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2 0 INTRODUCTION

0 Introduction

In this thesis we are mainly concerned with local wellposedness (LWP) problems for
nonlinear evolution equations, two global results will then be a direct consequence
of conservation laws. A standard scheme to prove LWP is the application of the
contraction mapping principle to the corresponding integral equation in a suitable
Banach function space, usually of the type Ct(I,Hs

x)∩Zs, where the choice of Zs is
determined by the knowledge of certain space time estimates for the solutions of the
corresponding linear equation. In this context the use of a two parameter scale of
function spaces closely adapted to the linear equation was introduced by Bourgain
in [B93]. The use of these spaces not only benefits of the above mentioned space
time estimates, but also exploits certain structural properties of the nonlinearity,
thus improving in many cases the results previously known. The idea was picked
up by many authors, further developed and simplyfied, and is meanwhile known as
the ”Fourier restriction norm method”.

This thesis is divided into two parts, the first of them being devoted to the
description of this method, starting with definitions and elementary properties,
continuing with a general local existence theorem, which reduces the wellposedness
problem to nonlinear estimates, explaining how to insert the space time estimates
into the framework of the method and finally discussing two strategies to tackle the
crucial nonlinear estimates. It also contains, in a slightly modified form, some of the
Strichartz type estimates for the Schrödinger equation in the periodic case due to
Bourgain. This descriptive part is - of course - based on Bourgain’s work [B93], but
even more on the survey article by Ginibre [G96] and the second section of [GTV97].
We have tried to reach a high degree of selfcontainedness in this exposition.

The second part contains the new research results, which we have obtained
by the method. Here we are concerned with a certain class of derivative nonlinear
Schrödinger equations, with solutions of nonlinear Schrödinger equations in Sobolev
spaces of negative index and, finally, with the generalized Korteweg-deVries equation
of order three. For a detailed summary we refer to the beginning of part II.

At this place I want to thank my advisor Prof. Dr. H. Pecher for his support
during the research for this thesis. I also wish to thank Prof. Dr. R. Michel, who
employed me at his chair and without whose support this thesis could not have
been written. Moreover, I want to thank my colleagues Dr. Leonard Frerick and
Dr. Daren Kunkle for numerous helpful discussions.
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Part I

Description of the Fourier
restriction norm method

1 The framework: Reduction of wellposedness prob-
lems to nonlinear estimates

In this section we introduce the function spaces Xs,b(φ) for arbitrary measurable
phase functions φ of at most polynomial growth and the corresponding restriction
norm spaces. Elementary properties - such as duality, interpolation, embedding
with respect to the time variable and behaviour under time reversion respectively
complex conjugation - are studied. In order to cover a limiting case we also in-
troduce the auxiliary spaces Ys(φ). The basic estimates for the solutions of the
homogeneous and inhomogeneous linear evolution equations are shown. Finally we
state and prove a general local existence theorem for nonlinear evolution equations,
which reduces the problem of local wellposedness - that is existence, uniqueness, per-
sistence property and continuous dependance on the data - to nonlinear estimates.
We include some remarks on the meaning of the nonlinearity for distributions in
Xs,b(φ) with s < 0. All the arguments in this exposition of the framework of the
Fourier restriction norm method are independent of the phase function.

1.1 The Xs,b(φ)-spaces: Definitions and elementary proper-
ties

Let φ : Rn → R be a measurable function. By the Fourier transform Fx :
Hs

x(Rn) → L2(Rn, 〈ξ〉s)1 one defines for D := −i∇ = −i(∂x1 , ..., ∂xn) the oper-
ator

φ(D) := F−1
x φ(ξ)Fx

with domain ∆ := {f ∈ Hs
x(Rn) : φFxf ∈ L2(Rn, 〈ξ〉s)}. Then φ(D) : ∆ →

Hs
x(Rn) is selfadjoint and generates a unitary group denoted by

(Uφ(t))t∈R := (exp (itφ(D)))t∈R.

Let f ∈ ∆. Then u(t) := Uφ(t)f is the solution of the Cauchy-problem (CP)

∂tu− iφ(D)u = 0, u(0) = f. (1)

The solution of the inhomogeneous linear equation

∂tv − iφ(D)v = F ∈ C0
t (R,Hs

x(Rn)), v(0) = 0 (2)

is given by

v(t) =
∫ t

0

Uφ(t− t′)F (t′)dt′ =: Uφ∗RF (t), (3)

1We use the notation 〈x〉 = (1 + |x|2)
1
2 .
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see e. g. [CH], chapters 4 and 5. The function φ arising in this context is called
phase function. Important examples are:

Example 1.1 (The Schrödinger equation)

∂tu− i∆u = 0 with φ(ξ) = −|ξ|2, n ∈ N.

Example 1.2 (The Airy equation)

∂tu + ∂3
xu = 0 with φ(ξ) = ξ3, n = 1.

Now let Hb
t (R) (respectively Hs

x(Rn)) be the usual Sobolev space of functions
depending on the time variable t (respectively on the space variable x) and Hs

x(Rn)⊗
Hb

t (R) the complete tensor product of these spaces. Then the Hilbert space Xs,b(φ)
is defined as follows:

Definition 1.1 Let Xs,b(φ) be the completion of
⋂

s,b∈R Hs
x(Rn) ⊗ Hb

t (R) with
respect to the norm

‖f‖Xs,b(φ) := ‖Uφ(−·)f‖Hs
x(Rn)⊗Hb

t (R).

Similarly for phase functions φ : Zn → R one defines the selfadjoint operators

φ(D) := F−1
x φ(ξ)Fx

with domain ∆ := {f ∈ Hs
x(Tn) : φFxf ∈ l2(Zn, 〈ξ〉s)}, generating a unitary

group (Uφ(t))t∈R with u(t) := Uφ(t)f for f ∈ ∆ being the solution of (1), which is
now called the periodic boundary value problem (pbvp). Here the solution of the
inhomogeneous linear equation (2) - with Hs

x(Rn) replaced by Hs
x(Tn) - is again

given by (3). The definition of the spaces Xs,b(φ) is now completely analogous:

Definition 1.2 In the periodic case the spaces Xs,b(φ) are defined as the completion
of

⋂
s,b∈R Hs

x(Tn)⊗Hb
t (R) with respect to the norm

‖f‖Xs,b(φ) = ‖Uφ(−·)f‖Hs
x(Tn)⊗Hb

t (R).

In the sequel we shall write for short Hb
t instead of Hb

t (R) and Hs
x instead of

Hs
x(Rn) respectively Hs

x(Tn), if a statement is valid in both cases or if it is clear
from the context, whether we are dealing with the periodic or with the nonperiodic
case. In the same way we use the notation L2

x. Moreover we shall use the notations
Hs,b for Hs

x ⊗Hb
t and H =

⋂
s,b∈R Hs,b.

Concerning the phase functions we assume from now on that they do not grow
faster than a polynomial.

Now for b, s ∈ R, f ∈ H we write

Js
xf := F−1

x 〈ξ〉sFxf

Jb
t f := F−1

t 〈τ〉bF tf

Λbf := UφJb
t Uφ(−·)f .
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Then we have ‖Jσ
x f‖Xs−σ,b(φ) = ‖f‖Xs,b(φ), and the extension of Jσ

x , which is
denoted again by Jσ

x , is an isometric isomorphism

Jσ
x : Xs,b(φ) ∼−→Xs−σ,b(φ). (4)

In the sequel it will be shown that a corresponding statement holds true for the
mapping Λβ . We start with the following

Lemma 1.1 For functions f ∈ H the identities

‖Λβf‖Xs,b−β(φ) = ‖f‖Xs,b(φ) (5)

FΛβf(ξ, τ) = 〈τ − φ(ξ)〉βFf(ξ, τ) (6)

‖f‖2Xs,b(φ) =
∫ ∫

〈τ − φ(ξ)〉2b〈ξ〉2s|Ff(ξ, τ)|2dτµ(dξ) (7)

are valid. Here µ in (7) denotes the Lebesgue measure on Rn respectively the count-
ing measure on Zn.

Proof: Concerning (5) we have

‖Λβf‖Xs,b−β(φ) = ‖UφJβ
t Uφ(−·)f‖Xs,b−β(φ)

= ‖Jβ
t Uφ(−·)f‖Hs,b−β

= ‖Uφ(−·)f‖Hs,b = ‖f‖Xs,b(φ).

To see (6), we use (F t(exp (ia·)g))(τ) = F tg(τ − a) to obtain

FΛβf(ξ, τ) = FUφJβ
t Uφ(−·)f(ξ, τ)

= F t exp (iφ(ξ)·)Jβ
t FxUφ(−·)f(ξ, τ)

= 〈τ − φ(ξ)〉βFUφ(−·)f(ξ, τ − φ(ξ))
= 〈τ − φ(ξ)〉βF t exp (−iφ(ξ)·)Fxf(ξ, τ − φ(ξ))
= 〈τ − φ(ξ)〉βFf(ξ, τ).

Considering (7), we observe that X0,0(φ) = L2
t (R, L2

x) and use (4), (5), Plancherel
resp. Parseval and (6) to see that

‖f‖2Xs,b(φ) = ‖ΛbJs
xf‖2L2

t (R,L2
x)

= ‖FΛbJs
xf‖2L2

τ (R,L2
ξ
(µ))

=
∫ ∫

〈τ − φ(ξ)〉2b〈ξ〉2s|Ff(ξ, τ)|2dτµ(dξ) . 2

Corollary 1.1 If the difference of two phase functions φi, i = 1, 2, is bounded, the
corresponding Xs,b(φi)-norms are equivalent.
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Proof: Taking into account that

〈τ − φ1(ξ)〉 ≤ c(1 + |τ − φ1(ξ)|)
≤ c(1 + |φ1(ξ)− φ2(ξ)|+ |τ − φ2(ξ)|) ≤ c〈τ − φ2(ξ)〉,

this follows from (7). 2

For functions f ∈ H it is clear by (6) and the growth condition on φ that
Λβf still belongs to H. Moreover, for given s̃, b̃ ∈ R there exist s, b ∈ R so that
Hs,b ⊂ Xs̃,b̃(φ). This gives Λβf ∈ ⋂

s,b∈R Xs,b(φ) for f ∈ H.
Thus the linear mapping

Λβ : Xs,b(φ) ⊃ H → Xs,b−β(φ)

is well defined for all s, b, β ∈ R and, by (5), isometric, especially injective. More-
over, for f ∈ H we have ΛβΛ−βf = f , which gives that the range of Λβ is dense in
Xs,b−β(φ). Thus for the extension of Λβ (again denoted by Λβ) we have shown:

Lemma 1.2 The mapping

Λβ : Xs,b(φ) ∼−→Xs,b−β(φ)

is an isometric isomorphism.

By the aid of the previous lemma we are now able to determine the dual spaces
of the Xs,b(φ)-spaces with respect to the inner product on L2

xt and to study their
interpolation properties:

Lemma 1.3 Let < ·, · > denote the inner product on L2
xt and let Φ : X−s,−b(φ) →

(Xs,b(φ))′ be defined by Φ(g)[f ] :=< Js
xΛbf, J−s

x Λ−bg >. Then Φ is an isometric
isomorphism and we have Φ(g)[f ] =< f, g >, whenever f ∈ Xs,b(φ) ∩ L2

xt and
g ∈ X−s,−b(φ) ∩ L2

xt.

Proof: For f ∈ Xs,b(φ), g ∈ X−s,−b(φ) Cauchy Schwarz gives

|Φ(g)[f ]| = | < Js
xΛbf, J−s

x Λ−bg > |
≤ ‖Js

xΛbf‖L2
xt
‖J−s

x Λ−bg‖L2
xt

= ‖f‖Xs,b(φ)‖g‖X−s,−b(φ).

Hence Φ(g) ∈ (Xs,b(φ))′ with ‖Φ(g)‖ ≤ ‖g‖X−s,−b(φ). Moreover, by Lemma 1.2

‖Φ(g)‖ = sup
‖f‖Xs,b(φ)≤1

| < Js
xΛbf, J−s

x Λ−bg > | = sup
‖h‖L2

xt
≤1

| < h, J−s
x Λ−bg > |

= ‖J−s
x Λ−bg‖L2

xt
= ‖g‖X−s,−b(φ).

It remains to show that Φ is onto. Therefore let y be a bounded linear functional
on Xs,b(φ). Then z = y ◦ J−s

x Λ−b is a bounded linear functional on L2
xt, and

by the Riesz’ representation theorem there exists g̃ ∈ L2
xt with z[f̃ ] =< f̃, g̃ >

for all f̃ ∈ L2
xt. Now g := Js

xΛbg̃ belongs to X−s,−b(φ) and a straightforward
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computation gives y[f ] = Φ(g)[f ] for all f ∈ Xs,b(φ). Finally let f ∈ Xs,b(φ) ∩ L2
xt

and g ∈ X−s,−b(φ) ∩ L2
xt. Then

< f, g > = < Uφ(−·)f, Uφ(−·)g >

= < Jb
t Uφ(−·)f, J−b

t Uφ(−·)g >

= < Λbf, Λ−bg > =< Js
xΛbf, J−s

x Λ−bg > .

2

Lemma 1.4 For s0, s1, b0, b1 ∈ R, θ ∈ (0, 1) and b = (1 − θ)b0 + θb1 , s = (1 −
θ)s0 + θs1 we have

(Xs0,b0(φ), Xs1,b1(φ))[θ] = Xs,b(φ)

with equality of norms. Here [θ] denotes the complex interpolation method.

Proof: For σ, β ∈ R define the measure ρ = ρ(σ, β) on R × Zn respectively on
Rn+1 by ∫

fdρ =
∫

f(ξ, τ)〈ξ〉σ〈τ − φ(ξ)〉βdτµ(dξ).

Denote the space of all ρ-measurable and square integrable (with respect to ρ)
functions by L2(ρ(σ, β)). Then the multiplier

M−σ,−β : L2
ξτ = L2(ρ(0, 0)) → L2(ρ(σ, β)), f 7→ 〈ξ〉−σ〈τ − φ(ξ)〉−βf

is an isometric isomorphism. Combined with Plancherel and Lemma 1.2 this gives
that the Fourier transform

F : Xσ,β(φ) ∼−→L2(ρ(σ, β))

is an isometric isomorphism. By theorem 5.5.3 in [BL] we have

(L2(ρ(s0, b0)), L2(ρ(s1, b1)))[θ] = L2(ρ(s, b))

with equal norms. Now, by the properties of an interpolation functor, we obtain
that

Id = F−1F : Xs,b(φ) → (Xs0,b0(φ), Xs1,b1(φ))[θ]

is isomorphic and, since [θ] is exact, also isometric. 2

Combining Sobolev’s embedding theorem (in the time variable) with the duality
lemma we obtain:

Lemma 1.5 For all s ∈ R and independently of the phase function the following
holds true

Xs,b(φ) ⊂ Ct(R,Hs
x) ∀ b >

1
2
, (8)

Xs,b(φ) ⊂ Lp
t (R,Hs

x) ∀ 2 ≤ p < ∞, b ≥ 1
2
− 1

p
, (9)

‖f‖Xs,b(φ) ≤ c‖f‖L1
t (R,Hs

x) ∀ b < −1
2
, (10)

‖f‖Xs,b(φ) ≤ c‖f‖Lp
t (R,Hs

x) ∀ 2 ≥ p > 1, b ≤ 1
2
− 1

p
. (11)
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Proof: We may assume s = 0 without loss of generality. To see (8) we use
Plancherel and Sobolev’s embedding theorem to obtain

‖f‖2L∞t (L2
x) = sup

t

∫
µ(dξ)|Fxf(ξ, t)|2

≤
∫

µ(dξ) sup
t
|Fxf(ξ, t)|2

≤ c

∫
µ(dξ)dτ〈τ〉2b|Ff(ξ, τ)|2 = c‖f‖2H0,b

for b > 1
2 . From this we get

‖f‖L∞t (R,L2
x) = ‖Uφ(−·)f‖L∞t (R,L2

x)

≤ c‖Uφ(−·)f‖H0,b = c‖f‖X0,b(φ).

This is the norm estimate in (8). To see the continuity statement in (8) one now
uses the density of H in X0,b(φ). To see (9) we use Minkowsky’s inequality and
again Sobolev’s embedding theorem to see that

‖f‖Lp
t (R,L2

x) ≤ ‖f‖L2
x(Lp

t )

≤ c‖f‖L2
x(Hb

t ) = c‖f‖H0,b

and argue then as above. Finally we obtain (10) from (8) and (11) from (9) by
duality. 2

Compared with more customary function spaces such as Lp
t (R,Hs

x) or C0
t (R,Hs

x)
the spaces Xs,b(φ) have an exceptional property: They are in general not invariant
under time reversion and complex conjugation. We shall conclude this from the
following

Remark 1.1 Let φi : Rn → R, i = 1, 2, be continuous phase functions with
supξ |φ1(ξ)− φ2(ξ)| = ∞. Then for all c ∈ R, b 6= 0 the estimate

1
c
‖f‖Xs,b(φ2) ≤ ‖f‖Xs,b(φ1) ≤ c‖f‖Xs,b(φ2) (12)

fails. The same statement holds for phase functions φi : Zn → R, i = 1, 2 .

Proof: By (4) we may assume s = 0. Next we observe that then (12) is equivalent
to

1
c
‖f‖H0,b ≤ ‖f‖X0,b(φ1 − φ2) ≤ c‖f‖H0,b .

So it is sufficient to show that for unbounded φ and b 6= 0 the estimate

1
c
‖f‖H0,b ≤ ‖f‖X0,b(φ) ≤ c‖f‖H0,b

fails. Consider the nonperiodic case first: We choose sequences ξk in Rn with
limk∈N |φ(ξk)| = ∞ and εk with |φ(ξ + ξk) − φ(ξk)| ≤ 1 for all |ξ| < εk. Now let
0 < χn ∈ C∞0 (Rn) with Supp(χn) ⊂ B1(0). We define the functions fk by

Ffk(ξ, τ) = ψεk
(ξ − ξk)χ1(τ) with ψε(ξ) = ε−

n
2 χn(

ξ

ε
).
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Then ‖fk‖H0,b is constant and

‖fk‖2X0,b(φ) =
∫ ∫

〈τ − φ(ξ + ξk)〉2bψ2
εk

(ξ)χ2
1(τ)dξdτ.

For k →∞ this tends to ∞, if b > 0, and to zero, if b < 0.
In the periodic case the proof is almost the same, except that in this case one

chooses Ffk(ξ, τ) = δξ,ξk
χ1(τ). 2

Corollary 1.2 Assume φ to be unbounded and continuous. Then we have

i) Xs,b(φ) is not invariant under time reversion.

ii) If supξ |φ(ξ) + φ(−ξ)| = ∞, then Xs,b(φ) is not closed under complex conju-
gation.

Proof: For f−(x, t) = f(x,−t) we have Ff−(ξ, τ) = Ff(ξ,−τ), which implies

‖f−‖Xs,b(φ) = ‖f‖Xs,b(−φ).

This gives i). To see ii), observe that Ff(ξ, τ) = Ff(−ξ,−τ), which gives

‖f‖Xs,b(φ) = ‖f‖
Xs,b(φ̃)

with φ̃(ξ) = −φ(−ξ). 2

In the applications one is sometimes forced to choose the parameters b = b′+1 =
1
2 . This leads to several problems, among others we cannot rely on the embedding
Xs,b(φ) ⊂ Ct(R,Hs

x) in this case. Here the auxiliary spaces Ys(φ) turn out to be
useful, which are defined as completion of H with respect to the norm

‖f‖Ys(φ) := ‖〈ξ〉s〈τ〉−1F(Uφ(−.)f)‖L2
ξ
(L1

τ )

= ‖〈ξ〉s〈τ − φ(ξ)〉−1Ff‖L2
ξ
(L1

τ ).

Observe that by Cauchy-Schwarz’ inequality we have Xs,b′(φ) ⊂ Ys(φ) with a con-
tinuous embedding, whenever b′ > − 1

2 .
Next we introduce the restriction norm spaces XΩ

s,b(φ), where Ω is a domain in
Rn+1 respectively in R×Tn:

Definition 1.3 The restriction norm spaces XΩ
s,b(φ) are defined by

XΩ
s,b(φ) := {f |Ω : f ∈ Xs,b(φ)},

endowed with the norm

‖f‖XΩ
s,b(φ) := inf{‖f̃‖Xs,b(φ) : f̃ ∈ Xs,b(φ), f̃ |Ω = f}.
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Notation: In most cases we will have Ω = I, where I = (−δ, δ)×Rn respectively
I = (−δ, δ)×Tn, and then we will write Xδ

s,b(φ) instead of XΩ
s,b(φ).

The spaces Xs,b(φ) are Hilbert spaces. From this it follows that the infimum
in the above definition is in fact a minimum. Moreover, for the Xδ

s,b(φ)-spaces we
have the following

Lemma 1.6 For u ∈ Xδ
σ,b(φ) there exists ũ ∈ Xσ,b(φ) with ũ|I = u, such that for

all s ≤ σ
‖u‖

Xδ
s,b(φ) = ‖ũ‖Xs,b(φ).

Proof: Let Rσ,b : Xσ,b(φ) → Xδ
σ,b(φ), u 7→ u|I , denote the restriction operator

and N(Rσ,b) its null space. Then

Rσ,b|N(Rσ,b)⊥ : N(Rσ,b)⊥ → Xδ
σ,b(φ)

is one to one, that is, for u ∈ Xδ
σ,b(φ) there exists exactly one extension ũ ∈

N(Rσ,b)⊥. For this extension ũ we have

‖u‖Xδ
σ,b

(φ) = inf{‖ṽ‖Xσ,b(φ) : ṽ ∈ Xσ,b(φ), ṽ|I = u}
= inf{‖ũ + w̃‖Xσ,b(φ) : w̃ ∈ N(Rσ,b)} = ‖ũ‖Xσ,b(φ),

since ‖ũ‖2Xσ,b(φ) ≤ ‖ũ‖2Xσ,b(φ) + ‖w̃‖2Xσ,b(φ) = ‖ũ + w̃‖2Xσ,b(φ). Now u ∈ Xδ
σ,b(φ)

implies that u ∈ Xδ
s,b(φ), s ≤ σ. The same argument gives that there is exactly one

extension ṽ ∈ N(Rs,b)⊥ ⊂ Xs,b(φ) of u and that ‖u‖
Xδ

s,b(φ)= ‖ṽ‖Xs,b(φ).

To see that ũ = ṽ, we have only to show that ũ ∈ N(Rs,b)⊥. Therefore let w ∈
Xs,b(φ) with w|I = 0. Then J

2(s−σ)
x w ∈ X2σ−s,b(φ) ⊂ Xσ,b(φ) and J

2(s−σ)
x w|I = 0.

This gives

0 =
∫

µ(dξ)dτ〈ξ〉2σ〈τ − φ(ξ)〉2bF ũF(J2(s−σ)
x w)

=
∫

µ(dξ)dτ〈ξ〉2s〈τ − φ(ξ)〉2bF ũFw,

that is ũ ∈ N(Rs,b)⊥. 2

Remark : The proof shows that for all u ∈ XΩ
s,b(φ) there exists an extension

ũ ∈ Xs,b(φ) with ‖u‖XΩ
s,b(φ) = ‖ũ‖Xs,b(φ).

1.2 Cut off functions and linear estimates

To localize in time one uses cut off functions ψ ∈ C∞0 (R) having the properties

i) supp(ψ) ⊂ (−2, 2)

ii) ψ|[−1,1] = 1

iii) ψ(t) = ψ(−t), ψ(t) ≥ 0.

For 0 < δ ≤ 1 one defines ψδ(t) := ψ( t
δ ). Then the following estimate is an

immediate consequence of the definition of the Xs,b(φ)-spaces:
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Lemma 1.7 (Estimate for the homogeneous linear equation) Let b ≥ 0. Then
for the solution u of the Cauchy (respectively periodic boundary value) problem (1)
the estimate

‖ψδu‖Xs,b(φ) ≤ cδ
1
2−b‖f‖Hs

x

holds true.

Proof: Using u = Uφf we obtain

‖ψδu‖Xs,b(φ) = ‖Uφ(−.)ψδUφf‖Hs,b

= ‖ψδf‖Hs,b = ‖ψδ‖Hb
t
‖f‖Hs

x
.

Now the claimed estimate follows from ‖ψδ‖Hb
t
≤ cδ

1
2−b‖ψ‖Hb

t
. 2

Lemma 1.8 If F ∈ Ys(φ)∩Ct(R,Hs
x), then Uφ∗RF belongs to Ct([−T, T ], Hs

x) for
all 0 < T < ∞ and the estimate

sup
|t|≤T

‖Uφ∗RF (t)‖Hs
x
≤ c〈T 〉‖F‖Ys(φ) (13)

holds true.

Proof: It follows from the group properties of Uφ that Uφ∗RF is continuous. To
see (13), we write g(t) = Js

xUφ(−t)F (t). Then we have to show for |t| ≤ T that

‖ ∫ t

0
g(t′)dt′‖L2

x
≤ c〈T 〉‖〈τ〉−1Fg‖L2

ξ
(L1

τ ). (14)

To see this, we write
∫ t

0
g(t′)dt′ = g ∗ χ[0,t](t) and calculate

F tg ∗ χ[0,t](τ) = cF tg(τ)F tχ[0,t](τ) = c
1− e−itτ

iτ
F tg(τ).

Now | 1−e−itτ

τ | ≤ c〈t〉〈τ〉−1 and by assumption F tg ∗ χ[0,t] ∈ L1
τ . Thus the Fourier

inversion formula can be applied to obtain

∫ t

0

g(t′)dt′ = c

∫ ∞

−∞

eitτ − 1
iτ

F tg(τ)dτ.

Using Plancherel’s theorem we see that

‖ ∫ t

0
g(t′)dt′‖2

L2
x

=
∫

µ(dξ)dτdτ ′
eitτ − 1

τ
Fg(τ)

e−itτ ′ − 1
τ ′

Fg(τ ′)

≤ c(1 + t2)
∫

µ(dξ)dτdτ ′〈τ〉−1|Fg(τ)|〈τ ′〉−1|Fg(τ ′)|

≤ c(1 + t2)‖〈τ〉−1Fg‖2L2
ξ
(L1

τ ),

which gives (14). 2
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Remark/Definition: (13) expresses the boundedness of

Uφ∗R : Ys(φ) ⊃ Ys(φ) ∩ Ct(R,Hs
x) → Ct([−T, T ],Hs

x).

Thus Uφ∗R can be extended uniquely to a bounded linear operator (denoted by
Uφ∗R again) from Ys(φ) into Ct([−T, T ],Hs

x). Here it is important that Uφ∗RF is
continuous for F ∈ Ys(φ). For the extended operator we have Uφ∗RF (0) = 0 and
Uφ∗RF solves ut − iφ(D)u = F in the sense of distributions. Moreover the identity

Uφ∗RF (t + t1) = Uφ(t)Uφ∗RF (t1) + Uφ∗R(τ−t1F )(t) (15)

holds true, where τ−t1F (t) = F (t + t1). This is easily checked for F ∈ Ct(R,Hs
x)

and follows in the general case by approximation.

Lemma 1.9 (Estimate for the inhomogeneous linear equation) Let b′+1 ≥
b ≥ 0 ≥ b′. Then the following estimate is valid:

‖ψδUφ∗RF‖Xs,b(φ) ≤ cδ1+b′−b‖F‖Xs,b′(φ) + c1δ
1
2−b‖F‖Ys(φ). (16)

If in addition b′ > −1/2, (16) holds with c1 = 0.

Proof: Without loss of generality we may assume F ∈ H, since the general case
then follows by an approximation argument again.

First we show for Kg(t) := ψδ(t)
∫ t

0
g(t′)dt′ that

‖Kg‖Hb
t
≤ cδ1+b′−b‖g‖Hb′

t
+ c0δ

1
2−b‖〈τ〉−1F tg‖L1

τ
, (17)

where we may choose c0 = 0, if b′ > − 1
2 . We have (cf. the previous proof)

∫ t

0

g(t′)dt′ = c

∫ ∞

−∞

exp (itτ)− 1
iτ

F tg(τ)dτ

and thus Kg(t) = I + II + III with

I = ψδ

∑

k≥1

tk

k!

∫

|τ |δ≤1

(iτ)k−1F tg(τ)dτ

II = −ψδ

∫

|τ |δ≥1

(iτ)−1F tg(τ)dτ

III = ψδ

∫

|τ |δ≥1

(iτ)−1 exp (itτ)F tg(τ)dτ.

The first contribution can be estimated for 1 ≥ b ≥ 0 ≥ b′ as follows:

‖I‖Hb
t
≤

∑

k≥1

1
k!
‖tkψδ‖Hb

t

∫

|τ |δ≤1

|τ |k−1|F tg(τ)|dτ,

where ∫

|τ |δ≤1

|τ |k−1|F tg(τ)|dτ ≤ δ1−k

∫

|τ |δ≤1

〈τ〉−b′〈τ〉b′ |F tg(τ)|dτ

≤ δ1−k(
∫

|τ |δ≤1

〈τ〉−2b′dτ)
1
2 ‖g‖Hb′

t

≤ cδ
1
2+b′−k‖g‖Hb′

t
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and

‖tkψδ‖2Hb
t

=
∫
〈τ〉2b|(∂k

τF tψδ)(τ)|2dτ

= δ2k+2

∫
〈τ〉2b|(F tψ)(k)(δτ)|2dτ

≤ cδ2k−2b+1

∫
〈τ〉2b|(F tψ)(k)(τ)|2dτ = cδ2k−2b+1‖tkψ‖2Hb

t
.

By the support condition on ψ we have

‖tkψ‖Hb
t
≤ ‖tkψ‖H1

t
≤ c(k + 1)2k‖ψ‖H1

t
,

hence

‖I‖Hb
t
≤

∑

k≥1

‖tkψ‖Hb
t

k!
δ1+b′−b‖g‖Hb′

t
≤ cδ1+b′−b‖g‖Hb′

t
.

Next we consider the second contribution: For b ≥ 0 we have

‖II‖Hb
t

≤ c‖ψδ‖Hb
t

∫

|τ |δ≥1

|τ |−1|F tg(τ)|dτ

≤ c0δ
1/2−b‖〈τ〉−1F tg‖L1

τ
.

For b′ > − 1
2 we use Cauchy Schwarz to obtain

‖II‖Hb
t

≤ c‖ψδ‖Hb
t

∫

|τ |δ≥1

|τ |−1|F tg(τ)|dτ

≤ cδ1/2−b‖g‖Hb′
t

(
∫

|τ |δ≥1

|τ |−2|〈τ〉−2b′dτ)
1
2

≤ cδ1+b′−b‖g‖Hb′
t

.

Finally, for the integral J arising in III we have

J = cF t
−1(iτ)−1χ|τ |δ≥1F tg

and thus

‖J‖2Hb
t

≤ c

∫

|τ |δ≥1

〈τ〉2b−2−2b′〈τ〉2b′ |F tg(τ)|2dτ

≤ c sup
|τ |≥ 1

δ

|τ |2b−2−2b′‖g‖2Hb′
t

.

For all b, b′ ∈ R satisfying b− b′ ≤ 1 this gives

‖J‖Hb
t
≤ cδ1+b′−b‖g‖Hb′

t
.

For the Fourier transform of the product ψδJ we have

〈τ〉bF t(ψδJ)(τ) = 〈τ〉b
∫

dτ1F tψδ(τ1)F tJ(τ − τ1)

≤ c

∫
dτ1|τ1|b|F tψδ(τ1)F tJ(τ − τ1)|

+
∫

dτ1|F tψδ(τ1)|〈τ − τ1〉b|F tJ(τ − τ1)|.
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This gives

‖ψδJ‖Hb
t

≤ ‖(|τ |b|F tψδ|) ∗ |F tJ |‖L2
τ

+ ‖|F tψδ| ∗ (〈τ〉b|F tJ |)‖L2
τ

≤ ‖|τ |b|F tψδ|‖L1
τ
‖J‖L2

t
+ ‖F tψδ‖L1

τ
‖J‖Hb

t

≤ c(δ−b‖J‖L2
t
+ ‖J‖Hb

t
) ≤ δ1+b′−b‖g‖Hb′

t
.

Now (17) is shown. It follows that for fixed ξ:
∫
〈τ〉2b|FKg(ξ, τ)|2dτ

≤ 2cδ2(1+b′−b)

∫
〈τ〉2b′ |Fg(ξ, τ)|2dτ + 2c0δ

1−2b(
∫
〈τ〉−1|Fg(ξ, τ)|dτ)2

Multiplying with 〈ξ〉2s and integrating with respect to µ(dξ) we obtain

‖Kg‖2Hs,b ≤ cδ2(1+b′−b)‖g‖2Hs,b′ + 2c0δ
1−2b‖〈ξ〉s〈τ〉−1Fg‖2L2

ξ
(L1

τ ),

respectively with c1 =
√

2c0:

‖Kg‖Hs,b ≤ cδ1+b′−b‖g‖Hs,b′ + c1δ
1
2−b‖〈ξ〉s〈τ〉−1Fg‖L2

ξ
(L1

τ ).

Applied to g(t) = Uφ(−t)F (t) this gives (16). 2

Lemma 1.10 Let f ∈ Xs,b(φ), ψδ as above and s ∈ R. Then we have the following
estimates:

i) ‖ψδf‖Xs,b′(φ) ≤ cδb−b′‖f‖Xs,b(φ) for 1
2 > b > b′ ≥ 0 or 0 ≥ b > b′ > − 1

2 ,

ii) ‖ψδf‖Xs, 1
2
(φ) ≤ cεδ

−ε‖f‖Xs, 1
2
(φ), ε > 0.

Proof: Consider i) and assume b > b′ ≥ 0 first. For g ∈ Hb
t , f ∈ Hβ

t we use that

‖fg‖Hb′
t
≤ c‖f‖Hβ

t
‖g‖Hb

t
(18)

with β = 1
2 − (b− b′) (see Lemma 2.10 in section 2.2) to obtain

‖ψδg‖Hb′
t
≤ c‖ψδ‖Hβ

t
‖g‖Hb

t
≤ cδb−b′‖g‖Hb

t
,

since ‖ψδ‖Hβ
t
≤ cδ

1
2−β‖ψ‖Hβ

t
. From this we get for f ∈ Xs,b(φ):

‖ψδf‖Xs,b′(φ) = ‖Uφ(−·)ψδf‖Hs,b′

= ‖ψδUφ(−·)f‖Hs,b′

≤ cδb−b′‖Uφ(−·)f‖Hs,b = cδb−b′‖f‖Xs,b(φ).

By duality the same inequality holds for 0 ≥ b > b′ > −1/2. The proof of ii) follows
the same lines, using

‖fg‖
H

1
2

t

≤ c‖f‖
H

1
2 +ε

t

‖g‖
H

1
2

t

(see again Lemma 2.10 in section 2.2) instead of (18). 2
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1.3 The general local existence theorem

The spaces Xs,b(φ) have turned out to be very useful to prove existence and unique-
ness results for initial value problems

u(0) = u0 ∈ Hs
x (19)

for nonlinear evolution equations

∂tu− iφ(D)u = N(u), (20)

where N is a nonlinear function of u and ∇u. Important examples, which were first
treated with this method, are

Example 1.3 (The nonlinear Schrödinger equation)

∂tu− i∆u = ukul , k, l ∈ N0 (21)

as well as

Example 1.4 (The KdV equation)

∂tu + ∂3
xu = ∂x(u2), (22)

see [B93], [KPV93b], [KPV96a],[KPV96b] and [St97]. In several cases we will con-
sider data and solutions in Sobolev spaces Hs

x with s < 0, so we have to be careful
with the meaning of N(u): For smooth functions u ∈ H we assume N(u) to be
given by

N(u)(x, t) = N0(u(x, t),∇u(x, t)), (23)

where N0 : Cn+1 → C is continuous and satisfies N(0) = 0 as well as

|N0(u1, v1)−N0(u2, v2)| ≤ c1(|u1|α−1|v1|β + |u2|α−1|v2|β)|u1 − u2| (24)
+ c2(|u1|α|v1|β−1 + |u2|α|v2|β−1)|v1 − v2|

for some α, β ≥ 1. (If N0 does not depend on ∇u, we assume (24) only with
c2 = β = 0, and if N0 depends only on ∇u, we assume (24) with c1 = α = 0.) We
shall always rely on a Lipschitz-estimate

‖N(u)−N(v)‖Xs,b′(φ)∩Ys(φ) ≤ C(‖u‖Xs,b(φ) + ‖v‖Xs,b(φ))‖u− v‖Xs,b(φ) (25)

for smooth u and v. Here C : R+
0 → R+

0 is a continuous and nondecreasing function,
s is the Sobolev exponent given with the data, and for the parameters b and b′ we
will approximately have b ≈ b′ + 1 ≈ 1

2 . By the estimate (25) we may extend the
nonlinear mapping N uniquely to the whole Xs,b(φ) by

N(u) := lim
n∈N

N(un),

where un ∈ H, un → u in Xs,b(φ) and the limit is taken in Xs,b′(φ) ∩ Ys(φ). It
is straight forward to check, that this limit does not depend on the approximating
sequence and that the estimate (25) is still valid for the extended operator N .
Obviously the question comes up, for which functions u ∈ Xs,b(φ) our definition of
N(u) coincides with the natural one in (23). Our (partial) answer is the following
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Lemma 1.11 Let u ∈ Xs,b(φ) such that for an open subset Ω ⊂ Rn+1 (respectively
Ω ⊂ R×Tn) u|Ω ∈ Lαp

loc(Ω) and ∇u|Ω ∈ Lβp′

loc (Ω) with 1
p + 1

p′ = 1. Then N(u)|Ω ∈
L1

loc(Ω) and (23) holds for almost all (x, t) ∈ Ω.

Remark: If N0 does not depend on ∇u we only assume u|Ω ∈ Lα
loc(Ω). If N0

depends only on ∇u we assume ∇u|Ω ∈ Lβ
loc(Ω).

Proof: We choose a smooth approximate identity (Jε)ε>0 on Rn+1 (respectively
on R × Tn), so that for u ∈ Xs,b(φ) we have uε := Jε ∗ u ∈ H. Then uε|Ω → u|Ω
in Lαp

loc(Ω) and ∇uε|Ω = (∇u)ε|Ω → ∇u|Ω in Lβp′

loc (Ω). The dominated convergence
theorem gives that uε → u in Xs,b(φ). Hence for φ ∈ C∞0 (Rn+1) (respectively
φ ∈ C∞0 (R × Tn)) supported in K ⊂⊂ Ω and N1(u)(x, t) := N0(u(x, t),∇u(x, t))
we obtain

|N(u)(φ)−N1(u)(φ)| ≤ |N(u)(φ)−N(uε)(φ)|
+‖φ‖L∞x,t

∫

K

dxdt|N0(uε(x, t),∇uε(x, t))−N0(u(x, t),∇u(x, t))| =: I + II.

Since N(uε) → N(u) in Xs,b′(φ), we have I → 0 (ε → 0). Using (24) the integral
in II can be estimated by

c1

∫

K

dxdt(|uε|α−1|∇uε|β + |u|α−1|∇u|β)|uε − u|

+ c2

∫

K

dxdt(|uε|α|∇uε|β−1 + |u|α|∇u|β−1)|∇uε −∇u|

≤ c1(‖uε‖α−1
Lαp(K)‖∇uε‖β

Lβp′ (K)
+ ‖u‖α−1

Lαp(K)‖∇u‖β

Lβp′ (K)
)‖uε − u‖Lαp(K)

+ c2(‖uε‖α
Lαp(K)‖∇uε‖β−1

Lβp′ (K)
+ ‖u‖α

Lαp(K)‖∇u‖β−1

Lβp′ (K)
)‖∇uε −∇u‖Lβp′ (K).

This tends to zero with ε → 0. 2

Corollary 1.3

i) Let Lq
loc denote Lq

loc(R
n+1) respectively Lq

loc(R×Tn). Then, for u ∈ Xs,b(φ)∩
Lαp

loc with ∇u ∈ Lβp′

loc it follows that N(u)(x, t) = N0(u(x, t),∇u(x, t)) a. e..

ii) For u ∈ H, v ∈ Xs,b(φ) with u|Ω = v|Ω we have N(u)|Ω = N(v)|Ω.

For u ∈ H the nonlinear operator N is local in spacetime and commutes with
time translations. This is still true for the extended operator:

Lemma 1.12

i) Let Ω ⊂ Rn+1 (respectively Ω ⊂ R×Tn) be a domain and u, v ∈ Xs,b(φ) with
u|Ω = v|Ω. Then N(u)|Ω = N(v)|Ω.

ii) Let τt denote the time translation τtu(t0) = u(t0 − t). Then for u ∈ Xs,b(φ)
we have N(τtu) = τtN(u).
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Proof: Choose sequences (un)n∈N, (vn)n∈N of smooth functions with un → u,
vn → v in Xs,b(φ).

To see i) we write

‖N(u)|Ω −N(v)|Ω‖XΩ
s,b′ (φ) ≤ ‖N(u)|Ω −N(un)|Ω‖XΩ

s,b′ (φ) (26)

+ ‖N(un)|Ω −N(vn)|Ω‖XΩ
s,b′ (φ) + ‖N(vn)|Ω −N(v)|Ω‖XΩ

s,b′ (φ).

Clearly, ‖N(u)|Ω −N(un)|Ω‖XΩ
s,b′ (φ) ≤ ‖N(u)−N(un)‖Xs,b′ (φ), which tends to zero

with n → ∞. By the same argument the third term in (26) vanishes. Now for all
u′n, v′n ∈ Xs,b(φ) with u′n|Ω = un|Ω and v′n|Ω = vn|Ω we have N(u′n)|Ω = N(un)|Ω
and N(v′n)|Ω = N(vn)|Ω by part ii) of Corollary 1.3. Hence by (25)

‖N(un)|Ω −N(vn)|Ω‖XΩ
s,b′ (φ) ≤ C(‖u′n‖Xs,b(φ) + ‖v′n‖Xs,b(φ))‖u′n − v′n‖Xs,b(φ).

A proper choice of u′n, v′n (cf. the remark below Lemma 1.6) yields the upper bound

C(‖un|Ω‖XΩ
s,b

(φ) + ‖vn|Ω‖XΩ
s,b

(φ))‖un|Ω − vn|Ω‖XΩ
s,b

(φ),

which tends to zero, since ‖un|Ω − vn|Ω‖XΩ
s,b

(φ) ≤ ‖un − u‖Xs,b(φ)+‖vn − v‖Xs,b(φ).

Now part i) is shown.

To see part ii) we first observe that τt is an isometric isomorphism on all the
spaces Xs,b(φ), Ys(φ) and Hs,b, since their norms depend only on the size of the
Fourier transform. Especially we have τtH = H. Hence

N(τtu) = N(τt lim
n∈N

un) = N( lim
n∈N

τtun)

= lim
n∈N

N(τtun) = lim
n∈N

τtN(un) = τtN(u),

where the first two limits are in Xs,b(φ) and the last two are in Xs,b′(φ). 2

Remark/Definition: By part i) of the above Lemma we can now define the
mapping

N : XΩ
s,b(φ) → XΩ

s,b′(φ) by N(u) = N(ũ)|Ω,

where ũ is an arbitrary extension of u.

We now turn to prove a general local existence theorem, which reduces local
wellposedness of (19), (20) to nonlinear estimates. Here by a local solution of (19),
(20) we understand a solution u ∈ Ct((−δ, δ),Hs

x) of the corresponding integral
equation

u(t) = Λu(t) := Uφ(t)u0 + Uφ ∗R N(u)(t), t ∈ (−δ, δ). (27)

Theorem 1.1 (General local wellposedness)

i) Let s ∈ R. Assume that there exist b ≥ 1
2 and θ > 0 such that for all 0 < δ ¿ 1

the estimate

‖Uφ∗R(N(u)−N(v))‖
Xδ

s,b(φ) ≤ δθC(‖u‖
Xδ

s,b(φ) + ‖v‖
Xδ

s,b(φ))‖u− v‖
Xδ

s,b(φ)
(28)
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holds with a nondecreasing function C : R+
0 → R+

0 , and that, for b = 1
2 ,

N(u) ∈ Ys(φ) for all u ∈ Xs,b(φ).

Then there exist δ = δ(‖u0‖Hs
x
) > 0 and a unique solution u ∈ Xδ

s,b(φ) of (27).
This solution belongs to Ct((−δ, δ),Hs

x) and the mapping f : Hs
x → Xδ0

s,b(φ),
u0 7→ u (data upon solution) is locally Lipschitz continuous for any 0 < δ0 < δ.

ii) Assume in addition that u0 ∈ Hσ
x for some σ > s and that also the estimates

‖Uφ∗RN(u)‖
Xδ

σ,b(φ) ≤ δθC(‖u‖
Xδ

s,b(φ))‖u‖Xδ
σ,b(φ) (29)

and

‖Uφ∗R(N(u)−N(v))‖
Xδ

σ,b(φ)≤δθ{C(‖u‖
Xδ

s,b(φ) + ‖v‖
Xδ

s,b(φ))‖u− v‖
Xδ

σ,b(φ)

+C(‖u‖
Xδ

σ,b(φ) + ‖v‖
Xδ

σ,b(φ))‖u− v‖
Xδ

s,b(φ)} (30)

are valid. In the case where b = 1
2 assume in addition that N(u) ∈ Yσ(φ) for all

u ∈ Xσ,b(φ). Then the solution u of (27) belongs to Xδ
σ,b(φ)∩Ct((−δ, δ), Hσ

x )
and the mapping data upon solution is locally Lipschitz continuous from Hσ

x

to Xδ0
σ,b(φ).

Proof: i) Existence: We assume (29) and (30), since by (28) these estimates hold
at least in the case σ = s. Defining

Bs,σ = {u ∈ Xδ
σ,b(φ) : ‖u‖

Xδ
σ,b(φ) ≤ Rσ, ‖u‖

Xδ
s,b(φ) ≤ Rs},

we shall show that for a proper choice of Rσ, Rs and δ the mapping Λ introduced
above has a fixed point in Bs,σ. In fact, by Lemma 1.7, applied to ψ(t)Uφ(t)u0, and
(29) we see that for u ∈ Bs,σ

‖Λu‖
Xδ

σ,b(φ) ≤ c‖u0‖Hσ
x

+ δθC(‖u‖
Xδ

s,b(φ))‖u‖Xδ
σ,b(φ)

≤ c‖u0‖Hσ
x

+ δθC(Rs)Rσ.

Especially for σ = s we have

‖Λu‖
Xδ

s,b(φ) ≤ c‖u0‖Hs
x

+ δθC(Rs)Rs.

Now choosing Rs = 2c‖u0‖Hs
x
, Rσ = 2c‖u0‖Hσ

x
and δ small enough to ensure that

δθ(C(2Rs)+1) ≤ 1
2 , we see that Λ maps Bs,σ into itself. For the difference Λu−Λv

we use (28) to obtain

‖Λu− Λv‖
Xδ

s,b(φ) ≤ δθC(‖u‖
Xδ

s,b(φ) + ‖v‖
Xδ

s,b(φ))‖u− v‖
Xδ

s,b(φ)

≤ δθC(2Rs)‖u− v‖
Xδ

s,b(φ) ≤
1
2
‖u− v‖

Xδ
s,b(φ)
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for u, v ∈ Bs,σ by our choice of Rs and δ. Iteration yields

‖Λnu− Λnv‖
Xδ

s,b(φ) ≤
1
2n
‖u− v‖

Xδ
s,b(φ). (31)

Next we use (30), (31) and induction to deduce

‖Λnu− Λnv‖
Xδ

σ,b(φ) ≤
n + 1
2n−1

(1 + C(2Rσ))‖u− v‖
Xδ

σ,b(φ).

Now Weissinger’s fixed point theorem2 gives a solution u ∈ Bs,σ of Λu = u.

ii) Persistence property: For b > 1
2 it follows from Lemma 1.5 that Xδ

σ,b(φ) ⊂
Ct((−δ, δ),Hσ

x ), while for b = 1
2 we use Lemma 1.8 and the additional assumption

N(u) ∈ Yσ(φ) for u ∈ Xσ,b(φ) to see that any solution u ∈ Xδ
σ,b(φ) of (27) belongs

to Ct((−δ, δ), Hσ
x ).

iii) Uniqueness: Assume that u, v ∈ Xδ
s,b(φ) are solutions of (27), which do not

coincide on [0, δ). Define

t0 := inf{t ∈ [0, δ) : u(t) 6= v(t)}.

Since u and v belong to Ct((−δ, δ),Hs
x) this makes sense and we have u(t0) = v(t0).

Now for δ0 ∈ (0, δ − t0) and t ∈ (−δ0, δ0) we write

u1(t) = u(t + t0) and v1(t) = v(t + t0).

Then u1, v1 ∈ Xδ0
σ,b(φ), and using (15) and part ii) of Lemma 1.12 we see that

u1(t)− v1(t) = Uφ∗RN(u1)(t)− Uφ∗RN(v1)(t) = Λu1(t)− Λv1(t).

Applying (28) we obtain

‖u1 − v1‖Xδ0
s,b(φ) ≤ δθ

0C(‖u1‖Xδ0
s,b(φ) + ‖v1‖Xδ0

s,b(φ))‖u1 − v1‖Xδ0
s,b(φ).

Now for δ0 > 0 sufficiently small we have

δθ
0C(‖u1‖Xδ0

s,b(φ) + ‖v1‖Xδ0
s,b(φ)) < 1,

which implies ‖u1 − v1‖Xδ0
s,b(φ) = 0. But then u(t + t0) = v(t + t0) for all t ∈

(−δ0, δ0). This contradicts the choice of t0. For t ∈ (−δ, 0] the same argument
applies.

iv) Continuous dependence: Let 0 < δ0 < δ and ε > 0 so small that
δθ
0(C(2(Rs + ε)) + 1) ≤ 1

2 . Then for v0, v′0 ∈ Hs
x with ‖u0 − v0‖Hs

x
≤ ε

2c and
‖u0 − v′0‖Hs

x
≤ ε

2c there exist unique solutions v, v′ ∈ Xδ0
s,b(φ) of (19) with v(0) = v0

2This is essentially the contraction mapping principle, the only difference is that the assumption
‖Λu− Λv‖ ≤ q‖u− v‖, q < 1, is replaced by ‖Λnu− Λnv‖ ≤ an‖u− v‖,

∑
n≥1

an < ∞.
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respectively v′(0) = v′0 and ‖v‖
Xδ0

s,b(φ), ‖v
′‖

Xδ0
s,b(φ) ≤ Rs + ε. Using (28) for the

difference v − v′ we obtain

‖v − v′‖
Xδ0

s,b(φ) ≤ c‖v0 − v′0‖Hs
x

+ δθ
0C(‖v‖

Xδ0
s,b(φ) + ‖v′‖

Xδ0
s,b(φ))‖v − v′‖

Xδ0
s,b(φ)

≤ c‖v0 − v′0‖Hs
x

+ δθ
0C(2(Rs + ε))‖v − v′‖

Xδ0
s,b(φ)

≤ c‖v0 − v′0‖Hs
x

+
1
2
‖v − v′‖

Xδ0
s,b(φ).

Hence
‖v − v′‖

Xδ0
s,b(φ) ≤ 2c‖v0 − v′0‖Hs

x
.

Next we assume in addition that v0, v′0 ∈ Hσ
x and ‖v0‖Hσ

x
, ‖v′0‖Hσ

x
≤ R, where R

is a given radius. Then by (30)

‖v − v′‖
Xδ0

σ,b(φ) ≤ c‖v0 − v′0‖Hσ
x

+ δθ
0{C(2(Rs + ε))‖v − v′‖

Xδ0
σ,b(φ) + C(‖v‖

Xδ0
σ,b(φ) + ‖v′‖

Xδ0
σ,b(φ))‖v − v′‖

Xδ0
s,b(φ)}

≤ c‖v0 − v′0‖Hσ
x

+
1
2
‖v − v′‖

Xδ0
σ,b(φ) + δθ

0C(4cR)2c‖v0 − v′0‖Hs
x
.

This gives ‖v − v′‖
Xδ0

σ,b(φ) ≤ L‖v0 − v′0‖Hσ
x

with L = 2c(1 + 2δθ
0C(4cR)). 2

Remark: The proof shows that the lifespan δ guaranteed by Theorem 1.1 can
be chosen as a continuous nonincreasing function of ‖u0‖Hs

x
.

We may go a step further and reduce the estimates (28) to (30) in Theorem 1.1
by the aid of Lemma 1.9 to nonlinear estimates of type (25). Here two cases occur:
In the first case for the parameters b and b′ we have b − b′ < 1 and we can obtain
a positive power of δ already from the linear estimate (Lemma 1.9). In the second
case we have b = b′ + 1 = 1

2 , and here the contracting factor has to come from the
nonlinear estimate.

Lemma 1.13 Let s ∈ R. Assume that there exist b > 1
2 and b′ > b− 1, so that the

estimate

‖N(u)−N(v)‖Xs,b′(φ) ≤ C0(‖u‖Xs,b(φ) + ‖v‖Xs,b(φ))‖u− v‖Xs,b(φ) (32)

holds, where C0 : R+
0 → R+

0 is continuous and nondecreasing. Then hypothesis
(28) of Theorem 1.1 is valid. If, in addiition, for some σ > s also the estimates

‖N(u)‖Xσ,b′(φ) ≤ C0(‖u‖Xs,b(φ))‖u‖Xσ,b(φ) (33)

and

‖N(u)−N(v)‖Xσ,b′(φ) ≤ C0(‖u‖Xs,b(φ) + ‖v‖Xs,b(φ))‖u− v‖Xσ,b(φ)
+ C0(‖u‖Xσ,b(φ) + ‖v‖Xσ,b(φ))‖u− v‖Xs,b(φ)(34)

hold, then the assumptions (29) and (30) of Theorem 1.1 are valid, too.
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Proof: Let u, v ∈ Xδ
s,b(φ) be given with extensions ũ, ṽ ∈ Xs,b(φ). Then

ψδUφ ∗R (N(ũ)−N(ṽ)) is an extension of Uφ ∗R (N(u)−N(v)). Combining Lemma
1.9 with (32) we obtain

‖Uφ∗R(N(u)−N(v))‖
Xδ

s,b(φ)≤‖ψδUφ ∗R (N(ũ)− (N(ṽ))‖Xs,b(φ)

≤cδ1−b+b′‖N(ũ)− (N(ṽ)‖Xs,b′(φ)

≤cδ1−b+b′C0(‖ũ‖Xs,b(φ)+‖ṽ‖Xs,b(φ))‖ũ− ṽ‖Xs,b(φ).

Now Lemma 1.6 gives (28) in Theorem 1.1 with θ = 1−b+b′ > 0 and C(t) = cC0(t).
The same argument shows that (33) implies (29) and that (34) implies (30). Here
the use of Lemma 1.6 becomes essential. 2

Lemma 1.14 Let s ∈ R and b = b′ + 1 = 1
2 . Assume that the estimate

‖N(u)−N(v)‖Xs,b′(φ)∩Ys(φ) ≤ C0(‖u‖Xs,b(φ)+‖v‖Xs,b(φ))‖u− v‖Xs,b(φ) (35)

holds, where C0 : R+
0 → R+

0 is a continuous and nondecreasing function satisfying
C0(λt) ≤ λγC0(t) for some γ ≥ 0. Assume further that there exists ε > 0 such that
for all 0 < δ ¿ 1 and for all u, v ∈ Xs,b(φ) supported in {(x, t) : |t| ≤ δ} we have

‖N(u)−N(v)‖Xs,b′(φ)∩Ys(φ) ≤ δεC0(‖u‖Xs,b(φ)+‖v‖Xs,b(φ))‖u− v‖Xs,b(φ).

(36)
Then N(u) is well defined for u ∈ Xs,b(φ) and belongs to Ys(φ). Moreover, assump-
tion (28) in Theorem 1.1 is fulfilled.

If additionally for some σ > s the estimates

‖N(u)‖Xσ,b′(φ)∩Yσ(φ) ≤ C0(‖u‖Xs,b(φ))‖u‖Xσ,b(φ) (37)

and

‖N(u)−N(v)‖Xσ,b′(φ)∩Yσ(φ) ≤ C0(‖u‖Xs,b(φ)+‖v‖Xs,b(φ))‖u− v‖Xσ,b(φ)
+ C0(‖u‖Xσ,b(φ)+‖v‖Xσ,b(φ))‖u− v‖Xs,b(φ)(38)

hold true and if they are still valid with an additional factor δε, whenever u, v are
supported in {(x, t) : |t| ≤ δ}, then N(u) ∈ Yσ(φ) for u ∈ Xσ,b(φ) and conditions
(29) and (30) of Theorem 1.1 are satisfied, too.

Proof: By (35) respectively (38) N(u) is well defined for u ∈ Xs,b(φ) (resp.
u ∈ Xσ,b(φ)) and belongs to Ys(φ) (resp. Yσ(φ)). Now let u, v ∈ Xδ

s,b(φ) be
given with extensions ũ, ṽ. Then ψδUφ ∗R (N(ψ2δũ)−N(ψ2δ ṽ)) is an extension of
Uφ ∗R (N(u)−N(v)), for which we obtain

‖ψδUφ ∗R (N(ψ2δũ)−N(ψ2δ ṽ))‖Xs,b(φ)
≤ c‖N(ψ2δũ)−N(ψ2δ ṽ)‖Xs,b′(φ)∩Ys(φ)
≤ cδεC0(‖ψ2δũ‖Xs,b(φ)+‖ψ2δ ṽ‖Xs,b(φ))‖ψ2δ(ũ− ṽ)‖Xs,b(φ)

≤ cδεC0(cε′δ
−ε′(‖ũ‖Xs,b(φ)+‖ṽ‖Xs,b(φ)))cε′δ

−ε′‖ũ− ṽ‖Xs,b(φ)

≤ δθC(‖ũ‖Xs,b(φ)+‖ṽ‖Xs,b(φ))‖ũ− ṽ‖Xs,b(φ),



22 1 THE FRAMEWORK

where θ = ε − (γ + 1)ε′. Here Lemma 1.9, (36) and Lemma 1.10, part ii), were
applied. Together with Lemma 1.6 this gives (28) in Theorem 1.1. Similarly (29)
respectively (30) can be derived from (37) respectively (38), here again the use of
Lemma 1.6 becomes essential. 2

In the situation where Lemma 1.13 applies, it is clear by the Sobolev embedding
in the time variable (Lemma 1.5) that the mapping data upon solution from Hs

x

to Ct((−δ0, δ0),Hs
x) (respectively from Hσ

x to Ct((−δ0, δ0),Hσ
x )) is locally Lipschitz

continuous. This is still true, but no longer trivial in the situation of Lemma 1.14:

Remark 1.2 Under the assumptions of Lemma 1.14 the mapping f : u0 7→ u
(data upon solution) is locally Lipschitz continuous from Hs

x to Ct((−δ0, δ0),Hs
x)

respectively from Hσ
x to Ct((−δ0, δ0),Hσ

x ).

Proof: Let v, v′ ∈ Xδ0
s,b(φ) as in step iv) of the proof of Theorem 1.1 with

extensions ṽ, ṽ′ ∈ Xs,b(φ). Then

‖v(t)− v′(t)‖Hs
x
≤ ‖v0 − v′0‖Hs

x
+ ‖Uφ ∗R (N(v)(t)−N(v′)(t))‖Hs

x
.

In order to estimate the second contribution we use Lemma 1.8, assumption (35)
in Lemma 1.14 and Lemma 1.6 to obtain

‖Uφ ∗R (N(v)(t)−N(v′)(t))‖Hs
x

≤ c‖N(ṽ)−N(ṽ′)‖Ys(φ)
≤ cC0(‖ṽ‖Xs,b(φ) + ‖ṽ′‖Xs,b(φ))‖ṽ − ṽ′‖Xs,b(φ)
≤ cC0(‖v‖Xδ0

s,b(φ) + ‖v′‖
Xδ0

s,b(φ))‖v − v′‖
Xδ0

s,b(φ)

≤ cC0(2(Rs + ε))2c‖v0 − v′0‖Hs
x

(for the last step cf. the proof of Theorem 1.1). If in addition v0, v
′
0 ∈ Hσ

x with
‖v0‖Hσ

x
, ‖v′0‖Hσ

x
≤ R, where R is a given radius, we can estimate similarly

‖v(t)− v′(t)‖Hσ
x
≤ ‖v0 − v′0‖Hσ

x
+ ‖N(ṽ)−N(ṽ′)‖Yσ(φ) = I + II.

Arguing as above but using (38) instead of (35) we see that

II ≤ cC0(‖v‖Xδ0
s,b(φ) + ‖v′‖

Xδ0
s,b(φ))‖v − v′‖

Xδ0
σ,b(φ)

+ cC0(‖v‖Xδ0
σ,b(φ) + ‖v′‖

Xδ0
σ,b(φ))‖v − v′‖

Xδ0
s,b(φ)

≤ cC0(2(Rs + ε))Lσ‖v0 − v′0‖Hσ
x

+ cC0(4cR)2c‖v0 − v′0‖Hs
x

(cf. again step iv) of the proof of Theorem 1.1). 2

Corollary 1.4 (Global wellposedness) If the assumptions of Lemma 1.13 or
Lemma 1.14 are fulfilled and if for a solution u of (27) ‖u(t)‖Hs

x
is a conserved

quantity, then the existence and uniqueness statements in Theorem 1.1 are valid
for all δ > 0. Moreover, the mapping data upon solution Hs

x → Ct((−δ, δ),Hs
x)

(respectively Hσ
x → Ct((−δ, δ),Hσ

x )) is locally Lipschitz continuous.
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Proof: For given u0 ∈ Hσ
x let ∆ denote the set of all δ > 0, for which the

following holds true:

i) There exists a solution u ∈ Xδ
σ,b(φ) ∩ Ct((−δ, δ),Hσ

x ) of (27),

ii) this solution is unique in Xδ
s,b(φ),

iii) there exists a neighbourhood U(u0) ⊂ Hσ
x and a Lipschitz constant L =

L(u0, δ) such that for all v0, v′0 ∈ U(u0) there exist unique solutions v, v′ ∈
Xδ

σ,b(φ) ∩ Ct((−δ, δ),Hσ
x ) of (19) with v(0) = v0, v′(0) = v′0 satisfying the

estimate
‖v − v′‖L∞t ((−δ,δ),Hσ

x ) ≤ L‖v0 − v′0‖Hσ
x
.

By the local existence theorem (and Remark 1.2) ∆ 6= ∅. Define T0 = sup{δ ∈ ∆}
and assume T0 < ∞. Fix 0 < ε ¿ δ(‖u0‖Hs

x
), δ = δ(‖u0‖Hs

x
)− ε, T1 = T0 − ε and

T = T0 − 2ε. Then for the solution u1 ∈ XT1
σ,b(φ) of (27) guaranteed by the choice

of T1 we consider the initial value problems

∂tu− iφ(D)u = N(u), u(0) = u1(±T ). (39)

By Theorem 1.1 (and Remark 1.2) we obtain solutions u± ∈ Xδ
σ,b(φ)∩Ct((−δ, δ),Hσ

x )
of (39), uniquely determined in Xδ

s,b(φ), such that in a whole neighbourhood U+(u1(T ))
(respectively U−(u1(−T ))) the mapping data upon solution into Ct((−δ, δ),Hσ

x ) is
Lipschitz. Define

U(t) :=





u1(t) : |t| ≤ T
u+(t− T ) : T ≤ t < T + δ
u−(t + T ) : −T − δ < t ≤ T.

Then, using (15) and part ii) of Lemma 1.12, we see that U solves (27) on (−T −
δ, T + δ). Moreover, τ∓T u1 solves (39) on (−ε, ε) and so U(t) = u1(t) for T ≤ t <
T + ε by local uniqueness, especially we have U ∈ Ct((−δ − T, δ + T ),Hσ

x ).
Now let ũ and ũ± ∈ Xs,b(φ) be extensions of u1 and τ±T u±. Then, for suitable

smooth characteristic functions χT of [−T, T ] and χδ of [T −δ, T +δ] with χT (t) = 0
for |t| ≥ T + ε respectively χδ(t) = 0 for |t− T | ≥ δ + ε, we see that

Ũ(t) = χT (t)ũ(t) + (1− χT (t))χδ(t)ũ+(t) + (1− χT (t))χδ(−t)ũ−(t)

is an extension of U in Xσ,b(φ), which gives U ∈ XT+δ
σ,b (φ).

Now let v ∈ XT+δ
s,b (φ) be another solution of (27). Then, by the choice of T0,

U(t) = u1(t) = v(t) for |t| ≤ T . Moreover, τ∓T v solves (39) on (−δ, δ) (use (15)
and Lemma 1.12, part ii) again) and thus τ∓T v(t) = u±(t) for |t| < δ. This gives
U(t) = v(t) for all |t| < T + δ.

Concerning continuous dependence we already know that there are neighbour-
hoods U(u0) and U±(u1(±T )) in Hσ

x such that

i) for all v0, v′0 ∈ U(u0) with corresponding solutions v, v′ we have

sup
|t|<T1

‖v(t)− v′(t)‖Hσ
x
≤ L(u0, T1)‖v0 − v′0‖Hσ

x
,
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ii) for all w0,±, w′0,± ∈ U±(u1(±T )) with corresponding solutions w±, w′± the
estimate

sup
|t|<δ

‖w±(t)− w′±(t)‖Hσ
x
≤ L(u1(±T ), δ)‖w0,± − w′0,±‖Hσ

x

holds true.

Choosing a smaller neighbourhood U ′(u0) ⊂ U(u0) we can achieve by i) that for all
v0, v′0 ∈ U ′(u0) with solutions v, v′ we have v(±T ) ∈ U±(u1(±T )) and v′(±T ) ∈
U±(u1(±T )). These solutions v, v′ can be extended in the same way as above on
the time interval (−T − δ, T + δ). For the extended solutions V, V ′ ∈ XT+δ

σ,b (φ) we
have the estimate

sup
|t|<T+δ

‖V (t)− V ′(t)‖Hσ
x
≤ sup
|t|<T

‖v(t)− v′(t)‖Hσ
x

+ sup
T≤|t|<T+δ

‖V (t)− V ′(t)‖Hσ
x

≤ L(u0, T1)‖v0 − v′0‖Hσ
x

+ max (L(u1(±T ), δ)‖v(±T )− v′(±T )‖Hσ
x
)

≤ L(u0, T + δ)‖v0 − v′0‖Hσ
x
,

where L(u0, T + δ) = L(u0, T1)(1 + max (L(u1(±T ), δ))). Now we have shown that
the properties i) to iii) hold true for T + δ > T0, which contradicts the choice of T0.

2

1.4 Notes and references

The use of the spaces Xs,b(φ) respectively Xδ
s,b(φ) (and similar ones, built up from

more complicated basic spaces) in order to treat wellposedness problems for non-
linear evolution equations by the contraction mapping principle was introduced by
Bourgain in his work on periodic nonlinear Schrödinger and KdV equations, see
[B93], and further applied in a series of subsequent articles, see e. g. [B93a], [B93b]
and [BC96]. All the basic properties of these spaces, the linear estimates and the
proof of the wellposedness theorem are contained - more or less explicitly - in these
papers. The idea was picked up, further developed but also simplyfied soon by
other authors, let us mention here the works of Kenig, Ponce and Vega on the KdV
equation with data in Sobolev spaces with negative index ([KPV93b]) and of Klain-
erman and Machedon on the nonlinear wave equation with a certain null form as
nonlinearity ([KM95]). In 1996 the survey article [G96] appeared, and the present
exposition of the method is in fact based on Ginibre’s article and the second section
of the work of Ginibre, Tsutsumi and Velo on the Zakharov system, see [GTV97].

In detail: In the definition of the spaces Xs,b(φ) as completion we follow Kenig,
Ponce and Vega ([KPV93b], for the periodic case see [KPV96a]). In order to achieve
uniformity in the treatment of the periodic and nonperiodic case, we use the inter-
section H of all mixed Sobolev spaces as test functions. The connection between
the Xs,b(φ)-norms and the unitary group Uφ, giving insight especially in the trivial
character of the first linear estimate, was made clear in [G96], section 3 (see also
the discussion at the beginning of section 3 in [KPV93b]). The duality lemma can
be found in a more general context in [T96], Theorem 3.6, in that paper the inter-
polation property is explicitly mentioned and used to define a more general class
of function spaces in the range 0 < |b| < 1 of the parameter b. The behaviour
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of the Xs,b(φ)-norms under complex conjugation respectively time reversion is not
discussed in the literature, allthough its consequences (e. g. for the treatment of
equations of second order in time, see below) are well known. Lemma 1.5 can be
found - up to ε′s - in [OTT99], see Lemma 2.1 in that paper. The auxiliary spaces
Ys(φ) were introduced in [GTV97] in order to treat the case b′ ≤ − 1

2 . The extension
lemma (Lemma 1.6), useful for the persistence of higher regularity (part ii) of the
general local existence theorem), seems to be new.

The linear estimates (section 1.2) are more or less taken over from [G96] re-
spectively [GTV97]. Lemma 1.7 is Lemme 3.1 in [G96], Lemma 1.8 is Lemma 2.2
in [GTV97], we only remark here that the definition of the solution operator for
F ∈ Ys(φ) contains an extension - otherwise we should have at least F ∈ L1

t (I, Hs
x)

for some time interval I around zero. For Lemma 1.9 see Lemma 2.1 in [GTV97],
the proof is taken from [G96] and goes back to Bourgain [B93]. For Lemma 1.10,
ii), cf. Lemma 2.5 in [GTV97].

In section 1.3 we start with the discussion of the meaning of the nonlinearity for
irregular distributions, which we define as the extension of the nonlinear operator
being Lipschitz continuous on a dense subset. This problem - in general not dis-
cussed in the literature - can sometimes be circumvented in the nonperiodic case,
if smoothing effects of the unitary group are available, cf. the remarks thereon in
[KPV93b]. In the periodic case such smoothing effects are not known, nevertheless
there are wellposedness results for data in Hs

x, s < 0, as well in the present litera-
ture (see e. g. [KPV96a], [KPV96b]) as in our subsequent applications. The proof
of the general local existence theorem collects some of the arguments found in the
above cited literature and is more or less standard. A major point in this context
is that the proof given here does not depend on the phase function or any other
special property of a nonlinear equation (such as scaling invariance, cf. [KPV96a],
[KPV96b]). This is somewhat in the spirit of Reed’s lecture notes [R]. A similar
attempt was made by Selberg for the nonlinear wave equation with general non-
linearity, see Theorems 2 and 3 in [Se01]. Some hints, especially on persistence of
higher regularity, were taken from that paper. Finally we show a corollary on global
wellposedness in the presence of a conserved quantity. The proof adapts a standard
argument given in [R] (there Theorem 2 in chapter 1.1) to the Xs,b(φ)-framework.

With regard to our applications in part II this exposition is restricted to a single
equation of first order in time. It should be mentioned that the method can be
generalized to systems of diagonal type in a straightforward way and to equations
of second order in the time variable, either by rewriting them as a system of first
order equations (see e. g. [GTV97] or [OTT99]) or by replacing τ by |τ | in expression
(7) in order to achieve the invariance of the norm under time reversion, which is
necessary in this case (see e. g. [KM95] or [FG96]).
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2 Nonlinear estimates: Generalities

In the nonlinear estimates the specific properties of the phase function as well as of
the nonlinearity play an important role. Nevertheless, some general arguments and
techniques can be formulated, sometimes at hand of examples. This shall be done
in this section, where we already focus on the Schrödinger equation.

2.1 Insertion of space-time estimates for free solutions into
the framework of the method

In the nonperiodic case there is a rich theory on linear space-time estimates - such as
Strichartz estimates, smoothing effect of Kato type and maximal function estimates
- for solutions of the Cauchy problem (1) for the homogeneous linear equation.
Recently also bilinear refinements of such estimates have appeared. Any multilinear
estimate of this type implies a corresponding Xs,b(φ)-estimate. This is made precise
in the following Lemma, which is the straightforward generalization of Lemma 2.3
in [GTV97] (see also Proposition 3.5 in [KS01]):

Lemma 2.1 Let - for some σ, σ1, ..., σk ∈ R -

m : Hσ1
x × ...×Hσk

x → Hσ
x

be a continuous k-linear operator and, for b > 1
2 ,

M : Xσ1,b(φ1)× ...×Xσk,b(φk) → Ct(R,Hσ
x )

be defined by
M(u1, ..., uk)(t) = m(u1(t), ..., uk(t)).

Moreover, assume Y ⊂ S ′(Rn+1) to be a B-space being stable under multiplication
with L∞t , that is

‖ψu‖Y ≤ c‖ψ‖L∞t ‖ψu‖Y ∀ψ ∈ L∞t , u ∈ Y,

such that for fi ∈ Hσi
x , Uφifi(x, t) = Uφi(t)fi(x) and si ≤ σi, 1 ≤ i ≤ k, the

estimate

‖M(Uφ1f1, ..., Uφk
fk)‖Y ≤ c

k∏

i=1

‖fi‖H
si
x

(40)

holds true. Then for all (u1, ..., uk) ∈ Xσ1,b(φ1)× ...×Xσk,b(φk) we have

‖M(u1, ..., uk)‖Y ≤ c

k∏

i=1

‖ui‖Xsi,b(φi),

where the constant depends on b.

Proof: Since b > 1
2 , we have gi := F tUφi(−·)ui ∈ L1

τ (R,Hσi
x ) and hence

ui(t) = Uφi(t)Uφi(−t)ui(t)

= cUφi(t)
∫

eitτ (F tUφi(−·)ui)(τ)dτ

= c

∫
eitτUφi(t)gi(τ)dτ.
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This gives

M(u1, ..., uk)(t) = m(c
∫

eitτUφ1(t)g1(τ)dτ, ..., c

∫
eitτUφk

(t)gk(τ)dτ)

= c

∫
dτ1..dτkeit(τ1+..+τk)m(Uφ1(t)g1(τ1), .., Uφk

(t)gk(τk)),

where we have used the continuity and k-linearity of m as well as gi ∈ L1
τ (R,Hσi

x ).
Now using Minkowski’s inequality and the stability assumption on Y we arrive at

‖M(u1, ..., uk)‖Y ≤ c

∫
dτ1..dτk‖M(Uφ1g1(τ1), ..., Uφk

gk(τk))‖Y

≤ c

∫
dτ1..dτk

k∏

i=1

‖gi(τi)‖H
si
x

by(40). Finally writing ‖gi(τi)‖H
si
x

= 〈τi〉−b(〈τi〉b‖gi(τi)‖H
si
x

) and using Cauchy-
Schwarz’ inequality completes the proof. 2

Remark : Most frequently we will use Lemma 2.1 in the simple case where k = 1,
σ = σ1 = s1 and m is the identity. Then we have

‖u1‖Y ≤ c‖u1‖Xs1,b(φ1), (41)

expressing the boundedness of the embedding Xs1,b(φ1) ⊂ Y (assuming Y to be
defined only by the size of its norm, which is always the case in the applications -
in fact we will usually have Y = Lp

t (Lq
x) or Y = Lp

x(Lq
t ) for some 1 ≤ p, q ≤ ∞).

If Yθ = (L2
xt, Y )[θ], θ ∈ [0, 1], we can interpolate between (41) and the trivial case

L2
xt = X0,0(φ1) to obtain

‖u‖Yθ
≤ c‖u‖Xs,b(φ1)

for s ≥ θs1, b > θ
2 . From this we get by duality

‖u‖Xs′,b′(φ1) ≤ c‖u‖(Yθ)′ ,

whenever s′ ≤ −θs1, b′ < − θ
2 . The latter is of special interest in view on Lemma

1.13 respectively Lemma 1.14, since there b′ ≥ − 1
2 is required.

In the sequel we shall give a series of examples concerning the Schrödinger and
Airy equation.

2.1.1 Schrödinger estimates

In this section we always have φ : Rn → R, ξ 7→ −|ξ|2. We start with the linear
Strichartz estimates for the free Schrödinger equation:

Lemma 2.2 Assume that 0 < 1
q < 1

2 , b > 1
2 (n

2 − n
q + 1− 2

p ) and

n

4
(
q − 2

q
) ≤ 1

p
<

{
1
q + n

4 ( q−2
q ) : n = 1, 2

1
2 : n ≥ 3
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Then the estimate
‖u‖Lp

t (Lq
x) ≤ c‖u‖X0,b(φ)

holds true for all u ∈ X0,b(φ).

Quotation/Proof: Let p and q be given according to the above assumptions.
Define

q0 := 2 +
2

n
2 + 2

q−2 (1− q
p )

and p0 by
1
p0

:=
n

2
(
1
2
− 1

q0
).

An elementary computation shows that q0 ∈ (2,∞) and for n ≥ 3 that q0 < 2n
n−2 .

In this case the Strichartz estimates

‖Uφu0‖L
p0
t (L

q0
x ) ≤ c‖u0‖L2

x
(42)

hold true (see [CH], Prop. 7.3.6). Next we define

θ :=
q0

q

q − 2
q0 − 2

=
n

2
− n

q
+ 1− 2

p
∈ (0, 1]

and b0 := b
θ > 1

2 . Now Lemma 2.1 gives

‖u‖L
p0
t (L

q0
x ) ≤ c‖u‖X0,b0(φ).

Using (L2
xt, L

p0
t (Lq0

x ))[θ] = Lp
t (Lq

x) (see [BL], Thm. 5.1.2, the interpolation condition
is easily checked for θ as above) and Lemma 1.4 we obtain the desired result. 2

Remarks : i) By duality we obtain the estimate

‖u‖X0,b′(φ) ≤ c‖u‖
Lp′

t (Lq′
x )

,

whenever 1
2 < 1

q′ < 1, b′ < 1
2 (n

2 − n
q′ + 1− 2

p′ ) and

1− n

4
(
2− q′

q′
) ≥ 1

p′
>

{
1
q′ − n

4 (2−q′

q′ ) : n = 1, 2
1
2 : n ≥ 3

.

ii) For many applications the special case p = q is sufficient. In this case the estimate
(42) goes back to Strichartz ([S77]). Here the assumptions in Lemma 2.2 reduce to

1
2

>
1
p
≥ 1

2
− 1

n + 2
, b > (

n

2
+ 1)(

1
2
− 1

p
)

respectively to

1
2

<
1
p′
≤ 1

2
+

1
n + 2

, b′ < (
n

2
+ 1)(

1
2
− 1

p′
)

for the dualized version.

As a simple application we give the following
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Example 2.1 (Nonlinear Schrödinger equation with data in L2(Rn))
Consider the Cauchy problem (19), (20) with s = 0, φ(ξ) = −|ξ|2 and the nonlin-
earity

N(u) = |u|k0uk1uk2 ,

where 0 ≤ k0 ∈ R, k1,2 ∈ N0, k0 + k1 + k2 = k ∈ (1, 1 + 4
n ). Then for

b′ ∈ (−1
2
,min(0,

1
2
− n

4
(k − 1))) b ∈ (

1
2
, b′ + 1)

the estimate

‖N(u)−N(v)‖X0,b′(φ) ≤ c‖u− v‖X0,b(φ)(‖u‖k−1

X0,b(φ) + ‖v‖k−1

X0,b(φ))

holds true. Thus Lemma 1.13 and Theorem 1.1 apply, we obtain local wellposedness
for k ∈ (1, 1 + 4

n ).

Proof: The assumption b′ < 1
2 − n

4 (k − 1) implies 1
2 − 2b′

n+2 > k
2 − k

n+2 . Thus

I := (
1
2
,
k

2
) ∩ (

k

2
− k

n + 2
,
1
2
− 2b′

n + 2
)

is not empty (observe that k > 1 and b′ < 0). Choosing p′ ∈ R with 1
p′ ∈ I we have

1
2

<
1
p′

<
1
2
− 2b′

n + 2
≤ 1

2
+

1
n + 2

,

the latter, since b′ > − 1
2 . Thus b′ < (n

2 + 1)( 1
2 − 1

p′ ), that is, the parameters b′ and
p′ fulfil the assumptions of remark i) below Lemma 2.2 (with p′ = q′, cf. remark
ii)).

From k
2 > 1

p′ ≥ k
2 − k

n+2 we deduce for p = kp′ that

1
2

>
1
p
≥ 1

2
− 1

n + 2
>

1
2
− 2b

n + 2
,

especially that b > (n
2 + 1)( 1

2 − 1
p ). Thus Lemma 2.2 (with p = q) applies for our

choice of b and p. Now using remark i), the mean value theorem, Hölder’s inequality
and Lemma 2.2 we obtain the following chain of inequalities:

‖N(u)−N(v)‖X0,b′(φ) ≤ c‖N(u)−N(v)‖
Lp′

xt

≤ c‖(u− v)(|u|k−1 + |v|k−1)‖
Lp′

xt

≤ c‖u− v‖Lp
xt

(‖u‖k−1
Lp

xt
+ ‖v‖k−1

Lp
xt

)

≤ c‖u− v‖X0,b(φ)(‖u‖k−1

X0,b(φ) + ‖v‖k−1

X0,b(φ))

2

Remark: The wellposedness result in this example is well known, see for instance
Theorem 1.2 in [CW90], where the wellposedness problem for NLS is also studied for
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s > 0. Nevertheless it has three interesting aspects: In the first place it covers the
whole subcritical region in the L2

x-case, thus coinciding with the known theory in this
case. Secondly, it contains Lemma 3.1 in [BOP98] as well as part ii) of Theorem 2.1
in [St97]. Finally, it gives a hint, for which values of k = k1 +k2 local wellposedness
might hold for the Schrödinger equation with nonlinearity N(u) = uk1uk2 and data
in Hs

x even for s < 0: These values are k ∈ {2, 3, 4} in one space dimension and
k = 2 in dimension two or three.

The next Lemma contains - in terms of Xs,b(φ)-estimates - the sharp version of
Kato’s smoothing effect in n ≥ 1 space dimensions and the onedimensional maximal
function estimate due to Kenig, Ponce and Vega:

Lemma 2.3 Let b > 1
2 . Then for n = 1 the estimates

i) ‖u‖L∞x (L2
t ) ≤ c‖u‖X− 1

2 ,b(φ) (Kato smoothing effect),

ii) ‖u‖L4
x(L∞t ) ≤ c‖u‖X 1

4 ,b(φ) (maximal function estimate)

hold true. For n ≥ 2 we have

iii) supR>0 R−
1
2 ‖u‖L2

t (L2
x(BR(0))) ≤ c‖u‖X− 1

2 ,b(φ) (Kato smoothing effect).

Quotation/Proof: Combining Theorem 4.1 in [KPV91] with Lemma 2.1 we ob-
tain

‖I 1
2 v‖L∞x (L2

t ) ≤ c‖v‖X0,b(φ),

where Is (Js) is the Riesz (Bessel) potential operator of order −s. Using the
projections p = F−1χ{|ξ|≤1}F and P = Id− p we get

‖J 1
2 v‖L∞x (L2

t ) ≤ c‖PJ
1
2 v‖L∞x (L2

t ) + ‖pJ
1
2 v‖L∞x (L2

t ) = I + II

with
I ≤ c‖I− 1

2 PJ
1
2 v‖X0,b(φ) ≤ c‖v‖X0,b(φ)

by the preceeding and

II ≤ c‖pJ
1
2 v‖L2

t (L∞x ) ≤ c‖pJ1+εv‖L2
xt
≤ c‖v‖X0,b(φ)

by Sobolev embedding in x. For u = J
1
2 v this gives i). Part ii) follows from

Theorem 2.5 in [KPV91] and Lemma 2.1. To see iii), we write for short ‖u‖ =
supR>0 R−

1
2 ‖u‖L2

t (L2
x(BR(0))). Then Theorem 4.1 in [KPV91] and Lemma 2.1 give

‖I 1
2 v‖ ≤ c‖v‖X0,b(φ)

respectively
‖J 1

2 v‖ ≤ ‖PJ
1
2 v‖+ ‖pJ

1
2 v‖ = I + II

with
I ≤ c‖I− 1

2 PJ
1
2 v‖X0,b(φ) ≤ c‖v‖X0,b(φ)
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and

II ≤ c‖pJ
1
2 v‖L2

t (L∞x ) + ‖pJ
1
2 v‖L2

xt
≤ c‖pJ1+εv‖L2

xt
≤ c‖v‖X0,b(φ).

Writing u = J
1
2 v again we obtain iii). 2

Remark : Let u ∈ Xs,b(φ) for some s ≥ − 1
2 , b > 1

2 . Then, by i) and iii), we have
u ∈ L2

loc(R
n+1) in arbitrary space dimensions. So for quadratic nonlinearities such

as u2, |u|2 or u2 the definition of the nonlinearity given at the beginning of section 1.3
coincides with the natural one by Lemma 1.11. This cannot be guaranteed anymore,
if s < − 1

2 . The Lipschitz estimate (25) has been shown for the nonlinearities u2

and u2 in one and two space dimensions not only for s ≥ − 1
2 , but also for s > − 3

4 ,
see [KPV96b] and [CDKS01]. This shows that in these cases it is not redundant to
define the nonlinearity by the extension process in section 1.3.

Now we turn to the bilinear refinements of Strichartz’ inequalities exhibiting
stronger smoothing properties than the standard Strichartz’ estimates. We start
with the case of one space dimension, where we have a gain of half a derivative on
the product of two solutions:

Lemma 2.4

‖I 1
2 (eit∂2

u1e
−it∂2

u2)‖L2
xt

=
1√
2
‖u1‖L2

x
‖u2‖L2

x

Proof: We will write for short û instead of Fxu and
∫
∗ dξ1 for

∫
ξ1+ξ2=ξ

dξ1. By
density we may assume ûi ∈ C∞0 (R). Then, using Fourier-Plancherel in the space
variable we obtain:

‖I 1
2 (eit∂2

u1e
−it∂2

u2)‖
2

L2
xt

=
1
2π

∫
dξdt|ξ|

∣∣∣∣
∫

∗
dξ1e

−it(ξ2
1−ξ2

2)û1(ξ1)û2(ξ2)
∣∣∣∣
2

=
1
2π

∫
dξdt|ξ|

∫

∗
dξ1dη1e

−it(ξ2
1−ξ2

2−η2
1+η2

2)
2∏

i=1

ûi(ξi)ûi(ηi)

=
∫

dξ|ξ|
∫

∗
dξ1dη1δ(ξ2

1 − ξ2
2 − η2

1 + η2
2)

2∏

i=1

ûi(ξi)ûi(ηi).

For the argument of the δ-function we have

ξ2
1 − ξ2

2 − η2
1 + η2

2 = 2ξ(ξ1 − η1).

Using δ(a(x− b)) = 1
|a|δ(x− b) we obtain

.. =
1
2

∫
dξdξ1dη1δ(ξ1 − η1)û1(ξ1)û2(ξ − ξ1)û1(η1)û2(ξ − η1)

=
1
2

∫
dξdξ1|û1(ξ1)û2(ξ − ξ1)|2 =

1
2
‖u1‖2L2

x
‖u2‖2L2

x
.

2
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Remarks : i) For the use of δ(P ) cf. appendix A 2.

ii) In view on the Sobolev embedding H
1
2+ε
x ⊂ L∞x this can be seen (almost) as

a refinement of the L4
t (L

∞
x )-Strichartz estimate, which is the admissible endpoint

case in one space dimension.

Using Lemma 2.1 we obtain the following estimate, which was shown by Beki-
ranov, Ogawa and Ponce using the Schwarz method described in section 2.2.2 (see
Lemma 3.2 in [BOP98]):

Corollary 2.1 (Bekiranov, Ogawa, Ponce) Let n = 1 and b > 1
2 . Then the

estimate
‖uv‖

L2
t (Ḣ

1
2

x )
≤ c‖u‖X0,b(φ)‖v‖X0,b(φ)

holds for all u, v ∈ X0,b(φ).

Next we have Bourgain’s bilinear refinements of Strichartz’ estimate in two (re-
spectively three) space dimensions, cf. Lemma 111 and Corollary 113 in [B98a]
(respectively Lemma 5 and Corollary 6 in [B98b]), for which we give a detailed
proof. For that purpose we introduce the following notation: First, for a subset
M ⊂ Rn, we define PM := Fx

−1χMFx, where χM denotes a smooth characteristic
function of the set M . Especially we require for l ∈ N0:

• Pl := PB2l
for the (closed) ball B2l of radius 2l centered at zero (P−1 = 0),

• P∆l := Pl − Pl−1, P̃∆l :=
∑1

k=−1 P∆(l+k), such that P∆l = P∆lP̃∆l, as well as

• PQl
α
, where α ∈ Zn and Ql

α is a cube of sidelength 2l centered at 2lα, so that
∑

α∈Zn

χQl
α

= 1 .

Lemma 2.5 (Bourgain) Let n = 2. Then for l ≥ m the estimate

‖eit∆P∆mu1e
it∆P∆lu2‖L2

xt
≤ c2

m−l
2 ‖u1‖L2

x
‖u2‖L2

x

holds.

Proof: By the standard Strichartz’ estimate we may assume m ¿ l. Arguing as
in the previous proof we obtain

‖eit∆P∆mu1e
it∆P∆lu2‖2L2

xt

= c

∫
dξ

∫

∗
dξ1dη1δ(

2∑

i=1

|ξi|2 − |ηi|2)
2∏

i=1

ûi(ξi)ûi(ηi)χ∆l(ξ1)χ∆m(ξ2)χ∆l(η1)χ∆m(η2)

≤ c

2
(I1 + I2) = cI1,

with

I1 =
∫

dξ

∫

∗
dξ1|û1(ξ1)û2(ξ2)|2

∫

∗
dη1δ(|ξ1|2 + |ξ2|2 − |η1|2 − |η2|2)χ∆l(η1)χ∆m(η2).
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(I2 is obtained from I1 by exchanging the variables ξi and ηi, thus we have
I1 = I2.) Now for the inner integral we get by Lemma A.2

I(ξ, ξ1) :=
∫

∗
dη1δ(|ξ1|2 + |ξ2|2 − |η1|2 − |η2|2)χ∆l(η1)χ∆m(η2)

=
∫

P (η1)=0

dSη1

|∇η1P (η1)|χ∆l(η1)χ∆m(ξ − η1),

where P (η1) = |η1|2 + |ξ − η1|2 − |ξ1|2 − |ξ2|2, hence |∇η1P (η1)| = |4η1 − 2ξ| =
2|η1 − η2| ≥ c2l. This gives

I(ξ, ξ1) ≤ c2−l

∫

P (η1)=0

dSη1χ∆m(ξ − η1) ≤ c2m−l,

since
∫

P (η1)=0
dSη1χ∆m(ξ−η1) is the length of the intersection of {P (η1) = 0} with

B2m(ξ)−B2m−1(ξ). Finally we conclude that

I1 ≤ c2m−l‖u1‖2L2
x
‖u2‖2L2

x
.

2

Remark: The corresponding estimate in three space dimensions is

‖eit∆P∆mu1e
it∆P∆lu2‖L2

xt
≤ c2m− l

2 ‖u1‖L2
x
‖u2‖L2

x
.

This follows from the geometric argument at the end of the above proof. Observe
that standard Strichartz in connection with Sobolev’s embedding Theorem gives

‖eit∆u1e
it∆u2‖L2

xt
≤ c‖u1‖

H
1
4

x

‖u2‖
H

1
4

x

≤ c2
m+l

4 ‖u1‖L2
x
‖u2‖L2

x
,

which coincides for m ∼ l.

Corollary 2.2 (Bourgain) Let n = 2, ε > 0 and 0 < s < 1
2 < b. Then

i) ‖eit∆u0e
it∆v0‖L2

t (Hs
x) ≤ c‖u0‖Hs+ε

x
‖v0‖L2

x
,

ii) ‖uv‖L2
t (Hs

x) ≤ c‖u‖Xs+ε,b(φ)‖v‖X0,b(φ).

Remarks : i) Using multilinear interpolation (Thm. 4.4.1 in [BL]) we obtain
from part ii):

‖uv‖L2
t (Hs

x) ≤ c‖u‖Xs1,b(φ)‖v‖Xs2,b(φ),

provided 1
2 > s ≥ 0, b > 1

2 , s1,2 ≥ 0 and s1 + s2 > s.

ii) For fixed v part ii) of the above Corollary expresses the boundedness of the
multiplier

Mv : Xs+ε,b(φ) → L2
t (H

s
x) u 7→ uv

with norm ≤ c‖v‖X0,b(φ). But then the adjoint mapping

M∗
v = Mv : L2

t (H
−s
x ) → X−s−ε,−b(φ) u 7→ uv
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is also bounded with the same norm, which gives the estimate

‖uv‖Xs−ε,−b(φ) ≤ c‖v‖X0,b(φ)‖u‖L2
t (Hs

x),

provided − 1
2 < s ≤ 0 < ε and b > 1

2 . Here we may replace u by u on the left hand
side, since ‖u‖L2

t (Hs
x) = ‖u‖L2

t (Hs
x).

Proof: Clearly, ii) follows from i) by Lemma 2.1. To see i) we write u0 =∑
m≥0 P∆mu0 and v0 =

∑
l≥0 P∆lv0. Then

‖eit∆u0e
it∆v0‖L2

t (Hs
x)

≤

 ∑

m≥l≥0

+
∑

l≥m≥0


 ‖eit∆P∆mu0e

it∆P∆lv0‖L2
t (Hs

x) =:
∑
1

+
∑
2

,

with
∑
1

≤
∑

m≥l≥0

2ms‖eit∆P∆mu0e
it∆P∆lv0‖L2

xt

≤ c
∑

m≥l≥0

2ms‖P∆mu0‖L2
x
‖v0‖L2

x

≤ c
∑

m≥0

m2−mε‖u0‖Hs+ε
x
‖v0‖L2

x
≤ c‖u0‖Hs+ε

x
‖v0‖L2

x
,

where we have used Hölder and (standard) Strichartz. Now using Lemma 2.5 we
obtain for the second contribution

∑
2

≤
∑

l≥m≥0

2ls‖eit∆P∆mu0e
it∆P∆lv0‖L2

xt

≤ c
∑

l≥m≥0

2ls+ m−l
2 ‖P̃∆mu0‖L2

x
‖v0‖L2

x

≤ c
∑

l≥m≥0

2l(s− 1
2 )2m( 1

2−s−ε)‖u0‖Hs+ε
x
‖v0‖L2

x
≤ c

∑

l≥0

2−lε‖u0‖Hs+ε
x
‖v0‖L2

x
.

2

Remark: The corresponding estimates in three space dimensions are

i) ‖eit∆u0e
it∆v0‖L2

t (Hs
x) ≤ c‖u0‖

H
s+ 1

2 +ε

x

‖v0‖L2
x
,

ii) ‖uv‖L2
t (Hs

x) ≤ c‖u‖Xs+ 1
2+ε,b(φ)‖v‖X0,b(φ),

provided ε > 0 and 0 < s < 1
2 < b, cf. Corollary 6 in [B98b].

Finally we show how to extend the twodimensional estimate to negative values
of s:

Lemma 2.6 Let n = 2. Then for l ≥ m , the estimate

‖P∆m(eit∆P∆lu1e
it∆u2)‖L2

xt
≤ c2

m−l
2 ‖u1‖L2

x
‖u2‖L2

x

holds.
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Proof: Without loss of generality we may assume ‖u1‖L2
x

= ‖u2‖L2
x

= 1 and, by
standard Strichartz, m ¿ l. Then

‖P∆m(eit∆P∆lu1e
it∆u2)‖L2

xt

≤
∑

α∈Z2

‖P∆m(eit∆PQm
α

P∆lu1e
it∆u2)‖L2

xt

≤
∑

α∈Z2

∑

|α+β|≤2

‖P∆m(eit∆PQm
α

P∆lu1e
it∆PQm

β
u2)‖L2

xt
,

since |ξ1−2mα| ≤ 2m and |ξ| ≤ 2m imply that |ξ2 +2mα| ≤ |ξ1−2mα|+ |ξ| ≤ 2m+1.
Now, for fixed α, β, we estimate the square of the L2

xt-norm:

‖P∆m(eit∆PQm
α

P∆lu1e
it∆PQm

β
u2)‖2

L2
xt

= c

∫
dξχ∆m

(ξ)
∫

∗
dξ1dη1δ(|ξ1|2 + |ξ2|2 − |η1|2 − |η2|2)χ∆l

(ξ1)χ∆l
(η1)..

× ..χQm
α

(ξ1)χQm
α

(η1)χQm
β

(ξ2)χQm
β

(η2)
2∏

i=1

ûi(ξi)ûi(ηi) ≤ c

2
(I1 + I2) = cI1,

where

I1 =
∫

dξχ∆m(ξ)
∫

∗
dξ1χQm

α
(ξ1)χQm

β
(ξ2)|û1(ξ1)û2(ξ2)|2I(ξ, ξ1)

and
I(ξ, ξ1) =

∫

∗
dη1δ(|ξ1|2 + |ξ2|2 − |η1|2 − |η2|2)χ∆l

(η1)χQm
α

(η1).

(As in the previous proof I2 is obtained from I1 by exchanging the variables ξi and
ηi, thus we have I1 = I2.) For the inner integral I(ξ, ξ1) we use

∫
dxδ(P (x))f(x) =∫

P (x)=0
dSx

|∇P (x)|f(x) with

P (η1) = |η1|2 + |ξ − η1|2 − |ξ1|2 − |ξ2|2, |∇η1P (η1)| = |4η1 − 2ξ| ≥ c2l

(because of the factors χ∆m(ξ), χ∆l
(η1) and m ¿ l) to get

I(ξ, ξ1) ≤ c2−l

∫

P (η1)=0

dSη1χQm
α

(η1) ≤ c2m−l.

We arrive at
I1 ≤ c2m−l‖PQm

α
u1‖2L2

x
‖PQm

β
u2‖2

L2
x

,

which gives, inserted into
∑

α∈Z2

∑
|α+β|≤2:

‖P∆m(eit∆P∆lu1e
it∆u2)‖L2

xt

≤ c2
m−l

2

∑

α∈Z2

∑

|α+β|≤2

‖PQm
α

u1‖L2
x
‖PQm

β
u2‖L2

x

≤ c2
m−l

2

∑

α∈Z2

∑

|α+β|≤2

‖PQm
α

u1‖2L2
x

+ ‖PQm
β

u2‖2
L2

x

≤ c2
m−l

2

2
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Corollary 2.3 Let n = 2, ε > 0 > s > − 1
2 and b > 1

2 . Then

i) ‖eit∆u0e
it∆v0‖L2

t (Hs−ε
x ) ≤ c‖u0‖Hs

x
‖v0‖L2

x
,

ii) ‖uv‖L2
t (Hs−ε

x ) ≤ c‖u‖Xs,b(φ)‖v‖X0,b(φ).

Remark : Again we can use multilinear interpolation to obtain

‖u1u2‖L2
t (Hs

x) ≤ c‖u1‖Xs1,b(φ)‖u2‖Xs2,b(φ),

provided − 1
2 < s ≤ 0, b > 1

2 , s1,2 ≤ 0 and s1 + s2 > s.

Proof: To see i) we write

‖eit∆u0e
it∆v0‖L2

t (Hs−ε
x )

≤
∑

m,l∈N

2m(s−ε)‖P∆m(eit∆P∆lu0e
it∆v0)‖L2

xt
≤

∑
1

+
∑
2

with
∑
1

=
∑

l∈N0

∑

m≥l

2m(s−ε)‖eit∆P∆lu0e
it∆v0‖L2

xt

≤ c
∑

l∈N0

2l(s− ε
2 )

∑

m∈N0

2−
mε
2 ‖P∆lu0‖L2

x
‖v0‖L2

x
≤ c‖u0‖Hs

x
‖v0‖L2

x

where we have used Hölder and (standard) Strichartz. Now Lemma 2.6 is applied
to estimate

∑
2

=
∑

l∈N0

∑

m≤l

2m(s−ε)‖P∆m(eit∆P∆lu0e
it∆v0)‖L2

xt

≤ c
∑

l∈N0

2−
l
2

∑

m≤l

2m(s+ 1
2−ε)‖P̃∆lu0‖L2

x
‖v0‖L2

x

≤ c
∑

l∈N

2l(s−ε)‖P̃∆lu0‖L2
x
‖v0‖L2

x
≤ c‖u0‖Hs

x
‖v0‖L2

x
.

This gives i). For u ∈ X0,b(φ) part ii) follows from this by Lemma 2.1, for the
general case we use an approximation argument as in the proof of Lemma 1.11
(observe that u ∈ L2

loc(R
n+1) by Lemma 2.3). 2

2.1.2 Airy estimates

Here we have φ : R → R, ξ 7→ ξ3. Again we start with the Strichartz type
estimates for the Airy equation:

Lemma 2.7 For b > 1
2 the following estimates are valid:

i) ‖u‖Lp
t (Hs,q

x ) ≤ c‖u‖X0,b(φ), whenever 0 ≤ s = 1
p ≤ 1

4 and 1
q = 1

2 − 2
p ,

ii) ‖u‖Lp
t (Lq

x) ≤ c‖u‖X0,b(φ), whenever 0 < 1
q = 1

2 − 3
p ≤ 1

2 .
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Quotation/Proof: Theorem 2.1 in [KPV91] gives in the case of the Airy-equation

‖e−t∂3
u0‖Lp

t (Ḣs,q
x ) ≤ c‖u0‖L2

x
,

provided 0 ≤ s = 1
p ≤ 1

4 and 1
q = 1

2 − 2
p . Now Lemma 2.1 is applied to obtain

‖u‖Lp
t (Ḣs,q

x ) ≤ c‖u‖X0,b(φ), b >
1
2

(43)

for the same values of s, p and q. From this ii) follows by Sobolev’s embedding
theorem (in the space variable). Especially we have

‖u‖L8
xt
≤ c‖u‖X0,b(φ), b >

1
2
,

which, interpolated with the trivial case, gives

‖u‖L4
xt
≤ c‖u‖X0,b(φ), b >

1
3
.

Now let us see how to replace Ḣs,q
x by Hs,q

x in (43) in the endpoint case, i. e.
s = 1

p = 1
4 , q = ∞: Using the projections p = F−1

x χ{|ξ|≤1}Fx and P = Id − p we
have

‖u‖
L4

t (H
1
4 ,∞

x )
≤ ‖Pu‖

L4
t (H

1
4 ,∞

x )
+ ‖pu‖

L4
t (H

1
4 ,∞

x )
=: I + II.

For I we use (43) to obtain

I ≤ c‖I− 1
4 J

1
4 Pu‖X0,b(φ) ≤ c‖u‖X0,b(φ),

while for II by Sobolev’s embedding theorem we get

II ≤ c‖pu‖
L4

t (H
1
2 +ε,4

x )
≤ c‖pu‖X 1

2+ε,b(φ) ≤ c‖u‖X0,b(φ).

This gives i) in the endpoint case, from which the general case follows by interpo-
lation with Sobolev’s embedding theorem (in the time variable). 2

Remark: The endpoint case in ii) is also valid - see e. g. Lemma 3.29 in
[KPV93a] - but we shall not make use of this here.

The Xs,b(φ)-versions of Kato’s smoothing effect and the maximal function esti-
mate for the Airy-equation are the following:

Lemma 2.8 Let b > 1
2 . Then the estimates

i) ‖u‖L∞x (L2
t ) ≤ c‖u‖X−1,b(φ) (Kato smoothing effect),

ii) ‖u‖L4
x(L∞t ) ≤ c‖u‖X 1

4 ,b(φ) (maximal function estimate).

hold true.

Quotation/Proof: Combining Theorem 4.1 in [KPV91] with Lemma 2.1 we ob-
tain i) as in the proof of Lemma 2.3. Part ii) follows from Theorem 2.5 in [KPV91]
and Lemma 2.1. 2
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2.2 Multilinear estimates leading to wellposedness results

Here we consider nonlinearities of the type N(u) = Dβ(
∏m

i=1 Dβiu). In this case
the nonlinear estimates (32) and (35) reduce to

‖Dβ(
∏m

i=1 Dβiui)‖Xs,b′(φ) ≤ c

m∏

i=1

‖ui‖Xs,b(φ) (44)

respectively to

‖Dβ(
∏m

i=1 Dβiui)‖Xs,b′(φ)∩Ys(φ) ≤ c

m∏

i=1

‖ui‖Xs,b(φ), (45)

and also (36) reduces to (45) with an additional factor δε on the right hand side. In
view on systems and nonlinearities depending on u and u the proof of the following
more general estimates is of interest:

‖Dβ(
∏m

i=1 Dβiui)‖Xs,b′(φ) ≤ c

m∏

i=1

‖ui‖Xsi,bi
(φi) (46)

and

‖Dβ(
∏m

i=1 Dβiui)‖Ys(φ) ≤ c

m∏

i=1

‖ui‖Xsi,bi(φi). (47)

Lemma 2.9 For 1 ≤ i ≤ m let ui ∈ H ⊂ Xsi,bi(φi) and

fi(ξ, τ) := 〈τ − φi(ξ)〉bi〈ξ〉siFui(ξ, τ).

Then with dν := µ(dξ1..dξm−1)dτ1..dτm−1 und ξ =
∑m

i=1 ξi, τ =
∑m

i=1 τi the fol-
lowing identities are valid:

FDβ(
m∏

i=1

Dβiui)(ξ, τ) = cξβ

∫
dν

m∏

i=1

ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi)

as well as

a) ‖Dβ(
∏m

i=1 Dβiui)‖Xs,b′(φ) =

c‖〈τ − φ(ξ)〉b′〈ξ〉sξβ
∫

dν
∏m

i=1 ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi)‖L2
ξ,τ

b) ‖Dβ(
∏m

i=1 Dβiui)‖Ys(φ) =

c‖〈τ − φ(ξ)〉−1〈ξ〉sξβ
∫

dν
∏m

i=1 ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi)‖L2
ξ
(L1

τ )

Proof: For the convolution of m functions gi, 1 ≤ i ≤ m, we have with
x =

∑m
i=1 xi ∗m

i=1
gi(x) =

∫
µ(dx1..dxm−1)

m∏

i=1

gi(xi).
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Hence by the properties of the Fourier transform the following holds true with
ξ =

∑m
i=1 ξi, τ =

∑m
i=1 τi:

FDβ(
m∏

i=1

Dβiui)(ξ, τ)

= cξβ(∗m
i=1

ξβiFui)(ξ, τ)

= cξβ(∗m
i=1

ξβi〈τ − φi(ξ)〉−bi〈ξ〉−sifi)(ξ, τ)

= cξβ

∫
dν

m∏

i=1

ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi).

From this we obtain a) because of

‖Dβ(
∏m

i=1 Dβiui)‖Xs,b′(φ) = ‖〈τ − φ(ξ)〉b′〈ξ〉sFDβ(
∏m

i=1 Dβiui)‖L2
ξ,τ

and b) because of

‖Dβ(
∏m

i=1 Dβiui)‖Ys(φ) = ‖〈τ − φ(ξ)〉−1〈ξ〉sFDβ(
∏m

i=1 Dβiui)‖L2
ξ
(L1

τ ).

2

Remark : The previous Lemma has some simple but important consequences:
First of all it shows that the estimate (46) holds true, iff

‖〈τ − φ(ξ)〉b′〈ξ〉sξβ
∫

dν
∏m

i=1 ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi)‖L2
ξ,τ

≤ c

m∏

i=1

‖fi‖L2
ξ,τ

. (48)

In order to prove the latter one may assume without loss of generality that
ξβ

∏m
i=1 ξβi

i fi(ξi, τi) ≥ 0. Because of

〈ξ〉 = 〈
m∑

i=1

ξi〉 ≤
m∑

i=1

〈ξi〉

it follows that, if the estimate (44) holds true for some s ∈ R, then for any σ ≥ s
the estimate

‖Dβ(
∏m

i=1 Dβiui)‖Xσ,b′(φ) ≤ c
m∑

j=1

‖uj‖Xσ,bj (φj)

m∏

i=1, i 6=j

‖ui‖Xs,bi(φi)

is also valid, which implies (33) and (34) in this case. Correspondingly, if (45) holds
true for some s ∈ R, then for all σ ≥ s the above estimate with Xσ,b′(φ) replaced
by Yσ(φ) is valid, too, implying (37) and (38).

As a simple application of the above arguments we give a short proof of Sobolev’s
multiplication law (cf. Corollary 3.16 in [T00]), which we have used in section 1:
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Lemma 2.10 Let s ≥ 0. Assume in addition that

i) s ≤ s1,2 and s < s1 + s2 − n
2 or

ii) s < s1,2 and s ≤ s1 + s2 − n
2 .

Then ‖fg‖Hs
x
≤ c‖f‖H

s1
x
‖g‖H

s2
x

with c depending on s, s1, s2 and n.

Proof: Without loss of generality we may assume Ff , Fg ≥ 0. Then, using
〈ξ〉 ≤ 〈ξ1〉+ 〈ξ2〉, we have

‖fg‖Hs
x

≤ ‖(Jsf)g‖L2
x

+ ‖fJsg‖L2
x

≤ ‖Jsf‖Lp
x
‖g‖

Lp′
x

+ ‖f‖
Lq′

x
‖Jsg‖Lq

x
,

where 1
p + 1

p′ = 1
q + 1

q′ = 1
2 . Now we choose

1
p′

=





0 : s2 > n
2

s1−s
n : s2 = n

2
1
2 − s2

n : s2 < n
2

;
1
q′

=





0 : s1 > n
2

s2−s
n : s1 = n

2
1
2 − s1

n : s1 < n
2

.

Then Hs2
x ⊂ Lp′

x and Hs1
x ⊂ Lq′

x (observe that s1,2 − s > 0 if s2,1 = n
2 ) as well as

Hs1
x ⊂ Hs,p

x and Hs2
x ⊂ Hs,q

x . 2

2.2.1 Bourgain’s approach

In order to prove (48) one uses linear (or multilinear) space-time estimates - similar
as in example 2.1 - after exploiting the algebraic inequality

〈τ − φ(ξ)〉+
m∑

i=1

〈τi − φi(ξi)〉 ≥ |
m∑

i=1

φi(ξi)− φ(ξ)| =: c.q. (49)

coming from the identity

τ − φ(ξ)−
m∑

i=1

(τi − φi(ξi)) =
m∑

i=1

φi(ξi)− φ(ξ)

(observe the convolution constraint
∑m

i=1 τi = τ ,
∑m

i=1 ξi = ξ in (48)).

Here it comes in that the results, which can be achieved by the method, do not
only depend on the degree of the nonlinearity but also on its structure. To illustrate
this we consider the Schrödinger equation with the nonlinearities

N1(u, u) = u2, N2(u, u) = uu, N3(u, u) = u2

in one space dimension: For N1 (respectively N3) we have c.q. = 2|ξ1ξ2| (respectively
c.q. = ξ2 + ξ2

1 + ξ2
2), giving control over half a derivative on each factor, while for

N2 one only has c.q. = 2|ξξ1|, which gives nothing, if ξ1 is very close to −ξ2. The
corresponding results are local wellposedness for data in Hs

x with s > − 3
4 for N1,3

respectively with s > − 1
4 for N2 in the nonperiodic case and with s > − 1

2 for N1,3

respectively with s ≥ 0 for N2 in the periodic case, see [KPV96b].
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As an application of this approach we consider the Schrödinger equation with
the nonlinearity N(u) = u2 in the continuous case first in three and then in two
space dimensions. In this case we have to show that

‖∏2
i=1 ui‖Xs,b′(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ)

where φ(ξ) = −|ξ|2. With vi = ui this can be rewritten as

‖∏2
i=1 vi‖Xs,b′(φ) ≤ c

2∏

i=1

‖vi‖Xs,b(−φ),

that is, we have φ1(ξ) = φ2(ξ) = |ξ|2 = −φ(ξ), which gives the rather comfortable
inequality

〈τ − φ(ξ)〉+
2∑

i=1

〈τi − φi(ξi)〉 ≥ 〈ξ〉2 +
2∑

i=1

〈ξi〉2.

Our first example is an alternative proof of a recent result due to Tao (see the
remark below Proposition 11.3 in [T00]):

Example 2.2 (Tao) Let n = 3 and φ : R3 → R, ξ 7→ −|ξ|2 (Schrödinger equation
in the nonperiodic case in three space dimensions). Assume that 0 ≥ s > − 1

2 ,
− 1

2 < b′ < s
2 − 1

4 and b > 1
2 . Then the estimate

‖∏2
i=1 ui‖Xs,b′(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ)

holds true. For b < b′+1 Lemma 1.13 and the general local existence Theorem apply
and give local wellposedness in Xs,b(φ), s > − 1

2 , for (19), (20) with φ as above and
N(u) = u2.

Proof: Defining fi(ξ, τ) = 〈τ − |ξ|2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 2, we have according
to Lemma 2.9

‖∏2
i=1 ui‖Xs,b′(φ) = c‖〈ξ〉s〈τ + |ξ|2〉b′ ∫ dν

∏2
i=1〈τi − |ξi|2〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

By the introductory remark and since b′ < s
2 − 1

4 is assumed, it holds that

〈ξ〉s+ 1
2

2∏

i=1

〈ξi〉−s ≤ c(〈τ + |ξ|2〉−b′ +
2∑

i=1

〈τi − |ξi|2〉−b′χAi),

where in Ai we have 〈τi − |ξi|2〉 ≥ 〈τ + |ξ|2〉. Hence

‖∏2
i=1 ui‖X0,b′(φ) ≤ c

2∑

j=0

‖Ij‖L2
ξ,τ

,
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with

I0(ξ, τ) = 〈ξ〉− 1
2

∫
dν

2∏

i=1

〈τi − |ξi|2〉−bfi(ξi, τi)

and, for 1 ≤ j ≤ 2,

Ij(ξ, τ) = 〈ξ〉− 1
2 〈τ + |ξ|2〉b′

∫
dν〈τj − |ξj |2〉−b′

2∏

i=1

〈τi − |ξi|2〉−bfi(ξi, τi)χAj

≤ 〈ξ〉− 1
2 〈τ + |ξ|2〉−b

∫
dν〈τj − |ξj |2〉b

2∏

i=1

〈τi − |ξi|2〉−bfi(ξi, τi).

To estimate I0 we use Lemma 2.9, Sobolev’s embedding theorem in the x-variable,
Hölder’s inequality and the Xs,b(φ)-version of the L4

t (L
3
x)-Strichartz-estimate (Lemma

2.2):

‖I0‖L2
ξ,τ

≤ c‖∏2
i=1 Jsui‖

L2
t (H

− 1
2

x )

≤ c‖∏2
i=1 Jsui‖

L2
t (L

3
2
x )

≤ c

2∏

i=1

‖Jsui‖L4
t (L3

x) ≤ c

2∏

i=1

‖ui‖Xs,b(φ).

To estimate Ij , 1 ≤ j ≤ 2, we also use the dual version of Lemma 2.2:

‖Ij‖L2
ξ,τ

≤ c‖JsuiF−1fj‖X− 1
2 ,−b(φ)

≤ c‖JsuiF−1fj‖
L

4
3
t (H

− 1
2 , 3

2
x )

≤ c‖JsuiF−1fj‖
L

4
3
t (L

6
5
x )

≤ c‖F−1fj‖L2
xt
‖Jsui‖L4

t (L3
x) ≤ c

2∏

i=1

‖ui‖Xs,b(φ).

2

Arguing as in the previous proof and using the L4
xt-Strichartz estimate valid in

two space dimensions leads to the estimate

‖u1u2‖X0,b′(φ) ≤ c‖u1‖Xs,b(φ)‖u2‖Xs,b(φ),

provided − 1
2 < b′ < s ≤ 0, 1

2 < b. This is essentially the first part of Theorem
2.1 in [St97]. This has been improved in [CDKS01], see the first part of Theorem
1 in that paper. As a second example we show here, how this improvement can
be deduced by using Bourgain’s refinement of Strichartz’ inequality in two space
dimensions (Corollary 2.2) and its extension to s < 0 (Corollary 2.3):
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Example 2.3 (Colliander, Delort, Kenig, Staffilani) Let n = 2 and φ : R2 →
R, ξ 7→ −|ξ|2 (Schrödinger equation in the nonperiodic case in two space dimen-
sions). Assume that 0 ≥ s > − 3

4 , − 1
2 < b′ < s + 1

4 , σ < 2(s − b′), σ ≤ 0, 2b′ ≤ s
and b > 1

2 . Then the estimate

‖∏2
i=1 ui‖Xσ,b′(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ)

holds true. For b < b′+1 Lemma 1.13 and the general local existence Theorem apply
and give local wellposedness in Xs,b(φ), s > − 3

4 , for (19), (20) with φ as above and
N(u) = u2.

Proof: Without loss of generality we may assume that σ > − 1
2 . Writing

fi(ξ, τ) = 〈τ − |ξ|2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 2 as in the previous proof we have

‖∏2
i=1 ui‖Xσ,b′(φ) = c‖〈ξ〉σ〈τ + |ξ|2〉b′ ∫ dν

∏2
i=1〈τi − |ξi|2〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

By the expressions 〈τ + |ξ|2〉 and 〈τi−|ξi|2〉, i = 1, 2, the quantity 〈ξ〉2+〈ξ1〉2+〈ξ2〉2
can be controlled. So we split the domain of integration into A0 +A1 +A2, where in
A0 we have 〈τ + |ξ|2〉 = max (〈τ + |ξ|2〉, 〈τ1 − |ξ1|2〉, 〈τ2 − |ξ2|2〉) and in Aj , j = 1, 2,
it should hold that 〈τj − |ξj |2〉 = max (〈τ + |ξ|2〉, 〈τ1 − |ξ1|2〉, 〈τ2 − |ξ2|2〉). First we
consider the region A0: Here we have 〈ξ1〉−b′〈ξ2〉−b′ ≤ c〈τ + |ξ|2〉−b′ , so that for this
region we get the upper bound

c‖〈ξ〉σ ∫
dν

∏2
i=1〈τi − |ξi|2〉−b〈ξi〉b′−sfi(ξi, τi)‖L2

ξ,τ

= c‖(Jb′u1)(Jb′u2)‖L2
t (Hσ

x ) ≤ c‖Jb′u1‖Xσ
2 +ε,b(φ)‖Jb′u2‖Xσ

2 +ε,b(φ),

by Corollary 2.3 and the remark below. Since σ < 2(s − b′) is assumed, this gives
the desired bound.

Now, by symmetry, it is sufficient to consider the region A1, where

〈τ + |ξ|2〉b+b′〈ξ1〉−2b′+s〈ξ2〉−s ≤ c〈τ1 − |ξ1|2〉b

holds, giving the upper bound

c‖〈ξ〉σ〈τ + |ξ|2〉−b
∫

dν〈ξ1〉2(b′−s)f1(ξ1, τ1)〈τ2 − |ξ2|2〉−bf2(ξ2, τ2)‖L2
ξ,τ

= c‖(J2(b′−s)F−1f1)(Jsu2)‖Xσ,−b(φ).

Using the dualized version of Corollary 2.2 this can be estimated by

c‖J2(b′−s)F−1f1‖L2
t (Hσ+ε

x )‖Jsu2‖X0,b(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ),

since 2(b′ − s) + σ < 0 by assumption. 2
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2.2.2 The Schwarz method

This method, developed by Kenig, Ponce and Vega in [KPV96a] and [KPV96b], (in
general) also uses the inequality (49) but avoids the use of the Strichartz- or sim-
ilar estimates, which is replaced by a clever use of the Cauchy Schwarz inequality
combined with Fubini’s Theorem and elementary subsequent estimates.

We still want to prove the estimate (48), which, by duality, is equivalent to
∣∣∣∣∣
∫

µ(dξ)dτdν〈τ − φ(ξ)〉b′〈ξ〉sξβf0(ξ, τ)
m∏

i=1

ξβi

i 〈τi − φi(ξi)〉−bi〈ξi〉−sifi(ξi, τi)

∣∣∣∣∣

≤ c

m∏

i=0

‖fi‖L2
ξ,τ

,

where again dν = µ(dξ1..dξm−1)dτ1..τm−1, ξ =
∑m

i=1 ξi and τ =
∑m

i=1 τi. For short
we write

dνj := µ(dξ1..dξj−1dξj+1..dξm)dτ1..τj−1τj+1..τm,

w(ξ, ξ1, .., ξm) := 〈ξ〉sξβ
m∏

i=1

ξβi

i 〈ξi〉−si and

W (ξ, ξ1, .., ξm, τ, τ1, .., τm) := w(ξ, ξ1, .., ξm)〈τ − φ(ξ)〉b′
m∏

i=1

〈τi − φi(ξi)〉−bi .

Now the use of Cauchy Schwarz and Fubini is summarized in the following

Lemma 2.11 Assume that

c2
0 := sup

ξ,τ

∫
dν|W (ξ, ξ1, .., ξm, τ, τ1, .., τm)|2 < ∞ (50)

or, for some j ∈ {1, .., m},

c2
j := sup

ξj ,τj

∫
dνj |W (ξ, ξ1, .., ξm, τ, τ1, .., τm)|2 < ∞. (51)

Then∣∣∣∣∣
∫

µ(dξ)dτdνW (ξ, ξ1, .., ξm, τ, τ1, .., τm)f0(ξ, τ)
m∏

i=1

fi(ξi, τi)

∣∣∣∣∣ ≤ c

m∏

i=0

‖fi‖L2
ξ,τ

,

where c = minm
j=0 cj.

Proof: Assume (50) first. Then Cauchy Schwarz applied to
∫

µ(dξ)dτ and to∫
dν gives

∣∣∣∣∣
∫

µ(dξ)dτdνW (ξ, ξ1, .., ξm, τ, τ1, .., τm)f0(ξ, τ)
m∏

i=1

fi(ξi, τi)

∣∣∣∣∣
≤ ‖f0‖L2

ξ,τ
‖ ∫

dνW (ξ, ξ1, .., ξm, τ, τ1, .., τm)
∏m

i=1 fi(ξi, τi)‖L2
ξ,τ

≤ ‖f0‖L2
ξ,τ
‖(∫ dν|W (ξ, ξ1, .., ξm, τ, τ1, .., τm)|2) 1

2 (
∫

dν
∏m

i=1 |fi(ξi, τi)|2) 1
2 ‖L2

ξ,τ

≤ c0‖f0‖L2
ξ,τ
‖(∫ dν

∏m
i=1 |fi(ξi, τi)|2) 1

2 ‖L2
ξ,τ

.
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By the Fubini Theorem we get

‖(∫ dν
∏m

i=1 |fi(ξi, τi)|2) 1
2 ‖2

L2
ξ,τ

=
∫

µ(dξ)dτ

∫
dν

m∏

i=1

|fi(ξi, τi)|2

=
∫

dν

m−1∏

i=1

|fi(ξi, τi)|2
∫

µ(dξ)dτ |fm(ξm, τm)|2

=
m∏

i=1

‖fi‖2L2
ξ,τ

,

which gives the first part of the claim. Now assume (51) for some j ∈ {1, .., m}.
Integrating with respect to (ξm, τm) instead of (ξ, τ) we obtain similarly as above

∣∣∣∣∣
∫

µ(dξ)dτdνW (ξ, ξ1, .., ξm, τ, τ1, .., τm)f0(ξ, τ)
m∏

i=1

fi(ξi, τi)

∣∣∣∣∣

=

∣∣∣∣∣
∫

µ(dξj)dτjdνjW (ξ, ξ1, .., ξm, τ, τ1, .., τm)f0(ξ, τ)
m∏

i=1

fi(ξi, τi)

∣∣∣∣∣
≤ ‖fj‖L2

ξ,τ
‖ ∫

dνjW (ξ, ξ1, .., ξm, τ, τ1, .., τm)f0(ξ, τ)
∏

i 6=j fi(ξi, τi)‖L2
ξj,τj

≤ ‖fj‖L2
ξ,τ
‖(∫ dνj |W (ξ, .., τ, ..)|2) 1

2 (
∫

dνj |f0(ξ, τ)|2 ∏
i 6=j |fi(ξi, τi)|2) 1

2 ‖L2
ξj,τj

≤ cj‖fj‖L2
ξ,τ
‖(∫ dνj |f0(ξ, τ)|2 ∏

i6=j |fi(ξi, τi)|2) 1
2 ‖L2

ξj,τj

.

Using Fubini again, we see that

‖(∫ dνj |f0(ξ, τ)|2 ∏
i 6=j |fi(ξi, τi)|2) 1

2 ‖2
L2

ξj,τj

=
∏

i 6=j

‖fi‖2L2
ξ,τ

,

which gives the second part of the claim. 2

In order to control the τi-integrations in the expressions c2
j the following elemen-

tary lemma is helpful, which we take over together with its proof from [GTV97] (cf.
Lemma 4.2 there):

Lemma 2.12 For 0 ≤ a− ≤ a+ with a+ + a− > 1 and a, b ∈ R the inequality

J(a, b) :=
∫

R
dτ〈τ − a〉−a+〈τ − b〉−a− ≤ c〈a− b〉−(a−−[1−a+]+)

is valid, where for x ∈ R [x]+ is defined by

[x]+ :=





x : x > 0
ε > 0 : x = 0

0 : x < 0
.
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Proof: Without loss of generality we may assume b = 0 and a > 0. Then

J(a, 0) ≤ 2
∫ ∞

0

dτ〈τ − a〉−a+〈τ〉−a−

≤ 2

(∫ a
2

0

+
∫ 3a

2

a
2

+
∫ ∞

3a
2

)
dτ〈τ − a〉−a+〈τ〉−a−

≤ c

(
〈a〉−a+

∫ a
2

0

dτ〈τ〉−a− + 〈a〉−a−
∫ a

2

− a
2

dτ〈τ〉−a+ +
∫ ∞

3a
2

dτ〈τ〉−a++a−

)

≤ c(〈a〉−(a+−[1−a−]+) + 〈a〉−(a−−[1−a+]+) + 〈a〉−(a++a−−1)).

Since a−− [1−a+]+ ≤ a+− [1−a−]+ ≤ a+ +a−−1, the claimed inequality follows.
2

For quadratic nonlinearities we obtain the following sufficient criterion for the
estimate (48):

Lemma 2.13 Let m = 2. Assume one of the following conditions a) , b) or c) to
be fulfilled:

a) b2 ≥ b1 > 1
4 , β = −(2b1 − [1− 2b2]+) and

sup
ξ,τ
〈τ − φ(ξ)〉2b′

∫
µ(dξ1)|w(ξ, ξ1, ξ − ξ1)|2〈τ − φ1(ξ1)− φ2(ξ − ξ1)〉β < ∞

b) b2 ≥ −b′ > 1
4 , β = 2b′ + [1− 2b2]+ (or −b′ ≥ b2 > 1

4 , β = −2b2 + [1 + 2b′]+)
and

sup
ξ1,τ1

〈τ1 − φ1(ξ1)〉−2b1

∫
µ(dξ2)|w(ξ1 + ξ2, ξ1, ξ2)|2〈τ1 − φ(ξ1 + ξ2) + φ2(ξ2)〉β < ∞

c) b1 ≥ −b′ > 1
4 , β = 2b′ + [1− 2b1]+ (or −b′ ≥ b1 > 1

4 , β = −2b1 + [1 + 2b′]+)
and

sup
ξ2,τ2

〈τ2 − φ2(ξ2)〉−2b2

∫
µ(dξ1)|w(ξ1 + ξ2, ξ1, ξ2)|2〈τ2 − φ(ξ1 + ξ2) + φ1(ξ1)〉β < ∞

Then the estimate (48) holds true.

Proof: By Lemma 2.12 we have
∫

dτ1〈τ1 − φ1(ξ1)〉−2b1〈τ − τ1 − φ2(ξ − ξ1)〉−2b2

≤ c〈τ − φ1(ξ1)− φ2(ξ − ξ1)〉β

for β = −(2b1 − [1− 2b2]+). Thus (50) follows from condition a), and Lemma 2.11
gives (48). Further we have, again by Lemma 2.12,

∫
dτ2〈τ2 − φ2(ξ2)〉−2b2〈τ1 + τ2 − φ(ξ1 + ξ2)〉2b′

≤ c〈τ1 − φ(ξ1 + ξ2) + φ2(ξ2)〉β
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for β = 2b′ + [1 − 2b2]+, if b2 ≥ −b′, respectively for β = −2b2 + [1 + 2b′]+, if
−b′ ≥ b2, that is, condition b) implies (51) for j = 1. The same argument gives
that condition c) implies (51) for j = 2. Now in both cases by Lemma 2.11 we
obtain (48). 2

Remark: The Schwarz method can be improved by introducing dyadic decom-
positions with respect not only to the variables ξ and ξi but also to other quantities
such as τ − φ(ξ), τi − φi(ξi) or φ(ξ) − ∑m

i=1 φi(ξi) before using Cauchy Schwarz.
This is done e. g. in [CDKS01], where the estimate in example 2.3 is shown by the
Schwarz method combined with ”a standard dyadic decomposition in the spatial
frequency variable and a parabolic level set decomposition”3. Using yet another
decomposition with respect to cos α, where α is the angle between ξ1 and ξ2, these
authors could also prove the estimate in example 2.3 with u1u2 replaced by u1u2

(under slightly stronger restrictions on σ and s). The same technique is applied
there successfully to treat the nonlinearity N(u) = |u|2 in two space dimensions.
We also refer to Tao’s article [T00], where this approach is studied systematically
and where the 3-d problem for the quadratic nonlinearities is solved.

2.3 Some Strichartz type estimates for the Schrödinger equa-
tion in the periodic case

In this section we are concerned with some of the Strichartz type estimates for
the Schrödinger equation in the periodic case, which were shown by Bourgain in
[B93]. All the following estimates are essentially contained in sections 2 and 3
of [B93]. Since we want to use them in the form of an embedding of the type
Lp

t (Lq
x) ⊂ Xs,b(φ), where we have spaces of functions being periodic in the space-

but not in the time-variable, we shall give modified proofs for these estimates,
combining some of the arguments from [B93] with the Schwarz method described
in 2.2.2. Throughout this section we have φ : Zn → R, ξ 7→ −|ξ|2.
Lemma 2.14 (cf. [B93], Prop. 2.6) Let n = 1. Then for any b > 3

8 and for any
b′ < − 3

8 the following estimates hold:

i) ‖u‖L4
xt
≤ c‖u‖X0,b(φ)

ii) ‖u‖X0,b′(φ) ≤ c‖u‖
L

4
3
xt

Proof (cf. [KPV96b], Lemma 5.3): Clearly, ii) follows from i) by duality. To see
i), we shall show first that

sup
(ξ,τ)∈Z×R

S(ξ, τ) < ∞

for

S(ξ, τ) =
∑

ξ1∈Z

〈τ + ξ2
1 + (ξ − ξ1)2〉1−4b

≤ c
∑

ξ1∈Z

〈4τ + (2ξ1)2 + (2(ξ − ξ1))2〉1−4b.

3quoted from the introduction of [CDKS01]
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With k = 2ξ1 − ξ ∈ Z we have

k + ξ = 2ξ1, k − ξ = 2(ξ1 − ξ) and (2ξ1)2 + (2(ξ − ξ1))2 = 2(ξ2 + k2),

hence

S(ξ, τ) ≤ c
∑

k∈Z

〈4τ + 2ξ2 + 2k2〉1−4b

≤ c
∑

k∈Z

〈k2 − |2τ + ξ2|〉1−4b

≤ c
∑

k∈Z

〈(k − x0)(k + x0)〉1−4b,

where x2
0 = |2τ + ξ2|. Now there are at most four numbers k ∈ Z with |k − x0| < 1

or |k + x0| < 1. For all the others we have

〈k − x0〉〈k + x0〉 ≤ c〈(k − x0)(k + x0)〉.
Cauchy-Schwarz’ inequality gives

S(ξ, τ) ≤ c + c
∑

k∈Z

(〈k − x0〉〈k + x0〉)1−4b

≤ c + c

(∑

k∈Z

〈k − x0〉2(1−4b)

) 1
2

(∑

k∈Z

〈k + x0〉2(1−4b)

) 1
2

≤ c ,

provided 2(1 − 4b) < −1, that is b > 3
8 . Without loss of generality we can assume

b ∈ ( 3
8 , 1

2 ). Using part a) of Lemma 2.13 we arrive at

‖∑
ξ1∈Z

∫
dτ1〈τ1 + ξ2

1〉−bf(ξ1, τ1)〈τ − τ1 + (ξ − ξ1)2〉−bg(ξ − ξ1, τ − τ1)‖L2
ξ,τ

≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
.

Now by Lemma 2.9 it follows that

‖u1u2‖L2
xt
≤ c‖u1‖X0,b(φ)‖u2‖X0,b(φ) .

Taking u1 = u2 = u, we get

‖u‖2L4
xt

= ‖u2‖L2
xt
≤ c‖u‖2X0,b(φ) .

2

Remark: Arguing as in Example 2.1, but using the previous lemma instead of
Lemma 2.2, one obtains local (and - by the conservation of the L2

x-norm - global)
wellposedness for

iut + uxx = |u|p−1u u(0) = u0 ∈ L2
x(T),

provided p ≤ 3. This is the onedimensional L2
x-result in [B93], cf. Theorem 4.45

there (see also Théorème 5.1 in [G96]).

In the sequel we shall make use of the following number theoretic results con-
cerning the number of solutions of certain Diophantine equations:
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Proposition 2.1 i) For all ε > 0 there exists a constant c = c(ε) with

a(r, 3) := #{(k1, k2) ∈ Z2 : 3k2
1 + k2

2 = r ∈ N} ≤ c〈r〉ε.

ii) For all ε > 0 there exists a constant c = c(ε) with

a(r, 1) := #{(k1, k2) ∈ Z2 : k2
1 + k2

2 = r ∈ N} ≤ c〈r〉ε.

iii) Let n ≥ 3. Then for all ε > 0 there exists a constant c = c(ε) with

#{k ∈ Zn : |k|2 = r ∈ N} ≤ c〈r〉n−2
2 +ε.

Quotation/Proof: i) a(r, 3) is calculated explicitly in [P], Satz 6.2: It is

a(r, 3) = 2(−1)r
∑

d|r
(
d

3
) .

Here (d
p ) denotes the Legendre-symbol taking values only in {0,±1}. Thus a(r, 3)

can be estimated by the number of divisors of r, which is bounded by c〈r〉ε, see
[HW], Satz 315. For ii), see Satz 338 in [HW]. iii) follows from ii) by induction,
writing {k ∈ Zn : |k|2 = r ∈ N} =

⋃
k2

n≤r{(k′, kn) : |k′|2 = r − k2
n}.

The following Lemma corresponds to Prop. 2.36 in [B93]:

Lemma 2.15 Let n = 1. Then for all s > 0 and b > 1
2 there exists a constant

c = c(s, b), so that the following estimate holds:

‖u‖L6
xt
≤ c‖u‖Xs,b(φ) .

Proof: As in the proof of the previous lemma, we start by showing that

sup
(ξ,τ)∈Z×R

S(ξ, τ) < ∞ ,

where now (with ξ3 = ξ − ξ1 − ξ2)

S(ξ, τ) =
∑

ξ1,ξ2∈Z

〈τ + ξ2
1 + ξ2

2 + ξ2
3〉−2b〈ξ1〉−2s〈ξ2〉−2s〈ξ3〉−2s

≤ c
∑

ξ1,ξ2∈Z

〈9τ + (3ξ1)2 + (3ξ2)2 + (3ξ3)2〉−2b〈(3ξ1)2 + (3ξ2)2 + (3ξ3)2〉−s.

Taking k1 = 3(ξ1 + ξ2)− 2ξ and k2 = 3(ξ1 − ξ2) as new indices, we have

3ξ1 =
1
2
(k1 + k2) + ξ, 3ξ2 =

1
2
(k1 − k2) + ξ and 3ξ3 = ξ − k1.

From this we get

(3ξ1)2 + (3ξ2)2 + (3ξ3)2 =
1
2
(3k2

1 + k2
2) + 3ξ2.
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It follows

S(ξ, τ) ≤ c
∑

k1,k2∈Z

〈9τ + 3ξ2 +
1
2
(3k2

1 + k2
2)〉−2b〈1

2
(3k2

1 + k2
2)〉−s

≤ c
∑

r∈N0

∑

3k2
1+k2

2=r

〈9τ + 3ξ2 +
r

2
〉−2b〈r

2
〉−s

≤ c
∑

r∈N0

〈9τ + 3ξ2 +
r

2
〉−2b,

where in the last step we have used part i) of the above proposition. Since we have
demanded b > 1

2 , the introducing claim follows. Now we use Lemma 2.12 to obtain

sup
(ξ,τ)∈Z×R

∫
dν

3∏

i=1

〈τi + ξ2
i 〉−2b〈ξi〉−2s < ∞

with
∫

dν =
∫

dτ1dτ2

∑
ξ1,ξ2∈Z and (τ, ξ) =

∑3
i=1(τi, ξi). Lemma 2.11 gives

‖ ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)‖L2
ξ,τ
≤ c

3∏

i=1

‖fi‖L2
ξ,τ

,

implying

‖∏3
i=1 ui‖L2

xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ)

by Lemma 2.9. Because of ‖u‖3
L6

xt
= ‖u3‖L2

xt
the proof is complete. 2

Corollary 2.4 Let n = 1:

a) For all Hölder- and Sobolevexponents p, q, s and b satisfying

0 ≤ 1
p
≤ 1

6
, 0 <

1
q
≤ 1

2
− 2

p
, b >

1
2
, s >

1
2
− 2

p
− 1

q

the estimate
‖u‖Lp

t (Lq
x) ≤ c‖u‖Xs,b(φ) (52)

holds true.

b) For all p, q, s and b satisfying

0 ≤ 1
p
≤ 1

q
≤ 1

2
≤ 2

p
+

1
q
≤ 3

2
, s > 0 and b >

3
4
− 1

p
− 1

2q

the estimate (52) is valid.

c) For all p, q, s satisfying

0 <
1
p
≤ 1

6
, 0 <

1
q
≤ 1

2
− 2

p
, s >

1
2
− 2

p
− 1

q

there exists b < 1
2 so that (52) holds true.
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Proof: i) By the Sobolev embedding theorem in the time variable we have
X0,b(φ) ⊂ L∞t (L2

x) for all b > 1
2 . Interpolating this with the above lemma, we

obtain (52) whenever 0 ≤ 1
p ≤ 1

6 , s > 0 and 1
2 = 2

p + 1
q .

ii) Combining this with Sobolev embedding in the space variable, part a) follows.
To see part b), one has to interpolate between the result in i) and the trivial case
X0,0(φ) = L2

xt.
iii) Now for p, q, and s according to the assumptions of part c), there exists

θ ∈ [0, 1) satisfying

θ ≥ 1− 2
p

θ > 1− 2
q

and s >
3
2
− θ − 2

p
− 1

q
.

Define s1 = s
θ , b1 = 1

4 + 1
4θ and p1, q1 by 1

p = 1−θ
2 + θ

p1
and 1

q = 1−θ
2 + θ

q1
. A simple

computation shows, that p1, q1, s1 and b1 are chosen according to the assumptions
of part a). Now part c) with b = θb1 = θ+1

4 < 1
2 follows by interpolation between

this and the trivial case. 2

Next we prove the higherdimensional L4-estimates (cf. [B93], Prop. 3.6).

Lemma 2.16 Let n ≥ 2. Then for all s > n
2 − n+2

4 and b > 1
2 there exists a

constant c = c(s, b), so that the following estimate holds:

‖u‖L4
xt
≤ c‖u‖Xs,b(φ) .

Proof: We start by showing that

sup
(ξ,τ)∈Zn×R

S(ξ, τ) ≤ cN4s

for

S(ξ, τ) =
∑

ξ1∈Zn

χN (ξ1)χN (ξ − ξ1)〈τ + |ξ1|2 + |ξ − ξ1|2〉−2b

≤ c
∑

ξ1∈Zn

χ2N (2ξ1)χ2N (2(ξ − ξ1))〈4τ + |2ξ1|2 + |2(ξ − ξ1)|2〉−2b.

Here χN denotes the characteristic function of the ball with radius N centered at
zero. With k = 2ξ1 − ξ ∈ Zn we have

k + ξ = 2ξ1, k − ξ = 2(ξ1 − ξ) and |2ξ1|2 + |2(ξ − ξ1)|2 = 2(|ξ|2 + |k|2).
Thus we can estimate

S(ξ, τ) ≤ c
∑

k∈Zn

χ2N (k + ξ)χ2N (k − ξ)〈4τ + 2(|ξ|2 + |k|2)〉−2b

≤ c
∑

k∈Zn

χ2N (k)〈2τ + |ξ|2 + |k|2〉−2b

= c
∑

r∈N0

∑

k∈Zn,|k|2=r

χ4N2(r)〈2τ + |ξ|2 + r〉−2b

≤ cNn−2+2ε
∑

r∈N0

〈2τ + |ξ|2 + r〉−2b ≤ cN4s ,
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where in the last but one inequality we have used Proposition 2.1. Thus the stated
bound on S(ξ, τ) is proved. Now using part a) of Lemma 2.13 again we arrive at

‖ ∫
dν

∏2
i=1〈τi + |ξi|2〉−bfi(ξi, τi)‖L2

ξτ
≤ cN2s

2∏

i=1

‖fi‖L2
ξτ

for all fi ∈ L2
ξτ which are supported in {(ξ, τ) : |ξ| ≤ N}. Now Lemma 2.9 gives for

all ui ∈ X0,b(φ), i = 1, 2, having a Fourier transform supported in {(ξ, τ) : |ξ| ≤ N}:

‖u1u2‖L2
xt
≤ cN2s

2∏

i=1

‖ui‖X0,b(φ) .

Taking u = u1 = u2 we get

‖u‖L4
xt
≤ cNs‖u‖X0,b(φ) (53)

provided the above support condition ist fulfilled.
Now let (φj)j∈N0 be a smooth partition of the unity according to the assumptions

of the Littlewood-Paley-Theorem4, such that ‖f‖L4
x(Tn) ∼ ‖(∑j∈N0

|φj ∗ f |2) 1
2 ‖L4

x(Tn).
Combining this with the estimate (53) we get

‖u‖2L4
xt

≤ c ‖∑
j∈N0

|φj ∗ u|2‖L2
xt

≤ c
∑

j∈N0

‖φj ∗ u‖2L4
xt

≤ c
∑

j∈N0

22sj‖φj ∗ u‖2X0,b(φ) ≤ c‖u‖2Xs,b(φ).

2

Corollary 2.5 Let n ≥ 2:

a) For all Hölder- and Sobolevexponents p, q, s and b satisfying

0 ≤ 1
p
≤ 1

4
, 0 <

1
q
≤ 1

2
− 1

p
, b >

1
2
, s >

n

2
− 2

p
− n

q

the estimate
‖u‖Lp

t (Lq
x) ≤ c‖u‖Xs,b(φ) (54)

holds true.

b) For all p, q, s and b satisfying

0 ≤ 1
p
≤ 1

q
≤ 1

2
≤ 1

p
+

1
q
≤ 1, s > (n− 2)(

1
2
− 1

q
) and b > 1− 1

p
− 1

q

the estimate (54) is valid.

c) For all p, q, s satisfying

0 <
1
p
≤ 1

4
, 0 <

1
q
≤ 1

2
− 1

p
, s >

n

2
− 2

p
− n

q

there exists b < 1
2 so that (54) holds true.

4see, e. g., Theorem 3.4.4 in [ST]
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The proof follows the same lines as that of Corollary 2.4 and therefore will be
omitted.

Remark : Because of ‖f‖Lp
t (Lq

x) = ‖f‖Lp
t (Lq

x) and ‖f‖Xs,b(−φ) = ‖f‖Xs,b(φ) all

the results derived in this section so far hold for Xs,b(−φ) instead of Xs,b(φ). More-
over, by Lemma 2.2 they are also valid for the corresponding spaces of nonperiodic
functions.

Lemma 2.17 Assume that for some 1 < p, q < ∞, s ≥ 0 and b ∈ R the estimate
‖u‖Lp

t (Lq
x) ≤ c‖u‖Xs,b(φ) is valid. Let B be a ball (or cube) of radius (sidelength)

R centered at ξ0 ∈ Zn. Define the projection PBu = Fx
−1χBFx, where χB denotes

the characteristic function of B. Then also the estimate

‖PBu‖Lp
t (Lq

x) ≤ cRs‖u‖X0,b(φ)

holds true.

(cf. [B93], p.143, (5.6) - (5.8))

Proof: If ξ0 = 0, this is obvious. For ξ0 6= 0 define

Tξ0u(x, t) := exp (−ixξ0 − it|ξ0|2)u(x + 2tξ0, t) .

Then Tξ0 : Lp
t (Lq

x) → Lp
t (Lq

x) is isometric. For the Fourier transform of Tξ0u the
identity

FTξ0u(ξ, τ) = Fu(ξ + ξ0, τ − 2ξξ0 − |ξ0|2)
is easily checked. Now let B0 be a ball (or cube) of the same size as B centered at
zero. Then we have

FTξ0PBu(ξ, τ) = FPBu(ξ + ξ0, τ − 2ξξ0 − |ξ0|2)
= χB(ξ + ξ0)Fu(ξ + ξ0, τ − 2ξξ0 − |ξ0|2)
= χB0(ξ)FTξ0u(ξ, τ) = FPB0Tξ0u(ξ, τ) .

That is Tξ0PBu = PB0Tξ0u. Moreover, because of

‖Tξ0u‖2X0,b(φ) =
∫

µ(dξ)dτ〈τ + |ξ|2〉2b|Fu(ξ + ξ0, τ − 2ξξ0 − |ξ0|2)|2

=
∫

µ(dξ)dτ〈τ + |ξ + ξ0|2〉2b|Fu(ξ + ξ0, τ)|2 = ‖u‖2X0,b(φ)

Tξ0 : X0,b(φ) → X0,b(φ) is also isometric. Now we can conclude

‖PBu‖Lp
t (Lq

x) = ‖Tξ0PBu‖Lp
t (Lq

x)

= ‖PB0Tξ0u‖Lp
t (Lq

x)

≤ cRs‖Tξ0u‖X0,b(φ) = cRs‖u‖X0,b(φ)
2

Remark : If B is a ball centered at ξ0 and −B is the ball of the same size
centered at −ξ0, then a short computation using Fxu(ξ) = Fxu(−ξ) shows that
PBu = P−Bu. From this and ‖u‖Xs,b(−φ) = ‖u‖Xs,b(φ) it follows, that Lemma

2.17 remains valid with Xs,b(φ) replaced by Xs,b(−φ). Moreover, as the proof shows,
the Lemma is also true in the nonperiodic case.
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Part II

Applications: New wellposedness
results
In this part we state and prove the wellposedness results, which we obtained by
the method described so far. The presentation of these results is divided into three
sections:

First we consider a certain class of derivative nonlinear Schrödinger equations,
where the nonlinearity depends only on the conjugate wave u. Due to a rather
comfortable algebraic inequality in this case we can prove a very general result
being valid in arbitrary space dimensions and for all integer exponents larger than
one. Moreover, it covers both the nonperiodic and the periodic case. Here we will
rely heavily on the Strichartz type estimates for the Schrödinger equation in the
periodic case, and - in order to gain a whole derivative - we will use that variant of
the method, where the contracting factor has to come from the nonlinear estimates.

Next we are concerned with nonlinear Schrödinger equations with rough data,
that is, they belong to some Sobolev space larger than L2. This problem has already
been studied in part by other authors, who considered the quadratic nonlinearities in
one space dimension ([KPV96b]) and in the nonperiodic case in two and three space
dimensions ([St97], [CDKS01] respectively [T00]). Here we investigate the cubic and
quartic nonlinearities in one space dimension and the quadratic nonlinearities in the
periodic case in space dimension two and three.

In the periodic case positive results below L2 can be achieved only, if some
fractional derivatives can be completely controlled by an algebraic inequality. With
the only exception of the nonlinearity N(u) = u2 in one space dimension (considered
in [KPV96b]) this is the case exactly if the nonlinearity does not depend on u itself.
This is worked out here for the nonlinearities N(u) = u3 and N(u) = u4 in one
space dimension (with an optimal result), for the nonlinearity N(u) = u2 on T2

(with an optimal result, thus answering a question raised in [St97]5 affirmatively)
and for the latter nonlinearity on T3 (with a probably improvable result). The use
of the Strichartz type inequalities is essential in the derivation of these results.

In the nonperiodic case, due to smoothing, the theory is much richer. For the
quadratic nonlinearities we refer here to the above cited literature (cf. also Example
2.3), for the cubic and quartic nonlinearities on the line see Theorems 4.2 and 4.3
below. In the proofs of these theorems certain bi- and trilinear refinements of the
onedimensional Strichartz’ estimates exhibiting stronger smoothing properties than
the linear ones are essential. I believe these estimates are of interest independent
of their application here. One of the bilinear refinements is the sharp estimate in
Lemma 2.4, leading to Corollary 2.1 due to Bekiranov, Ogawa and Ponce. In order
to state and prove the perfect analogue to this estimate in the case of two unbared
factors (Lemma 4.2), we introduce the bilinear operator Is

−, see Definition 4.1.
5on top of p. 81
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In close analogy to Bourgain’s bilinear refinement of Strichartz’ inequality in two
space dimensions we also have certain trilinear refinements of the onedimensional
L6-Strichartz-estimate. Unfortunately one of these estimates (Lemma 4.3) could
not be shown in the whole range of the parameter s, where it was expected, see
the problem posed in section 4.2. This leads to the unsatisfactory situation that we
cannot say whether or not our results concerning the cubic nonlinearities on the line
are optimal, allthough we can go beyond the result being obtained for N(u) = u3

by the use of the standard Strichartz’ estimate in all three cases in question. Things
look better for the quartic nonlinearities, here we can give a complete answer to
the problem and in fact for four of the five candidates we can reach all values of s
strictly larger than the scaling exponent.

In the last section we use similar arguments to prove local wellposedness of the
Cauchy problem for the generalized KdV-equation of order 3 for s > − 1

6 , which is
the scaling exponent here. For real valued data the L2-norm is a conserved quantity,
which gives global wellposedness in this case for s ≥ 0. A central role in the proof of
the corresponding nonlinear estimate is played by a bilinear estimate for solutions
of the Airy equation involving the operator Is

− again.

The contents of these three sections were published as preprint, see [Gr00],
[Gr01a], [Gr01b].

3 On the Cauchy- and periodic boundary value
problem for a certain class of derivative nonlin-
ear Schrödinger equations

In this section we prove local wellposedness of the initial value and periodic bound-
ary value problem for the following class of derivative nonlinear Schrödinger equa-
tions

ut − i∆u = (∇u)β , u(0) = u0 ∈ Hs+1
x .

Here the initial value u0 belongs to the Sobolev space Hs+1
x = Hs+1

x (Rn) or Hs+1
x =

Hs+1
x (Tn), β ∈ Nn

0 is a multiindex of length |β| = m ≥ 2 and we can admit all
values of s satisfying

s > sc :=
n

2
− 1

m− 1
, s ≥ 0.

The same arguments give local wellposedness for the problem

ut − i∆u = ∂j(um), u(0) = u0 ∈ Hs
x

with the same restrictions on s as above. In the special case of a quadratic nonlin-
earity in one space dimension (i. e. m = 2, n = 1) we can reach the value s = 0.
Employing the conservation of ‖u(t)‖L2

x
in this case, we obtain global wellposedness

for
ut − i∂2

xu = ∂x(u2), u(0) = u0 ∈ Hs
x.

Throughout this section we will have φ : Rn → R or φ : Zn → R, ξ 7→ −|ξ|2.
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3.1 The quadratic nonlinearities in one space dimension

Our local wellposedness result here is the following:

Theorem 3.1 Let n = 1 and s ≥ 0. Then there exists δ = δ(‖u0‖L2
x
) > 0, so

that there is a solution u ∈ Xδ
s, 1

2
(φ) of the initial value (periodic boundary value)

problem
ut − i∂2

xu = ∂x(u2), u(0) = u0 ∈ Hs
x. (1)

This solution is unique in Xδ
0, 1

2
(φ) and satisfies u ∈ Ct((−δ, δ),Hs

x). Moreover, for
any 0 < δ0 < δ the mapping data upon solution is locally Lipschitz continuous from
Hs

x to Xδ0
s, 1

2
(φ) ∩ Ct((−δ0, δ0),Hs

x).

In the same sense the Cauchy and periodic boundary value problem

ut − i∂2
xu = (∂xu)2, u(0) = u0 ∈ Hs+1

x (2)

is locally well posed, the solution here belongs to Xδ
s+1, 1

2
(φ)∩Ct((−δ, δ),Hs+1

x ) and

is unique in Xδ
1, 1

2
(φ).

Remarks : i) The Cauchy problem in (2) was considered by S. Cohn in [C92].
He obtained local wellposedness for data in Hs

x provided s ≥ 4 (see Theorem 1 in
[C92]).

ii) For the local solutions of (1) guaranteed by Theorem 3.1 the L2
x-norm is a

conserved quantity. To see this assume u0 ∈ H1
x first. Then the corresponding

solution u belongs to Ct((−δ, δ),H1
x), which gives N(u) = ∂x(u2) ∈ Ct((−δ, δ), L2

x).
We can use Proposition 6.1.1 in [CH] to see that

d

dt
‖u(t)‖2L2

x
= 2Re

∫
∂x(u2(t))u(t) =

2
3
Re

∫
∂x(u3(t)) = 0.

Now, since we can rely on continuous dependence, the general case follows by ap-
proximation. This gives the following

Corollary 3.1 The Cauchy- and the periodic boundary value problem (1) is globally
well posed for s ≥ 0 in the sense of Corollary 1.4.

By the general local existence Theorem, Lemma 1.14, Remark 1.2 and the re-
mark below Lemma 2.9 the proof of Theorem 3.1 reduces to the following estimates:

Theorem 3.2 Let n = 1 and θ ∈ (0, 1
4 ). Then for all u1,2 ∈ X0, 1

2
(φ) supported in

{(x, t) : |t| ≤ δ} the following estimates are valid:

i) ‖u1u2‖X1,− 1
2
(φ) ≤ cδθ‖u1‖X0, 1

2
(φ)‖u2‖X0, 1

2
(φ) and

ii) ‖u1u2‖Y1(φ) ≤ cδθ‖u1‖X0, 1
2
(φ)‖u2‖X0, 1

2
(φ)
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Proof: 1. Preparations: Setting vi = ui the stated inequalities read

‖v1v2‖X0,− 1
2
(φ) ≤ cδθ‖v1‖X0, 1

2
(−φ)‖v2‖X0, 1

2
(−φ) (3)

and
‖v1v2‖Y1(φ) ≤ cδθ‖v1‖X0, 1

2
(−φ)‖v2‖X0, 1

2
(−φ) . (4)

To show them, we need the following inequality:

〈ξ〉2 + 〈ξ1〉2 + 〈ξ2〉2
≤ 〈τ + ξ2〉+ 〈τ1 − ξ2

1〉+ 〈τ2 − ξ2
2〉 (5)

≤ c(〈τ + ξ2〉χA + 〈τ1 − ξ2
1〉+ 〈τ2 − ξ2

2〉) .

Here A denotes the region, where 〈τ + ξ2〉 ≥ max2
i=1〈τi − ξ2

i 〉. Defining fi(ξ, τ) =
〈τ − ξ2〉 1

2Fvi(ξ, τ) for i = 1, 2 we have ‖vi‖X0, 1
2
(−φ) = ‖fi‖L2

ξ,τ
. Now, for given

θ ∈ (0, 1
4 ) we fix ε = 1

4 ( 1
4 − θ).

2. Proof of (3): By Lemma 2.9 and (5) we have:

‖v1v2‖X1,− 1
2
(φ)

= c‖〈τ + ξ2〉− 1
2 〈ξ〉 ∫ µ(dξ1)dτ1

∏2
i=1〈τi − ξ2

i 〉−
1
2 fi(ξi, τi)‖L2

ξ,τ

≤ c

3∑

i=1

Ni

with
N1 = ‖ ∫

µ(dξ1)dτ1

∏2
i=1〈τi − ξ2

i 〉−
1
2 fi(ξi, τi)‖L2

ξ,τ
,

N2 = ‖〈τ + ξ2〉− 1
2

∫
µ(dξ1)dτ1〈τ2 − ξ2

2〉−
1
2

∏2
i=1 fi(ξi, τi)‖L2

ξ,τ

and
N3 = ‖〈τ + ξ2〉− 1

2
∫

µ(dξ1)dτ1〈τ1 − ξ2
1〉−

1
2

∏2
i=1 fi(ξi, τi)‖L2

ξ,τ
.

Lemma 2.9, Hölders inequality, Lemma 2.14 and Lemma 1.10 are now applied to
obtain

N1 = ‖v1v2‖L2
x,t

≤ ‖v1‖L4
x,t
‖v2‖L4

x,t

≤ c‖v1‖X0, 3
8+ε(−φ)‖v2‖X0, 3

8+ε(−φ)

= c‖ψ2δv1‖X0, 3
8+ε(−φ)‖ψ2δv2‖X0, 3

8+ε(−φ)

≤ cδ
1
4−4ε‖v1‖X0, 1

2−ε(−φ)‖v2‖X0, 1
2−ε(−φ) .

Similarly we get

N2 = ‖(F−1f1)v2‖X0,− 1
2
(φ) ≤ ‖ψ2δ(F−1f1)v2‖X0,− 1

2+ε(φ)

≤ cδ
1
8−2ε‖(F−1f1)v2‖X0,− 3

8−ε(φ)



3.1 The quadratic nonlinearities in one space dimension 59

≤ cδ
1
8−2ε‖(F−1f1)v2‖

L
4
3
x,t

≤ cδ
1
8−2ε‖F−1f1‖L2

x,t
‖v2‖L4

x,t

≤ cδ
1
8−2ε‖v1‖X0, 1

2
(−φ)‖ψ2δv2‖X0, 3

8+ε(−φ)

≤ cδ
1
4−4ε‖v1‖X0, 1

2
(−φ)‖v2‖X0, 1

2
(−φ) .

By exchanging v1 and v2 we get the same upper bound for N3. So, because of
θ = 1

4 − 4ε, the estimate (3) is proved.
3. Proof of (4): Using Lemma 2.9 and (5) we get

‖v1v2‖Y1(φ)

= c‖〈τ + ξ2〉−1〈ξ〉 ∫ µ(dξ1)dτ1

∏2
i=1〈τi − ξ2

i 〉−
1
2 fi(ξi, τi)‖L2

ξ
(L1

τ )

≤ c

3∑

i=1

Ni ,

where

N1 = ‖〈τ + ξ2〉− 1
2

∫
µ(dξ1)dτ1χA

∏2
i=1〈τi − ξ2

i 〉−
1
2 fi(ξi, τi)‖L2

ξ
(L1

τ ) ,

N2 = ‖〈τ + ξ2〉−1
∫

µ(dξ1)dτ1〈τ2 − ξ2
2〉−

1
2

∏2
i=1 fi(ξi, τi)‖L2

ξ
(L1

τ )

and
N3 = ‖〈τ + ξ2〉−1

∫
µ(dξ1)dτ1〈τ1 − ξ2

1〉−
1
2

∏2
i=1 fi(ξi, τi)‖L2

ξ
(L1

τ ) .

In order to estimate N1 we define

gi(ξ, τ) := 〈τ − ξ2〉 3
8+εFvi(ξ, τ) = 〈τ − ξ2〉− 1

8+εfi(ξ, τ) .

Then it is ‖gi‖L2
ξ,τ

= ‖vi‖X0, 3
8+ε(−φ) and

N1 = ‖〈τ + ξ2〉− 1
2

∫
µ(dξ1)dτ1χA

∏2
i=1〈τi − ξ2

i 〉−
3
8−εgi(ξi, τi)‖L2

ξ
(L1

τ ) .

Since in A we have 〈τ +ξ2〉 ≥ max2
i=1〈τi−ξ2

i 〉 as well as 〈τ +ξ2〉 ≥ c〈ξ1〉2, we obtain

N1 ≤ c‖ ∫
µ(dξ1)dτ1〈ξ1〉− 1

2−2ε
∏2

i=1〈τi − ξ2
i 〉−

1+ε
2 gi(ξi, τi)‖L2

ξ
(L1

τ ) ,

which we shall now estimate by duality. Therefore let f0 ∈ L2
ξ with ‖f0‖L2

ξ
= 1 and

f0 ≥ 0. Now applying Cauchy-Schwarz’ inequality first in the τ - and then in the
ξ-variables we get the desired upper bound for N1:

∫
µ(dξdξ1)dτdτ1f0(ξ)〈ξ1〉− 1

2−2ε
2∏

i=1

〈τi − ξ2
i 〉−

1+ε
2 gi(ξi, τi)

=
∫

µ(dξ1dξ2)dτ1dτ2f0(ξ1 + ξ2)〈ξ1〉− 1
2−2ε

2∏

i=1

〈τi − ξ2
i 〉−

1+ε
2 gi(ξi, τi)
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≤ c

∫
µ(dξ1dξ2)f0(ξ1 + ξ2)〈ξ1〉− 1

2−2ε
2∏

i=1

(
∫

dτi|gi(ξi, τi)|2) 1
2

≤ c

2∏

i=1

‖gi‖L2
ξ,τ
≤ c

2∏

i=1

‖vi‖X0, 3
8+ε(−φ) ≤ cδ

1
4−4ε

2∏

i=1

‖vi‖X0, 1
2
(−φ) ,

where in the last step we have used Lemma 1.10. To estimate N2 we apply Cauchy-
Schwarz on

∫
dτ :

N2 ≤ c‖〈τ + ξ2〉− 1
2+ε

∫
µ(dξ1)dτ1〈τ2 − ξ2

2〉−
1
2

∏2
i=1 fi(ξi, τi)‖L2

ξ,τ

= ‖ψ2δ(F−1f1)v2‖X0,− 1
2+ε(φ) .

This was already shown to be bounded by

cδ
1
4−4ε

2∏

i=1

‖vi‖X0, 1
2
(−φ) .

The same upper bound for N3 is obtained by exchanging v1 and v2, so the estimate
(4) is proved, too. 2

3.2 The general case

The local result in the previous section can be extended to higher dimensions and
(integer) exponents:

Theorem 3.3 Let m, n ∈ N, m ≥ 2 and m + n ≥ 4. Then for s > sc there exists
δ = δ(‖u0‖Hs

x
) > 0 and a unique solution u ∈ Xδ

s, 1
2
(φ) of the initial value (periodic

boundary value) problem

ut − i∆u = ∂j(um), u(0) = u0 ∈ Hs
x.

This solution is persistent and for any 0 < δ0 < δ the mapping data upon solution
from Hs

x to Xδ0
s, 1

2
(φ) ∩ Ct((−δ0, δ0),Hs

x) is locally Lipschitz continuous.
For any β ∈ Nn

0 with |β| = m and under the same assumptions on m,n, s the
Cauchy problem and the periodic boundary value problem

ut − i∆u = (∇u)β , u(0) = u0 ∈ Hs+1
x

is locally well posed in the same sense.

Remarks : 1. The special case in Theorem 3.3, where n = 1, m = 3 and s > 0,
has already been proved for the nonperiodic case by H. Takaoka, see Thm. 1.2 in
[T99].

2. A standard scaling argument suggests, that our result is optimal as long as
we are not dealing with the critical case s = sc. In fact, if u is a solution of the first
problem in Theorem 3.3 with initial value u0 ∈ Hs

x(Rn), then so is uλ, defined by
uλ(x, t) = λ

1
m−1 u(λx, λ2t), with initial value u0

λ(x) = u0(λx), and ‖u0
λ‖Ḣsc

x
(Rn) is

independent of λ.

By the general theory presented in part I the proof of Theorem 3.3 reduces to
the following estimates:
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Theorem 3.4 Let n,m ∈ N with m ≥ 2 and m + n ≥ 4. Assume in addition,
that s > n

2 − 1
m−1 . Then there exists θ > 0, so that for all 0 < δ ≤ 1 and for all

ui ∈ Xs, 1
2
(φ), 1 ≤ i ≤ m, having support in {(x, t) : |t| ≤ δ} the estimates

i) ‖∏m
i=1 ui‖Xs+1,− 1

2
(φ) ≤ cδθ

∏m
i=1 ‖ui‖Xs, 1

2
(φ) and

ii) ‖∏m
i=1 ui‖Ys+1(φ) ≤ cδθ

∏m
i=1 ‖ui‖Xs, 1

2
(φ)

hold.

To prove Theorem 3.4 we follow the ideas of section 5 in [B93] - essentially we
present a simplified version of the proof given there. Here some instructive hints
from [G96], section 5, were helpful. In particular, we do use Hilbert space norms
instead of Besov-type norms as in [B93]. Perhaps it is worthwile to mention, that
for the nonperiodic case there is a much easier proof, using the full strength of the
Strichartz estimates in this case. Before we start, we need some preparations:

We shall use the notation introduced in section 2 (before Lemma 2.5), but with
χM denoting in fact the characteristic function of a set M ⊂ Rn or M ⊂ Zn, so that
the operators PM := Fx

−1χMFx become projections. Next we shall fix a couple of
Hölder- and Sobolevexponents to be used below:

1. We choose 1
p = 1

(n+2)(m−1) . Then for any s > n
2 − 1

m−1 by Corollaries 2.4
and 2.5, part c), there exists b < 1

2 , so that the following estimate holds:

‖u‖Lp
xt
≤ c‖u‖Xs,b(±φ) (6)

2. Next we have 1
p0

= 1
6 + ε for n = 1 respectively 1

p0
= 1

4 + ε for n ≥ 2 and
s0 = ε if n = 1 respectively s0 = (n − 2)( 1

2 − 1
p0

) + ε = n−2
4 + (3 − n)ε if n ≥ 2.

Then, if ε > 0 is chosen appropriately small, by Corollaries 2.4 and 2.5, part b),
and Lemma 2.17 there exists b < 1

2 for which we have the estimate

‖PBu‖L
p0
xt
≤ cRs0‖u‖X0,b(±φ) , (7)

whenever B is a ball or cube of size R. Dualizing the last inequality, we obtain

‖PBu‖X0,−b(±φ) ≤ cRs0‖u‖
L

p′
0

xt

, (8)

where 1
p′0

= 5
6 − ε for n = 1 respectively 1

p′0
= 3

4 − ε for n ≥ 2.

3. We choose 1
p1

= 1
3 −ε− m−2

3(m−1) for n = 1 respectively 1
p1

= 1
4 −ε− m−2

(n+2)(m−1)

for n ≥ 2 and s1 = n
2 − n+2

p1
+ ε. Then it is s1 = 1

2 − 1
m−1 + 4ε if n = 1 respectively

s1 = n+2
4 − 1

m−1 +(n+3)ε if n ≥ 2, and by Corollaries 2.4, 2.5, part c), and Lemma
2.17 there exists b < 1

2 for which

‖PBu‖L
p1
xt
≤ cRs1‖u‖X0,b(±φ) . (9)

Observe that our choice guarantees

1
p0

+
1
p1

+
m− 2

p
=

1
2

resp.
1
p1

+
1
2

+
m− 2

p
=

1
p′0
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(for the Hölder applications) as well as for ε sufficiently small s0 + s1 − s < 0.
For m ≥ 3 in addition we shall need the following parameters:
4. Assuming s

n < 1
2 without loss of generality, we may choose 1

q = 1
2 − s

n > 0,
so that the Sobolev embedding Hs

x ⊂ Lq
x holds.

5. In the case of space dimension n = 1 we define 1
r0

= 1
6 − m−3

6(m−1) − ε, 1
q0

=

s+ 1
6− 2(m−3)

3(m−1)−ε and σ1 = ε, if m = 3, as well as σ1 = 1
2− 2

r0
− 1

q0
+ε = m−3

m−1−s+4ε

if m ≥ 4. For n ≥ 2 let 1
r0

= 1
4 − m−3

(n+2)(m−1) − 2ε, 1
q0

= s
n − 1

4 − m−3
(n+2)(m−1) − ε and

σ1 = n
2 − 2

r0
− n

q0
+ ε = 3n

4 + 1
2 − 2

m−1 − s + (n + 5)ε. Then, for some b < 1
2 , we

have the estimate
‖PBu‖L

r0
t (L

q0
x ) ≤ cRσ1‖u‖X0,b(±φ) . (10)

In general, this follows from part c) of the Corollaries 2.4, 2.5, except in the case
n = 1, m = 3, where one can use part b) of Corollary 2.4. (Here we assume s ≤ 1

3
in the cases n = 1 , m ∈ {3, 4}.)

6. We close our list of parameters by choosing 1
r1

= 1
6 − m−3

6(m−1) ,
1
q1

= 1
2 − 2

r1
=

1
6 + m−3

3(m−1) for n = 1 respectively 1
r1

= ε, 1
q1

= 1
2 for n ≥ 2. Then, by Corollary

2.4, part c), in the case of space dimension n = 1 and by Sobolev embedding in the
time variable in the case of n ≥ 2, we have the estimate

‖PBu‖L
r1
t (L

q1
x ) ≤ cRε‖u‖X0,b(±φ) (11)

for some b < 1
2 . Now for the Hölder applications we have

1
r0

+
1
2

+
1
r1

+
m− 3

p
=

1
q0

+
1
q

+
1
q1

+
m− 3

p
=

1
p′0

as well as for ε sufficiently small s0 + σ1 + ε− s < 0.

Now we derive three praparatory lemmas:

Lemma 3.1 Let n,m ∈ N with m ≥ 2 and n+m ≥ 4. Then for s > n
2 − 1

m−1 there
exists b < 1

2 , so that for all vi ∈ Xs,b(−φ), 1 ≤ i, j ≤ m, the following estimate is
valid:

‖(Jsvj)
∏m

i=1,i6=j vi‖L2
xt
≤ c

m∏

i=1

‖vi‖Xs,b(−φ) ,

where Js = Fx
−1〈ξ〉sFx.

Proof: Writing

m∏
i=1
i 6=j

vi = lim
l∈N0

m∏
i=1
i6=j

Plvi =
∑

l∈N0

(
m∏

i=1
i 6=j

Plvi −
m∏

i=1
i 6=j

Pl−1vi) ,

where
m∏

i=1
i 6=j

Plvi −
m∏

i=1
i 6=j

Pl−1vi =
m∑

k=1
k 6=j

(
∏
i<k
i6=j

Pl−1vi)P∆lvk(
∏
i>k
i6=j

Plvi) ,
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we obtain

‖(Jsvj)
∏

i 6=j vi‖L2
xt

≤
∑

l∈N0

m∑
k=1
k 6=j

‖(Jsvj)(
∏

i<k
i 6=j

Pl−1viP∆lvk(
∏

i>k
i 6=j

Plvi))‖L2
xt

(12)

≤
∑

l∈N0

m∑
k=1
k 6=j

‖(Jsvj)(P∆lvk)(
∏

i 6=k,j Plvi)‖L2
xt

.

Next we estimate the contribution for fixed l and k:

‖(Jsvj)(P∆lvk)(
∏

i 6=k,j Plvi)‖2L2
xt

= ‖∑
α∈Zn(PQl

α
Jsvj)(P∆lvk)(

∏
i6=k,j Plvi)‖2L2

xt

=
∑

α,β∈Zn

< (PQl
α
Jsvj)(P∆lvk)(

∏

i 6=k,j

Plvi), (PQl
β
Jsvj)(P∆lvk)(

∏

i 6=k,j

Plvi) >

Now the sequence {(PQl
α
Jsvj)(P∆lvk)(

∏
i6=j Plvi)}α∈Zn is almost orthogonal in

the following sense: The support of F(P∆lvk)(
∏

i 6=j Plvi) is contained in {(ξ, τ) :
|ξ| ≤ (m − 1)2l}, and thus F(PQl

α
Jsvj)(P∆lvk)(

∏
i6=j Plvi) is supported in C ×R,

where C is a cube centered at 2lα having the sidelength m2l. So for |2lα − 2lβ| >
cn2lm, that is for |α − β| > cnm, the above expressions are disjointly supported.
Thus for these values of α and β we do not get any contribution to the last sum,
which we now can estimate by
∑

α∈Zn

∑
β∈Zn

|β|≤cnm

< (PQl
α
Jsvj)(P∆lvk)(

∏

i 6=k,j

Plvi), (PQl
α+β

Jsvj)(P∆lvk)(
∏

i 6=k,j

Plvi) >

≤ c
∑

α∈Zn

‖(PQl
α
Jsvj)(P∆lvk)(

∏
i6=k,j Plvi)‖2L2

xt

(13)

≤ c
∑

α∈Zn

‖(PQl
α
Jsvj)(P∆lvk)(

∏
i 6=k,j vi)‖2L2

xt

.

Next we use Hölder’s inequality, (6), (7) and (9) to get

‖(PQl
α
Jsvj)(P∆lvk)(

∏
i 6=k,j vi)‖L2

xt

≤ ‖PQl
α
Jsvj‖L

p0
xt
‖P∆lvk‖L

p1
xt

∏

i 6=k,j

‖vi‖Lp
xt

(14)

≤ c2l(s0+s1)‖PQl
α
Jsvj‖X0,b(−φ)‖P∆lvk‖X0,b(−φ)

∏

i 6=k,j

‖vi‖Xs,b(−φ)

for some b < 1
2 . Using ‖P∆lvk‖X0,b(−φ) ≤ c2−sl‖vk‖Xs,b(−φ) we combine (13)

and (14) to obtain:

‖(Jsvj)(P∆lvk)(
∏

i 6=k,j Plvi)‖2L2
xt
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≤ c22l(s0+s1−s)
∑

α∈Zn

‖PQl
α
Jsvj‖2X0,b(−φ)

∏

i6=j

‖vi‖2Xs,b(−φ)

= c22l(s0+s1−s)
m∏

i=1

‖vi‖2Xs,b(−φ) .

Inserting the square root of this into (12) and summing up over k and l we can
finish the proof. 2

Corollary 3.2 For n,m and s as in the previous lemma there exists b < 1
2 , so that

for all vi ∈ Xs, 1
2
(−φ), 1 ≤ i, j ≤ m, the following estimate holds true:

‖(Λ 1
2 Jsvj)

∏m
i=1,i6=j vi‖X0,−b(φ) ≤ c‖vj‖Xs, 1

2
(−φ)

m∏
i=1
i6=j

‖vi‖Xs,b(−φ) ,

where Λ
1
2 = F−1〈τ − |ξ|2〉 1

2F .

Proof: Let the vi’s be fixed for i 6= j. Then the previous lemma tells us, that
the linear mapping

Aj : Xs,b(−φ) → L2
xt, f 7→ (Jsf)

m∏
i=1
i6=j

vi

is bounded with norm ‖Aj‖ ≤ c
∏m

i=1
i 6=j

‖vi‖Xs,b(−φ). The adjoint mapping A∗j , given
by

A∗j : L2
xt → X−s,−b(−φ), g 7→ Js(g

m∏
i=1
i 6=j

vi)

then is also bounded with ‖A∗j‖ = ‖Aj‖. From this we get for g = Λ
1
2 Jsvj :

‖(Λ 1
2 Jsvj)

∏m
i=1,i6=j vi‖X0,−b(φ) = ‖Js(Λ

1
2 Jsvj)

∏m
i=1,i 6=j vi‖X−s,−b(−φ)

≤ c‖Λ 1
2 Jsvj‖L2

xt

m∏
i=1
i 6=j

‖vi‖Xs,b(−φ) = c‖vj‖Xs, 1
2
(−φ)

m∏
i=1
i6=j

‖vi‖Xs,b(−φ)

2

Lemma 3.2 Let n,m ∈ N with m ≥ 2, n + m ≥ 4 and s ∈ (n
2 − 1

m−1 , n
2 ). For

n = 1, m ∈ {3, 4} assume in addition, that s ≤ 1
3 . Then there exists b < 1

2 , so that
for all vi ∈ Xs, 1

2
(−φ), 1 ≤ i, j ≤ m, the following estimate is valid:

‖(Jsvi)(Λ
1
2 vj)

∏m
k=1,k 6=i,j vk‖X0,−b(φ) ≤ c‖vj‖Xs, 1

2
(−φ)

m∏
k=1
k 6=j

‖vk‖Xs,b(−φ)

Here again we have Λ
1
2 = F−1〈τ − |ξ|2〉 1

2F .
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Proof: 1. Similarly as in the proof of the previous lemma we write

Λ
1
2 vj

m∏
k=1

k 6=i,j

vk =
∑

l∈N0

(PlΛ
1
2 vj

m∏
k=1

k 6=i,j

Plvk − Pl−1Λ
1
2 vj

m∏
k=1

k 6=i,j

Pl−1vk)

with

PlΛ
1
2 vj

m∏
k=1

k 6=i,j

Plvk − Pl−1Λ
1
2 vj

m∏
k=1

k 6=i,j

Pl−1vk

= P∆lΛ
1
2 vj

m∏
k=1

k 6=i,j

Plvk + Pl−1Λ
1
2 vj

∑

k 6=i,j

(
∏
ν<k

ν 6=i,j

Pl−1vν)P∆lvk(
∏
ν>k

ν 6=i,j

Plvν) .

From this we obtain for arbitrary b:

‖(Jsvi)(Λ
1
2 vj)

∏
k 6=i,j vk‖X0,−b(φ)

≤
∑

l∈N0

‖(Jsvi)(P∆lΛ
1
2 vj)

∏
k 6=i,j Plvk‖X0,−b(φ) (15)

+
∑

k 6=i,j

∑

l∈N0

‖(Jsvi)(PlΛ
1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖X0,−b(φ)

2. Next we show that for some b < 1
2 the estimate

‖(Jsvi)(P∆lΛ
1
2 vj)

∏
k 6=i,j Plvk‖X0,−b(φ)

≤ c2l(s0+s1−s)‖vj‖Xs, 1
2
(−φ)

m∏
i=1
i 6=j

‖vi‖Xs,b(−φ) (16)

holds true. To see this, we start from

‖(Jsvi)(P∆lΛ
1
2 vj)

∏
k 6=i,j Plvk‖

2

X0,−b(φ)

= ‖∑
α∈Zn(PQl

α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk‖

2

X0,−b(φ)

≤ c
∑

α∈Zn

‖(PQl
α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk‖

2

X0,−b(φ) ,

where in the last step we have used the almost orthogonality of the sequence
{(PQl

α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk}α∈Zn . Now we use (8), Hölders inequality, (9)

and (6) to obtain for some b < 1
2

‖(PQl
α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk‖X0,−b(φ)

≤ c2ls0‖(PQl
α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk‖

L
p′
0

xt

≤ c2ls0‖PQl
α
Jsvi‖L

p1
xt
‖P∆lΛ

1
2 vj‖L2

xt

∏

k 6=i,j

‖Plvk‖Lp
xt

≤ c2l(s0+s1)‖PQl
α
Jsvi‖X0,b(−φ)‖P∆lΛ

1
2 vj‖L2

xt

∏

k 6=i,j

‖vk‖Xs,b(−φ) .
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Using ‖P∆lΛ
1
2 vj‖L2

xt
≤ c2−ls‖vj‖Xs, 1

2
(−φ) we get

‖(PQl
α
Jsvi)(P∆lΛ

1
2 vj)

∏
k 6=i,j Plvk‖

2

X0,−b(φ)

≤ c22l(s0+s1−s)‖PQl
α
Jsvi‖2X0,b(−φ)‖vj‖2Xs, 1

2
(−φ)

∏

k 6=i,j

‖vk‖2Xs,b(−φ) .

Now summing up over α we arrive at the square of (16).
3. Now we show that there exists b < 1

2 for which

‖(Jsvi)(PlΛ
1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖X0,−b(φ)

≤ c2l(s0+σ1+ε−s)‖vj‖Xs, 1
2
(−φ)

m∏
i=1
i6=j

‖vi‖Xs,b(−φ) . (17)

Therefore again we write Jsvi =
∑

α∈Zn PQl
α
Jsvi and use the almost orthogonality

of {(PQl
α
Jsvi)(PlΛ

1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν}α∈Zn to obtain

‖(Jsvi)(PlΛ
1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖

2

X0,−b(φ)

≤ c
∑

α∈Zn

‖(PQl
α
Jsvi)(PlΛ

1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖

2

X0,−b(φ) .

Then we use (8), Hölders inequality, (10), Sobolev embedding in x, (11) and (6) to
get for some b < 1

2 :

‖(PQl
α
Jsvi)(PlΛ

1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖X0,−b(φ)

≤ c2ls0‖(PQl
α
Jsvi)(PlΛ

1
2 vj)(P∆lvk)

∏
ν 6=i,j,k Plvν‖

L
p′
0

xt

≤ c2ls0‖PQl
α
Jsvi‖L

r0
t (L

q0
x )‖PlΛ

1
2 vj‖L2

t (Lq
x)‖P∆lvk‖L

r1
t (L

q1
x )

∏

ν 6=i,j,k

‖Plvν‖Lp
xt

≤ c2l(s0+σ1+ε−s)‖PQl
α
Jsvi‖X0,b(−φ)‖vj‖Xs, 1

2
(−φ)

∏

k 6=i,j

‖vk‖Xs,b(−φ)

Squaring the last and summing up over α we arrive at the square of (17).
4. Conclusion: Since s0 + s1 − s < 0 as well as s0 + σ1 + ε− s < 0 we can now

insert (16) and (17) into (15) and finish the proof by summing up over k and l. 2

Lemma 3.3 Let m,n ∈ N with m ≥ 2, m + n ≥ 4 and s > n
2 − 1

m−1 . For
1 ≤ i, j ≤ m and vi ∈ Xs, 1

2
(−φ) define fi(ξ, τ) = 〈ξ〉s〈τ − |ξ|2〉 1

2Fvi(ξ, τ) and

G0j(ξ, τ) = 〈τ + |ξ|2〉− 1
2

∫
dν〈ξj〉sχA

m∏

i=1

〈τi − |ξi|2〉− 1
2 〈ξi〉−sfi(ξi, τi) ,

where in A the inequality 〈τ + |ξ|2〉 ≥ maxm
i=1〈τi − |ξi|2〉 holds. Then there exists

b < 1
2 for which the following estimate is valid:

‖G0j‖L2
ξ
(L1

τ ) ≤ c

m∏

i=1

‖vi‖Xs,b(−φ)
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Proof: We choose ε ∈ (0, s − n
2 + 1

m−1 ) with ε ≤ 1
m−1 and define δ = m−1

2m ε.
Observe that, because of

m∑

i=1

〈ξi〉2 ≤ 〈τ + |ξ|2〉+
m∑

i=1

〈τi − |ξi|2〉

in the region A the inequality

〈τ + |ξ|2〉 ≥ c

m∏

i=1

〈τi − |ξi|2〉2δ
m∏

i=1
i6=j

〈ξi〉
2

m−1−2ε

holds. From this we obtain

G0j(ξ, τ) ≤ c

∫
dν

m∏
i=1
i 6=j

〈ξi〉−s− 1
m−1+ε

m∏

i=1

〈τi − |ξi|2〉− 1
2−δfi(ξi, τi) .

In order to estimate ‖G0j‖L2
ξ
(L1

τ ) by duality let f0 ∈ L2
ξ with f0 ≥ 0 and ‖f0‖L2

ξ
= 1.

By Fubini and Cauchy-Schwarz we get:
∫

µ(dξ)dτdνf0(ξ)G0j(ξ, τ)

≤ c

∫
µ(dξ)dτdνf0(ξ)

m∏

i=1

〈τi − |ξi|2〉− 1
2−δfi(ξi, τi)

m∏
i=1
i6=j

〈ξi〉−s− 1
m−1+ε

= c

∫
µ(dξ1..dξm)dτ1..dτmf0(

m∑

i=1

ξi)
m∏

i=1

〈τi − |ξi|2〉− 1
2−δfi(ξi, τi)

m∏
i=1
i 6=j

〈ξi〉−s− 1
m−1+ε

≤ c

∫
µ(dξ1..dξm)f0(

m∑

i=1

ξi)
m∏

i=1
i 6=j

〈ξi〉−s− 1
m−1+ε

m∏

i=1

(
∫

dτifi(ξi, τi)2〈τi − |ξi|2〉−δ)
1
2

≤ c

m∏
i=1
i 6=j

(
∫

µ(dξi)〈ξi〉−2s− 2
m−1+2ε)

1
2

m∏

i=1

‖fi〈τ − |ξ|2〉− δ
2 ‖L2

ξτ

≤ c

m∏

i=1

‖fi〈τ − |ξ|2〉− δ
2 ‖L2

ξτ
= c

m∏

i=1

‖vi‖Xs, 1−δ
2

(−φ) .

From this the statement of the lemma follows for b = 1−δ
2 . 2

Proof of Theorem 3.4: 1. Setting vi = ui the claimed estimates read

‖∏m
i=1 vi‖Xs+1,− 1

2
(φ) ≤ cδθ

m∏

i=1

‖vi‖Xs, 1
2
(−φ) , (18)

‖∏m
i=1 vi‖Ys+1(φ) ≤ cδθ

m∏

i=1

‖vi‖Xs, 1
2
(−φ) . (19)
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To prove these, we shall assume s ∈ (n
2 − 1

m−1 , n
2 ) as well as s ≤ 1

3 for n = 1 and
m ∈ {3, 4}. Now for fi(ξ, τ) = 〈τ −|ξ|2〉 1

2 〈ξ〉sFvi(ξ, τ) we have by Lemma 2.9, that
the left hand side of (18) is equal to

‖〈τ + |ξ|2〉− 1
2 〈ξ〉s+1

∫
dν

∏m
i=1〈τi − |ξi|2〉− 1

2 〈ξi〉−sfi(ξi, τi)‖L2
ξτ
≤ c

m∑

i=0

‖Fi‖L2
ξτ

,

where

F0(ξ, τ) = 〈ξ〉s
∫

dν

m∏

i=1

〈τi − |ξi|2〉− 1
2 〈ξi〉−sfi(ξi, τi)

and, for 1 ≤ i ≤ m,

Fi(ξ, τ) = 〈τ + |ξ|2〉− 1
2 〈ξ〉s

∫
dν〈τi − |ξi|2〉 1

2

m∏

k=1

〈τk − |ξk|2〉− 1
2 〈ξk〉−sfk(ξk, τk) .

Here we have used the inequality

〈ξ〉2 ≤ 〈τ + |ξ|2〉+
m∑

i=1

〈τi − |ξi|2〉 .

Now by 〈ξ〉 ≤ ∑m
j=1〈ξj〉 it follows, that

F0(ξ, τ) ≤
m∑

j=1

F0j(ξ, τ), Fi(ξ, τ) ≤
m∑

j=1

Fij(ξ, τ) ,

where

F0j(ξ, τ) =
∫

dν〈ξj〉s
m∏

i=1

〈τi − |ξi|2〉− 1
2 〈ξi〉−sfi(ξi, τi)

and

Fij(ξ, τ) = 〈τ + |ξ|2〉− 1
2

∫
dν〈τi − |ξi|2〉 1

2 〈ξj〉s
m∏

k=1

〈τk − |ξk|2〉− 1
2 〈ξk〉−sfk(ξk, τk) .

2. To derive the estimate (19) we use the inequality

〈ξ〉2 ≤ c(〈τ + |ξ|2〉χA +
m∑

i=1

〈τi − |ξi|2〉) ,

where in the region A we have 〈τ + |ξ|2〉 ≥ maxm
i=1〈τi−|ξi|2〉 (cf. Lemma 3.3). Now

again by Lemma 2.9 we see that the left hand side of (19) is equal to

‖〈τ + |ξ|2〉−1〈ξ〉s+1
∫

dν
∏m

i=1〈τi − |ξi|2〉− 1
2 〈ξi〉−sfi(ξi, τi)‖L2

ξ
(L1

τ ) ≤ c

m∑

i=0

‖Gi‖L2
ξ
(L1

τ ),
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where now

G0(ξ, τ) = 〈τ + |ξ|2〉− 1
2 〈ξ〉s

∫
dνχA

m∏

i=1

〈τi − |ξi|2〉− 1
2 〈ξi〉−sfi(ξi, τi)

≤
m∑

j=1

G0j(ξ, τ)

with G0j precisely as in Lemma 3.3, and for 1 ≤ i ≤ m

Gi(ξ, τ) = 〈τ + |ξ|2〉−1〈ξ〉s
∫

dν〈τi − |ξi|2〉 1
2

m∏

k=1

〈τk − |ξk|2〉− 1
2 〈ξk〉−sfk(ξk, τk) .

Using Cauchy-Schwarz’ inequality the estimation of Gi, 1 ≤ i ≤ m, can easily be
reduced to the estimation of Fi, in fact for any ε > 0 we have:

‖Gi‖L2
ξ
(L1

τ ) ≤ cε‖〈τ + |ξ|2〉εFi‖L2
ξτ
≤

m∑

j=1

cε‖〈τ + |ξ|2〉εFij‖L2
ξτ

3. Using Lemma 2.9 and Lemma 3.1 we have for 1 ≤ j ≤ m:

‖F0j‖L2
ξτ

= c‖(Jsvj)
∏m

i=1,i6=j vi‖L2
xt
≤ c

m∏

i=1

‖vi‖Xs,b(−φ)

for some b < 1
2 . Now we use Lemma 1.10 to conclude that

‖F0j‖L2
ξτ
≤ cδθ

m∏

i=1

‖vi‖Xs, 1
2
(−φ)

for some θ > 0. Similarly, but using Corollary 3.2 (resp. Lemma 3.2) instead of
Lemma 3.1, we get the same upper bound for ‖〈τ + |ξ|2〉εFij‖L2

ξτ
, provided ε is

sufficiently small, for 1 ≤ i = j ≤ m (resp. 1 ≤ i 6= j ≤ m). Now the estimate (18)
is proved. For the proof of (19), it remains to show that ‖G0j‖L2

ξ
(L1

τ ), 1 ≤ j ≤ m,
is bounded by the same quantity. But this follows by Lemma 3.3 and Lemma 1.10.

2
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4 Some local wellposedness results for nonlinear
Schrödinger equations below L2

4.1 Statement of results

The first local (in time) wellposedness results below L2 for the initial value problem
for nonlinear Schrödinger equations (NLS)

ut − i∆u = N(u, u), u(0) = u0

were published in 1996 by Kenig, Ponce and Vega in [KPV96b]. (Here the initial
value u0 is assumed to belong to some Sobolev space Hs

x = Hs
x(Tn) or Hs

x = Hs
x(Rn)

with s < 0.) These authors considered the nonlinearities

N1(u, u) = u2, N2(u, u) = uu, N3(u, u) = u2

in one space dimension. They obtained wellposedness for N1 and N3 under the
assumptions u0 ∈ Hs

x(R), s > − 3
4 or u0 ∈ Hs

x(T), s > − 1
2 and for N2, provided

that u0 ∈ Hs
x(R), s > − 1

4 . Using appropriate counterexamples they also showed
that these results are essentially sharp. This was followed in 1997 by Staffilani’s
paper [St97], where wellposedness for NLS with N = N3 and u0 ∈ Hs

x(R2), s > − 1
2

was shown.

A standard scaling argument suggests that there are even more possible can-
didates for the nonlinearity to allow local wellposedness below L2: The critical
Sobolevexponent for NLS with N(u, u) = |u|αu obtained by scaling is sc = n

2 − 2
α .

So, for Ni, 1 ≤ i ≤ 3, there might be local wellposedness for some s < 0 even
for space dimension n = 3, and in one space dimension also for cubic and quartic
nonlinearities positive results seem to be possible. This conjecture is also suggested
by Example 2.1.

Recently new results concerning this question have appeared: In [CDKS01] Col-
liander, Delort, Kenig and Staffilani could prove that in the nonperiodic setting all
the results on Ni, 1 ≤ i ≤ 3, carry over from the one- to the twodimensional case
(with the same restrictions on s), cf. Example 2.3. Concerning the threedimensional
nonperiodic case, Tao has shown wellposedness for NLS with the nonlinearities N1

and N3 for s > − 1
2 and with N2 for s > − 1

4 (see [T00], section 11, cf. Example 2.2).
So concerning the quadratic nonlinearities in the nonperiodic setting the question
is meanwhile completely answered.

Also the following illposedness result should be mentioned: In [KPV01] it was
shown that in the continuous case in one space dimension the NLS with nonlinearity
N(u, u) = u|u|2 is ill posed below L2 in the sense that the mapping data upon
solution is not uniformly continuous, see Thm. 1.1 in [KPV01].

Here the remaining cases are considered, our positive results are gathered in the
following three theorems dealing with the periodic case (Theorem 4.1), the cubic
nonlinearities in the onedimensional nonperiodic case (Theorem 4.2) respectively
with the quartic nonlinearities on the line (Theorem 4.3). Throughout this section
we will have φ(ξ) = −|ξ|2.
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Theorem 4.1 Assume

i) n = 1, m = 3, s > − 1
3 , or

ii) n = 1, m = 4, s > − 1
6 , or

iii) n = 2, m = 2, s > − 1
2 , or

iv) n = 3, m = 2, s > − 3
10 .

Then there exist b > 1
2 and δ = δ(‖u0‖Hs

x(Tn)) > 0, so that there is a unique solution
u ∈ Xδ

s,b(φ) of the periodic boundary value problem

ut − i∆u = um, u(0) = u0 ∈ Hs
x(Tn).

This solution satisfies u ∈ Ct((−δ, δ),Hs
x(Tn)) and for any 0 < δ0 < δ the mapping

data upon solution is locally Lipschitz continuous from Hs
x(Tn) to Xδ0

s,b(φ).

The nonlinear estimates leading to this result are contained in Theorems 4.4, 4.5
and 4.8, see sections 4.3 and 4.4 below. For i) and iii) our results are optimal in the
framework of the method and up to the endpoint, in fact there are counterexamples
showing that the corresponding multilinear estimates fail for lower values of s, see
the discussion in section 4.3. For ii) the scaling argument suggests the optimality
of our result. The restriction on s in iv) can possibly be lowered down to − 1

2 ,
cf. the remark below Thm. 4.5. All the following results are restricted to the
onedimensional nonperiodic case:

Theorem 4.2 Assume

i) s > − 5
12 and N(u, u) = u3 or N(u, u) = u3, or

ii) s > − 2
5 and N(u, u) = uu2.

Then there exist b > 1
2 and δ = δ(‖u0‖Hs

x(R)) > 0, so that there is a unique solution
u ∈ Xδ

s,b(φ) of the initial value problem

ut − i∂2
xu = N(u, u), u(0) = u0 ∈ Hs

x(R).

This solution is persistent and for any 0 < δ0 < δ the mapping data upon solution
is locally Lipschitz continuous from Hs

x(R) to Xδ0
s,b(φ).

For the corresponding trilinear estimates see Theorems 4.6 and 4.7 (and the
remark below) in section 4.3. We must leave open the question, whether or not the
bound on s in the above Theorem can be lowered down to − 1

2 , which is the scaling
exponent in this case. This question is closely related to the problem concerning
certain trilinear refinements of Strichartz’ estimate posed in section 4.2.

Theorem 4.3 Let s > − 1
6 and N(u, u) ∈ {u4, u3u, uu3, u4}. Then there exist

b > 1
2 and δ = δ(‖u0‖Hs

x(R)) > 0, so that there is a unique solution u ∈ Xδ
s,b(φ) of

the initial value problem

ut − i∂2
xu = N(u, u), u(0) = u0 ∈ Hs

x(R).

This solution satisfies u ∈ Ct((−δ, δ),Hs
x(R)) and for any 0 < δ0 < δ the mapping

data upon solution is locally Lipschitz continuous from Hs
x(R) to Xδ0

s,b(φ). The same
statement holds true for s > − 1

8 and N(u, u) = |u|4.
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See Theorems 4.8 and 4.9 as well as Proposition 4.1 in section 4.4 for the crucial
nonlinear estimates. The − 1

6 -results should be optimal by scaling, while for the
|u|4-nonlinearity the corresponding estimate fails for s < − 1

8 , cf. Example 4.5.
Further counterexamples concerned with the periodic case are also given in section
4.4.

4.2 Refinements of Strichartz’ inequalities in the onedimen-
sional nonperiodic case

Lemma 4.1 Let n = 1. Then for all b0 > 1
2 ≥ s ≥ 0, the following estimates are

valid:

i) ‖uv‖L2
t (Hs

x) ≤ c‖v‖X0,b0(φ)‖u‖X0,b(φ), provided b > 1
4 + s

2 ,

ii) ‖uv‖Lp
t (Hs

x) ≤ c‖v‖X0,b0(φ)‖u‖X0,b0(φ), provided 1
p = 1

4 + s
2 ,

iii) ‖vw‖Xσ,b′(φ) ≤ c‖v‖Xσ,b0(φ)‖w‖L2
t (H−s−σ

x ), provided σ ≤ 0, b′ < − 1
4 − s

2 .

Proof: We start from

‖uv‖
L2

t (Ḣ
1
2

x )
≤ c‖u‖X0,b(φ)‖v‖X0,b(φ), b >

1
2

(see Corollary 2.1). Combined with

‖uv‖L2
xt
≤ c‖u‖X0,b(φ)‖v‖X0,b(φ), b >

3
8
,

which follows from Strichartz’ estimate (cf. Lemma 2.2), this gives

‖uv‖
L2

t (H
1
2

x )
≤ c‖v‖X0,b0(φ)‖u‖X0,b(φ), b0, b >

1
2
. (20)

On the other hand, by Hölder and again by Strichartz’ estimate we have

‖uv‖L2
xt
≤ c‖v‖L6

xt
‖u‖L3

xt
≤ c‖v‖X0,b0(φ)‖u‖X0,b(φ), b >

1
4
, b0 >

1
2
. (21)

Now, by interpolation between (20) and (21), we obtain part i). To see part ii), we
interpolate (20) with

‖uv‖L4
t (L2

x) ≤ ‖v‖L8
t (L4

x)‖u‖L8
t (L4

x) ≤ c‖v‖X0,b0(φ)‖u‖X0,b0(φ), b0 >
1
2
,

which follows from the L8
t (L

4
x)-Strichartz-estimate. Next we dualize part i) to obtain

part iii) for σ = 0. For σ < 0, because of 〈ξ1〉 ≤ c〈ξ〉〈ξ2〉, we then have

‖vw‖Xσ,b′(φ) ≤ c‖(Jσv)(J−σw)‖X0,b′(φ) ≤ c‖v‖Xσ,b0(φ)‖w‖L2
t (H−s−σ

x ).

2

Remark : Taking σ = − s
2 ∈ (− 1

4 , 0] in part iii), we obtain Theorem 1.2 in
[KPV96b].

In order to formulate and prove an analogue for Lemma 4.1 in the case of two
unbared factors, we introduce some bilinear pseudodifferential operators:
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Definition 4.1 We define Is
−(f, g) by its Fourier-transform (in the space variable)

FxIs
−(f, g)(ξ) :=

∫

ξ1+ξ2=ξ

dξ1|ξ1 − ξ2|sFxf(ξ1)Fxg(ξ2).

If the expression |ξ1− ξ2|s in the integral is replaced by 〈ξ1− ξ2〉s, the corresponding
operator will be called Js

−(f, g). Similarly we define Is
+(f, g) and Js

+(f, g) by

FxIs
+(f, g)(ξ) :=

∫

ξ1+ξ2=ξ

dξ1|ξ1 + 2ξ2|sFxf(ξ1)Fxg(ξ2).

Remark (simple properties) :

i) For functions u, v depending on space- and time-variables we have

FIs
−(u, v)(ξ, τ) :=

∫
ξ1+ξ2=ξ

τ1+τ2=τ

dξ1dτ1|ξ1 − ξ2|sFu(ξ1, τ1)Fv(ξ2, τ2)

and similar integrals for the other operators.

ii) Is
−(f, g) always coincides with Is

−(g, f) (and Js
−(f, g) with Js

−(g, f)), since we
can exchange ξ1 and ξ2 in the corresponding integral, while in general we will
have Is

+(f, g) 6= Is
+(g, f) (and Js

+(f, g) 6= Js
+(g, f)).

iii) Fixing u and s we define the linear operators M and N by

Mv := Js
−(u, v) and Nw := Js

+(w, u).

Then it is easily checked that M and N are formally adjoint with respect to
the inner product on L2

xt.

Now we have the following bilinear Strichartz-type estimate:

Lemma 4.2

‖I
1
2−(eit∂2

u1, e
it∂2

u2)‖L2
xt
≤ c‖u1‖L2

x
‖u2‖L2

x

Proof: We will write for short û instead of Fxu and
∫
∗ dξ1 for

∫
ξ1+ξ2=ξ

dξ1.
Then, using Fourier-Plancherel in the space variable we obtain:

‖I
1
2−(eit∂2

u1, e
it∂2

u2)‖
2

L2
xt

= c

∫
dξdt

∣∣∣∣
∫

∗
dξ1|ξ1 − ξ2| 12 e−it(ξ2

1+ξ2
2)û1(ξ1)û2(ξ2)

∣∣∣∣
2

= c

∫
dξdt

∫

∗
dξ1dη1e

−it(ξ2
1+ξ2

2−η2
1−η2

2)(|ξ1 − ξ2||η1 − η2|) 1
2

2∏

i=1

ûi(ξi)ûi(ηi)

= c

∫
dξ

∫

∗
dξ1dη1δ(η2

1 + η2
2 − ξ2

1 − ξ2
2)(|ξ1 − ξ2||η1 − η2|) 1

2

2∏

i=1

ûi(ξi)ûi(ηi)

= c

∫
dξ

∫

∗
dξ1dη1δ(2(η2

1 − ξ2
1 + ξ(ξ1 − η1)))(|ξ1 − ξ2||η1 − η2|) 1

2

2∏

i=1

ûi(ξi)ûi(ηi).
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Now we use δ(g(x)) =
∑

n
1

|g′(xn)|δ(x− xn), where the sum is taken over all simple
zeros of g, in our case:

g(x) = 2(x2 + ξ(ξ1 − x)− ξ2
1)

with the zeros x1 = ξ1 and x2 = ξ − ξ1, hence g′(x1) = 2(2ξ1 − ξ) respectively
g′(x2) = 2(ξ − 2ξ1). So the last expression is equal to

c

∫
dξ

∫

∗
dξ1dη1

1
|2ξ1 − ξ|δ(η1 − ξ1)(|ξ1 − ξ2||η1 − η2|) 1

2

2∏

i=1

ûi(ξi)ûi(ηi)

+ c

∫
dξ

∫

∗
dξ1dη1

1
|2ξ1 − ξ|δ(η1 − (ξ − ξ1))(|ξ1 − ξ2||η1 − η2|) 1

2

2∏

i=1

ûi(ξi)ûi(ηi)

= c

∫
dξ

∫

∗
dξ1

2∏

i=1

|ûi(ξi)|2 + c

∫
dξ

∫

∗
dξ1û1(ξ1)û1(ξ2)û2(ξ2)û2(ξ1)

≤ c(
2∏

i=1

‖ui‖2L2
x

+ ‖û1û2‖2L1
ξ
) ≤ c

2∏

i=1

‖ui‖2L2
x
.

2

Corollary 4.1 Let b0 > 1
2 and 0 ≤ s ≤ 1

2 . Then the following estimates hold true:

i) ‖Js
−(u, v)‖L2

xt
≤ c‖u‖X0,b0(φ)‖v‖X0,b(φ), provided b > 1

4 + s
2 ,

ii) ‖Js
+(v, u)‖X0,b′(φ) ≤ c‖u‖X0,b0(φ)‖v‖L2

xt
, provided b′ < − 1

4 − s
2 .

Remark : In i) we may replace Js
−(u, v) by Js

−(u, v), in fact a short computation
shows that Js

−(u, v) = Js−(u, v).

Proof: By Lemma 2.1 we obtain from the above estimate

‖I
1
2−(u, v)‖L2

xt
≤ c‖u‖X0,b0(φ)‖v‖X0,b(φ), b, b0 >

1
2
.

Combining this with

‖uv‖L2
xt
≤ ‖u‖L6

xt
‖v‖L3

xt
≤ c‖u‖X0,b0(φ)‖v‖X0,b(φ), b >

1
4
, b0 >

1
2
,

we obtain i) for s = 1
2 and s = 0.

To see i) for 0 < s < 1
2 , b > 1

4 + s
2 , we write w = Λbv, where Λb is defined by

FΛbv(ξ, τ) = 〈τ + ξ2〉bFv(ξ, τ). Then we have to show that

‖Js
−(u, Λ−bw)‖L2

xt
≤ c‖u‖X0,b0(φ)‖w‖L2

xt
, (22)

where

‖Js
−(u, Λ−bw)‖L2

xt
= ‖ ∫

τ1+τ2=τ

ξ1+ξ2=ξ
〈ξ1 − ξ2〉sFu(ξ1, τ1)〈τ2 + ξ2

2〉−bFw(ξ2, τ2)‖L2
ξτ

.
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Notice that, by the preceding, (22) is already known in the limiting cases (s, b) =
(0, 1

4 + ε) and (s, b) = ( 1
2 , 1

2 + ε), ε > 0. Choosing ε = b− 1
4 − s

2 we have

〈ξ1 − ξ2〉s〈τ2 + ξ2
2〉−b ≤ 〈τ2 + ξ2

2〉−
1
4−ε + 〈ξ1 − ξ2〉 1

2 〈τ2 + ξ2
2〉−

1
2−ε

and hence

‖Js
−(u, Λ−bw)‖L2

xt
≤ ‖u(Λ−

1
4−εw)‖L2

xt
+‖J

1
2−(u, Λ−

1
2−εw)‖L2

xt
≤ c‖u‖X0,b0(φ)‖w‖L2

xt
.

Finally, ii) follows from i) by duality (cf. part iii) of the remark on simple
properties of Js

−). 2

In view on Bourgain’s bilinear refinement of the L4
xt-Strichartz-estimate (Lemma

2.5 and Corollary 2.2) and on the fact that the exponent in the onedimensional
Strichartz’ estimate is 6 the question for trilinear refinements of this estimate comes
up naturally. Here we give a partial answer to this question, starting with the
following application of Kato’s smoothing effect:

Lemma 4.3 Let 0 ≤ s ≤ 1
4 , b > 1

2 . Then the estimate

‖u1u2u3‖L2
xt
≤ c‖u1‖Xs,b(φ)‖u2‖X−s,b(φ)‖u3‖X0,b(φ)

holds true.

Proof: For s = 0 this follows from standard Strichartz’ estimate, for s = 1
4 we

argue as follows: Interpolation between the L6-estimate and the Kato smoothing
effect (part i) of Lemma 2.3) with θ = 1

2 yields

‖u2‖L12
x (L3

t ) ≤ c‖u2‖X− 1
4 ,b(φ), b >

1
2
.

On the other hand we have the maximal function estimate

‖u1‖L4
x(L∞t ) ≤ c‖u1‖X 1

4 ,b(φ), b >
1
2
,

see part ii) of Lemma 2.3. Combining this with Hölder’s inequality and standard
Strichartz we obtain

‖u1u2u3‖L2
xt

≤ c‖u1‖L4
x(L∞t )‖u2‖L12

x (L3
t )‖u3‖L6

xt

≤ c‖u1‖X 1
4 ,b(φ)‖u2‖X− 1

4 ,b(φ)‖u3‖X0,b(φ),

which is the claim for s = 1
4 . For 0 < s < 1

4 the result then follows by multilinear
interpolation, see Thm. 4.4.1 in [BL]. 2

Remark : An alternative proof of Lemma 4.3 (up to ε’s) not using the Kato
effect is given in Appendix A1.

Problem: Does the above estimate hold for 1
4 < s < 1

2 ?
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Corollary 4.2 Assume 0 ≤ s ≤ 1
4 and b > 1

2 . Let ũ denote u or u. Then the
following estimates are valid:

i) ‖ũ1ũ2ũ3‖L2
xt
≤ c‖u1‖Xs,b(φ)‖u2‖X−s,b(φ)‖u3‖X0,b(φ),

ii) ‖ũ1ũ2ũ3‖X−s,−b(φ) ≤ c‖u1‖L2
xt
‖u2‖X−s,b(φ)‖u3‖X0,b(φ),

iii) ‖ũ1ũ2ũ3‖L2
t (Hs

x) ≤ c‖u1‖Xs,b(φ)‖u2‖X0,b(φ)‖u3‖X0,b(φ),

iv) ‖ũ1ũ2ũ3‖X−s,−b(φ) ≤ c‖u1‖L2
t (H−s

x )‖u2‖X0,b(φ)‖u3‖X0,b(φ).

Proof: Clearly, in ‖u1u2u3‖L2
xt

any factor ui may be replaced by ui. This gives
i). From this we obtain ii) by duality. Writing 〈ξ〉 ≤ 〈ξ1〉+ 〈ξ2〉+ 〈ξ3〉 and applying
i) twice (plus standard Strichartz), part iii) can be seen. Dualizing again, part iv)
follows. 2

In some cases, using the bilinear estimates in Lemma 4.1 and in Corollary 4.1,
we can prove better L2

t (Hs
x)-estimates:

Lemma 4.4 i) For |s| < 1
2 < b the following estimate holds:

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1‖X0,b(φ)‖u2‖X0,b(φ)‖u3‖Xs,b(φ)

ii) For − 1
2 < s ≤ 0, b > 1

2 the following is valid:

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1‖X0,b(φ)‖u2‖Xs,b(φ)‖u3‖X0,b(φ)

Remark : Using multilinear interpolation (Thm. 4.4.1 in [BL]) we obtain

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1‖Xs1,b(φ)‖u2‖Xs2,b(φ)‖u3‖Xs3,b(φ),

provided − 1
2 < s ≤ 0, b > 1

2 , s1,2,3 ≤ 0 and s1 + s2 + s3 = s. Moreover, we may
replace u1u2u3 on the left hand side by u1u2u3.

Proof: First we show i) for s > 0. From 〈ξ〉 ≤ c(〈ξ1 + ξ2〉+ 〈ξ3〉) it follows that

‖u1u2u3‖L2
t (Hs

x) ≤ c‖Js(u1u2)u3‖L2
xt

+ ‖u1u2J
su3‖L2

xt
=: c(N1 + N2).

Using the standard L6
xt-Strichartz-estimate we see that N2 is bounded by the right

hand side of i). For N1 we have with s = 1
p , 1

2 − s = 1
q (⇒ Hs ⊂ Lq, H

1
2 ⊂ Hs,p):

N1 ≤ c‖Js(u1u2)‖L2
t (Lp

x)‖u3‖L∞t (Lq
x)

≤ c‖u1u2‖
L2

t (H
1
2

x )
‖u3‖L∞t (Hs

x)

≤ c‖u1‖X0,b(φ)‖u2‖X0,b(φ)‖u3‖Xs,b(φ)

by Lemma 4.1, part i), and the Sobolev embedding in the time variable.
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Next we consider i) for s < 0. Writing 〈ξ3〉 ≤ c(〈ξ〉+ 〈ξ1 + ξ2〉), we obtain

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1u2J
su3‖L2

xt
+ ‖J−s(u1u2)Jsu3‖L2

t (Hs
x) =: c(N1 + N2).

To estimate N1 we use again the standard L6
xt-Strichartz estimate. For N2 we use

the embedding Lq ⊂ Hs, s− 1
2 = − 1

q and Hölder’s inequality:

N2 ≤ c‖J−s(u1u2)Jsu3‖L2
t (Lq

x)

≤ c‖J−s(u1u2)‖L2
t (Lp

x)‖u3‖L∞t (Hs
x),

where 1
q = 1

2+ 1
p . The second factor is bounded by c‖u3‖Xs,b(φ) because of Sobolev’s

embedding Theorem in the time variable. For the first factor we use the embedding
H

1
2 ⊂ H−s,p (observe that s = − 1

p ) and again Lemma 4.1, i).
We conclude the proof by showing ii): Here we have ξ = (ξ1 +ξ2)+(ξ3 +ξ2)−ξ2

respectively 〈ξ2〉 ≤ c(〈ξ〉+ 〈ξ1 + ξ2〉+ 〈ξ3 + ξ2〉) and thus

‖u1u2u3‖L2
t (Hs

x) ≤ c(N1 + N2 + N3)

with
N1 = ‖u1(Jsu2)u3‖L2

xt
≤ c‖u1‖X0,b(φ)‖u2‖Xs,b(φ)‖u3‖X0,b(φ)

(by standard Strichartz) and

N2 = ‖J−s(u1J
su2)u3‖L2

t (Hs
x), N3 = ‖u1J

−s((Jsu2)u3)‖L2
t (Hs

x).

By symmetry between u1 and u3 it is now sufficient to estimate N2: Using the
embedding Lq ⊂ Hs, s − 1

2 = − 1
q , Hölder’s inequality and the embedding H

1
2 ⊂

H−s,p, −s = 1
p we obtain

N2 ≤ c‖J−s(u1J
su2)u3‖L2

t (Lq
x)

≤ c‖J−s(u1J
su2)‖L2

t (Lp
x)‖u3‖L∞t (L2

x)

≤ c‖J 1
2 (u1J

su2)‖L2
xt
‖u3‖L∞t (L2

x).

Again, Lemma 4.1, i) and the Sobolev embedding in t give the desired bound. 2

Lemma 4.5 For − 1
2 < s ≤ 0, b > 1

2 the following holds true:

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1‖Xs,b(φ)‖u2‖X0,b(φ)‖u3‖X0,b(φ)

Remark : Again we may use multilinear interpolation to get

‖u1u2u3‖L2
t (Hs

x) ≤ c‖u1‖Xs1,b(φ)‖u2‖Xs2,b(φ)‖u3‖Xs3,b(φ)

for − 1
2 < s ≤ 0, b > 1

2 , s1,2,3 ≤ 0 and s1 + s2 + s3 = s. The same holds true with
u1u2u3 replaced by u1u2u3.

Proof: It is easily checked that for ρ, λ ≥ 0 the inequality

〈ξ1〉ρ ≤ c(〈ξ〉ρ +
〈ξ1 − ξ2〉ρ+λ

〈ξ1 + ξ2〉λ +
〈ξ1 − ξ3〉ρ+λ

〈ξ1 + ξ3〉λ )
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is valid, if ξ = ξ1 + ξ2 + ξ3. Choosing ρ = −s and λ = s + 1
2 it follows, that

‖u1u2u3‖L2
t (Hs

x) ≤ c(N1 + N2 + N3),

where

N1 = ‖(Jsu1)u2u3‖L2
xt
≤ c‖u1‖Xs,b(φ)‖u2‖X0,b(φ)‖u3‖X0,b(φ)

(by standard Strichartz) and

N2 = ‖(J−λJ
1
2−(Jsu1, u2))u3‖L2

t (Hs
x), N3 = ‖(J−λJ

1
2−(Jsu1, u3))u2‖L2

t (Hs
x).

Now, by symmetry between u2 and u3, it is sufficient to estimate N2. Using the
embedding Lq ⊂ Hs, (s− 1

2 = − 1
q ) and Hölder we get

N2 ≤ c‖J−λJ
1
2−(Jsu1, u2)u3‖L2

t (Lq
x)

≤ c‖J−λJ
1
2−(Jsu1, u2)‖L2

t (Lp
x)‖u3‖L∞t (L2

x)

with 1
q = 1

2 + 1
p . The second factor is bounded by c‖u3‖X0,b(φ). For the first factor

we observe that L2 ⊂ H−λ,p, so it can be estimated by

‖J
1
2−(Jsu1, u2)‖L2

xt
≤ c‖u1‖Xs,b(φ)‖u2‖X0,b(φ),

where in the last step we have used Corollary 4.1, i). 2

4.3 Estimates on quadratic and cubic nonlinearities

Theorem 4.4 Let n = 1, m = 3 or n = 2,m = 2. Assume 0 ≥ s > − 1
m and

− 1
2 < b′ < ms

2 . Then in the periodic and nonperiodic case for all b > 1
2 the estimate

‖∏m
i=1 ui‖X0,b′(φ) ≤ c

m∏

i=1

‖ui‖Xs,b(φ)

holds true.

Proof: Defining fi(ξ, τ) = 〈τ − |ξ|2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ m, we have

‖∏m
i=1 ui‖X0,b′(φ) = c‖〈τ + |ξ|2〉b′ ∫ dν

∏m
i=1〈τi − |ξi|2〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

Because of

τ + |ξ|2 −
m∑

i=1

(τi − |ξi|2) = |ξ|2 +
m∑

i=1

|ξi|2

there is the inequality

〈ξ〉2 +
m∑

i=1

〈ξi〉2 ≤ 〈τ + |ξ|2〉+
m∑

i=1

〈τi − |ξi|2〉

≤ c(〈τ + |ξ|2〉+
m∑

i=1

〈τi − |ξi|2〉χAi),
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where in Ai we have 〈τi − |ξi|2〉 ≥ 〈τ + |ξ|2〉. Since b′ < ms
2 is assumed, it follows

〈ξ〉ε
m∏

i=1

〈ξi〉−s+ε ≤ c(〈τ + |ξ|2〉−b′ +
m∑

i=1

〈τi − |ξi|2〉−b′χAi)

for some ε > 0. From this we conclude that

‖∏m
i=1 ui‖X0,b′(φ) ≤ c

m∑

j=0

‖Ij‖L2
ξ,τ

,

with

I0(ξ, τ) = 〈ξ〉−ε

∫
dν

m∏

i=1

〈τi − |ξi|2〉−b〈ξi〉−εfi(ξi, τi)

and, for 1 ≤ j ≤ m,

Ij(ξ, τ) = 〈ξ〉−ε〈τ + |ξ|2〉b′
∫

dν〈τj − |ξj |2〉−b′
m∏

i=1

〈τi − |ξi|2〉−b〈ξi〉−εfi(ξi, τi)χAj

≤ 〈ξ〉−ε〈τ + |ξ|2〉−b

∫
dν〈τj − |ξj |2〉b

m∏

i=1

〈τi − |ξi|2〉−b〈ξi〉−εfi(ξi, τi).

To estimate I0 we use Hölders inequality and Lemma 2.15 respectively Lemma 2.16:

‖I0‖L2
ξ,τ

≤ ‖ ∫
dν

∏m
i=1〈τi − |ξi|2〉−b〈ξi〉−εfi(ξi, τi)‖L2

ξ,τ

= c‖∏m
i=1 Js−εui‖L2

x,t
≤ c

m∏

i=1

‖Js−εui‖L2m
x,t

≤ c

m∏

i=1

‖Jsui‖X0,b(−φ) = c

m∏

i=1

‖ui‖Xs,b(−φ).

To estimate Ij , 1 ≤ j ≤ m, we define p = 2m and p′ by 1
p + 1

p′ = 1. Then we use the
dual versions of Lemma 2.15 respectively 2.16, Hölders inequality and the Lemmas
themselves to obtain:

‖Ij‖L2
ξ,τ

≤ c‖(∏m
i=1
i 6=j

Js−εui)(J−εF−1fj)‖X−ε,−b(φ)

≤ c‖(∏m
i=1
i 6=j

Js−εui)(J−εF−1fj)‖Lp′
x,t

≤ c‖J−εF−1fj‖L2
x,t

m∏
i=1
i6=j

‖Js−εui‖Lp
x,t

≤ c‖fj‖L2
ξ,τ

m∏
i=1
i 6=j

‖Jsui‖X0,b(−φ) = c

m∏

i=1

‖ui‖Xs,b(−φ)

2
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Theorem 4.5 Let n = 3 and assume 0 ≥ s > − 3
10 , − 1

2 < b′ < s
2 − 7

20 and b > 1
2 .

Then in the periodic case the estimate

‖∏2
i=1 ui‖Xs,b′(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ)

holds true.

Proof: Writing fi(ξ, τ) = 〈τ − |ξ|2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 2, we have

‖∏2
i=1 ui‖Xs,b′(φ) = c‖〈ξ〉s〈τ + |ξ|2〉b′ ∫ dν

∏2
i=1〈τi − |ξi|2〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

By the expressions 〈τ + |ξ|2〉 and 〈τi−|ξi|2〉, i = 1, 2, the quantity 〈ξ〉2+〈ξ1〉2+〈ξ2〉2
can be controlled. So we split the domain of integration into A0 +A1 +A2, where in
A0 we have 〈τ + |ξ|2〉 = max (〈τ + |ξ|2〉, 〈τ1 − |ξ1|2〉, 〈τ2 − |ξ2|2〉) and in Aj , j = 1, 2,
it should hold that 〈τj − |ξj |2〉 = max (〈τ + |ξ|2〉, 〈τ1 − |ξ1|2〉, 〈τ2 − |ξ2|2〉). First we
consider the region A0: Here we use that for ε > 0 sufficiently small

〈ξ〉 3
10+s

2∏

i=1

〈ξi〉−s+ 1
5+ε ≤ c〈τ + |ξ|2〉−b′ .

This gives the upper bound

‖〈ξ〉− 3
10

∫
dν

∏2
i=1〈τi − |ξi|2〉−b〈ξi〉− 1

5−εfi(ξi, τi)‖L2
ξ,τ

= c‖∏2
i=1 Js− 1

5−εui‖
L2

t (H
− 3

10
x )

.

Now, using the embedding Lq
x ⊂ H

− 3
10

x , 1
q = 3

5 , Hölder’s inequality and Corollary
2.5, part b) (with p = 4, q = 10

3 , s > 1
5 and b > 9

20 ), we get the following chain of
inequalities:

‖∏2
i=1 Js− 1

5−εui‖
L2

t (H
− 3

10
x )

≤ c‖∏2
i=1 Js− 1

5−εui‖L2
t (Lq

x)

≤ c‖Js− 1
5−εu1‖L4

t (L2q
x )‖Js− 1

5−εu2‖L4
t (L2q

x )

≤ c

2∏

i=1

‖ui‖Xs,b(φ).

Now, by symmetry, it only remains to show the estimate for the region A1: Here
we use

〈ξ〉s〈τ + |ξ|2〉b+b′〈ξ1〉−s〈ξ2〉−s+ 1
4+ε ≤ c〈ξ〉− 1

4−ε〈τ1 − |ξ1|2〉b

to obtain the upper bound

‖〈ξ〉− 1
4−ε〈τ + |ξ|2〉−b

∫
dνf1(ξ1, τ1)〈ξ2〉− 1

4−ε〈τ2 − |ξ2|2〉−bf2(ξ2, τ2)‖L2
ξ,τ

= c‖(F−1f1)(Js− 1
4−εu2)‖X− 1

4−ε,−b(φ),
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where ‖f1‖L2
ξ,τ

= ‖F−1f1‖L2
x,t

= ‖u1‖Xs,b(φ). Now we use the dual form of Lemma
2.16, Hölder’s inequality and the Lemma itself to obtain

‖F−1f1J
s− 1

4−εu2‖X− 1
4−ε,−b(φ) ≤ c‖F−1f1J

s− 1
4−εu2‖

L
4
3
xt

≤ c‖F−1f1‖L2
xt
‖Js− 1

4−εu2‖L4
xt

≤ c

2∏

i=1

‖ui‖Xs,b(φ).

2

Remark : In the nonperiodic case we can combine the argument given above
with the L4

t (L
3
x)-Strichartz-estimate to obtain the estimate in question whenever

s > − 1
2 , b′ < s

2 − 1
4 , b > 1

2 , see Example 2.2. As far as I know, it is still an open
question, whether or not the analogue of this Strichartz-estimate, that is

Xε,b(φ) ⊂ L4
t (R, L3

x(T3)), b >
1
2
, ε > 0

holds in the periodic case. This, of course, could be used to lower the bound on s
in the above theorem down to − 1

2 + ε.

Before we turn to the cubic nonlinearities in the continuous case, let us briefly
discuss some counterexamples concerning the periodic case: The examples given by
Kenig, Ponce and Vega connected with the onedimensional periodic case (see the
proof of Thm 1.10, parts (ii) and (iii) in [KPV96b]) show that the estimate

‖u1u2‖Xs,b′(φ) ≤ c‖u1‖Xs,b(φ)‖u2‖Xs,b(φ)

fails for all s < 0, b, b′ ∈ R, and that the estimate

‖u1u2‖Xs,b′(φ) ≤ c‖u1‖Xs,b(φ)‖u2‖Xs,b(φ)

fails for all s < − 1
2 , if b − b′ ≤ 1. From this we can conclude by the method

of descent, that these estimates also fail in higher dimensions. So our estimate
on u1u2 is sharp (up to the endpoint), while in three dimensions the estimate
might be improved (as indicated above), and for u1u2 no results with s < 0 can be
achieved by the method. For the bilinear form B(u1, u2) = u1u2 in the two- and
threedimensional periodic setting we have the following counterexample exhibiting
a significant difference between the periodic and nonperiodic case (cf. the results
in [CDKS01] and [T00] mentioned in 4.1):

Example 4.1 In the periodic case in space dimension d ≥ 2 the estimate

‖∏2
i=1 ui‖Xs,b′(φ) ≤ c

2∏

i=1

‖ui‖Xs,b(φ)

fails for all s < 0, b, b′ ∈ R.
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Proof: The above estimate implies

‖〈τ + |ξ|2〉b′〈ξ〉s ∫
dν

∏2
i=1〈τi + |ξi|2〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
≤ c

2∏

i=1

‖fi‖L2
ξ,τ

.

Choosing two orthonormal vectors e1 and e2 in Rd and defining for n ∈ N

f
(n)
1 (ξ, τ) = δξ,ne1χ(τ + n2), f

(n)
2 (ξ, τ) = δξ,ne2χ(τ + n2),

where χ is the characteristic function of [−1, 1], we have ‖f (n)
i ‖L2

ξ,τ
= c and it would

follow that
n−2s‖〈τ + |ξ|2〉b′〈ξ〉s ∫

dν
∏2

i=1 f
(n)
i (ξi, τi)‖L2

ξ,τ
≤ c. (23)

Now a simple computation shows that

∫
dν

2∏

i=1

f
(n)
i (ξi, τi) ≥ δξ,n(e1+e2)χ(τ + 2n2),

which inserted into (23) gives n−s ≤ c. This is a contradiction for all s < 0.
2

The next example shows that our estimate on u1u2u3 is essentially sharp:

Example 4.2 In the periodic case in one space dimension the estimate

‖∏3
i=1 ui‖Xs,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ)

fails for all s < − 1
3 , if b− b′ ≤ 1.

Proof: From the above estimate we obtain

‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏3
i=1〈τi − ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)‖L2
ξ,τ
≤ c

3∏

i=1

‖fi‖L2
ξ,τ

.

Then for n ∈ N we define

f
(n)
1,2 (ξ, τ) = δξ,nχ(τ − n2), f

(n)
3 (ξ, τ) = δξ,−2nχ(τ − 4n2),

with χ as in the previous example. Again we have ‖f (n)
i ‖L2

ξ,τ
= c and

n−3s‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏3
i=1 f

(n)
i (ξi, τi)‖L2

ξ,τ
≤ c.

Now it can be easily checked that

∫
dν

3∏

i=1

f
(n)
i (ξi, τi) ≥ δξ,0χ(τ − 6n2).
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This leads to n−3s+2b′ ≤ c respectively to 2
3b′ ≤ s. Consider next the following

sequences of functions

g
(n)
1 (ξ, τ) = δξ,nχ(τ+5n2), g

(n)
2 (ξ, τ) = δξ,nχ(τ−n2), g

(n)
3 (ξ, τ) = δξ,−2nχ(τ−4n2).

Arguing as before we are lead to the restriction − 2
3b ≤ s. Adding up these two

restrictions and taking into account that b− b′ ≤ 1 we arrive at s ≥ − 1
3 . 2

For all the other cubic nonlinearities the corresponding estimates fail for s < 0,
b, b′ ∈ R, see the examples 4.3 and 4.4 in the next section as well as the remarks
below. Next we consider the cubic nonlinearities in the continuous case:

Theorem 4.6 In the nonperiodic case in one space dimension the estimates

‖∏3
i=1 ui‖Xσ,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ) (24)

and

‖∏3
i=1 ui‖Xσ,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ) (25)

hold, provided 0 ≥ s > − 5
12 , − 1

2 < b′ < 1
2 ( 1

4 + 3s), σ < min (0, 3s− 2b′), b′ ≤ s and
b > 1

2 .

Proof: 1. To show (24), we write fi(ξ, τ) = 〈τ + ξ2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 3.
Then we have

‖∏3
i=1 ui‖Xσ,b′(φ) = ‖∏3

i=1 ui‖Xσ,b′(−φ)

= ‖〈τ − ξ2〉b′〈ξ〉σ ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)‖L2
ξ,τ

.

For 0 ≤ α, β, γ with α + β + γ = 2 we have the inequality

〈ξ1〉α〈ξ2〉β〈ξ3〉γ ≤ 〈ξ〉2 +
3∑

i=1

〈ξi〉2 ≤ c(〈τ − ξ2〉+
3∑

i=1

〈τi + ξ2
i 〉χAi),

where in Ai the expression 〈τi + ξ2
i 〉 is dominant. Hence

‖∏3
i=1 ui‖Xσ,b′(φ) ≤ c

3∑

k=0

Nk

with

N0 = ‖〈ξ〉σ ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉 2b′
3 −sfi(ξi, τi)‖L2

ξ,τ

= c‖∏3
i=1 J

2b′
3 ui‖L2

t (Hσ
x ) ≤ c

3∏

i=1

‖J 2b′
3 ui‖Xσ

3 ,b(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ),
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where we have used Lemma 4.5 and the assumption σ ≤ 3s−2b′. Next we estimate
N1 by

‖〈τ − ξ2〉b′〈ξ〉σ ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)χA1‖L2
ξ,τ

≤ c‖〈τ − ξ2〉−b〈ξ〉σ ∫
dν〈ξ1〉2b′−3sf1(ξ1, τ1)

∏3
i=2〈τi + ξ2

i 〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖(ΛbJ2b′−2su1)(Jsu2)(Jsu3)‖Xσ,−b(−φ),

where Λb = F−1〈τ + ξ2〉bF . By part iv) of Corollary 4.2 this is bounded by

c‖ΛbJ2b′−2su1‖L2
t (Hσ

x )‖u2‖Xs,b(φ)‖u3‖Xs,b(φ)

= c‖u1‖X2b′−2s+σ,b(φ)‖u2‖Xs,b(φ)‖u3‖Xs,b(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ),

since 2b′ − 2s + σ ≤ s. To estimate Nk for k = 2, 3 one only has to exchange the
indices 1 and k. Now (24) is shown.

2. Now we prove the second estimate: With fi as above we have

‖∏3
i=1 ui‖Xσ,b′(φ) = c‖〈τ + ξ2〉b′〈ξ〉σ ∫

dν
∏3

i=1〈τi + ξ2
i 〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

Here the quantity, which can be controlled by the expressions 〈τ + ξ2〉, 〈τi + ξ2
i 〉,

1 ≤ i ≤ 3, is
c.q. := |ξ2

1 + ξ2
2 + ξ2

3 − ξ2|.
So we divide the domain of integration into two parts A and Ac, where in A it
should hold that

ξ2
1 + ξ2

2 + ξ2
3 + ξ2 ≤ c c.q. .

Then concerning this region we can argue precisely as in the first part of this proof.
For the region Ac we may assume by symmetry that ξ2

1 ≥ ξ2
2 ≥ ξ2

3 . Then it is easily
checked that in Ac we have

1. ξ2 ≥ 1
2
ξ2
1 ≥

1
2
ξ2
2 and 2. ξ2

3 ≤ ξ2
1 ≤ c(ξ1 ± ξ3)2.

From this it follows

3∏

i=1

〈ξi〉−s ≤ c〈ξ〉−σ〈ξ1 + ξ3〉−s0〈ξ1 − ξ3〉 1
2

for s0 = 1
2 + 2b′ + ε, so that −3s ≤ −σ − s0 + 1

2 = −σ − 2b′ − ε for ε sufficiently
small. Hence

‖〈τ + ξ2〉b′〈ξ〉σ ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)χAc‖L2
ξ,τ

≤ c‖〈τ + ξ2〉b′ ∫ dν〈ξ1 + ξ3〉−s0〈ξ1 − ξ3〉 1
2

∏3
i=1〈τi + ξ2

i 〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖(Jsu2)J−s0J
1
2−(Jsu1, J

su3)‖X0,b′(φ).
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Using part iii) of Lemma 4.1 (observe that b′ < − 1
4 + s0

2 ) and part i) of Corollary
4.1 this can be estimated by

c‖Jsu2‖X0,b(φ)‖J−s0J
1
2−(Jsu1, J

su3)‖L2
t (H

s0
x )

≤ c‖u2‖Xs,b(φ)‖J
1
2−(Jsu1, J

su3)‖L2
xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ).

2

Theorem 4.7 In the nonperiodic case in one space dimension the estimate

‖u1

∏3
i=2 ui‖Xs,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ) (26)

holds, provided − 1
4 ≥ s > − 2

5 , − 1
2 < b′ < min (s− 1

10 ,− 1
4 + s

2 ) and b > 1
2 .

Proof: We write f1(ξ, τ) = 〈τ + ξ2〉b〈ξ〉sFu1(ξ, τ) and, for i = 2, 3,
fi(ξ, τ) = 〈τ − ξ2〉b〈ξ〉sFui(ξ, τ). Then, using the abbreviations σ0 = τ + ξ2,
σ1 = τ1 + ξ2

1 and, for i = 2, 3, σi = τi − ξ2
i , we have

‖u1

∏3
i=2 ui‖Xs,b′(φ) = c‖〈σ0〉b′〈ξ〉s

∫
dν

∏3
i=1〈σi〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

Here the quantity

c.q. := |ξ2 + ξ2
2 + ξ2

3 − ξ2
1 | = 2|ξ2ξ3 − ξ(ξ2 + ξ3)|

can be controlled by the expressions 〈σi〉, 0 ≤ i ≤ 3. Thus we divide the domain of
integration into A + Ac, where in A it should hold that c.q. ≥ c〈ξ2〉〈ξ3〉.

First we consider the region Ac. Here we have

1.〈ξ2〉 ≤ c〈ξ〉 or 〈ξ3〉 ≤ c〈ξ〉

and 2.〈ξ2,3〉 ≤ c〈ξ2 ± ξ3〉 or 〈ξ2,3〉 ≤ c〈ξ ± ξ2,3〉.
Writing Ac = B1 +B2, where in B1 we assume 〈ξ2〉 ≤ 〈ξ3〉 and in B2, consequently,
〈ξ2〉 ≥ 〈ξ3〉, it will be sufficient by symmetry to consider the subregion B1. Now B1

is splitted again into B11 and B12, where in B11 we assume 〈ξ2,3〉 ≤ c〈ξ2 ± ξ3〉 and
in B12 it should hold that 〈ξ2,3〉 ≤ c〈ξ ± ξ2,3〉.

Subregion B11: Here it holds that 〈ξ1〉〈ξ2〉〈ξ3〉 ≤ c〈ξ〉〈ξ2 − ξ3〉〈ξ2 + ξ3〉, giving
the upper bound

‖〈σ0〉b′
∫

dν〈ξ2 + ξ3〉−s〈ξ2 − ξ3〉−s
∏3

i=1〈σi〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖(Jsu1)J−sJ−s
− (Jsu2, J

su3)‖X0,b′(φ)

≤ c‖u1‖Xs,b(φ)‖J−s
− (Jsu2, J

su3)‖L2
xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ),
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where we have used part iii) of Lemma 4.1 (demanding for b′ < − 1
4 + s

2 ) and part
i) of Corollary 4.1.

Subregion B12: Here we have
〈ξ1〉〈ξ2〉〈ξ3〉 ≤ c〈ξ〉〈ξ − ξ3〉〈ξ + ξ3〉, leading to the upper bound

‖〈σ0〉b′
∫

dν〈ξ1 + ξ2 + 2ξ3〉−s〈ξ1 + ξ2〉−s
∏3

i=1〈σi〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖J−s
+ (J−s((Jsu1)(Jsu2)), Jsu3)‖X0,b′(φ)

≤ c‖u3‖Xs,b(φ)‖J−s((Jsu1)(Jsu2))‖L2
xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ).

Here we have used part ii) of Corollary 4.1 (leading again to the restriction
b′ < − 1

4 + s
2 ) and part i) of Lemma 4.1. By this the discussion for the region Ac is

completed.

Next we consider the region A =
∑3

j=0 Aj , where in Aj the expression 〈σj〉
is assumed to be dominant. By symmetry between the second and third factor
(also in the exceptional region Ac) it will be sufficient to show the estimate for the
subregions A0, A1 and A2.

Subregion A0: Here we can use 〈ξ2〉〈ξ3〉 ≤ c〈σ0〉 to obtain the upper bound

‖〈ξ〉s ∫
dν〈σ1〉−b〈ξ1〉−sf1(ξ1, τ1)

∏3
i=2〈σi〉−b〈ξi〉b′−sfi(ξi, τi)‖L2

ξ,τ

= c‖u1J
b′u2J

b′u3‖L2
t (Hs

x) ≤ c

3∏

i=1

‖ui‖Xs,b(φ)

by part ii) of Lemma 4.4, provided s > − 1
2 (in the last step we have also used

s ≥ b′).

Subregion A1: Here we have 〈ξ2〉〈ξ3〉 ≤ c〈σ1〉 and 〈σ0〉 ≤ 〈σ1〉. Subdivide A1

again into A11 and A12 with 〈ξ1〉 ≤ c〈ξ〉 in A11 and, consequently, 〈ξ1〉 ≈ 〈ξ2 + ξ3〉
in A12. Then for A11 we have the upper bound

‖〈σ0〉−b
∫

dνf1(ξ1, τ1)
∏3

i=2〈σi〉−b〈ξi〉b′−sfi(ξi, τi)‖L2
ξ,τ

= c‖(F−1f1)(Jb′u2)(Jb′u3)‖X0,−b(φ) ≤ c‖(F−1f1)(Jb′u2)(Jb′u3)‖L1
t (L2

x)

by Sobolev’s embedding theorem (plus duality) in the time variable. Now using
Hölder’s inequality and the L4

t (L
∞
x )-Strichartz estimate this can be controlled by

‖F−1f1‖L2
xt
‖Jb′u2‖L4

t (L∞x )‖Jb′u3‖L4
t (L∞x ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ),

provided b′ ≤ s.
Now A12 is splitted again into A121, where we assume 〈ξ2 + ξ3〉 ≤ c〈ξ2 − ξ3〉,

implying that also 〈ξ1〉 ≤ c〈ξ2 − ξ3〉, and A122, where 〈ξ2〉 ≈ 〈ξ3〉. Consider the
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subregion A121 first: Using 〈ξ1〉−s ≤ c〈ξ2 − ξ3〉 1
2 〈ξ2 + ξ3〉−s− 1

2 , for this region we
obtain the upper bound

‖〈σ0〉−b〈ξ〉s ∫
dνf1(ξ1, τ1)〈ξ2 − ξ3〉 1

2 〈ξ2 + ξ3〉−s− 1
2

∏3
i=2〈σi〉−b〈ξi〉b′−sfi(ξi, τi)‖L2

ξ,τ

= c‖(F−1f1)J−s− 1
2 J

1
2−(Jb′u2, J

b′u3)‖Xs,−b(φ)

≤ c‖(F−1f1)J−s− 1
2 J

1
2−(Jb′u2, J

b′u3)‖L1
t (Lp

x) (s− 1
2

= −1
p
)

≤ c‖F−1f1‖L2
xt
‖J−s− 1

2 J
1
2−(Jb′u2, J

b′u3)‖L2
t (Lq

x) (
1
p

=
1
2

+
1
q
)

≤ c‖u1‖Xs,b(φ)‖J
1
2−(Jb′u2, J

b′u3)‖L2
xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ).

Next we consider the subregion A122, where 〈ξ2〉 ≈ 〈ξ3〉 ≥ c〈ξ1〉. Here we get the
upper bound

‖〈σ0〉−b〈ξ〉s ∫
dνf1(ξ1, τ1)〈ξ1〉−s− 1

6
∏3

i=2〈σi〉−b〈ξi〉b′−s+ 1
12fi(ξi, τi)‖L2

ξ,τ

= c‖(ΛbJ−
1
6 u1)(Jb′+ 1

12 u2)(Jb′+ 1
12 u3)‖Xs,−b(φ), (Λb = F−1〈τ + ξ2〉bF)

≤ c‖Λbu1‖
L2

t (H
− 1

4−
1
6

x )
‖Jb′+ 1

12 u2‖X0,b(φ)‖Jb′+ 1
12 u3‖X0,b(φ),

where we have used s ≤ − 1
4 and part iv) of Corollary 4.2. The latter is bounded

by c
∏3

i=1 ‖ui‖Xs,b(φ), provided s ≥ − 5
12 and s ≥ b′ + 1

12 . Thus the discussion for
the region A1 is complete.

Subregion A2: First we write A2 = A21 + A22, where in A21 it should hold that
〈ξ1〉 ≤ c〈ξ〉. Then this subregion can be treated precisely as the subregion A11,
leading to the bound s > − 1

2 . For the remaining subregion A22 it holds that

〈ξ2〉〈ξ3〉 ≤ c〈σ2〉 and 〈ξ1〉 ≤ c〈ξ2 + ξ3〉.
Now A22 is splitted again into A221, where we assume 〈ξ1〉 ≤ c 〈ξ2〉, and into A222,
where we then have 〈ξ2〉 ¿ 〈ξ1〉. The upper bound for A221 is

‖〈σ0〉−b〈ξ〉s ∫
dνf2(ξ2, τ2)〈ξ2〉−s

∏
i 6=2〈σi〉−b〈ξi〉b′−sfi(ξi, τi)‖L2

ξ,τ

≤ c‖(Λb
−u2)(Jb′u1)(Jb′u3)‖Xs,−b(φ) (Λb

− = F−1〈τ − ξ2〉bF)

≤ c‖Λb
−u2‖L2

t (Hs
x)‖u1‖Xb′,b(φ)‖u3‖Xb′,b(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ).

Here we have used part i) of Lemma 4.4 (dualized version) and the assumption
s ≥ b′.

For the subregion A222 the argument is a bit more complicated and it is here,
where the strongest restrictions on s occur: Subdivide A222 again into A2221 and
A2222 with 〈ξ2〉2 ≤ 〈ξ1〉 in A2221. Then in A2221 it holds that

(〈ξ1〉〈ξ2〉〈ξ3〉) 2
5 ≤ c〈ξ1〉 ≤ c〈ξ3〉 ≤ c〈ξ2 ± ξ3〉,



88 4 NONLINEAR SCHRÖDINGER EQUATIONS BELOW L2

hence, for ε = 1 + 5
2s (> 0),

3∏

i=1

〈ξi〉−s ≤ c〈ξ2 − ξ3〉 1
2 〈ξ2 + ξ3〉 1

2−ε.

Then, throwing away the 〈ξ〉s-factor, we obtain the upper bound

‖〈σ0〉b′〈ξ2 − ξ3〉 1
2 〈ξ2 + ξ3〉 1

2−ε
∏3

i=1〈σi〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖(Jsu1)J
1
2−εJ

1
2−(Jsu2, J

su3)‖X0,b′(φ)

≤ c‖u1‖Xs,b(φ)‖J
1
2−(Jsu2, J

su3)‖L2
xt
≤ c

3∏

i=1

‖ui‖Xs,b(φ)

by Lemma 4.1, part iii), and Corollary 4.1, part i) (and the remark below), leading
to the restriction b′ < 5

4s, which - in the allowed range for s - is in fact weaker than
b′ < s− 1

10 . Finally we consider the subregion A2222, where we have
〈ξ1〉 1

2 ≤ 〈ξ2〉 ¿ 〈ξ1〉 ≈ 〈ξ3〉, implying that

〈ξ1〉 3
20 ≤ c(〈ξ2〉〈ξ3〉) 1

10 .

This gives the upper bound

‖〈σ0〉−b〈ξ〉s ∫
dν〈ξ1〉−s− 3

20 〈σ1〉−bf1(ξ1, τ1)
∏3

i=2〈ξi〉b′−s+ 1
10 fi(ξi, τi)〈σ3〉−b‖L2

ξ,τ

≤ c‖(J− 3
20 u1)(Λb

−Jb′+ 1
10 u2)(Jb′+ 1

10 u3)‖Xs,b(φ).

Now using s ≤ − 1
4 again and part ii) of Corollary 4.2 this can be estimated by

c‖u1‖X− 3
20− 1

4 ,b(φ)‖Λb
−Jb′+ 1

10 u2‖L2
xt
‖u3‖Xb′+ 1

10 ,b(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ),

since s > − 2
5 and s > b′ + 1

10 as assumed. 2

Remark: The estimate (26) also holds under the assumption s ≥ − 1
4 , b′ < − 3

8
and b > 1

2 . For s = − 1
4 this is contained in the above theorem, and for s > − 1

4 this
follows from 〈ξ〉 ≤ c

∏3
i=1〈ξi〉.

4.4 Estimates on quartic nonlinearities

Theorem 4.8 Let n = 1. Assume 0 ≥ s > − 1
6 and − 1

2 < b′ < 3s
2 − 1

4 . Then in the
periodic and nonperiodic case for all b > 1

2 the estimate

‖∏4
i=1 ui‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

holds true.
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Proof: Again we write fi(ξ, τ) = 〈τ − ξ2〉b〈ξ〉sFui(ξ, τ), so that

‖∏4
i=1 ui‖Xs,b′(φ) = c‖〈τ + ξ2〉b′〈ξ〉s ∫

dν
∏4

i=1〈τi − ξ2
i 〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

Now we can use the inequality

〈ξ〉2 +
4∑

i=1

〈ξi〉2 ≤ 〈τ + ξ2〉+
4∑

i=1

〈τi − ξ2
i 〉

and the assumption b′ < 3s
2 − 1

4 to obtain

〈ξ〉s+ 1
2−ε

4∏

i=1

〈ξi〉−s+ε ≤ c(〈τ + ξ2〉−b′ +
4∑

i=1

〈τi − ξ2
i 〉−b′χAi

)

for some ε > 0. (Again in Ai we assume 〈τi− ξ2
i 〉 ≥ 〈τ + ξ2〉.) From this it follows

that

‖∏4
i=1 ui‖Xs,b′(φ) ≤ c

4∑

j=0

‖Ij‖L2
ξ,τ

,

with

I0(ξ, τ) = 〈ξ〉− 1
2+ε

∫
dν

4∏

i=1

〈τi − ξ2
i 〉−b〈ξi〉−εfi(ξi, τi)

and, for 1 ≤ j ≤ m,

Ij(ξ, τ) = 〈ξ〉− 1
2+ε〈τ + ξ2〉b′

∫
dν〈τj − ξ2

j 〉−b′
4∏

i=1

〈τi − ξ2
i 〉−b〈ξi〉−εfi(ξi, τi)χAj

≤ 〈ξ〉− 1
2+ε〈τ + ξ2〉−b

∫
dν〈τj − ξ2

j 〉b
4∏

i=1

〈τi − ξ2
i 〉−b〈ξi〉−εfi(ξi, τi).

Next we estimate I0 using first Sobolev’s embedding theorem, then Hölder’s
inequality, again Sobolev and finally part a) of Corollary 2.4 (with p = 8 and
q = 4). Here ε′, ε′′ denote suitable small, positive numbers.

‖I0‖L2
ξ,τ

= ‖∏4
i=1 Js−εui‖

L2
t (H

− 1
2 +ε

x )
≤ c‖∏4

i=1 Js−εui‖L2
t (L1+ε′

x )

≤ c

4∏

i=1

‖Js−εui‖L8
t (L4+4ε′

x )
≤ c

4∏

i=1

‖Js−ε′′ui‖L8
t (L4

x)

≤ c

4∏

i=1

‖Jsui‖X0,b(−φ) = c

4∏

i=1

‖ui‖Xs,b(−φ)

To estimate Ij , 1 ≤ j ≤ 4, we use Sobolev (in both variables) plus duality, Hölder,
again Sobolev (in the space variable) and Lemma 2.15. Again we need suitable
small, positive numbers ε′, ε′′ and ε′′′.
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‖Ij‖L2
ξ,τ

≤ c‖(∏4
i=1
i 6=j

Js−εui)(J−εF−1fj)‖X− 1
2+ε,−b(φ)

≤ c‖(∏4
i=1
i 6=j

Js−εui)(J−εF−1fj)‖L1
t (L1+ε′

x )

≤ c‖J−εF−1fj‖L2
x,t

4∏
i=1
i 6=j

‖Js−εui‖L6
t (L6+ε′′

x )

≤ c‖J−εF−1fj‖L2
x,t

4∏
i=1
i 6=j

‖Js−ε′′′ui‖L6
xt

≤ c‖fj‖L2
ξ,τ

4∏
i=1
i6=j

‖Jsui‖X0,b(−φ) = c

4∏

i=1

‖ui‖Xs,b(−φ)

2

In the periodic case the following examples show, that for all the other quartic
nonlinearities (u4, u3u, ..., uu3) the corresponding estimates fail for all s < 0. The
argument is essentially that given in the proof of Thm 1.10 in [KPV96b].

Example 4.3 In the periodic case in one space dimension the estimate

‖∏4
i=1 ui‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

fails for all s < 0, b, b′ ∈ R.

Proof: The above estimate implies

‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏4
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)‖L2
ξ,τ
≤ c

4∏

i=1

‖fi‖L2
ξ,τ

.

Defining for n ∈ N

f
(n)
1,2 (ξ, τ) = δξ,2nχ(τ +ξ2), f

(n)
3 (ξ, τ) = δξ,−nχ(τ +ξ2), f

(n)
4 (ξ, τ) = δξ,0χ(τ +ξ2),

where χ is the characteristic function of [−1, 1], we have ‖f (n)
i ‖L2

ξ,τ
= c and it would

follow that
n−3s‖〈τ + ξ2〉b′〈ξ〉s ∫

dν
∏4

i=1 f
(n)
i (ξi, τi)‖L2

ξ,τ
≤ c. (27)

Now a simple computation shows that

∫
dν

4∏

i=1

f
(n)
i (ξi, τi) ≥ δξ,3nχ(τ + ξ2).

Inserting this into (27) we obtain n−2s ≤ c, which is a contradiction for any s < 0.
2
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Remark : Using only the sequences f
(n)
i , 1 ≤ i ≤ 3, from the above proof, the

same calculation shows that in the periodic case the estimate

‖∏3
i=1 ui‖Xs,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ)

fails for all s < 0, b, b′ ∈ R.

Example 4.4 In the periodic case in one space dimension the estimates

‖u1u2ũ3ũ4‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ),

where ũ = u or ũ = u, fail for all s < 0, b, b′ ∈ R.

Proof: We define

f
(n)
1 (ξ, τ) = δξ,nχ(τ + ξ2) , f

(n)
2 (ξ, τ) = δξ,−nχ(τ − ξ2)

f
(n)
3,4 (ξ, τ) = δξ,0χ(τ ± ξ2) (+ for ũ3,4 = u3,4, − for ũ3,4 = u3,4).

Then the above estimate would imply

n−2s‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏4
i=1 f

(n)
i (ξi, τi)‖L2

ξ,τ
≤ c. (28)

Now ∫
dν

4∏

i=1

f
(n)
i (ξi, τi) ≥ δξ,0χ(τ),

which inserted into (28) again leads to n−2s ≤ c. 2

Remark : Using only the sequences f
(n)
i , 1 ≤ i ≤ 3, from the above proof, we

see that in the periodic case the estimates

‖u1u2ũ3‖Xs,b′(φ) ≤ c

3∏

i=1

‖ui‖Xs,b(φ)

fail for all s < 0, b, b′ ∈ R.

Now we turn to discuss the continuous case, where we can use the bi- and
trilinear inequalities of section 4.2 in order to prove the relevant estimates for some
s < 0. We start with the following

Proposition 4.1 Let 0 ≥ s > − 1
8 , − 1

2 < b′ < − 1
4 + 2s. Then in the continuous

case in one space dimension for any b > 1
2 the estimate

‖u1u2u3u4‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

holds true.
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Proof: Apply part iii) of Lemma 4.1 to obtain

‖u1u2u3u4‖Xs,b′(φ) ≤ c‖u1‖Xs,b(φ)‖u2u3u4‖L2
t (Hσ−s),

provided that s ≤ 0, − 1
2 ≤ σ ≤ 0, b′ < − 1

4 + σ
2 . This is fulfilled for σ = 4s and the

second factor is equal to

‖u2u3u4‖L2
t (H3s) ≤ c

4∏

i=2

‖ui‖Xs,b(φ)

by Lemma 4.4 and the remark below. 2

To show that this proposition is essentially (up to the endpoint) sharp, we
present the following counterexample (cf. Thm 1.4 in [KPV96b]):

Example 4.5 In the nonperiodic case in one space dimension the estimate

‖u1u2u3u4‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

fails for all s < − 1
8 , b, b′ ∈ R.

Proof: The above estimate implies

‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏4
i=1〈σi〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
≤ c

4∏

i=1

‖fi‖L2
ξ,τ

,

where 〈σ1,2〉 = 〈τ1,2 + ξ2
1,2〉 and 〈σ3,4〉 = 〈τ3,4 − ξ2

3,4〉. Choosing

f
(n)
1,2 (ξ, τ) = χ(ξ − n)χ(τ + ξ2), f

(n)
3,4 (ξ, τ) = χ(ξ + n)χ(τ − ξ2)

we arrive at

n−4s‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏4
i=1 f

(n)
i (ξi, τi)‖L2

ξ,τ
≤ c. (29)

Now an elementary computation gives
∫

dν

4∏

i=1

f
(n)
i (ξi, τi) ≥ cχc(2nξ)χc(τ),

where χc is the characteristic function of [−c, c]. Inserting this into (29) we get
n−4s− 1

2 ≤ c, which is a contradiction for any s < − 1
8 . 2

Finally we consider the remaining nonlinearities u4, u3u and uu3, for which we
can lower the bound on s down to − 1

6 + ε :

Theorem 4.9 Let n = 1. Assume 0 ≥ s > − 1
6 , − 1

2 < b′ < 3s
2 − 1

4 and b > 1
2 .

Then in the nonperiodic case the estimates

‖N(u1, u2, u3, u4)‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

hold true for N(u1, u2, u3, u4) =
∏4

i=1 ui, = (
∏3

i=1 ui)u4 or = (
∏3

i=1 ui)u4.
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Proof: 1. We begin with the nonlinearity N(u1, u2, u3, u4) =
∏4

i=1 ui. Writing
fi(ξ, τ) = 〈τ + ξ2〉b〈ξ〉sFui(ξ, τ) we have

‖∏4
i=1 ui‖Xs,b′(φ) = c‖〈τ + ξ2〉b′〈ξ〉s ∫

dν
∏4

i=1〈τi + ξ2
i 〉−b〈ξi〉−sfi(ξi, τi)‖L2

ξ,τ
.

The quantity controlled by the expressions 〈τ + ξ2〉, 〈τi + ξ2
i 〉, 1 ≤ i ≤ 4, is

|∑4
i=1 ξ2

i − ξ2|. We divide the domain of integration into A and Ac, where in A we

assume ξ2 ≤ ξ2
1
2 and thus

|
4∑

i=1

ξ2
i − ξ2| ≥ c(

4∑

i=1

ξ2
i + ξ2).

So concerning this region we may refer to the proof of Theorem 4.8. For the region
Ac, where ξ2

1 ≤ 2ξ2, we have the upper bound

c‖(Jsu1)
∏4

i=2 ui‖X0,b′(φ) ≤ c‖u1‖Xs,b(φ)‖
∏4

i=2 ui‖L2
t (H3s

x ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

by Lemma 4.1, part iii), which requires b′ < 3s
2 − 1

4 , s ≥ − 1
6 , and by Lemma 4.5

(and the remark below), which demands s > − 1
6 .

2. Next we consider N(u1, u2, u3, u4) = (
∏3

i=1 ui)u4. For 1 ≤ i ≤ 3 we choose
the fi as in the first part of this proof and f4(ξ, τ) = 〈τ − ξ2〉b〈ξ〉sFu4(ξ, τ). Then
the left hand side of the claimed estimate is equal to

c‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏3
i=1〈τi + ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)〈τ4 − ξ2
4〉−b〈ξ4〉−sf4(ξ4, τ4)‖L2

ξ,τ
.

Now the quantity controlled by the expressions 〈τ + ξ2〉, 〈τi + ξ2
i 〉, 1 ≤ i ≤ 3, and

〈τ4 − ξ2
4〉 is

c.q. := |ξ2
1 + ξ2

2 + ξ2
3 − ξ2

4 − ξ2|.
We divide the domain of integration into the regions A, B and C = (A+B)c, where
in A it should hold that

c.q. ≥ c(
4∑

i=1

ξ2
i + ξ2).

Again, concerning this region we may refer to the proof of Thm. 4.8.
Next we write B =

⋃3
i=1 Bi, where in Bi we assume ξ2

i ≤ cξ2 for some large
constant c. By symmetry it is sufficient to consider the subregion B1, where we
obtain the upper bound

c‖(Jsu1)u2u3u4‖X0,b′(φ) ≤ c‖u1‖Xs,b(φ)‖u2u3u4‖L2
t (H3s

x ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

by Lemma 4.1, part iii), demanding for b′ < 3s
2 − 1

4 , 3s ≥ − 1
2 , and Lemma 4.4 (resp.

the remark below), where s > − 1
6 is required.

Considering the region C we may assume by symmetry between the first three
factors that ξ2

1 ≥ ξ2
2 ≥ ξ2

3 . Then for this region it is easily checked that
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1. ξ2 ¿ ξ2
3 , 2. ξ2

4 ≥ 3
2ξ2

2 , hence ξ2
4 ≤ c(ξ4 + ξ2)2, and 3. ξ2

1 ≤ c(ξ1 − ξ3)2.

This implies

1. 〈ξ〉−2s〈ξ4〉−s ≤ c〈ξ4 + ξ2〉−3s and

2. 〈ξ〉 1
2+3s〈ξ1〉−s〈ξ2〉−s〈ξ3〉−s ≤ c〈ξ1 − ξ3〉 1

2 ,

leading to the upper bound

‖J
1
2−(Jsu1, J

su3)J−3s(Jsu2J
su4)‖X− 1

2 ,b′(φ)

≤ c‖J
1
2−(Jsu1, J

su3)J−3s(Jsu2J
su4)‖Lp

t (L1+ε
x ) (b′ − 1

2
= −1

p
)

≤ c‖J
1
2−(Jsu1, J

su3)‖L2
xt
‖J−3s(Jsu2J

su4)‖Lq
t (L2+ε′

x )
(
1
q

=
1
p
− 1

2
= −b′).

Using Corollary 4.1 the first factor can be estimated by

c‖u1‖Xs,b(φ)‖u3‖Xs,b(φ),

while for the second we can use Sobolev’s embedding Theorem and part ii) of Lemma
4.1 to obtain the bound

c‖Jsu2J
su4‖Lq

t (H−3s+ε′′
x )

≤ c‖u2‖Xs,b(φ)‖u4‖Xs,b(φ).

Here the restriction b′ < 3s
2 − 1

4 is required again.

3. Finally we consider N(u1, u2, u3, u4) = (
∏3

i=1 ui)u4. With
fi(ξ, τ) = 〈τ − ξ2〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 3 and f4(ξ, τ) = 〈τ + ξ2〉b〈ξ〉sFu4(ξ, τ)
the norm on the left hand side is equal to

c‖〈τ + ξ2〉b′〈ξ〉s ∫
dν

∏3
i=1〈τi − ξ2

i 〉−b〈ξi〉−sfi(ξi, τi)〈τ4 + ξ2
4〉−b〈ξ4〉−sf4(ξ4, τ4)‖L2

ξ,τ
.

The controlled quantity here is

c.q. := |ξ2
1 + ξ2

2 + ξ2
3 − ξ2

4 + ξ2|.
Divide the area of integration into A, B and C = (A + B)c, where in A we assume
again

c.q. ≥ c(
4∑

i=1

ξ2
i + ξ2)

in order to refer to the proof of Theorem 4.8. In B we assume ξ2
4 ≤ cξ2, so that for

this region we have the bound

c‖u1u2u3(Jsu4)‖X0,b′(φ) ≤ c‖u4‖Xs,b(φ)‖u1u2u3‖L2
t (H3s

x ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

by Lemma 4.1, part iii), and Lemma 4.5 and the remark below. Here b′ < 3s
2 − 1

4
and s > − 1

6 is required.
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For the region C we shall assume again that ξ2
1 ≥ ξ2

2 ≥ ξ2
3 . Then it is easily

checked that in C

1. ξ2 ¿ ξ2
4 , 2. ξ2

4 ≥ 3
2ξ2

2 , hence ξ2
4 ≤ c(ξ4 + ξ2)2, and 3. ξ2

1 ≤ c(ξ1 − ξ3)2.

Then for C we have the estimate

‖J
1
2−(Jsu1, J

su3)J−3s(Jsu4J
su2)‖X− 1

2 ,b′(φ)

≤ c‖J
1
2−(Jsu1, J

su3)‖L2
xt
‖J−3s(Jsu2J

su4)‖Lq
t (L2+ε

x )

with 1
q = −b′, cf. the corresponding part of step 2. of this proof. Again we can use

Corollary 4.1 and part ii) of Lemma 4.1 to obtain the desired bound. 2
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5 A bilinear Airy-estimate with application to
gKdV-3

In the last section we could prove an optimal and exhaustive result concerning NLS
with quartic nonlinearities on the line (see Theorem 4.3). It turned out - which
is somewhat surprising - that on the line all the quartic nonlinearities are better
behaved than the cubic one N(u, u) = u|u|2. The situation is similar in the case of
the generalized Korteweg-deVries-equation of order k (for short gKdV-k), that is

ut + uxxx + (uk+1)x = 0,

the phase function here is φ(ξ) = ξ3. For k = 1 this is the KdV-equation, for
k = 2 this is usually called the modified KdV-equation. Concerning the latter local
wellposedness on the line is known for s ≥ 1

4 (see Theorem 2.4 in [KPV93a]) and
it was shown in [KPV01] that the Cauchy problem for this equation is ill posed for
data in Hs

x, s < 1
4 , in the sense that the mapping data upon solution is not uniformly

continuous, see Theorems 1.2 and 1.3 in [KPV01]. Using similar arguments as in the
previous section we can show here that the Cauchy problem for gKdV-3 is locally
well posed in Hs

x for s > − 1
6 , which is the scaling exponent in this case:

Theorem 5.1 Let s > − 1
6 . Then there exist b > 1

2 and δ = δ(‖u0‖Hs
x(R)) > 0, so

that there is a unique solution u ∈ Xδ
s,b(φ) of the Cauchy problem

ut + uxxx + (u4)x = 0, u(0) = u0 ∈ Hs
x(R). (30)

This solution is persistent and for any 0 < δ0 < δ the mapping data upon solution
is locally Lipschitz continuous from Hs

x(R) to Xδ0
s,b(φ).

Remarks : i) So far, local wellposedness of this problem is known for data
u0 ∈ Hs

x(R), s ≥ 1
12 . This was shown by Kenig, Ponce and Vega in 1993, see

Theorem 2.6 in [KPV93a].
ii) For real valued data u0 the solution guaranteed by Theorem 5.1 remains real

valued. In fact, if u0 = u0 and if u is a solution of (30), then so is u, so that by
uniqueness we have u = u. In this case, if u0 ∈ Hs

x(R) for s ≥ 0, the L2
x-norm of

the solution is a conserved quantity (cf. the argument in remark ii) below Theorem
3.1), and we obtain the following

Corollary 5.1 For real valued data u0 ∈ Hs
x(R), s ≥ 0 the Cauchy problem (30)

is globally well posed in the sense of Corollary 1.4.

By the general theory the proof of Theorem 5.1 reduces to the following estimate:

Theorem 5.2 For 0 ≥ s > − 1
6 , − 1

2 < b′ < s− 1
3 and b > 1

2 the estimate

‖∂x

∏4
i=1 ui‖Xs,b′(φ) ≤ c

4∏

i=1

‖ui‖Xs,b(φ)

is valid.
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The main new tool for the proof of Theorem 5.2 is the bilinear Airy-estimate
below. Here Is denotes the Riesz potential of order −s and Is

− is the bilinear
operator introduced in section 4.2:

Lemma 5.1

‖I 1
2 I

1
2−(e−t∂3

u1, e
−t∂3

u2)‖L2
xt
≤ c‖u1‖L2

x
‖u2‖L2

x

Proof: Replacing the phase function φ(ξ) = −ξ2 by φ(ξ) = ξ3 in the proof of
Lemma 4.2 we obtain

‖I 1
2 I

1
2−(e−t∂3

u1, e
−t∂3

u2)‖
2

L2
xt

= c

∫
dξ|ξ|

∫

∗
dξ1dη1δ(3ξ(η2

1 − ξ2
1 + ξ(ξ1 − η1)))..

× ..(|ξ1 − ξ2||η1 − η2|) 1
2

2∏

i=1

ûi(ξi)ûi(ηi).

Now we use δ(g(x)) =
∑

n
1

|g′(xn)|δ(x− xn), where the sum is taken over all simple
zeros of g, in our case:

g(x) = 3ξ(x2 + ξ(ξ1 − x)− ξ2
1)

with the zeros x1 = ξ1 and x2 = ξ − ξ1, hence g′(x1) = 3ξ(2ξ1 − ξ) respectively
g′(x2) = 3ξ(ξ − 2ξ1). As in the proof of Lemma 4.2 we see that the last expression
is equal to

c

∫
dξ

∫

∗
dξ1

2∏

i=1

|ûi(ξi)|2 + c

∫
dξ

∫

∗
dξ1û1(ξ1)û1(ξ2)û2(ξ2)û2(ξ1)

≤ c(
2∏

i=1

‖ui‖2L2
x

+ ‖û1û2‖2L1
ξ
) ≤ c

2∏

i=1

‖ui‖2L2
x
.

2

By Lemma 2.1 we get the following

Corollary 5.2 Let b > 1
2 . Then the following estimate holds true:

‖I 1
2 I

1
2−(u, v)‖L2

xt
≤ c‖u‖X0,b(φ)‖v‖X0,b(φ)

Together with the Strichartz type inequalities for the Airy equation (see Lemma
2.7) this will be sufficient to prove the crucial nonlinear estimate:

Proof of Theorem 5.2: Writing fi(ξ, τ) = 〈τ − ξ3〉b〈ξ〉sFui(ξ, τ), 1 ≤ i ≤ 4, we
have

‖∂x

∏4
i=1 ui‖Xs,b′(φ) = c‖〈τ − ξ3〉b′〈ξ〉s|ξ| ∫ dν

∏4
i=1〈τi − ξ3

i 〉−b〈ξi〉−sfi(ξi, τi)‖L2
ξ,τ

,

where dν = dξ1..dξ3dτ1..dτ3 and
∑4

i=1(ξi, τi) = (ξ, τ). Now the domain of integra-
tion is divided into the regions A, B and C = (A ∪ B)c, where in A we assume
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|ξmax| ≤ c. (Here ξmax is defined by |ξmax| = max4
i=1 |ξi|, similarly ξmin.) Then for

the region A we have the upper bound

c‖ ∫
dν

∏4
i=1〈τi − ξ3

i 〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖∏4
i=1 Jsui‖L2

x,t
≤ c

4∏

i=1

‖Jsui‖L8
x,t
≤ c

4∏

i=1

‖ui‖Xs,b(φ),

where in the last step Lemma 2.7 , part ii), with p = q = 8 was applied.
Besides |ξmax| ≥ c (⇒ 〈ξmax〉 ≤ c|ξmax|) we shall assume for the region B that

i) |ξmin| ≤ 0.99|ξmax| or

ii) |ξmin| > 0.99|ξmax|, and there are exactly two indices i ∈ {1, 2, 3, 4} with
ξi > 0.

Then the region B can be splitted again into a finite number of subregions, so that
for any of these subregions there exists a permutation π of {1, 2, 3, 4} with

|ξ|〈ξ〉s
4∏

i=1

〈ξi〉−s ≤ c|ξπ(1) + ξπ(2)|
1
2 |ξπ(1) − ξπ(2)|

1
2 〈ξπ(3)〉−

3s
2 〈ξπ(4)〉−

3s
2 .

Assume π = id for the sake of simplicity now. Then we get the upper bound

‖〈τ − ξ3〉b′∫ dν|ξ1 + ξ2| 12 |ξ1 − ξ2| 12〈ξ3〉− 3s
2 〈ξ4〉− 3s

2
∏4

i=1〈τi − ξ3
i 〉−bfi(ξi, τi)‖L2

ξ,τ

= c‖(I 1
2 I

1
2−(Jsu1, J

su2))(J−
s
2 u3)(J−

s
2 u4)‖X0,b′(φ).

To estimate the latter expression, we fix some Sobolev- and Hölderexponents:

i) 1
q0

= 1
2 − b′, so that Lq0

t (L2
x) ⊂ X0,b′(φ),

ii) 2
p = 1

q0
− 1

2 = −b′,

iii) 1
q = 1

2 − 2
p = 1

2 + b′, so that by Lemma 2.7 ‖J 1
p u‖Lp

t (Lq
x) ≤ c‖u‖X0,b(φ),

iv) ε = 1
p + 3s

2 > 1
q (since s > 1

3 + b′), so that Hε,q
x ⊂ L∞x .

Now we have

‖(I 1
2 I

1
2−(Jsu1, J

su2))(J−
s
2 u3)(J−

s
2 u4)‖X0,b′(φ)

≤ c‖(I 1
2 I

1
2−(Jsu1, J

su2))(J−
s
2 u3)(J−

s
2 u4)‖L

q0
t (L2

x)

≤ c‖I 1
2 I

1
2−(Jsu1, J

su2)‖L2
xt
‖J− s

2 u3‖Lp
t (L∞x )‖J− s

2 u4‖Lp
t (L∞x ).

Now by Corollary 5.2 the first factor can be controlled by c‖u1‖Xs,b(φ)‖u2‖Xs,b(φ),
while for the second we have the upper bound

c‖J− 3s
2 +εJsu3‖Lp

t (Lq
x) = c‖J 1

p Jsu3‖Lp
t (Lq

x) ≤ c‖u3‖Xs,b(φ).
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The third factor can be treated in precisely the same way. So for the contributions
of the region B we have obtained the desired bound.

Finally we consider the remaining region C: Here the |ξi|, 1 ≤ i ≤ 4, are all
very close together and ≥ c〈ξi〉. Moreover, at least three of the variables ξi have
the same sign. Thus for the quantity c.q. controlled by the expressions 〈τ − ξ3〉,
〈τi − ξ3

i 〉, 1 ≤ i ≤ 4, we have in this region:

c.q. := |ξ3 −
4∑

i=1

ξ3
i | ≥ c

4∑

i=1

〈ξi〉3 ≥ c〈ξ〉3

and hence, since s > 1
3 + b′ is assumed,

|ξ|〈ξ〉s
4∏

i=1

〈ξi〉−s ≤ c(〈τ − ξ3〉−b′ +
4∑

i=1

〈τi − ξ3
i 〉−b′χCi

),

where in the subregion Ci, 1 ≤ i ≤ 4, the expression 〈τi− ξ3
i 〉 is dominant. The first

contribution can be estimated by

c‖ ∫
dν

∏4
i=1〈τi − ξ3

i 〉−bfi(ξi, τi)‖L2
ξ,τ

= c‖∏4
i=1 Jsui‖L2

x,t
≤ c

4∏

i=1

‖Jsui‖L8
x,t
≤ c

4∏

i=1

‖ui‖Xs,b(φ),

where we have used Lemma 2.7, part ii). For the contribution of the subregion C1

we take into account that 〈τ1 − ξ3
1〉 = max{〈τ − ξ3〉, 〈τi − ξ3

i 〉, 1 ≤ i ≤ 4}, which
gives

〈τ − ξ3〉b+b′ |ξ|〈ξ〉s
4∏

i=1

〈ξi〉−s ≤ c〈τ1 − ξ3
1〉b.

So, for this contribution we get the upper bound

c‖〈τ − ξ3〉−b
∫

dν〈τ1 − ξ3
1〉b

∏4
i=1〈τi − ξ3

i 〉−bfi(ξi, τi)‖L2
ξ,τ

≤ c‖F−1f1

∏4
i=2 Jsui‖X0,−b(φ) ≤ c‖F−1f1

∏4
i=2 Jsui‖

L
8
7
xt

≤ c‖F−1f1‖L2
xt

4∏

i=2

‖Jsui‖L8
x,t
≤ c

4∏

i=1

‖ui‖Xs,b(φ).

Here we have used the dual version of the L8-Strichartz estimate, Hölder and the
estimate itself. For the remaining subregions Ci the same argument applies. 2
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A Appendix

A.1 Alternative proof of Lemma 4.3 (up to ε’s)

Lemma A.1 6 Let l ≥ m. Then in the onedimensional nonperiodic case the fol-
lowing trilinear refinement of Strichartz’ inequality is valid:

‖eit∂2
u1e

it∂2
P∆lu2e

it∂2
P∆mu3‖L2

xt
≤ c2

m−l
4 ‖u1‖L2

x
‖u2‖L2

x
‖u3‖L2

x

Proof: By the standard Strichartz’ estimate we may assume m ¿ l. Arguing as
in the proof of Lemma 2.4 we obtain

‖eit∂2
u1e

it∂2
P∆lu2e

it∂2
P∆mu3‖

2

L2
xt

= c

∫
dξ

∫

∗
dξ1dξ2dη1dη2δ(

3∑

i=1

ξ2
i − η2

i )
3∏

i=1

ûi(ξi)ûi(ηi)..

× ..χ∆l(ξ2)χ∆m(ξ3)χ∆l(η2)χ∆m(η3) ≤ cI1,

with

I1 =
∫

dξ

∫

∗
dξ1dξ2

3∏

i=1

|ûi(ξi)|2
∫

∗
dη1dη2δ(

3∑

i=1

ξ2
i − η2

i )χ∆l(η2)χ∆m(η3).

For the inner integral I = I(ξ, ξ1, ξ2) we use the change of variable

y1 = η1 + η2 − 2ξ

3
y2 = η1 − η2

respectively

η1 =
1
2
(y1 + y2) +

ξ

3
η2 =

1
2
(y1 − y2) +

ξ

3
η3 =

ξ

3
− y1,

giving

η2
1 + η2

2 + η2
3 =

1
2
(3y2

1 + y2
2) +

ξ2

3
,

to obtain

I(ξ, ξ1, ξ2) =
∫

P (y1,y2)=0

dS(y1,y2)

|∇P (y1, y2)|χ∆l(
1
2
(y1 − y2) +

ξ

3
)χ∆m(

ξ

3
− y1),

where P (y1, y2) = 1
2 (3y2

1 + y2
2) − ∑3

i=1 ξ2
i + ξ2

3 and |∇P (y1, y2)| = (9y2
1 + y2

2)
1
2 .

Writing a2 =
∑3

i=1 ξ2
i − ξ2

3 we have 2l ≤ ca ≤ c|∇P (y1, y2)| and omitting the
χ∆l-factor we can estimate

I(ξ, ξ1, ξ2) ≤ ca−1

∫

3y2
1+y2

2=2a2
dS(y1,y2)χ∆m(y1 − ξ

3
).

6Notation as introduced before Lemma 2.5
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The remaining line integral is the length of the intersection of the ellipse of dimension
a with the strip of size 2m around ξ

3 . Elementary geometric considerations show
that this can be estimated by c2

m
2 a

1
2 , which gives

I(ξ, ξ1, ξ2) ≤ c2
m
2 a−

1
2 ≤ c2

m−l
2 ,

respectively

‖eit∂2
u1e

it∂2
P∆lu2e

it∂2
P∆mu3‖

2

L2
xt
≤ c2

m−l
2

3∏

k=1

‖uk‖2L2
x
.

2

Using the dyadic decomposition and Lemma 2.1 we get similarly as in the proof
of Corollary 2.2

Corollary A.1 Let n = 1, ε > 0 and 0 < s < 1
4 and b > 1

2 . Then, in the
nonperiodic case the estimates

i) ‖∏3
k=1 eit∂2

uk‖L2
xt
≤ c‖u1‖L2

x
‖u2‖H−s

x
‖u3‖Hs+ε

x
,

ii) ‖∏3
k=1 uk‖L2

xt
≤ c‖u1‖X0,b(φ)‖u2‖X−s,b(φ)‖u3‖Xs+ε,b(φ)

hold true for φ(ξ) = −ξ2.

A.2 Remark on δ(P )

Let P ∈ C2(Rn), f ∈ C0
0 (Rn) and (Jε)ε>0 a smooth approximate identity. Then

we define δ(P ) by
∫

δ(P (x))f(x)dx := lim
ε→0

∫
Jε(P (x))f(x)dx,

whenever the limit exists and is independent of (Jε)ε>0. Consider the integral

I :=
∫

R
dt

∫
e−itP (x)f(x)dx,

where the inner integral is known to be nonnegative. Choosing (Jε)ε>0 even with
F tJε ↗ 1√

2π
we obtain by the Beppo Levi and Fubini theorems that

I = 2π

∫
δ(P (x))f(x)dx.

Under appropriate assumptions on P and f this can be expressed as a surface
integral:

Lemma A.2 Assume that |∇P | 6= 0 on Supp (f)∩U , where U is a neighbourhood
of {P = 0}, and that f |U ∈ C1(U). Then

∫
δ(P (x))f(x)dx =

∫

P=0

f(x)
|∇P (x)|dSx.
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Proof: We can write f =
∑n

k=0 fk, where f0 is supported away from {P = 0},
and with ∂P

∂xk
6= 0 on Supp (fk) for 1 ≤ k ≤ n. Then

∫
δ(P (x))f0(x)dx = 0, and for

1 ≤ k ≤ n we have with Φε(x) =
∫ x

−∞ Jε(t)dt:

∫
Jε(P (x))fk(x)dx =

∫ (
∂

∂xk
Φε(P (x))

)
fk(x)
∂P
∂xk

(x)
dx

= −
∫

Φε(P (x))

(
∂

∂xk

fk(x)
∂P
∂xk

(x)

)
dx

(ε→0)−→ −
∫

P≥0

(
∂

∂xk

fk(x)
∂P
∂xk

(x)
)dx =

∫

P=0

fk(x)
|∇P (x)|dSx,

where in the last step we have used the divergence theorem. 2

Remarks : i) The surface integral in the above Lemma is essentially the definition
of δ(P ) given in [GS], chap. III, §1.

ii) In the onedimensional case the above formula reduces to
∫

δ(P (x))f(x)dx =
∑
xn

f(xn)
|P ′(xn)| ,

where the sum is taken over all simple zeros of P . Also this is given as definition of
δ(P ) in [GS], p. 180.
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d’analyse mathématique 75 (1998), 267 - 297

[BC96] Bourgain, J., Colliander, J.: On wellposedness of the Zakharov System,
International Mathematics Research Notices 1996, No. 11, 515 - 546

[CW90] Cazenave, T., Weissler, F. : The Cauchy-Problem for the critical nonlinear
Schrödinger equation in Hs, Nonlinear Analysis 14 (1990), 807 - 836



104 REFERENCES

[C92] Cohn, S.: Resonance and long time existence for the quadratic semilinear
Schrödinger equation, CPAM 45, (1992), 973 - 1001

[CDKS01] Colliander, J., Delort, J., Kenig, C., Staffilani, G.: Bilinear estimates
and applications to 2D NLS, Transactions of the AMS 353 (2001), 3307 - 3325

[FG96] Fang, Y., Grillakis, M.: Existence and uniqueness for Boussinesq type equa-
tions on a circle, Comm. PDE, 21, 1253 - 1277 (1996)

[G96] Ginibre, J.: Le problème de Cauchy pour des EDP semi-linéaires périodiques
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