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2 0 INTRODUCTION

0 Introduction

In this thesis we are mainly concerned with local wellposedness (LWP) problems for
nonlinear evolution equations, two global results will then be a direct consequence
of conservation laws. A standard scheme to prove LWP is the application of the
contraction mapping principle to the corresponding integral equation in a suitable
Banach function space, usually of the type Cy(I, H) N Z,, where the choice of Z; is
determined by the knowledge of certain space time estimates for the solutions of the
corresponding linear equation. In this context the use of a two parameter scale of
function spaces closely adapted to the linear equation was introduced by Bourgain
in [B93]. The use of these spaces not only benefits of the above mentioned space
time estimates, but also exploits certain structural properties of the nonlinearity,
thus improving in many cases the results previously known. The idea was picked
up by many authors, further developed and simplyfied, and is meanwhile known as
the ”Fourier restriction norm method”.

This thesis is divided into two parts, the first of them being devoted to the
description of this method, starting with definitions and elementary properties,
continuing with a general local existence theorem, which reduces the wellposedness
problem to nonlinear estimates, explaining how to insert the space time estimates
into the framework of the method and finally discussing two strategies to tackle the
crucial nonlinear estimates. It also contains, in a slightly modified form, some of the
Strichartz type estimates for the Schrodinger equation in the periodic case due to
Bourgain. This descriptive part is - of course - based on Bourgain’s work [B93], but
even more on the survey article by Ginibre [G96] and the second section of [GTV9T].
We have tried to reach a high degree of selfcontainedness in this exposition.

The second part contains the new research results, which we have obtained
by the method. Here we are concerned with a certain class of derivative nonlinear
Schrédinger equations, with solutions of nonlinear Schrodinger equations in Sobolev
spaces of negative index and, finally, with the generalized Korteweg-deVries equation
of order three. For a detailed summary we refer to the beginning of part II.

At this place I want to thank my advisor Prof. Dr. H. Pecher for his support
during the research for this thesis. I also wish to thank Prof. Dr. R. Michel, who
employed me at his chair and without whose support this thesis could not have
been written. Moreover, I want to thank my colleagues Dr. Leonard Frerick and
Dr. Daren Kunkle for numerous helpful discussions.



Part 1
Description of the Fourier
restriction norm method

1 The framework: Reduction of wellposedness prob-
lems to nonlinear estimates

In this section we introduce the function spaces X, ;(¢) for arbitrary measurable
phase functions ¢ of at most polynomial growth and the corresponding restriction
norm spaces. Elementary properties - such as duality, interpolation, embedding
with respect to the time variable and behaviour under time reversion respectively
complex conjugation - are studied. In order to cover a limiting case we also in-
troduce the auxiliary spaces Ys(¢). The basic estimates for the solutions of the
homogeneous and inhomogeneous linear evolution equations are shown. Finally we
state and prove a general local existence theorem for nonlinear evolution equations,
which reduces the problem of local wellposedness - that is existence, uniqueness, per-
sistence property and continuous dependance on the data - to nonlinear estimates.
We include some remarks on the meaning of the nonlinearity for distributions in
Xsp(¢p) with s < 0. All the arguments in this exposition of the framework of the
Fourier restriction norm method are independent of the phase function.

1.1 The X,;(¢)-spaces: Definitions and elementary proper-
ties
Let ¢ : R® — R be a measurable function. By the Fourier transform F, :
H:(R™) — L*(R", (€)%)! one defines for D := —iV = —i(d,,,..., 0y, ) the oper-
ator
$(D) = F ' $(6)Fs

with domain A = {f € Hi(R") : ¢F.f € L2 (R",(£)*)}. Then ¢(D) : A —
H:(R™) is selfadjoint and generates a unitary group denoted by

(Up(t))ter = (exp (itd(D)))er.-
Let f € A. Then u(t) := Uy(t)f is the solution of the Cauchy-problem (CP)

Ou —ip(D)u = 0, u(0) = f. (1)
The solution of the inhomogeneous linear equation
O —ip(D)v = F € CY(R, H:(R")), v(0) =0 (2)
is given by
o) = [ Vale — ) W00 = U ), ®)

IWe use the notation (x) = (1 + |x\2)%



4 1 THE FRAMEWORK

see e. g. [CH], chapters 4 and 5. The function ¢ arising in this context is called
phase function. Important examples are:

Example 1.1 (The Schrédinger equation)
O — iAu =0 with (&) = —|¢*,n € N.
Example 1.2 (The Airy equation)
Opu + 02u =0 with p(&) =& n=1

Now let HP(R) (respectively H:(R™)) be the usual Sobolev space of functions
depending on the time variable ¢ (respectively on the space variable z) and H (R™)®
HP(R) the complete tensor product of these spaces. Then the Hilbert space X (¢)
is defined as follows:

Definition 1.1 Let X ,(¢) be the completion of [ ,cg Hy(R") ® HY(R) with
respect to the norm

£l x, () = 10Us (=) fll iz mmyome (m)-

Similarly for phase functions ¢ : Z™ — R one defines the selfadjoint operators
$(D) := F ¢(€) Fe

with domain A := {f € H:(T") : ¢F.f € [*(Z", (£)®)}, generating a unitary

group (Ug(t))rer with u(t) := Uy (t) f for f € A being the solution of (1), which is

now called the periodic boundary value problem (pbvp). Here the solution of the

inhomogeneous linear equation (2) - with H:(R"™) replaced by H:(T") - is again
given by (3). The definition of the spaces X, ;(¢) is now completely analogous:

Definition 1.2 In the periodic case the spaces X p(¢) are defined as the completion
of Ny per Ha(TT) ® HY(R) with respect to the norm

£ x, 4 (0) = 10s(=) Fll ez xm)@mp m)-

In the sequel we shall write for short HY instead of H?(R) and H? instead of
H:(R™) respectively H2(T™), if a statement is valid in both cases or if it is clear
from the context, whether we are dealing with the periodic or with the nonperiodic

case. In the same way we use the notation L2. Moreover we shall use the notations
H*? for H: @ H} and H =, yeg H*".

Concerning the phase functions we assume from now on that they do not grow
faster than a polynomial.

Now for b,s € R, f € H we write
Tof = F ) Ful
TS = Fy ) Fof
A f = Up U (=) f
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xT

Then we have ||J;’f||X57g,b(¢) = Hf||Xs,b(¢)’ and the extension of JJ, which is

denoted again by J7, is an isometric isomorphism
T7: Xop(9)—Xemon(9). (4)

In the sequel it will be shown that a corresponding statement holds true for the
mapping A®. We start with the following

Lemma 1.1 For functions f € H the identities

||Aﬁf||XS7b_ﬁ(¢) =1l x, (0) (5)
FAPf(&,m) =7 — @& Ff(&7) (6)
1915, 0y = [ [ 7= o)™ %1167 Pdra(ae) @)

are valid. Here p in (7) denotes the Lebesgue measure on R™ respectively the count-
ing measure on Z".

Proof: Concerning (5) we have

1Us I Us(=) N x,,_y(0)

7 Us(=)F o0
Vo=l =1Flx, (0

I Fllx, , s(0)

To see (6), we use (F(exp (ia-)g))(r) = Fig(T — a) to obtain

FAPF(ET) = FU Ug(—)f(E7)
= Frexp (ig(§)) I FolUys(—) f(£.7)
= (T =)’ FUS(—)f (&7 — (S))
= (7= 0(&))’ Frexp (—ig(&) ) Fuf (&7 — $())
= (1= ))’Ff(& 7).

Considering (7), we observe that X o(¢) = L?(R, L2) and use (4), (5), Plancherel
resp. Parseval and (6) to see that

s 2
1A T3 £ll22 (R 22)
s 2
||}'Abef||Lg(R.,L§(u))

/ / (r— G(E)) (€)% | FF (€, 7)Pdrulde) 0

11,0

Corollary 1.1 If the difference of two phase functions ¢;, i = 1,2, is bounded, the
corresponding Xs p(¢pi)-norms are equivalent.
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Proof: Taking into account that

(T=01(8) < c(l+|r—d1(9)l)
< (T4 P1(8) — @2 + [T — d2(§)]) < efr — $2(E)),

this follows from (7). O

For functions f € H it is clear by (6) and the growth condition on ¢ that
AP f still belongs to H. Moreover, for given §,b € R there exist s,b € R so that
H*" C X, ;(¢). This gives A’f € N, yer Xsp(0) for f € H.

Thus the linear mapping

AP Xsp(¢) D H — Xsp—5(0)

is well defined for all s,b,8 € R and, by (5), isometric, especially injective. More-
over, for f € H we have AA=P f = f, which gives that the range of A? is dense in
X p—p(¢). Thus for the extension of A? (again denoted by A?) we have shown:

Lemma 1.2 The mapping
A/B : Xs,b(¢)L>Xs,b7B(¢)
is an isometric isomorphism.

By the aid of the previous lemma we are now able to determine the dual spaces
of the X ;(¢)-spaces with respect to the inner product on L2, and to study their
interpolation properties:

Lemma 1.3 Let < -,- > denote the inner product on L2, and let ® : X_5 _4(¢) —
(Xsp(9)) be defined by ®(g)[f] =< JA f, J;75A"%g >. Then ® is an isometric
isomorphism and we have ®(g)[f] =< f,g >, whenever f € Xsu(¢) N L2, and
geX o u(o)NLZ,.

Proof: For f € X;s(¢), g € X_5 _p(¢) Cauchy Schwarz gives

[@(9)[/]]

| < AV S T A > |
< WAz 1A g, = 10k, o) Ilx_. 6

Hence ®(g) € (Xs,5(¢)) with ||®(g)]] < ”gHst,fb(¢)' Moreover, by Lemma 1.2

1®(9) = sup | < JIAYF,JATPg > | = sup | < h,J;ATPg > |
171X, ()< IBzz, <

—sA—b —
= 1Al = lgllx_, _,(g)

It remains to show that ® is onto. Therefore let y be a bounded linear functional

on X 4(#). Then z = yo J7*A~" is a bounded linear functional on L2,, and

by the Riesz’ representation theorem there exists g € L2, with z[f] =< f,§ >
for all f € L2,. Now g := J:AbG belongs to X_, _4(¢) and a straightforward
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computation gives y[f] = ®(g)[f] for all f € X;,(¢). Finally let f € X, () N L2,
and g € X_5 _(¢) N L2,. Then

< f7g > = < U¢(_)fa U¢(_)g >
= < JU(=)f. J; "Us(—)g >
<AVf ATEg > =< JSNYF TSNl >

d

Lemma 1.4 For sg,s1,b,b1 € R, 0 € (0,1) and b = (1 — )by +6b; , s = (1 —
0)so + 0s1 we have
(Xs0,b0(8), Xy 6, (0))16) = Xs,p(0)

with equality of norms. Here [0] denotes the complex interpolation method.

Proof: For 0,03 € R define the measure p = p(o, 3) on R x Z™ respectively on
Rn+1 by

/ fdp = / F(6. 7)) (7 — $(€)) drpu(de).

Denote the space of all p-measurable and square integrable (with respect to p)
functions by L?(p(c,3)). Then the multiplier

M_g g : L, = L*(p(0,0)) — L(p(a, B)), [+ (€)= 0(&)) " f

is an isometric isomorphism. Combined with Plancherel and Lemma 1.2 this gives
that the Fourier transform

F: Xo5(¢)—L?(p(0, 3))

is an isometric isomorphism. By theorem 5.5.3 in [BL] we have

(L*(p(s0,b0)), L*(p(s1,b1))) o) = L*(p(s,b))

with equal norms. Now, by the properties of an interpolation functor, we obtain
that

Id=F'F : Xy (6) = (Xoo,bo(6): Xoy ()10

is isomorphic and, since [f] is exact, also isometric. O

Combining Sobolev’s embedding theorem (in the time variable) with the duality
lemma we obtain:

Lemma 1.5 For all s € R and independently of the phase function the following
holds true

1

X.0(6) € Cu(R, H) Vb2, (5)
p s ]' ]'

XSyb(Qﬁ)CLt(R»Hx) V2§p<oo,b2 5_57 (9)
1

||fHXs,b(¢) <l flerwr.me) Vb< 5 (10)
1 1

Hf||XS7b(¢) <cllfllzemms) V2>p>1,b< 3 (11)
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Proof: We may assume s = 0 without loss of generality. To see (8) we use
Plancherel and Sobolev’s embedding theorem to obtain

113z = s [ udIF.AEDP

IN

/ p(de) sup | 7. 16 1)

IN

¢ / p(dE)dr (7Y FFE )2 = el 1o
for b > % From this we get

[fllzeem,zzy = Us(—=)fllreer.L2)
< Us(=)fmor = €llfl x, , (¢)-

This is the norm estimate in (8). To see the continuity statement in (8) one now
uses the density of H in X (¢). To see (9) we use Minkowsky’s inequality and
again Sobolev’s embedding theorem to see that

[ fllzz zr
C||f||L§(H§) = |l fll o

1 fllzr r.L2)

IA A

and argue then as above. Finally we obtain (10) from (8) and (11) from (9) by
duality. 0

Compared with more customary function spaces such as LY (R, H) or C (R, H?)
the spaces X ,(¢) have an exceptional property: They are in general not invariant
under time reversion and complex conjugation. We shall conclude this from the
following

Remark 1.1 Let ¢; : R" — R, ¢ = 1,2, be continuous phase functions with
sup |¢1(§) — ¢2(§)| = oo. Then for all c € R, b # 0 the estimate

1
X b(02) S WX, (00) = x4 (62) (12)
fails. The same statement holds for phase functions ¢; : Z" — R, i =1,2 .

Proof: By (4) we may assume s = 0. Next we observe that then (12) is equivalent
to

1
o < 17 (6 — g) < €I o
So it is sufficient to show that for unbounded ¢ and b # 0 the estimate

1
e P P e F e

fails. Consider the nonperiodic case first: We choose sequences £, in R"™ with
limgen |¢(&x)| = oo and e with [¢(€ + &) — ¢(&k)| < 1 for all [€] < e. Now let
0 < xn € C§°(R™) with Supp(x,) C B1(0). We define the functions fi by

F (€ 7) = the, (€ = &r)xa(7) with Ve(§) = 2 xn(2).
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Then || fx|| gro.» is constant and

15000 = | [ 7= 06 + )2 (8 (e

For k — oo this tends to oo, if b > 0, and to zero, if b < 0.

In the periodic case the proof is almost the same, except that in this case one
chooses F (&, 7) = e e, x1 (7). O

Corollary 1.2 Assume ¢ to be unbounded and continuous. Then we have
i) Xsp(¢) is not invariant under time reversion.

i) If supg [p(€) + ¢(—&)| = oo, then X p(¢) is not closed under compler conju-
gation.

Proof: For f_(z,t) = f(x,—t) we have Ff_(&, 1) = Ff(&, —7), which implies

17-1x, (0) = 1l x, y(—0)-

This gives i). To see ii), observe that Ff(¢,7) = Ff(—¢, —7), which gives
IFlx, o) = 111y, (@)
with $(¢) = —6(~). 0

In the applications one is sometimes forced to choose the parameters b = b'+1 =
%. This leads to several problems, among others we cannot rely on the embedding
Xsp(¢) C Cy(R, HZ) in this case. Here the auxiliary spaces Y;(¢) turn out to be
useful, which are defined as completion of H with respect to the norm

Illy,) = IOMTFU(=) Dz
= 1@ = o) " Ffllzun).

Observe that by Cauchy-Schwarz’ inequality we have X, (¢) C Ys(¢) with a con-
tinuous embedding, whenever b’ > —%.

Next we introduce the restriction norm spaces ng((b), where (2 is a domain in
R"*! respectively in R x T™:

Definition 1.3 The restriction norm spaces ng(qﬁ) are defined by

X2(0) = {fla: f € Xen(0)},

endowed with the norm

”fHngb(@ = inf{||f\|Xs’b(¢) L f € Xon(9), flo =}
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Notation: In most cases we will have 2 = I, where I = (-4, ) x R™ respectively
I =(-6,6) x T", and then we will write Xib((ﬁ) instead of ng(qb).

The spaces X (¢) are Hilbert spaces. From this it follows that the infimum
in the above definition is in fact a minimum. Moreover, for the Xs‘svb(cﬁ)-spaces we
have the following

Lemma 1.6 For u € ngb(¢) there exists @ € Xy (@) with 4|y = u, such that for
all s <o

IIUHng(QS) = llallx, ,(¢)-

Proof: Let Ryp @ Xop(9) — Xg,b(gb), u — u|r, denote the restriction operator
and N(Ryp) its null space. Then

Ra,b|N(RU,b)i : N(Rd,b)J— - ng(¢)

is one to one, that is, for u € Xg’b(@ there exists exactly one extension @ €
N(R,)*. For this extension @ we have

s o) = (g () € Xon(@). olr =}
= mf{Hﬁ + wH.Xo"b(¢) TWE N(Ra,b)} = ”'ELHXU’b(qS)V
since ||11||3(U)b(¢) < ||ﬂ||?)(g’b(¢) + ||7D|‘3(07b(¢) =[la+ w”?)(g)b((p)' Now u € Xg,b((b)

implies that u € X‘f’b(¢)7 s < 0. The same argument gives that there is exactly one
. ~ l _ ~
extension 0 € N(R, )~ C X, (4) of u and that Hu||X;s,b(¢)— \|U||ijb(¢)).

To see that @ = ¥, we have only to show that @ € N(Rs;)*. Therefore let w €
Xop(¢) with w|; = 0. Then J2*"w € Xoo_y4(¢) C Xon(e) and JZE" |, = 0.
This gives

0 = [ udeyar(er - o) FaF )
= [ wagarigir - o) FiFw,

that is @ € N(Rs;)" . O
Remark : The proof shows that for all u € ng(qﬁ) there exists an extension

€ Xoo(9) with [lull xo, () = lillx, ,(4):

1.2 Cut off functions and linear estimates
To localize in time one uses cut off functions ¢ € C§°(R) having the properties
i) supp(v) C (=2,2)
ii) Yl-11y =1
iii) (t) = (=), ¥(t) = 0.

For 0 < § < 1 one defines t5(t) := 9(%). Then the following estimate is an
immediate consequence of the definition of the X ;(¢)-spaces:
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Lemma 1.7 (Estimate for the homogeneous linear equation) Letb > 0. Then
for the solution u of the Cauchy (respectively periodic boundary value) problem (1)
the estimate

lsull x, ,(g) < 01 e

holds true.
Proof: Using u = Uy f we obtain

Ibsullx, (g) = NUe(=)0sUsfllmse
[¥sfllmae = llbslmpllfllag-

Now the claimed estimate follows from [|¢)s]| z» < C5%7b||'l/1||Hfb. O

Lemma 1.8 If ' € Y (¢) NCy(R, H3), then Uy, I belongs to C([-T,T1, H}) for
all 0 < T < oo and the estimate

e U, nF(B)ll; < (T Flly, () 13)

holds true.

Proof: It follows from the group properties of Uy that Uy, , F' is continuous. To
see (13), we write g(t) = J2U,(—t)F(t). Then we have to show for [¢| < T that

I fy 9(8)dt' |22 < T)[(7) " Fall2(11)- (14)

To see this, we write fot g(t")dt" = g * x[0,(t) and calculate

1— efitr

Fig* X, (7) = cFg(T)Fix[0,q(T) = c————F1g(7).

1T

—itT

Now [1=¢—| < ¢(t)(r)~! and by assumption F;g * x[o,q4 € LL. Thus the Fourier
inversion formula can be applied to obtain

t 00 eit'r -1
/ g(t)dt' = c/ - Frg(T)dr.
0

oo T

Using Plancherel’s theorem we see that

. .
it efztr -1

| aeharls, = / p(deydrar' L g Em

< (1442 / p(dg)drdr' (r) Y| Fg(r)|(r') "} Fg ()
< L) T Pyl

which gives (14). O
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Remark/De finition: (13) expresses the boundedness of
U¢*R : YS(¢) ) Y3(¢) N Ct(Rv H;) - Ct([_T7 T]’ H;)

Thus Uy, , can be extended uniquely to a bounded linear operator (denoted by
Uy, again) from Y,(¢) into Cy([-T,T], H;). Here it is important that Uy, ,F" is
continuous for I € Y;(¢). For the extended operator we have Uy, ,F(0) = 0 and
Up, pF' solves u; —i¢p(D)u = F in the sense of distributions. Moreover the identity

U, pF(t+ 1) = Us(t)Up, g F(t2) + U, 5 (71, F)(1) (15)

holds true, where 7_;, F'(t) = F(t + ¢1). This is easily checked for F' € C,(R, HZ)
and follows in the general case by approximation.

Lemma 1.9 (Estimate for the inhomogeneous linear equation) Letbd' +1 >
b>02>10b. Then the following estimate is valid:

144 —b 1op
1V6Us.rFll x, ,(4) = €0 1EN x, () T €102 I Ny, (4)- (16)
If in addition b/ > —1/2, (16) holds with ¢; = 0.

Proof: Without loss of generality we may assume F' € H, since the general case
then follows by an approximation argument again.
First we show for Kg(t) := 15(t) fot g(t')dt' that

/7 17 _
1K gl < e =Pllgll e + 002 ()~ Fegll s, (17)

where we may choose ¢y = 0, if b’ > —%. We have (cf. the previous proof)
t o .
tr) —1
/ g(t)dt' =c / SPT (ZZ. n) Frg(r)dr
0 —o0 T

and thus Kg(t) =1+ II + 111 with

tk B
I = ¢5ZE/ (iT)* 1 Fig(r)dr
E>1 |r]6<1
II = —%/ ()L Frg(T)dr
I716>1

IIT = / (i7) " exp (itT) Frg(T)dr.
[T]6>1
The first contribution can be estimated for 1 > b > 0 > ¥ as follows:

1 _
g < 3 sl [ i gl

7]

k>1
where
/ [ Fug(r)ldr < 64K / () (VY | Fog(r)dr
[T]o<1 |r|6<1
< sk / ()2 dr)} g o
|r|6<1 ¢
< T HFg]
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and
sl = [P @EF ) (e
55 [r) () (67) P
< et )0 () = oy

By the support condition on ) we have
[ty < [ 0l gz < ek + D289 g2,

hence 1]
t w Hb ’_ ’_
1Ty < 32 =0 gl < 8™+ lgll gy

k>1
Next we consider the second contribution: For b > 0 we have

g < clltsllm / T Eglar
T|6>1

cod" 27 (m) " Faglls

IA

For b’ > —% we use Cauchy Schwarz to obtain

Mgy < clldslla / 7L\ F g (r) dr
S JT|o>1
< e8] ( / 7 |=21(r) =2V dr) ¥
o Jlrle>1
< gl

Finally, for the integral J arising in 111 we have
J= cffl(ir)flxmazlftg

and thus
Iy < e f R g P
[T]6>1
< csup 7P g5
Ir1>% ‘

For all b,b’ € R satisfying b — b’ < 1 this gives
10 e < 6 ligl g

For the Fourier transform of the product 15J we have

(PF s T)(r) = () / dry Fotbs (m) FoJ (v — )

IN

c / dr 7| F s (r) Fod (7 — 1)

+

/d7'1|.7-'tw5(7'1)|(7 O\ FT(r— 7).



14 1 THE FRAMEWORK

This gives
les Tl < NOrPIFwsl) * 1Fedllze + 11Fes] * (YF D2z
< TPIFebsl el TNz + 1 Fewsll 7] e
< (67N ez + 1 0mp) < 8 lgll g

Now (17) is shown. It follows that for fixed ¢:
N R
< 262040 [0\ Fg(e,7) Py + 2008 [ (7)1 Fgl6 Plar)?
Multiplying with (£)?* and integrating with respect to u(d¢) we obtain
1K gl < 00 D gl 0+ 2e06 (€))7 Fola s
respectively with ¢; = v/2¢q:
1K gl er < e8P gl gew + 182 1€ (1) 7 Fall 2 (1a)-

Applied to g(t) = Ug(—t)F(t) this gives (16). O

Lemma 1.10 Let f € X, (), ¥s as above and s € R. Then we have the following
estimates:

D Nnflx,  (g) < IS, y(g) Jor b > 0>V 2000 20> 0 > —,

i <e.6c .

i) ”%fHXs,%(éb) < ceo HfHXs,%(Qb)’ e>0

Proof: Consider i) and assume b > b’ > 0 first. For g € H?, f € H} we use that
ol < el flo ol (18)

with 3 =1 — (b— V) (see Lemma 2.10 in section 2.2) to obtain
W51y < clivsll s gl < e gl
since V5| s < cdé_ﬁ\WHHﬁ. From this we get for f € X, ,(¢):

1Dsflx, (g) = IUs(=)¥sfllmw
= MNsUp(=)fll o
8" Us (=) fllrew = 6" If x, , (g)-

IN

By duality the same inequality holds for 0 > b > b’ > —1/2. The proof of ii) follows
the same lines, using

I6l,,5 < elfl, 3 lol 3

(see again Lemma 2.10 in section 2.2) instead of (18). O
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1.3 The general local existence theorem

The spaces X ,(¢) have turned out to be very useful to prove existence and unique-
ness results for initial value problems

u(0) =ug € H; (19)
for nonlinear evolution equations
Oru — i¢(Dyu = N(u), (20)

where N is a nonlinear function of v and Vu. Important examples, which were first
treated with this method, are

Example 1.3 (The nonlinear Schriodinger equation)
du —iAu=u*a k1 e Ny (21)
as well as

Example 1.4 (The KdV equation)
Opu + OPu = 0, (u?), (22)

see [B93], [KPV93b], [KPV96a],[KPV9I6b] and [St97]. In several cases we will con-
sider data and solutions in Sobolev spaces H with s < 0, so we have to be careful
with the meaning of N(u): For smooth functions v € H we assume N(u) to be
given by

N(u)(@, ) = No(u(z, £), Vu(z, 1)), (23)

where Ny : C"™1 — C is continuous and satisfies N(0) = 0 as well as

[No(ur,v1) = No(uz,v9)| - < er(jun|*Hor]? + Jua|*Hoa|))|ur — ua|  (24)

+ co(Jur| ™|+ Jug|*[v2]P 1) oy — va

for some o, B > 1. (If Ny does not depend on Vu, we assume (24) only with
ca = B =0, and if Ny depends only on Vu, we assume (24) with ¢; = a« =0.) We
shall always rely on a Lipschitz-estimate

IN(u) = N)llx, , (¢)n¥;(9) < CUlullx, ) T 101x, ()1~ vlx, 4 () (25)

for smooth u and v. Here C : R — Ry is a continuous and nondecreasing function,
s is the Sobolev exponent given with the data, and for the parameters b and b’ we
will approximately have b ~ &/ + 1 ~ 1. By the estimate (25) we may extend the
nonlinear mapping N uniquely to the whole X, ;(¢) by
N(u) := 71L16n& N(uy),

where u,, € H, u, — u in X;;(¢) and the limit is taken in X, (¢) N Ys(4). It
is straight forward to check, that this limit does not depend on the approximating
sequence and that the estimate (25) is still valid for the extended operator N.
Obviously the question comes up, for which functions u € X ,(¢) our definition of
N (u) coincides with the natural one in (23). Our (partial) answer is the following
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Lemma 1.11 Let u € X, ;(¢) such that for an open subset @ C R (respectively
QCRXT") ulg € LP(Q) and Vulg € Lloc (Q) with % + i =1. Then N(u)|g €
L} (Q) and (23) holds for almost all (z,t) € Q.

loc

Remark: If Ny does not depend on Vu we only assume u|q € Lt (Q). If Ny

depends only on Vu we assume Vu|q € LlOC(Q)

Proof: We choose a smooth approximate identity (J.)c>o on R"*! (respectively
on R x T™), so that for u € X, ,(¢) we have u. := J. xu € H. Then u.|o — ulg

in L;? () and Vu|o = (Vu)ela — Vulg in Llo( (©). The dominated convergence

loc

theorem gives that u. — u in X, ;(¢). Hence for ¢ € C5°(R™!) (respectively
¢ € CP(R x T")) supported in K CC Q2 and Ny(u)(z,t) := No(u(z,t), Vu(z,t))
we obtain

IN(u)(¢) = Ni(u)(9)] < [N(u)(¢) = N(uc)(9)]
+lollze, /K dwdt|No(ue(,t), Vue(z,t)) — No(u(z,t), Vu(z,t))| =: I + I1.

Since N(u.) — N(u) in X, (@), we have I — 0 (¢ — 0). Using (24) the integral
in IT can be estimated by

cl/ dedt(jua)* Ve + [ul* [Vl )]ue -l
K

+ 02/ dedt(Ju|*|Vue [P~ + [ul [Vl )|V, — Vul

< aalllucllg oo IVall? o ey Nl ey VUl Doy o) ltte =l on iy

+  co(fluellZer K)HVUEHL,@;D (K) + ”uHLQP(K ||quLﬁp (K))Hvue - VU”Lﬂp’(K)-
This tends to zero with ¢ — 0. O

Corollary 1.3

i) Let L} . denote L?OC(R”“) respectively L] (RxT™). Then, foru € X4 ,(¢)N
L}? with Vu € Lloc it follows that N(u)(z,t) = No(u(z,t), Vu(z, t)) a. e

it) Foru € H, v € X, () with ulg = v|g we have N(u)|g = N(v)|q.

For w € H the nonlinear operator N is local in spacetime and commutes with
time translations. This is still true for the extended operator:

Lemma 1.12

i) Let Q C R (respectively Q C R x T") be a domain and u,v € X p($) with
ulo = v|g. Then N(u)lg = N(v)|q.

it) Let 7, denote the time translation Tyu(to) = u(to —t). Then for u € X, ()
we have N(1yu) = 7N (u).
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Proof: Choose sequences (uy)neN, (Vn)nen of smooth functions with u,, — wu,
vy, — v in X ().

To see i) we write

IN (e = N(@)lelxa,, ) < IN(w)le = N(ud)lalxa,, ) (26)
+ [IN(un)le = N(valallxe,, ) + [N (va)le = N(v)lallxe , )

Clearly, | N (u)|q — N(un)|g||ngb,(¢) < [[N(uw) = N(un)| x, , (4), which tends to zero
with n — oo. By the same argﬁment the third term in (26) vanishes. Now for all
up, v, € Xsp(p) with u)|q = unla and v}, |q = vn|a we have N(ul)|a = N(un)|a

and N(v],)|a = N(v,)|q by part ii) of Corollary 1.3. Hence by (25)

INGum)lo = Nwnlallxe, @ < CUlIx, () + 100 x, () = ¥l ()

/! /

A proper choice of ul,, v/, (cf. the remark below Lemma 1.6) yields the upper bound

n? n
Clllunlalixe, @) + lonlallxe, @) lunla = valalixe, @),

which tends to zero, since ||u,|q — Un|ﬂ||xgb(¢) < |lwn — uHXs,b(d’)—i_”U” - U||Xs,b(¢)'

Now part i) is shown.

To see part ii) we first observe that 7 is an isometric isomorphism on all the
spaces Xs(¢), Ys(¢) and H*?, since their norms depend only on the size of the
Fourier transform. Especially we have 7 H = H. Hence

N = N(r 1 = N(l
(Teu) (7 lim up) = N(lim myun)
= Tlllengl N(ruy) = %gr& 7N (up) = 1 N(u),
where the first two limits are in X ,(¢) and the last two are in X 1/ (¢). |

Remark/Definition: By part i) of the above Lemma we can now define the
mapping
N: X2(0) — X2y (0) by N(u) = N(a)lq,

where @ is an arbitrary extension of u.

We now turn to prove a general local existence theorem, which reduces local
wellposedness of (19), (20) to nonlinear estimates. Here by a local solution of (19),
(20) we understand a solution u € Cy((—9,9), H?) of the corresponding integral
equation

u(t) = Au(t) .= Uy(t)uo + Uy *r N(u)(t), t e (=9,0). (27)

Theorem 1.1 (General local wellposedness)

i) Lets € R. Assume that there existb > % and § > 0 such that for all0 < § < 1
the estimate

[Ugr(N (u)=N(v)) )< el

illxs (o) +10llxs gy = vllxs ()
(25)

”Xg,b(Qb
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holds with a nondecreasing function C : Rar — Rar, and that, for b = %,
N(u) € Ys(¢) for all u € X5 ().

Then there exist 0 = §(||uol|m:) > 0 and a unique solution u € Xf’b(d)) of (27).

This solution belongs to C¢((—9,9), HS) and the mapping f : HS — Xff’b(gb),
ug — u (data upon solution) is locally Lipschitz continuous for any 0 < g < 0.

it) Assume in addition that ug € HZ for some o > s and that also the estimates
1Ug#rN (u)

)< s0(| (29)

Ix3,(6 [l xs, ()1l xs, ()

and
0
UV ()N @D (g S0l gy + Bl )= vls )
+C(luls ) + ol s o)l = vl 3, g0} (30
are valid. In the case where b = 1 assume in addition that N(u) € Y,(¢) for all

u € Xy p(@). Then the solution u of (27) belongs to Xf,’b(d)) NC((=6,0),HT)

and the mapping data upon solution is locally Lipschitz continuous from HS

to X2°,(¢).

Proof: i) Existence: We assume (29) and (30), since by (28) these estimates hold
at least in the case 0 = s. Defining

B = €X6 : < R,, < Rs},

; {u ob(®) ”u”Xib(@ = ||uHng(¢) < R}

we shall show that for a proper choice of R,, Rs and § the mapping A introduced
above has a fixed point in B, ,. In fact, by Lemma 1.7, applied to (¢)Us(t)ug, and
(29) we see that for u € B,

6
18ullys (g = clluoll +0°Cllull s (o)l s ()

A

clluol|me + 8°C(Rs)R,.

Especially for 0 = s we have

0
80l s gy < ellwoll; +5°C(Ru)R.

Now choosing Rs = 2c|lug|zs, Ry = 2¢||lug||gz and & small enough to ensure that
§°(C(2Rs)+1) < %, we see that A maps B, into itself. For the difference Au— Av
we use (28) to obtain

IN

Iu=Avllys ) = FCllullys, () + Wllxs, gl =vlxs,(g)

IN

1
FCER)u=vlys () < 5lu—vlys (4
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for u,v € B, » by our choice of R; and §. Iteration yields
A~ Al s (g0 < gl ol (31)

u— A" —||lu—v .

X2,(0) = 2n X24(9)

Next we use (30), (31) and induction to deduce

<"l R -

[A"u — A U”Xg-’b(qb) = 9n-1

v )
I3 ,0)
Now Weissinger’s fixed point theorem? gives a solution u € Bs , of Au = u.

ii) Persistence property: For b > 1 it follows from Lemma 1.5 that X(‘ib(qb) C
C((—0,6), HZ), while for b = 1 we use Lemma 1.8 and the additional assumption
N(u) € Y, (¢) for u € X, () to see that any solution u € X(‘ib(gb) of (27) belongs

to Cy((~4,0), HE).

iii) Uniqueness: Assume that u,v € Xib(d)) are solutions of (27), which do not
coincide on [0,6). Define

to = inf{t € [0,6) : u(t) £ v(t)}.

Since u and v belong to Cy((—0d,d), HZ) this makes sense and we have u(tg) = v(to).
Now for dg € (0,6 —tp) and t € (0o, Jp) we write

up(t) = u(t +to) and v1(t) = v(t +to).
Then uy, vy € Xg?b(gb), and using (15) and part ii) of Lemma 1.12 we see that
w1 (t) —v1(t) = Ugkr N (u1) (t) — Ugkr N (v1)(t) = Aui(t) — Avi (2).
Applying (28) we obtain

< 850(

=il o) = €Ul o) + Il ) s =t

Now for §p > 0 sufficiently small we have

el( ) <1,

|U1||X§,Ob(¢) + HU1||X§)0b(¢)

which implies |Juy = 0. But then u(t + to) = v(t +to) for all ¢t €

— vl ws

Hxs )
(=00, 00). This contradicts the choice of ty. For ¢t € (—d,0] the same argument
applies.

iv) Continuous dependence: Let 0 < dg < ¢ and € > 0 so small that
S0(C(2(Rs + €)) + 1) < 5. Then for vy, v € Hj with [Jug — vollz: < £ and

lluo — vollm: < 5 there exist unique solutions v, v' € Xff’b(qzﬁ) of (19) with v(0) = vg

2This is essentially the contraction mapping principle, the only difference is that the assumption

[[Au — Av|| < g|lu —vl|, ¢ < 1, is replaced by ||[A"u — A"v| < anllu — v, Zn>1 an < 00.
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respectively v’'(0) = v and ||v||X50 ( < R, + ¢. Using (28) for the
s,b

¢)’ ||v/||X§,0b(¢)

difference v — v’ we obtain

v— < ellvg — vh|l s + 82C(||v + ||’ v—
o 0 o
< ellvg = sl + BOR Nl =g
< cllvo = vhllas + 50— 'l g -
T2 Xs,b(¢)
Hence

v =0 s < 2¢||lvg — vh|| s

o=l gy < 2llo = bl

Next we assume in addition that v, vy € HY and |vollms, [[vpllms < R, where R
is a given radius. Then by (30)

o= vl i (g < lvo =g
g,

+ S5{C(2(Rs +€))|jv —v +C( )+ v

i o)+ Ul o)+ 10, )1 =l )

1
< cllvg —villge + =|lv =’ + 620 (4cR)2¢||vg — vh|| -
< el = vhllag + 30—l s )+ B4Rl — ]

This gives [[v —v']| ¢4, ( < L|jvo — vj|lme with L = 2¢(1 + 26C(4cR)). m
o,b

9)

Remark: The proof shows that the lifespan ¢ guaranteed by Theorem 1.1 can
be chosen as a continuous nonincreasing function of ||ugl|#:.

We may go a step further and reduce the estimates (28) to (30) in Theorem 1.1
by the aid of Lemma 1.9 to nonlinear estimates of type (25). Here two cases occur:
In the first case for the parameters b and b’ we have b — b < 1 and we can obtain
a positive power of § already from the linear estimate (Lemma 1.9). In the second
case we have b=V +1= %, and here the contracting factor has to come from the
nonlinear estimate.

Lemma 1.13 Let s € R. Assume that there exist b > % and b’ > b—1, so that the
estimate

IN () = Nl x, ,(g) < Colllullx, ) + 10lx, @) le—2lx, ) (32)

holds, where Cy : Rar — Rar is continuous and nondecreasing. Then hypothesis
(28) of Theorem 1.1 is valid. If, in addiition, for some o > s also the estimates

INGWIx, (¢ < Colllullx, , () lelx, ,(6) (33)
and
INGW) = NOlx, @) < Collulx, )+ I1Wlx, @)l —vlx, )
+ Colllullx, ) + I0lx, y(g)le = vlx, ()39
hold, then the assumptions (29) and (30) of Theorem 1.1 are valid, too.
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Proof: Let u, v € Xf’b(qﬁ) be given with extensions @, 0 € X;(¢). Then
YsUg xr (N (@) — N (D)) is an extension of Ug *g (N (u) — N(v)). Combining Lemma
1.9 with (32) we obtain

[Ugn(N(u) = N s (g <lsUs #r (N@) = (V@) x,, ()

<N (@) — (N@)llx, , ()

Sc51*b+b/Co(\|ﬂ||XS,b(¢)+||’5||XS’b(¢))Hﬂ —lx, ,(¢)

Now Lemma 1.6 gives (28) in Theorem 1.1 with § = 1—-b+b" > 0 and C(t) = cCy(t).
The same argument shows that (33) implies (29) and that (34) implies (30). Here
the use of Lemma 1.6 becomes essential. O

Lemma 1.14 Letse R and b=V +1 = % Assume that the estimate

ING) =NIx, \ (8)vi(9) = Colllullx, oy 0, (o) = vlx, ) B9

holds, where Cy : Rg — RaL is a continuous and nondecreasing function satisfying
Co(At) < ATCy(t) for some v > 0. Assume further that there exists € > 0 such that
for all0 < 0 < 1 and for all u,v € X, ,(¢) supported in {(x,t) : [t| <} we have

INC) = NOx, , (g)avi(g) < T Colllullx, y9) Hlvlx, ()l = vllx, o ()-
(36)
Then N (u) is well defined for u € X, ,(¢) and belongs to Ys(¢). Moreover, assump-
tion (28) in Theorem 1.1 is fulfilled.
If additionally for some o > s the estimates

IN(llx, , (9)Y, (9) = Colllulx, (g)ullx, 4 () (37)

and

INC) = N, (g)nva(g) < Colllulx, o)l () = lx . 0)
+ Colllullx, , (gyHIvllx, (o)) 1e = vl x, ,(0)(38)
hold true and if they are still valid with an additional factor 0%, whenever u,v are

supported in {(x,t) : |t| < 6}, then N(u) € Yo (¢) for u € Xy p(¢p) and conditions
(29) and (30) of Theorem 1.1 are satisfied, too.

Proof: By (35) respectively (38) N(u) is well defined for v € X, ;(¢) (resp.
u € X,4(¢)) and belongs to Ys(¢) (resp. Y,(¢)). Now let u, v € Xf’b(qﬁ) be
given with extensions @, 0. Then ¢sUy *p (N (¢25@) — N(1)250)) is an extension of
Ug *r (N(u) — N(v)), for which we obtain

19U % (N (25) — N(¢259)) x, , (4)
)

< N(Wasi) = N(¥2sD)llx,  (4)nY (o

< 6 ColllYastill x () V200l x (o)) ¥2s(@ = Dl x, , (9)

< b Coleerd ™ (lillx, , () 1Pl x, , (g))eerd ™" T = Blx, ,(g)
<

Clllally, ,(g) 7l x, ()% = llx, ()
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where § = € — (v + 1)¢’. Here Lemma 1.9, (36) and Lemma 1.10, part ii), were
applied. Together with Lemma 1.6 this gives (28) in Theorem 1.1. Similarly (29)
respectively (30) can be derived from (37) respectively (38), here again the use of
Lemma 1.6 becomes essential. O

In the situation where Lemma 1.13 applies, it is clear by the Sobolev embedding
in the time variable (Lemma 1.5) that the mapping data upon solution from H?
to C¢((—0do, d0), HS) (respectively from HZ to Cy((—dp,d0), HZ)) is locally Lipschitz
continuous. This is still true, but no longer trivial in the situation of Lemma 1.14:

Remark 1.2 Under the assumptions of Lemma 1.1j the mapping f : uyp — u
(data upon solution) is locally Lipschitz continuous from HE to Cy((—do,do), H:
respectively from HZ to Cy((—do,d0), HT).

Proof: Let v,v’ € Xffb(gb) as in step iv) of the proof of Theorem 1.1 with
extensions 9,7 € X, 5(¢). Then

[o(8) =o'l < llvo = vollag + 1Us *r (N(0)(#) = N(0')(8))]| a1z

In order to estimate the second contribution we use Lemma 1.8, assumption (35)
in Lemma 1.14 and Lemma 1.6 to obtain

1Us *r (N (v)(t) = N (") (0))] a1

< NG - Ny )

< cGolllollx, ,(g) + 19l x, ()1 = Pl x, ()
< CCO(”{U”X;S,Db(dj) + ||/U/||X§70b(¢))”v - ’U/”Xiob(qs)
< Col2(R, +e))2clv0 — v

(for the last step cf. the proof of Theorem 1.1). If in addition vg,vy € HZ with
llvollze, |[vollae < R, where R is a given radius, we can estimate similarly

[v(®) =o' O)llmg < llvo = vollmg + IN@) = N@)lly, () =1+ 11

Arguing as above but using (38) instead of (35) we see that

IT < cCo(|lv + [|V']| 580 v =0 o6
O(H ”Xf,ob(QS) H ||X§,b(¢))” ||ngb(¢)
+  cCo(||v]] 60 + ||| 160 v = 5,
O(H ||X§,b(¢) | ”Xg,b(‘b))H ||X§,b(¢)
< cCo(2(Rs +¢€))Lo|lvo — vgl| e + cCo(4cR)2¢||vo — vg| a3

(cf. again step iv) of the proof of Theorem 1.1). O

Corollary 1.4 (Global wellposedness) If the assumptions of Lemma 1.13 or
Lemma 1.14 are fulfilled and if for a solution u of (27) ||u(t)||ns is a conserved
quantity, then the existence and uniqueness statements in Theorem 1.1 are valid
for all § > 0. Moreover, the mapping data upon solution HS — Cy((—4,9), HS)
(respectively HS — Cy((—0,9), HZ)) is locally Lipschitz continuous.
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Proof: For given up € HJ let A denote the set of all § > 0, for which the
following holds true:

i) There exists a solution u € Xg,b(qb) NCy((—6,8), HT) of (27),
ii) this solution is unique in X2 ,(¢),

iii) there exists a neighbourhood U(ug) C HZ and a Lipschitz constant L =
L(ug, 6) such that for all vy, v, € U(ug) there exist unique solutions v, v’ €
Xg’b(qb) N Cy((=6,0),HZ) of (19) with v(0) = vy, v'(0) = v} satisfying the
estimate

v — v Lee((~6.6),12) < Lllvo — vg ae-

By the local existence theorem (and Remark 1.2) A # ). Define Ty = sup{d € A}
and assume Ty < oo. Fix 0 < & < 0(|luo||lms), 0 = 0(|luo||las) — €, T1 = To — € and
T =Ty — 2¢. Then for the solution u; € Xglb(¢) of (27) guaranteed by the choice
of T7 we consider the initial value problems

Opu —ip(D)u = N(u), w(0) = uy (£T). (39)

By Theorem 1.1 (and Remark 1.2) we obtain solutions uy € Xg’b(qb)ﬁOt((—cS, 0),HY)
of (39), uniquely determined in Xf’b(cb), such that in a whole neighbourhood U (uy(T'))
(respectively U_(ui(—T))) the mapping data upon solution into C¢((—4d,9), HZ) is
Lipschitz. Define

ur(t) : [t <T
Ut):=4 uy(t—=T) : T<t<T+H+96
w(t+T) : —-T—-6<t<T.

Then, using (15) and part ii) of Lemma 1.12, we see that U solves (27) on (=1 —
0,T 4 0). Moreover, T¢ru; solves (39) on (—¢,¢) and so U(t) = uy(t) for T <t <
T + ¢ by local uniqueness, especially we have U € Cy((—=6 = T,6+T), H?).

Now let @ and @+ € X, (¢) be extensions of u; and 7opuy. Then, for suitable
smooth characteristic functions xr of [-T,T] and xs of [T'— 6, T+ ] with x7(t) =0
for |t| > T + ¢ respectively xs(t) = 0 for |t —T'| > 6 + ¢, we see that

U(t) = xr(t)a(t) + (1 = xr(8)xs ()i () + (1 = xr(t))xs (=) a—(t)

is an extension of U in X, (), which gives U € X;Z‘S(qb).
Now let v € XT;7°(¢) be another solution of (27). Then, by the choice of Tp,

U(t) = uy(t) = v(t) for |t| < T. Moreover, T+7v solves (39) on (—4,0) (use (15)
and Lemma 1.12, part ii) again) and thus 7¢7v(t) = u(t) for [¢t| < . This gives
U(t) =v(t) for all |t| < T +9.

Concerning continuous dependence we already know that there are neighbour-
hoods U(ug) and Uy (u1(£T)) in HZ such that

i) for all vy, v € U(up) with corresponding solutions v, v' we have

sup [[v(t) = v'(t)lrg < L(uo, T1)|lvo — vol ug,
[t|<Ty
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ii) for all wo+, wy . € Ux(ui(£T)) with corresponding solutions w4, w!. the
estimate

sup lws(t) = wl ()| g < L(ur(£T), 6)|lwo = — wo, + || 1z
t|<s

holds true.

Choosing a smaller neighbourhood U’(ug) C U(ug) we can achieve by i) that for all
vo, vy € U'(up) with solutions v, v’ we have v(+T) € Uy (ui(£T)) and v'(£T) €
Uy (u1(£T)). These solutions v, v" can be extended in the same way as above on
the time interval (—T — §,T + §). For the extended solutions V, V' € XX, (¢) we
have the estimate ,

sup [|V(t) = V'(t)llgg < sup [[v(t) =o' (D)|ag +  sup  [[V(E) = V'(1)llng
|t|<T+6 [t|<T T<|t|<T+6
< L(uo, Th)lJvo — vl g + max (L(uy (£T), 0)[lo(£T) — v'(£T)|| g )
< L(uo, T+ 0)llvo — vyl g
where L(ug, T + ) = L(ug, T1)(1 + max (L(u1(£T),0))). Now we have shown that
the properties i) to iii) hold true for T'+ § > Ty, which contradicts the choice of Tp.
O

1.4 Notes and references

The use of the spaces X 5(¢) respectively Xf’b((,zb) (and similar ones, built up from
more complicated basic spaces) in order to treat wellposedness problems for non-
linear evolution equations by the contraction mapping principle was introduced by
Bourgain in his work on periodic nonlinear Schrodinger and KdV equations, see
[B93], and further applied in a series of subsequent articles, see e. g. [B93al, [B93b]
and [BC96]. All the basic properties of these spaces, the linear estimates and the
proof of the wellposedness theorem are contained - more or less explicitly - in these
papers. The idea was picked up, further developed but also simplyfied soon by
other authors, let us mention here the works of Kenig, Ponce and Vega on the KdV
equation with data in Sobolev spaces with negative index ([KPV93b]) and of Klain-
erman and Machedon on the nonlinear wave equation with a certain null form as
nonlinearity ([KM95]). In 1996 the survey article [G96] appeared, and the present
exposition of the method is in fact based on Ginibre’s article and the second section
of the work of Ginibre, Tsutsumi and Velo on the Zakharov system, see [GTV97].

In detail: In the definition of the spaces X ;(¢) as completion we follow Kenig,
Ponce and Vega ([KPV93b], for the periodic case see [KPV96a]). In order to achieve
uniformity in the treatment of the periodic and nonperiodic case, we use the inter-
section H of all mixed Sobolev spaces as test functions. The connection between
the X, 4(¢)-norms and the unitary group Uy, giving insight especially in the trivial
character of the first linear estimate, was made clear in [G96], section 3 (see also
the discussion at the beginning of section 3 in [KPV93b]). The duality lemma can
be found in a more general context in [T96], Theorem 3.6, in that paper the inter-
polation property is explicitly mentioned and used to define a more general class
of function spaces in the range 0 < |b|] < 1 of the parameter b. The behaviour
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of the X, ;(¢)-norms under complex conjugation respectively time reversion is not
discussed in the literature, allthough its consequences (e. g. for the treatment of
equations of second order in time, see below) are well known. Lemma 1.5 can be
found - up to &’s - in [OTT99], see Lemma 2.1 in that paper. The auxiliary spaces
Y;(¢) were introduced in [GTV97] in order to treat the case b’ < —3. The extension
lemma (Lemma 1.6), useful for the persistence of higher regularity (part ii) of the
general local existence theorem), seems to be new.

The linear estimates (section 1.2) are more or less taken over from [G96] re-
spectively [GTV97]. Lemma 1.7 is Lemme 3.1 in [G96], Lemma 1.8 is Lemma 2.2
in [GTV97], we only remark here that the definition of the solution operator for
F € Y,(¢) contains an extension - otherwise we should have at least F € L} (I, H?)
for some time interval I around zero. For Lemma 1.9 see Lemma 2.1 in [GTV97],
the proof is taken from [G96] and goes back to Bourgain [B93]. For Lemma 1.10,
ii), ¢f. Lemma 2.5 in [GTV97].

In section 1.3 we start with the discussion of the meaning of the nonlinearity for
irregular distributions, which we define as the extension of the nonlinear operator
being Lipschitz continuous on a dense subset. This problem - in general not dis-
cussed in the literature - can sometimes be circumvented in the nonperiodic case,
if smoothing effects of the unitary group are available, cf. the remarks thereon in
[KPV93b]. In the periodic case such smoothing effects are not known, nevertheless
there are wellposedness results for data in HJ, s < 0, as well in the present litera-
ture (see e. g. [KPV96a], [KPV96b]) as in our subsequent applications. The proof
of the general local existence theorem collects some of the arguments found in the
above cited literature and is more or less standard. A major point in this context
is that the proof given here does not depend on the phase function or any other
special property of a nonlinear equation (such as scaling invariance, cf. [KPV96al,
[KPV96b]). This is somewhat in the spirit of Reed’s lecture notes [R]. A similar
attempt was made by Selberg for the nonlinear wave equation with general non-
linearity, see Theorems 2 and 3 in [Se01]. Some hints, especially on persistence of
higher regularity, were taken from that paper. Finally we show a corollary on global
wellposedness in the presence of a conserved quantity. The proof adapts a standard
argument given in [R] (there Theorem 2 in chapter 1.1) to the X, ;(¢)-framework.

With regard to our applications in part II this exposition is restricted to a single
equation of first order in time. It should be mentioned that the method can be
generalized to systems of diagonal type in a straightforward way and to equations
of second order in the time variable, either by rewriting them as a system of first
order equations (see e. g. [GTVIT] or [OTT99]) or by replacing 7 by |7| in expression
(7) in order to achieve the invariance of the norm under time reversion, which is
necessary in this case (see e. g. [KM95] or [FG96]).
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2 Nonlinear estimates: Generalities

In the nonlinear estimates the specific properties of the phase function as well as of
the nonlinearity play an important role. Nevertheless, some general arguments and
techniques can be formulated, sometimes at hand of examples. This shall be done
in this section, where we already focus on the Schrédinger equation.

2.1 Insertion of space-time estimates for free solutions into
the framework of the method

In the nonperiodic case there is a rich theory on linear space-time estimates - such as
Strichartz estimates, smoothing effect of Kato type and maximal function estimates
- for solutions of the Cauchy problem (1) for the homogeneous linear equation.
Recently also bilinear refinements of such estimates have appeared. Any multilinear
estimate of this type implies a corresponding X (¢)-estimate. This is made precise
in the following Lemma, which is the straightforward generalization of Lemma 2.3
in [GTV97] (see also Proposition 3.5 in [KS01)):

Lemma 2.1 Let - for some o, 01, ..., o, € R -
m:HJ' x ... x HJ* — HY
be a continuous k-linear operator and, for b > %,
M : Xo p(h1) X oo X X p(Pr) — Ct(R, HY)

be defined by
M (g, ooy ) (£) = (s (8), oy g (1))

Moreover, assume Y C S'(R"*1) to be a B-space being stable under multiplication
with Lg°, that s

[Pully < clldll=llgully Vo € LT, uweY,

such that for f; € HZ, Uy, fi(x,t) = Uy, (t) fi(z) and s; < 04, 1 < i < k, the
estimate

k
”M(Ud?lfhﬂUdkak)”Y SCHHfZHH;’ (40)
i=1
holds true. Then for all (u1,...,ux) € Xo, p(¢1) X ... X X4 p(Pr) we have

k
M (s .. u) [y < C}:[l luill x,, ()
where the constant depends on b.
Proof: Since b > 1, we have g; := F,Uy, (—)u; € LL(R, HZ?) and hence
ui(t) = U, ()Us; (—t)ui(t)
Uy, (t) / e (FUg, (= )us) (1)dr

c / e Uy, (t)gi(T)dr.
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This gives

M(us, ) (t) = mlc / U, (891 ()T, s / ¢, (#)ge(7)dr)
B C/dTl-~dieit(Tl+”+Tk)m(U¢1(f)gl(ﬁ)a-~7U¢k(t)gk(7k))’

where we have used the continuity and k-linearity of m as well as g; € LL(R, HJ").
Now using Minkowski’s inequality and the stability assumption on Y we arrive at

IN

1M (w1, ooy uge)lly C/dT1~~diIIM(U¢1g1(ﬁ)7~~7U¢k9k(7k))lly

k
C/dTl..diHHgi(TZ')HH;i
i=1

by(40). Finally writing [|g;(7i)| e = <Ti>_b(<7-7;>bHgi(TZ')”H;i) and using Cauchy-
Schwarz’ inequality completes the proof. O

IA

Remark : Most frequently we will use Lemma 2.1 in the simple case where k = 1,
0 = o1 = s1 and m is the identity. Then we have

ludlly < elluallx, (1) (41)

expressing the boundedness of the embedding X, (¢1) C Y (assuming Y to be
defined only by the size of its norm, which is always the case in the applications -
in fact we will usually have Y = LY(L%) or Y = L2(L}) for some 1 < p,q < o0).
If Yy = (L2,,Y ), 0 € [0,1], we can interpolate between (41) and the trivial case

xts

L2, = Xo0(¢1) to obtain
lellys < C||uHXs,b(¢1)

for s > f0s1, b > g. From this we get by duality
lull x40 (1) < clellovays

whenever s’ < —f0s1, b < fg. The latter is of special interest in view on Lemma
1.13 respectively Lemma 1.14, since there v’ > —% is required.

In the sequel we shall give a series of examples concerning the Schrodinger and
Airy equation.
2.1.1 Schroédinger estimates

In this section we always have ¢ : R — R, £+ —|¢|2. We start with the linear
Strichartz estimates for the free Schrodinger equation:

Lemma 2.2 Assume that 0 < < 3,b> 5(5 — 2+ 1~ %) and

— 1 nrg=2y . _
nas2) 1 (i st
4° q P : >
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Then the estimate
lullzcesy < ellullx, ()
holds true for all u € Xg (o).

Quotation/Proof: Let p and ¢ be given according to the above assumptions.
Define

and pg by

T 2e T

Po 40
An elementary computation shows that ¢g € (2,00) and for n > 3 that ¢o < %
In this case the Strichartz estimates

[Usuollro(r20y < clluollL2 (42)

hold true (see [CH], Prop. 7.3.6). Next we define

Qo q—2 n o n
6 .= — =———41—-€(0,1
5 q+ (0,1]

qq—2

TN

and b : % > % Now Lemma 2.1 gives

lull prozooy < ellullxy . (9):

Using (L2,, L{° (L%))[g) = LY (L%) (see [BL], Thm. 5.1.2, the interpolation condition

xt
is easily checked for # as above) and Lemma 1.4 we obtain the desired result. O

Remarks : i) By duality we obtain the estimate

el (6) < Nl oy

whenever%<$<1,b’<%(%—%+1—5)and

—q 1 _ n(2=4¢

_2(2 Q)>l> q 4( q
4° ¢ "

~—

n=1,2
n>3

1

=

ii) For many applications the special case p = ¢ is sufficient. In this case the estimate
(42) goes back to Strichartz ([S77]). Here the assumptions in Lemma 2.2 reduce to

1 1 _1 1 n 1 1
— > > - — b —+1)(z— -
2>p_2 n+2’ >(2Jr )(2 p)
respectively to
1 1 1 1 n 1 1
- < =< V< (=+1(z—-—=
s <y <3tnya (5 +1)(5 p,)

for the dualized version.

As a simple application we give the following
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Example 2.1 (Nonlinear Schrédinger equation with data in L?(R"))
Consider the Cauchy problem (19), (20) with s = 0, ¢(£) = —|£]? and the nonlin-
earity

N(u) = |ufFourrh2,

where 0 < ky € R, k1,2 € N(], ko+ki+ko=ke (].,].+ %) Then fOT’
1 1 n 1
/ A L Lo
b e ( 2,mln(0,2 4(k 1)) b€(2,b +1)

the estimate

IN () = N ()l x, () < elle =l ) Ul )+ 100, )

holds true. Thus Lemma 1.13 and Theorem 1.1 apply, we obtain local wellposedness
forke(1,1+2).

. ; 1 ; iaq L 20’ k k
Proof: The assumption 0" < 5 — % (k — 1) implies 5 — =5 > 5 — =5, Thus

1 k k k 1 20
2 n+2'2 n+2

)

is not empty (observe that k > 1 and &’ < 0). Choosing p’ € R with ﬁ € I we have

—_

<1<1
p 2

N

the latter, since b’ > —%. Thus b/ < (% +1)(35 — ]%), that is, the parameters b’ and
p’ fulfil the assumptions of remark i) below Lemma 2.2 (with p’ = ¢/, cf. remark

ii)).

From g > ﬁ > % — nLH we deduce for p = kp’ that
1>1>1 1 >1 2b
2 pT2 n+27 2 n+2’

especially that b > (2 +1)(3 — %) Thus Lemma 2.2 (with p = ¢) applies for our
choice of b and p. Now using remark i), the mean value theorem, Holder’s inequality
and Lemma 2.2 we obtain the following chain of inequalities:

ING) = N)lx, ,(g) S €IN@)-NE)

’
[
Lmt

< llw—v)(ul* T+ o))

k— k—
< cfju— UHLL(HUHL?;: T HUHL.’QS)
<

cllu— UHXO’b(@(IIUII@{Olb(@ + Hvllﬁgolb(@)

a

Remark: The wellposedness result in this example is well known, see for instance
Theorem 1.2 in [CW90], where the wellposedness problem for NLS is also studied for
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s > 0. Nevertheless it has three interesting aspects: In the first place it covers the
whole subcritical region in the L2-case, thus coinciding with the known theory in this
case. Secondly, it contains Lemma 3.1 in [BOP98] as well as part ii) of Theorem 2.1

in [St97]. Finally, it gives a hint, for which values of k = k1 + k2 local wellposedness

might hold for the Schrédinger equation with nonlinearity N(u) = u*'7*? and data

in HS even for s < 0: These values are k € {2,3,4} in one space dimension and
k = 2 in dimension two or three.

The next Lemma contains - in terms of X, ;(¢)-estimates - the sharp version of
Kato’s smoothing effect in n > 1 space dimensions and the onedimensional maximal
function estimate due to Kenig, Ponce and Vega:

Lemma 2.3 Letb > % Then for n =1 the estimates

i) llullpeen2zy < cllullx o (6) (Kato smoothing effect),
-1,

i) ||ullpa(rey < ellull x, 2 (9) (mazimal function estimate)
I

hold true. For n > 2 we have

ii1) suppr~g R_%||u||L§(L§(BR(O))) Scllullx | 2 (9) (Kato smoothing effect).
3

Quotation/Proof: Combining Theorem 4.1 in [KPV91] with Lemma 2.1 we ob-

tain

1

20| oo (z2) < C||U||X0,b(¢)7
where I® (J®) is the Riesz (Bessel) potential operator of order —s. Using the
projections p = ]_-71X{‘€|§1}}- and P = Id — p we get
1720l e 22y < € PT20| Lo (r2) + IPT 2 0] oo 2y = T+ 1T

with

141

< elIm2PI2vlx, (9) < ellvlxg  9)

by the preceeding and

1
11 < clpT ol ugy < elpT " <vlzz, < cllvllx, ()

by Sobolev embedding in z. For u = Jzuv this gives i). Part ii) follows from
Theorem 2.5 in [KPV91] and Lemma 2.1. To see iii), we write for short ||u|| =
SUP R~ Ri%Hu”Lg(Li(BR(O)))' Then Theorem 4.1 in [KPV91] and Lemma 2.1 give

174l < ellollx, ,(4)

respectively . N 1
172 0]l < [PT20] + [[pJ 2ol = T+ 1T
with 1
1< c||I §PJ5'UHX076(¢) < C||UHX076(¢)
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and

1 1
IT < cllpTavllpzpeey + IpT2 0] 12, < ellpJ* 0|2, < C||U||X07b(¢)~

Writing u = J2v again we obtain iii). O

Remark : Let u € X ;(¢) for some s > —%, b > % Then, by i) and iii), we have
u € L} (R™1) in arbitrary space dimensions. So for quadratic nonlinearities such
as u?, |u|? or w2 the definition of the nonlinearity given at the beginning of section 1.3
coincides with the natural one by Lemma 1.11. This cannot be guaranteed anymore,
if s < —%. The Lipschitz estimate (25) has been shown for the nonlinearities u?
and @2 in one and two space dimensions not only for s > —%, but also for s > —%,
see [KPV96b] and [CDKS01]. This shows that in these cases it is not redundant to

define the nonlinearity by the extension process in section 1.3.

Now we turn to the bilinear refinements of Strichartz’ inequalities exhibiting
stronger smoothing properties than the standard Strichartz’ estimates. We start
with the case of one space dimension, where we have a gain of half a derivative on
the product of two solutions:

Lemma 2.4
.02 02
112 (e uye = uy) || 2. \fl\m\lm [uzlz2

Proof: We will write for short @ instead of Fyu and [, d&; for f§1+§2:€ d¢;. By

density we may assume 4; € C§°(R). Then, using Fourier-Plancherel in the space
variable we obtain:

192 P 2
172 (e ure ™" ug)|[ 2,

_ i/
T oo;

2
- %[MMA%MMWH%*@Hm@mm

2

dgle—it(ﬁf—fg)ﬁl (&) a(&)

2
] deil [ devmates - i ) [Tt

For the argument of the j-function we have

& =& =i+ =26 —m).
Using d(a(x — b)) = Wl‘é(a: —b) we obtain

::%/M&MWWrmmmm@gfwm@mﬁﬂwﬂ
1 1
::5/@&Mmm@@—mﬁzymﬁﬂwﬁ%
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Remarks : i) For the use of §(P) cf. appendix A 2.

1
ii) In view on the Sobolev embedding H7? e c L2° this can be seen (almost) as
a refinement of the Lj(LS°)-Strichartz estimate, which is the admissible endpoint
case in one space dimension.

Using Lemma 2.1 we obtain the following estimate, which was shown by Beki-
ranov, Ogawa and Ponce using the Schwarz method described in section 2.2.2 (see
Lemma 3.2 in [BOP98]):

Corollary 2.1 (Bekiranov, Ogawa, Ponce) Let n = 1 and b > L. Then the

2
estimate
”“U”Lg(gé) < cllullxy ()1 x4 4 (0)
holds for all u,v € Xo ().

Next we have Bourgain’s bilinear refinements of Strichartz’ estimate in two (re-
spectively three) space dimensions, c¢f. Lemma 111 and Corollary 113 in [B98a]
(respectively Lemma 5 and Corollary 6 in [B98b]), for which we give a detailed
proof. For that purpose we introduce the following notation: First, for a subset
M C R", we define Py := fw_1XMf£, where xps denotes a smooth characteristic
function of the set M. Especially we require for [ € Ny:

e P := Pp, for the (closed) ball By of radius 2! centered at zero (P_; = 0),
e Prj:=P — P4, Paji= Z,t:_l Pa(14k), such that Pa; = PAIPN, as well as
e Pg:, where o € Z" and Q!, is a cube of sidelength 2! centered at 2'a, so that
> xe, =1
a€eZn
Lemma 2.5 (Bourgain) Let n =2. Then for | > m the estimate
. . m—1
[[€72 Pamu1 €™ Pajug || 2. < 277 [lua]| 2 |uzll 2
holds.

Proof: By the standard Strichartz’ estimate we may assume m < [. Arguing as
in the previous proof we obtain

; ; 2
||€ZtAPA7nuleltAPAlu2||L’it
2

2
= C/df/d€1d7715(2|§i\2 = [mil® Hﬁ &)t (m)xar(€)xam (€2)Xa1(m) xam(n2)
* i=1

< %(11 + 1) = cly,
with

I = / e / € oy (1) (€2) / (a2 + (6212 — lm[? — [mal?) Xt (1) xam (72):



2.1 Insertion of space-time estimates into the framework of the method 33

(I3 is obtained from I; by exchanging the variables &; and 7;, thus we have
I, = I,.) Now for the inner integral we get by Lemma A.2

16.6) = [ amd(&P + 16 - Il = s xan()
as
- /p( )OmXAl(nl)XAm(g_nl),
)= 1

where P(m) = |m[* + | —m[* — [&1]* — |&[*, hence |V, P(m1)| = |[4m — 2¢| =
2|m — m2| > c2'. This gives

[(6.6) < 2! / 48, xam(€ —m) < 2™,
P(m)=0

since fP(m):O dSy, Xam(&—mn1) is the length of the intersection of {P(n;) = 0} with
Bom (§) — Bam—1(&). Finally we conclude that

I < 2™ | lua 72

Remark: The corresponding estimate in three space dimensions is
, ) _L
€72 Papmur e Pajusl| g2 < 2™ 2 [|ua | 12 [Jug || £z -

This follows from the geometric argument at the end of the above proof. Observe
that standard Strichartz in connection with Sobolev’s embedding Theorem gives

i ; mHl
le*Sume Sunllpz, < elhuall g lluall 3 < €275 luallzz fuzllz,

1
4
-
which coincides for m ~ [.

Corollary 2.2 (Bourgain) Letn=2,¢>0 and 0 <s < 3 <b. Then

i) lle"Cuoe™ voll 2 < clluoll gravellvoll 2.

i) luvllzac < elullx .10, (0)

Remarks : i) Using multilinear interpolation (Thm. 4.4.1 in [BL]) we obtain
from part ii):

lwvllzzms) < ellullx, (g) 101 x,, 4(0)

provided % >s5>0,b> %, s1,2 > 0 and s1 + 52 > s.

ii) For fixed v part ii) of the above Corollary expresses the boundedness of the
multiplier
M, : Xoyep(d) — LZ(HE) U uw

x

with norm < c||vHXO o(0)" But then the adjoint mapping

M} = My : L2(H;*) — X_o o _3(0) U uT
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is also bounded with the same norm, which gives the estimate

||W||X378)7b(¢) < CHUHXO’Z)((b)||u||L§(H;)7

provided —% <s<0<eandb> % Here we may replace u by @ on the left hand

side, since [lul|2ms) = ([Tl L2(mrs)-
Proof: Clearly, ii) follows from i) by Lemma 2.1. To see i) we write ug =
ZmZO PAmuO and Vo = ZlZO PA[UO. Then

”eitAquitAUOHL%(H;)

= Yoo+ > | e Pamuoe™ Parvollpz ) 2521:+22:7

m>1>0  1>m>0

with
Z < Z 2msHeitAPAnLquitAPAlvoHLit
1 m>1>0
< ¢ Z 2| Pamuol| 2 [[vol L2
m>1>0

< ey m2 " uollgsve Jvollzz < clluoll gtellvollre,
m>0

where we have used Holder and (standard) Strichartz. Now using Lemma 2.5 we
obtain for the second contribution

Z < Z 2ls||e”APAmU0€itAPAlUO||Lgt

2 1>m>0
< o >0 2B Paguol 2 |voll
1>m>0
< e Y 20 DmG T I gl e flvollz: < Y 27 luoll v ol 2
I>m>0 B 1>0 .

a

Remark: The corresponding estimates in three space dimensions are

i) e uoe™voll Lz < elluoll oigiellvollez,

i) [luvllzzcas) < C||uHX5+%+5,b(¢)||U||X0,b(¢)7
provided € > 0 and 0 < s < 3 < b, cf. Corollary 6 in [B9I8b].

Finally we show how to extend the twodimensional estimate to negative values
of s:

Lemma 2.6 Let n = 2. Then forl > m , the estimate
. . m—1
| Pam (e Pajure™™us)| 2, < €27 [Jua| 12 [Jug|l 2

holds.
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Proof: Without loss of generality we may assume |u1][z2 = [[uz|[z2 = 1 and, by
standard Strichartz, m < [. Then

[ Pam (€2 Pajure™®us)| 2,

S Z ||PAm(eitAPQZLPAluleitAUQ)||Lit
a€Z?
< Y Y I Pam(e"A Pog Parrei® Pypua) | 2,

a€Z? |a+B]<2

since [ —2Mal < 2™ and |£| < 2™ imply that & +2Ma| < [& —2Mal+ €] < 2mFL
Now, for fixed «, 3, we estimate the square of the L2,-norm:

||PAm(eitAPQZLPAluleltAPQgLUQ) ||L2
Tt

= ¢ / déxa, () / a2 + 1€l — Im[? — I2l®)xa (E2)xar (m).-

(Il + 12) - 6117

I\D\(‘h

2
X xan (€)xen (m)xey (62)xen (2 H

where
B = [ dexa, (©) [ dixar (€)xay (€l €O PIIE €)

and

1(¢,6) = /dm5(|§1|2 + & = Im* = In2l®)xa, (m)xqm (m).

(As in the previous proof I is obtained from I; by exchanging the variables &; and

n;, thus we have I; = I,.) For the inner integral I(§,&;) we use [ dzd(P(z))f(z) =
dS, :

fP(m):O v p(o /() with

P(m) = [m|* + |6 = m P = & = &, Vg, P(nn)] = 41 — 2¢] = 2!

(because of the factors xa,, (£), xa,(m) and m < 1) to get

I(ﬁ)fl) S CQ?I/ dSyh XQZI (771) S C2mil.
P(n1)=0

We arrive at
I <2 lHPQ'”“l”LQ ||PQ’"U2||L27

which gives, inserted into }- 72 3|44 51<o!

IIPA (€™ Pajure™us)| 2,

< e Yy ) [ Poruallez [ Pomusz|r2
a€Z? |a+B|<2
< Z > |PQ,,LU1\|L2 + Hp%nurznw <2

a€Z? |a+p|<2
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Corollary 2.3 Letn=2,e>0> s> f% and b > % Then

i) [l e uoll 3 ey < o]z ol .

i) ||U”||L§(H§’5) < CHUHXS b(¢)”UHX0,b(¢)'

Remark : Again we can use multilinear interpolation to obtain

luruzll 2 gy < ellull ) lluzllx,, ,(0):
provided —% <s<0,b> %, 512 <0and s; + 52 > s.

Proof: To see i) we write

||6itAu0€itAUO ||Lf(H;75)

< > 26| Pay (€A Pajuge™ P ug) 2, <D+
m,lEN ‘ 1 2

with

>

Z Z 2m(s—8) HeitAPAlquitAvO”sz

1 1EN) m>1
< ey 2078 N 0 | Pajuo| 2 llvoll z < elluollmllvoll 22
€Ny meENg

where we have used Hélder and (standard) Strichartz. Now Lemma 2.6 is applied

to estimate
Y= > > 2T Pam(e Paruoe™ ) e,

2 1eNy m<I
< ey 27 Y 2mEtTET| Prjug] e [lvo |12
leNo mgl
< e 2079 Pajuol|zz [lvollz2 < clluol myllvollzz -
leEN

This gives i). For u € Xo(¢) part ii) follows from this by Lemma 2.1, for the
general case we use an approximation argument as in the proof of Lemma 1.11
(observe that u € L? (R™*') by Lemma 2.3). O

loc

2.1.2 Airy estimates

Here we have ¢ : R — R, ¢ — &3. Again we start with the Strichartz type
estimates for the Airy equation:

Lemma 2.7 Forb > % the following estimates are valid:

1
§Zand

Q|
=
ST

i) Nlulle(psay < c||u||X07b(¢), whenever 0 < s = 1%

N

i) Iulizces) < ellullx,  (g), whenever 0 < =4 = % <
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Quotation/Proof: Theorem 2.1 in [KPV91] gives in the case of the Airy-equation

t

3
le™* ol 1 (g0y < clluol 2,
provided 0 < s = % < i and % = % — %. Now Lemma, 2.1 is applied to obtain
< b L 43
lellzp gy < bl x, () >3 (43)

for the same values of s, p and ¢g. From this ii) follows by Sobolev’s embedding
theorem (in the space variable). Especially we have

< _
lellzs, <l >3

which, interpolated with the trivial case, gives

1
lulls, < ellullxy ) >3
Now let us see how to replace H%? by H:9 in (43) in the endpoint case, i. e.
s = % = i, q = oo: Using the projections p = f;lxﬂﬂgl}}"x and P = Id — p we
have
lull e <MPull g+ llpull |3 =T+ T1
Li(H ) Li(HS ) Li(HS )

For I we use (43) to obtain
I< C||I7%J%P'LLHXU’Z)(¢) < C”U”Xo’b((b),
while for 11 by Sobolev’s embedding theorem we get

171 < < < .
< C||pu”L;}(H§+E’4) < C||pu|\X%+E’b(¢) < cllull x, ,(¢)

This gives i) in the endpoint case, from which the general case follows by interpo-
lation with Sobolev’s embedding theorem (in the time variable). O

Remark: The endpoint case in ii) is also valid - see e. g. Lemma 3.29 in
[KPV93a] - but we shall not make use of this here.

The X (¢)-versions of Kato’s smoothing effect and the maximal function esti-
mate for the Airy-equation are the following:

Lemma 2.8 Letb > % Then the estimates

i) lJullpee (n2y < CHUHX—Lb(Qf?) (Kato smoothing effect),

i) ||ullpa(peey < c||u||X%7b(¢) (mazimal function estimate).
hold true.

Quotation/Proof: Combining Theorem 4.1 in [KPV91] with Lemma 2.1 we ob-
tain i) as in the proof of Lemma 2.3. Part ii) follows from Theorem 2.5 in [KPV91]
and Lemma 2.1. O
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2.2 Multilinear estimates leading to wellposedness results

Here we consider nonlinearities of the type N(u) = DA([]-, D%u). In this case
the nonlinear estimates (32) and (35) reduce to

IDP(ITL DPua)lix, <CHIIUZIIX (44)

respectively to

IDP(T, DP )l x. , ¢ <cH||quX (45)

and also (36) reduces to (45) with an additional factor §¢ on the right hand side. In
view on systems and nonlinearities depending on u and @ the proof of the following
more general estimates is of interest:

HDﬁ(Hgl Dﬁiui)‘|Xs7b,(¢) < CH ”uiHXs,hbi (¢:) (46)
i=1

and

IDO(ITL, Do ui)lly, () < cH leillx,, , (6 (47)

Lemma 2.9 For1<i<mletu; € HC X, ,(¢;) and

fil€,m) = (1 — 9a( €))7 (€) Fui(€, 7).
Then with dv := p(d&;..d&m—1)d1..dTm—1 und £ = >0 &, 7 = >.i", 7; the fol-

lowing identities are valid:

m

FDO(] D us)(€7) = et / de&ﬁl ) IE)  Fulnm)

-1
as well as
o) [DP(ITL Dl x, ,, (g) =
el — BN (€)"€” [ v TI, €2 (rs — Bu(€) ™ (&)~ g1z
b) DTy Dﬁiuzv)llysw) -

ell(r = #(€) 1€ [ v T, €7 (ri — 4il&)) ™ () > fil&in )l 2

Proof: For the convolution of m functions g;, 1 < i < m, we have with

T =300

m m

?Egz(x) = /u(dwl..dxm_l)ngi(xi).
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Hence by the properties of the Fourier transform the following holds true with
E=2m1 & T= 2 T

m

FOY[] PPuie )

— (K ePiFu) (e, 7)

m

— PR P — () () (€ T)
= o [ [l (- en() ™ (6) (6

From this we obtain a) because of
DAL, Do w)lx (g = 17 — GO (€ FDATI, D)z
and b) because of

IO, D% uslly, gy = 7 — ()€ FDA(IT%y D% w2z

a

Remark : The previous Lemma has some simple but important consequences:
First of all it shows that the estimate (46) holds true, iff

1(r = €N (E)€? [ dv TT7y &7 (rs — di(€)) ™ (&)™ fil&is ma)ll e
<c[Tfillee - (48)
i=1

In order to prove the latter one may assume without loss of generality that
EOTI, €7 fi(&, i) = 0. Because of

m

() = <Z &) < Z<fz>
i=1

i=1

it follows that, if the estimate (44) holds true for some s € R, then for any o > s
the estimate

IDPILE D2l o) < e 2l 0 1 Tl o0
Jj= i=1,i#j

is also valid, which implies (33) and (34) in this case. Correspondingly, if (45) holds
true for some s € R, then for all o > s the above estimate with X, 4 (¢) replaced
by Y, (¢) is valid, too, implying (37) and (38).

As a simple application of the above arguments we give a short proof of Sobolev’s
multiplication law (cf. Corollary 3.16 in [T00]), which we have used in section 1:
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Lemma 2.10 Let s > 0. Assume in addition that

i) s <s12 and s < sy +sy— G or

ii) s < s12 and s < 51+ 53 — 5.
Then |[fgllms < cllfllgs1llgll s> with ¢ depending on s, s1, sz and n.

Proof: Without loss of generality we may assume Ff, Fg > 0. Then, using
(&) < (&) + (&), we have

[foll: < (J°Hgllez + 1 £T°gllLz
< N flleellgll e + 1LF Lo (1779l e,
where 1% + i = % + % = % Now we choose
1 Sg > % 1 0 S1 > %
_ S1—S . _n _ S2—S . _n
2R R 7 V. T2
37w 1 os2<3 37w 0 sy

Then H®> C L2 and H®* C LY (observe that s; o —s > 0 if 51 = 5) as well as
Hs' © HoP and H> C H59. 0
2.2.1 Bourgain’s approach

In order to prove (48) one uses linear (or multilinear) space-time estimates - similar
as in example 2.1 - after exploiting the algebraic inequality

(T =) + D tr— i) 21D i(6) — 9O = eq.  (49)
coming from the identity
T 6(€) = (T = 6i(&)) = D il&) — (9)

(observe the convolution constraint Y ;- 7, =7, Y0 & = £ in (48)).

Here it comes in that the results, which can be achieved by the method, do not
only depend on the degree of the nonlinearity but also on its structure. To illustrate
this we consider the Schrodinger equation with the nonlinearities

Ny (u,w) = u?, Ny (u,u) = uu, Ns(u,u) = w2

in one space dimension: For N; (respectively N3) we have c.q. = 2|¢;&a| (respectively
c.q. = 2 + €2 + £2), giving control over half a derivative on each factor, while for
Ny one only has c.q. = 2|££], which gives nothing, if & is very close to —&;. The
corresponding results are local wellposedness for data in H; with s > —3 for Nij3
respectively with s > —i for Ny in the nonperiodic case and with s > —35 for Ny 3
respectively with s > 0 for N» in the periodic case, see [KPV96b].
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As an application of this approach we consider the Schrodinger equation with
the nonlinearity N(u) = @2 in the continuous case first in three and then in two
space dimensions. In this case we have to show that

2
Tl willx, , (g) < [T luillx, , (g)
=1

where ¢(&) = —[¢|?. With v; = @; this can be rewritten as

2
ITE s villx, , (p) < eITluillx, ,(— )
=1

that is, we have ¢1(&) = ¢2(§) = [£]> = —¢(&), which gives the rather comfortable
inequality
2 2

(1= d(©)) + D (i — $i(&)) = (©)* + D _(&)>.

i=1 i=1

Our first example is an alternative proof of a recent result due to Tao (see the
remark below Proposition 11.3 in [T00]):

Example 2.2 (Tao) Letn =3 and ¢ : R®* — R, & — —|&|? (Schrédinger equation
in the nonperiodic case in three space dimensions). Assume that 0 > s > —%,
—3 <V <$—1% andb> 3. Then the estimate

2
T millx, ) < e LT Iillx, ()
=1

holds true. Forb < b +1 Lemma 1.13 and the general local existence Theorem apply
and give local wellposedness in X, ,(¢), s > —5, for (19), (20) with ¢ as above and
N(u) = u?.

Proof: Defining fi(€,7) = (1 — |€|?)°(€)* Fu;(€,7), 1 <4 < 2, we have according
to Lemma 2.9

T il x, , (p) = el (7 + €% [ v T (i — &%) ()~ fili )llz -

By the introductory remark and since b’ < § — i is assumed, it holds that
2 2
@2 L ™ <clir + 1P + > (m — 1611 " xan),

=1 i=1

where in A; we have (r; — |§|?) > (7 +[£]?). Hence

2
2
I @l x, , (6) < €0 Mllez
j=0
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with
Io(§,7) = %/dVH — &) fil&i, )

and, for 1 < j <2,

2
LEn = @ r+Ieh) [avtn — 162 TIem - 68 At mxa
1 ;71
< @ e [ vt — 6P [Tt~ l6P) 6
=1

To estimate Iy we use Lemma 2.9, Sobolev’s embedding theorem in the z-variable,
Holder’s inequality and the X ,(¢)-version of the L} (L3)-Strichartz-estimate (Lemma
2.2):

2 _
Hollez < el T 7wl o
< oI 7w ||LW
<

2
cH 17 uillsesy < e ] T luillx, ,(g)-
i=1 i=1 7

To estimate I;, 1 < j < 2, we also use the dual version of Lemma 2.2:

1Gllez, < elllTmF fillx_, ()
< || JfwF~ ngL%(Hf%%)
< el mE g 8
<

2
lF T Fillee 1T will sz < e ] ] luill x4 (8)-
=1

d

Arguing as in the previous proof and using the L2,-Strichartz estimate valid in
two space dimensions leads to the estimate

Izl (g) < cllunllx, o)1zl x, o (0):
provided —% <V <s<0, % < b. This is essentially the first part of Theorem
2.1 in [St97]. This has been improved in [CDKSO01], see the first part of Theorem
1 in that paper. As a second example we show here, how this improvement can
be deduced by using Bourgain’s refinement of Strichartz’ inequality in two space
dimensions (Corollary 2.2) and its extension to s < 0 (Corollary 2.3):
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Example 2.3 (Colliander, Delort, Kenig, Staffilani) Letn =2 and ¢ : R* —
R, & — —[£|? (Schridinger equation in the nonperiodic case in two space dimen-
sions). Assume that 0 > s > —%, —% <b <s+ %, c<2(s=V),0<0,2 <s
and b > % Then the estimate

2
I il () = e Tl 6)

holds true. Forb < b +1 Lemma 1.18 and the general local existence Theorem apply
and give local wellposedness in X, ,(¢), s > —3, for (19), (20) with ¢ as above and
N(u) =u?.

Proof: Without loss of generality we may assume that o > f%. Writing

(&, 1) = (1 — |€12)(€)s Fu;(&,7), 1 <i < 2 as in the previous proof we have

Tl @il x, , (p) = €7 (T + 1617 [ dv T (s — 167 € fil& mo)llz -
By the expressions (7+[£|?) and (7; —|&;]?), i = 1,2, the quantity (€)% 4 (&1)2+(£2)2
can be controlled. So we split the domain of integration into Ag+ A; + As, where in
Ag we have (7+ [¢[2) = max (( + [£[2), (71 — [€1]2), (72 — [€2[2)) and in 4, j = 1,2,
it should hold that (r; — |¢;]?) = max ((7 + [£[?), (11 — |&1]?), (72 — |&2]?)). First we

consider the region Ag: Here we have (€,)7% (&)Y < e(r+|¢[2)~"", so that for this
region we get the upper bound

cll(€)7 [ dvTTi_y (7 — \€i|2>7b<€i>b,75fz’(§i7Ti)||L§’T
L PR O NN VO R

by Corollary 2.3 and the remark below. Since o < 2(s — V') is assumed, this gives
the desired bound.

Now, by symmetry, it is sufficient to consider the region A;, where
(T + 1P ) T G) T < elm — G )

holds, giving the upper bound

ell(€)7 (7 + [€1%) 71 [ dv(€a)2 =) fr (€1, m) (72 — [62%) 7" F2(E2, m2) 2
= C||(J2(bl_s)‘7:_1f1)(m)||Xa7_b(¢)~

Using the dualized version of Corollary 2.2 this can be estimated by

2
=0 F il ey 1wl x, ) < e T Iilx, -
=1

since 2(b' — s) + o < 0 by assumption. O
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2.2.2 The Schwarz method

This method, developed by Kenig, Ponce and Vega in [KPV96a] and [KPV96b], (in
general) also uses the inequality (49) but avoids the use of the Strichartz- or sim-
ilar estimates, which is replaced by a clever use of the Cauchy Schwarz inequality
combined with Fubini’s Theorem and elementary subsequent estimates.

We still want to prove the estimate (48), which, by duality, is equivalent to

|/u(d§)deV<T—¢(€)>b/<£>sfﬁfo(§77)HSB% = 0i(&)) &) T ful&i )

=1

m
S CH ||fi||L§Ta
i=0 '

where again dv = p(d&;..dép—1)dr .. Tm—1, E = > v & and 7 = Y| 7;. For short
we write

de ,u(dgl..dfj,1d§j+1..d§m)d7'1..Tj,lTjJrl..Tm,

Wb ntn) = (O €[ and
i=1

W(gvglv",gmaT,Tlv“aTm) = w(£7£17"a€m)<7_¢(§)>b/H<Ti_¢i(€i)>7b

i=1
Now the use of Cauchy Schwarz and Fubini is summarized in the following

Lemma 2.11 Assume that

= sup/du\W({“,gl, &y Ty Ty oy T ) |2 < 00 (50)
&,
or, for some j € {1,..,m},
c? = sup /duj\W(ﬁ,fl, &y Ty Ly oy T ) |2 < 00 (51)
Then
/M(dé-)deVW(gvgla "7€m77—7 T1, ~~;Tm)f()(€77—) Hfl(g’HTZ) S CH ||fi||L§’Ta
i=1 i=0

where ¢ = min’ c;.

Proof: Assume (50) first. Then Cauchy Schwarz applied to [ u(d¢)dr and to
[ dv gives

/u(dg)deVW(fagla-'7§ma7-a7-1a"7 fO fa Hfz é.z;TZ

S Hf0||L2 ||deW§ flv'ag’ﬂuTlea )Hz 1f1(§l5Tl)||L2
S HfOHLg)T” de|W §7€1a~'v§m77—77—17~7 de i= 1 |f2 5177—1)‘ )%HLZT
< allfollzz I v TT, £l )P >%\|L;T.
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By the Fubini Theorem we get

(S dv T 156 7)) s
/M df)dT/dVHm(&,Ti)\z
i=1
m—1
= /dV H \fi(&vn)|2/u(df)d7|fm(§m,7m)|2
=1

m
11 IIfzIILz :
=1

which gives the first part of the claim. Now assume (51) for some j € {1,..,m}.
Integrating with respect to (&m, 7m) instead of (£, 7) we obtain similarly as above

‘//J(df)d’rdl/W(f,gh..,fm,’r, 7-1,'~7Tm)f0(£vT)Hfi(£ivTi)
i=1

/H’(dfj)dedeW(§7£17 --7€m77—7 T1y o5 TM)f0(§7T) H fi(gi?T’i)
=1

< fllez IS dviWi(€&xs o &ms o 71y Tn) So (6, 7 )H#jfi(fi,Ti)HLgﬂj
< Willez T dvglW € o )2 R dglfol& )P T Vi) sz
< <l |L2 |(f dvjlfo(&, 7)1 TLiy; |fi(€i77-i)|2)%||L§Nj'
Using Fubini again, we see that
(S vl fole, TP Tl Vil P20, =TTIAIR:
RACER ’
which gives the second part of the claim. O

In order to control the 7;-integrations in the expressions c? the following elemen-
tary lemma is helpful, which we take over together with its proof from [GTV97] (cf.
Lemma 4.2 there):

Lemma 2.12 For 0 <a_ <ay withay +a— > 1 and a,b € R the inequality
CL b / dT a+< b>_a_ < c<a — b>—(a_—[1—a+]+)

is valid, where for x € R [z]4 is defined by

x : x>0
]+ =9 >0 : =0
0 : <0
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Proof: Without loss of generality we may assume b = 0 and a > 0. Then

J(a,0) < 2/000 dr(r — @) (7)o~
2 </05 +/; +/;°> dr(r — ay=o+ ()=
i (Ww / ey (oo [ artmees /w d7<7>—“*”>

3a
2

< C(<a>*(a+*[lfa7]+) 4 <a>*(a7*[17a+]+) + <a>*(a++a,—1))'

IN

IN

Since a— —[1—ay]+ <ay—[1—a_]+ < ay+a_ —1, the claimed inequality follows.
O

For quadratic nonlinearities we obtain the following sufficient criterion for the
estimate (48):

Lemma 2.13 Let m = 2. Assume one of the following conditions a) , b) or ¢) to

be fulfilled:
a) by >by > 1, f=—(2b1 — [1 = 2bs]y) and

?MT—MQV“/uw&wwa&@—fm%T—m@n—¢ﬂf—&»ﬁ<m

b) by > —b > 1 B=20+[1—2b);y (or =t >by >3, B=—2by+[1+2V]})
and

sup (r1 — ¢1(&1)) 7" /N(d52)|w(§1 + &, 61, 6) 2 (11 — ¢(&1 + &) + ¢2(&2))’ < o0

§1,7m1

¢) by > b > B=2 +[1 -2y (or = >by > L B=—2 +[1+2V],)

and

sup (7o — o (&2)) 202 /u(d§1)|w(§1 + 62,61, 6))2 (T2 — ¢(&1 + &) + ¢1(€1))° < 00

§2,72

Then the estimate (48) holds true.
Proof: By Lemma 2.12 we have
/dT1<Tl — $1(&0)) 70T — 11— da(§ — &)

< olr—d1(&1) — pal€ — &)Y

for B = —(2b; — [1 — 2bs]4+). Thus (50) follows from condition a), and Lemma 2.11
gives (48). Further we have, again by Lemma 2.12,

/mﬂﬁ*%@»4Wﬁ+ﬁ*M&+&WU
< o — B + &) + $2(£))°
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for B = 20 + [1 — 2bg]4, if by > =V, respectively for 8 = —2by + [1 + 2V']4, if
=V > by, that is, condition b) implies (51) for j = 1. The same argument gives
that condition ¢) implies (51) for j = 2. Now in both cases by Lemma 2.11 we
obtain (48). O

Remark: The Schwarz method can be improved by introducing dyadic decom-
positions with respect not only to the variables £ and &; but also to other quantities
such as 7 — @(£), 7 — ¢3(&) or ¢(§) — D1, ¢i(&) before using Cauchy Schwarz.
This is done e. g. in [CDKSO01], where the estimate in example 2.3 is shown by the
Schwarz method combined with ”a standard dyadic decomposition in the spatial
frequency variable and a parabolic level set decomposition”®. Using yet another
decomposition with respect to cos «, where « is the angle between & and &5, these
authors could also prove the estimate in example 2.3 with wyws replaced by ujus
(under slightly stronger restrictions on o and s). The same technique is applied
there successfully to treat the nonlinearity N(u) = |u|? in two space dimensions.
We also refer to Tao’s article [T00], where this approach is studied systematically
and where the 3-d problem for the quadratic nonlinearities is solved.

2.3 Some Strichartz type estimates for the Schrodinger equa-
tion in the periodic case

In this section we are concerned with some of the Strichartz type estimates for
the Schrédinger equation in the periodic case, which were shown by Bourgain in
[B93]. All the following estimates are essentially contained in sections 2 and 3
of [B93]. Since we want to use them in the form of an embedding of the type
LY(L1) C X, (), where we have spaces of functions being periodic in the space-
but not in the time-variable, we shall give modified proofs for these estimates,
combining some of the arguments from [B93] with the Schwarz method described
in 2.2.2. Throughout this section we have ¢ : Z" — R, & +— —[¢|?.

Lemma 2.14 (¢f. [B93], Prop. 2.6) Let n = 1. Then for any b > % and for any
b < —% the following estimates hold:

) Nulls, < ellully, o)
i) Tl xy . (g) < €l 3
Proof (cf. [KPV96b], Lemma 5.3): Clearly, ii) follows from i) by duality. To see
i), we shall show first that

sup  S(&,7) < o0
(6,7)EZXR

for

SEr) = Y (r+&+E-)H)

§1€EZ

< ey (AT +(26)7+ (2(6 - &)

§1€Z

3quoted from the introduction of [CDKS01]
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With k£ = 2¢&, — € € Z we have
k+€=26, k—&=2(& —€) and (26)% + (2(€ — &))* = 2(6* + K7),

hence

5(577-) < CZ<4T+2§2+2k2>1—4b
keZ
< CZ<I@2 _ |2T+£2|>1—4b
keZ
< CZ<(k—xo)(k+x0)>l—4b7
keZ

where 3 = |27 + £?|. Now there are at most four numbers k € Z with |k — 2| < 1
or |k + zo| < 1. For all the others we have

(k — xo)(k + zo) < c{(k — x0)(k + x0)).

Cauchy-Schwarz’ inequality gives

S, 7)) < C+CZ(<k—$o><k+xo>)l‘4b

keZ
1 1
2 2
< C+C<Z<k—$o>2(14b)> <Z<k+fﬁo>2(14b)> <c,
keZ keZ

provided 2(1 — 4b) < —1, that is b > %. Without loss of generality we can assume
be (2, 3). Using part a) of Lemma 2.13 we arrive at

1 e ez S dn(m + €))7 f (&, m) (T — 71 + (€ = &1)?) "Pg(€ — &1, — Tl)HL?.T
< el fllzz lglsz

Now by Lemma 2.9 it follows that

luallzz, < elullx (g4l x4, (6) -
Taking u; = uy = u, we get
2 2
lellzs, = llw?llzz, < ellullx, ,(g) -
O

Remark: Arguing as in Example 2.1, but using the previous lemma instead of
Lemma 2.2, one obtains local (and - by the conservation of the L2-norm - global)
wellposedness for

g+ gy = |[ulP " u u(0) = up € L2(T),

provided p < 3. This is the onedimensional L2-result in [B93], cf. Theorem 4.45
there (see also Théoréme 5.1 in [G96]).

In the sequel we shall make use of the following number theoretic results con-
cerning the number of solutions of certain Diophantine equations:
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Proposition 2.1 i) For all € > 0 there exists a constant ¢ = c(e) with
a(r,3) .= #{(k1, ko) € Z? : 3k? + k3 = r € N} < ¢(r)=.
ii) For all e > 0 there exists a constant ¢ = c(e) with
a(r,1) == #{(k1, ko) € Z* : k3 + k3 =r € N} < ¢(r)®.
i11) Let n > 3. Then for all € > 0 there exists a constant ¢ = c(g) with
#{keZm:|k]2=rc N} <clr)=*e
Quotation/Proof: i) a(r,3) is calculated explicitly in [P], Satz 6.2: It is
- d
atr.3) =217 Y (5)

d|r

Here (g) denotes the Legendre-symbol taking values only in {0,+1}. Thus a(r, 3)

can be estimated by the number of divisors of r, which is bounded by ¢(r), see
[HW], Satz 315. For ii), see Satz 338 in [HW]. iii) follows from ii) by induction,
writing {k € Z" : |k|* = r € N} = U, < {(K k) K']2=r—k2}.

The following Lemma corresponds to Prop. 2.36 in [B93]:

Lemma 2.15 Let n = 1. Then for all s > 0 and b > % there exists a constant
¢ = c(s,b), so that the following estimate holds:

lullze, < ellullx, (g -
Proof: As in the proof of the previous lemma, we start by showing that

sup  S(¢,7) < o0,
(6,7)EZXR

where now (with & =& — & — &2)

SET) = D (THEHE+HE)TE) (&) &)

§1,62€Z

< e Y (9T +(36)7 + (3)% + (385)%) T((361)” + (3%2)° + (383)7)

§1,62€Z

Taking k1 = 3(&1 + &) — 2€ and ko = 3(&1 — &) as new indices, we have

3= 3 (ki + k) 6 36 = L0 — ko) +€ and B&s =€~ k.

From this we get

(3617 + (362)° + (36)° = (3K + K3) + 3¢
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It follows

1 1
SEm) < e Do (9m 3%+ S(3RT 4 kD) (S (3K + kD))
k1,ko€Z

c Z Z <9T+3£2+§>_2b<§>_s

r€No 3k2+k2=r

T, _
c Z (97 + 3¢% + §> 2,
r€Np

IN

IN

where in the last step we have used part i) of the above proposition. Since we have
demanded b > %, the introducing claim follows. Now we use Lemma 2.12 to obtain

3
sup [ T+ €7(6) > < 0
i=1

(§,7)€EZXR

with [dv = [dridr Y ¢ cq and (1,6) = S (76,&). Lemma 2.11 gives

3
3 e
I dv Ty (ri+ €70 ™ fulGomillz . < e[ T Iillez .
i=1
implying
3
3
Iy wlis, < eTT Il
e
by Lemma 2.9. Because of [|ul[}s = [[u®[ .2, the proof is complete. O
xt x

Corollary 2.4 Letn =1:
a) For all Hélder- and Sobolevexponents p, q, s and b satisfying

gl ol gl 12 1 12 1
“p 6 q= 2 p 2’ 2 p ¢
the estimate
||u||L§’(Lg) < C”“”X&b(@ (52)

holds true.

b) For all p, q, s and b satisfying

1 1 1 2 1 3 3 1 1
0<-<-<=-<-4-<=,s8>0andb>-——-— —
pPTq 2" p q= 2 4 p 2
the estimate (52) is valid.
¢) For all p, q, s satisfying
1 1 1 1 2 2
0<-< -, 0<-<-—=, s>-—>—-=
p— 6 a2 p 2 p q

there exists b < & so that (52) holds true.
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Proof: i) By the Sobolev embedding theorem in the time variable we have
Xop(¢) C Lg°(L2) for all b > %. Interpolating this with the above lemma, we
obtain (52) whenever 0 < % < %, s> 0 and % = % + %.

ii) Combining this with Sobolev embedding in the space variable, part a) follows.
To see part b), one has to interpolate between the result in i) and the trivial case
Xoo(¢) = L2,

iii) Now for p, ¢, and s according to the assumptions of part c), there exists
6 € ]0,1) satisfying

4921—g 9>1—gands>§—9—g—l.
p q 2 P q
Define sy = 3, by = i—i—ﬁ and p1, ¢ by % = %—i—% and + = 1;—94—‘%. A simple
computation shows, that p1, ¢q1, s1 and by are chosen according to the assumptions
of part a). Now part ¢) with b = 0b; = % < % follows by interpolation between
this and the trivial case. ]

Next we prove the higherdimensional L*-estimates (cf. [B93], Prop. 3.6).

Lemma 2.16 Let n > 2. Then for all s > 5 — ”T” and b > % there exists a

constant ¢ = ¢(s,b), so that the following estimate holds:

lullzs, < ellullx, (g
Proof: We start by showing that

sup  S(&,7) < eN*
(6,7)EZ" XR

ST = Y xn@xnE-&)r+IGalP+1E-&?)

&1€Zn

< e Y xen(28)xan (2(€ — &) (AT + 267 + [2(6 — &) D)

E1€EZN

Here xn denotes the characteristic function of the ball with radius N centered at
zero. With k = 2&) — & € Z™ we have

k+&=26, k—&=2(& — &) and [26]* + [2(¢ — &)* = 2(|¢]* + k[*).
Thus we can estimate

SE7) < > xon(k+Exan(k — &) (AT + 2(1¢* + [k[*)) >

keZn

< ey xan(R)@r € 4 [KP)
keZr

= e Y a2 P
r€No k€Z™,|k|2=r

S CN’n—2+26 Z <27__|_ |§|2 +7,>—2b S CN4S ,

reNg
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where in the last but one inequality we have used Proposition 2.1. Thus the stated
bound on S(&,7) is proved. Now using part a) of Lemma 2.13 again we arrive at

2
1 dv Ty (m + G ™ fil& ) 2, < eN** T il e,

i=1
for all f; € LET which are supported in {(§,7) : |§] < N}. Now Lemma 2.9 gives for
all u; € Xop(¢), ¢ = 1,2, having a Fourier transform supported in {({,7) : [¢] < N}:

2
luruz|r2, < eN?* Hl luill x4 () -
b

Taking u = u; = us we get
S
lellzs, < eN*llull x, (g (53)

provided the above support condition ist fulfilled.
Now let (¢;)jen, be asmooth partition of the unity according to the assumptions

of the Littlewood-Paley-Theorem?*, such that [ fllzacrny ~ (2 jen, 195 * f|2)% L4 (Tn)-
Combining this with the estimate (53) we get

2
lals <e 15jen, 95 *ulllis,

2
<e Y llgulll,

JENo
257 ) 2 2
<c Z 2%l * ullxy o (g) < cllull, ,(e)-
j€Ng
O
Corollary 2.5 Letn > 2:
a) For all Hélder- and Sobolevexponents p, q, s and b satisfying
1 1 1 1 1 1 n 2 n
0<-<-,0<-<=——, b>=, §>—————
p 4 a2 p 2 2 p q
the estimate
lullzpasy < cllullx, () (54)

holds true.

b) For all p, q, s and b satisfying
11 1 1 1 1 1 1 1
0<-<-<-<-+4+-<1 s>n-2)(z—-)and b>1—-——
A 2 q P q

the estimate (54) is valid.

¢) For all p, q, s satisfying
1
p
there exists b < & so that (54) holds true.

0<-<-,0<=-<

NG

4see, e. g., Theorem 3.4.4 in [ST]
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The proof follows the same lines as that of Corollary 2.4 and therefore will be
omitted.

Remark : Because of || fll o gy = [Ifllcr gy and [Ifl x , (—p) = IFllx, ,(p)
the results derived in this section so far hold for X ,(—¢) instead of X, ;(¢). More-
over, by Lemma 2.2 they are also valid for the corresponding spaces of nonperiodic
functions.

Lemma 2.17 Assume that for some 1 < p,q < o0, s > 0 and b € R the estimate
lullrnay < cllull x o(9) is valid. Let B be a ball (or cube) of radius (sidelength)

R centered at & € Z". Define the projection Pgu = F, ' x5F,, where xp denotes
the characteristic function of B. Then also the estimate

1Pl pesy < RNl (o)
holds true.
(cf. [B93], p.143, (5.6) - (5.8))

Proof: If &y = 0, this is obvious. For &, # 0 define
Te,u(z, t) = exp (—iz&y — it|&o|*)u(x + 2t&p, t) .

Then Tg, : LY(L2) — LY(LY) is isometric. For the Fourier transform of Tg,u the
identity

FTeu(€, ) = Fu(€ + &o, 7 — 26&0 — [€0]?)
is easily checked. Now let By be a ball (or cube) of the same size as B centered at
zero. Then we have

FTe, Ppu(é,7) = FPpu(f+&,7 — 28 — &)%)
= xB(E+ &)Fu(é+ &, — 266 — &)%)
= XBo (g)fTE()u(g?T) = FPBonou(faT) .

That is T¢, Ppu = Pp,T¢,u. Moreover, because of

el o) = [ #ldeddrie + 6P IFuE + o7 = 2660 — o)

= [ na@)irts + e+ PP IFu(E + 60,1 = [ullk, )
Te, : Xop(¢) — Xo,p() is also isometric. Now we can conclude

I1Ppullzrzay = TeoPrullzrns)

||PBoT£oU||Lf(Lg)
cRS||T50u||X0’b(¢) = CRSHUHXO’Z)(@

IN

O

Remark : If B is a ball centered at £ and —B is the ball of the same size
centered at —&p, then a short computation using F,u(§) = Fyu(—E) shows that
Pgu = P_pu. From this and ||uHXS’b(_¢) = ”E”Xs,b((b) it follows, that Lemma

2.17 remains valid with X, ;(¢) replaced by X, (—¢). Moreover, as the proof shows,
the Lemma is also true in the nonperiodic case.
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Part 11
Applications: New wellposedness
results

In this part we state and prove the wellposedness results, which we obtained by
the method described so far. The presentation of these results is divided into three
sections:

First we consider a certain class of derivative nonlinear Schrodinger equations,
where the nonlinearity depends only on the conjugate wave w. Due to a rather
comfortable algebraic inequality in this case we can prove a very general result
being valid in arbitrary space dimensions and for all integer exponents larger than
one. Moreover, it covers both the nonperiodic and the periodic case. Here we will
rely heavily on the Strichartz type estimates for the Schrodinger equation in the
periodic case, and - in order to gain a whole derivative - we will use that variant of
the method, where the contracting factor has to come from the nonlinear estimates.

Next we are concerned with nonlinear Schrodinger equations with rough data,
that is, they belong to some Sobolev space larger than L?. This problem has already
been studied in part by other authors, who considered the quadratic nonlinearities in
one space dimension ([KPV96b]) and in the nonperiodic case in two and three space
dimensions ([St97], [CDKSO01] respectively [T00]). Here we investigate the cubic and
quartic nonlinearities in one space dimension and the quadratic nonlinearities in the
periodic case in space dimension two and three.

In the periodic case positive results below L? can be achieved only, if some
fractional derivatives can be completely controlled by an algebraic inequality. With
the only exception of the nonlinearity N(u) = u? in one space dimension (considered
in [KPV96b]) this is the case exactly if the nonlinearity does not depend on u itself.
This is worked out here for the nonlinearities N(u) = @ and N(u) = @* in one
space dimension (with an optimal result), for the nonlinearity N(u) = @? on T?
(with an optimal result, thus answering a question raised in [St97]° affirmatively)
and for the latter nonlinearity on T® (with a probably improvable result). The use

of the Strichartz type inequalities is essential in the derivation of these results.

In the nonperiodic case, due to smoothing, the theory is much richer. For the
quadratic nonlinearities we refer here to the above cited literature (cf. also Example
2.3), for the cubic and quartic nonlinearities on the line see Theorems 4.2 and 4.3
below. In the proofs of these theorems certain bi- and trilinear refinements of the
onedimensional Strichartz’ estimates exhibiting stronger smoothing properties than
the linear ones are essential. I believe these estimates are of interest independent
of their application here. One of the bilinear refinements is the sharp estimate in
Lemma 2.4, leading to Corollary 2.1 due to Bekiranov, Ogawa and Ponce. In order
to state and prove the perfect analogue to this estimate in the case of two unbared

factors (Lemma 4.2), we introduce the bilinear operator I, see Definition 4.1.

5on top of p. 81
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In close analogy to Bourgain’s bilinear refinement of Strichartz’ inequality in two
space dimensions we also have certain trilinear refinements of the onedimensional
L5-Strichartz-estimate. Unfortunately one of these estimates (Lemma 4.3) could
not be shown in the whole range of the parameter s, where it was expected, see
the problem posed in section 4.2. This leads to the unsatisfactory situation that we
cannot say whether or not our results concerning the cubic nonlinearities on the line
are optimal, allthough we can go beyond the result being obtained for N(u) = @
by the use of the standard Strichartz’ estimate in all three cases in question. Things
look better for the quartic nonlinearities, here we can give a complete answer to
the problem and in fact for four of the five candidates we can reach all values of s
strictly larger than the scaling exponent.

In the last section we use similar arguments to prove local wellposedness of the
Cauchy problem for the generalized KdV-equation of order 3 for s > f%, which is
the scaling exponent here. For real valued data the L2-norm is a conserved quantity,
which gives global wellposedness in this case for s > 0. A central role in the proof of
the corresponding nonlinear estimate is played by a bilinear estimate for solutions
of the Airy equation involving the operator I again.

The contents of these three sections were published as preprint, see [Gr00],
[GrO1la], [Gr0O1Db].

3 On the Cauchy- and periodic boundary value
problem for a certain class of derivative nonlin-
ear Schrodinger equations

In this section we prove local wellposedness of the initial value and periodic bound-
ary value problem for the following class of derivative nonlinear Schrodinger equa-
tions

uy — iAu = (Va)?, u(0) = ug € HETL.

Here the initial value ug belongs to the Sobolev space H:T1 = H: T (R™) or H3 1! =
HETL(T™), B € N is a multiindex of length |3| = m > 2 and we can admit all
values of s satisfying

n 1

§> Sp = — —

2 m-1 820

The same arguments give local wellposedness for the problem
u — i1Au = 0;(T™), w(0) =ug € H;

with the same restrictions on s as above. In the special case of a quadratic nonlin-
earity in one space dimension (i. e. m = 2, n = 1) we can reach the value s = 0.
Employing the conservation of ||u(t)[|z2 in this case, we obtain global wellposedness
for

up — i02u = 0, (T?), u(0) =up € Hj.

Throughout this section we will have ¢ : R™ — R or ¢ : Z" — R, & — —[¢]?.
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3.1 The quadratic nonlinearities in one space dimension

Our local wellposedness result here is the following:

Theorem 3.1 Let n = 1 and s > 0. Then there exists 0 = (|lugllz2) > 0, so
that there is a solution u € Xg 1 (@) of the initial value (periodic boundary value)
)

problem
uy — 102u = 0, (a?), u(0) = ug € HE. (1)

This solution is unique in Xg 1 (¢) and satisfies u € Cy((=6,0), HZ). Moreover, for
)

any 0 < 09 < & the mapping data upon solution is locally Lipschitz continuous from
H; to X'y (¢) N Ci((~00,00), H3).

In the same sense the Cauchy and periodic boundary value problem
uy — i0%u = (0,7)?, u(0) = ug € HEH! (2)
is locally well posed, the solution here belongs to X° . 1 (¢) NCy((—=6,6), H:TY) and

s+1,%
is unique in Xi%(d)).

Remarks : i) The Cauchy problem in (2) was considered by S. Cohn in [C92].
He obtained local wellposedness for data in H? provided s > 4 (see Theorem 1 in
[C92]).

ii) For the local solutions of (1) guaranteed by Theorem 3.1 the L2-norm is a
conserved quantity. To see this assume ug € H] first. Then the corresponding
solution u belongs to Cy((—4,d), H.), which gives N (u) = 9,(a?) € C((—9,0), L2).
We can use Proposition 6.1.1 in [CH] to see that

Sl =2re [o0.@@yate) = S [0.@(0) =0,

Now, since we can rely on continuous dependence, the general case follows by ap-
proximation. This gives the following

Corollary 3.1 The Cauchy- and the periodic boundary value problem (1) is globally
well posed for s > 0 in the sense of Corollary 1.4.

By the general local existence Theorem, Lemma 1.14, Remark 1.2 and the re-
mark below Lemma 2.9 the proof of Theorem 3.1 reduces to the following estimates:

)4
{(z,t) : |t| < 0} the following estimates are valid:

Theorem 3.2 Letn =1 and 0 € (0,%). Then for all uy o € Xo,1(¢) supported in

i) ||ﬂlﬂz||)(1 _i(¢) S C50HU1||X0 l(¢)HU2\|X0 1(¢) and

i) Il ) < 8'lnlx, , o) el x, , 0
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Proof: 1. Preparations: Setting v; = u; the stated inequalities read

loellx, () < eloillx, , (—g)l2lx, | (—0) ®)
and
lorvally, () < e llsllx, , (—gylleallx, 4 (—g) - W
To show them, we need the following inequality:
() + () + (&)
(r+ &)+ (n— &) +{r &) ®)

<
< c((T+E)xa+ (i — &) +(n-&)).
Here A denotes the region, where (7 + £2) > max?_,(1; — £2). Defining f;(&,7) =
1 . .
(1 — 22 Fv;(&,7) for i = 1,2 we have HUiHXO’%(_(b) = ||leL§T Now, for given
€ (0,1) we fix e = 1(1 —0).
2. Proof of (3): By Lemma 2.9 and (5) we have:

||”1”2||X1,_;(¢)
= cll(r+€)72(6) [ uld€r)dm [Ty (ri = €)% fulki,m)lle
3
< CZNi
i=1
with .
Ni = || [ uldé)dm [T, (i = €)% ful&m)llie
Ny = |[(7 +€)7% [ p(dér)dn (re — &3) 72 T17y filomi)lloz |
and

N = ||(T +€2)~3 J u(déy)dm (T — )3 ?:1 fi(giﬂ'i)”Lg)T .

Lemma 2.9, Holders inequality, Lemma 2.14 and Lemma 1.10 are now applied to
obtain

A

Ny = [lorvallzz, < loallza flvalles

llorllx, s (- le2lx, . (—9)
c|[thasv1 ||X07%+5(7¢) ||¢26”2||X0,g+5(*¢)

IN

IN

1_4e
Al (o) lvelx, ) (-9) -

Similarly we get

IN

N = F - feellx, o) < Ies(F ey )

IN

05%26||(;E*1f1)v2||X07_§_5(¢)
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< 858 26“(? fl)UQH

< e E|F T Al ||v2IIL4

< 1_9¢

< 0l , (—g)llvaallx, o (—9)
<

1—4e
cd ||U1||XO,%(,¢)|\U2||X07%(,¢) ‘

By exchanging v; and vy we get the same upper bound for N3. So, because of
0 = 1 — 4e, the estimate (3) is proved.
3. Proof of (4): Using Lemma 2.9 and (5) we get
lv1v2lly; (¢ )
= d[(r+ &)U [ p(d&r)dn [T, (n: >7%fi(£ia7'i)“L§(L})

< CZNi )
i=1
where
Ny = (1 + €)% [ p(dér)drixa o, (m §2>“fz(§uTz)||L2 (L1) >
Ny = |[(1 + €)1 [ p(dér)dm(ms — €)= [~ 1 Jil&omi)llz e
and

Ny = |[(r + € [ p(d&r)dri(n — )2 [, fil&omllcz ey

In order to estimate N7 we define
gi(ga’r) = <T - §2>%+Efvi(£v7—) = <T - §2>_%+€fi(577—) .

Then it is ||9iHL§T = ||UiHX0 50 (—0) and
: '3

Ny = [[(r + €272 [ p(d&)drixa[Ti—y (r — €)% ~9i(& i)l Lz
Since in A we have (7+£2) > max?_, (1; —£2) as well as (7 +&2) > ¢(&1)?2, we obtain
Ny < cf| [ p(dér)dm (&)~ 52 T, (i — 512>_1%9i(§i77'i)”L§(L$) ;

which we shall now estimate by duality. Therefore let f; € Lg with || fol| L= 1 and

fo > 0. Now applying Cauchy-Schwarz’ inequality first in the 7- and then in the
&-variables we get the desired upper bound for Ny:

2
/N(d§d§1)deT1f0(f)<§1>_“25 I - )" F gi(&i,mi)
=1
2

= [ wagdg)andni + &)6)F [[in - &) Falm)

i=1
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<c [ utdgidea) folea + &6 > ([ anlates )

2 2 2
1_
se Mol <ellily, (g =™ 1, 40 -
i=1 i=1 '8 12

i=1
where in the last step we have used Lemma 1.10. To estimate Ny we apply Cauchy-
Schwarz on [ dr:

Ny < cl|(7 + €)%= [ p(dé)dm(r2 — )% [T, fil& ) ez
= ”77[’25(]:71101)02||X07_;+E(¢) :

This was already shown to be bounded by

2
1—4e .
o H ||Uz|\X07%(_¢) .

i=1
The same upper bound for N3 is obtained by exchanging v; and vs, so the estimate
(4) is proved, too. O

3.2 The general case

The local result in the previous section can be extended to higher dimensions and
(integer) exponents:

Theorem 3.3 Let m,n € N, m > 2 and m +n > 4. Then for s > s. there exists
6 = (||uollms) > 0 and a unique solution u € Xj 1 (p) of the initial value (periodic

boundary value) problem
up — tAu = 0;(T™), u(0) = up € H.

This solution is persistent and for any 0 < §y < § the mapping data upon solution
from HE to X;SOl (¢) N Ce((—d0,00), HE) is locally Lipschitz continuous.
2

For any 8 € N with |B] = m and under the same assumptions on m,n,s the
Cauchy problem and the periodic boundary value problem
uy — iAu = (Va)®?, u(0) = ug € H:H

is locally well posed in the same sense.

Remarks : 1. The special case in Theorem 3.3, where n =1, m = 3 and s > 0,
has already been proved for the nonperiodic case by H. Takaoka, see Thm. 1.2 in
[T99].

2. A standard scaling argument suggests, that our result is optimal as long as
we are not dealing with the critical case s = s.. In fact, if u is a solution of the first
problem in Theorem 3.3 with initial value up € HZ(R™), then so is uy, defined by
up(z,t) = )\ﬁu()\x,)\zt), with initial value u(z) = ug(Az), and [|ul]| 7= (R™) is
independent of \. :

By the general theory presented in part I the proof of Theorem 3.3 reduces to
the following estimates:
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Theorem 3.4 Let n,m € N with m > 2 and m +n > 4. Assume in addition,
that s > 5 — ﬁ Then there exists 0 > 0, so that for all 0 < § < 1 and for all
ui € X, 1(8), 1<i<m, having support in {(x,t) : [t| < 6} the estimates

i) TSl gy < O T luillyx () ond

N

i) T Tilly, gy < e T el ()

Nl

hold.

To prove Theorem 3.4 we follow the ideas of section 5 in [B93] - essentially we
present a simplified version of the proof given there. Here some instructive hints
from [G96], section 5, were helpful. In particular, we do use Hilbert space norms
instead of Besov-type norms as in [B93]. Perhaps it is worthwile to mention, that
for the nonperiodic case there is a much easier proof, using the full strength of the
Strichartz estimates in this case. Before we start, we need some preparations:

We shall use the notation introduced in section 2 (before Lemma 2.5), but with
X denoting in fact the characteristic function of a set M C R"™ or M C Z", so that
the operators Py, := .7:3:_1)( MmFz become projections. Next we shall fix a couple of
Hélder- and Sobolevexponents to be used below:

1. We choose % = m Then for any s > 5 — ﬁ by Corollaries 2.4
and 2.5, part c¢), there exists b < %, so that the following estimate holds:

lullzs, < ellullx, ,(+4) (6)

2. Next we have pio = % + ¢ for n = 1 respectively p% = i +¢eforn > 2 and

so = € if n = 1 respectively so = (n —2)(3 — 1%0)—1-6: =2 4 (3—n)eifn > 2.

Then, if € > 0 is chosen appropriately small, by Corollaries 2.4 and 2.5, part b),
and Lemma 2.17 there exists b < % for which we have the estimate

1Ppullyzy < R ullx, , (4g) ™)

whenever B is a ball or cube of size R. Dualizing the last inequality, we obtain

1Pl ) < cBONull (®)
’ xt
where 1% = % — ¢ for n =1 respectively pi, = % —¢eforn > 2.
9] 0
3. We choose p% = %—5— 3(7;’;21) for n = 1 respectively p% = %—5— %

forn >2and s; = 5 — "p—tQ +e¢e. Then it is 81 = % — ﬁ +4e if n = 1 respectively
s = 2 _ %1 +(n+3)e if n > 2, and by Corollaries 2.4, 2.5, part ¢), and Lemma

4 m

2.17 there exists b < % for which
1Ppullpry < R |lull x () - 9)

Observe that our choice guarantees

1 1 m-2 1 1 1 m-2 1
+ —+ == resp. —t+ -+ — =
Po P P 2 P 2 p Do
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(for the Holder applications) as well as for ¢ sufficiently small so + 51 — s < 0.
For m > 3 in addition we shall need the following parameters:

4. Assuming 2 < % without loss of generality, we may choose % = % -2>0,
so that the Sobolev embedding HS C L2 holds.

5. In the case of space dimension n = 1 we define - = & — 6(’”7’_31 o

0 m—1) q0
5+%_§EZZ:?§ —cand oy =¢,ifm =3, aswellas o1 = %—%—qio—ka = z—:‘;’—s—&-%
: 1 _ 1 -3 1 _ s _ 1 -3
lfm24 FOrnZ2letE—1_W_257 qfo—%_z_(nénjm_gand
o1 :%—%—qﬂo—l—gz%—l—%—%—s—i—(n—i—@a Then, for some b < %, we
have the estimate
g
|Psulo ) < R ull x, () - (10)

In general, this follows from part c) of the Corollaries 2.4, 2.5, except in the case
n =1, m = 3, where one can use part b) of Corollary 2.4. (Here we assume s < %
in the cases n =1, m € {3,4}.)

6. We close our list of parameters by choosing % = % - 6(’1’}1__31), q% = % — % =
% + 3(’2;31) for n = 1 respectively % =g, qil = % for n > 2. Then, by Corollary

2.4, part c), in the case of space dimension n = 1 and by Sobolev embedding in the
time variable in the case of n > 2, we have the estimate

1Poul s oy < R lull g, (20) (11)

for some b < % Now for the Hélder applications we have

1 1 1 m-3 1 1 1 m-3 1
—+ -+ =+ =—+-+—+ ==
ro 2 711 p 9 49 ¢ p Do

as well as for e sufficiently small sg + 01 +e— s < 0.

Now we derive three praparatory lemmas:

Lemma 3.1 Letn,m € N withm > 2 and n+m > 4. Then for s > %—ﬁ there
exists b < %, so that for all v; € Xsp(—¢), 1 < 1,5 < m, the following estimate is
valid:

m
N o) Ty villzz, < [T Ioillx, (g
=1

where J* = Fp, ) F,.

Proof: Writing

m m m

[ = jim [T #w = 3 (I 2= [T oo
i=1 =1 i
i#j

=1 leNg =1 =1
i#g i#j i#]
where
m m m
112w =[] Pavi = D (I Povvi) Paror(] | Prvi)
i=1 i=1 k=1 i<k i>k

i#] i#] k#j i#j i2j
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we obtain
[(J%v;) Hi;ﬁj Uz’HLit

S>> 1(7%0;) (I i<k ProrviPacor(ITeze Froi)) .z, (12)

<
leNy i;;
< 3 Yo Parw) [y Proal,

IEN, k=1
Next we estimate the contribution for fixed [ and k:
1(7*0;) (Paror) ([Lig,; Proa)ll3.
> ez (Por, Jsvj)(PAlUk)(Hz;ék SRl

= Y < (PoJvu)(Pame)(]] Bvi),(P%Jsvj)(PM)(H Prug) >
a,BEZN i#k,j i#k,j

Now the sequence {(Pqt J°v;)(Parvr)([]iz; Pivi) taezn is almost orthogonal in
the following sense: The support of F(Pajvk)([];; Prvi) is contained in {(¢, 7) :
€] < (m —1)2'}, and thus F(Por J*v;)(Parvr) (1,4, Pivi) is supported in C' x R,
where C is a cube centered at 2'a having the sidelength m2'. So for [2'a — 2!3| >
c,2!m, that is for |« — 8| > c,m, the above expressions are disjointly supported.
Thus for these values of o and 3 we do not get any contribution to the last sum,
which we now can estimate by

SN < (Po T (Parwk)( [ P, (Pt Jv;)(Parvw)( IT Pwi) >

acZm™ l[ﬁ;f:m i#k,j i#£k,j
<ey ”(PQlaJSvj)(PAlvk)(Hz;ﬁk]BUZ)H (13)
a€gZn
s 2
<e Y 1(Pgr J*v;) (Pawor) ([ o)l
acZm o

Next we use Holder’s inequality, (6), (7) and (9) to get

(P, J*v;) (Parvr) (T Lizx j vi)ll 2,

< N Po, T vsll e | Parewllzy TT lloille, (14)
i#h.j
I(
< 2Py Tl x| Parkllx,  (— g ) 11 lvill x, ¢
z#’w

for some b < 3. Using HPNW”XOI)(—QS) < 62_3l||vk||X§ b(—¢) Ve combine (13)
and (14) to obtain: 7 /

1C7%05) (Pavor) [Li g Proolly.
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< oot ST Py Pl T, ()
5. ’ i£] 7

022l(30+5175) ”,UHQ )
7 XS —
11:11 b(=9)

Inserting the square root of this into (12) and summing up over k and ! we can
finish the proof. a

Corollary 3.2 For n,m and s as in the previous lemma there exists b < %, so that
for all v; € XS,%(fQS), 1 <i,j < m, the following estimate holds true:

1(A% %0)) | J oy ”i”Xo,—b((b) = cllvj”& 1(=¢) 11 HUZ'”XSJ)(—@ ’

i
where A3 = F~ Y7 — |¢[2)3 F.

Proof: Let the v;’s be fixed for ¢ # j. Then the previous lemma tells us, that
the linear mapping

m

Aj o Xop(—0) — L2, fFr (e H ] v
2
is bounded with norm || 4,|| < CHE; ”vi”Xs,b(—@' The adjoint mapping A7}, given
by
A1 = X w(-0), gl g]] ™)
i=1

i#]

then is also bounded with [|A%]| = [|A;||. From this we get for g = Az Jsv;:

||(A%Jsvj) H;il,i;éj vi‘|X077b(¢) ||JS(A%JS”J') H?;Li;éj Uii”st,fb(—(b)

<Az, [ lill x, ,(~g) CHUJ'HXS’%(_d)) 11 lvill x, ,(~g)
=1 i=1
i#] i#]

d

Lemma 3.2 Let n,m € N withm > 2, n+m >4 and s € (% — 1=, 2). For
n=1, m e {3,4} assume in addition, that s < % Then there exists b < %, so that

for all v; € XS’%(—(;S), 1 <i,j < m, the following estimate is valid:

1) Ao T orlx () = €llallx, y (-g) T Henllx, ()

kst

Here again we have A% = .7:_1<7' — |§|2>%]—',
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Proof: 1. Similarly as in the proof of the previous lemma we write

m m m

1 1 1

Az || v = E (PA2 v, || P, — P_1Azv; || P_yv)
k=1 1eN k=1 k=1
k#i,j k#i,j k#i,j

with

]DZA%UJ H Plkaﬂ_lA%'Uj H P_yv

k=1 k=1
ki, ki)
m
1 1
= PanAzv; || P + P_1A2 v, E ( Il P _1v,) Pajvr( || Pu,) .
k=1 ki i v<k v>k
k#i,j 74 v#i,j vi,j

From this we obtain for arbitrary b:

[(J*v;) (A3 ;) Py Uk”Xo,_b((?)

< > ”(Jsvi)(PAlA%Uj)Hky&i,jPlvk”XO () (15)
1eNg ’

+ Yy H(Jsvi)(]DlA%vj)(PAlwk)Hu;ﬁi,j,kHUV||XO)7b(¢)
ki, 1EN

2. Next we show that for some b < % the estimate
||(Jsvi)(PAlA%Uj) Hk;éi,j PZU’CHXO’,Z,(@

< C2l(so+31—s)||vj||XS L (=) H ||%'HXS »(—9) (16)
»2 i=1 ’

i#]

holds true. To see this, we start from
s 1 2
1070 (Paih o) Ty Pl ()
1 2
| Zaczn (Por J*0i) (Paidv)) Tlai s el ()

1 2
< e D I(Poy T v) (Parh#u) Tisis Pkl ()
aEZ"

where in the last step we have used the almost orthogonality of the sequence
1

{(Pq J2vi) (P2 0;) [Tz s Pivktaezn. Now we use (8), Holders inequality, (9)

and (6) to obtain for some b < %

(Pgr, T*0;)(Paih2v;) ki s Pl”k”Xo,fb(@

1
< 2"%0|(Pgr J*vi) (PaiN2v;) [Tiss 5 Prokll
xt
< 20| Po Jou; PaAzv; P
< 20| Py Jovill g [|1ParhZvs] 2, [T I1Pwwllce,
k#i,j
<

S 1 S 1
ch(«(J"rs )”PQLJ UiHXOb(_¢)||PAlAZUj||Lit I | H’Uk”XS b(_(b) .
k.5
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. 1 —1
Using [[PaiAZvj| 2, < 2 S”Uj”XS’%(—QS) we get

. 1 2
[(Pr, J*vi) (PaiAzvj) Hk;&i,j PIU’“”XO,,Z,((;S)

< 2l(80+81—8) I 2 . 2 2 )
< 2 1Par T vill X, (g Vil X, 4 (—0) kl;‘”UkHXS’b(_(ﬁ)
0.
Now summing up over o we arrive at the square of (16).
3. Now we show that there exists b < % for which

H(‘]Svi)(PlA%Uj)(PAlvk)Hu;éijkPlUVHXo o(9)

A 1 oY 2 H lvill x, o (17)

o

7#1

Therefore again we write J*v; = ) czn Pq: J*v; and use the almost orthogonality
of {(Pqr, Jsvi)(PlA%vj)(PAlvk) [,k Prvv}aezn to obtain

1 2
[ (J50s) (PA20;) (Pacvi) [T, i ok Pl”vHXO ()

1 2
e 3 Py T (P dv) (Pacwe) Tl Pl ()
acZm ’

Then we use (8), Holders inequality, (10), Sobolev embedding in z, (11) and (6) to
get for some b < %:

[(Pgy, J*v:) (PLAZ ) (Parvr) Tz i Provllx, _y(9)

< c290|(Pgu Jovi) (PARv;) (Parvr) TTss ik Pyl »,
s 1
< 20| Pou J*0il| o 120 | A2 v | 2 ) | Pavvrll oy [T I1Powllie,
vtisgk
l(sot+o1+e—s) Soy. .
< o 1Pgr 7" vill () I0ilx, () 11 Nenllx, (o)

k#i,j
Squaring the last and summing up over a we arrive at the square of (17).

4. Conclusion: Since sy + s1 — s < 0 as well as sg + 01 + & — s < 0 we can now
insert (16) and (17) into (15) and finish the proof by summing up over k and [. O
Lemma 3.3 Let m,n € N with m > 2, m+n > 4 and s > %—ﬁ For
1 S 'ij S m and v; € Xs,%(_d)) deﬁne fz(ga’r) = <§>S<T - |£|2>%fvz(£v7—) and

Goj(e,r) = (7 + Iy [ avtgy) XAH e e il )

where in A the inequality (T + |€]?) > max™,(r; — |&|?) holds. Then there exists
b< % for which the following estimate is valid:

|Go, ||L§(L;) <c H Hvi”Xs,b(—@

i=1
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Proof: We choose ¢ € (0,s — 2 + —L-) with ¢ < —1- and define § = Z-1e.
Observe that, because of

m m

G < (r+1¢P) +Z — &%)

in the region A the inequality

(r+1€P) > c[[(m = 1&1*) 25H T
i=1

1#]

holds. From this we obtain

m

Go;(§7) < C/dV H<fz‘>_s_ﬁ+a I - )20 il ) -

i=1
i#]

In order to estimate ||G0j||L§(L1) by duality let fo € L with fo >0 and ||f0||L§ =1
By Fubini and Cauchy-Schwarz we get:

/ j(d€)drdu o €) Gy (€, 7)

< ¢ / p(dg)drdv fo(€) [ [ (m — 1611 30 (&, m) [ [ (&) =77t
= P
= ¢ / p(dey.de)drdr fo 3 &) T (mi — &) 20 fil&anm) [ &)~ F
i=1  i=1 =1
< / (d€ 1) fo Zgz T =TI / drfils, )2 — &) %)%
= &
< cH / (de){e) >+ [T It — 1624 e,
1¢J =1
< cJlfitr— 1€ 2||L2 —CHHUZIIX s(=9) -
i=1
From this the statement of the lemma follows for b = 1—55. O
Proof of Theorem 3.4: 1. Setting v; = u; the claimed estimates read
m ) 6
I vl (g) <0 Hlnvzu X, y(=6) (1)
m 6
Tz villy,,  (¢) < €0 H loillx, 4 (~¢) - (19)

i=1
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. %) as well as s < & for n =1 and

To prove these, we shall assume s € (5
) v;(&,7) we have by Lemma 2.9, that

m € {3,4}. Now for fi(&,7) = (1 —|€]?)2 (¢
the left hand side of (18) is equal to

7

47+ 1€2) 73 &)+ [ dv T {ms — |62 3 4&) ~* filo )z, < e IFillzz
=0
where
/duH P ) il )

and, for 1 <i < m,

Fie,m) = (r+ 6240 [ dvtr— 16) [Tm ~ 16) 46~ e

k=1
Here we have used the inequality
< (r+ 1P+ (m -1 -
i=1

Now by (&) < 25”21({]) it follows, that

< iFOj(&T), Fi(€,) < Zm;Fij(E,T) 7
P e
where
my6n) = | dv<§j>3f[1< &) HE) ™ 6 )
and 7
Fi(&,m) = (t+g) 2 / dviri — |&[?)7 (¢ >f[lm—|5k|2>—%<5k>—8fk<fk,m>.

2. To derive the estimate (19) we use the inequality
(€)* < c((r + & XA+Z — &%) .
i=1

where in the region A we have (7 + [£]?) > max, (1; — |&|?) (cf. Lemma 3.3). Now
again by Lemma 2.9 we see that the left hand side of (19) is equal to

[T+ [EP) "1 [dv TiL, (T — |£i‘2>7%<§i>7sfi(§i77'i)”L§(L;) < CZ HGz‘HLg(L;),

i=0
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where now

Gole,r) = (r+IR) b /duxAH &)

S ZGOJ (577-
j=1

with Go; precisely as in Lemma 3.3, and for 1 <¢ < m

N\»—A

T2(&) " fil&is i)

Gilé,r) = (r+ P 1) [ dvtri— 6P) 4 1L 6l ) o)

Using Cauchy-Schwarz’ inequality the estimation of G;, 1 < i < m, can easily be
reduced to the estimation of F;, in fact for any € > 0 we have:

1Gill 2 (ne) < cell(m + € Fill 2. < eell{r + 1€1°)* Fijll e

Jj=1

3. Using Lemma 2.9 and Lemma 3.1 we have for 1 < j < m:
1Fojllzz, = el (Tvi) TTZy i il 2, < CH1 lvill x,

for some b < % Now we use Lemma 1.10 to conclude that

1Fojl 2z, <C59H||Uz|\x 1(~9)

i=1

for some 6 > 0. Similarly, but using Corollary 3.2 (resp. Lemma 3.2) instead of
Lemma 3.1, we get the same upper bound for ||(r + |£|2>5Fij||L§T7 provided ¢ is
sufficiently small, for 1 <i=j <m (resp. 1 <i# j < m). Now the estimate (18)
is proved. For the proof of (19), it remains to show that HGOJ‘HLg(Li)a 1<j<m,

is bounded by the same quantity. But this follows by Lemma 3.3 and Lemma 1.10.
O
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4 Some local wellposedness results for nonlinear
Schrodinger equations below L2

4.1 Statement of results

The first local (in time) wellposedness results below L? for the initial value problem
for nonlinear Schrodinger equations (NLS)

ug — iAu = N(u,u), u(0) = ug

were published in 1996 by Kenig, Ponce and Vega in [KPV96b]. (Here the initial
value ug is assumed to belong to some Sobolev space H = H(T™) or H: = H:(R")
with s < 0.) These authors considered the nonlinearities

Nl(uﬂﬂ) = u2a N2(uvﬂ) = uﬂ, NS(uaﬂ) :ﬂ2

in one space dimension. They obtained wellposedness for N; and N3 under the
assumptions ug € H3(R), s > —% or ug € H:(T), s > —% and for N, provided
that up € H:(R), s > *i' Using appropriate counterexamples they also showed
that these results are essentially sharp. This was followed in 1997 by Staffilani’s
paper [St97], where wellposedness for NLS with N = N3 and up € Hi(R?), s > —1
was shown.

A standard scaling argument suggests that there are even more possible can-
didates for the nomlinearity to allow local wellposedness below L?: The critical
Sobolevexponent for NLS with N (u, @) = |u|*u obtained by scaling is s, = % — 2.
So, for N;, 1 < i < 3, there might be local wellposedness for some s < 0 even
for space dimension n = 3, and in one space dimension also for cubic and quartic
nonlinearities positive results seem to be possible. This conjecture is also suggested

by Example 2.1.

Recently new results concerning this question have appeared: In [CDKS01] Col-
liander, Delort, Kenig and Staffilani could prove that in the nonperiodic setting all
the results on N;, 1 < ¢ < 3, carry over from the one- to the twodimensional case
(with the same restrictions on s), cf. Example 2.3. Concerning the threedimensional
nonperiodic case, Tao has shown wellposedness for NLS with the nonlinearities Ny
and N3 for s > —1 and with N, for s > —1 (see [T00], section 11, cf. Example 2.2).
So concerning the quadratic nonlinearities in the nonperiodic setting the question
is meanwhile completely answered.

Also the following illposedness result should be mentioned: In [KPVO01] it was
shown that in the continuous case in one space dimension the NLS with nonlinearity
N(u,u) = ulu|? is ill posed below L? in the sense that the mapping data upon
solution is not uniformly continuous, see Thm. 1.1 in [KPVO01].

Here the remaining cases are considered, our positive results are gathered in the
following three theorems dealing with the periodic case (Theorem 4.1), the cubic
nonlinearities in the onedimensional nonperiodic case (Theorem 4.2) respectively
with the quartic nonlinearities on the line (Theorem 4.3). Throughout this section
we will have ¢(&) = —[£|?.
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Theorem 4.1 Assume

i) n=1, m =3, s>—%,or
i) n=1, m = 4, s>—%,0r
i) n =2, m =2, s> %,07’
i) n=3, m=2, s> —3 .

Then there existb > 1 and § = §([[uol| s (Tny) > 0, so that there is a unique solution
U € Xg}b(gb) of the periodic boundary value problem

ug — tAu =1u", u(0) = up € HJ(T").

This solution satisfies u € Cy((—9,9), HE(T™)) and for any 0 < dy < ¢ the mapping
data upon solution is locally Lipschitz continuous from HZ(T™) to Xffb(qb),

The nonlinear estimates leading to this result are contained in Theorems 4.4, 4.5
and 4.8, see sections 4.3 and 4.4 below. For i) and iii) our results are optimal in the
framework of the method and up to the endpoint, in fact there are counterexamples
showing that the corresponding multilinear estimates fail for lower values of s, see
the discussion in section 4.3. For ii) the scaling argument suggests the optimality
of our result. The restriction on s in iv) can possibly be lowered down to —%,
cf. the remark below Thm. 4.5. All the following results are restricted to the
onedimensional nonperiodic case:

Theorem 4.2 Assume
i) s>—2 and N(u,u) = u® or N(u,u) =u, or

i) s> —2 and N (u, ) = uu>.

Then there exist b > 1 and § = S([luoll s (ry) > 0, so that there is a unique solution
U € Xg}b(gb) of the initial value problem

uy — i0%u = N(u,7), u(0) = up € Hy(R).

This solution is persistent and for any 0 < dg < § the mapping data upon solution
is locally Lipschitz continuous from HZ(R) to Xffb(qﬁ).

For the corresponding trilinear estimates see Theorems 4.6 and 4.7 (and the
remark below) in section 4.3. We must leave open the question, whether or not the
bound on s in the above Theorem can be lowered down to —%, which is the scaling
exponent in this case. This question is closely related to the problem concerning
certain trilinear refinements of Strichartz’ estimate posed in section 4.2.

Theorem 4.3 Let s > —% and N(u,u) € {u*,u*n,wu’,u*}. Then there exist
b>1andé = S([[uoll s (ry) > 0, so that there is a unique solution u € ng(gﬁ) of
the initial value problem

uy — i0%u = N(u,7), u(0) = up € H;(R).

This solution satisfies u € Cy((=6,0), H:(R)) and for any 0 < 69 < § the mapping
data upon solution is locally Lipschitz continuous from HE(R) to ng’b(qb). The same
statement holds true for s > —% and N(u, @) = |u|*.
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See Theorems 4.8 and 4.9 as well as Proposition 4.1 in section 4.4 for the crucial
nonlinear estimates. The —%—results should be optimal by scaling, while for the
|u|*-nonlinearity the corresponding estimate fails for s < —é7 cf. Example 4.5.
Further counterexamples concerned with the periodic case are also given in section

4.4.

4.2 Refinements of Strichartz’ inequalities in the onedimen-
sional nonperiodic case

Lemma 4.1 Let n = 1. Then for all by > % > s >0, the following estimates are
valid:

i) ||u§||L$(H£) < c||vHX07b0(¢)||uHX07b(¢), provided b > i + 3,

i1) ||U@||Lf(H;) < c||UHXO b0(¢)||u\|X0 by (6)7 provided ]% = % + 3,

. 1 S
ii1) ||vw||XU’b,(¢) < c||v“X07bo(¢)”wHLf(H;S’”)f provided o <0,V < —% — 5.
Proof: We start from
1
_ < 1
T, 8, < el x, 00 >
(see Corollary 2.1). Combined with
] < b 3
lomlee, < ellullgy ) lxouie)y P> o
which follows from Strichartz’ estimate (cf. Lemma 2.2), this gives
1
v 1 < —.
I, 3, < ol @ llxo 0y b (20)
On the other hand, by Holder and again by Strichartz’ estimate we have
_ 1
lomlzz, < ellollzs, Nellze, < el ) lulxg @) B> gobo >3 @D

Now, by interpolation between (20) and (21), we obtain part i). To see part ii), we
interpolate (20) with

_ 1
lwvllzszy < Ml lulloses) < ellvllx, (@) 14l x,, () bo >3,

which follows from the L§(L%)-Strichartz-estimate. Next we dualize part i) to obtain
part iii) for 0 = 0. For o < 0, because of (£1) < ¢(£){(&2), we then have

lvwllx, () < ell(T7)T 0 x , (0) < vl (@) 102z
O

Remark : Taking 0 = —2 € (—%,O] in part iii), we obtain Theorem 1.2 in

2
[KPVI6b).

In order to formulate and prove an analogue for Lemma 4.1 in the case of two
unbared factors, we introduce some bilinear pseudodifferential operators:
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Definition 4.1 We define I° (f, g) by its Fourier-transform (in the space variable)

Pl (fo)@:= [ dale — Gl Fef(6)Fagl)

If the expression |1 —&a|® in the integral is replaced by (&1 —&2)*, the corresponding
operator will be called J*(f,g). Similarly we define I3 (f,g) and J5(f,g) by

FEG9©= [l + 2l Fu (@) Fagléo)
§1+82=¢
Remark (simple properties) :
i) For functions u, v depending on space- and time-variables we have
FIZ (u,0)(§,7) = /§1+§2=5 d&rdmi )& — &o|* Fu(&r, 1) Fo(6z, o)
T1+T2=T

and similar integrals for the other operators.

ii) I°(f,g) always coincides with I® (g, f) (and J* (f,g) with J% (g, f)), since we
can exchange £; and & in the corresponding integral, while in general we will

have I3 (f,g) # I1(g, f) (and JL(f,9) # Ji (g, f))-
iii) Fixing u and s we define the linear operators M and N by
Mv = J? (u,v) and Nw := J3 (w,).

Then it is easily checked that M and N are formally adjoint with respect to
the inner product on L2,

Now we have the following bilinear Strichartz-type estimate:
Lemma 4.2

1 02 .02

112 (e uy, € ug)| 12 < cllua|l 2 |luzll L2

Proof: We will write for short @ instead of F,u and [ d&; for [ _d&.
. . . . * §1+€2=¢
Then, using Fourier-Plancherel in the space variable we obtain:
”I% (eit82ul £it0?
— 9

= c/dﬁdt

2
— o [ asar [ dgnamem S EED 16— oy ) [0
=1

u2) 2.
2

/d§1|€1 — &) e MEHE) gy (£ )a (&)

2
— ¢ [ de [ dadmtt + a3 - & - )(1a ~ €allm — m) et

2
= o e [ dcuimotait - & + €@ ~m(e - &l mh? [Tt
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Now we use 6(g(x)) =>_, mé(x — ), where the sum is taken over all simple
zeros of g, in our case:

g(z) =2(2* + £(6 — @) — &)

with the zeros z1 = & and a9 = £ — &, hence ¢'(z1) = 2(2§ — &) respectively
g'(x2) = 2(€ — 2&1). So the last expression is equal to

C/df/*d&dmmé(m —e)(06 — &llm — ) [ ae)tm)
2
+oofaf s g bom = (€ = )6 = llm — ) T €70

- c/dﬁ/*d&f[lldi(&)F +c/d§/*d§1a1<sl)

2 2
2 PPN 2 2
o(TT hall3 + lanaall3) < e [T el 2.
=1 =1

@ (&2)ti2(82)02(61)

IN

O
Corollary 4.1 Let by > % and 0 < s < % Then the following estimates hold true:
) 12 )z, < cllullx, , (o) lollx () Provided b> 5 +3,
ii) ||Jj(v,ﬂ)\|X07b/(¢) < cHu||X0,b0(¢)Hv||Lit, provided b < —% -3

Remark : In i) we may replace J* (u,v) by J* (u,7), in fact a short computation
shows that J* (u,v) = J* (u,v).

Proof: By Lemma 2.1 we obtain from the above estimate

1 1
12 o)z, < ey, @) Plx0p(0)  Bb0> 5

Combining this with

< < b 1 b 1
lavllzz, < lulloe, lollzs, < ellullx,, @)lolxo, 0 B> 100> 50

we obtain i) for s = 1 and s = 0.

To see i) for 0 < s < %, b > % + 5, we write w = APy, where A? is defined by

FAv(E,7) = (1 + 2P Fv(€, 7). Then we have to show that
12 (1, A0 2, < ellullx, (gl (22)

where

172 (u, A~ Pw) | 2, = || fgligzi;<5l — &) Ful&r, 1) (2 + €§>*b]?w(§2,72)||L§7~
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Notice that, by the preceding, (22) is already known in the limiting cases (s,b) =
(0,4 +¢) and (s,b) = (3,5 +¢), e > 0. Choosing e =b— 1 — £ we have

(61 -6+ &) <+ &) T (G &) ()T
and hence

_ _1_ i _1_
172 (u, A= Pw) [ 2, < lu(A~37w) [ 2, 412 (u, A= 2 75w)| 12, < cllull x, . () 1wz, -

xt

Finally, ii) follows from i) by duality (cf. part iii) of the remark on simple
properties of J%). O

In view on Bourgain’s bilinear refinement of the L2,-Strichartz-estimate (Lemma
2.5 and Corollary 2.2) and on the fact that the exponent in the onedimensional
Strichartz’ estimate is 6 the question for trilinear refinements of this estimate comes
up naturally. Here we give a partial answer to this question, starting with the
following application of Kato’s smoothing effect:

Lemma 4.3 Let 0 < s < i, b > % Then the estimate

luruzuslcz, < clluill x, (@) lu2llx_, (o) lusllx, ,(0)

holds true.

Proof: For s = 0 this follows from standard Strichartz’ estimate, for s = i we
argue as follows: Interpolation between the LS-estimate and the Kato smoothing
effect (part i) of Lemma 2.3) with 6 = 1 yields

Juall sz 2y < el b=
wllpay <dluzllx_, ) 0> 3

On the other hand we have the maximal function estimate
s o) < b> 1
Ut|lrd (L) S CHUlHX%,b((b), > 5

see part ii) of Lemma 2.3. Combining this with Holder’s inequality and standard
Strichartz we obtain

|urugusllpz, < cllurllpaze)lluallpiz e llus| s,
<

cludlix, ,@)luallx_, () lusllxy ()

which is the claim for s = . For 0 < s < % the result then follows by multilinear
interpolation, see Thm. 4.4.1 in [BL]. O

Remark : An alternative proof of Lemma 4.3 (up to €’s) not using the Kato
effect is given in Appendix Al.

Problem: Does the above estimate hold for % <s< % ?
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Corollary 4.2 Assume 0 < s < % and b > % Let o denote u or w. Then the
following estimates are valid:

1) lnastsll ez, < clullx ,g)lluzllx_, ,g)lluslx, ()
) latatsl x| () < cllwalle luell x|, gy lusllxg (o)

i) \[tntots| L2 gy < clluall x| ()l x o (0) 13l x4 (4)

w) llntdetsllx_ (p) < clluallzas )l x, o)1l x4 (4)-

Proof: Clearly, in |luiugus||z2, any factor u; may be replaced by u;. This gives
i). From this we obtain ii) by duality. Writing (§) < (1) + (&2) + (¢3) and applying

i) twice (plus standard Strichartz), part iii) can be seen. Dualizing again, part iv)

follows. O

In some cases, using the bilinear estimates in Lemma 4.1 and in Corollary 4.1,
we can prove better L?(H?)-estimates:

Lemma 4.4 i) For |s| < 1 <b the following estimate holds:

lurtzusicz gy < elluallx , (g)lluzll xg , (0) 1usllx, ()
i1) For —% <s<0,b> % the following is valid:

lurtzusicz gy < cllunllx ()2l x, ) 1usll x4 ()

Remark : Using multilinear interpolation (Thm. 4.4.1 in [BL]) we obtain

lurzuslicz g < ellmllx, o g)lluellx,, (g)lluslx,, (o)

provided —% <s<0,b> %, s1,2,3 < 0 and s1 4 s2 + s3 = s. Moreover, we may

replace u1usuz on the left hand side by wusts.

Proof: First we show i) for s > 0. From (£) < ¢((&1 + &) + (&3)) it follows that
lui@aus| L2 (msy < cllJ*(w2)us|[r2, + [wiT2 S us|[2, =: ¢(N1 + Na).

Using the standard LS,-Strichartz-estimate we see that N» is bounded by the right
hand side of i). For N; we have with s = %, 1-s= é (= H* C L4, Hz C H"P):

Ny cll I (uim2) || L2 (zeyllusll Lo (na)

INIA

c||U1U2||L?(H§) l[usl| Lge o)

IN

cllullx, () lu2llxg () 143l x, 4 (0)

by Lemma 4.1, part i), and the Sobolev embedding in the time variable.
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Next we consider i) for s < 0. Writing (£3) < ¢((§) + (&1 + &2)), we obtain
luitaus || L2 msy < cllwi@e usl| 2, + |7 (uiti2) S us|| L2 (msy =t (N1 + Na).

To estimate N; we use again the standard LS,-Strichartz estimate. For Ny we use

the embedding L? C H?®, s — % = —% and Holder’s inequality:

IN

Ny cl[J 7 (wm2) JPus L2 La)

IN

el J 7% (urz) HL,?(U;;) lusll Lo (),

where % = %—l—%. The second factor is bounded by c||ug HXs,b((b) because of Sobolev’s

embedding Theorem in the time variable. For the first factor we use the embedding
Hz C H™%P (observe that s = f%) and again Lemma 4.1, i).

We conclude the proof by showing ii): Here we have £ = (§1 +&2) + (£&3+&2) — &
respectively (£&2) < c((§) + (&1 + &) + (&3 + &2)) and thus

|u1@aus||p2(psy < c(N1 + N2+ N3)
with
Ny = un (S @)uslz, < cllullx, o) luzllx, (o) lusll x4 (o)
(by standard Strichartz) and
No = [T (u1 J*U2)us|| 25y, N3 = llun = ((J°T2)us) || L2 (ms)-

By symmetry between w; and wug it is now sufficient to estimate Ny: Using the

embedding LY C H®, s — % = —%, Holder’s inequality and the embedding Hz C
H=P —s= % we obtain
No o < oI (w1 u2)us| L2 (La)

IN

cllJ 7 (ur I )| L2 Lry lusll oo (z2)

IN

ol|J % (ur J¥s) | 2, [lusl Lo (z2)-
Again, Lemma 4.1, i) and the Sobolev embedding in ¢ give the desired bound. O

Lemma 4.5 For —% <s<0,b> % the following holds true:

luruzusll 2oy < ellunll x|y luzll xg , (0) sl x4 (0)

Remark : Again we may use multilinear interpolation to get

luruzusllez < elullx, (o)l (o) lusllx,, o (0)

for f% <s<0,b> %, 51,2,3 < 0 and s; + s + s3 = 5. The same holds true with

uiusug replaced by uiusus.
Proof: It is easily checked that for p, A > 0 the inequality

(& — &) n (& — &)rt?

<€1>p < C(<€>p + (&1 + £2>,\ & +€3>>\

)
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is valid, if £ = &; 4+ &2 + &3. Choosing p = —s and A = s + % it follows, that
luruzus| Lz (msy < ¢(N1 + N2 + N3),
where
Ny = (T a2, < clmllx, ) luell () 150 0 5 (0)
(by standard Strichartz) and
1 1
Ny = |[(J7AT2(J*ur, ua))usll 2 sy, Na = [[(J7AT2 (5w, uz)usl| 22 sy

Now, by symmetry between us and wg, it is sufficient to estimate Ns. Using the

embedding L? C H?®, (s — % = f%) and Holder we get

1
Ny < o[ JAIZ(T%ur, uz)usll L2 (1g)

A

1
| T AT (TPur, uo)ll 2 opyllusl e 22
with ¢ = 5+ 1. The second factor is bounded by CHU3HX07};(¢)' For the first factor
we observe that L2 C H~*P, so it can be estimated by
3( s
172 (w2, < ellunlly gy lelxg ,(0):
where in the last step we have used Corollary 4.1, ). O

4.3 Estimates on quadratic and cubic nonlinearities

Theorem 4.4 Letn = 1,m =3 orn = 2,m = 2. Assume 0 > s > —+ and

—% < b < 5. Then in the periodic and nonperiodic case for all b > % the estimate

LS Wil x () < Ciljl luillx, o (0)
holds true.
Proof: Defining f;(&,7) = (1 — [£]2)2(€)s Fu; (€, 7), 1 < < m, we have
T2 @l x, 0 () = €llim + €17 [ dv T (i = [& ) =€)~ fil&s mi)ll 2 -

Because of

THEP =D (- l&l%) |§|2+Z|§z|2
i=1
there is the inequality
O+ () < (THIEP)+D (- l&P)
i=1 i=1
< (T IEP) + D (m — [&17)xa)),
i=1
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where in A; we have (r; — [§]?) > (7 +]¢[?). Since b’ < 2 is assumed, it follows

@ [I&) ™" <elr + 16 + > (mi = 1611 ™ xa,)
i=1 =1

for some € > 0. From this we conclude that
m
T2 @il x, 0 (0) < ey 1502z
j=0

with
h&n = [ duH &) e fi6 )

and, for 1 < j <m,

m

L) = (€ + ) / vy — 16157 T — 1622 (€) = fi(E m)xa

i=1

IA

€)= (r + g2 / 1P T — 602 ) i),
=1

To estimate Iy we use Holders inequality and Lemma 2.15 respectively Lemma 2.16:

Hollzz . < 1 dvII —1&I%) &) filGomi)llee
= CIILZ, il < cH 175~ | L2
i=1
<

cHnJuanOb chHuznxsb

To estimate I;, 1 < j < m, we define p = 2m and p’ by L4 L — 1. Then we use the
dual versions of Lemma 2.15 respectively 2.16, Holders inequality and the Lemmas
themselves to obtain:

Millez < C||(HZ:£3JS_EUi)(J_E}'_lfj)HX,E,fb(@
< el (IT2 T =) (S F )
i#£] x,t
< AT F e, T 1Tl
oy
< dlfjllez HHJSquXOb —CHHUZHX

t#]
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Theorem 4.5 Let n = 3 and assume 0 > s > f%, f% <V <5 - % and b > %
Then in the periodic case the estimate

2
|| Hf:l ﬂi”Xs’b/((ﬁ) S CH ||ul||Xs,b(¢)
i=1

holds true.

Proof: Writing f;(&,7) = (7 — |£?)°(€)* Fu;(€,7), 1 < i < 2, we have
TR Tllx, , () = € + 6 [ v Ty~ 602) 060~ il )l
By the expressions (7+¢£|?) and (1; — |&;|?), i = 1,2, the quantity (£)2+(£1)% +(&2)?
can be controlled. So we split the domain of integration into Ag+ A; + As, where in
Ag we have (7+¢]?) = max ((7 + [£]%), (11 — [&1]?), (72 — |&2[?)) and in Aj, j = 1,2,

it should hold that (r; — |¢;]?) = max ((7 + [£[?), (11 — |&1]?), (12 — |&2]?)). First we
consider the region Ay: Here we use that for € > 0 sufficiently small

2
@5 [T+ < elr+ 1)~
i=1

This gives the upper bound
(€)= [ dv TTi_y{mi — 1&l%) =€) =5 == fil&i, midllz

=l 78l
Now, using the embedding LI C H;l%, %

2.5, part b) (with p =4, ¢ = %, 5> % and b > 29—0)7 we get the following chain of
inequalities:

= %, Holder’s inequality and Corollary

2 I 2 1l
[ TTi=y J°75 EUiHLf(HI—%) <l Lmy I 5l L2 re)
_1_ _1_
< C”JS 5 EU1HL%(L311)||JS 5 EU?HL%(L?L,Q)
<

2
CH ”ui”Xs,b(Qb)'
=1

Now, by symmetry, it only remains to show the estimate for the region A;: Here

we use
1

(€) (7 + [T (&) 7 (&) T < e(€)TE T (m — &)
to obtain the upper bound
) 5= (r + €)™ [ dufu(r, m)(Ee) —3 5 (r2 — E2) T falC o)l e
—FE T Wy, )
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where ||f1HL§7T = ||f71f1”Li,f, = Hu1||XS’b(¢). Now we use the dual form of Lemma

2.16, Holder’s inequality and the Lemma itself to obtain

— 1 _ — ;1 _
|F~ fuTems Eu2||X_i_€ () S dFTAST ]y
El xt
< o F T Allpe, 17575 s s,
<

2
CH HWHXS,,,(@-
=1
O

Remark : In the nonperiodic case we can combine the argument given above
with the L}(L3)-Strichartz-estimate to obtain the estimate in question whenever
s>—2, b <5—1b>1 see Example 2.2. As far as I know, it is still an open
question, whether or not the analogue of this Strichartz-estimate, that is

1
Xoo(9) C LR, L3(T?)), b>5, >0

holds in the periodic case. This, of course, could be used to lower the bound on s
in the above theorem down to —% + €.

Before we turn to the cubic nonlinearities in the continuous case, let us briefly
discuss some counterexamples concerning the periodic case: The examples given by
Kenig, Ponce and Vega connected with the onedimensional periodic case (see the
proof of Thm 1.10, parts (ii) and (iii) in [KPV96b]) show that the estimate

luitialix, , () < ellunllx, g lealx, ()

fails for all s < 0, b,b’ € R, and that the estimate

[mlx, (g <l g lulx, o

fails for all s < —%, if b— b < 1. From this we can conclude by the method
of descent, that these estimates also fail in higher dimensions. So our estimate
on WiUy is sharp (up to the endpoint), while in three dimensions the estimate
might be improved (as indicated above), and for u1%s no results with s < 0 can be
achieved by the method. For the bilinear form B(ui,u2) = ujus in the two- and
threedimensional periodic setting we have the following counterexample exhibiting
a significant difference between the periodic and nonperiodic case (cf. the results
in [CDKS01] and [T00] mentioned in 4.1):

Example 4.1 In the periodic case in space dimension d > 2 the estimate

2
” H?:l ui”Xs’b/((Zs) S CH ”ul”Xs,b(Qﬁ)
i=1

ails for all s <0, b,b’ € R.
[



82 4 NONLINEAR SCHRODINGER EQUATIONS BELOW L2

Proof: The above estimate implies
2

I+ [E12)% )" f dv Tz (i + 6020 €)= G mdllaz . < e[ Iillae -
i=1

Choosing two orthonormal vectors e; and ey in R? and defining for n € N
A& T) = Ogmex(r+12), F5(6,7) = G nesX(7 +1?),

where x is the characteristic function of [—1, 1], we have ||fi(") ||L§ = c and it would
follow that '
B+ 1€ S v T £ Gz, < (23)

Now a simple computation shows that

2
/dVHfi(n)(gi’Ti) 2 O¢ n(er+ea) X(T + 2712)7

=1

which inserted into (23) gives n™° < ¢. This is a contradiction for all s < 0.

The next example shows that our estimate on u;usus is essentially sharp:

Example 4.2 In the periodic case in one space dimension the estimate

3
3 _
I, o) < T elx, )
fails for all s < 77’ ifb—b <1.
Proof: From the above estimate we obtain
3
[+ €24€)* [ dv Ty (me — )7 (€) " filém)llce . < eJTfillz -
i=1
Then for n € N we define
D (6.7) = bemx(T —n?),  f5(E7) = ¢ —anx(T — 4n),

with x as in the previous example. Again we have || fi(n) | 2, =c¢ and

n T+ Y€ [av T, £ (Gl < e

Now it can be easily checked that

3
/dV H fi(n) (&, 7i) > deox (T — 6n?).

i=1
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This leads to n=3s+20" < ¢ respectively to %b’ < s. Consider next the following
sequences of functions

B(ET) = bemx(T450%), g3 (6,7) = Semx(m—02), g8 (€,7) = e _anx(T—4n?).

Arguing as before we are lead to the restriction f%b < s. Adding up these two
restrictions and taking into account that b — &’ < 1 we arrive at s > —%. d

For all the other cubic nonlinearities the corresponding estimates fail for s < 0,
b,b" € R, see the examples 4.3 and 4.4 in the next section as well as the remarks
below. Next we consider the cubic nonlinearities in the continuous case:

Theorem 4.6 In the nonperiodic case in one space dimension the estimates

3
ITE @l () < e T Iuillx, o) (24)
=1
and
3
1Tl o) < LTIl x, 0) (25)
=1

hold, provided 0 > s > —3%, —4 < b < (5 +3s), o <min (0,35 — 20), ' < s and
b> 3.

Proof: 1. To show (24), we write f;(&,7) = (7 + €2)°(&)* Fui(é,7), 1 < i < 3.
Then we have
1T Tl o) = IR vl (o)
= 7 =P €)7 [ dv Ty (rs + )7 (€)™ fuli, )|z -
For 0 < o, 8,7 with a + 8 + v = 2 we have the inequality

3 3

() () (&) <O+ D () <eliT =) + Y (1 +Exan),

i=1 =1

where in A; the expression (7; + £2) is dominant. Hence

3
[ H:;l ﬂi”XU’b, (¢) < CZNk
k=0
with
No = €7 [ v T {ms + €€~ filéo m)llz

2b’

3 3
3 g '
el TTizy I will L2 qagy < e ] I17°5 uill x, 4 (g) = Cil;[l luill x, o (g)

i=1
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where we have used Lemma 4.5 and the assumption o < 3s —2b'. Next we estimate
N1 by

Il(r — &%) (¢ f dv [Ty (i + €))7 €) ™ ful& mi)xan e

el =€) 7€) [ dv(€)® = fi(ér,m) [Tis (i +&) " filGmi)llre
= CH(AbJ%/_qul)(Jsuz)(JsUS)||XU’_b(_¢),

IN

where A = F~1 (7 + €2)°F. By part iv) of Corollary 4.2 this is bounded by

c|| Al “Pullrzag vzl x gy llusl x, (o)
=l ey @ Tl x, <cH||uz|\X

since 20" — 2s + o < s. To estimate Ny for k = 2,3 one only has to exchange the
indices 1 and k. Now (24) is shown.
2. Now we prove the second estimate: With f; as above we have

T3 uillx, () = el (r+ €)Y (€)7 [ v Tz, (i + €)™ &) fil& i)l -

Here the quantity, which can be controlled by the expressions (T + £2), (r; + £2),
1<4<3,is

=1 +&+6 -
So we divide the domain of integration into two parts A and A€, where in A it
should hold that

48+ +32<c cq. .

Then concerning this region we can argue precisely as in the first part of this proof.
For the region A° we may assume by symmetry that £ > £2 > ¢2. Then it is easily
checked that in A¢ we have

L &> 06> 28 and 2. 2 <2< ety £65)°.

N | =

From this it follows

3
—s —0o —s 1
[ <c@ 7+ &) - &)z
i=1
for sg = % + 20 + ¢, so that —3s < —0 — 59 + % = —0 — 2l — ¢ for ¢ sufficiently

small. Hence
(7 + €)Y [dv Ty (ri + €2)~ <§i>_sfi(€iv7—i)XAC“L2
cllm + €)Y [dv(€r + &)™ (€ — &) 2 [1i_ (i + &)~ bfz(fz,ﬂ)lle

= C||(Jsu2)J—SOJE (Jsuh Jsu3)HX0 b’(¢)'

IN
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Using part iii) of Lemma 4.1 (observe that b’ < —% + %) and part i) of Corollary
4.1 this can be estimated by

ellTouall x, , () 1902 (T, Tous) |z o)

3
< clusllx, (oI (T Pz, < e[  luillx, ()

i=1
O
Theorem 4.7 In the nonperiodic case in one space dimension the estimate
3
3 _
o T Tl gy < T Nl (o) (26)
i=1

holds, provided —% > s > —%, —1 <V <min(s— %,—% + %) and b > 3.

Proof: We write f1(£,7) = (1 + £2)%(€)* Fuy (€, 7) and, for i = 2,3,
fi(6, 1) = (1 — E)(€)*Fu;(&,7). Then, using the abbreviations og = 7 + &2,
o1 =7 + & and, for i = 2,3, 0; = 1; — £2, we have
[[ua H§=2ﬂiHXs’b/(¢) cl{o0)” (€)° [ dv Ty (o) ~*(&) = fil&i )2z -
Here the quantity

= |2+ &5 + & — &F] = 26283 — &(& + &)

can be controlled by the expressions (o;), 0 <14 < 3. Thus we divide the domain of
integration into A + A°, where in A it should hold that c.q. > ¢(&3)(&3).

First we consider the region A°. Here we have

1.(&) < c(§) or (€3) < c(§)

and 2.(623) <c(§a£&3) or  (§23) < c(EE£&3).

Writing A® = B; + Bg, where in By we assume (£3) < (£3) and in By, consequently,
(&) > (&3), it will be sufficient by symmetry to consider the subregion B;. Now B
is splitted again into By; and Bj2, where in Byj we assume (€2 3) < ¢(é2 + &3) and
in Bjs it should hold that (£23) < ¢(§ £ &a.3).

Subregion Bi;: Here it holds that (£1)(€2)(&3) < c(§)(€2 — &3)(§2 + &3), giving
the upper bound

[{o0)?" [ dv (s + &) 7% (&2 — &) =" TTizy (o0) Pfiii)llez
CH(JSul)J*SJ__( (J EQ’JSE3)||X0,U(¢)

IN

3
cluallx, , (@) 17=" (1702, J*Ts)l 2, < I luill x, o (g):

=1
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where we have used part iii) of Lemma 4.1 (demanding for b < —1 + £) and part
i) of Corollary 4.1.

Subregion Bis: Here we have
(€1)(E2)(€3) < () (€ — €3)(€ + &3), leading to the upper bound

[(o0)? [dv (&1 + & + 283) (&1 + §2>_SH?:1<Ui>_bfi(€i,Ti)HLgT
— CHJ;S(J*S((Jsul)((]sﬂg))vJ5ﬂ3)||X07b/(¢)

IN

3
clusllx, ()17~ (T ) (Pm)llsz, < ] luillx, ()

i=1

Here we have used part ii) of Corollary 4.1 (leading again to the restriction
Y < —%+ %) and part i) of Lemma 4.1. By this the discussion for the region A is
completed.

Next we consider the region A = Z?:o A;, where in A; the expression (o;)
is assumed to be dominant. By symmetry between the second and third factor
(also in the exceptional region A°) it will be sufficient to show the estimate for the
subregions Ay, Ay and As.

Subregion Ag: Here we can use (£2)(£3) < ¢{op) to obtain the upper bound
||<§>8de<Ul>7b<§1>7Sf1(€1,Tl)H§:2<0i>7b<§i>b/75fi(§uTi)||L§,T
3
= C||U1Jb’ﬂgjb/ﬂ3”Lf(H;) < cH HuiHXs,b((ﬁ)
i=1

by part ii) of Lemma 4.4, provided s > —2 (in the last step we have also used

2
s>b).

Subregion A;: Here we have (£3)(&3) < ¢(o1) and (0g) < (o1). Subdivide A;
again into Ay; and Ay with (&1) < ¢(€) in Ayq and, consequently, (€1) ~ (&3 + &3)
in Ayo. Then for Ay, we have the upper bound

l{o0) ™ f dufr(é1, ) TTi—a o) ~4€)" — fil&s midl 1z
= CH(fflfl)(Jb/ﬂz)(Jb/ﬂs)||X0’7b(¢) < | (F AT ) (T ) || 1y 12

by Sobolev’s embedding theorem (plus duality) in the time variable. Now using
Holder’s inequality and the Lj(LS°)-Strichartz estimate this can be controlled by

3
IF 7 Full g2, 1T uall o poey 1 sl s 120y < CH Juill x b(6)’
i=1 ’
provided b’ < s.

Now Ao is splitted again into Ajg1, where we assume (&5 + £3) < (& — &3),
implying that also (£1) < ¢(& — &3), and Aj92, where (&) &~ (£3). Consider the
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subregion Ajo; first: Using (&1)7° < ¢{&3 — 53)%@2 + 53)*5*%, for this region we
obtain the upper bound

(o0) (&) [ dvfr(6r,m)(6e — &) (o + &a)™° 72 H?:2<Ui>7b<§i>blfsfi(§uTz‘)HLgT
= c||(F—1f1)J—S—%JE(Jb'ﬂ2,Jb'ﬂ3)|\Xs7_b(¢)

_ 1 .1 ; ;_ 1 1
< e[(FH)T TR 2 (I g, IV ) |y (s—5= _E)
_ IR ORI 1 1 1
< el F  fulle, 1T 2 J2(JV T, I Us)||2(La) (]*3:5—#5)
1 / / 3
< clullx, ,(g)I02 (I, I a5) 12, < e [Tlluillx, ()
i=1

Next we consider the subregion Ajss, where (&) & (£3) > ¢(£1). Here we get the
upper bound

l{o0) (€7 [ dvfi(€r, ) {€0) =78 TTisglon) (&)~ 2 filG, mi)ll 1z
= c||(AbJ‘€u1)(Jb 7)) (JY +%ﬂ3)”XS,_b(¢)’ (A =F Hr+&)'F)

IN

A
APl , g 17 el () 197 Bl g )

where we have used s < —l and part iv) of Corollary 4.2. The latter is bounded
by ¢[12_, [Jwill x o(6) prov1ded 5> —15 and s > b’ 4 1. Thus the discussion for

the region A; is complete.

Subregion As: First we write Ay = A1 + Ago, where in Ao it should hold that
(€&1) < ¢(§). Then this subregion can be treated precisely as the subregion Ai;,
leading to the bound s > —%. For the remaining subregion Ass it holds that

(€2)(&3) < c(o2) and (€1) < (2 + &3).

Now Ao is splitted again into Age;, where we assume (§1) < ¢ (£3), and into Asoa,
where we then have <£2> < (&1). The upper bound for Agy; is

1{o0) (€7 [ dv fa(€a, m) (€)™ Tlipa(00) &)~ Fil&s i) 22
C||(Ab_ﬂz)(c’blul)(ﬂ%)|\X57_b(¢) (A2 =FHr - &)'F)

IA

IN

el A Tz luall x,, , () 13l x, () < 1T Il x, ()

Here we have used part i) of Lemma 4.4 (dualized version) and the assumption
s>b.

For the subregion Asss the argument is a bit more complicated and it is here,
where the strongest restrictions on s occur: Subdivide Agss again into Asge; and
A2222 with <§2>2 < <£1> in Agggl. Then in A2221 it holds that

c1) < e(€3) < (€ £ &3),

2
5

((€1)(€2)(&3))5 <
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hence, for e =1+ 2s (> 0),

3
H )7° < cl€a — ) (6 + &),

Then, throwing away the (£)*-factor, we obtain the upper bound

[{o0)¥ (€2 — &) (&2 + &) 2 [Ty (00) " fil& Tilllez
= |(Trun) T T (T, TS| Xow (6)

A

3
< dhully, )20 Tz, < Tl 0

by Lemma 4.1, part iii) and Corollary 4.1, part i) (and the remark below), leading
to the restrictlon b < 45 which - in the allowed range for s - is in fact weaker than
WV <s— = Finally we consider the subregion Asg0s, where we have

<§1>2 < <§2> < (&) =~ (&), implying that

(€)% < c((€2)(E3)) .

This gives the upper bound

3

[{o0)=*(€)* [ dv (1)~ 30 {0y >_bf1(€177'1)H?_2<£i>bl_s+%fi(fiyTi)<0'3>_biiL§J
< | (J7Hug) (AL TP+ 6w (S +10“3)”)( (@)

Now using s < —i again and part ii) of Corollary 4.2 this can be estimated by

C”ulnX—i—i,b((ﬁ) ||Ab_=]bl+%ﬂ2|hgt||U3|\Xb,+17107b(¢) < CH luill x, 4 ()

20

since s > —% and s>b + E as assumed. O
Remark The estimate (26) also holds under the assumption s > —7, V' < %
and b > =. For s =—+ this is contained in the above theorem, and for s > - this

follows from &) < CH¢:1<§1>-

4.4 Estimates on quartic nonlinearities

Theorem 4.8 Letn=1. Assume (0> s> —= and —= <b’ < 375—%. Then in the

periodic and nonperiodic case for all b > 1 the estzmate

4
Tl willx, , (g) < eI Tlwillx, , (g)
=1

holds true.
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Proof: Again we write f;(£,7) = (1 — £2)°(&)* Fu; (&, 7), so that

| H?:1 ﬂz‘HXs b (0) = cl(r+ €AV (€)* [dv]] — &) <§i>_sfi(§ia7'i)”L§’T~
Now we can use the inequality
4 4
@2+ (6 < (r+€)+) An—¢D)
i=1 i=1
and the assumption b’ < 3 — 1 to obtain
oA 4
@ e [ <elr+ )7+ ) (m =€) )
i=1 i=1
for some € > 0. (Again in A; we assume (1; —&2) > (7+¢2).) From this it follows
that
4
4
Tz @il x, ,(g) < Cz% llzz
=
with

Bi&n =4 [ duH ) fi(& )

and, for 1 < j <m,

L , 4
Ij(f,’r) = <§>7§+E<7—+§2>b/ H a Efl(fl,ﬂ)

i:l
< (&) E(r Y- /d” e [Ltm — 7" == il ).
=1

Next we estimate Iy using first Sobolev’s embedding theorem, then Holder’s
inequality, again Sobolev and finally part a) of Corollary 2.4 (with p = 8 and
g =4). Here &', " denote suitable small, positive numbers.

4 e
HIO”LE.T = |[[[= J° Eui”LQ(H—%Jra) <CHH1 17 Euanz (L1
: 2(H,
4 4
"
< cH||JS*5mHL§(L3+45/) < CI_IHJS*6 Uil sz
i=1 - i=1
< cHnJ Tl (o —cHHuan

To estimate I;, 1 < j < 4, we use Sobolev (in both variables) plus duality, Holder,
again Sobolev (in the space variable) and Lemma 2.15. Again we need suitable
small, positive numbers &', ¢’ and &’”.
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4 e N/ e e
Illzz - < C||(H1?J u)(JEF 1fj)||)(7%+5)7b(¢)
< Cll(H JS ) (I F T ) ey
4
< CllJfgfflfjllL;tHllJS*Eﬂilng(Lgﬂ“)
oy
4
< eI E=F il T Wil e,
i%5
< il HHJ Uil Xy, (—o —CHHUZHXM

Z#J
O

In the periodic case the following examples show, that for all the other quartic

nonlinearities (u*, v?u, ..., un®) the corresponding estimates fail for all s < 0. The

argument is essentially that given in the proof of Thm 1.10 in [KPV96b].

Example 4.3 In the periodic case in one space dimension the estimate

4
Tl willx, , (g) < eI Tluillx, , (6)
=1

ails for all s <0, b,b/ € R.
f > )

Proof: The above estimate implies

4
I+ €7 () [ dv T, (i + €70 &z < e [T Ifillee .
i=1
Defining for n € N

6,7 = Beonx(THE2),  F(E,7) = bemnx(TH+E2),  [IV(E,7) = Seox(T+€2),

where y is the characteristic function of [~1, 1], we have || f{"|| 1z = cand it would
follow that 7
e+ €)Y [ dv T £ (€ mllez, < e (27)

Now a simple computation shows that

4
[ TLA7 60 2 dean(r +€2),

i=1

Inserting this into (27) we obtain n~2* < ¢, which is a contradiction for any s < 0.
O
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Remark : Using only the sequences fi(n), 1 < i < 3, from the above proof, the
same calculation shows that in the periodic case the estimate

3
I willx, , (g) < eI Tluillx, , (6)
=1

fails for all s < 0, b,0' € R.

Example 4.4 In the periodic case in one space dimension the estimates

4
lmTtstal x () < ][] luall x, (@)
’ i=1 7

where & = u or 4 = 1, fail for all s <0, b,b' € R.
Proof: We define
(e 1) = beax(t+€3) , fV(ET) = e nx(T — €2)
3(23 (5,7’) = 5570)((7’ + 52) (+ for ’EL374 = Uus4, — for 17,374 = ﬂ374).

Then the above estimate would imply

n2(r + )Y€ [av T, £7(& )l <e. (28)
Now
4
JarTL5 7 = deaxto,
i=1
which inserted into (28) again leads to n=2¢ < c. O

Remark : Using only the sequences fi("), 1 <4 < 3, from the above proof, we
see that in the periodic case the estimates

3
lunmatsll gy < [T luillx, , (6)
=1

fail for all s <0, b,0' € R.

Now we turn to discuss the continuous case, where we can use the bi- and
trilinear inequalities of section 4.2 in order to prove the relevant estimates for some
s < 0. We start with the following

Proposition 4.1 Let 0 > s > —%, —% <V < —i + 2s. Then in the continuous

case in one space dimension for any b > % the estimate

4
lurugtstiall x ) (p) < ]l el x, o(0)
i=1

holds true.
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Proof: Apply part iii) of Lemma 4.1 to obtain

luruetstall x ), (g) < C||u1||XS o (o) 11283l L2 (aro—s),

provided that s <0, =3 <o <0, ¥ < —1 + . This is fulfilled for o = 45 and the
second factor is equal to
4
|utstal| L2 (pssy < 01:[2 luill x, o (9)
by Lemma 4.4 and the remark below. |

To show that this proposition is essentially (up to the endpoint) sharp, we
present the following counterexample (cf. Thm 1.4 in [KPV96b]):

Example 4.5 In the nonperiodic case in one space dimension the estimate

luruaTstiall x () < c]1 luallx, o(0)

fails for all s < —%, b,/ € R.

Proof: The above estimate implies
4
1+ € ()" [ v T, (o) ™€) fleonm)llz . < [T IAllee .
i=1

where (01,2) = (11,2 + &7 5) and (034) = (134 — &3 4). Choosing
e ) =xE—nx(r+€3),  ARET) = x(E+n)x(r—€)

we arrive at
n T+ Y€ [av T, £ (Gl < e (29)

Now an elementary computation gives

4
[ TL10 6 m) = exenne(r),
=1

where x. is the characteristic function of [—c,c]. Inserting this into (29) we get
n~s-3 < ¢, which is a contradiction for any s < f%. O

4

Finally we consider the remaining nonlinearities u*, v*u and ww?, for which we

can lower the bound on s down to —% +e:

Theorem 4.9 Let n = 1. Assume 0 > s > —é, Loy <31 and b > 1.

2 2
Then in the nonperiodic case the estimates
4
IV (s uz, uz, ua)llx, ) (g) < cH luill x, ,(0)

hold true for N(uy,us, us,uyq) = H?Zl g, = (Hf’:1 ;) Uy or = (Hf’zlﬂi)u4.
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Proof: 1. We begin with the nonlinearity N (u1,us,us,us) = H?Zl u;. Writing
fi(€,7) = (7 + €)%(€)* Fuy (€, 7) we have

Tl will x, () = el + €€ v TTi (7 +6) 7€) " ful&imillz

The quantity controlled by the expressions (7 + &2), (7; +£2), 1 <i < 4, is
| Z?Zl €2 — £2|. We divide the domain of integration into A and A€, where in A we

2
assume 52 < %1 and thus

4 4
Y- >cd g +¢
=1

i=1

So concerning this region we may refer to the proof of Theorem 4.8. For the region
A€, where £2 < 2£2, we have the upper bound

4
s 4 X 4 . .
AT e il () = elluall oyl Tia wllzzey < 1Tl )
1=
by Lemma 4.1, part iii), which requires & < % — %, s> —%, and by Lemma 4.5
(and the remark below), which demands s > —%.

2. Next we consider N(uq,ug,us,us) = (H? 1 Ui)Us. For 1 <4 < 3 we choose
the f; as in the first part of this proof and f4(&,7) = (7 — £2)°(¢ > Fug(€, 7). Then
the left hand side of the claimed estimate is equal to

el +€)P(€)" [ dv Ty (mi + &) 7€) ™ fil&, 7i) (ra — €)™ (€)™ falbas o)l 2 -

Now the quantity controlled by the expressions (7 + £2), (r; +&2), 1 < i < 3, and
(ra —€3) is

=+ +& -6 -8
We divide the domain of integration into the regions A, B and C = (A+ B)¢, where
in A it should hold that

4
cq. > C(Z@-2 +£2).
i=1
Again, concerning this region we may refer to the proof of Thm. 4.8.
Next we write B = U?:1 B;, where in B; we assume &7 < c£? for some large
constant c¢. By symmetry it is sufficient to consider the subregion Bj, where we
obtain the upper bound

4
cl[(Jour)ugustial| x ) < clluall x uoustal|p2(mssy < ¢ | | il x
0,b (¢) s,b(d)) s,b(d))

i=1

by Lemma 4.1, part iii), demanding for b’ < 28 —1,3s > —1, and Lemma 4.4 (resp.
the remark below), where s > f% is requlred
Considering the region C we may assume by symmetry between the first three

factors that £2 > €35 > £2. Then for this region it is easily checked that
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1. 2 <&, 2. &2 > %E%, hence €7 < c(€4 4+ &2)%, and 3. €2 < (& — £3)%
This implies
L&) (€a) > < cl€a+ &) and

2. (€23 (61) T () T ()T < ela — &)7,
leading to the upper bound

1
J2 J3uq, J%ug J—3s Jiug Sy
172 TR ATI
1
< eI (Tour, Toug) T (w1 e W —

1
< JE(Tu, Trus) 2 1T (T ua U [ pa e (

Using Corollary 4.1 the first factor can be estimated by

cflur ||X57b(¢) \|U3||Xs’b(¢),

while for the second we can use Sobolev’s embedding Theorem and part ii) of Lemma
4.1 to obtain the bound

ellPua T Tall g g ey < ellualx, o ) 10all x, o 9):

Here the restriction b’ < 375 — i is required again.

3. Finally we consider N (u1,uz,us, us4) = (Hf=1 u;)ug. With
filgm) = (1 =€) Fui(€,7), 1 < i < 3 and fu(, 1) = (T +€)(€) Fua(€, 7)

the norm on the left hand side is equal to
el(r +E)P(€) [ dv Ty (ri — €)78E) ™ filko, ma)(ra + €)1 (€a) =" fal€asma) 2 -
The controlled quantity here is

g =G +&+& - +&7

Divide the area of integration into A, B and C' = (A 4+ B)¢, where in A we assume

again
4

cq. =) & +E%)
i=1
in order to refer to the proof of Theorem 4.8. In B we assume &7 < €2, so that for
this region we have the bound

4

cllmmms(Jou)l x, , (p) < clluallx_ () luruzuslizers) < e [T luill x, , ()
k) < i:1 <

3s

2

by Lemma 4.1, part iii), and Lemma 4.5 and the remark below. Here b’ < %

and s > —% is required.
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For the region C' we shall assume again that £ > €2 > ¢3. Then it is easily
checked that in C

1. 52 < fz, 2. 62 Z %f%, hence gz S C(€4 + 62)27 and 3. f% S C(gl — §3)2.
Then for C' we have the estimate
1
2 Sa7 ST —3s( Ts Sa7
||J7 (J ’th ’LL3)J (J ’LL4J U2)||X7%,b'(¢)
1
< el (TP, o) g2 1T (TP T ) | o g2

with é = =¥V, cf. the corresponding part of step 2. of this proof. Again we can use
Corollary 4.1 and part ii) of Lemma 4.1 to obtain the desired bound. O
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5 A bilinear Airy-estimate with application to
gKdV-3

In the last section we could prove an optimal and exhaustive result concerning NLS
with quartic nonlinearities on the line (see Theorem 4.3). It turned out - which
is somewhat surprising - that on the line all the quartic nonlinearities are better
behaved than the cubic one N (u, %) = u|u|?. The situation is similar in the case of
the generalized Korteweg-deVries-equation of order & (for short gKdV-k), that is

Ut + Ugpgr + (uk+1)f1: = 07

the phase function here is ¢(¢) = &3. For k = 1 this is the KdV-equation, for
k = 2 this is usually called the modified KdV-equation. Concerning the latter local
wellposedness on the line is known for s > i (see Theorem 2.4 in [KPV93a]) and
it was shown in [KPVO01] that the Cauchy problem for this equation is ill posed for
datain H3, s < i, in the sense that the mapping data upon solution is not uniformly
continuous, see Theorems 1.2 and 1.3 in [KPVO01]. Using similar arguments as in the
previous section we can show here that the Cauchy problem for gKdV-3 is locally
well posed in H} for s > —%, which is the scaling exponent in this case:

Theorem 5.1 Let s > —4. Then there exist b> 1 and § = S(luoll s (r)) > 0, so

that there is a unique solution u € Xg’b((b) of the Cauchy problem
Ut + Ugga + (uh)e =0, u(0) = uo € H;(R). (30)

This solution is persistent and for any 0 < dg < d the mapping data upon solution
is locally Lipschitz continuous from HE(R) to Xfob(qﬁ).

Remarks : i) So far, local wellposedness of this problem is known for data
ug € Hi(R), s > 7;. This was shown by Kenig, Ponce and Vega in 1993, see
Theorem 2.6 in [KPV93a].

ii) For real valued data ug the solution guaranteed by Theorem 5.1 remains real
valued. In fact, if up = U and if u is a solution of (30), then so is @, so that by
uniqueness we have u = %. In this case, if ug € H(R) for s > 0, the L2-norm of
the solution is a conserved quantity (cf. the argument in remark ii) below Theorem

3.1), and we obtain the following

Corollary 5.1 For real valued data ug € H:E(R), s > 0 the Cauchy problem (30)
is globally well posed in the sense of Corollary 1.4.

By the general theory the proof of Theorem 5.1 reduces to the following estimate:

Theorem 5.2 For (0> s > —%, —% <b <s— % and b > % the estimate

4
102 Tz willx, , g) < eI Tullx, ()
i=1

s valid.
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The main new tool for the proof of Theorem 5.2 is the bilinear Airy-estimate
below. Here I° denotes the Riesz potential of order —s and I° is the bilinear
operator introduced in section 4.2:

Lemma 5.1
1 P -
T3 12 (et uy, et us)| 2, < ellunlpe [lusll 2

Proof: Replacing the phase function ¢(¢) = —£2 by ¢(£¢) = €2 in the proof of
Lemma 4.2 we obtain

2
”Lit

- . / deé] / e,y SBEOR — € + £(E —m)).-

1 E
11212 (e71"uy, et uy)

2
< (l&n = Ellm —n2)® [T (&) ().
=1

Now we use d(g(z)) =>_,, mé(m — &), where the sum is taken over all simple

zeros of g, in our case:

g(w) = 3¢(2* + £(& — 2) = &)

with the zeros 1 = & and xs = £ — &, hence ¢'(z1) = 3£(2&; — &) respectively
g'(xz2) = 38(€ — 2&1). As in the proof of Lemma 4.2 we see that the last expression
is equal to

C/df/*d&f[Wi(&)2+C/df/*dﬁl’&l(fl)fu(52)112(52)112(51)

2 2
2 2 2
< e[ T luillze + laadzl7s) < e T luillzs-
i=1 i=1

By Lemma 2.1 we get the following

Corollary 5.2 Let b > % Then the following estimate holds true:

11312 (u0) 2, < llullx, , ()01l ,(0)

Together with the Strichartz type inequalities for the Airy equation (see Lemma
2.7) this will be sufficient to prove the crucial nonlinear estimate:

Proof of Theorem 5.2: Writing fi(&,7) = (1 — £)2(€)* Fu(€,7), 1 < i < 4, we
have

10 Ty will x, ,, (g) = €l — €Y 1€] [ dv Ty (i — €))7 E) " ful&mi)llez

where dv = d€;..d&sdr..dms3 and Z?Zl(&,n) = (¢, 7). Now the domain of integra-
tion is divided into the regions A, B and C' = (A U B)°, where in A we assume



98 5 A BILINEAR AIRY-ESTIMATE WITH APPLICATION TO GKDV-3

|€maz] < c. (Here &pay is defined by |€4.| = max?_; |&], similarly &,,;,.) Then for
the region A we have the upper bound

el f dv Tz (m =€)t fil&mllz
4 1
4 .
= o ITizy Jouillzz, < c[I7 uillps, < c]] luill x, , (g)>
i=1 i1

where in the last step Lemma 2.7 , part ii), with p = ¢ = 8 was applied.
Besides [Emaz| = ¢ (= (Emaz) < ¢|€maz|) we shall assume for the region B that

1) ‘gmzn| S 099|€ma;€| or

i) [&min] > 0.99|&max|, and there are exactly two indices i € {1,2,3,4} with
& > 0.

Then the region B can be splitted again into a finite number of subregions, so that
for any of these subregions there exists a permutation 7 of {1,2, 3,4} with

4

1€146)* TT) ™ < elémy + &mi) |2 1m) = Em) |2 (nis)) ™ 7 (i)™ 2 -

i=1
Assume m = id for the sake of simplicity now. Then we get the upper bound
K7 — €)Y [dviér + &l 2161 — &l 3(6s) ™ F(€a) ™ TTimilm — €))7 i 6o, m)ll e
= | (T2 (PP, Joua)) (I Fus) (TRl )
To estimate the latter expression, we fix some Sobolev- and Holderexponents:
i) qio =1 -V, sothat L{(L2) C Xo (6),
) 2=4 1=,

% = 1+, so that by Lemma 2.7 ||J%u||tho(Lg) < c||u||X0 o(6)°

Q=

(since s > & +b'), so that H3'? C LZ°.

Now we have

I 2 (T, ) (T R us) (T )l ()

IN

1 s s
el|(T512 (J*uy, Ju2))(J 72 uz)(J 2 ua)| poo 2y
1 1 s El
< of[I212(Jur, Jou2)||pe, (1972 usl o neey |~ 2 wall Lo (o0

Now by Corollary 5.2 the first factor can be controlled by cflus || x o(6) luall x o(6)?

while for the second we have the upper bound

T~ F+eT5us| o pay = || J7 Tous]|pronay < cflus)| .
3llLr (L) sliLh(rd) = 311X, (o)
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The third factor can be treated in precisely the same way. So for the contributions
of the region B we have obtained the desired bound.

Finally we consider the remaining region C: Here the [&;], 1 < i < 4, are all
very close together and > ¢(§;). Moreover, at least three of the variables §; have
the same sign. Thus for the quantity c.q. controlled by the expressions (7 — £3),
(r; — &3), 1 <i < 4, we have in this region:

4 4
== 1= e> (&) = c(g)?
=1 =1

and hence, since s > & + b’ is assumed,

'S
'S

‘£| ? H - < C 7_ - £3> + Z<7_2 - £?>7b/XC7:)a

i=1 i=1

where in the subregion C;, 1 < i < 4, the expression (; —&?) is dominant. The first
contribution can be estimated by

o [dv]]l — &) bfi(fivTi)HLgT

4 4
4
= oIl Puillee, < c[JI1uilles, <c[Tllullx ().
i=1 i=1

where we have used Lemma 2.7, part ii). For the contribution of the subregion Cy
we take into account that (11 — &) = max{(r — &%), (r; — &3),1 < i < 4}, which
gives

4
(r =)l [T < eln - &))"
i=1
So, for this contribution we get the upper bound

cllr =€)t [dv(r — € T (ri — €)™ *fil&millee
lF AT, Juillx) () = ol F A TT, Jouil g

xt

IN

IN

4 4
lF e, 1_[2 [ J*uil[s , < 01_[1 ||Ui||Xs7b(¢)-
1= 1=

Here we have used the dual version of the L3-Strichartz estimate, Holder and the
estimate itself. For the remaining subregions C; the same argument applies. a
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A Appendix

A.1 Alternative proof of Lemma 4.3 (up to ¢’s)

Lemma A.1 6 Let I > m. Then in the onedimensional nonperiodic case the fol-
lowing trilinear refinement of Strichartz’ inequality is valid:
. . Iy m—1
670" w1 77" Pajuse®® Papus| 2 < c2"% Jug||pal|uzllzz |lus 2

Proof: By the standard Strichartz’ estimate we may assume m < . Arguing as
in the proof of Lemma 2.4 we obtain

. . . 2
||e’t82u elt82 PA[UQ@Ztaz PAmU3HL2

3
= /dﬁ/dﬁld&dmdﬁﬁ 252 —n?) H’LZ (&)t (ns)

=1
X oxar(&)xam(&3)xar(m2)xam(nz) < 117

with
3 3
=/dﬁ/d&d&z]—[Idi(&)\z/dmdnﬁ(Z&? —n7)xa1(n2)Xam (13)-
* i=1 * i=1

For the inner integral I = I(&,&1,&2) we use the change of variable

3
y1=771+772—§ Y2 =11 — N2
respectively
1 3 1 § ¢
771—2(y1+y2)+3 71272@/1 y2)+3 773—3 Y1,
giving
2 2 o 1.5 2 £

oty 0y = 5y +ya) + 5

to obtain

dS(y, o) 1 ¢ ¢
fleane :/ o xal(5 (= y2) + 2)xam(Z — ),
( ' 2) P(y1,y2)=0 |VP(y1,y2)| AZ(Q( 1 2) 3) A (3 1)

2
where P(y1,92) = 3Byt +93) — Ximi & + & and [VP(y1,92)| = (997 + 43)*.
2
Writing a? = Zle £ — % we have 2! < ca § ¢|VP(y1,y2)| and omitting the
xa-factor we can estimate

1(5’51752) < ca”! / dS(Z/hZM)XAm(yl - g)
3y1+y2 2a2

6Notation as introduced before Lemma, 2.5
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The remaining line integral is the length of the intersection of the ellipse of dimension
a with the strip of size 2™ around % Elementary geometric considerations show

that this can be estimated by 02%(1%, which gives

m—1

1(§,61,62) < %077 <27,

respectively
2 l 3
A2 ., a2 ) m—
€79 w1 e0” Pajuge™? PAmu3||L§t <277 I | ||“k||2L§
k=1

|

Using the dyadic decomposition and Lemma 2.1 we get similarly as in the proof
of Corollary 2.2

Corollary A1 Letn =1, e > 0 and 0 < s < % and b > % Then, in the

nonperiodic case the estimates

. 3 152
i) [ TTay € unllzz, < elluallzz lluall s lusl go+e

ii) || TTeey ukll 2, < cllurllx, () lu2llx_, ) lluslx, . o (0)
hold true for ¢(£) = —¢€2.

A.2 Remark on §(P)

Let P € C*(R"), f € CJ(R™) and (J.)e>0 a smooth approximate identity. Then
we define 6(P) by

/ S(P(@) f(a)da = lim [ J.(P(@))f(@)de,

E—>

whenever the limit exists and is independent of (J:).so. Consider the integral

I ::/ dt/e_itp(x)f(x)dm,
R

where the inner integral is known to be nonnegative. Choosing (J:)e>o even with
Fide / \/% we obtain by the Beppo Levi and Fubini theorems that

I= 277/5(P(x))f(x)dw.
Under appropriate assumptions on P and f this can be expressed as a surface
integral:

Lemma A.2 Assume that |VP| # 0 on Supp (f)NU, where U is a neighbourhood
of {P = 0}, and that f|y € C*(U). Then

/5(P(x))f(x)dx = /P:O W";(Dga)'d.sx.
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Proof: We can write f = >, _, fx, where fo is supported away from {P = 0},
and with gTP # 0 on Supp (fx) for 1 <k < n. Then [ §(P(z))fo(x)dz = 0, and for

1 < k <n we have with ®.(z) = [*_ J.(t)dt:

/JE(P(x))fk(x)dx = /(aik CI’E(P(QU))> i}i((x;) dx
Oxy
_ —/fIJE(P(a:)) <aik g?g)) d
= ar () = o S
O

where in the last step we have used the divergence theorem.
Remarks : i) The surface integral in the above Lemma is essentially the definition

of §(P) given in [GS], chap. III, §1.
ii) In the onedimensional case the above formula reduces to
0(P(x))f (x)dz =
/ 2 )]

9

where the sum is taken over all simple zeros of P. Also this is given as definition of

d(P) in [GS], p. 180.
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