especially the "vertical" study of
orbits and their closures, and the "horizontal" study of parametric families of orbits and
quotients, are a common topic in algebraic Lie theory.

A well-known example is the study of the adjoint action of a reductive algebraic group on
its Lie algebra and numerous variants thereof, in particular the conjugacy classes of com-
plex (nilpotent) square matrices.

In 1870, the classification of the orbits by so-called Jordan normal forms was described
by M. Jordan [Jordan, 1989, Jordan, 1871]. Their closures were described by M. Gersten-
haber [Gerstenhaber, 1959] and W. Hesselink [Hesselink, 1976] in the second half of the
twentieth century in terms of partitions and visualized by combinatorial objects named
Young Diagrams.

Algebraic group actions of reductive groups have particularly been discussed elaborately
in connection with orbit spaces and more generally algebraic quotients, even though their
application to concrete examples is far from being trivial. In case of a non-reductive group,
even most of these results fail to hold true immediately.

For example, Hilbert’s theorem [Hilbert, 1890] yields that for reductive groups, the invari-
ant ring is finitely generated; and a criterion for algebraic quotients is valid [Kraft, 1984].
In 1958, though, M. Nagata [Nagata, 1960, Nagata, 1959] constructed a counterexample
of a not finitely generated invariant ring corresponding to a non-reductive algebraic group
action, which answered Hilbert’s fourteenth problem in the negative.

One exception are algebraic actions of unipotent subgroups that are induced by reductive
groups, since the corresponding invariant ring is always finitely generated [Kraft, 1984].

Our main attention in this work is turned towards algebraic non-reductive group actions
that are induced by the conjugation action of the general linear group GLn over C. For ex-
ample, the standard parabolic subgroups P (and, therefore, the Borel subgroup B) and the
unipotent subgroup U of GLn are not reductive. It suggests itself to consider their action
on the variety N (x)

n of x-nilpotent matrices of square size n via conjugation. We discuss
this setup in detail and, thereby, generalize certain known results.

The examination of a group action of P on N (x)
n can be refined if we consider the P-action

on a single nilpotent GLn-orbit O. This setup generalizes to arbitrary reductive groups G,
where the classification of the orbits is equally interesting. Our considerations are, how-
ever, restricted to the group GLn.
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Recent studies

A recent development in this field is A. Melnikov’s study of the B-action on the variety
of upper-triangular 2-nilpotent matrices via conjugation [Melnikov, 2000, Melnikov, 2006,
Melnikov, 2007] motivated by Springer Theory. The detailed description of the orbits and
their closures is given in terms of so-called link patterns; these are combinatorial objects
visualizing the set of involutions in the symmetric group S n.

The Ph.D. thesis of B. D. Rothbach yields a description of the B-orbits and equations for
their closures in the variety of 2-nilpotent matrices. There seems to be a desingularization
of the B-orbit closures as well. However, this work was not available to the author of the
present thesis, except for parts of it (see [Rothbach, 2009]).

In her Bachelor thesis [Halbach, 2009], B. Halbach describes the B-action on N (3)
3 in

all detail. The B-orbits as well as their closures, their minimal degenerations and their
singularities are explicity given and a generic normal form is introduced. She general-
izes the latter, obtaining a large set of pairwise non-B-conjugate matrices. These yield a
generic normal form in the nilpotent cone N B N (n)

n for arbitrary n which is proven in
[Boos and Reineke, 2011].

Another recent outcome is L. Hille’s and G. Röhrle’s study of an arbitrary parabolic ac-
tion on the variety n of upper-triangular nilpotent matrices [Hille and Röhrle, 1999]. They
obtain a criterion which determines whether the group action admits a finite or infinite
number of orbits.

Content of this work

We translate the group action of P to a certain group action in the representation theory
of finite dimensional algebras via an associated fibre product. In more detail, we “reduce”
the classification of orbits of the action to the knowledge of certain isomorphism classes of
representations of a quiver Q given by a linearly oriented quiver of Dynkin type An with a
loop at the sink and an admissible ideal I given by just one relation. The quiver Q and the
ideal I depend on the parabolic subgroup P and on the nilpotency degree x.

Although in general, the classification of these isomorphism classes is far from well-
known, there are several cases in which the algebra KQ/I is representation-finite and the
representations can be classified using the decomposition theorem of W. Krull, R. Remak
and O. Schmidt.

Our first aim is to classify those cases in which a finite group action arises. The most obvi-
ous case is an arbitrary parabolic action on the variety of 2-nilpotent matrices; the covering
quiver of Q is of Dynkin type A2n, then.

We classify the orbits in terms of “(enhanced) oriented link patterns”, a natural generaliza-
tion of A. Melnikov’s link patterns, and provide the concrete structure of the orbit closures:
By translating a description of orbit closures given by G. Zwara [Zwara, 1999], a natural
generalization of the description A. Melnikov obtains in [Melnikov, 2006] is deduced.
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By calculating the dimension of the stabilizer of a 2-nilpotent matrix (with respect to the
chosen parabolic subgroup), we are able to compute the dimension of every orbit (closure);
the description of the open orbit follows naturally.

In case of the B-action, we give an explicit description of the minimal degenerations.
Therefore, we describe all minimal, disjoint degenerations by using several results of K.
Bongartz [Bongartz, 1994] and generalize them to arbitrary minimal degenerations after-
wards. In this way, the precise degeneration diagram is obtained; this yields a concrete
algorithm to derive a set-theoretic description of the orbit closure of a given matrix by
turning around the arrows in the corresponding oriented link pattern. We prove that each
minimal degeneration is of codimension 1. Since the B-varietyN (2)

n is spherical, this result
can be obtained from the theory of sperical varieties as introduced in [Brion, 1989] as well.

In order to state a criterion for the group action of P on N (x)
n to be finite, we discuss the

action of a maximal parabolic subgroup on the variety of 3-nilpotent matrices. This partic-
ular action is finite and we classify the orbits and their closures by enhanced oriented link
patterns as well. We give an explicit description of the open orbit, which depends on the
maximal parabolic subgroup, as well as a detailed example which illustrates the general
considerations.

To get an overview of all finite cases, we consider fixed matrix sizes and prove the follow-
ing theorem by using general techniques from linear algebra.

Theorem 4.2.1
The P-action on N (x)

n is finite if and only if x ≤ 2, or P is maximal and x = 3.

Every quiver Q not considered up to this point is of wild type and we arrive at a classifica-
tion problem of wild type which yields explicit 2-parameter families of non-P-conjugate
matrices for certain parabolic subgroups P.

We consider “the most difficult case”, namely an arbitrary parabolic action on the nilpo-
tent cone N , and initiate a study of the generic classification by specifying a generic nor-
mal form. Following [Boos and Reineke, 2011], we construct a large class of determinan-
tal semi-invariants fP; these are used to prove the following lemma using results of A.
Schofield and M. van den Bergh [Schofield and van den Bergh, 2001]:

Lemma 5.3.1
The B-semi-invariant ring is generated by determinantal semi-invariants fP.

By observing that all B-semi-invariants are U-invariant functions, we obtain an (infinite)
set of generators of the U-invariant ring. We modify a well-known quotient criterion for
reductive group actions (see [Kraft, 1984]) and are, thereby, able to state a quotient crite-
rion for unipotent group actions. Algebraic quotients are provided explicitly in the cases
n = 2 and n = 3 by making use of this criterion.

In the general case, we mapN//U to an explicitly described toric variety X, such thatN//U
is generically an affine space fibration with fibres isomorphic to AD.
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In addition to calculating the variety X in all detail, we show how the U-orbits are separated
generically by certain invariant functions and discuss the interrelation of the varietiesN//U
and AD × X.

If n = 2 or n = 3, the desription of the U-invariant ring can be used to verify a GIT-quotient
of the nilpotent cone by B. In the general case, we separate the B-orbits generically by
semi-invariants of the same weight.

We translate this setup into the language of moduli spaces of representations of finite-
dimensional algebras and, thereby, initiate further studies.

Structure of this work

In chapter 1, we give a brief summary of methods summing up the fundamentals we make
use of later on.

We begin by reproducing basic knowledge about algebraic geometry in section 1.1, more
precisely about algebraic group actions in subsection 1.1.1 and, thereby, discussing (semi-)
invariants and quotients corresponding to them in subsection 1.1.2 and subsection 1.1.3. A
brief recapitulation of the concept of an affine toric variety is included in subsection 1.1.4.

In section 1.2, we introduce basic notions of the representation theory of finite-dimensional
algebras using the quiver approach. Basic principles of covering theory are recapitulated in
subsection 1.2.1 (see [Bongartz and Gabriel, 8182]). The notion of tame and wild algebras
as well as the classification of tame and wild path algebras by (extended) Dynkin quivers
is sketched in subsection 1.2.2. In subsection 1.2.3, we state general facts about degenera-
tions in the sense of G. Zwara [Zwara, 1999, Zwara, 2000] .

In chapter 2, we provide an introduction of the concrete setup of this work, that is, in-
troducing the notations and certain combinatorial objects, repeating basic facts and recent
results and realizing an important translation.

Generalizations of A. Melnikov’s link patterns, namely “oriented link patterns”, “enhanced
oriented link patterns” and “labelled oriented link patterns” are considered in section 2.1
as they represent the combinatorial objects which solve several upcoming classification
problems.

We recapitulate known work on the subject in section 2.2, starting in subsection 2.2.1
with the classification of GLn-orbits in varieties of nilpotent matrices, first given by M.
Jordan and M. Gerstenhaber. Recent results of A. Melnikov are considered in subsection
2.2.2 where the notion of a link pattern comes up. Subsequently, we examine results on
parabolic group actions given by L. Hille and G. Röhrle in subsection 2.2.3.

In section 2.3, we show how the problem of studying the group action of P on N (x)
n can be

translated to a setup in the representation theory of a finite-dimensional algebra.
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The conjugation action of an arbitrary parabolic subgroup P on the variety of 2-nilpotent
matrices is discussed in chapter 3. In addition, the action of the unipotent subgroup is
considered.

We start by classifying the orbits in section 3.1. More precisely, we discuss and classify the
parabolic orbits in terms of enhanced oriented link patterns in subsection 3.1.1 and deduce
representing labelled oriented link patterns of the unipotent orbits in subsection 3.1.2. The
section ends with two examples in subsection 3.1.3 where in the cases n = 3 and n = 4
every parabolic action is explicitly described.

In order to depict the orbit closures, we calculate the dimensions of homomorphism spaces
and spaces of extensions of certain representations in section 3.2.

By making use of this knowledge, we describe the orbit closures concerning the Borel
action in section 3.3. We start by describing the minimal, disjoint degenerations of repre-
sentations in subsection 3.3.1, which leads to a classification of all minimal degenerations
in subsection 3.3.2, divided into minimal degenerations obtained from an indecomposable
representation and minimal degenerations obtained from extensions. The examination of
Borel orbits in subsection 3.3.3 is concluded by giving an overview of the dimensions of
orbits and by calculating the open orbit. Minimal singularities are briefly examined in sub-
section 3.3.4.

In section 3.4, we have a closer look at arbitrary parabolic conjugation and describe the
orbit closures as well. The calculation of the minimal, disjoint degenerations of certain
representations in subsection 3.4.1 leads to a description of most minimal degenerations.
We include the dimensions of the orbits and the description of the open orbit in subsection
3.4.2.

Parabolic actions on varieties of x-nilpotent matrices for 2 < x < n are considered in chap-
ter 4. The considerations are restricted to the examination (and classification) of all finite
cases that arise.

The first finite case, discussed in section 4.1, is the action of an arbitrary maximal parabolic
subgroup P on the variety of 3-nilpotent matrices. The orbits are classified in subsection
4.1.1 and we give an algorithm on how to calculate the orbit closures in case the parabolic
is fixed in subsection 4.1.2. After calculating the dimensions of the orbits as well as the
open orbit for every parabolic action in subsection 4.1.3, we end the section by examining
the action of the parabolic subgroup of block sizes (2, 2) on the variety of 3-nilpotent 4×4-
matrices in subsection 4.1.4.

By observing that every finite action has been examined up to this point, we obtain a com-
plete list of the finite actions in section 4.2.

In section 4.3, the corresponding wild algebras are considered, that is, in subsection 4.3.1,
we prove that every non-finite algebra is of wild type before giving explicit 2-parameter
families of pairwise non-P-conjugate matrices for certain parabolic subgroups P in sub-
section 4.3.2.

Since every finite action has been classified, we consider a generic approach in chapter 5
and, therefore, classify the parabolic orbits in an open subset of the nilpotent cone.
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A generic normal form for an arbitrary parabolic action is provided in section 5.1, which
can be used to describe a generic normal form for the unipotent action.

In section 5.2, following [Boos and Reineke, 2011], we introduce a large class of B-semi-
invariants, thereby defining a large class of unipotent invariants as well.

In case of the Borel action, section 5.3 shows that the semi-invariant ring is in fact gener-
ated by these semi-invariants.

As it is of great interest to describe the U-invariant ring of the nilpotent cone, we start to
examine it in chapter 6.

In section 6.1, by proving a quotient criterion for U-actions, which is directly translated
from the reductive setup, we are able to describe the invariant rings for n = 2 and n = 3 in
subsection 6.1.1 explicitly.

These cases yield the existence of a subring of so-called toric invariants in the U-invariant
ring which we discuss in section 6.2. More precisely, subsection 6.2.1 proves that the toric
invariants are generated by a finite set containing so-called sum-free toric invariants. In
subsection 6.2.2, a general description of toric invariants is obtained combinatorially.

We show how the U-orbits can generically be separated by certain invariants in section 6.3.

Section 6.4 provides an explicit description of the toric variety X which is induced by the
toric invariants. We discuss two toric operations in subsection 6.4.1 and show how they are
related. By translating these operations, we obtain an explicit description of all sum-free
toric invariants in subsection 6.4.2. Subsection 6.4.3 discusses the results we obtained so
far about the interrelation of the varieties N//U and AD × X.

We end the chapter by working through the case n = 4 in section 6.5.

Since the description of the B-semi-invariant ring of a certain weight is a self-evident aim,
we start its discussion in chapter 7.

By application of the results on U-invariants in section 7.1, the semi-invariant rings for
n = 2 and n = 3 are described explicitly for certain weights.

In section 7.2, we then show how the B-orbits can be separated generically by semi-
invariants of the same weight.

We initiate the study of moduli spaces in section 7.3 and introduce a particular stability
which comes up naturally by the generic separation.
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1 Theoretical background

In the following, we will fix some notation and give a brief overview about the theories that
will be made use of. The reader is referred to [Borel, 1991] for more details on algebraic
group actions; questions about algebraic geometry in general, for example about singular-
ities, are answered in [Kraft, 1984] and [Hartshorne, 1977]. Quotients of algebraic group
actions, (semi-) invariants and everything closely related are described in [Mukai, 2003]
and background information concerning the representation theory of finite-dimensional
algebras can, for example, be found in [Assem et al., 2006], [Auslander et al., 1997] and
[Ringel, 1984].

1.1 Methods from Algebraic geometry and Invariant theory

Let K be an algebraically closed field of characteristic char K = 0; we denote by ei the i-th
coordinate vector of Kn.

If not stated differently, we consider a variety X to be an irreducible quasi-projective vari-
ety, we denote its structure sheaf by OX and its Krull dimension by dim X. For each point
x ∈ X, we denote by dimx(X) := dimOX,x the local dimension at x, that is, the maximal
dimension of those irreducible components containing x. For every closed subvariety X′

of X, we define by codimX(X′) B dim X − dim X′ the codimension of X′ in X. Given an
irreducible affine variety X, we denote its associated coordinate ring by OX(X) =: K[X]
and by K(X) the field of fractions.

An integral domain R with field of fractions K is called integrally closed if every element
of K which is a root of a monic polynomial in R[x] is an element of R. We obtain the
notion of a normal variety.

Definition 1.1.1. The variety X is called normal if every local ringOX,x is integrally closed.

For example, every affine space An is normal and if two varieties X and Y are normal, then
their product X × Y is normal as well. A large class of normal varieties is described by
Serre’s criterion, which we discuss next in the affine case [Kraft, 1984, AI.6.2] (see, for the
general case, [Hartshorne, 1977, Theorem 8.22A]).

A point x ∈ X is called a singularity in X if dim Tx(X) > dim X, here TxX is the tangent
space in x; otherwise x is called a regular point. We denote by Sing(X) the singular locus
of X, that is, the closed subvariety of all singular points of X.

The variety X is called regular in codimension 1 if codimX(Sing(X)) ≥ 2.

Theorem 1.1.2. (Serre’s criterion)
Let X be an irreducible affine variety. If X is regular in codimension 1, then X is normal.
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Let X and Y be two affine varieties. A morphism µ : X → Y is called birational if there
is an open subset X′ ⊆ X on which µ induces an isomorphism X′ � µ(X′). The following
lemma can be found in [Kraft, 1984, AI.3.7].

Lemma 1.1.3. (Birational morphisms)
A dominant morphism µ : X → Y is birational if and only if there is an open subset Y ′ ⊆ Y,
such that for every y ∈ Y ′, the fibre µ−1(y) contains exactly one element.

We include the following lemma of R. Richardson (see [Kraft, 1984, II.3.4]).

Lemma 1.1.4. (Lemma of Richardson)
Let µ : X → Y be a birational morphism for which codimY (Y\µ(X) ≥ 2. If Y is normal,
then µ is an isomorphism.

Let (X, x) and (Y, y) be two pointed varieties. They are called smoothly equivalent if there
are a pointed variety (Z, z) and smooth morphisms

X Z Y
λ ρ

fulfilling λ(z) = x and ρ(z) = y. This definition gives an equivalence relation ∼ on the class
of pointed varieties; we call the equivalence classes “types of singularities” and denote
them by Sing(X, x). Note that if (X, x) ∼ (Y, y), then x ∈ Sing(X) if and only if y ∈ Sing(Y).

1.1.1 Algebraic group actions

Denote by GLn B GLn(K) the general linear group for a fixed integer n ∈ N regarded as
an affine variety and let G be a linear algebraic group, that is, a closed subgroup of some
GLn.

An algebraic group action of G on X is given by a morphism _._: G×X → X which fulfills
(gh).x = g.(h.x) and 1G.x = x for all g, h ∈ G and x ∈ X.

We call X a G-variety and have a closer look at the concept of such group actions.

If possible...

... one would like to classify the orbits by some system of representatives.

... one would like to “understand” each orbit and its closure geometrically.

... one would like to find a set of generators of the invariant ring of the action.

... one would like to find a morphism that separates as many orbits as possible.

We call an algebraic group action finite if the number of orbits is finite and infinite other-
wise.

Since an orbit G.x is locally closed but in general not closed, we can consider the smallest
Zariski-closed superset in X that contains G.x, namely the orbit closure G.x.
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Every orbit closure is a union of orbits, more precisely if G.x =
⋃

x′ G.x′, then for all
x′ ∈ G.x\G.x the inequality dim G.x′ < dim G.x holds true.

The calculation of the orbit closure of some orbit, thus, leads to calculating degenerations
in X, in more detail we denote x ≤deg x′ if G.x′ ⊆ G.x and say that “x degenerates to x′”.

The Krull dimension of an orbit G.x is given by

dim G.x = dim G.x = dim G − dim IsoG(x)

and given a degeneration x <deg x′, we set

codim(x, x′) B codimG.x(G.x′).

1.1.2 Invariants and algebraic quotients

In order to understand an algebraic group action, we are first of all interested in describing
a complete system of representatives, for example, in a combinatorial way. There are,
though, several further techniques which yield knowledge about the algebraic group action.

On the one hand, we can classify the orbits generically, that is, in a natural open subset
X0 ⊂ X (typically by continuous parameters).

On the other hand, there are different kinds of quotients which we will have a closer look
at in what follows.

Let π : X → Y be a G-invariant morphism of G-varieties, then π is called an algebraic
G-quotient of X (sometimes also called a categorical quotient) if it fulfills the universal
property that for every G-invariant morphism f : X → Z, there exists a unique morphism
f̂ : Y → Z, such that f = f̂ ◦ π; we denote X//G B Y .

Let X be an irreducible affine G-variety. A global section f ∈ K[X] is called G-invariant if
f (g.x) = f (x) holds true for all g ∈ G and x ∈ X. The G-invariant ring

K[X]G B { f ∈ K[X] | f is G − invariant}

is a (not necessarily finitely generated) K-algebra which we assume to be finitely generated,
though, in the following. In this case, a G-invariant morphism π : X → Y is an algebraic
quotient if and only if K[Y] and K[X]G are isomorphic as K-algebras; the variety Y is then
affine as well. We immediately understand that a candidate for an algebraic G-quotient is
given by X//G B Spec K[X]G.

If the group G is reductive, that is, if every linear representation of G can be decomposed
into a direct sum of irreducible representations, D. Hilbert showed that the invariant ring
is finitely generated at all times (see [Hilbert, 1890]), even though it can be a problem of
large difficulty to find generating invariants.

In order to calculate an algebraic G-quotient of an irreducible affine variety, the criterion
what follows (see [Kraft, 1984, II.3.4]) can be of great help.
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Theorem 1.1.5. (Quotient criterion for reductive group actions)
Let G be a reductive group and X be an affine G-variety. Let Y be an affine variety and
π : X → Y be a G-invariant morphism of varieties. If

1. Y is normal,

2. π is surjective or codimY (Y\π(X)) ≥ 2 and

3. on an non-empty open subset Y0 ⊆ Y the fibre π−1(y) contains exactly one closed
orbit for each y ∈ Y0,

then π is an algebraic G-quotient of X.

Note that the condition codimY (Y\π(X)) ≥ 2 is weaker than surjectivity if dim Y > 1. If
dim Y = 1, though, we need to include surjectivity in order to obtain the criterion for such
special situation later on. In case G is not reductive, however, there are counterexamples
of only infinitely generated invariant rings (see [Nagata, 1959, Nagata, 1960]). One excep-
tion are actions of unipotent subgroups induced by reductive group actions, discussed in
[Kraft, 1984, III.3.2].

Lemma 1.1.6. (Finite generation of U-invariant rings)
Let U be a unipotent subgroup of G and X be an affine G-variety; the action of G restricts
to an action of U on X. Then the invariant ring K[X]U is finitely generated as a K-algebra.

One can prove that each fibre of π contains exactly one closed orbit. Therefore, an algebraic
G-quotient of X parametrizes the closed G-orbits in X.

Let X be a G-variety. We call a G-invariant morphism π : X → Y C X/G of varieties a
geometric quotient if

1. its fibres coincide with the G-orbits in X,

2. a subset U ⊆ Y is open in Y if and only if π−1(U) ⊆ X is open in X and

3. the morphism π induces an isomorphism π∗ : OY (U) → OX(π−1(U))G for every
open subset U ⊆ Y (where OX(π−1(U))G ⊆ OX(π−1) is the subring of G-invariant
functions induced by the G-action on X).

Note that if G is reductive, an algebraic quotient as above restricts to a geometric quotient
π|Xs : Xs → Xs/G if we define Xs to be the closed subset of X of stable points, that is, of
points x ∈ X with finite stabilizers, such that G.x ⊆ X is closed.

We introduce the notion of an associated fibre bundle (see, for example, [Bongartz, 1998]
and [Zwara, 2011]) briefly. Given a connected linear algebraic group G and a closed sub-
group H ⊆ G with the induced action h.g := g · h−1, there exists a geometric quotient
G → G/H.

Let X be an H-variety and consider the induced diagonal action of H on G × X.
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Then a geometric quotient

π : G × X → (G × X)/H =: G ×H X

exists, together with an induced G-equivariant fibre bundle G ×H X → G/H with typical
fibre X.

The following fact on associated fibre bundles sometimes makes it possible to translate an
algebraic group action into another algebraic group action that is easier to understand (see,
for example, [Serre, 1995] or [Slodowy, 1980]; and [Bongartz, 1994]).

Theorem 1.1.7. (Translation of algebraic group actions)
Let G be a linear algebraic group, let X and Y be G−varieties, and let π : X → Y be a G-
equivariant morphism. Assume that Y is a single G-orbit, Y = G.y0. Let H be the stabilizer
of y0 and set F B π−1(y0). Then X is isomorphic to the associated fibre bundle G ×H F,
and the embedding φ : F ↪→ X induces a bijection Φ between the H-orbits in F and the
G-orbits in X preserving orbit closures and types of singularities.

In the setting of theorem 1.1.7, we deduce the following corollary.

Corollary 1.1.8. (Preservation of codimensions)
For each x ∈ X we obtain

dim G − dim G.x = dim H − dim(G.x ∩ F).

In more detail, the bijection Φ in theorem 1.1.7 preserves dimensions of stabilizers (of
single points) and codimensions.

Proof. Let x ∈ X � G ×H F and denote the corresponding H-orbit by H.x ⊆ G × F.
Then G.x � G ×H (G.x ∩ F) and

dim G.x = dim(G ×H (G.x ∩ F)) = dim G + dim(G.x ∩ F) − dim H

yields the above equality.
Since dim IsoG(s) = dim G − dim G.x for each s ∈ G.x and
dim IsoH(s) = dim H − dim(G.x ∩ F) = dim H − dim H.x for all s ∈ G.x ∩ F, the bijection
Φ obviously preserves the dimensions of stabilizers of single points.
Then codim(x, x′) = dim G.x′ − dim G.x = dim IsoG(x) − dim IsoG(x′) and, thus, Φ also
preserves codimensions. �

1.1.3 Semi-invariants and GIT-quotients

Let Pn be the n-dimensional projective space which is obtained by gluing together certain
affine spaces. Given a graded commutative ring R =

⊕
m≥0 Rm, such that R0 = K and such

that R1 is a finitely generated K-vector space that generates R as a K-algebra, we define
R+ B

⊕
m>0 Rm. We sketch the notion of the projective spectrum Proj(R) briefly (see

[Mukai, 2003, 6.1(a)]).
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The underlying set of Proj(R) is given by the maximal homogeneous ideals R+ * m ⊆ R.
We consider the sets Ua B {m | a < m} for all homogeneous elements a ∈ R as a basis of
open subsets which induce a Zariski topology on Proj(R). The function field is given by

K0 B
{a

b
| deg a = deg b, a, b ∈ R

}
∪ {0}.

Furthermore, the structure sheaf OProj(R) is defined on the above open sets to be the local-
ization OProj(R)(Ua) B R(a). Due to these considerations, the space Proj(R) has a structure
of a projective variety.

We define a G-character to be a morphism χ : G → Gm of algebraic groups, where Gm is
the multiplicative group (GL1, ·). The set of G-characters is denoted by X(G) and has a
natural structure of an abstract group by setting (χ + χ′)(g) B χ(g) · χ′(g).

Let X be an irreducible affine variety and χ be a G-character. A global section f ∈ K[X] is
called a semi-invariant of weight χ if f (g.x) = χ(g) · f (x) holds true for all elements g ∈ G
and x ∈ X. We denote the χ-semi-invariant ring by

K[X]G
χ B

⊕
n≥0

K[X]G,nχ,

which is a subring of K[X] and naturally N-graded by the sets K[X]G,nχ, that is, by the
semi-invariants of weight nχ (and of degree n). The G-invariant ring is contained in K[X]G

χ

as a subring, in more detail, as the component of degree 0.

We define the semi-invariant ring corresponding to all characters by

K[X]G
∗ B

⊕
χ∈X(G)

K[X]G
χ .

Given functions f0, . . . , fs ∈ K[X]G
χ , such that all ratios fi

f j
are G-invariant rational func-

tions, the map

π : X − − − − > Ps

x 7→ ( f0(x) : . . . : fs(x))

is not defined on the common zeros of f1, . . . , fs. If we extend the number of functions fi it
is possible that the set of common zeros is diminished even though they in general do not
vanish completely.

These thoughts suggests the definition of the so-called unstable locus. Let χ ∈ X(G) be
a G-character, then we define the unstable locus of χ to be the subset of unstable points
x ∈ X, that is, f (x) = 0 for every f ∈ K[X]G,nχ and for every integer n > 0.

We, furthermore, define the semi-stable locus of χ to be the set of χ-semi-stable points in
X, that is, of points x ∈ X for which a χ-semi-invariant f ∈ K[X]G,nχ for an integer n > 0
exists, such that f (x) , 0.
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We define the so-called GIT-quotient of X by G in direction χ to be

X//χG := Proj(K[X]G
χ )

together with the induced morphism π : Xχ−sst → X//χG.

If the linear algebraic group G is reductive, the ring K[X]G
χ is finitely generated (see

[Mukai, 2003, 6.1(b)] or [Reineke, 2008] for more information on the subject) and a mor-
phism

π|χ : Xχ−sst → X//χG ⊆ Proj K[x0, . . . , xs]

x 7→ ( f0(x) : . . . : fs(x)).

is obtained, where f0, . . . , fs ∈ K[X]G
χ are generating semi-invariants of degrees a0, . . . , as

and xi is of weight ai for all i ∈ {0, . . . , s}. We call π|χ a GIT-quotient map of X by G in
direction χ.

Note that in case G is not reductive, the ring K[X]G
χ is not necessarily finitely generated.

1.1.4 Toric varieties

Since our considerations will involve the notion of a toric variety, we discuss it briefly in
what follows.

A toric variety is an irreducible variety X which containes (K∗)n as an open subset, such
that the action of (K∗)n on itself extends to an action of (K∗)n on X. We show in the
following how toric varieties can be constructed from cones; for more information on the
subject, the reader is referred to [Fulton, 1993] or [Cox et al., 2011].

Let N be a lattice, that is, a free abelian group N of finite rank. By M := HomZ(N,Z) we
denote the dual lattice, together with the induced dual pairing 〈_, _〉. Consider the vector
space NR := N ⊗Z R � Rn.

A subset σ ⊆ NR is called a convex rational polyhedral cone if there is a finite set S ⊆ N
that generates σ, that is,

σ = Cone(S ) :=

∑
s∈S

λs · s | λs ≥ 0

 .
The cone σ is called strongly convex if σ ∩ (−σ) = {0}.

Given a strongly convex rational polyhedral cone σ, we define its dual by

σ∨ := {m ∈ HomR(Rn,R) | 〈m, v〉 ≥ 0 for all v ∈ σ}

and its corresponding additive semigroup by S σ := σ∨ ∩ M, which is finitely generated
due to Gordon’s lemma (see [Fulton, 1993]). We associate to it the semigroup algebra KS σ

and obtain an affine toric variety Spec KS σ.

Lemma 1.1.9. (Toric varietys from cones)
An affine toric variety X is isomorphic to Spec KS σ for some strongly convex rational
polyhedral cone σ if and only if X is normal.
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1.2 Representation theory of finite-dimensional algebras

As we make key use of results from the representation theory of finite-dimensional alge-
bras, we now recall the basic setup of this theory and refer to [Assem et al., 2006] and
[Auslander et al., 1997] for a thorough treatment.

Let Q be a finite quiver, that is, a directed graph Q = (Q0,Q1, s, t) consisting of a finite set
of vertices Q0 and a finite set of arrows Q1, whose elements are written as α : s(α)→ t(α);
the vertices s(α) and t(α) are called the source and the target of α, respectively. A path in
Q is a sequence of arrows ω = αs . . . α1 such that t(αk) = s(αk+1) for all k ∈ {1, . . . , s − 1};
we formally include a path εi of length zero for each i ∈ Q0 starting and ending in i. We
have an obvious notion of concatenation ωω′ of paths ω = αs . . . α1 and ω′ = βt . . . β1 such
that t(βt) = s(α1).

The path algebra KQ is defined as the K-vector space with a basis consisting of all paths
in Q, and with multiplication

ω · ω′ =

{
ωω′, if t(βt) = s(α1);
0, otherwise.

The radical rad(KQ) of KQ is defined to be the (two-sided) ideal generated by all paths of
positive length; an ideal I of KQ is called admissible if there is some integer s, such that
rad(KQ)s ⊂ I ⊂ rad(KQ)2.

The key feature of such pairs (Q, I), consisting of a quiver Q and an admissible ideal
I ⊂ KQ, is the following: every finite-dimensional K-algebra A is Morita-equivalent
to an algebra of the form KQ/I, in the sense that their categories of finite-dimensional
K-representations are (K-linearly) equivalent.

A finite-dimensional K-representation M of Q consists of a tuple of K-vector spaces Mi for
i ∈ Q0, and a tuple of K-linear maps Mα : Mi → M j indexed by the arrows α : i→ j in Q1.
A morphism of representations M = ((Mi)i∈Q0 , (Mα)α∈Q1) and M′ = ((M′i )i∈Q0 , (M′α)α∈Q1)
consists of a tuple of K-linear maps ( fi : Mi → M′i )i∈Q0 , such that f jMα = M′α fi for every
arrow α : i→ j in Q1.

For a representation M and a path ω in Q as above, we denote Mω = Mαs · . . . · Mα1 . We
call M bound by I if

∑
ω λωMω = 0 whenever

∑
ω λωω ∈ I.

The abelian K-linear category of all representations of Q is denoted by repK(Q), the cat-
egory of representations of Q bound by I by repK(Q, I); it is equivalent to the category
of finite-dimensional representations of the algebra KQ/I. We have, thus, found a “linear
algebra model” for the category of finite-dimensional representations of an arbitrary finite-
dimensional K-algebraA.

We define the dimension vector dimM ∈ NQ0 of M by (dimM)i = dimk Mi for i ∈ Q0.
For a fixed dimension vector d ∈ NQ0, we define repK(Q, I)(d) to be the full subcategory
of repK(Q, I), consisting of representations of dimension vector d. We consider the affine
space Rd(Q) =

⊕
α : i→ j HomK(Kdi ,Kd j); its points m naturally correspond to representa-

tions M ∈ repK(Q)(d) with Mi = Kdi for i ∈ Q0.
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Via this correspondence, the set of such representations bound by I corresponds to a closed
subvariety Rd(Q, I) ⊂ Rd(Q). It is obvious that the algebraic group GLd =

∏
i∈Q0 GLdi acts

on Rd(Q) and on Rd(Q, I) via base change (gi)i · (Mα)α = (g jMαg−1
i )α : i→ j. By definition,

the GLd-orbits OM of this action naturally correspond to the isomorphism classes of repre-
sentations M in repK(Q, I)(d).

In order to find generators of certain (semi-) invariant rings later on, we will use a theorem
of A. Schofield which we will explain in the following.

There is an induced GLd-action on K[Rd(Q)] which yields the natural notion of a semi-
invariant.

Denote by addQ the additive category of Q with objects O(i) corresponding to the vertices
i ∈ Q0 and morphisms induced by the paths in Q. Since every representation M ∈ repK(Q)
can naturally be seen as a functor from addQ to Mod K, we denote this functor by M as
well. Let φ :

⊕n
i=1 O(i)xi →

⊕n
i=1 O(i)yi be an arbitrary morphism in addQ and let d be a

dimension vector of Q, such that
∑

i∈Q0 xi · di =
∑

i∈Q0 yi · di.
Then we can define an induced so-called determinantal semi-invariant by

fφ : Rd(Q)→ K

m 7→ det(M(φ))

where m ∈ Rd(Q) and M ∈ repK(Q)(d) are related via the above mentioned correspondence.

The following theorem (see [Schofield and van den Bergh, 2001]) is due to A. Schofield
and M. van den Bergh.

Theorem 1.2.1. (Generation of semi-invariant rings)
The semi-invariants in K[Rd(Q)]

GLd
∗ are spanned by the determinantal semi-invariants fφ.

Coming back to algebraic aspects of the algebra KQ/I, we discuss certain facts about the
theory of KQ/I-representations. The theorem of W. Krull, R. Remak and O. Schmidt
helps to classify the isomorphism classes of KQ/I-representations; it states that every rep-
resentation in repK(Q, I) is isomorphic to a direct sum of indecomposables, unique up to
isomorphism and permutation.

We call KQ/I representation-finite if it admits only a finite number of isomorphism classes
of indecomposable representations. It is called locally representation-finite if for each ver-
tex i ∈ Q0, the number of isomorphism classes of indecomposable representations M with
Mi , 0 is finite.

For certain classes of finite-dimensional algebras, a convenient tool for the classification
of the indecomposable representations is the Auslander-Reiten quiver Γ(Q, I) of KQ/I. Its
vertices [M] are given by the isomorphism classes of indecomposable representations of
KQ/I; the arrows between two such vertices [M] and [M′] are parametrized by a basis of
the space of so-called irreducible maps f : M → M′.
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One standard technique to calculate the Auslander-Reiten quiver is the knitting process
(see, for example, [Assem et al., 2006, IV.4]). If, for example, the quiver has oriented
cycles and the knitting process does not work, in some cases the Auslander-Reiten quiver
Γ(Q, I) can be calculated using covering techniques (see [Gabriel, 1981]), which we discuss
briefly in subsection 1.2.1. In [Bongartz and Gabriel, 8182], a more thorough approach is
given.

1.2.1 Covering theory of quiver algebras

Let Q and Q′ be connected quivers, of which Q is finite. We set A B KQ/I for an admis-
sible ideal I ⊆ KQ andA′ B KQ′/I′ for I′ ⊆ KQ′ and denote C B repK(Q, I).

Assume for every vertex x ∈ Q′0 the number of arrows starting or ending in x is finite and
there is a bound Nx ∈ N, such that all paths of length greater or equal than Nx that start or
end in x are contained in I′. Then C′ B repK(Q′, I′) is called locally bounded.

We define the corresponding category of covariant K-linear functors m : C → K- Mod (or
m : C′ → K- Mod, respectively) by C- MOD (or C′- MOD, respectively), where K- Mod is
the category of K-modules. Define C- mod (or C′- mod, respectively) to be the full subcat-
egory of functors m, such that

∑
x∈C dim m(x) < ∞ (or

∑
x∈C′ dim m(x) < ∞, respectively).

Now let F : C′ → C be a K-linear functor. F is called a covering functor if F is surjective
on objects and if for all objects x in C′ and y in C:⊕

y′ : Fy′=y

C′(x, y′) →̃ C(Fx, y) and
⊕

y : Fy′=y

C′(y′, x) →̃ C(y, Fx).

Then the restriction F• : C- MOD→ C′- MOD given by F•(m) = m ◦F has a left and right
adjoint functor Fλ, which is uniquely determined (up to isomorphism).

Let G be a torsionfree subgroup of AutK C′. We assume G to act freely on C′, that is,
g.x , x for all e , g ∈ G and x ∈ C′.

Theorem 1.2.2. (Existence of Galois-coverings)
There is a K-linear category C′/G and a G-invariant covering functor F : C′ → C′/G,
such that for every G-invariant functor H : C′ → C there exists a unique Ĥ : C′/G → C
with H = Ĥ ◦ F, that is, the following diagram commutes:

C′ C′/G

C

F

H Ĥ

We call F a Galois-covering with group G.

In case we have a Galois-covering F : C′ → C, certain structural properties are being
preserved.
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Lemma 1.2.3. (Properties of Galois-coverings)
The following statements hold true:

1. If m is indecomposable in C′- mod, then Fλm is indecomposable in C- MOD.

2. Fλ commutes with the Auslander-Reiten translate and preserves Auslander-Reiten
sequences.

3. C(Fλm, Fλm) � C′(m,
⊕

g∈G m ◦ g−1) for all m ∈ C′- mod.

4. C′ is locally representation-finite if and only if C is locally representation-finite.
In this case, the Auslander-Reiten quiver ΓC′ has precisely one connected component
and ΓC = ΓC′/G.
A bijection ind C′/G ↔ ind C between the categories of indecomposables is induced.

In the above setup, we are able to construct a Galois-covering for C:

For every arrow α : x → y in Q1 we define an inverse α−1 : y → x. A walk w from x to y
is a path w = αn · · ·α1 of arrows or inverses of arrows. We have a natural composition of
walks and an equivalence relation on the set of all walks induced by w1xx−1w2 ∼ w1w2 for
every x ∈ Q1 or x−1 ∈ Q1.

A walk is called reduced, if it is not equivalent to a walk which arises by cancelling out
minimal relations as above. Let [w] be the equivalence class of w, clearly the composition
of walks is well-defined on these classes.

Define the fundamental groupoid FQ of Q to be the category with objects Q0 and mor-
phisms FQ(x, y) given by the equivalence classes of walks from x to y. Then every mor-
phism of FQ is an isomorphism and FQ(x, x) � FQ(y, y) for all x, y ∈ Q0. We fix an
element x ∈ Q0 and define the fundamental group Π1(Q) B FQ(x, x) of Q, which is free in
finitely many generators (and, therefore, countable).

Definition 1.2.4. (Universal covering)
For x ∈ Q0, the universal covering π : Q̂ → Q is defined by

Q̂0 B {[w] | w a walk which starts in x}

and Q̂1 as follows:
Every arrow α ∈ Q1 with s(α) = y induces an arrow w 7→ [α−1w] for a reduced walk
w ∈ [w] in Q̂1 and every arrow α ∈ Q1 with t(α) = y induces an arrow w 7→ [αw] for a
reduced walk w ∈ [w] in Q̂1.

The universal covering induces a Galois-covering of the representation categories of the
algebrasA and Â B KQ̂/Î with induced relations. Since I is generated by paths of length
greater or equal than 2, the following can be proven.

Theorem 1.2.5. (Interrelation betweenA and Â)
The algebraA is representation-finite if and only if the algebra Â is locally representation-
finite.
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1.2.2 Tame and wild algebras

LetA := KQ/I be a finite-dimensional K-algebra, such that repK(Q, I) is locally bounded.

We callA of tame representation type (or simply “tame”) if for every integer d there is an
integer md and there are finitely generated K[x]-A-bimodules M1, . . . ,Mmd that are free
over K[x], such that for all but finitely many isomorphism classes of indecomposable right
A-modules M of dimension d, there are elements i ∈ {1, . . . ,m} and λ ∈ K, such that
M � K[x]/(x − λ) ⊗K[x] Mi.

The algebraA is called of wild representation type (or simply “wild”) if there is a finitely
generated K〈X,Y〉-A-bimodule that is free over K〈X,Y〉, such that the functor _ ⊗K〈X,Y〉 M
sends non-isomorphic finite-dimensional K〈X,Y〉-modules to non-isomorphicA-modules.

In 1979, J. A. Drozd proved the following theorem (see [Drozd, 1980]).

Theorem 1.2.6. (Tame-wild theorem)
Every finite-dimensional algebra is either tame or wild.

The notion of a tame algebra A yields that there are at most 1-parameter families of pair-
wise non-isomorphic indecomposable A-modules; in the wild case there are parameter
families of arbitrary many parameters of pairwise non-isomorphic indecomposable A-
modules. In order to show that an algebra is wild, it, thus, suffices to describe one particular
such 2-parameter family.

Let Q be a quiver of n vertices and consider the path algebra KQ without relations together
with the Euler form on Zn × Zn, defined by

〈
(d1, . . . , dn), (d′1, . . . , d

′
n)
〉

:=
n∑

i=1

di · d′i −
∑

(α:i→ j)∈Q1

di · d′j.

We define the Tits form of Q to be the corresponding quadratic form

q : Zn → Z; d 7→
1
2
· 〈d, d〉

A vector 0 , d ∈ Nn is called a root if there is an indecomposable representation of Q of
this dimension vector. We call d a real root if q(d) = 1 and an imaginary root if q(d) < 1.

The theorem of P. Gabriel (see [Gabriel, 1972]) shows that KQ is of finite type if and only
if the underlying unoriented graph of Q is a disjoint union of Dynkin graphs A, D, E6, E7
or E8; equivalently the corresponding Tits form q is positive definite.

The algebra KQ is representation-infinite and tame if and only if the underlying unoriented
graph is a disjoint union of at least one extended Dynkin graph Ã, D̃, Ẽ6, Ẽ7 or Ẽ8 and
Dynkin graphs; this is equivalent to the associated Tits form being positive semi-definite
(see, for example, [Bourbaki, 1972, Donovan and Freislich, 1973, Nazarova, 1973]).

Given a wild algebra KQ, there is an indecomposable representation M with q(dimM) < 0.
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1.2.3 Degenerations

In order to describe the closure of an orbit OM B GLd .m, where the representation M
naturally corresponds to m ∈ Rd(Q, I), by degenerations, there are some results of G.
Zwara that are extremly powerful - they are quoted from [Zwara, 1999] and [Zwara, 2000]
where more information can be found.

Definition 1.2.7. (Partial orderings on repK(Q, I)(d))
Let M,M′ ∈ repK(Q, I)(d). We denote

• M ≤deg M′ if OM′ ⊂ OM in Rd(Q, I).

• M ≤ext M′ if there exists some integer n, representations Mi,M′i ,M
′′
i ∈ repK(Q, I)

and exact sequences 0→ M′i → Mi → M′′i → 0 for i ∈ {1, . . . , n}, such that
M′i ⊕ M′′i � Mi+1 for i ∈ {1, . . . , n − 1}, M � M1 and M′ � M′n ⊕ M′′n .

• M ≤hom M′ if dimK Hom(V,M) ≤ dimK Hom(V,M′) for all V ∈ repK(Q, I).

To simplify the notation, we set [M,M′] B dimK Hom(M,M′) for two representations M
and M′. In general, the ≤ext-ordering is stronger than the ≤deg-ordering which is stronger
than the ≤hom-ordering. For some algebras both ≤deg and ≤hom are equivalent as the fol-
lowing result of G. Zwara shows (see [Zwara, 1999]).

Theorem 1.2.8. (Interrelation between ≤deg and ≤hom)
Suppose an algebra KQ/I is representation-finite, that is, KQ/I admits only finitely many
isomorphism classes of indecomposable representations. Let M and M′ be two finite-
dimensional representations of KQ/I of the same dimension vector. Then M ≤deg M′ if
and only if M ≤hom M′.

Since the dimension of a homomorphism space is additive with respect to direct sums, one
only has to consider the inequality [V,M] ≤ [V,M′] for indecomposable representations V
to characterize a degeneration M ≤deg M′.

To calculate the orbit closure of a given orbit, one needs to calculate every degeneration.
Of course, it is sufficient to calculate all minimal degenerations, that is, degenerations
M <deg M′ such that if M ≤deg L ≤deg M′, then M � L or M′ � L. We denote a minimal
degeneration by M <mdeg M′ and cite the next important result from [Zwara, 2000].

Theorem 1.2.9. (Types of minimal degenerations)
Let M and M′ be two finite-dimensional representations of KQ/I. If M <mdeg M′, then one
of the following holds true:

1. M <ext M′ or

2. there are representations W, M̃, M̃′ of KQ/I, such that

a) M � W ⊕ M̃
b) M′ � W ⊕ M̃′

c) M̃ <mdeg M̃′

d) M̃′ is indecomposable.

Of course, the converse does not hold true.
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2 The concrete setup

We will consider certain subgroups of GLn, namely

• the Borel subgroup B of upper triangular matrices,

• the parabolic subgroup P of upper-block matrices (that is, B ⊆ P) of block sizes
(b1, . . . , bp),

• the unipotent subgroup U ⊂ B, where all diagonal entries equal 1, and

• the torus T of diagonal matrices.

Each of these groups has a natural structure of a linear algebraic group. It is a well-known
fact that B = U · T = T · U is given as a semi-direct product.

For an integer x ∈ {1, . . . , n}, we denote by N (x) ⊂ Kn×n � An2
the closed subvariety of

x-nilpotent matrices N, that is, Nx = 0. If x equals n, we obtain an important special case,
namely, the nilpotent coneN B N (n). If the matrix size n is not clear from the context, we
denote it by the index Bn, Pn,N

(x)
n , etc.

Obviously, GLn acts on each varietyN (x) via conjugation; an action that restricts to actions
of all the above mentioned algebraic subgroups. The aim of this work is to examine the
action of an arbitrary parabolic (which clearly includes the Borel subgroup) on any variety
of nilpotent matrices in detail. Where possible, we include results about the unipotent
group action.

2.1 (Oriented) Link patterns

We will use combinatorial methods to give explicit descriptions of systems of representa-
tives of certain algebraic group actions. In more detail, we will make use of the combina-
torial concept of a link pattern (see [Melnikov, 2007]) and its generalizations.

Let S (2)
n be the set of involutions in the symmetric group S n in n letters.

Definition 2.1.1. (Link pattern)
An element σ of S (2)

n is represented by a so-called link pattern, an unoriented graph with
vertices {1, . . . , n} and an edge between i and j if σ(i) = j.

For example, the involution (1, 2)(3, 5)(4, 7) ∈ S 7 corresponds to the link pattern

• • • • • • •

1 2 3 4 5 6 7
.
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As we will see in subsection 2.2.2, these link patterns are used by A. Melnikov to describe
the orbits of a certain group action in all detail. Furthermore, we will see that the choice of
these link patterns is exactly the right one. In generalizing the results, we obtain different
kinds of link patterns that will be described in the following. The starting point is the
notion of an oriented link pattern.

Definition 2.1.2. (Oriented link pattern)
An oriented link pattern olp of size n is an oriented graph on {1, . . . , n} together with a set
of arrows { j1 → i1, . . . , js → is} between vertices ik , jk for some 0 ≤ s < n, such that
every vertex is incident with at most one arrow.

We call sh(olp) B ((i1, j1), . . . , (is, js)) ∈ (N × N)s the shape of olp if j1 < j2 < . . . < js.

An example of an oriented link pattern of size 7 and shape sh(olp) = ((3, 1), (5, 6), (2, 7))
is:

• • • • • • •

1 2 3 4 5 6 7
.

Furthermore, we can generalize a link pattern to the following notion of an “enhanced
oriented link pattern”.

Definition 2.1.3. (Enhanced oriented link pattern)
An enhanced oriented link pattern of type (b1, . . . , bp) is a diagram of vertices {1, . . . , p}
together with a set of arrows i→ j between vertices i and j and a set of dots at the vertices,
such that the sum of the numbers of sources, targets and dots at the i-th vertex equals bi.

For example, an enhanced oriented link pattern of type (3, 2, 6, 2, 5) is given by

• •
....
• •

...
•

1 2 3 4 5
.

A different kind of generalization is given if we label the arrows of an oriented link pattern.

Definition 2.1.4. (Labelled oriented link pattern)
A labelled oriented link pattern of size n is defined to be a tuple olpλ B (olp, λ) where olp
is an oriented link pattern of size n and λ ∈ (K∗)s, such that the arrow jk → ik is labelled
by λk; here s equals the number of arrows in olp.

We can illustrate the labelled oriented link pattern given by λ = (3, 6, 1) which is obtained
from the oriented link pattern above as follows:
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• • • • • • •

1 2 3 4 5 6 7

[3]
[6]

[1]

.

Note that the shape of the labelled oriented link pattern olpλ = (olp, λ) is defined to be
sh(olpλ) B sh(olp).

2.2 Known results

In case of the action of GLn onN (x), the classical theory of M. Jordan and M. Gerstenhaber
gives a complete classification of the orbits and their closures in terms of partitions. We
will describe the results briefly in 2.2.1 for completeness.

We can also consider n ⊆ N , namely the space of all strictly upper triangular matrices. The
classification of the orbits B.N of 2-nilpotent matrices N ∈ n(2) B n∩N (2) under the action
of B has been given by A. Melnikov in [Melnikov, 2000, Melnikov, 2006, Melnikov, 2007].
We will sketch the results briefly in 2.2.2 since they yield the starting point of our analysis.

Actions of arbitrary parabolics P on n have been coinsidered in [Hille and Röhrle, 1999];
they give a concrete list of the actions that admit a finite number of orbits. We will sum-
marize the results in 2.2.3 and generalize them later on to the action of P on N .

2.2.1 Results of M. Jordan and M. Gerstenhaber

We denote λ ` n if and only if λ is a partition of n.

For an integer m ∈ N, we define the Jordan block Jm ∈ Km×m (of size m) to be the matrix
given by (Jm)i+1,i = 1 and (Jm) j,i = 0 if j , i + 1.

Given a partition λ B (λ1 ≥ λ2 ≥ . . . ≥ λk) ` n, we denote by Jλ ∈ Kn×n the “Jordan
matrix” with Jordan blocks Jλ1 , . . . , Jλk on the diagonal and zeros everywhere else. This
matrix is unique up to permutation of Jordan blocks and we order the blocks decreasingly
by the partition λ.

Theorem 2.2.1. (Classification of GLn-orbits in N (x))
Let N ∈ N (x), then there exists a unique partition λ ` n as above, such that x ≥ λ1 and N
is GLn-conjugate to Jλ.

To classify the orbit closures, we briefly sketch the theory of M. Jordan and M. Gersten-
haber which describes them in terms of partitions. Let λ B (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0) and
λ′ B (λ′1 ≥ λ

′
2 ≥ . . . ≥ λ

′
k′ ≥ 0) be two partitions.

We set λ′ C λ if and only if k ≤ k′ ≤ k + 1 and if there is an index i, such thatλ′x = λx for
x < {i, i + 1}, λ′i+1 = λi+1 + 1 and λ′i = λi − 1.

Note that in terms of Young Diagrams, this relation is given by “lifting a box”.

We define J to be the transitive closure of C.
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Theorem 2.2.2. (GLn-orbit closures in N (x))
Let λ ` n be a partition as before, then

GLn .Jλ =
⋃
λ′`n
λ′Jλ

GLn .Jλ′

The minimal degenerations correspond to the relation C.

The only closed orbit is the orbit containing the zero-matrix.

2.2.2 Results of A. Melnikov

For σ ∈ S (2)
n and i, j ∈ {1, . . . , n}, define

(Nσ)i, j B

{
1, if i < j and σ(i) = j;
0, otherwise.

Then the upper-triangular matrix Nσ = ((Nσ)i, j)1≤i, j≤n is 2-nilpotent and, thus, Nσ ∈ n
(2).

The following theorem is due to [Melnikov, 2000].

Theorem 2.2.3. (Classification of B-orbits in n(2))
Every B-orbit in n(2) is of the form B.Nσ for a unique σ ∈ S (2)

n .

If σ = (i1, j1) . . . (ik, jk) ∈ S (2)
n , then

dim BNσ = kn +

k∑
s=1

(is − js) −
k∑

s=2

rs,

where rs B ]{ jp | p < s, jp < js} + ]{ jp | jp < is} (see [Melnikov, 2006]).

For 1 ≤ i < j ≤ n, consider the canonical projection πi, j : n(2) → n
(2)
( j−i+1× j−i+1) deleting the

first i − 1 and the last n − j columns and rows of a matrix in n(2).

Define the matrix RN of N ∈ n(2) by

(RN)i, j =

{
rank (πi, j(N)), if i < j;
0, otherwise.

This rank matrix RN is B-invariant, and we denote Rσ B RNσ for σ ∈ S (2)
n .

We define a partial ordering on the set of rank matrices by

Rσ′ 4 Rσ if (Rσ′)i, j ≤ (Rσ)i, j for all i and j,

inducing a partial ordering on S (2)
n by

σ′ 4 σ if Rσ′ 4 Rσ.
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In [Melnikov, 2006], these orderings are used to describe the B-orbit closures in all detail:

Theorem 2.2.4. (B-orbit closures in n(2))
Let σ ∈ S (2)

n be an involution. Then

B.Nσ =
⋃
σ′4σ

B.Nσ′ .

Moreover, the entry (Rσ)i, j of the rank matrix equals the number of edges with end points
e1 and e2 such that i ≤ e1, e2 ≤ j in the link pattern of σ.

The minimal steps of the partial ordering 4 are described explicitly by link patterns in
[Melnikov, 2007].

Thus, a combinatorial characterization of the B-orbits in n(2) and their orbit closures is
given in terms of link patterns.

2.2.3 Results of L. Hille and G. Röhrle

Let P be an arbitrary parabolic subgroup in GLn of block sizes (b1, . . . , bp), such that
B ⊆ P.

Denote by Pu the unipotent radical of P, that is, the space of strictly upper block matrices
of block sizes (b1, . . . , bp) where the blocks on the diagonal equal zero. We denote by pu

its Lie algebra. Then P acts on Pu via conjugation and on pu via the adjoint action.

In order to obtain a criterion as to whether the classification problem is of finite type, L.
Hille and G. Röhrle (see [Hille and Röhrle, 1999]) consider the quiver

Q(p) : • • • · · · • • •

α1 α2 αp−2 αp−1

β1 β2 βp−2 βp−1

together with the relations β1α1 = 0 and βiαi = αi−1βi−1 for i ∈ {2, . . . , p − 1} that induce
an ideal I(p). They define the full subcategoryM(p) of rep KQ(p)/I(p), given by the con-
dition that the linear maps at the arrows αi are injective for all i ∈ {1, . . . , p − 1}, and prove
that the classification problem explained above is of finite type if and only if the category
M(p) admits a finite number of isomorphism classes of indecomposable representations.

In order to prove a finiteness criterion, they state that the category M(p) equals the cat-
egory F (∆) of ∆-filtered modules over the Auslander algebra of the representation-finite
algebra K[x]/(xp). For the precise definitions, see the article [Dlab and Ringel, 1992] by
V. Dlab and C. M. Ringel, in which the following theorem is proved.

Theorem 2.2.5. (The representation type ofM(p))
Let p ∈ N. Then the representation type ofM(p) is finite precisely if p ≤ 5. It is tame if
p = 6 and wild otherwise.

L. Hille and G. Röhrle deduce the following theorem which answers the question about
actions of finite types.
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Theorem 2.2.6. (Classification of finite actions)
The number of P-orbits on Pu, or pu, is finite if and only if p ≤ 5.

An explicit description of the number of P-orbits for all finite types is obtained and the
tame case of theorem 2.2.5 is discussed in more detail.

2.3 Representation-theoretic approach

Let P be a parabolic subgroup of GLn of block sizes (b1, . . . , bp). We are interested in a
classification of the P-orbits in the variety N (x) for some fixed integer x ∈ {1, . . . , n}. The
starting point is the following translation, which makes use of theorem 1.1.7.

Define Q(p, x) to be the quiver

Q(p, x) : • • • · · · • • •

1 2 3 p − 2 p − 1 p

α1 α2 αp−2 αp−1
α

and A(p, x) = KQ(p, x)/I to be the finite-dimensional algebra with a unique element
1, where I = (αx) is an admissible ideal. We will for now denote Qp B Q(p, x) and
A B KQ(p, x) even though the reader has to keep in mind that both strongly depend on
the choices of p and x.

We fix the dimension vector dP B (d1, . . . , dp) B (b1, b1 + b2 . . . ,
p∑

i=1
bi).

As explained in section 1.2, the algebraic group GLdP
acts on RdP

(Qp, I); the orbits of this
action are in bijection with the isomorphism classes of representations in repK(Qp, I)(dP).

We define repinj
K (Qp, I)(dP) to be the subcategory of repK(Qp, I)(dP) consisting of represen-

tations (Vi,Mρ)1≤i≤p
ρ∈Q1

such that Mρ is injective if ρ = αi for i ∈ {1, . . . , p−1}. Corresponding

to this subcategory, there is an open subset Rinj
dP

(Qp, I) ⊂ RdP
(Qp, I), which is stable under

the GLdP
-action.

Theorem 1.1.7 yields a correspondence between the P-orbits in N (x) and the isomorphism
classes of representations in repinj

K (Qp, I)(dP).

Lemma 2.3.1. (Translation of the P-action on N (x))
The variety Rinj

dP
(Qp, I) is isomorphic to the associated fibre bundle GLdP

×PN (x). Thus,

there exists a closure-preserving bijection Φ between the set of P-orbits inN (x) and the set
of GLdP

-orbits in Rinj
dP

(Qp, I), which also preserves types of singularities.

Proof. Consider the subquiver Q̃p of Qp with (Q̃p)0 = (Qp)0 and (Q̃p)1 = (Qp)1 \ {α}. We
have a natural GLdP

-equivariant projection π : Rinj
dP

(Qp, I)→ Rinj
dP

(Q̃p). The variety Rinj
dP

(Q̃p)

consists of tuples of injective maps, thus, the action of GLdP
on Rinj

dP
(Q̃p) is easily seen to

be transitive.
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Namely, Rinj
dP

(Q̃p) is the orbit of the representation

y0 B Kd1
ε1
−→ Kd2

ε2
−→ · · ·

εp−2
−−−→ Kdp−1

εp−1
−−−→ Kn,

with ε j being the canonical embedding of Kd j into Kd j+1 .

The stabilizer H of y0 is isomorphic to P and the fibre of π over y0 is isomorphic to N (x).
Thus, Rinj

dP
(Qp, I) is isomorphic to the associated fibre bundle GLdP

×PN (x), yielding the
claimed bijection Φ. �

We denote OM := GL .m if m ∈ Rinj
dP

(Qp, I) corresponds to M ∈ repinj(Qp, I)(dP) as in
section 1.2 and equivalently use the notation IsoGLdP

(M) and IsoGLdP
(m) for the isotropy

group of m in Rinj
dP

(Qp, I). Then

dimOM = dim GLdP
− dim IsoGLdP

(M)

= dim GLdP
−[M,M].

Due to considerations of different parabolic subgroups and nilpotency degrees, the classi-
fication of the corresponding quiver representations differs wildly. Considering the related
covering quiver, we obtain conditions as to whether the classification is a finite, tame or
wild problem in the representation theory of finite-dimensional algebras.
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We will consider the action of an arbitrary parabolic subgroup P of GLn, in particular of the
Borel subgroup B, and of the unipotent subgroup U on the variety of 2-nilpotent matrices
by conjugation.

3.1 Classification of the orbits

Fortunately, in the above cases we are able to classify the orbits in detail and to give explicit
sets of representatives, that is, normal forms for the orbits.

3.1.1 Parabolic orbits

Let P be the parabolic subgroup of block sizes (b1, . . . , bp) and formally set b0 = 0.
Furthermore, define dP B (d1, . . . , dp) B (b1, b1 + b2, . . . ,

∑p
i=1 bi).

Given the quiver

Qp B Q(p, 2) : • • • · · · • • •

1 2 3 p − 2 p − 1 p

α1 α2 αp−2 αp−1
α,

the admissible ideal I = (α2) and the algebraA = KQp/I, in order to classify the P-orbits
in N (2), it suffices to classify the GLdP

-orbits in Rinj
dP

(Qp, I), see theorem 2.3.1.

As the theorem of W. Krull, R. Remak and O. Schmidt states, every representation in
repK(Qp, I) can be decomposed into a direct sum of indecomposables, which is unique up
to permutations and isomorphisms. By [Boos, 2008] and [Boos and Reineke, 2011], the
following lemma classifies the indecomposables in repK(Qp, I).

Lemma 3.1.1. (Indecomposables in repK(Qp, I))
Up to isomorphisms, the indecomposable representations in repK(Qp, I) are the following
(graphically represented by dots for basis elements and arrows for maps sending one basis
element to another):

Ui, j for 1 ≤ j ≤ i ≤ p:

0
0
−→ · · ·

0
−→ 0

0
−→ K

id
−→ · · ·

id
−→ K

e1
−→ K2 id

−→ · · ·
id
−→ K2

• → · · · → • → • → · · · → •

j i p
• → · · · → •

α
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Ui, j for 1 ≤ i < j ≤ p:

0
0
−→ · · ·

0
−→ 0

0
−→ K

id
−→ · · ·

id
−→ K

e2
−→ K2 id

−→ · · ·
id
−→ K2

• → · · · → • → • → · · · → •

i j p
• → · · · → •

α

Vi for 1 ≤ i ≤ p:

0
0
−→ · · ·

0
−→ 0

0
−→ K

id
−→ · · ·

id
−→ K

i p
• → · · · → •

0

Wi, j for 1 ≤ i ≤ j < p:

0
0
−→ · · ·

0
−→ 0

0
−→ K

id
−→ · · ·

id
−→ K

0
−→ 0

0
−→ · · ·

0
−→ 0

i j p
• → · · · → •

0

Here, e1 and e2 are the standard coordinate vectors of K2 and α =

(
0 0
1 0

)
.

Proof. To calculate a system of representatives of the indecomposable representations, we
make use of the Auslander-Reiten Theory for finite-dimensional algebras. In more detail,
we first calculate the Auslander-Reiten quiver and define representatives for each upcoming
indecomposable afterwards.
The universal covering of the quiver Qp at the vertex p is the (infinite) quiver Q̂p given by

...

• • • · · · • • •

Q̂p : • • • · · · • • •

• • • · · · • • •

...

1 2 3 p − 2 p − 1 p

αi

αi+1

together with the induced ideal Î, generated by all paths αi+1αi and the fundamental group
Z. The natural free action of the group Z on Q̂p is given by shifting the rows.

The algebra Â B KQ̂p/Î is locally representation-finite, since for each vertex x ∈ Q̂p, the
number of indecomposables M (up to isomorphism) with Mi , 0 is finite.
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Therefore, due to lemma 1.2.3, we have a bijection between the indecomposables inA and
the indecomposables in Â/Z.

It is easy to see that it suffices to calculate the indecomposable representations of the quiver
Q′p given by

Q′p : • • • · · · • • •

• • • · · · • • •

1 2 3 p − 2 p − 1 p

α.

In more detail, the quiver Q′p naturally embeds into Q̂p, such that the composition of this
inclusion with the projection Q̂p → Qp is surjective. We have corresponding maps of
the Auslander-Reiten quivers, namely an embedding Γ(Q′p) → Γ(Q̂p, Î) and a quotient
Γ(Q̂p, Î)→ Γ(Qp, I) whose composition is also surjective.

Since Q′p is nothing else than a Dynkin quiver of type A2p, it is routine to calculate its
Auslander-Reiten quiver (see [Assem et al., 2006, IV.4]), and we derive the Auslander-
Reiten quiver Γ = Γ(Qp, I) just by making the identifications resulting from the action of
Z, which can be read off from the dimension vectors of indecomposable representations.
We finally arrive at the picture (the marked regions have to be identified) given in fig-
ure 3.1.1. As one can see, the only dimension vectors corresponding to indecomposable
representations are

(0 . . . 01 . . . 12 . . . 2), (0 . . . . . . 01 . . . . . . 1) and (0 . . . 01 . . . 10 . . . 0).

By defining Ui, j,Vi and Wi, j as above, we can easily compute the endomorphism rings
of these representations:

End(Ui, j) � K for i > j,

End(Ui, j) � K[x]/(x2) for i ≤ j,

End(Vi) � K for all i and

End(Wi, j) � K for all i, j.

These are local, thus, the defined representations are indeed indecomposable.
Since the vertices of Γ correspond to a system of representatives of the isomorphism classes
of indecomposables in repK(Qp, I) and we have found one representative for each of them,
we know that no further indecomposable can exist (up to isomorphism). �

Of course, the representations Ui, j and Vi form a representative system of the indecom-
posables in repinj

K (Qp, I).

First, we classify the B-orbits since the Borel is the finest parabolic subgroup and the clas-
sification can easily be generalized to an arbitrary parabolic action.
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Theorem 3.1.2. (Classification of B-orbits in N (2))
There are natural bijections between

1. B-orbits in N (2),

2. isomorphism classes M in repinj
K (Qn, I) of dimension vector dB = (1, 2, . . . , n),

3. n × n-matrices N = (mi, j)i, j with entries 0 or 1, such that for i ∈ {1, . . . , n}:

n∑
j=1

mi, j +

n∑
j=1

m j,i ≤ 1

4. and oriented link patterns of size n.

Moreover, if an isomorphism class M corresponds to a matrix N under this bijection, the
orbit OM ⊂ Rinj

dB
(Qn, I) and the orbit B.N ⊂ N (2) correspond to each other via the bijection

Φ of lemma 2.3.1.

Proof. The bijection between 1. and 2. directly follows from lemma 2.3.1.
Let M be a representation in repinj

K (Qn, I) of dimension vector dB. Then

M =

n⊕
i, j=1

U
mi, j
i, j ⊕

n⊕
i=1

V
ni
i

for some multiplicities mi, j, ni ∈ N, since every representation can be decomposed into
indecomposables. Since dim M = (1, 2, . . . , n), we simply need to calculate all tuples
(mi, j, ni) that fulfill

n∑
i, j=1

mi, j · dimUi, j +

n∑
i=1

ni · dimVi = dB.

Applying the automorphism δ of Zn defined by

δ(d1, d2, . . . , dn) = (d1, d2 − d1, d3 − d2, . . . , dn − dn−1),

this condition is equivalent to

n∑
i, j=1

mi, j · δ(dimUi, j) +

n∑
i=1

ni · δ(dimVi) = (1, 1, . . . , 1, 1).

1 =

n∑
j=1

mi, j +

n∑
j=1

m j,i + ni.

The decomposition of M into indecomposables can be visualized as follows:
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• → • → • · · · • → • → • 1

• → • · · · • → • → • 2

• · · · • → • → • 3
...

...

• → • → • n − 2

• → • n − 1

• n.

The arrows in the rightmost column of the diagram allow us to read off the indecomposable
direct summands of M. Namely, Ui, j is a direct summand of M if and only if there is an
arrow j→ i. If there is no arrow at k, the indecomposableVk is a direct summand of M.

Shortening the above picture to the rightmost column, M corresponds to an oriented link
pattern:

• • • . . . • • •

1 2 3 n − 2 n − 1 n.

The conditions on (mi, j)i, j ensure that this graph in fact is an oriented link pattern. The
matrix N B (mi, j)i, j is obviously 2-nilpotent. �

Remark 3.1.3. We can also rederive theorem 2.2.3 of A. Melnikov.
Every B−orbit of an upper-triangular 2-nilpotent matrix corresponds to the orbit of a rep-
resentation in repinj

K (Qn, I) of dimension vector dB which does not contain a representation
Ui, j as a direct summand for i ≥ j. In this case, the corresponding link pattern consists of
arrows pointing in the same direction. We can, thus, delete the orientation and arrive at a
link pattern as in [Melnikov, 2000].

Define olp(X) to be the oriented link pattern corresponding to both the isomorphism class
of X ∈ repinj

K (Qn, I)(dB) and the B-orbit of X ∈ N (2).

We denote the set of representatives of B-orbits obtained from theorem 3.1.2 by

RB B

N = (mi, j)i, j ∈ {0, 1}n×n | ∀i ∈ {1, . . . , n} :
n∑

j=1

mi, j +

n∑
j=1

m j,i ≤ 1

 .
Next, we prove a criterion to decide whether two matrices are contained in the same orbit.

Let us define Vi = 〈e1, . . . , ei〉 to be the span of the first i coordinate vectors in Kn. Given
a matrix N ∈ N (2), we set DN = (dN

i, j)i, j with dN
i, j B dim(Vi ∩ N(V j)); we formally define

dN
i, j = 0 for i = 0 or j = 0.
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The matrix DN is obviously an invariant for the B-action on N (2). It is easy to extract an
oriented link pattern from DN as follows:

Proposition 3.1.4. (Identification of representatives)
The matrix N ∈ N (2) belongs to the B-orbit of a matrix (mi, j)1≤i, j≤n ∈ RB if and only if
dN

i, j =
∑

i′≤i; j′≤ j mi′, j′ or, conversely, mi, j = dN
i, j − dN

i−1, j − dN
i, j−1 + dN

i−1, j−1 for i, j ∈ {1, . . . , n}.

Of course, the number µB(N (2)) of B-orbits in N (2) is finite. We can moreover give an
explicit description.

Proposition 3.1.5. (Number of B-orbits in N (2))

µB(N (2)) =


n−2

2∑
i=1

(
n
2i

)
(n − 2i)(n − 2i − 1) + n2 − n + 1, if n is even;

n−3
2∑

i=0

(
n

2i+1

)
(n − 2i − 1)(n − 2i − 2) + 1, otherwise.

Proof. We define φv(x) to denote the number of oriented link patterns of size x, such that
each vertex is incident with an arrow.

Of course,

µB(N (2)) =

n−1∑
i=1

(
n
i

)
φv(n − i) + φv(n) + 1

and

φv(x) =

{
0, if x is odd;
x(x − 1), if x is even.

The claimed equalities follow. �

Example 3.1.6. (Number of B-orbits)
If...

• ...n = 2, then µB(N (2)) = 3,

• ...n = 3, then µB(N (2)) = 7,

• ...n = 4, then µB(N (2)) = 25,

• ...n = 5, then µB(N (2)) = 81.

Applying the analysis of the B-orbits analogously to 3.1.1, we can classify the P-orbits in
N (2).

We start with the coarsest parabolic subgroup, namely, GLn itself. The GLn-orbits in the
variety of 2-nilpotent matrices are in bijection with those Jordan normal forms with Jordan
blocks of sizes at most 2 (up to permutation of blocks), thus, it is perfectly clear how the
B-orbits are related to them. As we can easily describe a basis B of Kn, for which the
representing matrix of the B-orbit representative equals the Jordan normal form, we will
describe the connection in detail. Let N ∈ N (2) and define λx B (2, . . . , 2︸  ︷︷  ︸

x times

, 1, . . . , 1).
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Proposition 3.1.7. (Interrelation between B-orbits and GLn-orbits in N (2))
The B-orbit of N is contained in the GLn-orbit of Jλx if and only if olp(N) has exactly x
arrows.

Proof. If B.N ⊆ GLn .Jλx , then the oriented link pattern of N has x arrows, since the ma-
trices have the same rank.

If N ∈ N (2), such that olp(N) has x arrows, we can without loss of generality assume
N ∈ RB. We define the set of arrows in olp(N) to be Narr B { j1 → i1, . . . , jx → ix} and the
set of fixed vertices to be Nfix = { f1, . . . , fn−2x}.
By defining the basis B = (e j1 , ei1 , . . . , e jx , eix , e f1 , . . . , e fn−2x), the induced representing ma-
trix of the linear map lN (corresponding to N) equals Jλx . �

Let P be the parabolic subgroup of GLn of block sizes (b1, . . . , bp) and define the vector
d B (d1, . . . , dp) by

di B

{
0, if i = 0;
di−1 + bi, if i ∈ {1, . . . , p}

As an immediate consequence of theorem 3.1.2, we deduce the following corollary.

Corollary 3.1.8. (Classification of P-orbits in N (2))
There are natural bijections between

1. P-orbits in N (2),

2. isomorphism classes M in repinj
K (Qp, I) of dimension vector dP,

3. matrices N = (pi, j)i, j ∈ Np×p, such that for all i ∈ {1, . . . , p}:∑
j

pi, j +
∑

j

p j,i ≤ bi

4. and enhanced oriented link patterns of type (b1, . . . , bp).

Note that the multiplicity of the indecomposable Vi is obtained as the number of dots at
the vertex i, due to the missing of a natural notion of fixed vertices. Therefore, we call
these dots “fixed vertices”, too.

Define eolp(X) to be the enhanced oriented link pattern corresponding to both the isomor-
phism class of X ∈ repinj

K (Qp, I)(dP) and the P-orbit of X ∈ N (2).

Of course, if P is the parabolic subgroup of block sizes (1, . . . , 1), we derive theorem 3.1.2
and every enhanced oriented link pattern of this type is an oriented link pattern. If P = GLn,
we obtain the classification given by M. Jordan and M. Gerstenhaber, see proposition 2.2.1.

We denote the set of P-orbit representatives by

RP B

N = (pi, j)i, j ∈ Np×p | ∀i ∈ {1, . . . , p} :
∑

j

pi, j +
∑

j

p j,i ≤ bi

 .
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Our aim is to verify an algorithm in order to determine each B-orbit contained in a given
P-orbit corresponding to a p × p-matrix as in corollary 3.1.8.

The idea is the following: Since each P-orbit is represented by a p × p-matrix N, we can
show that all B-orbits contained in this P-orbit are (as B-orbits) represented by matrices,
which are obtained by extending N to n×n-matrices and thereby translating and interpreting
the entries of N. In this way, we obtain the above mentioned algorithm and a precise
classification.

Definition 3.1.9. (Inner sum)
Let N = (ni, j)i, j ∈ Kn×n, then define

sumi, j(N) B
∑

di−1<x≤di
d j−1<y≤d j

nx,y.

Let B B (e1, . . . , en) be the basis of coordinate vectors of Kn.

Proposition 3.1.10. (Interrelation between B-orbits and P-orbits in N (2))
Two matrices N and N′ in RB are P-conjugate if and only if sumi, j(N) = sumi, j(N′) for
i, j ∈ {1, . . . , p}.

Proof. A matrix S ∈ P with S −1 · N · S = N′ is induced by a permutation of B, say

σB B (eσ(1), . . . , eσ(n)),

such that if di−1 < x ≤ di, then di−1 < σ(x) ≤ di for all i ∈ {1, . . . , p}.

Let i and j be two indices, such that x B sumi, j(N) > sumi, j(N′) and assume there is a
matrix S ∈ P with S −1 · N · S = N′. Denote the corresponding non-zero entries of N
by (is, js) for 1 ≤ s ≤ x; they fulfill di−1 < is ≤ di and d j−1 < js ≤ d j. Of course,
N · e js = eis and due to di−1 < σ(is) ≤ di and d j−1 < σ( js) ≤ d j, we obtain x ≤ sumi, j(N′),
a contradiction.

Given N and N′ in RB fulfilling sumi, j(N) = sumi, j(N′) for i, j ∈ {1, . . . , p}, we have to
define a matrix S ∈ P such that S −1 · N · S = N′. We, therefore, define a permutation
σ ∈ S n, such that the i-th column S ·,i of S equals eσ(i). Without loss of generality we
assume the oriented link patterns of N and N′ to have x arrows.
First, we define σ on fixed vertices.
Let Fi be the set of fixed vertices f with di−1 < f ≤ di in olp(N) and F ′i be the set of fixed
vertices f ′ with di−1 < f ′ ≤ di in olp(N′). Of course, the number of elements in Fi and F ′i
coincides for all i. Given Fi = { f1, . . . , fli} and F ′i = { f ′1 , . . . , f ′li}, we define σ( f ′k ) = fk for
all 1 ≤ k ≤ li.
Next, we define σ on the source vertices of olp(N′).
Let Si be the set of source vertices s with di−1 < s ≤ di in olp(N) and S′i be the set of
source vertices s′ with di−1 < s′ ≤ di in olp(N′). We order them in the following way:
Let (Si) j be the set of source vertices of arrows with targets t, such that d j−1 < t ≤ d j

in olp(N) and let (S′i) j be the set of source vertices of arrows with targets t′, such that
d j−1 < t′ ≤ d j in olp(N′).
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Of course, the number of elements in (Si) j and (S′i) j coincides for i, j ∈ {1, . . . , p}.
Given (Si) j = {s1, . . . , sl} and (S′i) j = {s′1, . . . , s

′
l}, define σ(s′k) = sk for all k ∈ {1, . . . , l}.

Finally, we define σ on target vertices.
Let y′ ∈ (S′i) j be mapped to y ∈ (Si) j by σ. Let x be the target of the arrow y → x in
olp(N) and x′ be the target of the arrow y′ → x′ in olp(N′). Then we define σ(x′) = x. We
have, thus, defined σ on each vertex of the oriented link pattern and, therefore, on S n. In
the same way, we have defined the aforementioned basis σB = (eσ(i))1≤i≤n.

It now suffices to show S −1 · N · S = N′, that is, the representing matrix MσB
σB(lN) equals

N′, here we denote by lN and lN′ the induced linear maps.
If i is a fixed vertex in olp(N′), then σ(i) is a fixed vertex in olp(N) and Neσ(i) = 0. Then
the i−th column of MσB

σB(lN) as well as of N′ equals 0.
If i is a source vertex of an arrow in olp(N′) with a target j′, then σ(i) is a source vertex of
an arrow in olp(N) with a target j. Thus, N · eσ(i) = e j and since σ( j′) = j, the i−th column
of MσB

σB(lN) and of N′ coincide.
If i is a target vertex of an arrow in olp(N′) with a source j, then σ(i) is a target vertex of
an arrow in olp(N) with a source i′. Thus, Neσ(i) = 0 and the i−th column of N′ equals 0
as well. �

Note that the description of the P-orbits can also be deduced directly from the bijection
given in 2.3.1. The proof of the theorem however gives an explicit conjugation matrix and
therefore presents more details about the connection.

We have proven an explicit description of the P-orbits and derive a natural algorithm to
obtain each B-orbit contained in a given P-orbit. The interpretation in terms of oriented
link patterns is quite easy.

Given an enhanced oriented link pattern of k vertices, we construct oriented link patterns
belonging to the P-orbit as follows:
We draw n vertices numbered by 1, 2 up to n, such that we mark the first b1 vertices, then
the vertices b1 +1 up to b1 +b2 and so on. In this way, we obtain n numbered vertices which
are ordered in p sets by the block sizes of the parabolic. Now all oriented link patterns have
to be constructed, such that the number of arrows from the j-th tuple of vertices to the i-th
tuple of vertices equals the number of arrows from j to i in the enhanced oriented link
pattern. In this way, it becomes obvious why it is necessarily allowed to draw loops in an
enhanced oriented link pattern.

Example 3.1.11. (Parabolic orbits)

Consider n = 4 and the parabolic P of block sizes (3, 1).
Then p = 2 and

RP =

{(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
.
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We fix

A B

(
1 1
0 0

)
and express a system of representatives of the Borel-orbits contained in the P-orbit of A in
the following.

The matrices representing these B-orbits can be obtained from its enhanced oriented link
pattern

eolp(A) = • •

1 2

as follows: 
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

 : •1
•
2
•
3

•
4

����

•
1
•
2
•
3

•
4

����
:


0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

 ,


0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

 : •1
•
2
•
3

•
4

�� ��

•
1
•
2
•
3

•
4

�� ��
:


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 : •1
•
2
•
3

•
4

�� ��

•
1
•
2
•
3

•
4

�� ��
:


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


The reader can find exactly this picture in theorem 3.3.5.

3.1.2 Unipotent orbits

In case the unipotent subgroup U acts onN (2), we can make use of the above given classi-
fication of the B-orbits in order to classify the orbits in detail, even though the action is of
infinite type.

Given a labelled oriented link pattern olpλ of shape sh(olp) = ((i1, j1), . . . , (is, js)) and of
size n, we can define the matrix N(olpλ) ∈ N (2) by

N(olpλ)i, j =

{
λk, if i = ik and j = jk;
0, otherwise.
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Denote furthermore N(olp) B N(olp(1,...,1)).

Lemma 3.1.12. (Classification of U-orbits in N (2))
There are natural bijections between

1. U-orbits in N (2),

2. matrices N(olpλ) where olpλ is a labelled oriented link pattern of size n and

3. labelled oriented link patterns of size n.

Proof. The bijection between 2. and 3. is immediately clear. We, thus, have to show the
following two claims:

Claim 1: For each matrix N ∈ N (2) there is a labelled oriented link pattern olpλ, such that
N is U-conjugate to N(olpλ).

Proof of Claim 1. Due to theorem 3.1.2, the matrix N is B-conjugate to a unique matrix
NB = (mi, j)i, j ∈ RB, say b ·N · b−1 = NB with b ∈ B. Then b = t · u for a torus element t ∈ T
and a unipotent element u ∈ U:

t · u · N · u−1 · t−1 = b · N · b−1 = NB.

Let ((i1, j1), . . . , (is, js)) be the shape of olp(NB).

By setting λ B
(

t j1 , j1
ti1 ,i1

, . . . ,
t js , js
tis ,is

)
and olpλ B (olp(NB), λ), we obtain

u · N · u−1 = t−1 · NB · t = N(olpλ).

�

Claim 2: If N(olpλ) and N(olp′µ) are U-conjugate, then olp = olp′ and λ = µ.

Proof of Claim 2. Let olpλ = (olp, λ) and olp′µ = (olp′, µ) be labelled oriented link patterns
of size n and shapes sh(olp) = ((i1, j1), . . . , (is, js)) and sh(olp′) = ((i′1, j′1), . . . , (i′t , j′t)).
Assume N(olpλ) and N(olp′µ) are U-conjugate.

Then N(olp) is T -conjugate to N(olpλ) by conjugation with a torus element given by
tik ,ik = 1 and t jk , jk = λk for all k. With the same reasoning, N(olp′) is T -conjugate to
N(olp′µ). The matrices N(olp) and N(olp′) are, therefore, B-conjugate and olp = olp′ fol-
lows from theorem 3.1.2.

There is a matrix u ∈ U such that

u · N(olpλ) = N(olpµ) · u.

Since

(u · N(olpλ))i, j =

{
ui,ik · λk, if j = jk and i ≤ ik;
0, otherwise,

and

(N(olpµ) · u)i, j =

{
u jk , j · µk, if i = ik and j ≥ jk;
0, otherwise,

we derive λk = µk for all k. �
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The proof follows from claim 1 and claim 2. �

Each U-orbit is closed itself, see for example [Kraft, 1984].

3.1.3 The examples n = 3 and n = 4

We present how the parabolic orbits in N (2) are obtained from the Borel orbits if either
n = 3 or n = 4 in the following; in more detail we show how the enhanced oriented link
patterns (eolps) are built by the oriented link patterns (olps), depending on the parabolic
subgroup. We leave out the numbering of the vertices and denote the parabolic subgroup
of block sizes (i1, . . . , ik) by Pi1,...,ik .

Example 3.1.13. (The case n = 3)

We consider the actions of the Borel subgroup B3, the parabolic subgroups P2,1 and P1,2
and the general linear group GL3 on the variety N (2)

3 of 2-nilpotent matrices.

Clearly, the classifications of the P2,1-orbits and the P1,2-orbits are symmetric; hence we
restrict our considerations to the parabolic subgroup of block sizes (2, 1).

B3-orbits in N (2)
3

olps • • • • • •
��

• • •
��

• • •
��

• • •
��

• • •
��

• • •
		

P2,1-orbits in N (2)
3

olps • • • • • •
��

• • •
��

• • •




• • •




• • •
��

• • •
��

eolps •̈ •̇ •̇ •
��

•̇ •




• •̇
��

GL3-orbits in N (2)
3

olps • • • • • •
��

• • •
��

• • •




• • •
��

• • •
��

• • •




eolps
...
• •̇

��
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Example 3.1.14. (The case n = 4)

We consider the Borel action and the actions of the parabolics P2,2, P3,1 and P2,1,1 on the
variety N (2)

4 of 2-nilpotent matrices.

We include the parabolic action of P1,2,1 even though it can easily be derived from the
action of P2,1,1. We leave out the actions of P1,3 and P1,1,2, since they are symmetric to the
actions of P3,1 and P2,1,1, respectively.

B4-orbits in N (2)
4

olps
• • • •

��
• • • •

��
• • • •

��
• • • •

��
• • • •

��
• • • •

��

• • • •
��

• • • •
		

• • • •
��

• • • •
��

• • • •
		

• • • •
��

• • • •
�� ��

• • • •
����

• • • •
�� ��

• • • •
��



• • • •
�� ��

• • • •
��		

• • • •
�� ��

• • • •
��		

• • • •
�� ��

• • • •
����

• • • •
		 		

• • • •


��

• • • •

P2,2-orbits in N (2)
4

olps
• • • •

��
• • • •

��
• • • •
		

• • • •
��

• • • •
��



• • • •
��		

• • • •
��

• • • •
��

• • • •
��

• • • •
		

• • • •
��		

• • • •
����

eolps
•̇ •̇

��
•̇ •̇
�� • •

��
XX

olps
• • • •

�� ��
• • • •

�� ��
• • • •

��
• • • •

��
• • • •

�� ��
• • • •



��

• • • •
�� ��

• • • •
�� ��

• • • •
��

• • • •
��

• • • •
����

• • • •
		 		

eolps • •
�� ��

• •̈
��

•̈ •
��

• •FF
��

• •



XX

olps
• • • •

eolps ...
• •̇
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P3,1-orbits in N (2)
4

olps
• • • •

��
• • • •

����
• • • •

����

• • • •
��

• • • •
�� ��

• • • •
��		

• • • •
��

• • • •
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P2,1,1-orbits in N (2)
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P1,2,1-orbits in N (2)
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�� ��

• • •
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• • • •

��
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��
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��
• •̈ •
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We have seen how the parabolic orbits can be deduced from the Borel orbits if we make
use of their descriptions in terms of link patterns. Of course, in this way, every parabolic
action on every nilpotent variety N (2)

n can be described, even though the number of Borel
orbits increases rapidly.

In order to give an explicit system of representatives concerning a parabolic action, it suf-
fices to pick one oriented link pattern out of each orbit; the set of corresponding matrices
is a system of representatives.

3.2 Homomorphisms, extensions and their combinatorial
interpretation

We can calculate the dimensions of the spaces of homomorphisms between indecompos-
able representations in repK(Qp, I), see [Boos, 2008] and [Boos and Reineke, 2011].
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Proposition 3.2.1. (Homomorphisms between indecomposables)
Let i, j, k, l ∈ {1, . . . , p}. Then

1. [Vk,Vi] = [Vk,Ui, j] = δi≤k,

2. [Vk,Wi, j] = δi≤k≤ j,

3. [Uk,l,Vi] = δi≤l,

4. [Uk,l,Ui, j] = δi≤l + δ j≤l · δi≤k,

5. [Uk,l,Wi, j] = δ j≥k · δi≤k + δ j≥l · δi≤l

6. [Wk,l,Vi] = [Wk,l,Ui, j] = 0,

7. [Wk,l,Wi, j] = δi≤k≤ j≤l,

where δx≤y B

{
1, if x ≤ y;
0, otherwise.

We also consider the spaces of extensions Ext1
A

(M,M′) between indecomposables M and
M′ in repinj

K (Qp, I). For short notation, set [M,M′]1 B dimk Ext1
A

(M,M′).

Proposition 3.2.2. (Extensions between indecomposables)
Let i, j, k, l ∈ {1, . . . , p}. Then

1. [Vk,Vi]1 = 1,

2. [Vk,Ui, j]1 = δk< j,

3. [Uk,l,Vi]1 = δk<i,

4. [Uk,l,Ui, j]1 = δk< j + ·δl< j · δk<i,

Proof. We make use of the Auslander-Reiten formula (see [Assem et al., 2006, IV.2])

Ext1A(M,M′) � DHomA(M′, τM).

If at all, a homomorphism can factor through the injective Ip at the vertex p, thus, the cases
can be computed quickly by using the inequation

dimK DHomA(M′, τM) ≤ dimK HomA(M′, τM) :

1. τVk = U1,k+1 if k < p and τVp = V1.
In both cases [Vi, τVk] = δ1≤i = 1. An easy calculation shows that neither of these
homomorphisms factors through Ip.

2. τVk = U1,k+1 if k < p and τVp = V1.
Then in the first case [Ui, j, τVk] = δ1≤ j + δk+1≤ jδ1≤i = 1 + δk+1≤ j and in the second
case [Ui, j, τVk] = δ1≤ j. An easy calculation shows that the dimension is reduced by
1 when taking the quotient modulo homomorphisms that factor through Ip.
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3. τUk,l = Uk+1,l+1 if k, l < p, τUp,l = 0 and τUk,p = Vk+1 if k < p.
Then [Uk,l,Vi]1 = 0 if k = p and [Vi, τUk,l] = δk+1≤i otherwise. If k , p, then
[Ip, τUk,l] = 0 follows, therefore, no homomorphism factors through Ip.

4. τUk,l = Uk+1,l+1 if k, l < p, τUp,l = 0 and τUk,p = Vk+1 if k < p.
Then [Uk,l,Ui, j]1 = 0 if k = p, [Ui, j,Uk+1,l+1] = δk+1≤i + δl+1≤ jδk+1≤i if k, l < p
and [Ui, j,Vk+1] = δk+1≤i if k < p and l = p. Since [Ip, τUk,l] = 0 in all cases, no
homomorphism factors through Ip.

�

In order to prove an easy description of the parabolic orbit closures in N (2) in terms of
(enhanced) oriented link patterns, we discuss how the dimensions of the homomorphism
spaces are linked with these.

Definition 3.2.3. (The values ak, bk,l, ak and bi, j)
Let M be a representation in repK(Qp, I). For i, j, k, l ∈ {1, . . . , p} we define

ak(M) B [Vk,M], bk,l(M) B [Uk,l,M], ai(M) B [M,Vi] and bi, j(M) B [M,Ui, j].

If M is a representation in repinj
K (Qp, I)(dP), then an enhanced oriented link pattern eolp(M)

and a 2-nilpotent matrix N correspond to M via corollary 3.1.8. We use the notations
ak(M), ak(eolp(M)) and ak(N) analogously. The same holds true for bk,l, ai and bi, j.

Proposition 3.2.4. (Combinatorial interpretation)
Let M ∈ repinj

K (Qp, I)(dP) and let X = eolp(M). Then for i, j, k, l ∈ {1, . . . , p}:

ak(X) = ]{fixed vertices ≤ k} + ]{targets of arrows ≤ k},

bk,l(X) = al(X) + ]{arrows with source ≤ l and target ≤ k},

ai(X) = ]{fixed vertices ≥ i} + ]{sources of arrows ≥ i},

and bi, j(X) = ai(X) + ]{arrows with source ≥ j and target ≥ i}.

Proof. Let M =
⊕p

i, j=1U
mi, j
i, j ⊕

⊕p
i=1V

ni
i , then

ak(X) = [Vk,M] =

p∑
i, j=1

mi, j[Vk,Ui, j] +

p∑
i=1

ni[Vk,Vi] =
∑

1≤i≤k
1≤ j≤p

mi, j +
∑
i≤k

ni,

bk,l(X) = [Uk,l,M] =

p∑
i, j=1

mi, j[Uk,l,Ui, j] +

p∑
i=1

ni[Uk,l,Vi] = al(X) +
∑

1≤i≤k
1≤ j≤l

mi, j,

ai(X) = [M,Vi] =

p∑
k,l=1

mk,l[Uk,l,Vi] +

p∑
k=1

nk[Vk,Vi] =
∑

1≤k≤p
i≤l≤p

mk,l +
∑
i≤k

nk,
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and

bi, j(X) = [M,Ui, j] =

p∑
k,l=1

mk,l[Uk,l,Ui, j] +

p∑
k=1

nk[Vk,Ui, j] = ai(X) +
∑

i≤k≤p
j≤l≤p

mk,l.

�

We obtain an explicit combinatorial description of the dimension of the homomorphism
space between two arbitrary representations M,M′ ∈ repinj

K (Qp, I):

Corollary 3.2.5. (Dimension of homomorphism spaces)
Let M,M′ ∈ repinj

K (Qp, I) with multiplicities (mi, j, nk)i, j,k and (m′i, j, n
′
k)i, j,k. Then

[M,M′] =

p∑
i, j=1

mi, jbi, j(M′) +

p∑
k=1

nkak(M′) =

p∑
i, j=1

m′i, jbi, j(M) +

p∑
k=1

n′kak(M).

If two representations correspond to oriented link patterns as in theorem 3.1.2, an elegant
way to calculate these dimensions in concrete terms, is to form an unoriented (general-
ized) meander of the two oriented link patterns and to count the numbers accordingly (see
[Melnikov, 2007] for the analogous definition of a (generalized) meander of two link pat-
terns).

In order to form an oriented (generalized) meander of two oriented link patterns of the same
size, we draw both of them on the same n vertices, such that the arrows of the first oriented
link pattern are drown upward and the arrows of the second one are drown downward.

Example 3.2.6. (A meander)
We consider the representations M = U4,1 ⊕U2,5 ⊕V3 and M′ = U2,3 ⊕U5,4 ⊕V1.
Then in order to calculate [M,M′] we can form the meander

• • • • •

1 2 3 4 5
.

For every arrow j→ i (and for every fixed vertex k, respectively) in the above oriented link
pattern, we count the numbers bi, j (and ak, respectively) in the below one:

• for 1→ 4 we count
b4,1(M′) = a1(M′) + ]{arrows with source ≤ 1 and target ≤ 4} = 1 + 1 = 2,

• for 5→ 2 we count
b2,5(M′) = a5(M′) + ]{arrows with source ≤ 5 and target ≤ 2} = 3 + 1 = 4 and

• for the fixed vertex 3 we count
a3(M′) = ]{fixed vertices ≤ 3} + ]{targets of arrows ≤ 3} = 2.

Thus, [M,M′] = 8.
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3.3 Closures of Borel orbits

We will give a combinatorial description of the degenerations N ≤deg N′ in N (2), followed
by a generalization of the description of the orbit closures given in [Melnikov, 2006]. Then
we present the minimal, disjoint pieces of such degenerations before explicitly calculating
all minimal degenerations.

As stated in theorem 1.1.7, the bijection Φ in lemma 2.3.1 is closure-preserving. This leads
to calculating the orbit closures of the orbits in Rinj

dB
(Qn, I) instead of calculating them di-

rectly in N (2).

We make use of theorem 1.2.8 which states that the partial orderings ≤deg and ≤hom are
equivalent in repK(Qn, I).

In more detail, given a dimension vector d, a representation M ∈ repinj
K (Qn, I)(d) degener-

ates to another representation M′ ∈ repinj
K (Qn, I)(d) if and only if [V,M] ≤ [V,M′] for every

indecomposable representation V ∈ repK(Qn, I).

Since [Wk,l,M] = 0 for every representation M ∈ repinj
K (Qn, I) and every pair of integers

k, l ∈ {1, . . . , n} by proposition 3.2.1, we can restrict these indecomposables V to those of
typeUk,l andVk.

Proposition 3.3.1. (Combinatorial description of degenerations)
Let M,M′ ∈ repinj

K (Qn, I) be two representations of the same dimension vector. Then
M ≤deg M′ if and only if ak(M) ≤ ak(M′) and bk,l(M) ≤ bk,l(M) for all k, l ∈ {1, . . . , n}.

Proof. Given two representations M and M′ in repinj
K (Qn, I) of the same dimension vector,

theorem 1.2.8 states that M ≤deg M′ holds true if and only if for all k, l ∈ {1, . . . , n} the
inequalities [Vk,M] ≤ [Vk,M′] and [Uk,l,M] ≤ [Uk,l,M′] hold true.
Thus, the definition of ak and bk,l directly yields the claim. �

For k, l ∈ {1, . . . , n}, reconsider the canonical projection πi, j : n(2) → n
(2)
( j−i+1× j−i+1) corre-

sponding to deletion of the first i−1 and the last n− j columns and rows of a matrix in n(2).

We define the generalized projection πi, j : N (2) → Kn−i+1× j corresponding to deletion of
the first i − 1 rows and the last n − j columns of a matrix in N (2). Now we can define the
generalized rank matrix R(N) of N ∈ N (2)

n by

R(N)i, j = rank (πi, j(N)).

Then the definitions in 2.2.2 yield R(N) = RN if N ∈ n(2) and the rank matrix R(N) is
B-invariant which can be shown easily on the normal forms in RB.

We define a partial ordering on the set of generalized rank matrices by setting R(N′) 4 R(N)
if (R(N′))i, j ≤ (R(N))i, j for all i and j, which induces a partial ordering on the B-orbits in
N (2) by B.N′ 4 B.N if R(N′) 4 R(M) for N,N′ ∈ N (2).

Define V≥i B 〈ei, . . . , en〉 to be the vector space which is spanned by the last n − i + 1
coordinate vectors of Kn.
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Lemma 3.3.2. (Generalized rank matrices via dimensions of vector spaces)
Let N,N′ ∈ N (2), then

R(N′) 4 R(N) if and only if dimK(N′ · V j ∩ V≥i) ≤ dimK(N · V j ∩ V≥i)

for all i, j ∈ {1, . . . , n}.

Proof. Given two matrices N and N′ in N (2),

R(N′)i, j = rank (πi, j(N).

The deletion of the last n − j columns of a matrix N can be translated to multiplying
N · N′ where N′ ∈ {0, 1}n× j is given by N′k,k = 1 and N′k,k′ = 0 if k , k′. Then clearly
rank (N · N′) = dimK(N · V j).

The deletion of the first i − 1 rows of a matrix N can be translated analogously by multi-
plying N′ · N where N′ ∈ {0, 1}n−i+1×n is given by N′k,k′ = 1 if k′ = k + i − 1 and N′k,k′ = 0
otherwise. Then clearly rank (N′ · N) = dimK(N ∩ V≥i).

By combining both cases, the claim follows. �

We can reformulate the description and obtain a generalization of theorem 2.2.4.

Corollary 3.3.3. (Generalization of theorem 2.2.4)
Let N,N′ ∈ N (2), then N ≤deg N′ if and only if R(N′) 4 R(N).

Proof. Given two matrices N and N′ in N (2), then N ≤deg N′ if and only if

ai(N) ≤ ai(N′) and bi, j(N) ≤ bi, j(N′)

for all i, j ∈ {1, . . . , n}.

The inequality ai(N) ≤ ai(N′) translates to dimK(N′ ·Vi) ≤ dimK(N ·Vi) and the inequality
bi, j(N) ≤ bi, j(N′) translates to dimK(N′ · V j ∩ V>i) ≤ dimK(N · V j ∩ V>i).

The claim follows. �

3.3.1 Minimal, disjoint pieces of degenerations

We develop a combinatorial method to produce all degenerations of a given representation
M ∈ repinj

K (Qn, I)(dB) from its oriented link pattern. Therefore, we construct all minimal
degenerations in Rinj

dB
(Qn, I) in terms of oriented link patterns. Given the bijection in 2.3.1,

we can easily translate them to minimal degenerations in N (2).

In order to calculate the minimal, disjoint pieces of degenerations in Rinj
dB

(Qn, I), we con-

sider degenerations that do not correspond to points in Rinj
dB

(Qn, I), that is, representations

M ∈ repinj
K (Qn, I), such that possibly dim(M) , dB. They do not correspond to matrices in

N (2), but we will use them to find all minimal degenerations in N (2) afterwards.

The next proposition gives a characterization of the minimal, disjoint degenerations in
repinj

K (Qn, I), that is, minimal degenerations M <mdeg M′, such that M and M′ do not share
a common direct summand.
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Proposition 3.3.4. (Types of minimal, disjoint degenerations)
Let D <mdeg D′ be a minimal, disjoint degeneration in repinj

K (Qn, I). Then either D′ is
indecomposable or D′ � U ⊕ V, where U and V are indecomposables and there exists an
exact sequence 0→ U → D→ V → 0 or 0→ V → D→ U → 0.

Proof. We combine theorem 1.2.9 with the technique of [Bongartz, 1994, Theorem 4].

Let D <deg D′ be a minimal, disjoint degeneration in repinj
K (Qn, I). Then theorem 1.2.9

states that either D <ext D′ or there are representations W, X, X′, such that D � W ⊕ X and
D′ � W ⊕ X′ where X <deg X′ for an indecomposable representation X′.

Clearly, if the second case arises, the representation D′ is indecomposable, since D and D′

are disjoint and, therefore, W = 0.

Assume D <ext D′. Since D <mdeg D′ is minimal, the <ext-relation has to be ”minimal” as
well. Thus, there exists a decomposition D′ � U ⊕ V and an exact sequence

E = 0→ U → D→ V → 0.

Assume U is not indecomposable. Then there is an indecomposable direct summand of U,
we call it U′, and a retraction r : U � U′. We denote the kernel of this map by Ker (r) and
consider the section s : U′ → U such that r ◦ s = idU′ . Looking at the pushout of E by r,
we obtain a representation X and the following commutative diagram of exact sequences.

0 0

Ker (r) Ker (r)

0 U D V 0

0 U′ X V 0

0 0

α

γ

r s β idV

Given an exact sequence 0 → A → B → C → 0 of representations in repinj
K (Qn, I), we

know that A ⊕C ≤hom B.

Thus,
D ≤hom Ker (r) ⊕ X ≤hom Ker (r) ⊕ U′ ⊕ V = D′.

If Ker (r) ⊕U′ ⊕ V = D′ ≤hom Ker (r) ⊕ X as well, then [I,D′] = [I,Ker (r) ⊕ X] for every
indecomposable representation I. The sequence 0→ U′

γ
−→ X → V → 0 then splits, such

that there is a retraction ρ : X → U′ fulfilling ρ ◦ γ = idU′ .
Thus, ρ ◦ (β ◦ α) ◦ s = ρ ◦ (γ ◦ r) ◦ s = idU′ and U′ is a direct summand of both D and D′.
A contradiction.

We obtain
D ≤hom Ker (r) ⊕ X <hom Ker (r) ⊕ U′ ⊕ V = D′
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and since ≤hom and ≤deg are equivalent, D � Ker (r) ⊕ X due to the minimality of the
degeneration. Thus, Ker (r) is a direct summand of both D and D′, a contradiction.

Therefore, the representation U is indecomposable and an analogous proof shows that V is
indecomposable, too. �

As we have seen above, all minimal degenerations in repinj
K (Qn, I)(dB) are of the form

W ⊕ D <mdeg W ⊕ D′, such that D′ involves at most two indecomposable direct summands.
We have, therefore, “localized” the problem to the consideration of at most four vertices in
the corresponding oriented link patterns.

As mentioned before, we consider degenerations between representations in repinj
K (Qn, I)

whose dimension vectors differ from dB. We, therefore, define a set of representations
repinj

K (Qn, I)(dB)part ⊂ repinj
K (Qn, I) such that D ∈ repinj

K (Qn, I)(dB)part if and only if there ex-
ists a representation W ∈ repinj

K (Qn, I) such that D⊕W is a representation in repinj
K (Qn, I)(dB).

In the local case, that is, in repinj
K (Qn, I)(dB)part, we can apply proposition 3.3.1 and work

out all minimal degenerations.

Given a minimal degeneration D <mdeg D′ in repinj
K (Qn, I)(dB)part, in order to describe all

minimal degenerations, it then suffices to calculate all representations W ∈ repinj
K (Qn, I),

such that D ⊕W <mdeg D′ ⊕W is a minimal degeneration in repinj
K (Qn, I)(dB).

Theorem 3.3.5. (Minimal, disjoint pieces of degenerations)
Let D and D′ be two representations in repinj

K (Qn, I)(dB)part of the same dimension vector
such that D <mdeg D′ is a minimal, disjoint degeneration in repinj

K (Qn, I).

Considering an arbitrary oriented link pattern, let a < b (respectively a < b < c, respec-
tively a < b < c < d) be the vertices that D and D′ are incident with. Then the degeneration
D <mdeg D′ appears in one of the following diagrams.

A B

D1 •
a
•
b

��

D1 •
a
•
b
•
c

��

D2 •
a
•
b
•
c

��
•
a
•
b
•
c

�� D3

D2 •
a
•
b

��

D4 •
a
•
b
•
c

��
•
a
•
b
•
c

�� D5

D3 •
a
•
b

•
a
•
b
•
c

�� D6

4. 5.

1.

2.

1. 2.

3. 6.

7. 8.
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C D1 •
a
•
b
•
c
•
d

����

D2 •
a
•
b
•
c
•
d

�� ��
•
a
•
b
•
c
•
d

��		 D3

D4 •
a
•
b
•
c
•
d

��		 D5 •
a
•
b
•
c
•
d

�� ��
•
a
•
b
•
c
•
d

��		 D6

D7 •
a
•
b
•
c
•
d

�� �� D8 •
a
•
b
•
c
•
d

����
•
a
•
b
•
c
•
d

�� �� D9

D10 •
a
•
b
•
c
•
d

�� 		
•
a
•
b
•
c
•
d

�� �� D11

D12 •
a
•
b
•
c
•
d

		 		

4.
5. 6.

7.

10. 11. 12. 13.

16.
17. 18.

19.

1. 2.

3. 8.

9. 14.

15. 20.

21. 22.

The diagrams (and the corresponding representations) are named in the diagram as well
as the degenerations for the proof later on.
Note: The degenerations marked with dotted lines are not disjoint, but minimal.

Proof. Let D <mdeg D′ be a minimal, disjoint degeneration in repinj
K (Qn, I)(dB)part.

1. Assume the representation D′ is incident with one vertex a.

Then D = D′ = Va, thus, there is no minimal, disjoint degeneration D <mdeg D′.

2. Assume the representation D′ is incident with two vertices a < b.

Then D′ � Ub,a = D1 or D′ � Ua,b = D2 or D′ � Va ⊕Vb = D3.
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For k, l ∈ {1, . . . , n} we calculate

ak(Ub,a) = δb≤k ≤ ak(Ua,b) = δa≤k ≤ ak(Vb ⊕Va) = δa≤k + δb≤k

bk,l(Ub,a) = δb≤l+δa≤lδb≤k ≤ bk,l(Ua,b) = δa≤l+δb≤lδa≤k ≤ bk,l(Vb⊕Va) = δa≤l+δb≤l.

Thus, proposition 3.3.1 yields Ub,a <1.
mdeg Ua,b <2.

mdeg Vb ⊕ Va as claimed in
diagram A.

3. Assume the representation D′ is incident with three vertices a < b < c.

Then D′ is isomorphic to one of the representations defined in diagram B, that is,
D1 = Uc,a⊕Vb, D2 = Ub,a⊕Vc, D3 = Uc,b⊕Va, D4 = Ua,b⊕Vc, D5 = Ub,c⊕Va

or D6 = Ua,c⊕Vb, since for each choice of D′ the representation D7 B Va⊕Vb⊕Vc

has a direct summand in common with D′.

For k ∈ {1, . . . , n}, proposition 3.2.1 yields

ak(D1) = δb≤k + δc≤k = ak(D2),

ak(D3) = δa≤k + δc≤k = ak(D4),

ak(D5) = δa≤k + δb≤k = ak(D6),

ak(D7) = δa≤k + δb≤k + δc≤k

and ak(D1) = ak(D2) ≤ ak(D3) = ak(D4) ≤ ak(D5) = ak(D6) ≤ ak(D7).

For k, l ∈ {1, . . . , n}, we obtain

bk,l(D1) = δc≤l + δa≤lδc≤k + δb≤l, bk,l(D2) = δb≤l + δa≤lδb≤k + δc≤l,

bk,l(D3) = δc≤l + δb≤lδc≤k + δa≤l, bk,l(D4) = δa≤l + δb≤lδa≤k + δc≤l,

bk,l(D5) = δb≤l + δc≤lδb≤k + δa≤l, bk,l(D6) = δa≤l + δc≤lδa≤k + δb≤l.

First, let D and D′ be representations in repinj
K (Qn, I)(dB)part, such that ak(D) = ak(D′)

for all k.

- D1 <
1.
deg D2, since bk,l(D1) ≤ bk,l(D2) translates to δc≤k ≤ δb≤k and b < c.

Assume there is a representation L ∈ repinj
K (Qn, I)(dB)part fulfilling

D1 <deg L <deg D2. Then ak(D1) = ak(L) = ak(D2), so L � D1 or L � D2,
since D1 and D2 are up to isomorphism the only representations fulfilling this
condition. Thus, the degeneration is minimal.

- D3 <
5.
deg D4, since bk,l(D3) ≤ bk,l(D4) translates to δc≤k ≤ δa≤k and a < c.

Minimality follows in the same way as before.

- D5 <
8.
deg D6, since bk,l(D5) ≤ bk,l(D6) translates to δb≤k ≤ δa≤k and a < b.

Minimality follows in the same way as before.

Thus, the degenerations D1 <mdeg D2, D3 <mdeg D4 and D5 <mdeg D6 are minimal.
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We consider the remaining cases:

- D2 ≮ D3 since bk,l(D2) ≤ bk,l(D3) translates to δb≤l + δa≤lδb≤k ≤ δb≤lδc≤k + δa≤l.
Thus, for b ≤ k < c and l > b we have bk,l(D2) > bk,l(D3), so D2 � D3.

- D1 <
2.
mdeg D3, since bk,l(D1) ≤ bk,l(D3) translates to δb≤l ≤ δa≤l if k < c and is

obvious if k ≥ c.

- D1 ≮deg D4 is not minimal, since D1 <mdeg D3 <mdeg D4.

- D2 <
3.
mdeg D4, since bk,l(D2) ≤ bk,l(D4) translates to δb≤l ≤ δa≤l if k < a, to

0 ≤ δa≤l if a ≤ k < b and is obvious if k ≥ b.

- D4 ≮ D5 since bk,l(D4) ≤ bk,l(D5) translates to δb≤lδa≤k + δc≤l ≤ δb≤l + δc≤lδb≤k.
Thus, for a ≤ k < b and l ≥ c we have bk,l(D4) > bk,l(D5), so D4 � D5.

- D3 <
6.
mdeg D5, since bk,l(D3) ≤ bk,l(D5) translates to δc≤l ≤ δb≤l if k < b, to

0 ≤ δb≤l if b ≤ k < c and is obvious if k ≥ c.

- D2 <
4.
mdeg D5, since bk,l(D2) ≤ bk,l(D5) translates to δc≤l ≤ δa≤l if k < b and is

obvious if k ≥ b.

- D4 <
7.
mdeg D6, since bk,l(D4) ≤ bk,l(D6) translates to δc≤l ≤ δb≤l if k < a and is

obvious if k ≥ a.

We obtain diagram B.

4. Assume the representation D′ is incident with four vertices a < b < c < d.

Then D′ is isomorphic to one of the representations defined above in diagram C, that
is,

D1 = Ud,a ⊕Uc,b, D2 = Uc,a ⊕Ud,b, D3 = Ud,a ⊕Ub,c, D4 = Ua,c ⊕Ud,b,
D5 = Ub,a ⊕Ud,c, D6 = Uc,a ⊕Ub,d, D7 = Ua,b ⊕Ud,c, D8 = Ua,d ⊕Uc,b,

D9 = Ub,a ⊕Uc,d, D10 = Ua,d ⊕Ub,c, D11 = Ua,b ⊕Uc,d or D12 = Ua,c ⊕Ub,d.

Let D′ = Uv,w ⊕ Ux,y be a representation. Then ak(D) ≤ ak(D′) ≤ 2 for all k, thus,
D is the sum of at most two indecomposables as well since an(D) equals the number
of indecomposable direct summands of D up to isomorphisms. The representation
D, thus, is isomorphic to some Di with i ∈ {1, . . . , 12}.
For k, l ∈ {1, . . . , n} we calculate

ak(D1) = δc≤k + δd≤k = ak(D2),

ak(D3) = δb≤k + δd≤k = ak(D5),

ak(D4) = δa≤k + δd≤k = ak(D7) | ak(D6) = δb≤k + δc≤k = ak(D9),

ak(D8) = δa≤k + δc≤k = ak(D11),

ak(D10) = δa≤k + δb≤k = ak(D12).
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Furthermore,

bk,l(D1) = δd≤l + δa≤lδd≤k + δc≤l + δb≤lδc≤k,

bk,l(D2) = δc≤l + δa≤lδc≤k + δd≤l + δb≤lδd≤k,
bk,l(D3) = δd≤l + δa≤lδd≤k + δb≤l + δc≤lδb≤k,
bk,l(D4) = δa≤l + δc≤lδa≤k + δd≤l + δb≤lδd≤k,
bk,l(D5) = δb≤l + δa≤lδb≤k + δd≤l + δc≤lδd≤k,
bk,l(D6) = δc≤l + δa≤lδc≤k + δb≤l + δd≤lδb≤k,
bk,l(D7) = δa≤l + δb≤lδa≤k + δd≤l + δc≤lδd≤k,
bk,l(D8) = δa≤l + δd≤lδa≤k + δc≤l + δb≤lδc≤k,
bk,l(D9) = δb≤l + δa≤lδb≤k + δc≤l + δd≤lδc≤k,
bk,l(D10) = δa≤l + δd≤lδa≤k + δb≤l + δc≤lδb≤k,
bk,l(D11) = δa≤l + δb≤lδa≤k + δc≤l + δd≤lδc≤k,
bk,l(D12) = δa≤l + δc≤lδa≤k + δb≤l + δd≤lδb≤k.

First, let D and D′ be representations in repinj
K (Qn, I)(dB)part with ak(D) = ak(D′) for

all k.

- D1 <
1.
deg D2, since bk,l(D1) ≤ bk,l(D2) translates to δd≤k ≤ δc≤k if a ≤ l < b and

is obvious if l < a or b ≤ l.
Assume there is a representation L ∈ repinj

K (Qn, I)(dB)part that fulfills
D1 <deg L <deg D2. Then ak(D1) = ak(L) = ak(D2), so L � D1 or L � D2,
because D1 and D2 are up to isomorphisms the only representations fulfilling
this condition.
The same proof shows minimality in the next cases.

- D3 <
7.
deg D5 since bk,l(D3) ≤ bk,l(D5) translates to δd≤k ≤ δb≤k if a ≤ l < c and

is obvious if l < a or c ≤ l.

- D4 <
9.
deg D7 since bk,l(D4) ≤ bk,l(D7) translates to δd≤k ≤ δa≤k if b ≤ l < c and

is obvious if l < b or d ≤ l.

- D6 <
14.
deg D9 since bk,l(D6) ≤ bk,l(D9) translates to δc≤k ≤ δb≤k if a ≤ l < d and

is obvious if l < a or d ≤ l.

- D8 <
18.
deg D11 since bk,l(D8) ≤ bk,l(D11) translates to δc≤k ≤ δa≤k if b ≤ l < d and

is obvious if l < b or d ≤ l.

- D10 <
21.
deg D12 since bk,l(D10) ≤ bk,l(D12) translates to δb≤k ≤ δa≤k if c ≤ l < d

and is obvious if l < c or d ≤ l.

We obtain the diagram

D1 <mdeg D2
D3 <mdeg D5

D4 <mdeg D7 | D6 <mdeg D9
D8 <mdeg D11

D10 <mdeg D12.
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For two representations Di and D j in some cases neither Di <deg D j nor D j <deg Di

hold true. We will look at these cases now.

- D2 ≮deg D3, since bk,l(D2) ≤ bk,l(D3) translates to
δc≤l + δa≤lδc≤k + δb≤lδd≤k ≤ δa≤lδd≤k + δb≤l + δc≤lδb≤k.

We, therefore, obtain bc,a(D2) > bc,a(D3).

- D5 ≮deg D4, since bk,l(D5) ≤ bk,l(D4) translates to
δb≤l + δa≤lδb≤k + δc≤lδd≤k ≤ δa≤l + δc≤lδa≤k + δb≤lδd≤k.

Hence, bb,b(D5) > bb,b(D4).

- D5 ≮deg D6, since bk,l(D5) ≤ bk,l(D6) translates to
δa≤lδb≤k + δd≤l + δc≤lδd≤k ≤ δc≤l + δa≤lδc≤k + δd≤lδb≤k,

such that the inequality bb,a(D5) > bb,a(D6) follows.

- D5 ≮deg D8, since bk,l(D5) ≤ bk,l(D8) translates to
δb≤l + δa≤lδb≤k + δd≤l + δc≤lδd≤k ≤ δa≤l + δd≤lδa≤k + δc≤l + δb≤lδc≤k.

Then, clearly, bb,b(D5) > bb,b(D8).

- D7 ≮deg D8, since bk,l(D7) ≤ bk,l(D8) translates to
δb≤lδa≤k + δd≤l + δc≤lδd≤k ≤ δd≤lδa≤k + δc≤l + δb≤lδc≤k.

Therefore, ba,b(D7) > ba,b(D8) holds true.

- D9 ≮deg D8, since bk,l(D9) ≤ bk,l(D8) translates to
δb≤l + δa≤lδb≤k + δd≤lδc≤k ≤ δa≤l + δd≤lδa≤k + δb≤lδc≤k.

We, therefore, obtain bb,b(D9) > bb,b(D8).

- D11 ≮deg D10, since bk,l(D11) ≤ bk,l(D10) translates to
δb≤lδa≤k + δc≤l + δd≤lδc≤k ≤ δd≤lδa≤k + δb≤l + δc≤lδb≤k.

Thus, ba,c(D11) > ba,c(D10) holds true.

Several degenerations, more precisely the degenerations 2., 3., 5., 11., 12., 16., 17.
and 20., are not disjoint. We have proven that they, in fact, are degenerations and
will prove minimality in the following.

- D1 <
2.
deg D3 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part ful-
filling D1 <deg L <deg D3 has to be isomorphic to D2. Since we have shown
D1 ≮deg D2, minimality follows.

- D2 <
3.
deg D4 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part which
fulfills D2 <deg L <deg D4 has to be isomorphic to D3 or D5. By our consider-
ations above, D2 ≮deg D3 and D5 ≮deg D4, thus, minimality follows.

- D2 <
5.
deg D6 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part that
fulfills D2 <deg L <deg D6 has to be isomorphic to D3 or D5. Minimality
follows from D2 ≮deg D3 and D5 ≮deg D6.

- D5 <
11.
deg D7 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part for
which D5 <deg L <deg D7 holds true has to be isomorphic to D4. We have
proved D5 ≮deg D4, therefore, minimality follows.
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- D5 <
12.
deg D9 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part such
that D5 <deg L <deg D9 has to be isomorphic to D6. Our considerations show
D5 ≮deg D6 and minimality follows.

- D7 <
16.
deg D11 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part for
which D7 <deg L <deg D11 holds true has to be isomorphic to D8. We have
shown D7 ≮deg D8, thus, minimality follows.

- D8 <
17.
mdeg D10 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part
which fulfills D8 <deg L <deg D10 has to be isomorphic to D11. Since we
have proved D11 ≮deg D10, minimality follows.

- D9 <
20.
deg D11 is minimal, since any representation L ∈ repinj

K (Qn, I)(dB)part ful-
filling D9 <deg L <deg D11 has to be isomorphic to D8. By our considerations
above, D9 ≮deg D8, and minimality follows.

As a last step, we calculate all minimal degenerations that have not been considered
yet, but are still possible at this point.

- D2 <
4.
mdeg D5:

The inequality bk,l(D2) ≤ bk,l(D5) translates to δc≤k ≤ δb≤k if a ≤ l < b, to
δc≤k + δd≤k ≤ 1 + δb≤k if b ≤ l < c and to δc≤k ≤ δb≤k if c ≤ l. It obviously holds
true for l < a, thus, minimality follows from D2 ≮deg D3.

- D3 <
6.
mdeg D4:

The inequality bk,l(D3) ≤ bk,l(D4) translates to δd≤k ≤ 1 if a ≤ l < b and to
δb≤k ≤ δa≤k if c ≤ l. It obviously holds true for l < a or b ≤ l < c, thus,
minimality follows from D5 ≮deg D4.

- D3 <
8.
mdeg D6:

The inequality bk,l(D3) ≤ bk,l(D6) translates to δd≤k ≤ δc≤k if a ≤ l < c, to
δd≤k + δb≤k ≤ 1 + δc≤k if c ≤ l < d and to δd≤k ≤ δc≤k if d ≤ l. The inequality
is obviously true for l < a and, since we have shown D5 ≮deg D6, minimality
follows.

- D4 <
10.
mdeg D8:

The inequality bk,l(D4) ≤ bk,l(D8) translates to δd≤k ≤ δc≤k if b ≤ l < c, to
δa≤k + δd≤k ≤ 1 + δc≤k if c ≤ l < d and to δd≤k ≤ δc≤k if d ≤ l. For l < b, it
clearly holds true as well. The degeneration is minimal, since we have shown
D7 ≮deg D8.

- D6 <
13.
mdeg D8:

The inequality bk,l(D6) ≤ bk,l(D8) translates to δc≤k ≤ 1 if a ≤ l < b and to
δb≤k ≤ δa≤k if d ≤ l; it obviously holds true for l < a or b ≤ l < d. The
minimality of the degeneration follows from D9 ≮deg D8.

- D7 <
15.
mdeg D10:

The inequality bk,l(D7) ≤ bk,l(D10) translates to δa≤k ≤ 1 if b ≤ l < c, to
δa≤k + δd≤k ≤ 1 + δb≤k if c ≤ l < d and to δd≤k ≤ δb≤k if d ≤ l; it obviously
holds true for l < b. Because we have shown D7 ≮deg D8 and D11 ≮deg D10,
minimality follows.
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- D9 <
19.
deg D10:

The inequality bk,l(D9) ≤ bk,l(D10) translates to δb≤k ≤ 1 if a ≤ l < c and to
δc≤k ≤ δa≤k if d ≤ l. For l < a or c ≤ l < d it obviously holds true as well. The
degeneration is minimal, since we have shown D9 ≮deg D8 and D11 ≮deg D10.

- D11 <
22.
deg D12:

The inequality bk,l(D11) ≤ bk,l(D12) translates to δa≤k ≤ 1 if b ≤ l < c and to
δc≤k ≤ δb≤k if d ≤ l. It obviously holds true if l < b or if c ≤ l < d, therefore, it
suffices to show minimality which follows from D11 ≮deg D10.

We obtain diagram C. �

We can prove the following result about the codimensions of these minimal, disjoint de-
generations.

Corollary 3.3.6. (Codimension of minimal, disjoint degenerations)
Each minimal, disjoint degeneration D <mdeg D′ in theorem 3.3.5 has codimension 1.

Proof. Let D <mdeg D′ be a minimal, disjoint degeneration in repinj
K (Qn, I)(dB)part. Then

codim(D,D′) = dimOD − dimOD′ = [D′,D′] − [D,D].
For every two integers x, y ∈ {1, . . . , n}, proposition 3.2.1 yields

[Vx,Vx] = 1 and [Ux,y,Ux,y] =

{
2, if x ≤ y;
1, otherwise.

We make use of the notation of the representations given in the proof of theorem 3.3.5.

1. Let D <mdeg D′ be a degeneration in diagram A of theorem 3.3.5.

[Ub,a,Ub,a] = 1,
[Ua,b,Ua,b] = 2,

[Va ⊕Vb,Va ⊕Vb] = 2 + δa≤b + δb≤a = 3.

Then codim(D,D′) = 1 follows for both degenerations.

2. Let D <mdeg D′ be a degeneration in diagram B of theorem 3.3.5. Then

[D1,D1] = 1 + δb≤a + δc≤b + 1 = 2
[D2,D2] = 1 + δc≤a + δb≤c + 1 = 3
[D3,D3] = 1 + δa≤b + δc≤a + 1 = 3
[D4,D4] = 2 + δc≤b + δa≤c + 1 = 4
[D5,D5] = 2 + δa≤c + δb≤a + 1 = 4
[D6,D6] = 2 + δb≤c + δa≤b + 1 = 5.

The equality codim(D,D′) = 1 holds true for every degeneration in diagram B.
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3. Let D <mdeg D′ be a degeneration in diagram C of theorem 3.3.5. Then

[D1,D1] = 2 + δc≤a + δb≤aδc≤d + δd≤b + δa≤bδd≤c = 2
[D2,D2] = 2 + δd≤a + δb≤aδd≤c + δc≤b + δa≤bδc≤d = 3
[D3,D3] = 3 + δb≤a + δc≤aδb≤d + δd≤c + δa≤cδd≤b = 3
[D4,D4] = 3 + δd≤c + δb≤cδd≤a + δa≤b + δc≤bδa≤d = 4
[D5,D5] = 2 + δd≤a + δc≤aδd≤b + δb≤c + δa≤cδb≤d = 4
[D6,D6] = 3 + δb≤a + δd≤aδb≤c + δc≤d + δa≤dδc≤b = 4
[D7,D7] = 3 + δd≤b + δc≤bδd≤a + δa≤c + δb≤cδa≤d = 5
[D8,D8] = 3 + δc≤d + δb≤dδc≤a + δa≤b + δd≤bδa≤c = 5
[D9,D9] = 3 + δc≤a + δd≤aδc≤b + δb≤d + δa≤dδb≤c = 5

[D10,D10] = 4 + δb≤d + δc≤dδb≤a + δa≤c + δd≤cδa≤b = 6
[D11,D11] = 4 + δc≤b + δd≤bδc≤a + δa≤d + δb≤dδa≤c = 6
[D12,D12] = 4 + δb≤c + δd≤cδb≤a + δa≤d + δc≤dδa≤b = 7.

Thus, codim(D,D′) = 1 holds true for every minimal, disjoint degeneration. �

Note that the codimension 1 property is obtained from the theory of spherical varieties (see
[Brion, 1989, Brion, 1995]) as well (a proof is, for example, given in [Timashev, 1994]).

3.3.2 Minimal degenerations in general

Every minimal, disjoint degeneration D <mdeg D′ in repinj
K (Qn, I)(dB)part is described in

section 3.3.1. In order to classify the minimal degenerations in repinj
K (Qn, I)(dB), we need

to consider every such minimal, disjoint degeneration D <mdeg D′ and all representations
W, such that D ⊕W <deg D′ ⊕W is a degeneration in repinj

K (Qn, I)(dB). We give an explicit
description of those representations W for which the aforementioned degeneration is min-
imal.

The following proposition is derived directly from proposition 3.2.1.

Proposition 3.3.7. (Differences of dimensions of homomorphism spaces)
Let k, l ∈ {1, . . . , n} and consider the minimal degeneration

1. D = Ut,s <mdeg Us,t = D′, such that s < t.
Then ak(D′) − ak(D) = δs≤k<t and bk,l(D′) − bk,l(D) = δk<t · δs≤l<t + δs≤k<t · δt≤l.

2. D = Us,t <mdeg Vs ⊕Vt = D′, such that s < t.
Then ak(D′) − ak(D) = δt≤k and bk,l(D′) − bk,l(D) = δk<s · δt≤l.

3. D = Ur,t ⊕Vs <mdeg Us,t ⊕Vr = D′, such that s < r.
Then ak(D′) − ak(D) = 0 and bk,l(D′) − bk,l(D) = δs≤k<r · δt≤l.

4. D = Ur,s ⊕Vt <mdeg Ur,t ⊕Vs = D′, such that s < t.
ak(D′) − ak(D) = δs≤k<t and bk,l(D′) − bk,l(D) = δk<r · δs≤l<t.

5. D = Uu,t ⊕Us,r <mdeg Us,t ⊕Uu,r = D′, such that r < t and u < s.
Then ak(D′) − ak(D) = 0 and bk,l(D′) − bk,l(D) = δu≤k<s · δr≤l<t.
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6. D = Ut,s ⊕ Ur,u <mdeg Ut,r ⊕ Us,u = D′, such that u < t < s < r, t < u < s < r,
t < s < u < r, s < t < r < u or t < s < r < u.
Then ak(D′) − ak(D) = δs≤k<r and bk,l(D′) − bk,l(D) = δk<t · δs≤l<r + δs≤k<r · δu≤l.

7. D = Ut,s ⊕ Ur,u <mdeg Ur,t ⊕ Uu,s = D′, such that s < u < t < r, u < t < s < r or
u < t < r < s.
Then ak(D′) − ak(D) = δu≤k<t and bk,l(D′) − bk,l(D) = δk<r · δu≤l<t + δu≤k<t · δs≤l.

Here, δx≤y≤z B 1 if x ≤ y ≤ z and δx≤y≤z B 0 otherwise.

In order to apply these descriptions in the next proof, it is useful to depict them as follows:
We consider matrices (ak(D′) − ak(D))1≤k≤n ∈ K1×n and (bk,l(D′) − bk,l(D))1≤k,l≤n ∈ Kn×n.
They can, for example in case of the first degeneration, be visualized as in figure 3.2. The
light blue parts yield that the entries equal 1, in the dark blue parts they equal 2 (which is
only possible in the case 7.) and otherwise they equal 0.

s t

k

s t

s

t

k

l

Figure 3.2: The matrices (ak(D′) − ak(D))k and (bk,l(D′) − bk,l(D))k,l

in the case 1.

In the remaining cases of proposition 3.3.7, we depict the matrices (ak(D′) − ak(D))k in
figure 3.3 and the matrices (bk,l(D′) − bk,l(D))k,l exemplary in figure 3.4.
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Figure 3.3: The matrices (ak(D′) − ak(D))k

We divide the calculation of the minimal degenerations in repinj
K (Qn, I)(dB) into two parts,

starting with the degeneration Ut,s <mdeg Us,t since it is the only disjoint degeneration
D <mdeg D′, such that D′ is indecomposable in repinj

K (Qn, I).
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Figure 3.4: The matrices (bk,l(D′) − bk,l(D))k,l

In this particular setup, the visualizations can be helpful in order to understand the different
cases given in the proof of theorem 3.3.8.

Afterwards, we consider every degeneration D <mdeg D′ left. We already know from
proposition 3.3.4 that in the second case D′ � U⊕V , such that U and V are indecomposable
in repinj

K (Qn, I) and that there exists either an exact sequence 0 → U → D → V → 0 or
0→ V → D→ U → 0.

Minimal degenerations obtained from minimal, disjoint degenerations
D <mdeg D′ with D′ being indecomposable

Consider integers s, t ∈ {1, . . . , n} for which s < t holds true and the minimal, disjoint
degenerationUt,s <mdeg Us,t in repinj

K (Qn, I)(dB)part.

Let W be a representation in repinj
K (Qn, I), such thatUs,t ⊕W ∈ repinj

K (Qn, I)(dB).

Theorem 3.3.8. (Minimal degenerationsUt,s ⊕W <deg Us,t ⊕W)
The degenerationUt,s ⊕W <deg Us,t ⊕W is minimal if and only if every indecomposable
direct summand X of W fulfills [X,Us,t] − [X,Ut,s] = 0.

Lemma 3.3.7, thus, yields the following corollary.

Corollary 3.3.9. (Concrete description of theorem 3.3.8)
Ut,s ⊕ W <deg Us,t ⊕ W is minimal if and only if every direct summand Vk of W fulfills
k < s or k > t and every direct summandUk,l of W fulfills l < s or k > t, or k < s and l > t.
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Proof of corollary 3.3.9. Lemma 3.3.7 and figure 3.2 state

[Vk,D′] − [Vk,D] = ak(D′) − ak(D) = δs≤k<t and

[Uk,l,D′] − [Uk,l,D] = bk,l(D′) − bk,l(D) = δk<t · δs≤l<t + δs≤k<t · δt≤l.

Thus, [X,D′] − [X,D] = 0 translates to k < s or k > t if X � Vk and to l < s or k > t, or
k < s and l > t if X � Uk,l. �

Proof of theorem 3.3.8.

The only-if part

LetVk be a representation with s < k < t. Then the degenerationUt,s⊕Vk <mdeg Us,t⊕Vk

in repinj
K (Qn, I)(dB)part is not minimal since

Ut,s ⊕Vk <deg Uk,s ⊕Vt <deg Us,t ⊕Vk

are proper degenerations.

Let Uk,l be a representation with s , k < t and s < l < t (or s < k < t and l > t,
respectively). Then the degenerationUt,s ⊕ Uk,l <deg Us,t ⊕ Uk,l in repinj

K (Qn, I)(dB)part is
not minimal, since

Ut,s ⊕Uk,l <deg Uk,s ⊕Ut,l <deg Us,t ⊕Uk,l

(Ut,s ⊕Uk,l <deg Uk,s ⊕Ut,l <deg Us,t ⊕Uk,l, respectively)

are proper degenerations.

The if-part

Let W B
c⊕

x=1
Ukx,lx ⊕

c′⊕
x=1
Vk′x be a representation in repinj

K (Qn, I)(dB)part, such that the rep-

resentation M B Ut,s ⊕W degenerates to M′ B Us,t ⊕W in repinj
K (Qn, I)(dB).

Furthermore, for x ∈ {1, . . . , c′} let either k′x < s or k′x > t and for x ∈ {1, . . . , c} let either
kx > t, lx < s or (lx > t and kx < s).

Assume, the degeneration M <deg M′ is not minimal.

Then there exists a representation L =
a⊕

x=1
Uox,px

b⊕
x=1
Vo′x ∈ repinj

K (Qn, I)(dB) that fulfills

M <deg L <deg M. Without loss of generality, we can assume M <mdeg L.

Proposition 3.3.1 states [Vk,M] ≤ [Vk, L] ≤ [Vk,M′] for all k, in more detail, if k < s
or k ≥ t, then [Vk,M] = [Vk, L] = [Vk,M′] (see lemma 3.3.7) and we can translate the
statement as follows: The source vertices to the left of s−1 and to the right of t coincide in
olp(M), olp(L) and olp(M′). Also, the number of arrows coincides in all three link patterns

since [Vn,M] = [Vn, L] = [Vn,M′], therefore, L =
c+1⊕
x=1
Uox,px

c′⊕
x=1
Vo′x .
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Claim 1: LetUk,l be a direct summand of M, L or M′. If l < s or (k < s and l > t) or (k > t
and l > t), thenUk,l is a direct summand of M, L and M′.

Proof of Claim 1. As proposition 3.3.1 states, given a representation X ∈ repinj
K (Qn, I)(dB)

the values ak(X) = [Vk, X] can be translated to counting the fixed and target vertices to the
left of k, the values bk,l(X) = [Uk,l, X] can be translated to counting the number of arrows
with a source vertex to the left of l and a target vertex to the left of k in olp(X) and adding
al(X).

Lemma 3.3.7 immediately yields

• al(M) = al(L) = al(M′) if l < s or l ≥ t, thus, all source vertices < s and > t coincide
in the corresponding three oriented link patterns and

• bk,l(M) = bk,l(L) = bk,l(M′) if l < s or (k < s and l ≥ t) or (k ≥ t and l ≥ t), such that
the claimed arrows coincide in all three oriented link patterns.

The translation from the oriented link patterns to the direct summands of M, L and M′

proves the claim. �

Claim 2: LetUk,l be a direct summand of M, L or M′. If t < k and s < l < t, thenUk,l is a
direct summand of M, L and M′.

Proof of Claim 2. Let t < k and s < l < t for two integers k and l.

First, we assume that Uk,l is a direct summand of M, but not a direct summand of L.

Since M <mdeg L, the indecomposable Uk,l must be changed by some minimal, disjoint
part of the degeneration. The only possibilities for a change like that are the following:

1st case: The indecomposableUk′,l is a direct summand of L, such that k , k′.

1.1. The minimal, disjoint part isUk,l ⊕Vk′ <mdeg Uk′,l ⊕Vk, such that k′ < k:

The indecomposableVk′ can only be a direct summand of M if k′ < s or k′ > t.
If k′ < s, we obtain [Uk′,t,M] < [Uk′,t, L] and if k′ > t, we obtain [Uk′,l,M] < [Uk′,l, L], a
contradiction.

1.2. The minimal, disjoint part is Uk,l ⊕ Uk′,l′ <mdeg Uk′,l ⊕ Uk,l′ , such that k < k′ and
l′ < l, or such that k′ < k and l < l′:

The indecomposable Uk′,l′ can only be a direct summand of M if k′ > t or l′ < s, or if
k′ < s and l′ > t. As has been shown in claim 1, every indecomposable Ui, j with j < s,
or with j > t and i < s is either a direct summand of M, L and M′ or a direct summand of
none of them. Thus, k′ > t and if k < k′ and l′ < l, we obtain [Uk,l′ ,M] < [Uk,l′ , L]. If
k′ < k and l < l′, we obtain [Uk′,l,M] < [Uk′,l, L], a contradiction.

1.3. The minimal, disjoint part isUk,l ⊕Ul′,k′ <mdeg Ul′,k ⊕Uk′,l:

The indecomposable Ul′,k′ can only be a direct summand of M if l′ > t or k′ < s, or if
l′ < s and k′ > t. As has been shown in claim 1, every indecomposable Ui, j with j < s,
or with j > t and i < s is either a direct summand of M, L and M′ or a direct summand of
none of them.
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Thus, l′ > t and the only cases possible are l < l′ < k′ < k and l < k′ < k < l′. We
immediately obtain [Uk′,l,M] < [Uk′,l, L], a contradiction.

2nd case: The indecomposableUk,l′ is a direct summand of L, such that l , l′.

2.1. The minimal, disjoint part isUk,l ⊕Vl′ <mdeg Uk,l′ ⊕Vl, such that l < l′:

The indecomposableVl′ can only be a direct summand of M if l′ < s or l′ > t.
Thus, l′ > t and we obtain [Ut,l,M] < [Ut,l, L], a contradiction.

2.2. The minimal, disjoint part isUk,l ⊕Ul′,k′ <mdeg Uk,l′ ⊕Ul,k′ :

The indecomposable Ul′,k′ can only be a direct summand of M if l′ > t or k′ < s, or if
l′ < s and k′ > t. As has been shown in claim 1, every indecomposable Ui, j with j < s,
or with j > t and i < s is either a direct summand of M, L and M′ or a direct summand of
none of them, thus, l′ > t. But then we obtain [Ut,l,M] < [Ut,l, L] , a contradiction.

3rd case: The indecomposableUl,k is a direct summand of L.

Then [U1,t,M] < [U1,t, L] if s > 1 and [Ut,n,M] < [Ut,n, L] if t < n. Of course, if
s = 1 and t = n > 2, no representation W as given in the assumption can exist at all, a
contradiction.

Now we assume that Uk,l is a direct summand of L, but not a direct summand of M.

As before, the indecomposable Uk,l must have been changed by some minimal, disjoint
part of the degeneration. The only possibilities for this change are the following:

1st case: The indecomposableUk′,l is a direct summand of M, such that k , k′.

1.1. The minimal, disjoint part isUk′,l ⊕Vk <mdeg Uk,l ⊕Vk′ , such that k < k′:

The indecomposable Vk can only be a direct summand of M if k < s or k > t, thus, k > t
and we obtain [Uk,l,M] < [Uk,l, L], a contradiction.

1.2. The minimal, disjoint part is Uk′,l ⊕ Uk,l′ <mdeg Uk,l ⊕ Uk′,l′ , such that k′ < k and
l′ < l, or such that k < k′ and l < l′:

The indecomposableUk,l′ can only be a direct summand of M if k > t or l′ < s, or if k < s
and l′ > t and the indecomposable Uk′,l can only be a direct summand of M if k′ > t or
l < s, or if k′ < s and l > t.
As has been shown in claim 1, every indecomposable Ui, j with j < s, or with j > t and
i < s is either a direct summand of M,L and M′ or a direct summand of none of them.
Thus, k > t and k′ > t and if k′ < k and l′ < l, we obtain [Uk′,l′ ,M] < [Uk′,l′ , L]; if k < k′

and l < l′, we obtain [Uk,l,M] < [Uk,l, L], a contradiction.

1.3. The minimal, disjoint part isUk′,l ⊕Ul′,k <mdeg Ul′,k′ ⊕Uk,l:

The indecomposableUk′,l can only be a direct summand of M if k′ > t or l < s, or if k′ < s
and l > t and the indecomposable Ul′,k can only be a direct summand of M if l′ > t or
k < s, or if l′ < s and k > t.
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As has been shown in claim 1, every indecomposable Ui, j with j < s, or with j > t and
i < s is either a direct summand of M, L and M′ or a direct summand of none of them.
Thus, k′ > t and l′ > t and the only cases possible are l < l′ < k < k′ and l < k < k′ < l′,
we immediately obtain [Uk,l,M] < [Uk,l, L], a contradiction.

2nd case: The indecomposableUk,l′ is a direct summand of M, such that l , l′.

2.1. The minimal, disjoint part isUk,l′ ⊕Vl <mdeg Uk,l ⊕Vl′ , such that l′ < l:

The indecomposableVl can only be a direct summand of M if l < s or l > t, an immediate
contradiction, since s < l < t.

2.2. The minimal, disjoint part isUk,l′ ⊕Ul,k′ <mdeg Uk,l ⊕Ul′,k′ :

The indecomposableUl,k′ can only be a direct summand of M if l > t or k′ < s, or if l < s
and k′ > t. As has been shown in claim 1, every indecomposable Ui, j with j < s, or with
j > t and i < s is either a direct summand of M, L and M′ or a direct summand of none of
them, thus, l > t yields an immediate contradiction.

3rd case: The indecomposableUl,k is a direct summand of M.

The indecomposable Ul,k can only be a direct summand of M if l > t or k < s, or if l < s
and k > t, a contradiction.

Clearly, the indecomposableUk,l with t < k and s < l < t is a direct summand of M if and
only if it is a direct summand of M′ due to the definitions M = Ut,s⊕W and M′ = Us,t⊕W
and we have shown that the direct summands Uk,l with t < k and s < l < t coincide in all
three representations M, L and M′. �

Claim 1 and claim 2 show that all arrows l → k with bk,l(M) = bk,l(M′) and k, l < {s, t}
coincide in olp(M), olp(L) and olp(M′). More precisely, either there is an arrow l → k in
olp(M), olp(L) and olp(M′) or in none of them at all.

The minimal degeneration M <mdeg L, therefore, equals

M = Ut,s ⊕

c⊕
x=1

Ukx,lx ⊕

c′⊕
x=1

Vk′x <mdeg Uo,p ⊕

c⊕
x=1

Ukx,lx

c′⊕
x=1

Vo′x = L.

The minimal, disjoint piece of the degeneration has to be one of the following three, since
every other option is excluded due to the considerations so far.

• Ut,s <mdeg Us,t

Then L � M′, a contradiction to the assumption L <deg M′;

• Ut,s ⊕Vk′ <mdeg Ut,k′ ⊕Vs with k′ > t
In this caseUt,k′ ⊕Vs ≮deg Us,t⊕Vk′ due to theorem 3.3.5 and therefore L ≮deg M′,
a contradiction;

• Ut,s ⊕Vk′ <mdeg Uk′,s ⊕Vt with k′ < s
In this caseUk′,s⊕Vt ≮deg Us,t⊕Vk′ due to theorem 3.3.5 and therefore L ≮deg M′,
a contradiction.

Since we obtain a contradiction in each case, the degeneration M <deg M′ is minimal. �
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Minimal degenerations obtained from extensions

Consider a minimal, disjoint degeneration D <mdeg D′, such that D′ � U ⊕ V and U and V
are indecomposable representations in repinj

K (Qn, I). Then, without loss of generality, there
exists an exact sequence 0→ U → D→ V → 0. Let W be a representation in repinj

K (Qn, I),
such that D ⊕W ∈ repinj

K (Qn, I)(dB).

The aim of this subsection is to give an explicit description of those W for which the
degeneration D ⊕W <deg D′ ⊕W is minimal. A great help for proving this condition will
be the following two theorems. They have both been proven in [Bongartz, 1994].

For two representations M,M′ ∈ repK(Qn, I), let us define

〈M,M′〉 B {L ∈ repK(Qn, I) | M ≤deg L ≤deg M′}.

Theorem 3.3.10. (Cancellation of direct summands)
If codim(D,D′) = codim(D⊕W,D′⊕W), then the map L 7→ L⊕W induces an isomorphism
between the partially ordered sets 〈D,D′〉 and 〈D ⊕W,D′ ⊕W〉.

A general description of the above considered minimal degenerations follows.

Theorem 3.3.11. (Minimal degenerations obtained from extensions)
The degeneration D ⊕ W <deg D′ ⊕ W in repinj

K (Qn, I)(dB) is minimal if and only if the
equalities [X,D] = [X,D′] and [D, X] = [D′, X] hold true for every direct summand X of
W.

Proof. We extract the argumentation from [Bongartz, 1994, Theorem 4].

Let D ⊕W <mdeg U ⊕ V ⊕W be a minimal degeneration in repinj
K (Qn, I)(dB), such that U

and V are indecomposables and there exists an exact sequence 0→ U → D→ V → 0.

Let X be a direct summand of W, such that [X,D′] > [X,D]. Then the exact sequence

0→ U → D→ V → 0

yields the existence of an exact sequence

0→ Hom(X,U)→ Hom(X,D)→ Hom(X,V)→ Ext1(X,U)→ Ext1(X,D),

such that the last map is not injective.

Thus, there exists a representation Y and an exact sequence 0 → U → Y → X → 0, such
that the pushout sequence splits and we obtain the commutative diagram

0 0
↓ ↓

0 → U → Y → X → 0
↓ ↓ ↓

0 → D → D ⊕ X → X → 0
↓ ↓

V → V
↓ ↓

0 0

with D ⊕ X <deg V ⊕ Y <deg V ⊕ U ⊕ X.
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We denote by Z the representation that fulfills W = X ⊕ Z and obtain

D ⊕W <deg V ⊕ Y ⊕ Z <deg D′ ⊕W,

a contradiction.
A dual argument contradicts the assumption [D′, X] > [D, X] for a direct summand X of
W.

Assume [X,D] = [X,D′] and [D, X] = [D′, X] holds true for every direct summand X
of W. Then codim(D,D′) = codim(D ⊕ W,D′ ⊕ W) and theorem 3.3.10 yields that the
degeneration D ⊕W <deg D′ ⊕W is minimal if and only if D <deg D′ is. �

In the following theorem we are able to give all minimal degenerations obtained from
extensions.

Lemma 3.3.12. (Minimal degenerations obtained from extensions in detail)
Let D <mdeg D′ be a minimal, disjoint degeneration in repinj

K (Qn, I)(dB)part and let

M B D ⊕W <deg D′ ⊕W =: M′

be a degeneration in repinj
K (Qn, I)(dB).

Then M <mdeg M′ if and only if (in the numbering of proposition 3.3.7)

2. [X,D′]− [X,D] = 0 for every direct summand X � Uk,l of W and s < k < t for every
direct summandVk of W (if D � Us,t) and

3. [X,D′] − [X,D] = 0 for every direct summand X � Uk,l of W and k < s or k > r for
every direct summandVk of W (if D � Ur,t ⊕Vs) and

4.-7. [X,D′] − [X,D] = 0 for every direct summand X of W (if D � Us,t,Ur,t ⊕Vs).

Proof. We consider every minimal, disjoint degeneration D <mdeg D′ separately, num-
bered referring to proposition 3.3.7. Given one such degeneration and an indecomposable
X ∈ repinj

K (Qn, I), proposition 3.3.7 states the values of [X,D′]− [X,D]. We, thus, calculate
[D′, X] − [D, X] and via theorem 3.3.11 obtain a condition stating in which cases X can be
a direct summand of W in order to D ⊕W <deg D′ ⊕W being minimal.

Let k, l < {s, t, u, r}.

2. D = Us,t <mdeg Vs ⊕Vt = D′, such that s < t.

[Vk,D′] − [Vk,D] = δt<k = 0 if and only if k < t.
Fix k < t, then [D′,Vk] − [D,Vk] = (δk<s + δk<t) − δk<t = δk<s.
Thus, [D′,Vk] − [D,Vk] = 0 if s < k.

[Uk,l,D′] − [Uk,l,D] = δk<s · δt<l = 0 if and only if k > s or l < t.
Fix k > s and l < t, then [D′,Uk,l]− [D,Uk,l] = (δk<s + δk<t)− (δk<t + δl<t · δk<s) = 0.
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3. D = Ur,t ⊕Vs <mdeg Us,t ⊕Vr = D′, such that s < r.

[Vk,D′] − [Vk,D] = 0 and [D′,Vk] − [D,Vk] = (δk<t + δk<r) − (δk<t + δk<s) = 0 if
and only if k < s or k > r.

[Uk,l,D′] − [Uk,l,D] = δs<k<r · δt<l = 0 if and only if k < s, k > r or l < t.
Fix k and l such that k < s, k > r or l < t, then
[D′,Uk,l] − [D,Uk,l] = (δk<t + δl<t · δk<s + δk<r) − (δk<t + δl<t · δk<r + δk<s) = 0.

4. D = Ur,s ⊕Vt <mdeg Ur,t ⊕Vs = D′, such that s < t.

[Vk,D′] − [Vk,D] = δs<k<t = 0 if and only if k < s or k > t.
Fix k < s or k > t, then [D′,Vk] − [D,Vk] = (δk<t + δk<s) − (δk<s + δk<t) = 0.

[Uk,l,D′] − [Uk,l,D] = δk<r · δs<l<t = 0 if and only if k > r, l < s or l > t.
Fix k and l such that k > r, l < s or l > t, then
[D′,Uk,l] − [D,Uk,l] = (δk<t + δl<t · δk<r + δk<s) − (δk<s + δl<s · δk<r + δk<t) = 0.

5. D = Uu,t ⊕Us,r <mdeg Us,t ⊕Uu,r = D′, such that r < t and u < s.

[Vk,D′] − [Vk,D] = 0 and [D′,Vk] − [D,Vk] = (δk<t + δk<r) − (δk<r + δk<t) = 0.

[Uk,l,D′] − [Uk,l,D] = δu≤k<s · δr≤l<t = 0 if and only if k < u, k > s, l < r or l > t.
Fix k and l such that k < u, k > s, l < r or l > t, then
[D′,Uk,l] − [D,Uk,l] = (δk<t + δl<t · δk<s + δk<r + δl<r · δk<u)

− (δk<t + δl<t · δk<u + δk<r + δl<r · δk<s) = 0.

6. D = Ut,s ⊕ Ur,u <mdeg Ut,r ⊕ Us,u = D′, such that u < t < s < r, t < u < s < r,
t < s < u < r, s < t < r < u or t < s < r < u.

[Vk,D′] − [Vk,D] = δs≤k<r = 0 if and only if k < s or k > r.
Fix k < s or k > r, then [D′,Vk] − [D,Vk] = (δk<r + δk<u) − (δk<s + δk<u) = 0.

[Uk,l,D′] − [Uk,l,D] = δk<t · δs≤l<r + δs≤k<r · δu≤l = 0 if and only if
k > t, l < s or l > r holds true and k < s, k > r or l < u holds true.
Fix k and l such that (k > t, l < s or l > r) and (k < s, k > r or l < u), then
[D′,Uk,l] − [D,Uk,l] = (δk<r + δl<r · δk<t + δk<u + δl<u · δk<s)

− (δk<s + δl<s · δk<t + δk<u + δl<u · δk<r) = 0

7. D = Ut,s ⊕ Ur,u <mdeg Ur,t ⊕ Uu,s = D′, such that s < u < t < r, u < t < s < r or
u < t < r < s.

[Vk,D′] − [Vk,D] = δu≤k<t = 0 if and only if k < u or k > t.
Fix k < u or k > t, then [D′,Vk] − [D,Vk] = (δk<t + δk<s) − (δk<s + δk<u) = 0.

[Uk,l,D′] − [Uk,l,D] = δk<r · δu≤l<t + δu≤k<t · δs≤l = 0 if and only if
k > r, l < u or l > t holds true and k < u, k > t or l < s holds true.
Fix k and l such that (k > r, l < u or l > t) and (k < u, k > t or l < s), then
[D′,Uk,l] − [D,Uk,l] = (δk<t + δl<t · δk<r + δk<s + δl<s · δk<u)

− (δk<s + δl<s · δk<t + δk<u + δl<u · δk<r) = 0.

In all cases, theorem 3.3.11 yields the claim. �
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Corollary 3.3.13. (Explicit minimal degenerations obtained from extensions)
Lemma 3.3.12 translates as follows: D ⊕ W <deg D′ ⊕ W is a minimal degeneration in
repinj

K (Qn, I)(dB) if and only if for every direct summand X of W, the following holds true.

2. D = Us,t <mdeg Vs ⊕Vt = D′:

If X = Vk, then s < k < t and if X = Uk,l, then k > s or l < t.

3. D = Ur,t ⊕Vs <mdeg Us,t ⊕Vr = D′:

If X = Vk, then k < s or k > r and if X = Uk,l, then k < s, k > r or l < t.

4. D = Ur,s ⊕Vt <mdeg Ur,t ⊕Vs = D′:

If X = Vk, then k < s or k > t and if X = Uk,l, then k > r, l < s or l > t.

5. D = Uu,t ⊕Us,r <mdeg Us,t ⊕Uu,r = D′:

If X = Uk,l, then k < u, k > s, l < r or l > t.

6. D = Ut,s ⊕Ur,u <mdeg Ut,r ⊕Us,u = D′:

If X = Vk then k < s or k > r and if X = Uk,l, then k > t, l < s or l > r holds true
and k < s, k > r or l < u.

7. D = Ut,s ⊕Ur,u <mdeg Ur,t ⊕Uu,s = D′:

If X = Vk then k < u or k > t and if X = Uk,l, then k > r, l < u or l > t holds true
and k < u, k > t or l < s.

Proof. Follows directly from the proof of lemma 3.3.12. �

Of course, the possible direct summands of W can be read off the values of the matrices
(bk,l(D′) − bk,l(D))k,l ∈ Kn×n. For whatever k, l the entry (bk,l(D′) − bk,l(D))k,l equals zero,
the indecomposableUk,l can be a direct summand of W. The same holds true for X = Vk

except in the two differing cases mentioned in theorem 3.3.11 and of course concerning the
matrix (ak(D′) − ak(D))k ∈ K1×n.

Lemma 3.3.14. (Codimension of minimal degenerations)
Given M,M′ ∈ repinj

K (Qn, I)(dB) with M ≤deg M′, we have M <mdeg M′ if and only if
codim(M,M′) = 1.

Proof. If M <mdeg M′ comes up from the minimal, disjoint degeneration Ut,s <mdeg Us,t

by adding W, then [Ut,s, X] = [Us,t, X] whenever X is a direct summand of W follows
from theorem 3.3.8 and [X,Ut,s] = [X,Us,t] follows by a direct calculation.

If the degeneration is obtained by extensions, the results of corollary 3.3.6, theorem 3.3.8
and lemma 3.3.12 yield codim(M,M′) = 1.
Let codim(M,M′) = 1 and assume that M ≤deg M′ is not minimal. Since M and M′ cannot
be isomorphic, the degeneration is a chain of at least two minimal degenerations, each of
which has at least codimension 1. Thus, codim(M,M′) > 1, a contradiction. �
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3.3.3 Dimensions and the open orbit

We will now calculate the dimensions of the isotropy groups, the orbits and their closures.
Note that dimOM = dimOM in Rinj

dB
(Qn, I) for each representation M ∈ repinj

K (Qn, I)(dB)

and dim B.N = dim B.N in N (2) for every matrix N ∈ N (2)
n .

Although the dimensions of the orbits are changed by the bijection Φ in theorem 2.3.1, we
can nevertheless obtain from proposition 1.1.8 that codimensions and the dimensions of
isotropy groups are being preserved.

Let N ∈ N (2) be a 2-nilpotent matrix that corresponds to the representation

M =

n⊕
i, j=1

U
mi, j
i, j ⊕

n⊕
i=1

V
ni
i

in repinj
K (Qn, I)(dB) via the bijection of lemma 2.3.1.

Proposition 3.3.15. (Dimension of GLdB
-orbits in Rinj

dB
(Qn, I))

The equalities

dim IsoGLdB
(M) =

n∑
i, j=1

mi, jbi, j(M) +

n∑
i=1

niai(M)

and

dimOM =

n∑
i=1

i2 −
n∑

i, j=1

mi, jbi, j(M) −
n∑

i=1

niai(M)

hold true.

Proof. Let m be the point in Rinj
dB

(Qn, I) corresponding to M.
Since dim IsoGLdB

(m) = [M,M], the first equality follows from corollary 3.2.5.

Then dimOM = dim GLdB
− dim IsoGLdB

(M) =
n∑

i=1
i2 − [M,M] yields the claim. �

The interpretation in terms of oriented link patterns is as follows:
In order to calculate the dimension of the isotropy group, we add up the invariants bi, j(M)
for each arrow j→ i in the oriented link pattern, which were defined in 3.3. Then for each
fixed vertex i, we add the invariant ai(M).

Proposition 3.3.16. (Minimal GLdB
-orbit in Rinj

dB
(Qn, I))

There is one unique orbit of minimal dimension in Rinj
dB

(Qn, I), which is represented by

M0 =
⊕n

i=1Vi of dimension

dimOM0 =

n∑
i=1

i2 −
n(n + 1)

2
.

It corresponds naturally to the zero-matrix N0 in N (2), that is, (N0)i, j = 0 for all i, j.
Of course, dim B.N0 = 0 in N (2).
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Proof. The B-orbit of the zero-matrix N0 has dimension 0. The bijection Φ of theorem
3.1.2 yields the correspondence to the representation M0. Since codimensions are being
preserved, clearly the orbit corresponding to the isomorphism class of M0 is the orbit of
minimal dimension in Rinj

dB
(Qn, I). Its actual dimension can be computed by using proposi-

tion 3.3.15. �

Proposition 3.3.17. (Open GLdB
-orbit in Rinj

dB
(Qn, I))

There is one unique orbit of maximal dimension in Rinj
dB

(Qn, I), namely OMmax , such that

Mmax =

n/2⊕
k=1

Un−k+1,k and dimOMmax =

n∑
i=1

i2 −
n
2

if n is even and

Mmax =

n−1/2⊕
k=1

Un−k+1,k ⊕V n−1
2 +1 and dimOMmax =

n∑
i=1

i2 −
n + 1

2

if n is odd.

Proof. Regardless of n being even or odd, theorem 3.3.5 yields that every oriented link
pattern corresponding to an arbitrary representation M ∈ repinj

K (Qn, I)(dB) is obtained by
applying “decreasing minimal changes” to the oriented link pattern of Mmax. Thus, for
each representation Mmax � M ∈ repinj

K (Qn, I)(dB), the degeneration Mmax <deg M is a
proper chain of minimal degenerations and dimOMmax − dimOM ≥ 1by lemma 3.3.14. �

We have, thus, found the open orbit in Rinj
dB

(Qn, I). Note that there are no extensions between
direct summands of the representations in the open orbit if n is even. If n is odd, however,
this is not the case. More precisely, Ext1

A
(V(n+1)/2,V(n+1)/2) = 1 holds true.

Of course, we deduce

dim RdB
(Qn, I) =


n∑

i=1
i2 − n

2 , if n is even;
n∑

i=1
i2 − n+1

2 , if n is odd.

Lemma 3.3.18. (Dimension of B-orbits in N (2))
Let N ∈ N (2), then

dim B.N =
n(n + 1)

2
−

n∑
i, j=1

mi, jbi, j(N) −
n∑

i=1

niai(N).

Proof. Let N ∈ N (2), then dim IsoB(N) =
n∑

i, j=1
mi, jbi, j(N) +

n∑
i=1

niai(N).

Since dim B =
n(n+1)

2 and dim B.N = dim B − dim IsoB(N), we obtain the claimed descrip-
tion of dim B.N. �
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We obtain the orbits of maximal dimension from proposition 3.3.17 and lemma 3.3.18.

Corollary 3.3.19. (Open B-orbit in N (2))
There is one unique orbit of maximal dimension in N (2), namely B.Nmax with

(Nmax)i, j =

{
1, if i = n − j + 1 and 1 ≤ j ≤ n

2 ;
0, otherwise;

and dim B.Nmax =
n2

2

if n is even and

(Nmax)i, j =

{
1, if i = n − j + 1 and 1 ≤ j ≤ n−1

2 ;
0, otherwise;

and dim B.Nmax =
n2 − 1

2

if n is odd.

Proof. Translating proposition 3.3.17 to N (2) yields the description of Nmax. Lemma
3.3.18 then provides the claimed dimensions. �

Of course,

dimN (2) =

 n2

2 , if n is even;
n2−1

2 , if n is odd.

3.3.4 Minimal singularities

Since the bijection Φ of theorem 2.3.1 preserves types of singularities, we consider singu-
larities in Rinj

dB
(Q, I) in order to examine singularities in the B-orbit closures in N (2).

We denote a representation in repinj
K (Qn, I) by a capital letter and the corresponding point

in Rinj
dB

(Q, I) by the same small letter.

In the following, minimal singularities are discussed, that is, given a minimal degeneration
M <mdeg M′, we examine if m′ is a singularity in OM, where M ∈ repinj

K (Qn, I)(dB). Since
the bijection Φ of lemma 2.3.1 preserves types of singularities, the translation to the B-orbit
closures follows right away.

Note that if a point m′ is contained in the singular locus, then every GLdB
-conjugate of m′

is contained as well. Therefore, it suffices to consider representations in normal form.

Given a minimal degeneration M <mdeg M′ in repinj
K (Qn, I)(dB), we know that M = D ⊕W

and M′ = D′ ⊕W, such that D and D′ are disjoint and D <mdeg D′ is a minimal, disjoint
degeneration as in theorem 3.3.5 and codim(M,M′) = codim(D,D′) = 1.

Furthermore, [X,D] = [X,D′] and [D, X] = [D′, X] for every indecomposable direct sum-
mand X of W. Of course, then [X,M] = [X,M′] and [M, X] = [M′, X] holds true as well.

The following theorem is due to K. Bongartz (see [Bongartz, 1994]) and yields the reduc-
tion to minimal, disjoint degenerations; we formulate it for the setup given above.
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Theorem 3.3.20. (Cancellation theorem)
Let D <deg D′ and M = D ⊕ U <mdeg D′ ⊕ U = M′ be degenerations of the same
codimension. Then the two pointed varieties (OD⊕U , d′⊕u) and (OD, d′) are (very) smoothly
equivalent.

Thus, the pointed varieties (OD, d′) and (OM,m′) are (very) smoothly equivalent. There-
fore, in order to classify the minimal singularities, it suffices to describe singularities aris-
ing from the minimal, disjoint degenerations in theorem 3.3.5.

If the minimal, disjoint degeneration D <mdeg D′ is given by extensions, K. Bongartz
proves the following theorem (see [Bongartz, 1994]) which can easily be applied in the
setup above.

Theorem 3.3.21. (Smoothness for certain degenerations with two direct summands)
Let M <mdeg M′ = U ⊕ V be a minimal, disjoint degeneration of codimension one.
Then OM is smooth at m′.

As an easy consequence we see that no singularity arises if the minimal, disjoint degener-
ation is given by extensions.

Corollary 3.3.22. (Smoothness of minimal, disjoint degenerations from extensions)
For each minimal, disjoint degeneration D <mdeg D′ given in theorem 3.3.5 by extensions,
the point d′ is smooth in OD.

We aim to describe the minimal singularities arising from the minimal, disjoint degenera-
tionUt,s <mdeg Us,t for s < t and, therefore, examine the corresponding B-orbits.

Proposition 3.3.23. (Description of B-orbits by equations)
Let N ∈ N (2), then B.N is given by matrices X fulfilling the equations X2 = 0 and
dim(X · V j ∩ V≥i) = dim(N · V j ∩ V≥i) for all i, j ∈ {1, . . . , n}.

Proof. The datum dim(N ·V j∩V≥i) is B-invariant, it therefore suffices to consider N ∈ RB.
Furthermore, given N,N′ ∈ RB the equality dim(N · V j ∩ V≥i) = dim(N′ · V j ∩ V≥i) holds
true for all i, j ∈ {1, . . . , n} if and only if N = N′. �

We denote by Ei, j the n × n-matrix given by (Ei, j)i, j = 1 and (Ei, j)k,l = 0 otherwise.

Example 3.3.24. (The case n = 2)
We show that the point E1,2 is smooth in the closure of B.E2,1 ⊆ N

(2)
2 :

Theorem 3.3.5 yields B.E2,1 = B.E2,1 ∪ B.E1,2 ∪ {0}. The explicit structure of the orbits is
obtained from proposition 3.3.23.

• B.E2,1 =

{(
n1,1 n1,2
n2,1 n2,2

)
| n2,1 , 0; n1,1 + n2,2 = 0; n1,1n2,2 − n1,2n2,1 = 0

}

• B.E1,2 =

{(
0 n1,2
0 0

)
| n1,2 , 0

}



82 Nilpotency degree 2

• B.0 =

{(
0 0
0 0

)}
Of course,

B.E2,1 =

{(
n1,1 n1,2
n2,1 n2,2

)
| n1,1 + n2,2 = 0; n1,1n2,2 − n1,2n2,1 = 0

}
= N

(2)
2 .

The ideal
〈n1,1 + n2,2, n1,1n2,2 − n1,2n2,1〉 ⊂ k[n1,1, n1,2, n2,1, n2,2]

is reduced, thus, the associated Jacobian matrix is given by

J =

(
1 0 0 1
n2,2 −n2,1 −n1,2 n1,1

)
and we can read off the smoothness of every point contained in B.E2,1, except the zero-
matrix.

In the example n = 3, minimal singularities arise.

Example 3.3.25. (The case n = 3)
The orbits can due to proposition 3.3.23 be described by equations as follows.

• B.E1,3 =


 0 0 n1,3

0 0 0
0 0 0

 | n1,3 , 0


• B.E1,2 =


 0 n1,2 n1,3

0 0 0
0 0 0

 | n1,2 , 0


• B.E2,3 =


 0 0 n1,3

0 0 n2,3
0 0 0

 | n2,3 , 0


• B.E2,1 =


 n1,1 n1,2 n1,3

n2,1 n2,2 n2,3
0 0 0

 | n2,1 , 0; n1,1n2,2 − n1,2n2,1 = 0;
n1,1n2,3 − n1,3n2,1 = 0; n1,1 + n2,2 = 0


• B.E3,2 =


 0 n1,2 n1,3

0 n2,2 n2,3
0 n3,2 n3,3

 | n3,2 , 0; n2,2 + n3,3 = 0; n1,2n3,3 − n1,3n3,2 = 0;
n2,2n3,3 − n2,3n3,2 = 0


• B.E3,1 =


 n1,1 n1,2 n1,3

n2,1 n2,2 n2,3
n3,1 n3,2 n3,3

 | n3,1 , 0; n1,1 + n2,2 + n3,3 = 0;
n1,1n3,2 − n1,2n3,1 = 0; n2,1n3,2 − n2,2n3,1 = 0;
n1,1n3,3 − n1,3n3,1 = 0; n2,1n3,3 − n2,3n3,1 = 0


Thus, the orbit closures are given by the following equations:



3.3 Closures of Borel orbits 83

• B.E2,1 =


 n1,1 n1,2 n1,3

n2,1 n2,2 n2,3
0 0 0

 | n1,1 + n2,2 = 0; n1,1n2,2 − n1,2n2,1 = 0;
n1,1n2,3 − n1,3n2,1 = 0


• B.E3,2 =


 0 n1,2 n1,3

0 n2,2 n2,3
0 n3,2 n3,3

 | n2,2 + n3,3 = 0; n1,2n2,3 − n1,3n2,2 = 0;
n1,2n3,3 − n1,3n3,2 = 0; n2,2n3,3 − n2,3n3,2 = 0



• B.E3,1 =


 n1,1 n1,2 n1,3

n2,1 n2,2 n2,3
n3,1 n3,2 n3,3

 |
n1,1 + n2,2 + n3,3 = 0; n1,1n2,2 − n1,2n2,1 = 0;
n2,1n3,2 − n2,2n3,1 = 0; n1,1n3,3 − n1,3n3,1 = 0;
n2,1n3,3 − n2,3n3,1 = 0; n1,1n2,3 − n1,3n2,1 = 0;
n1,2n3,3 − n1,3n3,2 = 0; n2,2n3,3 − n2,3n3,2 = 0


By using the computer algebra system “Singular” (the computation is attached to the Ap-
pendix A), we can show that the induced ideals

I2,1 B
〈
n1,1 + n2,2, n1,1n2,2 − n1,2n2,1, n1,1n2,3 − n1,3n2,1, n3,1, n3,2, n3,3

〉
I3,2 B

〈
n2,2 + n3,3, n1,2n2,3 − n1,3n2,2, n1,2n3,3 − n1,3n3,2,

n2,2n3,3 − n2,3n3,2, n1,1, n2,1, n3,1

〉
and

I3,1 B

〈 n1,1 + n2,2 + n3,3, n1,1n2,2 − n1,2n2,1, n2,1n3,2 − n2,2n3,1,

n1,1n3,3 − n1,3n3,1, n2,1n3,3 − n2,3n3,1, n1,1n2,3 − n1,3n2,1,

n1,2n3,3 − n1,3n3,2, n2,2n3,3 − n2,3n3,2

〉

are reduced in k[n1,1, n1,2, n1,3, n2,1, n2,2, n2,3, n3,1, n3,2, n3,3].

Thus, the associated Jacobian matrices can be computed directly. Without loss of general-
ity, we consider the shortened ideal, deleting zero-variables.

The associated Jacobian matrix of B.E2,1 is

J =

 n2,2 −n2,1 0 −n1,2 n1,1 0
n2,3 0 n2,1 −n1,3 0 n1,1
1 0 0 0 1 0

 ,
we directly see that E1,2, E1,3 and E2,3 are singular points in B.E2,1.

The associated Jacobian matrix of B.E3,2 is

J =

 n3,3 −n3,2 0 0 −n1,3 n1,2
0 0 n3,3 −n3,2 −n2,3 n2,2
0 0 1 0 0 1

 .
and E2,3, E1,2 and E1,3 are singular in B.E3,2.
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The final orbit closure to consider is B.E3,1, in which case we obtain the Jacobian matrix

J =



1 0 0 0 1 0 0 0 1
n2,2 −n2,1 0 −n1,2 n1,1 0 0 0 0
0 0 0 n3,2 −n3,1 0 −n2,2 n2,1 0

n3,3 0 −n3,1 0 0 0 −n1,3 0 n1,1
0 0 0 n3,3 0 −n3,1 −n2,3 0 n2,1

n2,3 0 −n2,1 −n1,3 0 0 0 0 n1,1
0 n3,3 −n3,2 0 0 0 0 −n1,3 n1,2
0 0 0 0 n3,3 −n3,2 0 −n2,3 n2,2


.

The points E1,3, E1,2, E2,1, E2,3 and E3,2, thus, are singular in B.E3,1.

As we have seen, minimal degenerations in general do not correspond to smooth points in
the orbit closures. A conjecture for the general case suggests itself.

Conjecture 3.3.26. (Conjecture for minimal singularities)
The point Es,t is smooth in B.Et,s if and only if n = 2, s = 1 and t = 2.

3.4 Closures of parabolic orbits

In view of section 3.3, we generalize the results on B-orbit closures to arbitrary parabolic
actions in what follows.

Let P be the parabolic subgroup of block sizes (b1, . . . , bp). The closures of the orbits P.N
with N ∈ N (2) can be classified easily.

Lemma 3.4.1. (Parabolic orbit closures in N (2))
Let N ∈ N (2), then

P.N =
⋃
{N′ ∈ N (2) | ai(N) ≤ ai(N′) and bi, j(N) ≤ bi, j(N′) for all 1 ≤ i, j ≤ p}.

Proof. Follows directly from section 3.3. �

3.4.1 Minimal, disjoint degenerations

We consider the description of the orbits as enhanced oriented link patterns. The minimal,
disjoint degenerations are given by exactly the same proof as in theorem 3.3.5.

Of course, in case we are looking at repinj
K (Qn, I)(dB)part some degenerations are missing,

since the link patterns then cannot have loops or double arrows.

An indecomposable Vi is denoted, as before, by a dot and an indecomposable Ui,i by a
loop at the vertex i.
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Theorem 3.4.2. (Minimal, disjoint pieces of degenerations)
Let D <mdeg D′ be a minimal, disjoint degeneration in repinj

K (Qp, I). Then it either appears
in theorem 3.3.5 or in one of the following chains.

•
�� <mdeg

•̈

•̇ •
�� <mdeg

• •̇
�� <mdeg

•̇ •
		

• •̇
�� <mdeg

•̇ •
�� <mdeg

• •̇
��

• •
��
JJ
<mdeg

• •JJ


 <mdeg

• •
�� �� <mdeg

• •TT




• • •
��

TT
<mdeg

• • •
�� �� <mdeg

• • •
��

JJ
<mdeg

• • •
�� 

 <mdeg

• • •TT
��

• • •
��

FF
<mdeg

• • •
��

JJ
<mdeg


• • •




JJ

• • •
��
TT

 <mdeg
• • •




TT
<mdeg

• • •
��

XX

• • •
��
JJ
<mdeg

• • •
�� �� <mdeg

• • •
��

TT
<mdeg

• • •JJ
�� <mdeg

• • •


 �� <mdeg

• • •TT
��

Proof. Due to proposition 3.3.4, either D′ is indecomposable or D′ is the direct sum of
two indecomposables. In the same way as in the proof of theorem 3.3.5, the so far missing
minimal, disjoint degenerations in repinj

K (Qp, I) are obtained. �

Each minimal P-degeneration inN (2) is given by some degeneration D⊕W <mdeg D′ ⊕W,
such that the degeneration D <mdeg D′ is one of theorem 3.4.2. Due to this fact, we can
construct the P-orbit closures for a given P-orbit by adjusting minimal, disjoint moves to
the enhanced oriented link pattern corresponding to this orbit.

We will calculate the representations W which lead to minimal degenerations for parabolic
orbit closures, too. Given a minimal, disjoint degeneration D <mdeg D′ due to the parabolic
action, we have seen that D′ decomposes into two indecomposables. Thus, we are in the
case where the degenerations are obtained by extensions and can prove the minimality by
calculating the dimensions of the homomorphism spaces.
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Lemma 3.4.3. (Minimal degenerations)
Let D <mdeg D′ be a disjoint, minimal degeneration in repinj

K (Qp, I) with D � Ut,s.
A degeneration M B D ⊕W <deg D′ ⊕W =: M′ in repinj

K (Qp, I)(dP) is minimal if and only
if

ai(M) = ai(M′) and ai(M) = ai(M′)

for every direct summandVi of W and

bi, j(M) = bi, j(M′) and bi, j(M) = bi, j(M′)

for every direct summand Ui, j of W.

Proof. Since every degeneration is obtained by extensions, the claim follows directly from
proposition 3.2.4 and the proof of theorem 3.3.11. �

3.4.2 Dimensions of orbits

The same reasoning as in the previous section yields the following results about the di-
mensions of the P-orbits. Let N ∈ N (2) be a 2-nilpotent matrix that corresponds to the
representation

M =

p⊕
i, j=1

U
mi, j
i, j ⊕

p⊕
i=1

V
ni
i

in repinj
K (Qp, I)(dP) via the bijection of lemma 2.3.1.

Proposition 3.4.4. (Dimension of GLdP
-orbits in Rinj

dP
(Qp, I))

dimOM =

p∑
i=1

 i∑
x=1

bi


2

−

p∑
i, j=1

mi, jbi, j(M) −
p∑

i=1

niai(M).

There is a unique GLdP
-orbit of minimal dimension in RdP

(Qp, I), represented by

M0 B
p⊕

i=1
V

bi
i of dimension

dimOM0 =

p∑
i=1

b2
i −

p∑
i=1

i∑
x=1

(bi · bx).

It corresponds naturally to the P-orbit of minimal dimension in N (2), which is represented
by the zero-matrix and has dimension 0.

Corollary 3.4.5. (Dimension of P-orbits in N (2))

dim P.N =

p∑
i=1

i∑
x=1

(bi · bx) −
p∑

i, j=1

mi, jbi, j(N) −
p∑

i=1

niai(N).
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Assume N ∈ N (2) to be a matrix of rank N = x. Considering the GLn-action, the results
above yield

dim GLn .N = n2 − m1,1b1,1(N) − n1a1(N)

= n2 − x · n − (n − x)(n − x)

= x · (n − x).

Furthermore, we now know dim IsoGLn(N) = n2 − x · (n − x) = n2 − xn + x2.

We end the section with the description of the open orbits for these group actions. In case
GLn acts, the open orbit is clearly given by the highest rank matrices. In case of a parabolic
action, the description is slightly more difficult, though.

Let M be a representation in Rinj
dP

(Qp, I) and consider the enhanced oriented link pattern
corresponding to M. As has been seen in proposition 3.1.10, this enhanced oriented link
pattern can be extended to an oriented link pattern by splitting each vertex k into bk vertices
k(1), . . . , k(bk) and drawing arrows accordingly. Without loss of generality, we denote the
vertices by 1P, . . . , nP and can read off the open orbit directly.

We define UP
iP, jP

B Ux,y if there exist 1 ≤ s ≤ bx and 1 ≤ t ≤ by, such that iP = b(s)
x

and jP = b(t)
y . Furthermore, set VP

iP
B Vx if there exists an integer 1 ≤ s ≤ bx, such that

iP = b(s)
x .

Proposition 3.4.6. (Open GLdP
-orbit in Rinj

dP
(Qp, I))

The open orbit is represented by

Mmax =

n/2⊕
k=1

UP
(n−k+1)P,kP

if n is even and by

Mmax =

(n−1)/2⊕
k=1

UP
(n−k+1)P,kP

⊕VP
( n−1

2 +1)P

if n is odd.
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4 Finite classifications in higher
nilpotency degrees

We will next take matrices of nilpotency degree greater than 2 into consideration.

If B acts on N (x) and x > 2, the number of orbits is infinite as we will see in section 4.2.
Thinking in detail about the classification of B-orbits in N (x) via the associated algebra of
theorem 2.3.1, one realizes that the corresponding quiver as well as the associated classifi-
cation problem are of wild type. The same holds true for arbitrary non-maximal parabolic
actions, which we will prove in section 4.3.1.

Considering arbitrary parabolic actions, infinite classifications arise in most cases, but there
is one particular exception: the action of a maximal parabolic subgroup on matrices of
nilpotency degree 3.

4.1 Maximal parabolic action for x = 3

The only case where the algebra associated to the action of P on N (x) is representation-
finite comes up for x = 3 and a maximal parabolic subgroup Pm of arbitrary block-sizes
(b1, b2). We classify this case in the following before proving that it is the only finite case
in section 4.2.

4.1.1 Classification of the orbits

Let us define the quiver

Q B Q(2, 3) : • •

1 2

α1
α

.

Section 2.3 proposes to consider representations of the algebra A B KQ/I where I is the
admissible ideal I = (α3) in order to classify the Pm-orbits in N (3).

Define E(s)
i, j to be the elementary s × s-matrix with (E(s)

i, j )i, j = 1 and (E(s)
i, j )i′, j′ = 0 for

(i, j) , (i′, j′).

If i ≤ j, we furthermore define ei, j to be the natural embedding of Ki into K j.
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Theorem 4.1.1. (Indecomposable representations in repK(Q, I))
All indecomposable representations in repK(Q, I) are (up to isomorphism) of the form

U = Ki K j
ei, j

N

for certain integers i, j and nilpotent matrices N which are explicitly listed in the table
below.

We thereby name the indecomposables (the indeces coincide with the above mentioned
integers i, j) and describe their dimension vectors which are due to the corresponding
covering quiver and will be understood from the proof.

We again visualize each indecomposable graphically as in theorem 3.1.1 by a diagram of
dots for basis elements and arrows for maps sending one basis element to another; a dotted
arrow marks a map that sends a basis element to the negative of another basis element.

Indecom−
posable
U

Dimension−
vector

Matrix N Diagram D(U)

U0,1 01 0
•

◦

U1,1 11 0
•

•

U0,2
01
01 E(2)

2,1
• •

◦ ◦

U
(1)
1,2

11
01 E(2)

2,1
• •

• ◦

U
(2)
1,2

01
11 E(2)

1,2
• •

• ◦

U2,2
11
11 E(2)

2,1
• •

• •

Projectives:

U0,3

01
01
01

E(3)
2,1 + E(3)

3,2
• • •

◦ ◦ ◦

U
(1)
1,3

11
01
01

E(3)
2,1 + E(3)

3,2
• • •

• ◦ ◦
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Indecom−
posable
U

Dimension−
vector

Matrix N Diagram D(U)

U
(1)
2,3

11
11
01

E(3)
2,1 + E(3)

3,2
• • •

• • ◦

U
(2)
1,3

01
11
01

E(3)
3,1 + E(3)

1,2
• • •

• ◦ ◦

U
(2)
2,3

11
01
11

E(3)
3,1 + E(3)

2,3
• • •

• • ◦

Injectives:

U1,0 10 0
◦

•

U3,3

11
11
11

E(3)
2,1 + E(3)

3,2
• • •

• • •

U
(3)
1,3

01
01
11

E(3)
1,2 + E(3)

2,3
• • •

• ◦ ◦

U
(3)
2,3

01
11
11

E(3)
1,2 + E(3)

2,3
• • •

• • ◦

U1,4

01
12
01

E(4)
2,1 + E(4)

2,3
+E(4)

3,4

• • • •

• ◦ ◦ ◦

U
(1)
2,4

11
12
01

E(4)
3,1 + E(4)

4,2
+E(4)

4,3

• • • •

• • ◦ ◦

U
(2)
2,4

01
12
11

E(4)
1,2 + E(4)

1,3
+E(4)

3,4

• • • •

• • ◦ ◦

U3,4

11
12
11

E(4)
1,2 + E(4)

1,4
+E(4)

4,3

• • • •

• • • ◦
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Indecom−
posable
U

Dimension−
vector

Matrix N Diagram D(U)

U
(1)
2,5

12
12
01

E(5)
3,1 + E(5)

4,2
+E(5)

3,4 + E(5)
1,5

• • • • •

• • ◦ ◦ ◦

U
(2)
2,5

01
12
12

E(5)
3,2 + E(5)

1,4
+E(5)

2,5 + E(5)
4,5

• • • • •

• • ◦ ◦ ◦

U
(1)
3,5

12
12
11

E(5)
4,2 + E(5)

2,3
+E(5)

5,3 + E(5)
1,5

• • • • •

• • • ◦ ◦

U
(2)
3,5

11
12
12

E(5)
1,2 + E(5)

4,3
+E(5)

1,4 + E(5)
2,5

• • • • •

• • • ◦ ◦

U2,6

01
12
12
01

E(6)
1,3 + E(6)

2,1
+E(6)

2,4 − E(6)
4,3

+E(6)
5,1 + E(6)

6,2

• • • • • •

• • ◦ ◦ ◦ ◦

U3,6

12
12
12

E(6)
1,2 + E(6)

4,2
+E(6)

5,3 + E(6)
4,5

+E(6)
2,6 − E(6)

5,6

• • • • • •

• • • ◦ ◦ ◦

U
(1)
3,6

11
12
12
01

E(6)
2,1 + E(6)

3,2
+E(6)

3,4 − E(6)
4,1

+E(6)
5,2 + E(6)

6,3

• • • • • •

• • • ◦ ◦ ◦

U
(2)
3,6

01
12
12
11

E(6)
2,5 + E(6)

3,2
+E(6)

3,6 + E(6)
5,4

+E(6)
6,1 − E(6)

6,5

• • • • • •

• • • ◦ ◦ ◦

U4,6

11
12
12
11

E(6)
2,1 + E(6)

3,2
+E(6)

3,5 + E(6)
4,3

−E(6)
5,1 + E(6)

6,2

• • • • • •

• • • • ◦ ◦
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Indecom−
posable
U

Dimension−
vector

Matrix N Diagram D(U)

U3,7

12
13
12

E(7)
1,2 + E(7)

4,2
−E(7)

6,3 − E(7)
1,5

−E(7)
4,6 − E(7)

5,7

• • • • • • •

• • • ◦ ◦ ◦ ◦

U4,7

12
23
12

E(7)
5,2 + E(7)

1,3
+E(7)

2,4 + E(7)
6,4

+E(7)
3,7 + E(7)

6,7

• • • • • • •

• • • • ◦ ◦ ◦

The only indecomposable not contained in repinj
K (Q, I) is the indecomposableU1,0.

Proof. In order to calculate representatives of the isomorphism classes of indecomposable
representations of the quiver

Q : • •

1 2

α1
α

we make use of covering theory which was briefly recapitulated in subsection 1.2.1.

The universal covering quiver of Q at the vertex 2 is the (infinite) quiver Q̂ given by
...

...

• •

Q̂ : • •

• •

...
...

αi−1

αi

αi+1

αi+2

together with the induced ideal Î, generated by all paths αi+1αiαi−1, and the fundamental
group Z. The natural free action of the group Z on Q̂ is given by shifting the rows.

The algebra Â = KQ̂/Î is locally representation-finite since for each vertex x ∈ Q̂, the
number of indecomposables M (up to isomorphism) with Mx , 0 is finite as we will see in
the following. Therefore, due to lemma 1.2.3, we have a bijection between the indecom-
posables inA and the indecomposables in Â/Z.



94 Finite classifications in higher nilpotency degrees

For every integer k, we consider the finite subquiver

• •

• •

Q(k) :
...

...

• •

• •

α1

αk−1

together with the ideal I(k) generated by the paths αi+1αiαi−1 for i ∈ {2, . . . , k − 2}.

The Auslander-Reiten quivers Γ(Q(k), I(k)) can be calculated with elementary methods
(see [Assem et al., 2006, IV.4]).

By calculating the Auslander-Reiten quivers Γ(Q(4), I(4)) and Γ(Q(5), I(5)), we realize that
all isomorphism classes of indecomposables in KQ(5)/I(5) already appear (up to the ac-
tion of Z) in the quiver Γ(Q(4), I(4)). The translation of the indecomposables between the
algebras is deduced directly from the action of Z.

It, therefore, suffices to calculate the indecomposable representations of the quiver

• •

Q(4) : • •

• •

• •

α1

α2

α3

with the associated ideal I(4) generated by the path α3α2α1, since all indecomposables
arise up to the action of Z and up to isomorphism.

The Auslander-Reitem quiver Γ(Q(4), I(4)) is sketched in figure 5.1, where we denote the
indecomposables by their dimension vectors. Note that we directly delete zero rows in the
dimension vectors, such that the identifications by the action of Z can be seen right away.

We derive the Auslander-Reiten quiver Γ = Γ(Q, I) just by making the identifications re-
sulting from the action of Z as in the proof of lemma 3.1.1. Figure 5.2 shows Γ(Q, I), the
dotted lines mark the mentioned identifications.



4.1 Maximal parabolic action for x=3 95

01

↗

↘

11

↘

01
01

↗

↘

→

01
11

↗

↘
11
01 →

01
01
01

↗

↘

01

↘

01
12
12

↗

↘

→

11
01
01

↗

01
12
01

↗

↘
01
01
11
→

11
12
12

↗

↘

01
11
01

12
13
12

11
11

↘

↗

↘

→

↗

12
12
12

↗

↘
11
12
01
→

01
12
11

↗

↘

11
01
11

12
23
12

01
01

↘

↗

↘

→

↗

↘

11
12
11

↗

↘
01
11
11
→

12
12
01

↗

↘

01
01
01

↗

↘

11

↘

12
12
11

↗

↘

→

01
12
12
01

↗

↘

11
01
01

↗

01
11

↗

↘
11
01 →

01
12
12
11

↗

↘

11
12
12
01

↗

↘

01

↘

01
12
12

↗

↘

→

11
12
12
11

↗

↘

11
11
01

↗

01
12
01

↗

↘
01
01
11
→

11
12
12

↗

↘

11
11
11

↗

↘

01
11
01
↘

12
13
12

↗

↘

→

11
11

↗

10

12
12
12

↗

↘
11
12
01
→

01
12
11

↗

↘

11
01
11
↘

12
23
12

↗

↘

→

01
01

↗

11
12
11

↗

↘
01
11
11
→

12
12
01

↗

↘

11

↘

12
12
11

↗

↘

→

11
11
01

↗

01
11

↗

↘
11
01 →

11
11
11

↗

↘

01

↘

11
11

↗

→

10

11

↗

10

10

Figure 4.1: The Auslander-Reiten quiver Γ(Q(4), I(4))

The representations given in the table are all indecomposable, which can, for example,
be proved by showing that the corresponding endomorphism rings are local. Either the
representations have been considered in the 2-nilpotent case or the number of given rep-
resentations coincides with the number of corresponding indecomposables with the same
dimension vectors in the Auslander Reiten quiver Γ(Q, I).

↘

↗

↘

→

↗

12
12
12

↗

↘
11
12
01
→

01
12
11

↗

↘

. . .

11
01
11

12
23
12

01
01

↘

↗

↘

→

↗

↘

11
12
11

↗

↘
01
11
11
→

12
12
01

↗

↘

01
01
01

↗

↘

11

↘

12
12
11

↗

↘

→

01
12
12
01

↗

↘

11
01
01

↗

01
11

↗

↘
11
01 →

01
12
12
11

↗

↘

11
12
12
01

↗

↘

01

↘

01
12
12

↗

↘

→

11
12
12
11

↗

↘

11
11
01

↗

01
12
01

↗

↘
01
01
11
→

11
12
12

↗

↘

11
11
11

↗

↘

01
11
01
↘

12
13
12

↗

↘

→

11
11

↗

10

12
12
12

↗

↘
11
12
01
→

01
12
11

↗

↘

11
01
11
↘

12
23
12

↗

↘

→

01
01

↗

↘

11
12
11

↗

↘
01
11
11
→

12
12
01

↗

↘

01
01
01

↗

↘

11

↘

12
12
11

↗

↘

→

01
12
12
01

↗

↘

11
01
01

↗

Figure 4.2: The Auslander-Reiten quiver Γ(Q, I)

Thus, for each isomorphism class of indecomposables, a representative has been found. �
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We have found a normal form for each isomorphism class of indecomposable representa-
tions in repinj

K (Q, I) and can, without loss of generality, assume each upcoming indecom-
posable to be in normal form.

Denote by d := (b1, n) the dimension vector of theorem 2.3.1 and set U(0)
i, j B Ui, j for

reasons of formality.

Corollary 4.1.2. (GLd-orbits in Rinj
d (Q, I))

Each isomorphism class in repinj
K (Q, I)(d) contains a unique representation

M B
⊕
i, j,x

U
(x)m(x)

i, j
i, j ,

such that
∑

i, j,x m(x)
i, j · i = b1 and

∑
i, j,x m(x)

i, j · j = n.

Following lemma 2.3.1, the Pm-orbits of 3-nilpotent matrices are in bijection to the iso-
morphism classes of representations in repinj

K (Q, I) of dimension vector d. We translate the
description of these representatives to the Pm-orbits in N (3):

LetU andV be two indecomposable representations in repinj
K (Q, I). We denoteU ≤tab V

ifU comes up beforeV in the table of theorem 4.1.1, or ifU = V.

Let U be an indecomposable representation in repinj
K (Q, I) with dimU = (i, j). We de-

note i(U) := i and j(U) := j. Theorem 4.1.1 yields a diagram D(U) of i(U) bullets and
j(U) − i(U) circles in the bottom row and j(U) bullets in the top row.

Assume M = U1 ⊕ . . . ⊕ Us is a representation in repinj
K (Q, I) of dimension vector d, that

is,
∑s

k=1 i(Uk) = b1 and
∑s

k=1 j(Uk) = n. Assume furthermore Uk ≤tab Uk+1 for all k and
denote the columns of the diagram D(Uk) from left to right by (Uk)1 up to (Uk) j(Uk).

If we regard the sequence of diagrams D(U1), . . . ,D(Us) as one diagram of n columns
and s disjoint subdiagrams, we obtain a diagram called D(M) naturally. By changing the
positions of the columns of D(M) to

(U1)1,.., (U1)i(U1),.., (Us)1,.., (Us)i(Us), (U1)i(U1)+1,.., (U1) j(U1),.., (Us)i(Us)+1,.., (Us) j(Us)

and by adapting the arrows accordingly, we obtain a diagram which we denote by D̃(M).

Example 4.1.3. (The diagrams D(M) and D̃(M))
We consider the maximal parabolic subgroup Pm of block sizes (4, 9) which acts on N (3)

9
and define the representation M := U(1)

1,3⊕U
(2)
3,6. The corresponding diagrams (see theorem

4.1.1) which show how basis elements are mapped to each other are given by

D(U(1)
1,3) = • • • and D(U(2)

3,6) = • • • • • •

•
1

◦
2

◦
3

•
1

•
2

•
3

◦
4

◦
5

◦
6 .
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We obtain the diagrams

D(M) = • • • • • • • • •

•
1

◦
2

◦
3

•
1

•
2

•
3

◦
4

◦
5

◦
6 .

and

D̃(M) B • • • • • • • • •

•
1

•
2

•
3

•
4

◦
5

◦
6

◦
7

◦
8

◦
9 .

Corresponding to the diagram D̃(M), we define the 3-nilpotent matrix N(M) ∈ Kn×n as
follows:

(N(M))i, j B


1, if there is a permanent arrow j→ i in D̃(M);
−1, if there is a dotted arrow j→ i in D̃(M);
0, otherwise.

Example 4.1.4. (The matrix N(M))
In the setting of example 4.1.3, we can read off the matrix

N(M) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 −1 0


which is a representative of the corresponding Pm-orbit.

The matrix N(M) corresponds to the representation M naturally via the bijection Φ of
lemma 2.3.1. We have, therefore, proved the following corollary of theorem 4.1.1.

Corollary 4.1.5. (Classification of Pm-orbits in N (3))
Let N ∈ N (3), then the orbit Pm.N contains a unique matrix N(M), where M is a represen-
tation in repinj

K (Q, I)(d).

We have found a normal form for each Pm-orbit.
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4.1.2 Orbit closures

As in section 3.3, by making use of theorem 1.2.8, the orbit closures can be calculated.

Lemma 4.1.6. (Pm-orbit closures in N (3))
The Pm-orbit of a matrix N ∈ N (3) is contained in the Pm-orbit closure of N′ ∈ N (3)

if and only if [V,Φ(N′)] ≤ [V,Φ(N)] for all indecomposables V ∈ repK(Qp, I).

The dimensions are given in the following tables. With these, all degenerations can be
obtained in case the numbers n, b1 and b2 are fixed.

↗ U0,1 U0,2 U0,3 U1,0 U1,1 U
(1)
1,2 U

(2)
1,2 U

(1)
1,3 U

(2)
1,3 U

(3)
1,3

U1,4 U2,2 U
(1)
2,3 U

(2)
2,3 U

(3)
2,3

U0,1 1 1 1 0 1 1 1 1 1 1 2 1 1 1 1
U0,2 1 2 2 0 1 2 2 2 2 2 3 2 2 2 2
U0,3 1 2 3 0 1 2 2 3 3 3 4 2 3 3 3
U1,0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
U1,1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1

U(1)
1,2

0 0 0 1 1 1 1 0 1 1 1 2 1 1 2

U(2)
1,2

1 1 1 1 1 1 2 1 1 2 2 2 1 2 2

U(1)
1,3

0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

U(2)
1,3

1 1 1 1 1 1 2 1 2 2 2 2 2 2 2

U(3)
1,3

1 2 2 1 1 2 2 2 2 3 3 2 2 2 3

U1,4 1 2 2 1 2 2 3 2 3 3 4 2 3 3 4
U2,2 0 0 0 2 1 0 1 0 0 1 0 2 0 1 2

U(1)
2,3

0 0 0 2 1 0 1 0 0 1 0 2 1 1 2

U(2)
2,3

0 0 0 2 1 1 1 0 1 1 1 2 1 2 2

U(3)
2,3

1 1 1 2 1 1 2 1 1 2 2 2 1 2 3

U(1)
2,4

0 0 0 2 2 1 2 0 1 2 1 3 2 2 3

U(2)
2,4

1 2 2 2 2 2 3 2 2 3 3 3 2 3 4

U(1)
2,5

1 1 1 2 2 2 3 1 2 3 3 4 3 3 4

U(2)
2,5

1 2 2 2 2 2 3 2 3 4 4 4 3 4 5

U2,6 1 2 2 2 2 2 3 2 3 4 4 4 4 4 5
U3,3 0 0 0 3 1 0 1 0 0 1 0 2 0 1 2
U3,4 0 0 0 3 2 1 2 0 1 2 1 3 2 2 4

U(1)
3,5

0 0 0 3 2 1 2 0 1 2 1 4 2 3 4

U(2)
3,5

1 1 1 3 2 2 3 1 2 3 3 4 2 3 4

U3,6 1 1 1 3 2 2 3 1 2 3 3 4 3 4 5

U(1)
3,6

0 0 0 3 2 1 2 0 1 2 2 4 3 3 4

U(2)
3,6

1 2 2 3 2 2 3 1 2 3 3 4 3 4 5

U3,7 1 2 2 3 3 3 4 2 3 4 4 5 4 5 6
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↗ U0,1 U0,2 U0,3 U1,0 U1,1 U(1)
1,2 U(2)

1,2 U(1)
1,3 U(2)

1,3 U(3)
1,3

U1,4 U2,2 U(1)
2,3 U(2)

2,3 U(3)
2,3

U4,6 0 0 0 4 2 2 2 0 1 2 2 4 2 3 4
U4,7 1 1 1 4 3 2 3 1 2 4 3 5 3 4 6
↗ U(1)

2,4 U(2)
2,4 U(1)

2,5 U(2)
2,5

U2,6 U3,3 U3,4 U(1)
3,5 U(2)

3,5
U3,6 U(1)

3,6 U(2)
3,6

U3,7 U4,6 U4,7

U0,1 2 2 2 2 2 1 2 2 2 2 2 2 3 2 3
U0,2 3 3 4 4 4 2 3 4 4 4 4 4 5 4 5
U0,3 4 4 5 5 6 3 4 5 5 6 6 6 7 6 7
U1,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U1,1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1

U(1)
1,2

1 2 1 2 1 2 2 2 2 2 1 2 2 3 3

U(2)
1,2

2 3 2 3 2 2 2 3 3 3 2 2 4 3 4

U(1)
1,3

2 2 2 2 2 3 3 3 3 3 3 3 3 4 4

U(2)
1,3

2 3 3 3 3 3 3 3 4 4 3 4 4 4 5

U(3)
1,3

3 4 4 4 4 3 4 4 5 5 4 5 6 5 6

U1,4 4 5 5 6 6 4 5 5 6 5 5 6 7 5 8
U2,2 0 2 0 1 0 2 2 1 2 1 0 2 1 2 2

U(1)
2,3

0 2 0 1 0 3 2 1 2 1 0 2 1 2 2

U(2)
2,3

1 2 1 2 1 3 3 2 3 2 1 3 2 3 3

U(3)
2,3

2 3 2 3 2 3 3 3 4 3 2 4 4 4 4

U(1)
2,4

2 3 2 3 2 4 4 3 4 3 2 4 3 4 5

U(2)
2,4

3 5 4 5 4 4 5 5 6 5 4 6 6 6 7

U(1)
2,5

3 5 4 5 4 5 5 5 6 5 4 6 6 6 8

U(2)
2,5

4 6 5 6 3 5 6 6 7 7 5 7 8 6 9

U2,6 4 6 5 6 6 6 6 6 8 7 6 8 8 8 9
U3,3 0 2 0 1 0 3 2 1 2 1 0 2 1 2 2
U3,4 1 3 1 3 1 4 4 3 4 3 1 4 3 4 4

U(1)
3,5

2 4 2 3 2 5 5 4 5 4 2 5 4 5 6

U(2)
3,5

3 5 3 5 3 5 5 5 6 5 3 6 6 6 7

U3,6 4 5 4 5 4 6 6 5 7 6 4 7 6 7 8

U(1)
3,6

2 4 2 3 2 6 5 4 5 4 3 4 5 6 6

U(2)
3,6

5 6 5 6 5 6 6 6 7 7 5 8 8 8 8

U3,7 5 7 5 7 6 7 8 7 9 8 6 9 9 8 11
U4,6 2 4 2 3 3 6 5 4 5 4 2 5 4 3 6
U4,7 3 6 4 6 4 7 8 6 8 6 4 8 8 7 9
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4.1.3 Dimensions and the open orbit

As in subsection 4.1.1, in order to calculate the dimensions of the Pm-orbits and to describe
the open Pm-orbit in N (3) for a maximal parablic subgroup Pm of block sizes (b1, b2), we
make use of the translation of lemma 2.3.1 and corollary 1.1.8.

Dimensions of orbits

Let M ∈ repinj
K (Q, I)(d) be a representation, then

dimOM = dimOM = dim GLd − dim IsoGLd (M)

= dim GLd −[M,M]

= b2
1 + n2 − [M,M]

due to section 2.3. The dimensions, therefore, can be calculated by using the tables of
subsection 4.1.2.

Note that the zero matrix in N (3) corresponds to the representation M0 = U
b1
1,1 ⊕ U

b2
0,1 via

the bijection of lemma 2.3.1 and the orbit OM0 fulfills

dimOM0 = dim GLd −[Ub1
1,1 ⊕U

b2
0,1,U

b1
1,1 ⊕U

b2
0,1]

= b2
1 + n2 − b2

1 − b1b2 − b2
2

= n · b1.

Proposition 4.1.7. (Dimensions of Pm-orbits in N (3))
If a matrix N ∈ N (3) and a representation M ∈ repinj

K (Q, I)(d) correspond to each other via
the bijection Φ of lemma 2.3.1, then

dim Pm.N = n2 − b1b2 − [M,M].

The open orbit

We denote the matrix in normal form in the open Pm-orbit in N (3) by Nopen and the repre-
sentation in normal form in the open GLd-orbit in Rinj

d (Q, I) by Mopen.

Since the open orbit is the orbit of maximal dimension, we have dim Pm.Nopen = dimN (3)

and dimOMopen = dim Rinj
d (Q, I).

Proposition 4.1.8. (Dimension of the variety N (3))

dimN (3) =


n2 − 3r2, if n = 3r;
n2 − 3r2 − 2r − 1, if n = 3r + 1;
n2 − 3r2 − 4r − 2, if n = 3r + 2.
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Proof. In case of the GLn-action, the open orbit is represented by the matrix N of maximal
Jordan blocks.

Since dimN (3) = dim GLn .N = dim GLn − dim IsoGLn(N) = n2 − dim IsoGLn(N) it suffices
to show

dim IsoGLn(N) =


3r2, if n = 3r;
3r2 + 2r + 1, if n = 3r + 1;
3r2 + 4r + 2, if n = 3r + 2.

Let n = 3r and let g ∈ GLn. Then g ∈ IsoGLn(N) if and only if g = (Gi, j)1≤i, j≤r where

Gi, j =

 ai, j 0 0
bi, j ai, j 0
ci, j bi, j ai, j

 ∈ K3×3

for certain elements ai, j, bi, j, ci, j ∈ K.

Let n = 3r + 1 and let g ∈ GLn. Then g ∈ IsoGLn(N) if and only if g =

(
Gi, j Bi

C j D

)
1≤i, j≤r

where Gi, j is a matrix as above,

Bi =

 bi

0
0

 and C j =
(

c j 0 0
)

and D = (d)

for certain elements bi, c j, d ∈ K.

Let n = 3r + 2 and let g ∈ GLn. Then g ∈ IsoGLn(N) if and only if g =

(
Gi, j Bi

C j D

)
1≤i, j≤r

where Gi, j is a matrix as above,

Bi =

 bi 0
b′i bi

0 0

 and C j =

(
c j 0 0
c′j c j 0

)
and D =

(
d 0
d′ d

)

for certain elements bi, b′i , c j, c′i , d, d
′ ∈ K.

The claim follows. �

Lemma 4.1.9. (The representation Mopen)
The representation Mopen is the unique representation in normal form that fulfills

[Mopen,Mopen] =


3r2 − b1b2, if n = 3r;
3r2 + 2r + 1 − b1b2, if n = 3r + 1;
3r2 + 4r + 2 − b1b2, if n = 3r + 2.

Proof. Since

dimN (3) = dim Pm.Nopen = dimOMopen − n · b1 = b2
1 + n2 − [Mopen,Mopen] − n · b1,

the claim follows from proposition 4.1.8. �
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Making use of lemma 4.1.9, we are able to give an explicit description of the representation
Mopen.

Corollary 4.1.10. (Explicit description of the open orbit)
We consider the following cases:

1.1 If b1 ≤ b2, such that b1 ≤ r, then

Mopen = (U(1)
1,3)b1 ⊕ (U0,3)r−b1 ⊕


0, if n = 3r;
U0,1, if n = 3r + 1;
U0,2, if n = 3r + 2;

1.2 If b1 ≤ b2, such that b1 > r, then

Mopen = (U(1)
3,6)b1−r−1 ⊕ (U(1)

1,3)n−2b1 ⊕


U

(1)
3,6, if n = 3r;
U

(1)
2,4, if n = 3r + 1;
U

(1)
1,2, if n = 3r + 2;

2.1 If b1 ≥ b2, such that b2 ≤ r, then

Mopen = (U(1)
2,3)b2 ⊕ (U3,3)r−b2 ⊕


0, if n = 3r;
U1,1, if n = 3r + 1;
U2,2, if n = 3r + 2;

2.2 If b1 ≥ b2, such that b2 > r, then

Mopen = (U(1)
3,6)b2−r−1 ⊕ (U(1)

2,3)n−2b2 ⊕


U

(1)
3,6, if n = 3r;
U

(1)
2,4, if n = 3r + 1;
U

(1)
1,2, if n = 3r + 2;

Proof. We only consider the first two cases since the case 1.1 is symmetric to the case 2.1
and the case 1.2 is symmetric to the case 2.2.

Let n = 3r. If b1 ≤ b2, such that b1 ≤ r, then

[Mopen,Mopen] = [(U(1)
1,3)b1 ⊕ (U0,3)r−b1 , (U(1)

1,3)b1 ⊕ (U0,3)r−b1]

= b2
1 + 3b1(r − b1) + 3(r − b1)2

= 3r2 − b1b2.

If b1 ≤ b2, such that b1 > r, then

[Mopen,Mopen] = [(U(1)
3,6)b1−r ⊕ (U(1)

1,3)n−2b1 , (U(1)
3,6)b1−r ⊕ (U(1)

1,3)n−2b1]

= 3(b1 − r)2 + 3(b1 − r)(3r − 2b1) + (3r − 2b1)2

= 3r2 − b1b2.
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Lemma 4.1.9 yields the claim for the case n = 3r.

Let n = 3r + 1. If b1 ≤ b2, such that b1 ≤ r, then

[Mopen,Mopen] = [(U(1)
1,3)b1 ⊕ (U0,3)r−b1 ⊕U0,1, (U

(1)
1,3)b1 ⊕ (U0,3)r−b1 ⊕U0,1]

= b2
1 + 3b1(r − b1) + 3(r − b1)2 + 2(r − b1) + b1 + 1

= 3r2 + 2r + 1 − b1b2.

If b1 ≤ b2, such that b1 > r, then

[Mopen,Mopen] = [(U(1)
3,6)b1−r−1 ⊕ (U(1)

1,3)n−2b1 ⊕U
(1)
2,4, (U

(1)
3,6)b1−r−1 ⊕ (U(1)

1,3)n−2b1 ⊕U
(1)
2,4]

= 3(b1 − r − 1)2 + 3(b1 − r − 1)(n − 2b1) + (n − 2b1)2

+ 4(b1 − r − 1) + 2(n − 2b1) + 2

= 3r2 + 2r + 1 − b1b2.

Lemma 4.1.9 yields the claim for the case n = 3r + 1.

Let n = 3r + 2. If b1 ≤ b2, such that b1 ≤ r, then

[Mopen,Mopen] = [(U(1)
1,3)b1 ⊕ (U0,3)r−b1 ⊕U0,2, (U

(1)
1,3)b1 ⊕ (U0,3)r−b1 ⊕U0,2]

= b2
1 + 3b1(r − b1) + 3(r − b1)2 + 4(r − b1) + 2b1 + 2

= 3r2 + 4r + 2 − b1b2.

If b1 ≤ b2, such that b1 > r, then

[Mopen,Mopen] = [(U(1)
3,6)b1−r−1 ⊕ (U(1)

1,3)n−2b1 ⊕U
(1)
1,2, (U

(1)
3,6)b1−r−1 ⊕ (U(1)

1,3)n−2b1 ⊕U
(1)
1,2]

= 3(b1 − r − 1)2 + 3(b1 − r − 1)(n − 2b1) + (n − 2b1)2

+ 2(b1 − r − 1) + (n − 2b1) + 1

= 3r2 + 4r + 2 − b1b2. �

The translation to the normal form Nopen ∈ N
(3) is obtained from subsection 4.1.1.

Example 4.1.11. (The case n = 3)
If Pm is a parabolic of block sizes (1, 2), then Mopen = U

(1)
1,3 and if Pm is a parabolic of block

sizes (2, 1), then Mopen = U
(1)
2,3. In both cases, the matrix in normal form that represents

the open orbit is given by

Nopen =

 0 0 0
1 0 0
0 1 0

 .
Example 4.1.12. (The case n = 4)
If Pm is a parabolic of block sizes (1, 3), then Mopen = U

(1)
1,3 ⊕U0,1 and

Nopen =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 .
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If Pm is a parabolic of block sizes (2, 2), then Mopen = U
(1)
2,4 and

Nopen =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 1 0

 .
We will examine this example in more detail in subsection 4.1.4.

If Pm is a parabolic of block sizes (3, 1), then Mopen = U
(1)
1,3 ⊕U0,1 and

Nopen =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

 .
4.1.4 The parabolic of block sizes (2, 2)

We exemplify the results of the previous subsections by calculating a system of representa-
tives for the orbits of the action of the maximal parabolic Pm of block sizes (2, 2) on N (3)

4 .
We furthermore describe all minimal degenerations that arise in detail.

As an example which shows how easily even a large number of orbits can be classified, we
include the parabolic subgroup of block sizes (3, 4) in the appendix A.2.

The action of Pm provides 14 orbits which are obtained combinatorially by considering
every direct sum of indecomposables of dimension vector (2, 4) up to isomorphism.

Given a representation M in normal form, we can calculate the dimension of O(M) by

dimO(M) = dim GLd − dim IsoGLd (M)

= 20 − [M,M].

The normal forms classifying the orbits are listed in the table in figure 5.3 as well as the
dimension of their orbits.

Representation M dimO(M) Representation M dimO(M)
M1 := U(1)

2,4 18 M8 := U(1)
1,3 ⊕U1,1 17

M2 := U(2)
2,4 15 M9 := U(2)

1,3 ⊕U1,1 16
M3 := U(1)

2,3 ⊕U0,1 17 M10 := U(3)
1,3 ⊕U1,1 14

M4 := U(2)
2,3 ⊕U0,1 16 M11 := U(1)

1,2 ⊕U
(2)
1,2 15

M5 := U(3)
2,3 ⊕U0,1 14 M12 := U(1)

1,2 ⊕U1,1 ⊕U0,1 14
M6 := U2,2 ⊕U0,2 14 M13 := U(2)

1,2 ⊕U1,1 ⊕U0,1 11
M7 := U2,2 ⊕U

2
0,1 12 M14 := U2

1,1 ⊕U
2
0,1 10

Figure 4.3: Normal forms in the Pm-orbits
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We can read off a necessary criterion for degenerations, since the orbits contained in an
orbit closure are of smaller or equal dimension.

In order to calculate the exact degeneration diagram, we calculate the dimensions of the ho-
momorphism spaces, namely [V,Mi] for every indecomposable representation V ∈ repK(Q, I)
following lemma 1.2.8. The dimensions are listed in the tables in figure 5.4.

We compare every two representation that fulfill the necessary condition given by their
orbit dimensions and arrive at the degeneration diagram in figure 5.4 which sketches how
the diagrams and the representing matrices of the orbits degenerate to each other.

↙ U0,1 U0,2 U0,3 U1,0 U1,1 U(1)
1,2 U(2)

1,2 U(1)
1,3 U(2)

1,3 U(3)
1,3

U1,4 U2,2 U(1)
2,3 U(2)

2,3 U(3)
2,3

M1 2 3 4 0 0 1 2 2 2 3 4 0 0 1 2
M3 2 3 4 0 0 1 2 2 3 3 4 0 1 1 2
M8 2 3 4 0 1 1 2 2 2 3 4 1 1 1 2
M4 2 3 4 0 1 1 3 2 3 3 4 1 1 2 3
M9 2 3 4 0 1 2 2 2 3 3 5 1 1 2 2
M2 2 3 4 0 1 2 3 2 3 4 5 2 2 2 3
M11 2 4 4 0 1 2 3 2 3 4 5 1 1 2 3
M5 2 3 4 0 1 2 3 2 3 4 5 2 2 2 4
M6 2 4 4 0 1 2 3 2 3 4 4 2 2 2 3
M10 2 3 4 0 2 2 3 2 3 4 5 2 2 2 3
M12 3 4 4 0 1 2 3 2 3 4 5 1 1 2 3
M7 3 4 4 0 1 2 4 2 4 4 4 2 2 2 4
M13 3 4 4 0 2 2 4 2 4 4 6 2 2 2 4
M14 4 4 4 0 2 2 4 2 4 4 6 2 2 2 4
↙ U(1)

2,4 U(2)
2,4 U(1)

2,5 U(2)
2,5

U2,6 U3,3 U3,4 U(1)
3,5 U(2)

3,5
U3,6 U(1)

3,6 U(2)
3,6

U3,7 U4,6 U4,7

M1 2 3 3 4 4 0 1 2 3 4 2 4 5 2 3
M3 2 3 4 4 5 0 2 2 3 4 3 4 5 2 4
M8 2 4 3 4 4 1 2 2 3 4 2 4 5 2 4
M4 2 4 4 5 5 1 2 3 4 5 3 5 6 3 5
M9 3 4 4 5 5 1 3 3 4 5 3 4 6 3 5
M2 3 5 5 6 6 2 3 4 5 5 4 6 7 4 6
M11 3 5 5 5 5 1 3 3 5 5 3 5 7 4 5
M5 3 5 5 6 6 2 4 4 5 6 4 6 7 4 7
M6 3 5 5 6 6 2 3 4 5 5 4 6 7 4 6
M10 4 5 5 6 6 2 4 4 5 6 4 5 7 4 7
M12 3 5 5 5 5 1 3 3 5 6 3 5 7 4 6
M7 3 5 6 6 6 2 3 4 6 6 4 6 7 4 7
M13 4 6 6 6 6 2 4 4 6 7 4 6 8 4 7
M14 4 6 6 6 6 2 4 4 6 8 4 6 8 4 8

Figure 4.4: Dimensions of homomorphism spaces
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Note that we delete the bottom row of the diagrams corresponding to the orbits, since they
coincide for each orbit.

M1
• • • •

�� ��
KK

0 0 0 0
0 0 0 0
1 0 0 0
0 1 1 0

M3
• • • •

����
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0 • • • •

�� �� M8

M9
• • • •SS

��
0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0 • • • •

��
SS

M4

M2
• • • •SS

��
SS

0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

M11
• • • •

����
0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

M5
• • • •

����
0 0 0 0
0 0 1 0
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Figure 4.5: Degeneration-diagram for the parabolic subgroup of block sizes (2, 2)

4.2 A finiteness criterion

Next, we consider fixed integers n and give an explicit description of all finite types of the
action of a parabolic P on any variety of nilpotent n × n-matrices that appear.
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It is redundant to consider 2-nilpotent matrices, because it has been shown in chapter 3 that
all parabolic actions on 2-nilpotent matrices are finite. In the following, we look at small
examples, thereby discussing the methods and fixing the notations.

Let n=2. All matrices are either 2-nilpotent or equal to the zero-matrix.

Let n=3. The Borel subgroup B3 acts infinitely on N (3)
3 , since

{D1(λ) B

 0 0 0
1 0 0
λ 1 0

 | λ ∈ K∗}

is a 1-parameter family of pairwise non-conjugate matrices (this has been worked out in
[Halbach, 2009]). The only proper parabolic subgroups left in GL3 are those of block-sizes
either (1, 2) or (2, 1). Both are maximal and have been discussed in section 4.1.

Note that Bn, thus, acts infinitely on N (x)
n if x > 2, so that we do not have to consider the

action of the Borel subgroup anymore.

Let n=4.

• Let x = 3.
The maximal parabolic subgroups of block-sizes (1, 3), (3, 1) and (2, 2) have been
considered in 4.1. The parabolic subgroup P of block-sizes (1, 1, 2) acts infinitely,
since

{D1
1(λ) B


0 0 0 0
1 0 0 0
λ 1 0 0
0 0 0 0

 | λ ∈ K∗},

is a 1-parameter family of pairwise non-P-conjugate matrices which is clear by our
considerations in the case of the B3-action on N (3)

3 . Due to symmetry, the parabolic
subgroup of block-sizes (2, 1, 1) acts infinitely, too.
The parabolic subgroup P of block-sizes (1, 2, 1) acts infinitely because

{D2(λ) B


0 0 0 0
1 0 0 0
1 0 0 0
λ 1 1 0

 | λ ∈ K∗}

is a 1-parameter family of pairwise non-P-conjugate matrices.

• Let x = 4.
The maximal parabolic subgroup P of block-sizes (2, 2) acts infinitely, since

{E(λ) B


0 0 0 0
1 0 0 0
1 1 0 0
λ 1 1 0

 | λ ∈ K∗}
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is a 1-parameter family of pairwise non-P-conjugate matrices. The maximal parabolic
subgroup P of block-sizes (1, 3) acts infinitely, because

{F(λ) B


1 1 0 0
−1 −1 0 0
λ − 1 λ −1 1
λ λ − 1 −1 1

 | λ ∈ K∗}

is a 1-parameter family of pairwise non-P-conjugate matrices. Due to symmetry, the
maximal parabolic subgroup of block-sizes (3, 1) acts infinitely, too.

Let n=5.

• Let x = 3.
The maximal parabolic subgroups of block-sizes (1, 4), (4, 1), (3, 2) and (2, 3) have
been considered in section 4.1. The parabolic subgroup of block-sizes (1, 1, 3),
(3, 1, 1), (1, 1, 2, 1), (1, 2, 1, 1), (1, 1, 1, 2) and (2, 1, 1, 1) act infinitely, since the 1-
parameter family of the B3-action on N (3)

3 yields a 1-parameter family of pairwise
non-conjugate matrices for each of these cases.
The parabolic subgroup P of block-sizes (1, 3, 1) does not act finitely because

{D3(λ) B


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
λ 1 1 1 0


| λ ∈ K∗}

is a 1-parameter family of pairwise non-P-conjugate matrices.

• Let x = 4.
The parabolic subgroup P of block-sizes (2, 3) acts infinitely because

{E1(λ) B


0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
λ 1 1 0 0
0 0 0 0 0


| λ ∈ K∗}

is a 1-parameter family of pairwise non-P-conjugate matrices.

The parabolic subgroup P of block-sizes (1, 4) acts infinitely because

{F1(λ) B


1 1 0 0 0
−1 −1 0 0 0
λ − 1 λ −1 1 0
λ λ − 1 −1 1 0
0 0 0 0 0


| λ ∈ K∗}

is a 1-parameter family of pairwise non-P-conjugate matrices. Due to symmetry, the
maximal parabolic subgroups of block-sizes (3, 2) and (4, 1) act infinitely, too.
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• Let x = 5.
Since all parabolic actions already act infinitely on N (4)

5 , there is nothing left to
consider.

One can see that for n = 4, only the maximal parabolic subgroups act finitely on the
variety of 3-nilpotent matrices and each action becomes infinite if we swich to considering
all 4-nilpotent matrices. In the case n = 5, every parabolic action on N (4)

5 is infinite. We
generalize these observations in the following.

Theorem 4.2.1. (Classification of finite parabolic actions)
The action of a parabolic subgroup P in GLn on the variety N (x)

n is finite if and only if
x ≤ 2, or P is maximal and x = 3.

The proof of theorem 4.2.1 follows from lemma 4.2.2 and lemma 4.2.3.

Lemma 4.2.2. (Infiniteness of non-maximal parabolic actions on N (3)
n )

Each conjugation action of a non-maximal parabolic P ( GLn on N (x)
n is infinite if x ≥ 3.

Proof. Let P ( GLn be a parabolic subgroup of block-sizes (b1, . . . , bp).

We divide the proof into two parts. First, we show that each parabolic subgroup P(x)
of block-sizes (1, x, 1) acts infinitely and deduce the claim afterwards. As has been seen
above, it is of utility to define 3-nilpotent matrices Dx(λ) for λ ∈ K∗ as follows:

(Dx(λ))i, j =


λ, if i = n and j = 1;
1, if (1 ≤ i < n and j = 1) or (i = n and 1 ≤ j < n);
0, otherwise.

Claim: A 1-parameter family of pairwise non-P(x)-conjugate matrices is given by

{Dx(λ) | λ ∈ K∗}.

Let λ, µ ∈ K∗, such that λ , µ. Let us assume there is a matrix P ∈ P(x) with

P · Dx(λ) = Dx(µ) · P.

Then P1,i = Pi−1,n = 0 for all 2 ≤ i ≤ n and

n−1∑
i, j=2

Pi, j = (n − 2) · P1,1 = (n − 2) ·
λ

µ
· P1,1,

an immediate contradiction since λ , µ.

Let us consider a parabolic subgroup P of block-sizes (b1, . . . , bp), where p ≥ 3 and bi ≥ 1
for all i, say b1 = s + 1 and b3 = 1 + t.

We define matrices Ds
b2

(n, λ) for λ ∈ K∗ as follows:

(Ds
b2

(n, λ))i, j =

{
(Db2(λ))i−s, j−s if s + 1 ≤ i, j ≤ s + b2 + 2;
0 otherwise.
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Claim: A 1-parameter family of pairwise non-P-conjugate matrices is given by

{Ds
b2

(n, λ) | λ ∈ K∗}.

We proceed inductively on the matrix size n.

The beginning of the induction is given by the case n = 3. Clearly (b1, b2, b3) = (1, 1, 1)
and we arrive at the introductory example given above. In more detail, the 1-parameter
family {D1(λ) | λ ∈ K∗} consists of pairwise non-B3-conjugate matrices.

Assume that, for fixed k < n and each parabolic subgroup P′ ⊂ GLk of block-sizes
(b′1, . . . , b

′
m), where b′1 = s′ + 1 and b′3 = t′ + 1, all matrices in the 1-parameter family

{Ds′
b′2

(k, λ) | λ ∈ K∗}

are non-P′-conjugate.

Let λ, µ ∈ K∗, such that λ , µ and assume there is a matrix A ∈ P, such that

A · Ds
b2

(n, λ) = Ds
b2

(n, µ) · A.

First case: t , 0 or p ≥ 4

The equality is independent of the entries Ai,n if i < s or i > s + b2 + 2 and of the entries
An, j if j ∈ {1, . . . , n}. Furthermore, Ai,∗ · (Ds

b2
(n, λ))∗,n = 0 and (Ds

b2
(n, µ))n,∗ · A∗,i = 0

for all i; therefore, without loss of generality, we can set An,n = 1 and Ai,n = An,i = 0 for
i ∈ {1, . . . , n − 1}. It is easily examined that the existence of a matrix A ∈ P solving

A · Ds
b2

(n, λ) = Ds
b2

(n, µ) · A

is equivalent to the existence of a matrix A′ that is obtained from A by deleting the n-th
column and row, solving

A′ · Ds
b2

(n − 1, λ) = Ds
b2

(n − 1, µ) · A′.

A′ is a matrix of block-sizes (b1, . . . , bp − 1) and the induction yields the claim.

Second case: t = 0 and p = 3

Without loss of generality we assume s > 0, since otherwise we derive at a parabolic
subgroup of block-sizes (1, b2, 1), which has already been considered.
The equality does not depend on the entries A1, j if j ≤ s and on the entries Ai,1 if 1 , s + 1.
Additionally, Ai,∗ · (Ds

b2
(n, λ))∗,1 = 0 and (Ds

b2
(n, µ))1,∗ · A∗,i = 0 for all i; without loss of

generality we set A1,1 = 1 and Ai,1 = A1,i = 0 for all i , 1. It can be verified quickly that
the existence of a matrix A ∈ P which solves

A · Ds
b2

(n, λ) = Ds
b2

(n, µ) · A

is equivalent to the existence of a matrix A′ that arises from A by deleting the first column
and row which solves

A′ · Ds−1
b2

(n − 1, λ) = Ds−1
b2

(n − 1, µ) · A′.

A′ is a matrix of block-sizes (b1 − 1, b2, 1) and the induction yields the claim. �
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Lemma 4.2.3. (Infiniteness of maximal parabolic actions on N (4)
n )

Each conjugation action of a maximal parabolic subgroup P ⊂ GLn on N (4)
n is infinite.

Proof. Let P ( GLn be a parabolic subgroup of block-sizes (x, y).

First case: x ≥ 2 and y ≥ 2

Say x = s + 2 and y = t + 2, where it is possible that s = 0 or t = 0.

Claim: A 1-parameter family of pairwise non-P-conjugate 4-nilpotent matrices is given
by

{Es(n, λ) | λ ∈ K∗},

where Es(n, λ) is defined by

(Es(n, λ))i, j :=
{

(E(λ))i−s, j−s, if s + 1 ≤ i, j ≤ s + 4;
0, otherwise.

The beginning of the induction is given by the case n = 4. Then (x, y) = (2, 2) and
the introductory example given above yields the claim. More precisely, the 1-parameter
family {E(λ) | λ ∈ K∗} consists of pairwise non-P-conjugate matrices.

Assume that, for fixed k < n and for each parabolic subgroup P′ ⊂ GLk of block-sizes
(x′, y′), where x′ = s′ + 2 ≥ 2 and y′ = t′ + 2 ≥ 2, all matrices in the 1-parameter family

{Es′(k, λ) | λ ∈ K∗}

are pairwise non-P′-conjugate.

Without loss of generality, we can assume s > 0 (if s = 0, the claim follows for t > 0 due
to symmetry).

Let λ, µ ∈ K∗, such that λ , µ, and assume there is a matrix A ∈ P, such that

A · Es(n, λ) = Es(n, µ) · A.

The product A · Es(n, λ) of the equation is independent of the entries Ai,1 if i ∈ {1, . . . , n}
and of the entries A1, j if j ≤ s or j > s + 4. Also, the product Es(n, µ) · A is independent
of the entries A1, j if j ∈ {1, . . . , n} and of the entries Ai,1 if i ≤ s or i > s + 4. Moreover,
Ai,∗ · Es(n, λ)∗,1 = 0 and Es(n, µ)1,∗ · A∗,i = 0 for all i, thus, without loss of generality, we
set A1,1 = 1 and Ai,1 = A1,i = 0 for i ∈ {2, . . . , n}.

Then there is a matrix A ∈ P solving

A · Es(n, λ) = Es(n, µ) · A

if and only if there is a matrix A′ that is obtained from A by deletion of the first column
and row, such that

A′ · Es−1(n − 1, λ) = Es−1(n − 1, µ) · A′.

A′ is a matrix of block-sizes (x − 1, y) and the induction yields the claim.
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Second case: x = 1 or y = 1

Let without loss of generality x = 1, thus, y = n − 1. The opposite case follows due to
symmetry.

For λ ∈ K∗, let us define

(F(n, λ))i, j =

{
(F(λ))i, j, if 1 ≤ i, j ≤ 4;
0, otherwise.

Claim: A 1-parameter family of pairwise non-P-conjugate 4-nilpotent matrices is given
by

{F(n, λ) | λ ∈ K∗}.

We proceed inductively on the matrix size n as in the first case.

The beginning of the induction is given by the case n = 4. Then the block sizes of P are
(x, y) = (1, 3) and we arrive at the introductory example given above where a 1-parameter
family {F(λ) | λ ∈ K∗} of pairwise non-P-conjugate matrices was given.

Let us assume that, for fixed k < n and each parabolic subgroup P′ ⊂ GLk of block-sizes
(1, y′), all matrices in the 1-parameter family {F(k, λ) | λ ∈ K∗} are pairwise non-P′-
conjugate.

Let λ, µ ∈ K∗, such that λ , µ and assume, there is a matrix A ∈ P, such that

A · F(n, λ) = F(n, µ) · A.

Then, as before, A · F(n, λ) is independent of the entries Ai,n if i ∈ {1, . . . , n} and of the
entries An, j if j ≤ 5; and F(n, µ) · A independent of the entries Ai,n if j ≥ 5 and of the
entries An, j if j ∈ {1, . . . , n}. The equalities (An, j)1≤ j≤4 · F(λ) = 0 and F(µ) · (Ai,n)1≤i≤4 = 0,
therefore, yield that we can, without loss of generality, set An,n = 1 and Ai,n = An,i = 0 for
i ∈ {1, . . . , n − 1}.
Then the existence of a matrix A ∈ P for which

A · F(n, λ) = F(n, µ) · A

is equivalent to the existence of a matrix A′ which is deduced from A by deletion of the
n-th column and row for which

A′ · F(n − 1, λ) = F(n − 1, µ) · A′

holds true. A′ is a matrix of block-sizes (1, y − 1) and the induction yields the claim. �

Remark 4.2.4. The proofs of lemma 4.2.2 and lemma 4.2.3 provide a concrete 1-parameter
family of non-conjugate nilpotent matrices for each parabolic subgroup P that acts in-
finitely.

Given an arbitrary parabolic subgroup P of GLn, the action onN (x)
n translates to an infinite

classification problem if either x = 3 and P is not maximal or x > 3. In all these cases,
we consider the generic approach in chapter 5 which is a common tool to analyze infinite
classification problems.
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4.3 A wildness criterion

Let us fix p > 1. Section 4.2 shows that the algebraA(p, x) is of finite representation type
if and only if x ∈ {1, 2}, or p = 2 and x = 3.

4.3.1 The representation type of the corresponding algebras

In this subsection, it will be shown that each remaining algebra is of wild representation
type.

Proposition 4.3.1. (Representation type ofA(p, x))
The algebra A(p, x) is of wild representation type if and only if A(p, x) is not of finite
representation type.

Proof. IfA(p, x) is not of finite representation type, then either x = 3 and p > 2, or x ≥ 4.

If x = 3 and p > 2, then the covering quiver of A(p, x) at the vertex p contains the
subquiver

• • •

Q′ : • • •

• • •

α1

α2

without any relations.

If x ≥ 4, then the covering quiver ofA(p, x) at the vertex p contains the subquiver

• •

Q′ : • •

• •

• •

α1

α2

α3

without any relations.

These subquivers are not quivers of extended Dynkin types, therefore, the algebraA(p, x)
is of wild representation type. �

Of course, we have shown thatA(p, x) is never of infinite tame representation type.

Note that we cannot conclude that each parabolic action admits 2-parameter families of
non-conjugate matrices. It is possible that certain parabolic actions admit at most 1-
parameter families of pairwise non-conjugate matrices. One example is the Borel-action
on the nilpotent cone for n = 3 as has been seen in section 4.2.
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4.3.2 Concrete 2-parameter families via tree modules

Since the algebraA(p, x) is of wild representation type if either x = 3 and p > 2, or x ≥ 4,
it is natural to try to exhibit a 2-parameter family of pairwise non-conjugate matrices for at
least one parabolic action corresponding toA(p, x).

We follow the method for constructing indecomposable modules T. Weist describes in
[Weist, 2010] of which we describe the general idea first.

Let U and U′ be two indecomposable representations of a finite-dimensional path algebra
A = KQ, such that dimU and dimU′ are real roots and such that the root dimU + dimU′

is an imaginary root of Q. Assume that [U′,U] = 0 = [U,U′]1 and [U′,U]1 = 3, then the
representatives X of the middleterms of the classes of extensions

[0→ U → X → U′ → 0]

yield a 2-parameter family of pairwise non-isomorphic indecomposableA-representations.

We consider the two cases that come up in the proof of proposition 4.3.1.

First case:

Let us define the quiver

•
1

•
2

•
3

Q′ : •
4

•
5

•
6

•
7

•
8

•
9

α1

α2

and the root

d = (1, 2, 3, 1, 3, 4, 1, 2, 3) = (0, 1, 1, 0, 1, 2, 0, 1, 1)︸                     ︷︷                     ︸
eB

+ (1, 1, 2, 1, 2, 2, 1, 1, 2)︸                     ︷︷                     ︸
e′B

.

Then q(d) = 54 − 55 = −1 and, thus, d is an imaginary root of Q′; furthermore the equali-
ties q(e) = 9 − 8 = 1 and q(e′) = 21 − 20 = 1 yield that e and e′ are positive real roots.

There are indecomposable KQ-representations Ue and Ue′ , such that dimUe = e and
dimUe′ = e′:

0 K K K K K2

Ue : 0 K K2 Ue′ : K K2 K2

0 K K K K K2

0

0

0

id

e2

id

e1

(e1 + e2)t

id

e1

id

e1 + e2

id

e2

id

id
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We calculate the Euler forms

〈e, e′〉 = 0 and 〈e′, e〉 = −3.

Furthermore, [Ue′ ,Ue] = 0. In general, for two KQ′-representations M and M′, the equal-
ity 〈

dimM, dimM′
〉

= [M,M′] − [M,M′]1

holds true (see, for example, [Ringel, 1976]). We obtain [Ue′ ,Ue]1 = 3 and use these
extensions to glue the two representations together in order to obtain the sought represen-
tations, here λ, µ ∈ K:

0 K K

K K K2

0 K K2

K K2 K2

0 K K

K K K2

0

0

0

id

e2

id

e1

(e1 + e2)t

id

e1

id

e2

id

e1 + e2

id

id

λ

id

µ

We obtain the representation

K3 K7 K10
aλ,µ b

A

with

aλ,µ =



1 0 0
λ 0 0
0 1 0
0 0 0
0 1 0
0 0 1
0 0 µ


; b =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



; A =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0



.

For fixed parameters λ, µ ∈ K∗, this representation is isomorphic to a unique representation
of the form



116 Finite classifications in higher nilpotency degrees

K3 K7 K10
e3,7 e7,10

Nλ,µ
.

Let P be the parabolic subgroup P of block sizes (3, 4, 3). Our considerations prove the
following proposition (see [Weist, 2010]).

Proposition 4.3.2. (2-parameter family for the first quiver)
A 2-parameter family of pairwise non-P-conjugate matrices in N (3) is induced by the ma-
trices

Nλ,µ =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −µ 0 0 1 0
0 0 0 0 0 0 0 0 0 0
λ 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0


for λ, µ ∈ K∗.

Second case:

We consider the quiver

•
1

•
2

Q′ : •
3

•
4

•
5

•
6

•
7

•
8

α1

α2

α3

and the root

d = (1, 2, 2, 3, 1, 3, 1, 2) = (0, 1, 1, 2, 0, 1, 0, 1)︸                  ︷︷                  ︸
eB

+ (1, 1, 1, 1, 1, 2, 1, 1)︸                  ︷︷                  ︸
e′B

.

Then q(d) = 33−34 = −1 and, thus, d is an imaginary root ofQ′; furthermore the equalities
q(e) = 8−7 = 1 and q(e′) = 11−10 = 1 yield that e and e′ are positive real roots as before.

We proceed as in the first case and define indecomposable KQ-representations Ue and Ue′ ,
such that dimUe = e and dimUe′ = e′.
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0 K K K

Ue : K K2 Ue′ : K K

0 K K K2

0 K K K

0

e1

0

0

e2

(e1 + e2)t

id

id

id

e1

id

id

e2

(e1 + e2)t

The equality [Ue′ ,Ue]1 = 3 holds true, thus, we can again glue the representations Ue and
Ue′ together and obtain the sought representations, here λ, µ ∈ K:

0 K

K K

K K2

K K

0 K

K K2

0 K

K K

0

e1

0

0

e2

(e1 + e2)t

id

id

id

e1

id

id

e2

(e1 + e2)t

λ

id

µ

We obtain the representations

K5 K10
aλ,µ

A

for certain matrices aλ,µ and A, which can be read off the diagram. For fixed parameters
λ, µ, this representation is isomorphic to a unique representation of the form

K5 K10
e5,10

Nλ,µ
.

Let P be the parabolic subgroup P of block sizes (5, 5); we obtain the following proposition
as in the first case:
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Proposition 4.3.3. (2-parameter family for the second quiver)
A 2-parameter family of pairwise non-P-conjugate matrices in N (3) is induced by the ma-
trices

Nλ,µ =



0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
λ 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 − µ 0 0 0 1 −µ 0


for λ, µ ∈ K∗.



5 Generic classification in the nilpotent
cone

In the following, we verify a parabolic normal form for the orbits in an open subset of the
nilpotent cone N for an arbitrary parabolic subgroup P of GLn.

5.1 Generic normal forms

In [Halbach, 2009] and [Boos and Reineke, 2011], a generic normal form for the orbits of
the Borel-action is given, generalizing the case n = 3, which has been described in all
detail in [Halbach, 2009]. We will generalize the results to arbitrary parabolic actions.

As in 3.1.1, let P be a proper parabolic subgroup of GLn of block sizes b B (b1, . . . , bp).
Define

di B

{
0, if i = 0;
di−1 + bi, if 1 ≤ i ≤ p

and d B (d1, . . . , dp). Let V be an n-dimensional K-vector space and denote the space of
partial p-step flags of dimensions d by Fd(V), that is, Fd(V) contains flags

(0 = F0 ⊂ F1 ⊂ . . . ⊂ Fp−2 ⊂ Fp−1 ⊂ Fp = V),

such that dimK Fi = di. Let ϕ be a nilpotent endomorphism of V and consider pairs of a
nilpotent endomorphism and a p-step flag up to base change in V , that is, up to the GL(V)-
action via g.(F∗, ϕ) = (gF∗, gϕg−1).

Let us fix a partial flag F∗ ∈ Fd(V) and a nilpotent endomorphism ϕ of V .

Lemma 5.1.1. (Interrelation between partial flags and nilpotent operators)
The following properties of the pair (F∗, ϕ) are equivalent:

1. dimK ϕ
n−dk (Fk) = dk for every k ∈ {0, . . . , p},

2. there exists a basis w1, . . . ,wn of V, such that for all k ∈ {1, . . . , p}:

(ak) Fk =
〈
w1, . . . ,wdk

〉
and for every k ∈ {2, . . . , p}:

(b) ϕ(wx) =


wx+1 mod

〈
wd1+2, . . . ,wn

〉
, if x < d1;

wdk−1+1 mod
〈
wdk+1, . . . ,wn

〉
, if x = dk−1;

wx+1 mod
〈
wdk+1, . . . ,wn

〉
, if dk−1 < x < dk;

0, if x = n.
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Proof. If 2. holds true, then 1. follows:

Let w1, . . . ,wn be a basis of V that fulfills (a) and (b).
An easy induction shows

ϕi(wx) =

 wx+i mod
〈
w j | j > x + i

〉
, if x + i ≤ n;

0, if x + i > n.

Thus,
ϕn−dk (Fk) =

〈
ϕn−dk (w1), . . . , ϕn−dk (wdk )

〉
=

〈
wn−dk+1, . . . ,wn

〉
and dimK ϕ

n−dk (Fk) = dk for all k ∈ {0, . . . , p}.

If 1. holds true, then 2. follows:

We will start discussing permanence properties of the rank of ϕi for arbitrary i:

Let dimK ϕ
n−dk (Fk) = dk for all k ∈ {0, . . . , p}, then dimK ϕ

n−dk (V) = dk holds true and,
therefore, rank ϕn−dk = dk.

If for an integer i the condition rank ϕi , 0 holds true, then rank ϕi > rank ϕi+1 follows.
Furthermore, rank ϕn−dp−1 = dp−1 and rank ϕi , 0 for i ∈ {1, . . . , n − dp−1}, we, therefore,
immediately see rank ϕn−i = i for i ∈ {dp−1, . . . , n − 1}.

Since rank ϕ = n−1 and, thus, dimK kerϕ = 1, we arrive at rank ϕn−i = i for i ∈ {1, . . . , d1}.
We have proven that the following equation holds true for every integer i ∈ {1, . . . , n}:

rank ϕn−i = i.

Let u1, . . . , un be a basis of V that is adapted to F∗, that is, Fk =
〈
u1, . . . , udk

〉
for every

integer k ∈ {1, . . . , p}.

Let x ∈ {1, . . . , n}, then without loss of generality, due to the rank conditions examined
above, we can assume

dimK ϕ
n−x(〈u1, . . . , ux〉) = x.

In particular kerϕ =
〈
ϕn−1(u1)

〉
⊆ ϕn−x(〈u1, . . . , ux〉) and there exist elements bi,x ∈ K,

such that

ϕn−1(u1) =

x∑
i=1

bi,x · ϕ
n−x(ui).

We define

u′x B
x∑

i=1

bi,x · ui

and note that u′1, . . . , u
′
n form a basis of V , which is adapted to F∗:

Assume that bx,x = 0, then

ϕn−1(u1) =

x−1∑
i=1

bi,x · ϕ
n−x(ui).
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Application of ϕ yields 0 =
x−1∑
i=1

bi,x · ϕ
n−(x−1)(ui). But then bi,x = 0 for all i < x, since

ϕn−(x−1)(u1), . . . , ϕn−(x−1)(ux−1)

are linearly independent. We derive ϕn−1(u1) = 0, a contradiction.

Since the basis u1, . . . , un is adapted to F∗, the basis u′1, . . . , u
′
n is adapted to F∗ as well; it

furthermore fulfills
dimK

〈
ϕn−x

(
u′1

)
, . . . , ϕn−x (

u′x
)〉

= x.

Let x ∈ {1, . . . , n}, then in particular ϕn−x (
u′x

)
= u′n = ϕn−1

(
u′1

)
per definition and

ϕx
(
u′i

)
= ϕx+i−n

(
ϕn−i

(
u′i

))
= ϕx+i−n

(
ϕn−1

(
u′1

))
= 0

if x + i > n.

Given x ∈ {1, . . . , n}, we define cx,i ∈ K to be elements, such that ϕ
(
u′x

)
=

n∑
i=1

cx,i · u′i . Then

ϕ
(
u′x

)
= u′x+1 mod

〈
u′x+2, . . . , u

′
n

〉
holds true, since

ϕn−x−1
(
u′x+1

)
= u′n
= ϕn−x (

u′x
)

= ϕn−x−1 ◦ ϕ
(
u′x

)
=

n∑
i=1

cx,i · ϕ
n−x−1

(
u′i

)
= cx,x+1 · ϕ

n−x−1
(
u′x+1

)
+

∑
i<x+1

cx,i · ϕ
n−x−1

(
u′i

)
.

Thus, cx,x+1 = 1 and cx,i = 0 if i < x + 1 and, therefore,

ϕ
(
u′x

)
= u′x+1 mod

〈
u′x+2, . . . , u

′
n

〉
.

Since every endomorphism of a K-vector space V ′ has a representing matrix in Jordan
normal form, we can choose a basis v1, . . . , vn, such that for every integer k ∈ {1, . . . , p}
the following two conditions hold true:

• Fk =
〈
v1, . . . , vdk

〉
,

• ϕ(vx) =

{
vx+1 mod

〈
vdk+1, . . . , vn

〉
, if dk−1 < x < dk;

0 mod
〈
vdk+1, . . . , vn

〉
, if x = dk.

In more detail:

If we pass to ϕ′ : Kn → Kn by base change with respect to the basis of coordinate vectors
in Kn, we see that the representing matrix A has rank n − 1; the partial flag translates to
Fk =

〈
e1, . . . , edk

〉
.
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Since the adaption to the flag does not depend on the choice of basis vectors of each space〈
edk−1+1, . . . , edk

〉
, the base change “inside the blocks” can be brought into Jordan normal

form and we arrive at the above mentioned block-Jordan basis v1, . . . , vn, such that for
every integer k ∈ {2, . . . , p} and every dk−1 < x ≤ dk there are elements di,x ∈ K for which

vx =

dk∑
i=dk−1+1

di,x · u′i .

Let k ∈ {2, . . . , p}. The next aim is to define a basis (v′1, . . . , v
′
n), such that

ϕ
(
v′x

)
=


v′dk−1+1 mod

〈
v′dk+1, . . . , v

′
n

〉
, if x = dk−1;

v′x+1 mod
〈
v′dk+1, . . . , v

′
n

〉
, if dk−1 < x < dk;

0, if x = n.

So far, we know ϕ
(
vdk−1

)
= vdk−1+1 mod

〈
vdk−1+2, . . . , vn

〉
, thus, there are elements ηi ∈ K,

such that ϕ
(
vdk−1

)
= vdk−1+1 +

dk∑
i=dk−1+2

ηi · vi mod
〈
vdk+1, . . . , vn

〉
.

We define

v′x B


vx, if x = dk−1;

vx +
dk∑

i=x+1
ηdk−1−x+1+i · vi, if dk−1 < x < dk;

vn, if x = n.

Then clearly v′1, . . . , v
′
n build a basis of V that is adapted to F∗.

Given dk−1 < x < dk, we calculate

ϕ
(
v′x

)
= ϕ

vx +

dk∑
i=x+1

ηdk−1−x+1+i · vi


= vx+1 +

dk∑
i=x+1

ηdk−1−x+1+i · vi+1 mod
〈
vdk+1, . . . , vn

〉
= vx+1 +

dk∑
i=x+2

ηdk−1−(x+1)+1+i · vi mod
〈
vdk+1, . . . , vn

〉
= v′x+1 mod

〈
v′dk+1, . . . , v

′
n

〉
.

Let x = dk−1, then v′x = vx and

ϕ
(
v′x

)
= vx+1 +

dk∑
i=x+2

ηi · vi mod
〈
vdk+1, . . . , vn

〉
= vx+1 +

dk∑
i=x+2

ηdk−1−(x+1)+1+i · vi mod
〈
vdk+1, . . . , vn

〉
= v′x+1 mod

〈
vdk+1, . . . , vn

〉
= v′x+1 mod

〈
v′dk+1, . . . , v

′
n

〉
.
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Since ϕ
(
v′n

)
= ϕ (vn) = 0, the basis v′1, . . . , v

′
n has the desired properties.

The last step is to define a basis w1, . . . ,wn, such that

ϕ (wx) =


wx+1 mod

〈
wd1+2, . . . ,wn

〉
, if x < d1;

wdk−1+1 mod
〈
wdk+1, . . . ,wn

〉
, if x = dk−1;

wx+1 mod
〈
wdk+1, . . . ,wn

〉
, if dk−1 < x < dk;

0, if x = n.

We fix elements λx ∈ K, such that for 1 ≤ x < d1:

ϕ (wx) = wx+1 + λx · wd1+1 mod
〈
wd1+2, . . . ,wn

〉
.

By defining

µx−1 B


1, if x = 1;
−λd1−1, if x = 2;

−
x−1∑
i=0

µi · λd1−x+i, if 2 < x < d1,

we are able to introduce vectors wx as described above by setting

wx B


d1−x∑
i=0

µi · v′x+i, if x < d1;

v′x, if x ≥ d1.

Then w1, . . . ,wn is a basis of V that is obviously adapted to F∗ since v′1, . . . , v
′
n is adapted

to F∗. We calculate

ϕ (wx) =

d1−x−1∑
i=0

µi · ϕ
(
v′x+i

)
+ µd1−x · ϕ

(
v′d1

)
=

d1−x−1∑
i=0

µi ·
(
v′x+i+1 + λx+iv′d1+1

)
+ µd1−x · v′d1+1 mod

〈
v′d1+2, . . . , v

′
n

〉
= wx+1 +

d1−x−1∑
i=0

µi · λx+i + µd1−x

 · v′d1+1 mod
〈
wd1+2, . . . ,wn

〉
= wx+1 mod

〈
wd1+2, . . . ,wn

〉
.

Since wx = v′x for d1 ≤ x ≤ n, the basis w1, . . . ,wn fulfills the conditions of 2. �

We make use of theorem 5.1.1 in order to find a generic normal form in the variety of
nilpotent matrices over K. The following definition will be the key to this translation. Note
that it will play a significant role in section 5.2 as well.

Definition 5.1.2. (The submatrix N(a,b))
Let a, b ∈ {0, . . . , n} and let N ∈ N be a nilpotent matrix.
We define N(a,b) to be the submatrix formed by the last a rows and the first b columns of N.
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Corollary 5.1.3. (Generic P-normal form in N)
The following conditions on a matrix N ∈ N are equivalent:

1. The first dk columns of Nn−dk are linearly independent for each k ∈ {1, . . . , p − 1} ,

2. the minor det((Nn−dk )(dk ,dk)) is non-zero for each k ∈ {1, . . . , p − 1} ,

3. N is P-conjugate to a unique matrix H, such that for all k ∈ {1, . . . , p}:

Hi, j =



0, if i ≤ j;
0, if i = d1 + 1 and j < d1;
0, if dk−1 + 3 ≤ i ≤ dk and dk−1 + 1 ≤ j ≤ dk − 2, such that i > j + 1;
0, if dk−1 + 2 ≤ i ≤ dk and j = dk−1;
1, if i = j + 1.

The normal form is sketched in figure 5.1; the block sizes are those of the parabolic sub-
group P.

H =



0 · · · 0
1

. . .
...

0 1 0

0 0 0 0

0 · · · 0 1
∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0

0 · · · 0
1

. . .
...

0 1 0

0 0 0

∗ · · · ∗
...

...

∗ · · · ∗

∗ · · · ∗ 1
∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0

. . . 0 0

∗ · · · ∗
...

...

∗ · · · ∗

∗ · · · ∗
...

...

∗ · · · ∗

. . .

0 · · · 0
1

. . .
...

0 1 0

0

∗ · · · ∗
...

...

∗ · · · ∗

∗ · · · ∗
...

...

∗ · · · ∗

∗ · · · ∗
...

...

∗ · · · ∗

∗ · · · ∗ 1
∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0

0 · · · 0
1

. . .
...

0 1 0



Figure 5.1: The generic parabolic normal form
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Proof of corollary 5.1.3. The equivalence between 1. and 3. follows directly from theorem
5.1.1 when defining the partial flag F∗ by Fk = 〈e1, . . . , edk〉 for k ∈ {1, . . . , p}.

If 3. holds true, then 2. obviously holds true as well. Assume that the first dk columns of
Nn−dk are linearly dependent for some k ∈ {1, . . . , p − 1}, then we find λi ∈ K, such that

dk∑
i=1

λi · N
n−dk
∗,i = 0

and at least one of the λi is non-zero. But then det
((

Nn−dk
)
(dk ,dk)

)
= 0. �

What comes to mind when looking at the normal form given in figure 5.1 is a missing
symmetry: The entries in the first row of the very left second upper block equal zero.
As the proof of lemma 5.1.1 suggests, there are some possibilities for a normal form; we
choose this particular normal form, since it facilitates the clearest and most concise proof.

The conditions of Corollary 5.1.3 define an open subset of N ; we have, thus, found a
generic normal form for nilpotent matrices up to P-conjugacy. In more detail, we can define
a locally closed variety HP containing all these P-normal forms, which is isomorphic to
the affine space Ar of dimension r =

∑
i< j

(
bi · b j

)
− n + 1.

The set P.HP of all P-conjugates of normal forms in HP is an open subset of N and will
be denoted by NP B P.HP.

Note that all diagonal matrices with the same non-zero entries on the diagonal act trivially
on N . Then the calculation

dim (NP/P) = dimN − dim
(
P/K∗

)
= n (n − 1) +

∑
i≤ j

(
bi · b j

)
+ 1

=

l∑
i=1

b2
i + 2 ·

∑
i< j

(
bi · b j

)
− n −

∑
i≤ j

(
bi · b j

)
+ 1

=
∑
i< j

(
bi · b j

)
− n + 1

= dimHP

yields that the normal form is as fine as possible and separates the P-orbits inN generically.

One important special case is given by the Borel normal form. Since it will be examined in
more detail in chapter 7, we include a visualization of the Borel normal form in figure 5.2.
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

0 · · · 0
1 0
∗ 1 0 0

. . .
. . .

...
...

. . .
. . . 0

1 0
∗ · · · ∗ 1 0


Figure 5.2: The generic B- normal form

We conclude the subsection by giving a normal form for the U-action on N , that is, the
conjugation action by the unipotent subgroup.

Corollary 5.1.4. (Generic U-normal form in N)
The following conditions on a matrix N ∈ N are equivalent:

1. For k ∈ {1, . . . , n − 1}, the first k columns of Nn−k are linearly independent,

2. for k ∈ {1, . . . , n − 1}, the minor det
((

Nn−k
)
(k,k)

)
is non-zero,

3. N is U-conjugate to a unique matrix H′, such that H′i, j = 0 for i ≤ j and H′i+1,i , 0
for i ∈ {1, . . . , n − 1}.

Proof. Let N ∈ N . Then there is some matrix b ∈ B, such that b · N · b−1 = H ∈ HB is a
matrix in the above B-normal form. We have a unique decomposition b = u · t with u ∈ U
and t ∈ T . Thus, H = u · t · N · t−1 · u−1 and the U-normal forms are, thus, given by

HU B {t · H · t−1 | t ∈ T,H ∈ HB}

= {H′ | H′i, j = 0 if i ≤ j and H′i+1,i , 0 for i ∈ {1, . . . , n − 1}}. �

We define NU B U.HU .



0 . . . 0
x1 0
∗ x2 0 0

. . .
. . .

...
...

. . .
. . . 0

xn−2 0
∗ . . . ∗ xn−1 0


Figure 5.3: The generic U- normal form
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5.2 (Semi-) Invariants

We start calculating a class of B-semi-invariants on N (see [Boos and Reineke, 2011]).

For i ∈ {1, . . . , n}, we denote by ωi : B → Gm the character defined by ωi (g) = gi,i; the ωi

form a basis for the group of characters of B.

Fix integers a1, . . . , as, a′1, . . . , a
′
t ∈ {1, . . . , n}, such that a1 + . . . + as = a′1 + . . . + a′t =: r.

Moreover, for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, fix polynomials Pi, j (x) ∈ K[x], and denote

the datum
(
(ai)i ,

(
a′j

)
j
,
(
Pi, j

)
i, j

)
by P.

Let N ∈ N , then for all such i and j we consider the submatrices

Pi, j (N)(ai,a′j
) ∈ Kai×a′j

as defined in definition 5.1.2, and form the r × r-block matrix

NP B
(
Pi, j (N)(ai,a′j

))
i, j
.

These considerations provide a class of B-semi-invariants on the nilpotent cone:

Proposition 5.2.1. (B-semi-invariants on N)
For every datum P as above, the function

fP : N → K

N 7→ det
(
NP

)
defines a B-semi-invariant regular function on N of weight

s∑
i=1

(
ωn−ai+1 + . . . + ωn

)
−

t∑
j=1

(
ω1 + . . . + ωa′j

)
.

Proof. For g ∈ Bn and 1 ≤ a, a′ ≤ n, denote by g(≥a) ∈ Ba (respectively by g(≤(a′) ∈ Ba′)
the submatrix formed by the last a rows and columns (respectively by the first a′ rows and
columns) of g. With these definitions, we verify immediately that(

g · N · g−1
)
(a,a′)

= g(≥a) · N(a,a′) · g−1
(≤a′).

This yields the following equalities of block matrices(
g · N · g−1

)P
=

(
Pi, j

(
g · N · g−1

)(
ai,a′j

))
i, j

=

((
g · Pi, j (N) · g−1

)(
ai,a′j

))
i, j

=

(
g(≥ai) · Pi, j (N)(ai,a′j

) · g(
≤a′j

)−1
)

i, j

=
(
δi, j · g(≥ai)

)
i, j
· NP ·

(
δi, j · g(

≤a′j
)−1

)
i, j
.
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Therefore,

fP
(
g · N · g−1

)
= det

((
g · N · g−1

)P)
=

∏
i

det
(
g(≥ai)

)∏
j

det
(
g(
≤a′j

))−1
fP (N) . �

We call r the size of fP.

Corollary 5.2.2. (U-invariants on N)
All B-semi-invariants fP of proposition 5.2.1 are U-invariants.

Proof. Of course, det
(
g(≥ai)

)
= 1 and det

(
g(
≤a′j

)) = 1 for all i, j. �

Next, we will generalize the above proven semi-invariants to arbitrary parabolic subgroups
of GLn.

We consider the character group X (GLn), which is freely generated by the determinant det.

Definition 5.2.3. (The submatrix Na→b)
Given a matrix N ∈ Kn×n and two integers 1 ≤ a < b ≤ n, we define Na→b to be the
submatrix of N which is obtained by deletion of the first a and the last n − b columns and
rows.

Given the parabolic subgroup P of GLn of block sizes
(
b1, . . . , bp

)
, we define ωi : P→ Gm

by ωi (g) = det
(
gdi−1→di

)
, where di is defined as before. Then the ωi form a basis for the

group X(P) of characters of P.

We construct a class of determinantal P-(semi-) invariant functions on N in the following.

Define ai B n − di−1 and a′i B di for all i ∈ {1, . . . , p}.

Fix integers x1, . . . , xs, y1, . . . , yt ∈ {1, . . . , p}, such that ax1 + . . . + axs = a′y1
+ . . . + a′yt

=: r.
Moreover, fix polynomials Pi, j (x) ∈ K[x] for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, and denote

the datum
(
(xi)i ,

(
y j

)
j
,
(
Pi, j

)
i, j

)
by P as before.

Let N ∈ N , then for all such i and j consider the submatrices Pi, j (N)(
axi ,a

′
y j

) ∈ Kaxi×a′y j and

form the r × r-block matrix NP B
(
Pi, j (N)(

axi ,a
′
y j

))
i, j

.

Proposition 5.2.4. (P-semi-invariants on N)
For every datum P as above, the function

fP : N → K

N 7→ det
(
NP

)
defines a P-semi-invariant regular function on N of weight

s∑
1=i

(
ωxi + . . . + ωp

)
−

t∑
j=1

(
ω1 + . . . + ωy j

)
.
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Proof. With the definitions of proposition 5.2.1 for 1 ≤ x, y ≤ p, it follows immediately
that (

g · N · g−1
)
(ax,a′y)

= g(≥n−dx−1) · N(ax,a′y) · g
−1
(≤dy).

This yields the following equalities of block matrices:

(
g · N · g−1

)P
=

(
Pi, j

(
g · N · g−1

)(
axi ,a

′
y j

))
i, j

=

((
g · Pi, j (N) · g−1

)(
axi ,a

′
y j

))
i, j

=

(
g(≥n−dxi−1) · Pi, j (N)(

axi ,a
′
y j

) · g(
≤dy j

)−1
)

i, j

=
(
δi, j · g(≥n−dxi−1)

)
i, j
· NP ·

(
δi, j · g(

≤dy j

)−1
)

i, j
.

Therefore,

fP
(
g · N · g−1

)
= det

((
g · N · g−1

)P)
=

∏
i

det
(
g(≥n−dxi−1)

)∏
j

det
(
g(
≤dy j

))−1
fP (N) . �

5.3 Generation of semi-invariant rings

In order to show that the above defined semi-invariants in fact generate the ring of semi-
invariants

R B
⊕
χ∈X(B)

K[N]B
χ ,

we make use of theorem 1.2.1 and the translation of lemma 2.3.1:

To calculate generating B-semi-invariants of N , we can also translate generating determi-
nantal semi-invariants of the GLdB

-action on Rinj
dB

(Qn) where

Qn B • • • · · · • • •

1 2 3 n − 2 n − 1 n

α1 α2 αn−2 αn−1
α.

Thus, we fix the dimension vector dB and an arbitrary morphism in addQ, say

φ :
n⊕

j=1

O( j)x j →

n⊕
i=1

O(i)yi

with ∑
j∈Q0

x j · j =
∑
i∈Q0

yi · i.
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The homomorphism spaces P( j, i) between two objects O( j) and O(i) in addQ are gener-
ated as K-vector spaces by

P( j, i) =


0, if j > i;〈
ρ j,i B αi−1 · · ·α j

〉
, if j ≤ i < n;〈

ρ(k)
j,n B αkαn−1 · · ·α j | k ∈ N ∪ {0}

〉
, if i = n.

Then we obtain a determinantal semi-invariant

fφ : Rinj
dB

(Qn) → K

m 7→ det M(φ),

as defined in [Schofield and van den Bergh, 2001]; the definition has also been recapitu-
lated briefly in section 1.2.

Given an arbitrary matrix N ∈ Kn×n, define MN to be the representation

MN = K K2 K3 · · · Kn−2 Kn−1 Kn
ε1 ε2 εn−2 εn−1

N

in repinj
K (Qn)(dB) with natural embeddings εi : Ki ↪→ Ki+1.

Since GLdB
acts transitively on Rinj

dB
(Q′) with Q′ being the linearly oriented quiver of

Dynkin type An, we can examine the semi-invariants on these representations MN .

If the determinantal GLdB
-semi-invariant fφ of Rinj

dB
(Qn), interpreted as a B-semi-invariant,

can be expressed by the semi-invariants from proposition 5.2.1, we have found generating
semi-invariants of R, therefore we formulate the following lemma.

Lemma 5.3.1. (Generation of the B-semi-invariant ring of N)
The determinantal semi-invariant fφ corresponds to one of the B-semi invariants con-
structed in proposition 5.2.1.

Proof. The morphism φ is given by a
n∑

i=1
yi×

n∑
j=1

x j-matrix H with entries being morphisms

between objects in addQ.

We can view the matrix H as an n × n block matrix H = (Hi, j)1≤i, j≤n with Hi, j ∈ Kyi×x j for
i, j ∈ {1, . . . , n}. Then

(
Hi, j

)
k,l

=


0, if i < j;
λk,l

i, j · ρ j,i, for some λk,l
i, j ∈ K if j ≤ i < n;

∞∑
h=0

(
λk,l

n, j

)
h
· ρ(h)

j,n , for some
(
λk,l

n, j

)
h
∈ K if j ≤ i = n.

Let us denote by f φ the B-semi-invariant ofN associated to fφ via the translation of lemma
2.3.1,

f φ : N → K

N 7→ det MN(φ).
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The matrix
MN(φ) =

(
MN

i, j

)
1≤i, j≤n

∈ K
∑

i∈Q0 iyi×
∑

j∈Q0 jx j

is given as a block matrix where each block

MN
i, j =

((
MN

i, j

)
k,l

)
1≤k≤yi
1≤l≤x j

∈ Kiyi× jx j

is again a block matrix. The blocks of MN
i, j are given by

Ki× j 3
(
MN

i, j

)
k,l

=


0, if i < j;
λk,l

i, j · E
(i)
(i, j), if j ≤ i < n;

∞∑
h=0

(
λk,l

n, j

)
h
·
(
Nh

)
(n, j)

, if j ≤ i = n;

where E(i) ∈ Ki×i is the identity matrix and the notation N(i, j) is the same as in 5.1, that is,
the submatrix of the last i rows and the first j columns of N.

Note that if i, j ∈ {1, . . . , n}, then MN
i, j = MN′

i, j =: Mi, j for every pair of matrices N,N′ ∈ N .

Reduction
We prove in the following that, without loss of generality, y1 = . . . = yn−1 = 0 and proceed
by induction on the index i of yi.

The beginning of the induction is given by the case i = 1, we claim that we can, without
loss of generality, assume y1 = 0.

Clearly

MN(φ) =

 M1,1 0
∗

(
MN

i, j

)
1<i, j≤n

 .
If y1 > x1, the determinant det MN(φ) equals 0 for every matrix N due to rank considera-
tions.

If y1 = x1, then

det MN(φ) = det M1,1 · det
(
MN

i, j

)
1<i, j≤n

= λ · det
(
MN

i, j

)
1<i, j≤n

for some λ ∈ K independent of N and without loss of generality y1 = 0.

Let us assume y1 < x1. We can apply elementary row operations to the first y1 rows and
elementary column operations to the first x1 columns of MN(φ) to obtain the equality

det MN(φ) = λ · det

 E(y1) 0 0
∗ S

(
MN

i, j

)
1<i, j≤n


for some λ ∈ K independent of N and a naturally occurring matrix S .
In more detail, we can exchange two rows or columns and multiply a row or column with
an element µ ∈ K∗ because the same operations can be applied to H and the semi-invariant
stays the same up to scalar multiplication.
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Given elements µ, µ′ ∈ K∗, we can add the µ-th multiple of one row (or column) to the
µ′-th multiple of another row (or column, respectively) and for the same reasoning, the
semi-invariant does not change. Since the operations applied above are independent of N,
we obtain the given equality.
Then

det MN(φ) = λ · det
(

S
(
MN

i, j

)
1<i, j≤n

)
,

thus, without loss of generality, we can assume y1 = 0; this proves the beginning of the
induction.

Now let i ∈ {2, . . . , n − 1} and assume y1 = . . . = yi−1 = 0. Then

MN(φ) =

 Mi,1 Mi,2 . . . Mi,i 0(
MN

x,1

)
i<x

(
MN

x,2

)
i<x

. . .
(
MN

x,i

)
i<x

(
MN

x,y

)
i<x,y


and we distinguish between the following three cases.

First case: i · yi > x1 + 2 · x2 + . . . + i · xi .

Then det MN(φ) = 0 for every matrix N due to rank considerations.

Second case: i · yi = x1 + 2 · x2 + . . . + i · xi .

Then

det MN(φ) = det
(

Mi,1 Mi,2 . . . Mi,i
)
· det

(
MN

x,y

)
i<x,y

= λ · det
(
MN

x,y

)
i<x,y

for some λ ∈ K independent of N and without loss of generality yi = 0.

Third case: i · yi < x1 + 2 · x2 + . . . + i · xi .

Then i · yi ≤ i · xi, since otherwise det MN(φ) = 0 for every matrix N.
Define (

MN
s,.

)
y
B

((
MN

s, j

)
y,l

)
1≤ j≤n
1≤l≤x j

for 1 ≤ y ≤ ys

and
(
MN
.,t

)
x
B

((
MN

a,t

)
k,x

)
i≤a≤n
1≤k≤ya

for 1 ≤ x ≤ xt.

Remember that Mi,x = 0 if i < x and
(
MN

i,x

)
k,l

= λk,l
i,x · E

(i)
(i,x) ∈ Ki×x if x ≤ i.

With the same reasoning as in the case i = 1, by application of appropriate elementary row
and column operations, we obtain

det MN(φ) = λ · det

 M′i,1 M′i,2 . . . M′i,i−1 E(iyi) 0 0(
MN

x,1

)
i<x

(
MN

x,2

)
i<x

. . .
(
MN

x,i−1

)
i<x

S ′ S
(
MN

x,y

)
i<x,y


for some λ ∈ K independent of N and naturally occurring matrices M′i,x for x ∈ {1, . . . , i−1},
S and S ′.
In more detail, given y, y′ ∈ {1, . . . , yi} and x, x′ ∈ {1, . . . , xi}, we can exchange

(
MN

i,.

)
y

and
(
MN

i,.

)
y′

and we can exchange
(
MN
.,i

)
x

and
(
MN
.,i

)
x′

, because the same operations can be
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applied to H and the semi-invariant stays the same up to scalar multiplication.

We can multiply
(
MN

i,.

)
y

or
(
MN
.,i

)
x

with an element µ ∈ K∗ for the same reasoning.

Furthermore, given elements µ, µ′ ∈ K∗, we can add the µ-th multiple of
(
MN

i,.

)
y

(or
(
MN
.,i

)
x
)

to the µ′-th multiple of
(
MN

i,.

)
y′

(or
(
MN
.,i

)
x′

, respectively) as well, the semi-invariant does
not change. Since the operations applied above are independent of N, we obtain the given
equality.

The above matrix can be simplified since, given µ, µ′ ∈ K, we can without loss of generality
add the µ-fold of

((
MN
.,i

)
k

)
(i,l)

to the µ′-fold of
(
MN
., j

)
l
. The translation to H is easily done

and the semi-invariant is only changed by multiplication of a scalar independent of N. We
are, therefore, able to show

det MN(φ) = λ′ det

 0 0 . . . 0 E(iyi) 0 0
R′1 R′2 . . . R′i−1 S ′ S

(
MN

x,y

)
i<x,y


= ± λ′ det

(
R′1 R′2 . . . R′i−1 S

(
MN

x,y

)
i<x,y

)

for some λ′ ∈ K and naturally occurring matrices R′x for 1 ≤ x ≤ i − 1.
Thus, in all cases, we can without loss of generality assume yi = 0.

Now assume y1 = . . . = yn−1 = 0, then we are able to extract a semi-invariant as in 5.2.
Define

a B (n, . . . , n︸  ︷︷  ︸
=:a1,...,ayn

) and a′ B ( 1, . . . , 1︸  ︷︷  ︸
=:a′1,1,...,a

′
1,x1

, 2, . . . , 2︸  ︷︷  ︸
=:a′2,1,...,a

′
2,x2

, . . . , n, . . . , n︸  ︷︷  ︸
=:a′n,1,...,a

′
n,xn

).

Furthermore, define for j ∈ {1, . . . , n} and for each pair of integers k ∈ {1, . . . , yn} and
l ∈ {1, . . . , x j} a polynomial

P
(k,l)
j B

∞∑
h=0

(
λk,l

n, j

)
h
· Xh.

Let us denote P B
(
a, a′,

(
P(k,l)

j

)
j,k,l

)
and consider the B-semi-invariant

fP : N → K

N 7→ det NP.

We claim that fP(N) = f φ(N) holds true for all N ∈ N .
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Let N ∈ N . Then

f φ(N) = det MN(φ) = det
(
MN

n, j

)
1≤ j≤n

= det

((MN
n, j

)
k,l

)
1≤k≤yn
1≤l≤x j


1≤ j≤n

= det


 ∞∑

h=0

(
λk,l

n, j

)
h
·
(
Nh

)
(n, j)


1≤k≤yn
1≤l≤x j


1≤ j≤n

= det



 ∞∑

h=0

(
λk,l

n, j

)
h
· Nh


(n, j)


1≤k≤yn
1≤l≤x j


1≤ j≤n

= det
(P(k,l)

j (N)(n, j)
)
1≤k≤yn
1≤l≤x j


1≤ j≤n

= det NP = fP(N). �

Corollary 5.3.2. (Generation of the U-invariant ring of N)
The U-invariant ring K[N]U is generated by the U-invariants given in corollary 5.2.2.



6 Towards an algebraic U-quotient of the
nilpotent cone

Of course, GLn is a reductive group but neither U, B nor P are. Therefore, to calculate
quotients of the nilpotent cone by these groups, we cannot rely on those results which
assume the acting group to be reductive. In case of the U-action, however, there is a
translation to a reductive action.

6.1 A quotient criterion for unipotent actions

We will prove the quotient criterion given in theorem 1.1.5 in a more general way than nec-
essary for our aim, that is, for arbitrary unipotent actions that are induced by a reductive
group.

Let G be a reductive algebraic group and U be a unipotent subgroup. Then U acts on G by
right multiplication and lemma 1.1.6 states that the U-invariant ring K[G]U is finitely gen-
erated as a K-algebra. Thus, an algebraic U-quotient of G, namely G//U B Spec K[G]U ,
exists together with a dominant morphism πG//U : G → G//U B Spec K[G]U which is in
general not surjective. Note that there is an element e ∈ G//U, such that πG//U(g) = ge for
all g ∈ G.

The group G acts on G//U by left multiplication. Let X be an affine G-variety and consider
the diagonal operation of G on the affine variety G//U × X.
Let π′ : G//U × X → (G//U × X)//G B Spec K[G//U × X]G be the associated algebraic
G-quotient, then we obtain the following commutative diagram:

X G//U × X

(G//U × X)//G

ι

x 7→ (e, x)

ρ = π′ ◦ ι π′

By definition, the map ι∗ is given by

ι∗ : K[G]U ⊗ K[X] → K[X]∑
i

hi ⊗ fi 7→
∑

i

hi(e) fi.

The morphism ρ induces an isomorphism

ρ∗ : (K[G]U ⊗ K[X])G → K[X]U .
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Thus, X//U � (G//U × X)//G and

K[X]U � (K[G//U × X])G � (K[G//U] ⊗ K[X])G � (K[G]U ⊗ K[X])G.

Let Y be an affine G-variety and consider the following commutative diagram

X G//U × X

Y

X//U (G//U × X)//G

U
G

ι

x 7→ (e, x)

µ µ′

µ µ′

π π′

�

where µ′ is assumed to be G-invariant and

µ : X → Y

x 7→ ( f1(x), . . . , fs(x))

is assumed to be a dominant U-invariant morphism of affine varieties.

In this setting, we obtain the following criterion for µ to be an algebraic U-quotient.

Lemma 6.1.1. (Quotient criterion for unipotent actions)
Assume that

(1.) Y is normal,

(2.) µ separates the U-orbits generically, that is, there is an open subset XU ⊆ X, such
that µ(x) , µ(x′) for all x, x′ ∈ XU and µ(XU) is an open subvariety of Y, and

(3.) codimY (Y\µ(X)) ≥ 2 or µ is surjective.

Then µ is an algebraic U-quotient of X, that is, Y � X//U.

Proof. Let g1, . . . , gs ∈ K[G//U × X]G, such that ρ∗(gi) = fi for all i.

Y is assumed to be a normal variety.
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If Z ⊂ Z′, then Z ⊆ Z′. Thus,

Y\µ(X) = Y\µ′ ◦ ι(X) ⊇ Y\µ′(G//U × X)

and, therefore,
2 ≤ codimY (Y\µ(X)) ≤ codimY (Y\µ′(G//U × X)).

The orbit G.({e} × XU) is an open subvariety of G//U × X, since XU is an open subvariety
of X.
Then π separates the G-orbits in G//U × X generically, namely on G.({e} × XU):
Let yi B gi((e, x)) = gi((e, x′)) for all i and two non-U-conjugate x, x′ ∈ XU . Since the
diagram

X G//U × X

Y

ι

µ µ′

commutes, we derive

µ(x) = µ′ ◦ ι(x) = µ′((e, x)) = µ′((e, x′)) = µ′ ◦ ι(x′) = µ(x′),

a contradiction to assumption (3.). We have shown that generically each fibre of µ′ contains
a unique G-orbit. Since the fibres of a morphism are closed, each of the fibres µ′−1(y) for
y ∈ µ′(G.({e} × XU)) contains one unique closed orbit.
Of course, the assumptions yield that µ′(G.({e} × XU)) = µ(XU) is open in Y .

Thus, theorem 1.1.5 yields that π : G//U × X → Y is an algebraic G-quotient. Since fi
and gi correspond to each other via the isomorphism ρ∗ : (K[G]U ⊗ K[X])G → K[X]U , the
morphism µ : X → Y is an algebraic U-quotient of X. �

6.1.1 The examples n = 2 and n = 3

We are now able to give explicit descriptions of algebraic U-quotients of the nilpotent cone
in case n equals 2 or 3.

Example 6.1.2. (An algebraic U-quotient in N2)

We consider N = N2. In this case, the U-normal form of corollary 5.1.4 is given by
matrices Hx for x ∈ K∗, where

Hx B

(
0 0
x 0

)
.

Then we define a morphism by

f2,1 : N → K; N 7→ f2,1(N) := N2,1,

which is a U-invariant due to corollary 5.2.2.
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Claim: The morphism

µ : N → A1 = Spec K[ f2,1]

N 7→ f2,1(N).

is an algebraic U-quotient of N .

Proof. To make use of theorem 6.1.1, we show that

(1.) A1 is normal:

This is a well-known fact from algebraic geometry (see also section 1.1).

(2.) µ separates the U-orbits generically, that is, there is an open subset NU ⊆ N , such
that µ(N) , µ(N′) for all N,N′ ∈ NU and µ(NU) is an open subvariety of A1:

Let NU be defined as in 5.1 as the set of U-conjugates of normal forms. Then
µ(NU) = A1\{0} is open in A1 and µ(N) = µ(N′) for two normal forms directly
yields N = N′.

(3.) Since µ is surjective, there is nothing left to show. �

We have, therefore, proven
N//U = A1

and
K[N]U = K[ f2,1].

The case n = 3 is slightly more complex, but can still be proven by making use of theorem
6.1.1.

Example 6.1.3. (An algebraic U-quotient for N3)

We consider N = N3, in this case the U-normal forms are given by matrices

H =

 0 0 0
x1 0 0
x x2 0


for x1, x2 ∈ K∗.

Consider the following U-invariants (as in corollary 5.2.2), given by

f3,1 : N → K; N 7→ N3,1,

det1 : N → K; N 7→ N2,1N3,2 − N2,2N3,1,

det2 : N → K; N 7→ N1,1N3,1 + N2,1N3,2 + N3,1N3,3,

The equality det1(N) = det2(N) holds true for all N ∈ N due to the nilpotency conditions.
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Let f1(N) be the U-invariant given by a1 = 2, b1 = 1, b2 = 1,P1,1 = x and P1,2 = x2. Then

f1 : N → K; N 7→ N2,1 · det1 + N3,1 · (N2,1N3,3 − N3,1N2,3).

Let f2(N) be the U-invariant given by a1 = 1, a2 = 1, b1 = 2,P1,1 = x2 and P1,2 = x. Then

f2 : N → K; N 7→ N3,2 · det1 + N3,1 · (N1,1N3,2 − N1,2N3,1).

Claim: The morphism

µ : N → A1 × Spec
K[X1, X2,Z](
X1X2 = Z3)

N 7→ ( f3,1(N), f1(N), f2(N), det1(N))

is an algebraic U-quotient of N .

Proof. Given a matrix H in normal form as above, the equalities

f1(H) · f2(H) = (x2
1 · x2) · (x1 · x2

2) = x3
1 · x

3
2 = (x1 · x2)3 = det31(H)

yield f1 · f2 = det1 on HU . Since the morphisms f1, f2 and det1 are U-invariant, this
equality holds true on NU as well, and, since NU ⊂open N , on the whole nilpotent cone.

Furthermore,

Y B A1 × Spec
K[X1, X2,Z](
X1X2 = Z3)︸                 ︷︷                 ︸

XB

= Spec
K[ f3,1, f1, f2, det1](

f1 · f2 = det31
) .

To make use of theorem 6.1.1, we show that

(1.) the affine variety Y is normal:

The normality of the variety X follows immediately from Serre’s criterion 1.1.2 or
from the fact that X is a toric affine variety (see subsection 1.1.4) induced by the
strongly convex rational polyhedral cone

σ B Cone
((

1
1

)
,

(
1
2

)
,

(
2
1

))
.

Since products of normal varieties are normal, the variety Y is normal as well.

(2.) the morphism µ separates the U-orbits generically, that is, there is an open subset
Nopen ⊆ N , such that µ(N) , µ(N′) for all N,N′ ∈ Nopen and µ(Nopen) is an open
subvariety of Y:

Let Nopen B NU be defined as in 5.1 as the set of U-conjugates of U-normal
forms in HU and set X′ ⊂ X to contain those tuples of which all entries are be-
ing non-zero. Then µ(Nopen) = A1 × X′ is open in Y and f1 · f2 = det31, thus, if
µ(N) = µ(N′) ∈ A1 × X′, then det1(N) , 0 , det1(N′) and N and N′ are contained
in Nopen. We can, thus, assume them to be two normal forms and clearly derive
N = N′.
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(3.) codimY (Y\µ(N)) ≥ 2:

Since A1 × X′ ⊂ µ(N), it suffices to show that (s, t, u, v) ∈ µ(N) whenever either s, t
or u equals zero and v3 = ut.

We are left with the three cases

(3.1) µ(

 0 0 0
t/v 0 0
0 u/v 0

) = (0, t, u, v) for arbitrary t, u ∈ K∗.

(3.2) µ(

 0 0 0
0 0 −t/s2

s 0 0

) = (s, t, 0, 0) for arbitrary s, t ∈ K∗.

(3.3) µ(

 0 −u/s2 0
0 0 0
s 0 0

) = (s, 0, u, 0) for arbitrary s, u ∈ K∗.

Therefore, codimY (Y\µ(N)) ≥ 2. �

We have proven

N//U = A1 × Spec
K[X1, X2,Z](
X1X2 = Z3)

and
K[N]U =

K[ f3,1, f1, f2, det1](
f1 · f2 = det31

) .

6.2 Toric invariants

As the case n = 3 suggests, there is a toric variety closely related to N//U.

The idea of a generalization is the following: By considering a special type of U-invariants,
so-called toric invariants, we define a toric variety X together with a dominant morphism
N//U → X, such that the generic fibres are affine spaces of the same dimension.

Given a matrix H = (xi, j)i, j ∈ HU , we denote xi B xi+1,i and define its “toric part”
Htor ∈ Kn×n by

(Htor)i, j B

{
xi, if i = j + 1;
0, otherwise.

We call an invariant f “toric” if f (H) = f (Htor) for every matrix H ∈ HU .

There exists a minimal, finite set { f1, . . . , fs} of toric invariants that generates all toric
invariants, such that for each i ∈ {1, . . . , s}, there are integers h1, . . . , hn−1 with

f (H) = xh1
1 · . . . · x

hn−1
n−1 .

The set S of these tuples (h1, . . . , hn−1) yields a cone σ = Cone(S ), such that the variety
X B Spec KS σ is the aforementioned toric variety.

Our aim, thus, is to characterize all toric invariants in the invariant ring K[N]U by describ-
ing a finite set of generators of these invariants.
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6.2.1 Reductions

Let f , 0 be a toric invariant of size r, given by the data

P = ((ai)1≤i≤s, (a′j)1≤ j≤t, (Pi, j)1≤i≤s
1≤ j≤t

).

Proposition 6.2.1. (First reduction of toric invariants)

Let σ ∈ S r be a permutation, such that
r∏

i=1
(HP)i,σ(i) , 0 for every H ∈ HU . Then there is

an element λ ∈ K∗, such that for every H ∈ HU

f (H) = λ ·

r∏
i=1

(HP)i,σ(i).

Proof. Since

f (H) = detHP =
∑
τ∈S r

sgn(τ) ·
r∏

i=1

(HP)i,τ(i),

it is adequate to show that for every choice σ, τ ∈ S r, such that
r∏

i=1

(HP)i,σ(i) , 0 ,
r∏

i=1

(HP)i,τ(i),

there exists an element λ ∈ K∗ fulfilling
r∏

i=1

(HP)i,σ(i) = λ ·

r∏
i=1

(HP)i,τ(i).

Every permutation equals a product of transpositions, thus, it suffices to show that for every
choice 1 ≤ i, i′, j, j′ ≤ r with HPi, j · H

P
i′, j′ , 0 , HPi, j′ · H

P
i′, j, there is an element λ ∈ K∗, such

that
HPi, j · H

P
i′, j′ = λ · HPi, j′ · H

P
i′, j.

We consider single entries first:

Let H ∈ HU be an arbitrary matrix in normal form and denote the entries on the second
diagonal by Hm+1,m =: xm for all m.
Given k ∈ {1, . . . , s} and l ∈ {1, . . . , t} and elements x ∈ {1, . . . , ak} and y ∈ {1, . . . , a′t}, there
is an element µ ∈ K, such that

(Pk,l(H))(ak ,a′l ))x,y = µ ·

n−ak+x−1∏
h=y

xh.

Since HP = ((Pi, j(H))(ai,a′j))1≤i≤s
1≤ j≤t

, there are integers s′, s′′ ∈ {1, . . . , s} and t′, t′′ ∈ {1, . . . , t}

and integers x
′

∈ {1, . . . , as′ } and x
′′

∈ {1, . . . , as′′ }, as well as integers y
′

∈ {1, . . . , a′
t′
} and

y
′′

∈ {1, . . . , a′
t′′
}, such that

HPi, j = (Ps′,t′(H))(as′ ,a′t′ )
)x′,y′ ,
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HPi′, j′ = (Ps′′,t′′(H))(as′′ ,a′t′′ )
)x′′,y′′ ,

HPi, j′ = (Ps′,t′′(H))(as′ ,a′t′′ )
)x′,y′′ and

HPi′, j = (Ps′′,t′(H))(as′′ ,a′t′ )
)x′′,y′ .

Following the above considerations, there are elements µ1, µ2 ∈ K∗, such that

HPi, j · H
P
i′, j′ = (Ps′,t′(H))(as′ ,a′t′ )

)x′,y′ · (Ps′′,t′′(H))(as′′ ,a′t′′ )
)x′′,y′′

=

µ1 ·

n−as′+x′−1∏
k=y′

xk

 ·
µ2 ·

n−as′′+x′′−1∏
k=y′′

xk


and elements µ3, µ4 ∈ K∗ that fulfill

HPi, j′ · H
P
i′, j = (Ps′,t′′(H))(as′ ,a′t′′ )

)x′,y′′ · (Ps′′,t′(H))(as′′ ,a′t′ )
)x′′,y′

=

µ3 ·

n−as′+x′−1∏
k=y′′

xk

 ·
µ4 ·

n−as′′+x′′−1∏
k=y′

xk

 .
Then

HPi, j · H
P
i′, j′ =

µ1 · µ2

µ3 · µ4
· HPi, j′ · H

P
i′, j.

yields the claim. �

In order to calculate a set of minimal generators, we can without loss of generality assume
ai, a′j ≤ n − 1 for all i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, since otherwise the corresponding
semi-invariant f fulfills f (H) = 0 for every H ∈ HU or deletion of these blocks leads to
changing f by a scalar.

We call f a sum-free toric invariant, if its block sizes a1, . . . , as and a′1, . . . , a
′
t do not share

any partial sums, that is, ∑
i∈I

ai ,
∑
i′∈I′

a′i′

for all I ( {1, . . . , s} and I′ ( {1, . . . , t}.

Given such sum-free toric invariant, we define some corresponding combinatorial data that
depend on the block sizes a := (a1, . . . , as) and a′ := (a′1, . . . , a

′
t). Note, however, that they

do not depend on the polynomials defining an invariant of these block sizes.

Definition 6.2.2. (Combinatorial data of toric invariants)
For k ∈ {1, . . . , s} we denote the “horizontal change” of k by hc(k), that is, the minimal
integer, such that there is an integer hs(k) > 0 (the “horizontal split” of k) with

k∑
j=1

a j =

hc(k)∑
j=1

a′j − hs(k).

We denote the “complement of hs(k)” by ch(k) B a′hc(k) − hs(k); for formal reasons, we
define hc(0) B 0.
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These data can be visualized as follows:

k − 1

k

k + 1

hc(k − 1) · · · hc(k)

ch(k) hs(k)

hc(k) + 1

(i, i)

For k ∈ {1, . . . , t} denote the “vertical change” by vc(k), that is, the minimal integer, such
that there is an integer vs(k) > 0 (the “vertical split”) with

k∑
j=1

a′j =

vc(k)∑
j=1

a j − vs(k).

We denote the “complement of vs” by cv(k) B a′vc(k) − vs(k); for formal reasons we define
vc(0) B 0 as above.

These data can be visualized by:

vc(k − 1)

.

.

.

vc(k)

vc(k) + 1

k − 1 k

cv(k)

vs(k)

k + 1

(i, i)

For every i ∈ {1, . . . , r}, we define

the “horizontal block” hb(i), that is, the maximal integer with i =
hb(i)−1∑

j=1
a j + hd(i)

for a positive integer hd(i) (which we call the “horizontal datum”),

the “vertical block” vb(i), that is, the maximal integer with i =
vb(i)−1∑

j=1
a′j + vd(i) for

a positive integer vd(i) (which we call the “vertical datum”).
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We call an entry (i, j) ∈ {1, . . . , r}2 acceptable for (a, a′) if vd( j) < hd(i) + n − ahb(i) and
unacceptable otherwise.

A permutation σ ∈ S r is called acceptable for (a, a′) if every entry (i, σ(i)) is acceptable
for f .

Given a toric invariant, following lemma 6.2.1 it suffices to find one acceptable permutation
in order to calculate f on NU .

Lemma 6.2.3. (Second reduction of toric invariants)
The toric invariants are generated by sum-free toric invariants.

Proof. Let f be a toric U-invariant. Due to proposition 6.2.1, to see of which form f is on
HU , we can without loss of generality order a := (a1, . . . , as) and a := (a′1, . . . , a

′
t) as we

like and adapt the permutation accordingly.

It, therefore, suffices to consider an arbitrary r × r-matrix of sum-free block sizes a and a′,
that is, for every pair of subsets I ( {1, . . . , s} and I′ ( {1, . . . , t} the partial sums do not
coincide: ∑

i∈I

ai ,
∑
i′∈I′

a′i′ .

If we find an acceptable permutation σ for (a, a′), following proposition 6.2.1 there exists

an element µ ∈ K∗ and a datum P which fulfills f (H) = µ · fP(H) = µ ·
r∏

i=1
(HP)i,σ(i) , 0

for every H ∈ HU .

We define a permutation σ ∈ S r, such that every (i, σ(i)) is acceptable for (a, a′) by double
induction on s and t.

Let s = 1 and t = 1, then every entry (i, i) is acceptable for (a, a′), since ahb(i) = a1 ≤ n − 1
and, therefore,

vd(i) = i < i + n − a1 = hd(i) + n − a1.

Let t = 1 and assume that for every k ≤ s, the above claim holds true. Consider the block
sizes a := (a1, . . . , as+1) and a′ := a′1, then every entry (i, i) is acceptable for (a, a′), since

vd(i) = i < i + n − ahb(i) ≤ hd(i) + n − ahb(i).

Let s = 1 and assume for every k ≤ t, the above claim holds true. Consider the block sizes
a := (a1) and a′ := (a′1, . . . , a

′
t+1), then every (i, i) is acceptable for (a, a′) in the same way:

vd(i) = i < i + n − a1 = hd(i) + n − a1.

We can set σ = id in every of these cases.

Let us fix an arbitrary integer t and let us assume that for s′ ≤ s and for every choice

of block sizes a1, . . . , as′ and a′1, . . . , a
′
t with

s′∑
j=1

a j =
t∑

j=1
a′j, there is a permutation σ as

claimed.

We consider block sizes a := (a1, . . . , as+1) and a′ := (a′1, . . . , a
′
t) with

s+1∑
j=1

a j =
t∑

j=1
a′j = r

and show in the following that we can find a permutation as wished for.
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First case: We can order the block sizes a′1, . . . , a
′
t , such that a′t ≥ as+1.

We can apply the premise of the induction to the r − as+1 × r − as+1-upper-left submatrix
of block sizes a(s) := (a1, . . . , as) and a(s)′ := (a′1, . . . , a

′
t−1, a

′
t − as+1) and obtain a permu-

tation σ′ ∈ S r−as+1 , such that (i, σ′(i)) is acceptable for (a(s), a(s)′) for every i ≤ r − as+1.

We define σ ∈ S r by

σ(i) B
{
σ′(i), if i ≤ r − as+1;
i, otherwise.

Then every entry (i, σ(i)), where i ≤ r− as+1, is acceptable for (a, a′), since it is acceptable
for (a(s), a(s)′).

Every entry (i, i), where i > r − as+1, is acceptable for (a, a′), since

vd(i) = i −
t−1∑
j=1

a′j < i −
t∑

j=1

a′j + n = i −
s∑

j=1

a j + n − as+1 = hd(i) + n − as+1.

Second case: The inequality a′i < a j holds true for every i ∈ {1, . . . , s+1} and j ∈ {1, . . . , t}.

Claim: For every k ∈ {1, . . . , s}, there is a permutation σ ∈ S a1+...+ak+1 , such that every entry
(i, σ(i)) is acceptable for (a, a′). Furthermore, the entry (i, i) is acceptable for
(a, a′) for every integer a1 + . . . + ak + hs(k) < i ≤ a1 + . . . + ak+1.

We prove the claim by induction on k.

Let k = 1.
Define

σ(i) B


i, if i ≤ a1 − ch(1);
i + hs(1), if a1 − ch(1) < i ≤ a1;
i − ch(1), if a1 < i ≤ a1 + hs(1);
i, otherwise.

The permutation σ can be vizualized as follows:

1

2

1 · · · hc(1)

......︸︷︷︸
ch(1)

..........︸︷︷︸
hs(1)

hc(1) + 1

(i, σ(i))

(i, i)
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For i ≤ a1 − ch(1), the entry (i, i) is acceptable for (a, a′) due to the considerations in the
case s = 1.

For a1 − ch(1) < i ≤ a1, the entry (i, σ(i)) is acceptable for (a, a′), since

vd(σ(i)) = i + hs(1) −
hc(1)−1∑

j=1

a′j < i + n − a1 = hd(i) + n − a1.

For a1 < i ≤ a1 + hs(1), the entry (i, σ(i)) is acceptable for (a, a′), since

vd(σ(i)) = i + hs(1) −
hc(1)∑
j=1

a′j = i − a1 < i − a1 + n − a2 = hd(i) + n − a2.

For i > a1 + hs(1), the entry (i, σ(i)) is acceptable for (a, a′), since

vd(σ(i)) = i −
vb(σ(i))−1∑

j=1

a′j < i − a1 + n − a2 = hd(i) + n − a2.

Now let k + 1 > 1.

Assume the claim holds true for k, that is, there is a permutation σ′ ∈ S a1+...+ak+1 , such
that every entry (i, σ′(i)) is acceptable for (a, a′) and such that σ′(i) = i for every integer
a1 + . . . + ak + hs(k) < i ≤ a1 + . . . + ak+1.

Then we set

σ(i) B



σ′(i), if i ≤
∑k+1

j=1 a j − ch(k + 1);

i + hs(k + 1), if
∑k+1

j=1 a j − ch(k + 1) < i ≤
k+1∑
j=1

a j;

i − ch(k + 1), if
k+1∑
j=1

a j < i ≤
k+1∑
j=1

a j + hs(k + 1);

i, otherwise.

For i ≤
k+1∑
j=1

a j − ch(k + 1), the entry (i, σ′(i)) is acceptable for (a, a′) due to the assumption

of the induction.

For
k+1∑
j=1

a j − ch(k + 1) < i ≤
k+1∑
j=1

a j, the entry (i, σ(i)) is acceptable for (a, a′), since

vd(σ(i)) = i + hs(k + 1) −
hc(k+1)−1∑

j=1

a′j = i − (
hc(k+1)∑

j=1

a′j − hs(k + 1)) + a′hc(k+1)

= i −
k+1∑
j=1

a j + a′hc(k+1) < i + n −
k+1∑
j=1

a j = hd(i) + n − ak+1.
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For
k+1∑
j=1

a j < i ≤
k+1∑
j=1

a j + hs(k + 1), the entry (i, σ(i)) is acceptable for (a, a′), since

vd(σ(i)) = i − ch(k + 1) −
hc(k+1)−1∑

j=1

a′j = i − ak+1 −

k∑
j=1

a j

< i −
k+1∑
j=1

a j + n − ak+2 = hd(i) + n − ak+2.

For i >
k+1∑
j=1

a j + hs(k + 1), the entry (i, i) is acceptable for (a, a′), since

vd(σ(i)) = i −
vb(σ(i))−1∑

j=1
a′j < i −

k+1∑
j=1

a j + n − ak+2 = hd(i) + n − ak+2.

As in the case k = 1, the permutation σ can be vizualized by

k

k + 1

k + 2

hc(k) · · · hc(k + 1)

.......︸︷︷︸
ch(k+1)

...........︸ ︷︷ ︸
hs(k+1)

hc(k + 1) + 1

(i, σ′(i))

(i, σ(i))

(i, i)

If s is fixed and the assumption holds true for every k ≤ t, then it also holds true for t + 1
by an argumentation symmetric to the above one.

Therefore, we have found a permutation as wished for in every case.

We can define the polynomials

Pk,l B

 xn−ak+hd(imin)−vd(imin),
if there is a minimal element imin with
hb(imin) = k and vb(σ(imin)) = l;

0, otherwise.
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Then, corresponding to the datum P = ((ai)1≤i≤s, (a′j)1≤ j≤t, (Pi, j)1≤i≤s
1≤ j≤t

), proposition 6.2.1

yields the existence of an element µ ∈ K, such that

f (H) = µ ·

r∏
i=1

(HP)i,σ(i)

for every H ∈ HU . �

6.2.2 General description of toric invariants

We fix a sum-free toric invariant f of block sizes a := (a1, . . . , as) and a′ := (a′1, . . . , a
′
t)

and assume, without loss of generality, a1 ≤ . . . ≤ as and a′1 ≤ . . . ≤ a′t .

Given an integer i ∈ {1, . . . , s}, we define si :=
i∑

l=1
al + 1.

Definition 6.2.4. (Block crossings)
Let us define so-called block crossings of (a, a′) , that is, tuples of integers (ik, jk), such that
“the diagonal crosses the (ik − 1) × jk-th block in the upper right corner”, recursively as
follows:

• i0 = j0 B 0

Let k ≥ 0. Then we define

• i′k B min
{
ik−1 < i ≤ s | vd(si + hs(i)) = a′vb(si+hs(i)) and vd(si) , 1

}
and

ik B max
{
i | hc(i) = hc(i′k)

}
• jk B vb(sik ).

Note that the condition vd(si) , 1 is required to exclude a block crossing in the (1, 1)-th
block. If the tuple (a, a′) is sum-free, the condition is redundant for k > 1.

ik

jk

(i, i)

There is a minimal integer x, such that the set{
ix−1 < i ≤ s | vd(si + hs(i)) = a′vb(si+hs(i))

}
= ∅.

Finally, we set

• ix B s and jx B t.



6.2 Toric invariants 149

We define BC B {(ik, jk) | 0 ≤ k ≤ x} to be the set of block crossings of (a, a′).

Example 6.2.5. (Block crossings)

If r = 14, consider the block sizes a = (3, 4, 7) and a′ = (2, 6, 6).

The block matrix can be depicted as follows; we mark the (potentially) unacceptable en-
tries by coloring them.

a1

a2

a3

a′1 a′2 a′3

(i, i)

Then the block crossings are given in the following table:

k 0 1 2
ik 0 2 3
jk 0 2 3

Proposition 6.2.6. (Acceptable entries and block crossings)
If

i < {sik + h | h ∈ {0, . . . , hs(ik)} and k ∈ {1, . . . , x}},

then the entry (i, i) is acceptable for (a, a′).

Proof. Follows from definition 6.2.4 and since ai, a′j ≤ n − 1 for all integers i ∈ {1, . . . , s}
and j ∈ {1, . . . , t}. �

Following from the definition of block crossings, we obtain a general description of an
acceptable permutation of f .

Corollary 6.2.7. (An acceptable permutation)
The permutation σ ∈ S r defined by

σ(i) B


i + hs(ik), if

jk−1∑
j=1

a′j < i ≤
ik∑

j=1
a j;

i − ch(ik), if
ik∑

j=1
a j < i ≤

jk∑
j=1

a′j;

i, otherwise.

for k ∈ {1, . . . , x} is acceptable for (a, a′).
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Proof. We distinguish between two cases:

Let x = 1, then the permutation σ = id is acceptable in all cases.

Let x > 1; we look at certain blocks that are induced by the crossings (ik, jk). In more
detail, for k ∈ {1, . . . , x}, we show that every entry (i, σ(i)) is acceptable for (a, a′) if

jk−1∑
j=1

a′j < i ≤
jk∑

j=1

a′j.

The first block:

The permutation σ is given by

σ(i) B



i, if 0 < i ≤
j1−1∑
j=1

a′j;

i + hs(i1), if
j1−1∑
j=1

a′j < i ≤
i1∑

j=1
a j;

i − ch(i1), if
i1∑

j=1
a j < i ≤

j1∑
j=1

a′j.

We visualize these entries (i, σ(i)) in figure 6.1. Each of them is acceptable for (a, a′) which
can be proven with the help of proposition 6.2.6 analogously to the proof of lemma 6.2.3.

1

...

i1

i1 + 1

1 · · · j1

.....︸︷︷︸
ch(i1)

........︸︷︷︸
hs(i1)

j1 + 1

(i, σ(i))

(i, i)

Figure 6.1: The first block

The k-th block for k ∈ {2, . . . , x − 1}:

The permutation σ is given by

σ(i) B



i, if
jk−1∑
j=1

a′j < i ≤
jk−1∑
j=1

a′j;

i + hs(ik), if
jk−1∑
j=1

a′j < i ≤
ik∑

j=1
a j;

i − ch(ik), if
ik∑

j=1
a j < i ≤

jk∑
j=1

a′j.

and is depicted in figure 6.2.
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ik−1

ik

...

ik + 1

jk−1
· · · jk

......︸︷︷︸
ch(ik)

..........︸︷︷︸
hs(ik)

jk + 1

(i, σ(i))

(i, i)

Figure 6.2: The k-th block

Every entry (i, σ(i)) for
jk−1∑
j=1

a′j < i ≤
jk∑

j=1

a′j

is acceptable for (a, a′) which can be proven with the help of proposition 6.2.6 analogously
to the proof of lemma 6.2.3.

The last block:

The permutation σ is given by σ(i) B i for every integer
jx−1∑
j=1

a′j ≤ r.

The fact that each entry (i, i) is acceptable for (a, a′) follows from proposition 6.2.6 and the
condition as ≤ n − 1. Figure 6.3 visualizes the permutation σ in the last block.

ix−1

...

s

jx−1
· · · t

(i, σ(i))

(i, i)

Figure 6.3: The last block
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Every entry (i, σ(i)) for
jx−1∑
j=1

a′j ≤ r

is acceptable for (a, a′) which can be proven as in the proof of lemma 6.2.3.

Therefore, for every integer i ∈ {1, . . . , r}, the entry (i, σ(i)) is acceptable for (a, a′) and the
defined permutation σ is, thus, acceptable for (a, a′) as well. �

We fix the acceptable permutation σ ∈ S r and the induced datum P (as in the proof of
lemma 6.2.3).

Proposition 6.2.8. (Description of acceptable entries)
Let H = Htor ∈ HU be a matrix with entries Hk+1,k =: xk. Then

HP(i,σ(i)) = (Hn−vd(σ(i))−ahb(i)+hd(i))hd(i),vd(σ(i)) =

n−ahb(i)+hd(i)−1∏
k=vd(σ(i))

xk.

Proof. Clearly,
HP(i,σ(i)) = (Hn−vd(σ(i))−ahb(i)+hd(i))(hd(i),vd(σ(i))

due to the definition of hd and vd. The remaining equality follows from the consideration
of potencies of H (for example in the proof of proposition 6.2.1). �

For i, j ∈ {1, . . . , n − 1}, we consider so-called part-diagonal determinants, that is, determi-
nants along the blue entries, depicted in figure 6.4.
We say the determinant is of type (1) or (2), of height h and of width w.

(1)

h

w

(2)

h

w

Figure 6.4: Part-diagonal determinants

Corollary 6.2.9. (Description of part-diagonal determinants)
If the part-diagonal determinant of height h and width w is given by acceptable entries
(i, σ(i)) for i ∈ I, then it is given by∏

i∈I

HPi,σ(i) =

w∏
k=1

n−h−1∏
l=0

xk+l if it is of type (1)

and by ∏
i∈I

HPi,σ(i) =

w∏
k=w−h+1

n−w−1∏
l=0

xk+l if it is of type (2).
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Proof. Follows directly from proposition 6.2.8. �

We define data in order to describe the block diagonal determinants that are induced by the
permutation σ.

Definition 6.2.10. (The data s(σ) and diag( f ))
We start by defining a sequence (s(σ)k)1≤k≤h recursively as follows:

• s(σ)1 = 1 and

• for k > 1, the integer s(σ)k > s(σ)k−1 is the minimal integer, such that

hb(s(σ)k) > hb(s(σ)k−1) or vb(s(σ)k) > vb(s(σ)k−1).

If no such integer exists, we set k − 1 =: h and determine the sequence at s(σ)h.

Then a tuple

diag( f ) = (diag( f )1, . . . , diag( f )h) ∈ (N × N × {(1), (2)})h

is obtained as follows:
Let l ∈ {1, . . . , h} and denote i := hb(s(σ)l) as well as j := vb(s(σ)l.

• diag( f )l B (dl, d′l , (1)) if the permutation σ yields a block determinant as in the
figure 6.5.

ai

dl

a′j

d′l

(k, σ(k))
ai

dl

d′l = a′j

(k, σ(k))

Figure 6.5 : Part − diagonal determinants; first case

• diag( f )l B (dl, d′l , (2)) if the permutation σ yields a block determinant as in figure
6.6.

dl = ai

a′j

d′l

(k, σ(k))

Figure 6.6 : Part − diagonal determinants; second case
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Example 6.2.11. (The data s(σ) and diag( f )l)
We consider the example 6.2.5. The sequence s(σ) is given by

s(σ) = (1, 3, 4, 8, 9)

a1

a2

a3

•

•
•

•
•

a′1 a′2 a′3

(i, i)

and diag( f ) = ((3, 2, (1)); (1, 1, (1)); (4, 6, (2)); (7, 1, (1)); (6, 6, (1))).

We describe the tuple diag( f )l in detail in order to verify a general description of all toric
invariants.

Proposition 6.2.12. (Explicit description of diag( f ))
Let l ∈ {1, . . . , h} and denote i := hb(s(σ)l) as well as j := vb(s(σ)l).

1. Assume vd(s(σ)l) = 1.

• Let i , ik and j , jk for all k ∈ {1, . . . , x}.
– If hb(s(σ)l+1) = ai + 1, then

diag( f )l = (ai − hd(s(σ)l) + 1, vd(s(σ)l+1) − 1, (1))

and
– if hb(s(σ)l+1) = ai, then

diag( f )l = (ai − hd(s(σ)l) + 1, a′j, (1)).

• If j = jk for an integer k ∈ {1, . . . , x}, then

diag( f )l = (aik+1, hs(k), (1)).

2. Assume vd(s(σ)l) = 1.

• If i , ik and j , jk for all k ∈ {1, . . . , x}, then

diag( f )l = (ai, vd(s(σ)l+1 − 1, (2)).

• If i = ik for an integer k ∈ {1, . . . , x}, then

diag( f )l = (ai − hd(s(σ)l) + 1, a′j, (2)).
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We are now able to give an explicit description of the sum-free toric invariants.

Define

δ(l) B
{

1 if diag( f )l ∈ N × N × {(1))};
0 otherwise;

and

δ′(l) B
{

1 if diag( f )l ∈ N × N × {(2))};
0 otherwise.

Lemma 6.2.13. (Description of sum-free toric invariants)
Let f be a sum-free toric invariant of block sizes a B (a1, . . . , as) and a′ B (a′1, . . . , a

′
t).

Then

f =

h∏
l=1


δ(l)·d′l∏
k=1

n−dl−1∏
y=0

xk+y


 · h∏

l=1


δ′(l)·d′l∏

k=d′l−dl+1


n−d′l−1∏

y=0

xk+y




Proof. Lemma 6.2.9 gives the description of the partial diagonal block matrices. It, there-
fore, suffices to combine the datum diag( f ) with these descriptions. �

We define f(a,a′) to be the (unique) toric U-invariant given by the datum (a, a′, (Pi, j)i, j)
where Pi, j are polynomials induced by an acceptable permutation σ for (a, a′) as in the
proof of lemma 6.2.3.

6.3 Generic separation of the U-orbits

We define a set of U-invariants and a morphism µ : N → AD ×An−1 for an integer D, such
that µ separates the U-orbits in NU . More explicitly, if H,H′ ∈ HU and µ(H) = µ(H′),
then H = H′.

Let H = (xi, j)i, j be a matrix in U-normal form in the following and define xi B xi+1,i for
i ∈ {1, . . . , n − 1}.

Definition 6.3.1. (Separating invariants)
We define the toric invariants deti := f((n−i),(n−i)) and fi := f((i),(1,...,1)) for every integer
i ∈ {1, . . . , n − 1}.

Furthermore, for integers i, j ∈ {1, . . . , n}, such that j < i − 1, we define the datum

P =

(
( j − 1, n − i + 1), ( j, n − i),

(
xn− j+1 0

x xi

))
.

Then fi, j := fP is a U-invariant due to corollary 5.2.2.

Clearly, for i ∈ {1, . . . , b n+1
2 c}, the equalities

deti(H) = detn−i(H) = det
(
Hi

(n−i,n−i)

)
=

i−1∏
k=1

xk
k ·

n−i∏
k=i

xi
k ·

n−1∏
k=n−i+1

xn−k
k

hold true.
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Furthermore,

fi, j(H) = det

 Hn− j+1
( j−1, j) 0

H(n−i+1, j) Hi
(n−i+1,n−i)

 = det j−1(H) · detn−i(H) · xi, j

and

fi(H) = det
(

Hn−i
(i,1) . . . Hn−1

(i,1)

)
=

n−i∏
k=1

xi
k ·

n−1∏
k=n−i+1

xn−k
k .

We set D B (n−1)(n−2)
2 and can separate the U-orbits in the open subset NU ⊂ N .

Lemma 6.3.2. (Generic separation of the U-orbits)
The morphism

µ : N → AD × An−1

N 7→ (( fi, j(N))1≤ j<i−1≤n−1, ( fi(N))1≤i≤n−1)

separates the U-orbits in NU .

Proof. Let ai, j ∈ K∗ and ai ∈ K∗ be elements fulfilling

π(H) = (( fi, j(H))1≤ j<i−1≤n−1, ( fi(H))1≤i≤n−1) = ((ai, j)i, j, (ai)i).

We verify that the matrix H in normal form as above with these properties is uniquely de-
termined.

First, we show that the toric invariants fi separate the second diagonal, that is, the entries
x1, . . . , xn−1.

If i = 1, then

xi =
fn−1(H)
fn−2(H)

=
an−1

an−2
∈ K∗;

if 1 < i < n − 1, then

xi =
fn−i(H)2

fn−i−1(H) fn−i+1(H)
=

a2
n−i

an−i−1an−i+1
∈ K∗

and if i = n − 1, then

xi =
f1(H)2

f2(H)
=

a2
1

a2
∈ K∗.

Every entry xi is uniquely determined, therefore, the entries xi, j, where j + 1 , i, are also
uniquely determined, since

ai, j = fi, j(H) = xi, j · det j−1(H) · detn−i(H)

and because of the above description of det j−1 and detn−i. �

The U-invariant ring of NU , thus, is given by

K[NU]U = K[HU] � K[AD × (K∗)n−1].
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6.4 The toric variety X

We denote the toric part of the invariant ring K[N]U , that is, the subring which is generated
by the toric invariants given in section 6.2, by K[N]U

tor.

Corresponding to K[N]U
tor, there is a variety X B Spec K[N]U

tor which is a toric variety as
follows:

As before, let H = (xi, j)i, j be an arbitrary matrix in U-normal form and define xi B xi+1,i
for i ∈ {1, . . . , n − 1}.

Given a sum-free tuple (a, a′), there are integers h1(a, a′), . . . , hn−1(a, a′), such that

f(a,a′)(H) = xh1(a,a′)
1 · . . . · xhn−1(a,a′)

n−1 .

Denote by S the set of tuples (h1(a, a′), . . . , hn−1(a, a′)) ∈ Nn−1 for arbitrary sum-free tuples
that induce a minimal set of generating toric invariants and denote σ B Cone(S ).

Let N be the lattice Zn−1, then σ is generated by the finite set S ⊂ Zn−1 and, therefore, is a
convex rational polyhedral cone. It is strongly convex, since σ ∩ (−σ) = {0}.

Therefore, X = Spec K[N]U
tor � Spec K[S σ] is a normal toric variety by lemma 1.1.9.

6.4.1 Toric operation(s)

Let T ⊂ GLn be the torus of diagonal matrices. There is a natural action τ of T on the
U-invariant ring of N as follows:

τ : T × K[N]U → K[N]U

(t, f ) 7→

(
f : N → K

N 7→ f (tNt−1)

)
.

We examine τ on the separating toric invariants fi of section 6.3. Let t ∈ T be a matrix
with diagonal entries t1, . . . , tn ∈ K∗. Then

τ(t, fi)(H) =
tn−i+1 . . . tn

ti
1

·

n−i∏
k=1

xi
k ·

n−1∏
k=n−i+1

xn−k
k

can be verified directly, or by considering the character ω, such that fi is a B-semi-invariant
of weight ω as in proposition 5.2.1.

Lemma 6.4.1. (The operation τ)
Let f be a toric invariant, such that f (H) = xh1

1 . . . xhn−1
n−1 . Then

τ(t, f )(H) =

n∏
k=1

(
tk+1

tk

)hk

· f (H).
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Proof. Following section 6.3, we have the equality

f (H) =

( fn−1

fn−2

)h1

·

n−2∏
k=2

 f 2
n−k

fn−k−1 · fn−k+1

hk

·

 f 2
1

f2

hn−1
 (H).

The claim follows from our considerations above. �

Another operation is given, since the variety X = Spec K[N]U
tor is a toric variety, that is,

τ′ : (K∗)n−1 × K[N]U
tor → K[N]U

tor.

Let f be a toric invariant, such that f (H) = xh1
1 . . . xhn−1

n−1 , and c B (c1, . . . , cn−1) ∈ (K∗)n−1,
the operation τ′ is given by

τ′(c, f )(H) = f (H) · ch1
1 . . . chn−1

n−1 .

Consider the morphism

ρ : T → (K∗)n−1

(t1, . . . , tn) 7→
(
t2
t1
, . . . ,

tn
tn−1

)
.

Corollary 6.4.2. (Interrelation of the operations τ and τ′)
The operation τ is induced by the operation τ′ via the morphism ρ.

Proof. Follows from the description of τ and τ′ as well as of lemma 6.4.1. �

6.4.2 Explicit description of toric invariants

We make use of the interrelation of the operations τ and τ′ in order to describe the toric
invariants in detail.

Lemma 6.4.3. (Explicit description of toric invariants)
Let f be a sum-free toric invariant of block sizes a B (a1, . . . , as) and a′ B (a′1, . . . , a

′
t)

and let f (H) = xh1
1 . . . xhn−1

n−1 . Then, for l ∈ {1, . . . , n − 2},

hl = t +

l∑
k=2

]{ j ∈ {1, . . . , t} | a′j ≥ k} −
l−1∑
k=1

]{i ∈ {1, . . . , s} | ai ≥ n − k}

and
hn−1 = s.

Proof. The invariant f is a B-semi-invariant of weight

ω B
s∑

i=1

(
ωn−ai+1 + . . . + ωn

)
−

t∑
j=1

(
ω1 + . . . + ωa′j

)
.
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Therefore, if t ∈ T is a matrix with diagonal entries t1, . . . , tn, then the weight ω and
corollary 6.4.2 yield

s∏
i=1

(
tn−ai+1 · . . . · tn

)
t∏

j=1

(
t1 · . . . · ta′j

) = t. f (H) =

n−1∏
i=1

(
ti+1

ti

)hi

.

The claim follows by counting the corresponding factors. �

6.4.3 Interrelation between N//U and X

We summarize the results, we have proven so far about the affine variety N//U.

Let π : N → N//U be an algebraic U-quotient of N which exists, since K[N]U is finitely
generated.

The space of U-normal forms is given byHU � AD × (K∗)n−1 and the map π restricts to a
morphism i : HU → N//U.

Consider the toric variety X described above by its cone σ which is induced by the sum-
free toric invariants of subsection 6.2 and let X′ � (K∗)n−1 be the dense orbit in X.

The generic separation in section 6.3 yields that the morphism i : HU → i(HU) is injective
and that we can construct an explicit morphism i′ : i(HU)→ HU , such that i ◦ i′ = idi(HU )
and i′ ◦ i = idHU . Thus,

AD × (K∗)n−1 � i(HU) ⊆ N//U

and the morphism i is birational.

Lemma 6.4.4. (The morphism N//U → X)
The natural embedding K[N]U

tor → K[N]U induces a dominant, T -equivariant morphism

p : N//U → X,

such that for each point x′ ∈ X′, its fibre fulfills p−1(x) � AD.

Proof. The morphism p is T -equivariant due to our considerations in subsection 6.4.1
and dominant, since it is induced by the inclusion K[N]U

tor → K[N]U . More explicitly,
X′ = p(HU) ⊆ im p.

Let x′ ∈ X′, then p−1(x) ⊆ i(HU), since every determinant deti for i ∈ {1, . . . , n − 1} is a
toric invariant. If x′ ∈ X′, none of these determinants vanishes on x′ and corollary 5.1.4,
therefore, yields p−1(x′) ⊆ i(HU). Since the orbits inNU are separated by the U-invariants
of section 6.3 and sinceHU � AD × X′, the claim p−1(x) � AD follows. �

The morphism

HU
i
−→ N//U

p
−→ X

can be thought of as the projection on the first diagonal, that is, p ◦ i(H) = (xi)1≤i≤n−1 ∈ X′.
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There is a morphism q : N//U → AD as well, such that the composition

HU
i
−→ N//U

q
−→ AD

yields q ◦ i(H) = (xi, j)1< j+1≤i−1<n ∈ AD.

Lemma 6.4.5. (The morphism (p, q))
The morphism

(q, p) : N//U → AD × X

is dominant and birational.

Proof. The morphism (p, q) is dominant, since (following our considerations above) AD ×

X′ ⊆ im(p, q) ⊆ AD × X.

The morphism (p, q) is birational following lemma 1.1.3, since (p, q) is dominant and for
every y ∈ AD × X′ ⊆ AD × X, the fibre (p, q)−1(y) contains exactly one element by our
considerations in section 6.3. More straight forward, (p, q) restricts to an isomorphism
i(HU) � AD × X′. �

Remark 6.4.6. The morphism (p, q) is not surjective for n ≥ 4:

Let us assume the morphism (p, q) to be surjective. Since AD × X is a normal variety and
(p, q) is birational, the lemma of Richardson 1.1.4 yields that (p, q) is an isomorphism.

We obtain a contradiction, since K[N]U � K[HU]:

Define a U-invariant g by the data

P =

{
((2), (2), (x)), if n = 4;
((n − 2), (2, n − 4), (x, x4)) otherwise.

Let H ∈ HU be a matrix in U-normal form as before. Then

g(H) = (x3,1 · x4,2 − x2 · x4,1) · detn−4(H)

and the relation

g · detn−3 · det1 · fn−3 · fn−1︸                         ︷︷                         ︸
BF

= f3,1 · f4,2 · fn−3 · fn−1 − f4,1 · f 2
n−2 · detn−3 · det1︸                                                        ︷︷                                                        ︸

BF′

holds true in K[N]U . The inequality K[N]U � K[HU] � K[AD × X] follows.

Furthermore, since F , F′, the set M B {x ∈ AD × X | F(x) , 0; F′(x) = 0} is non-empty.
Then the inclusion M ⊆ (AD × X)\ im(p, q) directly yields that the morphism (p, q) is not
surjective.

By the same reasoning, we obtain the stronger result

codimAD×X((AD × X)\ im(p, q)) ≤ 1.
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6.5 The case n = 4

We work through the case n = 4 in all detail.

Toric invariants

Let us consider a matrix

H =


0 0 0 0
x1 0 0 0
x3,1 x2 0 0
x4,1 x4,2 x3 0


in U-normalform.

We deduce minimal toric generators following section 6.2 and describe them by their
monomials, that is, if f is a toric invariant, we describe the tuple (a, b, c), such that

f (H) = xa
1 · x

b
2 · x

c
3.

We start by describing all sum-free tuples (a, a′) with a = (a1, . . . , as) and a′ = (a′1, . . . , a
′
t)

with increasingly ordered entries, such that ai ≤ 3 and a′j ≤ 3 for all i, j.

There are integers s1, s2 ∈ {1, . . . , s} and t1, t2 ∈ {1, . . . , t} with

1 = a1 = . . . = as1 < as1+1 = . . . = as2 < as2+1 = . . . = as = 3

and
1 = a′1 = . . . = a′t1 < a′t1+1 = . . . = a′t2 < a′t2+1 = . . . = a′t = 3.

The following are the only sum-free tuples:

1. (a, a′) = ((1), (1)) 2. (a, a′) = ((2), (2)) 3. (a, a′) = ((3), (3))

4. (a, a′) = ((1, 1), (2)) 5. (a, a′) = ((2), (1, 1))

6. (a, a′) = ((1, 1, 1), (3)) 7. (a, a′) = ((3), (1, 1, 1))

8. (a, a′) = ((1, 2), (3)) 9. (a, a′) = ((3), (1, 2))

10. (a, a′) = ((2, 2), (1, 3)) 11. (a, a′) = ((1, 3), (2, 2))

Of course, given the toric normal form H,

H2 =


0 0 0 0
0 0 0 0

x1x2 0 0 0
0 x2x3 0 0

 and H3 =


0 0 0 0
0 0 0 0
0 0 0 0

x1x2x3 0 0 0

 .
The above sum-free tuples yield generating sum-free toric invariants as follows:

1. det1 = f1 = f((1),(1)): (a, b, c) = (1, 1, 1), since

det
(
(H3)(1,1)

)
= det (x1x2x3) = x1x2x3;
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2. det2 = f((2),(2)): (a, b, c) = (1, 2, 1), since

det
(
(H2)(2,2)

)
= det

(
x1x2 0

0 x2x3

)
= x1x2

2x3;

3. det3 = f((3),(3)): (a, b, c) = (1, 1, 1), since

det
(
(H)(3,3)

)
= det

 x1 0 0
0 x2 0
0 0 x3

 = x1x2x3;

4. g2 B f((1,1),(2)): (a, b, c) = (1, 2, 2), since

det
 H3

(1,2)
H2

(1,2)

 = det
(

x1x2x3 0
0 x2x3

)
= x1x2

2x2
3;

5. f2 = f((2),(1,1)): (a, b, c) = (2, 2, 1), since

det
(

H2
(2,1) H3

(2,1)

)
= det

(
x1x2 0

0 x1x2x3

)
= x2

1x2
2x3;

6. g3 B f((1,1,1),(3)): (a, b, c) = (1, 2, 3), since

det


H3

(1,3)
H2

(1,3)
H(1,3)

 = det


x1x2x3 0 0

0 x2x3 0
0 0 x3

 = x1x2
2x3

3;

7. f3 = f((3),(1,1,1)): (a, b, c) = (3, 2, 1), since

det
(

H(3,1) H2
(3,1) H3

(3,1)

)
= det

 x1 0 0
0 x1x2 0
0 0 x1x2x3

 = x3
1x2

2x3;

8. f((1,2),(3)): (a, b, c) = (1, 2, 2), since

det
(

H3
(1,3)

H(2,3)

)
= det


x1x2x3 0 0

0 x2 0
0 0 x3

 = x1x2
2x2

3;

9. f((3),(1,2)): (a, b, c) = (2, 2, 1) , since

det
(

H(3,1) H2
(3,2)

)
= det

 x1 0 0
0 x1x2 0
0 0 x2x3

 = x2
1x2

2x3;
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10. f((2,2),(1,3)): (a, b, c) = (2, 3, 2), since

det
(

H2
(2,1) H3

(2,3)
0 H(2,3)

)
= det


x1x2 0 0 0

0 x1x2x3 0 0
0 0 x2 0
0 0 0 x3

 = x2
1x3

2x2
3;

11. f((1,3),(2,2)): (a, b, c) = (2, 3, 2), since

det
(

H2
(1,2) H3

(1,2)
H(3,2) H(3,2)

)
= det


0 x2x3 0 0
x1 0 0 0
0 0 x1x2 0
0 0 0 x2x3

 = (−1) · x2
1x3

2x2
3.

The sum-free invariants are listed in the table in figure 6.7.

a a’ a b c a a’ a b c
(1) (1) 1 1 1 (3) (1,1,1) 3 2 1
(2) (2) 1 2 1 (1,2) (3) 2 2 1
(3) (3) 1 1 1 (3) (1,2) 1 2 2

(1,1) (2) 2 2 1 (2,2) (1,3) 2 3 2
(2) (1,1) 1 2 2 (1,3) (2,2) 2 3 2

(1,1,1) (3) 1 2 3

Figure 6.7: Generating toric invariants for n = 4

Define the ideal

R :=
(
g2

2 = g3det2, f 2
2 = f3det2, f3g3 = det41, f3g2 = det21 f2, g3 f2 = det21g2, f2g2 = det21det2

)
in the subring of toric invariants K[N]U

tor ⊂ K[N]U .

Then

X := Spec K[N]U
tor = Spec

K
[
det1, det2, f1, f2, g2, g3

]
R

due to our considerations above.

Claim: X is a normal affine toric variety.

There is an isomorphism X � Spec K[S σ] of affine varieties where σ is the convex poly-
hedral cone generated by

S =


 3

2
1

 ,
 1

2
1

 ,
 1

2
3

 ,
 1

2
2

 ,
 1

1
1

 ,
 2

2
1


 .

The variety X is a normal toric variety if and only if σ is a strongly convex rational poly-
hedral cone. Let N be the lattice Z3, then σ is generated by the finite set S ⊂ Z3 and,
therefore, is a convex rational polyhedral cone. It is strongly convex, since σ∩ (−σ) = {0}.
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Toric operations

Let T ⊂ GLn be the torus of diagonal matrices. Consider the operation

τ : T × K[N]U → K[N]U

(t, f ) 7→

(
f : N → K

N 7→ f (tNt−1)

)
which we examine the operation τ on the generating invariants defined in section 6.3 in the
following.

Let t ∈ T ⊂ K4×4 be a diagonal matrix with diagonal entries t1, t2, t3, t4 ∈ K∗. Then

det1(tHt−1) =
t4
t1

; f2(tHt−1) =
t3t4
t21

; g2(tHt−1) =
t24

t1t2
;

det2(tHt−1) =
t3t4
t1t2

; f3(tHt−1) =
t2t3t4

t31
; g3(tHt−1) =

t34
t1t2t3

.

These equalities can be verified directly, or by calculating the character ω, such that the
U-invariant is a B-semi-invariant of weight ω. The operation is fixed by those matrices for
which t1 = t2 = t3 = t4.

The variety X is a toric variety via the induced operation of

τ′ : (C∗)3 × K[N]U
tor → K[N]U

tor,

such that c B (c1, c2, c3) ∈ (C∗)3 acts on the generating invariants as follows:

c.det1(H) = det1(H)c1c2c3; c. f2(H) = f2(H)c2
1c2

2c3; c.g2(H) = g2(H)c1c2
2c2

3;

c.det2(H) = det2(H)c1c2
2c3; c. f3(H) = f3(H)c3

1c2
2c3; c.g3(H) = g3(H)c1c2

2c3
3.

We immediately understand that the operation τ is induced by the operation τ′ via the
morphism

ρ : T → (C∗)3

t 7→
(
t2
t1
,

t3
t2
,

t4
t3

)
.

Generic separation

Define

µ : N → A6

N 7→ ( f3,1(N), f2,1(N), f3,2(N), f1(N), f2(N), f3(N))

where the U-invariants fi, j and fi are defined as in definition 6.3.1.

Claim: The morphism µ separates the U-orbits generically, that is, on the open subset
NU ⊆ N , the inequality µ(N) , µ(N′) holds true for all N,N′ ∈ NU .
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Proof. Let H = (xi, j)i, j ∈ HU and H′ = (x′i, j)i, j ∈ HU be two matrices in normal form; we
set xi B x′i+1,i and x′i B x′i+1,i.

It is sufficient to show xi = x′i for all i.

Let (a, b, c, s, t, u) ∈ A6 and assume µ(H) = µ(H′) = (a, b, c, s, t, u).

x4,1 = f4,1(H) = a = f4,1(H′) = x′4,1

x3,1 · x1x2x3 = f3,1(H) = b = f3,1(H′) = x′3,1 · x
′
1x′2x′3

x4,2 · x1x2x3 = f4,2(H) = c = f4,2(H′) = x′4,2 · x
′
1x′2x′3

x1x2x3 = f1(H) = s = f1(H′) = x′1x′2x′3
x2

1x2
2x3 = f2(H) = t = f2(H′) = x′21 x′22 x′3

x3
1x2

2x3 = f3(H) = u = f3(H′) = x′31 x′22 x′3
We calculate x1 = x′1 = u/t and x2 = t2/us = x′2 and x3 = s2/t = x′3.

Therefore, H = H′ which proves the claim. �

The morphism (p, q)

We define the dominant morphism

(p, q) : N//U → A3 × X

as in subsection 6.4.3 which separates the U-orbits in A3 × X′ as has been shown above.

Consider the following three invariants:

• the (non-toric) invariant g given by the datum P = ((2), (2), (x)) for which

g(H) = det
(
H(2,2)

)
= x3,1 · x4,2 − x2 · x4,1

holds true,

• the (non-toric) invariant g′ given by the datum P = ((1), (1), (x2)) for which

g′(H) = det
(
H2

(1,1)

)
= x1 · x4,2 + x3 · x3,1

holds true and

• the (non-toric) invariant G2 by the datum P = ((2), (1, 1), (x, x2)) for which

g′′(H) = det
(

H(2,1) H2
(2,1

)
= x3,1 · g′(H) − x4,1 · x1 · x2

holds true.

Then, for example, the relations

g · det21 = f3,1 f4,2 − det1det2 f4,1 and g′′ · det21 = f3,1det1g′ − f2 f4,1

yield K[N]U � K[A3] ⊗ K[N]U
tor and N//U � A3 × X.
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7 Towards a GIT-quotient for the Borel
action

We initiate the study of a GIT-quotient for the Borel action on the nilpotent cone N in the
following.

7.1 The examples n = 2 and n = 3

We start by discussing n = 2 and consider N = N2.

Example 7.1.1. (A GIT-quotient in N2 for the Borel action)

Example 6.1.2 proves
K[N]U = K[ f2,1].

The U-invariant morphism f2,1 is a B-semi-invariant of weight χ0 B ω2 − ω1. Therefore,⊕
χ∈X(B)

⊕
n≥0

K[N]B,nχ =
⊕
n≥0

K[N]B,nχ0 .

Of course, N ∈ NB if and only if f2,1(N) , 0 and therefore Nχ0−sst = NB.

The morphism

µ : Nχ0−sst → {1} = Proj K[ f2,1]

N 7→ f2,1(N) = 1,

thus, is a GIT-quotient.

Example 7.1.2. (A GIT-quotient in N3 for the Borel action)

Let us consider N = N3. Example 6.1.3 proves

K[N]U =
K[ f3,1, f1, f2, det1](

f1 · f2 = det31
) .

We consider these U-invariants:

1. f3,1 and det1 are B-semi-invariants of weight χ3,1 B ω3 − ω1,

2. f1 is a B-semi-invariant of weight χ1 B −2ω1 + ω2 + ω3 and

3. f2 is a B-semi-invariant of weight χ2 B −ω1 − ω2 + 2ω3.
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The equality det1 = det2 holds true on N , therefore Nχ3,1−sst = NB ∪ {N ∈ N | N3,1 , 0}.

Thus, the morphism

µ : Nχ3,1−sst → P1 = Proj K[ f3,1, det1]

N 7→ ( f3,1(N) : det1(N))

is a GIT-quotient.

7.2 Generic separation of the same weight

We define the character

χ B
n−1∑
i=1

(ωn−i+1 + . . . + ωn) −
n−1∑
i=1

(ω1 + . . . + ωi).

There is one particular B-semi-invariant fB of weight χ which extracts the matrices in NB

from N .

Definition 7.2.1. (The B-semi-invariant fB)
Let ai B a′i B i for i ∈ {1, . . . , n − 1} and let

Pi, j B

{
xn−i, if i = j;
0, otherwise.

Define PB B ((ai)i, (a′i)i, (Pi, j)i, j) and

fB : N → K

N 7→ det(NPB) =

n−1∏
i=1

det(Nn−i)(i,i).

We directly see fB(H) = 1 for all H ∈ HB and that fB is a B-semi-invariant of character χ.

Proposition 7.2.2. (Extraction of NB)
The B-semi-invariant fB fulfills

fB(N) , 0 if and only if N ∈ NB.

Proof. Let N ∈ N . Clearly fB(N) , 0 if and only if
∏n−1

i=1 det(Nn−i)(i,i) , 0, thus, if and
only if det Nn−i

(i,i) , 0 for all i. Corollary 5.1.3 yields N ∈ NB. �

We show how to extract the entries of the normal forms H in the affine spaceHB � AD of
dimension D B (n−1)(n−2)

2 with the generating semi-invariants from proposition 5.2.1. In
particular, we are able to separate them with semi-invariants of the same weight χ.
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Lemma 7.2.3. (Separating B-semi-invariants)
For each i and j, such that 2 < j + 2 ≤ i ≤ n, there is a semi-invariant gi, j of weight χ
which fulfills

gi, j(H) = Hi, j

for every normal form H ∈ HB.

Proof. We consider three cases.

1. Let n − i + 1 < { j − 1, j}.

Define the datum P B ((ak)k, (a′k)k, (Pk,l)k,l) as follows:

· (ak)1≤k≤n−1 B ( j−1, n− i + 1, j, 1, . . . , j−2, j + 1, . . . , n− i, n− i + 2, . . . , n−1),

· (a′k)1≤k≤n−1 B ( j, n− i + 1, j− 1, 1, . . . , j− 2, j + 1, . . . , n− i, n− i + 2, . . . , n− 1)
and

· Pk,l B



xn− j+1, if k = l ∈ {1, 3};
x if k = 2 and l = 1;
xi if k = l = 2;
xi− j if k = 3 and l = 2;
xn−ak if k = l > 3;
0 otherwise.

Let us denote gi, j B fP and let H ∈ HB, then

gi, j(H) = det(HP)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) · det((Pk,l(H)(ak ,a′l ))4≤k,l≤n−1)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) ·
n−1∏
k=4

det(Pk,k(H)(ak ,a′k))

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3).

Of course,

(Pk,l(H)(ak ,a′l ))1≤k,l≤3 =



1 0 0
. . .

...

∗ 1 0
0 0

H(n−i+1, j)

0 0
1

. . .

∗ 1 0

0

0

∗ · · · ∗ 1
∗ · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗

0 · · · 0
1 0

. . .

∗ 1


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This is a lower triangular matrix, all diagonal entries being 1 except the ( j, j)-entry,
which equals Hi, j.

Thus,
gi, j(H) = det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) = Hi, j.

2. Let n − i + 1 = j.

We define the datum P B ((ak)k, (a′k)k, (Pk,l)k,l) by

· (ak)1≤k≤n−1 B ( j − 1, j, 1, . . . , j − 2, j + 1, . . . , n − 1),

· (a′k)1≤k≤n−1 B ( j, j − 1, 1, . . . , j − 2, j + 1, . . . , n − 1) and

· Pk,l B


xn− j+1, if k = l ∈ {1, 2};
x if k = 2 and l = 1;
xn−ak if k = l > 2;
0 otherwise.

Denote gi, j B fP and let H ∈ HB, then

gi, j(H) = det(HP)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) · det((Pk,l(H)(ak ,a′l ))3≤k,l≤n−1)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) ·
n−1∏
k=3

det(Pk,k(H)(ak ,a′k))

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2).

Of course,

(Pk,l(H)(ak ,a′l ))1≤k,l≤2 =



1 0 0
. . .

...

∗ 1 0
0

H(n−i+1, j)

0 . . . 0
1 0

. . .

∗ 1



This is a lower triangular matrix, all diagonal entries being 1 except the ( j, j)-entry,
which equals Hi, j.

Thus,
gi, j(H) = det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) = Hi, j.
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3. Let n − i + 1 = j − 1.

• Let j = 2 first, then i = n:

We define the datum P = ((ak)k, (a′k)k, (Pk,l)k,l) as follows:

· (ak)1≤k≤n−1 B (2, 1, 3, . . . , n − 1),

· (a′k)1≤k≤n−1 B (1, 2, 3, . . . , n − 1) and

· Pk,l B



xn−2, if k = l = 1;
xn−1 if k = 1 and l = 2;
x if k = l = 2;
xn−k if k = l > 2;
0 otherwise.

Consider gi, j B fP and let H ∈ HB be a matrix in normal form, then

gi, j(H) = det(HP)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) · det((Pk,l(H)(ak ,a′l ))3≤k,l≤n−1)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) ·
n−1∏
k=3

det(Pk,k(H)(ak ,a′k))

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤2).

Since

(Pk,l(H)(ak ,a′l ))1≤k,l≤2 =


1 0 0
∗ 1 0
0 ∗ Hn,2

 ,
we arrive at

gi, j(H) = det((Pk,l(H)(ak ,a′l ))1≤k,l≤2) = Hi, j.

• Let us assume j ≥ 3.

We consider the datum P = ((ak)k, (a′k)k, (Pk,l)k,l) defined by

· (ak)1≤k≤n−1 B ( j, j − 1, 1, . . . , j − 2, j + 1, . . . , n − 1),

· (a′k)1≤k≤n−1 B (1, j, j − 1, 2 . . . , j − 2, j + 1, . . . , n − 1) and

· Pk,l B



xn− j+1 if (k = 1 and l = 2) or if k = l = 3;
x if k = l = 2;
xn− j+2 if k = 2 and l = 3;
xn−ak if k = l = 1 or if k = l > 3;
0 otherwise.
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Let gi, j B fP and let H ∈ HB, then

gi, j(H) = det(HP)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) · det((Pk,l(H)(ak ,a′l ))4≤k,l≤n−1)

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) ·
n−1∏
k=4

det(Pk,k(H)(ak ,a′k))

= det((Pk,l(H)(ak ,a′l ))1≤k,l≤3).

Of course,

(Pk,l(H)(ak ,a′l ))1≤k,l≤3) =



1
∗
...

∗

0 0
1

. . .

∗ 1 0

0

0 H(n−i+1, j)

0 0
1

. . .

∗ 1 0
0 0 ∗ . . . ∗ 1


This is a lower triangular matrix, all diagonal entries being 1 except the
( j + 1, j + 1)-entry, which equals Hi, j.

Thus,
gi, j(H) = det((Pk,l(H)(ak ,a′l ))1≤k,l≤3) = Hi, j.

It follows from proposition 5.2.1 that in all cases, the given semi-invariant gi, j is of
weight χ. �

We have, thus, found semi-invariants of the same character that extract the coordinates of
HB � AD.

Proposition 7.2.4. (Description of χ)
The character χ can be described as a linear combination χ =

∑n
i=1 λiωi of the basis

ω1, . . . , ωn of X(B) with
λi = −n + 2i − 1.

Proof. The character χ is defined by

χ B
n−1∑
k=1

(ωn−k+1 + . . . + ωn) −
n−1∑
k=1

(ω1 + . . . + ωk),

where ωi appears (i − 1)-times in the first sum and (n − i)-times in the second sum. �
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7.3 Translation to the language of quiver moduli

The notion of a GIT-quotient of B inN can be translated to the language of moduli spaces.
We give a brief overview of this translation in the following; the reader is referred to
[Reineke, 2008] for a thorough treatment of the subject.

Let Q = Q(n, n) be the quiver defined in section 2.3, that is,

Q : • • • · · · • • •

1 2 3 n − 2 n − 1 n.

α1 α2 αn−2 αn−1
α

Fix θ ∈ (ZQ0)∗, that is, a linear map θ : Zn → Z and assume θ(d) =
n∑

i=1
θi · di.

We define the slope corresponding to θ by

µ : Nn\{0} → K∗; d 7→
θ(d)

dim d

where dim d =
∑n

i=1 di is the total dimension of d.

Let M ∈ repK(Q) be a representation that naturally corresponds to the point m ∈ Rd(Q) via
section 1.2 and denote d B dimM. We define

θ̂ : Nn → K; d′ 7→ θ(d) · dim d′ − dim(d) · θ(d′).

Then θ̂(d) = 0 and

µ(dimU) ≤ µ(d) if and only if θ̂(dimU) ≥ 0.

Given θ̂, such that θ̂(d) =
n∑

i=1
θ̂i · di we define a Gd-character by

χθ̂ : Gd → K∗; (gi)i∈Q0 7→
∏
i∈Q0

det(gi)θi .

A. King proves the following theorem in [King, 1994].

Theorem 7.3.1. (Theorem of King)
The representation M ∈ repK(Q) is semi-stable of weight χθ̂ if and only if for every subrep-
resentation 0 , M′ ( M the inequality µ(dimM′) ≤ µ(d) (or, equivalently, θ̂(dimM′) ≥ 0)
holds true.

Let N• = (N1, . . . ,Nn) ∈ Nn and define a B-character χN• by

χN• : B→ K∗; b 7→
n∏

i=1

bNi
i,i .

We translate the characters χθ̂ and χN∗ via the bijection of theorem 2.3.1 now.
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If we restrict χθ̂ to the isotropy group IsoGd (Rd(Q)) � B, we obtain

χθ̂ : IsoGd (Rd(Q))→ K∗; (bi)i∈Q0 7→
∏
i∈Q0

det(bi)θ̂i ,

such that

bi =


b1,1 · · · b1,i

0
. . .

...

0 0 bi,i

 ∈ Ki×i.

Therefore, ∏
i∈Q0

det(bi)θ̂i =

n∏
k=1

bθ̂k
1,1 · . . . · b

θ̂k
k,k

and, thus, the characters can be translated via Ni =
n∑

j=i
θ̂ j and θ̂i = Ni − Ni+1 if we set

Nn+1 = 0.

We call a representation M (and the corresponding point m) θ-semi-stable if they fulfill the
equivalent conditions of theorem 7.3.1.

Furthermore, they are called θ-stable if for every subrepresentation 0 , M′ ( M, the
inequality µ(dimM′) < µ(dimM) holds true.
Let us define

Rθ−sst
d (Q) B {m ∈ Rd(Q) | m is θ − semi − stable}

and
Rθ−st

d (Q) B {m ∈ Rd(Q) | m is θ − stable}.

Then we obtain the corresponding quotient varieties which will be denoted by

Mθ−sst
d (Q) B Rθ−sst

d (Q)//Gd

and
Mθ−st

d (Q) B Rθ−st
d (Q)/Gd.

We denote by PGd the factor group Gd/K∗ and by Mssimp
d (Q) the quotient variety

Mssimp
d (Q) B Rd(Q)//PGd

which parametrizes the semi-simple representations of Q of dimension vector d, we call
this variety the “moduli space of semi-simple representations”.

There is a projective morphism π : Mθ−sst
d (Q)→ Mssimp

d (Q) and we define

Mθ−sst,nilp
d (Q) B π−1(0),

where 0 B
⊕

i∈Q0
S di

i ∈ Mssimp
d (Q) is the point corresponding to the canonical semi-simple

representation of dimension vector d; the representation S i denotes the one-dimensional
representation at the vertex i.
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If χ and θ can be translated as above. we have an isomorphism

N//χB � Mθ−sst,nilp
dB

(Qn).

In order to prove semi-stability for a representation M of dimension vector dimM = d, for
each subrepresentation M′ ⊆ M we have to verify

n∑
i=1

(Ni − Ni+1) dimK M′i ≤ 0.

Without loss of generality, we assume Ni − Ni+1 > 0 for all i < n.

Proposition 7.3.2. (Translation of semi-stability)
M is θ-semi-stable if and only if for every subspace 0 , M′n ( Mn, such that Mα(M′n) ⊆ M′n,
the inequality

n−1∑
i=1

(Ni − Ni+1) dimK M−1
αi
· . . . · M−1

αn−1
(M′n) + Nn dimK M′n ≤ 0

holds true.

Proof. Follows from the translation of θ̂ and N• given above and from theorem 7.3.1. �

Corollary 7.3.3. (Injectivity of certain maps)
If M is semi-stable, then Mαi is injective for every integer i ∈ {1, . . . , n − 1}.

Proof. Assume, Mαi is not injective for an integer i ∈ {1, . . . , n − 1}. Then consider the
representation

M′ = 0→ . . .→ 0→ 〈v〉 → 0→ . . .→ 0

where 〈v〉 is the space at the i-th vertex of Q for a vector v ∈ Ker Mαi . Clearly,

n−1∑
i=1

(Ni − Ni+1) dimK M−1
αi
· . . . · M−1

αn−1
(M′n) + Nn dimK M′n = Ni − Ni+1 > 0,

a contradiction. �

Since we were able to separate the B-orbits generically by B-semi-invariants of the same
weight χ in section 7.2, it is natural to consider the weight

χ =

n−1∑
i=1

(ωn−i+1 + . . . + ωn) −
n−1∑
i=1

(ω1 + . . . + ωi)

which can be described as a linear combination χ =
∑n

i=1 λiωi with λi = −n + 2i − 1 by
proposition 7.2.4.

The translation above yields a stability

θ = (2, . . . , 2, 1 − n)

and a semi-stability criterion for θ is obtained.
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Proposition 7.3.4. (Concrete semi-stability)
M is θ-semi-stable if and only if for every subspace 0 , M′n ( Mn, such that Mα(M′n) ⊆ M′n,
the inequality

n−1∑
i=1

dimK M−1
αi
· . . . · M−1

αn−1
(M′n) ≤

n − 1
2

dimK M′n.

holds true.

Due to proposition 7.2.2,
NB ⊆ Rθ−sst

d (Q)

follows immediately.

As the translation to the representation theory of the algebra KQ/I provides an insight
into the classification of finite parabolic actions in case the algebra is representation-finite,
the translation to the language of moduli spaces may provide further knowledge about
quotients if the algebra is of wild representation type.
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A.1 Singular computations

1. > ring R = 0,(a, b, c, d, e, f , g, h, i),dp;
> ideal I = (a + e, a ∗ e − b ∗ d, a ∗ f − c ∗ d, g, h, i);
> LIB "primdec.lib";
// ** loaded /opt/Singular/3-1-1/LIB/primdec.lib (12962,2010-07-09)
// ** loaded /opt/Singular/3-1-1/LIB/ring.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/absfact.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/triang.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/matrix.lib (12898,2010-06-23)
// ** loaded /opt/Singular/3-1-1/LIB/nctools.lib (12790,2010-05-14)
// ** loaded /opt/Singular/3-1-1/LIB/inout.lib (12541,2010-02-09)
// ** loaded /opt/Singular/3-1-1/LIB/random.lib (12827,2010-05-28)
// ** loaded /opt/Singular/3-1-1/LIB/poly.lib (12443,2010-01-19)
// ** loaded /opt/Singular/3-1-1/LIB/elim.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/general.lib (12904,2010-06-24)
> quotient(I, radical(I));
_[1] = 1

2. > ring R = 0,(a, b, c, d, e, f , g, h, i),dp;
> ideal I = (e + i, b ∗ f − c ∗ e, b ∗ i − c ∗ h, e ∗ i − f ∗ h, a, d, g);
> LIB "primdec.lib";
// ** loaded /opt/Singular/3-1-1/LIB/primdec.lib (12962,2010-07-09)
// ** loaded /opt/Singular/3-1-1/LIB/ring.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/absfact.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/triang.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/matrix.lib (12898,2010-06-23)
// ** loaded /opt/Singular/3-1-1/LIB/nctools.lib (12790,2010-05-14)
// ** loaded /opt/Singular/3-1-1/LIB/inout.lib (12541,2010-02-09)
// ** loaded /opt/Singular/3-1-1/LIB/random.lib (12827,2010-05-28)
// ** loaded /opt/Singular/3-1-1/LIB/poly.lib (12443,2010-01-19)
// ** loaded /opt/Singular/3-1-1/LIB/elim.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/general.lib (12904,2010-06-24)
> quotient(I, radical(I));
_[1] = 1
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3. > ring R = 0, (a, b, c, d, e, f , g, h, i),dp;
> ideal I = (a + e + i, a ∗ e − b ∗ d, d ∗ h − e ∗ g, a ∗ i − c ∗ g, d ∗ i − f ∗ g,
a ∗ f − c ∗ d, b ∗ i − c ∗ h, e ∗ i − f ∗ h);
> LIB "primdec.lib";
// ** loaded /opt/Singular/3-1-1/LIB/primdec.lib (12962,2010-07-09)
// ** loaded /opt/Singular/3-1-1/LIB/ring.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/absfact.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/triang.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/matrix.lib (12898,2010-06-23)
// ** loaded /opt/Singular/3-1-1/LIB/nctools.lib (12790,2010-05-14)
// ** loaded /opt/Singular/3-1-1/LIB/inout.lib (12541,2010-02-09)
// ** loaded /opt/Singular/3-1-1/LIB/random.lib (12827,2010-05-28)
// ** loaded /opt/Singular/3-1-1/LIB/poly.lib (12443,2010-01-19)
// ** loaded /opt/Singular/3-1-1/LIB/elim.lib (12231,2009-11-02)
// ** loaded /opt/Singular/3-1-1/LIB/general.lib (12904,2010-06-24)
> quotient(I, radical(I));
_[1] = 1
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A.2 The parabolic subgroup of block sizes (4, 3)

Let us consider the action of the parabolic subgroup of block sizes (4, 3) on N (3)
7 . There

are 136 orbits of which the normal forms are listed in the following table; one can see how
easily they are obtained by combinatorially considering each representation M (as a direct
sum of indecomposables), such that dimM = (4, 7).

U4,7 U
(2)
2,4 ⊕U

2
1,1 ⊕U0,1 U2,2 ⊕U1,4 ⊕U1,1

U4,6 ⊕U0,1 U
(1)
2,3 ⊕U

(1)
2,3 ⊕U0,1 U2,2 ⊕U

(1)
1,3 ⊕U

(1)
1,2

U3,6 ⊕U1,1 U
(1)
2,3 ⊕U

(2)
2,3 ⊕U0,1 U2,2 ⊕U

(2)
1,3 ⊕U

(1)
1,2

U
(1)
3,6 ⊕U1,1 U

(1)
2,3 ⊕U

(3)
2,3 ⊕U0,1 U2,2 ⊕U

(3)
1,3 ⊕U

(1)
1,2

U
(2)
3,6 ⊕U1,1 U

(2)
2,3 ⊕U

(2)
2,3 ⊕U0,1 U2,2 ⊕U

(1)
1,3 ⊕U

(2)
1,2

U
(1)
3,5 ⊕U

(1)
1,2 U

(2)
2,3 ⊕U

(3)
2,3 ⊕U0,1 U2,2 ⊕U

(2)
1,3 ⊕U

(2)
1,2

U
(1)
3,5 ⊕U

(2)
1,2 U

(3)
2,3 ⊕U

(3)
2,3 ⊕U0,1 U2,2 ⊕U

(3)
1,3 ⊕U

(2)
1,2

U
(1)
3,5 ⊕U1,1 ⊕U0,1 U

(1)
2,3 ⊕U2,2 ⊕U0,2 U2,2 ⊕U

(1)
1,3 ⊕U1,1 ⊕U0,1

U
(2)
3,5 ⊕U

(1)
1,2 U

(2)
2,3 ⊕U2,2 ⊕U0,2 U2,2 ⊕U

(2)
1,3 ⊕U1,1 ⊕U0,1

U
(2)
3,5 ⊕U

(2)
1,2 U

(3)
2,3 ⊕U2,2 ⊕U0,2 U2,2 ⊕U

(3)
1,3 ⊕U1,1 ⊕U0,1

U
(2)
3,5 ⊕U1,1 ⊕U0,1 U

(1)
2,3 ⊕U2,2 ⊕U

2
0,1 U2,2 ⊕U

(1)
1,2 ⊕U

(1)
1,2 ⊕U0,1

U3,4 ⊕U
(1)
1,3 U

(2)
2,3 ⊕U2,2 ⊕U

2
0,1 U2,2 ⊕U

(1)
1,2 ⊕U

(2)
1,2 ⊕U0,1

U3,4 ⊕U
(2)
1,3 U

(3)
2,3 ⊕U2,2 ⊕U

2
0,1 U2,2 ⊕U

(2)
1,2 ⊕U

(2)
1,2 ⊕U0,1

U3,4 ⊕U
(3)
1,3 U

(1)
2,3 ⊕U

(1)
1,3 ⊕U1,1 U2,2 ⊕U

(1)
1,2 ⊕U1,1 ⊕U0,2

U3,4 ⊕U
(1)
1,2 ⊕U0,1 U

(1)
2,3 ⊕U

(2)
1,3 ⊕U1,1 U2,2 ⊕U

(2)
1,2 ⊕U1,1 ⊕U0,2

U3,4 ⊕U
(2)
1,2 ⊕U0,1 U

(1)
2,3 ⊕U

(3)
1,3 ⊕U1,1 U2,2 ⊕U

(1)
1,2 ⊕U1,1 ⊕U

2
0,1

U3,4 ⊕U1,1 ⊕U0,2 U
(2)
2,3 ⊕U

(1)
1,3 ⊕U1,1 U2,2 ⊕U

(2)
1,2 ⊕U1,1 ⊕U

2
0,1

U3,4 ⊕U1,1 ⊕U
2
0,1 U

(2)
2,3 ⊕U

(2)
1,3 ⊕U1,1 U2,2 ⊕U

2
1,1 ⊕U0,3

U3,3 ⊕U1,4 U
(2)
2,3 ⊕U

(3)
1,3 ⊕U1,1 U2,2 ⊕U

2
1,1 ⊕U0,2 ⊕U0,1

U3,3 ⊕U
(1)
1,3 ⊕U0,1 U

(3)
2,3 ⊕U

(1)
1,3 ⊕U1,1 U2,2 ⊕U

2
1,1 ⊕U

3
0,1

U3,3 ⊕U
(2)
1,3 ⊕U0,1 U

(3)
2,3 ⊕U

(3)
1,3 ⊕U1,1 U1,4 ⊕U

3
1,1

U3,3 ⊕U
(3)
1,3 ⊕U0,1 U

(3)
2,3 ⊕U

(2)
1,3 ⊕U1,1 U

(1)
1,3 ⊕U

(1)
1,2 ⊕U

2
1,1

U3,3 ⊕U
(1)
1,2 ⊕U0,2 U

(1)
2,3 ⊕U

(1)
1,2 ⊕U

(1)
1,2 U

(1)
1,3 ⊕U

(2)
1,2 ⊕U

2
1,1

U3,3 ⊕U
(2)
1,2 ⊕U0,2 U

(1)
2,3 ⊕U

(1)
1,2 ⊕U

(2)
1,2 U

(2)
1,3 ⊕U

(1)
1,2 ⊕U

2
1,1

U3,3 ⊕U
(1)
1,2 ⊕U

2
0,1 U

(1)
2,3 ⊕U

(2)
1,2 ⊕U

(2)
1,2 U

(2)
1,3 ⊕U

(2)
1,2 ⊕U

2
1,1

U3,3 ⊕U
(2)
1,2 ⊕U

2
0,1 U

(2)
2,3 ⊕U

(1)
1,2 ⊕U

(1)
1,2 U

(3)
1,3 ⊕U

(1)
1,2 ⊕U

2
1,1

U3,3 ⊕U1,1 ⊕U0,3 U
(2)
2,3 ⊕U

(1)
1,2 ⊕U

(2)
1,2 U

(3)
1,3 ⊕U

(2)
1,2 ⊕U

2
1,1

U3,3 ⊕U1,1 ⊕U0,2 ⊕U0,1 U
(2)
2,3 ⊕U

(2)
1,2 ⊕U

(2)
1,2 U

(1)
1,3 ⊕U

3
1,1 ⊕U0,1

U3,3 ⊕U1,1 ⊕U
3
0,1 U

(3)
2,3 ⊕U

(1)
1,2 ⊕U

(1)
1,2 U

(2)
1,3 ⊕U

3
1,1 ⊕U0,1

U
(1)
2,5 ⊕U2,2 U

(3)
2,3 ⊕U

(1)
1,2 ⊕U

(2)
1,2 U

(3)
1,3 ⊕U

3
1,1 ⊕U0,1

U
(2)
2,5 ⊕U2,2 U

(3)
2,3 ⊕U

(2)
1,2 ⊕U

(2)
1,2 (U(1)

1,2)3 ⊕U0,1
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U
(1)
2,5 ⊕U

2
1,1 U

(1)
2,3 ⊕U

(1)
1,2 ⊕U1,1 ⊕U0,1 (U(1)

1,2)2 ⊕U
(2)
1,2 ⊕U0,1

U
(2)
2,5 ⊕U

2
1,1 U

(1)
2,3 ⊕U

(2)
1,2 ⊕U1,1 ⊕U0,1 U

(1)
1,2 ⊕ (U(2)

1,2)2 ⊕U0,1

U
(1)
2,4 ⊕U

(1)
2,3 U

(2)
2,3 ⊕U

(1)
1,2 ⊕U1,1 ⊕U0,1 (U(2)

1,2)3 ⊕U0,1

U
(1)
2,4 ⊕U

(2)
2,3 U

(2)
2,3 ⊕U

(2)
1,2 ⊕U1,1 ⊕U0,1 U

(1)
1,2 ⊕U

3
1,1 ⊕U0,2

U
(1)
2,4 ⊕U

(3)
2,3 U

(3)
2,3 ⊕U

(1)
1,2 ⊕U1,1 ⊕U0,1 U

(2)
1,2 ⊕U

3
1,1 ⊕U0,2

U
(2)
2,4 ⊕U

(1)
2,3 U

(3)
2,3 ⊕U

(2)
1,2 ⊕U1,1 ⊕U0,1 U

(1)
1,2 ⊕U

3
1,1 ⊕U

2
0,1

U
(2)
2,4 ⊕U

(2)
2,3 U

(1)
2,3 ⊕U

2
1,1 ⊕U0,2 U

(2)
1,2 ⊕U

3
1,1 ⊕U

2
0,1

U
(2)
2,4 ⊕U

(3)
2,3 U

(2)
2,3 ⊕U

2
1,1 ⊕U0,2 (U(1)

1,2)2 ⊕U2
1,1 ⊕U0,1

U
(1)
2,4 ⊕U2,2 ⊕U0,1 U

(3)
2,3 ⊕U

2
1,1 ⊕U0,2 U

(1)
1,2 ⊕U

(2)
1,2 ⊕U

2
1,1 ⊕U0,1

U
(2)
2,4 ⊕U2,2 ⊕U0,1 U

(1)
2,3 ⊕U

2
1,1 ⊕U

2
0,1 (U(2)

1,2)2 ⊕U2
1,1 ⊕U0,1

U
(1)
2,4 ⊕U

(1)
1,2 ⊕U1,1 U

(2)
2,3 ⊕U

2
1,1 ⊕U

2
0,1 U4

1,1 ⊕U0,3

U
(1)
2,4 ⊕U

(2)
1,2 ⊕U1,1 U

(3)
2,3 ⊕U

2
1,1 ⊕U

2
0,1 U4

1,1 ⊕U0,2 ⊕U0,1

U
(2)
2,4 ⊕U

(1)
1,2 ⊕U1,1 U2

2,2 ⊕U0,3 U4
1,1 ⊕U

3
0,1

U
(2)
2,4 ⊕U

(2)
1,2 ⊕U1,1 U2

2,2 ⊕U0,2 ⊕U0,1

U
(1)
2,4 ⊕U

2
1,1 ⊕U0,1 U2

2,2 ⊕U
3
0,1
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