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Abstract 
This work was developed in the course of a cooperation project with the Merck KGaA 

Company (Darmstadt) on weakly coordinating anions and their applications. The 

main target was the preparation of the new strong N-H acids bis[bis(perfluoroalkyl)-

phosphinyl]imides (HFPI), bis(pentafluoroethyl)phosphinyl–(trifluoromethyl)sulfonyl-

imide (HPSI), their salts and ionic liquids as well as the study of their catalytic 

properties. Most of the compounds were analysed by NMR, IR and Raman 

spectroscopy, mass spectrometry and elemental analysis and in some cases by 

single crystal X-ray diffraction. The new ionic liquids were characterized by 

measuring their viscosity, density, melting point, thermal properties, electrochemical 

stability, conductivity, water and ionic impurities. 

The first chapter describes improved syntheses of the precursors of HFPI. By 

selective hydrolysing (CnF2n+1)3PF2 (n = 2, 4) pure bis(perfluoroalkyl)phosphinic, 

(CnF2n+1)2P(O)OH, and perfluoroalkylphosphonic, CnF2n+1P(O)(OH)2, acids have been 

obtained. PhPCl4 was found to be a suitable reagent to convert the acids into acid 

chlorides.  

In chapter 2 formation of (C2F5)2P(O)NH2 by treatment of (C2F5)3PO with NH3 at 

low temperature is described. Both precursors (C2F5)2P(O)Cl and (C2F5)2P(O)NH2 

were reacted in the presence of Et3N to form the salt [Et3NH][{(C2F5)2P(O)}2N]. The 

free acid was obtained by heating the salt in 100 % H2SO4 in vacuum. Its acidity was 

determined by different methods. 

In chapter 3 the preparation of new MFPI salts (M = Li, Na, K, Cs, Ag, Mg, Zn, 

La, Eu, Ce, and Yb) is described. LiFPI can be used as an electrolyte for lithium ion 

batteries. One important application of lanthanide salts are their use as Lewis acid 

catalysts.  

HFPI and the Na and K salts are suitable starting materials for the synthesis of 

new hydrophobic ionic liquids with the FPI anion as described in chapter 4. 

Relationships between their physico-chemical properties and their structures are 

discussed. FPI ionic liquids possess advanced properties such as: (i) melting points 

below 50 °C; (ii) hydrolytic stability in neutral aqueous solution up to 100 °C; (iii) 

thermal stability up to 280 °C; (iv) low viscosity; (v) high electrochemical stability; and 

(vi) they can be synthesized from industrially available materials.  



 

 

In the fifth chapter another strong N–H acid (HPSI) and new ionic liquids with 

the PSI anion are presented. The properties of a series of ionic liquids with 

asymmetrical perfluoroanions, such as PSI anion, are reported here. The asymmetric 

species have significant lower melting points than the corresponding symmetric ionic 

liquids. Further properties of these PSI derivatives were also investigated and 

compared with related FPI and TFSI derivatives. Furthermore, [Et3NH][PSI] was 

characterized by X-ray crystallography.  

The catalytic activity of the HFPI acid and some of its salts were investigated for 

acylation reactions of various compounds (with –OH, –NH, –SH functional groups) 

and the results are shown in chapter 6. 

Finally, the last chapter presents the synthesis and characterization of new 

bis(pentafluoroethyl)phosphinic acid amides and hydrazides.  



 

 

Zusammenfassung 
Die vorliegende Arbeit entstand im Rahmen eines Kooperationsprojekts mit der 

Firma Merck KGaA (Darmstadt) über schwach koordinierende Anionen und ihre 

Anwendungen. Das wichtigste Ziel bestand in der Synthese der starken N-H  

Brønsted Säuren Bis[bis(perfluoralkyl)-phosphinyl]imid (HFPI), Bis(pentafluor-

ethyl)phosphinyl–(trifluormethyl)sulfonyl-imid (HPSI), ihrer Salze und ionischen 

Flüssigkeiten wie auch das Studium ihrer katalytischen Eigenschaften. Die meisten 

der synthetisierten Verbindungen wurden durch NMR, IR und Raman Spektroskopie, 

Massenspektrometrie, Elementaranalysen, und in einigen Fällen  auch durch 

Einkristallstrukturanalysen untersucht. Die neuen ionischen Flüssigkeiten wurden 

durch Messung ihrer Viskosität, Dichte, Schmelzpunkte, thermischen Eigenschaften, 

elektrochemischen Stabilitäten, Leitfähigkeit und ihres Wasser- und Fremdionen-

Gehalts charakterisiert. 

Im ersten Kapitel sind die Synthesen der Ausgangsverbindungen für die HFPI 

Herstellung beschrieben. Durch selektive Hydrolyse von (CnF2n+1)3PF2 (n = 2, 4) 

konnten die reinen Bis(perfluoroalkyl)phosphin-, (CnF2n+1)2P(O)OH, und Perfluoralkyl-

phosphon-Säuren, CnF2n+1P(O)(OH)2, erhalten werden. PhPCl4 erwies sich als 

nützliches Reagenz, um die Säuren in Säurechloride zu überführen.  

In Kapitel 2 ist die Bildung von (C2F5)2P(O)NH2 durch Umsetzung von 

(C2F5)3PO mit NH3 bei tiefen Temperaturen beschrieben. Beide Vorläufer 

(C2F5)2P(O)Cl und (C2F5)2P(O)NH2 ließen sich in Gegenwart von Et3N zum Salz 

[Et3NH][{(C2F5)2P(O)}2N] verknüpfen. Die freie Säure konnte schließlich durch 

Erhitzen des Salzes in 100 % H2SO4 im Vakuum erhalten werden. Ihre Säurestärke 

ließ sich mit verschiedenen Methoden ermitteln. 

In Kapitel 3 werden die neuen MFPI Salze (M = Li, Na, K, Cs, Ag, Mg, Zn, La, 

Eu, Ce, und Yb) beschrieben. LiFPI kann für Elektrolyte in Lithiumionen Batterien  

verwendet werden. Eine wichtige Anwendung der Lanthanoid Salze besteht in ihrer 

katalytischen Aktivität.  

HFPI und die Na und K Salze sind nützliche Ausgangs-materialien für die 

Synthese von neuen hydrophoben ionischen Flüssigkeiten mit dem FPI Anion wie in 

Kapitel 4 beschrieben. Beziehungen zwischen ihren physikalisch-chemischen 

Eigenschaften und ihren Strukturen werden diskutiert. FPI ionische Flüssigkeiten 

besitzen fortschrittliche Eigenschaften wie: (i) Schmelzpunkte unter 50 °C; (ii) 



 

 

hydrolytische Stabilität in neutraler wässeriger Lösung bis 100 °C; (iii) thermische 

Stabilität bis 280 °C; (iv) niedrige Viskosität; (v) hohe elektrochemische Stabilität; und 

(vi) sie lassen sich aus industriell verfügbaren Ausgangsmaterialien herstellen.  

Im fünften Kapitel wird eine andere starke N–H Säure (HPSI) und ihre ionischen 

Flüssigkeiten  vorgestellt. Über die Eigenschaften einer Serie ionischer Flüssigkeiten 

mit  asymmetrischen Perfluoranionen, wie das PSI Anion, wird berichtet. Sie weisen  

signifikant niedrigere Schmelzpunkte auf als die entsprechenden symmetrischen 

ionischen Flüssigkeiten. Zudem wurden Eigenschaften dieser PSI Derivate 

untersucht und mit verwandten FPI und TFSI Derivaten verglichen. Weiterhin wurde 

[Et3NH][PSI]  auch durch Röntgenstrahlbeugung am Einkristall charakterisiert.  

In Kapitel 6 wird die katalytische Aktivität der HFPI Säure und einiger ihrer 

Salze für Acylierungsreaktionen an verschiedenen Verbindungen (mit –OH, –NH, –

SH funktionellen Gruppen) beschrieben. 

Schließlich wird im letzten Kapitel die Synthese und Charakterisierung von 

neuen Bis(pentafluorethyl)phoshin-Säure-amiden und -hydraziden behandelt.  
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1. Synthesis and characterization of precursors for the 
synthesis of bis[bis(pentafluoroethyl)phosphinyl]imide 
(FPI) derivatives  

Bis(pentafluoroethyl)phosphinic acid and bis(pentafluoroethyl)phosphinic acid 

chloride are very attractive precursors for the synthesis of new FPI derivatives such 

as: HFPI , FPI salts and ionic liquids. Therefore, we were interested to develop much 

simpler and less expensive synthetic routes, superior to the reported ones. In this 

chapter, new procedures are described for the synthesis of the precursors. 

1.1 Bis(perfluoroalkyl)phosphinic, (CnF2n+1)2P(O)OH and 
perfluoroalkylphosphonic, CnF2n+1P(O)(OH)2 acids  

Since the first synthesis of trifluoromethylphosphonic acid, CF3P(O)(OH)2, performed 

by Bennett et al. (1954) [1], this class of compounds have gained considerable 

interest. There are several reports on the preparation and application of different 

perfluoroalkyl phosphorus compounds. Their use as surfactants [2], catalysts in 

organic chemistry (Chapter 7) or as components of proton–conducting membranes 

[3] makes them of interest from laboratory research to industrial use. 
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 Examples of such type of derivatives are presented below. 

(CnF2n+1)2P(O)OH     CnF2n+1PO(OH)2 

bis(perfluoroalkyl)phosphinic acid  perfluoroalkylphosphonic acid 

n= 1, 2, 3, 4, 6, 7, 8. 

 

The diprotic acid, trifluoromethylphosphonic acid CF3P(O)(OH)2, was first 

synthesized by Bennett et al. (1954) via oxidative hydrolysis of CF3PX2 and (CF3)2PX 

(X = Cl or I) or by controlled hydrolysis of (CF3)3P followed by oxidation [1]. The 

monoprotic acid, (CF3)2P(O)OH was synthesized by hydrolysis of (CF3)2PCl3 [4] as 

well as by hydrolysis of (CF3)3PO [5].  

The heptafluoropropyl derivatives, (C3F7)2P(O)OH and C3F7P(O)(OH)2, were 

synthesized by Emeleus and Smith (1959) [6]. Reaction of C3F7I with red 

phosphorous in an autoclave at 220 – 230 °C resulted in a mixture of C3F7PI2 and 

(C3F7)2PI. After trap to trap distillation, separated (C3F7)2PI was treated with AgCl in a 

sealed tube, for 11 days, yielding (C3F7)2PCl. After chlorination, the resultant 

(C3F7)2PCl3 was hydrolyzed into the acid. These procedures are quite complex and 

only small quantities of (C3F7)2P(O)OH were obtained.  

Later, (C4F9)2P(O)OH was synthesized near to quantitative yield by heating of 

(C4F9)3PO with water at 44 °C (equation 1.1) [7]. (C4F9)2P(O)OH can be further 

hydrolyzed to (C4F9)2P(O)OH at higher temperatures (150 °C) for 36 hours. 

 

(C4F9)3PO + H2O ⎯⎯⎯→ (C4F9)2P(O)OH + C4F9H↑      (1.1) 

 

Another route to perfluoroalkylphosphonic acids (n = 2, 3, 4) is described by 

Kovaleva et al. (1989) [8]. The reaction of (CnF2n+1)3PF2 with 20% aqueous NaOH 

solution results in the sodium salt, Na2[CnF2n+1PO3]. The free acid was isolated by 

treatment with concentrated HCl. The protocol describes a two steps procedure with 

difficulties in separation of the side product (NaCl). Recently this method was 

modified by using Ba(OH)2·8H2O, instead of NaOH. In that case the free acid was 

obtained by treatment of the reaction mixture with H2SO4 followed by filtration of 

insoluble BaSO4 [9]. However, still some disadvantages as the application of toxic 

Ba(OH)2·8H2O and the two step procedure make this technique not attractive.  

Recently, a new synthesis of (CnF2n+1)2P(O)OH (equation 1.2) was developed 

by hydrolysis of tris(perfluoroalkyl)trifluorophosphoric acid, H[(CnF2n+1)3PF3]·nH2O 

44 °C 

36 h 
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(shortly named HFAP). The two step procedure and the use of concentrated, harmful 

HF make the reaction not convenient [10, 11] for laboratory application. 

 

(CnF2n+1)3PF2 + 5 H2O + HF ⎯⎯⎯→ H[(CnF2n+1)3PF3]·5H2O ⎯⎯⎯→  
 

    ⎯⎯⎯→ (CnF2n+1)2P(O)OH + CnF2n+1H↑ + 3 HF + 3 H2O (1.2) 
n = 2, 4. 
 

The acids formation by hydrolysis of the corresponding anhydrides is another 

interesting method as presented in equation 1.3. The anhydrides were synthesised 

by oxidation of (CnF2n+1)2PI with NO2 [12]. Bis(perfluoroalkyl)phosphinic acids can be 

also obtained by hydrolysis of bis(perfluoroalkyl)phosphinyl acid chlorides (equation 

1.4). In the following the different routes of bis(perfluoroalkyl)phosphinic acids 

formation are summarized:  

 

2 (CnF2n+1)2PI + 3 NO2 ⎯⎯⎯→ (CnF2n+1)2P(O)OP(O)(CnF2n+1)2 + I2 + 3 NO 

 
                                                  2 (CnF2n+1)2P(O)OH      (1.3) 

n = 6, 7, 8. 

 

(CnF2n+1)2P(O)Cl + H2O ⎯⎯⎯→ (CnF2n+1)2P(O)OH + HCl     (1.4) 

 

Our main interest was to simplify the synthesis of the monoprotic 

(CnF2n+1)2P(O)OH and diprotic acids CnF2n+1PO(OH)2, in particular for n = 2 and 4 

[13]. Finally, it was found that industrially available phosphoranes (CnF2n+1)3PF2 [14] 

can be simply hydrolyzed in water at different temperatures, depending on the 

reactivity of the phosphoranes. The hydrolyses were carried out in PFA 

(perfluoroalkyl–perfluoralkoxycopolymer) or PTFE (polytetrafluoroethylene) flasks. 

The product formation was followed by NMR spectroscopy (equation 1.5). 

 

(CnF2n+1)3PF2 + 2 H2O ⎯⎯⎯→(CnF2n+1)2P(O)OH + CnF2n+1H↑ + 2 HF   (1.5) 

n = 2 and 4. 

 

This new synthesis of pure (C2F5)2P(O)OH (1a) is most convenient and can be 

performed in big scale. (C2F5)3PF2 is added to an excess of water under vigorous 

+ H2O

-196 °C  
22 °C  

∆ 

∆ 

∆ 

ice 
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stirring at room temperature. The obtained mixture is then refluxed at 120 °C for 24 

hours. The aqueous HF is distilled off and then acid (1a) is distilled at reduced 

pressure. Unexpectedly, after long storage of acid aqueous solution (1a), small 

crystals of Ca[(C2F5)2PO2]2·2H2O (2a) were obtained from presence of traces of Ca2+ 

ions in water. A suitable crystal of (2a) was subjected of X–ray diffraction 

investigation (Section 1.3).  

The preparation of (C4F9)2P(O)OH acid (3a) requires higher reaction 

temperatures. (C4F9)3PF2 was slowly added to hot water (90 – 100 °C) and then 

refluxed at 120 °C. According to the 19F and 31P NMR spectra, the reaction was 

finished in one hour; despite of the longer perfluoroalkyl chain length. The aqueous 

HF obtained in the reaction was distilled off and the residue has been dried at 

reduced pressure. The acid (3a) is a white solid at room temperature. A suitable 

crystal for single crystal X–ray diffraction of the oxonium salt [H3O][(C4F9)2PO2] (4a) 

was obtained by slow crystallization from a concentrated aqueous solution of 3a at 

room temperature (Section 1.3).  

A mechanism for the formation of (CnF2n+1)2P(O)OH is proposed in Figure 1.1. 

The tris(pentafluoroethyl)trifluorophosphoric acid (HFAP) is a side product and is the 

less reactiv. The intermediates formation was investigated by NMR spectroscopy. For 

example, after addition of (C2F5)3PF2 into hot water the molar ratio between HFAP 

and (C2F5)2P(O)OH was 2:1 and after refluxing at 120 °C for one day, the total 

conversion of the phosphorane was observed.  

P

F

F

RF

RF

RF

P

F

O

RF

RF

RF

+ H2O

P

O

F

RF

RF

P

O

OH

RF

RF
+ H2O

- HF

- RFH

P

F

F

RF

RF

RF

OHH+

- HF

H+

 
 
Figure 1.1 Reaction mechanism proposed for the (CnF2n+1)2P(O)OH formation by 

hydrolysis of (CnF2n+1)3PF2. 
 

The corresponding diprotic acids were obtained via hydrolysis of 

tris(perfluoroalkyl)difluorophosphoranes with hot water by refluxing at high 
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temperature (120 – 130 °C) (equation 1.6) and in longer reaction time. Different 

reaction times were necessary for diprotic acids formation: C2F5P(O)(OH)2 (5a) – 14 

days and for C4F9P(O)(OH)2 (6a) – 4 days. The conversion ratio and reaction time 

depend on both the concentration of HF remaining in the reaction mixture and the 

temperature, respectively.  

 

(CnF2n+1)3PF2 + 3 H2O ⎯⎯→ CnF2n+1P(O)(OH)2 + 2 CnF2n+1H↑ + 2 HF  (1.6) 

n = 2 and 4.  

 

As example, the conversion of bis(nonafluorobutyl)phosphinic acid into 

nonafluorobutylphosphonic acid is shown in the 31P NMR spectra in Figure 1.2. The 

relative signal intensities of the two phosphorous species allow the monitoring of the 

reaction process.  

∆ 
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Figure 1.2 Decrease of the 31P NMR signal (ppm) of (C4F9)2P(O)OH and increase 
of the 31P NMR signal of (C4F9)P(O)(OH)2 with increasing reaction time. 

 

-150-140-130468

(C4F9)2P(O)OH H[(C4F9)3PF3] 

-4-20246 -4-20246

-4-20246 -4-20246

C4F9P(O)(OH)2 (C4F9)2P(O)OH  (C4F9)2P(O)OH C4F9P(O)(OH)2 

After 1 day 

1:0.8 
After 2 days 

1:3.5 

After 4 days 

1:16 
After 3 days 

1:10 

After 30 min

1:0.37 
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1.2 Bis(perfluoroalkyl)phosphinic acid chlorides, (CnF2n+1)2P(O)Cl 
and perfluoroalkylphosphonic acid chlorides, CnF2n+1P(O)Cl2 

The phosphonic acid (phosphonyl) halides and phosphinic acid (phosphinyl) halides 

are very useful compounds. They can be applied for preparation of different types of 

phosphorus derivatives such as: (i) cyclic boron–phosphorus compounds, e.g. 

(Ph2P–BH2)3 [15, 16]; (ii) tetrafluorophosphoranes, e.g. RPF4 [16]; (iii) thiohalide, e.g. 

RPSCl2 and (iv) P–N derivatives (e.g. phosphinic acid amides, phosphonic acid 

diamides, phosphinic acid hydrazides and phosphonic dihydrazides) (equation 1.7, 

1.8 and 1.9) [16]. The preparation of P–N derivatives received more attention in our 

studies (Chapter 7). 

 

Ph2P(O)Cl  +  NaBH4   ⎯⎯⎯→  1/3 (Ph2P–BH2)3  +  NaCl  +  H2O     (1.7) 

RP(O)Cl2   +  SF4         ⎯⎯⎯→   RPF4  +  SOCl2       (1.8) 

10 RP(O)Cl2  +  P4S10  ⎯⎯⎯→  10 RPSCl2  +  P4O10      (1.9) 

 

The synthesis of CF3P(O)Cl2 was pioneered by Griffiths (1968) [17]. Two 

decades later Yagupol’skii et al. (1984) reported the synthesis of (C3F7)2P(O)Cl [18]. 

Subsequently, Mahmmod and Shreeve (1986) described the preparation of 

(C2F5)2P(O)Cl and C2F5P(O)Cl2 by oxidation of (C2F5)2PCl and C2F5PCl2 with NO2 

according to the equation 1.10 and 1.11 [7].  

 

(C2F5)2PCl  +  NO2 ⎯⎯⎯→  (C2F5)2P(O)Cl  +  NO  (1.10) 

 

C2F5PCl2  +  NO2  ⎯⎯⎯→  C2F5P(O)Cl2  +  NO (1.11) 

 

A recently reported, synthesis of (C2F5)2P(O)Cl was based on the treatment of 

the corresponding acid with PCl5 [19]. However, the small difference of the boiling 

points of the product and of POCl3, made the purification of the acid chloride difficult. 

Therefore C6H5PCl4 (7a) was used in the place of PCl5, because C6H5P(O)Cl2 has a 

much higher boiling point (258 °C) than POCl3 (104 °C). C6H5PCl4 is easily prepared 

from commercially available C6H5PCl2 with chlorine according to the equation 1.12 

[20,21,22]. 

 

- 20 °C 

- 48 °C 
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C6H5PCl2  +  Cl2  ⎯⎯⎯→  C6H5PCl4 (1.12) 

 

The reactions of the acids with C6H5PCl4 were carried out mainly at room 

temperature by slowly addition of the acid to C6H5PCl4 [23]. The reaction is 

completed when HCl gas evolution is accomplished. (CnF2n+1)2P(O)Cl and 

CnF2n+1POCl2 (n = 4) are isolated by distillation.  

 

(CnF2n+1)2P(O)OH + C6H5PCl4 ⎯⎯→ (CnF2n+1)2P(O)Cl + C6H5P(O)Cl2 + HCl (1.13) 

for n = 2, (C2F5)2P(O)Cl (8a) and for n = 4, (C4F9)2P(O)Cl (9a).  

 

CnF2n+1P(O)(OH)2 + 2 C6H5PCl4 ⎯⎯→  

   ⎯⎯→ CnF2n+1P(O)Cl2 + 2 C6H5P(O)Cl2 + 2 HCl (1.14) 

for n = 2, C2F5P(O)Cl2 (10a) and for n = 4, C4F9P(O)Cl2 (11a).  
 

(CnF2n+1)2P(O)Cl and CnF2n+1POCl2 (n = 2 and 4) are colourless liquids which 

can be stored without decomposition at room temperature in a glass container 

equipped with a Young (London) valve under an inert gas atmosphere.  

1.3 Crystal structures of Ca[(C2F5)2PO2]2·2H2O and [H3O][(C4F9)2PO2] 

Crystals of Ca[(C2F5)2PO2]2·2H2O (2a) and [H3O][(C4F9)2PO2] (4a) suitable for X-ray 

diffraction were obtained from a concentrated aqueous solution at room temperature. 

A Gemini E Ultra –Diffractometer (Oxford) was used for measurements at 150 K 

and 140 K, respectively, with Mo–Kα radiation (λ = 0.717073 Å). The crystal 

structures were solved by direct methods using SHELXS–97. Full–matrix least–

squares of refinement on F2 was perfomed with WinGX V1.6405 (SHELXL–97). The 

hydrogen atoms were found on the difference maps and refined isotropically. 

The following parameters obtained for 2a are listed in Table 1.2 and the angles 

and distances in Appendix 1. Figure 1.3 shows a part of the structure within the unit 

cell. The Ca+2 ions are sixfold coordinated by oxygen atoms. Two times by water 

molecules (Ca–O: 2.356 Å) and four times by the bridging two dentate [(C2F5)2PO2]- 

anion (Ca–O: 2.290 Å). The anions are linked by the cations to infinitive chains. The 

anion exhibit local C2 symmetry and the Ca+2 sixfold coordinated with O atoms exhibit 

D2 symmetry.  
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Figure 1.3 Part of the crystal structure of Ca[(C2F5)2PO2]2·2H2O in the solid state.  
 

Single crystals of [H3O][(C4F9)2PO2] (3a) were grown by slow evaporation of a 

concentrated aqueous solution at room temperature. The crystal structure is 

stabilized by hydrogen bonds involving the [(C4F9)2PO2] anions and the oxonium 

cations (Figure 1.4). The two O atoms of the phosphinic acid group are nearly 

identical, as indicated by the lengths of the bond P–O1 (1.485 Å) and P–O2 (1.499 Å), 

respectively. The P–O lengths agree within the error limits of similar bonds in 

phosphinate compounds P–O (1.49 Å) [24]. The P–C and C–C are typical for such 

reported bonds. The coordination around the P atom departs significantly from 

regular tetrahedral. The angels are varying from C–P–C (102.41°) to O–P–O 

(120.6°), that agrees well with values found in α-aminomethyl(methyl)phosphinic acid 

(H3N+–CH2–PCH3O2
-) [25]. The hydrogen bondings between the anion and H of 

cation are very strong (H–O: 1.767 Å; 1.763 Å; 1.631 Å; 1.781 Å). The H atoms were 

refined at the same displacements and for 6 restrains of bonding lengths O–H it was 

find 0.85(2) Å. All angles and distances are presented in Appendix I. 
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Figure 1.4 Part of the crystal structure of [H3O][(C4F9)2PO2] in the solid state and 

the intermolecular interaction in the crystal dominated by hydrogen 
bonding.  

Table 1.2 Crystalographic and refinement data for (2a) and (4a).  

Crystalographic data Ca[(C2F5)2PO2]2·2H2O (2a) [H3O][(C4F9)2PO2] (4a) 
Empirical formula C8H4O6F20P2Ca  C8H3O3F18P 
Colour Colourless Colourless 
Formula weight 678.13 g·mol-1 520.05 g·mol-1 
Temperature 150 K 140 K 
Wavelength 0.71073 Å 0.71073 Å 
Crystal system Tetragonal Triclinic 
Space group P41212  P-1 (No. 2) 
Unit cell dimensions 
 
 

a = 13.7296(2) Å      α = 90° 
b = 13.7296(2) Å      β = 90° 
c = 5.74524(14) Å    γ = 90° 

a = 6.4447(3) Å      α = 107.509° 
b = 13.5217(8) Å    β = 92.056(4)° 
c = 20.0884(11) Å  γ = 91.355(4)° 

Volume 1082.99(4) Å
3
 1667.30(16) Å

3
 

Z 2 4 
Density (calculated) 2.080 mg·m-3 2.0 mg·m-3 

Absorption coefficient 0.633 mm-1 0.359 mm-1 

F(000) 660 e 968 e 
Crystal size 0.60 x 0.15 x 0.1 mm3 0.3 x 0.5 x 1.0 mm3 

θ range for data collection 2.97 to 29.02° 3.63 to 28.15° 

Index ranges -17 ≤ h ≤ 17, -18 ≤ k ≤ 17, 
 -7 ≤ l ≤ 7 

--8 ≤ h ≤ 8, -17≤ k ≤ 17, 
 -26 ≤ l ≤ 25 

Reflections collected 13976 23043 
Independent reflections 1363 [R

int
 = 0.0392] 7545 [R

int
 = 0.0436] 

Completeness to  ( = 29.02°) 95.8 % ( = 26.4°) 99.7 % 
Absorption correction None Numerical 

Refinement method Full–matrix least–squares on 
F2 Full–matrix least–squares on F2 

Data/restraints/parameters 1363/0/91 7545/6/580 
Goodness–of–fit on F2 0.997 1.031 
Final R indices [I>2σ(I)]a R1 = 0.0305   wR2 = 0.0720 R1 = 0.0975   wR2 = 0.2598 

R indices (all data)b R1 = 0.0417   wR2 = 0.0748 R1 = 0.1266   wR2 = 0.2807 
Largest diff. peak and hole 0.341 and -0.254 e Å-3 1.059 and -0.785 e Å-3 
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1.4 Experimental part  

Bis(pentafluoroethyl)phosphinic acid, (C2F5)2P(O)OH (1a) 

86 g (4.78 mol) of deionized water was placed in a three–neck PFA flask equipped 

with a reflux condenser and a PFA funnel. Under vigorous stirring, 250 g (0.58 mol) 

of (C2F5)3PF2 was slowly added at room temperature. The resulting solution was 

refluxed at 120 °C (temperature in oil–bath) for 24 hours and then aqueous HF was 

distilled off. The residue was distilled under reduced pressure (6·10-1 mbar). 133 g of 

a colourless transparent liquid was obtained. Yield: 76 %. Bp: 54 – 56 °C at 6·10-1 

mbar (literature value: 63 – 64 °C at 1.25 mbar [10]).  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
1H NMR (400 MHz), δ, ppm: 12.6 s (OH). 
19F NMR (376.4 MHz), δ, ppm: –81.9 m (2CF3); –127 d (2CF2); 2JP,F = 85 Hz. 
31P NMR (161.9 MHz), δ, ppm: 6.7 quin; 2JP,F = 84 Hz. 

 

Calcium bis(pentafluoroethyl)phosphinate, Ca[(C2F5)2PO2]2·2H2O (2a) 

19F NMR (lock/solvent D2O, 376.4 MHz), δ, ppm: –80.9 m (4CF3); –126.1 d (4CF2); 
2JP,F = 76 Hz. 
31P NMR (lock/solvent D2O, 161.9 MHz), δ, ppm: 3.4 quin (2P); 2JP,F = 76 Hz. 

 

Bis(nonafluorobutyl)phosphinic acid, (C4F9)2P(O)OH (3a) 

Using the same PFA installation, 117 g (0.16 mol) of (C4F9)3PF2 was slowly added 

(within 30 min) under vigorous stirring to 55 g (3.06 mol) of deionized water, which 

was heated at 90 – 100 °C (temperature in oil–bath). The resulting solution was 

refluxed for 1 hour at 120 °C (temperature in oil–bath) and then aqueous HF was 

distilled off. The residue was dried under reduced pressure (5·10-2 mbar) within 18 

hours at 50 °C (temperature in oil–bath). 76 g of a transparent solid was obtained. 

Yield: 94 %. Mp: 113 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 12.1 s (OH). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm:  –82.4 t,m (2CF3); –121.8 br.s 

(2CF2); –122.4 d (2CF2); –127 m (2CF2); 2JP,F = 85 Hz; 4JF,F = 10 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 3.9 quin; 2JP,F = 85 Hz. 
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Pentafluoroethylphosphonic acid, C2F5P(O)(OH)2 (5a) 

Using the same PFA installation, 222 g (0.52 mol) of (C2F5)3PF2 was slowly added 

(within 30 min) under vigorous stirring to 120 g (6.67 mol) of heated deionized water 

at 95 – 100 °C (temperature in oil–bath). The resulting solution was refluxed at 120 – 

130 °C (temperature in oil–bath) for 14 days and then aqueous HF was distilled off. 

The residue was dried under reduced pressure 10 hours at 60 – 70 °C (temperature 

in oil–bath). 103 g of a transparent liquid was obtained. Yield: 99 %.  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
1H NMR (400 MHz), δ, ppm: 11.3 s (2OH). 
19F NMR (376.4 MHz), δ, ppm: –82.8 br.s (CF3), –128.4 d (CF2), 2JP,F = 89 Hz. 
31P NMR (161.9 MHz), δ, ppm: –1.3 t, 2JP,F = 89 Hz. 

 

Nonafluorobutylphosphonic acid, C4F9P(O)(OH)2 (6a) 

Using the same PFA installation, 115 g (0.16 mol) of (C4F9)3PF2 was slowly added 

(within 30 min) under vigorous stirring to 60 g (3.33 mol) of water heated to 90 – 96 

°C (temperature in oil–bath). The resulting solution was refluxed at 130 °C 

(temperature in oil–bath) for 4 days and then the aqueous HF was distilled off. The 

residue was dried under reduced pressure (5·10-2 mbar) for 18 hours at 60 °C. 47 g 

of a transparent liquid, which slowly crystallized, was obtained. Yield: 99 %. Mp: 101 

°C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 11.1 s (2OH). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –82.4 t,m (CF3), –122.5 m 

(CF2), –124.8 d,t,m (CF2), –127.1 t,m (CF2), 2JP,F = 88 Hz, 4JF,F = 14 Hz, 4JF,F = 11 

Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –1.1 t, 2JP,F = 90 Hz. 

 

Phenyltetrachlorophosphorane, C6H5PCl4 (7a) 

30.1 g (0.168 mol) of C6H5PCl2 dissolved in 130 cm3 of dry CHCl3 was placed in a 

500 ml round bottom flask, equipped with a reflux condenser, magnetic stirring bar, 

gas dispersion tube and a thermometer. Below 10 °C excess of chlorine gas was 

bubbled through the reaction mixture until the solution became yellow (about 20 min). 
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After evaporation of the solvent, 40.7 g of a white solid was obtained. Yield: 97%. 

Mp: 73 – 74 °C (literature value: 73 °C [21]). 
31P NMR (lock solvent CDCl3, 161.9 MHz), δ, ppm: – 42.6 m. 

 

Bis(pentafluoroethyl)phosphinic acid chloride, (C2F5)2P(O)Cl (8a) 

20.2 g (80 mmol) of C6H5PCl4 was placed in a two–neck round–bottom flask, 

equipped with a magnetic stirring bar, drying tube and dropping funnel. 21.7 g (72 

mmol) of (C2F5)2P(O)OH was slowly added at room temperature. The reaction 

mixture was kept stirring for 4 hours at room temperature until two liquid layers were 

formed. The lower layer, (C2F5)2P(O)Cl was isolated from the reaction mixture by 

distillation at atmospheric pressure. 18.1 g of a colourless liquid was obtained. Yield: 

78 %. Bp: 86 – 88 °C.  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
19F NMR (376.4 MHz), δ, ppm: –81.9 s (2CF3); –120.1 d,d (2CFa); –124.3 d,d 

(2CFb); 2JP,Fa = 89 Hz; 2JP,Fb = 101 Hz;  2JFa,Fb = 320 Hz. 
31P NMR (161.9 MHz), δ, ppm: 20.8 quin; 2JP,F = 96 Hz 

FT–IR (4 mbar) ν/cm-1: 1332 (vs); 1306 (vs); 1241 (vs); 1163 (vs); 995 (vs); 758 (m); 

639 (m); 602 (s); 582 (s); 560 (m); 537 (w); 495 (s); 477 (s); 437 (w).  

Raman (liquid): 1331(w); 1302 (w); 1224 (w); 1165 (w); 994 (w); 756(vs); 640 (w); 

610 (w); 584 (w); 562 (w); 539 (w); 438 (s); 399 (w); 364 (s); 327 (s); 299 (w); 284 

(w); 263 (s); 247 (w); 214 (w); 179 (w); 150 (s). 

 

Bis(nonafluorobutyl)phosphinic acid chloride, (C4F9)2P(O)Cl (9a) 

2.5 g (4.9 mmol) of (C4F9)2P(O)OH was placed in a two–neck round–bottom flask, 

equipped with a magnetic stirring bar, drying tube and dropping funnel. 1.5 g (6.0 

mmol) of C6H5PCl4 diluted in 3 cm3 of dry CHCl3 was added. The reaction mixture 

was kept stirring for 30 minutes at room temperature. (C4F9)2P(O)Cl was isolated 

from the reaction mixture by distillation at atmospheric pressure. 1.6 g of a colourless 

liquid was obtained. Yield: 63 %. Bp: 158 – 160 °C.  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
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19F NMR (376.4 MHz), δ, ppm: –84 t,m (2CF3); –115.4 d,d (2Fa); –119.7 d,d (2Fb); –

121.5 m (2CF2); –128.6 m (2CF2); 2JP,Fa = 95 Hz; 2JP,Fb = 102 Hz;  2JFa,Fb = 324 Hz, 
4JF,F = 9.6 Hz. 
31P NMR (161.9 MHz), δ, ppm: 21.7 quin,m; 2JP,F = 98 Hz  

 

Pentafluoroethylphosphonic acid dichloride, C2F5P(O)Cl2 (10a) 

19.3 g (77 mmol) of C6H5PCl4 was placed in a two–necked round–bottom flask, 

equipped with a magnetic stirring bar, drying tube and dropping funnel. 6.4 g (32 

mmol) of C2F5P(O)(OH)2 was slowly added at 0 °C. The reaction mixture was kept 

stirring for 2 hours at room temperature. C2F5P(O)Cl2 was distilled off at atmospheric 

pressure. 4.6 g of a colourless liquid was obtained. Yield: 61 %. Bp: 77 – 79 °C.  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
19F NMR (376.4 MHz), δ, ppm: –81 m (CF3); –122.5 d,m (CF2); 2JP,F = 110 Hz. 
31P NMR (161.9 MHz), δ, ppm: 17.7 t; 2JP,F = 109 Hz  

 
Nonafluorobutylphosphonic acid dichloride, C4F9P(O)Cl2 (11a) 

A mixture of C4F9P(O)(OH)2 (6.0 g, 20 mmol) and 13.0 g (52 mmol) of C6H5PCl4 was 

placed in a round–bottom flask, equipped with a magnetic stirring bar and drying 

tube. The mixture was stirred 4 hours at room temperature until all the solid acid was 

reacted and the contents consisted of two liquid layers. C4F9P(O)Cl2 was isolated 

from the reaction mixture by distillation at atmospheric pressure. 5.7 g of a colourless 

liquid was obtained. Yield: 85 %. Bp: 124 – 126 °C.  

NMR spectra were measured using an FEP tube with an acetonitrile–D3 film as 

external lock:  
19F NMR (376.4 MHz), δ, ppm: –83.8 m (CF3), –118.5 d,t,m (CF2), –121.3 m (CF2),–

128 m (CF2), 2JP,F = 113 Hz, 4JF,F = 14 Hz. 
31P NMR (161.9 MHz), δ, ppm: 17.7 t, 2JP,F = 113 Hz.  
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Chapter 2 
 

 

 

 

 

2. Bis[bis(pentafluoroethyl)phosphinyl]imide, 
H[{(C2F5)2P(O)}2N] – HFPI  

2.1 Introduction 

In the past 20 years, a lot of efforts have been directed towards discovering new 

molecular superacids. As a result of these efforts, new HNR2 and HCR3 compounds 

have been synthesized and found to be a versatile class of acids. Their NH or CH–

Brønsted acidity is highly dependent on the nature of the substituent R. If R is 

strongly electron–withdrawing group, then the resulting imides are strong acids [26, 

27]. Prominent examples are bis(perfluoroalkylsulfonyl)imides [28, 29, 30, 31], in 

particular bis[(trifluoromethyl)sulfonyl]imide, (CF3SO2)2NH (TFSI) which was first 

reported by Foropoulos and DesMarteau (1984) [32]. 

The anion bis[(trifluoromethyl)sulfonyl]imide (TFSI) also called NTf2-, received 

most attention in the last decades [32, 33, 34]. Salts containing this anion are used 

as electrolytes in batteries [35, 36, 37], room temperature ionic liquids [38, 39], Lewis 

acid catalysts [40, 41, 42, 43] as well as in spectroscopic investigations [33, 34, 44, 

45] and structural studies [46]. 

(RFSO2)2N- anions are chemically very robust and therefore they undergo slow 

degradation in the environment. As more environmental friendly compounds 

bis[bis(perfluoroalkyl)phosphinyl]imides, [(RF)2P(O)]2N- can be considered. 

 



Bis[bis(pentafluoroethyl)phosphinyl]imide – HFPI Chapter 2 
_____________________________________________________________________________________________________ 

 16

2.2 Synthesis of HFPI 

The first perfluorinated–phosphinyl imide and its derivatives were reported by 

Pavlenko et al. (1985) [47]. According to this procedure, the preparation of 

H[{(C3F7)2P(O)}2N] requires a multi step procedure and the total yield was quite low 

(32 to 39 %). Recently, a similar synthesis of H[{(C2F5)2P(O)}2N] was reported [19]. 

However, this method also requires three steps and the total yield was less than 42 

%. In the first step the amide was prepared and isolated according to equation 2.1: 

 

(C2F5)2P(O)Cl + 2 NH3 ⎯⎯⎯→ (C2F5)2P(O)NH2 + NH4Cl↓    (2.1) 

 

In a second step, the imide was formed under strong basic conditions (equation 
2.2). Finally, the pure acid was isolated by heating the imide with sulphuric acid (100 
%) in vacuum (equation 2.3). 
 

(C2F5)2P(O)NH2 + (C2F5)2P(O)Cl + 2 Et3N ⎯⎯⎯→ 
⎯⎯⎯→ [Et3NH][{(C2F5)2P(O)}2N] + [Et3NH]Cl↓ (2.2) 

 

[Et3NH][{(C2F5)2P(O)}2N] + H2SO4 ⎯⎯⎯→ H[{(C2F5)2P(O)}2N] + [Et3NH]HSO4 (2.3) 
 

In this work an improved synthesis of the H[{(C2F5)2P(O)}2N] was developed.  

2.2.1 Synthesis of the HFPI from (C2F5)2P(O)Cl  

In this new procedure a one pot reaction was applied resulting of increasing yield up 

to 80 % [48]. In a pre–reaction, (C2F5)2P(O)Cl diluted in diethyl ether was treated with 

2 equivalents of ammonia at –78 °C. After warming up at room temperature, the 

mixture was stirred for 4 hours and a solid material precipitate. According to the NMR 

spectra the reaction mixture contains following products: (C2F5)2P(O)NH2 (1b), 

[NH4][{(C2F5)2P(O)}2N] (2b), [NH4][(C2F5)2PO2] (3b), and traces of C2F5P(O)(NH2)2 

(4b) (Table 2.1). 
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Et2O 
-78 °C 

Table 2.1 NMR data of related C2F5–P compounds. 
 

Compound δ(1H) 
[ppm] 

 

δ(19FA) 
[ppm] 
CF2 

δ(19FB) 
[ppm] 
CF2 

δ(31P) 
[ppm] 

2JP,FA 
[Hz] 
PCF2 

2JP,FB 
[Hz] 
PCF2 

2JFA,FB 
[Hz] 
PCF2 

δ(19F) 
[ppm]
CF3 

(C2F5)2P(O)Cl – –120.1
(m) 

–124.4
(m) 

+20.8 
(quin) 89 101 320 –81.9

(C2F5)2P(O)NH2
 5.3 

(s br) 
–124.9

(m) 
–127.7

(m) 
+12.9 

(quin,m) 79 84 335 –81.2

C2F5P(O)(NH2)2 
4.03 
(s br) 

–127.7 
(d) 

10.8 
(t) 77 –81.7

[NH4]+ 

[(C2F5)2PO2]- 
6.53 
(s br) 

–126.7 
(d) 

–0.5 
(quin) 69 –82.0

[NH4]+ 

[(C2F5)2P(O)]2N- 
3.15 
(m) 

–124.4
(m) 

–127.1
(m) 

–5.9 
(quin,m) 79 89 333 –81.7

[Et3NH]+ 

[(C2F5)2P(O)]2N- 
3.12(q) 
1.22(t) 

–123.7
(m) 

–126.8
(m) 

–8.1 
(quin,m) 78 85 316 –81.1

 

Previously unknown, [NH4][{(C2F5)2P(O)}2N] (2b) was easy converted to 

[Et3NH][{(C2F5)2P(O)}2N] (5b) under action of Et3N. Compound (C2F5)2P(O)NH2 (1b) 

was also converted into (5b), by addition of (C2F5)2P(O)Cl (8a), at 0 °C in the 

presence of Et3N or pyridine. Both compounds (C2F5)2P(O)NH2 (1b) and 

[NH4][{(C2F5)2P(O)}2N] (2b) were not isolated, but were identified in the reaction 

mixture by NMR spectroscopy. The processes are described by the equations 2.4 

and 2.5.  

 

3 (C2F5)2P(O)Cl + 6 NH3  ⎯⎯⎯→     (C2F5)2P(O)NH2 (1b)   
       [NH4][{(C2F5)2P(O)}2N] (2b)   

         3 NH4Cl + traces products (3b+4b)  (2.4) 
 

[NH4][{(C2F5)2P(O)}2N] + Et3N ⎯⎯⎯→ [Et3NH][{(C2F5)2P(O)}2N] + NH3↑  (2.5) 
(5b) 

 

After warming up of the reaction mixture (equation 2.4 and 2.5), the deposit of 

NH4Cl and [Et3NH]Cl was filtered off. A white solid of 5b was obtained after removing 

the solvent under vacuum. The free acid (HFPI) (6b) was obtained according to the 

equation 2.3. 

Excess of NH3 can further react with (C2F5)2P(O)NH2 according to the equation 
2.6. This undesired reaction, would reduce the yield considerably.  
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(C2F5)2P(O)NH2  + NH3 ⎯⎯⎯→ C2F5P(O)(NH2)2 + C2F5H↑    (2.6) 
      (4b) 

 

The products from several experiments were investigated by NMR 

spectroscopy and the data are listed in the Table 2.2. As it can be seen in Table 2.2, 

NH3 in dioxane shows quite good conversion into products only at low temperature. 

The optimal temperature is in the range of –60 to –78 °C. Increasing of temperature 

is leading to formation of undesired products, in particular of C2F5P(O)(NH2)2 (4b). 

The best results have been obtained using Et2O as a solvent. Traces of water 

hydrolysed (C2F5)2P(O)Cl (8a), that decrease considerably the yield of the products. 

This process seems to be nearly unavoidable and leads to the formation of traces of 

undesired product [NH4][(C2F5)2PO2] (3b) even if excess of NH3 is used. 

The best conditions for the preparation of HFPI are: (i) low temperature, (ii) very 

dry reagents and (iii) molar ratio between (C2F5)2P(O)Cl and NH3 of 1:2.  
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Table 2.2 Composition of products identified by NMR spectroscopy at different conditions in the reaction 2.4. 
 

a Other compounds not identified. * In closed system at a vacuum line.

Products ( % yield) 
NR. Reagent 

A 
NH3 Solvent T( °C) 

A (1b) (2b) (3b) (4b) 
Othersa 

 

Ratio 
A:NH3  

1. (C2F5)2P(O)Cl in dioxan  
(0.5 mol/L) dioxan –60 °C  4 8 47 37 4 1 1:2 

2. (C2F5)2P(O)Cl in dioxan 
(0.5 mol/L) Et2O –20 °C – 31 29 37 3 – 1:2 

3. (C2F5)2P(O)Cl in dioxan  
(0.5 mol/L) Et2O –70 °C – – 64 26 7 3 1:2 

4. (C2F5)2P(O)Cl gas Et2O –40 °C – – 49 23 25 3 1:2 

5. (C2F5)2P(O)Cl gas Et2O –78 °C 9 24 49 15 3 – 1:2 

6. (C2F5)2P(O)Cl gas Et2O –60 °C 2 22 55 13 8 – 2:3 

7. (C2F5)2P(O)Cl gas Et2O –70 °C – – 55 8 37 – excess 
NH3 

8.* (C2F5)2P(O)Cl gas–dry  Et2O –70 °C 6 45 49  – – 1:2 

9. (C2F5)3PO in dioxan  
(0.5 mol/L) – –40 °C 21 67 – 12 – – 1:1 

10. (C2F5)3PO gas Et2O ice – – – 50 30 20 excess 
NH3 

11. (C2F5)3PO in dioxan  
(0.5 mol/L) DME RT – 23 – 77 – – 1:1 

12. (C2F5)3PO gas – –35 °C 14 86 – – – – excess 
NH3 
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without solv. 
-35 °C 

 2.2.2 Synthesis of the HFPI from (C2F5)3PO  

(C2F5)3PO is also a possible precursor for the synthesis of HFPI. It can be obtained 

from (C2F5)3PF2 much easier than (C2F5)2P(O)Cl (8a) [49]. The equation 2.7 presents 

the reaction of (C2F5)3PO with excess of NH3 at –35 °C. Unfortunatly expected 

formation of HFPI was not observed in this case.  

 

(C2F5)3PO + NH3 ⎯⎯⎯⎯⎯→ (C2F5)2P(O)NH2 + C2F5H↑     (2.7) 

         (excess)                                         (1b) 

 

Product (1b) was isolated in 86 % yield without additional purification. The 

absence of any solvent makes this process very efficient. As can be seen in Table 

2.2, the best results were obtained by using of NH3 in excess, in the absence of the 

solvents at low temperature –35 °C (experiment 12).  

The process (equation 2.7) requires a continuous control of the temperature. 

Increase of temperature over the –25 °C (due to the exothermic process) lead to 

formation of C2F5P(O)(NH2)2 (4b) and decreasing in the yield of desired product. 

After removing the volatile compounds and unreacted (C2F5)3PO (traces), the white 

solid (C2F5)2P(O)NH2 can be used in the next step, according to equation 2.2 without 

further purification.  

The amide (C2F5)2P(O)NH2 (1b) is stable in dry conditions, very soluble in 

organic solvents (acetonitrile, acetone, chloroform), low soluble in benzene, hexane 

and undergo fast hydrolysis in water.  

The described procedure can be applied for large scale preparation of HFPI. 

The synthesis of HFPI using (C2F5)3PO instead of (C2F5)2P(O)Cl is prefered, due to 

the low costs of this reagent. Another advantage is the suppress hydrolysis during 

that process. The detailed characterization of (C2F5)2P(O)NH2 (1b) together with 

other amides will be presented in Section 7.1. 
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2.2.3 Synthesis of the HFPI from [(C2F5)2P(O)]2O  

A third route for the synthesis of HFPI was attempted using [(C2F5)2P(O)]2O in excess 

of ammonia. The reaction proceeded according to equation 2.8 in a closed system 

starting from –78 °C by slowly warming up to room temperature. According to the 

NMR spectra the products (C2F5)2P(O)NH2 (1b), [NH4][(C2F5)2PO2] (3b) and traces of 

C2F5P(O)(NH2)2 (4b) are formed. The yield of amide (C2F5)2P(O)NH2 (1b) is low and 

compound [NH4][(C2F5)2PO2] (3b) is formed in parallel as a product of ammonolysis 

process. After removing the volatile compounds, a white solid mixture of the products 

was obtained. The amide (1b) was used in the second step for the preparation of 

HFPI, according to the equation 2.2. 

 

O P

C2F5

C2F5

O

NH2P

C2F5

C2F5 O

P

C2F5

C2F5

O

P

C2F5

C2F5

O

O-NH4
+

 + 2 NH3   
    excess

 +

(1b) (3b)

(2.8)without solvent
-78 oC

 
 

Suitable crystals for single crystal X–ray diffraction of (C2F5)2P(O)NH2 (1b) were 

obtained from the reaction mixture. The crystals were formed on the wall of the flask 

during evaporation of volatile compounds at low pressure. Crystallographic data of 

1b will be presented in detail in the chapter 7. 

Treatment of (C2F5)2P(O)OMe or (C2F5)2P(O)OSiMe3 with ammonia failed to 

provide the desired product (1b). Attempts to prepare (C2F5)2P(O)NHSiMe3 (7b) 

result in very small yield (31P NMR, δ, ppm: –38.5 quin and 19F NMR, δ, ppm: –81 s; 

–126 m). Reaction of (Me3Si)2NH with (C2F5)3PO, within five days, at 80 °C, resulting 

in the formation of a brown mixture of products. Further reaction of 

(C2F5)2P(O)NHSiMe3 (7b) with (C2F5)2P(O)Cl lead to the (C2F5)2P(O)NH2 and HFPI.  

In conclusion, the synthesis of HFPI can be prepared in good yields using 

(C2F5)3PO as precursor which is not so expensive as (C2F5)2P(O)Cl.  
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2.3 Properties of HFPI 

2.3.1 Acidity 

Acidity constant in aqueous solution  

The acid, H[{(C2F5)2P(O)}2N] (HFPI) is a colourless hygroscopic solid. It is 

hydrolytically stable in aqueous solution at room temperature for at least five months. 

However, at 100 °C, after 2 hours in water, signals of (C2F5)2P(O)OH and 

C2F5P(O)(OH)2 were observed in the 19F NMR spectrum. In other solvents like 

DMSO and ethanol (or methanol) at room temperature the acid is stable for more 

then 5 days.  

Acidity of HFPI was determined by titration with KOH, pKa = 1.9 (Figure 2.1). 

This value is close to the pKa = 1.7 for HN(SO2CF3)2 reported by Foropoulos and 

DesMarteau (1984) [32].  

1
2
3
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5
6
7
8
9
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11
12

0 2 4 6 8 10 12 14
Volume / mL (KOH, 0,1M) 

pH

 
Figure 2.1 Titration curves of H[{(C2F5)2P(O)}2N] (0.1 M ) with KOH (0.1 M). 
 

Acidity measurements by NMR spectroscopy  

To gain more information about the acidity of HFPI, the 13C NMR method reported by 

Farcasiu and Ghenciu (1991) was applied [50]. The method is based on difference in 

the 13C NMR chemical shift between Cα and Cβ atoms of mesityl oxide and its 
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protonated form (8b). As solvent, liquid SO2 is used due to its low basicity and 

relative high dielectric constant. 

The protonation of 4–methyl–3–pentene–2–one (mesityl oxide) is described by 

equation 2.9. A consequence of protonation is an increase of the positive charge of 

Cβ that causes a shift of the signal to higher frequency. The difference between the 

chemical shifts of Cα and Cβ, noticed as ∆δ, is correlated with the acidity of the acid 

participating in the protonation process. The larger ∆δ indicate the stronger acid.  

Me2C CH C

O

Me + [H+] Me2C CH C

OH

Me  (2.9) 

                (8b) 
 

The 13C NMR chemical shifts of pure mesityl oxide in SO2, of Cβ 158.39 ppm 

and Cα 126.02 ppm, are identical with data reported by Farcasiu and Ghenciu (1991) 

[50]. According to Figure 2.2 the 13C NMR chemical shift difference (∆δ) is 81.8 ppm 

in the case of H[{(C2F5)2P(O)}2N]; higher than of HN(SO2CF3)2 (∆δ = 72.0 ppm) [51]. 

However, the acidity of H[{(C2F5)2P(O)}2N] is lower than that of carborane acids (∆δ ≈ 

84 ppm). For example, for H(CHB11H5Cl6) is ∆δ = 83.8 ppm and for H(CHB11H5l6) is 

∆δ = 83.3 ppm [50-52].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

α β α β 
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Figure 2.2 13C NMR spectrum of mesityl oxide protonated with H[{(C2F5)2P(O)}2N] in 

SO2.  
 

The disadvantages of this method are: (i) NMR spectroscopy is less sensitive 

than UV – visible spectroscopy and requires a higher concentration of the substrate 

and (ii) mesityl oxide can decompose easily. 

 

Acidity measurements by IR spectroscopy  

IR spectroscopy was also used as an additional method to measure the relative 

acidity of H[{(C2F5)2P(O)}2N]. This qualitative method was well developed to measure 

the high acidities of the different carborane acids [51, 53, 54].  

The method is based on measuring ν(N–H) frequencies for octyl3NH+A- (tri–n–

octylammonium salts) dissolved in CCl4 or ClCH2CH2Cl. The basicity of A- determines 

the hydrogen bond strength in the ion contact pair [NH····A-]. Low basicity results in a 

high ν(N–H) frequency.  

The measurements were performed in dilute solution of CCl4 (0.01 – 0.008 

mol/L) to avoid the concentration’s dependence. For the contact ion pair: 
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(C2H17)3N+ ⎯ H········N[P(O)(C2F5)2]2- 

 

the ν(N–H) frequency is 3081 cm-1 (Figure 2.3). This frequency is a little lower than in 

the case of HN(SO2CF3)2 [55]. Own measurements with HN(SO2CF3)2 under the 

same condition gave a ν(N–H) frequency of 3090 cm-1, close to the reported data. 

Furthermore, the same data of ν(N–H) frequency (3081 cm-1) was obtained using the 

Cs[{(C2F5)2P(O)}2N] as precursor for the synthesis of ionic liquid  

([octyl3NH]+[{(C2F5)2P(O)}2N]-). 

The ν(N–H) frequency was also measured for neat compound 

([octyl3NH]+[{(C2F5)2P(O)}2N]-) placed between Si windows. The value of ν(N–H) in 

this case was 3029 cm-1 (Figure 2.3).  
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Figure 2.3 ν(N–H) frequencies of tri–n–octylammonium FPI in CCl4 (A) and as 

neat compound in Si windows (B). 
 

These results confirm that the conjugated acid of the FPI anion is a strong 

Brønsted acid and can be used to protonate very weak basic molecules. The IR 

method ranks the basicity of weekly coordinating anions, while 13C NMR method 

ranks the acidity strength according to the protonation of weak ketone bases in dilute 

solutions.  



Bis[bis(pentafluoroethyl)phosphinyl]imide – HFPI Chapter 2 
_____________________________________________________________________________________________________ 

 26

2.3.2 Vibrational spectroscopy 

The vibrational spectra of H[{(C2F5)2P(O)}2N] are quite similar to that of salts with the 

FPI anion. Additional bands at 1392 (broad band) and 735 cm–1 were observed for 

free acid. The infrared and Raman spectra of Cs[{(C2F5)2P(O)}2N] presented here, 

were recorded at room temperature, using ATR–IR spectrometer (HARRICK, MVP 
StarTM) with a diamond as the ATR crystal and on Bruker (EQUINOX 55) FT Raman 

spectrometer (Figure 2.4).  

 

 
Figure 2.4 Infrared and Raman spectra recorded for neat solid 

Cs[{(C2F5)2P(O)}2N]. 
 

The spectra are complicated due to the low symmetry and high numbers of 

atoms present in the anion (93 fundamentals are in principle allowed). Additionaly, 

several rotamers (P=O/P=O cis or trans and different C2F5 orientations) are possible. 

Each of them has different vibrational characteristics displayed in the spectrum. 

However, the signals from several C2F5 groups and some of stretching modes are 

overlapping as it can be seen from comparison of observed and calculated band 

positions listed in Table 2.3. The highest mode is attributed to the νas P–N–P stretch, 

followed by C–C, P=O, C–F stretches, and deformations modes with the frequencies 

below 1000 cm-1. The strongest Raman band at 746 cm-1 is attributed to the 

symmetric CF3 deformations. Altogether, the vibrational spectra are suitable for 
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fingerprint identification of FPI anion. The possible rotamers could be identified by 

recording of the spectra at different temperatures, but that is not the aim of the work. 

 

Table 2.3 Observed and calculated band positions (cm-1) and infrared band  
  intensities of the [(C2F5)2P(O)]2N-anion. 
 

IRa Ramanb νcalcd.
c Assignment 

1371 vs 1331 m 1370 (1000) ν1              ν(PNP) 
1301 vs 1317 m 1307 (440) ν2/ν3          ν(CC) 

– 1268 s 1295(600) ν4/ν5          ν(CC) 
– 1230 s 1255 (280) ν6              νs(PO) 

1215 vs 1212 w 1215 (800) ν7/ν8/ν9      νas(CF3) 
1184 s 1196 w 1186 (250) ν10  – ν15      νas(CF3)/νs(PO) 
1147 vs 1147 w 1142 (900) ν16             νs(CF2) 
1110 vs 1119 w 1134 (500) ν17  – ν18      ν(PC) 
1086 s 1064 w 1100 (330) ν19 – ν23      ν(CF2) 
996 vs – 965 (250) ν24 – ν26      ν(PC) 
971 s 973 s 950 (100) ν27             ν(PC) 
784 m 760 m 750 (10) ν28             νs(PNP) 
755 w 746 vs 730 (25) ν29 – ν32      δ(CF3) 
627 s 629 m 620 (30) ν33 – ν35        
595 s 597 m 596 (50) ν36 – ν37        
564 s 574 w 580 (40) ν38  – ν39        
545 w 548 m 575 (0.5) ν40       

– – 550 (200) ν41/ν42       
512 vs – 520 (150) ν43 –ν46       
479 s – 472 (130) ν47/ν48       
458 m – 430 (20) ν49 – ν50       
427 s 425 w 435 (50) ν51 – ν52       

– 370 m 360 (10) ν53 – ν56       
– 340 w 340 (3) ν57 
– 303 m 300 (4) ν58 – ν61       
– 272 s 272 (4) ν62 – ν63 
– 255 s 250 (7) ν64 – ν65 

a Solid/b Solid neat compound; s = strong, m = medium, w = weak, v = very.  
c B3LYP/6–31+G(d), IR intensities in parentheses (km·mol-1).  

2.3.3 NMR spectroscopy 

The NMR spectra of H[{(C2F5)2P(O)}2N] were measured in dry CD3CN solution. A 

broad singlet between 9 – 12 ppm in the 1H NMR spectrum corresponds to the N–H 

proton. The 19F NMR spectrum of the C2F5 group shows a singlet at –81 and a 

multiplet at –125 ppm in a relative ratio of 3:2 as depicted in Figure 2.5. 
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Figure 2.5 Spectrum of the CF3 and CF2 resonance in acetonitrile–D3. 

 

The sharp singlet at –81 ppm indicates that F atoms of the CF3 group does not 

couple with the F atoms of the CF2–group, but the 13C satellites (1JCF = 95 Hz) are 

split by coupling with the CF2 group. The free FPI anion exhibits no symmetry. As a 

consequence the F atoms in the CF2 group are not equivalent and the –CF2–P 

moiety forms an AA’X spin system.  

A theoretical NMR spectrum can be calculated from the equations 2.10 and 

2.11. The chemical shift, δ and coupling constant, JAA’, from experimental NMR 

spectrum are corrected and compared in Table 2.4 and Figure 2.6.  

 

( ) ( )JJJJJ mmmm n 21211 2
1

2
1

−++= ; ( ) ( )JJJJJ mmmm n 12212 2
1

2
1

−++=           (2.10) 

∆
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=
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Table 2.4 Corrected (gNMR 4.1) experimental 19F chemical shift and coupling 

constants for H[{(C2F5)2P(O)}2N].  

Compound δ(19FA) 
[ppm] 
CF2 

δ(19FB) 
[ppm] 
CF2 

2JP,FA 
[Hz] 
PCF2 

2JP,FB 
[Hz] 
PCF2 

2JFA,FB 
[Hz] 
PCF2 

H[{(C2F5)2P(O)}2N]a –123.75 (m) –126.4 (m) 82.4 88.5 330 

CF2 CF3 

-135-127-119-111-103-95-87-79

δ / ppm

-128-127-126-125-124-123
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The experimental 19F NMR parameters have been used as input for simulation 

of the 19F NMR spectrum of [(C2F5)2P(O)]2N– anion as a AA’X spin system. The 

observed and simulated, by mean of gNMR 4.1 program, AA’ part of the 19F NMR 

spectrum is depicted in Figure 2.6. The additional unresolved splitting in the 

experimental spectrum may be due to different rotameres of the anion. 

 
 
Figure 2.6 Observed (top) and simulated (bottom) spectrum of the CF2 

resonances in [(C2F5)2P(O)]2N– anion. 
 

In the 31P NMR spectrum only one broad quintet is observed at 7.8 ppm due to 

coupling with the four nearly identical 19F nuclear of the two CF2 groups (Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 31P NMR spectrum of H[{(C2F5)2P(O)}2N] in acetonitrile–D3. 
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2.3.4 Thermal properties 

The thermal behaviour of H[{(C2F5)2P(O)}2N] was characterized by DSC and TG 

measurements. The sample was heated in inert atmosphere (N2) at a rate of 10 

°C·min-1. The decomposition curves of HFPI showed a continuous mass loss 

between 100 and 300 °C. The melting point is 49 °C. The thermal degradation curve 

showed an endothermic process at approximately 149 °C. Above 400 °C the mass 

loss was more than 90%. The thermal decomposition products of the HFPI were not 

investigated. 
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2.4 Experimental part  

Bis[bis(pentafluoroethyl)phosphinyl]imide, H[{(C2F5)2P(O)}2N] (6b) 

A solution of 45 g (140 mmol) of (C2F5)2P(O)Cl in 40 mL of dry Et2O was placed in a 

250 mL flask equipped with a glass valve with PTFE piston (Young, London) and 

cooled to –78 °C  (dry ice/ethanol bath). A 250 mL container charged with 4.7 g (276 

mmol) of liquid ammonia was connected to the reactor and then the ammonia slowly 

added. The mixture was stirred and allowed to warm up to room temperature within 4 

hour. A white deposit was formed and the solution was examined by 31P NMR 

spectroscopy: (C2F5)2P(O)Cl (9%), (C2F5)2P(O)NH2 (24%), C2F5P(O)(NH2)2 (3%), 

[NH4][(C2F5)2PO2] (15%) and [NH4][{(C2F5)2P(O)}2N] (49%). Subsequently, 12 g (37 

mmol) (C2F5)2P(O)Cl and 10 g (99 mmol) triethylamine were added to the reaction 

mixture within 30 min at 0 °C. After an additional 30 min stirring, the deposit of NH4Cl 

was filtered off and washed three times with 20 mL of dry diethyl ether. After 

removing the solvent under vacuum, the white solid was dissolved in 2–propanol and 

then, by addition of water, pure [Et3NH][{(C2F5)2P(O)}2N] (5b) precipitated. After 

drying under vacuum, 50 g of a white solid was obtained. Yield: 79%. Mp: 106 – 107 

°C. The decomposition curves of [Et3NH][{(C2F5)2P(O)}2N] showed an exothermic 

onset temperature at 215 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 3.12 q (CH2); 1.22 t (CH3, 3JH,H  = 

7.3 Hz).  
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb ); 2JP,Fa  = 78 Hz; 2JP,Fb  = 85.4 Hz; 2JFa,Fb  = 316 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.1 quin,m (2P, 2JP,F = 80 Hz). 

MS for [Et3NH][N{P(O)(C2F5)2}2]: m/z = 686 (M+), m/z = 787 (M++ (C2H5)3N) 

 

Sulphuric acid (35 mL/100 %) was added to the salt and the mixture was heated 

under vacuum (< 10-2 mbar) to 120–135 °C. The product sublimed through an 

ascending glass tube. The white solid H[{(C2F5)2P(O)}2N] (6b) (41.7 g) was collected 

in a bulb at 0 °C. It is very hygroscopic and must be handled under dry nitrogen. 

Yield: 97.8 %. Mp: 47 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 9–12 br. s (NH). 
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19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.8 m 

(4CFa); –126.6 m (4CFb); 2JP,Fa  = 79 Hz; 2JP,Fb  = 87 Hz; 2JFa,Fb  = 332 Hz.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.8 quin,m (2P, 2JP,F = 86 Hz). 

Elemental analysis calcd. (%) for C8HF20NO2P2 (M = 585.01 g/mol): C 16.42, H 0.17, 

N 2.39; found: C 16.07, H 0.11, N 2.47.  

MS for H[{(C2F5)2P(O)}2N]: m/z = 467 [(C2F5)2P(O)NHP(O)C2F5], m/z = 585 (M+). 

 

Bis(pentafluoroethyl)phosphinyl amide, (C2F5)2P(O)NH2 (1b) 

35.9 g (0.089 mol) of (C2F5)3PO was placed in a 250 ml round bottom flask, equipped 

with a cooler condenser (dry ice/ethanol), magnetic stirring bar, gas dispersion tube 

and a thermometer. Excess of ammonia gas was bubbled through the (C2F5)3PO for 

about 20 min. The reaction mixture was kept at temperatures between –30 to –35 °C 

(dry ice/ethanol bath). The reaction end was visually estimated when the resulting 

white product was formed. To complete the reaction, the mixture was kept at –30 °C 

for 10 minutes and then all volatile products were removed under vacuum (10-3 

mbar). 23.1 g of a white solid was obtained. Yield 86 %. Mp: 96 – 98 °C. 
1H NMR (solvent CD3CN, 400 MHz), δ, ppm: 5.3 br. s (NH2). 
19F NMR (solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (2CF3); –124.9 m (2CFa);    

–127.7 m (4CFb); 2JP,Fa  = 79 Hz; 2JP,Fb  = 84 Hz; 2JFa,Fb  = 335 Hz.  
31P NMR (solvent CD3CN, 161.9 MHz), δ, ppm: 12.9 quin,m (P, 2JP,F = 86 Hz). 

 

NMR measurements with mesityloxide 

23.4 mg (0.039 mmol) of H[{(C2F5)2P(O)}2N] was placed in a glass tube (l 20 cm and 

∅ 0.4 cm) under Ar atmosphere in a glove box (O2 < 2 ppm, H2O < 2 ppm) together 

with 2.9 mg (0.03 mmol ∼ 0.76 equiv.) of mesityloxide. Ca. 750 mg of dry SO2 was 

condensed at –196 °C into the tube and flame sealed. After shacking to homogenize 

the solution, the tube was placed into a NMR tube containing benzene–D6 as 

external lock and reference. 13C NMR spectrum was recorded at 25 °C on a Bruker 

Avance 250 MHz spectrometer. 
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IR measurements with trioctylamine 

The IR spectra were recorded with an adjustable path length IR cell (Glenrothes 
RIIK) with KRS-5 windows.  

a. In a typical experiment 201 mg (0.34 mmol) of H[{(C2F5)2P(O)}2N] was placed in a 

flask equipped with a Young valve, with 122 mg (0.34 mmol) of trioctylamine. The 

mixture was allowed to stir one hour and the ionic liquid octyl3NH+FPI- was 

obtained. Infrared spectrum of neat compound measured in Si windows is shown 

in Figure 2.2. 

b. The ionic liquid, octyl3NH+FPI- was placed in a flask equipped with a Young valve 

and dry CCl4 was condensed as solvent. The CCl4 was dried over 4A molecular 

sieves before use. Characteristic spectrum of octyl3NH+FPI- was recorded in the 

CCl4 at the concentration 0.008 mol/L and is shown in Figure 2.2.  

c. 14 mg (0.02 mmol) of Cs[{(C2F5)2P(O)}2N] and 7 mg (0.02 mmol) of trioctylamine 

were placed in a flask equipped with a Young valve. Dry CH2Cl2 was condensed 

as solvent. The mixture was cooled to –70 °C and HCl was added slowly making 

sure that the CsCl was precipitate. The solvent and excess of HCl was pump off 

and a mixture of octyl3NH+FPI- and CsCl was isolated. CCl4 was condensed to 

this mixture and characteristic spectrum of octyl3NH+FPI- indicate ν(N–H) 

frequencies value at 3081 cm-1. 

d. A solution of HN(SO2CF3)2 (1.03 g, 3.66 mmol) in 5 mL of water was added at 

room temperature to trioctylamine (1.28 g, 3.61 mmol). The mixture was left 

stirring over night. The water insoluble material was extracted with CH2Cl2 and 

washed few times with water. After evaporation of CH2Cl2 the residue was dried 

24 h in vacuum at 70 °C. A liquid material (2.1 g) was obtained and the yield was 

92%. The solution of octyl3NH+TFSI- (0.008 mol/L) in CCl4 was prepared using 

the same procedure described above. Characteristic spectra of octyl3NH+TFSI- 

indicate ν(N–H) frequencies value at 3090 cm-1. 
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3. Bis[bis(pentafluoroethyl)phosphinyl]imide salts, 
M[{(C2F5)2P(O)}2N]n, M = Li, Na, K, Cs, Ag, Mg, Zn and 
lanthanoides 

The bis(pentafluoroethyl)phosphinyl group is a strong electron–withdrawing group 

and charge delocalizing and as a consequence of that the acidity of HFPI is high. 

The synthesis of some salts of bis[bis(perfluoroalkyl)phosphinyl]imide and their 

properties are described in this work. The salts with FPI anion was intensively studied 

for several possible applications: (i) the lithium salt can be used as electrolyte for 

lithium ion batteries; (ii) K, Na, Ag salts are possible precursors for ILs (Chapter 4); 

and (iii) lanthanide salts can be used as Lewis acid catalysts, for example, in 

acylation reaction (Chapter 6).  

3.1 M[{(C2F5)2P(O)}2N]n, M = Li, Na, K, Cs, Ag, Mg, Zn 

The imide salts were obtained by neutralization of an aqueous solution of HFPI with 

the corresponding metal oxide, carbonate and hydroxide or by reaction with metals. 

The reactions have been carried out mostly at 0 °C or at room temperature. After 

completion of the reaction, the water was evaporated, and the solid residue was 

dried in vacuum at 60 – 80 °C for about 12 hours to give the pure metal imide. The 

reactions proceed almost quantitatively in all cases.  
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The salts are hygroscopic. The neutral aqueous solutions are hydrolytically 

stable, but under basic conditions they decompose rapidly with evolution of C2F5H. In 

the solid state they are stable up to 200 °C. The FPI salts (exception is AgFPI) 

display a high affinity to organic solvents having O and N donor’s centre.  

Lithium salts with large anions exhibit generally low lattice energies due to its 

anion size and extended delocalization of the negative charge. Specially, Li[TFSI] 

solutions possess high conductivity [35]. Thus, the first goal was to prepare LiFPI as 

an electrolyte for lithium ion batteries. LiFPI (1c) was prepared by reacting Li2CO3 

with HFPI in water at 0 °C in good yields ca. 96% (equation 3.1). The extremely 

hygroscopic colourless compound was dried only by azeotropic distillation with 

(MeO)2CO. The procedure was repeated three times and then the salt was dried in 

vacuum at 40 °C for 2 days. The water content detected by Karl–Fischer titration was 

160 ppm. An undesired by–product (C2F5)2P(O)OLi (< 10 %) was also observed 

during the reaction between LiH and HFPI, in different solvents (dimethoxyethan, 

CH2Cl2 or water) at room temperature.  

Conductivity of LiFPI has been investigated using a 703 Conductometer 
(Knick) in the range at – 20 °C to 80 °C. Figure 3.1 shows how the conductivity of 

the LiFPI solution varies with temperature.  
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Figure 3.1 The conductivity curve for LiFPI (■) in acetonitrile solution (conc 0.3 

mol/L). 
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Table 3.1 presents the conductivity data of different Li salts. The conductivity of 

LiFAP and LiPF6 are higher than the conductivity of LiFPI [56]. This can be probably 

due to the huge size of the FPI anion. Large size anions lead to lower ion mobility 

which results in a lower conductivity.  

 

Table 3.1 Conductivities of various salts in solvent system.  
Conductivity 
(mS/cm)  
              Temp. 

– 20 °C 0 °C 20 °C 40 °C 60 °C 

LiFAPa 0.75 2.01 3.87 6.23 9.08 

LiPF6
b 3.2 6.4 10.5 15.2 19.8 

LiFPIc 2.68 3.63 4.58 5.60 6.67 
aLi[(C2F5)3PF3] in propylene carbonate (conc. 0.5 mol/L); bLiPF6 in ethylene carbonate: dimethyl 
carbonate (1:1; conc. 1 mol/L) [56]; cLiFPI in acetonitrile (conc 0.3 mol/L). 

 

Figure 3.2 shows the electrochemical window for LiFPI. The potential window of 

LiFPI was over 5 V. The irreversible reduction starts at about -2.5 V versus Fc+/Fc 

and oxidation at about 2.6 V.  
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Figure 3.2 Cyclic voltammogram of LiFPI (1c). 
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NaFPI (2c) and CsFPI (4c) were synthesized by neutralization of an aqueous 

solution of HFPI with a solution of NaOH or CsOH·H2O, respectively, in equimolar 

ratio. For instance, an aqueous solution of K2CO3 was added slowly to the solution of 

the HFPI acid. The pH should not exceed 7 – 8 to avoid the decomposition. Silver 

carbonate (powder) reacts with an aqueous solution of HFPI to form AgFPI (5c) 

(equation 3.1). In all cases the pH value of the solutions was controlled (equation 

3.2). 

 

M2CO3(s)  +  2 H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→        

  ⎯⎯⎯→  2 M[{(C2F5)2P(O)}2N](s)  +  CO2(g)  +  H2O(l)   (3.1) 

M = Li, K, Ag 

 

MOH(aq)  +  H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→  M[{(C2F5)2P(O)}2N](s)  +  H2O(l)  (3.2) 

M = Na, Cs 

 

Mg(FPI)2 (6c) and Zn(FPI)2 (7c) salts were prepared by the reaction of HFPI 

with metals Mg or Zn, correspondigly (equation 3.3). These reactions proceed slowly. 

It can be accelerated by warming up of the reaction mixture.  

 

M(s)  +  2 H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→  M[{(C2F5)2P(O)}2N]2(s)  +  H2(g)  (3.3) 

M = Mg, Zn.         

 

Additionally, Mg(FPI)2 (6c) was also prepared from metal oxide, according to 

the equation 3.4. The solid MgO was added to the HFPI acid solution in water. After 

4 hours mixing, the 6c was isolated in near to quantitative yield.  

 

MgO(s)  +  2 H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→  Mg[{(C2F5)2P(O)}2N]2(s)  +  H2O(l) (3.4) 

 

The melting point of the FPI metal salts increase in the following order: LiFPI 

(44 °C) < CsFPI (107 °C) < KFPI (223 °C) < NaFPI (230 °C) according to increasing 

in the lattice energy. AgFPI (Mp = 211 °C) does not fit in this series because Ag+ is 

more covalently bonded to FPI anion The salts with divalent cations exhibit a melting 

point of 112 °C for Mg(FPI)2 and 98 °C for Zn(FPI)2.  
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The thermal stability (Tonset, TGA) of the salts dependens on the strength of the 

cation – anion interaction: CsFPI (380 °C) > KFPI (250 °C) > NaFPI (230 °C). Again 

AgFPI (220 °C) and LiFPI (300 °C) does not fit in this series. For Mg(FPI)2 and 

Zn(FPI)2 a sharp weight loss was observed at about 180 °C. 

The thermal behaviour and stability of the metal salts have been investigated by 

DSC and TGA, as presented, for example, in the Figure 3.3 for NaFPI (2c). The 

visually measured melting points are in agreement with the data presented above 

from DSC measurements. 

 
Figure 3.3  The thermal behaviour of NaFPI: 1 – measured with Netzsch DSC 

(204) instrument and 2, 3 – measured with Netzsch STA (409) 
instrument. 

 
All salts are soluble in water, acetonitrile, acetone and Et2O but insoluble in 

chloroform and hexane.  

3.2 Ln[{(C2F5)2P(O)}2N]3, Ln = La, Eu, Ce, Yb 

The interest on rare earth compounds as catalysts in organic chemistry has grown 

considerably during the past twenty years. Lanthanide trifluoromethanesulfonate – 

Ln(OTf)3 and lanthanide bis(perfluoroalkyl)sulfonyl amide – (Ln(NTf2)3) have been 

described as strong Lewis acids and as very efficient catalysts in Diels–Alder [57, 

58], Michael [59], Friedel–Crafts [60, 61] and Mukaiyama reactions [62].  
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The lanthanide bis[bis(pentafluoroethyl)phosphinyl]imides (Ln(FPI)3): Ce (FPI)3 

(7c), Eu (FPI)3 (8c), Yb(FPI)3 (9c), La(FPI)3 (10c) were prepared from HFPI acid with 

metal oxides or carbonates in water, according to equations 3.5 and 3.6. After slow 

evaporation of the water on a rotary evaporator, the salts can be isolated and dried at 

elevated temperature under high vacuum. It should be noted that, using La2CO3 or 

LaCl3 in aqueous solution, formation of La[(C2F5)2PO2]3 as a by–product was 

observed. The activation of P=O bond and nucleophilic attack on the P atom can be 

the reason of La[(C2F5)2PO2]3 formation.  

 

Ln2O3(s)  +  6 H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→   

⎯⎯⎯→  2 Ln[{(C2F5)2P(O)}2N]3(s)  +  3 H2O(l)     (3.5) 

Ln = La, Eu.  

 

Ln2(CO3)3(s)  +  6 H[{(C2F5)2P(O)}2N](aq)  ⎯⎯⎯→       

   ⎯⎯⎯→  2 Ln[{(C2F5)2P(O)}2N]3(s)  +  3 CO2(g)  +  3 H2O(l)  (3.6) 

Ln = Ce, Yb. 

 

The lanthanide salts with FPI anion are colourless stable solids at room 

temperature. Almost all of them are hygroscopic. For example, La(FPI)3 takes up to 7 

% of water after 2 months exposure to air. Several attempts to grow crystals led to 

the formation of only amorphous precipitates. Slow removal of water/solvents, 

accomplished in desiccator under a nitrogen atmosphere by using P4O10 as a drying 

agent, gave only colourless powder with more than 2000 ppm of water. It was 

impossible to isolate suitable single crystals for an X–ray diffraction analysis.  

Ln(FPI)3 are soluble in acetonitrile, acetone and Et2O but insoluble in chloroform 

and hexane. Thermogravimetric analysis was used to characterize the thermal 

stability of the Ln(FPI)3 salts. After drying in high vacuum at 60 °C, small portions (ca. 

15 – 20 mg) of four different lanthanide salts were used for TG and DSC 

measurements. TG studies indicate that the decomposition of Ln(FPI)3 occurr in two 

steps. The first stage relates to the dehydration (near 8 % mass lost), followed by the 

decomposition of Ln(FPI)3 at 160 – 210 °C.  

The study of catalytic activity of some FPI salts is presented in chapter 7. 
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3.3 Experimental part  

General procedure: 
The salts were prepared by reacting aqueous solutions of HN[P(O)(C2F5)2]2 at 0 °C 

with equal molar amounts of carbonate, oxide or hydroxide solutions in water. The 

vigorous stirring of the reaction mixture is important to prevent local basic conditions, 

to avoid the anion decomposition under formation of C2F5H. Neutral aqueous solution 

was evaporated and the solid residue was dried under vacuum (<10-2 mbar) at 60 – 

80 °C for 12 hours.  

The NMR spectra of all salts are almost identical: 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 76 Hz; 2JP,Fb  = 84 Hz; 2JFa,Fb  = 322 Hz.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.8 quin,m (2P, 2JP,F = 80 Hz). 

 
Lithium bis[bis(pentafluoroethyl)phosphinyl]imide, Li[{(C2F5)2P(O)}2N] (1c) 

Under vigorous stirring, 0.702 g (9.4 mmol) of Li2CO3 powder was slowly added to 

the aqueous solution of HN[P(O)(C2F5)2]2 (11 g, 18.8 mmol, in 20 mL of H2O) cooled 

at 0 °C. The resulting neutral solution was left stirring over night to ensure complete 

reaction (checked pH = 7.1). The water was removed on a rotary evaporator and 20 

mL of (MeO)2CO was added. After 2 hours stirring, the solvent/water mixture was 

distilled off at 90 °C. The procedure was repeated 3 times. After drying for 48 hours 

in vacuum at 40 °C, 10.6 g of a very hygroscopic white solid was obtained (160 ppm 

of residual water). Yield: 96%. Mp: 44 °C.  

 

Sodium bis[bis(pentafluoroethyl)phosphinyl]imide, Na[{(C2F5)2P(O)}2N] (2c) 

A solution 0.086 g (2.1 mmol) of NaOH in 3 mL of H2O was slowly added to a 

solution of HN[P(O)(C2F5)2]2 (1.260 g, 2.1 mmol) in 3 mL of H2O, by stirring at 0 °C. 

The resulting neutral solution was evaporated and dried in vacuum, yielding 1.250 g 

of 2c as a hygroscopic microcrystalline solid. Yield: 96%. Mp: 230 °C.  

Elemental analysis calcd. (%) for C8F20NO2P2Na (M = 607.0 g/mol): C 15.83, N 2.31; 

found: C 15.76, N 2.40.  
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IR (KBr pellet): ν (cm-1) = 1357 (vs); 1312 (vs); 1302 (vs); 1224 (vs); 1157 (vs); 1110 

(vs); 1003 (vs); 976 (s); 758 (m); 752 (w); 631 (s); 599 (s); 569 (s); 516 (s); 477 (s); 

424 (m). 

 

Potassium bis[bis(pentafluoroethyl)phosphinyl]imide,  

K[{(C2F5)2P(O)}2N] (3c) 

0.33 g (2.3 mmol) of K2CO3 in H2O (3 mL) was added to the solution of 2.80 g (2.3 

mmol) of HN[P(O)(C2F5)2]2 in H2O (5 mL). Reaction mixture was stirred as described 

above. The resulting solution was concentrated by rotary evaporator and dried in 

vacuum (<10-2 mbar) at 60 °C overnight. This yielded 2.95 g (98%) of the white, 

hygroscopic (3c) compound. Mp: 223 °C.  

Elemental analysis calcd. (%) for C8F20NO2P2K (M = 623.1 g/mol): C 15.42, N 2.25; 

found: C 15.29, N 2.34.  

MS – CI for K+[(C2F5)2P(O)]2N-: m/z 69 (CF3); 623 (M+). 

 

Cesium bis[bis(pentafluoroethyl)phosphinyl]imide,  

Cs[{(C2F5)2P(O)}2N] (4c) 

The solution of 0.72 g (4.2 mmol) of CsOH·H2O in 5 mL of H2O was added to 2.5 g 

(4.2 mmol) HN[P(O)(C2F5)2]2 in 5 mL of H2O as described above. The resulting 

neutral solution was evaporated and dried in vacuum. 2.90 g of 4c as a 

microcrystalline solid was obtained. Yield: 94 %. Mp: 107 °C. 

Elemental analysis calcd. (%) for C8F20NO2P2Cs (M = 716.9 g/mol): C 13.40, N 1.95; 

found: C 13.51, N 2.10.  

 

Silver bis[bis(pentafluoroethyl)phosphinyl]imide,  
Ag[{(C2F5)2P(O)}2N] (5c) 

0.55 g (2 mmol) of solid Ag2CO3 was added to 2.04 g (3.5 mmol) of HN[P(O)(C2F5)2]2 

dissolved in 10 mL of H2O. The suspension was stirred at room temperature for 1 

hour in darkness. Filtration, evaporation and drying in vacuum (<10-2 mbar) gave 

2.17 g of 5c. Yield: 90 %. Mp: 212 – 214 °C. 

Elemental analysis calcd. (%) for C8F20NO2P2Ag (M = 691.8 g/mol): C 13.89, N 2.02; 

found: C 13.96, N 2.24.  
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Magnesium bis[bis(pentafluoroethyl)phosphinyl]imide, 

Mg[{(C2F5)2P(O)}2N]2 (6c) 

A. Mg powder (0.035 g, 1.44 mmol) was added to the solution of HN[P(O)(C2F5)2]2 

(1.370 g, 2.3 mmol) in 5 mL of water. The mixture was stirred at room temperature for 

1 day. After filtration, the water was evaporated on a rotary evaporator. The white 

hygroscopic powder (6c) was obtained by drying in vacuum at 70 °C for 1 day. Yield: 

96 %. Mp: 112 °C.  

B. MgO (0.1 g, 2.4 mmol, excess) was added to the solution of HN[P(O)(C2F5)2]2 (2.0 

g, 3.4 mmol) in 10 mL of water. The mixture was stirred at room temperature for 4 

hours. After filtration, water was evaporated by rotary evaporator. The white powder 

was obtained by drying in vacuum at 70 °C for 1 day. Yield: 98 %. Mp: 112 °C. 

Elemental analysis calcd. (%) for C16F40N2O4P4Mg (M = 1192.3 g/mol): C 16.12, N 

2.35; found: C 15.81, N 2.62.  

 

Zinc bis[bis(pentafluoroethyl)phosphinyl]imide, Zn[{(C2F5)2P(O)}2N]2 (7c) 

Zn (dust) was activated with 2% aqueous HCl solution, filtered and washed again 

with water. Finally, Zn was washed with acetone and ether (the solvents were 

removed each time by filtration). After drying in vacuum, Zn (0.24 g, 3.6 mmol) was 

added slowly to the solution of HN[P(O)(C2F5)2]2 (1.72 g, 2.9 mmol) in H2O (5 mL). 

The reaction mixture was stirred at room temperature for 5 h. Filtration, evaporation 

and drying in vacuum (<10-2 mbar) gave 1.7 g of 7c. Yield: 95 %. Mp: 87 °C. 

Elemental analysis calcd. (%) for C16F40N2O4P4Zn (M = 1233.4 g/mol): C 15.58, N 

2.27; found: C 15.58, N 2.30.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.4 quin,m (2P, 2JP,F = 81 Hz). 

 

Cerium bis[bis(pentafluoroethyl)phosphinyl]imide, Ce[{(C2F5)2P(O)}2N]3 (8c) 

Ce2(CO3)3·xH2O (0.1 g, excess) was added to the solution of HN[P(O)(C2F5)2]2 (0.6 g, 

1.02 mmol) in H2O (5 mL) and the reaction mixture was stirred at room temperature 

for 4 hours. Filtration, evaporation and drying in vacuum (<10-2 mbar) gave 0.61 g of 

hygroscopic 9c. Yield: 95%.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 8.1 m (2P). 

Elemental analysis calcd. (%) for C24F60N3O6P6Ce (M = 1892.1 g/mol): C 15.23, N 

2.22; found: C 14.65, N 2.28.  
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Europium bis[bis(pentafluoroethyl)phosphinyl]imide, Eu[{(C2F5)2P(O)}2N]3 (9c)  

Eu2O3 (0.1 g, 0.28 mmol) was added to the solution of HN[P(O)(C2F5)2]2 (1.0 g, 1.7 

mmol) in H2O (5 mL). The reaction mixture was stirred at room temperature for 12 

hours. The solution was concentrated by rotary evaporator and then dried in vacuum 

(<10-2 mbar) at 60 °C overnight. Yield: 94%.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: – 45.6 m (2P). 

Elemental analysis calcd. (%) for C24F60N3O6P6Eu (M = 1903.9 g/mol): C 15.14, N 

2.21; found: C 14.92, N 2.32.  

 

Ytterbium bis[bis(pentafluoroethyl)phosphinyl]imide, Yb[{(C2F5)2P(O)}2N]3 (10c)  

Yb2O3 powder (0.25 g, 0.63 mmol) was added to the solution of HN[P(O)(C2F5)2]2 

(1.87 g, 3.1 mmol) in H2O (8 mL). The reaction mixture was stirred at 43 °C for 2 

days. After filtration, water was evaporated at rotary evaporator and residue was 

dried in vacuum (<10-2 mbar) at 30 °C overnight. Yield: 98%.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: – 16.1 quin,m (2P, 2JP,F = 83 

Hz). 

Elemental analysis calcd. (%) for C24F60N3O6P6Yb (M = 1925.0 g/mol): C 14.97, N 

2.18; found: C 14.81, N 2.04.  

 

Lanthanum bis[bis(pentafluoroethyl)phosphinyl]imide,  

La[{(C2F5)2P(O)}2N]3 (11c) 

La2O3 powder (0.14 g, 0.42 mmol) was added to the solution of HN[P(O)(C2F5)2]2 

(1.32 g, 2.2 mmol) in 10 mL of H2O. The mixture was stirred at room temperature for 

1 day. A viscous liquid phase was formed on the bottom of the flask. After filtration 

under vacuum, the aqueous phase was separated from the mixture. The residue (the 

organic layer) was concentrated under vacuum and dried in vacuum (<10-2 mbar) at 

40 °C overnight.  
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: – 3.4 quin, m (2P, 2JP,F = 87 

Hz). 

Elemental analysis calcd. (%) for C24F60N3O6P6La (M = 1890.6 g/mol): C 14.24, N 

2.22; found: C 15.02, N 2.20. 
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4. Ionic liquids with the FPI anion  

Ionic liquids (ILs) are very promising class of innovative compounds which attracted 

much attention in the last decade. The huge number of papers and patents currently 

being published reflects both academic and industrial interest in using ILs in diverse 

areas. This interest is due to unique properties of ionic liquids: negligible vapour 

pressure, thermal and electrochemical stability, conductivity, miscibilities with water 

and other solvents, ability to dissolve organic, inorganic and polymeric materials. 

In the following chapter the synthesis and properties of ILs with the 

bis[bis(pentafluoroethyl)phosphinyl]imide – anion are described. New low melting and 

hydrophobic ILs containing the FPI anion and imidazolium, ammonium, pyrrolidinium, 

pyridinium, phosphonium or benzothiazolium cations were prepared and 

characterized. Density, viscosity, melting point, glass transition temperature, 

decomposition temperature and conductivity were measured for these new materials.  

4.1 Introduction in ionic liquids (ILs)  

Ionic liquids are defined as materials containing only ions without any neutral 

compounds and having a low melting point, usually less then 100 °C [63]. Over time 
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the term of ionic liquids is now generally associated with the salts having weakly 

coordinating anions and which are liquid at room temperature.  

The discovery of ionic liquids can be dated to the last century. The synthesis of 

nitrite salts of ethylamine, dimethylamine and trimethylamine were reported in 1911, 

which, however, were not stable [64]. Later, in 1914, the synthesis of first stable room 

temperature IL, ethylammonium nitrate, [EtNH3][NO3] (Mp = 12 °C), as a “red oil” was 

described [65]. In 1951, the AlCl3–based ILs were developed by Hurley and Wier Jr. 

at Rice Institute in Texas [66]. The research groups of the U.S. Air Force Academy 

became interested in that work and investigated the spectroscopic and 

electrochemical properties of these ILs [66, 67]. In 1967 the liquid salt based on 

tetrahexyl ammonium benzoate was reported [68]. Hussey and Laher used for the 

first time tetraalkylpyridinium tetrahalidoaluminate, [Rpy][AlCl3X] as solvents [69]. 

The first generation of ILs, chloroaluminates–ILs, are very hygroscopic, air–

sensitive compounds, and therefore difficult to handle. A few years later, these 

problems were solved when new air/water stable ILs were prepared, e.q. 1–ethyl–3–

metylimidazolium tetrafluoroborate, [emim][BF4], 1–ethyl–3–metylimidazolium 

hexafluorophosphate, [emim][PF6] and 1–ethyl–3–metylimidazolium trifluoracetate, 

[emim][CF3CO2] [70]. 

Afterwards, the number of new ILs reported has exploded. Many different ILs 

have been prepared by choosing different combination of ions, or by modifying the 

chemical structures of the constituent ions (Table 4.1). The organic cations are 

mainly derivatives of imidazolium, pyridinium, pyrrolidinium, thiazolium, oxazolium, 

ammonium, phosphonium and sulfonium. Typical inorganic anions are e.g. 

tetrachloroaluminates, hexafluorophosphate and tetrafluoroborate. Typical organic 

anions are perfluoroalkylfluorophosphate, alkylsulfate, alkylsulfonate, 

bis[(trifluoromethyl)sulfonyl]imide, p–toluenesulfonate (tosylate) and trifluoroacetate. 

Some of ILs have a zwitterionic structure, in which both cation and anion are 

covalently bounded. 
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Table 4.1 Examples of common cations and anions used for the synthesis of ILs.  
 

   

  

N N
R2R1

      

N R1

             

N

R2

R1

 
                imidazolium                        pyridinium                                    pyrrolidinium 

N

R1

R4 R2

R3                    

P

R1

R4 R2

R3                    

S

R1

R3 R2  
              ammonium                                 phosphonium                                 sulfonium 

 

[PF6-n(RF)n] [B(CN)4] PF6 BF4CF3CO2  
      perfluoroalkyl                tetracyano             trifluoro                hexafluoro        tetrafluoro 

fluorophosphates (n=1-3)   borate                   acetate                 phosphate        borate  

SF3C N

O

O

S

O

O

CF3

                           AlCl4 Al2Cl7  
bis[(trifluoromethyl)sulfonyl]imide                                           aluminate                 (Inorganic) 

SO O

O

O

R

    

SR O

O

O     

S

O

O

O

 
           alkylsulfate                          alkylsulfonate                    tosylate                      (Organic)

 
General method to prepare ILs is based on quaternization of an amine, a 

phosphine or a heterocyclic N–ring with an alkylating reagent (R’X). The synthesis of 

ILs can be performed in two steps: formation of the desired cation, e.g. imidazolium, 

pyridinium, ammonium, phosphonium followed by anion exchange as it is presented 

in Figure 4.1. The direct quaternization process is the preferred method for the 

production of ILs. The preparation of some ILs under microwave irradiation was also 

developed [71, 72]. But, if IL with desired anion–cation combination can not be 

formed by direct synthesis, an anion exchange reaction is needed. This 

complementary route is the most used method in this work. The metathesis reaction 
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represents an interesting and potentially feasible alternative in the synthesis of a 

“task–specific” IL [73]. Commonly used ILs can be purchased from several sources: 

Merck KGaA, Sigma–Aldrich, Fluka, Acros Organics, BASF, IoLiTec. 

 

       NR3                       [R’R3N]+X-                                            [R’R3N]+[MXy+1]- 

     1. Metal salt M+A-/MX (precipitation) 

     2. Brønsted acid H+A-/HX (evaporation) 

     3. Ion exchange resin 

      [R’R3N]+A- 

 

Figure 4.1 Synthetic routes for preparation of ILs with ammonium cations.  

 

The unique properties and potential utilities as functional liquids make ionic 

liquids very attractive for the following applications:  

(i) as “designer solvents” (new alternatives for the chemical industry to replace 

the volatile organic compounds) [74, 75, 76]; 

(ii) in catalysis: Diels–Alder reaction [77]; Friedel–Crafts reaction [78, 79] and 

ester formation [80]. The transition metal catalyzed reactions, e.g. hydrogenations 

[81], Heck reaction [82, 83], and oxidations [84], are the major class of catalytic 

chemical reactions carried out in ILs [85, 86]; 

(iii) in biocatalysis [87, 88]; 

(iv) in analytical application, e.g. as stationary phase in gas chromatography 

[89, 90], as additives for the mobile phase in high performance liquid chromatography 

[91] or as electrolytes in capillary electrophoresis [92, 93].  

Figure 4.2 summarizes important properties of ILs and their wide range of 

applications (Sigma – Aldrich) [94].  

 
 
 
 

+ R’X + Lewis acid MXy 
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Figure 4.2 Important properties and applications of ionic liquids. 

4.2 Synthesis of new ionic liquids with the FPI anion  

The syntheses of ILs with the FPI anion were carried out by metathesis reactions, 

similar as it is shown in Figure 4.1, path 1 and 2. The general procedure was as 

followed: the acid (HFPI) or salt MFPI (M = Na, K) and Cat+A– were dissolved 

separately in a minimum quantity of water (some reactions required organic 

solvents). Both aqueous solutions were then mixed together and stirred at room 

temperature (equation 4.1). The obtained FPI ILs are insoluble and stable in water 

and precipitate as a dense bottom phase in the reactions flask. Vigorous stirring is 

essential for the reaction to proceed quantitatively. The bottom phase was separated; 

if necessary extracted with CH2Cl2, and washed several times with water. If a solid 

material is formed, it can be filtered and also washed with water until the test for 

chloride (bromide) with AgNO3 is negative. To avoid any excess of the FPI – acid in 

the IL, the washing water should contain some K2CO3.  
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Cat+A-  +  H[{(C2F5)2P(O)}2N]  ⎯⎯⎯→  Cat+[(C2F5)2P(O)]2N-  +  HA   (4.1) 

A = Cl, Br, OH  
Cat+ = cation (will be further presented).  
 

4.2.1 ILs with imidazolium cations 

Imidazolium [Im] cations are probably the most used cations in the preparation of ILs. 

The positive charge in imidazolium cation is well delocalized. That supports good 

chemical stability of ILs with this cation. The imidazolium system can be easy 

derivatized to vary the properties of ILs.  
The [Im] ILs with FPI anion, [Cnmim]FPI for n = 2 (1d), n = 4 (2d), n = 6 (3d), n 

= 10 (4d), n = 18 (5d), were prepared in good yield using commercially available 

[Im]chloride. By exchanging of halide with the FPI anion, new hydrophobic [Im][FPI 

ILs possessing low viscosity were prepared. The impurities, e.g. organic halide salts, 

halide residues, acid residues, were easily removed from FPI ionic liquids by washing 

with deionized water or with water containing small amount of K2CO3.  

Introduction of the FPI anion into ILs can be carried out with the metal salts 

(MFPI, where M = K, Na) by metathesis reaction (route 1). For example, the 

[emim]FPI (1d) was synthesized by stirring equimol amounts of [emim]Cl with MFPI 

in water at room temperature. The resulting ILs are immiscible with water and forms a 

bottom phase which can be easily separated and purified by washing with water.  

[emim]FPI (1d) was also prepared from ionic liquid with the 

bis(pentafluoroethyl)phosphinate anion [(C2F5)2P(O)O]-. The starting materials were 

dissolved in water and mixed together at room temperature with HFPI (equation 4.2). 

After separation of bottom phase the corresponding FPI IL was obtained in nearly 

quantitative yield. 

 

+ H[{(C2F5)2P(O)}2N]N N
C2H5H3C

N N
C2H5H3C

[(C2F5)2PO2] [(C2F5)2P(O)]2N

+ (C2F5)2P(O)OH

(4.2)  
 

Instead of HFPI the MFPI (M = Na, K) can be used in this synthesis (equation 

4.3).  
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+ M[{(C2F5)2P(O)}2N]N N
C2H5H3C

N N
C2H5H3C

[(C2F5)2PO2] [(C2F5)2P(O)]2N

+ M[(C2F5)2PO2]

(4.3)

M = Na, K  
 

Alkenyl or alkynyl functional groups can be easily introduced into the imidazole 

ring using the quaternization methods [95, 96, 97]. ILs with such imidazolium cations 

are often less viscous than their saturated counterparts and they can be further 

functionalized via addition reactions across the unsaturated bond. 1–allyl–3–

methylimidazolium bromide (6d), was prepared by alkylation of 1–methyl imidazole 

with BrCH2CH=CH2 according to the published procedure [98]. The yield of the yellow 

viscous liquid (6d) was 95%. The new low viscosity IL, 1–allyl–3–methylimidazolium 

FPI (7d), was synthesized in good yield via metathesis reaction starting from 6d. The 

viscosity of 7d (127 mPa·s) is less then that of [emim]FPI (2d) (172 mPa·s).  

Trisubstituted [Im] derivative, 1–n–butyl–2,3–dimethylimidazolium FPI (8d), was 

prepared using the same procedure. The properties of IL 8d confirm that increasing 

the chain lengths and the molecular weight lead to higher melting point and higher 

viscosity. The advantage of such type of ILs is their high thermal stability [99].  

4.2.2 ILs with pyridinium cations  

The synthesis of pyridinium ILs was pioneered by Carpio, (1979) [100]. Two 

pyridinium FPI ILs were synthesized by metathesis reaction in water from N–

alkylpyridinium chloride with HFPI: 1–n–butyl pyridinium FPI (9d) and 1–n–butyl–3,5–

dimethyl pyridinium FPI (10d). The IL 9d is a solid with a melting point of 49 °C. The 

IL 10d is liquid at room temperature probably due to the hindrances in the crystal 

packing caused by CH3 groups. IL 10d shows high thermal stability (300 °C).  

4.2.3 ILs with quaternary ammonium cations 

Quaternary ammonium, [NR3R’] (R, R’ = alkyl), ILs are more electrochemically stable 

that the corresponding [Im] ILs. Furthermore, it was demonstrates that such ILs with 

“robust” anions, such as TFSI and BF4
- are resistant against oxidation and reduction 
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[101, 102]. Simple preparation and low cost of these type of ILs make them attractive 

for possible industrial applications [103, 104].  
In this work different FPI alkylammonium salts were prepared by metathesis 

reactions. Structures and yields are depicted in Table 4.2. The asymmetrical salt (5b) 

was already described in chapter 2. 

 

Table 4.2 Structures and yields of quaternary ammonium FPI ILs.  

Compound R1 R yield, % 

5b H C2H5 79 

11d CH3 CH3 93 

12d C2H5 C2H5 94 R
N

R1

R
R  

13d C4H9 C4H9 85 

 

Pyrrolidinium ILs, in particular TFSI ILs, are useful materials for many 

applications due to low melting points, low viscosities and high electrochemical 

stabilities [105]. Recently, ILs with pyrrolidinium cations were investigated as surface 

active agents [106]. Burrell et al. (2007) reported a simple method for producing high 

quality of ILs in large scale using Na+A- (where A-= BF4, TFSI) [107]. That is the 

reason for our interest to prepare FPI ILs with pyrrolidinium cation. 1–n–butyl–1–

methylpyrrolidinium FPI (14d) was synthesised in good yield (84 %) reacting HFPI 

with 1–butyl–3–methylpyrrolidinium chloride.  

In an attempt to gain more information about the properties of ILs with the FPI 

anion, the syntheses of ILs with other functional groups attached to the pyrrolidinium 

cation was investigated. The reaction according to equation 4.4 was carried out at 

room temperature in deionized water. The mixture was stirred for some minutes until 

a bottom liquid phase was formed. Then, it was separated and washed two times 

with deionized water. During this procedure a solid product was formed. According to 

NMR spectroscopy and X–ray diffraction, the ester group was hydrolyzed during the 

synthesis, resulting in the formation of 15d. The hydroxyl functional group can 

provide the possibility for further derivatisation [108]. 
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N

O C

O + H[{(C2F5)2P(O)}2N]

Br [(C2F5)2P(O)]2N

+ HBr + CH3COOH

(4.4)

N

OH
(15d)

+ H2O

 
Recently, Lee et al. (2006) showed that the introduction of an ester functional 

group into the cations of ILs significantly improved their thermal and electrochemical 

properties [109]. Therefore, N–(3–ethoxy–3-oxopropy)–N–methyl pyrrolidinium FPI 

(16d) was prepared according to equation 4.5 (yield 72%). The very viscous liquid, 

16d exhibits a high thermal stability (300 °C). 

 

N
+ H[{(C2F5)2P(O)}2N]

CF3SO3 [(C2F5)2P(O)]2N

+ CF3SO3H

(4.5)

O

O

C2H5

(16d)

N

O

O

C2H5  
 

Guanidinium is another type of cation which was used in preparation of 

guanidinium FPI (17d) ionic liquid (equation 4.6). The IL 17d is a very hygroscopic 

solid with a melting point of 47 °C.  

 

[(C2F5)2P(O)]2N- CO2
- H2O

(4.6)(17d)

C
NH2H2N

NH2

+ 2 H[{(C2F5)2P(O)}2N]C
NH2H2N

NH2

2

CO3
2 2

 

4.2.4 ILs with quaternary phosphonium cations  

In the last years it was demonstrated that the imidazolium cation can degrade under 

basic condition (i.e. by action of Grignard, organolithium and amide – reagents) [110] 

and is susceptible to aromatic substitution reactions [111]. As a consequence, in the 

last years, phosphonium [R3R’P] ILs are more and more investigated [112, 113, 114]. 

Many publications devoted to study of these ILs and their properties are reported, by 
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the reason that they are: (i) less expensive than those based on imidazolium cation ; 

(ii) can be used as recyclable media for Pd–mediated cross–coupling reaction [115, 

116]; (iii) thermally very stable [112, 117]; (iv) stable towards strong basic reagents 

[110] and (v) commercially available in a big scale and at low cost (www.aldrich.com) 

[94].  

In this work, the [R3R’P]FPI ILs were synthesized and their properties were 

investigated.  

 

Table 4.3 Structures and yields of quaternary phosphonium FPI ILs. 

Compound R1 R yield, % 

18d C4H9 C4H9 86 

19d C6H5 CH2C6H5 75 R1

P

R

R1

R1  20d C6H13 C14H29 86 

 

4.2.5 ILs with other cations  

Benzothiazolium salt with the FPI anion (21d) was obtained as a light yellow powder 

in good yield (78 %) by reaction of the benzothiazolium bromide with HFPI in water at 

low temperature (0 °C).  

 

 

 

 

 
 
 

4.3 Quality aspects of ILs  

The presence of impurities influence essentialy the properties of ILs. Major impurities 

are organic salts, halide and acid residues. They are the result of incomplete 

reactions. Usually, the main impurity in [Im] ILs is methylimidazole, which is quite 

difficult to remove from the product. Organic impurities can be removed by distillation 

S

N

[(C2F5)2P(O)]2N

(21d)
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or extraction with diethyl ether, dichloromethane, dioxane or ethyl acetate. Halides 

are probably the most common impurities of ILs. They are strongly solvated in ILs 

making them difficult to remove completely. Halide impurities have a detrimental 

effect on transition– metal catalyzed reactions, e.g. hydrogenation [118, 119] or Heck 

type reactions [82]. Amount of residue of water depends on the nature of the ILs. 

Some of them require a special drying procedure and/or handling only in a glove box.  

The presence of impurities affect the properties of ILs (e.q.: Mp, viscosity or 

colour) [120] and some applications (e.g. rate of catalytic reactions, corrosive effects) 

[121, 122]. For example, for [emim]BF4 of different purity five different melting points 

are reported: 15 °C [70], 5.8 °C [123], 12.5 °C [124], 11 °C [125], 14.6 °C [126] and 

for [emim]TFSI three different melting points: –17°C [127], –15 °C [128], –21°C [38].  

In conclusion, the quality of ILs must be checked prior to use by different 

analytical methods: NMR [129, 130], LC/MS (ESI+ and ESI-) [92, 131], IR and 

elemental analysis. The chloride content can be detected by titration with AgNO3 

[132], by ion chromatography [133] or by chloride–sensitive electrodes [134]. Small 

amounts of water, which cannot be detected by 1H NMR, can be measured by Karl – 

Fisher titration.  

All ILs presented in this work were analysed by 1H, 19F, 31P NMR. For some ILs 

also 13C NMR. Spectra were recorded on a Brucker 400 and 600 MHz spectrometer 

in CD3CN or CDCl3 as solvent and lock. The chemical shifts are reported in ppm on 

the δ scale calculated from internal standard (see experimental part).  

ILs with the FPI anion were also identified using elemental analysis and some of 

them were analyzed with electrospray ionization mass spectrometry (ESI–MS). In all 

cases the strong peaks appear belongs to the parent cation and anion. 

ILs with the FPI anion may content (i) halide impurities (ii) water and (iii) traces 

of other ionic impurities, in particular the HFPI acid from incomplete metathesis 

reaction. 

Halide contents higher than 50 ppm were determined by titration with AgNO3. 

Ion cromatography was used to measure low concentration of halide impurities in ILs. 

The content of chloride or bromide in all synthesized ILs was below 50 ppm, namely 

(halide/ppm): 1d (5); 2d (30); 3d (7); 4d (3); 5d (19); 7d (7); 8d (9); 9d (9); 10d (13); 

11d (3); 12d (3); 13d (7); 14d (9); 15d (5); 16d (5); 17d (5); 18d (45); 19d (7); 20d 

(14); 21d (5).  
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Almost all FPI ILs are hydrophobic and their water content was reduced by 

drying at elevated temperature, in vacuum, for at least 12 h. The temperature should 

not exceed 80 °C. Higher temperature can cause a colourization of ILs. The water 

content of FPI ILs was in ppm: 1d (20); 2d (40); 3d (45); 4d (48); 5d (13); 7d (32); 8d 
(42); 10d (43); 14d (42); 15d (48); 17d (28); 20d (30).  

Solid FPI ILs contain water typically between 20 to 1000 ppm (0.002 to 0.1 

mass %) after drying. An efficient procedure to reduce the water content in these ILs 

is to dissolve the solid in dry dioxan or ethanol and then to distill off the solvent. The 

procedure can be repeated several times. In this manner, for example, the water 

content in [Et4N]FPI was reduced from 1280 ppm to 12 ppm.  

Some of FPI ILs are hygroscopic. For example, [emim]FPI takes up 8780 ppm 

of water after 3 weeks at air exposure.  

Recently it was shown that IR spectroscopy can provide detailed information on 

the nature of the interaction between water and ILs [135]. As it can be seen in Figure 

4.3, the broad asymmetric/symmetric stretching bands of water are found in the 3300 

– 3700 cm-1 region. The position and intensity of these bands depend on water 

concentration in ILs.  

 
Figure 4.3 The IR spectrum of [emim]FPI showing the two stretching frequencies 

of water. 
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Table 4.4 presents the vibrational frequencies of the [hmim]Cl, [hmim]FPI and 

for comparison HFPI. The IR spectra for [hmim] cation coincide well with the results 

obtained by Berg et al., (2005) [136]: the C–H vibrations of the ring occur at 3142 and 

3062 cm-1 in the chloride salt. In our measurements these bands are shifted to 3139 

and 3045 cm-1 for [hmim]Cl and to 3156 and 3057 cm-1 for [hmim]FPI. The peak 

positions and relative band intensities are influenced by hydrogen bonding between 

anion and hydrogen atoms of imidazolium ring. The corresponding spectra are 

shown in Figure 4.4.  

Table 4.4 Experimental spectra bands of the [hmim]Cl, [hmim]FPI and HFPI.  

Compound 
(Method) ν/cm-1 
[hmim]Cl 

(ATRa) 
3139 (m); 3045 (br. s); 2956 (s); 2932 (vs); 2859 (s); 2741 (w); 1643 
(w); 1568 (s); 1462 (s); 1432 (br. m); 1379 (m); 1336 (m); 1304 (br. w); 
1170 (vs); 1121 (w); 1093 (w); 1021 (w); 889 (m); 831 (m); 794 (m); 
765 (m); 735 (m); 698 (w); 653 (s); 624 (vs); 599 (vw); 502 (w); 417 
(vw). 

[hmim]FPI 
(ATRa) 

3156 (w); 3057 (br. w); 2965 (w); 2939 (w); 2872 (br. w); 1575 (m); 
1387 (s); 1302 (s); 1265 (vs); 1212 (vs); 1142 (vs); 983 (s); 885 (br. w); 
832 (w); 749 (m); 699 (vw); 627 (m); 595 (m); 562 (s); 507 (s); 476 (s); 
427 (m).  

HFPI 
(ATRb) 

1388 (br. m); 1301 (s); 1215 (vs); 1144 (vs); 1125 (br. m); 998 (m); 978 
(m); 780 (m); 757 (w); 733 (w); 639 (m); 621 (br. w); 597 (m); 565 (s); 
507 (br. s); 493 (br. s); 475 (br. s); 427 (m).  

a Liquid/b Solid - neat compound; s = strong, m = medium, w = weak, v = very, br. = broad.  
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Figure 4.4 ATR–IR spectra of [hmim]Cl, HFPI and [hmim]FPI measured with an 

HARRICK, MVP StarTM with a diamond as the ATR crystal.  
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Almost all ILs with the FPI anion are colourless compounds. Some of them are 

yellowish due to impurities in the precursors. Decolourization of FPI ILs can be 

achieved with active charcoal, similar to the procedure decribed in the literature 

[107]. Typically, the FPI IL is dissolved in ethanol and small amounts of active 

charcoal are added. The mixture left stirred and heated at 60 °C. After one day, the 

solution is cooled down to room temperature, filtered and the solvent is evaporated. If 

necessary, the decolorizing process is repeated.  

4.4 Physical and chemical properties of ionic liquids with the FPI 
anion 

4.4.1 Hydrolytic stability of FPI ionic liquids  

The FPI ILs are stable against hydrolysis in water at room temperature for more than 

two months. However, after keeping an aqueous solution of [emim]FPI (1d) for 5 

days at 100 °C a small signal belongs to the bis(pentafluoroethyl)phosphinate can be 

observed in the 19F NMR spectrum of this solution. 
Under basic conditions (6% aqueous KOH) at room temperature the hydrolysis 

of [emim]FPI proceeds much faster. Within 10 days about 40% of the IL is hydrolyzed 

to the phosphinate.  

4.4.2 Viscosity and density 

The viscosity is an important property of ILs, because it strongly influences the 

diffusion of species, which are dissolved or dispersed in the IL. This is especially 

important for electrochemical applications. In general, the viscosities of ILs are much 

higher than the viscosity of common organic solvents and are strongly influenced by 

cation–anion interactions, hydrogen bonding, as well as by the coordinating ability 

and symmetry of the ions [137]. 
It should be mentioned that the presence of water or other impurities (organic 

solvents) reduces the viscosity of ionic liquids substantially. Therefore, the water 

content in all FPI ILs are carefully controlled by Karl–Fischer titration prior to viscosity 

measurement, as discussed in Section 4.3. In all studied ionic liquids the water 

content was below 50 ppm which should not have a substantial influence on the 

viscosity. To avoid the influence of the halide impurities, all ILs were purified as 
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described above, until the halide content was less that 30 ppm, controlled by ion 

chromatography. 

ILs with the FPI anion possess kinematic viscosities which are comparable to 

the viscosities of ILs with the FAP anion or other phosphate anions [138]. For 

example, the viscosities data of [hmim] ILs with different anions are presented in 

Table 4.5. Anyway, all ILs having pefluoroalkyl groups bonded to phosphorus ILs 

show low kinematic viscosities in comparison to [hmim]PF6 despite of their bulky 

molecule. Hence, the viscosity of ILs is dominated by the nature of the anion, in 

particular on its coordination ability.  

 

Table 4.5 Viscosity and density data for some ILs with different anions. 

[hmim]X Kinematic viscosity
mm2/s (at 20 °C) 

Density 
g/cm3 

[hmim]Cl 7453 1.05 

[hmim][PF6] 548 1.30 

[hmim][BF4] 195 1.15 

[hmim][(C3F7)3PF3] 227 1.62 

[hmim][{(C2F5)2P(O)}2N] 103 1.54 

[hmim][(C2F5)3PF3] 74 1.56 

[hmim][(C2F5)2PF4] 61 1.47 

[hmim][C2F5PF5] 74 1.40 

[hmim][(CF3SO2)2N] 44 1.37 

 

In the series [Cnmim]FPI with different alkyl groups (n = 2, 4, 6) the viscosities 

(in mPa·s) are very similar: [emim]FPI (1d) has a viscosity  of 171, [bmim]FPI (2d) 

151, and [hmim]FPI (3d) 159 (Figure 4.5) [139]. For these three ionic liquids the 

influence of the cation size on the viscosity is minimal, because the bulky FPI anion 

occupies the major volume in the ionic liquid and carries the largest part of the molar 

mass (Table 4.6). The viscosity also decreases with introduction of unsaturated 

groups into side chain of alkyl-imidazolium cation: e.g. 1–allyl–3–methylimidazolium 

FPI (7d) has 127 mPa·s, less than of [emim]FPI (1d).  
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Table 4.6 Dynamic and kinematic viscosity and density of ILs with the FPI anion. 

Ionic liquid M.W. Part of FPI 
anion in the 
molecular 
weigh of IL % 

Dynamic 
viscosity 
η/mPa·s 
(20 °C) 

Kinematic 
viscosity 
ν/mm2·s-1 
(20 °C) 

Density 
ρ/g·cm-3 
 

[emim]FPI 695.17 84.0 171 102 1.68 

[bmim]FPI 723.22 80.7 151 95 1.59 

[hmim]FPI 751.28 77.7 159 103 1.54 

[dmim]FPI 807.38 72.3 199 137 1.45 

[omim]FPI 919.60 63.5 376 285 1.32 

[bmpl]FPI 726.27 80.4 325 206 1.58 

[p(h3)t]FPI 1061.82 55.0 536 443 1.21 

 

Recently it was shown that there is a strong relationship between the molecular 

volume Vm of ILs and their viscosity, conductivity and density [140]. According to 

equation 4.7 the volume of the FPI anion is estimated to be 0.467 nm3 by using Vm = 

0.58 nm3 (available from single crystal X–ray diffraction) of [(CH3)4N][{(C2F5)2P(O)}2N] 

and the volume for the [(CH3)4N]+ cation Vion(C+) = 0.113 nm3  [141]. This anion 

volume is double than that of [TFSI]– (0.232 nm3) [142]. The large size of the FPI 

anion influences the viscosity of ILs with this anion (Table 4.6).  

 

Vm = Vion (A-) + Vion (C+) (4.7) 

 
Figure 4.5 presents the viscosity of different FPI ILs plotted as a function of 

temperature. The difference in the viscosities of FPI ILs with various cations becomes 

very small at 80 °C. It looks that above 80 °C the weak interactions between FPI 

anion and organic cations are completely broken and the viscosity of FPI ILs 

practically doesn’t depend on the size of the cation anymore. In this critical point 

(above 80 °C) the viscosities of different ILs become very similar. 
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Figure 4.5 Viscosity of a series of FPI ILs as a function of temperature. 

 

 The density of FPI ILs decreases slowly with increasing the length of the alkyl 

chain (Table 4.6). In general, the density of ILs depends on molar mass. ILs with 

heavier atoms tend to be more dense than those with lighter atoms (Table 4.5). 

Again the dominant influence of the bulky and heavy FPI anion on the density of ILs 

with this anion is evident (Table 4.6).  

4.4.3 Melting point and glass transition temperature 

Measurements of phase–transition temperatures and heat capacities were carried 

out with a Netzsch DSC, model 204 and a Netzsch STA thermal gravimetric 

analyzer, model 409. The data were evaluated using the Netzsch Protens 4.2 

software. A temperature range between –120 and 600 °C with a heating rate of 10 

°C/min under dry N2 was employed. The glass transition temperature was determined 

to be a midpoint of a heat capacity range, whereas the melting and crystallization 

temperature were determined as the onset of the transition. For visual determinations 

of the melting point a SMP 10 STUART instrument was used. 

The melting points for some FPI ILs are presented in Table 4.7. It is evident that 

by reducing the symmetry of the cations, an ionic liquid with a low melting point can 

be obtained. Also, presence of the functional group in the alkyl chain can influence 

the melting point: e.g. for N–(2–hydroxyethyl)–N–methylpyrrolidinium FPI (15d) mp = 
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77 °C and N–(3–ethoxy–3-oxopropy)–N–methylpyrrolidinium FPI (16d) mp = 13 °C 

were observed. Small differences in the melting point measured by means of these 

three different instruments were notable, but not higher than ± 2 °C. Figure 4.6 shows 

characteristic DSC curves for three different ILs with the FPI anion. 

 

Table 4.7 The melting points (Tm) for some solid salts with the FPI anion. 

Compound DSCa 

(Tonset/°C)
DSCb 

(Tonset/°C )
Visual 
(Tm/°C) 

[Me4N]FPI (11d) 100 103 100 

[Et3NH]FPI (5b) 106 104 106 

[Et4N]FPI (12d) – – 46 – 47 

[Bu4N]FPI (13d) 151 151 150 – 151 

[Bu4P]FPI (18d) 143 145 144 – 145 

[(C6H5)3P(CH2C6H5)]FPI(19d) 108 108 109 – 110 

[C(NH2)3]FPI (17d) – – 52 

[C4Py]FPI (9d) 49 49 49 

[C4dmim]FPI (8d) 42 42 42 

[HOCH2CH2pyrr]FPI (15d) – 77 77 
a Measured with Netzsch DSC (204) instrument.  
b Measured with Netzsch STA (409) instrument. 
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Figure 4.6 DSC curve for three FPI salts: [Bu4N]FPI (Tm = 151 °C), [C4Py]FPI (Tm = 

49 °C) and [(C6H5)3P(CH2C6H5)]FPI (Tm = 108 °C).  
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As it was shown earlier, a relationship between the molecular structure and the 

melting point of ILs was observed [139]. Table 4.8 presents the melting point of three 

[emim] ILs. It can be seen that the symmetry of these weekly coordinating anions 

(which contain P) influences strongly the melting point [56].  

 
Table 4.8 The influence of the symmetry on the melting point of [emim] ILs. 

[emim] 
 

P
C2F5

F F
C2F5

C2F5

F

 

P
F

F F
C2F5

C2F5

F

 

P
F

F F
F

C2F5

F

 
liquid at room temperature 

mp: –1 °C 
solid at room temperature 

mp: 62 – 64 °C 
liquid at room temperature 

mp: –2 °C 
 

Not only the symmetry of anion or/and cation, but also interaction anion–cation 

strongly influences the melting points of organic salts (Table 4.9) [143].  
 
Table 4.9 Melting points (Tm) of ammonium, phosphonium and pyridinium salts 

with different anions. 

Cation Anion Tm/ºC Reference 
[Et4N] Cl 

TFSI 
FAP 
FPI 

110 
104 
95 
46–47

[144] 
[128] 
[138] 
this work (12d)

[Bu4P] Cl 
TFSI 
FAP 
FPI 

62–64 
65 
74 
145

[145] 
[146] 
[138] 
this work (18d)

[Bu4N] Cl 
TFSI 
FAP 
FPI 

41 
90 
62 
151

[147] 
[145] 
[138] 
this work (13d)

[C4Py] Cl 
TFSI 
FPI 

103/162 
26 
49 

[148, 149] 
[150] 
this work (9d) 

 

Beside the melting points, the crystallization and glass transition temperatures 

for ILs with the FPI anion have been also investigated (Table 4.10). A typical 

thermogram for [emim]FPI and [bmpl]FPI is shown in Figure 4.7. A glass transition 

temperature can be seen around –80 °C and one exothermic peak appears at around 
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–50 °C (–34 °C respectively). These peaks represent probably the crystallization of 

the supercooled liquid. In general FPI ILs show glass transition points at low 

temperature (Table 4.10). The subsequent endothermic peaks are attributed to the 

melting points.  

The melting points of these ILs were also checked visually (Table 4.10). For 

some compounds only the glass state was observed by cooling at low temperature.  
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Figure 4.7 DSC curve for [bmpl]FPI (1) and [emim]FPI (2); (a) glass transition 

temperature (–80 °C); (b) crystallization temperature (–34 °C/ –50 °C); 
(c) melting point (7 °C/ 13 °C). 

 
Table 4.10 The melting points (Tm), glass transition points (Tg) and crystallization 

peaks (Tcc) for ionic liquids containing the FPI – anion. 

Compound DSC (Tm/°C) Visual (Tm/°C) Tcc/°C Tg/°C 

[emim]FPI (1d) +13  17–18 – 50  – 81a  

[bmim]FPI (2d) + 7 b – – 82  

[hmim]FPI (3d) – b – – 81  

[dmim]FPI (4d) + 10 –15a b – – 79  

[omim]FPI (5d) + 14 16–17 – – 

[bmpl]FPI (14d) + 7  6–7 – 34  – 80a  

[p(h3)te3]FPI (20d) – 2a  b – – 81  

[C4dmPy]FPI (10d) + 19 21 – 31 – 67a  
a In these cases the melting point and glass transition temperature peaks are week and the reported 

values are only approximate. b In these cases glass state and no melting point was observed. 
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4.4.4 Thermal stability  

Figures 4.8 and 4.9 show characteristic TGA curves for FPI salts with organic 

cations. The samples were heated in an inert atmosphere (N2) at the rate of 10 °C 

per min on the TG STA 409 instrument. 

The thoroughly dried compounds show no weight loss up to 280 °C. [Bu4N]FPI 

(13d) is less thermally stable, while [Me4N]FPI (11d) is the most stable one (Figure 

4.8).  
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Figure 4.8 TGA for different solid salts with the FPI anion. 

 

The TGA measurements indicate that liquid FPI ILs containing different 

imidazolium cations shows rather similar thermal behaviour with continuous mass 

loss between 300 °C and 400 °C (Figure 4.9). This behaviour is common for ILs with 

weakly coordinating fluoro - anions (Table 4.11). 
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Figure 4.9 TGA for selected imidazolium ILs with the FPI anion. 

 
The analysis of the TGA curves allowed to determine (i) the start temperature 

(Tstart), the temperature at which decomposition of the sample begins (a measurable 

weigh loss, less than 2%) and (ii) the onset temperature (Tonset) – the intersection of 

the baseline from the beginning of the experiment and the tangent to the exothermic 

curve. This definition is important because many authors used the decomposition 

temperature as Tstart or Tonset or the temperature at 10 % weight loss [150] or even 

0.05% [151]. The relatively fast heating rate (10 °C/min) gives a Tonset of above 320 

°C for FPI ILs. Moderation of the heating rate to 5 °C/min, for example for [emim]FPI, 

lowers Tonset by 40 °C. Above 450 °C the mass loss is significant for all ILs and the 

weight of the residue remained almost constant. The decomposition products of the 

FPI ILs were not investigated.  
 

Table 4.11 Influence of some anions on degradation temperature of [emim] ILs.  

[emim]X T (decomp.)/°C Reference 
[emim]Cl 285 (pan:Al) 

281 (pan:Al2O3) 
[128] 

[emim]Br 311 (pan:Al) 
303 (pan:Al2O3) 

[128] 

[emim]BF4 447 (TGA) 
391 (TGA) 

[152] 
[150] 

[emim]PF6 373 (pan:Al) [128] 
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[emim]PF6 481 (pan:Al2O3) [128] 
[emim]TFSI 455 (pan:Al) 

453 (pan:Al2O3) 
417 (TGA) 

[128] 
[128] 
[150] 

[emim]FAP 300 (TGA) [138] 
[emim]FPI 280 (TGA) this work 

 

It can be concluded that the thermal stability of ILs with the FPI anion are high 

and comparable to those ILs with other weekly coordinating anions, like TFSI or FAP 

anions. For example, [hmim]FAP is stable up to 290 °C and [hmim]TFSI to 302 °C at 

a heating rate of 10 °C/min [138, 151].  

The general trend in thermal stability of ILs with different anions seems to be as 

follow [127, 128]:  

 

(C2F5SO2)2N-   (CF3SO2)2N-   PF6   BF4   (CF3SO2)3C-   AsF6
-   I-   Br-   Cl- 

Decreasing thermal stability  

4.4.5 Electrochemical stability 

The electrochemical stability is another very important property of ILs. The potential 

windows of ILs with the FPI anion were measured using an Autolab PGSTAT 30 
instrument (Eco Chemie). Cyclic voltammograms (CV) were recorded for 0.1 mol/L 

solutions in CH3CN, at glassy carbon disc (∅ 3 mm) electrode (surface area: 

7.065×10-2 cm2), at room temperature (23 °C) with a scan rate of 20 mV·s-1. Auxiliary 

Pt electrode and Ag/AgNO3 (CH3CN) as the reference electrode were used. The 

potential values were normalized to E° of ferrocene.  

In the last decade, numerous investigations of the electrochemical properties of 

ILs demonstrate that [R3R’N] ILs, especially [Et4N]BF4, possess high electrochemical 

stability [153]. Therefore, in this work the electrochemical stability (oxidation and 

reduction) of two different ammonium salts have been investigated: [Me4N]FPI (11d) 

and [Bu4N]FPI (13d). The FPI ILs have an electrochemical window of about 7 V 

(Figure 4.10), higher than the reported value of 5.5 V for [Me3prN]TFSI [154], but 

close to the value reported for [Bu4N]FAP [138].  

 

 

 



Ionic liquids with FPI anion  Chapter 4 
_____________________________________________________________________________________________________ 

 68

  

-16

-10

-4

2

8

-4 -2 0 2 4 6
Potential / V vs Fc+/Fc

C
ur

re
nt

 d
en

si
ty

 / 
m

A
•c

m
 -2

1   2 

 
 

Figure 4.10 Cyclic voltammogram of [Bu4N]FPI (1) and [Me4N]FPI (2). 
 

For [Bu4N]FPI the irreversible reduction starts at about –3V versus FC
+/FC and 

irreversible oxidation appears at ca. 4 V. 

In conclusion, the anodic stability of ILs with FPI anion is higher than for ILs with 

other anions: e.g. [BF4] (2.2 V), [TFSI] (2.3 ÷ 2.5 V) [154], but close to FAP anion (4.0 

V) [138], while the [R3R’N] cations show almost the same cathodic stability, e.g. 

[Me3BuN] (–3.3 V) or [Me3N(CH2OCH3)] (–2.7 V) [154]. Anyway, salts with FPI anion 

are very attractive for electrochemical applications. 

4.4.6 Conductivity  

The conductivity was studied using a 703 Conductometer (Knick) in the 

temperature range at –20 to +80 °C. The conductivity of 0.83 mol/L solution of 

[emim]FPI in acetonitrile increases linear with increasing of the temperature. The 

conductivity of [emim]FAP is higher than the conductivity of [emim]FPI, probably 

because the FAP anion is less bulky than the FPI anion.  
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Figure 4.11 The conductivity curve for [emim]FAP (■) and for [emim]FPI (•) in 

acetonitrile solution (conc 0.83 mol/L). 
 

In conclusion, ILs with FPI anion possess advanced properties as: (i) melting 

points below 50 °C; (ii) hydrolytic stability in neutral aqueous solution up to 100 °C; 

(iii) thermal stability up to 280 °C; (iv) low viscosity; (v) high electrochemical stability; 

and (vi) can be syntheses from industrially available materials.  

4.5 Crystal structures of [(CH3)4N]FPI and [C7H16NO]FPI 

Single crystals of [Me4N][{(C2F5)2P(O)}2N] suitable for X–ray diffractometry were 

obtained by recrystallization from an isopropanole/water solution. Single crystal 

diffraction data were collected at 100 K on a Kappa CCD diffractometer (Bruker 

AXS) using Mo–Kα radiation (λ = 0.71073 Å) and a graphite monochromator. The 

crystal structure of [Me4N][{(C2F5)2P(O)}2N] (11d) was solved by direct methods using 

SHELXS–97 and full–matrix least–squares refinement on F2 was performed with 

SHELXL–97 [155]. Diffracted intensities were corrected for absorption based on 

indexed crystal faces, Tmin, and Tmax: 0.87 and 0.95. The crystal structure was 

determined in space group P21/n with two independent formula units per unit cell, 

which are depicted in Figure 4.12.  
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Figure 4.12 Molecular structure of two formula unit of [Me4N][{(C2F5)2P(O)}2N] in the 
unit cell. 

 

The OPNPO skeleton of both [(C2F5)2P(O)]2N– anions shows approx. C2 

symmetry (rms 0.0624 Å) with the two P = O groups orientated gauche to each other 

(dihedral angles of 59° and –51°). The C2F5 groups don’t follow the local C2 

symmetry. Average values of selected bond lengths and angles for the anions are 

collected in Table 4.12 and are compared to the structural parameters of the free 

anion obtained from DFT calculations. The predicted and observed structural 

parameters are almost identical because there are no significant interionic contacts in 

the salt and the chosen basis set in the calculation is sufficient for this anion. The 

global minimum for the calculated gas–phase structure exhibits C1 symmetry. The 

shortest distances between the cation and anion amount to 2.349, 2.382 and 2.392 Å 

for P=O…H contacts about 0.3 Å shorter than the sum of the van der Waals radii.  
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Table 4.12 Observed/calculateda average bond lengths (Å) and angles (deg.) for the 
[(C2F5)2P(O)]2N– anion in the [Me4N]FPI salts. 

bond obs./calc. bond/angle obs./calc. 

CF2–F 1.33/1.35 P=O 1.47/1.49 

CF–F 1.36/1.37 P–N 1.56/1.59 

C–C 1.53/1.55 P–C 1.88/1.92 

  PNP 144/143 
a B3LYP/6–31+G(d) 

As input in the Gaussian 03W program (version 6.0, revision B.04) the 

averaged experimental geometric parameters of the anion (Figure 4.12) were used 

and then the structure was fully optimized at the B3LYP/6–31+G(d) level [156].  

The P–N bond distances and the P–N–P angle of the FPI anion differ 

substantially from the related acid. The P–N bonds in FPI anion are significantly 

shortened 1.562(6) Å comparing to 1.670(1) Å in iPr2P(O)NHP(O)iPr2 [157] and the 

P–N–P angle is widened from 130.1° to 143.9(15)°. Equally long P–N distances and 

reduced P–N–X angles are observed from the crystal structures of other molecules 

containing the R2P(O)NR’2 fragment [an analysis of the CSD Ver. 5.29 (Cambridge 

Crystallographic Data Centre, Cambridge, U.K.) yields 1.65(2) Å for a sample 

consisting of 11 observations, and 126(3)° derived from 7 observations]. On the other 

hand there is no significant difference between the P=O distances of the FPI anion 

1.471(3) Å and the HFPI acid, where this distances averages to 1.48(1) Å. The 

mesomeric structures rationalize this effect for the central bonds (Figure 4.13).  
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Figure 4.13 Mesomeric structures of [(C2F5)2P(O)]2N- anion. 
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Further analysis of the crystal structures of 11d suggests a small but significant 

shortening of the C–F bonds of the terminal CF3–groups (1.359(6) Å) compared to 

the CF2–groups (1.327(5) Å) by 0.032(6) Å. At least in part, this will be due to the 

larger anisotropic displacement parameters of the terminal CF3–groups, which 

causes an apparent reduction of the bond length [158]. This effect is also present – 

albeit less pronounced – in the optimized molecular structure obtained from DFT 

(Density Functional Theory) calculations.  

Crystals of N–(2–hydroxyethyl) N–methylpyrrolidinium FPI (15d) suitable for X–

ray diffraction were obtained from an ethanol–water solution at low temperature. A 

Gemini E Ultra –Diffractometer (Oxford) was used for measurements at 145 K with 

Mo–Kα radiation (λ = 0.717073 Å). The crystal structures were solved by direct 

methods using SHELXS–97 [155]. The full–matrix least–squares of refinement on F2 

was perfomed with WinGX V1.6405 (SHELXL–97). The hydrogen atoms were found 

on the difference maps and refined isotropically. The crystals are monoclinic (space 

group P21) with a = 9.2968(2), b = 10.0664(3), c= 27.2497(6) Å, and α = 90°, β = 

95.379(2)°, γ = 90° as it is shown in Figure 4.14.  
 

 
 
Figure 4.14 Part of the crystal structure of of [C7H16NO]FPI (15d) in the unit cell. 
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In the solid–state structures of [(CH3)4N]FPI (11d) and [C7H16NO]FPI (15d) the 

parameters of the FPI anion are very similar despite of different cations. The 

pyrrolidinium ring in 15d is planar. Slight differences between the pyrrolidinium ring in 

15d and [bmPyr][PF6] can be appreciated (Table 4.13) [159]. There are no significant 

intermolecular contacts, but hydrogen bonding between the O donor from anion and 

the H acceptor from the cation is observed, shorter than usually (O…H 1.953 Å to 

2.002 Å).  

C2C3

C4

N1

C1

C5 C6
C7

Y

X-

  
Y = OH, CH3 and X = FPI, PF6 

 

Table 4.13 Observed average bond lengths (Å) and angles (deg.) for pyrrolidinium 
cation with different anions. 

 
Bond/angle 

 
[C7H16NO]FPI 

(15d) 
[bmpyr][PF6]a 

N(1) – C(5) 1.491(6) 1.496(6) 
N(1) – C(6) 1.514(4) 1.509 (7) 
N(1) – C(1) 1.490(6) 1.492(6) 
N(1) – C(4) 1.501(4) 1.514(6) 
C(1) – C(2) 1.589(7) 1.505(8) 
C(3) – C(4) 1.504(6) 1.509(7) 
C(2) – C(3) 1.507(8) 1.507(8) 

C(5) – N(2) – C(6) 111.7(2) 108.9(4) 
C(4) – N(2) – C(1) 102.9(3) 103.0(4) 

a  Ref. [159] 
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Table 4.14 Crystalographic and refinement data for (11d) and (15d).  
 
Crystalographic data [(CH3)4N]FPI (11d) [C7H16NO]FPI (15d) 
Empirical formula C12H12F20N2O2P2 C15H16F20N2O3P2 
Colour colourless colourless 
Formula weight 658.18 g·mol-1 714.24 g·mol-1 

Temperature 100 K 145 K 
Wavelength 0.71073 Å 0.71073 Å 
Crystal system Monoclinic Monoclinic 
Space group P21/n, (no. 14) P21, (no. 4) 
Unit cell dimensions 
 
 

a = 15.7308(12) Å α= 90° 
b = 15.5515(13) Å β = 109.463(4)° 
c = 20.1328(14) Å γ = 90° 

a = 9.2968(2) Å   α= 90° 
b = 10.0664(3) Å β= 95.379(2)° 
c = 27.2497(6) Å γ = 90° 

Volume 4643.8(6) Å
3
 2538.95 Å

3
 

Z 8 4 
Density (calculated) 1.883 mg·m-3 1.869 mg·m-3 

Absorption coefficient 0.362 mm-1 0.342 mm-1 

F(000) 2592 e 1416 e 
Crystal size 0.10 x 0.02 x 0.01 mm3 0.162 x 0.232 x 0.428 mm3 

θ range for data collection 2.91 to 31.01° 2.78 to 29.57° 

Index ranges -22 ≤ h ≤ 22, -22≤ k ≤ 22, 
-29 ≤ l ≤ 27 

-12 ≤ h ≤ 12, -13≤ k ≤ 12, 
-37 ≤ l ≤ 36 

Reflections collected 88109 34689 
Independent reflections 14781 [R

int
 = 0.1325] 11627 [R

int
 = 0.0363] 

Reflections with I>2σ(I) 6920 7203 
Completeness to  ( = 31.01°) 99.8 % ( = 26.4°) 89.7 % 
Absorption correction Empirical Numerical 
Max./min. transmission 0.75 and 0.49 0.905 and 0.954 
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2 
Data/restraints/parameters 14781/0/693 11627/203/898 
Goodness-of-fit on F2 1.013 0.939 
Final R indices [I>2σ(I)]a R1 = 0.0775   wR2 = 0.0970 R1 = 0.0597   wR2 = 0.1512 
R indices (all data)b R1 = 0.1966   wR2 = 0.1226 R1 = 0.0942   wR2 = 0.1645 
Largest diff. peak and hole 0.406 and -0.410 e Å-3 0.665 and -0.350 e·Å-3 
 

 

 

 

 

 

 

 

 

 

 

 



Ionic liquids with FPI anion  Chapter 4 
_____________________________________________________________________________________________________ 

 75

4.6 Experimental part  

Chemicals were obtained from commercial suppliers and used without purifications. 

For all reactions deionized water was used.  

 

1–Ethyl–3–methylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C6H11N2][{(C2F5)2P(O)}2N] (1d) 

A solution of [C6H11N2]Cl (2.49 g, 16.9 mmol) in 10 mL of water was added to the 

solution of HN[P(O)(C2F5)2]2 (9.93 g, 16.9 mmol) in 30 mL of water at room 

temperature. After 1 h stirring the water insoluble material was extracted with CH2Cl2 

and washed several times with water containing of few mg of K2CO3. After 

evaporation of CH2Cl2, the residue was dried 24 h in vacuum at 70 °C. A liquid 

material (9.8 g) was obtained. Yield: 83%.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.46 s (CH); 7.38 s (CH); 7.32 s 

(CH); 4.15 q (CH2, 3JH,H  = 7.3 Hz); 3.80 s (CH3); 1.44 t (CH3, 3JH,H = 7.1 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb ); 2JP,Fa  = 76 Hz; 2JP,Fb  = 82 Hz; 2JFa,Fb  = 326 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.9 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C14H11F20N3O2P2 (M = 695.17 g/mol): C 24.19, H 

1.59, N 6.04; found: C 24.12, H 1.6, N 6.16.  

% MS (ESI+) {m/z calcd./m/z found [rel. int.(%)]}: [emim] {111.09/111.09 [100]}; 

[C4H7N2] {83.06/83.06 [21]}  

% MS (ESI-) {m/z calcd./m/z found [rel. int.(%)]}: [FPI] {583.90/583.90 [100]}. 

 

1–Butyl–3–methylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C8H15N2][{(C2F5)2P(O)}2N] (2d) 

To the stirred solution of [C8H15N2]Cl (1.13 g, 6.4 mmol) in 5 mL of water, the solution 

of HN[P(O)(C2F5)2]2 (3.78 g, 6.4 mmol) in 10 mL of water was slowly added at room 

temperature. The mixture was left stirring for 30 min and the bottom liquid phase was 

extracted with CH2Cl2 and washed with water until the test for chloride was negative. 

After evaporation of CH2Cl2, the residue was dried 48 h at 70 ° C in vacuum. 3.65 g 

of the pure viscous liquid (2d) was obtained. Yield: 79%.  
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1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.42 s (CH); 7.35 s (CH); 7.31 s 

(CH); 4.1 t (CH2, 3JH,H = 7.38 Hz); 3.80 s (CH3); 1.79 quin (CH2 ,3JH,H = 7.4 Hz); 1.32 

q,t (CH2, 3JH,H  = 7.4 Hz); 0.92 t (CH3, 3JH,H = 7.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 76 Hz; 2JP,Fb  = 85 Hz; 2JFa,Fb  = 330 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.1 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C16H15F20N3O2P2 (M = 723.22 g/mol): C 26.57, H 

2.09, N 5.81; found: C 26.96, H 2.55, N 5.76.  

 

1–Hexyl–3–methylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C10H19N2][{(C2F5)2P(O)}2N] (3d) 

To the stirred solution of [C10H19N2]Cl (2.8 g, 13.8 mmol) in 5 mL of water, a solution 

of HN[P(O)(C2F5)2]2 (8.1 g, 13.8 mmol) in 30 mL of water was slowly added at room 

temperature. After 1 h stirring the water insoluble material was extracted with CH2Cl2 

and washed few times with water containing a few mg of K2CO3. After evaporation of 

CH2Cl2 and drying the residue 24 h in vacuum at 70 °C, 8.4 g of a liquid material was 

obtained. Yield: 81 %. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.42 s (CH); 7.35 s (CH); 7.31 s 

(CH); 4.09 t (CH2, 3JH,H = 7.4 Hz); 3.80 s (CH3); 1.80 t,t (CH2, 3JH,H  = 6.8 Hz); 1.30 m 

(3CH2); 0.87 t (CH3, 3JH,H = 6.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 76 Hz; 2JP,Fb  = 85 Hz; 2JFa,Fb  = 330 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.0 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C18H19F20N3O2P2 (M = 751.28 g/mol): C 28.78, H 

2.55, N 5.59; found: C 29.11, H 2.65, N 6.07. 

 

1–Decyl–3–methylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C14H27N2][{(C2F5)2P(O)}2N] (4d) 

To the stirred solution of [C14H27N2]Cl (3.1 g, 11.9 mmol) in 15 mL of water a solution 

of HN[P(O)(C2F5)2]2 (7.0 g, 11.9 mmol) in 5 mL of water was slowly added at room 

temperature. After 30 min stirring, the water insoluble material was extracted with 

CH2Cl2 and washed several times with water containing a few mg of K2CO3. After 
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evaporation of CH2Cl2, the residue was dried 16 h in vacuum at 60 °C. 8.98 g of a 

liquid material was obtained. Yield: 94%. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.45 s (CH); 7.36 s (CH); 7.32 s 

(CH); 4.09 t (CH2, 3JH,H = 7.4 Hz); 3.80 s (CH3); 1.26 s (8CH2); 0.86 t (CH3, 3JH,H = 6.4 

Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 73 Hz; 2JP,Fb  = 82  Hz; 2JFa,Fb  = 327 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.9 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C22H27F20N3O2P2 (M = 807.38 g/mol): C 32.73, H 

3.37, N 5.20; found: C 32.17, H 3.32, N 5.08. 

 

1–Octadecyl–3–methylimidazolim bis[bis(pentafluoroethylphosphinyl]imide, 

[C22H43N2][{(C2F5)2P(O)}2N] (5d) 

A solution of [C22H43N2]Cl (3.25 g, 8.7 mmol) in 10 mL of ethanol was added at room 

temperature to the stirred solution of HN[P(O)(C2F5)2]2 (5.10 g, 8.7 mmol) in 10 mL of 

ethanol. The mixture was left stirring for 0.5 h. The solvent was removed in vacuum 

and the residue was washed with water until the test for chloride was negative. The 

obtained substance was dried 48 h at 60 °C in vacuum. 6.51 g of pure 5d was 

obtained. Yield: 81%.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.43 s (CH); 7.35 m (CH); 7.32 m 

(CH); 4.09 t (CH2, 3JH,H = 7.38 Hz); 3.80 s (CH3); 1.80 q,t (CH2, 3JH,H  = 7.4 Hz); 1.26 

m (15CH2); 0.87 t (CH3, 3JH,H = 6.8 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.2 m (4CFb); 2JP,F  = 74 Hz; 2JP,F  = 86 Hz; 2JFa,Fb  = 317 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.9 quin,m (2P;2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C30H43F20N3O2P2 (M = 919.60 g/mol): C 39.18, H 

4.71, N 4.57; found: C 40.19, H 5.38, N 4.57. 

 

1–Allyl–3–methylimidazolium bromide [C7H11N2]Br (6d) 

A mixture of fresh distilled 1-methyl imidazole (8.72 g, 0.106 mmol) and C3H5Br 

(12.86 g, 0.106 mmol) in 30 mL ethanol was stirred at room temperature for 6 days. 

Two phases were formed with viscous oil at the bottom. The phases were separated 
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and the pale yellow viscous liquid was washed with diethyl ether (3 x 100 mL). After 

drying under vacuum at 60 °C for one day, 20.92 g of 6d was obtained. Yield: 97 %.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.8 s (CH); 7.5 s (2CH); 6.1 m 

(CH); 5.5 m (CH2); 4.7 s (CH2); 3.9 s (CH3).  

 

1–Allyl–3–methylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C7H11N2][{(C2F5)2P(O)}2N] (7d) 

Salt 6d (1.84 g, 11.6 mmol) was dissolved in water (10 mL) and HN[P(O)(C2F5)2]2 

(6.83 g, 11.7 mmol) aqueous solution (in 10 mL of water) was added at room 

temperature. After 1 h stirring the water insoluble material was extracted with CH2Cl2 

and washed few times with water containing a few mg of K2CO3. After evaporation of 

CH2Cl2 the residue was dried 20 h in vacuum at 60 °C. 6.5 g of a liquid material was 

obtained. Yield: 79%. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.4 s (CH); 7.4 quint (3JH,H = 1.8 

Hz, 2CH); 6.0 t,t,d,d (CH, Jtrans = 27.3 Hz, Jcis = 12.9 Hz, 3JH,H = 6.3 Hz); 5.4 m (CH2); 

4.8 d,t (CH2, 3JH,H  = 6.3 Hz); 3.8 s (CH3). 
13C NMR (lock/solvent CD3CN, 100.6 MHz), δ, ppm: 136.9 (NCN); 131.6 

(CH2=CHCH2N); 124.8 (NCH); 123.3 (CH2=CHCH2N); 121.7 (CHN); 52.4 (NCH2); 

36.8 (NCH3) (the signals for anion are not detected).  
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –80.7 s (4CF3); –123.4 m 

(4CFa); –126.6 m (4CFb); 2JP,F  = 67 Hz; 2JP,F  = 89 Hz; 2JFa,Fb  = 314 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –9.4 quin,m (2P; 2JP,F = 78.6 

Hz). 

Elemental analysis calcd. (%) for C15H11F20N3O2P2 (M = 707.18 g/mol): C 25.48, H 

1.57, N 5.94; found: C 25.23, H 1.37, N 5.74. 

 

1–n–Butyl–2,3–dimethylimidazolium bis[bis(pentafluoroethyl)phosphinyl]imide 

[C9H17N2][{(C2F5)2P(O)}2N] (8d) 

A solution of HN[P(O)(C2F5)2]2, (5.80 g, 9.9 mmol) in 10 mL water was added at room 

temperature to a stirred solution of [C9H17N2]Cl (1.82 g, 9.6 mmol) in 5 mL water. 

After 30 min the liquid phase at the bottom was extracted with CH2Cl2 and washed 

few times with water. The residue was dried under vacuum at 80 °C for 12 h. 6.1 g of 

a solid material (8d) was obtained. Yield: 86%. Mp: 42 °C.  
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1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 7.24 d (CH, 3JH,H = 2 Hz); 7.22 d 

(CH, 3JH,H = 2 Hz); 4.01 t (CH2, 3JH,H = 7.4 Hz); 3.67 s (CH3); 2.48 s (CH3); 1.72 t,t 

(CH2, 3JH,H  = 7.5 Hz); 1.33 q,t (CH2, 3JH,H  = 7.5 Hz); 0.93 t (CH3, 3JH,H = 7.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m,  

(4CFa); –126.8 m,  (4CFb); 2JP,Fa  = 75 Hz;  2JP,Fb  = 85 Hz; 2JFa,Fb  = 326 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.2 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C17H17F20N3O2P2 (M = 737.25 g/mol): C 27.70, H 

2.32, N 5.7; found: C 27.69, H 2.25, N 5.78. 

 

1–n–Butylpyridinium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C9H14N][{(C2F5)2P(O)}2N] (9d) 

A solution of [C9H14N]Cl (2.0 g, 11.8 mmol ) in 5 mL water was added to a vigorously 

stirred solution of HN[P(O)(C2F5)2]2 (7.0 g, 11.9 mmol) in 10 mL water. The reaction 

mixture was diluted with 25 mL of water and stirred additionally 30 min. The resulting 

solid precipitate was collected by filtration and washed three times with water until pH 

6 to 7 and the test for chloride with AgNO3 was negative. After drying in vacuum for 

18 h at 80 °C, a white solid material (8 g) was obtained. Yield: 94%. Mp: 49 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.67 d (2CH, 3JH,H  = 6.1 Hz); 

8.48 t (CH, 3JH,H  = 7.8 Hz); 8.00 t (2CH, 3JH,H  = 6.6 Hz); 4.50 t (CH2, 3JH,H  = 7.6 Hz); 

1.92 m (CH2); 1.35 q,t (CH2, 3JH,H  = 7.4 Hz); 0.94 t (CH3, 3JH,H  = 7.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 69 Hz; 2JP,Fb  = 79 Hz; 2JFa,Fb  = 314 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.2 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C17H17F20N3O2P2 (M = 737.25 g/mol): C 28.35, H 

1.96, N 3.89; found: C 27.91, H 1.82, N 3.88. 

% MS (ESI+) {m/z calcd./m/z found [rel. int.(%)]}: [C4Py] {136.11/136.11 [100]}; 

[C5H6N] {80.05/80.04 [18]}  

% MS (ESI-) {m/z calcd./m/z found [rel. int.(%)]}: [FPI] {583.90/583.90 [100]}. 

 
1–n–Butyl–3,5–dimethylpyridinium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[C11H18N][{(C2F5)2P(O)}2N] (10d) 

To the stirred solution of [C11H18N]Cl (2.11 g, 10.5 mmol) in 5 mL of water, 6.20 g 

(10.6 mmol) of HN[P(O)(C2F5)2]2 in 10 mL of water was added at room temperature. 
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After 10 min two phases were formed. The reaction mixture was stirred for 30 min. 

The upper phase, containing unreacted starting material and HCl was removed from 

the mixture. The bottom phase was collected and approximately equal volume of 

CH2Cl2 was added. This solution was transferred to a separatory funnel and washed 

several times with water. The CH2Cl2 solvent was evaporated and the residue was 

dried for 18 h in vacuum at 60 °C resulting in a liquid material (6.90 g). Yield: 88%.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 8.35 s (2CH); 8.11 s (CH); 4.39 t 

(CH2, 3JH,H  = 7.6 Hz); 2.45 s (2CH3); 1.92 m (CH2); 1.34 q,t (CH2, 3JH,H  = 7.4 Hz); 

0.94 t (CH3, 3JH,H  = 7.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 74 Hz; 2JP,Fb  = 83 Hz; 2JFa,Fb  = 314 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.2 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C19H18F20N2O2P2 (M = 748.27 g/mol): C 30.50, H 

2.42, N 3.74; found: C 29.90, H 2.24, N 3.72. 

 

Tetramethylammonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(CH3)4N][{(C2F5)2P(O)}2N] (11d) 

To a solution of 0.3 g (2.7 mmol) of [(CH3)4N]Cl in water (5 mL) a solution of 1.6 g 

(2.7 mmol) of HN[P(O)(C2F5)2]2 in 5 mL water was added by stirring at room 

temperature. The mixture was left stirring for 20 minute and the white precipitate was 

filtered off and washed four times with 20 mL of water until the test for chloride was 

negative. The product was dried in vacuum at 50 °C for 3 h. 1.68 g of 11d was 

obtained. Single crystals were obtained from recrystallization in isopropanole/H2O 

solution. Yield: 93 %. Mp: 100 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 3.06 s (CH3). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –79.9 s (4CF3); –122.9 m 

(4CFa); –126 m (4CFb); 2JP,Fa  = 73 Hz; 2JP,Fb  = 82 Hz; 2JFa,Fb  = 325 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –9.0 quin,m (2P; 2JP,F = 78 Hz). 

Elemental analysis calcd. (%) for C12H12F20N2O2P2 (M = 685.15 g/mol): C 21.90, H 

1.84, N 4.26; found: C 21.89, H 1.80, N 4.09. 
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Tetraethylammonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C2H5)4N][{(C2F5)2P(O)}2N] (12d) 

A 20% aqueous solution of Et4NOH (5.55 g, 7.53 mmol) was slowly added to the 

solution of HN[P(O)(C2F5)2]2 (4.41 g, 7.53 mmol) in 15 mL water by stirring and 

cooling of the reaction mixture with an ice water bath until the reaction mixture was 

neutral. The reaction mixture was stirred additionally 30 minute at room temperature. 

The resulting mixture was concentrated by rotary evaporator. The residue was 

dissolved and stirred in 10 mL dioxane for 30 min. After the dioxane was distilled off, 

a very hygroscopic colourless solid remains in the reaction flask. The product (5 g, 

yield 94%) was dried at 60 °C in vacuum for ca. 12 hours. It contains 12 ppm of water 

was measured by Karl–Fischer titration. Mp: 46 – 47 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 3.15 q (4CH2, 3JH,H  = 7.1 Hz); 

1.19 t,m (4CH3, 3JH,H  = 7.1 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 81 Hz; 2JP,Fb  = 87 Hz; 2JFa,Fb  = 320 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.2 quin,m (2P; 2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C16H20F20N2O2P2 (M = 714.26 g/mol): C 26.91, H 

2.82, N 3.92; found: C 26.92, H 2.76, N 3.98. 

 

Tetra(n–butyl)ammonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C4H9)4N][{(C2F5)2P(O)}2N] (13d) 

To the solution of [(C4H9)4N]Br (1.23 g, 3.8 mmol) in 5 mL of water was slowly added 

a solution of HN[P(O)(C2F5)2]2 (2.23 g, 3.8 mmol) in 5 mL of water under stirring at 

room temperature. The mixture was left stirring for 30 minute and the liquid bottom 

phase was extracted with 10 mL of CH2Cl2. The extract was washed four times with 

40 mL of water until the test for bromide with AgNO3 was negative. The CH2Cl2 

solvent was evaporated and the residue was dried 18 h in vacuum (<10–3 mbar) at 60 

°C. Yield: 87%. Mp: 150 – 151 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 3.07 m (4CH2); 1.59 m (4CH2); 

1.34 q,t (4CH2, 3JH,H  = 7.3 Hz); 0.95 t (4CH3, 3JH,H  = 7.4 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 76 Hz; 2JP,Fb = 82 Hz; 2JFa,Fb = 330 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.4 quin,m (2P; 2JP,F = 79 Hz). 
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Elemental analysis calcd. (%) for C24H36F20N2O2P2 (M = 826.47 g/mol): C 34.88, H 

4.39, N 3.39; found: C 34.95, H 4.55, N 3.34. 

% MS (ESI+) {m/z calcd./m/z found [rel. int.(%)]}: [Bu4N] {242.28/282.28 [100]}; 

[C12H28N] {186.22/186.22} [0.5] 

% MS (ESI-) {m/z calcd./m/z found [rel. int.(%)]}: [FPI] 583.90/583.91 [100]. 

IR (KBr pellet): ν (cm-1) = 3050 (w); 2972 (vw); 1628 (br. w); 1495 (s); 1420 (br. m); 

1380 (s); 1307 (s); 1263 (vs); 1231 (br. vs); 1210 (vs);1150 (vs); 991 (s); 952 (m); 

773 (w); 753 (m); 629 (m); 597 (m); 564 (s); 511 (s); 477 (s); 426 (m).  

 
1–n–Butyl–1–methylpyrrolidinium bis[bis(pentafluoroethyl)phosphinyl]imide 

[C9H20N][{(C2F5)2P(O)}2N] (14d) 

To the stirred solution of [C9H20N]Cl (1.46 g, 8.2 mmol) in 4 mL of water was slowly 

added a solution of HN[P(O)(C2F5)2]2 (4.83 g, 8.2 mmol) in 10 mL of water. The 

reaction proceeds within few minutes. The water insoluble material was extracted 

with CH2Cl2 and washed three times with water. After drying, 5 g of liquid material 

(14d) was obtained. Yield: 84 %.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 3.38 m (2CH2); 3.21 m (CH2); 

2.92 s (CH3); 2.13 m (2CH2); 1.70 m (CH2); 1.35 q,t (CH2, 3JH,H  = 7.4 Hz); 0.95.t 

(CH3, 3JH,H  = 7.3 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.0 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 78 Hz; 2JP,Fb  = 89 Hz; 2JFa,Fb  = 318 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.9 quin,m (2P; 2JP,F = 81 Hz). 

Elemental analysis calcd. (%) for C17H20F20N2O2P2 (M = 726.27 g/mol): C 28.11, H 

2.78, N 3.86; found: C 28.15, H 2.25, N 4.22. 

% MS (ESI+) {m/z calcd./m/z found [rel. int.(%)]}: [bmpl] {142.15/142.15 [100]}; 

[C5H12N] {86.09/86.09 [3]}  

% MS (ESI-) {m/z calcd./m/z found [rel. int.(%)]}: [FPI] {583.90/583.90 [100]}. 

 

N–(2–hydroxyethyl)–N–methylpyrrolidinium 

bis[bis(pentafluoroethyl)phosphinyl]imide [C7H16NO][{(C2F5)2P(O)}2N] (15d) 

N–(acetyloxy)ethyl N–methylpyrrolidinium bromide (3.02 g, 11.9 mmol) was dissolved 

in approximately 15 mL of water. An equimolar amount of HN[P(O)(C2F5)2]2 (7.01 g, 

11.9 mmol) in 10 mL water was added at RT. After few minutes a viscous liquid 
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phase was formed on the bottom of the flask. The aqueous phase containing HBr 

was removed and the residue was washed with water two times. The separation 

becomes more difficult and the water turned cloudy. Then, a white product 

precipitates. The precipitation was accelerated under cooling with ice. The resulting 

white product was filtered off and dried for 18 h in vacuum. The further purification 

was done by crystallization from ethanol and water at 0 °C. Yield: 60%. Mp: 76 °C.  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 3.9 m (CH2); 3.5 m (CH2); 3.4 t 

(2CH2, 3JH,H = 4.9 Hz); 3 s (CH3); 2.1 br.s (OH); 1.9 q (2CH2, 3JH,H = 2.4 Hz). 
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 64.92 (NCH2CH2OH); 64.94 

(CH2CH2OH); 55.78 (NCH2CH2); 48.23 (NCH3); 20.73 (CH2–Ar). 
19F NMR (lock/solvent CDCl3, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 74 Hz; 2JP,Fb  = 79 Hz; 2JFa,Fb  = 322 Hz. 
31P NMR (lock/solvent CDCl3, 161.9 MHz), δ, ppm: –8.0 quin,m (2P;2JP,F = 79 Hz). 

Elemental analysis calcd. (%) for C15H16F20N2O3P2 (mol. mass 714.21): C 25.22, H 

2.26, N 3.92; found: C 25.37, H 2.26, N 3.80. 

 

N–(3–ethoxy–3-oxopropy)–N–methylpyrrolidinium 

bis[bis(pentafluoroethyl)phosphinyl]imide [C10H20NO2][{(C2F5)2P(O)}2N] (16d) 

A solution of [C10H20NO2][CF3SO2] (4 g, 11.9 mmol) in 10 mL of water was added to 

the solution of HN[P(O)(C2F5)2]2 (7 g, 11.9 mmol) in 10 mL of water at room 

temperature. After 40 min stirring the water insoluble material was extracted with 

CH2Cl2 and washed few times with water containing of few mg of K2CO3. After 

evaporation of CH2Cl2 the residue was dissolved and stirred in 30 mL ethanol for 30 

min. The ethanol was distilled off and a very viscous yellow material (6.6 g) was 

obtained. Yield: 72%.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 4.2 q (CH2; 3JH,H = 7.2 Hz); 3.6 t 

(CH2; 3JH,H = 7.4 Hz); 3.4 m (2CH2); 2.9 s (CH3); 2.9 t (CH2; 3JH,H = 7.5 Hz); 2.9 s 

(2CH2); 1.2 t (CH3; 3JH,H = 7 Hz). 
13C NMR (lock/solvent CD3CN, 100.6 MHz), δ, ppm: 169.8 (CH2COO); 64.3 

(OCH2CH3); 61.2 (NCH2CH2); 59.2 (NCH2CH2); 28.3 (CH2CH2O); 20.9 (CH2–Ar); 

12.92 (CH2CH3) (the signals for anion are not detected). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 73 Hz; 2JP,Fb  = 83 Hz; 2JFa,Fb  = 318 Hz. 
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31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.0 quin,m (2P;2JP,F = 78 Hz). 

 

Guanidinium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(NH2)3C][{(C2F5)2P(O)}2N] (17d) 

To the stirred solution of HN[P(O)(C2F5)2]2 (1.80 g, 3.1 mmol) in 5 mL water, solid 

[(NH2)3C]2[CO3] (0.28 g, 1.5 mmol) was slowly added at 0 °C. The reaction mixture 

was stirred at this temperature for 20 min and left to warm up to room temperature. 

After 30 min stirring at room temperature the precipitate was separated by filtration 

and washed with cold water several times. After drying in vacuum, 1.68 g of a very 

hygroscopic white solid material was obtained. Yield: 84 %. Mp: 52 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 5.92 br.s (3NH2). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 s (4CF3); –123.9 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 86 Hz; 2JP,Fb = 81 Hz; 2JFa,Fb = 316 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –6.5 quin,m (2P; 2JP,F = 82 Hz). 

Elemental analysis calcd. (%) for C9H6F20N4O2P2 (M = 644.09 g/mol): C 16.78, H 

0.94, N 8.7; found: C 16.83, H 0.86, N 8.54. 

 

Tetra(n–butyl)phosphonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C4H9)4P][{(C2F5)2P(O)}2N] (18d) 

A solution of [(C4H9)4P]Br (1.15 g, 3.38 mmol) in 10 mL of water was slowly added to 

the stirred solution of HN[P(O)(C2F5)2]2 (1.99 g, 3.4 mmol) in 10 mL of water at room 

temperature. The mixture was left stirring for 30 minute and the white precipitate was 

filtered off and washed three times with 30 mL of water. After drying, 2.47 g of a 

white solid material was obtained. Yield: 86%. Mp: 143 – 145 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 2.00 to 2.10 m (4CH2); 1.47 m 

(8CH2); 0.93 t (4CH3, 3JH,H  = 7.1Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 79 Hz; 2JP,Fb  = 89 Hz; 2JFa,Fb  = 322 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 34.9 m (1P); –8.3 quin,m (2P; 

2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C24H39F20NO2P3 (M = 843.44 g/mol): C 34.18, H 

4.30, N 1.66; found: C 34.42, H 4.71, N 1.65. 
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IR (KBr pellet): ν (cm-1) = 2976 (m); 2946 (m); 2885 (m); 1470 (s); 1427 (br. s); 1391 

(s); 1309 (br. s); 1271 (vs); 1237 (vs); 1217 (vs);1192 (s); 1147 (br. vs); 1139 (br. vs); 

1119 (s); 980 (s); 973 (br. s); 923 (m); 911 (m); 816 (br. m); 762 (w); 753 (m); 722 (br. 

w); 632 (m); 596 (m); 563 (s); 510 (br. s); 501 (s); 482 (s); 429 (m).  

 

Benzyl(triphenyl)phosphonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C6H5)3P(CH2C6H5)][{(C2F5)2P(O)}2N] (19d) 

To the stirred solution of [(C6H5)3P(CH2C6H5)]Cl (0.83 g, 2.1 mmol) in 5 mL of water, 

a solution of HN[P(O)(C2F5)2]2 (1.25 g, 2.1 mmol) in 5 mL of water was slowly added 

at room temperature. The mixture was kept stirring for one hour at room temperature. 

The water insoluble material was extracted with CH2Cl2 and washed with water two 

times. After evaporation of CH2Cl2 and drying, 1.48 g of a pure white solid (19d) was 

obtained. Yield: 75 %. Mp: 110 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 7.9 m (3CH, 3JH,H  = 7.6 Hz); 7.6 

m (6CH); 7.5 m (6CH); 7.3 m (CH); 7.2 t (2CH, 3JH,H  = 7.6 Hz); 6.9 d, m (2CH, 3JH,H  

= 7.1 Hz); 4.61 d (CH2P; 2JP,H  =14.7 Hz).  
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (4CF3); –123.7 m 

(4CFa); –126.8 m (4CFb); 2JP,Fa  = 78 Hz; 2JP,Fb  = 85 Hz; 2JFa,Fb  = 320 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 23.7 s (1P); –8.3 quin,m (2P; 
2JP,F = 80 Hz).  

Elemental analysis calcd. (%) for C33H22F20NO2P3 (M = 937.42 g/mol): C 42.28, H 

2.37, N 1.49; found: C 42.55, H 0.56, N 1.50. 

 
Trihexyl(tetradecyl)phosphonium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C6H13)3P(C14H29)][{(C2F5)2P(O)}2N] (20d) 

To the stirred solution of [(C6H13)3P(C14H29)]Cl (4.11 g, 7.9 mmol) in 13 mL of 

ethanol, 4.62 g (7.9 mmol) of HN[P(O)(C2F5)2]2 in 20 mL of water was added. The 

mixture was kept stirring for 1 hour. After the ethanol was distilled off in vacuum, the 

liquid material was washed with water three times. After drying, 7.24 g of a liquid 

material was obtained. Yield: 86 %. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 2.01 to 2.08 m (4CH2); 1.38 to 

1.54 m (8CH2); 1.28 to 1.33 m (16CH2); 0.86 to 0.91 m (4CH3). 
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19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.0 s (4CF3); –123.6 m 

(4CFa); –126.7 m (4CFb); 2JP,Fa  = 74 Hz; 2JP,Fb  = 80 Hz; 2JFa,Fb  = 318 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 34.7 m (1P); –8.3 quin,m (2P; 

2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C40H68F20NO2P3 (M = 1067.86 g/mol): C 44.83, H 

5.88, N 1.62; found: C 44.99, H 6.42, N 1.31. 

IR (ATR_IR/neat liquid): ν (cm-1) = 2958 (br. m); 2931 (m); 2859 (m); 1387 (s); 1304 

(s); 1267 (s); 1216 (vs); 1143 (vs); 1121 (br. m); 985 (s); 874 (br. w); 827 (br. w); 751 

(w); 721 (br. w); 627 (m); 595 (m); 563 (s); 507 (br. s); 477 (br. s); 427 (m).  

 

N–ethylbenzothiazolium bis[bis(pentafluoroethyl)phosphinyl]imide, 

[(C6H4)SCHNC2H5][{(C2F5)2P(O)}2N] (21d) 

A solution of [(C6H4)SCHNC2H5]Br (0.21 g, 0.85 mmol) in 5 mL of water was slowly 

added to the stirred solution of HN[P(O)(C2F5)2]2 (0.5 g, 0.85 mmol) in 5 mL of water 

at room temperature. The mixture was left stirring for 30 minutes. The water phase 

turned cloudy and a white precipitate formation was accelerated by cooling of the 

reaction mixture with ice bath. The product was washed three times with water and 

then dissolved in 30 mL of ethanol and stirred for 30 min. The ethanol was distilled 

off and 0.6 g of a white material (21d) was obtained. Yield: 94%. Mp: 68 °C.   
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 11.1 s (CH); 8.2 d (CH, 3JH,H = 7.5 

Hz); 8.0 d (CH, 3JH,H = 7.5 Hz); 7.9 t (CH, 3JH,H = 7.2 Hz); 7.8 t (3JH,H = 8.2 Hz, CH); 

4.9 q (CH2, 3JH,H = 7.3 Hz); 1.7 t (CH3, 3JH,H  = 7.3 Hz). 
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 164.5 (NCS); 139.7, 130.3, 

129.3, 124.6, 116.1 (C–Ar); 48.9 (CH2CH3); 14.5 (CH2CH3). 
19F NMR (lock/solvent CDCl3, 376.4 MHz), δ, ppm: –79.9 s (4CF3); –123.0 m 

(4CFa); –125.4 m (4CFb); 2JP,Fa  = 79 Hz; 2JP,Fb  = 88 Hz; 2JFa,Fb  = 324 Hz. 
31P NMR (lock/solvent CDCl3, 161.9 MHz), δ, ppm: –3.1 quin,m (2P;2JP,F = 80 Hz). 

Elemental analysis calcd. (%) for C17H10F20NO2P2S (M = 747.96 g/mol): C 27.29, H 

1.35, N 3.74, S 4.29; found: C 27.25, H 1.76, N 3.66, S 3.79. 
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5. Ionic liquids with the [bis(pentafluoroethyl)phosphinyl–
(trifluoromethyl)sulfonyl]imide (PSI) anion  

There are only two reports about ILs composed by an asymmetrical imide anions: 

[(CF3SO2)(CF3CO)N]- [160], [(CF3SO2)(C2F5SO2)N]- and [(FSO2)(CF3SO2)N]- [161]. 

Quaternary ammonium salts with these anions afford low melting points ILs 

possessing low viscosities. 

Therefore, synthesis and characterization of ILs with an asymmetrical 

[bis(pentafluoroethyl)phosphinyl–(trifluoromethyl)sulfonyl]imide anion, 

[{(C2F5)2P(O)}N{S(O)2CF3}] (PSI) was an interesting goal [162].  

5.1 Synthesis of H[{(C2F5)2P(O)}N{S(O)2CF3}] – HPSI 

The synthesis of H[{(C2F5)2P(O)}N{S(O)2CF3}] (named HPSI) was performed 

analogue to the synthesis of HFPI [48], shown in equation 5.1 and 5.2. Two 

equivalents of Et3N and 1 equivalent of (C2F5)2P(O)Cl was added to 1 equivalent of 

CF3SO2NH2 diluted in dry diethyl ether at –30 °C. After warming up the reaction 

mixture to room temperature, the liquid product mixture was analyzed by NMR 

spectroscopy. The product [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] (1e) and traces of 

[NH4][(C2F5)2PO2] (3b) were detected. The solid material of [Et3NH]Cl was filtered off 
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Et2O 
–30 °C

and traces of (3b) were removed by washing with cold water several times. The 

desired pure acid HPSI (2e) was isolated by heating the salt (1e) with sulphuric acid 

(100 %) in vacuum (equation 5.2) (yield 96%). During of this process, if small traces 

of water are present, fast hydrolysis occurred due to the protonation of P=O and 

formation of (C2F5)2P(O)OH (1a) as identified by NMR measurements.  

 

(C2F5)2P(O)Cl + CF3SO2NH2 + 2 Et3N  ⎯⎯⎯→  

  ⎯⎯⎯→ [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] + [Et3NH]Cl↓   (5.1) 

      (1e)   

 

[Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] + H2SO4  ⎯⎯⎯→ 

  ⎯⎯⎯→ H[{(C2F5)2P(O)}N{S(O)2CF3}] + [Et3NH]HSO4   (5.2) 

            (2e) 

 

The acid, H[{(C2F5)2P(O)}N{S(O)2CF3}] is a colourless very hygroscopic solid. It 

is soluble in acetonitrile, acetone, and chloroform. In very dry solvents like DMSO, 

ethanol (or methanol) and acetonitrile at room temperature the acid is stable for more 

then 4 days.  

In aqueous solution, after 4 days at room temperature, in the 19F NMR and 31P 

spectra, a small signal was observed which belongs to the hydrolysis product (1a). 

The hydrolysis is accelerated at higher temperature. After 4 days at 40 °C, the 

hydrolysis product (1a) was formed in nearly 30 % yield and H3PO4 in 5% yield. After 

10 days the content of (1a) was increased to 50 %. 

The thermal behaviour of HPSI was characterized by DSC measurements. The 

sample (25 – 40 mg) in a DSC Al pan was heated in inert atmosphere (N2) at the rate 

of 10 °C·min-1. The Figure 5.1 shows the thermal effects of the HPSI. An endothermic 

peak at about 175 °C was observed which probably belongs to the sublimation of the 

HPSI and/or decomposition of product. In order to study the decomposition of HPSI, 

a few mg of this acid were heated into NMR tube at 110 °C for 5 min. Sublimation 

was observed also in NMR tube. After separation of the crystals from the residue, in 

the 19F NMR spectrum, a signal of the CF3SO2NH– moiety was observed.  
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Figure 5.1 DSC diagram of H[{(C2F5)2P(O)}N{S(O)2CF3}] (2e). 

 

5.1.1 Vibrational spectroscopy 

Infrared and Raman spectra of (1e) and (2e) were recorded at room temperature 

using ATR–IR accessory (HARRICK, MVP StarTM) with a diamond as the ATR 

crystal and a Bruker (EQUINOX 55) FT Raman spectrometer. The spectra of (1e) are 

depicted in Figure 5.2.  

The bands at 3050 cm–1 are attributed to ν(NH), the bands at 3000 – 2800 cm–1 

to CH stretching vibrations and 1480 – 1400 cm–1 to the deformation vibrations of 

CH3 and CH2 groups of the cation in 1e. All fundamental vibrations of the PSI anion 

are below 1400 cm–1 and 66 internal vibrations are in principle allowed. According to 

literature data on similar systems [44], the antisymmetric stretching mode of the SO2 

groups, νas(SO2), is expected between 1350 and 1300 cm–1 and the symmetrical one, 

νs(SO2), between 1160 and 1120 cm–1. In the case of 1e were found the bands at 

1331 cm–1 of νas(SO2) and 1203 cm–1 and 1144 cm–1 of νs(SO2). There are also very 

intense absorption assigned to C2F5 and P=O between 1330 and 1100 cm–1. Some 

stretching modes are overlapping each other as can be seen by comparison of 

observed and calculated band positions in Table 5.1. The strongest Raman band at 

746 cm–1 is attributed to the symmetric CF3 deformations. Altogether, the vibrational 

spectra are suitable for fingerprint identification.  
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Figure 5.2 Infrared and Raman spectra of solid [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] 
(1e) recorded as neat compound. 

 

The infrared spectra for HPSI do not exhibit a typical sharp ν(N–H) band as it 

was observed in some cases [32], maybe due to the very hygroscopic/deliquescent 

nature of the compound. The vibrational spectra of the HPSI (2e) are quite similar to 

that of the (1e) anion. Some additional bands between 700 and 665 cm–1 were 

observed.  

 

Table 5.1 Observed and calculated band positions (cm–1) and infrared band 
intensities of the [{(C2F5)2P(O)}N{S(O)2CF3}]– anion in 1e. 

IRa Ramanb νcalcd.
c Assignment 

– 1324 m 1316 (30) ν1              νas(SO2) 
1298 s – 1292 (270) ν2              ν(CC) 
1273 vs 1274 w 1280 (900) ν3/ν4          ν(CC)/νs(CF3) 
1226 vs 1208 w 1206 (550) ν5/ν6          νas(CF3) 
1203 vs 1203 w 1197 (250) ν7              νas(PO) 
1183 s 1164 w 1170 (1060) ν8 – ν11      νas(CF3)/νs(SO2) 
1144 vs 1146 w 1147 (330) ν12/ν13       νs(CF2)/νs(SO2) 
1095 vs 1076 w 1091 (220) ν14 – ν16    νs(CF2)/ν(CN) 
1018 w 1016 w 1010 (380) ν17 – ν18    ν(CC)/ν(PC) 
979 s – 960 (80) ν19            ν(PC) 
750 w 759 m 754 (20) ν20             νs(PN) 
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741 w  741 vw 737 (30) ν21 – ν23     δ(CF3) 
615 s 644 w 615 (20) ν24/ν25        δ(SO2)/ δ(SN) 
595 m 594 vw 590 (240)  ν26 – ν28       δ(SO2) 
557 m 559 w 538 (40) ν29/ν30        δ(CF3) 
538 w – 536 (20) ν31/ν32        ρ(CH2) 
495 vs – 492 (80) ν33/ν34       
449 w  476 (100) ν35       
433  436 (9) ν36       
413 w 417 m 406 (20) ν37/ν38       
 368 m 360 (4) ν39       
 324 m 340 (6) ν40/ν41       
 304 m 306 (5) ν42 – ν44      
 270 m 278 (3) ν45 – ν46      
 260 m 230 (11) ν47 – ν49      
 176 m 208 (17) ν50 – ν54      
 157 vw 120 (2) ν55 – ν57      
 88 m 86 (3) ν58 – ν66      

a Solid/b Solid neat compound – s = strong, m = medium, w = weak, v = very. 
c B3LYP/6–31+G(d), IR intensities in parentheses (km·mol–1).  
 

5.1.2 NMR spectroscopy 

NMR spectra of HPSI (2e) were measured in dry CD3CN solution. A sharp singlet at 

11.7 ppm in the 1H NMR corresponds to a strong acidic N–H band. The compound 

possesses non–equivalent trifluoromethyl groups as well as two types of fluorine 

atoms. The 19F NMR spectrum shows a singlet at –81 ppm (two CF3 groups) and at –

81.7 (one CF3 group) and a multiplet at –125 ppm (CF2 groups) in a relative intensity 

ratio of 6:3:4. As a consequence of asymmetry of the anion, the F atoms in the CF2 

group are not equivalent and form an AA’X spin system.  

In the 31P NMR spectrum a triplet of triplet was observed between –6 at –7 ppm 

due to coupling with the two nearly identical 19F nuclear of the two CF2 groups. 

5.2 Synthesis of new ionic liquids with the PSI anion  

Six starting materials with different cations were used for the syntheses of ILs with 

the PSI anion (Table 5.2). The metathesis reactions were performed according to the 

equation 5.3. The acid and the cation–precursors were dissolved in a minimum 



Ionic liquids with PSI anion  Chapter 5 
_____________________________________________________________________________________________________ 

 92

quantity of cold water and mixed together at low temperature for 1 hour and the 

resulting yields are shown in Table 5.2.  

 
Cat+A–  +  H[{(C2F5)2P(O)}N{S(O)2CF3}]  ⎯⎯⎯→ 

 ⎯⎯⎯→  Cat+[{(C2F5)2P(O)}N{S(O)2CF3}]–  +HA 

A = Cl, Br, OH             (5.3) 

 
Table 5.2 Structures and yields of ILs with [{(C2F5)2P(O)}N{S(O)2CF3}]– anion. 

Cation Compound R R1 yield, % 

N N
R2R1

 

3e CH3 C2H5 74 

N

R2

R1

 

4e C4H9 CH3 78 

5e C6H13 C14H29 78 

6e C6H5 CH2C6H5 86 
R1

P

R

R1

R1  
7e C4H9 C4H9 73 

R
N

R1

R
R  

8e C4H9 C4H9 85 

 

The products were characterised by 1H, 19F, 31P NMR, IR, mass spectroscopy 

and elemental analysis.  

5.3 Physical and chemical properties of ionic liquids with the 
asymmetrical PSI anion 

All six ionic liquids with the PSI anion obtained in this work are hygroscopic and take 

up water from air. The water content was measured by Karl Fischer titration (in ppm): 

water  

ice / 1 h 
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3e (34); 4e (20); 5e (35). The chloride content measured by ion chromatography in 

ppm is: 3e (26); 4e (5); 5e (78); 6e (5). For 5e the chloride content could not be 

reduced less than 78 ppm. Nevertheless, the viscosity for 5e was 343 mPa·s with 

173 ppm of chloride and 346 mPa·s with 78 ppm of chloride, which indicate a not 

significant influence on the viscosity.  

5.3.1 Viscosity and density 

The viscosity of ILs is strongly dependent to the type of the anion and the 

coordinating ability and the symmetry of the ions [56]. As can be seen in Table 5.3 

low anion weight and low symmetry is necessary to obtain ILs with low viscosity.  

 

Table 5.3 The influence of the anion weight and symmetry on the viscosity of 
  [emim] ILs. 

[(C2F5)2P(O)]2N– 152 mPa·s (20 °C) (this work)
[C2F5SO2]2N– 61 mPa·s (26 °C)a 

[CF3SO2]2N– 41 mPa·s (20 °C)b 

[CH3SO2]2N– 787 mPa·s (20 °C)c 
[{(C2F5)2P(O)}N{S(O)2CF3}]– 127 mPa·s (20 °C) (this work)

[emim] 

[CF3CO]N[CF3S(O)2]– 25 mPa·s (25 °C)b 

a Ref. [163]; b Ref. [164]; c Ref. [165] 

 
Figure 5.2 presents the viscosity of different PSI ILs plotted as a function of 

temperature. The viscosity decrease with introduction of CF3SO2 group as was 

presented in Table 5.4.  
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Figure 5.3 Viscosity of different PSI ILs as a function of temperature. 

 

Table 5.4  Dynamic and kinematic viscosity and density of ILs with the PSI anion. 

Ionic liquid Dynamic 
viscosity 
η/mPa·s 
(20 °C) 

Kinematic 
viscosity 
ν/mm2·s–1 
(20 °C) 

Density 
ρ/g·cm–3 
 

[emim]FPI 171 102 1.68 

[emim][TFSI] 41 27 1.52a 

[emim]PSI 127 79 1.61 

[bmpl]FPI 325 206 1.58 

[bmpl][TFSI] 184 131 1.40b 

[bmpl]PSI 268 179 1.49 

[p(h3)t]FPI 536 443 1.21 

[p(h3)t][TFSI] 148 141 1.05a 

[p(h3)t]PSI 346 304 1.14 
a Ref. [164]; b Ref. [166] 

 

The densities of [emim]FPI, [emim]FAP, [emim]TFSI and [emim]PSI are shown 

as a function of temperature in Figure 5.4. Densities of these ILs decrease slightly 

with increasing of temperature. All ILs studied exhibited a similar degree of volume 
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expansion with temperature. The density of [emim]PSI is in between densities value 

of [emim]FPI and [emim]TFSI respectively. 
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Figure 5.4 Densities of a series of [emim] ILs as a function of temperature. 

5.3.2 Melting point and glass transition temperature 

The thermal behaviour of the ILs with PSI was examined visually and by DSC and 

TGA measurements with a Netzsch DSC, model 204 and a Netzsch STA thermal 

gravimetric analyzer, model 409.  

There are only two publications dealing with the preparation of lower melting 

points ILs with asymmetrical amide anion [160, 161]. In this thesis is presented 

preparation of six new room temperature ILs with different cations and the PSI anion 

(Figure 5.2). Surprisingly, the [Bu4P]PSI (7e) is liquid at room temperature, while 

[Bu4P]FPI (18d) has a melting point of 145 °C. The melting point of [Bu4N]PSI (8e) 

(36 °C) is much lower than that of [Bu4N]FPI (13d) (151 °C) and lower than 

[Bu4N]TFSI (90 °C) [128]. Not only the symmetrical ammonium or phosphonium 

cations, but also a big asymmetrical cation, [(C6H5)3P(CH2C6H5)], forms low melting 

point IL (6e) (73 °C). [Et3NH]PSI has melting point at 43 °C. These data show that 

the PSI anion forms salts with much lower melting point on compararison to FPI salts.  

 

 



Ionic liquids with PSI anion  Chapter 5 
_____________________________________________________________________________________________________ 

 96

 
Figure 5.5 DSC diagrams for two ILs: [Bu4N]PSI (Tm = 36 °C) and 

[(C6H5)3P(CH2C6H5)]PSI (Tm = 73 °C).  
 

The DSC diagrams of the room temperature ILs with PSI anion show no melting 

point, only glass transition at –81 °C for (5e), –77 °C (4e) and –80 °C (3e). The DSC 

representations of two ILs are displayed in Figure 5.6.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 DSC diagrams for [bmpl]PSI (1) and [p(h3)t]PSI (2); (a) glass transition 

temperature (–77 °C and -81°C). 
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5.3.3 Thermal stability  

The thermogravimetric analyses of two ILs with PSI anion are displayed in Figure 

5.7. The well dried compounds show no weight loss until at least 300 °C, providing a 

large, stable liquid range. The thermal stabilities (Tonset, TGA) of the ILs with PSI 

decrease in the series:  

 

6e (360 °C) > 4e (350 °C) > 7e (320 °C) > 3e (300 °C) > 1e (260 °C) 

 

[Et3NH]PSI (1e) is less thermally stable and decomposes at 260 °C. For 

[p(h3)te3]PSI (5e), the weight loss (3.5 %), in the 90 – 140 °C range, corresponds to 

the loss of some volatile impurities.  

In conclusion, the thermal stability of ILs with PSI anion is high and comparable 

with FPI anion.  
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Figure 5.7 TGA for two ILs (4e and 5e) with the PSI anion.  
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5.4 Crystal structure of [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] 

Single crystals of [Et3NH]PSI (1e) suitable for X–ray diffractometry were obtained by 

crystallization from an Et2O/water solution by slow evaporation. A Kappa CCD 

diffractometer (Bruker AXS) was used for measurements at 100 K with Mo–Kα 

radiation (λ = 0.71073 Å) and a graphite monochromator. The crystal structure of (1e) 

was solved by direct methods using SHELXS–97 and full–matrix least–squares 

refinement on F2 was performed with SHELXL–97 [155]. Diffracted intensities were 

corrected for absorption based on indexed crystal faces, Tmin, and Tmax: 0.90 and 

0.98, respectively. The parameters obtained for (1e) are listed in Table 5.5 and the 

angle and distance in Appendix 1. The crystal structure was determined in space 

group P21 (Table 5.6) with two independent formula units per unit cell, which are 

depicted in Figure 5.8.  

Figure 5.8 Molecular structure of two formula unit of [Et3NH]PSI in the unit cell. 

 

The PNS skeleton of both PSI anions shows approx. C2 symmetry. Average 

values of selected bond lengths and angles for the anion are collected in Table 5.5, 

which show a good agreement between experimental and calculated data for two 

different anions: [{(C2F5)2P(O)}2N]- and [(CF3SO2)2N]- [44]. The P–N and S–N bond 
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distance are shorter than that for corresponding acids: 1.588 Å in PSI compared to 

1.670(1) Å in iPr2P(O)NHP(O)iPr2 [157] and 1.561 Å for PSI compared to 1.660 Å in 

(CF3SO2)2NH [44]. That probably reflects the differencies in electron–withdrawing 

properties of these groups.  

 

Table 5.5 Observed/calculateda average bond lengths (Å) and angles (deg.) for the 
PSI anion in the [Et3NH]PSI salt. 

 
bond/angle obs. 

(this work) calca./obsref. 

P=O 1.47 1.49/1.47b 

P–N 1.58 1.59/1.56b 

P–C 1.87 1.92/1.88b 

C–C 1.52 1.55/1.53b 

CF2–F 1.33 1.35/1.33b 

CF–F 1.34 1.37/1.36b 

CF2–F (–SO2) 1.34 1.31/1.30c 

C–S 1.82 1.82/1.81c 

S=O 1.43 1.43/1.41c 

S–N 1.56 1.57c and 1.64d 

P–N–S 126.4 - 

a B3LYP/6–31+G(d); b for [{(C2F5)2P(O)}2N]-; c for [(CF3SO2)2N]- ref. [44]; 
d for [(CF3SO2)2N]- ref. [167].  

 
The X–ray structure (Figure 5.8) shows that the hydrogen bonding between 

the O donor from anions and the H acceptor from the cation is shorter than usually: 

P1–O1…H2–N2 (1.942 Å) and P4–O4…H4–N4 (2.258 Å).  
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Table 5.6 Crystalographic and refinement data for 1e.  
 

Crystalographic data [(C2H5)3NH]PSI (1e) 
Empirical formula C11H16F13N2O3PS 
Colour colourless 
Formula weight 534.29 g·mol-1 
Temperature 100 K 
Wavelength 0.71073 Å 
Crystal system Monoclinic 
Space group P21, (no. 4) 
Unit cell dimensions 
 
 

a = 10.8058(3) Å       α= 90° 
b = 11.1886(3) Å       β = 91.628(1)° 
c = 15.6646(5) Å       γ = 90° 

Volume 2013.97(10) Å
3
 

Z 4 
Density (calculated) 1.762 mg·m-3 

Absorption coefficient 0.374 mm
-1 

F(000) 1072 e 
Crystal size 0.30 x 0.26 x 0.05 mm

3
 

θ range for data collection 2.91 to 33.31° 
Index ranges -16 ≤ h ≤ 16, -17≤ k ≤ 17,-25 ≤ l ≤ 25 
Reflections collected 40674 
Independent reflections 15368 [R

int
 = 0.0514] 

Reflections with I>2σ(I) 12704 
Completeness to ( = 33.31°) 99.0 % 
Absorption correction Gaussian 
Max. / min. transmission 0.98179 and 0.90756 
Refinement method Full-matrix least-squares on F2 
Data/restraints/parameters 15368/1/565 
Goodness-of-fit on F2 1.098 
Final R indices [I>2σ(I)]a R1 = 0.0656    wR2 = 0.1823 

R indices (all data)b R1 = 0.0804    wR2 = 0.1926 
Absolute structure parameter 0.02(8) 
Largest diff. peak and hole 1.096 and -0.816 e Å-3 
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5.5 Experimental part  

Triethylammonium [bis(pentafluoroethyl)phosphinyl –

(trifluoromethyl)sulfonyl)]imide, [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] (1e) 

A 250 mL, three neck, round–bottomed flask was fitted with stirrer and a combined 

inlet–outlet assembly connected to an argon source and a bubbler. The flask was 

charged with 9.83 g (65.9 mmol) of CF3SO2NH2 and 13.50 g (133.0 mmol) of Et3N in 

20 mL of dry Et2O. The mixture was cooled with bath at –30 °C (ethanol/dry ice) while 

21.66 g (65.9 mmol) of (C2F5)2P(O)Cl was added slowly under vigorous stirring. After 

an exothermic process, the reaction mixture was stirred and allowed to warm up to 

room temperature. The white deposit of NH4Cl was filtered off and washed three 

times with 30 mL Et2O. After removing the solvent, a brown–yellow liquid product was 

obtained. The impurities from raw product were removed by washing several times 

with cold water. 33.68 g (62.9 mmol) of the desired product (yellowish) was obtained 

after drying in high vacuum (10-3 mbar). Yield: 95.5 %. Mp: 43 °C. 
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 3.11 to 3.04 m (3CH2, 3JH,H  = 7.2 

Hz); 1.18 t (3CH3, 3JH,H  = 7.2 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (2CF3); –81.2 s (CF3); 

–123.8 m (2CFa); –126.6 m (2CFb); 2JP,Fa = 74 Hz; 2JP,Fb = 84 Hz;  2JFa,Fb = 317 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –6.8 t,t (1P; 2JP,Fa = 73 Hz; 
2JP,Fb = 84 Hz). 

Elemental analysis calcd. (%) for C11H16F13N2O3PS (M = 543.27 g/mol): C 24.73, H 

3.02, N 5.24, S 6.00; found: C 24.80, H 2.69, N 5.10, S 5.86. 

MS – CI for [Et3NH]+{[(C2F5)2P(O)]N[S(O)2CF3]}-: m/z 301 (C2H5)2P(O)NH2); 149 

(CF3SO2NH2). 

 
Bis[(pentafluoroethyl)phosphinyl–(trifluoromethyl)sulfonyl]imide 

H[{(C2F5)2P(O)}N{S(O)2CF3}] (2e) 

6.7 g of concentrated sulphuric acid was added to 9.4 g (17.5 mmol) of (1e) salt and 

heated under vacuum (10-3 mbar) to 40 – 50 °C. The desired pure product was 

obtained by sublimation onto a cold–finger condenser cooled with dry ice and 

ethanol. The white solid of 2e is very hygroscopic and must be handled under argon. 

Yield: 97%.  
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1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 11.69 s (NH). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –80.9 s (2CF3); –81.7 s (CF3); 

––123.7 m (2CFa); –126 m (2CFb); 2JP,Fa = 79 Hz; 2JP,Fb = 91 Hz;  2JFa,Fb = 318 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –7.4 t,t (1P; 2JP,Fa = 79 Hz; 
2JP,Fb = 87 Hz). 

Elemental analysis calcd. (%) for C5HF13NO3PS (M = 433.09 g/mol): C 13.87, H 0.23, 

N 3.23, S 7.40; found: C 13.98, H 0.60, N 3.01, S 7.29. 

 

1–Ethyl–3–methylimidazolium [bis(pentafluoroethyl)phosphinyl – 

(trifluoromethyl)sulfonyl)]imide, [C6H11N2][{(C2F5)2P(O)}N{S(O)2CF3}] (3e) 

A solution of [C6H11N2]Cl (2.53 g, 17.2 mmol) in water (5 mL) was added slowly to a 

cooled solution of H[{(C2F5)2P(O)}N{S(O)2CF3}] (7.50 g, 17.3 mmol) in water (5 mL), 

under vigorous stirring. The product precipitated as a viscous liquid. It was collected 

by separation, dissolved in CH2Cl2 and washed several times with water. After 

evaporation of the solvent the residue was dried in high vacuum (10-3 mbar) for 22 h 

at 60 °C. 6.91 g of product 3e was obtained. Yield: 74%. 
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 8.42 s (CH); 7.38 s (CH); 7.31 s 

(CH); 4.14 q (CH2, 3JH,H  = 7.3 Hz); 3.80 s (CH3); 1.43 t (CH3, 3JH,H = 7.1 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (2CF3); –81.8 s (CF3); 

–123.8 m (2CFa); –126.6 m (2CFb); 2JP,Fa  = 72 Hz; 2JP,Fb  = 85 Hz; 2JFa,Fb  = 312 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –6.9 t,t (1P; 2JP,Fa = 74 Hz; 
2JP,Fb = 83 Hz). 

Elemental analysis calcd. (%) for C11H11F13N3O3PS (M = 543.01 g/mol): C 24.32, H 

2.04, N 7.74, S 5.90; found: C 23.68, H 2.18, N 7.89, S 5.53. 

 

1–n–Butyl–1–methylpyrrolidinium [bis(pentafluoroethyl)phosphinyl – 

(trifluoromethyl)sulfonyl)]imide, [C9H20N][{(C2F5)2P(O)}N{S(O)2CF3}] (4e) 

A slight excess of freshly prepared H[{(C2F5)2P(O)}N{S(O)2CF3}] (7.30 g, 16.8 mmol) 

in water (or methanol) (5 mL) was added to a cooled aqueous solution of [C9H20N]Cl 

(2.92 g, 16.4 mmol) and reaction mixture was left stirred for approximately 1 h. The 

precipitated product, as a viscous liquid, was collected by separation and was 

washed several times with water. For a good separation was dissolved in 

dichloromethane and washed again two times with water. The organic layer was 
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collected; the solvent was distilled off and the residue was dried in high vacuum (10-3 

mbar) for 36 h at 60 °C. 7.34 g of 4e was obtained. Yield: 78%. 
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 3.38 m (2CH2); 3.21 m (CH2); 

2.92 s (CH3); 2.13 m (2CH2); 1.70 m (CH2); 1.35 q,t (CH2, 3JH,H  = 7.5 Hz); 0.99.t 

(CH3, 3JH,H  = 7.3 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.0 s (2CF3); –81.7 s (CF3); 

–123.7 m (2CFa); –126.5 m (2CFb); 2JP,Fa  = 78 Hz; 2JP,Fb  = 83 Hz; 2JFa,Fb  = 316 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.4 t,t (1P; 2JP,Fa = 73 Hz; 
2JP,Fb = 84 Hz). 

Elemental analysis calcd. (%) for C14H20F13N2O3PS (M = 574.34 g/mol): C 29.28, H 

3.51, N 4.88, S 5.58; found: C 29.04, H 3.68, N 4.9, S 4.94. 

 

Trihexyl(tetradecyl)phosphonium [bis(pentafluoroethyl)phosphinyl – 

(trifluoromethyl)sulfonyl)]imide, [(C6H13)3PC14H29][{(C2F5)2P(O)}N{S(O)2CF3}] (5e) 

To a stirred solution of 6.94 g (13.36 mmol) [(C6H13)3PC14H29]Cl in 20 mL of ethanol 

was added 5.80 g (13.39 mmol) of H[{(C2F5)2P(O)}N{S(O)2CF3}] in 8 mL of water at 0 

°C. The mixture was kept stirring for 1 h at room temperature. The ethanol was 

distilled off in vacuum and then the residue was washed several times with water, 

dissolved in dichloromethane and washed again with water several times. The 

organic layer was collected; the solvent distilled off the residue dried in high vacuum 

(10-3 mbar) for 36 h at 60 °C. 9.52 g of a liquid material was obtained. Yield : 78 %. 
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 2.10 to 2.02 m (4CH2); 1.57 to 

1.41 m (8CH2); 1.38 to 1.28 m (16CH2); 0.95 to 0.89 m (4CH3). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.0 s (2CF3); –81.6 s (CF3); 

–123.6 m (2CFa); –126.5 m (2CFb); 2JP,Fa  = 72 Hz; 2JP,Fb  = 84 Hz; 2JFa,Fb  = 322 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 33.6 m (1P); –8.5 t,t (1P; 2JP,Fa 

= 72 Hz; 2JP,Fb = 83 Hz).  

Elemental analysis calcd. (%) for C37H68F13NO3P2S (M = 915.93 g/mol): C 48.52, H 

7.48, N 1.53, S 3.50; found: C 48.88, H 7.84, N 1.45, S 2.73. 
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Benzyl(triphenyl)phosphonium  

[bis(pentafluoroethyl)phosphinyl – (trifluoromethyl)sulfonyl)]imide, 

[(C6H5)3P(CH2C6H5)][{(C2F5)2P(O)}N{S(O)2CF3}] (6e) 

 To the stirred solution of [(C6H5)3P(CH2C6H5)]+Cl- (0.35 g, 0.9 mmol) in 2 mL of 

water, a solution of H[{(C2F5)2P(O)}N{S(O)2CF3}] (0.40 g, 0.9 mmol) in 3 mL of water 

was slowly added at room temperature. The mixture was kept stirring for 1 h at room 

temperature. The colloid mixture cannot be separated by filtration. The desired 

product (6e) was extracted with Et2O. The extract was washed two times with 20 mL 

of water until the test for bromide with AgNO3 was negative. After evaporation of 

solvent and drying, 0.62 g of a pure white solid was obtained. Yield: 86%. Mp: 73 °C.  
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 7.9 m (3CH); 7.7 m (6CH); 7.6 m 

(6CH); 7.4 m (CH); 7.2 t (2CH, 3JH,H  = 7.7 Hz); 6.9 d,m (2CH); 4.6 d (CH2P, 
2JP,H  

=14.4 Hz).  
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 s (2CF3); –81.7 s (CF3); 

–123.6 m (2CFa); –126.5 m (2CFb); 2JP,Fa  = 72 Hz; 2JP,Fb  = 84 Hz; 2JFa,Fb  = 316 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 22.5 s (1P); –6.8 t,t (1P; 2JP,Fa 

= 72 Hz; 2JP,Fb = 83 Hz). 

 

Tetra(n–butyl)phosphonium 

[bis(pentafluoroethyl)phosphinyl – (trifluoromethyl)sulfonyl)]imide, 

[(C4H9)4N][{(C2F5)2P(O)}N{S(O)2CF3}] (7e) 

A solution of [(C4H9)4P]Br (0.5 g, 1.4 mmol) in 3 mL of water was slowly added to the 

stirred solution of H[{(C2F5)2P(O)}N{S(O)2CF3}] (0.6 g, 1.4 mmol) in 4 mL of water at 

room temperature. The mixture was left stirring for 30 minutes. The precipitated 

viscous liquid was washed several times with water. After drying, 0.7 g of a liquid 

material was obtained. Yield: 73%. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 2.11 to 2.04 m (4CH2); 1.50 m 

(8CH2); 0.97 t (4CH3, 3JH,H  = 7.1Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.0 s (2CF3); –81.7 s (CF3); 

–123.6 m (4CFa); –126.5 m (4CFb); 2JP,Fa  = 73 Hz; 2JP,Fb = 82 Hz; 2JFa,Fb = 315 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 33.6 m (1P); –8.5 quin,m (2P; 

2JP,Fa = 72 Hz; 2JP,Fb = 84 Hz). 
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Elemental analysis calcd. (%) for C21H36F13NO3P2S (M = 691.5 g/mol): C 36.47, H 

5.25, N 2.03, S 4.64; found: C 36.39, H 5.17, N 1.96, S 4.74. 

 

Tetra(n–butyl)ammonium 

[bis(pentafluoroethyl)phosphinyl – (trifluoromethyl)sulfonyl)]imide, 

[(C4H9)4N][{(C2F5)2P(O)}N{S(O)2CF3}] (8e) 

A solution of [(C4H9)4N]OH (1 M, 1.1 mL) in ethanol was slowly added at room 

temperature to the stirred solution of H[{(C2F5)2P(O)}N{S(O)2CF3}] (0.5 g, 1.1 mmol) 

in 3 mL of water. The mixture was left stirring for 30 minute. The product was 

extracted with 10 mL of Et2O. The solvent was evaporated and the residue was dried 

8 h in vacuum (<10-3 mbar) at room temperature. Yield: 85%. Mp: 36 °C.  
1H NMR (lock/solvent CD3CN, 400MHz), δ, ppm: 3.10 m (4CH2); 1.64 m (4CH2); 

1.39 q,t (4CH2, 3JH,H  = 7.3 Hz); 1.0 t (4CH3, 3JH,H  = 7.3 Hz). 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: : –81.0 s (2CF3); –81.7 s (CF3); 

–123.6 m (4CFa); –126.5 m (4CFb); 2JP,Fa  = 73 Hz; 2JP,Fb = 82 Hz; 2JFa,Fb = 315 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: –8.5 t,t (1P; 2JP,Fa = 72 Hz; 
2JP,Fb = 83 Hz). 

Elemental analysis calcd. (%) for C21H36F13N2O3PS (M = 674.54 g/mol): C 37.39, H 

5.38, N 4.15, S 4.75; found: C 37.37, H 5.24, N 4.01, S 4.51. 
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6. HFPI – an efficient catalyst for acylation reactions  

Protection of alcohols, phenols, thiols and amides with acyl group is one of the 

frequently used protocol in organic chemistry and is usually achieved through 

acylation with anhydrides or acetyl chloride [168]. The various catalysts are 

developed for acylation, for example Lewis acids (metal halides, metal triflates, and 

metal triflimide) or acids themself. Recently, ILs were also used as catalyst and 

medium in acylation processes. The application of HN[P(O)(C2F5)2]2 (HFPI) in 

organic synthesis and its use as catalyst for efficient acylation of phenols, amines 

and thiols are reported in this chapter [169].  

6.1 Acylation of – OH, – NH, and – SH functional groups with HFPI 

Despite the great number of reported acylation procedures, new and more efficient 

methodologies are still demanded. Various acids and bases were tested as catalysts, 

but the applications of many of them are limited due to the instability of reactants or 

products under the reaction conditions or difficult workup (long reaction times, 

stringent conditions, use of hazardous materials). For example, many Lewis acids, 

such as scandium triflate, Sc(OTf)3 [170], cerium triflate Ce(OTf)3 [171], magnesium 

bromide, MgBr2 [172], tantalum chloride, TaCl5 [173], trimethylsilyl triflate Me3SiOTf 

[174], copper triflate, Cu(OTf)2 [175], indium triflate In(OTf)3 [176], aluminium triflate 
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Al(OTf)3 [177], or bismuth triflate, Bi(OTf)3 [178] have been used as catalysts for 

acylation processes. In general metal triflates are very expensive. Some of them are 

moisture sensitive and cannot be used for acylation of acid–sensitive alcohols. 

Recently, Alleti et al. (2005) have been reported the application of Gd(OTf)3 as a mild 

catalyst in acetylation of alcohols and amides [179]. Further improvement was 

achieved by using of some metal imide (e.g. LiTFSI, Mg(TFSI)2, Sc(TFSI)2) as very 

stable and mild catalyst [180, 60].  

In this work was found that HFPI is an efficient catalyst in acylation reactions 

according to equation 6.1. 

 

R(Ar)XH  +  (CH3CO)2O R(Ar)XCOCH3  +  CH3COOH

X = O, NH, S

cat.: HFPI
      
      RT

(6.1)

 
 

Various phenols were subjected to acylation according to this protocol, i.e. 1–

naphtol, 2–naphtol, catechol, 4–nitrophenol and 4–methoxyphenol. Most of the 

reactions were carried out with 1.2 equiv. of acetic anhydride, under solvent free 

conditions at room temperature in the presence of 1 mol % of catalysts (HFPI), 

unless otherwise stated. The results are summarized in the Table 6.1. The reactions 

proceeded fast, within ca. 30 min. The products were isolated mostly in excellent 

yields after sample work–up, using the procedures described in the experimental 

part. The product yields were influenced by the nature of the substrates (steric and 

electronic factors). Very small difference in the yield of 2– and 1– naphtyl acetate 

(entry 2 and 5) was observed. Good results were also obtained with phenols having 

electron–withdrawing substituent, such as NO2 (entry 14). 4–methoxyphenol was 

acylated smoothly and the –OMe group remained intact by this protocol. Dihydroxy 

aromatic compond afforded the diacetates in excellent yield. The isolated products 

were characterized with typical analytical procedure and the data were in full 

agreement with authentic samples (Mp, NMR, MS).  

Exploration of the catalytic activity of HFPI for acylation of diverse phenols was 

completed by studies with another acid, HTFSI as catalyst. Its comparable acidity 

was presented in Chapter 2. HFPI and HTFSI are equally effective in the acylation 

reactions.  
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Table 6.1 Acylation of O–substrates with Ac2O in the presence of HFPI and HTFSI as catalystsb. 
 

Entry Substratea Product Catalystb 

(mol %) 
Time 
(min) 

Temp. 
(°C) Solv. Yield (%) 

HFPI 
(1 %) 30 RT CH2Cl2 

(2 mL) 91 

1 – 2. 

OH

 

OAc

 
HFPI 
(1 %) 30 RT – 98 

HFPI 
(1 %) 10 RT CH2Cl2 

(2 mL) 74 

HFPI 
(1 %) 30 RT CH2Cl2 

(2 mL) 97 

HFPI 
(1 %) 30 RT – 99 

HFPI 
(0.1 %) 30 RT – 95 

HTFSI 
(1 %) 30 RT – 95–96 

3 – 8. 

OH

 

OAc

 

HTFSI 
(1.5 %) 30 RT – 95 
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Entry 
(contd.) Substratea Product Catalystb 

(mol %) 
Time 
(min) 

Temp. 
(°C) Solv. Yield (%) 

HFPI 
(1 %) 10 RT – 63 

HFPI 
(1 %) 20 RT – 79 

HFPI 
(1 %) 30 RT – 96–97 

HFPI 
(0.1 %) 30 RT – 92–93 

9 – 13. OH

OH

 

OAc

OAc

 

HTFSI 
(1.5 %) 30 RT – 97 

HFPI 
(1 %) 25 RT – 93–94 

14 – 
15. 

OH

NO2  

OAc

NO2  

HTFSI 
(2 %) 30 RT – 89 

HFPI 
(1 %) 30 RT – 97 

16 – 
17. 

OH

OCH3  

OAc

OCH3  

HTFSI 
(1 %) 30 RT – 87–89 

a The substrate was treated with Ac2O (1.2 equiv.) in the presence of the catalyst under neat conditions at room temperature. 
b Molar equiv of the catalyst used with respect to the substrate.  
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The influence of the reaction time of O–substrate with acetic anhydride was 

studied as well. When acetic anhydride was used as reagent and as a solvent, the 

higher yield of the desired product was obtained. On the other hand, in CH2Cl2, the 

catalyst was not completely dissolved and the yield of the acylation product was less 

(entries 1 and 3 – 4). Recovery of the catalyst, HFPI, is possible but not necessary 

because only 0.1 mol % of the catalyst was used (entry 6 and 12).  

Further, the catalytic activity of various FPI salts in acylation process was 

compared. The catalytic activity of AgFPI, Mg(FPI)2 and Zn([FPI)2 was investigated. 

The results are summerised in Table 6.2. The corresponding acetates were formed in 

relatively good yields, except the cases that Mg(FPI)2 and MgCl2 were used as 

catalysts (entries 3, 4 and 7).  

 

Table 6.2 Acylation of catechola with Ac2O in the presence of different catalysts. 

Pyrocatechol diacetate – Yield (%) 
Entry Catalystb 

(mol %) 
Time (min) Temp. (°C) Solv. Yield (%) 

1. AgFPI 
(2 %) 30 RT - 75 

2. AgFPI 
(5 %) 30 RT - 78 

3. Mg(FPI)2 
(1 %) 30 RT - 43-45 

4. Mg(FPI)2 
(1 %) 30 RT CH2Cl2 25 

5. Zn(FPI)2 
(1 %) 30 RT - 84 

20 RT - 92 
6. Mg[TFSI]2  

(1 %) 15 RT - 86c 

7. MgCl2 
(5 %) 60 RT - 27 

a The catechol was treated with Ac2O (1.2 equiv.) in the presence of the catalyst under neat conditions 
at room temperature. 

b Molar equiv of the catalyst used with respect to the substrate; c ref. [180].  
 

It is known that lanthanide (III) salts are active Lewis acid catalysts. Therefore, 

lanthanide bis[bis(pentafluoroethyl)phosphinyl]imide, such as La(FPI)3, Yb(FPI)3, 

Ce(FPI)3, have been used as efficient catalysts in acylation with acetic anhydride 

(Table 6.3). Catechol was chosen as a model substrat. All lanthanide FPI salts were 
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effective in acylation, however, the activity of La(FPI)3 was relatively low (entries 1 – 

3) compared to the FPI acid, as catalyst, due to the heterogeneous conditions of the 

process. High yield, was obtained when ionic liquid, [emim]FPI (0.2 g, three drops), 

was choosed as solvent in this reaction (entry 4). The pure pyrocatechol diacetate 

was separated by sublimation in vacuum at 60 – 80 °C.  

The N–acylation of amino groups is an important functionalization in organic 

chemisty [168]. Usually, acetic anhydride as a N–acylation reagent and a basic 

catalysts such as pyridine, 4–pyrrolidinopyridine, 4–dialkylaminopyridine, and 

ammonium acetate are used [181]. A variety of other catalysts, for instance as 

Cu(OTf)2 [175], In(OTf)2 [176], or zeolite H–FER [181] were also employed in these 

reactions. Here, a convenient procedure with HFPI as catalyst was developed for the 

N–acylation of aniline and its derivatives (Table 6.4). The reaction time was longer 

than in the case of O–acylation. N–benzyl–acetamide was easily isolated by 

crystallization (ether or CH2Cl2/hexane) from the crude product in good yield (entries 

3 – 4). p–Br–aniline undergo acylation at the same conditions (entry 6) resulting in a 

good yield of product. N–acylated products were characterized by comparison of 

their NMR, MS spectra and melting points with those of authentic samples.  

S–acylation was carried out with two different thiols: thiophenol and octane–1–

thiol. The products were obtained in good yields (entry 7 and 8).   

In conclusion, HFPI and the corresponding lanthanide salts are efficient catalyst 

for acetylation of phenols, thiols and amines [169]. The reactions proceed at room 

temperature, in solvent free conditions, resulting in a high yield of acetylated product.  
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Table 6.3 Acylation of substratesa with Ac2O in the presence of different catalystsb. 
 
Entry Substratea Product Time 

(min) 
Catalystb 

(mol %) 
Solv. Temp. 

(°C) 
Yield  
(%) 

1. 

OH

 

OAc

 

30 La(FPI)3  
(1 %) – RT 82 

2. 

OH

OCH3  

OAc

OCH3  

30 La(FPI)3 
(1 %) – RT 95 

30 La(FPI)3 
(1 %) – RT 81–84 

30 La(FPI)3 
(1 %) ILc RT 96 

39 Ce(FPI)3 
(1 %) – RT 89 

3 – 6. 
 

OH

OH

 

OAc

OAc

 
30 Yb(FPI)3 

(1 %) – RT 79 
a The substrate was treated with Ac2O (1.2 equiv.) in the presence of the catalyst under neat conditions at room temperature. 
b Molar equiv of the catalyst used with respect to the substrate. 
c The reaction was carried out in [emim]FPI (0.2 g).  
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Table 6.4 Acylation of N, S – substratesa with Ac2O in the presence of HFPI as catalystsb. 

 

Entry Substratea Product Catalystb 

(mol %) 
Time  
(min) 

Temp. 
(°C) Yield (%) 

HFPI 
(0.8 %) 180 50  91 

1 – 2. NH2

 
NHAc

 
HFPI 
(1%) 180 RT 90 

HFPI 
(1 %) 180 50  94–96 

3 – 4. 
NH2

 

NHAc

 
HFPI 
(1 %) 70 RT 70 

5  
NH2

 

NHAc
HFPI 

(1.25 %) 180 50  96 

6. NH2Br

 
NHAcBr

 

HFPI 
(1 %) 15 RT 95 

7. SH

 
SAc

 

HFPI 
(1 %) 180 RT 93 

8.  CH3(CH2)7SH CH3(CH2)7SAc HFPI 
(1.2 %) 180 RT 89 

a The substrate was treated with Ac2O (1.2 equiv.) in the presence of the catalyst at different temperature.  
b Molar equiv of the catalyst used with respect to the substrate.  
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6.2 Acylation of – OH groups with other Brønsted acids as 
catalysts 

Recently, it has been shown that (C2F5)2P(O)OH and (C4F9)2P(O)OH are efficient 

catalysts for acylation of 2–naphtol [13]. The acylation was carried out using variable 

amounts of catalyst with and without solvent. Addition of 1 mol % of (C2F5)2P(O)OH 

to a CH2Cl2 solution of 2–naphtol and acetic anhydride resulted in the formation of 

ester (2f) in high yield (96 %, entry 1), after 30 minutes. With 10 mol % of 

(C2F5)2P(O)OH as catalyst, under solvent free conditions, at room temperature, the 

product is formed in 94 – 95 % yield (entry 2). Triflic acid is also an active catalyst for 

acylation of 2–naphtol (entry 4). These observations suggested that the catalytic 

activities of these acids are comparable. Without catalyst (entry 5) the yield of the 

acylated product was lower than 10 %.  
 

OH

+    (CH3CO)2O
(RF)2P(O)OH (Cat)

OC(O)CH3

+   CH3C(O)OH

(6.2)
(2f)

 
 

Table 6.5 Acylation of 2–naphtola with Ac2O in the presence of different catalystsb. 

Entry Catalystb 

(mol %) 
Time 
(min) Solv. Temp. 

(°C) 
Yield 
(%) 

1. (C2F5)2P(O)OH 
(1 %) 30 CH2Cl2 RT 96 

2. (C2F5)2P(O)OH 
(10 %) 30 – RT 94–95 

3. (C4F9)2P(O)OH 
(1 %) 30 CH2Cl2 RT 97 

4. CF3SO3H 
(1 %) 30 CH2Cl2 RT 95 

5. – 30 CH2Cl2 RT < 10% 
a The substrate was treated with Ac2O (1.2 equiv.) in the presence of the catalyst at room temperature. 
b Molar equiv of the catalyst used with respect to the substrate.  
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6.4 Experimental part  

General procedure for the O – acetylation of 1–naphtol and 2–naphtol: 

A mixture of the substrate, 2–naphtol (6.00 g, 41.6 mmol), acetic anhydride (5.09 g, 

49.9 mmol, 1.2 equiv.) and HFPI (0.024 g, 0.1 mol % – related on substrate), was 

stirred at room temperature, under solvent free conditions, for 30 min. Then 15 mL of 

water was added to the reaction mixture and extracted with Et2O (3 x 15 mL). The 

organic phase was washed successively with 2% aqueous NaOH (15 mL) and 

saturated NaCl solution (15 mL). After drying with MgSO4, filtration and evaporation 

of the solvent at reduced pressure, the solid product was isolated and analyzed; 

(Table 6.1, entry 6).  
 

1–Naphtyl acetate (1f): white powder; Mp: 48 – 49 °C (lit. 48 – 49 °C [182]).  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.90 – 7.89 m (CH; 2 x Ar); 7.78 d 

(CH; 3JH,H = 7.9 Hz ); 7.57 – 7.53 m (CH; 3 x Ar); 7.29 m (CH; 3JH,H = 7.53 Hz); 2.50 s 

(CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 169.5 (CH3C(O)); 146.5 (CH); 

134.6 (CH); 128.0 (CH); 126.7 (CH); 126.4 (2 x CH); 126.0 (CH); 125.3 (CH); 121.1 

(CH); 118.0 (CH); 20.9 (C(O)CH3). 

MS (ESI+): 187 (M+ + 1). 

2–Naphtyl acetate (2f): yellowish powder; Mp: 70 °C (lit. 71 °C [182]) 
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.89 – 7.86 m (CH; 2 x Ar); 7.84 – 

7.83 d (CH; 3JH,H = 7.9 Hz); 7.61 d (CH; 3JH,H = 2.3 Hz); 7.51 m (CH; 2 x Ar); 7.27 d,d 

(CH; 3JH,H = 9.03 Hz); 2.38 s (CH3).  
13C NMR (lock/solvent CD3CN, 100.6 MHz), δ, ppm: 169.6 (CH3C(O)); 148.3 (CH); 

133.7 (CH); 131.4 (CH); 129.3 (CH); 127.7 (CH); 127.6 (CH); 126.5 (CH); 125.6 

(CH); 121.1 (CH); 118.5 (CH); 21.1 (C(O)CH3). 

MS (ESI+): m/z 187 (M+ + 1). 

 

General procedure for the O – acetylation of catechol and 4–nitrophenol:  

A. In a round–bottom flask 4–nitrophenol (0.50 g, 3.5 mmol) was treated with acetic 

anhydride (0.44 g, 4.3 mmol,1.2 equiv) in the presence of HFPI (0.021 g, 0.035 

mmol, 1 mol %). After 30 min stirring at room temperature 10 mL of water was added 
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to the reaction mixture. The solid material was separated by filtration. Then Et2O (10 

mL) and 2% aqueous NaOH (10 mL) was added, and organic and aqueous layers 

were separated. The aqueous layer was extracted with Et2O three times, and the 

organic layers were combined and dried over MgSO4 and filtered. The solvent was 

removed under reduce pressure and yellowish solid product was obtained; (Table 
6.1, entry 14).  
B. A mixture of La(FPI)3 (0.17 g, 0.089 mmol, 1 mol %), [emim]FPI (0.2 g), catechol 

(1 g, 9.09 mmol) and acetic anhydride (2.22 g, 21.6 mmol, 1.2 equiv.) was stirred at 

room temperature for 30 min. The reaction mixture was washed with water (2 x 10 

mL). The water was removed using Pasteur pipette and from the solid residue, pure 

pyrocatechol diacetate was obtained by sublimation in vacuum at 60 – 80 °C; (Table 
6.3, entry 4).  
 
Pyrocatechol diacetate (3f): white crystals; Mp: 62 °C (lit. 62 – 63 °C [182]).  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.22 – 7.20 m (CH; 2 x Ar); 7.29 – 

7.26 m (CH; 2 x Ar); 2.31 s (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 168.2 (2 x CH3C(O)); 142.1 (2 x 

CH); 126.5 (2 x CH); 123.4 (2 x OCCH); 20.5 (2 x C(O)CH3). 

4–Nitrophenol acetate (4f): yellowish powder; Mp: 82 °C (lit. 82 °C [182]).  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 8.28 d (CH; 2 x Ar; 3JH,H = 9.03 

Hz); 7.30 d (CH; 2 x Ar; 3JH,H = 9.03 Hz); 2.36 s (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 168.3 (CH3C(O)); 155.3 

(CHCC(O)); 145.3 (CHCNO2); 124.1 (2 x CH); 122.3 (2 x CH); 21.0 (C(O)CH3). 

 

General procedure for the O–acetylation of 4–methoxyphenol:  

A mixture of 4–methoxyphenol (0.60 g, 4.8 mmol), acetic anhydride (0.59 g, 5,7 

mmol, 1.2 equiv) and catalyst (e.g. HFPI, 0.028 g, 1 mol %) was stirred at room 

temperature, under solvent free conditions. After 30 min, Et2O (10 mL) and 2% 

aqueous NaOH (10 mL) was added, and organic and aqueous layers were 

separated. The aqueous layer was extracted with Et2O three times; the organic 

layers were combined; dried over MgSO4 and filtered. To isolate the product, the 

solvent was removed under reduce pressure; (Table 6.1, entry 16). 
 



HFPI – an efficient catalyst for acylation reactions Chapter 6 
_____________________________________________________________________________________________________ 

 118

4–Methoxyphenyl acetate (5f): yellowish powder; Mp: 32-36 °C (lit. 32 °C, [183]). 
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.02 d,m (CH; 2 x Ar; 3JH,H = 9.4 

Hz); 6.91 d,m (CH; 2 x Ar; 3JH,H = 9.03 Hz); 3.81 s (CH3); 2.36 s (CH3).  

3C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 169.9 (CH3C(O)); 157.2 

(CHCOC(O)CH3); 144.1 (CHCOCH3); 122.2 (2 x CH); 114.4 (2 x CH); 55.5 (OCH3); 

21.0 (C(O)CH3). 

MS (ESI+): m/z 136 (M+ - 2CH3); 108 [M+ - (C(O)CH3 + CH3)]. 

 

General procedure for the N–acetylation and S–acylation (Table 6.4):  

To the mixture of HFPI (0.054 g, 1 mol %) and acetic anhydride (1.14 g, 11.1 mmol, 

1.2 equiv), the substrate, N–benzylamine (1 g, 9.3 mmol), was added and the 

reaction mixture stirred at 50 °C for 3 hours. The volatile compounds were removed 

from the reaction mixture under vacuum. The reaction mixture was neutralized with 

2% aqueous NaOH (10 mL) and extracted with CH2Cl2 (3 x 10 mL). The combined 

organic extracts were washed with cold water and dried over MgSO4. To isolate the 

product, the solvent was removed under reduced pressure. The residue was 

recrystallized from ether or DCM/hexane (Table 6.4, entry 3). 
 

N–Phenyl–acetamide (6f): white powder, Mp: 118 °C (lit. 117.5 °C [184]). 
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.67 br. s (NH); 7.52 d (2CH; 3JH,H 

= 7.51 Hz); 7.32 t (2CH; 3JH,H = 7.91 Hz); 7.12 t (CH; 3JH,H = 7.53 Hz); 2.18 s (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 168.6 (CH3C(O)); 137.8 

(CHCHNH); 128.9 (2 x CH); 124.2 (2 x CH); 119.9 (CH); 24.4 (C(O)CH3). 

MS (ESI+): m/z 136 (M++1); 137 (M++1/13C).  

N–Benzyl–acetamide (7f): white crystals; Mp: 62 °C (lit. 62 °C [185]).  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 7.34 m (CH; 2 x Ar); 7.29 m (CH; 

3 x Ar); 6.76 br. s (NH); 4.43 d (CH2; 3JH,H = 4.9 Hz); 2.07 s (CH3). 
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 170.7 (CH3C(O)); 137.7 

(CHCHNH); 128.7 (2 x CH); 127.8 (2 x CH); 127.6 (CH); 43.9 (CH2NH); 22.6 

(C(O)CH3).  

MS (ESI+): m/z 150 (M++1); 151 (M++1/13C); 106 (M+–C(O)CH3); 91 (M+–HC(O)CH3). 

N–Phenethyl–acetamide (8f): white powder; Mp: 53 °C (lit. 52 °C [184]).  
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1H NMR (lock/solvent CDCl3, 400MHz), δ, ppm: 7.31 m (CH; 2 x Ar); 7.24 m (CH; 

Ar); 7.21 m (CH; 2 x Ar); 6.27 br. s (NH); 3.52 m (CH2); 2.84 t (CH2;3JH,H = 7.1 Hz); 

1.97 s (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 170.5 (CH3C(O)); 138.7 

(CHCHNH); 128.6 (2 x CH); 128.5 (2 x CH); 126.4 (CH); 40.8 (CH2CH2NH); 35.4 

(CH2NH); 22.8 (C(O)CH3).  

MS (ESI+): m/z 164 (M++1); 165 (M++1/13C); 105 (M+–NHC(O)CH3). 

N–(4–bromophenyl)–acetamide (9f): white solid, Mp: 169 °C (lit. 167-169 °C [186]) 
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 8.13 br. s (NH); 7.38 m (2CH); 

7.31 m (2CH); 2.05 s (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 168.6 (CH3C(O)); 137.3 

(CHCHNH); 131.2 (2 x CH); 120.9 (2 x CH); 116.6 (CHBr); 23.7 (C(O)CH3). 

S–Phenyl–thioacetate (10f): white liquid; Mp: 18 - 20 °C (lit. 18 – 19 °C [187]) 
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 2.45 s (CH3); 7.45–7.43 m (CH; 5 

x Ar). 
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 193.9 (CH3C(O)); 134.4 (2 x 

CH); 129.3 (CHCS); 129.1 (2 x CH); 127.9 (CH); 30.1 (C(O)CH3). 

S–Octyl–thioacetate (11f): white liquid; Mp: - 19 to - 18 °C.  
1H NMR (lock/solvent CDCl3, 400 MHz), δ, ppm: 2.88 t (CH2; 3JH,H = 7.4 Hz); 2.31 s 

(CH3); 1.58 quin (CH2; 3JH,H = 7.4 Hz); 1.35 to1.39 m (CH2); 1.26 to1.33 m (4CH2); 

0.92 t (CH3).  
13C NMR (lock/solvent CDCl3, 100.6 MHz), δ, ppm: 196.0 (CH3C(O)); 31.7 (CH); 

30.6 (CH); 29.4 (CH); 29.2 (CH); 29.1 (CH); 29.0 (CH); 28.8 (CH); 22.6 (CH); 14.0 

(C(O)CH3). 
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7. Bis(pentafluoroethyl)phosphinic acid amides and acid 
hydrazides  

Bis(perfluoroalkyl)phosphinic acid amides and acid hydrazides are very interesting 

compounds for several possible applications, for example in the synthesis of organic 

compounds having a (RF)2P(O)– moiety or as phase–transfer catalyst, surfactants 

(tensides), lubrificants, plasticizers, flame retardants, foams forming agents, 

antioxidants, or additives to electrolytes in electrochemical cells.  

In the following chapter the recent developments in the synthesis of 

bis(pentafluoroethyl)phosphinic acid amides and acid hydrazides are highlighted 

[188].  

7.1 Bis(pentafluoroethyl)phosphinic acid amides 

Only few fluorinated phosphinic acid amides are described in the literature. Their 

syntheses are based on interaction of phosphinic acid chloride with amines [16]. For 

example, bis(perfluoroalkyl)phosphinic acid amide (CnF2n+2)2P(O)NHR were prepared 

in moderate yield by the reaction of (CnF2n+1)2P(O)Cl (n =3, 4) with aliphatic and 

aromatic amines [18, 47, 189].  

Tris(perfluoroalkyl)phosphine oxides are also possible starting material for the 

synthesis of bis(perfluoroalkyl)phosphinic acid amides: (i) Burg and Sarkis (1969) 
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reported a quantitative reaction of bis(trifluoromethyl)phosphine oxide with dimethyl 

amine [190] and (ii) Mahmood et al. (1988) have found that reaction of 

bis(nonafluorobutyl)phosphine oxide with dimethyl amine results in the formation of 

complex mixture of products but they failed in their separation [191].  

Here, the aminolysis of tris(pentafluroethyl)phosphine oxides with ammonia, 

aliphatic and aromatic amines are presented, according to equation 7.1. These 

reactions occur at low temperature (–30 to 0 °C) giving the products in good yields as 

it is shown in Table 7.1.  

 

P

C2F5

C2F5

C2F5

O +
δ+ δ−

HN R

H

P

C2F5

C2F5

O

NH R

+ C2F5H

(1b and 1-3 g) (7.1)

P

C2F5

C2F5

C2F5

OH

NH R

 
 

Table 7.1 Structures, melting points and yields of bis(pentafluoroethyl)phosphinic 
acid amides.  

Compound R Mp ( °C) yield, % 

1b H 96 – 98 86 

1g CH2C6H5 93 – 94 89 

2g CH2CH2C6H5 109 – 110 84 

3g CH2CH(C2H5)(CH2)3CH3 76 92 

 

(C2F5)2P(O)NH2 (1b) as a precursor for the synthesis of HFPI acid is described 

in chapter 2. (C2F5)2P(O)NH2 is hydrolytically unstable compound. It is slowly 

converted to an ammonium salt when is disolved in wet solvents. The amides having 

longer alkyl chain attached to the nitrogen (1g – 3g) are more stable against 

hydrolysis.  

The IR and Raman spectra of (C2F5)2P(O)NH2 (1b) are shown in Figure 7.1. 

The bands attributed to ν(N–H) are at 3360 cm–1 and other fundamental vibrations 

are below 1400 cm–1. Between 1300 and 997 cm–1 there are intense absorption 

assigned to CF3, CF2, P–N and P=O. The strongest Raman band at 754 cm–1 is 

attributed to the symmetric CF3 deformations.  
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Figure 7.1 Infrared and Raman spectra of solid (C2F5)2P(O)NH2 recorded as neat 

compound. 
 

All products were characterized by 1H, 19F, 31P NMR spectroscopy (see 

experimental part). The NMR spectra were measured in dry CD3CN solution. In the 
1H NMR – spectrum for (1b) the NH is a broad singlet at 5.3 ppm and for (1g – 3g) is 

a broad dublet at 5.7, 5.3 and 5.08 ppm, respectively. The 19F NMR spectrum of the 

C2F5 group is complicate and shows a singlet at –81 and a multiplett at –125 ppm in 

a relative ratio of 3:2. In the 31P NMR spectrum of (1b) only a quintet of multiples is 

observed at 12.9 ppm. The 31P NMR spectrum of (1g – 3g) showed overlapping 

triplet of triplet of doublet of triplet as depicted in Figure 7.2, due to the P–H spin–

coupling (2JPH = 20 Hz and 3JPH = 11 Hz). In the 31P{1H} an overlapping triplet of 

triplet is observed due to the coupling with the four 19F nuclear of the two CF2 groups.  
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Figure 7.2 31P and 31P{1H} NMR spectra of (C2F5)2P(O)NHCH2C6H5 (1g) in 

acetonitrile–D3. 

7.2 Bis(pentafluoroethyl)phosphinic acid hydrazide  

Acetylhydrazides are well known building block in organic chemistry [192]. They play 

an important role as reagents in the synthesis of heterocyclic compounds: which are 

of interest as drugs, dyes or initiators for polymerization. There are few reports on the 

preparation of phosphinic acid hydrazides: (i) (CH3)2P(O)NHNHPh and 

Ph2P(O)NHNHPh [193]; (ii) (CH3)2P(O)NHNH2 [194]; (iii) (C2H5)2P(O)NHNH(t–C4H9) 

[195] and (iv) Ph2P(O)NHNH2 and Ph2P(O)NHNH(CH3)2 [196]. All these compounds 

were prepared by reaction of phosphinic acid chlorides, R2P(O)Cl with corresponding 

hydrazines. No fluorinated phosphinyl hydrazides are described in the literature. 

Bis(pentafluoroethyl)phosphinic acid hydrazides, (C2F5)2P(O)NHNHR are 

unknown compounds and are investigated for the first time. Results based on the 

synthesis of the acid hydrazides having C2F5 groups attached to the phosphorus will 

be reported also in the patent application by Ignatiev et al., (2010) [188]. These 

hydrazides can be synthesized not only from bis(pentafluoroethyl)phosphinic acid 

chlorides, but also from less reactive tris(pentafluoroethyl)phosphine oxides, as 

shown in equations 7.2, and 7.4. In the preparation of the acid hydrazides from 

bis(pentafluoroethyl)phoshinic acid chlorides, CaH2 was used as scavenger of HCl in 

10.210.711.211.712.212.7
(ppm)

10.210.711.211.712.212.7
(ppm)

δ 31P 
(2JPF = 81 Hz) 
(2JPH = 20 Hz) 
(3JPH = 11 Hz) 

δ 31P{1H} 
(2JPF = 81 Hz)
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order to avoid the formation of [NH2NRR’]Cl as side product (equation 7.3). The 

melting points and yields of hydrazides are presented in Table 7.2. 
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C2F5

C2F5

C2F5

O +
δ+ δ−

HN NRR'

H

P

C2F5

C2F5

O

NH NRR'

+ C2F5H

(4 - 6 g) (7.4)

2HCl + CaH2 CaCl2 + H2
(7.3)

 
 

Table 7.2 Structures, melting points and yields of bis(pentafluoroethyl)phosphinic 
  acid hydrazides.  
 

Compound R R’ Mp ( °C) yield, % 

H CH3 72 84 
4g 

H CH3 72 <75 

H C6H5 88 81 
5g 

H C6H5 88 77 

6g CH3 CH3 71 82 

 

These hydrazides are moisture sensitive compounds. All reactions were carried 

out in glass flasks equipped with a glass valve with PTFE piston (Young, London) 

attached to the vacuum line. Manipulations of non–volatile compounds were carried 

out in glove box. 

Bis(pentafluoroethyl)phosphinic acid hydrazide were characterized by 1H, 19F, 
31P NMR spectroscopy (see experimental part). The NMR spectra were measured in 

dry CD3CN solution. The 19F NMR spectrum of the C2F5 group is complicated as a 

consequence of non–equivalent F atoms in the CF2 group. The experimental 19F 

NMR parameters were used as input for simulation (gNMR 4.1 program) of the 19F 
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NMR spectrum of 5g as a AA’X spin system. The observed and simulated AA’ part is 

depicted in Figure 7.3. The 31P NMR spectrum of (C2F5)2P(O)NHNHC6H5 (5g) shows 

an overlapping triplet of triplet of doublet of doublet as depicted in Figure 7.4, due to 

the P–H spin–coupling (2JPH = 44 Hz and 3JPH = 4 Hz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Simulated (top) and observed (bottom) spectrum of the CF2 resonances 
in acetonitrile–D3. 
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Figure 7.4 31P NMR spectra of (C2F5)2P(O)NHNHC6H5 (5g) in acetonitrile–D3. 

7.3 Crystal structure of (C2F5)2P(O)NH2 

Single crystals of (C2F5)2P(O)NH2 were obtained after aminolysis of [(C2F5)2P(O)]2O 

with NH3 and evaporation of the solvent at low temperature, as well as by 

recrystallisation from a mixture of benzene and hexane (1:2).  

A Gemini E Ultra –Diffractometer (Oxford) was used for measurements at 150 

K with Mo–Kα radiation (λ = 0.717073 Å). The crystal structures were solved by 

direct methods using SHELXS–97. Full–matrix least–squares of refinement on F2 

was perfomed with WinGX V1.6405 (SHELXL–97) [155].  

The parameters obtained for (C2F5)2P(O)NH2 are listed in Table 7.3. The angles 

and distances are given in Appendix 1. Figure 7.5 presents two independent formula 

units.  

Phosphorus atom is tetrahedral coordinated. The angle O–P–N (116°) is larger 

than in P(O)(NH2)3 (119.09, 108.91 and 109.09°, respectively) [197] and C–P–C 

angle (101.9°) is smaller than in [{(C2F5)2P(O)}2N]- (102.4 or 104.8°). The angles of 

nitrogen atom are P–N–H1 (114.5°), P–N–H2 (112.5°) and H2–N–H1 (124.7°) close to 

average 120°.  

 

 

 

7.5 8 8.5 9 9.5 10 10.5
(ppm)

δ 31P 
(2JPFA = 78 Hz)
(2JPFB = 82 Hz)
(2JPH = 44 Hz)

(3JPH = 4 Hz)
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Figure 7.5 Molecular structure of two formula unit of (C2F5)2P(O)NH2 in the unit 

cell.  
 

The P=O bond in phosphinic acid amide (1.476 Å) is longer that in phosphoryl 

compounds such as POCl3 (1.45 Å) [198], but similar in length to that in molecules as 

H[{(C2F5)2P(O)}N{S(O)2CF3}] (1.472 Å) and H[{(C2F5)2P(O)}2N] (1.474 Å). The bonds: 

P–N (1.594 Å), N–H1 (0.889 Å) and N–H2 (0.885 Å) are quite similar than the length 

usually accepted. After refinement the hydrogen bond are N–H1…O (2.089 Å) and N–

H2…O (2.258 Å).  

The mesomeric and tautomeric structures of 1a (Figure 7.6) can be used to 

rationalize the crystal structure of (C2F5)2P(O)NH2, were the sp2 hybridization for N 

atom was clearly marked.  

 
Figure 7.6 Mesomeric and tautomeric structures of (C2F5)2P(O)NH2. 
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Table 7.3 Crystalographic and refinement data for 1e.  

Crystalographic data (C2F5)2P(O)NH2 (1b) 
Empirical formula C4H2F10NOP 
Colour colorless 
Formula weight 301.04 g·mol-1 
Temperature 150 K 
Wavelength 0.71073 Å 
Crystal system Monoclinic 
Space group P21, (no. 14) 
Unit cell dimensions 
 
 

a = 5.4103(6) Å           α= 90° 
b = 15.5309(18) Å       β = 95.538(12)° 
c = 11.6353(16) Å       γ = 90° 

Volume 973.1(2) Å
3
 

Z 4 
Density (calculated) 2.055 mg·m-3 

Absorption coefficient 0.421 mm-1 

F(000) 584 e 
Crystal size 0.56 x 0.13 x 0.04 mm3 

θ range for data collection 3.16 to 29.01° 
Index ranges -3 ≤ h ≤ 7, -20 ≤ k ≤ 19,-15 ≤ l ≤ 15 
Reflections collected 4305 
Independent reflections 2190 [Rint = 0.0412] 
Reflections with I>2σ(I) 6920 
Completeness to ( = 29.01°) 84.6 % 
Absorption correction Numerical 
Refinement method Full-matrix least-squares on F2 
Data/restraints/parameters 2190/2/161 
Goodness-of-fit on F2 1.025 
Final R indices [I>2σ(I)]a R1 = 0.0836    wR2 = 0.2147 
R indices (all data)b R1 = 0.1093    wR2 = 0.2284 
Largest diff. peak and hole 0.895 and -0.580 e Å-3 
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7.4 Experimental part  

Bis(pentafluoroethyl)phosphinyl–N–(benzyl)amide, (C2F5)2P(O)NHCH2C6H5 (1g) 

A 10 mL flask, equipped with a magnetic stirring bar, septum and drying tube filled 

with sicapent, was charged under nitrogen with (C2F5)3PO (3.22 g, 7.9 mmol). The 

benzyl amine (0.85 g, 7.9 mmol) was slowly added under good stirring at 0 °C. The 

reaction is exothermic and was let to warm up at room temperature to liberate C2F5H. 

The flask was connected to the membrane vacuum for 5 minutes to remove not 

reacted (C2F5)3PO. The resultant solid was solved in benzene and transferred to a 

separator funnel and washed 3 times with water. The solvent was distilled off under 

reduced pressure (< 0.05 mbar). After drying under vacuum, 2.76 g of white solid 

material was obtained. Yield: 89%. Mp: 93 – 94 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 7.39–7.29 m (5CH); 5.7 br.d 

(NH); 4.31 d,d (CH2); 2JP,H = 20 Hz; 3JH,H = 7.1 Hz. 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.1 m (2CF3); –124.6 d,d,m 

(2CFa); –126.6 d,d,m (2CFb); 2JP,Fa = 80 Hz; 2JP,Fb = 87 Hz;  2JFa,Fb = 319 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 12.7 t,t,d,t (1P); 2JP,H = 20 Hz; 
3JP,H = 11 Hz,  2JP,F = 81 Hz. 

 

Bis(pentafluoroethyl)phosphinyl–N–(2–phenyl–ethyl)amide, 

(C2F5)2P(O)NHCH2CH2C6H5 (2g) 

Under an inert atmosphere of nitrogen 2.29 g (17.7 mmol) of 2–phenyl–ethyl amine 

was added slowly to (C2F5)3PO (7.15 g, 17.7 mmol) at 0 °C with a good stirring. 

During this time the reaction mixture turned into a white solid. Then the same 

procedure was followed as that described above. 6.12 g of white solid was obtained. 

Yield: 84%. Mp: 109 – 110 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 7.34–7.26 m (5CH); 5.3 br.d 

(NH); 3.37 quin (CH2); 2.84 t (CH2); 2JP,H = 20 Hz; 3JH,H = 7.1 Hz. 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.4 m (2CF3); –124.6 m 

(2CFa); –126.7 m (2CFb); 2JP,Fa = 81 Hz; 2JP,Fb = 88 Hz;  2JFa,Fb = 319 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 11.2 t,t,d,t (1P); 2JP,F = 81 Hz. 
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Bis(pentafluoroethyl)phosphinyl–N–(2–ethylhexyl)amide, 

(C2F5)2P(O)NHCH2CH(C2H5)(CH2)3CH3 (3g) 

The same procedure as described above. The 2–ethylhexyl amine (2.19 g, 16.9 

mmol) was added slowly to (C2F5)3PO (6.8 g, 16.9 mmol) at 0 °C with a good stirring. 

The product 3g was obtained as a white solid (glue) (6.45 g). Yield: 92%. Mp: 76 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 5.08 br.d (NH); 3.05 t,d (CH); 

1.35 m (5CH2), 0.88 t (CH3), 0.85 t (CH3); 2JP,H = 20 Hz; 3JP,H = 10 Hz, 3JH,H = 6.8 Hz. 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 m (2CF3); –124.6 m 

(2CFa); –126.6 m (2CFb); 2JP,Fa = 76 Hz; 2JP,Fb = 81 Hz;  2JFa,Fb = 332 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 11.2 t,t,d,t (1P); 2JP,H = 20 Hz; 
3JP,H = 10 Hz 2JP,F = 81 Hz. 

 

Bis(pentafluoroethyl)phosphinyl–N–(methyl)hydrazide,  

(C2F5)2P(O)NHNHCH3 (4g) 

A dry 25 mL flask, equipped with a glass valve with PTFE piston (Young), was 

charged in a vacuum line with 0.10 g (2.1 mmol) of methylhydrazine, 1 mL of dry 

acetonitrile and 1.3 g (3.2 mmol) of (C2F5)3PO. The reaction mixture was left stirring 

at room temperature for 16 h and then all volatile products were removed under 

vacuum (10-3 mbar). 0.58 g of a white solid product was obtained. 4g was handled in 

a dry–box for NMR and melting point measuring. Yield: 84 %. Mp: 72 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 6.75 br.d (NH); 4.12 br.s (NH); 

2.57 s (CH3); 2JP,H = 40 Hz . 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: : –81.4 m (2CF3); –122.4 m 

(2CFa); –124.6 m (2CFb); 2JP,Fa = 73 Hz; 2JP,Fb = 80 Hz;  2JFa,Fb = 322 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 9.0 m (1P). 

Elemental analysis calcd. (%) for C5H5F10N2OP (M = 330.06 g/mol): C 18.19, H 1.53, 

N 8.49; found: C 17.93, H 1.94, N 9.28. 

 
Bis(pentafluoroethyl)phosphinyl–N–(phenyl)hydrazide,  
(C2F5)2P(O)NHNHC6H5 (5g) 

A. A dry 25 mL flask, equipped with a glass valve with PTFE piston (Young), was 

charged in a vacuum line with 0.47 g (4.3 mmol) of phenylhydrazine, 1 mL of dry 

acetonitrile and 1.9 g (4.7 mmol) of (C2F5)3P(O). After one hour stirring at room 
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temperature a homogeneous solution was formed. To complete the reaction, the 

mixture was left stirring at room temperature for 20 hours and then all volatile 

products were removed under vacuum (10-3 mbar). The resulting slightly yellow solid 

material (1.37 g) was purified by sublimation in high vacuum at 82 °C. Yield: 81%. Mp 

= 88 °C. 
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 7.46 br.d (NH); 7.24 – 7.31 m 

(2H); 7.00 – 6.92 m (3H); 6.47 d (NH); 2JP,H = 44 Hz; 3JP,H = 4 Hz. 
19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 m (2CF3); –121.9 m 

(2CFa); –124.6 m (2CFb); 2JP,Fa = 74 Hz; 2JP,Fb = 83 Hz;  2JFa,Fb = 340 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 8.9 t,t,d,d (1 P); 2JP,H = 44 Hz; 
3JP,H = 4 Hz; 2JP,Fa = 78 Hz; 2JP,Fb = 82 Hz. 

Elemental analysis calcd. (%) for C10H7F10N2OP (M = 392.13 g/mol): C 30.63, H 1.80, 

N 7.14; found: C 30.76, H 2.13, N 7.47. 

 

B. A dry 25 mL flask, equipped with a glass valve with PTFE piston (Young), was 

charged with 0.15 g CaH2, 0.34 g (3.1 mmol) of phenylhydrazine, 1 mL of dry 

acetonitrile. At a vacuum line 1.5 g (4.6 mmol) of (C2F5)2P(O)Cl were condensed to 

the reaction mixture. After warming up to room temperature, the reaction mixture was 

left stirring for 20 h and filtered. Subsequently all volatile material were removed 

under vacuum (10-3 mbar). The resulting yellow crystalline solid product (0.94 g) was 

handled only in a dry–box. Yield: 77%. Mp = 88 °C. 

 

Bis(pentafluoroethyl)phosphinyl–N,N–di(methyl)hydrazide, 
(C2F5)2P(O)NHN(CH3)2 

A dry 25 mL flask, equipped with a glass valve with PTFE piston (Young), was 

charged at a vacuum line with 0.23 g (3.8 mmol) of 1,1–dimethylhydrazine, 1 mL of 

dry acetonitrile and 1.78g (4.4 mmol) of (C2F5)3P(O). At room temperature the 

exothermic reaction started and the reaction mixture became homogeneous. The 

reaction mixture was left stirring at room temperature for 15 hours and then all 

volatile materials were removed under vacuum (10-3 mbar). The white solid product 

(1.45 g) was handled only in a dry–box. Yield: 82%. Mp = 71 °C.  
1H NMR (lock/solvent CD3CN, 400 MHz), δ, ppm: 6.90 br.d (NH); 2.61 (CH3); 6.47 d 

(NH); 2JP,H = 42 Hz. 
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19F NMR (lock/solvent CD3CN, 376.4 MHz), δ, ppm: –81.2 m (2CF3); –121.4 m 

(2CFa); –124.9 m (2CFb); 2JP,Fa = 72 Hz; 2JP,Fb = 82 Hz;  2JFa,Fb = 338 Hz. 
31P NMR (lock/solvent CD3CN, 161.9 MHz), δ, ppm: 6.5 t,t,d(1P); 2JP,H = 42 Hz; 
3JP,H = 4 Hz; 2JP,F(A) = 74 Hz; 2JP,F(B) = 82 Hz; 

Elemental analysis calcd. (%) for C6H7F10N2OP (M = 344.09 g/mol): C 20.94, H 2.05, 

N 8.14; found: C 21.25, H 2.58, N 8.87. 
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Instrumental 

The reactions were carried out usually in cylindrical or round bottom flasks. The 

special equipments made from FEP (tetrafluoroethylen-hexafluoropropylene), PFA 

(perfluoroalkyl–perfluoralkoxycopolymer) or PTFE (polytetrafluoroethylene) container 

and connections were used for working with HF solution (Figure 8.1).  

 
Figure 8.1 Laboratory set–up for preparation of bis(perfluoroalkyl)phosphinic 

and perfluoroalkylphosphonic acids.  
 

The commercial solvents and reagents were obtained from various sources. For 

drying and purification, the solvents were distilled following standard procedures and 

stored over molecular sieves. For handling and storage non volatile air sensitive 

compounds a glovebox (mBraun, Siemens SIMATIC OP7) with residual water (H2O 

< 2 ppm) and (O2 < 2 ppm) was used. Air and moist-sensitive reactions or 

manipulations were conducted under nitrogen or argon atmosphere into flasks 

equipped with a glass valve with PTFE piston (Young, London).  

C2F5H↑ 

HF + H2O

Acids + HF + H2O 

(CnF2n+1)3PF2 
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1. Analytical procedures: Elemental analysis was performed using a 

HEKATECH EA 3000 (Wegberg, Germany) elemental analyser and the Callidus 

software. 
2. NMR spectroscopy: NMR spectra of all compounds were recorded on a 

Bruker Avance DRX-400 MHz (1H, 400.13 MHz; 19F, 376.49 MHz; 13C, 100.61 MHz; 
31P, 161.97 MHz) and Bruker Avance DRX-600 MHz (1H, 600.13 MHz; 13C, 150.9 

MHz; 31P, 242.9 MHz) spectrometer. For simulation a gNMR 4.1 program was used. 

The spectra were recorded at room temperature. The chemical shifts are 

reported in parts per million (ppm) relative to external TMS (1H), CFCl3 (19F) and 

H3PO4 (31P). The coupling constants (J) are reported in Hertz (Hz). Usually 

approximatively 100 – 150 mg of samples dissolved in 0.7 – 1 mL solvent were 

introduced in 5 mm NMR tubes (528-PP, Wilmad-Labglass). For perfluorinated 

compound or solution of HF, spectra were recorded using FEP sample tube inside a 

5 mm thin walled NMR tube (537–PPT, Wilmad) with an acetonitrile-D3 film as an 

external lock.  

3. Vibrational spectroscopy: Infrared spectra were recorded at room 

temperature on a FTIR spectrometer TENSOR 27 (Bruker, Karsruhe, Germany) 

equipped with a DTGS detector and a KBr/Ge beam splitter operating in the region 

4000 – 400 cm-1. For each spectrum of the solid samples as KBr pellets, 64 scans 

were added with a resolution of 2 cm-1. For solutions the IR spectra were recorded 

with an adjustable path length IR cell (Glenrothes RIIK) with KRS–5 windows on the 

TENSOR 27 (Bruker, Karsruhe, Germany) equipped with a DTGS detector. 

Also, an ATR_IR accessory (HARRICK, MVP StarTM) with a diamond as the 

ATR crystal was used to obtain IR spectra, which were measured on a TENSOR 27 

(Bruker, Karsruhe, Germany) equipped with a DTGS detector. 

Raman spectra were recorded at room temperature on a Bruker EQUINOX 55 
FT Raman spectrometer using the 9394.8 cm-1 exciting line (500 mW) of a Nd: YAG 

laser. Solid samples were placed in melting point capillaries and used for recording 

spectra in the region 3000 – 50 cm-1 with a resolution of 2 cm-1. For each spectrum, 

between 32–500 scans were added. 

4. Theoretical calculations: Starting from the experimental geometry of the 

anion (FPI or PSI), the structure was fully optimized at the B3LYP/6-31+G(d) level 

using the Gaussian 03W program package (version 6.0, revision B.04). The 

vibrational frequencies and the IR intensities for the anion have been calculated at 
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the energy-minimized structure of C1 symmetry for which no imaginary vibrational 

frequency was found. 

5. Water content: Water content in the ILs was measured using a Metrohm 
Instrument Coulometric Karl Fisher Titrator, Model 831 which was calibrated 

using a Hydranal–Coulomat AD Water Standard (Riedel–de Haen). Samples 

ranging from 50 – 100 mg were injected into the titrator using a syringe with a steel 

needle. To study the absorption of water by the ILs at room temperature, 2 mL of 

sample was placed into a glass vial and exposed to the humid atmosphere for 

various time intervals. Then the water content was measured. 

6. Halide content: Chloride or bromide mas measured by ion-chromatography 

(Methrom Advanced IC System with Metrosep A Supp 5–150). About 50 – 80 mg 

of ionic liquids was solved in 25 ml acetonitrile and automatically injected using an 

autosampler.  

7. Viscosities and densities: Viscosities and densities of ILs were measured 

using the Viscosimeter SVM 3000 Anton Paar. About 3–3.5 mL of ILs were placed 

into a seringe (bubble free) and measured in the temperature range 20 to 80 °C.  

8. Electrochemical measurements: The electrochemical potential windows of 

the salts with FPI were measured at 23.8 °C using an Autolab PGSTAT 30 (Eco 

Chemie). Cyclic voltamogramms were recorded for different solutions in acetonitril. A 

glass carbon (gc) (Ø 3 mm; surface area: 7.065 x 10-2 cm2) electrode was used as 

the working electrode, Ag/AgNO3 (CH3CN) electrode served as the reference 

electrode and Pt wire as a counter electrode. The potential’s values were normalized 

to E° of ferrocene (Ep
ox ferrocene = 0.425 V).  

9. Conductivity: Conductivity data were obtained using a Conductometer 703 

(Knick). The conductivity of the ILs was measured at –20, –10, 0, 20, 40, 60, 80 °C. 

The cell constant of the electrode was calibrated by measuring the conductance of 

several standard solutions of potassium chloride with concentration ranging from 0.1 

mol/L to 0.01 mol/L at room temperature. 

10. Thermal analysis: The Schmelzpunkt SMP 10 – STUART apparatus was 

used for visual determinations of the melting point in glass capillaries (Ø 2 mm).  

 Thermo–analytical measurements were performed with a DSC Netzsch 204 

and a TG Netzsch STA 409 instrument. Temperature and sensitivity calibrations in 

the temperature range of 30 – 600 °C were carried out with naphthalene, benzoic 

acid, KNO3, AgNO3, LiNO3 and CsCl. About 25 – 40 mg of solid samples were 
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weighed and sealed in a DSC aluminium crucible or placed in ceramic pans for TG 

measurements. The temperature range used for measurements was between –120 

to 600 °C with a heating rate of 10 °C min-1, under an atmosphere of dry nitrogen. 

The data were processed with the Netzsch Protens 4.2 software.  

11. MS: Mass spectra were recorded on a Brucker micrOTOF coupled to a 

Agilent 1200 Series with a Coloum and Perfect Sil Target ODS-3HD 5µm.  

12. Single crystal X–ray diffraction: Two single–crystal diffraction data were 

collected on a Kappa CCD diffractometer (Bruker AXS) using Mo–Kα radiation (λ = 

0.71073 Å) and a graphite monochromator and the others with a Gemini E Ultra –
Diffractometer (Oxford). The crystal structures were solved by direct methods using 

SHELXS–97 and full–matrix least–squares refinement on F2 was performed with 

SHELXL–97.  
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Appendix I 

I.1 Crystal structure of Ca[(C2F5)2PO2]2·2H2O 
Table I.1.1 Atomic coordinates and equivalent isotropic displacement 

parameters(Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for Ca[(C2F5)2PO2]2·2H2O.  

 x y z U(eq) 
P 1207(1) 1207(1) 0 21(1) 
O(1) 786(1) 907(1) -2234(2) 30(1) 
C(1) 2566(2) 1077(2) -198(4) 36(1) 
F(11) 3011(1) 1749(1) 1149(3) 58(1) 
F(12) 2858(1) 1234(2) -2425(3) 76(1) 
C(2) 2962(2) 79(2) 523(5) 46(1) 
F(21) 3890(1) -14(1) -60(3) 78(1) 
F(22) 2459(1) -620(1) -450(4) 71(1) 
F(23) 2904(1) -28(1) 2806(2) 51(1) 
Ca 0 0 -5000 17(1) 
O(2) -1214(1) 1214(1) -5000 38(1) 

 
Table I.1.2 Selected bond lengths [Å] and angles [°] in Ca[(C2F5)2PO2]2·2H2O. 

P-O(1) 1.4664(12) F(12)-C(1)-C(2) 107.0(2) 
P-O(1)*1 1.4664(12) F(11)-C(1)-P 110.48(17) 
P-C(1) 1.879(2) F(12)-C(1)-P 109.58(15) 
P-C(1)*1 1.879(2) C(2)-C(1)-P 114.93(15) 
O(1)-Ca 2.2890(12) F(22)-C(2)-F(21) 109.2(2) 
C(1)-F(11) 1.351(3) F(22)-C(2)-F(23) 108.1(2) 
C(1)-F(12) 1.357(3) F(21)-C(2)-F(23) 107.4(2) 
C(1)-C(2) 1.531(3) F(22)-C(2)-C(1) 110.7(2) 
C(2)-F(22) 1.308(3) F(21)-C(2)-C(1) 111.1(2) 
C(2)-F(21) 1.323(3) F(23)-C(2)-C(1) 110.3(2) 
C(2)-F(23) 1.323(3) O(1)-Ca-O(1)*2 174.16(9) 
Ca-O(1)*2 2.2890(12) O(1)-Ca-O(1)*3 92.08(6) 
Ca-O(1)*3 2.2890(12) O(1)*2-Ca-O(1)*3 88.22(6) 
Ca-O(1)*4 2.2890(12) O(1)-Ca-O(1)*4 88.22(6) 
Ca-O(2) 2.357(2) O(1)*2-Ca-O(1)*4 92.08(6) 
Ca-O(2)*3 2.357(2) O(1)*3-Ca-O(1)*4 174.16(9) 
O(2)-H 0.76(4) O(1)-Ca-O(2) 87.08(4) 
O(1)-P-O(1)*1 123.05(11) O(1)*2-Ca-O(2) 87.08(4) 
O(1)-P-C(1) 108.13(10) O(1)*3-Ca-O(2) 92.92(4) 
O(1)*1-P-C(1) 107.15(10) O(1)*4-Ca-O(2) 92.92(4) 
O(1)-P-C(1)*1 107.15(10) O(1)-Ca-O(2)*3 92.92(4) 
O(1)*1-P-C(1)*1 108.13(10) O(1)*2-Ca-O(2)*3 92.92(4) 
C(1)-P-C(1)*1 101.09(14) O(1)*3-Ca-O(2)*3 87.08(4) 
P-O(1)-Ca 161.07(9) O(1)*4-Ca-O(2)*3 87.08(4) 
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F(11)-C(1)-F(12) 107.34(18) O(2)-Ca-O(2)*3 180.00(5) 
F(11)-C(1)-C(2) 107.19(18) Ca-O(2)-H 118(3) 

 Symmetry transformations used to generate equivalent atoms: 
 *1 y,x,-z ; *2 -y,-x,-z-1; *3 -x,-y,z; *4 y,x,-z-1.  
 

Table I.1.3 Anisotropic displacement parameters (Å2).  
 U11 U22 U33 U23 U13 U12 
P 21(1) 21(1) 19(1) 0(1) 0(1) -7(1) 
O(1) 33(1) 34(1) 24(1) -5(1) -5(1) -5(1) 
C(1) 24(1) 47(1) 37(1) 10(1) 0(1) -9(1) 
F(11) 40(1) 39(1) 96(1) 13(1) -34(1) -18(1) 
F(12) 37(1) 138(2) 53(1) 40(1) 21(1) 4(1) 
C(2) 27(1) 51(2) 59(2) -7(1) -1(1) 4(1) 
F(21) 33(1) 106(2) 93(1) 9(2) 12(1) 22(1) 
F(22) 62(1) 48(1) 103(2) -36(1) -22(1) 14(1) 
F(23) 49(1) 50(1) 55(1) 18(1) -8(1) 6(1) 
Ca 18(1) 18(1) 16(1) 0 0 0(1) 
O(2) 31(1) 31(1) 52(1) -5(1) -5(1) 9(1) 

The anisotropic displacement factor exponent takes the form:  
 -2π2[h2a*2U11+ ..+2hka*b*U12] 
 
Table I.1.4 Hydrogen coordinates and isotropic displacement parameters. 

 x y z U(eq) 
H -1110(30) 1680(30) -4330(80) 140(20) 

 

I.2 Crystal structure of [H3O][(C4F9)2PO2]  
Table I.2.1 Atomic coordinates and equivalent isotropic displacement 

parameters (Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for [H3O][(C4F9)2PO2].  

 x y z U(eq) 
P(1) 1142(2) 4885(1) 3421(1) 35(1) 
O(1) -1119(5) 4616(3) 3392(2) 41(1) 
O(2) 2317(5) 4668(3) 2762(2) 39(1) 
C(1) 1590(7) 6302(4) 3919(3) 42(1) 
F(1) 1483(5) 6447(3) 4608(2) 52(1) 
F(2) 3525(5) 6616(3) 3797(2) 53(1) 
C(2) 5(8) 7007(5) 3700(3) 47(1) 
F(3) -1833(5) 6884(3) 3977(2) 59(1) 
F(4) -273(5) 6665(3) 2997(2) 54(1) 
C(3) 620(11) 8179(5) 3921(3) 58(2) 
F(5) 1475(7) 8464(3) 4576(2) 75(1) 
F(6) 2006(7) 8339(3) 3484(3) 80(1) 
C(4) -1201(13) 8915(5) 3923(4) 69(2) 
F(7) -2443(9) 8946(4) 4437(3) 94(2) 
F(8) -2306(8) 8580(4) 3324(2) 88(1) 
F(9) -457(10) 9866(4) 3998(3) 101(2) 
C(5) 2516(7) 4236(4) 4006(2) 42(1) 
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F(11) 4357(5) 4760(3) 4237(2) 63(1) 
F(12) 1372(6) 4276(3) 4563(2) 62(1) 
C(6) 2975(8) 3085(5) 3648(3) 45(1) 
F(13) 1388(6) 2649(3) 3203(2) 71(1) 
F(14) 4661(6) 3080(3) 3251(2) 71(1) 
C(7) 3485(11) 2423(6) 4128(3) 63(2) 
F(15) 4481(6) 2992(3) 4712(2) 69(1) 
F(16) 1571(7) 2114(4) 4329(2) 75(1) 
C(8) 4579(14) 1423(7) 3819(5) 79(2) 
F(17) 6588(9) 1661(5) 3750(4) 123(2) 
F(18) 3810(9) 904(4) 3199(3) 98(2) 
F(19) 4631(10) 834(4) 4228(3) 109(2) 
P(2) 5801(2) 2694(1) 883(1) 41(1) 
O(3) 3536(6) 2781(4) 864(2) 69(1) 
O(4) 7161(5) 3546(3) 1356(2) 38(1) 
C(11) 6762(8) 2405(4) -21(3) 44(1) 
F(21) 6514(6) 1381(3) -361(2) 57(1) 
F(22) 8840(5) 2665(3) 16(2) 59(1) 
C(12) 5648(10) 3015(5) -450(3) 53(1) 
F(23) 3688(6) 2627(4) -615(2) 71(1) 
F(24) 5586(8) 4007(3) -41(2) 76(1) 
C(13) 6692(14) 3017(6) -1136(4) 69(2) 
F(25) 7171(11) 2047(4) -1479(3) 109(2) 
F(26) 8433(9) 3606(5) -983(3) 111(2) 
C(14) 5360(16) 3429(7) -1630(4) 83(2) 
F(27) 3766(12) 2790(5) -1907(3) 128(2) 
F(28) 4713(12) 4358(4) -1303(3) 117(2) 
F(29) 6410(12) 3491(5) -2162(3) 124(2) 
C(15) 6221(15) 1487(6) 1166(3) 77(2) 
F(31) 5185(8) 666(3) 719(2) 82(1) 
F(32) 5327(12) 1728(4) 1817(3) 124(3) 
C(16) 8393(18) 1243(6) 1308(5) 92(3) 
F(33) 9435(8) 1261(4) 737(3) 95(2) 
F(34) 9311(12) 1960(4) 1840(3) 136(3) 
C(17) 9240(20) 155(10) 1378(7) 57(4) 
C(17A) 7860(40) 182(16) 1499(13) 85(8) 
F(35) 8544(11) -584(4) 802(3) 108(2) 
F(36) 11353(6) 187(4) 1559(3) 95(2) 
C(18) 8290(30) -145(11) 1977(7) 67(5) 
C(18A) 9640(30) -81(17) 1858(17) 98(10) 
F(37) 6158(7) -204(4) 1812(3) 101(2) 
F(38) 8869(12) 611(5) 2586(3) 126(2) 
F(39) 9296(10) -984(5) 2002(4) 126(2) 
O(5) 6237(5) 4840(3) 2553(2) 38(1) 
O(6) 1070(5) 4105(3) 1452(2) 44(1) 

 
Table I.2.2 Selected bond lengths [Å] and angles [°] in [H3O][(C4F9)2PO2]. 

P(1)-O(1) 1.488(3) O(4)-P(2)-C(15) 107.0(3) 
P(1)-O(2) 1.504(3) C(11)-P(2)-C(15) 106.7(3) 
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P(1)-C(5) 1.875(5) P(2)-O(3)-O(6) 135.5(3) 
P(1)-C(1) 1.885(6) P(2)-O(4)-O(5) 127.4(2) 
C(1)-F(1) 1.342(6) F(21)-C(11)-F(22) 107.9(4) 
C(1)-F(2) 1.362(6) F(21)-C(11)-C(12) 109.0(4) 
C(1)-C(2) 1.553(8) F(22)-C(11)-C(12) 107.7(5) 
C(2)-F(4) 1.352(6) F(21)-C(11)-P(2) 110.1(4) 
C(2)-F(3) 1.354(7) F(22)-C(11)-P(2) 109.4(4) 
C(2)-C(3) 1.549(8) C(12)-C(11)-P(2) 112.6(4) 
C(3)-F(6) 1.333(8) F(23)-C(12)-F(24) 108.8(5) 
C(3)-F(5) 1.348(7) F(23)-C(12)-C(11) 109.0(5) 
C(3)-C(4) 1.556(10) F(24)-C(12)-C(11) 107.3(5) 
C(4)-F(7) 1.320(9) F(23)-C(12)-C(13) 108.4(5) 
C(4)-F(9) 1.325(9) F(24)-C(12)-C(13) 107.9(5) 
C(4)-F(8) 1.325(9) C(11)-C(12)-C(13) 115.4(5) 
C(5)-F(12) 1.351(6) F(26)-C(13)-F(25) 108.7(7) 
C(5)-F(11) 1.360(6) F(26)-C(13)-C(14) 106.8(6) 
C(5)-C(6) 1.546(8) F(25)-C(13)-C(14) 108.0(7) 
C(6)-F(13) 1.335(6) F(26)-C(13)-C(12) 109.7(6) 
C(6)-F(14) 1.371(6) F(25)-C(13)-C(12) 108.7(5) 
C(6)-C(7) 1.532(8) C(14)-C(13)-C(12) 114.8(7) 
C(7)-F(15) 1.328(7) F(29)-C(14)-F(28) 108.4(7) 
C(7)-F(16) 1.404(9) F(29)-C(14)-F(27) 105.1(7) 
C(7)-C(8) 1.511(10) F(28)-C(14)-F(27) 110.4(9) 
C(8)-F(18) 1.304(10) F(29)-C(14)-C(13) 111.0(8) 
C(8)-F(19) 1.305(9) F(28)-C(14)-C(13) 110.6(6) 
C(8)-F(17) 1.349(11) F(27)-C(14)-C(13) 111.2(7) 
P(2)-O(3) 1.467(4) F(31)-C(15)-F(32) 109.4(6) 
P(2)-O(4) 1.495(3) F(31)-C(15)-C(16) 111.6(7) 
P(2)-C(11) 1.871(6) F(32)-C(15)-C(16) 104.4(7) 
P(2)-C(15) 1.905(8) F(31)-C(15)-P(2) 109.9(6) 
C(11)-F(21) 1.350(6) F(32)-C(15)-P(2) 103.4(6) 
C(11)-F(22) 1.370(6) C(16)-C(15)-P(2) 117.4(6) 
C(11)-C(12) 1.533(8) F(34)-C(16)-F(33) 106.1(9) 
C(12)-F(23) 1.347(7) F(34)-C(16)-C(15) 112.5(8) 
C(12)-F(24) 1.348(7) F(33)-C(16)-C(15) 105.6(6) 
C(12)-C(13) 1.555(10) F(34)-C(16)-C(17A) 112.0(11) 
C(13)-F(26) 1.332(9) F(33)-C(16)-C(17A) 123.1(11) 
C(13)-F(25) 1.335(8) C(15)-C(16)-C(17A) 97.0(11) 
C(13)-C(14) 1.526(11) F(34)-C(16)-C(17) 104.5(7) 
C(14)-F(29) 1.308(10) F(33)-C(16)-C(17) 97.7(9) 
C(14)-F(28) 1.315(10) C(15)-C(16)-C(17) 127.7(9) 
C(14)-F(27) 1.319(10) C(17A)-C(16)-C(17) 33.3(8) 
C(15)-F(31) 1.344(7) C(17A)-C(17)-C(18A) 88(2) 
C(15)-F(32) 1.398(9) C(17A)-C(17)-F(35) 84.6(19) 
C(15)-C(16) 1.483(14) C(18A)-C(17)-F(35) 117.9(18) 
C(16)-F(34) 1.317(9) C(17A)-C(17)-F(36) 151(2) 
C(16)-F(33) 1.357(11) C(18A)-C(17)-F(36) 64.9(15) 
C(16)-C(17A) 1.62(2) F(35)-C(17)-F(36) 117.5(11) 
C(16)-C(17) 1.626(15) C(17A)-C(17)-C(18) 51.8(17) 
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C(17)-C(17A) 0.93(2) C(18A)-C(17)-C(18) 36.8(12) 
C(17)-C(18A) 1.13(3) F(35)-C(17)-C(18) 104.6(11) 
C(17)-F(35) 1.337(14) F(36)-C(17)-C(18) 101.5(11) 
C(17)-F(36) 1.391(14) C(17A)-C(17)-C(16) 73.3(15) 
C(17)-C(18) 1.53(2) C(18A)-C(17)-C(16) 130.1(19) 
C(17A)-C(18) 1.20(2) F(35)-C(17)-C(16) 106.4(9) 
C(17A)-C(18A) 1.44(3) F(36)-C(17)-C(16) 114.1(9) 
C(17A)-F(37) 1.45(2) C(18)-C(17)-C(16) 112.3(12) 
C(17A)-F(35) 1.56(3) C(17)-C(17A)-C(18) 90(2) 
F(36)-C(18A) 1.37(2) C(17)-C(17A)-C(18A) 51.3(19) 
C(18)-C(18A) 0.92(2) C(18)-C(17A)-C(18A) 39.4(12) 
C(18)-F(39) 1.332(15) C(17)-C(17A)-F(37) 150(2) 
C(18)-F(38) 1.370(16) C(18)-C(17A)-F(37) 62.9(16) 
C(18)-F(37) 1.397(19) C(18A)-C(17A)-F(37) 101.9(18) 
C(18A)-F(39) 1.35(2) C(17)-C(17A)-F(35) 58.8(16) 
C(18A)-F(38) 1.58(3) C(18)-C(17A)-F(35) 110.0(17) 
O(2)-O(5) 2.592(5) C(18A)-C(17A)-F(35) 90(2) 
O(4)-O(5) 2.611(5) F(37)-C(17A)-F(35) 114.5(15) 
O(5)-O(1)*1 2.441(5) C(17)-C(17A)-C(16) 73.4(16) 
O(5)-H(51) 0.84(2) C(18)-C(17A)-C(16) 135(2) 
O(5)-H(52) 0.84(2) C(18A)-C(17A)-C(16) 109.3(19) 
O(5)-H(53) 0.85(2) F(37)-C(17A)-C(16) 135.7(17) 
O(2)-O(6) 2.600(5) F(35)-C(17A)-C(16) 96.7(14) 
O(3)-O(6) 2.474(6) C(17)-F(35)-C(17A) 36.6(8) 
O(6)-O(4)*2 2.596(5) C(18A)-F(36)-C(17) 48.1(11) 
O(6)-H(61) 0.84(2) C(18A)-C(18)-C(17A) 85(2) 
O(6)-H(62) 0.84(2) C(18A)-C(18)-F(39) 71.1(16) 
O(6)-H(63) 0.85(2) C(17A)-C(18)-F(39) 131.3(18) 
O(1)-P(1)-O(2) 120.66(19) C(18A)-C(18)-F(38) 85(3) 
O(1)-P(1)-C(5) 108.5(2) C(17A)-C(18)-F(38) 113.9(16) 
O(2)-P(1)-C(5) 107.4(2) F(39)-C(18)-F(38) 105.6(11) 
O(1)-P(1)-C(1) 108.9(2) C(18A)-C(18)-F(37) 150(2) 
O(2)-P(1)-C(1) 107.7(2) C(17A)-C(18)-F(37) 67.2(17) 
C(5)-P(1)-C(1) 102.1(2) F(39)-C(18)-F(37) 120.9(13) 
P(1)-O(2)-O(5) 131.83(19) F(38)-C(18)-F(37) 113.7(12) 
P(1)-O(2)-O(6) 131.76(19) C(18A)-C(18)-C(17) 47.2(18) 
O(5)-O(2)-O(6) 96.32(15) C(17A)-C(18)-C(17) 37.7(13) 
F(1)-C(1)-F(2) 108.2(4) F(39)-C(18)-C(17) 104.2(13) 
F(1)-C(1)-C(2) 108.6(4) F(38)-C(18)-C(17) 107.7(12) 
F(2)-C(1)-C(2) 107.6(5) F(37)-C(18)-C(17) 103.7(11) 
F(1)-C(1)-P(1) 110.2(4) C(18)-C(18A)-C(17) 96(2) 
F(2)-C(1)-P(1) 109.1(3) C(18)-C(18A)-F(39) 68.9(16) 
C(2)-C(1)-P(1) 112.9(4) C(17)-C(18A)-F(39) 131(3) 
F(4)-C(2)-F(3) 107.8(4) C(18)-C(18A)-F(36) 162(3) 
F(4)-C(2)-C(3) 108.4(5) C(17)-C(18A)-F(36) 67.0(17) 
F(3)-C(2)-C(3) 108.7(5) F(39)-C(18A)-F(36) 126.3(17) 
F(4)-C(2)-C(1) 107.9(4) C(18)-C(18A)-C(17A) 56.0(18) 
F(3)-C(2)-C(1) 108.0(5) C(17)-C(18A)-C(17A) 40.3(13) 
C(3)-C(2)-C(1) 115.8(5) F(39)-C(18A)-C(17A) 111.4(19) 
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F(6)-C(3)-F(5) 109.5(6) F(36)-C(18A)-C(17A) 106(2) 
F(6)-C(3)-C(2) 108.6(5) C(18)-C(18A)-F(38) 59(2) 
F(5)-C(3)-C(2) 109.1(5) C(17)-C(18A)-F(38) 118.4(18) 
F(6)-C(3)-C(4) 107.6(6) F(39)-C(18A)-F(38) 93.9(17) 
F(5)-C(3)-C(4) 106.6(5) F(36)-C(18A)-F(38) 122.5(19) 
C(2)-C(3)-C(4) 115.3(6) C(17A)-C(18A)-F(38) 90.7(18) 
F(7)-C(4)-F(9) 108.9(6) C(18)-F(37)-C(17A) 49.9(10) 
F(7)-C(4)-F(8) 108.4(7) C(18)-F(38)-C(18A) 35.3(9) 
F(9)-C(4)-F(8) 108.9(6) C(18)-F(39)-C(18A) 40.1(9) 
F(7)-C(4)-C(3) 111.1(6) O(1)*1-O(5)-O(2) 120.94(18) 
F(9)-C(4)-C(3) 109.9(7) O(1)*1-O(5)-O(4) 105.02(17) 
F(8)-C(4)-C(3) 109.7(6) O(2)-O(5)-O(4) 110.59(16) 
F(12)-C(5)-F(11) 108.7(4) O(1)*1-O(5)-H(51) 19(5) 
F(12)-C(5)-C(6) 107.5(5) O(2)-O(5)-H(51) 112(5) 
F(11)-C(5)-C(6) 108.0(4) O(4)-O(5)-H(51) 124(5) 
F(12)-C(5)-P(1) 110.1(3) O(1)*1-O(5)-H(52) 118(5) 
F(11)-C(5)-P(1) 108.1(4) O(2)-O(5)-H(52) 4(5) 
C(6)-C(5)-P(1) 114.3(3) O(4)-O(5)-H(52) 111(5) 
F(13)-C(6)-F(14) 106.4(5) H(51)-O(5)-H(52) 109(6) 
F(13)-C(6)-C(7) 110.3(5) O(1)*1-O(5)-H(53) 122(5) 
F(14)-C(6)-C(7) 107.3(5) O(2)-O(5)-H(53) 105(4) 
F(13)-C(6)-C(5) 108.7(4) O(4)-O(5)-H(53) 19(5) 
F(14)-C(6)-C(5) 106.7(5) H(51)-O(5)-H(53) 139(6) 
C(7)-C(6)-C(5) 117.0(5) H(52)-O(5)-H(53) 107(6) 
F(15)-C(7)-F(16) 106.0(6) O(3)-O(6)-O(4)*2 117.5(2) 
F(15)-C(7)-C(8) 110.5(6) O(3)-O(6)-O(2) 104.56(19) 
F(16)-C(7)-C(8) 104.7(6) O(4)*2-O(6)-O(2) 108.66(17) 
F(15)-C(7)-C(6) 110.7(6) O(3)-O(6)-H(61) 108(5) 
F(16)-C(7)-C(6) 106.3(5) O(4)*2-O(6)-H(61) 105(4) 
C(8)-C(7)-C(6) 117.8(6) O(2)-O(6)-H(61) 4(5) 
F(18)-C(8)-F(19) 110.6(8) O(3)-O(6)-H(62) 4(5) 
F(18)-C(8)-F(17) 107.3(7) O(4)*2-O(6)-H(62) 117(5) 
F(19)-C(8)-F(17) 105.0(7) O(2)-O(6)-H(62) 101(5) 
F(18)-C(8)-C(7) 112.4(6) H(61)-O(6)-H(62) 105(6) 
F(19)-C(8)-C(7) 113.0(7) O(3)-O(6)-H(63) 102(5) 
F(17)-C(8)-C(7) 108.1(7) O(4)*2-O(6)-H(63) 16(5) 
O(3)-P(2)-O(4) 120.5(2) O(2)-O(6)-H(63) 111(5) 
O(3)-P(2)-C(11) 109.8(3) H(61)-O(6)-H(63) 108(6) 
O(4)-P(2)-C(11) 108.0(2) H(62)-O(6)-H(63) 102(6) 
O(3)-P(2)-C(15) 104.0(4)   

 Symmetry transformations used to generate equivalent atoms: 
 *1 x+1,y,z; *2 x-1,y,z. 
 
Table I.2.3 Anisotropic displacement parameters (Å2).  

 U11 U22 U33 U23 U13 U12 
P(1) 22(1) 51(1) 30(1) 6(1) -4(1) 2(1) 
O(1) 22(2) 57(2) 44(2) 14(2) -3(1) -1(1) 
O(2) 25(2) 60(2) 27(2) 5(2) -3(1) 1(1) 
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C(1) 27(2) 54(3) 40(3) 7(2) -2(2) 2(2) 
F(1) 55(2) 60(2) 34(2) 3(1) -5(1) 5(2) 
F(2) 35(2) 62(2) 56(2) 9(2) -4(1) -10(1) 
C(2) 42(3) 50(3) 45(3) 10(2) -4(2) 4(2) 
F(3) 37(2) 62(2) 75(2) 17(2) 7(2) 12(2) 
F(4) 58(2) 54(2) 44(2) 9(1) -12(1) 4(2) 
C(3) 71(4) 47(3) 49(3) 6(3) -3(3) -2(3) 
F(5) 92(3) 54(2) 65(2) -2(2) -25(2) 0(2) 
F(6) 84(3) 60(3) 92(3) 19(2) 14(2) -9(2) 
C(4) 93(5) 49(4) 65(5) 16(3) -4(4) 16(3) 
F(7) 110(4) 87(3) 89(3) 27(3) 22(3) 48(3) 
F(8) 113(4) 72(3) 75(3) 15(2) -21(3) 27(3) 
F(9) 146(5) 50(3) 104(4) 19(2) -6(3) 14(3) 
C(5) 29(2) 61(3) 27(2) 2(2) -6(2) 2(2) 
F(11) 43(2) 66(2) 70(2) 10(2) -30(2) -4(2) 
F(12) 72(2) 79(3) 38(2) 21(2) 14(2) 27(2) 
C(6) 39(3) 56(3) 34(3) 7(2) -5(2) 4(2) 
F(13) 76(3) 61(2) 66(2) 8(2) -32(2) -1(2) 
F(14) 71(3) 75(3) 69(3) 21(2) 27(2) 22(2) 
C(7) 70(4) 65(4) 50(4) 13(3) -14(3) 16(3) 
F(15) 69(2) 81(3) 56(2) 21(2) -26(2) 7(2) 
F(16) 66(2) 84(3) 85(3) 40(2) 10(2) 4(2) 
C(8) 89(6) 74(5) 78(5) 29(4) 3(4) 36(4) 
F(17) 79(4) 148(6) 157(6) 64(5) 26(4) 57(4) 
F(18) 143(5) 65(3) 76(3) 6(2) -4(3) 36(3) 
F(19) 145(5) 88(4) 110(4) 49(3) 5(3) 58(3) 
P(2) 30(1) 50(1) 34(1) 2(1) -3(1) -6(1) 
O(3) 29(2) 94(4) 56(3) -17(2) 2(2) -10(2) 
O(4) 29(2) 42(2) 38(2) 4(1) -5(1) -2(1) 
C(11) 40(3) 39(3) 47(3) 6(2) 3(2) 2(2) 
F(21) 76(2) 44(2) 46(2) 6(1) 4(2) 4(2) 
F(22) 36(2) 75(2) 66(2) 20(2) 7(2) 5(2) 
C(12) 62(4) 39(3) 51(3) 5(2) -4(3) 5(3) 
F(23) 55(2) 96(3) 60(2) 22(2) -15(2) 3(2) 
F(24) 116(3) 45(2) 60(2) 6(2) -8(2) 26(2) 
C(13) 100(6) 52(4) 59(4) 20(3) 11(4) 9(4) 
F(25) 190(6) 76(3) 75(3) 33(3) 62(3) 56(3) 
F(26) 100(4) 137(5) 122(5) 82(4) -1(3) -23(4) 
C(14) 127(8) 66(5) 55(4) 16(4) -10(4) -3(5) 
F(27) 187(7) 120(5) 77(3) 41(3) -57(4) -43(4) 
F(28) 216(7) 70(3) 67(3) 23(2) -10(3) 48(4) 
F(29) 210(7) 116(5) 69(3) 57(3) 40(4) 49(4) 
C(15) 127(7) 56(4) 40(3) 5(3) -6(4) -39(4) 
F(31) 116(4) 58(2) 58(2) 0(2) 4(2) -41(2) 
F(32) 226(7) 79(3) 64(3) 13(2) 56(4) -30(4) 
C(16) 153(9) 52(4) 67(5) 19(4) -51(5) -4(5) 
F(33) 81(3) 88(4) 132(5) 61(3) -20(3) 2(3) 
F(34) 197(6) 57(3) 141(5) 23(3) -113(5) -9(3) 
C(17) 39(8) 59(7) 80(9) 32(6) 8(5) 7(5) 
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C(17A) 71(17) 68(12) 130(20) 54(12) 13(12) 14(9) 
F(35) 168(6) 55(3) 90(4) 4(2) 26(4) -5(3) 
F(36) 49(2) 86(3) 166(5) 62(3) 17(3) 15(2) 
C(18) 80(13) 65(8) 69(9) 36(7) 15(7) 15(7) 
C(18A) 51(12) 84(14) 200(30) 94(17) 29(14) 22(9) 
F(37) 62(3) 104(4) 126(4) 17(3) 24(3) -10(3) 
F(38) 187(7) 128(5) 72(4) 43(4) 1(4) -30(5) 
F(39) 132(5) 90(4) 190(7) 90(4) 9(4) 34(3) 
O(5) 24(2) 50(2) 37(2) 8(2) -4(1) 0(1) 
O(6) 31(2) 62(3) 35(2) 8(2) -6(1) -8(2) 

The anisotropic displacement factor exponent takes the form:  
 -2π2[h2a*2U11+ ..+2hka*b*U12] 
 
Table I.2.4 Hydrogen coordinates and isotropic displacement parameters. 

 x y z U(eq) 
H(51) 6970(90) 4950(50) 2920(20) 56(8) 
H(52) 4980(40) 4750(50) 2640(30) 56(8) 
H(53) 6350(100) 4580(50) 2118(12) 56(8) 
H(61) 1390(100) 4300(50) 1884(12) 56(8) 
H(62) 1920(80) 3640(40) 1280(30) 56(8) 
H(63) -60(60) 3750(40) 1390(30) 56(8) 

 

I.3 Crystal structure of [Me4N][{(C2F5)2P(O)}2N] 
Table I.3.1 Atomic coordinates and equivalent isotropic displacement 

parameters (Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for [Me4N][{(C2F5)2P(O)}2N].  

 x y z U(eq) 
C(1) 0.3210(2) 0.0662(2) 0.5477(2) 0.025(1) 
C(2) 0.4218(2) 0.0499(2) 0.5654(2) 0.030(1) 
C(3) 0.2637(2) -0.0694(2) 0.4376(2) 0.025(1) 
C(4) 0.1907(2) -0.1113(2) 0.3751(2) 0.032(1) 
C(5) 0.2133(2) 0.2697(2) 0.3652(2) 0.032(1) 
C(6) 0.1505(3) 0.3279(2) 0.3080(2) 0.034(1) 
C(7) 0.3408(2) 0.1721(2) 0.3162(2) 0.030(1) 
C(8) 0.3613(3) 0.0987(3) 0.2729(2) 0.038(1) 
C(9) 0.3134(2) -0.1323(2) 0.9117(2) 0.030(1) 
C(10) 0.3302(3) -0.2180(3) 0.8826(2) 0.047(1) 
C(11) 0.3618(2) -0.0107(2) 0.8151(2) 0.029(1) 
C(12) 0.3530(3) 0.0794(2) 0.7828(2) 0.036(1) 
C(13) 0.2768(2) 0.1477(2) 1.0003(2) 0.026(1) 
C(14) 0.3631(2) 0.1024(2) 1.0449(2) 0.033(1) 
C(15) 0.1324(2) 0.1696(2) 0.8675(2) 0.030(1) 
C(16) 0.0431(2) 0.1411(2) 0.8132(2) 0.035(1) 
F(1) 0.3122(1) 0.1522(1) 0.5580(1) 0.036(1) 
F(2) 0.2953(1) 0.0243(1) 0.5972(1) 0.037(1) 
F(3) 0.4675(1) 0.0816(1) 0.6287(1) 0.038(1) 
F(4) 0.4382(1) -0.0338(1) 0.5663(1) 0.046(1) 
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F(5) 0.4521(1) 0.0874(2) 0.5190(1) 0.043(1) 
F(6) 0.2731(1) -0.1203(1) 0.4950(1) 0.034(1) 
F(7) 0.3421(1) -0.0737(1) 0.4240(1) 0.034(1) 
F(8) 0.1166(1) -0.1275(1) 0.3908(1) 0.047(1) 
F(9) 0.1693(2) -0.0604(1) 0.3195(1) 0.044(1) 
F(10) 0.2202(1) -0.1852(1) 0.3582(1) 0.040(1) 
F(11) 0.1729(2) 0.2608(1) 0.4153(1) 0.044(1) 
F(12) 0.2910(2) 0.3132(1) 0.3948(1) 0.046(1) 
F(13) 0.0681(1) 0.2939(1) 0.2831(1) 0.043(1) 
F(14) 0.1434(2) 0.4047(1) 0.3341(1) 0.054(1) 
F(15) 0.1814(1) 0.3383(1) 0.2548(1) 0.039(1) 
F(16) 0.3343(1) 0.2450(1) 0.2771(1) 0.042(1) 
F(17) 0.4141(1) 0.1816(1) 0.3749(1) 0.039(1) 
F(18) 0.3007(2) 0.0966(2) 0.2086(1) 0.051(1) 
F(19) 0.3589(2) 0.0238(1) 0.3041(1) 0.046(1) 
F(20) 0.4420(2) 0.1074(2) 0.2670(1) 0.055(1) 
F(21) 0.2506(1) -0.1465(1) 0.9433(1) 0.037(1) 
F(22) 0.3902(1) -0.1095(1) 0.9634(1) 0.046(1) 
F(23) 0.3902(2) -0.2090(2) 0.8501(2) 0.085(1) 
F(24) 0.3623(2) -0.2758(1) 0.9334(1) 0.060(1) 
F(25) 0.2552(2) -0.2496(1) 0.8380(1) 0.067(1) 
F(26) 0.4428(1) -0.0145(1) 0.8666(1) 0.043(1) 
F(27) 0.3637(1) -0.0659(1) 0.7634(1) 0.042(1) 
F(28) 0.3710(2) 0.1402(1) 0.8320(1) 0.048(1) 
F(29) 0.2693(2) 0.0913(1) 0.7386(1) 0.049(1) 
F(30) 0.4097(2) 0.0897(1) 0.7471(1) 0.049(1) 
F(31) 0.2339(1) 0.1747(1) 1.0452(1) 0.041(1) 
F(32) 0.3022(1) 0.2197(1) 0.9735(1) 0.037(1) 
F(33) 0.4053(1) 0.1492(1) 1.1019(1) 0.046(1) 
F(34) 0.4191(1) 0.0921(1) 1.0091(1) 0.043(1) 
F(35) 0.3437(2) 0.0266(1) 1.0658(1) 0.050(1) 
F(36) 0.1127(1) 0.2337(1) 0.9059(1) 0.043(1) 
F(37) 0.1823(1) 0.2045(1) 0.8308(1) 0.040(1) 
F(38) 0.0557(1) 0.0696(1) 0.7808(1) 0.048(1) 
F(39) -0.0184(1) 0.1240(1) 0.8433(1) 0.044(1) 
F(40) 0.0100(1) 0.2008(1) 0.7643(1) 0.044(1) 
N(3) 0.2673(2) 0.1044(2) 0.4083(1) 0.028(1) 
N(4) 0.2595(2) 0.0373(2) 0.8935(1) 0.026(1) 
P(1) 0.2371(1) 0.0435(1) 0.4575(1) 0.024(1) 
P(2) 0.2350(1) 0.1575(1) 0.3381(1) 0.024(1) 
P(3) 0.1960(1) 0.0815(1) 0.9285(1) 0.024(1) 
P(4) 0.2667(1) -0.0418(1) 0.8475(1) 0.023(1) 
O(1) 0.1468(1) 0.0422(1) 0.4645(1) 0.029(1) 
O(2) 0.1601(2) 0.1330(1) 0.2748(1) 0.028(1) 
O(3) 0.1315(2) 0.0364(1) 0.9550(1) 0.030(1) 
O(4) 0.1907(1) -0.0757(1) 0.7891(1) 0.028(1) 
N(1) 0.9173(2) 0.1111(2) 0.3898(1) 0.025(1) 
N(2) 0.9820(2) 0.8512(2) 0.9047(1) 0.026(1) 
C(91) 0.9184(2) 0.7765(2) 0.8882(2) 0.031(1) 
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C(92) 1.0472(2) 0.8427(2) 0.9781(2) 0.036(1) 
C(93) 0.9295(2) 0.9328(2) 0.8985(2) 0.032(1) 
C(94) 1.0324(2) 0.8534(2) 0.8535(2) 0.031(1) 
C(95) 0.8227(2) 0.1443(2) 0.3644(2) 0.030(1) 
C(96) 0.9700(2) 0.1519(2) 0.3489(2) 0.034(1) 
C(97) 0.9170(2) 0.0156(2) 0.3798(2) 0.033(1) 
C(98) 0.9601(2) 0.1318(3) 0.4664(2) 0.039(1) 

 
Table I.3.2 Selected bond lengths [Å] and angles [°] in [Me4N][{(C2F5)2P(O)}2N]. 

C(1)-F(2) 1.360(4) F(14)-C(6)-F(13) 107.9(3) 
C(1)-F(1) 1.367(4) F(15)-C(6)-F(13) 108.5(3) 
C(1)-C(2) 1.525(5) F(14)-C(6)-C(5) 110.6(3) 
C(1)-P(1) 1.888(3) F(15)-C(6)-C(5) 111.1(3) 
C(2)-F(5) 1.320(4) F(13)-C(6)-C(5) 110.5(3) 
C(2)-F(4) 1.325(4) F(17)-C(7)-F(16) 106.9(3) 
C(2)-F(3) 1.331(4) F(17)-C(7)-C(8) 107.3(3) 
C(3)-F(7) 1.352(3) F(16)-C(7)-C(8) 106.4(3) 
C(3)-F(6) 1.367(3) F(17)-C(7)-P(2) 111.8(2) 
C(3)-C(4) 1.538(5) F(16)-C(7)-P(2) 109.6(2) 
C(3)-P(1) 1.878(3) C(8)-C(7)-P(2) 114.5(2) 
C(4)-F(9) 1.321(4) F(20)-C(8)-F(18) 108.4(3) 
C(4)-F(10) 1.326(4) F(20)-C(8)-F(19) 108.2(3) 
C(4)-F(8) 1.329(4) F(18)-C(8)-F(19) 108.4(3) 
C(5)-F(12) 1.350(4) F(20)-C(8)-C(7) 111.4(3) 
C(5)-F(11) 1.367(4) F(18)-C(8)-C(7) 110.6(3) 
C(5)-C(6) 1.537(5) F(19)-C(8)-C(7) 109.8(3) 
C(5)-P(2) 1.893(3) F(22)-C(9)-F(21) 106.4(3) 
C(6)-F(14) 1.324(4) F(22)-C(9)-C(10) 107.6(3) 
C(6)-F(15) 1.327(4) F(21)-C(9)-C(10) 106.6(3) 
C(6)-F(13) 1.333(4) F(22)-C(9)-P(4) 112.0(2) 
C(7)-F(17) 1.358(4) F(21)-C(9)-P(4) 105.3(2) 
C(7)-F(16) 1.364(4) C(10)-C(9)-P(4) 118.2(3) 
C(7)-C(8) 1.534(5) F(25)-C(10)-F(23) 109.1(4) 
C(7)-P(2) 1.873(3) F(25)-C(10)-F(24) 107.3(3) 
C(8)-F(20) 1.321(4) F(23)-C(10)-F(24) 107.6(3) 
C(8)-F(18) 1.328(4) F(25)-C(10)-C(9) 111.0(3) 
C(8)-F(19) 1.330(4) F(23)-C(10)-C(9) 110.0(3) 
C(9)-F(22) 1.354(4) F(24)-C(10)-C(9) 111.7(3) 
C(9)-F(21) 1.360(4) F(26)-C(11)-F(27) 107.7(3) 
C(9)-C(10) 1.513(5) F(26)-C(11)-C(12) 107.2(3) 
C(9)-P(4) 1.886(3) F(27)-C(11)-C(12) 106.0(3) 
C(10)-F(25) 1.317(5) F(26)-C(11)-P(4) 112.2(2) 
C(10)-F(23) 1.323(4) F(27)-C(11)-P(4) 109.1(2) 
C(10)-F(24) 1.327(4) C(12)-C(11)-P(4) 114.3(2) 
C(11)-F(26) 1.350(4) F(28)-C(12)-F(30) 107.5(3) 
C(11)-F(27) 1.359(4) F(28)-C(12)-F(29) 108.4(3) 
C(11)-C(12) 1.531(5) F(30)-C(12)-F(29) 108.3(3) 
C(11)-P(4) 1.883(3) F(28)-C(12)-C(11) 111.6(3) 
C(12)-F(28) 1.329(4) F(30)-C(12)-C(11) 111.0(3) 
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C(12)-F(30) 1.329(4) F(29)-C(12)-C(11) 109.9(3) 
C(12)-F(29) 1.333(4) F(32)-C(13)-F(31) 106.7(3) 
C(13)-F(32) 1.358(4) F(32)-C(13)-C(14) 107.0(3) 
C(13)-F(31) 1.361(3) F(32)-C(13)-C(14) 107.0(3) 
C(13)-C(14) 1.528(5) F(32)-C(13)-P(3) 111.0(2) 
C(13)-P(3) 1.883(3) F(31)-C(13)-P(3) 108.7(2) 
C(14)-F(34) 1.321(4) C(14)-C(13)-P(3) 116.1(2) 
C(14)-F(35) 1.321(4) F(34)-C(14)-F(35) 109.4(3) 
C(14)-F(33) 1.333(4) F(34)-C(14)-F(33) 107.7(3) 
C(15)-F(37) 1.357(4) F(35)-C(14)-F(33) 108.4(3) 
C(15)-F(36) 1.359(4) F(34)-C(14)-C(13) 111.1(3) 
C(15)-C(16) 1.530(5) F(35)-C(14)-C(13) 110.1(3) 
C(15)-P(3) 1.888(4) F(33)-C(14)-C(13) 110.2(3) 
C(16)-F(40) 1.327(4) F(37)-C(15)-F(36) 107.4(3) 
C(16)-F(39) 1.329(4) F(37)-C(15)-C(16) 106.7(3) 
C(16)-F(38) 1.337(4) F(36)-C(15)-C(16) 106.8(3) 
N(3)-P(1) 1.554(3) F(37)-C(15)-P(3) 111.5(2) 
N(3)-P(2) 1.568(3) F(36)-C(15)-P(3) 109.5(2) 
N(4)-P(3) 1.560(3) C(16)-C(15)-P(3) 114.6(2) 
N(4)-P(4) 1.566(3) F(40)-C(16)-F(39) 108.2(3) 
P(1)-O(1) 1.474(2) F(40)-C(16)-F(38) 107.8(3) 
P(2)-O(2) 1.468(2) F(39)-C(16)-F(38) 107.7(3) 
P(3)-O(3) 1.473(2) F(40)-C(16)-C(15) 111.6(3) 
P(4)-O(4) 1.468(2) F(39)-C(16)-C(15) 111.5(3) 
N(1)-C(96) 1.492(4) F(38)-C(16)-C(15) 109.8(3) 
N(1)-C(95) 1.495(4) P(1)-N(3)-P(2) 145.02(19) 
N(1)-C(98) 1.497(4) P(3)-N(4)-P(4) 142.77(19) 
N(1)-C(97) 1.498(4) O(1)-P(1)-N(3) 125.32(14) 
N(2)-C(93) 1.496(4) O(1)-P(1)-C(3) 107.25(14) 
N(2)-C(91) 1.496(4) N(3)-P(1)-C(3) 107.32(14) 
N(2)-C(92) 1.496(4) O(1)-P(1)-C(1) 107.30(14) 
N(2)-C(94) 1.496(4) N(3)-P(1)-C(1) 103.61(15) 
F(2)-C(1)-F(1) 106.6(2) C(3)-P(1)-C(1) 104.21(15) 
F(2)-C(1)-C(2) 106.7(3) O(2)-P(2)-N(3) 124.85(14) 
F(1)-C(1)-C(2) 106.1(3) O(2)-P(2)-C(7) 110.22(14) 
F(2)-C(1)-P(1) 109.4(2) N(3)-P(2)-C(7) 103.29(15) 
F(1)-C(1)-P(1) 104.8(2) O(2)-P(2)-C(5) 108.65(15) 
C(2)-C(1)-P(1) 122.2(2) N(3)-P(2)-C(5) 105.10(15) 
F(5)-C(2)-F(4) 109.1(3) C(7)-P(2)-C(5) 102.48(16) 
F(5)-C(2)-F(3) 107.8(3) O(3)-P(3)-N(4) 125.17(14) 
F(4)-C(2)-F(3) 108.1(3) O(3)-P(3)-C(13) 110.63(14) 
F(5)-C(2)-C(1) 110.7(3) N(4)-P(3)-C(13) 102.58(14) 
F(4)-C(2)-C(1) 110.5(3) O(3)-P(3)-C(15) 107.57(14) 
F(3)-C(2)-C(1) 110.5(3) N(4)-P(3)-C(15) 107.81(15) 
F(7)-C(3)-F(6) 107.1(2) C(13)-P(3)-C(15) 100.30(15) 
F(7)-C(3)-C(4) 107.2(3) O(4)-P(4)-N(4) 123.80(14) 
F(6)-C(3)-C(4) 106.7(3) O(4)-P(4)-C(11) 110.06(14) 
F(7)-C(3)-P(1) 111.8(2) N(4)-P(4)-C(11) 103.05(15) 
F(6)-C(3)-P(1) 109.3(2) O(4)-P(4)-C(9) 107.89(14) 
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C(4)-C(3)-P(1) 114.3(2) N(4)-P(4)-C(9) 105.68(15) 
F(9)-C(4)-F(10) 108.4(3) C(11)-P(4)-C(9) 104.83(15) 
F(9)-C(4)-F(8) 108.6(3) C(96)-N(1)-C(95) 109.7(2) 
F(10)-C(4)-F(8) 107.8(3) C(96)-N(1)-C(98) 109.5(3) 
F(9)-C(4)-C(3) 110.5(3) C(95)-N(1)-C(98) 109.5(2) 
F(10)-C(4)-C(3) 110.4(3) C(96)-N(1)-C(97) 108.9(3) 
F(8)-C(4)-C(3) 111.1(3) C(95)-N(1)-C(97) 109.8(3) 
F(12)-C(5)-F(11) 107.4(3) C(98)-N(1)-C(97) 109.4(3) 
F(12)-C(5)-C(6) 107.3(3) C(93)-N(2)-C(91) 109.3(2) 
F(11)-C(5)-C(6) 105.8(3) C(93)-N(2)-C(92) 109.6(3) 
F(12)-C(5)-P(2) 111.4(2) C(91)-N(2)-C(92) 109.9(3) 
F(11)-C(5)-P(2) 107.1(2) C(93)-N(2)-C(94) 109.0(3) 
C(6)-C(5)-P(2) 117.4(2) C(91)-N(2)-C(94) 109.4(2) 
F(14)-C(6)-F(15) 108.2(3) C(92)-N(2)-C(94) 109.6(3) 

 
Table I.3.3 Anisotropic displacement parameters (Å2).  

 U11 U22 U33 U23 U13 U12 
C(1) 0.027(2) 0.030(2) 0.021(2) 0.000(2) 0.010(2) -0.002(2) 
C(2) 0.028(2) 0.035(2) 0.024(2) -0.002(2) 0.007(2) -0.001(2) 
C(3) 0.025(2) 0.029(2) 0.024(2) 0.006(2) 0.012(2) 0.002(2) 
C(4) 0.039(2) 0.027(2) 0.031(2) 0.001(2) 0.012(2) 0.002(2) 
C(5) 0.040(2) 0.029(2) 0.024(2) -0.002(2) 0.007(2) -0.003(2) 
C(6) 0.046(2) 0.025(2) 0.029(2) -0.003(2) 0.008(2) 0.006(2) 
C(7) 0.026(2) 0.036(2) 0.025(2) 0.011(2) 0.005(2) -0.002(2) 
C(8) 0.032(2) 0.047(2) 0.040(2) 0.010(2) 0.018(2) 0.007(2) 
C(9) 0.018(2) 0.038(2) 0.030(2) 0.005(2) 0.004(2) -0.002(2) 
C(10) 0.056(3) 0.034(2) 0.056(3) 0.007(2) 0.027(2) 0.009(2) 
C(11) 0.028(2) 0.034(2) 0.029(2) -0.007(2) 0.013(2) -0.002(2) 
C(12) 0.036(2) 0.040(2) 0.038(2) -0.002(2) 0.019(2) -0.008(2) 
C(13) 0.027(2) 0.029(2) 0.025(2) -0.004(2) 0.012(2) -0.004(2) 
C(14) 0.030(2) 0.039(2) 0.024(2) 0.000(2) 0.003(2) -0.005(2) 
C(15) 0.026(2) 0.030(2) 0.034(2) 0.001(2) 0.011(2) 0.000(2) 
C(16) 0.028(2) 0.037(2) 0.038(2) -0.002(2) 0.009(2) 0.004(2) 
F(1) 0.036(1) 0.032(1) 0.037(1) -0.009(1) 0.008(1) 0.004(1) 
F(2) 0.034(1) 0.053(1) 0.024(1) 0.003(1) 0.011(1) -0.009(1) 
F(3) 0.031(1) 0.051(1) 0.026(1) -0.002(1) 0.004(1) -0.004(1) 
F(4) 0.037(1) 0.040(1) 0.048(1) -0.004(1) -0.001(1) 0.013(1) 
F(5) 0.026(1) 0.076(2) 0.030(1) 0.007(1) 0.012(1) -0.002(1) 
F(6) 0.049(1) 0.026(1) 0.025(1) 0.006(1) 0.010(1) -0.001(1) 
F(7) 0.031(1) 0.035(1) 0.038(1) 0.001(1) 0.015(1) 0.007(1) 
F(8) 0.041(1) 0.052(1) 0.051(1) -0.019(1) 0.018(1) -0.017(1) 
F(9) 0.058(2) 0.036(1) 0.027(1) 0.004(1) -0.001(1) -0.002(1) 
F(10) 0.057(1) 0.029(1) 0.032(1) -0.005(1) 0.012(1) 0.004(1) 
F(11) 0.065(2) 0.040(1) 0.030(1) 0.001(1) 0.019(1) 0.013(1) 
F(12) 0.051(1) 0.033(1) 0.038(1) -0.004(1) -0.005(1) -0.008(1) 
F(13) 0.035(1) 0.042(1) 0.049(1) 0.004(1) 0.007(1) 0.011(1) 
F(14) 0.084(2) 0.029(1) 0.044(1) -0.007(1) 0.013(1) 0.017(1) 
F(15) 0.049(1) 0.034(1) 0.032(1) 0.008(1) 0.012(1) 0.004(1) 
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F(16) 0.038(1) 0.042(1) 0.047(1) 0.019(1) 0.015(1) -0.001(1) 
F(17) 0.023(1) 0.049(1) 0.037(1) 0.006(1) 0.001(1) -0.007(1) 
F(18) 0.047(1) 0.079(2) 0.029(1) -0.004(1) 0.012(1) 0.012(1) 
F(19) 0.057(2) 0.038(1) 0.052(1) 0.005(1) 0.029(1) 0.009(1) 
F(20) 0.039(1) 0.076(2) 0.059(2) 0.013(1) 0.029(1) 0.011(1) 
F(21) 0.035(1) 0.042(1) 0.036(1) 0.012(1) 0.016(1) 0.003(1) 
F(22) 0.031(1) 0.050(1) 0.047(1) 0.014(1) -0.002(1) -0.002(1) 
F(23) 0.121(3) 0.044(2) 0.135(3) 0.015(2) 0.102(2) 0.025(2) 
F(24) 0.056(2) 0.039(1) 0.086(2) 0.027(1) 0.025(1) 0.017(1) 
F(25) 0.099(2) 0.028(1) 0.059(2) -0.005(1) 0.008(2) 0.001(1) 
F(26) 0.023(1) 0.061(1) 0.042(1) 0.004(1) 0.008(1) -0.003(1) 
F(27) 0.048(1) 0.041(1) 0.049(1) -0.014(1) 0.032(1) -0.007(1) 
F(28) 0.066(2) 0.033(1) 0.057(2) -0.012(1) 0.035(1) -0.016(1) 
F(29) 0.045(1) 0.053(1) 0.047(1) 0.021(1) 0.012(1) -0.001(1) 
F(30) 0.054(2) 0.054(1) 0.052(1) -0.004(1) 0.034(1) -0.019(1) 
F(31) 0.036(1) 0.053(1) 0.038(1) -0.020(1) 0.019(1) -0.007(1) 
F(32) 0.040(1) 0.029(1) 0.038(1) 0.002(1) 0.009(1) -0.010(1) 
F(33) 0.043(1) 0.056(1) 0.030(1) -0.008(1) 0.001(1) -0.006(1) 
F(34) 0.026(1) 0.061(2) 0.041(1) -0.007(1) 0.009(1) 0.003(1) 
F(35) 0.056(2) 0.041(1) 0.041(1) 0.014(1) 0.001(1) -0.006(1) 
F(36) 0.042(1) 0.034(1) 0.046(1) -0.008(1) 0.008(1) 0.010(1) 
F(37) 0.032(1) 0.043(1) 0.044(1) 0.015(1) 0.010(1) -0.002(1) 
F(38) 0.037(1) 0.046(1) 0.047(1) -0.016(1) -0.003(1) 0.007(1) 
F(39) 0.025(1) 0.053(1) 0.051(1) 0.009(1) 0.009(1) 0.002(1) 
F(40) 0.035(1) 0.051(1) 0.040(1) 0.013(1) 0.004(1) 0.010(1) 
N(3) 0.022(2) 0.029(2) 0.029(2) 0.001(1) 0.007(1) -0.001(1) 
N(4) 0.023(2) 0.028(2) 0.026(2) -0.001(1) 0.008(1) 0.001(1) 
P(1) 0.022(1) 0.025(1) 0.024(1) 0.001(1) 0.007(1) 0.002(1) 
P(2) 0.024(1) 0.023(1) 0.023(1) 0.002(1) 0.005(1) 0.000(1) 
P(3) 0.023(1) 0.026(1) 0.023(1) -0.002(1) 0.008(1) -0.003(1) 
P(4) 0.022(1) 0.025(1) 0.024(1) 0.000(1) 0.009(1) 0.001(1) 
O(1) 0.023(1) 0.033(1) 0.030(1) -0.002(1) 0.008(1) 0.000(1) 
O(2) 0.028(1) 0.027(1) 0.025(1) -0.002(1) 0.004(1) -0.002(1) 
O(3) 0.028(1) 0.033(1) 0.031(1) -0.004(1) 0.010(1) -0.007(1) 
O(4) 0.027(1) 0.031(1) 0.026(1) -0.003(1) 0.007(1) 0.000(1) 
N(1) 0.024(2) 0.030(2) 0.020(2) 0.000(1) 0.007(1) 0.003(1) 
N(2) 0.023(2) 0.033(2) 0.022(2) -0.001(1) 0.007(1) -0.002(1) 
C(91) 0.029(2) 0.029(2) 0.036(2) -0.006(2) 0.012(2) -0.005(2) 
C(92) 0.038(2) 0.044(2) 0.022(2) 0.001(2) 0.004(2) -0.002(2) 
C(93) 0.029(2) 0.031(2) 0.034(2) -0.006(2) 0.010(2) -0.002(2) 
C(94) 0.025(2) 0.044(2) 0.028(2) -0.003(2) 0.012(2) -0.002(2) 
C(95) 0.027(2) 0.036(2) 0.027(2) -0.001(2) 0.010(2) 0.007(2) 
C(96) 0.027(2) 0.039(2) 0.037(2) 0.007(2) 0.015(2) 0.002(2) 
C(97) 0.032(2) 0.029(2) 0.038(2) 0.002(2) 0.011(2) 0.001(2) 
C(98) 0.031(2) 0.057(3) 0.025(2) -0.008(2) 0.003(2) 0.009(2) 

The anisotropic displacement factor exponent takes the form:  
 -2π2[h2a*2U11+ ..+2hka*b*U12] 
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I.4 Crystal structure of [C7H16NO]FPI 
Table I.4.1 Atomic coordinates and equivalent isotropic displacement 

parameters (Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for [C7H16NO]FPI.  

 x y z U(eq) 
P(1) 500(1) 3426(1) 3994(1) 40(1) 
O(1) 1708(3) 2559(3) 4183(1) 52(1) 
C(11) -588(5) 3888(6) 4527(2) 53(1) 
F(111) -1398(3) 4979(3) 4418(1) 61(1) 
F(112) -1521(3) 2857(3) 4647(1) 69(1) 
C(12) 291(6) 4160(7) 4998(2) 68(2) 
F(124) 1286(3) 5100(4) 4892(1) 72(1) 
F(122) 972(3) 3073(4) 5181(1) 73(1) 
F(123) -504(3) 4588(4) 5344(1) 76(1) 
C(13) -942(5) 2449(5) 3617(2) 49(1) 
F(131) -2211(3) 3108(3) 3591(1) 60(1) 
F(134) -1141(3) 1264(3) 3843(1) 64(1) 
C(14) -635(6) 2116(6) 3090(2) 60(1) 
F(141) -1622(4) 1303(4) 2884(1) 78(1) 
F(145) -645(4) 3198(4) 2819(1) 74(1) 
F(146) 652(3) 1533(5) 3102(1) 87(1) 
N(1) 541(11) 4650(10) 3650(5) 32(2) 
P(2) 1762(6) 5648(4) 3552(2) 29(1) 
O(2) 2595(18) 6475(18) 3925(8) 39(2) 
C(21) 3037(10) 4811(8) 3157(3) 52(3) 
F(213) 3174(6) 3494(5) 3304(2) 68(2) 
F(214) 2520(20) 4886(14) 2676(3) 62(2) 
C(22) 4598(13) 5274(11) 3212(4) 52(2) 
F(223) 5160(7) 5054(12) 3674(2) 77(2) 
F(225) 4659(7) 6574(7) 3125(3) 83(2) 
F(226) 5470(20) 4700(30) 2915(10) 62(2) 
C(23) 711(11) 6737(10) 3090(4) 52(3) 
F(232) 1627(6) 7568(7) 2879(2) 70(2) 
F(233) -39(19) 5971(8) 2728(4) 60(2) 
C(24) -435(10) 7632(10) 3284(3) 48(3) 
F(241) -1137(8) 8338(8) 2926(3) 71(2) 
F(243) 207(9) 8443(8) 3623(3) 96(2) 
F(245) -1460(12) 6918(12) 3483(4) 83(3) 
N(1A) 803(12) 4757(9) 3721(5) 32(2) 
P(2A) 1625(6) 6059(4) 3588(2) 29(1) 
O(2A) 2425(18) 6842(18) 3978(8) 39(2) 
C(21A) 2893(10) 5621(9) 3112(3) 46(2) 
F(211) 2430(20) 4589(13) 2812(3) 62(2) 
F(212) 3123(8) 6677(7) 2819(2) 81(2) 
C(22A) 4392(13) 5149(10) 3316(4) 52(2) 
F(221) 5100(20) 4630(30) 2956(10) 62(2) 
F(222) 4251(8) 4208(7) 3657(2) 68(2) 
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F(224) 5137(7) 6139(9) 3553(3) 74(2) 
C(23A) 378(11) 7115(9) 3172(4) 52(3) 
F(231) 964(8) 8336(6) 3127(3) 73(2) 
F(234) 24(19) 6552(8) 2711(4) 60(2) 
C(24A) -1107(12) 7340(10) 3358(3) 65(5) 
F(242) -1864(9) 8249(9) 3093(4) 88(3) 
F(244) -902(10) 7713(10) 3828(2) 95(3) 
F(246) -1882(8) 6227(8) 3291(3) 76(2) 
P(3) 4553(1) 8725(1) 1038(1) 37(1) 
O(3) 3311(3) 7895(4) 860(1) 52(1) 
C(31) 5633(4) 9087(6) 496(2) 46(1) 
F(311) 6479(3) 10178(3) 584(1) 63(1) 
F(312) 6502(3) 8054(4) 393(1) 72(1) 
C(32) 4701(5) 9382(7) 22(2) 57(1) 
F(321) 5501(3) 9760(4) -337(1) 74(1) 
F(322) 3748(3) 10321(4) 105(1) 70(1) 
F(323) 3995(3) 8293(4) -148(1) 71(1) 
C(33) 5967(5) 7751(5) 1423(2) 52(1) 
F(331) 7261(3) 8358(3) 1435(1) 58(1) 
F(332) 6117(4) 6525(3) 1212(1) 70(1) 
C(34) 5670(6) 7497(7) 1957(2) 66(2) 
F(341) 4338(4) 7012(5) 1954(1) 104(1) 
F(342) 5775(4) 8575(4) 2215(1) 79(1) 
F(343) 6602(4) 6618(4) 2161(1) 86(1) 
N(3) 4450(3) 10032(4) 1333(1) 39(1) 
P(4) 3532(1) 11299(1) 1406(1) 41(1) 
O(4) 2746(3) 12028(4) 997(1) 48(1) 
C(41) 2231(5) 10964(7) 1879(2) 59(2) 
F(411) 2085(5) 12080(5) 2170(2) 107(1) 
F(412) 2717(3) 9992(4) 2192(1) 86(1) 
C(42) 756(6) 10605(6) 1694(2) 62(1) 
F(421) 804(4) 9683(4) 1345(1) 79(1) 
F(422) 80(3) 11678(4) 1460(2) 92(1) 
F(423) -49(3) 10173(4) 2039(1) 81(1) 
C(43) 4822(6) 12434(6) 1788(2) 68(2) 
F(431) 5099(4) 11901(5) 2282(1) 87(1) 
F(432) 4202(4) 13663(4) 1818(1) 90(1) 
C(44) 6281(8) 12604(8) 1626(3) 92(2) 
F(441) 6080(5) 12960(5) 1159(1) 116(2) 
F(442) 6962(5) 13564(4) 1917(2) 116(2) 
F(443) 7059(3) 11506(4) 1714(2) 92(1) 
N(2) 432(3) 5479(4) 754(1) 33(1) 
C(51) 1016(4) 5541(5) 254(1) 39(1) 
C(52) -77(4) 5685(6) -185(1) 50(1) 
O(52) -840(3) 6887(4) -156(1) 55(1) 
C(53) -72(5) 6776(5) 938(2) 51(1) 
C(54) -60(7) 6452(7) 1509(2) 77(2) 
C(55) 1080(5) 5403(6) 1623(2) 58(1) 
C(56) 1637(4) 5108(5) 1134(1) 43(1) 
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C(57) -745(5) 4475(6) 764(2) 61(1) 
N(4) 4631(17) 35(12) 4241(7) 31(2) 
C(61) 4000(20) -20(20) 4725(6) 34(2) 
C(62) 5020(20) 348(17) 5178(8) 44(3) 
O(62) 5821(17) 1546(17) 5149(6) 46(2) 
C(63) 5752(18) -1031(12) 4230(5) 49(2) 
C(66) 3400(20) -280(20) 3859(6) 45(3) 
C(65) 3945(13) 49(16) 3366(6) 50(3) 
C(68) 5140(12) 1080(10) 3486(3) 57(3) 
C(67) 5152(17) 1320(11) 4043(3) 38(2) 
N(4A) 4580(18) 305(12) 4203(7) 31(2) 
C(61A) 3980(20) 190(20) 4693(6) 34(2) 
C(62A) 5090(20) 42(16) 5140(8) 44(3) 
O(62A) 5512(17) 1390(16) 5249(6) 46(2) 
C(67A) 5097(16) 1703(11) 4167(4) 38(2) 
C(63A) 5758(18) -638(13) 4094(4) 49(2) 
C(64) 5816(8) -688(10) 3541(3) 49(2) 
C(65A) 4343(11) -150(17) 3345(6) 50(3) 
C(66A) 3450(20) 40(20) 3781(6) 45(3) 

 
Table I.4.2 Selected bond lengths [Å] and angles [°] in [C7H16NO]FPI.  

P(1)-O(1) 1.476(3) F(211)-C(21A)-C(22A) 102.1(10) 
P(1)-N(1) 1.550(4) F(212)-C(21A)-P(2A) 111.4(6) 
P(1)-N(1A) 1.571(4) F(211)-C(21A)-P(2A) 113.9(9) 
P(1)-C(13) 1.887(5) C(22A)-C(21A)-P(2A) 115.5(7) 
P(1)-C(11) 1.904(5) F(221)-C(22A)-F(222) 108.6(16) 
C(11)-F(111) 1.349(6) F(221)-C(22A)-F(224) 111.9(15) 
C(11)-F(112) 1.411(6) F(222)-C(22A)-F(224) 105.8(9) 
C(11)-C(12) 1.482(7) F(221)-C(22A)-C(21A) 110.4(14) 
C(12)-F(123) 1.323(6) F(222)-C(22A)-C(21A) 109.1(9) 
C(12)-F(122) 1.337(7) F(224)-C(22A)-C(21A) 110.8(9) 
C(12)-F(124) 1.373(7) F(231)-C(23A)-F(234) 110.5(9) 
C(13)-F(131) 1.349(5) F(231)-C(23A)-C(24A) 106.1(9) 
C(13)-F(134) 1.363(6) F(234)-C(23A)-C(24A) 102.4(10) 
C(13)-C(14) 1.526(7) F(231)-C(23A)-P(2A) 109.8(7) 
C(14)-F(145) 1.316(7) F(234)-C(23A)-P(2A) 113.3(9) 
C(14)-F(141) 1.316(6) C(24A)-C(23A)-P(2A) 114.2(7) 
C(14)-F(146) 1.330(6) F(242)-C(24A)-F(244) 110.5(9) 
N(1)-P(2) 1.558(5) F(242)-C(24A)-F(246) 104.6(9) 
P(2)-O(2) 1.475(8) F(244)-C(24A)-F(246) 113.2(10) 
P(2)-C(23) 1.874(8) F(242)-C(24A)-C(23A) 111.8(9) 
P(2)-C(21) 1.874(7) F(244)-C(24A)-C(23A) 107.9(9) 
C(21)-F(214) 1.357(8) F(246)-C(24A)-C(23A) 108.8(8) 
C(21)-F(213) 1.387(8) O(3)-P(3)-N(3) 124.66(19) 
C(21)-C(22) 1.518(9) O(3)-P(3)-C(33) 111.9(2) 
C(22)-F(226) 1.331(9) N(3)-P(3)-C(33) 103.1(2) 
C(22)-F(225) 1.332(9) O(3)-P(3)-C(31) 108.08(19) 
C(22)-F(223) 1.336(9) N(3)-P(3)-C(31) 107.7(2) 
C(23)-F(232) 1.358(9) C(33)-P(3)-C(31) 98.1(2) 



                                                                                                                    Appendix 
___________________________________________________________________________________________________ 

 155

C(23)-F(233) 1.387(9) F(311)-C(31)-F(312) 108.0(3) 
C(23)-C(24) 1.527(9) F(311)-C(31)-C(32) 105.4(4) 
C(24)-F(241) 1.328(8) F(312)-C(31)-C(32) 106.0(4) 
C(24)-F(243) 1.331(8) F(311)-C(31)-P(3) 111.0(3) 
C(24)-F(245) 1.348(9) F(312)-C(31)-P(3) 112.5(3) 
N(1A)-P(2A) 1.576(4) C(32)-C(31)-P(3) 113.5(3) 
P(2A)-O(2A) 1.469(8) F(322)-C(32)-F(321) 110.3(5) 
P(2A)-C(23A) 1.873(8) F(322)-C(32)-F(323) 109.1(4) 
P(2A)-C(21A) 1.884(7) F(321)-C(32)-F(323) 105.6(4) 
C(21A)-F(212) 1.358(8) F(322)-C(32)-C(31) 109.4(4) 
C(21A)-F(211) 1.367(9) F(321)-C(32)-C(31) 111.5(4) 
C(21A)-C(22A) 1.528(9) F(323)-C(32)-C(31) 110.9(5) 
C(22A)-F(221) 1.339(9) F(331)-C(33)-F(332) 107.0(4) 
C(22A)-F(222) 1.340(9) F(331)-C(33)-C(34) 107.0(4) 
C(22A)-F(224) 1.344(9) F(332)-C(33)-C(34) 106.4(5) 
C(23A)-F(231) 1.355(9) F(331)-C(33)-P(3) 110.7(3) 
C(23A)-F(234) 1.389(9) F(332)-C(33)-P(3) 109.2(3) 
C(23A)-C(24A) 1.531(9) C(34)-C(33)-P(3) 116.1(4) 
C(24A)-F(242) 1.327(9) F(342)-C(34)-F(343) 108.6(5) 
C(24A)-F(244) 1.331(9) F(342)-C(34)-F(341) 109.5(5) 
C(24A)-F(246) 1.335(9) F(343)-C(34)-F(341) 109.2(5) 
P(3)-O(3) 1.470(3) F(342)-C(34)-C(33) 111.6(5) 
P(3)-N(3) 1.549(4) F(343)-C(34)-C(33) 110.0(5) 
P(3)-C(33) 1.880(5) F(341)-C(34)-C(33) 107.9(5) 
P(3)-C(31) 1.896(4) P(3)-N(3)-P(4) 145.4(2) 
C(31)-F(311) 1.360(6) O(4)-P(4)-N(3) 123.41(18) 
C(31)-F(312) 1.362(6) O(4)-P(4)-C(41) 107.6(2) 
C(31)-C(32) 1.517(6) N(3)-P(4)-C(41) 109.7(2) 
C(32)-F(322) 1.330(6) O(4)-P(4)-C(43) 111.0(2) 
C(32)-F(321) 1.337(5) N(3)-P(4)-C(43) 103.8(2) 
C(32)-F(323) 1.338(7) C(41)-P(4)-C(43) 98.4(3) 
C(33)-F(331) 1.347(6) F(412)-C(41)-F(411) 105.7(4) 
C(33)-F(332) 1.372(6) F(412)-C(41)-C(42) 106.6(5) 
C(33)-C(34) 1.528(7) F(411)-C(41)-C(42) 105.0(4) 
C(34)-F(342) 1.291(7) F(412)-C(41)-P(4) 111.5(3) 
C(34)-F(343) 1.324(7) F(411)-C(41)-P(4) 110.5(4) 
C(34)-F(341) 1.330(7) C(42)-C(41)-P(4) 116.8(3) 
N(3)-P(4) 1.559(4) F(423)-C(42)-F(421) 109.6(5) 
P(4)-O(4) 1.470(3) F(423)-C(42)-F(422) 108.8(4) 
P(4)-C(41) 1.879(5) F(421)-C(42)-F(422) 105.0(4) 
P(4)-C(43) 1.895(5) F(423)-C(42)-C(41) 114.2(5) 
C(41)-F(412) 1.348(6) F(421)-C(42)-C(41) 109.0(4) 
C(41)-F(411) 1.388(7) F(422)-C(42)-C(41) 109.8(5) 
C(41)-C(42) 1.462(7) F(432)-C(43)-F(431) 108.5(4) 
C(42)-F(423) 1.328(6) F(432)-C(43)-C(44) 108.5(6) 
C(42)-F(421) 1.334(6) F(431)-C(43)-C(44) 103.4(4) 
C(42)-F(422) 1.376(7) F(432)-C(43)-P(4) 109.2(3) 
C(43)-F(432) 1.370(6) F(431)-C(43)-P(4) 109.5(4) 
C(43)-F(431) 1.451(7) C(44)-C(43)-P(4) 117.3(4) 
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C(43)-C(44) 1.475(10) F(441)-C(44)-F(443) 115.2(8) 
C(44)-F(441) 1.318(7) F(441)-C(44)-F(442) 112.5(6) 
C(44)-F(443) 1.330(9) F(443)-C(44)-F(442) 105.6(5) 
C(44)-F(442) 1.366(7) F(441)-C(44)-C(43) 105.6(5) 
N(2)-C(53) 1.490(6) F(443)-C(44)-C(43) 110.4(6) 
N(2)-C(57) 1.491(6) F(442)-C(44)-C(43) 107.3(7) 
N(2)-C(56) 1.501(4) C(53)-N(2)-C(57) 109.5(3) 
N(2)-C(51) 1.514(4) C(53)-N(2)-C(56) 102.9(3) 
C(51)-C(52) 1.502(5) C(57)-N(2)-C(56) 108.7(3) 
C(51)-H(51A) 0.99 C(53)-N(2)-C(51) 114.7(3) 
C(51)-H(51B) 0.99 C(57)-N(2)-C(51) 111.7(3) 
C(52)-O(52) 1.408(6) C(56)-N(2)-C(51) 108.9(3) 
C(52)-H(52A) 0.99 C(52)-C(51)-N(2) 116.6(3) 
C(52)-H(52B) 0.99 C(52)-C(51)-H(51A) 108.1 
O(52)-H(52) 0.84 N(2)-C(51)-H(51A) 108.1 
C(53)-C(54) 1.589(7) C(52)-C(51)-H(51B) 108.1 
C(53)-H(53A) 0.99 N(2)-C(51)-H(51B) 108.1 
C(53)-H(53B) 0.99 H(51A)-C(51)-H(51B) 107.3 
C(54)-C(55) 1.507(8) O(52)-C(52)-C(51) 110.2(4) 
C(54)-H(54A) 0.99 O(52)-C(52)-H(52A) 109.6 
C(54)-H(54B) 0.99 C(51)-C(52)-H(52A) 109.6 
C(55)-C(56) 1.504(6) O(52)-C(52)-H(52B) 109.6 
C(55)-H(55A) 0.99 C(51)-C(52)-H(52B) 109.6 
C(55)-H(55B) 0.99 H(52A)-C(52)-H(52B) 108.1 
C(56)-H(56A) 0.99 C(52)-O(52)-H(52) 109.5 
C(56)-H(56B) 0.99 N(2)-C(53)-C(54) 100.2(4) 
C(57)-H(57A) 0.98 N(2)-C(53)-H(53A) 111.7 
C(57)-H(57B) 0.98 C(54)-C(53)-H(53A) 111.7 
C(57)-H(57C) 0.98 N(2)-C(53)-H(53B) 111.7 
N(4)-C(61) 1.496(8) C(54)-C(53)-H(53B) 111.7 
N(4)-C(63) 1.498(9) H(53A)-C(53)-H(53B) 109.5 
N(4)-C(67) 1.499(9) C(55)-C(54)-C(53) 106.6(4) 
N(4)-C(66) 1.507(8) C(55)-C(54)-H(54A) 110.4 
C(61)-C(62) 1.529(9) C(53)-C(54)-H(54A) 110.4 
C(61)-H(61A) 0.99 C(55)-C(54)-H(54B) 110.4 
C(61)-H(61B) 0.99 C(53)-C(54)-H(54B) 110.4 
C(62)-O(62) 1.424(9) H(54A)-C(54)-H(54B) 108.6 
C(62)-H(62A) 0.99 C(56)-C(55)-C(54) 104.5(4) 
C(62)-H(62B) 0.99 C(56)-C(55)-H(55A) 110.9 
O(62)-H(62) 0.84 C(54)-C(55)-H(55A) 110.9 
C(63)-H(63A) 0.98 C(56)-C(55)-H(55B) 110.9 
C(63)-H(63B) 0.98 C(54)-C(55)-H(55B) 110.9 
C(63)-H(63C) 0.98 H(55A)-C(55)-H(55B) 108.9 
C(66)-C(65) 1.519(9) N(2)-C(56)-C(55) 105.4(3) 
C(66)-H(66A) 0.99 N(2)-C(56)-H(56A) 110.7 
C(66)-H(66B) 0.99 C(55)-C(56)-H(56A) 110.7 
C(65)-C(68) 1.533(10) N(2)-C(56)-H(56B) 110.7 
C(65)-H(65A) 0.99 C(55)-C(56)-H(56B) 110.7 
C(65)-H(65B) 0.99 H(56A)-C(56)-H(56B) 108.8 
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C(68)-C(67) 1.536(8) N(2)-C(57)-H(57A) 109.5 
C(68)-H(68A) 0.99 N(2)-C(57)-H(57B) 109.5 
C(68)-H(68B) 0.99 H(57A)-C(57)-H(57B) 109.5 
C(67)-H(67A) 0.99 N(2)-C(57)-H(57C) 109.5 
C(67)-H(67B) 0.99 H(57A)-C(57)-H(57C) 109.5 
N(4A)-C(67A) 1.493(9) H(57B)-C(57)-H(57C) 109.5 
N(4A)-C(61A) 1.500(8) C(61)-N(4)-C(63) 109.0(14) 
N(4A)-C(63A) 1.501(9) C(61)-N(4)-C(67) 121.1(13) 
N(4A)-C(66A) 1.507(8) C(63)-N(4)-C(67) 111.2(11) 
C(61A)-C(62A) 1.531(9) C(61)-N(4)-C(66) 105.3(13) 
C(61A)-H(61C) 0.99 C(63)-N(4)-C(66) 108.5(15) 
C(61A)-H(61D) 0.99 C(67)-N(4)-C(66) 100.6(13) 
C(62A)-O(62A) 1.435(9) N(4)-C(61)-C(62) 115.8(19) 
C(62A)-H(62C) 0.99 N(4)-C(61)-H(61A) 108.3 
C(62A)-H(62D) 0.99 C(62)-C(61)-H(61A) 108.3 
O(62A)-H(62E) 0.84 N(4)-C(61)-H(61B) 108.3 
C(67A)-H(67C) 0.98 C(62)-C(61)-H(61B) 108.3 
C(67A)-H(67D) 0.98 H(61A)-C(61)-H(61B) 107.4 
C(67A)-H(67E) 0.98 O(62)-C(62)-C(61) 116.7(17) 
C(63A)-C(64) 1.514(9) O(62)-C(62)-H(62A) 108.1 
C(63A)-H(63D) 0.99 C(61)-C(62)-H(62A) 108.1 
C(63A)-H(63E) 0.99 O(62)-C(62)-H(62B) 108.1 
C(64)-C(65A) 1.522(9) C(61)-C(62)-H(62B) 108.1 
C(64)-H(64A) 0.99 H(62A)-C(62)-H(62B) 107.3 
C(64)-H(64B) 0.99 N(4)-C(63)-H(63A) 109.5 
C(65A)-C(66A) 1.524(9) N(4)-C(63)-H(63B) 109.5 
C(65A)-H(65C) 0.99 H(63A)-C(63)-H(63B) 109.5 
C(65A)-H(65D) 0.99 N(4)-C(63)-H(63C) 109.5 
C(66A)-H(66C) 0.99 H(63A)-C(63)-H(63C) 109.5 
C(66A)-H(66D) 0.99 H(63B)-C(63)-H(63C) 109.5 
O(1)-P(1)-N(1) 128.3(5) N(4)-C(66)-C(65) 105.7(15) 
O(1)-P(1)-N(1A) 120.3(5) N(4)-C(66)-H(66A) 110.6 
N(1)-P(1)-N(1A) 11.6(7) C(65)-C(66)-H(66A) 110.6 
O(1)-P(1)-C(13) 111.2(2) N(4)-C(66)-H(66B) 110.6 
N(1)-P(1)-C(13) 98.1(4) C(65)-C(66)-H(66B) 110.6 
N(1A)-P(1)-C(13) 109.7(4) H(66A)-C(66)-H(66B) 108.7 
O(1)-P(1)-C(11) 108.59(19) C(66)-C(65)-C(68) 104.7(12) 
N(1)-P(1)-C(11) 108.2(6) C(66)-C(65)-H(65A) 110.8 
N(1A)-P(1)-C(11) 106.5(6) C(68)-C(65)-H(65A) 110.8 
C(13)-P(1)-C(11) 98.2(2) C(66)-C(65)-H(65B) 110.8 
F(111)-C(11)-F(112) 107.9(4) C(68)-C(65)-H(65B) 110.8 
F(111)-C(11)-C(12) 106.9(5) H(65A)-C(65)-H(65B) 108.9 
F(112)-C(11)-C(12) 103.6(4) C(65)-C(68)-C(67) 104.8(10) 
F(111)-C(11)-P(1) 110.9(3) C(65)-C(68)-H(68A) 110.8 
F(112)-C(11)-P(1) 112.3(4) C(67)-C(68)-H(68A) 110.8 
C(12)-C(11)-P(1) 114.7(3) C(65)-C(68)-H(68B) 110.8 
F(123)-C(12)-F(122) 106.1(5) C(67)-C(68)-H(68B) 110.8 
F(123)-C(12)-F(124) 111.0(5) H(68A)-C(68)-H(68B) 108.9 
F(122)-C(12)-F(124) 109.8(4) N(4)-C(67)-C(68) 104.3(10) 
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F(123)-C(12)-C(11) 112.2(4) N(4)-C(67)-H(67A) 110.9 
F(122)-C(12)-C(11) 112.0(5) C(68)-C(67)-H(67A) 110.9 
F(124)-C(12)-C(11) 105.8(4) N(4)-C(67)-H(67B) 110.9 
F(131)-C(13)-F(134) 107.4(4) C(68)-C(67)-H(67B) 110.9 
F(131)-C(13)-C(14) 107.4(4) H(67A)-C(67)-H(67B) 108.9 
F(134)-C(13)-C(14) 106.1(4) C(67A)-N(4A)-C(61A) 106.1(13) 
F(131)-C(13)-P(1) 110.2(3) C(67A)-N(4A)-C(63A) 109.7(11) 
F(134)-C(13)-P(1) 109.2(3) C(61A)-N(4A)-C(63A) 118.0(14) 
C(14)-C(13)-P(1) 116.1(3) C(67A)-N(4A)-C(66A) 108.9(13) 
F(145)-C(14)-F(141) 107.9(4) C(61A)-N(4A)-C(66A) 112.0(13) 
F(145)-C(14)-F(146) 109.7(4) C(63A)-N(4A)-C(66A) 101.9(14) 
F(141)-C(14)-F(146) 109.0(5) N(4A)-C(61A)-C(62A) 115.8(19) 
F(145)-C(14)-C(13) 110.7(5) N(4A)-C(61A)-H(61C) 108.3 
F(141)-C(14)-C(13) 110.7(4) C(62A)-C(61A)-H(61C) 108.3 
F(146)-C(14)-C(13) 108.8(4) N(4A)-C(61A)-H(61D) 108.3 
P(1)-N(1)-P(2) 132.6(6) C(62A)-C(61A)-H(61D) 108.3 
O(2)-P(2)-N(1) 126.1(13) H(61C)-C(61A)-H(61D) 107.4 
O(2)-P(2)-C(23) 109.9(9) O(62A)-C(62A)-C(61A) 102.7(16) 
N(1)-P(2)-C(23) 98.7(5) O(62A)-C(62A)-H(62C) 111.2 
O(2)-P(2)-C(21) 109.2(8) C(61A)-C(62A)-H(62C) 111.2 
N(1)-P(2)-C(21) 108.6(7) O(62A)-C(62A)-H(62D) 111.2 
C(23)-P(2)-C(21) 101.3(5) C(61A)-C(62A)-H(62D) 111.2 
F(214)-C(21)-F(213) 110.2(9) H(62C)-C(62A)-H(62D) 109.1 
F(214)-C(21)-C(22) 109.1(10) C(62A)-O(62A)-H(62E) 109.5 
F(213)-C(21)-C(22) 101.8(7) N(4A)-C(67A)-H(67C) 109.5 
F(214)-C(21)-P(2) 110.1(10) N(4A)-C(67A)-H(67D) 109.5 
F(213)-C(21)-P(2) 108.1(5) H(67C)-C(67A)-H(67D) 109.5 
C(22)-C(21)-P(2) 117.1(8) N(4A)-C(67A)-H(67E) 109.5 
F(226)-C(22)-F(225) 106.3(18) H(67C)-C(67A)-H(67E) 109.5 
F(226)-C(22)-F(223) 107.2(17) H(67D)-C(67A)-H(67E) 109.5 
F(225)-C(22)-F(223) 108.1(10) N(4A)-C(63A)-C(64) 108.2(11) 
F(226)-C(22)-C(21) 115.9(11) N(4A)-C(63A)-H(63D) 110 
F(225)-C(22)-C(21) 109.9(9) C(64)-C(63A)-H(63D) 110.1 
F(223)-C(22)-C(21) 109.2(9) N(4A)-C(63A)-H(63E) 110 
F(232)-C(23)-F(233) 109.6(9) C(64)-C(63A)-H(63E) 110.1 
F(232)-C(23)-C(24) 105.6(8) H(63D)-C(63A)-H(63E) 108.4 
F(233)-C(23)-C(24) 104.7(10) C(63A)-C(64)-C(65A) 102.9(10) 
F(232)-C(23)-P(2) 109.6(7) C(63A)-C(64)-H(64A) 111.2 
F(233)-C(23)-P(2) 110.4(8) C(65A)-C(64)-H(64A) 111.2 
C(24)-C(23)-P(2) 116.7(7) C(63A)-C(64)-H(64B) 111.2 
F(241)-C(24)-F(243) 109.9(9) C(65A)-C(64)-H(64B) 111.2 
F(241)-C(24)-F(245) 105.3(8) H(64A)-C(64)-H(64B) 109.1 
F(243)-C(24)-F(245) 109.6(12) C(64)-C(65A)-C(66A) 108.0(13) 
F(241)-C(24)-C(23) 111.8(8) C(64)-C(65A)-H(65C) 110.1 
F(243)-C(24)-C(23) 108.7(8) C(66A)-C(65A)-H(65C) 110.1 
F(245)-C(24)-C(23) 111.6(9) C(64)-C(65A)-H(65D) 110.1 
P(1)-N(1A)-P(2A) 158.6(7) C(66A)-C(65A)-H(65D) 110.1 
O(2A)-P(2A)-N(1A) 120.2(13) H(65C)-C(65A)-H(65D) 108.4 
O(2A)-P(2A)-C(23A) 112.1(9) N(4A)-C(66A)-C(65A) 103.0(15) 
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N(1A)-P(2A)-C(23A) 109.0(5) N(4A)-C(66A)-H(66C) 111.2 
O(2A)-P(2A)-C(21A) 108.5(10) C(65A)-C(66A)-H(66C) 111.2 
N(1A)-P(2A)-C(21A) 108.2(7) N(4A)-C(66A)-H(66D) 111.2 
C(23A)-P(2A)-C(21A) 96.2(5) C(65A)-C(66A)-H(66D) 111.2 
F(212)-C(21A)-F(211) 107.6(7) H(66C)-C(66A)-H(66D) 109.1 
F(212)-C(21A)-C(22A) 105.6(7)   

 
Table I.4.3 Anisotropic displacement parameters (Å2).  

 U11 U22 U33 U23 U13 U12 
P(1) 41(1) 46(1) 32(1) 7(1) 4(1) 13(1) 
O(1) 48(2) 58(2) 49(2) 7(2) 5(1) 21(2) 
C(11) 51(3) 65(4) 42(2) 10(2) 4(2) 6(3) 
F(111) 58(2) 65(2) 61(2) 6(2) 13(1) 33(2) 
F(112) 56(2) 72(2) 81(2) -6(2) 22(1) -29(2) 
C(12) 63(3) 91(5) 51(3) -5(3) 11(2) 21(3) 
F(124) 47(2) 85(2) 85(2) -24(2) 17(1) -32(2) 
F(122) 64(2) 108(3) 46(2) 22(2) -2(1) 25(2) 
F(123) 53(2) 136(3) 41(1) -26(2) 9(1) 8(2) 
C(13) 45(2) 48(3) 56(3) 16(2) 13(2) 0(2) 
F(131) 38(1) 67(2) 75(2) 6(2) 6(1) 7(1) 
F(134) 75(2) 49(2) 68(2) 13(1) 9(1) -6(2) 
C(14) 60(3) 76(4) 45(3) -4(3) 0(2) -10(3) 
F(141) 85(2) 79(2) 70(2) -13(2) -1(2) -25(2) 
F(145) 92(2) 83(3) 45(2) 12(2) -4(1) -29(2) 
F(146) 63(2) 130(3) 67(2) -23(2) 10(2) 21(2) 
N(1) 26(3) 38(2) 28(3) 1(2) -12(2) -1(2) 
P(2) 35(1) 20(2) 30(1) -4(2) -3(1) 7(2) 
O(2) 44(4) 28(9) 43(4) -9(4) -5(3) 12(4) 
C(21) 71(7) 40(7) 49(6) 27(5) 26(5) 15(6) 
F(213) 69(4) 36(3) 106(5) 19(3) 43(3) 10(3) 
F(214) 79(3) 85(6) 21(4) -2(4) -9(5) 5(4) 
C(22) 46(4) 64(4) 45(5) -5(3) 4(4) 6(3) 
F(223) 50(4) 134(8) 47(3) -9(4) 0(3) 30(5) 
F(225) 79(4) 49(4) 128(6) 4(4) 46(4) -27(4) 
F(226) 37(8) 91(4) 64(4) -8(3) 32(5) -8(7) 
C(23) 60(6) 45(7) 47(4) 14(5) -14(4) -15(5) 
F(232) 59(4) 69(5) 81(4) 45(4) -1(3) -17(3) 
F(233) 81(2) 57(7) 39(2) -2(5) -6(2) 5(7) 
C(24) 32(6) 58(8) 54(6) 10(5) -3(5) -2(6) 
F(241) 62(5) 54(4) 98(5) 31(4) 7(4) 30(4) 
F(243) 92(4) 73(5) 115(5) -48(4) -44(4) 39(4) 
F(245) 62(5) 86(7) 105(7) 25(6) 29(5) 33(5) 
N(1A) 26(3) 38(2) 28(3) 1(2) -12(2) -1(2) 
P(2A) 35(1) 20(2) 30(1) -4(2) -3(1) 7(2) 
O(2A) 44(4) 28(9) 43(4) -9(4) -5(3) 12(4) 
C(21A) 61(6) 39(6) 36(5) -1(4) -5(4) -6(6) 
F(211) 79(3) 85(6) 21(4) -2(4) -9(5) 5(4) 
F(212) 99(5) 89(5) 56(3) 39(4) 16(3) 4(4) 
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C(22A) 46(4) 64(4) 45(5) -5(3) 4(4) 6(3) 
F(221) 37(8) 91(4) 64(4) -8(3) 32(5) -8(7) 
F(222) 70(4) 70(5) 66(4) 18(3) 13(3) 9(4) 
F(224) 58(4) 88(6) 75(5) -12(4) 0(3) -30(4) 
C(23A) 60(6) 45(7) 47(4) 14(5) -14(4) -15(5) 
F(231) 76(4) 40(4) 94(5) 13(3) -34(4) -10(3) 
F(234) 81(2) 57(7) 39(2) -2(5) -6(2) 5(7) 
C(24A) 52(12) 82(14) 56(9) 16(8) -11(8) 15(10) 
F(242) 73(5) 71(6) 112(7) 18(5) -28(5) 35(5) 
F(244) 102(6) 127(8) 52(4) -9(4) -18(4) 51(6) 
F(246) 50(4) 68(6) 105(6) 4(4) -15(4) -3(4) 
P(3) 33(1) 44(1) 35(1) -3(1) 4(1) -1(1) 
O(3) 38(2) 61(2) 59(2) 0(2) 6(1) -12(2) 
C(31) 30(2) 64(3) 46(2) -8(2) 5(2) 1(2) 
F(311) 51(2) 84(2) 55(2) -7(2) 12(1) -28(2) 
F(312) 59(2) 92(3) 66(2) -3(2) 13(1) 37(2) 
C(32) 43(3) 86(4) 44(2) 3(3) 7(2) -7(3) 
F(321) 52(2) 136(3) 35(1) 12(2) 7(1) -7(2) 
F(322) 50(2) 90(3) 71(2) 17(2) 14(1) 28(2) 
F(323) 61(2) 110(3) 42(1) -22(2) 0(1) -22(2) 
C(33) 51(3) 49(3) 56(3) -2(2) 5(2) 8(2) 
F(331) 37(1) 66(2) 70(2) 1(2) 4(1) 8(1) 
F(332) 87(2) 46(2) 75(2) -7(2) 1(2) 18(2) 
C(34) 60(3) 80(5) 58(3) 14(3) 8(3) 8(3) 
F(341) 72(2) 159(4) 81(2) 49(2) 7(2) -21(2) 
F(342) 95(2) 96(3) 45(2) 1(2) -1(1) 40(2) 
F(343) 96(2) 83(3) 79(2) 30(2) 1(2) 32(2) 
N(3) 39(2) 43(2) 33(2) -4(2) 1(1) 9(2) 
P(4) 35(1) 52(1) 34(1) -8(1) -5(1) 9(1) 
O(4) 42(2) 55(2) 45(2) -6(2) -11(1) 3(2) 
C(41) 44(2) 95(5) 38(2) -6(3) 6(2) 21(3) 
F(411) 117(3) 117(3) 93(2) -55(2) 36(2) -9(3) 
F(412) 63(2) 129(3) 66(2) 43(2) 4(2) 20(2) 
C(42) 57(3) 68(4) 62(3) -4(3) 8(2) 6(3) 
F(421) 93(2) 75(3) 71(2) -19(2) 16(2) -26(2) 
F(422) 54(2) 102(3) 122(3) 21(3) 14(2) 28(2) 
F(423) 59(2) 113(3) 74(2) -8(2) 28(2) 1(2) 
C(43) 67(3) 63(4) 67(3) -29(3) -25(3) 26(3) 
F(431) 91(2) 123(3) 47(2) -7(2) 7(2) -22(2) 
F(432) 79(2) 69(2) 112(3) -42(2) -43(2) 26(2) 
C(44) 83(5) 90(6) 92(5) 18(4) -44(4) -35(4) 
F(441) 130(3) 147(4) 65(2) 20(2) -16(2) -53(3) 
F(442) 102(3) 77(3) 156(4) -23(3) -52(3) -18(2) 
F(443) 47(2) 90(3) 136(3) -20(3) -2(2) 12(2) 
N(2) 26(2) 44(2) 29(1) -2(1) 1(1) 4(2) 
C(51) 28(2) 58(3) 31(2) -2(2) 6(1) 6(2) 
C(52) 35(2) 84(4) 32(2) -13(2) 0(2) 1(2) 
O(52) 46(2) 58(2) 56(2) 14(2) -21(1) 1(2) 
C(53) 40(2) 56(3) 56(3) -12(2) 7(2) 16(2) 
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C(54) 92(4) 91(5) 49(3) -9(3) 15(3) 30(4) 
C(55) 62(3) 78(4) 34(2) 8(2) 0(2) 27(3) 
C(56) 31(2) 54(3) 40(2) 11(2) -6(2) 8(2) 
C(57) 34(2) 71(4) 78(3) 12(3) 7(2) -7(2) 
N(4) 25(2) 33(4) 36(3) 1(3) 1(2) 2(3) 
C(61) 29(2) 34(4) 39(2) 10(2) 4(2) -3(3) 
C(62) 41(3) 49(6) 41(3) 12(4) -1(2) 0(4) 
O(62) 45(5) 47(4) 43(5) 4(3) -9(3) -11(3) 
C(63) 37(2) 40(6) 71(5) 9(4) 8(4) 11(4) 
C(66) 36(2) 53(7) 44(4) -9(4) -5(3) -1(4) 
C(65) 54(5) 59(5) 36(2) -6(3) -2(4) -2(4) 
C(68) 75(6) 47(6) 52(5) -5(4) 18(4) 3(5) 
C(67) 49(2) 34(5) 31(4) -7(3) 11(3) -5(4) 
N(4A) 25(2) 33(4) 36(3) 1(3) 1(2) 2(3) 
C(61A) 29(2) 34(4) 39(2) 10(2) 4(2) -3(3) 
C(62A) 41(3) 49(6) 41(3) 12(4) -1(2) 0(4) 
O(62A) 45(5) 47(4) 43(5) 4(3) -9(3) -11(3) 
C(67A) 49(2) 34(5) 31(4) -7(3) 11(3) -5(4) 
C(63A) 37(2) 40(6) 71(5) 9(4) 8(4) 11(4) 
C(64) 45(4) 48(5) 57(5) -21(4) 12(4) -6(4) 
C(65A) 54(5) 59(5) 36(2) -6(3) -2(4) -2(4) 
C(66A) 36(2) 53(7) 44(4) -9(4) -5(3) -1(4) 

The anisotropic displacement factor exponent takes the form:  
 -2π2[h2a*2U11+ ..+2hka*b*U12] 
 
Table I.4.4 Hydrogen coordinates and isotropic displacement parameters. 

 x y z U(eq) 
H(51A) 1695 6298 255 47 
H(51B) 1579 4721 211 47 
H(52A) 419 5671 -491 60 
H(52B) -762 4930 -196 60 
H(52) -1379 7001 -418 83 
H(53A) -1054 7002 789 61 
H(53B) 602 7506 877 61 
H(54A) 174 7260 1708 92 
H(54B) -1017 6120 1585 92 
H(55A) 1864 5740 1862 70 
H(55B) 658 4598 1761 70 
H(56A) 2512 5639 1091 51 
H(56B) 1879 4154 1109 51 
H(57A) -1617 4805 572 91 
H(57B) -951 4321 1105 91 
H(57C) -439 3641 620 91 
H(61A) 3632 -929 4772 41 
H(61B) 3155 589 4709 41 
H(62A) 4440 415 5465 53 
H(62B) 5710 -391 5245 53 
H(62) 6227 1733 5429 69 
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H(63A) 6621 -771 4439 74 
H(63B) 5995 -1155 3890 74 
H(63C) 5374 -1864 4352 74 
H(66A) 2541 259 3913 54 
H(66B) 3138 -1234 3874 54 
H(65A) 3159 422 3136 60 
H(65B) 4335 -753 3214 60 
H(68A) 4924 1912 3300 69 
H(68B) 6085 735 3404 69 
H(67A) 6139 1532 4191 45 
H(67B) 4497 2060 4111 45 
H(61C) 3318 -579 4683 41 
H(61D) 3392 997 4742 41 
H(62C) 4656 -372 5421 53 
H(62D) 5925 -499 5059 53 
H(62E) 6208 1398 5469 69 
H(67C) 5358 1872 3833 56 
H(67D) 5945 1839 4404 56 
H(67E) 4328 2315 4242 56 
H(63D) 5559 -1534 4221 59 
H(63E) 6697 -330 4256 59 
H(64A) 5954 -1609 3427 59 
H(64B) 6605 -123 3437 59 
H(65C) 3855 -782 3106 60 
H(65D) 4454 709 3175 60 
H(66C) 2779 799 3726 54 
H(66D) 2888 -771 3841 54 

 

I.5 Crystal structure of [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}] 
Table I.5.1 Atomic coordinates and equivalent isotropic displacement 

parameters (Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}]. 

 x y z U(eq) 
C(1) 0.8085(3) 0.8835(4) 0.1511(2) 0.031(1) 
C(2) 0.4364(3) 0.8579(3) 0.3498(2) 0.028(1) 
C(3) 0.4134(3) 0.7715(4) 0.4189(2) 0.031(1) 
C(4) 0.6196(3) 1.0515(3) 0.3753(2) 0.026(1) 
C(5) 0.7515(4) 1.1060(3) 0.3709(3) 0.035(1) 
C(6) 0.7951(4) 0.5867(3) 0.4596(2) 0.031(1) 
C(7) 0.8792(4) 0.4920(4) 0.4986(3) 0.038(1) 
C(8) 0.9391(3) 0.6392(3) 0.3491(2) 0.030(1) 
C(9) 0.9857(4) 0.7480(4) 0.3940(3) 0.037(1) 
C(10) 0.7745(3) 0.4921(3) 0.3223(2) 0.028(1) 
C(11) 0.6383(4) 0.4611(4) 0.3260(3) 0.036(1) 
C(12) 0.7413(4) 0.8836(4) 0.6320(2) 0.034(1) 
C(13) 0.8289(3) 1.0856(3) 0.8328(2) 0.026(1) 
C(14) 0.7123(3) 1.1146(3) 0.8807(2) 0.028(1) 
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C(15) 1.0171(3) 0.9223(3) 0.8974(2) 0.024(1) 
C(16) 1.0740(3) 0.7956(3) 0.9125(2) 0.031(1) 
C(17) 0.3007(3) 0.0194(3) 0.1632(2) 0.026(1) 
C(18) 0.1660(4) -0.0136(3) 0.1516(2) 0.031(1) 
C(19) 0.4703(3) 0.1595(3) 0.1403(2) 0.030(1) 
C(20) 0.5170(4) 0.2710(3) 0.1005(3) 0.035(1) 
C(21) 0.3098(3) 0.1263(3) 0.0293(2) 0.027(1) 
C(22) 0.3823(4) 0.0307(4) -0.0135(2) 0.034(1) 
F(1) 0.8035(3) 0.9932(3) 0.1230(2) 0.045(1) 
F(2) 0.8829(2) 0.8808(3) 0.2159(2) 0.045(1) 
F(3) 0.8568(3) 0.8136(3) 0.0954(2) 0.045(1) 
F(4) 0.3887(2) 0.8052(3) 0.2823(1) 0.038(1) 
F(5) 0.3685(2) 0.9579(2) 0.3628(2) 0.037(1) 
F(6) 0.4680(3) 0.6675(2) 0.4056(2) 0.042(1) 
F(7) 0.2935(2) 0.7524(3) 0.4245(2) 0.041(1) 
F(8) 0.4560(2) 0.8172(3) 0.4874(1) 0.041(1) 
F(9) 0.5423(3) 1.1303(2) 0.3388(2) 0.038(1) 
F(10) 0.5914(2) 1.0459(2) 0.4536(1) 0.035(1) 
F(11) 0.7816(4) 1.1230(3) 0.2964(2) 0.067(1) 
F(12) 0.8337(3) 1.0365(3) 0.4077(3) 0.068(1) 
F(13) 0.7547(3) 1.2111(2) 0.4076(2) 0.044(1) 
F(14) 0.6575(2) 0.9160(3) 0.6840(2) 0.050(1) 
F(15) 0.6854(3) 0.8137(4) 0.5770(2) 0.056(1) 
F(16) 0.7802(3) 0.9831(3) 0.5955(2) 0.050(1) 
F(17) 0.8066(2) 1.1235(2) 0.7570(2) 0.036(1) 
F(18) 0.9225(2) 1.1533(2) 0.8642(2) 0.041(1) 
F(19) 0.6142(2) 1.0629(2) 0.8465(2) 0.035(1) 
F(20) 0.6941(2) 1.2322(2) 0.8814(2) 0.037(1) 
F(21) 0.7260(3) 1.0766(2) 0.9560(2) 0.038(1) 
F(22) 0.9918(2) 0.9673(2) 0.9697(1) 0.031(1) 
F(23) 1.1087(2) 0.9888(2) 0.8659(1) 0.032(1) 
F(24) 1.1733(2) 0.8046(3) 0.9610(2) 0.042(1) 
F(25) 0.9938(3) 0.7239(2) 0.9468(2) 0.046(1) 
F(26) 1.1088(3) 0.7475(3) 0.8443(2) 0.052(1) 
N(1) 0.6124(3) 0.9196(2) 0.2385(2) 0.025(1) 
N(2) 0.8105(3) 0.6003(2) 0.3713(2) 0.024(1) 
N(3) 0.9205(3) 0.8975(3) 0.7437(2) 0.024(1) 
N(4) 0.3365(3) 0.1315(2) 0.1185(2) 0.023(1) 
O(1) 0.6848(2) 0.8140(2) 0.3786(2) 0.027(1) 
O(2) 0.6776(3) 0.7097(2) 0.2052(2) 0.033(1) 
O(3) 0.5825(3) 0.8400(3) 0.1013(2) 0.035(1) 
O(4) 0.7776(2) 0.8497(2) 0.8712(2) 0.025(1) 
O(5) 0.9560(3) 0.7857(3) 0.6199(2) 0.036(1) 
O(6) 0.8112(3) 0.7023(3) 0.7164(2) 0.041(1) 
P(1) 0.6052(1) 0.8972(1) 0.3322(1) 0.022(1) 
P(3) 0.8731(1) 0.9212(1) 0.8317(1) 0.021(1) 
S(1) 0.6540(1) 0.8275(1) 0.1748(1) 0.024(1) 
S(2) 0.8693(1) 0.8041(1) 0.6816(1) 0.025(1) 
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Table I.5.2 Selected bond lengths [Å] and angles [°] in     
   [Et3NH][{(C2F5)2P(O)}N{S(O)2CF3}]. 

C(1)-F(1) 1.313(5) F(10)-C(4)-C(5) 107.2(3) 
C(1)-F(2) 1.328(5) F(9)-C(4)-P(1) 112.7(2) 
C(1)-F(3) 1.332(5) F(10)-C(4)-P(1) 108.0(2) 
C(1)-S(1) 1.836(4) C(5)-C(4)-P(1) 114.1(2) 
C(2)-F(4) 1.358(4) F(11)-C(5)-F(12) 110.2(4) 
C(2)-F(5) 1.359(4) F(11)-C(5)-F(13) 107.8(4) 
C(2)-C(3) 1.529(5) F(12)-C(5)-F(13) 107.4(4) 
C(2)-P(1) 1.907(4) F(11)-C(5)-C(4) 110.9(3) 
C(3)-F(7) 1.319(4) F(12)-C(5)-C(4) 110.7(3) 
C(3)-F(8) 1.322(5) F(13)-C(5)-C(4) 109.8(3) 
C(3)-F(6) 1.327(5) N(2)-C(6)-C(7) 114.1(3) 
C(4)-F(9) 1.347(4) C(9)-C(8)-N(2) 114.0(3) 
C(4)-F(10) 1.350(4) N(2)-C(10)-C(11) 113.5(3) 
C(4)-C(5) 1.554(5) F(14)-C(12)-F(15) 107.8(3) 
C(4)-P(1) 1.874(3) F(14)-C(12)-F(16) 107.4(4) 
C(5)-F(11) 1.306(5) F(15)-C(12)-F(16) 108.4(4) 
C(5)-F(12) 1.319(5) F(14)-C(12)-S(2) 111.2(3) 
C(5)-F(13) 1.326(4) F(15)-C(12)-S(2) 110.4(3) 
C(6)-N(2) 1.494(5) F(16)-C(12)-S(2) 111.5(3) 
C(6)-C(7) 1.529(5) F(17)-C(13)-F(18) 107.3(3) 
C(8)-C(9) 1.508(5) F(17)-C(13)-C(14) 106.9(3) 
C(8)-N(2) 1.513(4) F(18)-C(13)-C(14) 107.1(3) 
C(10)-N(2) 1.505(4) F(17)-C(13)-P(3) 109.5(2) 
C(10)-C(11) 1.515(5) F(18)-C(13)-P(3) 111.1(2) 
C(12)-F(14) 1.323(5) C(14)-C(13)-P(3) 114.7(2) 
C(12)-F(15) 1.335(5) F(19)-C(14)-F(21) 109.5(3) 
C(12)-F(16) 1.343(5) F(19)-C(14)-F(20) 108.7(3) 
C(12)-S(2) 1.823(4) F(21)-C(14)-F(20) 108.7(3) 
C(13)-F(17) 1.348(4) F(19)-C(14)-C(13) 109.9(3) 
C(13)-F(18) 1.356(4) F(21)-C(14)-C(13) 110.5(3) 
C(13)-C(14) 1.545(5) F(20)-C(14)-C(13) 109.6(3) 
C(13)-P(3) 1.901(3) F(22)-C(15)-F(23) 108.1(3) 
C(14)-F(19) 1.322(4) F(22)-C(15)-C(16) 106.6(3) 
C(14)-F(21) 1.329(4) F(23)-C(15)-C(16) 105.8(3) 
C(14)-F(20) 1.330(4) F(22)-C(15)-P(3) 109.9(2) 
C(15)-F(22) 1.341(4) F(23)-C(15)-P(3) 112.3(2) 
C(15)-F(23) 1.356(4) C(16)-C(15)-P(3) 113.8(2) 
C(15)-C(16) 1.563(5) F(26)-C(16)-F(25) 109.3(4) 
C(15)-P(3) 1.878(3) F(26)-C(16)-F(24) 108.1(3) 
C(16)-F(26) 1.321(5) F(25)-C(16)-F(24) 108.1(3) 
C(16)-F(25) 1.322(5) F(26)-C(16)-C(15) 110.6(3) 
C(16)-F(24) 1.328(4) F(25)-C(16)-C(15) 111.1(3) 
C(17)-C(18) 1.509(5) F(24)-C(16)-C(15) 109.6(3) 
C(17)-N(4) 1.514(4) C(18)-C(17)-N(4) 113.5(3) 
C(19)-C(20) 1.507(5) C(20)-C(19)-N(4) 113.3(3) 
C(19)-N(4) 1.513(5) N(4)-C(21)-C(22) 113.9(3) 
C(21)-N(4) 1.508(4) S(1)-N(1)-P(1) 126.24(18) 
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C(21)-C(22) 1.515(5) C(6)-N(2)-C(10) 114.8(3) 
N(1)-S(1) 1.555(3) C(6)-N(2)-C(8) 113.5(3) 
N(1)-P(1) 1.585(3) C(10)-N(2)-C(8) 108.9(3) 
N(3)-S(2) 1.561(3) S(2)-N(3)-P(3) 127.29(18) 
N(3)-P(3) 1.588(3) C(21)-N(4)-C(19) 113.5(3) 
O(1)-P(1) 1.472(2) C(21)-N(4)-C(17) 114.1(3) 
O(2)-S(1) 1.433(3) C(19)-N(4)-C(17) 108.0(3) 
O(3)-S(1) 1.436(3) O(1)-P(1)-N(1) 124.93(14) 
O(4)-P(3) 1.476(2) O(1)-P(1)-C(4) 109.90(16) 
O(5)-S(2) 1.426(3) N(1)-P(1)-C(4) 103.07(15) 
O(6)-S(2) 1.431(3) O(1)-P(1)-C(2) 108.70(15) 
F(1)-C(1)-F(2) 109.2(3) N(1)-P(1)-C(2) 105.17(16) 
F(1)-C(1)-F(3) 108.3(3) C(4)-P(1)-C(2) 102.89(16) 
F(2)-C(1)-F(3) 108.3(3) O(4)-P(3)-N(3) 124.77(15) 
F(1)-C(1)-S(1) 111.5(3) O(4)-P(3)-C(15) 108.75(14) 
F(2)-C(1)-S(1) 110.5(3) N(3)-P(3)-C(15) 104.83(15) 
F(3)-C(1)-S(1) 109.0(3) O(4)-P(3)-C(13) 109.89(14) 
F(4)-C(2)-F(5) 107.2(3) N(3)-P(3)-C(13) 104.99(15) 
F(4)-C(2)-C(3) 106.5(3) C(15)-P(3)-C(13) 101.04(15) 
F(5)-C(2)-C(3) 107.5(3) O(2)-S(1)-O(3) 118.49(18) 
F(4)-C(2)-P(1) 108.4(2) O(2)-S(1)-N(1) 114.85(16) 
F(5)-C(2)-P(1) 110.9(2) O(3)-S(1)-N(1) 111.01(16) 
C(3)-C(2)-P(1) 116.0(2) O(2)-S(1)-C(1) 103.67(18) 
F(7)-C(3)-F(8) 108.7(3) O(3)-S(1)-C(1) 104.71(18) 
F(7)-C(3)-F(6) 108.2(3) N(1)-S(1)-C(1) 101.74(17) 
F(8)-C(3)-F(6) 109.8(3) O(5)-S(2)-O(6) 118.8(2) 
F(7)-C(3)-C(2) 109.7(3) O(5)-S(2)-N(3) 110.32(17) 
F(8)-C(3)-C(2) 110.2(3) O(6)-S(2)-N(3) 114.58(17) 
F(6)-C(3)-C(2) 110.2(3) O(5)-S(2)-C(12) 104.39(19) 
F(9)-C(4)-F(10) 108.3(3) O(6)-S(2)-C(12) 103.6(2) 
F(9)-C(4)-C(5) 106.2(3) N(3)-S(2)-C(12) 102.96(17) 

Table I.5.3 Anisotropic displacement parameters (Å2).  
 U11 U22 U33 U23 U13 U12 
C(1) 0.024(1) 0.039(2) 0.032(2) -0.002(1) 0.006(1) -0.005(1) 
C(2) 0.027(1) 0.024(1) 0.031(2) 0.003(1) -0.003(1) 0.002(1) 
C(3) 0.028(2) 0.036(2) 0.031(2) 0.004(1) 0.003(1) 0.001(1) 
C(4) 0.033(2) 0.019(1) 0.026(1) -0.003(1) -0.002(1) 0.004(1) 
C(5) 0.038(2) 0.023(2) 0.043(2) -0.005(1) 0.000(2) -0.002(1) 
C(6) 0.033(2) 0.029(2) 0.031(2) 0.002(1) 0.002(1) 0.008(1) 
C(7) 0.041(2) 0.035(2) 0.039(2) 0.005(2) -0.003(2) 0.005(2) 
C(8) 0.023(1) 0.024(1) 0.041(2) -0.002(1) 0.003(1) 0.000(1) 
C(9) 0.028(2) 0.026(2) 0.058(3) -0.004(2) -0.002(2) -0.001(1) 
C(10) 0.028(2) 0.020(1) 0.036(2) -0.003(1) 0.002(1) 0.000(1) 
C(11) 0.029(2) 0.028(2) 0.050(2) 0.003(2) -0.001(2) -0.005(1) 
C(12) 0.029(2) 0.038(2) 0.035(2) -0.005(2) -0.008(1) 0.002(1) 
C(13) 0.025(1) 0.019(1) 0.032(2) 0.003(1) 0.001(1) 0.000(1) 
C(14) 0.033(2) 0.019(1) 0.032(2) 0.001(1) 0.003(1) 0.003(1) 
C(15) 0.023(1) 0.027(1) 0.023(1) 0.002(1) -0.001(1) -0.002(1) 
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C(16) 0.033(2) 0.031(2) 0.030(2) 0.002(1) -0.005(1) 0.002(1) 
C(17) 0.030(2) 0.017(1) 0.031(2) 0.004(1) -0.001(1) 0.003(1) 
C(18) 0.034(2) 0.023(1) 0.036(2) 0.000(1) 0.001(1) -0.002(1) 
C(19) 0.031(2) 0.020(1) 0.039(2) 0.004(1) -0.008(1) -0.001(1) 
C(20) 0.028(2) 0.024(2) 0.052(2) 0.003(1) 0.002(2) -0.006(1) 
C(21) 0.031(2) 0.026(1) 0.024(1) 0.003(1) -0.001(1) 0.003(1) 
C(22) 0.038(2) 0.030(2) 0.033(2) -0.004(1) 0.007(1) 0.002(1) 
F(1) 0.055(2) 0.034(1) 0.047(2) 0.009(1) 0.010(1) -0.010(1) 
F(2) 0.030(1) 0.062(2) 0.042(1) 0.000(1) -0.005(1) -0.005(1) 
F(3) 0.041(1) 0.051(2) 0.043(1) -0.006(1) 0.015(1) 0.005(1) 
F(4) 0.041(1) 0.044(1) 0.028(1) -0.001(1) -0.005(1) -0.010(1) 
F(5) 0.027(1) 0.031(1) 0.054(2) 0.005(1) 0.003(1) 0.011(1) 
F(6) 0.044(1) 0.028(1) 0.054(2) 0.010(1) 0.013(1) 0.005(1) 
F(7) 0.026(1) 0.049(2) 0.046(1) 0.007(1) 0.004(1) -0.006(1) 
F(8) 0.037(1) 0.058(2) 0.028(1) 0.003(1) -0.001(1) -0.004(1) 
F(9) 0.048(1) 0.021(1) 0.043(1) -0.001(1) -0.008(1) 0.011(1) 
F(10) 0.049(1) 0.028(1) 0.028(1) -0.005(1) 0.005(1) 0.001(1) 
F(11) 0.087(3) 0.063(2) 0.054(2) -0.022(2) 0.032(2) -0.045(2) 
F(12) 0.033(1) 0.032(1) 0.137(4) 0.006(2) -0.023(2) -0.002(1) 
F(13) 0.060(2) 0.023(1) 0.050(2) -0.010(1) -0.004(1) -0.007(1) 
F(14) 0.023(1) 0.070(2) 0.056(2) -0.015(2) -0.003(1) 0.007(1) 
F(15) 0.047(2) 0.072(2) 0.048(2) -0.018(2) -0.020(1) -0.002(2) 
F(16) 0.061(2) 0.042(2) 0.044(1) 0.014(1) -0.012(1) 0.010(1) 
F(17) 0.043(1) 0.027(1) 0.037(1) 0.012(1) 0.007(1) 0.008(1) 
F(18) 0.029(1) 0.018(1) 0.076(2) -0.001(1) -0.004(1) -0.003(1) 
F(19) 0.026(1) 0.028(1) 0.052(1) -0.001(1) 0.002(1) 0.001(1) 
F(20) 0.046(1) 0.017(1) 0.047(1) 0.000(1) 0.006(1) 0.006(1) 
F(21) 0.057(2) 0.028(1) 0.030(1) 0.001(1) 0.007(1) 0.007(1) 
F(22) 0.036(1) 0.030(1) 0.027(1) -0.004(1) -0.001(1) -0.001(1) 
F(23) 0.024(1) 0.032(1) 0.037(1) 0.004(1) -0.001(1) -0.007(1) 
F(24) 0.035(1) 0.040(1) 0.049(1) 0.008(1) -0.013(1) 0.002(1) 
F(25) 0.036(1) 0.029(1) 0.072(2) 0.019(1) -0.008(1) -0.004(1) 
F(26) 0.065(2) 0.045(2) 0.045(2) -0.011(1) -0.007(1) 0.032(1) 
N(1) 0.028(1) 0.020(1) 0.026(1) -0.001(1) 0.000(1) 0.005(1) 
N(2) 0.024(1) 0.018(1) 0.031(1) -0.001(1) -0.001(1) 0.004(1) 
N(3) 0.025(1) 0.021(1) 0.027(1) 0.002(1) 0.000(1) -0.002(1) 
N(4) 0.025(1) 0.017(1) 0.026(1) 0.001(1) -0.001(1) 0.002(1) 
O(1) 0.030(1) 0.021(1) 0.029(1) 0.003(1) -0.001(1) 0.006(1) 
O(2) 0.042(1) 0.019(1) 0.039(1) -0.002(1) 0.007(1) 0.001(1) 
O(3) 0.035(1) 0.038(2) 0.031(1) -0.008(1) -0.005(1) 0.003(1) 
O(4) 0.025(1) 0.018(1) 0.032(1) 0.002(1) 0.002(1) -0.001(1) 
O(5) 0.034(1) 0.039(2) 0.035(1) -0.008(1) 0.003(1) 0.005(1) 
O(6) 0.056(2) 0.025(1) 0.041(2) 0.000(1) -0.003(1) -0.013(1) 
P(1) 0.024(1) 0.017(1) 0.024(1) 0.001(1) 0.000(1) 0.003(1) 
P(3) 0.022(1) 0.016(1) 0.025(1) 0.002(1) 0.000(1) -0.001(1) 
S(1) 0.026(1) 0.019(1) 0.025(1) -0.002(1) 0.001(1) 0.001(1) 
S(2) 0.027(1) 0.022(1) 0.027(1) -0.001(1) -0.001(1) -0.001(1) 

The anisotropic displacement factor exponent takes the form:  
-2π2[h2a*2U11+ ..+2hka*b*U12] 
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I.6 Crystal structure of (C2F5)2P(O)NH2  
Table I.1.1 Atomic coordinates and equivalent isotropic displacement 

parameters (Å2). Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor for (C2F5)2P(O)NH2. 

 x y z U(eq) 
P 229(2) 1073(1) 8793(1) 24(1) 
O -2085(5) 735(2) 9199(3) 32(1) 
N 2718(6) 885(3) 9603(4) 31(1) 
C(1) 626(11) 692(4) 7289(5) 42(1) 
F(11) 2506(10) 1122(3) 6879(4) 85(2) 
F(12) -1510(9) 850(3) 6609(4) 86(2) 
C(2) 1151(11) -267(4) 7168(6) 48(1) 
F(21) 3354(8) -450(3) 7698(5) 86(2) 
F(22) 1134(9) -503(3) 6088(4) 73(1) 
F(23) -461(10) -731(3) 7684(5) 87(2) 
C(3) 75(9) 2263(3) 8597(5) 33(1) 
F(31) -1534(9) 2466(2) 7694(4) 73(1) 
F(32) 2345(7) 2565(2) 8377(4) 71(1) 
C(4) -697(10) 2769(3) 9626(5) 40(1) 
F(41) -695(7) 3600(2) 9458(4) 60(1) 
F(42) -2985(8) 2557(3) 9822(5) 91(2) 
F(43) 714(11) 2592(3) 10558(4) 96(2) 

 
Table I.6.2 Selected bond lengths [Å] and angles [°] in (C2F5)2P(O)NH2. 

P-O 1.476(3) H(1)-N-H(2) 124(7) 
P-N 1.594(4) F(11)-C(1)-F(12) 109.6(5) 
P-C(3) 1.863(5) F(11)-C(1)-C(2) 107.4(5) 
P-C(1) 1.880(6) F(12)-C(1)-C(2) 106.2(5) 
N-H(1) 0.889(10) F(11)-C(1)-P 109.4(4) 
N-H(2) 0.885(10) F(12)-C(1)-P 108.6(4) 
C(1)-F(11) 1.342(7) C(2)-C(1)-P 115.6(4) 
C(1)-F(12) 1.358(7) F(22)-C(2)-F(21) 108.1(5) 
C(1)-C(2) 1.526(8) F(22)-C(2)-F(23) 109.9(5) 
C(2)-F(22) 1.309(7) F(21)-C(2)-F(23) 106.1(6) 
C(2)-F(21) 1.319(7) F(22)-C(2)-C(1) 112.2(5) 
C(2)-F(23) 1.320(7) F(21)-C(2)-C(1) 109.6(5) 
C(3)-F(31) 1.337(6) F(23)-C(2)-C(1) 110.8(5) 
C(3)-F(32) 1.361(6) F(31)-C(3)-F(32) 107.5(5) 
C(3)-C(4) 1.523(8) F(31)-C(3)-C(4) 106.8(4) 
C(4)-F(43) 1.294(7) F(32)-C(3)-C(4) 106.9(4) 
C(4)-F(41) 1.306(6) F(31)-C(3)-P 110.4(3) 
C(4)-F(42) 1.321(6) F(32)-C(3)-P 109.5(3) 
O-P-N 116.1(2) C(4)-C(3)-P 115.3(4) 
O-P-C(3) 111.3(2) F(43)-C(4)-F(41) 109.0(5) 
N-P-C(3) 106.2(2) F(43)-C(4)-F(42) 106.8(6) 
O-P-C(1) 111.2(2) F(41)-C(4)-F(42) 106.6(5) 
N-P-C(1) 109.1(2) F(43)-C(4)-C(3) 111.4(5) 
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C(3)-P-C(1) 101.9(2) F(41)-C(4)-C(3) 112.8(5) 
P-N-H(1) 114(5) F(42)-C(4)-C(3) 109.9(4) 
P-N-H(2) 112(5)   

 
Table I.6.3 Anisotropic displacement parameters (Å2).  

 U11 U22 U33 U23 U13 U12 
P 14(1) 23(1) 36(1) 6(1) 7(1) 1(1) 
O 12(1) 33(2) 52(2) 10(2) 9(1) -1(1) 
N 12(2) 34(2) 48(2) 15(2) 6(2) 1(2) 
C(1) 49(3) 40(3) 38(3) 0(2) 11(2) 8(2) 
F(11) 129(4) 56(2) 81(3) -6(2) 75(3) -24(2) 
F(12) 110(4) 93(3) 49(2) -19(2) -25(2) 64(3) 
C(2) 48(3) 41(3) 58(4) -13(3) 15(3) 3(3) 
F(21) 71(3) 73(3) 108(4) -34(3) -23(3) 44(2) 
F(22) 93(3) 67(3) 58(2) -21(2) 9(2) 21(2) 
F(23) 110(4) 42(2) 115(4) -20(2) 45(3) -21(2) 
C(3) 32(2) 23(2) 43(3) 7(2) 8(2) 0(2) 
F(31) 114(3) 40(2) 57(2) -3(2) -33(2) 31(2) 
F(32) 62(2) 30(2) 130(4) 8(2) 63(3) -10(2) 
C(4) 39(3) 33(3) 49(3) -5(2) 5(2) -1(2) 
F(41) 72(2) 29(2) 81(3) -5(2) 12(2) 6(2) 
F(42) 64(3) 70(3) 150(5) -52(3) 63(3) -24(2) 
F(43) 146(5) 74(3) 59(3) -28(2) -41(3) 47(3) 

The anisotropic displacement factor exponent takes the form:  
 -2π2[h2a*2U11+ ..+2hka*b*U12] 
 
Table I.6.4 Hydrogen coordinates and isotropic displacement parameters. 

 x y z U(eq) 
H(1) 2700(130) 400(30) 10000(50) 65(15) 
H(2) 4040(80) 1090(40) 9300(60) 65(15) 
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