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Introduction

In the late 60’s and early 70’s, Retakh and Palamodov published a number of articles
which contained applications of methods from Homological Algebra to the theory of locally
convex spaces (See [P1]. [P2], [R]). Various properties as e.g. topological properties of pro-
jective and inductive limits, stability properties of subspaces and extension as well as lifing
properties were described using homological notions and characterized by the vanishing of
certain derived Functors like Ext! and Proj' in the considered categories.

The theory of the vanishing of Ext! in the category of Fréchet spaces was developed by Vogt
in [V1] and [V2]. [V3] and [V4] contain characterizations of the vanishing of the first de-
rived projective limit functor in the class of (LB)-spaces . In [D], [DV1], [DV2] and [DV3],
Domanski respectively Domanski and Vogt developed splitting theories for the space of
distributions and the space of smooth functions, in this way e.g. characterizing subspaces
and quotients of the space of smooth functions. For further analytical applications we refer
to the mentioned articles.

Other fields of study in which the application of the aforementioned homological methods is
very useful are existence theorems for fundamental solutions on classes of ultradifferential
functions as well as surjectivety problems of convolution operators and partial differential
operators on these classes, which was done in [BMV1] and [BMV2].

In this thesis we will try to establish an approach to the splitting problem in the category
of (PLB)-spaces, which are reduced projective limits of countable spectra of complete (LB)
- spaces, focusing on the subcategory of (PLS)-spaces. The idea is to study spectra of
(LB)-spaces and to approach the splitting problem (i.e. the problem of the vanishing of
Ext!) in this category in the way which was developed in [V1]. We will need to give gen-
eralizations of some central theorems known so far and we will have to study the settings
in this category as opposed to the situation in the Fréchet case.

As an application, we will consider power series spaces of (PLB)-type and show that in
some cases our general theorems can be used to characterize the splitting behaviour of
these spaces in the category of (PLS)-spaces.

The motivation of studying these spaces may be that quite some classes of analytic func-
tions are isomorphic to sequence spaces of this type (see [BMV1] and [BMV2]).

Chapter 1 contains the fundamental notions with which we will be concerned. We introduce
projective spectra and the functors Proj®, Proj’ and Ext! in the category of (PLB)-spaces,
and state the theorems of Vogt, Retakh-Palamodov and Frerick-Wengenroth, of which we
will later on try to give suitable generalisations useful for the spaces we will be considering.
Chapter 2 describes the connection between the functors Ext' and Proj' in the category of
(PLB)-spaces, giving us the possibility to describe the vanishing of Ext! by the vanishing
of Proj!, a tool most useful in the theory of the functor Ext! as developed e.g. for Fréchet
spaces by Vogt in [V1]. Tt also describes the setting in some special cases used later on.
For the vanishing of Proj' we will give a characterisation in chapter 3 in the spirit of the
theorem of Retakh and Palamodov, which will be generalised to the class of webbed spaces.
In chapter 4 we furtheron give sufficient and necessary conditions for the fulfillment. of the
condition in the Retakh-Palamodov theorem, the motivation being the wish to have easier
calculable conditions which may be used in applications.

We apply in chapter 5 the theory developed so far to (PLB)-sequence spaces defined by
certain matrices and show the vanishing of Ext! for some of those spaces; we finally char-



acterise the splitting behaviour of sequence spaces E and F under the assumption that one
of them is a stable Fréchet space and give an overview concerning the solved problems and
open questions.

I wish to thank my supervisor Prof. Dr. D. Vogt for his support during the research for
this thesis. T also wish to thank Prof. Dr. P. Domaniski of the university of Poznai who
has been a great help to me during my two months stay at the university. A great part
of the results in the last chapter were obtained during this stay. Further thanks I wish to
give to Dr. Leonard Frerick, for his invaluable support and lots of fruitful discussions on
the subject.
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1 Preliminaries

1.1 Spectra of locally convex spaces and (PLB)-spaces

In this section we introduce (PLB)-spaces and (PLS)-spaces. We assume familiarity with

the notions of (LB),(LS) and (LN)-spaces, which we will always consider as given by a
oC

countable mion £ = |J E,, where the F,, n € IN are Banach spaces and F,, — F, 1,
n=1

n € IN, with a continuous (resp. in the (LS)-case compact and in the (LN)-case nuclear)

embedding. Material on these spaces can be found in [FWL]. We start with the notion of

a countable spectrum :

Definition 1.1 A countable projective spectrum of locally conver spaces is a family X =
(XN7 L%H)Neﬂv of locally convex spaces (XN)ycp and continuous linear operators

L%+1:XN+1—>XN,N€W,

called connecting maps. For a given spectrum X, we consider the linear mapping

oc oc
v o [ Xv  — I Xn
N+1

% —_
(mN)NGﬂV (LN ITN+1 xN)NeﬂV

1 1s continuous with respect to the product topology; the space
T N+1
ker p = {(zn)yew € T Xn vy on41 =an, N € IN}
N=1

equipped with the subspace topology of the product, will be denoted by Proi’X. If for all
N € IN the image of (ProjoX) under the canonical mapping

N Prof®X¥ - Xn
(:L’J)Jew — IN

s dense in Xy, then we will call the projective limit reduced. The cokernel of 1, i.e. the
space

(o0
[ Xy / oy
N=1

where Imiy denotes the space

o0 (e @)
{(yN)New € Il Xn:3aen)yenw € II Xn N Moy —an =yn N € JN}
N=1 N=1

will be denoted by Proj'X.
Remark:

i) We will not need any topological considerations concerning the space Proj' X, because
for a given spectrum X we will only need to know, when Proj'X = 0, which is a
question of a purely algebraic nature.



ii) As we will only be concerned with countable spectra, we will sometimes use merely
the notion spectrum meaning in detail a countable one.

The notions of projective spectra and projective limits arise naturally in the theory of
locally convex spaces, as e.g. every Fréchet space can be represented as the projective
limit of a suitable projective spectrum of Banach spaces, and properties as e.g. being
Schwartz or nuclear have their correspondence in the connecting maps being compact,
respectively nuclear. Projective Spectra of (DF)-spaces have been studied in [V3] and [V4];
in [BMV1] it is shown that the surjectivity of convolution operators on Gevrey classes in
IRY is characterized by the vanishing of Proj'X’ for a certain spectrum X arising out of
the properties of the operators studied. Further applications concerning the vanishing of
Proj! for spectra of (DF) - spaces can be found in [BMV2] and [MTV].

It will be important to know under which conditions two different spectra have the same
projective limit. A property ensuring this which we will often need uses the following
notion:

Definition 1.2 Two countable spectra

2 3

1 2
X — X1 u X2 u

and 7 i
y = Y1 u YQ u

are called equivalent, if there are sequences of natural numbers (K (N)) yepn and (L(N)) yen
e INY which are increasing and tend to infinity and continuous linear mappings

SN:YK(N)_>XN: NelN

and
TN:XL(N)%YN: N € IN

such that for oll N € IN

Ty o Spiny = Lﬁ(”m)

and .
SNOTK(N):jN< W,

The following proposition is easily verified:

Proposition 1.3 The projective limits of two equivalent spectra are topologically isomor-
phic.

(PLB)-spaces arise out of spectra of complete (L.B)-spaces by taking the projective limit:

Definition 1.4 A (PLB)-space is a locally convex space E which can be represented as the

N+1>

reduced projective limit of a countable spectrum (EN,LN N of complete (LB)-spaces

€
En, N € IN. If the spaces Ex ,N € IN are (LS) (resp. (LN)), we will call E a (PLS) (resp.
(PLN) ) -space.



Examples of (PLB)-spaces are e.g. the space of real-analytic funcions on the real line or
the spaces D' (Q) of C*°-functions on an open set  in IR™ . Of course every Fréchet space
is a (PLB)-space, as it is a projective limit of a countable spectrum of Banach spaces.
The following Proposition, which was proved e.g. in [DV2], shows that for certain (PLB)-
spaces the converse of 1.3 holds as well:

Proposition 1.5 Two spectra of complete (LB)-spaces, having the same projective limit
are equivalent.

The proof is obtained by the following lemma on factorization of mappings between (PLB)-
spaces. As we will use it in subsequent chapters, we will give a proof for the sake of
completeness:

Lemma 1.6 For a (PLB) space E, a complete (LB)-space F and T € L (E, F) the following
holds:

i) For a fited My € IN T factorizes through En, (i.e. there is T € L (Eu,, F) such that
T =T o™M0) iff for all neighbourhoods of zero V.C I there is a neighbourhood of zero

U C En, such that
-1
T ((LMO) U) cv

ii) There is My € IN, such that T factorises through Fyy,.

Proof: i) If there is a factorization, the inclusion follows from continuity . If the inclusion
with the given quantifiers is satisfied, we get a factorisation by putting

T : M@E) - F
WMoy — Tz

The assumption gives that T is well defined and continuous, and as the spectrum is reduced
and F complete, we can extend 7' onto E,.

ii) Assume that there is no factorization. Then for every M € IN there is a neighborhood
of zero Vs C F' such that for all neighbourhoods of zero Ups C Eyy

T ((LMO)I UM> Z Var.

As T is an (LB)-space, there is a neighborhood of zero V, and a sequence (Aar)z¢pv, such
that

oc
V C ﬂ AV
M=1

(cf. [PCB, Proposition 8.3.5]). Furthermore there is a neighbourhood of zero U C E such
oC
that T (U) C V. Keeping in mind that E is a closed subspace of [[ Eus, and that the /M,
M=1
M € IN are the canonical projections, we find an My € IN and a neighbourhood of zero

-1
Unty C Ejg,, such that (LMO) Un, C U, giving the contradiction
-1
T ((LMO) UM()) C /\MOVMO:

7



thus the proof is finished.

As mentioned, every Fréchet space is a (PLB)-space. We will need to know that analogously
for every Fréchet-Schwartz space we can find an equivalent spectrum of (LS)-spaces:

Proposition 1.7 Every Fréchet-Schwartz space is a (PLS)-space.

Proof: For the proof we will use the following two facts on compact sets in Banach
spaces: First, the theorem of Banach-Dieudonne gives that a subset K of a Banach space
X is relatively compact iff it is contained in the closure of the absolutely convex hull of a
sequence (z,),, v tending to zero in X. Second, a subset K of /1 is relatively compact iff it
is bounded and

o0
A}gnoosup{V:ZN Aol : (A)pemw € K} = 0.

Let now E = Proj’ (EN, L-’NVH)NGIN be a Fréchet-Schwartz space, i.e. the Ex,N € IN are

Banach spaces and the mappings L%H : Eny1 — En, N € IN are compact. We have to

find an equivalent spectrum (X N j%H)Ne/N of (LS)-spaces such that for which we have
E = Proj’ (XN,j%H)NEJN. Fix N € IN. The set L%HB, where B denotes the closed unit

ball in En 1, is relatively compact in Ey, thus there is a sequence (z,), in Ex tending
to zero such that

E
NBCcT({z,:ve N}
For every n € IN we can find an increasing sequence (7)), of real numbers such that
)yr>1 nvelN
.. . ’y:} —
ii) Vlggc T 0 nvelN

iii) lim v} = oc for all n € IN

V—00

iv) Jim 7z, =0 for alln € IN

We put for all n € IN

B [ °]
B =T (0w, v VD = { £ M Wy € B
and
XN i=span By.,.

Due to the theorem of Banach-Dieudonne, the By ,, n € IN are compact and thus Banach
balls, so the Xy ,, n € IN equipped with the topology induced by the By, as closed
unit balls are Banach spaces. For all n € IN we have Xy, — Xy 41 with a compact
embedding, as By, is the closure of the absolutely convex hull of a sequence which tends
to zero in Xy 1, thus the space

oc
Xy = U XN,n
n=1



+

is an (LS)- space. We will now show that the mapping (N : Ey1 — Ey factorises

through Xy. We have

NTB T ({z,:v€IN}) C By,

SO L%H : Eny1 — X is continunous. Xy, being compact in En, we get
XN,n — EN

for all n € IN, so
Xy ‘—>EN,

which gives the factorisation. We have found (LS)-spaces Xy, N € IN and continuous

linear mappings j%“ : Xnya1 — Xy, N € IN, such that the spectrum (XNJ%H)NUV is

equivalent to (EN, L%H)New, so according to 1.5

E = PrOjO(XijJJ\\f’H)NeN

and E is a (PLS)-space.

Finally we will use the theorem of Banach-Dieudonne to find for a given (PLS)-space E
another equivalent spectrum of an easier form:

Proposition 1.8 If 9 3
{1

nglu Egu

is a countable spectrum of (LS)-spaces and E its projective limit, then there is an equivalent

spectrum
72 i3
1 ~ 2

gzﬁlu By u

that satisfies

~N+1 | 1 n
N : ENJan — EN,n

continuously for all n,N € IN.

For the proof we shall need the following

Lemma 1.9 If X1 — Xy — X3 and X — Z are sequences of Banach spaces with compact
embeddings, and if ¢ : Z — X3 is a continuous linear mapping that maps X continuously
into X1, then there is a Banach space Y such that X — Y — Z with compact embeddings
and + maps Y continuously into X, i.e. the following diagram commutes:

Xé u Zu
z z
X2 u - Y
1I u
74 74
X1 u ¢ X




Proof: According to the theorem of Banach-Dieudonne, there is a sequence (z),, v € 2%
tending to zero in Z, such that

By CT {2, ne N}’ = M.

We put

N::I‘{unmn:nelN}Z

where (), € (1, 50)™ is an increasing sequence tending to infinity such that (u, Tn)nen
still tends to zero in Z. Then M and N satisfy the following properties:

e M C N as
M:{Z )‘nfEn:(/\n)nGﬂVEBh}z

n=1

o0
N:{Z Vnﬂnxni(Vn)neyVEBll}:

with (’\—"

€ By, .
“”)neﬂ\f h

e Due to the theorem of Banach-Dieudonne, N is compact in Z, so if [N] denotes the
span of N then ([N],| |l y). where || - || denotes the Minkowski functional of N, is
a Banach space, and the embedding

(INLD-Nly) = 2
is compact.

e The sequence (), tends to zero in ([N], |- [[y), because for every m € IN we
have z,, € im N. Thus M is the closure of the absolutely convex hull of a sequence
tending to zero in ([N], ] - || ), so M is compact in ([N], ] - [[5)-

We define the space Y as
Y :={(z,2) € Xax [N]:x =12}

which is a closed subspace of Xo x [N] and thus a Banach space. To finish the proof we
will show that

1. The embedding X — Z factorizes over Y with compact embeddings, i.e. there is a
commutative diagram

X oy—_
TP& J2 ¥

&
Yo

where j7; and j» are compact.

10



2. 1o :Y — X3 acts continuously into Xs.

To show 1.), we define
Y

n X
x (ta,z)

%

%
and

o 1Y o Z

(,2) — 2.

J1 is compact as ¢ (X) C X1 and X7 is embedded into X2 by a compact map. Furthermore
X C [M] and M is relatively compact in [N]; obviously 7; is injective.

Jjo is compact as By C Bx, x N and thus jo By C N and N is compact in Z.
Furthermore it is obvious that js o 71 is the embedding of X into Z.

To show 2.), we observe that for (z,2) € Y we have

tjo(z,2) =12 =12

according to the definition of Y, so ¢ 0 jo (Y) C X5. That ¢ o jo acts continuously into Xs
is implied by the form of the topology on Y. Thus the lemma is proved.

Proof of 1.8: The proof of 1.8 is now reached by inductively applying 1.9. We will show,
how this is done for L% : Fs — Fq. First Grothendieck’s factorisation theorem provides
(v(n)),epv € INY such that for all n € IN y(n) > n and 3 acts continuously from E,
into By (). Now using 1.9, we may fill in spaces between Fs, and Es 1. such that we
get the desired spectrum.

1.2 Fundamental known splitting results

This section will be devoted to providing a short introduction to those parts of the theory
of the functor Ext! in the category of (PLB)-spaces which will be relevant in the following
chapters. Tt will contain the algebraic notions that are used to describe the splitting of
short exact sequences of (PLB)-spaces as well as a look on the results already known for
the category of Fréchet spaces. These results will be the motivation of our investigation in
the next chapters, which will contain some generalizations to the class of webbed spaces.

Definition 1.10 If we are given (PLB)-spaces E and F, then we will write
Ext(ppp (B, F) =0,
whenever every short exact sequence of (PLB)-spaces
0-F—->X—>FE—=0,

where Fis a subspace and E a quotient of X, splits. (Here the arrows represent the canonical
embedding, respectively the quotient map.) The corresponding meaning will be given to
Ext%PLS) (E,F) = 0 in the category of (PLS)-spaces and to Ext%F) (E,F) = 0 in the
category of Fréchet spaces.

11



Remark: Actually it would not be necessary to specify the category of Fréchet spaces, as
being a Fréchet space is a three space property, meaning that in a short exact sequence
with the subspace and the quotient being Fréchet, the middle space must be Fréchet; this
is done merely to avoid misunderstanding.

Recently (in [DV1]) the subspaces and quotients of the space D' () of distributions have
been characterized by means of their splitting behaviour: For a (PLN)-space F the prop-
erty Ext! (F, D' (Q)) = 0, is equivalent to F being isomorpic to a subspace of D’ () and
for F being ultrabornological ( or equivalently, Proj'F = 0 for the spectrum F defining
F ), being a quotient of D' (Q) is equivalent to Ext! (D' (Q),F) = 0. Similiar results for
the Fréchet space (s) of rapidly decreasing sequences have been obtained earlier by Vogt
in [V2]. Thus the vanishing of Ext! has topological consequences for the spaces concerned,
it can also help to solve the question of right inverses for partial differential operators (see
e.g. [V2]). A thorough investigation on the Functor Ext! for Fréchet spaces can be found
in [V1] and [V2].

When approaching the problem of the vanishing of Ext!, a crucial observation is the con-
nection to the spaces ProjlX': If one is given (PLB)-spaces E = Proj’€ and F = Proj’F,

with spectra €& = <EN’j]]\\;+1)NeﬂV and F = (FN,L%J“l)NeIN, then we get a spectrum

L(B,F)=(L(E,Fy) ,L*%“)NEIN by defining

s L(E,Fy) — L(E,Fyi1)
A - uNtloA

of which the projective limit will be the space of continuous linear maps L(E,F). Now in the
case of E and F being Fréchet spaces there is the following description of Ext%F) (E,F)=0
([V1], Theorem 1.2):

Theorem A: (Vogt) If E = Proj’€ and F' = Proj’F are reduced projective
. _ N1 _ N+1
limits of spectra & = (ENJN )NEW and F = (FN,LN )Neﬂv of Banach

spaces and if Ext{p (E, Fy) = 0 holds for all N € IN, then Ext(p (B, F) =0
iff ProjlL (E, F) = 0.

Remark: In most applications the assumptions of the theorem are satisfied in a very
natural way, for instance nuclear spaces I are given as projective limits of [, for details

see [V1].

In view of the last theorem it is natural to consider the splitting problem by seeking
conditions for Proj' £ (E, F) = 0. A characterisation for the vanishing of Proj' X was given
by Retakh and Palamodov in [R] and ([P2]. theorem 5.4) in the following way:

Theorem B: (Retakh - Palamodov) Let X = (XN7 L%H)Neﬂv be a countable

projective spectrum and let each Xy, N € IN be covered by an increasing
sequence of Banach balls such that for every N € IN L%H maps one of the
balls covering X into one of those covering Xy,1. Then ProjtX = 0 iff for
every N € IN there is a Banach ball By C X such that

12



i) N™MByi1C By, NEIN
ii) For all N € IN exists M € IN with M > N such that for all K € IN with

K > M we have
W X C 18Xk + By

Although this theorem provides a full characterisation, it is in general difficult to get
calculable conditions for Ext'(E, F) = 0 in terms of the given spaces by it. In ([V4],
Theorem 2.5), Vogt obtained conditions on the Banach balls for the vanishing of Projl X,
which could be translated into calculable conditions.

Theorem C: (Vogt) Let X be a countable spectrum of (LS)-spaces.

e Proj! X = 0 if the following holds:
There is n € IN such that for all N € IN exist M € IN with M > N such
that for all K € IN with K > M and all m € IN exist k€ IN and S > 0
such that
LA]\?BM,m cS (L%BK,]C + BN,n)

e Proj'! X = 0 implies the following:
For all N € IN exist M € IN with M > N and n € IN such that for all
K € IN with K > M and all m € IN exist k£ € IN and S > (0 such that

LAN4BM,m cSs (LﬁBK,k + BN,n)

For Fréchet spaces there are the following sufficient and necessary conditions for the van-
ishing of Proj* £(FE, F) ([V1], Theorem 2.5):

Theorem D: (Vogt) Let E and F be Fréchet spaces.

i) Proj'L(E, F) = 0 if the following holds:
There is n € IN such that for all N € IN exists M € IN with M > N such
that for all K € IN with K > M, allm € IN and all € > 0 there are k € IN
and S > 0 such that

M K
[’*NBL(Em,FM) C SL*NBL(Ek,FK) +6BL(ETL7FN)

ii) Proj'L(E, F) = 0 implies the following: For all N € IN exists M € IN
with M > N and n € IN such that for all K € IN with K > M and all
m € IN there are k € IN and S > 0 such that

L*AN4BL(Em7FM) cs (L*KNBL(EMFK) + BL(En,FN))

In [V1] these conditions are translated into ones containing an inequality between dual
norms and thus calculable conditions (S1*) for sufficiency and (S2*) for neccessity for
Proj'L(E, F) = 0 are obtained. Using these conditions leads to solutions for the splitting
problem for Fréchet power series spaces ([V1], section 4) and to results on right inverses
for elliptic differential operators with constant coefficients ([V1], section 7).

13



It was conjectured that the condition (S3*) might also be sufficient, at least in cases im-
portant for applications. At first, this was shown by Krone and Vogt in [KV] for the case
of E and F being Koethe sequence spaces. In [FW] the following theorem was proved, and
using the means introduced in [V1], this leads to the result, that in the cases of E or F
being nuclear as well as in the cases of E or F being Koethe spaces of the types E = A! (A)
or ' = \*° (B) the condition (S2*) will also be sufficient. (For the precise definition of the
spaces Al (A) or \*° (B), see [MV]).

Theorem E: (Frerick-Wengenroth) Let X = (X N L%H)NGN be a countable

projective spectrum and let each Xy, N € IN be covered by a system By of
Banach balls which is directed by inclusion and stable under multiplication with
scalars. Further assume that for every N € IN L%H maps each member of By 11
into a member of By. Then the following is snfficient for Proj'X = 0:

For all N € IN exists M ¢ IN with M > N and By € By such that for all
K € IN with K > M and all D € B,s exists C € Bk such that

L% (D) C LJ[\? (C)+ By

Summarizing, the problem of Ext%F) (E, F') can under conditions which are often fulfilled in

relevant cases be translated into the problem of the vanishing of Proj'L (E, F), for which
the theorem of Retakh and Palamodov gives a full characterisation. Using Theorem D
and the theorem E from [FW] as well as the methods developed in [V1]. it is possible to
reach a characterisation for Fréchet spaces in the cases important for applications which
is accessible for calculation. We will furtheron be concerned with generalisations of the
methods described so far to the problem of Ext%PLS) (E,F)=0.

2 Connections between splitting in the category of (PLS)
-spaces and the vanishing of the first derived projective
limit functor for spectra of spaces of continuous linear
maps

In view of Theorem A in section 1.2, we will describe the connection between the problems

of Ext%PLS) (E,F) =0 and Proj'£ (E, F) = 0 for (PLS)-spaces E and F. For this, we have
to understand how the splitting of every short exact sequence

0—-F—-=G—=FEF—0

is related to the question of the surjectivity of
oC

N L(E,Fy) — I L(E, Fy)
N=1 N=1

(AN) Nemw - (L%+1 o ANy — AN)NeIN

the latter meaning Proj'£ (E, F) = (). For this we need a representation of the short exact
sequence as a projective limit of short exact sequences of (LS)-spaces:
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2.1 Local sequences and local splitting

Definition 2.1 Let a subcategory C of the category of locally convex spaces be given. If for
a given short exact sequence

0>FLGSES0
of locally convex spaces we have for every N € IN short exact sequences
U%FNQGN(&EN—)U

of locally convex spaces such that F' = Proj’Fy, G = Proj’Gy and E = Proj’Ex (the pro-
jective limits being reduced), if the spaces Fn,Gy and Exn, N € IN, belong to the category
C, and if for every N € IN we can set up a commutative diagram

0 wF : Wi wE w0

1l 1l 1l
hil hil hil
hil hfl hfl

h il hl hl
hofl hofl hofl
AN Mg Mg
il h fl il h fl il h fl
hofl hofl hofl

i~ flan
O WF{\{ A ‘NG]]}[ A WE{}[ —H—WO
f f f
fl fl fl
f f f
fl fl fl
fl JN+1 i gN+1 f
0 wh'N 11 WG N 11 N1 W)
u u u

(where N, N gN D gNFL 6N and oV 11 denote the canonical projections), we will say

that we have local sequences for the sequence
0F5G65ES0
in the category C.

The following proposition from [DV1] ensures the existence of local sequences in the cate-
gory of (PLS)-spaces:

Proposition 2.2 Let a short ezact sequence

0 F5G45E=0

15



of (PLS)-spaces E = Proj’Ex, G = Proj’Gy and F = Proj°Fy be given. Then there

; — N+1 _ N+1 . N+1 .
exist spectra X = <XN7LN )Neﬂv’ y = <YN7,"€N )Neﬂv and Z = <ZN,(7N )Neﬂv of
(LS)-spaces such that E = Proi’Xy, G = Proj’¥x and F = Proj’Zy as well as short

exact sequences '
0> XvByYy B 2Zy >0, Ne N

such that the diagram

0 wF Wi wE w
H Hl H
hfl hfl hfl
hfl hfl hfl
hfl hfl hfl
hfl h h
A SR AR
il h fl u h fl u h fl
h fl h fl h fl
hh ﬂﬂLN+1 hh ﬂﬂK/N-l—l hh ﬂﬂo.N+1
koA f ko4
flINn flan )
0 WX{}[ 1 WY]lY 1 Z f w(]
fl fl fl
fl fl fl
g A A o4
J q
0 wX N 11 Sk WY N1 ahE ZN 11 w)
u u u

commutes for every N € IN. Either the sequence (Yn) ycpv can be chosen as a subsequence
of (GN)new or the sequences (Xn)yep and (ZN) e con be chosen as subsequences of

(FN)nenw and (EN) yepv-

For the proof of this proposition we refer to [DV1, Remark after 1.7].
For a characterization of Ext%P Ls) (E,F) = 0, we will need local sequences which split.
This can be described in the following way:

Proposition 2.3 Let a short ezact sequence

0-FLGEE—=0

of (PLS) - spaces be given. Then the following are equivalent:

i) There are local sequences of (LS)-spaces
U%FNQGN(&EN—)U

which split for every N € IN.

16



i1) F can be represented by a spectrum (FN, L_,NVH)N eIV of (LS) - spaces such that for

every N € IN the canonical mapping o : F — Fy has an extension onto G, i.e. there
exist mappings Iy : G — Fy, N € IN such that for all N € IN we have /¥ = Iy o 7.

Proof: We will only show that ii) implies i) as the other direction is a straightforward
application of the splitting of the local sequences. By 2.2 we get local sequences

U%FNQGN(&EN—)U

~N+1

with a gpectrum (FN,LN representing F. As we already know that the two

)NEJN

o ~N+1
)NeJN and (Fy, 7 )NEJN
procedure (see Appendix), we get local sequences

N+1

spectra <F Ny are equivalent, by using the push-out

O%FNQGN(&EN—)O

(after maybe having to change the numeration). Consider ! : F — F; and its lifting
I1 : G — Fy. According to 1.6, there exists M € IN such that I; factorizes through Gy,.
We obtain a mapping ¢1 : G — Fi and a commutative diagram

Ji q1

0 wF] w3 whq W
a [ u u
N [“[ M oM
0 Wy M WGM au wE g W)
u u u

using the pushout-construction (see Appendix), we obtain a commutative diagram

71 q1

0 wFy w3 | wh W)

u u u
id S1 oM

0 wi & V‘@l a wh w0

uf [ i u
M [il[ T id

0 Wy M WGM au wE g W)

u u u

such that Sy o Ty = k. The mapping i; provides a mapping 1 : Eys — G1 which lifts
the identity (see Appendix), so the middle row splits. We put F; := F; and Ey := Ejy.
Proceeding inductively, we find local sequences which split.

17



Definition 2.4 If for a given short exact sequence

0= F 2L G—>E—>0

of locally conves spaces one of the two equivalent conditions of 2.3 are fulfilled, we will refer
to this situation as local splitting of the sequence

0FHGS5E—S0
in the category C.

In subsequent paragraphs we will investigate the splitting of certain (PLS)-sequence
spaces. In the course of this we will need the following

Lemma 2.5 Let E be a Fréchet-Schwartz space which is locally l1, i.e. there is a countable
reduced spectrum

5 i
X=[1 +— 1 1 +—

such that E = Proj’X. Let
0= F 2L G L ES0

be a short exact sequence with (PLS)-spaces F = Proj’Fy and G = Proj’Gy. Then the
following holds:

i) There exist a reduced spectrum
X +— Xo+— ...
of locally conver spaces that satisfies G = Proj’ Xy and sequences
0= Fy XXy, -0, NelN

which are local sequences in the category of locally conver spaces and which split. The
space X is a subspace of Xn x 1y with a suitable (LS)-space Xn.

i1) The sequence
0>FLGES5E=0

splits locally in the category of (PLS) -spaces.

Proof: We first prove i). Putting for every N € IN

HN = FGN and IN = GN/HN,

18



we get as in [DV1] a commutative diagram

w hfA wuw hfA u hfl
h

where the rows are exact and the columns are reduced spectra of (LS)-spaces such that
F = Proj’Hy and E = Proj’Ix. We know by 1.6 that any two defining spectra of complete

(LB)-spaces for a (PLB)-space are equivalent, so the spectra
I — b I3 +— ...

and
l]%l] %l]%

are equivalent, as well as the spectra
H{+— Hy <— Hy+— ...

and
Fl%FQ%Fg%...
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Inserting the Fiy, N € IN into the diagram above by push-out constructions (see Appendix)
we get (after maybe having to change the numeration) a diagram

0 wh w7 wE W)
h h h
h h h
h h h
h h h
h h h
h h h
u h u h u h
h h h
h h h
h h h
lb IN h qnN lb
0 WFN WXN WIN w0
u u u r [
[ [
&
®
x aeSN
JN+1 = N1 &
0 \’VFNJ-I WX N1 INJl W)

where the Xy, N € IN, are (LS)-spaces (this category is closed with respect to finite
products, closed subspaces and quotients). Now the pullback construction gives for every
N € IN a commutative diagram

JN ~ qN

0 wFy WX N wi 5 w0
u u u
id unN Twn
wN PN
0 wF )y wX Wl]u W)
u ol
K,%Jrl UN Sn
JN+1  ~ gN+1
0 —whf'vy1 WX N1 —wlng ———w0

where 3
Xy = {(:p,u) € Xy xli:gnr = TNU}
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and the mappings uy, py, wy and vy are defined as follows:

un(z,u) =z, py(z,u):=u, wy(f):=(nf,0)

and
on(E) = (L%HCE, SNQN+1§7) :
The spectrum

V10U vgous

X = X1 u X2 u X3 u
is equivalent to the spectrum
. K2 - K3 -
X, u X, u X3 u
so we have by 1.3:
X = Proj’x.

It remains to find right inverses for the mappings py, NV € IN. The idea when showing
their existence is that a quotient map onto [y has a right inverse iff it lifts bounded sets. Fix
N € IN. From [DV1, Lemma 1.5] (see also [D, Theorem 2.3]), we get a compact Banach
disk C © Xy, such that

By, Cpn (C)

where By, is the unit ball in l;, and by finding a sequence (¢, ), € CT¥ such that for all
veIN

€y = PN (Cl/)
(ey, v € IN, denoting the canonical unit vectors in /1), we get a lifting Ry : Iy — Xy for
Ty by putting

By ((0\)semw) == gfl taca.

The proof of ii) is now just one more application of the push-out construction: Consider
for a fixed N € IN the diagram

wN PN

0 wF )y wX Wl]u W)
u ol
I{%Jrl UN Sn
JN+1  ~ gN+1
0 —whf'vy1 WX N1 wiyyp ——w0
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the push-out procedure gives a diagram

wWN PN

0 wH wX Wl]u W)
u ol
id AN SN
in A qnN
0 why WX WINaLl —)
u i1
n%'H By id
JN+1  ~ gN+1
0 ———whFny1 WX N 11 wWin 1 ———w0

where Xy is an (LS) - space , because it is a quotient of Fiy X Xn 1. As the upper row
splits, there is a left inverse [, : Xy — Fy for wy and we get a left inverse for jny by
putting [y :=Iy o An.

2.2 The vanishing of Ext%PLS)(E, F) in the case of local splitting

We want to generalize Vogt’s Theorem A (see section 1.2) to the category of (PLS)-spaces.
For this we first need to describe Ext%P LS) (E, F) =0 in terms of lifting continuous linear

oC
maps A: E— [] Fu:
N=1

Theorem 2.6 If for given (PLS)-spaces E = Proj’Ex and F = ProjFyx we have local
splitting for every short exact sequence

0=-FLG5H—=0
then the following are equivalent:
i) Ext{pre) (B, F) =0

i1) For every diagram
T A

with (PLS)-spaces G and H and continuous linear maps q and A such that the upper
row 1s exact and Im A C Tm ¢, there is a continuous linear map A 1 E — G such that

goA=A.
iit) For every diagram
v o0 w o0
0 - F < H Fy — H Fy
N=1 N=1
1+ A
FE
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with a continuous linear map A such that Im A C Im 1), where ¢ as in section 1.1
denotes the mapping

oc oc
(0 [T v — TII Fn

N+l
(TN)yenw — (LN 5EN+1—CEN)N€]N

~ oc ~
there is a continuous linear map A: E — [ Fn such that o A= A.
N=1

iv) For every commutative diagram

N=1 N=1
Tid T B TA
0 - F 4 G 4 FE - 0

where G is a (PLS)-space, A and B are continuous linear maps and both rows are
~ oc ~
exact, there is a continuous linear map A : E — [[ Fn such that ¢ o A = A.
N=1
(Observe that commutativity and exactnes of the rows imply that Im A C Tm 1) ).

Remark: In ([V1], Theorem 1.8) a similiar version of ) < 4i) has been proved for Fréchet
spaces, there it suffices to demand that the upper row be exact. Local splitting is needed for
the implication of i) by ii),iii) or iv) whereas the other direction always holds. For Fréchet
spaces we always have that ¢ is surjective, this need not be the case for (PLS)-spaces,
though a large class of spaces satisfy that property (in fact, it is equivalent to F being
ultrabornological).

Proof of Theorem 2.6 : We only need to show that i) implies ii) and that iv) implies i),
as the other implications are obvious. So assume Ext%P LS) (E,F) =0, and let a diagram

0o F 4 g % H
+ A
E

as in ii) be given. Using the pullback construction (see Appendix), we get a commutative
diagram
0o - F L ¢ % H
Tid TP TA
0 - F - X EFE = 0

13

with a suitable (PLS)-space X such that the lower row is a short exact sequence of (PLS)-
spaces (we have to keep in mind that finite products and closed subspaces of (PLS)-spaces
are again (PLS)-spaces, this is shown in [DV1, Proposition 1.2]). Our assumption provides
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the existence of a right inverse R : E — X for P, and we put A := Py o R. Tor every 2 € X
we get from commutativity

APz = qPiRP>x = APyRPyx = APz

and thus the surjectivety of P> gives gA = A.
Now assume iv) and consider a short exact sequence

0-FLGEE—=0

with local sequences '
0> FyvEYZv®NEy -0 NelN

Lifting for all N € IN the canonical maps

commutative diagram

: F— Fy to Iy : G — Fy we get a

' x P =
0 wE' —w ][] Fvn —w ][ Fn
u N=1 N—1
u [ [ u
id B [ ‘[4 A
[
J q
0 wF W wE w0

where B is defined by Bz := (Iy z) 5 c Iv: T € G. A is the mapping between the quotients
induced by B and A is the lifting which exists due to our assumption. We get a left inverse
for j by putting L := 1o (B — Ao q), which finishes the proof. Notice that in the proof
that iv) implies 1) we have shown the following

Lemma 2.7 If for given (PLS)-spaces E = Proj’Ex and F = Proj’Fy we have local
splitting for every exact sequence

0—+F—-G—FE—0,

then we can set up a diagram

v x> ,lp o0
0 - F < J] Fyv = T Fn
N=

N=1 1
+id + B + A
0 - F % ¢ 4 R ~ 0

and we get a right inverse for q iff A has a lifting A such that o A = A.
With 2.6 we can describe the connection between the problem of Ext%P LS) (E,F)=0 and
Proj'L (E,F) = 0 as follows: Since Proj'£ (E, F) = 0 means that every map 4 : £ —
oc -~ oC ~

I1 Fn can be lifted to A : E — [] Fn such that 1o A = A, we get immediately from

2.6:
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Corollary 2.8 If for given (PLS)-spaces E = Proj’Ex and F = Proj’Fx we have local
splitting for every exact sequence

0—+F—-G—FE—0,
then Proj' L (B, F) = 0 implies Ext{p, g, (E, F) = 0.

For the spectrum F = (FN’L%Jrl)NeW Proj! F = 0 just means the surjectivity of the

mapping ¢ in iii) of theorem 2.6, so the condition Im A C Im ¢ is satisfied for every A.
Thus we get as an analogon to Vogt’s Theorem A of section 1.2:

Corollary 2.9 Assume that for given (PLS)-spaces E = Proi’Ex and F = Proj’Fy we
have local splitting for every exact sequence

0—+F—-G—FE—0,

and if Proj' F = 0 for the spectrum F defining F. Then Ext%PLS) (E,F) =0 is equivalent
to Proj'L(E, F) =0

Remark: As was indicated earlier, the additional assumption Proj'F = 0 is in the category
of (PLS) -spaces needed for the equivalence of the vanishing of Proj' and Ext!. In fact
it is obviously crucial because if v is not surjective, then this cannot be expected for *.
In Theorem A this assumption does not appear as it is always fulfilled in the category of
Fréchet spaces (cf. [V1, Lemma 1.1]).

Thus for the investigation of the splitting problem it will be very helpful to find conditions
for Proj'L£ (E, F) = 0 in the spirit of the theorems B, C and D that have been introduced
in section 1.2.

A necessary condition for local splitting is the following:

Proposition 2.10 If E and F' = Proj® <FN, L%H are (PLS)-spaces such that

Ivem
Ext{prs) (E, Fx) =0, N € IN,
then we have local splitting for every exact sequence
0=>F—G—F—0,

of (PLS) -spaces.

Proof: If we consider for every N € IN the diagram
Fy
u

N




we get by the pushout - construction a diagram

0 wit' Y WC{*l WEu W)
N id
J q
0 Wl w7 wk, w)

with a (PLS) - space G (the class of (PLS) - spaces is closed with respect to products,
closed subspaces and quotients), in which the upper row splits, thus we get an extension
of /N onto G.

Often the assumption
Ext{prs) (B, Fy) =0, N € IN,

is fulfilled in the way that
Ext(1g) (Eum, Fy) =0, M,N € IN,

which is a question for which the answer is accessible by dualisation through the splitting
theory for Fréchet spaces. For the sake of completeness we give the following

Proposition 2.11 If for given (PLS)-spaces E = Proj’Ey and F = Proj’Fy
Ext(1g) (Eam, Fy) =0, M,N € IN,

then we have
Ext{pps) (B, Fy) =0, N € IN.
Proof: Let for a fixed N € IN a short exact sequence

0 Wy ——wG ——wE W0
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with a (PLS)-space G be given. 2.2 gives us a commutative diagram

J q

0 wh'y WG wE W)
H Hl il
hfl hil hl
hil hfl hfl
hil hl hil
id hhﬂﬂ M hhﬂﬂ oM hhﬂﬂ
u h fl il h u h 1l
h 1 h fl h 1l
h 1 h 1l h 1
h ﬂld h ﬂNM-{—l h ﬂO.M+1
l fl fl
fin ﬁl flan ﬁl fl
fl fl fl
fl fl fl
id| fl VR | oMHLl 4
fl fl fl
f JN+1 f gN+1 f
0 WF{Y WY]W&rl WE]Wqul W)

in which the local sequences split because of our assumption. If [ : Y3 — Fy denotes the

left inverse for jy, we get a left inverse for j by putting L :=1 o M.

2.3 The vanishing of Ext/p; s (E, F) for E being a Fréchet space

If E is locally {1 , we can find a stricter version of 2.6. We will use the following notation:

Definition 2.12 For a given spectrum

ta
X:Xlu X2u

we consider for all K € IN the canonical projections

K o0 K
pt o [ Xv = I Xn
N=1 N=1

K
(N)nernw = (@N)N=1

and .
K41 {
K+1 .
prt o Il X = 1 Xw

K41 K
("EN)N;rl = (TN)N=1
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giving a projective spectrum

2 2 3
[Mx = X3 v ] Xy v 1] Xy uv—0
oC
of which ] X is the projective limit. With
N=1
oC oC
Y [T Xy = I Xy
N
@N)yenw (LN+1£N+1_J;N>N€EV
as in 1.1, we define for all K € IN
K+1 K
v+ I1 Xv = I Xn
K
(en)vir = (v Mevi—an
N=1

The mapping corresponding to 1 in the spectrum [[ X s

oc K oc K
p o II I Xne = TII II Xn
K=1N=1 K=1N=1

(:EI() N <p§\)+1$K+1 . xK)
KelN * KelN

Remark: It is easily verified and will be used in the subsequent calculations that for all

K+2 _ K41
K € IN we have ¢Yxpy_; =pr ' K41

We begin with the following
Lemma 2.13 Let F = ProjO(FN7L%+1)N€W be a (PLS)-space and let E be a Fréchet-

Schwartz space which is locally 1. Then the following are equivalent:

i) Ext{pps)(E, F) =0
ii) For every increasing sequence (YN)yen € INT and every continuous linear map
oo K+1
C:E— Flﬁl x I kergr N I FN,VN
K=1 N=1

for which there is a commutative diagram

(o] P (o]
Fy x [] kerypre ——wFy x [] kervy

u u

c C

0 wf wX wE w0

28



where the lower row is a short exact sequence of (PLS) - spaces, there exists a lifting
for C, i.e. a continuous linear mapping

oC
D:F— F| x H kerz,l)K
K=1
such that po D =C.
" " 00
Remark: As w[(pf}ﬁ = pﬁ,ﬂi/)KH, the Mapping p actually maps F1 x ][] kery g into
K=1
itself.

Proof: If Ext%PLS)(E, F) = 0 and a diagram (*) as above is given, then we get a right

inverse R: E — X in the lower row and we can define a lifting by T := C o R.
Assume now that ii) holds and let a short exact sequence

0 Wl wX 1 wE w0

of (PLS) - spaces be given. We assume without loss of generality that we have Fy =

oc
U Bnn- By 2.5 we have local splitting, thus according to 2.7 we can set up a diagram
n=1

o0 X
0 W wl] Fn w] Fn
u N=1 N=1
id i A
0 Wk wX a wE w)

for which we have to show that A has a lifting. We put for all K € IN

K
AKX =9 oA E— ] Fy
N=1

For all K € IN we have a commutative diagram

K41 K
[[ Fn U wl[ Fn
N=1 N=1
u u
23
pE+L ®
X pK
&®
o0 o0
[l Fn w [l Fy AR
N=1 N=1
f [
[
4l
[
F
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and the first step will be to show that we can find a lifting for A%, i.e. for every K € IN
there is a continuous linear map
K+1
BETLE— T] Fy
N=1

such that for all K € IN we have

77[)}'( O BK+1 == AI<.

oC
We know that the space [[ Fy is strictly webbed ! by
N=1

K 0 n
OO!|K = ] BN,aNX I1 FN:(OCN)NGWEW ,K € IN.
N=1 N=K+1

If (Uk) e denotes a decreasing basis of neighbourhoods of zero in E, then de Wilde’s
localization theorem gives us strictly increasing sequences (Yn) ey and (Ly)yepn € IN N
such that for all K € IN

A (ULK) C %b (C'Y\K+1) .

As E is a Fréchet space, we get a strictly increasing sequence (Mg ) ey € IN N such that, for
all K € IN AE factorizes over Ejs,.. We assume without loss of generality Mg = Ly = K,
K € IN. So we have for all K € IN

AK (Uk) C pKw (C’Y|K+l)

— ppt Tt (Cmml)
K+1

= YK ( [I BN,7N>
N1

and thus by lifting the canonical unit vectors, we can lift AX to

K+1
K+1 .
BET .E—>NH1FN,7N

such that for all K € IN

Kol K+1
=1
and @bKBKJrl = AK.
We define B! := 0, and use the (BK>I)€W to get a contimious linear mapping
3¢

[eS] K
C:FE— Flﬁl x I (keri/)K N I FN,’YN)
K=1 N=1

1For the definition of webbed spaces we refer to the section 3.1. The notion of a web is often used in
section 3 wheras before it appears only at this point. It therefore seemed more consistent to state the
definition and the elementary properties in section 3.
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in the following way: We put
OF — p?:HBKH _BE KeIN
: ¢ , .
and we observe that for all K € IN we have

K
CF (Uk) = pi "' BR M (Uk) — BX (Uk) C QNHIBNKYN

and

K41 _ K42 pK+2 Kt1
Y C = Ygpr 1B " —¢xB”

_ Kt K+2 K+1
= P YrnBYTT —¢kB
Rl 4K 4K

pr A — A

= 0
and so by defining C' := (CK)I’elzv’ we get a continuous linear mapping as above. To
4
complete (*), we need to construct C. Analogously as before, we define for all K € IN
e Kz K
AV i =pt 0o A: X — [] Fy
N=1
and get for all K € IN the following properties:
a) pg-s—lAKH — pK/I — AK
b) AR = yppK A = p
— pKAq — AKq
c) AE+L _ BE+lg ¢ ey 1K because using b) and the lifting property of BT, we get
Y BF g = A% g = AKT

We then define

5 i1 (pK,  iK ) o7
C = ( A ,(B g— A )QQ) (X = Py ] erg
and get Cqg = pC because of
cKy = p§+1BK+1q _ BE,
_ pﬁjﬂ (BK+1q o AK+1) o (BKq . AK)
_ pEHGKT_GK ke
where in the second equality we have used a) from above. Thus we have constructed a

diagram (*) and the assumption that ii) holds, gives us a continuous linear map

oC
D:FE— Fy x [] keryx
K=1
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such that po D = C, i.e. the mappings DX := pX o D, K € IN fulfill
pﬁgﬂDKH _pE _ K :p[IgHBKH _BK Ke.

Now we can finally define the lifting for A: The continuous linear mappings

K
T8 =X DK . E— ]
N

Fy,KeIN
1

¢

fulfill
pEATEIL K g N

and can be written in the form
T = (1f,...,TE).
With this notation we put
T .= (TX Eo [ F
‘_ ( K)Ke/N e anl K-

and get ¢ o T = A because for all K € IN

pEYT = rpttiT

¢KTK+1

@bKBK+1 _ @bKDK+1
@bKBK+1

AK

= phA

Thus the proof is finished.
We will now look for another description of the spaces appearing in condition ii) of 2.13.
For this we use the following notions:

Definition 2.14 Let a spectrum

f:Flu F2u

of (LB)-spaces,
oC
Fy=U Fy,. NN,
n=1

a sequence (YN) yep € INY and K € IN be given. We put

Fli= () (ﬁ@)_lFNﬁN

N=1
and
~ K K -1
PR 49
B = (LN) BNy
N=1

where By, denotes the unit ball in Fn,, n, N € IN.
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The properties of the spaces F}. which we will need are contained in the following

Proposition 2.15 Let a spectrum F as in 2.14, (YN)yen € INN and K € IN be given.

i)

i)

iii)

F} is a Banach space with unit ball B}, and Fj- — Fi 5, with a continuous embed-
ding.
We have
Fx= |J F?
ccINE
and the topology of Fy is the inductive limit topology with respect to the embeddings
Fg < Fg, 0 € INV.

The continuous linear mappings

K+1
SK FI’E-JFI = kervr N ] FN,’YN
N=1
K+1
K+1
v ()
and
Sk ¢ Frgy1 — keryg
K+1
K+1
b ()
are isomorphisms.
The continuous linear mapping
oC oC
S H Fy — Fix H kerz,[)K
K=1 K=1

@x)gen — (@1, (SxTE+1) geny)

s an isomorphism and the diagram

0 P 00
F1 X H kerz,[)K —WF1 X H kem/)K
K=1 I\’:&

S S
(o] ,lp (o]
[l Fx w ] Fx
K=1 K=1

commutes.



Proof: i) is elementary as the By ,,. N = 1,..., K are Banach balls and thus B}, is a
Banach ball and moreover the span of B} obviously equals F-. The continuous embedding
then follows from B;Y( C Bi yg-

To prove ii), let # € F be given. Then there exists ox € IN such that € g ,,. Accord-
ing to Grothendiecks factorization theorem, there are natural numbers oq,...,0x_1, such
that for N =1,..., K we have LI]\?FKJK C Fn sy and thus for a suitable o € NN g e Fz..
As to the inductive limit topology, the claim follows from the fact that F} < Fk is con-
tinuous and that for every n € IN there exists ¢ € INY and A > 0 such that Brn C ABY%.
iii) follows from ii) and from the fact that the mapping (x N)f\‘,ﬁ — T 41 1S a continuous
inverse for sx and Sk respectively.

For iv) we finally we have to check the commutativety of the given diagram. So let

oC
(#x) e € [l Fi be given. Then
K=1

K
- - == K C
pS(me)]\elN p((LNxA)Nﬂ)Ke/N

- K+1 K41
_ (K41 (K41 K
( N=1 N=l/)Kken

K

_ K+1 K

= ((LN+ xK+1—LNmK> )
N=1)genN

_ K+1
= S(LK TK41 — l’K)

= Sw(xK)KEW

KeclN

which proves iv).

If we collect 2.13 and 2.15 we get the following condition for the vanishing of Ext! (E, F):
Theorem 2.16 Let F' = Proj° (FN, L-’NVH)NGIN be a (PLS)-space and let E be a Fréchet

space which is locally l1. Then the following are equivalent:
i) Ext{pps)(E, F) =0
ii) For every increasing sequence (YN)yen € INT and every continuous linear map
oC
C:E— [] F}
K=1

for which there is a commutative diagram

o0 ,lp o0
[ Fx —w ]I Fx

K=1 K=1
u u
c c
0 Wk wX wE w)

where the lower row is a short exact sequence of (PLS) - spaces, there exists a lifting
for C.
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3 The vanishing of the first derived projective limit functor
for spectra of webbed spaces

The appropriate setting for a general formulation of the theorem of Retakh and Palamodov
as needed here is the class of webbed spaces. Webbed spaces enjoy nice stability properties
as this class is closed with respect to closed subspaces, quotients, and projective as well as
inductive limits. Thus all the spaces considered here are webbed, as Banach and Fréchet
spaces are webbed in quite an easy way. Also the spaces of continuous linear operators
which already appeared in our investigations in the last section will be shown to be webbed.
As for the theorem of Retakh and Palamodov, the methods used for the proof (especially
the abstract Mittag-Leffler method used by Palamodov in [P2]) demand just the properties
being fulfilled by webbed spaces. Thus it is natural to prove the theorem in this abstract
setting, we will use it later on the spaces L (F, Fy), N, € IN where E is a (PLS)-space and
F = (FN, L%H)Neﬂv a spectrum of (LS)-spaces. First we will introduce the notion of a

web in a locally convex space together with some preparatory lemmas needed later on.

3.1 Webs in locally convex spaces

Definition 3.1 Let X be a locally convex space. A web in X is a family
(Coryosar )i oty €IV of absolutely convex sets with the following properties:

oC
i) U Ca=X
a—1
oC
i) U Cay...opna = Cay.ay, Jor allk,on, ... 0p € IN
a—1

i) For every sequence (Qp)pepny € IN™ there is a sequence (Ak)renv of positive real
numbers such that for every sequence (xy),cp m X with

oC
2 € Cay....0p + k € IN the series kz AT converges in X.
=1

The web is called strict, if in i11) we additionally have for every ko € IN
oC
> M@k € Coy,ap,
k=ko
The web is called ordered, if for all sequences (ay)cpy and (Br)cp of natural numbers

that satisfy ay < Br .k € IN, the inclusion Cy, .. o, C Cp,,.. g, holds for all k € IN.

For abbreviation we will use the following notation: For a sequence (o), and j, k € IN
we set ay, ... ap = q);p and aq, ... ag = o, thus Cy; 4, will be denoted by Cau . and
Cal,...,a;g by COz|k'

k

Examples for webbed spaces are all Fréchet spaces: For a Fréchet space E we can define a
strict. ordered web by

k
COCUc = ﬂ Oszj
j=1
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where U7 D Uz D ... is a fundamental system of neighbourhoods of zero for E. Closed
subspaces and quotients of a webbed space are webbed by taking the intersections with
the sets Calk, k,a1,...,ar € IN respectively their images under the quotient map. If the
original web is strict respectively ordered, these webs will be strict respectively ordered
as well. For a countable family (Xx)ycop of webbed spaces with strict ordered webs

o0
cN = (CCJYV ) , N € IN one gets a strict ordered web on || Xy by defining
Ik k,a1,...,ap€IN N=1
k . oc
Copp, =11 Céu,k X I X;
j=1 j=k+1

In general one gets in a slightly more complicated way product webs of spaces that are
simply webbed, but as we will only work with strict ordered webs, it will be easier to use
the form of the product web given above. For a thorough treatment of webbed spaces see
e.g. [K].

The condition iii) in definition 3.1 will be important for using the Mittag-Leffler method
in the proof of our general version of the Retakh-Palamodov theorem. We will refer to this
property using the following notion:

Definition 3.2 Let X be a locally convex space. A decreasing sequence (Ay)ycpv of abso-
lutely conver subsets of X is called completing, if there is a sequence (A,)cpv of nonnegative
numbers such that for all (zy),cpn 0 X satisfying zy, € Ay, k € IN the series

oC

> kT

k=1
converges. A completing sequence (Ay),cp @5 called strict, if for all kg € IN

oC
> ATk € Agg
k=kqo

Remark: Examples for completing sequences which we will need come naturally from a

given web <Oa|k)k,a‘k€ﬂ\/

numbers, then property ii) and iii) in the definition of webs give that the sequence (A),c
defined by Ax = Cy, is completing, if the web is strict, then (Ag)pe also is strict. The
following proposition is easy to prove, we state it for later reference:

on a locally convex space: If we fix a sequence (o), v of natural

Proposition 3.3 Let f : X — Y and g : Y — Z be continuous maps between locally

conver spaces X,Y and Z with completing sequences (AkX)kgw, (Aky and (Af)

)kew keI’

Then the sequence (Ay),cpy of subsets of Y defined by
(51 47) 0 (7 4% + 47)

. . X Y Z .
s completing. If the sequences (Ak >kelN’(Ak >keﬂ\/ and (Ak )keﬂ\f are strict, then (Ag) e

18 strict.

In order to find conditions for Proj'X = 0 similiar to the ones in the theorems B, C, D
and E, it will be necessary to construct complete metrisable group topologies from a given
completing sequence on a locally convex space. In order to show that these topologies exist
(proposition 3.5), we need to know that the sequence (Ap);cp in Definition 3.2 can be
substituted by any absolutely convergent sequence:
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Lemma 3.4 If (Ay),c 15 a completing sequence in the locally conves space (X,0), then
the following holds:

oC oC
i) For all sequences (ix)pepy €l and (2p) ey € 11 Ak the series Y pgxy converges
k=1 k=1
mn X.

i) If (Ap)pcpe 1 strict, then for all (zg),cny € 11 Ak and K € IN we also have for all
k=1

e>0
[ee]
> vk € (1(s)gsrcl, +e) Ax.
k=K -

Proof: Let (Az),n be a sequence as in the definition of completing sequences. We first
claim that for every neighborhood of zero V' C X there is a tyg € IN such that for all £ > ¢

M Ay C V. (1)

Assuming the contrary, we find a neighbourhood of zero Vj and sequences ({1),cp € IN N
tending to infinity and (zy),c satisfying zp € Ay, k€ IN, such that Az is not a
member of Vy for all £ € IN. We reach a contradiction by putting Z; := x; for t = t;,
k € IN and z; := 0 for all other £ € IN; because the series

oC . oC
Z ATy = Z /\t,gl’k
=1 k=1

converges, so (g, Tp),, ¢ v must be a null sequence and almost all Ay, 2 must be contained
in V.

Proceeding to the proof of i), we find a strictly increasing sequence (k¢),.p € IN N tending
to infinity, such that for all ¢ € IN we have k; >t and

oC
> el < Al (2)
k=kt
which implies for all t € IN and S,T > k;
T
> Tk € AAy, (3)
k=S

because Ay is absolutely convex for all £ € IN and z, € A C Ay, for bt << S < k< T.
From this we get first that

kt+1—1
> urxk € MAg, forall te IN. (4)
k=kt
oC
and second (also using (1)) that > urxg is a cauchy sequence in X.
k=k1

By our assumption on (Ag), v the series

oc kir1—1

> D HkTk (5)

t=1 k=k;
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oC
converges, the limit of which we denote by x. Now > pugxk also converges to x, because

k=k1
it is cauchy and the series in (5) is a convergent. subsequence.
Remark: Notice that we have also proved that
oC oc kt+1—1
Yoo BETE= Y. D, PkTk

k:kl tzl k:kf

In full analogy to the previous we can also show that for every NV € IN

oC oC kt+1—1
Yo oBETE= Y, DL METk
k=kny t=N k=ky

Let us now consider the claim in ii): We fix K € IN and ¢ > 0 and for abbreviation we
put Mg := ||(,uk)k>KHll. We shall proceed analogously to the proof of i): We can find a

sequence (k¢),cpy With k1 > K such that

oC
> el <elhf. e IN

k=k:
and absolute convexity gives
kt+1—1
> urTk €M Ag,, t € IN.
k=kt
As before we can show
oc o kt+1—1
o BETE = DL Y. HETk
E—Fq t=1 k—k;

and by our assumption on (Ag),cn together with (11) we get

oc
S upTe E&Akl CeAg
k=k1

ki
Moreover we know that > |ur] < Mk, so absolute convexity gives
k=K

k1
> uptk € My Ak,
k=K

which finally gives
> prrk € (MK +¢) Ax,
k=K

completing our proof.

(6)

(10)

Proposition 3.5 Let (Ay), .y be a completing sequence in the separated locally convex
space (X,0). Then the sets Uy := 2= *+tD A, k€ IN define a basis of neighborhoods of
zero for a metrizable group topology T under addition on X. If (Ag),cp 15 strict, then

(X, 7) is complete.



Proof: Notice first that we get from the definition
1
Uky1 C 5 Up, so Upy1+ U1 CU, k€N,

which implies that (Ug),c is a neighborhood basis of zero for a topology 7 on X and
addition is continuous on (X, 7). As metrizability is concerned, the fact that we have a
countable basis for 7 leaves us to show that (X, 7) is separated and regular. As to the
haussdorf property, take an element = € X, which is a member of Uy for all £ € IN. To
show that x = 0, we write z = 2_(k+1)ck with ¢x € Ak, k € IN and using Lemma 3.4 we
get the convergence of

00 0
Z 2_(k+1)ck = Z Z,
k=1 k=1

thus the constant sequence (), is a null sequence. To show regularity, we observe that
each point has a neighborhood basis consisting of 7-closed sets, due to the fact that for all
ke IN

U1 C Upsr + Upsr C Up.

Now we assume that (Ay),cp is strict and to prove completeness of (X, 7) we take a 7 -
Cauchy sequence (1) pcpv- Then we can find a strictly increasing sequence (k;) jev such
that for all j € IN and k > k;

) ; 1
zp — wp, € Unj = 9—(2j+1) Ag; C 9—(2j+1) A; = ng_ (1)

We write the zy,, j € IN, as

Mu.

Tk, = (xky - xku—l) + Ty -

v=2

From (1) we get
Tk, — Th,_; € 9~ (2v-1) A,_1.v>2, (2)

o0
so by Lemma 3.4 i) the series Y. g, — zk,_, converges in (X, o), and thus also <xk]) -~
v=2 7

has a limit point

oC
r=>. ($ku — xkkl) + 1.
v=2

in (X,0). Now the web is strict, so by Lemma 3.4 ii) we may substitute the sequence

(2—(2y+1)> . for the arbitrary sequence (A, ), in the definition of a strict web. As for
v

every N € IN
I (2—(2v+1)) | <o),
v>N"1 ’
(2) and Lemma 3.4 ii) imply for all N > 2

0

_ —(2v+1) —(N-1)
VEN T, — Th,_; € 2 || (2 )I/ZN—1||[1 AN—17 C 2 An_1 (3)

This shows that <xk]) N also converges in (X, 7) to the limit x. Thus also (zx)cp
J
converges to x in (X, 7) and the proof is finished.
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3.2 The theorem of Retakh and Palamodov in the class of webbed spaces

We are now able to prove the theorem of Retakh and Palamodov in a more general setting
than in the one given in Theorem B in 1.2.

Theorem 3.6 If a projective spectrum X = (XN7 L%H)Neﬂv of webbed vector spaces with

ordered webs <O‘]"\\Zk)k . s given, then the following are equivalent:
[ 3
1) Proj'x =0

2) For every N € IN there is a completing sequence <A;“V>kezzv in Xy satisfying the

conditions

i) KAK c AY for all K, N € IN with K > N.

i1) For every N € IN there is M € IN with M > N such that for oll K € IN with
K > M we have

L%XM C L%XK + A%

8) There is a sequence (V)cpy and for every N € IN there is M € IN with M > N
such that for all K € IN with K > M we have

N —1
L%‘[XM C LﬁXK + JOI (Lflv> C:VJIJ,N

If the spectrum is strictly webbed, these conditions are equivalent to
4) For every N € IN there is a strict sequence (A;“V)kezzv satisfying

i) KAK c AY for all K, N € IN with K > N.
i1) For every N € IN there i1s M € IN with M > N such that

NXy VX + AN

5) There is a sequence (V) and for every N € IN there is M € IN with M > N
such that for all K € IN with K > M we have

N -1
MxyclNX+ N (Ly) cs
J=1

YJ,N

Proof: a): First we show that 1) implies 3) by following the ideas of the original proof of
Retakh (cf. [R, Theorem 3]). Il = [] Xn has an ordered web of the form
N=1

K J o0
Coe =11 G, o x 11 X
J=1 ’ J=K+1
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oC
We define a complete metrizable group topology 7 under addition on II = [[] Xx by
N=1

defining as a basis of neighbourhoods of zero

Up:=Tl and Uy := H{O}x [ X;, NeN.
J=N-+1

Now as Proj'X = 0, the mapping

v o 10 — 1II

N+1
(mN)NeﬂV — (LN xN+1_xN)N€ﬂV

is surjective, so

M= Oglwcw)

and as (II, 7) is a Baire space, we get 1 € IN, such that ¢ (C,,) is of second category in
II, i.e. the closure has an interior point. Now

oC

(] (C’Yl) = U9 (C’ylry) s

=1

so we get v, such that ¢ (Cy, 4,) is of second category in II. Inductively we can find a
sequence (k) such that for all N € IV

w(&,ﬁ-w(n % XJ>

J=N+1

is of second category in (I, 7). By a simple convexity argument, we can show that for every

N € IN the origin must also be an interior point of ¢ (Cvuv): Fix N € IN and let 2y be an

interior point of C := ¢ (C% N), then there exist a neighbourhood of zero U and another

such one V such that g+ U C C and V 4+ V C U. Due to absolute convexity also
—zg+U=—(20+U)C-C=C

and

1 1
5( x0+U)30+ U30+ (V+V)D>0+W.

This means that for all N € IN there is an M € ]N with M > N such that

1
035 ($0+U)+

J=N+1

o0 ' M-1 o0
Y H Son < I Xs| D TT{0}x I X (1)
J=1 J=M
which implies that for all K € IN with K > M we have

w(n Jo XJ> + T T x

J=N+1 J=K+1
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M-1 oc
Let now xz € Xj; be given, then define z € ] {0} x [I X by
J=1 J=M

0 : J<M-1
Tri=<¢ x : J=M (3)
0 : J>M+1

Then the inclusion (2) provides the existence of (y7) ;. such that y; € C;’l sy for J =
1,...,N and of (27) ;. such that z; = 0 for J =1,..., K satisfying
@1)renw = VW) sew + (20) jew

ie. forall J € IN
S J+1 ,
Ty=17 Yj+1 —Ya T 2T

From this and from (3) we get the following:

_ M1
T=1ly YM+1 — YM

Iy =y J=1,.... M—-1, J=M+1,....K (4)
yJeC;’UN J=1,...,N
and thus finally
011\\1455 = LA]\/fr+1yM+1_LNyM
= bﬁyK—?/N

with 18y € 18 X and yy € ﬂ (LJ) 10,{UN This now implies 3).

b): That 3) implies 2) is tr1v1al 1f one puts for every N € IN

N
AY = N NHed ke IN.

VNIk®

¢): The next step is to show that 2) implies 4); the implication 3) implies 5) is done
in exactly the same way. To simplify our notation we will in the following assume that
M(N) = N +1 so that we have

N Xy NP2 Xy +27 VDAY, Ne IV (5)

and we will show that
NIX v N X+ AN, Ne IV (6)

(The proof of (6) for general sequences (M (N)) ¢ is exactly the same. Observe that as in
the assumption two of the sets mentioned are linear spaces, we may multiply the inclusion
with arbitrary scalars). So fix Ny € IN and let € Xn,4+1 be given. We set xy,+1 1= =,
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and using (5), we inductively find sequences () ;= y, 1 and (vy) y>y, . such that we have
w7 € Xy, J>No+ 1,05 €2 DAL J> Ny and
L§+1ZBJ+1 = L§+2ZBJ+2 + vy, J > Ng. (7)

Define for all N € IN
yy = lim L]I\ng
K—oo

To show that the limit exists for all N € IN, we write for K > N > Ny

K1
K41 _ J+2 J+1 N+1
Iy R4l = JZN (LN Tjia— Ly l’J+1) + iy TN

_ J J+2 J+1 +1
= ZLN(J Tyyo — L7 T4 1)+LN TN
=N

Now from (7) we know that
J+2.',UJ+2 — d Tj41 €27 (J'H)Aj, J>N
so using the assumption in 2) ii) we get
—(JH1) 4N
L“,(,+23:J+2 — L“,(,Ha:JH = L}IV (L§+2ZBJ+2 — LjH:J:JH) c o~ U+ )AJ , J > N.

As the (Af,v> form a strict sequence, and as ||( J+1)) | =27V, we conclude
JeIN

J>N";
with the help of Lemma 3.4 that

J42 J+1 —(N=1) 4N
ZLN Tyye — Ly Tjp1 €2 ( )AN (9)
and -
TS J+2 J+1 N+1
yv = lim iyxzg = > oy Trye — Uy Tge1 iy TN (10)
J—oo J=—N

therefore exists. The continuity of the maps LN +1 gives that (Yv) e 18 an element of
X = Proj’X, so if we show that

No+1 N
LN2+ z — N (N nven) € Ane

we have concluded that 4) holds. Indeed, by (9) and (10) we have

No+1 _ J+
INg T YNy = —J_Z LNO xJ+2—LN0 xJ+1€ -2

(NO*l)A%g
= 2 (Mo gl ¢ A

d): It remains to show that 4) implies 1) (the argument that 5) implies 4) is again trivial
and the implication that 2) implies 1) is exactly the same, as no strictness is needed). By
passing to an equivalent spectrum, and considering that two of the terms in the inclusion
are linear spaces, we may assume that for all N € IN

N Xy VX 427D 4N (11)
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oC oC
We want to show that for given (zn) ey € [ X, we can construct (2n)yepy € 1 Xwv.
such that
(L%+IZN+1 — ZN) (@N)Nenw

for this aim we construct inductively sequences (yN )N € XT and (vn) yepv with vy €
€

NelN

2_(N+1)A%, N € IN in the following way: We set ! := 0. According to (11) there are
y? € X and vy € 2724} such that

L%:L'Q = L1y2 + v1.

In the next step there are ¢ € X and vy € 27343, such that
Lgxg + L2y2 = L2y3 + vo.
Proceeding inductively we get the aforementioned sequences fulfilling

N+ N+1

1 N N N
Uty INy1HY =0y +uN.
We define -
ZN = —xN+LNyN— Z LLJ]V’UJ, NEﬂV
J=N
then we get for all N € IN
N+1 _ N+1 N4+1 N+1, N+1 N, N
LN+ ZN4+1 — 2N = —LN+ .'17N+1+.’17N+LN+L +y oy Y
SO S
— > wyurt DD iyvg
J=N+1 J=N
N+1 N+1

_ N+1 _ N, N
= —ly INt1TINTL y =Ny fon

= TN,

thus the proof is complete.

From Theorem 3.6 one can easily set up a sufficient condition for Proj'X = 0 which we
will use in section 5:

Corollary 3.7 Assume that a given spectrum (XN7L%+1)N€W of webbed spaces with or-

dered webs <C’é\‘fk)k apelN fulfills

NHCN+H ool NEJN,(aJ)JGINEIN]N.

N1 QN4
Them the following is sufficient for Proj'X = 0:
(L)

There is a sequence (Vi) v 0f natural numbers such that for every N € IN there is M € IN
with M > N such that for all K € IN with K > M and all sequences (ay),cpn of natural
numbers there is a sequence (By),cp and an s € IN such that we have

M ~M KK N
LN Oals C LNOﬁu + C,”N
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Proof: If we define A,]CV = Cé\‘]k, N,k € IN then for every N € IN the sequence (Afcv)k

is completing and fulfills the assumption of theorem 3.6. Thus Proj'X = 0.

cN

Another version of the theorem of Retakh and Palamodov for webbed spaces has been
proved in [D, Theorem 4.1]:

Theorem: If a projective spectrum X = (XN7 L%H)Neﬂv of strictly webbed

vector spaces with ordered webs <C’N and subspaces Yy C Xy, N € IN

lk ) k,a|k€ﬂ\/
are given, then the following are equivalent:

i) For the mapping

oC oC
v oo I Xy = 1 Xn

N+1
(mN)NeﬂV — (LN xN—H_xN)NeﬂV

we have -
IT Yy C Imp.
N=1

ii) There is a sequence (ON)ycn € INN such that for all N € IN exists
M € IN with M > N such that for all K € IN with K > M we have

O\J,N

N -1
Ky c "X+ N (Lf,v> c?
J=1
Where X = Proj’ X’ denotes the projective limit of the spectrum X.

3.3 Webs on spaces of continuous linear maps

In view of 2.8 and 2.9, the kind of webbed spaces that will concern us are the spaces L (E, F')
where E is a (PLB)-space and F a complete (LB)-space. In this section we will always use

the following notation: E = (EM’L%Jrl)MeW denotes a (PLB)-space. The Fy, M € IN

oC
we will write as Eyr = U Eprm. M € IN, endowed with the inductive limit topology with

m=1
respect to the embeddings I;’,\f t Eypm — By, M,m € IN. Let further By, M,m € IN
denote the corresponding closed unit balls in Epy .

n=1
will denote a complete (LB)-space with embeddings J,, : F,, — F, n € IN and closed unit
balls D, C F,,, n € IN.
oc
We assume that F' = |J D, and that for every subset D which is bounded in one of the F},,

n=1

n € IN, there is n € IN, such that D C Dj; (which can always be achieved by multiplying
every D, with a suitable R, > 0). We are now ready to define the web on L (F, F'): Let
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us recall that for two locally convex spaces X and Y we get a locally convex topology on
L (X,Y) by defining as a basis of neighbourhoods of zero the sets

W(B,U):={T e L(X,Y):T(B)CU}.

where B is a bounded set in X and U a neighborhood of zero in Y. (A thorough treatment
of this subject can e.g. be found in [J, Chapter 2.10]

oC
Proposition 3.8 If E is a (PLB)-space and F = |J F,, is a complete (LB) space such

n=1
that every bounded set in I is contained in one of the unit balls D, of I, for a suitable
n € IN, then we get a strict ordered web on L (E, F) by defining

Co:={T € L(E,F): T factorizes through E,}, o € IN

and

C,

Qlf+1

i={T € Cuy, : T(Bay ) C Doy} b € IN

(here T denotes the factorization of T).

Remark: Thus for fixed k € IN and (an)ye CO‘I . is the set of all linear mappings in
L(E,F) that factorize through E,, and for j =1,...,k — 1 map B,, ; into D
Proof: To show that (Cal k)k N is a web, we first observe that because of Lemma 1.6

| €
every element of L (E, F') factorises through a certain E,,, so

Qj+1-

LEF) =) C,
a=1

Secondly, for for fixed k,a, € IN and T € Cy, the mapping T o I acts continuously
from the Banach space E,, ; into a countable union of Banach Spaces, so Grothendieck’s
factorization theorem gives us an ng € IN such that T o I acts continuously into Fj,,
thus f’(Bahk) is contained in F,,, and bounded there. Due to our assumption on the D,

n € IN, we get an g1 € IN such that T(By, 0,) C Da,,,- As a consequence

oc
ChM::: U C%”Ma-
a=1

Obviously our web is ordered. To show that we have obtained a C-web, we claim that for

a fixed sequence () of natural numbers and every sequence (Ty), v in L(E,F) that
o0

satisfies Ty € Cq,,,, k € IN the series - 27*T, converges in L(E,F). For all k € IN we will
k=1

denote the factorization of T} through E,, by Tj. For k > v we have

Ty € Copp, C Copyy s
thus )
27" (Bayw) C27¥Da, s k> v (1)

which implies the convergence of

X0 ~
> 27k T, I
k=v+1
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in L (FEa, v, F,

t, 1) SO the limit

0 ~
S, = > 27k T, I
k=1

exists in L (E,, ,, F'). In order to see that we are able to put the S, v € IN together to a

mapping on F,, ., we consider the continuous embeddings
o
IV’V+1 : Eah,, — Ea17l/+1.

We have S, 101}, =8, forall v € IN, as
o0 ~ X0 ~
(So*forh)mn = £, 1.,
k=1 ’ k=1 ’
>0 ~
= S 27kT, 1o,
k=1
therefore we can define a linear operator S : E,, — F' by putting
Sx =85z, € Ey .
E,, being ultrabornological and S,, v € IN continuous, S also is continuous, so it remains

to show that S = § 27% Ty in L (E,,, FF). For this, let a bounded set B in E,, and a closed

k=1
neighborhood of the origin U in F be given. We have to show that there is an N € IN such
that

M
S— S 27T, e W(B,U)
k=1

for M > N. Now there is vy and A > 0 such that B C /\Bah,,og, where o denotes the
inductive limit topology of E,,. (in an (L.B)-space the system of the unit balls, closed with
respect to the inductive limit topology is a fundamental system of bounded sets, see e.g.

[e @]

[MV., Satz 25.16]), and a sequence (u;);cp of positive numbers such that T (lU le> C
=1

AU, Using (1) we get N > 1y satisfying

o0
Z 27k: S /~'LO¢,,0+1 :
k=N+1

so that we have

x ~ 00
k*%f:Jrl 2 Tk(BahVO) - (k—%-l-l 2_k> Da”o-H - Nau0+1DaV0+1 C /\_IU.

This gives for M > N
M . 00 1
S— S 2F%T | (Bayuy) = > 278T4(Bay, ) C AT,
k=1 E=M+1

and because of continuity and U being closed

M o 1
S— 3 T (Bm,,,0 ) CAIU, M>N
k=1
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SO

(S— % )\ka> (B) cU, M>N.
k=1

To show that our web is strict, observe that for all kg € IN we obtain from (1)

e8] ~ o0
Z 27k: Tk: (Bal,kofl) 6 ( Z 2k> DOzk()? C Dako
k=ko k—=kg

thus

0 ~
kz]:c 2k T € Oo‘lko’
=ko

and the proof is complete.

4 Further conditions for the vanishing of the first derived
projective limit functor for spectra of webbed spaces

In section 2 we characterized the connection between the vanishing of Ext%P LS) (E, F) and

Proj' L (E, F) and section 3 contained a generalization of the Retakh-Palamodov theorem,
which gives a characterization of the latter problem in terms of the webs on the spaces Xy,
N € IN. This was done in order to give an analogy to the theorems A and B of Vogt and
Retakh-Palamodov cited in section 1.2 . As already indicated there, it is in general very
difficult to verify the inclusion

N -1
L%XMCLI]\{;XK-FJH (ijv) cs
=1

MNJI,N*

so we now seek to find conditions similiar to the theorems C and E of Vogt and Frerick-
Wengenroth. The advantage of these conditions is that the inclusions between the spaces

Xy, N € IN, are substituted by inclusions between Banach balls. The analogy will be
N -1

that we try to substitute the spaces Xy, N € IN, and the intersection ) (ijv) C;’UN
J=1 ’

by websets Cé\lfr (An example of that kind is the condition in corollary 3.7, we will try to
find similiar conditions with general r € IN instead of r = N).

4.1 Sufficient conditions

The first step will be to give a “graded” version of a sufficient condition, i.e. we set up
N -1

a condition in which the intersection () (Ly ) C;’UN is substituted by the webset Cé\lf
J=1 ’ "

with an arbitrary » € IN and the space Xjs is substituted by the webset CO% .

Proposition 4.1 Let a spectrum X = <XN7L%+1)N€W of strictly webbed spaces with or-

dered webs <C'(]X\‘fk)k a eV’ N € IN be given. Suppose that we have for all N, k,a, € IN
N N
2C,, C lek.
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Then the following is sufficient for Proj'X = 0: For all N € IN there is a sequence
(*yév) - and an M € IN, such that for all K € IN with K > M and all sequences (0w),c v
v

there is a sequence (B,),c v, such that for every r € IN we have

M ~M KK N
LN Calr C LNCBlr-H + C’YNlr

Remark:

i) As the proof will show, we have to demand that the substitution for X x must have the
index r + 1, the same condition with r instead of r + 1 merely leads to the conclusion
that the spectrum is reduced, which is already one of our general assumptions.

ii) The assumption 2 Cé\lf . C C%lk can always be fulfilled when dealing with spectra

L (E, F) by renorming the Banach spaces constituting the spaces (Fn)y¢py-

Proof: As a first step, by replacing (c ), pv by (4 @), ¢ v, We may write in our assumption

M 1 -
M K K
LNC'QW 1 O

1 N
6|r+1 + 1 C’Yh'

Second, it is sufficient to show Proj 1¥ =0 foran equivalent spectrum X , SO We may assume
that in the assumption we have M(N) = N + 1 for all N € IN. For every N € IN we will

construct strict sequences <Afgv )keﬂv of subsets of X, satisfying the following conditions:

i) For every K, N € IN with K > N we have

NAK C AR

ii) For every N, K € IN and every sequence (o), there is a sequence (4,),p such
that for all » € IN we have

N+1AN+L ~ KK N
iy Oy CLNCT|T+1+AT

For N =1 we set A} := C’illk and see that ii) is fulfilled by the assumption of the theorem.
For the induction process we show for simplicity of notation the step from N =1to N =2
(The general induction step from N to N + 1 we can handle analogously). We use ii) for
N =1 with (),en == (72),epvs K = 3 and get a sequence (8,), such that for all

re N
22 33 1
Llc’leT C Llcﬁ\r-ﬁ-l + A,

If we take x € C’% , we find ¢ € CEIH—I and z € Al such that /22 = 13y + 2. This implies

r=idye (8)7 AL

furthermore we have

3 2 3 ~3
T — 15y € 072 . + L2CB|T+1,
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so that

—1
r=r—dytdy e dop (D) ain (g0, r0n )l W

We know by 3.3 that
(<L§>—1A; n (gcgl e ))
r relN

defines a strict sequence on X5, so we can define for r» € IN
-1
2._ (2 1 3
AZ:= () Abn <L2CS|T + 03%) .

By this definition we have obviously fulfilled property i) for N = 2, so we proceed to the
proof of ii). Let for this K € IN and (ow ), be arbitrary but fixed. Equation (1) gives
us for all r € IN
0§2| - chﬂl + A2 (2)
We now use our initial assumption in the formulation of the proposition to obtain (6,), ¢ p
such that for all r € IN
15C5 c 5oLty Lo,

Ir Olrt1 ST

Inserting equation (2), we get for all r € IN

1 1 1
LgCgp« c - 10 xcok — L3Cg| T 1 A2,

|r+1

i 1,
C *[/2 C(sl +1+7 CB| +1+1AT'

Let r € IN be fixed, and take x € ng; using the last equation inductively, we get sequences
(k) penvs Wk)pery and (2x) ey which satisfy for all & € IV

K
T € 6|r+k”
Yk € Og|r+k’

and 2z, € A72°+k71=

such that for all k£ € IN
k ) . k :
Br =3 27Ut Kp 4 S 270+ 4 97k 3y, (3)
Jj=1 Jj=1

Due to strictness, we know from 3.4 that for every ¢ > 0

(7+1) __or—1 7 r—1 —J K
5312 7 =2 j zr:+12 riaj €2 (H <2 >j27“+1 i +6) o

o (putting e :=27")

Jj+1
J¥12 T i~ 05|7‘+1
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Analogously we get
> —-(+1) 2
2 zj € A;L

j=1
The sequence (2_k yk)kelN converges to zero, because the series
o0
> 2 Ry,
k=1
converges. So we get
3 KK 2
//2.%' = LQ 05|r+1 + AT'
Thus we get
3 K K 2
LQCEV C ty C5I|‘r+1 + A;. (4)

which is condition ii) for N = 2, thus we have finished the induction step. Now we easily
get Proj' X = 0 using Theorem 3.6: For every N € IN we set M(N) := N+ 1. let K € IN
with K > M and = € Xy, be given. We can find a sequence (o), of natural numbers
such that « € Cé\lfjvrl; for this sequence we find another one (7)), 5 such that the inclusion
in ii) with » = N is fulfilled. This shows

L%Hx c KXy + AY

Form this and from i) we conclude that condition ii) in theorem 3.6 is fulfilled, so Proj' X' =
0.

If we want to weaken the condition in the sense that the substitution for X; does not have
to contain the given index r but may have a maybe considerably bigger index s € IN (of
course depending on r), thus making the term on the left hand side of the inclusion smaller,
we have to place stronger conditions on the substitution for Xg:

Proposition 4.2 Let a spectrum X = (XN7L%+1)N€W of strictly webbed spaces with or-

dered webs <O‘]"\\Zk)k . be given. Suppose that for all N, k,ay, € IN
N N
2 Cqy, C O -

Then Proj'X = 0, if we have the following: For all N € IN there is a sequence (W)enw
and an M € IN, such that for all K > M and all sequences (o), there is a sequence
(Bv)ycms such that for every r € IN there is s € IN such that for all t € IN we have

M ~M KK N
LN Cals C LNCBTt + C’ylf

Proof: We proceed quite analogously to the preceding: Defining for all N € IN the strict
sequences (Afcv )k N 8 before, and using the same arguments as before, we get sequences

(Bu)yen and (s(r)), v such that for all ¢, € IN

02

33 2
Vi © LQC/BM + A (1)
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Applying the assumption to (8,),cp, we obtain (6,),pn and (3(7));cp such that for all
7. teIN
1. -1
L%Cglé(?’) C 7 wta?@;fl‘{ + 1 032
Setting now 7 := s(r),r € IN and using (1), we get for all r, ¢, € IN

|7

1 -1 1
3,3 + KK = 33 T A2
chﬂlﬂs(ﬂ) C 4 ) 0(5|£ + 5 //206” + 4 A,,,.

Here we set t :=%:= 5 (s(r + 1)), and get for all » € IN( denoting 3 (s(r)) by 3(r))

1 1 1
3,3 KK 3,3 2
chﬂwm C 4 b2 C5I§(r+1) T 9 chﬁ\s‘(rH) + 4 A

Thus the same process as before gives us for all » € IN

3,3 KK 2

chﬁlgm S A (2)
The rest is the same as before.

Remark: It should be noted that neither one of the two sufficient conditions implies the
other one in any standard way.

4.2 Necessary conditions

We now try to find a similiar condition to Vogt’s Theorem C of section 1.2, by finding for a
given spectrum X of srictly webbed spaces a necessary condition for Proj' X = 0, in which
the inclusion relations between the whole spaces as in Theorem 3.6 are substituted by ones

betwen the websets <Cé“\lfk)k e
| €

Proposition 4.3 Let a spectrum X = <XN7L%+1)N€W of strictly webbed spaces with or-

dered webs <C’N

a"“)k,alkew be given. Let for l{;,oqk c IN denote

k . 00
By, =X N Cl, > I X
j=1 j=k+1

Then Proj'X = 0 implies that there is a sequence (Vj)jeﬂ\ﬁ such that for every N € IN
exists M € IN satisfying the following: For all sequences (aj)jEﬂV there are (/Bj)jeﬂ\f and
(Rj)jeﬂ\f such that for all r € IN we have s € IN satisfying

N -1 .
M ~M N N J
N Ca|s - RT (L Eﬂp« + 7,91 (Lj ) OWj,Nﬁh)

Here R, can be chosen as 28(r)+2,
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Proof: Let us assume Proj' X = 0 for a spectrum X of strictly webbed spaces. Then we
know from Theorem 3.6, that there is a sequence (7;) jeN of natural numbers such that for
all N € IN there is a M € IN such that

N -1 .
Mxy o NX + n (), (1)
J:

We take an arbitrary sequence (ay);.p of natural numbers, and put

Ak::CM ke IN.

Oé|k7

Then we know from Definition 3.1 that (Ay), v forms a strict sequence of subsets of Xy
and thus according to Proposition 3.5 induce a complete metrizable group topology under
addition on X and thus (L% Ak> N induce such a topology on 1% X;;, which we call 7.

ke
The inclusion in (1) enables us to use a Baire argument: Due to the properties i) and ii)

of webs, we get a sequence (ﬁj)j cv such that for every r € IN the set

N -1 .
N N J
L Eﬂlr + jgl (Lj ) C’Y\j,Naﬁh«

is of second category in (L% X, 7') (the closure has an interior point, which can be con-

sidered to be the origin with the same argument as in the proof of Theorem 3.6). In the
following, let us use the notation

N -1
N J e
‘791 (Lj ) O’Y\j,N?ﬂW T Dﬂ\'f’

so that for every r € IN [’NEﬁh« + Dg,, is of second category in (L%XM, 7'). Remembering
from proposition 3.5 that the zero neighbourhoods for 7 are given by

Uk = 2_(k+1)Ak,
we get for every r € IN numbers s(r) € IN and R, = 25(0+! such that
Lj\NdAs(r) - RTLNEglr + D/ngT. (2)

Without loss of generality we assume that for all » € IN we have s(r + 1) > s(r) and thus
R, 11 > R,. Our next step is to show that the closure in (2) is redundant, and in the proof
of this claim we assume for simplicity of notation s(r) = r for all » € IN. We fix an ry € IN
and observe that for all j € INy and any ¢ > 0 we have because of (2)

M N M
VN Argtj C Rroj (L Eppges T Dﬁlro-&-j) + 0uN Argtjt (3)

We now take an = € A,, and we will show that there is an R,, > 0 which does not depend
on x (only on A,,) and satisfies

Nz eR,, (LNEBW + Dﬁ\N) . (4)
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To do this, we set up an induction process: We want to find (en),cp,. (dn),epy, and
(¢n)penv such that
en € Eﬂ\r0+n’ n € INg

dy, € Dﬁ|m+n= n € INg (5)

cn € Argin, nelIN
such that for all n € INg

n n
Nz = Ry (LNeg +dy+ > 2ot Ne, 4 50 2(7“0+l)dl>
=1 =1
+ Ry 270t Rl el ()

Using (3) with j = 0 and ¢ = R,,27""FUR L we obtain ey € Eg,_, do € Dg, and
c1 € Ap,+1 satisfying

L%ZE = R,, (LNeg + do) + RTOQ_(TO'H) r_nl—f—l L%/cl.

As to the induction step, let for an arbitrary n € IN e, ..., en, dg,...,dy and ¢1,...,Cn11
be given, such that for j = 0,...,n we have ¢; € Eﬂmﬂ., d; € Dﬁlmﬂ” ¢j+1 € Apgyjr1 and
the following holds:

n n
My — R (LNeg—l—do—i-lZl 2oiroVe 1 3 2(7“0“)dl>
+ R, g (rotn+l) 7“_01-1-n+1 L%CnJrl- (%)

We apply (3) with j=n+1 and o = Rr0+n+12*1Rr_01+n+2 and as ¢p4+1 € Apgine1, we find
éntl € Eﬂ\r0+n+l’ dni1 € Dﬂ\m+n+1 and ¢, 9 € Apyqn42 fulfilling

M N —1p-—1 M
LN Cnt1 = Rrgnt1 (L €ny1 + d'ﬂ+1) + Rrgtn+12 Rm+n+2bN Cn+2

Inserting this equation in (**), we get

ntl n+1

L%x = Ry, (LNeg +dog+ > 2_(T0+Z)LNel + 5 2—(ro+l)dl>
=1 =1
+ R, 9—(ro+n+2) ;01_4%_4_2 L%Cn+2; ( % %)

thus finishing the induction step. The properties of the e,,n € INy, d,,n € INy and
¢n,n € IN in (5) together with strictness and Lemma 3.4 imply that

S 9—(ro+)
l;? 0Ttler € Eﬂ\r0+1=

S~ 9 (ro+)
l;Z oTtidy € Dﬁlro-H

and
0
3 2—(7“0—‘,—1—1—2)6Z
=1
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converges in Xy, the latter meaning that

—(rog+n—+2 -1 M
Ryy2 (ro ) ro+n+2tN Cnt2

tends to zero as m tends to infinity. (Keep in mind that R,, < Ry in42 for all n € INy).
Thus if in (***) we let n tend to infinity we obtain

M, _ N S o (ro+l), N 2 o (ro+1)
v = Ry tVeg+do+ 32 e+ >0 2 d;
=1 =1

N N
€ RTO (L E18|7’0 + D6|r0 te Eﬂhﬂo-{—l + DB'TOJrl)

C 2Ry, (NEB, +Dg, )

which proves (4) with R, := 2R,, r € IN and thus our proposition.
The same proof gives:

Proposition 4.4 Proj'X = 0 implies that there is a sequence (79')7‘617\” such that for every
N € IN exists M € IN with M > N such that for all K € IN with K > M we have the
following: For all sequences (aj)jElV there are (/Bj)jeﬂv and (Rj)jelN such that for allr € IN
we have s € IN salisfying

N -1 .

M K

3G C’O]lli C R, (LNCél(T + .ﬂl (Ljv) C’%MvﬁlJ
J:

Remark:

i) In this proposition the webs need not be ordered (in the last proposition we needed
this fact for the easy form of the product web).

ii) One cannot expect the condtitions given here to be sufficient, because the sequence
(Ry),c v appearing here makes it impossible to reach an inclusion as in the theorem
of Retakh and Palamodov. On the other hand, the appearance of this sequence seems
natural, because in the proof we used a Baire argument for which it was crucial to
have a topology constructed out of the websets belonging to the sequence (o) jeN-
To construct this topology we have to use weights 2"+, » € IN, which appear in the
condition as the numbers R,, r € IN.

5 Weighted sequence spaces

We will now apply the results of the previous sections to power series spaces of (PLS) -
type and obtain some splitting results for these kind of spaces. In the first two subsections
we state the definitions and elementary properties and state the general assumptions on
these spaces which will be valid thoughout the whole section. 5.3 contains a quick look at
local splitting for these spaces. The subsections 5.4 - 5.7 contain splitting results in the
category of (PLS) - spaces as well as results for the vanishing of Proj'L (E, FF) for special
pairs E' and F' of power series spaces of (PLS) - type. In 5.8 we gather the results we have
obtained and the connections we could prove between the vanishing of Ext%PLS) (E,F)

and Proj'L (E, F).
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5.1 Projective limits of special weighted sequence spaces

We explain the kind of spaces we will consider throughout this section. We will investi-
gate (PLB)-spaces of the following kind: Consider an infinite matrix (ax, g m) that
satisfies the following properties:

MK meN

axx.m > 0forall A\, K,m € IN.

aIKm < QN K11,m for all A, K, m € IN.

axxm = oxKmi1 for all A, K,m € IN.

We take a fixed p € IR with 1 < p < oc and for K, m € IN we put
oC
X = lp (axm) = {(@) e 1@\ ) e liem = El ax K m" |TA[P < oo}
For p = oc we put
XEm =l (axm) == {(@x) e @) renwllBm = sup ax K m|Tx| < oo},
€

or
X2 = o (axm) = {(@\) ey * i angemler| = 0},

where ¢g (ag ) is endowed with the same norm as loc (axm)-
In all cases the X%, and X7?  are Banach spaces and because of the assumed estimates,
we get for all K, m € IN the continuous embeddings

P D 3 co (0]
Xim ™ Xk my1 respectively X2 — Xpp )

and

P P : co co
Xxi1m = Xkm respectively Xgm = XK moi1-

oC
We put for all K € IN Xf( = U Xf( m: and get a projective spectrum of (LB)-spaces with
m=1 ’

the continuous inclusions X% X P. as connecting maps (We deal analagously with the
o - case).

Definition 5.1 For a matriz A = (ax xm), meny 08 described before we will denote the

(PLB)-spaces arising out of the construction above by A% (A), 1 < p < oc and A% (A)
respectively.

Using this construction for matrices (ax xm) \Emen and (bv,Ln)y 1 ey We can con-
sider (PLB)-spaces XP = ProjOXf( and YP = ProjOYf, and set up a projective spectrum
L(X? Y}, ) = L(X?,Y}), L € IN with again the inclusions as connecting maps (Analo-
gously in the ¢y - case).

In our applications of our general results to these kind of spaces we will consider the follow-
ing special kind of matrices: Let # = (x)\) . and y = (ya) v be sequences of positive
real numbers tending to infinity. Let (rx)gcpn and (sm),,cpv be increasing sequences of

real numbers and set r := lim rx and s := lim s,,. Then the matrix (a .
K—o0 K m-—soo ( /\vam))\,A,meﬂV
defined by

axzm = exp(rx Ty — smyr), A, K,m € IN

satisfies the conditions demanded above.
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Definition 5.2 The (PLB)-space constructed with this special matriz will be denoted by
l
AT}?S (.’IJ, y)

Remark:

i) As in the special case of Fréchet power series spaces one can show that for s < oc we
have Aff s (, y)éAipo (z,y) and the same holds for r < co. As we are only interested

in the vanishing of the Functors Ext! and Proj!, which is a property independent of
isomorphism classes, we will restrict ourselves to the case r = 0 respectively s =0 in
the finite case.

ii) Moreover we will consider the sequences (13),cpn and (sg)gcp. to be either (k). p
for r,s = oc or (—k‘l)kgw for r,s < oo, in order to avoid too much complicated
notation when formulating our conditions. The methods for general (r),. and
(81)pcpv are not different from the ones used here.

First we can quite easily show that the spaces defined in 5.2 are (PLS)-spaces:

Proposition 5.3 Let an infinte matriz A = (ax x.m), menv be gwen and fiz K,m € IN

i) For (PLB)-spaces X given as X = A (A), 1 < p < oc or X = A (A) the inclusion
J: Xgm > Xk mt1 is a compact operator iff

. a)\ K 1
lim ~AdmAl 0
A—oc AN K,m

i) If A= (exp(rgxy— smy)\)))vK’melN with the sequences . = (T\) e ¥ = (UA)renw
(rE) e and (8m) e as above, then the spaces Agfs (z,y) and A% (v, y) are (PLS)-
spaces.

Proof: i) follows from the following lemma ([MV, Lemma 27.8]):

Lemma: Let L =1, 1 <p<ocor L D cy be a closed subspace of I, such
that (lywk)pepy € L for alll = (Ix) ey € loc and x = (2g),cpy € L. Then for a
given d = (di) ey € loc the mapping D : L — L, D(xp)pcp = (dpr)pe v I8
continuous and linear and the following are equivalent:

i) D is compact

il ) d € ¢y
In our case we set L :=1[,, 1 <p < ocor L := ¢y. and define D by means of the sequence
d = <(12AKT’”+1)/\ N Furthermore we use the isometric isomorphisms Tk ,,, and Tk ;1
JK,m c
defined by

Tkm @ Xkm — L
(t)\))\eﬂv — (t/\a)\,K,m>)\€ﬂV
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and analogously for T ., 1. We have a commutative diagram

J
Xkm — Xkmyt

1 Txm 4+ T mt1
L 2

which implies that D is compact iff J is compact (keep in mind that Tx ,, and Tk 1 are

isomorphisms and that compactness is an ideal property), thus the claim follows immedi-

ately.

To show ii), take an mg € IN such that s,,,41 is strictly greater than s,,, and observe that

the quotient in i) can be written as
XK mo+1

= €Xp ((Smo - 3m0+1)y)\) .
ax K,mo

This expression converges to zero as A tends to infinity iff Alim Yy = 00, so ii) follows.
— 00

We now want to describe the webs in the spaces L (X,Yy), N € IN. For this let infinite
matrices (ax x.m) M men and (bv,Nn), N ey be given. We will restrict ourselves to the
case where

Xgm =l (6xm). K,meIN

and
YN,n = (bN,n) s N,?’L cIN

as in this case it is possible to give a good description of the continuous linear operators
T : Xgm — YNy In the following theorems we will always refer to the spaces Xg .
K,m € IN and Yy, N,n € IN in this meaning.

Lemma 5.4 Let K, N € IN be given.

i) For every m,n € IN the continuous linear operators T : X m — Yy, are given by
matriz representations (T’/v)‘)u)\eﬂ\f such that for every t = (ty) e € Xi,m we have

00
Tt = <Z T\ t>\>
A=1

veIN

The operator norm of T is given by

b
IT|| = sup { b |Tm|}

v,AEIN A Kom

i1) The continuous linear operators T : X — Yn are given by matriz representations
(Tux),c v that fulfill the following: For every m € IN there is an n € IN such that

by, N
sup 4 2eln o
vAEIN | O\ K,m
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Remark: From i) it is obvious that for an operator T': X — Yx the numbers

b
Cp i= sup M|Ty.)\| ,meIN
v,AEIN ax,K.m

represent the operator norm of Tix,. 1 X m = Yy pom) m € IN
Proof: i) For t = (t))\c v € XK ,m We have

oC
t= > tiey
A=1
where (e) ),y denote the canonical unit vectors. We write Tt as (T;,t),, v and get
[e.@]
Tt = (Tyt)yew = <Z t,\Tl,e>\>
A=1 velN

so we can put T, ) := T,ey. The formula for the operator norm we get by the estimates

il = sup {bos
v

0
> Tl/,)\t)\’}
A—1

IA

[ee]
sup {by,N,n sup {|Tuslay ke b 5 aA,K,mlm}
veIN NEIN

= sup {bu,N,naX}c,mm,A}”t”XK,m

v, AeEIN

and

171 = sup 1T (a3 e men) I,
AeIN N,n

}

The proof of ii) is easily obtained by observing that by Grothendieck’s factorisation theorem
the continuous linear operators T : X — Y are just sequences of operators T : X, —
Ynn(m): m € IN, such that T|”)};1n =T™, m € IN. Inserting the vectors ey, A € IN, which
are contained in all Xg ,,, m € IN, yields that the matrix representations for all T are
the same.

~1
= Sup {bv,N,na,\,K,m Ty
v, AeEIN

We will use the matrix representations to describe the websets <C’N on the spaces

a‘k)k,a rEIN
L(X,Yy), N € IN. For this we have to keep in mind that in Sectionl 3.3 we made the
assumption that for every Yy, N € IN, we know that every set which is bounded in one
of the Yn,,, n € IN, is contained in one of the unit balls Dy, C Yn,. n, N € IN. As we
are interested in the spaces Af{s (z,y) and A% (z,y) and this assumption is not a priori

fulfilled (e.g. if (8m)pmen = (—%)mew), we will use the following convention: If a matrix

(bu,N.n)y N ey does not have the property that for every n, N € IN every bounded set in
Yy, is contained in the unit ball of some Yy 5., we put

bynni=nbyNnn, v,N,n € IN,
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thus ensuring that for every N,n € IN and every bounded set B C Yy, contained in
R Dy, for an R > 0 we have for ng € IN with ng > maz{R,n}

B Cnyg DN,n Cng DNJLO
and so our assumption is fulfilled with the new unit balls
f)N’n :=nDp,, N,nclIN.

If the given Matrix has this property, (e.g. in the case (s;),,cy = (M)pen). We do not
have to change the norms and simply put

bu,N,n = bu,N,n; v,N,n € IN.

With this convention, we can formulate the following description of the sets <C’é\|7 k)k N

Bed)3
Proposition 5.5 Let K, N € IN be fired. For a continuous linear operator T : Xx — Y,
a sequence (o) of natural numbers and v € IN the following are equivalent:

i) T is a member of Cé\fr

i) There are sequences (Np),cy and (Cp)peny With Ny, = oy and Cp, = 1 for
1 <m <r—1 such that for allv,\ € IN

. a)
T\ < inf < Cp, ==
meIN bu,N,nm

(where (T,)), \cpy denotes the matriz representation of T)

Proof: T being a member of Cé\lfr means that T has a factorisation T : X,, — Yy and

that for j=1,...,r—1 TXaw‘ acts continuously into Yy o, with operator norm less or
equal to 1. Its matrix representation is the same as the one for T, which can be seen by
observing that T and T coincide on the system of the canonical unit vectors. From Lemma
5.4 with K = a1 and the remark after it, we see that this can be described by the existence
of (nm) ey and (Cpy), e such that ny,, = oy and G, =1 for m=1,...,7— 1 and

b
sup {V’Mn(m)|TV,,\|}§Cm, m € IN.
v AEIN | ) a1.m

This finally is equivalent to

a
T, 5| < inf Cp 22214 3 N\ € IN.
meN v N,
So the websets in L (X, Yy ), N € IN can be described as matrices for which the components
satisfy the estimates given in the last proposition. We can use this fact to transform
the inclusions in our conditions on Proj'X = 0 into inequalities containing the weights

(@A,K,m)x,f(,meﬂv and (b”’N’”> u,N,neﬂV:
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Lemma 5.6 For N,M,K,r,s,t € IN, sequences (a),cpy> (Buv)yen (W)yenw of natural
numbers the following are equivalent:
i) There exist R, S > 0 such that

M K N
CO‘IS C RCBM + SC’YW

i1) There exist R, S > 0 such that for all sequences (N ), and (Cpm) ey with Ny =
g1 and Cp, =1 for m =1,...,5 — 1 there are sequences (pm) ey 9nd (D) ey with

Pm = Pmi1 and Dy, =1 form=1,...,t =1 and (gm) ey 90d (En) ey With ¢ = Ymy1
and E,, =1 form=1,...,r — 1 such that for allv,\ € IN the following inequality (which
we will call (*)) holds:

) a ) a ' a
inf < C,, “danm <max<{ R inf {D,, IAfrm .S inf {E, 2Ay,m
melN by, M, melN v, K ppm melN b, N g,

Proof: We first show that i) implies ii). Let (np),,cn and (Cp),cpn With 1, = apin
and Cp, =1form=1,...,8—1 be given. We set for all v, A\ € IN

a
T, = inf {C’m SAoa,m }

bu,M,nm
Using the last proposition, we see that (T,,), v 18 an element of Co% , so we find matrices
(Vo) yaen and (Wy0), \cpv such that for all v, A € IN

TI/,A = RVV,)\ + SWV,)\- (1)

These matrices belong to Cé‘(t and C% respectively, so there are sequences (py,),,cp and

(D) e With pp, = Brqr and Dy, = 1form =1,...,t — 1 and (gm) ey a0d (En)en
with ¢y = Yme1 and B, =1 for m = 1,...,r — 1 fulfilling for all v, A € IN the continuity
estimates

Voal < inf {Dm Zw_lm}

v, K,pm

and |W, | < inf {EmM}
’ meIN

v,N,gm
thus we immediately get from (1) for all v, A € IN
inf C’mM <2mazx{ R inf me , S inf Emw
mel bu, M mel by, K o men by, N

Assuming now ii), we take an operator (T,)), \op € Co% . Then lemma 5.4 supplies us
with sequences (1) ,cpv and (Cp), ey With ny, = g and Gy = Tform =1,...,5 = 1

such that N
T, b
sup [Tl bv M <1
v,A,meIN C(m axa1,m
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Now ii) gives us (py) e v 204 (D) e v With pr, = By and Dy, = 1form =1,...,t — 1
and (gm) ey and (Ep) ey With ¢ = By and E,, =1 for m =1,...,7 — 1 such that for
all v, A € IN (*) holds, the latter being equivalent to

sup M > min 1 sup 761/"[{’13’" 1 sup 7&/’]\7’% (2)
meN Cma)\,al,m a R e Dmak,ﬁl,m "S men Emak,’yl,m

Let us construct the decomposition of (T, 5),, .t Let
I;l/ M,n L IN)V K
Ji:={v,ANEIN: sup { ——"" 4 > — gsup { ———Pm
{ menN | Om ax,o1,m Ryenv | Dm ax,Br.m

JQZ:WXW—Jl

and

We set for v, A € IN

1 .
Vo ::{ Bloa o WNER

0 : () ey
0 () €T ’

%T,,’)\ : (I/,)\)EJQ

Then we have T,y = RV, x+SW, , for all v, A € IN and to prove i) we have to verify that
Vi, A)u, e and (W, ,\)V’ \emv Delong to Cé‘(t and C’é\(r respectively. For this, we observe that

(2) implies for all v, A € IN

Vil by.xc 1 T, | b
Sup | Vv)\ Vv-[\vpm S _ Sup | Vv)\| Vvap’m
menN | Dm ax,p1,m R env | D A B1,m
T, b
S Sup | Vv)\| V7M7nm
meIN C(m a)\,al,m
< 1,

the last inequality coming from Proposition 5.5, because (7))

Analogously 5
|W1/ A bl/ N,q
sup { Al Zidm L
meN { Em  axqym

: M
vaclv 18 amember of COqs‘

This completes the proof.

5.2 Power series spaces of (PLS) -type

We will now take a closer look at the spaces A, ; (z,y), fixing some notation concerning the
(LS) - steps and determining under which conditions these spaces are Fréchet - Schwartz
respectively (LS) -spaces.

Definition 5.7 Let a matriz of weights
A= (aA,K,m)A,K,mEW = (exp (rg@y — Smy/\))A,K,mew

with sequences (1i) ey 0nd (Sm)pmepn 08 10 section 5.1 be given.
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i) For every K € IN and 1 < p < oc we put

o9}

Alsp* (re,y) == Ullp(eXP (rczy — Smy)\)))\eﬂv
m=

where the union is equipped with the inductive topology with respect to the inclusions.
If for a K € IN we have rg =0, we put

AP (y) == AZ* (0,9)
i1) For every m € IN we define the Frechet space
AP (,8m) = lim Iy (exp (rx@x — $mya))remy
and for any m € IN with s, =0
Al (2) = Al (2,0)
which are the well known Fréchet power series spaces (cf. [MV, Chapter 29]).
Analogously we define the spaces A°* (ri,y), AS* (y), AL (z,8,) and A ().
Remark:

i) Using the notation of definition 5.1, we may write the space Af{s (z,y) as
Ag},s (37, y) = LHII(I. Ai’l* (7'K7 y)

ii) Observe that for the space A% (x) the theorem of Dieudonne and Gomes (cf. [MV],
27.9) implies that A% (2) = Ale (z) iff lim 2y = 0.
g

In some of the cases we will consider, it will be important to know, under which conditions
the space All_ (x,y) will be a Fréchet- resp. an (LB) space:

7,8
Proposition 5.8 For the space Agfs (z,y) with 1 < p < oc we have

Al _ 4l oo
i) NS (z,9) = AP () Zﬁ)\lél{vgi>(]

i1) Afy (2,y) = AJ"(y) iff lim £ =

—oc I

iii) Moo (2,y) = AF (z) iff lim 2 = cc

A—oc
iv) Afoc (2,y) = A% (y) iff sup 2 < oc
AEIN

The analogous characterisation holds for the space AL’ (z,9)
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Proof: We will prove the theorem for 1 < p < o0, as the other two cases are proved in a
completely analogous way. Recall that the space Aff s (z,y) has the form

! x I
Ads (@"ay) = N A (TKay)

K=1
where
Ip* e
AP (ric,y) = !llp ((exp (rEzr = $SmYr))reny)

In i) we have (sy),,ey = (—m™Y), -, thus for all K,m,\ € IN
exp (rxxy — $Smyn) > exp (rgay)
which implies for all K, m € IN
Ip ((exp (rx@x = smya))renw) = (p(exp (rxaa)) sepv)

and thus, as Alsp *(rk,y) is equipped with the inductive limit topology of the union,

AP (rieyy) = (plexp (rxza)) e )
for all K € IN. From the definition of the projective limit we get

As (2,y) = AP (r,y) . K € IN, (1)
so together with the last inclusion we get for all K € IN

Affs (z,y) = Ly ((exp (r&er)) \emv)

and thus -
AZs () = ) (50 (i) yepy) = A (2)

So for s =0 AP () = Agfs (z,y) is equivalent to

Al () < Ay (2,y).

Now because of (1) and due to the properties of the projective limit, this is equivalent to
the fact that for all K € IN
Ag“p (l‘) — Alsp* (Tl(v y) s

which by Grothendieck’s factorization theorem is equivalent to the existence of (m(K)) jecpv
such that for all K € IN

AP (x) = 1, ((exp (?“K:BA - Sm(K)y)\))AEJN')

The last continuous inclusion means that there are sequences (Ck) gy and (E(K)) e
such that k(K) > K, K € IN, and for all (ty),.py € A (z) and K € IN

ﬁl |tx[Pexp (p (rK:E,\ - sm(K)yA)) < CKA§1 [tA|Pexp (p (%(K)ZE,\))-
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Inserting the canonical unit vectors, we see that this is equivalent to

Ty 1
exp (y)\ ((TK - Tk(K)) o 3m(K)>> < (Ck)r, K,A€IN (2)

Consequently, to show i), we have to show that the existence of sequences (Cr) ey

(m(K)) ey and (E(K)) jee v such that (2) holds is equivalent to )\mﬂfv Z—i > 0. Let such
€

sequences be given and assume the latter is not true, then there is an infinite subset I C IN

such that forall A e T
X s 1 Smu

YA o= TRy 2

Then for all A e ]

Ci > exp (yx ((7“1 - Tk(l)) o 3m(1)))

li ( Sm(l)) .
1m exp | —yx = o0,
A— 00 2

Ael

we reach a contradiction.

If 6 := )\mﬂfv Z—i >0, we set Cx :=1and k(K) := K 41 and find (m(K)) ;. such that for
€

all K € IN =25 . Then we get for all K, A € IN

T
exp (10 ((rae =) 52 = sma))) < exp (1 (s = 7o) 6 = s ))
< exp(0) = Ck
and the proof of i) is finished.

In ii) we also have s = 0, i.e. ($m)pepny =(—m"), -
ie. ("K)genw = () gepe- We have for all K,m, A € IN

We first show the claim for r = oo,

exp (T 2y — Smyr) = exp (—smyar)

and therefore for all K,m € IN

Ip ((exp (rx@x — smya))aev) = o ((€xP (—smyn))repv)
which implies
l lp*
Ay (@, y) = Ag (y)-

Now l l
AZ () = Af (2,y)

iff for all K € IN l l
AF"(y) = A (T, y)



and that is equivalent to the fact that for all K, m € IN there is n(K,m) € IN withn > m
such that

lp(eXp (_Smy/\)),\eﬂv =1y (exp (TKZUA - Sn(K,m)y)\>>)\€W

or equivalently for all K,m € IN there are n(K,m) € IN and C(K, m) > 0 such that for
allA € IN

C(K,m) > exp (?JA <7"K:;—A +Sm — Sn(Kvm)>) (3)
)

To show ii) for r = oo, we must therefore show, that (3) holds iff /\lim Z—i = 0. If (3) holds
—oc
and we assume that there is an infinite subset 7 C IN such that § := inf %A > 0, we find

Ael I
an my € IN such that 16 + s, > 0 and get for A € I the contradiction

x
C(lvml) > exp (y)\ (rly_i + Smy — Sn(l,m1)>> > exp (y)\ (7'15 + Sm, ))

because the last term tends to infinity as A € T tends to infinity. If on the other hand
lim 2 =0, we can find for every K,m € IN a \g such that for A > g

A—oc

X

A
+ 8m — Sma1 <0,
Yx

K

thus there is C'(K,m) > 0 such that (3) holds for all A € IN (with n(K,m) = m + 1,
m € IN), and we have shown ii) for r = co.
Ifr=0,ie (r6)gen = (—K_l)KHN, we get by the estimate

exp (rr ox+ smyx) < exp (8myn) K,m,\ € IN

the inclusion l l
Aop*(y) — Aop,o (z,9)

and we have to show that )\lim o~ = 0 iff for all K,m € IN exist n(K,m) € IN and
—0oC
C (K, m) > 0 such that

exp <_7’K117>\ + (S — Sn(K,m))y)\) < C(K,m)

which follows by exactly the same arguments as in (3) for r = co.
The proofs of iii) and iv) run along the same lines as i) and ii): We have (sp),,cpv =
(m),,c and thus in iii) the estimate

exp (rxxy — smyn) < exp(rxxy), K,m,\A € IN

shows
Al (2) = Ao (2,7)

and the opposite inclusion is equivalent to the fact that for all N € IN there exists K € IN
such that for all m € IN

!
Ao (z,y) Nlp(exp (rrzy — Sm¥a))aew — lp(exp (PNTA)) e
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the last continuous inclusion being equivalent to the existence of C,, > 0 such that

exp ((rv — rx) x + smyr) < C,

Analogous arguments as before give that this is equivalent to Alim % = 00.
—oc

In iv) we have for r = oc
Ps (2,9) = AP (y)

and the opposite inclusion is equivalent to the fact that for all K, m € IN there are n(K,m)
and C(K,m) > 0 such that

exp (T’KZUA + (Sm - Sn(z(,m)) yx) < C(K,m)

which is equivalent to sup % < 00. For r = 0 we have
AEN

. !
AZ* (y) = Ao (,9)

and the opposite unclusion is equivalent to the existence of sequences (n(K, m)) i v and
(C(K,m)) f¢ ey sSuch that

€xXp (—T’Kﬂﬁza + <3m - Sn(K,m)) yx) < C(K,m)

which is equivalent to sup % < 00. Thus the proof is finished.
AelN

5.3 Local splitting for (PLS) - power series spaces

In the following we will consider spaces E = Af}ﬁ (z,y) with r, s, z,y as before and F =
AL, (v,w), where T is defined by a matrix

B = (bvNn)y e = (X0 (PN = Gntwp)), N e

SO
F = A, (v,w) = lim AS" (pyv, )

with sequences v = (Vg)pcp: W = (Wi)pepy Such that klim wy, = 00, and (pg)ycp and
— 00
(qk) pe v, Putting p := lim py and ¢ := lim gz. We will treat the case where r = ¢ = oo,
k—oo k—oo

as in this case we have local splitting. To see this, we need the following proposition, which
contains only well known facts (cf. [MV. Theorem 25.19, Theorem 26.4)):

Proposition 5.9 If we are given a short exact sequence

0-x3vLz-o0 (1)
of (LS)-spaces, then the dual sequence

0725y 5 x =0 2)

is a short exact sequence of Fréchet-Schwartz spaces. The sequence (1) splits iff the sequence
(2) splits.
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The following follows from ([V1, Corollary 4.4]):
Theorem 5.10 For any s € {0,00} we have
Fxt{p (Al (2), Ak () =0

Thus we see that for ¢ = oc we have local splitting:
Proposition 5.11 For every short exact sequence

0= AP (v,w) = X — Af}ﬁ (z,y) =0
of (PLS)-spaces we have local splitting.
Proof: Given a short exact sequence

00— A (v,w) = X — Af{s (z,y) =0
with a (PLS)-space X, we get for all N € IN local sequences

0— Agg* (pK(N),w) — XN — Alsl* (TL(N)vy) — 0.

with suitable sequences (K(N))ycp and (L(N))yep- The dual sequences

0— AlsOC (rL(N),y) — Xy — AQC (pK(N),w) —0

split for every N € IN because of Theorem 5.10, so we get local splitting by 5.9.

5.4 Splitting when the quotient is of infinite projective type and the
subspace has infinite (LS) - steps

In order to show
Ext! (Af;o,s (z,1), AP (v, w)) =0

we must show that we have Proj'£ (E, F) = (0. By Corollary 3.7 and Lemma 5.6 it will be
sufficient. to show the following condition :

(L)

There is a sequence (yg),cpn of natural numbers such that for every N € IN
there is an M € IN with M > N such that for all K € IN with K > M and all
sequences (o) of natural numbers we 8 € IN and an s € IN such that for
all (Cr)pen and (Ig)pepy With Cp = 1 and I = agq for 1 <k < s—1 there are
(Di) e and (my) e and (By)pep and (ng) e with By = 1 and ng = yp41
for 1 <k < N — 1 such that for all v, A\ € IN we have

a a ) a
inf < C “Aark < maz{ inf ¢ Dy Bk , inf < By Ak
kCIN by, keN by im, | kEN by, Ny,
Observe that we do not have to renorm the given spaces as we are in the case where the
second space consists of (LS) - steps of infinite type.
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5.4.1 The case of the quotient having (LS) - steps of infinite type

We assume that we have
A= (exp (Kzx — kyr)\ gkenw

and
B= (exp (pNUu - nwu))y,N,neﬂV'

where (pn) yey = (N) yepv or (=N71) v Inserting the definition of the matrices A and
B and taking logarithms on both sides the inequality in (L) reads thus:

(L)OO,OO,p,OC

1Ty — PpUy + kinﬂfv {InCy + lpw, — kyn} < max {
€
B1ay — PV, + kiélﬂfv {In D +mpw, — kyr}.

TN — PNVy + kiélﬂf\/ {InEy + npw, — kyr} ¥

To show this inequality with the quantifiers demanded in (L), we first need the following
lemma;:

Lemma 5.12 For N,M,K € IN with N < M < K, sequences (g)pepns (Br)pen and
(Yi)pen of natural numbers and r,s € IN we have for all v, € IN

(L)OO,OO#LOC

s—1
1@y — puvy + ok {ag 1wy — kyyj < maz

r—1
Bray — prvL, + /?:lf1 {Brr1wy — kyp},

N-1
M)~ pNvy + inf {Ver1we — kyr} }

iff for all (Cy)pep and () ey with Cp = 1 and Iy, = ogy1 for 1 < kb < s —1 there
are (Di)pen and (my)peny and (Ex)pen and (ng)pepy with By = 1 and ng = vy for
1 <k <N —1 such that for all y,A € IN (L)so .00 p.oc holds.

Proof: We assume (L)s 00 p0o- Let us use the following abbreviations: For all v, A € IN
we put
Oy ) == 012\ — PMUy,

P, )= prxzy — prUy,

Qv = Y1%\ — PNV
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Let ko € {1,...,s =1}, kp e {l,...,r — 1} and kg € {1,..., N — 1} be the indices where

s—1

Qo p1Wy — kOYx = ]gn; {ogrw, — kyn}
r—1

Prp+1wy — kpyy = inf {Brr1wy — kyat

N-1
Uhg+1Wy — kgyx = inf { 1w, — Eyr}

Let,
Jy = {(14 A) € IN?: Oy p + anps1wy — koyn < Poy + Brp 1wy — kuA}

and
Jo = IN? — J.

Let (Ci)pepv and (Ig) e be given. We will show that

i) For every k € IN with k > r there is k€ IN with k > s and Dy and my such that for
all (v, \) € Jy

O,,’)\—i—lnC,;—i—l,;wl,—l%y)\ SPV’)\—i—lnDk—i—mkwl,—ky)\ (1)

ii) For every k € IN with k& > N there is k € IN with k > s and Ej as well as ng such
that for all (v, \) € Jo

O,,’)\—i—lnC,;—i—l;cwl,—l;:y)\ gP,,’)\—i—lnEk—i—nkwl,—ky,\. (2)

Then setting Dy, = 1 and my = fxaq for k=1,...,r — 1 and E = 1 and ng = ;.1 for
E=1,...,N —1 we will get from (1) for (v, A\) € .Jy

Oy + kigﬂfv {InCy + lw, — kyr} < Py + kigﬂfv {In Dy, + mpw, — kyx}
and from (2) for (v,\) € Jo
Oy x + klélﬂf\f {InCk + lrw, —kyr} < Qur + klélﬂf\/ {InEy + npw, — kyyr}

which will imply (L)so,00,p,00- To show i), let & > r be given. According to the definition
of Jy, we know that for (v, \) € Ji

Oy + apor1wy — koyr < Py + Prpr1wy — kpyy (3)

For all k& > s

Oun+InCp +liw, —kyy = Oupx+ apgr1w, — koya

+ (111 Cr +liwy, — 12:% — Oy 1 Wy + koy,\)
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and for k> r

P,y +InDy +mpw, —kyn = Py + Brpr1we — kpyn

+  (In Dy + mgwy, — kyx — Brpr1wy + kpyy)
Thus (3) will give us (1) if we can find k € IN, Dy, and my, such that
InC; +lwy, — kyy — gy 1wy + koyx < In Dy, + mpw, — kyy — Brp 10, + kpys
or equivalently
In Dy —InCj + (aror1 — Brpr1 +me — 1) wy + (krp — ko +k— kr) Yy >0

Now ko € {1,...,s—1} and kp € {1,...,7 — 1}, s0 k, my and Dy can be chosen to fulfill
the last inequality, which shows i). The Proof of ii) runs along the same lines, the same

calculation gives that one for a given £ > N has to find k > s as well as Ej, and ny that
fulfill

In F5, —lanc—i- (Ocko+1 —WkQJrl—i—nk —l];) wy, + (kQ—ko—i-l;:—k) yy > 0

which can always be done.

Now assume (L)oo 00 poo- FiX Vo, Ag € IN and observe that without loss of generality we
can assume that for given (Cp)pcpy and (Ix)pew the (Dp)pens (mi)penys (Br)pep and
(nk)kew fulfill Dy, Ex > Cp, k € IN and my,ng > [ and that the (Ck)keﬂ\f and (lk)keﬂ\f

are increasing. Now use (L)so,copoc O SEqUENces (C’,i) and (li)k N j € IN that
€

keIN
fulfill . )
Cl=1, ], = ogpy1, jeINk=1,...,5—1
. . (4)
lim ) = lim i} =oc k> s.
j—00 j—00
J J J J : ;
We then find <Dk>keﬂv’(mk)keﬂv’(Ek)keﬂv and (n )keﬂv for every j € IN fulfilling
D] =1, m} = Bry1, jeEINk=1,...,r—1
. . (5)
lim D] = lim mj,=oc k>r
and ) .
El =1, n}, = vp41, jeINk=1,... N—1
(6)

lim B} = lim n} =cc k>N
J—00 J—00

such that for all 7 € IN
A1Trg — PMUyy + klélﬂf;[ {ln C’,z + liw,,o — k:y,\o} < max {
,311’/\0 — PK Uy, + klélﬂf;f {ln Di + miwyo — /{}y)\o} N
VML )G — PNUyyq + kléllif\/' {lIlEi + n.]];wllo - kon} }
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Due to (4), (5) and (6) and due to our assumption that the <Cg)keﬂv (li)kew, j € IN are
increasing, there is a J € IN such that for j > J

inf {ln C’,z + liw,,o — l{:y)\o} = it_l% {agr1wpy, — kyng |-

kcIN k=1

r—

1
n1 {/Bk-f-lwl/o - ky)\()} s

klglﬂf;[ {ln Di + miw,,0 - ky,\o} = ]i:
‘ . N-1
and klélﬂfv {ln El 4+ njw,, — k:y,\o} = ér:ﬁ; {Vhr1Wy — Kkyng } -

giving

s—1
AL \g — PM Uy + Iir*lfl {ak-l—lwl/(] — ky)\o} S ma:z:{

r—1
/le)\(] — PK Uy, + lir:lfl. {/Bk—i—lwl/(] - ky)\o} s

N—

1
Y1TAq — PNUyy + ]iI:lfl‘ {7k+1wl/0 - ky)\n} }

As vy, \g € IN were chosen arbitrary, this shows (L)oo ,p,c0-

That (L)oo,c0p,ec is fulfilled in quite an easy way will follow from the following

Lemma 5.13 For all sequences (Vi) e and (o) ey of natural numbers and all numbers
N,M,K € IN with N < M < K there is a sequence (By)pcp such that for allv, A € IN

N-—1

arzy = pyvy + I {agw, —kynt < maz

N—1
Bray — prvL, + ,ﬂ {Brs1wy, — kyp},

N-1
Y1ETA — PNVy + ]if:lg 1wy —kyrt b

Proof: Let (vi)ucn: (@k)pen and N, M, K € IN with N < M < K be given. Choose

B1 > 061-1-%(041—%):

Bry1 > HQN:

and Sy arbitrary for £ > N + 1. We define as before

N-1
Jp = {(1/7 N eIN?: aqxy — pyos + ;rzlfl {agri1w, — kyp}

N_1
< Biza —prUy + é{lfl {Brer1wy — kya} |
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and

Jo:=IN? — Jj.
If we show that for all v, A € IN € .Jo we have
N-1 N-1
arzy —puvy + Inf {aypw, —kyn} <yzy —pyvoy + Inf {pepw, —kyab o (1)

we will have shown the inequality in the claim. So take v, A € J3. From the definition of
J1 we get

N-1 N-1
a1z = pyvy + inf {og41wy — kyat > By — prvs + inf {Brr1wy — kyx}

or equivalently

B1—aq 1 N1 N1
vy > Zy+ /ir:lfi {Brt1wy — kyn} — ,g:lfl‘ {agr1w, — kyr} (2)

PK —Pm PK —PMm

(observe that K > M and thus px > pu)-

(1) is equivalent to
N-] N-1
(n —an)ax + (pyr —pn) vp + b {yeprwe —kya} — b {agw, —kyaj 20

As pyr > pn, we can insert (2) into this inequality and see that it will be sufficient to prove

(y1—oaq)zy+ H (B1 —oa)
pu—pn (N4 el

+ DK =DM ,iT:lfi {Brr1wy, — kyn} — ]ilzlfi {oagt1w, — kyr} (3)
N-1 N-1

+nf {yppiwy = kyaj — Inf {agwe —kyad >0

or equivalently

(H (1 —a1) — (a1 — 71)) T\

pu —pn Y pr —pn VA

T ok —pum ;Y:lt; {Brerrwy — kyxt — DK = Pum ;rzlfl {ar1w, — kyn} (4)
N-1

+Inf {ypwy — kya >0

The first term is nonnegative due to the choice of 8;. Observe further that

N—

1
nf {yppw, —kyat = —(N =1y

N_1
and — ]irig {og1w, — kyr}

Y

—(ayw, — (N = 1)ya).,
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therefore to show (4), it suffices to show that for every ky € {1,..., N — 1} we have

PM — PN PK — PN
= (Bros1wy — koyy) — ———— (
PK — PM PK — PM

anwy, — (N =1Dyy) = (N=1)yx >0 (5)

For such a kg the estimates

_PM — DN DK — DN (n (N
DK — DM koyx + DK — DM (V= 1)yr — (N = 1)y =
_bym—PN _ PK — PN 1y _ _
< DK — PM (N—1) DK — PM (N-1)—(N 1)) o= 0
and
PM — PN _ PK — DN

PK — PN _ PK — PN
Pr — oM N T g —pu
show (5), thus the lemma is proved.

aANWy = 0

Collecting the previous results, we get
Theorem 5.14 Ext%PLS) (Af}om (z,1), AP (uw)) =0
Proof: As ¢ = oo, we have local splitting, so 2.8 shows that we have to show

Proj' £ (A oo (#,4). A0 (v,w)) = 0.

For this we have according to 3.7 and 5.12 to show that (L)co 00 p,oc holds, which follows
from 5.13.

5.4.2 The case of the quotient having (LS) - steps of finite type

In this case the given matrices are

A= (eXp (Kﬂ”A + %y)‘>))\,]\’,k€ﬂ\/

and
B = (exp (pyvy, — nwv))y,N,neJN'

where (pn)yew = (N)yen or (—N71) oy~ In this case the inequality in (L) reads thus:
(L)oo,0,p,00

_ : 1
1Ty — PpUy + klélﬂf;[ {ln Cy + lpw, + ky,\} < mazx{
. 1
Brar — PEVy + klélﬂf\/ {lnDk + mpwy + Eyk} ;

_ ; 1
NTA = PNy + o {ln Ey + njpw, + kyx} }

We claim that we can show a similiar result as in the last case :
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Lemma 5.15 For all sequences (Vi) pcp and (o) ey of natural numbers and all numbers
N,M,K € IN with N < M < K there is a sequence (By),cp Such that for all (Cy)pen
and (Ig) e satisfying Cp =1 and Iy, = agqy for k=1,...,N we get (Di)rens (Ek)pemns
(M) e and (ng),ep soatisfying By, =1 and ng = vy for k=1,...,N —1 such that for
all v, A € IN we have

_ : 1
Q1T — PMUy + klélﬂf;[ {ln Ci + lpw, + ky,\} < max{
Br1za — prVy + kigﬂfv {ln Dy + mpwy, + %w} ;

_ : 1
YTy — PNV, + klélﬂf;[ {1nEk + npw, + ky,\} b

Remark: In the formulation with the wehsets (C J

O""’)k,a‘kel\/’ J € IN the inequality means
that

cM cck +oX
|1

Q| N+1 NN

Proof of the lemma: Let N,M,K € IN with N < M < K and (o) be given. We

choose
51 > o + M (

aq —71)-
Pym — PN

Let further (Cy)yepv and (1) v be given such that Cp, = 1T and I = gy fork=1,..., N.
We find a sequence (l;;(k;))kew such that for all £ € IN

k(k) > PK Z PN, (1)
PM — PN

and choose (Dy), v and (my), o such that for all k € IN

mDy > PE=FBNmc

PM — PN
(2)
PK — PNy,
M > par—p k)

Furthermore choose (Ey),cpn and (ng),cpn such that Ey = 1 and ng = v, for & =
1,...,N—=Tand for k> N Ep > 1 and ng € IN arbitrary. Analogously to the proof of
5.13 we set

Jp = {(I/, A) € IN? . A1) — PMUy —i—kiélﬂfv {lan + lpw, + %gp\}

. 1
< Brza —prus + klgﬂfv {ln Dy + mpw, + ny} }

and
Jo:i=IN? — J.
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Now for (v, \) € Jo we get

PK —PmMm
(3)
i (g (Pt s + = int {1nCi+ i + o} )
We have to show
: 1
Q1T\ — PMUy + klgﬂfv {ln Ck + lpwy, + ny} <
Y1Zx — pNVy + Inf {ln By +npw, + %y,\}
kcIN
Inserting (3) gives as in the proof of 5.13, that it will be sufficient to show
(BM=BN (81 — a1) = (a1 — 1))
Dby — PN 1 _ Pk = PN ; 1
+ bR inf (Dot maw + o} = ST inf {n G+ liwy o o}
4+ inf {lnEk + npw, + %gp\} >0
kcIN
(4)
The first and the last term are nonnegative, so we have to show that
: 1 PK — PN . { 1 }
f <InD — > ———— inf {1 — .
klélﬂ\f{n k—f—mkwy—l-ky,\} S klélﬂ\f nC/g-i-lkwl,-i-ky)\ (5)

Due to the choice of (l;:(k:))
ke IN

eI (Di) ey and (mg) e, (see (1) and (2)) we have for all

PK = PN

1
In D, + mpw, + —yy >
k DM — PN

1

which shows (5) and therefore the lemma is proved.

Theorem 5.16 Ext%PLS) (Aélo,o (z,9), A (v,w)) =0

5.5 The case of the subspace being a stable Fréchet space

We will solve the splitting problem for spaces E = Af{s (z,y) FF' = A*(v) under the as-

sumption that F is shift-stable, i.e. sup v;—“ < 00. The general method will be to analize
velN "
the splitting behaviour of F with complemented coordinate Fréchet-subspaces of E.

Definition 5.17 If I C IN is an infinte set of indices, and 1 < p < o0, we define for a
sequence (1)) ,c; the new sequence t1 by

t{\ = iy, AET
tg\ = 0, A&IT
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and put
A%s (m,y,]) = {t = (t)\))\e[ € IZVI : tI € A%s (.T,y)} :

Alr(z, 1) := {t =(t\)y; € INT:tl € Aﬁ?(:}:)}

and
NPy, 1) = {t = (t3) ey € INT 1 £ € AP* () }

From proposition 5.8 we immediately get

Corollary 5.18 i) If Af{s (z,y) does not contain a Fréchet subspace of the kind Al (z, 1),
then Ajl (,y) = AL (y).

i) IfAf{s (z,y) does not contain an (LS)- subspace of the kind Ab*(y, I), then Af}’S (z,y) =
Al ().

Proof: We will show only i) for s = 0 as the rest is completely analogous. If there is no
infinite subset 7 C IN such that Al (z,y,I) = Ali(z,I), i.e. inf 22 >0, then lim % =0,
’ aer ¥ A—oc YA

Le. Ag},s (37, y) = Ai,l*(y)

With this knowledge we can solve the problem of Ext%P LS) (Af{s (z,y), A (v)) in the fol-
lowing way:

Theorem 5.19 If (v,), . satisfies

Vy+1

lim yy = lim v, =oc and sup < oc
A—00 V=00

veIN Uy

then Bxt{pp g (Aﬁ{s (z,y), AL (U)) =0 iff r=o0c or E= A1*(y).

1
Proof: For r = oc we set w, := v2. Then

o=

. Vy .
lim — = lim »

= 00,
v—oC 4, V—00

so according to 5.8
AP (v) = A (v, w)

and the theorems 5.14 and 5.16 give Ext%PLS) (Ai{s (z,y), AP (v, w)) =0.
If r=0, and Aé{s (z,y) has a Fréchet subspace of the form A (x, 1), we know from ([V1],
Corollary 4.4) that Ext%F) (Af)l(:p, I), Ay (v)) # 0, so there is a short exact sequence

0— A%(w) = X — Al (z,1) = 0
with a Fréchet space X which does not split. Let Ebea (PLS) -space such that

AY, (zy) = A (2, 1) x E
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(remember that closed subspaces of (PLS)-spaces are again (PLS)-spaces, see [DV1], Propo-
sition 1.2). Adding the short exact sequence

020E4E 0
we get a short exact sequence
0= A%(w) = X x B — A (z,1) = 0

which does not split, and as X is a Fréchet-Schwartz space (being a Schwartz space
is a three space property) and every Fréchet-Schwartz space is a (PLS)-space, we have

Ext{prsy (Al (#.9), AP (v)) #0.
In the case that Aé{ s (z,y) does not have a Fréchet subspace of the form Af)l (x, 1), then

1

1 1
by corollary 5.18 we have Aé{s (z,y) = Al*(y). Setting 7y := y. A € IN and w, = v3,
v € IN, we get

AP (y) = AL o (7,9)
and
AP (v) = AP (v, w),

so theorem 5.16 gives

Extlprs) (A" (), A (v)) = 0.

which finishes the proof.

5.6 The case of the quotient being a stable Fréchet space

We use the same method as in the previous section to prove an analogous theorem.
Throughout this section we will make the assumption that ()¢ (V) ey and (wy),cp

tend to infinity, and
x
lim 2 — 1,
v=oc gy

Theorem 5.20
Ext{prsy (A (2), Agl, (v,w)) =0
iff r=oc or A% (v,w) = AQ"(w).

5.6.1 The finite case

To prove 5.20, we will first treat the case r = 0.

Lemma 5.21
EXt%PLS) (Aél (), Ay, (”7“’)) =0

iff A%, (v, w) = AL (w).

78



Proof: The first case to consider is that of A% (v,w) having a Fréchet subspace of the
form
AP (v, ).

Then from ([V1, Theorem 4.2]) it follows that
Ext{py (Al (2), A (v,1)) #0
and analogously to the proof of 5.19 we get
Ext{prs) (Af (2), Agly (v,w)) #0.

In the second case we have A7 (v,w) = Ag*(w), which is (PLS)-space in quite an easy
way, namely as the projective limit of the constant spectrum

A* (w) AL () w—
Then we reach the conclusion
Ext{ppsy (Af (), A" (w)) = 0.

in the following way: From 2.5 we get local splitting, so 2.8 shows that it is necessary to
show
Proj £ (A (), A2 (w)) = 0
for the spectrum
l id l id
L (A (@), A (w)) < L (Aff (2), A (w) )

which is obviously fulfilled.

5.6.2 The infinite case

For the case r = oc we begin with ¢ = oc
Lemma 5.22

Ext{prs) (A% (2), Al (v,w)) = 0.

Proof: We set for all A € IN
and get from 5.8 iii)

so 5.14 gives

It remains to show that



which will need some more consideration; namely we have to use the facts we established
in section 2 in 2.16 on Fréchet spaces which are locally /1. It is trivial that the space
E = AlL(2) is locally l;. To interpret the spaces I, appearing in 2.16, we observe that
according to the definition of the matrix defining F we have

BN+1,TL - BN,TL: nvN € ﬂ\f’
and the connecting maps of the spectrum defining F are simply the inclusions
Fyip— Fy, N € IN.

For a sequence (yn)yepn € IN™ the spaces F}.. K € IN, are thus given as

K
Y
FK - m FNv’}/N'
N=1

Furtheron we observe the following: For (yn)ycpn € IN I the spectrum
2 3
f’Y:FL»n(—’ ﬂ FN,7N<_’ ﬂ FN,’YN<_)“'
N=1 N=1

is a reduced spectrum of Banach spaces, as the canonical unit vectors are dense in every
one of the spaces constituting F”, thus the mapping

oC oC
v fiEm - R
K=1 K=1

@N)venw = (@N+1—2ZN)yenw

is surjective. This implies that for every (yv)ycpy € IV N the image of the mapping

(@N)venw = (@N+1—2ZN)yenw

oC

contains the space ] FX, With these observations we can in our present case set up the
K=1

following version of 2.16:

Corollary 5.23 For E = AlL(z) and F = A;?O (v,w) the following are equivalent:
i)
Ext!(prg) (E, F) =0

i) For every (YN)yew € IN™ and for every continuous linear mapping

C:E— ] F}
K=1
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there s a lifting in the diagram

o ,lp o
[l Fx —w]l Fk
K=1 I\’:lu

C
ii1) For the mapping

(Ax) ke — (Ak+1 —Ax)gen

we have
0 K
I L{E, N Fyqy | CImy*
K=1 N=1
iv) For every (Yn)yepn € INT there exists a sequence (on)yep € INY such that for all
N € IN exists M € IN with M > N such that

N
L(E,F{)CL(E,F)+ N C/
J=

1 YJ,N

where (CN , N € IN are the ordered webs on L (FE, Fy), N € IN constructed

O‘“")k,a‘kew
mn 3.8.

Proof: If i) holds then we know for a given C that Im C' C Im, so we can use the pullback
construction to get a lifting. If ii) holds and if we are given a diagram as in 2.16, then ii)
gives a desired lifting, so 2.16 ii) holds and we get

Ext'(prs) (E,F) = 0.

iii) is merely a reformulation of ii), and the equivalence of iii) and iv) is exactly the statement
of the Retakh-Palamodov theorem for webbed spaces as formulated in ([D]. theorem 4.1)
(cf. section 3.2).

To show the condition 5.23 iv), we will first consider the spaces and the webs appearing in
the inclusion. Recall that in 3.8 we showed that for every N € IN we get an ordered strict
web on L(E, Fy) by

CN .= {T € L(E, Fy) : T factorizes through E,}, o € IN

and
cN = {TECN 1T(Ba1,k) CDN,%+1}= /{:,qu €N

Xk+1 &%)
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where T denotes the factorisation of T. For this definition we assumed that every bounded
set in Fv is contained in one of the unit balls Dy, n € IN. We can fulfill the latter
assumption for F' = A% (v, w) by putting

DN,n = nBFN’n

as every (LS)-space is regular and as we have Bry , C Bry,,,. 7, N € IN. Now as Eis a
Fréchet space, there is the following easier description of the websets C¥ :

Oz|k'
Proposition 5.24
i) For every N € IN and k > 2 the web on L (E, Fy) has the form
N _ N
CO‘UC - Oal,az
= {T E— Fy:T € a9 BL(EQ17FN,O¢2)}

oC
ii) The web on L(E,F)= () L(E,Fx) has the form
N=1

K 00
Cope = (H O er x I L(E,FN)> NL(E, F)
N=1 ’ N=K+1

K-1 K o]
= [1 Clyaner X Care x 11 L(E,Fy) | NL(E, F)
N=1 ' N=K+1

= {T:E->F:i’ew+1BL( ),J:L...,K—l,

EQJ7FN,C¥J+1

there is 8 € IN such that T' € /BBL(E FKB)}
(25 &! N

From this we may set up a sufficient condition for condition iv) in 5.23:

Corollary 5.25

Fxt{prs) (AL(2), A (v,w)) =0

s implied by the following:

For every sequence (YN)yen € INT ezists a sequence (oN)Nenw € IN™ such that for
all N € IN there is an M € IN with M > N such that for all o € IN exists a sequence
(BN)yerw € INY and K € IN with K > M such that

K-1

J K o7
OCBL(EaaFX'/[) < <JH1 OﬂJﬁJ-H x CﬂK X J:lf_\l+1L(E’ FJ)) N L(E, F)

Nt N
+ 101 CJJ’UJHHC

on,B1

To prove the inclusion in 5.25, we need to describe the sets of operators appearing therein
by their matrix representations analogously to 5.5:
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Proposition 5.26
i)

a
SOCQWVAEW}

v,N,a2

Cé\fK = {(TV7)‘)I/,)\€W T

M 1
o Brp, ry) = {(T”’Wew ATl < aao it {bm } e W}
sy VT

iii)
L(E.F) = N L(E.F)

= N {(TW\)V/\GW : there exist §, 8 € IN such that
J=1 ’

bl/J

3¢y

Tyl < 820y x e JN}

= {(Tyﬁ,\)yv)\ew : there exist (65) ;e v, (B7) sew € NV

2 (OW T
such that |T,\| < inf < By —= % v,A € IN
J=1 va‘]mBJ

e ck [ LEF L(E, F)
X X , N ,
Jl;ll B187+1 Bx N:l;{’+1 ( N)

= {(TM,\)V’/\GW : there exist (77) ;e (T7) sew € N

77 =0y J=1,....K

such that ry=PB1 J=1,...,K—1

'OO a)\vTJ
and |T, | < }Iif; {ﬂ'J b} Vv, € ]N}

v,J, g

on,B1

— . < : Nil a’)\vO'J a)\vo—N
= (Tun)y e 2 [Tup] <min g inf o7y , B
’ J=1 bl/,J,O'J+1 bVﬂ]mBl

With these descriptions the technique of decomposing matrices as used in 5.6 shows

N N
701 CUJJJH ne,
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Corollary 5.27
Fxt!pr) (AL (), A% (v,w)) =0
if the following holds:

(L)oo,p,O

For all (7)) 7oy € INY exists a sequence (07) ;o pv € INTY such that for all N € IN there is
an M € IN with M > N such that for all a € IN there are sequences (B1) ;e (07) 7envs
(1) jen € INY and K € IN with K > M such that §; = By for J = 1,....K and
wy=pByu1 for J=1,..., K —1 and for all v, \ € IN we have

M 1
aayq inf < max{
J=1 bl/vJv’YJ
2 W)
inf <y —=L %,
J=1 bu,JﬂrJ

N-1 o
. . A ax
min < inf {os1 TL L B L
J=1 bV,JJJH bV7N751

It remains to show the condition (L) 0:

Lemma 5.28 The spaces E = AlL(z) and F = A (v, w) fulfill the condition (L)oo p.0-
Proof: Let us first recall that E is defined by the matrix

(aK,)\)K,AeIV = (exp(K x)\))K,)\eﬂV
and F by
o 1
(bv,l,n)y,L,nelN T (e:vp (pL Oy + n w”))y,L,neﬂV

where

LeN’
Inserting these weights into the inequality in (L)oo 0 and taking logarithms, we see that
we have to show the following inequality with the corresponding quantifiers:

(*)

.M 1
1na+ax>\+}rifl{—pjv,, — %w,,} < max {

.OO 1
}Ig {1H7TJ + 07T —PJ Uy — Ewu}:

N—-1
. . 1
mln{}gfi {IDGJH +o5Ty—PpJuy . w,,} ,

{1n/31+0NxN—pNUV— %wu}}
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Solet (vs) ;e € INT be given. We assume without loss of generality that (V1) jemn € NN
is strictly increasing. We define (o) ;. € IN™ by 0 :=,, J € IN. For given N € IN
we put M := N + 1. Let o € IN be given. Set K := N 4 1. To find suitable (8) ;-

(07) jerv and (77) s ps let J € IN denote a number such that
Inoyiy —lna>0, J> J

which we can find as (o) ;- is strictly increasing. Now we can find (87) 7cpvs (67)5em
and (77) ;cpv € IN™ such that

i) For all J € IN

N _
/8J77TJ75J Z max{a7WN+l7a+Sup{M |UL —Oé’}}
L=1 \PL+1 — PL

ii) For all J € IN

Inm; > Ina+ si{p {pJ—m lnop1— lna\}
L=1 \PL+1 — PL

Let now v, A € IN be fixed. To show that (*) holds, we consider two cases: In the first case
we have for all J € IN

1 1
Ina+azy—pro,— —w, <Inwy+ 072\ —pjvy — — Wy
B! T

in which case (*) holds.
In the second case there is Jy € IN such that

1
Ino+azy—prv, — —w, >Inwg, + 8,5 — Dy ¥y — — Wy
Y1 TJq

or equivalently

1 1
Inm;, —Ina 07, — o v T
vy > Jo + o zy + "0 gy,

PJo —P1 P — D1 Pio —P1

(observe that due to our choice of the §; and 7y, J € IN we know that Jy > 2 and that
(ps) jcv is increasing). To show (*), we will show that

a) For every J € {1,...,N — 1} we have

1 1
Ina+azy—prr1vy— ——wy, <Inoji1 +072) —provy —
YJI+1 0J+1

Wy

b) and

1
wy, <Inpfy +oyzy —pPNV — Wy

Ina+axy —pyni1vy —
YN+1 B1

or equivalently



a) For every J € {1,...,N — 1} we have
Inojyi—Ina+ (oy—a) zx+ (pjr1 —pg) vu >0

b) and

1 1
w1 B

InB —lna+ (oy — @) a:A—i-(pNH—pN)UV—i-( )wyz(]

As the factors in front of w, are nonnegative, and as we know that

Inm;, —lna 05, — «
Vy, > Jo + Jo Ty,
PJo — P1 Pio —P1

we can insert the last inequality into a) and b) and see that it is sufficient to show
a) For every J € {1,...,N — 1} we have

Ina + PJj+1 —PJ

T (Inmy, —Inca)

Inoyy—

Y
o

Pj+1 —PJ _ _
+ ( DJy, — P1 (5J0 OC) + (UJ Oé)) T

Inf; —lna+ 1%7__;11\[ (Inmy, —Inca)

+ <2712\?[$1—__;?1N((5JO—06)+(0N—04))$)\ Z 0

a) follows in the following way: Let J € {1,..., N — 1} be fixed. If J > J. then we have
Inoyii —Ina>0

according to the definition of J and

Pj+1 —pJ (

Inmy —Ina) >0
Pry—P1

because 77 > «, J € IN and (py) ;¢ is strictly increasing. Thus

PJ+1 —PJ (

In7y —Ina) > 0.
Pr — D1

Inoyi1—Ina+

If J < .J we get from condition ii) on (1) semv

Inoyi1— lna—i-% (Inmy, —Ina)

Pij+1 —PJ J Pjy — M1
> — o o S AJo Lo —
]no'J+1 Ina+ Do 1 ?u[]){p 1 D |lna[+1 1noz|}

Y
o
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In any case we get from the condition i) on (7) ;. pv

IH (s — ) + (05 — @)

PJ+1 —Pg N[ Do —P1

= P, — M L:E){pL-q-l —PL oz — a[} + (o) — @)

> 0.

and a) follows. b) is proved in exactly the same way to finish the proof of the lemma.

So we finally have established th condition (L) p0. which shows that

Fxt!pr) (AL (), A% (v,w)) =0

and so 5.20 is established.

5.7 Proj'L (E,F) = 0 for F consisting of (LS) - steps of finite type
We first state some facts which we will need . The first one comes from [Z, Theorem 1]:

Theorem 5.29 Let X = X1 X Xs and Y = Y1 X Ys be locally convex spaces such that the
continuous linear maps from X1 to Yo and from Y1 to Xo are compact. Then X=Y iff
there exists s € IN such that one of the following two properties holds:

Z) Y1£X1 x IK?® and Y2 X ]I(“S&XQ
i) Y1 x IK*=X7 and Y2=X5 x IK?

To apply this theorem in our case, we need the following

oC
Proposition 5.30 If X is a Fréchet space and Y = U Y, is an (LS)-space, then every
n=1
continuous linear map from X to Y or vice versa is compact.
Proof: If we have a continuous linear map T from X to Y, then, according to Grothendieck’s
factorization theorem, it must act continuously into one of the Y,,. As the embeddings into

Y are compact, T is compact. If T acts from Y to X, and if for all n € IN B,, denotes the
unit ball in Y;,, then T(B,,) is for every n € IN a precompact subset of X. It is easy to check

ocC
that there is a sequence (M), v such that |J A, T(By) is precompact in X (Just take for
n=1
a given basis (Uy), v of neighbourhoods of zero a corresponding sequence (), such
o0
that A\, T(B,) C Uy, n € IN). Then V :=T ( U M\ Bn> is a neighbourhood of zero in Y
n=1

whose image under T is precompact in X.

A central problem regarding isomorphisms between power series spaces is the question of
when a given space X is shift-stable, i.e. F=IK x E and when it is stable, i.e. EF=F X
E. The following characterizations are well known, we give a short proof for the sake of
completeness:
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Theorem 5.31 For a Fréchet space E = A,(x) with a monotonous sequence (x)),\cp the
following are equivalent:

i) sup m—g;"—l <o
AEN

ii) E=IK x E
iit) For alln € IN E=IK™ x E.
iv) There exists n € IN such that E=IK™ x E.

Proof: That i) implies ii) follows immediately from continuity estimates, we only have to
show that iv) implis i) as the other implications are obvious. Now IK" x A,(z) is a power
series space A, () defined by the sequence

. ]1 1<A<n
= Trn A>N

The isomorphism implies that there exists C' > 0 such that 2y < C Z) (cf. [MV, Theorem
29.1]). This together with the monotonicity of (x)),. implies i).
An anlogous characterization holds for stability:

Theorem 5.32 For a Fréchet space E = A,(x) with a monotonous sequence (x)),cp the
following are equivalent:

i) sup 24 <oc
relN

ii) E=E x E
iii) For alln € IN E=E".
iv) There exists n € IN such that E=E™.

Proof: The same technique as in the proof of 5.31 applied to the spaces A,(z) and A, (%)
with
Iy=x, n(p—1) < X<np, \,u€IN,

yields the result.

We will need to know that the stability of certain product spaces is equivalent to the
stability of the factors:

Proposition 5.33 The (PLS)-space E = Ay(x) x Ay(y), where x and y are monotonous
positive sequences tending to infinity, is stable iff every factor is stable.

Proof: If every factor is stable, the stability of E is trivial. Lett E=F x E. For abbreviation
we put F':= Ap(z) and G := Aj(y). We apply 5.29 to the isomorphism

FxG=E=E x E=F x F x G x G,

getting an s; € IN such that
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i) F=F x F x IK*' and G x IK**=G x G or
ii) F'x IK*1=F x F and G=G x G x IK*®".

In both cases the same technique as in 5.31 and 5.32 yields the result.

A product of the kind appearing in the last proposition will concern us in connection with
the following result ([V4, Corollary 4.4]):

Theorem 5.34 Let F' = Af}fo (z,y), 1 <p<ocor F =AY (z,y)be a (PLS)-space. Then
for the spectrum F generating F we have Proj' F = 0 iff there are subsets I,J C IN such
that

i) INJ =0
i) IN=TU.J
iii) F = AP (z,I) x AP*(y,J)
(resp. in iii) F' = A (z, T) x AL (y,J)).
The facts which we have collected enable us to give the following characterization:
Theorem 5.35 [f E = Af{s (z,y) is shift-stable, if F = A;?O (v,w) is stable, and if
AILH;O Y\ = VILIEIO v, = 00,
then
Proj'L (B, F) =0
iff ProjtF = 0 and one of the following holds:
i) r=occ
i) B = Ay (y)
i) F = AP (w)

Proof: Assume that Proj'L(FE,F) = 0 and neither ii) nor iii) hold, then obviously
Proj!F = 0, so according to 5.34 we have a decomposition F' = Ao (0, T) x AP (w, J),
in which T cannot be finite because iii) does not hold and F is stable. 5.33 shows that
Fy := A°(v, I) must be stable and it is easy to see that necessarily we must have

Proj'L (B, Fy) = 0.

As ii) does not hold and as E is shift-stable, E must contain a complemented coordinate
subspace Fy := All(z, M) where M cannot be finite. Again we must have

Proj' £ (Ey, Fy) = 0.
This implies that we must have

Ext(py (E1, F1) = 0.
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According to [V1, Corollary 4.4] this implies r» = o0.
If on the other hand we have a decomposition, then it is obvious that
Proj' L (E, A&*(w, J)) = 0,
and
Proj' £ (B, AP (v, 1)) =0,
is in the case i) implied by 2.9 and 5.19 and in the case ii) by writing
E=AF(y) = AL, (&)
and
AP (v, 1) = APy (v, @)
for suitably chosen # and @ and applying 5.14 (for s = 00) respectively 5.16 (for s = 0)
and 2.9.

5.8 Solved cases and open questions

We want to point out again the connection between the vanishing of Proj'£ (E, F) and the
vanishing of Ext! (E, F) for E = Af}ﬁ (z,y) and F' = A0, (v, w) and which of the problems
we solved and which are open. We always assume that (z))ycpn: (Un)aens (V) e and
(wy), ey are sequences of positive numbers tending to infinity.

1) g = oc (the case of local splitting)

1.1 r=cc
We have Proj'F = 0. In section 5.4 we showed that
Proj'L (E,F) =0
and thus
Ext{pps) (E, F) = 0.
1.2 r=0

The vanishing of Proj'L (E, F) as well as that of Ext%PLS) (E, F) are open in

this case. One cannot expect a result like in the case 1.1 to hold, because even in

the special case of E = Al (z) and F = As° (v) with v being shift-stable neither

Ext%PLS) (E, F) nor Proj' £ (E, F) vanish (cf. [V1, Theorem 1.2, Corollary 4.4]).

2) ¢g=0
In section 5.7 we showed that
Proj'L (E,F) =0
iff
Proj!F =0
and one of the following holds:
r=oc or E=A(y) or F=A*(w).

The question of Ext%PLS) (E, F) = 0 remains open, because we do not know, if the
vanishing of Ext%P Ls) (E, F) also implies the vanishing of Proj' £ (E, F) (remember
that equivalence only holds, if we a priori have Proj!F = 0, see 2.8 and 2.9).
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6 Appendix
6.1 The Push-Out Construction

Let a commutative diagram

A

u

L

0 wX d wY ! w7 w0

of locally convex spaces with continuous linear operators be given, where the lower row is
exact. Then there is a commutative diagram with exact rows

0 W/lll —W, 14111 WZu w)
L s id
J q
0 wX WY w7 w)

with the space A, and the maps u, v and S defined by
A= (AxY) / M
where
M ={(z,—jx):x € X},
u(a) := (a,0) + M

forall a € A,

v((a,y) + M) :=qy
for all a,y € A xY and

S(y) == (0,y) + M

forally e Y.
Let a commutative diagram

0 wX 1 W}/& wZ 1 w
i af i
0 wX o 72 WY i W25 wl)
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of locally convex spaces and contimious linear maps be given, where the lower row is exact.
Then there is a commutative diagram with exact rows

J1 q1

O WX 1 WY1 WZ 1 WO
u u u
id T K2
U ~ ke
0 WX 1 WY NZ& w0
2 s id
0 wX o 72 WY i W25 W)

such that T'o § = o?. Here Y, u,v and S are defined as before and
T((z,y) +M):=ofy+j12
for all z,y € X1 x Ys.

6.2 The Pullback - Construction

Let a commutative diagram

0 wX ——wWY WZu w0

of locally convex spaces with continuous linear operators be given, where the lower row is
exact. Then there is a commutative diagram with exact rows

0 WX — WY — w7 w0
u u u
id S 1
0 wX —o wA Y wA W)
where .
A={(y,a) €Y xA:qy=1ra}.
u(z) := (j z,0)
forall x € X,
v((y,a)) :==a
and
S((y,a)) ==y
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for all (y,a) € A. Let a commutative diagram

J1

0 wX 1 WY1 A w0
u u u
i of K
0 WX2 /2 WY2 e WZ2 w0

of locally convex spaces and contimious linear maps be given, where the lower row is exact.
Then there is a commutative diagram with exact rows

J1 q1

0 wXq wY7 W/ W)
u u u
id S n%
0 WX& u Wf{l ) WZ& w0
L% T id
0 wX o 72 WY i W25 w0

such that S o T = o2. Here Y, u,v and T are defined as before and
S((z,y) + M) =0y +qy

for all y € V5.

6.3 A lemma on extending and lifting continuos linear maps

Let a commutative diagram with exact rows

J1

0 wX 1 WY1 A wl)
u u u
L T K

0 wX o 72 WY i W25 w()

of locally convex spaces with continuous linear operators and exact rows be given. There
exists an extension for + onto Yy (i.e. a map T : Yo — Xy such that T o jo = 1) iff there
exists a lifting for k£ to Y1 (i.e. a map S : Zy — Y7 such that ¢; 0 S = k.

Proof: If T exists, then S := j; 0T — ¢ is a mapping from Y5 to Y; which factorizes through

Z5. The factorization is a mapping which lifts x. If § exists, then T':= 0 — So ¢y is a
mapping from Y5 to Yy such that ¢ o T =0, so T actually has its image in X7.
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