
  I 

 

 

 

 

 

All-Conjugated Diblock Copolyelectrolytes 

 

Dissertation 

 

Zur Erlangung des akademischen Grades 

 

Doktor der Naturwissenschaften 

(Dr. rer. nat.) 

 

Bergische Universität Wuppertal 

Fachbereich C – Mathematik und Naturwissenschaften 

 

 

von 

Andrea Gutacker 

aus Wuppertal 

 

Wuppertal, 2011 

  



II 

  

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20120403-101217-5
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20120403-101217-5]



  III 

Die vorliegende Arbeit wurde in der Zeit von Oktober 2007 bis Mai 2011 am Lehrstuhl für 

Makromolekulare Chemie des Fachbereichs C – Mathematik und Naturwissenschaften der 

Bergischen Universität Wuppertal unter Anleitung von Prof. Dr. Ullrich Scherf, sowie an der 

University of California, Santa Barbara, USA, unter Anleitung von Prof. Dr. Guillermo C. 

Bazan angefertigt. 

 

  

 

 

 

 

 

Mein besonderer Dank gilt Herrn Prof. Dr. Ullrich Scherf für die interessante Themenstellung 

und zahlreiche Fragestellungen sowie seine vielfältige, persönliche Unterstützung und die 

angenehme Atmosphäre im Arbeitskreis. 

Ebenso gilt mein Dank Herrn Prof. Dr. Guillermo C. Bazan für die freundliche Aufnahme in 

seinen Arbeitskreis an der University of California, Santa Barbara, USA. 

 

 

1. Gutachter: Prof. Dr. Ullrich Scherf (Bergischen Universität Wuppertal, Deutschland) 

2. Gutachter: Prof. Dr. Guillermo C. Bazan (University of California, Santa Barbara, USA) 

3. Gutachter: Prof. Dr. Rachel C. Evans (Trinity College, University of Dublin, Ireland) 

 

Eingereicht im Oktober 2011 

Verteidigt im Dezember 2011 

  



IV 

  



  V 

 

 

 

 

 

 

 

 

 

 

 

Meinen Eltern in Dankbarkeit 

  



VI 

  



  VII 

 

 

 

 

 

 

 

 

 

 

 

Life is what happens to you while you are busy making other plans. 

John Lennon (1940-80) 

 

 

  



VIII 

  



  IX 

 Table of Contents 

 

Table of Contents………………………………………………..……………………………IX 

1. Introduction and Background ......................................................................................... 1 

1.1. All-Conjugated Polyelectrolytes (CPE) ....................................................................... 2 

1.1.1. CPEs for Biomolecule Detection ......................................................................... 3 

1.1.2. CPEs for Optoelectronic Devices ......................................................................... 7 

1.2. All-Conjugated Block Copolyelectrolytes ................................................................. 10 

1.3. Aim and Scope ........................................................................................................... 12 

1.4. References ................................................................................................................. 13 

2. All-Conjugated, Cationic Polyfluorene-b-Polythiophene Polyelectrolyte Block 

Copolymers ............................................................................................................................. 19 

2.1. Introduction ............................................................................................................... 19 

2.2. Results and Discussion .............................................................................................. 21 

2.2.1. Synthesis ............................................................................................................. 21 

2.2.2. Optical Properties ............................................................................................... 24 

2.2.3. Aggregation Behavior in Methanol .................................................................... 27 

2.2.3.1. Atomic Force Microscopy of Thin Films ................................................... 27 

2.2.3.2. Confocal Microscopy .................................................................................. 31 

2.2.4. Complexation with Anionic Surfactants ............................................................ 32 

2.2.5. Incorporation into Organic Electronic Devices .................................................. 33 

2.3. Conclusion and Outlook ............................................................................................ 36 

2.4. Experimental Section ................................................................................................. 38 

2.5. References ................................................................................................................. 47 

3. All-Conjugated, “Rod-Rod” Diblock Copolyelectrolytes and their Complexes with 

Charged Molecules ................................................................................................................. 51 

3.1. Introduction ............................................................................................................... 51 



X 

3.2. Results and Discussion .............................................................................................. 53 

3.2.1. Synthesis and GPC Characterization .................................................................. 53 

3.2.2. Complexation with DNA ................................................................................... 54 

3.2.3. Complexation with Anionic Surfactants ............................................................ 57 

3.2.4. Interaction with Organic Acids .......................................................................... 58 

3.3. Conclusion and Outlook ............................................................................................ 59 

3.4. Experimental Section ................................................................................................. 59 

3.5. References ................................................................................................................. 63 

4. All-Conjugated, Cationic Polyfluorene-b-Polyfluorene “Rod-Rod” Diblock 

Copolymers ............................................................................................................................. 67 

4.1. Introduction ............................................................................................................... 67 

4.2. Results and Discussion .............................................................................................. 69 

4.2.1. Synthesis ............................................................................................................. 69 

4.2.2. Optical Properties ............................................................................................... 71 

4.2.3. Atomic Force Microscopy of Thin Films ........................................................... 72 

4.2.4. Confocal Microscopy ......................................................................................... 74 

4.2.5. Incorporation into Organic Light-Emitting Diodes (OLEDs) ............................ 75 

4.3. Conclusion and Outlook ............................................................................................ 77 

4.4. Experimental Section ................................................................................................. 79 

4.5. References ................................................................................................................. 85 

5. Summary .......................................................................................................................... 87 

A Acknowledgement ........................................................................................................... 89 

B List of Publications ......................................................................................................... 90 

C Curriculum Vitae ............................................................................................................ 92 

 



Introduction and Background 

  1 

 

Chapter 1 

1. Introduction and Background 

 

Polyelectrolytes (PEs) are defined as “polymers composed of macromolecules in which a 

substantial portion of the constitutional units contains ionic or ionizable groups or both”.1 

These materials can dissociate in aqueous solution while leaving ions of one kind bound to 

the polymer chain and their corresponding counter ions in solution. Depending on the 

positively or negatively charged backbone a distinction is made between anionic [e.g. 

poly(sodium styrene sulfonate)] and cationic PEs (e.g. quaternized polyvinylpiridine) as 

shown in Scheme 1.1. Thus, there are also neutral PEs, containing both positive and negative 

charges (e.g. as zwitterions), so-called ampholytes.2,3 

In contrast to most neutral hydrocarbon polymers, which are only soluble in less polar organic 

solvents, PEs are often soluble in more polar solvents, as methanol or water. Regarding to 

their dissociation behavior PEs are classified into strong and weak types. Strong ones 

dissociate completely in water independent of the pH value. In contrast, weak PEs dissociate 

only partly with the pH value having a big influence on the dissociation equilibrium. This is 

based on intra- or intermolecular Coulomb repulsion, osmotic and conformational effects. 

 

Scheme 1.1. Chemical structures of two PEs, anionic poly(sodium styrene sulfonate) [right] and a 

cationic, quaternized polyvinylpiridine [left]. 

The presence of ionic groups in PEs influences the polymer conformation drastically. 

Generally, also PEs, even with a high charge density, tend to form random coils like 

uncharged, linear polymers. But with decreased ion strength of the surrounding medium (e.g. 

by changing the solvent) intramolecular Coulomb interactions and osmotic effects come into 

play. Accordingly, intermolecular electrostatic repulsion and the Debye length increase. These 

effects result in a more extended chain conformation which is often called “ridgid-rod” 

conformation as illustrated in Figure 1.1.3,4 Contrary, the addition of ions (salts) increases the 
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ion strength and supports a coiled conformation because of 

within the PE chain. It is well known that the

viscosity5, turbidity6 and conductivity

Figure 1.1. Conformational change

strength from a coiled (left) to a “

With respect to the unique properties of PE they play an important role in 

as well as in industrial applications. For example

RNA) act as carriers of the genetic information in organism

huge relevance for the metabolism

natural as well as synthetic PEs

PEs are used in the textile industry as fix

electrostatic effects and in the water treatment as a flocking agent

biocompatible PEs are added to many foods and

 

1.1. All- Conjugated Polyelectrolytes (CPE)
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conjugated polyelectrolytes (CPEs) are polymer materials

backbones and defined pendant groups with ionic functionalities.

these materials have been available

semiconducting) polymers15 and the individual uniqueness 

properties are strongly determined by electrostatic forces.

are nowadays important materials

cells (OSC)18 and organic light emitting diodes (O

on the possibility of implementing solution

fabrication process. With the addition of ionic side

a coiled conformation because of reduced electrostatic interactions 

. It is well known that these conformational changes 

and conductivity7 of the solutions.4,8  

. Conformational changes of a cationic PE dissolved in water when

“ rigid rod” conformation (middle); and after salt addition (

With respect to the unique properties of PE they play an important role in 
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the genetic information in organisms. Moreover, several

metabolism of plants and animals. Water-soluble polyelectrolytes, 

synthetic PEs, are widely used in many industrial applications.

in the textile industry as fixation agents, in cosmetics for a 

and in the water treatment as a flocking agent
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Conjugated Polyelectrolytes (CPE) 

a special class of PEs, PEs with π-delocalized backbones. So

conjugated polyelectrolytes (CPEs) are polymer materials with electronically delocalized 

backbones and defined pendant groups with ionic functionalities.11,12 Since the mid 1980s 

these materials have been available.13,14 CPEs combine the characteristics of conjugated

and the individual uniqueness of polyelectrolytes in which the 

determined by electrostatic forces.10,16 Neutral conjugated 

materials17 for use in optoelectronic devices, such as organic solar 

organic light emitting diodes (OLEDs)19,20. Primarily, the interest is based 

on the possibility of implementing solution-based deposition methods as part of the device 

ocess. With the addition of ionic side groups the solubility in polar 

electrostatic interactions 
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solvents like methanol and water increases allowing for an orthogonal processing of 

multilayer stacks. In parallel, the manufacturing process may become environmentally 

friendlier.10 

Much of the recent research into CPEs is focused towards applications in biological and 

chemical sensors. Design and synthetic schemes towards CPEs for biosensor applications 

have been developed by different scientists.21,22 The integration of CPE layers into multilayer 

optoelectronic devices has resulted in improvements of organic field effect transistors 

(OFETs), photovoltaic devices23, OLEDs24 and organic light-emitting electrochemical cells25. 

Generally, there is a rising interest in novel CPEs for the optimization of device performance 

and processing. For instance, the strong interfacial dipole from the ionic groups can support 

charge injection and migration. The solubility of CPEs in polar solvents allows for their 

deposition atop of neutral organic semiconductors (principle of orthogonal solubility).10,11,26 

 

1.1.1. CPEs for Biomolecule Detection 

 

The majority of publications on the application of CPEs for biomolecule detection take 

advantage of absorbance changes or fluorescence quenching due to analyte-induced polymer 

aggregation27 or electron/energy transfer processes.11,28 This will be discussed exemplary for 

the following examples.  

In the field of biosensing applications, a pioneer for CPE-based DNA detection was Leclerc 

and his team. In 2002, they first reported the synthesis of a cationic imidazolium-substituted 

poly(thiophene) (PImiT), which was made by oxidative coupling of the corresponding 

thiophene monomers by FeCl3 (Scheme 1.2).  

 

Scheme 1.2. Synthesis of PImiT, a) CH3CN, 1,2-dimethylimidazole, b) FeCl3, Bu4NCl, ion exchange. 

PImiT as water-soluble CPE is highly sensitive to the presence of oligonucleotides as 

depicted in Figure 1.2.29 Upon addition of single-stranded DNA (ssDNA) to a solution of 
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PImiT in water the color changes from yellow (λmax = 397 nm) to red (λmax = 527 nm). This 

indicates complex (“duplex”) formation between PImiT and ssDNA due to electrostatic 

interactions, as illustrated in Figure 1.3. Furthermore, the complementary ssDNA strand was 

added to the red mixture and the color of the solution turned again to yellow (λmax = 421 nm). 

Leclerc et al. attributed this to a “triplex” formation, between PImiT and the hybridized 

double-stranded DNA (dsDNA). This color change from red to yellow is based on a 

conformational transition of the polythiophene backbone. Here, a highly conjugated and 

planar conformation of the polymer is present for the red colored “duplex”, the yellow color 

of the “triplex” reflects a less conjugated, less planar (probably helical) PImiT conformation, 

respectively.11,16,29 

 

Figure 1.2. UV-Vis spectra of solutions of a) PImiT, b) PImiT/ssDNA complex (“duplex”), c) 

PImiT/dsDNA “triplex”, d) PImiT/ssDNA “duplex” plus a complementary ssDNA strand with a two-

base mismatch, and e) PImiT/ssDNA “duplex” plus a complementary ssDNA strand with a one-base 

mismatch after mixing the components, including images of the corresponding solutions.29 

 

Figure 1.3. Schematic sketch of the formation of a planar PImiT/ssDNA “duplex”and a distorted, 

helical PImiT/dsDNA “triplex”.22,29  
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One year later Nilsson et al. published a zwitterionic amino acid substituted poly(3-

alkylthiophene) which confirmed the Leclerc observations for another system, that showed 

qualitatively similar changes of the optical spectra upon addition of oligonucleotides.22,30 

Scheme 1.3 illustrates the straightforward synthesis of poly(3-[(R)-5-amino-5-carboxyl-3-

oxapentyl]-2,5-thiophenylene hydrochloride) (POWT) after Nilsson et al., starting from N-t-

BOC-L-serine (with BOC = t-butyloxycarbonyl) and thiophene-3-carboxylic acid. The amino 

acid-substituted monomer was polymerized as trifluoroacetate salt by chemical oxidation with 

FeCl3 in toluene.31  

 

Scheme 1.3. Synthesis of POWT, a) LiAlH4, ether, b) p-toluenesulfonyl chloride, pyridine, c) N-t-BOC-

L-serine, K2CO3, DMF, d) trifluoroacetic acid, e) FeCl3, tetrabutylammonium 

trifluoromethanesulfonate, CHCl3.
31 

Further on, Nilsson et al. reported the interaction and the resulting conformational changes of 

this zwitterionic CPE in the presence of a synthetic oligopeptide. The negatively charged 

peptide (JR2E) was bounded to POWT via electrostatic attraction and hydrogen bonding. A 

red shift in the optical spectra indicates that the polymer backbone becomes more planar upon 

binding to the oligopeptide. Also, polymer aggregation was observed and attributed to 

interpeptide hydrogen bonding which brought several CPE and peptide chains into close 

neighborhood. By adding a positively charged peptide (JR2K), these polymer aggregates were 

broken as seen in a reverse blue shift of the emission maximum and an increased emission 

intensity. The authors attribute the deaggregation to interpeptide interactions thus leading to a 

disaggregation of the polyelectrolyte aggregates.16,32  

In 2002, Gaylord, Bazan and Heeger reported an further example of CPE-based DNA 

detection based on a fluorescence resonance energy transfer (FRET) process27c,33, also known 

as Förster energy transfer, including a cationic poly(fluorene-co-phenylene)s as CPE 

component.34,35 The CPE was synthesized in two steps as shown in Scheme 1.4. First, 2,7-

dibromo-9,9-bis(6-bromohexyl)fluorene and a 1,4-phenylenebisboronic ester were 

polymerized in a Suzuki coupling. The second step involved a polymer-analogous 
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quaternization reaction with trimethylamine thus generating poly[9,9-bis(6-(N,N,N-

trimethylammonium)hexyl)-2,7-fluorene]-co-phenylene (PFP-Br). The sensing system 

consists of three parts: the quaternized CPE (PFP-Br), DNA of a specific sequence and a dye-

labeled peptide nucleic acid (PNA).36 Figure 1.4 depicts a schematic illustration of this 

sensing scheme using CPEs for direct visual DNA sensing based on FRET. The electrostatic 

attraction between the complementary ssDNA/PNA complex and the CPE chain brings 

energy donor (CPE) and acceptor (dye-labeled PNA) into close proximity thus enabling 

efficient FRET (A). The use of non-complementary ssDNA does not allow complex 

formation between donor (CPE) and acceptor (PNA) resulting in the absence of fluorescence 

energy transfer (B). They found that for this case that the electrostatic complexation only 

occurs between CPE and ssDNA while the CPE--- PNA distance remains too large for FRET. 

Therefore, the extent of hybridization between PNA and ssDNA can be directly estimated by 

the FRET efficiency or the intensity of dye emission.34,37 

 

Scheme 1.4. Synthesis of PFP-Br, a) Pd(PPh3)4, 2 M Na2CO3, toluene, b) trimethylamine, 

THF/methanol.34 

 

Figure 1.4. Schematic illustration of the dye-labeled PNA (red) / ssDNA-based sensing assay using a 

cationic CPE (black) and a specifically labeled PNA (red with C for fluorescein) as probe strand; the 

complementary ssDNA (blue) is shown in blue (A), the non-complementary ssDNA in green (B).37  

Another class of CPE materials was introduced by Bazan et al. a few years later based on 

CPE backbones composed of donor-acceptor-type moieties. They represent a further 

advantage towards direct visual DNA detection. A cationic PFP derivative containing 5 mol% 
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2,1,3-benzothiadiazole (BT) on-chain units was generated by a Suzuki copolymerization of 

1,4-phenylene bisboronic acid and a 95:5 mixture of 2,7-dibromo-9,9-bis(6-

bromohexyl)fluorene and 4,7-dibromo-2,1,3-benzothiadiazole. The intermediate was 

quaternized with trimethylamine in THF/water (Scheme 1.5).38 The resulting PFP-BT is 

soluble in polar and protic solvents as methanol or water and emits blue in solution. 

Complexation between the CPE and oppositely charged DNA molecules induces polymer 

aggregation, leading to enhanced interchain contacts and improved electronic coupling 

between the components. Under these condensed-state conditions, the energy transfer from 

the fluorene segments (donor) to the lower emission energy BT units (acceptor) is more 

efficient than in isolated chains. Thus, green emission from BT units dominates in the 

aggregated state. Such an aggregation-enhanced FRET allows for an efficient dsDNA 

detection in the concentration range from 0.6 nM to 0.15 µM.11,39  

 

Scheme 1.5. Synthesis of PFP-BT, a) 2 M K2CO3, THF, Pd(PPh3)4, b) N(CH3)3, THF/H2O.38 

Variations of the chemical structure lead to an further extension of the dsDNA detection 

range. For this purpose, BT-containing CPEs with oligo(ethylene oxide) pendant groups on 

the fluorene or phenylene units were generated.11,40 As a matter of fact, CPEs are very 

promising for future applications in biomolecule sensing devices. 

 

1.1.2. CPEs for Optoelectronic Devices 

 

There is an increasing number of publications on the incorporation of CPE interlayers as 

components of optoelectronic devices especially for an optimization of charge carrier 

injection/extraction. The use of CPE layers also offers new fabrication opportunities for 

multilayer stacks in organic light emitting diodes (OLEDs)41,42, thin film transistors 

(OFETs)43 as well as in organic solar cells (OSCs)19,44.45 The solubility of the CPEs in polar 

solvents allows, from a practical point of view, for the integration of CPE layers in multilayer 

devices using solution-casting methods (principle of orthogonal solubility).41,46 Thin CPE 
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films with an optimized surface morphology and thickness can be precisely made using such 

solution processing techniques.21c 

Exemplarily, two optoelectronic device applications (multilayer OLEDs and OSCs) including 

CPE layers are discussed in the following paragraph. Multilayer OLEDs including CPE-based 

electron injection/transport layers (EIL) for improving the device efficiency have been 

described by several groups. The improvements rely on a variety of mechanisms.47 A study 

published by Hoven et al. revealed considerable details on how ion motion and energy level 

alignment of the OLED layers involved improve device performance. Their research work is 

based on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) as 

emissive layer and CPE layers of varying thickness as electron injection layers (EIL) of 

ITO/PEDOT:PSS/MEH-PPV/CPE/Au or Al devices [in which ITO stands for indium tin 

oxide and PEDOT:PSS for poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)].10,48 

PFP-Br34 with tetrakis(imidazolyl) borate as counter ion41a (PFP-BIm4) was, hereby, used as 

the EIL (electron injection/hole blocking) layer (Figure 1.5). Because of the orthogonal 

solubility of MEH-PPV (soluble in non-polar solvents) and PFP-BIm4 (soluble in polar 

solvents) multilayer fabrication can be easily realized. Gold or aluminum was used as 

cathode. The improved electron injection results from the combination of hole accumulation 

at the emissive layer/EIL interface and electric field screening within the EIL layers caused by 

the mobile counter ions. The device response time could be improved by reducing the 

thickness of the EIL layer and by using smaller, mobile counter ions, an important 

improvement when OLEDs are targeted for fast video applications.48 

 

      

 

Figure 1.5. Schematic structures. of MEH-PPV and PFP-BIm4. (left). OLED device structure (right).48 

Bulk heterojunction (BHJ)-type organic solar cells are based on blends of electron-donating 

and electron-accepting materials as active layer. There are promising photovoltaic devices as 

they offer lightweight, shape-variable and low-cost solutions.49,50 Main targets of this 

Au or Al 

PFP-BIm4 

MEH-PPV 

PEDOT:PSS 

ITO 
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technology are currently the optimization of the short circuit current density (JSC), open circuit 

voltage (VOC), and fill factor (FF), all influencing the resulting power conversion efficiency 

(PCE). These characteristic indicators are connected within the equilibration  ��� �

 
���	
���

��
 , where Pin is the incident light power.51 

In 2009 Cao et al. showed that the VOC can be increased by up to 0.3 V in BHJ-type organic 

solar cells by integrating a thin 5 nm CPE interlayer of a quaternized PFP derivate, relative to 

the situation in control devices.52 FF and JSC were also shown to increase slightly in 

comparison to the control device. The increased built-in potential across the device based on 

the interfacial dipole from the CPE interlayer is, herby, responsible for the enhanced device 

performance.11,52 

One year later He et al. analyzed the dark currents of BHJ cells with different donor materials 

for a better understanding of the increase in VOC.53 The general assembly of their devices was 

ITO/PEDOT:PSS/active layer/CPE/Al, as illustrated in Figure 1.6. Quaternized 

poly(alkylfluorene) PF-Br with several counter ions (e.g. PF-BIm4) was used as CPE, 

different conjugated polymers as poly(3-hexylthiophene) (P3HT), MEH-PPV, and poly[2,7-

(9,9-dioctylfluorene)-co-(4,7-dithien-2-yl)-2,1,3-benzothiadiazole] (PFO-DBT35)52 as donor 

and phenyl C61-butyric acid methyl ester (PCBM) as acceptor materials. Regarding VOC, the 

best results were achieved with PFO-DBT35 and PF-Br (VOC = 1.07 V) or PF-BIm4 (1.06 V). 

Relatively to the control device a VOC rise of 140 to 150 mV occurred. These observations 

support the application potential of thin CPE interlayers. Similar results were obtained for 

P3HT and MEH-PPV as donor materials.  

 

 

Figure 1.6. Molecular structures of PF-Br and PF-BIm4. (left). OSC device structure (right). 

Focussing on the dark current density-voltage (J-V) characteristics OSC devices with PFO-

DBT35 as donor polymer display significantly suppressed dark current densities when 

applying thin CPE interlayers. Dark currents reduced by 1-2 orders of magnitude were 

observed for the OSC devices containing CPE interlayers, a reduction by ca. 1 order of 

Al 

PF-X 

active layer 

PEDOT:PSS 

ITO 
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magnitude was observed for P3HT:PCBM- or MEH-PPV:PCBM-based devices. The authors 

propose that the decrease of dark currents is also responsible for the VOC enhancement. 

Furthermore, Kim et al. published results on other polyfluorene-based polyelectrolyte 

derivatives used as interlayers of OSC devices showing a similar behavior.11,54,55  

In summary, thin CPE interlayers can significantly improve the performance of optoelectronic 

devices. Multilayer devices can be easily obtained by orthogonal processing techniques. 

 

1.2. All-Conjugated Block Copolyelectrolytes  

 

All-conjugated block copolymers, comprising of two different blocks, are well known 

because of their spontaneous self organization in solution as well as in the solid state.56,57 

Emerging applications for conjugated (co)polymers in organic photovoltaics58,59 and 

biotechnology often require the patterning of materials on the 10-100 nm length scale, and 

block copolymers may provide an elegant route to control the self-assembly into such 

nanostructured morphologies. However, the rod-like nature of most conjugated polymers 

complicates the self-assembly of corresponding block copolymers through a competition 

between crystalline and liquid crystalline interactions and the nanophase separation.60,61 In 

comparison to coil-coil and rod-coil diblock copolymers, for all-conjugated rod-rod block 

copolymers a preferred assembly into low curvature vesicular and lamellar structures has been 

observed.62 This tendency should be mainly independent of the chemical structure, size and 

composition of the block copolymer. 

One nice example describing self-assembling in non-conjugated, rod-rod diblock copolymers 

was announced by Hayakawa and coworker in 2006, discussing the formation of a lamellar 

solid state morphology in oligo(ether sulphone)-b-oligo(ether ketone) diblock and triblock 

molecules.63 Energy-filtering transmission electron microscopic (EFTEM) images of these 

diblock oligomers especially showed the formation of lamellar structures with a inter-lamellar 

spacing of 9.1 nm in full agreement with a molecular length of 9.2 nm for the fully elongated 

(“rigid rod”) conformation of the aromatic oligomers.64  

A second example was reported in 2011 by Wu et al.65 They investigated synthesis and 

nanostructure formation of a polythiophene-b-poly(γ-benzyl L-glutamate) (P3HT-b-PBLG) 

diblock copolymer. The authors observed the formation of spherical particles with a diameter 
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of 200-300 nm as illustrated in transmission electron microscopy (TEM) images of Figure 

1.7. Combined with the UV-Vis data, the researchers proposed that aggregates containing a 

P3HT core and a PBLG shell were formed.  

Nowadays, conjugated polymers can be synthesized in high purity, with low amounts of 

structural defects, and high regioregularity by applying powerful transition metal-catalyzed or 

-mediated aryl-aryl coupling methods, e.g. after Suzuki, Stille or Yamamoto.66 

 

Figure 1.7. TEM image of nanoparticles formed from P3HT-b-PBLG (stained with 1 wt% aqueous 

solution of phosphotungstic acid).65 

Novel protocols for an in situ generation of such conjugated polymers with defined, reactive 

end groups and a rather low polydispersity have also been developed. This kind of protocols 

is connected to the invention of chain-growth polycondensations.67 Yokozawa et al. reported 

that the drastically reduced amount of chain termination events in such chain-growth 

polycondensations allows for a simple, step-by-step polycondensation of two (or more) 

different AB-type monomers in the aryl-aryl cross-coupling sequence thus leading to the 

formation of block copolymers. Since the chain-growth (or catalyst-transfer) 

polycondensation process allows for the generation of polyphenylenes, polyfluorenes, or N-

substituted polypyrroles, Yokozawa et al. e.g. succeeded in the synthesis of a poly(2,5-

dialkoxy-1,4-phenylene)-b-poly(N-hexyl-2,5-pyrrole) (PPy-b-PPP) diblock copolymer with a 

very narrow polydispersity of 1.16.68 Based on the Yokozawa results also other research 

groups generated polythiophene-based diblock copolymers, for instance the rod-rod diblock 

copolymer poly(3-hexylthiophene)-b-poly[3-(2-ethylhexyl)thiophene] (P3HT-b-P3EHT) as 

shown in Scheme 1.6.57,69 
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Scheme 1.6. Synthesis of a P3HT-b-P3EHT, a) i-C3H3MgCl, THF, Ni(dppe)Cl2 with dppe = 1,2-

bis(diphenylphosphino)ethane.57 

Regarding to the self-assembly properties described above, P3HT-b-P3EHT shows the 

expected formation of a lamellar solid state morphology driven by the immiscibility of the 

two different poly(3-alkylthiophene) (P3AT) blocks mainly as a result of the different 

crystallization behavior of linear and branched octyl substituted P3ATs (Figure 1.8).64,69  

  

Figure 1.8. AFM images of lamellar nanostructure formed by P3HT-b-P3EHT; P3HT/P3EHT ratio: 

83:17 (w/w, phase mode, image size: 1 ×  1 µm2, interlamellar distance: ca. 15 nm).57  

In conclusion, conjugated rod-rod block copolymers are very promising candidates for future 

applications, especially based on their unique and tunable self-assembly behavior. 

 

1.3. Aim and Scope 

 

Inspired by the unique properties of CPEs and rod-rod block copolymers, a combination of 

both classes of materials seems very promising thus leading to all-conjugated block 

copolyelectrolytes composed of one ionic polyelectrolyte (CPE) block and one non-polar 

(CP) block. Such advanced materials based on electronically different conjugated polymer 

backbones and different pendant groups (including ionic side groups) have been synthesized 

within this project followed by studying their optical and self-assembly properties as well as 
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their complexation behavior with biomolecules and their incorporation into optoelectronic 

devices.  

In the second chapter the synthesis of cationic polyfluorene-b-polythiophene diblock 

copolymers with varying ionic groups is described. The optical properties have been 

investigated dependent on the aggregation state and their application as electron extraction 

layer of organic solar cells. In chapter 3, the interaction of these all-conjugated block 

copolyelectrolytes with oppositely charged molecules (e.g. biomolecules, anionic surfactants, 

organic acids) is reported. Chapter 4 introduces novel diblock copolymers containing both a 

neutral and a charged (ionic) poly(alkylfluorene) block. UV-Vis absorption and 

photoluminescence (PL) of the diblock copolymer have been analyzed as well as their self-

assembling behavior and an incorporation as thin EIL layer of OLEDs.  

All three chapters are presented as independent chapters with separate experimental and 

references sections. 
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Chapter 2 

 

2. All-Conjugated, Cationic Polyfluorene-b-Polythiophene Polyelectrolyte 

Block Copolymers 

 

All-conjugated polyelectrolyte (CPE) diblock copolymers containing two “rigid rod” blocks, 

a non-ionic poly(alkylfluorene) block and a cationic, quaternary 

poly(ammoniumhexylthiophene) block can be generated in a “grafting from” scheme. They 

show a preferred tendency to self-assemble into low curvature, nano-scaled architectures in 

solution and the solid state. Their optical properties have been investigated by means of UV-

Vis and photoluminescence (PL) spectroscopy in different solvents and solvent mixtures. By 

addition of oppositely charged molecules, e.g. surfactants, the aggregation leads to the 

formation of ordered polyelectrolyte/surfactant complexes. CPEs, especially also block 

copolymer-based CPEs, are promising candidates for an application in electronic devices or 

in functional membranes (e.g. for bio-/sensor applications). For bulk heterojunction (BHJ)-

type organic solar cells (OSC) the power conversion efficiency (PCE) could be increased 

from 5% to 6.5% by incorporating a thin CPE interlayer between the active layer and the 

metal cathode.  

 

2.1. Introduction 

 

Block copolymers, which contain two chemically different chains that are covalently bound to 

each other, represent a fascinating field of synthetic macromolecular science.1 Hereby, all-

conjugated, rod-rod block copolymers are a novel, very recent development within this 

field.2,3 They offer the opportunity to accomplish a defined microphase separation of the 

different conjugated segments in order to realize, materials with unique properties and to 

access new applications.4,5 
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These unique properties of all-conjugated block copolymers combine the electronic properties 

of conjugated polymers with the individual characteristics of block copolymers like solvent-

dependent aggregation behavior.6 The fact that both blocks of all-conjugated, rod-rod block 

copolymers are “rigid rods” mainly dictates their assembling behavior.4 The structure of the 

conjugated blocks can be modified with different functional groups for tuning their electrical, 

physical (e.g. crystallization) and chemical properties leading to a variety of different 

nanostructures.7,8,9 Polymer blends of the two components (blocks) of a diblock copolymer 

tend to demix. However, the covalent linkage between the blocks only allows for a nanoscale 

phase separation; macroscopic demixing cannot occur.1 

Key to accessing the desired diblock copolymer structures is the development of suited 

reaction schemes for generating them. In 2007 Tu et al.2 described a first all-conjugated, rod-

rod diblock copolymer which contains one non-polar, hydrophobic poly[9,9-bis(2-

ethylhexyl)fluorene] (PF2/6) and one polar, hydrophilic poly[3-(6-

diethylphosphonatohexyl)thiophene] (P3PHT) block with different electronic properties of 

both blocks. The synthesis relies on a Suzuki-type step-growth polycondensation (cross-

coupling)10 as key step to yield a poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-(6-

bromohexyl)thiophene] (PF2/6-b-P3BrHT) diblock copolymer intermediate. Phosphorylation 

of the bromohexyl side groups in a subsequent polymer-analogue step provides the target 

diblock copolymer poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-(6-diethylphosphonato-

hexyl)thiophene] (PF2/6-b-P3PHT). A very similar synthetic approach towards PF-b-PT 

diblock copolymers was later on described by Darling et al.11 Aggregated species of our 

“rigid rod”-type, amphiphilic PF-b-PT block copolymers show that different arrangements of 

the hydrophilic and hydrophobic blocks can be obtained by changing polarity and 

composition of solvent mixtures. Vesicle formation is, hereby, accompanied by distinct 

changes of the absorption and photoluminescence behavior.  

The next, logical extension of our approach was the generation and characterization of the 

corresponding ionic analogues: amphiphilic, all-conjugated diblock copolymers incorporating 

ionic (polyelectrolyte) and non-polar blocks. Such systems with a positive charge of the 

conjugated polyelectrolyte block, i.e. cationic poly[9,9-dialkylfluorene]-b-poly[3-(6-

trimethylammoniumhexyl)thiophene] (PF2/6-b-P3TMAHT or PFO-b-P3TMAHT, where 

PF2/6 or PFO denote branched 2-(ethyl)hexyl and linear octyl alkyl pendant groups), 

respectively, and poly(9,9-dialkylfluorene)-b-poly[3-(6-pyridylhexyl)thiophene] (PF2/6-b-
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P3PyHT and PFO-b-P3PyHT) polyelectrolytes, all containing nitrogen-based cationic side 

groups, have been the target of this study.12  

The synthesis of the ionic diblock copolyelectrolytes starts from the diblock copolymer 

PF2/6-b-P3BrHT and PFO-b-P3BrHT which was already uses for the generation of PF2/6-b-

P3PHT and PFO-b-P3PHT.13 Our approach in the generation of amphiphilic PF-b-PT systems 

is generally connected to three main advantages: I) the generation of the polyelectrolyte block 

copolymers follows a well-established synthetic approach; II) the well distinguishable optical 

properties of both blocks (absorption, emission) allow for an independent spectroscopic 

investigation of the self assembly process for the two blocks, and III) the amphiphilic 

character, i.e. the combination of hydrophobic and hydrophilic blocks additionally drives 

phase separation and self assembly. 

 

2.2. Results and Discussion 

 

2.2.1. Synthesis 

 

Our synthetic approach uses two different monomer components, a bifunctional AB-type 

fluorene monomer (Scheme 2.1) and a polythiophene-based macromonomer Br-P3BrHT, 

prepared in a synthetic protocol previously described by McCullough et al.14 (shown in 

Scheme 2.1).  

In order to synthesize the AB-type fluorene monomer, 2,7-dibromofluorene was prepared 

from fluorene15 and afterwards 9-alkylated with 2-ethylhexylbromide or 1-octylbromide into 

2,7-dibromo-9,9-bis(2-ethylhexyl) or 2,7-dibromo-9,9-dioctylfluorene. In a next step, 2,7-

dialkylfluorene is converted to the bifunctional AB-type monomers 2-bromo-9,9-bis(2-

ethylhexyl)fluorene-7-boronic ester (F2/6) or 2-bromo-9,9-dioctylfluorene-7-boronic ester 

(FO).16  

In order to synthesize the polythiophene-based macromonomer Br-P3BrHT 3-bromo-

thiophene and 1,6-dibromohexane are first reacted to 3-(6-bromohexyl)thiophene (T6Br)17. 

After bromination of T6Br with NBS into 2-bromo-3-(6-bromohexyl)thiophene (BrT6Br) 

BrT6Br was coupled to monobromo-endcapped HT-poly[3-(6-bromohexyl)thiophene] (Br-

P3BrHT) in a procedure after McCullough et al.18  
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The next synthetic step involves a Suzuki-type cross-coupling10 of 2-bromo-9,9-

dialkylfluorene-7-boronic ester using Pd(PPh3)4 as a catalyst and Br-P3BrHT as a 

macromolecular end-capper to synthesize the non-polar diblock copolymers PF2/6-b-P3BrHT 

and PFO-b-P3BrHT. The final polymer-analogous conversion involves the quaternization of 

the bromohexyl side groups with trimethylamine or pyridine to obtain the target 

polyelectrolyte diblock copolymers PF2/6-b-P3TMAHT / PFO-b-P3TMAHT or PF2/6-b-

P3PyHT / PFO-b-P3PyHT.  

 

Scheme 2.1. Synthesis of the polyelectrolyte diblock copolymers PF2/6-b-P3TMAHT / PFO-b-

P3TMAHT and PF2/6-b-P3PyHT / PFO-b-P3PyHT (C8H17: n-octyl for PFO, 2-ethylhexyl for PF2/6 

series), a) n-BuLi, 1,6-dibromohexane, b) NBS, c) ZnCl2, LDA, Ni(dppp)Cl2, d) KOH, 2-

ethylhexylbromide/1-octylbromide, e) n-BuLi, pinacolborane, f) NaHCO3, Pd(PPh3)4, g) N(CH3)3, h) 

pyridine. 

Standard characterization of the polymeric products was accomplished by gel permeation 

chromatography (GPC) analysis, nuclear magnetic resonance (NMR) spectroscopy and 

optical spectroscopy as well as atomic force microscopy (AFM) as imaging technique (see 

next chapter). 

The results of the NMR analysis are in accordance with the proposed structure (see 

experimental section) and as confirmed by Darling et al. in 2011.11 
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The GPC analysis of the diblock copolymers uses multiple detection channels (RI, UV-Vis 

detection at the different absorption maxima of both blocks) to confirm the formation of block 

copolymers, preferably done at the stage of the non-polar diblock intermediates PF2/6-b-

P3BrHT / PFO-b-P3BrHT.2 The resulting average molecular weights Mn of the non-polar 

diblock copolymer precursors PF2/6-b-P3BrHT and PFO-b-P3BrHT were determined 

between 12,000 and 35,000 g/mol when starting from bromo-endcapped Br-P3BrHT 

macromonomers with a Mn between 6,000 and 17,500 g/mol (Table 2.1). We could not 

exactly measure the molecular weight of the cationic block copolymers by conventional GPC 

due to the strong interaction of the copolymer with the columns. 

Table 2.1 lists the characterization data for four different batches. The 

polythiophene/polyfluorene mass ratio n of samples A-D remained relatively constant 

between 1.0 and 1.25 (as shown in Table 2.1). The polydispersity Mw/Mn of the diblock 

copolymers A-D varies between 1.38 and 2.0. 

Table 2.1. Molecular weight data for four investigated diblock copolymers A-D. 

sample structure Mn Mw Mw/M n Mn 

(Br-P3BrHT) 

M w 

(Br-P3BrHT) 

M w/M n 

(Br-P3BrHT) 

M n  

(PF) calc. 

A PF2/6-b-P3BrHT 12,000 24,000 2.0 6,000 9,000 1.5 10,000 

B PF2/6-b-P3BrHT 13,000 18,000 1.38 6,500 9,100 1.4 6,500 

C PFO-b-P3BrHT 18,000 25,000 1.39 10,000 18,000 1.8 8,000 

D PF2/6-b-P3BrHT 35,000 65,000 1.86 17,500 24,500 1.41 17,500 

 
 

The solubility of the diblock copolymers changes drastically after quaternization. PF2/6-b-

P3BrHT and PFO-b-P3BrHT are soluble in typical organic solvents, such as chloroform, 

tetrachloroethane, or chlorobenzene. The cationic diblock copolymers are only soluble in 

polar solvents and solvent mixtures, including methanol, THF/water, or acetone/water. 

Dissolving PF2/6-b-P3TMAHT, PFO-b-P3TMAHT, PF2/6-b-P3PyHT or PFO-b-P3PyHT in 

pure water, turbid solutions are obtained that indicate formation of larger aggregates. The 

aggregation behavior is examined in the following paragraphs. 
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2.2.2. Optical Properties 

 

Following, we studied the optical properties of the cationic, all-conjugated diblock 

copolymers PF2/6-b-P3TMAHT and PFO-b-P3TMAHT, as well as PF2/6-b-P3PyHT and 

PFO-b-P3PyHT in THF, methanol, water and THF/water 1:1 solution by UV-Vis absorption 

and photoluminescence (PL) spectroscopy. For simplicity, we will mainly concentrate on the 

trialkylammoniumhexyl-substituted derivative PF2/6-b-P3TMAHT. The resulting spectra are 

depicted in Figure 2.1 and summarized in Table 2.2.  
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Figure 2.1. a) UV-Vis absorption and b) photoluminescence spectra of PF2/6-b-P3MAHT (made from 

precursor B) in methanol (dash-dotted line), THF (dashed line), water (solid line) and THF/water 1:1 

(dotted line), at a polymer concentration of ~0.05 mg/mL (a) and ~0.002 mg/mL (b), λexc = 380 nm. 

The absorption spectra show two characteristic bands peaking at 379-387 and 439-487 nm. 

Each of the two absorption bands is the spectral signature of one block. The higher energy 

maximum is attributed to the PF2/6 block.19
 The PF2/6 absorption band, is on contrast to the 

behavior of PFO, more or less insensitive to the aggregation state of the PF2/6 block.19 The 

second band originates from the polar P3TMAHT blocks. The absorption band of the ionic 

P3TMAHT block in methanol, water and THF/water 1:1 appears at similar wavelengths as for 

the non-polar P3HT homopolymer.20
 Nevertheless, the absorption spectrum in water is 

slightly broadened with a red-shifted long-wavelength tail, most likely due to ongoing 

aggregation of the polar P3TMAHT blocks in pure water. Intensity changes in the ratio of the 

absorption maxima of the PF2/6 and P3TMAHT blocks between methanol (absorption PF2/6 

< absorption P3TMAHT) and water (absorption PF2/6 > absorption P3TMAHT) are, at least 

in part, also a consequence of the band broadening in water. Contrary, the absorption 

spectrum in THF, as a less polar, non-protic solvent, shows a distinct red-shift of the 

P3TMAHT absorption feature to a λmax at 487 nm, thus indicating aggregation of the ionic 
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P3TMAHT blocks in THF.21 The solvatochromatic effect on the PT absorption band is 

visually detected as a color change from deep red in THF to pale orange in water.22 

Figure 2.1 (and Table 2.2) also depicts the photoluminescence spectra (PL) of sample B 

obtained on selective excitation into the PF block at 380 nm. The occurrence of characteristic 

emissions of both blocks is observed, a blue PL feature at 400-500 nm for the PF2/6 block 

and a red PL feature at 500-700 nm for the P3TMAHT block. Here the P3TMAHT emission 

is (partially) sensitized by excitation energy transfer from the PF2/6 blocks. Further excitation 

experiments (not shown here) on detection at the P3TMAHT emission at 600 nm exhibit the 

characteristic PF absorption band thus further supporting the occurrence of PF�PT excitation 

energy transfer (FRET).22 The emission features are again similar for methanol, water and 

THF/water 1:1. However, the PL of the P3TMAHT block shows an 18 nm red-shift when 

going from methanol to water while no corresponding shift in PL is observed for the PF2/6 

block. The PL red-shift may indicate the formation of aggregates of the ionic P3TMAHT 

blocks in water. In THF we observed a dominant PF2/6 emission accompanied by a very 

weak and much red-shifted P3TMAHT PL component (λmax = 630 nm). Higher intensity PL 

of the P3TMAHT blocks is observed with direct excitation into the P3TMAHT absorption 

band at 430 nm (not shown here), compare also to Figure 2.2). This finding indicates the 

formation of solid state-like P3TMAHT aggregates in THF with a distinct phase segregation 

thus strongly diminishing the excitation energy transfer. The overall photoluminescence 

quantum yields (PLQY) are 23% (THF), 16% (THF/water 1:1) and 3% (water).21  

Table 2.2. Absorption and photoluminescence maxima of the PF2/6-b-P3TMAHT diblock copolymer 

(made from precursor B) in different solvents (PL: λexc = 380 nm). 

solvent absorption λmax abs (nm) photoluminescence λmax PL (nm) 

methanol 387 (PF2/6), 442 (P3TMAHT) 416/438 (PF2/6), 572 (P3TMAHT) 

water 384, 439 416/438, 590 

THF 379, 487 412/435, ca. 630 (very weak) 

THF/water 1:1 383, 448 412/435, 576 

 

Compared to the non-polar P3HT homopolymer the absorption and emission features of the 

P3TMAHT block display a somewhat larger Stokes loss, probably that resulting from a 
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distinctly more coiled, disordered confirmation of the individual, ionic P3TMAHT chains 

driven by electrostatic Coulombic repulsion between the charged, cationic side groups. 

Very similar trends are seen for the pyridinium-derivative PF2/6-b-P3PyHT. In comparison 

with PF2/6-b-P3TMAHT, PF2/6-b-P3PyHT shows a slightly increased solubility of the polar 

P3PyHT block in non-polar and a decreased solubility in polar solvents thus indicating a 

somewhat reduced hydrophilic (or increased hydrophobic) character of the P3PyHT block, as 

expected. The analysis of the optical spectra of the corresponding diblock copolymers 

containing PFO blocks (with linear octyl side chains) instead of PF2/6 is complicated by β-

phase formation leading to the occurrence of additional red-shifted absorption and emission 

features for the polyfluorene block. The details are not discussed here.19,21,23 

500 550 600 650 700 750 800
0,0

0,2

0,4

0,6

0,8

1,0
 0 % 
 10%
 20 %
 30 %
 40 %
 50 %
  THF

 

 
P

L 
In

te
ns

ity
 (

a.
u.

)

Wavelength (nm)

 

λ
exc

= 430 nm

a

500 550 600 650 700 750 800
0,0

0,2

0,4

0,6

0,8

1,0
 60 % 
 70 %
 80 %
 90 %
  THF

 

 
P

L 
In

te
ns

ity
 (

a.
u.

)

Wavelength (nm)

 

 

λ
exc

= 430 nm

b

 

Figure 2.2 a/b). PL spectra of PF2/6-b-P3MAHT (made from precursor B; polymer concentration: 

1.2×10-3 mg/mL) in THF/water mixtures (λexc = 430 nm). 
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Figure 2.3. Photoluminescence intensity at 590 nm of PF2/6-b-P3TMAHT in THF/water mixtures 

(precursor B, polymer concentration: 1.2×10-3 mg/mL, λexc = 430 nm) as a function of composition 

(v/v).  

PL spectra of PF2/6-b-P3TMAHT (excitation at 430 nm, thus leading to exclusive emission 

from the P3TMAHT block) in THF/water mixtures of varying composition are shown in 
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Figure 2.2. Starting from pure water to 10 and 20% THF, the PL band becomes more intense, 

and is accompanied by a blue shift of the emission maximum. This indicates an ongoing de-

aggregation of the ionic polythiophene block. Further THF addition (to 30, 40, 50 and 60%) 

leads to a subsequent de-aggregation which is accompanied by a 50 nm blue shift of the 

P3TMAHT emission maximum. THF contents of 70, 80 and 90% again result in a decrease of 

the PL intensity and a red-shifted P3TMAHT PL band, thus reflecting the re-aggregation of 

the P3TMAHT blocks. For 50% THF the maximum PL intensity band is observed. The plot 

shown in Figure 2.3 visualizes this trend for the relative PL intensity at 590 nm of the 

P3TMAHT emission band after excitation of PF2/6-b-P3TMAHT at 430 nm as function of 

the composition indicating PL quenching by aggregation with increasing water contents. On 

excitation into the PF2/6 absorption band (at 380 nm) the intensity of the blue PF2/6 emission 

band is progressively reduced with decreasing THF content (not shown here).  

A nearly identical trend in the PL spectra is observed for PF2/6-b-P3PyHT in THF/water 

mixtures, with the maximum PL intensity for the P3PyHT block observed for ca. 40% THF. 

The difference in the THF contents should reflect the slightly reduced hydrophilicity of the 

cationic P3PyHT block. 

 

2.2.3. Aggregation Behavior in Methanol 

 

Now we studied the aggregation of the diblock copolyelectrolytes PF2/6-b-P3TMAHT and 

PF2/6-b-P3PyHT by two different imaging techniques (AFM and confocal fluorescence 

microscopy). Here, we focus on the aggregation behavior in pure methanol. 

 

2.2.3.1. Atomic Force Microscopy of Thin Films 

 

AFM images of spin and drop cast layers of PF2/6-b-P3TMAHT or PF2/6-b-P3PyHT from 

dilute methanolic solution (0.03-0.08 mg/mL) onto mica substrates show the formation of 

spherical vesicles. The diameter of these vesicles (so-called polymersomes) ranges from 

several hundreds of nanometers up to several microns (ca. 0.2-4 µm). The results impressively 

demonstrate the tendency of rod-rod all-conjugated polyelectrolyte diblock copolymers 

towards formation of nanoaggregates with low curvature (vesicles or lamellae). This behavior 
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should be widely independent from the nature of the side chains at the polyfluorene block 

(PFO or PF2/6), the molecular weight of the diblock copolymer, the polydispersity, and the 

block length ratio.12  

  

Figure 2.4. Tapping mode AFM images of PF2/6-b-P3PyHT (made from precursor B) deposited from 

methanolic solution onto a mica substrate (0.08 mg/mL, left: topography 5.0x5.0 µm2, right: phase 

image 5.0x5.0 µm2).  

Figure 2.4 illustrates the formation of vesicular PF2/6-b-P3PyHT (precursor B) aggregates 

from a methanolic solution of low diblock copolymer concentration. The layers were drop 

casted onto mica substrates and investigated by tapping mode AFM (left: topography; right: 

phase image). The occurrence of isolated, collapsed vesicles with a partially damaged 

vesicular shell, most likely a bilayer, is clearly visible in the AFM images (tapping mode). 

During collapse of the vesicles some diblock copolymer material was re-distributed on the 

surface as a very thin layer with a fractal shape.  

Also contact mode AFM images show large vesicular structures from methanolic solution 

onto mica substrates (Figure 2.5). The polymersome formation seems similar if compared to 

the tapping mode AFM images from methanol. Comparable, but smaller vesicular structures 

have been observed for the uncharged amphiphilic poly[9,9-bis(2-ethylhexyl)fluorene]-b-

poly[3-(6-diethylphosphonatohexyl)thiophene] by Tu et al. in 2007.2 

Remarkably, drop casting of PF2/6-b-P3TMAHT from water (polymer concentration 

0.1 mg/mL, Figure 2.6) followed by slow solvent evaporation leads to the formation of 

fractal-like, poorly structured aggregates as been also observed for triblock polyaniline-

polyfluorene-polyaniline copolymers24 and non-conjugated amphiphilic block copolymers 

(PS-b-PEO)25. 
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Figure 2.5. Contact mode AFM images of PF2/6-b-P3TMAHT (made from precursor B) deposited 

from methanolic solution onto a mica substrate (0.03 mg/mL; topography images, left: 50.0x50.0 µm2, 

right: 10.0x10.0 µm2). 

 

Figure 2.6. Contact mode AFM image of PF2/6-b-P3TMAHT (made from precursor C) deposited from 

aqueous solution onto a mica substrate (0.1 mg/mL; topography image, 100.0x100.0 µm2). 

Figure 2.7 depicts a structure model of the diblock copolymer vesicles (polymersomes) that 

are formed in methanol. The core region of the amphiphilic bilayers (vesicle walls) is 

generated in the aggregation of the non-ionic, hydrophobic PFO or PF2/6 segments (in red) 

while the outer shells of the vesicle walls are formed by the ionic, hydrophilic P3PyHT or 

P3TMAHT segments (in blue). Our structure model leads to the occurrence of an interfacial 

dipole within the vesicle walls.26 The degree of interdigitation of the PF2/6 segments in the 

inner region of the vesicle walls cannot be derived from our data. However, the thickness of 

the collapsed vesicles (ca. 35-45 nm, see next paragraph) points to an interdigitation of the 

hydrophobic PF2/6 segments. 

Further AFM experiments have been collected at higher concentrations of the polyelectrolyte 

diblock copolymer PF2/6-b-P3PyHT (precursor A, Figure 2.8) and PF2/6-b-P3TMAHT 
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(precursor D, Figure 2.9) in methanol. A denser coverage of the substrate accompanied by a 

transition to solid state-like films is obtained by drop-casting from methanol onto silica 

substrates.  

 

Figure 2.7. Graphical illustration of the vesicle structure formed by PF2/6-b-P3TMAHT and PF2/6-b-

P3PyHT from methanolic solution (red: PF2/6 block, blue: P3TMAHT or P3PyHT block). 

In Figure 2.8 vesicular and lamellar (fibrillar) aggregates with an inter-lamellar distance of ca. 

20 nm coexist. The interlamellar distance well corresponds to the lateral dimension of 

extended copolymer chains (Figure 2.8).  

  

Figure 2.8. Tapping mode AFM images of PF2/6-b-P3PyHT (made from precursor A) drop-casted 

from methanolic solution onto a silica substrate (0.08 mg/mL, phase images, left: 5.0x5.0 µm2, right: 

1.0x1.0 µm2).  

Further experiments (Figure 2.9) at higher polymer concentration illustrate the transition from 

vesicular (region 1) to terrace-like morphologies (region 3) with a terrace height of ca. 35-

45 nm. This step height should approximately correspond to the double lateral dimension of 

the copolymer bilayers which are formed in the collapse/fusion of the vesicles after 
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deposition. The layered assemblies should show a parallel orientation with respect to the silica 

surface.21  

 

Figure 2.9. Tapping mode AFM images of PF2/6-b-P3MAHT (made from precursor D) deposited 

from methanolic solution onto a silica substrate (5 mg/mL, topography image, 4.0x4.0 µm2). (1) 

vesicular, (2) mixed, and (3) terrace-like morphology. 

 

2.2.3.2. Confocal Microscopy 

 

 

Figure 2.10. Confocal fluorescence microscopy images of three PF2/6-b-P3PyHT (made from 

precursor A) vesicles in methanolic solution (10 mg/mL) on a glass substrate (vesicle size: 3-4 µm), 

left: single vesicle, middle and right: fused vesicles. 

Next, in addition to the AFM investigations, we have analyzed the vesicle (polymersome) 

formation of PF2/6-b-P3PyHT in solution directly by confocal fluorescence microscopy. 

Three confocal images of luminescent PF2/6-b-P3PyHT vesicles (precursor A) in methanol 

1 

2 

3 
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with a diameter of 3-4 µm are depicted in Figure 2.10. The use of color filters showed that the 

photoluminescence of the vesicles is dominated by the red emission of the P3PyHT blocks 

that are located in the outer shell of the polymersomes. The left picture depicts a single 

vesicle, the middle and right images show fused vesicles that have been formed in the fusion 

of two or more initially formed single polymersomes.21 

 

2.2.4. Complexation with Anionic Surfactants 

 

In further experiments, the complexation of the block copolyelectrolyte PF2/6-b-P3TMAHT 

with the oppositely charged surfactant sodium dodecyl sulfate in water (SDS) has been 

studied. The PL spectra of PF2/6-b-P3TMAHT after addition of SDS to an aqueous solution 

of the diblock copolymer are depicted in Figure 2.11. 

500 550 600 650 700 750 800
0,0

0,4

0,8

1,2

λ
exc

 = 430 nm

 

 P
L 

In
te

ns
ity

 (
a.

u.
)

Wavelength (nm)

 0
 2.4E-6 M
 4E-6 M
 1.28E-5 M
 1E-4 M

 

Figure 2.11. Photoluminescence spectra of PF2/6-b-P3TMAHT with the addition of sodium dodecyl 

sulfate (SDS) to an aqueous solution of the diblock copolymer (polymer concentration: 1.2×10-3 

mg/mL ≈ 2.3×10-6 M charged repeat units; the SDS concentrations are given in the inset, at a SDS 

concentration of 2.4×10-6 M (dotted line) charge compensation should occur; λexc = 430 nm). 

Excitation at 430 nm into the P3TMAHT absorption only causes emission of the polar 

P3TMAHT blocks. In contrast to the PF2/6 emission band, the P3TMAHT blocks show a 

distinct spectral response during surfactant addition. Incorporation of a charge equivalent of 

SDS leads to a significant PL enhancement without spectral changes after direct excitation at 

430 nm. Starting at a 5-fold SDS excess a distinct red-shift of the PL spectral signature of the 

P3TMAHT blocks is observed that is accompanied by a spectral narrowing and the 

occurrence of well-resolved vibronic side bands. This spectral behavior is typical for an 

ongoing formation of highly ordered polyelectrolyte/surfactant (P3TMAHT/SDS) complexes 

of the diblock copolymer with SDS. At a 40-fold SDS excess, which still corresponds to an 
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SDS concentration considerably below its critical micelle concentration (cmc: 8.2 mM),27 the 

re-organization process is mainly finished. This shows that not simply an incorporation of the 

diblock copolymer into micelles occurs. The finding that surfactant interactions with the 

diblock copolymers are observed at concentrations well below the surfactant cmc is in 

agreement with observations for other polyelectrolyte/surfactant systems as described by 

Jonsson et al.28
 The concept of ‘‘critical association concentration’’ (cac) describes the 

interaction of surfactants with oppositely charged polyelectrolytes at concentrations below 

their cmc, largely through electrostatic interactions and under formulation of 

polymer/surfactant aggregates.28 A quite similar behavior, but at higher surfactant 

concentrations, is observed upon addition of sodium octyl sulfate (SOS). As has previously 

been seen with oppositely charged surfactants and alternating conjugated polyelectrolytes,29,30
 

this strongly suggests that charge neutralization leads to self-assembly into ordered 

P3TMAHT/SDS complexes. In the case of our diblock copolymers this leads to a more rigid, 

planarized conformation of the ionic polythiophene chains. However, it should be pointed out, 

that the spectral changes only reflect the self-organization of the ionic P3TMAHT blocks 

upon formation of highly ordered P3TMAHT/SDS complexes. The consequences of SDS (or 

SOS) addition on the organization of the polyfluorene blocks cannot be derived from the PL 

spectra of Figure 2.11. Recently, similar observations were obtained by Yao et al. for the 

interaction of a cationic homopolythiophene poly{2-methyl-3-[3-(N,N,N-

trimethylammonium)-1-propyloxy]-2,5-thiophene} with anionic surfactants.31 

  

2.2.5. Incorporation into Organic Electronic Devices 

 

The solubility of conjugated polyelectrolyte (CPE) block copolymers in highly polar solvents 

generally allows for a simple and reliable fabrication of multilayer-based organic devices, 

which may avoid one serious problem in the fabrication of multilayer devices by solution 

processing – the mixing of different components during the subsequent processing steps.5,32 

Recently, polyfluorene-based and related CPE’s have been inserted between the active layer 

and the electron collecting electrode in bulk heterojunction (BHJ) devices for a more efficient 

charge carrier extraction.33  

Consequently, we have used our novel CPE block copolymer PF2/6-b-P3TMAHT as well as 

the corresponding homopolymer P3TMAHT as charge extraction interlayer of BHJ-type 
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organic solar cells. Figure 2.12 shows the chemical structures of the used materials as well as 

the device structure with the CPE layer between active layer and metal electrode for charge 

extraction improvement. 

BHJ-type organic solar cells were fabricated with an active PCDTBT/PC71BM blend onto a 

40 nm thick poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer on 

patterned ITO coated glass substrates. The blend films of poly[N-9”-heptadecanyl-2,7-

carbazole-ail-5,5-(4’,7’-di-2-thenyl-2’,1’,3’-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl 

C70-butyric acid methyl ester (PC71BM) were deposited by spin-coating (procedure described 

in the experimental section). The CPE layers were subsequently deposited by spin-coating 

0.01% (w/v) P3TMAHT or 0.02% (w/v) PF2/6-b-P3TMAHT methanolic solutions. The low 

CPE concentrations were chosen to calibrate a thickness of only several nanometers thus 

minimizing possible complications due to ion motion.34 We also fabricated a control device 

without CPE layer for comparison. 

   

Figure 2.12. Chemical structure of the materials used for OSC device fabrication (left). Device 

configuration of an organic solar cell including a thin CPE layer (right). 

Current density-voltage (J-V) characteristics of the devices measured under AM 1.5 

illumination are shown in Figure 2.13. The obtained short circuit current (JSC), open circuit 

voltage (VOC), fill factor (FF) and power conversion efficiency (PCE), as determined from the 

J-V curves are summarized in Table 2.3. It is noteworthy that all devices with CPE layers 

show improved performances in comparison to control devices. The introduction of the CPE 

layer leads to increases of JSC from 9.7 to 10.8 mA/cm² (P3TMAHT) and 10.6 mA/cm² 

(PF2/6-b-P3TMAHT). Similarly, an improvement in VOC from 0.82 to 0.86 V (P3TMAHT) 

and 0.89 V (PF2/6-b-P3TMAHT) and FF from 63 to 66% (P3TMAHT) and 67% (PF2/6-b-

Al 
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P3TMAHT) was observed. Therefore, the PCE increases from 5.3% for the control device to 

6.3% (P3TMAHT) and 6.5% (PF2/6-b-P3TMAHT). 35 

 

Figure 2.13. Current density-voltage (J-V) characteristics of PCDTBT:PC71BM devices without CPE 

layer (black), with a thin P3TMAHT (blue) or PF2/6-b-P3TMAHT interlayers (red) under illumination 

with an AM 1.5G solar simulator, 100 mW/cm-2. Also pure methanol (green) was spin-cast on top of 

the active blend layer for comparison. 

As a control experiment a possible influence of the solvent methanol used for CPE deposition 

was tested. These experiments involved spin-coating of pure methanol atop the active layer, 

followed by a sequence of steps similar to those for CPE layer deposition. Interestingly, the 

devices obtained after methanol treatment showed somewhat increased VOC values and a 

somewhat higher PCE (Figure 2.13 and Table 2.3). However, the JSC values are smaller in 

comparison to the devices containing CPE layers. We assume that the performance 

improvement for the devices with CPE layers may be due to a combination of several 

effects.35 

In summary, we demonstrated the simple fabrication of high efficiency BHJ solar cells with a 

thin CPE interlayer between active layer and cathode. The introduction of P3TMAHT and 

PF2/6-b-P3TMAHT interlayers leads to a CPE increase from ca. 5.3 to 6.5%. Typically, the 

polythiophene backbones of the CPE are considered as hole transport/hole extraction 

materials. Cationic polythiophenes as well as block copolymers with cationic polythiophene-

based CPE segments have been shown to be useful electron extracting interlayers. The reason 

for this effect may be due to the formation of interfacial dipoles and/or to the interfacial 

accumulation of ions. The main outcome is that a simple deposition of thin CPE layers 

simultaneously increases VOC, JSC, FF and PCE. However, further experiments are needed for 

a full understanding of the impact of CPEs interlayers on solar cell performance.35 The 

available literature concerning this point is until now not consistent. 
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Table 2.3. Device performance of the PCDTBT:PC71BM-based BHJ-type organic solar cells with and 

without CPE interlayers (JSC: short circuit current density, VOC: open circuit voltage, FF: fill factor, 

PCE: power conversion efficiency). 

PCDTBT:PC71BM  JSC 

(mA/cm²) 

  VOC        

(V) 

FF 

(%)  

 PCE 

(%) 

Average 

PCE 

(%) 

Best 

w/o CPE layer 9.7 ± 0.3 0.82 ± 0.04 61 ± 1 5.0 5.3 

w/methanol 9.7 ± 0.3 0.88 ± 0.01 62 ± 1 5.3 5.4 

w/P3TMAHT 10.8 ± 0.3 0.86 ± 0.01 66 ± 1 6.1 6.3 

w/PF2/6-b-P3TMAHT 10.6 ± 0.3 0.89 ± 0.01 67 ± 1 6.2 6.5 

 

2.3. Conclusion and Outlook 

 

In summary, we have developed a straightforward synthetic protocol towards novel all-

conjugated, cationic diblock copolymers consisting of a non-ionic poly(dialkylfluorene) and a 

cationic poly(3-alkylthiophene) block. Pure PF2/6-b-P3TMAHT, PFO-b-P3TMAHT, PF2/6-

b-P3PyHT and PFO-b-P3PyHT polyelectrolyte block copolymers were isolated by careful 

separation from homopolymeric products including repeated solvent extraction steps. Further 

on, we have studied the photophysical properties and aggregation behavior of them in solution 

and in the solid state.  

Absorption and PL spectra of PF2/6-b-P3TMAHT, PFO-b-P3TMAHT, PF2/6-b-P3PyHT, and 

PFO-b-P3PyHT show spectral signatures of PF and PT blocks. Absorption and PL 

experiments in aqueous solution indicate the presence of strongly aggregated species. 

Addition of 30-70% THF leads to a subsequent de-aggregation which is accompanied by a 

blue shift of the emission maximum for the ionic polythiophene block. The all-conjugated, 

cationic block copolymers show the formation of micron-sized vesicular aggregates 

(polymersomes) mostly independent of the molecular weight of the ionic diblock copolymers. 

Vesicle formation was observed by imaging techniques such as contact/tapping mode atomic 

force microscopy (AFM) and confocal fluorescence microscopy.  
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Our CPEs have been tested as electron extraction interlayers of organic BHJ-type solar cells. 

The introduction of P3TMAHT or PF2/6-b-P3TMAHT as thin interlayers lead to an increase 

of the PCE from ca. 5.3 to ca. 6.5%. 

Inspired by our preliminary results, future work will provide a more detailed studies of the 

self-organization properties. Concerning the poly(fluorene)-b-poly(thiophene) diblock 

copolyelectrolytes, a further improvement of the electronic properties seems possible by 

modification of the side groups (alkyl length, polar head groups). For this, ionic block 

copolymers with different quaternary ammonium groups, e.g. derived from quinoline or 

methylimidazole, as well as zwitterionic CPEs may be generated. 

Hereby, the introduction of zwitterionic side groups seems especially interesting (exemplary 

shown for the PF-b-PT block copolymer in Scheme 2.2). An advantage of such zwitterionic 

CPE block copolymers is the absence of mobile counter ions due to the pinning of the 

sulfonate counter ions to the CPE side chain. This may also help to clarify the function of the 

thin CPE interlayers in OSCs. Such zwitterionic CPE interlayers may cause a further device 

improvement and are promising candidates for organic electronics devices.36,37 

 

Scheme 2.2. Chemical structures of possible all-conjugated, zwitterionic diblock copolymers. 

CPE-based sensors have already been developed for several kinds of analytes, as 

anions/cations, proteins or DNA.38,39 In this context, block polyelectrolytes should be tested 

for an application in sensors/biosensors. 
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2.4. Experimental Section 

 

Materials 

Unless otherwise indicated, all reagents were obtained from commercial suppliers and were 

used without further purification. All reactions were carried out using standard and Schlenk 

techniques under an argon atmosphere. The solvents were used as commercial p.a. and HPLC 

quality. 

 

3-(6-Bromohexyl)thiophene (T6Br)17 

3-Bromothiophene (10.0 g, 61.3 mmol) was dissolved in dry n-hexane (85 mL) and cooled 

down to -50 °C. Then, 1.6 M n-butyllithium (38.3 mL, 61.3 mmol) was added drop-wise. 

After stirring for 10 min dry THF (8 mL) was introduced yielding a white precipitate. The 

mixture was stirred for 1 h and allowed to warm up to room temperature. Additional THF 

(3 mL) was added along with an excess of 1,6-dibromohexane (38 mL, 81.7 mmol). The 

yellow mixture was stirred for 2 h followed by extraction with diethyl ether for three times. 

The organic phase was isolated, washed with water, and dried over magnesium sulfate. After 

removing the organic solvents, the excess of alkylbromide was removed under reduced 

pressure. Further purification by vacuum distillation afforded 3-(6-bromohexyl)thiophene as a 

colorless oil (10.26 g, 68%). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm): 7.17 (dd, J = 5.1 Hz and 3.0 Hz, 1H, Ar-H), 6.87 (dd, 

J = 5.1 Hz and 1.2 Hz, 1H, Ar-H), 6.86 (dd, J = 3.0 Hz and 1.2 Hz, 1H, Ar-H), 3.35 (t, J = 

6.6 Hz, 2H, Br-CH2), 2.56 (t, J = 7.6 Hz, 2H, Ar-CH2), 1.78 (quint, J = 7.1 Hz, 2H, Br-CH2-

CH2), 1.56 (quint, J = 7.6 and 7.1 Hz, 2H, Ar-CH2-CH2), 1.38 (quint, J = 8.1 and 7.1 Hz, 2H, 

Ar-(CH2)2-CH2), 1.28 (quint, J = 7.1 and 8.1 Hz, 2H, Br-(CH2)2-CH2). 
13C-NMR (100 MHz, 

CD2Cl2): δ (ppm): 143.3, 128.6, 125.5, 120.2, 34.7, 33.0, 30.6, 30.4, 28.7, 28.3. GC-MS: tr = 

7.5 min, 100% M+: 246. Bp: 96 °C (± 1 °C) at 0.04 mbar. 

 

2-Bromo-3-(6-bromohexyl)thiophene (BrT6Br)  

3-(6-Bromohexyl)thiophene (4.95 g, 20.0 mmol) was dissolved in DMF (50 mL) in the dark 

at -20 °C. A solution of NBS (3.62 g, 20.5 mmol) in DMF (50 mL) was added drop-wise and 
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the resulting mixture stirred for 30 min at -20 °C and subsequently warmed up overnight to 

room temperature. Then, the reaction mixture was poured into ice (50 g). The resulting 

solution was extracted with dichloromethane for three times. The combined organic layers 

were dried over magnesium sulfate followed by the removal of volatile solvents at reduced 

pressure. The residue was purified by silica gel column chromatography (eluent: n-heptane) to 

afford 2-bromo-3-(6-bromohexyl)thiophene as a colorless oil (25.58 g, 73%). 

DC: Rf = 0.50 (silica gel, n-heptane). 1H-NMR (400 MHz, CD2Cl2): δ (ppm): 7.13 (d, J = 

5.6 Hz, 1H, Ar-H), 6.73 (d, J = 5.6 Hz, 1H, Ar-H), 3.34 (t, J = 7.1 Hz, 2H, Br-CH2), 2.45 (t, J 

= 7.6 Hz, 2H, Ar-CH2), 1.78 (quint, J = 7.1 Hz, 2H, Br-CH2-CH2), 1.56 (quint, J = 7.6 and 

7.1 Hz, 2H, Ar-CH2-CH2), 1.38 (quint, J = 7.6 and 7.1 Hz, 2H, Ar-(CH2)2-CH2), 1.27 (quint, J 

= 7.1 and 7.6 Hz, 2H, Br-(CH2)2-CH2). 
13C-NMR (100 MHz, CD2Cl2): δ (ppm): 142.0, 128.6, 

125.7, 109.1, 34.7, 33.0, 29.7, 29.5, 28.6, 28.2. Elemental analysis: C10H14Br2S, calculated 

(%): C 36.83, S 9.83, H 4.33, measured (%): C 36.95, S 9.72, H 4.59. GC-MS: tr = 6.8 min, 

100% M+: 326. 

 

General procedure for the synthesis of 2,7-dialkylfluorene 

2,7-Dibromofluorene (15.8 g, 48.8 mmol), alkylbromide (488 mmol) and 

tetrabutylammonium bromide (1.57 g, 4.88 mmol) were added to an aqueous potassium 

hydroxide solution (300 mL, 45% w/w). The mixture was stirred for 1 h at 80 °C and then 

diluted with water (50 mL). The aqueous solution was extracted with dichloromethane for 

three times and the combined organic layers were washed with water, 1 M HCl, brine, and 

dried over magnesium sulfate. After removal of the organic solvent, the excess of 

alkylbromide was removed under reduced pressure. The crude product, a yellow oil, was 

purified by silica gel column chromatography to afford 2,7-dialkylfluorene as a colorless oil, 

which was recrystallized from ethanol yielding colorless crystals. 

 

2,7-Dibromo-9,9-dioctylfluorene (BrFO) 

According to the general procedure, 2,7-dibromofluorene (3.84 g, 14.76 mmol) was reacted 

with 1-bromooctane (28.50 g, 147.6 mmol) to yield, after purification by column 

chromatography (eluent: n-hexane), about 5.84 g (approx. 72%) of the target compound. 
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1H-NMR (500 MHz, CD2Cl2): δ (ppm): 7.50 (d, J = 8.0 Hz, 2H, Ar-H), 7.49-7.46 (m, 4H, Ar-

H), 1.95 (m, 4H, CH2), 1.24-1.06 (m, 24H, CH2), 0.59 (m, 6H, CH3). 
13C-NMR (125 MHz, 

CD2Cl2): δ (ppm): 153.46, 139.9, 130.7, 126.9, 122.0, 121.8, 56.4, 40.7, 32.4, 30.5, 29.8, 

24.3, 23.2, 22,5, 14.5. Elemental analysis: C29H40Br2, calculated (%): C 63.51, H 9.79, 

measured (%): C 63.41, H 9.61. GC-MS: tr = 8.5 min, 100% M+: 548. Mp: 50 °C (± 1 °C). 

 

2,7-Dibromo-9,9-bis(2-ethylhexyl)fluorene (BrF2/6)  

According to the general procedure, 2,7-dibromofluorene (3.20 g, 12.30 mmol) was reacted 

with 3-(bromomethyl)heptane (23.60 g, 123 mmol) to yield, after purification by column 

chromatography (eluent: n-hexane), about 5.02 g (approx. 74%) of the target compound. 

DC: Rf = 0.80 (silica gel, hexane). 1H-NMR (400 MHz, CDCl3): δ (ppm): 7.53 (d, J = 7.6 Hz, 

2H, Ar-H), 7.46 (d, J = 1.5 Hz, 2H, Ar-H), 7.44 (d, J = 1.5 Hz, 2H, Ar-H), 1.98-1.89 (m, 4H, 

Ar-CH2), 0.95-0.45 (m, 30H, alkyl-H). 13C-NMR (100 MHz, CDCl3): δ (ppm): 152.4, 139.2, 

130.1, 127.1, 121.0, 120.8, 55.5, 44.4, 34.7, 33.7, 28.1, 27.1, 22.7, 14.0, 10.3. Elemental 

analysis: C29H40Br2, calculated (%): C 63.51, H 9.79, measured (%): C 63.45, H 9.85. GC-

MS: tr = 8.5 min, 100% M+: 548. Mp: 46 °C (± 1 °C). 

 

General procedure for the synthesis of 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-
yl)-7-bromo-9,9-dialkylfluorene 

2,7-Dibromo-9,9-dialkylfluorene (15.4 mmol) was dissolved in dry, degassed diethylether 

(300 mL) and placed in a 500 mL round bottle flask. The solution was cooled down to -78 °C 

and 0.98 equivalents of alkyl lithium (either n-butyllithium or t-butyllithium) were added 

drop-wise. The resulting solution was allowed to stir for one hour followed by addition of 2-

isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12.6 mL, 61.5 mmol) in one shot. The 

reaction mixture was then stirred one more hour at -78 °C. The mixture was then allowed to 

warm up to room temperature overnight followed by quenching with water (50 mL). The two-

phase solution was then extracted with dichloromethane for three times and the combined 

organic layers were washed with water and brine, and dried over magnesium sulfate. The 

solvent was removed under reduced pressure and the resulting yellow oil was purified by 

silica gel column chromatography to afford 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-

2’-yl)-7-bromo-9,9-dioctylfluorene as a colorless oil.  
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2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-dioctylfluorene (FO) 

According to the general procedure, 2,7-dibromo-9,9-dioctylfluorene (6.0 g, 10.9 mmol) was 

reacted 1.6 M n-butyllithium (6.2 mL, 10.7 mmol) to yield, after purification by column 

chromatography (eluent: ethyl acetate/hexane = 5:95), about 3.20 g (approx. 49%) of the 

target compound. 

1H-NMR (500 MHz, CDCl3): δ (ppm): 7.81 (d, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 7.66 (d, 1H, 

Ar-H), 7.57 (d, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 7.40 (m, 1H, Ar-H), 2.04-1.90 (m, 4H, Ar-

CH2), 1.39 (bs, 12H, OC(CH3)2C(CH3)2O), 1.29-1.00 (m, 20H, alkyl-H), 0.82 (t, 6H, CH2-

CH3), 0.64-0.47 (m, 4H, alkyl-H). 13C-NMR (125 MHz, CDCl3): δ (ppm): 153.6, 149.5, 

143.0, 140.0, 133.9, 129.9, 128.9, 126.2, 121.4, 119.0, 83.8, 55.5, 40.1, 31.8, 29.9, 29.1, 24.9, 

23.6, 22.6, 14.0. Elemental analysis: C35H52BBrO2, calculated (%): C 70.59, H 8.80, 

measured (%): C 70.42, H 8.39. GC-MS: tr = 9.8 min, 100% M+: 596. 

 

2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(2-
ethylhexyl)fluorene (F2/6) 

According to the general procedure, 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene (4.94 g, 

9.00 mmol) was reacted with 1.6 M n-butyllithium (6.2 mL, 10.7 mmol) to yield, after 

purification by column chromatography (eluent: ethyl acetate/hexane = 2:98), about 2.90 g 

(approx. 53%) of the target compound. 

DC: Rf = 0.32 (silica gel, ethyl acetate/hexane = 2:98). 1H-NMR (400 MHz, CDCl3): δ (ppm): 

7.82 (s, 1H, Ar-H), 7.78 (d, J = 7.6 Hz, 1H, Ar-H), 7.64 (d, J = 7.6 Hz, 1H, Ar-H), 7.56 (d, J 

= 8.1 Hz, 1H, Ar-H), 7.51 (s, 1H, Ar-H), 7.44 (d, J = 8.1 Hz, 1H, Ar-H), 2.05-2.00 (m, 2H, 

Ar-CH2), 1.95-1.87 (m, 2H, Ar-CH2), 1.36 (s, 12H, OC(CH3)2C(CH3)2O), 0.92-0.43 (m, 30H, 

alkyl-H). 13C-NMR (100 MHz, CDCl3): δ (ppm): 153.4, 149.2, 143.0, 140.1, 133.8, 130.4, 

129.8, 127.5, 121.3, 118.9, 83.6, 55.2, 44.3, 33.7, 28.1, 27.3, 27.0, 24.8, 22.7, 14.0. Elemental 

analysis: C35H52BBrO2, calculated (%): C 70.59, H 8.80, measured (%):71.24, H 8.89. GC-

MS: tr = 9.8 min, 100% M+: 596. 

 

Monobromo-endcapped poly[3-(6-bromohexyl)-2,5-thiophene] (Br-P3BrHT)  

Fresh lithium diisopropylamide (LDA) was prepared from freshly distilled diisopropylamine 

(1.6 mL) and 1.6 M n-buthyllithium (6.25 mL in n-hexane). The product was added to dry 
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THF (50 mL) under Ar atmosphere at -78 °C via a syringe. The resulting solution was 

allowed to warm up to room temperature. The solution was stirred for 5 min at room 

temperature and again cooled down to -78 °C followed by addition of 2-bromo-3-(6-

bromohexyl)thiophene (3.26 g, 10.0 mmol). After stirring for 2 h the reaction mixture was 

added to a cooled solution (-78 °C) of dry zinc(II) chloride (1.40 g, 10.3 mmol) in dry THF 

(3 mL) via a syringe followed by additional stirring for 1 h at -78 °C. After warming up the 

mixture to room temperature the catalyst Ni(dppp)Cl2 (43 mg, 0.0065 mmol) was added in 

the dark and the resulting reaction solution stirred for 30 min. The reaction product was 

poured into cold methanol (500 mL) and the precipitate isolated by filtration. The crude 

polymer was re-dissolved in CHCl3 and washed with water, brine, and saturated NaHCO3. 

Then, the solution was concentrated and the polymer re-precipitated by pouring the viscous 

solution into cold methanol (500 mL). The polymer was purified by Soxhlet extraction with 

methanol, acetone, and n-hexane. The residue was re-dissolved in chloroform and the 

polymer isolated by removing the chloroform under reduced pressure. The resulting polymer 

was dried in vacuum to yield Br-P3BrHT as a dark red solid (1.82 g, 56%). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm): 6.94 (s, 1H, Ar-H), 3.37 (t, 2H, J = 6.6 Hz, -CH2), 

2.87-2.74 (t, 2H, Ar-CH2), 1.91-1.73 (m, 2H, alkyl-H), 1.72-1.55 (m, 2H, alkyl-H), 1.54-1.11 

(m, 4H, alkyl-H). 13C-NMR (100 MHz, CD2Cl2): δ (ppm): 140.0, 133.9, 130.8, 128.9, 34.7, 

33.0, 30.5, 29.6, 28.9, 28.3. Elemental analysis: (C10H13BrS)n, calculated (%): C 48.92, S 

13.08, H 5.34, measured (%):C 48.68, S 12.97, H 5.38. UV-Vis (CHCl3): λmax, abs = 435 nm. 

PL (CHCl3, λexc = 380 nm): λmax, em = 570 nm. 

 

General procedure for the synthesis of poly(9,9-dialkyl-2,7-fluorene)-b-poly[3-(6-
bromohexyl)-2,5-thiophene]  

2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-dialkylfluorene 

(1.80 mmol), and tetrakis(triphenylphosphine)palladium(0) (34 mg, 0.030 mmol) were 

dissolved in toluene (5 mL) followed by addition of 2 M aqueous sodium carbonate solution 

(5 mL). The resulting mixture was allowed to react under inert atmosphere for 8 h at 80 °C. 

After that, Br-P3BrHT (200 mg) in toluene (5 mL) was added. The reaction mixture was 

further reacted for 40 h at 80 °C. Upon completion of the reaction the mixture was poured into 

methanol (500 mL) resulting in polymer precipitation. The solid was collected and 

washed/fractionated by Soxhlet extraction with methanol and hexane for 24 h each, followed 

by Soxhlet extraction with chloroform. The chloroform fraction was characterized and used. 
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Poly(9,9-dioctyl-2,7-fluorene)-b-poly[3-(6-bromohexyl)-2,5-thiophene] (PFO-b-P3BrHT)  

According to the general procedure, 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-

7-bromo-9,9-dioctylfluorene (FO) (0.56 mg, 0.90 mmol) and poly[3-(6-bromohexyl)-2,5-

thiophene] (Br-P3BrHT) (51 mg) as macromolecular endcapper were reacted to yield, after 

Soxhlet extraction, about 178 mg (approx. 31%, related to the amount of fluorene monomer) 

of the target compound as a dark red solid. 

1H-NMR (400 MHz, CDCl3): δ (ppm): 7.88-7.56 (m, PF-block), 7.00-6.97 (m, PT-block), 

3.43-3.37 (m, alkyl-H), 2.89-2.77 (m, alkyl-H), 2.20-0.63 (m, alkyl-H). UV-Vis (CHCl3): 

λmax, abs = 385, 435 nm. PL (CHCl3, λexc = 380 nm): λmax, em = 415, 572 nm. 

 

Poly[9,9-bis(2-ethylhexyl)-2,7-fluorene]-b-poly[3-(6-bromohexyl)-2,5-thiophene] (PF2/6-b-
P3BrHT)  

According to the general procedure, 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-

7-bromo-9,9-bis(2-ethylhexyl)fluorene (F2/6) (3.096 mg, 5.20 mmol) and poly[3-(6-

bromohexyl)-2,5-thiophene] (Br-P3BrHT) (716 mg) as macromolecular endcapper were 

reacted to yield, after Soxhlet extraction, about 805 mg (approx. 26%, related to the amount 

of fluorene monomer) of the target compound as a dark red solid. 

1H-NMR (400 MHz, CDCl3): δ (ppm): 7.89-7.56 (m, PF-block), 7.00-6.96 (m, PT-block), 

3.75-3.70 (m, alkyl-H), 2.89-2.78 (m, alkyl-H), 2.23-0.50 (m, alkyl-H). UV-Vis (CHCl3): 

λmax, abs = 390, 439 nm. PL (CHCl3, λexc = 380 nm): λmax, em = 424, 571 nm. 

 

General procedure for the quaternization reaction 

A large excess of the amine (10 mmol) was added to a solution of the neutral polymer 

(50 mg) in dry THF (5 mL). After stirring for 1 day at 80 °C the formation of a precipitate 

was observed, which was re-dissolved by addition of methanol (10 mL). After filtration to 

remove some insoluble material the solvents were removed under reduced pressure. The 

residue was purified by dialysis against water/methanol 1:1 using a dialysis membrane with a 

cut-off of 3,500 g/mol. 
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Poly(9,9-dioctyl-2,7-fluorene)-b-poly[3-(6-trimethylammoniumhexyl)-2,5-thiophene] (PFO-b-
P3TMAHT)  

According to the general procedure, PFO-b-P3BrHT (50 mg) was reacted with 45 wt% 

aqueous trimethylamine solution (2 mL) to yield, after purification by dialysis 

(water/methanol 1:1), about 41 mg (approx. 80%) of the target compound as a dark red solid. 

1H-NMR (400 MHz, MeOD): δ (ppm): 7.31-7.15 (m, PF-block), 7.14-7.01 (m, PT-block and 

pyridine), 3.14 (m, alkyl-H), 2.93-2.74 (m, alkyl-H), 1.91-0.73 (m, alkyl-H). UV-Vis 

(MeOH): λmax, abs = 388 (PF-block), 422 nm (PT-block). PL (MeOH, λexc = 380 nm): λmax, em = 

417 (PF-block), 572 nm (PT-block). 

 

Poly[9,9-bis(2-ethylhexyl)-2,7-fluorene]-b-poly[3-(6-trimethylammoniumhexyl)-2,5-
thiophene] (PF2/6-b-P3TMAHT)  

According to the general procedure, PF2/6-b-P3BrHT (43 mg) was reacted with 45 wt% 

aqueous trimethylamine solution (2 mL) to yield, after purification by dialysis 

(water/methanol 1:1), about 41 mg (approx. 85%) of the target compound as a dark red solid. 

1H-NMR (400 MHz, MeOD): δ (ppm): 7.30-7.17 (m, PF-block), 7.16-7.00 (m, PT-block), 

3.52-3.26 (m, CH3-N), 3.15 (m, alkyl-H), 2.96-2.77 (m, alkyl-H), 1.92-0.76 (m, alkyl-H). UV-

Vis (MeOH): λmax, abs = 387 (PF-block), 422 nm (PT-block). PL (MeOH, λexc = 380 nm): 

λmax, em = 416, 438 (PF-block), 572 nm (PT-block). 

 

Poly[9,9-bis(2-ethylhexyl)-2,7-fluorene]-b-poly{3-[6-pyridylhexyl]-2,5-thiophene} (PF2/6-b-
P3PyHT)  

According to the general procedure, PF2/6-b-P3BrHT (200 mg) was reacted with pyridine 

(5 mL) to yield, after purification by dialysis (water/methanol 1:1), about 120 mg (approx. 

51%) of the target compound as a dark red solid. 

1H-NMR (400 MHz, D2O): δ (ppm): 8.95-8.66 (m, pyridine-H), 8.57-8.40 (m, pyridine-H), 

8.10-7.80 (m, pyridine-H), 7.30-6.66 (m, PF- and PT-block), 4.64-4.33 (m, alkyl-H), 2.79-

2.26 (m, alkyl-H), 2.05-1.75 (m, alkyl-H), 1.64-0.97 (m, alkyl-H). DSC: Tg = 75.5 °C. UV-

Vis (MeOH): λmax, abs = 389 (PF-block), 423 nm (PT-block). PL (MeOH, λexc = 380 nm): 

λmax, em = 419 (PF-block), 570 nm (PT-block). 
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Poly{3-[6-(N,N,N-trimethylammonium)hexyl]-2,5-thiophene} (P3TMAHT) 

According to the general procedure, Br-P3BrHT (151 mg) was reacted with aqueous 45 wt% 

trimethylamine solution (2 mL) to yield, after purification by dialysis (water), about 142 mg 

(approx. 76%) of the target compound as a dark red solid. 

1H-NMR (400 MHz, D2O). δ (ppm): 7.56-6.57 (m, 1H, Ar-H), 3.64-2.33 (m, 11H, N-CH3 and 

alkyl-H), 2.04-0.57 (m, 10H, alkyl-H). Elemental analysis: (C13H22BrNS)n, calculated (%): C 

51.31, S 10.54, H 7.29, measured (%): C 51.42, S 10.05, H 7.00. UV-Vis (MeOH): λmax, abs = 

429 nm. PL (MeOH, λexc = 390 nm) λmax, em= 562 nm. 

 

Device Part 

Organic bulk heterojunction-type solar cells were fabricated by spin-coating the active 

PCDTBT/PC71BM blends onto a 40 nm layer of PEDOT:PSS on patterned ITO glass 

substrates. The PCDTBT:PC71BM (1:4 ratio) blends were, hereby, spin casted at 5000 rpm for 

40 sec from solution in a chlorobenzene/1,2- dichlorobenzene (1:3) mixture onto the 

PEDOT:PSS layer. The films were annealed on a hot plate at 70°C for 10 min in a glove box. 

The CPE layers were subsequently deposited by spin-coating a 0.01% (w/v) P3TMAHT or 

0.02% (w/v) PF2/6-b-P3TMAHT methanolic CPE solution. Finally, 100 nm thick Al 

electrodes were deposited by thermal evaporation in vacuum. The J-V characteristics of all 

devices were measured using a Keithley 236 Source Measure Unit.The solar cell performance 

was determined with an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation 

intensity of 100 mW/cm2. An aperture (9.84 mm2) was used on top of the cell to eliminate 

extrinsic effects such as crosstalk, wave guiding and shadow effects. The spectral mismatch 

factor was calculated by comparison of the spectrum of the solar simulator and the AM 1.5 

spectrum at RT. 

 

Instrumentation 

NMR 

The 1H and 13C NMR spectra were recorded on Bruker ARX 400 and Avance III 600 

spectrometers with use of solvent proton or carbon signals as internal standards. 
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Elemental analyses 

Elemental analyses were performed on a Vario EL II (CHNS) instrument. 

 

GC-MS 

GC-MS measurements were obtained on a Shimadzu GC-17a with a Shimadzu GCMS-QP 

5050 mass spectrometer (column: FS-OV1-CB-0.25) under helium. Injection temperature: 

280 °C, starting temperature: 250 °C, heating rate: 6 °C, end temperature: 280 °C, end time: 

30 min. 

 

DSC 

Differential Scanning Calorimetry (DSC) measurements were collected with a Perkin Elmer 

DSC 7 (heating/cooling rate 10 K/,min). 

 

GPC 

Gel permeation chromatography (GPC) measurements were carried out using Jasco PU 1580 

equipped with Column “MZ plus linear 5 µ and 300 mm” columns, RI (Jasco RI-2031) and 

UV (Jasco UV-2031) detectors, toluene or THF as a solvent using polystyrene (PSS) 

calibration. The measurements were obtained at 30 °C. 

 

UV-Vis absorption spectroscopy 

UV-Vis absorption spectra were recorded on a Jasco V 550 spectrophotometer at room 

temperature. 

 

Photoluminescence spectroscopy 

Fluorescence measurements were carried out on a Varian Cary Eclipse instrument at room 

temperature. 
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Confocal flourescence microscope 

Confocal fluorescence images were collected using a Leica TCS SP high resolution spectral 

confocal microscope equipped with a Millennia® series argon laser S-10 excitation source. 

The polymer samples were prepared by depositing a polymer solution onto glas slide 

followed by placement of a cover slip. The slide was inverted and placed onto the microscope 

stage (cover slip down) and the sample imaged in the epi-fluorescence mode. 

 

AFM 

Atomic force microscopy measurements were recorded using two instruments. 1) A diInnova 

microscope from Bruker in the tapping mode at room temperature under ambient conditions. 

The silicon cantilevers used were between 215-235 µm in length and had a resonance 

frequency of approximate 84 kHz; the tip height was between 15-20 µm. The polymer films 

are prepared by drop-casting of polymer solutions onto mica and dried in the exsiccator at 

room temperature. The solutions were filtered through 0.25 µm PTFE-filters. 2) AFM 

measurements were recorded using a under nitrogen environment using a commercial 

scanning probe microscope (MultiMode and Nanoscope Controller IIIa, Veeco Inc.). Surface 

potential measurements were collected using a Veeco diDimension Icon atomic force 

microscope instrument. 
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Chapter 3 

 

3. All-Conjugated, “Rod-Rod” Diblock Copolyelectrolytes and their 

Complexes with Charged Molecules 

 

All-conjugated block copolymers of the “rod-rod”-type have gained an enormous interest 

because of their unique and attractive combination of nanostructure formation and electronic 

activity. Potential applications for this class of block copolymer materials for (bio)sensors or 

photovoltaic devices have been demonstrated. Combining the active optical and electronic 

function of conjugated polymers with (cat)ionic polyelectrolytes in all-conjugated block 

copolyelectrolytes is, therefore, a very challenging goal of synthetic polymer chemistry. First 

examples of such all-conjugated block copolymers from a couple of research groups 

demonstrate possible synthetic approaches and the rich application potential in biosensors 

and electronic devices. 

 

3.1. Introduction 

 

The majority of research on block copolymers has focused on coil-coil1 and rod-coil2,3 block 

copolymers. Much less studied are rod-rod block copolymers, which can be attributed to the 

challenges in synthesizing these types of materials. Driven by the increasing interest in all-

conjugated, rod-type block copolymers as components of target structures with biological 

[copolymers with polypeptide or deoxyribonucleic acid (DNA) blocks] or electronic 

(conjugated polymer blocks) function3, investigations into rod-rod block copolymers have 

strongly intensified during the last five years. Two, or more, different “rigid rod” blocks 

covalently bound to each other, will allow for a controlled spatial arrangement of these 

blocks. As a result, functional nanostructures arising from aggregation and phase separation 

of the different blocks have much application potential.4 
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Conjugated polyelectrolytes (CPEs) are often synthesized by polycondensation reactions of 

dihalides and a second, correspondingly substituted, difunctional monomer (e.g. with 

B(OR)3
5, SnR3

6, ZnX7, and phosphonates8 as functional groups). Within the class of metal-

catalyzed or -mediated aryl-aryl coupling methods, novel synthetic routes for a preparation of 

conjugated polymers with defined and appropriately reactive end groups have been developed 

by McCullough et al.9 They synthesized several end-functionalized regioregular poly(3-

alkylthiophene) via a so-called Grignard metathesis polymerization reaction in one step. 

Furthermore, the method of chain-growth polycondensation, which lead to conjugated 

polyarylenes with rather low polydispersity10-12, allows for novel synthetic schemes towards 

all-conjugated block copolymers. Yokozawa et al. are one of the pioneering groups in the 

development of such catalyst transfer (or chain-growth) polycondensations, and applied this 

method for polyphenylene and polyfluorene synthesis, respectively.11 They recently adapted 

their procedure for the step-wise generation of all-conjugated diblock copolymers.12 The 

drastically reduced amount of chain termination events in such catalyst-transfer 

polycondensations allows for a simple, step-by-step polycondensation of two, or more, AB-

type monomers in the step-wise aryl-aryl cross-coupling sequence. Utilizing this, the authors 

successfully synthesized a poly(2,5-dialkoxy-1,4-phenylene)-b-poly(N-hexyl-2,5-pyrrole) 

diblock copolymer (PPy-b-PPP) with a rather narrow molecular weight distribution of 1.16.12 

We have now studied synthesis and nanostructure formation of ionic, all-conjugated, rod-rod 

diblock copolymers containing two conjugated blocks of different polarity. Thereby, one 

rational was to introduce an additional driving force for self-organization by using 

conjugated, amphiphilic block copolymers. So, we have synthesized and characterized a 

cationic, all-conjugated, rod-rod diblock copolymer PF2/6-b-P3TMAHT which is composed 

of a non-polar poly[9,9-bis(2-ethylhexyl)fluorene] (PF2/6) and a polar, cationic poly[3-(6-

trimethylammoniumhexyl)-2,5-thiophene] (P3TMAHT) block. The resulting PF2/6-b-

P3TMAHT block copolyelectrolyte is expected to exhibit solubility in polar protic solvents 

including methanol and water. Solubility in water is a crucial prerequisite for potential 

application in biosensors. 

One advantage of conjugated polyelectrolytes as component of biosensors over small 

molecule-based systems stems from the amplification of both fluorescence quenching13,14 and 

Förster resonance energy transfer to appropriate dyes.15 This can lead to extremely high 

sensitivity. For example, genetic material (DNA) can be detected up to the zeptomole level.16 

So, cationic, conjugated polyelectrolytes are of particular importance for a use as DNA 
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sensors.17 However, although CPE-based fluorescent probes with more than one emission 

feature have been developed,18 it would appear desirable to develop a CPE-based ratiometric 

fluorescence sensor which output signal can be related to an internal standard (and follows 

changes of the nucleic acid concentration).  

All-conjugated, diblock copolymers consisting of polyfluorene (PF) and polythiophene (PT) 

are valuable advanced materials.19,20 The chain conformation of both blocks, especially the 

polythiophene block can be modulated by its environment. The introduction of cationic side 

chains at the PT-segment introduces water solubility and the possibility of tuning the 

electronic and optical properties by changing solvent or by addition of appropriate additives 

such as anionic surfactants.21 Following the well-established effects of nucleic acids on the 

spectral and photophysical properties of cationic polythiophenes,22 we report the use of the 

cationic diblock copolyelectrolyte PF2/6-b-P3TMAHT in an assay for anionic surfactants like 

sodium dodecylsulfate (SDS), DNA as well as organic acids.  

 

3.2. Results and Discussion 

 

3.2.1. Synthesis and GPC Characterization 

 

For synthesizing the cationic, all-conjugated diblock copolymer PF2/6-b-P3TMAHT we used 

a “grafting-from” approach starting from a monobromo-endcapped, regioregular poly[3-(6-

bromohexyl)-2,5-thiophene] Br-P3BrHT precursor with a mean average molecular weight 

(Mn) of 10,000 (weight average molecular weight Mw = 18,000, polydispersity Mn/Mw = 1.8) 

that was generated in a coupling protocol by McCullough and coworkers.23 In the next step, 

the non-polar diblock copolymer PF2/6-b-P3BrHT was synthesized under Suzuki cross-

coupling conditions with 2-bromo-9,9-bis(2-ethylhexyl)fluorene-7-boronic ester (F2/6) as 

bifunctional AB-type monomer and the monobromo-terminated Br-P3BrHT macromonomer 

as end-capper (Scheme 3.1). After subsequent purification (removal of homopolymeric by-

products which was accomplished by several solvent extraction steps based on the rather 

different solubility behavior of the components) the bromoalkyl side groups of the diblock 

copolymer intermediate were converted into the charged target copolymer with 

trimethylamine leading to the NR4
+-type cationic side groups of PF2/6-b-P3TMAHT.19,24 (See 

also chapter 2 for more synthetic details.) 
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Scheme 3.1. Synthesis of the polyelectrolyte diblock copolymer PF2/6-b-P3TMAHT (C8H17: 2-

ethylhexyl for PF2/6), a) NaHCO3, Pd(PPh3)4, b) N(CH3)3. 

The Mn of the non-polar diblock copolymer PF2/6-b-P3BrHT was determined to be 18,000 

(Mw = 25,000, Mn/Mw = 1.4), corresponding to a Mn of the PF2/6 block of about 8,000. 

During GPC characterization of P3BrHT-b-PF2/6, the detection of the GPC elugrams was 

carried out both at 380 and 450 nm, respectively, corresponding to the long wavelength 

absorption maxima of the related homopolymers PF2/6 and P3BrHT in dilute solution. The 

GPC profiles of PF2/6-b-P3BrHT display a very similar shape and very similar Mn/Mw values 

at both detection wavelengths supporting that the resulting block copolymer is not a 

mixture/blend with one or both homopolymers. 

 

3.2.2. Complexation with DNA 

 

CPE-based biosensors are sensitive to variations in the environment and instrumental 

conditions, therefore, they need appropriate standards for quantitative applications. 

Fluorescence sensors can use ratiometric methods that compare the luminescence from more 

than one emitting species.25 For example, CPE-based systems with two emission features 

have been developed for DNA quantification using ratiometric fluorescence methods.15 

Furthermore, selective fluorescence quenching is an attractive option. Here, we report the 

potential use of cationic diblock CPEs for ratiometric nucleic acid sensing.  

The ionic nature of the copolymer PF2/6-b-P3TMAHT leads to an increased solubility in 

polar solvents as methanol and water compared to the neutral precursor PF2/6-b-P3BrHT. 

Although PF2/6-b-P3TMAHT aggregates in water, which may influence its interactions with 

other macromolecules/analytes, these aggregates can be broken up by addition of 20 - 80% of 

a cosolvent, such as THF (compare chapter 2.2.2).26 We used PF2/6-b-P3TMAHT solutions 

of 20% THF / 80% water mixtures to study the interaction between the cationic diblock 
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copolymer and DNA. This solution mixture was found to provide a balance between 

photophysical properties and aggregation. 
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almost not influenced. In addition, the quenching of the polythiophene PL is accompanied by 

a red shift of the emission maximum. As observed with the absorption spectra, the red shift of 

fluorescence with ssDNA (36 nm) is larger than with double stranded dsDNA (18 nm).  
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Figure 3.2. Photoluminescence spectra of PF2/6-b-P3TMAHT during addition of ssDNA to a polymer 

solution (9.86×10-6 M) in 20% / THF 80% water, the ssDNA concentrations are given in the inset, 

together with a photograph of the solutions before and during the addition of increasing ssDNA 

amounts. (λexc=385 nm). 
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Figure 3.3. a) Stern-Volmer plots for the photoluminescence quenching of the polyfluorene (λem = 

413 nm, open symbols) and polythiophene (λem = 578 nm, solid symbols) related PL with ssDNA 

(circles) and dsDNA (squares) and b) PL intensity ratio of PF/PT block as a function of the 

[DNA]/[PF2/6-b-P3TMAHT] ratio for ssDNA (circles) and dsDNA (squares). 

The quenching behavior was analyzed by using Stern-Volmer plots28,29of the emission 

intensity at the PL maxima of the PT and PF block in the presence (I) and absence (I0) of the 

analyte as a function of the [DNA]/[PF2/6-b-P3TMAHT] ratio for ssDNA and dsDNA 

(Figure 3.3). The corresponding Stern-Volmer plots for the PL quenching of the 

polythiophene blocks show a sigmoidal behavior, reminiscent of a titration curve, where the 

steep slope occurs for a [DNA]/[PF2/6-b-P3TMAHT] ratio corresponding to charge 
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neutralization (molar concentrations in terms of the respective monomeric repeat units). In 

contrast, no significant quenching is seen for the PL of the polyfluorene block. Fluorescence 

titrations using this system permit DNA quantification at the submicromolar level. From 

Figure 3.3, it can also be seen that the polythiophene PL quenching upon addition of ssDNA 

is twice that with the double-stranded one thus providing a potential ratiometric fluorescence 

detection route for distinguishing between single and double stranded DNA.  

 

3.2.3. Complexation with Anionic Surfactants 

 

The addition of an oppositely charged anionic surfactant like sodium dodecyl sulfate (SDS) to 

an aqueous solution of PF2/6-b-P3TMAHT leads to an ongoing compensation of the charges 

and the formation of highly ordered polyelectrolyte/surfactant complexes as shown by a 

distinct red shift of the PL maximum (polythiophene component) with the occurrence of a 

well-resolved vibronic structure in the PL band as known from aggregated PT (Figure 3.4).20 

Almost the same results were observed with the addition of sodium octyl sulfate, but 

significant changes in the spectrum were only seen at higher surfactant concentrations (for 

more details compare chapter 2.2.4. 

 

Figure 3.4. Photoluminescence spectra of PF2/6-b-P3TMAHT with the addition of sodium dodecyl 

sulfate (SDS) to an aqueous solution of the diblock copolymer (polymer concentration: 

1.2×10-3 mg/mL ≈ 2.3×10-6 M charged repeat units; the SDS concentrations are given in the inset, at a 

SDS concentration of 2.4×10-6 M (dotted line) charge compensation should occur; λexc = 430 nm). 

Recently, similar observations were obtained by Yao et al. for a cationic homopolythiophene 

poly{2-methyl-3-[3-(N,N,N-trimethylammonium)-1-propyloxy]-2,5-thiophene} and anionic 

surfactants and supported the validity of our results.30 
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3.2.4. Interaction with Organic Acids 

 

To study the interaction of the cationic diblock copolymer PF2/6-b-P3TMAHT with organic 

acids (like p-toluenesulfonic acid and acetic acid) absorption spectra were recorded in the 

presence of different amounts of the organic acids (Figure 3.5). Increasing the amounts of p-

toluenesulfonic acid caused a red-shift of the PT band in the absorption spectra from 440 nm 

to 510 nm. These spectral changes are due to the transition from random-coil PT chains 

(without acid) to well-ordered aggregates i.e. π-stacked complexes (addition of acid).31,32 In 

contrast, the effect of acetic acid on the polyelectrolyte absorption maxima is very small. This 

leads us to the consideration that p-toluenesulfonic acid as a “soft” base has a stronger 

aggregation-tendency with the “soft” acid of the quaternary ammonium head group in the side 

chains of the PT block than acetic acid as a “hard” base. The so-called hard-soft acid-base 

(HSAB) principle by Pearson33 predicts that hard-hard or soft-soft combinations are better 

stabilized and helps us to understand why the electrostatic interaction between a quaternary 

ammonium group and a sulfonate group is stronger than a carboxylate group with a 

quaternary ammonium group.34 Furthermore, the type of electrostatic interaction influences 

the formation of π-stacked PT complexes. For comparison, similar interactions of a cationic 

homopolymer with organic acids have been observed by a Chinese group in 2010.35  
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Figure 3.5. UV-Vis absorption spectra of PF2/6-b-P3TMAHT with the addition of p-toluenesulfonic 

acid (a) and acetic acid (b), (polymer concentration: 0.1 mg/mL; the acid concentrations are given in 

the inset). 
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3.3.  Conclusion and Outlook 

 

In conclusion, the all-conjugated, rod-rod diblock copolyelectrolyte PF2/6-b-P3TMAHT has 

been successfully synthesized. Selective quenching and/or a red shift of the PT-related 

photoluminescence band of the cationic polythiophene block is seen upon addition of either 

surfactants or DNA. Binding of nucleic acids to PF2/6-b-P3TMAHT leads to red shifts in the 

absorption and emission maxima due to conformational changes. Fluorescence titration of the 

diblock conjugated polyelectrolyte with DNA can be used for nucleic acid quantification at 

the submicromolar level. In addition, differences in the fluorescence quenching response can 

be used to distinguish between single and double strand DNA. As for DNA interactions with 

other cationic conjugated polyelectrolytes36 at high nucleic acid concentrations the 

complexation is accompanied by the formation of nanostructured networks. 

Additionally, we have shown the interaction of the block copolyelectrolyte with organic acids. 

The interaction can be realized with the HSAB principle. “Soft-soft” combinations with 

sulfonic acids favor the electrostatic interaction between PF2/6-b-P3TMAHT and p-

toluenesulfonic acid under formation of π-stacked PT complexes. 

However, a lot of further research is necessary to optimize all-conjugated block copolymers 

for a use in biosensors e.g. for DNA. Future work will be directed towards characterization of 

the solid state structures of conjugated block polyelectrolytes at high nucleic acid 

concentrations. Moreover, the complexation behavior of PF2/6-b-P3TMAHT with anionic 

polyelectrolytes as polystyrene sulfonic acid (PSSA) seems interesting and will be 

investigated in further studies. 

 

3.4. Experimental Section 

 

Materials 

Unless otherwise indicated, all reagents were obtained from commercial suppliers and were 

used without further purification. All reactions were carried out using standard and Schlenk 

techniques under an argon atmosphere. The solvents were used as commercial p.a. and HPLC 

quality. 
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2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(2-
ethylhexyl)fluorene (F2/6) 

2,7-Dibromo-9,9-bis(2-ethylhexyl)fluorene (4.94 g, 9.00 mmol) was dissolved in dry, 

degassed diethylether (250 mL) and placed in a 500 mL round bottle flask. The solution was 

cooled down to -78 °C and 0.98 equivalents of 1.6 M n-butyllithium (6.2 mL, 10.7 mmol) 

were added drop-wise via a syringe. The resulting solution was stirred for one hour followed 

by addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12.6 mL, 61.5 mmol) in 

one shot. The reaction mixture was stirred for one more hour at -78 °C. The mixture was 

allowed to warm up to room temperature overnight followed by quenching with water 

(50 mL). The two-phase solution was then extracted with dichloromethane for three times and 

the combined organic layers were washed with water and brine, and dried over magnesium 

sulfate. The solvent was removed under reduced pressure and the resulting yellow oil was 

purified by silica gel column chromatography (eluent: ethyl acetate/hexane = 98:2), to afford 

2.90 g (approx. 53%) of 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-

dioctylfluorene as a colorless oil.  

DC: Rf = 0.32 (silica gel, ethyl acetate/hexane = 98:2). 1H-NMR (400 MHz, CDCl3): δ (ppm): 

7.82 (s, 1H, Ar-H), 7.78 (d, J = 7.6 Hz, 1H, Ar-H), 7.64 (d, J = 7.6 Hz, 1H, Ar-H), 7.56 (d, J 

= 8.1 Hz, 1H, Ar-H), 7.51 (s, 1H, Ar-H), 7.44 (d, J = 8.1 Hz, 1H, Ar-H), 2.05-2.00 (m, 2H, 

Ar-CH2), 1.95-1.87 (m, 2H, Ar-CH2), 1.36 (s, 12H, OC(CH3)2C(CH3)2O), 0.92-0.43 (m, 30H, 

alkyl-H). 13C-NMR (100 MHz, CDCl3): δ (ppm): 153.4, 149.2, 143.0, 140.1, 133.8, 130.4, 

129.8, 127.5, 121.3, 118.9, 83.6, 55.2, 44.3, 33.7, 28.1, 27.3, 27.0, 24.8, 22.7, 14.0. Elemental 

analysis: C35H52BBrO2, calculated (%): C 70.59, H 8.80, measured (%): C 71.24, H 8.89. GC-

MS: tr = 9.8 min, 100% M+: 596. 

 

Poly[3-(6-bromohexyl)-2,5-thiophene] (Br-P3BrHT)23 

Fresh lithium diisopropylamide (LDA) was prepared from freshly distilled diisopropylamine 

(1.6 mL) and 1.6 M n-buthyllithium (6.25 mL in n-hexane). The product was added to dry 

THF (50 mL) under Ar atmosphere at -78 °C via a syringe. The resulting solution was 

allowed to warm up to room temperature. The solution was stirred for 5 min at room 

temperature and again cooled down to -78 °C followed by addition of 2-bromo-3-(6-

bromohexyl)thiophene (3.26 g, 10.0 mmol). After stirring for 2 h the reaction mixture was 

added to a cooled solution (-78 °C) of dry zinc(II) chloride (1.40 g, 10.3 mmol) in dry THF 
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(3 mL) via a syringe followed by additional stirring for 1 h at -78 °C. After warming up the 

mixture to room temperature the Ni(dppp)Cl2 catalyst (43 mg, 0.0065 mmol) was added in 

the dark and the resulting reaction solution stirred for 30 min. The reaction product was 

poured into cold methanol (500 mL) and the precipitate isolated by filtration. The crude 

polymer was re-dissolved in CHCl3 and washed with water, brine, and saturated NaHCO3. 

Then, the solution was concentrated and the polymer re-precipitated by pouring the viscous 

solution into cold methanol (500 mL). The polymer was purified by Soxhlet extraction with 

methanol, acetone, and n-hexane. The residue was re-dissolved in chloroform and the 

polymer isolated by removing the chloroform under reduced pressure. The resulting polymer 

was dried in vacuum to yield Br-P3BrHT as a dark red solid (1.82 g, 56%). 

1H-NMR (400 MHz, CD2Cl2): δ (ppm): 6.94 (s, 1H, Ar-H), 3.37 (t, 2H, -CH2), 2.87-2.74 (t, 

2H, Ar-CH2), 1.91-1.73 (m, 2H, alkyl-H), 1.72-1.55 (m, 2H, alkyl-H), 1.54-1.11 (m, 4H, 

alkyl-H). 13C-NMR (100 MHz, CD2Cl2): δ (ppm): 140.0, 133.9, 130.8, 128.9, 34.7, 33.0, 30.5, 

29.6, 28.9, 28.3. Elemental analysis: (C10H13BrS)n, calculated (%): C 48.92, S 13.08, H 5.34, 

measured (%):C 48.68, S 12.97, H 5.38. GPC Anal. (THF, 254 nm): Mn = 10 000 g/mol, Mw 

= 18 000 g/mol, Mn/Mn = 1.8. UV-Vis (CHCl3): λmax, abs = 435 nm. PL (CHCl3, λexc = 

385 nm): λmax, em = 570 nm. 

 

Poly[9,9-bis(2-ethylhexyl)-2,7-fluorene]-b-poly[3-(6-bromohexyl)-2,5-thiophene] (PF2/6-b-
P3BrHT)  

2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(2-ethylhexyl)-

fluorene (F2/6) (3.096 mg, 5.20 mmol), and tetrakis(triphenylphosphino)-palladium(0) 

(95 mg, 0.084 mmol) were dissolved in toluene (15 mL) followed by addition of 2 M aqueous 

sodium carbonate solution (15 mL). The resulting mixture was allowed to react under inert 

atmosphere for 8 h at 80 °C. After that Br-P3BrHT (716 mg) in toluene (15 mL) was added. 

The reaction mixture was allowed to react for 40 h at 80 °C. Upon completion of the reaction 

the mixture was poured into methanol (1000 mL) resulting in polymer precipitation. The solid 

was collected and washed/fractionated by Soxhlet extraction with methanol and hexane for 

24 h each, followed by Soxhlet extraction with chloroform to yield about 805 mg (approx. 

26%, related to the fluorene monomer) of the target compound as a dark red solid. The 

chloroform fraction was characterized and further used. 
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1H-NMR (400 MHz, CDCl3): δ (ppm): 7.89-7.56 (m, PF-block), 7.00-6.96 (m, PT-block), 

3.75-3.70 (m, alkyl-H), 2.89-2.78 (m, alkyl-H), 2.23-0.50 (m, alkyl-H).GPC Anal. (THF, 254, 

380 and 450 nm): Mn = 18,000 g/mol, Mw = 25,000 g/mol, Mw/Mn = 1.4. UV-Vis (CHCl3): 

λmax, abs = 390, 439 nm. PL (CHCl3, λexc = 254, 385 and 430 nm): λmax, em = 424, 571nm. 

 

Poly[9,9-bis(2-ethylhexyl)-2,7-fluorene]-b-poly[3-(6-trimethylammoniumhexyl)-2,5-
thiophene] (PF2/6-b-P3TMAHT)  

A large excess of aqueous 45 wt% trimethylamine (2 mL) was added to a solution of the 

neutral polymer PF2/6-b-P3BrHT [43 mg, Mn  = 18,000 g/mol, Mn (Br-P3BrHT) = 

10,000 g/mol] in dry THF (5 mL). After stirring for 1 day at 80 °C the formation of a 

precipitate was observed, which was re-dissolved by addition of methanol (10 mL). After 

filtration to remove some insoluble material, the solvent was removed under reduced pressure. 

The residue was purified by dialysis against water/methanol 1:1 using a dialysis membrane 

with a cut-off of 3,500 g/mol to yield, after evaporating the solvent, about 41 mg (approx. 

85%) of the target compound as a dark red solid. 

1H-NMR (400 MHz, MeOD): δ (ppm): 7.30-7.17 (m, PF-block), 7.16-7.00 (m, PT-block), 

3.52-3.26 (m, CH3-N), 3.15 (m, alkyl-H), 2.96-2.77 (m, alkyl-H), 1.92-0.76 (m, alkyl-H). UV-

Vis (20% THF/80% H2O): λmax, abs = 382 (PF-block), 445 nm (PT-block). PL (20% THF/80% 

H2O, λexc = 385 nm): λmax, em = 412, 437 (PF-block), 576 nm (PT-block).  

 

Instrumentation 

NMR 

The 1H and 13C NMR spectra were recorded on a Bruker ARX 400 spectrometer with use of 

the solvent proton or carbon signals as internal standard. 

 

Elemental analyses 

Elemental analyses were performed on a Vario EL II (CHNS) instrument. 
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GC-MS 

GC-MS measurements were obtained on a Shimadzu GC-17a coupled with a Shimadzu 

GCMS-QP 5050 mass spectrometer (column: FS-OV1-CB-0.25) under helium gas, injection 

temperature: 280 °C, starting temperature: 250 °C, heating rate: 6 °C, end temperature: 

280 °C, end time: 30 min. 

 

GPC 

Gel permeation chromatography (GPC) measurements were carried out using Jasco PU 1580, 

Column “MZ plus linear 5 µ and 300 mm”, RI (Jasco RI-2031) and UV (Jasco UV-2031) 

detectors, toluene or THF as solvents using polystyrene (PSS) calibration. The measurements 

were obtained at 30 °C. 

 

UV-Vis absorption spectroscopy 

UV-Vis absorption spectra were recorded on a Jasco V 550 and on a Shimadzu UV-2401 PC 

spectrophotometer at room temperature. 

 

Photoluminescence spectroscopy 

Fluorescence measurements were carried out on a Varian Cary Eclipse and on a Shimadzu 

UV-2401 instrument room temperature. 
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Chapter 4 

4. All-Conjugated, Cationic Polyfluorene-b-Polyfluorene “Rod-Rod” 

Diblock Copolymers 

 

Abstract 

All-conjugated diblock copolymers are currently of considerable interest, also for potential 

applications as components of biological sensors or optoelectronic devices. We report on a 

novel cationic diblock copolymer containing a neutral poly(alkylfluorene) block covalently 

bound to a ionic polyfluorene block, namely poly[9,9-bis(6-trimethylammoniumhexyl)-2,7-

fluorene]-b-poly(9,9-dioctyl-2,7-fluorene) (PF6NBr-b-PFO), which was synthesized via a 

step-wise chain-growth Suzuki-Miyaura-type polycondensation in the first step followed by 

quaternization with trimethylamine as the second step. The optical properties were 

investigated by UV-Vis and photoluminescence spectroscopy in three different solvents: 

methanol, THF and THF/methanol 1:1. First indications of nanoaggregation have been 

obtained from imaging techniques such as confocal fluorescence microscopy in solution and 

atomic force microscopy (AFM) of thin films. The formation of vesicles/spherical particles 

was observed in THF, methanol, and in the solid state. The use of PF6NBr-b-PFO as electron 

injection layer of organic light-emitting diodes (OLEDs) indicated that these block 

copolymers can effectively reduce electron injection barriers and, therefore, serve as a 

promising candidate for improving charge electron injection into optoelectronic devices. 

 

4.1. Introduction 

 

All-conjugated block copolymers, consisting of one polyfluorene (PF) and one polythiophene 

(PT) block have been discussed in detail in chapter 2 and 3, especially their unique tendency 

to self-assemble.1 Similar self-assembling behavior has been observed for poly(3-

alkylthiophene)-b-poly(3-alkylthiophene) (P3AT-b-P3AT) diblock copolymers. An all-

conjugated P3AT-b-P3AT diblock copolymer poly(3-hexylthiophene)-b-poly[3-(2-
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ethylhexyl)thiophene] (P3HT-b-P3EHT) has been first synthesized by Zhang et al.2 The 

P3HT-b-P3EHT was generated in a quasi-living chain-growth polycondensation as developed 

by McCullough et al.3 and Yokozawa et al.4 to afford well-defined diblock copolymers with 

narrow molecular weight distribution. This effort requires the use of catalysts that selectively 

transfer reactivity to the terminus of the polymer chain upon addition of each monomer unit to 

the chain end.5 Subsequent reports have focused on the microphase separation in (P3HT-b-

P3EHT)s into crystalline P3HT and amorphous P3EHT domains.6 The observed worm-like 

patterns, obtained after a thermal annealing of polymer films, are also seen in conjugated 

poly(3-hexylthiophene)-b-poly(3-phenoxymethylthiophene) (P3HT-b-P3PT) systems (for the 

structures see Scheme 4.1)7. Recent work by Wu et al.8 and Ge et al.9 has yielded new types 

of diblock copoly(3-alkylthiophene)s like poly(3-butylthiophene)-b-poly(3-octylthiophene) 

(P3BT-b-P3OT) and poly(3-butylthiophene)-b-poly(3-hexylthiophene) (P3BT-b-P3HT) with 

high degrees of internal order within both blocks. 

  

Scheme 4.1: Structures of different poly(3-alkylthiophene)-b-poly(3-alkylthiophene) diblock 

copolymers: P3HT-b-P3EHT after Zhang et al.2, P3HT-b-P3PT after Ohshimizu et al.7, P3BT-b-P3OT 

after Wu et al.8, P3BT-b-P3HT after Ge et al.9.  

Motivated by these studies, we report here synthesis, optical characteristics, self assembly 

properties and device application of diblock copolymers that include a neutral 

poly(alkylfluorene) (PF) bound to a cationic poly(fluorene) block. Due to their strong blue 

fluorescence and their rigid, conjugated structure, PFs are very attractive as components of 

optoelectronic devices.10 In particular, solid state phase formation and self-organization 

represent central facets in the physics of PFs.11 Our block copolymers are macromolecular 

systems which have two rigid segments with identical electronic structure of the conjugated 

backbone and are expected to exhibit morphologies that are highly sensitive to the polarity of 

the surrounding medium. 
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Our interest in synthesis and applications of poly(fluorene)-based block copolymers prompted 

us to look at recent developments in the field of Suzuki-Miyaura polymerizations. Yokozawa 

et al.12 reported the polymerization of a 7-bromo-9,9-dialkylfluorene-2-yl boronic ester using 

Hartwig’s (t-Bu3P)Pd(C6H5)Br13 arylpalladium(II) catalyst. Unlike to typical Suzuki-Miyaura 

coupling reactions14 using aromatic dihalides and the corresponding arylene diboronic esters, 

the polymeric products exhibited narrow molecular weight distributions. Under suitable 

reaction conditions it is possible to obtain polydispersity indexes (Mw/Mn) for the products 

lower as 1.3. As for polythiophenes, the reaction conditions applied by Yokozawa et al.12 lead 

to a chain-growth mechanism of polycondensation.  

 

4.2. Results and Discussion 

 

4.2.1. Synthesis 

 

Towards the poly(fluorene)-based diblock copolymers, our initial target structure were 

poly(fluorene)-b-poly(fluorene) diblock copolymers in which one of the poly(fluorene) 

segments contains alkylbromide substituents at the 9-position of the repeat unit. The 

bromoalkyl functions can subsequently be used in quaternization reactions to form charged 

poly(fluorene) segments. The overall synthetic strategy is illustrated in Scheme 4.2, details 

are outlined in the Experimental Section. In a first step, the two monomers 2-(4’,4’,5’,5’-

tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-dioctylfluorene (FO) and 2-

(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(6-bromohexyl)-

fluorene (F6Br) were synthesized (see Figure 4.2) by mono-lithiation of the well-known 

dibromoderivatives under conditions that promote metal halogen exchange followed by 

reaction with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.15 The non-ionic 

poly[9,9-bis(6-bromohexyl)-2,7-fluorene]-b-poly(9,9-dioctyl-2,7-fluorene) (PF6Br-b-PFO) is 

subsequently generated in a step-wise chain-growth polycondensation,12 by addition of first 

FO, followed by F6Br, as the two AB-type monomers. Optimization of the reaction 

conditions was carried out by varying reaction time (from 0.5 to 60 minutes), catalyst 

concentration (2.5-10 mol%), and the order of monomer addition between FO and F6Br. We 

found optimum conditions by firstly polymerizing FO with 10 mol% of (t-Bu3P)Pd(C6H5)Br 

catalyst in a sodium carbonate solution in H2O/THF (5:12) for 10 minutes at room 
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temperature. After addition of the second monomer F6Br as a solution in THF the mixture 

was stirred for an additional 30 minutes. The polymer solution was poured into acidified 

methanol and the residue was subsequently purified by Soxhlet extraction with methanol for 

24 hours. The polymer PF6Br-b-PFO was obtained in 82% yield as a light yellow solid and is 

soluble in typical organic solvents, such as chloroform, tetrachloroethane, or chlorobenzene. 

The resulting non-ionic PF6Br-b-PFO was reacted with trimethylamine in a quaternization 

reaction to obtain our target, an all-conjugated, cationic diblock copolymer PF6NBr-b-PFO 

(92% yield). The cationic diblock copolymer PF6NBr-b-PFO is soluble in polar solvents and 

solvent mixtures, including methanol and THF/water as well as in organic solvents such as 

chloroform and THF.  

Standard characterization of the polymeric products was accomplished by gel permeation 

chromatography (GPC) analysis, nuclear magnetic resonance (NMR) spectroscopy (1H and 
13C) and optical spectroscopy. Atomic Force Microscopy (AFM) as imaging technique (see 

next paragraphs) was used to characterize the self assembly properties of the block 

copolymers. 

The results of the NMR analysis are in accordance with the proposed structure (see 

Experimental Section).  

  

Scheme 4.2. Synthesis of the cationic diblock copolymer PF6NBr-b-PFO. a) Na2CO3, b) N(CH3)3. 

The molecular weights afforded for the different blocks after extraction are listed in Table 4.1. 

PF6Br-b-PFO was obtained with a mean number average molecular weight (Mn) of 18,100 

and a Mw/Mn of ~1.27. To calculate the mean number average molecular weights of both 
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blocks a GPC sample was taken before the second monomer F6Br was added to give a Mn ~ 

8,100, corresponding to ca. 20 repeat units for the PFO block. The difference between the 

observed Mn of the PFO aliquot and the PF6Br-b-PFO sample reflects the Mn of the PF6Br 

block (Mn = 10,000, m = ~20). We could not measure the molecular weight of the cationic 

block copolymers by conventional GPC due to the strong interaction of the charged 

copolymer with the stationary phase of the GPC column (adsorption). 

Table 4.1. Molecular weight data of PFO, PF6Br, and PF6Br-b-PFO. 

structure M n Mw M n/M w 

PFO 8,100 10,200 1.26 

calculated PF6Bra 10,000 12,700 1.27 

PF6Br-b-PFO 18,100 22,900 1.27 

a. Calculation of Mn(PF6Br) = Mn(PF6Br-b-PFO) – Mn(PFO). Calculation of Mw done in an analogous way. 

 

4.2.2. Optical Properties 

 

Figure 4.1(a) shows the normalized absorption spectra of PF6NBr-b-PFO in three solvents: 

methanol, THF/methanol 1:1, and THF. One major absorption band is observed in THF, with 

an absorption maximum at about 390 nm which is typical of polyfluorene materials10. In 

methanol, one observes the emergence of a sharp, second peak of lower energy at about 

430 nm in addition to the broad band previously observed in THF. The absorption in the 

THF/methanol (1:1) mixture is similar to that observed in methanol. The sharp peak at 

430 nm has been previously assigned to the beta-phase of PFO.11,16 Nothofer reported the 

formation of the PFO beta-phase when dissolving the polymer in good solvent/poor solvent 

mixtures of increasing “poor solvent” content. PFO shows a rich and unique packing 

behavior.17 The so called β-phase is characterized by a distinct red shift of absorption and 

emission with remarkable well-resolved vibronic structure caused by a planar confirmation of 

the PFO backbone we found as the polarity of the solvent increases aggregation occurs and 

formation of the PFO β-phase is observed. 
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The photoluminescence (PL) spectra obtained by excitation at 380 nm are shown in Figure 

4.1(b). The PL spectra in THF shows the characteristic polyfluorene emission bands at 414, 

437 and 464 nm (414 nm: 0-0 α-phase, 437 nm: 0-0 β-phase).18 In methanol stronger peaks at 

437 and 464 nm emerge in relation to the emission band at 414 nm due to an increased β-

phase content.19 The photoluminescence of the mixture of THF/methanol (1:1) is similar to 

that in methanol. Protic and polar solvents favor the formation of the β-phase in our block 

copolymers as described for other PFO-based systems.11 

300 350 400 450 500
0,0

0,2

0,4

0,6

0,8

1,0

 

 

A
bs

or
pt

io
n 

(a
.u

.)

Wavelength (nm)

 MeOH
 THF/MeOH 1:1
 THF

a

400 450 500 550 600
0,0

0,2

0,4

0,6

0,8

1,0

λ
exc

 = 380 nm

 

 

P
L 

In
te

ns
ity

 (
a.

u.
)

Wavelength (nm)

 MeOH
 THF/MeOH1:1
 THF

b

 

Figure 4.1. a) UV-Vis and b) photoluminescence spectra of the diblock copolymer PF6NBr-b-PFO in 

methanol, THF/methanol (1:1), and THF, (λexc= 380 nm). 

 

4.2.3. Atomic Force Microscopy of Thin Films  

 

Having first indications of aggregation from the absorption and photoluminescence spectra 

we also investigated the aggregation behavior of the all-conjugated, cationic diblock 

copolymer PF6NBr-b-PFO by tapping mode Atomic Force Microscopy (AFM) imaging 

technique. Here, the aggregation behavior in a selective solvent (methanol) for the polar block 

and a non-selective solvent (THF) will be discussed in detail. Figure 4.2(a+b) gives an 

exemplary illustration of the formation of vesicular aggregates from methanolic solution. 

Films spin-coated onto mica from methanolic solution (0.1% of PF6NBr-b-PFO) show the 

occurrence of clearly visible vesicular particles with a diameter of several 10 nanometers as 

well as larger aggregates. 

Further AFM experiments have been carried out in THF for the same concentration (0.1%) of 

the polyelectrolyte diblock copolymer PF6NBr-b-PFO [Figure 4.2(c+d)]. Spin-coated a THF 
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(0.1%) solution (after aging for 10 days) 

probably due to a pre-aggregation processes during aging.

The preferred formation of low curvature 

conjugated diblock copolymers

curvature aggregates should be, herby, widely

diblock copolymers and the block length ratio.

Figure 4.2. Tapping mode AFM m
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Furthermore, AFM also allows 
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The topography image of Figure 

methanol. For comparison, AFM experiments have

solutions at the same concentration (0.1
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(after aging for 10 days) leads to a dense coverage of the substrate most 

aggregation processes during aging. 

preferred formation of low curvature vesicular aggregates for rigid rod

conjugated diblock copolymers was recently rationalized.20 The self-assembly

curvature aggregates should be, herby, widely independent from the molecular

diblock copolymers and the block length ratio.21,22 

AFM morphology (a and c) and phase (b and d) images of PF6NBr

0.1% in methanol (a and b) and 0.1% THF (c and d), spin-coated, (image size: 2.0x2.0

allows for differentiating between charged and neutral blocks based 

electrostatic surface potential of the blocks. Films spin

from a dilute methanolic solution (0.1% of PF6NBr

e of isolated spherical aggregates with a diameter of about 50 nanometers.

Figure 4.3(a) illustrates the formation of spherical aggregates from 
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leads to a dense coverage of the substrate most 
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assembly into such low 

molecular weight of the 

 

orphology (a and c) and phase (b and d) images of PF6NBr-b-PFO, 

, (image size: 2.0x2.0 µm). 

between charged and neutral blocks based 

of the blocks. Films spin-coated onto 

PF6NBr-b-PFO by weight) 

about 50 nanometers. 

the formation of spherical aggregates from 

been carried out on films cast from THF 

%) of the polyelectrolyte diblock copolymer PF6NBr-
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b-PFO [Figure 4.3(c)]. In contrast

cast from THF contain cylindrical, worm

Figure 4.3.AFM topography (a and 

0.1% in methanol (a and b) and 0.1%

A comparison of topography and surface potential AFM images provides information about 

the position of the cationic blocks 

aggregates from methanol is low in comparison to the high surface potential of the particles 

from THF we conclude that the ionic block

the particles. The phenomenon

has been previously discussed

 

4.2.4. Confocal Microscopy

 

In addition to our AFM investigations we have studied the aggregate formation process of 

PF6NBr-b-PFO by confocal fluorescence imaging technique. 

In contrast to the spheres observed in films cast from meth

cast from THF contain cylindrical, worm-like aggregates.  

and c) and surface potential (b and d) images of ITO/PF6NBr

b) and 0.1% THF (c and d), spin-coated, (image size: 2.0

comparison of topography and surface potential AFM images provides information about 

the position of the cationic blocks [Figure 4.3(b and d)]. Since the surface 

methanol is low in comparison to the high surface potential of the particles 

THF we conclude that the ionic blocks are located inside (THF) or outside (MeOH) of 

The phenomenon of reverse block morphologies as a function of solvent polarity 

.23  

Confocal Microscopy 

In addition to our AFM investigations we have studied the aggregate formation process of 

by confocal fluorescence imaging technique. PF6NBr-b-PFO

to the spheres observed in films cast from methanol, films 

 

ITO/PF6NBr-b-PFO, 

.0x2.0 µm). 

comparison of topography and surface potential AFM images provides information about 

. Since the surface potential of the 

methanol is low in comparison to the high surface potential of the particles 

located inside (THF) or outside (MeOH) of 

es as a function of solvent polarity 

In addition to our AFM investigations we have studied the aggregate formation process of 

PFO was dissolved 
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in THF (1 mg/mL) and drop cast onto a glass substrate (a traditional microscope slide). The 

same solution was prepared in methanol in order to vary the solvent polarity, analogous to the 
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within the polymersomes in THF solution as compared to the behavior i
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(concentration: 1 mg/mL) on glass substrate in THF (left) and methanol (right). 
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fluorescence microscopy images, compared to the AFM images, should result from a fusion 

of the primarily formed smaller vesicles.
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mobile counter ions can migrate under an applied 
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mg/mL) and drop cast onto a glass substrate (a traditional microscope slide). The 

same solution was prepared in methanol in order to vary the solvent polarity, analogous to the 

Vis analysis. The results of these experiments are shown in Figure 4.4. In THF vesicles or 

polymersomes (polymer liposomes) with a diameter of 12-16 µm are formed, in methanol 

rticles with a diameter of 6-10 µm. Therefore, self-assembly of the diblock 

PFO is observed for both solvents. Because methanol is a good 

solvent for polar PF6NBr blocks it is reasonable to anticipate that the cationic blocks should 

internal solvent phase and PFO to the interior of the polymer

walls for methanolic solutions. In contrast, because THF is a good solvent for the PFO blocks 

PF6NBr we expect an inversion of the block copolymer orientation 

within the polymersomes in THF solution as compared to the behavior in methanol.

. Confocal fluorescence microscopy images of two PF6NBr-b-

mg/mL) on glass substrate in THF (left) and methanol (right).  

By the way, the dramatically increased size of the particles (vesicles) in the confocal 

fluorescence microscopy images, compared to the AFM images, should result from a fusion 

of the primarily formed smaller vesicles. 

Incorporation into Organic Light-Emitting Diodes (OLED

the primary applications of conjugated polyelectrolytes was a use 

emitting diodes (OLEDs) leading to an improved device efficiency

conjugated polyelectrolytes offer functions and device processing opt

attainable by using their neutral counterparts. The conjugated polyelectrolyte 

strong interfacial dipoles are based on their ionic functionalities

migrate under an applied external electric field.
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mg/mL) and drop cast onto a glass substrate (a traditional microscope slide). The 

same solution was prepared in methanol in order to vary the solvent polarity, analogous to the 

. In THF vesicles or 

m are formed, in methanol 

assembly of the diblock 

is observed for both solvents. Because methanol is a good 

solvent for polar PF6NBr blocks it is reasonable to anticipate that the cationic blocks should 

internal solvent phase and PFO to the interior of the polymersome 

walls for methanolic solutions. In contrast, because THF is a good solvent for the PFO blocks 

PF6NBr we expect an inversion of the block copolymer orientation 

n methanol. 

 

-PFO polymersomes 

 

increased size of the particles (vesicles) in the confocal 

fluorescence microscopy images, compared to the AFM images, should result from a fusion 

LEDs) 

 as charge injection 

device efficiency.24 

conjugated polyelectrolytes offer functions and device processing options not 

polyelectrolyte (CPE) materials 

ionic functionalities. Moreover, 

. Their solubility in 
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polar solvents opens the option for quenching multilayer systems in a very simple way via 

solution deposition.25 
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Figure 4.5. a) Chemical structures of MEH-PPV and schematic drawing of a multilayer OLED 

including a PF6NBr-b-PFO interfacial layer. b) Current density versus bias. c) Luminance versus 

bias and d) luminous efficiency versus current density characteristics of the multilayer OLEDs. 

Our polyelectrolyte block copolymer was applied as an organic electron injection layer of 

OLEDs. We have fabricated the OLED devices with PF6NBr-b-PFO as the electron injection 

layer (EIL) via the orthogonal solvent deposition approach. Figure 4.5(a) shows the multilayer 

device configuration used. Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV) is used as the emissive layer (EL) and poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as hole injection layer. The 

multilayer device structure can be fabricated based on the orthogonal solubility of MEH-PPV 

(soluble in toluene) and of PF6NBr-b-PFO (soluble in methanol) that allows the PF6Br-b-

PFO layer to be cast atop the MEH-PPV layer while preventing mixing of these layers and 

allowing for the formation of a defined interface. The current density versus voltage (J-V), 

luminance intensity versus voltage (L-V), and efficiency versus current density (E-J) 

characteristics of devices with thin interlayers are depicted in Figure 4.5 (b-d). Herby, the 

O

O
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n

Al 
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CPE interlayer is made from a solution of 0.5 or 0.1% (w/v) PF6NBr-b-PFO in methanol with 

a thickness of 40-60 nm (for 0.5% w/v) and 5-10 nm (0.1% w/v). The devices with the EIL 

show a low turn-on voltage (2.0-2.5 V). The results indicate that a PF6NBr-b-PFO interlayer 

can effectively reduce the electron injection barrier from the Al electrode, similar to other 

conjugated polyelectrolytes with only a single polyelectrolyte block. The devices with the 

thicker EIL show a lower maximum brightness and lower OLED efficiency as compared to 

the devices with a thin EIL. Based on our previous results, the difference in brightness and 

efficiency between devices with thick and thin EIL layers can be attributed to different 

primary operating mechanisms of the EIL. Thick EILs may preferably operate via ion 

migration whereas thin EILs preferably operate via formation of interfacial dipoles. It may be 

possible that the neutral PFO block of PF6NBr-b-PFO perturbs the ion migration for thick 

EIL films. These observations demonstrate that PF6NBr-b-PFO is a promising candidate as 

EIL layer for improving the electron injection from the cathode in OLED devices.  

 

4.3. Conclusion and Outlook 

 

In summary, we have developed a synthetic protocol towards novel, all-conjugated, cationic 

PF6NBr-b-PFO diblock copolymers. We have studied the photophysical properties and 

aggregation behavior of them in solution and in the solid state. We are able to tune the 

nanophase morphology of the all-conjugated, cationic block copolymer by using different 

solvents (and concentrations). The block copolymers have been used as the electron injection 

layer in OLEDs. 

Figure 4.6 depicts our structure model for the diblock copolymer vesicles (polymersomes) 

that are formed by PF6NBr-b-PFO in methanol and in THF. In methanol the core region of 

the amphiphilic bilayers (vesicle walls) is generated by the aggregation of the non-ionic, 

hydrophobic PFO segments (in orange) while the outer shells of the vesicle walls are formed 

by the ionic, hydrophilic PF6NBr segments (in black). The aggregation leads to the 

occurrence of an interfacial dipole within the conjugated polyelectrolyte layers.26 Aggregation 

in THF results in an inversion of the block orientation compared to that observed in methanol 

as indicated in our AFM experiments.  
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Figure 4.6. Graphical illustration of the vesicle structure formed by PF6NBr

THF (orange: PFO block, black: PF6NBr block).
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4.4. Experimental Section 

 

Materials 

Unless otherwise indicated, all reagents were obtained from commercial suppliers and were 

used without further purification. All reactions were carried out using standard and Schlenk 

techniques under an argon atmosphere. The solvents were used as commercial p.a. quality. 

 

General procedure for the synthesis of 2,7-dibromo-9,9-dialkylfluorene 

2,7-Dibromofluorene (15.8 g, 48.8 mmol), alkylbromide (488 mmol) and 

tetrabutylammonium bromide (1.57 g, 4.88 mmol) were added to an aqueous potassium 

hydroxide solution (300 mL, 45% w/w). The mixture was stirred for 1 h at 80 °C under argon 

atmosphere and then diluted with water (50 mL). The aqueous solution was extracted with 

dichloromethane three times and the combined organic layers were washed with water, 1 M 

HCl, brine, and dried over magnesium sulfate. After removal of the organic solvent, the 

excess alkylbromide was removed under reduced pressure. The crude product, a yellow oil, 

was purified by silica gel column chromatography to afford 2,7-dibromo-9,9-dialkylfluorene 

as a colorless oil, which was recrystallized from ethanol yielding colorless crystals. 

 

2,7-Dibromo-9,9-dioctylfluorene (BrFO) 

According to the general procedure, 2,7-dibromofluorene (3.84 g, 14.76 mmol) was reacted 

with 1-bromooctane (28.50 g, 147.6 mmol) to yield, after purification by column 

chromatography (eluent: n-hexane), about 5.84 g (approx. 72%) of the target compound.  

1H-NMR 500 MHz, CD2Cl2). δ (ppm): 7.50 (d, J = 8.0 Hz, 2H, Ar-H), 7.49-7.46 (m, 4H, Ar-

H), 1.95 (m, 4H, CH2), 1.24-1.06 (m, 24H, CH2), 0.59 (m, 6H, CH3). 
13C-NMR (125 MHz, 

CD2Cl2): δ (ppm): 153.46, 139.9, 130.7, 126.9, 122.0, 121.8, 56.4, 40.7, 32.4, 30.5, 29.8, 

24.3, 23.2, 22,5, 14.5. Elemental analysis: C29H40Br2, calculated (%): C 63.51, H 9.79, 

measured (%): C 63.41, H 9.61. GC-MS: tr = 8.5 min, 100% M+: 548. Mp: 50 °C (± 1 °C). 
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2,7-Dibromo-9,9-bis(6-bromohexyl)fluorene (BrF6Br)  

According to the general procedure, 2,7-dibromofluorene (15.80 g, 48.80 mmol) was reacted 

with 1,6-dibromohexane (117.61 g, 488 mmol) to yield, after purification by column 

chromatography (eluent: CHCl3/hexane = 9:1), about 23.11 g (approx. 72%) of the target 

compound. 

1H-NMR 500 MHz, CD2Cl2). δ (ppm): 8.28 (d, J = 8.0 Hz, 2H, Ar-H), 8.21-8.19 (m, 4H, Ar-

H), 4.03 (t, J = 6.8 Hz, 4H, CH2-Br), 2.68 (quint, J = 4.6 and 3.7 Hz, 4H, CH2), 2.38 (quint, J 

= 7.6 and 6.9 Hz, 4H, CH2), 1.91 (quint, J = 8.5 and 6.9 Hz, 4H, CH2), 1.81 (quint, J = 7.5 and 

7.3 Hz, 4H, CH2), 1.31 (m, 4H, CH2). 
13C-NMR (125 MHz, CD2Cl2): δ (ppm): 150.9, 137.9, 

129.1, 124.9, 120.3, 120.0, 54.3, 38.8, 32.6, 31.4, 27.7,26.5, 22.23. Elemental analysis: 

C29H40Br2, calculated (%): C 46.19, H 4.65, measured (%): C 46.10, H 4.71. GC-MS: tr = 

7.2 min, 100% M+: 650. 

 

General procedure for the synthesis of 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-
yl)-7-bromo-9,9-dialkylfluorene 

2,7-Bromo-9,9-dialkylfluorene (15.4 mmol) was dissolved in dry, degassed diethylether 

(300 mL) and placed in a 500 mL round bottle flask. The solution was cooled down to -78 °C 

and 0.98 equivalents of alkyl lithium (either n-butyllithium or t-butyllithium) was added drop-

wise. The resulting solution was stirred for one hour followed by addition of 2-isopropoxy-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12.6 mL, 61.5 mmol) in one shot. The reaction 

mixture was stirred for one more hour at -78 °C. The mixture was then allowed to warm up to 

room temperature overnight followed by quenching with water (50 mL). The two-phase 

solution was then extracted with dichloromethane three times and the combined organic 

layers were washed with water and brine, and dried over magnesium sulfate. The solvent was 

removed under reduced pressure and the resulting yellow oil was purified by silica gel column 

chromatography to afford 2-(4’,4’,5’,5’-tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-

9,9-dioctylfluorene as a colorless oil.  

 

2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-dioctylfluorene (FO)  

According to the general procedure, 2,7-bromo-9,9-dioctylfluorene (6.0 g, 10.9 mmol) was 

reacted 1.6 M n-butyllithium (6.2 mL, 10.7 mmol) to yield, after purification by column 
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chromatography (eluent: ethyl acetate/hexane = 95:5), about 3.20 g (approx. 49%) of the 

target compound. 

1H-NMR (500 MHz, CDCl3). δ (ppm): 7.81 (d, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 7.66 (d, 1H, 

Ar-H), 7.57 (d, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 7.40 (m, 1H, Ar-H), 2.04-1.90 (m, 4H, Ar-

CH2), 1.39 (bs, 12H, OC(CH3)2C(CH3)2O), 1.29-1.00 (m, 20H, alkyl-H), 0.82 (t, 6H, CH2-

CH3), 0.64-0.47 (m, 4H, alkyl-H). 13C-NMR (125 MHz, CDCl3): δ (ppm): 153.6, 149.5, 

143.0, 140.0, 127.8, 133.9, 129.9, 128.9, 126.2, 121.4, 119.0, 83.8, 55.5, 40.1, 31.8, 29.9, 

29.1, 24.9, 23.6, 22.6, 14.0. Elemental analysis: C35H52BBrO2, calculated (%): C 70.59, H 

8.80, measured (%): C 70.42, H 8.39. GC-MS: tr = 9.8 min, 100% M+: 596. 

 

2-(4’,4’,5’,5’-Tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(6-
bromohexyl)fluorene (F6Br)  

According to the general procedure, 2,7-bromo-9,9-bis(6-bromohexyl)fluorene (10.0 g, 

15.4 mmol) was reacted with 1.7 M t-butyllithium (15.1 mmol) to yield, after purification by 

column chromatography (eluent: ethyl acetate/hexane = 95:5), about 5.60 g (approx. 52%) of 

the target compound. 

1H-NMR (500 MHz, CDCl3). δ (ppm): 7.82 (d, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 7.66 (d, 1H, 

Ar-H), 7.77 (d, 1H, Ar-H), 7.46 (d, 2H, Ar-H), 3.30 (t, 4H, CH2-Br), 2.00 (m, 4H, CH2), 1.67 

(quint., 4H, CH2), 1.42 (s, 12H, OC(CH3)2C(CH3)2O), 1.21 (quint., 4H, CH2), 1.09 (quint., 

4H, CH2), 0.60 (quint., 4H, CH2). 
13C-NMR (125 MHz, CDCl3): δ (ppm): 171.3, 153.3, 149.3, 

142.9, 140.0, 134.0, 130.2, 129.0, 126.3, 121.8, 121.7, 119.2, 83.9, 60.6, 55.4, 39.9, 34.6, 

32.8, 29.1, 27.9, 25.1, 23.6, 21.3, 14.5. Elemental analysis: C31H42BBr3O2, calculated (%): C 

53.40, H 6.07, measured (%): C 53.44, H 66.08. GC-MS: tr = 8.3 min, 100% M+: 697. 

 

Poly[9,9-bis(6-bromohexyl)-2,7-fluorene]-b-poly(9,9-dioctyl-2,7-fluorene) (PF6Br-b-PFO)  

Aqueous 2 M sodium carbonate solution (5 mL) was added to a mixture of 2-(4’,4’,5’,5’-

tetramethyl-1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-dioctylfluorene F8 (150 mg, 

0,25 mmol) in freshly distilled THF (12 mL) in a Schlenk tube under argon. The catalyst  

(t-Bu3P)Pd(C6H5)Br (9.6 mg, 0,025 mmol) in THF (4 mL) was added via a syringe and the 

mixture was stirred for 10 minutes at room temperature. After that 2-(4’,4’,5’,5’-tetramethyl-

1’,3’,2’-dioxaborolane-2’-yl)-7-bromo-9,9-bis(6-bromohexyl)fluorene F6Br (176 mg, 
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0.25 mmol) in THF (2 mL) were added via a syringe and the mixture was stirred for 30 min at 

room temperature. The polymer solution was then poured into acidified methanol (500 mL, 

containing 50 mL of 2 M HCl). The precipitate was isolated via filtration and purified by a 

Soxhlet extraction with methanol. The residue was re-dissolved in chloroform. The polymer 

was isolated by removing the chloroform via rotary evaporation. The residual solid was dried 

under vacuum to a constant weight to give PF6Br-b-PFO as a light yellow solid (178 mg, 

82%).  

1H-NMR (500 MHz, CDCl3). δ (ppm): 7.84 (m, 4H, Ar-H), 7.70 (m, 8H, Ar-H), 3.29 (m, 4H, 

CH2), 2.13 (m, 8H, CH2), 1.70 (m, 4H, CH2), 1.22 (m, 32H, alkyl-CH2), 0.81 (m, 6H, CH2-

CH3). GPC Anal. (THF, 254 nm): Mn = 18 000 g/mol, Mw = 22 900 g/mol, Mw/Mn = 1.27.  

 

Poly[9,9-bis(6-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene]-b-poly(9,9-dioctyl-2,7-
fluorene) (PF6NBr-b-PFO)  

Condensed trimethylamine (2.5 mL) was added drop-wise to a solution of the block 

copolymer precursor (100 mg, Mn = 18 000 g/mol) in THF (50 mL) at -78 °C. The mixture 

was allowed to warm up to room temperature gradually and stired for 16 hrs. The solvent was 

then removed under reduced pressure. The residue was re-dissolved by addition of methanol, 

and a second portion of trimethylamine (2 mL) was added at -78 °C. The mixture was stirred 

vigorously for additional 24 h at room temperature. After removal of most of the solvent 

under reduced pressure the polymer solution was placed in a dialysis bag (cut-off of the 

dialysis membrane: 1,000 g/mol, solvent: water/methanol 1:1) for three weeks for further 

purification. After evaporation of the solvents the polymer was collected and dried under 

reduced pressure to yield about 104 mg (approx. 92%) of the target compound as a yellow 

solid. 

1H-NMR (600 MHz, MeOD). δ (ppm): 7.96-7.80 (m, 12H, Ar-H), 3.22 (m, 22H, N+(CH3)3 

and N+-CH2), 1.70-1.60 (m, 4H, alkyl-CH2), 1.31-1.17 (m, 32H, alkyl-CH2), 0.83 (m, 8H, 

alkyl-CH2), 0.14 (m, 6H, CH2-CH3). UV-Vis (MeOH): λmax, abs = 390 nm. PL (MeOH, λexc = 

380 nm) λmax, em= 414, 437 nm. 
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Device Part 

The organic thin films were prepared on indium tin oxide (ITO)-coated glass substrates (Thin 

Film Devices) for electrical measurements. Therefore, the ITO-coated glass substrate was first 

cleaned with detergent, then ultrasonicated in acetone and isopropyl alcohol, and 

subsequently dried in an oven overnight. The substrates were treated with UV/O3 (UVO 

Cleaner 42, Jelight Co. Inc.) for an hour prior to polymer deposition. 

For OLED fabrication, 0.5% w/v solutions of MEH-PPV in toluene, and 0.5% or 0.1% w/v 

solutions of PF6NBr-b-PFO in methanol, were prepared and stirred at 40 °C overnight prior 

to use. ITO-coated glass substrates were used as the anode onto which a PEDOT:PSS 

dispersion (Baytron 4083, H. C. Stark) was spin-coated at 1500 rpm for 70 s, yielding a 

∼60 nm thick PEDOT:PSS film. The PEDOT:PSS layer was dried at 150 °C for 1 h. The 

MEH-PPV solution was spin-coated at ∼1000 rpm for 60 s atop the PEDOT:PSS layer to 

yield a ∼ 80 nm thick MEH-PPV film. Subsequently, the PF6NBr-b-PFO interlayer was spin-

coated atop the MEH-PPV layer at 3000 rpm for 60 s to yield a 5-10 nm thin interlayer by 

using 0.1% w/v solution of PF6NBr-b-PFO in methanol and a 40-60 nm thick interlayer for 

0.5% w/v solution, respectively. The devices were completed by drying them under a 10-4 torr 

vacuum overnight followed by thermal evaporation of Al electrodes at a pressure of 10-8 torr. 

All fabrication, annealing and testing steps were carried out inside a nitrogen atmosphere dry 

glove box. The film thicknesses were determined by AFM measurements. 

 

Instruments 

NMR 

The 1H and 13C NMR spectra were recorded on a either a Bruker Avance500 500 MHz or a 

Bruker Avance II 600 MHz NMR spectrometer with use of the solvent proton or carbon 

signals as internal standard. 

 

GC-MS 

GC-MS measurements were obtained on Shimadzu GC-17A/QP-5000 EI GCMS (column: 

FS-OV1-CB-0,25) under helium a gas; injection temperature: 280 °C, starting temperature: 

250 °C, heating rate: 6 °C, end temperature: 280 °C, end time: 30 min. 
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Elemental analyses 

Elemental analyses were performed on a Vario EL II (CHNS) instrument. 

 

GPC 

Gel permeation chromatography (GPC) measurements were carried out using a Waters 2695 

Separation Module equipped with Column I-Series Mixed Bed High Molecular Weight 

Viscotek columns with separation range 1000 – 10 M (30 cm x 7.8 mm i.d.), a 2414 RI 

detector and a 2996 photodiode array (PDA) detector. THF was employed as the solvent and 

polystyrene (PSS) standards were used for calibration. The measurements were obtained at 

30 °C. 

 

UV-Vis  

UV-Vis absorption spectra were recorded on a Shimadzu UV-2401 PC spectrophotometer at 

room temperature. 

 

Photoluminescence spectroscopy 

Fluorescence measurements were carried out on a Shimadzu UV-2401 instrument at room 

temperature. 

 

Confocal flourescence microscope 

Confocal fluorescence images were collected using a Leica TCS SP high resolution spectral 

confocal microscope equipped with a Millennia® series argon laser S-10 excitation source. 

The polymer samples were prepared by depositing a polymer solution onto glas slide 

followed by placement of a cover slip. The slide was inverted and placed onto the microscope 

stage (cover slip down) and the sample imaged in epi-fluorescence mode. 
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AFM  

Atomic force microscopy measurements were recorded using a under nitrogen environment 

using a commercial scanning probe microscope (MultiMode and Nanoscope Controller IIIa, 

Veeco Inc.). Surface potential measurements were collected using a Veeco diDimension Icon 

atomic force microscope instrument. 
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Chapter 5 

5. Summary 

 

Within this thesis, new all-conjugated, cationic diblock copolyelectrolytes, based on 

polyfluorene and polythiophene blocks, have been successfully synthesized. Their 

photophysical properties and aggregation behavior have been studied in solution and in the 

solid state. Especially PF2/6-b-P3MAHT shows a significant solvatochromatic effect in 

THF/water mixtures. Bilayer-based vesicles (polymersomes) with diameters of several 

microns have been observed for PF2/6-b-P3PyHT and PF2/6-b-P3TMAHT diblock 

copolymers. Using solvents of different polarity (THF versus methanol) leads to a tunable 

self-assembly for PF6NBr-b-PFO with a different arrangement of the components within the 

vesicle walls. Because of the resulting control on the formed nano-scaled arrangement CPEs 

are also promising materials for an incorporation into optoelectronic devices. The application 

of P3TMAHT and PF2/6-b-P3TMAHT as thin electron extraction layers of BHJ-type organic 

solar cells leads to an increase of the PCE from ca. 5.3 to ca. 6.5%. Further on, PF6NBr-b-

PFO has been used as thin electron injection layer of OLEDs. Such CPEs are promising 

candidates for improving the electron injection into the organic layers of OLEDs. 

Furthermore, ionic surfactants, organic acids or biomolecules as DNA lead to a selective 

quenching and/or a characteristic red shift of the polythiophene-based emission band of 

PF2/6-b-P3TMAHT in due to a conformational re-organization. In this perspective PF2/6-b-

P3TMAHT seems to be a very attractive material for sensors/biosensor applications. 
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