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Abstract

An updated analysis using about 1.5 million events recorded at /s = Mz with the
DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event
shape observables are measured as a function of the polar angle of the thrust axis.
The data are compared to theoretical calculations in O(a?) including the event
orientation.

Detailed studies of the renormalization scale dependence of the O(a?) predictions
have been performed, including fits applying experimentally optimized renormaliza-
tion scale values as well as theoretically motivated scale setting prescriptions. It is
found, that in general the predictions fail to describe the data if a renormalization
scale value u? = M2 is applied. In this case, the slope of the observed distributions
is badly described and the stability of a,(M?2) with respect to a variation of the fit
range is poor. These deviations with respect to the data propagate into the matched
predictions of O(a?) and next-to-leading log approximation (NLLA), making them
also inappropriate for an accurate description of the high precision data.

An excellent description of the 18 event shape distributions in O(a?) precision is
obtained if the renormalization scale value is fitted to the individual data distribu-
tions. The stability of the fits with respect to a variation of the fit range is very good.
The scale values obtained from the fits are found to be similar to those predicted by
the effective charge method (ECH) and the principle of minimal sensitivity (PMS).

The influence of higher order contributions was also investigated by using the method
of Padé approximants to obtain an estimate of the uncalculated O(c?) contribution
as well as for the sum of the perturbative series. The renormalization scale depen-
dence of the Padé predictions is found to be largely reduced with respect to the
O(a?) predictions.

A combined fit of c; and of the renormalization scale in O(a?) to the 18 oriented
event shape distributions yields a perfectly consistent set of 18 measurements of the
strong coupling. A weighted average from 18 observables yields a,(M%) = 0.1174 +
0.0026. This result accounts for heavy quark mass effects and considers correlations
between the individual measurements.

The final result, derived from the jet cone energy fraction, the observable with the
smallest theoretical and experimental uncertainty, is

as (M%) = 0.1180 + 0.0006(exp.) £ 0.0013(hadr.) + 0.0008(scale) + 0.0007(mass).

This value is in perfect agreement with recent o, determinations from renormaliza-
tion group improved predictions for the Bjorken sum rule and the hadronic decay
of the 7 lepton.
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Chapter 1

Introduction

In the recent decades our understanding of the nature of elementary particles and
fundamental forces has significantly improved. According to our present knowledge,
the structure and the behaviour of matter is ruled by four fundamental forces: Grav-
itation, the electromagnetic, the weak and the strong nuclear force. The three latter
ones are described within a common framework, the Standard Model of elementary
particle physics. The Standard Model has been extraordinary successful in predicting
properties of new particles and the structure of the interactions and has so far been
able to describe all known experimental facts in particle physics. Numerous preci-
sion tests of Standard Model predictions have been performed at the Large Electron
Positron Collider (LEP) at CERN, which is the world’s largest particle accelerator
to date. Several parameters of the Standard model have been determined with an
extraordinary precision, for example the mass and the width of the Z° boson [1]:

Mz = 91186.7+£2.1 MeV,
'y = 24939+ 2.4 MeV.

Standard Model predictions for physical observables are commonly expressed in
terms of perturbative series, i.e. asymptotic expansions in powers of the relevant
coupling for the process under consideration. These perturbative predictions are
very successful in particular within the electroweak sector of the Standard Model
which is related to the smallness of the electroweak coupling. For processes involv-
ing strong interactions the relevant coupling is much larger limiting the numerical
precision of theoretical predictions. The convergence behavior of perturbative series
is expected to be closely related to the renormalization scheme dependence of fixed
order perturbative predictions [2].
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The concept of renormalization is an essential feature for the success of the Standard
Model. It provides a self consistent procedure for the removal of infinite quantities
appearing within the calculation of higher order corrections to the basic interactions.
Thus accurate numerical predictions for physical observables become possible. The
price to pay however, is the dependence of the theoretical predictions on a number
of arbitrary parameters which characterize the renormalization scheme and reflect
the principal ambiguity introduced by the subtraction of the infinite expressions.

The scheme dependence problem is subject of an extensive literature. A number of
proposals for controlling or avoiding this difficulty have been made [3, 4, 5, 6], but
from a theoretical point of view, a definite answer to the solution of this problem is
still missing. Within the theory of strong interactions, Quantum Chromo Dynamics
(QCD), the dependence of finite order perturbative expansions on the choice of the
renormalization scheme is however a very real phenomenological problem, which
cannot be ignored. Numerous measurements of the strong coupling «; have been
published in the past, but so far ‘consistency’ between measurements of ay(M?2)
from a set of different observables has only been achieved by taking into account
large renormalization scale uncertainties obtained by varying the renormalization
scale value within a large and ad hoc range [6].

Although previous studies [7] indicated a better description of the experimental data
and an improved consistency of the measurements of the strong coupling in combi-
nation with an optimization of the renormalization scale, definite answers about the
qualification of the different approaches for the description of experimental observa-
tions have so far not been obtained. With the considerable and steady improvement
of experimental data, the constraints implied on the theoretical predictions for the
strong interaction are becoming more stringent and a judgement of the qualification
of the different approaches becomes possible.

About 17 million hadronic events have been recorded by the four LEP experiments
ALEPH , OPAL , DELPHI and L3 from the studies of electron positron annihilation
around the Z° resonance. Owing to the large energy and the clean and well defined
initial state of the process, the collected data provide an ideal testing field for the
predictions of perturbative QCD.

The DELPHI data analyzed in this thesis are much improved in both their statistical
and systematic precision compared with those of previous DELPHI publications [8, 9].
From the measured data, eighteen distributions of different infrared and collinear
safe hadronic event observables are determined at various values of the polar angle ¥r
of the thrust axis with respect to the ete™ beam direction. The Y7 dependence of all
detector properties are taken into account, thus achieving an optimal experimental
precision.



The data distributions are compared with next-to-leading order (NLO) QCD cal-
culations for oriented event shapes. The renormalization scale dependence of the
theoretical predictions has been studied in detail. Different prescriptions for obtain-
ing an optimized scale value have been compared with the customary fixed scale
approach and with methods for the estimate of higher order contributions by the
means of Padé Approximation. Further studies cover all orders resummed predic-
tions in next-to-leading-logarithmic approximation (NLLA).

It will be demonstrated that the precise experimental data are fully consistent with
the expectation from second order QCD. A two parameter fit to each of the dis-
tributions results in experimentally optimized renormalization scale values and a
consistent set of eighteen a,(M?2) values. The renormalization scale values obtained
are similar to those predicted by the Principle of Minimal Sensitivity (PMS) [3] and
by the Effective Charge approach (ECH) [4]. Applying fixed renormalization scale
values to the NLO predictions yields in general large deviations from the data dis-
tributions. The «,(M?2) values obtained are unstable with respect to a variation of
the fit range and the measurements from different observables are inconsistent. The
deviations observed are propagating into the matched NLLA & NLO predictions.

This thesis is organized as follows: The next chapter contains a brief introduction to
Quantum Chromo Dynamics and the Standard Model. The renormalization scheme
dependence of perturbative predictions is discussed and methods for renormaliza-
tion scheme optimization are introduced. Within Chapter 3 some theoretical aspects
relevant for the determination of a;(M?) in eTe™ annihilation are discussed in more
detail and the eighteen collinear and infrared safe shape observables are defined. The
LEP collider and the DELPHI experiment are introduced in Chapter 4. In the follow-
ing chapter, the data analysis is presented and the obtained data distributions are
compared to those obtained from other experiments. Chapter 6 contains the com-
parison of the measured distributions with the different theoretical predictions and
a precision determination of a,(M?2) taking into account leading order quark mass
effects. The Jet Cone Energy Fraction (JCEF) is identified as the observable with
the smallest theoretical and experimental uncertainties. The experimental results
are summarized in Chapter 7. The last chapter contains a concluding discussion and
suggestions which might be relevant for future QCD analyses and determinations of
as(M32).
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Chapter 2

Quantum Chromo Dynamics
and the Standard Model

Our present knowledge about the structure and the behaviour of matter is formu-
lated by the Standard Model of elementary particle physics. After a brief introduc-
tion into some of its basic properties, some aspects relevant to this analysis will be
discussed in more detail, in particular the renormalization scheme dependence prob-
lem of finite order perturbative predictions. The aim of this discussion is to enable
an intuitive understanding of this problem, rather than a complete and mathemat-
ically exact derivation. For a general introduction the reader is referred to [10], an
overview about the scheme dependence problem can be found e.g. in [6, 11] and the
references given therein.

2.1 Introduction into the Standard Model

The development of the Standard Model of particles and their interactions started
in the 1960’s. It covers the electromagnetic, weak and the strong interactions, which
are interpreted as an exchange of a gauge boson between fermions. Strong inter-
actions are described by Quantum Chromo Dynamics (QCD), while the behaviour
of electromagnetic and weak interactions is described by the Electroweak Theory
(GWS!-model). The gravitation is described by general relativity. Although it is the
most evident force in everyday life, it can be neglected in elementary particle physics,
since it is by several orders of magnitude the weakest force. This is illustrated in
Table 2.1.

!Glashow Weinberg Salam
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Interactions
strong electroweak gravity
Theory QCD GSW general relativity

Symmetry Group | SU(3)¢ | SU(2)L x U(1)y -

Gauge Bosons | g1---gs | v, W%, Z° H° graviton

weak isospin
Charge colour mass
weak hypercharge

Coupling Qs @, sin? Oy G

Strength 0.2 0.03 < 10730

Table 2.1: The fundamental forces.

Within the Standard Model, the basic constituents of matter, quarks and leptons, are
considered to be fundamental fermions. They can be classified into three generations.
The fermions of the second and third generation are identical copies of the fermions
of the first generation, with the exception that they have larger masses. Table 2.2
gives an overview of the spectrum of elementary quarks and leptons. They appear in
two different states of helicity, i.e. left- and right-handed states, which have different
properties regarding the electroweak interaction. Right handed neutrinos have yet
not been observed. Recently observed neutrino oscillations [12] however imply their

existence. So far right handed neutrinos have not been incorporated in the Standard
Model.

The basic theoretical framework used for the description of elementary particles and
their interactions is Quantum Field Theory. The theories are constructed in terms
of a Lagrangian, or an action, which is a well developed and known formalism of
classical mechanics. The structure of the Lagrangian, i.e. its symmetries, already
tell us something about the physics it is supposed to describe. For example, it
can be elegantly deduced from the Lagrangian that the homogeneity of time, the
homogeneity of space and the isotropy of space lead to the fundamental conservation
laws of energy, momentum and angular momentum. The local gauge invariance of
the Lagrangian induces forces and is necessary for realistic models of interactions,
which are described by the exchange of gauge bosons. The introduction of a Higgs
mechanism induces massive gauge bosons within a theory wich is still invariant under
a local gauge transformation.
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The prototype of local gauge theories is Quantum Electro Dynamics (QED). It de-
scribes the electromagnetic interaction between charged fermions by the exchange
of a single massless gauge boson according to the gauge group U(1), which charac-
terizes the symmetry of the model. Here U stands for the unitary groups and the 1
reflects the dimension of the charge space. Due to the abelian character of the U(1)
group, the gauge boson carries no charge itself and can be identified with the well
known photon.

The electromagnetic and the weak interaction, which has been introduced by Fermi
[13] to describe the 3-decay of the neutron, are nowadays described by a common
gauge theory developed by Glashow, Salam and Weinberg [14] in the late 1960s.
The underlying gauge symmetry of the electroweak theory is Uy (1) x SUL(2), where
SU(N) corresponds to the special unitary groups of dimension N. SU(2) is a non-
abelian gauge group, which implies that the corresponding gauge bosons are charged.
N =2 corresponds to a two dimensional charge which is usually expressed in terms

Fermions Generations Quantum Numbers
1. 2. 3. Q/e I Y
Ve ) ( Yy ) ( Vy ) 0 1/2 -1
e/, - T ), -1 —1/2 -1
Leptons
(€)r (W)r (7)r -1 0 —2
u ( c ) ( t ) 2/3 1/2 1/3
d )L s/, v), | -1/3  -1/2  -1/3
Quarks
(u)r (¢)r (t)r 2/3 0 4/3
(d)r (s)r ®)r —1/3 0 —2/3

Table 2.2: The fundamental particles and their electroweak quantum numbers. The
neutrinos v, v, and v, respectively belong to the electron (e), muon (u) and tau
(7) leptons. The quarks, up (u), down (d), strange (s), charm (c), bottom (b) and
top (t) also carry colour charge. The primes at the left handed quarks d’,s" and b’
indicate, that they are eigenstates of the electroweak interaction. These eigenstates
are linear combinations of the mass eigenstates d, s and b and are determined by
the so called Cabibbo-Kobayasshi-Maskawa (CKM) matrix.
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of the weak hypercharge and the third component of the weak isospin I5. They are
related to the electrical charge (Q by the Gell-Mann-Nishijima relation

Q=h+§ . (2.1)

A special feature of the weak interaction is its parity violation. It has first been
observed within the Wu-experiment [15], which has shown, that the electrons created
within the 3-decay are emitted with a preferred helicity, thus revealing that the weak
interaction discriminates between left and right handed fermions. Within the GWS-
model the left handed fermions belong to isospin doublets, whereas the right handed
fermions are isospin singlets (see Table 2.2). The subscript L in SU(2); indicates,
that this gauge group is only relevant for the left handed fermions.

The fundamental gauge symmetry of the Standard model requires massless fermions
and gauge bosons. In order to explain the physically observed massive particles, the
gauge symmetry is considered to be spontaneously broken by the so-called Higgs
mechanism. A direct consequence of this mechanism is the existence of a physical
massive scalar particle, the Higgs boson H°, which has not been observed yet. Its
discovery is one of the major goals elementary particle physics is facing nowadays.
If symmetry breaking of Uy (1) x SUL(2) is done by the simplest Higgs mechanism,
it results in three massive vector bosons W+, W=, Z% and one massive, scalar Higgs
boson H?. The charged weak current is associated purely to SU(2), while the neutral
currents from U(1) and SU(2) undergo mixing, producing a massless v and a massive
ZY boson. The strength of this mixing is given by the Weinberg angle 0y, thus
relating the couplings belonging to U(1) and SU(2), which can be expressed for
example in terms of the fine structure constant o and sin?y,. The values of the
couplings cannot be determined from fundamental principles. They enter as free
parameters into the theory and have to be measured by experiment. Due to the
Higgs mechanism, two additional free parameters enter into the theory, which can
be parameterized for example in terms of the masses of the Z° and the H®. The
masses of the W+ bosons can then be related to the Z° mass via the Weinberg angle
according to

M?

2 14
sin“fy =1 — : (2.2)

M3

The masses of the fermions are also generated by the Higgs mechanism. Their masses
are proportional to their coupling strength to the Higgs particle. To generate the
fermion mass spectrum, for each particle an individual coupling is needed. These cou-
plings cannot be derived from theoretical principles and also enter as free parameters
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into the theory. Assuming massless neutrinos, in total nine free parameters have to
be introduced to describe the fermion masses. The mass eigenstates of the quarks
are however different to their interaction eigenstates. The electroweak eigenstates
d',s', b (see Table 2.2) are mixtures of the mass eigenstates d, s and b, thus allow-
ing decays leading to transitions between the three generations. The electroweak
eigenstates are related to the mass eigenstates by the Cabibbo-Kobayashi-Maskawa,
(CKM) matrix, which is a three dimensional unitary matrix. It can be parameterized
by four independent numbers, for example three angles and one imaginary phase.
Again these four parameters cannot be determined from fundamental considerations
and their values have to be determined experimentally.

Since the discovery, that atomic nuclei consist of protons and neutrons, it is clear
that a strong nuclear force must exist, which holds the protons and neutrons within
the nuclei together. Otherwise, no nuclei with multiple protons could exist due to
the coulomb rejection. Today we know that protons and neutrons are not elementary
particles. They are build by three elementary constituents, which are called quarks.
Quarks appear in six different flavours, ¢ = u, d, s, ¢, b,t and were proposed in 1964
by Gell-Mann [16] and Zweig [17] in order to describe the spectra of the large number
of hadrons, which had been discovered at that time. This hadrons can be separated
into two classes. The baryons, consisting of three quarks (ggqq) or anti-quarks (§gq)
and the mesons, consisting of a quark and an anti-quark (¢g). In 1964, Gell-Mann
and Zweig recognized, that all existing hadrons could be arranged into multiplets
according to higher representations of a global SU(3) figuour Symmetry, where the
three corresponds to the three quark flavours (u,d,s) which were required to describe
the hadron spectrum known in 1964.

The interaction between the hadrons is described by Quantum Chromo Dynamics
(QCD) [18], a local gauge theory with a SU(3)¢ symmetry structure. The C' indi-
cates the charge of the strong interaction, which is called colour. According to the
dimension three of the gauge group, colour appears in three different states called red
(r), green (g), blue (b) and their anti-states. Each quark carries exactly one unit of
colour. Free colour charges are not observed. The SU(3)¢ symmetry implies that the
physically observed mesons (¢g) and baryons (ggg) are colour-singlets, i.e. that the
colour charges of constituent quarks combine to a colour-less (white) configuration.

The gauge bosons mediating the strong force are named gluons and carry one unit
colour and one unit of anti-colour. There are eight different types of gluons repre-
senting an octet with respect to the SU(3)¢ gauge group. Since the gluons carry
colour charge, they also interact among themselves. The strength of the quark gluon
and the gluonic interaction is given in terms of a single universal coupling, the
strong coupling «;. As for the couplings of the electroweak interaction, a; is a free
parameter of the theory, which can only be determined by measurement.
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2.2 The concept of a running coupling

Since the structure of the Standard Model lagrangian is rather complicated and
involves non-liner interaction terms and an infinite number of degrees of freedom,
the theory cannot be solved analytically. In order to derive measurable quantities
from the Lagrangian, one has in general two choices to obtain them. Firstly one can
try to solve the complicated expressions by numerical integration on fast computers.
This is done by Lattice Gauge Theory (LGT). The main concern of this approach
is the confinement region of QCD, where the physical coupling is strong.

The second approach is perturbation theory. Within QCD theory, it can be applied
for interactions involving a large momentum transfer, where the physical coupling is
small. According to perturbation theory, a specific process, i.e. a transition from a
well defined initial state to a well defined final state, can be understood with the help
of so-called Feynman Rules as an infinite sum over all possible virtual intermediate
states which can contribute to the observed transition. These Feynman Rules are
mathematical instructions to calculate the transition amplitudes involved. They can
be visualized with the help of diagrams, thereby having the advantage of reflecting
an intuitive picture of the physical processes. The basic diagrams of QCD are shown
in Figure 2.1.

A coupling is associated to each vertex, and a propagator term describes the lines
encapsulated by two vertices. Mathematically, the amplitude for a particular inter-
mediate state, is proportional to a specific power of the strong coupling. The power
is given by the number of vertices. In order to calculate transition probabilities, the

¢ > * IR R
(@ (b)

(©) (d) (e)

Figure 2.1: The fundamental QCD Feynman diagrams. (a) quark propagator, (b)
gluon propagator, (¢) quark-gluon vertex, (d) 3-gluon vertex and (e) 4-gluon vertex.
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L5

CY

R

(d)

Mm< M‘< : )i:

Figure 2.2: Some first order corrections to the basic QCD diagrams. (a) The first
order correction to the fermion propagator called ‘self’ energy. (b) The vacuum
polarization diagram, which also exists in QED. (c) The gluon self coupling diagram
and the direct gluon self coupling diagram (d), which are absent in the abelian QED
theory. (e-g) First order corrections to the quark gluon vertex.

sum over all amplitudes has to be squared. The resulting expression is a power series
in powers of the coupling. Provided the involved coupling is small, the higher orders
can be neglected and the concept of perturbation theory is applicable. The calcula-
tion of higher order corrections to QCD perturbative series are extremely difficult
and cumbersome, thus for most observables only next-to-leading order calculations
are available. Little is known about the higher order behaviour of the series and it
is not proven that QCD perturbative expansions converge at all?. It is commonly
assumed that the series of Feynman diagrams is an asymptotic series, i.e. that fi-
nite physical predictions can be derived by considering just the first N orders of
the expansion, even though the whole series may diverge. For a detailed discussion
about the convergence problem of perturbative QCD predictions and its relevance
for different physical situations see for example reference [20).

2For the special case of perturbative expansions applying the so-called t Hooft renormalization
scheme, it can be shown, that the corresponding series are factorially divergent. It should however
be noted, that the factorial growth of the coeflicients has no scheme invariant meaning. Exploiting
the freedom of choosing a renormalization scheme could result in not just summable but even
convergent perturbative predictions [19].
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2.2.1 Quantum Loops

At lowest order perturbation theory (tree-level), it is straightforward to compute
all kind of scattering amplitudes. Since for example the QCD Lagrangian involves a
single coupling g, = v/47a,, all strong interacting phenomena should be described
in terms of the single parameter g,. Unfortunately, the tree-level diagrams itself do
not help very much to understand the physically observed hadronic world. First,
one observes hadrons instead of quarks and gluons. Second, one observes that the
strength of the strong force changes with the energy scale. The strength is very
strong (confining) at low energies, but quarks behave as nearly free particles at high
energies. However, apart from the quark masses (which will be neglected in the
following consideration), the QCD Lagrangian does not contain any energy scale
at all, thus, there is no way to decide if the energy of a given process is large or
small, because there is no reference scale to compare with. In order to understand
the energy dependence of QCD, one has to calculate the perturbative corrections
to the tree-level diagrams, which introduce a dynamical scale through quantum
loop effects. Figure 2.2 shows some of the first order corrections to the basic QCD
diagrams.

2.2.2 Regularization of loop integrals

The computation of perturbative corrections to the tree-level results involves di-
vergent loop integrals. Therefore, it is necessary to find a way of getting finite
results with physical meaning from the a priori meaningless divergent quantities.
The technique achieving this is called regularization. Considering quantum loop ef-
fects introduces an energy scale, which can be illustrated by considering the vacuum
polarization diagram as an example [21].

Figure 2.3: The QCD vacuum polarization diagram. k and g represent the four-
momenta involved and a,b =1,...,8 indicate the colour octet label of the incoming
and outgoing gluon respectively.
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The contribution of the vacuum polarization diagram as shown in Figure 2.3 can be
obtained using standard Feynman rule techniques (for an introduction see e.g. [10]):

d'k Tr [ (k)7 (77 (g — k)o)]
(2m)4 k2 (k —q)°

ZHZby(Q) = _gg(sabTF/ ) (23)

where p, v, etc. are Dirac-Indices and v, are the Dirac-matrices. The contribution is
proportional to g2, because there are two ggg vertices, and there is a SU(3)¢ factor,
Tr = 1/2. The problem arises with the integration over all internal momenta, which
is logarithmically divergent in the ultraviolett region ( |k| — oc). In principal, there
are several methods to define the momentum integral, like e.g. introducing a momen-
tum cut-off parameter. Conventionally the so-called dimensional regularization [22]
is applied, which has several advantages because it conserves the gauge symmetry
of the lagrangian. Within dimensional regularization the calculation is performed in
D = 4 4 2¢ dimensions. For € # 0 the resulting integral is well-defined:

/ (g:)kl’ Z?EZ - Z;: N 6(4_;)2 (25)6”‘6) (1 - 26) {% +q“q"} (2.4)

The ultraviolet divergence of the loop appears at € = 0, through the pole of the
Gamma function,

['(—e€) = —% — v+ O() (2.5)

where vz = 0.577215. .. is the Euler constant. Since the momentum-transfer ¢ has
dimensions, it is useful to introduce an arbitrary energy scale p and write

(55) =9 = w(55) +-o

= —pu* {% + g — Indn + In(—¢*/p®) + (’)(—6)} . (2.6)

Obviously, this expression does not depend on p, but written in this form one has a
dimensionless quantity (—¢*/u?) inside the logarithm. The contribution of the loop
diagram in Figure 2.3 can finally be written as
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% = 6w (—¢°9"™ + ¢*¢") 1I(¢°)

1) = 27 (%) { L srs - mar et - 2+ 00} @)

Owing to the ultraviolet divergence, Eq. 2.7 does not determine the wanted con-
tribution from the vacuum polarization graph. However, it shows how this effect
changes with the energy scale. If one could fix the value of I1(g?) at some reference
momentum transfer g7, the result would be known at any other scale:

() = 1) — 57r (22) n(@?/ad) - 2.9

1(¢?) can be splitted into a meaningless divergent piece and a finite term, which
includes the ¢ dependence.

M(¢°) = ALl (u*) + Tr(¢*/1°) (2.9)

This separation is of course ambiguous, because the finite ¢ — independent con-
tributions can be splitted in an infinite number of ways. A given choice defines a
renormalization scheme (RS), some examples are given below:

_%%N% [L+7e —Indm — 3] (p — scheme),

All = ¢ —Fegpl (MS — scheme),  (2.10)
_%%M% |2+ 7. — Indr] (MS — scheme),
_%% In (—¢*/p?) (p — scheme),

Allg = _%% [(—¢*/1®) + v — Indm — ] (MS — scheme),  (2.11)
_%% [(_q2/ﬂ2) - Z:,‘)] (MS — scheme).

In the p — scheme, one uses the value of TI(—u?) to define the divergent part. MS
and MS stand for minimal subtraction and modified minimal subtraction schemes,
in the MS case, one subtracts only the divergent 1/e term, while in the MS scheme
also the annoying vz — In4x term is put into the divergent part.
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The idea of renormalization is to redefine the original fields and couplings (the so-
called bare fields and couplings) through absorbing all ultraviolett divergences into
them, thus yielding renormalized quantities. Theoretical predictions expressed in
terms of the renormalized quantities yield finite results, which can be compared
with experiment. Such a strategy is meaningful, provided that it can be done in a
selfconsistent way, i.e. that all ultraviolett divergent contributions from all possible
scattering amplitudes can be eliminated through the same redefinition of the cou-
plings and fields. This is valid for the Standard Model but it is not a general feature
of gauge theories.

The principle of this mechanism is shown in the following example. The scattering
amplitude of the QED interaction between two electrons takes the form

T(q%) ~ J*Ju— {1 S (2.12)

with the coupling o = €2?/(4x) and J# denoting the electromagnetic current. The
vacuum polarization contribution II(g?) at one loop level is just given by Eq. 2.7
with the modifications Tr — 1 and g, — e. The divergent correction is absorbed by
a redefinition of the coupling;

% {1 - AN - @/} = S -t} a9
OZR(,U?) {1 + ?O;?_N% |:% + Cscheme:| + .. } , (2.14)

where ay = e2/(4m) denotes the bare coupling. Bare quantities, like the bare coupling
oy are not measurable at all. The goal of experimental measurements is the deter-
mination of the value of the renormalized coupling ag. However, ag(u?) depends
on the arbitrary renormalization scale u and on the choice of the RS. Cipeme in Eq.
2.14 denotes the term coming from the splitting of the finite ¢ — independent con-
tribution of I1(g?). This is not a principal problem, since the renormalized coupling
itself is not a directly observable quantity. Observable quantities like the scattering
amplitude T'(¢q)? should of course be y — independent:

T(q%) ~ J”JuaRq(;u ) {1 + a};(: 2 i (~4*/1) + ] + - } - (219
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To leading order, the above expression is inescapable renormalization scale depen-
dent and therefore completely arbitrary. The scale dependence is however cancelled
to some extent due to the logarithmic term coming up in next to leading order. Com-
pletely p—independent expressions can only be achieved by a non-trivial cancellation
of all scale dependent terms involving all orders perturbation theory, i.e. any predic-
tion from a truncated perturbative expression comes with a residual renormalization
scale dependence. Internal consistency of perturbation theory only guarantees that
the residual scale dependence is of one order higher than the one considered.

2.2.3 The Renormalization Group Equation of QCD

As outlined in the previous subsection, renormalization scale independence of phys-
ical quantities is achieved through a non-trivial cancellation process involving all
orders perturbation theory. Consider a generic dimensionless physical observable R,
which depends on an energy scale % and can be calculated perturbatively within
QCD, yielding a power series in terms of the renormalized coupling o = a,(u?) of
the following form:

R (as, Q*/07) = asri(Q° /1) + ogra(Q° /1) + ... = Zain(Q2/M2) . (2.16)

R depends on p explicitly via the functions r;(Q?/u?) and implicitly through a,.
Since R is an observable, it should be independent of p, i.e. all implicit and explicit
renormalization scale dependence should cancel if R is summed up to all orders. This
condition is expressed by the so-called Renormalization Group Equation (RGE):

d Q? s, da; O
— =)=y 2= =0 . 2.1
L d,u2R (as, M2> [,u 9.2 +u o2 aas] R=0 (2.17)

A solution of this equation is found by introducing a new function, which describes
the renormalization scale dependence of «:

aQS(N2) . i
/_,L2 a/_,L2 = ﬂ(as) = —boag — blai’ — ... = Zbias+2 . (218)

The right hand side of Eq. 2.18 is the so-called § — function, its coeflicients b; are
calculated by considering loop diagrams as shown in Figure 2.2 up to the desired
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order. The first two coeflicients are universal, i.e. independent of the RS and have
been computed to be

33 — 2ny
bp= ——= 2.19
0 197 ’ ( )
153 — 19n;
= 7 2.20
b 2472 ’ (220)

where n; is the number of active quark flavours which contribute to quark loop
corrections as shown in Figure 2.3, which has to be set to ny = 5 at LEP energies.

The higher order coefficients b;,2 > 2 are RS dependent and therefore arbitrary
parameters. The dependence of the coupling o, on these parameters is determined
by equations similar to Eq. 2.18 [3]:

8045 (bz)
0b;

= Bilas) = (it +wia?? + whalt® +..) (2.21)

1—1

Within the MS — scheme the coefficient b, has been computed to be

w1 5033 325
MS = _— (92857 — ——n, — =—nl . 2.22
02" = 1o8x ( e A (2.22)

The relation of the coupling «;, at one scale p? to that at another scale u2 is given

ai?) = a) {1+ o (%) o) +nm (L) a2+ .|

Ho 0

~ a,(p3) {1 —byln (Z—i) o, (p3) (2.23)

0
2 2
+ [bg In? (%) — b In (%)] 2(ud) + .. }

The coupling decreases at large scales, i.e.

lim a,(u?) =0 (2.24)

u2 00
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which is an important property of QCD and is called asymptotic freedom. The
perturbative calculations tell us how the coupling evolves with the scale (which
is called running of the coupling), but nothing about its absolute value. The latter
has to be determined from experiment. Apart from the problem of assigning an ap-
propriate RS, one could choose for example the value of o, at a convenient reference
scale, e.g. the mass of the Z° —boson M as the fundamental parameter of the the-
ory. Instead of this, it has become standard to introduce a dimensionful parameter
directly into the definition of a,(u?). By convention this parameter is called A and
is a constant of integration defined by

2 o0 oo
1 dx dz
In{=)=- = 2.2
’ <A2> /as(;ﬂ) () /as(;ﬁ) box? + byx® + b2at + .. (2:25)

Formally, A represents the scale at which «a,(u?) diverges. The arbitrariness of the
integration constant is reflected in the fact that the replacement A — ¢ A, ¢ =
constant still gives a solution of Eq. 2.18.

Utilizing the definition of A according to Eq. 2.25, o, can be written as an expansion
in inverse powers of In(u?/A?). The leading order (LO) expression is

9 1

o, (p°) = boln (4212 (2.26)

and the calculation in next-to-next-to-leading (NNLO) calculation yields [23]

oo 1 by In [In (42/A2)] b
as(p°) = bo In (12/A2) _% In (2/A?) b31n2(,u2/A2)

1 bobe 5

X ([ln [In (u?/A%)] - 5]2 T Z) : (2.27)

The value of A, and hence the value of ¢, depends on the number of active quark
flavours and on the RS employed. In order to distinguish different definitions of
A, it is usual to label them AZ@, where n; indicates the number of active quark
flavours and RS the renormalization scheme employed. For example Ai/Ts stands
for the definition within the MS — scheme with 5 active quark flavours. In order
to compare measurements from different experiments at different energies, it has
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become conventional to give values for the strong coupling within the MS — scheme
and in terms of ay(My), i.e. the value of a4 at the Z° mass scale.

Invariance with respect to the renormalization group equation (RGE) (2.17) de-
termines also the renormalization scale dependence of the functions r; of the
perturbative expansion (2.16). Up to O(c?) the p — dependence is given by

R=ra, + (@ + 71bp In (422 /Q?))ag 4 [fg, + 279by In (112/Q?)

w8 (b (/@) + 83107 /@) |2 (2:28)

where 7; denote the coefficients evaluated from the Feynman diagrams in ¢ — th
order perturbation theory. The logarithmic terms appearing at higher orders in the
perturbative expansion are determined in terms of lower order coefficients 7;. It can
be shown, that RGE invariance requires the presence of such logarithmic terms at
all orders perturbation theory (see for example [24]), i.e.

ri(u?/Q%) = 7; [bo In (%22)] +.o . (2.29)

Thus, even for low order calculations like O(a?), an infinite subset of contributions
from all orders perturbation theory is already known and the form of the higher
order corrections is highly constrained. Obviously, the choice of the arbitrary renor-
malization scale p is of major importance for the convergence behaviour of the
perturbative expression. Since any value u? > A? is principally allowed, the size of
the higher order contributions depend crucially on an appropriate choice. Within
the MS — scheme for example, the choice 2 = Q? yields for many observables quite
large second order contributions, which may be of the same size or even larger than
the first order contribution. Clearly, such large higher order terms can hardly be
interpreted as a ‘perturbation’ of the lower order expressions.

An often heard argument for the choice u? = Q?* (see for example [24]), the so-called
‘physical scale’ originates from the expansion of the higher order logarithmic terms
according to Eq. 2.29. For p? = @? these logarithms are resummed automatically,

e.g.
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R = 7,1+ agbyln (MQ/Q2) + (Ozsbo In (NQ/Q2) )2+ .. ]

7 Qs (N2)
1+ o (12)bo In(Q2/142)
R 1
" heIn (12/A%) + b In(Q2/22)

. 1 .
Tlm = Tlas(Q2) . (230)

Thereby MS is implicitly assumed to be an appropriate RS and the scheme depen-
dence problem is ignored.

In order to investigate this argument further, it is quite instructive to study the RS
dependence problem in more detail. Stevenson [3] has shown, that one can param-
eterize the RS dependence of the perturbative expansion (2.16) up to O(ca%) by a
set of n — 1 parameters. In NLO the full scheme dependence may be parameterized
by the integration constant (2.25) 7 = by In(u?/A?). Equivalently, one can choose
A = Apg as a fundamental constant, and parameterize the RS dependence by the
renormalization scale parameter 2. This connection may easily be understood by
comparing Eq. 2.9 with Eq. 2.10. In higher order perturbation theory, additional
RS dependence enters through the scheme dependent parameters b;, ¢ > 1, of the
B — function (2.21). Thus RS = RS(u?, ba, ..., 0" ) is a complete parameterization
of the scheme dependence problem in O(a?) .

Since u? serves to label the NLO scale dependence, the above argument for the
choice pig = Q? is not of too much relevance. In fact, for any choice p* # @2
within a specific RS, an alternative scheme RS can be specified, where s = Q?
is satisfied, and the resummation of the logarithmic terms in Eq. 2.30 is again
performed automatically. Moreover, the implicit change of the scheme in conjunction
with the choice p? # @Q? is completely equivalent with the explicit change to the
corresponding scheme with py? = Q2. Thus, within any RS, i.e. for any choice of
the renormalization scale p?, the renormalization group predictable logarithms are
resummed to all orders. Therefore, the principle of resumming all renormalization
group predictable terms does not fix the renormalization scale (i.e. renormalization
scheme) problem.

Supposing however, that an optimal RS can be specified and assuming that the
resummation of the higher order logarithmic terms within this optimal scheme is
performed correctly, the choice of an unsuitable scheme corresponds to a truncation
of the optimal resummation series [25]. If for example the effective charge scheme
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(ECH) [4] is considered to be such an optimal RS, it can be shown [25], that for
typical observables in eTe™ annihilation the measurement of c,(M?2) within the
MS — scheme will lead to a sizeable overestimate of the true value of the coupling
in combination with a large scatter of the a,(M?) values measured from different
observables [6]. Both features have indeed been observed within this analysis.

2.3 Renormalization scheme optimization

Obviously, the RS dependence of finite order perturbative predictions plays in im-
portant role in experimental QCD analysis, which cannot be ignored. Without any
assumption about the values allowed for the parameters p? and b;, ¢ > 1, any re-
sult for the strong coupling can be obtained. Since QCD theory however gives no
principal answer on the choice of these parameters, any choice involves some addi-
tional assumptions beyond the scope of fundamental theory. Several proposals have
been made for the choice of an ‘optimal’ RS, and so far no one has been able to
command universal support [6]. Within this analysis, several optimization methods
have been examined with respect to their applicability for the measurement of the
strong coupling from hadronic Z° — events. They will be briefly introduced in the
following.

2.3.1 The Principle of Minimal Sensitivity (PMS)

In this approach, suggested in Ref. [3], the RS is fixed by demanding that

ORWN) _ ORM _ ORWN)
op

=0 , (2.31)

p=pPMs ab2 bo=bL'MS abN—l bN_IZbEI\_/IiS‘

i.e. the N — th order approximant R™") of the expansion (2.16) has locally the

property that the full expansion must satisfy globally. At NLO, the PMS criterion
(2.31) reduces to the choice of the renormalization scale in such a way, that it is least
sensitive with respect to its variation. Note that, contrary to fixed RS approaches,
the PMS choice selects an RS which depends on the observable under study. The
same is true also for the methods introduced in the following subsections.
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2.3.2 The method of Effective Charges (ECH)

By dividing the expansion (2.16) by the RS independent tree level coefficient r;, Eq.
2.16 may be rewritten without loss of generality as

R(0g Q%) =5+ 710 + 70l +... . (2.32)

where the lowest order approximant is the coupling itself. The basic idea of the
ECH approach [4] is, to choose the RS in such a way, that the relation between the
physical quantity and the coupling is the simplest possible one:

R (0, Q?) = oPM (2.33)

i.e. all higher order coefficients 7; vanish, and hence R*™) = o™ is called an effective

charge. The RS parameters p and b;, ¢ > 2 have to be chosen in such a way, that Eq.
2.33 holds. At NLO, this corresponds to the choice of the renormalization scale in
such a way, that the NLO coefficient vanishes. Since all higher order coefficients van-
ish, this method has also become known as method of fastest apparent convergence
(FAC). It might appear, that there is no convergence problem at all applying this
method, however the problem reappears with the expansion of the corresponding
(3 — function [11].

It should be noted, that the PMS and the ECH renormalization scheme optimization
introduced above are closely related with renormalization scheme invariant quanti-
ties derived from the renormalization group equation. For the demonstration of these
relations it is convenient to introduce a more compact notification for the renormal-
ization group, as it can be found in many theoretical discussions. Using this notation
the perturbative expansion of a generic dimensionless observable reads

R (QQ) =« (1 +ra+ra?+ .. ) (2.34)

and the f—function, which specifies the strong coupling o = /7, is written in the
following form

d
% = _ﬂ(a) = —a? (1 —+ co + 02042 + .. ) ) (2-35)
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where 7 = bIn(u/A) with u denoting the renormalization scale and A the fundamen-
tal QCD parameter differing from the traditional definition by a factor (2¢/b)~¢/
[6]. The renormalization scheme invariant coefficients b and ¢ are linear combina-
tions of the coefficients b; and by of Eq. 2.18. 7 and the higher order coefficients
Co, C3,... are used to parameterize the renormalization scheme dependence in NLO
and higher orders respectively. By iterating the consistency conditions on the finite
order coefficients 7; of expansion (2.34)

dTN

dry dry
dr

= O(OZN+1) y dC~

= 0> ) | (2.36)

the renormalization scheme invariant quantities p; can be identified order by order.
In NLO one finds

pr =1 —11(7) (2.37)

and in NNLO

pa = ca +1o(T,c0) — eri (1) — (7)) (2.38)

which allows to calculate 7 (7) and 73(7, ¢2) from any r; and ro obtained in an initial
scheme specified by the parameters 7 and c,. The renormalization scheme invari-
ance of the quantities p; implies that all scheme dependence cancels order by order
between the scheme dependent terms on the right hand side of Eq. 2.37 and Eq.
2.38. The first invariant p; is a function of the scheme invariant combination p/ A,
whereas the higher order invariants p;,7 = 2,3, ... are pure numbers. The observ-
able R(Q)) depends on a single dimensionful scale ), which suggests the following
identification:

p(Q)=1—m(1) = bln% : (2.39)

with p;(Q) and A being renormalization scheme invariants and A depending on the
particular observable R(Q). According to [6] the quantities p; (@) and A should have
more physical significance than RS dependent quantities such as o(7) and (7).
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The ECH renormalization scheme is fixed by the requirement, that all higher order
coefficients r; vanish, i.e.

rEOH g | o = p, (2.40)

and similarly for still higher orders. Thus the ECH scheme is entirely formulated in
terms of the renormalization group invariants p;. It should however be noted, that
the ECH approach does not represent a unique solution for defining a scheme in
terms of renormalization group invariants. An investigation of the PMS approach
shows [6] for example, that in NLO the PMS scheme corresponds with 7 being
approximately

TECH ~ ) —¢/2 (2.41)

which suggests, that in principle any combination of renormalization scheme invari-
ant expressions can be considered for the definition of such a scheme. In section 6.4.6
it will however be shown, that the results obtained by applying the PMS and ECH
renormalization schemes are almost identical.

2.3.3 The method of Brodsky, Lepage and MacKenzie
(BLM)

This method [5] borrows its basic idea from QED, where the renormalized electric
charge is fully given by the vacuum polarization due to charged fermion-antifermion
pairs. In QCD, the authors of this method suggest, that all effects of quark-antiquark
pairs should be absorbed in the definition of the renormalized coupling itself, leaving
no residual dependence in the expansion coefficients. At NLO, this corresponds to a
choice of the renormalization scale in such a way, that the n; dependence vanishes.
Since the higher order coefficients 7;, ¢+ > 2 can be split into a ny dependent and an
ny¢ independent part, e.g.

71 =T+ 0, (2.42)
the above condition can be satisfied at NLO by a choice of y = pPL™ which com-
pensates for the ny dependent part of Eq. 2.42. A basic problem of the BLM method
is, that the splitting above (2.42) is RS dependent [26]. Contrary to the PMS and
ECH method, the BLM scheme prescription is not unique and depends on the initial
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scheme, in which the splitting (2.42) is performed. In [27] it has been shown, that
this ambiguity is completely equivalent to the original scheme ambiguity for any
fixed RS.

2.3.4 Experimentally optimized Renormalization Scheme

The aim of the theoretically motivated RS optimization approaches is, to find a
scheme, which minimizes the difference between the exact and RS-independent all
order prediction for an observable R (2.16) and their fixed order approximation
R™. Obviously an all order prediction is unknown and might even not exist at all.
Therefore, a rigorous proof, that the methods described above serve with the desired
qualities, is impossible. Although the concept of renormalization group invariants
may turn out to be an important ingredient for obtaining an optimized prediction,
the differences in the results obtained from the PMS and ECH prescriptions demon-
strate that it does not allow the construction of a uniquely determined series.

Since the RS dependence of perturbative predictions cannot be uniquely fixed by
theoretical means, the scheme parameters may be allowed to vary freely in fits to
experimental data and their optimal values may be determined by the constraints
from the shape of the data distributions. In Chapter 6 will be demonstrated that in
NLO this method yields a superior description of the data distributions and perfectly
consistent a(M?2) values from a large set of data distributions. The renormalization
scale values obtained will turn out to be strongly correlated with those obtained
from the PMS and ECH methods.

The success of this strategy may be understood by considering that additional in-
formation about the behavior of higher order contributions is required in order to
determine an optimized renormalization scheme. In the ECH approach, the higher
order corrections are assumed to be small and set to zero. In the PMS approach the
information is utilized, that an all order prediction R does not depend on the choice
of the RS. In fits to the experimental data however, the information about the higher
order behavior is provided by the data distributions themselves. Provided QCD is
the correct theory, the all order prediction for an observable R should be identical
(apart from additional non-perturbative contributions) with the experimentally ob-
served value Regp. Thus the experimental data R, provide the maximum knowledge
which can be obtained about the missing all order prediction. Thereby it is required,
that Ry is not just a pure number from an inclusive measurement, since one has to
determine the coupling itself in combination with N — 1 scheme parameters. Fortu-
nately, most QCD observables are differential distributions in terms of a kinematical
variable. The observables studied within this analysis are even double differential
distributions with respect to a kinematical variable and to the event orientation.
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All observables studied are known in NLO, where the RS determination is equivalent
to the determination of the renormalization scale value u. Practically, a simultane-
ous fit of the coupling and the renormalization scale to the data distributions is
performed. Therefore, the renormalization scales determined by a fit to the mea-
sured data have become known as experimentally optimized renormalization scales.
It should however be emphasized, that ‘scale’ optimization has to be understood in
terms of scheme optimization, i.e. RS = RS(u) is supposed. As outlined before, this
is indeed true for a fixed order perturbative expansion in NLQO, but not however for
example for the popular all orders next-to-leading-logarithmic (NLLA) resumma-
tion, where a parameterization of the RS dependence is still unknown and cannot
be obtained easily (see e.g. [6]).



Chapter 3

Perturbative QCD
in Electron-Positron-Annihilation

The eTe™ annihilation into a quark-antiquark pair at large centre-of-mass energies
V8, in particular at /s = M,, is an ideal process for studies of perturbative QCD.
It provides the most simple initial state for strong interaction studies, where apart
from initial and final state photon radiation, the energy of the process is well known.
Owing to the Z° resonance, the cross section at ) = My is much larger than
at any other energy scale within the perturbative region. A very large statistics
of several million hadronic events per LEP experiment has been collected in the
past, allowing a careful analysis and minimization of experimental uncertainties.
Additionally background processes, in particular from initial state radiation, are
largely suppressed at the Z° resonance. Due to asymptotic freedom, the value of
o, at Q) = My is roughly three times smaller than the value at @) = m,, which
is relevant for the decay of the 7 lepton, where the convergence behaviour of the
perturbative series is expected to be more relevant [30].

The quarks and gluons produced by strong interaction are however not directly
observable. QCD confinement enforces a transition of these colour charged objects
into colourless hadrons. The final state hadrons appear as bundles of particles, the
so called hadron-jets. At large energies these jets are strongly collimated and the
jet directions closely correspond to the directions of the initial partons. The effects
of hadronization cannot be described perturbatively. They are expected to decrease
proportional 1/@ for most of the observables studied in e*e™ annihilation [29], thus
becoming less important with increasing centre-of-mass energies.

Within this chapter, an overview of some theoretical aspects concerning the determi-
nation of the strong coupling in ete™ annihilation is given. After a brief discussion
of the structure of a multihadronic hadronic event in e*e~ annihilation, a set of
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collinear and infrared save event shape observables is introduced which are used for
the determination of the strong coupling. Different theoretical approaches to ob-
tain predictions for these observables will be discussed, in particular with respect
to the event orientation. Also a brief overview is given about Monte Carlo genera-
tors in ete™ annihilation. These programs combine perturbative QCD predictions
with phenomenological models for the hadronization process in order to simulate
the complete annihilation process on an event-by-event basis and are used in order
to study the influence of hadronization effects on the perturbative predictions.

3.1 The Hadronic Decay of the Z°

The structure of a typical multihadronic event in e*e~ annihilation is shown in Fig.
3.1. The process from the annihilation of the initial electron and positron to the
formation of the finally observed hadrons can be divided into four phases.

In the first stage, an electron and a positron annihilate into a quark-antiquark pair
by the exchange of a virtual v or a Z° boson. This process is described by the
GWS model and can be calculated perturbatively. For precise quantitative studies,
it has to be considered, that the electron and or the positron can radiate a photon
before annihilation takes place, which reduces the energy available for the subsequent
processes. At the Z° resonance however, this initial state radiation (ISR) is strongly
suppressed.

0} I (1 (V)

time

Figure 3.1: A schematic view of the process ete™ — 7*/Z% — hadrons.
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The second stage is the phase of strong interaction in combination with large mo-
mentum transfers. The primary quarks radiate gluons which themselves can decay
into further quarks or gluons, thus producing multi-parton cascades or showers. This
phase can be described by perturbative QCD.

With subsequent branching of the partons, the momentum transfer decreases in
combination with an increase of the strength of the strong interaction and the tran-
sition of quarks and gluons into colourless hadrons takes place. Since this phase
cannot be described perturbatively, one has to rely on phenomenological models,
which are implemented within so called Monte-Carlo-Generators such as JETSET
(string fragmentation) and HERWIG (cluster fragmentation).

During the last phase, the primary hadrons decay into stable particles. It can be
adequately described by the particles’ lifetimes and branching ratios determined
from experimental measurements.

3.2 Event Shape Observables

In order to characterize the structure of the multihadronic final states in eTe™ an-
nihilation a large number of observables have been developed, which describe the
global properties of the final state, like the number of jets or the topology of an event.
For a measurement of the strong coupling one has to choose observables, which are
both sensitive to o, and which can be calculated in at least next-to-leading order
perturbation theory. For the calculability of observables in perturbation theory at
least two conditions have to be satisfied. The observable must be infrared save, i.e.
insensitive with respect to the radiation of gluons with infinitesimal momenta. Addi-
tionally, the observable must be collinear safe, i.e. they it be insensitive with respect
to a splitting of particles into two parallel moving particles with equal momentum
(see also Section 3.3).

Due to the RS dependence of perturbative predictions, one is principally faced with
an infinite number of a priori valid renormalization schemes in combination with an
infinite range of possible a; values. Hadronization corrections and their uncertain-
ties as well experimental systematic uncertainties are of different size and structure
for individual event shape observables. The relevance of an «, determination can
therefore hardly be judged by a single measurement from a single observable. In
order to study the reliability of the different approaches for the determination of
o suggested in literature, a large number of observables with different higher or-
der and hadronization corrections and different experimental systematics should be
taken into account. Conclusions may then be drawn from the consistence of the «;
measurements from the different approaches for the different observables.



30 3. Perturbative QCD in Electron-Positron-Annihilation

Within this analysis, eighteen event shape observables have been considered, which
represents the most complete list of commonly studied observables for the deter-
mination of ¢, in eTe~ annihilation so far. The definition of these observables is
presented in the following.

3.2.1 Definition of the Observables

Thrust T is defined by [31] :

T = max 2%l (3.1)
i > |Pil

where p; is the momentum vector of particle ¢, and 7ip is the thrust axis to be
determined.

Major M and Minor m are defined similarly, replacing 7ir in the expression above
by the Major axis 7ijs,j, which maximizes the momentum sum transverse to 7ir or

the Minor axis fiain = fimae; X Tir respectively.

The oblateness O is then defined by [32]:

O=M-m . (3.2)

The C-parameter C is derived from the eigenvalues A of the infrared-safe linear
momentum tensor O [33]:

y 1 ol
Qi — — . = 3.3
S 2 (33)
C =3 (Mda+dads + Ashi) (3.4)

Here p¢ denotes the i-component of pj,.
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Events can be divided into two hemispheres, a and b, by a plane perpendicular
to the thrust axis 7ir. With M, and M, denoting the invariant masses of the two
hemispheres, the normalized heavy jet mass py, light jet mass py,, the sum of the jet
masses ps and their difference pp can be defined as

max(My, M)

pH = B (3.5)
pr = T ) (5.5)
ps = pu + pr (3.7)
pPD = P — PL (3.8)

where
Eys =Y E; (3.9)

and the energy of the particles ¢ has been calculated assuming pion mass for charged
and zero mass for neutral particles.

Jet broadening measures have been proposed in [34]. In both hemispheres a and b
the transverse momenta of the particles are summed thus:

Bab _ Ziea,b |ZZ X ﬁT|

b= = (3.10)
2Zi |7

The wide jet broadening B,.x, the narrow jet broadening B,;,, and the total jet
broadening By, are then defined by

Binee = max(B,, By) (3.11)

Bmin = min(Ba, Bb) (312)
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Bsum = Bmaw + Bmzn . (313)

The first order prediction in perturbative QCD vanishes for both pr, and Byi,. There-
fore these observables cannot be used for the determination of o in O(a?) .

Jet rates are commonly obtained using iterative clustering algorithms [35] in which
a distance criterion or a metric y;;, such as the scaled invariant mass, is computed
for all pairs of particles ¢ and j. The pair with the smallest y;; is combined into
a pseudoparticle (cluster) according to one of several recombination schemes. The
clustering procedure is repeated until all of the y;; are greater than a given threshold,
the jet resolution parameter y... The jet multiplicity of the event is defined as
the number of clusters remaining; the n-jet rate R, (y..) is the fraction of events
classified as n-jet, and the differential two-jet rate is defined as

R2 (ycut) - R2 (ycut - Aycut)
Aycut

D2(ycut) = (314)

Several algorithms have been proposed differing from each other in their definition
of y;; and their recombination procedure. We apply the EO, P, PO, JADE [36],
Durham [37], Geneva [35] and the Cambridge algorithms [38]. The definitions of
the metrics y;; and the recombination schemes for the different algorithms are given
below.

In the EO algorithm y;; is defined as the square of the scaled invariant mass of the
pair of particles 7 and j:

_ (pi +py)?
Wi= g,

vis

(3.15)

The recombination is defined by:

E — —
(B 5 (3.16)

Ey=E;+E; , ﬁk=m
i T Dj

where E; and E; are the energies and p; and p; are the momenta of the particles.

In the P algorithm y;; is defined by Eq. (3.15), and the recombination is defined by
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D=0 +D; , Ex=|Pk] - (3.17)

The PO algorithm is defined similarly to the P algorithm, however the total energy
Eyis (Eq. 3.9) is recalculated at each iteration for the remaining pseudoparticles.

In the JADE algorithm, the definition of y;; is

_ 2E;E;(1 — cos 0;;)

Yij 23 ; (3.18)
where 0;; is the angle between the pair of particles 7 and j.
For the Durham algorithm y;; is given by

2min(E?, E?)(1 — cos 6;;)
Yij = E]z d (3.19)
and for the Geneva algorithm by
8E;E;(1 — cosb;;
Yij = i i) (3.20)

9(E; + E;)?

For the algorithms given by Equations (3.18), (3.19) and (3.20) the recombination
is done by adding the particles four-momenta.

The Cambridge algorithm [38] introduces an ordering of the particles ¢ and j ac-
cording to their opening angle, using the ordering variable

Vij = 2(1 — COS QZ]) (3.21)

and y;; is defined by Eq. (3.19). The algorithm starts clustering from a table of N,
primary objects, which are the particles’ four-momenta, and proceeds as follows:

1. If only one object remains, store this as a jet and stop.

2. Select the pair of objects ¢+ and j that have the minimal value of the ordering
variable v;; and calculate y;; for that pair.
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3. If yij < Yeur then remove the objects ¢ and j from the table and add the
combined object with four-momentum p; + p;. If ¥;; > y.u: then store the
object 7 or j with the smaller energy as a separated jet and remove it from the
table. The higher energy object remains in the table.

4. go to 1.

The energy-energy correlation EEC [39] is defined in terms of the angle x;; between
two particles ¢ and j in an hadronic event:

xS

(X' — xij)dx' (3.22)

1
EEC(x —
I [
2

where NV is the total number of events, Ax is the angular bin width and the angle
x is taken from y = 0° to xy = 180°.

The asymmetry of the energy-energy correlation AEEC is defined as

AEEC(x) = EEC(180° — x) — EEC(x) . (3.23)

The jet cone energy fraction JCEF [40] integrates the energy within a conical shell
of an opening angle x about the thrust axis. It is defined as

11
N

UZS

-
/ (X' —xi)dx' (3.24)
x— 5%

where x; is the opening angle between a particle and the thrust axis vector 7ir,
whose direction is defined here to point from the heavy jet mass hemisphere to
the light jet mass hemisphere. Although the JCEF is a particularly simple and
excellent observable for the determination of ¢ , it has been rarely used until now in
experimental measurements. Within an O(c?) analysis, the region 90° < x < 180°,

corresponding to the heavy jet mass hemisphere, can be used for the measurement of
o . Hadronization corrections and detector corrections as well as the next-to-leading
order perturbative corrections are small. This allows a specially wide fit range to be
used.



3.3. Perturbative QCD Predictions in Next-To-Leading Order 35

3.3 Perturbative QCD Predictions in Next-To-
Leading Order

In Born approximation the cross section for the process ete™ — ¢g is given by the
GWS model. For an exact calculation of the QCD effects contributing to the process
above, all QCD matrix elements up to the desired order perturbation theory have
to be considered. Practically, the full perturbative calculation becomes extremely
difficult to perform. Today, a complete calculation of the fully differential matrix
elements exists only up to O(a?), which corresponds to a maximum number of four
partons in the final state (four quarks or two quarks and two gluons).

Fig. 3.2(a) shows the Feynman diagrams contributing up to O(«s). Within this
order, up to three partons can appear in the final state. Neglecting quark masses,
the differential cross section for the production of three partons is given by [41]

1 &P?g® - ]+ 23
A=—z)(1—z9)

_ = 3.2
o)) dIEIdIEQ ( )

where oy is the Born cross section, & = a/27, Cr = 4/3 is a SU(3)¢ factor and

T = i=1,2,3 . (3.26)

cm

E; are the energies of the three decay particles (i = 1: quark, 2: anti-quark, 3:
gluon), E., is the centre-of-mass energy and from energy conservation it follows
that L1+ To+ T3 = 2.

The differential cross section (3.26) diverges for z; — 1 or zo — 1. There are
two distinct kinematical configurations leading to this divergence. The first type of
singularity is called collinear divergence and appears if the gluon is radiated collinear
to the quark or the anti-quark. The second type is called infrared divergence, coming
from the radiation of a gluon with vanishing energy, i.e. 1,22 — 1, x3 — 0. Virtual
corrections to the production of 2 parton states however contain the same kind of
divergence with opposite sign. They cancel with the singularities above in such a
way that well defined inclusive quantities, like the the total hadronic cross section,
are finite. Also less inclusive observables like the shape distributions introduced
in Section 3.2 are finite, provided they are defined collinear and infrared safe (see
Section 3.2). Similar infrared and collinear divergences appear also for the matrix
elements in higher order perturbation theory. It has been shown that a cancellation of
divergent terms from real matrix elements with those from virtual corrections occurs
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Figure 3.2: Feynman Diagram for the process ete™ — ¢¢ in Born approximation
and some QCD corrections up to O(ca?).

(a) Feynman Diagram for the process ete™ — ¢g in Born approximation.

(b) Feynman diagrams contributing to the 3-jet production in O(«).

(c) Some virtual corrections contributing to the 2-jet production in O(c).

(d) Some diagrams contributing to the the 4-jet production in O(a?).

(e) Some virtual corrections contributing to the 3-jet production in O(a?).
(Diagrams not shown are symmetrically.)

in every order «; [42], which guarantees infrared and collinear safe predictions order
by order perturbation theory.

The O(a?) matrix elements have been calculated by several groups. The calculation
of the Leiden group [43] has some advantages over the calculation in [44], which has
been considered as standard calculation for many years. In [44], the matrix elements
have been summed over permutations of the outgoing partons, which means that
quarks and gluons cannot be distinguished in the final state. Also they consider only
the decay of a virtual photon, thus they can only predict quantities averaged over
orientations of hadronic events, loosing all information on their lab-frame directions
and lepton-hadron correlations [45].
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The integration of these matrix elements over the phase space is rather complicated
and cannot be solved analytically. Several programs for the numerical integration by
Monte Carlo techniques have been developed. The most recent one, EVENT2 [46],
is based on the so-called Dipole Formalism introduced in [47] and implements the
matrix elements of the Leiden group.

With EVENT2 , weighted cross sections for any infrared and collinear safe observable
Y in ete™ annihilation can be calculated within the MS renormalization scheme
prescription:

1
w9 s, Ay + a2

= == .B(Y) (3.27)

where &, = /27 and oy is the total cross section in Born approximation. The
weight of the cross sections W (Y') will be discussed below. A(Y") denotes the O(c,)
QCD coefficient and B(Y) the O(a?) QCD coefficient within the MS scheme, which
can be decomposed into three parts proportional to different SU(3)¢ factors:

B(Y)=Cp- (CF - Be,(Y) +Cya - Boy(Y) + T - BTR(Y)) (3.28)

with the SU(3)¢ factors Cr = 4/3, C4 = 3 and the ny dependent factor Tr = nsTr
with Tr = 1/2. The consideration of the ny dependence of the coefficients B(Y)

becomes important for the optimization of the renormalization scale according to
the BLM approach.

Although the integration over the phase space yields in principle infrared finite
results, some care has to be taken with respect to the numerical stability of the Monte
Carlo integration and the number of calculations required for numerical convergence.
It is for example important to introduce a weight W(Y") to damp the sharp rise of
the cross sections at the phase space boundaries. The weights appropriate for the
observables studied within this analysis are

sin? (x/2) for EEC, AEEC and JCEF,

(3.29)
Y otherwise.

W(Y) = {

Since the cancellation of the collinear and infrared divergences occurs only for the
coherent sum of real and virtual partonic configurations, i.e. by taking the difference
between two very large contributions, the exact treatment of the infrared region
would require an infinite numerical accuracy. Thus, an infrared cut-off on the phase
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space has to be applied. If any pair of partons ¢, has an invariant mass mfj <
Q20> the whole configuration is thrown away. The number of iterations needed for
numerical convergence of the integration depends crucially on the accuracy of the
integration i.e. on the choice of Q2 , 4. For the cross sections calculated within this
analysis the integration has been performed in quadruple precision with Q2,4 =
10713,

Figure 3.3 shows the A and B coefficients for the Thrust distribution together with
the contributions B¢,, B¢, and Br, to the second order coefficient according to
Eq. 3.28. Whereas the LO coeflicients are positive definite, one can observe, that
the NLO coefficients for the Thrust distribution take largely negative values in the
extreme two-jet region (1 — T') — 0. Figure 3.4 shows the same for the Oblateness
distribution. Here, the next-to-leading order coefficients are negative for almost the
whole kinematical range.

In order to compare the theoretical predictions with experimentally measured quan-
tities, one has to consider also QCD corrections to the total hadronic cross section
up to the desired order

P — 142 a2 + K- a2(p?) + - (3.30)

Otot

with the O(a?) coefficient given in the MS scheme [48]:

K=" = Sy - 86(3) (3.31)

with 8y = (33 — 2ny)/6 and ((3) = > 2, (1/n3) =1.2021....

Considering also the scale dependence of the theoretical predictions, the weighted
cross section for an infrared and collinear safe observable Y in O(c?) can finally be
written as

W(Y)—= = a,(p?) - A(Y) + &2 (u®) - [B(Y) + (27rb0 In(z,) — 2)A(y)] (3.32)

with the renormalization scale parameter z, = p?/E2,,. The ordinary cross section
can be obtained by dividing prediction (3.32) by the mean weight (W (Y")) in each
Y bin.
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Figure 3.3: QCD coefficients for the Thrust distribution (1 —T). (left side) A coeffi-
cients proportional to O(«,) . (right side) B coefficients proportional to O(a?) and
the contributions Be¢,, B¢, and Br, according to Eq. 3.28.
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Figure 3.4: The same as Fig. 3.3 but for the Oblateness distribution (O).
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3.3.1 QCD dependence on the Event Orientation

Additional information on the strong coupling is given by the angular dependence
of hadronic events. It can be exploited by using the matrix element calculations of
the Leiden group [43].

At the Born level, the Z° with spin 1 will decay into a quark and an antiquark with
spin 1/2, with an angular distribution proportional to 1 + cos®+ and an additional
parity violating term proportional to cos ¥, where ¥ is the angle between the quark
and the e~ beam. The angular distribution is however modified due to gluon radi-
ation. Instead of the primary quark direction, which is not directly observable, the
event orientation is usually specified by the polar angle ¥ of the thrust axis with
respect to the eTe~ beam direction. The general form of the angular distribution
can be expressed as

do
dcos Ur

3 3
=2 (14 cos®dr) - or + ZsmwT Lo, (3.33)

where the parity violating term is absent, which reflects that the sense of the thrust
axis is arbitrary. The terms o7, and or are called longitudinal and transverse cross
section respectively, with the total cross section given by o, = o7, + or. The ter-
minology originates from the circumstance, that a longitudinally polarized Z9, i.e.
having spin component zero along the ete™ direction, would yield a sin? 97 depen-
dence in its decay into fermions, though however this component of the angular
distribution is entirely generated by final state QCD effects. At O(a?) , the longi-
tudinal cross section is given by [49]

‘;—ﬁ - —2(81n ; n 3)CF;‘—;(1 + l%) , (3.34)

where the O(a?) coefficient [ can be obtained by numerical integration of the Leiden
Group matrix elements. The QCD prediction for the longitudinal cross section can
be used to determine a;(M?2). This analysis has been done by ALEPH [50] with the
result a,(M2) = 0.121 £ 0.022(stat.) + 0.011(sys). The relatively large statistical
error stems from the fact that the overall effect of gluon radiation on the cos®
distribution is small. The effect is however enhanced in the region of hard gluon
radiation, thus one can combine the information from the «,; dependence of the
angular distribution with the information of event shape observables sensitive to
the kinematics of an event in order to enhance the sensitivity to the strong coupling
for the combined prediction, which has been done in the present analysis.
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Figure 3.5: Angular dependent QCD coefficients for the Thrust distribution 1 — T,
in four different intervals of cos Y.
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Figure 3.6: The same as Figure 3.5 but for the Energy Energy Correlation EEC.
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Within this study, the a,; dependence of the combined information of the collinear
and infrared save event shape observables introduced in the previous section and of
the angular dependence has been parameterized in the following way:

=a, - A(Y,97)+a2-B(Y,9r) .  (3.35)

dog \ ' d?c(Y, cos Ir)
Yy A\ TR P
(d cos Yt ) W) dY dir

The double differential cross section (3.35 ) has been normalized to the cos 7 depen-
dence of the Born cross section dog/d cos 9. Both, A and B coefficients depend on
the event orientation. Numerical calculations have been done for eight equidistant
intervals of cos ¥ between 0.0 and 0.96. Figure 3.5 shows the angular dependence
of the O(a;) and O(a?) coefficients for the Thrust distribution. Figure 3.6 shows
the same for the distribution of the Energy Energy Correlation EEC.

For the comparison with measured cross sections, the unweighted form of expression
3.35 has to considered and the Born cross section has to be corrected for QCD effects
according to Eq. 3.30, thus yielding an expression of the following form:

Ao >_1 d?c(Y, cos Ir) (3.36)

R(Y,9r) = ( dY dor

dcos I

where oy, corresponds to the one-loop corrected cross section for an «, determi-
nation in O(a?) and the two-loop corrected cross section for the estimated O(a?)
predictions by the means of Padé approximants.

3.4 Predictions in Next-To-Leading Logarithmic
Approximation

An alternative theoretical prediction can be applied for a limited number of so-called
exponentiating [51] observables. Here, the leading and next-to-leading logarithmic
terms of the perturbative expansion can be resummed to all orders perturbation
theory. These expressions can be applied in a limited kinematical region close to the
infrared limit (the semi-inclusive region) where these contributions dominate the
theoretical predictions.

Within the framework of next-to-leading logarithmic approximation (NLLA), theo-
retical predictions are calculated for the cumulative cross-sections defined by:
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Y
1 do
R(Y, = Y’ .
o) = / & (3.37)
0
They can be expanded in the form
R(Y, ;) = Clag) exp X(as, L) + Fas,Y) (3.38)
where L =1n(1/Y) and
Clas) =1+ Y _Cial (3.39)
i=1
0o i+1
S, L) =Y @ty GyLl (3.40)
i=1 j=1
Fla,,Y)=> F(Y)a . (3.41)

The constants C; and the functions F;(Y) can be calculated perturbatively by com-
paring the NLLA predictions for exp X(«;, L) order by order with the corresponding
fixed order expression.

Eq. 3.40 can be written in the form:

Y(as, L) = Lfrr(osL) + fyrn(o,L) + subleading terms (3.42)

where

Lf(e,L Za Giip L' (3.43)

i=1

represent the leading and
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fon(aL) =) aiGi L (3.44)
i1

the next-to-leading logarithms. They have been calculated for a number of observ-
ables, including 1 — T [52], C [53], Bz [54], Bsum[54], prr [55] and DPurhem [56]
where the NLLA predictions for B,.; and By, entering into this analysis are the
recently improved calculations by Yu. L. Dokshitzer et al. [57].

The F;(Y) vanish in the infrared limit ¥ — 0 and are neglected within pure NLLA
predictions:

Ryira(Y, o) = (14 Cra, + Coa?) exp [LfLL(asL) + fNLL(asL)] . (3.45)

All calculations above have been done within the MS — scheme at the renormaliza-
tion scale Q% = s. Whereas the expression for the leading logarithms fr;, is renor-
malization scheme invariant, the expressions for the non leading terms are scheme
dependent. The renormalization scale dependence of fxry, is given by:

fyon(asL, M2) = fyrn(osL, Q2) + bo(asL)2f,£L(asL) ln(%) ) (3.46)

where f}; is the derivative of frr. Unlike the O(a?) case, where z,, parameterizes
the complete renormalization scheme dependence, such a parameterization is not
known for the predictions in NLLA.

3.4.1 Combining NLLA with fixed order predictions

Pure NLLA calculations can be used to measure a;(M2) in a limited kinematic
region close to the infrared limit, where L becomes large. In order to achieve a
prediction where the kinematical range can be extended towards the 3 jet region,
several procedures have been suggested [58] to match the NLLA calculations with
the calculations in O(a?).

The O(ca?) QCD formula can be written in the integrated form:

Roepy(Ys o) =1+ A(Y)a, + B(Y)a, | (3.47)
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where A (Y) and B (Y) are the cumulative forms of the fixed order coefficients
A(Y, cos ) and B(Y, cos ¥7), integrated over 7. Together with the first and second
order terms of the NLLA prediction:

(L) = Gpl?+GuL (3.48)

92(L) = Gos L* + G L? (3.49)

the In R matching scheme can be defined as:

In R(Y, ;) = Lfir(aL) + fyrr(asL) + Hi (Y)a, + Hao(Y)a? (3.50)

with
H(Y)=AY)-g(L) , (3.51)
Hy(Y) = B(Y) = JA(Y) ~ go(L) (3.52)

Within the In R matching scheme, all logarithmic and non-logarithmic terms are
exponentiated. Several other matching schemes can be defined which differ only
in the treatment of the subleading terms, thus introducing a principal ambiguity
in the matching procedure. Within the R matching scheme, only the leading and
next-to-leading logarithmic terms are exponentiated:

RY,a;) = (1 +Cias + 02073) exp [LfLL(asL) + fNLL(OésL)]

+F(Y)a, + FB(Y)a? (3.53)

with
RY)=AY)-al)-C (3.54)
Fi(Y) = BY) = 503(5) ~ 0a(L) = Cigr (L) ~ G (3.55)
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Within the R—G2; matching scheme, additionally the analytically known subleading
logarithm G3; proportional to O(a?) is exponentiated:

R(Y,os) = (14 Cia+ Cod?2) exp|Lfrr(ewLl) + farr(asL) + G21L07§]
+F(Y)a, + Fa(Y)a2 — G La? . (3.56)

—

When combining O(a?) predictions with NLLA calculations one has to take into
account that the resummed terms do not vanish at the upper kinematic limit Y4
of the event shape distributions. In order to correct for this, the resummed logarithms
are redefined [59] by:

L=1n(1/Y — 1/ Yy + 1). (3.57)

The In R matching scheme has become the preferred one, because it includes the
C5 and the G4 coefficients implicitly and uses only those NLLA terms which are
known analytically. It yields the best description of the data in terms of x?/ng in
most cases [9]. Therefore, it has been chosen as the standard matching procedure
within this analysis and the R and R — G5; matching schemes have been used for
the estimation of the uncertainty due to the matching ambiguity.

3.5 From Quarks to Hadrons

The formation of quarks and gluons, i.e. the hard process, can be understood
within the framework of perturbative QCD. The transition into the final state
hadrons observed in experiment however occurs at small momentum scales, where
the perturbative predictions are no longer valid. In order to account for these
hadronization effects, phenomenological models have to be employed. These mod-
els are in general implemented within Monte Carlo Generators, which simulate the
complete process ete™ — hadrons according to the four phases shown in Fig. 3.1
on an event-by-event basis. For each event simulated, the complete kinematical in-
formation is available for the final state hadrons as well as for the initial quarks and
gluons, thus allowing to evaluate the hadronization corrections for any collinear and
infrared safe shape observable.
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3.5.1 Simulation of the Perturbative Phase

Historically the first approach for the simulation of the initial parton state was
based on the O(a?) matrix element calculations and is implemented for example as
‘matrix element’ option within the JETSET Monte Carlo generator [60]. This matrix
element approach works reasonably well but yields a poor description of the data in
comparison with models based on the parton shower approach [61].

A fundamental problem of the matrix element approach has been found in [62] and
arises due to the renormalization scale dependence of the O(a?) predictions. Since
the second order QCD coefficients can be negative over a large kinematical range (see
for example Figures 3.3 and 3.4) also the corresponding differential cross sections
can be negative for certain choices of the renormalization scale. This suggests, that
a the three-jet cross section may be negative over a large fraction of the phase space.
For small renormalization scale values of z, ~ 0.002 which are required in order to
describe the measured data [61], the fraction with negative three-jet cross section
covers about 15 % of the phase space [62]. The Monte Carlo prediction however
is unreliable if the three-jet cross section is negative, because it is interpreted as
probability for the event generation. Within the JETSET matrix element Monte
Carlo, the contribution from the region with negative cross section is ignored. The
contribution from the region with positive cross section is then rescaled by a constant
factor in order to conserve the overall three-jet rate.

Today, the simulation of the perturbative phase within event generators is most
commonly based on the parton shower approach. It is derived within the framework
of the renormalization scheme invariant leading logarithmic approximation LLA.
There are several Monte Carlo Generators with different implementations of the
basic approach. The algorithms are based on the iterative use of the basic branchings
q — qg, g — qG and g — gg. The Altarelli-Parisi equations [63]:

Pa—)bc_ CVS(,LL2)
o _ / =2 P (2) (3.58)

give the probability P of the branching a — bc during a change dt of the evolution
parameter ¢ = In(Q?,,;/A%). The P,_;.(z) are the Altarelli-Parisi splitting kernels
given by

, (3.59)
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Py_,4e(2) = N¢ a —z(zl(l_—z)z))2 , (3.60)
Pysatls) = Tal#? + (1= 2)) (3.61)

where z and 1 — 2z are the four-momenta fractions assigned to the daughter particles
b and c respectively.

Within the JETSET parton shower (PS) generator the first branch of a quark into a
quark and a gluon is done according to the leading order matrix element prediction.
All subsequent branches are done according to the partonshower approach (Eq. 3.58).
Interference effects between the radiated gluons are taken into account via angular
ordering. This means that the angle between the radiated partons must decrease with
every subsequent branch. The strong coupling «; applied for the shower development
corresponds to the leading order solution (Eq. 2.26) where the QCD scale is chosen to
be proportional to the transverse momentum of the branching parton, i.e. u? = p?.
The evolution scale @2, corresponds to be the effective mass or the virtuality of
the branching parton a, i.e. Q%,, = m2 = E? — p2. The virtuality is decreasing
in subsequent branches down to a cutoff scale Q3 of O(1GeV), where the parton
shower is terminated.

The HERWIG parton shower [64] is quite similar to the Jetset parton shower. The
HERWIG choice of the evolution scale Q2,,, ~ m2/(2z(1 — z)) guarantees angu-
lar ordering automatically, whereas the angular ordering in JETSET is achieved by
additional kinematical constrains. The main difference between the HERWIG and
the JETSET Monte Carlo generator is the treatment of the non-perturbative phase,

which is described below.

The successive splitting into quarks and gluons within the ARIADNE Monte Carlo
generator [65] is based on the colour dipole model, which is somewhat different from
the commonly used parton shower approach. Here the gluon emission is treated as a
radiation from a colour dipole spanning between pairs of partons. As in HERWIG and
JETSET , the QCD scale is taken to be the transverse momentum of the radiating
partons and the choice of the evolution scale Q?,; = p3 guarantees angular ordering
by a decrease of the transverse momentum for subsequent branches. The shower
development is stopped when the transverse momenta are below a given cut-off

value.
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3.5.2 Hadronization Models

The simulation of the non-perturbative phase, i.e. the transition from the initial
quarks and gluons to the observed final state hadrons is based on QCD inspired,
phenomenological models. The most successful of these models is the Lund string
fragmentation model [66], which is applied within the Monte Carlo Generators JET-
SET and ARIADNE . Within this model, a colour string, i.e. a colour flux tube is
stretched between between quarks and antiquarks via the gluon colour charges. The
string has a linearly rising potential V (r) = kr with a string tension k ~ 1GeV,
wich is supported by lattice calculations and provides a natural explanation for
QCD confinement. With increasing distance between the quark anti-quark pair, the
energy contained within the string allows the production of a new quark anti-quark
pair by breaking the string into two independent pieces. The breakup mechanism is
interpreted as a tunneling phenomenon according to the probability

exp (M> : (3.62)

K

The consideration of quark masses m, leads to a suppression of heavy quark pair pro-
duction, which is a consequence of the larger tunneling distance required for picking
up enough string energy in order to materialize heavy quarks. Baryon production
takes place due to the direct production of di-quark anti-di-quark pairs analogously
to quark anti-quark pairs. The iterative production mechanism continues until all
remaining hadrons are on-shell, i.e. that their virtuality vanishes.

An alternative model for the hadronization phase is the cluster model [67]. It is
implemented within the HERWIG Monte Carlo generator. Here the gluons at the
end of the perturbative phase are split into quark anti-quark pairs. Colour-neutral
pairs of quarks nearby in phase space are then recombined into massive clusters.
Hadronization takes place mainly by isotropic two body decays of the individual
clusters.
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Chapter 4

The DELPHI Experiment

The DELPHI experiment is one of the four large high energy physics experiments,
which are operating at the Large Electron Positron Collider LEP at the European
Laboratory for Particle Physics CERN in Geneva, Switzerland. The experiment is
operated by a collaboration of about 600 physicists from 56 institutes worldwide.
During the first operation period (LEP 1) from 1989 to 1995, ete™ annihilation has
been studied at centre-of-mass energies around the Z° resonance. Several million
of hadronic Z° decays have been recorded, allowing extensive tests of the standard
model and a high precision determination of its parameters.

Within this chapter an overview is given of the LEP collider, the DELPHI detector
and its components and of the data analysis software. Detailed information about
the detector and its performance can be found in [68, 69].

4.1 The LEP collider

With a circumference of 26.7 km the LEP collider is the worlds largest particle
accelerator to date. The accelerator ring is situated about 100 m below ground at the
French-Swiss border near Geneva, Switzerland (see Fig. 4.1). It has the shape of an
octagon with rounded corners, i.e. eight straight sections and eight arcs alternating
around the circumference. There are altogether eight interaction regions at the center
of the straight sections, four of them equipped with sophisticated general purpose
detectors (ALEPH [70], DELPHI [68], L3 [71] and OPAL [72]) for the study of the
complete spectrum of ete™ annihilation physics at LEP.
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Figure 4.2: Schematic Map of the LEP injection system, including the two stage
LEP Injector Linacs (LIL), the Electron Positron Accumulator (EPA), the Proton
Synchrotron (PS) and the Super Proton Synchrotron (SPS).
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Two beams consisting of bunches of electrons and positrons, respectively, circulate
in opposite directions within one beam pipe, which is kept at ultra high vacuum
with a residual pressure of about 1072 bar. The electrons and positrons are injected
into the LEP collider with an energy of about 20 GeV after being accelerated by a
series of other accelerators as illustrated in Fig. 4.2.

The LEP ring accelerates the beams from 20 GeV to the desired energy between
about 45 GeV and 100 GeV. This acceleration is done by the means of radio fre-
quency (RF) cavities which are installed in the straight sections of the LEP tunnel.
The electrons and positrons are maintained on a circular orbit by dipole magnets
installed in the curved sections of the tunnel. The particle beams are focussed by
the means of quadrupole and sextupole magnets, which are located close to the in-
teraction points, where the electron and positron bunches are made to collide. A
detailed description of the LEP collider can be found in the design reports [73].

4.2 The DELPHI Detector

The DELPHI detector (DEtector with Lepton, Photon and Hadron Identification)
is one of the four big particle detectors installed at the LEP collider. It covers as
much as possible of the solid angle around the interaction point and is forward back-
ward and azimutally symmetric, reflecting that the outgoing particles are essentially
symetrically emitted in the laboratory frame. It is designed with special emphasis
on particle identification and on precise vertex determination. Most of the detector
components provide three-dimensional information of high granularity.

The DELPHI detector consists of a cylindrical section, the so-called barrel, and two
end-caps. The detector is about 10 m long and 9 m in diameter and its weight is
about 3500 tons. Fig. 4.3 shows the layout of the barrel region and of one endcap.
Cartesian as well as cylindric coordinate systems are applied for the description of
the detector elements. Their origin is at the nominal interaction point. The z axis
is defined along the direction of the electron beam, the z axis pointing towards
the center of LEP and the y axis pointing vertically upwards. The polar angle 6 is
defined with respect to the 2z axis and the azimuthal angle ¢ and the radius r are
defined in the zy plane.

The various sub-detectors of DELPHI can be divided into several groups. The first
group consist of tracking detectors, which are used to measure the positions and
trajectories of charged particles by the means of the ionisation produced in a medium
by their passage. The presence of a magnetic field allows the determination of their
momenta and electric charges.
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Figure 4.3: A perspective view of the DELPHI detector, showing the layout of the
barrel region and of one endcap.
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The second group of detectors, the calorimeters, measure the energy of charged and
neutral particles. This measurement requires the deposition of essentially all the
particles energy, whereas the energy loss in a tracking detector should be minimal.
Calorimeters contain therefore a large amount of high density material, where the
particles loose their energy by producing showers of secondary particles. Within
sampling calorimeters, the passive high density material is layered with active ma-
terials in order to reconstruct the position and energy of the original particle from
the showers of secondary particles produced. Within homogeneous calorimeters, the
high density and the active materials are identical.

RICH detectors (Ring Imaging CHerenkow detectors ) are located both in the barrel
and in the forward region of DELPHI . They use the Cherenkow radiation emitted by
a charged particle traversing a medium with a velocity which exceeds the velocity of
light within this medium to measure the particles’ velocity. This allows to determine
the particles’ mass, i.e. the identification of a particle by combining the results of
the velocity and the momentum measurement. A detailed description can be found
in reference [68].

Scintillation counters are installed in the barrel region (Time of Flight Counter TOF)
and in the forward region (Forward Scintillator Hodoscope HOF). Both systems are
used for increasing the muon trigger efficiency and to reject cosmic background.

4.2.1 The Super Conducting Solenoid

The barrel section contains a super conducting solenoid of 7.2 m length and an inner
diameter of 5.2 m. It is made of a Nb-Ti alloy, which is cooled with liquid helium
to a temperature of 4.5 K. The solenoid provides a homogeneous magnetic field
of 1.2 T parallel to the z direction, which is the basis of an accurate momentum
determination of charged particles from their curved trajectory with an average
momentum resolution of o, /p ~ 0.0008 - p GeV/c.

4.2.2 The Tracking Detectors
The Vertex Detector

The Vertex Detector (VD) directly surrounds the beam pipe and consists of three
concentric layers of silicon micro-strips at at radii of 6.3, 9 and 11 cm. The individual
layers cover polar angles 6 between 25° and 155°. Within a polar angle range between
44° and 136°, a particle crosses all three layers of the VD. For the 1994 LEP running
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period, the most inner and the most outer layer have been equipped with double
sided micro-strips, allowing measurements both in r¢ and z direction. The intrinsic
resolution is 7.6 ym in ¢ and 9 ym in 2. The detector provides precise extrapolation
of the tracks back towards the interaction point and allows a precise reconstruction
of both the primary vertex and of secondary vertices due to the decay of short living
particles.

The Inner Detector

The Inner Detector (ID) immediately surrounds the VD and extends from an inner
radius of 12.0 cm to an outer radius of 28.0 cm. It covers polar angles 6 from
25° to 155° and provides an accurate track measurement both in r¢ and z direction.
Additionally, the ID information is used for fast trigger information. The ID consists
of two components, the Jet Chamber and the Trigger Layers.

The Jet chamber is located at the most inner side and extends to a radius of 22 cm.
It is a drift chamber, segmented into 24 azimuthal sectors of 15° in ¢. Each sector
contains 24 anode wires stretched in radial direction, thus providing a maximum of
24 r¢ measurements for each traversing particle with a typical resolution of about 90
pm. The Jet Chamber is surrounded by the Trigger Layers at radii between 23 cm
and 28 cm. These are five cylindrical layers of Multi Wire Proportional Chambers
(MWPC), each layer consisting of 192 signal wires for the r¢ measurement and 192
circular cathode strips for the z measurement.

The Time Projection Chamber

The Time Projection Chamber (TPC) is the principal tracking device in DELPHI .
The pattern recognition of DELPHI starts in general with the information provided
by the TPC, which is located around the ID at radii between 35 ¢cm and 111 ¢m and
covers a polar angle region 6 between 44° and 136°.

In the middle of the detector, at » = 0, the TPC is divided by a high voltage
plane into two drift volumes, both are 130 cm long and filled with an a mixture of
argon (80%) and methane (20%) at a pressure of 1 atm. The read out chambers
and its electronics are mounted on each end plate. Charged particles will ionize the
gas on their way through the TPC and the resulting electrons will drift with an
velocity of vp = 6.7cmus towards the end plates in the homogeneous electrical field,
whose direction is parallel to the beam axis. The transverse diffusion of the drifting
electrons is suppressed by the parallel and homogeneous magnetic field of the super
conducting solenoid. Both end caps are segmented into six azimuthal sectors ¢ of
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60°, each of which containing a MWPC with 192 anode wires and 16 concentric
cathode pad-rows. The z coordinate is measured by the drift time. The analysis of
the height of the read out signal allows the measurement of the energy loss dE/dx of
the particles along the track direction, which can be used for particle identification.
The spatial resolution is about 250 pym in r¢ and about 880 ym in z direction.

The Outer Detector

An additional track measurement behind the Barrel RICH detector is provided by
the Outer Detector (OD). Located at radii between 198 cm and 206 cm, it is the
tracking detector with the largest distance to the interaction point. Thus the OD
significantly improves the momentum resolution of the high energetic particles with
small curvature of the corresponding tracks. Additionally, the OD is important in
providing fast trigger information in both r¢ and z direction. The OD covers an
polar angle between 43° and 137°. It has 24 modules, each consisting of 145 drift
tubes disposed in five layers. The resolution in r¢ is 110 ym. The z information is
obtained with a resolution of 3.5 cm from the difference of the drift time to both
ends of the tubes.

The Forward Chambers

Two sets of planar drift chambers, the Forward Chambers A (FCA) and the Forward
Chambers B (FCB) are installed within the two end caps of the DELPHI detector.

The FCA is located on both sides behind the TPC at a distance of |z| = 160cm from
the interaction point and covers polar angles from 11° to 32° and from 148° to 169°.
Each side of the FCA consists of three modules, each of which having two staggered
layers with 64 wires. To obtain an optimal track reconstruction and good resolution,
the modules are rotated by 120° with respect to each other. The reconstructed track
elements have a precision of o(z) = 290 pm, o(y) = 240 um, o(#) = 8.5 mrad and
o(¢) = 24 mrad (averaged over 0).

The FCB is a drift chamber located in each of the end caps behind the Forward
RICH detector at a distance of of |z| = 275¢m from the interaction point. It covers
polar angles from 11° to 36° and from 144° to 169°. The chamber consists of 12 wire
planes, which are divided into 3 groups of 4 planes. Similar to the FCA case, these
groups are rotated by 120° with respect to each other. The precision achieved on the

parameters of reconstructed track elements are o(z,y) = 150 ym, () = 3.5 mrad
and o(¢) = 4 mrad.
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The Muon Chambers

The Muon Chambers (MUC) are a set of drift chambers placed in the outermost part
of DELPHI . They are crucial for Muon Identification, since muons are essentially the
only particles which can traverse the lead and iron of the electromagnetic and the
hadron calorimeters. They are separated into three components: The barrel region
(MUB), covering polar angles from 53.0° to 88.5° and from 91.5° to 127°, the forward
region (MUF) with an polar angle coverage between 20° and 42° and between 138°
and 160° and the Surround Muon Chambers (SMC), which have been installed in
1994 to fill the gap between the barrel and forward regions.

4.2.3 The Calorimeters
The High Density Projection Chamber

The High Density Projection Chamber (HPC) is the DELPHI electromagnetic
calorimeter in the barrel region. It is located between the OD and the super-
conducting solenoid at radii between 206 cm and 260 cm. It consists of 144 inde-
pendent modules, arranged into six concentric rings around z, each ring consisting
of 24 modules and covers a polar angle from 43° to 137°.

Each HPC module consists of 40 planes of lead with a thickness of about 3 mm,
corresponding to 18 radiation length altogether. The 8 mm gaps between the lead
planes are filled with an argon-methane (80%/20%) gas mixture. Traversing particles
shower in the lead converter and deposit electrical charge in the gas. As in the TPC,
the electrons drift in a homogeneous electrical field (vp = 5.5 cm/us) towards the
end of a module where they are detected by a MWPC. The MWPCs consist of 39
sense wires and 128 pads arranged in nine rows, which provide the r¢ measurement.
The z coordinate is measured by the drift time, thus allowing a three dimensional
shower reconstruction with an angular resolution of ¢(f) = 1.0 mrad and o(¢) =
3.1 mrad. The relative precision of the energy measurement can be parameterized
as 0(E)/E = 32%/VE + 4.3% (E in GeV).

The Forward Electromagnetic Calorimeter

The Forward Electromagnetic Calorimeter (FEMC) is a homogeneous calorimeter
installed in each end cap behind the FCB at a distance of |z| = 284 cm. It covers
the polar angle regions from 10° to 36.5° and from 143.5° to 170°.
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The FEMC consists of two times 4532 blocks of lead-glass with a shape of trun-
cated pyramids disposed in two layers, corresponding to 20 radiation length. The
Cherenkow light emitted by the charged particles of the electromagnetic shower is
read out by photomultipliers. For neutral showers of energy larger than 2 GeV, the
average precision on the reconstructed hit position in x and y projected to |z| = 284

cm is about 0.5 cm. The relative precision on the measured energy can be parame-
terized as o(E)/E = 11%/E + 12%/VE + 3.% (E in GeV).

The Hadron Calorimeters

The Hadron Calorimeter (HAC) is a sampling gas detector incorporated in the
magnet yoke. The barrel part (HAB) covers polar angles from 42.6° to 137.4° and
the forward part (HAF) from 11.2° to 48.5° and from 131.5° to 168.8°.

The HAC consists of successive layers of 5 ¢m iron and 2 cm wire chambers, 20
layers in the barrel and 19 layers in the forward region. For hadronic Z° events in
the barrel region, the relative precision on the measured energy has been found to

o(E)/E = 112%/VE + 21% (E in GeV).

The Luminosity Monitoring Detectors

Two additional calorimeters are installed in the very forward region to measure the
luminosity of the beam by using the well known Bhabha cross section under small
angles. The Small Angle Tile Calorimeter (STIC) is a lead scintillator sampling
calorimeter and covers polar angles between 1.7° and 10.6°. Even smaller polar
angles between 0.29° and 0.4° are covered by the Very Small Angle Tagger (VSAT),
which consists of 4 calorimeter modules, each of which composed of 12 silicon diodes.

Hermeticity of the Electromagnetic Calorimeters

The DELPHI detector covers about 90% of the solid angle. There are however
some weak points in particular with respect to the homogeneity of electromagnetic
calorimetery in DELPHI . Around 6 ~ 90° + 1.5° there is an uncovered region due to
the passage of the supports for the super conducting solenoid. Another gap exists
between the HPC and the FEMC at # ~ 40°, providing a passage for cables of
various detector components. Additionally there are ¢ cracks in the HPC coverage
between the 24 HPC modules.
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The reconstruction of neutral tracks in the forward region is hampered due to mul-
tiple scattering processes induced by the large amount of material placed in front of
the FEMC, which corresponds to about 2 radiation length.

4.2.4 Trigger and Data Acquisition

The time between two Beam Cross Overs (BCO) at LEP is 22 us (11 us in 8 bunch
mode). Only for a small fraction of these BCOs (O(107°)) an e*te™ annihilation event
occurs. The goal of the trigger system is to select those events with high efficiency,
thereby reducing the flux of data and the dead time of the detector and readout
system. The DELPHI trigger system is composed of four successive levels (T1, T2,
T3 and T4) of increasing selectivity. The T1 decision is made after 3.9 us and
incorporates fast tracking detectors (ID, OD, FCA, FCB) and scintillator arrays in
the HPC. The T1 rate is about 400 Hz. After a positive outcome of the T1 decision,
the T2 decision is taken within 39 us after the BCO, incorporating the information
from slow drift detectors (TPC,HPC) and combinations of signals from different
sub-detectors. The T2 rate is typically about 4 Hz. With a positive T2 decision the
data from all detector components are read out and stored into local event buffers.
The complete read out process requires about 3 ms.

The trigger levels T3 and T4 are software filters and based on pattern recognition
algorithms for specific detectors. They are performed asynchronously with respect
to the BCO. If an event passes the T3 decision, the data are transferred from the
local memories to the central Data Acquisition System (DAS). The T4 level decides
if the data is stored for physics analysis and provides the information for the online
Quality Checking (QC). With the complete four level trigger system the event rate
is reduced to less than 2 Hz with an efficiency for multihadronic events of about
99.9%.

4.2.5 The Data Analysis Chain

Before the recorded raw data can be used for physics analysis, they undergo a chain
of central processings including calibration and alignment of detector components,
reconstruction of tracks and particle identification. An overview over the offline anal-
ysis chain is shown in Fig. 4.4. It basically consists of three software packages. The
event reconstruction program DELANA, the detector simulation program DELSIM
and the graphics package DELGRA.

The DELGRA software offers a three dimensional colour display of an event, visual-
izing the contributions obtained from different detector components. It is useful for
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Figure 4.4: The DELPHI offline analysis chain.
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investigation of the detector performance and for visualizing the results of the event
reconstruction software. An example of a three jet event presented by DELGRA is
shown in Fig. 4.5.

Event Reconstruction and DST production

The recorded raw data are further processed by the event reconstruction program
DELANA [74]. It uses the information from the DELPHI database to perform the
calibration and alignment of the raw data for each sub detector.

The event reconstruction proceeds in several steps. It begins with the reconstruction
of the local information of each sub detector by pattern recognition algorithms, which
try to combine the separated space points into local track elements. In a second step
the track elements from all components are combined into track candidates. For each
candidate, a trajectory fit is performed. After resolving ambiguities, the fitted tracks
are extrapolated in order to obtain an estimate of the particles trajectory through
the detector. Then the local pattern recognition is repeated in order to improve the
trajectories by incorporating additional information from the sub detectors which
could not have been exploited in the first pattern recognition step. Now the charged
tracks are extrapolated to the calorimeters. Calorimeter hits, which are consistent
with this extrapolation, are associated with the trajectories. The remaining energy
depositions are interpreted as neutral tracks. In a final step, all reconstructed tracks
are combined for fit of the primary vertex. The output of DELANA is written on Data
Summary Tapes (DST), which is a tree structure of banks containing all information
needed for further analyses. The size of a multihadronic event on DST is about 80
Kbyte. At this stage all measured track elements are stored with errors and selected
technical data.

In order to reduce the amount of data to be processed within the most common
physics analyses, a condensed version of the DST, the so-called Short DST is pro-
duced. Eventually remaining calibration and alignment corrections are hereby ap-
plied in combination with an improvement of the track and vertex fits and detector
specific data are removed. Additionally, some basic physics analyses are performed,
for example the identification of electrons, photons and muons, the reconstruction
of decayed particles and the tagging of b—events. The short DST contains the most
relevant information within a volume of about 50% of the initial DST size. For many
physics analyses, the amount of information provided by Short DST is still too ex-
tensive and can be further reduced by applying even more condensed data formats
like Mini DST or the Wuppertal Mini format, which allows to store the most relevant
information of a hadronic event within about 6 Kbyte.
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Detector Simulation

The physical interpretation of measured data requires a precise knowledge of de-
tector resolution and acceptance effects. These studies are most commonly done by
applying detector simulation programs, where the output of physics event genera-
tors serves as input for the simulation of the particles interactions with the detector
material and the signal response of the individual detector components.

The Monte Carlo simulation program of the DELPHI detector is called DELSIM[75].
The event generator is be chosen according to the process under consideration, usu-
ally the JETSET 7.3 PS generator for the simulation of hadronic Z° events. Within
DELsiM, the generated tracks are traced on their passage through the detector,
thereby considering secondary interactions like compton scattering, pair produc-
tion, bremsstrahlung, positron annihilation, d-ray emission, photon conversion, mul-
tiple scattering, nuclear interactions and absorptions and the decay of short-living
particles. The simulation of the signal response like signal height, noise and tresh-
old depends on the individual detector components and their operating conditions.
These informations are obtained from the DELPHI database.

The output of the DELSIM simulation is stored in the same format as the raw data
and undergoes the same treatment as discussed above. Additional banks are included
in the resulting DST and Short DST, which provide the information from the initial
Monte Carlo generators.
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Figure 4.5: Hadronic event recorded with the DELPHI detector and presented with
the DELGRA event display package. Charged tracks are shown as lines and the hits
in the calorimeters as boxes. A three jet structure can be clearly observed. The jet
in forward direction deposits a large amount of energy in the FEMC and the HAF.
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Data Analysis

Within the present study, the final data measured with the DELPHI detector in
1994 at a centre-of-mass energy of /s = My are used. The statistics of about 1.5
million hadronic events from the 1994 data suffices for precise measurements of
oriented event shape distributions and accurate QCD studies. The data have been
largely improved in both their statistical and systematic precision compared with
those of previous DELPHI publications [8, 9]. Furthermore, the 97 dependence of all
detector properties has been taken into account in order to achieve the best possible
experimental precision.

The following chapter describes the selection criteria applied to the data, the sub-
traction of background processes, the corrections for detector acceptance and effi-
ciency and for initial state photon radiation followed by an estimate of systematic
effects due to the selection procedure and due to the corrections applied. Finally the
measured data distributions are compared to the distributions published by other
experiments.

5.1 Data Selection

In order to separate hadronic events from background events and to obtain a high
quality data sample with small detector corrections and precisely measured tracks,
several selection criteria have to be applied on the quality of individual tracks as
well as on global properties of the events.
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5.1.1 Run Selection

The data acquisition is separated into individual runs. Since the TPC is the main
tracking device, only those runs have been accepted, where the TPC was at opera-
tional to at least 99%.

5.1.2 Track Selection

Only the charged particles in hadronic events were used for the central analysis.
They were required to pass the following selection criteria:

e momentum, p, greater than 0.4 GeV/c,

e relative momentum uncertainty, Ap/p, less than 100%,
e measured track length greater than 30 cm,

e track polar angle between 16° and 164°,

e impact parameter with respect to the nominal interaction point within 4 cm
perpendicular to and 10 cm along the beam.

The energy of the charged tracks has been recalculated from the measured momenta
assuming the pion mass of m, = 0.1396GeV.

The selection criteria listed above are applied in order to provide tracks of defined
quality. Within the forward region however, the momentum resolution is reduced
due to the reduced curvature of the charged tracks. The impact parameter cuts are
applied in order to suppress the tracks originating from the decays of long lived
particles and from secondary interactions with the detector material.

For a high precision measurement of oriented event shape distributions, the inclu-
sion of neutral tracks is not appropriate due to the inhomogeneities in the DELPHI
electromagnetic calorimetry, which would cause rather large acceptance corrections.
For the study of systematic uncertainties however, the neutral tracks have been
considered. They are assumed to be massless and have been selected if the mea-
sured energy deposition within the electromagnetic calorimeters was in the range
between 0.5 GeV and 100.0 GeV, and within a range of 1.0 GeV and 100.0 GeV for
a measurement with the hadron calorimeters.
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5.1.3 Selection of Hadronic Events

Based on the track cuts listed above, hadronic events were selected by requiring:

at least 5 charged particles,

the total energy of charged particles greater than 12% of /s,

the charged energy in each hemisphere of the detector, defined by the plane
perpendicular to the beam, Ejg.;s, greater than 3% of /s,

the polar angle of the thrust axis Y7, between 90.0° and 16.3°.

The cut on the total energy in combination with the cut on the charged energy in
each hemisphere is applied in order to suppress two photon events and beam-gas
interactions which are mostly boosted in one direction. The requirement of at least
five charged particles suppresses leptonic events ete™ — ete™, utu~, 7777, Signif-
icant background contribution arises only due to 7 events because of the hadronic
decay of the 7 lepton. The contamination of beam-gas events, two photon events
and leptonic events other than 717~ is expected to be altogether about 0.01% and
can be neglected.

In total about 1.4 million events satisfy the cuts listed above. Hadronic events are

selected with an efficiency of €04, = 92,81% =+ 0.06%, the selection efficiency for
the 7 background is e, = 8,92% =+ 0.05%. The expected 7 background is

[

= 0.46% + 0.03 . 5.1
€hadr.L hadr. + €17 % % (5.1)

5.2 Event Orientation

Since the thrust axis does not distinguish between forward and backward directions,
its orientation is chosen such that cosdr > 0. ¥ is called the event orientation.
The data are binned according to the event orientation into eight equidistant bins
of cos¥r between 0.0 and 0.96. With the exception of the eighth bin, the thrust
axis is well contained within the detector acceptance. The correction of the data for
background processes and acceptance corrections described below are considered for
each angular interval individually.
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For the comparison of event shape observables with QCD predictions in all orders
resummed next-to-leading-log approximation, the distributions have been integrated
over Yr. Differing from the event selection criteria listed above, the hadronic events
were selected if the polar angle of the thrust axis satisfied 40.0° < 97 < 90.0° for
these angular integrated distributions. This cut corresponds to the requirement, that
the events are well contained inside the barrel region of the detector, leading to a
significant reduction of detector acceptance corrections in particular for small values

Of Yeut-

5.3 Data Corrections

5.3.1 Subtraction of the 7 Background

The selection efficiencies for hadronic and for 7 events given above have been deter-
mined with the DELSIM Monte Carlo including the full simulation of the DELPHI
detector and by applying the same selection criteria than for real data. The under-
lying event generator for the hadronic Monte Carlo production has been JETSET 7.3
PS and the 7 events have been simulated with the KORALZ [76] generator.

Fig. 5.1 shows the uncorrected data distributions integrated over cos¥r for some
typical event shape observables together with the expectation from the hadron and
the 7 Monte Carlo. Due to the pronounced two jet topology of the 777~ events
their background contribution is limited to the extreme two jet region of the shape
distributions. The 7 background contribution is typically between 3% and 8% in the
first bin of the distributions and about a few per mille in the next few following
bins. The T background as predicted by Monte Carlo has been subtracted from the
measured data according to its relative proportion of 0.46% =+ 0.03%.

5.3.2 Correction for Detector Effects

After subtraction of the 7 background, the data distributions have to be corrected
for detector acceptance and resolution effects. The size of the acceptance effects
depends on the efficiency and the geometry of the detector. The event acceptance
is always less than 100% and can lead to a preferred selection of particular event
topologies. Detector resolution effects, track reconstruction problems, track losses
and secondary interactions with the detector material result in smearing effects and
a systematical deviation of the measured quantities.
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Figure 5.1: 7 background in the uncorrected data distributions of the event shape
observables 1 — T, JCEF, EEC and Dy%¥¢. The distributions shown are integrated
over the event orientation. The shaded areas show the expectation from the Hadron
and the 7 Monte Carlo, respectively. The Monte Carlo distributions have been cal-
culated with the DELSIM generator by including the detector simulation and by
applying the same selection criteria than for real data.
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Detector effects and the corrections to be applied were determined by the means
of Monte Carlo simulation. Several procedures have been suggested to obtain cor-
rected, i.e. unfolded data distributions [77, 78]. Provided, the binning of the data
distributions is large with respect to the detector resolution, a linear bin-by-bin cor-
rection can be applied. For most of the observables presented within this analysis,
the validity of this assumption has been explicitly checked in [79]. For each observ-
able Y introduced in section 3.2 a bin-by-bin correction factor C (Y, cos¥r) has been
calculated:

DELSIM
1 d’a
o dYdcosdr

CDet.Cor. (Y, COS ﬁT) = Dg;;ggaﬁd (52)

1_ &
o dYdcosdr

reconstructed

where the subscript reconstructed refers to the Monte Carlo on reconstruction level,
i.e. including full detector simulation and application of selection criteria, and the
subscript generated denotes the same Monte Carlo on generator level, i.e. as from
the simulation of the initial event generator. Particles with a lifetime larger than 1
ns were considered as stable in the generated distributions.

Figure 5.2 shows the detector correction for the JCEF' distribution in the eight
different cos ¥ intervals. The detector correction for all intervals of cos ¥r is large
at x = 90° , i.e. for the cones adjoining the plane perpendicular to the thrust axis,
i.e. a region with very soft particle emission. The size of the detector corrections
in the other kinematical regions of the JCEF' distribution strongly depends on the
event orientation within the detector. In the region 0. < cos¥r < 0.12, where the
thrust axis is almost perpendicular to the beam axis, the detector correction is large
around x ~ 100°. For these particles emitted with large transverse momenta into
the very forward direction, there is a large probability of not being detected at all.
In the region of 0.84 < cos¥r < 0.96, where the thrust axis itself points into the
very forward region, this large detector corrections occur around y ~ 160°, again
with a large probability for the emitted particles of not being detected. For cos ¥r
in between the two regions discussed above, the hump of large detector corrections
is moving continuously through the kinematical range of the distribution. On the
other hand, for each cos ¥ a particular kinematical region of the JC E F distribution
can be found, where the detector correction and hence the corresponding systematic
uncertainty is very small, in particular smaller than for an averaged detector cor-
rection not considering the event orientation. Thus, from an experimental point of
view, the angular dependent detector corrections are important for obtaining precise
data distributions.
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Figure 5.2: Detector correction for the JCEF distribution in dependence on the event
orientation Shown are the detector corrections for the eight different bins in cos 7.



72 5. Data Analysis

5.3.3 Correction for Initial State Photon Radiation

Initial state photon radiation (ISR) causes a reduction of the centre-of-mass energy
available for the annihilation process resulting in a boost of the event and a cor-
responding modification of the event topology. ISR is in particular important at
energies above the Z° resonance where radiative returns are possible, i.e. hard ISR
due to the creation of a nearly on-shell Z° boson. At the Z° resonance itself, ISR
is strongly suppressed and its influence on the event shape distributions is small
(about 0.2%).

ISR corrections to the shape observables have been determined using events gen-
erated by JETSET 7.3 PS [60] with and without initial state photon radiation as
predicted by DyMU3 [80]. For any given observable Y a bin-by-bin correction factor
C(Y, cosdr) is calculated as:

1 d’o
o dYdcosdr

ISR
1 d3c
o dYdcosdr

)noISR

CISR(Y, COS 19'1") = ( (53)

5.4 Systematic Uncertainties

For the evaluation of systematic uncertainties due to the hadronic event selection,
the data analysis has been repeated several times, whereas for each analysis one of
the track and event selection criteria has been varied over a wide range:

e The measured track length has been demanded to be greater than 50 cm.

e The measured momentum of charged tracks has been demanded to be in the
range between 1.0 GeV and 50 GeV. For the analysis including neutral tracks,
the measured energy deposition within the hadronic and the electromagnetic
calorimeters has been demanded to be within a range between 1.0 GeV and
50.0 GeV

e Hadronic events have been accepted if least 7 charged particles were selected.

e An additional criterion for the event selection has been applied by requiring
the momentum imbalance

(5.4)
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to be less than 15% of the centre-of-mass energy.

Additionally, a variation of the tracking efficiency has been considered by discarding
2% of the accepted tracks at random.

The influence of uncertainties in the momentum resolution has been estimated by
applying an additional 10% Gaussian smearing of the inverse momenta of the sim-
ulated tracks.

From the stability of the measured distributions a systematic uncertainty has been
computed as the variance with respect to the central value.

As the systematic error is expected to grow proportional to the deviation of the
overall correction factor from unity, an additional relative systematic uncertainty of
10% of this deviation has been added quadratically to the above value. The resulting
overall systematic uncertainty has been smoothed for each distribution individually.

Complete tables of the considered oriented and angular integrated shape distribu-

tions including statistical and systematic uncertainties can be found in Appendix
B.

5.5 Comparison with Other Experiments

Oriented event shape distributions have so far not been published by other exper-
iments. In order to compare the data measured by DELPHI with those from other
experiments, the angular integrated distributions are considered. Moreover, the data
distributions published by most experiments are derived from charged and neutral
tracks and thus not directly comparable to the distributions used for the central part
of this analysis. Therefore, the comparison with the data from these experiments
can only be done with distributions derived from the analysis including charged and
neutral tracks. In a second step, the distributions from the analysis including only
charged tracks are compared with data distributions published by ALEPH .

Figures 5.3 and 5.4 show a comparison of the shape observables 1 — T, O, py and
JCEF with the measured distributions from ALEPH , L3, OPAL and SLD . The
data have been published in references [81, 82, 83, 84]. For each observable, the
distributions itself are shown in the upper part, whereas in the lower part the relative
difference of the data distributions from the different experiments with respect to the
DELPHI measurement is shown. The dark shaded band indicates the quadratic sum
of the statistical and the systematic uncertainty of the DELPHI data distributions.
It should be noted, that the data previously published by other experiments are
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based on a much smaller statistics than those of the present analysis. Therefore,
the light shaded band indicates the uncertainty of the ALEPH distributions as a
representative example for the uncertainties of the lower statistics data published
by the other experiments. For the JCEF' distribution, which has previously only
been published by SLD , the light shaded band indicates the total uncertainty as
determined by SLD . The relevance of the comparison between DELPHI and L3 is
reduced due to the very different binning of the L3 distributions compared with the
binning of the other experiments. All DELPHI distributions agree very well with those
from the other experiments. Observed differences can be satisfactorily explained by
statistic fluctuations.

Figures 5.5 and 5.6 show a comparison of event shape distributions derived from
the analysis including only charged tracks with those from ALEPH . Shown are the
observables Dy%% pp, C and py. The ALEPH distributions for Dy%¥* and pp have
been published in reference [81], whereas the distributions for C' and py origin from
an analysis with improved statistics and have been published in reference [50]. For
large values of py, the ALEPH distribution is somewhat below the DELPHI disribu-
tion. However, all the DELPHI distributions derived from charged tracks only agree
very well with those from ALEPH within the statistical and systematic uncertainty.

The statistical and systematic uncertainty of the DELPHI distributions is largely
reduced in comparison of the published data of most other experiments. The uncer-
tainty of the ALEPH distributions published in reference [50] is however comparable
to those of the angular integrated DELPHI distributions. It should be noted, that
o, measurements from these ALEPH distributions with improved statistics have so
far only been published for analyses in matched NLLA precision and not for pure
O(o?) predictions which will be the preferred approach within this analysis.
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Chapter 6

Determination of the Strong
Coupling

Numerous measurements of a,(M?) from event shape observables in eTe™ annihila-
tion have been published in the past, incorporating different theoretical approaches
like fixed order perturbative perturbative expansion, all orders resummed predictions
and several schemes for the matching of fixed order and resummed predictions. For
an extensive overview of measurements from Z° data see for example [95]. A major
problem arising from the comparison of measurements from various shape observ-
ables is that ‘consistency’ of the results can only be achieved by taking into account
the large renormalization scale uncertainties obtained by varying the renormaliza-
tion scale value within a large and ad hoc chosen range [6].

Some of the earlier studies in O(a?) including renormalization scheme optimization
observed an improved consistency of the measurements including an experimental
optimization of the renormalization scale value [7], the interpretation of these results
was however hampered due to the very flat distribution of the x? values of the fits
in dependence of the renormalization scale, in particular with respect to large scale
values (see for example [85, 84]). Thus, no decisive conclusion about the reliability
of the different approaches has been taken so far. Predictions in matched NLLA and
O(a?) precision have been considered to be more reliable by theoretical arguments
[58], within experimental analyses however, they do not solve the problem of the
consistency of individual measurements from different observables as well as fixed
order predictions.

With the precise data of eighteen oriented event shape distributions determined
from about 1.5 million hadronic events the significance of the results obtained from
different approaches for the determination of a,(M?) is expected to increase. The
number of shape observables studied within this analysis is the largest considered
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so far within an experimental analysis of a(M?2) and covers practically all observ-
ables considered to be useful for the determination of a;(M2) in O(a?) perturbation
theory. Thus, definite conclusions about the degree of consistency of individual mea-
surements turned out to be possible.

This chapter is organized as follows: In the first section, the determination of the
hadronization corrections is described and the data are compared with the predic-
tions from various Monte Carlo generators. Section 6.2 covers a description of the
fitting procedure and the criteria applied for the determination of the fit range ap-
plied. Section 6.3 contains a discussion of experimental and theoretical uncertainties.
In Section 6.4 the results from the fits in O(a?) are presented. Measurements with
experimentally optimized renormalization scale values are compared with fixed scale
measurements as well as to measurements covering theoretical approaches for an op-
timized renormalization scheme. The problem of deriving a weighted average from
correlated observables is discussed and a weighted average is given by estimating a
common overall correlation factor. In the next section the Padé Approximants are
used for the estimate of higher order corrections to the perturbative series and the
results from fits in O(a?) Padé Approximation and Padé Sum Approximation are
presented. Section 6.6 describes the results from fits in NLLA and matched NLLA
and O(c?) precision and Section 6.7 describes the correction of the O(a?) measure-
ments for effects from heavy quark masses. Finally, the results obtained from the
determination of a,(M?2) from the Jet Cone Energy Fraction are summarized and
discussed in Section 6.8.

6.1 Hadronization Corrections

QCD based hadronization models have been introduced in Chapter 3.5. The par-
ton shower models are known to describe well the distributions of event shape ob-
servables in the hadronic final state of ete™ annihilation and are commonly used
for modelling the transition from the primary quarks to the hadronic final state.
Perturbative QCD can describe only a part of this transition, the radiation of hard
gluons and the evolution of a parton shower. For a comparison with perturbative
QCD predictions and for the determination of the strong coupling o, one has to
take account of the so-called fragmentation or hadronization process, which is char-
acterized by a small momentum transfer and hence a breakdown of perturbation
theory.

Several parton shower Monte Carlo generators have been used to estimate the size of
the hadronization effects and the corresponding uncertainty. All generators consid-
ered are described in Chapter 3.5 and are most frequently used within QCD analyses,
namely JETSET 7.3 PS [60], ARIADNE 4.06 [65] and HERWIG 5.8¢ [64]. The models
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have been extensively studied and tuned to DELPHI data and to identified particle
spectra from all LEP experiments in reference [61]. As discussed in detail in [61] all
models describe the data well.

As the central generator for the evaluation of hadronization effects the JETSET
7.3 Parton Shower (PS) Generator has been chosen. The DELPHI version of this
program has been modified with respect to the heavy particle decays to obtain a
better description of the heavy particle branching fraction. This modified version
is denoted by JETSET 7.3 PS D in the following. The tuned parameters have been
taken from [61], where the updated tuning procedure is described in detail.

In order to compare the measured data with the theoretical expressions describing
the parton distributions, corrections have to be made for hadronization effects, i.e.
effects resulting from the transition of the parton state into the observed hadronic
state. For the global event shape observables this transition is performed by a ma-
trix P, where Pj; is the probability that an event contributing to the bin j of the
partonic distribution will contribute to the bin i in the hadronic distribution and
is computed from a Monte Carlo model. This probability matrix has been applied
to the distributions from O(a?) perturbative theory Dpery. (Y, cosdr) to obtain the
distributions for the predictions of the observed final state Dyagr. (Y, cos d7):

Dhoar (Y, cos¥r); = Z P, (Y, cos O7) Dpert. (Y, cos V1), . (6.1)

J

In the case of the JCEF, EEC and AEEC, which are defined in terms of single par-
ticles and pairs of particles, respectively, bin-by-bin correction factors Cragr. similar
to that described above for the detector effects have been computed such as:

Dhgar (Y, cos V1) = Crgar. (Y, €08 01); Dpert. (Y, cos ¥r); . (6.2)

Comparison of the Data with Monte Carlo predictions

Fig. 6.1 shows a comparison of the angular integrated data distributions for the
observables 1 — T and JCEF with the predictions from the different Monte Carlo
generators described in Section 3.5.1. Additionally shown are the detector correc-
tions including effects due to initial state radiation, the size of the hadronization
corrections and the fit ranges applied for the QCD fits in O(a?).

Figures for all shape observables considered can be found in the appendix. The
agreement of the data distributions with the predictions from the Monte Carlo
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generators is reasonable. Within the fit ranges applied for the QCD studies, the
deviation between data and Monte Carlo predictions is in general less than 5%.

Fig. 6.2 shows the 1—T and the JC E F' distribution for two different intervals of ¥7 in
the forward and the barrel region, respectively. For these figures, the distributions for
each angular interval have been normalized to the total hadronic cross section ;.
The Y1 dependence of the detector corrections is shown as well as the difference of the
hadronization corrections for the individual Y1 interval with respect to the average
hadronization correction. The angular dependence of the hadronization corrections
is of the order 1% and thus quite small with respect to the angular dependence of
the detector corrections.
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6.2 The Fitting Procedure

The traditional experimental approach to account for the renormalization scheme
problem of perturbative QCD predictions has been to measure all observables apply-
ing the same fixed renormalization scale value, the so-called physical scale z, = 1 or
equivalently y? = Q2. The scale dependence has been taken into account by varying
u over some wide ad hoc range, quoting the resulting change in the QCD predictions
as theoretical uncertainty. It should be noted, that for the physical scale approach,
the ratio of the O(a;) and the O(c?) contributions to the cross-section, defined as

() [ B(Y) + A(Y) (27 In(z,) - 2)|
A(Y) ’

TNLO(Y, :E[L) = (6-3)

is quite large for many of the observables studied within this analysis. In some cases
this ratio can have a magnitude approaching unity, indicating a poor convergence
behavior of the O(«?) predictions in the MS scheme. This circumcstance could quite
naturally result in a wide spread of the measured oy values, which has indeed been
observed in previous analyses using O(ca?) QCD [8, 84, 85, 86].

The principal approach for the determination of o, within the present analysis the
experimentally optimized renormalization scale method has been chosen. Applying
the measured scale values, the ratio ryzo(Y,z,) is significantly reduced for many
of the observables studied. In the past this strategy suffered from a poor sensitivity
of the fit with respect to z, for most of the observables. Due to the high statistics
and high precision data now available, an improved sensitivity for this parameter is
expected.

In practice, az(M2) and the renormalization scale factor z, are determined si-
multaneously by comparing the corrected distributions for each observable Y with
the perturbative QCD calculations corrected for hadronization effects as described
above. The theoretical predictions have been fitted to the measured distributions
R(Y,cos?dr) (Eq. 3.36) by minimizing x?, defined by using the sum of the squares
of the statistical and systematic experimental errors, with respect to the variation
of Agrg and z,,.

The fit range for the central analysis, i.e. including the experimental optimization
of z,, has been chosen according to the following criteria:

e Requiring a detector acceptance larger than 80%, the last bin in cosdrt has
been excluded in general, i.e. the fit range has been restricted to the interval
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0 < cos ¥t < 0.84 which corresponds to the polar angle interval 32.9° < 1 <
90.0°.

e Acceptance corrections have been required to be below about 25% and the
hadronization corrections to be below ~ 40%.

e The contribution of the absolute value of the second order term rno(Y) as
defined in Eq. (6.3) has been required to be less than one over the whole fit
range.

e The requirement that the data can be well described by the theoretical pre-
diction, i.e. x*/ng is approximately 1 and stable over the fit range.

e Stability of the oy - measurement with respect to the variation of the fit range.

The requirement, that the contribution of the absolute value of the second order
term is less than one over the whole fit range, restricts the fit interval only for the
total jet broadening observable By, which yields rather large O(a?2) contributions
for any choice of the renormalization scale value.

For the analysis with a fixed renormalization scale value z, = 1, the requirement
that x?/ngs is approximately one, can in general not be applied, since it would cause
an unreasonably large reduction of the fit range for many observables. The thrust
distribution for example could then be fitted only over a range of at most three
bins. A detailed description of this problem can be found in the results section 6.4.1.
The fit ranges for this analysis as well as for the analyses applying theoretically
motivated scale setting methods have therefore been chosen identical to the analysis
with experimentally optimized scale values, regardless of the x? values of the fits.

6.3 Systematic and Statistical Uncertainties

For each observable the uncertainties from the fit of «;(M%) and of z, have been
determined by changing the parameters corresponding to a unit increase of x2. In
the case of asymmetric errors the higher value has been taken.

Systematic Uncertainties

The systematic experimental uncertainty has been estimated by repeating the anal-
ysis with the distributions derived with the alternative data selection criteria and
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the modified prescriptions for the calculation of the acceptance corrections as de-
scribed in Section 5.4. Additionally, an analysis has been performed including neutral
clusters measured with the hadronic and electromagnetic calorimeters. The overall
uncertainty has been taken as the variance of the individual a,(M32) measurements.

An additional source of experimental uncertainty arises from the determination of
the fit range, which has been estimated by varying the lower and the upper edge of
the fit range by £1 bin, respectively, while the other edge is kept fixed. Half of the
maximum deviation in «,(M3%) has been taken as the error due to the variation of
the fit range and has been added in quadrature. Whereas the fits applying O(a?)
perturbative predictions are in general very stable with respect to the variation of
the fit range, a significant contribution due to this uncertainty arises in particular
for QCD fits applying pure NLLA predictions within a limited kinematical range.

Hadronization Uncertainties

In order to estimate the systematic error of the hadronization correction, the analysis
is repeated using alternative Monte Carlo generators with different hadronization
models. In addition, the parameters for the JETSET PS have been varied.

The alternative models used are ARIADNE 4.06, HERWIG 5.8¢ as well as version 7.4
JETSET PS [60]. All these models have been tuned to DELPHI data [61].

Additionally, an alternative tuning of the central hadronization generator to the
DELPHI data has been applied, where Bose-Einstein Correlations (BEC) have been
considered wich are not not included in the reference tuning.

Whereas the number of hard gluons predicted by second order QCD matrix elements
is simulated by the hadronization models [87], additional soft gluons are produced
within the parton shower cascade, controlled by the JETSET PS parameter (Qg, which
describes the parton virtuality at which the parton shower is stopped. To account
for the sensitivity of the shape observables with respect to the additional soft gluons,
Qo has been varied from 0.5 GeV to 4.0 GeV.

The systematic error of oy originating from hadronization corrections is then esti-
mated as the variance of the fitted o, values obtained by using all the hadronization
corrections mentioned above.

Further studies have been made to investigate the influence of the main fragmenta-
tion parameters of the JETSET PS model by varying them within their experimental
uncertainty. It has been found that this contribution to the uncertainty of ¢, in gen-
eral is less than one per mille, and has been neglected.



88 6. Determination of the Strong Coupling

The total uncertainty on (M%) is determined from the sum of the squares of the
errors listed above.

Uncertainties due to Missing Higher Order Calculations

An additional source of theoretical uncertainty arises due to the missing higher order
calculations of perturbative QCD. It is commonly assumed, that the size of these
uncertainties can be estimated by varying the renormalization scale value applied
for the determination of o, (M2) within some ‘reasonable’ range [88]. The choice of
a ‘reasonable’ range involves subjective judgement and so far no common agreement
about the size of this range has been achieved. Furthermore, this commonly used
approach has been criticized in the literature [6]. According to [6] any artificial in-
crease of the uncertainty of a;(M?2) due to a large variation of the renormalization
scale should be avoided so that the degree of precision to which QCD can be tested
remains transparent. It should be pointed out that no such additional uncertainty
is required to understand the scatter of the measurements from a large number
of observables if experimentally optimized renormalization scale values are applied.
This will be demonstrated in the results section. Other procedures for estimating
uncertainties due to missing higher order corrections have been suggested, in par-
ticular the comparison of o, (M?) values obtained by applying different reasonable
renormalization schemes or by replacing the missing higher order terms by their
Padé Approximants [88]. Both strategies have been studied. By comparing the size
of the uncertainties derived applying these methods (see e.g. Table 6.8 on page 139),
a variation of z, between 0.5 -z} and 2- 3" seems justified to obtain an estimate
of these uncertainties. Similar or identical ranges have for example also been chosen
in [9, 89].
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6.4 Comparison of the Data with Angular Depen-
dent Second Order QCD

6.4.1 QCD Fits with Experimentally Optimized Renormal-
ization Scales

The fit ranges for the 18 oriented event shape distributions and the results of the
QCD fits applying experimentally optimized scales are summarized in tables 6.1 and
6.2. For a graphical view of the results obtained for a,(M?) see also Fig. 6.12 on
page 108.

Figures 6.3 to 6.6 (pages 92 - 95) show a direct comparison of the measured oriented
shape distributions for 1 -7, JCEF, EEC and Dj®®* for various bins in cos ¥ with
the results of the QCD fits with experimentally optimized renormalization scales.
The theoretical predictions describe the measured data distributions exactly over
a large range of values. The measured dependence on both cos¥r and the studied
observable are precisely reproduced by the fits. For all shape observables studied, the
x?/nqr is about one for a typically large number of degrees of freedom (ng = 16—236,
see also Table 6.1).

The individual sources of errors contributing to the total error on the value of o
are listed in Table 6.2. Typically the experimental uncertainty yields the smallest
and the hadronization uncertainty yields the largest overall contribution. Among
the observables considered, the JCEF yields the most precise result. For a more
complete discussion of the results of the ay(M?2) determination from the JCEF
distribution see section 6.8.

More details concerning the renormalization scale dependence of the O(a?) QCD
predictions are presented in Fig. 6.7 (page 96). Shown are the values of «;(M2) and
the corresponding values of Ax?, i.e. the change of x? with respect to the optimal
value, for the fits as a function of the scale lg(x,) for some of the investigated
observables.

The optimized renormalization scale values vary over several orders of magnitude for
the different observables. For the distributions of O, pp and D§¢"¢¥%_ the scale values
are significantly larger than z, = 1.0, which makes it difficult to understand these
values in terms of any ‘physical’ scale of the underlying process. The shape of the
Ax? curves indicates that for most distributions the renormalization scale is bound
to a rather narrow range of values in order to be consistent with the data. For most
of the observables the renormalization scale dependence of a,(M?2) is significantly
smaller in the region of the optimized scale value than in the region around z, = 1.
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Observable Fit Range cos ¥ Range Ty x2 [T g
EEC 28.8° — 151.2° 0.0-0.84 0.0112+0.0006 1.02 236
AEEC 25.2° — 64.8° 0.0-0.84 0.0066 + 0.0018  0.98 75
JCEF 104.4° — 169.2° 0.0-0.84 0.08204+0.0046 1.05 124
1-T 0.05-0.30 0.0-0.84 0.0033 +0.0002 1.24 89
O 0.24 - 0.44 0.0-0.84 2.30 +0.40 0.90 33
C 0.24 - 0.72 0.0-0.84 0.0068 + 0.0006  1.02 82
Baax 0.10-0.24 0.0-0.84 0.0204 4+ 0.0090  0.89 47
Bsum 0.12-0.24 0.0-0.84 0.0092 +0.0022 1.19 40
o 0.03 - 0.14 0.0-0.84 0.0036 4+ 0.0004  0.63 o4
Os 0.10 - 0.30 0.0-0.36 0.0027 4+ 0.0019  0.82 16
oD 0.05-0.30 0.0-0.84 2.214+0.38 1.02 68
DEO 0.07 - 0.25 0.0-0.84 0.048 + 0.020 0.85 68
DEO 0.05 - 0.18 0.0-0.84  0.112+0.048 1.02 68
DY 0.10 - 0.25 0.0-0.84 0.0044 4+ 0.0004  1.00 47
D%ade 0.06 - 0.25 0.0-0.84 0.126 + 0.049 1.05 75
D2DurhaLm 0.015 - 0.16 0.0-0.84 0.0126 +0.0015  0.92 96
Dgeneva 0.015 - 0.03 0.0-0.84 7.10 +£0.28 0.84 19
Dgambridee 0.011 - 0.18 0.0-0.84  0.066+0.019  0.98 145

Table 6.1: Observables used in the O(a?) QCD fits. For each of the observables the
fit range, the range in cos 7, the measured renormalization scale factor z,, together
with the uncertainty as determined from the fit, the x?/ng and the number of
degrees of freedom ng4 are shown. In the case of asymmetric errors the higher value

is given.
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Observable «a,(M2) Aag (Exp.) Aqs (Hadr) Ay (Scale.) Aqg (Tot.)
EEC 0.1142  +0.0007 =+ 0.0023 +0.0014 =+ 0.0028
AEEC 0.1150 £ 0.0037 = 0.0029 +0.0100 =+ 0.0111
JCEF 0.1169 =+ 0.0006 = 0.0013 + 0.0008 =+ 0.0017
1-T 0.1132  +0.0009 =+ 0.0026 +0.0023 =+ 0.0036
0 0.1171 £ 0.0028 = 0.0030 +0.0038 =+ 0.0056
C 0.1153 £ 0.0021 =+ 0.0023 +0.0017 =+ 0.0036
Biax 01215  +0.0022 =+ 0.0031 +0.0013 =+ 0.0041
Bsum 0.1138 £ 0.0030 = 0.0032 +0.0030 =+ 0.0053
P 01215  +0.0014 =+ 0.0029 + 0.0050 =+ 0.0060
Ps 0.1161  +0.0014 =+ 0.0018 +0.0016 =+ 0.0033
oD 0.1172  +0.0013 =+ 0.0034 +0.0007 =+ 0.0038
DEO 0.1165  + 0.0027 =+ 0.0029 +0.0017 =+ 0.0044
DFO 0.1210  +0.0018 =+ 0.0026 +0.0009 =+ 0.0033
DY 0.1187  +0.0019 =+ 0.0021 +0.0036 =+ 0.0046
Djade 0.1169  +0.0011 = 0.0020 +0.0028 =+ 0.0040
Dpurham 0.1169 =+ 0.0013 = 0.0016 +0.0015 =+ 0.0026
D§eneva 0.1178 £ 0.0052 = 0.0075 +0.0295 =+ 0.0309
DSamPridee 01164 £ 0.0008 =+ 0.0023 4+ 0.0004  +0.0025

Table 6.2: Individual sources of errors of the o, (M?) measurement. For each ob-
servable, the value of a,(M?) , the experimental uncertainty (statistical and sys-
tematic), the uncertainty resulting from hadronization corrections, the theoreti-
cal uncertainty due to scale variation around the central value z? in the range
0525 <z, <2z and the total uncertainty are shown.
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It should however be noted, that even for observables exhibiting a strong scale depen-
dence of o (M?) , e.g. D§™v the a,(M?2) value for the experimentally optimized
scale value is perfectly consistent with the average value.

Combining the 18 individual results from the a,(M?) measurements applying ex-
perimentally optimized renormalization scale values by using an unweighted average
yields

s (M2) = 0.1170 + 0.0025

whereas the corresponding average for the measurements using the fixed scales z,, =
1is ay(M2) = 0.1234 +0.0154 (see Section 6.4.2). For the experimentally optimized
scales the scatter of the individual measurements is significantly reduced.

In order to verify the consistency of the a,(M2) values from individual measure-
ments with experimentally optimized scales, a x? has been computed on the basis
of the experimental and the hadronization uncertainties, which have been added
quadratically. No additional renormalization scale uncertainty has been considered
here. The resulting value is x?/ng = 9.6/17, i.e. the individual measurements are
clearly consistent and the measured values can be understood without assuming
any additional theoretical uncertainty due to the renormalization scale dependence
of the theoretical predictions.

The idea behind the common analysis of such a large number of observables is to op-
timize the use of the information contained in the complex structure of multi-hadron
events. Errors due to the corrections for hadronization effects may be expected to
cancel to some extent in the averaging procedure. To test this expectation the analy-
sis of each of the individual 18 observables is repeated by performing hadronization
corrections with the different hadronization models and different settings for the
model parameters as described in Section 6.3. This results in 7 times 18 individual
o, values. As a first test for each of the 18 observables the unweighted average value
of cs from the seven models is evaluated. The average value of the 18 ¢, values is
as(M?2) = 0.1177 £ 0.0029. In a second step for each of the 7 hadronization models
an unweighted average of the corresponding 18 «; values is calculated. Finally an
unweighted average of the 7 average values for the different hadronization models is
computed resulting in o (M2) = 0.1177 £ 0.0016. The result confirms that the scat-
ter of the average values due to different assumptions for hadronization corrections
is significantly smaller than the uncertainty of £0.0025 of the mean value from 18
individual observables.
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6.4.2 QCD Fits with a fixed Renormalization Scale Value

For comparison, the data have also been fitted in O(a?) applying the conventional,
so-called ‘physical’ scale approach of choosing a fixed renormalization scale value
z, = 1.

The choice of an appropriate fit range for the a,;(M2) measurement turns out to
be problematic. As illustrated in Fig. 6.7 the range of renormalization scale values
required for a consistent description of the data varies within several orders of mag-
nitude for the individual observables. If the fit range is chosen to be identical to
the range for experimentally optimized scales, the resulting perturbative prediction
yields only a poor description of the data, which makes it difficult to interpret the
significance of the measured o,(M?2) values. It may be argued, that the fit range
applied for experimentally optimized scales may not be appropriate for the choice
z, = 1, since it is known that the theoretical description for z, = 1 is worse in
particular in the 2-jet region [90].

Figure 6.8 shows a comparison of the QCD fits to the data with experimentally
optimized and with fixed renormalization scale values x, = 1 for the observables
1 —T, pg and D}. For the fixed scale predictions, the deviations with respect to
the data are not at all limited to the 2-jet region but can be observed also within
the 3-jet region. In particular the slope of the experimental distributions cannot be
described and a good description can in general only be achieved within the small
kinematical region where the fit curve intersects with the data. Similar deviations
can be observed for some other observables studied within this analysis.

The requirement that x?/ng is approximately 1 can in general not be applied for
the fixed scale measurements, since it would cause an unreasonably large reduction
of the fit range for many observables. The oriented thrust distribution for example
could be fitted only over a range of at most three bins in 1 — 7. Two different
choices of fit ranges for the thrust distribution would then be possible. The first
one corresponds to 1 — T values between 0.08 and 0.11 with as(M2) = 0.1343 and
x2/nqg = 0.97. The second one corresponds to 1 — T values between 0.14 and 0.20
with as(M2) = 0.1442 and x*/ng = 1.23. If these two fit ranges are now combined,
ie 0.08 <1—T <0.20 the result is o (M?) = 0.1391 with x?/ng = 219 / 55 =
3.38 and a probability of p = 2 - 1072!. The description of By, is even worse for
z,, = 1. Here the oriented distribution can for example only be described within one
single interval of two bins in By, ranging from 0.16 to 0.20.

Another problem arises due to the poor stability of the ay(M?2) values with respect
to the variation of the fit range. Fig. 6.9 on page 101 shows for example the o, (M?2)
values derived from the B,,,, distribution within different ranges of three bin inter-
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vals. Stability of the a,;(M2) values with respect to the fit range cannot be obtained
if £, = 1.0 is applied.

It should be noted, that By, is the observable with the largest corrections from
the second order contribution of the perturbative expression (Eq. 6.3). Within the
fit range applied, this contribution varies within rxz0 = 0.74 — 0.98 if 7, = 1.0 is
applied. For the experimentally optimized scale value of z,, = 0.0092 the contribution
from the second order term is still large and varies between ryro = 0.40 — 0.82.
Applying this scale value for the determination of a,(M?2) within the three bin fit
intervals as described above, the measured a;(M?2) values are extraordinary stable
and well within the estimated uncertainty due to the variation of the renormalization
scale.

In Figure 6.10 (page 102), the results from fits to the three bin fit intervals described
above are shown for the thrust distribution. Again no stability of the a;(M2) values
with respect to the variation of the fit range is achieved for measurements with z, =
1.0. If however the scale value of z, = 0.0033 from the fit including an experimental
optimization is applied, the measured a,(M?) values are again very stable with
respect to a variation of the fit range. The three bin intervals of the event shape
distributions do not provide enough information to allow a combined fit of a,(M?2)
and the renormalization scale value. If however the fit range of the thrust distribution
is separated into two almost disjunct fit intervals, and the renormalization scale
value is optimized for both intervals individually, the a,(M?2) values derived from
both intervals are almost identical (see Figure 6.10 and also Table 6.6 in Section
6.4.5 for details).

The slope of the measured «, (M2) values of the thrust distribution for measurements
with z,, = 1.0 offers a simple explanation for the wide spread of the published o, (M?2)
values for this observable. Table 6.3 shows a summary of as(M2) values determined
from the thrust distribution with a fixed renormalization scale value z, = 1.

Due to the large statistics within the 2-jet region, the measured «; values depend
strongly on the lower limit of the fit interval. The a,(M?2) values from the measure-
ments listed in Table 6.3 increase almost monotonously with the lower limit of the
fit interval from a,(M?2) = 0.118 +0.009 for 1 — T < 0. to a,(M2) = 0.145 + 0.015
for 1 — T < 0.10. The o (M?) value from the OPAL Collaboration [85] is larger
than one would expect naively from the consideration of the lower fit interval. The
as(M?) determination has however been made from the weighted thrust distribu-
tion (1 —T')-1/04 do/dT. The weighting by (1-T) prefers however the 3-jet region
of large (1-T) values, with the consequence of an increased «; value. The slightly
larger value of the present analysis with respect to the SLD measurement can be
understood due to the enhanced precision of the data within the 3-jet region (see
e.g. Fig. 5.3 on page 75).
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Figure 6.9: a;(M?2) for the oriented Bgy, distribution in dependence on the fit range.
O(c?) fits have been performed for all three bin intervals of the Bgy,, distribution.
The full symbols show the results for the fits with a renormalization scale value
z, = 1.0, the open dots indicate the results for fits with z, = 0.0033, i.e. the
experimentally optimized value obtained from the fit covering the full fit range as
listed in Table 6.1. The horizontal bars indicate the fit ranges and the vertical bars
represent the the uncertainties from the fits. The o, (M?2) value derived from the fit
to the complete fit range is indicated by the dotted line. The shaded band indicates
the corresponding renormalization scale uncertainty as listed in Table 6.2.
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Figure 6.10: Same as Figure 6.9 but for the oriented thrust distribution. The star
symbols represent the results from two additional fits, where the full fit range of
the thrust distribution has been separated into two almost disjunct fit intervals
and where the renormalization scale value has been optimized for both intervals
individually (see also Section 6.4.5 for details).
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Measurement Reference Fit Range (1-T) o,(M2) + Aa; (tot.)

L3 [91] 0.00 - 0.29 0.118 = 0.009
SLD [84] 0.06 - 0.32 0.125 + 0.020
DELPHI [92] 0.09 - 0.30 0.140 =+ 0.003
ALEPH [93] 0.10 - 0.30 0.145 + 0.015
this analysis 0.05 - 0.30 0.133 = 0.006
OprAL [85] 0.085 - 0.285 0.145 £ 0.001

Table 6.3: as(M?) values determined from the Thrust Distribution by applying a
fixed renormalization scale value z, = 1. The error of the OPAL and the DELPHI
measurement from reference [92] covers only the statistical uncertainty. The ALEPH
measurement has been done by applying a renormalization scale value z, = 0.5.
For this comparison it has been recalculated by using the renormalization scale
uncertainty given in reference [93]. The OPAL value originates from a fit to the
weighted thrust distribution, where the 3-jet region of the distribution is statistically
preferred.

Figure 6.11 (page 103) shows the results from a,(M?2) fits to three bin intervals of the
JCEF distribution. The stability of the fits with z, = 1.0 with respect to a variation
of the fit range is partially increased. For JC E F values between about 110° and 150°
the variation in a,(M?2) is of about 2%. If the fits are however compared with the
corresponding fits applying the experimentally optimized scale value of z,, = 0.0820,
the differences with respect to a variation of the fit range are remarkable.

The somewhat better behaviour of the JCEF distribution may be understood due
to the smaller deviation of the experimentally optimized renormalization scale value
from z, = 1.0. Also the contribution of the second order term is quite small for
JCEF. Within the fit range applied, the average ratio of the second with respect to
the first order contribution is (ryzo) ~ 25% if z, = 1 is applied and only (ryzo) ~
6% for the experimentally optimized renormalization scale value of z,, = 0.0820.

Due to the problems associated with the choice of the fit range as explained above,
the fit ranges for the analysis with a fixed renormalization scale value as well as for
the analyses applying theoretically motivated scale setting methods have therefore
been chosen identical to the analysis with experimentally optimized scale values,
regardless of the x? values of the fits.

The results of the fits with a fixed renormalization scale value z, = 1 are summa-
rized in Table 6.4 and the «,;(M2) values obtained are shown in Figure 6.13 on page
109. As can be seen from the x?/ng values of the fits, the choice of z, = 1 yields
only a poor description of the data for most of the observables, for many observables
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the description is even unacceptable. Combining the 18 individual o, (M?2) measure-
ments by using an unweighted average yields o, (M2) = 0.1234+0.0154. Computing
a x? value on the basis of the total uncertainty but without considering any renor-
malization scale uncertainty analogously to the average value from experimentally
optimized scale values, the resulting value is x?/ng = 168/17, thus in this case the
individual measurements are clearly inconsistent with each other.

Observable a;(M2) Acy (Scale) Acq, (Tot.) x*/ng

EEC 0.1297 4+ 0.0037 4 0.0042  10.7
AEEC 0.1088 4 0.0015 £ 0.0050  2.04
JCEF 0.1191 £ 0.0012  + 0.0024 7.7
1-T 0.1334  £+0.0042  £0.0051  25.9
0 0.1211 4+ 0.0065 =+ 0.0077  2.38
C 0.1352 4+ 0.0043 4 0.0053  12.0
Biax 0.1311 4+ 0.0073 £ 0.0083  1.67
Bsum 0.1403 4 0.0056 =+ 0.0071 8.1
o 0.1325 4 0.0036 =+ 0.0049 5.1
05 0.1441 £ 0.0055 £ 0.0062  2.16
oD 0.1181 £ 0.0012  +£0.0039  1.54
DEO 0.1267 4+ 0.0033 4 0.0052  1.35
DEO 0.1265 4 0.0026  +0.0041  1.31
DY 0.1154 4+ 0.0019 4+ 0.0036  5.35
Djade 0.1249 £+ 0.0030 £ 0.0042  1.53
DPurham 0.1222 £ 0.0034 £ 0.0046  3.47
Dgreneva 0.0735 £ 0.0071 4+ 0.0116  120.

Dgambridee 01202 £ 0.0021 4+ 0.0033  1.32

Table 6.4: Results of the a;(M?2) measurements using a fixed renormalization scale
z, = 1. For each observable, the value of o;(M2) , the uncertainty from the variation
of the scale between 0.5 < z, < 2, the total uncertainty and the x*/ng of the fit
are shown.
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6.4.3 Calculation of a Weighted Average

When trying to average the results of the a;(M2) measurements from the individual
observables, one is confronted with the problem, that the individual results are
correlated due to common uncertainties.

For gaussian distributed errors and provided the correlations between the individual
measurements are described correctly by a covariance matrix C', a weighted average
T can be calculated by minimizing the the x? function

X = (@ —2)(z; —7)(C)y (6.4)

Y]

with respect to . This procedure requires however a precise knowledge of the co-
variance matrix. Owing to the dominance of theoretical uncertainties of the mea-
surements of a,(M?) the correlation pattern is unknown.

One possible solution to this problem is to reject the calculation of a weighted av-
erage at all and to quote the individual measurement with the smallest theoretical
uncertainty as the final result. This is motivated by the point of view, that ad-
ditional measurements involving large theoretical uncertainties cannot improve a
precise measurement based on small theoretical uncertainties. This argumentation
is followed in Section 6.8 after considering the additional studies described in the
following section.

On the other hand the strategies applied for the estimation of the systematic and
theoretical uncertainties may result in too optimistic values for particular observ-
ables. Additional and unknown sources of theoretical and systematic uncertainties
may affect individual measurements or may even lead to an increase of the total error
for all observables considered. Even if the correlations between the measurements
would be known exactly, the weighted average calculated with the mathematical
standard procedure will be pulled to the single most optimistic result.

This problem can be avoided completely by the calculation of a simple mean value
in combination with a simple rms as it has been done in the previous sections. The
simple rms indicates the scatter of all measurements around their common mean
and does not depend on the individual errors quoted for each measurement. All
measurements are treated on equal footing and the overall uncertainty is dominated
by those measurements which are strongly deviating from the common mean, i.e. in
general by the measurements with larger uncertainties.
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A method for the calculation of a weighted average in case of unknown correlations
between the measurements has been proposed in [94]. Here the effective size of
the correlations is estimated from the data itself. The method has been applied for
example for the calculation of a world average of the strong coupling [95, 96, 97] and
a detailed discussion and comparison with other suggested methods can be found
in reference [97]. In absence of a detailed knowledge of the covariance matrix it is
assumed that the different measurements i and j are correlated with a fixed fraction
pet Of the maximum possible correlation Ci'**:

Cij = paCi;** i #j, with Cj*" =o00; . (6.5)

For peg = 0 the measurements are treated as uncorrelated, for peg = 1 as 100%
correlated entities. The quality of the weighted average = can be judged by means
of the corresponding x? value (Eq. 6.4). For uncorrelated data one expects x?* to
be equal to the number of degrees of freedom ng. If the x? is significantly smaller
than its expectation value, the measurement uncertainties are either overestimated
or positively correlated. When positive correlations are known to be present, then
the x? can be used to estimate the size of the effective correlation peg by adjusting
its value such that x*(pes) is equal to ng.

A x? larger than ng indicates that the errors of the individual measurements are
underestimated. In this case an estimate of the size of the correlations is not possi-
ble. Within this analysis this case occurs for example for the o, (M?2) measurements
with a fixed renormalization scale value. For the calculation of a weighted aver-
age the value of peg is assumed to be identical with the one determined from the
measurements with experimentally optimized scales and the errors of the individual
measurements are scaled by a common factor until x? = ng is satisfied.

Applying this method to the 18 observables studied, the weighted average from the
os measurements applying experimentally optimized renormalization scale values
(see Fig. 6.12) yields:

a,(M2) = 0.1168 =+ 0.0026

with peg being 0.635. Both the central value and its uncertainty are almost iden-
tical to the unweighted average and the rms quoted above, clearly indicating the
robustness of the error estimate.

The corresponding average for the fixed scale measurements yields a,(M?2) = 0.1232
+ 0.0116 (see Fig. 6.13). Here, the uncertainty of the average is largely increased
with respect to the result from applying experimentally optimized scale values.
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Figure 6.12: Results of the QCD fits applying experimentally optimized scales for
18 oriented event shape distributions. The error bars indicated by the solid lines are
the quadratic sum of the experimental and the hadronization uncertainty. The error
bars indicated by the dotted lines include also the additional uncertainty due to the
variation of the renormalization scale due to scale variation around the central value
zg’P in the range 0.5 - 25 < 1, < 2 7. Also shown is the correlated weighted
average (see text). The x?-value is given before readjusting according to Eq. 6.4.
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Figure 6.13: Results of the QCD fits applying a fixed renormalization scale z, =1 .
The error bars indicated by the solid lines are the quadratic sum of the experimental
and the hadronization uncertainty. The error bars indicated by the dotted lines
include also the additional uncertainty due to the variation of the renormalization
scale around the central value from 0.5 < z, < 2. Also shown is the correlated
weighted average. It has been calculated assuming the same effective correlation
per = 0.635 as for the fit results applying experimentally optimized scales. The
x?/ng for the weighted average is 71/17, where the x* given corresponds to the
value before adjusting peg. In order to yield x?/ng = 1, the errors have to be scaled
by a factor fe, = 3.38.
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The x?/ng for this average yields 71/17 before adjusting peg. The x? is largely
reduced with respect to the x? for the unweighted average due to the consideration
of the renormalization scale uncertainties as given in table 6.4, but the individual
measurements are still inconsistent in this case. Considering an effective correlation
pesr Of 0.635 like for the measurements with experimentally optimized scales, the
errors have additionally to be scaled by a common factor f,, = 3.38 in order to
obtain x?/ng = 1.

According to reference [97], the method for calculating the weighted average intro-
duced above is closest to a mathematically appropriate treatment of the correlated
errors, however the x? and the uncertainties derived do not have the same mathe-
matical and probabilistic interpretation than the standard procedure. In particular
the weighted average does not necessarily lead to the smallest possible error. In [97]
it is shown for example, that the error of the weighted average is increased if less
significant measurements are included. Within this analysis however, the o, mea-
surements from all individual observables have been considered, regardless of their
significance. This is motivated by the fact that the errors of the oy, measurements
quoted in Table 6.2 and in the following subsections contain all uncertainties which
can be evaluated from a careful experimental analysis. The spread of the o, mea-
surements may however not be explainable by the individual uncertainties alone,
there may be additional uncertainties, which cannot be derived from a single ob-
servable. Therefore the above averaging procedure has been applied and robustness
of the error estimate has been preferred instead of minimizing the error.

Obviously the error estimate cannot cover a possible common shift of all measured
as(M?) values with respect to the true value. From an experimental point of view,
such a shift could only be inferred by comparing with different types of theoretical
calculations, like all orders resummed predictions or Padé approximation, which are
studied in the following sections.

6.4.4 Discussion of Systematic and Theoretical Uncertain-
ties

In order to investigate the contribution of individual sources of systematic and the-
oretical uncertainties to the weighted average, the a,;(M?) measurements have been
repeated for all observables by applying different track and event selection criteria,
hadronization models and model parameters and by varying the optimized renor-
malization scale values as described in detail in Section 6.3. For each of the modified
strategies for the determination of as(M?2) , a weighted average has been computed
from the results of the oy measurements for all eighteen observables. These results
are listed in Table 6.5.
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as(Mz) measurement as(Mz) average

as(Mz) shift

standard procedure 0.1168 4+ 0.0026

systematic uncertainties (see also pages 72 and 86 )

modified track selection criteria 0.1168 + 0.0026 +0.0000
modified event selection criteria 0.1169 + 0.0026 +0.0001
additional cut on momentum imbalance 0.1168 + 0.0030 +0.0000
modified tracking efliciency 0.1174 £ 0.0027 +0.0006
modified momentum resolution 0.1171 + 0.0026 +0.0003
analysis including neutral tracks 0.1154 + 0.0032 —0.0014
enlarged lower bound of fit range 0.1178 + 0.0035 +0.0010
reduced lower bound of fit range 0.1166 + 0.0030 —0.0002
enlarged upper bound of fit range 0.1166 £ 0.0026 —0.0002
reduced upper bound of fit range 0.1169 4+ 0.0028 + 0.0001
hadronization uncertainties (see also page 87 )
JETSET 7.4 PS 0.1172 £+ 0.0030 +0.0004
ARIADNE 4.06¢ 0.1167 £+ 0.0026 —0.0001
HERWIG 5.8 ¢ 0.1170 £ 0.0050 +0.0002
JETSET 7.3 PS D + BEC 0.1192 + 0.0038 +0.0024
JETSET 7.3 PS D, Qg = 0.5 GeV 0.1161 £+ 0.0026 —0.0007
JETSET 7.3 PS D, Qy = 4.0 GeV 0.1184 + 0.0046 +0.0016
renormalization scale uncertainty (see also page 88 )
P — 0.5 5 0.1169 £ 0.0038 +0.0001
TP — 2.0 - 5 0.1174 £+ 0.0029 -+ 0.0006

Table 6.5: Individual sources of experimental and theoretical uncertainties contribut-
ing to the weighted average of a;(M?) : Shown are the weighted averages of a,(M?2)
determined from the analyses of 18 observables by applying modified selection cri-
teria, modified fit ranges, different hadronization models and model parameters and
by varying the experimentally optimized renormalization scale values as described
in Section 6.3. Also given is the corresponding shift of the average a,(M?2) values

with respect to the standard procedure.
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The main systematic uncertainty comes from the inclusion of neutral tracks in the
analysis. For a; measurements from data distributions including charged and neu-
tral tracks, the weighted average of a,(M?2) is shifted to a lower value by about
1.2% with respect to the analysis using charged tracks only. However, also the er-
ror of the average value is about 20% larger. This can be understood due to the
inhomogeneities in the DELPHI calorimetry (see also discussion in Section 4.2.3 )
in combination with increased systematic uncertainties of the corresponding data
distributions.

The uncertainty of the weighted average derived from the variation of the exper-
imentally optimized renormalization scale value z*? for each observable between
0.5- 25 and 2.0 - 2§ is small (~ 0.5%). This can be explained by the fact, that for
most observables the experimentally optimized renormalization scale value is close
to the scale value, where the strong coupling is least sensitive with respect to its
variation (see Figure 6.14 on page 118 and discussion in Section 6.4.6).

The largest theoretical uncertainty is estimated by considering Bose-Einstein Cor-
relations (BEC) for the hadronization corrections calculated with JETSET 7.3 PS.
Here, the weighted average is shifted to a larger value by about 2%. Again the error
of the average value of o, (M?2) is larger (~ 50%) than for the standard analysis. It
should be noted, that only a crude estimate of BEC effects on the determination of
as(M?) is possible since the JETSET algorithm for modelling BEC is known to vio-
late energy momentum conservation [60, 98]. This is restored only by an additional
Lorentz boost.

A larger uncertainty arises also from the variation of the Parton Shower parameter
Qo to 4.0 GeV for the calculation of the hadronization corrections. Here the weighted
average is shifted to a larger value by about 1.4%. The uncertainty of the average is
about 80% larger than for the standard analysis. It should be noted, that by applying
such a large value for )y the Monte Carlo model is unable to describe the measured
data [61], it has however been considered in order to simulate the smaller number
of up to 4 partons, which are produced by second order QCD Matrix Elements.

6.4.5 Stability of the Renormalization Scale Value with re-
spect to the Variation of the Fit Range

An underlying assumption for the O(a?) QCD fits to the shape observables is that
the value of «; is approximately independent of a variation of the renormalization
scale within the fit range. To check this assumption, a cross check for the differential
two jet rate observables has been performed following a suggestion in [99]. For these
observables the QCD fits have been repeated, allowing the renormalization scale
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to vary proportionally t0 Yeyut, i-e. p? = ZuYewr/s. The differences in the o (M?2)
determination have been found to be of the order of a few per mille for the individ-
ual jet rate observables and to be less than two per mille for the average of these
observables.

A further investigation has been performed for all observables of Table 6.1. The
fit range listed in Table 6.1 has been divided into two separate regions, allowing a
maximum overlap of one bin. a;(M?) has been determined applying experimentally
optimized scales for both regions independently. The fits were successful for all
observables except D§em¢¥® where the resulting fit ranges were too small to allow
the fits to converge. The results of these fits are shown in Table 6.6.

It is well known from previous analyses incorporating an experimentally optimization
of the renormalization scale, that the sensitivity for the renormalization scale value
can be increased by extending the fit range with respect to the 2-jet region. One
reason for the reduced sensitivity within the 3-jet region are the larger uncertainties
of the data due to the reduced statistics. Another theoretical argument arises from
the smaller variation of the perturbative coefficients of the shape distributions within
the 3-jet region [6].

For most of the observables listed in Table 6.6 the measurement uncertainties are
significantly larger if the fit range is restricted with respect to the 2-jet region.
However, for some observables a surprisingly accurate determination of both a,(M?2)
and z, can be obtained for both fit intervals, in particular for JCEF, 1T, C and
DX For these observables, the renormalization scale values for both intervals agree
within a factor two or even better. No systematic trend of the two values of the
renormalization scale for the two fit ranges (dominated by two respectively three jet
events) is observed. For many of the observables, the agreement between the two
values measured is very good.

In a further step, the two «,(M2) values have been combined for each observable
according to their statistical weight (see Table 6.6). These «, values have been com-
bined by calculating a weighted average as described in Section 6.4.3. The resulting
average value of o, (M2) = 0.1168 +0.0025 is identical to the value determined from
the standard procedure.
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Observable  Fit Range as(M?) + Aw,(Fit) =z, + Az, (Fit) @, (M?)
O REIL OMT O GO, o oom
SERE I32T60 0114100048 00069 + 00037 1145+ 0.003L
P l6E1e02 01173400003 00740 + 00048 01167 0.0003
T 0110030 01128200007 0.0023 £ oo 01126+ 0.0003
7 032- 041 0100700026 4251201 OL168:E0.0007
’ 048-0.72 01162500021 0.0076 = 00053 01130 = 0.0003
Ve 0160024 01200 £ 00006 0.0202 = 00204 01210 % 00008
P 0180024 0108800035 0.0030 £ 00080 01133 % 00013
& 006-0.14 01213 £ 00036 00066 = 00431 01194 0.0011
" 0142030 0114500013 0.0004 = 00004 1145 = 0.0013
" 005030 01195+ 00024 1% i7g 01208 0.002
E0

> 012.02 0112250003 0,006 = 0ogs O116L = 0.0008
PO

> 0100018 0120700014  0.095 £ 0ogd 01209 0.0007
P

> 014-025 01149 % 0.0017 0.0049 = 0og07 1173 = 0.0016
Jad

P GNT028 0112500086 0014 = o1s5 O1175% 00013
Durham

P 0070 0216 01458 £ 00143 0.0020 = 0.0004 0117 % 00005
Cambridge

> 0040- 0,150 0171 = 0.0051  0.179 4 0.502 1171 0.0008

Table 6.6: Results of as(M?2) fits to different intervals of oriented shape distributions.
The fit range for each observable has been splitted into two (almost) independent
intervals. For each observable the two fit ranges and the corresponding results for
as(M?) and z,, are shown together with uncertainties as determined from the fits. In
the case of asymmetric errors the higher value is given. Also shown is the weighted
average o (M?2) for the oy values from the two fit intervals. The fits for DS did
not converge.
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6.4.6 Scale Setting Methods from Theory

Three different theoretical approaches for the determination of an optimized renor-
malization scheme are described in Section 2.3. For perturbative predictions in
O(a?), the problem of finding an optimized scheme corresponds to the determi-
nation of an optimized renormalization scale value. These optimized scale values are
determined as described below.

() Principle of minimal sensitivity (PMS):
The PMS optimization amounts to the determination of the renormalization scale

value, which minimizes the sensitivity of theoretical prediction with respect to its
variation. It has been determined by solving the following equation numerically:

0 1 do
% {Utot d—Y} =" (6.0

where the theoretical prediction 1/0y do/dY for the shape observable Y has been
integrated over the fit range applied.

(1) Method of effective charges (ECH):

In O(c?) perturbation theory, the ECH scale value has to be chosen in such a way
that the second order term vanishes:

B(Y, cosdr) + (2nByIn(z,) — 2)A(Y,cosdr) =0 . (6.7)

For the determination of the ECH scale value the unweighted first and second order
coefficients A(Y,cosdr) and B(Y,cosdr) have been integrated over the fit range
applied and Eq. 6.7 has been solved numerically.

(711) The method of Brodsky, Lepage and MacKenzie (BLM):

In O(a?) , the BLM scale is fixed by the requirement that z, is chosen in such a
way that the flavour dependence n; of the second order term (Eq. 3.28) is removed:

— {B(Y, ng) + (26 In(z,) — 2)A(Y)} =0. (6.8)

anf

ng=>5
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Also the above equation has been solved numerically and the perturbative coeffi-
cients have been integrated over the fit range applied

The results of the o, (M?) measurements for the individual observables applying the
different scale setting prescriptions are listed in tables 6.7 and 6.8. The weighted
averages calculated according to the method described in section 6.4.3 yield the
following results for the different methods applied:

(1) PMS method :

as(M2) = 0.1154 £ 0.0045  (x%/ngs = 19/17)
(77) ECH method :

as(M2) = 0.1155 £ 0.0044  (x2/ngs = 19/17)
(746) BLM method :

as(M2) = 0.1174 £ 0.0068  (x?/nar = 29/13)

to be compared with ag(M%) = 0.1168 +0.0026 ( x?/ng = 6.2/17) using the exper-
imentally optimized scales.

The weighted averages for the different theoretical methods are in agreement with
the average using experimentally optimized scales. The scatter of the individual
measurements is lowest for the experimentally optimized scales and highest for the
BLM method.

For the ECH and the PMS approaches the a,(M?) values from the individual mea-
surements are consistent. The results from both methods are very similar, the cor-
relation p between ECH and PMS scales is almost 1. It should be noted that the
consistency of the a;(M?) measurements for the PMS and the ECH approaches are
of different quality than the consistency obtained by using experimentally optimized
renormalization scale values. In the case of PMS and ECH scales the consistency
is obtained by assuming an uncertainty due to the variation of the renormalization
scale values between z%7*/2 and 2z%*. whereas for experimentally optimized scale
values the individual measurements are perfectly consistent even if no additional
uncertainty due to the variation of the renormalization scale is assumed (see Section
6.4.1, page 97).
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In the case of the BLM method the x?/ng indicates that the individual ay(M?2)
measurements are inconsistent. Moreover, the fits using the scales predicted by the
BLM method did not converge at all for the observables JCEF, O, pp and D§emeve,

Figure 6.14 shows the correlation between the logarithms of the experimentally
optimized scales and the logarithms of the scales predicted by the ECH, PMS and the
BLM methods. For the ECH and the PMS method there are significant correlations
of p = 0.75 £ 0.11. In the case of BLM there is a slightly negative correlation of
p = —0.34 £ 0.25, compatible with zero.

The results obtained suggest that the ECH and the PMS methods are useful proce-
dures for obtaining an optimized scale value in those cases where an experimental
optimization can not be performed. The BLM method however does not seem to be
suitable for the determination of a,(M?).
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Observable  ofXP(M32) aPMS(M2) afCH(MZ) aBIM (p2)
EEC 0.1142 0.1133 0.1135 0.1142
AEEC 0.1150 0.1063 0.1064 0.1179
JCEF 0.1169 0.1168 0.1169
1-T 0.1132 0.1101 0.1111 0.1133
O 0.1171 0.1128 0.1124
C 0.1153 0.1119 0.1124 0.1144
Baax 0.1215 0.1222 0.1217 0.1268
Bsum 0.1138 0.1023 0.1021 0.1118
P 0.1215 0.1197 0.1198 0.1258
Ps 0.1161 0.1154 0.1149 0.1169
PD 0.1172 0.1190 0.1203
DEO 0.1165 0.1145 0.1142 0.1143
DO 0.1210 0.1204 0.1202 0.1232
DY 0.1187 0.1110 0.1108 0.1118
Djade 0.1169 0.1137 0.1134 0.1137
DDurham 0.1169 0.1162 0.1159 0.1241
DSeneva 0.1178 0.1064 0.1171
Dgmbridge 0.1164 0.1164 0.1163 0.1124

W. average

x>/

19 / 17

19 / 17

29 / 13

0.1168 + 0.0026 0.1154 + 0.0045 0.1155 + 0.0044 0.1174 & 0.0068
6.2/ 17

Table 6.7: Comparison of the a,(M?) values obtained using the different methods
for evaluating the renormalization scale suggested by theory. For each observable
the a;(M?2) values using experimentally optimized scales and «,(M2) values for the
scales predicted by the PMS, ECH and BLM methods are shown. The errors for the
as(M?) measurements are assumed to be identical for all methods (see table 6.2).
The weighted averages are calculated using pegs = 0.635 and scaling the errors to
yield x?/ng = 1 in the case of the PMS, ECH and the BLM methods (see text).
The x? given for the averaging correspond to the values before adjusting peg and
rescaling the measurement uncertainties. The fits using the scales predicted by BLM

did not converge for the observables JCEF, O, pp and D§eneva,
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Observable :BEX P xﬁ M5 xf CH foM
EEC 0.0112 0.0048 0.0068 0.0015
AEEC 0.0066 0.0830 0.1158 0.0056
JCEF 0.0820 0.1576 0.2189 0.0011
1-T 0.0033 0.0006  0.0009 0.0043
0 2.30 11.33 15.53  0.0015
C 0.0068 0.0007 0.0010 0.0068
Buax 0.0204 0.0108 0.0153 0.0039
Bsum 0.0092 0.00005 0.00007 0.0055
P 0.0036 0.0106  0.0151 0.0019
0s 0.0027 0.0004 0.0006 0.0082
oD 2.21 0.1086  0.1511 0.0027
DO 0.048  0.0037 0.0037 0.0043
DO 0.112 0.0266 0.0374 0.0023
DY 0.0044 0.0253 0.0356 0.0044
Djade 0.126  0.0041  0.0059 0.0037
DDurham 0.0126 0.0192  0.0270 0.0027
DSreneva 7.10 5.08 6.97  0.0002

Dgambridee 066 0.048  0.067  0.0022

Table 6.8: Comparison of the scale values obtained using the different methods for
evaluating the renormalization scale. For each observable the central scale value
as obtained from experimental optimization and the scale values predicted by the
PMS, ECH and BLM methods are shown. For the theoretically motivated scale
setting methods the values have been derived by considering the full theoretical
prediction within the fit range. The variation of these scale values over the fit range
is shown in Fig. 6.14.
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6.5 Padé Approximation

At present, exact perturbative predictions for most observables are limited to O(a?).
The calculation of the third order QCD matrix elements is yet not complete. So far
only the tree level diagram for the production of five partons [100] and the virtual
corrections to the four parton production [101] are available. These matrix elements
allow the determination of o, in O(a3) from 4-jet observables, which is subject of
the study in reference [102].

The higher order contributions to a perturbative QCD series can however be esti-
mated by means of Padé Approximations. The Padé Approximant [N/M] to the
series

S =Sy+ Siz+ Sez? + ...+ S,z" (6.9)

is defined [103] by

ap + a1z + agz? + ... +anzV
N/M| = : N+ M= 6.10
[N/M] 14+bix+byz?2+...+byaM ’ + " (6.10)
and
[N/M] =S + O(zV M+ | (6.11)

The set of equations (6.11) can be solved, and by considering the terms of
O(zN+*M+1) one can obtain an estimate of the next order term Sy,ar.; of the
original series. This is called the PA method. Furthermore, for an asymptotic series
[N/M] can be taken as an estimate of the sum (PS) of the series to all orders.

The PA method has been used successfully to estimate coefficients in statistical
physics [103], and various quantum field theories including QCD [104]. Justifica-
tions for some of these successes have been found in mathematical theorems on
the convergence and renormalization scale invariance of PAs [104]. The physical
interpretation of the renormalization scheme dependence of the approximated pre-
dictions implies that in particular the diagonal Padé Approximants [N/N + 1] sum
up correctly the most important part of higher order QCD contributions, i.e. the
contributions related to the running of the strong coupling [105].

In many cases the PAs yield predictions for the higher order coefficients in
perturbative series with high accuracy, whereas this accuracy is not expected for
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the lower order predictions such as O(a?) . For the application of the a;(M2) de-
termination from event shapes, the Padé Approximation can serve as a reasonable
estimate of the errors due to higher order corrections [106].

For each bin of our observables an estimate for the O(a?) coefficient C(y) can be

derived from [0/1] with ay = A, b = —B/A:

B*(y)
Aly)

CPodé(y) = (6.12)

It should be noted that the PA predictions CF%€(y) are positive by construction
which will result in large errors for kinematical regions where the O(a3) contribu-
tion is negative. The fit range has therefore been determined in the following way:
Starting from the same fit range as in O(c?), the fit has been accepted if x?/ng4 < 5.
Otherwise the fit range was reduced bin by bin until the fit yielded x?/ng < 5.

In addition to the O(a?) fits in the Padé Approximation, the PS method has been
used as an estimate of the sum of the perturbative series and as(M2) has been
extracted by fitting the [0/1] approximation directly to the data. Here, the fit range
has been chosen to be the same as for the fits in the O(a?) Padé approximation. The
x* dependence of the o, (M?2) fits applying the Padé Approximation as a function of
the renormalization scale value x, is quite small, especially for the PS method. For
most of the observables o (M2) and z, could not be determined in a simultaneous
fit. Therefore, the fits have been done choosing a fixed renormalization scale value
z, = 1. The uncertainty due to the scale dependence of a;(M?) has been estimated
by varying z, between 0.5 and 2.

The fit results for the individual observables are listed in tables 6.9 and 6.10. The
fit applying PS to the Bgy,, distribution did not converge for any fit range chosen.
For the D§emeve distribution, the fits did not converge for either method.

Comparing the fit results of the O(c2) fits in Padé Approximation with the fit results
in O(a?) applying z, = 1, as given in table 6.4, the scale dependence of a,(M?2)
is reduced for most of the observables, as one would expect from measurements
using exact calculations in O(a?). For the PS method, the reduction of the scale
dependence is even stronger. Here, o (M?) is less scale dependent than in the O(a?)
fits for all observables considered. This observation is in very good agreement with
the result from the analysis of the Bjorken sum rule [107], where the renormalization
scheme dependence of the Padé Sum Prediction is found to be drastically reduced
with respect to the original third order prediction.
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Observable  Fit Range as(M2)  Aa;, (Scale.) Acq, (Tot.)
EEC 28.8° — 151.2° 0.1189 +0.0016 +0.0026
AEEC 925.2° — 64.8° 0.1074 +0.0030 +0.0056
JCEF 104.4° —169.2°  0.1169 +0.0006 +0.0016
1-T 0.07 - 0.30 0.1207 +0.0023 +0.0036
0 0.24 - 0.32 0.1098 +0.0014 +0.0044
C 0.32 - 0.72 0.1208 +0.0023 +0.0039
Bax 0.10 - 0.24 0.1183 +0.0016 +0.0042
Bsum 0.14 - 0.18 0.1127 +0.0016 +0.0068
pH 0.03 - 0.14 0.1230 +0.0015 +0.0036
Ps 0.10 - 0.30 0.1252 +0.0024 +0.0038
PD 0.07 - 0.30 0.1045 +0.0015 +0.0040
DO 0.05 - 0.18 0.1159 +0.0014 +0.0042
DFo 0.05 - 0.18 0.1199 +0.0011 +0.0034
DF 0.10 - 0.20 0.1128 +0.0008 +0.0030
Djade 0.06 - 0.25 0.1142 +0.0014 +0.0032
Dpurbam 0.015 - 0.16 0.1170 +0.0009 +0.0023
Dgambridee 0.011 - 0.18 0.1164 +0.0007 +0.0026

average

0.1168 £ 0.0054

x*/ng =30/ 16

Table 6.9: Results on a,(M?2) for QCD-Fits including the O(a?) Term in the Padé
Approximation (PA). For each of the observables the fit range, o, (M?) , the uncer-
tainty due to scale variation between 0.5 < z, < 2 and the total uncertainty are
shown. The experimental errors and the uncertainties due to the hadronization cor-
rections are assumed to be the same as for the O(a?) measurements. The weighted
average is calculated using peg = 0.635 and scaling the errors to yield x*/ng = 1 (see
text). The x? given for the averaging corresponds to the value before adjusting pes
and rescaling the measurement uncertainties. The fit for DZ¢"*® did not converge.
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Observable  «a,(M2)  Aa, (Scale.) Acq, (Tot.)

EEC 0.1147 +0.0003 +0.0021
AEEC 0.1070 +0.0002 +0.0048
JCEF 0.1169 +0.0003 +0.0015
1-T 0.1165 +0.0003 +0.0028
0 0.1135 +0.0003 +0.0042
C 0.1150 +0.0003 +0.0032
Bax 0.1196 +0.0003 +0.0039
o 0.1219 +0.0004 +0.0033
Ps 0.1161 +0.0003 +0.0029
oD 0.1098 +0.0003 +0.0037
DEO 0.1136 +0.0003 +0.0040
DFO 0.1198 +0.0003 +0.0032
DF 0.1124 +0.0003 +0.0029
Djade 0.1123 +0.0003 +0.0029
Dpurham 0.1164 +0.0003 +0.0021
Dgambridee 0.1162 40.0003 +0.0025
average 0.1157 + 0.0037 X2 /ng =17/ 15

Table 6.10: Results on a,(M?) for QCD-Fits applying the Padé Sum Approximation
(PS). For each of the observables a,(M?2) , the uncertainty due to scale variation
between 0.5 < z, < 2 and the total uncertainty are shown. The experimental errors
and the uncertainties due to the hadronization corrections are assumed to be the
same as for the O(a?) measurements. The weighted average is calculated using
pet = 0.635 and scaling the errors to yield x?/ng = 1 (see text). The x? given
for the averaging corresponds to the value before adjusting peg and rescaling the
measurement uncertainties. The fits for Bgy,, and D§®"** did not converge.
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Figure 6.15 shows the scale dependence of a;(M?2) applying the different QCD pre-
dictions to the distribution of the Jet Cone Energy Fraction as an example. There
is almost no x? dependence of the a,(M?) fits as a function of the renormalization
scale for the PS prediction. For the fits applying O(a?) in the Padé Approximation,
the x? dependence is less than for the O(a?) prediction. The JCEF is one of the few
observables, where a simultaneous fit of a;(M?2) and z,, is possible.

Assuming the same correlation as in the O(c?) fits, the weighted averages of a(M?2)
over the observables used have been calculated as:

as(M2) = 0.1168 = 0.0054

for the PA fits and

as(M2) = 0.1157 & 0.0037

for the PS fits. The averages are in excellent agreement with the O(a?) value of
as(M2) = 0.1168 + 0.0026 using optimized scales. The scatter between the observ-
ables, however, is somewhat larger than in the O(a?) case, in particular for the PA
fits. The x?/ng for the average values is 30/16 and 17/15 respectively.

It should be noted, that the «; values derived from the PA prediction are exception-
ally small for AEEC, O and pp. The «, values from the PS prediction to AEEC and
pp are again very small, the o, value from the Oblateness is somewhat increased
if the PS prediction is applied. These three observables are however constructed
by explicitly subtracting two shape observables from each other. The subtraction
results in small or even negative NLO coefficients for these observables. The NLO
coefficients of the Oblateness distribution are for example negative over almost the
whole kinematical range (see Fig. 3.4). In view of the construction mechanism it
might be expected that the NNLO coefficients for these observables have a larger
chance for being negative over some kinematical range than for other observables.
Thus a sign error of the NLLO Padé Approximants due to the positive definiteness
of the prediction (Eq. 6.12) might explain the exceptional values of ay. Ignoring
these observables, the spread of the measurements would be significantly reduced
and would be comparable to the result obtained with experimentally optimized scale
values.
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Figure 6.15: as(M?2) and Ax? = x%—x2,, for the distribution of the Jet Cone Energy
Fraction as a function of z, from QCD fits applying O(a?) prediction, O(a?) in Padé
Approximation and the Padé Sum Approximation. Additionally, the x? minimum
for the O(a?) fit and the renormalization scale value z, = 1 have been indicated in
the a,(M?) curves.
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6.6 QCD in the Next-to-Leading Log Approxima-
tion

All orders resummed QCD calculations in the Next-to-Leading Log Approximation
(NLLA) matched with O(a?) calculations as described in Section 3.4 have been
widely used to measure a,;(M2) from event shape observables [9, 84, 108, 109, 110].
Pure NLLA predictions have for example been used in [9] to determine c,(M?)
from the extreme 2-jet region of event shape distributions. In the following, both
approaches are used to determine o;(M?) from angular integrated shape distribu-
tions and the results are compared to those obtained from fixed order perturbative
predictions.

6.6.1 Measurement of a;(Mz) using pure NLLA predictions

To measure a;(M?2) from pure NLLA calculations the fit range has to be restricted to
the extreme 2-jet region, where L = In(1/Y) becomes large and the resummed loga-
rithms dominate. The ratio w of the resummed logarithms to the non-exponentiating
second order contributions is defined by

Y(as, L)
YT H()a, + Hy(YV)a2 (6.13)

In addition to the fit range criteria listed in Section 6.4 the minimum of the ratio
w is required not to fall below 5 over the whole fit range for the fits in pure NLLA.
This leads to the fit ranges listed in table 6.11. For the observable DP“ham the
ratio w remains small even for small values of y.,;. No fit range can be found where
the resummed logarithms dominate the prediction. Therefore DP%r*™ has not been
used for the fits in pure NLLA.

As outlined in Section 2.3 an optimization of the renormalization scale (or more
precisely an optimization of the renormalization scheme) can to date not be per-
formed for the resummed NLLA predictions. Therefore the renormalization scale
value is fixed to z, = 1 for these measurements. The uncertainty due to the scale
dependence of a;(M?2) is estimated by varying the scale z,, between 0.5 and 2.

The fit results for the individual observables are listed in table 6.12. The «, values
measured from the individual observables are consistent within their uncertainties.
The experimental and the overall uncertainties of the individual measurements are
however larger than for the O(a?) predictions. This can be explained due to the
limited kinematical 2 jet range, where the systematic experimental uncertainties of
the data are increased.
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Observable Fit Range (NLLA) Fit Range (matched)
1-T 0.04 - 0.09 0.04 - 0.30
C 0.08 - 0.16 0.08 - 0.72
Briax 0.02 - 0.04 0.02-0.24
Bsum 0.06 - 0.08 0.06 - 0.24
pu 0.03 - 0.06 0.03-0.30
DPurham 0.015 - 0.16

Table 6.11: Fit range for the observables in pure NLLA and matched NLLA fits.
The observable DP“rham hag not been used for pure NLLA fits, since no fit range
can be found, where the resummed logarithms dominate the predictions (see text).

The weighted average of a,(M?) for the 5 observables is

a,(M2) = 0.116 + 0.006

which is in excellent agreement with the average value for the O(a?) fits of
as(M?) = 0.1168 % 0.0026.

Observable  «,(M2)  Aa,(exp.) Acg(had.) Ac,(scal.) Acag(tot.) x?/ng
1-T 0.120 +0.001 +0.004 +0.004 £0.006  0.59

C 0.116 +0.002 +0.003 +0.004 £0.006  0.53

Brax 0.111 +0.004 +0.003 +0.002 +0.006  2.37

Bsum 0.116 +0.003 +0.004 +0.002 +0.006 1.24

pu 0.117 +0.004 +0.006 +0.004 +0.009  0.43

average 0.116 + 0.006 X2 ng =12/4 pet = 0.71

Table 6.12: Results for the o (M?) fits in pure NLLA for the individual observables
together with the individual sources of uncertainties and the x*/ng for the NLLA
fits. The total error on o, (M?2) listed, is the quadratic sum of the experimental error
(statistical and systematic uncertainty), the uncertainty due to the hadronization
correction and the uncertainty due to the scale dependence of o, (M?2). Also listed is
the weighted average of «;(M?) for the 5 observables together with the x*/ng for
the averaging procedure and the correlation parameter p.g. The x? corresponds to
the value before readjusting according to Eq. 6.4.
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6.6.2 Measurement of a;(Mz) using NLLA predictions
matched with O(a?)

The choice of an appropriate fit range for the matched NLLA and O(a?) predic-
tions turns out to be nearly as difficult as for the O(a?) predictions with a fixed
renormalization scale value. In general, a stability of «,(M2) with respect to the
variation of the fit range cannot be achieved. Figure 6.16 shows the a,(M?2) values
obtained from fits applying the In R matching scheme to all three bin intervals of
the 1 — T distribution as introduced in Section 6.4.2 for the «, measurements in
O(a?). Stability of oy with respect to a variation of the fit range cannot be ob-
served. The observed change of ¢, is large in particular within the two-jet region,
where the ratio of contributions from the resummed and the fixed order part of
the predictions changes rapidly. The problem of the stability of various theoretical
predictions including also power corrections obtained from the energy dependence
of shape observables is subject of an ongoing detailed analysis [111].

The matching procedure has originally been designed to obtain improved predictions
over the whole kinematical range covered by NLLA and O(c?) predictions. In order
to study the viability of this conjecture, the fit range has been chosen as the combined
fit range for the pure NLLA and the O(c?) fits. The results for the individual
observables in the In R matching scheme are listed in table 6.13.

The ay(M?2) measurements from the individual observables are consistent with each
other within their uncertainties. The additional uncertainty due to the matching
ambiguity has been estimated as the maximum difference of o (M?) in the In R
matching scheme and the two alternative matching schemes, R and R — Gg;. The
dependence on the choice of Y4, i.e. the value of the upper kinematic limit for the
shape observables used for the redefinition of the resummed logarithms according
to Eq. 3.57, has been studied by repeating the fits with the value of Y,,,; being
reduced by 10 %. The resulting variation in a,;(M2) has been found to be small, the
maximum change is about 1 %.

The average value of a,(M?) in the In R matching scheme is
a,(M2) = 0.119 + 0.005

which is in agreement with the average value for the O(a?) fits of
s (M2) = 0.1168 % 0.0026.

Looking at the individual fit results, one finds from the x?/ng4 that most of the
shape distributions cannot be successfully described in a fit range expected to apply
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Figure 6.16: ag(M?2) in matched NLLA and O(a?) precision for the 1 —T distribution
in dependence on the fit range. Fits in the In R matching scheme have been performed
for three bin intervals of the 1 — T distribution. The symbols show the results of the
a,(M?) measurements, and the horizontal bars indicate the fit ranges applied. The
vertical bars represent the uncertainties from the fits.
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Observable «;(M?2) Aas(exp.) Aag(had.) Aag(scal.) Aagmat.) Aag(tot.) x*/ng

1-T 0.124  +0.002  +0.003  £0.004 +0.003 +£0.007 9.5
C 0.120 +0.002  +0.002  £0.004 +0.004 £0.007 15.2
Binax 0.113 +0.002  +0.002  £0.003 +0.003 £0.005 8.4
Bsum 0.122  +0.002  +0.003  £0.004 +0.005 £0.008 11.9
pu 0.119 +0.002  +0.002  £0.003 +0.005 £0.007 1.33
DDurham 0.121  +0.001  +0.002  £0.002  +0.005 £0.006 1.70
average 0.119 £ 0.005 X2 /g =23/5 per = 0.57

Table 6.13: Results of the QCD fits in the In R matching scheme for the individ-
ual observables together with the individual sources of uncertainties and the x?/ng4
for the a,(M?) fits. The total error is the quadratic sum of the experimental error
(statistical and systematic uncertainty), the uncertainty due to the hadronization
correction, the uncertainty due to the scale dependence of as(M2) and the uncer-
tainty due to the matching ambiguity. Also listed is the weighted average of a,(M?2)
for the 6 observables together with the x*/ng for the averaging procedure and the
correlation parameter p.g. The x? corresponds to the value before readjusting ac-
cording to Eq. 6.4.

for the combined theory. The ay(M?2) values are higher than for the fits in pure
NLLA for all observables considered. In the case of 1 — T, C and B,,,, the measured
as(M?) values are even above the values for both the pure NLLA fits and the O(a?)
fits using experimentally optimized scales, where one might expect the matched
predictions to be a kind of ‘average’ of the individual theories.

In order to investigate this result further it is instructive to compare the theoretical
predictions of the shape distributions for the different methods with the data distri-
butions. Fig. 6.17 shows experimental distributions for 1 — 7" and C' in comparison
with the fitted curves for three different types of QCD fits, namely O(ca?) using
experimentally optimized scales, O(e?) using a fixed renormalization scale z, = 1

and the fits in the In R matching scheme.

For the fits in O(a?) using experimentally optimized scales, the data are described
well over the whole fit range. For the fits in O(a?) using a fixed renormalization
scale value and for the fits in the In R matching scheme, only a poor description of
the data is achieved and the slope of both curves show a similar though less distinct
systematic distortion with respect to the data. In the case of O(a?) applying z,, = 1
the distortion arises from the wrong choice of the renormalization scale. Since the
scale value for the matched predictions is also chosen to be z, = 1, the similarity
of the curves indicates that the subleading and non-logarithmic terms originating
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from the O(a?) part of the matched theory and introduced using the scale value
z, = 1 distort the In R predictions. It should be noted that the matched theory
requires a renormalization scale value of O(1). Unlike the O(a?) case, 2 parameter
fits in o (M2) and z,, do not converge for most of the observables; for such low scale
values as in O(a?) the data can not be described at all in the matched theory.

It seems that the combination of all orders resummed predictions and terms only
known in O(ca?) results in a systematic shift in «,(M2) due to the impossibility
of choosing an appropriate renormalization scale value. The comparison of the fit
curves in Fig. 6.17 suggests, that the distortion of the fit curves observed the for
theoretical predictions in O(«?) with z, = 1 propagates into the matched prediction
due to a mismatch of the different renormalization scale values required for NLLA
and O(a?) predictions.

Although the average values for the O(a?) fits, the fits in pure NLLA and the fits in
the In R matching scheme agree within the uncertainties, the matched results should
be considered to be less reliable than those of the O(a?) and pure NLLA analyses
due to the systematic deviation of the prediction to most of the data distributions
(see e.g. Figure 6.17 and Table 6.13) and the inherent dependence of the result on
the arbitrary choice of the fit range.
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6.7 Correction for Heavy Quark Mass Effects

Studies of the influence of quark mass effects on jet cross-sections [112] have shown
that these effects can be important in the study of event shape observables and hence
in the measurement of the strong coupling. For a natural mixture of quark flavours,
the influence of the quark masses on the measurement of a;(M?2) from event shapes
is expected to be ~ 1% [113].

In order to derive a high precision value of a;(M?), the O(a?) measurement with

experimentally optimized scales has been refined by considering the influence of b
quark mass effects in leading order:

1 d%0(Y,cosdr)

p— = a, (i) - A(Y 1+Am]+a,2(u?)- B(Y, 14
oV dsostn = ) AY; cosVr)[1+Am] 4@ (47)-B(Y, cos I, 2) (6:14)

where

Z d*c,(Y,cosbr)/ Z o4

Am — qymb;£0 qymb;£0 _ 1 (615)
Z d*a,(Y,cosbr)/ Z o
g,mp=0 q,mp=0

The coefficients Am for the 18 observables studied have been computed numerically
[114] for two different definitions of the b—quark mass: The b pole mass of M, =~
4.6 GeV/c? and the b running mass at the Mz, my(Mz) ~ 2.8 GeV/c? [112]. All
definitions of the quark mass are equivalent to leading order; differences are entirely
due to higher orders in «.

Figure 6.18 [115] shows the ratio of theoretical predictions of the 3-jet rate for
b — quark events with respect to light quark events

bl __ nget/rb
5 =
1—‘éjet/l—‘l

(6.16)

for different jet algorithms. I'j;, and I'? denote the 3-jet and the total decay width
of a ZY into a quark pair of flavour ¢, with [ = u,d, s indicating the average over
all light flavours. Shown are the LO and the NLO predictions for the pole mass M,
and the running mass my(Mz) definition of the b-quark mass.
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Figure 6.18: Ratio of theoretical predictions for the 3-jet rate for b — quark events
with respect to light quark events for the EM, E, Jade and the Durham algorithm
[115].
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For the Durham and the Jade algorithm, which have both been used within this
analysis, the NLO predictions for both definitions of the b — quark mass are in be-
tween the LO predictions for almost the whole kinematical range. This behaviour
is generally expected for all observables with moderate and small NLO corrections
[116]. In combination with the small influence of the quark mass effects on the deter-
mination of a;(M?2) for a natural mixture of quark flavours, the LO approximation
for the estimation of these influences seems to be appropriate.

For the jet rates determined from the E and the EM algorithm (for a definition
of these algorithms see for example [115]) the deviations of the NLO predictions
with respect to the LO predictions are larger (see Fig. 6.18). Both algorithms have
however not been used within this analysis. In particular the E algorithm is known
for the poor reliability of the theoretical predictions. In reference [117] it has been
found, that there are very large deviations between the Monte Carlo predictions
on the hadron level with respect to the parton level. The NLO correction to the
perturbative prediction for example can be as large as 90% of the LO prediction. Also
the shift in the resolution parameter y.,; produced by the quark mass is positive,
whereas from kinematical arguments a negative effect is expected, since massive
quarks radiate less gluons than massless quarks [115].

as(M?) has been determined applying both the pole and the running mass definition.
The average of a;(M?2) derived from both definitions has been taken as the central
value, and half the difference has been taken as an estimate of the uncertainty due
to higher order mass effects. The results for the individual observables are listed in
table 6.14. For a graphical view of the results obtained for a,(M?) see also Fig. 6.19.

The weighted average of a,(M?2) for O(a?) predictions including quark mass effects
is

s (M2) = 0.1174 £ 0.0026

corresponding to an average shift of Aa,(M2) = +0.0006 with respect to the result
from the massless predictions.
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Observable as(M?) as(M?) shift Aca; (Mass) Aca; (Tot.)
EEC 0.1145 0.0003 £ 0.0001 £ 0.0028
AEEC 0.1149 -0.0001 + 0.0001 £ 0.0111
JCEF 0.1180 0.0011 =+ 0.0007 £ 0.0018
1-T 0.1136 0.0004 £ 0.0001 £ 0.0036
O 0.1184 0.0013 £ 0.0006 =+ 0.0057
C 0.1156 0.0003 £ 0.0002 £ 0.0036
Baax 0.1223 0.0008 £ 0.0002 + 0.0041
Bsum 0.1144 0.0006 £ 0.0003 £ 0.0053
Pu 0.1216 0.0001 £ 0.0001 £ 0.0060
Ps 0.1160 -0.0001 £ 0.0001 £ 0.0029
PD 0.1196 0.0024 £ 0.0008 £ 0.0039
DEO 0.1165 0.0000 £ 0.0002 + 0.0044
DO 0.1207 -0.0003 £ 0.0002 £ 0.0033
DY 0.1186 -0.0001 £ 0.0001 + 0.0046
Djade 0.1182 0.0013 £ 0.0005 + 0.0041
DPurham 0.1172 0.0003 £ 0.0003 £ 0.0026
Dgeneva 0.1216 0.0038 £ 0.0013 £ 0.0310
Dgambridee 0.1176 0.0012 + 0.0006 + 0.0026

average

0.1174 + 0.0026

X*/ng = 6.60 / 17

Peft = 0.615

Table 6.14: Results of the refined O(ca?) measurement of o, (M?) including b quark
mass effects in leading order. The central value of a,(M?) quoted is the average
of a; derived from applying the b pole mass M, and the b running mass my(Myz)
definition. Also given is the shift of a;(M2) with respect to the massless prediction.
Aas(Mass) = |as(Mp) — as(my(Mz))| /2 has been taken as an estimate of the un-
certainty due to quark mass effects of higher orders. The total error displayed is
the quadratic sum of the experimental uncertainty, the hadronization uncertainty,
the scale uncertainty and the uncertainty due to quark mass effects. The x? given,

corresponds to the value before readjusting according to Eq. 6.4.
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Figure 6.19: a,(M?2) from the refined O(o?) fits applying experimentally optimized
scales including quark mass effects in leading order for 18 oriented event shape
distributions. The error bars indicated by the solid lines are the quadratic sum of
the experimental and the hadronization uncertainty. The error bars indicated by
the dotted lines include also the additional uncertainty due to the variation of the
renormalization scale due to scale variation around the central value z{* in the
range 0.5 - 757 < z, < 2- 25, Also shown is the correlated weighted average (see
text). The x*-value is given before readjusting according to Eq. 6.4.
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6.8 The Role of the Jet Cone Energy Fraction

Among the observables studied, the Jet Cone Energy Fraction (JCEF) [40] naturally
reveals some superior properties. First, the size of the hadronization correction is
extremely small, with an average correction within the applied fit range of about
3.5%, the JCEF has the smallest hadronization correction from all observables
considered.

The scale dependence of a,(M?) derived from JCEF is very small. Both the exper-
imental and the theoretical uncertainties are smallest for the o;(M?) measurement
from the JCEF distribution.

The second order contributions to the cross-section are also very small. Within
the applied fit range, the average ratio of the second to first order contributions
is (ryro) ~ 25% if z, is fixed at 1 and only (ryro) ~ 6% if the experimentally
optimized scale value is applied. This indicates a good convergence behavior of the
corresponding perturbative series.

Table 6.15 shows a summary of o, measurements from the JCEF distribution for
the different methods studied. The a;(M?2) value determined from the fit applying
an experimentally optimized renormalization scale value is in excellent agreement
with the result obtained from the fits applying the ECH and the PMS renormal-
ization sale optimization criteria. Also for the Padé Sum estimate and the O(a?)

prediction a,(M?2) T,  X*/ng
O(a?) exp. opt. scale 0.1169 = 0.0017 0.0820 1.05
ECH/FAC 0.1169 + 0.0017 0.2189  2.75
PMS 0.1168 + 0.0017 0.1576 1.91
Padé Sum (fixed scale) 0.1169 £+ 0.0015 1.0 3.05
Padé O(c3) (fixed scale) 0.1169 +0.0016 1.0 3.12
Padé Sum (fixed scale) 0.1169 £+ 0.0015 1.0 3.05
Padé O(a3) (exp. opt. scale) 0.1164 4+ 0.0015 0.1814  2.45
O(a?) (fixed scale) 0.1191 +£0.0024 1.0 7.7
O(a?) exp. opt. scale 0.1180 + 0.0018

+ LO quark mass effects

Table 6.15: Summary of as(M?) measurements from the oriented distribution of the
Jet Cone Energy Fraction (JCEF).
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prediction in Padé Approximation a perfect agreement is obtained. Due to the re-
duced renormalization scale dependence of the predictions in Padé Approximation,
the difference of a,(M?2) obtained with an experimentally optimized scale value and
with z, =1 is only about a few per mille.

It should be noted that the PMS and ECH methods are a prior: unrelated with
the predictions of the Padé Approximation. The PMS and the ECH approach are
based on the renormalization group and attempt to minimize the contributions from
the higher order perturbative predictions. The Padé Approximation does not use
renormalization group ingredients but is considered to resum rapidly growing higher
order terms of the perturbative expansion. According to reference [107], a good
numerical agreement between these different predictions should be considered as
strong evidence that the predictions from both approaches are correct.

Fits applying experimentally optimized renormalization scale values involve no the-
oretical assumptions at all. They simply try to seek the renormalization scheme
which yields an optimal description of the experimental data. The coincidence of
as(M?) from the two parameter fit to the data with the results from the theoretical
approaches supports the conclusion that the theoretical uncertainties of the o, (M?)
measurement from the JOCEF distribution due to higher order contributions are
indeed very small.

The O(a2) fit of o (M2) applying a fixed renormalization scale value z, = 1 clearly
fails to describe the data with x*/ng = 965/125. However, even for this method,
the deviation of a;(M?) from the value obtained using the experimentally optimized
scale value is only about 2 %, wich again demonstrates the remarkable stability of
the theoretical prediction with respect to the variation of the renormalization scale.

All other approaches yield nearly identical a; values within a few per mille. The
deviation of the «; values derived from the different methods, which can serve as
an estimate of the theoretical uncertainty due to missing higher order terms [88],
is clearly smaller than the uncertainty of £0.0008 derived from the variation of
the renormalization scale value. Due to the outstanding qualities of this observable,
the JCEF is considered as best suited for a precise determination of o, (M?2). After
correcting the measured value for heavy quark mass effects, the final result for this
observable is

as(M2) = 0.1180 = 0.0006(exp.) = 0.0013(hadr.) = 0.0008(scale) = 0.0007(mass).



Chapter 7

Summary

From 1.4 Million hadronic Z° decays recorded with the DELPHI detector and repro-
cessed with improved analysis software, the distributions of 18 infrared and collinear
safe event shape observables have been precisely measured at various values of the
polar angle ¥1 of the thrust axis with respect to the beam direction. The Y1 de-
pendence of all detector properties has been taken fully into account to achieve
an optimal experimental precision. In order to compare with QCD calculations in
O(c?), hadronization corrections are evaluated from precisely tuned fragmentation
models.

The precise data are used to measure a;(M?2) applying a number of different methods
described in the literature. The most detailed studies have been performed in second
order pertubative QCD. Fits taking explicit account of the «; dependent event
orientation as predicted by QCD with experimental acceptance corrections less than
~ 25% and hadronization corrections less than ~ 40% yield the result that the data
can be surprisingly well described in O(a?) by using a common value of ay(M?2)
with a small uncertainty.

The consistency of the individual a,;(M?) values determined from the 18 oriented
event shape distributions is achieved by using the so-called experimentally optimized
scales, i.e. the particular values of the renormalization scale =, have been determined
from the fits to of the individual observables. The significance of the fits is improved
due to an improved statistical and systematical accuracy.

The precise experimental data are fully consistent with the expectation from second
order QCD. The spread of the a;(M?) measurements in O(a?) perturbation theory
does not require to introduce any additional theoretical uncertainty like for example
due to a variation of the renormalization scale. Thus, the consistency of the indi-
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vidual measurements does not rely on controversial assumptions about theoretical
uncertainties due to the renormalization scale dependence of the perturbative series.

For most of the investigated observables the scale dependence of ¢, is very small in
the vicinity of the experimentally optimized scale value. The quoted error of a(M?2)
includes an uncertainty due to a variation of the experimentally optimized scale value
in the range between 0.5- 23 and 2.-z{?. Taking account of the correlation among
the observables an average value of a,(M2) = 0.1168 £ 0.0026 is obtained from the
data.

An analysis with a fixed renormalization scale value of z, = 1 yields an unaccept-
able description of the data for many observables and leads to a wide spread of
the individual o, (M?) values. In contrast to fits applying experimentally optimized
scales, the stability of the a, values with respect to the choice of the fit range is
in general poor. For many observables the slope of the theoretical predictions does
not fit the data neither in the region dominated by 2-jet events nor in the region
dominated by 3-jet events. Similar discrepancies of fit curves with respect to the
slope of the data can be observed from an examination of figures presented in pre-
vious publications (see for example [85]). Due to the improved accuracy of the data,
systematic differences between the O(a?) analysis using experimentally optimized
and fixed renormalization scale values z, = 1 become significant.

To check the reliability of the o, results obtained from the experimentally optimized
scales three further approaches for choosing an optimized value of the renormal-
ization scale have been investigated: The principle of minimal sensitivity (PMS),
the method of effective charges (ECH), and the method of Brodsky, Lepage and
MacKenzie (BLM). The weighted averages of o from the three methods are in ex-
cellent agreement with the weighted average of oy obtained from the experimental
optimization, but their scatter is larger. It is largest for BLM. A significant cor-
relation between the renormalization scale values evaluated with ECH and PMS

with the experimentally optimized scale values is observed. No such correlation is
observed for the BLM scales.

Further approaches to estimate the influence of higher order contributions to the
perturbative QCD series are based on Padé approximants. The [0/1] Padé approxi-
mant has been used as an estimate of the sum of the perturbative series as well as
for the extrapolation of the unknown O(a?) coefficients for the 18 distributions. In
both studies the renormalization scale has been set to z, = 1. The renormalization
scale dependence of a;(M2) obtained from the Padé predictions is largely reduced,
in particular for the Padé sum prediction. A similar observation has been made in
[107] from an analysis of theoretical predictions for the Bjorken sum rule in deep
inelastic scattering. The average values of a;(M?) obtained from the PA and the PS
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predictions are both consistent with the average value from the experimental scale
optimization in O(a?).

Beside the above mentioned determinations of oy (M?2) in fixed order perturbation
theory, a further cross check has been performed by applying predictions in all orders
resummed next-to-leading logarithmic approximation (NLLA). In a first step, pure
NLLA predictions have been confronted with the data in a limited fit range where
the ratio of the resummed next-to-leading logarithms to the non-exponentiating
O(a?) contributions is large. Good agreement between the average value of a,(M?2)
obtained from the pure NLLA fits with a renormalization scale value z, = 1 and
the O(a?) fits using experimentally optimized scales has been obtained.

In a further step NLLA matched to O(a?) calculations have been applied. The qual-
ity of the fits to different observables is in general quite poor. For many observables
the x?/ng is unacceptable. The stability of the fits with respect to a variation of
the fit range is in general poor in comparison with O(ca?) fits with experimentally
optimized renormalization scale values. Compared with O(c?) fits applying z, = 1,
the stability is somewhat improved. The ¢, values from all investigated observables
are systematically higher, the average value of a;(M?) determined in matched NLLA
and O(a?) theory is however still consistent with the O(a?) result.

For the distributions of 1 — T and C' a detailed comparison of the matched NLLA
predictions with the high precision data has been performed. It has been shown that
the trend of the data deviates in a systematic fashion from the predictions of the
matched theory. The distortion of the fit curves with respect to the data observed
has the same shape as for the O(a?) fits applying z, = 1. The size of the deviations
is however somewhat reduced. The observation suggests, that the deviations ob-
served for the O(a?) predictions applying an improper renormalization scale value
propagate also into the matched NLLA predictions. A comparison with the pub-
lished results from previous analyses [9, 85| shows, that the deviations observed are
similar to those observed before. The significance of the fits presented within this
analysis is however largely improved. The x?/ng for the matched NLLA fits to the
thrust distribution increases for example from x*/ng = 2.3 in [110] and x?/ng =
3.4 1in [9] to x?/ng = 9.5, corresponding to a probability P = 3.2-107%° within the
present analysis.

The «, average values derived from the different approaches considered are in very
good agreement. The O(c?) analysis applying a simultaneous fit of o, and z,, to the
experimental data yields superior results in all respects.

The influence of heavy quark mass effects on the measurement of o, (M2) has been
studied. The weighted average of a,(M2) from the O(a?) measurements using ex-
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perimentally optimized renormalization scale values and corrected for the b — mass
to leading order yields

as(M2) = 0.1174 =+ 0.0026.

Among the observables studied, the Jet Cone Energy Fraction (JCEF) [40] reveals
some superior properties. The size of the hadronization correction as well as the
second order contribution to the cross-section and the are very small. The latter
indicates a good convergence behavior of the corresponding perturbative series. Ad-
ditionally, the renormalization scale dependence of a,;(M?2) derived from JCEF is
very small. Fits in O(a?) applying an experimentally optimized scale value, PMS
and ECH scale values as well as fits in O(a?) Padé approximation with fixed and ex-
perimentally optimized renormalization scale values and fits applying the Padé sum
prediction yield almost identical values for a,(M?2). In correspondence, both experi-
mental and theoretical uncertainties are smallest for the a;(M?) measurement from
the JCEF distribution.

After correcting the measured o,(M?) value for heavy quark mass effects, the final
result derived from an O(c?) fit to the JCEF distribution by applying an experi-
mentally optimized renormalization scale value yields

as(M2) = 0.1180 = 0.0006(exp.) = 0.0013(hadr.) = 0.0008(scale) = 0.0007(mass).

The result is in very good agreement with the recent PDG world average value of
as(M?) = 0.1185 £ 0.0020 [118]. Compared with other recent precision measure-
ments of ay(M?2), there is very good agreement with the determination of a,(M?2)
= 0.1174 + 0.0024 from Lattice Gauge Theory [119] and the recent result from an
NNLO analysis of ep deep inelastic scattering data of ay(M2) = 0.1172 £ 0.0024
[120]. The result is also in good agreement with the result from the LEP elec-
troweak working group of a,(M2) = 0.119 + 0.004 [1] from the standard model fit
to the full set of electroweak precision data. Compared with the most recent result
from spectral functions in hadronic tau decays, «; is smaller than the central value of
as(M2) = 0.1219+0.0020 quoted in [89], but in very good agreement with the value
of a,(M2) = 0.1177 £ 0.0010 derived in [121] by considering the renormalization
scheme invariance of the NNLO prediction and with a,(M2) = 0.1169 + 0.0017 de-
rived in [89] by using an alternative analysis method considering renormalon chains.



Chapter 8

Discussion and Outlook

With the present analysis it has been demonstrated for the first time that the spread
of the a,;(M2) measurements from a large number of observables in O(a?) pertur-
bation theory can be understood without assuming theoretical uncertainties due to
a variation of the renormalization scale.

For most of the observables and in particular for the jet cone energy fraction a
very good agreement of the a;(M?2) values derived by applying experimentally op-
timized renormalization scale values and by applying the theoretically motivated
renormalization scheme optimization approaches is observed. The renormalization
scale values obtained by applying the different approaches are strongly correlated.
This observation strongly suggests the importance of a renormalization group in-
variant expansion of perturbative series in QCD.

Diagonal Padé Approximants [N/N + 1] have been proven to be exactly renormal-
ization scale invariant in the limit where the §—function is dominated by the one
loop contribution [105]. Beyond the one loop approximation, this invariance is almost
completely conserved, since in QCD the one loop running of the coupling is dominant
[105]. It should be emphasized that the predictions obtained by Padé Approximants
are a priori unrelated with the predictions of the PMS and ECH approaches. There-
fore the good agreement between the results obtained by the Padé predictions with
those obtained by predictions utilizing renormalization group considerations further
supports the relevance of a renormalization group invariant perturbative expansion.

In the analysis of event shape observables in matched NLLA and O(a?) precision
within the MS renormalization scheme only a very poor description of the high
precision data can be obtained. Another problem arises due to the poor stability
of a,(M?) with respect to the variation of the fit range. The NLLA analysis is
however hampered by the fact that with the currently available calculations neither
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the renormalization scheme dependence can be parameterized nor a resummation in
terms of renormalization group invariants is available.

It should be noted that in NLLA no optimization is achieved by simply performing
a combined fit of the strong coupling and the renormalization scale. This has been
recognized within the OPAL analysis of event shape observables applying the In R
matching scheme [110], where fits applying z, = 1 have been compared with fits
considering z, as a free parameter. It has been found, that the description of the
data is slightly improved if z, is fitted. This is however expected simply do to the
additional free parameter. In contrast to measurements in O(ca?) the scatter of the
individual measurements is largely increased if z,, is fitted. A simple mean value cal-
culated from all observables studied yields a,(M?2) = 0.121 + 0.007 if the scale value
is fixed to z, = 1 but a,(M2) = 0.126 £+ 0.021 if z, is fitted. The main difference
between the available predictions in O(a?) and NLLA predictions is however, that
in O(a?) the renormalization scale completely parameterizes the renormalization
scheme dependence, suggesting the major importance of this feature.

Thus, a re-examination of the theoretical predictions in NLLA with respect to the
renormalization scheme dependence is strongly suggested. That this is not a principal
problem has already been demonstrated in [6] by the resummation of the (during
that time incomplete) NLLA prediction of the 2-jet rate in the Durham scheme.

The importance of renormalization group improved perturbative predictions in
higher orders perturbation theory has been demonstrated for example with the
study of theoretical predictions for the Bjorken sum rule [107]. Within this anal-
ysis, it has been found that the MS scheme prediction with y = @ yields rather
scheme dependent results and is considered as a not well behaved renormalization
scheme. In contrast the PMS and ECH schemes turn out to be well behaved as
well as the Padé prediction. Using the available data from polarized deep inelastic
scattering, a;(3GeV?) has been determined by applying the ECH renormalization
scheme. Evolving o, to My yields o, (M2) = 0.1171005% (exp.) £ 0.002(theo.), which
is in perfect agreement with the result obtained in the present analysis. The result
that would have been obtained from an «, determination in the MS scheme is
as(M?) = 0.123 [107], which is outside the theoretical error range quoted by the
authors.

In [121] a new approach for an renormalization scheme invariant (RSI) measurement
of the strong coupling is introduced. The RSI approach is used to determine ¢, from
the measured data from the 7 hadronic decay. The corresponding effective 3 function
is found to converge reasonably well. The resulting value for the strong coupling is
as(m;) = 0.3184 £0.0060(exp.). The value is in very good agreement with the value
of as(m,) = 0.314 £ 0.010 obtained in [122] by applying the Padé Sum prediction.
Evolving «, to My yields a,(M2) = 0.1177 £ 0.0007(ezp.) + 0.0006(mass.) to be
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compared with the result obtained by applying the standard MS scheme extraction
of ay(M?) = 0.1202 £+ 0.0008(ezxp.) + 0.0006(mass.). Thus, the shift obtained in
a,(M?) by considering the renormalization scheme invariance for the measurement
of the strong coupling yields an almost identical value than that obtained within
this analysis.

For the application of the RSI method in ete™ annihilation the shift in «, is expected
to be smaller due to the better convergence behaviour of the perturbative series at
higher energies [123]. Thus, the already very good agreement between the o (M?2)
value determined within this analysis in NLO precision with the value of ay(M?2)
= 0.119 £+ 0.004 obtained in NNLO precision from from the standard model fit to
the electroweak precision data [1] is likely to improve if the RSI method is applied
to the NNLO analysis.

The results of the a,(M2) measurements applying optimized renormalization
schemes introduced above including the result of the present analysis agree within
1%, although they involve measurements from different processes at very differ-
ent energy scales. The agreement is in particular better than the uncertainty of
Aay(Mz) = £0.002 of the current PDG world average [118] which is however de-
rived to a large extent from measurements applying the conventional «; extraction
within an arbitrary renormalization scheme.

The results considered above strongly suggest an improvement of the consistence of
the a,(M?2) determination from different processes if renormalization scheme invari-
ant methods are applied. It should be emphasized here that renormalization group
invariance is a fundamental property of perturbation theory in quantum field theory
which should be respected in any numerical analysis [121].
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Appendix A

Figures of the Data Distributions

In the following the figures of the eighteen collinear- and infrared- safe event shape
distributions are presented.

The data are based on about 1.5 million events recorded at /s = My with the
DELPHI detector in 1994. The distributions are corrected for detector effects, 7
background and initial state photon radiation. The corrected cross sections corre-
spond to the charged final state before decays.

For each of the observables the measured distribution is shown integrated over ¥r
and acceptance corrected to the full solid angle. The central part of the figures
show the data distributions in comparison with the prediction from four different
hadronization generators: JETSET 7.3 PS D with DELPHI modification of heavy
particle decays, JETSET 7.4 PS, ARIADNE 4.8 and HERWIG 5.8 C. For each ob-
servable, the fit range applied for the QCD analysis in O(c?) is indicated. The lower
part of the figures shows the ratio (Monte Carlo - Data)/Data for the four hadroniza-
tion generators. The width of the band indicates the size of the experimental errors.
The upper part shows the detector correction including effects due to initial state
radiation. The part just below shows the size of the hadronization correction. The
width of the band indicates the uncertainty of the correction.
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Appendix B

Tables of the Data Distributions

In the following the data tables of the collinear- and infrared- safe event shape
distributions are presented as a function of the polar angle ¥7 of the thrust axis
with respect to the eTe™ beam direction as well as integrated and extrapolated to
the full solid angle. The data are based on about 1.5 million events recorded at
V'8 = Mz with the DELPHI detector in 1994.

The double differential cross sections for the shape observables Y in dependence
on the event orientation cos ¥ have been determined from charged particles only
within 8 bins of 0.0 < cos ¥ < 0.96. The data distributions are corrected for detector
effects, 7 background and initial state photon radiation. The corrected cross sections
correspond to the charged final state before decays.

All distributions are normalized to the partial cross section in each cos ¥t interval:

do >_1 d?o (Y, cos )

Y, =
R(Y, cos V1) (d cos U dY dcos9r

(B.1)

For each of the observables there is also one column, which contains the data in-
tegrated over ¥r and acceptance corrected to the full solid angle. The first error
displayed is statistical, the second error represents the experimental systematic un-
certainty.
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B. Tables of the Data Distributions

Energy Energy Correlation EEC

x(deg) 0.0 < cosdr < 0.12 0.12 < cosdr < 0.24 0.24 < cosdr < 0.36
0.0- 3.6 0.8101 =+ 0.0024 =+ 0.0120 0.8095 =+ 0.0025 = 0.0081 0.8144 4+ 0.0032 = 0.0070
3.6- 7.2 1.1836 =+ 0.0029 = 0.0055 1.1845 = 0.0027 =+ 0.0035 1.1885 =+ 0.0026 =+ 0.0035
7.2- 10.8 0.8477 =+ 0.0021 =+ 0.0041 0.8464 =+ 0.0013 = 0.0027 0.8478 4+ 0.0019 = 0.0031
10.8 - 14.4 0.5997 = 0.0014 =+ 0.0030 0.5988 4+ 0.0012 = 0.0025 0.5959 =+ 0.0014 =+ 0.0026
14.4- 18.0 0.4354 =4 0.0013 =+ 0.0026 0.4317 4+ 0.0010 = 0.0021 0.4325 4+ 0.0011 =+ 0.0018
18.0- 21.6 0.3258 = 0.0008 =+ 0.0020 0.3243 =+ 0.0009 = 0.0019 0.3241 =+ 0.0010 =+ 0.0015
21.6 - 25.2 0.2538 £ 0.0008 = 0.0018 0.25640 =+ 0.0008 = 0.0014 0.2539 =+ 0.0008 =+ 0.0013
25.2- 28.8 0.2087 £ 0.0008 = 0.0015 0.2083 =+ 0.0008 = 0.0013 0.2084 = 0.0007 =+ 0.0012
28.8- 324 0.1777 £ 0.0007 = 0.0012 0.1778 =+ 0.0006 = 0.0010 0.17728 £ 0.00063 £ 0.00078
32.4- 36.0 0.1559 =+ 0.0007 = 0.0010 0.15465 £ 0.00061 + 0.00091  0.15489 + 0.00061 + 0.00074
36.0- 39.6 0.13747 £ 0.00062 £ 0.00073  0.13755 &£ 0.00056 £ 0.00082  0.13892 + 0.00060 + 0.00073
39.6 - 43.2 0.12583 £ 0.00057 &+ 0.00065 0.12553 + 0.00055 £ 0.00077  0.12411 £ 0.00060 £ 0.00087
43.2 - 46.8 0.11522 £ 0.00055 &+ 0.00063 0.11464 + 0.00053 £ 0.00077 0.11444 £ 0.00050 £ 0.00093
46.8 - 50.4 0.10727 £ 0.00053 & 0.00065 0.10676 + 0.00048 £ 0.00090 0.1060 =+ 0.0005 =+ 0.0011
50.4 - 54.0 0.10081 &£ 0.00052 &+ 0.00079  0.0997 =+ 0.0005 =+ 0.0010 0.0996 =+ 0.0005 =+ 0.0012
54.0 - 57.6 0.09475 £ 0.00051 + 0.00088  0.0950 =+ 0.0005 =+ 0.0011 0.0943 =+ 0.0005 =+ 0.0014
57.6- 61.2 0.0909 =+ 0.0005 = 0.0010 0.0904 = 0.0005 = 0.0012 0.0900 =+ 0.0004 =+ 0.0016
61.2- 64.8 0.0874 £ 0.0005 = 0.0012 0.0869 =+ 0.0005 = 0.0013 0.0869 =+ 0.0004 =+ 0.0016
64.8 - 68.4 0.0839 £ 0.0005 = 0.0012 0.0849 =+ 0.0005 = 0.0014 0.0837 =+ 0.0005 =+ 0.0016
68.4- 72.0 0.0825 =+ 0.0005 = 0.0013 0.0828 =+ 0.0005 = 0.0016 0.0813 =+ 0.0005 =+ 0.0017
72.0- 75.6 0.0807 =+ 0.0005 =+ 0.0014 0.0809 =+ 0.0005 = 0.0016 0.0794 =+ 0.0005 =+ 0.0017
75.6 - 79.2 0.0792 =+ 0.0005 =+ 0.0015 0.0800 =+ 0.0005 = 0.0016 0.0782 =+ 0.0005 =+ 0.0017
79.2 - 82.8 0.0796 =+ 0.0005 =+ 0.0016 0.0790 =+ 0.0005 =+ 0.0016 0.0790 =+ 0.0005 =+ 0.0018
82.8- 86.4 0.0795 £ 0.0005 = 0.0016 0.0786 = 0.0005 = 0.0017 0.0781 =+ 0.0005 =+ 0.0017
86.4- 90.0 0.0792 £ 0.0005 = 0.0017 0.0790 = 0.0006 = 0.0017 0.0783 =+ 0.0004 =+ 0.0017
90.0- 93.6 0.0803 = 0.0007 = 0.0017 0.0798 =+ 0.0006 = 0.0017 0.0791 = 0.0004 =+ 0.0017
93.6 - 97.2 0.0805 =+ 0.0007 = 0.0017 0.0824 =+ 0.0006 = 0.0017 0.0809 =+ 0.0004 =+ 0.0016
97.2 - 100.8  0.0840 =+ 0.0005 = 0.0017 0.0842 =+ 0.0006 = 0.0016 0.0826 =+ 0.0004 =+ 0.0016
100.8 - 104.4 0.0854 =+ 0.0007 = 0.0016 0.0853 =+ 0.0007 = 0.0014 0.0854 =+ 0.0004 =+ 0.0016
104.4 - 108.0 0.0891 =+ 0.0006 = 0.0013 0.0889 = 0.0007 = 0.0014 0.0875 =+ 0.0005 =+ 0.0015
108.0 - 111.6  0.0927 =+ 0.0007 = 0.0012 0.0921 =+ 0.0006 = 0.0012 0.0920 =+ 0.0005 =+ 0.0015
111.6 - 115.2  0.0975 =+ 0.0007 = 0.0010 0.0974 =+ 0.0006 = 0.0011 0.0967 =+ 0.0006 =+ 0.0014
115.2 - 118.8  0.1026 =+ 0.0007 = 0.0010 0.1028 =+ 0.0006 = 0.0010 0.1018 =+ 0.0005 =+ 0.0013
118.8 - 122.4  0.1093 =+ 0.0006 = 0.0010 0.10903 £ 0.00069 + 0.00080 0.1081 =+ 0.0006 =+ 0.0012
122.4 - 126.0  0.1174 =+ 0.0006 = 0.0010 0.11747 £+ 0.00064 + 0.00075 0.1157 =+ 0.0006 =+ 0.0011
126.0 - 129.6  0.1272 =+ 0.0007 = 0.0010 0.12629 £ 0.00065 £ 0.00076  0.12592 + 0.00059 + 0.00090
129.6 - 133.2  0.1382 £ 0.0009 = 0.0012 0.13817 £ 0.00069 £ 0.00091  0.13701 +£ 0.00077 + 0.00086
133.2 - 136.8  0.1526 =+ 0.0009 = 0.0014 0.1523 =+ 0.0009 = 0.0010 0.1521 =+ 0.0008 = 0.0011
136.8 - 140.4 0.1702 =+ 0.0009 = 0.0018 0.1707 =+ 0.0009 = 0.0011 0.1694 =+ 0.0007 =+ 0.0014
140.4 - 144.0 0.1924 =+ 0.0009 = 0.0019 0.1932 =+ 0.0009 = 0.0014 0.1914 4+ 0.0009 =+ 0.0015
144.0 - 147.6  0.2221 =+ 0.0010 = 0.0021 0.2201 =+ 0.0008 = 0.0017 0.2189 =+ 0.0010 =+ 0.0015
147.6 - 151.2  0.2593 =+ 0.0011 = 0.0023 0.25677 4+ 0.0011 = 0.0022 0.25666 =+ 0.0010 =+ 0.0017
151.2 - 154.8  0.3098 =+ 0.0013 = 0.0025 0.3071 &£ 0.0011 = 0.0023 0.3074 =+ 0.0011 =+ 0.0020
154.8 - 158.4 0.3750 =+ 0.0014 = 0.0027 0.3757 &£ 0.0011 = 0.0024 0.3747 4+ 0.0013 = 0.0023
158.4 - 162.0 0.4668 =+ 0.0015 = 0.0029 0.4645 =+ 0.0013 = 0.0025 0.4662 =+ 0.0015 =+ 0.0026
162.0 - 165.6  0.5979 =+ 0.0018 = 0.0030 0.5978 =+ 0.0016 = 0.0025 0.5970 =+ 0.0016 =+ 0.0029
165.6 - 169.2  0.7768 £ 0.0024 = 0.0032 0.7771 4+ 0.0021 = 0.0026 0.7777 4 0.0020 = 0.0031
169.2 - 172.8  0.9897 =+ 0.0026 = 0.0039 0.9906 =+ 0.0024 = 0.0027 0.9960 =+ 0.0022 =+ 0.0032
172.8 - 176.4 1.1131 =+ 0.0034 = 0.0048 1.1259 4+ 0.0029 =+ 0.0036 1.1277 4+ 0.0024 =+ 0.0033
176.4 - 180.0 0.6282 + 0.0038 = 0.0059 0.6291 = 0.0021 = 0.0045 0.63278 £ 0.0027 =+ 0.0027

Table B.1.a: Energy Energy Correlation EEC
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Energy Energy Correlation EEC

x(deg) 0.36 < cos¥r < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr < 0.72
0.0- 3.6 0.8157 =+ 0.0026 =+ 0.0062 0.8184 £ 0.0025 £+ 0.0053  0.8238 + 0.0022 + 0.0069
3.6- 7.2 1.1917 + 0.0024 = 0.0034 1.1937 £ 0.0020 &+ 0.0037  1.1983 &£ 0.0020 + 0.0058
7.2- 10.8 0.8522 4+ 0.0017 =+ 0.0032 0.8527 £+ 0.0016 £+ 0.0035 0.8547 + 0.0018 + 0.0042
10.8 - 14.4 0.5960 = 0.0012 =+ 0.0028 0.5986 &+ 0.0014 £+ 0.0027 0.5971 + 0.0013 & 0.0028
14.4- 18.0 0.4319 = 0.0010 =+ 0.0025 0.4336 £+ 0.0012 £+ 0.0020 0.4322 4+ 0.0010 & 0.0022
18.0- 21.6 0.3235 4 0.0009 =+ 0.0018 0.3220 £+ 0.0010 £ 0.0016  0.3242 + 0.0008 + 0.0018
21.6 - 25.2 0.2525 =+ 0.0008 = 0.0013 0.2537 £+ 0.0008 £+ 0.0013 0.2512 + 0.0007 & 0.0013
25.2- 28.8 0.2086 =+ 0.0007 = 0.0011 0.2079 £+ 0.0007 £+ 0.0011  0.2055 %+ 0.0007 & 0.0012
28.8- 324 0.1761 =+ 0.0006 = 0.0010 0.1754 £+ 0.0006 £+ 0.0010 0.1744 + 0.0006 + 0.0011
32.4- 36.0 0.15434 £ 0.00061 & 0.00082 0.1534 £ 0.0005 £ 0.0010 0.1523 £ 0.0005 £ 0.0013
36.0 - 39.6 0.13847 £ 0.00056 &+ 0.00077 0.1369 £ 0.0005 £ 0.0010 0.1361 £ 0.0005 £ 0.0015
39.6 - 43.2  0.12500 £ 0.00055 &+ 0.00091  0.1235 £ 0.0005 £ 0.0012  0.1239 £ 0.0005 £ 0.0018
43.2- 46.8 0.1141 =+ 0.0005 = 0.0011 0.1128 £+ 0.0005 £+ 0.0014  0.1132 £ 0.0005 & 0.0020
46.8 - 50.4 0.1057 =+ 0.0005 = 0.0013 0.1052 £+ 0.0004 £+ 0.0016  0.1045 £+ 0.0005 & 0.0021
50.4 - 54.0 0.0986 =+ 0.0005 = 0.0014 0.0989 £ 0.0004 £+ 0.0018 0.0982 £+ 0.0005 & 0.0021
54.0 - 57.6 0.0931 =+ 0.0005 = 0.0016 0.0930 £+ 0.0004 £+ 0.0018 0.0929 £ 0.0005 &+ 0.0020
57.6- 61.2 0.0889 £ 0.0005 = 0.0017 0.0894 £ 0.0004 £+ 0.0019 0.0880 + 0.0004 + 0.0020
61.2- 64.8 0.0857 £ 0.0005 = 0.0018 0.0858 £+ 0.0004 £+ 0.0020 0.0849 + 0.0004 + 0.0020
64.8 - 68.4 0.0830 =+ 0.0005 = 0.0018 0.0837 &+ 0.0004 £+ 0.0020 0.0824 + 0.0004 + 0.0020
68.4- 72.0 0.0810 =+ 0.0005 = 0.0018 0.0816 £+ 0.0004 £+ 0.0019  0.0800 + 0.0004 + 0.0018
72.0- 75.6 0.0793 =+ 0.0005 =+ 0.0018 0.0780 £+ 0.0004 £+ 0.0019  0.0787 &+ 0.0004 + 0.0017
75.6 - 79.2 0.0784 =+ 0.0005 =+ 0.0018 0.0782 £+ 0.0004 £+ 0.0018 0.0775 %+ 0.0004 + 0.0016
79.2 - 82.8 0.0780 =+ 0.0005 =+ 0.0018 0.0778 £+ 0.0004 £+ 0.0017 0.0769 &+ 0.0004 + 0.0015
82.8- 86.4 0.0787 £ 0.0005 = 0.0017 0.0779 £+ 0.0004 £+ 0.0016  0.0767 &+ 0.0004 + 0.0014
86.4- 90.0 0.0789 £ 0.0005 = 0.0016 0.0781 £+ 0.0004 £+ 0.0015 0.0769 %+ 0.0004 + 0.0013
90.0- 93.6 0.0803 = 0.0004 =+ 0.0016 0.0789 £ 0.0005 £+ 0.0014 0.0776 &+ 0.0004 + 0.0013
93.6 - 97.2 0.0811 =+ 0.0005 = 0.0016 0.0801 £ 0.0005 £+ 0.0014  0.0793 £ 0.0004 + 0.0012
97.2 - 100.8 0.0825 =+ 0.0005 = 0.0016 0.0818 £+ 0.0005 £+ 0.0013 0.0802 % 0.0004 + 0.0011
100.8 - 104.4 0.0845 =+ 0.0006 = 0.0015 0.0828 £+ 0.0005 £+ 0.0013 0.0833 &+ 0.0004 + 0.0011
104.4 - 108.0 0.0877 £ 0.0006 = 0.0015 0.0866 £+ 0.0005 £+ 0.0013  0.0858 + 0.0004 + 0.0011
108.0 - 111.6  0.0909 =+ 0.0006 = 0.0015 0.0898 £+ 0.0005 £+ 0.0014  0.0892 + 0.0005 & 0.0011
111.6 - 115.2  0.0939 =+ 0.0007 = 0.0015 0.0947 £+ 0.0005 £+ 0.0014  0.0929 + 0.0005 + 0.0012
115.2 - 118.8  0.1000 =+ 0.0007 = 0.0015 0.0997 £+ 0.0007 £ 0.0015 0.0993 £ 0.0005 + 0.0013
118.8 - 122.4  0.1072 £ 0.0007 = 0.0015 0.1060 £+ 0.0007 £+ 0.0015 0.1053 + 0.0005 + 0.0014
122.4 - 126.0  0.1157 =+ 0.0007 = 0.0014 0.1129 £+ 0.0007 £+ 0.0015 0.1123 + 0.0006 + 0.0016
126.0 - 129.6  0.1252 =+ 0.0007 = 0.0012 0.1240 £+ 0.0007 £+ 0.0015 0.1220 + 0.0006 + 0.0016
129.6 - 133.2  0.1362 =+ 0.0007 = 0.0011 0.1342 £+ 0.0007 £+ 0.0014  0.1334 & 0.0006 + 0.0017
133.2 - 136.8 0.1506 =+ 0.0008 = 0.0011 0.1484 £+ 0.0007 £+ 0.0011  0.1476 &+ 0.0007 &+ 0.0017
136.8 - 140.4 0.1698 =+ 0.0008 = 0.0011 0.1673 £+ 0.0006 £+ 0.0010 0.1655 %+ 0.0008 + 0.0017
140.4 - 144.0 0.1913 =+ 0.0008 = 0.0011 0.1899 £+ 0.0007 £+ 0.0010 0.1879 & 0.0008 + 0.0017
144.0 - 147.6  0.2209 =+ 0.0009 = 0.0016 0.2189 £ 0.0008 £+ 0.0013  0.2180 % 0.0009 + 0.0017
147.6 - 151.2  0.2565 =+ 0.0010 = 0.0018 0.2569 £+ 0.0008 £+ 0.0014  0.2540 % 0.0009 + 0.0017
151.2 - 154.8 0.3056 =+ 0.0010 = 0.0021 0.3067 £+ 0.0012 £+ 0.0019  0.3041 & 0.0009 £ 0.0021
154.8 - 158.4  0.3713 £ 0.0011 = 0.0026 0.3748 £+ 0.0013 £+ 0.0022 0.3726 + 0.0010 & 0.0024
158.4 - 162.0 0.4678 £ 0.0013 = 0.0028 0.4676 £+ 0.0014 £+ 0.0027 0.4673 &+ 0.0013 & 0.0030
162.0 - 165.6  0.5980 =+ 0.0018 = 0.0032 0.5978 £+ 0.0019 £+ 0.0032 0.6011 + 0.0015 + 0.0035
165.6 - 169.2  0.7779 £ 0.0023 = 0.0033 0.7804 £ 0.0023 £+ 0.0034 0.7849 + 0.0022 + 0.0042
169.2 - 172.8  0.9988 =+ 0.0029 = 0.0035 1.0029 + 0.0025 + 0.0035 1.0082 £ 0.0024 + 0.0047
172.8 - 176.4 1.1310 =+ 0.0033 = 0.0040 1.1382 £ 0.0027 + 0.0042  1.1457 &£ 0.0028 + 0.0038
176.4 - 180.0 0.6363 =+ 0.0024 = 0.0031 0.6368 &+ 0.0028 £+ 0.0024 0.6412 + 0.0029 + 0.0022

Table B.1.b: Energy Energy Correlation EEC
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B. Tables of the Data Distributions

Energy Energy Correlation EEC

x(deg) 0.72 < cosdr < 0.84 0.84 < cosdr < 0.96 0. <cosdr < 1.
0.0- 3.6 0.8440 =+ 0.0023 =+ 0.0104 0.8527 =+ 0.0033 = 0.0194 0.8214 =+ 0.0009 + 0.0098
36- 7.2 1.2040 + 0.0019 =+ 0.0079 1.1861 =+ 0.0029 =+ 0.0091 1.1937 = 0.0010 =+ 0.0051
7.2- 10.8 0.8545 = 0.0013 = 0.0050 0.8350 =+ 0.0021 =+ 0.0032 0.8513 =+ 0.0008 + 0.0034
10.8 - 14.4 0.5948 =+ 0.0010 =+ 0.0037 0.5810 =+ 0.0018 =+ 0.0035 0.5977 =+ 0.0005 + 0.0028
14.4 - 18.0 0.4294 =+ 0.0010 =+ 0.0020 0.4213 =+ 0.0013 =+ 0.0042 0.4323 =+ 0.0005 + 0.0022
18.0 - 21.6 0.3192 =+ 0.0009 =+ 0.0010 0.3139 =+ 0.0010 =+ 0.0043 0.3234 =+ 0.0004 + 0.0017
21.6 - 25.2 0.2500 = 0.0007 = 0.0010 0.2456 =+ 0.0008 = 0.0041 0.2525 =+ 0.0003 + 0.0014
25.2- 28.8 0.2034 = 0.0007 = 0.0012 0.2018 =+ 0.0007 =+ 0.0038 0.2073 =+ 0.0002 + 0.0010
28.8 - 324 0.1728 = 0.0005 = 0.0018 0.1717 4+ 0.0007 =+ 0.0032 0.1758 =+ 0.0003 + 0.0010
324 - 36.0 0.1518 = 0.0005 = 0.0021 0.1504 =+ 0.0007 =+ 0.0028 0.1537 =+ 0.0003 + 0.0010
36.0 - 39.6 0.1339 = 0.0005 = 0.0022 0.1332 =+ 0.0006 =+ 0.0023 0.1370 =+ 0.0002 + 0.0011
39.6 - 43.2 0.1218 = 0.0005 = 0.0023 0.1209 =+ 0.0005 =+ 0.0018 0.1242 + 0.0002 + 0.0012
43.2 - 46.8 0.1125 = 0.0005 = 0.0023 0.1106 =+ 0.0005 =+ 0.0014 0.1137 =+ 0.0002 + 0.0013
46.8 - 50.4 0.1044 = 0.0005 = 0.0023 0.1032 =+ 0.0005 =+ 0.0010 0.1054 =+ 0.0002 + 0.0014
50.4 - 54.0 0.0979 = 0.0005 = 0.0022 0.0979 =+ 0.0005 =+ 0.0010 0.0988 =+ 0.0002 + 0.0015
54.0 - 57.6 0.0929 = 0.0004 = 0.0021 0.09289 £ 0.00051 £+ 0.00091  0.0933 = 0.0002 £ 0.0016
57.6 - 61.2 0.0883 = 0.0004 = 0.0019 0.08898 £ 0.00052 £+ 0.00074 0.0891 = 0.0002 £ 0.0016
61.2 - 64.8 0.0853 = 0.0004 = 0.0018 0.08521 £ 0.00048 £ 0.00065 0.0857 = 0.0002 £ 0.0017
64.8 - 68.4 0.0823 = 0.0004 = 0.0016 0.08275 £ 0.00045 £ 0.00063 0.0831 = 0.0002 £ 0.0017
68.4 - 72.0 0.0804 = 0.0004 = 0.0015 0.07862 £ 0.00046 £ 0.00057 0.0809 = 0.0002 £ 0.0017
72.0- 75.6 0.0787 £ 0.0005 =+ 0.0014 0.07824 £ 0.00044 £ 0.00060 0.0792 = 0.0002 £ 0.0017
75.6 - 79.2 0.0775 £ 0.0005 =+ 0.0013 0.07662 £ 0.00046 £+ 0.00062 0.0778 = 0.0002 £ 0.0016
79.2 - 82.8 0.0763 £ 0.0005 =+ 0.0012 0.07531 £ 0.00042 £ 0.00067 0.0775 = 0.0002 £ 0.0016
82.8 - 86.4 0.0757 =+ 0.0005 = 0.0010 0.07433 £ 0.00045 £ 0.00079  0.07727 £ 0.0002 £ 0.0015
86.4 - 90.0 0.0763 = 0.0005 = 0.0010 0.07492 £ 0.00044 £ 0.00082 0.07728 £ 0.0002 £ 0.0015
90.0 - 93.6 0.0768 = 0.0005 =+ 0.0010 0.07604 £ 0.00047 £ 0.00085 0.07815 £ 0.0002 £ 0.0014
93.6 - 97.2 0.07734 £ 0.00048 &+ 0.00092 0.07643 £ 0.00048 £ 0.00087  0.07929 £ 0.0002 £ 0.0013
97.2 - 100.8  0.07900 £ 0.00053 &+ 0.00090 0.07842 + 0.00045 £ 0.00088  0.08107 £ 0.0002 £ 0.0013
100.8 - 104.4  0.08226 £ 0.00050 £ 0.00091  0.08014 =+ 0.00049 + 0.00087 0.08295 + 0.0002 + 0.0012
104.4 - 108.0  0.08417 £ 0.00053 £ 0.00091  0.08186 + 0.00046 + 0.00090 0.08583 + 0.0002 & 0.0011
108.0 - 111.6  0.0875 =+ 0.0005 =+ 0.0010 0.08607 £ 0.00051 £+ 0.00091  0.08932 &+ 0.0002 £ 0.0011
111.6 - 115.2  0.0907 =+ 0.0005 =+ 0.0010 0.09038 £ 0.00051 £ 0.00092 0.09350 + 0.0002 £ 0.0011
115.2 - 118.8  0.0969 =+ 0.0005 =+ 0.0010 0.0954 =+ 0.0005 =+ 0.0010 0.09911 =+ 0.0003 + 0.0010
118.8 - 122.4  0.1030 =+ 0.0005 =+ 0.0010 0.1024 =+ 0.0005 =+ 0.0010 0.10558 + 0.0003 + 0.0010
122.4 - 126.0 0.1095 =+ 0.0005 =+ 0.0012 0.1107 = 0.0006 = 0.0011 0.11311 + 0.0003 + 0.0010
126.0 - 129.6  0.1200 =+ 0.0005 =+ 0.0014 0.1195 =+ 0.0006 =+ 0.0012 0.12298 + 0.0003 + 0.0010
129.6 - 133.2 0.1317 £ 0.0006 =+ 0.0016 0.1305 =+ 0.0006 =+ 0.0012 0.13427 £ 0.0003 + 0.0010
133.2 - 136.8 0.1456 =+ 0.0006 =+ 0.0018 0.1448 =+ 0.0008 =+ 0.0015 0.14855 + 0.0003 + 0.0011
136.8 - 140.4 0.1628 =+ 0.0007 =+ 0.0021 0.1605 =+ 0.0009 =+ 0.0018 0.16680 £ 0.0003 + 0.0012
140.4 - 144.0 0.1854 =+ 0.0007 =+ 0.0022 0.1815 =+ 0.0010 =+ 0.0025 0.18934 + 0.0003 + 0.0014
144.0 - 147.6  0.2143 £ 0.0007 =+ 0.0023 0.2095 =+ 0.0010 =+ 0.0032 0.21842 + 0.0004 + 0.0016
147.6 - 151.2  0.2513 =+ 0.0009 =+ 0.0023 0.2459 =+ 0.0012 =+ 0.0044 0.25555 + 0.0004 + 0.0019
151.2 - 154.8 0.3006 =+ 0.0010 =+ 0.0025 0.2960 =+ 0.0012 = 0.0051 0.30565 £ 0.0004 + 0.0024
154.8 - 158.4 0.3692 =+ 0.0011 =+ 0.0026 0.3643 4+ 0.0013 = 0.0061 0.37366 + 0.0005 + 0.0028
158.4 - 162.0 0.4643 =+ 0.0013 =+ 0.0033 0.4559 =+ 0.0014 =+ 0.0070 0.46704 + 0.0005 + 0.0033
162.0 - 165.6  0.5970 =+ 0.0015 =+ 0.0043 0.5843 =+ 0.0019 =+ 0.0073 0.59937 + 0.0007 + 0.0035
165.6 - 169.2 0.7832 £ 0.0018 = 0.0056 0.7665 =+ 0.0022 =+ 0.0076 0.78214 + 0.0009 =+ 0.0037
169.2 - 172.8 1.0172 =+ 0.0019 =+ 0.0061 0.9923 =+ 0.0024 =+ 0.0080 1.00379 £ 0.0009 + 0.0038
172.8 - 176.4 1.1532 £ 0.0028 =+ 0.0047 1.1510 =+ 0.0043 =+ 0.0082 1.13862 £ 0.0016 £ 0.0039
176.4 - 180.0 0.6553 =+ 0.0031 =+ 0.0035 0.7031 =+ 0.0030 =+ 0.0147 0.6419 =+ 0.0010 + 0.0041

Table B.1.c: Energy Energy Correlation EEC
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Asymmetry of the Energy Energy Correlation AEEC

x(deg)

0.0 < cos¥r <0.12

0.12 < cos ¥ < 0.24

0.24 < cos?r < 0.36

0.0- 3.6

3.6- 72

7.2-10.8
10.8 - 14.4
14.4 - 18.0
18.0 - 21.6
21.6 - 25.2
25.2 - 28.8
28.8 - 32.4
32.4 - 36.0
36.0 - 39.6
39.6 - 43.2
43.2 - 46.8
46.8 - 50.4
50.4 - 54.0
54.0 - 57.6
57.6 - 61.2
61.2 - 64.8
64.8 - 68.4
68.4 - 72.0
72.0 - 75.6
75.6 - 79.2
79.2 - 82.8
82.8 - 86.4
86.4 - 90.0

-0.1827 + 0.0039 £ 0.0073
-0.0702 + 0.0028 + 0.0069
0.1483 + 0.0024 + 0.0049
0.1790 + 0.0015 + 0.0040
0.1627 + 0.0012 + 0.0032
0.1410 + 0.0008 + 0.0030
0.1212 + 0.0007 + 0.0025
0.1011 + 0.0006 + 0.0021
0.0817 + 0.0005 + 0.0019
0.0664 + 0.0005 + 0.0017
0.0551 + 0.0004 + 0.0016
0.0448 + 0.0004 + 0.0013
0.0377 £ 0.0004 + 0.0010
0.0314 + 0.0003 + 0.0009
0.0267 + 0.0003 + 0.0007
0.0230 + 0.0003 + 0.0006
0.0187 + 0.0003 + 0.0005
0.0156 + 0.0003 + 0.0003
0.0137 + 0.0003 + 0.0003
0.0104 + 0.0003 + 0.0002
0.0085 + 0.0002 + 0.0002
0.0066 + 0.0002 + 0.0002
0.0047 + 0.0002 + 0.0003
0.0008 + 0.0002 + 0.0003
0.0017 + 0.0005 + 0.0001

-0.1807 + 0.0017 £ 0.0068
-0.0595 + 0.0015 + 0.0048

0.1473 + 0.0014 + 0.0042
0.1792 + 0.0011 + 0.0030
0.1666 + 0.0009 + 0.0024
0.1402 + 0.0008 + 0.0021
0.1218 + 0.0007 + 0.0018
0.0989 + 0.0006 + 0.0015
0.0801 + 0.0005 + 0.0013
0.0658 + 0.0005 + 0.0012
0.0559 + 0.0004 + 0.0011
0.0455 + 0.0004 + 0.00087
0.0380 + 0.0003 £ 0.00085
0.0318 + 0.0003 £ 0.00064
0.0268 + 0.0002 £ 0.00052
0.0227 + 0.0002 £ 0.00041
0.0188 + 0.0002 + 0.00037
0.0161 + 0.0002 £ 0.00031
0.0127 + 0.0003 £ 0.00029
0.0097 + 0.0003 £ 0.00025
0.0084 + 0.0003 £ 0.00017
0.0057 + 0.0003 £ 0.00019
0.0053 + 0.0003 £ 0.00021
0.0029 + 0.0004 £ 0.00036
0.0016 + 0.0006 + 0.00031

-0.1826 + 0.0019 + 0.0063
-0.0613 + 0.0016 + 0.0042

0.1508 + 0.0014 + 0.0035
0.1826 + 0.0013 + 0.0028
0.1647 + 0.0010 + 0.0024
0.1422 + 0.0008 + 0.0020
0.1208 + 0.0007 + 0.0017
0.0990 + 0.0006 + 0.0015
0.0796 + 0.0005 + 0.0012
0.0644 + 0.0005 + 0.0010
0.0530 + 0.0004 £ 0.00092
0.0456 + 0.0004 + 0.00087
0.0379 + 0.0003 £ 0.00072
0.0314 + 0.0003 £ 0.00056
0.0265 + 0.0003 £ 0.00051
0.0217 + 0.0003 + 0.0004
0.0183 + 0.0002 + 0.0003
0.0150 + 0.0002 + 0.00027
0.0131 + 0.0002 £ 0.00025
0.0108 + 0.0002 £ 0.00024
0.0083 + 0.0002 £ 0.00022
0.0071 + 0.0002 £ 0.00019
0.0038 + 0.0002 £ 0.00017
0.0027 + 0.0002 £ 0.00015
0.0005 + 0.0003 + 0.00017

Table B.2.a: Asymmetry of the Energy Energy Correlation AEEC

Asymmetry of the Energy Energy Correlation AEEC

x(deg)

0.36 < cos¥r < 0.48

0.48 < cos ¥ < 0.60

0.60 < cosdr <0.72

0.0- 3.6

3.6- 72

7.2-10.8
10.8 - 14.4
14.4 - 18.0
18.0 - 21.6
21.6 - 25.2
25.2 - 28.8
28.8 - 32.4
32.4 - 36.0
36.0 - 39.6
39.6 - 43.2
43.2 - 46.8
46.8 - 50.4
50.4 - 54.0
54.0 - 57.6
57.6 - 61.2
61.2 - 64.8
64.8 - 68.4
68.4 - 72.0
72.0 - 75.6
75.6 - 79.2
79.2 - 82.8
82.8 - 86.4
86.4 - 90.0

-0.1796 + 0.0019 £ 0.0059
-0.0611 + 0.0017 £ 0.0041
0.1489 + 0.0015 + 0.0037
0.1826 + 0.0012 + 0.0033
0.1662 + 0.0010 + 0.0024
0.1443 + 0.0008 + 0.0021
0.1190 + 0.0006 + 0.0017
0.0973 + 0.0005 + 0.0015
0.0807 + 0.0004 + 0.0013
0.0668 + 0.0004 + 0.0011
0.0533 + 0.0003 + 0.0008
0.0452 + 0.0003 + 0.0007
0.0368 + 0.0003 + 0.0006
0.0307 + 0.0003 + 0.0005
0.0267 + 0.0003 + 0.0004
0.0226 + 0.0003 + 0.0003
0.0184 + 0.0003 + 0.0003
0.0146 + 0.0003 + 0.0003
0.0113 + 0.0002 + 0.0002
0.0101 + 0.0002 + 0.0002
0.0085 + 0.0002 + 0.0002
0.0060 + 0.0002 + 0.0002
0.0043 + 0.0001 + 0.0001
0.0025 + 0.0001 + 0.0001
0.0039 + 0.0022 + 0.0013

-0.1815 + 0.0018 + 0.0059
-0.0567 + 0.0016 + 0.0048

0.1523 + 0.0015 + 0.0041
0.1823 + 0.0013 + 0.0029
0.1643 + 0.0011 + 0.0024
0.1456 + 0.0008 + 0.0020
0.1212 + 0.0007 + 0.0017
0.0991 + 0.0006 + 0.0014
0.0817 + 0.0005 + 0.0011
0.0657 + 0.0004 £ 0.00091
0.0533 + 0.0004 £ 0.00070
0.0441 + 0.0004 £ 0.00057
0.0358 + 0.0003 £ 0.00046
0.0293 + 0.0003 £ 0.00042
0.0253 + 0.0003 £ 0.00039
0.0202 + 0.0003 £ 0.00036
0.0170 + 0.0002 £ 0.00034
0.0141 + 0.0002 £ 0.00032
0.0113 + 0.0002 £ 0.00029
0.0088 + 0.0001 + 0.00027
0.0071 + 0.0001 £ 0.00024
0.0050 + 0.0001 £ 0.00021
0.0039 + 0.0001 £ 0.00018
0.0025 + 0.0001 + 0.00014
0.0009 + 0.0001 + 0.00011

-0.1817 + 0.0016 + 0.0082
-0.0529 + 0.0015 £ 0.0071

0.1558 + 0.0012 £ 0.0051
0.1882 + 0.0011 + 0.0035
0.1688 + 0.0009 + 0.0029
0.1432 + 0.0007 + 0.0027
0.1215 + 0.0005 + 0.0019
0.0987 + 0.0004 + 0.0016
0.0799 + 0.0004 £ 0.0011
0.0658 + 0.0004 £ 0.00091
0.0521 + 0.0003 £ 0.00066
0.0420 + 0.0003 £ 0.00051
0.0349 + 0.0003 £ 0.00046
0.0292 + 0.0003 £ 0.00043
0.0241 + 0.0003 £ 0.00040
0.0197 + 0.0002 £ 0.00039
0.0171 + 0.0002 £ 0.00037
0.0143 + 0.0002 £ 0.00035
0.0108 + 0.0001 + 0.00033
0.0090 + 0.0001 £ 0.00031
0.0071 + 0.0001 £ 0.00028
0.0057 + 0.0001 £ 0.00024
0.0034 + 0.0001 £ 0.00022
0.0023 + 0.0001 £ 0.00013
0.0011 + 0.0004 + 0.00019

Table B.2.b: Asymmetry of the Energy Energy Correlation AEEC
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B. Tables of the Data Distributions

Asymmetry of the Energy Energy Correlation AEEC

x(deg)

0.72 < cosdr < 0.84

0.84 < cos?r < 0.96

0. <cosdr < 1.

0.0- 3.6

3.6- 7.2

7.2-10.8
10.8 - 14.4
14.4 - 18.0
18.0 - 21.6
21.6 - 25.2
25.2 - 28.8
28.8 - 32.4
32.4 - 36.0
36.0 - 39.6
39.6 - 43.2
43.2 - 46.8
46.8 - 50.4
50.4 - 54.0
54.0 - 57.6
57.6 - 61.2
61.2 - 64.8
64.8 - 68.4
68.4 - 72.0
72.0 - 75.6
75.6 - 79.2
79.2 - 82.8
82.8 - 86.4
86.4 - 90.0

-0.1866 + 0.0015 + 0.0146
-0.0529 + 0.0010 + 0.0116
0.1664 + 0.0014 + 0.0082
0.1889 + 0.0013 £ 0.0051
0.1676 + 0.0008 + 0.0036
0.1450 + 0.0007 + 0.0030
0.1193 + 0.0006 + 0.0023
0.0974 + 0.0005 + 0.0019
0.0787 + 0.0005 + 0.0012
0.0629 + 0.0004 + 0.0010
0.0517 + 0.0004 + 0.0008
0.0413 + 0.0004 + 0.0008
0.0335 + 0.0003 + 0.0007
0.0278 + 0.0003 + 0.0006
0.0226 + 0.0002 + 0.0006
0.0176 + 0.0002 + 0.0005
0.0150 + 0.0002 + 0.0005
0.0120 + 0.0002 + 0.0005
0.0091 + 0.0001 + 0.0004
0.0075 + 0.0001 + 0.0003
0.0057 + 0.0001 + 0.0003
0.0046 + 0.0001 + 0.0002
0.0029 + 0.0001 £ 0.0001
0.0016 + 0.0001 + 0.0001
0.0019 + 0.0008 + 0.0001

-0.1563 £ 0.0009 £ 0.0194
-0.0336 £ 0.0027 £ 0.0626

0.1567 + 0.0018 + 0.0085
0.1855 + 0.0013 + 0.0056
0.1630 + 0.0011 + 0.0036
0.1420 + 0.0008 + 0.0029
0.1188 + 0.0007 + 0.0024
0.0944 + 0.0006 + 0.0017
0.0745 + 0.0005 + 0.0014
0.0594 + 0.0004 £ 0.00125
0.0486 + 0.0004 + 0.00088
0.0398 + 0.0004 + 0.00078
0.0342 + 0.0003 £ 0.00074
0.0273 + 0.0003 £ 0.00070
0.0217 + 0.0003 £ 0.00065
0.0178 + 0.0003 + 0.00064
0.0133 + 0.0003 £ 0.00068
0.0102 + 0.0003 £ 0.00070
0.0072 + 0.0004 + 0.00083
0.0078 + 0.0004 + 0.0010
0.0012 + 0.0006 + 0.0014
0.0017 + 0.0009 + 0.0019
0.0007 + 0.0015 + 0.0021
0.0000 + 0.0026 + 0.0044
0.0121 + 0.0104 + 0.0384

-0.1792 £ 0.000 £ 0.0081
-0.0565 £ 0.000 + 0.0066

0.1564 + 0.000 £ 0.0047
0.1856 + 0.000 £ 0.0036
0.1673 £+ 0.000 £ 0.0029
0.1437 £+ 0.000 £ 0.0024
0.1212 £ 0.000 £ 0.0019
0.0985 + 0.000 £ 0.0011
0.0800 + 0.000 £ 0.0010
0.0651 £ 0.000 £ 0.00094
0.0527 £+ 0.000 £ 0.00085
0.0430 £ 0.000 £ 0.00069
0.0353 £+ 0.000 £ 0.00059
0.0293 £ 0.000 £ 0.00049
0.0245 £ 0.000 £ 0.00041
0.0201 £ 0.000 £ 0.00038
0.0168 £ 0.000 £ 0.00031
0.0137 £ 0.000 £ 0.00026
0.0109 £ 0.000 £ 0.00022
0.0088 + 0.000 £ 0.00020
0.0070 £+ 0.000 £ 0.00015
0.0053 £ 0.000 + 0.00011
0.0037 £+ 0.000 £ 0.00009
0.0021 £ 0.000 £ 0.00008
0.0008 + 0.000 £ 0.00007

Table B.2.c: Asymmetry of the Energy Energy Correlation AEEC

Jet Cone Energy Fraction JCEF

x(deg) 0.0 < cosr < 0.12 0.12 < cosdr < 0.24 0.24 < cosdr < 0.36
90.0 - 93.6 0.0244 = 0.0005 =+ 0.0019 0.0248 + 0.0005 &+ 0.0017  0.0244 + 0.0004 + 0.0014
93.6 - 97.2 0.0410 = 0.0006 =+ 0.0018 0.0408 + 0.0006 + 0.0016  0.0404 +£ 0.0005 + 0.0013
97.2 - 100.8  0.0472 = 0.0007 =+ 0.0016 0.0471 &+ 0.0007 &+ 0.0013  0.0480 £ 0.0006 + 0.0012

100.8 - 104.4 0.0530 =+ 0.0008 = 0.0012 0.0540 + 0.0008 + 0.0012  0.0544 + 0.0007 + 0.0012
104.4 - 108.0  0.05863 £ 0.00082 £ 0.00093  0.0592 &£ 0.0009 &£ 0.0011  0.0591 £ 0.0007 £ 0.0012
108.0 - 111.6  0.06727 £ 0.00089 £ 0.00086 0.0666 £ 0.0009 £ 0.0010 0.0668 £ 0.0008 £ 0.0011
111.6 - 115.2  0.07337 £ 0.00093 £ 0.00082  0.0747 £ 0.0010 &£ 0.0010  0.0737 £ 0.0009 £ 0.0011
115.2 - 118.8  0.0821 =+ 0.0010 = 0.0008 0.0824 + 0.0011 &+ 0.0009 0.0788 £ 0.0009 + 0.0010
118.8 - 122.4  0.0916 =+ 0.0010 = 0.0009 0.0893 + 0.0011 £ 0.0007  0.0892 + 0.0010 £ 0.0009
122.4 - 126.0  0.1000 =+ 0.0011 = 0.0009 0.1002 + 0.0012 £+ 0.0008 0.0978 £ 0.0011 + 0.0007
126.0 - 129.6  0.1103 =+ 0.0012 = 0.0010 0.1104 + 0.0012 £+ 0.0009  0.1057 &£ 0.0011 + 0.0007
129.6 - 133.2  0.1229 + 0.0013 = 0.0012 0.1224 + 0.0013 &+ 0.0010  0.1193 £ 0.0012 + 0.0008
133.2 - 136.8 0.1354 =+ 0.0014 = 0.0013 0.1358 + 0.0013 &+ 0.0011  0.1352 £ 0.0013 + 0.0009
136.8 - 140.4 0.1514 =+ 0.0014 = 0.0014 0.1509 + 0.0014 + 0.0012  0.1518 + 0.0013 + 0.0009
140.4 - 144.0 0.1726 =+ 0.0016 = 0.0016 0.1736 + 0.0015 + 0.0013  0.1713 £ 0.0015 + 0.0010
144.0 - 147.6  0.1985 =+ 0.0018 = 0.0017 0.1958 + 0.0018 &+ 0.0015 0.1963 £ 0.0016 + 0.0012
147.6 - 151.2  0.2317 £ 0.0019 = 0.0020 0.2306 + 0.0020 &+ 0.0016  0.2296 + 0.0017 + 0.0015
151.2 - 154.8  0.2755 =+ 0.0023 = 0.0023 0.2749 + 0.0022 £+ 0.0018  0.2740 £ 0.0018 + 0.0016
154.8 - 158.4  0.3387 £ 0.0026 = 0.0026 0.3372 + 0.0026 + 0.0020 0.3358 £ 0.0020 + 0.0017
158.4 - 162.0 0.4261 =+ 0.0031 = 0.0035 0.4237 + 0.0029 £+ 0.0023  0.4241 + 0.0023 + 0.0018
162.0 - 165.6  0.5643 =+ 0.0040 = 0.0041 0.5589 + 0.0034 &+ 0.0027  0.5592 + 0.0027 + 0.0025
165.6 - 169.2  0.7896 =+ 0.0044 = 0.0047 0.7894 + 0.0037 + 0.0034  0.7845 + 0.0041 + 0.0032
169.2 - 172.8  1.1848 =+ 0.0052 = 0.0063 1.1750 £ 0.0046 £ 0.0056 1.1859 £ 0.0055 £ 0.0043
172.8 - 176.4  1.8620 =+ 0.0083 = 0.0202 1.8765 £ 0.0073 £ 0.0136  1.8823 £ 0.0087 £ 0.0127
176.4 - 180.0 1.8626 =+ 0.0102 = 0.0383 1.8540 £ 0.0062 £ 0.0291  1.8648 £ 0.0094 £ 0.0272

Table B.3.a: Jet Cone Energy Fraction JCEF
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Jet Cone Energy Fraction JCEF

x(deg) 0.36 < cosdr < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr <0.72

90.0 - 93.6 0.02514 &£ 0.00050 &+ 0.00094 0.02510 % 0.00023 £ 0.00100 0.02443 £ 0.00035 £+ 0.00083

93.6 - 97.2 0.04060 £ 0.00054 &+ 0.00091  0.04064 + 0.00048 £ 0.00077  0.04000 £ 0.00038 £ 0.00072

97.2 - 100.8  0.04763 £ 0.00058 £ 0.00090  0.04686 + 0.00053 £ 0.00075  0.04690 + 0.00042 + 0.00058
100.8 - 104.4 0.0532 =+ 0.0006 = 0.0010 0.05230 £ 0.00060 £ 0.00074 0.05284 + 0.00056 + 0.00052
104.4 - 108.0 0.0590 =+ 0.0007 = 0.0011 0.05800 + 0.00071 £ 0.00078 0.05770 % 0.00060 + 0.00059
108.0 - 111.6  0.0656 =+ 0.0009 = 0.0012 0.06433 £ 0.00078 £ 0.00095 0.06397 + 0.00069 + 0.00068
111.6 - 115.2  0.0720 =+ 0.0010 = 0.0013 0.0716 =+ 0.0008 =+ 0.0012 0.07004 £ 0.00075 £ 0.00071
115.2 - 118.8 0.0792 =+ 0.0010 = 0.0016 0.0800 =+ 0.0009 =+ 0.0014 0.0790 =+ 0.0008 =+ 0.0010
118.8 - 122.4  0.0877 £ 0.0011 = 0.0015 0.0869 =+ 0.0010 =+ 0.0016 0.0869 =+ 0.0009 =+ 0.0013
122.4 - 126.0 0.0970 =+ 0.0012 4 0.0014 0.0969 + 0.0011 =+ 0.0019 0.0935 =+ 0.0009 =+ 0.0017
126.0 - 129.6  0.1059 =+ 0.0013 = 0.0013 0.1047 + 0.0011 =+ 0.0018 0.1036 =+ 0.0010 =+ 0.0019
129.6 - 133.2  0.1193 £ 0.0013 = 0.0009 0.1167 =+ 0.0012 =+ 0.0016 0.1145 =+ 0.0011 =+ 0.0023
133.2 - 136.8 0.1338 £ 0.0014 = 0.0007 0.1290 =+ 0.0012 =+ 0.0013 0.1292 =+ 0.0012 =+ 0.0025
136.8 - 140.4 0.1516 =+ 0.0015 = 0.0008 0.1475 =+ 0.0013 = 0.0011 0.1449 = 0.0013 =+ 0.0025
140.4 - 144.0 0.1707 £ 0.0017 = 0.0009 0.1674 =+ 0.0014 =+ 0.0009 0.1626 =+ 0.0014 =+ 0.0023
144.0 - 147.6  0.1973 =+ 0.0018 = 0.0009 0.1965 =+ 0.0015 =+ 0.0010 0.1896 =+ 0.0015 =+ 0.0017
147.6 - 151.2  0.2295 =+ 0.0019 = 0.0011 0.2299 =+ 0.0017 =+ 0.0013 0.2236 =+ 0.0016 =+ 0.0013
151.2 - 154.8 0.2698 =+ 0.0021 = 0.0014 0.2728 + 0.0019 =+ 0.0016 0.2712 =+ 0.0018 =+ 0.0014
154.8 - 158.4  0.3341 £ 0.0025 = 0.0018 0.3367 =+ 0.0022 =+ 0.0018 0.3331 &£ 0.0022 = 0.0018
158.4 - 162.0 0.4236 =+ 0.0027 = 0.0025 0.4234 + 0.0025 =+ 0.0025 0.4213 =+ 0.0027 = 0.0025
162.0 - 165.6  0.5524 =+ 0.0030 = 0.0029 0.5591 =+ 0.0029 =+ 0.0030 0.5633 =+ 0.0029 =+ 0.0031
165.6 - 169.2  0.7885 £ 0.0048 = 0.0036 0.7861 =+ 0.0034 =+ 0.0039 0.7877 =+ 0.0034 =+ 0.0046
169.2 - 172.8  1.1790 =+ 0.0053 = 0.0048 1.1822 4 0.0047 =+ 0.0047 1.1917 =+ 0.0051 =+ 0.0049
172.8 - 176.4 1.8890 =+ 0.0078 = 0.0127 1.8930 =+ 0.0062 =+ 0.0107 1.9072 =+ 0.0059 =+ 0.0123
176.4 - 180.0 1.8735 =+ 0.0100 = 0.0268 1.8775 4+ 0.0082 =+ 0.0224 1.8656 =+ 0.0077 =+ 0.0263

Table B.3.b: Jet Cone Energy Fraction JCEF

Jet Cone Energy Fraction JCEF

x(deg) 0.72 < cosdr < 0.84 0.84 < cosdr < 0.96 0. < cosdr < 1.

90.0 - 93.6 0.02451 &£ 0.00031 & 0.00090 0.02426 + 0.00031 £ 0.00089 0.0246 =+ 0.0001 =+ 0.0011

93.6 - 97.2 0.03969 £ 0.00035 £ 0.00067  0.03867 £ 0.00040 £ 0.00063 0.04001 + 0.00012 £ 0.00092

97.2 - 100.8  0.04668 £ 0.00049 & 0.00065 0.04507 %+ 0.00053 £ 0.00050 0.04671 £ 0.00020 £ 0.00077
100.8 - 104.4  0.05262 £ 0.00058 &+ 0.00061  0.05019 + 0.00061 £ 0.00051  0.05256 £ 0.00023 £ 0.00075
104.4 - 108.0  0.05764 £ 0.00063 £ 0.00058 0.05680 + 0.00073 +£ 0.00062 0.05800 + 0.00026 + 0.00073
108.0 - 111.6  0.06292 £ 0.00069 & 0.00060 0.06230 + 0.00077 £ 0.00069 0.06448 £ 0.00028 £ 0.00075
111.6 - 115.2  0.06874 £ 0.00076 & 0.00062 0.06925 + 0.00082 £ 0.00077 0.07110 £ 0.00033 £ 0.00077
115.2 - 118.8  0.07700 £ 0.00080 & 0.00071  0.07708 & 0.00089 + 0.00081  0.07889 £ 0.00034 £ 0.00079
118.8 - 122.4  0.08334 £ 0.00086 + 0.00087  0.08356 + 0.00095 + 0.00088 0.08655 + 0.00035 + 0.00083
122.4 - 126.0  0.0923 =+ 0.0009 = 0.0010 0.09339 £ 0.00098 £ 0.00092 0.09555 + 0.00036 + 0.00087
126.0 - 129.6  0.1027 =+ 0.0010 = 0.0014 0.10197 £ 0.0010 =+ 0.0010 0.10478 £ 0.00038 £ 0.00091
129.6 - 133.2  0.1122 + 0.0011 = 0.0017 0.11250 +£ 0.0011 = 0.0011 0.11652 £ 0.00042 £+ 0.00095
133.2 - 136.8 0.1252 + 0.0012 = 0.0022 0.1253 + 0.0012 =+ 0.0014 0.1301 =+ 0.0004 =+ 0.0010
136.8 - 140.4 0.1425 =+ 0.0013 = 0.0026 0.1412 + 0.0013 =+ 0.0017 0.1468 =+ 0.0005 =+ 0.0011
140.4 - 144.0 0.1615 =+ 0.0014 = 0.0029 0.1636 =+ 0.0014 =+ 0.0020 0.1668 =+ 0.0006 =+ 0.0012
144.0 - 147.6  0.1903 =+ 0.0015 = 0.0033 0.1865 =+ 0.0016 =+ 0.0027 0.1931 =+ 0.0007 =+ 0.0013
147.6 - 151.2  0.2217 =+ 0.0016 = 0.0036 0.2201 + 0.0018 =+ 0.0040 0.2263 =+ 0.0007 = 0.0015
151.2 - 154.8  0.2649 =+ 0.0018 = 0.0031 0.2641 + 0.0021 =+ 0.0049 0.2705 =+ 0.0008 = 0.0016
154.8 - 158.4  0.3280 =+ 0.0019 = 0.0026 0.3248 + 0.0025 =+ 0.0054 0.3331 =+ 0.0009 =+ 0.0018
158.4 - 162.0 0.4139 £ 0.0022 = 0.0022 0.4110 =+ 0.0030 =+ 0.0059 0.4208 =+ 0.0010 = 0.0020
162.0 - 165.6  0.5530 =+ 0.0028 = 0.0039 0.5500 =+ 0.0034 =+ 0.0065 0.5578 =+ 0.0012 =+ 0.0023
165.6 - 169.2  0.7886 =+ 0.0035 = 0.0064 0.7777 =+ 0.0039 =+ 0.0073 0.7870 =+ 0.0014 =+ 0.0037
169.2 - 172.8  1.1911 =+ 0.0042 = 0.0099 1.1639 =+ 0.0051 =+ 0.0079 1.1821 =+ 0.0019 =+ 0.0062
172.8 - 176.4 19128 + 0.0058 = 0.0178 1.8781 4+ 0.0075 =+ 0.0289 1.8895 =+ 0.0031 =+ 0.0161
176.4 - 180.0 1.9184 =+ 0.0084 = 0.0411 2.0028 + 0.0087 =+ 0.0650 1.8978 =+ 0.0025 =+ 0.0345

Table B.3.c: Jet Cone Energy Fraction JCEF
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1 - Thrust (1 —T)

1-T 0.0 < cosdr < 0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥t <£0.36
0.00 - 0.01 3.3056  £0.043 £ 0.186 3.340 £0.041 £+ 0.190 3330 +£0.046 £ 0.193
0.01-0.02 13.031 =+0.104 = 0.527 13.219 £+ 0.105 =+ 0.542 13.315 £ 0.098 £ 0.572
0.02-0.03 15.170 +0.132 =+ 0.235 15.038 £+ 0.122 + 0.339 15.224 £+ 0.127 £ 0.222
0.03-0.04 12.262 +0.126 =+ 0.173 12.395 £+ 0.119 =+ 0.180 12.207 £+ 0.119 £ 0.147

0.04 - 0.05 9.555 £ 0.114 £ 0.151 9.376 £ 0.106 £ 0.152 9.392 +£0.102 +£0.135
0.05 - 0.06 7.214 +£0.096 =+ 0.135 7.122 +0.088 £ 0.117 7304 £+ 0.091 +0.114
0.06 - 0.07 5.717 £ 0.080 =+ 0.076 5.743 +£0.080 £ 0.101 5.762 £ 0.078 £ 0.099
0.07 - 0.08 4.577 £ 0.076 £ 0.069 4.555 +£0.076 £ 0.072 4.627 £ 0.069 £ 0.066
0.08 - 0.09 3.886 £ 0.067 £ 0.066 3.868 £ 0.066 =+ 0.061 3.723 £ 0.065 £ 0.056
0.09 - 0.10 3.156 £ 0.065 =+ 0.051 3.106 =+ 0.063 =+ 0.053 3.180 £ 0.061 £ 0.048
0.10 - 0.11 2.713 £ 0.060 =+ 0.046 2.670 £ 0.060 £ 0.045 2.730 £ 0.056 =+ 0.044
0.11 - 0.12 2.320 £ 0.053 £ 0.036 2.384 £ 0.052 £ 0.038 2.168 =+ 0.053 £ 0.041
0.12-0.14 1.885 +0.040 = 0.027 1.852 £ 0.033 &£ 0.027 1.832 £ 0.039 =+ 0.035
0.14 - 0.16 1.413 =+ 0.032 = 0.026 1.409 £ 0.028 =+ 0.022 1.405 =+ 0.028 =+ 0.030
0.16 - 0.18 1.111 £ 0.028 =+ 0.024 1.185 £ 0.026 =+ 0.018 1.158 £ 0.025 =+ 0.019
0.18 - 0.20 0.900 £ 0.024 =+ 0.013 0.893 +£0.022 =+ 0.015 0.891 +£ 0.022 =+ 0.009
0.20 - 0.25 0.642 £ 0.012 =+ 0.009 0.626 + 0.012 =+ 0.007 0.617 =+ 0.012 =+ 0.006

0.25 - 0.30 0.3419 =+ 0.0081 =+ 0.0047 0.3540 =+ 0.0083 =+ 0.0054 0.3498 =+ 0.0085 =+ 0.0042
0.30 - 0.35 0.1643 =+ 0.0061 =+ 0.0018 0.1602 =+ 0.0059 =+ 0.0033 0.1538 =+ 0.0060 =+ 0.0035
0.35 - 0.40 0.0293 =+ 0.0033 =+ 0.0012 0.0272 =+ 0.0029 =+ 0.0024 0.0251 =+ 0.0033 =+ 0.0031
0.40 - 0.50 0.00043 £ 0.00025 + 0.00029 0.00028 + 0.00016 + 0.00010 0.00031 £ 0.00015 + 0.00019

Table B.4.a: 1 - Thrust (1 —T)

1 - Thrust (1 —T)

1-T 0.36 < cos?dr < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr < 0.72
0.00 - 0.01 3.365 £ 0.040 =+ 0.195 3.391 £ 0.040 =+ 0.198 3.434 £ 0.037 =+ 0.208
0.01 - 0.02 13.288 4+ 0.097 =+ 0.589 13.383 £ 0.095 &£ 0.557 13.484 £ 0.093 =+ 0.585
0.02 - 0.03 15.278 £+ 0.114 =+ 0.266 15.445 + 0.113 =+ 0.382 15.414 + 0.120 4+ 0.189
0.03-0.04 12330 =+ 0.109 = 0.154 12.293 £ 0.108 =+ 0.153 12.391 £ 0.109 =+ 0.173

0.04 - 0.05 9.563 £ 0.102 £ 0.145 9.447 £ 0.097 +£0.134 9.269 + 0.097 £ 0.136
0.05 - 0.06 7.216 £ 0.087 =+ 0.098 7.210 =+ 0.085 =+ 0.105 7379 =+ 0.089 £ 0.116
0.06 - 0.07 5.635 £ 0.075 £ 0.077 5.658 +0.075 £ 0.084 5.732 £ 0.072 £ 0.091
0.07 - 0.08 4.576 £ 0.072 £ 0.061 4.486 £ 0.066 =+ 0.058 4.621 £ 0.065 £ 0.075
0.08 - 0.09 3.760 £ 0.063 £ 0.056 3.720 £ 0.061 £ 0.052 3.822 £ 0.061 £ 0.059
0.09 - 0.10 3.112 £ 0.059 =+ 0.050 3.204 +£0.056 £ 0.048 3.104 £ 0.056 =+ 0.052
0.10 - 0.11 2.730 £ 0.056 £ 0.041 2.643 £ 0.063 £ 0.041 2.595 £ 0.048 £ 0.047
0.11 - 0.12 2.313 £ 0.048 £ 0.037 2.340 £ 0.049 £ 0.035 2.365 £ 0.043 £ 0.042
0.12-0.14 1.820 =+ 0.031 = 0.030 1.878 £ 0.034 &£ 0.027 1.827 £ 0.031 =+ 0.020
0.14 - 0.16 1.470 =+ 0.027 =+ 0.025 1.404 £ 0.027 =+ 0.021 1.396 =+ 0.024 =+ 0.016
0.16 - 0.18 1.104 +£0.025 =+ 0.021 1.119 £ 0.025 =+ 0.016 1.056 =+ 0.021 =+ 0.014
0.18 - 0.20 0.904 £ 0.023 £ 0.015 0.902 +0.019 =+£0.013 0.883 +£ 0.019 £ 0.010
0.20 - 0.25 0.609 £ 0.012 =+ 0.009 0.600 =+ 0.011 =+ 0.008 0.589 + 0.010 =+ 0.009

0.25 - 0.30 0.3354 =+ 0.0083 =+ 0.0051 0.3081 =+ 0.0081 =+ 0.0093 0.3190 =+ 0.0074 =+ 0.0057
0.30 - 0.35 0.1416 =+ 0.0060 =+ 0.0039 0.1488 =+ 0.0060 =+ 0.0048 0.1211 =+ 0.0048 =+ 0.0032
0.35 - 0.40 0.0248 =+ 0.0031 =+ 0.0018 0.0216 =+ 0.0024 =+ 0.0020 0.0199 =+ 0.0022 =+ 0.0013
0.40 - 0.50 0.00019 £ 0.00011 + 0.00006 0.00046 + 0.00021 + 0.00008 0.00016 £ 0.00010 £ 0.00012

Table B.4.b: 1 - Thrust (1 —T)
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1 - Thrust (1 —T)

1-T 0.72 < cos ¥ < 0.84 0.84 < cos¥dr < 0.96 0. < cos¥r < 1.
0.00 - 0.01 3.523 £ 0.036 =+ 0.219 3.982 £ 0.034 4+ 0.342 3.402 £ 0.015 &£ 0.212
0.01 - 0.02 13.549 £ 0.084 =+ 0.575 13.227 £+ 0.088 £ 0.543 13.367 £ 0.038 £ 0.585
0.02 - 0.03 15.349 4+ 0.100 =+ 0.253 15.164 £ 0.111 £ 0.432 15.337 £ 0.048 £ 0.292
0.03-0.04 12.600 = 0.098 =+ 0.231 12.337 £ 0.106 =+ 0.232 12.403 + 0.044 £ 0.183
0.04 - 0.05 9.335 £ 0.085 £ 0.154 9.338 £ 0.087 £ 0.172 9.493 £ 0.041 £ 0.158
0.05 - 0.06 7.227 £+ 0.075 £ 0.117 7.127 £+ 0.080 £ 0.124 7.272 +£0.034 £ 0.118
0.06 - 0.07 5.683 £ 0.065 =+ 0.088 5.575 £ 0.066 =+ 0.089 5.708 4+ 0.030 = 0.086
0.07 - 0.08 4.595 +£0.059 =+ 0.071 4.506 £+ 0.060 =+ 0.080 4.582 £+ 0.027 £ 0.067
0.08 - 0.09 3.780 £ 0.054 =+ 0.056 3.839 £ 0.057 =+ 0.072 3.798 £ 0.025 =+ 0.054
0.09 - 0.10 3.131 £ 0.051 =+ 0.048 3.045 £ 0.052 =+ 0.051 3.144 £ 0.023 &£ 0.045
0.10 - 0.11 2.631 £ 0.047 =+ 0.040 2.647 £ 0.045 £ 0.043 2.649 £ 0.020 = 0.034
0.11 - 0.12 2.311 £ 0.041 £ 0.037 2.203 £ 0.042 =+ 0.033 2.294 £ 0.017 =+ 0.030
0.12 - 0.14 1.858 4+ 0.027 =+ 0.024 1.855 £ 0.027 =+ 0.023 1.843 £+ 0.013 =+ 0.022
0.14 - 0.16 1.415 £ 0.023 =+ 0.019 1.392 4 0.024 £ 0.019 1.406 4+ 0.011 =+ 0.016
0.16 - 0.18 1.069 =+ 0.020 =+ 0.012 1.060 &+ 0.021 =+ 0.017 1.095 £+ 0.010 =+ 0.012
0.18 - 0.20 0.817 £ 0.018 =+ 0.009 0.820 £ 0.018 =+ 0.014 0.8676 =+ 0.0085 =+ 0.0086
0.20 - 0.25 0.5482 + 0.0091 =+ 0.0074 0.551 £ 0.009 = 0.011 0.5881 =+ 0.0044 =+ 0.0063
0.25 - 0.30 0.3082 -+ 0.0073 = 0.0055 0.2990 =+ 0.0066 =+ 0.0042 0.3163 =+ 0.0029 =+ 0.0026
0.30 - 0.35 0.1199 =+ 0.0047 =+ 0.0026 0.1178 =+ 0.0042 =+ 0.0025 0.1368 =+ 0.0021 =+ 0.0017
0.35 - 0.40 0.0165 =+ 0.0016 =+ 0.0008 0.0160 =+ 0.0016 =+ 0.0009 0.01964 £ 0.00083 £ 0.00069
0.40 - 0.50 0.00007 £ 0.00009 £ 0.00011 0.00021 £+ 0.00010 £ 0.00025 0.00096 £ 0.00022 £+ 0.00014

Table B.4.c: 1 - Thrust (1 —1T)

Oblateness O

0] 0.0 < cos¥r < 0.12 0.12 < cos¥r < 0.24 0.24 < cos ¥ < 0.36
0.00 - 0.02 7.194 £+ 0.062 £ 0.090 7.159 £+ 0.058 £ 0.049 7.329 £ 0.060 £ 0.053
0.02-0.04 10.582 £ 0.073 =+ 0.097 10.684 £+ 0.074 £ 0.079 10.579 £ 0.069 £ 0.048
0.04 - 0.06 7.840 £+ 0.062 £ 0.031 7.756 £+ 0.060 £ 0.059 7.792 £ 0.057 £ 0.052
0.06 - 0.08 5.278 £ 0.055 &£ 0.027 5.291 £ 0.050 =+ 0.043 5.283 £ 0.049 =+ 0.049
0.08 - 0.10 3.862 £ 0.044 =+ 0.025 3.835 £ 0.044 =+ 0.037 3.834 £ 0.041 £ 0.042
0.10 - 0.12 2.906 £ 0.037 =+ 0.022 2.849 £ 0.039 =+ 0.031 2941 £ 0.037 =+ 0.033
0.12 - 0.14 2.204 +£0.033 =£0.021 2.244 £ 0.034 =+ 0.026 2215 £ 0.033 &£ 0.021
0.14 - 0.16 1.817 £ 0.029 £ 0.017 1.829 £ 0.029 £ 0.020 1.844 £+ 0.029 =+ 0.011
0.16 - 0.20 1.335 £+ 0.017 =+ 0.014 1.347 4+ 0.018 =+ 0.014 1.339 £+ 0.017 =+ 0.010
0.20 - 0.24 0.919 +£0.015 =+ 0.011 0.940 £ 0.015 = 0.008 0.910 4+ 0.014 = 0.008
0.24 - 0.28 0.681 + 0.013 =+ 0.009 0.652 £ 0.012 =+ 0.006 0.637 £ 0.012 = 0.006
0.28 - 0.32 0.470 £ 0.010 = 0.007 0.465 £ 0.010 = 0.005 0.449 £ 0.010 = 0.005
0.32 - 0.36 0.3191 + 0.0081 = 0.0071 0.3150 =+ 0.0080 =+ 0.0045 0.3147 4+ 0.0080 =+ 0.0049
0.36 - 0.40 0.2199 =+ 0.0071 = 0.0053 0.2231 + 0.0066 =+ 0.0037 0.2140 =+ 0.0066 =+ 0.0039
0.40 - 0.44 0.1498 + 0.0055 =+ 0.0039 0.1334 + 0.0052 = 0.0031 0.1401 =+ 0.0051 =+ 0.0027
0.44 - 0.52 0.0538 + 0.0021 =+ 0.0018 0.05673 =+ 0.0023 =+ 0.0023 0.0487 4+ 0.0021 =+ 0.0014
0.52 - 0.56 0.0083 =+ 0.0011 =+ 0.0009 0.0100 =+ 0.0013 =+ 0.0007 0.0090 =+ 0.0013 =+ 0.0005
0.56 - 0.64 0.00146 + 0.00040 £ 0.00022 0.00099 £+ 0.00027 £ 0.00009 0.00107 £ 0.00036 £ 0.00013

Table B.5.a: Oblateness O
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Oblateness O

O 0.36 < cos T < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr < 0.72
0.00 - 0.02 7.245 £ 0.056 £ 0.044 7.373 £+ 0.0563 £ 0.033 7.284 £+ 0.050 £ 0.042
0.02 - 0.04 10.712 &£ 0.067 =+ 0.049 10.670 £ 0.064 =+ 0.039 10.790 £ 0.060 =+ 0.043
0.04 - 0.06 7.820 £ 0.058 £ 0.042 7.884 £+ 0.054 £ 0.037 7.884 £+ 0.054 £ 0.029
0.06 - 0.08 5294 £ 0.047 £ 0.035 5.325 +£0.044 =+ 0.034 5315 £ 0.045 =+ 0.026
0.08 - 0.10 3.848 £+ 0.040 =+ 0.030 3.813 £ 0.038 4+ 0.029 3.823 £ 0.037 £ 0.023
0.10 - 0.12 2.874 £ 0.036 =+ 0.026 2.801 +£0.034 =+ 0.021 2.876 £ 0.033 =+ 0.020
0.12 - 0.14 2217 £ 0.031 =+ 0.021 2.254 +£0.030 = 0.012 2243 £ 0.028 =+ 0.016
0.14 - 0.16 1.8256 4+ 0.028 + 0.013 1.772 £ 0.026 =+ 0.010 1.804 £ 0.024 + 0.013
0.16 - 0.20 1.338 £+ 0.017 =+ 0.010 1.336 £ 0.018 =+ 0.009 1.324 4 0.016 =+ 0.008
0.20 - 0.24 0.915 4+ 0.014 =+ 0.008 0.919 £ 0.013 = 0.007 0.903 £ 0.013 = 0.006
0.24 - 0.28 0.636 £ 0.012 =+ 0.005 0.627 £ 0.010 = 0.006 0.614 £ 0.010 = 0.004
0.28 - 0.32 0.447 £ 0.010 = 0.004 0.4428 + 0.0093 = 0.0051 0.4372 + 0.0085 =+ 0.0033

0.32 - 0.36 0.3147 =+ 0.0094 =+ 0.0039 0.3001 =+ 0.0079 =+ 0.0038 0.2992 + 0.0070 =+ 0.0024
0.36 - 0.40 0.2087 =+ 0.0074 =+ 0.0033 0.2070 =+ 0.0064 =+ 0.0021 0.1935 =+ 0.0058 =+ 0.0015
0.40 - 0.44 0.1215 =+ 0.0049 =+ 0.0029 0.1276 =+ 0.0049 =+ 0.0017 0.1185 =+ 0.0046 =+ 0.0012
0.44 - 0.52 0.0517 =+ 0.0022 =+ 0.0013 0.0479 =+ 0.0020 =+ 0.0014 0.0476 =+ 0.0022 =+ 0.0008
0.52 - 0.56 0.0102 =+ 0.0014 =+ 0.0006 0.0105 =+ 0.0015 =+ 0.0006 0.0069 =+ 0.0010 =+ 0.0006
0.56 - 0.64 0.00098 £ 0.00032 + 0.00011 0.00104 =+ 0.00028 + 0.00011 0.00107 £ 0.00036 £ 0.00006

Table B.5.b: Oblateness O

Oblateness O

(o] 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. < cosdr < 1.
0.00 - 0.02 7.456 4+ 0.048 &+ 0.069 7.868 + 0.057 &+ 0.184 7.328 + 0.022 &+ 0.060
0.02-0.04 10.866 =+ 0.056 = 0.055 10.769 4+ 0.062 =+ 0.086 10.737 4 0.027 £ 0.049
0.04 - 0.06 7.858 4+ 0.048 &+ 0.043 7.847 +£ 0.054 &£ 0.056 7.869 + 0.023 &+ 0.022
0.06 - 0.08 5.360 £+ 0.041 &+ 0.031 5.284 4+ 0.044 4+ 0.052 5.333 £+ 0.018 &+ 0.018
0.08 - 0.10 3.854 4+ 0.035 &+ 0.023 3.782 £+ 0.034 4+ 0.037 3.848 4+ 0.016 & 0.014
0.10 - 0.12 2.854 4+ 0.030 4 0.020 2.796 £+ 0.031 4+ 0.032 2876 £+ 0.014 4 0.012
0.12-0.14 2.258 £+ 0.027 &+ 0.017 2.259 £+ 0.025 &+ 0.027 2223 4+ 0.012 4 0.011
0.14 - 0.16 1.777 £ 0.024 + 0.014 1.791 £+ 0.021 £ 0.021 1.805 &+ 0.011 £ 0.010
0.16 - 0.20 1.302 +£ 0.016 =+ 0.011 1.299 £+ 0.015 £ 0.016 1.3200 =+ 0.0065 =+ 0.0079
0.20 - 0.24 0.872 £+ 0.013 & 0.007 0.881 £+ 0.012 4 0.010 0.9021 &+ 0.0050 = 0.0066
0.24 - 0.28 0.615 4+ 0.010 & 0.004 0.611 4 0.010 & 0.007 0.6283 4+ 0.0043 = 0.0049

0.28 - 0.32 0.4102 =+ 0.0083 =+ 0.0034 0.4233 =+ 0.0088 =+ 0.0053 0.4376 =+ 0.0036 =+ 0.0040
0.32 - 0.36 0.2813 =+ 0.0067 =+ 0.0026 0.2865 =+ 0.0068 =+ 0.0046 0.2984 + 0.0031 =+ 0.0036
0.36 - 0.40 0.1865 =+ 0.0054 =+ 0.0023 0.1925 =+ 0.0058 =+ 0.0039 0.1983 =+ 0.0025 =+ 0.0027
0.40 - 0.44 0.1134 =+ 0.0042 =+ 0.0020 0.1081 =+ 0.0038 =+ 0.0028 0.1232 =+ 0.0019 =+ 0.0022
0.44 - 0.52 0.0414 =+ 0.0017 =+ 0.0013 0.0419 =+ 0.0017 =+ 0.0014 0.0466 =+ 0.0008 =+ 0.0013
0.52 - 0.56 0.0099 =+ 0.0014 =+ 0.0006 0.0077 =+ 0.0010 =+ 0.0004 0.00796 £ 0.00038 £ 0.00045
0.56 - 0.64 0.00086 £ 0.00022 + 0.00006 0.00068 + 0.00017 + 0.00010 0.00079 £ 0.00008 + 0.00008

Table B.5.c: Oblateness O
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C-Parameter C

C 0.0 < cosdr <0.12 0.12 < cosdr < 0.24 0.24 < cos ¥ < 0.36
0.00 - 0.04 0.363 = 0.007 =+ 0.021 0.382 4+ 0.007 =+ 0.022 0.378 =+ 0.007 = 0.022
0.04 - 0.08 2.252 4+ 0.021 = 0.096 2.266 =+ 0.020 =+ 0.089 2.282 4+ 0.019 = 0.100
0.08 - 0.12  3.469 = 0.030 =+ 0.085 3.479 £+ 0.029 =+ 0.111 3.532 £+ 0.032 = 0.089
0.12 - 0.16 3.242 4+ 0.029 =+ 0.039 3.264 =+ 0.029 =+ 0.060 3.215 £+ 0.029 = 0.032
0.16 - 0.20 2.606 = 0.026 =+ 0.030 2.589 4+ 0.027 =+ 0.029 2.612 £+ 0.027 = 0.030
0.20-0.24 2.111 = 0.023 =+ 0.028 2.072 £ 0.023 =+ 0.024 2.111 =+ 0.024 =+ 0.028
0.24 - 0.28 1.669 =+ 0.022 =+ 0.019 1.666 =+ 0.021 =+ 0.020 1.658 =+ 0.021 =+ 0.026
0.28 - 0.32 1.409 =+ 0.021 =+ 0.016 1.364 + 0.019 =+ 0.015 1.391 +£ 0.020 =+ 0.023
0.32-0.36 1.183 =+ 0.020 =+ 0.012 1.174 + 0.019 =+ 0.013 1.176 =+ 0.018 =+ 0.016
0.36 - 0.40 0.987 =+ 0.017 =+ 0.011 0.993 =+ 0.016 =+ 0.012 0.989 =+ 0.017 =4 0.014
0.40 - 0.44 0.867 =+ 0.016 = 0.010 0.844 4+ 0.016 =+ 0.012 0.852 + 0.016 = 0.013
0.44 - 0.48 0.728 =+ 0.015 =+ 0.010 0.755 =+ 0.015 =+ 0.011 0.733 £+ 0.015 = 0.012
0.48 - 0.52 0.648 =+ 0.014 = 0.009 0.649 =+ 0.013 =+ 0.010 0.593 =+ 0.013 =+ 0.011
0.52-0.56 0.574 =+ 0.013 = 0.008 0.556 =+ 0.013 =+ 0.009 0.566 =+ 0.012 4 0.010
0.56 - 0.60 0.502 =+ 0.012 = 0.008 0.534 =+ 0.012 =+ 0.008 0.514 =+ 0.012 = 0.008
0.60 - 0.64 0.465 =+ 0.012 = 0.007 0.458 =+ 0.011 =+ 0.007 0.481 =+ 0.011 = 0.007
0.64 - 0.68 0.425 =+ 0.011 = 0.006 0.413 =+ 0.011 =+ 0.007 0.416 =+ 0.010 = 0.006
0.68 - 0.72 0.383 =+ 0.010 = 0.006 0.395 =+ 0.010 = 0.006 0.3721 £ 0.0095 + 0.0053
0.72-0.76  0.3419 £ 0.0092 £ 0.0059  0.3400 & 0.0090 £ 0.0049  0.3359 + 0.0091 + 0.0042
0.76 - 0.80  0.3025 & 0.0089 & 0.0055 0.3115 & 0.0087 £+ 0.0041  0.2927 + 0.0086 + 0.0037
0.80 - 0.84 0.1807 &+ 0.0070 £+ 0.0053  0.1964 + 0.0073 £+ 0.0032  0.1877 &+ 0.0077 & 0.0033
0.84 - 0.88  0.0943 £+ 0.0052 £+ 0.0051  0.0777 &+ 0.0045 £+ 0.0024  0.0859 + 0.0058 + 0.0026
0.88 - 0.92 0.0466 + 0.0039 £ 0.0023  0.0389 & 0.0033 £+ 0.0014 0.0472 £ 0.0046 + 0.0021
0.92-1.00 0.0086 + 0.0013 &+ 0.0002 0.0097 &+ 0.0014 £+ 0.0009 0.0086 + 0.0012 &+ 0.0006

Table B.6.a: C-Parameter C

C-Parameter C

C 0.36 < cos?r < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos¥r < 0.72
0.00 - 0.04 0.382 =+ 0.007 =+ 0.022 0.374 =+ 0.007 =+ 0.022 0.392 £+ 0.006 = 0.024
0.04 - 0.08 2.288 =+ 0.018 =+ 0.099 2.319 =+ 0.018 =+ 0.099 2.318 £+ 0.017 = 0.107
0.08 - 0.12  3.527 =+ 0.027 =+ 0.105 3.524 4+ 0.025 =+ 0.112 3.557 =+ 0.024 =+ 0.081
0.12-0.16 3.221 4+ 0.026 =+ 0.029 3.310 £ 0.027 =+ 0.050 3.262 £+ 0.025 = 0.034
0.16 - 0.20 2.627 =+ 0.025 =+ 0.028 2.584 =+ 0.024 =+ 0.047 2.620 =+ 0.024 = 0.030
0.20 - 0.24 2.107 =+ 0.023 =+ 0.026 2.121 4+ 0.022 =+ 0.045 2.092 £+ 0.021 = 0.026
0.24 -0.28 1.703 =+ 0.020 = 0.024 1.655 =+ 0.020 =+ 0.023 1.676 =+ 0.019 =+ 0.020
0.28 - 0.32 1.377 =+ 0.018 =+ 0.016 1.376 + 0.017 =+ 0.017 1.410 #+ 0.017 =+ 0.016
0.32-0.36 1.150 =+ 0.018 = 0.015 1.134 + 0.016 =+ 0.015 1.170 + 0.016 =+ 0.014
0.36 - 0.40 0.965 =+ 0.017 =+ 0.014 0.978 =+ 0.016 =+ 0.012 0.977 £+ 0.015 = 0.012
0.40 - 0.44 0.843 =+ 0.016 =+ 0.013 0.837 =+ 0.015 = 0.009 0.848 + 0.014 =+ 0.011
0.44 -0.48 0.726 =+ 0.015 =+ 0.012 0.744 4 0.013 = 0.008 0.739 £+ 0.013 = 0.010
0.48 - 0.52 0.649 =+ 0.013 =+ 0.010 0.648 =+ 0.012 =+ 0.008 0.624 =+ 0.012 = 0.009
0.52-0.56 0.571 =+ 0.012 = 0.009 0.574 =+ 0.012 =+ 0.007 0.546 =+ 0.011 = 0.008
0.56 - 0.60 0.518 =+ 0.011 = 0.008 0.501 =+ 0.011 =+ 0.007 0.499 =+ 0.011 = 0.007
0.60 - 0.64 0.456 = 0.011 = 0.007 0.467 =+ 0.010 = 0.006 0.438 =+ 0.010 = 0.006
0.64 - 0.68 0.418 =+ 0.010 = 0.007 0.408 =+ 0.010 = 0.006 0.3960 + 0.0091 £ 0.006
0.68 - 0.72 0.366 =+ 0.010 =+ 0.006 0.3558 £+ 0.0092 £+ 0.0062 0.3553 &+ 0.0087 &+ 0.0058
0.72-0.76  0.3301 &+ 0.0091 £+ 0.0062  0.3194 &+ 0.0085 £+ 0.0057 0.3135 % 0.0084 + 0.0052
0.76 - 0.80  0.2877 &+ 0.0086 &+ 0.0050 0.2809 + 0.0083 £ 0.0048  0.2880 + 0.0080 + 0.0045
0.80 - 0.84 0.1796 &+ 0.0082 £+ 0.0041  0.1715 &+ 0.0074 £+ 0.0043  0.1562 + 0.0056 + 0.0036
0.84 - 0.88 0.0866 + 0.0054 &+ 0.0032  0.0822 &+ 0.0047 £+ 0.0031  0.0750 % 0.0045 + 0.0027
0.88 - 0.92 0.0338 &+ 0.0033 &+ 0.0013  0.0363 &+ 0.0034 £+ 0.0017  0.0323 £+ 0.0031 & 0.0016
0.92 -1.00 0.0098 &+ 0.0015 £+ 0.0006  0.0082 &+ 0.0010 £+ 0.0009  0.0050 % 0.0010 % 0.0002

Table B.6.b: C-Parameter C
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B. Tables of the Data Distributions

C-Parameter C

C 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. <cosdr < 1.

0.00 - 0.04 0.417 &£ 0.006 = 0.026 0.518 =+ 0.007 =+ 0.057 0.388 £+ 0.003 &+ 0.025
0.04 - 0.08 2.330 &+ 0.016 = 0.107 2.271 + 0.017 &+ 0.102 2.300 4+ 0.008 &+ 0.101
0.08 - 0.12 3.559 4+ 0.020 = 0.083 3.470 =+ 0.025 4+ 0.108 3.633 £+ 0.011 &+ 0.096
0.12-0.16 3.299 4+ 0.023 = 0.052 3.229 + 0.027 &+ 0.063 3.274 £+ 0.011 4 0.042
0.16 - 0.20 2.622 4+ 0.021 = 0.037 2.604 + 0.023 &+ 0.037 2.622 4+ 0.010 4 0.034
0.20 - 0.24 2.078 &+ 0.019 = 0.028 2.053 =+ 0.020 =+ 0.029 2.112 4 0.009 & 0.027
0.24 - 0.28 1.671 &£ 0.017 = 0.022 1.666 =+ 0.018 = 0.026 1.675 £+ 0.008 + 0.020
0.28-0.32 1.395 &4 0.016 = 0.019 1.358 &+ 0.016 =+ 0.018 1.395 £+ 0.007 £ 0.016
0.32-0.36 1.176 =+ 0.015 = 0.017 1.143 &+ 0.015 =+ 0.014 1.164 £+ 0.007 + 0.013
0.36 - 0.40 0.952 &+ 0.013 =+ 0.013 0.970 + 0.014 &+ 0.017 0.978 4+ 0.006 = 0.011
0.40 - 0.44 0.845 &+ 0.012 = 0.012 0.837 + 0.013 &+ 0.010 0.8432 4+ 0.0055 = 0.0091
0.44 - 0.48 0.746 =+ 0.011 = 0.011 0.740 =+ 0.013 =+ 0.009 0.7356 &+ 0.0053 = 0.0079
0.48 - 0.52 0.635 =+ 0.011 = 0.011 0.633 =+ 0.012 =+ 0.008 0.6310 4+ 0.0047 = 0.0066
0.52-0.56 0572 &4 0.010 =+ 0.010 0.553 =+ 0.010 =+ 0.008 0.5578 &+ 0.0044 = 0.0061
0.56 - 0.60 0.481 &+ 0.010 = 0.008 0.486 =+ 0.010 =+ 0.007 0.5014 4+ 0.0043 = 0.0052
0.60 - 0.64 0.4289 £ 0.0095 &+ 0.0081 0.4318 + 0.0090 £ 0.0073 0.4505 =+ 0.0042 =+ 0.0048
0.64 - 0.68 0.3761 & 0.0084 &+ 0.0072 0.3738 £ 0.0081 £ 0.0068 0.3982 + 0.0038 =+ 0.0043
0.68 - 0.72 0.3431 £ 0.0082 &+ 0.0064 0.3365 + 0.0074 £ 0.0066 0.3569 =+ 0.0035 =+ 0.0039
0.72 - 0.76  0.3006 £ 0.0079 &+ 0.0054 0.2985 + 0.0072 £ 0.0063 0.3156 =+ 0.0032 =+ 0.0038
0.76 - 0.80 0.2458 £ 0.0069 &+ 0.0050 0.2399 + 0.0064 £ 0.0057 0.2716 =+ 0.0031 =+ 0.0037
0.80 - 0.84 0.1570 £ 0.0058 &+ 0.0044 0.1532 + 0.0052 £ 0.0048 0.1656 =+ 0.0026 =+ 0.0034
0.84 - 0.88 0.0695 £ 0.0039 &+ 0.0018 0.0699 + 0.0035 £ 0.0028 0.0771 =+ 0.0018 =+ 0.0022
0.88 - 0.92 0.0317 £ 0.0028 &+ 0.0013  0.0291 + 0.0022 £ 0.0006 0.0343 =+ 0.0012 =+ 0.0004
0.92 - 1.00 0.0055 & 0.0010 &+ 0.0004 0.0064 + 0.0010 £ 0.0003 0.00653 + 0.00034 £ 0.00016

Table B.6.c: C-Parameter C

Heavy Jet Mass pg

PH 0.0 < cosdr <0.12 0.12 < cos¥r < 0.24 0.24 < cos?r < 0.36
0.00 - 0.01 4.358 =+ 0.107 =+ 0.357 4.435 £+ 0.117 4 0.348 4.456 =+ 0.090 =+ 0.363
0.01 - 0.02 16.681 =+ 0.182 =+ 0.538 16.932 £+ 0.204 =+ 0.519 16.928 =+ 0.182 + 0.508
0.02 - 0.03 17.076 =+ 0.147 =+ 0.289 16.823 =+ 0.143 =+ 0.294 16.802 =+ 0.142 + 0.273
0.03 - 0.04 12.843 + 0.127 =+ 0.193 12.607 =+ 0.127 =+ 0.201 12.781 =+ 0.129 + 0.178
0.04 - 0.05 9.226 =+ 0.119 =+ 0.154 9.249 4+ 0.112 =+ 0.175 9.288 4+ 0.110 =+ 0.159
0.05 - 0.06 6.945 4+ 0.102 =+ 0.116 6.958 =+ 0.092 = 0.158 7.200 =+ 0.098 =+ 0.136
0.06 - 0.07 5.426 =+ 0.099 =+ 0.097 5.456 =+ 0.083 = 0.138 5.264 =+ 0.079 =+ 0.127
0.07 - 0.08 4.202 £+ 0.073 =+ 0.084 4.338 £+ 0.075 =+ 0.103 4.399 =+ 0.072 =+ 0.105
0.08 - 0.10 3.238 4+ 0.048 =+ 0.058 3.198 £+ 0.048 = 0.069 3.106 =+ 0.044 =+ 0.070
0.10 - 0.12 2.198 =+ 0.039 =+ 0.031 2.139 £+ 0.037 =+ 0.045 2.092 =+ 0.039 =+ 0.037
0.12 - 0.14 1.559 =+ 0.031 =+ 0.026 1.566 =+ 0.029 =+ 0.020 1.591 =+ 0.035 =+ 0.031
0.14 - 0.16 1.114 + 0.024 =+ 0.016 1.149 + 0.025 =+ 0.013 1.113 + 0.027 =+ 0.017
0.16 - 0.20 0.745 =4+ 0.014 =+ 0.012 0.742 + 0.015 =+ 0.011 0.739 =+ 0.017 =+ 0.014
0.20 - 0.25 0.3809 £ 0.0092 £ 0.0042 0.3853 + 0.0086 + 0.0062 0.3753 £ 0.0096 £ 0.0060
0.25 - 0.30 0.1748 £+ 0.0069 £ 0.0023 0.1615 + 0.0058 + 0.0028 0.1575 £+ 0.0057 £+ 0.0031
0.30 - 0.35 0.0651 £+ 0.0037 £+ 0.0017 0.0620 + 0.0037 &+ 0.0006 0.0691 £ 0.0039 £ 0.0011
0.35 - 0.40 0.0194 £ 0.0019 £ 0.0018 0.0229 + 0.0024 + 0.0006 0.0205 £ 0.0019 £ 0.0002

Table B.7.a: Heavy Jet Mass pgy
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Heavy Jet Mass pg

PH 0.36 < cos ¥ < 0.48 0.48 < cos ¥ < 0.60 0.60 < cosdr < 0.72
0.00 - 0.01 4.522 + 0.111 =+ 0.340 4.540 =+ 0.102 = 0.360 4.566 =+ 0.096 =+ 0.327
0.01-0.02 16.826 =+ 0.179 =+ 0.487 16.999 =+ 0.156 =+ 0.472 17.257 =+ 0.160 =+ 0.566
0.02-0.03 16.899 + 0.148 =+ 0.253 17.161 =+ 0.121 =+ 0.291 16.860 =+ 0.120 =+ 0.272
0.03-0.04 12946 + 0.131 =+ 0.184 12.738 =+ 0.118 + 0.251 13.017 4+ 0.111 =+ 0.183
0.04 - 0.05 9.322 + 0.102 =+ 0.152 9.266 =+ 0.098 = 0.169 9.468 =+ 0.101 =+ 0.161
0.05 - 0.06 7.011 4+ 0.094 =+ 0.129 7.013 £+ 0.092 =+ 0.133 6.934 =+ 0.082 =+ 0.134
0.06 - 0.07 5.356 =+ 0.083 =+ 0.116 5.330 £+ 0.085 =+ 0.117 5.346 =+ 0.071 =+ 0.110
0.07 - 0.08 4.234 £+ 0.075 =+ 0.103 4.244 £+ 0.073 =+ 0.094 4.245 £+ 0.065 = 0.107
0.08 - 0.10 3.177 £+ 0.055 =+ 0.064 3.168 =+ 0.038 = 0.065 3.083 =+ 0.040 =+ 0.070
0.10 - 0.12 2.201 =+ 0.040 =+ 0.049 2.175 £+ 0.034 = 0.049 2.123 + 0.030 =+ 0.051
0.12 - 0.14 1.5639 &£ 0.026 =+ 0.031 1.483 =+ 0.030 =+ 0.041 1.500 =+ 0.028 + 0.042
0.14 - 0.16 1.119 +£ 0.025 =+ 0.023 1.107 £ 0.025 =+ 0.025 1.105 =+ 0.025 =+ 0.034
0.16 - 0.20 0.729 =+ 0.015 =+ 0.016 0.713 =+ 0.013 = 0.018 0.682 =+ 0.012 =+ 0.020
0.20 - 0.25 0.3482 + 0.0079 £ 0.0082 0.3606 + 0.0094 + 0.0107 0.3422 + 0.0082 + 0.0107
0.25 - 0.30 0.1522 + 0.0054 + 0.0066 0.1423 + 0.0055 + 0.0043 0.1563 + 0.0053 + 0.0054
0.30 - 0.35 0.0612 + 0.0041 + 0.0018 0.0674 + 0.0039 & 0.0023 0.0549 + 0.0031 + 0.0026
0.35 - 0.40 0.0224 + 0.0021 + 0.0013 0.0229 + 0.0023 + 0.0010 0.0204 + 0.0020 + 0.0013

Table B.7.b: Heavy Jet Mass pg

Heavy Jet Mass pg

PH 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. < cosdr < 1.

0.00 - 0.01 4.635 =+ 0.102 =+ 0.373 4.628 + 0.094 =+ 0.406 4.537 £+ 0.095 &£ 0.252
0.01 -0.02 17.190 =+ 0.164 =+ 0.582 17.134 + 0.156 =+ 0.582 17.046 4+ 0.134 &+ 0.525
0.02-0.03 17.196 =+ 0.115 =+ 0.291 17.067 + 0.110 =+ 0.363 17.024 4+ 0.062 &+ 0.386
0.03 -0.04 12.802 &+ 0.104 =+ 0.163 12.841 + 0.107 &+ 0.316 12.838 4+ 0.051 &+ 0.188
0.04 - 0.05 9.295 + 0.092 4+ 0.132 9.287 £+ 0.095 &+ 0.217 9.303 £+ 0.047 4+ 0.131
0.05 - 0.06 6.971 =+ 0.078 =+ 0.118 6.921 =+ 0.085 =+ 0.158 6.990 £+ 0.040 4+ 0.103
0.06 - 0.07 5.483 =+ 0.065 =+ 0.104 5.305 =+ 0.071 &+ 0.129 5.385 £+ 0.037 &+ 0.089
0.07 - 0.08 4.281 =+ 0.061 =+ 0.095 4.270 =+ 0.065 =+ 0.109 4.177 £+ 0.029 4+ 0.073
0.08 - 0.10 3.124 + 0.038 =+ 0.078 3.112 + 0.037 &+ 0.072 3.137 £+ 0.018 & 0.068
0.10 - 0.12 2.074 + 0.029 =+ 0.058 2.085 =+ 0.029 4+ 0.049 2.156 £+ 0.013 &£ 0.057
0.12-0.14 1.516 =+ 0.026 = 0.051 1.503 &+ 0.026 = 0.032 1.491 £ 0.011 £ 0.040
0.14 - 0.16 1.050 &+ 0.021 = 0.029 1.066 =+ 0.020 = 0.023 1.096 + 0.010 =+ 0.026
0.16 - 0.20 0.665 =+ 0.011 =+ 0.019 0.687 =+ 0.014 =+ 0.009 0.703 £+ 0.005 & 0.016
0.20 - 0.25 0.3227 + 0.0076 £ 0.0089 0.3626 + 0.0066 + 0.0048 0.3546 4+ 0.0032 = 0.0067
0.25 - 0.30 0.1566 + 0.0053 + 0.0044 0.1415 + 0.0044 + 0.0040 0.1528 = 0.0018 = 0.0020
0.30 - 0.35 0.0537 + 0.0027 £ 0.0023 0.0599 + 0.0027 £ 0.0025 0.0616 = 0.0011 4 0.0010
0.35 - 0.40 0.0206 + 0.0018 + 0.0009 0.0213 + 0.0018 + 0.0013 0.02065 + 0.00064 + 0.00091

Table B.7.c: Heavy Jet Mass pg
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B. Tables of the Data Distributions

Sum of the Jet Masses pg

ps 0.0 < cos¥T <0.12 0.12 < cos ¥ < 0.24 0.24 < cosdr < 0.36
0.00 - 0.01 1.34 £ 0.05 +£0.15 1.36 £0.04 £+0.14 1.37 +£0.05 +£0.15
0.01 - 0.02 768 £ 0.15 = 0.62 7.71 +£0.15 =+ 0.65 779 £ 0.14 4+ 0.68
0.02-0.03 1253 =+ 0.17 £ 041 12.83 £+ 0.14 £ 0.48 12.64 + 0.15 £ 0.37
0.03-0.04 1277 =+ 0.14 +£ 0.33 12.57 +£0.13 £ 0.36 12.92 4+ 0.14 + 0.32
0.04 - 0.05 10.90 =+ 0.12 £ 0.28 10.73 +£0.12 £ 0.29 10.70 + 0.13 +£ 0.28
0.05 - 0.06 8.540 &+ 0.117 =+ 0.254 8.618 + 0.114 &+ 0.274 8.726 &+ 0.115 =+ 0.271
0.06 - 0.07 7.036 =+ 0.107 =+ 0.202 6.856 + 0.098 =+ 0.229 7.036 =+ 0.105 =+ 0.247
0.07 - 0.08 5.511 =4+ 0.089 =+ 0.168 5.692 + 0.088 4+ 0.181 5.560 =+ 0.083 =+ 0.176
0.08 - 0.10 4.258 =+ 0.059 =+ 0.128 4.217 =+ 0.057 &+ 0.137 4.135 =+ 0.053 =+ 0.124
0.10 - 0.12 2.994 4 0.043 + 0.075 3.009 + 0.044 4+ 0.084 2.956 4+ 0.050 =+ 0.091
0.12 - 0.14 2.183 &+ 0.037 =+ 0.055 2.162 =+ 0.037 =+ 0.053 2.095 =+ 0.037 =+ 0.054
0.14 - 0.16 1.629 =+ 0.031 =+ 0.040 1.629 &+ 0.030 = 0.037 1.634 =+ 0.032 &+ 0.045
0.16 - 0.20 1.131 =+ 0.019 =+ 0.019 1.163 =+ 0.019 =+ 0.024 1.144 + 0.018 =+ 0.029
0.20 - 0.25 0.6671 &+ 0.0144 + 0.0143 0.6555 + 0.0119 + 0.0162 0.6593 + 0.0127 + 0.0175
0.25 - 0.30 0.3422 4+ 0.0127 £ 0.0072 0.3347 + 0.0092 + 0.0088 0.3232 4+ 0.0098 + 0.0120
0.30 - 0.35 0.1104 £ 0.0055 + 0.0027 0.1118 + 0.0050 + 0.0024 0.1139 £ 0.0052 + 0.0035
0.35 - 0.40 0.0293 £+ 0.0025 + 0.0015 0.0299 + 0.0026 + 0.0007 0.0285 4+ 0.0027 + 0.0004

Table B.8.a: Sum of the Jet Masses pg

Sum of the Jet Masses pg

ps 0.36 < cos T < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr < 0.72
0.00 - 0.01 1.39 +£0.04 £0.15 1.38 £0.05 +£0.15 143 £0.05 = 0.16
0.01 - 0.02 7.79 £0.15 £ 0.68 791 £0.15 = 0.66 791 £0.15 £ 0.65
0.02-0.03 12.80 +£0.14 =+ 0.43 12.87 £ 0.13 =+ 0.46 1290 +0.13 &£ 0.39
0.03-0.04 1261 +£0.13 +0.35 12.87 £0.12 £ 0.35 12.83 +0.12 =+ 0.35
0.04-0.05 10.92 +£0.12 +0.29 10.90 £ 0.11 =+ 0.28 1095 +0.11 =+ 0.31
0.05 - 0.06 8.647 4+ 0.112 £ 0.279 8.572 £+ 0.103 = 0.265 8.662 =+ 0.098 =+ 0.265
0.06 - 0.07 7.002 =+ 0.108 + 0.230 6.792 £+ 0.095 =+ 0.219 7.111 =4 0.096 =+ 0.232
0.07 - 0.08 5.643 =+ 0.098 £ 0.183 5.601 =+ 0.084 = 0.185 5.460 =+ 0.082 =+ 0.183
0.08 - 0.10 4.181 =+ 0.051 £ 0.129 4.132 £+ 0.049 =+ 0.127 4.195 =+ 0.047 =+ 0.132
0.10 - 0.12 2.935 =+ 0.042 £ 0.085 3.010 =+ 0.047 = 0.087 2.924 + 0.040 =+ 0.088
0.12 - 0.14 2.232 £ 0.037 £ 0.065 2.135 =+ 0.033 = 0.063 2.134 =+ 0.034 =+ 0.062
0.14 - 0.16 1.643 =+ 0.030 £ 0.044 1.636 =+ 0.030 =+ 0.047 1.5687 &£ 0.028 =+ 0.049
0.16 - 0.20 1.122 + 0.020 £ 0.030 1.121 + 0.019 =+ 0.036 1.119 =+ 0.020 =+ 0.040
0.20 - 0.25 0.6574 &+ 0.016 £ 0.0253 0.6344 + 0.014 = 0.025 0.6095 + 0.0112 £ 0.0236
0.25 - 0.30 0.2960 &+ 0.008 £ 0.0140 0.2903 + 0.0079 + 0.0137 0.2877 + 0.0074 £+ 0.0151
0.30 - 0.35 0.0982 £ 0.005 £ 0.0047 0.1069 + 0.0051 + 0.0059 0.1031 + 0.0049 £ 0.0059
0.35 - 0.40 0.0309 & 0.002 £ 0.0015 0.0301 + 0.0029 + 0.0015 0.0257 + 0.0024 £+ 0.0013

Table B.8.b: Sum of the Jet Masses pg
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Sum of the Jet Masses pg

ps 0.72 < cos ¥ < 0.84 0.84 < cos ?r < 0.96 0. <cosdr < 1.

0.00 - 0.01 1.44 &£ 0.04 =+ 0.17 1.59 =+ 0.05 £ 0.28 1.43 £ 0.04 &£ 0.17
0.01 - 0.02 797 £+ 0.13 + 0.67 779 £ 014 4 0.69 7.84 £+ 0.13 =+ 0.66
0.02-0.03 1291 +0.12 £ 0.43 12.67 + 0.13 +£ 0.43 12.79 +£0.09 &£ 0.42
0.03-0.04 1294 +0.11 =+ 0.36 12.67 £+ 0.12 +£ 0.39 12.80 + 0.06 =+ 0.36
0.04 - 0.05 10.87 £+ 0.10 £ 0.28 10.90 £+ 0.11 +£ 0.34 10.87 £ 0.05 =+ 0.29
0.05 - 0.06 8.682 =+ 0.091 &+ 0.264 8.614 4+ 0.092 =+ 0.302 8.640 =+ 0.045 &+ 0.275
0.06 - 0.07 6.951 =+ 0.095 £ 0.229 6.814 =+ 0.093 + 0.235 6.944 + 0.041 =+ 0.225
0.07 - 0.08 5.576 =+ 0.079 £ 0.181 5.523 4+ 0.081 =+ 0.193 5.562 =+ 0.036 =+ 0.178
0.08 - 0.10 4.271 =+ 0.045 £ 0.146 4.071 =+ 0.049 =+ 0.146 4.180 =+ 0.025 &+ 0.132
0.10 - 0.12 2.900 =+ 0.037 £ 0.091 2.903 &+ 0.040 =+ 0.085 2.942 + 0.019 =+ 0.083
0.12-0.14 2.132 + 0.031 £ 0.068 2.123 &+ 0.031 =+ 0.065 2.143 + 0.014 =+ 0.059
0.14 - 0.16 1.598 =+ 0.028 + 0.054 1.586 =+ 0.026 =+ 0.044 1.611 =+ 0.012 = 0.043
0.16 - 0.20 1.050 =+ 0.014 £ 0.037 1.063 =+ 0.018 =+ 0.030 1.103 &+ 0.008 = 0.029
0.20 - 0.25 0.5839 + 0.010 £ 0.0229 0.6116 &+ 0.0102 + 0.0133 0.6250 + 0.0049 + 0.0173
0.25 - 0.30 0.2862 + 0.007 & 0.0129 0.2759 4+ 0.0063 + 0.0033 0.2979 + 0.0032 + 0.0084
0.30- 0.35 0.0920 + 0.004 £ 0.0033 0.0918 £+ 0.0037 + 0.0027 0.1007 £+ 0.0015 + 0.0022
0.35 - 0.40 0.0241 + 0.002 £ 0.0010 0.0276 &+ 0.0018 + 0.0016 0.0274 + 0.0008 + 0.0009

Table B.8.c: Sum of the Jet Masses pg

Difference of the Jet Masses pp

oD 0.0 < cosdr < 0.12 0.12 < cos ¥ < 0.24 0.24 < cosdr < 0.36
0.00-0.01 2863 +0.19 =+ 0.40 28.69 £+ 0.18 £+ 0.47 28.83 +0.20 +£0.48
0.01-0.02 1934 =+£0.15 +£0.25 19.30 +0.14 +£0.25 19.30 +£0.15 =+ 0.19
0.02-0.03 1237 =+£0.13 +£0.16 12.47 £+ 0.12 £ 0.17 12.45 +£0.12 =+ 0.16
0.03 - 0.04 8.252 +0.12 £ 0.11 8.320 + 0.108 =+ 0.129 8.270 + 0.095 &+ 0.127
0.04 - 0.05 5.931 =+ 0.087 &+ 0.062 5.810 =+ 0.090 =+ 0.088 6.096 =+ 0.089 =+ 0.112
0.05 - 0.06 4.465 =+ 0.075 =+ 0.055 4.493 + 0.071 &+ 0.076 4.538 + 0.081 =+ 0.093
0.06 - 0.07 3.410 =+ 0.064 =+ 0.046 3.445 + 0.064 =+ 0.045 3.318 + 0.064 =+ 0.074
0.07 - 0.08 2.841 =+ 0.052 4+ 0.033 2.738 + 0.058 =+ 0.035 2.665 =+ 0.051 =+ 0.052
0.08 - 0.10 2.075 =+ 0.039 &+ 0.016 1.999 4+ 0.036 =+ 0.023 2.009 =+ 0.038 =+ 0.025
0.10 - 0.12 1.407 &+ 0.031 =+ 0.013 1.449 4+ 0.032 = 0.021 1.350 =+ 0.028 = 0.019
0.12-0.14 1.013 &+ 0.022 4 0.010 0.9785 + 0.0251 £ 0.0171 1.017 &£ 0.023 = 0.010
0.14 - 0.16 0.7215 + 0.0206 + 0.0092 0.7404 + 0.0201 + 0.0082 0.7241 + 0.0207 £ 0.0071
0.16 - 0.20 0.4937 £ 0.0116 + 0.0058 0.5062 + 0.0129 + 0.0059 0.4845 + 0.0128 + 0.0060
0.20 - 0.25 0.2644 + 0.0095 £ 0.0047 0.2672 £ 0.0073 £ 0.0042 0.2601 + 0.0070 £ 0.0038
0.25 - 0.30 0.1274 £+ 0.0050 + 0.0024 0.1121 + 0.0046 + 0.0030 0.1145 + 0.0047 £ 0.0015
0.30- 0.35 0.0433 + 0.0028 + 0.0020 0.0463 + 0.0030 £ 0.0011 0.0517 + 0.0037 £ 0.0009
0.35 - 0.40 0.0161 + 0.0016 + 0.0017 0.0183 + 0.0021 + 0.0004 0.0170 £+ 0.0019 + 0.0004

Table B.9.a: Difference of the Jet Masses pp
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Difference of the Jet Masses pp

PD 0.36 < cos T < 0.48 0.48 < cosdr < 0.60 0.60 < cosdr < 0.72
0.00 - 0.01 28.76 +0.21 4+ 0.49 29.11 £ 0.17 £ 0.51 29.24 +£0.18 £ 0.52
0.01-0.02 1963 =+£0.16 =+ 0.25 19.37 +0.14 +0.24 19.55 £+ 0.13 &£ 0.26
0.02-0.03 1230 =+£0.14 +£0.13 1229 +£0.11 =+ 0.13 1249 £+ 0.11 =+ 0.11
0.03 - 0.04 8.248 4+ 0.101 =+ 0.103 8.511 + 0.104 =+ 0.11 8.369 =+ 0.084 = 0.101
0.04 - 0.05 5.991 4 0.082 =+ 0.082 5.803 + 0.081 =+ 0.071 5.816 =+ 0.075 =+ 0.085
0.05 - 0.06 4.388 =+ 0.068 =+ 0.076 4.517 £+ 0.074 = 0.062 4.419 =+ 0.064 =+ 0.064
0.06 - 0.07 3.555 =+ 0.063 =+ 0.063 3.387 £+ 0.058 = 0.053 3.448 =+ 0.053 =+ 0.051
0.07 - 0.08 2.729 4 0.068 = 0.045 2.697 =+ 0.051 = 0.035 2.641 =4 0.047 =+ 0.042
0.08 - 0.10 2.079 =+ 0.043 =+ 0.038 2.006 =+ 0.033 =+ 0.027 1.932 + 0.034 =+ 0.029
0.10 - 0.12 1.341 + 0.027 =+ 0.024 1.338 &£ 0.027 =+ 0.018 1.327 + 0.023 =+ 0.021
0.12 - 0.14 0.9749 £+ 0.0238 £+ 0.0131 0.9705 + 0.0231 + 0.0137 0.9642 £+ 0.0212 £ 0.0198
0.14 - 0.16 0.7207 £+ 0.0189 £ 0.0100 0.7565 + 0.0181 + 0.0121 0.7141 £+ 0.0181 £ 0.0149
0.16 - 0.20 0.4927 £+ 0.0111 £ 0.0071 0.4667 + 0.0115 + 0.0108 0.4529 £ 0.0098 £ 0.0106
0.20 - 0.25 0.2362 £+ 0.0069 £ 0.0046 0.2408 + 0.0066 + 0.0051 0.2471 £ 0.0081 £ 0.0068
0.25 - 0.30 0.1067 £+ 0.0046 £ 0.0035 0.1037 &+ 0.0042 £+ 0.0025 0.1100 £ 0.0041 £ 0.0021
0.30 - 0.35 0.0472 £+ 0.0034 £ 0.0013 0.0472 £+ 0.0031 &+ 0.0011 0.0419 £ 0.0029 £ 0.0017
0.35 - 0.40 0.0183 £ 0.0018 £ 0.0009 0.0205 + 0.0025 + 0.0009 0.0154 £+ 0.0017 £ 0.0007

Table B.9.b: Difference of the Jet Masses pp

Difference of the Jet Masses pp

oD 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. < cosdr < 1.
0.00 -0.01 29.39 =+£0.17 +£0.51 2997 £ 0.19 =+ 0.54 29.18 + 0.14 + 0.48
0.01 - 0.02 19.61 £+ 0.11 £ 0.31 19.28 £+ 0.12 + 0.32 19.44 + 0.06 + 0.26
0.02-0.03 1230 =+£0.09 +£0.11 12.17 £+ 0.10 +£ 0.17 12.35 + 0.05 + 0.14
0.03 - 0.04 8.315 =+ 0.082 4+ 0.099 8.180 &+ 0.092 + 0.106 8.303 £+ 0.035 4 0.105
0.04 - 0.05 5.936 =+ 0.072 &+ 0.080 5.884 4+ 0.074 + 0.089 5.899 £+ 0.032 & 0.076
0.05 - 0.06 4.430 =+ 0.065 =+ 0.064 4.315 4+ 0.060 =+ 0.065 4.432 £+ 0.025 & 0.057
0.06 - 0.07 3.460 =+ 0.057 =+ 0.058 3.394 4+ 0.056 =+ 0.059 3.424 4+ 0.022 4 0.047
0.07 - 0.08 2.747 + 0.049 &+ 0.049 2.704 =+ 0.047 =+ 0.053 2.709 £+ 0.020 4 0.034
0.08 - 0.10 1.956 =+ 0.030 =+ 0.035 1.894 + 0.029 4+ 0.024 1.980 + 0.014 + 0.024
0.10 - 0.12 1.3276 £ 0.0233 £ 0.0251 1.354 + 0.024 &+ 0.017 1.353 £ 0.011 £ 0.015
0.12-0.14 0.9452 + 0.0215 + 0.0164 0.9316 4+ 0.0189 + 0.0146 0.9660 = 0.0073 = 0.0101
0.14 - 0.16 0.6831 + 0.0197 £ 0.0135 0.7093 £+ 0.0152 + 0.0112 0.7133 =4 0.0065 = 0.0069
0.16 - 0.20 0.4320 + 0.0096 + 0.0083 0.4666 + 0.0102 + 0.0062 0.4676 =+ 0.0039 = 0.0046
0.20 - 0.25 0.2318 + 0.0063 + 0.0042 0.2518 £+ 0.0059 + 0.0056 0.2467 4 0.0026 = 0.0023
0.25 - 0.30 0.1097 + 0.0042 + 0.0020 0.0963 &+ 0.0038 + 0.0047 0.1082 4 0.0015 = 0.0017
0.30 - 0.35 0.0406 + 0.0024 + 0.0012 0.0457 4+ 0.0020 + 0.0024 0.04446 4+ 0.0009 = 0.0010
0.35 - 0.40 0.0160 + 0.0015 + 0.0008 0.0178 4+ 0.0016 + 0.0012 0.01682 + 0.00056 + 0.00053

Table B.9.c: Difference of the Jet Masses pp
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Wide Jet Broadening Barqx

Bpyax 0.0 < cosd < 0.12

0.12 < cosdr < 0.24

0.24 < cosdr < 0.36

0.00 - 0.01 0.027 =+ 0.007
0.01 - 0.02 1.895 =+ 0.038
0.02 - 0.03 9.222 + 0.093
0.03-0.04 14.040 = 0.120
0.04-0.05 13.180 =+ 0.116
0.05-0.06 10.699 = 0.098
0.06 - 0.07 8.618 =+ 0.094
0.07 - 0.08 6.803 =+ 0.081
0.08 - 0.10 5.191 =+ 0.049
0.10 - 0.12 3.689 =+ 0.041
0.12 - 0.14 2.686 =+ 0.035
0.14 - 0.16 1.968 =+ 0.032
0.16 - 0.18 1.441 =+ 0.025
0.18 - 0.20 1.077 =+ 0.023
0.20 - 0.22 0.715 =+ 0.019
0.22 - 0.24 0.472 =+ 0.014

0.24 - 0.28 0.2069 + 0.0067 + 0.0048
0.28 - 0.32 0.0284 + 0.0024 + 0.0015

+ 0.012
+ 0.056
+ 0.225
+ 0.188
+ 0.121
+ 0.082
+ 0.050
+ 0.045
+ 0.038
+ 0.026
+ 0.024
+ 0.022
+ 0.019
+ 0.015
+ 0.012
+ 0.007

0.020 =+ 0.007 =+ 0.010
1.887 =+ 0.036 =+ 0.055
9.260 =+ 0.084 =+ 0.172
14.256 =+ 0.111 =+ 0.196
13.153 =+ 0.113 =+ 0.095
10.646 =+ 0.102 =+ 0.084
8.339 =+ 0.089 =+ 0.069
6.813 =+ 0.081 =+ 0.056
5.230 =+ 0.054 =+ 0.039
3.650 =+ 0.042 =+ 0.034
2.614 =+ 0.039 =+ 0.029
2.052 =+ 0.032 =+ 0.021
1.433 =+ 0.026 =+ 0.013
1.047 =+ 0.023 =+ 0.009
0.742 =+ 0.019 =+ 0.007
0.466 =+ 0.015 =+ 0.005
0.1997 £ 0.0064 £ 0.00331
0.0295 + 0.0024 £ 0.00205

0.015
1.883
9.326
14.295
13.156
10.699
8.498
6.802
5.195
3.651
2.688
1.881
1.452
1.021
0.737
0.450

0.1970 £+ 0.0066 £ 0.0004
0.0302 £ 0.0026 £ 0.0006

+ 0.006
+ 0.037
+ 0.082
+ 0.110
+ 0.107
+ 0.095
+ 0.084
+ 0.079
+ 0.050
+ 0.037
+ 0.035
+ 0.029
+ 0.026
+ 0.021
+ 0.019
+ 0.015

+ 0.009
+ 0.055
+ 0.179
+ 0.196
+ 0.090
+ 0.077
+ 0.051
+ 0.033
+ 0.025
+ 0.023
+ 0.021
+ 0.017
+ 0.014
+ 0.009
+ 0.005
+ 0.004

Table B.10.a: Wide Jet Broadening By,

Wide Jet Broadening Barqx

Buyax 0.36 < cos V¥

<0.48

0.48 < cos ¥ < 0.60

0.60 < cosdr < 0.72

0.00 - 0.01 0.027 =+ 0.007
0.01 - 0.02 1.924 =+ 0.034
0.02 - 0.03 9.324 + 0.082
0.03-0.04 14241 =+ 0.104
0.04-0.05 13.442 =+ 0.108
0.05-0.06 10.568 =+ 0.093
0.06 - 0.07 8.380 =+ 0.085
0.07 - 0.08 6.928 =+ 0.076
0.08 - 0.10 5.215 =+ 0.048
0.10 - 0.12 3.599 =+ 0.037
0.12 - 0.14 2.691 =+ 0.033
0.14 - 0.16 1.924 =+ 0.031
0.16 - 0.18 1.417 =+ 0.025
0.18 - 0.20 1.008 =+ 0.021
0.20 - 0.22 0.713 =+ 0.017
0.22 - 0.24 0.427 =+ 0.014

0.24 - 0.28 0.1807 + 0.0062 + 0.0024
0.28 - 0.32 0.0343 + 0.0028 + 0.0010

+ 0.008
+ 0.055
+ 0.197
+ 0.159
+ 0.113
+ 0.090
+ 0.056
+ 0.042
+ 0.037
+ 0.030
+ 0.027
+ 0.022
+ 0.012
+ 0.010
+ 0.009
+ 0.008

0.020 =+ 0.007 = 0.009
1.852 £ 0.032 =+ 0.055
9.494 + 0.078 =+ 0.195
14.354 =+ 0.099 =+ 0.184
13.332 =+ 0.096 =+ 0.084
10.702 =+ 0.089 =+ 0.068
8.436 + 0.084 =+ 0.036
6.881 =+ 0.078 =+ 0.024
5.139 =+ 0.044 =+ 0.021
3.660 =+ 0.037 =+ 0.018
2.669 =+ 0.031 =+ 0.014
1.903 =+ 0.028 =+ 0.012
1.404 =+ 0.025 =+ 0.010
1.015 =+ 0.021 =+ 0.009
0.682 =+ 0.017 =+ 0.008
0.400 =+ 0.014 = 0.006
0.1857 + 0.0066 + 0.0034
0.0315 + 0.0027 + 0.0007

0.027
1.994
9.404
14.312
13.517
10.737
8.558
6.763
5.203
3.675
2.574
1.875
1.362
0.967
0.653
0.427

0.1729 + 0.0059 + 0.0063
0.0297 + 0.0026 + 0.0016

+ 0.006
+ 0.031
+ 0.072
+ 0.096
+ 0.091
+ 0.084
+ 0.075
+ 0.071
+ 0.041
+ 0.036
+ 0.029
+ 0.026
+ 0.023
+ 0.019
+ 0.016
+ 0.013

+ 0.009
+ 0.063
+ 0.185
+ 0.155
+ 0.089
+ 0.070
+ 0.041
+ 0.037
+ 0.030
+ 0.027
+ 0.022
+ 0.018
+ 0.015
+ 0.014
+ 0.012
+ 0.011

Table B.10.b: Wide Jet Broadening By,
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Wide Jet Broadening Bjsq,
Brraz 0.72 < cos ¥ < 0.84 0.84 < cos¥r < 0.96 0. < cosdr < 1.

0.00 - 0.01 0.083 =+ 0.010 =+ 0.017 0.296 =+ 0.017 = 0.088 0.041 = 0.003 = 0.036
0.01 - 0.02 2.094 =+ 0.029 =+ 0.073 2.267 £+ 0.031 =+ 0.138 1.945 + 0.014 =+ 0.087
0.02 - 0.03 9.625 =+ 0.071 =+ 0.227 9.413 £+ 0.071 = 0.246 9.412 4+ 0.039 =+ 0.295
0.03 - 0.04 14.380 =+ 0.092 =+ 0.185 14.152 =+ 0.097 =+ 0.203 14.307 =+ 0.045 =+ 0.235
0.04 - 0.05 13.299 + 0.087 =+ 0.093 12.932 £+ 0.089 = 0.136 13.367 =+ 0.039 =+ 0.105
0.05 - 0.06 10.859 =+ 0.083 =+ 0.061 10.459 =+ 0.084 = 0.094 10.755 =+ 0.035 =+ 0.073
0.06 - 0.07 8.510 =+ 0.070 =+ 0.049 8.393 £+ 0.076 =+ 0.073 8.510 =+ 0.032 =+ 0.045
0.07 - 0.08 6.816 =+ 0.064 =+ 0.039 6.843 =+ 0.069 = 0.060 6.849 =+ 0.030 =+ 0.025
0.08 - 0.10 5.185 =+ 0.040 =+ 0.031 5.119 =+ 0.043 = 0.057 5.193 =+ 0.017 =+ 0.023
0.10 - 0.12 3.621 =+ 0.034 =+ 0.028 3.599 4+ 0.035 = 0.052 3.639 =+ 0.015 =+ 0.022
0.12 - 0.14 2.577 £+ 0.031 =+ 0.026 2.563 =+ 0.031 = 0.040 2.625 =+ 0.014 = 0.016
0.14 - 0.16 1.849 + 0.026 =+ 0.024 1.801 =+ 0.025 =+ 0.031 1.900 =+ 0.012 =+ 0.014
0.16 - 0.18 1.361 =+ 0.022 4+ 0.021 1.331 £ 0.022 =+ 0.022 1.3878 + 0.0094 + 0.0091
0.18 - 0.20 0.909 =+ 0.017 =+ 0.017 0.929 £+ 0.017 = 0.010 0.9828 + 0.0082 £ 0.0082
0.20 - 0.22 0.610 =+ 0.015 =+ 0.012 0.6567 =+ 0.014 = 0.008 0.6722 £+ 0.0065 £ 0.0062
0.22 - 0.24 0.387 =+ 0.011 =+ 0.010 0.407 =+ 0.011 = 0.006 0.4212 £ 0.0050 £ 0.0043
0.24 - 0.28 0.1722 £+ 0.0056 £+ 0.0028 0.1654 + 0.0048 + 0.0052 0.1802 £ 0.0024 £ 0.0016
0.28 - 0.32 0.0303 £+ 0.0024 £ 0.0007 0.0293 + 0.0020 + 0.0017 0.0292 £+ 0.0010 £ 0.0007

Table B.10.c: Wide Jet Broadening By,

Total Jet Broadening Bsym
Bsym 0.0 < cos 7 < 0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥ < 0.36

0.00 - 0.01 0.003 =+ 0.002 =+ 0.009 0.001 =+ 0.001 =+ 0.002 0.004 =+ 0.003 =+ 0.004
0.01-0.02 0.089 =+ 0.010 =+ 0.012 0.089 =+ 0.010 =+ 0.015 0.091 =+ 0.009 =+ 0.011
0.02-0.03 0.949 =+ 0.027 =+ 0.043 0.942 + 0.026 =+ 0.041 0.924 =+ 0.024 =+ 0.042
0.03-0.04 3.517 &£ 0.055 =+ 0.145 3.594 =+ 0.051 =+ 0.114 3.489 =+ 0.051 =+ 0.107
0.04-0.05 6.571 =+ 0.079 =+ 0.159 6.522 =+ 0.073 =+ 0.128 6.739 =+ 0.070 =+ 0.165
0.05-0.06 8.726 =+ 0.097 =+ 0.144 8.959 =+ 0.091 =+ 0.161 9.042 =+ 0.093 =+ 0.185
0.06 - 0.07 9.705 =+ 0.099 =+ 0.126 9.709 =+ 0.097 =+ 0.122 9.613 =+ 0.095 =+ 0.135
0.07 - 0.08 9.047 £ 0.097 =+ 0.103 9.043 =+ 0.099 =+ 0.083 9.148 =+ 0.089 =+ 0.041
0.08 - 0.10 7.453 =+ 0.062 =+ 0.059 7.394 4+ 0.060 =+ 0.072 7.399 =+ 0.055 =+ 0.038
0.10-0.12 5.580 =+ 0.051 =+ 0.030 5.439 =+ 0.051 =+ 0.043 5.538 =+ 0.049 =+ 0.036
0.12-0.14 4.196 =+ 0.047 =+ 0.028 4.222 + 0.044 + 0.037 4.192 =+ 0.044 =+ 0.026
0.14-0.16 3.259 =+ 0.040 =+ 0.027 3.210 =+ 0.039 =+ 0.026 3.168 =+ 0.039 =+ 0.024
0.16 - 0.18 2.442 + 0.034 =+ 0.026 2.499 =+ 0.036 =+ 0.021 2.446 =+ 0.032 =+ 0.022
0.18-0.20 1.957 =+ 0.030 =+ 0.025 1.925 =+ 0.030 =+ 0.019 1.913 =+ 0.030 =+ 0.020
0.20-0.22 1.509 =+ 0.026 =+ 0.023 1.547 £ 0.026 =+ 0.018 1.472 +£ 0.027 &+ 0.018
0.22-0.24 1.226 =+ 0.024 =+ 0.017 1.215 =+ 0.023 &+ 0.016 1.269 =+ 0.023 =+ 0.016
0.24-0.28 0.870 + 0.014 =+ 0.013 0.848 =+ 0.014 =+ 0.007 0.849 =+ 0.014 =+ 0.006
0.28 - 0.32 0.443 =+ 0.010 =+ 0.007 0.452 =+ 0.010 =+ 0.005 0.441 =+ 0.010 =+ 0.003
0.32-0.36 0.1537 £ 0.0058 £ 0.0042 0.1506 + 0.0061 £ 0.0020 0.1368 + 0.0057 £ 0.0030
0.36 - 0.40 0.0133 £ 0.0032 £ 0.0009 0.0143 £ 0.0028 £ 0.0011  0.0117 £ 0.0025 + 0.0007

Table B.11.a: Total Jet Broadening Bgy,
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Total Jet Broadening Bgy,

Bsym 0.36 < cosdr < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos¥r < 0.72
0.00 - 0.01  0.002 = 0.002 = 0.003 0.002 = 0.001 = 0.004 0.004 =+ 0.002 = 0.003
0.01 - 0.02 0.097 =+ 0.010 = 0.007 0.085 =+ 0.008 = 0.010 0.089 =+ 0.008 = 0.013
0.02 - 0.03 0.898 =+ 0.023 = 0.044 0.903 =+ 0.024 =+ 0.042 0.972 £+ 0.022 = 0.043
0.03 -0.04 3.614 = 0.050 =+ 0.120 3.545 4+ 0.045 =+ 0.103 3.603 =+ 0.046 =+ 0.108
0.04 - 0.05 6.693 =+ 0.068 =+ 0.141 6.911 =+ 0.071 =+ 0.216 6.843 £+ 0.069 = 0.202
0.05 - 0.06 9.010 =+ 0.085 =+ 0.143 8.974 4+ 0.080 =+ 0.169 8.978 =+ 0.077 =+ 0.121
0.06 - 0.07 9.750 =+ 0.091 = 0.140 9.901 =+ 0.094 =+ 0.123 9.764 =+ 0.091 = 0.100
0.07 - 0.08 9.016 =+ 0.087 =+ 0.079 9.256 =+ 0.091 =+ 0.102 9.212 4+ 0.085 = 0.059
0.08 - 0.10 7.452 4+ 0.057 =+ 0.071 7.351 &£ 0.054 =+ 0.039 7.507 =+ 0.050 =+ 0.052
0.10 - 0.12  5.591 = 0.047 =+ 0.044 5.571 =+ 0.046 =+ 0.034 5.509 =+ 0.044 = 0.037
0.12-0.14 4.158 =+ 0.042 =+ 0.038 4.086 =+ 0.041 =+ 0.030 4.231 £+ 0.036 =+ 0.033
0.14 - 0.16 3.117 =+ 0.038 =+ 0.030 3.129 &£ 0.034 =+ 0.027 3.189 =+ 0.033 =+ 0.031
0.16 - 0.18 2.470 =+ 0.034 =+ 0.016 2.499 4 0.031 =+ 0.024 2.430 =+ 0.030 = 0.028
0.18-0.20 1.889 =+ 0.027 =+ 0.015 1.902 =+ 0.029 =+ 0.021 1.843 =+ 0.026 =+ 0.022
0.20 - 0.22 1.538 =+ 0.024 =+ 0.014 1.5632 + 0.026 =+ 0.017 1.501 =+ 0.024 =+ 0.020
0.22-0.24 1.250 = 0.022 = 0.012 1.184 =+ 0.024 =+ 0.010 1.161 =+ 0.021 =+ 0.017
0.24 - 0.28 0.817 =+ 0.013 = 0.007 0.806 =+ 0.013 = 0.009 0.769 =+ 0.013 =+ 0.014
0.28 - 0.32 0.430 =+ 0.010 = 0.005 0.430 =+ 0.010 = 0.005 0.426 =+ 0.010 =+ 0.013
0.32-0.36 0.1346 &+ 0.0060 &+ 0.0034  0.1259 &+ 0.0054 £+ 0.0032  0.1168 + 0.0059 + 0.0055
0.36 - 0.40 0.0163 & 0.0037 &+ 0.0021  0.0077 &+ 0.0019 £ 0.0007 0.0063 &+ 0.0013 + 0.0008

Table B.11.b: Total Jet Broadening Bgyn,

Total Jet Broadening Bgqm

Bsym 0.72 < cos¥r < 0.84 0.84 < cos ¥ < 0.96 0. <cosdr < 1.
0.00-0.01 0.001 =+ 0.001 =+ 0.014 0.153 =+ 0.052 =+ 0.088 0.010 £ 0.003 = 0.025
0.01-0.02 0.120 = 0.012 =+ 0.022 0.300 + 0.012 =+ 0.069 0.091 +£0.004 = 0.015
0.02-0.03 0.973 &£ 0.034 =+ 0.045 1.138 £ 0.020 =+ 0.086 0.939 £ 0.010 = 0.042
0.03-0.04 3.714 &£ 0.066 =+ 0.142 3.585 =+ 0.040 = 0.167 3.590 +£0.019 = 0.119
0.04-0.05 6.856 =+ 0.095 =+ 0.188 6.704 + 0.061 =+ 0.185 6.772 £ 0.027 =+ 0.169
0.05-0.06 9.041 =+ 0.115 + 0.116 8.957 =+ 0.075 =+ 0.173 9.003 +£0.033 =+ 0.151
0.06 - 0.07 9.803 = 0.123 =+ 0.102 9.510 =+ 0.081 = 0.166 9.788 £ 0.035 &£ 0.127
0.07 - 0.08 9.298 =+ 0.127 + 0.085 8.883 =+ 0.076 =+ 0.125 9.167 £ 0.036 =+ 0.079
0.08 - 0.10 7.667 =+ 0.078 =+ 0.079 7.351 =+ 0.048 =+ 0.087 7.485 £+ 0.022 £ 0.066
0.10- 0.12 5.541 = 0.068 =+ 0.041 5.401 =+ 0.040 = 0.066 5.5564 £ 0.019 =+ 0.039
0.12-0.14 4.173 =4 0.059 =+ 0.034 4.121 + 0.035 =+ 0.058 4.188 £ 0.017 =+ 0.028
0.14-0.16 3.135 =+ 0.048 =+ 0.032 3.170 + 0.033 =+ 0.051 3.178 £ 0.014 4+ 0.024
0.16 - 0.18 2.422 4+ 0.044 =+ 0.031 2.438 +0.029 =+ 0.032 2.454 £ 0.013 =+ 0.019
0.18-0.20 1.892 4+ 0.037 £ 0.015 1.867 =+ 0.025 =+ 0.025 1.891 4+ 0.011 + 0.016
0.20-0.22 1.421 = 0.034 =+ 0.013 1.437 £ 0.023 =+ 0.022 1.493 4+ 0.010 =+ 0.013
0.22-0.24 1.123 = 0.030 =+ 0.009 1.113 #£ 0.021 =+ 0.020 1.1823 4+ 0.0092 =+ 0.0093
0.24-0.28 0.762 =+ 0.017 £ 0.007 0.759 =+ 0.012 =+ 0.013 0.7968 =+ 0.0047 =+ 0.0059
0.28 - 0.32 0.358 =+ 0.012 =+ 0.005 0.372 + 0.010 =+ 0.004 0.4062 =+ 0.0035 =+ 0.0035
0.32-0.36 0.1127 £+ 0.0064 £+ 0.0024 0.1065 &+ 0.0043 &+ 0.0027 0.1229 =+ 0.0019 = 0.0016
0.36 - 0.40 0.0058 £ 0.0014 £ 0.0010 0.0065 &+ 0.0012 £+ 0.0002 0.00758 £ 0.00054 £+ 0.00011

Table B.11.c: Total Jet Broadening Bgy,
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B. Tables of the Data Distributions

Differential 2-Jet Rate Fo Scheme Dy °

Y23 0.0 < cos 7 < 0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥t < 0.36
0.000 - 0.005 23.43 +0.25 =+ 0.65 23.04 £019 £0.77 23.43 +£0.22 +£0.72
0.005 - 0.010 26.19 =+ 0.23 &+ 0.47 26.55 +0.22 +£0.45 26.62 +£0.21 +0.48
0.010 - 0.015 20.55 +0.21 +0.21 20.49 £020 +£0.26 2035 £0.20 +£0.25
0.015 - 0.020 1598 +0.19 =+ 0.16 16.26 £+ 0.19 =+ 0.22 16.25 £+0.19 =4 0.19
0.020 - 0.025 13.08 =+ 0.17 =+ 0.13 12.84 £+ 0.17 =+ 0.17 13.11 £ 0.17 £ 0.15
0.025 - 0.030 10.78 +0.15 =+ 0.12 10.77 +0.15 =+ 0.12 10.83 £ 0.16 =+ 0.13
0.030 - 0.040 8.264 + 0.106 =+ 0.111 8.603 =+ 0.116 =+ 0.108 8.414 £+ 0.096 =+ 0.116
0.040 - 0.050 6.366 =+ 0.091 = 0.089 6.180 =+ 0.095 =+ 0.073 6.171 =+ 0.084 = 0.076
0.050 - 0.060 4.883 =+ 0.073 =+ 0.063 4.824 =+ 0.072 =+ 0.061 4.741 £+ 0.070 = 0.065
0.060 - 0.070 4.009 =+ 0.067 = 0.052 3.825 + 0.064 =+ 0.053 3.937 £+ 0.062 = 0.054
0.070 - 0.080 3.151 =+ 0.063 = 0.044 3.178 =+ 0.060 =+ 0.048 3.063 =+ 0.057 = 0.046
0.080 - 0.090 2.569 =+ 0.058 = 0.040 2.749 =+ 0.0567 =+ 0.045 2.668 =+ 0.054 = 0.042
0.090 - 0.100 2.204 =+ 0.053 = 0.035 2.203 =+ 0.0563 =+ 0.040 2.280 =+ 0.052 = 0.037
0.100 - 0.110 1.940 =+ 0.049 =+ 0.028 1.911 =+ 0.042 =+ 0.035 1.913 +£ 0.047 =+ 0.031
0.110 - 0.120 1.630 =+ 0.046 =+ 0.014 1.588 &+ 0.039 =+ 0.029 1.660 =+ 0.040 =+ 0.027
0.120 - 0.140 1.327 £ 0.030 =+ 0.022 1.316 =+ 0.028 =+ 0.017 1.256 &+ 0.027 =+ 0.021
0.140 - 0.160 0.9687 + 0.0248 + 0.0209 0.9940 + 0.0237 £+ 0.012 0.9813 + 0.0244 + 0.0205
0.160 - 0.180 0.7907 £+ 0.0213 &+ 0.0110 0.7829 + 0.0209 + 0.0114 0.7487 + 0.0200 + 0.0123
0.180 - 0.200 0.5526 + 0.0182 + 0.0095 0.5892 + 0.0177 &+ 0.0108 0.6101 + 0.0149 4+ 0.0111
0.200 - 0.250 0.3669 + 0.0088 + 0.0061 0.3602 + 0.0086 + 0.0092 0.3557 + 0.0082 + 0.0085
0.250 - 0.300 0.1474 £+ 0.0058 + 0.0031 0.1479 + 0.0064 + 0.0047 0.1363 + 0.0059 + 0.0038
0.300 - 0.350 0.0212 + 0.0042 + 0.0016 0.0146 + 0.0019 + 0.0011 0.0187 + 0.0028 + 0.0012

Table B.12.a: Differential 2-Jet Rate Ey Scheme D2

Differential 2-Jet Rate Eq Scheme D °

Y23 0.36 < cosdT < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos¥r < 0.72
0.000 - 0.005 23.31 +0.20 =+ 0.76 23.65 +£0.18 +£0.76 23.64 +£0.17 +£0.78
0.005 - 0.010 26.57 +0.21 £+ 0.48 26.75 +£0.21 £ 0.48 26.77 +£0.19 £ 0.47
0.010 - 0.015 20.55 +0.19 =+ 0.25 20.66 £+ 0.20 £ 0.32 20.64 +£0.18 +£0.24
0.015 - 0.020 16.26 =+ 0.17 =+ 0.19 16.35 +0.18 =+ 0.31 16.61 £+ 0.17 &£ 0.17
0.020 - 0.025 12.98 +0.16 =+ 0.17 13.06 +0.16 =+ 0.15 13.20 £ 0.16 =+ 0.14
0.025 - 0.030 1098 +0.13 =+0.15 10.83 +0.13 £+ 0.11 10.68 £+ 0.12 4+ 0.11
0.030 - 0.040 8.442 + 0.112 + 0.121 8.371 =+ 0.089 = 0.097 8.481 =+ 0.105 =+ 0.101
0.040 - 0.050 6.199 =+ 0.094 =+ 0.077 6.219 =+ 0.070 =+ 0.082 6.243 + 0.075 =+ 0.081
0.050 - 0.060 4.840 =+ 0.077 =+ 0.062 4.803 =+ 0.066 =+ 0.070 4.909 =+ 0.069 = 0.067
0.060 - 0.070 4.034 =+ 0.068 = 0.057 3.924 + 0.062 =+ 0.063 3.907 =+ 0.065 = 0.056
0.070 - 0.080 3.214 £+ 0.059 = 0.054 3.216 =+ 0.0567 =+ 0.055 3.1563 £+ 0.060 = 0.050
0.080 - 0.090 2.636 =+ 0.053 = 0.049 2.504 =+ 0.050 =+ 0.042 2.529 £+ 0.054 = 0.039
0.090 - 0.100 2.248 £+ 0.049 = 0.045 2.263 =+ 0.048 = 0.037 2.112 4+ 0.049 = 0.032
0.100 - 0.110 1.890 =+ 0.045 =+ 0.036 1.850 =+ 0.046 =+ 0.031 1.939 &£ 0.041 =+ 0.029
0.110 - 0.120 1.586 =+ 0.038 =+ 0.027 1.647 &£ 0.042 =+ 0.025 1.594 =+ 0.037 =+ 0.026
0.120 - 0.140 1.287 £ 0.024 =+ 0.018 1.282 &+ 0.025 =+ 0.024 1.235 =+ 0.023 =+ 0.022
0.140 - 0.160 0.9625 + 0.0221 + 0.0165 0.9538 + 0.0226 + 0.0232 0.9602 + 0.0217 + 0.0203
0.160 - 0.180 0.7255 + 0.0205 + 0.0149 0.7362 £+ 0.0218 + 0.0215 0.7282 + 0.0181 + 0.0175
0.180 - 0.200 0.6095 + 0.0173 &+ 0.0115 0.5599 + 0.0189 + 0.0175 0.5452 + 0.0143 £+ 0.0141
0.200 - 0.250 0.3341 + 0.0079 £ 0.0095 0.3403 + 0.0094 + 0.0107 0.3297 £+ 0.0079 & 0.0103
0.250 - 0.300 0.1347 £+ 0.0056 + 0.0069 0.1293 + 0.0054 + 0.0061 0.1356 + 0.0055 + 0.0070
0.300 - 0.350 0.0129 + 0.0019 + 0.0008 0.0146 + 0.0021 + 0.0032 0.0152 + 0.0020 + 0.0014

Table B.12.b: Differential 2-Jet Rate £, Scheme DZ?
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Differential 2-Jet Rate Fo Scheme Dy °

Y23 0.72 < cos ¥ < 0.84 0.84 < cos ?r < 0.96 0. < cosdr < 1.
0.000 - 0.0056 24.18 +0.17 =+ 0.79 25,51 £0.19 +£091 23.88 + 0.11 + 0.74
0.005 - 0.010 27.02 +0.20 =+ 0.51 26.48 +£0.19 £ 0.44 26.68 + 0.08 + 0.47
0.010 - 0.015 20.73 +0.17 =+ 0.29 20.26 £ 0.17 £ 0.31 20.54 + 0.07 + 0.24
0.015 - 0.020 16.26 =+ 0.15 =+ 0.18 16.12 £+ 0.15 &£ 0.27 16.28 + 0.06 + 0.20
0.020 - 0.025 13.24 +£0.13 +£0.14 13.23 4+ 0.14 £+ 0.23 13.11 + 0.06 + 0.17
0.025 - 0.030 10.81 +0.11 +0.12 10.75 £ 0.13 £ 0.11 10.80 + 0.05 + 0.11
0.030 - 0.040 8.3568 £+ 0.088 =+ 0.103 8.316 =+ 0.081 =+ 0.093 8.401 £ 0.035 =+ 0.081
0.040 - 0.050 6.3562 £+ 0.074 =+ 0.075 6.170 =+ 0.068 =+ 0.081 6.242 £ 0.029 =+ 0.063
0.050 - 0.060 4.965 =+ 0.065 = 0.063 4.779 =+ 0.063 =+ 0.065 4.842 £ 0.026 =+ 0.054
0.060 - 0.070 3.793 £ 0.056 = 0.058 3.968 =+ 0.058 =+ 0.055 3.919 £ 0.023 =+ 0.045
0.070 - 0.080 3.104 =+ 0.052 = 0.053 3.072 £ 0.051 = 0.046 3.133 £ 0.019 =+ 0.037
0.080 - 0.090 2.673 £+ 0.046 = 0.049 2.561 =+ 0.046 =+ 0.042 2.599 £ 0.017 =+ 0.032
0.090 - 0.100 2.127 £+ 0.041 = 0.044 2.212 4+ 0.043 =+ 0.035 2.193 £ 0.018 =+ 0.028
0.100 - 0.110 1.797 £ 0.037 =+ 0.040 1.828 + 0.040 =+ 0.028 1.866 £+ 0.014 =+ 0.023
0.110 - 0.120 1.639 =+ 0.034 =+ 0.033 1.564 =+ 0.031 =+ 0.023 1.603 &+ 0.013 =+ 0.019
0.120 - 0.140 1.267 =+ 0.021 =+ 0.030 1.227 + 0.024 =+ 0.019 1.264 4+ 0.010 =+ 0.018
0.140 - 0.160 0.8996 + 0.0191 4+ 0.0181 0.9240 £ 0.0200 £ 0.0157 0.9492 + 0.0079 =+ 0.0136
0.160 - 0.180 0.6517 + 0.0168 + 0.0159 0.7035 £+ 0.0178 £ 0.0116 0.7223 + 0.0067 =+ 0.0122
0.180 - 0.200 0.5146 + 0.0134 + 0.0135 0.5080 £ 0.0137 £ 0.0108 0.5503 =+ 0.0060 =+ 0.0103
0.200 - 0.250 0.3228 + 0.0070 &+ 0.0101 0.3162 £ 0.0069 £ 0.0096 0.3347 + 0.0027 =+ 0.0074
0.250 - 0.300 0.1140 + 0.0043 £ 0.0041 0.1250 £ 0.0047 £ 0.0047 0.1298 + 0.0017 =+ 0.0037
0.300 - 0.350 0.0126 + 0.0016 + 0.0009 0.0094 £ 0.0013 £ 0.0007 0.01310 £ 0.00064 £ 0.00062

Table B.12.c: Differential 2-Jet Rate E, Scheme DJ°

Differential 2-Jet Rate Py Scheme Dy °

Y23 0.0 < cos¥T <0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥ < 0.36
0.000 - 0.005 32.26 + 0.24 4+ 0.49 3179 £022 £ 0.62 3236 +£0.23 £ 0.54
0.005 - 0.010 31.19 +0.24 4+ 0.36 3175 +£024 +£0.36 3151 +£0.22 +£0.42
0.010- 0.015 2222 =+ 020 =+ 0.24 2228 $+£0.22 +0.25 2231 £0.19 =£0.14
0.015 - 0.020 16.19 +0.18 =+ 0.19 16.34 +0.21 £+ 0.18 16.18 £+ 0.18 =+ 0.22
0.020 - 0.025 12.23 £+ 0.16 =+ 0.07 11.97 =+ 0.15 =+ 0.08 11.99 £ 0.15 =+ 0.13
0.025 - 0.030 9.674 =+ 0.140 =+ 0.056 9.719 =+ 0.121 =+ 0.074 10.09 £ 0.13 &£ 0.09
0.030 - 0.040 7.304 &£ 0.095 =+ 0.048 7.335 £ 0.088 =+ 0.065 7.329 £ 0.086 =+ 0.071
0.040 - 0.050 5.445 4+ 0.077 =+ 0.042 5.401 =+ 0.076 =+ 0.049 5.187 =+ 0.074 = 0.055
0.050 - 0.060 4.085 =+ 0.069 =+ 0.038 3.906 =+ 0.0568 =+ 0.038 4.141 £+ 0.069 = 0.044
0.060 - 0.070 3.267 =+ 0.055 =+ 0.035 3.328 =+ 0.0565 =+ 0.033 3.241 £+ 0.058 = 0.033
0.070 - 0.080 2.612 =+ 0.050 =+ 0.029 2.743 =+ 0.0561 =+ 0.028 2.599 4+ 0.054 = 0.025
0.080 - 0.090 2.180 =+ 0.047 =+ 0.025 2.164 =+ 0.047 =+ 0.021 2.182 £+ 0.048 =+ 0.019
0.090 - 0.100 1.866 =+ 0.044 =+ 0.023 1.877 £ 0.044 + 0.016 1.892 =+ 0.042 =+ 0.016
0.100 - 0.110 1.600 =+ 0.042 =+ 0.020 1.619 &+ 0.041 =+ 0.013 1.556 =+ 0.037 =+ 0.013
0.110 - 0.120 1.403 =+ 0.040 =+ 0.017 1.301 £ 0.035 =+ 0.011 1.342 + 0.033 =+ 0.012
0.120 - 0.140 1.103 =+ 0.023 =+ 0.014 1.079 +£ 0.022 + 0.010 1.070 =+ 0.024 =+ 0.010
0.140 - 0.160 0.8011 £ 0.0201 £ 0.0129 0.8577 + 0.0198 + 0.0091 0.8468 + 0.0215 &+ 0.0091
0.160 - 0.180 0.6568 £+ 0.0182 £+ 0.0098 0.6716 + 0.0185 + 0.0083 0.6317 + 0.0161 + 0.0083
0.180 - 0.200 0.4816 £ 0.0134 £ 0.0081 0.5072 + 0.0143 + 0.0078 0.5020 + 0.0118 + 0.0071
0.200 - 0.250 0.3227 £+ 0.0074 £ 0.0078 0.3065 + 0.0076 + 0.0052 0.3085 + 0.0058 + 0.0057
0.250 - 0.300 0.1349 £ 0.0046 £ 0.0048 0.1243 + 0.0052 + 0.0028 0.1162 + 0.0046 + 0.0046
0.300 - 0.350 0.0128 £+ 0.0016 £ 0.0019 0.0181 + 0.0022 + 0.0009 0.0194 + 0.0026 + 0.0014

Table B.13.a: Differential 2-Jet Rate Py Scheme DL
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Differential 2-Jet Rate Po Scheme D}°

Y23 0.36 < cosdT < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos¥r < 0.72
0.000 - 0.005 32.36 +0.21 =+ 0.62 3260 £ 020 +£0.60 32,71 £0.19 £ 0.64
0.005 - 0.010 31.52 +0.21 =+ 0.39 31.89 £021 +£0.40 31.84 +£0.22 +£0.42
0.010 - 0.015 2230 =+£0.19 +£0.24 2222 +£020 £+0.35 2242 +£0.16 =£0.15
0.015 - 0.020 16.08 +0.16 =+ 0.16 16.33 £+ 0.17 =+ 0.22 16.41 £+ 0.14 4+ 0.13
0.020 - 0.025 12.29 +0.14 +£0.13 1239 +£0.14 +£0.15 12.28 +0.13 £ 0.11
0.025 - 0.030 9.975 £+ 0.126 = 0.089 9.662 =+ 0.110 =+ 0.058 9.616 =+ 0.110 =+ 0.101
0.030 - 0.040 7.324 £+ 0.070 =+ 0.074 7.294 £+ 0.071 =+ 0.049 7.476 =+ 0.076 =+ 0.085
0.040 - 0.050 5.201 =+ 0.067 = 0.063 5.215 =+ 0.062 =+ 0.036 5.311 £+ 0.062 = 0.062
0.050 - 0.060 4.196 =+ 0.064 = 0.048 4.069 =+ 0.069 =+ 0.029 4.149 =+ 0.057 =+ 0.051
0.060 - 0.070 3.293 £+ 0.055 = 0.039 3.281 =+ 0.0564 =+ 0.024 3.1565 =+ 0.050 = 0.043
0.070 - 0.080 2.636 £+ 0.047 =+ 0.028 2.667 =+ 0.049 =+ 0.019 2.692 £+ 0.046 = 0.035
0.080 - 0.090 2.238 £+ 0.044 = 0.023 2.216 =+ 0.043 = 0.017 2.047 £+ 0.038 =+ 0.026
0.090 - 0.100 1.897 =+ 0.040 =+ 0.019 1.855 =+ 0.039 =+ 0.016 1.813 £ 0.035 =+ 0.022
0.100 - 0.110 1.533 £ 0.037 =+ 0.016 1.542 + 0.034 =+ 0.015 1.555 =+ 0.032 =+ 0.017
0.110 - 0.120 1.310 £ 0.034 =+ 0.013 1.325 +£ 0.030 =+ 0.012 1.318 =+ 0.028 =+ 0.013
0.120 - 0.140 1.097 +£ 0.023 =+ 0.011 1.060 =+ 0.023 =+ 0.011 1.057 £ 0.020 =+ 0.011
0.140 - 0.160 0.8179 + 0.0196 + 0.0095 0.8104 + 0.0182 + 0.0093 0.7859 + 0.0185 + 0.0093
0.160 - 0.180 0.6263 + 0.0188 + 0.0087 0.6164 + 0.0178 + 0.0088 0.5845 + 0.0149 + 0.0083
0.180 - 0.200 0.4771 + 0.0161 &+ 0.0071 0.4610 + 0.0144 + 0.0171 0.4624 + 0.0123 £+ 0.0071
0.200 - 0.250 0.2897 + 0.0065 + 0.0048 0.2937 £+ 0.0072 £ 0.0059 0.2908 + 0.0070 + 0.0062
0.250 - 0.300 0.1182 + 0.0051 + 0.0039 0.1087 &+ 0.0048 + 0.0041 0.1114 + 0.0043 & 0.0051
0.300 - 0.350 0.0109 + 0.0016 + 0.0009 0.0162 + 0.0023 + 0.0013 0.0106 + 0.0015 + 0.0009

Table B.13.b: Differential 2-Jet Rate Py Scheme DJ®

Differential 2-Jet Rate Py Scheme D °

Y23 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. <cosdr < 1.
0.000 - 0.005 33.34 +£0.17 £ 0.63 3492 +£0.21 +£0.88 32.94 + 0.09 + 0.58
0.005 - 0.010 32.07 +£0.18 +£0.39 31.22 +£0.19 +£0.38 31.69 + 0.08 + 0.39
0.010 - 0.015 2230 +£0.16 £ 0.25 21.98 +£0.16 =+ 0.33 22.25 + 0.07 + 0.23
0.015-0.020 16.29 +£0.14 +£0.15 16.35 £ 0.15 £ 0.24 16.29 + 0.06 + 0.18
0.020 - 0.025 1239 +£0.12 #£0.12 12.23 +0.13 =+ 0.12 12.24 + 0.05 + 0.11
0.025 - 0.030 9.737 £+ 0.112 =+ 0.108 9.7562 4+ 0.117 =+ 0.118 9.765 £ 0.043 =+ 0.068
0.030 - 0.040 7.275 £ 0.069 =+ 0.074 7.269 =+ 0.067 =+ 0.085 7.330 £+ 0.026 £ 0.042
0.040 - 0.050 5.418 =+ 0.064 =+ 0.061 5.265 =+ 0.060 =+ 0.074 5.304 +£0.021 4+ 0.034
0.050 - 0.060 4.114 =+ 0.054 = 0.057 4.083 =+ 0.051 = 0.058 4.089 +£0.019 =+ 0.028
0.060 - 0.070 3.213 =+ 0.047 =+ 0.048 3.222 4+ 0.042 = 0.049 3.241 £ 0.017 4+ 0.023
0.070 - 0.080 2.659 =+ 0.045 =+ 0.039 2.544 £+ 0.039 = 0.044 2.635 £ 0.016 = 0.020
0.080 - 0.090 2.238 =+ 0.042 £+ 0.032 2.146 =+ 0.037 =+ 0.033 2.169 £ 0.015 =+ 0.019
0.090 - 0.100 1.780 =+ 0.035 =+ 0.025 1.724 £ 0.036 =+ 0.025 1.823 4+ 0.014 =+ 0.016
0.100 - 0.110 1.471 +£ 0.033 =+ 0.022 1.562 =+ 0.032 =+ 0.020 1.541 4 0.012 + 0.013
0.110 - 0.120 1.321 £ 0.031 =+ 0.016 1.353 £ 0.030 =+ 0.018 1.326 £ 0.010 =+ 0.012
0.120 - 0.140 1.030 +£ 0.019 =+ 0.013 1.031 + 0.018 =+ 0.016 1.056 £ 0.007 =+ 0.011
0.140 - 0.160 0.7503 + 0.0170 &+ 0.0111 0.7693 + 0.0171 4+ 0.0131 0.7942 + 0.0062 = 0.0092
0.160 - 0.180 0.5379 + 0.0149 + 0.0098 0.5888 + 0.0159 + 0.0104 0.6047 =+ 0.0053 =+ 0.0080
0.180 - 0.200 0.4477 + 0.0117 £+ 0.0088 0.4460 + 0.0143 + 0.0093 0.4632 =+ 0.0041 =+ 0.0072
0.200 - 0.250 0.2677 + 0.0060 + 0.0064 0.2622 + 0.0066 + 0.0082 0.2868 =+ 0.0023 =+ 0.0053
0.250 - 0.300 0.0964 + 0.0036 + 0.0032 0.0951 + 0.0035 + 0.0045 0.1091 =+ 0.0015 =+ 0.0025
0.300 - 0.350 0.0113 + 0.0015 + 0.0006 0.0114 + 0.0016 + 0.0006 0.01253 + 0.00054 £ 0.00053

Table B.13.c: Differential 2-Jet Rate P, Scheme D°
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Differential 2-Jet Rate P Scheme DY

Y23 0.0 < cosdr <0.12 0.12 < cos ¥ < 0.24 0.24 < cos?r < 0.36
0.000 - 0.005 34.40 + 0.26 + 0.56 33.94 + 0.24 + 0.72 34.59 + 0.25 + 0.60
0.005 - 0.010 32.71 + 0.28 + 0.39 33.31 + 0.25 + 0.44 33.12 + 0.24 + 0.52
0.010 - 0.015 23.21 + 0.22 + 0.36 23.26 + 0.23 + 0.30 22.93 + 0.22 + 0.19
0.015 - 0.020 16.62 + 0.19 + 0.16 16.51 + 0.20 + 0.27 16.55 + 0.18 + 0.16
0.020 - 0.025 12.43 + 0.17 + 0.08 12.35 + 0.16 + 0.12 12.46 + 0.16 + 0.101
0.025 - 0.030 9.932 +£0.139 =+ 0.082 9.878 4+ 0.140 =+ 0.077 10.31 + 0.14 + 0.090
0.030 - 0.040 7.469 £+ 0.092 £ 0.078 7.571 £ 0.095 £ 0.069 7.402 £+ 0.080 £ 0.079
0.040 - 0.050 5.501 £ 0.081 =+ 0.066 5311 £ 0.076 =+ 0.057 5.273 £ 0.072 =+ 0.055
0.050 - 0.060 4.019 £ 0.062 = 0.058 4.049 £ 0.067 =+ 0.049 4.157 £ 0.066 =+ 0.048
0.060 - 0.070 3.180 £ 0.059 =+ 0.053 3.323 £ 0.058 £ 0.045 3.154 £ 0.060 = 0.035
0.070 - 0.080 2.607 £ 0.054 4+ 0.048 2.545 £+ 0.049 =+ 0.040 2.659 £ 0.055 =+ 0.031
0.080 - 0.090 2.116 £ 0.041 =+ 0.041 2.181 £ 0.045 =+ 0.033 2.067 £ 0.052 4+ 0.027
0.090 - 0.100 1.805 £+ 0.049 =+ 0.034 1.782 £+ 0.041 =+ 0.027 1.814 £ 0.047 =+ 0.022
0.100 - 0.110 1.564 £+ 0.046 =+ 0.029 1.404 £+ 0.039 =+ 0.019 1.418 £ 0.039 =+ 0.016
0.110 - 0.120 1.227 £ 0.040 =+ 0.025 1.308 £+ 0.037 =+ 0.016 1.247 £ 0.033 =+ 0.013
0.120 - 0.140 0.9518 + 0.0238 =+ 0.0237 0.9890 =+ 0.0234 =+ 0.0149 0.9617 =+ 0.0220 =+ 0.0123
0.140 - 0.160 0.7157 =+ 0.0193 =+ 0.0149 0.7017 =+ 0.0196 =+ 0.0128 0.6840 =+ 0.0185 =+ 0.0114
0.160 - 0.180 0.4932 + 0.0158 =+ 0.0122 0.5078 =+ 0.0164 =+ 0.0102 0.4994 -+ 0.0165 = 0.0096
0.180 - 0.200 0.3673 + 0.0136 = 0.0093 0.3406 =+ 0.0129 =+ 0.0079 0.3554 + 0.0127 = 0.0067
0.200 - 0.250 0.1622 + 0.0059 =+ 0.0049 0.1614 =+ 0.0054 =+ 0.0058 0.1473 £+ 0.0055 =+ 0.0039
0.250 - 0.300 0.0239 + 0.0023 =+ 0.0016 0.0216 =+ 0.0019 =+ 0.0018 0.0246 + 0.0020 =+ 0.0015
0.300 - 0.350 0.00005 + 0.00005 £ 0.00007 0.00000 £ 0.00000 £ 0.00003 0.00000 £ 0.00000 £ 0.00002

Table B.14.a: Differential 2-Jet Rate P Scheme DY

Differential 2-Jet Rate P Scheme DY

Y23 0.36 < cos¥r < 0.48 0.48 < cos ¥ < 0.60 0.60 < cosdr < 0.72
0.000 - 0.005 34.59 + 0.23 + 0.70 34.66 + 0.21 + 0.68 34.84 + 0.21 + 0.74
0.005 - 0.010 32.95 + 0.22 + 0.46 33.54 + 0.23 + 0.44 33.38 + 0.25 + 0.50
0.010 - 0.015  23.03 + 0.20 + 0.25 23.01 + 0.21 + 0.39 23.83 + 0.18 + 0.21
0.015 - 0.020 16.64 + 0.18 + 0.23 16.93 + 0.18 + 0.32 16.83 + 0.16 + 0.17
0.020 - 0.025 12.71 + 0.16 + 0.20 12.48 + 0.15 + 0.08 12.42 + 0.14 + 0.13
0.025 - 0.030 10.02 + 0.13 + 0.11 9.930 4+ 0.134 =+ 0.057 10.01 + 0.12 + 0.10
0.030 - 0.040 7.404 £+ 0.083 £ 0.056 7.365 £ 0.083 £ 0.046 7.580 £+ 0.081 £ 0.091
0.040 - 0.050 5.370 £ 0.071 £ 0.045 5277 £ 0.069 =+ 0.037 5.392 £ 0.069 = 0.062
0.050 - 0.060 4.196 £ 0.062 =+ 0.041 4.169 £ 0.062 =+ 0.032 4.058 £ 0.057 =+ 0.050
0.060 - 0.070 3.198 £ 0.056 =+ 0.039 3.242 £ 0.058 =+ 0.026 3.189 £ 0.052 4+ 0.042
0.070 - 0.080 2.648 £ 0.047 =+ 0.036 2.538 £ 0.053 £ 0.023 2.509 +£0.049 =+ 0.035
0.080 - 0.090 2.164 £ 0.045 =+ 0.032 2.128 £+ 0.048 4+ 0.021 2.059 £ 0.046 =+ 0.027
0.090 - 0.100 1.721 £ 0.043 =+ 0.027 1.807 £+ 0.042 £ 0.019 1.764 £ 0.043 £ 0.021
0.100 - 0.110 1.488 £+ 0.038 =+ 0.025 1.458 £+ 0.038 =+ 0.018 1.419 £ 0.037 =+ 0.018
0.110 - 0.120 1.202 £ 0.035 =+ 0.023 1.167 =+ 0.034 =+ 0.016 1.171 £ 0.031 =+ 0.016
0.120 - 0.140 0.9610 =+ 0.0223 = 0.0214 0.9324 4 0.0207 =+ 0.0145 0.9355 =+ 0.0199 =+ 0.0150
0.140 - 0.160 0.6842 + 0.0209 =+ 0.0155 0.6937 =+ 0.0183 = 0.0117 0.6361 =+ 0.0172 =+ 0.0123
0.160 - 0.180 0.4628 + 0.0152 = 0.0106 0.4575 =+ 0.0164 = 0.0097 0.4480 =+ 0.0154 =+ 0.0109
0.180 - 0.200 0.3126 + 0.0122 = 0.0077 0.3219 =+ 0.0117 = 0.0085 0.3332 £+ 0.0131 =+ 0.0093
0.200 - 0.250 0.1482 + 0.0052 =+ 0.0042 0.1388 =+ 0.0049 =+ 0.0027 0.1453 + 0.0044 =+ 0.0053
0.250 - 0.300 0.0207 =+ 0.0017 =+ 0.0009 0.0208 =+ 0.0020 = 0.0011 0.0186 =+ 0.0015 =+ 0.0018
0.300 - 0.350 0.00003 £ 0.00003 £ 0.00010 0.00002 £ 0.00002 £ 0.00009 0.00000 £ 0.00000 £ 0.00007

Table B.14.b: Differential 2-Jet Rate P Scheme DJ
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Differential 2-Jet Rate P Scheme DY

Y23 0.72 < cos ¥ < 0.84 0.84 < cos ¥ < 0.96 0. < cos¥r < 1.
0.000 - 0.005 35.58 + 0.19 + 0.72 37.15 + 0.23 + 0.97 35.13 + 0.087 =+ 0.66
0.005 - 0.010 33.61 + 0.20 + 0.43 32.64 + 0.22 + 0.45 33.21 + 0.082 + 0.45
0.010 - 0.015 23.08 + 0.17 + 0.27 22.92 + 0.18 + 0.39 23.08 + 0.074 £+ 0.29
0.015 - 0.020 16.68 + 0.15 + 0.21 16.83 + 0.16 + 0.23 16.73 + 0.061 £+ 0.22
0.020 - 0.025 12.67 + 0.13 + 0.18 12.39 + 0.14 + 0.15 12.50 + 0.058 + 0.12
0.025 - 0.030 9.916 4+ 0.108 =+ 0.159 9.928 &+ 0.11 + 0.12 9.979 £+ 0.055 &+ 0.094
0.030 - 0.040 7.423 + 0.078 &£ 0.070 7.344 £ 0.079 &£ 0.082 7.445 £+ 0.029 &+ 0.058
0.040 - 0.050 5475 £+ 0.068 4+ 0.049 5.334 £+ 0.066 &+ 0.054 5.363 £+ 0.023 &+ 0.041
0.050 - 0.060 4.071 £+ 0.055 &+ 0.039 4.126 £ 0.057 = 0.052 4.104 4+ 0.021 &+ 0.031
0.060 - 0.070 3.226 £+ 0.049 4+ 0.035 3.152 4+ 0.053 &+ 0.049 3.202 £+ 0.019 & 0.026
0.070 - 0.080 2.614 £+ 0.046 4+ 0.031 2.480 £+ 0.044 4+ 0.043 2.563 £+ 0.017 4 0.023
0.080 - 0.090 2.033 £+ 0.041 &+ 0.027 2.043 £+ 0.040 4 0.032 2.084 £+ 0.016 & 0.017
0.090 - 0.100 1.668 £+ 0.037 £+ 0.024 1.747 £+ 0.037 £ 0.027 1.746 + 0.014 £ 0.015
0.100 - 0.110 1.386 + 0.035 £ 0.021 1.440 £+ 0.034 + 0.024 1.434 + 0.012 + 0.014
0.110 - 0.120 1.200 £+ 0.033 £+ 0.018 1.152 4+ 0.031 + 0.019 1.195 +£ 0.011 + 0.013

0.120 - 0.140 0.8925 =+ 0.0201 =+ 0.0151 0.9003 =+ 0.0179 =+ 0.0171 0.9306 =+ 0.0074 =+ 0.012
0.140 - 0.160 0.5913 =+ 0.0151 =+ 0.0135 0.6327 =+ 0.0153 =+ 0.0152 0.6555 =+ 0.0060 =+ 0.0113
0.160 - 0.180 0.4165 =+ 0.0127 =+ 0.0097 0.4267 =+ 0.0132 =+ 0.0121 0.4544 =+ 0.0056 =+ 0.0087
0.180 - 0.200 0.3075 =+ 0.0078 =+ 0.0078 0.2889 + 0.0102 =+ 0.0099 0.3216 =+ 0.0043 =+ 0.0064
0.200 - 0.250 0.1215 =+ 0.0037 =+ 0.0033 0.1331 =+ 0.0040 =+ 0.0042 0.1408 =+ 0.0017 =+ 0.0038
0.250 - 0.300 0.0194 =+ 0.0016 =+ 0.0011 0.0139 =+ 0.0011 =+ 0.0011 0.01920 £ 0.00058 + 0.00098
0.300 - 0.350 0.00001 =+ 0.00001 + 0.00004 0.00002 £ 0.00002 £ 0.00005 0.00011 =+ 0.00004 £ 0.00012

Table B.14.c: Differential 2-Jet Rate P Scheme DY

Differential 2-Jet Rate Jade Algorithm Dj%?

Y23 0.0 < cos 7 < 0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥t < 0.36
0.000 - 0.005 25.041 =+ 0.202 = 0.532 25.038 £+ 0.179 + 0.636 25.267 + 0.185 =+ 0.610
0.005 - 0.010 26.901 =+ 0.239 = 0.433 26.883 =+ 0.215 + 0.382 27.288 + 0.220 =+ 0.470
0.010 - 0.015  20.539 =+ 0.204 =+ 0.195 20.456 =+ 0.183 + 0.272 20.316 + 0.192 =+ 0.201
0.015 - 0.020 16.128 =+ 0.183 =+ 0.143 16.440 =+ 0.168 =+ 0.233 16.054 =+ 0.167 =+ 0.157
0.020 - 0.025 12.933 &+ 0.172 =+ 0.138 12.722 4+ 0.159 =+ 0.132 12.978 =+ 0.166 =+ 0.147
0.025 - 0.030 10.565 =+ 0.143 =+ 0.125 10.555 =+ 0.151 =+ 0.111 10.601 =+ 0.143 =+ 0.097
0.030 - 0.040 8.148 £+ 0.109 = 0.105 8.314 =+ 0.105 =+ 0.093 8.287 =+ 0.096 =+ 0.091
0.040 - 0.050 6.110 =+ 0.087 = 0.085 5.989 =+ 0.078 =+ 0.062 6.031 =+ 0.083 = 0.083
0.050 - 0.060 4.787 £+ 0.075 =+ 0.072 4.760 =+ 0.071 =+ 0.059 4.654 =+ 0.077 =+ 0.069
0.060 - 0.070 3.791 £+ 0.068 = 0.059 3.738 =+ 0.068 =+ 0.055 3.830 =+ 0.065 = 0.058
0.070 - 0.080 3.106 =+ 0.058 = 0.047 3.085 =+ 0.055 =+ 0.046 2.960 =+ 0.054 = 0.046
0.080 - 0.090 2.523 £+ 0.050 = 0.034 2.622 + 0.049 =+ 0.038 2.676 =+ 0.050 = 0.042
0.090 - 0.100 2.210 =+ 0.048 = 0.023 2.237 £+ 0.046 =+ 0.029 2.147 £+ 0.047 =+ 0.037
0.100 - 0.110 1.909 &+ 0.046 =+ 0.021 1.821 + 0.042 + 0.021 1.910 =+ 0.045 =+ 0.028
0.110 - 0.120 1.571 =+ 0.039 =+ 0.018 1.594 &+ 0.039 =+ 0.018 1.593 =+ 0.039 =+ 0.023
0.120 - 0.140 1.273 £ 0.028 =+ 0.016 1.275 +£ 0.028 + 0.014 1.238 =+ 0.032 =+ 0.019
0.140 - 0.160 0.994 £+ 0.025 = 0.014 0.991 =+ 0.024 =+ 0.011 0.989 =+ 0.028 = 0.016
0.160 - 0.180 0.759 =+ 0.019 =+ 0.011 0.770 + 0.019 = 0.010 0.737 +0.025 =+ 0.011
0.180 - 0.200 0.545 =+ 0.016 = 0.009 0.566 =+ 0.017 =+ 0.009 0.598 =+ 0.018 =+ 0.010
0.200 - 0.250 0.3653 + 0.0081 + 0.0057 0.3587 + 0.0081 + 0.0078 0.3487 + 0.0079 & 0.0083
0.250 - 0.300 0.1452 + 0.0053 + 0.0029 0.1469 + 0.0056 + 0.0047 0.1366 + 0.0055 + 0.0033
0.300 - 0.350 0.0200 + 0.0029 + 0.0012 0.0140 + 0.0018 + 0.0007 0.0197 + 0.0023 + 0.0013

Table B.15.a: Differential 2-Jet Rate Jade Algorithm Dy%?
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Differential 2-Jet Rate Jade Algorithm Dg°d

Y23 0.36 < cosdr < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos ¥ < 0.72
0.000 - 0.005 25.281 =+ 0.186 = 0.645 25.426 =+ 0.167 =+ 0.642 25.652 + 0.160 =+ 0.670
0.005 - 0.010 27.223 4+ 0.181 =+ 0.443 27.440 =+ 0.180 =+ 0.438 27.359 + 0.177 =+ 0.452
0.010 - 0.015 20.336 =+ 0.177 =+ 0.194 20.719 =+ 0.168 + 0.274 20.561 =+ 0.160 =+ 0.196
0.015 - 0.020 16.308 =+ 0.159 =+ 0.177 16.163 =+ 0.156 =+ 0.190 16.583 =+ 0.148 =+ 0.170
0.020 - 0.025 12.861 =+ 0.149 = 0.165 12.930 =+ 0.152 = 0.098 13.172 £ 0.134 =+ 0.154
0.025 - 0.030 10.931 =+ 0.136 =+ 0.122 10.683 =+ 0.143 =+ 0.091 10.343 &+ 0.115 =+ 0.083
0.030 - 0.040 8.274 4+ 0.091 =+ 0.108 8.190 =+ 0.080 =+ 0.078 8.261 =+ 0.089 = 0.072
0.040 - 0.050 5.928 =+ 0.075 =+ 0.069 6.001 =+ 0.066 =+ 0.064 6.133 =+ 0.074 = 0.068
0.050 - 0.060 4.700 =+ 0.068 =+ 0.048 4.694 =+ 0.062 =+ 0.049 4.793 =+ 0.069 = 0.062
0.060 - 0.070 3.901 =+ 0.064 =+ 0.043 3.860 =+ 0.0568 = 0.046 3.763 =+ 0.058 = 0.055
0.070 - 0.080 3.068 =+ 0.055 =+ 0.035 3.1563 =+ 0.063 =+ 0.040 3.074 £+ 0.047 =+ 0.035
0.080 - 0.090 2.602 =+ 0.052 =+ 0.031 2.466 =+ 0.049 =+ 0.035 2.494 £+ 0.043 =+ 0.027
0.090 - 0.100 2.227 4+ 0.047 =+ 0.029 2.171 =+ 0.047 =+ 0.031 2.113 £+ 0.041 = 0.025
0.100 - 0.110 1.812 + 0.042 =+ 0.026 1.892 &+ 0.045 =+ 0.028 1.838 £ 0.039 =+ 0.023
0.110 - 0.120 1.565 =+ 0.039 =+ 0.019 1.515 £ 0.039 =+ 0.025 1.517 £ 0.037 =+ 0.021
0.120 - 0.140 1.267 =+ 0.027 =+ 0.017 1.262 &+ 0.025 =+ 0.022 1.245 + 0.025 =+ 0.018
0.140 - 0.160 0.971 =+ 0.024 =+ 0.015 0.928 =+ 0.023 =+ 0.020 0.955 =+ 0.020 = 0.016
0.160 - 0.180 0.699 =+ 0.022 =+ 0.014 0.717 £+ 0.018 = 0.017 0.685 =+ 0.018 = 0.014
0.180 - 0.200 0.586 =+ 0.017 =+ 0.012 0.573 =+ 0.016 =+ 0.014 0.541 £+ 0.016 = 0.012
0.200 - 0.250 0.3394 £ 0.0078 £ 0.0091 0.3320 £ 0.0091 + 0.0090 0.3284 £+ 0.0071 £ 0.0095
0.250 - 0.300 0.1288 £+ 0.0056 £+ 0.0060 0.1279 + 0.0052 £+ 0.0047 0.1347 £+ 0.0058 + 0.0064
0.300 - 0.350 0.0150 £ 0.0019 £ 0.0010 0.0149 + 0.0018 + 0.0014 0.0129 + 0.0015 + 0.0006

Table B.15.b: Differential 2-Jet Rate Jade Algorithm Dy*¢

Differential 2-Jet Rate Jade Algorithm Dy ¢

Y23 0.72 < cos ¥ < 0.84 0.84 < cos ¥ < 0.96 0. < cosdr < 1.

0.000 - 0.005 26.088 =+ 0.161 = 0.655 27.460 &+ 0.177 =+ 0.882 25.268 &+ 0.066 &+ 0.624
0.005 - 0.010 27.609 =+ 0.179 = 0.454 27.048 &+ 0.187 =+ 0.368 27.173 £ 0.070 &+ 0.439
0.010 - 0.015 20.789 =+ 0.156 4 0.247 20.302 &+ 0.165 =+ 0.293 20.591 &£ 0.065 &+ 0.207
0.015 - 0.020 16.184 =+ 0.139 =+ 0.144 16.172 =+ 0.147 + 0.225 16.298 4+ 0.063 + 0.189
0.020 - 0.025 13.028 &+ 0.145 =+ 0.123 12.908 =+ 0.127 + 0.178 13.010 &+ 0.060 =+ 0.153
0.025 - 0.030 10.619 &+ 0.118 = 0.116 10.529 =+ 0.118 =+ 0.090 10.648 4+ 0.053 &+ 0.090
0.030 - 0.040 8.203 + 0.077 &+ 0.069 8.153 &+ 0.073 =+ 0.079 8.285 £+ 0.034 4+ 0.085
0.040 - 0.050 6.103 =+ 0.061 =+ 0.061 6.025 =+ 0.064 =+ 0.065 6.106 =+ 0.029 4 0.062
0.050 - 0.060 4.762 =+ 0.058 =+ 0.059 4.745 4+ 0.058 =+ 0.059 4.739 £+ 0.027 4+ 0.053
0.060 - 0.070 3.811 =+ 0.054 =+ 0.057 3.823 &+ 0.055 =+ 0.053 3.810 4+ 0.024 4 0.039
0.070 - 0.080 3.014 + 0.045 4+ 0.047 2.913 4+ 0.047 =+ 0.042 3.091 4+ 0.021 4+ 0.033
0.080 - 0.090 2.620 =+ 0.041 =+ 0.043 2.563 =+ 0.044 + 0.040 2.564 4+ 0.018 & 0.026
0.090 - 0.100 2.093 + 0.036 =+ 0.037 2.137 4+ 0.042 + 0.026 2.186 4+ 0.017 4+ 0.023
0.100 - 0.110 1.735 =+ 0.032 = 0.031 1.800 =+ 0.036 =+ 0.023 1.838 + 0.015 =+ 0.019
0.110 - 0.120 1.574 &+ 0.032 = 0.028 1.525 =+ 0.033 =+ 0.021 1.564 £+ 0.013 £ 0.017
0.120 - 0.140 1.270 &+ 0.020 =+ 0.024 1.199 =+ 0.023 &+ 0.019 1.247 £+ 0.010 £ 0.015
0.140 - 0.160 0.876 =+ 0.018 &+ 0.017 0.912 &+ 0.019 =+ 0.015 0.943 &£+ 0.009 & 0.012
0.160 - 0.180 0.643 + 0.015 =+ 0.014 0.700 =+ 0.015 =+ 0.013 0.7105 =+ 0.0070 = 0.0097
0.180 - 0.200 0.496 =+ 0.012 &+ 0.012 0.499 =+ 0.012 + 0.011 0.5474 4 0.0063 = 0.0089
0.200 - 0.250 0.3199 + 0.0070 £ 0.0093 0.3064 + 0.0062 + 0.0087 0.3295 4+ 0.0027 = 0.0069
0.250 - 0.300 0.1131 + 0.0040 + 0.0035 0.1236 + 0.0044 + 0.0038 0.1279 4+ 0.0018 = 0.0031
0.300 - 0.350 0.0106 + 0.0014 + 0.0006 0.0096 + 0.0012 + 0.0004 0.01482 £ 0.00069 + 0.00060

Table B.15.c: Differential 2-Jet Rate Jade Algorithm Dy?
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Differential 2-Jet Rate Durham Algorithm DP¥"

Y23 0.0 < cos¥r < 0.12 0.12 < cosdr < 0.24 0.24 < cos?r < 0.36

0.000 - 0.005 95.620 £ 0.374 = 0.667 95.693 £ 0.354 =+ 0.552 96.188 £ 0.363 £ 0.570
0.005 - 0.010 29.162 £ 0.235 =+ 0.126 29.357 £ 0.218 £ 0.131 29.123 £ 0.217 £ 0.092
0.010 - 0.015 15.164 £ 0.179 &£ 0.073 15.008 + 0.163 =+ 0.101 14.928 £+ 0.162 =+ 0.073

0.015 - 0.020 9.539 +£0.139 £ 0.053 9.618 =+ 0.130 £ 0.090 9.696 £ 0.132 £ 0.071
0.020 - 0.025 7.200 =+ 0.115 =+ 0.046 7.089 =+ 0.107 =+ 0.057 7.125 +£0.116 =+ 0.066
0.025 - 0.030 5.533 +£0.109 £ 0.042 5.302 £ 0.098 £ 0.046 5.527 £ 0.106 =+ 0.049
0.030 - 0.040 4.045 +£0.066 =+ 0.032 3.980 £ 0.066 =+ 0.034 3.973 £ 0.057 £ 0.027
0.040 - 0.050 2.856 £ 0.061 £ 0.028 2,779 £ 0.061 £ 0.025 2.734 £ 0.049 £ 0.023
0.050 - 0.060 2.069 +0.046 £ 0.026 2.152 £ 0.045 £ 0.022 2.136 £ 0.046 £ 0.020
0.060 - 0.070 1.693 £ 0.043 =+ 0.024 1.722 £ 0.041 =+ 0.020 1.714 +0.040 = 0.018
0.070 - 0.080 1.334 £ 0.036 =+ 0.022 1.361 £ 0.035 =+ 0.018 1.284 +0.035 =+ 0.017
0.080 - 0.090 1.105 £ 0.035 =+ 0.019 1.101 £ 0.033 =+ 0.017 1.076 +0.032 =+ 0.015
0.090 - 0.100 0.933 +£0.029 £ 0.017 0.955 £ 0.030 =+ 0.016 0.910 £ 0.029 =+ 0.014
0.100 - 0.110 0.758 £ 0.026 =+ 0.015 0.773 £ 0.028 £ 0.013 0.749 £ 0.026 =+ 0.013
0.110 - 0.120 0.629 +0.023 =+ 0.010 0.648 + 0.025 =+ 0.011 0.634 £ 0.022 £ 0.012
0.120 - 0.140 0.510 =+ 0.016 =+ 0.009 0.523 + 0.016 =+ 0.009 0.510 £ 0.015 =+ 0.010
0.140 - 0.160 0.398 +0.014 =+ 0.008 0.372 £ 0.013 £ 0.008 0.360 £ 0.013 =+ 0.009
0.160 - 0.180 0.280 +£0.012 =+ 0.007 0.284 + 0.012 =+ 0.006 0.295 £ 0.012 =+ 0.007
0.180 - 0.200 0.217 +£0.011 =+ 0.006 0.202 + 0.010 =+ 0.005 0.207 £ 0.010 =+ 0.005

0.200 - 0.250 0.1169 =+ 0.0054 =+ 0.0027 0.1143 =+ 0.0053 =+ 0.0037 0.1121 =+ 0.0046 =+ 0.0034
0.250 - 0.300 0.0275 =+ 0.0026 =+ 0.0023 0.0285 =+ 0.0027 =+ 0.0013 0.0262 =+ 0.0023 =+ 0.0011
0.300 - 0.350 0.00032 + 0.00018 + 0.00016 0.00051 + 0.00023 + 0.00032 0.00010 £ 0.00008 + 0.00064

Table B.16.a: Differential 2-Jet Rate Durham Algorithm DJvr

Differential 2-Jet Rate Durham Algorithm DP¥"

Y23 0.36 < cosdr < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos ¥ < 0.72
0.000 - 0.005 96.619 &£ 0.342 =+ 0.565 96.976 =+ 0.329 =+ 0.617 97.122 4+ 0.310 =+ 0.650
0.005 - 0.010 29.141 £ 0.206 =+ 0.176 29.227 4+ 0.209 =+ 0.093 29.688 £+ 0.199 =+ 0.120
0.010 - 0.015 15.061 &£ 0.159 =+ 0.066 14.740 £+ 0.153 =+ 0.088 14.919 £ 0.146 =+ 0.063

0.015 - 0.020 9.779 £ 0.126 £ 0.046 9.724 £ 0.116 =+ 0.077 9.811 =+ 0.124 £ 0.058
0.020 - 0.025 7.002 +0.112 =+ 0.038 7.093 =+ 0.100 =+ 0.053 6.972 £ 0.097 £ 0.049
0.025 - 0.030 5.422 +£0.098 =+ 0.036 5.377 £ 0.088 =+ 0.036 5.331 £ 0.082 £ 0.041
0.030 - 0.040 3.945 +£0.068 £ 0.032 3.895 £ 0.056 =+ 0.030 3.950 £ 0.057 £ 0.035
0.040 - 0.050 2,776 £ 0.048 £ 0.025 2.839 £ 0.046 =+ 0.026 2.719 £ 0.043 £ 0.029
0.050 - 0.060 2.052 £ 0.045 £ 0.023 2.147 £ 0.041 =+ 0.021 2.054 + 0.038 £ 0.026
0.060 - 0.070 1.689 £ 0.037 =+ 0.021 1.669 =+ 0.037 =+ 0.020 1.528 £ 0.034 =+ 0.024
0.070 - 0.080 1.2561 £ 0.034 =+ 0.019 1.310 =+ 0.032 =+ 0.019 1.251 £ 0.032 =+ 0.023
0.080 - 0.090 1.025 £ 0.032 =+ 0.018 1.066 =+ 0.030 =+ 0.017 1.056 &£ 0.030 =+ 0.021
0.090 - 0.100 0.899 +£0.029 £ 0.017 0.871 £ 0.028 =+ 0.015 0.892 +£0.025 £ 0.020
0.100 - 0.110 0.771 £ 0.027 £ 0.016 0.729 £ 0.026 =+ 0.014 0.680 =+ 0.023 £ 0.018
0.110 - 0.120 0.652 =+ 0.025 =+ 0.015 0.582 +£ 0.022 =+ 0.013 0.612 + 0.022 =+ 0.014
0.120 - 0.140 0.514 +0.016 =+ 0.013 0.503 -+ 0.015 =+ 0.012 0.471 +£0.014 =+£0.013
0.140 - 0.160 0.369 +0.014 £ 0.011 0.346 £ 0.012 =+ 0.010 0.357 £ 0.012 £ 0.012
0.160 - 0.180 0.298 +0.012 =+ 0.010 0.264 + 0.011 = 0.009 0.261 + 0.011 =+ 0.011
0.180 - 0.200 0.188 +0.010 =+ 0.006 0.182 +£ 0.010 =+ 0.008 0.197 +£ 0.010 =+ 0.009

0.200 - 0.250 0.0948 + 0.0045 =+ 0.0058 0.10320 + 0.0043 + 0.0049 0.1056 =+ 0.0046 =+ 0.0055
0.250 - 0.300 0.0256 =+ 0.0025 =+ 0.0015 0.02305 + 0.0022 + 0.0015 0.0235 =+ 0.0021 =+ 0.0017
0.300 - 0.350 0.00043 =+ 0.00021 + 0.00039 0.0001 =+ 0.0001 + 0.0006 0.00010 £ 0.00007 £ 0.00011

Table B.16.b: Differential 2-Jet Rate Durham Algorithm DPur
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Differential 2-Jet Rate Durham Algorithm DP¥"

Y23

0.72 < cos ¥ < 0.84

0.84 < cos ¥ < 0.96

0. < cosdr < 1.

0.000 - 0.005 9
0.005 - 0.010 2
0.010-0.015 1
0.015 - 0.020
0.020 - 0.025
0.025 - 0.030
0.030 - 0.040
0.040 - 0.050
0.050 - 0.060
0.060 - 0.070
0.070 - 0.080
0.080 - 0.090
0.090 - 0.100
0.100 - 0.110
0.110 - 0.120
0.120 - 0.140
0.140 - 0.160
0.160 - 0.180
0.180 - 0.200
0.200 - 0.250
0.250 - 0.300
0.300 - 0.350

7.718
9.759
5.068
9.721
7.119
5.330
3.946
2.669
2.032
1.572
1.251
1.007
0.835
0.693
0.604
0.448
0.317
0.2285
0.1651
0.0918
0.0220

0.00025 + 0.00013 + 0.00044

+ 0.292
+ 0.179
+ 0.126
+ 0.106
+ 0.090
+ 0.085
+ 0.049
+ 0.044
+ 0.039
+ 0.036
+ 0.030
+ 0.028
+ 0.026
+ 0.023
+ 0.020
+ 0.014
+ 0.010
+ 0.0094
+ 0.0079
+ 0.0036
+ 0.0025

+ 0.679
+ 0.215
+ 0.098
+ 0.086
+ 0.065
+ 0.053
+ 0.045
+ 0.041
+ 0.032
+ 0.029
+ 0.026
+ 0.023
+ 0.019
+ 0.017
+ 0.015
+ 0.011
+ 0.009
+ 0.0071
+ 0.0059
+ 0.0038
+ 0.0019

98.223

29.467

14.813
9.807
6.797
5.500
3.884
2.746
2.020
1.599
1.215
1.036
0.786
0.668
0.622
0.489
0.330
0.2233
0.1633
0.0878
0.0247

0.00006 £ 0.00005 + 0.00005

+ 0.301
+ 0.174
+ 0.132
+ 0.114
+ 0.099
+ 0.084
+ 0.050
+ 0.041
+ 0.034
+ 0.031
+ 0.029
+ 0.027
+ 0.024
+ 0.023
+ 0.021
+ 0.013
+ 0.010
+ 0.0087
+ 0.0074
+ 0.0034
+ 0.0019

+ 0.937
+ 0.313
+ 0.152
+ 0.115
+ 0.076
+ 0.070
+ 0.049
+ 0.033
+ 0.030
+ 0.028
+ 0.025
+ 0.021
+ 0.017
+ 0.014
+ 0.012
+ 0.009
+ 0.007
+ 0.0062
+ 0.0079
+ 0.0033
+ 0.0014

96.947

29.417

14.978
9.704
7.077
5.370
3.960
2.743
2.065
1.639
1.280
1.044
0.878
0.714
0.607
0.485
0.3537
0.2653
0.1871
0.1004
0.0242

+ 0.139
+ 0.086
+ 0.061
+ 0.051
+ 0.042
+ 0.036
+ 0.025
+ 0.018
+ 0.017
+ 0.015
+ 0.014
+ 0.013
+ 0.011
+ 0.010
+ 0.009
+ 0.006
+ 0.0050
+ 0.0044
+ 0.0037
+ 0.0019
+ 0.0009

+ 0.660
+ 0.154
+ 0.062
+ 0.055
+ 0.040
+ 0.032
+ 0.027
+ 0.025
+ 0.019
+ 0.017
+ 0.016
+ 0.014
+ 0.013
+ 0.012
+ 0.011
+ 0.010
+ 0.0090
+ 0.0063
+ 0.0055
+ 0.0037
+ 0.0011

0.00101 =+ 0.00020 + 0.00011

Table B.16.c: Differential 2-Jet Rate Durham Algorithm D2vr

Differential 2-Jet Rate Geneva Algorithm D$e"

Y23 0.0 < cosdr <0.12 0.12 < cos ¥ < 0.24 0.24 < cos ¥ < 0.36
0.000 - 0.005 4.52 £+ 0.08 =£0.21 460 +0.08 +0.24 4.53 +0.08 +0.23
0.005 - 0.010 20.66 =+ 0.22 4+ 0.52 20.84 £020 +£0.44 2092 +£0.19 +£0.30
0.010 - 0.015 24.56 =+ 0.24 =+ 0.39 25.26 £+ 024 £ 0.56 25.27 +£0.22 +£041
0.015-0.020 21.58 =+ 0.22 +£0.19 21.52 $+£0.22 +0.20 21.30 £0.20 #£0.17
0.020 - 0.025 16.61 =+ 0.20 = 0.16 16.41 £+ 0.20 =+ 0.16 16.54 +£0.19 =+ 0.13
0.025 - 0.030 13.17 +0.18 =+ 0.14 13.01 +0.17 =+ 0.13 13.11 £ 0.15 =£0.11
0.030 - 0.040 9.191 =+ 0.101 =+ 0.061 9.257 =+ 0.098 =+ 0.081 9.323 £+ 0.095 =+ 0.072
0.040 - 0.050 6.351 =+ 0.079 =+ 0.037 6.307 =+ 0.081 =+ 0.052 6.297 + 0.078 =+ 0.061
0.050 - 0.060 4.694 =+ 0.069 =+ 0.034 4.696 =+ 0.077 =+ 0.045 4.688 =+ 0.066 =+ 0.050
0.060 - 0.070 3.722 £+ 0.067 =+ 0.033 3.747 £+ 0.059 =+ 0.039 3.636 =+ 0.064 = 0.040
0.070 - 0.080 3.0561 =+ 0.063 =+ 0.030 3.010 =+ 0.054 =+ 0.032 3.135 £+ 0.060 = 0.022
0.080 - 0.090 2.691 =+ 0.055 =+ 0.027 2.606 =+ 0.0562 =+ 0.028 2.524 £+ 0.049 = 0.019
0.090 - 0.100 2.169 =+ 0.050 =+ 0.024 2.213 =+ 0.048 =+ 0.022 2.219 £+ 0.046 =+ 0.017
0.100 - 0.110 1.897 + 0.046 =+ 0.021 1.939 &£ 0.045 =+ 0.019 1.954 &+ 0.041 =+ 0.016
0.110 - 0.120 1.758 =+ 0.042 =+ 0.019 1.857 =+ 0.040 =+ 0.018 1.644 =+ 0.038 =+ 0.015
0.120 - 0.140 1.469 =+ 0.028 =+ 0.017 1.490 =+ 0.028 =+ 0.015 1.409 =+ 0.027 =+ 0.013
0.140 - 0.160 1.229 + 0.025 =+ 0.014 1.203 =+ 0.026 =+ 0.012 1.225 &+ 0.025 =+ 0.011
0.160 - 0.180 1.001 =+ 0.021 =+ 0.012 0.990 =+ 0.021 =+ 0.011 1.031 =+ 0.023 =+ 0.009
0.180 - 0.200 0.814 =+ 0.019 = 0.011 0.808 =+ 0.018 =+ 0.010 0.793 =+ 0.021 = 0.008
0.200 - 0.250 0.596 =+ 0.011 =+ 0.010 0.594 =+ 0.013 = 0.008 0.591 =+ 0.011 = 0.007
0.250 - 0.300 0.2818 £ 0.0073 £ 0.0068 0.2863 + 0.0072 £+ 0.0073 0.2728 + 0.0076 + 0.0059
0.300 - 0.350 0.0348 £+ 0.0029 £ 0.0018 0.0374 £+ 0.0029 + 0.0014 0.0417 + 0.0038 + 0.0029

Table B.17.a: Differential 2-Jet Rate Geneva Algorithm DSe™
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Differential 2-Jet Rate Geneva Algorithm D$e"

Y23 0.36 < cos¥r < 0.48 0.48 < cos ¥ < 0.60 0.60 < cos¥r < 0.72
0.000 - 0.005 4.68 +0.07 +0.24 4.63 £0.08 +£0.24 4.73 +£0.07 +0.20
0.005 - 0.010 20.65 +0.22 +0.34 21.10 +0.20 =+ 0.33 21.04 +£0.19 +£0.28
0.010 - 0.015 25.29 +0.20 =+ 0.40 25.565 +0.20 4+ 0.42 25.65 +£0.21 +£0.35
0.015-0.020 21.41 =+£0.19 +£0.22 21.44 +0.18 =+ 0.17 21.68 +£0.16 =+ 0.17
0.020 - 0.025 16.74 +0.17 =+ 0.14 16.75 £ 0.17 £ 0.12 16.79 £ 0.15 =£0.11
0.025 - 0.030 1293 +0.16 =+ 0.12 13.04 £0.15 +£0.10 13.00 £ 0.13 = 0.10
0.030 - 0.040 9.285 =+ 0.091 = 0.057 9.361 £+ 0.088 =+ 0.055 9.196 =+ 0.085 = 0.053
0.040 - 0.050 6.447 =+ 0.080 = 0.046 6.229 £+ 0.074 =+ 0.044 6.309 =+ 0.070 =+ 0.047
0.050 - 0.060 4.694 =+ 0.063 =+ 0.041 4.624 £+ 0.063 =+ 0.037 4.705 =+ 0.058 = 0.034
0.060 - 0.070 3.621 =+ 0.056 = 0.038 3.701 £ 0.058 =+ 0.032 3.7569 =+ 0.055 = 0.029
0.070 - 0.080 3.071 £+ 0.052 = 0.034 2.940 £ 0.051 =+ 0.029 3.087 =+ 0.046 = 0.024
0.080 - 0.090 2.476 =+ 0.046 =+ 0.029 2.615 £+ 0.047 =+ 0.026 2.507 +0.044 =+ 0.021
0.090 - 0.100 2.242 4+ 0.044 = 0.024 2.182 £+ 0.045 =+ 0.022 2.209 £+ 0.041 = 0.019
0.100 - 0.110 2.032 £+ 0.042 = 0.016 1.995 + 0.039 =+ 0.018 1.872 £ 0.036 =+ 0.017
0.110 - 0.120 1.737 £ 0.039 =+ 0.014 1.718 + 0.036 =+ 0.015 1.720 +£ 0.033 =+ 0.016
0.120 - 0.140 1.466 =+ 0.033 =+ 0.013 1.458 + 0.025 =+ 0.014 1.441 + 0.023 =+ 0.015
0.140 - 0.160 1.198 =+ 0.027 =+ 0.012 1.174 + 0.023 =+ 0.013 1.201 #£ 0.021 =+ 0.013
0.160 - 0.180 0.970 + 0.024 =+ 0.011 0.986 £+ 0.021 =+ 0.012 0.927 + 0.019 =+ 0.011
0.180 - 0.200 0.819 + 0.018 = 0.010 0.848 £+ 0.017 =+ 0.010 0.796 =+ 0.015 = 0.009
0.200 - 0.250 0.570 =+ 0.010 = 0.008 0.544 £ 0.010 =+ 0.007 0.539 =+ 0.009 = 0.008
0.250 - 0.300 0.2613 + 0.0069 + 0.0087 0.249 +£ 0.0069 £ 0.0077 0.2464 + 0.0065 + 0.0082
0.300 - 0.350 0.0321 + 0.0032 £ 0.0023 0.028 £ 0.0025 £ 0.0023 0.0342 + 0.0031 + 0.0035

Table B.17.b: Differential 2-Jet Rate Geneva Algorithm D"

Differential 2-Jet Rate Geneva Algorithm D$e"

Y23 0.72 < cos ¥ < 0.84 0.84 < cos ¥ < 0.96 0. <cosdr < 1.
0.000 - 0.005 4.8 +0.07 +0.20 6.056 =+ 0.08 =+ 0.52 4.883 =+ 0.052 =+ 0.259
0.005 - 0.010 21.15 +0.18 =+ 0.28 20.41 £ 0.18 £ 0.66 20.905 =+ 0.095 =+ 0.329
0.010 - 0.015 25.53 +0.20 =+ 0.39 25.67 +£022 +£0.73 25.442 + 0.092 =+ 0.508
0.015 - 0.020 21.96 +0.18 =+ 0.17 21.30 £0.18 +£0.33 21.501 =+ 0.067 =+ 0.263
0.020 - 0.025 16.85 +0.14 £+ 0.12 16.75 +0.17 =+ 0.21 16.698 =+ 0.062 =+ 0.121
0.025 - 0.030 13.21 +0.13 =+ 0.09 13.11 +0.14 £+ 0.13 13.071 =+ 0.060 =+ 0.071
0.030 - 0.040 9.445 =+ 0.087 = 0.054 9.324 + 0.081 =+ 0.116 9.297 £+ 0.036 = 0.040
0.040 - 0.050 6.377 £+ 0.064 = 0.047 6.289 =+ 0.060 =+ 0.089 6.322 £+ 0.029 = 0.029
0.050 - 0.060 4.549 =+ 0.054 = 0.043 4.614 =+ 0.063 =+ 0.082 4.645 =+ 0.021 = 0.028
0.060 - 0.070 3.595 =+ 0.048 = 0.038 3.628 =+ 0.050 =+ 0.063 3.663 =+ 0.020 = 0.028
0.070 - 0.080 3.069 =+ 0.045 = 0.034 2.945 + 0.048 =+ 0.055 3.030 =+ 0.017 4 0.017
0.080 - 0.090 2.578 £+ 0.043 =+ 0.029 2.596 =+ 0.043 =+ 0.041 2.565 =+ 0.016 =+ 0.017
0.090 - 0.100 2.171 £+ 0.039 = 0.024 2.199 =+ 0.041 =+ 0.025 2.192 4+ 0.015 =+ 0.013
0.100 - 0.110 1.944 + 0.037 =+ 0.022 1.955 =+ 0.035 =+ 0.020 1.942 + 0.014 =+ 0.008
0.110 - 0.120 1.702 +£ 0.033 =+ 0.019 1.687 £ 0.029 =+ 0.019 1.723 £ 0.013 =+ 0.011
0.120 - 0.140 1.475 =+ 0.026 =+ 0.016 1.406 =+ 0.024 =+ 0.017 1.4460 £ 0.0081 + 0.0071
0.140 - 0.160 1.160 =+ 0.019 =+ 0.014 1.160 =+ 0.021 =+ 0.016 1.1863 £ 0.0074 £ 0.0063
0.160 - 0.180 0.961 =+ 0.017 =+ 0.012 0.896 =+ 0.018 =+ 0.015 0.9581 + 0.0081 + 0.0071
0.180 - 0.200 0.722 £+ 0.015 = 0.010 0.756 =+ 0.015 =+ 0.013 0.7867 + 0.0064 + 0.0078
0.200 - 0.250 0.509 =+ 0.008 = 0.009 0.525 =+ 0.009 =+ 0.011 0.5504 + 0.0035 + 0.0078
0.250 - 0.300 0.2227 + 0.0055 + 0.0076 0.2281 + 0.0055 + 0.0099 0.2493 + 0.0022 £+ 0.0069
0.300 - 0.350 0.0243 + 0.0021 + 0.0019 0.0261 + 0.0024 + 0.0018 0.0301 + 0.0008 + 0.0014

Table B.17.c: Differential 2-Jet Rate Geneva Algorithm Dge"
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Differential 2-Jet Rate Cambridge Algorithm D™

Y23 0.0 < cos¥r < 0.12 0.12 < cos¥r < 0.24 0.24 < cos ¥ < 0.36
0.000 - 0.001  235.3 + 1.6 + 2.9 235.9 + 1.6 + 2.6 236.4 + 1.6 + 2.4
0.001 - 0.002 1454 + 1.4 + 1.8 144.9 + 1.3 + 1.2 146.8 + 1.3 + 1.0
0.002 - 0.003 88.25 + 1.10 + 0.49 89.96 + 1.07 + 0.84 90.34 + 0.98 + 0.74
0.003 - 0.004 53.64 + 0.85 + 0.45 51.89 + 0.79 + 0.75 52.07 + 0.75 + 0.31
0.004 - 0.005 39.58 + 0.76 + 0.43 38.72 + 0.68 + 0.71 37.80 + 0.72 + 0.29
0.005 - 0.006 30.81 + 0.67 + 0.31 30.34 + 0.61 + 0.65 30.23 + 0.60 + 0.27
0.006 - 0.007 26.68 + 0.58 + 0.28 26.94 + 0.58 + 0.63 26.94 + 0.57 + 0.26
0.007 - 0.008 20.61 + 0.57 + 0.27 20.74 + 0.56 + 0.58 20.42 + 0.51 + 0.25
0.008 - 0.009 18.24 + 0.56 + 0.25 17.68 + 0.54 + 0.53 18.58 + 0.47 + 0.24
0.009 - 0.010 16.12 + 0.55 + 0.24 16.51 + 0.52 + 0.47 16.51 + 0.46 + 0.24
0.010 - 0.011 16.01 + 0.54 + 0.23 15.45 + 0.50 + 0.43 15.98 + 0.45 + 0.23
0.011 - 0.012 12.19 + 0.52 + 0.22 13.15 + 0.48 + 0.40 12.19 + 0.45 + 0.22
0.012 - 0.013 12.02 + 0.47 + 0.20 12.03 + 0.45 + 0.25 11.22 + 0.43 + 0.16
0.013 - 0.014 10.87 + 0.44 + 0.17 11.14 + 0.43 + 0.22 11.06 + 0.42 + 0.14
0.014 - 0.015 10.56 + 0.41 + 0.14 10.39 + 0.37 + 0.16 10.84 + 0.41 + 0.12
0.015 - 0.016 8.807 £+ 0.334 =+ 0.108 9.046 £ 0.328 4+ 0.112 9.398 4+ 0.401 =+ 0.105
0.016 - 0.018 8.168 £+ 0.236 =+ 0.095 8.195 £+ 0.231 &£ 0.074 8.086 £ 0.272 4+ 0.089
0.018 - 0.020 7.240 £ 0.186 £ 0.084 7.378 £ 0.168 £ 0.053 7.447 £ 0.233 £ 0.081
0.020 - 0.025 6.181 4+ 0.125 =+ 0.064 5.868 4+ 0.129 4+ 0.045 6.140 4+ 0.141 4+ 0.075
0.025 - 0.030 4.716 £ 0.102 =+ 0.057 4.561 £+ 0.101 =+ 0.038 4.474 £ 0.109 = 0.063
0.030 - 0.040 3.5564 £ 0.067 =+ 0.055 3.540 £ 0.075 £ 0.034 3.521 £ 0.073 &£ 0.052
0.040 - 0.050 2.503 £ 0.052 =+ 0.052 2.392 £ 0.061 =+ 0.029 2.408 £ 0.057 =+ 0.040
0.050 - 0.060 1.793 £+ 0.047 =+ 0.048 1.911 £+ 0.055 =+ 0.027 1.846 £+ 0.047 =+ 0.030
0.060 - 0.070 1.475 4+ 0.044 =+ 0.042 1.575 £+ 0.045 =+ 0.025 1.527 4+ 0.043 =+ 0.026
0.070 - 0.080 1.213 4+ 0.042 =+ 0.031 1.227 4+ 0.040 =+ 0.024 1.172 £ 0.039 =+ 0.023
0.080 - 0.090 1.023 £+ 0.038 =+ 0.024 0.9860 =+ 0.0388 =+ 0.0231 0.9985 =+ 0.0378 =+ 0.0203
0.090 - 0.100 0.8332 =+ 0.0341 =+ 0.0222 0.8906 =+ 0.0353 =+ 0.0213 0.8459 =+ 0.0353 =+ 0.0183
0.100 - 0.110 0.6835 =+ 0.0296 =+ 0.0201 0.7347 4+ 0.0307 =+ 0.0190 0.6747 =+ 0.0335 =+ 0.0151
0.110 - 0.120 0.5679 =+ 0.0270 =+ 0.0169 0.5692 =+ 0.0273 = 0.0165 0.5732 =+ 0.0255 =+ 0.0143
0.120 - 0.140 0.4666 =+ 0.0244 = 0.0128 0.4798 =+ 0.0194 = 0.0151 0.4484 4 0.0162 =+ 0.0125
0.140 - 0.160 0.3833 =+ 0.0189 = 0.0110 0.3629 =+ 0.0158 =+ 0.0131 0.3576 =+ 0.0142 =+ 0.0104
0.160 - 0.180 0.25648 =+ 0.0147 = 0.0093 0.2796 =+ 0.0141 =+ 0.0102 0.2839 =+ 0.0131 = 0.0088
0.180 - 0.200 0.25646 =+ 0.0130 =+ 0.0074 0.2303 =+ 0.0122 =+ 0.0061 0.2219 =+ 0.0115 =+ 0.0061
0.200 - 0.250 0.0949 = 0.0053 = 0.0038 0.0932 =+ 0.0051 =+ 0.0038 0.0967 =+ 0.0053 = 0.0050
0.250 - 0.300 0.0344 =+ 0.0030 = 0.0022 0.0331 =+ 0.0032 = 0.0022 0.0327 =+ 0.0044 =+ 0.0023

0.300 - 0.350 0.00109 £ 0.00051 £ 0.00055 0.00125 £ 0.00052 £ 0.00046 0.00090 £ 0.00049 + 0.00016

Table B.18.a: Differential 2-Jet Rate Cambridge Algorithm D§*™
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Differential 2-Jet Rate Cambridge Algorithm DZ%™

Y23 0.36 < cosdr < 0.48 0.48 < cos ¥ < 0.60 0.60 < cosdr < 0.72
0.000 - 0.001  237.5 + 1.5 + 2.3 240.6 + 1.5 + 2.0 240.9 + 1.4 + 2.7
0.001 - 0.002 147.2 + 1.2 + 1.2 146.5 + 1.2 + 0.9 147.9 + 1.2 + 1.0
0.002 - 0.003 87.71 + 0.98 + 1.05 88.83 + 0.96 + 0.62 88.28 + 0.93 + 0.77
0.003 - 0.004 53.60 + 0.75 + 0.49 51.93 + 0.78 + 0.37 53.10 + 0.75 + 0.62
0.004 - 0.005 38.81 + 0.66 + 0.37 39.43 + 0.74 + 0.33 38.73 + 0.58 + 0.44
0.005 - 0.006 30.17 + 0.62 + 0.33 30.66 + 0.58 + 0.26 30.92 + 0.55 + 0.37
0.006 - 0.007 28.14 + 0.57 + 0.31 28.22 + 0.55 + 0.23 27.27 + 0.55 + 0.35
0.007 - 0.008 20.75 + 0.54 + 0.29 20.57 + 0.47 + 0.21 21.50 + 0.48 + 0.33
0.008 - 0.009 18.17 + 0.49 + 0.28 18.41 + 0.46 + 0.20 18.43 + 0.46 + 0.32
0.009 - 0.010 16.21 + 0.47 + 0.28 15.22 + 0.44 + 0.19 15.40 + 0.44 + 0.31
0.010 - 0.011 16.17 + 0.46 + 0.27 15.14 + 0.43 + 0.18 15.46 + 0.42 + 0.30
0.011 - 0.012 12.53 + 0.45 + 0.26 12.22 + 0.42 + 0.16 13.18 + 0.38 + 0.29
0.012 - 0.013 12.11 + 0.43 + 0.24 11.49 + 0.37 + 0.13 12.28 + 0.33 + 0.27
0.013 - 0.014 10.74 + 0.41 + 0.23 11.06 + 0.36 + 0.12 11.26 + 0.32 + 0.25
0.014 - 0.015 10.21 + 0.39 + 0.21 10.30 + 0.35 + 0.10 10.19 + 0.31 + 0.23
0.015 - 0.016 9.087 £ 0.341 £ 0.203 8919 £ 0.304 =+ 0.085 8.909 £+ 0.184 £ 0.178
0.016 - 0.018 8.413 £ 0.258 £ 0.158 8.165 £+ 0.221 4+ 0.074 8.154 £+ 0.205 =+ 0.116
0.018 - 0.020 7.479 £ 0.228 £ 0.120 7.457 £ 0.185 £ 0.066 7.637 £ 0.18 £ 0.087
0.020 - 0.025 5982 £+ 0.119 = 0.085 6.123 £+ 0.124 £ 0.059 5.860 4+ 0.108 =+ 0.075
0.025 - 0.030 4.644 £ 0.099 = 0.064 4.583 £ 0.091 =+ 0.052 4.499 £ 0.091 =+ 0.055
0.030 - 0.040 3.417 £ 0.066 =+ 0.048 3.409 £ 0.062 =+ 0.044 3.414 £ 0.056 =+ 0.043
0.040 - 0.050 2.460 £ 0.054 £ 0.034 2.489 £ 0.051 4+ 0.041 2.390 £ 0.046 =+ 0.041
0.050 - 0.060 1.803 £+ 0.045 =+ 0.032 1.818 £+ 0.048 =+ 0.036 1.866 + 0.044 =+ 0.039
0.060 - 0.070 1.492 4+ 0.041 =+ 0.029 1.500 £+ 0.043 =+ 0.032 1.395 £+ 0.039 =+ 0.035
0.070 - 0.080 1.0567 =+ 0.037 =+ 0.026 1.260 £+ 0.041 =+ 0.028 1.062 £+ 0.032 =+ 0.033
0.080 - 0.090 0.9302 =+ 0.0351 =+ 0.0247 0.9597 =+ 0.0363 = 0.0232 0.9315 =+ 0.0318 = 0.0310
0.090 - 0.100 0.8609 =+ 0.0337 = 0.0234 0.8166 =+ 0.0324 =+ 0.0204 0.8366 =+ 0.0304 =+ 0.0299
0.100 - 0.110 0.6649 =+ 0.0314 =+ 0.0223 0.6345 =+ 0.0303 =+ 0.0192 0.6381 =+ 0.0291 =+ 0.0279
0.110 - 0.120 0.6097 =+ 0.0296 = 0.0211 0.5375 =+ 0.0245 =+ 0.0187 0.5849 =+ 0.0274 = 0.0255
0.120 - 0.140 0.4815 =+ 0.0167 =+ 0.0169 0.4462 =+ 0.0175 = 0.0166 0.4221 =+ 0.0165 =+ 0.0225
0.140 - 0.160 0.3597 =+ 0.0154 =+ 0.0155 0.3524 4+ 0.0158 = 0.0156 0.3318 =+ 0.0137 = 0.0202
0.160 - 0.180 0.2637 =+ 0.0141 =+ 0.0137 0.2225 =+ 0.0126 =+ 0.0134 0.2499 =+ 0.0131 =+ 0.0144
0.180 - 0.200 0.2084 =+ 0.0122 =+ 0.0103 0.2112 4+ 0.0107 =+ 0.0118 0.2176 =+ 0.0127 =+ 0.0115
0.200 - 0.250 0.0861 =+ 0.0053 = 0.0066 0.0862 =+ 0.0050 =+ 0.0073 0.0902 =+ 0.0049 =+ 0.0076
0.250 - 0.300 0.0281 =+ 0.0032 =+ 0.0022 0.0302 =+ 0.0046 =+ 0.0039 0.0274 =+ 0.0027 = 0.0037

0.300 - 0.350 0.00089 £ 0.00048 £ 0.00027 0.00053 £ 0.00028 + 0.00086 0.00067 £ 0.00035 £ 0.00008

Table B.18.b: Differential 2-Jet Rate Cambridge Algorithm D™
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Differential 2-Jet Rate Cambridge Algorithm D™

Y23 0.72 < cos ¥ < 0.84 0.84 < cos?r < 0.96 0. <cosdr < 1.

0.000 - 0.001 245.9 + 1.3 + 3.1 253.9 + 1.4 + 5.8 241.95 + 0.62 + 2.61
0.001 - 0.002 146.4 + 1.1 + 1.3 143.7 + 1.0 + 1.3 146.21 + 0.43 + 0.96
0.002 - 0.003 89.48 + 0.82 + 0.63 87.25 + 0.91 + 0.96 88.75 + 0.32 + 0.50
0.003 - 0.004 52.13 + 0.67 + 0.50 51.76 + 0.66 + 0.79 52.46 + 0.28 + 0.47
0.004 - 0.005 38.55 + 0.62 + 0.42 38.63 + 0.64 + 0.67 38.71 + 0.27 + 0.38
0.005 - 0.006 31.31 + 0.53 + 0.37 30.13 + 0.54 + 0.51 30.55 + 0.24 + 0.31
0.006 - 0.007 27.75 + 0.45 + 0.35 26.78 + 0.52 + 0.48 27.35 + 0.20 + 0.27
0.007 - 0.008 21.63 + 0.43 + 0.33 20.97 + 0.47 + 0.43 20.93 + 0.18 + 0.24
0.008 - 0.009 18.56 + 0.42 + 0.32 17.56 + 0.44 + 0.39 18.17 + 0.17 + 0.22
0.009 - 0.010 16.28 + 0.41 + 0.31 16.76 + 0.42 + 0.34 16.05 + 0.16 + 0.16
0.010 - 0.011 14.80 + 0.40 + 0.29 15.71 + 0.40 + 0.31 15.53 + 0.15 + 0.14
0.011 - 0.012 12.63 + 0.39 + 0.27 12.24 + 0.38 + 0.27 12.55 + 0.14 + 0.13
0.012 - 0.013 11.25 + 0.35 + 0.23 12.04 + 0.35 + 0.23 11.76 + 0.14 + 0.11
0.013 - 0.014 11.06 + 0.34 + 0.20 10.53 + 0.33 + 0.19 10.75 + 0.14 + 0.08
0.014 - 0.015 10.63 + 0.31 + 0.16 10.44 + 0.31 + 0.15 10.58 + 0.13 + 0.07
0.015 - 0.016 8.439 4+ 0.288 4+ 0.126 9.461 £+ 0.291 4 0.142 8.960 £+ 0.122 4 0.061
0.016 - 0.018 8.191 £+ 0.193 4+ 0.088 8.033 £+ 0.229 4 0.129 8.163 £+ 0.077 &+ 0.053
0.018 - 0.020 7.540 £+ 0.175 &+ 0.081 7.209 4+ 0.181 &£ 0.121 7.412 £+ 0.071 &£ 0.051
0.020 - 0.025 6.102 £+ 0.116 =+ 0.072 5.901 £+ 0.102 & 0.109 6.010 £+ 0.039 &+ 0.044
0.025 - 0.030 4.594 £+ 0.099 & 0.060 4.599 £+ 0.090 =+ 0.094 4.576 £+ 0.034 4 0.036
0.030 - 0.040 3.380 £+ 0.057 & 0.053 3.560 £+ 0.064 & 0.076 3.465 £+ 0.021 &+ 0.032
0.040 - 0.050 2.439 £+ 0.049 4 0.050 2.334 4+ 0.052 4+ 0.044 2.413 £+ 0.020 & 0.027
0.050 - 0.060 1.710 +£ 0.041 + 0.046 1.742 +£ 0.042 + 0.035 1.797 +£ 0.017 £ 0.025
0.060 - 0.070 1.402 +£ 0.037 £ 0.042 1.457 +£ 0.037 + 0.032 1.464 + 0.015 + 0.023
0.070 - 0.080 1.109 +£ 0.034 + 0.034 1.098 + 0.035 =+ 0.029 1.138 +£ 0.013 + 0.020
0.080 - 0.090 0.9142 4 0.0327 = 0.0302 0.9389 4 0.0331 = 0.0265 0.9459 4 0.0125 = 0.0178
0.090 - 0.100 0.8244 4 0.0316 =+ 0.0257 0.7551 4 0.0272 4 0.0242 0.8188 = 0.0108 = 0.0163
0.100 - 0.110 0.5863 = 0.0256 = 0.0219 0.5884 4 0.0220 = 0.0226 0.6350 = 0.0096 = 0.0154
0.110 - 0.120 0.5265 = 0.0229 =+ 0.0191 0.5418 = 0.0211 = 0.0195 0.5534 4 0.0081 = 0.0145
0.120 - 0.140 0.4228 4+ 0.0186 =+ 0.0177 0.4513 4 0.0156 = 0.0135 0.4433 4 0.0069 =+ 0.0118
0.140 - 0.160 0.3043 =+ 0.0126 = 0.0122 0.3253 4 0.0131 4 0.0108 0.3398 = 0.0057 = 0.0103
0.160 - 0.180 0.2267 4 0.0104 4 0.0110 0.2189 4 0.0116 = 0.0085 0.2439 4 0.0045 = 0.0076
0.180 - 0.200 0.1972 4 0.0094 = 0.0095 0.1889 = 0.0093 = 0.0067 0.2093 = 0.0036 = 0.0057
0.200 - 0.250 0.0741 4 0.0039 = 0.0051 0.0778 4 0.0040 = 0.0044 0.0848 4 0.0017 = 0.0046
0.250 - 0.300 0.0293 = 0.0033 = 0.0034 0.0271 4 0.0024 = 0.0019 0.0290 = 0.0012 4 0.0018

0.300 - 0.350 0.00055 £ 0.00026 + 0.00018 0.00027 £ 0.00016 £ 0.00008 0.00133 £ 0.00026 + 0.00021

Table B.18.c: Differential 2-Jet Rate Cambridge Algorithm D™
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