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Abstract

In 1958, 46 years after the discovery of cosmic rays by Hess, Kulikov and Khristiansen
measured the “knee” of the cosmic ray spectrum, which is associated with a change of the
index of the power law. Many decades passed, before in 2003 the KASCADE experiment
clarified post hoc that this knee is caused by a change in the spectra of light cosmic ray
mass groups. The knowledge about the composition of cosmic rays and the existence of
specific structures in the energy spectrum around the knee is of fundamental importance
for understanding things like the transition from galactic to extragalactic origin of cosmic
rays, or the cosmic ray acceleration and propagation in general.

The KASCADE-Grande experiment, an extension of the original KASCADE exper-
iment, is dedicated to measure the energy spectra for elemental groups of cosmic rays
at one or two orders of magnitude higher energies than its predecessor, namely in the
energy range from 1016 eV to 1018 eV. It thereby enables the verification of a possible
second knee expected at approximately 1017 eV.

This work’s primary objective is to determine the energy spectra of different cosmic
ray mass groups by means of unfolding techniques applied to the KASCADE-Grande
dataset. This analysis yields strong indications for a knee-like structure in the spectrum
of the heavy component of cosmic rays (represented by iron) at about 8 × 1016 eV. For
the first time, it is demonstrated experimentally that the sought-after second knee exists
and is related to a change in the spectra of heavy cosmic ray mass groups. This insight
contributes considerably to our understanding of cosmic ray physics.

Kurzzusammenfassung

Im Jahre 1958, 46 Jahre nach der Entdeckung der kosmischen Strahlung durch Hess,
detektierten Kulikov und Khristiansen das sogenannte “Knie” im Spektrum der kos-
mischen Strahlung, welches mit einer Veränderung im Index des Potenzgesetzes verknüpft
ist. Viele Jahrzehnte vergingen bis im Jahre 2003 durch das KASCADE Experiment post
hoc klargestellt werden konnte, dass dieses Knie durch eine Veränderung in den Spektren
der leichten Massengruppen verursacht wird. Die Kenntnis von der Komposition der
kosmischen Strahlung sowie der Existenz spezifischer Strukturen im Energiespektrum im
Bereich des Knies ist von fundamentaler Bedeutung für das Verständnis von Dingen wie
zum Beispiel dem Übergang von kosmischer Strahlung galaktischen zu extragalaktischen
Ursprungs, oder deren Beschleunigung und Propagation im Allgemeinen.

Das KASCADE-Grande Experiment, eine Erweiterung des ursprünglichen KASCADE
Experiments, ist der Messung der Energiespektren einzelner Elementgruppen der kos-
mischen Strahlung, im Bereich einer oder zweier Größenordnungen höherer Energien
als dessen Vorgänger, gewidmet. Es werden dabei Energien von 1016 eV bis 1018 eV
abgedeckt. Das Experiment ermöglicht es dadurch die Existenz eines vermuteten zweiten
Knies im Bereich von 1017 eV zu verifizieren.

Die Bestimmung der Energiespektren verschiedener Massengruppen der kosmischen
Strahlung durch Anwendung von Entfaltungsmethoden auf den KASCADE-Grande
Messdatensatz ist das Hauptziel dieser Dissertation. Diese Analyse ergibt deutliche Hin-
weise auf die Existenz einer knieähnlichen Struktur im Spektrum der schweren Massen-
gruppe (repräsentiert durch Eisen) bei Energien von ungefähr 8 × 1016 eV. Zum ersten
Mal wurde experimentell nachgewiesen, dass ein zweites Knie existiert und mit einer Än-
derung im Spektrum der schweren Massengruppen verknüpft ist. Diese Erkenntnis trägt
maßgeblich zu unserem Verständnis von der Physik der kosmischen Strahlung bei.
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Chapter 1

Introduction and Motivation

Cosmic rays have been discovered by Hess1 in 1912 [90] during several free balloon as-
cents. He observed an increase of the ionization rate of air with increasing altitude, and
concluded that there must be a hitherto unknown radiation penetrating into the Earth’s
atmosphere from the outer space. This important discovery was confirmed ex post facto
by Kolhörster in 1913/14 [115] by means of improved electrometers during balloon ascents
to even higher altitudes.

In 1929, Bothe and Kolhörster [43] proved the corpuscular nature of cosmic rays. This
was confirmed by Clay [52], who revealed an interrelation between cosmic rays and the
magnetic latitude, and hence concluded that cosmic rays are charged particles.

In 1938, Kolhörster et al. [116] and, independently, Auger et al. [18] discovered that
cosmic rays are individual charged particles, which interact with a nucleus of the Earth’s
atmosphere, and consequently induce a cascade of secondary particles. These so-called
extensive air showers were detected with a setup of cloud chambers and Geiger-Müller
tubes, separated by some tens of meters, and operated in coincidence. This finding pio-
neered a new approach to investigate cosmic rays at the highest energies2: the measure-
ment of extensive air showers by means of large ground based detector arrays.

In the subsequent years, insights about the shape of the energy spectrum of cosmic
rays have been attained. The flux of cosmic rays follows a power law over many orders
of magnitude in energy, overall appearing rather featureless (cf. Fig. 1.1). However, there
are a few structures observable. In 1958, Kulikov and Khristiansen [119] discovered a
distinct steepening in the measured electron shower size spectrum for particle numbers
larger than 8×105, what corresponds roughly to a primary energy of the shower inducing
cosmic ray particle of E ≈ 8× 1015 eV. This should be the first measurement of the so-
called knee of the cosmic ray spectrum. Three years later, Peters [148] concluded that the
position of this knee will depend on the atomic numbers of the cosmic ray particles, if
their acceleration is correlated to magnetic fields. He interpreted the knee “as a magnetic
rigidity cut-off in the source which contributes the bulk of primaries below 1015 eV,” and,
more precisely, to be at “a magnetic rigidity corresponding to that of protons with about
1015 eV.” However, this would mean that also the spectra of heavier cosmic ray primaries
ought to exhibit such knee structures successively.

For many decades, the detection of changes in the mass composition of primary cosmic
rays just beyond the first knee was the attempt of many air shower experiments. Round
about half a century after the discovery of Kulikov and Khristiansen, the KASCADE

1“For his discovery of cosmic radiation,” Hess has been awarded the Nobel Prize in Physics in 1936.
2Where the fluxes of cosmic rays are very low, and hence statistically not accessible for balloon or

satellite based experiments that measure the primary cosmic rays immediately.

1



2 1. Introduction and Motivation

Figure 1.1: The all-particle energy spectrum of cosmic rays obtained by direct measure-
ments above the Earth’s atmosphere (e.g. with balloons or satellites), or by indirect ones
based on air shower detectors at ground level. Additionally shown is the flux of primary
protons for direct measurements (figure taken from [42]).

experiment [10] clarified that the change in spectral index at the knee is indeed caused
by a decrease of the so far dominating light mass group of cosmic rays [9]. This result was
achieved by means of an unfolding analysis disentangling the manifold convoluted energy
spectra of five mass groups from the measured two-dimensional shower size distribution
of electrons and muons at observation level.

Nowadays, there are numerous theories about the origin and acceleration of cosmic
rays. Concerning the knee position, some of them predict in contrast to the rigidity
dependence considered by Peters a correlation with the mass of the particles. Hence, it
is of great interest to verify whether or not also the spectra of heavy components exhibit
analogous structures, and if, at what energies. The KASCADE-Grande experiment [14]
extends the accessible energy range of KASCADE to higher energies up to 1018 eV and
allows by this to investigate the composition of cosmic rays at energy regions where a
“second knee” is expected, and where the transition from galactic to extragalactic cosmic
rays could occur. The discovery of the so-called “iron knee” would enable the validation
or falsification of the various theoretical models.

Following this purpose, in this thesis, the KASCADE-Grande measurements will be
analysed similar to the aforementioned studies [9] of the KASCADE data. As motivation,
in Fig. 1.2, left panel, some contours of the two-dimensional shower size distribution of
charged particles and muons measured with KASCADE-Grande are depicted. Based on
simulations, the dashed lines mark the most probable shower size combinations generated
in air showers initiated by primaries of constant energy (for different angle of incidences,
bracketed by the two shown extreme assumptions for 0◦ and 40◦). To guide the eyes,
the course of the light and heavy edges3, belonging to the light respectively heavy mass

3As can be seen from Fig. 5.36, the upper edge (called “light edge”) of the distribution corresponds
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Figure 1.2: Left panel: Contours of the two-dimensional shower size distribution of
charged particles and muons measured with KASCADE-Grande. Based on simulations,
the dashed lines mark the most probable shower size combinations generated in air show-
ers initiated by primaries of constant energy (for different angle of incidences). To guide
the eyes and better point out discontinuities, the course of the light and heavy edges,
belonging to the light respectively heavy mass groups, is visualized by some hand-drawn
lines along some borders of the outer contours (see text for details). Right panel: The
differential muon flux measured with KASCADE-Grande. A slight change in the spec-
tral index can be guessed at muon numbers at about log10(Nµ,corr.) ≈ 6.0, what roughly
corresponds to ∼ 1017 eV primary energy. The spectrum is fitted up to muon numbers
of log10(Nµ,corr.) = 6.0 with a single power law function (red line). The fit function is
extrapolated (dashed red line) to higher muon numbers/energies in order to point out
the deviation from this single power law at higher energies.

groups, is visualized by some hand-drawn lines along some borders of the outer contours.
There is a discontinuity4 discernible in the light edge at about 5×1015 eV (vertical show-
ers). This corresponds exactly to the energy range where the knees in the spectra of light
primaries have been observed. Hence, based on this simplified, and for sure scientifically
barely stressable first inspection of the measurements, also in the KASCADE-Grande
data slight indications for a knee-like structure in the lighter mass groups are given. Fur-
thermore, the heavy edge shows such a discontinuity, too: At energies at about 1017 eV
(vertical showers), exactly where the iron knee is expected in the framework of a rigidity
dependent cosmic ray acceleration and/or propagation. Basically, the remaining exercise
would be to assign an appropriate scale for mass and energy to the measured distribution.
On the right panel, the measured differential muon5 fluxes are depicted. The spectrum is
fitted up to muon numbers of log10(Nµ,corr.) = 6.0 with a single power law function (red
line), which is extrapolated (red dashed line) to higher muon numbers, corresponding
to higher energies. In a first and rough guess, a change in the power law index beyond
log10(Nµ,corr.) ≈ 6.0 can be observed, what corresponds to about ∼ 1017 eV primary
energy. Hence, also based on this basic observable there are indications for a second knee
in the cosmic ray spectrum. As simplified these first discussions are, as motivating they
are for the unfolding analysis presented in this work.

rather to the lighter mass groups, the lower edge (called “heavy edge”) to the heavy ones.
4This discontinuity is not an effect of the experiment’s efficiency, since in that case it would be oriented

towards smaller numbers of showers with decreasing energy.
5Shown are the results for the corrected muon number; see Chapter 3 for details about the muon

correction.
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In the following, after a short introduction to the theory of cosmic rays (Chapter 2)
and the KASCADE-Grande experiment (Chapter 3), the first task will be to find an
appropriate observable set, which can serve as basis for the analysis (Chapter 4). In this
context, the procedure of the unfolding method will be outlined. Thereafter, the response
matrix that describes the convolution of the sought-after elemental energy spectra into
the measured dataset will be computed and its reliability will be reviewed accurately
(Chapter 5). What follows is the determination of an optimal unfolding algorithm, and
its implementation will be discussed (Chapter 6). This includes also the development of
strategies to estimate the uncertainties the final solution will suffer from, and extensive
tests of the unfolding algorithms based on toy datasets. Finally, the dataset measured
with KASCADE-Grande will be unfolded, and the obtained results will be analysed and
discussed in detail, including the physical interpretation, as well as the comparison with
energy spectra of other experiments (Chapter 7).



Chapter 2

Cosmic Rays and Extensive Air
Showers

After the brief historical overview over the development of insights gained in the field of
cosmic ray research given in the previous chapter, we shall now focus on the theory of
cosmic rays that is related to the objectives of this thesis. Thereby, especially galactic
cosmic rays are outlined, while extragalactic ones are skimmed over only peripherally
and solar cosmic rays are omitted completely.

Below energies per nucleon of ∼ 109 eV, solar cosmic rays are dominating1. Cosmic
rays between this threshold and energies of about ∼ 1017 eV, or, depending on the model,
up to several ∼ 1018 eV are usually assumed to originate from our Galaxy, and to be
extragalactic beyond these energies.

The most fundamental question related to cosmic rays, that is where they exactly
come from and how they are accelerated, is still unanswered. There are many theoretical
attempts at an explanation, however an overwhelming evidence for the reliability of one
of these models is still missing. However, the analyses performed in this work will help
to get a better understanding of the composition of cosmic rays beyond the first knee,
and will answer the question about the existence of a knee-like structure in the spectra of
heavy primaries. By this, the thesis will contribute a further piece of the puzzle towards
the solution of this long-persisting mystery.

There are several publications, which give an overview over the status quo of the
field of cosmic ray research (cf. for instance the publications [86, 42, 182], or the books
[164, 158, 74, 128, 129]), such that it will be renounced in this thesis to go into detail.
However, the theory that is important for the understanding and motivation of this thesis
will at least be touched briefly. This includes especially the most important attempts of
explanation for the origin and the acceleration of galactic cosmic rays (Section 2.1),
possible interpretations of the one or several knees (Section 2.2), as well as a summary of
promising models that are describing the transition from galactic to extragalactic cosmic
rays (Section 2.3). Thereafter, the development of extensive air showers will be outlined,
as, therein, the secondary particles are generated that are measured with KASCADE-
Grande (Section 2.4).

1The “standard” solar wind, while, at highest energies next to the threshold of ∼ 109 eV, the solar
cosmic rays are correlated with solar flares and coronal mass ejections at the sun. Solar cosmic rays are
primarily protons and electrons (95%), but also alpha particles (4%) and isotopes of e.g. helium, neon,
and argon (1%). For galactic cosmic rays of lower energies of some tens of GeV, their flux at the top
of the Earth’s atmosphere can be modulated by this solar flux (and the Earth’s magnetic field), while
beyond these energies it is less or not disturbed.

5



6 2. Cosmic Rays and Extensive Air Showers

2.1 Origin and Acceleration of Cosmic Rays

The spectrum of cosmic rays follows over many magnitudes in energy power laws, what is
the first indication for a non-thermal acceleration process. There is a huge amount of pub-
lications (cf. for instance [42, 86, 63, 35]) introducing and discussing possible acceleration
scenarios for galactic cosmic rays, like supernova remnant shocks [20, 21, 186], superbub-
bles that have been generated by manifold supernova explosions of massive stars formed
in giant OB associations [125], gamma ray bursts [60], microquasars [89], and more. Es-
pecially the supernova remnants are often considered as most favoured candidates for the
acceleration of galactic cosmic rays, and hence will briefly be outlined in the following.

Already in 1934, Baade and Zwicky [20, p. 258] computed that “the total energy
emitted during the existence of the super-nova [...] is of the order of [...] 1054 ergs [...to...]
1051 ergs”. Considering that the energy density of cosmic rays is about 1eV/cm3, the power
required to sustain that intensity is ∼ 1041 erg/s [42, p. 6]. Taking into account that there
are round about three supernovae per century in our Galaxy, the required energy could
already be provided if only ∼ 10% of the released kinetic energy is transferred to cosmic
rays.

Today, it is theoretically established that cosmic rays can be accelerated in shock
waves of supernova remnants by means of the diffusive shock acceleration mechanism2

[118, 19, 26, 27, 37] up to the energies where the knees of the cosmic ray spectrum are
discernible. Especially new and extended3 calculations [25] indicate that it is theoretically
possible to accelerate nuclei up to energies of Z×1017 eV, where Z is the atomic number
(charge) of the particle. The scenario of particle acceleration in supernova remnants based
on the diffusive shock acceleration mechanism is in agreement with the results of diverse
experiments. Already in the early fifties, an evidence for such accelerations in supernova
remnants was found by radio telescopes, which detected synchrotron radiation emitted
by accelerated electrons that are gyrating in the magnetic fields of the remnant [162, 138].

Nowadays, with modern Cherenkov telescopes, γ-ray photons of TeV energies coming
from supernova remnants have been detected, what gives strong indications for an efficient
acceleration of charged particles to energies beyond 100 TeV, in consistency with the
models predicting an acceleration of particles in young supernova remnant shocks [2].
Another indication for TeV particles inside supernova remnants is given by observations
of non-thermal X-rays [22, 146]. While the non-thermal X-rays are certainly synchrotron
emission from high energetic electrons [154], the origin of the γ-ray photons of TeV
energies is still uncertain. Two scenarios are possible: The γ-ray photons could have been
produced in leptonic processes4, or in hadronic ones5 [61]. An experimental validation of
the latter scenario would be the eagerly awaited evidence for an acceleration of hadrons
in supernova remnants. What complicates the situation is the fact that the accelerated

2Also referred to as “first order Fermi process”. The diffusive shock acceleration mechanism bases
principally on the mechanism proposed by Fermi [69], but assume that the acceleration occurs in the
neighbourhood of a shock front and that the energy gains are caused by the systematic compression in
the shock front (and not by small random velocities of the scatterers in magnetized clouds), in combination
of an escape of particles from the acceleration region by advection downstream. It is a fast process, and
leads to a power law spectrum in agreement with experimental observations.

3While the “classical” calculations, which consider a pure diffusive shock acceleration mechanism only,
predict maximal energies of only Z × 1014 eV [120].

4Inverse Compton effect between the same electrons, which are already producing the non-thermal
X-rays, and the ambient photon field.

5Decays of π0 produced in hadron-hadron collisions between accelerated hadrons and the interstellar
material.
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electrons, which are verifiably there since they produce the observable non-thermal X-
rays, can also cause a TeV γ-ray flux by inverse Compton scattering on the microwave
background. Mastichiadis [134] concluded that this process could produce a TeV γ-ray
flux of the same order as the flux produced from the π0 decay. Consequently, those γ-
ray fluxes could also be the result of two processes. Hence, precise measurements of the
fluxes are necessary, since electrons would result in flatter photon power laws, and thereby
would enable a distinction between different scenarios.

The precise measurement of the γ-ray fluxes originating from supernova remnants is
the objective of several experiments, and new results are currently published steadily;
however, with sometimes varying conclusions. For instance, the LAT collaboration
favoured, based on observations of the supernova remnant RX J0852.0–4622 with the
Fermi Large Area Telescope [170], the production of γ-rays in hadronic processes, while
the leptonic ones are considered less likely, however, cannot be ruled out at all. Same con-
clusions were drawn in many other publications of that experiment. However, in another
publication [1] concerning the supernova remnant RX J1713.7–39466, based on an anal-
ysis of Fermi Large Area Telescope observations in comparison with the measurements
[3] of the H.E.S.S. experiment, the leptonic processes were favoured. The measurements
do not agree with the fluxes predicted by most of the hadronic models published so far.
However, it is conceivable to modify these hadronic process models in order to get a
better agreement, or to assume mixed models basing on both the hadronic as well as the
leptonic generation of TeV γ-rays. The LAT collaboration stated that further data stud-
ies, particularly based on a better modelling of the Galactic diffuse emission, are needed
to give final answers whether or not hadrons are accelerated in supernova remnants.

In this context, a precise knowledge about the composition of high energy cosmic
rays and the knees in the elemental spectra will enable a better understanding about
the plausibility of diverse theoretical model, too. And thereby, the results obtained in
this work can help prospectively to throw light on the question about the origin of high
energy cosmic rays.

2.2 The Knees of the Cosmic Ray Spectrum

In 1958, Kulikov and Khristiansen [119] discovered a distinct steepening in the measured
electron shower size spectrum for particle numbers larger than 8×105, what corresponds
roughly to a primary energy of the shower inducing cosmic ray particle of E ≈ 8×1015 eV.
This should be the first measurement of the so-called knee of the cosmic ray spectrum.
Three years later, Peters [148] concluded that the position of this knee would depend
on the atomic numbers of the cosmic ray particles, if their acceleration is correlated to
magnetic fields. He interpreted the knee “as a magnetic rigidity cut-off in the source
which contributes the bulk of primaries below 1015 eV,” and, more precisely, to be at “a
magnetic rigidity corresponding to that of protons with about 1015 eV.” However, this
would mean that also the spectra of heavier cosmic ray primaries ought to exhibit such
knee structures successively.

About half a century after the discovery of Kulikov and Khristiansen, the KASCADE
experiment [10] clarified that the change in spectral index at the knee is caused by a
decrease of the so far dominating light mass group of cosmic rays [9]. In this thesis,
based on KASCADE-Grande measurements, it will be shown that there is very likely7 a

6Which is quite similar to the aforementioned remnant RX J0852.0–4622.
7If the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68] used whilst the
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second knee, which is caused by a knee-like feature in the spectrum of heavy cosmic ray
primaries.

There are diverse theoretical approaches used to explain the cause of the knees (see
e.g. the compilations in [94, 65] or [161, p. 365 et seqq.]). A comprehensive discussion of
all these models will not be possible in this thesis; and hence, only the most favoured
explanation attempts will be outlined, but only briefly. Basically, the models can be
divided into two categories: The astrophysical models that attribute the knees to a change
in the elemental energy spectra of primary cosmic rays (references will be given later), or
the interaction models that assume a change of the nature of the hadronic interactions
between the high energy particles of cosmic rays and the nuclei of the Earth’s atmosphere
(see e.g. [107, 108, 141]). However, d’Enterria et al. [59, p. 6] stated that their insights
gained based on LHC data “give[...] a strong support to the interpretation of the results
in the CR ”knee“ energy range (Elab = 1015.5 eV) in terms of conventional primary
spectrum and nuclear mass composition and disfavours some proposed speculative ideas
that the change of the CR spectral slope could be due to a sudden change in the hadronic
interaction mechanism above 2 TeV c.m. energy”, such that the interaction models appear
rather unlikely. They will not be discussed further. The astrophysical models seem to be
more plausible however. They can roughly be divided into three subclasses:

Knee caused by acceleration mechanism

Very promising models try to explain the knees in the cosmic ray spectrum as the result
of a maximal reachable energy of the diffusive shock acceleration mechanism in supernova
remnant shocks (cf. e.g. [28, 114, 165, 168]). There are also models predicting a single
source, e.g. a single, nearby and recent supernova, as cause of the knee [65]: The spectrum
of that source is overlaid over the structure-less cosmic ray background spectrum, that
originates from many other unspecified sources. However, also other possible scenarios
are discussed in publications, like re-acceleration of cosmic rays by spiral shocks in the
galactic wind [187], accelerations of cosmic rays in ultra-relativistic cannonballs ejected
into the galactic halo [150, 189], and many more.

While the models based on the shock acceleration mechanism predict a rigidity de-
pendent maximal reachable cosmic ray energy, alternatives like the cannonball model
yield a cut-off for individual particles in dependence on their atomic mass caused by
effects of relativistic beaming in the jets. By this, an exact determination of the position
of the knees of individual cosmic ray mass groups, what is one objective of this thesis,
will help to judge about the plausibility of the different models. However, one has to keep
in mind that an observation of a rigidity dependence would not automatically rule out
the cannonball models, since it is still possible that the latter is the dominant source of
acceleration, and the knee is only an effect of a rigidity dependent leakage of cosmic rays
from our Galaxy (discussed in the following).

Knee caused by leakage from our Galaxy – Propagation effects

Whilst their propagation through the Galaxy, cosmic rays will be deflected many times
in randomly oriented magnetic fields. Thereby, with increasing energy, it will be more
and more difficult to confine the cosmic ray particles to our Galaxy. Hence, there will
be a rigidity dependent cut-off caused by a leakage of cosmic rays from the Galaxy.
For instance, Swordy [169] suggested a combination of the diffusive shock acceleration

unfolding analysis describe the physics of hadronic interactions reliably.
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mechanism with an energy dependent propagation path length in the Leaky Box model.
There are many other approaches to describe the propagation process, like e.g. that in
[152, 122, 142, 157].

However, Erlykin and Wolfendale [64] remarked that the measured knee structure is
too sharp for pure leakage models. Maybe the models have to be modified, or it is simply
a combination of both, the propagation and the acceleration mechanism at the source.
Final answers are still eagerly awaited. Also in this context, a precise determination of
the elemental spectra of cosmic rays and possible knee structures could yield a better
understanding of the reliability of these models.

Knee caused by interaction with the interstellar medium

Another possible explanation for the knee is an interaction of cosmic rays with back-
ground particles of the interstellar medium whilst the propagation process. Debated are
e.g. interactions with massive neutrinos (e.g. [62, 190]), photo disintegration in dense
photon fields (e.g. [106, 48]), etc. However, these models would mean that whilst these
interactions further secondary protons would be produced. Candia et al. [48] remarked
that the cosmic ray composition should become lighter beyond ∼ 1016 eV, what is in
contradiction to the results of current air shower experiments, as well as to the results
obtained in this thesis. Furthermore, the massive neutrino can be excluded, as Hannes-
tad [82] has deduced based on WMAP and 2dFGRS measurements. Nevertheless, at the
present moment such influences on the knee by interactions of cosmic rays with other
particles whilst the propagation process cannot be ruled out entirely. Again, a precise
measurement of the elemental cosmic ray spectra can help to improve the actual knowl-
edge.

2.3 Transition from Galactic to Extragalactic Cosmic Rays

The question about a possible transition from galactic to extragalactic cosmic rays is
closely related to that about the origin of the knees and the composition of cosmic
rays beyond the first knee. Cosmic rays beyond the first and the second knee, so called
ultrahigh energy cosmic rays, are expected to be of extragalactic origin. This is reasoned
with arguments like e.g. the large gyro-radius of the primaries at these energies, such
that the magnetic fields inside our Galaxy would presumably not be strong enough to
keep the particles as long in the Galaxy that they could be randomly deflected to a
isotropic distribution. Hence, if the ultrahigh energy cosmic rays are accelerated within
our Galaxy, it should be able to trace them back to their source; however, such powerful
galactic sources are not observed so far. But, there are also further arguments, which
cannot be discussed entirely in this thesis.

There are a couple of models (see e.g. compilations in [51, 31, 57, 105]) dedicated to
describe the transition process, and thereby also to explain the observable ankle of cosmic
rays (the ankle is denoted in Fig. 1.1). In the following, the discussion will be restricted
to three exemplary models that are considered to be promising in many publications.

The ankle model

In the traditional ankle model, the ankle-like structure in the all-particle spectrum at
energies of about ∼ 5 − 10 × 1018 eV is interpreted as an effect of the transition from
galactic to extragalactic cosmic rays (see e.g. [91, 92]). The extragalactic cosmic rays are
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assumed to be subjected to a flat generation spectrum ∝ E−2, what could be explained
based on a non-relativistic shock acceleration mechanism8, and which provides appropri-
ate luminosities of the sources. The assumed galactic cosmic ray spectrum is comparably
steep.

However, this model does not conform immediately with most of the favoured models
that are describing the elemental cosmic ray spectra, and thereby especially the knees,
by means of rigidity dependences: The upper edge of this “standard” galactic cosmic
ray spectrum predicted by the rigidity dependence should occur already one, or even two
orders of magnitude in energy below the assumed transition from galactic to extragalactic
cosmic rays in the ankle model. Nevertheless, there are approaches that try to fill the
gap between the possible second knee, which marks the upper edge of the usual galactic
cosmic ray spectrum and the ankle by e.g. introducing an additional galactic component,
a “component B” as denoted by Hillas [91, 92]. Another solution ansatz bases on the
idea of Bell and Lucek [25], where the magnetic fields of supernova shocks are amplified
non-linearly by the cosmic rays itself, and hence resulting in higher reachable acceleration
energies as assumed in the usual models. There are further explanation attempts, which,
however, cannot be treated comprehensively in this thesis.

One basic property of the ankle model is that it assumes a dominance of heavy
particles in the transition region at around ∼ 5 − 10 × 1018 eV. However, this does not
seem to be compatible with the results obtained by the Pierre-Auger-Observatory by
measurements of the mean Xmax [66], where a dominance of lighter nuclei in the energy
range from about 1018 eV to 1019 eV is concluded. Furthermore, the results obtained in
this thesis give slight indications (however not statistically significant) that the spectrum
of protons recovers beyond energies of 1017 eV, while the flux of iron nuclei seems to
decrease steeply. Thus, the composition at around 1018 eV would be dominated by lighter
primaries, and not by heavy ones. If this is right, this would mean an agreement with
the results of the Pierre-Auger-Observatory, and hence a disagreement with the scenario
predicted by the “ankle model”, too (cf. Section 7.2.1, and discussion in Chapter 8).

The dip model

A different explanation attempt for the transition from galactic to extragalactic cos-
mic rays is given in the dip model (cf. e.g. [32]). There, the dip in the energy range of
∼ 1× 1018 eV to ∼ 4 × 1019 eV is assumed to be related to electron-positron pair pro-
duction of extragalactic protons on cosmic microwave background photons. A flattening
of the dip at energies & 1 × 1019 eV is reproducing the ankle, while there is another
flattening at energies . 1× 1018 eV, which is related to the transition9 from galactic to
extragalactic cosmic rays. This transition occurs where the adiabatic energy losses due
to the expansion of the Universe and the ones due to pair-production are of equal order.

Hence, the transition of galactic to extra-galactic cosmic rays is expected to happen
already at energies close/or equal to that where the second knee is observed, in agree-
ment with a pure rigidity model for galactic cosmic rays. An additional component B
like in case of Hillas model is not necessary. Furthermore, the pair production mecha-
nism necessitates a dominance of protons10 (only ∼ 10% to ∼ 15% contamination of

8Some models also predict extragalactic generation spectra up to ∝ E−2.5, what would rather agree
with ultra-relativistic shock acceleration (cf. [123]).

9At energies . 1×1018 eV, the extragalactic spectrum of protons computed in the dip model becomes
flatter such that it will intersect the steeper galactic cosmic ray spectrum (at ∼ 1− 5× 1017 eV).

10Since the threshold for pair production is proportional to the energy/nucleon, only protons are rele-
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helium nuclei) in the composition of extragalactic cosmic rays. This agrees well with the
insights obtained by the Pierre-Auger-Observatory by measurements of the mean Xmax
[66], where a domination of light nuclei in the energy range from about 1018 eV to 1019 eV,
where the dip occurs, is concluded11. Furthermore, also the results in this thesis will give
slight indications for a return of the dominance of the cosmic ray composition by lighter
primaries beyond the “iron-knee” (see discussion in Chapter 8).

The mixed composition model

In the intermediate mixed composition model [7, 6, 5], a mixed composition for both the
galactic as well as the extragalactic cosmic rays is assumed at the transition region. In
this model, the transition from galactic to extragalactic cosmic rays is assumed to happen
at energies of about ∼ 2− 3× 1018 eV, and hence below the energy the transition takes
place in the ankle model. That is why the necessity of an additional “component B” for
galactic cosmic rays is reduced. The composition could12 be heavy13 dominated below
energies of ∼ 5 − 10 × 1017 eV, such that the predictions would be in agreement with
most of the experimental findings, as e.g. that in this thesis, where a dominance of heavy
particles is observed at around ∼ 1017 eV. One possible difficulty could be that in the
mixed composition model the elemental spectra are subsequently suppressed at energies
above & A×1018 eV, where A is the atomic mass number [182]; hence, a mass dependent
cut-off is expected, instead of an rigidity dependent one.

Figure 2.1 comprises a comparison between different models for the transition from
galactic to extragalactic cosmic rays: the ankle model (top panel), the mixed composition
model (middle panel), and the dip model (bottom panel). The predicted galactic (denoted
“galactic”) and extra-galactic (denoted “CRPropa” respectively “mixed egal.”) cosmic
ray spectra are illustrated by the dashed black lines and the red lines respectively. In
addition, the sum of both components (denoted “galactic+extragalactic”) is given by the
black lines and is compared to the all-particle spectra determined by diverse experiments.
All pictures are taken from [182]; hence, see there for further details. Concerning the dip
model, one remark has to be given: Due to the steep injection spectrum at the sources
of extragalactic cosmic rays, the extrapolation to lower energies would be problematic
for reasons of a too large emissivity. Therefore, usually, an “artificial” suppression of the
extragalactic spectrum below a certain energy is introduced, what is, however, not shown
in the figure.

According to the explanations to the different approaches given afore, the transition
from the galactic to the extragalactic component varies from model to model. Due to
the specific requirements on the composition and the behaviour of the elemental energy
spectra attributed to certain models, an exact measurement of these properties, as done
in this thesis, can help to judge about the validity of the different approaches.

vant in the context of energies at the dip.
11However, beyond energies of about 1019 eV, the results of the Pierre-Auger-Observatory indicate

(under suffering from larger uncertainties) a recover of the heavier particles what would contradict the
dip model expectation of a steadily light composition for energies & 1018 eV.

12Depending on the realization of the model.
13And – again depending on the realization of the model – probably proton dominated at energies

& 3× 1019 eV due to photodisintegration of nuclei. This could possibly be incompatible with the findings
of the Pierre-Auger-Observatory [66], where (suffering from larger uncertainties) a recover of the heavy
particles is observed beyond energies of ∼ 1019 eV.
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Figure 2.1: Comparison between different models for the transition from galactic to extra-
galactic cosmic rays: the ankle model (top panel), the mixed composition model (middle
panel), and the dip model (bottom panel). The predicted galactic (denoted “galactic”)
and extra-galactic (denoted “CRPropa” respectively “mixed egal.”) cosmic ray spectra
are illustrated by the dashed black lines and the red lines respectively. In addition, the
sum of both components (denoted “galactic+extragalactic”) is shown and compared to
the all-particle spectra determined by diverse experiments. All pictures are taken from
[182]; hence, see there for further details.
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2.4 Extensive Air Showers

The flux of cosmic rays at energies above ∼ 1014 eV is as small that it gets impossible
to detect the cosmic ray particles by means of direct observation techniques, which are
based on satellite or balloon experiments, with sufficient statistics. However, the high
energy cosmic rays are interacting with the Earth’s atmosphere, and thereby induce a
large cascade of secondary particles. Hence, the atmosphere serves as large calorimeter
for indirect high energy cosmic ray studies.

Detailed information about extensive air showers is given e.g. in [86, 42, 51], and
references therein. A detailed introduction will be omitted in this thesis. The main prop-
erties of hadron14 initiated showers, as far as they are important for the understanding
of this work, will be discussed briefly.

If a cosmic ray nucleus penetrates into the Earth’s atmosphere, it will interact with
the nuclei therein. The basic principle of the development of the initiated extensive air
shower is sketched in Fig. 2.2. Most of the secondary particles are pions and kaons.
Before interacting further, they can also decay for instance into muons or neutrinos.
The muonic component and the neutrinos are usually passing through the remaining
atmosphere, and can be detected with appropriate experiments. The most intense elec-
tromagnetic component of the shower, i.e. electrons15 and photons, is primarily caused by
fast decaying neutral pions. They decay into photons, which initiate the electromagnetic
shower. This shower component bases on two alternating processes: bremsstrahlung of
electrons, and pair production by photons. The multiplication continues until the energy
loss by bremsstrahlung is of the same order as that caused by ionization. Nevertheless,
there will be a certain amount of electrons and photons that reach the observation level,
and can hence be detected. The hadronic component can be regarded as the backbone of
the shower, since it feeds the electromagnetic and muonic components. The electromag-
netic component can further cause Cherenkov or fluorescence light, what is unimportant
in context of this thesis however. In addition, things like radio emission etc. will be
neglected in the following.

A detailed quantitative discussion of the dependence of the shower sizes like muon
and electron number on the energy and type of the primary particle will be omitted,
since the shower development will be simulated by means of Monte Carlo methods16,
such that it can be considered as a kind of black box in context of this thesis. However,
in the following, the properties of the air shower development that are important in the
framework of this thesis will at least be discussed qualitatively.

What is of importance in context of this thesis is that the inelastic cross-section be-
tween the primary nucleus and the nuclei of the Earth’s atmosphere depends on the type
of the primary particle. For example, at primary energies of 1×1015 eV, the cross-section
for iron nuclei is round about six times larger than for protons. That means that light
primaries usually can penetrate deeper into the atmosphere, before a first interaction will
occur. To put it simply, a nucleus with atomic mass number A can roughly be considered
as superposition of A independent nuclei. Following this simplified consideration, the air
shower induced by a particle with atomic mass A and energy E can be compared to the
superposition17 of A proton induced showers, where each has a primary energy of E/A.

14Since only the hadronic cosmic rays are of interest for this thesis, the showers induced by electrons
or photons will not be discussed.

15More precisely, electrons and positrons.
16Based on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
17The superposition model is suitable since the typical energies of the primary exceed the binding
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Figure 2.2: Schematic of the development of an extensive air shower initiated by a cosmic
ray nucleus by a nuclear interaction with the Earth’s atmosphere (taken from [86]).

Hence, in air showers initiated by heavy primaries, more secondary particles are pro-
duced at sea level than in case of those induced by protons; however, they have smaller
energies. Consequently, the number of muons at observation level is larger than in case
of proton induced showers: due to the larger number of secondaries on the one hand, and
on the other hand due to the concomitant on average smaller energy18 per pion (kaon)
causing them to decay earlier into muons, instead of further interacting hadronically;
and all this in combination with the relatively small interaction probability of muons
whilst the propagation through the Earth’s atmosphere. However, the smaller energies of
secondary particles result in a faster attenuation of the electrons during the air shower
development19. In summary, the larger the atomic mass of the air shower inducing nu-
cleus is, the larger the muon number, and the smaller the electron number is at sea level
in comparison to lighter primaries. As a conclusion, the correlation between the number
of electrons and muons can serve as appropriate starting point for a composition analysis
like that in this thesis.

Another property that varies between cosmic ray primaries of different mass groups
are the intrinsic shower fluctuations. In general, the intrinsic shower fluctuations of heav-
ier primaries with atomic mass A are smaller, since they can be considered as a super-
position of A hydrogen nuclei, and by this the statistical fluctuations roughly20 decrease
by
√
A, since the primary energy is split in A independent cascades.

Last but not least, it is trivial and obvious that higher primary energies will result in
higher numbers of electrons and muons detectable at observation level.

energy of nucleons by far.
18The hadronic interactions are not dominating over the decay processes for smaller charged pion

energies (smaller than a critical energy of some tens of GeV, i.e. the connected Lorentz factors are
comparatively small) or at high atmospheric altitudes with smaller particle densities (and the point of
first interaction is located at higher altitudes for heavy particles).

19In combination with the smaller depth of the shower maximum for heavy primaries and the relatively
fast attenuation of electrons, what results in smaller electron numbers at sea level, too.

20In more precise computations, the intrinsic shower fluctuations for heavy primaries are decreasing a
little bit less than

√
A; however, they are still significantly smaller than that in case of protons.
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Figure 2.3: The correlation between charged particles and muons at observation level
computed based on Monte Carlo simulations (histograms; based on the interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68]). The charged particles are
primarily electrons, such that one could also speak about “electrons” instead of “charged
particles”, and hence about the correlation of electrons and muons. The simulations are
performed at several fixed primary energies (denoted above the respective distributions),
and for primary protons (“H”) and iron nuclei (“Fe”). Additionally shown are some
contour lines of the parametrizations determined in Chapter 5 (for details, see Chapter 5,
and information given there to Fig. 5.14).

In Fig. 2.3, the correlation between the charged particles, respectively electrons since
they are dominating the charged particles by far, and muons is depicted based on Monte
Carlo simulations. As predicted afore, the larger the atomic mass of the air shower in-
ducing nucleus is, the larger the muon number, and the smaller the charged particle,
respectively electron number is at sea level. Furthermore, the distributions belonging to
protons are significantly wider than that for iron nuclei, hence meaning larger intrinsic
shower fluctuations. And for sure, the higher the primary energy is, the more charged
particles/electrons and muons will be generated.

To summarize, the measurement of the electron and the muon number, as done by
KASCADE-Grande, allows to draw inferences about the energy as well as the mass
of the primary cosmic ray nucleus that initiated the air shower; and by this, enables
the determination of energy spectra for elemental groups of cosmic rays. This allows
answering questions like that about the origin of the second knee, as well as about
the transition from galactic to extragalactic cosmic rays, etc. In the next chapter, the
KASCADE-Grande experiment will be introduced briefly.





Chapter 3

The KASCADE-Grande
Experiment

In the previous chapters, it has been clarified why the knowledge about the elemental
spectra of cosmic rays is an important cornerstone of our understanding about the origin
of the knees of the cosmic ray spectrum and the transition from galactic to extragalactic
cosmic rays. The objective of this thesis is to provide insights that can help to put
together one or more pieces of the puzzle of cosmic rays, like acceleration mechanisms,
propagation processes, etc. As also explained, due to their very low fluxes at the knee
and beyond, cosmic rays can only be detected indirectly by measuring the secondary
particles in extensive air showers initiated by the primary cosmic ray particle. This is the
purpose of the KASCADE-Grande Experiment [14], based on whose measurements the
composition analysis in this thesis is carried out.

In the following, the KASCADE-Grande Experiment will be introduced briefly (Sec-
tion 3.1). Thereby, as far as they are important for the understanding of this thesis, the
detector components will be explained. Afterwards, it will be focused on the reconstruc-
tion procedure of the shower observables that are used in the final unfolding analysis
of this work (Section 3.2). Thereafter, the comprehensive set of quality cuts necessary
to guarantee reliable results will be outlined (Section 3.3). Finally, the reconstruction
accuracy of the two observables the main unfolding analysis will be based on will be
discussed, and appropriate means to improve especially the muon number determination
will be introduced (Section 3.4).

3.1 Setup of the KASCADE-Grande Experiment

The KASCADE-Grande experiment measures extensive air showers initiated by cosmic
ray particles with primary energies from 1016 eV to 1018 eV. It is located1 at the Karlsruhe
Institute of Technology (KIT). In Fig. 3.1, the basic setup is sketched and overlaid over a
satellite picture of the KIT area (satellite picture taken from [97]). A detailed introduction
to KASCADE-Grande can be found in [14], and will hence be omitted. Instead, only the
main components of the experiment important for this thesis will be outlined briefly; to
a certain extent basing on the introduction in [72].

In KASCADE-Grande, the extensive air showers are measured by means of 37 scin-
tillator stations (marked with the blue quadratic markers in Fig. 3.1; cf. Section 3.1.2).

1Observation level of 110 m a.s.l., corresponding to an average atmospheric depth of 1022 g/cm2, and
located at the coordinates 49.1◦ N, 8.4◦ E.

17
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Figure 3.1: Sketch of the setup of the KASCADE-Grande experiment overlaid over a
satellite picture of the KIT area (satellite picture taken from [97]). Additionally, the
overlaid grid represents the internal KASCADE-Grande array coordinates. See text for
further details.

They are optimized to measure the charged particles of the air shower, i.e. primarily
electrons, but also muons. By means of the outer detectors of the co-located smaller ar-
ray of the former KASCADE experiment (marked with the red shaded area in Fig. 3.1;
cf. Section 3.1.1), the electromagnetic component can be measured separately from the
muonic one due to iron/lead absorbers above the muon detectors. Roughly speaking,
the subtraction of the muon number measured with the KASCADE detectors from the
charged particle number measured with the Grande stations yields the electron number.
Hence, for every shower detected with KASCADE-Grande, the total charged particle
number, as well as the pure electron and muon numbers can be reconstructed.

3.1.1 KASCADE detector stations

The scintillators of the former KASCADE detector array cover an area of 200× 200 m2.
They are housed in 252 stations on a grid with 13 m spacing. While the inner stations
are only equipped with liquid scintillators measuring primarily electrons and gammas,
the 192 outer stations (marked with the red shaded area in Fig. 3.1) are also containing
plastic scintillators underneath a shielding of 10 cm lead and 4 cm iron, which allows
to measure muons separately from electrons and gammas. The absorber corresponds to
round about 20 radiation lengths, resulting in a muon threshold of 230 MeV for vertically
incident muons. In Fig. 3.2, a schematic of such an outer KASCADE detector station is
illustrated (from [104]).

The muon detectors, which are of interest in the framework of the KASCADE-Grande
experiment, consist of four plastic scintillators per station. The scintillators are of 3 cm
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Figure 3.2: Schematic of an outer KASCADE detector station. Shown are the elec-
tron/gamma detector, the shielding, as well as the muon detector (from [104]).

thickness and their surface area is 90 × 90 cm2 each. The light is coupled out by wave-
length shifters and read out by 1.5 inch photomultipliers. The energy resolution has been
determined to be of the order of 10% at 8 MeV, what corresponds to the mean energy
deposit of a minimum ionizing particle (MIP).

Further details about the KASCADE experiment can be found in [10].

3.1.2 Grande detector stations

The scintillator array of KASCADE-Grande (the so-called Grande stations, marked with
the blue quadratic markers in Fig. 3.1) covers a collecting area of approximately 700 ×
700 m2. The 37 Grande stations are located on a hexagonal grid with an average mutual
distance of 137 m. They measure the energy deposits of the charged particles of the air
shower, without distinguishing between electrons and muons. Each Grande station houses
10 m2 of plastic scintillators, segmented into 16 individual scintillators of 4 cm thickness
and with a surface area of 80 × 80 cm2, each read out with a high gain photomultiplier
(for timing and particle density measurements). The four central modules are equipped
additionally with low gain photomultipliers (for measurements in case of large particle
densities). In Fig. 3.3, a sketch of a Grande scintillation detector station is depicted.

The 37 Grande stations are organized in 18 hexagonal trigger cells (cf. Fig. 3.1, where
one trigger cell is outlined exemplarily). Each cell consists of seven stations: a central one,
and six surrounding stations2. The most analyses based on KASCADE-Grande data, as
also that in this thesis, only consider air showers that are capable to trigger a seven-fold
coincidence3, i.e. all seven stations of an arbitrary cluster, since only then the trigger is
transmitted to KASCADE for read-out of the muon detectors there.

2However, station No. 29 has only five surrounding stations, such that this cluster consists of six
stations only (see Fig. 3.1).

3While the Grande data acquisition itself is already triggered by a four-fold coincidence.
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Figure 3.3: Sketch of the Grande scintillation detector. Shown are the 16 individual
modules, each read out with a high gain photomultiplier. The four central modules are
equipped additionally with low gain photomultipliers (taken from [14]).

3.2 Air Shower Reconstruction with KASCADE-Grande

The air shower reconstruction with KASCADE-Grande is discussed in detail in [14].
However, since the numbers of charged particles and muons will serve as basis for the
unfolding analysis in this thesis, the reconstruction of these two sizes will be outlined
briefly, whereas things like e.g. the determination of the shower core or the angle of
incidence will be omitted.

3.2.1 Charged particle number reconstruction

The Grande detector stations allow measuring the charged particle number of the air
shower. Therefor, the energy deposited in the scintillation detectors by the crossing
charged particles has to be converted to the charged particle number. For this purpose,
a so-called lateral energy correction function (LECF) is used, which describes the mean
energy deposit per charged particle as a function of the distance from the shower core
r correcting for the energy dependence of the stopping power and the energy release
originating from photon conversion in the detector or its surroundings:

energy deposit
charged particle

(r/m) /MeV =
e1−0.1×r + 7.51 + 0.02× r + 5.5× 10−5 × r2 + 5.4× 10−8 × r3 if r ≤ 450 m ,
energy deposit

charged particle
(450) else .

(3.1)

The parameters have been determined by means of Monte Carlo simulations. The Grande
LECF is depicted in Fig. 3.4, left panel. For further details, and an explanation of the
specific structure, see [14].

Since for every triggered Grande station the number of charged particles can be
computed by means of the LECF, the last remaining step will be to estimate, based on
the randomized measurements of the local charged particle densities at those individual
stations, the total number of charged particles Nch exhibited by the shower at observation
level. For this purpose, the lateral distribution of charged particles has to be known,
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Figure 3.4: Left panel: The LECF according to Eq.(3.1) for the conversion of the energy
deposits in the Grande detector stations into charged particle numbers. Right panel: The
average experimental charged particle lateral distributions for different bins of shower
sizes, and angle of incidences below 18◦. The lines represent the predictions of the LDF
according to Eq.(3.2) by using the average value of Nch and s in the given interval of
Nch. Both figures are taken from [14].

and hence was determined based on Monte Carlo simulations. It was found that this
distribution, i.e. the dependence of the charged particle density %ch on the core distance
r, can be described by means of a modified NKG lateral distribution function (LDF)
[103, 81]:

%ch(r/m)/m−2 = Nch × C(s)×
(
r

r0

)s−α
×
(

1 + r
r0

)s−β
with C(s) = Γ (β − s)

2πr20 × Γ (s− α+ 2)× Γ (α+ β − 2s− 2)

. (3.2)

Based on the simulations, the parameters were found to be α = 1.6, β = 3.4, and r0 = 30.
The slope of the distribution is given by the free parameter s, which is often referred to
as “shower age”.

Now, a maximum likelihood function can be computed, and the parameters s and
Nch, i.e. the sought-after total number of charged particles, can be derived for every
individual air shower event by fitting the charged particle densities locally measured at
the triggered Grande stations by the afore-given lateral distribution function. For further
details, see again [14].

In Fig. 3.4, right panel, the experimental average lateral distributions of charged par-
ticles for different bins of shower sizes, and angle of incidences below 18◦, are depicted.
Additionally shown are the predictions of the LDF according to Eq.(3.2) by using the
average value of Nch and s in the given interval of Nch. In general, the experimental distri-
bution is described very well by the assumed LDF, enabling a high quality reconstruction
of the charged particle number on a event-by-event basis.
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3.2.2 Muon number reconstruction

The muon number reconstruction with KASCADE-Grande is explained and discussed
comprehensively in [73, 14], such that the basic steps will now be summarized only
briefly.

Analogous to the procedure in case of the charged particles, also in case of the muons
the measured energy deposits in the KASCADE muon detectors are converted to muon
numbers by means of a muon LECF :

energy deposit
muon

(r/m) /MeV = 7.461 + e1.762−0.0166×r + 0.0002886× r ; (3.3)

where r is again the distance to the shower core. The energy deposit per muon is depicted
in Fig. 3.5, left panel.

The lateral distribution of muons is described by means of a LDF based on that
proposed by Lagutin and Raikin [121] for the electron component:

%µ(r/m)/m−2 = Nµ × fµ(r/m)

= Nµ ×
0.28
r20
×
(
r

r0

)p1
×
(

1 + r
r0

)p2
×
(

1 +
(
r

10× r0

)2
)p3

,
(3.4)

where Nµ is the total number of muons at observation level, and the parameters p1 =
−0.69, p2 = −2.39, p3 = −1.0, and r0 = 320 have been determined based on Monte Carlo
simulations.

Based on a maximum likelihood estimation, the total number of muons Nµ exhibited
by an individual air shower at observation level can be computed as follows:

Nµ =

k∑
i=1
ni

k∑
i=1

(
fµ(ri/m)×Ai/m2 × cos(Θ)

) , (3.5)

where ni is the number of particles measured at a core distance ri in one of the k
muon detectors within an area Ai, Θ is the angle of incidence of the shower, and fµ the
distribution function according to Eq.(3.4).

In Fig. 3.5, right panel, the experimental average lateral distributions of muons for
different bins of muon sizes, and angle of incidences below 40◦, are depicted. Additionally
shown are the predictions of the LDF according to Eq.(3.4) by using the average value of
N rec

µ in the given interval of N rec
µ . In general, the experimental distribution is described

well by the assumed LDF ; however, not as good as in case of the charged particles4 (see
Fig. 3.4, right panel). In case of intervals of smaller muon numbers, corresponding on
average to smaller primary energies, the used LDF overestimates the local muon densities
at smaller core distances, and underestimates them further afar. In case of larger muon
numbers, it is the opposite. These deficits in the description of the measured densities
are caused by the fixed shape of the LDF. In case of the charged particles, it was free
(parameter s). Due to the position of the muon detectors often quite far away from the
shower core, the muon densities that are present at the KASCADE muon detectors are
usually very small; in addition to the anyway small number of muons in comparison to

4Also the limitation to smaller angle of incidences below 18◦, as it was the case in the depictions for
the charged particles, does not improve the situation for the muon reconstruction significantly.
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Figure 3.5: Left panel: The LECF according to Eq.(3.3) for the conversion of the energy
deposits in the KASCADE muon detector stations into muon numbers. Right panel:
The average experimental muon lateral distributions for different bins of muon sizes, and
angle of incidences below 40◦. The lines represent the predictions of the LDF according
to Eq.(3.4) by using the average value of N rec

µ in the given interval of N rec
µ .

that of electrons, which are the main contributors to the charged particle number. For
many air shower events, only in a very few muon detectors sufficient energy deposits
are detectable. It was found that a fit to the measured muon density distribution on an
event-by-event basis is often very unstable, if the slope of the LDF is variable. Hence,
it was decided that it is more adequate to accept the systematic effects caused by the
non-perfect description of the experimental muon lateral distribution by the used LDF,
but, as a quid pro quo, ensure more stable fit results.

Since in this thesis the muon number will be used as second observable beside the
total number of charged particles as basis for an unfolding analysis, it is important to
reconstruct these shower sizes with the highest quality possible. Hence, in the following,
the quality of the air shower reconstruction will be discussed briefly, and a method for the
correction of the reconstructed muon number will be introduced. But, firstly, the standard
quality cuts that are applied to guarantee a certain value of data and reconstruction
quality will be outlined briefly.

3.3 Quality Cuts

Parallel to the comprehensive improvements of the reconstruction procedure, which fi-
nally resulted in an overall already very precise air shower reconstruction, a set of quality
cuts has been developed. These cuts are necessary to eliminate those air shower events
whose proper reconstruction cannot be guaranteed despite all endeavours.

The first group of cuts is related to the “hardware” of the experiment. The follow-
ing conditions have to be fulfilled in order that the respective air shower event will be
considered in later analyses:

• Only air showers that are capable to trigger a seven-fold5 coincidence are consid-

5However, station No. 29 has only five surrounding stations, such that this trigger cluster consists of
six stations only. Hence, in that case, a six-fold coincidence is demanded.
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ered6, i.e. all seven Grande stations of an arbitrary cluster. The reason is that only
in this case the trigger is transmitted to KASCADE for read-out of the detectors
there; and hence, only then, the muon number can be measured.

• All 18 Grande trigger clusters must have been active and functioning properly. That
means further that periods with technical errors in the data acquisition electronics
are omitted.

• The KASCADE detector array must have been active, since only then the additional
measurement of a pure muon number is possible.

• Fake events that are caused by the synchrotron radiation source ANKA, also located
at the Karlsruhe Institute of Technology, are filtered out. This is realized by a query
of a database that comprises information about the ANKA operation time.

• Air shower events whose maximal energy deposit is located at the border of the
Grande array are omitted, since it could be possible that the reconstructed places
of the shower centres will not be equal to the true ones. If the true shower core
is located outside of the detector field, only the tails of the lateral distribution
are hitting the Grande detectors. Nevertheless, the shower would be considered to
have had his core located inside the array, what will finally cause misreconstructed
shower sizes.

• In case of air showers initiated by primaries below the KASCADE-Grande en-
ergy threshold, the reconstruction procedure is unreliable. In order to discard these
so-called “small events”, events that triggered less than 12 Grande stations are
neglected.

After the reconstruction process, there are additional quality cuts applied that are de-
pending on the reconstructed shower observables itself:

• The reconstruction procedure must have passed without failure. That means espe-
cially that the minimization procedures performed by means of MINUIT [99] must
have been successful. Such a basic failure of the reconstruction procedure is rather
seldom however (only for ∼ 0.3% of the events).

• Since the reconstruction procedure has been optimized for a reconstruction of air
showers with angle of incidences below 40◦, events with larger ones are omitted.
Otherwise, a reliable reconstruction cannot be guaranteed in all cases.

• The shower core distribution is not homogeneous over the whole Grande array.
This is, amongst others, caused by the hardware cut that demands a minimum of
12 Grande stations to be triggered by the respective air shower. Many extensive
tests have shown that a homogeneous shower core distribution as well as a reliable
shower size reconstruction can only be guaranteed if only air shower events are
considered whose core-coordinates fulfil the following conditions:

−420 m < x-coordinate < −50 m,
−550 m < y-coordinate < −30 m, and

250 m <
√

x-coordinate2 + y-coordinate2 < 600 m .

In Fig. 3.6, the fiducial area finally used is marked by the red coloured area.
6While the Grande data acquisition itself is basically already triggered by a four-fold coincidence.
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Figure 3.6: Sketch of the KASCADE-Grande setup. The fiducial area used in most of the
KASCADE-Grande analyses, including that in this thesis, is marked by the red coloured
area.

• If the slope parameter7 s of the electron size lateral distribution fit (cf. Eq.(3.2)) is
close to its outer limits, the reconstruction of the shower sizes is often unreliable.
It was found that a sufficient stability can only be ensured if the slope parameter,
determined whilst the fit, fulfils the following condition: −0.385 < s < 1.485.

• In some cases, the reconstructed shower sizes are too large in comparison to the ac-
tual energy deposits caused by the particles in the detectors. Hence, the shower sizes
are overestimated. If N tot

c is the sum of the energy deposits in the Grande scintil-
lators by the particles of the air shower, this can roughly be converted to a particle
number by N tot

c /8.5, since the most probable energy deposit by a single particle in
a Grande detector is 8.5 MeV. If the deviation of this roughly estimated8 number
of particles hitting the detectors and the reconstructed total particle number of the
shower is unphysically too large, a problem in the reconstruction procedure has oc-
curred. In that case, the reconstructed shower sizes are unreliable, and hence those
showers are omitted in further analyses. Practically, the sum of the energy deposits
N tot

c in the Grande stations is compared on the one hand to the reconstructed
charged particle number Nch, on the other hand to the pure electron number9 Ne.
The conditions that air shower events have to fulfil in order to be considered in the
analyses are:

log10(N tot
c /8.5) > 1

3.5
× (2.9× log10(Nch)− 9.5) ,

and
log10(N tot

c /8.5) > 1
4.2
× (2.9× log10(Ne)− 8.4) .

7Respectively “shower age” parameter.
8A roughly estimated size, however, very directly measured, since no lateral distribution assumptions

are made so far, and no fitting routine is necessary.
9What allows further to include possible influences from a misreconstructed muon number, since the

electron number is, roughly speaking, determined by subtracting the muons measured with the KASCADE
muon detectors from the number of charged particles measured with the Grande stations.
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The discrimination power of all these conditions was tested extensively by means of Monte
Carlo data, but was also reviewed in the context of measurements. The application of
these cuts to the measured data will enable a high quality reconstruction of the respective
shower sizes, and hence will pave the way for successful analyses. Nevertheless, especially
the muon reconstruction has still some weaknesses, which will be discussed in the next
section.

3.4 Quality of the Shower Reconstruction and Correction
Methods

In Fig. 3.7, the charged particle (left panel) and muon (right panel) reconstruction ac-
curacies are depicted. They have been determined based on Monte Carlo simulations,
exemplarily for angle of incidences below 18◦ (however, the situation is similar in case of
the other angle intervals). All necessary quality cuts introduced in the previous section
have been applied. The shown relative deviations are medians, the error bars represent
the quantiles at 84% and at 16%, and thus the central 68% distribution. The range of
full trigger and reconstruction efficiency10 is marked by the dashed vertical lines.

While in case of the charged particles the reconstruction accuracy is very good, in
case of the muons the resolution is worse. It goes along with a significant bias especially
at muon numbers close to the threshold of full efficiency. The muon reconstruction was
analysed in detail, since the muon number is the second important observable used in
the unfolding analysis presented in this thesis.

It would go considerably beyond the scope of this thesis to discuss these preparatory
work in detail. However, the main facts will be summarized briefly. The by far largest
source of systematic deficits is the fixed shape of the used muon lateral distribution
function (cf. Eq.(3.4)). As already discussed in Section 3.2.2 and observable in Fig. 3.5,
right panel, the fixed slope11 causes local under- or overestimations of the muon densities
in dependence on the distance from the shower core. Since in Fig. 3.7 no distinction
between different core distances is made, these systematic distortions are hidden in the
statistical error bars to a certain degree. Many attempts to improve the situation have
been performed. The most successful solution is to simply correct the reconstructed muon
number by means of a correction matrix12, which contains appropriate correction values
to correct for a systematic deviation from the true muon number in dependence on the
angle of incidence, the distance of the shower core to the centre of the KASCADE array,
and the reconstructed muon number itself. The corrected muon number, determined by
application of this matrix, is also depicted in Fig. 3.7, right panel (red hollow circles).
On the one hand, the bias is now in agreement with zero. On the other hand, also the
resolution seems to be improved, what is caused by the fact that the correction matrix
considers also the shower core distance, and hence correct for some systematic effects still
hidden in the statistical error bars of the uncorrected muon number.

This muon correction matrix is used in almost all current analyses of KASCADE-
Grande data. Also in the unfolding analysis of this thesis, the muon correction13 is ap-
plied, however in a slightly different way. Based on the knowledge gained in the extensive

10Most of the KASCADE-Grande analyses take into account only charged particle and muon numbers
for that the experiment has full efficiency.

11As discussed in Section 3.2.2, a variable slope can cause unstable fit results, whose unreliability is
often not discernible.

12Whose entries have been determined based on Monte Carlo data.
13As well as a correction of the charged particles.
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Figure 3.7: Charged particle (left panel) and muon (right panel) reconstruction accuracies
derived from Monte Carlo simulations, exemplarily for angle of incidences below 18◦. The
shown relative deviations are medians, the error bars represent the quantiles at 84% and
at 16%, and thus the central 68% distribution. The range of full trigger and reconstruction
efficiency is marked by the dashed vertical lines. In case of the muons, also the situation
after applying a correction method is shown (slightly shifted along the x-axis for a better
discriminability. See text for details about the correction).

preparatory work of this thesis, the bias in the muon reconstruction will be parametrized
by appropriate functions in order to correct for it (see Section 5.2.3). Instead of using
a matrix, this allows easier modifications of things like bin widths etc. The resolutions
of the shower sizes are taken into account, by means of appropriate parametrizations, in
the response matrix for the unfolding problem, too (see Section 5.2.4). Hence, after all
extensive improvements of the reconstruction procedure, and under application of the
quality cuts and correction methods, the unfolding analysis can draw on a very stable
dataset with well reconstructed shower sizes. This enables the determination of energy
spectra for elemental groups of cosmic rays with highest quality. However, before that,
some preparatory considerations are performed in the next chapter.





Chapter 4

Preliminaries for Unfolding the
Energy Spectra

This work’s objective is to determine the composition and the energy spectrum of cosmic
rays outside the Earth’s atmosphere. Whereas these observables are not immediately
accessible for the ground based KASCADE-Grande experiment, it is possible to measure
the particles produced in the cascade initiated by an interaction of a cosmic ray particle
with the large-scale atmospheric target volume. Primarily, electrons and muons, in the
following referred to as shower sizes, are detected. The basic procedure is sketched in
Fig. 4.1.

The air shower development is subject to fluctuations; thus, the number of electrons
and muons hitting the experiment’s detection area at ground varies from event to event.
Moreover, these quantities will likely be reconstructed divergently from the true ones
due to limited reconstruction resolution, detection efficiency etc. Consequently, the dis-
tributions of the reconstructed shower sizes are generated by a convolution1 of the true
primary energy spectrum with the afore indicated influences. The primary goal of this
work will be to disentangle the measurement by means of a deconvolution procedure, and
by this to compute the individual energy spectra of certain mass groups.

The next question to be answered is which observables should be used as basis for
a deconvolution analysis (Section 4.1). Thereafter, the basic principle of the unfolding
procedure will be outlined (Section 4.2).

4.1 Choice of Observables

In this section, an appropriate set of observables shall be determined, based on which
the final unfolding analysis will be carried out. As explained in Chapter 3, the directly
measured observables are not the shower sizes, e.g. the number of electrons or muons, but
their energy deposits in the detectors. Hence, one could argue that it is possibly better to
use these direct measured values. However, the shower sizes are the standard observables
in the majority of the analyses of our collaboration, and are thus well tested and ready to
use. The uncertainties are known or at least accessible through already available Monte
Carlo simulations.

In [184] was figured out that “the muon number measured by KASCADE-Grande can
be used for unfolding analyses, leading to an [all-particle] energy spectrum”. A distinction
between different primaries was not possible due to the limited resolution of the detector

1The terms convolution and folding will be used synonymously in this work.

29
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Figure 4.1: Simplified sketch of the convolution of the primary cosmic ray energy spectrum
with the shower fluctuations as well as with the detector characteristics, and of the
principle underlying the KASCADE-Grande shower size reconstruction.

and the limited data statistics at the time of that analysis. Now, in the present approach,
two observables will be used in the analysis, instead of only one in [184], such that
the analysis becomes multivariate. Figure 4.2 illustrates how the separation quality2

is improved when using two instead of one observable. Shown is the two-dimensional
logarithmic shower size distribution of charged particles log10N

true
ch vs. muons log10N

true
µ

at ground level generated using CORSIKA [88], with which the shower development in
case of primary protons and iron nuclei with an energy of 2 × 1015 eV was simulated.
In case of considering only one shower size, the separation quality is represented by the
respective projection of the two-dimensional distribution into a one-dimensional along
the corresponding axis. The geometric distances of the distribution’s maxima of different
primaries, in this case protons and iron nuclei, will get smaller each time such a projection
is performed, and hence resulting in a worse separability: geometric distances ∆Nch or
∆Nµ instead of

√
(∆Nch)2 + (∆Nµ)2. Another advantage of the two-dimensional case is

that the whole distributions are less overlapping at all.
As explained in Section 2.4 the correlation between the total number of electrons and

of muons measured at a certain stage of the shower development is a promising quantity,
which is not only sensitive to the primary particle’s energy but also to its atomic mass.
To summarize, the larger the atomic mass of the air shower inducing nucleus is, the larger

2While in this simplified illustration the separation quality is given by the geometric distance of the
maxima in the distributions of the different primaries, more precisely one has also to take into account
their shapes and widths. Thus, this should only be understood as a kind of first guess.
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Figure 4.2: The two-dimensional log10N
true
ch –log10N

true
µ shower size distribution for pro-

ton (H) or iron (Fe) induced showers with primary energy of 2 × 1015 eV. One can see
that using two instead of one observable improves the separation quality between different
primaries.

the muon number, and the smaller the electron number is at sea level in comparison to
lighter primaries. As a conclusion, the correlation between the number of electrons and
muons can serve as appropriate starting point for a composition analysis.

In case of the used KASCADE-Grande experiment [14], primarily the total number
of charged particles, rather than the pure electron number3, is measured in combination
with the muon number. However, the number of muons in the air shower is very small
compared to that of electrons, such that the number of charged particles is approximately
equivalent to the number of electrons. The composition sensitive correlation between
the electrons and muons is comparably distinct in case of the correlation between all
charged particles and muons, as will be shown in the following. Now, possible sets of
KASCADE-Grande observables will be discussed and rated concerning their usability for
a composition analysis.

The three KASCADE-Grande observables, which can serve optionally as a basis for
an unfolding, are the number of muons (Nµ), the number of electrons (Ne) and the
number of charged particles (Nch, containing in the vast majority electrons Ne, but also
muons Nµ). All these variables are well tested by the collaboration and directly accessi-
ble via the experiment’s database of reconstructed events. As possible candidates for the
two-dimensional shower size plane, serving as the basis of the deconvolution, these com-
binations are surveyed: Nch–Nµ and Ne–Nµ. Furthermore, a third attempt is presented
using the locally measured densities of charged particles ρch(r0) at a certain distance
r0 from the shower core, again with the muon number as second partner of the set.

3Nevertheless, the electron number can be derived by subtracting the number of muons from the total
number of charged particles. However, this further reconstruction step induces additional uncertainties.
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Figure 4.3: Left panel: The lateral distribution of charged particles based on Monte Carlo
simulations. Right panel: The relative fluctuations in the densities of charged particles
show a minimum – in this specific case at around 260 m distance from the core of the air
shower.

The charged particles density ρch(r0) is a more native, but less tested observable. More-
over, this variable is not determined by the KASCADE-Grande standard reconstruction
procedure, and therefore has to be treated supplementary.

In the following, firstly some investigations concerning the question at which core
distance the local density of charged particles should be used. The lateral distribution
of charged particles is determined using CORSIKA [88] 6.307 shower simulations, which
are based on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24,
67, 68]. The experiment’s response is simulated using CRES4 1.16/07, which bases on
the GEANT 3.21 [46, 76] detector description and simulation tool. In the left panel of
Fig. 4.3 this distribution is shown in case of proton induced air showers with primary
energy 16.0 < log10(E/eV) < 16.5 and angle of incidence below 17.6◦. The densities in
each distance bin are averaged over some hundred events, the error bars represent the
RMS. As one can see, the error bars, and thus the shower to shower fluctuations, seem to
vary with the distance to the core. In Fig. 4.3, right panel, the relative fluctuations in the
densities of charged particles are shown in dependence on the core distance. There can
been seen a clear minimum at around 260 m. The distance with the smallest relative RMS
in the density varies for different primary particle energies and types, confer Fig. 4.4, left
panel. Conservatively, the different optimal distances, substituted by those of protons
and iron nuclei, are averaged resulting in a common one of 235 m, represented by the
horizontal dashed line. The RMS of the charged particle densities of proton or iron
induced showers at the optimal distance, in comparison to that at the assumed common
distance of 235 m, is depicted in Fig. 4.4, right panel. There is no large difference between
both results; thus, it is possible to neglect these particle type and energy depending
influences and to take into account the densities at a fixed distance of 235 m in the
following. In case of measured data, this has to be done anyway because of the lack of
knowledge of the primary particle’s characteristics. Hillas et al. [93] stated that there will
be a distinct distance from the air shower core at which the lateral distributions of all
primaries overlap. This position would be a good energy discriminator. But if the relative
abundances of the components of cosmic rays shall also be reconstructed, i.e. one would

4Cosmic Ray Event Simulation, a program package developed for the KASCADE [10] detector simu-
lation.
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like to distinguish between different particle types, it is not adequate to work with this
specific distance at which the local densities are not sensitive to different primaries. In
case of KASCADE-Grande, the lateral distributions coincide at around 500 m away from
the core [44, 153, 177, 178], as shown in Fig. 4.5. The afore chosen common distance of
235 m is to a certain extent apart from this overlap area, but also not to close to the
core, what would result in a worse reconstruction performance of the detectors (e.g. due
to punch-through effects). Going beyond 500 m would in turn mean very low particle
densities, and thus also a bad reconstruction. If the densities will be used as basis for the
unfolding analysis, those at 235 m are the most appropriate ones.

In order to select the most qualified set of observables for the deconvolution, i.e. Ne–
Nµ, Nch–Nµ, or ρch(235m)–Nµ, the combinations can roughly be judged by their weighted
separation quality in y-direction:

Qs (E) = 〈yH〉 (E)− 〈yFe〉 (E)
σy,H (E) + σy,Fe (E)

, (4.1)

where 〈yi〉 is the mean value of the ordinatesNe,Nch or ρch(235 m) of the two-dimensional
shower size plots for protons respectively iron nuclei in case of different primary energies
E (the numerator of Eq.(4.1) is e.g. comparable to ∆Nch in Fig. 4.2), and σy,i are the
RMS of the distributions in y-direction. The larger the separation quality is, the better
the differentiation between the primaries will be. As depicted in Fig. 4.6 the separation
is worse in case of the charged particle density while there is more or less no difference
between the total number of charged particles or electrons. The fluctuations in the charged
particle density are too large, due to the fact that the density at a certain distance will
only be measured with a small amount of detectors. Using the integral of the lateral
distribution, i.e. the total number of particles, takes into account also the distances where
the distribution is insensitive to the composition (at around 500 m), but cancels out the
fluctuations to a certain degree. Altogether, the weighted separation quality improves
in case of taking into account more detectors and using the total number of particles,
instead only the local densities.

The afore examined separation quality bases only on the one-dimensional projection
of the distributions to the y-axis. Thus, the correlation between the variables stays un-
considered. However, the method can at least be pursued to have a kind of first guess,
since the second contributor to the set, the muon number, was the same in all three
constellations. As a more correct approach taking into account all correlations, one has
to review the entire two-dimensional shower size distribution. This is shown in Fig. 4.7.
The two-dimensional histograms are the measured distributions5, while the markers rep-
resent the simulation ascertained maxima in the associated probability distributions of
proton as well as iron induced air showers in case of different primary energy ranges.
The error ellipses are derived based on the 1-sigma uncertainties6 and taking into ac-
count the correlation coefficients. Shown are three constellations: while in every case the
number of muons is used, the other contributors to the shower size plot are the number
of electrons (Fig. 4.7, top panel), the number of all charged particles (Fig. 4.7, middle
panel) or the density of charged particles at the common core distance of 235 m (Fig. 4.7,
bottom panel). The two first-mentioned instances do not differ significantly. There could
be a slightly better separation between the primaries in the mid-level energy range for
the second case. The results in the bin of highest energy have to be interpreted under

5The distributions, i.e. the axis ranges, are already cut to domains of full trigger and reconstruction
efficiency – how it will also be claimed in the final deconvolution analysis later on.

6Originating from the shower fluctuations, the efficiencies, as well as the reconstruction accuracies.
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Figure 4.5: The lateral distribution of charged particles based on CORSIKA simulations
for proton or iron induced air showers with a primary energy of 5.62 × 1016 eV. The
distributions overlap at around 500 m distance from shower core. On the right panel the
radial range is zoomed in and the simulations are fitted by a Linsley [127, 126] function
(Figures taken from [177]).
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consideration of the large uncertainties in the estimation of the maximal probabilities
and in the error ellipses due to a very limited simulation statistics, and hence have to be
handled with caution. The local densities do not appear to be a good choice: especially
in the mid-level energy range the separation quality is worse. Even though in the highest
energy bin, at a first glance, the separation seems to be somewhat better. But, again,
one has to take into account the small simulation statistics. Nevertheless, the particle
densities at a certain core distance get higher with increasing energy; thus, the number
of particles hitting a detector station gets larger and their ascertainment will be better.
The initial weakness in the approach based on the local densities, i.e. that the small
numbers of particles hitting a detector result in large, primarily Poissonian uncertainties,
might get unimportant in case of higher energies. But, certainly, one would have to test
this with larger simulation statistics. If these checks confirm the expectation, the local
particle density could be used as basis for a deconvolution in the highest energy range of
KASCADE-Grande in a manner of a cross-check.

Summarizing the results of this section, as second contributor to the two-dimensional
shower size plot, beside the muon number, both the number of electrons and of charged
particles can likewise be utilized for an unfolding analysis. The charged particle number
shows a negligible better separation quality in the middle of the examined energy range
at around 1016.5 eV to 1017.0 eV. A deconvolution based on the charged particle density
seems only to be promising in the second half of the energy range covered by KASCADE-
Grande. Hence, an analysis using this variable can only serve as a kind of cross-check.
Taking into account the obtained results, the two-dimensional shower size distribution of
charged particles and muons will be used in the final unfolding analysis.



36 4. Preliminaries for Unfolding the Energy Spectra

)
µ

(N
10

muon number log
5 5.5 6 6.5 7 7.5

) e
(N

10
el

ec
tr

o
n

 n
u

m
b

er
 lo

g

6

6.5

7

7.5

8

8.5

9

n
u

m
b

er
 o

f 
sh

o
w

er
s

1

10

210

310

eV16.0...16.510
eV16.5...17.010

H

Fe

eV17.0...17.510

eV17.5...18.010

)
µ

(N
10

muon number log
5 5.5 6 6.5 7 7.5

)
ch

(N
10

ch
ar

g
ed

 p
ar

t.
 n

u
m

b
er

 lo
g

6

6.5

7

7.5

8

8.5

9

n
u

m
b

er
 o

f 
sh

o
w

er
s

1

10

210

310

eV16.0...16.510

eV16.5...17.010

H

Fe

eV17.0...17.510

eV17.5...18.010

)
µ

(N
10

muon number log
5 5.5 6 6.5 7 7.5

)
-2

(2
35

m
)/

m
chρ(

10
ch

ar
ge

d 
pa

rt
. d

en
si

ty
 lo

g

-1

-0.5

0

0.5

1

1.5

2

2.5

nu
m

be
r 

of
 s

ho
w

er
s

1

10

210

310

eV16.0...16.510

eV16.5...17.010

H
Fe

eV17.0...17.510

eV17.5...18.010

Figure 4.7: Different constellations as possible basis for an unfolding analysis: Number
of electrons and of muons (top), number of all charged particles and of muons (middle),
or the local density of charged particles 235 m away from core and the number of muons
(bottom). The histograms are the distributions measured with KASCADE-Grande, while
the markers represent the simulation ascertained maxima in the associated probability
distributions of proton or iron induced air showers in case of different primary energy
ranges (stated above each marker). The error ellipses are the one-sigma uncertainties
regarding the shower fluctuations, the efficiencies, as well as the reconstruction accuracies.
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4.2 Outline of the Deconvolution Analysis
The basic principle of the deconvolution procedure will be introduced now. In general,
endeavours are performed to keep the analysis as close as possible to the one based on
the former measurements of the KASCADE-experiment carried out by Ulrich [180, 9], in
order to get better comparable results between both experiments.

In Section 4.1, a set of observables, respectively the total number of charged particles
and of muons, have been determined as an appropriate basis for a deconvolution analysis.
The two-dimensional shower size distribution7 used for the final analysis is shown in
Fig. 4.8. The axes’ limits are already set such that the shown ranges only include particle
numbers for that full trigger and reconstruction efficiency8 is expected (cf. Section 5.2.2),
realized by the following cuts:

log10(Nch) ≥ 6.0 and log10(Nµ) ≥ 5.0 . (4.2)

All events have passed the quality cuts outlined in Section 3.3, and an angle of incidence
selection9 of 0◦ ≤ θ ≤ 18◦. The measurement time covers approximately 1 318 days
resulting in 78 000 quality cuts passed and used air shower events, and an exposure of
164 709 m2 sr yr. The chosen bin width is 0.07 in logarithmic scale for both the charged
particle and the muon numbers. In order to find this appropriate binning, the studies of
the reconstruction accuracies are taken into account in such a way that it is not adequate
to use a bin width beneath the achievable detector resolution (cf. Section 5.2).

As mentioned at the beginning of Chapter 4, the energy spectra of interest for differ-
ent mass groups of cosmic rays are folded with the shower fluctuations and the detector
characteristics resulting in the measurable distribution of charged particle and muon
numbers, depicted in Fig. 4.8. Thus, the analysis’ object is to disentangle the convo-
luted information. In order to get an easier mathematical access, the cells of the two-
dimensional distribution are incrementally numbered from the left to the right, beginning
from the lower left bottom corner (bin of smallest charged particle and muon number).
The last cell is the most right bin at the top. The convolution of the differential fluxes
dJn/d log10E of the primary cosmic ray nuclei n having an energy E into the measured
number of showers Ni contributing to the cell i, and thus to the content of this specific
charged particle and muon number bin (log10(Nch), log10(Nµ))i, can be described by an
integral equation:

Ni =
Nnucl∑
n=1

∫
Tm

∫
Ωtot

∫
Af

∫
E

dJn
d log10E

pn d log10E cos θ dA dΩ dt ,

with pn = pn
(
(log10Nch, log10Nµ)i | log10E

)
.

(4.3)

One has to sum over allNnucl nuclei contributing to the all particle cosmic ray spectrum10.
The differential fluxes, given in units of energy, area, solid angle and time, have to be

7I.e. the number of measured showers as a function of the number of charged particles and muons.
8Although the efficiencies will be parametrized, there can be unexpected incidents like e.g. a failure

of a single photomultiplier in a detector, possibly remaining unrecognized for a certain amount of time.
Such problems can especially distort the efficiency curve near the detection threshold. Hence, the particle
numbers that belong to primary energies below the threshold are omitted.

9This angle of incidence interval corresponds to a change in the atmospheric depth of (1− cos 18◦) ∼
5%.

10Due to the limited separation quality between different primary particles the current analysis is
restricted that way that the sum will actually only be carried out for some selected primaries representative
for different mass groups.
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Figure 4.8: The measured shower size distribution of charged particles vs. muon number,
as used for the deconvolution analysis. On the left panel as two-dimensional, on the
right one as three-dimensional depiction. The axes’ limits are set such that the shown
ranges only include particle numbers for that full trigger and reconstruction efficiency is
expected. All events have passed the quality cuts outlined in Section 3.3.

integrated over the measurement time Tm, the total solid angle Ωtot accessible for the
experiment and used for the analysis, the chosen fiducial area Af and all physically
possible energies11 E. The term pn represents the conditional probability to reconstruct
a certain combination of charged particle and muon number, respectively to get an entry
in the cell (log10(Nch), log10(Nµ))i, if the air shower inducing particle was of the type n
and had an energy E. The cosine term in cos θ dA accomplishes the transformation from
the horizontal surface element to the effective detection area. In [184, p. 33 et seqq.] is
proved that, in case of full trigger and reconstruction efficiency, there is no significant
dependence of the shower sizes on the azimuth angle φ. Hence, the integration over the
solid angle can be carried out partly utilizing dΩ = sin θ dθ dφ and considering the used
zenith angle range 0◦ ≤ θ ≤ 18◦, resulting in a coefficient 2π and a remaining integral
over the zenith angle12. Furthermore, the integration over time and area can be solved:

Ni = 2πAfTm

Nnucl∑
n=1

18◦∫
0◦

+∞∫
−∞

dJn
d log10E

pn sin θ cos θ d log10E dθ ,

with pn = pn
(
(log10Nch, log10Nµ)i | log10E

)
.

(4.4)

The probabilities pn are originating from a convolution merging the intrinsic shower
fluctuations sn, the trigger and reconstruction efficiency εn, and the reconstruction char-
acteristics rn:

pn
(
(log10Nch, log10Nµ)i | log10E

)
=

+∞∫
−∞

+∞∫
−∞

sn εn rn d log10N
true
ch d log10N

true
µ , (4.5)

11Since the possible energies as well as the shower sizes can attain values spread over some orders of
magnitude, these variables are used in logarithmic scale.

12Some extensive tests have shown that the shower fluctuations are negligibly sensitive to changes in
the zenith angle within the chosen zenith angle range, which in total corresponds to a change in the
atmospheric depth of only 5% (as shown in Footnote 9). Furthermore, the reconstruction properties also
do not depend significantly on the zenith angles out of that range. Nevertheless, the integration over the
zenith angle is still shown for reasons of clarity.
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with sn = sn
(
log10N

true
ch , log10N

true
µ | log10E

)
,

εn = εn
(
log10N

true
ch , log10N

true
µ

)
,

rn = rn
(
log10Nch, log10Nµ | log10N

true
ch , log10N

true
µ

)
.

(4.6)

More precisely, sn is the probability that a nucleus n, having an energy E, induces an air
shower containing a specific number of charged particles log10N

true
ch and muons log10N

true
µ

when arriving the experiment’s detection plane. The probability to reconstruct, due to
possible reconstruction uncertainties, a certain number of charged particles log10Nch and
muons log10Nµ instead the true ones log10N

true
ch and log10N

true
µ is described by rn.

Equation (4.4) can mathematically be understood as a system of coupled integral
equations and is named Fredholm [71, 17, 16, 83, 149] integral equation of the first kind:

b∫
a

K (y, s)x (s) ds = f (y) ,

with c ≤ y ≤ d .

(4.7)

K (y, s) is the so-called kernel, response, or transfer function13, which encodes the un-
derlying physics that describes the relation between the model x and the observation f ,
[a, b] is the domain of s, while [c, d] is the domain of y. Transferred to the actual analysis,
the kernel function relates to the probabilities given in Eq.(4.6). The observation f is
represented by the measured shower size plane (Fig. 4.8). The mentioned model x is the
sought-after flux of cosmic rays. Hence, one has to solve Eq.(4.7) for x.

One has to keep in mind that, usually, f is not known exactly since it bases on a mea-
surement with limited statistics only. More precisely, instead of a rather smooth f that
bases on a forward folding of x under the assumption of infinite measurement statistics,
a limited data sample f∗ will be measured, which suffers from statistical fluctuations.
Depending on K, the solution x can be extremely sensitive even to small changes in f .
Integral equations, i.e. also the forward folding from x to f , in general tend to damp es-
pecially higher frequencies. That means that high frequency fluctuations in x are damped
during the integration withK; hence, f is smoother than x. But, the reverse is of interest:
while solving the inverse problem exactly, higher frequencies present in f will be ampli-
fied. The higher the frequency is, the larger the amplification will be. Even small random
fluctuations in f can introduce large perturbations in the solution x (for further details
confer [83, p. 7 et seqq.]). And, since in this analysis only f∗ is known, which suffers from
fluctuations, an exact solution of Eq.(4.7) will result in a cosmic ray energy spectrum
with unphysical large oscillations. Hence, such an exact solution of the problem is not
desired, apart from the question if it would be mathematical achievable anyway. Instead
of an exact and unbiased solution, rather an “appropriate” one is wanted that does not
reproduce every single fluctuation originating from the limited measurement time. Such
an optimal solution is biased, but less oscillating. Deconvolution strategies that regard
these circumstances have to be used and will be introduced in Chapter 6.

In summary, in order to determine the fluxes of different cosmic ray particles, one
has to solve a convolution problem. Due to the unavailability of a universal approach to
solve such an integral equation under consideration of all circumstances, one has to find
a method that yields an appropriate solution (cf. Chapter 6). All possible approaches
have in common that the kernel function has to be known a priori. Accordingly, the first

13More precisely, in most analyses it is rather a matrix than a function.
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following steps will be to compute the probabilities given in Eq.(4.6). The contributors
to the kernel function can either be determined separately from each other based on sim-
ulations. Another approach would be to simulate everything directly from the beginning
to the end, what means that particular particles with certain fixed energies would be
assumed, which induce some hundreds or thousands of air showers, while the complete
chain of CORSIKA shower simulation, CRES detector simulation, and reconstruction
procedure is joined together. The resulting distribution of charged particles and muons
would be taken as basis for the kernel function. The shower fluctuations, the efficiencies,
and the reconstruction properties would be taken into account in only one combined
simulation chain. For instance, this ansatz was adopted in [184]. However, analysing and
ascertaining all contributors to the kernel function separately have the advantage that the
different influences on the results can be examined independently. Moreover, the different
sources of uncertainties can be kept separated. Furthermore, some contributors can be
replaced without simulating the whole chain again; e.g. the part describing the shower
development could be exchanged by a new one based on another interaction model than
QGSJET-II-02. In contrast to these strong advantages, primarily only the not negligible
additional effort of the separating method has to be mentioned. In the current analysis,
balancing the pros and cons, the approach of analysing every contributor to the response
function separately will be pursued. The effects of the intrinsic shower fluctuations will
be parametrized in Section 5.1, while the efficiencies and properties of the reconstruction
process will be analysed in Section 5.2.



Chapter 5

The Response Matrix

In Chapter 4, a mathematical formalism of the convolution problem was derived, in
which the intrinsic shower fluctuations as well as the detector properties were considered
in a so-called response matrix. Now, the probability distributions contributing to that
response matrix will be parametrized (Sections 5.1 and 5.2). Subsequently, the response
matrix will be computed and its reliability will be checked (Section 5.3).

5.1 Investigations to the Intrinsic Shower Fluctuations.

The goal of this section is to derive a parametrization for the intrinsic shower fluctua-
tions, i.e. for sn in Eq.(4.6). More precisely, the probability that an air shower exhibits a
specific number of charged particles log10N

true
ch and muons log10N

true
µ at the experiment’s

detection plane, if the air shower inducing particle is of a certain type and had a particu-
lar energy, shall be determined. For this purpose, one can1 use the means of Monte Carlo
simulations. In the following, the simulation strategy will be outlined (Section 5.1.1).
Thereafter, the intrinsic shower fluctuations will be parametrized (Section 5.1.2).

5.1.1 Simulation of the air shower development

The distributions that are required to parametrize the shower fluctuations will be de-
termined using mono-energetic CORSIKA simulations that are based on the interaction
models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68]. Since the simulations
are mono-energetic, no a priori assumptions of an underlying power law spectrum have
to be made. In order to account for the problem of finite simulation statistics, the results
are parametrized using appropriate functions, what induces a smoothing and extrap-
olates the rather unknown tails of the distributions. Moreover, these parametrizations
allow to solve most of the occurring integrals analytically. The energy dependence of the
parameters used in the parametrizations will be interpolated using appropriate functions.
Hence, the mono-energetic results can be applied also to continuous spectra, or at least
to a finer energy binning.

As mentioned in Footnote 10 of Chapter 4, it will not be possible to deconvolute
the fluxes of any number of primaries. Some preliminary tests have shown that the
distributions that belong to the respective primary particles are overlapping2 in the
two dimensional shower size plane. At a certain number of used primaries, this cross-
over will be as large that the unfolded result will not be reasonable any longer. Some

1In case of KASCADE-Grande, one has to use simulations.
2The overlap results from the intrinsic shower fluctuations and the experiment’s limited resolution.
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Energy / PeV Number of showers
2 6400
5 4800
10 3200

31.6 2400
100 1600
316 1200
1000 800
3160 400

Table 5.1: Listed are the numbers of simulated air showers for a certain primary energy
(same numbers for all primaries).

tests, summarized in Section 5.3.2, have shown that the consideration of five primaries,
each representing a different mass group, yield the best results of the deconvolution
analysis. Only in a few exceptional circumstances problems occur, which can be solved
by combining the deconvoluted fluxes of two or three primaries at the very end, such that
the effective number of particles is four or three. These experiences conform with that
of Ulrich [180], where also the spectra of five mass groups have been ascertained. For
purpose of comparability, in case of the current analysis the same cosmic ray elements
are chosen: protons (representing a hydrogen nucleus, and hence sometimes referred to as
“hydrogen”), as well as helium, carbon (representing the carbon-nitrogen-oxygen group),
silicon (representing the intermediate elemental group), and iron (representing the heavy
component of cosmic rays) nuclei3.

In order to get a sufficient simulation statistics in a certain amount of time, the
thinning option [87] of CORSIKA was enabled. This option’s objective is to save com-
puting time. Below a selectable fraction of the primary energy, all particles produced in
a single interaction will be represented by only one particle, to which suitable weights
are assigned. The extensive tests performed by Ulrich [180] are applicable to the current
simulation process. It was shown that a thinning level of 10−6, or even of 10−5 can be
used without significant distortion of the distributions of charged particles and muons.
This conforms with the results of Hansen et al. [84], carried out at higher energies of
1019 eV. It was stated that there is no significant dependence of the mean value as well
as of the relative fluctuations of the distributions of electrons and muons on the chosen
thinning level, if it is equal or less than 10−6. Accordingly, to be on the safe side, the
chosen thinning level in this analysis will be 10−6. The number of air showers simulated
for each primary of a certain energy is listed in Table 5.1. The relevant parameters and
options that have been set in the CORSIKA program whilst the simulation process are
summarized in Table 5.2.

The U.S. standard atmosphere parametrized by J. Linsley (cf. [88]) is used as atmo-
spheric model. This atmosphere’s air has an assumed fractional-volume composition of
78.084% nitrogen, 20.9476% oxygen, 0.934% argon, and 0.0314% carbon dioxide at sea-
level [183, p. 3]. At 100 m geometric altitude (close to the observation level of KASCADE-
Grande of 110 m) the assumed air pressure amounts to 1001.2 mbar [183, p. 52]. As
depicted in Fig. 5.1 the mean air pressure whilst the measurements is 1003 mbar with
a RMS of 8.6 mbar. Taking into account the RMS, the mean conforms well with the

3The word “nuclei”/“nucleus” is sometimes omitted in this thesis. However, e.g. “iron” will every time
stand for an “iron nucleus”.
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Option or parameter Setting
Atmospheric model U.S. standard atmosphere
Magnetic field Central Europe
Observation level 110 m a.s.l.
Azimuth angle 0◦ to 360◦, uniformly distributed
Zenith angle 0◦ to 18◦, distributed ∝ sin(ϑ) cos(ϑ)
Low energy interaction model FLUKA 2002.4
High energy interaction model QGSJET-II-02
Transition between low and
high energy interaction model 200 GeV
Energy threshold muons 100 MeV
Energy threshold electrons,
positrons, gammas 3 MeV
Energy threshold hadrons 100 MeV
NKG option Active: electromagnetic sub-cascade

treated analytically.
EGS option Active: all interactions of electrons,

positrons and photons are calculated explicitly.
LONGI option Switched on: longitudinal development

of gammas, positrons, electrons,
muons, hadrons, all charged nuclei
and Cherenkov photons is sampled.

Thinning option 10−6 (10−4 is default), what is
the fraction of primary energy below
which thinning becomes active.

Hadronic fragmentation flag 2 (default)

Table 5.2: The most important parameters and options set inside CORSIKA whilst all
simulations.

values used in the U.S. standard atmosphere model. Hence this model can be used in the
simulation procedure4. However, it has to be verified whether or not the changes of the
pressure within the RMS can influence the deconvolution result. Furthermore, possible
variations in the temperature have to be taken under consideration.

Firstly, the influence on the muon number will be examined. Maier [131] has found
that the muon number at observation level does not depend significantly on the air
pressure at observation level. On the contrary, there is a dependence on the altitude of the
200 hPa isobar, on the variation in the height difference between the 300 hPa and 500 hPa
isobars, and on the effective temperature [131, p. 85]. The variation in the muon number
– in case of a fixed primary energy – due to the aforementioned influences is less than
2.5%. This correspond to a change in the logarithmic muon number of ∆ log10Nµ ≈ 0.01.
The logarithmic muon bin width used in the deconvolution process is 0.07 and by this
seven times larger than the influences possibly caused by the considered effects; hence,
they are negligible. This was also stated by Ulrich et al. [181] based on simulations.

4From all the properties of the atmospheric models the pressure (and possibly the temperature) is the
one with the most important influence on the measured observables, as will be shown immediate in the
next steps, while the other parameters are either the same in the U.S. and the European atmosphere or
only with insignificant influence. The pressure is comparable in both atmospheres, such that one can use
the U.S. atmosphere implemented in CORSIKA instead of the true European one.
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Figure 5.1: The air pressure distribution at the KASCADE-Grande level at time of data
acquisition.

Now, the possible variations in the number of charged particles will be investigated.
Based on measurements, Maier [131] and Antoni et al. [8] have shown that the number of
electrons depends directly on the air pressure at observation level, as opposed to the muon
number. Ulrich [179] has confirmed this with simulations. These results are applicable to
the number of charged particles, because the electrons are by far the main contributors to
this number. Furthermore, the contributing muons do not show a significant dependence
as already stated afore. Consequently, it will not be distinguished between charged par-
ticles and electrons in what follows. The pressure whilst the measurements is distributed
with an RMS of 8.6 mbar around the mean value of 1003 mbar. Maier [131, p. 61 et seq.]
figured out that at fixed primary energy a spread of 8.8 mbar in the pressure induces a
variation in the number of electrons, respectively charged particles, of 6% to 10%, mainly
caused by changes in the attenuation length. Ulrich et al. [181] found effects in the order
of 10% for typical atmospheric variations. More exactly, the number of charged parti-
cles arises mainly from a folding of the intrinsic shower fluctuations and the variations
induced by the changes in the air pressure. The given percentage range corresponds to
a modification of the logarithmic number of charged particles of ∆ log10Nch = 0.025 to
∆ log10Nch = 0.041. Even assuming the worse scenario, the mentioned folding will be
effective only inside the respective charged particle bin, which will have a logarithmic
width of 0.07 in the final analysis. As a result, the influences of the variations in the air
pressure can be neglected.

In summary, an appropriate simulation strategy to investigate the shower development
is elaborated. The specific conditions present at the experiment’s location are taken into
account. Furthermore, influences originating from variations in the real atmosphere in
comparison to the assumptions made in the atmospheric model are evaluated and found
to be without importance for the final deconvolution analysis with respect to the used
bin widths. Based on this experience, the intrinsic shower fluctuations will be analysed
now.
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Figure 5.2: The effect of the intrinsic shower fluctuations on the two-dimensional shower
size distribution log10N

true
ch vs. log10N

true
µ . Shown are the simulated distributions for

proton (upper distributions) and iron (lower distributions) induced air showers at certain
primary energies, labelled above each distribution.

5.1.2 Parametrization of the intrinsic shower fluctuations

An air shower developing in the Earth’s atmosphere underlies fluctuations. These in-
trinsic shower fluctuations have to be known when deriving the fluxes of cosmic rays by
means of deconvolution (cf. Eqs.(4.4) to (4.6)). Using the simulation method explained in
Section 5.1.1 yields to the two-dimensional shower size plane5 log10N

true
ch vs. log10N

true
µ

depicted in Fig. 5.2. Whereas only the results in case of proton and iron induced air
showers are shown, the simulations are actually performed for protons, as well as for
helium, carbon, silicon, and iron nuclei. The used primary energies are given in the figure
as well as in Table 5.1.

The spread in the distributions originates from the intrinsic shower fluctuations, and is
smaller in case of iron induced showers since they can be understood as a superposition of
56 proton induced ones, as explained in Section 2.4. An iron induced air shower represents
– roughly speaking – an average over 56 proton induced ones, and by this the statistical
fluctuations are suppressed in comparison to those appearing whilst the development of a
shower caused by a single proton. Furthermore, it is obvious that the number of charged
particles and the number of muons are correlated, as the distributions are elliptical.

In a first step, the one-dimensional distribution of charged particles (corresponding
to a projection of the two-dimensional distribution on the y-axis) will be analysed. In a
second step, the complete two-dimensional distribution will be parametrized including
all correlations.

5In some Figures of this section the superscript “true” will be omitted, since it is contextually obvious
that true sizes are used.



46 5. The Response Matrix

Parametrization of the log10N true
ch distribution

In Fig. 5.3, exemplarily, the spread in the number of charged particles that are exhibited
at observation level whilst the development of proton induced air showers with a primary
energy of 2 PeV is depicted. The distribution bases on 6400 showers simulated following
the strategy outlined in Section 5.1.1. The shown Gaussian fit describes the distribution
only poorly (χ2/ndf = 376/63 ≈ 6). This is also reflected by the skewness of 0.4, what
means an asymmetry in the tails: in case of that positive skew a shift to the right in
comparison to a Gaussian distribution. The kurtosis of -0.1 indicates shorter tails in
comparison to those of a Gaussian. Actually, that the intrinsic shower fluctuations are
not simply Gaussian can be understood rather easily: the first randomized property of the
shower development, the depth of the first interaction, depends on the interaction mean
free path via an exponential law. The distance between the depth of first interaction and
the maximum in the shower development is the next property varying by chance, now
in rough approximation underlying a Gaussian distribution. Hence, already these two
circumstances mean a convolution of a normal distribution and an exponential function.
Therefore, it appears less likely that the resulting distributions at ground level are simply
Gaussian. Instead, a convolution of different functional relations is expected.

There are some physically motivated approaches to describe the shower development,
and by this the number of particles produced in this shower. For instance confer the
Gaisser-Hillas-function, described in [75]. They all describe primarily the average lon-
gitudinal development, i.e. the most likely particle number rather than the complete
probability distribution.

In order to find an appropriate parametrization, a phenomenological approach will be
pursued instead of an analytical one. The left side of the distribution is characterized by
a fast increase and an asymptotic convergence to the maximum. This behaviour is well
known from the Gauss error function:

erf (z) = 2√
π

∫ z
0

e−τ2dτ , z ∈ C . (5.1)

It is related to the Gaussian cumulative distribution function F via:

F (x) = 1
2

(
1 + erf

(
x− µ
σ
√

2

))
, (5.2)

with the standard deviation σ and the expectation value µ. The right tail is rather
reminiscent of a simple power function. A fit based on a combination of the function
given by Eq.(5.2) and a power function yielded better results. However, in some detailed
tests it turned out that the result, especially in the region around the maximum, can still
be improved6 by an additional – however, only slight – variation through an exponential
term. Consequently, a combination based on an error function, a power function, and an
exponential function will be applied.

6In most (but not all) cases, the improvement was significant. In this context, one has to take into
account that the exponential term modifies the function especially in regions around the distribution’s
maximum, and hence in a statistically relevant region.
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The parametrization finally used is depicted in Fig. 5.4. The underlying probability
density function is composed as follows:

p
(
log10N

true
ch | log10E

)
= p0

×
(

0.5 + 0.5× erf
(

log10N
true
ch − p1
p2

))
× exp

((
log10N

true
ch − p4

)
p3
)

×
(
p4 − log10N

true
ch

)p5
.

(5.3)

The parameters depend on the primary energy and vary with the shower inducing particle.
A complete list of all determined parameters in case of the eight simulated energies and
the five primaries are given in Appendix A.1.

The parameters are on their part parametrized, for each primary separately, as a func-
tion of the primary energy. By this the results obtained based on the individual mono-
energetic CORSIKA showers are interpolated such that the charged particle distribution
is now computable at every energy out of the observed interval. The mono-energetic
simulations’ advantage that one does not have to make a ad hoc supposition about the
underlying cosmic ray spectrum continues to exist when transferring the results as men-
tioned to arbitrary energies by means of an interpolation. The parameters p3 and p5 were
found to be independent of the energy in the sense that they can be kept constant to an
average value without worsening the quality of the description. In addition to it, p5 is
also insensitive to the type of the primary particle within the parameters’ uncertainties.
In that context, a good fit quality is assumed in case of chi-squares per degree of freedom
at around 1, i.e. values out of the interval [0.6, 1.4], except for a few cases where such a
quality is not achievable despite all the care taken. However, one has to keep in mind that
the chi-square test gets meaningless in case of very low statistics; hence, in those cases
the quality of the description is additionally judged by means of a Kolmogorov-Smirnov
test [117, 163]. The energy dependence of the parameters p1, p2 and p4 of Eq.(5.3) is
interpolated using polynomial functions of a certain degree7 d:

f (x) = a0 + a1x1 + . . .+ ad−1x
d−1 + adxd , d ∈ N , (5.4)

where f represents the parameter pi that depends on the energy x. This is shown exem-
plarily in case of protons in Fig. 5.5.

The resulting parametrization of the log10N
true
ch distribution based on Eq.(5.3), where

the energy dependence of the parameters is polynomial interpolated according to Eq.(5.4),
is depicted in Fig. 5.6 in case of protons or iron nuclei with 2 PeV primary energy. The chi-
squares per degree of freedom of the fits are shown in Fig. 5.7. In comparison with Fig. 5.4,
there is no significant difference discernible between the optimal fit with free parameters
and the fit based on an interpolation of the parameters. All ascertained parameter values
of the polynomial interpolation based on Eq.(5.4) and the fits’ chi-squares per degree of
freedom are shown in Appendix A.2. The parametrization based on this interpolation
will finally be used in the further steps.

7The degree was chosen such that the chi-square per degree of freedom of the polynomial fit is around
1.



48 5. The Response Matrix

Entries  6400

Mean   0.002731±  5.333 

RMS    0.001931± 0.2184 

Skewness  0.4423

Kurtosis  -0.09825

 / ndf 2χ    376 / 63

Constant  3.8± 235.4 

Mean      0.003± 5.335 

Sigma     0.0021± 0.2047 

chN
10

log
4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

nu
m

be
r 

of
 s

ho
w

er
s

0

50

100

150

200

250

Entries  6400

Mean   0.002731±  5.333 

RMS    0.001931± 0.2184 

Skewness  0.4423

Kurtosis  -0.09825

 / ndf 2χ    376 / 63

Constant  3.8± 235.4 

Mean      0.003± 5.335 

Sigma     0.0021± 0.2047 

Entries  6400

Mean   0.002731±  5.333 

RMS    0.001931± 0.2184 

Skewness  0.4423

Kurtosis  -0.09825

 / ndf 2χ    376 / 63

Constant  3.8± 235.4 

Mean      0.003± 5.335 

Sigma     0.0021± 0.2047 

chN
10

log
4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

nu
m

be
r 

of
 s

ho
w

er
s

-110

1

10

210

Entries  6400

Mean   0.002731±  5.333 

RMS    0.001931± 0.2184 

Skewness  0.4423

Kurtosis  -0.09825

 / ndf 2χ    376 / 63

Constant  3.8± 235.4 

Mean      0.003± 5.335 

Sigma     0.0021± 0.2047 

Figure 5.3: The charged particle distribution at observation level based on the simulation
of 6400 proton induced air showers with a primary energy of 2 PeV. On the right panel in
logarithmic scale of y-axis. The fit based on a Gaussian function describes the distribution
only poorly.
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Figure 5.4: Final parametrization of the charged particle distribution based on Eq.(5.3).
On the left panels in case of proton induced air showers, on the right panels in case of iron
induced ones. The primary energy amounts 2 PeV (top) respectively 3.16 EeV (bottom).
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Figure 5.5: The interpolation of the energy dependence of the parameters p1, p2 and p4
of Eq.(5.3) with polynomials according to Eq.(5.4) of degree 3, 2, and 3 respectively,
exemplarily in case of protons.
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Figure 5.6: Final parametrization of the charged particle distribution based on Eq.(5.3),
where the parameters themselves are parametrized with polynomials as a function of the
primary energy according to Eq.(5.4). On the left panels exemplarily in case of proton
induced air showers, on the right panels in case of iron induced ones. The primary energy
amounts 2 PeV (top) respectively 3.16 EeV (bottom).
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Figure 5.7: Chi-squares per degree of freedom – for all simulated energies – of the final
parametrization of the charged particle distribution based on Eq.(5.3), where the param-
eters themselves are parametrized with polynomials as a function of the primary energy
according to Eq.(5.4), exemplarily in case of proton (left panel) or iron (right panel)
induced air showers.



5.1. Investigations to the Intrinsic Shower Fluctuations. 51

Parametrization of the log10N true
ch –log10N true

µ distribution

As already mentioned in the introduction to this section, there is a significant correla-
tion between the numbers of charged particles log10N

true
ch and muons log10N

true
µ . The

strategy was to parametrize in a first step the log10N
true
ch distribution omitting all cor-

relations, while in a second step the correlated log10N
true
ch –log10N

true
µ distribution should

be analysed. The latter step will be shown in what follows.
The muon number of an air shower induced by a certain cosmic ray particle depends

above all on the primary energy, as can be seen in Fig. 5.2. The dependence on the
charged particle number in context of a correlation between both observables is a sec-
ondary impact on the muon number distribution. Focusing on the first mentioned energy
dependence and taking into account the message of Fig. 5.2, it is obvious that the muon
number gets larger with increasing primary energy. To analyse the second dependence, it
is assumed that the primary energy of a certain cosmic ray particle is fixed. Due to the in-
trinsic shower fluctuations, the muon number varies from shower to shower according to a
probability distribution function. Nevertheless, there will be a most probable muon num-
ber specific for this combination of particle type and primary energy. For instance, in case
of the 6400 simulated proton induced air showers with an energy of 2 PeV (cf. Table 5.1)
the possible muon numbers range roughly from log10N

true
µ = 3.6 to log10N

true
µ = 4.6

around a maximum at about log10N
true
µ = 4.3, as can be seen from Fig. 5.2. At an ap-

proximate estimate half of the simulated showers exhibit a muon number larger than or
equal to the most probable one. More general, the fraction R of showers exhibiting muon
numbers log10N

true
µ above a specific threshold log10N

true
µ,t in relation to all simulated ones

can be described mathematically:

R
(
log10N

true
µ,t | log10E

)
=

+∞∫
log10N

true
µ,t

p
(
log10N

true
µ

)
d log10N

true
µ , (5.5)

where p
(
log10N

true
µ

)
is the aforementioned normalized probability density function of the

muon number, while any correlation with the charged particle number is still neglected.
In order to regard the positive8 correlation between both observables, one has to

take into account that an increase in the muon number is equivalent to an increase in
the charged particle number. That means that, on the supposition that the threshold
log10N

true
µ,t is fixed to a certain value, there are more showers with muon numbers above

this threshold if the average charged particle number is large, than in case of small charged
particle numbers correlating with rather small muon numbers. Hence, the ratio R will
increase with growing numbers of charged particles. The ratio of showers exhibiting muon
numbers above a specific threshold log10N

true
µ,t in relation to all simulated ones, now under

consideration of the correlation with the number of charged particles log10N
true
ch , is given

by:

R
(
log10N

true
ch , log10N

true
µ,t | log10E

)
=

+∞∫
log10N

true
µ,t

p
(
log10N

true
ch , log10N

true
µ

)
d log10N

true
µ

+∞∫
−∞

p
(
log10N

true
ch , log10N

true
µ

)
d log10N

true
µ

,

(5.6)
8That the correlation is positive can be concluded from the distributions’ shapes depicted in Fig. 5.2.
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Figure 5.8: The ratioR of the number of showers exhibiting muon numbers above a certain
threshold to the number of all showers as a function of the charged particle number, on
the left panel in case of protons, on the right in case of iron induced air showers with a
primary energy of 2 PeV. The threshold was kept fixed to log10N

true
µ,t = 4.30 in case of

protons and log10N
true
µ,t = 4.45 for iron nuclei, such that the ratio R depends only on the

number of charged particles now. The ratio is fitted by a function according to Eq.(5.7).

where p
(
log10N

true
ch , log10N

true
µ

)
is again the probability density function of the muon

number, but now considering also the correlated charged particle number.
In Fig. 5.8, exemplarily for proton or iron showers with 2 PeV primary energy, the ratio

R is depicted as a function of the charged particle number, while the threshold is kept
constant to log10N

true
µ,t = 4.30 respectively log10N

true
µ,t = 4.45. These values correspond

to the respective muon numbers with maximal probability roughly estimated based on
Fig. 5.2. Due to the fact that the threshold is a constant in that case, R can only vary
with the charged particle number; and it does so. This is again a proof for the correlation
between both observables, because otherwise the ratio would be a constant.

The functional relationship between R and log10N
true
ch is reminiscent of a Gauss er-

ror function (cf. Eq.(5.1)) because of the evident asymptotic tails. However, the ratio
converges rather fast to the marginal values R = 0 and R = 1, while in the middle the
derivative is comparatively small. To account for this, the error function that is used to
parametrize the ratio is given a varying width by extending the denominator in the error
function’s argument by an appropriate term depending on the variable log10N

true
ch :

R
(
log10N

true
ch , log10N

true
µ,t | log10E

)
=(

0.5 + 0.5× erf
(

log10N
true
ch − log10N0

p6 − p7 × (log10N0 − log10N
true
ch )

))
.

(5.7)

While varying the threshold log10N
true
µ,t the parameters p6 and p7 can be kept constant

without worsening the fit result, whereas the parameter log10N0, which determines the
inflection point of the error function, has to be adapted. The underlying functional rela-
tion is exemplarily9 shown in case of 2 PeV proton showers in Fig. 5.9 and is fitted by a
quadratic function:

log10N0
(
log10N

true
µ,t

)
= b0 + b1 × log10N

true
µ,t − b2 ×

(
log10N

true
µ,t

)2
. (5.8)

9In case of other primaries and energies a comparable behaviour can be seen.
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Figure 5.9: The dependence of the parameter log10N0 of Eq.(5.7) on the threshold value
log10N

true
µ,t , exemplarily shown in case of 2 PeV proton induced showers, is fitted by a

quadratic function according to Eq.(5.8).

Taking into account the already parametrized probability density of charged particles
p
(
log10N

true
ch | log10E

)
, given by Eq.(5.3), and the last gained insights, the probability

that an air shower deposits log10N
true
ch charged particles and more than log10N

true
µ,t muons

can be written as:

P
(
log10N

true
ch , log10N

true
µ ≥ log10N

true
µ,t | log10E

)
= R

(
log10N

true
ch , log10N

true
µ,t | log10E

)
× p

(
log10N

true
ch | log10E

)
d log10N

true
ch .

(5.9)

Assuming an infinitesimal small muon interval dlog10N
true
µ and setting up the equation

twice, the muon number can actually be “bracketed” to one specific probability value
instead of only giving limits for it. The resulting probability that a shower with primary
energy E exhibits shower sizes log10N

true
ch and log10N

true
µ is given by:

P
(
log10N

true
ch , log10N

true
µ | log10E

)
=(
R
(
log10N

true
ch , log10N

true
µ | log10E

)

−R
(
log10N

true
ch , log10N

true
µ + d log10N

true
µ | log10E

))

× p
(
log10N

true
ch | log10E

)
d log10N

true
ch

= sn × d log10N
true
ch d log10N

true
µ ,

(5.10)

where sn = sn
(
log10N

true
ch , log10N

true
µ | log10E

)
are the intrinsic shower fluctuations de-

fined in Eq.(4.6), whose parametrization is the primary objective of this section.
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The remaining last step will be to determine the parameters of Eq.(5.10). The pa-
rameters of the probability density of charged particles p

(
log10N

true
ch | log10E

)
, given by

Eq.(5.3), are already known. Instead of fitting a function according to Eq.(5.10) to the
two-dimensional shower size distributions, it appeared more suitable to perform a fit
to the one-dimensional distribution of muons. As all parameters of the charged particle
probability density are known, the dependence on this observable can be eliminated from
Eq.(5.10) by means of integration:

P
(
log10N

true
µ | log10E

)
=

+∞∫
−∞

P
(
log10N

true
ch , log10N

true
µ | log10E

)
d log10N

true
ch

d log10N
true
ch

=
+∞∫
−∞

(
R
(
log10N

true
ch , log10N

true
µ | log10E

)

−R
(
log10N

true
ch , log10N

true
µ + d log10N

true
µ | log10E

))

× p
(
log10N

true
ch | log10E

)
d log10N

true
ch .

(5.11)

This function, going along with Eqs.(5.7) and (5.8), is used to fit the distribution of
muons and by this to determine the remaining10 parameters p6, p7, b0, b1 and b2. The
log10N

true
µ distribution and the fit is illustrated exemplarily in Fig. 5.10 in case of proton

and iron induced air shower having a primary energy of 2 PeV and 3.16 EeV.
In order to judge the fit quality, the chi-squares per degree of freedom are regarded.

However, the remarks made in the previous section about the applicability of this test
in case of rather low statistics still persist. For example, the iron distributions (Fig. 5.10
right panels) are fitted based on only a few sampling points. Hence, the chi-squares per
degree of freedom should be interpreted with caution. As already mentioned, in those
cases an additional Kolmogorov-Smirnov test [117, 163] is used. For instance, in case of
the parametrization of the muon number distribution of iron induced air showers hav-
ing an energy of 3.16 EeV the maximal Kolmogorov distance is computed to be 0.0118,
while the number of effective entries counts 400. The null hypothesis assumes that the
distribution sample comes from the hypothesized distribution given by the parametriza-
tion. In this example, the null hypothesis is rejected under a significance level11 of 99%
if the critical distance value of 0.0296 is exceeded, what is actually not the case. Thus,
the parametrization is assumed to describe the muon distribution very well. Comparable
tests are performed to the remaining primaries and energies, demanding a significance
level of 95%. Moreover, all fits are verified subjectively by eye. A complete compilation
of all parameters derived for the muon number distribution is given in Appendix B.1.

The parameters p7, b1 and b2 were found to be independent of the energy in the sense
that they can be kept fixed to an average value without worsening the quality of the fit.

10Whilst the integration performed in Eq.(5.11), the parameters of the probability density of charged
particles p

(
log10N

true
ch | log10E

)
are kept constant to the already derived ones from the previous section,

listed in Appendix A.1. The infinitesimal small muon interval was set to dlog10N
true
µ = 0.02, what was

found to be sufficiently small enough.
11A significance level of 99% means, roughly speaking, that one allows an 99% error probability whilst

rejecting a hypothesis. There is a 99% chance that the hypothesis is falsely rejected although it is actually
a right one. Nevertheless, despite this large allowed error probability the null hypothesis is not rejected
in this example, what strongly confirms the properness of the fit.
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Figure 5.10: Final parametrization of the muon number distribution based on Eq.(5.11)
going along with Eqs.(5.7) and (5.8). On the left panels in case of proton induced air
showers, on the right panels in case of iron induced ones. The primary energy amounts
2 PeV (top) respectively 3.16 EeV (bottom).
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Figure 5.11: The interpolation of the energy dependence of the parameters p6 and b0 of
Eq.(5.11) going along with Eqs.(5.7) and (5.8) with polynomials according to Eq.(5.4) of
degree 3 and 2, exemplarily in case of protons.
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The energy dependence of the parameters p6 and b0 is interpolated using polynomials
according to Eq.(5.4), as already done in case of the energy depending parameters of the
charged particle distribution (cf. previous section). The polynomials’ constant coefficients
are labelled with ai, where i = 0 . . . d, and d ∈ N is an appropriate degree. The results are
illustrated exemplarily in case of protons in Fig. 5.11. The resulting parametrization of the
log10N

true
µ distribution based on Eq.(5.11) going along with Eqs.(5.7) and (5.8), where the

energy dependence of the parameters is polynomial interpolated according to Eq.(5.4),
is depicted in Fig. 5.12 in case of protons or iron nuclei with 2 PeV primary energy.
The chi-squares per degree of freedom of the fits are shown in Fig. 5.13. In comparison
with Fig. 5.10, there is no significant difference discernible between the optimal fit with
free parameters and the fit based on an interpolation of the parameters. All ascertained
parameter values of the polynomial interpolation based on Eq.(5.4) and the fits’ chi-
squares per degree of freedom are shown in Appendix B.2.

In Fig. 5.14, the quality of the final parametrization of the two-dimensional
log10N

true
ch –log10N

true
µ shower size distribution is reviewed. In the top panels, exemplar-

ily the distributions, more precisely the isolines of same number of showers, exhibited by
2 PeV proton (left panel) or iron (right panel) showers are depicted (“bumpy” lines), over-
laid with the final parametrization according to Eq.(5.10) (smooth lines). At the bottom
panel, the distributions at all simulated energies are shown. The simulated distributions
are very well described by the deduced parametrizations.

Recapitulating, the objective of this section, the mathematical access to the
intrinsic shower fluctuations sn = sn

(
log10N

true
ch , log10N

true
µ | log10E

)
defined in

Eq.(4.6), is achieved by the parametrization given in Eq.(5.10), whose parame-
ters are determined by now. In order to complete the calculation of the response
function introduced via Eq.(4.7), the computation of the experiment’s properties,
namely the efficiency εn

(
log10N

true
ch , log10N

true
µ

)
and the reconstruction accuracy

rn
(
log10Nch, log10Nµ | log10N

true
ch , log10N

true
µ

)
, is still open. This will be carried out in

the next section.
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Figure 5.12: Final parametrization of the muon number distribution based on Eq.(5.11)
going along with Eqs.(5.7) and (5.8), where the parameters themselves are parametrized
with polynomials as a function of the primary energy according to Eq.(5.4). On the left
panels exemplarily in case of proton induced air showers, on the right panels in case
of iron induced ones. The primary energy amounts 2 PeV (top) respectively 3.16 EeV
(bottom).
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Figure 5.13: Chi-squares per degree of freedom – for all simulated energies – of the final
parametrization of the muon number distribution based on Eq.(5.11) going along with
Eqs.(5.7) and (5.8), where the parameters themselves are parametrized with polynomials
as a function of the primary energy according to Eq.(5.4), exemplarily in case of proton
(left panel) or iron (right panel) induced air showers.
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Figure 5.14: The contour lines of the simulated two-dimensional log10N
true
ch –log10N

true
µ

shower size distribution in case of proton (top left panel) and iron (top right panel) in-
duced air showers with a primary energy of 2 PeV (“bumpy”, coloured lines). In addition,
the parametrization according to Eq.(5.10) is shown (smoother lines), which describes the
distribution well. The simulated shower size distributions at all used energies, labelled
above each distribution, are illustrated at the bottom panel in case of proton (upper
distributions) in comparison with iron (lower distributions) induced air showers. Again
the parametrization according to Eq.(5.10) is overlaid (smooth lines).
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5.2 Investigations to the Experiment’s Properties

The object of this section will be to compute the remaining contributors to the response
function introduced via Eqs.(4.6) and (4.7), i.e. the experiment’s properties, namely the
efficiency εn

(
log10N

true
ch , log10N

true
µ

)
(see Section 5.2.2) and the reconstruction accuracy

rn
(
log10Nch, log10Nµ | log10N

true
ch , log10N

true
µ

)
(see Section 5.2.3 and 5.2.4). Prior to this

an appropriate strategy for the computation has to be stated: the respective experiment’s
properties will be derived by means of simulations, as will be outlined in Section 5.2.1.

5.2.1 Simulation of the experiment’s properties

In order to determine the experiment’s properties like efficiency and reconstruction ac-
curacy, a set of CORSIKA [88] 6.307 shower simulations based on the interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68] is used. The main proper-
ties of the simulations are comparable to the ones used to parametrize the intrinsic
shower fluctuations, as outlined in Section 5.1.1. However, the actually used simulations
are not mono-energetic, but instead assuming a continuous energy spectrum following a
power law with a differential index12 of −2. The simulated primary energies range from
1 × 1014 eV to 3.16 × 1018 eV. Another difference is that the showers are entirely sim-
ulated, i.e. without using the thinning option explained in Section 5.1.1, since thinned
showers cannot be treated by the used detector simulation program. The experiment’s
response to the CORSIKA showers is simulated using CRES13 1.16/07, which bases on
GEANT 3.21 [46, 76] detector description and simulation tool. By this means, all exper-
iment specific properties, for instance detector characteristics and electronics features,
are regarded. At the very end, the respective air shower observables are reconstructed,
starting from the simulated signals in the detectors, with the experiment’s standard re-
construction software14. From all reconstructed events only those are used that pass the
quality cuts summarized in Section 3.3.

The reliability of this simulation procedure was intensively tested by the KASCADE-
Grande collaboration within many analyses. While the statistical effects like the detector
resolution can be simulated by the detector simulation, a priori systematic effects can
possibly remain unconsidered. For instance, a systematic distortion affecting the calcu-
lation of the angles of incidence could yield to preferred angle ranges, and by this could
influence the cosmic rays flux determination if angles at the upper limit of the used zenith
angle interval [0◦, 18◦] are e.g. pulled to values above the upper threshold. However, in
a model independent comparison [14] between the results of the KASCADE and the
KASCADE-Grande experiment, no systematic problems could be identified in case of
the zenith angle and the shower core reconstruction. The overall conclusion is that the
available simulation set yields the same detector signals and data structures as in case of
measured events, and by this it is an appropriate means for the investigations that are
object of this section.

12The bin widths whilst the analyses in this section are chosen as small that slight deviations from the
right index of the power law spectrum do not have any significant influence on the results.

13Cosmic Ray Event Simulation, a program package developed for the KASCADE [10] detector simu-
lation.

14Internally named KRETA, KASCADE REconstruction for exTensive Air showers.
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5.2.2 The experiment’s efficiency

In the final unfolding analysis, the charged particle and muon number ranges are set such
that the combined trigger and reconstruction efficiency for the respective air showers is
next to 100%. However, for the calculation of the response function, also smaller shower
sizes below these limits are considered in order to account for the shower fluctuations
and the resulting migration effects. Thus, a parametrization of the combined efficiency is
necessary. Firstly, some technical things will be discussed, then it will be focused on the
trigger condition, and thereafter on the combined trigger and reconstruction efficiency.

Some technical things about the calculation of efficiencies

The commonly used technique for the computation of efficiencies seems often to be applied
somewhat imprecisely concerning the consideration of uncertainties. Hence, it will be
focused on that problem in the following. The general idea to derive for example the
efficiency vs. energy15 is to produce two histograms. While in one histogram the energy
distribution is plotted for all air showers, in the second histogram only the energies of
events are plotted that pass the respective selection conditions or cuts. By bin wise
dividing the latter histogram by the first one, one gets an estimate for the efficiency.
Mathematically, the efficiency in a bin i is given by εi = ci/ai if ai is the number of
entries in the histogram containing all showers, while ci refers to the histogram after
cuts.

While the procedure itself is consistent, the error calculation is sometimes carried out
in a wrong way. The standard access seems to base on Poisson errors. By this, assuming
a large sample statistics, the error is given by the square root of the number or entries,
respectively σci = √ci and σai = √ai. By means of Gaussian error propagation law, the
resulting uncertainty of the efficiency would be:

σε =

√√√√( 1
ai

√
ci

)2
+
(
ci
a2i

√
ai

)2

=
√
ci (ai + ci)
a3i

. (5.12)

This yields in some cases wrong errors as shown by this example: If in a certain bin i
no event passes the cuts, i.e. ci = 0, while there are in total more than zero events, i.e.
ai > 0, the resulting efficiency would be εi = 0 ± 0 without any uncertainty! Another
problem is that e.g. in case of ci = ai the efficiency would be εi = 1±

√
2/a. If additional

ai = 1, the resulting efficiency would be εi = 1± 1.4. Hence, this would allow physically
not possible efficiencies above 1 or below 0.

An alternative access would be to assume binomial errors. Whether or not an individ-
ual event passes the cuts is underlying a binomial probability distribution; the efficiency
is the probability to succeed a cut. The number of events ci passing the selection condi-
tions is a random variable, while the total number of events ai and the efficiency εi are
parameters. The standard deviation of the binomially distributed number of entries ci in
a certain bin of the histogram is given by σci =

√
ai εi,t (1− εi,t), where εi,t is the true

efficiency. Based on this, the statistical error of the efficiency can be calculated by means
of Gaussian error propagation as follows:

σεi =

√( 1
ai

√
ai εi,t (1− εi,t)

)2
= 1
ai

√
ci

(
1− ci
ai

)
, (5.13)

15Or, instead, vs. the charged particle or muon number.
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where the true efficiency was replaced by the estimated one εi,t ≈ εi = ci/ai. Although
the true distribution of the efficiency is not necessarily symmetric, the afore-calculated
standard deviation is a sufficient approximation for the real uncertainty. The problem of
the Poissonian approach that the errors can extend the efficiency to unphysical ranges is
not present here. However, also the binomial error is zero, and by this predicts perfect
certainty in the computation of the efficiency, if ci = ai or ci = 0.

In contrast to the aforementioned approaches that base on frequentist statistics, there
are also methods that are based on the Bayes’ theorem resulting in all over correct errors.
However, the final results, namely the parameters of the efficiency’s parametrization, were
found to be the same as in case of the binomial approach. Hence, the remaining problem
of the binomial method will not worsen the final result, whereas the problems of the
Poisson approach would indeed allow unphysical regions an by this could have a negative
impact.

Consequently, the errors of the efficiencies will be computed in a binomial way ac-
cording to Eq.(5.13). The estimated efficiencies will be fitted based on the least squares
method in order to obtain a parametrization. The Bayesian approach for the error cal-
culation will only be used as cross-check, what can easily be done with the ROOT [45]
routine TGraphAsymmErrors::BayesDivide, which assumes a binomial model in com-
bination with a uniform prior, but carries out the computation considering the Bayes’
theorem. Furthermore, the functions used for the parametrizations are chosen such that
only physical reasonable codomain ranges are covered.

The trigger efficiency

The condition for a KASCADE-Grande detector station to trigger itself is a four-fold
or seven-fold coincidence in the corresponding trigger cluster. There are overall 18 such
trigger cells, each consisting of a hexagon of seven16 stations. The condition used in
this analysis is the seven-fold coincidence, internally also named “7/7 trigger”. Addition-
ally, there must be an energy deposit in at least one charged particle detector (Grande
detectors) and one muon detector (KASCADE array). While the first condition is au-
tomatically fulfilled when a 7/7 trigger is given, the second one implies that also the
KASCADE array has detected the shower, what is necessary for the measurement of the
muon number, and is hence a second important trigger condition in the sense of the cur-
rent unfolding analysis. Since the Grande stations do not discriminate between electrons
and muons, the total number of charged particles is a criterion for a successful trigger.

In Fig. 5.15, the trigger efficiency as a function of the electron (left panel) or the muon
number (right panel) is depicted. It is obvious that there is a dependence on both shower
sizes. As explained at the beginning of Section 4.1, the muon to electron ratio in iron
induced air showers is higher than in proton induced ones with the same primary energy.
At same electron shower size, there will be more muons if the primary is an iron nucleus
than in case of a proton. Since the KASCADE-Grande trigger is sensitive to both the
electron and the muon number, a higher muon number means a higher trigger probability.
Consequently, the trigger efficiency for iron nuclei is shifted to smaller electron numbers
in comparison to the one of protons, confer Fig. 5.15, left panel. The other way around,
in case of a fixed muon number, proton induced air showers will exhibit more electrons
then iron induced ones. Hence, the trigger efficiency for iron nuclei is shifted to higher
muon numbers, confer Fig. 5.15, right panel.

16One of the outer clusters consists only of 6 stations.
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Figure 5.15: The trigger efficiency as a function of the true electron number (left) and
the true muon number (right).
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Figure 5.16: The number of triggered KASCADE-Grande detector stations as a func-
tion of the true number of charged particles (left) as well as the number of triggered
KASCADE muon detector stations as a function of the true muon number (right).

In Fig. 5.16, the number of triggered KASCADE-Grande charged particle detector
stations as a function of the true number of charged particles is illustrated (left panel), as
well as the number of triggered KASCADE muon detector stations as a function of the
true muon number (right panel). As one would expect, due to the earlier development
of iron induced air showers in the atmosphere, they are laterally more extended and by
this hitting more stations at ground level than similar proton induced ones. Due to this,
at a fixed number of charged particles, iron induced showers hit more Grande stations
than in case of protons. Hence, in case of iron nuclei, the 7/7 trigger condition will be
fulfilled earlier. Figure 5.16, right panel, is only shown for the sake of completeness. The
trigger condition for showers considered in the unfolding analysis only depends on the
KASCADE-Grande charged particle detector stations. However, as mentioned afore, it is
additionally demanded that there must be an energy deposit in at least one KASCADE
muon detector station, such that the dependence shown in the right panel can impact
indirectly on the trigger efficiency, too. Nevertheless, no significant difference can be seen
between proton or iron induced showers17. For fixed muon numbers, the proton induced

17The proton curve starts at smaller muon numbers, but also stops at smaller ones in comparison to
iron. This is an effect of the energy range chosen for the simulations: e.g. in case of the smallest simulated
energy, proton showers have on average smaller muon numbers than in case of iron showers, such that
the shown proton curve reaches smaller muon numbers than the iron one. Hence, this has a technical
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air showers have on average higher primary energies than iron induced ones. Also the
energy per particle is on average higher, what is important since the muon detectors have
a threshold energy of 230 MeV. This all seems to compensate the effects of the laterally
wider distribution of the iron induced air showers, such that the number of muon detector
stations measuring a signal does not depend on the primary particle in case of equal total
muon numbers.

The combined trigger and reconstruction efficiency

The goal will now be to parametrize the combined trigger and reconstruction efficiency
ε (such that it can be considered in the response function calculation, confer Eq.(4.6)),
in the following simply called “efficiency” in contrast to the pure “trigger efficiency”
discussed before. The additional reconstruction efficiency means both that an air shower
has been reconstructed at all as well that the event passes all quality cuts summarized in
Section 3.3. Since the two-dimensional distribution of charged particles and muons is used
as basis for the unfolding analysis, these two sizes have to be treated in the computation
of the response function. Hence, the efficiency in dependence on these two shower sizes
have to be parametrized.

In Fig. 5.17, the efficiency as a function of the true charged particle (left panel) or
muon number (right panel) is illustrated. The efficiency is similar to the pure trigger
efficiency depicted in Fig. 5.15. The additional contribution of the reconstruction effi-
ciency seems to be rather slight. The quality cuts or conditions are manifold and can be
correlated. It will be difficult to analyse all these influences in a way that one could in
detail interpret the impact on the efficiency. Hence, the depicted efficiency will not be
discussed further than already done.

As shown, the efficiency depends on both contributors to the two-dimensional shower
sizes plane, more precisely on the charged particle and muon number. In Fig. 5.18, top,
the efficiency as a function of these two observables at the same time is shown, exemplarily
for protons (left panel) and iron nuclei (right panel). The correlation between the shower
sizes was found to be rather unimportant in case of the efficiency determination in the
sense that there will not be significant impacts on the final response function. Shower
sizes below full efficiency are only considered to account for possible migration effects.
Consequently, a 100% correct description of the efficiency is anyway not necessary.

Considering Fig. 5.17, the dependence of the efficiency on the two shower sizes re-
minds of the graph of a Gauss error function, confer Eq.(5.1). Treating both observables
log10(N tru

ch ) and log10(N tru
µ ) as uncorrelated, the efficiency ε as a function of both these

variables at the same time can be parametrized by a product of the two individual error
functions:

ε
(
log10(N tru

ch ), log10(N tru
µ )

)
=(
0.5 + 0.5× erf

(
p0
(
log10(N tru

µ )− p1
)))

×(
0.5 + 0.5× erf

(
p2
(
log10(N tru

ch )− p3
)))

.

(5.14)

The parametrization is drawn in Fig. 5.18, bottom. All derived parameters are listed in
Appendix C.

background and is not implicating a physically important result.
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Figure 5.17: The efficiency as a function of the true charged particle number (left) and
the true muon number (right).
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Figure 5.18: The efficiency as a function of the true charged particle and muon number
(top), and the derived parametrization given by Eq.(5.14) (bottom). On the left panels
in case of proton induced showers, on the right panels for iron induced ones.
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Figure 5.19: Cross-check between the efficiency computed based on the parametrization
after Eq.(5.14) (lines) and the one directly simulated (markers), both as a function of the
true numbers of charged particles (top left), of muons (top right), or of the true primary
energy (bottom left). On the bottom right panel the simulated efficiencies, exemplarily
as a function of the charged particle number, are fitted by a constant over the charged
particle number range for that the efficiencies are close to 100%.

While in general there seems to be a good agreement between the efficiency (top
panels of Fig. 5.18) and its parametrization (bottom panels of Fig. 5.18), the quality
of the description will further be tested. The simulated (without any cuts or trigger
conditions) two-dimensional shower size distribution of charged particles vs. muons, or,
alternatively, the one-dimensional distribution of energies are now forward folded with
the efficiency given by Eq.(5.14). The folding is carried out under either an integration
of the two-dimensional shower size distribution over the charged particle respectively the
muon number, or, alternatively, by integrating the one-dimensional energy distribution
over both the numbers of charged particles and of muons. By this, the one-dimensional
distributions of either the numbers of muons or of charged particles, or in the latter case
of the primary energy, are computed as they are expected to appear for showers passing
all trigger and reconstruction conditions. By dividing these computed distributions by
the initial ones, which were just forward folded with the efficiency parametrization, one
gets the efficiency curve as a function of the number of muons, of charged particles, or of
the primary energy. In Fig. 5.19, this computed efficiency (lines) is compared to the one
directly derived by applying trigger conditions and reconstruction cuts to the simulated
shower events (markers, already shown in Fig. 5.17). In all three cases, there is a good
agreement between the simulated and the computed efficiency discernible. Furthermore,
on the bottom right panel the simulated efficiencies, exemplarily as a function of the
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charged particle number, are separately fitted for all primaries by a constant for charged
particle number ranges for that the efficiencies are close to 100%. The purpose of this
cross-check was to check, whether or not there is a systematic bias to 100% efficiency,
which could not be considered by the Gauss error function, because it converges only to
one (for the right tail, to zero for the left one). The constant lines agree, considering the
fit parameters’ uncertainties, with 100% efficiency. Hence, above a certain threshold, the
efficiencies converge in average to 100%, as also the Gauss error function does. Hence,
the restrictive convergence behaviour of the Gauss error function does not induce a
remarkable systematic bias.

In summary, the combined trigger and reconstruction efficiency ε, which will be used
in the computation of the response function (confer Eq.(4.6)), can sufficiently be described
by the parametrization given in Eq.(5.14). Depending on the true charged particle or
muon numbers, full efficiency starts at around log10(N tru

ch ) = 6.0 or log10(N tru
µ ) = 5.0. In

the final deconvolution analysis, only air showers exhibiting shower sizes equal or larger
than these limits are considered. Nevertheless, whilst the computation of the response
function also smaller values are regarded to account for possible migration effects caused
by the intrinsic shower fluctuations. On average, all air showers with true primary energies
equal or larger than approximately Etru = 1016 eV are triggering KASCADE-Grande
and pass the reconstruction process as well as all quality cuts. However, that an air
shower is detected and all shower sizes are reconstructed does not imply that they are
necessarily equal to the true ones, or at least close to them. Hence, the question about
the reconstruction quality will be object of the next sections.

5.2.3 The systematic reconstruction uncertainties

Even if air showers are triggered and reconstructed with 100% efficiency, the determined
shower sizes can differ from the true ones due to statistical fluctuations or systematic
shifts. The latter ones are analysed in the following. A systematic bias in the reconstructed
shower sizes can be caused by many possible sources. The main problem is an insufficient
description of the true particle lateral distribution by the fits used in the reconstruction
procedure. These functions have been chosen under the criterion of a balanced equilibrium
between an on average accurate reconstruction of the respective shower size and in general
stable fit result.

The systematic shifts will now be parametrized, supported by the experience and
knowledge gained in Chapter 3, where appropriate functions for the correction of a sys-
tematic bias in the muon reconstruction have been determined. However, the bias in the
reconstruction of the shower sizes will be described by functions instead of applying cor-
rection matrices in order to simplify the computation of the response function. The tiny
but important difference between the thoughts made in Chapter 3 and here is that in the
first case the measured shower sizes are corrected to more accurate ones, which could be
used as input for further analyses, while in this section the bias caused whilst the recon-
struction process shall be parametrized in order to account for it in the computation of
the response functions. The measured data, finally used as input for the deconvolution
analysis, will not be corrected at all, since all errors are included in the response function,
and hence are considered in the unfolding process itself.
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Systematic uncertainties of the log10N rec
ch ascertainment

The systematic deviation between the true and reconstructed number of charged parti-
cles will be parametrized as a function of the true charged particle number. The deter-
mined function describes how the true size will systematically be distorted whilst the
reconstruction process. This systematic bias is, beside the statistical reconstruction un-
certainty discussed in Section 5.2.4, one of the contributors to the term representing the
reconstruction characteristics rn (cf. Eq.(4.6)), which for its part again contributes to the
response function. As will be shown, the bias is very small. A common parametrization
for all primaries yields appropriate results, such that one does not have to treat all par-
ticles separately and one can in lieu join them together with equal weights. This joining
will be labelled with “All” in the following figures.

In Fig. 5.20, top left panel, the deviation between the true and the reconstructed
charged particle number as a function of the true charged particle number is depicted for
individual primaries as well as for the aforementioned combination of “All” primaries.
One can see that there is not a significant difference between the primaries, such that
they can be considered as an unity. The parametrization of the systematic shift bases
on a phenomenological approach. The left trajectory of the bias is parabolic, while on
the right a linear behaviour is visible. Hence, as parametrization C of the deviation a
combination of a quadratic and a linear function is used:

C
(
log10(N tru

ch )
)

=
{
p2 + p1 ×

(
log10(N tru

ch )− p0
)2 if log10(N tru

ch ) < p0 ,
p2 + p3 ×

(
log10(N tru

ch )− p0
)

else .
(5.15)

The fit is shown in Fig. 5.20, top left panel, black line. The fit parameters are additionally
listed in Appendix D. In the top right panel, the reconstructed number of charged par-
ticles is corrected with C. In general, the remaining bias is very small for all primaries,
and hence the common parametrization also works well when applied to individual parti-
cles. Because of the large number of markers, the remaining deviation for each individual
primary and for the combination “All” is fitted by a linear function in order to get a
better impression how the remaining mean bias varies with increasing particle numbers.
In case of the combination of all particles, the remaining mean bias is zero (black line),
but also for individual elements it is close to that value. On the bottom panel again the
remaining bias is shown, but now only for the all particle case. The error bars represent
the symmetric18 spread instead of the error of the mean that is shown in the other plots.
In comparison to the large statistical uncertainties or to the charged particles’ channel
width19, which is 0.07 in logarithm in the unfolding analysis, the remaining bias is negli-
gible small. Nevertheless, the parametrization of the statistical uncertainties, which will
be determined in Section 5.2.4, also allows to consider20 a bias, such that the remaining
one will finally also be regarded this way in the computation of the response function.

18The distribution of the reconstruction uncertainties is de facto not symmetric. Thus, the symmetric
spread is only shown to give a rough estimate of the statistical uncertainties. A more detailed analysis
will be carried out in Section 5.2.4.

19Whilst the choice of the optimal bin width for the reconstructed shower sizes used in the unfolding,
primarily the width of the distribution of the deviations between the reconstructed and the true sizes
above the threshold of full efficiency is considered. However, also different widths around that value have
been tested and yield the final chosen width of 0.07 in the logarithm of the charged particle number.
The same procedure is also applied to the muon number, resulting in the same channel width of 0.07 in
logarithm of the muon number.

20However, only a bias with rather linear trajectory or small and smooth derivation can be considered,
such that a first parametrization with more variable functions, as done here, is necessary.
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Figure 5.20: Parametrization C (cf. Eq.(5.15)) of the deviation between the true and the
reconstructed charged particle number as a function of the true charged particle number
in case of a combination of “All” primaries with equal weights (top left). The bias in
the reconstruction in case of all contributing individual particles is also shown, but not
parametrized, for purpose of comparison. The remaining bias after correction with the
derived parametrization C is illustrated on the top right panel, as well as on the bottom
panel. In the latter case, the error bars represent the spread instead of the error of the
mean. The linear fits give an impression of the mean trajectory of the remaining bias.

In summary, a function describing the systematic bias in the reconstruction of the
charged particle number has been derived, such that it can be considered whilst the
computation of the response function. The remaining systematic shift that is not covered
by this parametrization is already negligible small in comparison to the channel widths
used in the final analysis or to the statistical fluctuations of the reconstruction, but
can nevertheless be considered additionally in the parametrization of the last-mentioned
uncertainties.

Systematic uncertainties of the log10N rec
µ ascertainment

The parametrization of the systematic deviation between the reconstructed muon number
and the true one proceeds in general analogous to the one introduced afore in case of
the charged particles. The keynotes are still valid and will not be repeated. Again, all
primaries can be combined (labelled with “All” in the following figures) without worsening
the final result. In Fig. 5.21, top left panel, the deviation between the true and the
reconstructed muon number as a function of the true muon number is depicted. There is
no significant difference observable between the primaries. The trajectory of the bias can
be described by a polynomial function up to muon numbers of log10(N tru

µ ) = 6.0. Beyond
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Figure 5.21: Parametrization C (cf. Eq.(5.16)) of the deviation between the true and the
reconstructed muon number as a function of the true muon number in case of a combina-
tion of “All” primaries with equal weights (top left). The bias in the reconstruction in case
of all contributing individual particles is also shown, but not parametrized, for purposes
of comparison. The remaining bias after correction with the derived parametrization C
is illustrated on the top right panel, as well as on the bottom panel. In the latter case,
the error bars represent the spread instead of the error of the mean. The linear fits give
an impression of the trajectory of the remaining bias.

this value, a simple linear fit can be used:

C
(
log10(N tru

µ )
)

=
{
p1 + p2 ×∆2 + p3 ×∆3 + p4 ×∆4 if log10(N tru

µ ) < p0 ,
p1 + p5 ×∆ else ,

with ∆ = log10(N tru
µ )− p0 .

(5.16)

The fit parameters are listed in Appendix D. In the top right panel, the remaining
deviation after correction with C is presented. In general, it is very small and more
symmetric around zero than before. The deviation for each individual primary and for
the combination “All” is again fitted by a linear function. In case of the combination of
all particles, the remaining mean bias is zero (black line), but also for individual elements
it is close to that value. On the bottom panel, the remaining bias is shown for the all
particle case with error bars representing the symmetric21 spread, and not the error of the
mean value. In comparison to the statistical reconstruction uncertainty and to the used
bin width of 0.07 in logarithm of the reconstructed muon number, how it will be used

21However, in truth, the fluctuation around the mean value is not symmetric, such that the shown
symmetric spread only serves as rough estimate for the statistical muon reconstruction uncertainties
(which will be analysed more accurately in Section 5.2.4).
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in the final unfolding analysis, the remaining bias is negligible. However, this systematic
shift can additionally be regarded to a certain degree whilst the parametrization of the
statistical uncertainties, such that it can also be considered this way in the calculation
of the response function.

Summarizing, a function describing the systematic bias in the reconstruction of the
muon number has been derived, such that it can be considered whilst the computation
of the response function. The remaining systematic shift that is not covered by this
parametrization is negligible small in comparison to the channel widths used in the
final analysis or to the statistical fluctuations of the reconstruction, but can nevertheless
additionally be considered in the parametrization of the last-mentioned uncertainties.

5.2.4 The statistical reconstruction uncertainties

The main contributor to the statistical uncertainty of the shower size reconstruction is the
to a certain extent random distribution of the air shower particles over the experiment’s
observation area. Due to these fluctuations, the number of particles exhibited by a shower
at a certain detector station can differ from the one expected on average for this very
events. The lateral distribution functions, based on which the total number of particles
will be computed whilst the reconstruction process, are parametrized using mean values.
Every time when the particle densities detected at a station differ from the average, the
total number of particles will be determined deviating from the actually true one. The
parametrization of those uncertainties of the shower size reconstruction will be object
of this section. By this, they can be considered, besides the systematic bias already
determined in Section 5.2.3, as second contributor to the term rn that represents the
reconstruction characteristics in Eq.(4.6), which for its part again contributes to the
response function.

Statistical uncertainties of the log10N rec
ch ascertainment

In Fig. 5.22, the distribution of the deviations between the reconstructed charged particle
number, whose systematic bias was corrected with C according to Eq.(5.15), and the true
one is depicted in dependence on the true charged particle number. The distribution is
a combination of the individual ones of the five primary particles, what increases the
statistics, but does not worsen the results as will be discussed later. In general, due
to the applied correction C, the average deviation is arranged around zero. However,
the distribution is obviously not symmetric. With increasing number of true charged
particles, the width decreases. This is due to the fact that larger particle numbers also
mean higher particle densities at the detector stations, what results in a better description
of the lateral profile of the shower, and hence in a more accurate reconstruction of the
total charged particle number.

In order to parametrize the distribution, some slices along the “deviation” axis, each
corresponding to a specific true charged particle number range, are analysed. By this
the problem is transferred to a two-dimensional one. Each slice corresponds to a true
charged particle number bin of width 0.1 in logarithm, what was found to be a good
compromise between an adequate statistics for a fit and a sufficiently small true charged
particle number range, such that the uncertainty distribution varies only slightly from
one slice to another. Every slice will be fitted separately using appropriate functions.
At the very end, all derived fit parameters, which up to now only allow to describe the
specific situation in one slice, will be parametrized as a function of the true charged
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particle number. Due to this interpolation, the statistical reconstruction uncertainties
will be determinable for any interesting true charged particle number, and hence can
be considered in the response function. Because of the small simulation statistics, all
distributions of the five simulated primaries are add together in order to improve the
available statistics for the fits, as it was also done in case of the parametrization of the
bias in the reconstruction (cf. Section 5.2.3). Unlike the intrinsic shower fluctuations,
the statistical reconstruction uncertainties were found not depend significantly on the
particle type, such that this means to enhance the statistics is suitable. All following
plots in this section will show these combined distribution, if nothing else is stated.

In Fig. 5.23, exemplarily the slices covering the true charged particle number ranges
6.6 < log10N

tru
ch < 6.7 (top, left) and 7.3 < log10N

tru
ch < 7.4 (top, right) of the distribution

of the charged particle reconstruction uncertainty after correction (what was depicted in
Fig. 5.22) are shown. As mentioned above, and especially for slices containing small true
charged particle numbers, an asymmetric distribution can be observed. While the left
part is reminiscent of a Gaussian distribution, the right one shows rather an exponential
decrease. At small true charged particle number intervals, the probability density function
will be parametrized by a combined Gaussian and exponential function, whereas at higher
values above log10N

tru
ch > 7.3 the distribution is compatible with a simple Gaussian

distribution. Hence, the parametrization is given by:

p
(
∆N tru

ch

)
=


p0 × e−0.5(

∆Ntru
ch −p1
p2

)2
if ∆N tru

ch ≤ p1 −
p22
p3
,

p0 × e
∆Ntru

ch
p3 × e−

p1
p3

+0.5( p2
p3

)2︸ ︷︷ ︸
=const. (for cont. differentiability)

else ,

with ∆N tru
ch = log10N

rec
ch − C − log10N

tru
ch ,

(5.17)

in case of small true charged particle numbers, i.e. log10N
tru
ch ≤ 7.3, or

p
(
∆N tru

ch

)
= p0 × e−0.5(

∆Ntru
ch −p1
p2

)2
,

with ∆N tru
ch = log10N

rec
ch − C − log10N

tru
ch ,

(5.18)

in case of larger ones. The two fit functions conform, since22 for limp3→0; p3<0(p) the
second case term of Eq.(5.17), what describes mainly the “right” part of the distribution,
converges to zero. Hence, in that case the distribution will be all over fitted by the “left”
part, a simple Gaussian function, what is in agreement with Eq.(5.18). The parameter p3
can be understood to some extent as a weight assigned to the exponential part. In the limit
of p3 → 0, the parameters p1 and p2 represent the mean value and the standard deviation
of the used Gaussian function. By this, but only in the limit p3 → 0, the parameter p1
accounts for the remaining bias after the correction of the systematic shift (cf. Fig. 5.20,
top right panel), while p2 represents the statistical reconstruction uncertainties, which
are the primary object of this section and were already hinted at in Fig. 5.20, bottom
panel.

As already mentioned at the beginning of Section 4.2 and discussed in Footnote 19, the
chosen bin width for the final unfolding analysis is 0.07 in logarithmic scale for the charged
particle number. In order to find this appropriate binning, the studies of the shower size
specific reconstruction accuracies, analysed in this section here, are taken into account

22It will be shown later on in Fig. 5.24 (bottom) that p3 converges to zero (with p3 < 0) when
log10N

tru
ch → 7.3.
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Figure 5.22: The distribution of the charged particle reconstruction uncertainty after cor-
recting the bias in the reconstruction with C, which is given by Eq.(5.15), in dependence
on the true charged particle number. The results of all five individual primaries are add
together for this plot in order to increase statistics (see text).
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Figure 5.23: Slices 6.6 < log10N
tru
ch < 6.7 (top, left) and 7.3 < log10N

tru
ch < 7.4 (top, right)

of the distribution of the charged particle reconstruction uncertainty after correction (de-
picted in Fig. 5.22). The distributions are fitted according to Eq.(5.17) (left) respectively
Eq.(5.18) (right). At the bottom, the reduced chi-squares of all fits as a function of the
true charged particle number are illustrated.
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Figure 5.24: Interpolation (based on the parametrizations given by Eq.(5.19)) of the
true charged particle number dependence of the parameters p1, p2 and p3 used in the
parametrization of the charged particle reconstruction uncertainty (cf. Eq.(5.17) and
Eq.(5.18)).

in such a way that it is not adequate to use a bin width beneath the achievable detector
resolution. As can be derived from Fig. 5.20, bottom panel, as well as from Fig. 5.24, top
right panel, in case of 100% efficiency (log10N

tru
ch ≥ 6.0) the experiment’s resolution is

comparable to the bin width of 0.07, which was chosen for one thing under consideration
of this resolution, for another thing based on preliminary tests using different values.

The parameter p0 finally corresponds to the arbitrary normalization of the distribu-
tions. The two slices shown in Fig. 5.23, top left panel respectively the top right one,
are fitted by the functions according to Eq.(5.17) respectively Eq.(5.18). The regarding
reduced chi-squares, in case of all used true charged particle number intervals, are de-
picted at the bottom panel. In addition, as already done whilst the parametrization of
the intrinsic shower fluctuations (cf. Section 5.1.2), the fit quality is judged by means of
a Kolmogorov-Smirnov test and checked by eye. It was found that the chosen functions
describe the uncertainty distributions very well. All derived fit parameters are listed in
Appendix E.

As mentioned in the introducing thoughts at the beginning of this Section, the de-
pendence of the fit parameters p1, p2 and p3 (jointly used in Eqs.(5.17) and Eq.(5.18))
on the true charged particle number has to be interpolated in order to get a functional
relationship what can be used in the computation of the response function. Again, a
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Figure 5.25: Slices 6.6 < log10N
tru
ch < 6.7 (top, left) and 7.3 < log10N

tru
ch < 7.4 (top, right)

of the distribution of the charged particle reconstruction uncertainty after correction
(depicted in Fig. 5.22). The distributions are fitted using Eqs.(5.17) (left panel) and
(5.18) (right panel), while the parameters are fixed according to the interpolation based
on Eq.(5.19). At the bottom, the reduced chi-squares of all fits, with parameters fixed
according to the interpolation, are illustrated as a function of the true charged particle
number.

phenomenological approach23 will be pursued:

p1(x) =
{
c0 + c5(x− c2)2 if x ≤ c2 ,
c0 + c1(x− c2) + c3(x− c2)2 + c4(x− c2)3 else ,

p2(x) = d0 + d2xd1 × (0.5 + 0.5× erf(−d4x+ d3)) ,

p3(x) =
{
e0 + e3 × erf(e1(x− e2)) if x < e2 ,
e0 + e4(x− e2) else ,

with x = log10N
tru
ch .

(5.19)

The fits are illustrated in Fig. 5.24. Additionally, the derived values of the used parameters
ci, di and ei are listed in Appendix E. In Fig. 5.25, the fits (using Eqs.(5.17) and (5.18))
to the reconstruction uncertainty distributions are shown, now with parameters fixed
according to the interpolations given by Eq.(5.19). Again, the reduced chi-squares are
shown (bottom), and its values are listed in Table E.5 in Appendix E.

Comparing the results shown in Fig. 5.25 to those in Fig. 5.23, one can conclude
that the additional interpolation does not worsen the quality of the fits. Hence, the

23Primarily based on polynomials, but if needed using the convergence properties of the Gauss error
function.
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parametrizations given by Eqs.(5.17) and (5.18), with parameters interpolated according
to Eq.(5.19), will allow to account for the statistical charged particle reconstruction
uncertainties whilst the computation of the response function.

Statistical uncertainties of the log10N rec
µ ascertainment

The parametrization of the statistical muon reconstruction uncertainties proceeds in gen-
eral analogous to the one introduced afore in case of the charged particles. The keynotes
are still valid and will not be repeated. Unlike the intrinsic shower fluctuations of muons,
the statistical muon reconstruction uncertainties were found to not depend significantly
on the particle type. Hence, in order to improve the statistics for the fits, all primaries
can again be combined without worsening the final result. In Fig. 5.26, the distribution
of the deviations between the reconstructed muon number, whose systematic bias was
corrected with C according to Eq.(5.16), and the true one is depicted in dependence on
the true muon number. In general, due to the applied correction C the average deviation
is arranged around zero. However, the distribution is obviously not symmetric. With in-
creasing number of true muons, the width decreases. This is due to the fact that larger
particle numbers also mean higher particle densities at the detector stations, what results
in a better description of the lateral profile of the shower, and hence in a more accurate
reconstruction of the total muon number.

In order to parametrize the distribution, it is divided into slices of width 0.1 in loga-
rithm of the true muon number, which are fitted separately. At the very end, all derived
fit parameters, which up to now only allow to describe the specific situation in one slice,
will be parametrized as a function of the true muon number. In Fig. 5.27, exemplarily
the slices covering the true muon number ranges 4.9 < log10N

tru
µ < 5.0 (top, left) and

5.8 < log10N
tru
µ < 5.9 (top, right) of the distribution of the muon reconstruction uncer-

tainty after correction (what was depicted in Fig. 5.26) are shown. As mentioned above,
and especially for slices containing small true muon numbers, an asymmetric distribution
can be observed. While the right part is reminiscent of a Gaussian distribution, the left
one shows rather an exponential decrease. At small true muon number intervals, the prob-
ability density function will be parametrized by a combined Gaussian and exponential
function, whereas at higher values above log10N

tru
µ > 5.75 the distribution is compatible

with a simple Gaussian distribution. Hence, the parametrization is given by:

p
(
∆N tru

µ

)
=


p0 × e−0.5(

∆Ntru
µ −p1
p2

)2
if ∆N tru

µ ≥ p1 −
p22
p3
,

p0 × e
∆Ntru

µ
p3 × e−

p1
p3

+0.5( p2
p3

)2︸ ︷︷ ︸
=const. (for cont. differentiability)

else ,

with ∆N tru
µ = log10N

rec
µ − C − log10N

tru
µ ,

(5.20)

in case of small true muon numbers, i.e. log10N
tru
µ ≤ 5.75, or

p
(
∆N tru

µ

)
= p0 × e−0.5(

∆Ntru
µ −p1
p2

)2
,

with ∆N tru
µ = log10N

rec
µ − C − log10N

tru
µ ,

(5.21)

in case of larger ones. The two fit functions conform, since24 for limp3→0; p3>0(p) the
second case term of Eq.(5.20), what describes mainly the “left” part of the distribution,

24It will be shown later on in Fig. 5.28 (bottom) that p3 converges to zero (with p3 > 0) when
log10N

tru
µ → 5.75.
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Figure 5.26: The distribution of the muon reconstruction uncertainty after correcting the
bias in the reconstruction with C, which is given by Eq.(5.16), in dependence on the true
muon number. The results of all five individual primaries are add together for this plot
in order to increase statistics (see text).
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Figure 5.27: Slices 4.9 < log10N
tru
µ < 5.0 (top, left) and 5.8 < log10N

tru
µ < 5.9 (top, right)

of the distribution of the muon reconstruction uncertainty after correction (depicted in
Fig. 5.26). The distributions are fitted according to Eq.(5.20) (left) respectively Eq.(5.21)
(right). At the bottom, the reduced chi-squares of all fits as a function of the true muon
number are illustrated.
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Figure 5.28: Interpolation (based on the parametrizations given by Eq.(5.22)) of the true
muon number dependence of the parameters p1, p2 and p3 used in the parametrization
of the muon reconstruction uncertainty (cf. Eq.(5.20) and Eq.(5.21)).

converges to zero. Hence, in that case the distribution will be all over fitted by the “right”
part, a simple Gaussian function, what is in agreement with Eq.(5.21). Analogous to the
remarks made in the previous section for the charged particle reconstruction accuracy,
the parameter p3 can again be understood as a weight assigned to the exponential part.
In the limit of p3 → 0, the parameters p1 and p2 represent the mean value and the
standard deviation of the used Gaussian function, and p2 by this the statistical recon-
struction uncertainties, which are the primary object of this section. As can be derived
from Fig. 5.21, bottom panel, as well as from Fig. 5.28, top right panel, in case of full
efficiency (log10N

tru
µ ≥ 5.0) the resolution improves from initially 0.1 to finally 0.025 in

units of the logarithmic muon number. The muon bin width for the final analysis is set
to 0.07 in logarithmic scale for the muon number, taking into account the afore men-
tioned resolution development, as well as the results from preliminary tests trying out
different binnings. Finally, the parameter p0 corresponds to the arbitrary normalization
of the distributions. The two slices shown in Fig. 5.27, top left panel respectively the
top right one, are fitted by the functions according to Eq.(5.20) respectively Eq.(5.21).
The regarding reduced chi-squares, in case of all used true muon number intervals, are
depicted at the bottom. All derived fit parameters are listed in Appendix F.

The dependence of the fit parameters p1, p2 and p3 (jointly used in Eqs.(5.20) and
Eq.(5.21)) on the true muon number is interpolated in order to get a functional re-
lationship, which can be used in the computation of the response function. Again, a
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Figure 5.29: Slices 4.9 < log10N
tru
µ < 5.0 (top, left) and 5.8 < log10N

tru
µ < 5.9 (top, right)

of the distribution of the muon reconstruction uncertainty after correction (depicted in
Fig. 5.26). The distributions are fitted using Eqs.(5.20) (left panel) and (5.21) (right
panel), while the parameters are fixed according to the interpolation based on Eq.(5.22).
At the bottom, the reduced chi-squares of all fits, with parameters fixed according to the
interpolation, are illustrated as a function of the true muon number.

phenomenological approach will be pursued:

p1(x) =
{
f0 + f1(x− f2) + f3(x− f2)2 + f4(x− f2)3 if x ≤ f2 ,
f0 else ,

p2(x) = g0 + g2 × xg1 × (0.5 + 0.5× erf(−g4x+ g3)) ,

p3(x) =
{
h0 + h4(x− h2) + h5(x− h2)2 + h6(x− h2)3 + h7(x− h2)4 if x < h2 ,

h0 + h3 × erf(h1(x− h2)) else ,
with x = log10N

tru
µ .

(5.22)

The fits are illustrated in Fig. 5.28. Additionally, the derived values of the used parameters
fi, gi and hi are listed in Appendix F. In Fig. 5.29, the fits (using Eqs.(5.20) and (5.21))
to the reconstruction uncertainty distributions are shown, now with parameters fixed
according to the interpolations given by Eq.(5.22). Again, the reduced chi-squares are
shown (bottom), and its values are listed in Table F.5 in Appendix F.

Comparing the results shown in Fig. 5.29 to those in Fig. 5.27, one can conclude
that the additional interpolation does not worsen the quality of the fits. Hence, the
parametrizations given by Eqs.(5.20) and (5.21), with parameters interpolated according
to Eq.(5.22), will allow to account for the statistical muon reconstruction uncertainties
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whilst the computation of the response function.
Together with the parametrization of the charged particle number reconstruction

uncertainty as well as with the bias correction functions from Section 5.2.3, a functional
description of the reconstruction properties term rn of Eq.(4.6) is available now. As the
other terms of Eq.(4.6), namely the parametrization of the intrinsic shower fluctuations
sn (see Section 5.1) and the one of the experiment’s efficiency (obtained in Section 5.2.2),
are already known, by now all contributors to the response function are determined, such
that it can be computed in the following.

5.3 Computation and Test of the Response Matrix

In the previous sections, the contributors to the kernel function pn, introduced in Eq.(4.6),
have been determined: the probabilities describing the intrinsic shower fluctuations sn,
the experiments efficiency εn, as well as the reconstruction properties rn. In this section,
the resulting response matrix will be computed, then its condition number will be dis-
cussed and, afterwards, some consistency checks will be performed in order to ensure its
reliability.

5.3.1 Computation of the response matrix

In Section 4.2, the equations describing the convolution of the sought-after primary energy
spectra of individual primaries are deduced. Equation (4.4) represents the folding of the
differential energy fluxes dJn/d log10E of the primary cosmic ray nuclei n having an
energy E into the measured number of showers Ni contributing to the cell i, and thus to
the content of this specific charged particle and muon number bin (log10(Nch), log10(Nµ))i
of the measured distribution (depicted in Fig. 4.8). The term pn represents the kernel
function. For a detailed description of all variables, confer Section 4.2. As mentioned
there, neither the intrinsic shower fluctuations nor the efficiencies or the reconstruction
properties vary significantly within the used zenith angle range 0◦ ≤ θ ≤ 18◦, such that
its influence on all three probabilities can be neglected. Hence, the integration over the
zenith angle can be carried out, such that Eq.(4.4) yields:

Ni = ΩeffAfTm

Nnucl∑
n=1

+∞∫
−∞

dJn
d log10E

pn d log10E ,

with pn = pn
(
(log10Nch, log10Nµ)i | log10E

)
.

(5.23)

The new variable Ωeff represents the effective solid angle. While the left side of the equa-
tion is already discretized since the measurement is histogramized and filled into discrete
cells of the two-dimensional shower size plane (Fig. 4.8), the sought-after differential
flux (contributing to the right side) is still a continuous variable. Due to effects of lim-
ited resolution, it will not be possible to reconstruct the energy spectra with arbitrary
fine bin width, such that also the solution part has to be discretized using appropriate
bin widths25 ∆log10E. Thereby it is assumed that the measured shower size plane has
Nm cells and the solution, the differential energy fluxes of individual primaries, will be

25In preliminary tests was found that a bin width of ∆log10(E/eV ) = 0.14 allows reliable and stable
results.
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reconstructed for Ns energy intervals:

Ni = ΩeffAfTm

Nnucl∑
n=1

Ns∑
j=1

log10Ej+∆log10E∫
log10Ej

dJn
d log10E

pn d log10E ,

with pn = pn
(
(log10Nch, log10Nµ)i | log10E

)
, i ∈ [1, Nm] .

(5.24)

The right side can mathematically be expanded:

Ni =
Nnucl∑
n=1

Ns∑
j=1

log10Ej+∆log10E∫
log10Ej

dJn
d log10E

pn d log10E

log10Ej+∆log10E∫
log10Ej

dJn
d log10E

d log10E

︸ ︷︷ ︸
:=Rnij

×

×ΩeffAfTm

log10Ej+∆log10E∫
log10Ej

dJn
d log10E

d log10E

︸ ︷︷ ︸
:=xnj

,

with pn = pn
(
(log10Nch, log10Nµ)i | log10E

)
, i ∈ [1, Nm] .

(5.25)

The term Rnij is the ij element of the response matrix, belonging to the primary n, while
xnj is the number of entries in the jth energy bin of the sought-after solution26 for that
primary n. More precisely, the entry Rnij represents the probability that a particle n,
having an energy belonging to an energy bin j of the solution vector, will finally be
reconstructed with a specific charged particle and muon number (log10(Nch), log10(Nµ))i
corresponding to the entry number i of the measurement vector27.

For purposes of simplification, Eq.(5.25) will in the following be written as a matrix
equation:

−→
Y = R

−→
X, with −→Y ∈ RNm ,

−→
X ∈ RNnuclNs , R ∈ RNm×NnuclNs , (5.26)

26In order to obtain a differential energy spectrum, which is comparable to those of other experiments,
at the very end the “preliminary” solution xnj has to be divided by the exposure ΩeffAfTm and the energy
bin width.

27Vector, since the cells of the two-dimensional shower size plane were numbered continuously, such
that their content can be written into a one-dimensional vector.
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what, more precisely, corresponds to:

 N1
...
NNm


︸ ︷︷ ︸
−→
Y

=


 R

1
11 . . . R1

1Ns... . . . ...
R1
Nm1 . . . R

1
NmNs

 . . .


RNnucl

11 . . . RNnucl
1Ns... . . . ...

RNnucl
Nm1 . . . RNnucl

NmNs




︸ ︷︷ ︸
R

×



x1
1
...
x1
Ns...
...
xNnucl

1
...
xNnucl
Ns


︸ ︷︷ ︸

−→
X

.

(5.27)
The in total Nnucl solution vectors (each of dimension Ns), namely the individual energy
spectra of different primaries, are consecutively recorded in one common vector −→X . The
contents of the Nm cells of the two-dimensional shower size plane are also listed in a
vector

−→
Y , as already mentioned above. Finally, the Nnucl individual response matrices

for the specific primaries are considered as submatrices of a common matrix R.
As can be deduced from Eq.(5.25), the response matrix also depends on the solution

itself, hence on the sought-after differential energy fluxes dJn/d log10E. Since the solution
is not a priori known, it can only be estimated. In the limit of infinitesimal small energy
bin widths, the flux can be treated as constant inside the specific energy intervals. By
this, the flux can be taken in front of the integral, such that it can be cancelled out from
the response matrix term. While, due to the limited resolution, only energy bin widths at
around ∆log10(E/eV ) = 0.14 are possible, whilst the computation of the response matrix
these intervals were again divided into 14 sub-intervals, each corresponding to a bin width
of ∆log10(E/eV ) = 0.01. It was found28 that these widths are small enough to sufficiently
decouple the correlation between the matrix elements and the flux. Considering that the
exact value of the flux is not important for the computation of the response matrix, it was
fixed according to an E−3 energy spectrum. This value was chosen taking into account the
result about the all-particle energy spectrum obtained by our collaboration [33], which
states a spectral index of ≈ −3.0 for energies between 1016 eV to 1017 eV, and of ≈ −3.2
above energies of 1017 eV.

By this, the means and the knowledge necessary for the computation of the response
matrix are acquired, such that the task can be completed now. The next steps will be to
check the conditioning of the derived matrix.

5.3.2 Conditioning of the response matrix

The response matrix R is computed based on the continuous parametrization functions
determined in Sections 5.1 and 5.2. Since double precision floating-point numbers are used
inside the applied C++ scripts, the calculated probabilities cover some ten decades and
range from just below 1 down to the precision limit of the used floating-point numbers29.

28This was tested by assuming either a E−1, E−2, E−3 or E−4 energy spectrum when computing the
response matrix. Based on these four different matrices, a test data sample was unfolded. It was found
that there is no significant difference between the results, such that the exact knowledge of the spectral
value is not necessary.

29Till they are rounded to zero below a certain value, when the corresponding floating-point number
runs out of the precision.
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Figure 5.30: The entries (which are probability densities) of the response matrix R defined
in Eq.(5.27), visualized by a coloured histogram.

Furthermore, the intrinsic shower fluctuations and the reconstruction uncertainties both
result in a remarkable overlap of the probability distributions of different primaries (cf.
Fig. 5.37). The more similar the atomic mass numbers of the particles are, the stronger
the effect is. Due to the limitation given by the precision of the calculation and the
chosen bin widths, nearby primaries could induce to some degree coinciding submatrices,
on which the final response matrix bases.

In Fig. 5.30, the entries30 of the response matrix R, defined in Eq.(5.27) and computed
exemplarily using five primaries31, are visualized. White cells represent zero probability,
or values that are below the precision of the floating-point numbers, and hence regarded
to be zero. The abscissa represents the column numbers. The used energy range is di-
vided into 25 bins. Thus, the solution vector −→X has 25 entries for each of the 5 primaries,
hence in total 125 ones resulting in the 125 columns of R. The measured shower size
distribution log10(Nch) vs. log10(Nµ) is divided in 45 bins for the muon and 55 bins for
the charged particle number, resulting in 2475 cells. The ordinate reflects these 2475
entries of the measurement vector −→Y . As defined in Section 4.2, the shower size plane
is numbered from the left to the right, beginning from the lower left cell. This causes
the slice-like structures in the probabilities shown in Fig. 5.30. The vertical dashed lines
that are observable at all five columns, each corresponding to the lowest energy bin for
the respective primary, are originating presumably from the limited precision whilst the
computation of the response matrix. In case of these lowest energies (at around 1015 eV),
the probability that an air shower exhibits charged particle respectively muon numbers
log10(Nch) ≥ 6.0 and log10(Nµ) ≥ 5.0 is very small (cf. Fig. 5.14, top panels). This small
probability will be distributed over the cells of the log10(Nch)–log10(Nµ) plane, such that
the probability belonging to an individual cell will even be smaller. Whilst the compu-
tation of the response matrix (cf. Eq.(5.25)), these small probabilities, in combination

30Which are probability densities.
31Protons (representing a hydrogen nucleus), as well as helium, carbon (representing the carbon-

nitrogen-oxygen group), silicon (representing the intermediate elemental group), and iron (representing
the heavy component of cosmic rays) nuclei.
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with the limited precision of the floating-point numbers, can yield artificial probability
values unequal zero, finally resulting possibly in artefacts like e.g. the mentioned vertical
structures32.

One has to conclude that the response matrix consists of many almost identical
columns and rows. Furthermore, there is a large number of cells that are exhibiting very
small probabilities and are surrounding the areas with higher probability values. Hence,
the response matrix is ill-conditioned and to a certain extent singular33. Equation (5.26)
is overdetermined, since R is not a square matrix. An exact solution via inversion will
not be possible. However, deconvolution algorithms are an appropriate means to solve
such equations. Nevertheless, also these methods demand a minimum level of stability
to provide reliable solutions. The stability of such an matrix equation is usually char-
acterized by the condition number κ, in this case by the condition number κ(R) of the
response matrix. This number reflects the accuracy, i.e. the statistical significance of the
solution, that can be expected when performing a simple matrix inversion to solve the
equation.

In case of a invertible matrix, the condition number can be calculated rather simple.
The response matrix R cannot be inverted; however, one can calculate a “pseudoinverse”
by means of a singular value decomposition (SVD). A SVD transforms a matrix to a
product of a diagonal matrix and orthonormal matrices, and is often used to investigate
ill-conditioning. More details about the investigation or solution of ill-conditioned matrix
equations can be found in [79, 53, 112, 113, 176, 85, 139, 147, 156, 167]. The response
matrix R is factorized based on the SVD following the instructions summarized in [79]
and [80, p. 69 et seqq.], what yields:

R = UΣV T , (5.28)

where U ∈ RNm×Nm and V ∈ RNnuclNs×NnuclNs are orthogonal matrices, whereas Σ ∈
RNm×NnuclNs is a rectangular diagonal matrix:

Σ =
(

D 0
0 0

)
, with D = diag (σ1, σ2, . . . , σr) , and σ1 ≥ σ2 ≥ . . . ≥ σr > 0 . (5.29)

The nonnegative diagonal entries σi are called the singular values of R. The rank of R
is given by r.

The condition number κ(R) is given by (cf. [53]):

κ(R) = ‖R‖‖R−1‖ . (5.30)

Since R is not invertible, κ(R) can only be calculated based on the pseudoinverse. Fur-
thermore, the condition number depends on the used norm34. From Eq.(5.28) one can
deduce that

Rvi = σiui, RTui = σivi, (5.31)
32Nevertheless, the probabilities given by the vertical structures are very small, and hence are compat-

ible with zero. It has been observed that these lines disappear when the probabilities at small energies
are on trial increased, what strengthens the assumption that especially these structures are caused by
the very small probabilities for the lowest energies. The applied conditioning will remove these structures
(cf. Fig. 5.31), such that they are unproblematic for the final analysis.

33More precisely, a matrix equation is called singular if the condition number is infinite, but only
ill-conditioned if this number is relatively too large.

34E.g. the l1, l2 or the l∞ norms, from which the Euclidean norm l2 is usually used in analyses compa-
rable to that in this work.
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and since ‖R‖2 = σ1 and ‖R−1‖2 = σ−1
r (cf. [80, p. 71]), one can write:

κ2(R) = ‖R‖2‖R−1‖2 = σ1
σr
. (5.32)

The index “2” indicates the use of the Euclidean norm l2. Hence, the condition number
can be calculated by the ratio of the largest to the smallest singular value.

Even though using double precision floating-point numbers in this work, not any
matrix R with arbitrary small singular values can be treated. This problem is discussed
in more detail by Osborne [143]. A good rule of thumb for an indicator for the accuracy
of the matrix equation solution is the logarithm of the condition number [171, p. 267]. If
nmax is the largest integral value not greater than the logarithm of the condition number,
then the accuracy of the solution is 15−nmax digits for a double precision arithmetic. The
content of further digits would be statistically insignificant. Some preliminary tests have
shown that based on the chosen bin widths the solution contains maximally numbers
with 6 digits35. Following the rule of thumb, the condition number should not be larger
than 109. Since this is only a short and rough estimate, just to be on the safe side, in this
analysis a condition number not larger than 107 is demanded. Although also matrices that
fulfil this requirement are still to a certain degree ill-conditioned, it was found that the
precision, respectively the stability is then accurate enough to solve the matrix equation
by applying deconvolution algorithms, whereas a simple inversion method would still fail.

In general, two paths can be pursued to improve the stability of the matrix equation
(given by Eq.(5.26)). The first one would be to reduce the number Nnucl of primary
particles used whilst the unfolding. The second one would be to apply cuts to the response
matrix, such that all probabilities below a certain threshold are neglected, i.e. assumed
to be compatible with zero. With all examined constellations of numbers of primary
particles and of possible cuts to the probabilities in R, generated realistic toy data sets36

are unfolded in order to verify whether or not a reliable solution can be achieved.
The quality of the solution will be judged by a comparison between the unfolded

solution and the a priori known true test spectra, which were the input to these test
runs. This can easily be done by eye. Furthermore, the unfolded solution can be forward
folded, to get the two-dimensional shower size distribution belonging to the solution. This
plane can be compared to the initial test data set by means of a Kolmogorov-Smirnov
test. As a third criterion, the condition number κ2(R) is computed and should not be
larger than 107, as explained above.

It was found that it is not possible to regard more than five primary particles. The
comprehensive tests have furthermore shown that the solution is more reliable, if five
instead of only four primaries are used for the unfolding. This result, obtained based on
simulated test spectra, was confirmed by an unfolding of the shower size plane measured
with KASCADE-Grande. The comparison between the measured distribution and the one
obtained by a forward folding of the solution revealed a Kolmogorov-Smirnov probability
of 0.85 to 0.88 (depending on which primaries are used) in case of four, and 0.97 in case
of five considered particles. In case of only three primaries, the probabilities are even
lower. This indicates that, based on the used high energy interaction model QGSJET-II-
02, the solution is only compatible to the measurement if there are at least five particles
considered whilst the deconvolution. Hence, in the following and in the main analysis,

35I.e. shower numbers up to ≈ 106.
36The mechanism of testing the deconvolution procedure by means of test spectra will be explained in

detail in the Section 6.3.
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five primaries will be considered: protons, as well as helium, carbon, silicon, and iron
nuclei.

The entries of the diagonal matrix D defined in Eq.(5.29), if the response matrix R
bases on five primaries, are given in Appendix G, Eq.(G.1). The condition number37 is
κ2(R) = 0.54/(1.17×10−13) = 4.6×1012. Hence, R is very ill-conditioned. Nevertheless,
an unfolding based on this matrix is in general also possible in most cases, as intensive
trial runs with toy spectra have shown. However, there were a few test data samples
with some larger excesses, which are actually compatible with the normal statistical
fluctuations and by this could also appear in the measured data set. This results in large
oscillations in the unfolded solution. Hence, one would leave it to chance, whether or not
the deconvolution of the measured data will have reliable results – depending on whether
or not the measured shower size plane is such a “problematic” data set. Since this is not
acceptable, in order to solve this problem, as aforementioned, cuts are applied to the
response matrix. Tests have shown that these cuts do not deteriorate the results of the
deconvolution of the already excess-free trial samples, but improve the solutions in case
of the few “problematic” ones.

The suitable cuts on the response matrix R have been derived based on detailed
trial runs, where toy data samples have been unfolded and compared by eye to the true
solution, as well as by the Kolmogorov-Smirnov test, as described afore. Furthermore, for
every examined response matrix, the condition number is computed and was demanded
to be below the afore-stated limit of 107. As a result, the contents of all cells in R that
contain probability densities below pmin = 10−4 will be set to zero in the final analysis.
The entries of the diagonal matrix D of the resulting conditioned response matrix are
given in Appendix G, Eq.(G.2). The condition number is κ2(R) = 0.54/(2.27 × 10−7) =
2.4×106 now, and thus below the demanded limit of 107. It was found that the exact value
of the cut is only of minor importance. In case of the “unproblematic” test samples, it is
anyway not necessary, but at least does not deteriorate the unfolding result. However, in
case of the “problematic” test spectra, the results are significantly better when applying
this cut, while its exact value pmin is not important as long as it is in the range 10−3

to 10−5. However, one should not cut away probabilities larger than 10−3, since one
then affects probability ranges that are necessary to account for the intrinsic shower
fluctuations, and hence are physically important. Although the fluctuations from lower
to higher energy bins get less likely with increasing distance between the bins, such that
the probabilities are very small from the mathematical point of view, they can have a
huge impact on the final energy spectrum due to steeply decreasing flux of cosmic rays.
Setting the cut value pmin to probabilities larger than 10−3 would hence induce non
negligible systematic distortions.

Whilst the unfolding, for the energy spectra of individual particles only those energy
bins are considered for that there is a non-zero probability that this particular primary
with this specific energy contributes to at least one cell of the measured log10(Nch)–
log10(Nµ) shower size plane. Due to the cut on R, a non-zero probability means a prob-
ability larger than pmin = 10−4. Consequently, the solution vector −→X derived with the
conditioned response matrix will no longer have necessarily all 25 entries that a solution
vector derived with an unconditioned one would have. Analogous to Fig. 5.30, where
the unconditioned response matrix is shown, in Fig. 5.31 the entries of the conditioned

37In case of four primaries it is κ2(R) ≈ 5 × 1010 to κ2(R) ≈ 1 × 1011 (depending on the chosen
primaries); and thus a response matrix, only considering four primary particles, would be ill-conditioned,
too, such that a reduction of the number of primaries would not solve this problem.
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Figure 5.31: The entries (which are probability densities) of the response matrix R defined
in Eq.(5.27), visualized by a coloured histogram, after improving the condition number
by the cut pmin = 10−4 (see text).

one, computed applying the cut pmin = 10−4, are visualized. The unphysical vertical
structures at the beginning of each particle’s energy interval are gone. Furthermore, the
contributing probability distributions are less overlapping. As mentioned above, the in-
dividual particles contribute with less than 25 energy bins to the solution vector −→X , such
that the number of columns of the conditioned response matrix is smaller than in case
of the unconditioned one.

Hence, if the conditioned response matrix is used, the matrix equation (given by
Eq.(5.26)) has a sufficient level of stability, and can therefore be solved by means of un-
folding methods. Although the reliability of the conditioned response matrix has already
extensively been tested whilst deconvolutions of simulated toy data sets, a last additional
check of consistency will be performed in the next section.

5.3.3 Consistency checks for the response matrix

The reliability of the conditioned38 response matrix, introduced in Section 5.3.2, has
already extensively been tested by means of deconvolutions of simulated toy data sets.
However, in the following, some last checks of consistency will be performed. Initially,
a cross-check with the Monte Carlo simulation set introduced in Section 5.2.1 will be
accomplished, thereafter a first comparison with the measured shower size distribution
follows.

As outlined in Section 5.2.1, there is a large simulation set available, in the follow-
ing referred to as “direct Monte Carlo” set, which covers for one thing the air shower
development, for another thing the entire measurement and reconstruction procedure.
This set was simulated assuming a continuous energy spectrum with a spectral index of
−2, and for five individual primaries39 with equal abundance. Using this direct Monte

38The distinctive description “conditioned” will be left out in the future, since the conditioned response
matrix will be the one used in the final analysis, while the unconditioned one will never be used again.

39Protons, as well as helium, carbon, silicon, and iron nuclei.
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Carlo set, one can compute the resulting two-dimensional log10(Nch)–log10(Nµ) shower
size distribution, which is depicted in Fig. 5.32, left panel. All shown events pass the
standard quality cuts (cf. Section 3.3) that will be used in the final analysis. In this com-
putation, the derived shower size planes of all five primaries are combined to the shown
resulting one. In addition, one can compute the same shower size distribution based on
the response matrix, i.e. based on the parametrizations (again with equal abundance of
the primaries). This is achieved by dividing the individual five energy spectra, which
underlie the direct Monte Carlo simulations, into bins. Based on this, and regarding
the response matrix as probability distribution, one can determine the two-dimensional
shower size distribution by means of a random generator. For example, if there are Ni
entries in the first energy bin of the direct Monte Carlo proton spectrum, one simply has
to call the random generator, which regards that part of the response matrix as proba-
bility distribution that belongs to protons and this particular energy bin, Ni times. In
every step, a (log10(Nµ), log10(Nch)) pair will be returned. Repeating the same for every
energy bin and all primaries, and combining all results in a common shower size distri-
bution, referred to as “parametrization result”, yields the plane shown in Fig. 5.32, right
panel. In general, there seems to be a good agreement between the results of the direct
Monte Carlo simulations and the ones based on the parametrization. However, one has
to take into account that the direct simulations are the same ones that have been used
to parametrize the reconstruction properties in Section 5.2, and thus there is somehow a
correlation between them and the response matrix. Nevertheless, for the parametrization
of the shower fluctuations, different simulation sets are used. Furthermore, the computed
response matrix was conditioned. Considering all this, the comparison between the di-
rect Monte Carlo simulations and the parametrizations given by the response matrix
is nonetheless an appropriate additional consistency check. In Fig. 5.33, the results of
some projections applied to the distributions of Fig. 5.32 are illustrated. Also these one-
dimensional distributions conform very well inside the statistical uncertainties.

The projections shown in Fig. 5.34 do not depend on the combined two-dimensional
shower size distributions of all individual primaries. Instead, the distributions of them
are considered separately now, more precisely exemplarily in case of protons or iron
nuclei. Furthermore, the one-dimensional distributions based on the response matrix are
now calculated immediately40 using the parametrizations for protons, respectively iron
nuclei. In general, also in case of single primaries there seems to be a good agreement
between the direct Monte Carlo simulations and the parametrizations. Furthermore, it
gets obvious that the utilization of parametrizations to derive the entries in the response
matrix was necessary. The alternative that would be to derive the entries of the response
matrix immediately based on the direct Monte Carlo simulations would cause problems
due to the limited statistics. As it can be seen in Fig. 5.34, bottom, in case of the direct
simulations the results suffer from statistical uncertainties. Furthermore, the possibility to
analyse the influences of the individual probability functions, contributing to the response
matrix, would get lost. The direct simulations only would allow computing the final
probability that a primary with a certain energy will contribute to a specific cell of
the shower size distribution, while all intermediate stages would be hidden in a kind of
black box. Hence, this would also complicate the implementation of another high energy
interaction model, what means in case of the parametrization, as used in this work, a
simple exchange of the functions describing the shower fluctuations.

As a last consistency check, the parametrizations, used in the response matrix, are

40This time not using a random generator to compute a two-dimensional shower size distribution.



88 5. The Response Matrix

)rec
µ

(N
10

log
5 5.5 6 6.5 7 7.5 8

)
re

c

ch
(N

10
lo

g

6

6.5

7

7.5

8

8.5

9

9.5 Entries  13970

Mean x  0.002934±  5.464 

Mean y  0.003791±  6.525 

RMS x  0.002075± 0.3468 

RMS y  0.002681± 0.4481 n
u

m
b

er
 o

f 
sh

o
w

er
s

1

10

210

Entries  13970

Mean x  0.002934±  5.464 

Mean y  0.003791±  6.525 

RMS x  0.002075± 0.3468 

RMS y  0.002681± 0.4481 

)rec
µ

(N
10

log
5 5.5 6 6.5 7 7.5 8

)
re

c

ch
(N

10
lo

g

6

6.5

7

7.5

8

8.5

9

9.5 Entries  13421

Mean x  0.00294±  5.451 

Mean y  0.003814±  6.534 

RMS x  0.002079± 0.3406 

RMS y  0.002697± 0.4418 n
u

m
b

er
 o

f 
sh

o
w

er
s

1

10

210

Entries  13421

Mean x  0.00294±  5.451 

Mean y  0.003814±  6.534 

RMS x  0.002079± 0.3406 

RMS y  0.002697± 0.4418 

Figure 5.32: A comparison between the shower size distribution based on direct Monte
Carlo simulations (left) or on the parametrizations included in the response matrix
(right).
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Figure 5.33: A comparison between the projections applied to the shower size distribu-
tion based on direct Monte Carlo simulations (Fig. 5.32, left panel, here labelled “coll.
MCs”) and to the one based on the parametrizations (Fig. 5.32, right panel, here labelled
“parametrization” and represented by their statistical error band): On the left for differ-
ent log10(Nµ) intervals, on the right for log10(Nch)-intervals. The upper plots correspond
to lower primary energies, and those at the bottom to higher ones.
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Figure 5.34: A comparison between the projections applied to the shower size distributions
based on direct Monte Carlo simulations considering either pure protons or iron nuclei
(labelled “coll. MCs”) and the one-dimensional distributions based on the parametriza-
tions for protons or iron nuclei (labelled “param.”). On the left for different log10(Nµ)
intervals, on the right for log10(Nch)-intervals. The upper plots corresponds to lower
primary energies, and those at the bottom to higher ones.

compared to the shower size distribution measured with KASCADE-Grande. In Fig. 5.35,
some projections applied to the measured shower size distribution (depicted in Fig. 4.8)
are shown. In addition, the distributions computed based on the parametrizations are
shown in case of protons and iron nuclei. They are normalized41 such that their tails
overlap with those of the measured distribution. Regarding the limited statistics, one
cannot find indications that the parametrizations are not able to describe the measured
distributions. On the contrary, the parametrizations are able to describe the measurement
quite well. However, with these two primaries it is not possible to cover the middle part of
the measured distribution, i.e. also particles with intermediate atomic mass are needed
for an entire description. Furthermore, in order to describe the tails of the measured
distribution reliably, the distribution based on the parametrizations for iron primaries
is “higher” than that for protons. Hence, iron nuclei have to be more abundant than
protons. This appears to be even more pronounced in case of higher energies, where iron
nuclei have to dominate significantly over protons in order to describe the tails of the
measured distribution reliably. Although this is only a rough cross-check, it gives already
slight indications that the cosmic ray composition is dominated by a heavy component
at the observed energies and regarding the interaction model QGSJET-II-02.

This is confirmed by Fig. 5.36, where the measured shower size distribution (grey

41This is done by hand, since this should only be a rough cross-check.
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Figure 5.35: A comparison between the projections applied to the measured shower size
distribution (Fig. 4.8, here labelled “real data”) and the one-dimensional distributions
based on the parametrizations for protons or iron nuclei (labelled “param.”). On the left
for different log10(Nµ) intervals, on the right for log10(Nch)-intervals. The upper plots
corresponds to lower primary energies, and those at the bottom to higher ones.

isoareas) and the most probable log10(Nµ)–log10(Nch) values according to the parametri-
zations (markers) are illustrated for different particles and primary energies. All over, the
most probable values for the heavy nuclei (silicon, iron) are located in the central region
of the measured distribution, where it has many entries, while the most probable values
for lighter primaries (with same primary energy) are located at regions with smaller
number of entries. Hence, this indicates that there are more heavy than light nuclei, i.e.
that the composition is dominated by the heavy component.

However, one must not only consider these maximal probabilities, but also the widths
of the probability distributions. In Fig. 5.37, again the measured shower size plane is
shown, now in comparison to some isolines representing the cells (log10(Nch), log10(Nµ))i
of the data plane with constant probability (from the inner42 to the outermost isoline:
0.1, 0.05 and 10−4 probability density). Although only three primaries are illustrated,
one can see that there is a large overlap between the individual distributions, such that a
simple consideration of the maxima will not result in a reliable solution. Hence, the entire
probability distributions have to be taken into account and used whilst the deconvolu-
tion procedure. Furthermore, the isolines, which correspond to the log10(Nµ)–log10(Nch)
combinations with a probability value of 10−4, represent the smallest probability value,

42In case of smaller energies, the widths of the probability distributions are as large that there are
no individual probabilities larger than 0.1 or even 0.05, such that the inner isolines are missing in these
cases.
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Figure 5.36: A comparison between the measured shower size distribution (grey isolines
with filled areas in between) and the most probable log10(Nµ)–log10(Nch) combinations
according to the parametrizations, illustrated for different particles. The corresponding
primary energies are out of the log10(E/GeV) interval 6.98 to 9.5, which is divided into
18 bins of width 0.14 (the first bin, which covers the energy bin log10(E/GeV)=6.98 to
7.12, corresponds to the first markers shown in the bottom left corner). To guide the
eyes, the markers are connected with straight lines.
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Figure 5.37: A comparison between the measured shower size distribution (grey his-
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probability.
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just considered in the response matrix after its conditioning (cf. Section 5.3.2). As can be
seen, these outer isolines cover almost all measured data, hence the minimal probability
is not set too large.

Summarizing the insights gained in this section, the response matrix, in the condi-
tioned version according to the instructions given in Section 5.3.2, seems to represent
the experiment’s response to air showers, induced by an individual particle with specific
primary energy, sufficiently well. The parametrizations conform with direct Monte Carlo
simulations. Furthermore, the measured shower size distribution can be described based
on the response matrix. Hence, together with the tests already performed in the previous
section, one can conclude that the applied conditioning does not deteriorate the quality
of the solution of the matrix equation Eq.(5.26). This enables to solve this equation by
means of deconvolution methods, what will be the object of the next chapter.



Chapter 6

Unfolding Methods and Monte
Carlo Tests

The main goal of this work is to solve the matrix equation (introduced in Eq.(5.26))
−→
Y = R

−→
X, with −→Y ∈ RNm ,

−→
X ∈ RNnuclNs , R ∈ RNm×NnuclNs , (6.1)

which describes the convolution of the individual energy spectra of different primary par-
ticles, represented by

−→
X , to the measured log10(Nch)–log10(Nµ) shower size distribution,

represented by
−→
Y . There is a huge number of methods available to find a solution, how-

ever, with strongly varying quality. The general ideas or approaches that are pursued in
the following base mainly on the information given in [38, 100, 54, 55, 41, 11, 39, 40]. Es-
pecially Jansson [100] gives a comprehensive overview over the multitudinous and widely
spread topic of deconvolution.

As emphasized many times in the last chapter, direct methods, like for example a
solution based on a simple matrix inversion, will not yield appropriate results, due to the
ill-conditioning of the response matrix. Hence, these methods will only be outlined rather
shortly. Afterwards, the focus will immediately be put on the deconvolution procedures1.

In the following, based on an example where a simple matrix inversion fails (Sec-
tion 6.1), the usage of more complex deconvolution methods will be motivated, of which
different algorithms and techniques will subsequently be discussed (Section 6.2). After-
wards, the implementation of that algorithms will be explained, and their quality will be
tested based on toy data samples (Section 6.3).

6.1 Why Unfolding Algorithms?
In Section 4.2, it was already indicated, why a simple solution of the matrix equation (6.1)
based on inversion fails in many cases: While a convolution is correlated to a smoothing
of the distributions, since integral equations in general tend to damp especially higher
frequencies, the deconvolution behaves conversely and amplifies fluctuations2 present in
the measured data sample (for further details confer [83, p. 7 et seqq.]). Hence, the
solution by inversion, i.e. −→

X = R−1−→Y , (6.2)
1Some authors also count the simple matrix inversion to the unfolding procedures, what is from the

basic principle in fact true. However, in this work with unfolding methods only those are meant that use
iterative algorithms or apply some other regularization techniques.

2And the KASCADE-Grande data sample will, beyond question, suffer from fluctuations due to the
limited measurement time.

93
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Figure 6.1: Left: A true histogram
−→
X . Middle: The histogram based on a measurement

(dashed lines, corresponding to −→Y meas) as well as the one expected based on the matrix
equation (6.1) (solid lines, corresponding to −→Y ). Right: The estimated solution (−→X est)
based on a matrix inversion given by Eq.(6.3). All pictures are taken from Cowan [55].

or, more realistically, assuming that the entries of the actually measured3 data vector−→
Y meas are independent and following a Poisson distribution:

−→
X est = R−1−→Y meas , (6.3)

will not yield appropriate results4.
This is illustrated exemplarily in Fig. 6.1, taken from Cowan [55]. On the left panel,

an example spectrum5, what is assumed to be the true one
−→
X , is depicted. Based on

Eq.(6.1), the spectrum −→Y that is expected to be observed can be computed by means
of a forward folding (middle panel, solid lines). However, typically the statistics of the
experiment is not infinite, such that the instead measured data sample −→Y meas will suffer
from fluctuations, often underlying a Poisson distribution. This actually measured distri-
bution is represented by the dashed lines, middle panel. Using this distribution as basis
for the matrix inversion, given by Eq.(6.3), yields the estimated solution −→X est shown
in the right panel. The solution oscillates, has huge variances and negative correlations
between the adjoining bins. Although the solution is unbiased, since for the expectation
value of

−→
X est follows:

〈
−→
X est〉 = R−1〈

−→
Y meas〉 =

−→
X , (6.4)

it is useless in sense of a physical analysis due to the large statistical oscillations.
Nevertheless, from all unbiased estimators for the solution, the one based on the

matrix inversion has at least the smallest possible variance, although it is already huge
(cf. [55]). Hence, the only possibility to reduce the statistical uncertainty will be to allow
a small systematic bias in the final solution. This won’t yield an exact solution, but an
appropriate one. The goal is not to regard any single fluctuation in the data set and to
derive an exact solution for the actual energy spectra present whilst the limited time
of measurements, but rather to find a best estimate for the true energy spectrum that
is expected in case of infinite measurement time, and thus for infinite statistics. Hence,
in the following, a good solution will be synonymous to an “appropriate” one, but not

3“Measured” vector
−→
Y meas as counterpart to the “true” data vector

−→
Y , which are only equal in case

of infinite measurement statistics. However,
−→
Y meas is a good maximum likelihood estimator for

−→
Y .

4Apart from the problem that R in this work would not be invertible at all due to the ill-conditioning.
5This is only an arbitrary example, as well as the considered experiment and its response matrix.
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to an “exact” one. Suitable methods that allow deriving such optimal solutions will be
introduced now.

6.2 Unfolding Algorithms

Since the estimators for the solution of the matrix equation (6.1) that one would derive
based on a simple matrix inversion can exhibit extremely large oscillations, one has
to use alternative solution techniques that reduce these statistical uncertainties, but in
turn do not yield unbiased results however. There are two classes of frequently used
methods available6, which allow to solve, to a certain extent, this problem of amplifying
the statistical fluctuations: unfolding methods based on regularization techniques or on
iterative algorithms. Both categories will be introduced in the following.

6.2.1 Regularized unfolding

The principal idea underlying the regularized unfolding methods bases mainly on the
investigations of Levenberg [124] and Marquardt [132]. In the following, the theoretical
background will be introduced. Afterwards, a concrete implementation of these ideas will
be discussed based on the method of “maximum entropy”.

General idea of regularized unfolding

The oscillating estimated solution that was computed in Section 6.1 by means of inver-
sion given by Eq.(6.3) corresponds to a minimum value from a chi-square minimization7

applied to Eq.(6.1):

χ2(−→X ) =
Nm∑
i=1


yi −

NnuclNs∑
j=1
Rijxj

σ(yi)



2

. (6.5)

Thereby, σ(yi) represents the statistical uncertainty of the data element yi. As the ob-
tained solution can suffer from large oscillations, a regularization has to be deployed.
This can be achieved by limiting the solution space:

χ2(−→X ) ≤ χ2
min +∆χ2 . (6.6)

This means to find a compromise between a systematic bias and possible statistical oscil-
lations. However, there should still be a certain agreement between the derived solution
and the measurement: i.e. the measured vector

−→
Y should to a certain degree conform

with the result R
−→
X obtained by a forward folding of the solution −→X .

In addition to the limitation of the solution space to acceptable values, the solution
should also exhibit a certain amount of smoothness. The idea will be, to select the

6A solution based on a forward folding is also often performed in comparable analyses. But, thereby,
the shape of the solution that will be forward folded has to be known already a priori. Therefore, one
cannot use this method to examine unknown structures in the solution. Furthermore, in this work the
solution is not known sufficiently. Hence, the solution by forward folding will not be considered in the
following.

7Respectively to a maximization of a log-likelihood function, which will be neglected in the following,
since everything is analogue to the chi-square method.
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smoothest solution out of the set of acceptable ones. For this purpose, a measure of
smoothness has to be defined. This is done by means of a regularization function S(

−→
X ),

while a regularization parameter τ defines the strength of the regularization:

χ2(−→X ) =
Nm∑
i=1


yi −

NnuclNs∑
j=1
Rijxj

σ(yi)



2

+ τS(−→X ) . (6.7)

If τ = 0, the solution will oscillate as strong as the one derived by inversion does. The
larger τ is, the smoother the solution will get and the more the structures in the measured
data distribution will be ignored.

There are many different approaches to realize a regularization and to implement
the ideas into an unfolding algorithm. A very popular one, the Tikhonov regularization
[172, 173, 174, 175], was developed by Tychonoff, who tried to solve ill-conditioned equa-
tions in a mathematically precise way. However, in the actual analysis this method is
not applicable since it allows negative solutions, which are unphysical in terms of the
sought-after fluxes. Furthermore, in case of small number of entries, the algorithm tends
to reconstruct zero or small negative values. There are extensions and modifications avail-
able, which shall guarantee positiveness; however, for this analysis there are more stable
methods usable. Another standard method based on regularization uses the principle of
maximum entropy and will be outlined in the following.

Principle of maximum entropy

The maximum entropy method is a regularized unfolding, which is often used in image
reconstruction procedures and hence also intensively refined by the technical industry,
like that of the digital cameras. In science, it is widely used, e.g. for image processing in
astronomy [140]. The technique combines a least-squares method with the principle of
maximum entropy. Its regularization function bases on the so-called entropy of informa-
tion [160]:

H(−→X ) = −
NnuclNs∑
j=1
xj loge(xj) . (6.8)

The entropy can serve as measure for the smoothness of the solution. Hence, the regu-
larization function of Eq.(6.7) can be written as:

S(
−→
X ) = −H(

−→
X ) =

NnuclNs∑
j=1
xj loge(xj) . (6.9)

The case of maximum entropy correlates to a minimal regularization function. This max-
imum entropy means the smoothest solution. In case of an uniformly distributed solution,
the entropy would adopt the largest possible value. The regularization uses implicitly the
positiveness of −→X , what is an advantage over the aforementioned Tikhonov regularization,
since by this only positive solutions are possible.

The maximum entropy method was modified by Schmelling [159], who applied the
principle of reduced cross-entropy. Thereby, a best guess8 −→X ref for the expected solution

8What is called prior in Bayes’ theorem.
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has to be stated. It is demanded that the solution −→X does not deviate significantly from
the reference vector

−→
X ref . Based on this, the regularization function can be written as

follows:

S(−→X ) = −K(−→X,−→X ref) =
NnuclNs∑
j=1
xj loge

(
xj
xref,j

)
, (6.10)

where K(
−→
X,
−→
X ref) is the so-called cross-entropy or Shannon-Jaynes entropy [102]. Using

the reduced cross-entropy as regularization function in Eq.(6.7), yields:

χ2(
−→
X ) =

Nm∑
i=1


yi −

NnuclNs∑
j=1
Rijxj

σ(yi)



2

+ τ
NnuclNs∑
j=1
xj loge

(
xj
xref,j

)
. (6.11)

In this case, the regularization can be understood as follows: The bias of the estimated
solution will be small, if the true solution is equal, or at least close to the reference
distribution.

The resulting minimization functional is non-linear and of high complexity, what
complicates the solution procedure. Whilst the cross-check unfoldings of the KASCADE-
Grande data, the functional was solved based on the ROOT [45] class TMinuit, which
implements the MINUIT package [98]. Thereby, the reference function was chosen to be
as realistic as possible. For this purpose, the result obtained by our collaboration [33] was
considered, which states a spectral index of the differential energy spectrum of ≈ −3.0
for energies below log10(E/GeV) = 8.0, and of ≈ −3.2 above. That is why the reference
distribution, which describes the reference vector

−→
X ref , is assumed to follow a E−2.1

power law (what corresponds to a differential energy spectrum with flux index −3.1).
Furthermore, in the reconstructed integral energy spectrum there are roughly 3 × 106

entries in the energy bin log10(E/GeV) = 5.93 to 6.07. Hence, the reference distribution
is assumed to contain 3 × 106 showers at an energy of log10(E/GeV) ≈ 6.0. Using for
simplification the logarithm of the energy and the assumptions made afore, as reference
function xref , which contributes to the reference vector

−→
X ref , the following equation will

be used:

xref (log10(E/GeV)) = 3× 106 ×
(
10log10(E/GeV) × 10−6.0

)−2.1

= 3× 106 × 10−2.1(log10(E/GeV)−6.0) .
(6.12)

Due to the steeply falling spectrum of cosmic rays and the resulting huge solution space,
the following transformation will be used:

x̃j = xj/xref,j ,

R̃ij = Rij × xref,j .
(6.13)

Since
R̃ij x̃j = Rij × xref,j × xj/xref,j = Rijxj , (6.14)

the transformation mathematically does not change the left part of Eq.(6.11), i.e. the
standard chi-square term. However, the regularization term will base on the new variables
now. Thereby, the elements of the new reference vector will be x̃ref,j = 1. Furthermore,
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since
−→
X bases on a normalized probability distribution, also

−̃→
X has to be used normalized

in the entropy term. The new functional that has to be minimized in the final analysis
is given by:

χ2
(−̃→
X

)
=
Nm∑
i=1


yi −

NnuclNs∑
j=1
R̃ij x̃j

σ(yi)



2

+ τ
NnuclNs∑
j=1

x̃j∑NnuclNs
k=1 x̃k

loge

(
x̃j∑NnuclNs

k=1 x̃k

)
.

(6.15)
The regularization parameter τ will be chosen based on the weighted mean squared error,
which will be described in Section 6.3.4. In case of the KASCADE-Grande data, values
around τ = 700 to 900 permit reliable unfolding results.

It was found that in general the deconvolution based on the least-squares method in
combination with the principle of reduced cross-entropy yields reliable results in many
cases. Nevertheless, the iterative unfolding algorithms result in steadily comparable, or
even better results, as ascertained by means of the unfolding of test spectra. The weak-
ness of the entropy based method is the large number of variables9 that have to be
considered whilst the minimization procedure. Furthermore, the method works best in
cases of rather underdetermined equation systems, for which reason it is often applied in
image reconstruction analyses. However, in this work the convolution is strongly overde-
termined. As a conclusion, the method of maximum entropy will only be used for the
purpose of cross-checks. The slightly better iterative methods will be discussed in the
following section.

6.2.2 Iterative unfolding

Albeit already the regularized unfolding method of maximum entropy, which bases on
the least-squares method in combination with the principle of reduced cross-entropy,
yields reliable results in many cases, an alternative approach will be discussed now: the
iterative deconvolution algorithms. Among these, especially the algorithm developed by
Gold as well as the Bayesian unfolding are extensively applied in situations comparable
to that in this work. While the first one is a refinement of the Van Cittert algorithm
and is based on the minimization of a chi-square functional, the second technique uses
the Bayes’ theorem. All iterative methods have in common that they try to approximate
successively the solution by recursion. As explained in Section 6.1, the exact and unbiased
solution of the matrix equation can suffer from huge statistical uncertainties such that
one should rather search an “appropriate” solution instead of an exact one. The basic idea
of the iterative methods is to stop the iteration at a certain depth, where the solution is
as unbiased as possible, while the statistical fluctuations are still small enough. Strictly
speaking, by this the iterative procedures deploy a kind of regularization, too. In the
following, the algorithm of Van Cittert and its refinement by Gold as well as the method
based on the Bayes’ theorem will be introduced.

9At around 125, since the solution vector
−→
X will have, maximally, 25 (energy bins) times 5 (primaries)

entries.
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Van Cittert’s algorithm

The Van Cittert algorithm is the most famous iterative deconvolution technique and
the first published linear iterative unfolding method [185]. It has comprehensively been
discussed by Jansson [100], while further details about the application can be found in
[47, 166].

The iteration specification of the Van Cittert algorithm is given by:

xk+1
i = xki + α

yi − NnuclNs∑
j=1
Rijx

k
j

 , i, j = 1, . . . , NnuclNs . (6.16)

The idea bases on a comparison between the measurement vector −→Y and the data distri-
bution predicted by the current estimated solution

−→
X k, computed by the forward folding

Rijx
k
j . The closer the estimated solution is to the exact one, the smaller the residual will

be, i.e. the better the estimated solution will describe the measured data. The estimated
solution of step k will be corrected by that residual, what yields the new estimation of
step k + 1. The convergence can be steered by the parameter α, the so-called relaxation
factor, which was introduced by Jansson [101].

As can be seen, the dimensions of the data vector −→Y and the one of the solution −→X
have to be equal. Since this is not the case in the current analysis, one has to apply the
following transformations:

R→ RTR and −→
Y → RT−→Y . (6.17)

To account for the statistical errors σ(yi) of the measured data, they can be considered
via the error matrix Cij = δij σ(yi) in the modified response matrix R̃ and the modified

measurement vector −̃→Y :

R̃ = CR and
−̃→
Y = C

−→
Y . (6.18)

The speed of convergence can be steered by the relaxation factor α. For a save conver-
gence, this parameter has to be 0 < α < 2/λmax, with λmax being the largest eigenvalue
of the response matrix [191].

The disadvantages of Van Cittert’s method are discussed by Jansson [100]. It is a
general problem of most of the linear deconvolution methods that they cannot guarantee
positiveness of the solution. However, negative fluxes would not physically make sense in
the current analysis. This problem can be solved by utilization of nonlinear algorithms,
which ensure that no channel of the solution can have negative values. In 1964, Gold [77]
developed a nonlinear unfolding technique, which applies multiplicative corrections, in-
stead of the subtraction in case of Van Cittert. This algorithm, which ensures positiveness
of the solution, will be outlined in the next section.

Gold’s algorithm

The nonlinear iterative unfolding technique developed by Gold [77] in 1964 was regarded,
over many years, to be unrelated to the algorithm of Van Cittert. Thirty years later, Xu
et al. [191] showed that Gold’s algorithm is simply a special form of the Van Cittert
technique with a variable relaxation function, which does not only vary with the channel
number, but also with the iteration index. In comparison to the Van Cittert algorithm,
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Gold’s one demands stricter conditions for convergence. It is only applicable, if all prin-
cipal minors of the response matrix and all its eigenvalues are positive and real. The
following deliberations base on the ones performed in [77].

In a first assumption, the response matrix R is considered to be quadratic10, i.e.
R ∈ Rn×n. It is not singular and has only positive entries, while the diagonal elements
additionally have to be non-zero. The two latter claims are satisfied in the current anal-
ysis, since only non-negative probabilities contribute to R, while the non-singularity
condition is sufficiently fulfilled, since the response matrix is ill-conditioned, but not
completely singular. The data vector

−→
Y has to consist of positive values only, what can

simply be achieved by only regarding those cells of the measured two-dimensional shower
size distribution that have non-zero entries. Last but not least, the solution vector

−→
X has

to be non-negative, what is the case since the cosmic ray flux does not adopt negative
values. Under all these assumptions, stated by Gold [77], the problem can be transferred
to a kind of eigenvalue problem. There exists a diagonal matrix D with unique elements
such that:

−→
X = D

−→
Y , with Dii = xi/yi, i = 1, 2, . . . , n . (6.19)

Note that only in the trivial case, where the response matrix R itself is diagonal, D can
be identified with the inverse of R. If the diagonal matrix D is known, one can simply
compute

−→
X , and hence the sought-after energy spectra. While Van Cittert’s algorithm

successively approximates the solution −→X , in Gold’s ansatz the elements of D will be
iteratively approximated in lieu thereof (cf. [77, p. 12 et seqq.] for a detailed derivation):

Dk+1
ii = Dkiiyi

n∑
j=1
RijD

k
jjyj

, i, j = 1, 2, . . . , n . (6.20)

However, by multiplication with the measurement −→Y and using Eq.(6.19), one can trans-
form this equation into a recursion relation between successive approximations for the
solution −→X :

xk+1
i = xki yi

n∑
j=1
Rijx

k
j

= xki
yi

yki
, i, j = 1, 2, . . . , n . (6.21)

Thereby, the solution −→X can be approximated without using the inverse of R. While in
Van Cittert’s algorithm, given by Eq.(6.16), the difference yi − yki between the measure-
ment vector

−→
Y and the data vector

−→
Y k that is predicted by the actual solution

−→
X k is

regarded as indicator for the quality of the approximation, in Gold’s approach their ratio
yi/y

k
i is considered. Therefore, it is sometimes named Gold’s ratio method. For example,

if the element yki of the estimated data vector −→Y k, which is derived by a forward folding
of the actual solution

−→
X k, is smaller than that one in the measured vector

−→
Y , the ratio

will be larger than one. By this, the corresponding entry in the estimated solution will
be increased from iteration step k to k + 1, such that the subsequent solution estimate
will conform better with the measured data sample.

10The non-quadratic case will be discussed later.
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Furthermore, it is obvious that all successive estimates −→X k are positive vectors11,
since the data vector consists of positive values only, as demanded afore. By this, the
initially claimed condition that the solution vector has to be non-negative is accomplished.
Gold [77, p. 21 et seqq.] proves that, if the conditions12 claimed at the beginning of this
subsection are fulfilled, the iteration given by Eq.(6.21) will converge to the exact solution,
as long as it lies in the non-negative subspace.

In case of non-symmetric response matrices R ∈ Rm×n with m > n, i.e. the matrix
equation (6.1) is overdetermined, the method has to be modified. Gold [77, p. 22] states
that if R does not fulfil the required conditions, RTR however does and is positive
definite13. The modified matrix equation follows by multiplication of Eq.(6.1) by RT:

RT−→Y︸ ︷︷ ︸
−→
Y mod

= RTR︸ ︷︷ ︸
Rmod

−→
X . (6.22)

Since
−→
Y is positive, also

−→
Y mod = RT−→Y will be. Hence,

−→
X will meet the requirement of

a positive solution. In general, this modified equation fulfils all conditions necessary for
a convergence of Gold’s algorithm to the exact solution.

Gold and Bennett [78] discuss in detail how random statistical errors possessed by
the measured data sample will influence the solution of the convolution equation. The
regarding uncertainties depend strongly on the statistics of the data sample, and are not
a priori considered in the response matrix14. Practically, these statistical errors of the
data set are often regarded additionally in an extended response matrix R̃ by means of
an error matrix C:

R̃ = CR ,
−̃→
Y = C

−→
Y , with C ∈ Rm×m , and Cij = δij

σi
. (6.23)

The statistical errors σi of the data vector element yi are usually assumed to be Poissonian
ones15. Applying this error extension to the modified response matrix Rmod and the data
vector −→Y mod from Eq.(6.22), yields:

R̃mod = (CR)T(CR) , −̃→Y mod = (CR)TC
−→
Y , with C ∈ Rm×m , and Cij = δij

σi
.

(6.24)
Using these modifications, Eq.(6.22) has to be written as:

−̃→
Y mod = R̃mod

−→
X ⇐⇒ RTCC

−→
Y = RTCCR

−→
X . (6.25)

Since C is a diagonal matrix16, R and R̃ have the same rank. The new response matrix
R̃mod is still positive definite. Finally, Gold’s iteration method, given in Eq.(6.21), can

11If the initial vector −→X 0 is also positive, what can, however, be fulfilled, since this vector has to be set
manually at the very beginning. In this context, a short remark: Gold [77, p. 27 et seqq.] has shown that
the convergence of the iteration is independent of the choice of

−→
X 0 (as long as it is positive). Only the rate

of convergence will be influenced. Practically, as starting point
−→
X 0 a positive vector that is preferably

close to the expected solution should be chosen.
12Primarily, that the response matrix has only positive principal minors and all its eigenvalues are real

and positive, which especially prevail with matrices that are positive definite.
13Although not mentioned by Gold, this statement bases on an application of the ideas going along

with the Cholesky decomposition [80, p. 143 et seqq.].
14In which, due to the application of parametrizations, effects of the limited Monte Carlo statistics,

which correlate in one sense to the uncertainty in the data sample, are cancelled out to a certain extent.
15In this analysis, σi = √yi will be assumed.
16Which may have positive elements only, what is, however, fulfilled in this analysis due to the specific

choice of Poissonian errors.
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be written as:
xk+1
i = xki ỹmod,i

n∑
j=1
R̃mod,ijx

k
j

, i, j = 1, 2, . . . , n . (6.26)

This recurrence formula will be used in the final unfolding analysis of this work.
Whilst his reasoning, Gold [77, p. 23] introduced the positive definite quadratic form:

F (−→X k) = (−→X k −−→X )TR(−→X k −−→X ) . (6.27)

Mathematically, this functional, which is also named error function, is the norm of the
difference vector −→X k −−→X between the estimated −→X k and the exact solution −→X , while R
is the underlying metric respectively. The convergence of Eq.(6.26) is equivalent to the
convergence F k→∞−−−→ 0. Using Eq.(6.26) and after a short calculation, this functional can
be transferred to the following one:

F (
−→
X k) =

∑
i

 n∑
j=1
Rijx

k
j − yi

2

σ(yi)2 = χ2
k
k→∞−−−→ 0 . (6.28)

Therefore, the convergence of Gold’s algorithm is equivalent to a chi-square minimization,
which converge to the exact solution of the matrix equation. However, as explained in
Section 6.1, this exact and unbiased solution that one would achieve in case of a large
number of iteration steps (k →∞) is not wanted, since it can suffer from large oscillations.
Hence, one will have to stop Gold’s iteration at an appropriate depth, such that the
estimated solution will be biased, but, as a quid pro quo, will exhibit significantly smaller
fluctuations than the unbiased exact solution. The optimal stopping criterion will be
discussed in Section 6.3.4.

As a conclusion, Gold’s algorithm, in the form given by Eq.(6.26), is an easy to use
and robust algorithm. Furthermore, no defining constants have to be specified. Only the
first guess for the solution, based on which the iteration will start, has to be chosen at
the very beginning. Thereby, not the convergence itself, but only its rate will depend on
the initial value. This starting point should be set as close as possible to the expected
true solution, while the accuracy of its definition is uncritical however. Furthermore, the
introduced method is very fast and hence an appropriate mean to deconvolute also two-
dimensional problems. In comparison to Van Cittert’s algorithm, Gold’s one guarantees
the positiveness of the solution implicitly and by this physically meaningful results. In
addition, it is less sensitive to ill-conditioning in the response matrix. Nevertheless, also
in case of his rather stable algorithm, Gold [77, p. 36 et seqq.] concluded that, in case
of strongly ill-conditioned response matrices, “the rate of convergence may be too low to
afford a proper definition of the appropriate solution”. Among other things, he suggested
to apply smoothing techniques or to limit the domain of the solution. Both ideas are
in general already considered in this work. The conditioning of the response matrix was
improved in Section 5.3.2 by application of specific cuts on the domain of the probabili-
ties, whereas the use of parametrizations whilst the computation of the response matrix
introduced a kind of smoothing. In summary, the course for a successful implementation
of Gold’s unfolding method is set. Preliminary trials based on test spectra have shown
that reliable solutions are derivable, such that Gold’s method will be the primary one
used in this work. Nevertheless, beside the already introduced regularized deconvolution
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technique based on the principle of maximum entropy (Section 6.2.1), a second com-
parative method will be used in this analysis in order to verify the results derived with
Gold’s algorithm. For this purpose, an iterative method that applies Bayes’ theorem will
be used, which is also widely used in comparable analyses and will be outlined now.

Bayesian unfolding

Algorithms based on the Bayes’ theorem are often applied solution techniques for con-
volutions equivalent to that given by the matrix equation (6.1). While in Bayes’ native
approach the a priori knowledge of the initial distribution is a basic prerequisite, the
deduced deconvolution methods overcome this limitation by iterative procedures. The
considerations performed in the following base mainly on [56, 155, 130, 96, 137, 136, 109,
110, 111].

If a solution
−→
X of Eq.(6.1) exists, what is the case as already shown in the sections

afore, its elements xi can be written as a linear combination based on the elements yj of
the measurement vector

−→
Y :

P (xi) =
∑
j

PijP (yj) =
∑
j

P (xi|yj)P (yj) , or P (−→X ) = PP (−→Y ) . (6.29)

Thereby, P is an appropriate transfer matrix, which contains the conditional probability
of a true event at xi, under the condition of a measured event at yj . As in case of Gold’s
algorithm, where the transfer matrix D (cf. Eq.(6.19)) is not the inverse of the response
matrix R, also P is not! Since P contains only non-negative values by construction, again
the non-negativeness of the solution vector −→X is ensured. While in Gold’s algorithm D

has to be estimated to solve the matrix equation for
−→
X , in the actual Bayesian approach

the conditional probability P will finally have to be approximated successively. This
probability can be reformulated based on Bayes’ theorem:

P (xi|yj)
Bayes′=

theorem

P (yj |xi)P (xi)
P (yj)

= P (yj |xi)P (xi)∑
l

P (yj |xl)P (xl)
. (6.30)

This expression for P can now be substituted into Eq.(6.29):

P (xi) =
∑
j

P (yj |xi)P (xi)P (yj)∑
l

P (yj |xl)P (xl)
. (6.31)

However, this equation cannot be solved immediately since the prior P (−→X ), which is the
sought-after solution itself, is not known, but contributes also to the right-hand side of
the expression. As mentioned in the introductory words to this subsection, the problem
due to the unknown prior can be solved by means of iterative procedures. Thereby, Bayes’
postulate, occasionally also referred to as principle of equidistribution of ignorance, will
be used, which assumes that, if there exists no further knowledge, the prior P (−→X ) can
be approximated by a uniform probability distribution17 P (−→X 0) = 1/I, where I is the
dimension of the vector −→X . Taking P (−→X 0) as first guess, the exact solution P (−→X ) can

17Alternatively, one can also use a physically motivated starting value, or a first guess based on the
results of other unfolding methods (Gold, maximum entropy, etc.).



104 6. Unfolding Methods and Monte Carlo Tests

now be computed iteratively:

P (xk+1
i ) = P (xki )

∑
j

P (yj |xi)P (yj)∑
l

P (yj |xl)P (xkl )
. (6.32)

The probabilities P (xi) and P (yj) can be expressed as follows:

P (xi) = xi
L∑
l=1
xl

and P (yj′) =
yj′
J∑
j=1
yj

, (6.33)

where L and J are the dimensions of −→X and −→Y respectively. Furthermore, the transfer
probability P (yj |xi) is nothing less than the response matrix:

P (yj |xi) = Rji . (6.34)

Hence, Eq.(6.32) can be replaced by the following recurrence formula:

xk+1
i = xki

∑
j

P (yj |xi)yj∑
l

P (yj |xl)xkl
= xki

∑
j

Rjiyj∑
l

Rjlx
k
l

. (6.35)

The summation over j can be understood as a regularization or, more precisely, as a cor-
rection factor affecting xki analogue to that in Van Cittert’s or Gold’s approach. Usually,
the denominator tends to be the dominant initiator of the correction. If e.g. the estimated
solution xki is too small, the recurrences of xki in the denominator would usually enlarge
the value of xki that is in front of the summation, and a new and typically larger solution
xk+1
i will be approximated.

Because the Bayesian approach rests on the concept of probability, one has to take
into account that full efficiency of the experiment will not occur in all cases. Especially
for air showers with smaller primary energies, the probability to induce an entry in the
measured two-dimensional shower size spectrum is possibly smaller than 1. Hence, in
case of the Bayesian unfolding the efficiency ε has to be considered explicitly in the
used algorithm. Since the response matrix contains all probabilities, the corresponding
efficiencies can be computed by:

εi =
∑
j

Rji . (6.36)

Based on this expression, the algorithm that will finally be used in this work can be
written as:

xk+1
i = xki∑

j

Rji

∑
j

Rjiyj∑
l

Rjlx
k
l

. (6.37)

The convergence of the Bayesian unfolding method was topic of many publications.
For example, Kennett et al. [109] have investigated the convergent properties in detail
and investigated the relationship between the depth of the iteration and the achieved
resolution. Summarizing the results of all contributions, the convergence is not in every
case sure, contrary to Gold’s algorithm, which guarantees this property a priori. Further-
more, the implementation is more difficult, and the determination of the right stopping
criterion is not as simple as in case of Gold’s approach. However, the Bayesian deconvo-
lution has performed rather stable and offered good results, as trial unfoldings based on
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test spectra have shown. As stated in the previous subsection, Gold’s algorithm will be
the first choice for this work, while, nevertheless, the main results will be cross-checked
by means of the Bayesian method, beside the third approach based on the principle of
maximum entropy.

6.3 Implementation and Quality of the Unfolding Algo-
rithms

In Section 6.2, different deconvolution techniques were introduced, which can be used to
solve the matrix equation

−→
Y = R

−→
X, with

−→
Y ∈ RNm ,

−→
X ∈ RNnuclNs , R ∈ RNm×NnuclNs , (6.38)

for −→X that contains the information about the primary energy spectra of individual
mass groups. These methods have been chosen attentively out of the large number of
unfolding procedures that can be used to solve such matrix equations. The preselected18

algorithms will now be tested by means of Monte Carlo methods. Firstly, the meaning of
the term “iteration depth”, which is related to the number of iteration steps and will be
used several times in the following, will be defined precisely. Then, appropriate toy data
samples will be generated (Section 6.3.2) that can be used as basis for trial unfoldings,
which serve to investigate the propagation of errors (Section 6.3.3), to find appropriate
stopping criterions for the iterative unfolding methods (Section 6.3.4), and to analyse the
quality and robustness of the algorithms (Section 6.3.5).

6.3.1 Definition of the “iteration depth”

In case of the iterative unfolding procedures, a kind of regularization of the reconstruction
process can be applied by stopping the recursion after a specific number of iteration
steps, before it converges to the exact, but probably oscillating solution. The number
of iterations is rather a mathematical size, and less physically motivated. Hence, an
alternative quantity will be introduced now that represents the number of iteration steps
in a more meaningful way. As stated in Section 6.2.2, Gold’s algorithm is equivalent to a
chi-square minimization (cf. Eq.(6.28)). Hence, the reduced chi-square value19

χ2
k = 1
M

M∑
i=1

 N∑
j=1
Rijx

k
j − yi

2

σ(yi)2 := 1
M

M∑
i=1
χ2
k,i . (6.39)

is a good measure, how accurately the actual solution estimate
−→
X k, that is derived after

k iteration steps, describes the measured data sample −→Y . Thereby, M and N are the
dimensions of −→Y and −→X k respectively. The used statistical errors σ(yi) of the data sample

18As already mentioned in Section 6.2, Gold’s method turned out to be the most reliable one for this
analysis. Hence, in the following, mainly results for this algorithm will be shown, whereas, however, all
considerations have been applied to the other techniques, too.

19However, since some of the entries of the data vector
−→
Y are small numbers, the chi-square test have

to be interpreted with caution. As a replacement for the physically less meaningful number of iterations
it is suitable, while, in the final analysis, a precise comparison between the unfolded solution and the
measurement will additionally be performed by means of a Kolmogorov-Smirnov test [117, 163].
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Figure 6.2: The quality χ2
k (given by Eq.(6.39)) of the description of the measured data

by the unfolded solution (left panel), as well as the quality improvement ∆χ2 (given by
Eq.(6.40)) from iteration step k to k+ 1 (right panel), both as a function of the number
or iterations. The presented results base on an unfolding of a realistic toy dataset that
will be introduced in Section 6.3.2.

−→
Y are assumed to be Poissonian ones, and hence are set to σ(yi) = √yi. Alternatively,
instead of the quality measure χ2

k itself, the degree of its improvement

∆χ2 = χ2
k − χ2

k+1 (6.40)

from iteration step k to k + 1 can be considered. It is more sensitive to changes in the
number of iterations, and hence a better replacement for the iteration number, while still
possessing a physical meaning.

In Fig. 6.2, both χ2
k and ∆χ2 are illustrated as a function of the iteration number k.

The results base on an unfolding of the realistic toy data sample that will be introduced
in Section 6.3.2. It is obvious, that a larger number of iterations will yield a smaller χ2

k

value, what corresponds to a better reproduction of the data sample by the estimated
solution. While the reduced χ2

k values level out at around 0.3 to 0.4 after some tens of
iterations, its improvement ∆χ2 from one step to another decreases significantly. For the
toy dataset, which was exemplarily used for this comparison, an optimal solution will be
found for ∆χ2 values at around 3 × 10−4, as will be shown later on (cf. Section 6.3.4).
This correlates roughly to 100 iteration steps, while the corresponding χ2

k is round about
0.35. Henceforth, the change ∆χ2 will be used as reference value instead of the number
of iterations. The term “iteration depth”, which will be used frequently in the further
analysis, will be used synonymously20 for ∆χ2.

While, in case of the aforementioned example, the estimated solution already seems
to conform with the data quite accurately after round about 100 iteration steps, further
recursions, however, would again improve the description. In this context, it should be
pointed out, that the defined chi-square value describes the quality of the reproduction
of the measured data by the solution, but not the quality of the solution itself. This is an
important difference, since, as mentioned in Section 6.1, not an exact solution is desired
that reproduces every single fluctuation of the data sample, but, instead, an “appropriate”
one. In order to judge about the quality of the solution itself, a better indicator will be
defined (cf. Section 6.3.4), which allows to find an iteration depth that yields an optimal

20This is reasonable, since ∆χ2 corresponds indeed to a certain number of iterations, and hence to the
“depth” of the recursion
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primary γ1 γ2 Ek/PeV relative abundance α, (
∑

= 1)
H -2.62 -4.76 4.47 0.1956
He -2.62 -4.63 8.94 0.4058
C -2.62 -4.37 26.82 0.1550
Si -2.62 -3.84 62.58 0.0812
Fe -2.62 -3.05 116.22 0.1624

Table 6.1: The parameters of the spectra of individual cosmic ray mass groups measured
with KASCADE [9] and computed in [36]. These parameters are used as basis for, to a
certain extent realistic, trial spectra.

solution (in this example the iteration depth ∆χ2 = 3×10−4). But before that, the focus
will be put on the generation of toy datasets that serve for further investigations.

6.3.2 Generation of toy datasets

Monte Carlo methods are used in order to test the unfolding procedure, to derive its
uncertainties etc. Thereby, arbitrary energy spectra of cosmic rays can be assumed. Based
on those, toy datasets can be generated, which can be unfolded by means of the respective
unfolding algorithms. As the assumed “true” spectra are known a priori, the unfolded
solution can be compared to it. By this, the quality of the unfolding procedure can be
judged.

As starting point, any spectrum could be assumed. However, since it is accepted
widely that the spectrum of cosmic rays follows a power law, in this work only trial
spectra are considered that are distributed according to a single or a double power law.
For the mathematical description of the differential spectrum dJ(E)/dE of a certain
cosmic ray mass group, a formula, inspired by that used by Hörandel [95] for the poly-
gonato21 model, is used:

dJ(E)
dE

= J0 E
γ1

(
1 +

(
E

Ek

)ε)(γ2−γ1)/ε
, (6.41)

where the absolute flux J0 serves as normalization, while the power law can be a broken
one with a change of index from γ1 to γ2 at the transition energy Ek. The index “k” alludes
to the word “knee”, since the structures that are expected in the observed energy range
of cosmic rays are called the knees of the cosmic ray spectrum, caused by a steepening
of the spectra of individual mass groups. However, vice versa, also spectra that get
harder (“ankle”-like structure) or those with no change in index can be regarded. The
smoothness of the transition between the two power laws is characterized by ε, whereby
ε = 1 corresponds to a smooth change over about one decade of energy, while ε = 4
means a faster change within already 1/5 of a decade [95].

To get trial spectra that are close to reality22, the results of Bindig [36] are taken into
account, who fitted the spectra of individual mass groups measured with the KASCADE
experiment [9]. The results are summarized in Table 6.1. The parameter of smoothness
can be set to ε = 3, while its exact value is not important for the tests. The absolute
normalization J0 that belongs to the respective mass group is not important, either,

21Greek notation for many knees.
22The trial spectra should be more or less realistic, while the exact properties are not of importance,

since they are used only to test the unfolding algorithms, but are not used in the final analysis of the
measured data.
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since Eq.(6.41) will serve only as a probability distribution used as basis for a random
generator, and will thereby be normalized to 1 anyway.

Lastly, the generation of toy data samples is sketched in Fig. 6.3. The procedure can
be divided into three basic steps:

1. Arbitrary energy spectra for the five used mass groups have to be stated, in this
example the realistic ones based on a broken power law according to Eq.(6.41) with
parameters as summarized in Table 6.1. These initial spectra will be considered as
the “true ones” in the following.

2. Since the measurement time of KASCADE-Grande is strongly limited to a couple
of years only, even perfectly reconstructed energy spectra would only represent a
sample of the true23 energy spectra. This sample will suffer from statistical fluc-
tuations. Hence, based on the assumed smooth energy spectra, a new set will be
generated by means of a random generator24 that considers the initial power law
functions as probability distributions. By this, more realistic energy spectra, which
include statistical fluctuations, are attained. Remark: in the example of the realistic
test spectra, for a specific primary the random generator will be run 7.86× 106×α
times, where α is the relative abundance of this primary as given in Table 6.1. The
factor 7.86 × 106 was defined such that the toy dataset that will be generated in
step 3 has roughly the same number of entries25 as the shower size plane actually
measured with KASCADE-Grande and used in this analysis. Thus, the generated
toy dataset will suffer from comparable statistical uncertainties like the measured
one.

3. Now, the toy dataset can be generated. This is again done by means of the random
generator. Thereby, the response matrix is considered as probability distribution,
since it contains the information with which probability an air shower that was
induced by a primary having a certain energy will contribute to a specific cell of
the measured two-dimensional shower size plane. The number of runs of the random
generator for a specific energy bin and primary particle is given by the number of
entries in the associated energy bin of the particle’s trial spectrum generated in
step 2.

The artificial toy dataset can now be used for further investigations, and, thereby, e.g.
can be unfolded. As the initial “true” energy spectra are known a priori, the estimated
solutions can be compared to them in order to review the quality of different unfolding
techniques. Furthermore, the error propagation through the algorithms can be examined,
what will be the topic of the next section.

23Which can only be determined with unlimited measurement time, under the condition that they are
constant over that time and their variations have only a statistical origin.

24In all further steps, as random generator the Mersenne and Twister pseudo-random number generator,
developed by Matsumoto and Nishimura [135], is used in form of the implementation in the ROOT [45]
class TRandom3. It is fast and of high quality.

25Actually, in the toy data sample there are a little bit less events than in case of the measurement.



6.3. Implementation and Quality of the Unfolding Algorithms 109

Figure 6.3: Sketch of the generation of toy datasets (see text for further details).



110 6. Unfolding Methods and Monte Carlo Tests

6.3.3 Error propagation

In this section, the uncertainties imposed to the unfolded solution are examined. Thereby,
all considerations are performed exemplarily for the “realistic” toy spectrum introduced in
the previous section. However, everything was repeated for diverse spectra, as well as for
other26 unfolding procedures than that based on Gold’s algorithm. Firstly, an overview
over all possible sources of uncertainties is given. Thereafter, appropriate methods to
account for these uncertainties are elaborated. Finally, a first comparison of the impacts
of different sources of uncertainties on the unfolded solution based on the shower size
distribution measured with KASCADE-Grande will be presented.

Sources of uncertainties

In this analysis, four different sources of uncertainties have to be considered and will now
be discussed:

1. Statistical uncertainties due to the limited measurement time: Due to the limited
exposure, the measured data sample will suffer from unpreventable statistical un-
certainties, which are expected to be Poisson distributed. These uncertainties will
be propagated through the applied unfolding algorithm and are usually amplified
thereby. In case of the iterative deconvolution techniques, this amplification can be
controlled by the number of iterations, or, in case of the regularized methods, by
the regularization parameter respectively.

2. Systematic bias induced by the unfolding method: based on the convergence proper-
ties of the iterative algorithms, small numbers of iteration steps will for one thing
reduce the amplification of the statistical uncertainties of the data sample, for an-
other thing will result in a solution that is deviating from the exact one. In case of
the regularized techniques it is similar, since the regularization damps oscillations,
but, conversely, results in a biased solution.

3. Systematic uncertainties due to the limited Monte Carlo statistics: Due to limited
computing time, only Monte Carlo simulation sets with limited statistics can be
generated. The uncertainties in the simulated distributions used in Sections 5.1 and
5.2 to parametrize the air shower development and the reconstruction properties
result in an uncertainty in the computed response matrix. Hence, the response ma-
trix can be systematically wrong. Furthermore, the conditioning (cf. Section 5.3.2)
that was applied to the matrix could have systematic impacts, which are, however,
small enough to be neglected. Since the response matrix is used in the deconvolu-
tion procedure, all this induces finally a systematic uncertainty in the estimated
solution.

4. Systematic uncertainties due to the systematic uncertainty in the Monte Carlo sim-
ulations: The Monte Carlo simulations used to compute the response matrix base
on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
As indicated by the word “model”, they are theoretical constructs, even though ex-
perimental experiences are considered. It is not guaranteed that they describe the
truth sufficiently well. d’Enterria et al. [59] compared the first Large Hadron Col-
lider (LHC) data with the predictions of various Monte Carlo models, including e.g.

26Since everything would be analogue to the way of proceeding pursued for Gold’s algorithm, the other
methods are not treated separately.
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the models QGSJET 01, QGSJET-II, SIBYLL 2.1, and EPOS 1.99. They stated
that none of the investigated models can describe consistently all characteristics
of the LHC measurements. Nevertheless, whilst the final analysis of this work, it
will be shown that the used model QGSJET-II-02 yields results, that agree with
the data measured with KASCADE-Grande, and hence it can be expected that
the result is not quite far off the truth. Coming back to the response matrix, a
possible deficient description of the contributing physical processes would result
in systematic errors in the response matrix, and hence to a systematic wrong de-
convolution result. However, this is a common problem of all analyses that need
to utilize simulations. This kind of uncertainties cannot be computed within this
analysis. Nevertheless, as mentioned just afore, the quality of the description of
the measured data by the solution can be investigated to have a rough impression
whether the used interaction models are rather wrong, or, possibly, proper candi-
dates. Hence, all results in this work can only be given under the assumption that
the applied models QGSJET-II-02 and FLUKA 2002.4 are the right ones, such that
the additional model uncertainty can be neglected in the following. From both, the
low energy interaction model, here FLUKA, has less influence on the final result,
as already the analyses based on the KASCADE measurements have proved [12].
An impression about the model dependence of the solution can only be obtained by
repeating the whole analysis using different high energy interaction models. Whilst
the main analysis of this work, a first but roughly done cross-check based on the
high energy interaction model EPOS 1.99 [188] will be performed (Section 7.2.3).
Precise analyses based on that or alternative interaction models are carried out
actually by our collaboration and will be presented in the near future, but cannot
be shown in this work right now.

In the following, adequate measures are adopted in order to account for the mentioned
sources of uncertainties and to consider them in the final results.

“True” statistical uncertainty and “true” bias

The “true” statistical uncertainty, caused by the limited exposure, as well as the “true”
bias, caused by the unfolding algorithm itself, will be computed now. The determination
of these “true”27 uncertainties is only possible in case of trial energy spectra and toy
datasets, since there the “true” solution is known and can be compared to the estimated
one. In case of the measurement, however, one can only try to estimate the uncertainties,
what will be shown thereafter. The principle of the computation of the “true” uncertain-
ties is sketched in Fig. 6.4 and can be divided into several steps:

1. The first step is the generation of a toy dataset, as already explained in Section 6.3.2.
However, based on the assumed “true” energy spectra

−→
X tru, instead of one N toy

energy spectra are generated28. Again, based on these spectra, for each set i a toy
dataset −→Y i will be generated.

2. Every toy dataset
−→
Y i is unfolded based on Gold’s algorithm with the same de-

fined iteration depth, which yields the estimated solutions −→X est
i belonging to the

respective set i and the chosen iteration depth.
27Strictly speaking, these are not the really true uncertainties and hence are written with quotation

marks, since the true uncertainties can only be derived with infinite simulation statistics. However, the
computed “true” uncertainties are reliable estimates.

28In this work, N = 50 sets are used.
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Figure 6.4: Sketch of the computation of the “true” uncertainties (see text for further
details).
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The “true” statistical uncertainties are given by the fluctuations of the N estimated
solutions

−→
X est
i . More precisely, the variance of the distribution of the estimated solutions

xest
k,i around their mean value xest

k for an individual energy bin k will be used as measure
for the absolute statistical uncertainty σk of the flux at that energy bin:

σ2
k = 1
N

N∑
i=1

(
xest
k,i − xest

k

)2
, with xest

k = 1
N

N∑
i=1
xest
k,i . (6.42)

The absolute bias bk of the flux at an individual energy bin k is given by the mean
deviation of the estimated solutions xest

k,i from the true one xtru
k for that specific energy

bin k:

bk = 1
N

N∑
i=1

(
xest
k,i − xtru

k

)
. (6.43)

Whilst the aforementioned computations based on toy datasets, the whole deconvo-
lution procedure is considered as a kind of “black box”. Thereby, the exact knowledge
about the propagation process of the errors is not necessary. However, as already em-
phasized, in case of the KASCADE-Grande measurements the “true” energy spectra are
not known, such that the unfolded ones cannot be compared to them. For this purpose,
the error computation has to be modified, what will be shown hereinafter. Firstly, the
estimation of the statistical uncertainty will be explained, and, thereafter, the estimation
of the bias.

Estimation of the statistical uncertainty

Since in case of the measurement the “true” energy spectra are not known, the methods
explained afore to compute the “true” statistical uncertainties are not immediately appli-
cable. However, by means of a frequentist approach, the uncertainties can be estimated.
The basic idea is sketched in Fig. 6.5, and can be divided into two steps:

1. Based on the measured data sample
−→
Y , N toy datasets

−→
Y i are generated. This

is done by means of a random generator, that regards the measured sample −→Y as
probability distribution. The generated sets will differ from the measured one in
the context of Poisson statistics only.

2. The generated toy datasets −→Y i are now unfolded, what yields the estimated solu-
tions

−→
X est
i .

Analogue to the “true” absolute statistical uncertainty, the estimated one σest
k can now

be determined by the variance of the distribution of the estimated solutions xest
k,i around

their mean value xest
k for an individual energy bin k:

(σest
k )2 = 1

N

N∑
i=1

(
xest
k,i − xest

k

)2
, with xest

k = 1
N

N∑
i=1
xest
k,i . (6.44)

In Fig. 6.6, a comparison between the “true” (computed using Eq.(6.42)) and the
estimated (computed using Eq.(6.44)) statistical uncertainties, based on the realistic toy
dataset introduced in Section 6.3.2, is shown. The data samples have been unfolded with
either a smaller iteration depth ∆χ2 = 3 × 10−3 (top panels), or with a significantly
larger number of iteration steps corresponding to a ∆χ2 = 1× 10−8 (bottom panels), of
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Figure 6.5: Sketch of the computation of the estimated statistical uncertainties (see text
for further details).
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Figure 6.6: Comparison between the “true” (Eq.(6.42)) and the estimated (Eq.(6.44))
absolute statistical uncertainties of the flux based on the realistic toy dataset introduced
in Section 6.3.2, which was unfolded with either a smaller iteration depth ∆χ2 = 3×10−3

(top panels), or with a significantly larger one ∆χ2 = 1× 10−8 (bottom panels). This is
exemplarily shown in case of primary protons (left) or iron nuclei (right).

which the latter iteration yields a solution closer to the exact one and by this results in
larger statistical fluctuations. This is exemplarily shown in case of primary protons (left)
or iron nuclei (right). Overall, there is a good agreement; hence, the estimation of the
statistical uncertainties performs reliable. If there are deviations, they are mostly based
on an overestimation of the statistical uncertainties, what will result in slightly too large
error bars of the flux at that energy bins. Nevertheless, this appears more acceptable
than a presentation with error bars that are too small. However, most of the significant
deviations are in energy ranges for that the spectrum of the specific primary will have
one-digit entry numbers only, such that both the estimated and the “true” statistical
uncertainties are large enough to tag this range as precarious in equal measure. The
exact uncertainty values are less important there. Above energies of log10(E/GeV) ≈ 8.5,
de facto no energy spectra will be shown in the final result of this work29, such that this
range is less important anyhow.

29Due to the huge overall uncertainties there.



116 6. Unfolding Methods and Monte Carlo Tests

Estimation of the bias

In case of the measurement, the bias can be estimated only, since, naturally, the “true”
spectra are not known such that the unfolded estimates cannot be compared to them.
The estimation of the bias is again performed based on a frequentist approach. The basic
idea bases on the principle of the bootstrap methods and is illustrated in Fig. 6.7. The
procedure can be divided into the following steps:

1. The “true” bias was computed by a comparison between some estimated solu-
tions and the initially assumed true elemental energy spectra. Since in case of the
measurement the true energy spectra are sought-after, and hence not known, the
situation is more difficult. An appropriate compromise that was found to solve this
problem is to guess the “true” solution by means of an unfolding of the measured
data sample −→Y for a specific iteration depth. For purpose of the estimation of the
bias it is not necessary that the guessed solution is right. This will only be impor-
tant in the final analysis, and a method to find the best guess will be introduced
in Section 6.3.4. Therefore, currently, the properness of the guessed solution is not
of interest, and hence the used iteration depth can be arbitrary without loss of
generality. The unfolded solution estimate will be considered, for lack of a better
knowledge, to be the true one in the following steps. However, it will be named−→
X temp to point out, that it is rather a template for the further computations and
not really the definitely true solution.

2. Based on the solution template −→X temp, N toy datasets −→Y i can be generated by
means of a random generator and based on the response matrix as probability
distribution. Hence, the following steps will be equivalent to that performed whilst
the computation of the “true” bias.

3. All toy datasets −→Y i are unfolded, what yields the estimated solutions −→X est
i . Thereby,

for a correct estimation of the bias, the same iteration depth has to be used as whilst
the computation of the template solution in step 1.

Analogue to the “true” absolute bias, the estimated one best
k at an energy bin k is given

by the mean deviation of the estimated solutions xest
k,i from the template xtemp

k :

best
k = 1

N

N∑
i=1

(
xest
k,i − x

temp
k

)
. (6.45)

The basic idea behind this technique is that the bias is only an intrinsic one induced
by the unfolding algorithm itself. Hence, if the algorithm is biased30, whilst the unfolding
of the toy datasets that were generated based on the template a certain bias will be
introduced. This bias is a specific one for the unfolding of that data sample31 under the
chosen iteration depth. In the final analysis, the task will be to find a template that is
close to the true32 solution, and then to estimate the associated bias by the outlined
technique.

In Fig. 6.8, a comparison between the “true” (Eq.(6.43)) and the estimated (Eq.(6.45))
absolute bias, based on the realistic toy dataset introduced in Section 6.3.2, is shown33.

30What is the case for the used ones, as explained in Section 6.2.
31Or comparable datasets that are compatible within statistics.
32In Section 6.3.4, a method will be introduced that allows to judge whether or not the template is

close to the truth.
33Since the bias varies over some orders of magnitudes in the observed energy range, a logarithmic

scale was used such that only the absolute values |best| and |b| can be shown.
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Figure 6.7: Sketch of the computation of the estimated bias (see text for further details).
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Figure 6.8: Comparison between the “true” (Eq.(6.43)) and the estimated (Eq.(6.45))
absolute bias of the flux based on the realistic toy dataset introduced in Section 6.3.2,
which was unfolded with either a smaller iteration depth ∆χ2 = 3 × 10−3 (top panels),
or with a significantly larger one ∆χ2 = 1 × 10−8 (bottom panels). This is exemplarily
shown in case of primary proton (left) or iron nuclei (right).

Both the template solution
−→
X temp as well as the estimated solutions have been derived

by an unfolding with the same iteration depth: either both with ∆χ2 = 3 × 10−3 (top
panels) or ∆χ2 = 1×10−8 (bottom panels). This is exemplarily shown in case of primary
protons (left) or iron nuclei (right). Tendentially, the estimated and the “true” bias agree
well. The orders of magnitude as well as the course are roughly the same. However,
looking at individual energy bins, in several cases one can observe larger deviations
between the “true” and the estimated bias. In a few cases, also the signs of the values
are different34, what happens seldom however. While the estimation of the statistical
uncertainties performs as well that it can be done for each energy bin separately, this will
not be possible for the bias. Instead, a conservative approach will be pursued: the limits of
the domain of the estimated bias will be determined under the demand that the “true”
bias will be covered and, as possible, that the bias will not be underestimated. These
limits will be used as measure for the systematic bias of the used unfolding algorithm.

For this purpose, it is more useful to regard the relative bias instead of the absolute
one. In Fig. 6.9, the relative bias, i.e. the relation between the number of entries in the
estimated solution vector for a certain energy to that in the true solution, is depicted as a
function of the number of entries in the estimated solution vector, i.e. as a function of the

34Not visible here, since only the absolute values are shown. Confer Fig. 6.9 to get a better impression.
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Figure 6.9: Comparison between the “true” and the estimated relative bias for different
primaries and based on the realistic toy dataset introduced in Section 6.3.2, which was
unfolded with the optimal iteration depth of ∆χ2 = 3 × 10−4 (cf. Section 6.3.4). On
the right panel, the range of the axis of ordinates is scaled-down for reasons of a better
distinguishability.

number of showers35 log10(N rec). The result bases on the realistic toy dataset introduced
in Section 6.3.2, which was unfolded with the optimal iteration depth of ∆χ2 = 3× 10−4

(cf. Section 6.3.4). Both the “true” and the estimated relative bias are shown.
Above values of log10(N rec) = 1.3 (indicated by the vertical dashed line), what corre-

sponds to around N = 20 air shower events and hence to 20 entries in the related energy
spectrum, the relative systematic bias can be bracketed overall as done in the figure by
the two dashed horizontal lines. On the right panel, the axis of ordinates is scaled-down
for a better distinguishability. Thereby, only the estimated relative biases are taken into
account, since the “true” ones would not be available in case of the real measurement.
Tendentially, the “true” and the estimated biases conform to a certain extent. However,
it will be more reliable to consider, conservatively, the value derived by the bracketing as
common bias for all primaries. By this, for this example a common relative bias of 40%
can be stated. This bracketing can also be done in case of the measured data sample,
since it covers not only the estimated relative bias, but also the “true” one in almost all
cases, as extensive tests based on diverse trial spectra have shown. Only in a few exam-
ples, the bias was underestimated slightly (maximal 5%), but only at one or two shower
numbers log10(N rec), what is still an acceptable result and does not give any indication
that the applied bias estimation will fail in case of real data.

For smaller numbers of entries in the solution vector, in this example in case of less
then 20 air shower events, the relative bias gets huge. This is mainly caused by the positive
definiteness of Gold’s algorithm, that results in non-zero flux entries, often quite far away
from zero, even when the true flux is zero. This results in overestimations of the flux,
and hence in the discernible large relative bias. Furthermore, the estimated bias agrees
only slightly with the “true” one, while both are subject to bin-by-bin fluctuations. Some
tests have shown that it is more appropriate to assume a fixed absolute bias, instead of a
relative one, below that problematic threshold. In this example, based on the estimated
relative bias, an absolute one of b = 40 was defined, if log10(N rec) < 1.3. With decreasing

35The relative bias in the number of showers is shown in dependence on the number of showers itself
instead on the energy. This simplifies the reconversion to an absolute bias that will be assigned to the
fluxes in terms of error bands in the final depiction.
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number of events, the relative bias will get larger in case of this assumption. For example,
at log10(N rec) = 1, what corresponds to N = 10 events, b = 40 would mean that there
could also be 50 events, what is equivalent to a relative bias of 400%. This would already
tag the corresponding ranges of the spectrum as not trustable. Hence, the knowledge of
the exact value of the bias is less important in those cases.

Extensive tests with diverse trial spectra have shown, that the common relative bias
estimated based on the bracketing, in combination with the defined fixed absolute bias
below a certain number of events, yields reliable results in all observed cases. Hence,
this method yields an acceptable estimate for the relative bias over the whole observed
energy range, and will finally be used in case of measured data, too. Again, it should be
emphasized that both the estimation of the statistical uncertainty as well as of the bias
can be applied in the same manner for all used unfolding techniques, and hence are not
restricted to Gold’s algorithm.

Systematic uncertainties in the response matrix

One key part of the unfolding analysis is the response matrix, which contains the prob-
abilities that specific charged particle and muon number combinations are measured by
KASCADE-Grande, on condition that the air shower, in which the particles were pro-
duced, was induced initially by a certain cosmic ray primary with a specific energy. The
probability densities that contribute to the response matrix have been determined based
on Monte Carlo simulations (cf. Section 5.1 and 5.2). Due to the limited Monte Carlo
statistics, the response matrix computation will suffer from uncertainties. Furthermore,
the response matrix was optimized in order to avoid a strong ill-conditioning (cf. Sec-
tion 5.3.2). All this will affect the solution gained by an unfolding.

The last-mentioned source of uncertainties was intensively analysed by means of di-
verse trial spectra. It was found that the applied conditioning is as weak that it cannot
introduce a significant systematic bias to the unfolded solution. One has to keep in mind,
that the used cuts on the probability values of the response matrix are covering only
charged particle and muon number combinations that are already very unlikely. Hence,
and since the measured dataset has strongly limited statistics (at around 78 000 used
events only), those combinations will less likely occur. However, in case of some prob-
lematic trial spectra, the conditioning could help to damp huge unphysical oscillations
in the solution, while in the unproblematic cases that can be unfolded without these
statistical distortions the conditioning will not have any effect, neither a positive nor a
negative one. In all observed cases where the conditioned response matrix was used, the
statistical uncertainties of the solution could be estimated reliably. Since the conditioning
affects mainly the propagation of the statistical uncertainties of the limited data sample
through the unfolding algorithm, and hence influences the statistical uncertainties36 of
the solution while the systematic ones remain unaffected, the conditioning does not have
to be considered as possible systematic error source further.

Now, the systematic uncertainty in the solution caused by the limited Monte Carlo
statistics will be investigated. The methods introduced so far and sketched in Fig. 6.7
allow, regarding the systematic uncertainties, only to investigate the intrinsic bias caused
by the unfolding method itself, but not the effects of systematic uncertainties in the
response matrix. The latter ones would already affect the generation of toy data samples,
such that in the following unfolding procedure this influence would be compensated to a

36That are already considered by the afore-explained estimation of the statistical uncertainties.
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certain degree, since the same wrong response matrix would be used again. Consequently,
the systematic uncertainties will instead be analysed by another conservative approach.

But, firstly, we shall investigate which of the contributors37 to the response matrix, i.e.
the intrinsic shower fluctuations or the reconstruction resolution of KASCADE-Grande,
have to be considered in this context. If e.g. the resolution is as bad that the reconstructed
shower sizes have relative deviations from the true values in the order of some hundred
per cent, a preceding variation within e.g. some ten per cent caused by the intrinsic
shower fluctuations will get lost in the following strong smearing by the reconstruction
uncertainties. Hence, in the context of this example, the uncertainty in the parametriza-
tion of the shower fluctuations would have less influence on the solution. In Fig. 6.10, a
comparison between the intrinsic shower fluctuations and the reconstruction resolution
of KASCADE-Grande is accomplished (at the top panel for the charged particle number,
at the bottom one for the muon number). The shower fluctuations as a function of the
respective mean true shower size are obtained, for each set of mono-energetic shower
simulations separately, by plotting the RMS38 of the distributions of charged particles
respectively muons as a function of their mean values39. The depiction of the resolution
of the charged particle respectively muon reconstruction bases on the RMS40 of the devi-
ations between the true and the reconstructed41 shower sizes. The abscissa, i.e. the mean
true value42 of the respective shower size, is the same as in case of the shower fluctua-
tions. Whilst these comparisons, the actually asymmetric distributions are considered to
be symmetric ones. However, this simplification will affect the shown results only slightly.

In case of the charged particles, the intrinsic fluctuations whilst the development of
the air showers that are induced by protons are by far the largest uncertainties. In general,
the intrinsic shower fluctuations of heavier primaries with atomic mass A are smaller,
since they can be considered as a superposition of A hydrogen nuclei, and by this the
fluctuations roughly43 decrease by

√
A, since the primary energy is split in A independent

cascades (cf. Section 2.4). This is confirmed by the shown result, where the intrinsic
fluctuations of iron induced showers are significantly smaller than that of proton induced
ones. While in case of protons the uncertainty caused by the reconstruction resolution is
considerably smaller than that induced by the shower fluctuations, in case of iron nuclei
both sources are with less diverse impacts. Above the threshold of full efficiency at around
log10(N tru

ch ) ≈ 6.0, the shower fluctuations and the experiment’s resolution in case of iron
nuclei as well as the resolution in case of protons are of comparable magnitude. Hence,
especially in case of heavier primaries, the resolution is a crucial source of uncertainties.
Consequently, in case of the charged particle number the resolution will be taken into
account additionally to the intrinsic shower fluctuations in the following considerations.

The situation is similar in case of the muon number. Again, the intrinsic shower fluc-
tuations are smaller for heavier primaries. Above the threshold of full efficiency at around

37The efficiency is contributing, too, but with less influence since only charged particle and muon
number combinations that belong to 100% efficiency are considered in the final analysis. The small
uncertainty in the parametrization of the efficiencies is negligible in comparison to the other discussed
sources.

38See exemplarily Fig. 5.6 respectively 5.12, where the RMS is given in the statistics box.
39The mean is also given in the statistics box of the mentioned example Fig. 5.6 respectively 5.12.
40Can be seen exemplarily in the statistics boxes of Fig. 5.25 respectively 5.29.
41That are already corrected for a bias by C that is given by Eq.(5.15) respectively (5.16).
42The mean is given by the middle of the actually chosen interval of the true sizes, that is e.g. given in

the caption of the mentioned example Fig. 5.25 respectively 5.29.
43In more precise computations, the intrinsic shower fluctuations for heavy primaries are decreasing a

little bit less than
√
A; however, they are still significantly smaller than that in case of hydrogen nuclei.
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Figure 6.10: Comparison between the intrinsic shower fluctuations and the reconstruction
resolution of KASCADE-Grande, on the top panel for the charged particles, on the
bottom one for muons (exemplarily for proton and iron primaries). To guide the eye, the
markers are connected with straight lines.
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log10(N tru
µ ) ≈ 5.0, the fluctuations in the air showers induced by protons are dominant.

However, below that limit, the muon reconstruction causes the largest uncertainties. Nev-
ertheless, the resolution gets rapidly better in case of full efficiency. Hence, in case of the
muon number all four sources will be considered, too.

As already mentioned, the distributions used in Section 5.1 and 5.2 to parametrize the
contributors to the response matrix suffer from statistical uncertainties, since they base
on Monte Carlo simulations with limited statistics. Due to this, the derived parametriza-
tions will suffer from these uncertainties, too. The impacts on the unfolded solution are
investigated by the following procedure:

1. Whilst fitting the distributions in Section 5.1 and 5.2, the fit routine takes into
account also their statistical uncertainties. Hence, to all fit parameters appropriate
uncertainties are given, which reflect the uncertainty caused by the limited Monte
Carlo statistics. In a very conservative approach, all fit parameters are assumed
to be uncorrelated and to follow a Gaussian probability density function. The fit
parameter is treated as the mean value of a Gaussian function, while the parameter’s
error is regarded as the standard deviation. For every parameter an individual
Gaussian function is defined.

2. By regarding the Gaussian functions that have been defined in step 1 as probability
distribution for the respective parameters, and using a random generator, for every
parameter a new one can be computed, which conforms with the initial one in terms
of the statistical uncertainties.

3. As done in Section 5.1 and 5.2, the energy dependence of the parameters is inter-
polated based on the new parameter set.

4. All afore-listed steps are repeated for each of the error sources, i.e. for the parametri-
zation of the intrinsic shower fluctuations as well as of the reconstruction accuracy
(both in case of the muon and charged particle number).

5. Now, a new set of parametrizations for all four types of distributions is available,
based on which a new response matrix is computed. The new response matrix will
differ from the usual one only within statistical uncertainties.

The whole chain is repeated 50 times in order to get a sufficiently large set of response
matrices, which all are only differing within statistical uncertainties. The data sample
can now be unfolded with each of the 50 response matrices, resulting in 50 solutions. The
bin-wise variance of all solutions can be interpreted as the systematic uncertainty arising
from the uncertainty in the response matrix, i.e., more precisely, from the limited Monte
Carlo statistics.

It was found that the aforementioned technique varies the parametrizations only
slightly. Particularly, in the middle part of the distributions the Monte Carlo statistics
is rather good, such that the fit is already confined to a certain extent and will reveal
only small parameter uncertainties. Furthermore, the tails of the distributions will be
affected only marginally by these modifications. From the mathematical point of view,
these tails are absolutely unimportant for the fit procedure, as their content is negligible
small in comparison to that of the middle part of the distributions. The tails of the
parametrizations can be modified without changing the reduced chi-square value of the
fit. However, from the physical perspective they are of high importance. In particular,
the right tail that describes the fluctuations in direction to higher energies can have an
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Figure 6.11: Different parametrizations for the intrinsic shower fluctuations of charged
particles (top) and muons (bottom). Exemplarily, the distributions for proton (left) or
iron (right) induced showers are shown, both for a primary energy of 2 PeV.

important impact on the unfolded solution due to the steeply falling flux of cosmic rays.
These bin-to-bin migration effects can affect the unfolded solution significantly. That is
why the influence of the tails will now be investigated additionally.

In order to examine the impacts of the uncertainties in the distributions’ tails on the
final solution, a conservative approach is pursued. The tails of all four different types of
distributions that have been used to parametrize the intrinsic shower fluctuations and
the experiment’s resolution, for the number of charged particles as well as of muons, are
parametrized additionally based on different approaches. Thereby, all used fit functions
describe the distributions equally well, i.e. all modifications yields parametrizations that
are compatible within the statistical uncertainties.

In Fig 6.11, different parametrizations for the intrinsic shower fluctuations of charged
particles (top) and muons (bottom) are depicted. Exemplarily, the distributions for pro-
ton (left) or iron (right) induced showers are shown, both for a primary energy of 2
PeV.

On the top panels, the black lines (“normal”) represent the standard parametrization
that were already shown in Fig. 5.6. Taking into account the large statistical uncertainties
of the tails, the standard parametrizations can be bracketed by two extreme cases: for
one thing by a faster decreasing fit function (“hard” cutoff), for another thing by a
less steeper one (“exp.”, i.e. exponential decrease). Both additional parametrizations are
chosen on the one hand to cover almost all possible scenarios, but on the other hand such
that the resulting fit quality does not get worse. All three approaches are consistent in
the context of the statistical uncertainties in the Monte Carlo simulations. For all three
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cases, the parametrization bases mainly on that given by Eq.(5.3). Only the tails have
been modified. The hard cutoff was realized by assuming zero probability if the number of
showers falls below 1/20 of the number at the distribution’s maximum. Thereby, Eq.(5.3)
will be replaced by:

phard
(
log10N

true
ch | log10E

)
=


0 if log10N

true
ch ≤ p6 ,

Eq.(5.3) unchanged if p6 < log10N
true
ch < p7 ,

0 if log10N
true
ch ≥ p7 ,

(6.46)

where p6 and p7 are the charged particle numbers at that the distribution falls below 1/20
of its maximum. In case of the exponential decrease approach, the continuous differential
transition to the exponential function starts when the distribution falls below 1/10 of its
maximum. More precisely, Eq.(5.3) will be replaced by:

pexp.
(
log10N

true
ch | log10E

)
=


p10 × exp

(
(p6 − log10N

true
ch )p8

)
if log10N

true
ch ≤ p6 ,

Eq.(5.3) unchanged if p6 < log10N
true
ch < p7 ,

p10 × exp
(
(p7 − log10N

true
ch )p9

)
if log10N

true
ch ≥ p7 .

(6.47)
Thereby, the value p10 is 1/10 of the distribution’s maximum and ensures continuity,
while p6 and p7 correspond to the charged particle numbers where the distribution falls
below that defined threshold value, and hence mark the transition region. The parameters
p8 and p9 are the derivatives44 of the original function at the transition points, and hence
ensure the differentiability there.

On the bottom panels, the two black lines given in each plot correspond to the stan-
dard parametrization of the muon number distribution already shown in Fig. 5.12. Since
the charged particle and the muon numbers are correlated sizes, this was considered in
Section 5.1 whilst the determination of the standard parametrizations, which finally in-
clude this correlation. Hence, using the modified description of the charged particle shower
fluctuations, also the correlated log10Nch-log10Nµ distribution would be affected, and by
this also the parametrization for the muon number distribution given by Eq.(5.11). The
two black lines represent the by now unchanged parametrization according to Eq.(5.11)
under the assumption of the hard decrease (“Nch hard”) of the charged particle distri-
bution, or of an exponential one (“Nch exp.”) respectively.

Additionally, two extreme parametrizations for the description of the muon shower
fluctuations are shown: a fast cutoff (“hard”), and an exponential decrease (“exp”). Again,
all parametrizations are chosen such that the quality of the description, which is repre-
sented by the reduced chi-square value, does not get worse. The modification of Eq.(5.11)
was done somewhat different to that applied to Eq.(5.3) by means of the new Eqs.(6.46)
or (6.47). While the modification with the hard cutoff can equally be applied to the
muon distribution45, the modification considering an exponential decrease have to be
implemented based on another approach. Otherwise, if the description of the tails would
simply be replaced by an exponential term as a function of the muon number, the corre-
lation between the two shower sizes would get lost, since the new functional description
of the tails would depend only on the muon number. In order to keep the correlation,
the quadratic function, given by Eq.(5.8) and used for the parametrization of the muon

44More precisely, the derivatives divided by p10.
45And since the implementation of the hard cutoff is done analogue to that in case of the charged

particles (cf. Eq.(6.46)), it is trivial and will not be shown again.
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number distribution by Eq.(5.11), was modified in such a way that the desired effect can
be achieved. For the modification of the left tail, the old quadratic function is replaced
by the new one:

log10N0
(
log10N

true
µ,t

)
= b0 + b1 × log10N

true
µ,t − b2 ×

(
log10N

true
µ,t

)2

− (b3 − log10N
true
µ,t )× 0.3×

(
log10N

true
µ,t

)2

16
,

(6.48)

if log10N
true
µ,t ≤ b3. The right tail is modified by the replacement:

log10N0
(
log10N

true
µ,t

)
= b0 + b1 × log10N

true
µ,t − b2 ×

(
log10N

true
µ,t

)2

− (b4 − log10N
true
µ,t )× 0.4×

(
log10N

true
µ,t

)2

16
,

(6.49)

if log10N
true
µ,t ≥ b4. The parameters b3 and b4 correspond to the muon numbers where the

distribution falls below a defined threshold value, and hence mark the transition region.
Thereby, the hard cutoff is assumed to start at 1/40 of the distributions maximum, and
the exponential decrease at 1/5 respectively. The values 0.3 respectively 0.4 cause the less
faster decrease of the tails of the final parametrization of the muon number fluctuations.
More precisely, by this modification the final parametrizations will not base on a true
exponential description of the tails. The standard tail will only be deformed such that
it decreases slower. Hence, the description “exponential decrease” is strictly speaking
not hundred per cent correct here46. The term

(
log10N

true
µ,t

)2
/16 causes a variation of

the strength of the modification in dependence on the muon number, i.e. in principle in
dependence on the primary energy.

Now, we shall focus on the reconstruction resolution. In Fig 6.12, different parametri-
zations for the reconstruction accuracies of the charged particles (left) and muons (right)
are depicted, exemplarily for the slices 6.6 < log10N

tru
ch < 6.7 and 4.9 < log10N

tru
µ < 5.0

respectively. The black lines (“normal”) represent the standard parametrization that are
already shown in Fig. 5.25 and 5.29 respectively. Taking into account the large statisti-
cal uncertainties of the tails, the standard parametrizations can again be bracketed by
two extreme cases: for one thing by a faster decreasing fit function (“hard” cutoff), for
another thing by a less steeper one (“exp.”, i.e. exponential decrease). The hard cutoff
was realized by assuming zero probability if the number of showers falls below 1/25 of
the number at the distribution’s maximum (both for the charged particles and for the
muons). For the exponential decrease, the threshold values are 1/4 of the distribution’s
maximum in case of the charged particles, and 1/3 in case of the muons. While the
hard cutoff is again realized as done for the shower fluctuations, the exponential decrease
is implemented somewhat different. In case of the distribution of the charged particle
reconstruction accuracy (cf. Eq.(5.17)), the left part of the parametrization was given
by a Gaussian function, and can hence be modified analogue to Eq.(6.47), whereas the
right part bases already on an exponential function. In order to additionally reduce the
velocity of that exponential decrease of the right tail, its strength is reduced by substi-
tuting p3 of Eq.(5.17) by p3 → 1.4 × p3. Vice versa, in case of the distribution of the

46Nevertheless, the applied modification yields the desired effect, as can be seen from Fig. 6.11, bottom
panel, such that the description “exponential decrease” will be used synonymously for the in truth only
slower decreasing tails in comparison to the standard parametrization.
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Figure 6.12: Different parametrizations for the reconstruction accuracies of charged par-
ticles (left) and muons (right), depicted exemplarily for the slices 6.6 < log10N

tru
ch < 6.7

and 4.9 < log10N
tru
µ < 5.0 respectively.

muon reconstruction accuracy (cf. Eq.(5.20)) the left part of the distribution follows and
exponential law, while the right one is given by Gaussian function. The latter one can be
modified analogue to Eq.(6.47), while the exponential decrease can again be attenuated
by applying the aforementioned substitution, now to Eq.(5.20).

Under consideration of the two additional parametrization approaches, i.e. either the
assumption of a hard cutoff or the weaker exponential decrease for all distributions, two
new response matrices can be computed. Based on these matrices, the dataset can be
unfolded again. The “standard” solution

−→
X is bracketed by the two “extreme” estimates−→

Xhard and −→X exp.. The range that is spanned by the “extreme” solutions can be considered
as a conservative estimate for the systematic uncertainty caused by the ambiguity of the
distributions’ tails due to the limited Monte Carlo statistics. In the following, the range
of this systematic uncertainty that affects the bin k of the estimated solution

−→
X will be

considered to be given by ±|xexp.
k − xhard

k |/2.
The absolute value of the estimated range |xexp.

k − xhard
k |/2 of systematic uncertainty

in the unfolded solution
−→
X in dependence on the primary energy is depicted in Fig. 6.13,

exemplarily for protons (top panel) or iron nuclei (bottom panel). By this, the influence
of the tail’s uncertainties can be judged. The result bases on an unfolding of the realistic
toy data sample, which was introduced in Section 6.3.2. While the dataset was generated
by means of the standard response matrix, it was unfolded with different sets of response
matrices in that either some or all new “extreme” parametrizations have been considered.
Shown are four different cases: While in the first one the response matrix used in the
unfolding was computed based on the new parametrizations of the charged particle shower
fluctuations only, in the other cases in addition to that also the other parametrizations
are changed successively, i.e. the fluctuations in the muon number, the parametrizations
of the resolution for the charged particles, and, finally, all four new parametrizations
together. In case of protons, already a large systematic effect is induced by a modification
of the shower fluctuations of the charged particles, while the changes applied to the
other three types of parametrizations are with less additional influence. This was already
expected, since the results shown in Fig. 6.10 predicted that in case of protons the
charged particle shower fluctuations are the dominant uncertainties. For iron nuclei, the
circumstances are different. Again, the systematic uncertainty induced by the one in the
charged particle shower fluctuations is dominating again, while the shower fluctuations in
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Figure 6.13: The range of the systematic uncertainty in the unfolded solution caused by
the ambiguity of the distributions’ tails due to the limited Monte Carlo statistics as a
function of the primary energy (top: protons, bottom: iron nuclei). Shown are different es-
timates that are gained by modification of either only some or of all four parametrizations
that are contributing to the response matrix (see legend and text for details).
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the muon number are less important (again already predicted by Fig. 6.10). However, in
case of iron nuclei the shower fluctuations are in general smaller than in case of protons,
while the reconstruction resolution is comparable to that of protons. Hence, in case of
heavier nuclei, the resolution gets more and more important. That is why in case of iron
nuclei also the modifications of the parametrizations of the reconstruction accuracies will
have significant impacts on the final solution. This can be ascertained from Fig. 6.13,
where, especially close to the threshold of full efficiency at around log10(E/GeV) ≈ 7.0,
the additional modification of the parametrizations of the resolution induces further
systematic uncertainties. To summarize, the preliminary considerations that based on
Fig. 6.10 and motivated the decision to take into account all four parametrizations as
sources of significant systematic uncertainties, have finally been confirmed.

Impacts of the uncertainties in case of real data

Since, appropriate means are now available to estimate all sources of uncertainties, the
impacts of them on the unfolded solution that bases on the shower size distribution
measured with KASCADE-Grande can now be examined. While the calculation of the
uncertainties for the unfolding of that real dataset will be performed later on, at this
point the results are already anticipated, since the comparison fits contextually well in
this section. Furthermore, the uncertainty of the response matrix is more meaningful
in case of the unfolding of the measured shower sizes distribution than in case of trial
spectra, which are already generated using the perhaps systematically “wrong” response
matrix. The results shown here are derived by an unfolding with Gold’s algorithm under
an iteration depth of ∆χ2 = 2× 10−3, which will later on be found to be the best one in
case of the real data.

In Fig. 6.14, a comparison between all uncertainties the solution suffers from is pre-
sented (top panel for protons, bottom panel for iron nuclei). Since real data are used, the
statistical uncertainty due to the limited measurement time as well as the bias caused
by Gold’s algorithm could only be estimated. While the former was computed according
to Eq.(6.44), the latter one bases on the relative systematic bias bracketed analogue to
Fig. 6.9 and reconverted to an absolute value, i.e. to units of the number of showers. The
overall uncertainties in the parametrizations that are used in the response matrix and
that are caused by the limited Monte Carlo statistics are computed by the afore-explained
approach that bases on the randomized generation of new parametrizations, which are all
compatible within statistics. The influences of the uncertainties of the distributions’ tails
are again analysed additionally by means of the two extreme approaches assuming either
a hard cutoff or an exponential decrease of all four parametrizations that contribute to
the response matrix.

While at the lower energies the bias as well as the systematic uncertainty caused by
the ambiguity in the tails of the distributions dominate, at higher energies the statistical
uncertainty due to the limited measurement time gets important, too. At the highest
observed energies the number of air showers contributing to a specific energy bin gets as
small that the tails of the distributions are covered only rarely, such that their uncer-
tainties get less important. The systematic uncertainty that was caused by the overall
statistical uncertainty in the distributions is, compared to the other sources, without
significance over the whole energy range. That means that the Monte Carlo statistics is
in general already good. Considering the limited data statistics, an increase of the Monte
Carlo statistics does not seem to be needed. Nevertheless, the tails of the simulated dis-
tributions are very ambiguous. From the statistical point of view, they are unimportant.
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Figure 6.14: Comparison between all uncertainties the solution suffers from (top: pro-
tons, bottom: iron nuclei). The results base on an unfolding of the measured shower size
distribution. Since real data are used, the statistical uncertainty due to the limited mea-
surement time as well as the bias caused by Gold’s algorithm are both estimated only
(see text for further details).
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From the physical one, as explained afore, this uncertainty can have huge impacts on
the final result. In order to simulate distributions with significantly better confined tails,
an enormous number of air showers have to be generated, which would mean a very
long computing time. However, the effects of the tail’s uncertainties are not significantly
larger than the systematic bias induced by the unfolding algorithm itself, such that it
was decided not to generate a larger simulation set.

Summing up the insights gained in this section, all possible sources of uncertainties
are known and can be estimated with high precision. All results can be applied with-
out limitation to the case of real data. In the final presentation of the energy spectra
for elemental groups of cosmic rays, the statistical uncertainties caused by the limited
measurement time will be represented by error bars, while all three sources of systematic
uncertainties, i.e. the bias caused by the unfolding algorithm as well as both uncertainties
induced by the limited Monte Carlo statistics, are visualized by a common systematic
error band. Hence, the presented results will agree with the truth within the given uncer-
tainties, under the premise that the used high energy interaction model QGSJET-II-02
describes the air shower development correctly.

6.3.4 Stopping criterion for Gold’s unfolding algorithm

The iterative unfolding algorithms approximate the exact solution
−→
X of the matrix equa-

tion −→Y = R
−→
X successively. As explained, the more iteration steps are performed, the

less47 biased the estimated solution will be, but the more possible fluctuations in the
data set will be amplified. It will be the goal to find an “optimal” iteration depth that
yields an “appropriate” solution. The question to answer is: what characterizes such an
optimal solution?

The weighted mean squared error

In Section 6.3.1, a chi-square test (cf. Eq.(6.39)) was introduced in order to check the
quality of the description of the measured data by the unfolded solution. However, it was
emphasized that by this test the quality of the solution itself can only be judged periph-
erally. For sure, the unfolded solution should be able, to a certain extent, to reproduce
the measured data sample. Nevertheless, the solution is not wanted to reproduce any
random fluctuation in the data sample.

Instead, an “appropriate” solution will be characterized by an optimal balance be-
tween a remaining bias and the unavoidable statistical uncertainties. Thereby, only the
statistical uncertainties of the data sample that are propagated through the unfolding
algorithm, as well as the bias of the algorithm itself are of interest. The additional un-
certainties that are caused by the systematic uncertainties in the response matrix are
meaningless for the question about an optimal iteration depth. Cowan [54] suggests as a
measure of the goodness of the unfolded solution the so-called Mean Squared Error :

MSE = 1
N

N∑
k=1

(
σ2
k + b2k

)
. (6.50)

Thereby, for all48 N energy bins k of the estimated solution vector
−→
X est the true statistical

47Since Gold’s algorithm is designed to converge to the exact solution.
48Note: the vector

−→
X est contains, by construction, the estimated solutions of all five regarded primary

particles, i.e. five energy spectra, such that the sum in Eq.(6.50) is carried out over all considered energies
for all used primaries. Thus, the MSE includes also an averaging over all nuclei.
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uncertainty σk (given by Eq.(6.42)) and the true bias bk (given by Eq.(6.43)) in the
current bin are considered. An optimal solution estimate −→X est is achieved when the MSE
is minimal, since in this case the best compromise between a remaining bias and statistical
oscillations is realized.

However, since the contents xest
k of the bins of the solution vector can have different

statistical accuracies, in a correct approach the uncertainties σk and bk of individual
bins should have varyingly strong influences on the MSE. Assuming, in a simplified
argumentation, Poissonian uncertainties in the bin contents of the solution −→X est, the
uncertainty in bin k of the solution is given by

√
xest
k . Using this, the Weighted Mean

Squared Error can be defined:

WMSE = 1
N

N∑
k=1

σ2
k + b2k
xest
k

. (6.51)

In the further analysis, the iteration depth that is used to unfold the optimal solution
with the smallest WMSE possible will be called the “optimal iteration depth”.

In [55], Cowan introduces another approach to find the optimal solution. He observed
the ratio between the bias b and the accuracy σ2

b of its determination itself by means of
the Relative Variance of the Bias:

RVB = 1
N

N∑
k=1

b2k
σ2

b,k
. (6.52)

In Eq.(6.43), the bias b is computed as the mean deviation between the true solution
and 50 estimates that base on toy datasets generated by means of a random generator.
The fluctuation of these deviations can be considered as the uncertainty σ2

b in the bias
estimation itself. The larger the iteration depth is, the smaller the bias, but the larger
the uncertainty in its determination will be. An optimal situation would be, if RVB = 1.
In this case, the bias and its uncertainty are of comparable size. A deeper iteration would
be unsuitable, since on the one hand the bias would get smaller, while on the other hand
its uncertainty will increase such that the determination of the bias will fail.

In Fig. 6.15, on the top panels, the weighted mean variance

weighted mean variance = 1
N

N∑
k=1

σ2
k

xest
k

, (6.53)

as well as the weighted mean squared bias

weighted mean squared bias = 1
N

N∑
k=1

b2k
xest
k

(6.54)

are illustrated in dependence on the iteration depth, which both contribute49 to the
WMSE given by Eq.(6.51) and shown in the middle plot. Additionally, the alternative
approach that bases on the RVB, given by Eq.(6.52), is depicted on the bottom panel. All
results are exemplarily shown in case of the realistic trial spectra that is introduced in
Section 6.3.2 and unfolded with the respective iteration depths. As already predicted, the

49The weighted mean variance can be understood as the “left” term of Eq.(6.51), while the weighted
mean squared bias gives the “right” one.
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Figure 6.15: On the top panels, the weighted mean variance (cf. Eq.(6.53)) and the
weighted mean squared bias (cf. Eq.(6.54)) are illustrated in dependence on the iteration
depth, which both contribute to the WMSE (cf. Eq.(6.51)) shown in the middle plot, again
as a function of the iteration depth. Additionally, the alternative approach that bases on
the RVB (cf. Eq.(6.52)) is depicted on the bottom panel. All results are exemplarily
shown in case of the realistic trial spectra that is introduced in Section 6.3.2. To guide
the eyes, all markers are connected by straight lines.
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larger50 the depth of the iteration is, the larger the statistical uncertainties will get, but
the smaller the bias will be. The resulting WMSE has a minimum at around ∆χ2 ≈ 10−4.
An optimal balance between the statistical uncertainties and the remaining bias is given
in case of that iteration depth. The RVB is 1 at around ∆χ2 ≈ 3× 10−5, what conforms
with an iteration depth for that the WMSE is still minimal in good approximation, as
the range of the minimum is relatively broad. Also the RVB implies that more iteration
steps are useless, since the uncertainty in the bias estimate will be larger than the bias
itself.

Also in case of other trial spectra, both approaches yield compatible optimal iteration
depths, such that they can be used optionally. In a further cross-check based on diverse
toy data samples and performed by eye, the unfolded solutions have been compared to
the true ones in order to review the quality of the prediction of the optimal iteration
depth by both methods. Thereby, both approaches performed reliably in all cases. The
next question to be answered is how that can be applied to real data, where the “true”
uncertainties are unknown and hence can only be estimated.

The estimated weighted mean squared error

For the determination of the optimal iteration depth for the unfolding of the shower
size distribution measured with KASCADE-Grande, basically the same approach as in
case of the toy spectra can be used. The only difference will be that now the estimated
uncertainties, i.e. the estimated statistical uncertainty σest

k given by Eq.(6.44) and the
estimated bias best

k given by Eq.(6.45), have to be regarded. The estimated WMSEest is
given by:

WMSEest = 1
N

N∑
k=1

(σest
k )2 + (best

k )2

xest
k

, (6.55)

while the estimated RVBest follows to:

RVBest = 1
N

N∑
k=1

(best
k )2

(σest
b,k)2 . (6.56)

However, since for the estimation of the systematic bias templates are used that have
been reconstructed by an unfolding under specific iteration depths and are assumed to
represent the “true” solution in the subsequent steps, the answer which of the templates
is really close to the truth has still to be given. The template that is as close to the
truth as possible can be considered as the best estimate in the final analysis. As a first
indication, the toy dataset that will be generated based on the template solution should
be, within statistics, compatible to the initial shower size distribution that was measured
with KASCADE-Grande. This criterion will be considered in the final unfolding analysis.
However, as already explained, the quality of the data description is something different
than the quality of the solution itself. Hence, a further criterion has to be found.

The following chain of thoughts will illustrate how to find the best solution template:
Each template is gained by an unfolding of the measured shower size distribution under
a specific iteration depth. Whilst the estimation process of the systematic bias, a certain
number of toy datasets are generated based on the template by means of a random
generator and regarding the response matrix as probability distribution. Apart from that

50Note: A large depth of iteration corresponds to a large number of iterations, and hence finally to a
small value of ∆χ2. Thus, the utilization of a large number of iterations means to follow the abscissas
from the right to the left.
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a random generator is used, this generation is an exact one in the sense that there is no
algorithm used that could cause any bias. The generated toy dataset is now unfolded with
diverse iteration depths. The unfolding results can be compared to the template solution,
i.e. to the solution that is temporarily assumed to be the “true” one. Hence, for the toy
datasets an optimal iteration depth can be determined by means of the minimum in the
WMSE. In case of using the same iteration depth for the unfolding of the toy datasets
as already used for the computation of the template, the best agreement between the
template and the estimated solutions should be given. This can be understood when
taking into account that the generation of the toy datasets is primarily an exact and
unbiased procedure, such that the unfolding of all toy sets is only a repetition of the
initial computation of the template, i.e. of the unfolding of the measured shower size
distribution. Since it is only a repetition, the best iteration depth should be the same as
in case of the initial unfolding. However, if the WMSE predicts another optimal iteration
depth than that used in the computation of the template, something goes wrong. There
are two possible scenarios: The optimal iteration depth for the unfolding of the toy
datasets is smaller51 than the depth used for the template computation, or vice versa.
The first case means that already in the initial unfolding of the measured distribution
too many iteration steps have been performed. That means that the bias in the template
is reasonable, but the statistical oscillations can get problematic. In the second case, the
iteration whilst the computation of the template was stopped too early. The template
will suffer from a too large bias. Consequently, the template is most probable close to
the truth, if the toy datasets have to be unfolded with the same52 number of iteration
steps as already used in the initial template computation. By this, additionally to the
comparison of the toy datasets with the measured data sample by means of a chi-square
test, the comparison between the iteration depth of the template and the optimal depth
predicted by the WMSE for the toy datasets will offer a criterion which of all templates
is most probable close to the “truth”. In this analysis, this template solution will finally
be considered as the best estimate for the elemental energy spectra of cosmic rays.

The application of the afore introduced criterion will now be shown exemplarily in case
of the realistic trial spectrum, which is introduced in Section 6.3.2 and was also already
used for the figures that depict the true WMSE (Fig. 6.15). In Fig. 6.16, a comparison
between that true and the estimated WMSE or RVB is shown for diverse templates. Each
template, computed under a specific iteration depth (see legend), was used to generate
toy datasets that have been unfolded with diverse iteration depths. For each depth, a
WMSEest can be determined. For each template, these estimated WMSEest are shown as
a function of the iteration depth used to unfold the respective toy datasets. The RVBest is
also shown for cross-check purposes. On the two bottom panels, the axis has been rescaled
to the important ranges. The vertical lines mark, on the x-axis, the iteration depths that
have been used whilst the computation of the respective template. The afore-introduced
criterion, i.e. that the best iteration depth used to unfold the toy datasets should be equal
or slightly less deeper than that used whilst the computation of the respective template,
is fulfilled in case of the template characterized by the iteration depth ∆χ2 = 3× 10−4.
The same reasoning used for the WMSEest can also be applied to the RVBest. Also
the iteration depth that is tagged to be the optimal one by the criterion RVBest = 1
should correspond to the depth initially used to compute the respective template. This is
fulfilled for the template unfolded with an iteration depth ∆χ2 = 3× 10−4. Hence, both

51The iteration is not as deep, i.e. less steps are necessary.
52Or slightly smaller.
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Figure 6.16: Comparison between the true and the estimated WMSE or RVB for different
templates. On the bottom panels, the important axis ranges are zoomed in. The results
base on the realistic trial spectrum that is introduced in Section 6.3.2.
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approaches yield the same optimal iteration depth, and agree53 with the ones gained by
the true WMSE (∆χ2 ≈ 10−4) or the true RVB (∆χ2 ≈ 3 × 10−5). Consequently, an
optimal iteration depth can also be determined if the true spectra are unknown, as it is
the case for the real measurement. As a result and based on the WMSEest, for the used
realistic trial spectra an optimal iteration depth of ∆χ2 = 3× 10−4 is selected.

As a conclusion, the determination of the optimal iteration depth based on the
WMSEest works reliable. This was also tested by means of diverse alternative trial spec-
tra. The RVBest confirms the results. Hence, also in case of the real data distribution
measured with KASCADE-Grande, an appropriate means to determine the optimal iter-
ation depth is available now. In the next section, the quality of the unfolding procedure
will be tested by means of diverse exemplary trial spectra.

6.3.5 Quality of Gold’s unfolding algorithm

The reliability of Gold’s unfolding algorithm was examined by means of a vast number
of toy spectra. A large variety of constellations have been tested that cover physically
meaningful spectra, but also very abstract ones that are expected to be present in nature
less likely. In almost all observed cases, Gold’s unfolding algorithm yielded solutions that
were compatible with the true initial spectra within the estimated uncertainties. Only in
a very few examples, some deviations between the true and the unfolded spectra were
found that were not covered by the estimated uncertainties. However, experiences have
been gained that allow to judge, e.g. based on the WMSE, whether or not such problems
have to be expected. Showing all these intensive tests would go beyond the scope of this
thesis. Hence, only some exemplary trial unfoldings will be presented in the following.

Realistic toy spectra

Firstly, the unfolding procedure shall be tested by means of a toy spectrum that is close to
the cosmic ray spectrum expected to be present in nature. For this purpose, the realistic54

toy dataset, introduced in Section 6.3.2 and based on Eq.(6.41), with parameters given
in Table 6.1, was used. As determined by the estimated WMSE (cf. Section 6.3.4), the
optimal iteration depth for the unfolding of that toy dataset is ∆χ2 = 3× 10−4.

In Fig. 6.17, the solution to the toy dataset estimated by means of Gold’s unfolding
algorithm and based on the aforementioned iteration depth is shown for all five considered
primaries, representing different mass groups, as well as for the all-particle spectrum,
which is the bin-wise sum of all five individual spectra. Additionally shown are, with
hollow markers, the initially assumed true energy spectra. For a better distinguishability,
the lighter (top panel) and heavier (bottom panel) mass groups are depicted in individual
diagrams. The error bars represent the estimated statistical uncertainties caused by the
limited statistics of the data sample, while the error bands mark the maximal range of
the systematic uncertainties induced by the unfolding algorithm itself55. All uncertainties
are estimated as elaborated in Section 6.3.3. The spectra are scaled by the potential law
(E/GeV)1.62, which is the reciprocal of the one assumed in the initial toy spectra to be
present before the knee (cf. Table 6.1, where the indices of the differential toy energy

53Considering the broad minimum of the WMSE.
54Or at least expected to be close to reality.
55Maximal 40% relative bias if log10(N rec) > 1.3 (corresponding to around N > 20 air shower events),

or, else, an absolute one of b = 40, as explained in Section 6.3.3 based on Fig. 6.9.
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Figure 6.17: True (hollow markers) and unfolded (filled markers, Gold unfolding with
iteration depth ∆χ2 = 3 × 10−4) energy spectra based on the realistic toy dataset that
was introduced in Section 6.3.2. On the top panel for the all-particle spectrum and the
lighter mass groups, represented by protons, helium, as well as by carbon, and on the
bottom panel for the heavier mass groups represented by silicon and iron. The error bars
represent the statistical uncertainties, while the error bands mark the maximal range of
systematic uncertainty. For a better distinguishability, the true spectra are shown without
error bars, albeit they suffer from statistical uncertainties, too.
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Figure 6.18: The detection probability, which incorporates the trigger and reconstruction
efficiency (cf. Section 5.2.2) as well as the cut log10(Nch) ≥ 6.0 and log10(Nµ) ≥ 5.0 that
showers have to pass in order to get considered in the log10(Nch)–log10(Nµ) shower size
plane.

spectra are summarized). By this, the knee structures are discernible more easily in the
depiction.

In general, there is a good agreement between the true and the reconstructed solution,
and most of the deviations conform with either the statistical uncertainties or with the
systematic bias, or at least with a combination of both. Especially the all-particle spec-
trum can be unfolded with only small uncertainties. At higher energies, the spectra suffer
from very large deviations or fluctuations. However, these ranges are tagged successfully
to be insignificant by either the error bars or the error bands, or by both. One has to keep
in mind that at these energies one has to deal with bins with actually only one-figure, or
even zero content. Due to the positive definiteness of Gold’s unfolding algorithm, these
contents are artificially enlarged. These overestimation effects are intensified visually by
the diagrammatic representation due to the scaling of the spectra by (E/GeV)1.62.

As explained in Section 5.3.2, the conditioning applied to the response matrix will
affect the number of reconstructed energy bins, since whilst the unfolding of the energy
spectra of individual particles only those energy bins are considered for that there is a non-
zero probability that this particular primary with this specific energy contributes to at
least one cell of the considered log10(Nch)–log10(Nµ) shower size plane, with log10(Nch) ≥
6.0 and log10(Nµ) ≥ 5.0. That is why not all 25 energy bins are covered by the solution,
but only the last 19 or 20 bins.

While the unfolded spectra of the lighter mass groups often agree with the true
ones already in the first considered bins, in case of the spectra of silicon and iron nu-
clei the first bins are often affected by larger deviations, which are not covered by the
given uncertainties. This underestimation of the uncertainties for silicon and iron nuclei
next to the threshold of full detection efficiency was observed in almost all performed
trial unfoldings. The mentioned detection efficiency includes on the one hand the trig-
ger and reconstruction efficiency (cf. Section 5.2.2), but in this specific analysis also the
probability that an individual air shower contributes to at least one cell of the defined
log10(Nch)–log10(Nµ) shower size plane. Hence, additionally, all used showers have to
pass the cuts log10(Nch) ≥ 6.0 and log10(Nµ) ≥ 5.0 that define the lower limits of the
considered plane. In Fig. 6.18, that detection probability is illustrated in dependence on
the primary energy. It was found that the unfolded spectra are only reliable for energies
for that the respective primary has at least a detection probability of around 40% to
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50%. In case of protons, helium, and carbon, this minimum probability is given for en-
ergies beyond log10(E/GeV) ≈ 7.0, and for silicon and iron at higher energies at around
log10(E/GeV) ≈ 7.1 to 7.2. Already in case of the pure trigger and reconstruction effi-
ciency (cf. Fig. 5.19, bottom left panel), for the heavier mass groups the efficiency curves
were shifted to higher energies with respect to those of the lighter ones.

The reason for the dependence of the quality of the unfolded solution on the detection
probability bases on differences in the convergence rates. Whilst the unfolding process,
the quality improvement from one to another iteration step is judged by means of a
chi-square test between the initial data sample and the forward folded solution, i.e. the
reconstructed data sample (cf. Section 6.3.1). In case of low detection probabilities, a
change in the solution will have less impacts on the reconstructed data sample than
in case of full detection efficiency. Hence, for lower energies, going along with smaller
detection probabilities, more iteration steps are necessary than for energy ranges with
full detection efficiency. This imbalance between the convergence rates for the solution
at smaller and higher energies is the reason for the bias visible at the first energy bins of
the spectra of silicon and iron nuclei. In principle, if one would only take into account the
smaller energies, the minimum in the WMSE would be located more at deeper iteration
depths than in case of considering only higher energies whilst the WMSE computation.
Hence, simply enlarging the number of iteration steps would for one thing remove the bias
at the first energy bins, but for another thing would result in arising oscillations in the
solution at higher energies. Since only the first energy bins56 are affected by that bias, in
the final analysis the afore-gained results will be considered such that the unfolded spectra
are only shown for energies beyond the aforementioned minimum detection probability
limits log10(E/GeV) ≈ 7.0 for the lighter mass groups, and log10(E/GeV) ≈ 7.1 to
7.2 for silicon and iron. Adapting these limits also for the results shown in Fig. 6.17,
i.e. one would have to remove the first two markers of the unfolded energy spectra for
protons, helium, and carbon, as well as the first three respectively four markers in case
of iron respectively silicon, would improve the quality of the shown results significantly.
Extensive tests have shown that all aforementioned insights can also be transferred to
other toy spectra, such that, without loss of generality, everything will also be applicable
for the unfolding of the dataset measured with KASCADE-Grande. Hence, a high quality
solution, which will only deviate from the “true” one within the given uncertainties, is
guaranteed.

Improvement of the unfolding results

Although already all conceivable measures are adopted to get an optimal estimate for
the true energy spectra, it will now be focused briefly on the question what else could be
done to improve the results further. One main problem is the reconstruction resolution
of the KASCADE-Grande experiment. While in the former KASCADE experiment the
unavoidable shower fluctuations were dominating significantly over the reconstruction
uncertainties, in KASCADE-Grande both sources are of more equivalent weight. Espe-
cially the muon reconstruction suffers from the limited detector coverage. In principle, the
resolution can only be improved significantly by comprehensive and costly extensions of
the experimental setup. Another problem is the limited measurement time. In Fig. 6.19,
the same toy spectra are shown as already used for Fig. 6.17, but with round about a

56These are rather unimportant for this thesis, since one of the main goals is to examine whether or not
the heavy component, i.e. especially the iron-like one, shows a knee-like structure at energies at around
E = 1017 eV, what would be far enough from the first problematic energy bins.
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Figure 6.19: True (hollow markers) and unfolded (filled markers, iteration depth ∆χ2 =
3 × 10−4) energy spectra based on the realistic toy dataset that was introduced in Sec-
tion 6.3.2, but now with a statistics enhanced by a factor of 10. On the top panel for the
all-particle spectrum and the lighter mass groups, represented by protons, helium, as well
as by carbon, and on the bottom panel for the heavier mass groups represented by silicon
and iron. The error bars represent the statistical uncertainties, while the error bands
mark the maximal range of systematic uncertainty. For a better distinguishability, the
true spectra are shown without error bars, albeit they suffer from statistical uncertainties,
too.
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Figure 6.20: An exemplary result for an unfolding of a toy dataset that bases on “true”
elemental energy spectra with equal indices, knee positions, and normalizations for all
five primaries. For a better distinguishability, only the statistical uncertainties of the
unfolded solutions are shown.

factor 10 more statistics. Except for the initial bias affecting again the energy ranges be-
low full detection efficiency, the enhanced statistics yields a significantly better unfolding
result. The spectra are overall smoother. Furthermore, the unfolded spectra are reliable
up to energies half (lighter mass groups) a decade, or even a complete one (heavier mass
groups) more than in case of the realistic data sample. Since the data set used in this
work was collected during ∼ 6.5 years, a factor 10 more in statistics would require an
additional operation for approximately 60 years, which is unrealistic. Alternatively, the
observation area could be enlarged significantly, what would again cause additional costs.

As a conclusion, significant improvements of the estimation of the elemental energy
spectra are principally achievable at KASCADE-Grande, but only under rather unreal-
izable efforts.

Equidistribution

Many trial unfoldings have been performed in order to check whether or not the applied
unfolding methods are, maybe, favouring certain primaries due to their different response
matrices. None of the tests has revealed indications for such a favour. In Fig. 6.20,
exemplarily the result of such a trial unfolding is shown. The true spectra base on a
double power law with a knee at 6.3× 1016 eV, and indices of the differential power law
of -2.62 before, and -4.76 after the knee. The primaries have equal abundances. Except
for the well-known bias at the first energy bins, there is no indication that the applied
algorithm of Gold favours a certain mass group. Within the statistical uncertainties, the
unfolded spectra are still overlapping.

Consequently, if the unfolding of the measured shower size spectra will yield that
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an individual mass group is dominating over the others, this is not due to a systematic
distortion caused by the applied algorithm, but certainly a true physical result57.

Problematic spectra

In Fig. 6.21, exemplarily, for one of the rare “problematic” toy spectra sets the unfolding
result is depicted. The toy energy spectra are characterized by very steep falling carbon
and silicon spectra in comparison to that of the other primaries. Especially the silicon
to iron ration decreases quickly. Hence, the unfolding algorithm has to deal with neigh-
bouring mass groups with considerably different abundances, and hence possibly different
convergence rates to an exact solution. While the solutions agree with the true spectra
in general, there are a few excesses discernible, which are not covered by the given uncer-
tainties, e.g. in the spectrum of silicon at around log10(E/GeV) ≈ 8. Since these excesses
are not tagged to be insignificant by respective large uncertainties, the risk arises that
they could be interpreted as real physical structures.

However, it was found that in most cases those excesses that are not covered by the
given uncertainties are only affecting one single bin, such that one would anyway not dare
to pay too much attention to this possible “structure”. Furthermore, the WMSE often
gives indications whether or not such spectra are “problematic” ones. In Fig. 6.22, the
WMSE in case of the problematic toy dataset used in Fig. 6.21 is depicted. Additionally
shown are the WMSE of individual primaries that finally contribute to the common
WMSE. The WMSE of the individual primaries have strongly different minima. While
e.g. protons and carbon need smaller iteration depths, silicon or iron need significantly
more iteration steps. A common optimal iteration depth is not achievable. Hence, if one
selects an iteration depth that is as deep that all elemental spectra can be unfolded
with a small bias only, some of the spectra of primaries with smaller necessary iteration
number can already suffer from huge oscillations. For example, in case of the carbon
spectrum, at around log10(E/GeV) ≈ 8, one can observe a large jump from around
N × (E/GeV)1.62 ≈ 1015 to below N × (E/GeV)1.62 ≈ 1013. As a consequence and due to
the correlation between the unfolded spectra, the spectrum of silicon is pulled up there,
although in case of that primary the iteration depth is optimal, such that oscillations
actually should not occur.

In such cases, where the correlated spectra of individual primaries underlie different
convergence rates whilst the unfolding process, the influence of these excesses can to a
certain degree be weakened by combining some individual spectra to a representative
one. This is illustrated exemplarily in Fig. 6.23, where the individual spectra of helium,
carbon, and silicon nuclei, shown in Fig. 6.21, are summed up bin-wise to a representative
one. Now, at least within the combination of the statistical uncertainty and the bias, the
unfolded spectra agree better with the true ones. Nevertheless, one knows that also this
result has to be interpreted with caution, since the used datasets are already tagged to
be “problematic” ones by the individual WMSE.

Based on intensive trial unfoldings, on the one hand technical means to tag problem-
atic datasets have been elaborated, but on the other hand also experiences have been
gained that allow to judge the reliability of the derived solution.

57But only in the framework of the used interaction models, here QGSJET-II-02, as already mentioned
several times.
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Figure 6.21: True (hollow markers) and unfolded (filled markers, iteration depth ∆χ2 =
4 × 10−6) energy spectra based on an arbitrary chosen “problematic” toy dataset. On
the top panel for the all-particle spectrum and the lighter mass groups, represented by
protons, helium, as well as by carbon, and on the bottom panel for the heavier mass groups
represented by silicon and iron. The error bars represent the statistical uncertainties,
while the error bands mark the maximal range of systematic uncertainty. For a better
distinguishability, the true spectra are shown without error bars, albeit they suffer from
statistical uncertainties, too.
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Figure 6.22: The WMSE (“all”) in case of the problematic toy dataset used in Fig. 6.21.
Additionally shown are the WMSE of individual primaries finally contributing to the
common WMSE (“all”).
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Figure 6.23: The true and unfolded spectra already shown in Fig. 6.21. But now the
spectra of helium, carbon, and silicon are summed up bin-wise to a representative one.
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Comparison between different unfolding algorithms

Finally, a brief comparison between the unfolding results gained by the iterative unfolding
methods applying Gold’s algorithm or Bayes’ theorem, and by the regularized unfolding
based on the principle of maximum entropy will be presented. Again, the realistic toy
dataset, introduced in Section 6.3.2, is unfolded. In Fig. 6.24, a comparison between
the unfolding results of all three algorithms is illustrated. As also seen in other trial
unfoldings, the unfolding techniques applying Gold’s algorithm or Bayes’ theorem yield
comparable results, with sometimes slight advantages for Gold’s one. The method based
on the principle of maximum entropy sometimes does not agree at all with the results of
the two aforementioned techniques within the given uncertainties, while in general the
unfolded solutions are of less quality. The all-particle spectrum can only be unfolded with
larger uncertainties, too. As a conclusion, for the main unfolding analysis of the dataset
measured with KASCADE-Grande Gold’s algorithm will be used, while the two other
ones will only be applied for cross-check purposes.

Summarizing the content of this chapter, appropriate methods for unfolding the
shower size spectrum measured with KASCADE-Grande have been elaborated. The un-
certainties that have to be taken into account are well known. Furthermore, the reliability
of the whole unfolding procedure was tested intensively. Hence, all means that are needed
to successfully apply these techniques to the measurement are available now, what will
be the objective of the next chapter.
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Figure 6.24: The true and unfolded spectra in case of the realistic toy dataset. But now,
additionally, the unfolding results (dashed lines) gained with the algorithms based on
Bayes’ theorem or the principle of maximum entropy are shown. For a better distin-
guishability, only the statistical uncertainties (error bars) in case of Gold’s algorithm are
given.





Chapter 7

Unfolding the Energy Spectra for
Elemental Groups of Cosmic Rays

This work’s objective is to determine the composition and the elemental energy spectra of
cosmic rays outside the Earth’s atmosphere. In the previous chapters, appropriate tech-
niques to derive these energy spectra by means of an unfolding of the two-dimensional
log10(Nch)–log10(Nµ) shower size distribution (cf. Fig. 4.8), measured with KASCADE-
Grande, have been elaborated. Suitable deconvolution algorithms have been introduced,
from which that of Gold revealed to be the most robust one. A method to estimate the
uncertainties of the reconstructed solution was developed, and the reliability of the un-
folding techniques has been tested extensively. Accordingly, the unfolding of the measured
shower size spectrum is well prepared now and will be presented in the following.

After some preparatory work in Section 7.1, where things like the optimal iteration
depth and the uncertainties are determined, in Section 7.2, the measured dataset will be
unfolded, and the quality of the solution will be judged. Thereafter, the significance of
the structures observed in some spectra will be evaluated (cf. Section 7.3). Finally, the
compatibility between the results obtained in this thesis and those obtained by other
analyses will be examined (see Section 7.4).

7.1 Some Preparations for the Unfolding of the Measured
Data

The first step in the unfolding analysis of the measured dataset will be to determine the
optimal iteration depth for Gold’s iterative algorithm (Section 7.1.1), and to compute
the uncertainties imposed to the final solutions (Section 7.1.2).

7.1.1 The optimal iteration depth

The procedure that was used in Section 6.3.4 to determine the optimal iteration depth
for the toy datasets can also be applied to the measurement without limitation, and will
hence not be explained again. In Fig. 7.1, top panel, the WMSE, estimated according
to Eq.(6.55), is shown for different templates generated by means of a preliminary un-
folding of the measured shower size distribution. In the middle diagram, the important
axis ranges are zoomed in, whereby uninteresting curves are omitted for a better dis-
tinguishability. Following the line of reasoning given in Section 6.3.4, the template that
was unfolded with an iteration depth of ∆χ2 = 2 × 10−3 is the one expected to be the
closest to the optimal solution of the convolution problem. In case of this template, the
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Figure 7.1: The estimated WMSE (cf. Eq.(6.55)) for different templates generated by
an unfolding of the measured shower size distribution under different iteration depths
(top panel). On the middle panel, the important axis ranges are zoomed in, whereby
uninteresting curves are omitted. On the bottom panel is shown, exemplarily in case of
the ∆χ2 = 2× 10−3 template, how the individual WMSE of the primaries contribute to
the sum WMSE (“all”) that is shown in the two top panels.
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estimated WMSE has a minimum at around ∆χ2 = 2.1 × 10−3, what agrees1 with the
depth ∆χ2 = 2× 10−3 that was used while generating the template.

Hence, the measured dataset will finally be unfolded under this iteration depth of
∆χ2 = 2 × 10−3. In Fig. 7.1, bottom panel, for the template generated with this ∆χ2

value is illustrated how the individual WMSE of certain primaries contribute to the sum
WMSE (“all”). While the absolute values of the specific WMSE are slightly different at
around ∆χ2 = 2 × 10−3, what is unproblematic however, the positions of their minima
are sufficiently compatible. Hence, there is no indication that whilst the unfolding process
the spectra of different primaries are subjected to different convergence rates. Consid-
ering the comprehensive experiences gained by trial unfoldings of toy datasets, partly
summarized in Section 6.3.5, the measured dataset does not have to be categorized to be
a “problematic” one. On the contrary: A very good-natured solution can be expected in
case of the KASCADE-Grande measurement. Since now the optimal iteration depth is
found, the uncertainties imposed to the final solution can be computed.

7.1.2 Error propagation

The elemental energy spectra derived by an unfolding of the shower size distribution
measured with KASCADE-Grande will suffer from four different sources of uncertainties,
as described at the beginning of Section 6.3.3. The statistical uncertainties due to the
limited measurement time as well as the bias caused by the unfolding algorithm itself can
be estimated according to Eqs.(6.44) and (6.45). The systematic uncertainty due to the
uncertainty in the response matrix, caused by the limited Monte Carlo statistics, can be
estimated by the two additional “extreme” response matrices introduced in Section 6.3.3,
which base on either slower, or faster decreasing tails of the used parametrizations in
comparison to the “standard” case. As also explained in the aforementioned section, the
fourth source of uncertainty, i.e. the interaction models used for the simulations, cannot
be analysed in detail in this work. Hence, all results have to be interpreted under the
premise that especially the used model QGSJET-II-02 describes the physics of hadronic
interactions at these energies with a high level of reliability.

The computation of the statistical uncertainties as well as of the systematic uncertain-
ties caused by the limited Monte Carlo statistics is straightforward, such that the result
will immediately be shown in the final energy spectra in terms of error bars and error
bands, without presenting further calculations. The estimation of the bias induced by the
unfolding algorithm itself needs an intermediate step however. As shown in Section 6.3.3,
this bias can overall be estimated correctly, while in some individual exceptional energy
bins the estimation could fail however. It was stated that a bin-wise computation, as done
for the other sources of uncertainties, will not be possible in case of the bias. Instead, it
is more convenient to conservatively estimate the maximal range of the relative bias.

In Fig. 7.2, the estimated relative bias for individual primaries as a function of
the number of entries in the estimated solution vector2 is depicted. Above values of
log10(N rec) = 1.4 (indicated by the vertical dashed line), what corresponds to around
N = 25 air shower events and hence to 25 entries in the related energy spectrum,
the relative systematic bias can be bracketed overall as done in the figure by the two
dashed horizontal lines. On the right panel, the axis of ordinates is scaled-down for a

1Reminder: The minimum in the estimated WMSE belonging to a certain template should be at the
same, or a slightly larger ∆χ2 value than that used to generate the template. This was the criterion for
which of the templates is expected to be the correct one (cf. Section 6.3.4).

2I.e. as a function of the number of showers log10(N rec).
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Figure 7.2: The estimated relative bias for different primaries in case of the measured
dataset, which was unfolded with the optimal iteration depth of ∆χ2 = 2 × 10−3 (cf.
Section 7.1.1). On the right panel, the range of the axis of ordinates is scaled-down for
reasons of a better distinguishability.

better distinguishability. By this, a common relative bias of 20% can be estimated for
log10(N rec) > 1.4.

For smaller numbers of entries in the solution vector, i.e. in case of less then 25
air shower events, the relative bias gets huge. This is mainly caused by the positive
definiteness of Gold’s algorithm, what results in a reconstruction of always non-zero flux
entries, often quite far away from zero, even when the true flux is zero. This results in an
overestimation of the flux, and hence in the discernible large relative bias. As shown in
Section 6.3.3, it is more appropriate to assume a fixed absolute bias, instead of a relative
one, below that threshold. Based on the aforementioned deliberations and the depicted
estimated relative bias, an absolute one of b = 25 can be defined, if log10(N rec) ≤ 1.4.
For the final depictions of the unfolded elemental energy spectra, the relative bias of 20%
can simply be converted to respective absolute values for the specific energy bins. Then,
the computed absolute bias will be shown together with the systematic uncertainty that
was caused by the uncertainty in the response matrix in terms of a common resulting
error band.

As the optimal iteration depth is known, and the expected uncertainties are discussed,
the measured shower size distribution can be unfolded now.

7.2 Unfolding of the KASCADE-Grande Dataset

In this section, the key result of this thesis will be presented: The energy spectra for
elemental groups of cosmic rays. The shower size distribution measured with KASCADE-
Grande is unfolded by means of Gold’s algorithm with an iteration depth of ∆χ2 =
2 × 10−3. For the sake of completeness, it is emphasized that the results are obtained
based on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].

Firstly, the reconstructed fluxes will be presented (Section 7.2.1). Thereafter, the
consistency and the quality of the obtained spectra will be judged (Section 7.2.2). Finally,
some preliminary results based on the high energy interaction model EPOS 1.99 [188]
will be discussed (Section 7.2.3).
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7.2.1 Energy spectra for elemental groups of cosmic rays

Fig. 7.3 comprises the unfolded energy spectra for elemental groups of cosmic rays, rep-
resented by protons, helium, and carbon nuclei (top panel) as well as by silicon and
iron nuclei (bottom panel). The all-particle spectrum is also shown. The differential flux
values of the unfolded energy spectra and their uncertainties are listed in Appendix H,
Table H.1 to H.6.

The error bars represent the statistical uncertainties caused by the limited measure-
ment time. The error bands mark the maximal range of systematic uncertainties, con-
sidering both the bias caused by Gold’s algorithm as well as the uncertainty caused by
the one in the parametrizations used for the response matrix. Thereby, for energy bins
with more than N = 25 contributing air shower events, a constant relative bias of 20%
(cf. Section 7.1.2) is assumed. The uncertainty caused by the parametrizations depends
more strongly on the primary energy: while at lower energies the shower fluctuations are
larger, and hence the uncertainty in their description is more important, at higher ones
the tails of the distributions are additionally only rarely covered by events due to the
small statistics, such that the parametrization uncertainties are even less important there.
This was already illustrated by Fig. 6.14. The uncertainties due to the parametrizations
(caused by the limited Monte Carlo statistics) are dominating at energy ranges up to
log10(E/GeV) ≈ 7.4 for lighter mass groups, or up to log10(E/GeV) ≈ 7.8 for heavier
ones. That is why in Fig. 7.3 the error bands get larger at lower3 energies.

The demand for a minimum detection probability (cf. Section 6.3.5) of around 40%
to 50% determines which is the smallest shown energy bin for a specific primary. The all-
particle spectrum is the bin-wise sum of all five individual spectra; hence, the effect of the
correlated biases at the very first energy bins for individual primaries is compensated to
a certain degree, such that the all-particle spectrum can be shown up to slightly smaller
energies. However, as will be discussed in Section 7.4.1 whilst a comparison of the all-
particle spectra based on KASCADE and KASCADE-Grande, there are indications that
the first shown all-particle flux value (at log10(E/GeV) ≈ 6.9) is overestimated to a
certain extent. Hence, in most of the further depictions, this first data point is omitted.
The right axis limit for the shown spectra at around log10(E/GeV) ≈ 8.6 is determined
by the all-particle as well as the iron spectrum: above this energy, these unfolded spectra
are unreliable, as tagged by the large error bars and error bands there. The spectra of the
lighter mass groups are subject to larger uncertainties already at smaller energies due to
their comparatively smaller fluxes. The energy ranges tagged by these large uncertainties
should be treated with extreme caution, since no physically meaningful interpretation is
possible there.

The abundance of the respective primaries seems to increase successively from pro-
tons, over helium, carbon, silicon up to iron nuclei. Hence, the heavier cosmic ray mass
groups seem to be the most abundant ones in the observed energy range. This is con-
firmed by the depiction of the mean logarithmic atomic mass in Fig. 7.4. The markers
represent the mean logarithmic mass derived based on the elemental spectra shown in
Fig. 7.3. Up to energies of log10(E/GeV) ≈ 8.0 the composition seems to get steadily
heavier. However, at this energy, there seems to be a change in composition in direction
back to lighter elements.

3And also larger at the highest energies, since there not a constant relative bias, but a constant absolute
one is assumed if the number of showers contributing to a specific energy bin is less than N = 25. The
unfolded solution is poor at these energies. But, by means of the large assumed absolute bias, these ranges
are successfully tagged to be insignificant.
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Figure 7.3: The unfolded energy spectra for elemental groups of cosmic rays, represented
by protons, helium, and carbon nuclei (top panel) as well as by silicon and iron nuclei
(bottom panel). The all-particle spectrum that is the sum of all five individual spectra is
also shown. The error bars represent the statistical uncertainties, while the error bands
mark the maximal range of systematic uncertainties. The result bases on the interaction
models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
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Figure 7.4: The development of the mean logarithmic mass (black markers) that was
derived based on the elemental spectra shown in Fig. 7.3 in dependence on the primary
energy. The error bars represent the statistical uncertainties, the error band the maximal
range of the systematic ones. The horizontal dashed lines represent the logarithmic atomic
masses of specific nuclei (see legend).

Investigating the results depicted in Fig. 7.3 further shows that the spectra of pro-
tons, as well as of helium, carbon, and silicon nuclei are rather featureless, if one only
takes into account the energy ranges that are not tagged to be meaningless by large
uncertainties. But, the spectra of protons as well as of helium nuclei seem to get harder
above log10(E/GeV) > 7.4 respectively log10(E/GeV) > 7.6. However, these parts of the
spectra have to be interpreted with caution since the statistics is poor there, as reflected
by the large error bars. As mentioned in Section 6.3.5, Gold’s algorithm tends to pull up
the spectra at ranges of low statistics due to its positive definiteness. Hence, although
the obtained results give slight indications for a hardening especially in the spectrum
of protons, this cannot be stated with absolute certainty. From the statistical point of
view, none of the spectra of protons, helium, carbon, or silicon, as well as the all-particle
spectrum shows a significant structure.

Things are different in case of iron nuclei. The flux of this most abundant primary
can be reconstructed over a wide energy range with only small uncertainties. There is a
steepening observable in the spectrum at around log10(E/GeV) ≈ 7.9 to log10(E/GeV) ≈
8.0. The significance of this “knee-like” structure will be judged in Section 7.3.1. The
relative increase of the flux of iron nuclei at around log10(E/GeV) ≈ 8.45 has to be
interpreted with caution. For one thing, the statistical uncertainties are already large
there, for another thing, the immediately succeeding energy bins are already tagged to
be insignificant by large systematic uncertainties. Hence, beside the possibility that this
increase at that single energy bin is simply a statistical effect, it could also be caused by a
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systematic artificial effect of the algorithm; e.g. due to the positive definiteness of Gold’s
algorithm, since the number of contributing air showers to that energy bin is N = 49,
and hence already very small. As shown in Fig. 7.5, this relative flux increase is primarily
visible in case of the two iterative unfolding methods (Gold, Bayes’ theorem), while the
spectrum of iron nuclei derived by the regularized unfolding based on the principle of
maximum entropy is rather structureless at this energy range. Hence, this could be an
indication that this increase is an impact of the used algorithm. However, if the flux of
iron nuclei really suffers from such a systematic distortion at this energy, the performed
estimation of the bias would have failed to a certain extent at this energy bin. The
number of entries that one would expect if this data point would follow the trend of the
predecessors is round about N ≈ 20. To explain the deviation by a systematic effect, the
relative bias would be rather 40% instead of the assumed 20% at this specific energy bin.
Such a single underestimation is possible however, as discussed in Section 6.3.3, since the
bracketing of the “estimated” relative biases in order to get an estimate for the maximal
range of uncertainty works reliably in many cases, but could indeed fail to cover a few
single “true” relative biases. This was especially observed in case of smaller statistics. As
a conclusion, it cannot be decided whether or not the increase of the flux of iron nuclei
at around log10(E/GeV) ≈ 8.45 is a real physical feature, even though there are more
indications that it is not. Hence, in the following analyses, this data point as well as all
subsequent ones will be neglected.

To summarize, the preliminary expectation of Section 5.3.3 (cf. Fig. 5.35 and 5.36)
that the composition of cosmic rays is dominated by the heavy component is confirmed
now. While the spectra of protons, as well as of helium, carbon, and silicon nuclei are fea-
tureless within the scope of uncertainties, the flux of iron nuclei seems to be characterized
by a steepening at around log10(E/GeV) ≈ 7.9 to log10(E/GeV) ≈ 8.0. However, concern-
ing protons, it might be possible that its spectrum recovers above log10(E/GeV) > 7.4.
Before the significance of the knee-like structure in the spectrum of iron nuclei will be
analysed in more detail, or comparisons with other results are performed, first the quality
of the solution will be examined in the next section.

7.2.2 Consistency and quality of the result

In order to review the reliability of the solution, in a first step, the spectra unfolded with
Gold’s algorithm can be compared to those derived with the other introduced unfolding
algorithms. By this, a potential systematic impact of the applied technique can be ruled
out. However, since the true energy spectra are unknown, it is hard to judge about the
quality of the derived solution. The only expedient will be to compare the results with
the measured shower size distribution by means of a forward folding, to get at least an
impression about the quality of the data description, even though this is not exactly the
same as the quality of the solution itself.

Cross-check with other unfolding algorithms

For cross-check purposes, the shower size distribution measured with KASCADE-Grande
is unfolded with the two additional methods introduced also in Section 6.2: The iterative
algorithm using the Bayes’ theorem, as well as the regularized unfolding based on the
principle of maximum entropy. the optimal iteration depth (∆χ2 = 4×10−3) respectively
the appropriate regularization parameter (τ = 900) have been determined based on the
WMSE, as already done in case of Gold’s technique.
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Fig. 7.5 comprises the energy spectra for elemental groups of cosmic rays, represented
by protons, helium, and carbon nuclei (top panel) as well as by silicon and iron nuclei (bot-
tom panel). The all-particle spectrum is also shown. The markers (connected by straight
lines to guide the eyes) are the solution derived by Gold’s unfolding method, while the
dashed lines represent the spectra unfolded by the techniques based on Bayes’ theorem or
the principle of maximum entropy (see legend for details). For a better distinguishability,
the error bars represent the statistical uncertainties of the solution derived by Gold’s
algorithm only, while the systematic error bands are omitted entirely4. All results base
again on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].

In case of the all-particle spectrum, all three results agree perfectly. The solutions for
the spectra of individual particles derived by the two iterative procedures conform very
well, too. Only the method based on the principle of maximum entropy yields spectra
farther away from those of the two iterative algorithms. As stated in Section 6.3.5, the
quality of this regularized technique was already found to be poorer in case of trial
unfoldings based on toy datasets, such that this result is not surprising. Nevertheless,
at least the courses of the fluxes agree tendentially. Furthermore, in all three unfolded
spectra of iron nuclei, the steepening at around log10(E/GeV) ≈ 7.9 to log10(E/GeV) ≈
8.0 is likewise observable, such that there is no indication that this knee-like feature is
an artificial effect of the applied unfolding algorithm itself.

As a conclusion, the solution based on Gold’s algorithm has been confirmed by means
of two additional unfolding methods. Especially the knee-like structure in the spectrum
of iron nuclei is observable independently from the applied unfolding technique.

Quality of data description

Since in case of the analysis of the measured shower size distribution the true solution
is unknown, the quality of the solution itself cannot be reviewed immediately. In Sec-
tion 6.3.1, a chi-square test (cf. Eq.(6.39)) was introduced in order to check the quality
of the description of the measured data by the unfolded solution. It was emphasized that
by this test the quality of the solution itself can only be judged peripherally. For sure,
the unfolded solution should be able to reproduce the measured data sample to a certain
extent. However, the solution is not wanted to reproduce any random fluctuation in the
data sample. Nevertheless, to check the quality of the description of the measured data
by the unfolded solution, i.e. that the solution agrees in principle with the measured
dataset, is the only expedient.

The chi-square test (cf. Eq.(6.39)) between the forward folded solution (Fig. 7.6,
top right panel) and the measured shower size distribution (Fig. 7.6, top left panel)
yields a reduced chi-square value of 0.5 (chi-square probability of agreement is 100%).
An additional Kolmogorov-Smirnov test results in a probability of 97% for a compatibility
of both distributions. Hence, in principle, the unfolded solution agrees with the actually
measured dataset. Overall, the quality of the data description is high.

However, it has to be checked whether the small difference between both distributions
is caused by statistical excesses in the measured dataset, which are neglected successfully
by Gold’s algorithm, or if there are indications for systematic problems, like e.g. a deficit
description of the physics of hadronic interactions at these energies by the used interac-
tion models. In this context, one has to call to mind that a forward folding introduces
a smoothing (cf. explanations in Section 4.2), such that the forward folded solution will

4Anyway, the uncertainties are only slightly different for the applied unfolding techniques.
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Figure 7.5: The energy spectra for elemental groups of cosmic rays, represented by pro-
tons, helium, and carbon nuclei (top panel) as well as by silicon and iron nuclei (bottom
panel). The all-particle spectrum is also shown. The markers (connected by straight lines
to guide the eyes) are the solution derived by Gold’s unfolding method, while the dashed
lines represent the spectra unfolded by the techniques based on Bayes’ theorem or the
principle of maximum entropy (see legend for details). The error bars represent the sta-
tistical uncertainties of the solution derived by Gold’s algorithm. All results base on the
interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
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Figure 7.6: The shower size distribution measured with KASCADE-Grande (top left) and
the one derived by a forward folding of the unfolding solution (top right). On the bottom
panel, the distribution of the χ2

i -deviations (that are the M summands χ2
i of Eq.(6.39)

that contribute to the chi-square value, where M is the dimension of the data vector)
between these two shower size planes is depicted.

naturally be smoother than the measured data sample. The forward folded solution re-
flects rather a data sample with high statistics5, and hence with less fluctuations than in
case of the KASCADE-Grande dataset measured in a few years only, and thus with very
limited statistics. More precisely, it has to be checked in the following if the forward folded
solution agrees with the measured dataset in the framework of statistics, albeit such an
agreement is already highly indicated by the large chi-square and Kolmogorov-Smirnov
probabilities.

For this purpose, the distribution of the χ2
i -deviations (that are the M summands

χ2
i of Eq.(6.39) that contribute to the chi-square value, where M is the dimension of

the data vector) between the two shower size planes is examined more in-depth (cf.
Fig. 7.6, bottom panel). Overall, there seems to be a good agreement between the for-
ward folded solution and the measurement (χ2

i values at around 1 or less). Only a few
cells exhibit larger χ2

i values. This is confirmed by the distributions comprised in Fig. 7.7.
There, different one-dimensional slices of the two two-dimensional distributions depicted
in Fig. 7.6 are shown: for different fixed charged particle number (left panels) respec-
tively muon number (right panels) intervals6, as denoted in the legends. Additionally

5What would be the ideal case: An experiment with unlimited statistics, which does not suffer from
fluctuations, such that the “true” energy spectra can be reconstructed without the need of strong regu-
larization.

6In this exemplary depictions, only the interesting intervals are covered that are corresponding to
smaller or intermediate energies, as only there large deviations are discernible (cf. Fig. 7.6, bottom
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Figure 7.7: Comparison between the measured dataset (“measured data”) and the recon-
structed one (“rec. data”) that was derived by a forward folding of the unfolded solution.
Shown are different slices of the two-dimensional distributions depicted in Fig. 7.6: for
different fixed charged particle number (left panels) respectively muon number (right
panels) intervals, as denoted in the legends. Additionally shown are the contributions of
the individual primaries to the reconstructed dataset.
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Figure 7.8: The distribution already shown in Fig. 7.7, top left panel, now zoomed in in
order to better point out the deviations between the measured dataset and the recon-
structed one.

shown are the contributions of the individual primaries to the reconstructed dataset. In
general, there is a good agreement between the measurement and the forward folded so-
lution. Furthermore, especially from the right panels, one can deduce that a dominating
heavy component is needed in order to describe sufficiently the left tail of the measured
distribution. However, also lighter components are still needed at these energy ranges in
order to describe the right tail.

Exemplarily, the excesses observable in Fig. 7.6 (bottom panel) in the interval 6.14 <
log10(Nch) < 6.21 at the bins 5.21 < log10(Nµ) < 5.28 or 5.49 < log10(Nµ) < 5.56 will
now be examined. For this purpose, the range of the y-axis of the distribution shown in
Fig. 7.7, top left panel, is reduced in order to better point out the respective deviations.
The result is depicted in Fig. 7.8. The two muon number bins of this slice where these
larger excesses are observable in the chi-square distribution are marked. In general, the
measured distribution is described reliably. Taking into account that the description is
of high quality for almost all cells of the shower size plane, these single larger deviations
are less likely of physical origin, but rather compatible with random statistical excesses
due to the limited measurement time. Due to the smoothing effect of the forward folding,
the reconstructed dataset does not exhibit such excesses.

As a conclusion, the unfolded energy spectra for elemental groups of cosmic rays
enable a very good description of the measured shower size distribution. The few sta-
tistical excesses in the data sample are ignored successfully by the unfolding procedure.
This results in very small isolated deficits in the description of the measured data by the
unfolded solution, however, guarantees an optimal non-oscillating solution what is the
primary goal of the analysis. There are no indications that the used interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68] fail to describe the physics of
hadronic interactions at these energies reliably7.

panel).
7What, however, does not necessarily mean that the used models are 100% correct.
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7.2.3 Preliminary result based on EPOS 1.99

It was emphasized in Section 6.3.3 that the unfolded solution will suffer from four sources
of uncertainties. While the uncertainties caused by the limited measurement time, the
limited Monte Carlo statistics, as well as the bias of the unfolding algorithm can be
estimated reliably, the uncertainty that originates from a possibly wrong description
of the physical processes in the air shower development by the used interaction models
cannot be estimated immediately, since the truth is not known. The reliability of the error
estimation cannot be reviewed as done in case of the other sources by the comparison
between “true” and “estimated” uncertainties. However, the influence of different models
on the final result can be examined in order to get a first impression about the model
dependence; but, without knowing which of the models is the right one, or at least
close to truth. Only accelerator experiments enable an independent test of the hadronic
interaction processes considered in the different interaction models. Nevertheless, the
comparison between the measured dataset and the one predicted by the solution (forward
folding) can at least give first indications whether or not the used models seem to describe
the physical processes in a right way.

In order to get a rough impression about the model dependence of the unfolded
solution, the unfolding procedure is repeated in a very preliminary analysis based on the
high energy interaction model EPOS 1.99 [188]. After some words about the preparatory
steps for the EPOS 1.99 analysis, the results will be presented and compared to the
QGSJET-II-02 solution. Deficits in the data description by EPOS 1.99 will be discussed,
and preliminary suggestions for a possible improvement of that model will be given.

Preparations

Since the low energy interaction model (here FLUKA 2002.4) is less important for the
final result8, only the influence of the high energy interaction models (in the main analysis
QGSJET-II-02 [144, 145]) has to be examined. A change of that model means that the
whole unfolding analysis9 has to be repeated again based on the new model. Since this is
very time consuming, only a rather quick cross-check based on the high energy interaction
model EPOS 1.99 [188] has been performed for this thesis. This model is widely used in
actual analyses, such that it was selected for the first cross-check. In principle the same
steps as already done in case of the main analysis based on QGSJET-II-02 have been
performed. However, in case of the new model EPOS 1.99 only very quickly, while in
case of the standard model of this thesis every step was reviewed very carefully. Hence,
all EPOS based results shown in this section are only preliminary results! Accurate and
final analyses based on different high energy interaction models are actually in work and
will be presented by our collaboration soon.

Since things like detector efficiency and resolution do not depend10 significantly on
the model used to simulate the air shower, only the part of the response matrix that
contains the parametrization of the air shower development has to be re-parametrized
using EPOS. The used EPOS 1.99 simulation set is comparable to the QGSJET-II-02 set

8As already the analyses based on KASCADE measurements have proved [12].
9Beginning from the parametrizations of the air shower development, the computation of the response

matrix and its conditioning, test of the reliability of the applied unfolding algorithms in case of the current
model, determination of the optimal iteration depth, computation of uncertainties etc.

10Or at least should not depend on the used shower development simulation code, what has to be
checked in case of a final EPOS analysis. However, in first preliminary checks, this appeared to be
confirmed.
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(cf. Section 5.1.1) used for the main analysis of this work. The intrinsic shower fluctuations
are parametrized for EPOS analogous to those for QGSJET-II-02 in Section 5.1. The
remaining parametrizations for the efficiency and the reconstruction uncertainties are
inherited from the QGSJET-II-02 response matrix. Finally, a new response matrix, which
bases on EPOS 1.99 and FLUKA 2002.4, can be computed and used for an unfolding
analysis.

A first comparison between the preliminary parametrizations based on the EPOS 1.99
response matrix and the measured dataset is depicted in Fig. 7.9 and 7.10. In the first
mentioned figure, the measured shower size distribution (grey isoareas) and the most
probable log10(N rec

µ )–log10(N rec
ch ) values according to the response matrix (markers) that

bases on EPOS 1.99 and FLUKA 2002.4 are illustrated for different particles and primary
energies. While in case of QGSJET-II-02 (see Fig. 5.36) the most probable values for the
heavy nuclei (silicon, iron) are located in the central region of the measured distribution
(where it has many entries), in case of EPOS 1.99 the most probable values for the
intermediate mass group (represented by carbon nuclei) are matching this central region.
That gives first indications that in case of EPOS 1.99 the reconstructed composition of
cosmic rays would be lighter than in case of QGSJET-II-02.

In Fig. 7.10, again the measured shower size plane is shown, but now in comparison
to some isolines representing the cells

(
log10(N rec

ch ), log10(N rec
µ )

)
i

of the data plane with
constant probability (from the inner11 to the outermost isoline: 0.1, 0.05 and 10−4 prob-
ability density). One can see that the widths of the distributions are of the same order as
those in case of QGSJET-II-02, such that again a simple consideration of the maxima will
not result in a reliable solution. Hence, also in case of EPOS 1.99, the entire probability
distributions have to be taken into account and used whilst the deconvolution procedure.

Unfolded energy spectra based on EPOS 1.99

The measured log10(N rec
µ )–log10(N rec

ch ) shower size distribution is unfolded by means
of Gold’s algorithm and using the response matrix based on the interaction models
EPOS 1.99 [188] and FLUKA 2002.4 [24, 67, 68]. The optimal iteration depth12 for
this purpose was found to be ∆χ2 = 2× 10−4 (determined based on the WMSE).

Fig. 7.11 comprises the unfolded energy spectra for elemental groups of cosmic rays,
represented by protons, helium, and carbon nuclei (top panel) as well as by silicon and
iron nuclei (bottom panel). The all-particle spectrum that is the bin-wise sum of all five
individual spectra is also shown. The error bars represent the statistical uncertainties
caused by the limited measurement time. The systematic uncertainties13 are not yet
shown in this preliminary result.

Comparing this preliminary result to that derived by means of the interaction mod-
els QGSJET-II-02 and FLUKA 2002.4 (cf. Fig. 7.3) reveals some significant differences
between both solutions. The spectra of the lighter mass groups, represented by protons

11In case of smaller energies, the widths of the probability distributions are as large that there are
no individual probabilities larger than 0.1 or even 0.05, such that the inner isolines are missing in these
cases.

12The determined optimal iteration depth differs from that used in the unfolding based on the QGSJET-
II-02 model. It will be discussed later on that EPOS 1.99 does not need iron and silicon nuclei to describe
the measurement. Hence, the unfolding using the EPOS model is primarily based on only three primaries,
instead of five. This could be one reason, why in case of EPOS 1.99 Gold’s algorithm has different
convergence rates than in case of QGSJET-II-02.

13The bias of the unfolding algorithm is again at around 20% to 30%, while the systematic uncertainties
due to that in the response matrix, caused by the limited Monte Carlo statistics, are not yet computed.
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Figure 7.9: A comparison between the measured shower size distribution (grey isolines
with filled areas in between) and the most probable log10(N rec

µ )–log10(N rec
ch ) combinations

according to the preliminary parametrizations, illustrated for different particles and based
on EPOS 1.99 and FLUKA 2002.4. The corresponding primary energies are out of the
log10(E/GeV) interval 6.98 to 9.5, which is divided into 18 bins of width 0.14 (the first
bin, which covers the energy bin log10(E/GeV)=6.98 to 7.12, corresponds to the first
markers shown in the bottom left corner). To guide the eyes, the markers are connected
with straight lines.
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Figure 7.10: A comparison between the measured shower size distribution (grey
histogram) and some isolines with log10(N rec

µ )–log10(N rec
ch ) combinations of constant

probability according to the preliminary parametrizations based on EPOS 1.99 and
FLUKA 2002.4. This is illustrated exemplarily for protons, carbon as well as for iron
nuclei, and in case of six energy bins (labelled below each isoline set). Each isoline set
corresponds, from the inner to the outermost line, to 10%, 5% and 0.01% probability.



7.2. Unfolding of the KASCADE-Grande Dataset 165

(E/GeV)
10

primary energy in log

7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6

)
1.

50
 G

eV
-1

 s
-1

 s
r

-2
 / 

(m
2.

50
 E⋅

di
f. 

flu
x 

dJ
/d

E
 

10

210

310

sum spectrum
H
He
C

PRELIMINARY

(E/GeV)
10

primary energy in log

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6

)
1.

50
 G

eV
-1

 s
-1

 s
r

-2
 / 

(m
2.

50
 E⋅

di
f. 

flu
x 

dJ
/d

E
 

-110

1

10

210

310

sum spectrum
Si
Fe

PRELIMINARY

Figure 7.11: The unfolded preliminary energy spectra for elemental groups of cosmic
rays, represented by protons, helium, and carbon nuclei (top panel) as well as by silicon
and iron nuclei (bottom panel; the spectrum of iron nuclei is slightly shifted along the
x-axis for a better discriminability). The all-particle spectrum that is the sum of all five
individual spectra is also shown. The error bars represent the statistical uncertainties,
while the systematic uncertainties are not yet shown. The result bases on the interaction
models EPOS 1.99 [188] and FLUKA 2002.4 [24, 67, 68].
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and helium nuclei, are still very similar (only the absolute normalizations, i.e. the rela-
tive abundances, are different). Especially the impression that the proton spectrum gets
harder beyond log10(E/GeV) > 7.4 seems to be confirmed by the EPOS result14. How-
ever, the spectrum of the intermediate mass group, represented by carbon nuclei, shows
a significantly different structure in comparison to the QGSJET-II-02 result. The differ-
ential flux of carbon nuclei is characterized by a rather small power law index of around
γ ≈ 2.5 up to energies of around log10(E/GeV) ≈ 7.9 to log10(E/GeV) ≈ 8.0. Beyond
this energy, the spectrum seems to get steeper. Such a knee-like feature is not observ-
able in the spectrum of carbon nuclei derived using QGSJET-II-02. It seems that this
structure present in the data is assigned to iron nuclei in case of QGSJET-II-02, and to
carbon nuclei in case of EPOS 1.99. Since all EPOS 1.99 results are only preliminary and
EPOS 1.99 has some deficits in the data description (as shown later), the significance of
this structure has to be interpreted with caution and will not be analysed in more detail
in this work. In case of the heavier mass groups, represented by silicon and iron nuclei,
the results are completely different from that obtained in case of using QGSJET-II-02.
There is only a vanishingly low flux of silicon nuclei observable, while iron is even less
important. In truth, both fluxes are presumably compatible with zero, and are only de-
termined to be non-zero due to the positive definiteness of Gold’s algorithm. This result
was already expected, as discussed in the context of Fig. 7.9. In case of EPOS 1.99, the
cosmic ray composition is dominated by the intermediate or the lighter mass groups.
The contents of the spectra of silicon and iron nuclei unfolded based on QGSJET-II-02
seem, in case of EPOS 1.99, to be assigned to the lighter mass groups, especially to the
one represented by the spectrum of carbon nuclei. Due to the very low abundance of
iron nuclei, in the context of the given measurement statistics of KASCADE-Grande no
statement about a possible iron-knee can be given. This does not necessarily mean that
there is not one, but only that the KASCADE-Grande experiment is not able to measure
it if the high energy interaction model EPOS 1.99 describes the air shower development
reliably. However, it should again be emphasized that this conclusion is preliminary.

In Fig. 7.12, a preliminary comparison between the all-particle spectra derived by
an unfolding based on the high energy interaction models EPOS 1.99 or QGSJET-II-02
in combination with the low energy interaction model FLUKA 2002.4 is illustrated. For
a better distinguishability, only the statistical (error bars) and systematic (error band)
uncertainties in case of QGSJET-II-02 are shown. Both spectra show the same slope and
structures. This is again an indication that on the one hand individual primaries have
different abundances for different interaction models. But, on the other hand, specific
structures in the data seem to be conserved, however, with an assignment to different
primaries in dependence on the used model. Regarding the absolute normalization, the
EPOS 1.99 flux is constantly shifted slightly to smaller values in comparison to the
QGSJET-II-02 one. The deviation is within the given error band, i.e. within the sys-
tematic uncertainties of the QGSJET-II-02 solution. It could be caused by a systematic
bias15 of the algorithm itself, or by the uncertainties in the response matrices. However, it
could also be a real physical property: a different mean energy assignment by the models.
As one can derive from a comparison between Fig. 5.36 and 7.9, in case of EPOS 1.99,
at a fixed energy, the air showers exhibit on average more muons, but less charged par-
ticles (and hence less electrons) than in case of QGSJET-II-02. That means that in case
of EPOS 1.99 more energy will be assigned to muons, and less energy to electrons (if

14However, also there without statistical significance.
15That is maybe differently large in case of unfolding the data based on the EPOS 1.99 or QGSJET-II-02

response matrices.
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Figure 7.12: A preliminary comparison between the all-particle spectra derived by
an unfolding based on the high energy interaction models EPOS 1.99 [188] or
QGSJET-II-02 [144, 145] in combination with the low energy interaction model FLUKA
2002.4 [24, 67, 68]. For a better distinguishability, only the statistical (error bars) and
systematic (error band) uncertainties in case of QGSJET-II-02 are shown.

the assignment per particle is not different, too). Such effects can finally influence the
absolute scale of the all-particle spectra.

Quality of data description by EPOS 1.99

As already impossible in case of QGSJET-II-02, also in case of EPOS 1.99 the quality
of the unfolded solution cannot be judged immediately. The only expedient was to ex-
amine the quality of the data description by the solution and to demand an agreement
within statistics (cf. Section 7.2.2). By this, a first indication is given whether or not the
used interaction model seems to have serious deficits in the description of the physics of
hadronic interactions at these energies.

In case of EPOS 1.99, a Kolmogorov-Smirnov probability of only 69% for an agreement
between the measured dataset and the one computed by a forward folding of the unfolded
solution was achievable. Even with very deep iteration depths, which yield a less biased16

solution, and therefore describe the data sample better, no higher probability than 75%
was achievable. Consequently, EPOS 1.99 seems to have problems to describe the shower
development reliably.

To examine the deficits in more detail, in Fig. 7.13, top panel, the distribution of the
χ2
i -deviations (that are theM summands χ2

i of Eq.(6.39) that contribute to the chi-square
value, where M is the dimension of the data vector) between the measured dataset and

16But, a more oscillating, and hence meaningless solution.
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Figure 7.13: On the top panel, the distribution of the χ2
i -deviations (that are theM sum-

mands χ2
i of Eq.(6.39) that contribute to the chi-square value, whereM is the dimension

of the data vector) between the measured shower size plane and the one computed by a
forward folding of the EPOS 1.99 solution is depicted (note the different z-axis scaling
between this depiction and that in Fig. 7.6, bottom panel). On the bottom panels, a
comparison between the measured dataset (“measured data”) and the reconstructed one
(“rec. data”) that was derived by the forward folding of the unfolded solution is per-
formed: Shown are different slices of the two-dimensional distributions for different fixed
muon number intervals, as denoted in the legends. Additionally shown are the contribu-
tions of the individual primaries to the reconstructed dataset.

the one derived by a forward folding of the EPOS 1.99 solution is illustrated. Comparing
this distribution to that for QGSJET-II-02 (see Fig. 7.6, bottom panel; note the different
scaling of the z-axis!) reveals significantly larger deviations in case of EPOS 1.99. They
are primarily located at lower energies and next to the heavy edge17 of the distribution.

In Fig. 7.13, bottom panel, one-dimensional slices through the respective two-dimen-
sional shower size distributions are examined, exemplarily for the two fixed muon num-
ber18 intervals 5.42 < log10(Nµ) < 5.49 and 6.19 < log10(Nµ) < 6.33. One can see that
already the lighter and intermediate mass groups basically allow to describe the data in
the main, without the need of a dominant heavy component. More precisely, in case of
the shown muon number interval 5.42 < log10(Nµ) < 5.49, a heavy component (especially
iron nuclei) is not allowed at all. The lighter primaries are already needed in such high

17As can be seen from Fig. 7.9, the upper edge (called “light edge”) of the distribution corresponds
rather to the lighter mass groups, while the lower edge (called “heavy edge”) corresponds the heavy ones.

18Slices of fixed charged particle number intervals yield comparable results, and hence are not shown
additionally.
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Figure 7.14: A comparison between the measured shower size distribution (grey isolines
with filled areas in between) and the energy dependence of the most probable log10(N rec

µ )–
log10(N rec

ch ) combinations according to the parametrizations, illustrated by the straight
lines for different particles and based on EPOS 1.99 respectively QGSJET-II-02 [144, 145]
in combination with FLUKA 2002.4.

abundances in order to describe the right tail reliably that at the left tail this causes a
systematic overestimation of the measured dataset by the reconstructed one. An addi-
tional heavy component would further deteriorate the description. Such a overestimation
at the left tail can also be seen for the neighbouring muon number intervals, such that
these deviations are not compatible with single statistical excesses (as it was the case for
QGSJET-II-02), but are caused by systematic effects. The overestimation corresponds to
the deviations observable for smaller energies at the heavy edge (cf. Fig. 7.13, top panel).
In some other intervals19, one can observe an underestimation of the right tail of the
measured data by the solution. Hence, this is an interplay between sufficiently abundant
lighter or intermediate mass groups in order to describe the right tail correctly, and a
sufficiently description of the left tail without overestimation. Especially at the lower
energies, it is not possible to fulfil both requirements without under- or overestimating
the measured distribution at the respective tails.

One could interpret this deficit such that EPOS 1.99 predicts too many muons20, or
too few charged particles, respectively electrons, than the data would require. This can
better be explained based on Fig. 7.14. There, a comparison between the measured shower
size distribution (grey isolines with filled areas in between) and the energy dependence of
the most probable log10(N rec

µ )–log10(N rec
ch ) combinations according to the parametriza-

19In the actually depicted interval only slightly visible for the last four or six shown bins.
20What is surprising, since most of the other experiments recognize rather a muon deficit in the inter-

action models like QGSJET-II-02 (cf. e.g. [58, 192]), and hence it was actually the idea that larger muon
numbers are needed.
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tions, illustrated by the straight lines for different particles and based on EPOS 1.99
respectively QGSJET-II-02 [144, 145] and FLUKA 2002.4, is depicted. The lines of max-
imal probability in case of a certain primary for QGSJET-II-02 and EPOS 1.99 are not
exactly parallel. Their distance seems to be larger in case of smaller energies, i.e. at en-
ergies where EPOS 1.99 seems to have some deficits. If the EPOS 1.99 lines would be
shifted towards higher charged particle numbers (or to smaller muon numbers) at these
energies, such that they are finally more parallel to the QGSJET-II-02 lines, one would
already expect an improvement of the data description in case of EPOS 1.99. Since the
maximal probability lines for the lighter and intermediate mass groups would get shifted
farther away from the centre of the measured shower size plane, their abundance would
be smaller, while also the heavy component would begin to be important. The large im-
balance between light and heavy primaries that did not allow to describe both the right
and left tails of the one-dimensional distributions (Fig. 7.13, bottom panel) equally well
would be reduced to a certain degree. Another possibility to improve the data descrip-
tion in case of EPOS 1.99 could be to assume smaller intrinsic shower fluctuations: the
distributions needed to describe the right tails and belonging primarily to the light or
intermediate mass groups would be narrower, and hence would less affect the left tail.
However, the aforementioned possible optimizations are rather educated guesses than
assured facts. They base on simplified interpretations of the deficits of EPOS 1.99 in the
data description. The physics of hadronic interactions at these energies is nontrivial and
to a great extent still unknown, and can only be extrapolated tentatively from results
gained by particle accelerator experiments at lower energies. Hence, the afore-suggested
solutions, which furthermore base on preliminary results only, could also be wrong and
should be treated with care.

Summary of the EPOS 1.99 results

Comparing the energy spectra unfolded based on the interaction model EPOS 1.99 to
those based on QGSJET-II-02 reveals that both models result in comparable all-particle
spectra, which are slightly shifted against each other, presumably due to a different mean
energy assignment whilst the air shower development. Another reason could be that the
uncertainties in the response matrix (mainly the uncertainties in the description of the
tails of the shower fluctuations) or the bias caused by the unfolding algorithm itself are
of different size for different high energy interaction models.

The spectra of individual mass groups are less compatible. Especially the relative
abundances are very different. That different high energy interaction models yield differ-
ent relative abundances of the mass groups conforms with the result based on the KAS-
CADE unfolding analysis [9], where the interaction models QGSJET-01 and SIBYLL
yielded different relative abundances of individual primaries, while the structures in the
specific spectra were less model dependent. Especially the knee-like features in the spec-
tra were observable independently from the applied model. The latter point cannot be
confirmed by the KASCADE-Grande analysis. In case of QGSJET-II-02, there is a knee-
like structure visible in the flux of iron nuclei. In case of EPOS 1.99, due to the very low
abundance of iron nuclei going along with a very low statistics, no statement about a
structure in the spectrum of iron nuclei can be given. However, the structure presumably
present in the data and assigned to iron nuclei in case of QGSJET-II-02, seems to be
assigned to carbon nuclei in case of EPOS 1.99.

A comparison between the measured dataset and the one obtained by a forward
folding of the EPOS 1.99 solution reveals systematic deficits of this model in the data
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description. Hence, the obtained energy spectra should be interpreted with caution. Since
in case of QGSJET-II-02 there are no indications for serious deficits in the data descrip-
tion, the QGSJET-II-02 based results are considered to be reliable at the moment, while
the EPOS 1.99 based results are ignored in the following analyses in this thesis. Empha-
sizing that the EPOS 1.99 results base on a preliminary analysis only, it can be supposed
that EPOS 1.99 seems to predict too many muons respectively too few electrons. Al-
ternatively, the intrinsic shower fluctuations could be too large in case of EPOS 1.99.
However, this are rather educated guesses than assured facts.

Detailed unfolding analyses based on other high energy interaction models than
QGSJET-II-02 are currently in progress and will be presented by our collaboration soon.
They will replace this preliminary EPOS 1.99 analysis presented in this work and will
allow to draw final conclusions about the model dependence of the result obtained in
the main analysis of this work based on QGSJET-II-02. Furthermore, the Large Hadron
Collider (LHC) has started operation. It is designed to collide protons at centre-of-mass
energies of up to 14 TeV, corresponding to a fixed-target energy of about ∼ 1017 eV, and
hence covering the energy range observable with KASCADE-Grande to a large extent.
Hence, the results of this experiment will help to tune the parameters of the high energy
interaction models in the near future.

7.3 Analysis of the Energy Spectra – Physical Conclusions

In the last preceding section, the energy spectra for elemental groups of cosmic rays have
been unfolded. Some consistency checks (cf. Section 7.2.2) yielded a good agreement be-
tween the predictions of the model QGSJET-II-02 and the measurement, such that there
is no indication so far that the derived solution could be unreliable21. The unfolded flux
of iron nuclei, which is representing the heavy mass group of cosmic rays, was character-
ized by a steepening at a primary energy of about ∼ 1017 eV, as observable by eye. The
significance of this structure will now be analysed mathematically (Section 7.3.1). There-
after, the position of the knee-like feature will be compared to those in the spectra of
protons and helium nuclei determined with the KASCADE experiment (Section 7.3.2).
This allows drawing inferences about the physical background of cosmic ray accelera-
tion. Finally, the all-particle spectrum will be analysed and its spectral index will be
determined (Section 7.3.3).

7.3.1 Significance of the knee-like structure in the flux of iron nuclei

The unfolded flux of iron nuclei, based on the interaction models QGSJET-II-02 as well
as FLUKA 2002.4 and depicted in Fig. 7.3, is characterized by a discernible structure at
a primary energy of about ∼ 1017 eV. The significance of this knee-like feature will be
judged in this section.

In Fig. 7.15, left panel, again the unfolded flux of iron nuclei is shown, but now
unscaled. The last two data points of the spectrum of iron nuclei, still shown in Fig. 7.3,
are omitted in the current figure, since they are precarious as discussed in Section 7.2.1.
The error bars represent the statistical uncertainties, while the error bands mark the
maximal range of systematic uncertainties. The flux is fitted by means of a single power

21While a preliminary unfolding based on EPOS 1.99 revealed deficits in the data description by that
model, such that the EPOS 1.99 solution is probably unreliable.
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Figure 7.15: On the left panel, the unfolded flux of iron nuclei is depicted. The error bars
represent the statistical uncertainties, while the error bands mark the maximal range of
systematic uncertainties. Additionally, the flux is fitted by means of a single power law ac-
cording to Eq.(7.1). On the right panel, the residual flux between the spectrum predicted
by that power law fit and the unfolded spectrum of iron nuclei is illustrated. Additionally,
the spectrum of iron nuclei is fitted by a double power law function according to Eq.(7.2).

law according to the following function:

dJ(E)
dE

= J0 E
γ1 , (7.1)

where the absolute flux J0 serves as normalization, while γ1 is the index of the power law.
The quality of the fit is very poor however (chi-square probability of less than 1% with
χ2/ndf = 18.9/7). In order to better emphasize the deviations, on the right panel, the
residual flux between the spectrum predicted by that single power law fit and the unfolded
spectrum of iron nuclei is illustrated. Additionally, the spectrum of iron nuclei is fitted
by a double power law function according to the poly-gonato function (cf. Eq.(6.41))
already introduced in Section 6.3.2:

dJ(E)
dE

= J0 E
γ1

(
1 +

(
E

Ek

)ε)(γ2−γ1)/ε
, (7.2)

where the absolute flux J0 serves as normalization, while the power law can be a broken
one with a change of index from γ1 to γ2 at the transition energy Ek. The index “k” alludes
to the word “knee”, since the structure that is observed is knee-like. The smoothness
of the transition between the two power laws is characterized by ε, whereby ε = 1
corresponds to a smooth change over about one decade of energy, while ε = 4 means
a faster change within already 1/5 of a decade [95]. The latter parameter can be kept
fixed to ε = 7 without worsening the fit quality. The spectrum of iron nuclei can be
fitted significantly better by this double power law (chi-square probability of around
30% with χ2/ndf = 6.2/5). The poor fit quality in case of the single power law and the
significantly better one in case of the double power law give strong indications for the
presence of an “iron-knee”22 at around 80 PeV. The spectral indices of the power laws are
γ1 = −2.62± 0.02 before, respectively γ2 = −3.7± 0.4 beyond this knee. This result was
confirmed by spectra of heavy primaries obtained by our collaboration in independent

22If the mass group represented in this analysis by the iron nuclei actually consists only, or at least
primarily, of iron nuclei. Else, one would have to speak about the “heavy-knee” instead.
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analyses, which also yield a significant knee-like steepening at about 90 PeV [13, 34] or
62 PeV [49, 50].

In this context, a short remark about the systematic uncertainties, which are shown
in the depictions, but not used whilst the fit procedure, will now be given. In further
tests it was found that the systematic uncertainties primarily shift the whole solution
up- or downwards. This was observed for both important sources of uncertainties: the
ones caused by the uncertainties in the response matrix as well as the bias induced by
the unfolding algorithm itself. It is very unlikely that the systematic uncertainties cause
a sharp asymmetric distortion from one bin to another. As a conclusion, the systematic
uncertainties seem rather to affect the absolute overall normalizations, and thereby con-
serve the structures of the spectra without changing them significantly. Hence, in this
rather quick analysis, the systematic uncertainties have been neglected.

Furthermore, neighbouring bins of the individual elemental energy spectra are cor-
related to a certain degree, among others due to internal mechanisms in the unfolding
methods. Hence, in a more accurate judgement of the significance of the observed struc-
ture in the flux of iron nuclei, one would have to take into account these correlations, too.
In that case, as a first guess, one would expect a slight improvement of the chi-square
probability of the fits. While both the single as well as the double power law function
would describe the unfolded spectrum better, also in this case the relative advantage of
the double power law fit would still persist. Since, the effect of the correlations on the
computed reduced chi-square values is presumably rather moderate, it is scarcely to be
expected that the single power law could describe the flux of iron nuclei satisfactorily,
even when the correlations are taken into account. Hence, in the framework of this quick
analysis, the effect of the bin-to-bin correlations was neglected.

To summarize, if the high energy interaction model QGSJET-II-02 describes the
physics of hadronic interactions at these energies with a sufficient level of reliability23,
there is a strong indication for a knee-like structure at around 80 PeV caused by a change
in the spectra of the heavy nuclei of cosmic rays. Furthermore, if the mass group that is
represented by iron nuclei in this thesis really consists only, or at least primarily of iron
nuclei, this structure can more precisely be identified as the “iron-knee”.

7.3.2 Comparison of knee positions

In the last section, it was shown that there is a strong indication for the presence of a knee-
like structure in the energy fluxes of the heavy component of cosmic rays, represented by
iron nuclei in this analysis. This was declared under the premise that the used interaction
models QGSJET-II-02 and FLUKA 2002.4 are reliable. In order to draw inferences about
the physical background of cosmic ray acceleration, the position of the “heavy-knee” can
be compared to the positions of the knees of the lighter mass groups.

Such knee-like structures in the spectra of lighter nuclei have already been observed by
the KASCADE experiment [9] based on the high energy interaction models QGSJET 01
or SIBYLL 2.1 in combination with the low energy interaction model GHEISHA 2002.
For the comparison, the update [70] to this KASCADE analysis, now also based on
QGSJET-II-02 and FLUKA 2002.4, is considered in the following. In Fig. 7.16, top panels,
the fluxes of protons (left) and helium nuclei (right) reconstructed with KASCADE are
depicted. On the bottom panel, again the flux of iron nuclei determined in this thesis
and reconstructed with KASCADE-Grande is shown. All three spectra are fitted by a
double power law function according to Eq.(7.2). In case of protons and iron nuclei, the

23And, up to now, none of the performed tests gave rise to the assumption that it does not.
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Figure 7.16: On the top panels, the fluxes of protons (left) and helium nuclei (right)
are shown as they are reconstructed by the KASCADE experiment [70] based on the
interaction models QGSJET-II-02 and FLUKA 2002.4. The error bars represent the
statistical uncertainties. On the bottom panel, again the flux of iron nuclei determined
in this thesis is shown. It is based on the aforementioned interaction models, too, but
reconstructed with KASCADE-Grande (for an explanation of the vertical lines and bands,
see text). All three spectra are fitted by a double power law function according to Eq.(7.2).

fit performs well, while in case of helium nuclei the reduced chi-square value indicates
problems. Especially the first data points are fluctuating around the fit significantly
stronger than the statistical uncertainties would allow. However, since the structure in
the flux of helium nuclei at around log10(E/GeV) ≈ 6.8 seems to be a significant one,
as one can judge by eye, and since only its position is of interest in the following, the
poorness of the fit quality will be ignored.

The fits yield knee-like structures at log10(E/GeV) = 6.6 ± 0.1 in the spectrum
of protons, at log10(E/GeV) = 6.8 ± 0.1 in the spectrum of helium nuclei, and at
log10(E/GeV) = 7.9 ± 0.1 in the spectrum of iron nuclei. At the bottom panel, the
position of the “iron-knee” and its uncertainty range are marked by the vertical red
line and the shaded red band. In order to compare this knee position to those of the
lighter primaries, the knee positions of protons and helium nuclei are scaled by either the
factor ZFe/ZH or He or AFe/AH or He, where Zi is the atomic number (the “charge”) and
Ai the mass number of the respective nucleus i. In both cases, after the multiplication,
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the weighted mean value (the uncertainties are the weights) of the results for protons
and helium nuclei is computed. The uncertainties of the two computed mean values are
estimated by conservatively assuming the uncertainties of the knee positions as the un-
certainty range. The two computed mean values and its uncertainty ranges are shown
additionally in the bottom panel. The vertical blue line represents the knee positions of
protons and helium nuclei scaled proportional to the atomic number, while the shaded
blue band marks the range of uncertainty. The grey line and band are obtained by the
scaling in dependence on the atomic mass number.

One can see that under the assumption of a rigidity dependence the knee positions
of heavy and light nuclei agree within the uncertainties, while a mass dependent scaling
seems to be rather unlikely. In this context, it has to be emphasized again that this
conclusion is only true if the used interaction models are reliable and if the mass groups
represented by protons, as well as by helium and iron nuclei actually consist only, or at
least primarily, of these respective primaries. While in case of protons this assumption
is presumably fulfilled sufficiently (the nucleus of next following element of the periodic
table, helium, is considered in the analysis, too), in case of iron nuclei things are different:
The next following lighter nucleus considered in the analysis is that of silicon, what means
a larger jump in the periodic table omitting several elements. Hence, in this analysis, iron
has to represent also some lighter elements24. This would result in a slightly shifted knee
position towards smaller energies, what could explain the small offset between the charge-
scaled (with respect to pure iron nuclei) knee position of the lighter elements and that of
iron nuclei. For lack of better resolution, the number of primaries that can be regarded
is limited, such that no more accurate analysis is possible.

Although it is slightly off-topic, it is maybe worth to mention that the spectrum below
the knee (represented by the parameter γ1) as well as beyond the knee (represented by
the parameter γ2) seems to get harder with increasing mass of the primaries. However,
taking into account the given uncertainties, this result is not significant. Apart from
this constraint, the mass dependent hardening before the knee would agree well with the
finding of the balloon-borne Cosmic Ray Energetics And Mass experiment (CREAM) [4],
where, at energies below the knee, also a harder spectrum for helium nuclei in comparison
to protons was observed. Based on this finding, and based on their observation of a general
hardening above energies of 200 GeV/nucleon, the authors stated that their results would
challenge the view that the cosmic ray spectra of individual primaries follow a simple
power law below the knee. In contrast, for the behaviour above the knee, there is no
simple explanation available, but it could give hints to the theory of a mixture of source
populations for the galactic cosmic rays at highest energies, e.g. described in [151]. But,
due to the possible non-significance of the differences between the extracted spectral
indices of different primaries in this work, this point will not be discussed further, such
that it will be left at that mention.

To summarize, the comparison between the knee-like structures discernible in the
spectra of the light and heavy cosmic ray nuclei gives indications for a rigidity dependence
of the knee position. This would encourage the cosmic ray acceleration and/or propa-
gation models that are assuming correlations to magnetic fields. The particle physics
approaches that assume connections to the mass of the nuclei seem to be less likely25.
However, these findings have to be treated with caution, since they base on the one
hand on the simplified assumption that the mass groups represented by the respective

24But, possibly, also heavier ones.
25If it is not a mixture of many effects, like for instance a mass dependent acceleration in combination

with a charge dependent propagation.
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primaries primarily consist only of these primaries, on the other hand on the supposition
that the used interaction models are reliable.

7.3.3 Spectral indices of the all-particle spectrum

In the previous sections, the flux of iron nuclei was analysed in detail. Since the re-
maining elemental spectra suffer from larger uncertainties, especially due to their lower
abundances, a comparable analysis like fitting these spectra with appropriate functions
appears unprofitable. However, the all-particle energy flux is more stable, such that it
will be investigated more in-depth.

An all-particle spectrum was already determined by our collaboration by means of a
more robust method26 [33], which is more native, i.e. closer to the measured data sample,
and is based on a subsample with larger statistics. The residual flux between that all-
particle spectrum and a single power law according to Eq.(7.1) with index −3.015 is
depicted in Fig. 7.17, top panel. In that analysis, the differential all-particle spectrum
was fitted by different power law functions resulting in a spectral index of ≈ −3.0 for
energies below log10(E/GeV) = 7.9 to log10(E/GeV) = 8.0, and of ≈ −3.2 above. The
significance of the change of the power law index was estimated to be at the level of 99.8%.
Hence, there is a strong indication for a knee-like structure in the all-particle spectrum.
The position of this structure conforms very well with the knee-like feature observed in
the spectrum of iron nuclei at around log10(E/GeV) = 7.9 (cf. Section 7.3.1). Hence, this
indicates that the knee-like feature in the all-particle spectrum is caused by a steepening
in the fluxes of the heavy cosmic ray primaries. In case of the all-particle spectrum,
which was derived in this thesis by summing up all five individual elemental spectra,
no significant structure can be observed27 at around energies of log10(E/GeV) = 7.9
to log10(E/GeV) = 8.0, as can be seen in Fig. 7.17, bottom panel. One has to keep in
mind that the uncertainties of the individual elemental fluxes are propagated to this sum
flux. Hence, possible structures in the all-particle flux can perhaps get lost in the larger
uncertainties.

However, the all-particle flux exhibits a “concave” behaviour in the energy range from
log10(E/GeV) = 6.9 to log10(E/GeV) = 7.2. This “concave” structure is also observed by
our collaboration based on the more robust analysis [33], which is inter alia based on a
subsample with larger statistics, and was found to be significant. But, as will be discussed
in Section 7.4.1, the first shown flux value of the all-particle spectrum determined in this
work has to be interpreted with caution, since it is probably overestimated. However,
ignoring this data point completely, gives still slight indications for a concave behaviour.

The all-particle flux determined in this thesis is fitted by a double power law function
according to Eq.(7.2) (cf. Fig. 7.17, bottom panel). The parameter Ek corresponds to
the energy at around log10(E/GeV) = 7.1 to log10(E/GeV) = 7.2, where the index
change takes place. In this case, it marks a “dip-position”, rather than a knee-position.
The spectral index changes from ≈ −3.8 to ≈ −3.1. This conforms well with the result
given in [33], that states an index of ≈ −3.0 for energies beyond log10(E/GeV) = 7.2 to
log10(E/GeV) = 7.3, but below log10(E/GeV) = 7.9 to log10(E/GeV) = 8.0.

26But, as a quid pro quo, do not enable to separate the elemental spectra with such a precision the
unfolding technique allows.

27This was tested by means of a triple power law fit: such a fit that also contains a break in the all-
particle spectrum at around log10(E/GeV) ≈ 8.0 does not yield better chi-square values than a double
power law fit that allows a concave structure at around log10(E/GeV) ≈ 7.2 only, but no change in the
spectrum at around log10(E/GeV) ≈ 8.0.



7.3. Analysis of the Energy Spectra – Physical Conclusions 177

7 7.5 8 8.5 9

)-
1

-3
.0

15
 E×

/(
A

 
Φ

-0.6

-0.4

-0.2

0

0.2

0.4

hist5
Entries  0
Mean x       0
Mean y       0
RMS x       0
RMS y       0

hist5
Entries  0
Mean x       0
Mean y       0
RMS x       0
RMS y       0

(E/GeV)
10

log

µ - Nch  N
Syst. Band

Preliminary

7 7.2 7.4 7.6 7.8 8 8.2 8.4

)
2.

05
9

 G
eV

-1
 s

-1
 s

r
-2

 / 
(m

3.
05

9
 E⋅

di
f. 

flu
x 

dJ
/d

E
 

710

(E/GeV)
10

primary energy in log

 / ndf 2χ  4.655 / 8
p0        5.904e+09± 1.84e+12 
p1        0.03143± 7.176 
p2        0.003257±  -3.8 
p3        0.01382± -3.059 
p4            0±    25 

 / ndf 2χ  4.655 / 8
J0        5.904e+09± 1.84e+12 
Ek        0.03143± 7.176 
  1       γ        0.003257±  -3.8 
  2       γ        0.01382± -3.059 
ε             0±    25 

Figure 7.17: On the top panel, the residual flux between a single power law according
to Eq.(7.1) with index −3.015 and the all-particle spectrum derived by a more robust
method by our collaboration is depicted (taken from [33]). On the bottom panel, the
differential all-particle spectrum computed by summing up all five individual elemental
spectra unfolded in this thesis is shown. The statistical uncertainties are given by the
error bars, while the error bands mark the maximal range of systematic uncertainty. The
flux is fitted by a double power law function according to Eq.(7.2).

As a conclusion, at energies at around log10(E/GeV) = 7.9 to log10(E/GeV) = 8.0,
where the flux of iron nuclei was characterized by a knee-like feature, in case of the
computed all-particle spectrum no structure is discernible, but it could also be veiled by
the large flux uncertainties. However, based on a more robust alternative analysis method
[33], which is inter alia based on a subsample with larger statistics, our collaboration
found a high significant change of the spectral index of the all-particle spectrum at this
very energy range. Hence, there is a strong indication for a knee-like structure in the
cosmic ray spectrum at around log10(E/GeV) = 7.9 to log10(E/GeV) = 8.0, which is
caused by a steepening in the spectra of heavy primaries; especially by one in the flux
of iron nuclei28, as the unfolding analysis suggests. Furthermore, both the unfolding as
well as the alternative method [33] yield a concave behaviour of the all-particle spectrum
at the energy range from log10(E/GeV) = 6.9 to log10(E/GeV) = 7.2. Viewing the

28Or at least the mass group that is represented by iron.
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all-particle spectra of the GAMMA and the Tibet-III experiment, depicted in Fig. 7.22
(bottom panel), or that of the TUNKA and the Tibet experiment, depicted in Fig. 8.3,
one can observe such concave structures at the same energy range there, too. However,
this is a first impression only, and does not replace a comprehensive analysis!

In the following, more detailed comparisons between the energy spectra unfolded
in this thesis and those based on other analysis methods or other experiments will be
performed, in order to get further insights about the compatibility of the obtained results.

7.4 Comparison with Other Results

In the previous sections, the reliability of the elemental energy spectra unfolded based
on the interaction models QGSJET-II-02 and FLUKA 2002.4 has been discussed, and
the specific structures of the fluxes have been judged in the framework of statistics. It
was found that based on the determined solution the measured dataset can be described
well, such that there are no indications for an unreliability of the unfolded spectra.
Thereafter, the significance of the distinct structures discernible in the flux of iron nu-
clei and in the all-particle spectrum was judged. A comparison of the derived solution
with spectra reconstructed in other analyses will be the last check of consistency, and
will offer insights about the compatibility of the results. Thereby, the unfolded energy
fluxes will be compared to those derived with other unfolding analyses based either on
KASCADE-Grande, too, or on KASCADE measurements (Section 7.4.1). Then, a com-
parison with KASCADE-Grande results obtained by our collaboration in analyses that
are more closely related to the measured dataset will follow (Section 7.4.2). Finally, the
unfolded all-particle spectrum will be compared to those obtained by other cosmic ray
experiments (Section 7.4.3).

7.4.1 Comparison with spectra obtained by other unfolding analyses of
our collaboration

Some time ago, the energy spectra for elemental groups of cosmic rays at lower ener-
gies, more precisely at the energy range of 1 PeV to some tens of PeV, have already
been determined by our collaboration by means of an unfolding analysis, too, but based
on KASCADE measurements [9]. Since that analysis bases on the older high energy
interaction models QGSJET 01 or SIBYLL 2.1 and the low energy interaction model
GHEISHA 2002, it was repeated in [70] based on the interaction models QGSJET-II-02
and FLUKA 2002.4. Additionally, in [70], the unfolding technique was also applied to
KASCADE-Grande data. The aforementioned unfolding analyses base on the measured
two-dimensional electron vs. muon number distribution, while that in this thesis bases
on the distribution of the charged particle vs. muon number. Nevertheless, as discussed
in Section 4.1, the final solution should not depend on which of the two sets will be
chosen for the analysis. KASCADE and KASCADE-Grande base principally on separate
setups29, such that the results of them can to a certain extent be interpreted as those
of two different experiments. But, the results obtained in this thesis and in [70] by an
unfolding of the KASCADE-Grande data should be more similar, since both base on the

29Indeed, KASCADE-Grande uses the former KASCADE detectors in order to measure the energy
deposits of muons separately from those of electrons. However, things like core position, angle of incidence,
etc., needed for the muon reconstruction, are determined based on KASCADE-Grande measurements.
Hence, the remaining reconstruction procedure is independent from the KASCADE experiment.
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same measurements30. In a first step, the spectra for elemental groups will be compared,
and, thereafter, the all-particle spectra, which are the sums of the respective individual
spectra.

Elemental spectra

In Fig. 7.18, the energy spectra for elemental groups of cosmic rays obtained in this work
(labelled with “Grande...Nch-Nµ-unfolding”) are compared to those obtained by other
unfolding analyses [70] that are based on the KASCADE-Grande data (labelled with
“Grande...Ne-Nµ-unfolding”, see top panel), too, or on KASCADE data (labelled with
“KASCADE...Ne-Nµ-unfolding”, see bottom panel). The error bars represent statistical
uncertainties, the error bands the systematic ones (the latter ones are only shown for the
results of this thesis). For a better distinguishability, the spectra of helium, carbon, and
silicon nuclei are summed up to one resulting intermediate mass group (“medium”), while
the spectra of protons and iron nuclei, representing the “light” and “heavy” mass groups,
are still shown individually. All results base on the interaction models QGSJET-II-02
and FLUKA 2002.4. Instead of using the charged particle number as second observable
beside the muon number, in case of the analyses performed in [70] the electron number
was chosen. However, this difference is expected to have only small, or even negligible
influences on the final result.

Comparing the two results obtained by unfolding analyses based on KASCADE-
Grande data (Fig. 7.18, top panel) reveals differences in the energy spectra. While the
slopes of the fluxes are very similar31, their absolute values are significantly different.
However, taking into account the systematic uncertainties of both analyses, there is in
the main an agreement between the results. The origin for the deviations is not known
at the moment, and can only be ascertained in detailed investigations. Possible reasons
could be the different iteration depths, slightly different quality cuts32, or the fact that
different observable sets33 have been used. Furthermore, there are slight differences in the
functions used for the parametrizations of the response matrix, and the conditioning of
the response matrix is treated in a different way. The interplay between all these sources
could cause such deviations, but is not easy to analyse. Since the spectra coincide within
the systematic uncertainties, there are no indications for systematic mistakes. Ignoring
the systematic shift, especially the spectra of iron nuclei show a very similar slope; and
even most individual bin-to-bin variations are identical. Both spectra are characterized
likewise by a knee-like structure at around 80 PeV, such that the existence of the iron-
knee/heavy-knee is confirmed by both unfolding analyses.

Comparing the spectra of this thesis with the ones obtained by the unfolding of the
KASCADE dataset [70] (Fig. 7.18, bottom panel), yields similar results as in case of
the afore-performed comparison. Again, there are differences in the relative abundances.

30Both analyses have been performed independently, such that the comparison of the results can also
be understood as cross-check to identify possible human-caused technical mistakes in the analysis process.

31Beside the fact that the results derived in [70] seem to suffer from larger bin-to-bin fluctuations,
possibly explainable by the larger number of iteration steps (∆χ2 = 6× 10−4), in comparison to the ones
used in this thesis (∆χ2 = 2× 10−3).

32Especially the fiducial areas are different.
33Basically, the solution should not depend on which of the two possible observable sets is chosen.

However, if the used interaction models have deficits especially in the description of one observable,
different observable sets could yield differing solutions. As an example: If the electron number prediction
is wrong, it will be a difference if the second observable is the pure deficient electron number, or the
charged particle number, which also contains contributions of the perhaps well predicted muon number.
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Figure 7.18: The energy spectra for elemental groups of cosmic rays obtained in this work
(“Grande...Nch-Nµ-unfolding”) are compared to those obtained by other unfolding anal-
yses [70] that are based on the KASCADE-Grande data (“Grande...Ne-Nµ-unfolding”,
see top panel), too, or on KASCADE data (“KASCADE...Ne-Nµ-unfolding”, see bottom
panel). The error bars represent statistical uncertainties, error bands the systematic ones
(the latter ones are only shown for the results of this thesis). For a better distinguisha-
bility, the spectra of helium, carbon, and silicon nuclei are summed up to one resulting
intermediate mass group (“medium”), while the spectra of protons and iron nuclei, rep-
resenting the “light” and “heavy” mass groups, are still shown individually. All results
base on the interaction models QGSJET-II-02 and FLUKA 2002.4.
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Figure 7.19: The all-particle spectrum, obtained in this work (“Grande...Nch-Nµ-
unfolding”), is compared to those obtained by other unfolding analyses [70] that are
based on the KASCADE-Grande data (“Grande...Ne-Nµ-unfolding”), too, or on KAS-
CADE data (“KASCADE...Ne-Nµ-unfolding”). The error bars represent statistical un-
certainties, error band the systematic ones (the latter one is only shown for the result of
this thesis). All results base on the interaction models QGSJET-II-02 and FLUKA 2002.4.

Nevertheless, the deviation is now smaller in case of the spectra of iron nuclei, and neg-
ligible small in case of the intermediate mass groups. It is surprising that the differences
are smaller than that discernible whilst the comparison between the two unfolding results
both basing on KASCADE-Grande data, since now the spectra of two “different” experi-
ments are compared. Taking into account the systematic uncertainties, both results agree
perfectly. Since the KASCADE experiment suffers from very low statistics at these en-
ergies, no conclusion about a possible structure in the spectrum of iron nuclei at around
80 PeV can be drawn. However, at least the slope of the flux of iron nuclei before that
energy agrees very well. Finally, the slight34 hardening in the proton spectrum observed
in this thesis beyond energies of about ∼ 25 PeV can also be seen in the proton spectrum
obtained based on the KASCADE measurements35.

All-particle spectra

After the comparison between the energy fluxes for elemental groups, now that between
the all-particle spectra, which are computed by summing up all individual spectra, fol-
lows. This is illustrated in Fig. 7.19: The all-particle spectrum obtained in this work
(“Grande...Nch-Nµ-unfolding”) is compared to those obtained by other unfolding anal-
yses [70] that are based on the KASCADE-Grande data (“Grande...Ne-Nµ-unfolding”),

34Albeit statistically not significant.
35But, also there without statistical significance.
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too, or on KASCADE data (“KASCADE...Ne-Nµ-unfolding”). The error bars represent
statistical uncertainties, the error band the systematic ones (the latter one is only shown
for the result of this thesis). All results base on the interaction models QGSJET-II-02
and FLUKA 2002.4.

While in case of the spectra of individual mass groups differences in the absolute flux
values could be observed, in case of the all-particle spectra a perfect agreement between
the two KASCADE-Grande results is discernible. Furthermore, the results conform with
that of KASCADE, at least within the statistical uncertainties. Only at the first data
point of the all-particle spectrum derived in this work (“Grande...Nch-Nµ-unfolding”),
there is a larger deviation to the KASCADE result (“KASCADE...Ne-Nµ-unfolding”)
observable. However, as discussed in Section 7.2.1, it was found that, below energies
of 1016 eV, the individual elemental spectra suffer from larger systematic uncertainties,
which are not considered sufficiently in the error estimation. Hence, below that energy,
no individual spectra are shown. The all-particle spectrum, which is the sum of all single
spectra, was assumed to be more stable, and hence was also shown below 1016 eV. But,
considering the result obtained right now, the first shown flux value should be interpreted
with caution36.

Nevertheless, ignoring this first data point of the all-particle spectrum obtained in this
work, there is still a slight indication for the concave behaviour at the energy range from
log10(E/GeV) = 6.9 to log10(E/GeV) = 7.2 remaining (cf. Section 7.3.3, and Fig. 7.17).
Such a concave behaviour is not ascertainable in case of the KASCADE data. In this
context, one has to keep in mind that, despite the comparatively good KASCADE-Grande
statistics in that energy range, this structure was already determined with notable less
significance37 than in case of more robust analysis methods like [33]. Because of the
smaller statistics in case of KASCADE at these energies, it could be possible that this
concave structure is smeared out to a certain degree, what could be the reason why it
is not observable there. However, a final explanation can currently not be given in this
thesis.

To summarize, both the comparison of the unfolded individual energy spectra and
that of the all-particle fluxes revealed a good agreement between all results, at least
within the given uncertainties. The absolute values of the individual spectra are slightly
different, but the heavy mass group is dominating the cosmic ray composition at energies
between ∼ 10 PeV and ∼ 100 PeV in all cases. Furthermore, also most of the specific
structures in the spectra are equal. Especially, the iron/heavy knee can be observed in
both KASCADE-Grande unfolding results. For purpose of a further compatibility check,
the energy spectra unfolded in this thesis will now be compared to ones derived by other
analysis methods of our collaboration.

7.4.2 Comparison with spectra obtained by other analysis methods of
our collaboration

The all-particle flux as well as the spectra of individual mass groups have also been
determined by our collaboration by means of more robust methods38, which are more
native, i.e. closer to the measured data sample, and which are based on a subsample with

36Furthermore, this first data point of the all-particle spectrum will not be shown in the following
depictions any longer, since its reliability within the given uncertainties is not guaranteed.

37In case of the more robust methods, this concave structure was found to be of high significance.
38They are more robust, but, as a quid pro quo, do not enable to separate the elemental spectra with

such a precision the unfolding technique allows.
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Figure 7.20: The energy spectra for elemental groups of cosmic rays, obtained in this
work (“Nch-Nµ-unfolding”), are compared to those obtained by other analyses of our
collaboration [49, 50] (“Nµ/Nch-ratio”) or [13, 34] (“Nch-Nµ”). The error bars represent
statistical uncertainties, error bands the systematic ones (the latter ones are only shown
for the results of this thesis). All results base on the interaction models QGSJET-II and
FLUKA 2002.4. See text for further details.

larger statistics. In these alternative methods, parametrized energy estimators are used,
which are rather simple, but solid, and are based immediately on the measured shower
sizes. The results derived in this thesis will now be compared to those elemental energy
spectra, and, thereafter, to those all-particle fluxes.

Elemental spectra

In Fig. 7.20, the energy spectra for elemental groups of cosmic rays, obtained in this
work (“Nch-Nµ-unfolding”), are compared to those obtained by other analyses of our
collaboration [49, 50] (“Nµ/Nch-ratio”) or [13, 34] (“Nch-Nµ”). The error bars represent
statistical uncertainties, error bands the systematic ones (the latter ones are only shown
for the results of this thesis). Based on the specific technical aspects of the alternative
methods, the spectra are divided into ones of a lighter, an intermediate, and a heavy mass
group. These mass groups correspond to different primary particles39 (see legends). For
a better comparability, in case of the unfolding analysis results the unfolded individual
spectra are summed up: protons and helium nuclei represent the “light” mass group,
silicon and iron the “heavy” one. The spectrum of carbon nuclei is still shown individually
and represents the intermediate (“medium”) mass group. For orientation, the all-particle

39The classification into light, intermediate, and heavy mass groups is done in a rather simple, but
robust way. These mass groups are roughly correlated to the primaries labelled in the legends, but do not
correspond exactly to them as in case of the unfolding analysis.



184 7. Unfolding the Energy Spectra for Elemental Groups of Cosmic Rays

spectra derived in [33] and in this thesis are shown additionally. All results base on the
interaction models QGSJET-II and FLUKA 2002.4.

In general, taking into account that e.g. H+He in case of the analysis [13, 34] is
not exactly the same40 as in case of the unfolding analysis, the agreement between both
results is alright. The results of [49, 50] are more different, since the light mass group
is represented by protons only, while the intermediate mass group is given by helium
and carbon nuclei. Due to this, especially the “light” flux is below the fluxes of the two
other methods. However, all methods have in common that the spectra of the heavy
component exhibit a knee-like structure: in case of [49, 50] at around 62 PeV, for [13, 34]
at about 90 PeV, and at about 80 PeV for the unfolding analysis. Hence, although the
two alternative methods divide the primaries into mass groups only roughly, there is a
nice agreement between all results.

All-particle spectra

Fig. 7.21 comprises a comparison of the all-particle spectrum41 obtained in this work
(“Nch-Nµ-unfolding”) with those obtained by other analyses of our collaboration [15]
(“Nch-Nµ”, “Nch”, or “Nµ”). The error bars represent statistical uncertainties, error
bands the systematic ones (the latter ones are only shown for the results of this thesis).
All results base on the interaction models QGSJET-II and FLUKA 2002.4. Thereby,
the results that are labelled “Nch” or “Nµ” and are represented by the dashed lines are
all-particle spectra derived under the assumption that the cosmic rays are pure protons
(“Proton”) or iron (“Iron”) nuclei; and hence, they represent rather limits for the all-
particle spectrum.

The all-particle spectrum “Nch-Nµ” and that determined in this thesis agree very
well within the given uncertainties. They are bracketed by the spectra determined under
the assumptions of a pure proton or iron nuclei composition; but, they are always closer
to the spectra based on the iron nuclei hypothesis. Furthermore, the spectra “Nch-Nµ-
unfolding”, “Nch-Nµ”, as well as “Nµ” (in case of the hypothesis of pure iron nuclei) are
characterized by the concave behaviour below 2× 1016 eV.

As a conclusion, albeit the assignment of primary nuclei to specific mass groups is
technically not exactly identical, the spectra of individual mass groups derived by different
analysis methods and based on different observables agree very well. In all results, the
heavy mass group is dominating the cosmic ray composition and exhibits a knee-like
structure at around 60 PeV to 90 PeV. The discussed all-particle spectra agree very well,
too, and also predict a domination of the heavy mass group. Again, the concave structure,
which is observable in the unfolding result below 2 × 1016 eV, is confirmed by some of
the alternative analysis methods. Since now the conformity of the results obtained with
different analysis methods based on the KASCADE/KASCADE-Grande experiment is
ensured, finally, a comparison with spectra of other experiments follows.

40In case of the alternative methods, the particles finally representing a specific mass group are combined
already whilst the analysis itself, and hence assumptions about the relative abundances have to be made
(equal abundances are assumed). In case of the unfolding analysis, every primary is treated separately,
such that no a priori assumption has to be made. Only at the very end, primaries are combined, if desired.

41As discussed in Section 7.4.1, only data points beyond 1016 eV are shown, since for smaller energies
their reliability cannot be guaranteed.
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Figure 7.21: The all-particle spectrum obtained in this work (“Nch-Nµ-unfolding”) is
compared to those obtained by other analyses of our collaboration [15] (“Nch-Nµ”, “Nch”,
or “Nµ”, see text for further details). The error bars represent statistical uncertainties,
error bands the systematic ones (the latter ones are only shown for the results of this
thesis). All results base on the interaction models QGSJET-II and FLUKA 2002.4.

7.4.3 Comparison with spectra obtained by other experiments

After, in the previous section, the unfolding results obtained in this thesis have been
checked against those obtained by further analyses of our collaboration, the comparison
with spectra determined by other experiments will be the last step now.

In Fig. 7.22, the all-particle spectrum obtained in this work (“Grande ... Nch-Nµ-
unfolding”) based on KASCADE-Grande measurements42 and the one obtained in [70]
(“KASCADE ... Ne-Nµ-unfolding”) based on the KASCADE experiment are compared to
those obtained by other experiments (see legend for references). The error bars represent
statistical uncertainties, error bands the systematic ones (the latter ones are only shown
for the results of this thesis). On the bottom panel, only the energy range covered by the
KASCADE-Grande unfolding is shown in order to get a better distinguishability between
the results of the different experiments.

In the main, the all-particle spectrum obtained in this work agrees well with that
of most of the other experiments within the uncertainties. Extrapolating the trend of
the all-particle flux determined with KASCADE-Grande by eye up to energies beyond
1018 eV, yields a good agreement with the results obtained by the HiRes-II experiment
or the Pierre Auger Observatory.

Also in case of the comparison depicted at the bottom panel, there is a good agreement
with the results of most of the other experiments discernible: The slopes are compatible,

42As discussed in Section 7.4.1, only KASCADE-Grande data points beyond 1016 eV are shown, since
for smaller energies their reliability cannot be guaranteed.
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Figure 7.22: The all-particle spectrum obtained in this work (“Grande ... Nch-Nµ-
unfolding”) based on KASCADE-Grande measurements and the one obtained in [70]
(“KASCADE ... Ne-Nµ-unfolding”) based on the KASCADE experiment are compared
to those obtained by other experiments (see legend for references). The error bars rep-
resent statistical uncertainties, error bands the systematic ones (the latter ones are only
shown for the results of this thesis). On the bottom panel, only the energy range covered
by the KASCADE-Grande unfolding is shown in order to get a better distinguishability
between the results of different experiments.
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and also the absolute values are very similar, at least within the systematic uncertainties.
Especially, the spectra derived by the Tibet-III and the GAMMA experiment show a
slight concave behaviour below energies of 2×1016 eV, too. However, at around 6×1016 eV
to 8×1016 eV, things are different: while the result of the GAMMA experiment43 exhibits
a “bump”, this cannot be confirmed with the KASCADE-Grande result of this work.

To summarize, the all-particle spectrum obtained in this work by means of an un-
folding analysis based on KASCADE-Grande measurements agrees very well with that
of most of the other air shower experiments. Based on a guesstimate by eye, the slight
concave behaviour below energies of 2× 1016 eV is observable in the spectra determined
by the GAMMA and the Tibet-III experiment, too. However, the “bump” at around
6× 1016 eV to 8× 1016 eV, seen by the GAMMA experiment, cannot be confirmed with
the current KASCADE-Grande results. Extrapolating the all-particle spectrum obtained
in this work by eye towards higher energies, yields a good agreement with the spectra
determined by the Pierre Auger Observatory or the HiRes-II experiment.

43And also the TUNKA experiment, but with less significance.





Chapter 8

Summary, Final Discussion, and
Outlook

The ultimate goal of the extension of the former KASCADE to the KASCADE-Grande
experiment was to measure the energy spectra for elemental groups of cosmic rays in the
energy range from 10 PeV to beyond 100 PeV. By this, the question about the existence
of a so-called “second knee” in the spectrum of cosmic rays, caused by a steepening in the
spectra of heavy primaries, have to be answered. Furthermore, the knowledge about the
cosmic ray composition at the energies covered by KASCADE-Grande allows drawing
inferences about a transition from galactic to extra-galactic cosmic rays. This goal, i.e.
the determination of spectra for elemental groups of cosmic rays in that energy range,
was accomplished in this work. The respective KASCADE-Grande results are of up to
now unrivalled quality.

Summary of the main steps of the analysis strategy

In order to get such high quality results, a very stable experiment is necessary, and its
properties have to be understood accurately. Furthermore, a very well working air shower
event reconstruction procedure is needed. The reconstruction software was optimized
and checked extensively in the past time, making such unfolding analyses possible in the
first place. Hence, contributing to these indispensable improvements was the preparatory
work for this thesis. After at a certain stage of the optimization process a sufficient
reconstruction quality of the shower sizes was realized, the main analysis was started.
Since the sought-after energy spectra are folded with the probability distributions for
the intrinsic shower fluctuations, as well as for the detector properties like efficiency and
resolution, it was decided to apply unfolding techniques.

After preliminary considerations, the optimal set of KASCADE-Grande observables
for the unfolding analysis of this work was found: the two-dimensional charged particle
number vs. muon number shower size spectrum. Then, the response matrix, which inter-
relates the sought-after spectra with the measured dataset, and which has to be known
for the unfolding, was computed. For this purpose, shower simulations based on the inter-
action models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68] have been used.
Whilst the determination of the response matrix, smoothing respectively regularization
techniques have been applied by using parametrization functions, and by conditioning
the derived response matrix itself under verification by means of a singular value de-
composition. All this ensures a stable solution. The final response matrix was checked
intensively.

189
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Different solution techniques for the present convolution problem have been discussed
and tested. The unfolding procedure introduced by Gold [77] was found to be the most
suitable for the current analysis. However, alternative methods based on Bayes’ theorem
or the principle of maximum entropy serve for cross-checks. Things like the optimal
iteration depth or the appropriate regularization parameter have been determined based
on the weighted mean squared error or the relative variance of the bias. A well working
error estimation was realized by means of a frequentist approach.

Afterwards, the whole unfolding procedure was tested thoroughly by means of toy
datasets. The applied techniques were found to guarantee a high quality solution. Prob-
lems occurred in case of very few trial spectra only; but, appropriate indicators for the
identification of such problems have been elaborated.

Main analysis and discussion of the results

Finally, the gained insights and techniques have been applied to the measured shower
size spectrum. The most important results are1:

• The cosmic ray composition is dominated by the heavy mass group in the
energy range from about 10 PeV to 100 PeV.

• The energy spectrum of the heavy mass group of cosmic rays, in this analysis rep-
resented by iron nuclei, exhibits a knee-like structure at around 80 PeV. This
position corresponds to the knee-like structure observed by our collaboration [33]
in the all-particle spectrum. Furthermore, this result was confirmed by spectra of
heavy primaries obtained in other analyses [13] of our collaboration.

• The unfolded spectra for the other primaries (protons, as well as helium, car-
bon and silicon nuclei) suffer from low statistics. Within the given uncertainties,
the fluxes exhibit no significant structures. There are only slight indications that
the proton spectrum possibly gets harder for energies log10(E/GeV) & 7.4, what
is, from a pure statistical point of view, without significance however2.

• A comparison between the knees in the spectra of protons, of helium nuclei (both
determined based on KASCADE measurements [70]), and of iron nuclei yields
strong indications for a dependence of the knee positions on the atomic
number, what would encourage the models predicting a rigidity dependent ac-
celeration and/or propagation of cosmic rays connected with magnetic fields. This
conclusion was drawn under the premise that the mass groups represented in this
thesis by protons, as well as by helium or iron nuclei actually consist only, or at
least primarily, of these respective primaries.

• There is a slight concave behaviour of the all-particle spectrum at around
log10(E/GeV) = 6.9 to log10(E/GeV) = 7.2 observable. This “dip-like” feature
(respectively hardening) is confirmed by another analysis of our collaboration [33],
where this structure was found to be significant.

1Based on the interaction models QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
2However, slight indications for such a “recovering” can also be observed in an unfolding analysis

based on KASCADE measurements (see Fig. 7.18, bottom panel). But also there, without statistical
significance.
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The quality of the unfolded energy spectra was reviewed extensively. Thereby, the
quality of the description of the measured dataset by the derived solution was exam-
ined. Furthermore, the results have been counter-checked based on the alternative un-
folding algorithms. There were no indications found that the used interaction models
QGSJET-II-02 and FLUKA 2002.4 fail to describe the physics of hadronic interactions
at these energies reliably. Accordingly, there are no signs that the derived energy spectra
are unreliable. This finding could be considered to be somewhat contrasting with the
conclusion drawn in [59], where the first Large Hadron Collider (LHC) data have been
compared to predictions of diverse hadron-interaction Monte Carlos, like QGSJET 01,
QGSJET-II, SIBYLL 2.1, and EPOS 1.99. The authors point out that “none of the mod-
els is in perfect agreement with all the hadronic observables measured at the LHC” ([59,
p. 6]). However, these findings are not inconsistent with the results obtained in this work:
The comparison between the unfolded solution and the measured data is indeed a means
to detect rather serious and significant problems of the models, but is not as sensitive
that it would allow to judge about slighter deficits that prevent only a “perfect agree-
ment”, to use the words of the authors. Hence, that the model QGSJET-II-02 enables
a good description of the measured data has to be understood as indication that it is
probably not deficient at all, but does not automatically claim a “perfect” description of
the physics of hadronic interactions at these energies.

The LHC is still operating at lower energies up to centre-of-mass energies at around
7×1012 eV, corresponding to a fixed-target energy of ∼ 2.4×1016 eV. Thereby, it reaches
the lower energy threshold of KASCADE-Grande. But, it is designed to collide protons
at centre-of-mass energies of up to 1.4×1013 eV, corresponding to a fixed-target energy of
about ∼ 1017 eV; and thus its results can prospectively help to tune the parameters of the
high energy interaction models at almost the whole energy range covered by KASCADE-
Grande. In this context, especially the findings of the LHC experiments TOTEM (TOTal
Elastic and diffractive cross section Measurement) and LHCf (Large Hadron Collider
forward) will be of interest, as well as the measurements of the CASTOR (Centauro And
Strange Object Research) calorimeter of the CMS (Compact Muon Solenoid) experiment.
They are all designed to study the particles generated in the forward region3 of collisions,
what is the relevant kinematic range for cosmic ray air shower physics, as it dominantly
influences the air shower development by transferring efficiently a large fraction of the
energy of the projectile into the atmosphere. Hence, improved versions of the hadronic
interaction models are expected in the near future.

In order to get a rough impression how different interaction models could influence the
final result, a first, but very preliminary cross-check was performed by an unfolding based
on the high energy interaction model EPOS 1.99 [188]. It was found that EPOS 1.99 seems
to have deficits in the description of the measured data. Nevertheless, beside the finding
that the results obtained based on EPOS 1.99 are less trustable, this countercheck allows
to assess the influence of different models on the solution: As far as this rough and prelim-
inary test allows deducing such conclusions, different models seem to affect primarily the
relative abundances of different mass groups, while most of the characteristic structures
in the individual spectra seem to be less model dependent4. This confirms the results ob-
tained in [9], where the high energy interaction models QGSJET 01 and SIBYLL yielded

3While typical collider experiments investigate rather the particles emitted transversely in order to
examine hard interactions with large momentum transfer and high particle multiplicities.

4Especially, whether or not the structures are there seems to be independent of the used model;
nevertheless, the energies, at which the structures are observable, can vary slightly. Furthermore, the
assignment of the structures to certain primaries can be different.



192 8. Summary, Final Discussion, and Outlook

different relative abundances of the individual primaries, while the structures in the spe-
cific spectra were less model dependent. Based on the obtained preliminary results, a
first supposition developed that EPOS 1.99 possibly predicts air showers with too many
muons5, or too little charged particles.

In context of the interpretation6 of the results obtained in this work, one has to
ensure that the observed knee structures are actually connected to things like nuclear
mass composition, acceleration procedure, or propagation effects, and are not caused by
changes in the hadronic interaction mechanisms in the air shower development possibly
not considered so far. Such alternative “new TeV physics” are e.g. discussed in [23].
However, d’Enterria et al. [59, p. 6] stated that their insights gained based on LHC
data “give[...] a strong support to the interpretation of the results in the CR “knee”
energy range (Elab = 1015.5 eV) in terms of conventional primary spectrum and nuclear
mass composition and disfavours some proposed speculative ideas that the change of
the CR spectral slope could be due to a sudden change in the hadronic interaction
mechanism above 2 TeV c.m. energy.” Hence, such alternative explanations for the cosmic
ray “knee” observation appear to be less likely. This conclusion can be strengthened by
the results obtained in this thesis, too: most of the alternative explanation attempts,
e.g. the one given in [23], predict that the knee positions scale with the atomic mass
for different primaries. However, in this thesis, indications for a charge dependent scaling
have been found. To conclude this line of thought, such alternative explanations that need
“new physics” to describe the discernible cosmic rays knees appear rather implausible.
Hence, the primary supposition of this thesis, that both the light and the heavy knee
exist, and are primarily connected with a maximal reachable acceleration energy of an
astrophysical accelerator interrelated with magnetic fields, and are maybe additionally7

connected with a modulation in dependence on the charge whilst the propagation process,
is still reasonable (for further theoretical details, see Section 2.2).

The energy spectra based on QGSJET-II-02 and FLUKA 2002.4 have been com-
pared to spectra obtained in other analyses of our collaboration. Although the results
are obtained with varying levels of complexity, precision and stability, and in some cases
even on different observables, no serious deviations8 could be observed. Especially the
main findings, i.e. the dominance of the cosmic ray composition by the heavy component
and the structures observable in the iron as well as the all-particle spectrum, have been
confirmed likewise with all methods.

A comparison of the unfolded elemental spectra with those of other experiments is not
possible, since exactly comparable results are not published yet. However, the TUNKA
collaboration has recently shown the development of the mean logarithmic atomic mass
of cosmic rays in dependence on the primary energy based on TUNKA-133 measurements
[29]. The presented compilation is depicted in Fig. 8.1. For purpose of comparison, the
corresponding result (cf. Fig. 7.4) obtained in this thesis based on KASCADE-Grande

5What is surprising, since most of the other experiments recognize rather a muon deficit in the inter-
action models like QGSJET-II-02, and hence it was actually the idea to increase the muon number by
using models like EPOS 1.99 that predict larger muon numbers (cf. e.g. [58, 192]).

6E.g. the interpretation that the observed charge dependent scaling of the knee position encourages
cosmic ray acceleration and/or propagation models based on magnetic fields.

7Whereas, due to the sharp turn down of the spectra, it appears less likely that the knees are caused by
a pure leakage of cosmic rays from the Galaxy (cf. [91]). Hence, if also the propagation effects contribute,
it can presumably only be a combination of both: a break of the spectra at the source and a leakage
whilst the propagation process (cf. [94]).

8And smaller deviations are traceable to systematic differences in the methods, like different assign-
ments of primaries to the specific mass groups, etc.
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Figure 8.1: Compilation of Prosin [29] comprising the mean logarithmic atomic mass
as a function of the primary energy derived by the TUNKA experiment in comparison
with those of diverse other experiments (see legend). The logarithmic atomic masses of
protons (“p”), helium (“He”), the carbon-nitrogen-oxygen group (“CNO”), as well as of
iron (“Fe”) are indicated by the position of the respective labelling on the right side of
the panel. Overlaid is the development of the mean logarithmic mass (grey, quadratic
markers) derived in this work based on QGSJET-II-02 and FLUKA 2002.4 (cf. Fig. 7.4);
the error bars represent the statistical uncertainties, the error band the maximal range
of the systematic ones.

measurements is overlaid (grey, quadratic markers). Taking into account the uncertain-
ties, most of the shown results agree very well with that obtained in this work. All ex-
periments predict an increase of the ratio of the heavy to lighter cosmic ray mass groups
with increasing energy. However, at energies of about log10(E/GeV) ≈ 8.0 the abundance
of the heavy component gets again smaller. The energy where this turnround in com-
position takes place corresponds to that where the knee-like structure in the spectrum
of iron nuclei was observed in this thesis. In this context, one has to take into account
that this turnround in the mean logarithmic mass can also be caused by a recover in the
spectra of the lighter mass groups. The final answer can only be given in analyses like
that in this work, where the elemental spectra can be observed separately. Nevertheless,
the spectra obtained by the other experiments confirm the finding that the composition
in the KASCADE-Grande energy range is dominated by the heavy component, and that
the composition underlies a rather sharp change at around log10(E/GeV) ≈ 8.0, what
can be explained based on the results of this work by a knee-like feature in the flux of
the mass group represented by iron nuclei. Hence, these two of the main results obtained
in this thesis are already in agreement with the findings of other experiments.

Another main conclusion was that the spectra of protons, as well as of helium, carbon,
and silicon nuclei are featureless in the framework of the given uncertainties. Only in case
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Figure 8.2: Mean Xmax in dependence on the primary energy, measured with the Pierre
Auger Observatory (black markers, fitted by a two slope function). The error bars rep-
resent statistical uncertainties, the error bands systematic ones. Additionally shown are
the expected mean Xmax values for either pure protons or pure iron nuclei, computed
based on different interaction models (see legend). The figure was taken from [66].

of protons, there are slight indications that the proton spectrum possibly slightly recovers
for energies log10(E/GeV) & 7.4, what is, from a pure statistical point of view, without
significance however. Nevertheless, adopting this impression hypothetically to be true,
this would mean that the abundance of protons rises relatively in comparison to those of
the other primaries. Since beyond the knee-like structure at about log10(E/GeV) ≈ 8.0
iron nuclei get less abundant progressively, an energy should exist where the fluxes of iron
nuclei and protons cross. Extrapolating the unfolded fluxes of protons and iron nuclei
shown in Fig. 8.4 by eye, predicts such a crossing at around log10(E/GeV) ≈ 8.6. Beyond
this energy, the lighter, or at least the intermediate mass groups, are expected to be
dominating. This purely hypothetical finding can be compared to the result [66] of the
Pierre Auger Observatory, depicted in Fig. 8.2. Shown there is the measured mean Xmax
development in dependence on the primary energy compared to some predictions for ei-
ther pure protons or pure iron nuclei, computed based on different interaction models. No
matter what simulations are considered, the composition at above log10(E/GeV) ≈ 9.0
seems to be dominated by the light, or at least intermediate mass groups. However, fol-
lowing the trend of the shown fit down to lower energies, this result predicts a decreasing
ratio of the light cosmic ray nuclei to the heavy ones. Hence, the composition gets less
lighter, or, the other way around, gets heavier. This result would conform perfectly with
that obtained in this work.

The finding that the knee positions of different primaries seem to scale with their
charges cannot be verified based on other experiments. Such predictions are only possi-
ble if the knee positions of individual nuclei are determined with high precision. Up to
now, only KASCADE and KASCADE-Grande together offer both the knee positions of
heavy as well as of light primaries. However, due to the limited resolution of the respec-
tive unfolding procedures, only a limited number of nuclei can be considered, such that
they represent mass groups rather than individual particles. This causes uncertainties
in the predictions about the scaling of the knee positions. Hence, the charge dependent
scaling, concluded in this work, was drawn under the assumption, that the mass groups
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Figure 8.3: Left panel: Compilation of Kuzmichev [30] comprising all-particle spectra
derived by the TUNKA experiment in comparison with those of diverse other experiments
(see legend). Right panel: The recent all-particle spectra determined by the GAMMA
experiment (taken from [133], see there for further details).

represented in this thesis by protons, as well as by helium or iron nuclei actually consist
only, or at least primarily, of these respective primaries. Consequently, this result should
be interpreted with caution, i.e. under keeping in mind that it is only true under certain
circumstances.

The last main finding, i.e. that the all-particle spectrum determined in this the-
sis9 exhibits a concave behaviour in the energy range from log10(E/GeV) = 6.9 to
log10(E/GeV) = 7.2, is compatible with results of other experiments, too. In Fig. 8.3, left
panel, a compilation of Kuzmichev [30] on behalf of the TUNKA collaboration is depicted,
and, on the right panel, the newest result of the GAMMA experiment [133]. Illustrated
are all-particle spectra of diverse experiments. Both TUNKA results as well as the one
of the Tibet experiment exhibit a concave structure at around log10(E/GeV) ≈ 7.0.
Furthermore, this structure can also be observed in the recent results of the GAMMA
experiment. In addition, the new TUNKA-133 results also confirm the steepening in the
all-particle flux at around log10(E/GeV) ≈ 8.0, as can be seen in Fig. 8.3, left panel. In
case of the GAMMA experiment (right panel), there could be a slight indication for a
kink in the all-particle flux beyond log10(E/GeV) ≈ 8.0, too.

Brief interpretation of the results in context of some exemplarily selected
models

After the previous discussions about the quality respectively reliability, the compatibil-
ity, and the importance of the obtained results, it will now be focused briefly on the
interpretation of the findings. For this purpose, one can make use of theoretical models,
which try to describe the shape of the spectra and the composition of cosmic rays (see
Chapter 2). A comprehensive discussion of those models would go beyond the scope of
this thesis. However, the results will be compared exemplarily to two well known models;

9But also in other analyses of our collaboration (cf. Section 7.3.3).
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firstly, to the one developed by Hillas [91, 92]. It considers the results of direct cosmic
ray measurements obtained with balloon or satellite based experiments. These results are
extrapolated, and, based on KASCADE measurements, knee like structures are assigned
to the elemental cosmic ray spectra. The assumption is that the galactic cosmic rays are
accelerated in supernova remnants with a rigidity dependent maximal reachable energy,
resulting in rather sharp knee-like structures. These cosmic rays are called “component
A” by Hillas. However, the all-particle flux predicted by this component A differs from
the one measured by diverse experiments. Hillas concluded that either the heavy compo-
nent (especially iron nuclei) behaves differently as expected, or there is “component B”
needed, which is an extension of the elemental cosmic ray fluxes beyond their knees. Fur-
thermore, Hillas assumed that from energies of about E ≈ 1017 eV extragalactic cosmic
rays have to be considered, too, which consist mainly of protons. Taking into account
components A and B, as well as the extragalactic one, allows a better description of the
measured all-particle spectrum.

In Fig. 8.4, the all-particle spectrum derived in this work (“Grande...all-part”) is com-
pared to the results of other experiments. Furthermore, the unfolded elemental spectra
representing the light mass group (given by protons) of cosmic rays, the intermediate
one (given by the sum of the individually unfolded spectra of helium, carbon, and sili-
con nuclei), as well as the heavy one (given by iron nuclei) are shown (“Grande...<mass
group>”). For purpose of comparison, also the analogous elemental spectra obtained by
KASCADE measurements [70] are depicted (“KASCADE...<mass group>”). In addition,
some predictions based on Hillas’s model [91, 92] are shown (see legend). The assumed
transition between the components A and B takes place at around E ≈ 7 × 1015 eV for
protons, or at around E ≈ 2× 1017 eV for iron nuclei.

If the absolute flux values of protons determined in this thesis are right, and not shifted
systematically, the data points follow rather a pure extrapolation of component A, while
a concave structure as seen in the combined component A+B at around E ≈ 7× 1015 eV
is not discernible. This is confirmed, as far as statistics allow such a conclusion, by the
KASCADE results. However, beyond E ≈ 2 × 1016 eV, the KASCADE-Grande proton
flux slightly recovers. This agrees very well with the extragalactic proton flux predicted
by Hillas. However, in the “ankle model” (for details, see Section 2.3), favoured by Hillas,
the transition from galactic to extragalactic cosmic rays should happen actually at higher
energies, and thereby causes the ankle at around several 1018 eV. The flux of iron nuclei,
unfolded in this work, agrees very well with Hillas component A for iron nuclei, too. Due
to a lack of statistics, the spectrum of iron nuclei could only be unfolded up to energies
below the predicted transition of component A and B at around E ≈ 2×1017 eV, such that
based on the spectrum of iron nuclei no statement about the necessity of a component B
can be given. Analysing the all-particle spectrum obtained in this work gives indications
that, also in this case, only the all-particle spectrum is needed that is predicted by Hillas
based on the component A. Extrapolating the all-particle spectrum of pure component
A to higher energies and considering the predicted extragalactic all-particle component,
this conforms also well with the first shown markers representing the results of the Pierre
Auger Observatory10, or with the spectrum of the HiRes-II experiment.

While, under the premise that the absolute flux values are not considerably shifted
systematically, especially the all-particle and the proton spectrum determined in this the-
sis does not claim a necessity of a further component B, the observed concave behaviour

10Even when correcting the flux obtained by the Pierre Auger Observatory slightly to higher values, as
sometimes stated to be possibly necessary (in the order of 10% to 15%).
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in the all-particle spectrum at around E ≈ 1016 eV and beyond would be compatible
with the two-component model. This dip-like structure, which was confirmed by other
analyses of our collaboration, as well as by results of the TUNKA and the GAMMA
experiments, could indicate a transition between component A and B. However, there
are also alternative attempts available that can explain such a concave behaviour. For
example, in model calculations, De Donato and Medina-Tanco [57] assumed a pure rigid-
ity dependence of galactic cosmic rays. As can be seen in Fig. 1 and 2 of [57], such a
concave behaviour in the all-particle spectrum can simply be caused by a gap between the
spectra of light primaries (“Z=1–5”, i.e. primarily protons and helium nuclei) and that
of the next following mass group (“Z=6–12”, i.e. primarily carbon, nitrogen, and oxygen
nuclei). Hence, the existence of the dip-like structure is not automatically an evidence
for the two-component model.

A very promising alternative model is the “dip model” of Berezinsky et al. [32] (for
details, see Section 2.3). They assume that the dip in the energy range ∼ 1× 1018 eV to
∼ 4× 1019 eV is related to electron-positron pair production of extragalactic protons on
cosmic microwave background photons. Thereby, the transition from galactic to extra-
galactic cosmic rays is assumed to happen already at energies close to that where the
second knee is observed, in agreement with a pure rigidity based model for galactic
cosmic rays. An additional component B like in case of Hillas’s model is not necessary.
Furthermore, the pair production mechanism necessitates a dominance of protons in
the composition of extragalactic cosmic rays. This would also agree with the finding of
this work that the unfolded proton spectrum seems to recover at energies above E &
2.5 × 1016 eV, such that its relative abundance in the all-particle spectrum will again
increase for higher energies. As mentioned above, by extrapolating the unfolded fluxes of
protons and iron nuclei (shown in Fig. 8.4) by eye, already at around E ≈ 4 × 1017 eV
a crossing of both spectra is expected. Beyond this energy, the lighter, or at least the
intermediate mass groups are presumably dominating. To summarize, the model proposed
by Berezinsky et al. [32] seems to be compatible with the results obtained in this thesis
within the uncertainties. Nevertheless, it has to be emphasized that a mixed model (cf.
Section 2.3) could also be possible, such that the afore-performed comparison is only
exemplary, and for sure not final.

The afore-shown comparisons are basing on only some exemplarily selected models.
Due to the large amount of further alternative models, which are all trying to explain
the spectrum of cosmic rays at the energies between the first knee and the ankle, a
comprehensive and conclusive analysis will not be possible in this work. However, it could
be shown that, under considering steadily the possibility of systematic uncertainties11,
and hence exercising respective cautions, the results obtained in this thesis are also a
powerful means to judge about the plausibility of diverse theoretical models.

Closing statement

Beside the circumstance that the findings in this thesis allow to answer the long exist-
ing question about the existence of a second knee caused by a change in the fluxes of
heavy cosmic ray primaries, they open new possibilities in evaluating the plausibility
of diverse theoretical models used to describe the spectrum of cosmic rays at energies
between the first knee and the ankle. Thereby, the obtained results enable, among other

11On the one hand the computed and given uncertainties, but also that caused by possible deficits in the
used interaction models QGSJET-II-02 and FLUKA 2002.4 that could not be considered quantitatively
in this work.



8. Summary, Final Discussion, and Outlook 199

things, to draw inferences about the transition from galactic to extragalactic cosmic rays.
Furthermore, the insights gained in this work allow on the one hand to judge roughly
about the reliability of hadronic interaction models, and on the other hand even to give
indications how the respective models could possibly be improved, as done exemplarily
for EPOS 1.99. The obtained results appear to be of high quality; however, every in-
terpretation has to be done under consideration of the given uncertainties, as well as
under taking into account that all findings are based on the assumption that the used
interaction models QGSJET-II-02 and FLUKA 2002.4 describe the physics of hadronic
interactions at these energies reliably12. In the near future, new data of the LHC will
help to improve the understanding of the hadronic interaction processes, and will finally
allow to judge about the quality of the obtained results ex post facto, and, if necessary,
to apply corrections.

Let us conclude this thesis with a statement Victor Franz Hess made in his Nobel
Lecture, on December 12th, 1936, but what is still valid today:

“From a consideration of the immense volume of newly discovered facts in
the field of physics, especially atomic physics, in recent years it might well
appear to the layman that the main problems were already solved and that
only more detailed work was necessary.
This is far from the truth, as will be shown by one of the biggest and most
important newly opened fields of research, with which I am closely associated,
that of cosmic rays.”

12Nevertheless, a data Monte Carlo comparison did not give any indication for serious deficits in these
models, unlike it was the case for the combination EPOS 1.99 and FLUKA 2002.4.





Appendix A

Results of the Parametrization of
the log10N

true
ch Distribution

A.1 Parameters of the Parametrization of the log10N
true
ch

Distribution
The log10N

true
ch distribution is parametrized based on Eq.(5.3). The fit parameters vary

from primary to primary. They all show an energy dependence, except for the parameters
p3 and p5 which can be kept constant over all energies without worsening the fit result.
The latter parameter also does not change significantly with the particle type and can
be set to p5 = 2.3. The parameter p0 is a simple normalization factor and will thus not
be listed. All determined parameters are compilated in Table A.1 and A.2.

particle, energy/eV p3 p5

H, all energies 0.4 2.3
He, all energies -4.4 2.3
C, all energies -4.6 2.3
Si, all energies -4.8 2.3
Fe, all energies -5.0 2.3

Table A.1: Values of the parameters p3 and p5 of the parametrization of the log10N
true
ch

distribution based on Eq.(5.3).
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202 A. Results of the Parametrization of the log10N
true
ch Distribution

particle, energy/eV p1 p2 p4

H, 2.00e+15 5.1134±0.0056 0.1695±0.0050 6.1299±0.0083
H, 5.00e+15 5.5988±0.0051 0.1514±0.0047 6.5271±0.0066
H, 1.00e+16 5.9708±0.0066 0.1414±0.0058 6.8221±0.0106
H, 3.16e+16 6.5739±0.0065 0.1314±0.0057 7.3174±0.0090
H, 1.00e+17 7.1522±0.0069 0.1059±0.0062 7.8345±0.0109
H, 3.16e+17 7.7444±0.0073 0.0992±0.0064 8.3327±0.0112
H, 1.00e+18 8.3043±0.0089 0.0883±0.0078 8.8610±0.0149
H, 3.16e+18 8.9009±0.0128 0.0916±0.0099 9.3320±0.0176
He, 2.00e+15 5.2902±0.0094 0.1961±0.0039 5.9983±0.0223
He, 5.00e+15 5.7435±0.0075 0.1763±0.0036 6.3980±0.0147
He, 1.00e+16 6.0899±0.0101 0.1601±0.0046 6.6707±0.0208
He, 3.16e+16 6.6433±0.0092 0.1373±0.0046 7.2200±0.0217
He, 1.00e+17 7.2258±0.0086 0.1285±0.0046 7.7034±0.0159
He, 3.16e+17 7.7857±0.0106 0.1133±0.0055 8.2049±0.0192
He, 1.00e+18 8.3417±0.0112 0.1004±0.0060 8.7286±0.0208
He, 3.16e+18 8.8981±0.0172 0.0967±0.0092 9.2814±0.0316
C, 2.00e+15 5.1810±0.0047 0.1488±0.0025 5.7636±0.0078
C, 5.00e+15 5.6700±0.0060 0.1450±0.0030 6.1478±0.0089
C, 1.00e+16 6.0001±0.0058 0.1257±0.0032 6.5157±0.0112
C, 3.16e+16 6.5896±0.0076 0.1183±0.0038 7.0102±0.0131
C, 1.00e+17 7.1596±0.0090 0.1087±0.0046 7.5607±0.0159
C, 3.16e+17 7.7314±0.0090 0.0980±0.0047 8.0791±0.0144
C, 1.00e+18 8.3008±0.0092 0.0956±0.0051 8.6389±0.0133
C, 3.16e+18 8.8531±0.0119 0.0821±0.0065 9.1371±0.0172
Si, 2.00e+15 5.1038±0.0031 0.1159±0.0019 5.5741±0.0027
Si, 5.00e+15 5.5774±0.0034 0.1066±0.0021 6.0360±0.0040
Si, 1.00e+16 5.9261±0.0034 0.0973±0.0024 6.4357±0.0037
Si, 3.16e+16 6.5474±0.0061 0.1038±0.0031 6.8699±0.0079
Si, 1.00e+17 7.1182±0.0059 0.0942±0.0034 7.4485±0.0075
Si, 3.16e+17 7.6750±0.0049 0.0780±0.0032 8.0193±0.0058
Si, 1.00e+18 8.2523±0.0076 0.0710±0.0043 8.5233±0.0124
Si, 3.16e+18 8.8160±0.0115 0.0736±0.0063 9.0699±0.0160
Fe, 2.00e+15 5.0420±0.0029 0.0981±0.0017 5.4161±0.0035
Fe, 5.00e+15 5.5311±0.0033 0.0964±0.0019 5.8814±0.0045
Fe, 1.00e+16 5.8726±0.0030 0.0836±0.0021 6.2941±0.0027
Fe, 3.16e+16 6.4803±0.0044 0.0841±0.0025 6.8143±0.0075
Fe, 1.00e+17 7.0637±0.0051 0.0779±0.0030 7.3711±0.0085
Fe, 3.16e+17 7.6407±0.0059 0.0706±0.0034 7.9176±0.0095
Fe, 1.00e+18 8.2140±0.0058 0.0699±0.0036 8.4833±0.0076
Fe, 3.16e+18 8.7684±0.0089 0.0618±0.0054 9.0446±0.0182

Table A.2: Values of the parameters p1, p2 and p4 of the parametrization of the log10N
true
ch

distribution based on Eq.(5.3).
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A.2 Energy Dependence of the Parameters of the Parame-
trization of the log10N

true
ch Distribution – Parameters

of the Interpolation
The energy dependence of the parameters p1, p2 and p4 of Eq.(5.3) is interpolated using
polynomial functions of appropriate degree according to Eq.(5.4). The results are compi-
lated in Table A.3. In Table A.4 the chi-squares per degree of freedom are summarized.

particle, parameters of the polynomial fits
par. pi a0 a1 a2 a3

H, p1 -5.178 ± 1.490 2.176 ± 0.584 -0.1120 ± 0.0757 0.00408 ± 0.00324
H, p2 0.677 ± 0.149 -0.1168 ± 0.0391 0.00575 ± 0.00253 0
H, p4 2.266 ± 2.192 0.068 ± 0.858 0.117 ± 0.111 -0.00481 ± 0.00474
He, p1 -0.877 ± 2.222 0.722 ± 0.866 0.058 ± 0.112 -0.00265 ± 0.00475
He, p2 0.828 ± 0.121 -0.1465 ± 0.0321 0.00732 ± 0.00209 0
He, p4 0.326 ± 0.512 0.821 ± 0.133 0.01251 ± 0.00856 0
C, p1 -2.755 ± 0.172 1.3354 ± 0.0454 -0.01192 ± 0.00295 0
C, p2 0.4586 ± 0.0914 -0.0679 ± 0.0241 0.00301 ± 0.00157 0
C, p4 3.258 ± 2.393 -0.564 ± 0.939 0.207 ± 0.121 -0.00873 ± 0.00522
Si, p1 -1.980 ± 0.997 0.959 ± 0.395 0.0411 ± 0.0518 -0.00237 ± 0.00224
Si, p2 0.2392 ± 0.0743 -0.0235 ± 0.0197 0.00059 ± 0.00129 0
Si, p4 -12.795 ± 1.156 5.456 ± 0.463 -0.5441 ± 0.0614 0.02235 ± 0.00269
Fe, p1 -1.934 ± 0.915 0.905 ± 0.362 0.0493 ± 0.0474 -0.00274 ± 0.00205
Fe, p2 0.2522 ± 0.0646 -0.0334 ± 0.0171 0.00144 ± 0.00112 0
Fe, p4 -15.844 ± 1.325 6.517 ± 0.533 -0.6742 ± 0.0710 0.02781 ± 0.00312

Table A.3: The parameters ai of the polynomial fits according to Eq.(5.4) used to inter-
polate the energy dependence of the parameters p1, p2 and p4 of Eq.(5.3).
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particle, energy/eV χ2/ndf

H, 2.00e+15 81.41/65=1.3
H, 5.00e+15 73.85/61=1.2
H, 1.00e+16 52.98/52=1.0
H, 3.16e+16 53.57/48=1.1
H, 1.00e+17 53.89/42=1.3
H, 3.16e+17 74.06/36=2.1
H, 1.00e+18 27.84/31=0.9
H, 3.16e+18 22.41/25=0.9
He, 2.00e+15 72.92/51=1.4
He, 5.00e+15 58.93/49=1.2
He, 1.00e+16 84.58/43=2.0
He, 3.16e+16 40.48/38=1.1
He, 1.00e+17 25.51/36=0.7
He, 3.16e+17 34.51/29=1.2
He, 1.00e+18 31.07/27=1.2
He, 3.16e+18 26.39/22=1.2
C, 2.00e+15 47.73/48=1.0
C, 5.00e+15 63.34/41=1.5
C, 1.00e+16 36.22/41=0.9
C, 3.16e+16 49.88/33=1.5
C, 1.00e+17 27.88/29=1.0
C, 3.16e+17 30.05/25=1.2
C, 1.00e+18 34.15/24=1.4
C, 3.16e+18 19.41/19=1.0
Si, 2.00e+15 138.16/36=3.8
Si, 5.00e+15 88.20/35=2.5
Si, 1.00e+16 58.03/33=1.8
Si, 3.16e+16 78.16/29=2.7
Si, 1.00e+17 88.23/26=3.4
Si, 3.16e+17 22.29/21=1.1
Si, 1.00e+18 29.33/19=1.5
Si, 3.16e+18 21.56/17=1.3
Fe, 2.00e+15 47.38/30=1.6
Fe, 5.00e+15 125.16/30=4.2
Fe, 1.00e+16 92.46/28=3.3
Fe, 3.16e+16 71.71/26=2.8
Fe, 1.00e+17 26.79/25=1.1
Fe, 3.16e+17 27.33/19=1.4
Fe, 1.00e+18 21.82/20=1.1
Fe, 3.16e+18 7.38/16=0.5

Table A.4: Chi-squares per degree of freedom of the fits to the log10N
true
ch distribution

based on Eq.(5.3). The parameters have been fixed to the results of the energy dependence
interpolation according to Eq.(5.4).



Appendix B

Results of the Parametrization of
the log10N

true
µ Distribution

B.1 Parameters of the Parametrization of the log10N
true
µ

Distribution
The log10N

true
µ distribution is fitted with a function according to Eq.(5.11), which it-

self includes Eqs.(5.7) and (5.8). The fit parameters vary from primary to primary. In
addition, the parameters p6 and b0 depend on the energy, while the others can be kept
constant to an average value for all energies without worsening the fit result. All deter-
mined parameters are compilated in the Tables B.1 and B.2.

particle, energy/eV p7 b1 b2

H, all energies 0.20 -0.69 -0.54
He, all energies 0.06 -0.71 -0.53
C, all energies 0 -0.73 -0.45
Si, all energies 0 -0.75 -0.58
Fe, all energies 0 -0.75 -0.48

Table B.1: Values of the parameters p7, b1 and b2 of the parametrization of the log10N
true
µ

distribution based on Eq.(5.11) going along with Eqs.(5.7) and (5.8).
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particle, energy/eV p6 b0

H, 2.00e+15 0.4243±0.0063 -1.7181±0.0048
H, 5.00e+15 0.4716±0.0074 -2.7479±0.0057
H, 1.00e+16 0.4737±0.0088 -3.6521±0.0069
H, 3.16e+16 0.5381±0.0105 -5.3058±0.0087
H, 1.00e+17 0.5209±0.0122 -7.2407±0.0102
H, 3.16e+17 0.5435±0.0140 -9.3914±0.0120
H, 1.00e+18 0.5553±0.0171 -11.7673±0.0149
H, 3.16e+18 0.5797±0.0245 -14.4459±0.0217
He, 2.00e+15 0.2491±0.0042 -1.6931±0.0030
He, 5.00e+15 0.2597±0.0045 -2.7168±0.0035
He, 1.00e+16 0.2843±0.0054 -3.5903±0.0044
He, 3.16e+16 0.2983±0.0060 -5.2170±0.0050
He, 1.00e+17 0.3140±0.0071 -7.0640±0.0063
He, 3.16e+17 0.3257±0.0081 -9.1663±0.0073
He, 1.00e+18 0.3184±0.0096 -11.4916±0.0087
He, 3.16e+18 0.3182±0.0135 -14.0562±0.0123
C, 2.00e+15 0.0980±0.0039 -0.2909±0.0019
C, 5.00e+15 0.1279±0.0036 -1.0535±0.0022
C, 1.00e+16 0.1396±0.0040 -1.7159±0.0027
C, 3.16e+16 0.1498±0.0043 -2.9539±0.0031
C, 1.00e+17 0.1652±0.0050 -4.3930±0.0038
C, 3.16e+17 0.1778±0.0056 -6.0306±0.0045
C, 1.00e+18 0.1981±0.0068 -7.8793±0.0058
C, 3.16e+18 0.1837±0.0090 -9.9227±0.0076
Si, 2.00e+15 0.1639±0.0027 -2.9192±0.0020
Si, 5.00e+15 0.1765±0.0031 -4.1171±0.0024
Si, 1.00e+16 0.1782±0.0037 -5.1302±0.0029
Si, 3.16e+16 0.1860±0.0041 -7.0015±0.0033
Si, 1.00e+17 0.1972±0.0049 -9.1248±0.0041
Si, 3.16e+17 0.2015±0.0055 -11.5041±0.0048
Si, 1.00e+18 0.1950±0.0065 -14.1361±0.0056
Si, 3.16e+18 0.1945±0.0091 -17.0150±0.0079
Fe, 2.00e+15 0.0933±0.0023 -1.1109±0.0014
Fe, 5.00e+15 0.0992±0.0026 -1.9748±0.0016
Fe, 1.00e+16 0.1018±0.0031 -2.7194±0.0020
Fe, 3.16e+16 0.1106±0.0034 -4.1198±0.0023
Fe, 1.00e+17 0.1230±0.0039 -5.7248±0.0029
Fe, 3.16e+17 0.1310±0.0043 -7.5373±0.0034
Fe, 1.00e+18 0.1271±0.0051 -9.5665±0.0040
Fe, 3.16e+18 0.1300±0.0075 -11.7959±0.0059

Table B.2: Values of the parameters p6 and b0 of the parametrization of the log10N
true
µ

distribution based on Eq.(5.11) going along with Eqs.(5.7) and (5.8).
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B.2 Energy Dependence of the Parameters of the Parame-
trization of the log10N

true
µ Distribution – Parameters

of the Interpolation
The energy dependence of the parameters p6 and b0 of Eq.(5.11) going along with
Eqs.(5.7) and (5.8) is interpolated using polynomial functions of appropriate degree ac-
cording to Eq.(5.4). The results are compilated in Table B.3. In Table B.4 the chi-squares
per degree of freedom are summarized.

particle, parameters of the polynomial fits
par. pi a0 a1 a2 a3

H, p6 -4.357 ± 2.296 1.711 ± 0.911 -0.202 ± 0.120 0.00802 ± 0.00518
H, b0 -5.802 ± 0.217 3.7150 ± 0.0583 -0.48672 ± 0.00387 0
He, p6 0.852 ± 1.370 -0.358 ± 0.541 0.0612 ± 0.0708 -0.00310 ± 0.00305
He, b0 -5.062 ± 0.130 3.4500 ± 0.0349 -0.46271 ± 0.00230 0
C, p6 -0.547 ± 0.120 0.1530 ± 0.0310 -0.00800 ± 0.00206 0
C, b0 -1.971 ± 0.703 2.046 ± 0.279 -0.2408 ± 0.0367 -0.00660 ± 0.00159
Si, p6 -0.224 ± 0.105 0.0960 ± 0.0281 -0.00546 ± 0.00185 0
Si, b0 -5.0862 ± 0.0851 3.4934 ± 0.0228 -0.49986 ± 0.00150 0
Fe, p6 -0.1130 ± 0.0870 0.0454 ± 0.0232 -0.00204 ± 0.00153 0
Fe, b0 -4.9570 ± 0.0604 3.2309 ± 0.0162 -0.41588 ± 0.00107 0

Table B.3: The parameters ai of the polynomial fits according to Eq.(5.4) used to inter-
polate the energy dependence of the parameters p6 and b0 of Eq.(5.11) going along with
Eqs.(5.7) and (5.8).
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particle, energy/eV χ2/ndf

H, 2.00e+15 43.28/42=1.0
H, 5.00e+15 35.89/41=0.9
H, 1.00e+16 44.40/32=1.4
H, 3.16e+16 30.19/33=0.9
H, 1.00e+17 21.80/27=0.8
H, 3.16e+17 28.73/26=1.1
H, 1.00e+18 28.59/25=1.1
H, 3.16e+18 13.25/20=0.7
He, 2.00e+15 23.85/26=0.9
He, 5.00e+15 21.60/21=1.0
He, 1.00e+16 12.50/20=0.6
He, 3.16e+16 12.36/18=0.7
He, 1.00e+17 15.54/17=0.9
He, 3.16e+17 7.90/13=0.6
He, 1.00e+18 6.11/14=0.4
He, 3.16e+18 2.85/11=0.3
C, 2.00e+15 18.25/19=1.0
C, 5.00e+15 29.18/16=1.8
C, 1.00e+16 20.36/16=1.3
C, 3.16e+16 14.18/13=1.1
C, 1.00e+17 12.47/12=1.0
C, 3.16e+17 7.86/10=0.8
C, 1.00e+18 5.86/10=0.6
C, 3.16e+18 7.08/8=0.9
Si, 2.00e+15 15.59/15=1.0
Si, 5.00e+15 9.44/14=0.7
Si, 1.00e+16 17.13/13=1.3
Si, 3.16e+16 5.88/11=0.5
Si, 1.00e+17 5.66/9=0.6
Si, 3.16e+17 3.53/9=0.4
Si, 1.00e+18 8.78/7=1.3
Si, 3.16e+18 3.52/7=0.5
Fe, 2.00e+15 14.28/13=1.1
Fe, 5.00e+15 19.53/13=1.5
Fe, 1.00e+16 8.64/12=0.7
Fe, 3.16e+16 10.93/10=1.1
Fe, 1.00e+17 6.06/8=0.8
Fe, 3.16e+17 7.30/9=0.8
Fe, 1.00e+18 10.34/8=1.3
Fe, 3.16e+18 2.47/6=0.4

Table B.4: Chi-squares per degree of freedom of the fits to the log10N
true
µ distribution

based on Eq.(5.11) going along with Eqs.(5.7) and (5.8). The parameters have been fixed
to the results of the energy dependence interpolation according to Eq.(5.4).
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Results of the Parametrization of
the Efficiency

The parameters of the parametrization (Eq.(5.14)) of the combined trigger and recon-
struction efficiency are listed in Table C.1.

part. p0 p1 p2 p3 χ2/ndf

H 2.400±0.043 3.9841±0.0067 3.302±0.084 5.0269±0.0051 872.2/465=1.9
He 3.210±0.090 4.1038±0.0087 3.026±0.077 4.9907±0.0074 802.5/323=2.5
C 3.046±0.176 4.1634±0.0126 3.056±0.137 4.9848±0.0092 578.7/246=2.4
Si 3.181±0.088 4.3036±0.0098 3.478±0.326 4.8999±0.0122 497.9/207=2.4
Fe 3.213±0.111 4.3524±0.0129 3.160±0.114 4.8976±0.0158 603.7/185=3.3

Table C.1: Values of the parameters of the parametrization of the combined trigger and
reconstruction efficiency based on Eq.(5.14).
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Results of the Parametrization of
the Systematic Bias in the
Reconstruction Procedure

The parameters of the parametrization of the systematic bias in the charged particle or
muon number reconstruction based on Eq.(5.15) and Eq.(5.16) are listed in Table D.1
and D.2.

parameter value
p0 5.802±0.026
p1 0.1294±0.0076
p2 -0.0233±0.0010
p3 -0.01273±0.00080
χ2/ndf 383.2/58=6.6

Table D.1: Values of the parameters of the parametrization of the systematic bias in the
charged particle number reconstruction based on Eq.(5.15).

parameter value
p0 6.057±0.020
p1 -0.0040±0.0014
p2 0.2657±0.0088
p3 0.295±0.013
p4 0.0829±0.0049
p5 0.0269±0.0033
χ2/ndf 109.1/57=1.9

Table D.2: Values of the parameters of the parametrization of the systematic bias in the
muon number reconstruction based on Eq.(5.16).
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Appendix E

Results of the Parametrization of
the Statistical Reconstruction
Uncertainties for Charged
Particles

E.1 Parameters of the Parametrization of the Statistical
Reconstruction Uncertainties for Charged Particles

The derived fit parameters, used in the parametrization (given by Eqs.(5.17) and (5.18))
of the statistical reconstruction uncertainties for charged particles, are listed in Table E.1.
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Charged Particles

log10(N tru
ch )-interval p1 p2 p3

[4.5, 4.6] 0.0472±0.0001 0.0973±0.0359 -0.0950±0.1915
[4.6, 4.7] 0.0445±0.0001 0.1726±0.0000 -0.0950±0.1743
[4.7, 4.8] 0.0005±0.0049 0.1088±0.0044 -0.0891±0.0076
[4.8, 4.9] -0.0124±0.0031 0.1087±0.0025 -0.0926±0.0049
[4.9, 5.0] -0.0217±0.0023 0.1066±0.0019 -0.0942±0.0036
[5.0, 5.1] -0.0236±0.0017 0.1031±0.0015 -0.0911±0.0027
[5.1, 5.2] -0.0271±0.0016 0.1000±0.0014 -0.0972±0.0023
[5.2, 5.3] -0.0269±0.0015 0.0938±0.0012 -0.1004±0.0020
[5.3, 5.4] -0.0237±0.0014 0.0904±0.0012 -0.0921±0.0019
[5.4, 5.5] -0.0188±0.0014 0.0893±0.0013 -0.0917±0.0020
[5.5, 5.6] -0.0151±0.0015 0.0851±0.0014 -0.0888±0.0020
[5.6, 5.7] -0.0128±0.0015 0.0857±0.0013 -0.0803±0.0021
[5.7, 5.8] -0.0114±0.0015 0.0821±0.0014 -0.0769±0.0020
[5.8, 5.9] -0.0117±0.0018 0.0816±0.0016 -0.0724±0.0025
[5.9, 6.0] -0.0138±0.0017 0.0769±0.0015 -0.0675±0.0025
[6.0, 6.1] -0.0106±0.0018 0.0768±0.0018 -0.0627±0.0029
[6.1, 6.2] -0.0125±0.0021 0.0727±0.0018 -0.0657±0.0027
[6.2, 6.3] -0.0052±0.0020 0.0737±0.0016 -0.0551±0.0029
[6.3, 6.4] -0.0104±0.0021 0.0695±0.0017 -0.0489±0.0030
[6.4, 6.5] -0.0072±0.0024 0.0704±0.0019 -0.0467±0.0044
[6.5, 6.6] -0.0079±0.0024 0.0658±0.0020 -0.0463±0.0040
[6.6, 6.7] -0.0082±0.0028 0.0667±0.0022 -0.0462±0.0044
[6.7, 6.8] -0.0064±0.0024 0.0688±0.0018 -0.0234±0.0052
[6.8, 6.9] -0.0076±0.0034 0.0666±0.0029 -0.0404±0.0071
[6.9, 7.0] -0.0025±0.0031 0.0646±0.0027 -0.0386±0.0068
[7.0, 7.1] -0.0058±0.0038 0.0614±0.0034 -0.0440±0.0067
[7.1, 7.2] -0.0055±0.0035 0.0623±0.0027 -0.0304±0.0099
[7.2, 7.3] 0.0013±0.0037 0.0591±0.0025 -0.0017±0.0142
[7.3, 7.4] 0.0003±0.0050 0.0627±0.0037 0
[7.4, 7.5] -0.0065±0.0056 0.0699±0.0050 0
[7.5, 7.6] -0.0159±0.0051 0.0637±0.0040 0
[7.6, 7.7] -0.0100±0.0058 0.0542±0.0048 0
[7.7, 7.8] -0.0075±0.0068 0.0618±0.0060 0
[7.8, 7.9] 0.0140±0.0071 0.0624±0.0045 0
[7.9, 8.0] -0.0153±0.0070 0.0647±0.0059 0
[8.0, 8.1] -0.0026±0.0104 0.0707±0.0099 0
[8.1, 8.2] 0.0039±0.0072 0.0584±0.0048 0
[8.2, 8.3] -0.0234±0.0168 0.0793±0.0161 0
[8.3, 8.4] 0.0149±0.0106 0.0615±0.0111 0
[8.4, 8.5] -0.0399±0.0026 0.0700±0.0188 0
[8.5, 8.6] -0.0591±0.0050 0.0700±0.0195 0
[8.6, 8.7] -0.0457±0.0050 0.0700±0.0100 0
[8.7, 8.8] 0.0400±0.0039 0.0700±0.0142 0
[8.8, 8.9] -0.0648±0.0035 0.0700±0.0109 0

Table E.1: Values of the parameters p1, p2 and p3 of the parametrization (according to
Eqs.(5.17) and (5.18)) of the charged particle reconstruction uncertainty.
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E.2 Charged Particle Number Dependence of the Param-
eters of the Parametrization of the Statistical Recon-
struction Uncertainties for Charged Particles – Param-
eters of the Interpolation

The dependence of the parameters p1, p2 and p3 – used in the parametrization (cf.
Eqs.(5.17) and (5.18)) of the statistical uncertainties of the charged particle reconstruc-
tion – on the true charged particle number is interpolated by means of the functions given
by Eq.(5.19). The results are summarized in Tables E.2, E.3 and E.4. In Table E.5 the chi-
squares per degree of freedom are summarized in case of the fits (according to Eqs.(5.17)
and (5.18)) with interpolated parameters (according to Eq.(5.19)) to the distributions of
the charged particle reconstruction uncertainties.

parameter value
c0 -0.0266000±0.0000023
c1 0.0261±0.0017
c2 5.160000±0.000020
c3 -0.0081±0.0017
c4 0.00009±0.00038
c5 0.21200±0.00024
χ2/ndf 56.2/38=1.5

Table E.2: Values of the parameters used in the parametrization (according to Eq.(5.19))
of the dependence of the parameter p1 (from Eqs.(5.17) and (5.18)) on the true charged
particle number.

parameter value
d0 0.0617±0.0013
d1 -4.427±0.089
d2 52.40±7.54
d3 7.17±0.64
d4 1.09±0.10
χ2/ndf 31.8/39=0.8

Table E.3: Values of the parameters used in the parametrization (according to Eq.(5.19))
of the dependence of the parameter p2 (from Eqs.(5.17) and (5.18)) on the true charged
particle number.
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parameter value
e0 -0.0917±0.0011
e1 -9.83±4.69
e2 5.40±0.15
e3 -0.0043±0.0017
e4 0.0403±0.0017
χ2/ndf 44.0/23=1.9

Table E.4: Values of the parameters used in the parametrization (according to Eq.(5.19))
of the dependence of the parameter p3 (from Eqs.(5.17) and (5.18)) on the true charged
particle number.
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log10(N tru
ch )-interval χ2/ndf

[4.5, 4.6] 2.2/4=0.6
[4.6, 4.7] 16.8/12=1.4
[4.7, 4.8] 22.0/19=1.2
[4.8, 4.9] 25.9/29=0.9
[4.9, 5.0] 57.9/35=1.7
[5.0, 5.1] 67.7/30=2.3
[5.1, 5.2] 59.3/36=1.6
[5.2, 5.3] 67.9/33=2.1
[5.3, 5.4] 68.4/34=2.0
[5.4, 5.5] 88.3/34=2.6
[5.5, 5.6] 72.7/32=2.3
[5.6, 5.7] 49.1/30=1.6
[5.7, 5.8] 44.5/28=1.6
[5.8, 5.9] 53.8/28=1.9
[5.9, 6.0] 43.6/23=1.9
[6.0, 6.1] 35.2/20=1.8
[6.1, 6.2] 16.6/20=0.8
[6.2, 6.3] 9.8/18=0.5
[6.3, 6.4] 31.6/16=2.0
[6.4, 6.5] 9.1/15=0.6
[6.5, 6.6] 12.1/16=0.8
[6.6, 6.7] 6.5/13=0.5
[6.7, 6.8] 25.7/12=2.1
[6.8, 6.9] 12.5/12=1.0
[6.9, 7.0] 7.6/11=0.7
[7.0, 7.1] 11.1/11=1.0
[7.1, 7.2] 7.4/10=0.7
[7.2, 7.3] 15.0/10=1.5
[7.3, 7.4] 7.2/9=0.8
[7.4, 7.5] 7.7/9=0.9
[7.5, 7.6] 8.1/8=1.0
[7.6, 7.7] 8.2/8=1.0
[7.7, 7.8] 4.0/7=0.6
[7.8, 7.9] 28.8/8=3.6
[7.9, 8.0] 2.6/9=0.3
[8.0, 8.1] 9.5/8=1.2
[8.1, 8.2] 20.6/8=2.6
[8.2, 8.3] 6.1/7=0.9
[8.3, 8.4] 14.7/9=1.6
[8.4, 8.5] 1.1/4=0.3
[8.5, 8.6] 0.9/3=0.3
[8.6, 8.7] 0.6/2=0.3
[8.7, 8.8] 0/0
[8.8, 8.9] 0/0

Table E.5: Chi-squares per degree of freedom of the fits (according to Eqs.(5.17) and
(5.18)) with interpolated parameters (according to Eq.(5.19)) to the distributions of the
charged particle reconstruction uncertainties.



Appendix F

Results of the Parametrization of
the Statistical Reconstruction
Uncertainties for Muons

F.1 Parameters of the Parametrization of the Statistical
Reconstruction Uncertainties for Muons

The derived fit parameters, used in the parametrization (given by Eqs.(5.20) and (5.21))
of the statistical reconstruction uncertainties for muons, are listed in Table F.1.

216



F. Results of the Parametrization of the Statistical Reconstruction Uncertainties for
Muons 217

log10(N tru
µ )-interval p1 p2 p3

[3.6, 3.7] 0.0000±0.1983 0.2850±0.0326 0.0500±0.0181
[3.7, 3.8] -0.0932±0.1506 0.2850±0.0607 0.0500±0.0181
[3.8, 3.9] -0.0025±0.1758 0.2850±0.0619 0.0500±0.0181
[3.9, 4.0] 0.0156±0.0206 0.2524±0.0200 0.1836±0.0584
[4.0, 4.1] 0.0045±0.0218 0.2427±0.0158 0.1529±0.0518
[4.1, 4.2] 0.0182±0.0050 0.2282±0.0036 0.1696±0.0067
[4.2, 4.3] 0.0374±0.0036 0.1997±0.0028 0.1779±0.0037
[4.3, 4.4] 0.0412±0.0026 0.1867±0.0021 0.1716±0.0029
[4.4, 4.5] 0.0394±0.0026 0.1691±0.0021 0.1772±0.0032
[4.5, 4.6] 0.0392±0.0024 0.1578±0.0020 0.1594±0.0029
[4.6, 4.7] 0.0277±0.0022 0.1456±0.0020 0.1391±0.0028
[4.7, 4.8] 0.0232±0.0021 0.1356±0.0019 0.1168±0.0027
[4.8, 4.9] 0.0150±0.0020 0.1258±0.0018 0.0981±0.0030
[4.9, 5.0] 0.0092±0.0020 0.1170±0.0018 0.0821±0.0032
[5.0, 5.1] 0.0021±0.0020 0.1020±0.0017 0.0748±0.0029
[5.1, 5.2] 0.0003±0.0019 0.0938±0.0016 0.0592±0.0033
[5.2, 5.3] 0.0020±0.0020 0.0832±0.0018 0.0527±0.0036
[5.3, 5.4] 0.0023±0.0019 0.0775±0.0017 0.0398±0.0048
[5.4, 5.5] 0.0027±0.0020 0.0726±0.0014 0.0310±0.0047
[5.5, 5.6] 0.0000±0.0022 0.0687±0.0017 0.0298±0.0058
[5.6, 5.7] 0.0007±0.0219 0.0636±0.0012 0.0089±0.0365
[5.7, 5.8] -0.0015±0.0021 0.0545±0.0015 0
[5.8, 5.9] -0.0043±0.0025 0.0517±0.0019 0
[5.9, 6.0] 0.0020±0.0025 0.0484±0.0021 0
[6.0, 6.1] 0.0010±0.0028 0.0455±0.0021 0
[6.1, 6.2] 0.0027±0.0033 0.0427±0.0029 0
[6.2, 6.3] -0.0055±0.0044 0.0495±0.0033 0
[6.3, 6.4] -0.0096±0.0044 0.0368±0.0029 0
[6.4, 6.5] 0.0055±0.0037 0.0334±0.0028 0
[6.5, 6.6] -0.0025±0.0039 0.0391±0.0026 0
[6.6, 6.7] 0.0079±0.0034 0.0278±0.0023 0
[6.7, 6.8] 0.0017±0.0040 0.0305±0.0033 0
[6.8, 6.9] -0.0004±0.0043 0.0269±0.0041 0
[6.9, 7.0] 0.0042±0.0059 0.0257±0.0049 0
[7.0, 7.1] -0.0240±0.0504 0.0356±0.0298 0
[7.1, 7.2] -0.0030±0.9932 0.0249±0.7268 0
[7.2, 7.3] -0.0200±0.2768 0.0883±9.0902 0

Table F.1: Values of the parameters p1, p2 and p3 of the parametrization (according to
Eqs.(5.20) and (5.21)) of the muon reconstruction uncertainty.
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F.2 Muon Number Dependence of the Parameters of the
Parametrization of the Statistical Reconstruction Un-
certainties for Muons – Parameters of the Interpola-
tion

The dependence of the parameters p1, p2 and p3 – used in the parametrization (cf.
Eqs.(5.20) and (5.21)) of the statistical uncertainties of the muon reconstruction – on
the true muon number is interpolated by means of the functions given by Eq.(5.22).
The results are summarized in Tables F.2, F.3 and F.4. In Table F.5 the chi-squares per
degree of freedom are summarized in case of the fits (according to Eqs.(5.20) and (5.21))
with interpolated parameters (according to Eq.(5.22)) to the distributions of the muons
reconstruction uncertainties.

parameter value
f0 0
f1 -0.023±0.068
f2 5.12±0.14
f3 0.17±0.12
f4 0.168±0.038
χ2/ndf 33.3/33=1.0

Table F.2: Values of the parameters used in the parametrization (according to Eq.(5.22))
of the dependence of the parameter p1 (from Eqs.(5.20) and (5.21)) on the true muon
number.

parameter value
g0 0.0249±0.0026
g1 -2.92±0.14
g2 14.29±2.25
g3 3.50±0.45
g4 0.650±0.079
χ2/ndf 51.4/32=1.6

Table F.3: Values of the parameters used in the parametrization (according to Eq.(5.22))
of the dependence of the parameter p2 (from Eqs.(5.20) and (5.21)) on the true muon
number.
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parameter value
h0 0.089±0.021
h1 -1.26±0.61
h2 4.91±0.16
h3 0.084±0.036
h4 -0.11±0.17
h5 0.60±0.50
h6 1.19±0.34
h7 0.49±0.15
χ2/ndf 17.7/13=1.4

Table F.4: Values of the parameters used in the parametrization (according to Eq.(5.22))
of the dependence of the parameter p3 (from Eqs.(5.20) and (5.21)) on the true muon
number.
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log10(N tru
µ )-interval χ2/ndf

[3.6, 3.7] 0.7/2=0.4
[3.7, 3.8] 1.1/7=0.2
[3.8, 3.9] 15.6/16=1.0
[3.9, 4.0] 16.7/20=0.8
[4.0, 4.1] 55.4/25=2.2
[4.1, 4.2] 152.3/29=5.3
[4.2, 4.3] 241.8/29=8.3
[4.3, 4.4] 167.3/29=5.8
[4.4, 4.5] 81.9/26=3.2
[4.5, 4.6] 96.8/30=3.2
[4.6, 4.7] 56.2/28=2.0
[4.7, 4.8] 65.0/27=2.4
[4.8, 4.9] 28.6/22=1.3
[4.9, 5.0] 34.9/20=1.7
[5.0, 5.1] 24.8/21=1.2
[5.1, 5.2] 12.6/15=0.8
[5.2, 5.3] 32.6/17=1.9
[5.3, 5.4] 25.4/16=1.6
[5.4, 5.5] 18.8/16=1.2
[5.5, 5.6] 16.0/13=1.2
[5.6, 5.7] 16.8/10=1.7
[5.7, 5.8] 7.1/10=0.7
[5.8, 5.9] 8.8/7=1.3
[5.9, 6.0] 3.6/7=0.5
[6.0, 6.1] 0.4/6=0.1
[6.1, 6.2] 8.6/6=1.4
[6.2, 6.3] 15.4/5=3.1
[6.3, 6.4] 12.3/5=2.5
[6.4, 6.5] 10.6/5=2.1
[6.5, 6.6] 11.2/5=2.2
[6.6, 6.7] 8.6/4=2.2
[6.7, 6.8] 1.9/4=0.5
[6.8, 6.9] 0.9/3=0.3
[6.9, 7.0] 0.9/2=0.4
[7.0, 7.1] 0.1/1=0.1
[7.1, 7.2] 0.0/1=0.0
[7.2, 7.3] 0.4/1=0.4

Table F.5: Chi-squares per degree of freedom of the fits (according to Eqs.(5.20) and
(5.21)) with interpolated parameters (according to Eq.(5.22)) to the distributions of the
muons reconstruction uncertainties.



Appendix G

Entries of the Diagonal Matrix of
the Response Matrix
Factorization by SVD

The response matrix R, defined in Eq.(5.26), was factorized by means of the SVD (cf.
Eqs.(5.28) and (5.29)). The diagonal matrix D, if the response matrix R bases on all five
primaries, is given by:
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D = diag
(

0.5422723667031193, 0.520103458246924, 0.49032600811023486,
0.45956993058320456, 0.42747353015486944, 0.3910380306670524,
0.35237908132838097, 0.3147429614398176, 0.3091031618504913,
0.2891468441149333, 0.2804111344910435, 0.2744934240985449,
0.26229102046318087, 0.2436729141806119, 0.24176842535923565,
0.2243505768178768, 0.2069164177080118, 0.20087508727396647,
0.17880489586724357, 0.1672052136581474, 0.1589656580233755,
0.15048884446946556, 0.139447274652344, 0.13747527300893722,
0.13619306978994655, 0.12780852385329297, 0.12259374664420425,
0.11750440480898337, 0.11241760351156814, 0.10394196794087762,
0.09493175375752856, 0.09345536180436431, 0.0841595281398968,
0.08207149713157465, 0.07576044369605106, 0.07155392351389586,
0.06602555575168623, 0.05949587457022103, 0.05441879253913666,
0.052989155404462904, 0.05005039614819152, 0.04601666928794832,
0.04437243533655123, 0.04370276335764391, 0.037810904095364174,
0.03622393260000482, 0.03417558784282055, 0.03161797648150007,
0.031353032122250525, 0.028066225920178177, 0.027339048243654993,
0.02612139255441941, 0.02253393846073224, 0.019620602776118518,
0.01949516874748848, 0.01728737165829651, 0.015202879561481837,
0.014570497074600662, 0.013249820107033931, 0.013166680832744125,
0.01252322491027643, 0.011650205170088019, 0.011434419496012893,
0.010961158540018362, 0.010127654467138442, 0.009713115723809628,
0.008885560042760306, 0.008054197526291003, 0.007367094517174988,
0.007274261244150086, 0.006748783495513325, 0.006045254909847775,
0.00527442156938896, 0.004593922691969088, 0.00426448121591894,
0.0032927445743306076, 0.002357553580842307, 0.0019607552812931205,
0.0012673756702215977, 0.0008082797395408309, 0.0005562283620021495,
0.0004253750365712129, 0.00021616084318648774, 0.00016454890749190165,
0.0000743082764299595, 0.0000446673297901509, 0.000024007604906245624,
0.000019911472889809562, 0.000014979659723874907, 0.000012913741341030732,
5.7639003397369064× 10−6, 2.66475928364136× 10−6, 1.9498722982342773× 10−6,

7.448094851607356× 10−7, 3.654329601037045× 10−7, 1.7718407912301687 × 10−7,

1.3265426658523495× 10−7, 2.257089572371777 × 10−8, 6.072746485998527 × 10−9,

2.0243870308037545× 10−9, 1.4461609513714547 × 10−9, 2.5886593111196026× 10−10,

9.169213831211122× 10−11, 1.9396462672767594× 10−11, 1.70657841869029× 10−11,

2.632445240129791× 10−12, 1.555982061690543× 10−12, 4.619093332701857 × 10−13,

2.809692190026773× 10−13, 1.1697048262018725× 10−13) ,
(G.1)
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before, and by:

D = diag
(

0.5410315651402106, 0.5192058500570461, 0.4897296699375651,
0.45937495463932126, 0.42764652071028547, 0.3915330857066353,
0.353083050839372, 0.31538748806031425, 0.309419023131552,
0.2894793531411193, 0.2806426875054452, 0.274846580266015,
0.26271865575312314, 0.24409979470818544, 0.24217891282061949,
0.2247925592137016, 0.2072417193447789, 0.20121026301119,
0.17915457868719556, 0.16732946331909762, 0.1589624937312841,
0.15037288845655214, 0.13936513981540394, 0.13740055827964975,
0.13618994546562013, 0.12781850725202834, 0.12260390488479823,
0.11727375655469845, 0.11241177738741628, 0.10396309904439155,
0.09448495036416728, 0.09340527243212254, 0.08406813428782303,
0.08179295775131144, 0.07576321213684786, 0.071382421079445,
0.06574215999765871, 0.05920718202019056, 0.05448516134447801,
0.052702052119786756, 0.049865048303919565, 0.0461168885829859,
0.0443735073337368, 0.04346470941693313, 0.03782172675941715,
0.036172107253546124, 0.034165358085424626, 0.03170012090752251,
0.03115689721226761, 0.02807398345805006, 0.027203011975072303,
0.02607236257798598, 0.02252985488427554, 0.019494123420967818,
0.019345744064621872, 0.017328540568230206, 0.015128223524993569,
0.01459256957068736, 0.013299449553346557, 0.013146636421176696,
0.012489479033455599, 0.011714548726624316, 0.011376029708766206,
0.010748219025655583, 0.010090933556765356, 0.00974073036416497,
0.008865754162545253, 0.008137496783872815, 0.007432787472103774,
0.007299608808111442, 0.00675706911594217, 0.006072762666831561,
0.005268643561534597, 0.004654824911593205, 0.004309572878309808,
0.003356654488788354, 0.0026061748010492, 0.0020912319718943864,
0.0014102208758410093, 0.0011156093206293699, 0.0008284191465039228,
0.0007219049954235829, 0.000601919913399369, 0.0005849968976307148,
0.00044795157265295276, 0.00037069364963798057, 0.0002864119499741611,
0.0002606859245936317, 0.00006007260841748, 0.000040742627295298026,
2.269220698818733× 10−7) ,

(G.2)

after applying cuts to improve the condition number of the response matrix.



Appendix H

Values of the Elemental Energy
Spectra

The differential flux values of the unfolded energy spectra for elemental groups of cosmic
rays and their uncertainties, depicted in Fig. 7.3, are listed in Table H.1 to H.6.

energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
1.12×107 (2.11± 0.68± 0.93)×10−16

1.55×107 (5.87± 1.31± 2.54)×10−17

2.14×107 (1.78± 0.35± 0.63)×10−17

2.95×107 (7.13± 1.12± 1.69)×10−18

4.07×107 (2.99± 0.69± 0.80)×10−18

5.62×107 (1.27± 0.33± 0.29)×10−18

7.76×107 (2.79± 1.34± 0.89)×10−19

1.07×108 (7.87± 4.41± 0.16)×10−20

1.48×108 (1.18± 0.55± 0.54)×10−19

2.04×108 (5.30± 3.68± 7.49)×10−20

2.82×108 (1.64± 2.40± 5.45)×10−20

3.89×108 (2.25± 1.81± 4.27)×10−20

Table H.1: Differential flux values dJ/dE of the unfolded energy spectrum of protons
depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statistical respectively
systematic uncertainties. The result bases on the interaction models QGSJET-II-02 [144,
145] and FLUKA 2002.4 [24, 67, 68].
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energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
1.12×107 (5.75± 0.72± 1.98)×10−16

1.55×107 (1.43± 0.19± 0.63)×10−16

2.14×107 (3.72± 0.65± 2.02)×10−17

2.95×107 (1.05± 0.20± 0.62)×10−17

4.07×107 (3.28± 0.58± 1.98)×10−18

5.62×107 (1.62± 0.36± 0.76)×10−18

7.76×107 (3.55± 1.12± 1.76)×10−19

1.07×108 (1.03± 0.42± 1.85)×10−19

1.48×108 (1.11± 0.35± 0.42)×10−19

2.04×108 (2.22± 1.19± 8.04)×10−20

2.82×108 (4.24± 8.70± 55.3)×10−21

3.89×108 (2.31± 2.94± 39.9)×10−21

Table H.2: Differential flux values dJ/dE of the unfolded energy spectrum of he-
lium nuclei depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statisti-
cal respectively systematic uncertainties. The result bases on the interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].

energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
1.12×107 (7.57± 1.03± 1.92)×10−16

1.55×107 (2.20± 0.24± 0.88)×10−16

2.14×107 (6.91± 0.67± 1.49)×10−17

2.95×107 (1.85± 0.23± 0.57)×10−17

4.07×107 (5.58± 0.86± 2.12)×10−18

5.62×107 (2.19± 0.45± 0.59)×10−18

7.76×107 (5.91± 1.82± 1.80)×10−19

1.07×108 (1.94± 0.60± 0.89)×10−19

1.48×108 (1.11± 0.50± 0.42)×10−19

2.04×108 (2.34± 1.95± 7.31)×10−20

2.82×108 (4.19± 5.47± 55.4)×10−21

3.89×108 (0.00± 2.16± 39.1)×10−21

Table H.3: Differential flux values dJ/dE of the unfolded energy spectrum of car-
bon nuclei depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statisti-
cal respectively systematic uncertainties. The result bases on the interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].
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energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
1.55×107 (2.32± 0.27± 1.12)×10−16

2.14×107 (9.79± 0.80± 7.30)×10−17

2.95×107 (3.10± 0.28± 2.41)×10−17

4.07×107 (1.19± 0.11± 0.97)×10−17

5.62×107 (3.83± 0.52± 2.54)×10−18

7.76×107 (1.35± 0.26± 0.79)×10−18

1.07×108 (5.35± 1.14± 3.33)×10−19

1.48×108 (2.04± 0.70± 1.07)×10−19

2.04×108 (3.49± 1.67± 7.33)×10−20

2.82×108 (1.47± 1.07± 5.62)×10−20

3.89×108 (2.35± 5.47± 39.7)×10−21

Table H.4: Differential flux values dJ/dE of the unfolded energy spectrum of sili-
con nuclei depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statisti-
cal respectively systematic uncertainties. The result bases on the interaction models
QGSJET-II-02 [144, 145] and FLUKA 2002.4 [24, 67, 68].

energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
1.55×107 (2.43± 0.35± 1.33)×10−16

2.14×107 (1.34± 0.11± 0.80)×10−16

2.95×107 (5.09± 0.42± 2.58)×10−17

4.07×107 (2.56± 0.21± 1.03)×10−17

5.62×107 (8.58± 1.00± 3.07)×10−18

7.76×107 (4.05± 0.46± 1.08)×10−18

1.07×108 (1.33± 0.21± 0.41)×10−18

1.48×108 (4.01± 0.77± 0.99)×10−19

2.04×108 (1.35± 0.50± 0.28)×10−19

2.82×108 (1.04± 0.27± 0.26)×10−19

3.89×108 (6.45± 8.80± 39.3)×10−21

Table H.5: Differential flux values dJ/dE of the unfolded energy spectrum of iron nuclei
depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statistical respectively
systematic uncertainties. The result bases on the interaction models QGSJET-II-02 [144,
145] and FLUKA 2002.4 [24, 67, 68].
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energy E/GeV (dJ/dE ±σstat. ±∆syst.) / (m−2sr−1s−1GeV−1)
8.13×106 (1.02± 0.12± 0.23)×10−14 *unreliable*
1.12×107 (3.03± 0.20± 0.66)×10−15

1.55×107 (8.97± 0.55± 1.72)×10−16

2.14×107 (3.57± 0.19± 0.74)×10−16

2.95×107 (1.18± 0.07± 0.25)×10−16

4.07×107 (4.94± 0.34± 0.89)×10−17

5.62×107 (1.75± 0.16± 0.33)×10−17

7.76×107 (6.62± 0.69± 1.18)×10−18

1.07×108 (2.24± 0.28± 0.44)×10−18

1.48×108 (9.45± 1.37± 1.86)×10−19

2.04×108 (2.68± 0.69± 0.48)×10−19

2.82×108 (1.43± 0.39± 0.26)×10−19

3.89×108 (3.36± 2.10± 3.86)×10−20

Table H.6: Differential flux values dJ/dE of the unfolded all-particle energy spectrum
depicted in Fig. 7.3. σstat. respectively ∆syst. are the absolute statistical respectively
systematic uncertainties. The result bases on the interaction models QGSJET-II-02 [144,
145] and FLUKA 2002.4 [24, 67, 68]. As discussed in Section 7.4.1, the flux value of
the all-particle spectrum at 8.13×106 GeV has to be interpreted with caution, since its
reliability within the given uncertainties is not guaranteed.
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