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1. Introduction

Many interesting processes of the strong interaction are not accessible by perturbation theory
because they occur at energy scales around ΛQCD ≈ 200 MeV. Thus, a different approach has
to be taken and the most prominent and important method today is the lattice discretization
of QCD or lattice QCD in short. When it was invented by Kenneth Wilson in 1974, its
application was limited to analytical calculations in the strong coupling limit since computer
technology and the development of algorithms were still at their very early stages. This has
dramatically changed over the past years: today, every smartphone is much more powerful
than any supercomputer thirty years ago, and new or improved algorithms further optimized
the overall costs per flop. It is especially important to stress the latter point: back in 2001,
with the algorithms available at that time, it seemed to be quite unrealistic that lattice calcu-
lations will be able to reach the physical pion mass even if petaflop computers were available.
Today, in 2011, ‘armed’ with these petaflop computers and highly efficient algorithms, we
were able to reach the physical pion mass in our calculations.
Since a few years, lattice QCD can give serious and precise predictions and provide important
insights and answers to fundamental questions. However, it should not be forgotten that
lattice computations still require cutting-edge hard- and software, and a lot of effort goes into
writing code, tuning simulation parameters, generating configurations and analyzing data.
Especially important for successful lattice computations is the careful choice of algorithms
and actions. Conceptually more attractive lattice actions often come with large additional
CPU costs. We found a good balancing and were able to give answers to important questions.

The logical structure of this thesis can be summarized as follows: the introductory section 2
describes all methods we used in our studies and also gives a brief introduction into lattice and
continuum QCD. Beside textbook methods and formulas, this part contains descriptions of
methods we applied in order to reach remarkable percent-level precisions in our calculations.
One of those methods is the new ratio-difference method (cf. section 2.3.7). The others are
the non-perturbative continuum running as well as the trace-subtraction (cf. 2.4.3). Another
important ingredient to our calculations is link smearing (cf. section 2.3.3 for details).
The goal of the calculations presented in section 4 was the pre- or post-diction of important
physical observables with full control over and minimization of all errors. Before such expen-
sive and elaborate calculations can be started, a suitable lattice action has to be designed.
We decided to use two different actions, both involving link smearing and tree-level clover
improved Wilson fermions. The difference between the two actions is the type of smearing,
denoted by 6 EXP and 2 HEX respectively (see section 2.3.3 for details). It is important
to study newly designed lattice actions carefully and especially check whether they have the
desired properties. This is done in detail in chapter 3 and summarized in subsection 3.3.
After these important and successful scaling tests, we used our new actions to perform ab
initio calculations of important observables. These are discussed in detail in the main chapter
4. We determined the physical spectrum of low-lying hadron masses (4.1), light quark masses
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6

(4.2) and the kaon bag parameter BK (4.3). The level of theoretical and computational com-
plexity increases with each section: the physical spectrum required the extraction of hadron
masses and some additional techniques to treat finite volume effects. The quark mass deter-
mination required the additional calculation of non-perturbative renormalization factors from
quark bilinears, whereas the renormalization of BK involved four-fermion operators and the
additional subtraction of contributions from chirally enhanced operators.
The different projects of chapter 4 are summarized in 4.1.4 (spectrum), 4.2.5 (quark masses)
and 4.3.4 (kaon bag parameter) respectively.
The final chapter 5 contains an overall summary and provides an outlook on how this work
can be extended in the future.

As mentioned before, many projects presented here involved large scale computations with
testing, parameter tuning, method and program code optimization, data analysis, etc.. The
large amount of manpower and CPU time necessary to perform all these tasks, can only be
provided by a large collaboration, such as the Budapest-Marseille-Wuppertal collaboration I
am part of. This in turn means, that almost every collaboration member is an author of the
papers this thesis is based on. Therefore, I briefly summarize the main points I worked on in
order to help the reader estimate my contributions to the presented papers:

• prediction of BK : I performed the analysis for the precision prediction of BK in full
QCD. This involved the implementation and computation of four-fermion operator ma-
trix elements as well as renormalization constants. The calculation of BK is the main
part of this thesis.

• scaling studies: I performed the scaling studies for the quark masses, BK , as well as
hadron masses. Note that I did not perform the locality and stability tests on my own.
They were already finished when I took over the action tests.

• computing renormalization factors: I computed the renormalization factors used in the
corresponding projects.

• renormalization: I implemented an optimized code for the non-perturbative renormal-
ization of fermion bilinears and four-fermion operators and added it to the recent existing
and frequently used codes.

• data analysis: I measured meson and baryon correlation functions and PCAC masses
using the same code. I added the gluonic definition of the topological charge to the
existing codes. Using these measurements, I computed masses and autocorrelation
times for different observables.

• configuration generation: I generated some of the gauge configurations for all our
projects, using available high-performance code for different machines, such as the Blue-
Gene P and Juropa at FZ Jülich, IDRIS at Paris and some local clusters at the Bergische
Universität Wuppertal.

Some of the results were already published in scientific journals or the corresponding publi-
cation is in preparation. Thus, this thesis is based on [Durr et al., 2009, 2011b, 2010, 2011a]
and [Dürr et al., 2008] along with its corresponding “Supporting Online Material” (SOM).



2. Theoretical Overview

In the first two sections of this chapter (2.1 and 2.2), I will give a brief overview over the
standard model of particle physics (SM in short) and the mathematical framework of Quantum
Field Theory (QFT ) behind it. It is not intended to be comprehensive here since more
detailed information can be found in today’s textbooks [e.g. such as Peskin and Schroeder,
1995; Weinberg, 1995, 1996] which usually fill several hundreds of pages.
This chapter is meant to be as comprehensive as needed to understand the difficulties of
calculations within the QFT framework for making predictions in QCD as well as the methods
which help to overcome those. One of these difficulties is, that many strong interaction
processes occur at momentum regions which cannot be accessed by standard perturbation
theory (cf. section 2.2). The most powerful and straightforward method to overcome this
difficulty is lattice QCD, which we also used in our studies.
In part 2.3 of this introduction, I will sketch the basic ideas of lattice QCD, give definitions
of the actions and discuss the algorithms we have used in our calculations. I am also going
to discuss the method of link smearing (or filtering) to tame UV fluctuations as it plays an
important role in our calculations. I will close this overview with a brief discussion on data
analysis and the assessment of statistical and systematic errors.

2.1. The standard model

The standard model of particle physics is a theory describing the strong- and electroweak
interaction between twelve different fermions (spin S = 1/2). These particles can be catego-
rized into two groups called leptons (greek: light) and quarks.
The lepton-group consists of six particles with electromagnetic charge C = {0,−1} (see be-
low). Three of them are electron-types (C = −1), the other three are the so-called neutrinos
(C = 0). The charged leptons are massive, whereas the neutrinos have zero masses1. Addi-
tionally, it is possible to define three families (or generations), each consisting of a charged
lepton and a corresponding neutrino, within which the masses of the family members increase
from left to right (cf. Table 2.1).
The second group, quarks, also consists of three families within which the same mass hierar-
chy applies as in the case of the leptonic families. Hence the u, d quarks are the lightest ones
and masses increase from left to right (cf. Table 2.1). The quarks carry fractional charges
of C = {+2/3,−1/3} respectively and, in addition, a color charge allowing them to interact
strongly (see below).
In nature, free quark states are not observed (except for the top-quark, which decays before
it can form a hadronic state) but only color singlets (see section 2.2). This phenomenon is
commonly referred to as confinement or infrared slavery and it leads to the fact that it is not

1For recent developments and reviews related to neutrino masses and mixing, see [Nakamura et al., 2010].
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8 2.1. THE STANDARD MODEL

possible to separate quarks on macroscopic distances. Hence, low energy quarks form bound
states which are called hadrons.
Every particle has its corresponding anti-particle, carrying the opposite charge and helicity.
Due to CPT invariance, the masses of particles and anti-particles are the same.

The interactions (or forces) of the standard model are the strong and electroweak interaction,
where each one is mediated by particles called gauge-bosons. The electroweak interaction
is a unification of the gauge group SU(2) with the abelian U(1) introduced by Glashow,
Weinberg and Salam (GWS). At energy scales of present day experiments, the SU(2)×U(1)
symmetry is broken spontaneously by the Higgs mechanism, generating the massive W±, Z
gauge-bosons and a massless photon [cf. Peskin and Schroeder, 1995, p. 690ff for details]. Due
to the different macroscopic behaviour of these gauge-bosons, I formally split the electroweak
interaction into the electromagnetic and weak force. Thus we can summarize:2

• electromagnetic (EM) force: electromagnetically charged particles interact by exchang-
ing massless photons.

• weak interaction: this force is mediated by the massive vector bosons Z,W±. It violates
parity maximally and CP to a certain extent. It is responsible for radioactive β-decays.

• strong interaction: the gauge particle is the massless gluon. This force is responsible
for heavy particle formation and also for the nuclear force.

For the sake of completeness, we list an additional force, which is not part of the standard
model:

• gravity : its gauge-boson is assumed to be the massless, spin-2 graviton. Since the grav-
itational charge is unsigned, gravity is the most relevant force on cosmic scales. The
reason for not including gravity in the standard model is, that naive quantization of grav-
itation (i.e. the Einstein-Hilbert action) leads to a perturbatively non-renormalizable
theory [’t Hooft and Veltman, 1974].3

l (C = −1) electron e muon µ tau τ
me ≈ 0.511 mµ ≈ 105.7 mτ ≈ 1776.8

ν (C = 0) e-neutrino νe µ-neutrino νµ τ -neutrino ντ
mνe < 2 · 10−6 mνµ < 0.19 mντ < 18.2

u−type (C = +2/3) up u charm c top t
mu ≈ 1.7− 3.3 mc ≈ 1270 mt ≈ 172 · 103

d−type (C = −1/3) down d strange s bottom b
md ≈ 4.1− 5.8 ms ≈ 101 mb ≈ 4.2 · 103

Table 2.1.: Standard model fundamental fermions, all masses are in MeV [taken from Naka-
mura et al., 2010]. All particles are accompanied by anti-particles which carry the
opposite charge and helicity.

2I omit the yet unidentified scalar Higgs boson of the electroweak theory.
3This is due to the fact that there is no asymptotically free theory or Gaussian fixed-point. Beside other theories
of quantum gravity, there are some ideas which relax this requirement to an asymptotically safe scenario
[Niedermaier and Reuter, 2006], where the theory is not free in the UV.



2.2. QUANTUM FIELD THEORETICAL FORMULATION OF QCD AND
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The strong force is responsible for the existence of nuclear particles; it binds two up- and one
down-quarks together to form a proton, as well as two down- and one up-quark to form a
neutron. These particles are very heavy compared to their constituents: gluons are massless
and up- and down-quarks have a very small mass, compared to the nucleon mass of around
1 GeV [Nakamura et al., 2010]. As a result of our studies [Dürr et al., 2008], we show that it
is the binding energy which makes up the majority of that mass.
Beside the well-known nucleons, several other elementary particles exist which also consist
of three quarks. These usually include up-, down-, strange-, charm-quarks and sometimes
bottom-quarks. Top-quarks decay too fast to form a bound state. These kind of particles are
called baryons which acquire integer charge and fractional spin.
Another possibility to form color singlets is to tie a quark and an anti-quark together. The
resulting particles are then called mesons with integer charges and spin.
Except for the nucleons, all these particles are unstable and decay very fast in different chan-
nels.4 This is why all our atomic nuclei only consist of two types of hadrons, the neutron and
the proton, and not more.
Residual strong force effects between nucleons, effectively modeled by (multi-)meson ex-
changes, may be responsible for binding them into heavy nuclei. Although this question
is still open and not yet fully answered, there is some evidence that this assumption is true
[cf. e.g. Ishii et al., 2007].

Thus, studying the strong force and predicting (or post-dicting) physical quantities is im-
portant to understand how our world works at the smallest length scales. It is an important
result if a QCD calculation can reproduce the experimental results, because then we know
that QCD suffices to explain strong physics at the considered energy scales. However, it is
even more interesting if one can find observables where the experiment and QCD calculations
disagree. In that case, there is a possibility that the experimental measurements are influ-
enced by physical effects which are not yet included in the theoretical framework. They are
commonly referred to as beyond the standard model (BSM) effects.

2.2. Quantum field theoretical formulation of QCD and
renormalization

This section is a brief synthesis of selected topics from standard textbooks [Peskin and
Schroeder, 1995; DeTar and DeGrand, 2006; Cheng and Li, 2004], including many well known
calculations and formulas. For a more detailed explanation of the topics discussed here, please
follow these references and the references therein.
The theory of strong interaction has developed over several decades since the discovery of the
strong force in experiments with atomic nuclei. In the 1950’s and 1960’s, several experiments
and theoretical considerations improved our understanding of the strong force. The modern
form of QCD was formulated in the 1970’s as an SU(3) gauge theory of interacting quarks and
gluons as fundamental particles [Gross and Wilczek, 1973; Weinberg, 1973; Fritzsch et al.,
1973]. It became soon, along with its companion gauge theories, a part of the standard model.

4The free neutron decays into a proton, an electron and anti-electron-neutrino. However, bound inside a nucleus,
the neutron is usually stable.
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Up to now, QCD could not be falsified in experiment and thus seems to be a correct descrip-
tion of the strong interaction at energy scales which could be reached in these experiments.

In a modern field theory, all interactions and fundamental particles are encoded in a mathe-
matical term known as Lagrange density. For QCD, it is given by

L = −1

2
Tr
[
FµνF

µν(x)
]

+

Nf∑

i=1

ψ̄i(x)(i/D −mi)ψi(x), (2.1)

where ψi is a quark field of flavour i with mass mi and Fµν = ∂µAν −∂νAµ− ig[Aµ, Aν ] is the
field-strength tensor of QCD. The last term in this sum gives rise to gluonic self-couplings,
which are absent on leading order (LO) in abelian gauge theories. The gauge fields Aµ are
elements of the Lie-algebra of SU(3), i.e. Aµ ∈ Ŋu(3). Being color octets, they transform
according to the adjoint representations of SU(3). Thus they can be written as

Aµ =

8∑

a=1

Aaµ λ
a, (2.2)

where the λa are the generators of SU(3). These can be represented by the Gell-Mann matrices
which are normalized via Tr[λa λb] = δab/2.
The sum in the second term of the Lagrangian in (2.1) runs over all possible quark flavours
i with masses mi. The quark fields ψi are color triplets and therefore transform according
to the fundamental representation of SU(3) in color space. Due to the fact that quarks are
fermions, the ψ fields are spin-1/2 variables and therefore transform as spinors in Dirac space.
The covariant derivative

/D = γµ (∂µ − igAµ) (2.3)

finally couples the quarks to the gluons and makes the kinetic quark term gauge invariant. It
is easy to show that a local transformation

ψ → (1 + iα)ψ (2.4)

Aaµ → Aaµ + fabcαbAcµ + ∂µα
a/g, (2.5)

with α ≡ α(x) = αa(x)λa and the, fully anti-symmetric, structure constants of QCD fabc,
leaves the Lagrangian in (2.1) invariant.
In a quantum field theory, the number of allowed terms in the Lagrangian is highly restricted
if renormalizability is enforced (cf. 2.2.4). Nevertheless, note that we could have written
down a term of the type

Lθ ∝ θTr
[
FµνF̃

µν
]
, (2.6)

where F̃µν = εµναβF
αβ/2 is the dual field-strength tensor and θ the vacuum angle. This term

is gauge invariant, a Lorentz scalar and a dimension 4 operator. Depending on the value of
θ, it can break CP invariance of the strong force. However, experiment suggests that θ is
extremely small. The reasons for this are still unknown and referred to as strong CP problem.
I will revisit this issue in section 2.3.2.
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2.2.1. Chiral symmetry

It is important to consider continuous global symmetries, which give rise to conserved currents
and therefore, in case of a quantum theory, to certain quantum numbers.
It is easy to verify that the Lagrangian (2.1) is invariant under charge conjugation and parity.
In case of zero quark masses (the so-called chiral limit), the classical theory exhibits a chiral
U(Nf )L×U(Nf )R symmetry in flavour space. To illustrate this, let us think of ψ as a super-
vector, collecting all quark flavours into one large single vector. We can then define its left-
and right-handed parts via

ψL =
1− γ5

2
ψ; ψR =

1 + γ5

2
ψ. (2.7)

Now we can rewrite the fermionic part of (2.1) as follows:

ψ̄ i/D ψ = ψ̄L i/D ψL + ψ̄R i/D ψR, (2.8)

where the sum of (2.1) is incorporated within the scalar products. Hence, we can rotate the
left- and right-handed party independently in flavour space. The chiral theory is a bad ap-
proximation if all six quark flavours are considered, since the charm-, bottom- and top-quark
masses are large. However, the masses of the light up-, down- and strange-quark are small.
Therefore, it is suitable to split the quark-flavour super-vector into a light and heavy part,
considering only the light part in the following.
If we assume that the light quarks are massless, the classical Lagrangian possesses a U(3)L×
U(3)R symmetry on the light flavour sector. However, the U(1)A symmetry is broken by quan-
tum effects, resulting in the Adler-Bell-Jackiw anomaly [Adler, 1969; Adler and Bardeen,
1969; Bardeen, 1969; Bell and Jackiw, 1969]. Thus, the remaining symmetry group after
quantization is SU(3)L×SU(3)R×U(1)V , where U(1)V induces baryon number conservation.
This allows for classifying hadrons into mesons and baryons [cf. Scherer, 2003, p. 74].
The SU(3)L × SU(3)R × U(1)V symmetry is also present in the chiral QCD Hamiltonian,
naively leading to an organization of hadrons into approximately degenerate particle mul-
tiplets according to the dimensionalities of the irreducible representations of this group [cf.
Scherer, 2003, p. 74]. Thus, in the chiral limit, the low-energy spectrum of baryons would
contain an additional degenerate baryon octet with negative parity [cf. Scherer, 2003, p. 74f].
In nature, the light quarks are not exactly massless but their small masses can be treated as a
perturbation. In that sense, an approximately degenerate negative-parity copy of the baryon
octet is not observed, indicating that SU(3)L × SU(3)R is spontaneously broken to SU(3)V .
Thus, the remaining light-flavour-symmetry-group of QCD is SU(3)V ×U(1)V .
In the chiral limit, the spontaneous breakdown of SU(3)A generates 32 − 1 = 8 massless par-
ticles, the Goldstone bosons. In case of small but non-vanishing quark masses, these particles
become massive and are referred to as pseudo Goldstone bosons. Candidates for these parti-
cles are the three pions, four kaons and the eta.
Explicit chiral symmetry breaking induced by small quark masses can be treated systemati-
cally within chiral perturbation theory (χPT) [Gasser and Leutwyler, 1985], an effective field
theory framework. Using this, it is possible to derive relations between quark masses and
pseudo Goldstone boson masses or decay constants. Chiral perturbation theory has become
a useful tool in lattice QCD so that I am going to discuss it briefly in section 2.2.5.
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2.2.2. Quantum theory of QCD

In the preceding part, we discussed the classical Lagrangian of QCD and its symmetries. In
the following section, we will use the path integration method to quantize QCD and discuss
the implications.
The method of path integration was originally developed by Feynman [Feynman, 1948; Feyn-
man and Hibbs, 1965] based on earlier work by Dirac [1933] for applications in classical
quantum mechanics. Over time, the method has been generalized to quantum field theories.
Today, path integration methods play an important role when considering statistical systems.

Path integral

It is well known that the partition function of a quantum system with fields φk(τ,x) at
Minkowskian coordinates (τ,x) ∈M4 can be written as5

Z =

∫
Dφ eiS[φ], (2.9)

where S is the classical action of the system and

Dφ =
∏

k,τ,x

dφ(x, τ) (2.10)

the integration measure. The degrees of freedom can be either bosonic or fermionic and are
treated differently as discussed below. Expression (2.9) is numerically of limited use because
of the oscillatory integrand. This can be resolved by rotating the system to Euclidian time t,
i.e. setting τ = it:

Z =

∫
Dφ e−SE [φ], (2.11)

where SE denotes the Euclidian rotated action of S. In the following, we will always use the
Euclidian action and therefore drop the index E.
The procedure of rotating the theory to imaginary times is also called Wick rotation [e.g.
Gattringer and Lang, 2010, p. 7]. It ensures that the integrand in (2.11) is real and thus can
be treated as a weight factor (see section 2.3 for details). Note that the Wick rotation rotates
the Minkowski metric of M4 to the Euclidian metric of R4. For convenience, also the Dirac
matrices are redefined, i.e. γEk = −iγk and γE4 = γ0. This changes the Dirac operator from
i/D −m to /D E +m. Again, I drop the subscript E for the rest of this work.
In order to compute n-point Greens functions from (2.11), we introduce the scalar ‘source’
field J(x):

G(n)(x1,x2, . . . ,xn) = 〈φ(x1)φ(x2) · · ·φ(xn)〉

=
1

Z

δ

δJ(x1)

δ

δJ(x2)
· · · δ

δJ(xn)

∫
Dφ e−S[φ]+

∫
d4y J(y)φ(y)

∣∣∣∣
J=0

.(2.12)

The path integral formulation of quantum field theory is advantageous for numerical simu-
lations. Arbitrary Greens functions can be computed by performing operator averages over

5see [cf. Weinberg, 1995, p. 378ff] for a detailed derivation
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background field configurations.

We mentioned that the degrees of freedom φk(τ,x) can be either bosonic or fermionic. A
bosonic Gaussian path integral can be evaluated analytically. Consider

IB(M,χ†, χ) =

∫
Dφ†Dφ eφ

†Mφ+φ†χ+χ†φ, (2.13)

with Dφ†Dφ = (
∏
k dφ†k dφk) and bosonic degrees of freedom φ, φ†.6 The exponent can be

rewritten by completing the square

φ†M φ+ φ†χ+ χ†φ =
(
φ† + χ†M−1

)
M
(
φ+M−1χ

)
− χ†M−1χ (2.14)

and applying the substitution

φ′ = φ+M−1χ; φ′ † = φ† + χ†M−1. (2.15)

This yields

IB(M,χ†, χ) = e−χ
†M−1χ

∫
Dφ′ †Dφ′eφ

′ †Mφ′ . (2.16)

Assume M can be diagonalized by the matrix O, so that O†MO is diagonal with eigenvalues
λi. Using the substitution

φ′ = Ox; φ′ † = x†O†, (2.17)

we find ∫
Dφ′ †Dφ′eφ

′ †Mφ′ =
∏

i

∫
dx†idxi e

−|xi|2λi ∝
∏

i

1

λi
= det(M−1). (2.18)

Hence
IB(M,χ†, χ) ∝ det(M−1) e−χ

†M−1χ. (2.19)

Thus, the result is proportional to the inverse determinant of M .

Consider now the fermionic action S[ψ̄, ψ] = ψ̄Mψ with bilinearform M and the correspond-
ing path integral:

IF (M, θ̄, θ) =

∫
DψDψ̄ exp(ψ̄Mψ + θ̄ψ + ψ̄θ). (2.20)

As in (2.14), we can complete the square in the exponent to obtain the expression

IF (M, θ̄, θ) = e−θ̄M
−1θ

∫
Dψ′Dψ̄′ eψ̄

′Mψ′ . (2.21)

Again, we diagonalize M to obtain the eigenvalues λi and the corresponding left- and right-
eigenvectors ξ̄i, ξi. The exponential can thus be expanded in powers of ξ̄iξi, where only the
term containing each pair ξ̄iξi exactly once survives the integration. This yields for the

6In literature one often finds that Dφ†Dφ = (
∏
k dReφk dImφk) which is essentially the same
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remaining integral:

∫
Dψ′Dψ̄′ eψ̄

′Mψ′ =

∫ (∏

k

dξk dξ̄k

)(∏

i

ξ̄iξiλi

)
, (2.22)

Now we can reorder this expression as follows:

∫ (∏

k

dξk dξ̄k

)(∏

i

ξ̄iξiλi

)
=

∫ (∏

k

dξk dξ̄k λk ξ̄kξk

)
. (2.23)

Note that pairs such as ξ̄iξi are bosonic variables which commute with bosonic variable of the
kind dξi dξ̄i. Hence we obtain

∫ (∏

k

dξk dξ̄k λk ξ̄kξk

)
=
∏

k

λk = det(M). (2.24)

The full result for IF then is

IF (M, θ̄, θ) = det(M) e−θ̄M
−1θ. (2.25)

In this case, the result is proportional the the determinant of M . Since the fermionic part
of the QCD path integral is usually of the form (2.20) with M = /D + m being the Dirac
operator, the fermionic degrees of freedom can be integrated out analytically. However, since
detM is a global quantity, it is numerically impossible to compute it exactly. This problem is
circumvented by combining the expressions (2.19) and (2.25), allowing to transform fermionic
degrees of freedom into bosonic degrees of freedom (cf. 2.3 for details).

Haar measure

The bosonic degrees of freedom in QCD are represented by the SU(3) matrices U . Therefore
the partition function for the Yang-Mills theory (QCD without fermions) is given by

Z =

∫
DU e−SG[U ], (2.26)

where the integral over U at each space-time point extends over the gauge-group SU(3).7 Not
only the action itself, but also the path integral should be invariant under gauge transfor-
mations U → U ′. This requires that DU = DU ′. Due to the definition of the path integral
measure (2.10) and the locality of the gauge transformation, this requirement reduces to
dU = dU ′. Hence, the measure dU has to be left and right invariant under SU(3) transfor-
mations. Such kind of measure is known as the Haar measure in mathematical literature. It
satisfies the already mentioned invariance conditions

dU = d(U V ) = d(V U), ∀V ∈ SU(3), (2.27)

7In lattice QCD, the gauge degrees of freedom are represented by U ∈ SU(3) instead of A ∈ Ŋu(3) (cf. section
2.3).
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and is normalized, so that ∫
dU = 1. (2.28)

It is important to note that the measure is separately invariant under left and right transfor-
mations and not only under the transformation U → GUG†. As we will see in section 2.3.1,
the endpoints of the gauge links transform differently via Uµ(x)→ G(x)Uµ(x)G†(x+ µ̂).

2.2.3. Topology

We are interested in the quasi-classical (finite action) solutions to the field equations of Yang-
Mills theory in Euclidian space. The derivation is based on [Cheng and Li, 2004, p. 479ff] and
[Coleman, 1988, p. 282ff] and carried out for SU(2), but the result can easily be generalized
to SU(N). Consider the gauge fields

Aµ =
τa

2
Aaµ, Fµν =

τa

2
F aµν , ∀ a = 1, 2, 3, (2.29)

with the rescaling
Aµ → Aµ/g. (2.30)

This simplifies the following calculations since the explicit dependence on the coupling g drops
out. This transformation changes the Lagrangian to

L =
1

2g2
Tr
(
FµνF

µν
)

(2.31)

as well as the field strength tensor to

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (2.32)

Under an arbitrary gauge transformation G ∈ SU(N), the Aµ-fields transform via

A′µ = GAµG
† +G∂µG

†. (2.33)

We require the quasi-classical solution to vanish at the boundaries, i.e.

∮

∂R4

df Tr
(
FµνF

µν
)

= 0, (2.34)

what amounts to

Fµν(x)
|x|→∞−→ 0. (2.35)

The assumption that Aµ itself has to vanish at the boundary is too restrictive. It is sufficient
to assume, that

∃G y Aµ(x)
|x|→∞−→ G∂µG

†, (2.36)
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which is a gauge transformation of Aµ = 0 at the boundaries. The points at infinity can be
identified with points on the three sphere S3, thus

G : x 7→ G(x) (2.37)

is a mapping from S3 → SU(2). It is easy to prove that this mapping is not gauge invariant:
consider H ∈ SU(2) and

Aµ → HAµH
† +H∂µH

†, (2.38)

which implies that G transforms as G → HG. One can argue that all gauge transforma-
tions HG of G are in the same homotopy class [cf. Coleman, 1988, p. 284f]. Therefore, all
mappings G and thus, using (2.36), all quasi-classical solutions Aµ can be classified by their
corresponding homotopy class.
These homotopy classes differ by their winding numbers (or Pontryagin indices), which can
be calculated as follows: consider the current [Cheng and Li, 2004, p. 480]

Kµ = 4εµνλρ Tr

(
Aν ∂λAρ +

2

3
Aν AλAρ

)
, (2.39)

with the property
∂µKµ = 2 Tr

(
FµνF̃

νµ
)
. (2.40)

With the help of Gauss’ theorem, we can write

∫
d4x Tr

(
FµνF̃

νµ
)

=
1

2

∫
d4x ∂µKµ =

1

2

∮

∂R4

dfµKµ. (2.41)

At the boundary, the gauge fields Aµ are given by (2.36), so we find

Kµ =
4

3
εµνλρ Tr

(
(G∂νG

†)(G∂λG
†)(G∂ρG†)

)
. (2.42)

Inserting this expression into (2.41) and using a general theorem about the winding number,
we obtain:

ν =
1

16π2

∫
d4x Tr

(
FµνF̃

µν
)
. (2.43)

Expression (2.43) holds also for the general case of SU(N). When referring to ν, we will
generally speak of topological charge in order to emphasize its importance in physics. The
topological charge is associated with quasi-particles called instantons.
One might ask of what relevance quasi-classical solutions to the Yang-Mills equations are in
a quantum field theoretical setup. The important point is, that the term

∆L ∼ θ

16π2
Tr
(
FµνF̃

µν
)

(2.44)

is ‘evoked’ by quantum effects through the axial anomaly: U(1)A is a symmetry of the action
for vanishing quark masses but not a symmetry of the corresponding path integral due to
non-trivial transformation properties of the measure.8 This gives rise to an effective CP odd
term such as (2.44) in the QCD Lagrangian, where θ is strength of strong CP violation. It is

8This issue is discussed in detail in [Weinberg, 1996, p. 362ff].
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easy to show that the QCD partition function (2.26) decomposes into a series of path integrals
over a fixed topological sector [Leutwyler and Smilga, 1992]:

Z(θ) =

∞∑

ν=−∞
eiθν Zν =

∞∑

ν=−∞
eiθν

∫
[DU ]ν e

−SG[U ]. (2.45)

Thus, the QCD vacuum is a superposition of denumerably infinite topological sectors between
which tunneling occurs.
It is worth to note that the topological charge is directly related to the zero modes of the
Dirac operators by the Atiyah-Singer index theorem [Weinberg, 1996, p. 368ff]:

ν = n− − n+, (2.46)

where n− and n+ are the numbers of left- and right-handed zero modes respectively.

The strong CP problem

In experiment, strong CP violation can be measured by probing the electric dipole moment of
the neutron [Cheng and Li, 2004; Ramsey, 1978; Altarev et al., 1981]. Electroweak diagrams
for neutron scattering at an infinitely heavy source cancel at LO, NLO and NNLO. The
next possible larger contribution can come through the anomaly term of QCD. Hence, an
experimental bounds on the neutron electric dipole moment establishes a bound on θ which
is found to be extremely small [θ < 10−10, Baker et al., 2006]. The fundamental question
is, why this value for θ is so small. The simplest solution to the strong CP problem is a
massless quark: consider Z(θ) of equation (2.45) with dynamical quarks included [Leutwyler
and Smilga, 1992]:

Z(θ) =
∞∑

ν=−∞
eiθν Zν =

∞∑

ν=−∞
eiθν

∫
[DU ]ν e

−SG[U ] det(/D[U ] + M̃), (2.47)

where

M̃ =
1

2
(1− γ5)M +

1

2
(1 + γ5)M † (2.48)

is a general complex quark mass matrix. The nonzero eigenvalues of /D[U ] come in pairs
(λn,−λn) and the index theorem tells us that there are at least |ν| left- or right-handed zero
modes for each ν. For ν > 0, we can write for the fermion determinant in (2.47)9

det(/D + M̃) = (detM)ν
∏

λn>0

det(λ2
n +MM †). (2.49)

This means that the partition function Z only depends on θ and the quark matrix M through
the product M exp(iθ/Nf ). Hence, a change in the phase of the quark mass matrix is equiv-
alent to a change in θ. Furthermore, if one of the quarks becomes massless, we find

(eiθ detM)ν = δν0, (2.50)

9For ν<0, one should replace (detM)ν by (detM†)−ν [Leutwyler and Smilga, 1992].
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i.e. Z becomes independent of θ and the strong CP problem would be solved. This problem
can also be viewed as the appearance of a global U(1) symmetry as soon as one quark becomes
massless. Using this additional symmetry, the θ phase can be rotated away. The ‘natural’
candidate for this quark would be the light up-quark. However, our result for the asymmetry
parameter (md−mu)/(md+mu) deviates from one by about 22 standard deviations and thus
strongly disfavors the mu = 0 solution to the strong CP problem (cf. 4.2.3).

2.2.4. Renormalization

When doing perturbative calculations in quantum field theories beyond tree-level, diverging
momentum integrals may be encountered. The regularization of these integrals introduces
some kind of arbitrariness since one has the freedom to add additional non-divergent terms
besides the necessary removal of the divergencies. The specific choice of these terms is called
renormalization scheme, and all renormalized quantities will be stated in a corresponding
scheme. Different schemes differ by a finite renormalization called conversion factor.
We will now have a closer look on that from a different perspective which helps to understand
the origin of divergent integrals and renormalization in quantum field theories.
Since the measurement of some specific renormalized quantities is the main part of this thesis,
it is worth to be more detailed here than in the other introductory parts.

Wilson’s picture of renormalization

This method was originally derived by Wilson and uses the path integral formalism discussed
before. With some abbreviations, I follow the argumentation and derivations from [Peskin
and Schroeder, 1995, p. 393ff], where all necessary calculations have been worked out for a
scalar field in φ4 theory. The conclusions basically hold for any renormalizable theory with
an UV fixed point, e.g. any non-abelian gauge theory [’tHooft and Veltman, 1972] such as
QCD. Of course, the calculations are much more involved when non-abelian gauge groups are
used. A further review on this approach to renormalization is given by Wilson and Kogut
[1974].

The idea is to consider the quantum theory as a statistical system, analogously to e.g. popular
statistical models for magnets.10 The Lagrangians of these models usually incorporate only
nearest neighbor couplings, i.e. they are defined at a large ultraviolet cutoff Λ. Thus, the
interaction range (or correlation length) ξ is of the order of this cutoff. In case of magnets,
the cutoff is equal to the distance between neighboring atoms inside the solid state body. For
some relevant models we know that we can tune the theory to a critical temperature, where
the correlation length diverges. In that case, the interaction range becomes much larger than
the atomic spacing.
Compared to a solid state body, the cutoff of a quantum field theory with an UV fixed point
is artificial, since it incorporates a energy scale at which we expect new physics to occur. At
that scale, the typical mass of the system is m ∼ Λ, but we are interested in energy scales
m� Λ. The relation m ∼ ξ−1 implies that we have to tune the Lagrangian bare parameters
close to the critical point where ξ→∞.

10A well-known example for such a model is the Ising model.
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We illustrate this by discussing the Euclidian scalar φ4 theory as an example. Consider
the Lagrangian

L[φ] =
1

2

(
∂µφ

)2
+
m

2
φ2 +

λ

4!
φ4, (2.51)

and the corresponding partition function with a finite cutoff Λ in d dimensions:

Z =

∫
[Dφ]Λ exp

(
−
∫

ddxL[φ]

)
, (2.52)

where [Dφ]Λ means that the integration extends only over fields at momenta |k| < Λ. Now,
choose b < 1 and divide the φ fields into two different groups. Let φ(k) be the Fourier modes
of φ(x) and define11

φ̂(k) =

{
φ(k) ∀ bΛ ≤ |k| < Λ

0 otherwise
, φ̃(k) =

{
φ(k) ∀ |k| ≤ bΛ

0 otherwise
. (2.53)

Now we have to replace φ in the Lagrangian by φ̃+ φ̂ and rewrite (2.52):

Z =

∫
Dφ̃

∫
Dφ̂ exp

(
−
∫

ddx

[
1

2

(
∂µφ̃+ ∂µφ̂

)2
+
m

2
(φ̃+ φ̂)2 +

λ

4!
(φ̃+ φ̂)4

])

=

∫
[Dφ]bΛ e

−
∫

ddxL[φ]

∫
Dφ̂ exp

(
−
∫

ddx

[
−1

2
(∂µφ̂)2 +

m

2
φ̂2

+λ

(
1

6
φ3φ̂+

1

4
φ2φ̂2 +

1

6
φφ̂3 +

1

4!
φ̂4

)])
(2.54)

≡
∫

[Dφ]bΛ e
−

∫
ddxLeff [φ], (2.55)

where all quadratic terms of the form φφ̂ vanish due to orthogonality in Fourier space. We also
renamed φ̃ to φ for the sake of clarity. Using diagrammatic expansions or Wick contractions,
the integration over the high momentum modes φ̂ can be carried out. Consider for example

−
∫

ddx
λ

4
φ2φ̂φ̂ = −1

2

∫
ddk

(2π)d
µφ(k1)φ(−k1), (2.56)

where

µ =
λ

2

∫

bΛ≤|k|<Λ

ddk

(2π)d
1

k2
=

λ

(4π)dΓ
(
d
2

) 1− bd−2

d− 2
Λd−2. (2.57)

This means that we can include the contributions from the integration over the high momen-
tum shells bΛ ≤ |k| < Λ by redefining the mass m. The same can be shown for the coupling
λ. Thus, running down a theory defined at a large ultraviolet scale to energy scales reachable
at present day experiments by integrating out the high energy degrees of freedom, is the same
as modifying the parameters in the Lagrangian accordingly.

11Lattice QCD literature discussing renormalization usually focuses on the coordinate space aspect of this trans-
formation: since the momentum cutoff Λ is reduced to bΛ, the ‘granularity’ of space-time is increased by a
factor b−1. This is often referred to as coarse graining or blocking transformation, but the reasoning is basically
the same.
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In order to allow for a better comparison of (2.52) and (2.55) we can rewrite this transforma-
tion by rescaling the momenta k′ = k/b and distances x′ = xb. To see what happens to other
operators under this transformation, consider the most general theory of scalar fields:

∫
ddxLeff [φ] =

∫
ddx

[
1

2
(1 + ∆Z)(∂µφ)2 +

1

2
(m2 + ∆m2)φ2

+
1

4!
(λ+ ∆λ)φ4 + (C + ∆C)(∂µφ)4 + (D + ∆D)φ6 + . . .

]
. (2.58)

After rescaling we find

∫
ddxLeff [φ] =

∫
ddx′ b−d

[
1

2
(1 + ∆Z)b2(∂′µφ)2 +

1

2
(m2 + ∆m2)φ2

+
1

4!
(λ+ ∆λ)φ4 + (C + ∆C) b4(∂′µφ)4 + (D + ∆D)φ6 + . . .

]
.(2.59)

Defining rescaled fields via φ′ =
√
b2−d(1 + ∆Z)φ, we obtain:

∫
ddxLeff [φ] =

∫
ddx′

[
1

2
(∂′µφ

′)2 +
1

2
m′ 2φ′ 2

+
1

4!
λ′φ′ 4 + C ′(∂′µφ

′)4 +D′φ′ 6 + . . .

]
, (2.60)

where

m′ 2 = (m2 + ∆m2)(1 + ∆Z)−1b−2, (2.61)

λ′ = (λ+ ∆λ)(1 + ∆Z)−2bd−4, (2.62)

C ′ = (C + ∆C)(1 + ∆Z)−2bd, (2.63)

D′ = (D + ∆D)(1 + ∆Z)−3b2d−6. (2.64)

If we choose b close to 1, the transformations become continuous. In that case they are often
referred to as renormalization group transformations (RGT), although they do not form a
group in the strict mathematical sense.12 Hence, we can consider any arbitrary starting point
of parameters and think of a renormalization group flow induced by the transformation. In
φ4-theory, there is a trivial fixed point with respect to these transformations, namely the
free-field fixed point (m = λ = C = D = . . . = 0). In the vicinity of this point, the shifts
∆m, ∆λ, etc. are negligible and we have the simple transformation law:

m′ 2 = m2b−2, λ′ = λbd−4, C ′ = Cbd, D′ = Db2d−6, . . . (2.65)

The terms with positive order in b will die out in the b → 0 limit and are therefore called
irrelevant operators (e.g. C,D). The associated irrelevant directions span the critical sur-
face which contains the fixed point, since all renormalization group transformations on that
surface converge to that point.13 On the other hand, terms with negative orders in b will

12The RGT is usually not invertible.
13In theories where no UV fixed point exists, the renormalization group transformations may meander randomly

or approaching some limit cycle. In theory with more than one fixed-point, the associated basins of attraction
define the universality classes of the theory [cf. Gupta, 1997, p. 68ff].



2.2. QUANTUM FIELD THEORETICAL FORMULATION OF QCD AND
RENORMALIZATION 21

explode under renormalization group transformations and are therefore called relevant op-
erators (e.g. mass m). They pull the parameters away from the critical surface along the
relevant directions. The terms of order b0 are called marginal operators (e.g. coupling λ
in four dimensions), and in order to decide whether they grow or shrink, we would have to
include higher order corrections. Typically, the renormalization factors for these operators
run logarithmically such as the QCD coupling αs.
In the vicinity of the critical surface, any arbitrarily complicated Lagrangian degenerates un-
der RGT into a Lagrangian with a finite number of renormalizable couplings.
The bottom line is: the bare couplings of any UV theory, defined in the vicinity of the fixed
point, have to be renormalized in order to describe physics at lower energy scales. The renor-
malization is attributed to the procedure of analytically integrating out contributions from
the high-momentum components of the fields and compensating these effects in a redefinition
of the couplings.

Running coupling of QCD

The coupling constant αs of QCD is a Lagrangian parameter and hence has to be renormalized.
Using the Callan-Symanzik equations, one can calculate the running coupling of QCD to
arbitrary loop order. At one loop order, the running can be stated in a closed formula

αs(µ
2) =

αs(µ
2
0)

1 + (b0αs(µ2
0)/4π) ln(µ2/µ2

0)
, (2.66)

where µ2
0 is the reference scale. Note that b0 = 11 − 2/3Nf>0 in real world physics. This

means that the coupling goes to zero for µ2 → ∞. This behaviour is commonly referred to
as asymptotic freedom. We can recast equation (2.66) into a different form

αs(µ
2) =

4π

b0 ln
(
µ2/Λ2

QCD

) , (2.67)

where we defined

αs(µ
2
0)
b0
4π

ln

(
µ2

0

Λ2
QCD

)
= 1. (2.68)

Therefore, perturbation theory breaks down at a scale of ΛQCD. From measurements one can
deduce ΛQCD ≈ 200 MeV, hence the convergence of the perturbative series can be trusted
down to several GeV, where αs(µ

2) . 0.4. Below this scale, strong physics is described by
highly non-perturbative processes such as hadron formation, rendering the separation of a
single quark from a color-neutral set of quarks impossible. This phenomenon is often referred
to as infrared slavery or confinement. This mechanism is still not fully understood and its
theoretical explanation is considered to be a ‘holy grail of quantum chromodynamics’.
The bottom-line is that QCD dynamically generates a characteristic energy scale through
quantum effects, inducing the anomalous breaking of scale invariance.
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2.2.5. Chiral perturbation theory

As discussed in section 2.2.1, the SU(3)L × SU(3)R flavour symmetry of the chiral QCD La-
grangian is spontaneously broken to SU(3)V .14 This gives rise to eight massless Goldstone
bosons. For non-vanishing but small quark masses, these particles become massive and are
then referred to as pseudo Goldstone bosons. They can be identified with the physical pions,
kaons and the eta.
It is possible to systematically derive an effective field theory (EFT), describing the low energy
regime of QCD. This theory is called chiral perturbation theory and was first introduced by
Gasser and Leutwyler [1985]. The low energy effective Lagrangian has to respect all symme-
tries of the underlying theory, e.g. SU(3)L×SU(3)R×U(1)V in the chiral limit. Additionally,
the preserved symmetries after the chiral symmetry breaking have to be manifest. One can
show that the fields within this framework cannot be expressed by a linear representation,
but a so-called non-linear realization. This means that the Lagrangian contains the fields

U = exp

(
i
φ(x)

F0

)
, (2.69)

where

φ(x) =
8∑

a=1

λaφa(x) ≡




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η


 . (2.70)

In this framework, a chiral transformation becomes a local ‘gauge’ transformation, i.e. U →
RUL†, with R,L ∈ SU(3). All terms containing combinations of U fields which are invariant
under a chiral transformation are allowed in the Lagrangian. Following Weinberg’s recipe for
defining effective field theories [cf. Weinberg, 1996, p. 163ff], which states that one has to
incorporate all possible terms respecting the symmetries of the underlying theory into the
Lagrangian, one ends up with infinitely many terms and the theory is non-renormalizable.
Perturbative calculations in effective theories rely on Weinbergs power counting scheme [Wein-
berg, 1980], allowing to perform an asymptotic expansion in powers of the momentum p. As
χPT is a low energy effective theory, one can hope that contributions from higher momentum
Lagrangians become less important. For example, the fundamental Lagrangian of O(p2) is
given by

L2 =
F 2

0

4
Tr[∂µU∂

µU †],

where F0 is a parameter which depends on the dynamics of the underlying theory of QCD.15

In order to obtain a perturbative series depending on the observable pion fields φa, the U -fields
have to be expanded up to the desired power in p. Furthermore, higher order Lagrangian
terms L2n have to be included and expanded to the equivalent order in φa. The Lagrangian
parameters from these terms renormalize loop diagrams from Lagrangians of lower order.
Thus, the theory has to be ‘renormalized order by order’, i.e. by introducing additional
counterterms at each order. In practice, it is often not suitable to go beyond one loop level
because the number of Lagrangian parameters rapidly grows with the momentum order p2n.

14The charge operator QaA for the axial charge does not annihilate the ground state [cf. Scherer, 2003].
15This means that F0 cannot be predicted by chiral perturbation theory itself and has to be determined using

different methods, e.g. by performing lattice calculations.



2.2. QUANTUM FIELD THEORETICAL FORMULATION OF QCD AND
RENORMALIZATION 23

Furthermore, the chiral expansion is an asymptotic expansion and its range of validity is still
unclear.16

Nevertheless, chiral perturbation theory is a good tool for lattice physicists because it can
describe how specific QCD observables depend on the quark masses (cf. [Sharpe, 1992, 2006]
for the quenched and full theory respectively). These masses can be incorporated by intro-
ducing spurion fields χ, transforming exactly as the U -fields under chiral rotations. Thereby,
chiral invariant expressions can be built up from the U and χ fields (and additional left- and
right-handed currents lµ, rµ). To lowest order we find:

L2 =
F 2

0

4
Tr[DµU (DµU)†] +

F 2
0

4
Tr[χU † + Uχ†], (2.71)

with DµA = ∂µA − rµA + iAlµ and setting χ = 2B0diag(mu,md,ms) in the end of the
calculation. Now it is possible to compute the quark mass dependence of observables such as
decay constants or meson masses. Most results on this can be found in the literature so that
we will state the corresponding formulas along with the references wherever we use them.

It is important to remark that continuum chiral perturbation theory can be extended or
modified in several ways. For example, the chiral group can be reduced from SU(3) to SU(2).
This is motivated by the fact that the average up- and down-quark masses are much smaller
than the strange quark mass (cf. e.g. section 4.2). The resulting SU(2) chiral perturbation
theory often fits lattice data better than its SU(3) counterpart [cf. e.g. Allton et al., 2008].
Furthermore, it is possible to incorporate discretization effects for example. Although these
effects affect the UV behaviour of the theory, they often also break chiral symmetry (such as
the Wilson term (2.114)) and therefore modify the chiral behaviour of certain observables.
Within this thesis, I will mainly use continuum SU(2) chiral perturbation theory. This is,
owing to the quality of our data, completely justified.
Chiral perturbation theory is also very useful when dealing with finite volume corrections (cf.
2.3.5) because it can predict the strength of such effects for different sets of parameters.

2.2.6. Neutral kaon mixing and bag parameter BK

The neutral kaons K0 and K̄0 mix through weak interaction processes. But even without the
GWS formalism of the standard model, it is easy to understand the mixing of these states
through their common ππ decays, i.e. K0 ↔ ππ ↔ K̄0. Phenomenologically, we may write
the neutral kaon wavefunction as17

|ψ(t)〉 = a(t)|K0〉+ b(t)|K̄0〉, (2.72)

where a(t) and b(t) are time-dependent complex functions. The time development is then
given by the Schroedinger equation

i
d

dt
|ψ(t)〉 =

(
M − i

2
Γ

)
|ψ(t)〉. (2.73)

16The convergence radius is zero by definition, but the momentum range in which the truncated series still gives
good approximations can be much larger.

17This section follows closely the argumentation of Donoghue et al. [1992, p. 232ff].
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The elements of the complex mass matrix on the r.h.s. are given by the transition amplitudes

[
M − i

2
Γ

]

ij

=
1

2mK
〈K0

i |Heff |K0
j 〉 (2.74)

≈ m
(0)
K δij +

〈K0
i |Hint|K0

j 〉
2mK

+
1

2mK

∑

n

〈K0
i |Hint|n〉〈n|Hint|K0

j 〉
m

(0)
K − En + iε

(2.75)

to second order in perturbation theory. Here, Heff = m
(0)
K 1 +Hint is the full effective Hamil-

tonian and Hint its interacting part. Using the definition for the principal value

1

ω − En + iε
= P

(
1

ω − En

)
− iπ δ(En − ω) (2.76)

we can write for the matrix elements of Γ

Γij =
1

2mK

∑

n

〈K0
i |Hint|n〉〈n|Hint|K0

j 〉 2π δ(En −mK), (2.77)

where the other terms on the r.h.s. of (2.75) contribute to the difference m
(0)
K − mK . The

matrices M and Γ are Hermitian and the diagonal elements of the mass matrix have to be
equal due to CPT invariance. Thus we can write

M − i

2
Γ =

(
A p2

q2 A

)
,

with some complex numbers A, p2 and q2. The states K0 and K̄0 are CP conjugate, i.e.

CP|K0〉 = λ|K̄0〉 (2.78)

with |λ|2 = 1. We choose λ = −1 for convenience. In case of CP invariance, we would have
CPHeff(CP)−1 = Heff and thus

〈K0|Heff |K̄0〉 = 〈K0|(CP)−1 CPHeff(CP)−1 CP|K̄0〉 = 〈K̄0|Heff |K0〉. (2.79)

This would imply p = q and, combined with the hermiticity of M and Γ, that p, q ∈ R. If CP
invariance is violated, we have p 6= q an hence the mass matrix eigenstates

∣∣∣∣KL
S

〉
=

1√
|p|2 + |q|2

[
p|K0〉 ± q|K̄0〉

]
, (2.80)

with eigenvalues EL/S = A± qp, cannot be CP eigenstates. The ratio p/q is given by

p

q
=

√
M12 − i

2Γ12

M∗12 − i
2Γ∗12

, (2.81)

with M21 = M∗12 and Γ21 = Γ∗12 due to hermiticity, as well as

M12 −
i

2
Γ12 = 〈K0|Heff |K̄0〉. (2.82)
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The eigenvalue difference evaluates to

2qp = (mL −mS)− i

2
(ΓL − ΓS) = 2

√(
M12 −

i

2
Γ12

)(
M∗12 −

i

2
Γ∗12

)

≈ 2 ReM12 − iReΓ12, (2.83)

where the approximation is only valid for small CP violation, i.e. ImM12/ReM12 � 1 and
ImΓ12/ReΓ12 � 1. The subscripts L and S in (2.80) stand for ‘long’ and ‘short’ and refer to
the respective lifetimes of the corresponding states.
To understand this, consider the CP conserving limit p = q: in that case, KS and KL become
CP-even and CP-odd respectively. Their decay states would also have to obey CP invariance
and hence KS can decay into 2π whereas KL has to decay into 3π. Since the phase space
for the former decay exceeds the one for the latter, KL→3π is considerably suppressed with
respect to KS→2π. In a non CP invariant world, KS and KL can be expanded in terms of
CP eigenstates: ∣∣∣∣KL

S

〉
=

1√
1 + |ε̄|2

(
|K0
∓〉+ ε̄|K0

±〉
)
,

p

q
=

1 + ε̄

1− ε̄ , (2.84)

with |K0
±〉 = (|K0〉 ± |K̄0〉)/

√
2. Note that ε̄ can be expanded in terms of real and imaginary

parts of the K0 − K̄0 transition matrix element:

ε̄ =
p− q
p+ q

≈ i

2

ImM12 − iImΓ12/2

ReM12 − iReΓ12/2
≈ 1

2

M12 −M21 − i
2(Γ12 − Γ21)

mL −mS − i
2(ΓL − ΓS)

. (2.85)

The time development of an initially prepared K0 or K̄0 state is experimentally measurable.
Using the results from above, it can be written as

|K0(t)〉 = g+(t)|K0〉+
q

p
g−(t)|K̄0〉, (2.86)

|K̄0(t)〉 =
p

q
g−(t)|K0〉+ g+(t)|K̄0〉, (2.87)

g±(t) =
1

2
e−it(mL−iΓL/2)

(
1± eit(∆m+i∆Γ/2)

)
. (2.88)

The differences ∆Γ = ΓS−ΓL and ∆m = mL−mS are both positive quantities by definition.

CP violation in the standard model framework

The standard model supports CP violation by the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix. This matrix quantifies the probability of quark flavour changing under W-boson me-
diation. Because there are three quark generations, the CKM matrix is a 3 × 3 complex
matrix:

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 .
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In the standard model formalism, the CKM matrix appears in the Lagrangian after rotating
the quark fields from electroweak eigenstates to mass matrix eigenstates.18. Due to that, the
CKM matrix has to be unitary in the standard model.
A unitary 3 × 3 matrix can be described by nine real parameters, where three of them are
angles (rotation in three dimensions) and six are phases (in the diagonal and upper or lower
triangular part). Five of these phases can be removed by rephasing the quark fields and thus
have no physical significance. However, a sixth, overall phase remains and this is where CP
violation enters the standard model. Note that a 2× 2 unitary matrix only has three phases
for four quark fields. This means that they can be completely removed and thus there is no
CP violation via the CKM mechanism in a world with only two quark generations.19

Applying the unitarity conditions

V †CKMVCKM = VCKMV
†
CKM = 1 (2.89)

allows for rewriting the CKM matrix into the Wolfenstein parametrization [Nakamura et al.,
2010], which is often used in phenomenological applications. Consider:20

Vud = 1− 1

2
λ2 − 1

8
λ4 +O(λ6),

Vus = λ+O(λ7),

Vub = Aλ3(ρ− iη),

Vcd = −λ+
1

2
A2λ5

[
1− 2(ρ+ iη)

]
+O(λ7),

Vcs = 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6),

Vcb = Aλ2 +O(λ8),

Vtd = Aλ3(1− ρ̄− iη̄) +O(λ7),

Vts = −Aλ2 +
1

2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6),

Vtb = 1− 1

2
A2λ4 +O(λ6),

with expansion parameter λ = |Vus| ≈ 0.23 [Nakamura et al., 2010] and

ρ̄ ≡ ρ
(

1− 1

2
λ2

)
, η̄ ≡ η

(
1− 1

2
λ2

)
. (2.90)

To very good accuracy, one can replace ρ, η in the above relations by ρ̄ and η̄ respectively.
We will see that this parametrization becomes particularly useful for testing the unitarity of
the CKM matrix in experiment. Consider

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.91)

18See [Donoghue et al., 1992, p. 60ff] or [Peskin and Schroeder, 1995, p. 719ff]
19In fact, before a third generation of quarks was observed in experiment, Kobayashi and Maskawa [1973]

considered it as a possibility to introduce CP violation in the standard model.
20for a more detailed derivation and discussion read [Buras, 1998]
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which is implied by unitarity constraints on VCKM . We can apply the substitution

VcdV
∗
cb → −Aλ3 (2.92)

to excellent accuracy, as higher order corrections are proportional to λ7. Note that this
quantity is real, as it does not involve η. Analogously we find up to O(λ5) corrections:

1

Aλ3
VudV

∗
ub = ρ̄+ iη̄,

1

Aλ3
VtdV

∗
tb = 1− (ρ̄+ iη̄). (2.93)

Thus (2.91) defines a triangle in the complex plane with corners (0, 0), (0, 1) and (ρ̄, η̄) (cf.
figure 2.1). Note that any phase rotation applied to (2.91) only rotates the unitary triangle in
the complex plane, but does not change the angles or side lengths. Thus, two angles and a side
length or the area are physical parameters — the so-called rephasing invariants — which can
be determined in experiment. A very important rephasing invariant is the so-called Jarlskog
invariant J [Jarlskog, 1985]. It is directly proportional to the imaginary part of the CKM
matrix and thus has to appear in all CP violating observables. Though it is defined by taking
the imaginary part of a product of four CKM matrix elements, it can be directly computed by
calculating the area of a unitary triangle. Consider equation (2.91) which lead to the unitary
triangle picture shown in figure 2.1. This time, we do not rescale all the sides by a factor of
1/(Aλ3) and compute the area:21

A∆ =
1

2

Aλ3 Aλ3ρ̄
0 Aλ3η̄

=
1

2
A2λ6η̄ =

J

2
,

where all other unitary triangles give the same result.
In experiment, the CKM mechanism can be tested in CP conserving decays which are sensitive
to |Vus|, |Vub|, |Vcb| and |Vtd| [Buras, 1998]. This is possible because the CKM mechanism
closely relates quark mixing and CP violation.
Recent results on standard model CKM physics are collected by the PDG [Nakamura et al.,
2010]. For more details on how the fitting to standard model flavour mixing data is performed,
see the proceedings of CKMfitter [Hocker et al., 2001, and updates] and UTfit [Ciuchini et al.,
2001, and updates].

Application to neutral kaon mixing

Back to kaon mixing, the CKM matrix enters the relevant Feynman diagrams displayed in
figure 2.2.22 The external legs of these diagrams have to be contracted with kaon states, ren-
dering the process non-perturbative. The strong dynamics can be computed on the lattice,
whereas this is difficult for the electroweak part. In order to define a low energy effective
operator for the latter, a careful analysis of the diagrams in figure 2.2 is necessary to identify
the dominant electroweak contributions.
Note that all diagrams are affected by the GIM mechanism [Glashow et al., 1970], so that
K0 and K̄0 would not mix if all up-type quark masses were degenerate. These cancellations

21The corrections to this quantity are of O(λ10) and thus truly negligible.
22Analogous to [Donoghue et al., 1992, p. 235], we left out diagrams containing internal Higgs lines [Gaillard and

Lee, 1974; Inami and Lim, 1981]. However, the computation of Higgs diagrams can be avoided by computing
the diagrams from figure 2.2 in the unitary gauge (see e.g. section D).
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(0, 0)

(ρ̄, η̄)

(1, 0)

γ

α

β

Figure 2.1.: One of six unitary triangles in the Wolfenstein parametrization as defined by
unitarity constraints on VCKM in (2.91). In a CP invariant world there is η̄ = 0
and therefore the area would be equal to zero. Together with |Vus| and |Vcb|,
suitable for determining λ and A, this picture contains the full information on
the CKM matrix.

are logarithmic in diagram (c), suppressing it by factors of m2
K/m

2
c with respect to the box

contributions (a) and (b) [see Donoghue et al., 1992, p. 236 for details]. Since lattice calcu-
lations are slowly reaching a percent level accuracy [Constantinou et al., 2011; Aubin et al.,
2010; Aoki et al., 2010; Bae et al., 2010], those contributions will become relevant in future
computations. However, in state-of-the-art lattice calculations, such as ours presented in sec-
tion 4.3, these contributions are neglected.
Diagram (d) has a short distance and long distance part, and thus might give a significant
contribution to neutral kaon mixing. However, using experimental data from direct CP vio-
lation in K0 → ππ decays, it is possible to argue that its contribution to the K0− K̄0 mixing
amplitude is also small. Consider for example the CP-odd |K0

−〉 state: it can directly decay
into CP-even ππ states and thus violating CP directly. Hence, an initial |KL〉 state can decay
into two pions either by indirect CP violation, i.e. if the CP-even |K+〉 admixture decays, or
by direct CP violation, i.e. if the CP-odd |K−〉 admixture decays. Thus, we can write the
two possible decays schematically as

KL → K+ → ππ, KL → K− → ππ. (2.94)

Since CP violation appears as a complex phase in the Lagrangian, it can only affect physical
processes by interference. These two processes above clearly interfere and thus can be used
to measure CP violation. This can be done by defining the ratios (see e.g. [Donoghue et al.,
1992, p. 238f] or [Nakamura et al., 2010])

η00 =
〈π0π0|Hint|KL〉
〈π0π0|Hint|KS〉

= ε+ ε′, η+− =
〈π+π−|Hint|KL〉
〈π+π−|Hint|KS〉

= ε− 2ε′. (2.95)
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Figure 2.2.: Perturbative leading order diagrams contributing toK0−K̄0 mixing. The ∆S = 2
box diagrams (a) and (b) dominate over diagrams (c) and (d) containing ∆S = 1
interactions.

The current experimental results for these ratios are obtained by fitting K→ππ data [Naka-
mura et al., 2010]:

|η00| = (2.221± 0.011)× 10−3, (2.96)

|η+−| = (2.232± 0.011)× 10−3, (2.97)

φ00 = arg(η00) = (43.51± 0.05)◦, (2.98)

φ+− = arg(η+−) = (43.52± 0.05)◦, (2.99)

where the latter values were obtained by fits assuming CPT invariance. This translates into
[Nakamura et al., 2010]

|ε| = (2.228± 0.011)| × 10−3, Re(ε′/ε) = (1.65± 0.26)× 10−3. (2.100)

The physical interpretation of the parameter ε′ is the following: in any kaon decay, the final
state pions can have either isospin I = 0 or I = 2 due to Bose symmetry. Because the
kaon has isospin I = 1/2, these two different possible final states correspond to ∆ = 1/2
and ∆ = 3/2 transitions. The interference between these two processes is quantified by ε′,
whereas the interference of KL → K+ → ππ and KL → K− → ππ is quantified by both, ε and
ε′. However, the second relation in (2.100) tells us that the contribution of ε′ to the neutral
kaon mixing amplitude must be small. To finish the argumentation, note that the major
contributions to ε′ come from penguin diagrams like those displayed in figure 2.3. Finally,
diagram 2.2 (d) consists of a combination of such diagrams and hence its contribution to the
full kaon mixing amplitude is expected to be small.
Therefore, we are left with the box diagrams 2.2 (a) and (b). Unfortunately, the real parts of

these diagrams receive large long-distance contributions induced by charm quark propagation
along the internal quark lines, rendering computations of KL,KS mass differences extremely
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q

g, γ, Z
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Figure 2.3.: Perturbative leading order contributions to ∆S = 1 decays.

difficult.23 However, this does not apply to computations of the indirect CP violating param-
eter ε, which is in principle proportional to the imaginary part of these diagrams.24 It turns
out that this part is dominated by momentum scales between mc and mt and therefore well
suited for lattice computations (see appendix D for diagrammatic details and section 2.3.8
for the lattice setup). Note, that also ε is affected by long-distance corrections induced by
e.g. active charm quarks. However, recent estimates argue that all long-range corrections to
ε contribute by around −5% [Buras and Guadagnoli, 2008; Buras et al., 2010] and are thus
subdominant.
Therefore we can contract the internal propagator lines of diagrams (a) and (b) onto a point
to obtain the low energy effective four-fermion operator O∆S=2

O∆S=2 =
(
d̄γµ(1− γ5)s

) (
d̄γµ(1− γ5)s

)
= (d̄s)V−A(d̄s)V−A. (2.101)

The superscript ∆S = 2 denotes that this operator changes the strangeness in the system by
an amount of two, since a strange quark is converted into an anti-strange or vice versa. Using
this, we define the so-called kaon bag parameter BK via

BK =
〈K0|O∆S=2|K̄0〉

8
3〈K0|(d̄γµγ5s)|0〉〈0|(d̄γµγ5s)|K̄0〉 =

〈K0|O∆S=2|K̄0〉
8
3M

2
KF

2
K

, (2.102)

where the numerator represents the so-called vacuum saturation approximation VSA, an ob-
solete method to estimate CP violation in the neutral kaon system. We still use this ratio in
lattice simulations because it cancels some statistical and systematic effects. Note that since
O∆S=2 is an effective operator, it has to be renormalized as discussed in detail in section
2.4.2. It is important to keep in mind that the renormalized BK can be directly related to
the indirect CP violation parameter ε.25

The bottom line of this whole derivation is that we are able to predict the strength of CP
violation visible in the neutral kaon system because perturbative electroweak contributions
and hadronic corrections accessible on the lattice factorize (cf. section 2.3.8 for details).

23See [Christ, 2010] for a recent proposal on how this observable can be computed on the lattice. Also cf.
[Sachrajda, 2010] for a summarizing review on new lattice techniques for computing weak matrix elements.

24See [Lellouch, 2011, p. 21ff] or appendix D for a detailed discussion.
25See [Lellouch, 2011, p. 28f] or appendix D.
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2.3. Lattice discretization of QCD

The starting point for the lattice discretization of QCD is the Euclidian partition function

Z =

∫
DU det(/D[U ] +m) e−SG[U ]. (2.103)

Compared to expression (2.47), the sum over nontrivial topological sectors is implied by in-
tegrating over all possible gauge degrees of freedom and not only those with a fixed winding
number ν.
Solving this path integral or computing corresponding Greens functions analytically is almost
impossible. In 1974 however, Kenneth G. Wilson found a way to discretize this path integral
[Wilson, 1974].26 Although it was originally designed for analytical calculations in the strong
coupling limit, his lattice discretization is well suited for numerical treatment. In the lattice
picture, the path integral is approximated by a sum over configurations defined on a four
dimensional finite grid of volume V and lattice spacing a. The discretization errors of O(an)
can be removed by considering finer and finer lattices and extrapolating a → 0. This limit
most probably exists since there is strong evidence that QCD has a UV fixed point. Addi-
tionally, Wilson showed that lattice QCD exhibits confinement in the strong coupling limit,
induced by the area suppression of Wilson loops [Wilson, 1974]. Confinement is necessary to
reproduce the behaviour of continuum QCD and there is strong evidence that quarks on the
lattice are also confined outside the strong coupling regime.27

The first step in each lattice calculation is to generate an ensemble {Ui}Ni=1 of field configu-
rations which is distributed according to the weight

w[U ] = det(/D[U ] +m) exp(−SG[U ])/Z. (2.104)

Once this ensemble is obtained, operator expectation values can be approximated by simply
computing the average

〈O〉 =

∫
DU w[U ]O(U) ≈ 1

N

N∑

i=1

O(Ui). (2.105)

The rightmost expression is an approximation in various aspects: first, the ensemble is finite
and so the correct distribution w[U ]/Z can only be approximated to finite precision. This
will lead to statistical errors which have to be treated accordingly. The configurations will be
generated within a Markov chain (cf. section 2.3.4), so subsequent configurations within an
ensemble will not be entirely decorrelated. One has to include and estimate these autocorre-
lation effects.
Second, the box size is finite because the integral is carried out on a computer with finite
memory. This leads to finite volume effects which can be estimated by studying different
volumes.
Finally, the integral is discretized and therefore suffers from discretization effects. As dis-
cussed above, these kinds of errors can be accounted for by extrapolating the results to a→ 0

26Jan Smit and Alexander Polyakov also developed lattice gauge theory independently and may be mentioned
as co-inventors here, cf. [Wilson, 2005].

27Note that we restrict ourselves to zero-temperature QCD.
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in the suitable power n of a, depending on the action used in the simulations.
I will discuss the algorithms used to generate our ensembles in section 2.3.4 and the treatment
of statistical as well as systematic errors in 2.3.5.

In any numerical computation, all measured observables such as masses, decay constants
etc. are dimensionless. Thus, only combinations of the type Xak are measured, where k is
the mass dimension of X. However, renormalization group theory tells us that the lattice
theory has to be tuned to continuum QCD in order to reproduce the correct behaviour in
the continuum limit. Ideally, the quark masses are kept fixed to their physical values while
performing this limit. To be able to do so, the intrinsic length scale a has to be converted into
physical units. Therefore, in order to fix the scale and quark masses in calculations involving
Nf degenerate quark flavours, one has to ‘sacrifice’ Nf + 1 physical observables, typically
meson or hadron masses (cf. sections 4.1,4.2). Once the scale is determined and the input
masses are tuned to their physical values, other observables can be predicted.
A common observable for setting the scale in the quenched theory is r0 (cf. app. B for details),
where the advantages of this Sommer radius are listed in the original paper [Sommer, 1994b].
Furthermore, the dependence of r0/a on the bare coupling β is already precisely known for
the plaquette action [cf. Necco and Sommer, 2002].
However, if results obtained in units of r0 are converted into physical units, a physical value
for r0 has to be assumed. This can be done in several ways (cf. e.g. [Garden et al., 2000;
Necco and Sommer, 2002; Aubin et al., 2004a; Khan et al., 2006]), where the obtained physical
values for r0 differ by about 10%. This spread reflects the fact, that the neglected sea-quark
contributions usually differ for different processes. The associated systematic uncertainty is
commonly referred to as scale-setting ambiguity and often the major source of uncertainty
in quenched calculations. In modern lattice calculations including dynamical up- down- and
strange-quarks, this ambiguity has become subdominant (cf. e.g. [Davies et al., 2004]).

2.3.1. Actions

As discussed in 2.2, the action of QCD decomposes into a bosonic and a fermionic part.
In this section, I will describe how the different terms can be discretized and what kind of
cutoff effects are expected from our action. The order of the discretization errors has to be
considered separately for the gluonic and fermionic action. In case of the fermionic action,
chirality is important as well, i.e. in how far the lattice discretization respects chiral symmetry
at vanishing quark masses. For some special quantities, improving the dispersion relations of
the propagator might prove effective as well.

Gauge action

There are two main ingredients to construct a lattice gauge theory: it has to have the right
continuum limit and must be gauge invariant. The most popular gauge actions place the
gluonic variables, which are elements of the fundamental representation of SU(3), on the
links of the lattice, connecting two neighbouring sites in a gauge invariant way. These links
are defined by

Uµ(x) = exp
[
igaAµ(x)

]
, (2.106)
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where Aµ(x) are the gluon fields we know from continuum QCD and the scalar g is the
gauge coupling. These link matrices act as parallel transporters of a color three-vector from
lattice site x to x + µ̂. Thus, we can construct parallel transporters along arbitrary paths
by multiplying the corresponding links along that path. A gauge transformation W (x) ∈
SU(3)∀x rotates the links according to

Uµ(x)→W (x)Uµ(x)W †(x+ µ̂). (2.107)

Therefore, one class of gauge invariant terms which can be constructed out of the link matrices
are closed loops:

WC = tr

[
P
∏

C

Uµ(x)

]
, (2.108)

hence path ordered products P of links along a closed contour C. If these contours have a
rectangular shape, they are also called Wilson loops.28 The most simple Wilson loop is called
the plaquette

Pµν(x) = Tr
[
Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x)

]
,

where we used the relation U−µ(x) = U †µ(x − µ̂). The action only consisting of a plaquette
term is called Wilson or plaquette action:

Splaq
G = β

∑

x

∑

µ<ν

(
1− RePµν(x)/3

)
, (2.109)

with β = 6/g2. Using (2.106), it is straightforward to show that expression (2.109) converges
to the continuum gauge action of QCD for a→ 0. The discretization effects are of O(a2).
Note that the discretization of the gauge action is not unique. In principle, arbitrarily many
irrelevant operators can be added to (2.109). Doing this in a clever way, these operators
will cancel contributions of higher orders in a and thus improving the scaling. The easiest
modification to (2.109) is adding gauge invariant terms involving higher order Wilson loops,
e.g. traces of 2× 1 rectangles Rµν :

SSym
G = β

∑

x

∑

µ<ν

[
c0

(
1− RePµν(x)/3

)
+ c1

(
1− ReRµν(x)/3

)]
, (2.110)

which is the so-called Symanzik improved or Lüscher-Weisz gauge action [Luscher and Weisz,
1985]. The coefficients c0 and c1 can be determined using lattice perturbation theory. Their
tree-level values are

c1 = −1/12; c0 = 1− 8c1 = 5/3. (2.111)

In case of tree-level improvement, the Symanzik action is of order O(αsa
2). In order to remove

O(a2) effects completely, a non-perturbative determination of the ci would be necessary.
Lattice perturbation theory allows at least for computing the coefficients to higher order
in αs, improving the scaling accordingly. However, lattice perturbation theory is often not
available for complicated actions such as those involving iterative smearing (cf. section 2.3.3).

28Closed paths of links extending into three lattice dimensions and thus forming chair-like or parallelogram-like
curves are called non-planar. If the Wilson loop lies exactly within a plane of the coordinate system, it is
called planar.
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In most cases, nested smearing modifies the quark-gluon-vertex in a non-trivial way, rapidly
complicating the Feynman rules [cf. e.g. the appendix of Capitani et al., 2006]. The good
news is that smearing itself improves the scaling and thus tree-level improvement is sufficient
in many cases (cf. 2.3.3).

Fermions

In contrast to the straightforward gluonic part, discretizing the fermionic action is not as
simple. The problem is the impossibility of defining a Dirac operator which is local (cf. section
3.1), doubler-free (see below), posesses the continuum chiral symmetry for massless quarks
and reproduces the correct continuum limit [Nielsen and Ninomiya, 1981a,c,b]. One can go
into two directions from here: either sacrificing chiral symmetry on the lattice completely
in order to obtain ‘lightweight’ fermion formulations, which are relatively inexpensive and
easy to implement. On the other hand, one could redefine the chiral transformation on the
lattice, ending up with a Dirac operator satisfying the Ginsparg-Wilson relation [Ginsparg
and Wilson, 1982]. This yields fermions which possess an exact chiral symmetry but also
leads to computationally very expensive calculations.29 Since exact chiral symmetry was not
a crucial feature in our studies in contrast to performance and CPU time, we took the first
approach.
The most simple fermion discretization are the naive fermions. They are obtained by the
straightforward discretization of the Dirac operator:

ψ̄(x) (/D +m)ψ(x)→ 1

2a

(
ψ̄n γµUµ(x)ψ(x+ µ̂)− ψ̄n γµU †µ(x− µ̂)ψ(x− µ̂)

)
+mψ̄(x)ψ(x).

(2.112)
The free propagator can easily be calculated [DeTar and DeGrand, 2006, p. 103]:

1

a
S(p) =

−iγµ sin(pµa) +ma∑
µ sin2(pµa) +m2a2

. (2.113)

Obviously, this momentum-space Dirac operator has 24−1 unwanted zero modes in the first
Brillouin zone, corresponding to unphysical degrees of freedom. These are called doublers and
can be removed by adding a second-derivative-like term

Wµ = − r

2a
ψ̄(x)

[
ψ(x+ µ̂)− 2ψ(x) + ψ(x− µ̂)

]
(2.114)

to the naive operator, where r is an arbitrary, nonzero constant. The corresponding propa-
gator is given by

1

a
S(p) =

−iγµ sin(pµa) +ma− r∑µ(cos(pµa)− 1)
∑

µ sin2(pµa) + [ma− r∑µ(cos(pµa)− 1)]2
. (2.115)

Therefore, the doublers acquire a mass proportional to 1/a and will be removed in the contin-
uum limit. The price which has to be payed for this un-doubling is explicit chiral symmetry

29The most important fermion discretizations of that kind are overlap [Narayanan and Neuberger, 1993a, 1994,
1993b, 1995; Neuberger, 1998a,b] and domain-wall fermions [Callan and Harvey, 1985; Frolov and Slavnov,
1993; Kaplan, 1992; Shamir, 1993].
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breaking, significantly complicating the computation of observables that are sensitive to chiral
symmetry.
In order to apply on-shell improvement to the fermionic action, we add the Sheikholeslami-
Wohlert (or clover-)term to the Wilson operator [Sheikholeslami and Wohlert, 1985]:

SW = cSW ψ̄(x)σµν F
µν(x)ψ(x). (2.116)

This gives the following fermionic action

Sf =
∑

x

ψ̄(x)ψ(x)

−κ
∑

x,µ

[
ψ̄(x)(r − γµ)Uµ(x)ψ(x+ µ̂) + ψ̄(x)(r + γµ)U †µ(x− µ̂)ψ(x− µ̂)

]

−rκcSW
2

∑

x,µ,ν

ψ̄(x)σµνF
µν(x)ψ(x). (2.117)

We rescaled the fields via ψ →
√

2κψ using the hopping parameter κ = (ma+ 4r)−1/2.
The field strength tensor can be efficiently calculated using the clover-leaf product of links.
Consider

Gµν(x) =

µ

!

where the circle marks the site x. The field strength tensor is then given by

Fµν(x) =
1

8

(
Gµν(x)−G†µν(x)

)
. (2.118)

Like c0, c1 in the Lüscher-Weisz action, cSW can be in principle computed non-perturbatively.
Since we are using link smearing, we found that the tree-level value cSW = 1 yielded sufficient
improvement.

2.3.2. Topological charge

A definition of the lattice equivalent to the topological charge can be obtained by applying a
straightforward discretization to (2.43). Therefore consider 30

q =
1

16π2

∑

x

Fµν(x)F̃µν(x), (2.119)

where the field strength tensor is calculated using the clover-leaf average from (2.118). We
refer to this definition as gluonic or naive charge. Note that q is not an integer as its contin-
uum counterpart ν. The reason for this is that the lattice is not a manifold and hence some
assumptions in the derivations for the continuum topological charge do not hold. However,

30I denote the discretized topological charge by q and the continuum charge by ν.
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since q and ν are continuum equivalent, the former is close to integer values on sufficiently
fine lattices and a suitable binning to the distribution of q-values can be applied.31

We apply several smearing steps (e.g. from 10-30 HYP steps, cf. section 3.1.2) before calcu-
lating (2.119), driving the charge closer to integer values.
The renormalization factor Z will be determined on a given ensemble {Ui}i∈I with charges
{qi}i∈I by minimizing

χ2 =
∑

i∈I
(Z qi − round(Z qi))

2 , (2.120)

where the round operation casts the argument to the nearest integer [Dürr et al., 2007]. Using
this, we define the renormalized charge via

qren = round(Z q). (2.121)

This charge is integer by definition and equals ν in the continuum limit.32 Since the topological
charge is a global quantity, autocorrelation effects are large. The corresponding autocorrela-
tion times are assumed to be a good measure for estimating the ergodicity of the algorithm
at a given set of parameters. We therefore monitor the topological charge in all our runs,
especially at large β where the topological sector tunneling rate may significantly decrease
(cf. 3.1.2).

2.3.3. Smearing

Observables measured on plain configurations are often contaminated by short distance fluc-
tuations. It is possible to improve the signal by using smearing (or filtering) methods. The
basic procedure, common to most smearing recipes, is the averaging of the thin link matrices
Uµ(x) over their surrounding neighbours. The idea behind this is that the direct, single-link
gauge connection is not the only possibility to connect two neighbouring lattice sites in a
gauge covariant way. It is possible to choose other, extended paths around the lattice con-
necting these two sites, which are less sensitive to ultraviolet fluctuations. The most basic
smearing recipes are based on (weighted) averages of the thin link with the next simplest
gauge connections, i.e. the surrounding staples. Replacing the single link gauge connection in
the fermion operator33 with a smeared (fat) link amounts to adding an irrelevant operator to
the action. This operator vanishes in the continuum limit, as long as the smearing prescrip-
tion, i.e. the smearing method, smearing parameters and iteration level, remains constant
in the continuum limit. This can easily be understood by noting that the physical extend
of the smearing decreases with a and reduces to a point in the continuum limit. At finite
lattice spacing however, the coupling of the physical observables to the unphysical UV modes
is suppressed and hence the scaling is improved. Note that smearing does not change the
structure of the Dirac operator (2.117). The only modification is replacing the thin links by
their smeared counterparts.

31What ’sufficiently fine’ means in this context is highly dependent on the specific choice of the action.
32It has been checked that within the Symanzik scaling regime [Symanzik, 1983a,b], fermionic and gluonic

definitions of the topological charge give the same continuum limit [Alles et al., 1998; Cundy et al., 2002;
Del Debbio and Pica, 2004].

33including the clover term
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Over the last decade, smeared clover-link fermions have been well established [DeGrand et al.,
1998; Bernard and DeGrand, 2000; Stephenson et al., 2001; Bernard et al., 2001b; Zanotti
et al., 2002; Capitani et al., 2006]. It was found that all improvement coefficients appear-
ing in the unsmeared fermion action such as cSW are driven closer to their tree-level values
and the normality of the Dirac operator is improved [Hoffmann et al., 2007; Horsley et al.,
2008; Durr et al., 2009]. Another important effect of link smearing is the reduction of the
inherent additive mass renormalization of Wilson-type fermions [Capitani et al., 2006]. This
can easily be understood by noting that the unphysical doubler modes, located in the corners
of the first Brioullin zone, couple to the physical p = 0 mode by exchanging hard gluons.
Suppressing this coupling reduces the influence of doubler modes on the physical spectrum
and thus reduces the size of the additive quark mass renormalization. Furthermore, smeared
link fermion actions are not (or much less) affected by some pathologies thin link actions
may show at large cutoffs (cf. [Della Morte et al., 2005a; Aoki et al., 2005] and section 3.1).
The most important feature of smeared actions is that the spectrum of the Dirac operator
is stabilized and hence small eigenvalue fluctuations are suppressed [DeGrand et al., 1999;
Stephenson et al., 2001]. This allows to perform lattice calculations at or even below physical
pion masses (cf. section 4.2 and Durr et al., 2011b, 2010), which is significantly more difficult
without link smearing.
Note that recent works were able to find a relation between successive infinitesimal EXP
smearing steps and renormalization group flows [Narayanan and Neuberger, 2006; Luscher,
2010a,b,c]. Literature offers smearing recipes for different purposes [cf. Albanese et al., 1987;
Hasenfratz and Knechtli, 2001; Morningstar and Peardon, 2004; Capitani et al., 2006; Hasen-
fratz et al., 2007; Durr, 2009; Schaefer et al., 2007; Hoffmann et al., 2007; Moran and Lein-
weber, 2008] but I only present those which have been used in our studies. All these recipes
are gauge covariant and hence no gauge fixing is needed.

APE and HYP blocking

The APE smearing [Albanese et al., 1987] is the oldest smearing recipe. The original link Uµ
is replaced by the average of the surrounding staples:

Vµ(x) = PSU(3)


(1− α)Uµ(x) +

α

6

∑

±ν 6=µ
Uν(x)Uµ(x+ ν̂)U †ν (x+ µ̂)


 (2.122)

where PSU(3) is a projection to SU(3).34 It is possible to apply several iterative smearing steps
in order to improve the smearing effect.

The HYP blocking [Hasenfratz and Knechtli, 2001] is a slight modification of the APE idea.
One can think of it as applying three successive APE smearing steps, where the staples
involved in formula (2.122) are chosen in such a way, that the dependence of the fat link Vµ

34Note that except for the SU(2)-case, a linear combination of SU(N) matrices is not necessarily proportional
to an element of SU(N).
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on its surrounding gauge fields Uν is restricted to the hypercube. The formula is given by

V (1)
µ:ρν(x) = PSU(3)


(1− α3)Uµ(x) +

α3

2

∑

±η 6=ρ,ν,µ
Uη(x)Uµ(x+ η̂)U †η(x+ µ̂)




V (2)
µ:ν (x) = PSU(3)


(1− α2)Uµ(x) +

α2

4

∑

±ρ6=ν,µ
V (1)
ρ:νµ(x)V (1)

µ:ρν(x+ ρ̂)V (1) †
ρ:νµ (x+ µ̂)




Vµ(x) = PSU(3)


(1− α1)Uµ(x) +

α1

6

∑

±ν 6=µ
V (2)
ν:µ (x)V (2)

µ:ν (x+ ν̂)V (2) †
ν:µ (x+ µ̂)


 .(2.123)

For a better understanding, the pictorial description of this procedure is given in figure 2.4.
In principle, a single HYP blocking is equivalent to 3 APE smearing steps if suitable smearing
parameters are chosen.35

(a) (b)

Figure 2.4.: HYP blocking procedure in three dimensions. The fat link in the middle of the
cube is the staple average of the surrounding links (a). These links again consist
of staple averages of their surrounding links (b), only including staples belonging
to the same hypercube as the initial link [cf. Hasenfratz and Knechtli, 2001].

Analytic EXP- and HEX-blocking

The disadvantage of the above discussed smearing recipes is the SU(3) projection step. This
operation is usually not analytic, i.e. one cannot compute the derivative of the smearing
operation. However, the smearing has to be analytic in order to use it within a molecular
dynamics trajectory (cf. 2.3.4). Nevertheless, both recipes described above can be easily

35It is generally not fully equivalent since three APE steps also touch links outside the hypercube. However, an
equivalent improvement of certain observables can be found (cf. section 3.2).
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made analytic by choosing a proper projection method.36 In this work, we use the so called
EXP (or stout) links, which are defined by

Γµ(x) =
∑

±ν 6=µ
Uµ(x)Uµ(x+ ν̂)U †ν (x+ µ̂)

Vµ(x) = exp
(
ρPTA

{
ΓµU

†
µ(x)

})
Uµ(x), (2.124)

where PTA projects any 3× 3 matrix Ω to its traceless anti-Hermitian part:

PTA{Ω} =
1

2

[
Ω− Ω†

]
− 1

6
Tr
[
Ω− Ω†

]
. (2.125)

It is straightforward to prove that this smearing is analytic for any iteration level (cf. section
E.2).
The HEX smearing is equivalent to the HYP blocking, where all APE links have to be replaced
by stout smeared links [Capitani et al., 2006]. In straight analogy to the HYP blocking, one
has the freedom to choose three smearing parameters (α1, α2, α3) to determine the smearing
strength of a single iteration level:

Γ(1)
µ:νρ(x) =

∑

±σ 6=(µ,ν,ρ)

Uσ(x)Uµ(x+ σ̂)U †σ(x+ µ̂)

V (1)
µ:νρ(x) = exp

(α3

2
PTA

{
Γ(1)
µ:νρ(x)U †µ(x)

})
Uµ(x)

Γ(2)
µ:ν(x) =

∑

±σ 6=(µ,ν)

V (1)
σ:µν(x)V (1)

µ:νσ(x+ σ̂)V (1) †
σ:µν (x+ µ̂)

V (2)
µ:ν (x) = exp

(α2

4
PTA

{
Γ(2)
µ,ν(x)U †µ(x)

})
Uµ(x)

Γ(3)
µ (x) =

∑

±ν 6=µ
V (2)
ν:µ (x)V (2)

µ:ν (x+ ν̂)V (2) †
ν:µ (x+ µ̂)

Vµ(x) = exp
(α1

6
PTA

{
Γ(3)
µ (x)U †µ(x)

})
Uµ(x). (2.126)

This smearing recipe was used in our studies as well and is compared to EXP smearing in
section 3.2.
I finish this section with a general remark on smearing. One argument against smearing is
that excessive use of smearing destroys gauge field locality of the action and badly influences
the short-distance behaviour of certain observables. This argument is especially true, if the
smearing level or parameters are adjusted with respect to the lattice cutoff a. For example, if
the smearing extent is held constant in physical units by tuning the number of smearing steps
accordingly, this information will propagate into the continuum. In our calculations, we use
a constant number of 6 steps EXP and 2 steps HEX smearing with constant and moderate
smearing parameters. The information content of an individual link propagates within a
single smearing step by following a diffusion law [cf. Capitani et al., 2006], hence even slower
than the mathematically worst case (factor '

√
2 for each iteration or HYP-level). I will

36The derivatives of the simple staple averages in (2.122) or (2.123) can be computed by considering the fat
link as a sum of paths and take the derivative by ‘following these paths’. However, this methods becomes
inapplicable if iterative smearing is used [DeTar and DeGrand, 2006, p. 211ff].
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discuss the locality of our actions in section 3.1.

2.3.4. Algorithms

In addition to the lattice discretization of the action, the choice of adequate algorithms is
of great importance as well. In case of quenched calculations, i.e. calculations in which the
functional determinant of the Dirac operator is set to one37, Monte-Carlo based algorithms
such as overrelaxation and pseudo heatbath are the methods of choice (see below).
Today, quenched QCD is mainly used as an inexpensive testbed for new methods, because
calculations in full QCD are now feasible.38 Besides the growth in computational power, this
is partly attributed to the tremendous progress which has been made in improving algorithms.
These algorithms are mostly molecular dynamics based, such as the (R)HMC (see below).
Note, that due to the accumulation of rounding errors, the updated gauge field links may de-
viate from unitarity after a certain number of updates. Therefore, reunitarization steps have
to be applied regularly, independent of the used update algorithm [Gattringer and Lang, 2010,
p. 82].

Before discussing more optimized methods, it is useful to understand the most basic importance-
sampling method called Metropolis algorithm. Because of its generality, it can be applied to
many statistical systems or being combined with more specialized algorithms.

Monte-Carlo integration and Metropolis criterion

Let us recall the statistical interpretation of quantum field theory: we want to obtain an
ensemble {Ui}i∈I which is distributed according to the Boltzmann weight

ρ[U ] =
e−S[U ]

Z
. (2.127)

This can be achieved by producing a Markov chain of configurations Ui by means of Monte-
Carlo integration. Every new configuration Un+1 is computed from an existing one Un by
applying a suitable, algorithm dependent transformation to Un. This yields a candidate
configuration U ′ which is set equal to Un+1 (and thus being accepted) with a probability of

P [Un → U ′] = min

{
1,
ρ[U ′]
ρ[Un]

}
. (2.128)

The update is rejected and Un+1 set equal to Un with the inverse probability. This condition
is referred to as Metropolis criterion.
The algorithm satisfies detailed balance, i.e. for any two configurations U,U ′ the equation

ρ[U ]P [U → U ′] = ρ[U ′]P [U ′ → U ] (2.129)

37This is equivalent to neglecting diagrams containing internal quark lines in perturbative calculations.
38However, the quenched approximation is still very important in some special fields of lattice gauge theory. A

good example for this are large Nc theories, where diagrams containing quark loop become strongly suppressed
when increasing Nc. Thus, the quenched diagrams will give the major contributions to all observables in that
limit.
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holds. Along with ergodicity and aperiodicity, detailed balance is a sufficient condition
to guarantee that the algorithm converges towards the equilibrium distribution (2.127) [cf.
Creutz et al., 1983]. Aperiodicity means, that P [U → U ]6=0∀U , whereas ergodicity states
that the algorithm can reach any possible field configuration within a finite number of steps.
If even P [U ′ → U ]>0 is satisfied for any pair U,U ′, the algorithm can reach every configura-
tion in a single step. This feature is called strong ergodicity. The question whether an update
algorithm is ergodic or not is difficult to answer. For example, local update algorithms may
have problems in sampling global properties of the equilibrium distribution correctly.

Algorithms used in the quenched approximation

The first more specialized algorithm to be discussed is the Monte-Carlo based pseudo heat bath
algorithm. It chooses the transition probability equal to the weight of the final configuration,
irrespective of the initial one. Therefore, it demands that39

P [U → U ′] = ρ[U ′],

which obviously satisfies detailed balance. Due to the large configuration space, one cannot
implement this requirement fully numerically. Instead, we can visit the lattice site by site and
update only single links Ux. Let us denote all links which are kept fixed in a single update
by Ŭx. The canonical weight is then given by

ρ[U ] = ρ[Ux|Ŭx] ρ̆[Ŭx], (2.130)

where ρ̆[Ŭx] is the weight of U by ignoring the link Ux. Hence, the transition probability
factorizes into

P [U → U ′] = Px[Ux → U ′x|Ŭx] δ(Ŭx − Ŭ ′x), (2.131)

where Px[Ux → U ′x|Ŭx] is the transition probability of going from Ux to U ′x under the condition
that the other links Ŭx are kept fixed. The heat bath requires

Px[Ux → U ′x|Ŭx] = ρ[U ′x|Ŭx]. (2.132)

The probability density function can be written as

dEŬx [Ux] = ρ[Ux|Ŭx] dUx. (2.133)

As a total derivative, the measure dEŬx is translationally invariant and we can obtain a new
link U ′x by integrating dEŬx with respect to Ux, shifting the result by a random number
r ∈ [0; 1[ and applying an inversion:

U ′x = E−1

Ŭx

(
EŬx(a) + r[EŬx(b)− EŬx(a)]

)
. (2.134)

Here [a; b] is the interval of all allowed links. Of course, the inverse of the density function is
hard to compute and it is more suitable to work with an approximation ρ0 of ρ and E0,Ŭx

of

39This section is based on [Montvay and Münster, 1994, p. 396ff], following closely the argumentation of [cf.
Kurth, 2007, p. 45ff].
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EŬx and combining the update with an accept-reject step:

r′ ≤ ρ[U ′x|Ŭx]

ρ0[U ′x|Ŭx]
min

Ux∈[a;b]

(
ρ0[Ux|Ŭx]

ρ[Ux|Ŭx]

)
≤ 1. (2.135)

For the gauge group SU(2), these approximations can be found rather easily. It is well known
that each U ∈ SU(2) can be represented by a quaternionic unit vector a = (a0,a) via

U = a0 + ı
3∑

k=1

ak σk. (2.136)

This means that linear combinations of SU(2) group elements, such as the staple sum Sx
belonging to Ux can be directly reprojected into SU(2) by simple normalization. This allows
us to define an element of SU(2) by setting

U0 =
√

detSx S
−1
x = αS−1

x . (2.137)

Recall that we demanded the transition probability to be equal to the weight of the phase
space, i.e.

ρ[Ux|Ŭx] dUx ∝ exp

(
β

2
Re Tr[UxSx]

)
, (2.138)

where Sx solely depends on some links of Ŭx. Using relation (2.137) yields

UxSx = αUxU
−1
0 = αU0,x = α

(
a0 + i

3∑

k=1

σkak

)
. (2.139)

Since U−1
0 ∈ SU(2), the Haar measure is invariant under the transformation Ux → UxU

−1
0 =

U0,x. Thus, we obtain

∫

SU(2)

dUx ρ[Ux|Ŭx] =

∫

SU(2)

dU0,x ρ[U0,x|Ŭ0,x]. (2.140)

Using the quaternionic representation of the SU(2) Haar measure, we end up with the prob-
ability density of the parameters of a single link

p(a1, a2, a3)d3a = da0

√
1− a2

0 e
βαa0d2Ω, (2.141)

where a0 =
√

1− (a2
1 + a2

2 + a2
3) and d2Ω is the solid angle with respect to the three-vector a.

Although a generalization of that algorithm to Nc > 2 is difficult, it is possible to apply the
SU(2) heatbath successive to all diagonal SU(2) subgroups of the SU(Nc) link. This method
is called pseudo heat bath. Detailed balance is also fulfilled for this derived algorithm which
goes back to Cabibbo and Marinari [1982].
The second important gauge-update algorithm is the overrelaxation method. The idea is to
find a rotation U0 which, when applied to the original link via U ′x = U0U

†
xU0, maximizes

Re Tr(U ′xUx), (2.142)
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while preserving the action at the same time. This guarantees that the update will always
be accepted. However, such an update is not ergodic since it generates the microcanonical
ensemble instead of the canonical one. Nevertheless, in combination with a heat bath algo-
rithm, overrelaxation speeds up the decorrelation of subsequent configurations in the Markov
chain [Petronzio and Vicari, 1990].
We found it to be most efficient to combine four overrelaxation steps with one pseudo heat
bath step. We used this setup for generating our quenched configurations for the scaling test
of the quenched strange quark mass (cf. 3.2.2) and quenched BK (cf. 3.2.3).

Hybrid-Monte-Carlo

Performing simulations with dynamical fermions is much more involved compared to the pure
gauge case. In Yang-Mills theory, the action is ultra-local and thus changes in the action can
be also computed locally. In case of fermion fields, this is not true. The fermion functional
determinant introduces a global quantity. Recall that

Z =

∫
DU

∫
Dψ

∫
Dψ e−SG[U ]−ψ (/D[U ]+m)ψ =

∫
DU det(/D[U ] +m) e−SG[U ]. (2.143)

We rewrite expression (2.143) using the identity det(M) = exp(Tr[lnM ]), obtaining

Z =

∫
DU e−SG[U ]−SF [U ], (2.144)

where SF [U ] = −Tr[ln(/D[U ] +m)]. This expression is at least as difficult to compute numer-
ically as the determinant before and we only use it for notational means. The idea behind
many fermionic algorithms is to exploit the path integral identities between bosonic and
fermionic variables (cf. formulae (2.19) and (2.25)). Assuming non-vanishing eigenvalues, we
have det(D) = 1/ det(D−1).40 For even numbers of degenerate flavours we can rewrite the
fermionic path integral via41

∫ ( n∏

i=1

DψiDψ̄i DξiDξ̄i

)
e−

∑n
i=1(ψ̄iDiψi+ξ̄iDiξi) =

n∏

i=1

det(D2
i ) (2.145)

=
n∏

i=1

det(DiD
†
i ) (2.146)

∝
∫ ( n∏

i=1

Dφ†iDφi

)
e
−

n∑
i=1

φ†i (DiD
†
i )
−1φi

.

(2.147)

We concentrate on two degenerate flavours (n = 1), but the calculations can be easily extended
to arbitrary n.
The configurations we want to obtain should be distributed by exp(−S[U ])/Z, where S[U ] =

40For brevity, I denote /D +m by D.
41I follow the argumentation from Gattringer and Lang [2010, p. 190ff] and also use a similar notation. However,

I leave out the description of the MD algorithm in flat space [cf. Gattringer and Lang, 2010, p. 191ff] for brevity
and start by discussing the SU(3) algorithm invented by [Duane et al., 1987].
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SG[U ]− φ†(DD†)−1φ. The updates of φ can be performed by generating a complex random
vector χ which is distributed by exp(−χ†χ) and then setting φ = Dχ.
A molecular dynamics method is then applied for updating to the gauge fields U , where
the φ are treated as external constant fields. In order to ensure reversibility even when using
relatively large MD timesteps ∆τ , a Metropolis accept-reject step at the end of each trajectory
has to be applied.
In detail, the update is computed as follows: first, express all link variables Uµ(x) using the
Lie-algebra generators λi and eight real numbers ωiµ(x):

Uµ(x) = exp

(
i

8∑

i=1

ωiµ(x)λi

)
= exp(iQµ(x)). (2.148)

To each coordinate variable Qµ belongs a momentum variable

Pµ(x) = exp

(
i

8∑

i=1

P iµ(x)λi

)
, (2.149)

where P iµ(x) ∈ R, ∀i, µ, x. The variables Qµ, Pµ are conjugate42 and allow for sampling the
micro-canonical ensemble using an MD algorithm. The micro-canonical Hamiltonian involves
the expression

1

2

∑

x,µ,i

(
P iµ(x)

)2
=
∑

x,µ

Tr[Pµ(x)2]. (2.150)

For performing the molecular dynamics evolution, we have to compute the derivative of the
action with respect to the Qµ. I am going to discuss this for a thin-link action where no
smearing is applied.43

Derivatives live in the tangent space of the corresponding manifold. In case of SU(3), this is
the Lie algebra Ŋu(3) and thus can be expressed using the corresponding basis vectors. The
action is a function of the links U . Therefore, we define the Lie-derivative of an arbitrary,
lie-differentiable function f to be

δUif(U) =
∂f(U)

∂ωi
= ∂ωf

(
eiωλiU

)∣∣∣
ω=0

= lim
ω→0

f
(
eiωλiU

)
− f

(
U
)

ω
. (2.151)

Using this, we can define the derivative of f with respect to some group element U via

δf

δU
=
∑

i

λi δUif(U) (2.152)

Thus, the MD force is given by the Lie algebra element

F [U, φ] =
δ

δU

(
SG[U ] + φ†(DD†)−1φ

)
. (2.153)

Computing the numerical derivative of the gauge action is straightforward when rewriting it
as a trace of products of U and the corresponding staples. The function is linear in U and

42More precisely, ωiµ and P iµ form a set of conjugate variables.
43For a detailed discussion of the smeared action, please read the appendix E.2
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the derivative can be easily computed (remember that the staple is independent of U). The
fermionic part of the force can be rewritten via (cf. appendix E.1)

∂i
(
φ†(DD†)−1φ

)
= −φ†(DD†)−1

(
∂iDD

†)(DD†)−1φ

= −
(
(DD†)−1φ

)† (
(∂iD)D† +D(∂iD

†)
) (

(DD†)−1φ
)
. (2.154)

It is obvious, that the most expensive parts of the update are the inversions of DD† and
the computation of the derivative of D. Therefore, the performance of the algorithm mainly
depends on the speed of the algorithm used for the inversions. We use a mixed precision [Durr
et al., 2009] conjugate gradient [CG, cf. Press et al., 2007, p. 87f] solver which is well balanced
concerning memory consumption and convergence rate. Using a CG solver is possible because
DD† is a Hermitian matrix.
In order to obtain detailed balance it is necessary to use an integrator which provides re-
versibility of the trajectory as well as preservation of the integration measure DU DP (or area
conservation) inside the MD evolution. The well known leapfrog algorithm [Press et al., 2007,
p. 1038ff] satisfies both [cf. Gattringer and Lang, 2010, p. 192f].
The full algorithm can be summarized as follows (n∆τ = 1):

1. Compute the pseudofermion field φ = Dχ, where χ is distributed by exp(−χ†χ).

2. Compute eight real numbers P i for each link U0 in order to obtain P0, where the P i

have to be distributed by exp(−Tr(P 2
0 )).

3. Calculate the starting value for the leapfrog algorithm using an initial half-step:

P1/2 = P0 −
∆τ

2
F [U, φ]|U=U0

. (2.155)

4. Apply n− 1 full intermediate steps for k = 1, . . . , n− 1:

Uk = exp
(
i∆τPk−1/2

)
Uk−1; Pk+1/2 = Pk−1/2 −∆τ F [U, φ]|U=Uk

. (2.156)

5. Finish with a half-step:

Un = exp
(
i∆τPn−1/2

)
Un−1; Pn = Pn−1/2 −

∆τ

2
F [U, φ]|U=Un

. (2.157)

6. Close the trajectory by applying the Metropolis criterion (2.128). The action is given
by integrating over the full microcanonical Hamiltonian, i.e.

S[U,P, φ] = Tr(P 2) + SG[U ] + φ†(DD†)−1φ. (2.158)

Due to the Metropolis step at the end, this algorithm is exact. Formally it corrects for O(∆τ2)
discretization errors in MD time and in principle allows for using larger time steps. Of course,
increasing the step size has to be done carefully since this results in a reduced acceptance
rate and therefore in larger autocorrelation times. It is good to tune the algorithm to obtain
at least 80% acceptance. In our work we tried to obtain a sustained acceptance rate > 90%.
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Rational HMC

The HMC cannot treat odd numbers of fermions. The reason is that the Dirac operator
enters quadratically via DD†, which guarantees the convergence of the pseudofermionic path
integral. Using D−1 alone therefore causes trouble.
If detD> 0,44 the solution to this is using the operator (DD†)−1/2 within the standard HMC,
where the inverse square root has to be approximated by a suitable functional form. In our
case we use a rational ansatz of the form45

M−
1
2 ≈ α0 +

d∑

i=1

αi
βi −M

, (2.159)

with the zolotarev coefficients αi, βi and the order d chosen appropriately. The algorithm
is named after this kind of approximation, viz. rational HMC (RHMC) [Clark et al., 2003;
Clark and Kennedy, 2007]. The approximation may be rather crude, since the Metropolis
step at the end of each (R)HMC trajectory also corrects for truncation errors in (2.159). In
order to guarantee a good acceptance rate by preserving a good performance, one has to tune
the expansion order d: increasing d improves the approximation and thus the acceptance rate,
but involves more expensive inversions of the Dirac operator. A multishift solver [Frommer
et al., 1995] serves well here. Analogous to the HMC, the RHMC is an exact algorithm.

Mass preconditioning - Hasenbusch Trick

This method goes back to Martin Hasenbusch [Hasenbusch, 2001]. The fermion determinant
is split up via

detM = det(Mn)

(
n∏

k=2

det(M−1
k Mk−1)

)
det(M−1

1 M), (2.160)

where a stochastic estimator is used for all of the factors. The advantage is, that one can
use the M−1

k matrices as preconditioners. We chose Dirac operators with different masses
as preconditioners for the different insertions in our calculations. This isolates the heavily
fluctuating UV part of the force so that it can be treated separately (see below).

Multiple timescale integration

Inside the force of the MD evolution (2.153), different terms usually contribute by different
orders of magnitude when using a fixed step size ∆τ . This means that after a full MD
step, some terms contribute less to the total fermion force than others. Hence, they can be
integrated on a much larger timescale ∆τl while preserving the overall discretization error
O(∆τ2). This can be achieved by a so-called Sexton-Weingarten integration scheme [Sexton
and Weingarten, 1992]. Within the MD part of the HMC, the step size for integration of
each individual part of the force is chosen individually to achieve an equal contribution of
each term to the total force. While this does not reduce the acceptance rate, it does reduce

44Which is satisfied if D is γ5-Hermitian, as it is the case for the Wilson Dirac operator.
45One can also choose a Padé ansatz such as M−

1
2 ≈ c0

∏d
i=1

αi−M
βi−M

.
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the computational costs. Combining the mass preconditioning with the Sexton-Weingarten
integration scheme leads to a very efficient algorithm: the less expensive UV part of the force
can be integrated on much smaller timescales, whereas the demanding IR part of the force can
be integrated using a relatively large step size [Ali Khan et al., 2003; Urbach et al., 2006a].
For instance, the heavy quark flavours can be integrated on much smaller timescales than the
expensive light quark flavours.

Omelyan integrator

The omelyan integrator applies a slight modification to the leapfrog algorithm within the
MD: before and after the leapfrog step, a small momentum update (reduced by λ ≈ 0.193) is
added and shortens the original leapfrog momentum update by a factor of 1−2λ. This scheme
increases the computational costs by a factor of ' 2 but in turn improves the MD energy
conservation by about one order of magnitude. This allows for chosing a larger step size ∆τ
which leads to an overall performance benefit of around 50% [Takaishi and de Forcrand, 2006].

All these algorithmic improvements shifted the “Berlin-Wall” of computational costs [Jansen
et al., 2006; Urbach et al., 2006b] to smaller pion masses (cf. e.g. [Jung, 2009]).

2.3.5. Error treatment

Monte-Carlo techniques used for generating gauge-configurations are statistical techniques.
The QCD path integral is approximated by a sum over a finite number of configurations
obtained by importance sampling. The uncertainty attributed to neglecting the configurations
‘missed’ by the sampling algorithm can be expressed by assigning a statistical error to all
lattice results. Thus, it can be reduced by increasing the number of configurations in an
ensemble. In the limit of large statistics, this error is expected to decrease with 1/

√
N , where

N is the size of the sample.46

A second source of uncertainty is related to the specifics of the action, the methods used
in the final analysis, etc.. Some examples are the use of quark masses much larger than
the physical ones or the use of a fermion discretization which is not chirally symmetric for
vanishing quark masses. The former setup involves an extrapolation to the physical point,
introducing a systematic uncertainty attributed to the choice of the extrapolation formula.
The latter setup complicates the computation of observables sensitive to chiral symmetry and
thus introduces a systematic uncertainty attributed to the method used for correcting for these
effects. The error associated to these kind of uncertainties is called systematic error and can
bias the final results. Therefore, it is important but often difficult to estimate it in a reliable
way. In this section, I will present a method on how this error can be estimated.47 This
method also allows for giving error budgets, i.e. for disentangling the different contributions
to the systematic error. This helps identifying the dominant sources of uncertainty and thus
deciding how future calculations can be improved.
Finite volume effects can be viewed as a special kind of systematic uncertainties and literature

46The sections related to the assessment of statistical errors is based on [Gattringer and Lang, 2010, p. 97].
47This method was already used and its description is published in the SOM for [Dürr et al., 2008] and [Durr

et al., 2010].
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offers methods allowing to correct for them [cf. Luscher, 1986a,b, 1991a,b; Colangelo et al.,
2005]. I will briefly discuss these techniques in the end of this section, following closely the
argumentation from our SOM for [Dürr et al., 2008].

Thermalization and autocorrelation

Gauge configurations belonging to the same Markov chain (cf. section 2.3.4) are generally
not statistically independent. Thus, expectation values of observables evaluated on different
subsets of these configurations are correlated. These correlations are referred to as autocorre-
lations and they strongly depend on the update algorithm and specific observable. It is easy
to understand, that global quantities such as the topological charge have a larger autocorrela-
tion than local observables such as the plaquette. It is possible to measure the autocorrelation
for any observable O, as long as the expectation value of this observable can be measured on
a single configuration.48 Consider the autocorrelation function

CO(t) = 〈(Oi − 〈Oi〉)(Oi+t − 〈Oi+t〉)〉 = 〈OiOi+t〉 − 〈Oi〉〈Oi+t〉, (2.161)

where the time difference t is in Monte-Carlo time. The normalized autocorrelation function
ΓO exhibits exponential behaviour for large time separations t:

ΓO(t) =
CO(t)

CO(0)
∼ exp

(
− t

τO

)
, (2.162)

where the decay constant τO is the exponential autocorrelation time of observable O [Gat-
tringer and Lang, 2010, p. 94]. Autocorrelation leads to systematic errors of order exp(−t/τO).
Since the exponential autocorrelation time is difficult to measure, it is recommended to use
the integrated autocorrelation time:

τO,int =
1

2
+

N∑

t=1

ΓO(|t|) ≈
∞∫

0

dt e−t/τ = τ. (2.163)

For large t the statistics will be very limited and the errors on the autocorrelation function
(2.162) very large. Thus, the sum in expression (2.163) should be truncated at the first t-
value, where ΓO(|t+1|) is compatible with zero within errors. This gives a fair estimate of the
real autocorrelation time τO. Comparing integrated autocorrelation times for different lattice
sizes and pion masses gives a hint on the strength of the inherent critical slowing down. The
integrated autocorrelation time usually behaves as

τO,int ∼ ξzO, (2.164)

where the dynamical critical exponent z depends on the update algorithm. Near critical points
we have ξO ≈ L on finite lattices (ξO →∞ in the continuum) and therefore in the worst case

τO,int ∼ Lz, (2.165)

48It is difficult to define a reasonable autocorrelation function for e.g. hadron masses, since the correlation
functions from which hadron masses are extracted have to be averaged over (a subset of) an ensemble.
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where the numerical costs grow accordingly.
Thermalization is also related to autocorrelation. When starting from a random configuration,
it takes several N ·τ sweeps or trajectories to thermalize the system, i.e. bring it into thermal
equilibrium. Of course, all non-thermalized configurations should be thrown away and we
carefully watch for possible remaining thermalization effects in our configurations. This is
also to be done for the autocorrelation effects of the most critical observables such as the
topological charge.
In our computations, autocorrelation time is calculated using a more sophisticated setup
described by Wolff [2004], where we basically used the MATLAB code supplied by the author.
The best method to deal with these autocorrelations is to take every τ ·nth configuration with
n ∼ 3 − 5. Unfortunately, this is not always feasible in present day simulations. Even if it
were, some minor autocorrelation effects would still remain. A possible solution to this is data
binning, but it requires large statistics and calculating reliable errors is very difficult. The
(moving block) bootstrap method I am going to describe now is well suited for calculating
trustable errors on datasets with small autocorrelation effects.

Statistical error treatment: Bootstrap analysis

The bootstrap procedure [Press et al., 2007, p. 809f] is a simple and computationally cheap
Monte-Carlo data sampling method [Press et al., 2007, p. 807ff], where no assumptions
about the underlying process or the nature of the measurement errors have to be made.
Assume having a dataset D0 consisting of N independent and identically distributed (iid)
data points. We generate M synthetic data sets {Dk}Mk=1 by drawing N random data points
with replacement from the original sample D0. Hence, each generated data sample contains
≈ 37% duplicated original points [cf. Press et al., 2007, p. 810]. For any observable of interest
O we can calculate the means Ōk on each of these samples via

Ōk =
1

N

N∑

i=1

Oki, ∀Oki ∈ Dk. (2.166)

The (biased) bootstrap estimate Õ and error σO is then given by

Õ ≡ 1

M

M∑

k=1

Ōk; σ2
O ≡

1

M

M∑

k=1

(
Ōk − Õ

)2
. (2.167)

As the final result one should quote Ō0±σO.49 The major drawback of the standard bootstrap
method is the iid assumption. Due to non-vanishing autocorrelation effects, this requirement
is violated. Methods allowing to relax this assumption are currently under research. In our
work, we use the moving block bootstrap technique [Mignani and Rosa, 1995]. The basic idea
is to draw overlapping blocks of subsequent measurements instead of a single measurement
at a time. A multiple of the integrated autocorrelation time serves well as an estimate for the
optimal block length l. For l = 1, the standard bootstrap technique is recovered. A major

49Please note that [Gattringer and Lang, 2010, p. 97] contains an error in the paragraph following formula
(4.71). According to their notation, the expectation value computed from the full sample θ̂ should be used for
the central value, since the mean of the bootstrap means θ̃ is biased.
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advantage of bootstrapping over data blocking methods is that it is possible to obtain reliable
errors for functions of expectations values. The function has to be applied to the bootstrap
sample means Ok before calculating the bootstrap error according to (2.167).

Systematic error treatment

For ab initio computations of physical quantities it is extremely important to carry out an
unbiased data analysis. Any preference based on prejudices and estimates and not on facts re-
lated to the choice of fitting intervals, fitting functions, scale setting, etc. should be avoided.
Our method is basically an extended version of the frequentist method [Nakamura et al.,
2010], following the philosophy, that any potential source of systematic error has to be taken
into account as long as it is not proven to be sub-dominant and therefore can be neglected.
Translated into a cooking recipe, this means: we repeat the whole data analysis, from the
very beginning to the very end, using e.g. different fit ranges for correlators, different mass
cuts, different functional forms for the fits, etc.. Hence we consider many possible methods for
analyzing the data, where every single one is completely reasonable and may be used as the
‘main method’ in standard approaches. Thus, we obtain several ‘final’ values for the observ-
able ai which can be weighted by using their quality of fit qi = 1−Γ(ni/2, χ

2
i /2).50 All ai form

a (usually non-Gaussian) distribution and we can calculate the final value ā by computing
the median and the systematic error σa,syst by calculating the central 68% probability. There
is no ambiguity related to data binning which is necessary to obtain the probability density
function (PDF), since both quantities can be computed from the unambiguous cumulative
distribution function (CDF).
Note that this method allows for computing error budgets: assume that we want to estimate
the influence of the variation of method b (which might be the choice of fit ranges for ex-
ample) on the final result. We assume further that we have n reasonable replacements for
method b (e.g. n different fit ranges). Thus we can perform n analyses, keeping the method
b fixed but different for each of those and varying over all other uncertainties. We obtain n
averaged values āb and compute the central 68% of those in order to estimate the influence
of the variation of method b on the final result.
Note that the assumption of ‘only using reasonable methods in the data analysis’ is math-
ematically not solid and relies on the intuition of the person performing the analysis. In
many cases it is clear which methods should be included in the analysis and which should
not. However, there are borderline cases where this is not entirely clear. In our studies, this
applies to the assumption for the scaling behavior of the action, i.e. whether it is dominated
by O(αsa) or O(a2) effects. However, including both possibilities is a conservative choice
which may at worst lead to an overestimation of the systematic error.51

A common difficulty is to combine the statistical and systematic errors. Since the systematic
error is usually non-Gaussian, it is, strictly speaking, not allowed to add these two in quadra-
ture. Hence, we quote both errors separately and only add them in quadrature for illustration
purposes.

50Here, Γ is the incomplete gamma function and ni the number of degrees of freedom.
51Note, that we are not including terms proportional to αsa and a2 in the same fit. Our data are not precise

enough and do not cover a sufficiently broad range in a allowing the fit to discriminate between these terms.
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Finite volume corrections

The finite volume effects are a source of systematic errors which in principle cannot be avoided
completely in lattice QCD. Nevertheless, they can be made arbitrarily small by using suffi-
ciently large lattices. If this is computationally not feasible or possible, they can at least be
estimated and subtracted.
In principle there are two different types of finite volume corrections. The first type results
from virtual pion exchanges between different copies of the periodic system and it tends to
shift the energy levels of single particle states to higher values. The second type is only
relevant to resonant states, in regions of parameter space where they would decay in infinite
volume.
The frameworks for treating finite volume corrections have been established by Luscher
[1986a,b]; Colangelo et al. [2005] for stable and by Luscher [1991a,b] for unstable states.
They allow treating finite volume corrections in a self-consistent manner, i.e. in a way in
which only the results of the lattice computation and the axioms of quantum field theory are
used.

The first type of finite volume effects are most transparent in case of non-singlet meson
masses at 1-loop level χPT.52 Let us consider the pion mass Mπ: up to higher orders in Mπ,
its relative shift from finite to infinite volume is given by

Rπ(L) =
Mπ(L)

Mπ
− 1 = const. ·M2

π g̃1(Mπ L), (2.168)

where g̃1 has a well behaved expansion in terms of a Bessel function of the second kind

g̃1(x) =
24K1(x)

x
+

48K1(
√

2x)√
2x

+ . . . . (2.169)

The Bessel function K1 can be expanded for large x via

K1(x) =
(π
x

)1/2
e−x

(
1 +

3

8x
+ . . .

)
, (2.170)

which implies that finite volume corrections are exponentially suppressed at large L [Luscher,
1986a].53 In principle, the analytic results from these references along with (2.168) can be
used to correct lattice data for finite volume effects. This can either be done by fitting ded-
icated finite volume data to these formulas or using the predictions for the corresponding
coefficients from χPT.54 We will see in section 3.2.4 that finite volume effects on our quanti-
ties of interest are tiny. However, we still correct for them.

The second type of finite volume corrections has to be treated differently. Consider the
hypothetical case in which we have a resonant state which does not couple to its scattering
state as it would do in infinite volume. In a finite box with size L, the spectrum in the center

52Higher orders have been worked out in [Colangelo et al., 2005].
53Analytic results for finite volume corrections of the nucleon are given in [Ali Khan et al., 2004; Colangelo et al.,

2006, 2010a].
54A good check for testing the chiral behaviour of the action is to compare both approaches.
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of mass frame consists of two particle states with energy

E =
√
M2

1 + k2 +
√
M2

2 + k2, (2.171)

where k = n2π/L, ∀n ∈ Z3 and M1, M2 are the masses of the lighter particles (with applied
finite volume corrections as described in the last paragraph). Let us denote the mass of the
resonant state by MX (again with corrections of type I). When increasing L or lowering the
quark masses55, the energy of the scattering state E can become smaller than MX . In the
presence of interactions, the resonant and its scattering state mix. Hence in continuum theory,
the spectral density of the scattering state will show a peak in its multi-particle-continuum
region. The position of the peak can be interpreted as the mass MX of the resonant state
and the width is proportional to its decay constant ΓX . Inside a finite volume however, the
spectrum is discrete and non-degenerate. This leads to an avoided level crossing phenomenon
of the scattering and resonant state (cf. figure 2.5). The resulting volume dependent mass
shifts can distort the chiral extrapolation of hadron masses to the physical point.
Literature [Luscher, 1986a,b, 1991a,b] provides a conceptually satisfactory basis and good
mathematical tools to deal with resonances in lattice QCD: each measured energy corresponds
to a momentum k = |k| through a complicated non-linear equation. We will discuss the ρ-
resonance as an example: this particle decays almost exclusively into two pions π with a total
energy

W = 2
√
k2 +M2

π (2.172)

in the center of mass frame. The ππ scattering phase δ11(k) in the isospin I = 1 and angular
momentum J = 1 channel passes through π/2 at the resonance energy. This corresponds to
a pion momentum of

k = kρ =
√
M2
ρ/4−M2

π . (2.173)

The effective range formula
k3

W
cot δ11(k) = a+ bk2 (2.174)

yields

a = −bk2
ρ =

4k5
ρ

M2
ρ Γρ

, (2.175)

where Γρ is the decay width of the ρ.56 The bottom line is that the energy levels are still
given by (2.172) but with k being the solution of the non-linear equation

nπ − δ11(k) = φ

(
kL

2π

)
, (2.176)

with 0 < k <
√

3Mπ, n ∈ N and φ being a known kinematical function which was evaluated
numerically for our analysis [cf. Luscher, 1991b, for details].
Therefore, the spectrum of resonant states is determined by MX , the masses of the scattering
states M1,M2 and the coupling gX which is related to the width of the resonance.

55The masses of light hadrons depend stronger on the masses of their constituents compared to heavier hadrons.
56The decay width can also be parametrized by an effective coupling g between the ρ and ππ states. This

coupling can then be measured directly on the lattice and hence additional experimental input can be avoided.
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Figure 2.5.: Energy levels for the resonant MX and ππ scattering state W in non-interacting
(a) and interacting (b) theory in dependence of MπL. In the left panel, the
MX state has energy E/Mπ = 3 (red line) and the discrete energies of the ππ
scattering states are represented by different hyperbolic black curves. On the
right side, we observe a clear distortion of the energy spectrum when interaction
is switched on. The different colors denote the spectrum for different choices of
coupling g [taken from Frison et al., 2010, with the permission for reprint from
the authors].

Besides hadron masses and decay constants, also BK defined in (2.102) is affected by finite
volume corrections. However, since this quantity is a ratio of matrix elements with similar
chiral structure, cancellations in the chiral expansions render the finite volume corrections
to this ratio small [cf. Becirevic and Villadoro, 2004]. Furthermore, SU(3) flavour symmetry
relations lead to cancellations in χPT diagrams for large pion masses. Therefore, an additional
suppression of finite volume corrections to BK is observed in that energy region. In section
4.3, we show that our expected finite volume corrections to BK are even smaller than that to
Mπ and thus well under control. However, we use the formulas from [Becirevic and Villadoro,
2004] to correct for the small remaining effects.

2.3.6. Spectroscopy

One of the most important tasks in lattice gauge theory is to measure the masses of hadrons,
mainly of pions and kaons. Even if these quantities are not of interest in themselves, they
can be used as input quantities (cf. 2.3).
In order to extract energy levels in lattice QCD, we have to define interpolating operators O
which have non-vanishing overlap with the state |h〉 we are interested in, i.e. O|h〉6=0.57 In
the following, we are going to discuss only operators which are local in coordinate space. For
mesons, these operators may be written as

Omeson(x, t) = q̄(1)(x, t)Γ q(2)(x, t), (2.177)

57This section is based on [Gattringer and Lang, 2010, p. 123ff] and [DeTar and DeGrand, 2006, p. 215ff].
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where Γ is a projection operator, projecting to proper spin and parity of the desired meson (i.e.
Γ = γ5 for obtaining a pion-interpolating-operator). Baryons are colour singlets consisting of
three valence quarks. The corresponding local interpolating-operators can be written as

Obaryon(x, t) = εabc q
(1)
a (x, t)

(
q

(2)T
b (x, t)F Γq(3)

c (x, t)
)
, (2.178)

where again Γ projects to the correct spin and parity and F can be a charge conjugation or
something similar, which makes use of isospin symmetries of octet or decuplet.58 For hadrons,
it is possible to construct composed operators which are linear combinations of expressions
(2.177) or (2.178) with different quark contents and projectors Γ, F . The masses of hadronic
states |h〉, having the same quantum numbers as O and satisfying O|h〉6=0, can then be
obtained by calculating correlators

C(t) =
1

V

∑

x,y

〈
O(x, t)O†(y, 0)

〉
=
∑

k

〈0|O|k〉〈k|O†|0〉
2(Ek − E0)

e−t (Ek−E0) =
∑

k

|〈0|O|k〉|2
2mk

e−tmk ,

(2.179)
where we inserted a spectral sum of eigenstates |k〉 with energy-eigenvalues Ek. Since the sum
over all positions x,y projects the hadron onto zero-momentum, we can consider the energy
difference Ek − E0 to be the mass mk of state |k〉 in lattice units. If O is local, the vacuum
overlap |〈0|O|k〉| is related to the corresponding decay constant of |k〉.
If |h〉 is the lowest energy state, we have m1 = mh. Due to mk>ml, ∀ k>l, all excited states
die out faster in time than the ground state because of the stronger exponential suppression.
Therefore, the time extent of the correlator has to be sufficiently large in order to be able to
compute mh with insignificant excited states contributions.59 This yields

C(t)
t→∞−→ |〈0|O|h〉|

2

2mh
e−mht. (2.180)

On a periodic lattice, the correlator receives contributions coming from the opposite boundary
in t direction. This gives rise to contributions proportional to

C̃(t)
(T−t)→∞−→ ε

|〈0|O†|h̃〉|2
2mh̃

e−mh̃(T−t), (2.181)

where ε = ±1, depending on the number of quark fields in the interpolating operator and
whether anti-periodic boundary conditions in time direction are established. The state |h̃〉
is equal to |h〉 if the lowest lying states of O and O† are the same. In this work we used
operators satisfying |〈0|O|h〉|2 = |〈0|O†|h̃〉|2 and |h〉 = |h̃〉, which simplifies the sum C + C̃.
Further corrections arise from states whose propagators are ‘wraping’ around the lattice
several times. For the ground state, these contributions can be resummed yielding a factor
of (1− exp(−mhT ))−1, where T is the time extent of the lattice. Since we are only interested
in mh and this factor is usually very close to one, we absorb it into the fitted vacuum overlap
|〈0|O|h〉|2.

58The operators from (2.178) cannot be chosen such that they exclusively couple to spin-3/2 states [Leinweber
et al., 1992]. In order to eliminate the spin-1/2 contributions, an additional projection has to be applied.
However, Leinweber et al. [1992] see no indications for these contributions being large.

59Extracting excited states is rather difficult and beyond the scope of this work.
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Therefore, the functional form of our hadron correlators is given by

C(t) + C̃(t) ∼
{

cosh(mh (t− T/2)) for ε = +1
sinh(mh (t− T/2)) for ε = −1

, (2.182)

for t→ T/2 and T/2� 0 and ε from (2.181).
In order to obtain mh, we fit our correlators to the suitable form of (2.182) after investigating
the effective mass plateau defined by [cf. e.g. Gattringer and Lang, 2010, p.145]

meff(t+ 1/2) = ln
C(t)

C(t+ 1)
. (2.183)

This is necessary for adjusting the fit window in order to ensure that excited states contribu-
tions are subdominant.
In practice, the hadronic correlators can be obtained by computing traces of quark propaga-
tors. Consider for example the meson-correlator:

1

V

∑

x,y

〈
O†(x, t)O(y, 0)

〉

=
1

V

∑

x,y

〈(
q̄(1)Γq(2)

)†
(x, t)

(
q̄(1)Γq(2)

)
(y, 0)

〉

= ± 1

V

∑

x,y

〈
q̄(2)(x, t)Γ†q(1)(x, t)q̄(1)(y, 0)Γq(2)(y, 0)

〉

= ±
〈

Tr
[
S(2)(0, t) Γ† S(1)(t, 0)Γ

]
− δ(1)(2) Tr

[
S(t, t) Γ†

]
Tr
[
S(0, 0)Γ

]〉
,

(2.184)

where the ± depends on the result of the permutation of γ4 with Γ† and the (computationally
demanding) disconnected contribution is present only if the quark fields q(1) and q(2) are of the
same flavour. The quantity S(i)(t1, t0) is the quark propagator, describing the propagation of
quark i from time-slice t0 to t1, where the momentum-zero projection by averaging over all
spatial positions y,x at these time-slices is implied. The same calculation can be carried out
for baryonic correlation functions, but, due to the larger quark content, the contractions are
more complicated.
In order to efficiently compute the sum over y in (2.179), extended sources can be used.
A common example are U(1) random wall sources which are discussed in appendix E.3.
However, if energy levels of hadrons are extracted, it is more efficient to use appropriately
smeared sources and sinks which have a better overlap with the desired state. For extracting
masses, we found that Gaussian smeared quark fields serve well. These are defined by

ψ(x) = θ
(
ξ − |x− x0|

)
δ(t− t0)

e−r |x−x0|

N
, (2.185)

with a hard cutoff ξ, radius r > 0, normalization N and position x0 = (t0,x0). Extended
sinks can be obtained by convoluting the sink shape function ψ̄ into D−1ψ, accelerated by
using fast-fourier-transformations [Hauswirth, 2002, p. 50f]. Note that the Gaussian source
is not gauge covariant, hence gauge fixing is required before the inversion is performed. We
use the Coulomb gauge (cf. app. C) for calculating spectral observables.
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PCAC mass

Consider the isovector axial current Aaµ and the pseudoscalar density P a

Aaµ(x) =
1

2
ψ̄(x) γµγ5τ

a ψ(x), (2.186)

P a(x) =
1

2
ψ̄(x) γ5τ

a ψ(x), (2.187)

with τ0 = 12×2 and τk = σk, ∀ k = 1, 2, 3. The τ -matrices act as rotations in 2-flavour space
and we consider degenerate up- and down-quark masses, i.e. mu = md = m. Also consider
the axial rotation with

δψ = γ5
τa

2
ψ, δψ = −ψγ5

τa

2
. (2.188)

The Ward identity for arbitrary (multi-)local operators O(y) under this transformation can
be obtained by computing

δ〈O(y)〉 = 〈δO(y)〉 − 〈O(y) δS〉 = 0, (2.189)

where δS is the variation of the action. For δO(y) = 0 and in the continuum limit, expression
(2.189) reads:60

〈
(∂µA

a
µ(x))O(y)

〉
= 2m 〈P a(x)O(y)〉. (2.190)

In a chiral theory wherem = 0, the isovector axial current is conserved and therefore is referred
to as partially conserved axial current (PCAC). After multiplying the suitable renormalization
constants and considering non-vanishing lattice spacing a, expression (2.190) reads

〈
(∂̂µA

a (ren)
µ (x)O(ren)(y)

〉
= 2m(ren) 〈P a (ren)(x)O(ren)(y)〉+ contact terms +O(ak), (2.191)

where the scaling exponent k depends on the level of improvement of Aaµ, P
a. The renormal-

ized unimproved operators are expected to have O(a) discretization effects. The improved
operators defined by

Aa (ren)
µ (x) = ZA(1 + bAma)

(
Aaµ(x) + cA a ∂̂µP

a(x)
)

(2.192)

P a (ren)(x) = Zp(1 + bP ma)P a(x), (2.193)

with appropriately chosen improvement coefficients bA, bP , cA, are expected to scale as O(a2).
Using the tree level values cA = 0, bA = bP = 1 yields formally O(αsa) scaling, where αs is
the strong coupling.
The renormalized PCAC or Axial Ward identity (AWI) mass can be defined by [cf. Gattringer
and Lang, 2010, p. 220]

m
(ren)
AWI =

ZA
ZP

〈(
∂̂µA

a
µ(x) + cA a ∂̂

µ∂̂µP
a(x)

)
P a(x)

〉

2 〈P a(x)P a(x)〉 =
ZA
ZP

mPCAC. (2.194)

60Equation (2.190) holds up to contact terms. For derivation of this Ward identity, cf. [Gattringer and Lang,
2010, p.270ff] or [Kurth, 2007, p. 91f]. A more detailed discussion of this WI including off-shell terms and
lattice irrelevant operators can be found in [Bochicchio et al., 1985].
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Due to Goldstone’s theorem, the AWI mass vanishes for M2
π = 0 and thus does not suffer

from possible additive renormalization such as the VWI mass (see below). As a byproduct,
we obtained the renormalization factor for the AWI quark mass:

ZmAWI =
ZA
ZP

. (2.195)

VWI mass

There is a second definition of quark masses on the lattice, more closely related to the La-
grangian bare parameters: the so-called vector-Ward-identity (VWI) quark mass. Consider
the local vector current operator

V a
µ (x) =

1

2
ψ̄(x) γµτ

a ψ(x). (2.196)

On the lattice using Wilson-type fermions, this current is not conserved. However, it can be
modified to a point-split conserved vector current

V a,C
µ (x) =

1

4

[
ψ̄(x) (γµ − r)Uµ(x)ψ(x+ µ̂) (2.197)

+ψ̄(x+ µ̂) (γµ + r)U †µ(x)ψ(x) + (x→ x− µ̂)
]

(2.198)

≡ ψ̄(x) γµ ψ(x)− ra

2
ψ̄(x)

(←
Dµ −

→
Dµ

)
ψ(x), (2.199)

where Dµ is the Wilson Dirac operator and conservation implies that ZV C = 1. The Ward
identity for this current reads

〈∂µV C,a
µ (x)O(y)〉 = 〈ψ̄(x)[M̄, τa]ψ(x)O(y)〉+ contact terms +O(a), (2.200)

where M̄ is the subtracted quark mass matrix. The subtraction term m(crit), commonly
referred to as additive mass renormalization, can be obtained by fitting mPCAC linearly in
the bare quark mass m(bare). Since the former vanishes in the chiral limit and is not affected
by additive renormalization, the x-axis intersection of the fit determines m(crit).
Multiplying both sides of (2.200) with the suitable renormalization factors, we obtain the
multiplicative VWI-mass renormalization constant

ZmVWI =
1

ZS
. (2.201)

Here, ZS is the scalar density renormalization factor, necessary to renormalize terms pro-
portional to 〈ψ̄ψ〉. I have to point out, that the derivation of this result did not include
non-vanishing singlet diagrams appearing in the mass renormalization due to the Wilson and
clover terms.61

61For a brief discussion of this issue see 2.3.7.
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2.3.7. The ratio-difference-method

We introduced this method in our quark mass determinations [Durr et al., 2011b, 2010] and
this section will closely follow these publications.
For Wilson-type fermions there are two options for obtaining the renormalized quark mass.
One possibility is to start with the Lagrangian parameter am(bare) and apply both additive
and multiplicative renormalization to build the quark mass62

mVWI =
1

ZS

[
1− 1

2
bS am

W +O(a2)

]
mW , (2.202)

where mW = m(bare) −m(crit), ZS = ZS(µ2) is the scalar density renormalization constant,
bS the on shell improvement constant and m(crit) the critical mass. The label VWI stands
for ‘Vector Ward Identity’, albeit this specific WI only restricts differences of quark masses.
In the following, we use mVWI only in such differences and the dependence on m(crit) only
persists in an O(a) suppressed term. A second method to obtain the renormalized quark mass
is to use the PCAC relation (2.194) together with additional on-shell improvement terms:

mAWI =
ZA
ZP

1 + bA am
W +O(a2)

1 + bP amW +O(a2)
mPCAC, (2.203)

with improvement coefficients bP , bA. If one is content with O(a) scaling, all these factors can
be set to zero. In our studies we use the tree level parameters bS = bP = bA = 1 and cA = 0
in (2.194). In any case, the difference of mAWI and mVWI vanishes in the continuum, so it
does not matter which quark mass definition is used. Please note that both choices do have
specific advantages and disadvantages: the AWI mass avoids additive renormalization but
the multiplicative renormalization factor involves the pseudoscalar density renormalization
constant ZP . In a RI scheme involving exceptional momenta, this quantity is affected by pion
pole contributions [Martinelli et al., 1995] and therefore hard to determine. In case of the
VWI mass, only ZS is needed, which is not affected by this effect. On the other hand, mVWI

has to be renormalized additively which usually enhances the errors of this quantity.63

For simplifying the following derivations, assume that all improvement coefficients are set to
zero. The more general case will be discussed later.
In this setup, it is natural to use mW in quark mass differences whereas mPCAC should be

used in quark mass ratios. This means that we use d = amW
s − amW

ud = am
(bare)
s − am(bare)

ud

and r = mPCAC
s /mPCAC

ud . The renormalized quark masses can be then obtained by computing

am
(ren)
ud =

1

ZS

d

r − 1
, am(ren)

s =
1

ZS

rd

r − 1
. (2.204)

In the following, we are going to refer to this strategy as ratio-difference-method. Applying
tree-level improvement to (2.203) (i.e. cA = 0, bP = bA = 1) does not change this reasoning
and thus we are safe to do so. Tree-level improvement of amW makes things a little bit
more complicated, since setting bS = 1 in (2.202) introduces quadratic terms in amW so that

amW
s − amW

ud does not coincide with am
(bare)
s − am(bare)

ud anymore. Additionally, note that in
a full dynamical theory, the improvement pattern itself is slightly more complicated because

62in order to avoid a cumbersome notation, I drop the superscript (ren) in the following derivations
63Remember that the bare quark mass is known exactly because it is a parameter of the calculation.
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of the presence of quark-line disconnected diagrams [Gockeler et al., 2006; Bhattacharya
et al., 2006; Rakow, 2005]. We will see that our ratio-different-method steers around both
complications and that the quark masses can be computed via (2.204), where the quantities
r, d are slightly more complicated (see below).

The ratio-difference-method in full QCD

We apply the findings of [Bhattacharya et al., 2006] to our method, adopting their notation,
except that we will not denote renormalized quantities by a hat .̂ Instead, we will write
out the renormalization factors explicitly, so that it is easier to see which renormalization
constants are involved. Equations (2.202) and (2.203) now read

mVWI
j =

1

ZS
mW
j

[
1− 1

2
bS am

W
j − b̄S a Tr(M) +O(a2)

]
+ . . . (2.205)

mAWI
j =

ZA
ZP

mPCAC
j

[
1 + (bA − bP )amW

j + (b̄A − b̄P ) a Tr(M) +O(a2)
]
, (2.206)

where M is the flavour diagonal quark mass matrix and the dots in (2.205) denote terms of
higher orders in Tr(M)k and Tr(Mk). Furthermore, ZX are the flavour non-singlet renor-
malization constants and bX = 1 + O(αs), b̄X = O(α2

s), cA = O(αs) denote Nf -dependent
improvement coefficients. The quantities b̄X correct for the appearance of non-vanishing
flavour singlet diagrams and hence start off at two-loop order (the external quark line is con-
nected to a quark loop containing the operator insertion by two gluon lines, cf. figure 2.6).

Finally, mW
j = m

(bare)
j −m(crit), where m(crit) is the Nf=3 critical mass (i.e. in the unitary

direction).
When comparing the simplified expressions (2.202) and (2.203) to (2.205) and (2.206), note

the additional term proportional to Tr(M) =
∑

f m
W
f . It renders the renormalized mj being

dependent on all other quark masses mk. Evidently, this term comes from quark loops in
the functional determinant and a perturbative expansion shows that the related improvement
coefficients b̄X start out at O(α2

s). This means that they enter through two-loop effects, i.e.
a gluon-loop which attaches quark-loop to the external quark (cf. figure 2.6). Taking the
differences of two VWI masses and the ratio of two AWI masses yields

mVWI
j −mVWI

k =
1

ZS
(mW

j −mW
k )

[
1− 1

2
bS a(mW

j +mW
k )− b̄S aTr(M) +O(a2)

]
, (2.207)

mAWI
j

mAWI
k

=
mPCAC
j

mPCAC
k

[
1− 1

2
bS a(mW

j −mW
k )− b̄S a Tr(M) +O(a2)

]
. (2.208)

Considering the Nf=2+1 flavour case, with d and r as defined before, gives

amVWI
s − amVWI

ud =
d

ZS

[
1− 1

2
bS a(mW

s +mW
ud)− b̄S a(mW

S + 2mW
ud) +O(a2)

]
, (2.209)

amAWI
s

amAWI
ud

= r
[
1 + (bA − bP )a(mW

s −mW
ud) +O(a2)

]
. (2.210)



60 2.3. LATTICE DISCRETIZATION OF QCD

(a) non-singlet and singlet contribution (b) singlet contribution only

Figure 2.6.: Diagrams giving rise to two-loop contributions to the mass renormalization for
non-singlet and singlet parts (a) and singlet part only (b). The scalar insertion
is denoted by the black dot. The latter diagramm contains 5 gamma matri-
ces (2 from vertices and 3 from quark propagators) and is therefore zero in the
continuum and chiral limit. However, this is not the case for Wilson or clover
fermions.

We can further write

amW
s + amW

ud = (amW
s − amW

ud)
mW
s /m

W
ud + 1

mW
s /m

W
ud − 1

' dr + 1

r − 1
, (2.211)

amW
s + 2amW

ud = (amW
s − amW

ud)
mW
s /m

W
ud + 2

mW
s /m

W
ud − 1

' dr + 2

r − 1
, (2.212)

where the last equality is only valid up to O(a2). Accordingly, we can express the differences
of the VWI and ratios of AWI masses through d and r as

amVWI
s − amVWI

ud =
1

ZS
dimp,

mAWI
s

mAWI
ud

= rimp, (2.213)

where

dimp = d

[
1− 1

2
bS d

r + 1

r − 1
− b̄S d

r + 2

r − 1
+O(a2)

]
, (2.214)

rimp = r
[
1 + (bA − bP )d+O(a2)

]
. (2.215)

Note that when tree-level improvement is used, all sub-leading terms in the brackets vanish
except for the one proportional to bS . Thus, using dimp and rimp instead of d and r in (2.204)
allows us to compute the renormalized quark masses ms and mud using only the differences
d and ratios r, avoiding the use of the pseudoscalar renormalization constant ZP and critical
mass m(crit).

2.3.8. Matrix elements of four-fermion operators on the lattice

In section 2.2.6, I discussed how standard model CP violation in the neutral kaon system is
related to the kaon bag parameter BK defined in formula (2.102). In this section I show how
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BK can be computed on the lattice: consider the 3-point function64

C3(τ, t1, t0) =
( a
L

)3 ∑

x1,x0,x

〈(s̄γ5d)(t1,x1)O∆S=2(τ,x) (s̄γ5d)(t0,x0)〉, (2.216)

where the sums over x1,x2 project the external kaon states onto zero momenta and the sum
over x is a volume average for increasing statistics. We will discuss below, how these sums
are performed efficiently in practice.
Since the operator (s̄γ5d)(t) is a pion interpolating function, expression (2.216) has the fol-
lowing interpretation: for sufficiently large separations of τ , t1 and t0, an anti-kaon is created
at t = t0, converted into a kaon by O∆S=2 at t = τ and annihilated at t = t1. In this limit,
the overlap of (s̄γ5d)(t) with the kaon ground state is maximal and thus

C3(τ, t1, t0)
t0�τ�t1−→ 〈0|s̄γ5d(t1)|K0〉〈K̄0|s̄γ5d(t0)|0〉

( a
L

)3∑

x

〈K0|O∆S=2(τ,x)|K̄0〉

=
e−MK(t1−t0)

4M2
K

〈0|s̄γ5d(0)|K0〉〈K̄0|s̄γ5d(0)|0〉
( a
L

)3∑

x

〈K0|O∆S=2(0,x)|K̄0〉.

(2.217)

Note that the r.h.s. is τ -independent since MK0 = MK̄0 ≡ MK . This expression is propor-
tional to the desired matrix element 〈K0|O∆S=2(0)|K̄0〉, but still contains additional factors.
These can in principle be computed on the lattice by studying kaon-kaon correlation func-
tions. However, since the vacuum overlaps 〈K̄0|s̄γ5d(0)|0〉 and 〈0|s̄γ5d(0)|K0〉 are multiplied
by an exponential, it is very difficult to extract it reliably. Additionally, a correct normal-
ization of all quantities involved is necessary. This explains why we use the ratio defined
in equation (2.102) for extracting BK . In that ratio, many statistical and systematic effects
cancel. Consider the correlation function

C2µ(τ, t) =
( a
L

)3 ∑

x1,x

〈(s̄γ5d)(t,x1)(d̄γµγ5s)(τ,x)〉. (2.218)

For large separations t− τ we can insert intermediate kaon states and obtain

C2µ(τ, t)→ e−MK(t−τ)

2MK
〈0|s̄γ5d(0)|K0〉

( a
L

)3∑

x

〈K0|d̄γµγ5s(0,x)|0〉 (2.219)

Analogously, we define

C̄2µ(τ, t) =
( a
L

)3 ∑

x1,x

〈(d̄γµγ5s)(τ,x)(s̄γ5d)(t,x1)〉, (2.220)

which yields

C̄2µ(τ, t)→ e−MK(τ−t)

2MK

( a
L

)3
〈K̄0|s̄γ5d(0)|0〉

∑

x

〈0|d̄γµγ5s(0,x)|K̄0〉. (2.221)

64See e.g. [Lellouch, 2011, p. 32ff] for more details.
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Combining everything gives

C3(τ, t1, t0)

C2µ(τ, t1)C̄µ2 (τ, t0)
→
(
L

a

)3 ∑
x〈K0|O∆S=2(0,x)|K̄0〉∑

x1
〈K0|d̄γµγ5s(0,x1)|0〉∑x2

〈0|d̄γµγ5s(0,x2)|K̄0〉 (2.222)

= BK(a), (2.223)

where the argument a emphasizes that the regularization scheme is the lattice scheme. The
matching to a continuum scheme can be achieved by using the Rome-Southampton method as
discussed in part 2.4.2. Since we are using chirality breaking Wilson fermions, O∆S=2 mixes
with other dimension six operators. Thus, in order to obtain BK on the lattice, we have to
measure the matrix elements of all five mixing operators Ok (cf. section 2.4.2 for details).
Thus, we have to compute65

Q̃k(τ) =
C3 k(τ, T/2, 0)

C2µ(τ, T/2)C̄µ2 (τ, 0)
, (2.224)

where

C3 k(τ, t1, t0) =
( a
L

)3 ∑

x1,x0,x

〈(s̄γ5d)(t1,x1)Ok(τ,x) (s̄γ5d)(t0,x0)〉. (2.225)

Note that this ratio is automatically tree-level, on-shell O(a) improved, since all improvement
factors cancel. The r.h.s. of (2.224) can be measured on the lattice by performing the con-
tractions displayed in figure 2.7. The factor of two in the numerator arises from diagrammatic
symmetries, and the two addends are called trace-disconnected and trace-connected respec-
tively. As the second addend involves only a single trace, it is suppressed by a factor of 1/Nc

with respect to the first one in large Nc theory. Because of the same sign of both addends,
a partial cancellation is at work which increases the statistical error. The volume averages
in (2.224) are obtained by using random wall sources at t = 0 and t = T/2, i.e. at the kaon
insertions (cf. appendix E.3 for details on random wall sources). When using two different
random sources per configuration, we end up with four Dirac operator inversions: one for
each source and mass mud and ms. Increasing the number of random sources by a factor of
N2 would reduce the statistical error by a factor of N . However, since measurements on same
configurations are correlated, it is often better to use more configurations instead. Of course,
the situation changes on fine expensive lattices with small pion masses. The CPU costs for
obtaining a factor of two in statistical accuracy can be much lower when using multiple ran-
dom sources instead of enlarging the ensemble.
The average over the spatial positions of the Ok insertion is exact. Note the computational
difference between the trace-disconnected term in the numerator and the VSA terms in the
denominator: for the former, one has to first compute the product of traces at each operator
insertion point x and then perform the average, whereas the volume average is carried out
before multiplying the traces for the latter. Of course, the average over the configurations is
always implied.
In the limit of large separations, all Q̃k(τ) are independent on τ . Thus, once the Q̃k(τ) are

65We denote them by Q̃k instead of Qk as it is done in part 2.4.2, because these quantities differ by the
denominator given by the VSA of BK . However, the renormalization pattern does not change, since the same
denominator is used for all five Q̃k.
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γ5 γ5

t = T/2 t = 0

t = τAµ Aµ
8
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− 2×2×
d

s s
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s

d d

s

d d

ss

t = T/2 t = 0

γ5 γ5

t = τ

γ5 γ5

t = 0t = T/2

t = τ

Ok Ok

Figure 2.7.: Diagrammatic description of contractions necessary to compute the matrix el-
ements in (2.224). The factor of two in the numerator is a symmetry factor,
because there are two possibilities of contracting the external quark lines with
the kaon states. The first term in the numerator is the trace-disconnected and the
second one the trace-connected part. The relative minus sign arises from different
numbers of fermion field anti-commutations. Large Nc theory predicts that the
trace-disconnected contribution is enhanced by a factor of Nc with respect to the
trace-connected contribution. In practice, both contributions have the same sign
so that a partial cancellation is at work.

obtained, a constant fit or average over the region where this function is flat in τ yields the
desired matrix elements Q̃k. Using the measured vector (Q̃1, Q̃2, Q̃3, Q̃4, Q̃5) together with
non-perturbative data obtained in the RI scheme (cf. part 2.4.2), converts the cutoff depen-
dent BK into a continuum scheme, allowing for comparison with experimental quark flavour
mixing data.

2.4. Non-perturbative renormalization

In QCD, observables related to Lagrangian parameters or effective operators usually require
renormalization. On the lattice as well as in the continuum, a regulator is applied to the
calculations in order to make the results finite, but the way how divergences are subtracted
differ. The lattice acts as a regulator since it introduces a momentum cutoff π/a. This means
that a renormalized operator is matched to the bare one via

Oren(1/a) = Z lat
O (1/a)Obare. (2.226)

In the continuum, the modified-minimal-subtraction-scheme (MS-scheme) is used in most
perturbative calculations. In that scheme, 1/ε poles coming from dimensional regularization
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along with the constant ln 4π+γE are subtracted. This allows for matching the bare operator
to the renormalized one via

Oren(µ) = ZMS
O (µ)Obare. (2.227)

For µ ∼ a−1, both schemes differ by a multiplicative, finite renormalization, i.e. a conversion
(or matching) factor. This means that matrix elements of this operator can be immediately
matched [cf. DeTar and DeGrand, 2006, p. 249]

〈α|O(µ)|β〉 = ZO(µ, a) 〈α|O(1/a)|β〉, (2.228)

where ZO(µ, a) = ZMS
O (µ)/Z lat

O (1/a). This operator matching decouples the renormalization
scale µ from the lattice cutoff π/a. It allows for comparing lattice results in continuum per-
turbation schemes and helps providing input for phenomenological calculations.
Renormalization constants of lattice operators can either be computed perturbatively or non-
perturbatively. The advantage of perturbative calculations is that they do not require large
amounts of CPU time. The disadvantage is that they can be very difficult if one uses com-
plicated actions such as our 2 HEX approach. Furthermore, the perturbative series has to
be truncated at a finite order and it is mostly difficult to estimate the uncertainties com-
ing from higher order corrections.66 This problem is solved by the non-perturbative renor-
malization method, which is computationally demanding on the other hand. Furthermore,
a non-perturbative calculation is sensitive to non-perturbative physics, possibly rendering
the matching to continuum perturbation theory difficult. A well-known example for this is
the pion pole [Martinelli et al., 1995] appearing in the infrared region of the pseudoscalar
renormalization constant ZP , if it is calculated at exceptional momenta67. This pole is a
non-perturbative Goldstone boson effect, since the pseudoscalar operator ψ̄γ5ψ has a strong
overlap with the pion wave function.

In our calculations, we use non-perturbative renormalization in the RI scheme together with
Ward identity methods for calculating bilinear and four-fermion operator renormalization
constants on the lattice.

2.4.1. Three-point function WI method

Ward identities provide an elegant way for computing the vector current renormalization ZV
non-perturbatively up to a high precision.68 Since ZV is scheme independent, it can be used
to calculate ZRI

q by computing (Zq/ZV )RI ZV , where the ratio (Zq/ZV )RI is obtained from
the RI formalism (cf. section 2.4.2). The vector-current WI is related to the global U(1)V or
U(1)f1 × . . .× U(1)f2 symmetries69

ψ → eiαψψ, ψ̄ → ψ̄e−iαψ , (2.229)

66In unimproved thin-link lattice perturbation theory, these corrections tend to be rather large. However, this
issue is mostly resolved if fat-links or tadpole resummation are used [cf. Capitani, 2003, and references therein].

67i.e. momentum transfer q2 = 0
68Read [Bakeyev et al., 2004] or follow the the ideas of Martinelli et al. [1991, 1992].
69The U(1)V symmetry is related to baryon number conservation and the U(1)f1×. . .×U(1)f2 symmetry implies

that there are no flavour changing neutral currents in QCD.



2.4. NON-PERTURBATIVE RENORMALIZATION 65

which are also satisfied for non-chiral fermion formulations such as the Wilson Dirac operator.
By applying Noether’s theorem, this global symmetry leads to the conserved current

J (ψ)
µ

(
x+

µ̂

2

)
=

1

2

[
ψ̄(x)(γµ − 1)Uµ(x)ψ(x+ µ̂)− ψ̄(x+ µ̂)(γµ + 1)U †µ(x)ψ(x)

]
. (2.230)

Due to the appearance of gauge fields, mediating between quarks on neighbouring sites, this
expression is sometimes called point-split vector current. The WI related to this current is
given by 〈

Ω(x)∆µ J
(ψ)
µ

(
x+

µ̂

2

)〉
=

〈
δΩ(x)

δψ(x)
ψ(x)

〉
+

〈
ψ̄(x)

δΩ(x)

δψ̄(x)

〉
, (2.231)

where ∆µf(x) = (f(x) − f(x − µ̂))/2 is the backward derivative and the expectation value
is meant to be taken over all gauge configurations U and fermion fields ψ. Obviously, the
r.h.s. of (2.231) is equal to zero if Ω(x) contains neither ψ(x) nor ψ̄(x). This not only true
on average, but on every single configuration. Effectively, the r.h.s. counts the quark and
anti-quark content of Ω at x. Let us now consider the ratio function

ζ(τ) =
〈P̄ (T/2)O(τ)P (0)〉
〈P̄ (T/2)P (0)〉 , (2.232)

where we choose Ω(t) = P (t) =
∑

x ψ̄(x, t)γ5ψ(x, t) instead of baryonic operators as in
[Bakeyev et al., 2004]. This function has a jump discontinuity at τ = T/2, where the height
of the jump is exactly equal to 1 in case of O(τ) = J4(τ). When inserting the non-conserved
vector current V4(τ) =

∑
x ψ̄(x, τ)γ4ψ(x, τ), the height of the jump is proportional to ZV .

More precisely, we can write

ZV (1 + bV am
W ) =

1

|ζ(t1)− ζ(t2)| for 0 < t1 < T/2 < t2 < T, (2.233)

where (1 + bV am
W ) is an on-shell O(a) tree-level improvement factor.70

In order to compute (2.232) on the lattice, the contractions displayed in figure 2.8 have
to be carried out. By choosing Ω(t) = 〈P̄ (t)P (0)〉, the r.h.s. of (2.231) becomes zero and the
disconnected contribution from figure 2.8 will only yield an additive normalization. There-
fore, it does not contribute to the discontinuity so that we can omit the difficult calculation of
the disconnected part and remain with the (numerically inexpensive) connected parts. This
computation can be simply done by using point propagators, but it turns out that statistical
noise can be efficiently reduced if U(1) random wall sources are used (cf. appendix E.3).
These are inserted at t = 0 and t = T/2, allowing to compute the spatial average at t = τ
exactly.
The major advantage of the non-perturbative WI method for renormalization is the avoid-
ance of calculating ZRI

q directly in the RI scheme as discussed in 2.4.2. The value for ZV
obtained by this method is far more precise compared to the quantity (ZV /Zq)

RIZRI
q ob-

tained from RI computations (see below). The reason for this is, that while relations in the
RI scheme are only valid for propagator averages because of the broken translation invariance
of single configuration propagators, the WI ZV relations are in principle valid on every single

70The relation (2.233) can be immediately obtained by choosing µ = 0 in (2.231) and integrating over t.
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γ5 γ5

t = 0t = T/2

(a) Diagrammatic description of the 〈P̄ (T/2)P (0)〉
correlator.

γ5 γ5

γ0

t = 0

t = τ

t = T/2

γ5 γ5

γ0

t = 0t = T/2

t = τ

(b) Diagrammatic description of the 〈P̄ (T/2)O(τ)P (0)〉 correlator, connected and disconnected parts.

Figure 2.8.: Quark-line contractions necessary to compute (2.232).

configuration. This results in a much better noise suppression compared to RI quantities.

2.4.2. Regularization independent scheme

The regularization independent (RI) scheme (more precisely called RI/MOM-scheme, cf.
[Martinelli et al., 1995]) provides a complete framework for calculating renormalization con-
stants non-perturbatively on the lattice and matching them perturbatively to a continuum
scheme such as MS. Additionally, many perturbative calculations in this scheme have already
been carried out so that the lattice data can be immediately matched to the perturbative
results for checking their agreement or identifying non-perturbative effects.
In our studies, we need the renormalization factors of two- and four-fermion-operators: the
former are needed for quark mass as well as the axial current renormalization, whereas the
latter are necessary for renormalizing O∆S=2 (cf. expression (2.101)).
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Renormalization of quark bilinears

The principles of the RI scheme are simple: the quark and gluon amputated Greens functions
are computed in a smooth gauge71, where a large Euclidian momentum p2 is assigned to all
external quark-lines. Consider for example the general bilinear quark operator

OΓ(x) = ψ̄(x)Γψ(x), (2.234)

where Γ can be a combination of Dirac matrices or a more complicated structure. Let us
denote the off-shell single particle momentum eigenstates by |p〉. Then, the momentum space
matrix elements of OΓ in the interacting theory can be related to the matrix elements of OΓ

in the free-field theory (i.e. the bare operator) via

ZRI
Γ (µ) 〈p|O|p〉p2=µ2 = 〈p|O|p〉bare, (2.235)

or equivalently

ZRI
Γ (µ)

1

12
Tr
[
〈p|O|p〉p2=µ2 〈p|O|p〉−1

bare

]
= 1. (2.236)

Hence, the second factor inside the trace is a projector I will denote by PΓ. The first factor
inside the trace is the amputated Greens function ΛΓ(p) modulus the wave function renor-
malization ZRI

q . This yields72

ZRI
Γ (µ)

ZRI
q (µ)

1

12
Tr [ΛΓ(p) PΓ]p2=µ2 = 1. (2.237)

This renormalization condition states that the renormalized vertex function ΛΓ(p) at p2 = µ2

is set to its tree-level value (cf. figure 2.9).
Computing amputated Greens functions on the lattice is a two-step process: first, one has to

p2 = µ2

=

ΓΓ Γ

Z−1
q ×

Figure 2.9.: Depiction of the renormalization conditions in formula (2.237).

compute the non-amputated Greens function GΓ(p) and propagators S(p). After performing

71We use the Landau gauge, cf. appendix C.
72The definition of ZRI

q in this text may differ from the wave function renormalization constants in other literature
by a simple inversion [cf. e.g. DeTar and DeGrand, 2006, p. 255]. Within this work I stick to the convention
of Martinelli et al. [1995].
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ensemble averages over each of those, the amputation can be performed, i.e.

ΛΓ(p) = S−1(p)GΓ(p) γ5(S−1(p))†γ5, (2.238)

with

S(p) =
1

N

N∑

i=1

Si(p|0) (2.239)

and

GΓ(p) =
1

N

N∑

i=1

Si(p|0)Γ γ5S
†
i (p|0)γ5, (2.240)

where the sums run over the ensemble. The single-configuration-quark-propagator Sk(p|0) is
defined being the Fourier transform of the coordinate space propagator

Sk(p|0) =

∫
d4x e−ipx Sk(x|0) (2.241)

and is not translationally invariant. This is only true for the average (2.239) in the limit of
large statistics. Therefore, it is possible to improve translational invariance by using more
than one source position x0 per configuration, i.e.

Sk(p) =
1

N

N∑

k=1

1

#X

∑

x0∈X

∫
d4x e−ip(x−x0) Sk(x|x0), (2.242)

with X = {x0,1, x0,2, . . . , x0,M} and where formula (2.240) has to be modified accordingly.
In addition, it is suitable to improve the non-perturbatively calculated quark propagators by
subtracting an O(a) contact term (cf. section 2.4.3). Mathematically this correction amounts
to replacing the unimproved Sk(x|0) by the improved S̄k(x|0) in (2.242) and (2.240).
It is straightforward to calculate ZA/Zq, ZP /Zq, ZS/Zq as well as ZV /Zq and ZT /Zq at a given
scale µ in the RI scheme.73 The scale µ should be chosen such that

1

L
� ΛQCD � µ� π/a, (2.243)

which is sometimes referred to as window condition. The dispersion relation of many lattice
Dirac operators significantly deviates from the linear dispersion relation of the continuum
Dirac operator D at large momenta. Therefore, it is better to choose µ ≤ π/(2a) and I will
refer to this conservative choice for the upper bound on µ as strict window condition.74

the wave function renormalization ZRI
q is also needed. In principle it can be calculated using

the RI relation

ZRI
q =

−i
12

Tr

[
∂S−1(p)

∂/p

]
. (2.244)

However, it is difficult to extract derivatives on the lattice precisely. As a replacement, one can
use the so called RI′ prescription, which projects the quark propagator against the free-field

73See appendix A for definitions of the operators S, P, T, V , and A.
74This renders the extraction of renormalization factors on coarser lattices difficult. A solution to this problem

is provided in section 2.4.3.



2.4. NON-PERTURBATIVE RENORMALIZATION 69

one:
1

ZRI′
q

=
1

12
Tr
[
S(p)S−1

0 (p)
]
. (2.245)

This definition is equivalent to ZRI
q at NLO perturbation theory. In our studies we apply a

hybrid approach: we calculate ZV using the three point function method explained in section
2.4.1 and use it together with the ratio (ZV /Zq)

RI in order to calculate ZRI
q .

Note that perturbative calculations are usually done in a massless scheme. In contrast to
that, all propagators computed on the lattice have to be infrared regularized by a finite mass.
In practice, this means that one has to compute the renormalization constants at different
values for the quark mass and then perform a chiral extrapolation to the massless scheme.
This can be done in several ways, where some of them are described in 3.2.2, 4.2 and 4.3.

Renormalization of four-fermion operators

In contrast to the bilinear case, the renormalization of four-fermion operators is in general
much more involved. The reason for this is, that the considered dimension six operators mix
with other dimension six operators under renormalization. The RI renormalization prescrip-
tion for ∆S = 2 operators has been worked out with care in [Donini et al., 1999]. I give an
overview over this work in this section, but omit some of the details.

The idea is to compute physical amplitudes such as

Aβ→α = CW (µ)ZO(µ, a) 〈α|O(1/a)|β〉, (2.246)

where CW is a Wilson coefficient in the corresponding OPE, 〈α|O(1/a)|β〉 the corresponding
matrix element of the bare lattice operator O and ZO its renormalization factor. For example,
in case of neutral kaon mixing, we are interested in the matrix element 〈K0|O∆S=2(µ)|K̄0〉
(see (2.102) in section 2.2.6). The operator inducing this mixing (cf. 2.3.8) can be expressed
in the basis75

OV V , OAA, OSS , OPP , OTT ,

OV A, OAV , OSP , OPS , OT T̃ , (2.247)

where
OΓ(1)Γ(2) = (ψ̄1Γ(1)ψ2)(ψ̄3Γ(2)ψ4), (2.248)

and the ψi represent the external fermion lines. The basis (2.247) is not the most optimal
choice: it can be simplified by considering discrete symmetries such as Fierz transformation,
i.e. interchanging flavour 2 ↔ 4, parity transformation, charge conjugation as well as the
flavour switching symmetries 1 ↔ 2, 3 ↔ 4 and 1 ↔ 4, 2 ↔ 3. This basis decomposes into
subgroups, where no mixing occurs between them. Furthermore, these operators do not mix
with lower-dimensional operators since those cannot have a four-flavour content. Using this

75Note that ‘kaon mixing’ should not be confused with ‘operator mixing’. The first is a physical process and
the second a technical subtlety, arising when computing renormalization constants of effective four-fermion
operators.
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information, we can define two sets of basis operators as described in table 2.2.76 We use the

Parity even Parity odd

O±1 = O±[V V+AA] O±1 = O±[V A+AV ]

O±2 = O±[V V−AA] O±2 = O±[V A−AV ]

O±3 = O±[SS−PP ] O±3 = −O±[SP−PS]

O±4 = O±[SS+PP ] O±4 = O±[SP+PS]

O±5 = O±TT O±5 = O±
T T̃

Table 2.2.: Decomposed basis of four-fermion operators according to their chiral properties.
The notation O± is explained in (2.249) and (2.250).

notation

O±XY =
1

2

[
OXY ±OFXY

]
, (2.249)

where OFXY it obtained from OXY by interchanging the flavours 2 and 4. Furthermore we
define

O[Γ(1)Γ(2)±Γ(2)Γ(1)] = OΓ(1)Γ(2) ±OΓ(2)Γ(1) . (2.250)

Donini et al. [1999] show that operators containing colour rotations λa can be reduced to
linear combinations of those defined in table 2.2. Since the two groups do not mix, the
renormalization for the matrix elements of these operators is given by

Qren±
i = Z±ij Q

±
j , Qren±

i = Z±ij Q±j , (2.251)

where Qi and Qi are matrix elements of Oi and Oi respectively, e.g. Qi = 〈α|Oi|β〉. Using
more symmetry arguments, it can be shown that the renormalization matrix Z± has to be
block-diagonal. Thus




Qren
1

Qren
2

Qren
3

Qren
4

Qren
5




±

=




Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55




±


Q1

Q2

Q3

Q4

Q5




±

. (2.252)

Note that the operator mixing of Q2,Q3 as well as Q4,Q5 is physical because there is no
symmetry of the QCD action forbidding this.
In case of the parity even (or conserving) operators, this is different. The selection rules for
operator mixing within this subset are highly dependent on the presence of chiral symmetry.
On the lattice, chiral symmetry is explicitly broken for many currently used fermion discretiza-
tions. Therefore, one cannot exclude mixing between any of the Qi. If chiral symmetry is
conserved, a mixing pattern analoguous to (2.252) applies. Donini et al. [1999] construct the
full mixing pattern of the parity even operator basis by using the hypothetical intermediate
chirally regulated scheme χRS , which assumes the use of a chirally symmetric regularization.
Despite the hypothetical character of this scheme, it is very useful for lattice calculations
since chiral symmetry is restored in the continuum limit. This means, that for (small) finite

76We denote the basis operators by Oi,Oi in contrast to Qi,Qi as done by Donini et al. [1999]. By Qi,Qi we
denote matrix elements of these operators (see text).
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lattice spacings, the mixing attributed to chiral symmetry breaking can be quantified by small
contributions ∆ik, vanishing logarithmically in a. Therefore, the full mixing pattern for the
parity conserving operators is given by




Qren
1

Qren
2

Qren
3

Qren
4

Qren
5




±

=




Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55




±


1 ∆12 ∆13 ∆14 ∆15

∆21 1 0 ∆24 ∆25

∆31 0 1 ∆34 ∆35

∆41 ∆42 ∆43 1 0
∆51 ∆52 ∆53 0 1




±


Q1

Q2

Q3

Q4

Q5




±

.

(2.253)
The unmixing matrix 1 + ∆±, with

∆ =




0 ∆12 ∆13 ∆14 ∆15

∆21 0 0 ∆24 ∆25

∆31 0 0 ∆34 ∆35

∆41 ∆42 ∆43 0 0
∆51 ∆52 ∆53 0 0




±

(2.254)

can be interpreted as a change of basis from the lattice scheme into χRS in which the contin-
uum mixing pattern can be applied. The entries of ∆± are small if the fermion discretization
used possesses a good chiral symmetry.
I will now explain how to compute the additive and multiplicative renormalization factors
on the lattice. The approach is analogous to the bilinear case: we define the connected
one-particle-irreducible Green’s function via

G±
Γ(1)Γ(2)(x1, x2, x3, x4) =

〈
ψ1(x1) ψ̄2(x2)O±

Γ(1)Γ(2)(0)ψ3(x3) ψ̄4(x4)
〉
, (2.255)

where

O±
Γ(1)Γ(2)(0) =

1

2

[
ψ̄1(0)Γ(1)ψ2(0) ψ̄3(0)Γ(2)ψ4(0)± ψ̄1(0)Γ(1)ψ4(0) ψ̄3(0)Γ(2)ψ2(0)

]
. (2.256)

By contracting all fermion-fields with external sources we can write for the components of
G±

Γ(1)Γ(2) in momentum space:

[
G±

Γ(1)Γ(2)(p)
]ABCD
αβγδ

=
1

2

[〈
Γ(1)(p)ABαβ Γ(2)(p)CDγδ

〉
∓
〈
Γ(1)(p)ADαδ Γ(2)(p)CBγβ

〉]
, (2.257)

where
Γ(k)(p)ABαβ = S(p|0)ARαρ Γ(k)

ρσ

[
γ5S

†(p|0)γ5

]RB
σβ
, (2.258)

and Sk(p|0) as defined in (2.241). Note the sign-flip at the r.h.s. of (2.257), attributed to a
net relative fermion anti-commutation.
In principle, the Greens functions of four-fermion operators are tensor products of two quark
bilinears, where an additional Fierz transformation applied. The amputation is completely
straightforward:

[
Λ±

Γ(1)Γ(2)

]RSTU
ρσηξ

= S−1(p)RAρα
[
γ5(S−1(p))†γ5

]BS
βσ

[
G±

Γ(1)Γ(2)(p)
]ABCD
αβγδ

S−1(p)TCηγ
[
γ5(S−1(p))†γ5

]DU
δξ

.

(2.259)
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This high-rank tensor will be projected onto all possible Dirac structures. We define the
projector

PΓ(1)Γ(2) = PΓ(1) ⊗ PΓ(2) , (2.260)

where its application to (2.259) is defined by

Tr PΓ(1)Γ(2)Λ±
Γ(1)Γ(2) =

[
PΓ(1)

]
σρ

[
PΓ(2)

]
ξη

[
Λ±

Γ(1)Γ(2)(p)
]RRTT
ρσηξ

. (2.261)

The explicit form of the projectors belonging to the operators Ok,Ok can be worked out by
considering the projection of the corresponding tree-level amputated Greens functions.77 For
applying the renormalization conditions, it is convenient to use projectors which fulfill the
orthogonality relations

Tr P±i Λ
(0)±
k = δik, (2.262)

TrP±i L
(0)±
k = δik, (2.263)

where we denote the tree-level amputated Greens functions for the parity conserving and

violating case by Λ
(0)±
k ,L(0)±

k respectively. Writing the Greens functions as 1× 5 row vectors
and the corresponding projectors as 5×1 column vectors, allows for using the matrix notation

P± · Λ(0)± = 1, P± · L(0)± = 1. (2.264)

In case of the parity violating operators, the renormalized amputated Greens function is given
by the row vector

Lren±(p/µ) = Z−2
q (µa)L±(pa)

(
Z±(µa)

)t
. (2.265)

We rewrite the amputated Greens function L± as a product of the bare one L(0)± with a
matrix D±, containing the dynamics of L±:

L± = L(0)±D±. (2.266)

Using the relations (2.264) yields
D± = P± · L±. (2.267)

The matrix Z± is determined by the RI renormalization conditions

P± · Lren±(p/µ)
∣∣
p2=µ2 = 1. (2.268)

Using this relation together with expressions (2.265) and (2.267), we obtain after some algebra

Z± = Z2
q

(
[D±]t

)−1
. (2.269)

The wave function renormalization Zq can be obtained the same way as in the bilinear case.

In case of parity conserving operators, the approach for calculating Z± has to be slightly
modified, because the mixing attributed to chiral symmetry breaking has to be subtracted
first. The mixing coefficients ∆±ik are momentum independent, since they can be computed
by using the appropriate Ward identities. Hence, they are constant in p and should be sub-

77I omit this part here and just give the final forms in appendix A.
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tracted before Z± can be determined as in the parity violating case. Analogous to (2.265) we
can write

Λren±(p/µ) = Z−2
q (µa) Λ±(pa) (1 + ∆±)t

(
Z±χ (µa)

)t
, (2.270)

where Zχ is the renormalization matrix in the χRS scheme, hence the first factor at the r.h.s.
of (2.253). With

Λ± = Λ(0)±D±, (2.271)

as well as
D± = P± · Λ±. (2.272)

The mixing matrix ∆± as well as the renormalization constants Z±χ can be obtained by
applying the renormalization conditions

P± · Λ±(p/µ)
∣∣
p2=µ2 = 1 (2.273)

and by combining them with the previous equations (2.270), (2.271) and (2.272). This yields

Z−2
q D± (1 + ∆±)t (Z±χ )t = 1, (2.274)

or, in index notation,

D±kl +

5∑

j=1

D±kj∆
±
lj = Z2

q (Z±χ )−1
lk . (2.275)

Given the structure of ∆± (2.254), it is possible to determine its elements by solving the
linear system of equations

D±kj∆
±
lj = −D±kl, (2.276)

for all possible k. After applying this unmixing step, the renormalization coefficients can be
obtained by computing

Z±χ = Z2
q

(
[D±]t

)−1
, (2.277)

which is completely analogous to equation (2.269). Nevertheless, one has to keep in mind
that the un-mixing 1 + ∆± has to be applied to the vector of the measured matrix elements
{Q1, Q2, Q3, Q4, Q5} in order to transform this vector into the χRS scheme so that the renor-
malization can proceed as in the parity violating case.
For the determination of Q1 which is related to the kaon bag parameter BK (see 2.3.8), the
extraction of the relevant mixing coefficients ∆1k is a delicate procedure. This is due to the
fact that the contributions from Q2, . . . , Q5 are chirally enhanced with respect to Q1 [cf. e.g.
Aoki et al., 2006].

2.4.3. Improvement techniques for RI renormalization factors

It is recommended to use improvements for computing renormalization factors in the RI
scheme, since discretization errors as well as non-perturbative effects render the matching
to perturbation theory difficult. Essential ingredients in our calculations are the trace-
subtraction method, which removes an O(a) contact term, as well as the ratio-extrapolation
which helps to circumvent the RI window condition and allows us to obtain non-perturbative
continuum running. Especially in case of the four-fermion operator renormalization, the mix-
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ing coefficients are dominated by unphysical discretization effects which are removed by using
the trace subtraction. The same applies to the quark mass renormalization 1/ZS , where
the situation there is not so severe. The ratio extrapolation allowed us to have continuum
running and significantly improved the matching of the non-perturbative data to continuum
perturbation theory. This is especially important for comparing our results to other lattice de-
terminations or for providing input for phenomenological calculations. I give a short overview
over these two methods in the following.

Trace-subtraction

Consider the tree-level Wilson propagator (2.115)

1

a
S(p,m) =

−iγµ sin(pµa) +ma− r∑µ(cos(pµa)− 1)
∑

µ sin2(pµa) + [ma− r∑µ(cos(pµa)− 1)]2
. (2.278)

We expand the trigonometrical functions up to the appropriate powers and find

1

a
S(p,m) =

−i(/p a) +ma+ r (pa)2

2 +O(a3)

(pa)2 +
[
(ma) + r (pa)2

2

]2
+O(a4)

, (2.279)

where we defined
(pa)2 =

∑

µ

(pµa)2, (/p a) =
∑

µ

γµ(pµa). (2.280)

Now we remove all irrelevant terms proportional to (pa)2. This can be achieved by adding
irrelevant operators to S(p):

(1 + rma)
S

a
− r

2
=
−i(/p a) +ma+ r (pa)2

2 − i r(/p a)(ma) + r(ma)2 + r2 (pa)2(ma)
2 +O(a3)

(pa)2 +
[
(ma) + r (pa)2

2

]2
+O(a4)

−r
2

[
(pa)2 + (ma)2 + r(ma)(pa)2

]
+O(a3)

(pa)2 +
[
(ma) + r (pa)2

2

]2
+O(a4)

=
−i(/p a) +ma− i r(/p a)(ma)− r(ma)2

2 +O(a3)

(pa)2 +
[
(ma) + r (pa)2

2

]2
+O(a4)

(2.281)

The denominator can be rewritten as follows:

1

(pa)2 +
[
(ma) + r (pa)2

2

]2
+O(a4)

=
1

(pa)2 + (ma)2 + r(pa)2(ma) +O(a4)
. (2.282)

Since we consider on-shell improvement, we obtain (pa)2 = −(ma)2 from the classical equa-
tions of motion. Therefore

1

(pa)2 + (ma)2 + r(pa)2(ma) +O(a4)
=

1

(pa)2 + (mIa)2 +O(a4)
, (2.283)
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where we defined the improved mass by

mIa = ma(1− rma/2). (2.284)

This yields for the full expression (2.281):

(1 + rma)
S(p,mI)

a
− r

2
=
−i(/p a) +mIa− i r(/p a)(mIa)

(pa)2 + (mIa)2
+O(a). (2.285)

This result allows us to define an improved propagator via [Heatlie et al., 1991; Martinelli
et al., 1991, 1995]

SI(p,mI) = (1 + r amI)S(p,mI)− ar

2
, (2.286)

where the discretization effects are of O(a2) in the chiral limit. For finite quark mass, the
discretization effects are O(a) and caused by the term proportional to (/p a)(ma). However,
they can be removed by using off-shell improvement, i.e. by applying the substitution

(1 + rma)S →
(

1 +
ar

4
(−i /p +m)

)
S
(

1 +
ar

4
(−i /p +m)

)
, (2.287)

where we recover our on-shell improved results by again using i /p = −m. Heatlie et al. [1991]
show, that the improvement effectively removes contact terms of O(a), which are diagonal in
spin and colour. Greens functions constructed and amputated from propagators as defined
in (2.286) are O(a) improved.
This improvement can also be achieved by applying a different technique [Capitani et al.,
2001; Becirevic et al., 2000; Martinelli et al., 2001; Maillart and Niedermayer, 2008]: we may
define our improved propagator as

S̄(p,mI) = S(p,mI)− TrD[S(p,mI)]

4
, (2.288)

where the index D denotes that the trace is taken in Dirac space. It is easy to see that on
tree-level

S̄(p,mI) = SI(p,mI)− mI(1− i r /p )

p2 + (mI)2
+O(a2), (2.289)

i.e. the trace subtracted propagator is equal to the improved propagator on O(a) without the
physical mass term and the term proportional to mI /p . The removal of the latter term yields
O(a) improvement even outside the chiral limit but the price to pay is the removal of physical
contributions proportional to the mass. However, the RI renormalization scheme is a massless
scheme and thus any computed renormalization factors have to be extrapolated into the chiral
limit at some point. In practice, renormalization factors computed from trace subtracted
propagators agree much better with perturbative expectations than those computed with the
standard improvement (2.286).

Ratio-extrapolation

In order to improve the matching of non-perturbative renormalization factors as well as cir-
cumventing the strict RI window condition (2.243), we computed the continuum limit of the
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ratio [Constantinou et al., 2010; Arthur and Boyle, 2011; Durr et al., 2010]

RX(µ, µ′, a) =
ZX(µ, a)

ZX(µ′, a)
, (2.290)

where ZX is the RI renormalization factor78 of operator X, e.g. X = S,BK , etc.. Note
that this limit exists since the numerator and denominator are renormalized by the same
counterterms. We denote the continuum limit of this ratio by RX(µ, µ′). The scales µ should
be chosen such that it fulfills the strict window condition for a sufficiently large set of lattice
spacings, so that the continuum extrapolation can be safely performed. If µ is even chosen
to be well inside the perturbative region, the non-perturbative data can be safely matched to
continuum perturbation theory.
The scale µ′ has to be chosen such that it fulfills the strict window condition for all lattice
spacings included in the analysis. Thus we obtain ZX(µ, a) on all lattices via

ZX(µ, a) = RX(µ, µ′)× ZX(µ′, a). (2.291)

Therefore, RX(µ, µ′) describes the non-perturbative continuum running of X from µ′ to µ.

In section 4.2.2, we will also compute the continuum limit of the ratio

RS,RI→RI−m(µ, a) =
ZRI−m
S (µ, a)

ZRI
S (µ, a)

, (2.292)

which converts quark masses from the massive intermediate scheme RI-m to the massless
RI scheme at a given scale µ. The existence of this limit is not obvious, so I discuss this
issue here. Usually, one would expect that the divergent structure is not necessarily the
same and thus spoiling the continuum limit. However, this is at least not true for the quark
mass renormalization factor 1/ZS . Since quark masses are protected by chiral symmetry, the
superficial degree of divergence of all massless quark mass diagrams is at most logarithmically.
These divergences arise from loop integrals of the form

∫
d4k

k4
. (2.293)

Massive quarks give rise to terms proportional to

∫
d4k

k4

mα

kα
, (2.294)

with α > 0 and the factor k−α cancels the additional mass dimensions in the numerator. This
integral is in fact even less than logarithmically divergent, i.e. it is finite. This means that
the massive RI-m and the massless RI scheme differ by a finite renormalization and thus the
limit of (2.292) exists.

78This method also works for different schemes, as long as the counterterms in the numerator and denominator
are the same. We define this ratio in the RI scheme so that we can drop the superscript RI in the following.
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Removing non-perturbative contributions

The RI Greens functions computed on the lattice carry information on the perturbatively
inaccessible hadron spectrum. This means that some of the operators inserted into the Greens
functions have an overlap with hadronic states, i.e. pseudoscalar-operator q̄γ5q with several
pseudoscalar meson states. These effects are dominant in the infrared, whereas for large
momenta the perturbative and non-perturbative contributions can in principle be disentangled
because of their different dependence on the momentum p [Martinelli et al., 1995]. However,
on coarse lattices even the largest momenta may be significantly affected by these kind of
effects. Typically, the renormalization factors ZP , ZA, and those necessary to renormalize
four fermion operators like Z+

11 are affected. It is assumed that these effects are mainly
attributed to virtual zero-momentum pion exchanges inside the non-perturbatively computed
vertex [Aoki et al., 2008; Sturm et al., 2009]. The standard RI prescription (cf. 2.4.2) uses so-
called exceptional configurations, i.e. configurations with q = p1−p2 = 0, where p1 and p2 are
the momenta of the incoming and outgoing quark. The non-perturbative contributions inside
the vertex are proportional to a pion propagator with momentum q, which then badly diverges
in the chiral limit if exceptional momenta are used. One possibility to overcome this problem
is the use of non-exceptional momenta, i.e. momenta which fulfill p2

1 = p2
2 = (p1 − p2)2 = q2

[Sturm et al., 2009]. The resulting scheme is called symmetric MOM (or SMOM) scheme
and provides an elegant way to significantly suppress these non-perturbative effects. The
drawback of this approach is that the number of available momenta fulfilling the symmetric
momentum condition is very small. For example, assuming periodic boundary conditions in
all directions, a valid pair of momenta would be pµν(n), pµρ(n), where ν 6= ρ and

pµν(n) = (eµ − eν)
2πn

L
, (2.295)

with eν being a unit vector in direction ν and n ∈ {1, . . . , L− 1}. Different choices of µ and
ν give degenerate momenta and also many possible choices for n when using the bosonic mo-
menta. If some sensible momentum cuts are applied to the data, only n = L/4 non-degenerate
momenta remain from this construction. This renders the mapping of the functional form of
the resulting renormalization factors difficult, which in turn complicates the estimation of cut-
off effects. More complicated setups such as the use of twisted boundary conditions [Arthur
and Boyle, 2011] in combination with momentum sources [Gockeler et al., 1999] substantially
increase the computational costs. Furthermore, this setup induces unitarity violations and
finite volume corrections, which are not fully understood yet. Thus we do not use the SMOM
scheme in this work.
Our treatment of such terms is data-driven: consider the projected amputated greens func-
tion Γ at two different quark masses m1, m2. The pion pole together with massive O(a)
corrections suggests a form

Γ(p2,m) = A(p2,m) +
B(p2)

p2m
+O(a2) +O

(
1

p4

)
(2.296)

The term A(p2,m) gives the perturbative value of Γ in the chiral limit and the term pro-
portional to B(p2) includes the non-perturbative pole contributions. We can fit the different



78 2.4. NON-PERTURBATIVE RENORMALIZATION

contributions by either applying a combined fit or computing the difference

Γsub(p2,m1,m2) =
m1Γ(p2,m1)−m2Γ(p2,m2)

m1 −m2
(2.297)

as suggested by Giusti and Vladikas [2000]. All discretization and other non-perturbative
effects can be fitted out without having to take care of the pion pole term. An analogous
treatment can be found for four fermion Greens functions which may also include double poles
[Becirevic et al., 2004]. Both methods work equally well in practice and we chose the second
for subtracting pole contributions from the relevant BK mixing coefficients ∆1k.

2.4.4. Some remarks on perturbative renormalization

Perturbative calculations in the RI scheme can also be used to estimate the influence of
non-perturbative effects on the measured data. The matching of lattice data to continuum
perturbation theory can either be achieved by dividing the lattice data by the perturbative
running and fitting the remaining curve to some appropriate model, or by fitting to a linear
combination of the perturbative running and some other contributions, such as pole terms or
O((pa)k) cutoff effects. These two approaches differ by higher order effects and we used the
first one in our studies (cf. 4.2.2 and 4.3.1).

The Callan-Symanzik- or renormalization group equation (RGE), describing the scale-dependence
of the quark mass, is given by [cf. e.g. Chetyrkin and Retey, 2000]79

µ2 d

dµ2
m(µ2) = m(µ2)γm(αs(µ

2)) = −m
∑

i≥0

γ(i)
m

(αs
π

)i+1
, (2.298)

with the strong coupling αs and perturbatively computable anomalous dimensions γ
(i)
m . The

former obeys the differential equation [Chetyrkin and Retey, 2000]

µ2 d

dµ2

αs(µ
2)

π
= β(αs) = −

∑

i≥0

βi

(αs
π

)i+2
, (2.299)

where the running coefficients βi can be evaluated perturbatively as well. The beta-function
coefficients βi as well as the quark mass anomalous dimensions γm have been computed in
QCD up to four loop order by van Ritbergen et al. [1997]; Vermaseren et al. [1997] in the
MS and by Chetyrkin and Retey [2000] in the RI scheme. Using an appropriate numerical
integrator, one can easily compute the running of the coupling and quark mass in either
schemes down to scales µ� ΛQCD.
Usually results are quoted in a continuum scheme like MS, which involves applying a (finite)
scheme conversion C. For the quark mass we have

Cm = 1 +
∑

i>0

C(i)
m

(αs
π

)i
, (2.300)

79See [Peskin and Schroeder, 1995, p. 410f] for a detailed derivation.
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where the coefficients C
(i)
m were computed perturbatively by Chetyrkin and Retey [2000].

Consider now composite expressions such as local four-fermion operators, where all inter-
nal lines are contracted onto a single point. We discussed in (2.246), that physical amplitudes
can be expressed as matrix elements of the condensed operator times a renormalization con-
stant and Wilson coefficient. The computation of these renormalization constants is more
complicated compared to the renormalization of bilinear operators.
The first complication is the mixing of different dimension six operators under renormaliza-
tion, leading to coupled renormalization group equations.
The second problem is the manifestation of an inherent ambiguity of the MS-scheme, originat-
ing from dimensional regularization. This technique reduces the degree of divergence of loop
integrals by reducing the number of dimensions from D to D − 2ε. It is ambiguous to define
whether the ε-dimensional part γ̂5 of γ5 should commute or anti-commute with the other γµ.
In many calculations of renormalization constants for bilinear operators, this ambiguity does
not propagate into the final results, but for local four-fermion operators it does. We define
γ̂5 to anti-commute with all other γi’s, as γ5 does in four dimensions. This scheme is called
NDR-MS, naively-dimensional-reguralized-MS.

Assuming the 5 × 1 column vector of Wilson coefficients C±(µ2), we can adopt the equa-
tion (2.298) to describe the running of these Wilson coefficients

µ2 d

dµ2
C±(µ2) = γ±(µ)tC±(µ2), (2.301)

where γ±(µ)now is a 5×5 anomalous dimension matrix (ADM). It can be expanded in powers
of αs via

γ±(µ) =
αs
4π

γ(0)± +
α2
s

(4π)2
γ(1)± +O(α3

s). (2.302)

The coefficient matrices γ(i)± have been computed perturbatively up to two loop level in
[Ciuchini et al., 1998; Buras et al., 2000], where for BK we are especially interested in γ+

11.
All calculations in that reference were done using the NDR-MS scheme. Also the conversion
factor for converting between MS and RI scheme is given:

CRI±(µ2) =
(

1− αs
4π

∆rt
MS→RI

)
CMS±(µ2) +O(α2

s). (2.303)

Note that ∆rt
MS→RI

depends on the gauge fixing parameter ξ, because the RI scheme depends
on the choice of the gauge. It turns out that the gauge parameter does not cancel in the
calculations and hence has to be renormalized. In Landau gauge (ξ = 0) however, all terms
containing ξ drop out.80

80The starting value ξ = 0 is a fixed point of its RGE.





3. Scaling and stability tests

The success of lattice calculations is highly dependent on the used actions and algorithms. A
good balance between CPU demand and ‘conceptual cleanness’ has to be found for obtaining a
cost-effective setup. For example, theoretically appealing chiral overlap fermions [Narayanan
and Neuberger, 1993a, 1994, 1993b, 1995; Neuberger, 1998a,b] require a huge amount of CPU
time. This renders calculations at the physical pion mass and in sufficiently large volumes
on present day computers with state-of-the-art algorithms extremely difficult. If chirality is
not a critical issue, there are powerful alternatives: as discussed in section 2.3.3, the use of
smearing improves the chirality of the Wilson Dirac operator. The computational overhead
of smearing is more than compensated by the reduced computational costs of the (R)HMC
trajectories: smearing does not change the condition number of the Dirac operator but dras-
tically reduces its fluctuations, keeping the low modes away from zero. The combination of
smearing with the advanced algorithms presented in sections 2.3.4 is a highly efficient way to
perform lattice calculations as we will see in the following section.1

The two actions used in our dynamical calculations are both based on the tree-level im-
proved Lüscher-Weisz gauge action and (also tree-level improved) clover Wilson operator (cf.
section 2.3.1). The two approaches we used differ by their smearing recipes. The first action
uses 6 step EXP smearing (see section 2.3.3 for details) with smearing parameter ρ = 0.11.
The second action is 2 step HEX smeared with the parameters (α1, α2, α3) = (0.95, 0.76, 0.38).
Calculations in quenched QCD show that the dependence of observables on the smearing is
quite mild [Capitani et al., 2006; Durr, 2009]. Some exploratory studies suggest that this
persists in the full theory [Kamleh et al., 2004; Hasenfratz et al., 2007; Schaefer et al., 2007;
Hoffmann et al., 2007; Moran and Leinweber, 2008], as long as a comparable amount of smear-
ing is used.
In fact, in our studies we have proven this assumption true for our two types of smearing.
In order to be able to give a comprehensive overview, we tested our actions with respect to
stability, performance and the absence of unphysical phases as well as ergodicity. Testing
the scaling behaviour within a simple framework is also very useful in order to determine
what can be expected from large scale calculations like those we performed when computing
the physical hadron spectrum [Durr et al., 2009; Dürr et al., 2008], light quark masses [Durr
et al., 2010] and BK [Durr et al., 2011a]. Some of the scaling tests are performed in the
quenched approximation, where we used the Wilson plaquette action but the same smearing
prescriptions as in the corresponding full QCD calculations.
For generating dynamical quark configurations, we used the RHMC with all optimizations
discussed in section 2.3.4. In the quenched case, we combined four overrelaxation sweeps with
one pseudo heat bath update.

1In this section, I will review the results from our publications [Durr et al., 2009, 2011b, 2010] as well as the
“Supporting Online Material” of [Dürr et al., 2008]. The scaling study of quenched BK was not published
before.
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Concerning the stability of our setup, we did not expect any problems. Nevertheless, we
tested the 6 EXP action for a possible metastable behaviour and found that these unphysical
effects were absent (cf. section 3.1). Since the 2 HEX smearing is approximately equivalent
to the 6 EXP one, we are very convinced that it also fulfills all stability criteria. Both actions
are ultra-local, as it is also discussed in 3.1. For all tested observables in the range of interest,
both actions perform equally well. This is shown by the Nf=3 hadron masses scaling studies
in section 3.2. The scaling study for the quenched quark mass has been restricted to the 2
HEX choice, but we found very good agreement with results from the literature (cf. 3.2.2).
The same applies to the scaling study for quenched BK (cf. 3.2.3). I close this section by
discussing finite volume effects and the chiral behaviour of our actions. These analyses were
carried out on some of the the Nf=2+1 datasets also used in our phenomenological compu-
tations. It is recommended to use these data sets, since the size of finite volume effects and
the appearance of chiral logs highly depends on the box sizes and pion masses used in the
calculations.

3.1. Stability and locality of smeared actions

A general concern about smearing is, that informations contained in a single link can be prop-
agated all around the lattice and especially around the boundaries, if the smearing parameters
are too aggressive and a large number of iterations is used. It is especially problematic if the
smearing prescription is adjusted to the lattice spacing, since this may introduce a continuum-
non-irrelevant coupling range.2 In contrast to that, Symanzik scaling is fulfilled if the action
is local [Symanzik, 1983a,b]. For any fermionic action, there are two different notions of
locality:

1) Locality in coordinate space, i.e.

‖D(x, y)‖ < const. e−λ|x−y|, (3.1)

with λ = O(a−1). This ensures that the Dirac operator D does not couple arbitrary
separated quarks in the continuum limit because the extension of the coupling range
dies off faster than the lattice spacing goes to zero.
In our case, this requirement is trivially fulfilled because our Dirac operator at most
couples nearest neighbour fields and hence D ∼ δ(x+ 1− y) + δ(x− y).

2) Locality with respect to gauge fields:

∥∥∥∥
δD(x, y)

δU(z)

∥∥∥∥ < const. e−λ|(x+y)/2−z|, (3.2)

where also λ = O(a−1).

Also the second requirement is fulfilled for our actions as can be seen from figure 3.1. This
figure displays the l.h.s. of (3.2) in the Frobenius norm versus the Euclidian distance |x−z| in
lattice units for our 6 EXP.3 Mathematically, the ultra-locality range of this action is r/a = 6

2For example if the iteration level is increased with β.
3It is sufficient to investigate the case x = y because of coordinate space locality.



3.1. STABILITY AND LOCALITY OF SMEARED ACTIONS 83

what can also be learned from the plot. Within this range, the dependence of D(x, x) on
the thin link fields U drops off exponentially for 3 ≤ |x − z|/a ≤ 6 with a decay constant
λ ≈ 2.2a−1. Therefore, our actions even fulfill the locality condition (3.2) within the ultra-
locality range. A good agreement between different values for β is also observed.
We have not reproduced this figure for the 2 HEX action, since the ultra-locality range is even
smaller in that case. Mathematically, the 2 HEX action has r/a = 4 and we also expect (3.2)
to be fulfilled within this range. However, since the 2 HEX ultra-locality range is smaller
than that of the 6 EXP action, this property will probably be obscured by short range terms.
We can summarize that both our actions are ultra-local in coordinate space and with respect
to the gauge fields. Furthermore, they fulfill the locality condition (3.2) within the ultra-
locality range.

3.1.1. Absence of unphyisical meta-stabilities

In some dynamical Wilson fermion simulations, the occurrence of an unphysical first-order
phase transition has been reported [Della Morte et al., 2005a; Aoki et al., 2005]. This has
been interpreted as the presence of a lower bound for the quark mass where sensible physical
calculations can be performed. It was observed that this phenomenon occurs only on coarse
lattices and that gauge action improvement decreases this lower bound on the quark mass.
Additionally, O(a)-improved Wilson fermions in combination with improved gauge actions
made the problem disappear for all lattice spacings investigated by Aoki et al. [2005]. Jansen
et al. [2007] showed that one level of EXP smearing weakens the phenomenon.
Since physical first-order phase transitions can only occur in infinite volume, the appearance
of such phase transition in a finite volume signals a failure of the updating algorithm in
finding the true minimum of the effective potential. Hence, for finite-volume simulations, it is
important to ask whether the update algorithm can thermalize the system for a sensible set
of parameters in a manageable number of updating steps. If this is the case, the unphysical
phase transitions will be absent.
In order to investigate this issue, we took two 163×32 configurations. One consists of random
links and the other one was thermalized in an Nf=2+1 simulation at β = 3.3 with amPCAC

ud =
0.0066, corresponding to a pion mass of approximately 240 MeV and amPCAC

s = 0.0677 which
roughly corresponds to the physical strange quark mass. The chosen β is the smallest cutoff
we considered in our studies.
Starting from the random configuration, we performed a ‘downward’ updating sequence by
subsequently lowering the pion mass. From amPCAC

ud ≈ 0.0243, going over 0.0173, 0.0131,
0.0086 and finishing at 0.0066. This corresponds to a range of pion masses Mπ ∼ 440 MeV−
240 MeV. Each simulation at the next (lower) mass point started from the previous (heavier)
point by applying 100 trajectories for thermalization and 300 trajectories for measuring the
plaquette expectation value 〈P 〉. Analogous we performed an ‘upward’ sequence, starting
from a thermalized configuration at amPCAC

ud = 0.0066 and increasing the light quark mass up
to amPCAC

ud ≈ 0.0243. In between we applied measurements at the same masses already used
for the downward sequence. Also here, 100 trajectories for thermalizing each mass point and
300 trajectories for measuring the plaquette were generated. If the update algorithm had been
inefficient, the 100 thermalization steps would not have been sufficient to fully thermalize the
system, leading to a hysteresis in 〈P 〉 versus aMπ. The results for this cycle are shown in
figure 3.2, where no signal of a hysteresis can be seen.
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In a similar test, we measured the plaquette expectation value in dependence of the HMC
time during thermalization from a ‘hot’ or ‘cold’ configuration [Durr et al., 2007]. In both
cases, the same average plaquette was reached within a reasonable number of update steps.
Thus, regardless of the starting configuration, our algorithm evolves the system to the correct
equilibrium state in a reasonable number of steps. We are convinced that our 2 HEX action
would perform equally well in this study and hence did not repeat it for this action.

3.1.2. Mass-gap, topology and plaquette expectation values

In quenched QCD, the (unsmeared) clover fermion operator may have one or several eigen-
values close to the origin or with a negative real part. This problem even occurs at not very
light quark masses, so that inversions on these configurations fail. Such configurations are
referred to as ‘exceptional’.
In dynamical simulations using an HMC algorithm, such configurations would not appear if
infinitesimally small timescales could be used. Trajectories where at least one eigenvalue of
the Hermitian Wilson operator HW = γ5DW approaches zero will be repelled by an infinite
back-driving force. For finite timescales however, the near-zero modes are only approximately
suppressed. This may cause the HMC evolution to fail, so it is natural to monitor the (mag-
nitude of the) smallest eigenvalue within an HMC evolution and check if its distance to zero
is sufficiently large during the entire run. In a given ensemble, the distribution of the smallest
eigenvalue is approximately Gaussian, hence if its center µ is several σ away from zero the
simulation is deemed safe [Del Debbio et al., 2006]. Since we use even-odd precondition-
ing, the relevant quantity to observe is the smallest eigenvalue of the reduced, γ5-Hermitian
operator

DW,red =
1

2

(
Doo −D−1

ee Deo

)
. (3.3)

The Dab can be considered as block-operators, where Dee, Doo only couple even to even and
odd to odd sites respectively, and Deo couples odd to even sites. The factor 1/2 aligns its IR
eigenvalues with the low-lying eigenvalues of the full operator. For our 6 EXP action and the
smallest pion mass (Mπ/Mρ = 0.60, cf. section 3.2), the eigenvalue distributions are shown
in figure 3.3, where β ranges from 2.8 to 3.76. Even at the coarsest lattice, the peak is several
sigma away from the origin. This situation even improves when going to finer lattices since
the center of the peak shifts to the right and its width rapidly decreases.
For phenomenological applications, it is important to know how the spectral gap evolves when
lowering the light quark mass. Instead of measuring the smallest eigenvalue itself, we measured
the closely related quantity n−1

CG, the inverse iteration count for the lightest pseudofermion
in the action. The results for the 6 EXP action are displayed in figure 3.4 and for our 2
HEX action in figure 3.5. In both cases, we can find a clear gap providing the evidence for
the stability of our algorithm. Furthermore, we measured the energy violation ∆H on all
ensembles throughout the whole runs and ensured that 〈exp(−∆H)〉 is compatible with one.
Since the acceptance probability of the Metropolis step is given by Pacc = min(1, exp(−∆H)),
it is provided that the acceptance rate is sufficiently large (& 90% in all our runs).

The update algorithm has to sample different topological sectors adequately in order for
being ergodic. Generically this sampling becomes more difficult when small lattice spacings
are used. This means, at fixed physical quark masses, the autocorrelation of the topological
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Figure 3.1.: Gauge field dependence of Dirac operator D versus the euclidian distance |x−z|/a
in lattice units. The ultra-locality range in lattice units is equal to 6 and we find
a large exponential decay with a decay constant of λ ≈ 2.2a−1. Note that it is
sufficient to evaluate D on spot x, since it is ultra-local in coordinate space [from
Durr et al., 2009].
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Figure 3.2.: Absence of hysteresis in the plaquette cycle. The data are from an Nf=2+1 run
on a 163× 32 lattice at β = 3.3 with fixed strange quark mass amPCAC

s = 0.0677.
The light quark masses vary between amPCAC

ud ≈ 0.0243 and amPCAC
ud = 0.0066 in

ascending (squares) or descending (circles) order. The second dataset is slightly
shifted along the x-axis for better readability [from Durr et al., 2009].
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charge increases when the lattice spacing is decreased, signaling a reduced tunneling rate.
However, the strength of this reduction is highly algorithm and action dependent.
In our simulations, we measured a reduced tunneling rate for small lattice spacings, but in the
range of considered parameters we did not observe any dramatic slowing down of tunneling
events and hence no drastically increasing autocorrelation times (cf. figure 3.7 and 3.8). We
tested this for both actions using the gluonic definition of the topological charge (cf. section
2.3.2) for different types of smearing. We applied different numbers of HYP smearing steps
(20 and 30 levels) to the 2 HEX data and six steps of EXP smearing to the 6 EXP data. For
the smearing parameters, we used the conservative parameters (α1, α2, α3) = (0.75, 0.6, 0.3)
in the former and ρ = 0.11 in the latter case.
Figure 3.7 shows the renormalized topological charge on one of the 6 EXP data sets. The
renormalization factor, computed by the minimization of (2.120), is very close to one. The
autocorrelation times of the renormalized topological charge are of O(10) trajectories and we
expect the corresponding value for the physically more relevant q2

ren to be even lower. The
quantity q2

ren is more important, since it is more closely related to the topological susceptibility
χtop. Furthermore, we know from experiment that the strong interaction does not violate CP
(cf. section 2.2.3). Since qren and −qren are related by a CP transformation, the sign of the
charge is irrelevant.
The unrenormalized 2 HEX-topological charges obtained from the different HYP smearing
levels (cf. figure 3.8 a) are very close to each other and the corresponding renormalization
factors very close to one. Furthermore, the charges are symmetrically distributed around zero
as it is expected from theory [Leutwyler and Smilga, 1992] and numerical studies [cf. e.g.
Kurth, 2007]. The integrated autocorrelation time of q2

ren is 29.3(8.1).
In any case, the algorithm does not stay in a fixed topological sector and thus these results
provide evidence for a good ergodicity of our algorithm. Figure 3.6 shows the MD history of
some representative ensembles in our 6 EXP and 2 HEX production runs. Also here, we find
no evidences for possible instabilities.
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is shown [from Durr et al., 2009].
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Figure 3.5.: Inverse iteration count for the 2 HEX action at different β and lightest quark
mass for the lightest pseudofermion in the ensemble [from Durr et al., 2010].
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Figure S2: Forces in the molecular dynamics time history. We show here this history for a
typical sample of trajectories after thermalization. Since the algorithm is more stable for large
pion masses and spatial sizes, we present –as a worst case scenario– the fermionic force for our
smallest pion mass (Mπ≈190 MeV; MπL≈4). The gauge force is the smoothest curve. Then,
from bottom to top there are pseudofermion 1, 2, the strange quark and pseudofermion 3 forces,
in order of decreasing mass. No sign of instability is observed.

10

(a) 6 EXP action at the smallest pion mass Mπ ∼
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Figure 3.6.: History of molecular dynamics forces for the 6 EXP and 2 HEX actions for some
‘representative’ ensembles. The smoothest curve is the gauge force, and the av-
erage contributions from the different pseudofermions to the total force increases
with their masses. We can see no signs of instabilities in all our simulations (from
the SOM for [Dürr et al., 2008] and [Durr et al., 2010]).
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renormalized topologcial charge. The dashed red horizontal line in the bottom plot is the
integrated autocorrelation time for this ensemble (plots generated using the Γ-Method from
[Wolff, 2004] where the accompanying MATLAB code was used).

Figure 3.7.: History of the renormalized topological charge (a) and the corresponding auto-
correlation function plot (b) for the 6 EXP action measured on the finest lattice
for Nf=3 (β = 3.75, aMπ = 0.2019(20)) (Z ≈ 1.14). Note that the x-axis
is in configuration time and the separation of subsequent configurations are 10
trajectories. This means that the autocorrelation is of O(10) trajectories .
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Figure 3.8.: History of the renormalized topological charge (Z ≈ 1.06) for the 2 HEX action
and two different sets of HYP smearing levels (a, top, blue and red) together
with the HMC energy violation history (a, bottom, green). Since the topological
tunneling rate is expected to decrease with the lattice spacing and our definition
of the topological charge (2.121) is well suited for measurements in small volumes,
only the finest lattice with the smallest volume is shown. The algorithm does not
stay in a fixed topological sector and the integrated autocorrelation time of q2

ren

shown in (b) equals 29.3(8.1) trajectories [from Durr et al., 2010].
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3.2. Scaling tests

In the previous section we have seen that our action is ultra-local. When using it in combi-
nation with the HMC algorithm, we did not observe any meta-stabilities or problems with
ergodicity and stability. Now we can focus on the quality of our scaling, namely the broadness
of the scaling window and the size of the scaling corrections for some observables of interest.

3.2.1. Scaling of Nf=3 hadron masses

We start by discussing the scaling of the Nf=3 hadron spectrum for both of our actions.
Again, we used our optimized HMC combined with the tree-level improved Lüscher-Weisz
gauge action and a smeared clover-improved Wilson operator. Two flavours are handled by
he HMC, whereas the integration of the third is carried out by our RHMC. This test can
therefore be regarded as a field test for phenomenological Nf=2+1 calculations.
We used lattices with at least four lattice spacings and approximately constant physical vol-
umes. The spatial extents of our lattices range from L/a = 8 to L/a = 24, where we doubled
the extent in time direction in order to be able to extract correlators properly. The bare cou-
plings vary between β = 3.23 and 3.76, where we generated an additional coarse lattice with
β = 2.8 for the 6 EXP action. On the two finest lattices, we performed measurements after
every 10 trajectories, whereas on the coarser, this spacing was increased to 20 trajectories.
The statistical errors were computed using a moving-block-bootstrap technique (cf. section
2.3.5) with a bin size of 2 and 8 configurations for the coarsest and finest lattices respectively.
The number of bootstrap samples is chosen to be 2000, because the calculated bootstrap
errors saturate at ≈ 1500 samples. At each beta, we ran fully unquenched simulations at
a minimum of four masses, such that the ratio Mπ/Mρ lays in between 0.60 and 0.68. It
is preferable to use rather large masses in order to enhance possible discretization effects of
order aM .
After fixing to Coulomb gauge, we measured the correlators using multiple Gaussian sources
on different time slices. The width of the sources was set to L/4 and is thus approximately
constant in physical units. The effective masses (cf. 2.3.6) computed from these corre-
lators reached a plateau very quickly so that sensible fitting ranges, where excited states
contributions are small, could be easily defined (cf. figure 3.9 for a typical effective mass
plot). The hadron masses were extracted by correlated single channel cosh or sinh fits to
the correlators. In order to estimate a remaining excited state contribution, we decreased
the lower end of the fit window by up to two time slices and repeated the procedure. The
difference in the fit results was propagated into the systematic error. For each β, we interpo-
lated (aMπ)2, aMρ, aMN , aM∆ linearly in amPCAC to a common quark mass at a determined
Mπ/Mρ. This is shown for the 6 EXP action at β = 3.59 in figure 3.10. The errors of amPCAC

are of O(10−4) and therefore barely visible at this scale. The scaling tests for the baryon spec-
trum were performed at four different values of Mπ/Mρ ranging from 0.60 to 0.68. All of these
points can be reached by interpolation so no extrapolation in the quark mass is necessary.
Table 3.1 summarizes the values of amPCAC, aMπ, aMρ, aMN and aM∆ after interpolation
to our four Mπ/Mρ ratios. We also list MπL which is roughly constant for fixed Mπ/Mρ. The
table also shows that we are deep in the MπL regime even for our lightest masses, so that we
could safely neglect finite volume effects. Even if this criterion alone does not guarantee the
smallness of finite volume effects, our scaling study would still be meaningful: the fact that
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Figure 3.9.: Effective masses of the hadron spectrum on the 6 EXP ensemble with L/a = 16,
β = 3.59, amPCAC = 0.04608(12). The points are obtained by solving equation
C(t− 1)/C(t+ 1) = f(ameff(t− 1− T/2))/f(ameff(t+ 1− T/2)), where f(x) =
cosh(x) (for π and ρ) or sinh(x) (for N and ∆). The horizontal lines denote the
fitted masses along with the error bars. The fit range is indicated by the length
of the lines [from Durr et al., 2009].

our boxes have a fixed physical size ensures that possible finite volume effects are of the same
size for all data at a given Mπ/Mρ ratio.
All masses are known to better than 2% and this is also true for their ratios due to correla-
tions. Figure 3.11 shows the continuum extrapolations of MN/Mπ and M∆/Mπ at the ratios
Mπ/Mρ = 0.60, 0.64, 0.68 for both actions assuming O(a2) cutoff effects, measured in units of
M−2
ρ . The baryon masses are normalized by Mπ in order to separate clearly the three lines

of constant physics. The horizontal and vertical error bars shown in the plots are all purely
statistical and were both incorporated into the fits. The results for the continuum extrapo-
lation are displayed in table 3.2. As expected, all masses agree within errors. The point at
β = 2.8 for the 6 EXP data was not included in the fits but it agrees with the corresponding
continuum limits at the 3%-level (cf. figure 3.11).

Although our clover coefficient is close to a non-perturbative determined value, we cannot
exclude O(αsa) effects even from our precise data, covering a factor of seven in units of a2.

Hence, we chose a fourth ratio Mπ/Mρ = [2(Mphys
K )2 − (Mphys

π )2]1/2 ≈ 0.67 and identify Mρ

with the mass of the physical φ. Therefore we could express our lattice spacing in physical
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(a) 6 EXP

Mπ/Mρ L/a β amPCAC LMπ aMπ aMρ aMN aM∆

0.60

8 2.80 0.0676(11) 4.55 0.5688(26) 0.9480(44) 1.3605(73) 1.5944(75)

10 3.23 0.0468(28) 4.44 0.4437(57) 0.7395(95) 1.064(12) 1.248(10)

12 3.40 0.0456(16) 4.60 0.3830(34) 0.6384(57) 0.9236(74) 1.0823(87)

16 3.59 0.0324(8) 4.56 0.2852(26) 0.4754(43) 0.6785(44) 0.8006(38)

24 3.76 0.0229(5) 4.85 0.2019(20) 0.3365(33) 0.4825(34) 0.5708(20)

0.64

8 2.80 0.0839(8) 5.03 0.6292(21) 0.9832(33) 1.4341(43) 1.6581(59)

10 3.23 0.0607(23) 4.95 0.4950(47) 0.7735(73) 1.127(10) 1.3074(82)

12 3.40 0.0568(13) 5.12 0.4268(23) 0.6669(35) 0.9711(62) 1.1282(71)

16 3.59 0.0396(7) 5.03 0.3146(23) 0.4916(36) 0.7099(35) 0.8279(29)

24 3.76 0.0284(6) 5.41 0.2256(18) 0.3524(28) 0.5081(29) 0.5933(29)

0.68

8 2.80 0.1050(11) 5.60 0.6993(22) 1.0284(32) 1.5286(52) 1.7401(65)

10 3.23 0.0796(21) 5.57 0.5574(52) 0.8198(76) 1.212(11) 1.389(10)

12 3.40 0.0718(13) 5.76 0.4798(30) 0.7055(44) 1.0354(47) 1.1903(52)

16 3.59 0.0488(7) 5.57 0.3483(22) 0.5122(32) 0.7495(30) 0.8624(44)

24 3.76 0.0359(10) 6.11 0.2546(25) 0.3744(37) 0.5434(38) 0.6242(39)

(b) 2 HEX

Mπ/Mρ L/a β amPCAC LMπ aMπ aMρ aMN aM∆

0.60

10 3.23 0.0487(16) 4.49 0.4485(47) 0.7475(78) 1.0699(76) 1.2749(86)

12 3.40 0.0445(4) 4.49 0.3743(17) 0.6238(28) 0.8984(27) 1.0602(32)

16 3.59 0.0318(4) 4.48 0.2798(15) 0.4664(25) 0.6653(29) 0.7824(47)

24 3.76 0.0225(12) 4.87 0.2028(47) 0.3380(78) 0.4823(71) 0.5667(14)

0.64

10 3.23 0.0627(12) 4.98 0.4976(34) 0.7775(53) 1.1253(53) 1.3201(63)

12 3.40 0.0559(4) 5.01 0.4173(15) 0.6521(23) 0.9454(22) 1.0995(33)

16 3.59 0.0399(3) 5.00 0.3123(12) 0.4880(19) 0.7020(28) 0.8167(40)

24 3.76 0.0282(10) 5.44 0.2267(36) 0.3542(56) 0.5090(56) 0.5932(95)

0.68

10 3.23 0.0811(15) 5.56 0.5556(40) 0.8170(59) 1.1980(68) 1.3794(82)

12 3.40 0.0714(8) 5.64 0.4696(28) 0.6906(41) 1.0094(47) 1.1529(59)

16 3.59 0.0510(4) 5.63 0.3519(14) 0.5174(20) 0.7522(30) 0.8637(37)

24 3.76 0.0362(9) 6.15 0.2561(30) 0.3767(43) 0.5459(45) 0.6299(72)

Table 3.1.: Results of the interpolation of aMπ, aMρ, aMN and aM∆, obtained from sim-
ulations performed at different bare quark masses and gauge couplings, to the
reference points Mπ/Mρ = 0.60, 0.64, 0.68 for the 6 EXP (a) and 2 HEX (b) scal-
ing runs (table (a) from [Durr et al., 2009]).
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Mπ/Mρ 0.60 0.64 0.68 0.67 (αsa) [MeV] 0.67 (a2) [MeV]

6 EXP
MN 2.369(22)(08) 2.239(14)(04) 2.128(11)(02) 1483(09)(02) 1488(08)(01)

M∆ 2.839(34)(28) 2.628(22)(10) 2.434(18)(16) 1710(14)(07) 1713(12)(07)

2 HEX
MN 2.392(32)(12) 2.245(19)(03) 2.120(10)(04) 1480(09)(02) 1485(08)(02)

M∆ 2.779(52)(32) 2.611(31)(11) 2.467(28)(33) 1723(18)(19) 1725(15)(15)

Table 3.2.: Continuum limits for MN and M∆ at the different Mπ/Mρ ratios. The first error
is statistical and the second one our systematic error. It includes different fit
ranges for extracting the masses from correlators. The last two columns show
the cotinuum limits of the O(αsa) and O(a2) extrapolations at Mπ/Mρ = 0.67 in
physical units. All results agree within errors.

units and compute αs(µ) for arbitrary scales µ using 4-loop perturbation theory [van Rit-
bergen et al., 1997] for three active flavours. Using this setup we repeated the analysis, this
time assuming O(αsa) or O(a2) scaling.4 The plots are shown in figure 3.12 and the corre-
sponding continuum limits can be found in the last two columns of table 3.2. As expected,
all continuum limits for the respective masses are compatible within errors. The fit qualities
slightly favour O(a2) scaling, but for later phenomenological applications we included both
scaling assumptions into our final estimates and enhanced our systematic error accordingly.
Note that the scaling window extends at least up to '0.16 fm and the scaling corrections, i.e.
the deviation of the measured baryon masses on the coarsest lattices from their continuum
limit, are at most around 2% for M∆ and the 2 HEX action.

We have demonstrated in a dedicated scaling test of light baryon masses, including five lattice
spacings with a total variation by almost a factor of three, that scaling violations associated
with the use of our both actions in full QCD are small for these quantities. For lattice spac-
ings up to 0.16 fm, the discretization errors on the light baryon masses do not exceed 2% for
all lattice spacings up to 0.19 fm. A small slope in the continuum extrapolation is very useful
for obtaining precise continuum limits. Futhermore, all data below 0.16 fm seem to be inside
the scaling window, which is in line with findings of Kamleh et al. [2008] where a different
approach to link smearing is taken.
As a final conclusion we can recommend both actions for phenomenological calculation of
hadron masses and expect this also to be true for comparable improvements. In part 4.1, I
will show physical results for the non-singlet low-lying hadron spectrum of QCD, computed
using our 6 EXP approach.

4In our original paper [Durr et al., 2009], we assumed O(a) instead of O(αsa) scaling. However, the statements
on the quality of the scaling we made here also hold for the results of that paper. In our computation of the
spectrum [Dürr et al., 2008] we compared O(a2) to O(a) scaling, and the scaling study [Durr et al., 2009] was
performed in order to prove that this important computation is reliable and as precise as stated. However,
since O(αsa) is closer to O(a2) scaling than O(a) to O(a2) scaling, the assumptions in [Dürr et al., 2008] may
have at worst slightly increased the systematic errors of our final results.
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Figure 3.11.: Continuum extrapolation of the spin 1/2 and 3/2 baryon masses versus the
lattice spacing squared in units of M−2

ρ for both actions. The fits include the
data from β = 3.76 to β = 3.23, where the curve in (a) is extended to β = 2.8
for comparison. In case of the 2 HEX action at β = 3.76 and small quark
masses, the error is significantly larger compared to that of the 6 EXP data.
Since the statistics is of O(1000) trajectories in both cases, this indicates that
the 2 HEX action is slightly less efficient than the 6 EXP action. In that sense,
we approximately doubled the statistics for β = 3.59 and 3.4, so that their error
bars are much smaller than those of the 6 EXP data (plots for 6 EXP action are
published in [Durr et al., 2009]).
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Figure 3.12.: Continuum extrapolation of the spin 1/2 and 3/2 baryon masses for both actions
assuming O(a2) and O(αsa) scaling. The strong coupling αs at the given scales
was computed using 4-loop perturbation theory with three active flavours. All
continuum limits from the four fits agree within errors as expected. From visual
inspection, one cannot exclude one of the scaling assumptions but the fit qualities
slightly favour O(a2) over O(αsa) scaling. Thus, we decided to include both
scaling assumptions into our finals estimates and therefore into our systematic
error (6 EXP O(a2) plot from [Durr et al., 2009] and 2 HEX plots from [Durr
et al., 2010]).
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3.2.2. Scaling of quenched quark masses

After the successful scaling tests of the hadron masses, we tested the scaling of a different kind
of observable. This was the quenched average heavy-light quark mass mud+ms, which, unlike
hadron masses, required renormalization. In this test, we aimed at reproducing the results
of Garden et al. [2000] using our setup. This means that we computed the continuum limit
of mud + ms in the RI and MS scheme for our 2 HEX action within a quenched simulation.
We used the pure Wilson plaquette action (2.109) to generate configurations at five different
lattice spacings with β ranging from 5.7366 to 6.3. Each time we saved 600 well de-correlated
configurations for the analysis (i.e. 200 for determining the renormalization factors ZS and
400 for computing the bare quark masses amVWI).
The couplings and geometries were chosen to realize a physical box size of L ' 1.84 fm (see
table 3.3) by using our fit to the Necco-Sommer data (cf. appendix B). On each set, at
least four quark masses were used to safely interpolate to MP r0 = 1.299, where MP is the
pseudoscalar mass and its value in r0 units has been chosen to match (the isopospin averaged)

Mphys
K r0 assuming r0 = 0.49 fm [Sommer, 1994a]. The main aspects of this computation were

also used for determining mud and ms in a full QCD calculation (cf. 4.2). We computed the x-
axis intersection of mPCAC versus m(bare) which follows a linear relationship. This intersection
point defines mcrit and thus, using the input bare masses, we obtained the unrenormalized
mVWI.
We determined ZS(µ, a) non-perturbatively in the RI scheme (cf. 2.4.2) with the trace-
subtraction improvement [Capitani et al., 2001; Becirevic et al., 2000; Martinelli et al., 2001;
Maillart and Niedermayer, 2008, also cf. section 2.4.3]. Hence we replaced all propagators S
in the RI procedure with their trace-subtracted counterparts S̄ = S − Tr[S]/4, removing a
contact term of O(a) from the renormalization factors. To improve translational invariance,
we always used four different sources at the hyper-diagonal positions

x0 ∈
{

(0, 0, 0, 0) ,

(
Lx
4
,
Ly
4
,
Lz
4
,
Lt
4

)
,

(
Lx
2
,
Ly
2
,
Lz
2
,
Lt
2

)
,

(
3Lx

4
,
3Ly

4
,
3Lz

4
,
3Lt
4

)}
(3.4)

for computing the momentum-space propagators and Greens functions (cf. expression (2.242)).
Note that the obtained ZS is the non-singlet scalar renormalization constant because all quark
disconnected contributions vanish in the quenched theory. Before computing the momenta
using the bosonic momentum definition

p2 ≡
4∑

ν=1

p̂2
ν =

4

a2

4∑

ν=1

sin2(apν/2), (3.5)

with apν = 2πxν/Lν , we applied a hyper-diagonal cylinder cut on the dual lattice [Leinweber
et al., 1998]. This procedure significantly improves the data since the renormalization factors
obtained from there are not as highly affected by the breaking of O(4) invariance as those
at momenta which lie close to one axis. We ended up with values of ZRI

S (µ, a) at different
momenta pa which survived this cut.
In order to be able to control systematic effects in the determination of RI renormalization
constants, we have to consider that:

1. the renormalization scale µ has to be significantly below the cutoff π/a (upper window
condition).



3.2. SCALING TESTS 99

2. the renormalization scale µ has to be in the perturbative regime in order to match the
non-perturbative data to perturbation theory, i.e. µ� ΛQCD (lower window condition).

3. the chiral limit m→ 0 has to be under control.

To solve these problems, we applied the following methods:

Ad 1. We found that for µ < π/(2a), deviations from the continuum Dirac operator’s disper-
sion relation were acceptable (cf. section 2.4.2). The choice µ′ = 2.1 fulfilled this strict
window condition on our four finest lattices (cf. figure 3.13).

Ad 2. In order to fulfill the second condition, we would have had to set µ ≥ 3 GeV, because the
perturbative expectation describes our data for these scales (cf. figure 3.14). However,
we were not able to choose these large scales because this would have violated condition
1 on the coarser lattices. To circumvent this restriction, we used the ratio-extrapolation
method described in section 2.4.3.
According to formula (2.290), we set µ = 3.5 GeV (and µ′ = 2.1 GeV as mentioned
above). For this µ, the strict window condition was fulfilled for the three finest lattice
spacings. By performing a linear fit of RS(µ, µ′, a), only including these lattices and
assuming O(αsa) or O(a2) scaling, we computed the non-perturbative continuum run-
ning RS(3.5 GeV, 2.1 GeV) (cf. figure 3.16). This extrapolation is well controlled, since
the slope of the fit is very mild (as expected from visual inspection of 3.13). We used
the extrapolated running to compute ZS(3.5 GeV, a) on all lattice spacings.

Ad 3. We performed a linear extrapolation to the chiral limit in (MP r0)2 for all scales µ. This
point-by-point extrapolation gives reliable results because the slope in these extrapola-
tions is extremely flat (cf. figure 3.15).

Finally we computed the renormalized quark mass mVWIr0(µ) at µ = 3.5 GeV in the RI
scheme via (2.202). We converted this value to the MS scheme at 2 GeV for illustrative
reasons using 4-loop perturbation theory [van Ritbergen et al., 1997; Vermaseren et al., 1997;
Chetyrkin and Retey, 2000].5 The result was identified with the heavy-light quark mass
average (ms + mud) r0 and extrapolated into the continuum limit by again applying both of
our scaling assumptions (cf. figure 3.17). Using our method for propagating statistical and
systematic errors from section 2.3.5, we obtained the combined result in the continuum limit

(ms +mud)
MSr0(2 GeV) = 0.2609(39)(28), (3.6)

where the first error is statistical and the second one is systematic. We computed the statis-
tical error by repeating the analysis on 2000 bootstrap samples. For obtaining the systematic
error, we used three different fit ranges for extracting the masses from the correlators, two
different scaling assumptions for the continuum limit and three scales µ = 3, 3.5 and 4 GeV at
which we matched the non-perturbative results to perturbation theory. The dominant source
of systematic uncertainty is the continuum extrapolation, contributing by about 1% to the
total systematic error.

5In order to determine a starting value for the quenched strong coupling αs, we used ΛQCD = 242.43 MeV
which was converted from results of Capitani et al. [1999] by consistently assuming r0 = 0.49 fm.
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Our result (3.6) is in perfect agreement with the continuum value (ms + mud)r0 = 0.261(9)
quoted by the ALPHA collaboration [Garden et al., 2000]. It is consistent within less than
1σ with the result 0.274(18) given by JLQCD [Aoki et al., 1999] and, within less than 2σ,
with the value 0.312(28) obtained in a quenched overlap computation [Durr and Hoelbling,
2005]. There is some tension with the result 0.293(6) by CP-PACS [Aoki et al., 2003a] but this
result does not include any systematic error estimation for the perturbative renormalization
involved in their computations.
Assuming r0 = 0.49 fm and ms/mud ≈ 27.5 as suggested by the results from section 4.2, our
result (3.6) can be used to compute the quenched strange quark mass

mMS
s (2 GeV) = 101.4(1.5)(1.1). (3.7)

This value does not include any error related to the use of perturbation theory as well as the
inherent quenched scale setting ambiguity.
The scaling window of the continuum extrapolation extends up to a ≈ 0.15 fm where we
observe mild scaling corrections below 8%. The coarsest data point at β = 5.7366 therefore
lies outside the scaling window. The qualities of fit slightly favour O(a2) over O(αsa) scaling
and the fact that the coarsest data point is closer to the fit curve for the former assumption
may emphasize this preference.
Our conclusion is that the 2 HEX action is well suited for computing light quark masses in
lattice simulations.

β L3×T (ms +mud)r0

5.7366 123×24 0.3070(50)
5.8726 163×32 0.2801(50)
5.9956 203×40 0.2758(52)
6.1068 243×48 0.2654(42)
6.3000 323×64 0.2685(29)

Table 3.3.: Simulation parameters and measured quenched quark masses in the MS scheme
at 2 GeV [from Durr et al., 2010].
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3.2. SCALING TESTS 103

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  0.02  0.04  0.06  0.08  0.1

(m
ud

+m
s)

r 0

sa/r0

Garden et al., [Nucl.Phys.B 2000]
sa-extrapolation

(a) O(αsa)-scaling

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  0.02  0.04  0.06  0.08  0.1

(m
ud

+m
s)

r 0

(a/r0)2

Garden et al., [Nucl.Phys.B 2000]
a2-extrapolation

(b) O(a2)-scaling

Figure 3.17.: Continuum extrapolation of quenched (ms + mud)
RI at 2 GeV in units of r0

[from Durr et al., 2010; Kurth et al., 2010].



104 3.2. SCALING TESTS

3.2.3. Scaling of quenched kaon bag parameter BK

The calculation of the kaon bag parameter BK is complicated by the mixing of O∆S=2 = O1

with same-dimension operators O2, . . . O5 under renormalization (cf. section 2.4.2). Since the
latter are chirally enhanced with respect to O1 [cf. e.g. Aoki et al., 2006], the extraction of
the mixing coefficients ∆1k is a delicate task. Thus, before going to predict BK using a full
Nf=2+1 calculation, it is useful to study this quantity in the quenched approximation. In
this testbed, all data analysis methods can be developed and optimized before being applied
to the dynamical case.
This computation was performed on some of the configurations used for calculating the
quenched quark mass (cf. section 3.2.2). The coarsest lattice spacing at β = 5.7366 was
not used, because the low momentum cutoff did not allow for a safe extraction of the mix-
ing coefficients. However, all configurations for the remaining four lattice spacings between
β = 5.8726 and β = 6.3 could be used in this study. Analogously, from the 600 well de-
correlated configurations per beta, we used 200 for extracting renormalization and mixing
coefficients and the remaining 400 for computing the bare matrix elements. The large con-
stant physical volume with L ' 1.84 fm and mud = ms, leading to large pseudoscalar masses
MP, guarantee that possible finite volume effects to BK are very small according to Becirevic
and Villadoro [2004]. However, we still correct for these effects using their corresponding
formulas. Furthermore, we used at least four quark masses per lattice spacing allowing for
safe chiral extrapolations of the renormalization factors as well as interpolation of the renor-
malized BK to the physical kaon mass. The scale setting procedure is the same as in section
3.2.2.

Non-perturbative renormalization

Analogous to section 3.2.2, we used the non-perturbative RI scheme to compute the axial-
current renormalization factor ZA, necessary to renormalize the denominator in (2.102).
The additional renormalization factors for the four fermion operator O1 was also obtained
non-perturbatively (cf. section 2.4.2). Before extracting the Greens functions, the trace-
subtraction (cf. section 2.4.3) was applied to the propagators in order to remove an O(a)
contact term. We also used four point sources located on the lattice hyper-diagonal in order
to improve translational invariance. Furthermore, we applied hyper-diagonal cylinder cuts in
order to minimize O(4) breaking effects.
For partially canceling systematic effects in the multiplicative renormalization constant ZBK =
Z+

11/Z
2
A, with Z+

11 being defined in (2.253), we compute

ZRI
BK

=

(
Z+

11

Z2
q

)RI

·
(
Z2
q

Z2
A

)RI

(3.8)

directly from the RI data. Thus, there is no need to calculate Zq separately as was done in
section 3.2.2. However, we have checked that the results from both procedures are in good
agreement. To improve the matching of the non-perturbative data to continuum perturbation
theory, we apply the ratio-extrapolation method (cf. section 2.4.3). In this case, we considered
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the ratio

RRI
BK

(3.5 GeV, µ, a) =
ZRI
BK

(3.5 GeV, a)

ZRI
BK

(µ, a)
, (3.9)

for 2.3 GeV ≤ µ ≤ 3.5 GeV. The continuum extrapolation of this ratio involved the three
finest lattice spacings and was performed assuming O(αsa) or O(a2) scaling. The resulting
non-perturbative continuum running RRI

BK
(3.5 GeV, µ) was divided by the two-loop perturba-

tive expectation in order to test the agreement of our non-perturbative data with perturbation
theory. Figure 3.18 shows that the deviation from two-loop continuum perturbation theory
[cf. Ciuchini et al., 1998; Buras et al., 2000] is smaller than 0.5% for 2.7 GeV ≤ µ ≤ 3.5 GeV.
In order to estimate the systematic effects coming from the remaining uncertainties, we read
off ZRI

BK
at the three different scales µ ∈ {2.8, 3.0, 3.4} and transformed them to the higher

scale µ = 3.5 GeV using our non-perturbative continuum running. All three possibilities were
propagated into the systematic error.
The relevant mixing coefficients ∆1k were computed by solving the system of linear equations
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Figure 3.18.: Non-perturbative running obtained by extrapolating (3.9) into the continuum
using the three finest lattice spacings, assuming O(αsa) (squares) or O(a2) (cir-
cles) scaling. The data are divided by the two-loop perturbative running from
Ciuchini et al. [1998]; Buras et al. [2000], also normalized at µ = 3.5 GeV. We
observe that both runnings agree within a reasonable range of scales between
2.7 GeV and 3.5 GeV to better than 0.5%.

(2.276). Note that the extracted mixing coefficients still have a mass dependence which has to
be removed. Furthermore, their infrared behaviour is distorted by an O(p−2) term, probably
a Goldstone boson contribution attributed to virtual pion exchanges. Thus we apply the
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subtraction (cf. section 2.4.3)

∆sub
1k (a,m1,m2) =

m1 ∆1k(a,m1)−m2 ∆1k(a,m2)

m1 −m2
(3.10)

which removes this leading term. The remaining momentum dependence comes from dis-
cretization terms of O((pa)2) and double Goldstone terms of O(p−4). We applied combined
fits to remove these terms and the remaining mass dependence. To estimate systematic un-
certainties coming from this procedure, we used different fit ranges and different fit models
including either only a (pa)2 discretization term or an additional double Goldstone boson
pole-term proportional to p−4. Figure 3.19 shows the pole subtracted mixing coefficients
∆sub

1k for β = 5.9956 with removed quark mass dependence and fitted by functions linear in
(ap)2. The mass dependence was found to be very small in all cases and could be removed
by the combined fit in a stable manner.

Matrix elements

We computed the traces in the numerator shown diagrammatically in figure 2.7 in section
2.3.8 for all five operators O1, . . . , O5. We used different random sources at t = 0 and t = T/2,
where T is the temporal extent of the lattice. In order to suppress statistical fluctuations,
we used the same random sources for computing the matrix elements in the numerator. The
operator was inserted at t = τ where τ was varied over the whole temporal extent. Since the
r.h.s. of expression (2.224) is independent of τ for sufficiently large separations 0� τ � T/2
we observed a plateau between this temporal points. Note that the signal propagates through
the boundaries due to the boundary conditions. Therefore, we observed a similar plateau for
T/2� τ � T . Thus we improved the statistics by symmetrizing the plateaus with respect to
T/2. The remaining averaged plateau was fitted by a constant using three different fit ranges
in order to estimate possible contributions coming from excited states. Figure 3.20 shows
the fits to the plateau of Q1(τ) for β = 5.9956 and lightest quark mass along with their 1σ
error bands. We observe good agreement within errors since the plateau is well pronounced.
Combining the mixing coefficients with the bare matrix elements allows for decomposing the
renormalized BK into the different contributions from the individual Qi. Figure 3.21 shows
this decomposition for the relatively coarse lattice at β = 5.9956 and MP ∼ 480 MeV. We
observed that chiral symmetry breaking effects are very small, because 98.7(1.1)% of the
contributions to BK come from Q1.

Combined analysis

After obtaining the renormalized BK , we performed a combined continuum extrapolation and
interpolation to the physical isospin-averaged kaon mass Mphys

K = 494.2 MeV. Since our data
straddle the physical point, we used a Taylor ansatz for describing the quark mass and scale
dependence. The generic form is given by

BRI
K (3.5 GeV,M2

P, a) = BRI
K

(
3.5 GeV) · (1 + a1M

2
P + a2M

4
P

)
+ d(a), (3.11)
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Figure 3.19.: Quenched pole subtracted mixing coefficients ∆sub
1k at β = 5.9956 plotted versus

the momentum scale µ2. The remaining small mass dependence was removed
by a combined fit to the subtracted data. We observe that the momentum
dependence is well described by a (pa)2 term in the fitting regions denoted by
the dashed vertical lines. To estimate systematic uncertainties induced by the
choice of the fit window or fitting function, we used different fit ranges and
fitting functions including an additional p−4 pole term. All these possibilities
were propagated into the systematic error.

where d(a) is proportional to either a2 or αsa and αs was computed by using 4-loop perturba-
tion theory (cf. section 3.2.2). In order to estimate systematic effects attributed to the choice
of the fitting function, we used different models with a1 free and a2 = 0 or both parameters
free. This also estimates higher order effects in MP. We do not include terms compatible with
zero in our fits. A sample fit linear in M2

P is displayed in figure 3.22. The chiral behaviour
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Figure 3.20.: Constant fits to quenched plateau for Q1 at β = 5.9956 and MP ∼ 480 MeV.
Different colors represent different fit ranges along with their 1σ error bands.
Note that we observe nice agreement between the extracted plateau values.
However, we propagated the small deviations into the final systematic error by
repeating the analysis for all different fit ranges.

is relatively mild and thus the interpolation in the quark mass well under control. The same
is true for the continuum extrapolation as shown in figure 3.23 since the scaling corrections
are on the 4% level. To estimate the final overall error we used the procedure described in
section 2.3.5. Thus, we performed the analysis on 2000 moving block bootstrap samples with
atomic block size since the samples are well de-correlated. To obtain the systematic errors,
we repeated the whole analysis for

• 2 different fit ranges for extracting the masses from the correlators as well as 3 different
fit ranges for extracting the bare matrix elements

• 2 different scalings proportional to either αsa or a2 in the continuum extrapolation of
the running as well as renormalized BK

• 3 different scales for extracting the renormalized matrix elements and converting them
to our reference scale 3.5 GeV using our non-perturbative continuum running

• 3 different pseudoscalar mass cuts

• 2 different fit functions and 3 different fit ranges for extracting the mixing coefficients

• 2 different functional forms in the final combined fit.

This yielded in total 2592 different analyses and hence as many values for BK along with
their qualities of fit. The weighted median of the corresponding distribution is our final value
and the central 68% probability the systematic error. The final value for our quenched BK ,
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Figure 3.21.: Contributions to the renormalized BK from the individual Qi for β = 5.9956
and lightest mass (MP ∼ 480 MeV). The blue bars denote the total contribution
of the corresponding matrix element Qi to the renormalized BK and the lighter
regions their overall uncertainty. If chiral symmetry is unbroken, operator Q1

contributes solely to BK . Here, chiral symmetry is broken but the contribution
from Q1 is already 98.7(1.1)%. Therefore, chiral symmetry breaking effects are
very small and thus well under control.

quoted in different schemes (RI, RGI, MS-NDR) is

BRI
K (3.5 GeV) = 0.5428(50)(158) (3.12)

B̂K = 0.7809(72)(227) (3.13)

BMS−NDR
K (2 GeV) = 0.5671(52)(165), (3.14)

where the first error is statistical and the second systematic. The value for BRI
K (3.5 GeV) is

our main, fully non-perturbative result and the conversion to other schemes was performed
using results from 2-loop perturbation theory [Ciuchini et al., 1998; Buras et al., 2000]. We
neglected the systematic error induced by the truncation of the perturbative series, since the
dominant uncertainty comes from the quenched scale setting ambiguity. Because we do not
attempt to compare our quenched result to full QCD, we also omitted estimating an error
for this. A breakup of the overall systematic error into different sources of uncertainties is
displayed in table 3.4. It exhibits the dominant source of systematic uncertainty, viz. the
subtraction of mixing operators. This error collects all uncertainties attributed to the choice
of different ranges and functions for fitting the non-perturbative mixing coefficients. It is large
due to the fact that the dominant subtracted mixing coefficient ∆ren

12 could equally well be
fitted with a term linear in (ap)2 as well as an additional term proportional to p−4 (cf. figure
3.19 (a)), resulting in a large spread of the extracted mixing coefficient (cf. figure 3.21). The
large quark mass interpolation uncertainty tells us that the interpolation is strongly affected
by terms of higher order in M2

P. If our data would cover a broader range in M2
P, this error
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Figure 3.22.: Combined continuum extrapolation and interpolation to the physical quark mass
of quenched BK for one of our 2592 fits which assumes a linear dependence of BK
on M2

P. The black square denotes the resulting BRI
K (3.5 GeV) and the dashed

vertical line the physical kaon mass. The quark mass interpolation is well under
control since we observe a mild chiral behaviour.
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K (3.5 GeV) obtained from the combined fit in

figure 3.22. The scaling corrections, i.e. the relative deviation of BK from the
coarsest to the finest lattice, are around 4%.
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would reduce since one of our two chiral forms would be preferred and the corresponding
qualitites-of-fit enhanced. The further systematic uncertainties are subdominant and shall
not be discussed in detail.
Our final result in the RGI framework is compared to different quenched results from other
lattice groups in figure 3.24, showing good agreement and reasonable error bars. Thus, our
lattice setup and analysis approach is expected to be well suited for computing BK in Nf=2+1
flavour QCD.

total mixing M2
P interpolation continuum limit excited states NPT matching

0.0158 0.0105 0.0095 0.0039 0.0013 0.0013

Table 3.4.: Individual contributions to total systematic error from different sources of uncer-
tainty. The approximately equally dominant contributions come from subtracting
the operator mixing as well as the interpolation in the quark mass. Analogous to
our previous quenched scaling study (cf. section 3.2.2), the uncertainty attributed
to different scaling assumptions is at the percent level. As expected from figures
3.18 (concerning non-perturbative matching scale uncertainties) and 3.20 (con-
cerning excited states uncertainties), the last two contributions to the systematic
error are subdominant. The quadratic sum of all contributions does not reproduce
the overall systematic error due to correlations.

BK
^

this work (2011, 2HEX-CIW)

Babich et al. (2006, OV)

Y. Aoki et al. (2006, DW)

ALPHA (2007, TM)

CP-PACS (2008, DW)

ALPHA O(a) (2009, OS-TM)

ALPHA O(a2) (2009, OS-TM)

 0.6  0.7  0.8  0.9

Figure 3.24.: Results for quenched B̂K from the last 5 years. The grey band is drawn in
order to help comparing our result (bottom) to those of other groups (top to
6th). The agreement is good and the error bars are reasonable, giving confidence
that our method of analysis is well suited for predicting BK in dynamical QCD.
The references are (from top to 4th): Babich et al. [2006], Aoki et al. [2006],
Dimopoulos et al. [2007], Nakamura et al. [2008] and Dimopoulos et al. [2009]
(5th and 6th).
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3.2.4. Finite volume effects

In general, finite volume effects can be described by the frameworks briefly sketched in section
2.3.5. Here, we will have a closer look at finite volume corrections of type I, i.e. corrections
to stable states coming from squeezing the surrounding pion cloud. The results for our
finite volume runs are displayed in figures 3.25 and 3.26 for the 2 HEX and 6 EXP data
respectively. In both cases, we observe good agreement with the analytical expectations from
χPT [Colangelo et al., 2005, 2006]. We could also establish a global fit to all our data in
various volumes if we adjusted the free coefficient in (2.168). We found that the deviation of
this fit from the χPT prediction became large below MπL < 3, which is mainly due to the
fact that χPT becomes questionable in boxes around that value.
It is important to stress that only data points fulfilling either MπL ≥ 4 or L ∼ 6 fm entered the
final analyses for determining the spectrum, the light quark masses and BK . Nevertheless, the
remaining points were corrected for their small finite volume effects by using the appropriate
relations from Colangelo et al. [2005, 2006]; Becirevic and Villadoro [2004].

16 24 32
L/a

0.14

0.15

0.16

0.17

0.18

0.19

aM
! ignored in final analysis

M
!
L=4M

!
L=3

Figure 7: Dedicated finite-volume analysis at β =3.31, with Mπ !250 MeV (lower set of data)
and Mπ !300 MeV (upper set). Results are compared to the prediction from Chiral Perturbation
Theory. The fit to (42) is shown by solid red curves and the prediction of ChPT [3] is the green
set of dashed curves. The steep dotted lines indicate the boundaries MπL=3 and MπL=4.

0.15 fm), with a slight preference for O(a2) over O(αa) scaling, and this suggests that our tree-
level value of cSW (see Sec. 2 for the definition and details) is close to the nonperturbative value
(which is not known for our action). This finding is in accordance with the results of [8]. Next,
the continuum extrapolated values shown in Fig. 6 are in perfect agreement with the continuum
extrapolated baryon masses found in [9] with a different action. Last but not least, the slope
in either panel of Fig. 6 is small1, and an action which shows generically a flat slope in scaling
quantities is useful for obtaining precise predictions in the continuum.

In summary we find that both the 6stout action used in [2, 9] and the 2HEX action used in
the present work exhibit small cut-off effects on standard hadron masses over a broad range of
lattice spacings.

9 Finite volume corrections
For a fixed set of bare parameters, β, mud, ms, energies and matrix elements of hadronic states
depend on the spatial size L of the lattice. Typically, the finite volume tends to increase the

1The deviation of the result on the coarsest lattice from the continuum is 2.0% at most [∆ with O(αa) ansatz].

19

Figure 3.25.: Dedicated finite volume analysis for 2 HEX action at β = 3.31 with Mπ '
250 MeV (lower) and Mπ ' 300 MeV (upper). The dashed green curves repre-
sent the χPT fits by Colangelo et al. [2005] and the solid red curves our fits.
The dotted blue lines indicate the boundaries MπL = 3 and MπL = 4 (taken
from [Durr et al., 2010]).



3.2. SCALING TESTS 113

12 16 20 24 28 32 36
L/a

0.21

0.215

0.22

0.225

aM
p
(L

)

c1+ c2 e-M
p L-3/2  fit L

Colangelo et. al. 2005

volume dependenceM
p
L=4

12 16 20 24 28 32 36
L/a

0.7

0.75

0.8

aM
N
(L

)

c1+ c2 e-M
p L-3/2  fit L

Colangelo et. al. 2005

M
p
L=4 volume dependence

Figure S4: Volume dependence of the π (left panel) and N (right panel) masses for one of our
simulation points corresponding to a ≈ 0.125fm andMπ ≈ 320MeV. The results of fits to the
form c1+c2 exp(−MπL)/(MπL)3/2 are shown as the solid curves, with c1 = aMX(L = ∞) and
c2 = acX(Mπ) given in the text (X = π, N for pion/nucleon). The dashed curves correspond
to fits with the c2 of refs. (S9,S10).
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Figure S5: Distribution used to estimate the central value and systematic error on the nucleon
mass. The distribution was obtained from 432 different fitting procedures as explained in the
text. The median is shown by the arrow. The experimental value of the nucleonmass is indicated
by the vertical line.
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Figure 3.26.: Volume dependence of the π (a) and N (b) masses for one simulation point at
a ≈ 0.125 fm and Mπ ' 320 MeV. The solid red curves represent our fits and
the dashed green ones the analytical expectation from Colangelo et al. [2005,
2006] (taken from the SOM for [Dürr et al., 2008]).

3.2.5. Chiral behaviour

To illustrate the quality of our results obtained at physical or heavier values of the average
up-down quark mass mud = (mu +md)/2, we investigated whether the pion mass and decay
constants can be described by χPT. The prediction from SU(2) χPT at NLO are given by
[Gasser and Leutwyler, 1984]

M2
π = M2

[
1 +

x

2
ln

(
M2

Λ2
3

)]
(3.15)

Fπ = F

[
1− x ln

(
M2

Λ2
4

)]
, (3.16)

with x = M2/(4πF 2) and M2 = 2Bmud. The NNLO expressions for these quantities have
been worked out by Colangelo et al. [2001]. Note, that in contrast to SU(3) χPT, the mass of
the strange quark in the above expressions is not treated as light. The LEC’s Λk thus carry
information on these high energy degrees of freedom.
Figure 3.27 shows the quantities M2

π/m
PCAC
ud and Fπ plotted versus mPCAC

ud at an intermediate
lattice spacing (β = 3.5) for our 2 HEX dataset. The pion mass reaches down to Mπ '
135 MeV (for more details, cf. section 4.2). For Mπ < 400 MeV, our results could be jointly
fitted with the formulae (3.15), (3.16), with acceptable χ2/dof and reasonable values for the
LEC’s. However, a precise determination of these low energy constants is beyond the scope
of the present work. Note that we did not produce the equivalent figure 3.27 for our 6 EXP
action, because our average pion mass is much larger there. The 2 HEX data set is our first
data set containing pion masses down to its physical value. Hence, the chiral behaviour is
much more pronounced here than in our older 6 EXP data set.
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Figure 8: M2
π/mPCAC

ud (left) and Fπ (right) versusmPCAC
ud (cf. Sec. 11) for our 4 lightest ensem-

bles at β = 3.5, at fixed ams = −0.006, which is close to mphys
s . A joint fit to the NLO chiral

ansatz (45, 46) yields reasonable values of the low-energy constants. Error bars are statistical.

These results confirm our rule of thumb that simulations with MπL ≥ 4 and/or L>∼5 fm
yield infinite-volume masses within statistical accuracy. An overview of the expected size of
RMπ in our simulations is given in Fig. 1. In all of these points the mass correction is less than
about 5 permil, and for points close to Mphys

π (which dominate our analysis) it is even smaller.
Nevertheless, we include these (tiny) shifts into our global analysis (cf. Sec. 14).

10 Chiral behavior of pion mass and decay constant
To illustrate the quality of our results obtained in lattice QCD calculations with physical or
larger than physical values of the quark mass mud = (mu +md)/2, we briefly investigate here
whether the mud dependence of the pion mass and decay constant can be described by ChPT
[37, 38] in this range of quark masses.

To this end we compare our results forM2
π and Fπ versusmud at fixed (nearly physical)ms

(cf. Tab. 1) to the NLO predictions of the SU(2) framework. The latter read [37]

M2
π = M2

[
1 +

1

2
x log(

M2

Λ2
3

)
]

(45)

Fπ = F
[
1 − x log(

M2

Λ2
4

)
]

(46)

with x = M2/(4πF )2 and M2 = 2Bmud a shorthand expression for the light quark mass (up
to the factor 2B, with B = Σ/F 2). The NNLO expressions can be found in [39]. In all of
these expressions F, Σ, B refer to the pion decay constant, the absolute value of the quark
condensate and the condensate parameter in the 2-flavor chiral limit mud → 0 with ms held
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Figure 3.27.: Chiral behaviour of (aMπ)2/mud (a) and unrenormalized aFπ (b) for our four
lightest ensembles at β = 3.5 for the 2 HEX data. The bare strange quark mass
was kept fixed at ams = −0.006, which is very close to mphys

s . A joint fit to
(3.15) and (3.16) yields reasonable values for the LEC’s Λ3 and Λ4. The error
bars are statistical [from Durr et al., 2010].

3.3. Summary and conclusions

The tests show that both our actions

• are ultra-local by construction and even fulfill the locality condition within the ultra-
locality range.

• do not show any unphysical meta-stabilities in our simulations.

• possess a well pronounced mass gap, hence simulations at physical quark masses are
possible (and feasible).

• show good topological tunneling with a symmetric distribution around zero for the
topological charge at least up to a ≈ 0.5 fm. The physically relevant autocorrelation
times of q2

ren are of O(10) trajectories so that we do not expect major difficulties in a
sufficient sampling of different topological sectors.

• possess large scaling windows up to a ≈ 0.16 fm and down to 0.5 fm when hadron masses
are considered. The scaling corrections are small and do not exceed the 3%-level.

Furthermore, in case of the quenched strange quark mass, we can state that the 2 HEX action
has a large scaling window up to a ≈ 0.15 fm and fairly mild scaling corrections below 8%.
The situation for the quenched kaon bag parameter BK is a bit different, since a reliable
extraction of the mixing coefficients fails on the coarsest lattice. Thus, the scaling window
extends only up to a ≈ 0.12 fm, but nevertheless still allows to perform a safe continuum
limit. The scaling corrections from the coarse lattice included in the analysis to the finest
lattice are on the 4% level and thus well under control.
The finite volume corrections are very small in the MπL > 4 region and remaining effects can
be subtracted in a controlled manner.
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In 2 HEX simulations with dynamical quarks we observed a quark mass dependence of M2
π

and Fπ which is fully compatible with SU(2) χPT expectations.

Additionally, smeared fermions are computationally relatively cheap and, compared to other
dynamically improved actions, easy to implement. In principle, no expensive parameter tun-
ing is required or at least can be reduced to a minimum.
Thus we can recommend the 6 EXP and 2 HEX action for the use in phenomenological ap-
plications. Both actions are comparably efficient so that either choice may only depend on
personal taste or computational resources. The 2 HEX action has a better ultra-locality range
than the 6 EXP formulation, but, on the other hand, is computationally more demanding: its
smearing prescription either requires to keep several copies of the lattice in the RAM which
may heavily drain the machines’ memory resources, or a significant fraction of performance
is lost if the smearing is applied time-slice by time-slice. Therefore, 6 EXP smearing can be
the better choice when simulations are performed on devices with limited memory, such as
graphics cards.





4. Physical quantities from 2+1 dynamical
flavours

The successful scaling studies and stability tests presented in the last chapter paved the way
for precise computations of important physical observables from first principles.
A large leap forward in this context is our reproduction of a relevant part of the physical
particle spectrum by lattice QCD. We were able to prove that QCD is a correct theory for
describing the low-lying hadron masses up to percent-level precision. This result is presented
and discussed in section 4.1.1

Unlike hadron masses, physical quark masses are hard to measure in experiment because they
form bound hadronic states.2 Our results on the hadron spectrum have proven the common
assumption that the mass of a hadron and therefore of our world is mainly attributed to the
binding energy and not to the mass of its constituents. Still it was unsatisfactory to not know
these important standard model parameters precisely. Reliably and precisely computed light
quark masses can be used as input parameters for perturbative calculations, which in turn
can then improve the predictions of perturbative cross sections. With more precise input
parameters and reduced error bars, it might be possible to discover deviations from standard
model expectations in upcoming LHC experiments. Furthermore, the specific values for the
quark masses are important to understand the stability of matter, since a reversed hierarchy
between mu and md would imply a proton decay.
In section 4.2, I present the precision computation of the three light quark masses u, d and s
with full control over all errors.3

A third extremely interesting and important application of lattice QCD is the computation of
hadronic corrections to weak matrix elements sensitive to CP violation. CP violation is a key
ingredient for the explanation of baryon-asymmetry which developed during the baryogenesis
in the early universe [Sacharow, 1968]. The computed matrix elements can be combined with
electroweak perturbative calculations and then compared to fits involving experimental quark
flavour mixing data. This allows estimating possible BSM contributions to standard model
mixing amplitudes.
In the final section of this part 4.3, I present our precise lattice prediction of the kaon bag
parameter BK , which can be related to the electroweak indirect CP violation parameter ε.4

1Published in Dürr et al. [2008] and the corresponding SOM.
2This does not apply to the heavy top quark since it decays before it can form a bound state.
3Published in Durr et al. [2011b, 2010].
4See part 2.2.6 for details on ε. A publication about our computation of BK is in preparation [Durr et al.,
2011a].
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4.1. Hadron spectrum

More than 99% of the mass of the visible universe is made up of protons and neutrons, and
both particles are much heavier than the sum of their constituents. If the standard model is
correct in this aspect, it should explain that large difference.
Over the past 20 years, many collaborations performed lattice calculations and published
results on this topic. The spectrum computed in quenched QCD agreed with the experimental
results for typical hadron masses up to 10% [Aoki et al., 2000]. The systematic uncertainties
of quenching compared to Nf=2 flavour simulations have been observed to be beyond that
level of precision [Aoki et al., 2000, 2003a]. The agreement of lattice QCD with experiment
significantly improved when light sea quark effects were included [Davies et al., 2004]. Owing
to the continuous progress since then, lattice QCD calculations can now be performed with
light sea quarks at physical values [Aoki et al., 2009]5. Additional calculations including
these sea quark effects have appeared in the literature [Bernard et al., 2001a; Aubin et al.,
2004a; Ukita et al., 2007; Gockeler et al., 2007; Antonio et al., 2007; Walker-Loud et al., 2009;
Del Debbio et al., 2007; Alexandrou et al., 2008; Noaki et al., 2007].
However, all these calculations are not ab initio, because all of them neglected one or more
important ingredients.
These ingredients are:

• The inclusion of dynamical effects of sea quark masses with an exact algorithm and the
use of an action whose universality class is QCD.

• A complete determination of the light ground-state masses of flavour non-singlet mesons,
octet and decuplet baryons is necessary. Three of these have to be used to fix mud, ms

and the overall scale.

• Many results in the literature work with small volumes (MπL < 4) so that finite volume
corrections are significant. Resonances require a special treatment, their finite volume
corrections are much more involved (cf. 2.3.5).

• Some results lack controlled extrapolations to the physical quark masses mud and ms.
Whereas the interpolation in the comparatively heavy strange quark mass ms is straight-
forward, a chiral extrapolation to the physical value of mud is much more complicated.
In order to perform a controlled extrapolation in this quantity, computationally expen-
sive calculations at pion masses around 200 MeV or less are needed.

• A controlled extrapolation to the continuum, requiring at least three different lattice
spacings in order to guarantee that the scaling region of the action is reached.

We present our results on the ab initio calculation of the non-singlet low lying hadron spec-
trum including all five of these ingredients with full control over all possible statistical and
systematic errors.

5When this computation in 2007/2008 was performed, the volumes were still quite small.
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4.1.1. Details of the simulations

We used the same setup as in our 6 EXP hadron masses scaling study (cf. chapter 3), i.e.
a tree-level improved clover Wilson operator together with the tree-level improved Lüscher-
Weisz gauge action. For the EXP smearing we used again ρ = 0.11 and 6 iteration levels.
We worked on spatial volumes as large as L3 ' (4 fm)3 and temporal extents up to T ∼
2L ≈ 8 fm and ensured that MπL > 4 on all our lattices. Besides significantly reducing finite
volume corrections (cf. 2.3.5), this choice also reduced statistical fluctuations. The reason for
this is that the spatial summation in correlators needed to project the correlation function to
zero momentum is proportional to L3, and the time-extent available to extract the effective
masses is again proportional to L. Hence, for a given pion mass Mπ, the increase of statistics
is proportional to the ratio of volumes, e.g. 1300 trajectories at MπL = 4 roughly correspond
to 4000 trajectories at MπL = 3.

Autocorrelation analysis

The autocorrelation times of the plaquette and that of the conjugate gradient iteration count
are less than approximately ten trajectories. Therefore we performed our measurements on
every tenth trajectory. The integrated autocorrelation time of the physically relevant q2

ren is
at worst three times larger than this value, so that we do not observe significant long range
correlations (cf. 3.1.2).
We computed the spectrum by using Gaussian smeared sources and sinks of constant physical
radii r ≈ 0.32 fm on eight time slices. These kind of sources are less affected by excited
state contaminations than point sources and sinks (cf. figure 4.1). We varied the bootstrap
blocking size in order to check for remaining autocorrelation effects in quantities where the
autocorrelation function cannot be measured directly, e.g. in case of hadron masses. All
results from these tests were in good agreement and thus we conclude that our data show no
further correlations.

Finite volume effects and extraction of the masses

The treatment of finite volume effects of type I was already discussed in 3.2.4. Also, corrections
of type II could be mostly treated as described in 2.3.5. However, out of the 14·12 = 168 mass
determinations (14 sets of lattice spacings, see table 4.1 for details) there were two cases for
which the mass MX of the resonant state was larger than that of the lowest scattering state.
These exceptions were the ρ and ∆ for the lightest pion mass point at a ≈ 0.085 fm. For these
two cases, the energy of the lowest lying state was already dominated by the contribution
from the neighboring two particle state. More precisely, the energy of the scattering state
depended only very weakly on the mass of the resonant state MX , which therefore could not
be extracted reliably without imposing precise information on the decay width ΓX . Since we
want to avoid using more experimental input than necessary, these points were neglected in
the determination of Mρ and M∆. Thus, and only for the ∆ and ρ channels, these two points
were excluded from the analysis.
Completely analogous to the proceeding in section 3.2.1, we extracted the hadron masses by
applying correlated cosh or sinh fits to the correlators. Figure 4.2 shows the effective mass
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β amud ams L3 · T # traj.

3.3

-0.0960 -0.057 163 · 32 10000
-0.1100 -0.057 163 · 32 1450
-0.1200 -0.057 163 · 64 4500
-0.1233 -0.057 163 · 64 / 243 · 64 / 323 · 64 5000 / 2000 / 1300
-0.1265 -0.057 243 · 64 2100

3.57

-0.0318 0.0 / -0.01 243 · 64 1650 / 1650
-0.0380 0.0 / -0.01 243 · 64 1350 / 1550
-0.0440 0.0 / -0.007 323 · 64 1000 / 1000
-0.0483 0.0 / -0.007 483 · 64 500 / 1000

3.7

-0.0070 0.0 323 · 96 1100
-0.0130 0.0 323 · 96 1450
-0.0200 0.0 323 · 96 2050
-0.0220 0.0 323 · 96 1350
-0.0250 0.0 403 · 96 1450

Table S1: Bare lagrangian parameters, lattice sizes and statistics. The table summarizes the 14
simulation points at three different lattice spacings ordered by the light quark masses. Note that
due to the additive mass renormalization, the bare mass parameters can be negative. At each
lattice spacing 4-5 light quark masses are studied. The results of all these simulations are used
to perform a combined mass and continuum extrapolation to the physical point. In addition, for
one set of Lagrangian parameters, different volumes were studied and four of our simulations
at β=3.57 were repeated with different strange quark masses.
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Figure S1: Effective masses for different source types in the pion (left panel) and nucleon (right
panel) channels. Point sources have vanishing extents, whereas Gaussian sources, used on
Coulomb gauge fixed configurations have radii of approximately 0.32 fm. Clearly, the extended
sources/sinks result in much smaller excited state contamination.
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β amud ams L3 · T # traj.

3.3

-0.0960 -0.057 163 · 32 10000
-0.1100 -0.057 163 · 32 1450
-0.1200 -0.057 163 · 64 4500
-0.1233 -0.057 163 · 64 / 243 · 64 / 323 · 64 5000 / 2000 / 1300
-0.1265 -0.057 243 · 64 2100

3.57

-0.0318 0.0 / -0.01 243 · 64 1650 / 1650
-0.0380 0.0 / -0.01 243 · 64 1350 / 1550
-0.0440 0.0 / -0.007 323 · 64 1000 / 1000
-0.0483 0.0 / -0.007 483 · 64 500 / 1000

3.7

-0.0070 0.0 323 · 96 1100
-0.0130 0.0 323 · 96 1450
-0.0200 0.0 323 · 96 2050
-0.0220 0.0 323 · 96 1350
-0.0250 0.0 403 · 96 1450

Table S1: Bare lagrangian parameters, lattice sizes and statistics. The table summarizes the 14
simulation points at three different lattice spacings ordered by the light quark masses. Note that
due to the additive mass renormalization, the bare mass parameters can be negative. At each
lattice spacing 4-5 light quark masses are studied. The results of all these simulations are used
to perform a combined mass and continuum extrapolation to the physical point. In addition, for
one set of Lagrangian parameters, different volumes were studied and four of our simulations
at β=3.57 were repeated with different strange quark masses.
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sources/sinks result in much smaller excited state contamination.
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(b) N channel

Figure 4.1.: Effective masses for different kinds of sources. Whereas point sources have ef-
fectively zero extent, our Gaussian sources have radii r ≈ 0.32 fm and clearly a
better overlap to hadronic ground states. This translates into larger and cleaner
plateaus (from SOM for [Dürr et al., 2008]).

plateaus for our lightest ensemble at Mπ ≈ 190 MeV and a ≈ 0.085 fm.

4.1.2. Approaching the physical mass point and the continuum limit

In order to be able to estimate the systematic errors induced by setting the scale as well as
extrapolating the masses to the physical point and the continuum, we applied several different
methods for each of these steps. We considered two different methods of setting the scale and
for each of these we followed two different strategies to extrapolate to the physical mass point.
Additionally, we applied three different cuts on the maximum pion mass. We also used two
different valid parametrizations for the continuum extrapolation to estimate the dependence
of our results on the choice of the specific fit model. Furthermore, we set the scale by using
either the Ω or the Ξ baryon. The very precisely known pion and kaon masses were always
‘sacrificed’ for setting the light and strange quark masses and thus could not be ‘predicted’
by this calculation.
The two methods of setting the scale were namely the

• ratio method : this method is motivated by the fact that lattice QCD measurements
are always dimensionless combinations of observables, e.g. mass ratios. The advantage
of using mass ratios is that possible cutoff effects cancel. Also statistical uncertainties
might be suppressed due to correlations. To sketch this method for the Ξ scale setting:
consider the ratios rX = MX/MΞ and parametrize them by using rπ = Mπ/MΞ and
rK = MK/MΞ. The continuum extrapolated surface parametrized by rX(rπ, rK) is an
unambiguous prediction for a particle of type X (some points on these surface were
already determined by Durr et al. [2009] (see also section 3.2.1). For illustrational
purposes it is suitable to plot one-dimensional slices of this surface. The one-dimensional
parametrizations for the nucleon and omega mass in figure 4.4 were obtained by setting
the combination 2r2

K − r2
π to its physical value of 0.27 and moving the data points

accordingly using the fit formula.
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β amud ams L3 · T #traj.

3.3

−0.0960 −0.057 163 · 32 10000
−0.1100 −0.057 163 · 32 1450
−0.1200 −0.057 163 · 64 4500
−0.1233 −0.057 163 · 64 / 243 · 64 / 323 · 64 5000 / 2000 / 1300
−0.1265 −0.057 243 · 64 10000

3.57

−0.0318 0.0 / −0.010 243 · 64 1650 / 1650
−0.0380 0.0 / −0.010 243 · 64 1350 / 1550
−0.0440 0.0 / −0.007 323 · 64 1000 / 1000
−0.0483 0.0 / −0.007 483 · 64 500 / 1000

3.7

−0.0070 0.0 323 · 96 1100
−0.0130 0.0 323 · 32 1450
−0.0200 0.0 323 · 96 2050
−0.0220 0.0 323 · 96 1350
−0.0250 0.0 403 · 96 1450

Table 4.1.: Bare masses, lattice sizes and statistics. The table depicts the 14 simulation
points, ordered by the light quark masses. Due to the additive renormalization
constant, the bare masses can be negative. All these points were included into
a combined chiral and continuum extrapolation. Additionally, a dedicated finite
volume study has been performed for one choice of masses on the coarsest lattice.
The points at β = 3.57 have been repeated for a different strange quark mass
(from SOM for [Dürr et al., 2008]).

on a hypercubic space-time lattice with spacing a,
to evaluate its Green's functions numerically and
to extrapolate the resulting observables to the con-
tinuum (a→0). A convenient way to carry out this
discretization is to place the fermionic variables on
the sites of the lattice, whereas the gauge fields
are treated as 3 × 3 matrices connecting these
sites. In this sense, lattice QCD is a classical four-
dimensional statistical physics system.

Calculations have been performed using the
quenched approximation, which assumes that
the fermion determinant (obtained after integrat-
ing over the y fields) is independent of the
gauge field. Although this approach omits the
most computationally demanding part of a full
QCD calculation, a thorough determination of
the quenched spectrum took almost 20 years. It

was shown (4) that the quenched theory agreed
with the experimental spectrum to approximately
10% for typical hadron masses and demonstrated
that systematic differences were observed be-
tween quenched and two-flavor QCD beyond
that level of precision (4, 5).

Including the effects of the light sea quarks
has dramatically improved the agreement be-
tween experiment and lattice QCD results. Five
years ago, a collaboration of collaborations (6)
produced results for many physical quantities
that agreedwell with experimental results. Thanks
to continuous progress since then, lattice QCD
calculations can now be performed with light sea
quarks whose masses are very close to their phys-
ical values (7) (though in quite small volumes).
Other calculations, which include these sea-quark

effects in the light hadron spectrum, have also
appeared in the literature (8–16). However, all of
these studies have neglected one or more of the
ingredients required for a full and controlled cal-
culation. The five most important of those are, in
the order that they will be addressed below:

1) The inclusion of the up (u), down (d), and
strange (s) quarks in the fermion determinant
with an exact algorithm and with an action
whose universality class is QCD. For the light
hadron spectrum, the effects of the heavier
charm, bottom, and top quarks are included in
the coupling constant and light quark masses.

2) A complete determination of the masses of
the light ground-state, flavor nonsinglet mesons
and octet and decuplet baryons. Three of these
are used to fix the masses of the isospin-averaged
light (mud) and strange (ms) quark masses and the
overall scale in physical units.

3) Large volumes to guarantee small finite-
size effects and at least one data point at a
significantly larger volume to confirm the small-
ness of these effects. In large volumes, finite-size
corrections to the spectrum are exponentially
small (17, 18). As a conservative rule of thumb,
MpL >

e
4, withMp the pionmass and L the lattice

size, guarantees that finite-volume errors in the
spectrum are around or below the percent level
(19). Resonances require special care. Their finite
volume behavior is more involved. The literature
provides a conceptually satisfactory framework
for these effects (20, 21), which should be in-
cluded in the analysis.

4) Controlled interpolations and extrapola-
tions of the results to physical mud and ms (or
eventually directly simulating at these mass
values). Although interpolations to physical ms,
corresponding to MK ≅ 495 MeV, are straight-
forward, the extrapolations to the physical value of

Fig. 2. Pion mass dependence of the nucleon (N) andW for all three values of
the lattice spacing. (A) Masses normalized by MX, evaluated at the
corresponding simulation points. (B) Masses in physical units. The scale in
this case is set byMX at the physical point. Triangles on dotted lines correspond
to a ≈ 0.125 fm, squares on dashed lines to a ≈ 0.085 fm, and circles on solid
lines to a ≈ 0.065 fm. The points were obtained by interpolating the lattice
results to the physicalms (defined by setting 2MK

2 –Mp
2 to its physical value).

The curves are the corresponding fits. The crosses are the continuum
extrapolated values in the physical pion mass limit. The lattice-spacing
dependence of the results is barely significant statistically despite the factor of
3.7 separating the squares of the largest (a ≈ 0.125 fm) and smallest (a ≈
0.065 fm) lattice spacings. The c2/degrees of freedom values of the fits in (A)
are 9.46/14 (W) and 7.10/14 (N), whereas those of the fits in (B) are 10.6/14
(W) and 9.33/14 (N). All data points represent the mean T SEM.

A B

Fig. 1. Effective masses
aM = log[C(t/a)/C(t/a +
1)], where C(t/a) is the
correlator at time t, for
p, K, N, X, and W at our
lightest simulation point
withMp ≈ 190 MeV (a ≈
0.085 fm with physical
strange quark mass). For
every 10th trajectory, the
hadron correlators were
computed with Gaussian
sources and sinks whose
radii are approximately
0.32 fm. The data points
represent mean T SEM.
The horizontal lines indi-
cate the masses T SEM,
obtained by performing
single mass-correlated cosh/sinh fits to the individual hadron correlators with a method similar to that
of (29).

www.sciencemag.org SCIENCE VOL 322 21 NOVEMBER 2008 1225

REPORTS

Figure 4.2.: Effective masses at Mπ ∼ 190 MeV and a ≈ 0.085 fm and physical strange quark
mass, for the π, K, N , Ξ and Ω channel. The horizontal lines are the masses
obtained by correlated cosh or sinh fits to the correlators. Their length denote
the fit size in lattice units [from Dürr et al., 2008].
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In direction of the strange quark mass, a linear interpolation in r2
K is sufficient because

our chosen ms is already tuned very close to its physical value. On the other hand, some
channels showed a curvature in the r2

π dependence. Therefore, a series expansion around
a chosen pion mass point was needed. The singular choice rπ = 0 corresponds to chiral
perturbation theory. Another possibility is to use a non-singular expansion point, e.g.
a point lying inside the range of measured rπ. We applied both methods and will refer
to them as chiral fit or Taylor fit respectively. Besides the typical pseudo-Goldstone
boson terms proportional to M2

π , χPT predicts terms proportional to M3
π [Langacker

and Pagels, 1974] for masses of particles which are no pseudo-Goldstone bosons. This
is provided by our chiral fit strategy. As a generic expansion around a reference point
(rπ,ref , rK,ref), we applied the ansatz

rX(rπ, rK) = rX,ref + αX
(
r2
π − r2

π,ref

)
+ βX

(
r2
K − r2

K,ref

)
+O(r3

π, r
3
K). (4.1)

In case of the chiral fits, the higher orders were chosen proportional to r3
π and the

reference point (rπ2,ref , r
2
K,ref) = (0, r̄2

K), where r̄2
K is the midpoint between our values

of r2
K , which straddle the physical value.6

For the Taylor fit we chose the reference point (r2
π,ref , r

2
K,ref) = (r̂2

π, r̄
2
K), with r̄2

K as

defined before and r̂2
π is the midpoint between the physical pion point and the largest

simulated r2
π considered in the fit. Note that in this case, all our data and reference

points are well inside the radius of convergence which is defined by the nearest singular
points at r2

π = 0 and r2
K = 0. It shows that higher order contributions proportional to

r4
π were sufficient for the Taylor fit.

The combined extrapolation to the physical mass point was performed by applying
both strategies, where the deviation propagated into our systematic error. The range
of applicability of these extrapolations is not known a priori, and the higher order
contributions were compatible with zero for the vector mesons for all different pion mass
cuts. Nevertheless, these terms have been included in the analysis. On the baryonic
sector, the higher order contributions became significant and the difference between the
results obtained by these different types of fits allowed us to estimate yet higher order
terms which were not included into our fits. In order to improve this estimate further,
we applied three different cuts to the pion masses. In the first cut, we included all 14
simulation points, in the second cut we neglected all points with pion masses above
rπ = 0.38 which removed two points from the fit. The third cut was even more strict
because we neglected all points with pion masses above rπ = 0.31, which removed three
additional points from the fit. Again, the different results for the extrapolations using
these three different fits contributed to our systematic error.
To summarize the ratio method as a practitioners guide: use the input data ratios rX ,
rπ and rK to determine rX(r2

π,ref , r
2
K,ref), αX and βX and then rX at the physical point

using an extra/interpolation. This is done by applying two different fit formulae (chiral
and Taylor) and using three different pion mass cuts for each of them.

• mass independent scale setting : this method is much more conventional compared to
the ratio method discussed above. The input mass MΞ (or MΩ) is first extrapolated
to the physical point, given by the experimental values of Mπ/MΞ and MK/MΞ. This

6This means we used SU(2) χPT, where the strange quark is treated as heavy. For SU(3) χPT we would have
had to choose (r2

π,ref , r
2
K,ref) = (0, 0).
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value can then be identified with the physical value of MΞ and thus one obtains a scale
for the specific lattice spacing. This procedure can be repeated on all lattice spacings
and our chiral and Taylor extrapolations can be performed as in the ratio method
before, this time using the quantities Mπ, MK and MΞ in physical units instead of the
ratios. We applied the same pion mass cuts as in the ratio method which translates into
Mπ = 560 MeV and Mπ = 450 MeV for the two more strict cuts. Again, all different
fits contributed to our systematic error.

As discussed in section 3.2.1 and [Durr et al., 2009], typical hadron masses deviate from
their continuum values by less than approximately 1% for lattice spacings up to a ≈ 0.125 fm.
Furthermore, we showed in [Durr et al., 2009] that cutoff effects are linear in a2 for 0.065 fm ≤
a ≤ 0.125 fm and even above. Hence we allowed the quantities rX(rπ, rK) and MX(Mπ,MK)
to acquire a linear dependence in a2. In order to estimate the effect of possible higher
order contributions in a, we also performed an extrapolation linear in the lattice spacing and
propagate the difference into our systematic error.
Both the continuum and chiral extrapolations were carried out simultaneously in a combined
correlated fit.

4.1.3. Analysis of statistical and systematic errors

Beside the systematic uncertainties we accounted for in the discussion above, we also included
several other possible systematic contributions in our results. In order to estimate the possible
contributions of excited states in fitting the correlation functions, we used 18 different time in-
tervals. These intervals vary from large time values where we can definitely exclude significant
excited state contributions, down to small time values where excited states contributions are
not visible in the effective mass plateau but might influence the fit. We ended up having two
methods of normalizing the hadron masses, two strategies to extrapolate to the physical pion
mass, three pion mass cuts, two different continuum extrapolations as well as eighteen time
intervals for the fits of the two point functions. This resulted in 2 · 2 · 3 · 2 · 18 = 432 different
values for each single hadron mass. Each of them coming with a weight proportional to its
goodness-of-fit. Therefore, from the 432 different fits for each hadron we obtained a histogram
whose entries are weighted according to their fit quality. Our result for the hadron mass is
then given by the median and the error by the central 68% probability. The corresponding
histogram for the nucleon mass is shown in figure 4.3, where the arrow denotes its median.
The statistical errors have been estimated by repeating the whole analysis on 2000 MB boot-
strap samples with a block size of 1.7 Hence, we obtained 2000 distributions for each hadron
and thus 2000 medians. The central 68% of the distribution of the bootstrapped medians is
our statistical error. The two different types of errors have been summed up quadratically,
where we expect this to be the most fair and reliable estimator. The individual contributions
to our final systematic errors are given in table 4.2.
Note, that taking the quadratic sum of errors to obtain an overall error is only allowed for
statistically independent Gaussian distributions, which is not the case for our systematic er-
ror. However, the correlation is very small and would even decrease our final overall error if
completely taken into account. Thus, our final error is slightly overestimated, as can be seen

7Due to the decorrelation of our measurements, larger values for the block size did not affect the results
significantly.
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by the perfect agreement of all our values with experiment. From naive statistics, we would
expect that approximately 2/5 of our data points are off the experimental prediction, hence
∼ 3 measurements out of 10.

Before proceeding to the presentation of our results, I discuss a last source of possible system-
atic uncertainties: in lattice QCD applications, the electromagnetic interactions are neglected
and isospin is an exact symmetry. However, electromagnetic and mass isospin breaking ef-
fects typically contribute to a small fraction of 1% to masses of light vector mesons and
baryons [Gasser and Leutwyler, 1982]. Furthermore, the electromagnetic contribution to the
mass splitting between members of the same isospin multiplet is also well below the 1%-level
[Gasser and Leutwyler, 1982]. We accounted for these effects by isospin averaging the exper-
imental masses to which we compare our results. This removed the leading isospin breaking
terms, ending up with higher order corrections of only a small fraction of 1%. For the pion
and kaon masses we used the isospin averaging as well as Dashen’s theorem [Dashen and
Weinstein, 1969] in order to determine the leading electromagnetic effects. Higher order cor-
rections to this theorem are expected to be below the 3 per mil level [Aubin et al., 2004c] so
that it is safe to neglect them in our calculation.

4.1.4. Results and discussion

Our final result for the non-singlet low-lying hadron spectrum is compared to the experimental
values in figure 4.5 and table 4.3. We observe a perfect agreement with the experimental data
and thus our studies strongly suggest that QCD is the correct theory of strong interaction
at hadronic energy scales. The computation of the hadron spectrum was one of the most
important steps in understanding where 99% of the visible matter comes from. Furthermore,
it shows that lattice computations will be one of the most important tools to proof the non-
perturbative regimes of the standard model and especially QCD. In this context, I present
our results on the light quark masses in the next section 4.2.
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Figure S4: Volume dependence of the π (left panel) and N (right panel) masses for one of our
simulation points corresponding to a ≈ 0.125fm andMπ ≈ 320MeV. The results of fits to the
form c1+c2 exp(−MπL)/(MπL)3/2 are shown as the solid curves, with c1 = aMX(L = ∞) and
c2 = acX(Mπ) given in the text (X = π, N for pion/nucleon). The dashed curves correspond
to fits with the c2 of refs. (S9,S10).
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Figure S5: Distribution used to estimate the central value and systematic error on the nucleon
mass. The distribution was obtained from 432 different fitting procedures as explained in the
text. The median is shown by the arrow. The experimental value of the nucleonmass is indicated
by the vertical line.
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Figure 4.3.: Distribution of nucleon masses obtained from our different fits. The arrow depicts
the computed median whereas the experimental value for the nucleon mass is
indicated by the vertical line (from SOM for [Dürr et al., 2008]).

channel continuum extrapolation chiral fits/normalization excited states finite volume

ρ 0.20 0.55 0.45 0.20
K∗ 0.40 0.30 0.65 0.20

N 0.15 0.90 0.25 0.05
Λ 0.55 0.60 0.40 0.10
Σ 0.15 0.85 0.25 0.05
Ξ 0.60 0.40 0.60 0.10

∆ 0.35 0.65 0.95 0.05
Σ∗ 0.20 0.65 0.75 0.10
Ξ∗ 0.35 0.75 0.75 0.30
Ω 0.45 0.55 0.60 0.05

Table 4.2.: Error budget as fractions from total systematic error. All results represent averages
from the Ξ an Ω scale setting sets. The columns correspond to uncertainties
related to two different continuum extrapolations (O(a) or O(a2)) (column 2),
two different fit ansaetze (chiral and Taylor) for extrapolating to the physical
mass point as well as three different pion mass cuts (column 3), then 18 different
fit intervals for the extraction of the masses from the correlators (column 4) and
finally the finite volume corrections (column 5). The quadratic sum of all errors
does not combine exactly to 1 because of correlations and non-Gaussian nature
of the underlying distributions. The finite volume corrections of the decouplet
resonances increase with increasing strange content because the total systematic
error decreases so that the absolute finite volume corrections are of the same level.
The black horizontal line separates the vector mesons from the baryon and the
octet from the decuplet sector (from SOM for [Dürr et al., 2008]).
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on a hypercubic space-time lattice with spacing a,
to evaluate its Green's functions numerically and
to extrapolate the resulting observables to the con-
tinuum (a→0). A convenient way to carry out this
discretization is to place the fermionic variables on
the sites of the lattice, whereas the gauge fields
are treated as 3 × 3 matrices connecting these
sites. In this sense, lattice QCD is a classical four-
dimensional statistical physics system.

Calculations have been performed using the
quenched approximation, which assumes that
the fermion determinant (obtained after integrat-
ing over the y fields) is independent of the
gauge field. Although this approach omits the
most computationally demanding part of a full
QCD calculation, a thorough determination of
the quenched spectrum took almost 20 years. It

was shown (4) that the quenched theory agreed
with the experimental spectrum to approximately
10% for typical hadron masses and demonstrated
that systematic differences were observed be-
tween quenched and two-flavor QCD beyond
that level of precision (4, 5).

Including the effects of the light sea quarks
has dramatically improved the agreement be-
tween experiment and lattice QCD results. Five
years ago, a collaboration of collaborations (6)
produced results for many physical quantities
that agreedwell with experimental results. Thanks
to continuous progress since then, lattice QCD
calculations can now be performed with light sea
quarks whose masses are very close to their phys-
ical values (7) (though in quite small volumes).
Other calculations, which include these sea-quark

effects in the light hadron spectrum, have also
appeared in the literature (8–16). However, all of
these studies have neglected one or more of the
ingredients required for a full and controlled cal-
culation. The five most important of those are, in
the order that they will be addressed below:

1) The inclusion of the up (u), down (d), and
strange (s) quarks in the fermion determinant
with an exact algorithm and with an action
whose universality class is QCD. For the light
hadron spectrum, the effects of the heavier
charm, bottom, and top quarks are included in
the coupling constant and light quark masses.

2) A complete determination of the masses of
the light ground-state, flavor nonsinglet mesons
and octet and decuplet baryons. Three of these
are used to fix the masses of the isospin-averaged
light (mud) and strange (ms) quark masses and the
overall scale in physical units.

3) Large volumes to guarantee small finite-
size effects and at least one data point at a
significantly larger volume to confirm the small-
ness of these effects. In large volumes, finite-size
corrections to the spectrum are exponentially
small (17, 18). As a conservative rule of thumb,
MpL >

e
4, withMp the pionmass and L the lattice

size, guarantees that finite-volume errors in the
spectrum are around or below the percent level
(19). Resonances require special care. Their finite
volume behavior is more involved. The literature
provides a conceptually satisfactory framework
for these effects (20, 21), which should be in-
cluded in the analysis.

4) Controlled interpolations and extrapola-
tions of the results to physical mud and ms (or
eventually directly simulating at these mass
values). Although interpolations to physical ms,
corresponding to MK ≅ 495 MeV, are straight-
forward, the extrapolations to the physical value of

Fig. 2. Pion mass dependence of the nucleon (N) andW for all three values of
the lattice spacing. (A) Masses normalized by MX, evaluated at the
corresponding simulation points. (B) Masses in physical units. The scale in
this case is set byMX at the physical point. Triangles on dotted lines correspond
to a ≈ 0.125 fm, squares on dashed lines to a ≈ 0.085 fm, and circles on solid
lines to a ≈ 0.065 fm. The points were obtained by interpolating the lattice
results to the physicalms (defined by setting 2MK

2 –Mp
2 to its physical value).

The curves are the corresponding fits. The crosses are the continuum
extrapolated values in the physical pion mass limit. The lattice-spacing
dependence of the results is barely significant statistically despite the factor of
3.7 separating the squares of the largest (a ≈ 0.125 fm) and smallest (a ≈
0.065 fm) lattice spacings. The c2/degrees of freedom values of the fits in (A)
are 9.46/14 (W) and 7.10/14 (N), whereas those of the fits in (B) are 10.6/14
(W) and 9.33/14 (N). All data points represent the mean T SEM.

A B

Fig. 1. Effective masses
aM = log[C(t/a)/C(t/a +
1)], where C(t/a) is the
correlator at time t, for
p, K, N, X, and W at our
lightest simulation point
withMp ≈ 190 MeV (a ≈
0.085 fm with physical
strange quark mass). For
every 10th trajectory, the
hadron correlators were
computed with Gaussian
sources and sinks whose
radii are approximately
0.32 fm. The data points
represent mean T SEM.
The horizontal lines indi-
cate the masses T SEM,
obtained by performing
single mass-correlated cosh/sinh fits to the individual hadron correlators with a method similar to that
of (29).
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Figure 4.4.: Pion mass dependence of the nucleon N and Ω for all three values of the lattice
spacing. Figure (A) depicts the extrapolation in the ratio method, figure (B) the
extrapolation using the mass independent scale setting where the scale is set by
MΞ at the physical point. The red triangles and dashed curves correspond to
a ≈ 0.125 fm, the green squares and dashed curves to a ≈ 0.085 fm and the blue
circles and solid curves to a ≈ 0.065 fm. The points and curves were obtained
by projecting the corresponding two dimensional surfaces along the 2M2

K −M2
π

direction onto its physical value. The black vertical lines represent the physical
pion mass and the black circles on top of these lines the combined continuum
and chiral extrapolations. The lattice spacing dependence of our results is barely
statistically significant, despite the factor of around 3.7 separating the points on
the finest and coarsest lattices. The χ2/dof of these fits for both channels are
7.10/14 (N) and 9.46/14 (Ω) for (A) as well as 9.33/14 (N) and 10.6/14 (Ω)
respectively for (B) [from Dürr et al., 2008].

X Experimental values[Yao et al., 2006] MX (Ξ set) MX (Ω set)

ρ 0.775 0.775(29)(13) 0.778(30)(33)
K∗ 0.894 0.906(14)(04) 0.907(15)(8)

N 0.939 0.936(25)(22) 0.953(29)(19)
Λ 1.116 1.114(15)(05) 1.103(23)(10)
Σ 1.191 1.169(18)(15) 1.157(25)(15)
Ξ 1.318 1.318 1.317(16)(13)

∆ 1.232 1.248(97)(61) 1.234(82)(81)
Σ∗ 1.385 1.427(46)(35) 1.404(38)(27)
Ξ∗ 1.533 1.565(26)(15) 1.561(15)(15)
Ω 1.672 1.676(20)(15) 1.672

Table 4.3.: Spectrum results in GeV. The first error quoted is statistical and the second error
systematic. Note that the experimental masses have been isospin averaged. This
average is at most within 3.5 MeV of the masses of all its members. Octet masses
are more accurate than the decuplet masses and the precision also increases with
the strange content. As a consequence, the ∆ mass is the least precise result.
Again, the black horizontal lines separate the vector meson from the baryon and
the octet from the decuplet sector (from SOM for [Dürr et al., 2008]).
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mud, corresponding toMp ≅ 135MeV, are difficult.
They need computationally intensive calculations,
withMp reaching down to 200 MeVor less.

5) Controlled extrapolations to the contin-
uum limit, requiring that the calculations be
performed at no less than three values of the
lattice spacing, in order to guarantee that the
scaling region is reached.

Our analysis includes all five ingredients
listed above, thus providing a calculation of the
light hadron spectrum with fully controlled sys-
tematics as follows.

1) Owing to the key statement from renor-
malization group theory that higher-dimension,
local operators in the action are irrelevant in the
continuum limit, there is, in principle, an un-
limited freedom in choosing a lattice action.
There is no consensus regarding which action
would offer the most cost-effective approach to
the continuum limit and to physical mud. We use
an action that improves both the gauge and
fermionic sectors and heavily suppresses non-
physical, ultraviolet modes (19). We perform a
series of 2 + 1 flavor calculations; that is, we
include degenerate u and d sea quarks and an
additional s sea quark. We fix ms to its approxi-
mate physical value. To interpolate to the phys-
ical value, four of our simulations were repeated
with a slightly different ms. We vary mud in a
range that extends down to Mp ≈ 190 MeV.

2) QCD does not predict hadron masses in
physical units: Only dimensionless combinations
(such as mass ratios) can be calculated. To set the
overall physical scale, any dimensionful observ-
able can be used. However, practical issues in-
fluence this choice. First of all, it should be a
quantity that can be calculated precisely and
whose experimental value is well known. Sec-
ond, it should have a weak dependence on mud,
so that its chiral behavior does not interfere with
that of other observables. Because we are con-
sidering spectral quantities here, these two con-
ditions should guide our choice of the particle
whose mass will set the scale. Furthermore, the
particle should not decay under the strong in-
teraction. On the one hand, the larger the strange
content of the particle, the more precise the mass
determination and the weaker the dependence on
mud. These facts support the use of theW baryon,
the particle with the highest strange content. On
the other hand, the determination of baryon dec-
uplet masses is usually less precise than those of
the octet. This observation would suggest that
the X baryon is appropriate. Because both the
W and X baryon are reasonable choices, we
carry out two analyses, one withMW (theW set)
and one withMX (the X set). We find that for all
three gauge couplings, 6/g2 = 3.3, 3.57, and 3.7,
both quantities give consistent results, namely
a ≈ 0.125, 0.085, and 0.065 fm, respectively. To
fix the bare quark masses, we use the mass ratio
pairs Mp/MW,MK/MW or Mp/MX,MK/MX. We
determine the masses of the baryon octet (N, S,
L, X) and decuplet (D, S*, X*, W) and those
members of the light pseudoscalar (p, K) and

vector meson (r, K*) octets that do not require
the calculation of disconnected propagators.
Typical effective masses are shown in Fig. 1.

3) Shifts in hadron masses due to the finite
size of the lattice are systematic effects. There
are two different effects, and we took both of
them into account. The first type of volume de-
pendence is related to virtual pion exchange be-
tween the different copies of our periodic system,
and it decreases exponentially with Mp L. Using
MpL >

e
4 results in masses which coincide, for

all practical purposes, with the infinite volume
results [see results, for example, for pions (22)
and for baryons (23, 24)]. Nevertheless, for one
of our simulation points, we used several vol-
umes and determined the volume dependence,
which was included as a (negligible) correction at
all points (19). The second type of volume de-
pendence exists only for resonances. The cou-
pling between the resonance state and its decay
products leads to a nontrivial-level structure in
finite volume. Based on (20, 21), we calculated
the corrections necessary to reconstruct the reso-
nance masses from the finite volume ground-
state energy and included them in the analysis
(19).

4) Though important algorithmic develop-
ments have taken place recently [for example

(25, 26) and for our setup (27)], simulating di-
rectly at physical mud in large enough volumes,
which would be an obvious choice, is still ex-
tremely challenging numerically. Thus, the stan-
dard strategy consists of performing calculations
at a number of larger mud and extrapolating the
results to the physical point. To that end, we use
chiral perturbation theory and/or a Taylor expan-
sion around any of our mass points (19).

5) Our three-flavor scaling study (27) showed
that hadron masses deviate from their continuum
values by less than approximately 1% for lattice
spacings up to a ≈ 0.125 fm. Because the sta-
tistical errors of the hadron masses calculated in
the present paper are similar in size, we do not
expect significant scaling violations here. This is
confirmed by Fig. 2. Nevertheless, we quantified
and removed possible discretization errors by a
combined analysis using results obtained at three
lattice spacings (19).

We performed two separate analyses, setting
the scale with MX and MW. The results of these
two sets are summarized in Table 1. The X set is
shown in Fig. 3. With both scale-setting proce-
dures, we find that the masses agree with the
hadron spectrum observed in nature (28).

Thus, our study strongly suggests that QCD
is the theory of the strong interaction, at low

Fig. 3. The light hadron
spectrum of QCD. Hori-
zontal lines and bands are
the experimental values
with their decay widths.
Our results are shown by
solid circles. Vertical error
bars represent our com-
bined statistical (SEM) and
systematic error estimates.
p, K, and X have no error
bars, because they are
used to set the light quark
mass, the strange quark
mass and the overall
scale, respectively.

Table 1. Spectrum results in giga–electron volts. The statistical (SEM) and systematic uncertainties
on the last digits are given in the first and second set of parentheses, respectively. Experimental
masses are isospin-averaged (19). For each of the isospin multiplets considered, this average is
within at most 3.5 MeV of the masses of all of its members. As expected, the octet masses are more
accurate than the decuplet masses, and the larger the strange content, the more precise is the
result. As a consequence, the D mass determination is the least precise.

X Experimental (28) MX (X set) MX (W set)
r 0.775 0.775 (29) (13) 0.778 (30) (33)
K* 0.894 0.906 (14) (4) 0.907 (15) (8)
N 0.939 0.936 (25) (22) 0.953 (29) (19)
L 1.116 1.114 (15) (5) 1.103 (23) (10)
S 1.191 1.169 (18) (15) 1.157 (25) (15)
X 1.318 1.318 1.317 (16) (13)
D 1.232 1.248 (97) (61) 1.234 (82) (81)
S* 1.385 1.427 (46) (35) 1.404 (38) (27)
X* 1.533 1.565 (26) (15) 1.561 (15) (15)
W 1.672 1.676 (20) (15) 1.672
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Figure 4.5.: Light hadron spectrum of QCD for the Ξ scale setting set. The horizontal bars
and shaded bands denote the experimental values along with their decay widths
for strongly decaying particles. Our results are indicated by the red circles and
the combined statistical and systematic errors by the corresponding error bars.
The blue circles represent the input quantities necessary to fix the quark masses
(Mπ, MK) and the scale (MΞ). The plot for the Ω scale setting is completely
analogous. We see a very good agreement of the computed quantities with exper-
imental measurements, hence strongly indicating that QCD is the correct theory
for describing strong interactions also at perturbatively inaccessible low energies
[from Dürr et al., 2008].
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4.2. Quark masses

In 2.1 we discussed that the standard model of particle physics has many free parameters, e.g.
the coupling strengths, quark and lepton masses, mixing angles or gauge boson masses, the
higgs mass etc. Obviously, ordinary matter8 can be described by six fundamental parameters:
three couplings for the strong, electromagnetic and gravitational interaction, as well as three
masses, i.e. the mass of the electron me and the light quark masses mu, md. Through virtual
corrections, the strange quark mass ms also contributes to the nucleon mass. Since the masses
of heavier quarks mostly exceed the total energy of the hadronic state, their contribution to
the nucleon mass is negligible. Whereas the three couplings and the electron mass are known
to an accuracy of better than a few per mil, the light and strange quark masses are only
poorly known. The Particle Data Group quotes them with conservative errors of around 25%
[Nakamura et al., 2010]. The reason for this large uncertainty is attributed to the fact that
(light) quark masses are inaccessible by direct measurements. The strong interaction con-
fines quarks into hadrons in such a way that a single quark cannot be isolated. Furthermore,
the strength of interaction is such that the masses of hadrons are not simple sums of their
constituent masses but highly affected by complicated non-perturbative strong dynamics (cf.
part 4.1). This confinement or infrared slavery is the counterpart of the theory’s asymptotic
freedom at high energies.
Lattice QCD is known for several decades now, but a large amount of computational and
algorithmic development was necessary to reach a level where quark masses can be extracted
reliably with a high precision. In case of the hadron spectrum, many computations have
been performed in the quenched approximation [cf. Garden et al., 2000, for the most precise
result on ms]. Besides introducing an uncontrolled uncertainty by neglecting the fermion
determinant, quenched QCD calculations also cannot reach the region of physical up- and
down-quark masses due to the occurrence of exceptional configurations.9 Although the in-
clusion of sea quark effects [Eicker et al., 1997; Ali Khan et al., 2002; Aoki et al., 2003b;
Gockeler et al., 2006; Della Morte et al., 2005b] was an important step, physical quark masses
still have been out of reach due to algorithmic reasons. The first major breakthrough came
with the MILC collaboration [Aubin et al., 2004b] which used a Nf=2+1 staggered dynamical
fermion formulation with larger volumes and smaller quark masses. More recent calculations
give results with root-mean-squared of the pion taste partners down to 258 MeV and use even
finer lattices [Bazavov et al., 2010, 2009]. On a subset of the MILC configurations, HPQCD
made an attempt to indirectly obtain the light quark masses by measuring the mc/ms ra-
tio [McNeile et al., 2010]. However, the aggressive error estimates on their input quantities
and the use of a non-unitary staggered fermion formalism does not fulfill the requirements
of a fully controlled ab initio determination. Recently, also ETMC [Blossier et al., 2010] and
RBQCD [Aoki et al., 2011] have presented results with significantly larger error bars.
The improvement of algorithms [Hasenbusch, 2001; Luscher, 2005], the use of theoretically
sound Wilson and domain wall fermions for ab initio calculations [Dürr et al., 2008; Allton
et al., 2008] as well as reaching physically small mud for the first time (albeit in small vol-
umes and at a single lattice spacing [Aoki et al., 2009]), marked the second breakthrough in
determining the light quark masses. If we again apply the criteria for a complete ab initio

8By which we mean visible matter which does not decay weakly.
9This occurs when some eigenvalues of the valence Dirac operator get close to zero. In full QCD, such configu-
rations are suppressed by a large back-driving force within the molecular dynamics evolution.
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determination with full control over all errors from part 4.1, many of the above mentioned
results will fail. In case of quark masses, we have to add two important criteria to those
mentioned in that section:

• Non-perturbative treatment in all steps. Only this treatment allows to remove the
uncertainties coming from the truncation of the perturbative series completely from the
determination. Of course, the use of perturbation theory together with a fair estimation
of these truncation errors is also justified but this usually enlarges the overall systematic
error.

• Careful choice of input parameters. The quark masses and scale should be set with ex-
perimentally well measured observables whose error bars are undisputed. Furthermore,
these observables should not contain any hidden assumptions such as empirical models.
Our studies fulfill this requirement by using the experimentally well known quantities
Mπ, MK and MΩ, as done before in 4.1. Taking derived quantities like r1 and mc

instead can be problematic. The error bar on mc used by McNeile et al. [2010] is 13
times smaller than the established PDG value [Nakamura et al., 2010]. Similarly, due to
the difficulty in determining r1 (and its related value r0) and quantifying its systematic
uncertainty, its continuum limit is disputed.

We determined the light and strange quark masses mu, md and ms with a precision of below
2% within an ab initio lattice calculation. The pion masses we used range down to their
physical values (and even below) and the box sizes reach up to 6 fm. We used five lattice
spacings for the continuum extrapolation and the renormalization is performed completely
non-perturbatively. These precise results could be obtained by using improved methods which
circumvent some inherent difficulties in the procedures we used. Namely these are the ratio-
difference-method for calculating the quark masses (cf. 2.3.7), the ratio-extrapolation-method
to circumvent the RI window problem and the trace subtraction to remove a specific O(a)
artifact (cf. 2.4.3) as well as our advanced data analysis technique to propagate all statistical
and systematic errors reliably into the final result (cf. section 2.3.5 and [Dürr et al., 2008]).
The second extremely important ingredient are our data points computed directly at physical
pion masses or even below. Since the necessary extrapolations in mud become interpolations,
the related systematic uncertainties are drastically reduced.

4.2.1. Simulation details and scale setting

We first determined the renormalized averaged light quark masses mud = (mu + md)/2 and
strange quark mass ms at the physical point in the continuum. The results on mud and
ms/mud were then combined using dispersive information based on η→3π decays to obtain
mu and md separately. For determining the bare quark masses we used our 2 HEX smeared
tree-level improved clover Wilson action with 2+1 dynamical flavours (cf. 3). The strange
quark mass ms was held fixed to its approximate physical value and the pion masses we used
range down to Mπ = 120 MeV. We simulated at five different lattice spacings ranging from
a ≈ 0.116 fm down to 0.054 fm and box sizes as large as L3 ' (6 fm)3. Furthermore, we
ensured that MπL ≥ 4 and/or L ≥ 5 fm for all points included in the final analysis. To de-
termine the renormalization factors, we generated configurations using the same action with
three degenerate dynamical flavours and ensured that MπL ∼ 4 for the smallest pion masses
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used in the computations. Tables 4.4 and 4.5 display an overview of all simulation parame-
ters. Note that the quoted pion masses correspond to one possible choice of the correlation
functions fitting range and the errors are purely statistical.

We set the scale by using the experimental isospin averaged and electromagnetic corrected
values of Mπ, MK and MΩ. This was done by using the framework as given by FLAG [Colan-
gelo et al., 2010b], which is essentially the refined version of an analysis presented by MILC
[Aubin et al., 2004c]. The bottom line of these analyses are that one should use the input
masses Mπ = 134.8(3) MeV and MK = 494.2(5) MeV which agree with the experimentally
measured neutral pion mass Mπ0 and averaged kaon mass MK = [(M2

K+ + M2
K0)/2]1/2 re-

spectively. The physical point can be found by comparing the measured ratios Mπ/MΩ and
MK/MΩ to their corresponding experimental values and the lattice spacing by computing

aMΩ/M
phys
Ω using Mphys

Ω = 1.672 GeV [Nakamura et al., 2010]. As discussed in part 4.1, one
can also use MΞ to set the scale. We have also seen that correlation functions of decuplet
members are noisier than those of octet members. On the other hand, increasing strange
content means decreasing statistical fluctuations. In [Dürr et al., 2008], where pion masses
down to 190 MeV were used, these effects balanced each other rendering MΩ and MΞ equally
good choices. This time, our pion masses are as low as 120 MeV and hence these competing
effects prefer the use of MΩ which does not contain light valence quarks. Within this context,
we used the conventional mass-independent-scale-setting (cf. section 4.1.1).
The masses in our ensembles straddle the physical values of M2

π and M2
ss̄ ≡ 2M2

K − M2
π .

Therefore it suffices to use a parametrization of aMΩ as a function of (aMπ)2 and (aMss̄)
2

which describes the entire data set. The Taylor ansatz

aMΩ = c0 + c1(aMπ)2 + c2(aMss̄)
2 + c3(aMss̄)

2 (4.2)

perfectly describes our data.

The integrated autocorrelation times for the plaquette and the inverse iteration count of
the conjugate gradient in the HMC Metropolis step are of O(10) trajectories. Depending on
these measurements, we took every fifth to tenth configuration for our final analysis. Results
on the autocorrelation of the topological charge, which, as a global quantity, usually shows
the largest autocorrelation times, were already presented in section 3.1.2. We showed that the
integrated autocorrelation time of the physically relevant q2

ren is of O(10) configurations so
that we did not observe any further correlations in our data. We also checked for remaining
thermalization effects by dropping the first 20-100 configurations but found no significant
changes in our results. In order to reduce the relative weight of excited states in hadronic
correlators, we used Gaussian sources and sinks with radii r ≈ 0.32 fm.
Additional checks concerning finite volume corrections, chiral behaviour, algorithmic stability
and scaling behaviour were already presented in chapter 3. We corrected for possible finite
volume effects which were always below the 0.5% level and even smaller at the physical point.
A landscape plot demonstrating the quality of our data concerning pion masses and volumes
is shown in figure 4.6.
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Figure 1: Summary of our simulation points. The pion masses and the spatial sizes of the
lattices are shown for our five lattice spacings. The percentage labels indicate regions, in which
the expected finite volume effect [3] onMπ is larger than 1%, 0.3% and 0.1%, respectively. In
our runs this effect is smaller than about 0.5%, but we still correct for this tiny effect.

In our view, item 2 marks the beginning of a new era in numerical lattice QCD, because it
avoids an extrapolation in quark masses which, generically, requires strong assumptions, thus
relinquishing the first-principles approach (see the discussion in [1]).

To give the reader an overview of where we are in terms of simulated pion massesMπ and
spatial box sizes L, a graphical survey of (some of) our simulation points is provided in Fig. 1
(with more details given in Sec. 5). We have data at 5 lattice spacings in the range 0.054−
0.116 fm, with pion masses down to ∼120 MeV and box sizes up to ∼6 fm. Comparison with
Chiral Perturbation suggests that our finite volume effects are typically below 0.5%, and close
to the physical mass point (which is the most relevant part) even smaller. Still, we correct for
them by means of Chiral Perturbation Theory [3], and test the correctness of this prediction
through explicit finite volume scaling runs (see below).

The remainder of this paper is organized as follows. In Sec. 2 details are given concerning
the action and algorithm employed, while Sec. 3 specifies how one determines the HMC force
with HEX smeared clover fermions. Our choice of the scale setting procedure and of the in-
put masses is discussed in Sec. 4, with simulation parameters tabulated in Sec. 5. Checks of
algorithmic stability are summarized in Sec. 6, while autocorrelation and (practical) ergodicity
issues are reported in Sec. 7. To corroborate the good scaling properties of our action, explicit
tests of the scaling of hadron masses in Nf =3 QCD are carried out, see Sec. 8. Details of how

4

Figure 4.6.: Landscape plot of all our Nf=2+1 ensembles. The percentage labels of the
different shaded regions denote the lower boundaries for the expected relative
finite volume corrections on Mπ as given by Colangelo et al. [2005]. In all our
runs these corrections are smaller than 0.5% where we still correct for these tiny
effects [from Durr et al., 2010].

3.31 163 × 32 3.5 243 × 48 3.61 243 × 48 3.7 323 × 64 3.8 323 × 64
-0.04 4780 -0.006 2560 -0.0045 4620 -0.0060 1010 0.000 505
-0.06 3320 -0.010 3140 -0.0085 3680 -0.0085 1050 -0.004 635
-0.07 2420 -0.012 2580 -0.0100 4140 -0.0110 1020 -0.008 500
-0.08 2500 -0.020 2700 -0.0200 3140 -0.0140 1290 -0.012 1030

-0.035 1090 -0.0250 1230 -0.0160 1020 -0.014 1000

Table 4.4.: Bare masses, volumes and number of trajectories of our dedicated Nf=3 simula-
tions for RI renormalization. The β-values are the same as in our phenomenological
runs, cf. table 4.5. Note that RI renormalization factors are in general statistically
very precise, so only O(1000) trajectories are sufficient [from Durr et al., 2010].
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β ambare
ud ambare

s volume # traj. aMπ MπL

3.31

-0.07000 -0.0400 163 × 32 1650 0.3530(12) 5.61
-0.09000 -0.0400 243 × 48 1600 0.2083(08) 5.00
-0.09300 -0.0400 243 × 48 4350 0.1775(06) 4.30
-0.09300 -0.0400 323 × 48 2500 0.1771(05) 5.65
-0.09530 -0.0400 323 × 48 1225 0.1500(13) 4.81
-0.09756 -0.0400 323 × 48 2600 0.1202(11) 4.00
-0.09900 -0.0400 483 × 48 1700 0.0887(06) 4.26
-0.09933 -0.0400 483 × 48 1240 0.0804(13) 3.94
-0.09000 -0.0440 243 × 64 1065 0.2024(10) 4.86
-0.09300 -0.0440 323 × 64 1030 0.1717(08) 5.50
-0.09530 -0.0440 323 × 64 1300 0.1457(09) 4.66

3.5

-0.04800 -0.0023 323 × 64 1500 0.1354(06) 4.33
-0.02500 -0.0060 163 × 32 12000 0.2898(07) 4.62
-0.03100 -0.0060 243 × 48 3000 0.2535(05) 6.07
-0.03600 -0.0060 243 × 48 1800 0.2250(08) 5.41
-0.04100 -0.0060 243 × 48 4000 0.1921(05) 4.61
-0.04370 -0.0060 243 × 48 3900 0.1725(04) 4.13
-0.04900 -0.0060 323 × 64 1100 0.1212(08) 3.90
-0.05294 -0.0060 643 × 64 1100 0.0613(06) 3.92
-0.04100 -0.0120 243 × 64 1020 0.1884(08) 4.52
-0.04630 -0.0120 323 × 64 1065 0.1445(06) 4.62
-0.04900 -0.0120 323 × 64 1000 0.1174(06) 3.76
-0.05150 -0.0120 483 × 64 1200 0.0835(07) 4.01

3.61

-0.02000 0.0045 323 × 48 2100 0.1993(3) 6.36
-0.02800 0.0045 323 × 48 3910 0.1488(4) 4.75
-0.03000 0.0045 323 × 48 2000 0.1322(4) 4.24
-0.03121 0.0045 323 × 48 2200 0.1211(2) 3.87
-0.03300 0.0045 483 × 48 2100 0.1026(4) 4.93
-0.03440 0.0045 483 × 48 1100 0.0864(4) 4.15
-0.03650 -0.0030 643 × 72 1004 0.0468(5) 3.00
-0.02000 -0.0042 323 × 48 1750 0.1969(4) 6.30
-0.03000 -0.0042 323 × 48 1450 0.1297(5) 4.17

3.7

-0.00500 0.0500 323 × 64 1000 0.2227(04) 7.13
-0.01500 0.0500 323 × 64 1170 0.1711(03) 5.48
-0.02080 0.0010 323 × 64 1150 0.1251(04) 4.00
-0.01500 0.0000 323 × 64 1115 0.1644(04) 5.26
-0.02080 0.0000 323 × 64 1030 0.1245(06) 3.98
-0.02540 0.0000 483 × 64 1420 0.0821(03) 3.94
-0.02700 0.0000 643 × 64 1045 0.0603(03) 3.86
-0.02080 -0.0050 323 × 64 1405 0.1249(04) 4.00
-0.02540 -0.0050 483 × 64 1320 0.0806(03) 3.87

3.8

-0.01400 0.0300 323 × 64 1325 0.1242(5) 3.97
-0.01900 0.0300 483 × 64 1045 0.0830(4) 3.99
-0.00900 0.0000 323 × 64 2280 0.1523(4) 4.87
-0.01400 0.0000 323 × 64 1055 0.1249(5) 4.00
-0.01900 0.0000 483 × 64 1080 0.0836(4) 4.01
-0.02100 0.0000 643×144 1200 0.0598(2) 3.83

Table 4.5.: Overview of our Nf=2+1 simulations. The scales at β = 3.31, 3.5, 3.61, 3.7,
3.8 correspond to a = 0.1163(4), 0.0926(6), 0.0771(8), 0.0652(6), 0.0539(5) fm,
respectively. The smallest pion mass per coupling is Mπ = 136(2), 131(2), 120(2),
182(2), 219(2)MeV [from Durr et al., 2010].
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4.2.2. Non-perturbative renormalization of quark masses

Quark masses are input parameters of the Lagrangian and thus they have to be tuned in or-
der to reproduce the experimental low-energy spectrum of hadron masses. This immediately
determines the quark masses in the (action specific) lattice cutoff scheme. For comparing the
results with different lattice computations or some continuum scheme like MS or RGI, one
has to convert them from the original cutoff-scheme to a scheme where the renormalization
scale µ is not tied to the lattice spacing a.

We calculated the bare quark masses using our ratio-difference method (2.213) and (2.204)
for full QCD. This method avoids complications coming from quark-line-disconnected con-
tributions [Gockeler et al., 2006; Bhattacharya et al., 2006; Rakow, 2005] and renders the
computation of the additive mass renormalization as well as the pseudoscalar renormaliza-
tion constant ZP unnecessary (cf. section 2.3.7 for details).

Determination of the scalar renormalization factor

The scalar renormalization factor was computed non-perturbatively in the RI scheme on
our Nf=3 ensembles by applying all refinements already used in 3.2.2. This means that we
applied the trace- subtraction to remove O(a) contact terms from the propagators (cf. section
2.4.3) and used four point sources sitting on the lattice hyper-diagonal in order to improve
translational invariance. Again we applied hyper-diagonal cylinder cuts to suppress artifacts
attributed to SO(4) breaking. We used the VWI to determine ZV and thus ZRI

q (cf. section
2.4.1). Figure 4.7 shows an example of the precise plateaus from which we determined the
vector renormalization factor ZV .
After obtaining ZS for different lattice spacings and masses, we had to perform a controlled
chiral extrapolation and to deal with the strict window problem.
The latter could be circumvented by our ratio-extrapolation method described in section 2.4.3
and used before in 3.2.2. In close analogy to the quenched analysis, we chose µ = 4 GeV and
µ′ = 2.1 GeV according to formula (2.290). The strict window condition for µ was met on the
three finest and that for µ′ on all lattices. Additionally, the scale µ = 4 GeV was well inside the
perturbative regime (cf. figure 4.9), allowing for later conversions to continuum perturbation
theory. The continuum extrapolation of RS(µ, µ′, a) was performed linearly assuming O(αsa)
or O(a2) scaling. The obtained continuum running RS(µ, µ′) was multiplied by ZS(µ′, a) in
order to obtain ZS(µ, a) on all lattices. Figure 4.8 shows the multiplicatively matched ZS
before the above procedure was applied. The running is very universal in the considered range
2.1 GeV ≤ µ ≤ 4 GeV and discretization effects are smaller than the statistical uncertainty.
This implies that the continuum extrapolation of RS(µ, µ′, a) is essentially flat and thus well
controlled.
Although a complete non-perturbative determination of the quark masses is perfectly valid, it
is useful to convert the measurements into a continuum scheme like MS or RGI for comparison.
The matching factors performing this change of schemes have been computed perturbatively
up to 4-loop order by Chetyrkin and Retey [2000]. The matching should be performed in a
region where the agreement of the data with perturbation theory is good. Additionally, as
also suggested by figure 4.10, the perturbative higher-order corrections and the deviation from
one of the perturbative scheme conversion constant is smaller for larger scales µ [Chetyrkin
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and Retey, 2000]. At our matching scale µ = 4 GeV, the uncertainty related to this is at
the 0.5% level and therefore subdominant. We converted to the MS and RGI schemes using
4-loop running [Chetyrkin and Retey, 2000; Garden et al., 2000], where the matching function
of Garden et al. [2000] was adjusted to the Nf=3 case.

As discussed in section 2.4.2, the RI scheme is a massless renormalization scheme but all
Nf=3 simulations use finite quark masses in the approximate range mphys

s /3 < m < mphys
s .

At some point, a chiral extrapolation is necessary. In order to have full control over the
systematic effects coming, we used two different methods to extrapolate the data into the
chiral limit.

1. We first extrapolated all ZS for each β linearly in the quark mass into the chiral limit.
Then we applied the procedure described above to immediately obtain mRI(4 GeV).
This is exactly what we also did in the quenched scaling study (c.f. section 3.2.2 and
[Kurth et al., 2010; Durr et al., 2010]).

2. We interchanged the order of limits. We first interpolated our ZS values for each β
to a reference quark mass mref = 70 MeV. This value was chosen because it could
safely be reached by interpolation on all lattice spacings. The resulting ZS factors are
no RI renormalization constants but defined in an intermediate scheme with reference
mass mref . In that scheme, we determined the renormalized light and strange quark
masses at the renormalization scales µ = 1.3 and 2.1 GeV and extrapolated into the
continuum. This yielded mRI−m(µ), where RI-m denotes a RI related massive renor-
malization scheme. Using the ratio extrapolation at µ′ = 4 GeV and µ′′ = 1.3 as well
as µ′′ = 2.1 GeV along with the massive ZRI−m

S , we obtained the continuum matching
factor transforming mRI−m(µ) into mRI−m(4 GeV) for both µ′′. This means that

mRI−m(4 GeV) = mRI−m(µ)
ZRI−m
S (µ)

ZRI−m
S (4 GeV)

. (4.3)

We then multiplied the l.h.s. with ZRI−m
S (4 GeV)/ZRI

S (4 GeV) 10 to obtain mRI(4 GeV).
This result was compared to the one we obtained from method 1.

Scheme and scale ms mud mu md

RI(4GeV) 96.4(1.1)(1.5) 3.503(48)(49) 2.17(04)(10) 4.84(07)(12)
RGI 127.3(1.5)(1.9) 4.624(63)(64) 2.86(05)(13) 6.39(09)(15)

MS(2GeV) 95.5(1.1)(1.5) 3.469(47)(48) 2.15(03)(10) 4.79(07)(12)

Table 4.6.: Renormalized quark masses in the RI/MOM scheme at µ = 4 GeV, and after
conversion to RGI and the MS scheme at µ = 2 GeV. The fully non-perturbative
RI values in the first row are our main results. The first two columns emerge di-
rectly from our lattice calculation, the last two additionally incorporate dispersive
information on Q. The precision of ms and mud is below the 2% level, for mu

and md it is about 5% and 3%, respectively. The ratio ms/mud = 27.53(20)(08)
is independent of the scheme and accurate to better than 1% [Durr et al., 2010].

10This ratio was obtained by extrapolating the corresponding a-dependent ratio into the continuum. The exis-
tence of this limit is discussed in section 2.4.3.
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Figure 9: The ratio ζ(t) as defined in (66). The gauge coupling in this Nf =3 run is β =3.61,
the quark mass is am=−0.0045. This procedure yields a stable plateau for ZV .

the running ofZS(µ) is known perturbatively to 4-loop order [44]. However, this is only relevant
for the conversion to other schemes, e.g.MS at µ=2 GeV. Our main result,mud andms in the
RI/MOM scheme at µ=4 GeV is derived without reference to perturbation theory.

In the RI/MOM scheme, renormalization conditions are defined in Landau gauge and re-
quire the forward, truncated quark Green’s function of an operator to be equal to its tree-level
value at a Euclidean four-momentum p, whose magnitude is chosen to be the renormalization
scale. Given a quark bilinear operator OΓ

12 = ψ̄2Γψ1, where ψ1 and ψ2 are mass-degenerate
quark fields and Γ is a Dirac matrix, the relevant Green’s function is

ΛΓ(p) ≡ 〈S(p)〉−1
{∫

d4xd4y eip(x−y) 〈ψ2(y)OΓ
12(0)ψ̄1(x)〉

}
〈S(p)〉−1 . (62)

In this equation, S(p) is the propagator of quark flavors 1 and 2. Now, defining a projector PΓ

such that tr{PΓΓ} = 1 (the trace is over spin×color), the renormalization condition reads

ZΓ(µ) = Zψ(µ) / ΓΓ(p)|p2=µ2 (63)

where Zψ is the wavefunction renormalization factor and

ΓΓ(p) ≡ tr{PΓΛΓ(p)} . (64)

26

Figure 4.7.: The ratio ζ(t) as defined in 2.232 for the Nf=3 ensemble at β = 3.61 and
am = −0.0045. The plateau is well pronounced and the errors are very small
[from Durr et al., 2010].
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Figure 10: Renormalization factors ZRI
S,β(µ

2) as a function of the bosonic momentum squared.
For each β momenta µ ≤ π/(2a) are included. The data from the coarser lattices have been
multiplied by a µ-independent factor to match those at β =3.8. The solid line represents a Pade
ansatz where the 1-loop anomalous dimension is built in as a constraint.

To determineZS from the RI/MOM condition (63) with Γ=I , one needs to know Zψ. In the
original publication [43] the procedure was supplemented with a recipe to obtain Zψ from the
momentum dependence of the trace of the inverse propagator. Here we avoid the determination
of this wave-function renormalization constant all together, by calculating the ratio ZS(µ)/ZV

via the RI/MOM procedure and by combining it with ZV from the 3-point function with a
vector-current insertion. In other words, on each ensemble we compute ZS(µ)/ZV using

ZS,β,m(µ)

ZV,β,m
=

ΓV (p)

ΓS(p)

∣∣∣∣
p̂2=µ2

(65)

where the dependence on the coupling and the Nf =3 quark mass is indicated with subscripts.
The bosonic momentum definition p̂ν = (2/a) sin(apν/2) is used, and a standard cylinder cut
around hyperdiagonal momenta is applied [45]. In addition, we determine ZV from the ratio

ζ(t) ≡ 〈P (T/2)V4(t)P̄ (0)〉
〈P (T/2)P̄ (0)〉 (66)

where

P (t) =
∑

$x

(ψ̄2γ5ψ1)(&x, t) , P̄ (t) =
∑

$x

(ψ̄1γ5ψ2)(&x, t) , V4(t) =
∑

$x

(ψ̄1γ4ψ1)(&x, t) (67)

27

Figure 4.8.: Multiplicatively matched renormalization factors ZRI
S (µ, a) as function of the

bosonic momentum squared. For each beta, only aµ ≤ π/2 are included. The
solid line represents a Padé ansatz where the 1-loop anomalous dimension is built
in as a contraint [from Durr et al., 2010].
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Figure 11: Ratio of the nonperturbative ZRI
S to the perturbative prediction at 4-loop level. The

momentum range shown extends to µmax = π/(2a) at β = 3.8. For µ ≥ 4 GeV the data agree
with the plateau within errors.

The difficulty to fulfill, in one simulation, the first two conditions is sometimes referred to
as the “window problem” of the RI/MOM procedure. In the following we show how we can
simultaneously satisfy all three requirements.

Ad (a): To renormalize our quark masses and to extrapolate them to the continuum we
choose a convenient renormalization scale µ=2.1 GeV. This scale satisfies µ<π/(2a) for all
our lattices (on the coarsest one this figure is about 2.7 GeV). When plotting the running of
ZS,β(µ) at different β on top of each other (see Fig. 10), one finds that discretization effects are
below our statistical accuracy in this region, and that the form of the running is almost identical
for our five β values.

Ad (b): With the procedure described above and by taking the continuum limit we obtain a
fully nonperturbative determination of the quark masses in the RI/MOM scheme at µ=2.1 GeV.
In principle, we could stop here, quoting this as our main result. However, if one wants to
convert this result to another scale or another scheme, it is evident from Fig. 12 that doing
so perturbatively would introduce an uncertainty in the 1−2% range. Therefore we use our
renormalization data to run our quark mass results, nonperturbatively, to the scale µ′ =4 GeV,
where this perturbative uncertainty is in the 0.5% range and hence subdominant. At µ′ =4 GeV
we still have 3 different β values which satisfy the condition µ′ < π/(2a). More specifically,
we use our data to extrapolate the ratio ZRI

S,β(µ)/ZRI
S,β(µ

′) to the continuum, with an extremely

29

Figure 4.9.: Non-perturbative ZS for β = 3.8 divided by the perturbative 4-loop running. The
plateau shows that the data agree with perturbation theory for µ ≥ 4 GeV [from
Durr et al., 2010].
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Figure 12: Ratio of the perturbatively evaluated ZRI
S (µ) (top panel) and ZMS

S (µ) (bottom panel)
at different loop orders. The renormalization group equations have been numerically integrated,
using 1-loop through 4-loop anomalous dimensions. To estimate the remaining uncertainty in
the 4-loop running, we employ the analytic expression at 4-loop level [44], which differs from
the numerically integrated one by 5-loop effects. In the labels this is called “4-loop/ana”.
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S (µ) (top panel) and ZMS

S (µ) (bottom panel)
at different loop orders. The renormalization group equations have been numerically integrated,
using 1-loop through 4-loop anomalous dimensions. To estimate the remaining uncertainty in
the 4-loop running, we employ the analytic expression at 4-loop level [44], which differs from
the numerically integrated one by 5-loop effects. In the labels this is called “4-loop/ana”.
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Figure 4.10.: Ratio of perturbatively evaluated ZRI
S (a) and ZMS

S (b) at different loop orders.
The renormalization group equations have been integrated numerically using
1-loop through 4-loop anomalous dimensions. To estimate higher loop contribu-
tions, we employ the analytic expression at 4-loop level [Chetyrkin and Retey,
2000], which differs from the numerically integrated one by 5-loop effects. This
ratio is denoted by “4-loop/ana“ [from Durr et al., 2010].
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We can summarize that all continuum extrapolations are extremely flat and the masses ob-
tained using both methods described above differ by around 1%. This implies that all limiting
procedures are fully controlled. As in the quenched studies, all continuum extrapolations were
performed assuming O(αsa) or O(a2) scaling, where the differences propagated into our sys-
tematic error using our standard assessment of systematic errors. The O(αsa) continuum
extrapolation for mud, ms and the universal ratio ms/mud are shown in figure 4.11. The final
results for mud, ms as well as mu and md at different renormalization scales and schemes
are shown in table 4.6. The splitting of mud into separate values for mu and md is discussed
below.

4.2.3. Removing the degeneracy from mud

Before the resources for phenomenological lattice computations were available, the most re-
liable source of information on light quark masses were current algebra and its descendant
χPT. Due to the fact that its low energy constants cannot be predicted by χPT itself but have
to be computed by matching the effective field theory to QCD, χPT can only predict quark
mass ratios where these LEC’s cancel. Accordingly, we can compare our results on ms/mud to
the one predicted by SU(3)-χPT in order to learn something about its convergence pattern.
Furthermore, we can combine our values of mud and ms with the best available information
on another ratio Q to obtain a result for the individual quark masses mu, md.

Comparing our measured ms/mud to χPT predictions

We start with the tree-level χPT relations for the meson masses

M2
π = B0(mu +md) (4.4)

M2
K± = B0(mu +ms) (4.5)

M2
K0 = B0(md +ms) (4.6)

M2
η = B0(mu +md + 4ms)/3, (4.7)

where no electromagnetic corrections are included.11 Putting in the experimental masses
on the l.h.s., one obtains three predictions. The first is the famous Gell-Mann-Okubo mass
relation

3M2
η +M2

π ' 2M2
K± + 2M2

K0 , (4.8)

which evaluates to 0.919 GeV2 ' 0.938 GeV2. This amounts to a 7% accuracy. On the other
hand

(
M2
K± +M2

K0

)
/M2

π = (ms +mud)/mud (4.9)

M2
η /M

2
π = (2ms +mud)/(3mud) (4.10)

yield ms/mud ' 25.1 and ms/mud ' 23.4 respectively. Again, this spread suggests a precision
of a few percent. Since the η undergoes significant mixing with the η′, formula (4.9) should

11Masses of particles without superscripts denote isospin averages over the corresponding physical ones, i.e.
M2
π = (M2

π0 +M2
π±)/2, M2

K = (M2
K0 +M2

K+)/2
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Figure 14: Continuum extrapolation of mud (top), ms (middle), ms/mud (bottom) versus αa,
for one of our 288 analyses with a good fit quality (cf. discussion in Sec. 14).

nonperturbative running for µ>∼4 GeV. The ratio ms/mud is scheme and scale invariant. It turns
out that our action entails favorable scaling properties not just for hadron masses, but also for
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for one of our 288 analyses with a good fit quality (cf. discussion in Sec. 14).
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out that our action entails favorable scaling properties not just for hadron masses, but also for

42

Figure 4.11.: Continuum extrapolation of mud (top), ms (middle) and ms/mud (bottom)
versus αsa. The fits represent one of our 288 analyses with a good fit quality
[from Durr et al., 2011b].
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be preferred over (4.10). Omitting all equations including M2
η yields the estimates

mu

md
=
M2
K± −M2

K0 +M2
π

M2
K0 −M2

K± +M2
π

' 0.66 (4.11)

ms

md
=
M2
K± +M2

K0 −M2
π

M2
K0 −M2

K± +M2
π

' 20.8, (4.12)

which again do not include electromagnetic effects. These can be accounted for by extending
the chiral framework to include photon interactions. In that case, the relative leading order
contributions in αQED in the 3-flavour chiral limit are the same for the pion and kaon mass,
i.e. [

M2
π± −M2

π0

]
QED

=
[
M2
K± −M2

K0

]
QED

, (4.13)

also known as the Dashen’s theorem [Dashen and Weinstein, 1969]. The QED corrections are
the largest contributions to the mass splitting of π± and π0, since isospin breaking effects are
proportional to (mu −md)

2 and therefore tiny [Leutwyler, 1996].12 This allows to compute
the leading order improved relations [Weinberg, 1977; Leutwyler, 1996]

mu

md
=
M2
K± −M2

K0 + 2M2
π0 −M2

π±

M2
K0 −M2

K± +M2
π±

' 0.56 (4.14)

ms

md
=
M2
K± +M2

K0 −M2
π±

M2
K0 −M2

K± +M2
π±
' 20.2, (4.15)

where we used the most recent PDG input from Nakamura et al. [2010] in order to obtain
the estimates on the r.h.s.. From this we obtain

ms

mud
=

2
md
ms

+ mu
md

md
ms

' 25.9. (4.16)

Comparing this to our result of ms/mud = 27.53(20)(08) (see caption of table 4.6), we find
that higher order χPT contributions are on the 6% level and hence the relatively simple
estimate (4.16) is surprisingly precise.

Leutwyler’s ellipse

As shown before, χPT is well suited to address quark mass ratios. However, in the previous
sections we mostly dealt with leading order contributions which do not include chiral logs
coming from loop diagrams in the perturbative expansion. Fortunately, there are some com-
binations of χPT predictions allowing to form ratios from leading order quantities in which
the NLO contributions cancel. Consider for example the expressions [Gasser and Leutwyler,

12Note that this does not apply to the mass splitting of K± and K0. In that case, isospin breaking is the
dominant effect [Leutwyler, 1996].
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1985; Leutwyler, 1996]

M2
K

M2
π

=
mud +ms

mu +md

(
1 + ∆ +O(m2)

)
(4.17)

M2
K0 −M2

K+

M2
K −M2

π

=
md −mu

ms −mud

(
1 + ∆ +O(m2)

)
, (4.18)

where ∆ is the same in both cases and is of the form

∆ =
8(M2

K −M2
π)

F 2
π

(2L8 − L5) + χlogs. (4.19)

The factors L8 and L5 are LEC’s from the O(p4) χPT Lagrangian, necessary to cancel diver-
gences from one-loop diagrams. The remaining effects are denoted by the term χlogs, because
these are essentially logarithmic terms in the particle masses. The quantity F 2

π is the pion
decay constant. By taking the ratio of (4.17) and (4.18), these NLO contributions cancel and
we end up with the (from χPT’s perspective) robust double ratio [Leutwyler, 1996]

Q2 ≡ m2
s −m2

ud

m2
d −m2

u

. (4.20)

When neglecting the numerically tiny term m2
ud/m

2
s one can rewrite this expression into the

equation for an ellipse (
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1. (4.21)

Relying on Dashen’s theorem or refinements thereof [Colangelo et al., 2010b], one can in
principle attempt to determine the value of Q from the masses of the charged and neutral
kaon and pion. Since we are aiming at computing the isospin splitting from first principles, it is
necessary to use a determination of Q which does not include additional assumptions. It turns
out that the most suitable method for calculating Q is to use results from dispersion theory on
the η→3π decay rate. Dispersion theory mainly relies on the axioms of quantum field theory
and is therefore conceptually as ab initio as lattice QCD itself. The decay η → 3π is especially
sensitive to isospin breaking [Leutwyler, 1996] and not much affected by electromagnetic
effects [Ditsche et al., 2009]. The value for Q coming out of these calculations [Kambor et al.,
1996; Anisovich and Leutwyler, 1996; Colangelo et al., 2009] is therefore the optimal choice
for determining the isospin splitting. Note, that due to presently incomplete or unprecise
available data, some additional input beside the axioms of quantum field theory is required
[see e.g. Colangelo et al., 2009]. To account for such provisional effects, Leutwyler assigned
his estimate Q = 22.3(8) [Leutwyler, 2009] a much larger error bar than claimed in the
publications his result is based on.
We regard this result to be the most accurate available, if one is not willing to resort to model
assumptions. To extend our lattice determinations by the computation of mu and md, we
rewrite equation (4.20) and (4.21) to

1

Q2
= 4

(
mud

ms

)2 md −mu

md +mu
. (4.22)
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Using the value for Q quoted above together with our measurement

ms

mud
= 27.53(20)(08) (4.23)

yields for the light quark mass asymmetry parameter

md −mu

md +mu
= 0.381(05)(27), (4.24)

where the error on Q is considered as a systematic error. This asymmetry parameter is
equivalent to mu/md = 0.448(06)(29). Combining (4.24) with our result mRI

ud(4 GeV) =
3.503(48)(49) MeV we obtain

mRI
u (4 GeV) = 2.17(04)(10) MeV, mRI

d (4 GeV) = 4.84(07)(12) MeV. (4.25)

All our results on the quark masses are summarized in table 4.6 and quoted in Durr et al.
[2011b, 2010].
In this part we determined mu and md based on our lattice results mud and ms/mud together
with the dispersive input Q. Given that our simulation points bridge the physical values of
mud and ms, the chiral framework is no longer needed in the first two quantities and thus
χPT is only used in some subdominant contributions to Q, which is mainly determined by
dispersion theory.

Physics implication, robustness and outlook

An important conclusion from the previous section is that our result (4.24) excludes a vanish-
ing up-quark mass by about 22 standard deviations. This is a consequence of the dispersively
determined Q being entirely inconsistent with 13.8 which is necessary to enforce mu = 0
using our results on mud and ms/mud. Note that the latter quantity has been determined
to sub-percent precision in our calculations. Our precise results together with the dispersive
calculation of Q, which excludes large corrections to Dashen’s theorem, rule out the simplest
proposed solution to the strong CP problem (for a brief discussion cf. section 2.2.3). This
corroborates the previous findings of Leutwyler [1996]. Note that the way in which we have
used phenomenological information is designed to ensure that the so-called Kaplan-Manohar
ambiguity is circumvented in our derivation of mu and md. This ambiguity expresses the fact
that the quark condensate and certain low-energy constants can be redefined, resulting in a
shift on ms/md and mu/md along Leutwyler’s ellipse [Kaplan and Manohar, 1986]. However,
these transformations do not change the aspect-ratio of the ellipse which is encoded in Q.13

Let us point out that there is conceptually no big difference between using Mπ, MK , MΩ and
Q. Although the former three quantities can be directly accessed in experiment and Q is a de-
rived quantity, it nevertheless is obtained from well settled dispersion theory calculations with
some small contributions from chiral perturbation theory. Note that also the input masses
had to be corrected using theoretical assumptions concerning isospin averaging and removing
electromagnetic effects. Of course, there is still room for improvement because our directly
measured mud has 2% precision and the split quantities mu and md are only known to 5%

13The value for Q is only affected through NNLO contributions proportional to md−mu. These corrections are
numerically on the per mil level and therefore irrelevant for the present discussion as well as in the near future.



142 4.2. QUARK MASSES

and 3% accuracy. The major contribution to this error comes from systematic uncertainties
in Q. Improvements on this parameter may be possible [Anisovich and Leutwyler, 1996], but
reaching accuracies below the percent level most probably requires a different approach. One
of these approaches might be the use of Nf=1+1+1 lattice QCD joined with the abelian
gauge group U(1) to account for electromagnetic effects. Together with the precisely known
experimental values for MK+ and MK0 as input parameters, such approaches will probably
lead to determinations of mu and md with superior precision.

4.2.4. Treatment of statistical and systematic errors

I will finally describe the different contributions which went into the errors of our final results
quoted in table 4.6. The main procedure was to establish a correlated global fit to all 47
simulation points of table 4.5, where the continuum limit and the extra-/interpolation to the
physical point was performed simultaneously. We repeated the entire analysis for different
interpolation formulae, mass cuts, discretization terms, fit ranges and renormalization proce-
dures.

The chiral extra-/interpolation is often done using SU(2) or SU(3) χPT [Gasser and Leutwyler,
1984, 1985], where the expansion points of the perturbative series in terms of squared pion
and kaon masses are at (0,M2

K,phys) or (0, 0) respectively. The corresponding formulae for

a quantity vanishing in the chiral limit contain terms proportional to M2
π as well as chiral

logs proportional to M4
π ln(M2

π/Λ
2) with know pre-factors and the chiral symmetry breaking

scale Λ. In practice, the knowledge on the pre factors is of limited use because they contain
parameters which are not known in the specific simulation or distorted by large error bars.
Using phenomenological input for these parameters is not the best choice when considering
a full ab initio calculation. Furthermore, even advanced fitting algorithms cannot safely dis-
tinguish between M4

π ad M4
π ln(M2

π/Λ
2) terms if the masses are not sufficiently large so that

the log becomes visible. However, the applicability of χPT itself is in question in this region.
The most optimal choice for chiral extrapolations is choosing an expansion point within the
range covered by the data set. Together with a suitable Taylor ansatz, good results can be
obtained [Dürr et al., 2008].
We used both fitting methods in order to be able to estimate higher order systematic effects.
We started by solving the SU(2) χPT mass formula (3.15) for mud in two different ways

mud =
M2
π

2B

(
1− 1

2

M2
π

(4πFπ)2
ln

(
M2
π

Λ2
3

))
(1 + cs∆) (4.26)

mud =
M2
π

2B

/(
1 +

1

2

M2
π

(4πFπ)2
ln

(
M2
π

Λ2
3

))
(1 + cs∆) , (4.27)

which differ by NNLO effects. Here we introduced the hadronic quantity

∆ = 2M2
K −M2

π − [2M2
K −M2

π ]phys, (4.28)

so that the latter term is essentially a linear fit in ms centered at its physical value. It
accounted for small deviations of our input strange quark masses from their physical values
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[Dürr et al., 2008]. Alternatively we used Taylor expansions for mud and ms

mud = c1 + c2M
2
π + c3M

4
π + c4∆ (4.29)

ms = c5 + c6M
2
π + c7∆ + c8∆2. (4.30)

Augmenting these fit formulas with terms proportional to ∆2 and M4
Π respectively yielded

coefficients consistent with zero for these terms.
In total we used three different ansaetze for performing the chiral extra-/interpolation. We
enhanced them by applying the two different mass cuts Mπ < 348, 380 MeV in order to test
for the significance of our fit models to higher order contributions in M2

π . We also applied the
pion mass cuts Mπ < 380, 480 MeV to the MΩ extrapolation (cf. formula (4.2)) necessary for
setting the scale. Thus we used in total four different pion mass cuts.
To reduce contributions from excited states in the correlation functions, we used Gaussian
sources with radii r ≈ 0.32 fm as already done in Dürr et al. [2008]. We tested for excited
state contributions by applying correlated single- and double-channel fits to the correlators.
We found complete agreement of the data with single-channel fits around tmin ≈ 0.7 fm for
the meson channels and tmin ≈ 0.8 fm for the Ω correlation functions. This amounts to
atmin = {6, 8, 9, 11, 13} for β = {3.31, 3.5, 3.61, 3.7, 3.8} and to 20% larger atmin for baryons.
Again, we repeated the whole analysis using the more conservative fit ranges starting at
atmin = {7, 9, 11, 13, 15}. The upper end of the interval was chosen to be at atmax = 2.7 atmin

or T/2 − 1 for lattice extends shorter than 5.4 atmin. It is important to approximately keep
the size of the fit window independent of atmin so that all fits for a single beta but different
atmin have the same number of degrees of freedom. Otherwise we would have lost sensitivity
to possible excited states contributions: in fitting ranges with smaller atmin, these effects
would have been (partly) compensated by a larger number of degrees of freedom and hence
the χ2/ndf’s would not have been comparable. On the other hand, this comparability is an
important requirement in our error analysis method since all results are weighted by their
corresponding goodness-of-fit and are thus compared by those.
To summarize, we used two different ranges for fitting the correlators in order to ensure that
possible effects coming from excited states are under control.
As already discussed in part 3, our action has formally O(αsa) cutoff effects. Since the appli-
cation of smearing suppresses this term, it is possible that our leading discretization errors are
of O(a2). The cutoff dependence of different observables can be different, thus we assumed
O(αsa) or O(a2) scaling in the continuum extrapolation of the quark masses as well as in the
ratios of renormalization factors (cf. section 4.2.2). This added four possibilities to the final
analysis.
In order to assess the statistical errors we used the moving block bootstrap with 2000 boot-
strap samples and a block size ranging from 1 to 10, where two atomic blocks were separated
by 10 HMC trajectories (cf. the autocorrelation analysis in 4.2.1).
Altogether we ended up with three ansaetze for the quark mass interpolation, four pion mass
cuts, two different intervals for fitting the correlators, four fit models for the continuum ex-
trapolation and three ways of performing the RI renormalization. This yielded a total of 288
analyses, where our final result and error estimates were computed analogous to the procedure
described in 4.1.
Table 4.7 shows the different contributions to the systematic error. It exhibits the cutoff
effects as the dominant source of systematic uncertainty in our results.
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cen. val. σstat σsyst plateau scale set fit form mass cut renorm. cont.

3.503 0.048 0.049 0.330 0.034 0.030 0.157 0.080 0.926
96.43 1.13 1.47 0.207 0.005 0.031 0.085 0.085 0.970
27.531 0.196 0.083 0.513 0.200 0.023 0.320 — 0.771

Table 4.7.: Disentangled contributions to the systematic uncertainty of mphys
ud , mphys

s and

mphys
s /mphys

ud (from top to bottom). Entries in columns 1-3 are in MeV and refer
to the RI scheme at µ = 4 GeV. Columns 4-10 indicate the relative share of the
systematic error given in column 3 (the squares of these numbers add up to 1). The
headers of these columns refer to the plateau range in the primary observables, the
overall scale setting, the interpolation ansatz to tune to the physical mass point,
the cut in the pion mass, the details of the renormalization procedure (read-off
scale, chiral extrapolation), and the continuum extrapolation [Durr et al., 2010].

4.2.5. Summary

We determined the average light and strange quark masses mud and ms with 2% accuracy in
an Nf=2+1 lattice calculation using non-perturbative renormalization for the quark masses.
Our data cover five lattice spacings in the range 0.054−0.116 fm, pion masses down to 120 MeV
and volumes up to 6 fm. This allowed for performing safe interpolations in the quark masses,
an extrapolation into the continuum and an infinite volume limit.
We exploited the different renormalization pattern of VWI and AWI quark masses to cir-
cumvent difficulties in RI renormalization using dynamical Wilson-type quarks and imposing
O(a) improvement. We bypassed the RI window problem with the continuum extrapolation
method for ratios of renormalization constants. Our main results for mud and ms are in the
RI scheme at 4 GeV obtained fully non-perturbatively. To allow for comparison with the
literature, we converted our results perturbatively into the MS and RGI schemes (cf. table
4.6). In this step the use of perturbation theory is unavoidable but figure 4.9 shows that our
data is inside the perturbative region for µ ≥ 4 GeV.
A direct lattice determination of mu and md is beyond the scope of this calculation and not
feasible at this time. The reason for this is that much computing time has to be spent in
order to tune the quark masses to their physical values. As soon as machine power increases
and algorithmic developments improve, a Nf=1+1+1 setup, probably also including electro-
magnetic effects, might become feasible and a direct high precision measurement of mu, md

and ms possible. Nevertheless, using the dispersive input Q we were able to compute the up-
and down-quark masses with an accuracy of 5% and 3% respectively.
The values from table 4.6 can be compared to Nf=2+1 quark mass calculations from liter-
ature. According to the most recent lattice averages performed by FLAG [Colangelo et al.,
2010b],14 our results are in very good agreement.
We conclude that our results provide precise and reliable input for upcoming phenomenolog-
ical calculations in which light quark mass values are required.

14note, that these did not yet include our results, so that a comparison is allowed
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4.3. Kaon bag parameter BK

The most important and final project of this thesis is the prediction of the kaon bag parameter
BK , which can be related to CP violation in the standard model (cf. section 2.2.6). Com-
pared to our calculations presented in the previous sections, this computation additionally
involved the complicated subtraction of operator mixing (cf. section 2.4.2), since our fermion
discretization breaks chiral symmetry explicitly.
In the following, I can often refer to 4.2, since a lot of the basic work was already done in that
section. This especially applies to the generated ensembles, from which we could use a large
fraction for this calculation. We had to neglect the largest lattice spacing of a ≈ 0.115 fm since
it did not provide a sufficiently large momentum cutoff for extracting the relevant renormal-
ization factors. However, four different lattice spacings between 0.054 fm . a . 0.093 fm still
remained, allowing for a safe continuum extrapolation. Furthermore, we added a few more
quark masses to some of the existing lattice spacings. Our Nf=2+1 data straddle the physical
pion mass and thus allowed for a safe interpolation in the averaged up- and down-quark mass
mud. We discussed the smallness of finite volume effects of the pion mass on all our ensembles
in section 4.2.1, illustrated by the plot shown in figure 4.6. We produced the same plot for the
estimated finite volume corrections to BK (cf. figure 4.12) by using the appropriate formulas
of Becirevic and Villadoro [2004]. Note, that these formulas are dependent on M2

π and M2
K .

Thus, and only for illustrative purposes, we flattened out the latter dependence by keeping
the difference 2M2

K − M2
π fixed to its physical value. Since this difference is proportional

to the strange quark mass and our data are close to mphys
s , we consider this being a good

approximation. We observe that our estimated finite volume corrections to BK are below
0.3% and thus well under control. However, we still correct for this small effect in the final
fit using the same formulas. In order to set the scale, we used the results from section 4.2.

4.3.1. Non-perturbative renormalization

This is the most important part of the calculation. As described in section 2.4.2, the mixing
coefficients have to be extracted reliably since the matrix elements of Q2, . . . , Q5 are chirally
enhanced with respect to Q1. In our analysis we closely followed the procedures already used
for the determination of quenched BK in section 3.2.3.
We computed the dynamics matrix D as described in section 2.4.2 for at least five quark
masses per β. From that matrix we computed the mixing coefficients ∆1k by solving the
linear system of equations (2.276) and then computed the (massive) un-mixed Z+

11 using the
full set of equations (2.275).15 Furthermore, we improved the signal by canceling statistical
and systematic effects in the ratio ZBK = Z+

11/Z
2
A, which can be directly obtained from non-

perturbative RI data without having to compute Zq in an intermediate step. However, we
checked that a separate computation of Z+

11 and ZA using the Zq determined in section 4.2
yielded compatible results.

15Formally, the un-mixing is defined in a massless scheme where no additional chiral symmetry breaking induced
by non-vanishing quark masses occurs. In order to test whether our proceeding is valid, we swapped the
different steps. This means that we first extrapolated into the chiral limit and then performed the un-mixing.
Since our non-perturbative renormalization data depend only very lightly on the quark mass, we found no
significant deviations between these two procedures. Therefore, the use of either one is perfectly valid on our
level of precision.
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Figure 4.12.: Estimated finite volume effects on BK using the 1-loop χPT finite volume for-
mulas of Becirevic and Villadoro [2004] with flattened M2

K direction by setting
2M2

K −M2
π to its physical value. Our data points are colored according to the

lattice cutoff and the shaded bands denote the estimated finite volume correc-
tions to BK at different %-levels as indicated by the labels 1%, 0.3% and 0.1%.
The strong deviation from the exponential-like behaviour for large pion masses is
due to cancellations in the finite volume formulas: when Mπ reaches the SU(3)
symmetric point, contributions coming from π, K and η-loops almost cancel
each other. Due to this, our estimated finite volume effects are below the 0.3%
level and thus well under control.

In order to improve the matching to 2-loop continuum perturbation theory, we applied the
ratio extrapolation (see section 2.4.3), i.e. we computed the continuum limit of

RBK (3.5 GeV, µ, a) =
ZBK (3.5 GeV, a)

ZBK (µ, a)
(4.31)

in the RI scheme, by applying a linear fit including data from the three smallest lattice
spacings. Again, we assumed either O(αsa) or O(a2) scaling and propagated the difference
into our systematic error. The non-perturbative continuum running RBK (3.5 GeV, µ) ob-
tained by this procedure can be compared to the expected continuum running computed
in 2-loop perturbation theory [Ciuchini et al., 1998; Buras et al., 2000]. Figure 4.13 shows
the ratio of this two quantities and we observe that both runnings agree to better than 1%
for scales between 1.8 GeV ≤ µ ≤ 3.5 GeV under both scaling assumptions. We read off
ZBK (µ, a) at three different scales µ ∈ {2.8, 3.0, 3.4} and obtained ZBK (3.5 GeV, a) by com-



4.3. KAON BAG PARAMETER BK 147

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 3  4  5  6  7  8  9  10  11  12

R
B K

(3
.5

 G
eV

, !
)/R

B K
2-

lo
op

(3
.5

 G
eV

, !
)

!2[GeV2]

sa-scaling
a2-scaling

Figure 4.13.: Non-perturbative running of ZBK in the RI scheme normalized at 3.5GeV, ob-
tained by extrapolating (4.31) into the continuum, assuming O(αsa) (squares)
or O(a2) (circles) scaling. It was divided by the perturbative 2-loop expec-
tation from [Ciuchini et al., 1998; Buras et al., 2000], which was normal-
ized at the same scale. We observe good agreement of the two runnings for
1.8 GeV ≤ µ ≤ 3.5 GeV.

puting RBK (3.5 GeV, µ) ·ZBK (µ, a). The different choices of µ propagated into our systematic
error.
The relevant mixing coefficients ∆1k are affected by non-perturbative poles, most probably
attributed to the exchange of virtual pions with zero-momentum [Aoki et al., 2008; Sturm
et al., 2009]. We subtracted these terms by computing the difference (3.10) for different quark
masses mi. As in the quenched case, the remaining major contributions to the subtracted
mixing coefficients come from discretization errors proportional to (ap)2 as well as p−4-poles.
The mass dependence is rather small and thus subdominant. We removed all these effects by
applying suitable combined fits as shown in figure 4.14. In order to estimate the systematic
contributions attributed to the specific choice of the fitting function as well as the fit window,
we used 4 different fit windows and 2 fit models which either included only an (ap)2 term or
an additional p−4 term. All different choices were propagated into the systematic error. We
found that all mixing coefficients except for ∆14 and ∆15 were compatible with zero within
errors. The significant mixing coefficients were nevertheless small and vanished slowly with
the lattice spacing (cf. figure 4.14).
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Figure 4.14.: Subtracted mixing coefficient ∆sub
14 for a ≈ 0.077 fm prior to removing discretiza-

tion effects proportional to (ap)2 (left panel). The mass dependence was removed
by the fit and the red horizontal line denotes the extracted mixing coefficient
along with its 1σ error band. The next panel shows the same data with the dis-
cretization term removed. The right panel shows the same data for a ≈ 0.054 fm.
We observe that the extracted mixing coefficient is very small and vanishes slowly
for a→ 0.

4.3.2. Matrix elements

Analogous to our proceeding in part 3.2.3, we computed the matrix elements Q1, . . . , Q5 by
evaluating the r.h.s. of expression (2.224). Therefore, we used random sources at t = 0 and
t = T/2, where T is the temporal extent of the lattice, and varied the operator insertion time-
slice τ . Note, that we needed only four inversions per random source pair: one for each quark
mass and random source. As in 3.2.3, we improved our statistics by symmetrizing our data
with respect to T/2 and applied constant fits to the corresponding plateaus (see figure 4.15
for an example). We used 3 different fit ranges in order to estimate possible contributions
coming from excited states. All choices were propagated into our final systematic error.
By combining the mixing coefficients with the obtained Qi, we were able to decompose the
renormalized BK into the contributions from the individual Qi. This decomposition is shown
in figure 4.16 for a ≈ 0.077 fm and Mπ ∼ 120 MeV. The matrix element Q1 would contribute
to BK alone, if chiral symmetry were unbroken. In our case, this contribution is 98.1(1.2)%
for the data point shown in 4.16, indicating that our action has good chiral properties.

4.3.3. Final analysis

We performed a combined continuum extrapolation and interpolation in the quark masses
using different fit functions which can be combined in the single generic form

BRI
K (3.5 GeV, x, y, a) = BRI

K (3.5 GeV) · f(x, y) + d(a), (4.32)
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Figure 4.16.: Decomposition of contributions to renormalized BK from the individual Qi at
a ≈ 0.077 fm and Mπ ∼ 120 MeV. The fact that Q1 contributes to 98.1(1.2)%
testifies that our action has good chiral properties.
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where f(x, y) with x = M2
π and y = 2M2

K −M2
π is a functional form describing quark mass

dependence. The generic form of f is

f(x, y) =

[
1 + a10x+ a20x

2 + a01y + a11xy −
aχx

32π2f2
0

ln

(
x

µ

)]
. (4.33)

We used different Taylor fits with always aχ kept fixed to zero and a10, a01 left free as well
as either a11 or a20 free or set to zero. This estimates higher order effects in the quark
masses. We also applied two different SU(2)-χPT inspired fits with aχ = 1, a10 = a20 = 0 and
f0, µ, a01 free as well as a11 either left free or kept fixed to zero. Since BK is automatically
tree-level on-shell improved, we chose the lattice spacing dependence d(a) to be proportional
to either αsa or a2 as done in the analyses before. We do not include terms compatible with
zero in our fits. The physical input pion and kaon masses were corrected for isospin and
electromagnetic effects. One of our Taylor fits with αsa scale dependence is shown in figure
4.17. All different fitting functions used in the analysis yielded comparable qualities of fit
when they were applied to the same data set.
We also tried SU(2)-χPT fits of the form

BRI
K (3.5 GeV, x, y, a) = BRI

K (3.5 GeV) ·
[
1 + b1y −

1

32π2f2
π

ln

(
x

µ2

)]
+ d(a), (4.34)

with fixed fπ = 93 MeV and leaving b1, µ as free parameters. Our data were also perfectly
consistent with these fits and thus to χPT predictions. However, we did not include them
into the final analysis in order to avoid redundancies. To illustrate the quality of our data,
the continuum limit of figure 4.17 is shown explicitly in figure 4.18. Note that the continuum
scaling is very flat. The statistical error was computed on 2000 moving block bootstrap
samples with sufficiently large block size. To estimate the systematic error we repeated the
analysis using

• 2 different fit ranges to extract pion and kaon masses from the correlators

• 3 different fit ranges for extracting the bare matrix elements Qi

• 4 different fit windows and 2 fit functions for obtaining the mixing terms

• 3 different scales for extracting the renormalized matrix elements

• αsa or a2 scaling for the final fit and in the continuum extrapolation of the running

• 2 different pion mass cuts, i.e. only considering Mπ < 340 MeV or Mπ < 380 MeV

• 5 different fit functions for performing the final fit.

This yields 5760 different analysis and each analysis gives an estimate for BRI
K (3.5 GeV) and

a corresponding quality of fit. The median of this distribution gave our central value and the
central 68% the systematic error. We obtain for our final result

BRI
K (3.5 GeV) = 0.5308(56)(23), (4.35)

where the first error is statistical and the second one systematic. The dominant contribution
to the systematic error arises from subtracting the mixing terms (0.0021) followed by excited
states uncertainties (0.0007) as well as the quark mass interpolation and extrapolating into
the continuum (both 0.0006).
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Figure 4.17.: Combined continuum extrapolation and interpolation to physical quark masses
of BK using a Taylor ansatz with a11 = 0 and a20 left free. The physical quark
masses are denoted by the dashed vertical line and the black square represents
the result for BRI

K (3.5 GeV). The interpolation in mud is relatively mild, whereas
the data show a substantially stronger dependence on ms. Nevertheless, the
quark mass interpolation is fully under control in both cases. The continuum
extrapolation is essentially flat, as can be also seen from figure 4.18.
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Figure 4.18.: Continuum extrapolation of BK obtained from the fit displayed in 4.17.

Note that result (4.35) is fully non-perturbative, but the conversion to other schemes such as
MS-NDR or the RGI framework involves the use of perturbation theory. Thus, it is necessary
to estimate the uncertainty attributed to the truncation of the perturbative series. Figure
4.19 shows the relative difference between numerical 1-loop and 2-loop as well as numerical
and analytical 2-loop running, using the anomalous dimensions of [Ciuchini et al., 1998; Buras
et al., 2000]. The β-function was always evaluated to 4-loop order using the coefficients from
[van Ritbergen et al., 1997]. At the relevant scale µ = 3.5 GeV, the 2-loop to 1-loop corrections
are around 2% and the analytical 2-loop to numerical 2-loop corrections around 0.5%. The
full conversion factor from the RI scheme to MS-NDR at the same scale is around 1.6%.
Since higher order corrections are typically much smaller [Buchalla et al., 1996], we added
the rather conservative truncation error of 1% to our converted results. These read in RGI
and MS-NDR respectively:

B̂K = 0.7727(81)(34)(77), (4.36)

BMS−NDR
K (2 GeV) = 0.5644(59)(25)(56). (4.37)

Figure 4.20 shows the recent standard model expectation as well as results from other lattice
groups. Our result is in good agreement with global standard model fits to flavour mixing data
obtained by CKMfitter [ICHEP 10 update to Charles et al., 2005]. We are also consistent with
expectations obtained by UTfit [Bona et al., 2006] by either including all decays (B̂K,all =

0.94(17)) or neglecting the semileptonic channels (B̂K,no−sl = 0.88(13)) in the fits. Concerning
recent results from literature, we also observe reasonable agreement.
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Figure 4.19.: Convergence of the perturbative series for ZBK up to 2-loop obtained by using
the anomalous dimensions from [Ciuchini et al., 1998; Buras et al., 2000] and
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Figure 4.20.: Comparison of our result with the value for BK obtained by CKMfitter [ICHEP
10 update to Charles et al., 2005, vertical line]. The dark and light bands
correspond to CKMfitter’s 1σ and 2σ confidence intervals respectively. The
results from different Nf=2 [Constantinou et al., 2011, 1st] and Nf=2+1 (Aubin
et al., 2010, Aoki et al., 2010, Bae et al., 2010, 2nd to 4th) lattice computations
are also shown..
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4.3.4. Summary and Discussion

We determined the kaon bag parameter BK in dynamical Nf=2+1 flavour simulations in RI
scheme at 3.5 GeV with around 1.2% precision and converted it into continuum schemes such
as MS or RGI, conservatively assuming a perturbative uncertainty of 1%. Our result agrees
with standard model expectations and with results from other lattice groups.
In section 2.2.6 and appendix D, we related BK to the indirect CP violation parameter ε, also
denoted by εK in modern flavour physics literature [cf. e.g. Nakamura et al., 2010]. Since εK
constrains the apex of the UT triangle in global standard model fits to flavour mixing data,
it is worth to comment on the impact of our result for these kind of fits.
The large error bar assigned to the fitted BK by CKMfitter indicates, that εK is rather
insensitive to BK . The errors quoted by UTfit are smaller16, but also well above 10% and
therefore stating a similar insensitivity. The explanation for this is, that εK is currently
dominated by other sources of uncertainties. Consider for example the CKM matrix element
|Vcb|: since εK ∝ |Vcb|4, it is very sensitive to uncertainties in |Vcb|. Exclusive determinations of
|Vcb| from semi-leptonic B decays and inclusive determinations are only marginally consistent,
inducing a ∼ 2.5% overall error of that matrix element [cf. e.g. Lunghi and Soni, 2011a].17

Therefore, the error of εK is currently dominated by the uncertainty of |Vcb| [Laiho et al.,
2010].
An additional systematic error is introduced by neglecting long-distance corrections in the
BK calculation. These stem from from virtual charm exchanges in box diagrams (a), (b) or
gauge boson exchanges in penguins (c), (d) in figure 2.2. Recent perturbative calculations
using experimental inputs suggest that long-distance corrections to εK are at the −5% level
[Buras et al., 2010].
I finally conclude, that we do not find evidence for new fundamental contributions to indirect
CP violation in K→ππ decays [Durr et al., 2011a]. This supports the reasoning of Lunghi
and Soni [2011a,b], who expect significant new physics contributions to B-meson decays and
mixings instead.

16Their Bayesian approach considers the standard model being a collection of individual theories, allowing for
independently distributed input and output parameters. This disrespects the standard model framework as
being a unified theory with strong correlations between different observables and parameters, possibly leading
to an under-estimation of the total error.

17Note, that Vub can be used instead, but the discrepancy between values obtained from semi-leptonic and
inclusive decays is even larger for this CKM matrix element [Lunghi and Soni, 2011a,b].



5. Summary and Outlook

After 40 years of lattice QCD, we are at a stage where we can test the strong dynamics of the
standard model up to a high precision. We showed that the experimentally observed low-lying
hadron spectrum of QCD could be recovered from first principles. This calculation received
much attention in the past few years and was “considered to be a ‘milestone’ [Wilczek, 2008]
‘in a 30-year effort of theoretical and computational physics’ [Kronfeld, 2008]” [Krieg, 2008,
p. 74].
Furthermore, we predicted the light quark masses mu,md,ms with uncertainties of at most
5%, providing reliable input for upcoming phenomenological predictions. Additionally, this
calculation allowed us to exclude the mu = 0 solution to the strong CP-problem by about 22
standard deviations.
Finally, we were able to compute the kaon bag parameter BK with an uncertainty below
2%. Also here, we found no significant deviation from standard model expectations. This is
in-line with the assumptions of Lunghi and Soni [2011a,b], who expect that new CP-violating
physics is largely contributing to B-meson processes.
In that sense, I can conclude, that the work presented in this thesis is a large leap forward in
testing standard model predictions from first principles using lattice QCD.

Although our computations have already been very precise and extensive, it is always possible
to think of improvements and extensions. In case of the hadron spectrum, we only included
the low-lying non-singlet particles so far. Adding excited states requires the implementation
and application of new techniques suitable for extracting these excited states properly. State
of the art methods to mention here are variational approaches [Michael, 1985; Luscher and
Wolff, 1990; Blossier et al., 2009]. The idea is to consider cross-correlators of operators having
the same quantum numbers but which couple to different energy states. Using a generalized
eigenvalue approach, the energy levels of the excited states can be extracted, given that the
base of operators was chosen wisely.
Extracting the ground state of singlet particles is also very complicated, because their cor-
relation functions involve the computation of disconnected diagrams. Compared to standard
(diluted) random source approaches, the distillation method [Peardon et al., 2009; Morn-
ingstar et al., 2010] is able to reduce statistical fluctuations in such computations significantly.
The method is based on the fact that Jacobian (Laplacian) smearing suppresses the higher
eigenmodes of the lattice Laplace operator. Distillation goes a step further and only projects
out the lowest eigenvalues and eigenvectors, used to build distillation projectors which can
be inserted into Greens functions. Depending on the number of computed eigenvectors, the
inversion of the Dirac operator significantly simplifies since the dimension of the subspace is
much smaller than the lattice volume. Thus, a forward lattice Dirac operator inversion be-
comes feasible. The distillation method can also improve the overlap of operators to a certain
state [Bulava et al., 2010] and thus also improves the signal in the variational approaches
discussed before.
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Additionally, one can compute the hadron spectrum in Nf=2+1+1 simulations, i.e. including
a dynamical charm quark. However, since the charm quark is heavy compared to the mesons
and octet-baryons and approximately of the same mass as the decuplet-baryons, its influence
on the ground state energies is expected to be small. Nevertheless, it would be interesting to
investigate the size of dynamical charm effects which might be significant for excited states.
On the far end, the inclusion of isospin breaking and electromagnetic effects would lead to
interesting insights into the degeneracy of the nucleon masses and thus the stability of matter.

The quark mass study can also be extended to Nf=2+1+1 calculations, allowing for mea-
suring the charm quark mass. Even more interesting is the inclusion of isospin breaking and
electromagnetic effects in order to determine the individual mu and md in a direct lattice
calculation, since this would remove the large uncertainties coming from the use of dispersion
theory completely. Isospin breaking can be incorporated by using 3 degenerate flavours in our
RHMC. The most time-consuming part would be to tune the quark masses to their physical
values. An extension of the method described in [Horsley, 2011] may help performing this
task. The inclusion of (quenched) electromagnetic effects is also investigated in recent lattice
calculations [Duncan et al., 1996; Blum et al., 2007; Portelli et al., 2010].

The study of the kaon bag parameter only involved the first term of the OPE. We neglected
long-range contributions induced by virtual charm quark exchanges in the box diagrams (a)
and (b) of figure 2.2. The penguin diagram (c) is suppressed by powers of m2

K/m
2
c ∼ O(15%)

with respect to these active charm contributions, naively suggesting a O(2%) contribution
to BK . Using large Nc expansion of the corresponding dimension-8 effective operator, Cata
and Peris [2003] argue that the true contributions are even smaller. However, these contri-
butions should be considered in future lattice computations. Using χPT, Buras et al. [2010]
estimated, that long-distance corrections in kaon mixing contribute by about −4%. Never-
theless, a lattice calculation with full control over all errors would be preferable.1

In order to obtain tightened error bounds on εK , a precise determination of |Vcb| (or |Vub|
respectively) is inevitable. As soon as these improved bounds on εK are established, it would
be interesting to compute BSM contributions to BK arising from operators O2, . . . Q5 in table
2.2. Among other things, this introduces a coupling of right handed particles to flavour chang-
ing currents. By considering the corresponding coupling constants as free parameters, one
can obtain bounds on these couplings by comparing the computed εK with the experimental
expectation.

Finally, the RI/MOM scheme might be replaced by the symmetric RI/SMOM scheme [Sturm
et al., 2009] in future studies. This new scheme helps suppressing infrared divergencies in
RI renormalization constants. However, still a lot of effort has to go into the investigation
of unitarity violations and finite volume effects, associated with the commonly used twisted
boundary conditions [Arthur and Boyle, 2011].

1See [Christ, 2010; Sachrajda, 2010] for recent developments.
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A. Notation

• Euclidian gamma matrices and combinations (µ, ν = 1, . . . , 4):

{γµ, γν} = 2δµν , (A.1)

γ5 = γ1γ2γ3γ4, (A.2)

γR/L =
1

2
(1± γ5), (A.3)

σµν =
1

2
[γµ, γν ], (A.4)

σ̃µν =
1

2
εµναβσαβ ≡ γ5σµν , (A.5)

• Some notation from RI renormalization procedure. In case of bilinears:

Vµ ≡ γµ, (A.6)

Aµ ≡ γµγ5, (A.7)

S ≡ 1, (A.8)

P ≡ γ5, (A.9)

Tµν ≡ σµν . (A.10)

The projectors belonging to these Dirac factors are are very simple: in the two point
function case, it is PΓ = Γ†.

The four-fermion operators are denoted as follows:

SS = 1⊗ 1, (A.11)

PP = γ5 ⊗ γ5, , (A.12)

SP = 1⊗ γ5, (A.13)

PS = γ5 ⊗ 1, (A.14)

V V =
4∑

µ=1

Vµ ⊗ Vµ, (A.15)

AA =

4∑

µ=1

Aµ ⊗Aµ, (A.16)

V A =

4∑

µ=1

Vµ ⊗Aµ, (A.17)
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AV =
4∑

µ=1

Aµ ⊗ Vµ, (A.18)

TT =
4∑

µ=1

4∑

ν=µ+1

σµν ⊗ σµν , (A.19)

T T̃ =

4∑

µ=1

4∑

ν=µ+1

σµν ⊗ σ̃µν . (A.20)

Other four fermion operators can be built upon these by taking linear combinations.
Note that in case of the tensor operator, the summation runs only over the six indepen-
dent Lorentz indices.
The projectors to the operators O±i ,O±i are, also because of the mixing, slightly more
involved and have been worked out by Donini et al. [1999]. The projectors to the parity
conserving operators O±i are (Nc is the number of colours):

P±1 ≡ +
1

64Nc(Nc ± 1)
(PV V + PAA), (A.21)

P±2 ≡ +
1

64(N2
c − 1)

(PV V − PAA)± 1

32Nc(N2
c − 1)

(PSS − PPP ), (A.22)

P±3 ≡ ± 1

32Nc(N2
c − 1)

(PV V − PAA) +
1

16(N2
c − 1)

(PSS − PPP ), (A.23)

P±4 ≡ +
(2Nc ± 1)

32Nc(N2
c − 1)

(PSS + PPP )∓ 1

32Nc(N2
c − 1)

PTT , (A.24)

P±5 ≡ ∓ 1

32Nc(N2
c − 1)

(PSS + PPP ) +
(2Nc ∓ 1)

96Nc(N2
c − 1)

PTT . (A.25)

The projectors to the parity violating operators O±i are:

P±1 ≡ − 1

64Nc(Nc ± 1)
(PV A + PAV ), (A.26)

P±2 ≡ − 1

64(N2
c − 1)

(PV A + PAV )∓ 1

32Nc(N2
c − 1)

(PSP − PPS), (A.27)

P±3 ≡ ∓ 1

32Nc(N2
c − 1)

(PV A − PAV )− 1

16(N2
c − 1)

(PSP − PPS), (A.28)

P±4 ≡ +
(2Nc ± 1)

32Nc(N2
c − 1)

(PSP + PPS)∓ 1

32Nc(N2
c − 1)

PT T̃ , (A.29)

P±5 ≡ ∓ 1

32Nc(N2
c − 1)

(PSP + PPS)∓ (2Nc ∓ 1)

96Nc(N2
c − 1)

PT T̃ . (A.30)

The projectors PXY with X,Y ∈ {A,P, S, V,Q, T, T̃} are given by the appropriate
expressions (A.11-A.20).



B. The Sommer parameter r0

The Wilson loops defined in (2.108) have an important physical implication; they are related
to the so-called static quark potential. For showing this, consider only Wilson loops which
have a spatial and a time extend for now. Let us denote the spatial extend by R and the
temporal one by T .1 Using the gauge freedom, we can apply temporal gauge fixing so that
all links in time direction are equal to one (consider a lattice with infinite time extend for
simplicity). Then, the trace in (2.108) reduces to a trace over two lines of spatial links:

WC(R, T ) =

〈
Tr

[(
R∏

k=0

Ui(x+ îk)

)(
0∏

k=R

U−i(x+ î(k + 1) + 0̂T )

)]〉

=
〈

Tr
[
P (x,R, 0)P †(x,R, T )

]〉
, (B.1)

where we introduced the shorthand notation

P (x,R, T ) =
R∏

k=0

Ui(x+ îk + 0̂T ). (B.2)

Inserting in the r.h.s of (B.1) a complete set of states |k〉 yields

WC(R, T ) =
∑

k

〈0|P (x,R, 0)|k〉〈k|P †(x,R, T )|0〉

=
∑

k

|〈0|P (x,R, 0)|k〉|2 e−T (Ek(R)−E0(R)), (B.3)

where we additionally define
E1(R)− E0(R) = V (R), (B.4)

so that we obtain the famous area-law

WC(R, T )
T→∞∼ e−T V (R). (B.5)

In order to show why V (R) can indeed be seen as the potential between two static, and thus
infinitely heavy, quarks, we would need to introduce the hopping parameter expansion [cf.
e.g. Gattringer and Lang, 2010, p. 114ff]. This would lead too far for this appendix so that
I will only sketch the main points in the line of argumentation.
The propagation of quarks is described by the inverse Dirac operator D−1. In case of heavy
quarks, it can be expanded in powers of 1/m or, more precisely, in powers of the hopping
parameter κ. The term multiplied by κ is called hopping term H, since it contains the nearest-
neighbour interactions of D. Terms such as (κH)n, appearing in the power series of D−1,

1For non-planar loops, the spatial extend R is usually calculated by using the euclidian norm.
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connect quarks and anti-quarks which are separated by n sites in a gauge invariant way, i.e.
through appropriate products of gauge links.
In the limit κ → 0, the shortest connection between a quark and an anti-quark gives the
dominant contribution to this power series, since all other possible paths are multiplied with
additional powers of κ. This shortest connection is exactly the Wilson loop and, according
to this argumentation, the static quark potential will receive significant contributions from
hopping terms of higher order in κ at small distances R. This is where the approximation of
the static quark potential by Wilson loops breaks down.
Let us now have a closer look at V (R). In QED, one would expect a coulomb term such
as B/R for a small coupling g, but we also know that the gluons interact with each other
forming a flux tube between a pair of a quark and an anti-quark. The energy of this tube is
expected to grow linearly with the distance. Thus we can make the ansatz

V (R) = A+
B

R
+ σR, (B.6)

where A is an arbitrary normalization for the potential. It turns out that this ansatz fits
lattice data very well. It is even possible to assume the validity of a bosonic string model
which predicts all of the three parameters and also fits lattice data very well [Necco and
Sommer, 2002]. The potential V (R) can be used to set the scale a, by using the Sommer
radius r0 [Sommer, 1994a]. It is defined by the equation

r2
0

d

dR
V (R)

∣∣∣∣
R=r0

= 1.65, (B.7)

which corresponds to a physical value of r0 ≈ 0.49 fm [Sommer, 1994a]. The dimensionless
ratio r0/a can be acquired from lattice data by combining the parametric form (B.6) with
the definition of r0 (B.7) to obtain

−B + σr2
0 = 1.65 (B.8)

and finally in lattice units

r0

a
=

√
1.65 +B

σ a2
, (B.9)

where B and σ a2 can be directly measured on the lattice. The most precise data measuring
r0 for the Wilson action in the quenched approximation come from Necco and Sommer [2002].
In our work, we do not apply the polynomial fit to r0/a suggested there, but we use the Padé
model

ln(r0/a) =
4π2

33
β

1 + d1/β + d2/β
2

1 + d3/β + d4/β2
(B.10)

instead. This we have already done in Dürr et al. [2007] and is described in more detail by
Kurth [2007, p. 97f]. This ansatz converges in the weak coupling limit β → ∞ to the right
perturbative value. The ansatz (B.10) fitted to the data of Necco and Sommer [2002] gives
d1 = 8.2384, d2 = 15.310, d3 = −2.7395 and d4 = −11.526 as well as χ2/ndf = 0.91. In
[Kurth, 2007, p. 98], the fit is shown in figure E.1. We used our parametrization as well
as r0 = 0.49 fm for setting the scale in the quenched scaling analyses (cf. sections 3.2.2 and
3.2.3).



C. Gauge fixing

As discussed in 2.2, gauge invariance is a central principle of QCD. The lattice formulation
preserves this property and physical observables have to be gauge invariant. For showing this,
consider a gauge variant observable O[U ] 6= O[U ′], with U ′µ(x) = G(x)Uµ(x)G(x+µ̂)† ≡ GU ′G̃
and G(x), Uµ(x) ∈ SU(3), ∀µ, x. We can write

〈O〉 =
1

Z

∫
DU e−S[U ]O[U ] (C.1)

=
1

Z

∫
D(GUG̃) e−S[GUG̃]O[GUG̃] (C.2)

=
1

Z

∫
DU e−S[U ]O[U ′], (C.3)

where we used the gauge invariance of the action and the invariance properties of the Haar
measure. The gauge transformation G can be chosen arbitrarily so that we are allowed to
integrate over it

〈O〉 =

∫
DG 〈O[GUG̃]〉. (C.4)

Any (Yang-Mills) gauge variant functional O can be written as an open chain of multiplied
links C(x, x′), where x and x′ with x′ 6= x (cf. C.1) are the starting end ending points of the
linkchain respectively. We can integrate over all gauge transformations G at the endpoint x
without changing the expectation value of C(x, x′):

〈C(x, x′)〉 =

∫
dG(x) 〈G(x)C(x, x′)G†(x′)〉 =

∫
dG(x)G(x)〈C(x, x′)G†(x′)〉 = 0. (C.5)

Thus, the expectation value of any gauge variant quantity is equal to zero.
One could ask why we need gauge fixing at all, if physical observables are gauge invariant?

First, it can simplify specific computations. In the calculation of Wilson loops for example,
it is suitable to use the temporal gauge U4(x4,x)=1∀x4 < T−1, since it drastically reduces
the number of necessary link multiplications. Second, gauge fixing is necessary when gauge
variant quantities such as renormalization coefficients are computed. Also gauge variant
improvements require gauge fixing, e.g. the use of Gaussian smeared sources in spectroscopy.
The most popular gauges (and the ones we used in this work) are the Coulomb and the Landau
gauge. In the continuum, the gauge fixing condition for both of them can be stated as

n∑

µ=1

∂µA
µ(x) = 0, (C.6)

where n = 4 or n = 3 for Landau or Coulomb gauge respectively. The former gauge imposes
a condition on the fields in all directions and therefore is sometimes called a complete gauge.
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x’

x

Figure C.1.: Chain of links C(x, x′) with open ends (x′ 6= x) in two dimensions.

We now convert (C.6) to a formula for the link variables U . The condition (C.6) is equivalent
to the problem of finding an extremal value of the functional [Gattringer and Lang, 2010, p.
52]

W [A] =
n∑

µ=1

∫
d4x Tr[Aµ(x)Aµ(x)]. (C.7)

Hence in the extremum, W [A] should be invariant under infinitesimal gauge transformations
(cf. formula (2.5))

Aµ(x)→ Aµ(x) + ε (i[α(x), Aµ(x)]− ∂µα(x)) . (C.8)

Applying (C.8) to (C.7) yields after some lines of algebra

W [A]→W [A]− 2ε

n∑

µ=1

∫
d4x Tr[Aµ(x) ∂µα(x)]

= W [A] + 2ε

n∑

µ=1

∫
d4x Tr[∂µA

µ(x)α(x)], (C.9)

where we performed an integration by parts and assumed that α(x) vanishes at the boundaries.
Since the second term of (C.9) has to vanish for any α(x) ∈ SU(3), we recover (C.6). The
continuum QCD expression (C.7) has a simple lattice counterpart [cf. Gattringer and Lang,
2010, p. 52]:

Wlat = −a2
n∑

µ=1

∑

x

Tr
(
Uµ(x) + U †µ(x)

)
. (C.10)

Note that for Uµ(x) = exp(iaAµ(x)) and small cutoff a, we indeed recover (C.7). Therefore,
in order to fix the gauge to Landau or Coulomb gauge, one has to find a gauge transformation
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G which is an extremum of

F [G] = −a2
n∑

µ=1

∑

x

Tr
(
G(x)Uµ(x)G†(x+ µ̂) +G(x+ µ̂)U †µ(x)G†(x)

)
. (C.11)

To tackle this optimization problem, different minimization techniques and corresponding
improvements such as overrelaxation are used [cf. Giusti et al., 2001, and references therein].
Note, that F has in general multiple stationary points which are referred to as Gribov copies
and discussed in detail in the review [Giusti et al., 2001] and references therein.





D. Remarks on diagrammatic K0 − K̄0 mixing

We discussed the weak contributions to neutral kaon mixing in section 2.2.6 and argued that
the process is dominated by diagrams (a) and (b) depicted in figure 2.2. Since these diagrams
are related by Fierz symmetry, we consider only diagram (a) for now.
Using electroweak Feynman rules and setting all external momenta to zero, we can write the
corresponding amplitude as follows [cf. e.g. Lellouch, 2011, p. 26]

− iM =
g4

2

4

∫
d4k

(2π)4
iDW

µν(k) iDW
ρσ(k) (d̄Lγ

µS(k)γσsL)(d̄Lγ
νS(k)γρsL), (D.1)

where g2 is the electroweak non-diagonal SU(2) coupling,

qL = γLq, q̄L = q̄γR (D.2)

are left-handed projected spinors and

DW
µν(k) =

−gµν + kµkν/M
2
W

k2 −M2
W

(D.3)

is the W-boson propagator in unitary gauge, allowing us to disregard box diagrams with
internal Higgs lines. Furthermore we defined

λq ≡ V ∗qdVqs (D.4)

and

S(k) =
∑

q=u,c,t

λq
1

/k −mq
. (D.5)

CKM matrix unitarity implies
∑

q λq = 0 and thus

S(k) =
∑

q=c,t

λq

(
1

/k −mq
− 1

/k −mu

)
≈
∑

q=c,t

λq
k2mq + /k m2

q

k2(k2 −m2
q)
, (D.6)

where we used mu ≈ 0 in the last step. Note that the GIM mechanism is in action here: if all
up-type quark masses were degenerate, S(k) would be identical to zero and thus no neutral
kaon mixing would occur.
Next we contract the W-boson propagator with the γ-matrix indices, obtaining the expression

− iM =
g4

2

4

∫
d4k

(2π)4

−1

(k2 −M2
W )2

∑

q1,q2=c,t
i,j,k,l

λq1λq2 d̄isj d̄ksl Tq1q2;ijkl, (D.7)
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where

Tq1q2;ijkl ≡
[
(γµγLSq1γσγL)ij(γ

µγLSq2γ
σγL)kl +

1

M4
W

(/k γLSq1 /k γL)ij(/k γLSq2 /k γL)kl

− 1

M2
W

(
(γµγLSq1 /k γL)ij(γ

µγLSq2 /k γL)kl + (/k γLSq1γσγL)ij(/k γLSq2γ
σγL)kl

)]
,

(D.8)

and

Sqi =
k2mqi + /k m2

qi

k2(k2 −m2
qi)

. (D.9)

In order to simplify (D.8), we use the generalized Fierz transformation [Nishi, 2005]

ΓAijΓ
B
kl =

1

4

∑

C,D

Tr[ΓA ΓC ΓB ΓD] ΓDil Γ
C
jk (D.10)

in the 16 component chiral basis

ΓX ∈ {γR, γL, γRγµ, γLγµ, σµν}, ΓX ∈ {γR, γL, γLγµ, γRγµ, σµν/2}. (D.11)

In our case, the traces we have to evaluate are of the type

Tr
[
γµγLSq1γσγLΓCγνγLSq2γργLΓD

]
. (D.12)

Irrespective of whether the part of Sqi proportional to 1 or /k is picked, all traces except those
for ΓC ,ΓD = γLγµ cancel, because otherwise factors γLγR would meet inside the trace. This
means, that the tensor product is proportional to (d̄LγµsL)(d̄Lγ

µsL). Performing the traces
and using the dimensional regularization identity kµkν = gµνk

2/4, the sum in (D.7) reduces
to

∑

q1,q2=c,t

λq1λq2
−4m2

q1m
2
q2

k2(k2 −m2
q1)(k2 −m2

q2)

(
1− k2

4M2
W

)2

× (d̄LγµsL)(d̄Lγ
µsL) (D.13)

Using the Fermi coupling GF = g2
2/(4
√

2M2
W ), the final result for M can be written as

[compare Lellouch, 2011, p. 27]

M =
G2
FM

2
W

2π2

(
λ2
tStt + λ2

cScc + 2λcλtSct
)
× (d̄LγµsL)(d̄Lγ

µsL), (D.14)

with

Sq1q2 =
4i

π2M2
W

∫
d4k

m2
q1m

2
q2

k2(k2 −m2
q1)(k2 −m2

q2)

(
1− k2

4M2
W

)2

(
1− k2

M2
W

)2 . (D.15)

Interpreting the external quark fields as operators and contracting them with external K0, K̄0

states, one can obtain the off-diagonal mass matrix element M12.1 The values for λq as well

1Modulus a symmetry factor of 1/2, which arises in order to compensate for double-counting when contracting
the four-fermion operator (d̄LγµsL)(d̄Lγ

µsL) with external kaon states.
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as the quark masses mq suggest that ReM12 is dominated by the cc term [Lellouch, 2011, p.
27]:

G2
FM

2
W

4π2
Scc =

iG2
F

π4

∫
d4k

m4
c

k2(k2 −m2
c)

2
+O(M−6

W ). (D.16)

Clearly, this integral is dominated by momenta between 0 and mc, i.e. long-range contribu-
tions rendering a reliable lattice computation of ∆MK difficult.
The situation is different if the indirect CP violation parameter ε is considered [Lellouch,
2011, p. 28f]. It is sensitive to the interference of different K→ππ processes like the ones
displayed in figure D.1. The CKM matrix element appearing in diagram (a) is λu, whereas

K̄0

π+

π−

V ∗
ud

Vus

d

u

d

s

u

(a)

π+

Vud

V ∗
us

u

d
d

u
s

K̄0

π−
d

(b)

Figure D.1.: Diagrams describing electroweak K→ππ decays. Indirect CP violation is at-
tributed to the interference of these two diagrams, giving rise to a non-vanishing
relative phase ε.

diagram (b) depends on λ∗u and M12 coming from the box diagram we discussed above. This
means, that the relative phase between these two weak decays is given by2

ε ∼ Im[(λ∗u)2M12]

Re[(λ∗u)2M12]
. (D.17)

The denominator can be estimated by current experiments measuring ∆MK . Concerning the
numerator, note that

(λ∗u)2M12 =
G2
FM

2
W

4π2

(
(λ∗uλt)

2Stt+(λ∗uλc)
2Scc+2(λ∗uλc)(λ

∗
uλt)Sct

)
×〈K0|O∆S=2|K̄0〉, (D.18)

with O∆S=2 = (d̄s)V−A(d̄s)V−A. The quantities λ∗uλq are rephasing invariants with the
property Im[λ∗uλc] = −Im[λ∗uλt] = J . This gives

Im
[
(λ∗u)2M12

]
=
G2
FM

2
W

2π2
J (Re(λ∗uλt)(Stt − Sct)− Re(λ∗uλc)(Scc − Sct))× 〈K0|O∆S=2|K̄0〉.

(D.19)

2We neglect the contribution ξ = ImA0/ReA0 [Lellouch, 2011, p. 28]. However, this and other long-distance
contributions induce a O(5%) correction to ε [Buras and Guadagnoli, 2008; Buras et al., 2010] and have to be
considered in further studies.
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To see that the remaining integrals are dominated by momenta between mc and mt, consider
the integrand of Stt − Sct:3

m4
t

k2(k2 −m2
t )

2
− m2

tm
2
c

k2(k2 −m2
t )(k

2 −m2
c)

=
m4
t (k

2 −m2
c)− (k2 −m2

t )m
2
tm

2
c

k2(k2 −m2
c)(k

2 −m2
t )

2
=

m2
t (m

2
t −m2

c)

(k2 −m2
c)(k

2 −m2
t )

2
.

Thus, ε can be reliably computed using the above relations augmented by a non-perturbative
computation of 〈K0|O∆S=2|K̄0〉.

3We dropped the W-boson propagator dependence for brevity.



E. Calculations and proofs for lattice
techniques

Many aspects of the following calculations presented here have been published in Durr et al.
[2010], in references therein, or are textbook standard.

E.1. Chain rule for Lie-derivatives

Within the HMC, we need to compute the contribution δSF /δU to the total force (cf. section
2.3.4). In case of smeared links, SF depends only indirectly on the thin links U , viz. via the
smeared links V . In order to handle these nested dependencies, we need to derive a chain
rule for Lie-derivatives. As a prerequisite, we need to be able to compute derivatives ∂ωM

−1

of invertible matrices M . Consider:

0 = ∂ω(MM−1) = (∂ωM)M−1 +M ∂ωM
−1. (E.1)

Solving for ∂ωM
−1 gives:

∂ωM
−1 = −M−1(∂ωM)M−1. (E.2)

Consider now a complex-valued function f on the group space SU(3): f(U) ∈ C, ∀U ∈ SU(3).
The Lie-derivative of f is given by (compare expression (2.151) from section 2.3.4)

δUif(U) =
∂f(U)

∂ωi
= ∂ωf

(
eiωtiU

)∣∣
ω=0

= lim
ω→0

f
(
eiωtiU

)
− f

(
U
)

ω
, (E.3)

with normalized generators ti ∈ Ŋu(3) satisfying Tr(ti tj) = δij
1 as well as

δf

δU
=
∑

i

ti δUif. (E.4)

The use of normalized generators does not change the reasoning of section 2.3.4, but simplifies
the following calculations.
Expression (E.3) can be rewritten as

δUif = Tr

(
ti U

∂f

∂UT

)
, (E.5)

1This can be achieved by rescaling all Gell-Mann matrices with
√

2.
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where the partial derivative of f with respect to U (or its transpose) is meant to be the
derivative with respect to the matrix elements itself, e.g.

∂Ucd
∂Uab

= δca δbd. (E.6)

Using U † = U−1 and (E.2), we find for the derivative of U † with respect to U :

∂U †cd
∂Uab

= −U †caU †bd. (E.7)

If the function f is real-valued, we can write

δf

δU
=
∑

i

ti δUif =
∑

i

ti Tr

(
ti U

∂f

∂UT

)
= PTA

{
U
∂f

∂UT

}
, (E.8)

where PTA was defined in (2.125). For proving the last step, we have to show that for any
given 3× 3 matrix M , the projection operator can be recast as

PTA{M} =
∑

k

tk Re Tr(tkM). (E.9)

This can be easily seen by rewriting the matrix M as follows:2

M =
∑

k

tk (mk + ink) + 1(c+ ib), (E.10)

with

mk = Re Tr(tkM); nk = Im Tr(tkM); c = Re Tr(M); b = Im Tr(M), (E.11)

wgere all parameters mk, nk, c, b have to be real. We find

M −M † = 2
∑

k

tkmk + 2ib; Tr(M −M †) = Tr(2ib) = 6ib. (E.12)

And thus
1

2
[M −M †]− 1

6
Tr[M −M †] =

∑

k

tkmk =
∑

k

tk Re Tr(tkM). (E.13)

Note that this projection also satisfies

Re Tr
(
PTA{M}N

)
= Re Tr

(
PTA{N}M

)
. (E.14)

For our force calculation, we additionally need the derivative of the smeared link V with
respect to the thin link U , hence the derivative of an SU(3)-valued function V . Using the

2This decomposition is complete: note that any 3 × 3 complex matrix can be described by 18 independent
real-valued parameters. Here we have 8 mk and 8 nk and c, b.
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generators tk, a small change of U can be written as (compare (E.3))

U → U ′ = exp

(
8∑

k=1

ωk tk

)
U, (E.15)

and accordingly a small change of V as

V → V ′ = exp

(
8∑

k=1

ηk tk

)
V, (E.16)

with some real coefficients ωk, ηk. Since V depends on U , the ηi are real-valued functions of
the ωk, where ηi(0) = 0, ∀ i. This implies that

∂V ′

∂ωk
=

∂

∂ωk

[
exp

(
8∑

i=1

ηi ti

)
V

]

=
∂(
∑8

i=1 ηi ti)

∂ωk
V +O(η2

i )

=

(
8∑

i=1

∂ηi
∂ωk

ti

)
V +O(η2

i ), (E.17)

and hence in the ωk → 0 limit

δUkV =
8∑

i=1

∂ηi
∂ωk

ti V. (E.18)

Using the usual chain rule

∂f

∂ωk
=

8∑

i=1

∂f

∂ηi
∂ηi
∂ωk

, (E.19)

we find in the limit:

δUkf =

8∑

i=1

(δVif)
∂ηi
∂ωk

. (E.20)

As a last ingredient, we have to rewrite equation (E.18)

∂ηi
∂ωk

= Tr
(
ti (δUkV )V †

)
. (E.21)

Hence we obtain for the chain rule for Lie-derivatives of SU(3)-valued functions:

δUkf = Tr

(
δf

δV
(δUkV )V †

)
. (E.22)

This can be formally stated as
δf

δU
=
δf

δV
?
δV

δU
. (E.23)
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E.2. Analyticity of HEX smearing

Using the results of the last part, we can complete the proof for the analytic dependence of
our HEX smeared action on the thin link fields U .3 I will discuss the special case of one step
HEX smearing, where the generalization to multiple steps of HEX smearing can be carried
out in the same manner but it is much more involved.
We need to compute the derivative of the (real-valued) action SF :

δSF
δU

=
δSF
δV

?
δV

δU
, (E.24)

where the first factor δSF /δV of the star product is more or less trivial: just treat the smeared
fields V as the fundamental degrees of freedom and do the calculation. On the other hand,
the second factor is more involved. Consider4

δUkSF = Σab

(
δUkVba

)
= Σab Tr

(
tk U

∂Vba
∂UT

)
, (E.25)

where the sum over a, b is implied and

Σ ≡ V † δSF
δV

, (E.26)

which is easy to compute. Since SF is real-valued, we can write

δSF
δU

= PTA

{
UΣab

∂Vba
∂UT

}
. (E.27)

The last HEX substep is given by V = exp(A)U with A = PTA{Γ(3)U †} (cf. 2.126), therefore5

δSF
δU

= PTA

{
UΣab

∂Vba
∂UT

}
= PTA{UΣ exp(A)}+ PTA

{
UΣab

∂ exp(A)bc
∂UT

Uca

}
. (E.28)

The Cayley-Hamilton theorem and some algebra yields [Morningstar and Peardon, 2004]

d exp(A) = Tr(AdA)B1 + Tr(A2 dA)B2 + f1 dA+ f2{A,dA}, (E.29)

where B1, B2 are second-order polynomicals in A and f1, f2 complex constants which depend
on the trace and determinant of A. Using this identity and some cyclic permutations of the

3The same proof for EXP-smeared links was worked out by Morningstar and Peardon [2004]
4I use the notation introduced in section 2.3.3 throughout this calculation.
5The first term on the r.h.s can easily be computed when rewriting the expression

PTA

{
UΣab exp(A)

∂Uab
∂UT

}
=
∑
k

tk Re
∑

i,j,k,l,a,b

(tk)ijUjkΣab exp(A)bl
∂Ula
∂Uki

with the definition of the projector from (2.125).
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traces we obtain for the second term of the r.h.s. of (E.28):

PTA

{
UΣab

∂ exp(A)bc
∂UT

Uca

}

= PTA

{
U
∂Aab
∂UT

[
Tr(UΣB1)A+ Tr(UΣB2)A2 + f1UΣ + f2{UΣ, A}

]
ba

}
, (E.30)

where A = PTA{Γ(3)U †}. Since this projector is linear, we can drag any derivative inside so
that it acts onto its argument. Furthermore, we can use identity (E.14) to obtain

PTA

{
U
∂PTA{M}ab

∂UT
Nba

}
= PTA

{
U
∂Mab

∂UT
PTA{N}ba

}
, (E.31)

and hence we can shuffle the projector in A = PTA{Γ(3)U †} to the square brackets in (E.30).
Note that

U
∂(Γ(3)U †)ab

∂UT
PTA{. . .}ba = U

∂Γ
(3)
ab

∂UT
(U † PTA{. . .})ba − PTA{. . .}Γ(3)U †. (E.32)

Now we define

Z ≡ U † PTA{Tr(UΣB1)A+ Tr(UΣB2)A2 + f1UΣ + f2{UΣ, A}} (E.33)

in order to obtain a more condensed notation. Combining everything yields the compact
expression

PTA

{
UΣab

∂Vba
∂UT

}
= PTA

{
U(ΣV − ZΓ(3))U † + U

∂Γ
(3)
ab

∂UT
Zba

}
. (E.34)

Now, remember that the U dependence of Γ(3) comes only from V (2). Thus, we can write
(Z(3) = Z)

PTA

{
UΣab

∂Vba
∂UT

}
= PTA

{
U
(
ΣV − Z(3)Γ(3)

)
U †
}

+ PTA

{
UΣ

(2)
ab

∂V
(2)
ba

∂UT

}
, (E.35)

where we defined

Σ
(2)
ab =

∂Γ
(3)
cd

∂V
(2)
ba

Z
(3)
dc . (E.36)

We end up with the U dependence of SF for one step HEX smearing

δSF
δU

=
∑

i=3,2,1

PTA

{
U
(
Σ(i)V (i) − Z(i)Γ(i)

)
U †
}

+ PTA

{
UΣ(0)

}
, (E.37)

with V (3) = V and the recursive definition of Σ(i)

Σ
(i)
ab =

∂Γ
(i+1)
cd

∂V
(i)
ba

Z
(i+1)
dc ,∀ i = 0, 1, 2. (E.38)
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The remaining staple derivative can be computed in a straightforward manner. The only dif-
ficulty arises from keeping track of all Lorentz indices, which have been dropped for brevity
in this calculation.

This calculation has been published in [Durr et al., 2010] and extends the calculations by
Morningstar and Peardon [2004]; Hasenfratz et al. [2007]. Some more analytical as well as
numerical treatments for the dynamically smeared FLiC fermions can be found in [Kamleh
et al., 2004].

E.3. Random sources

In order to calculate quark-line diagrams, it is useful to replace the point-propagator con-
tractions by random-source-propagator contractions. This is done by using U(1) random-wall
sources

|χ(x, T )〉α,c = ei2π r(x,c)/N, (E.39)

where r(x, c) ∈ [0; 1[ is a random number different for any color c and location x and N is
an appropriate normalization. Note that these sources are diagonal in spin α in order not to
destroy the spin structure of the propagator. Additionally, the following identity is fulfilled
for an infinite number of random sources

∑

χ,ξ

c1,α1〈χ(x, T )|ξ(y, T )〉α2,c2 = δxy δc1c2 δα1α2 δχξ, (E.40)

so that
∑

χ |χ〉〈χ| will be close to the identity matrix for many different random sources χ.

Consider now the pseudoscalar correlator 〈P̄ (t)P (0)〉 with P (t) =
∑

x ψ̄(x, t)γ5ψ(x, t). In
terms of quark propagators, this expression can be written as

〈P̄ (t)P (0)〉 =
∑

x,y

Tr
[
γ5S

(
(x, t)← (y, 0)

)
γ5S

(
(y, 0)← (x, t)

)]
, (E.41)

where S((x, t)← (y, 0)) is the quark propagator from (y, 0) to (x, t). Expression (E.41) can
be rewritten in terms of random sources as follows:6

∑

x,y

Tr
[
γ5S

(
(x, t)← (y, 0)

)
γ5S

(
(y, 0)← (x, t)

)]
≈
∑

χ,ξ

〈ξ(t)|γ5D
−1|χ(0)〉〈χ(0)|γ5D

−1|ξ(t)〉

=
∑

χ,ξ

|〈ξ(t)|γ5D
−1|χ(0)〉|2. (E.42)

Since different measurements on a single configuration are correlated, it is often more efficient
to increase the number of configurations than the number of random sources per configuration.
The identity condition still holds for the ensemble average.

6As a matter of convenience we are dropping all color and spinor indices.
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