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Introduction

Optimization is used in a variety of areas. Often real systems are described through mathe-
matical models. For those systems parameters are sought which optimize the system in some
ways. And the search of these parameters leads usually to a problem of global optimization.
In optimization one distinguishes local and global optimization. For local optimization lots
of efficient methods already exist. Global optimization is more complicated. Unlike local
optimization it is not enough to only rely on local information. The smallest of all local
minima should be determined. Real problems usually have many local minima. Therefore
methods for global optimization are very computation consuming.
Usually, classical methods compute results which are not verified, i.e. there is no information
on how closely the computed results approximate the ”true” solution. This can be due to
rounding errors on a computer or due to the fact that the method in use cannot provide such
information by its very construction. For some problems from the industry it is not allowable to
have a non-quantified error in results. This resulted in a new approach in global optimization,
so called verified global optimization, which became popular in recent years. Verified methods
involve interval arithmetic which guarantees verification of results.
In this work we consider verified global optimization. We analyze the standard method for
verified global optimization and its variations occurring in the literature. And we design a new
adaptive serial method for verified global optimization. Here we introduce two new strategies:
a strategy for box processing after an interval method and a strategy for applying an interval
method to boxes. We show that a strategy for determining the success of the interval method
is not the best one and give an alternative strategy. This new strategy is an adaptive one. All
existing methods either use statically set threshold parameters in the process of handling boxes
or use a dynamically changing parameter tying the behavior of the function over unrelated parts
of the search area. The new strategy takes into account the different behavior of the given
function over different boxes. In the final serial method we incorporate both a new strategy for
box processing and a strategy for applying an interval method to boxes. The resulting method
is more efficient than existing methods, as our numerical results show.
Through the development of efficient methods for global optimization and through advances in
computer technology, problems which were left out of consideration some years ago due to the
very long solution time, became today solvable in acceptable time. For the solution of complex
problems parallel computers are available. They offer more memory and power than by serial

vii
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computers. Most of the complex problems were not possible to solve since they require too
much time and a lot of memory. With p processors one expects to solve a problem about p
times faster than on one computer. But because processors are not always effectively utilized
this speedup is not always achieved.
In this work we present a new approach for the efficient use of processors, memory and com-
munications. This method does not have any constraints on the number of processors of the
parallel computer. It runs only one process on each processor unlike some existing methods
which need two processes - a scheduler and a worker - running on the same processor, thus
loosing time for the context switch between them. The new method introduces a send a box
on demand idea which seems to be new for parallel methods for verified global optimization.
The underlying goal is to minimize unnecessary transference of boxes between processors. The
new method also features a centralized management, which reduces the number of communi-
cations and simplifies the finalization of the method. The combination of the new idea with a
centralized management results in a very efficient parallel method. The efficiency of the new
method is confirmed by numerical results and by comparison with an existing method.
We now shortly describe the content of each chapter.
In the first chapter we give the background which is required for understanding the rest of the
work. Here notations of terms used throughout the work and notations for the description of
algorithms are given. We describe the problem of global optimization and briefly cover classical
methods. We explain why interval arithmetic should be used instead of the usual floating point
arithmetic on a computer. Then we give basics of interval arithmetic (definitions and rules).
After this we introduce the concept of an inclusion function and give several possible ways to
compute such functions. We give the definition of the order of inclusion functions, a measure for
comparing the ”accuracy” of inclusion functions. Then we briefly explain the implementation
of computational differentiation which we used in our work. At the end we describe which
software we used for the implementation of interval arithmetic and for the implementation of
communication in the parallel method.
In Chapter 2 there is an in-depth introduction to verified global optimization. First we give a
basic serial method. Then we show several strategies for the box subdivision and the selection
of the next box. These strategies have already been well analyzed in the literature and therefore
we give them only at an introductory level. We also consider accelerating devices, again at
an introductory level. We also introduce two new strategies: a strategy for box processing
and a strategy for applying an interval method to boxes. Both strategies improve an existing
serial method. The efficiency of these strategies is shown by numerical results. Finalizing this
chapter we present a new serial method for verified global optimization, which will later be used
in the parallel method. This new serial method uses both of the new strategies introduced.
In Chapter 3 we further consider the interval Krawczyk method, which appeared already as
an accelerating device for verified global optimization in Chapter 2. We additionally consider
the interval Newton method. These methods are used not only in methods for verified global
optimization. They are mainly applied for solving systems of nonlinear equations. We also
consider modifications of these methods. We analyze properties of the original and the modified
methods and give sufficient conditions for their convergence or divergence. The convergence
properties were already considered in the literature. But divergence properties are newly
analyzed in our work. We discuss advantages and drawbacks of modified methods, and we give
numerical results for comparison.
In Chapter 4 we introduce the concept of parallel computing. First we give basics of paral-
lel computing: Flynn’s hardware taxonomy, taxonomy of topologies, new trends in parallel
computing, and measure of performance. After that we turn to parallel methods for verified
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global optimization. We consider existing parallel approaches for verified global optimization
from: Dixon and Jha; Henriksen and Madsen; Eriksson; Moore, Hansen and Leclerc; Berner;
Wiethoff. We also give a short analysis of these approaches based on numerical results from
their papers. Then we introduce our new method for verified global optimization with the
new communication model. After that we go through all routines of the new method in-depth
giving a complete algorithmic description. Finally we present numerical results. The efficiency
of the new method is shown by comparison with the centralized mediator approach of Berner
which is the most efficient of the prior existing methods.
In Appendix A test problems used in this work are presented along with their solution sets.
They are subdivided into three groups depending on the time required for their solution: simple,
medium and hard problems. For some problems we have plotted graphs of the corresponding
objective functions.
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Chapter 1

Background

1.1 Terms and Algorithm Notations

In this section we shall explain shortly all the terms that are often used in this work. We also
give the notation for expressing algorithms.
Terms

We will take intervals, interval vectors and interval matrices into brackets. Small letters will be
used for integers and real numbers, for intervals and for real and interval vectors. Matrices will
as usually be written in capital letters. For an interval vector [x] by x̌ we denote an arbitrary
point vector from [x].
We denote the set of all intervals by IR, the set of all n-dimensional interval vectors by IRn

and the set of all n×m-interval matrices by IRn×m. We denote the lower bound of an interval
[x] by inf([x]) or x1, the upper bound by sup([x]) or x2.
For a vector x ∈ Rn we denote by xi, i = 1, . . . , n, the i-th component of this vector. For a
matrix A ∈ Rn×m we denote by aij , i = 1, . . . , n, j = 1, . . . , m, the j-th element in the i-th
row. The same applies to interval vectors and interval matrices.
We use an upper index to denote enumeration, for instance, xi means i-th real number or i-th
vector. For a function f : D ⊆ Rn → R the following notations apply:
f ′ - first derivative (gradient) of f , f ′ : D → Rn

f ′′ - second derivative (Hessian) of f , f ′′ : D → Rn×n

3f(D̃) - range of the function f over D̃ ⊆ D, i.e. 3f = {f(x) : x ∈ D̃}
2f(D̃) - smallest enclosure of the range 3f(D̃) into an interval
f([x]) - natural interval extension of f over the box [x] ⊆ D
F ([x]) - value of an inclusion function F for f over the box [x] ⊆ D

For continuous functions f the values 3f([x]) and 2f([x]) are everywhere equal and we will
prefer the notation 2f([x]). The concepts of ”natural interval extension” and ”inclusion func-
tion” will be explained later.

1



2 Chapter 1. Background

Algorithm Notations

Algorithms are expressed in a high-level language in common use. Each algorithm begins with
a description of its input and its output, followed by statements (which themselves consist of
a sequence of one or more statements). We next give a list of the statements most frequently
used in our algorithms.

1. Assignment statement:
variable = expression
The expression on the right is evaluated and assigned to the variable on the left.

2. Conditional statement:
if condition then

Statement 1;
Statement 2;
. . .

else
Statement 1’;
Statement 2’;
. . .

end if

The condition is evaluated, and the statements following then are executed if the value
of the condition is true. The else part is optional; it is executed if the condition is false.
In the case of nested conditional statements, we use braces to indicate the if statement
associated with each else statement.

3. Loops:
We use one of the following three formats:

for variable = start to end do
Statement 1;
Statement 2;
. . .

end for
while condition do

Statement 1;
Statement 2;
. . .

end while
repeat

Statement 1;
Statement 2;
. . .

until condition

The interpretation of the for loop is as follows. If the initial value is less than or equal
to the final value, the statement following do is executed, and the value of the variable is
incremented by one. Otherwise, the execution of the loop terminates. The same process
is repeated with the new value of the variable, until that value exceeds the final value,
in which case the execution of the loop terminates.
The while loop is similar, except that there is no initialization; the condition is tested
before each execution of the statement, if the condition is true, the statement is executed,
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otherwise, the execution of the loop terminates.
The repeat until is like while, but testing is done after each execution cycle.

4. Return statement:
return
return Value 1, . . . , Value n
This statement causes the execution of the block where it is located to end. It may return
a list of values.

5. Function calls:
function name(Argument 1, . . . , Argument n)
(Value 1, . . . , Value m) = function name(Argument 1, . . . , Argument n)
A function is called by the name, passing the corresponding number of arguments. The
number of arguments can be zero. A function may also return a list of values. Then they
are assigned in the same order as given in the parenthesis.

1.2 The Problem of Global Optimization

The problem of global nonlinear optimization, that will be considered here, is defined as follows:
Given a continuously differentiable function f : D → R, D ⊆ Rn, D open.
Sought is the global minimum

f∗ = min
x∈[x]

f(x) (1.1)

for an interval vector [x] ⊆ D. Sought is also the set of global minimizers

x∗ = {x ∈ [x] : f(x) = f∗}
or at least one such minimizer. The continuous differentiability of the function f is not required
at all places. But we will assume it in general for the sake of simplicity.
The global maximum of the function f is the global minimum of the function −f . Therefore
global maximization is equivalent to global minimization (1.1). Throughout this work by the
optimization we will understand the minimization of function f .
The problems considered in global optimization in general can not be solved by applying
local optimization methods, since there can be many minimizers of the given function in the
considered domain. Under these conditions the global minimizers can be found only with
considerable computational expenses.
Finding the global minima is much more expensive than the local minima. There is no local
criterion qualifying a found minimum as local or global. Lots of techniques exist for solving
the problem of global optimization. We give an overview over the classical methods in the
next section. An overview of interval methods, which is the subject of this work, starts in
Section 1.2.2.

1.2.1 Classical Methods

The first collections of classical techniques for global optimization can be found in [11, 12].
Since that time there is a goal to develop more efficient methods. New developments in this
field are described in [24, 49, 50, 54], for example. Usually one distinguishes stochastic and
deterministic methods in classical methods for global optimization.
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Stochastic methods, that are well described in [49] and [50], randomly select points from [x]0

in order to find the global minimum. The simplest form of a stochastic method (pure random
search) selects a certain number of points. The point with the smallest function value is taken
as the global minimizer. An advanced modification of this method is the multi start-method.
In this method a local optimization is performed from every selected point. For efficiency
reasons one tries to apply the local optimization only for certain of the selected points. In
this method the starting points will be determined from the analysis of the considered points
and their function values. In this way the application of the method of local optimization is
limited to the promising points. Often after completion of the method, one can compute the
probability, that the real global minimizer was actually found.
The deterministic methods, which are well described in [24], do not use probability quantities.
Using exhaustive search these methods try to guarantee that an approximation to the global
minimizer is found. This is possible only for a limited class of functions. For instance, there
exist deterministic methods for concave functions over a convex set [x] and for Lipschitz-
continuous functions, whose Lipschitz-constants are known or can be estimated. The methods
relying on the branch and bound principle also belong to deterministic methods (see [24],
chapter 4). Interval methods also belong to this class. Therefore the branch and bound
principle will be explained in the next section.

1.2.2 Interval Methods

For interval methods we reformulate the problem of global optimization as follows:
sought is the global minimum

f∗ = min
x∈[x]0

f(x)

and the set

x∗ = {x ∈ [x]0 : f(x) = f∗},

where [x]0 = [x1
1, x

2
1]× . . .× [x1

n, x2
n] ⊆ D. In the sequel we will not be limited to the search of

only one global minimizer, but all such points from [x]0 should be found.
Interval methods belong to the group of deterministic methods (see [20, 45]). They are based
on the branch and bound principle. One consecutively decomposes the given problem into
small subproblems (branching). The tree of subproblems, resulting from the process, will
be cut wherever possible (bounding). In other words, some subproblems will not be further
decomposed and will not be handled, because they surely do not lead to the solution. The
bounding is important, in order to reduce the expense of the solution of the problem.
Applied to the global optimization problem, the branch and bound principle means that the
starting box [x]0, where the global minimizer is sought, will be subsequently divided. Subboxes,
that definitely do not contain the global minimizer, should not be handled further. In Figure 1.1
the tree, that represents the branch and bound method, is shown. Among others the branch
and bound principle is also applied in interval methods that seek the solution of a system
of nonlinear equations (see [20, 34]). The crucial property of the method for verified global
optimization is that the function is evaluated not only at discrete points, but an enclosure of
the function values of f over the whole subbox is always computed: for a subbox [x] of the
starting box [x]0 an interval F ([x]) such that

3f([x]) = {f(x) : x ∈ [x]} ⊆ F ([x]) (1.2)
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will be computed. The upper bound f̃ , f̃ ≥ f∗ for the global minimum, that is obtained
through evaluating the function f at some point x ∈ [x], will serve as a criterion for bounding.
Boxes [x] with inf(F ([x])) > f̃ definitely do not contain the global minimizer, hence they can
be discarded. Should [x] contain the global minimizer x∗, then from (1.2) and the definition
of f̃ it follows that

inf(F ([x])) ≤ f(x∗) = f∗ ≤ f̃

is valid. This is clarified in Figure 1.2. In this example the upper bound f̃ is set equal to a
local minimum. The interval method returns always the enclosure of the global Minimum f∗

and subboxes, whose union contains all the global minimizers of f in [x]0.
In many classical methods only the information about the function in discrete points is used.
One can not be sure, that the solution returned by such a method is really a global minimum.
This is caused by the fact that during the execution of the method only a finite number of
points will be considered and the global minimizer may leave out this set. An example of such
a problem, where the global minimum is left unconsidered by a classical method for global
optimization, is a function plotted in Figure 1.3:

f(x) = 3 · x2 − 3 · e−(200·(−x−0.0675))2

100
+ 0.03.

A class of such functions is given in [17]. In this example, the enclosures for the range of a
function over a given box, which are used in verified method, could be easily computed with
the aid of interval arithmetic. Therefore we give a short introduction to interval arithmetic
in the next section. In Section 1.2.6 we show how interval arithmetic can be used in order to
compute the enclosure of the range of a function.

Startbox

Branching

Bounding Bounding

Bounding Bounding

Figure 1.1: Like interval methods for global optimization branch and bound methods construct
a search tree through subsequent decomposition of the given problem. The search tree is cut
by the bounding strategy
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Figure 1.2: Schematic representation of the execution of an interval method for global opti-
mization. Here f̃ does not change, which is not the case in general

1.2.3 Interval Arithmetic

Definitions and statements from interval computations can be found in [4, 39, 41].
Below we give a summary of the main concepts and properties.

Definition 1. A subset of R of the form

[a1, a2] = {t | a1 ≤ t ≤ a2, a1, a2 ∈ R}

is called an interval.

Real numbers a ∈ R may be considered as special members [a, a] of IR, and they will generally
be called point intervals. Interval vectors will also be called n-dimensional boxes.

Definition 2. Let ◦ ∈ {+,−, ·, :} be a binary operation on the set of real numbers R. If
[a], [b] ∈ IR, then

[a] ◦ [b] = {a ◦ b | a ∈ [a], b ∈ [b]}

defines a binary operation on IR.
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Figure 1.3: An example of an optimization problem, where the classical method will only find
a local minimizer

It is assumed that 0 /∈ [b] in the case of division, and this will not be explicitly mentioned
in the sequel. The operations on intervals [a] = [a1, a2] and [b] = [b1, b2] may be calculated
explicitly as

[a] + [b] = [a1 + b1, a2 + b2],
[a]− [b] = [a1 − b2, a2 − b1],
[a] · [b] = [min{a1 · b1, a1 · b2, a2 · b1, a2 · b2}, max{a1 · b1, a1 · b2, a2 · b1, a2 · b2}],
[a] : [b] = [a1, a2] · [1/b2, 1/b1].

This follows from the fact that f(x, y) with f(x, y) = x ◦ y, ◦ ∈ {+,−, ·, :}, is a continuous
function on a compact set. The function f(x, y) therefore takes a largest and a smallest value
as well as all values in between. [a] ◦ [b] is therefore again an interval. Notice that subtraction
and division are no more the inverse operations for addition and multiplication. This becomes
clear from the following examples:

[0, 1]− [0, 1] = [−1, 1] 6= 0,

[1, 2]/[1, 2] = [1/2, 2] 6= 1.

Furthermore, for an interval [a] the equality [a] · [a] = [a]2 is no more valid; for [a] = [−1, 3] we
have:

[a] · [a] = [−1, 3] · [−1, 3] = [−3, 9],

[a]2 = [−1, 3]2 = [0, 9].

The explanation to this is that in the interval arithmetic evaluation of an expression several
occurrences of the same variable are treated as being independent. For example, for the
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computation of [a]− [a] we use

[a]− [a] = {a− b : a, b ∈ [a]}.
For multiplication and addition in interval arithmetic the following rules hold

[a] + [b] = [b] + [a],
[a] + ([b] + [c]) = ([a] + [b]) + [c],

[a] · [b] = [b] · [a],
[a] · ([b] · [c]) = ([a] · [b]) · [c].

The distributivity rule is no more valid. It is replaced by the subdistributivity

[a] · ([b] + [c]) ⊆ [a] · [b] + [a] · [c].
Proves of all rules given above can be found in [4]. One significant property of interval arith-
metic is the inclusion monotonicity of standard operations and elementary functions s (like
sin, cos, exp, etc), i.e.

[a] ⊆ [c], [b] ⊆ [d] ⇒ [a] ◦ [b] ⊆ [c] ◦ [d],
[a] ⊆ [c] ⇒ s([a]) ⊆ s([c])

are valid, where s([a]) is the range of the function s over an interval [a].
The intersection, union and set relations for intervals are defined as for sets:

[a] ∩ [b] := {c : c ∈ [a] ∧ c ∈ [b]}
[a] ∪ [b] := {c : c ∈ [a] ∨ c ∈ [b]}
[a] = [b] ⇔ a1 = b1 ∧ a2 = b2

[a] ⊆ [b] ⇔ a1 ≥ b1 ∧ a2 ≤ b2.

An intersection is said to be empty if the intersection is empty at least for one component.
The union of intervals is not necessarily an interval.
Further functions on intervals, that will be used later, are

m([a]) := (a1 + a2)/2 (the midpoint of [a]),
d([a]) := a2 − a1 (the diameter of [a]),
|[a]| := max{|a| : a ∈ [a]} (the absolute value of [a]),

q([a], [b]) := max{|a1 − b1|, |a2 − b2|} (the distance between [a] and [b]).

For interval vectors and interval matrices these definitions are applied componentwise. In this
work the following rules will be used. One can find them in [4, 41]. Here [a], [b] ∈ IR.

R1 d([a] + [b]) = d([a]) + d([b]);
R2 |[a] · [b]| = |[a]| · |[b]|;
R3 [b] symmetric, i.e. b1 = −b2 ⇒ d([a] · [b]) = |[a]| · d([b]);
R4 0 ∈ [a], 0 ∈ [b] ⇒ d([a] · [b]) ≤ d([a]) · d([b]).

The intersection, union and set relations of interval vectors and interval matrices are defined
componentwise.
For an arbitrary set D by I(D) we denote the smallest interval enclosing the set D.
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1.2.4 Machine Arithmetic

We now turn to the realization of interval operations on a digital computer. As is well known,
computers have only a finite set of numbers that are often represented in a semilogarithmic
manner as fixed length floating point numbers (see [4])

x = m · be.

Here m is the mantissa, b the base, and e the exponent. The numbers are normally represented

internally with a base b = 2 and a normalized mantissa, that is
1
2
≤ |m| < 1. The set of

machine numbers of the above type is denoted by RM. In actual numerical computation using
digital computers the user is bedeviled by errors which arise in various fashions including the
following:

Errors in data. In the context of formula evaluation and differentiation, this means that
the values of the constants, parameters, and variables may not be known or represented
exactly, so that one has to compute with approximations to them.

Roundoff error. Computer arithmetic is not carried out exactly, even on exactly known
arguments, so that most calculations of the results of arithmetic operations and library
functions will be mathematically inaccurate, since all results are required to be expressed
as a number in RM. The actual computation thus results in an approximation to the true
result of the transformation or operation being performed, and the difference between
the result obtained and the true result is called the roundoff error of the computation.

Truncation error. Many mathematical quantities, such as integrals, derivatives, and vari-
ous algebraic and transcendental functions, are actually defined only as the limits of infi-
nite sequences of operations. Unless, as in the case of differentiation of simple functions,
rules are available which give the values of these limits explicitly, their computation can
only be carried out to a finite point of the sequence defining their values. The resulting
error of the approximate result obtained by actual computation is called the truncation
error.

Ordinarily, a result produced by execution of a computer program will be contaminated by
one or more of the above types of error. Furthermore, it is not possible to draw a clear line
of distinction between these types of error, nor to eliminate them completely. For example,
numbers as 1/3 or π which appear in a formula may be impossible to be represented exactly as
numbers in the system used by a given type of computer. The resulting error in the computation
of sin(x) by a library subroutine in the computation of the transcendental sine function is due
to the approximation of the function by a polynomial. Whatever the source, error is pervasive
in digital computation, and the accuracy of the result of hundreds or thousands of inexact
computations on inaccurate data is always questionable without some additional investigation.
The problem of the analysis of the error of numerical results is one which is fundamental to
statements about the reliability of the computation.
We denote by [a]M ∈ RM the smallest machine interval that encloses [a] ∈ IR. Let [a], [b] ∈ IR
and [a]M , [b]M ∈ RM the corresponding machine intervals, ◦ ∈ {+,−, ·, /}. Then

[a] ◦ [b] ⊆ [a]M ◦ [b]M

is valid due to the inclusion isotony. The interval [a]M ◦[b]M is not in general a machine interval.
On a computer it will be approximated by a new machine interval ([a]M ◦ [b]M )M . This is done
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by the outer rounding in the computation of [a]M ◦ [b]M , i.e. the lower bound of the resulting
interval is rounded down and the upper bound is rounded up to the closest machine number.
The consequence of the outer rounding is that after several cosequitive standard operations
and an application of elementary functions an interval can become relatively large. Hence we
cannot use the theory as it is on a computer when working with small quantities. Dispite this
drawback we should use machine interval arithmetic. Because this way we always enclose the
real result.

1.2.5 Inclusion Functions

An inclusion function is defined in [32] as

Definition 3. Let f : D → R be a given function, [x]0 ∈ IRn with [x]0 ⊆ D, where D ⊆ Rn

is open. Then a function F that maps every box [x] ∈ [x]0 to an interval F ([x]) ∈ IR so that
F ([x]) contains 3f([x]), the range of f over [x], will be called an inclusion function of f on
[x]0.

It follows that

3f([x]) ⊆ F ([x]) for all [x] ⊆ I([x]0).

Definition 4. The inclusion function F of f over [x]0 is called inclusion monotone if for
[x], [y] ⊆ I([x]0):

[x] ⊆ [y] ⇒ F ([x]) ⊆ F ([y]).

In this work we only consider inclusion functions which are inclusion monotone. One way to
obtain an inclusion function is through the natural interval evaluation as we explain now.

1.2.6 The Natural Interval Evaluation

The easiest way to get an inclusion function F is to use interval quantities instead of real
quantities in variables that appear in an expression of the function f . The inclusion function
F obtained this way is called the natural interval extension of f , i.e. we set F ([x]) := f([x]).
The fact that the resulting function F is really an inclusion function and that F is inclusion
monotone follows from the inclusion isotony of interval arithmetic.
For clarity we show this in an example:
Let

f(x1, x2) = x2
1 − x1 + x2,

then

F ([x]1, [x]2) = [x]21 − [x]1 + [x]2

is the natural interval extension for f . If we choose, for instance, [x] = ([1, 2], [3, 4])T , then we
have

3f([1, 2], [3, 4]) = {f(x1, x2) : x1 ∈ [1, 2], x2 ∈ [3, 4]}
= [3, 6],

F ([1, 2], [3, 4]) = [1, 2]2 − [1, 2] + [3, 4]
= [2, 7]
⊇ [3, 6].

(1.3)
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Notice that there could be many mathematically equivalent expressions for the function f . The
corresponding interval extensions usually give different results. For the considered function an
alternative expression is

f(x1, x2) = x2
1 − x1 + x2 = x1 · (x1 − 1) + x2.

If the interval vector ([−1, 2], [0, 0])T is chosen, one can see that the two interval extensions
return different results:

[x]21 − [x]1 + [x]2 = [−1, 2]2 − [−1, 2] + [0, 0]
= [0, 4]− [−1, 2] + [0, 0] = [−2, 5],

[x]1 · ([x]1 − 1) + [x]2 = [−1, 2] · ([−1, 2]− 1) + [0, 0]
= [−1, 2] · [−2, 1] = [−4, 2].

One should choose the expression of a function in such a way that the interval extension
encloses the range as closely as possible. If in the expression every variable appears only once,
then the enclosure is equal to the range (see [4, 39, 41]). We do not know any unified method
allowing to determine which expression should be preferred to another.

1.2.7 The Mean Value and Taylor Forms

As we can see from (1.3) the real range of a function over an interval is usually overestimated
by the enclosure returned by the natural interval extension. This overestimation is often
substantial. There exist possibilities, other than the natural interval extension, to construct
an inclusion function for f . For instance, one possibility is through the use of Taylor series.
Let [x] ⊆ I(D), c ∈ [x], and f be differentiable. Then for all x ∈ [x]

f(x) = f(c) + (x− c)T · f ′(ξ) for one ξ ∈ [x]

and, if f is twice differentiable,

f(x) = f(c) + (x− c)T · f ′(c) +
1
2
(x− c)T · f ′′(ξ) · (x− c) for some ξ ∈ [x].

If we denote by F ′ and F ′′ inclusion functions for the gradient f ′ and the Hessian f ′′ of f ,
respectively, that could be, for instance, obtained from the natural interval extension, then
from the inclusion isotony it follows that

f([x]) ⊆ T1([x], c) := f(c) + (x− c)T · F ′([x]),

f([x]) ⊆ T2([x], c) := f(c) + (x− c)T · f ′(c) +
1
2
([x]− c)T · F ′′([x]) · ([x]− c)

for all [x] ⊆ I(D), c ∈ [x], i.e. T1 and T2 are inclusion functions for f . We will call T1 the
mean value form, since the expression is constructed from the mean value formula, and T2 the
second order Taylor form for f . The point c can be chosen as an arbitrary point from the box
[x]. Usually one takes the midpoint c = m([x]).
The application of the inclusion functions introduced above is more expensive per evaluation
than the application of the natural interval extension. Therefore it is useful only if it leads
to narrower enclosures. Below we show that one can expect narrower enclosures for the range
using the mean value or the Taylor form instead of the natural interval extension, at least for
narrow intervals.
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1.2.8 The Order of the Inclusion Function

In order to be able to compare inclusion functions the concept of the order is introduced:

Definition 5. Let F denote an inclusion function of f : Rn → R. If there is a constant K
independent of the box [x] ∈ Rn such that

d(F ([x]))− d(2f([x])) ≤ K · d([x])α

for all boxes [x] with d([x]) sufficiently small and fixed α > 0, then we say that F is an order
α inclusion function for f . When α is 1 or 2, we call the inclusion first order or second order,
respectively.

Because of 2f([x]) ⊆ F ([x]), the order gives the rate of how fast the inclusion function con-
verges to the smallest enclosure of the range of the given function. One can show:

• If f has an expression and F is the natural interval extension of this expression, then F
is of order 1.

• If f is differentiable and the inclusion function F ′ for f ′ is Lipschitz continuous, i.e. there
exists a positive c ∈ R such that

d(F ′([y])) ≤ c · d([y]) for all [y] ∈ I(D),

then the mean value form is of order 2 (see [30]).

• If f is twice differentiable and the inclusion function F ′′ for f ′′ is bounded, then the
second order Taylor form is of order 2 (see [44]);

An introductory treatment of different inclusion functions can be found in [44]. Our above
statements make it clear that especially for small boxes one can expect better enclosures from
the mean value form or the Taylor form than from the natural interval extension, because they
have higher order. But their computation is expensive due to the computation of the gradient
or the gradient and the Hessian.

1.3 Differentiation

As one can see from the mean value or the Taylor form, in some cases we need to compute
the gradient and the Hessian of f or their enclosures. Therefore we should find methods to
compute derivatives and their enclosures.
There are at least three possibilities to realize the computation of derivatives. In numerical
differentiation an approximation to the derivative is computed through finite differences. In
symbolic differentiation, through the application of differentiation rules to a function’s expres-
sion, one obtains an expression for the derivative. This is then used for the computation of
the derivative at different points. In automatic differentiation, the two steps of the symbolic
differentiation are combined. One uses differentiation rules to compute the value of the deriva-
tive. To this purpose, one substitutes variables by the corresponding values, so that one does
not get a symbolic expression, but the value for the derivative. During the computations one
works with numbers, not symbols.
Numerical differentiation is not suitable in our context, since it does not yield a possibility to
compute an enclosure of the derivatives over an interval vector.
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With the use of symbolic differentiation one can enclose the derivative over a box [x] ∈ IRn,
by substituting the point x ∈ Rn by the box [x] in the expression resulting from symbolic dif-
ferentiation (natural interval extension). However, one may get very complicated expressions.
Those are not efficient to use and may lead to large overestimations of the range.
Within this work symbolic differentiation has been used. First the code list for the given
function was generated. Then code lists for derivatives were generated using a special package
(we have implemented the package similar to the one described in [32]). Finally all code lists
were translated to C-XSC standard expressions. One can find an in depth introduction to the
technique we used in [32]. Our symbolic differentiation is about twice faster than the automatic
differentiation of the CToolbox (see [13]). Therefore in the implementation of our algorithms
we use this symbolic differentiation. For all objective functions used in our work we obtained
the same enclosures over starting boxes as by automatic differentiation of the CToolbox.

1.4 The Programming Language in Use

For implementation of the following methods the programming language C++ was used to-
gether with the C-XSC library (see [33]), which is developed especially for scientific computa-
tions. The library C-XSC has been chosen for implementation since there exists a data type
for intervals with corresponding machine arithmetic. This library also allows good handling
of real and interval constants, since they can be directly substituted by the smallest enclosing
machine interval. This is important, for instance, if constants like 0.1 appear, that have no bi-
nary code representation as a machine number. For the implementation of the communication
in the parallel method we used MPI (see [36]).
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Chapter 2

The Serial Method for Verified
Global Optimization

For interval vectors [x] ∈ IRn we define a new diameter dm([x]) as

dm([x]) :=
n

max
i=1

d([x]i).

In other words it is the length of the longest edge of the box [x].
As a rule all classical methods for global optimization are very computation consuming. Ad-
ditionally a problem arises, whether a global or a relative minimum is found as a solution.
The absence of guarantee for the correctness of the solution implies that a method for verified
global optimization is a right alternative even though it might be even more time consuming.
The development of interval methods for global optimization began in 1966 with an algorithm of
Moore [37], that was later improved by Skelboe [51]. These algorithms aim only on determining
the global minimum f∗. Methods that also determine global minimizers, were developed by
Ichida and Fujii [25] and by Hansen [18, 19]. One can find the description of these methods
in [45]. In [20] interval methods for global optimization are described at an introductory level.
As before we always assume that f : D → R, D ⊆ Rn open, is a continuously differentiable
function. And F will be an inclusion function for f over [x]0. We point out that when the
evaluation of the function f at a point x ∈ Rn is required, we will write F (x) and consider
x as a point interval vector. We do this because by using machine arithmetic instead of
exact arithmetic we obtain that F (x) contains the correct result f(x), thus guaranteeing the
correctness of the method. The usual evaluation of f(x) could lead to wrong results due to
rounding errors.
Existing methods are implemented upon a basic principle, that is described in Algorithm 2.1.
As input the algorithm takes a box [x]0 wherein global minimizers are sought, an inclusion
monotonic inclusion function F for f over [x]0. The algorithm returns an enclosure for the
global minimum and a list of boxes which contain all the global minimizers. The algorithm
works by the branch and bound principle. Branching is the subdivision of a box into several

15
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Algorithm 2.1 The Basic Serial Method for Verified Global Optimization
Input: the starting box [x]0 ∈ IRn, the inclusion function F ;
Output: an enclosure [f ] ∈ IR for the global minimum, the list of boxes L̃ which contain all

the minimizers;

f̃ = sup(F (m([x]0)));
Initialize the working list L := {([x]0, inf(F ([x]0)))};
Initialize the solution list L̃ := ∅;
while L 6= ∅ do

choose ([x], inf(F ([x]))) ∈ L;
subdivide the box [x] into boxes [x]1, . . . , [x]k, k ≥ 2; {Branching}
for i = 1 to k do

if inf(F ([x]i)) ≤ f̃ then {Bounding}
f̃ := min{f̃ , sup(F ([x]i))};
if d(F ([x]i)) < ε then

put ([x]i, inf(F ([x]i))) into L̃;
else

put ([x]i, inf(F ([x]i))) into L;
end if

end if
end for
L = cut-off(L, f̃); {Bounding}

end while
L̃ = cut-off(L̃, f̃);
select the pair ([x], inf(F ([x]))) ∈ L̃ with inf(F ([x])) minimal;
[f ] = [inf(F ([x])), f̃ ];
return [f ], L̃;

subboxes and the search of global minimizers there. Bounding is the deletion of boxes which so
far surely cannot contain a global minimizer. This is done by comparison of the lower bound
f of the range of the function over that box with the upper bound f̃ . If f > f̃ then the box
definitely does not contain any global minimizer and can be discarded, since the value of the
function at any point from this box is already greater than the verified upper bound for the
global minimum. In the algorithm first we initialize the verified upper bound for the global
minimum by sup(F ([x]0). Then we initialize the working list L with a pair ([x]0, inf(F ([x]0)))
and the solution list S with an empty list. Then we take a pair ([x], inf(F ([x]))) from L. We will
give strategies for the selection of a pair from the list in subsection 2.1. We subdivide the box [x]
into k subboxes [x]1, . . . , [x]k. Strategies for the subdivision we will give in subsection 2.3. For
each [x]i we compute F ([x]i). Now if inf(F ([x]i)) < f̃ , then we insert the pair ([x]i, inf(F ([x]i)))
either into the solution list L̃ or the working list L, depending on a criterion (see below), else
we can discard this pair. As a criterion for the insertion of the pair ([x], inf(F ([x]))) into the
solution list L̃ we use d(F ([x])) < ε, where ε is a given accuracy. If sup(F ([x]i)) is less than f̃ ,
then we assign it to f̃ . After all boxes [x]1, . . . , [x]k are handled we perform bounding, i.e. the
cut-off test. The cut-off test merely discards all elements ([x], inf(F ([x]))) with inf(F ([x])) > f̃
from the list. The description of the cut-off test is given in Algorithm 2.2. As long as the
list L is not empty we take the next pair and do the same what we have done with the pair
([x], inf(F ([x]))). At the end before returning the solution list L̃ we perform cut-off test for f̃
with the latest value of f̃ .
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Algorithm 2.2 cut-off

Input: the list L and the verified upper bound f̃ ;
Output: the list L without elements ([x], inf(F ([x]))) for which inf(F ([x])) > f̃ ;

for i = 1 to #L do
if inf(F [x]i) > f̃ then

discard pair ([x]i, inf(F ([x]i))) from the list L;
end if

end for
return L;

2.1 Strategies for the Box Selection

The choice of the box to be handled next influences the order of the execution of Algorithm 2.1
definitely. In the literature one distinguishes the following criteria:

• oldest-first-strategy: to choose the oldest box, i.e. L is handled as a queue;

• best-first-strategy: to choose the box with the smallest corresponding lower bound, i.e.
L is handled as a sorted list;

• depth-first-strategy: to choose one of the recently created boxes, i.e. L is handled as a
stack.

The best-first-strategy was used in [8, 21] as breadth-first-strategy. The oldest-first-strategy was
used in [18, 19]. Examples of algorithms with best-first-strategy can be found in [20, 25, 38, 51].
In [8, 21] the depth-first-strategy was used. In [27, 28, 29] one can see a combination of oldest-
first- and best-first-strategies. A short introduction to selection strategies can be found in
[46].

2.1.1 oldest-first-Strategy

In the oldest-first-strategy the box, that is longest in the list, is selected. One can consider
it as a FIFO (first in first out) structure, i.e. L is a queue. Always the box from the head is
selected in order to be handled. Subboxes, resulting from the handling, are inserted to the tail.
The advantage of this strategy is that all boxes are regularly subdivided. Therefore one can
expect that the range of the function f over all boxes is always well enclosed. If f̃ 6= f∗ is valid
then this strategy tends to subdivide those boxes again, which with other list management
would have been discarded without further subdivision through the cut-off test when f̃ was
sufficiently decreased. In other words during other list managements the best upper bound f̃
tends to f∗ faster than by this one.

2.1.2 best-first-Strategy

If one chooses as the next box the element ([x], lbf), that has the minimal lower bound lbf
for the range of f over the box [x] then the strategy is called best-first-strategy. In this way
the most promising box will always be selected as the next box. The important point in
this strategy is that basically no box is subdivided unnecessarily as shown in the statement
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below. Here we assume that the criterion for insertion of a box [x] into the solution list L̃ is
d(F ([x])) ≤ ε.

Statement 1. Using Algorithm 2.1 with the best-first-strategy no pair ([x], lbf) with lbf >
f∗ + ε will be chosen for subdivision.

Proof. See Statement 2.1 in [5].

Here, ε is the parameter which was chosen for the criterion to insert boxes into the solution list
L̃. It is important to note that any strategy for choosing the next box will have to investigate
pairs ([x], lbf) with lbf ≤ f∗ and [x] not fulfilling the termination criterion d(F ([x])) ≤ ε. For
these boxes a decision, if they contain global minimum points or not is not possible yet, even
if the global minimum f∗ is already known. Only pairs ([x], lbf) with f∗ < lbf < f∗ + ε,
therefore, might be considered unnecessarily with the best-first-strategy, but the number of
these boxes is small in practice. Using the other two strategies, normally many pairs ([x], lbf)
with lbf > f∗ + ε are investigated, so that it is favorable to use the best-first-strategy. This
was always our choice in our algorithms.

2.1.3 depth-first-Strategy

In the depth-first-strategy one manages boxes in a LIFO (last in first out) structure. The
natural structure for box storage is thus a stack. For proceeding one always takes the first box
from the stack and places new subboxes into the stack. In this way the box will be subdivided
further and further as long as it does not fulfill the termination criterion.
One advantage of this strategy is that the maximal length of the list of boxes is usually less
than in other strategies. There are always a few small boxes in the list.
In this strategy boxes could be subdivided unnecessarily, though. This happens, for instance,
if we insert always the left part of the box (by bisection, i.e. k = 2) first, and the right part
second, and the global minimizer is in the right part of the initial box. All the boxes in the
left part would be subdivided unnecessarily.

2.2 Comparison of Box Selection Strategies

For the comparison of the selection strategies it is important to emphasize that all handled
boxes come from the tree resulting from subdividing the initial box [x]0. The tree does not
depend on the selection strategy. It depends only on how the subdivision is done. If the box is
divided along the longest edge, then one gets the tree presented in Figure 2.1. For the leaves
of this tree the termination criterion d(F ([x])) is fulfilled.
For all selection strategies boxes from this tree will be handled. Only the set of subboxes to
be handled and the order of handling differ. As an example, in Figure 2.1 we used gray boxes
to denote those which are handled using the depth-first-strategy. The rest of the boxes was
discarded through the cut-off test and won’t be handled. Using another selection strategy
usually the order of boxes to be handled is different, yielding different values for f̃ , so that a
different set of boxes will be handled.
The best-first-strategy is the only strategy out of the three considered here, that will handle
only a small amount of boxes with inf(F ([x])) ≤ f∗ + ε, that were unnecessary. For all strate-
gies this is only so if f̃ is very close to f∗ from the beginning, see [5], statement 2.2.
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[X]
0

Figure 2.1: Tree resulting from the successive subdivision of the starting box [x]0

Along with the number of boxes that are handled during the execution of the method, also
the cost for the box management should be taken into account. They both are decisive for the
efficiency of the method.
In the best-first-strategy one can store boxes, for instance, in a sorted list. In this case the
insertion of new boxes is relatively expensive, but the cut-off test is efficient. It is not necessary
to go through the whole list. It is sufficient to find the point from where the rest of the list can
be discarded. If one does not store boxes in a sorted list, then the cost of insertion is small.
But new expenses appear: in each step the whole list must be searched in order to perform
the cut-off test, and also to determine the element with the smallest lower bound. Therefore,
in the implementation of the method we use the sorted list.
In the oldest-first-strategy boxes should be stored in a queue. In the depth-first-strategy boxes
should be stored in a stack. In both, stack and queue the insertion and retrieval are performed
without a large effort. But for the cut-off test the whole stack or the whole queue must be
searched.

2.3 Strategies for the Box Subdivision

We now turn to discuss different strategies for the box subdivision in Algorithm 2.1. In this
section we will present some possibilities for how boxes could be subdivided in order to obtain
smaller enclosures for the range of the function and therefore for the global minima.

2.3.1 Bisection Strategies

In most of the literature on interval methods for global optimization the initial box is succes-
sively bisected. The direction orthogonal to which the box is to be bisected can be determined
by different criteria. Untill now the most used criterion is the direction with the largest interval
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diameter. In [46] it is shown that this is by far not the most efficient way and other subdivision
strategies are introduced.
We introduce the new measure - generalized diameter - dg([x]) = (d1([x]), . . . , dn([x]))T , where
di([x]) ∈ R, di ≥ 0. Using the generalized diameter we bisect the box [x] in the direction k
for which (dg)k = maxi(dg)i. Algorithm 2.3 describes how the bisection can be done. The

Algorithm 2.3 bisection
Input: the box [x];
Output: subboxes [x]1 and [x]2;

k = min{j ∈ {1, . . . , n} : ((dg)j([x]) = maxn
i=1(dg)i([x])}; {determine the direction k

orthogonally to which the box is to be bisected}
[x]1 = [x]; {bisect the box [x]}
[x]2 = [x];
[x]1k = [inf([x]k),m([x]k)];
[x]2k = [m([x]k), sup([x]k)];
return [x]1, [x]2;

evaluation of the direction, i.e. the evaluation of (dg)i([x]) could be performed in different
ways. Below we give some bisection strategies. Here again F ′ is the inclusion function for the
gradient of f .
Strategy A: This is the strategy proposed first, historically. It is until now mostly used in
the literature, see [18, 19, 45]. One defines

(dg)i([x]) = d([x]i).

In other words, one always bisects orthogonally to the direction of the longest edge (the longest
interval diameter). This strategy is based on the idea that such a regular bisection leads to
boxes looking like a cube and the diameter of the boxes possibly tends to zero fast. In this
way one gets a good enclosure of the global minimizer and hopes to get a good enclosure for
the range of the function over the box as well. For this strategy there exists a short theoretical
investigation for its convergence and its convergence speed in the Moore-Skelboe-Algorithm in
[5], page 27.
Strategy B: Hansen in [20] used another strategy. He sets the goal to bisect orthogonally to
the direction in which the function varies most. One defines

fi(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn), i = 1, . . . , n,

where xj = m([xj ]). Then

wi([x]) = max
t∈[x]i

fi(t)− min
t∈[x]i

fi(t)

represents a measure of how the function varies in i-th variable. It would be desirable to bisect
the box orthogonal to the direction i in which wi is maximal. Since the evaluation of wi would
be expensive, one uses the estimate

wi ≤ d(F ′i ([x])) · d([x]i),

which immediately follows from the mean value Theorem, see (3.7). Now one sets

(dg)i([x]) = wi([x]).
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Strategy C: The bisection strategy C like the strategy B uses the gradient over the box [x]
in order to determine the direction. Like the strategy B it sets the goal to bisect orthogonally
to the direction in which the diameter of F ([x]) changes most. One now takes

(dg)i = |F ′i ([x])| · d([x]i).

This strategy is already used in the method for enclosing the solution of a system of nonlinear
equations in [31]. In the method for verified global optimization it was first used in [47]. This
strategy differs from the strategy B in that it uses the absolute value instead of the diameter.
And therefore we choose now the direction in which the given function is steepest.

2.3.2 Multisection Strategies

By multisection we understand the subdivision of a box into more than two parts. Again
strategies similar to Strategies A - C can be used. The idea of multisection originates from
the parallelization of methods for verified global optimization. During the execution of the
method it happens that some processors handle boxes that contain no global minimizer and
this becomes clear relatively early. Those processors may run out of boxes. At this point it is
important to have them busy again as soon as possible. When a processor has boxes not just
for itself but also to share, idle processors could be provided with new boxes fast. For this it
is efficient to have boxes multisected into more than two parts in each step of the iteration.
In [5] tests show that for an algorithm given there it is efficient to multisect boxes into four
parts. Also for a serial method given in [9] it turned out to be efficient to multisect boxes into
3 parts. For multisection it is again important to find the appropriate strategy for computing
the subdivision directions. If the box is subdivided into many parts, then one can expect to
have better enclosures of the range of the function f over those subboxes. By the bisection it
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Figure 2.2: Strategies for the box subdivision

can happen that intermediate boxes, which do not contain a minimizer cannot be discarded
because the lower bound for the range of the function over this box is still small. On the other
hand, in multisection it can happen that we produce many subboxes (which all have to be
worked upon), whereas bisection would already have given two subboxes which both would
have been discarded subsequently. In the parallel method in [5] it is proven by numerical
experiments that multisection into four parts is the most efficient. In [20] it is shown that for
the algorithm for global optimization considered there, it is indeed efficient to subdivide the
box into even more parts. There the number of subboxes was 23 = 8 and strategy B for the
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direction selection was used. Also in [15] for that parallel method multisection was efficient.
There strategy A is used.
The multisection of the box [x] can be done with Algorithm 2.4. One gets the bisection if one
chooses l = 1.

Algorithm 2.4 multisection
Input: the box [x] and the number of subboxes k = 2l;
Output: subboxes [x]1, . . . , [x]k;

compute (dg)i([x]), i = 1, . . . , n, according to the multisection strategy;
for i = 1 to l do {determine the directions r1, . . . , rl}

ri = min{j ∈ {1, . . . , n} : (dg)i([x]) = maxn
i=1(dg)i([x])};

(dg)ri([x]) = (dg)ri([x])/2;
end for
list = multisect([x], l, r1, . . . , rl) {an auxiliary function}
return list;

Algorithm 2.5 multisect
Input: the box [x], the number of subboxes k = 2l and directions r1, . . . , rl;
Output: subboxes [x]1, . . . , [x]k;

bisect [y] orthogonally to the direction rl:
[y]1 = [y];
[y]2 = [y];
[y]1k = [inf([y]rl

),m([y]
l
)];

[y]1k = [m([y]
l
), sup([y]rl

)];
if l = 1 then

list = {[y]1 ∪ [y]2};
else

list = multisect([y]1, k − 1, r1, . . . , rl−1) ∪ multisect([y]2, k − 1, r1, . . . , rl−1);
end if
return list;

2.4 Accelerating Devices

Algorithm 2.1 is widely applicable, since it does not require the differentiability of the consid-
ered function. By considering differentiable functions, the process can be accelerated through
the insertion of additional tests to discard boxes and of methods to shrink boxes other than
by subdivision. As accelerating devices we consider here the monotonicity test, which requires
continuous differentiability of a function, and the nonconvexity test as well as the interval
Krawczyk method, which require two times continuous differentiability of a function.
All the accelerating devices guarantee that none of the boxes that contain the global minimizer
is discarded (see [20, 45]).
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2.4.1 The Monotonicity Test

For the monotonicity test, whose description can be found in [20, 45], it is assumed that the
given function is continuously differentiable. Let F ′ = (F ′1, . . . , F ′n)T be an inclusion function
of the gradient g = (g1, . . . , gn)T of the function f .
A global minimum, that is assumed to be in the interior of the starting box [x]0, is always a
local minimum at a certain point x∗. If the function f is strongly monotone over the given box
[x] ∈ I([x]0), i.e. gi(x) < 0 or gi(x) > 0 is valid for some i ∈ {1, . . . , n} and for all x ∈ [x], then
the box [x] does not contain any stationary points and hence neither local nor global minima.
In the monotonicity test we therefore check whether for at least one i ∈ {1, . . . , n}

0 6∈ F ′i ([x]).

Since F ′ is the inclusion function for the gradient g it follows that gi(x) < 0 or gi(x) > 0 is
valid for all x ∈ [x]. Since we assume that the global minimum is located in the interior of
[x]0, the box [x] needs not be considered any more. If only F ′i ([x]) ≤ 0 or F ′i ([x]) ≥ 0 is valid
then it is not sufficient to consider just edges, given by

([x]1, . . . , [x]i−1, sup([x]i), [x]i+1, . . . , [x]n)T ,

([x]1, . . . , [x]i−1, inf([x]i), [x]i+1, . . . , [x]n)T ,

at least, if all global minimizers are sought. The function surely achieves its minimal value at
the edges. But the function could be constant parallel to the direction i in the interior of [x]
and there would thus be other global minimizers in the interior of [x].
If the global minimum is definitely not in the interior of the starting box [x], but can be
located on an edge, then the monotonicity test should be modified. Instead of discarding
the box in the case 0 6∈ F ′i ([x]) we should check if F ′i ([x]) ≤ 0 or F ′i ([x]) ≥ 0 is valid for
([x]1, . . . , [x]i−1, sup([x]i), [x]i+1, . . . , [x]n)T or ([x]1, . . . , [x]i−1, inf([x]i), [x]i+1, . . . , [x]n)T , re-
spectively. If it is the case, then the box can be reduced to the corresponding edge, otherwise
it can be discarded.
Throughout this work we assume that global minimizers are in the interior of the initial box
[x]0.

2.4.2 The Nonconvexity Test and the Interval Krawczyk Method

If the function f is twice differentiable, then the usage of an inclusion function F ′′ for the
Hessian can accelerate the method as we shall explain below. But one should remember that
it is usually relatively expensive to compute an enclosure for the Hessian. By application of
forward automatic differentiation or symbolic differentiation the cost increases by factor c · n2

(here n is the number of variables, c is a constant depending on the function complexity)
compared to the amount of time required to compute the original function value.
In the nonconvexity test and the interval Krawczyk methods, which are given below, it is again
assumed that the global minimum is in the interior of the box [x]0.

The Nonconvexity Test

If an enclosure for the Hessian over the box [x] is computed, then it is useful to perform the
nonconvexity test (also called concavity test), since it has very low additional cost. From this
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test, that is quite well described in [20, 47], we can determine whether the given function is
nowhere locally convex over the given box. For a local minimizer x ∈ [x] the matrix f ′′(x) is
always positive semidefinite. Hence the function is locally convex at the minimum. Therefore
a box [x], where f is not convex at each point locally, cannot contain local minimizers and
therefore it can be discarded.
We will denote F ′′([x]) by H. In the nonconvexity test we will consider the diagonal elements
Hii = [hii, hii] of H. If hii < 0 holds for at least one i ∈ {1, . . . , n}, then none of the
matrices (hii)i,j=1,... ,n ∈ H with hij ∈ Hij is positive semidefinite. Since H is the enclosure
for 3f ′′([x]), the matrix f ′′ is nowhere in [x] positive semidefinite. The box [x] needs not be
considered further.

The Interval Krawczyk Method

A global minimizer in the interior of [x]0 is always a stationary point x∗, i.e. a point where the
gradient f ′ vanishes, i.e. f ′(x∗) = 0. Therefore one can try to enclose zeros of f ′ in [x] using
the interval Krawczyk method.
If we denote the gradient by g, g : [x]0 ⊆ Rn → Rn, g = (g1, . . . , gn)T , gi : [x]0 → R, then
points x ∈ [x] with g(x) = 0 are sought. For this purpose we can use the interval Krawczyk
method (which will be analyzed in detail in Section 3.5). We write down the algorithm for this
method in Algorithm 2.6.

Algorithm 2.6 The Interval Krawczyk Method
Input: the box [x], inclusion functions F ′, F ′′ for g and f ′′, respectively, m - number of

maximum steps;
Output: the reduced box [x], which contains a zero of g or an empty set;

1: set [x]1 = [x];
2: for l = 1 to m do
3: choose c ∈ [x]l;
4: compute Y =

(
m

(
F ′′

(
[x]l

)))−1;
5: compute [y] = F ′(c);
6: [k] = c− Y · [y] +

(
I − F ′′([x]l)

) · ([x]l − c);
7: set [x]l+1 = [x]l ∩ [k];
8: if [x]l+1 = ∅ then
9: return ∅;

10: end if
11: end for
12: return [x]m+1;

In Algorithm 2.6, line 6 we always get an interval vector, not a set of interval vectors like in the
interval Newton method. If in Algorithm 2.6, line 7 we get an empty intersection we terminate
the iteration and there is no zero of g in [x].
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2.5 A New Serial Method for Verified Global Optimiza-
tion

In this section we introduce a new serial method for verified global optimization. We will
build it up step by step introducing several new techniques. In the next subsection we give
a modification of the interval Krawczyk method, which makes a little improvement over the
interval Krawczyk method. Then we introduce two new techniques related to the interval
methods along with numerical results. And finally in subsection 2.5.5 we give the complete
description of the new method.

2.5.1 Modification of the Krawczyk Method

In the interval Krawczyk method, the interval vector [x]l is used for calculation of all the
components of the intermediate interval vector [k] (see Algorithm 2.6, line 6). We modify
the interval Krawczyk method by substituting some terms in thhe calculation of the i-th
component of the vector k by the updated values: ([x]l+1−c)j instead of [x]l−c)j for 1 ≤ j < i.
Using updated intervals (sometimes they get narrower) we try to get narrower intervals [k]l

and consequently at the end a narrower resulting interval [x]m+1. Algorithm 2.7 states this
modification.

Algorithm 2.7 The Modification of the Interval Krawczyk Method
Input: the box [x], inclusion functions F ′, F ′′ for g and f ′′, respectively;
Output: the reduced box [x], which contains a zero of g or an empty set;

set [x]1 = [x];
for l = 1 to m do

choose cl ∈ [x]l;
compute Y =

(
m

(
F ′′

(
[x]l

)))−1;
compute [y] = g(c);
compute M = I − Y · F ′′([x]l);
for i = 1 to n do

[k]i = ci − (Y · [y])i +
(
M · ([x]l − c))

)
i
;

[x]li = [x]li ∩ [k]i;
if [x]li = ∅ then

return ∅;
end if

end for
set [x]l+1 = [x]l;

end for
return [x]m+1;

We measure the run time of the program implementing Algorithm 2.1 using the Krawczyk
Interval Method as an accelerating device. After the modification we get time improvements
for seven test problems, which we report in Table 2.1. For the rest of the test problems there
is no change. The definition of the test functions are given in Appendix A. Although the
improvement is not significant, we will use the modified method. From now on we will refer to
this modification as the interval Krawczyk method. In order to perform the interval Krawczyk
method we evaluate the Hessian of the function f . At this point, before the interval Krawczyk



26 Chapter 2. The Serial Method for Verified Global Optimization

method, we compute an enclosure of the range of the function using the Taylor form (see 1.2.7),
which costs almost nothing, in hope to discard the box (comparing the lower bound of the range
of the function with f̃) without performing the expensive interval Krawczyk method.

2.5.2 A New Strategy for Box Processing

After the introduction of the interval methods as accelerating devices the following question
arises:
Should we perform multisection after the interval method.
In [5] Berner used both, the interval Newton method and multisection. In [55] Wiethoff used
the interval Newton method as an accelerating device and performs multisection only if the
Newton method leaves the box unchanged. There are two more possibilities:

• apply multisection if after the interval Krawczyk method at least one component of the
box remains unchanged.

• never apply multisection.

The option of never processing a box by subdivision is not a viable one. Even when boxes are
very small, it can happen that the interval Krawczyk method does not reduce the box in at
least one direction, so that we can run into an infinite loop. So we have the following strategies
for performing multisection after the interval method:

A if the box remains unchanged;

B if at least one component remains unchanged;

C always.

Table 2.2 represents the time measured using algorithms, that implement strategies A - C
formulated above in the second, the third and the forth columns, respectively. In the third and
the forth columns, the parenthesis indicate the speedup relatively to the second column. In
the last row the average speedup for the third and the forth columns is given. As we see from
the table, strategy B, i.e. processing a box by subdivision if at least one component remains
unchanged, is the best on average. The slightly longer time for strategy B than strategy A when
the numbers of iterations are the same is explained as the time spent for extra subdivisions.
Because the box remains unchanged implies at least one component remains unchanged, all
boxes processed by subdivision in the strategy A are also processed by subdivision in the
strategy B. But not all boxes processed by subdivision in the strategy B are processed by
subdivision in the strategy A.
In some test problems those boxes that are processed by subdivision in strategy B and not in
strategy A, yield a smaller upper bound for the global minimum f̃ . Owe to them the time
for these problems are significantly decreased. But for the rest of the problems execution time
increases slightly. After all we should emphasize that if strategy B increases the time, then
not significantly, but it can decrease the time substantially (see problems SHCB, L8, L12, L18,
H6, GEO3). We will use the strategy B in our algorithm. It is difficult to apply the strategy
B to the Newton method, since it can return more than one boxes.
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2.5.3 A New Strategy for Applying the Krawczyk Method

Usually interval methods used as accelerating devices are applied once the diameter of the box
gets smaller than an a priori set parameter (see [5]). The disadvantage of this approaches is
that we have a parameter not depending on the given function. This results in a non-optimal
use of the interval method which is quite expensive. Wiethoff in [55] tried to adjust the
parameter dynamically. His approach has disadvantages, too. He adjusts the parameter based
on the result of the interval method applied to the current box. But the function can behave
completely different over the next selected box. And therefore adjusted parameters could be
of no use there. Here is a new approach to this problem. When the interval vector [x] is too
large and the given function is too complicated, the interval Krawczyk method fails, leaving all
components of the interval vector [x] unchanged. If this takes place, we save, together with the
box, a counter t, that indicates the number of times the box should now be processed without
the interval Krawczyk method. Each time the box is processed, the counter is decremented
until it is zero. In this way we try to store the information about the behavior of the given
function over the box. If the interval method failed to reduce the box then we postpone the
application of the interval method next time when this box is selected as the next one to be
handled. In Table 2.3 we give times measured with different values of t compared with the time
of the algorithm which processes a box with the standard interval Krawczyk method (t = 0).
In this table we see that in general the adaptive application of the interval method is better
than the usual way of application of the interval method. For simple problems like S5, S7,
S10 and RO it works very well with all values of t. A new adaptive approach is good not only
for simple problems. We see that it is also good for medium and hard problems like R4, H6,
S2.14, GEO1, GEO2, GEO3 and R8 for all three values. And for values 1 and 2 it is efficient
for problem S2.14, HM3, HM4. For the case t = 2 we have the best average time. But in the
final serial algorithm we rather set t = 1 because for medium and hard problems it gives better
timing (see Table 2.4). To show the efficiency of this technique we also tried out this strategy
in an algorithm using the interval Newton method instead of the interval Krawczyk method.
In general we got a similar improvement. Results are presented in Table 2.5.
In Table 2.6 we compare algorithms with the new technique and the algorithm by Wiethoff.
In perenthesis we give weighted percentage - the percentage of the correcponding method from
the total time spent by all methods for a certain problem. The very small time for R8 spent
by the Algorithm of Wiethoff is the result of use of the Boxing Method (see [55]). For R8, by
chance one of global minimizers is isolated at the beginning and a very good approximation to
the global minimum is obtained. But unfortunately for the rest of the problems this method
does not work that well.

2.5.4 Dependence of the results on the differentiation technique

The decision of which interval method to use depends on the software for interval arithmetic
and on a technique for differentiation. As we have mentioned in the introduction, automatic
differentiation of the package C++ Toolbox, which is well explained in [13], it is about twice
slower than the symbolic differentiation we have implemented. The interval Krawczyk method
always returns at most one box, none in the best case. The interval Newton method can return
up to n boxes, where n is the dimension of the box, since in every internal loop division by an
interval containing zero can occur. If the dimension is large and the gradient of the function
is expensive to evaluate then the insertion of boxes after the interval Newton method becomes
expensive. In such cases it is preferable to use the interval Krawczyk method over the interval
Newton method. In this subsection we perform all tests on the serial method, but this time we
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will use automatic differentiation of the package C++ Toolbox (see [13]). We perform all tests
to show that our new techniques work well also with automatic differentiation of the package
C++ Toolbox.
In Table 2.7 we show that the modification of the interval Krawczyk method has a little impact
to the execution time. Here we see that using the modified method for the problem H6 gets
worse. It can be explained as follows. The interval Krawczyk method shrinks the box only
a little and the succeeding multisection would be of good use. In Table 2.8 we tested three
possible strategies for multisecting the box after the interval Krawzyk method. Like the version
without the C++ Toolbox we get better times on average for strategy B - processing the box
by subdivision if at least one component of a box remains unaffected.
In Table 2.9 we see times for different values of t. For t = 1 we have the best average time,
unlike the algorithms which use our symbolic differentiation. But the important point is that
the new technique accelerates the average time. The new technique also works for methods
using the interval Newton Method. This fact is shown in Table 2.10.

2.5.5 A New Serial Method for Verified Global Optimization

Puttin all previous observations together, we end up with our new serial method for verified
global optimization, which we discribe in detail now. The algorithm is divided into two parts:
its main part - Algorithm 2.8 and the handling of an element - Algorithm 2.9. It is done in
this way since the handleBox routine can also be used in a parallel method. The main part
is simple. At the beginning the working list L is initialized with ([x]0, inf(F ([x]0), 0) and the
solution list L̃ with an empty list. Then one element is taken from the list L and processed by
handleBox. After that bounding is performed. This continues until L becomes empty. Then
the cut-off test is performed for the solution list and an enclosure for the global minimum is
set to [inf(F ([x])), f̃ ], where ([x], inf(F ([x]))) is an element in L̃ with inf(F ([x])) minimal. At
the end both, [f ] and L̃ are returned. The handleBox part is where everything happens.

Algorithm 2.8 A New Serial Method for Verified Global Optimization

Input: the starting box [x]0, inclusion functions F , F ′ and F ′′, an upper bound f̃ =
sup(F (m[x]0)) for a global minimum;

Output: an enclosure for the global minimum f∗ and the list of boxes L̃ which contain all
the global minimizers;

initialize the working list L = {([x]0, inf(F ([x]0))), 0};
initialize the solution list L̃ = ∅;
repeat

retrieve element ([x], lbf, t) with lbf minimal from the list L;
(L, L̃, f̃) = handleBox(L, L̃, f̃ , ([x], lbf, t));
L = cut-off(L, f̃);

until L = ∅
L̃ = cut-off(L̃, f̃);
select an element ([x], inf(F ([x])), t) ∈ L̃ with inf(F ([x])) minimal;
[f ] = [inf(F ([x])), f̃ ];
return [f ], L̃;

In handleBox we perform tests in the increasing order of their computational cost. We compute
F ′([x]) and try to discard the box if the function is monotone over this box. If the function
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is not monotone then we have two possibilities. If the counter t is positive or the diameter
dm of the box is greater than an a priori set static parameter εint meth then we multisect the
box into subboxes [x]1, . . . , [x]2

l

(for subdivision strategies see Section 2.3). For each of these
boxes we evaluate the range of the function and test if the lower bound of this range is greater
than f̃ , the validated upper bound for the minimum. If it happens that the lower bound of
the range is greater than f̃ then the function f definitely has no minimizer in that box and
the box can be discarded. Otherwise we insert the box [x]l either into L or L̃, depending on
the termination criterion, with the counter set to t− 1. As a termination criterion we use the
condition d(F ([x])) < εaccept, i.e. when the range of the function over this box is small enough.
We compare the upper bound of the range with f̃ . If the upper bound is less than f̃ we set f̃
to this value. After the insertion of all subboxes we return from the procedure, probably with
the updated value of f̃ .
But if the counter is zero and the diameter of the box is smaller than the static parameter
εint meth then we do the following. We evaluate F ′′([x]) (F ([x]) is evaluated automatically
during the evaluation of F ′′([x])). This will be used for the nonconvexity test as well as for
the evaluation of the range of the function using the Taylor form and for performing one step
of the interval Newton method. Using F ′′([x]) we test if the function is concave over the box.
If not we discard the box and exit from the procedure returning L and L̃.
If the box is not yet discarded we find the middle point of the box and compute function and
gradient values at that point. Using the Taylor form we evaluate the range of the function and
check if its lower bound is greater than f̃ . If so we discard the box.
Now we perform one step of the interval Newton method. If the Newton method returns empty
intersection we exit the procedure returning L and L̃. If the Newton method does not shrink
the box at all, i.e. all components of the box remain unchanged, we multisect the box into
subboxes [x]1, . . . , [x]2

l

and insert them into the working list L with the counter set to tmulti.
If the Newton method left unchanged at least one component (but not all) we multisect the
box into subboxes and insert them into the working list L with the counter set to zero. At the
end we return L and L̃ and exit the procedure. We choose the interval Newton method over
the interval Krawczyk method bacause based on the comparison given in Table 2.6 it is better
in the average.

Problem Original Modified
Iterations Time Iterations Time

S7 22 1.01 21 0.99
S10 22 1.36 21 1.28
RO 47 0.29 45 0.27
H6 300 28.88 299 28.24
GEO1 352 14.51 351 14.48
GEO2 423 25.20 422 23.09
S2.7 94 32.29 91 31.57

Table 2.1: The use of Algorithm 2.7 instead of Algorithm 2.6 gives a little improvement
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Algorithm 2.9 handleBox

Input: the working list L, the solution list L̃, the triple ([x], x, t), the best upper bound f̃ ;
Output: the working list L, the solution list L̃, the actual f̃ ;

perform monotonicity test;
if the box [x] is to be discarded then

return L, L̃, f̃ ;
end if
if t = 0 and dm([x]) ≤ εint meth then

perform nonconvexity test;
if the box [x] is to be discarded then

return L, L̃, f̃ ;
end if
c = m([x]);

[w] = F ([x]) ∩ (F (c) + ([x]− c)T F ′(c)T +
1
2
([x]− c)T F ′′([x])([x]− c)); {Taylor Form}

if inf([w]) > f̃ then
return L, L̃, f̃ ;

end if
perform one step of the interval Newton method;
if the box is [x] discarded because of the empty intersection then

return L, L̃, f̃ ;
else if Newton method did not shrink the box [x] at all then

([x]1, . . . , [x]2
l

) = multisect([x], l);
for i = 1 to 2l do

(L, L̃, f̃) = insert(L, L̃, [x]i, tmulti);
end for

else if Newton method left at least one component unchanged then
([x]1, . . . , [x]2

l

) = multisect([x], l);
for i = 1 to 2l do

(L, L̃, f̃) = insert(L, L̃, [x]i, 0);
end for

end if
else

([x]1, . . . , [x]2
l

) = multisect([x], l);
for i = 1 to 2l do

(L, L̃, f̃) = insert(L, L̃, [x]i, t− 1);
end for

end if
return L, L̃, f̃ ;
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Algorithm 2.10 insert - inserts the box into L or L̃ depending on the termination criterion

Input: the working list L, the solution list L̃, the box [x], the counter t and the upper bound
f̃ ;

Output: the working list L, the solution list L̃, the actual f̃ ;

if inf(F ([x]) > f̃ then
return L, L̃, f̃ ;

end if
f̃ = min{f̃ , sup(F ([x])};
if d(F ([x]) ≤ εaccept then

insert ([x], inf(F ([x])), t) into L;
else

insert ([x], inf(F ([x])), t) into L̃;
end if
return L, L̃, f̃ ;

Problem Whole box One component Always
Iters Time Iters Time (%) Iters Time (%)

S5 17 0.69 17 0.69 (100) 23 0.75 (108)
S7 21 0.99 21 0.99 (100) 27 1.07 (108)
S10 21 1.28 21 1.28 (100) 27 1.44 (112)
SHCB 691 5.73 235 1.52 (26) 271 1.81 (31)
BR 38 1.09 38 1.09 (100) 42 1.44 (132)
RO 46 0.28 45 0.27 (96) 46 0.29 (103)
L8 35 8.27 12 2.16 (26) 12 2.13 (25)
L9 14 2.96 14 2.96 (100) 14 3.36 (113)
H3 37 2.59 41 2.67 (103) 63 3.60 (138)
G5 31 2.85 31 2.88 (101) 31 3.09 (108)
R4 265 11.97 261 11.68 (97) 293 12.88 (107)
L12 166 67.52 34 11.81 (17) 33 11.97 (17)
L18 90 25.20 29 6.75 (26) 28 6.99 (27)
G7 42 5.60 42 5.57 (99) 42 5.89 (105)
G10 44 9.12 44 9.12 (100) 44 9.87 (108)
GP 7600 90.05 7687 90.03 (99) 7726 89.63 (99)
H6 872 86.11 299 28.24 (32) 332 29.63 (34)
S2.14 10219 143.33 5146 78.93 (55) 5157 80.00 (55)
GEO1 351 14.48 351 14.48 (100) 357 14.70 (101)
GEO2 1987 84.36 422 23.09 (27) 446 24.94 (29)
GEO3 2018 88.43 507 29.36 (33) 529 30.56 (34)
JS 504 101.36 216 45.17 (44) 253 52.00 (51)
S2.7 197 51.91 91 31.57 (60) 124 41.20 (79)
L3 543 130.21 543 130.43 (100) 693 159.57 (122)
R8 1145 217.73 1145 220.32 (101) 1145 217.57 (99)
HM3 754 232.13 754 233.28 (100) 809 244.77 (105)
HM4 3716 1820.20 3392 1761.58 (96) 3400 1753.41 (96)
Average (75) (83)

Table 2.2: Different strategies for processing a box by subdivision after the interval Krawczyk
method
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Problem Krawczyk Adaptive Krawczyk
t=1 t=2 t=3

Time Time (%) Time (%) Time (%)
S5 0.69 0.56 (81) 0.53 (77) 0.53 (77)
S7 0.99 0.83 (84) 0.77 (78) 0.85 (86)
S10 1.28 1.09 (85) 1.07 (84) 1.15 (90)
SHCB 1.52 1.33 (87) 1.57 (103) 2.03 (134)
BR 1.09 1.09 (100) 1.09 (100) 1.09 (100)
RO 0.27 0.24 (89) 0.19 (70) 0.24 (89)
L8 2.16 2.19 (101) 2.16 (100) 2.16 (100)
L9 2.99 2.99 (100) 2.96 (99) 2.96 (99)
H3 2.67 2.61 (98) 2.37 (89) 2.83 (106)
G5 2.88 2.91 (101) 2.91 (101) 2.91 (101)
R4 11.68 10.40 (89) 11.60 (99) 9.55 (82)
L12 11.81 11.73 (99) 11.76 (100) 11.73 (99)
L18 6.75 6.69 (99) 6.69 (99) 6.69 (99)
G7 5.57 5.60 (101) 5.60 (101) 5.60 (101)
G10 9.12 9.17 (101) 9.20 (101) 9.20 (101)
GP 90.03 102.13 (113) 106.53 (118) 530.67 (589)
H6 28.24 23.09 (82) 21.97 (78) 20.45 (72)
S2.14 78.93 65.07 (82) 60.53 (77) 102.08 (129)
GEO1 14.48 14.37 (99) 14.43 (100) 14.53 (100)
GEO2 23.09 21.31 (92) 20.96 (91) 22.35 (97)
GEO3 29.36 25.07 (85) 23.63 (82) 24.35 (83)
JS 45.17 49.68 (110) 59.84 (132) 51.81 (115)
S2.7 31.57 33.44 (106) 29.47 (93) 35.12 (111)
L3 130.43 128.08 (98) 132.61 (102) 139.97 (107)
R8 220.32 205.87 (93) 201.23 (91) 210.43 (96)
HM3 233.28 230.88 (99) 231.84 (99) 249.20 (107)
HM4 1761.57 1659.68 (94) 1661.92 (94) 1844.53 (111)
Average (95) (94) (117)

Table 2.3: Time measured with different t
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Problem Krawczyk Adaptive Krawczyk
t=1 t=2 t=3

Time Time (%) Time (%) Time (%)
R4 11.68 10.40 (89) 11.60 (99) 9.55 (82)
L12 11.81 11.73 (99) 11.76 (100) 11.73 (99)
L18 6.75 6.69 (99) 6.69 (99) 6.69 (99)
G7 5.57 5.60 (101) 5.60 (101) 5.60 (101)
G10 9.12 9.17 (101) 9.20 (101) 9.20 (101)
GP 90.03 102.13 (113) 106.53 (118) 530.67 (589)
H6 28.24 23.09 (82) 21.97 (78) 20.45 (72)
S2.14 78.93 65.07 (82) 60.53 (77) 102.08 (129)
GEO1 14.48 14.37 (99) 14.43 (100) 14.53 (100)
GEO2 23.09 21.31 (92) 20.96 (91) 22.35 (97)
GEO3 29.36 25.07 (85) 23.63 (82) 24.35 (83)
JS 45.17 49.68 (110) 59.84 (132) 51.81 (115)
S2.7 31.57 33.44 (106) 29.47 (93) 35.12 (111)
L3 130.43 128.08 (98) 132.61 (102) 139.97 (107)
R8 220.32 205.87 (93) 201.23 (91) 210.43 (96)
HM3 233.28 230.88 (99) 231.84 (99) 249.20 (107)
HM4 1761.57 1659.68 (94) 1661.92 (94) 1844.53 (111)
Average (96) (97) (129)

Table 2.4: Time measured with different t for medium and hard problems only
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Problem Newton Adaptive Newton
t=1 t=2 t=3

Time Time (%) Time (%) Time (%)
S5 0.67 0.56 (84) 0.53 (79) 0.53 (79)
S7 0.93 0.80 (86) 0.75 (81) 0.75 (81)
S10 1.31 1.09 (83) 1.04 (79) 1.07 (82)
SHCB 0.69 0.69 (100) 0.88 (128) 1.01 (146)
BR 1.09 1.09 (100) 1.09 (100) 1.09 (100)
RO 0.27 0.21 (78) 0.19 (70) 0.24 (89)
L8 2.51 2.51 (100) 2.51 (100) 2.51 (100)
L9 2.93 2.96 (101) 2.96 (101) 2.96 (101)
H3 2.61 2.51 (96) 2.37 (91) 2.83 (108)
G5 2.88 2.88 (100) 2.88 (100) 3.01 (105)
R4 11.49 10.05 (87) 10.29 (90) 9.31 (81)
L12 13.23 13.23 (100) 13.23 (100) 13.31 (101)
L18 7.20 7.20 (100) 7.20 (100) 7.31 (102)
G7 5.60 5.60 (100) 5.60 (100) 5.68 (101)
G10 9.15 9.15 (100) 9.15 (100) 9.33 (102)
GP 83.71 89.55 (107) 95.23 (114) 538.45 (643)
H6 27.95 23.49 (084) 22.37 (80) 20.83 (75)
S2.14 111.68 93.60 (084) 87.52 (78) 85.76 (77)
GEO1 14.48 14.45 (100) 14.48 (100) 14.75 (102)
GEO2 23.36 21.20 (91) 20.83 (89) 22.48 (96)
GEO3 29.47 25.33 (86) 23.63 (80) 24.37 (83)
JS 38.48 39.95 (104) 50.80 (132) 46.53 (121)
S2.7 31.68 31.39 (99) 30.99 (98) 33.33 (105)
L3 123.23 120.19 (98) 124.45 (101) 129.97 (105)
R8 217.81 205.79 (94) 201.23 (92) 199.23 (91)
HM3 164.32 161.89 (99) 161.81 (98) 161.95 (99)
HM4 1086.96 1088.08 (100) 1087.79 (100) 1087.89 (100)
Average: (95) (96) (118)

Table 2.5: Applying the adaptive approach to the algorithm with the interval Newton method
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Problem Adaptive methods Wiethoff
Krawczyk with t = 1 Newton with t = 1

Time (%) Time (%) Time (%)
S5 0.56 (28) 0.56 (28) 0.88 (44)
S7 0.83 (29) 0.80 (28) 1.17 (41)
S10 1.09 (28) 1.09 (28) 1.65 (43)
SHCB 1.33 (37) 0.69 (19) 1.55 (43)
BR 1.09 (27) 1.09 (27) 1.79 (45)
RO 0.24 (34) 0.21 (30) 0.24 (34)
L8 2.19 (28) 2.51 (32) 3.01 (39)
L9 2.99 (26) 2.96 (26) 5.33 (47)
H3 2.61 (28) 2.51 (26) 4.19 (45)
G5 2.91 (26) 2.88 (25) 5.33 (47)
R4 10.40 (33) 10.05 (31) 11.01 (34)
L12 11.73 (27) 13.23 (31) 16.99 (40)
L18 6.69 (37) 7.20 (40) 4.05 (22)
G7 5.60 (6) 5.60 (6) 69.25 (86)
G10 9.17 (26) 9.15 (26) 15.92 (46)
GP 102.13 (37) 89.55 (32) 82.96 (30)
H6 23.09 (33) 23.49 (33) 23.01 (33)
S2.14 65.07 (19) 93.60 (28) 168.48 (51)
GEO1 14.37 (33) 14.45 (33) 13.92 (32)
GEO2 21.31 (31) 21.20 (31) 25.55 (37)
GEO3 25.07 (33) 25.33 (33) 25.41 (33)
JS 49.68 (33) 39.95 (26) 60.37 (40)
S2.7 33.44 (30) 31.39 (28) 45.65 (41)
L3 128.08 (33) 120.19 (31) 136.37 (35)
R8 205.87 (49) 205.79 (49) 8.21 (1)
HM3 230.88 (40) 161.89 (28) 170.77 (30)
HM4 1659.68 (43) 1088.08 (28) 1048.59 (27)
Average (31) (29) (39)

Table 2.6: Comparison of Krawczyk and Newton methods using the adaptive approach with
the algorithm by Wiethoff (with weighted percentage)

Original Modified
Problem Iterations Time Iterations Time
S7 22 1.95 21 1.79
S10 22 2.69 21 2.53
RO 49 0.53 53 0.56
H6 291 52.80 290 51.73
GEO1 352 17.58 351 17.39
GEO2 425 29.27 424 29.15
S2.7 94 69.44 91 68.80

Table 2.7: The use of Algorithm 2.7 instead of Algorithm 2.6 gives a little improvement (using
automatic differentiation)
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Problem Whole box One component Always
Iters Time Iters Time (%) Iters Time (%)

S5 17 1.28 17 1.31 (102) 23 1.81 (141)
S7 21 1.87 21 1.79 (95) 27 2.75 (147)
S10 21 2.56 21 2.53 (98) 27 3.79 (148)
SHCB 695 11.49 235 3.20 (27) 271 4.67 (40)
BR 38 1.44 38 1.47 (102) 42 2.19 (152)
RO 49 0.51 53 0.56 (109) 47 0.64 (125)
L8 35 4.37 12 1.41 (32) 12 1.65 (37)
L9 38 6.45 14 2.27 (35) 14 2.80 (43)
H3 34 3.41 37 3.55 (104) 59 5.95 (174)
G5 31 4.24 31 4.27 (100) 31 5.15 (121)
R4 261 13.33 261 13.23 (99) 293 17.28 (129)
L12 166 100.88 34 15.39 (15) 33 17.44 (17)
L18 90 30.16 29 8.05 (26) 28 8.80 (29)
G7 42 8.43 42 8.48 (100) 42 10.00 (118)
G10 44 13.89 44 13.97 (100) 44 18.19 (130)
GP 7605 206.24 7687 195.73 (94) 7726 257.20 (124)
H6 289 53.84 290 51.73 (96) 320 62.67 (116)
S2.14 10221 251.49 5149 140.67 (55) 5160 169.73 (67)
GEO1 351 17.39 351 17.39 (100) 357 20.77 (119)
GEO2 1880 106.48 424 29.15 (27) 450 39.04 (36)
GEO3 1936 114.51 507 36.61 (31) 529 50.08 (43)
JS 503 121.09 216 51.23 (42) 253 68.77 (56)
S2.7 195 126.11 91 68.80 (54) 94 85.71 (67)
L3 634 184.00 634 178.91 (97) 778 239.79 (130)
R8 1145 286.19 1145 267.60 (93) 1145 301.31 (105)
HM3 754 249.23 754 240.08 (96) 809 309.73 (124)
HM4 3716 1976.27 3392 1837.25 (92) 3400 2248.64 (113)
Average (75) (98)

Table 2.8: Different strategies for processing the box by subdivision after the interval Krawczyk
method (using automatic differentiation)
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Problem Krawczyk Adaptive Krawczyk
t=1 t=2 t=3

Time Time (%) Time (%) Time (%)
S5 1.28 1.10 (85) 1.09 (85) 1.07 (83)
S7 1.79 1.62 (90) 1.72 (96) 1.64 (91)
S10 2.53 2.15 (84) 2.21 (87) 2.23 (88)
SHCB 3.12 2.41 (77) 3.72 (119) 4.13 (132)
BR 1.47 1.48 (100) 1.48 (100) 1.47 (100)
RO 0.56 0.42 (74) 0.44 (78) 0.51 (91)
L8 1.39 1.43 (102) 1.43 (102) 1.41 (101)
L9 2.27 2.30 (101) 2.45 (107) 2.28 (100)
H3 3.52 3.61 (102) 3.33 (94) 3.85 (109)
G5 4.35 4.37 (100) 4.40 (101) 4.52 (103)
R4 13.09 11.72 (89) 13.08 (99) 10.74 (82)
L12 15.28 15.62 (102) 15.59 (102) 15.64 (102)
L18 8.03 8.17 (101) 8.21 (102) 8.19 (101)
G7 8.40 11.64 (138) 8.60 (102) 8.59 (102)
G10 13.89 14.11 (101) 14.68 (105) 15.43 (111)
GP 198.21 144.70 (73) 182.16 (91) 632.05 (318)
H6 51.73 41.13 (79) 36.73 (71) 33.83 (65)
S2.14 139.44 115.48 (82) 108.49 (77) 172.12 (123)
GEO1 17.39 17.50 (100) 17.67 (101) 17.60 (101)
GEO2 29.15 27.27 (93) 26.69 (91) 27.76 (95)
GEO3 37.12 31.81 (85) 29.47 (79) 29.92 (80)
JS 51.57 58.48 (113) 68.95 (133) 57.63 (111)
S2.7 68.80 72.23 (104) 63.12 (91) 75.51 (109)
L3 179.57 177.12 (98) 180.74 (100) 185.72 (103)
R8 270.64 252.58 (93) 245.63 (90) 242.67 (89)
HM3 238.88 245.15 (102) 243.96 (102) 249.53 (104)
HM4 1855.68 1849.42 (99) 1765.38 (95) 1768.30 (95)
Average (95) (96) (107)

Table 2.9: Time measured with different t (using automatic differentiation)



38 Chapter 2. The Serial Method for Verified Global Optimization

Problem Newton Adaptive Newton
t=1 t=2 t=3

Time Time (%) Time (%) Time (%)
S5 1.33 1.10 (82) 1.04 (78) 1.05 (78)
S7 1.87 1.59 (85) 1.49 (79) 1.49 (79)
S10 2.61 2.18 (83) 2.05 (78) 2.06 (78)
SHCB 1.47 1.32 (89) 1.86 (126) 1.89 (128)
BR 1.47 1.48 (100) 1.49 (101) 1.46 (99)
RO 0.51 0.42 (82) 0.36 (70) 0.41 (80)
L8 1.65 1.60 (96) 1.73 (104) 1.61 (97)
L9 2.64 2.52 (95) 2.72 (103) 2.53 (95)
H3 3.68 3.48 (94) 3.45 (93) 3.77 (102)
G5 4.61 4.30 (93) 4.44 (96) 4.29 (93)
R4 14.11 11.21 (79) 12.71 (90) 10.29 (72)
L12 18.85 17.59 (93) 19.10 (101) 17.50 (92)
L18 8.59 8.56 (99) 8.59 (100) 8.53 (99)
G7 8.67 9.06 (104) 9.08 (104) 8.48 (97)
G10 14.64 14.02 (95) 15.75 (107) 13.96 (95)
GP 185.47 134.84 (72) 176.00 (94) 612.76 (330)
H6 52.11 41.74 (80) 39.53 (75) 34.60 (66)
S2.14 213.79 175.60 (82) 167.59 (78) 157.55 (73)
GEO1 17.60 17.56 (99) 18.23 (103) 17.96 (102)
GEO2 29.52 26.84 (90) 27.96 (94) 29.40 (99)
GEO3 37.60 31.97 (85) 29.54 (78) 31.64 (84)
JS 47.20 45.35 (96) 76.53 (162) 55.79 (118)
S2.7 68.32 67.81 (99) 94.08 (137) 75.05 (109)
L3 171.33 169.06 (98) 227.57 (132) 184.43 (107)
R8 270.37 265.53 (98) 242.12 (89) 251.59 (93)
HM3 166.40 166.88 (100) 165.75 (99) 173.29 (104)
HM4 1138.16 1148.31 (100) 1136.09 (99) 1347.88 (118)
Average (91) (99) (103)

Table 2.10: Applying the adaptive approach to the algorithm with the interval Newton method
(using automatic differentiation)
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Problem Adaptive methods Wiethoff
Krawczyk with t = 1 Newton with t = 1

Time (%) Time (%) Time (%)
S5 1.10 (30) 1.10 (30) 1.38 (38)
S7 1.62 (31) 1.59 (31) 1.91 (37)
S10 2.15 (30) 2.18 (30) 2.80 (39)
SHCB 2.41 (42) 1.32 (23) 1.97 (34)
BR 1.48 (31) 1.48 (31) 1.74 (37)
RO 0.42 (34) 0.42 (34) 0.38 (31)
L8 1.43 (28) 1.60 (32) 1.92 (38)
L9 2.30 (29) 2.52 (31) 3.10 (39)
H3 3.61 (32) 3.48 (31) 3.88 (35)
G5 4.37 (30) 4.30 (29) 5.80 (40)
R4 11.72 (35) 11.21 (33) 10.51 (31)
L12 15.62 (30) 17.59 (34) 18.15 (35)
L18 8.17 (18) 8.56 (19) 26.52 (61)
G7 11.64 (9) 9.06 (7) 99.05 (82)
G10 14.11 (30) 14.02 (30) 18.07 (39)
GP 144.70 (38) 134.84 (35) 98.94 (26)
H6 41.13 (35) 41.74 (36) 32.05 (27)
S2.14 115.48 (20) 175.60 (31) 268.86 (48)
GEO1 17.50 (34) 17.56 (34) 16.29 (31)
GEO2 27.27 (32) 26.84 (31) 30.75 (36)
GEO3 31.81 (32) 31.97 (32) 35.01 (35)
JS 58.48 (36) 45.35 (28) 54.99 (34)
S2.7 72.23 (31) 67.81 (29) 90.87 (39)
L3 177.12 (30) 169.06 (29) 226.70 (39)
R8 252.58 (30) 265.53 (32) 303.73 (36)
HM3 245.15 (43) 166.88 (29) 146.39 (26)
HM4 1849.42 (45) 1148.31 (28) 1095.20 (26)
Average (31) (30) (38)

Table 2.11: Comparison of Krawczyk and Newton methods using the adaptive approach with
Wiethoff’s method (with weighted percentage, using automatic differentiation)
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Chapter 3

Nonlinear Systems: Convergence
and Divergence of Interval
Newton and Krawczyk Methods

In this chapter we will investigate properties of interval Newton and interval Krawczyk methods
and their modifications. In the previous chapter we used them for accelerating the serial
method for verified global optimization. These interval methods can be used not only as an
accelerating device in methods for verified global optimization but also alone for the solution
of systems of nonlinear equations. In some cases, using exclusive properties of systems, we
can decrease the running time of the method. In this chapter we give sufficient conditions for
convergence and divergence of modified Newton and Krawczyk methods.

3.1 Notations and Preliminaries

We denote the point vector (ei) ∈ Rn, ei = 1, 1 ≤ i ≤ n, and the point matrix (eij) ∈ Rn×n,
eij = 1, 1 ≤ i, j ≤ n, by e and E, respectively. By I we denote the identity matrix of the
proper dimension.
We will use norms

‖x‖ = ‖x‖∞ = max
i
|xi|, ‖A‖ = max

i,j
|aij |.

For lower triangular and upper triangular matrices L and U with non-zero diagonal entries we
denote L \ and U \ the forward and backward substitutions, respectively. This notation has
been given by Rump in [22]; see (3.3) and (3.4) below.
Given L = (lij) ∈ Rn, a lower triangular matrix, and U = (uij) ∈ Rn, an upper triangular

41
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matrix, we define matrices:

Li =




1
. . .

1

− li1
lii

. . . − li,i−1

lii

1
lii

1
. . .

1




, lii 6= 0, 1 ≤ i ≤ n, (3.1)

U i =




1
. . .

1
1

uii
−ui,i+1

uii
. . . −uin

uii
1

. . .
1




, uii 6= 0, 1 ≤ i ≤ n. (3.2)

The i-th step in the forward substitution with matrix L is equivalent to multiplication by the
matrix Li, we have

L \ [x] = (Ln(Ln−1 . . . (L1[x]) . . . )). (3.3)

Here we cannot omit parenthasis because of subdistributivity in interval arithmetic. Moreover,
for the matrices L1, . . . , Ln we have

Ln · . . . · L1 = L−1. (3.4)

The same is valid for upper triangular matrices and backward substitution:

U \ [x] = (Un(Un−1 . . . (U1[x]) . . . )), (3.5)

Un · . . . · U1 = U−1. (3.6)

Lemma 1. For point matrices A, B, an interval matrix [C] and an interval vector [x]

A · (B · [x]) ⊇ (A ·B) · [x],
A · (B + [C]) = A ·B + A · [C]

holds.

Proof. Application of subdistributivity several times results in A · (B · [x]) ⊇ (A ·B) · [x]. And
A · (B + [C]) = A ·B + A · [C] is trivial.

Lemma 2. For a nonsingular lower triangular matrix L, a nonsingular upper triangular ma-
trix U and an interval vector [x]

L \ [x] ⊇ L−1[x],

U \ [x] ⊇ U−1[x]

are valid.
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Proof. Because of the subdistributivity, from

L \ [x] = (Ln(Ln−1 . . . (L1[x]) . . . )),
U \ [x] = (Un(Un−1 . . . (U1[x]) . . . ))

we get

L \ [x] ⊇ (Ln · Ln−1 · · · · L1)[x],
U \ [x] ⊇ (Un · Un−1 · · · · U1)[x]

and therefore

L \ [x] ⊇ L−1[x],

U \ [x] ⊇ U−1[x].

Lemma 3. For an interval matrix [A] and a point vector b

[A] · b = {A · b | A ∈ [A]}

holds.

Proof. Let [A] = ([a]ij) and b = (bi) be the given interval matrix and point vector. {A · b|A ∈
[A]} ⊆ [A] · b is obvious. We will prove that [A] · b ⊆ {A · b|A ∈ [A]}.
Let c = (ci) be an arbitrary point vector from [A] · b. Then c1 ∈ ∑n

i=1[a1i] · bi. Hence
there are a∗11, a∗12, ..., a∗1n ∈ R such that c1 =

∑n
j=1 a∗1j · bj . In the same manner we find

a∗21, ..., a∗2n, a∗31, ..., a∗nn ∈ R such that ci =
∑n

j=1 a∗ij · bj . For A∗ = (a∗ij) we get A∗ · b = c.
Since {A · b|A ∈ [A]} ⊆ [A] · b and [A] · b ⊆ {A · b|A ∈ [A]} we get equality.

Lemma 4. For an interval matrix [A] and a point vector b

[A] · b = [A1 · b, A2 · b]

is valid for some A1, A2 ∈ [A].

Proof. Let n1, n2 ∈ [A] ·b be the lower and upper bounds of [A] ·b. Then based on the previous
lemma they can be represented as a product of a point matrix from [A] and the given point
vector b:

n1 = A1 · b, n2 = A2 · b, A1, A2 ∈ [A].

Hence [A] · b = [A1 · b, A2 · b].

Let there be given a Fréchet-differentiable mapping f : [x]0 ⊂ Rn → Rn with components
fi(x), 1 ≤ i ≤ n, of the vector variable x = (x1, ..., xn)T ∈ [x]0. Let us consider the function
fi(x1, ..., xn) only in dependence on x1, and then let it be expanded at the point y1 as

fi(x1, x2, ..., xn) = fi(y1, x2, ..., xn) +
∂fi

∂x1
(y1 + θi1 · (x1 − y1), x2, ..., xn) · (x2 − y2)
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with θi1 ∈ (0, 1).
We then expand fi(y1, x2, ..., xn) as a function of x2 at the point y2 and get

fi(y1, x2, x3, ..., xn) = fi(y1, y2, x3, ..., xn)

+
∂fi

∂x2
(y1, y2 + θi2 · (x2 − y2), x3, ..., xn) · (x2 − y2).

We now expand fi(y1, y2, x3, ..., xn) again as a function only of x3 at the point y3 and so on
until fi(y1, ..., yn−1, xn) is expanded at the point yn. If we now insert the expressions formed
in this manner into each other we get

fi(x1, ..., xn) = fi(y1, ..., yn)

+
n∑

j=1

∂fi

∂xj
(y1, yj−1, yj + θij · (xj − yj), xj+1, ..., xn) · (xj − yj),

from which we have the relation

f(x)− f(y) = δf(x, y) · (x− y), x, y ∈ [x]0, (3.7)

where the matrix δf(x, y) is defined by

δf(x, y) =
(

∂fj

∂xj
(y1, ..., yj−1, zj , xj+1, ..., xn)

∣∣∣
zj=yj+θij ·(xj−yj)

)
, 1 ≤ j ≤ n.

It clearly follows that for any enclosure function F ′ of f ′ we have

δf(x1, x2) ∈ F ′([x]0), x1, x2 ∈ [x]0, (3.8)

since

f ′([x]) =
(

∂f

∂xj
([x]1, ..., [x]n)

)
, 1 ≤ j ≤ n.

Assume now that we have given an n × n interval matrix [A] = ([a]ij) and an interval vector
[b] = ([b]i) with n components. By applying the formulae of the Gaussian algorithm we can
compute an interval vector [x] = ([x]i) for which the relation

s = {A−1 · b∣∣A ∈ [A], b ∈ [b]} ⊆ [x]

holds (see [53], p.20ff, for example). Algorithm 3.1 describes this process of interval Gaussian
elimination in more details. We set [a]1ij = [a]ij , 1 ≤ i, j ≤ n, and [b]1i = [b]i, 1 ≤ i ≤ n. Here,
we assume that the necessary pivoting has been performed to the matrix in advance in order
to prevent division by an interval which contains zero. Therefore in the formulae we will not
take into account exchanges of rows or columns. If one programs Algorithm 3.1 then the upper
index can be suppressed and the loop over l can be ignored.
Given an interval matrix [A] we define two matrices [L] = ([l]ij) and [U ] = ([u]ij) as follows:

[l]ij =
[a]jij
[a]jii

, 1 ≤ j < i ≤ n,

[l]ii = 1 1 ≤ i ≤ n,

[l]ij = 0 1 ≤ i < j ≤ n;
[u]ij = [a]nij 1 ≤ i ≤ j ≤ n,

[u]ij = 0 1 ≤ j < i ≤ n,
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Algorithm 3.1 Gaussian Elimination Algorithm
for k = 1 to n− 1 do

for i = k + 1 to n do
for j = k + 1 to n do

[a]k+1
ij = [a]kij −

[a]kik
[a]kkk

· [a]kkj

end for

[b]k+1
i = [b]ki −

[a]kik
[a]kkk

· [b]kk
end for
for l = 1 to k do

for j = l to n do
[a]k+1

lj = [a]klj
end for
[b]k+1

j = [b]kj
for j = l + 1 to n do

[a]k+1
jl = 0

end for
end for

end for

[x]n =
[b]nn
[a]nnn

for i = n− 1 to 1 do

[x]i =
[b]ni −

∑n
j=i+1[a]nij · [x]j
[a]nii

end for

where [a]kij come from Algorithm 3.1. Because of the construction for the case when [A] is a
point matrix we get the equality

A = L · U,

and in the general case

[A] ⊆ [L] · [U ]. (3.9)

For [L] and [U ] we define matrices [L]1, . . . [L]n, [U ]1, . . . ,[U ]n similarly to (3.1) and (3.2):

[L]i =




1
. . .

1

− [l]i1
[l]ii

. . . − [l]i,i−1

[l]ii
1

[l]ii
1

. . .
1




, 1 ≤ i ≤ n, (3.10)
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[U ]i =




1
. . .

1
1

[u]ii
− [u]i,i+1

[u]ii
. . . − [u]in

[u]ii
1

. . .
1




, 1 ≤ i ≤ n. (3.11)

If we define the interval-matrices

[P]k =




Ik−1 0 0
0 1 0

− [a]kk+1,k

[a]kkk
...

0 − [a]knk

[a]kkk

In−k




, 1 ≤ k ≤ n− 1, (3.12)

[Q]k =




Ik−1 0 0

0
1

[a]nkk

0

0 0 In−k


 , 1 ≤ k ≤ n, (3.13)

[R]k =




Ik−1 0 0
0 1 −[a]nk,k+1 · · · −[a]nkn

0 0 In−k


 , 1 ≤ k ≤ n− 1, (3.14)

then for the interval vector [x], resulting from Algorithm 3.1 we have the representation

[x] = [Q]1([R]1([Q]2([R]2(. . . ([Q]n−1([R]n−1([Q]n · ˜[b]) . . . ),

where

˜[b] = [P ]n−1([P ]n−2(. . . ([P ]2([P ]1 · [b]) . . . ).

This has been first given by Schwandt in [53]. As in [53] we denote this interval vector by
IGA([A], [b]), that is we have the representation

IGA([A], [b]) = [Q]1([R]1 . . . ([Q]n−1([R]n−1([Q]n([P ]n−1(. . . ([P ]2([P ]1 · [b]) . . . ). (3.15)

Notice that it is not possible to omit the parenthesis in general. We define an interval-matrix
IGA([A]) by using the interval-matrices occuring on the right-hand side of (3.15):

IGA([A]) = [Q]1([R]1([Q]2([R]2(. . . ([Q]n−1([R]n−1([Q]n([P ]n−1(. . . ([P ]2[P ]1) . . . ). (3.16)

IGA([A]) exists if the matrices [P ]i, [Q]i and [R]i exist. And matrices [P ]i, [Q]i and [R]i exist
if the Gaussian elimination algorithm can be performed for [A] and every right-hand side [b].
In other words IGA([A]) exists if 0 /∈ [a]kkk , k = 1, ..., n, in Algorithm 3.1.
From the construction of IGA([A]) and from inclusion isotony in interval arithmetic we get

Lemma 5. If [A] ⊆ [B] and IGA([B]) exists then

IGA([A]) ⊆ IGA([B]).



3.1. Notations and Preliminaries 47

Lemma 6. If C ∈ [A] and IGA([A]) exists then C is nonsingular and C−1 ∈ IGA([A]).

Proof. Since IGA([A]) exists, we can perform the Gaussian elimination algorithm for [A].
Since C ∈ [A], the Gaussian elimination algorithm can be performed for C, too. Therefore C
is nonsingular.
We set C1 = C = (cij), 1 ≤ i, j ≤ n, and perform the Gaussian elimination algorithm. We get
the matrices Ck, 1 ≤ k ≤ n. We define point matrices:

P k =




Ik−1 0 0
0 1 0

−ck
k+1,k

ck
kk
...

0 −ck
nk

ck
kk

In−k




, 1 ≤ k ≤ n− 1,

Qk =




Ik−1 0 0

0
1

cn
kk

0

0 0 In−k


 , 1 ≤ k ≤ n,

Rk =




Ik−1 0 0
0 1 −cn

k,k+1 · · · −cn
kn

0 0 In−k


 , 1 ≤ k ≤ n− 1.

From the construction of P k, Qk and Rk and inclusion isotony in interval arithmetic we have

P k ∈ [P ]k, Qk ∈ [Q]k, Rk ∈ [R]k. (3.17)

Now we calculate the matrix:

C∗ = Q1(R1(Q2(R2(. . . (Qn−1(Rn−1 ·Qn) . . . ).

In the calculation of C∗ ·C we can rearrange parenthesis because we deal with point matrices:

C∗ · C = Q1(R1(Q2(R2(. . . (Qn−1(Rn−1(Qn · C) . . . ) = I.

We get that C∗ = C−1 and from (3.17) we get C∗ ∈ IGA([A]).

Lemma 7. Let [B] be an interval matrix such that IGA([B]) exists. Then there exist positive
numbers αk

ij and βk, i, j, k = 1, ..., n such that for all interval matrices [A] ⊆ [B] we have

d
(
[a]kij

) ≤ αk
ij · ‖d([B])‖,

d

(
1

[a]kkk

)
≤ βk · ‖d([B])‖, (3.18)

where [a]kij, 1 ≤ i, j, k ≤ n come from performing Algorithm 3.1 on the matrix [A].

Proof. We set [â]1ij = [b]ij , 1 ≤ i, j ≤ n, and perform Algorithm 3.1. We get intervals [â]kij ,
1 ≤ i, j ≤ n, 2 ≤ k ≤ n. Then we determine constants αk

ij and βk, 1 ≤ i, j, k ≤ n, such that

d([â]kij) ≤ αk
ij · ‖d([B])‖,

d

(
1

[â]kkk

)
≤ βk · ‖d([B])‖
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are fulfilled. For intervals [a]1 ⊆ [a]2, [b]1 ⊆ [b]2 we have:

1
[a]1

⊆ 1
[a]2

, if 0 /∈ [a]2,

[a]1 · [b]1 ⊆ [a]2 · [b]2, [a]1 − [b]1 ⊆ [a]2 − [b]2.

Therefore for all intervals [a]kij , 1 ≤ i, j, k ≤ n, resulting from Algorithm 3.1 performed on
[A] ⊆ [B]

d
(
[a]kij

) ≤ d
(
[â]kij

) ≤ αk
ij · ‖d([B])‖,

d

(
1

[a]kkk

)
≤ d

(
1

[â]kkk

)
≤ βk · ‖d([B])‖

are valid.

Lemma 8. Let [A], [B] be interval matrices and c a positive constant such that

d([A]) ≤ c · U,

d([B]) ≤ c · V,

where U , V are nonnegative matrices. Then

d(([A] · [B])) ≤ c ·W
is valid, where W is a nonnegative matrix which depends on |[A]|, |[B]| and U, V .

Proof. Indeed

d(([A] · [B])) ≤ d(A) · |B|+ |A| · d(B)
≤ c · U · |B|+ c · |A| · V
= c ·W, where W = U · |B|+ |A| · V.

Lemma 9. Let there be given a function F ′ : IRn → IRn. If IGA
(
F ′([x]0)

)
exists and

d (F ′([x])) ≤ ‖d([x])‖ · S, [x] ∈ [x]0, (3.19)

then

d (IGA(F ′([x]))) ≤ ‖d([x])‖ · T, [x] ∈ [x]0,

where S and T are nonnegative matrices.

Proof. For matrices [P ]k, [Q]k, [R]k (see (3.12), (3.13) and (3.14)) from Lemma 7 and (3.19)
we have

d
(
[P ]k

) ≤ ‖d([x])‖ · Ck
p , 1 ≤ k ≤ n− 1,

d
(
[Q]k

) ≤ ‖d([x])‖ · Ck
q , 1 ≤ k ≤ n,

d
(
[R]k

) ≤ ‖d([x])‖ · Ck
r , 1 ≤ k ≤ n− 1,

with nonnegative point matrices Ck
p , Ck

q and Ck
r . Now using Lemma 8 (with ‖d([x])‖ instead

of c) 3n− 3 times we get that

d (IGA([A])) ≤ ‖d([x])‖ · T.
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Lemma 10. Let there be given an interval vector [x]0 ⊂ Rn and an inclusion monotonic
function F ′ : [x]0 ⊂ IRn → IRn.
Suppose IGA

(
F ′([x]0)

)
exists and denote A =

∣∣I − IGA
(
F ′([x]0)

) · F ′([x]0)
∣∣.

If ρ(A) < 1 (ρ spectral radius) then all point matrices from IGA
(
F ′([x]0)

)
are nonsingular.

Proof. If U ∈ IGA
(
F ′([x]0)

)
, V ∈ F ′([x]0) then

|I − U · V | ≤ ∣∣I − IGA
(
F ′([x]0)

) · F ′([x]0)
∣∣ = A

For nonnegative matrices |I−U ·V | and A from the theorem of Perron and Frobenius (see [41])
it follows that

ρ(|I − U · V |) ≤ ρ(A) < 1.

Since for an arbitrary matrix C the inequality ρ(C) ≤ ρ(|C|) holds, for the matrix I − U · V
we have

ρ(I − U · V ) ≤ ρ(|I − U · V |) < 1.

Hence

(U · V )−1 = (I − (I − U · V ))−1

exists, from which the existence of U−1 follows.

Lemma 11. For two given interval vectors [x] = [x1, x2] and [y] = [y1, y2] the relation [x] ∩
[y] = ∅ is valid if and only if

(
1
2
d([x]) +

1
2
d([y])

)

i0

< |m[x]−m[y]|i0 .

This takes place if and only if there is at least one index i0 ∈ {1, 2, . . . , n} such that
(
y2 − x1

)
i0

< 0 or
(
x2 − y1

)
i0

< 0.

Proof. Let [x] ∩ [y] = ∅, then there is at least one index i0 ∈ {1, 2, . . . , n} such that

[x]i0 ∩ [y]i0 = ∅.

This is equivalent to

y2
i0 < x1

i0 or x2
i0 < y1

i0 . (3.20)

This proves the second part of the lemma. Since m[x] and m[y] are midpoints of [x] and [y]
we can write:

[x] =
[
m[x]− 1

2
d([x]),m[x] +

1
2
d([x])

]
,

[y] =
[
m[y]− 1

2
d([y]),m[y] +

1
2
d([y])

]
.

(3.21)
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Using (3.21) we write (3.20) as follows:

m[y]i0 +
1
2
d([y])i0 < m[x]i0 −

1
2
d([x])i0

or

m[x]i0 +
1
2
d([x])i0 < m[y]i0 −

1
2
d([y])i0 .

This is equivalent to

1
2
d([x])i0 +

1
2
d([y])i0 < m[x]i0 −m[y]i0

or
1
2
d([y])i0 +

1
2
d([x])i0 < −(m[x]i0 −m[y]i0).

Since the sum of diameters is nonnegative, only that one of these two inequalities, whose
right-hand side is positive, takes place. And in that case the right-hand side is equal to
|m[x]i0 −m[y]i0 |. Therefore we get

(
1
2
d([x]) +

1
2
d([y])

)

i0

< |m[x]−m[y]|i0 .

Lemma 12. Let there be given a fixed point matrix A = (aij) ∈ Rn×n. Then for all point
vectors b = (bi) ∈ R we have

|A · b| = O(‖b‖) · e.

Proof. Denote A · b by c = (ci).

ci =
n∑

j=1

aij · bj .

Therefore

|ci| =
∣∣∣∣∣∣

n∑

j=1

aij · bj

∣∣∣∣∣∣
≤

n∑

j=1

|aij · bj | = ‖b‖
n∑

j=1

∣∣∣∣aij · bj

‖b‖

∣∣∣∣ ≤ ‖b‖
n∑

j=1

|aij | ≤ ‖b‖ ·mi,

where mi =
∑n

j=1 |aij | ≥ 0. But each mi = O(1), so |c| = ‖b‖ ·O(1) · e = O(‖b‖) · e.
Lemma 13. Let [A] = ([a]ij), 1 ≤ i, j ≤ n be an interval matrix that does not contain
singular point matrices and let f : [x]0 ⊂ Rn → Rn be a continuous mapping for which
f(x) 6= 0, x ∈ [x]0. Then there exist c > 0 and ε(c) > 0 such that for each x ∈ [x]0 there is at
least one index i(x) such that

∣∣(A · f(x))i(x)

∣∣ > c, for all A ∈ [A]

and

sign
((

A1 · f(x1)
)
i(x1)

)
= sign

((
A2 · f(x2)

)
i(x1)

)
, for all A1, A2 ∈ [A],

once |x1 − x2| < ε(c) · e.
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Proof. From the assumption it follows

0 /∈ [A] · f(x), x ∈ [x]0. (3.22)

Otherwise by Lemma 3 there would exist A ∈ [A], x ∈ [x] such that A · f(x) = 0. But A is
nonsingular and f(x) 6= 0, which is a contradiction.
Since (3.22) holds for each x ∈ [x]0 there is at least one index i(x) such that

0 /∈ ([A] · f(x))i(x).

If there are several indices we take the one for which

ωi = min
A∈[A]

|(A · f(x))i|

is the largest. For the selected i(x)

ωi(x) > 0 (3.23)

holds.
Suppose we can not choose c > 0 such that

|(A · f(x))i(x)| > c for all A ∈ [A], x ∈ [x]0.

Then for any c > 0 there exists a pair (A(c), x(c)), A(c) ∈ [A], x(c) ∈ [x]0 such that
∣∣∣(A(c) · f(x(c)))i(x(c))

∣∣∣ < c.

For a sequence {cn}∞n=1 =
{

1
n

}∞

n=1

we obtain a sequence {(A(cn), xn)}∞n=1. Since [A] and

[x]0 are both compact sets there exists a subsequence {(Ank , xnk)}∞k=1 such that (A∗, x∗) =
limk→∞(Ank , xnk). For (A∗, x∗)

∣∣∣(A∗ · f(x∗))i(x∗)

∣∣∣ ≤ lim
k→∞

cnk = 0.

is valid. But this contradicts (3.23). Consequently there exists such c > 0.
([A]·f(x))i(x) is an interval that does not contain zero. Therefore either sup

(
([A] · f(x))i(x)

)
<

0 or inf
(
([A] · f(x))i(x)

)
> 0 and from this it follows

sign
((

A1 · f(x)
)
i(x)

)
= sign

((
A2 · f(x)

)
i(x)

)
for all A1, A2 ∈ [A]. (3.24)

The n functions gi(x) = A2
i · f(x), 1 ≤ i ≤ n, where A2

i is the i-th row of A2, are continuous.
Therefore there exist εi, 1 ≤ i ≤ n, such that |gi(x1) − gi(x2)| < c when |x1 − x2| < εi · e.
Define ε = mini εi. At this point ε depends on A2. We will show that we can choose ε > 0
which can be applied to all A ∈ [A]. Suppose we cannot choose such ε > 0. Then for every
εn = 1

n there exist An ∈ [A] and xn, yn ∈ [x] such that

|An
i · f(xn)−An

i · f(yn)| ≥ c and |xn − yn| < εn · e
for i = i(n). Again [A] and [x] are compact sets. Therefore there exists a convergent subse-
quence {(Ank , xnk , ynk)}∞k=1 such that, in addition, i(nk) = i∗ for all k. Denote (A∗, x∗, y∗) =
limk→∞(Ank , xnk , ynk). For (A∗, x∗, y∗) we have

|A∗i∗ · f(x∗)−A∗i∗ · f(y∗)| ≥ c for x∗, y∗. (3.25)
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From the selection of εn = 1
n it follows

x∗ = lim
k→∞

xnk = lim
k→∞

ynk = y∗.

Hence

|A∗i · f(x∗)−A∗i · f(y∗)| = 0,

which contradicts to (3.25). Therefore we can choose ε > 0 independently from A ∈ [A]. Then
for the given x1 we have

∣∣∣
(
A2 · f(x1)

)
i(x1)

∣∣∣ =
∣∣gi(x1)(x1)

∣∣ > c

and for x2 fulfilling the condition |x1 − x2| < ε · e we have

sign
((

A2 · f(x1)
)
i(x1)

)
= sign

((
A2 · f(x2)

)
i(x1)

)
for all A2 ∈ [A],

once |x1 − x2| < ε · e.
From the last equation and (3.24) it follows that

sign
((

A1 · f(x1)
)
i(x1)

)
= sign

((
A2 · f(x2)

)
i(x1)

)
for all A1, A2 ∈ [A],

once |x1 − x2| < ε · e.
Lemma 14. Let A be a point matrix and {xn}∞n=1 a sequence of nonnegative point vectors.
We assume

ρ(A) < 1,

xk+1 ≤ xk,

xk+1 ≤ A · xk.

Then

lim
n→∞

xn = 0.

Proof. {xn}∞n=1 is a nonincreasing sequence bounded from below. Therefore x∗ = limn→∞ xn

exists. From xk+1 ≤ A · xk it follows

xk+1 ≤ Ak · x1.

Using the continuity of operations from the last inequality and tending k →∞ we get x∗ ≤ 0,
since ρ(A) < 1 inplies limk→∞Ak = 0. And since xk ≥ 0, k = 0, 1, . . . we have x∗ = 0.

Lemma 15. If IGA([A]) exists then

IGA([A], b) ⊆ IGA([A]) · b.

Proof. For interval matrices [A] and [B] and a point vector c we have

([A] · ([B] · c))i =
n∑

j=1

[a]ij · ([B] · c)j

=
n∑

j=1

[a]ij ·
(

n∑

k=1

[b]jk · ck

)
.
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And using the subdistributivity in interval arithmetic we have

([A] · ([B] · c))i ⊆
n∑

j=1

n∑

k=1

[a]ij · [b]jk · ck

=
n∑

k=1




n∑

j=1

[a]ij · [b]jk


 · ck

=
n∑

k=1

([A] · [B])ik · ck

= ([A] · [B] · c)i.

Applying this property several times to (3.15) and using (3.16) we get

IGA([A], b) ⊆ IGA([A]) · b.

3.2 Quadratic Divergence of the Newton Method

For an interval vector [x] = ([x]i) ⊆ [x]0 ⊂ Rn and F ′, the inclusion function for the Fréchet-
derivative f ′ of a mapping f : [x] ⊆ [x]0 ⊂ Rn → Rn over [x]0, we define the interval Newton
operator as:

N [x] = [n1, n2] = x̌− IGA (F ′([x]), f(x̌)) ,

where x̌ ∈ [x]. Using N [x] we define the interval Newton method for a given interval vector
[x]0 as follows:

[x]k+1 = N [x]k ∩ [x]k, k = 0, 1, 2, ...,

where the intersection is taken componentwise.

Theorem 1. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0.
We assume that IGA

(
F ′

(
[x]0

))
exists, ρ(A) < 1 (ρ spectral radius), where

A =
∣∣I − IGA

(
F ′

(
[x]0

)) · F ′ ([x]0
)∣∣, and

d (F ′([x])) < C · ‖d([x])‖, for all [x] ⊆ [x]0, C ≥ 0.

Then

x2 − n1 ≤ O
(‖d([x])‖2) · e + A2 · f (

x2
)
,

n2 − x1 ≤ O
(‖d([x])‖2) · e−A1 · f (

x1
)

are valid for some A1, A2 ∈ IGA (F ′([x])).
Moreover if [x]0 does not contain any zero of f(x) then there is ε > 0 and at least one index
i ∈ {1, . . . , n} such that

(x2 − n1)i < 0 or (n2 − x1)i < 0

once d([x]) < ε · e.
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The proof of this theorem and further details on the divergence of the Interval-Newton method
can be found in [3]. The Newton method possesses the quadratic convergence. Theorem 1
shows that the Newton method also possesses a quadratic behavior in the case of divergence.
It describes what kind of divergence we should expect if there is no zero of the given function,
i.e. how fast the iteration terminates resulting in an empty set. Unlike convergence, where we
consider all the components of the interval vector, in the case of divergence it is enough that
intersection results an empty set at least for one component.

Lemma 16. Let the assumption of Theorem 1 hold and assume that [x]k and [x]k+1 exist.
Then

m[x]k /∈ [x]k+1.

Proof. See [1], Lemma 6.

This lemma says that at least one component of the diameter d
(
[x]k

)
is more than halved in

the (k + 1)th step.

3.3 The Simplified Newton Method

For an interval vector [x] = ([x]i) ⊆ [x]0 ⊆ IRn and an inclusion function F ′ for the Fréchet-
derivative f ′ of a mapping f : [x] ⊆ [x]0 ⊂ Rn → Rn over [x]0 we define the simplified interval
Newton operator as:

SN [x] = x̌− IGA
(
F ′

(
[x]0

)
, f(x̌)

)
,

where x̌ ∈ [x]. Using SN [x] we define the simplified Interval-Newton method for a given
interval vector [x]0 as follows:

[x]k+1 = SN [x]k ∩ [x]k k = 0, 1, 2, ...,

where the intersection is taken componentwise.
We denote the lower and upper bounds of SN [x] by n1 and n2.
The following Theorem gives sufficient conditions for the convergence of the simplified Newton
method.

Theorem 2. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0. We assume that
IGA

(
F ′

(
[x]0

))
exists and that ρ(A) < 1, where A =

∣∣I − IGA
(
F ′

(
[x]0

)) · F ′ ([x]0
)∣∣. Then

a) if [x]0 contains a zero x∗ of f(x) then x∗ ∈ [x]k and limk→∞[x]k = x∗;
b) if [x]0 does not contain any zero then there is k0 such that SN [x]k0 ∩ [x]k0 = ∅.

The proof of this theorem can be found in [1].

3.4 Linear divergence of the Simplified Newton Method

We have loosened the operator N [x] by substituting F ′([x]0) for F ′([x]). Under certain as-
sumptions we still get divergence. But the speed of divergence is loosened from quadratic to
linear. The following theorem gives sufficient conditions for linear divergence.
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Theorem 3. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0.
We assume that IGA

(
F ′

(
[x]0

))
exists and that ρ(A) < 1,

where A =
∣∣I − IGA

(
F ′

(
[x]0

)) · F ′ ([x]0
)∣∣.

Then for any [x] ⊆ [x]0 with [x] = [x1, x2], SN [x] = [n1, n2]

x2 − n1 ≤ O(‖d([x])‖) · e + A2 · f (
x2

)
, (3.26)

n2 − x1 ≤ O(‖d([x])‖) · e−A1 · f (
x1

)
(3.27)

are valid for some A1, A2 ∈ IGA
(
F ′

(
[x]0

))
.

Moreover if [x]0 does not contain any zero of f then there is ε > 0 and at least one index
i ∈ {1, . . . , n} such that

(
x2 − n1

)
i
< 0 or

(
n2 − x1

)
i
< 0 (3.28)

once d([x]) > ε · e.

Proof. Using Lemma 15 we have

SN [x] = x̌− IGA
(
F ′

(
[x]0), f(x̌

))

⊆ x̌− IGA
(
F ′

(
[x]0

)) · f(x̌) := S̃N [x] = [ñ1, ñ2].

The inclusion SN [x] ⊆ S̃N [x] is equivalent to

ñ1 ≤ n1 ≤ n2 ≤ ñ2. (3.29)

From the definition of S̃N [x] and Lemma 3 it follows that

ñ1 = x̌−A2 · f(x̌)

ñ2 = x̌−A1 · f(x̌)
(3.30)

for some A1, A2 ∈ IGA
(
F ′

(
[x]0

))
. For the right end point x2 of the vector [x], using (3.29),

(3.30) and (3.7), we can write the following:

x2 − n1 ≤ x2 − ñ1

= x2 − x̌ + A2 · f(x̌)

= x2 − x̌ + A2
(
f

(
x2

)
+ δf

(
x̌, x2

) · (x̌− x2
))

=
(
I −A2 · δf (

x̌, x2
)) · (x2 − x̌

)
+ A2 · f (

x2
)
.

(3.31)

Because of (3.8) and Lemma 6, the matrix δf
(
x̌, x2

)
is nonsingular and(

δf
(
x̌, x2

))−1 ∈ IGA
(
F ′

(
[x]0

))
.

Therefore we have
∣∣(I −A2 · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ =
∣∣∣
((

δf
(
x̌, x2

))−1 −A2
)
· δf (

x̌, x2
) · (x2 − x̌

)∣∣∣ .

Since
∣∣∣
(
δf

(
x̌, x2

))−1 −A2
∣∣∣ ≤ d

(
IGA

(
F ′

(
[x]0

)))
and

∣∣δf (
x̌, x2

)∣∣ ≤ ∣∣F ′ ([x]0
)∣∣ we get:

∣∣(I −A2 · δf (
x̌, x2

)) · (x2 − x̌
)∣∣ ≤ d

(
IGA

(
F ′

(
[x]0

))) · ∣∣F ′ ([x]0
)∣∣ · d([x]).
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Applying Lemma 12 to d
(
IGA

(
F ′

(
[x]0

))) ·
∣∣F ′ ([x]0

)∣∣ · d([x]) from the last inequality we get:
∣∣(I −A2 · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ = O(‖d([x])‖) · e. (3.32)

From (3.31) and (3.32) we get (3.26):

x2 − n1 ≤ O(‖d([x])‖) · e + A2 · f (
x2

)
.

In the same manner we can obtain (3.27).
From (3.7) we get:

f(x̌) = f
(
x1

)
+ δf

(
x̌, x1

) · (x̌− x1
)
,

f(x̌) = f
(
x2

)
+ δf

(
x̌, x2

) · (x̌− x2
)
.

Therefore

A1 · f(x̌) = A1 · f (
x1

)
+ A1 · δf (

x̌, x1
) · (x̌− x1

)

A2 · f(x̌) = A2 · f (
x2

)
+ A2 · δf (

x̌, x2
) · (x̌− x2

)
.

(3.33)

Here

A1 · δf (
x̌, x1

) · (x̌− x1
) → 0 for d([x]) → 0,

A2 · δf (
x̌, x2

) · (x̌− x2
) → 0 for d([x]) → 0.

(3.34)

According to Lemma 10 the matrix IGA
(
F ′

(
[x]0

))
does not contain singular point matrices.

Moreover, f(x) 6= 0, for all x ∈ [x]0 and f(x) is continuous by the assumption (see page 3).
Then from Lemma 13 it follows that there exist c > 0 and ε(c) > 0 such that

|A · f(x)|i(x) > c for all A ∈ IGA
(
F ′

(
[x]0

))
, x ∈ [x]0, (3.35)

and

sign
((

A1 · f(x1)
)
i(x1)

)
= sign

((
A2 · f(x2)

)
i(x1)

)
,

for all A1, A2 ∈ IGA
(
F ′

(
[x]0

))
, x1, x2 ∈ [x]0,

(3.36)

once |x1 − x2| < ε(c) · e.
Define α > 0 such that in (3.26) the term O(‖d([x])‖) is less than α · ‖d([x])‖. Now let ‖d([x])‖
be small enough such that in (3.34) we have

∣∣A1 · δf (
x̌, x1

) · (x̌− x1
)∣∣ < c/2 · e,∣∣A2 · δf (

x̌, x2
) · (x̌− x2

)∣∣ < c/2 · e (3.37)

and also

α · ‖d([x])‖ < c/2,

‖d([x])‖ < ε(c).
(3.38)

Then from (3.33), (3.35), (3.37) and (3.38) for i0 = i(x̌) we get:
∣∣∣
(
A1 · f (

x1
))

i0

∣∣∣ > c/2
∣∣∣
(
A2 · f (

x2
))

i0

∣∣∣ > c/2
(3.39)

Since α · ‖d([x])‖ < c/2, from (3.26), (3.27), (3.36) and (3.39) we get

(x2 − n1)i0 < 0 or (n2 − x1)i0 < 0.

So (3.28) has been proven together with part b) of Theorem 3.
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From Theorem 3 and Lemma 11 it follows that if the starting interval vector does not contain
a zero of the function then the Simplified Newton method ”diverges linearly”. Sometimes it
is preferrable to choose a linear divergence of the simplified Newton method over a quadratic
divergence of the Newton method. It can happen if the evaluation of the Hessian in the
Newton method is more expensive than several iterations of the simplified Newton method.
And therefore the simplified Newton method diverges faster than the usual Newton method.

3.5 The Krawczyk Method

Another interval method for solving systems of nonlinear equations is the Krawczyk method.
Below we introduce the Krawczyk method and give sufficient conditions for convergence and
divergence of this method.
For an interval vector [x] = ([x]i) ⊆ [x]0 ⊂ Rn and an inclusion function F ′ for the Fréchet-
derivative f ′ of a mapping f : [x]0 ⊂ Rn → Rn over [x] we define the Krawczyk operator
as:

K([x], x̌) = x̌− Y · f(x̌) + (I − Y · F ′([x])) · ([x]− x̌),

where Y = (m(F ′([x])))−1 and x̌ ∈ [x].
Using K([x], x̌), we define the Krawczyk method for a given interval vector [x]0 as follows:

[x]k+1 = K([x]k, x̌k) ∩ [x]k, k = 0, 1, 2, . . . ,

where the intersection is taken componentwise.
We denote by k1, k2 the lower and upper bounds of K([x], x̌).

Theorem 4. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f . We assume that IGA
(
F ′

(
[x]0

))
exists and that ρ(2 ·A) < 1 where A =

∣∣I − IGA
(
F ′

(
[x]0

)) · F ′ ([x]0
)∣∣. Then

a) if [x]0 contains a zero x∗ of f(x) then x∗ ∈ [x]k and limk→∞[x]k = x∗;
b) if [x]0 does not contain any zero then there is k0 such that K[x]k0 ∩ [x]k0 = ∅.
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

The proof can be found in [41], by observing that from our assumption, F ′([x]) is a Lipschitz
matrix in the sense of [41], p.171 which is strongly regular (see Theorem of [41], p.116).

Theorem 5. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0.
We assume that IGA

(
F ′

(
[x]0

))
exists and ρ(2 ·A) < 1,

where A =
∣∣I − IGA

(
F ′

(
[x]0

)) · F ′ ([x]0
)∣∣, and

d (F ′([x])) < ‖d([x])‖ · C, [x] ⊆ [x]0, C ≥ 0. (3.40)

Then

x2 − k1 ≤ O
(‖d([x])‖2) · e + Y · f (

x2
)
, (3.41)

k2 − x1 ≤ O
(‖d([x])‖2) · e− Y · f (

x1
)

(3.42)

are valid for Y = (m(F ′([x])))−1.
If [x]k 6= ∅ for all k then

d([x]k+1) = O(‖d([x]k)‖2) · e. (3.43)
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Moreover, if [x]0 does not contain any zero of f(x) then there is n0 ≥ 0 and at least one index
i ∈ {1, . . . , n} such that

(x2 − k1)i < 0 or (k2 − x1)i < 0

for [x]n0 = [x1, x2].
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

We will give the proof of this theorem together with the proof of Theorem 7, since the proves
differ only slightly.

3.6 The Simplified Krawczyk Method

For an interval vector [x] = ([x]i) ⊆ [x]0 ⊂ Rn and an inclusion function F ′ for the Fréchet-
derivative f ′ of a mapping f : [x]0 ⊂ Rn → Rn over [x]0 we define the simplified Krawczyk
operator as:

SK([x], x̌) = x̌− Y · f(x̌) +
(
I − Y · F ′ ([x]0

)) · ([x]− x̌),

where Y =
(
m(F ′

(
[x]0

)
)
)−1, and x̌ ∈ [x].

Using SK([x], x̌), we define the simplified Krawczyk method for a given interval vector [x]0 as
follows:

[x]k+1 = SK
(
[x]k, x̌k

) ∩ [x]k, k = 0, 1, 2, ...,

where the intersection is taken componentwise.
We denote by k1, k2 the lower and upper bounds of SK([x], x̌).

Theorem 6. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0. We assume that
IGA(F ′([x]0)) exists. Suppose that ρ(2 · A) < 1, where A =

∣∣∣I −
(
m(F ′

(
[x]0

)
)
)−1 · F ′ ([x]0

)∣∣∣.
Then
a) if [x]0 contains a zero x∗ of f(x) then x∗ ∈ [x]k and limk→∞[x]k = x∗;
b) if [x]0 does not contain any zero then there is k0 such that SK

(
[x]k0 , x̌k0

) ∩ [x]k0 = ∅.
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

Proof. First we prove a).
Denote by x∗ a zero of f . Suppose x∗ ∈ [x]k. Then

SK
(
[x]k, x̌k

)− x∗ = x̌k − x∗ − Y · f (
x̌k

)
+

(
I − Y · F ′ ([x]0

)) · ([x]k − x̌k
)
. (3.44)

Using (3.7) for x̌k and x∗ we have:

f
(
x̌k

)
= δf

(
x̌k, x∗

) · (x̌k − x∗
)
. (3.45)

From (3.44) and (3.45) it follows that:

SK
(
[x]k, x̌k

)− x∗ =− (
I − Y · δf (

x̌k, x∗
)) · (x∗ − x̌k

)

+
(
I − Y · F ′ ([x]0

)) · ([x]k − x̌k
)
.

(3.46)
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According to (3.8) we have δf
(
x̌k, x∗

) ∈ F ′
(
[x]0

)
and therefore

(
I − Y · δf (

x̌k, x∗
)) ∈ (I − Y · F ′ ([x])) . (3.47)

Hence
(
I − Y · δf (

x̌k, x∗
) · (x∗ − x̌k

)) ∈ (
I − Y · F ′ ([x]0

)) · ([x]k − x̌k
)
.

From this it follows that

0 ∈ (
I − Y · F ′ ([x]0

)) · ([x]k − x̌k
)− (

I − Y · δf (
m([k]k), x∗

)) · (x∗ − x̌k
)

or, by (3.46),

0 ∈ SK
(
[x]k, x̌k

)− x∗

or

x∗ ∈ SK
(
[x]k, x̌k

)
.

And since [x]k+1 = [x]k ∩ SK
(
[x]k, x̌k

)
also x∗ ∈ [x]k+1 is true.

By assumption x∗ ∈ [x]0 and therefore by induction x∗ ∈ [x]k for each k.
From (3.46) it follows that

∣∣SK
(
[x]k, x̌k

)− x∗
∣∣ ≤ ∣∣(I − Y · δf (

x̌k, x∗
)) · (x∗ − x̌k

)∣∣
+

∣∣(I − Y · F ′ ([x]0
)) · ([x]k − x̌k

)∣∣
≤

∣∣I − Y · δf (
x̌k, x∗

)∣∣ ·
∣∣x∗ − x̌k

∣∣
+

∣∣I − Y · F ′ ([x]0
)∣∣ · ∣∣[x]k − x̌k

∣∣ .

(3.48)

Using (3.47) and the fact that x∗ − x̌k ∈ [x]k − x̌k we get
∣∣SK

(
[x]k, x̌k

)− x∗
∣∣ ≤ 2 ·A · ∣∣[x]k − x̌k

∣∣ .

Using

q
(
[x]k, x∗

)
=

∣∣[x]k − x∗
∣∣

q
(
SK

(
[x]k, x̌k

)
, x∗

)
=

∣∣SK
(
[x]k, x̌k

)− x∗
∣∣

this can be written as

q
(
SK

(
[x]k, x̌k

)
, [x]∗

) ≤ 2 ·A · q (
[x]k, x∗

)
.

Because x∗ ∈ SK
(
[x]k, x̌k

) ∩ [x]k = [x]k+1 ⊆ SK
(
[x]k, x̌k

)
it also holds that

q
(
[x]k+1, x∗

) ≤ q
(
SK

(
[x]k, x̌k

)
, x∗

) ≤ 2 ·A · q (
[x]k, x∗

)

and therefore

q
(
[x]k+1, x∗

) ≤ (2 ·A)k+1 · q (
[x]0, x∗

)
.

Since ρ(2 · A) < 1, from Lemma 14 it follows that limk→∞[x]k = x∗. If one chooses x̌k to be

the center of [x]k in (3.48) we would have |x∗ − x̌k| ≤ 1
2
d([x]k) and |[x]k − x̌k| = 1

2
d([x]k) and
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therefore the condition ρ(A) < 1 is enough.
Now we prove b).
Assume that for all k ≥ 0 the intersections SK

(
[x]k, x̌k

) ∩ [x]k are not empty. Then it holds
that

[x]0 ⊇ [x]1 ⊇ . . . [x]k ⊇ [x]k+1 . . . ,

from which it follows that the sequence is converging to an interval vector [z]∗. We now
consider the sequence {x̌k}∞k=0. There exists a convergent subsequence {x̌kn}∞n=0. Denote
m∗ = limn→∞ x̌kn . For elements of the sequence {x̌kn}∞n=0 it holds that x̌kn ∈ [x]kn . From
this remark it follows that beside of limn→∞[x]kn = [z]∗ we also have m∗ ∈ [z]∗. Using the
continuity of operations from

SK
(
[x]k, x̌k

)
= x̌k − Y · f (

x̌k
)

+
(
I − Y · F ′ ([x]0

)) · ([x]k − x̌k
)
,

[x](k+1) = SK
(
[x]k, x̌k

) ∩ [x]k

we get the relations

[s]∗ = m∗ − Y · f (m∗) +
(
I − Y · F ′ ([x]0

)) · ([z]∗ −m∗) ,

[z]∗ = [s]∗ ∩ [z]∗,
(3.49)

where [s]∗ = limn→∞ SK
(
[x]kn , x̌kn

)
= SK ([z]∗,m[z]∗).

From the first equation we get

|[s]∗ −m∗ + Y · f (m∗)| =
∣∣(I − Y · F ′ ([x]0

)) · ([z]∗ −m∗)
∣∣

≤ ∣∣(I − Y · F ′ ([x]0
))∣∣ · |([z]∗ −m∗)|

and then

|[s]∗ −m∗ + Y · f (m∗)| ≤ A · |[z]∗ −m∗| . (3.50)

0 ∈ ([z]∗ −m∗) implies |[z]∗ −m∗| ≤ d ([z]∗ −m∗) = d ([z]∗). The inequality
1
2
· d([x]) ≤ |[x]|

holds for all [x] ∈ IRn. From the last two remarks and (3.50) we get

1
2
· d ([s]∗) =

1
2
· d ([s]∗ −m∗ + Y · f (m∗))

≤ |[s]∗ −m∗ + Y · f (m∗)|
≤ A · |[z]∗ −m∗|
≤ A · d ([z]∗)

(3.51)

or

d ([s]∗) ≤ 2 ·A · d ([z]∗)

and using the second equation of (3.49) this can be written as

d ([s]∗) ≤ 2 ·A · d ([s]∗) ,

from which we get d ([s]∗) ≤ (2 · A)n · d ([s]∗) for all n. Then d ([s]∗) = 0, since ρ(2 · A) < 1.
Therefore [s∗] and [z∗] are point vectors and s∗ = z∗ = m∗. Then from the first equation of
(3.49) it follows that

m∗ = m∗ − Y · f (m∗) +
(
I − Y · F ′ ([x]0

)) · (m∗ −m∗) ,
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from which we get

0 = Y · f (m∗) .

Since Y is nonsingular it follows that f (m∗) = 0. But this contradicts the fact that f(x) has
no zeros in [x]0. Hence there is k0 such that SK

(
[x]k0 , x̌k0

)∩ [x]k0 = ∅ If one chooses x̌k to be
the center of [x]k from (3.51) we would have d ([s]∗) ≤ A · d ([z]∗) and therefore the condition
ρ(A) < 1 is sufficient.

Theorem 7. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn →
Rn and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0. Suppose that
ρ(2 ·A) < 1, where A =

∣∣∣I −
(
m(F ′

(
[x]0

)
)
)−1 · F ′ ([x]0

)∣∣∣. Then

x2 − k1 ≤ O(‖d([x])‖) · e + Y · f (
x2

)
, (3.52)

k2 − x1 ≤ O(‖d([x])‖) · e− Y · f (
x1

)
(3.53)

are valid for Y =
(
m(F ′

(
[x]0

)
)
)−1.

If [x]k 6= ∅ for all k then

d([x]k+1) = O(‖d([x]k)‖) · e. (3.54)

Moreover, if [x]0 does not contain any zero of f(x) then there is n0 ≥ 0 and at least one index
i ∈ {1, . . . , n} such that

(x2 − k1)i < 0 or (k2 − x1)i < 0

for [x]n0 = [x1, x2].
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

Proof. Here we prove both Theorem 5 and Theorem 7. For the proof of Theorem 5 we take
[z] = [x]0 and for the proof of Theorem 7 [z] = [x].
Denote (I − Y · F ′([z])) · ([x]− x̌), by [r] and the lower and upper bounds of [r], as usually, by
r1 and r2.
Then

k1 = x̌− Y · f(x̌) + r1,

k2 = x̌− Y · f(x̌) + r2
(3.55)

are obvious.
For the right end point x2 of the interval vector [x] using (3.55) we can write the following

x2 − k1 = x2 − x̌ + Y · f(x̌)− r1.

Using (3.7) for x̌ and x2 we have f(x̌) = f
(
x2

)
+ δf

(
x̌, x2

) · (x̌− x2
)

and therefore

x2 − k1 = x2 − x̌ + Y
(
f

(
x2

)
+ δf

(
x̌, x2

) · (x̌− x2
))− r1

=
(
I − Y · δf (

x̌, x2
)) · (x2 − x̌

)
+ Y · f (

x2
)− r1.

(3.56)
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Because of (3.8) and Lemma 6 the matrix δf
(
x̌, x2

)
is nonsingular and(

δf
(
x̌, x2

))−1 ∈ IGA (F ′([z])). Therefore we have

∣∣(I − Y · δf (
x̌, x2

)) · (x2 − x̌
)∣∣ =

∣∣∣
((

δf
(
x̌, x2

))−1 − Y
)
· δf (

x̌, x2
) · (x2 − x̌

)∣∣∣

and since
∣∣∣
(
δf

(
x̌, x2

))−1 − Y
∣∣∣ ≤ d (IGA (F ′([z]))) and

∣∣δf (
x̌, x2

)∣∣ ≤ ∣∣F ′ ([x]0
)∣∣ we get:

∣∣(I − Y · δf (
x̌, x2

)) (
x2 − x̌

)∣∣ ≤ d (IGA (F ′([x]))) · ∣∣F ′ ([x]0
)∣∣ · d([x]).

For Theorem 5 taking into account (3.40) and applying Lemma 9 we obtain

d(IGA(F ′([z]))) ≤ O(‖d([z]‖) ·M, with [z] = [x]

and then using Lemma 12 we get
∣∣(I − Y · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ = O(‖d([x])‖) · ‖d([x])‖ · e = O(‖d([x])‖2) · e. (3.57)

For Theorem 7 we have

d(IGA(F ′([z]))) ≤ C1

where C1 is a constant point matrix and therefore using Lemma 12 we get
∣∣(I − Y · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ = O(‖d([x])‖) · e. (3.58)

Now we consider [r]:

|[r]| = |(I − Y · F ′([z])) · ([x])− x̌)|
≤ |I − Y · F ′([z])| · |[x]− x̌|
≤ |Y | · ∣∣Y −1 − F ′([z])

∣∣ · |[x]− x̌|
≤ |Y | ·

∣∣Y −1 − F ′([z])
∣∣ · d([x]).

(3.59)

Since Y −1 = m(F ′([z])) ∈ F ′([z]) we have
∣∣Y −1 − F ′([z])

∣∣ ≤ d(F ′([z])).

For Theorem 5 from (3.40) we have d(F ′([z])) = O(‖d([z])‖) · e and therefore
∣∣Y −1 − F ′([z])

∣∣ ≤ d(F ′([z])) = O(‖d([z])‖) · E, with [z] = [x]. (3.60)

For Theorem 7 the matrix d(F ′([z])) is constant:

d(F ′([z])) = C2. (3.61)

From Lemma 6 the relation Y ∈ IGA (F ′([z])) holds and therefore

|Y | ≤ C, (3.62)

where C is a constant point matrix. Using (3.59), (3.60) and (3.62) for Theorem 5 we have
the following

|[r]| = O
(‖d([x])‖2) · e. (3.63)



3.6. The Simplified Krawczyk Method 63

For Theorem 5 using (3.59) and (3.62) we have

|[r]| = O (‖d([x])‖) · e, (3.64)

and from (3.56), (3.57) and (3.63) we get

x2 − k1 ≤ O
(‖d([x])‖2) · e + Y · f (

x2
)
.

For Theorem 7 from (3.56), (3.58) and (3.64) we get

x2 − k1 ≤ O (‖d([x])‖) · e + Y · f (
x2

)
.

So we have proved (3.41) and (3.52). In the same manner we can get (3.42) and (3.53).
From (3.41) and (3.42) it follows:

d([x]) + d(K([x], x̌)) = (x2 − x1) + (k2 − k1) = (x2 − k1) + (k2 − x1)

≤ O(‖d([x])‖2) · e + Y · (f(x2)− f(x1)).

And from (3.52) and (3.53) it follows:

d([x]) + d(SK([x], x̌)) ≤ O(‖d([x])‖) · e + Y · (f(x2)− f(x1)).

We consider Y · (f(x2)− f(x1)). Using (3.8) we get:

Y · (f(x2)− f(x1)) = Y · δf(x2, x1) · (x2 − x1).

For δf(x2, x1) we have:

δf(x2, x1) = m(F ′([z])) + Z

where |Z| ≤ d(F ′([z])), since δf(x2, x1), m(F ′([z])) ∈ F ′([z]). Then

Y · (f(x2)− f(x1)) = Y · (m (F ′([z])) · d([x]) + Z · d([x]))
= d([x]) + Y · Z · d([x])
≤ d([x]) + |Y | · |Z| · d([x])
≤ d([x]) + |Y | · d(F ′([z])) · d([x]).

(3.65)

For Theorem 5 using (3.40) and (3.62) from (3.65) we get:

Y · (f(x2)− f(x1)) ≤ d([x]) + O(‖d([x])‖2) · e.

Then

d([x]) + d(K([x], x̌)) ≤ d([x]) + O(‖d([x])‖2) · e

or

d(K([x], x̌)) ≤ O(‖d([x])‖2) · e.

For Theorem 7 from (3.65), (3.62) and (3.61) we have

Y · (f(x2)− f(x1)) ≤ d([x]) + O(‖d([x])‖) · e
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and further

d(K([x], x̌)) ≤ O(‖d([x])‖) · e.

If [x]k+1 6= ∅ then d([x]k+1) ≤ d(K([x]k, x̌k)). Then we have

d([x]k+1) ≤ O(‖d([x]k)‖2) · e

for Theorem 5 and

d([x]k+1) ≤ O(‖d([x]k)‖) · e

for Theorem 7. We have proved (3.43) and (3.54).
To finish the proof assume now that f does not have a zero in [x]0.
All matrices (m(F ′ ([z])))−1, [z] ⊆ [x]0, are nonsingular. Also f(x) 6= 0, for all x ∈ [x]0 and
f(x) is continuous by the assumption. From Lemma 13 we have that there exist c > 0 and
ε(c) > 0 such that:

∣∣∣(m(F ′([z])))−1 · f(x)
∣∣∣
i(x)

> c for all x ∈ [x]0 (3.66)

and

sign

((
(m(F ′([z])))−1 · f(x1)

)
i(x1)

)
= sign

((
(m(F ′([z])))−1 · f(x2)

)
i(x1)

)
for x1, x2 ∈ [x],

(3.67)

once |x1 − x2| < ε(c) · e.
From the inclusion isotonicity in interval arithmetic we have

F ′([x]k) ⊆ F ′([x]0),

Y ∈ IGA(F ′([x]0)).
(3.68)

We estimate d([x]k+1). For Theorem 5 we have

d
(
[x]k+1

) ≤ d(K([x]k, x̌k))

= d
(
x̌k − Y · f(x̌k) +

(
I − Y · F ′([x]k)

) · ([x]k − x̌k
))

= d
(
(I − Y · F ′([x]k)) · ([x]k − x̌k)

)

≤ 2 · ∣∣(I − Y · F ′([x]k)) · ([x]k − x̌k
)∣∣

≤ 2 · |I − Y · F ′([x]k)| ·
∣∣[x]k − x̌k

∣∣ .

Using (3.68) we get d
(
[x]k+1

) ≤ 2 ·A · ∣∣[x]k − x̌k
∣∣ . For Theorem 7 we have

d
(
[x]k+1

) ≤ d(SK([x]k, x̌k))

= d
(
x̌k − Y · f(x̌k) +

(
I − Y · F ′([x]0)

) · ([x]k − x̌k
))

= d
(
(I − Y · F ′([x]0)) · ([x]k − x̌k)

)

≤ 2 ·
∣∣(I − Y · F ′([x]0)) · ([x]k − x̌k

)∣∣
≤ 2 · |I − Y · F ′([x]0)| · ∣∣[x]k − x̌k

∣∣
= 2 ·A ·

∣∣[x]k − x̌k
∣∣ .
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Since 0 ∈ [x]k − x̌k we have
∣∣[x]k − x̌k

∣∣ ≤ d
(
[x]k − x̌k

)
= d

(
[x]k

)
. (3.69)

Therefore

d
(
[x]k+1

) ≤ 2 ·A · d (
[x]k

)
.

and

d
(
[x]k+1

) ≤ (2 ·A)k+1 · d (
[x]0

)
.

Suppose [x]k 6= ∅ for all k. Then we have ρ(2 ·A) < 1 and therefore from Lemma 14 it follows
limk→∞ d([x]k) = 0. Let the term O(‖d([x])‖2) in (3.41) and (3.42) be bounded by α·‖d([x])‖2,
α ≥ 0. From limk→∞ d([x]k) = 0 it follows that there exists n0 ≥ 0 such that

α · ‖d([x]n0)‖2 < c,

d([x]n0) < ε(c) · e.
Then for Theorem 5 from (3.41), (3.42), (3.66) and (3.67) for at least one index i0 ∈ {1, . . . , n}
either (x2 − k1)i0 < 0 or (k2 − x1)i0 < 0 takes place for [x]n0 = [x1, x2].
The same can be obtained for Theorem 7.
From Lemma 11 it follows that [x]n0+1 = [x]n0 ∩ [K([x]n0 ,m([x]n0) = ∅. This contradicts
[x]k 6= ∅ for all k. Hence there is [x]k0+1 = ∅ or from Lemma 11 either (x2 − k1)i0 < 0 or
(k2 − x1)i0 < 0 takes place for [x]n0 = [x1, x2] and for at least one index i0 ∈ {1, . . . , n}. If

one chooses x̌k to be the center of [x]k instead of (3.69) we would have |[x]k − x̌k| = 1
2
d([x]k)

and therefore the condition ρ(A) < 1 is sufficient.

3.7 The Modified Krawczyk Method
(with LU Factorization)

Many systems of nonlinear equations come from the discretization of certain problems. Such
systems possess a property which can be advantageous: they are sparse. The sparse structure
allows us to simplify a time consuming part of the interval Krawczyk method - computation
of the inverse matrix in the normal way. In this and the next subsections we will show how
this can be done and will give sufficient conditions for modified methods to work. As it will be
shown in the numerical results the use of the LU factorization can significantly decrease the
time for large dimensions. But the number of classes of functions, to which modified methods
can be applied, shrinks.
For an interval vector [x] = ([x]i) ⊆ [x]0 ∈ Rn and an inclusion function F ′ for the Fréchet-
derivative f ′ of a mapping f : [x]0 → Rn over [x], we define the modified Krawczyk operator
as:

MK([x], x̌) = x̌− U \ {L \ {f(x̌)− (m(F ′([x]))− F ′([x])) · ([x]− x̌)}},
where L, U come from the LU factorization of m(F ′([x])), i.e. m(F ′([x])) = L ·U , and x̌ ∈ [x].
From (3.3), (3.5) and Lemma 1 it follows

MK([x], x̌) = x̌− U \{ L \{f(x̌)}}+ U \{ L \{(m(F ′([x]))− F ′([x])) · ([x]− x̌)}}
= x̌− Y · f(x̌) + U \{ L \{(m(F ′([x]))− F ′([x])) · ([x]− x̌)}}
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where Y = (m(F ′([x])))−1 = U−1 · L−1.
We denote by k1, k2 the lower and upper bounds of MK([x], x̌).

Theorem 8. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0. Denote A = |[U ]n| ·
. . . · |[U ]1| · |[L]n| · . . . · |[L]1| · d (

F ′
(
[x]0

))
.

We assume that IGA
(
F ′

(
[x]0

))
exists and that ρ(2 ·A) < 1, where matrices [U ]i and [L]i are

defined by (3.10) and (3.11). Then
a) if [x]0 contains a zero x∗ of f then x∗ ∈ [x]k and limk→∞[x]k = x∗,
b) if [x]0 does not contain any zero then there is k0 such that MK[x]k0 ∩ [x]k0 = ∅.
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

We omit the proof of this theorem since it is similar to the proof of Theorem 10.

Theorem 9. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0.
Denote A = |[U ]n| · . . . · |[U ]1| · |[L]n| · . . . · |[L]1| · d (

F ′
(
[x]0

))
, where the matrices [U ]i and [L]i

are defined by (3.10) and (3.11) (with [L] · [U ] ⊇ [A] = F ′([x]0)).
We assume that ρ(2 ·A) < 1, IGA

(
F ′

(
[x]0

))
exists and

d (F ′([x])) < ‖d([x])‖ · C, [x] ⊆ [x]0, C ≥ 0.

Then

x2 − k1 ≤ O
(‖d([x])‖2) · e + Y · f (

x2
)
, (3.70)

k2 − x1 ≤ O
(‖d([x])‖2) · e− Y · f (

x1
)

(3.71)

are valid for Y = (m(F ′ ([x])))−1 = U−1 · L−1.
If [x]k 6= ∅ for all k then

d([x]k+1) = O(‖d([x]k)‖2) · e. (3.72)

Moreover, if [x]0 does not contain any zero of f(x) then there is n0 ≥ 0 and at least one index
i ∈ {1, . . . , n} such that

(x2 − k1)i < 0 or (k2 − x1)i < 0

for [x]n0 = [x1, x2].
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

We will give the proof of this theorem together with the proof of Theorem 11.

3.8 The Simplified Modified Krawczyk Method
(with LU Factorization)

For an interval vector [x] = ([x]ij) ⊆ [x]0 ∈ Rn and an inclusion function F ′ for the Fréchet-
derivative f ′ of a mapping f : [x]0 → Rn over [x], we define the modified Simplified Krawczyk
operator as:

MSK([x], x̌) = x̌− U \ {L \ {f(x̌)− (
m(F ′([x]0))− F ′([x])

) · ([x]− x̌)}},
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where L, U come from the LU factorization of m(F ′([x]0)), i.e. m(F ′([x]0)) = L · U , and
x̌ ∈ [x].
From (3.3), (3.5) and Lemma 1 it follows

MSK([x], x̌) = x̌− U \{ L \{f(x̌)}}+ U \{ L \{(m(F ′([x]0))− F ′([x])) · ([x]− x̌)}}
= x̌− Y · f(x̌) + U \{ L \{(m(F ′([x]0))− F ′([x])) · ([x]− x̌)}}

where Y =
(
m(F ′

(
[x]0

)
)
)−1 = U−1 · L−1.

We denote by k1, k2 the lower and upper bounds of SMK([x], x̌).

Theorem 10. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0.
Denote A = |Un| · . . . · |U1| · |Ln| · . . . · |L1| · d(F ′([x]0)), where the matrices U i, Li, i = 1, . . . n
are defined by (3.1) and (3.2) (with L · U = A = m(F ′([x]0))).
We assume that ρ(2 ·A) < 1 and IGA

(
F ′

(
[x]0

))
exists.

Then
a) if [x]0 contains a zero x∗ of f then x∗ ∈ [x]k and limk→∞[x]k = x∗,
b) if [x]0 does not contain any zero then there is k0 such that MSK

(
[x]k0 , x̌k0

) ∩ [x]k0 = ∅.
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

Proof. First we prove a).
Denote by x∗ a zero of f . Suppose x∗ ∈ [x]k. Then

MSK
(
[x]k, x̌k

)− x∗ = x̌k − x∗ − Y · f (
x̌k

)

+ U\ {L\ {(m(F ′([x]0))− F ′ ([x])
) · ([x]k − x̌k

)}}. (3.73)

Using (3.7) for x̌k and x∗ we have:

f
(
x̌k

)
= δf

(
x̌k, x∗

) · (x̌k − x∗
)
. (3.74)

From (3.73) and (3.74) it follows that:

MSK
(
[x]k, x̌k

)− x∗ = x̌k − x∗ − Y · δf (
x̌k, x∗

) · (x̌k − x∗
)

+ U\ {L\ {(m(F ′([x]0))− F ′ ([x])
) · ([x]k − x̌k

)}}
= −Y · (m(F ′([x]0))− δf

(
x̌k, x∗

)) · (x∗ − x̌k
)

+ U\ {L\ {(m(F ′([x]0))− F ′ ([x])
) · ([x]k − x̌k

)}}
= U\ {L\ {(m(F ′([x]0))− F ′ ([x])

) · ([x]k − x̌k
)

− Y · (m(F ′([x]0))− δf
(
x̌k, x∗

)) · (x∗ − x̌k
)}}.

According to (3.8) we have δf
(
x̌k, x∗

) ∈ F ′ ([x]) and therefore

m(F ′([x]0))− δf
(
x̌k, x∗

) ∈ m(F ′([x]0))− F ′
(
[x]0

)
.

From this it follows that

0 ∈ (
m(F ′([x]0))− F ′ ([x])

) · ([x]k − x̌k
)− (

m(F ′([x]0))− δf
(
x̌k, x∗

)) · (x∗ − x̌k
)

and

0 ∈ U\ {L\ {(m(F ′([x]0))− F ′ ([x])) · ([x]k − x̌k)− (
m(F ′([x]0)− δf

(
x̌k, x∗

)) · (x∗ − x̌k
)}}
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which implies

0 ∈ MSK
(
[x]k, x̌k

)− x∗

or

x∗ ∈ MSK
(
[x]k, x̌k

)
.

And since [x]k+1 = [x]k ∩MSK
(
[x]k, x̌k

)
also x∗ ∈ [x]k+1 is true.

By assumption x∗ ∈ [x]0 and therefore by induction x∗ ∈ [x]k for each k. For d([x]k+1) we can
write

d([x]k+1) ≤ d(MSK([x]k, x̌k))

= d(U\ {L\ {(m(F ′([x]k))− δf
(
x̌k, x∗

)) · (x∗ − x̌k
)

− (
m(F ′([x]0))− F ′([x])

) · ([x]k − x̌k
)}})

= d(U\ {L\ {(m(F ′([x]0))− F ′([x])
) · ([x]k − x̌k

)}})
≤ 2 · |U\ {L\ {(m(F ′([x]0))− F ′([x])

) · ([x]k − x̌k
)}}|

≤ 2 · |Un| · . . . · |U1| · |Ln| · . . . |L1| · ∣∣m(F ′([x]0))− F ′([x])
∣∣ · ∣∣[x]k − x̌k

∣∣
≤ 2 ·A · d([x]k).

(3.75)

Hence

d([x]k+1) ≤ (2 ·A)kd([x]0).

Under the assumption ρ(2 · A) < 1 from Lemma 14 we get limk→∞ d([x]k) = 0. Now taking
into account the fact that x∗ ∈ [x]k we obtain limk→∞[x]k = x∗. If one chooses x̌k to be

the center of [x]k in (3.75) we would have
∣∣[x]k − x̌k

∣∣ =
1
2
d([x]k) and therefore the condition

ρ(A) < 1 is sufficient.
Now we prove b).
Assume that for all k ≥ 0 the intersections MSK

(
[x]k, x̌k

)∩ [x]k are not empty. Then it holds
that

[x]0 ⊇ [x]1 ⊇ . . . [x]k ⊇ [x]k+1 . . . ,

from which it follows that the sequence is converging to an interval vector [z]∗. We now
consider the sequence {x̌k}∞k=0. There exists a convergent subsequence {x̌kn}∞n=0. Suppose
that m∗ = limn→∞ x̌kn . For elements of the sequence {x̌kn}∞n=0 it holds that x̌kn ∈ [x]kn .
From this remark it follows that beside of limn→∞[x]kn = [z]∗ we also have m∗ ∈ [z]∗. Using
the continuity of operations from the equations

MSK
(
[x]k, x̌k

)
= x̌k − Y · f (

x̌k
)

+ U\ {
L\ {(

m(F ′([x]0))− F ′ ([x])
) · ([x]k − x̌k

)}}
,

[x]k+1 = MSK
(
[x]k, x̌k

) ∩ [x]k

we get relations

[s]∗ = m∗ − Y · f(m∗) + U\ {L\ {(m(F ′([x]0))− F ′([x])) · ([z]∗ −m∗)}},
[z]∗ = [s]∗ ∩ [z]∗,

(3.76)
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where [s]∗ = limn→∞MSK
(
[x]kn , x̌kn

)
= MSK ([z]∗,m[z]∗).

From the first equation it follows

d([s]∗) = d(U\ {L\ (
m(F ′([x]0))− F ′ ([x])

) · ([z]∗ −m∗)}})
≤ 2 · |U\ {L\ (

m(F ′([x]0))− F ′ ([x])
) · ([z]∗ −m∗)}}|

≤ 2 · |Un| · . . . · |U1| · |Ln| · . . . · |L1|
× |m(F ′([x]0))− F ′ ([x]) | · |[z]∗ −m∗|

≤ 2 · |Un| · . . . · |U1| · |Ln| · . . . · |L1|
×

∣∣m(F ′([x]0))− F ′([x])
∣∣ · d([z]∗ −m∗)

= 2 ·A · d([z]∗)

(3.77)

and using the second equation of (3.76) this implies

d ([s]∗) ≤ 2 ·A · d([s]∗).

From which we get d([s]∗) ≤ (2 ·A)nd([s]∗) for all n. Then d([s]∗) = 0, since ρ(2 ·A) < 1. And
this implies that [s∗] and [z∗] are point vectors and s∗ = z∗ = m∗. From the first equation of
(3.76) it follows that

m∗ = m∗ − Y · f (m∗) + U\ {L\ {(m(F ′([x]0))− F ′ ([x])) · (m∗ −m∗)}},
0 = Y · f (m∗) .

Since Y is nonsingular it follows that f (m∗) = 0. But it contradicts the fact that f(x) has no
zeros in [x]0.
Hence there is k0 such that MSK

(
[x]k0 , x̌k0

)∩ [x]k0 = ∅. If one chooses x̌k to be the center of

[x]k in (3.77) we would have |[z]∗ −m∗| = 1
2
d([z]∗ −m∗) and therefore the condition ρ(A) < 1

is sufficient.

The condition ρ(2 ·A1) < 1, where A1 = |I−(m(F ′([x]0)))−1 ·F ′([x]0)|, in Theorems 6 and 7 is
not stronger than the condition ρ(2·A2) < 1, where A2 = |Un|·. . .·|U1|·|Ln|·. . .·|L1|·d(F ′([x]0)),
in Theorems 10 and 11. Indeed

|I − (m(F ′([x]0)))−1 · F ′([x]0)| = |((m(F ′([x]0)))−1 · (m(F ′([x]0))− F ′([x]0))|
≤ |m(F ′([x]0)))−1| · |m(F ′([x]0))− F ′([x]0))|
= |m(F ′([x]0)))−1| · d(F ′([x]0)))

≤ |Un| · . . . · |U1| · |Ln| · . . . · |L1| · d(F ′([x]0))).

From the theorem of Perron and Frobenius (see [41]) it follows that ρ(A1) ≤ ρ(A2). Thus, the
simplified Krawczyk method is applicable everywhere where the simplified modified Krawczyk
method is applicable.
Theorem 10 gives sufficient conditions for convergence and divergence of the simplified modified
Krawczyk method. The next theorem shows that under the same conditions convergence and
divergence are linear.

Theorem 11. Let there be given an interval vector [x]0 ⊂ Rn, a mapping f : [x]0 ⊂ Rn → Rn

and an inclusion function F ′ for the Fréchet derivative f ′ of f over [x]0. Denote A = |Un| ·
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. . . · |U1| · |Ln| · . . . · |L1| ·d(F ′([x]0)), where the matrices U i, Li, i = 1, . . . n are defined by (3.1)
and (3.2). Suppose that ρ(2 ·A) < 1 and IGA(F ′([x]0)) exists. Then

x2 − k1 ≤ O(‖d([x])‖) · e + Y · f (
x2

)
, (3.78)

k2 − x1 ≤ O(‖d([x])‖) · e− Y · f (
x1

)
(3.79)

are valid for Y =
(
m(F ′

(
[x]0

)
)
)−1 = U−1 · L−1.

If [x]k 6= ∅ for all k then

d([x]k+1) = O(‖d([x]k)‖) · e. (3.80)

Moreover, if [x]0 does not contain any zero of f(x) then there is n0 ≥ 0 and at least one index
i ∈ {1, . . . , n} such that

(x2 − k1)i < 0 or (k2 − x1)i < 0

for [x]n0 = [x1, x2].
If one chooses x̌k to be the center of [x]k then the condition ρ(2 · A) < 1 can be replaced by
ρ(A) < 1.

Proof. We again prove two theorems Theorem 9 and Theorem 11 together. For the proof of
Theorem 9 we take [z] = [x] and for the proof of Theorem 11 we take [z] = [x]0.
Denote U \{L \{(m(F ′([z]))− F ′([x])) · ([x]− x̌)}} by [r] = [r1, r2].
Then

k1 = x̌− Y · f(x̌) + r1,

k2 = x̌− Y · f(x̌) + r2
(3.81)

are obvious.
For the right end point x2 of the interval vector [x] using (3.81) we have

x2 − k1 = x2 − x̌ + Y · f(x̌)− r1.

Using (3.7) for x̌ and x2 we have:

f (x̌) = f(x2) + δf
(
x̌, x2

) · (x̌− x2
)
.

Then

x2 − k1 = x2 − x̌ + Y
(
f(x2) + δf

(
x̌, x2

) · (x̌− x2
))− r1

=
(
I − Y · δf (

x̌, x2
)) · (x2 − x̌

)
+ Y · f (

x2
)− r1.

(3.82)

Because of (3.8) and Lemma 6 the matrix δf
(
x̌, x2

)
is nonsingular and(

δf
(
x̌, x2

))−1 ∈ IGA (F ′([x])). Therefore we have

∣∣(I − Y · δf (
x̌, x2

)) · (x2 − x̌
)∣∣ =

∣∣∣
((

δf
(
x̌, x2

))−1 − Y
)
· δf (

x̌, x2
) · (x2 − x̌

)∣∣∣ .

Since
∣∣∣
(
δf

(
x̌, x2

))−1 − Y
∣∣∣ ≤ d (IGA (F ′([z]))) and

∣∣δf (
x̌, x2

)∣∣ ≤
∣∣F ′ ([x]0

)∣∣ we get:

∣∣(I − Y · δf (
x̌, x2

)) (
x2 − x̌

)∣∣ ≤
((

δf
(
x̌, x2

))−1 − Y
)
· δf (

x̌, x2
) · (x2 − x̌)

≤ d (IGA (F ′([z]))) ·
∣∣F ′ ([x]0

)∣∣ · d([x]).
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From Lemma 12 it follows
∣∣F ′ ([x]0

)∣∣ · d([x]) = O(‖d([x])‖) · e.
For Theorem 9 from Lemma 9 it follows

d (IGA (F ′([x]))) = O(‖d([x])‖) · E,

hence
∣∣(I − Y · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ = O
(‖d([x])‖2) · e. (3.83)

For Theorem 11 we have
∣∣(I − Y · δf (

x̌, x2
)) · (x2 − x̌

)∣∣ = O (‖d([x])‖) · e. (3.84)

Now we consider [r]:

|[r]| = |U \{L \{(m(F ′([z]))− F ′([x])) · ([x]− x̌)}}|
=

∣∣Un(. . . (U1(Ln(. . . (L1 (m(F ′([z]))− F ′([x])) · ([x]− x̌)) . . . )
∣∣

≤ |Un| · . . . · |U1| · |Ln| · . . . · |L1| · |(m(F ′([z]))− F ′([x])) · ([x]− x̌)|
≤ |Un| · . . . · |U1| · |Ln| · . . . · |L1| · d(F ′([z])) · d([x])

≤ |[U ]n| · . . . · |[U ]1| · |[L]n| · . . . · |[L]1| · d(F ′([z])) · d([x])
≤ M · d(F ′([z])) · d([x])
≤ ‖d([x])‖ ·M · d(F ′([z])) · e,

where M = |[U ]n| · . . . · |[U ]1| · |[L]n| · . . . · |[L]1|.
For Theorem 9 using the assumption d (F ′([x])) < C · ‖d([x])‖ we get

|[r]| = O
(‖d([x])‖2) · e. (3.85)

For Theorem 11 we have

|[r]| = O (‖d([x])‖) · e. (3.86)

The equation (3.85) together with (3.82) and (3.83) gives us

x2 − k1 ≤ O
(‖d([x])‖2) · e + Y · f (

x2
)

and the equation (3.86) together with (3.82) and (3.84) gives us

x2 − k1 ≤ O (‖d([x])‖) · e + Y · f (
x2

)

So we have proved (3.70) and (3.78).
In the same manner we can get (3.71) and (3.79).
From (3.70) and (3.71) we can get (3.72), from (3.78) and (3.79) we can get (3.80). The proof
is similar to the proof in Theorem 5.
To prove the last part of Theorem 11 assume that there is no zero of f in [x], i.e. f(x) 6= 0, for
all x ∈ [x]0. All matrices (m(F ′ ([z])))−1 are nonsingular. The function f is continuous by the
assumption (see page 3). From Lemma 13 we have that there exist c > 0 and ε(c) > 0 such
that:

(
(m(F ′([z])))−1 · f(x)

)
i(x)

> c for all x ∈ [x]0 (3.87)
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and

sign

((
(m(F ′([z])))−1 · f(x1)

)
i(x1)

)
= sign

((
(m(F ′([z])))−1 · f(x2)

)
i(x1)

)
, for all x1, x2 ∈ [x],

(3.88)

once |x1 − x2| < ε(c) · e.
We now estimate d

(
[x]k+1

)
. For Theorem 9 we have:

d
(
[x]k+1

) ≤ d(MK([x]k, x̌k)

= d
(
x̌k − Y · f(x̌k) + U \{L \{(m(F ′([x]k))− F ′([x]k)

) · ([x]k − x̌k
)}})

= d
(
U \{L \{(m(F ′([x]k))− F ′([x]k)

) · ([x]k − x̌k
)}}) .

The fact that 0 ∈ [x]k − x̌k implies 0 ∈ U \{L \{(m(F ′([x]k))− F ′([x]k)
) · ([x]k − x̌k

)}} and
therefore

d(U \{L \{(m(F ′([x]k))− F ′([x]k)
) · ([x]k − x̌k

)}})
≤ 2 · |U \{L \{(m(F ′([x]k))− F ′([x]k)

) · ([x]k − x̌k
)}}|.

So we have

d
(
[x]k+1

) ≤ 2 · ∣∣U \{L \{(m(F ′([x]k))− F ′([x]k)
) · ([x]k − x̌k

)}}∣∣
= 2 ·

∣∣Un · . . . · (U1 · (Ln · . . . · (L1 · (m(F ′([x]k))− F ′([x]k)
) · ([x]k − x̌k

)∣∣
≤ 2 · |Un| · . . . · |U1| · |Ln| · . . . · |L1| ·

∣∣m(F ′([x]k))− F ′([x]k)
∣∣ ·

∣∣[x]k − x̌k
∣∣

≤ 2 ·M · ∣∣m(F ′([x]k))− F ′([x]k)
∣∣ · ∣∣[x]k − x̌k

∣∣

Since 0 ∈ [x]k − x̌k and 0 ∈ m(F ′([x]k))− F ′([x]k we have
∣∣[x]k − x̌k

∣∣ ≤ d
(
[x]k − x̌k

)
= d

(
[x]k

)
, (3.89)∣∣m(F ′([x]k))− F ′([x]k)

∣∣ ≤ d
(
m(F ′([x]k))− F ′([x]k)

)
= d

(
F ′([x]k)

)
.

Therefore d
(
[x]k+1

) ≤ 2M · d(F ′([x]k)) · d([x]k) ≤ 2 · A · d (
[x]k

)
and d

(
[x]k+1

) ≤ (2 · A)k+1 ·
d

(
[x]0

)
.

For Theorem 11 we have:

d
(
[x]k+1

) ≤ d(MK([x]k, x̌k)

= d
(
x̌k − Y · f(x̌k) + U \{L \{(m(F ′([x]0))− F ′([x]0)

) · ([x]k − x̌k
)}})

= d
(
U \{L \{(m(F ′([x]0))− F ′([x]0)

) · ([x]k − x̌k
)}}) .

The fact that 0 ∈ [x]k − x̌k implies 0 ∈ U \{L \{(m(F ′([x]0))− F ′([x]0)
) · ([x]k − x̌k

)}} and
therefore

d(U \{L \{(m(F ′([x]0))− F ′([x]0)
) · ([x]k − x̌k

)}})
≤ 2 · |U \{L \{(m(F ′([x]0))− F ′([x]0)

) · ([x]k − x̌k
)}}|.
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So we have

d
(
[x]k+1

) ≤ 2 · ∣∣U \{L \{(m(F ′([x]0))− F ′([x]0)
) · ([x]k − x̌k

)}}∣∣
= 2 ·

∣∣Un · . . . · (U1 · (Ln · . . . · (L1 · (m(F ′([x]0))− F ′([x]0)
) · ([x]k − x̌k

)
. . .

∣∣
≤ 2 · |Un] · . . . · |U1| · |Ln| · . . . · |L1| ·

∣∣m(F ′([x]0))− F ′([x]0)
∣∣ ·

∣∣[x]k − x̌k . . .
∣∣

= 2 ·A · ∣∣[x]k − x̌k
∣∣

≤ 2 ·A · d([x]k).
(3.90)

consequently

d
(
[x]k+1

) ≤ (2 ·A)k+1 · d (
[x]0

)
.

For both Theorem 9 and Theorem 11 we have

d
(
[x]k+1

) ≤ (2 ·A)k+1 · d (
[x]0

)
.

Suppose [x]k 6= ∅ for all k. Then we have ρ(2 ·A) < 1 and therefore from Lemma 14 it follows
limk→∞ d([x]k) = 0. Let the term O(‖d([x])‖2) in (3.70) and (3.71) be bounded by α·‖d([x])‖2,
α ≥ 0. From limk→∞ d([x]k) = 0 it follows that there exists n0 ≥ 0 such that

α · ‖d([x]n0)‖2 < c,

d([x]n0) < ε(c) · e.
Then for Theorem 9 from (3.70), (3.71), (3.66) and (3.67) for at least one index i0 ∈ {1, . . . , n}
either (x2 − k1)i0 < 0 or (k2 − x1)i0 < 0 takes place for [x]n0 = [x1, x2].
The same can be obtained for Theorem 11.
From Lemma 11 it follows that [x]n0+1 = [x]n0 ∩ [K([x]n0 ,m([x]n0) = ∅. This contradicts
[x]k 6= ∅ for all k. Hence there is [x]k0+1 = ∅ or from Lemma 11 either (x2 − k1)i0 < 0 or
(k2 − x1)i0 < 0 takes place for [x]n0 = [x1, x2] and for at least one index i0 ∈ {1, . . . , n}. If

one chooses x̌k to be the center of [x]k instead of (3.89) we would have |[x]k − x̌k| = 1
2
d([x]k)

and therefore the condition ρ(A) < 1 is sufficient.

3.9 Numerical examples

All calculations had been performed on Ultra 10 Workstation (Sun Microsystems).
The time is given in STU (see Appendix A).
As was mentioned in Section 1.2.4 on a computer not all numbers have representations. And
it can happen that the calculated value of L ·U in the modified Krawczyk and in the simplified
modified Krawczyk methods does not equal to m(F ′([x])). In the theory we use the fact that
U\{L\{m(F ′([x]))}} = I. We should preserve this fact. In order to enclose the identity
matrix in the resulting interval we replace a point matrix m(F ′([x])) with the interval matrix
[Z] ⊇ [L] · [U ], where [L] and [U ] are point matrices L and U . It is allowable since the matrix
m(F ′([x])) may be any nonsingular matrix. We also consider x̌ as an interval vector in the
computation of f(x̌), since the exact value should be enclosed, too. In the following examples
the stopping criterion is when the diameter of the interval vector is less than ε = 10−6,
convergence is when the method converges to the solution without empty inersections and
divergence is when at least one component of the intersection [x]k ∩ Operator([x]k) is empty.
We perform the LU factorization using the Gaussian elimination algorithm.
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Example 1.

We consider the two-point boundary value problem

u′′ = φ(u), u(0) = u(1) = 0, x ∈ [0, 1],

φ(u) = u4 + u3 + 1.

Discretizing with finite differences at n equidistant points ti = ih, h =
1

n− 1
, i = 0, . . . , n− 1,

results in the nonlinear system:

ui−1 − 2ui + ui+1 − h2φ(ui) = 0, i = 1, . . . , n− 1,

where u0 = un−1 = 0, ui ≈ u(ti), i = 1, . . . , n− 2.
We consider the left-hand side of this system as a mapping f : [u]n ⊂ Rn → Rn and use all
considered modifications of the Krawczyk method and the Krawczyk method itself to solve

f(x) = 0.

In the numerical example we take n = 150 and [x]0 = [u]n as a starting vector.
For [u] = [−1, 0] we get convergence to the solution plotted in Figure 3.1(a).
For [u] = [−0.12, 0] we get divergence. In Figure 3.1(b) we plotted the midpoints of the
nonempty components of the intersection [x]k ∩Operator([x]k).

[u] Method Steps Time Status
[−1, 0] Krawczyk 4 158.95 convergence

simplified Krawczyk 7 216.46 convergence
modified Krawczyk 4 7.03 convergence
simplified modified Krawczyk 7 13.30 convergence

[−0.12, 0] Krawczyk 1 30.92 divergence
simplified Krawczyk 1 30.92 divergence
modified Krawczyk 1 1.45 divergence
simplified modified Krawczyk 1 1.45 divergence

Table 3.1: Time measurements for Example 1

Example 2.

We now consider the boundary value problem

∆u = α · φ(u), u(∂Ω) = 0, Ω = [0, 1]× [0, 1], x ∈ Ω

We will specify the function φ(u) later.

Discretizing with finite differences at n = N2 equidistant points ti,j = (ih, jh), h =
1

N − 1
,

i, j = 0, . . . , N − 1 results in the nonlinear system:

ui−N + ui−1 − 4ui + ui+1 + ui+N − αh2φ(ui) = 0, i = N + 1, . . . , N2 −N − 2,

where ui+N ·j ≈ u(ti,j).
We consider the right-hand side of this system as a mapping f : [x]0 ⊂ Rn → Rn, where
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[x]0 = [u]n, and use the modified Krawczyk and modified simplified Krawczyk methods to
solve

f(x) = 0.

In the numerical examples we take N = 20
In order to reduce the bandwidth and concentrate all the nonzero elements near the diagonal
we use the symrcm function (MatLab), the symmetric reverse Cuthill-McKee ordering. See
Figure 3.2. Before the reordering matrices L and U from the LU factorization of the matrix
of the nonlinear system have 8019 nonzero elements each. After the reordering they have 5910
nonzero elements each.
First we consider φ(u) = eu, [u] = [−1, 0], hence [x]0 = [−1, 0]n.
For α = 1 we get convergence to the solution plotted in Figure 3.3(a). For α = 45 we get
divergence. In Figure 3.3(b) we plotted the midpoints of the nonempty components of the
intersection [x]k ∩Operator([x]k).

α Method Steps Time Status
1 Krawczyk 3 1728.75 convergence

modified Krawczyk 3 52.42 convergence
simplified modified Krawczyk 4 26.89 convergence

45 Krawczyk 2 1138.76 divergence
modified Krawczyk 2 40.50 divergence
simplified modified Krawczyk 2 20.49 divergence

Table 3.2: Time measurements for Example 2 with φ(u) = α · eu, [u] = [−1, 0]

Now we consider φ(u) = u4 + u3 + 1, α = 1. For [x]0 = [−1, 0]n we get convergence to the
solution plotted in Figure 3.4(a). For [x]0 = [−0.06, 0]n we get divergence. In Figure 3.4(b) we
plotted the midpoints of the nonempty components of the intersection [x]k ∩Operator([x]k).
We do not give time measurements for the simplified Krawczyk method in Example 2. Because
of the overestimation in the computation of F ′([x]0) after the first iteration the simplified

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

(a) Convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

(b) Divergence

Figure 3.1: The two-point boundary value problem



76 Chapter 3. Convergence and Divergence of Interval Newton and Krawczyk Methods

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 1920

(a) Original

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 1920

(b) After permutation

Figure 3.2: The sparsity pattern of the matrix of the nonlinear system
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Figure 3.3: The boundary value problem with φ(u) = eu

Krawczyk operator does not shrink the interval vector any more and the method runs onto
an infinite loop. Both the modified Krawczyk and the simplified modified Krawczyk methods
significantly reduce the number of computations in one iteration. Which results in significantly
less time compares to the normal Krawczyk method (see Table 3.1, Table 3.3 and Table 3.3).
On the other hande both methods need stronger assumptions than by the normal Krawczyk
method. In Example 1 we see that the modified Krawczyk method is preferrable over the
simplified modified Krawczyk method in case of convergence. It is because each iteration of the
modified Krawczyk method for this function is not much expensive compared to the simplified
modified Krawczyk method. There we have a system of 150 equations. In Example 2 the
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simplified modified Krawczyk method is preferrable. There we have a system of 400 equations.
We see that even two iterations of the simplified modified Krawczyk method are cheaper than
one iteration of the modified Krawczyk method. So the choice of the method depends on the
complexity of the system.

[u] Method Steps Time Status
[−1, 0] Krawczyk 3 1984.99 convergence

modified Krawczyk 3 59.92 convergence
simplified modified Krawczyk 6 52.47 convergence

[−0.06, 0] Krawczyk 1 593.23 divergence
modified Krawczyk 1 18.47 divergence
simplified modified Krawczyk 1 18.47 divergence

Table 3.3: Time measurements for Example 2 with φ(u) = u4 + u3 + 1, α = 1
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Figure 3.4: The boundary value problem with φ(u) = u4 + u3 + 1
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Chapter 4

The Parallel Method for Verified
Global Optimization

4.1 Parallel Processing

The main purpose of parallel processing is to perform computations faster than they can be
done with a single processor by using a number of processors concurrently. The pursuit of
this goal has had a tremendous influence on almost all the activities related to computing.
The need for faster solutions and for solving larger-size problems arises in a wide variety of
applications. These include fluid dynamics, weather prediction, modeling and simulation of
large systems, information processing and extraction, image processing, artificial intelligence,
automated manufacturing and global optimization.
Three main factors have contributed to the current strong trend in favor of parallel processing.
First, the hardware cost has been falling steadily; hence it is now possible to build systems
with many processors at a reasonable cost. Second, the very large scale integration circuit
technology has advanced to the point where it is possible to design complex systems requiring
millions of transistors on a single chip. Third, the fastest cycle time of a von Neumann-
type processor seems to be approaching fundamental physical limitations beyond which no
improvement is possible; in addition, as higher performance is squeezed out of a sequential
processor, the associated cost increases dramatically. All these factors have pushed researchers
into exploring parallelism and its potential use in important applications.

Definition 6 (see [35]). A parallel computer is simply a collection of processors, typically
of the same type, interconnected in a certain fashion to allow the coordination of their activities
and the exchange of data.

The processors are assumed to be located within a small distance of each other, and are
primarily used to solve a given problem jointly. In contrast to such systems there are distributed
systems, where a set of possible many different types of processors are distributed over a large
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geographic area, and where the primary goals are to use the available distributed resources,
and to collect information and transmit it over a network connecting the various processors.

4.1.1 Architecture Classifications

Flynn’s Hardware Taxonomy

Several alternative parallel architectures were developed throughout the 1980s and 1990s. A
classification of computer architectures was proposed by Flynn [16] in 1966 and is used to dis-
tinguish between alternative parallel architectures. Flynn proposed the following four classes,
based on the interaction between instruction and data streams of the processor(s):

SISD - Single Instruction stream Single Data stream. Computers in this class execute a
single instruction on a single piece of data before moving on to the execution of the next
instruction on a different piece of data. The traditional von Neumann computer is a
scalar uniprocessor that falls in this category.

SIMD - Single Instruction stream Multiple Data stream. Computers with this architecture
can execute a single instruction simultaneously on multiple data. This type of computa-
tion is possible only if the operations of an algorithm are identical over a set of data and
if the data can be mapped on multiple processors for concurrent execution. Examples of
SIMD systems are Connection Machine CM-2 (up to 65,536 Processing Elements) from
Thinking Machines Corporation, GF11 (up to 566 Processing Elements) from IBM Wat-
son Research Center, MasPar MP-1 and MP-2 (up to 16,384 Processing Elements) from
MasPar Computer Corporation and all vector computers.

MISD - Multiple Instruction stream Single Data stream. Computers with this architecture
execute multiple instructions concurrently on a single piece of data. This form of par-
allelism has not received much attention in practice. It appears in the taxonomy for
completeness.

MIMD - Multiple Instruction stream Multiple Data stream. Computers in this class can exe-
cute multiple instructions concurrently on multiple piece of data. Multiple instructions
are generated by code modules that may execute independently from each other. Each
module may operate either on a subset of the data of the problem or on a copy of all
the problem data, or it may access all the data of the problem, together with the other
modules, in a way that avoids read or write conflicts. Examples of MIMD systems are
Connection Machine CM-5 from Thinking Machines Corporation, NCUBE (up to 8,192
Processing Elements), iWarp, iPSC (up to 1,024 Processing Elements), Paragon from
Intel, SP-2 from IBM, ASCI Red TOPS from Intel (9,536 Processing Elements) and
Cray T3E.

Multiprocessor systems are also characterized by the number of available processors. Small-
scale parallel systems have up to 16 processors, medium-scale systems up to 128, and large-
scale systems up to 1024. Systems with more that 1024 processors are considered to be
massively parallel. Multiprocessor systems are also characterized as coarse-grain or fine-
grain. In coarse-grain systems each processor is very powerful, typically of the kind found in
contemporary workstations. Fine-grain systems typically use simple processing elements. For
example, an Intel iPSC/860 system with 1024 processors is a coarse-grain parallel machine.
The Connection Machine CM-2 with up to 65,536 simple processing elements is a fine-grain,
massively parallel machine.
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Organization of Memory

Beside Flynn’s taxonomy one distinguishes computers by the organization of memory. The
organization of memory is defined by the so-called interconnection network topology.

Definition 7. An interconnection network topology is a mapping function from the set
of processors and memories onto the set of all subsets of processors and memories.

In other words, the topology describes how processors and memories are connected to other
processors and memories.
A fully connected topology, for example, is a mapping in which each processor is connected to all
other processors. Nearly all parallel processors can be distinguished by their interconnection
network topology. While the speed and capacity may vary, the most significant difference
between parallel processors is their interconnection network topology.
Interconnection network topologies belong to one of two important groups:

Distributed memory. It typically combines local memory and processor at each node of
the interconnection network. Message-passing is used to communicate between any two
processors, and there is no global, shared memory. Commercial examples of distributed
memory architectures are all cluster parallel computers: RS/6000 ”ASCI White” powered
by 8,192 copper microprocessor, ASCI Red TOPS from Intel powered by 9,536 Pentium
II Xeon Core Processors, ALiCE from Compaq with 128 Alpha processors.

Shared memory. It typically accomplishes interprocessor coordination
through a global memory shared by all processors. Commercial examples of shared
memory multiprocessors are all SMP parallel computers: IBM RS/6000 SP with up to
16 Power II processors, Compaq AlphaServer ES40 with up to 4 Alpha 21264A Proces-
sors.

In recent years two architectures became most popular: SMP (symmetric multiprocessing)
and cluster computing. They do not belong to a certain class of Flynn’s taxonomy. The
SMP belongs to shared memory topology. With SMP, multiple identical processors share a
single global memory space allowing the processors to cooperatively execute a single copy of
an operating system. SMP systems allow multiple concurrent processes to be executed in
parallel within different processors. Through the system’s shared memory, these processes can
communicate rapidly with each other. SMP with cache processors does not scale well because
it becomes increasingly difficult to keep track of data as the number of processors grows.
Basically, every processor needs to tell every other processor what it is doing. This is relatively
easy when the number of processors is small. However, the interprocessor communications
problem grows quickly as the number of processors increases. Typically the relationship is not
linear.
By Joseph A. Kaplan and Michael L. Nelson at Queen’s University of Belfast a cluster has been
defined to be (see URL: http://www.pcc.qub.ac.uk/tec/courses/intro/ohp/intro-ohp.html)

Definition 8. A cluster is a collection of computers on a network that can function as a single
computing resource through the use of additional system management software.

A cluster computing belongs to distributed memory topology. A unified cluster providing
distributed computing services is achieved through use of specialized system management soft-
ware:

DQS - Distributed Queuing System - batch environment containing different queues based
on architecture and group;
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CODINE - COmputing in DIstributed Networked Environments - optimal utilization of the
compute resources in heterogeneous networked environments;

NQE - Network Queuing Environment - UNIX batch environment consisting of NQS and
NLB;

LSF - Load Sharing Facility - distributes the workload around one or more large heterogeneous
clusters of workstations.

4.1.2 Measures of Performance

Definition 9 (Speedup). Speedup S(p) is the ratio of the solution time Tser for a problem
with the fastest known serial code executed on a single processor, to the solution time Tpar(p)
with the parallel algorithm executed on multiple processors p.
The sequential algorithm is executed on one of the processors of the parallel system.

S(p) =
Tser

Tpar(p)
.

Definition 10 (Efficiency). Efficiency E(p) is the ratio of speedup S(p) to the number of
processors p.

E(p) =
S(p)

p
.

Efficiency provides a way to measure the performance of an algorithm independently from the
power of processors on the particular computer. Linear speedup is observed when a parallel
algorithm on p processors runs p times faster than on a single processor. Linear speedup
corresponds to efficiency of 1. Sublinear speedup, or efficiency less than 1, is achieved
when the improvement in performance is less than p. Sublinear speedup is common due to
the presence of sequential segments of code, delays for processor synchronization, overhead in
spawning independent tasks. Superlinear speedup, with efficiency exceeding 1, is unusual.
It indicates that the parallel algorithm follows a different, more efficient solution path than
the sequential algorithm. It is often possible in such situations to improve the performance of
the sequential algorithm based on insights gained from the parallel algorithm.

4.2 Existing Parallel Approaches

The considered methods for verified global optimization belong to the branch and bound class.
By the branch and bound method (see Chapter 2), the given initial problem will be successively
subdivided into subproblems. Some of these subproblems need not be considered further,
depending on the criterion of the bounding strategy. By the parallelization of the branch
and bound method the independent subproblems will be distributed between the available
processors and will be handled there. In order to achieve an efficient parallel method one
should be concerned with the following issues:

1. All processors should always be busy handling the subproblems;

2. The total cost of handling all the subproblems should not be greater than the cost in the
serial method;
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3. The additional cost (for instance for the communication and synchronization) should be
relatively small.

Issue 2 means more precisely that all processors should not be just busy, but be doing useful
work. If subproblems, which have been discarded in the serial method, are considered, then the
load of processors become high and the efficiency of the parallel method is not optimal. Note
that such situations can really arise, because a parallel method will process the subproblems in
a different order than the serial method. So in a parallel method for verified global optimization
boxes [x] with inf(F ([x])) > f∗ may be handled, although they would not be handled in the
serial method, since they are stored behind the boxes with better upper bounds and for them
inf(F ([x])) > f̃ is valid.
The parallelization of the branch and bound method on a MIMD computer with shared memory
is relatively easy. All the subproblems and the criterion for the bounding-strategy are stored
in the shared memory. Every processor takes a subproblem and the criterion in each step,
handles the subproblem, and puts a new subproblem and a probably updated criterion to the
shared memory and then starts over again. The method with shared memory runs almost in
the same way as the serial method. But the communication between processors and the shared
memory could be expensive. And also memory access conflicts could arise, which is a general
problem for shared memory architecture.
Here we shall investigate the parallelization on a MIMD computer with distributed memory.
In this case it is difficult to fulfill all the issues 1.-3. above simultaneously. For issue 2 it is
important that the current best bounding criterion (in case of the global interval optimization
this is the smallest value of f̃ on all processors) is sent to every processor as fast as possible.
For this we need communications. Whereas in many problems from linear algebra we can
estimate the communication cost of the method a priori, this is much more difficult in the
branch and bound methods. Therefore, a static load balancing is not practicable. Instead, a
dynamic load balancing is required. One must try to distribute the remaining subproblems
between processors, in order to keep all processors equally loaded or at least keep them all
busy. In addition one should try to fulfill all three issues to get an efficient parallel method.
The dynamical load balancing between the processors can be done with respect to several
different criteria (see [15]). One is with respect to the quantity, i.e. to the number of the
subproblems, another is with respect to the quality. The quality of a subproblem determines
how soon the subproblem should be handled. ”Better” subproblems are those for which we
expect that handling those will allow us to discard many of the remaining subproblems. In
global optimization, ”better” subproblems are those which give a smaller upper bound for f∗.
When parallelizing the branch and bound method there are two possibilities for managing
subproblems. The first is to store subproblems on one central processor. The other is to
distribute them between processors. In our context of verified global optimization this means
either to store boxes in a list on one processor or to store them in lists on every processor. The
first case has a disadvantage: the maximal length of a list is limited by the amount of memory
of one processor, whereas in the second case the memories of all processors can be used.
In this section we present some parallel approaches for methods for verified global optimization
considered in the literature. In [14], where the parallelization of different methods for verified
global optimization is investigated, one can find a very simple parallelization where boxes
are stored in a central list and are handled by all processors. Similar parallelizations of this
master-slave principle are in [21] and [8]. In [15] Eriksson manages processors in a ring where
each processor has its own list. All these parallelizations, with exception of the approach of
Moore, Hansen and Leclerc (see [40]), use the same serial method, where the box is chosen in
accordance to the best-first-strategy and the bisection strategy A for the box multisection (see
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pages 17 and 19). As an accelerating device along with the midpoint test, the monotonicity test
is used. In [40] the parallelization is derived from the method that uses the oldest-first-strategy.
In the following, p will always denote the number of processors.

4.2.1 The Approach of Dixon and Jha (1993)

Characterization
list management best-first
multisection parameter l 1
subdivision strategy A
accelerating devices monotonicity test

interval Newton method
The parallelization in [14] takes place on a Transputer Net with 13 T800 Transputers. They
are arranged in a tree where each node has three children. The transputer in the root of the
tree manages the list of boxes. If there are more than p boxes in the list then each processor
handles the box. Otherwise the next box of the list is subdivided orthogonally to one direction
into p parts which are distributed between processors. This method was tested on five test
functions. The speedup was disappointing. Using 13 processors the speedup was between 2.83
and 8.75. In the majority of test functions it was less than 4.

4.2.2 The Approach of Henriksen and Madsen (1992)

Characterization
list management depth-first
multisection parameter l 1
subdivision strategy A
accelerating devices monotonicity test

interval Newton method
In the parallel methods of Henriksen and Madsen in [21] the interval Newton method, as in
Section 4.2.1, is used as an accelerating device. The parallel methods were implemented in a
net of T800 Transputers. For parallelization, a master-slave principle was used.
The master manages a central list L of boxes and the upper bound f̃ . It sends boxes from the
list to slaves, who in turn send back the result to the master. A result is a pair consisting of a
box and a lower bound, and the actual value for f̃ . The master sends the best (smaller) f̃ to
the rest of the processors (see Figure 4.2). The starting box is subdivided into p− 1 parts at
the beginning.
The program was tested on 1, 4, 8, 16 and 32 processors. When passing from 16 to 32 processors
in most cases the speedup increases only a little or even decreases much. The decrease was
observed even earlier for the majority of test functions. One of the main reasons of the decrease
of speedup is the overhead for communication.
To reduce communication, in [21] the depth-first-strategy was used instead of the best-first-
strategy. This has the advantage that the slaves need not to get a box for handling in each
iteration. Instead, after bisection, they keep one box for further handling and send only the
second box back to the master (if not discarded). The slave must request a box from the master
only if both boxes are discarded of fulfill the stopping criterion. In [21] the upper bound f̃
was initialized to the global minimum f∗. So depth-first becomes similar to best-first (no box
is handled unnecessarily; even the set of boxes handled is minimal). Therefore it was assumed
that f∗ is known in advance which is not the case in general. Initializing f̃ to f∗ one achieves
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that for all selection strategies the same boxes are handled, although in different order.
The speedup for this depth-first-method was almost always better than with the best-first-
method (also initialized with f̃ = f∗), sometime even significantly. But even using the depth-
first-strategy, the speedup does not increase any more or increases only little bit for larger
p. For some test problems the speedup for 32 processors was below 16. For the others the
speedup on 32 processors was between 19 and 28.
To summarize, [21] showed that using the depth-first-strategy one can achieve a better speedup.
But one has to know a good upper bound f̃ in advance. The serial method with the depth-
first-strategy otherwise is significantly less efficient than with the best-first-strategy. If one
chooses the best-first-strategy to avoid these problems then one should choose also another
communication model.
The approach from [21] that was described here thus has the following disadvantages:

1. the efficiency decreases with the number of processors, the master can become a bottle-
neck;

2. the maximal length of the list of boxes is limited by the amount of memory on the master;

3. the depth-first-method, under the realistic assumption that one cannot initialize f̃ by f∗,
is usually less efficient than the best-first-method. In order to get an initial value f̃ close
to f∗, [8] proposed to perform some local nonverified minimization before executing the
method.

P3 P4 P5P2P1

P0 Master

Slaves
Figure 4.2: The master-slave model: The master manages the central sorted list and the upper
bound f̃ . The boxes are sent to the slaves for handling, and the results are received back.
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4.2.3 The Approach of Eriksson (1991)

Characterization
list management best-first
multisection parameter l 1
subdivision strategy A
accelerating devices monotonocity test

nonconvexity text
interval Krawczyk method

The parallelization of Eriksson in [15] is based on a serial method described also in [15] which
uses the Krawczyk method as an accelerating device. In the method there is no list for potential
solution boxes. The iteration is terminated as soon as all the boxes of the sorted list have
diameter less than ε (ε = 0.1).
The method, which was implemented on a iPSC/2 Hypercube, arranges all processors in a
pool. The processors are logically located in a ring. There is an orientation in the ring, so that
there is a next one for every processor. On every processor there are two processes running: a
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Figure 4.3: Communication structure by Eriksson
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worker and a scheduler. The worker is responsible for handling boxes and for the distribution of
the upper bound f̃ . The scheduler is responsible for load balancing of boxes left to be handled.
On each processor the scheduler manages its own list of boxes. When the worker has found a
better upper bound f̃ , it sends this value to all processors immediately. This becomes possible
by using an asynchronous receive-command available on the iPSC/2 that indicates readiness
of another worker. A signal sent to a worker is immediately received and its readiness is reset.
A scheduler is responsible for the load balancing of the boxes. Several approaches were tested.
Balancing with respect to the quantity of boxes was implemented using the receive-initiated-
scheduling. When the worker on a processor has handled a box and the list of the scheduler is
empty, the scheduler sends a request-message to the next processor in the ring. If this processor
has no boxes to give, it retransmits the request further. The first scheduler, whose list is not
empty, sends the box to the scheduler of the process which initiated the request. The box will
not travel in the ring, but is sent to the corresponding processor directly.
Balancing with respect to the quality of boxes was implemented as sender-initiated-scheduling.
In this way one tries to achieve that boxes with small lower bounds are handled as soon as
possible. More precisely, one tries to handle the p bestmost boxes analogously to the serial
method. Since we have local lists of boxes, it is difficult to guarantee that really the p bestmost
boxes are handled. The following scheme was developed in [15]: If the number of boxes on
a certain processor is greater than the given limit (it was set to 5), then the processor sends
its first box to a randomly selected processor. One modification of this approach is to use a
dynamic limit instead of a static one. If after the insertion the new box is in the head of the list
(lists are sorted), then the limit is decremented, otherwise it is incremented. In this manner
good boxes are sent early. On the other hand the processors with least promising boxes send
boxes only rarely, since their limit is incremented.
Numerical results presented in [15] show that a method which uses receive-initiated-scheduling
combined with dynamic send-initiated-scheduling is efficient. Through the usage of the sender-
initiated-scheduling the total number of boxes handled for a given problem is reduced. The
speedup for the three considered problems were 9.71, 19.58 and 11.97 on 16 processors and
15.04, 28.26 and 30.88 on 32 processors, respectively. So superlinear speedup was achieved for
one problem (on 16 processors). The reason of superlinear speedup was not explained.

4.2.4 The Approach of Moore, Hansen and Leclerc (1992)

Characterization
list management oldest-first
multisection parameter l 1
subdivision strategy A
accelerating devices midpoint test

monotonicity test
nonconvexity test
interval Newton method

As opposed to the methods considered so far the parallelization of Moore, Hansen and Leclerc
in [40] is based on the serial method that use the oldest-first-strategy for box selection. As
it was shown in Section 2.1.1 this strategy handles some boxes unnecessarily. To accelerate
the method along with the midpoint test (this is simply an evaluation of the range of the
function at a midpoint of the box in order to get a better upper bound of the minimum) and
the monotonicity test also the nonconvexity test and the interval Newton method were used.
The parallel method was implemented on a workstation cluster of 250 Sparc-Stations SLC.
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Figure 4.4: Communication structure in the parallelization by Moore, Hansen and Leclerc

Like in the approach of Eriksson every processor manages its own list. The best upper bound
is sent through the broadcast command to all processors. If processor Pi has no more boxes to
handle, then it sends a request to a randomly selected processor Pj . If processor Pj has boxes
in the list, then it sends half of its boxes (but no more than a limit set a priori) to the processor
which initiated the request. Otherwise Pi sends a request to P(j+1) mod p, P(j+2) mod p and
so on (see Figure 4.4).
Running this parallel method on a parameterized problem MHL (see [5]) superlinear speedup
was achieved. A maximum speedup of 170 on 32 processors was achieved.

4.2.5 The Approach of Berner (1995)

Characterization
list management best-first
multisection parameter l 2
subdivision strategy C
accelerating devices monotonicity test

nonconvexity test
interval Newton method

Berner’s approach described in [5] was implemented on a CM-5, a MIMD computer with 32
processors. The parallel method is based on the serial method that uses the monotonicity
test, the nonconvexity test and the interval Newton method as accelerating devices. As a box
selection strategy the best-first-strategy is chosen. In this approach there is one centralized
mediator and workers (see 4.5). Each worker manages its own list of boxes whose length is
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Figure 4.5: Communication structure by the parallelization by Berner

controlled by the centralized mediator. The centralized mediator waits for requests of idle pro-
cessors to send them new boxes. Moreover, it keeps a limit max, that is changed dynamically.
This limit is used to make sure that the centralized mediator does not run out of boxes, but
also that not too many boxes are stored in its list. Processors which keep more than max
boxes in their lists send some of them to the centralized mediator (see Figure 4.5).
The boxes to be sent to the centralized mediator are selected neither randomly nor from the tail.
Every second box (at most max-send boxes are sent) is selected from the list. Each processor
sends the best upper bound to all workers and the centralized mediator. An advantage of this
parallel approach compared to the master-slave model used in Henriksen and Madsen is that
there is less work for the centralized mediator than for the master. So it will not become a
bottleneck if the number of processors used is not too large. Moreover, the whole memory
including that of the workers is used. Compared to the approach of Eriksson and the one of
Moore, Hansen and Leclerc, there is no need to request several processors to get boxes, if a
processor becomes idle. Instead, it is the centralized mediator that directly responds to each
request.
The method was run on 4, 8, 16 and 32 processors. For some test problems slight superlinear
speedup was achieved.
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4.2.6 The Approach of Wiethoff (1997)

Characterization
list management best-first
multisection parameter l 2
subdivision strategy C
accelerating devices Monotonicity Test

Nonconvexity Test
Interval Newton Method

In [55] Wiethoff presented his distributed parallel method. It was implemented on IBM RS /
6000 SP. 96 processors were used. For the list management he used the best-first-strategy. His
parallel method was based on a serial method with accelerating devices like the monotonicity
test, the nonconvexity test and the interval Newton method. Boxes were subdivided into 4
parts when needed. And for this he applied strategy C. Processors were located in a pool
logically arranged in a ring. All processors had their own lists of boxes. Each processor
communicates only with its 4 neighbors (two nearest and two next to nearest). On every
processor two processes run. One for load balancing and exchange of the best upper bound.
The other is for handling local boxes. The newly found better upper bound was sent only to
neighbors and from there propagated further. This method was run on 4, 8, 16, 32, 64, 96
processors. 18 problems were tested. For a few problems superlinear speedup was achieved.
On 8 processors for 2 problems, on 16 processors for 3 problems, on 32 and more processors
only for one problem. The method has no bottleneck at all. But the larger the number of
processor the lower the efficiency. Information is distributed very slowly.

4.3 A New Parallel Approach: a Challenge Leadership
Model

Characterization
list management best-first
multisection parameter l 2
subdivision strategy C
accelerating devices Monotonicity Test

Nonconvexity Test
Interval Newton Method

In this section we present a new parallel method for verified global optimization. In the
method we assume that the global minimum is not known a priori so that a sequential update
of the upper bound for the global minimum is required. The method is based on the serial
algorithm 2.8 described in Section 2.5.5.

4.3.1 General Conditions for the Parallelization

For the development of the verified global optimization method a cluster of 8 Ultra 10 work-
stations from Sun Microsystems was available. On individual computers software supporting
the MPI interface with asynchronous communication was installed. In order to accelerate the
data exchange we have introduced user-defined structures within MPI. The method has no
constraints on the number of processors. But for comparison reasons we test the parallel pro-
gram essentially for numbers of processors which are powers of 2, i.e. p = 1, 4, 8, 16. In the
case of p = 16 we run 16 processes on 8 computers, two processes on each computer. For
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performance evaluation we consider only the user time (the time of the program execution
without the time spent for starting a process and its finalization). The source code of this
parallel program can be compiled without any changes on any system supporting the MPI
interface and having C-XSC installed. We also take into account that messages from different
processors may arrive in a different order than initiated. When a message from a processor
claiming to be a leader arrives we store it in a queue. When the leadership changes we search
the queue of stored messages for messages with a leader set to the actual leader and retrieve
them in the order they were inserted. According to the MPI standard messages from the same
processor arrive in the same order. Therefore messages from the current leader arrive in the
right order and the information is always consistent.

4.3.2 Description of the Communication Model

In the design of the challenge leadership model we tried to use the advantage of the best-first-
strategy and advantages of the centralized management. We also tried to reduce the number
of interprocess communications.
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Figure 4.6: Communication structure by the challenge leadership model

In this model there is always one leader and workers (see Figure 4.6). The leader is determined
as the processor holding the smallest best upper bound. The leader has boxes for handling.
Therefore idle processors send requests to the leader. Every idle processor sends only one
request, it sends it to the leader. This reduces the number of possible retransmissions, since
the leader has at least one box which will be subdivided if there are incoming requests.
When a processor obtains a better best upper bound, it sends a ”challenge” to the leader, but
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not to the other processors. The leader determines the smallest of the best upper bounds, if
it receives several of them, and decides who is the next leader. It sends the new best upper
bound together with the information on change of the leadership in one message to all other
processors. If the leader has the last box and it fulfills the termination criterion, it inserts it
into the solution list and chooses any non-idle processor as the next leader. In the case, that
there is no non-idle processors left, it sends a termination signal to all the processors and the
method ends.
Opposite to Berner’s approach there is no need to transfer boxes between processors in advance.
When a processor needs a box it gets one.
One advantage of this approach is that when an idle processor requests a box it gets it from
the list of a processor with the smallest best upper bound. To reduce the number of idle
processors waiting for a box from the leader, we switch the leader from handling boxes to
serving requests if the number of requests waiting to be served exceeds the static constant
limit. For sending new best upper bounds (by the leader and other processors), for sending
boxes we use asynchronous communication (see Section 4.3.3) to increase the performance of
the sender.
The new method is based on the serial method described in section 2.5.5. If the list length
is large enough then performing the cut-off tests becomes a bit expensive if it is done often,
since we have to run through the whole list. By some approaches (for instance, centralized
mediator) all processors send their updated upper bounds to the rest of processors. Every
processor receives many upper bounds and performs the cut-off test for each of them. In the
new method the centralized distribution of the best upper bound comes to help. It reduces the
number of cut-off-tests eliminating the intermediate unnecessary cut-off-tests. In the following
sections the method based on the challenge leadership approach is presented as a pseudo code
and explained.

4.3.3 Used Communication Routines

In order to present the parallel method as a pseudo code we first introduce notations for the
communication routines used in the method. First we list the passing parameters that appear
in the routines:

i: is the number of the processor to which the message is sent or from which the message is
received. ? in a receive routine means that the message to be received can be from any
source.

tag: In a send routine the message with tag tag is sent. In the receive routine only messages
with that tag is received. ? in a receive routine means that a message with any tag is
received.

variable In the send routine it is the storage where the data to be sent is stored. In the
receive routine it is the storage where the new data will be stored. The type of variable
determines the amount of storage needed.

Now we can describe the communication routines:

receive-block (i, tag, variable)
Blocking receive, the processor waits until the matching message arrives.

send-async (i, tag, variable)
Nonblocking send, the processor sends the message and immediately continues his work
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not waiting for the receiver to receive the message. In this routine one should be careful
when rewriting variable. One must check if the message has been received before.

send-block (i, tag, variable)
Blocking send, the processor sends the message and waits until the receiver acknowledges
the reception. In this routine one can safely rewrite variable after the return from the
routine.

last-message-sent (i, tag)
Checks if the last message sent to processor i with tag tag has been received. ? as
the first argument means that the processor checks if all messages with tag tag sent to
different processors have been received.

message-wait (i, tag)
Checks if there is a pending message from processor i with tag tag. ? as a first argument
means that messages from all processors are taken into account. ? as a second argument
means that messages with any tag are considered.

A send-async call is an asynchronous communications. An asynchronous send-async call
initiates the send operation, but does not complete it. The send-block call will return before
the message was copied out of the send buffer. The seperate check is needed to verify that
the data has been copied out of the send buffer. A blocking send-async call initiates the
send operation and waits until the operation completes. The operation completes when the
corresponding receive is initiated.
In the communication routines the following tags are used:

tag-box the message contains data of type MPI BOX. The message contains only one element,
since there is only one box sent per request.

tag-best the message contains data of type MPI BEST. The message contains exactly one
element. The element contains the new value of f̃ from the leader and, signalized by a
flag, the rank of a new leader.

tag-empty the message contains data of type MPI EMPTY. This message can be sent only
by the leader indicating that he worked out his boxes and appoints a new leader. It also
contains status data showing which processors requested boxes.

tag-get the message contains data of type MPI GET. The message contains exactly one el-
ement. But this one element contains all requests not served by the processor which is
the originator of this message.

tag-solution the message contains data of type MPI BOX. The message can contain more
than one element, it can also contain no elements. These messages are used in the end
phase to collect solutions from the processors.

4.3.4 A New Parallel Method

In this subsection we describe the implementation details including all routines of our proposed
parallel method. To simplify the implementation of the method we subdivided the whole
algorithm into many small functions. The overhead due to calling all these functions is close
to nothing.
The new parallel method for verified global optimization is given in Algorithm 4.1.
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Algorithm 4.1 A New Parallel Method for Verified Global Optimization
Input: the initial box [x]0, inclusion functions F , F ′ and F ′′, the number of processors p;
Output: an enclosure for the global minimum f∗ and the list L̃ of boxes which contain all

global minimizers;

MPI Comm rank(MPI COMM WORLD, &my rank); {an MPI function which returns the
rank of the processor}
[x] = getStartBox([x]0, p, my rank);
(leader, f̃) = distributeUpper(my rank, [x]);
L = {([x], inf(F ([x])))};
L̃ = ∅;
repeat

repeat
take the first element ([x], inf(F ([x])), t) from L;
beforeHandle();
handleBox(L, L̃, f̃ , ([x], inf(F ([x])), t));
afterHandle();
if f̃ has changed since the last cut-off-test then

L = cut-off(L, f̃);
end if

until L = ∅
until inWait() = true
L̃ = cut-off(L̃, f̃);
L̃ = collectSolution();
if L̃ 6= ∅ then

take the first element ([x], inf(F ([x]))) from L̃;
set f∗ = [inf(F ([x])), f̃ ];
return f∗ and L̃;

end if

It takes the initial box [x]0, inclusion functions F , F ′ and F ′′ for the given function f , its
gradient and its Hessian respectively, and the number of processors as an input. As a result
it returns an enclosure for the global minimum f∗ and the list L̃ of boxes which contain all
global minimizers.
Before processors start working they divide the initial box into p parts through the call to
getStartBox (see Algorithm 4.2).

Algorithm 4.2 getStartBox
Input: the initial box [x]0, p - the number of processors, my rank - the rank of this processor;
Output: the subbox [x] that corresponds to the processor my rank;

compute the factorization p = r · 2l, where r is odd;
determine l + 1 directions for subdivision; {we use strategy C}
subdivide the box [x]0 into p parts;
return my rank-th box;

In this function, first, the factorization p = r · 2l, where r is odd, is computed. Using strategy
C we determine the order in which edges should be subdivided. The first edge we subdivide
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into r parts. For the next l edges (if l + 1 > n, n is the dimension, we select edges in cycle)
we simply double the number of parts. Depending on the rank of the processor the function
returns the corresponding part. In this manner, we obtain individual boxes for which the ratio
of the lenghts in each direction remains similar to theat of the original box. After the box
is subdivided each processor computes the range of the given function over its subbox. It
initializes the upper bound for the minimum to the upper bound of the range. After that we
call the function distributeUpper (see Algorithm 4.3) to determine the leader and distribute the
verified upper bound for the global minimum. In the function the rank r and the local best
upper bound f̃ is stored into local, which is of the data type MPI DOUBLE INT, predefined
in MPI (see [36]). Then using the collective communication MPI Allreduce with the option
MPI MINLOC we distribute the rank of the processor holding the smallest value for the
upper bound and the value itself. If there are several processors, then the processor with the
smallest rank is chosen. The leader variable is set to this rank and f̃ to the global best upper
bound. After the leader is determined and the global upper bound is distributed we initialize
the local working list L to ([x], inf(F ([x]))) and the solution list L̃ to the empty list. Here [x]
corresponds to this processor’s box.

Algorithm 4.3 distributeUpper
Input: the rank of the processor my rank, the box [x];
Output: the rank of the leader processor leader, the best upper bound f̃ ;

local.rank = my rank;
local.f = Sup(F ([x]));
Allreduce(local, global, MPI MINLOC); {this is the call to MPI function MPI Allreduce}
leader = global.rank;
f̃ = global.f ;
return leader, f̃ ;

Now all the initialization is done and we turn to the calculation. We take the first element from
L. Through the call to the function beforeHandle (see Algorithm 4.4) we check for incoming
requests for boxes or the change of the leader. If there are incoming requests it is efficient
to serve these request in order to keep other processors doing a useful job. Therefore we
serve them first. In the function beforeHandle we first check if we have processors requesting
for boxes. This information is stored in the local status of the processors. If there are such
processors we send boxes from the working list, as long as there are boxes. Then we receive
pending messages in the same order in which they came. The order of arrival is important
for information consistency. If there is a message with the tab-best tag we call the function
serveBest (see Algorithm 4.5). There are two possible actions. First, this processor is the leader
and the incoming message is the challenge. Then if the upper bound stored in the message
is smaller than the current upper bound we check if there is already a pretender and if so we
choose from the challenger and the pretender the one with the smallest upper bound, else we
set the challenger as a pretender. Second, this processor is not the leader. Then the message
is either an update of the upper bound or the appointment of a new leader. In these cases we
simply update the local information: the actual value of the upper bound and the rank of the
leader.
If there is a message with tab-empty tag we call the function serveEmpty (see algorithm 4.6).
There we set new values for leader and upper bound. We also update the local status of
other processors calling updateStatus (see Algorithm 4.7). In the local status of the processor
we store requests from processors. We also indicate there which processor is idle and has
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Algorithm 4.4 beforeHandle
Input: no input;
Output: no output;

if have a pending request then
while L 6= ∅ and have pending requests do

take element req from the request queue; {an element req of the request queue has a
field proc, the rank of the processor initiated this request}
take the element box = ([x], lbf, t) from L;
send-async(req.proc, tag-box, box);

end while
end if
while message-wait(?, ?) do

if message-wait(?, tag-best) then
serveBest(r); {r is the rank of a processor whose message is received}

end if
if message-wait(?, tag-empty) then

serveEmpty(r); {r is the rank of a processor whose message is received}
end if
if message-wait(?, tag-get) then

serveGet(r); {r is the rank of a processor whose message is received}
end if

end while
leaderUpdate(leader);
if best upper bound has changes since the last cut-off test then

L = cut-off(L, f̃);
end if

Algorithm 4.5 serveBest
Input: the rank r of the processor whose message is pending;
Output: no output;

receive-block(r, tag-best, new best);
if new best.status = status-update then

f̃ = new best.f ;
else if new best.status = status-new then

f̃ = new best.f ;
leader = new best.leader;

else if my rank = leader then
if f̃ > new best.f then

if there is a pretender then
choose from the pretender and the challenger the one who has smallest upper value;

else
set the challenger as a pretender;

end if
end if

end if
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Algorithm 4.6 serveEmpty
Input: the rank r of the processor whose message is pending;
Output: no output;

receive-block(r, tag-empty, empty −message);
leader = empty −message.leader;
f̃ = empty −message.f ;
updateStatus(empty −message.status);

requested a box, but not from this processor. This happens when the processor already sent
a message with tag tag-get and now either was appointed as a leader and changes leadership
or retransmits someone’s request. Status-empty in most cases prevents an idle processor to be
appointed as a leader.

Algorithm 4.7 updateStatus
Input: array of p elements latest status indicating statuses of processors;
Output: no output;

for i = 0 to p− 1 do
if latest status[i] = status-get then

procStatus[i] = status-get;
insert the new element i into the request queue;

else if latest status[i] = status empty and procStatus[i] = status-full then
procStatus[i] = status-empty;

end if
end for

A message with tag tab-empty means that the leader has no more boxes to handle and sets
the other non-idle processor as a leader. Such message also encapsulates the requests of boxes
that the leader has received.
If there is a message with the tab-get tag we call the function serveGet (see Algorithm 4.8).
In serveGet we merely receive the message and update the local status of processors calling
updateStatus. After all incoming messages are served we call the function leaderUpdate (see
Algorithm 4.9). Here if the processor is the leader and there is a pretender then the pretender
is set as a leader and a message is sent to all processors with the tag-best tag and with the
flag set to new. If the processor is not a leader then the challenge message is sent to the leader.
After all messages are served we check if the best upper bound is changed either locally or
on another processor. If it is changed then we perform the cut-off test to discard unnecessary
boxes.

Algorithm 4.8 serveGet
Input: the rank r of the processor whose message is pending;
Output: no output;

receive-block(r, tag-get, get message);
updateStatus(get message.status);

Now we can go further. We call the function handleBox for handling the box. For the details
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of handling see Algorithm 2.9 in Section 2.5.5.

Algorithm 4.9 leaderUpdate
Input: the rank of the leader l;
Output: no output;

if my − rank = leader then
if last-message-sent(?, tag-best) then

if l 6= my − rank then
best−message.status = status-new;

else
best−message.status = status-update;

end if
best−message.leader = l;
best−message.f = f̃ ;
for i = 0 to p− 1 do

if i 6= my − rank then
send-async(i, tag-best, best−message);

end if
end for

end if
else if I have better upper bound then

if last-message-sent(leader, tag-best) then
send-async(leader, tag-best, challenge);

end if
end if

After the box handling we receive incoming messages through the call to the function after-
Handle (see Algorithm 4.10). In this function we only receive incoming messages through the

Algorithm 4.10 afterHandle
Input: no input;
Output: no output;

while message-wait(?, ?) do
if message-wait(?, tag-best) then

serveBest(r); {r is the rank of a processor whose message is received}
end if
if message-wait(?, tag-empty) then

serveEmpty(r); {r is the rank of a processor whose message is received}
end if
if message-wait(?, tag-get) then

serveGet(r); {r is the rank of a processor whose message is received}
end if

end while
leaderUpdate(leader);

call to functions serveBest, serveEmpyy, serveGet and leaderUpdate which are already described.
If the upper bound is changed either locally or on another processor we perform the cut-off
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test to discard unnecessary boxes.
As long as the working list is not empty we take one element from the list and do everything
again. If it is empty we go waiting calling the function inWait (see Algorithm 4.11). If the

Algorithm 4.11 inWait
Input: no input;
Output: a flag indicating if the method terminates;

if myrank = leader then
if givingUp() = true then

return true;
end if

else
store all received requests in getmessage;
send-async(leader, tag-get, getmessage);

end if
while message-wait(?, ?) do

if message-wait(?, tag-best) then
serveBest(r); {r is the rank of a processor whose message is received}

end if
if message-wait(?, tag-empty) then

serveEmpty(:); {r is the rank of a processor whose message is received}
end if
if message-wait(?, tag-get) then

recv-block(i, tag-get, get message);
for i = 0 to p− 1 do

if get message.status[i] = status-get then
procStatus[i] = status-get; insert an element i into the request queue;

end if
end for

end if
serveGet(i);
if message-wait(?, tag-box) then

recv-block(i, tag-box, box);
insert box into L;
return false;

end if
if message-wait(?, tag-finish) then

return true;
end if
if have pending requests then

for i = 0 to p− 1 do
if procStatus[i] = status-get then

get message.status[i] = status-get; procStatus[i] = status-empty;
end if

end for
send-async(leader, tag-get, get message);

end if
end while
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Algorithm 4.12 givingUp
Input: no input;
Output: a flag indicating if the method terminates;

if exists i with procStatus[i] = status-full and i 6= my rank then
leader = i;
best message.status = status-new;
best message.leader = leader;
best message.f = f̃ ;
for i = 0 to p− 1 do

if procStatus[i] = status-get then
best message.status[i] = status-get;
procStatus[i] = status-empty;

end if
end for
best message.status[my rank] = status-get;
procStatus[my rank] = status-empty;
for i = 0 to p− 1 do

if i 6= my rank then
send-async(i, tag-best, best message);

end if
end for

else
for i = 0 to p− 1 do

if i 6= my rank then
send-async(i, tag-finish, finish);

end if
end for
return true;

end if
return false;

processor is the leader it calls the function givingUp (see Algorithm 4.12). There it selects one
of the non-idle processors as a leader and informs all processors about a leadership change. It
also sends requests for boxes in the same message.
The existence of a non-idle processor is checked by the number of requests and the local status
of processors. If there is no such processor then all processors are informed about the final
phase: solution collection.
If the processor is not a leader it stores all received requests in one message, including its own
request, and sends this message to the leader.
After this we start receiving messages. If messages with tags tag-best, tag-empty or tag-
get are received we call one of the corresponding functions serveBest, serveEmpty, serveGet. In
between we retransmit collected requests for boxes.
This continues until either the message with a box or the message indicating the termination
is received.
When all boxes are handled the function collectSolution (see Algorithm 4.13) is called to collect
solutions. The function collectSolution is the final phase of the method. Here the processor
with rank 0 collects solutions from other processors. The processor with rank 0 requests solu-
tions from all processor in turn. Solutions are sent in blocks of at most MAX SOL solutions.
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Algorithm 4.13 collectSolution
Input: no input;
Output: the solution list if the rank is 0;

if my rank 6= 0 then
for i = 1 to p− 1 do

recv-block(i, tag-solution, sol);
while number of received boxes is not null do {the maximal number of elements to be
received at once is MAX SOL}

insert received elements into L̃;
recv-block(i, tag-solution, sol);

end while
end for
return ∅;

else
while L̃ 6= ∅ do

take at most MAX SOL elements from L̃;
send-block(0, tag-solution, sol);

end while
return L̃;

end if

4.3.5 Numerical Results

In this section we present numerical results of the new method. For time measurement we use
Standard Time Unit (STU). One STU is the time spent for evaluation of the Shekel 5 function
with real arguments 1000 times. It is surely the compiler dependent. Using C-XSC on a Sun
Ultra 10 one STU is 0.375 seconds.
We analyze the reason of superlinearity of the new method for some problems. Descriptions
of all problems can be found in Appendix A along with their solutions.
Since the run time depends on the software and hardware in use, for fair comparison we
implemented also the centralized mediator approach. We have chosen this method since it is
the most efficient of all prior existing methods. Also it can be implemented quite easily.
Here we notice again that in the case of p = 16 we run 16 processes on 8 processors. It is not
the same productivity as on 16 processors.
In Table 4.1 we give run times for the new parallel method. In the table in parenthesis we
give efficiency in percentage. We do not expect superlinearity or even linearity for problems
for which the serial method requires less than 100 iterations.
For the problems L12 and L18 the serial method needs 36 and 30 iterations, respectively. In
the parallel method with 16 processors in the best case each processor would handle about 2
boxes. But because of the relatively slow communication and due to the parallelization, the
number of boxes handled is sometimes much larger (see Table 4.2). Also the time for the start
phase and finalization is long compared to the time spent purely for handling boxes. For both
problems we have poor parallelization.
The same is valid for the problems G7 and G10.
For problems GP, S2.14, KOW, INF1 we have superlinear speedup. For these problems the
serial method requires thousands of iterations and therefore they are well parallelizable.
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Problem Serial Parallel
p = 4 p = 8 p = 16

Iters Time Time (%) Time (%) Time (%)
R4 265 10.05 2.59 (97) 2.11 (59) 1.25 (50)
L12 36 13.23 8.53 (38) 5.66 (29) 11.07 (7)
L18 30 7.20 9.74 (18) 13.97 (6) 11.84 (3)
G7 42 5.60 33.99 (4) 6.06 (11) 9.13 (3)
G10 44 9.15 9.10 (25) 9.77 (11) 9.03 (6)
GP 9193 89.55 21.00 (106) 10.47 (106) 4.13 (135)
H6 307 23.49 11.50 (51) 5.00 (58) 4.42 (33)
S2.14 9024 93.60 23.03 (101) 4.35 (268) 4.42 (132)
GEO1 351 14.45 7.43 (48) 3.21 (56) 2.63 (34)
GEO2 443 21.20 7.03 (75) 2.94 (90) 2.63 (50)
GEO3 511 25.33 8.99 (70) 4.13 (76) 3.35 (47)
JS 226 39.95 12.57 (79) 7.21 (69) 4.57 (54)
S2.7 98 31.39 16.19 (48) 10.52 (37) 9.57 (20)
L3 531 120.19 31.05 (96) 12.50 (120) 9.28 (80)
R8 1145 205.79 110.22 (46) 51.73 (49) 48.97 (26)
HM3 697 161.89 42.32 (95) 23.03 (87) 11.85 (85)
HM4 2996 1088.08 298.79 (91) 152.49 (89) 79.61 (85)
KOW 193301 34114.24 3057.00 (278) 992.66 (429) 658.29 (323)
WK 163895 5821.49 134.32 (1084) 54.96 (1324) 40.96 (888)
INF1 57309 3275.97 285.06 (287) 38.85 (1054) 22.49 (910)

Table 4.1: Times for test problems on a cluster of Sun workstations using the challenge lead-
ership approach

To solve these problems we need a lot of memory. But this is not the only reason for the
superlinearity. In Table 4.2 we see that for these problems the number of handled boxes in the
parallel method is less than the number of handled boxes in the serial method. For instance,
for the problem GP the number of boxes handled in the parallel method is less than in the
serial method by a factor of 2. For the problem WK the factor is even larger, it is more than
3. Therefore even with overhead for slow communication we obtained superlinear speedup for
these problems. On the other hand for problems S2.14, KOW, INF1 the number of boxes
handled in the parallel method are only slightly less than in the serial method. Nevertheless
the speedup is very impressive: 1.32× 16 for S2.14, 3.23× 16 for KOW and 9.10× 16 for INF1
on 16 processors. On 4 and 8 processors the parallel method achieves even better speedup.
This impressive speedup is due to the intensive use of memory. For these problems the serial
method manages very long lists of boxes, which do not fit into memory. Therefore every call
to the cut-off test is followed by swapping to and from the hard disk. And this increases the
run time significantly. In Table 4.2 we also see that for problems HM3 and HM4 the serial
method handles less boxes than the parallel method. These numbers are very close and we
have for them almost linear speedup.
We grouped problems, with exception of those for which the serial method requires less than
50 iterations, into four groups and plotted graphs for them.
In Figure 4.7 we see that the speedup changes better than linearly until 8 processors. Then
on 16 processors it gets worse. It is due to the run of 16 processes on 8 processors.
In Figure 4.8 we observe the same behavior for three of four problems: GEO2, GEO3, JS. For
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the problem R4 the speedup becomes worse even on 8 processors.
In Figure 4.9 we see that all problems have nearly linear speedup. The speedup changes linearly
until 8 processors for all problems. For three of four problems - HM3, HM4, GP - the speedup
is still linear even for 16 processes, despite of the usage of 8 processors. For the problem L3
the speedup gets worse for 16 processes on 8 processors, as usual.
In Figure 4.10 we plotted speedup for hard problems. For them we have superlinear speedup
for all numbers of processors (for p = 16 there are 16 processes on 8 processors). And, as
usually, the is a speedup drop from 8 to 16 processes.
As we see from Figures 4.7, 4.8, 4.9 and 4.10 we have a significant drop of speedup on 8
processors only for the problem R4. For the rest of the problems the speedup gets better or
remains almost the same.

4.3.6 Comparison

In Table 4.3 we presented run times for all problems by the centralized mediator approach. As
we can see from the table the centralized mediator approach has achieved superlinear speedup
only for two problems - KOW and WK. The solution of this problem requires very much
memory. For many problems the speedup decreases dramatically when the number of processor
increase. For instance, for problems H6, GEO2, S2.7, L3, HM4 there is no improvement of time
at all changing from 8 processors to 16 processor. It is due to the communication overhead of
the method.

Problem Serial Parallel
p = 4 p = 8 p = 16

Iters Time Time (%) Time (%) Time (%)
R4 265 10.05 5.47 (45) 5.47 (22) 8.88 (7)
L12 36 13.23 9.60 (34) 9.81 (16) 16.24 (5)
L18 30 7.20 5.31 (33) 5.26 (17) 7.85 (5)
G7 42 5.60 4.85 (28) 3.93 (17) 6.68 (5)
G10 44 9.15 7.92 (28) 6.49 (17) 10.81 (5)
GP 9193 89.55 34.89 (64) 16.59 (67) 25.61 (21)
H6 307 23.49 8.16 (71) 5.60 (52) 5.37 (27)
S2.14 9024 93.60 55.71 (42) 14.45 (80) 39.17 (14)
GEO1 351 14.45 6.56 (55) 4.29 (42) 3.47 (26)
GEO2 443 21.20 6.63 (79) 3.33 (79) 3.35 (39)
GEO3 511 25.33 7.93 (79) 4.08 (77) 3.87 (40)
JS 226 39.95 15.36 (65) 13.39 (37) 17.93 (13)
S2.7 98 31.39 16.09 (48) 10.16 (38) 9.19 (21)
L3 531 120.19 32.51 (92) 18.19 (82) 18.37 (40)
R8 1145 205.79 59.93 (85) 45.64 (56) 53.63 (23)
HM3 697 161.89 57.27 (70) 146.92 (13) 127.20 (7)
HM4 2996 1088.08 512.23 (53) 130.48 (104) 140.06 (48)
KOW 193301 34114.24 2027.51 (420) 1229.87 (346) 1184.26 (180)
WK 163895 5821.49 233.81 (622) 174.60 (417) 177.19 (205)
INF1 57309 3275.97 2556.41 (32) 3898.67 (10) 4348.17 (4)

Table 4.3: Times for test problems on a cluster of Sun workstations using centralized mediator
approach
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In the new parallel method this overhead is reduced through the centralized propagation of
the upper bound and the box transference on demand: the box is transmitted only when there
is request message for a box.
To show the efficiency of the new approach we computed the ratio of the time spent by the
centralized mediator to the time spent by the challenge leadership approach for each problem.
This ratio gives us which part of the time spent by the centralized mediator method is required
by the new method for the same problem.
In Figure 4.11 we see that the centralized mediator is good on 4 processors for 3 problems: H6,
GEO1 and R8. On 8 processors the centralized mediator is good only for 2 problems. And
running with 16 processes it is slightly better than the challenge leadership for one problem -
S2.7.
In Figure 4.12 the centralized mediator method is better than the new method for problems
GEO2 and GEO3 on 4 processors. But for these problems the new method becomes better
when the number of processors increase. For 16 processes the new method is preferrable for
all four problems.
An even interesting behavior we observe in Figure 4.13. The centralized mediator method is
worse for all four problems on 4 processors. On 8 processors it becomes better for the problem
HM4. But for 16 processes it is significantly bad again for all four problems.
In Figure 4.14 we see that the centralized mediator method gets worse, as ussually, when the
number of processors increases.
Finalizing the comparison we emphasize that the challenge leadership approach is better than
the centralized mediator, especially when the number of processors increase. Sometimes this
difference becomes significant (see problems S2.14, GP, HM3, WK, INF1).

4.3.7 A Problem from Industry

We describe this problem in Appendix A.4. Here we explain implementation details and give
numerical results.
The objective function is not defined everywhere in the search region. Therefore we use the
multisection strategy A (see Section 2.3). We also cannot use accelerating devices like the
monotonicity test, the nonconvexity test and the interval Newton method for boxes where the
function is partly not defined. If the objective function is defined over the selected box, then
the normal routine is applied. If not, the box will be subdivided until its diameter is less than
εbound. And when the diameter is less than εbound the box will be inserted into the list Lb. In
this implementation we therefore have the working list L, the solution list L̃ and the list Lb,
where we store boxes for which

neither inf([x]2) >
454.3496

2 ·
(

282.5
[x]1

+ 3.182
)3 nor sup([x]2) <

454.3496

2 ·
(

282.5
[x]1

+ 3.182
)3

holds, see Appendix A.4.
In the working list we store boxes ordered by the lower bound of the range of the function over
that box. If the function is partly undefined over the box we cannot have the lower bound. In
this case we store the diameter of the box with the minus sign as a lower bound. This way we
first handle boxes for which the function is not defined.
We have run the serial and the parallel methods (modified for A.4) for this problem. In the
case of the parallel method we run only on 4 processors.
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The serial method for verified global optimization takes 3,466,981.00 STU and handles 2,069,315
boxes. So the parallel method on 4 processors takes 523,220.47 STU and handles 2,182,928
boxes. The parallel method handles 5 percent more boxes than the serial method. But the
parallel method is 6.63 times faster than the serial method.
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Appendix A

Considered Test Problems

In this work the following standard test problems for global optimization had been considered.
Along with the function definition, the starting box [x] and the parameter ε, that is used in the
termination criteria, we give the enclosure of the global minimum and of the global minimizer.
The considered test problems had been distributed into three classes according to the execu-
tion time of the serial methods: simple, medium and hard test problems. The simple test
problems, the test problems with the execution time less than 10 STU, were not considered
for parallelization, since the serial execution time is already small and it is meaningless to
parallelize it further. But we use them in the process of designing serial methods.
All test problems achieve all their global minima at an interior point of the starting box [x], so
that a special edge handling for the serial and for the parallel methods was not implemented.
All constant parameters appearing in the test problems were enclosed in intervals when im-
plemented. In that way the problem of the non-representability of some decimal numbers on
computers was circumvented.

A.1 Simple Problems

S5 (n = 4, Shekel 5)

f(x) = −
5∑

i=1

1
(x−Ai)(x−Ai)T + ci

113
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with [x] = [0, 10]4, ε = 10−6,

A =




4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6




and c =




0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5




.

The global minimum f∗ ∈ [−10.153199707210,−10.153199650879].
The unique verified global minimizer is enclosed in

[4.000036851753, 4.000037458427]
[4.000133096919, 4.000133461207]
[4.000037057807, 4.000037252354]
[4.000133225965, 4.000133332058]

.

S7 (n = 4, Shekel 7)

f(x) = −
7∑

i=1

1
(x−Ai)(x−Ai)T + ci

with [x] = [0, 10]4, ε = 10−6, A and c as in S5.
The global minimum f∗ ∈ [−10.402940854942,−10.402940278610].
The unique verified global minimizer is enclosed in

[4.000572392022, 4.000573448767]
[4.000689046287, 4.000689693693]
[3.999489540210, 3.999489885356]
[3.999606062342, 3.999606263183]

.

S10 (n = 4, Shekel 10)

f(x) = −
10∑

i=1

1
(x−Ai)(x−Ai)T + ci

with [x] = [0, 10]4, ε = 10−6, A and c as in S5.
The global minimum f∗ ∈ [−10.536410152654,−10.536409480641].
The unique verified global minimizer is enclosed in

[4.000745984918, 4.000747087330]
[4.000592619822, 4.000593257244]
[3.999663227190, 3.999663575795]
[3.999509700323, 3.999509908542]

.

SHCB (n = 2, Six-Hump-Camel-Back)

f(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

with [x] = [−2, 2]2, ε = 10−6. The global minimum
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Figure A.1: The plot of the Six Hump Camel Back function

f∗ ∈ [−1.031628453614,−1.031628453366].
The unique verified local minimizers are enclosed in

[-0.089842013102, -0.089842013098]
[ 0.712656403010, 0.712656403032] ,

[ 0.089842013098, 0.089842013102]
[-0.712656403032, -0.712656403010] .

BR (n = 2, Branin)

f(x) =
(

5
π

x1 − 5.1
4π2

x2
1 + x2 − 6

)2

+ 10
(

1− 1
8π

)
cosx1 + 10

with [x] = [−5, 10]× [0, 15], ε = 10−6. The global minimum
f∗ ∈ [0.397887357729, 0.397887361142].
The unique verified local minimizers are enclosed in

[-3.141718350524, -3.141466904082]
[12.274921258894, 12.275078374432] , [ 3.141574972457, 3.141610336919]

[ 2.274998780786, 2.275001215451] ,

[ 9.424734796677, 9.424821122815]
[ 2.474998330906, 2.475001666965] .

RO (n = 2, Rosenbrock)

f(x) = 100(x2 − x2
1)

2 + (x1 − 1)2

with [x] = [−5, 5]2, ε = 10−6. The global minimum f∗ ∈ [0, 7.551320394136 · 10−8].
The unique verified global minimizer is enclosed in

[0.999988864642, 1.000011135358]
[0.999994813743, 1.000005186257] .

L8 (n = 3, Levy 8)

f(x) =
2∑

i=1

(yi − 1)2(1 + 10 sin2(πyi+1)) + sin2(πy1) + (y3 − 1)2



116 Appendix A. Considered Test Problems

0

5

10

15

−5

0

5

10
0

50

100

150

200

250

300

350

x2x1

Figure A.2: The plot of Branin’s function
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with yi = 1 + (xi − 1)/4, i = 1, . . . , 3, [x] = [−10, 10]3, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 2.751816814187 · 10−9].
The unique verified global minimizer is enclosed in

[0.999999921242, 1.000000079089]
[0.999840137807, 1.000184079674]
[0.999933892944, 1.000100715801]

.

L9 (n = 4, Levy 9)

f(x) =
3∑

i=1

(yi − 1)2(1 + 10 sin2(πyi+1)) + sin2(πy1) + (y4 − 1)2

with yi = 1 + (xi − 1)/4, i = 1, . . . , 4, [x] = [−10, 10]4, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 6.500293555635 · 10−8].
The unique verified global minimizer is enclosed in

[0.999999815271, 1.000000184787]
[0.999159280921, 1.000898023821]
[0.999664183571, 1.000388113611]
[0.999790540536, 1.000288039607]

.

H3 (n = 3, Hartman)

f(x) = −
4∑

i=1

ci exp


−

3∑

j=1

Aij(xj − Pij)2




with [x] = [0, 1]3, ε = 10−6.

A =




3 10 30
0.1 10 35
3 10 30

0.1 10 35


 , c =




1
1.2
3

3.2


 and P =




0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828


 .

The global minimum f∗ ∈ [−3.862782158846,−3.862782136795].
The unique verified global minimizer is enclosed in

[0.114614313535, 0.114614363644]
[0.555648849192, 0.555648850752]
[0.852546953063, 0.852546953979]

.

G5 (n = 5, Griewank 5)

f(x) =
5∑

i=1

x2
i

400
−

5∏

i=1

cos
(

xi√
i

)
+ 1

with [x] = [−500, 600]5, ε = 10−6.
The global minimum f∗ ∈ [−0.000000000000, 3.162684336644 · 10−9].
The unique verified global minimizer is enclosed in

[-0.000047126184, 0.000026346703]
[-0.000050237712, 0.000025987328]
[-0.000049887998, 0.000024425925]
[-0.000067131531, 0.000029231509]
[-0.000063538412, 0.000025042049]

.
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Figure A.4: The plot of Ratz’s function

A.2 Medium Problems

R4 (n = 2, Ratz 4)

f(x) = sin(x2
1 + 2x2

2) exp(−x2
1 − x2

2)

with [x] = [−3, 3]2, ε = 10−6. The global minimum
f∗ ∈ [−0.106891344004,−0.106891338812].
The unique verified global minimizer is enclosed in

[-3.875919873641E-008], 3.875919873641E-008]
[-1.457522109420, -1.457522101088 ] ,

[-3.875919873641E-008], 3.875919873641E-008]
[ 1.457522101088, 1.457522109420 ] .

L12 (n = 10, Levy 12)

f(x) =
9∑

i=1

(yi − 1)2(1 + 10 sin2(πyi+1)) + sin2(πy1) + (y10 − 1)2

with yi = 1 + (xi − 1)/4, i = 1, . . . , 10, [x] = [−10, 10]10, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 5.022707427890 · 10−12].
The unique verified global minimizer is enclosed in
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[0.999999999999, 1.000000000001]
[0.999999999990, 1.000000000010]
[0.999999999989, 1.000000000011]
[0.999999999989, 1.000000000012]
[0.999999996389, 1.000000003645]
[0.999997930503, 1.000002086249]
[0.999992487985, 1.000007867647]
[0.999996881182, 1.000003658406]
[0.999999326761, 1.000000852685]
[0.999999997600, 1.000000002395]

.

L18 (n = 7, Levy 18)

f(x) =
6∑

i=1

(xi − 1)2(1 + sin2(3πxi+1))

+ (x7 − 1)2(1 + sin2(2πx7)) + sin2(3πx1)

with [x] = [−5, 5]7, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 5.415762071898 · 10−12].
The unique verified global minimizer is enclosed in

[0.999999999999, 1.000000000001]
[0.999999999988, 1.000000000012]
[0.999999881074, 1.000000117323]
[0.999998120221, 1.000001807931]
[0.999998570159, 1.000001318913]
[0.999999382590, 1.000000509353]
[0.999999889173, 1.000000097517]

.

G7 (n = 7, Griewank 7)

f(x) =
7∑

i=1

x2
i

4000
−

7∏

i=1

cos
(

xi√
i

)
+ 1

with [x] = [−500, 600]7, ε = 10−6.
The global minimum f∗ ∈ [−0.000000000000, 3.146680827016 · 10−8].
The unique verified global minimizer is enclosed in

[-0.000152632287, 0.000096304339]
[-0.000163024956, 0.000096174777]
[-0.000162823505, 0.000091817740]
[-0.000161711682, 0.000105549551]
[-0.000152903602, 0.000098344826]
[-0.000144957421, 0.000091601764]
[-0.000137798478, 0.000085371476]

.

G10 (n = 10, Griewank 10)

f(x) =
10∑

i=1

x2
i

4000
−

10∏

i=1

cos
(

xi√
i

)
+ 1

with [x] = [−100.5, 120]10, ε = 10−6.
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Figure A.5: The plot of Goldstein-Price’s function

The global minimum f∗ ∈ [−0.000000000000, 1.708910790655 · 10−9].
The unique verified global minimizer is enclosed in

[-0.000042329872, 0.000041768222]
[-0.000035576283, 0.000035135435]
[-0.000040145513, 0.000040868663]
[-0.000029043363, 0.000029562000]
[-0.000021972735, 0.000022353973]
[-0.000017243896, 0.000017528873]
[-0.000013935200, 0.000014149906]
[-0.000011522315, 0.000011683990]
[-0.000009693677, 0.000009814265]
[-0.000008257013, 0.000008345096]

.

GP (n = 2, Goldstein-Price)

f(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x3
1 − 14x2 + 6x1x2 + 3x2

2))×
(30 + (2x1 − 3x2)2(18− 32x1 + 12x2

2 + 48x2 − 36x1x2 + 27x2
2))

with [x] = [−2, 2]2, ε = 10−6. The global minimum f∗ ∈ [2.999999953835, 3.000000021153].
The unique verified global minimizer is enclosed in

[-7.092166092395E-011, 6.674678603178E-0-11]
[-1.000000000048, -0.999999999962 ] .

H6 (n = 6, Hartman 6)

f(x) = −
4∑

i=1

ci exp


−

6∑

j=1

Aij(xj − Pij)2



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with [x] = [0, 1]6, ε = 10−6,

A =




10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


 , c =




1
1.2
3

3.2


 and

P =




0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


 .

The global minimum f∗ ∈ [−3.322368011452,−3.322368011379].
The unique verified global minimizer is enclosed in

[0.201689511002, 0.201689511012]
[0.150010691821, 0.150010691826]
[0.476873974209, 0.476873974235]
[0.275332430494, 0.275332430495]
[0.311651616600, 0.311651616601]
[0.657300534065, 0.657300534066]

.

S2.14 (n = 4, Schwefel 2.14)

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

with [x] = [−4, 5]4, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 4.475425668718 · 10−8].
The unique verified global minimizer is enclosed in

[-0.009392075036, 0.009317319146]
[-0.000907897950, 0.000939203138]
[-0.002972763767, 0.003141232908]
[-0.002899169922, 0.003141401623]

,

[ 0.002319335937, 0.003033963163]
[-0.000289916993, -0.000221252441]
[-0.003233245939, -0.003173828125]
[-0.003233442004, -0.003173828125]

,

[-0.004477072180, -0.004272460937]
[ 0.000396728515, 0.000447702853]
[ 0.002868652343, 0.003184367790]
[ 0.003143310546, 0.003184542425]

,

[-0.004516072739, -0.004272460937]
[ 0.000396728515, 0.000451600668]
[ 0.003417968750, 0.003612312397]
[ 0.003417968750, 0.003612576659]

.

GEO1 (n = 3, The Problem from the Geodesy)

f(x) =
(√

x2
2 + x2

3 − 2c1x2x3 − s1

)2

+
(√

x2
3 + x2

1 − 2c2x3x1 − s2

)2

+
(√

x2
1 + x2

2 − 2c3x1x2 − s3

)2

with [x] = [10−13, 3600]× [10−13, 3520]2, ε = 10−6.

c =




0.846735205
0.928981803
0.912299033


 and s =




1871.1
1592.4
1471.9


 .

The global minimum f∗ ∈ [0.000000000000, 4.064659879814 · 10−8].
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The unique verified local minimizers are enclosed in
[2.292480245974E+003, 2.292480532764E+003]
[3.225046974853E+003, 3.225047033776E+003]
[3.477180122515E+003, 3.477180155240E+003]

,

[3.575365805357E+003, 3.575366350973E+003]
[3.412155596113E+003, 3.412155809792E+003]
[2.435715337047E+003, 2.435715899727E+003]

.

GEO2 (n = 3, The problem from the Geodesy)
The same as GEO1 with [x] = [10−13, 8.68]× [10−13, 9.24]× [10−13, 8.68], ε = 10−6.

c =




0.740824038
0.817119474
0.737253644


 and s =




6.2
5.0
6.3


 .

The global minimum f∗ ∈ [0.000000000000, 1.623435961783 · 10−10].
The unique verified local minimizers are enclosed in

[8.369812220149, 8.369839576033]
[8.947975268228, 8.947982535122]
[8.150609828868, 8.150627639759]

,
[4.873871645490, 4.874651656288]
[8.964325384629, 8.964372850539]
[8.118603200621, 8.118671024373]

,

[8.284519260955, 8.284618895430]
[8.999435873302, 8.999467348600]
[5.288929330144, 5.289080719743]

,
[8.311368014175, 8.311422879085]
[3.271289310727, 3.271387415143]
[8.221033235082, 8.221046574887]

.

GEO3 (n = 3, The problem from the Geodesy)
The same as GEO1 with [x] = [10−13, 8.0]3, ε = 10−6.

c =




0.766044443
0.766044443
0.766044443


 and s =




5.0
5.0
5.0


 .

The global minimum f∗ ∈ [0.000000000000, 1.435824800184 · 10−9].
The unique verified local minimizers are enclosed in

[7.309465389835, 7.309556607226]
[7.309480041821, 7.309541955399]
[7.309493137513, 7.309528859554]

,
[7.309455164529, 7.309566441765]
[3.889171586871, 3.889445949503]
[7.309484162818, 7.309537442613]

,

[3.889135969558, 3.889481326344]
[7.309473015841, 7.309548531135]
[7.309482573959, 7.309538972089]

,
[7.309463050123, 7.309558754954]
[7.309472945285, 7.309548860249]
[3.889221015008, 3.889397330209]

.

JS (n = 2, Jennrich-Sampson Problem)

f(x) =
10∑

i=1

(
2 + 2i− (

eix1 + eix2
))2

with [x] = [−1, 1]2, ε = 10−6. The global minimum
f∗ ∈ [124.362182355353, 124.362182355877].
The unique verified global minimizer is enclosed in

[0.257825213670, 0.257825213671]
[0.257825213670, 0.257825213671] .
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Figure A.6: The plot of Jennrich-Sampson function

A.3 Hard Problems

S2.7 (n = 3, Schwefel 2.7)

f(x) =
10∑

k=1

(
exp

(−kx1

10

)
− exp

(−kx2

10

)
−

(
exp

(−k

10

)
− exp(−k)

)
x3

)2

with [x] = [0, 5]× [8, 11]× [0.5, 3], ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 0.000000132422].
The unique verified global minimizer is enclosed in

[0.999760695233, 1.000238272497]
[9.997724926185, 10.002284236045]
[0.999951808024, 1.000048843040]

.

L3 (n = 2, Levy 3)

f(x) =
5∑

i=1

i cos((i + 1)x1 + i)
5∑

j=1

j cos((j + 1)x2 + j)

with [x] = [−10, 10]2, ε = 10−6. The global minimum
f∗ ∈ [−1.867309091505 · 102,−1.867309088310 · 102].
The unique verified local minimizers are enclosed in

[ 5.482864205738, 5.482864207677]
[ 4.858056878362, 4.858056879357] , [-0.800321100996, -0.800321099948]

[ 4.858056878605, 4.858056879115] ,

[-7.708313735502, -7.708313735496]
[-7.083506407653, -7.083506407650] ,

[-1.425128428321, -1.425128428318]
[-7.083506407653, -7.083506407651] ,

[-7.708313735500, -7.708313735499]
[ 5.482864206707, 5.482864206708] ,

[-7.708313735500, -7.708313735499]
[-0.800321100472, -0.800321100471] ,
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Figure A.7: The plot of Levy’s function

[ 4.858056878859, 4.858056878860]
[-7.083506407652, -7.083506407651] ,

[ 5.482864206707, 5.482864206708]
[-7.708313735500, -7.708313735499] ,

[-1.425128428320, -1.425128428319]
[ 5.482864206707, 5.482864206708] , [-1.425128428320, -1.425128428319]

[-0.800321100472, -0.800321100471] ,

[-0.800321100472, -0.800321100471]
[-7.708313735500, -7.708313735499] , [-7.083506407652, -7.083506407651]

[-7.708313735500, -7.708313735499] ,

[ 4.858056878859, 4.858056878860]
[ 5.482864206707, 5.482864206708] , [-7.083506407652, -7.083506407651]

[ 4.858056878859, 4.858056878860] ,

[ 4.858056878859, 4.858056878860]
[-0.800321100472, -0.800321100471] , [-7.083506407652, -7.083506407651]

[-1.425128428320, -1.425128428319] ,

[ 5.482864206707, 5.482864206708]
[-1.425128428320, -1.425128428319] , [-0.800321100472, -0.800321100471]

[-1.425128428320, -1.425128428319] .

R8 (n = 9, Ratz 8)

f(x) =

(
sin2

(
π

x1 + 3
4

)
+

8∑

i=1

(
xi − 1

4

)2 (
1 + 10 sin2

(
π

xi+1 + 3
4

)))2

with [x] = [−10, 10]9, ε = 10−6. The global minimum f∗ ∈ [0.000000000000, 0.000000455511].
The unique verified local minimizers are enclosed in



A.3. Hard Problems 125

−10
−5

0
5

10

−10

−5

0

5

10
−30

−20

−10

0

10

20

30

x1x2

Figure A.8: The plot of Henriksen-Madsen’s function

[ 0.996093750000, 1.015625000000]
[ 0.937500000000, 1.015625000000]
[ 0.976562500000, 1.015625000000]
[ 0.937500000000, 1.015625000000]
[ 0.937500000000, 1.015625000000]
[ 0.976562500000, 1.015625000000]
[ 0.937500000000, 1.015625000000]
[ 0.976562500000, 1.015625000000]
[-10.000000000000, 10.000000000000]

.

HM3 (n = 2, Henriksen and Madsen)

f(x) = −
2∑

i=1

5∑

j=1

j sin((j + 1)xi + j)

with [x] = [−10, 10]2, ε = 10−6. The global minimum
f∗ ∈ [−24.062498884345,−24.062498884330].
The unique verified local minimizers are enclosed in

[-6.774576143440, -6.774576143438]
[-6.774576143440, -6.774576143438] , [ 5.791794470920, 5.791794470921]

[-6.774576143440, -6.774576143438] ,

[-6.774576143440, -6.774576143438]
[ 5.791794470920, 5.791794470921] , [-0.491390836260, -0.491390836259]

[-6.774576143440, -6.774576143438] ,

[-6.774576143440, -6.774576143438]
[-0.491390836260, -0.491390836259] , [ 5.791794470920, 5.791794470921]

[ 5.791794470920, 5.791794470921] ,

[ 5.791794470920, 5.791794470921]
[-0.491390836260, -0.491390836259] ,

[-0.491390836260, -0.491390836259]
[ 5.791794470920, 5.791794470921] ,

[-0.491390836260, -0.491390836259]
[-0.491390836260, -0.491390836259] .



126 Appendix A. Considered Test Problems

HM4 (n = 3, Henriksen and Madsen)

f(x) = −
2∑

i=1

5∑

j=1

j sin((j + 1)xi + j)

with [x] = [−5, 5]3, ε = 10−6.
The global minimum f∗ ∈ [−36.093748326755,−36.093748326248].
The unique verified global minimizer is enclosed in

[-0.491390836264, -0.491390836254]
[-0.491390836260, -0.491390836259]
[-0.491390836264, -0.491390836254]

.

KOW (n = 4, Kowalik Problem)

f(x) =
11∑

i=1

(
ai − x1

b2
i + bix2

b2
i + bix3 + x4

)2

with [x] = [0, 0.42]4, ε = 10−6,

c =




0.1957
0.1947
0.1735
0.1600
0.0844
0.0627
0.0456
0.0342
0.0323
0.0235
0.0246




and s =




4
2
1

0.5
0.25
1/6

0.125
0.1

1/12
1/14

0.0625




.

The global minimum f∗ ∈ [0.000307140870, 0.000307616995]
The unique verified global minimizer is enclosed in

[0.192832591586, 0.192834390270]
[0.190819898956, 0.190850903478]
[0.123112693715, 0.123121520922]
[0.135759694776, 0.135771333126]

.

WK (n = 1, Krämer Problem)

f(x) = −p(x)
q(x)

= −
∑29

i=0 pix
i

∑4
i=0 qixi

with [x] = [0, 64], ε = 10−6,

q =




0.5882867463286834293466299376 · 1011

0.3634674934656008741064237087 · 109

0.9963536031000602675027277824 · 106

0.1464341776255599539789435142 · 104

1



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and

p =




7.629394531250000 · 10−6

−1.150369644165040 · 10−5

1.372280530631542 · 10−5

−6.579421551577981 · 10−6

1.659054419178573 · 10−6

−2.521266665667100 · 10−7

2.505680664436719 · 10−8

−1.713721655060476 · 10−9

8.330923088212047 · 10−11

−2.935023067946825 · 10−12

7.564193999729689 · 10−14

−1.426868803614099 · 10−15

1.954186293985405 · 10−17

−1.910400220016202 · 10−19

1.299884226135079·10−21
−5.995712492310049 · 10−24

1.876066147446556 · 10−26

−4.291373306373139 · 10−29

7.622481227988642 · 10−32

−1.096397325341554 · 10−34

1.315291857866774 · 10−37

−1.344664974747858 · 10−40

1.190815536452828 · 10−43

−9.253132527171894 · 10−47

6.374582890249432 · 10−50

−3.926998956415952 · 10−53

2.170989219023664 · 10−56

−1.142719267106732 · 10−59

3.823185031874960 · 10−63

−3.691550884472599 · 10−66




.

The global minimum f∗ ∈ [−5.129659043375E − 016,−4.541716718401E − 016]
The unique verified global minimizer is enclosed in

[34.566830008723, 34.566830519889]
[34.566830635070, 34.566830764922]

INF1 (n = 2)

f(x) = (x1 − x2)2

with [x] = [−2.0, 2.5]2, ε = 10−6.
The global minimum f∗ ∈ [0.000000000000, 1.885928213597E − 008].
The local minimizers are

[x]∗ = [x] ∩ {(x1, x2) : x1 = x2}.
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Figure A.9: The plot of Krämer’s function

Figure A.10: Schematic of the microrelay

A.4 A Problem from Industry

This problem comes from the design of a microrelay. Our description given here follows the
unpublished article of Prof. Dr.-Ing. B. Tibken, the University of Wuppertal. The microrelay
has been developed at the Forschungszentrum Karlsruhe in the Institue of Microstructure
Technology (see Figure A.10). The actual size of this microdevice is approximately 2mm ×
3mm and the distance between the contacts is only 30µm. Mathematical modeling of the
dynamics of this device results in the following differential equation of second order

z′′(t) + 2 · d · ω0 · z′(t) + ω2
0 · z(t) + b(z(t)) · I2(t) = 0 (A.1)
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Parameter Physical Interpretation Value
d damping constant 0.012

f0 =
ω0

2 · π base frequency 829.7Hz

AG cross-sectional area of air gap 20000µm2

µ0 magnetic field constant 1.2566 · 10−6

N number of coil windings 44
LFe effective length of magnetic core 11.3mm
AFe cross-sectional area of magnetic core 40000µms

δ0 width of air gap in steady state position 30µm

where z(t) describes the lever deflection from the rest position. The parameters d and f0 =
ω0

2 · π
are the damping constant and the base frequency, respectively, and I(t) is the input current
through the copper coil. The nonlinear function b(z) is given by

b(z) =
ω2

0 ·AG

cg · µ0
·
(

N · µ0 · µr

LF e·AG

AF e
+ 2 · µr · (δ0 + z)

)2

(A.2)

and is derived from the magnetic interaction. In (A.1) and (A.2) all parameters except µr and
cg are well known and have been taken from published data or have been directly measured
using a microscope. The corresponding values are given in Table A.4. For the estimation of
µr and cg the experimental measurement data are the measured stationary deflections of the
lever for different constant currents I. The experimental measurements have been performed
for 23 different current values I1, . . . , I23. From the model equation (A.2) it follows that the
stationary deflections satisfy the following cubic equation

z3 + 2 · γ · z2 + γ2 · z + ν = 0 (A.3)

where the abbreviations

γ(µr) =
LFe ·AG

2 · µr ·AFe
+ δ0,

ν(cg, I) =
N2 ·AG · µ0 · I2

4 · cg

have been introduced. Using the procedure given in [7] to compute the solutions of (A.3)
results in three real solutions for the given parameter range. The relevant solution describing
the stationary deflection for constant current is given by

z(µr, cg, I(t)) =
2γ(µr)

3
·

cos


arccos

(
1− 27ν(cg,I(t))

2γ(µr)3

)

3


− 1




where the dependence from the parameters to be estimated has been made explicit. In this
equation, the value of the function z can be measured for the input current I. The measurement
equation is given by

y = h(µr, cg),

where h(µr, cg) = (h1(µr, cg), . . . h23(µr, cg))
T with

hi(µr, cg) =
2γ(µr)

3
·

cos


arccos

(
1− 27ν(cg,Ii)

2γ(µr)3)

)

3


− 1


 , i = 1, . . . , 23.
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The experimentally measured values are

I1 = 10.0 · 10−3, y1 = 31.6 · 10−6 − 31.82 · 10−6,
I2 = 15.0 · 10−3, y2 = 31.38 · 10−6 − 31.82 · 10−6,
I3 = 20.0 · 10−3, y3 = 30.94 · 10−6 − 31.82 · 10−6,
I4 = 25.0 · 10−3, y4 = 30.5 · 10−6 − 31.82 · 10−6,
I5 = 30.0 · 10−3, y5 = 29.84 · 10−6 − 31.82 · 10−6,
I6 = 32.5 · 10−3, y6 = 29.61 · 10−6 − 31.82 · 10−6,
I7 = 35.0 · 10−3, y7 = 29.17 · 10−6 − 31.82 · 10−6,
I8 = 37.5 · 10−3, y8 = 28.73 · 10−6 − 31.82 · 10−6,
I9 = 40.0 · 10−3, y9 = 28.29 · 10−6 − 31.82 · 10−6,

I10 = 42.5 · 10−3, y10 = 27.63 · 10−6 − 31.82 · 10−6,
I11 = 45.0 · 10−3, y11 = 27.19 · 10−6 − 31.82 · 10−6,
I12 = 47.5 · 10−3, y12 = 26.52 · 10−6 − 31.82 · 10−6,
I13 = 50.0 · 10−3, y13 = 24.97 · 10−6 − 31.82 · 10−6,
I14 = 50.5 · 10−3, y14 = 24.75 · 10−6 − 31.82 · 10−6,
I15 = 51.0 · 10−3, y15 = 24.75 · 10−6 − 31.82 · 10−6,
I16 = 51.5 · 10−3, y16 = 24.31 · 10−6 − 31.82 · 10−6,
I17 = 52.0 · 10−3, y17 = 24.31 · 10−6 − 31.82 · 10−6,
I18 = 52.1 · 10−3, y18 = 23.65 · 10−6 − 31.82 · 10−6,
I19 = 52.2 · 10−3, y19 = 23.65 · 10−6 − 31.82 · 10−6,
I20 = 52.3 · 10−3, y20 = 23.65 · 10−6 − 31.82 · 10−6,
I21 = 52.4 · 10−3, y21 = 23.65 · 10−6 − 31.82 · 10−6,
I22 = 52.5 · 10−3, y22 = 23.43 · 10−6 − 31.82 · 10−6,
I23 = 52.6 · 10−3, y23 = 23.43 · 10−6 − 31.82 · 10−6.

The estimates for the parameters µr and cg are calculated with the help of the optimization
problem

min
µr,cg

‖y − h(µr, cg)‖2 = min
µr,cg

23∑

i=1

(yi − hi(µr, cg))
2

which has to be solved in order to compute the L2 optimal solution to the parameter
estimation problem. The search regions for µr and cg are [500, 2500] and [5.2, 6.7],

respectively. One difficulty of this problem is that the function arccos
(
1− 27ν(cg,Ii)

2γ(µr)3)

)
is not

defined everywhere over the search region. It is defined only for

cg >
454.3496

2 ·
(

282.5
µr

+ 3.182
)3 . (A.4)

We run the method for verified global optimization (modified for the condition (A.4),
see 4.3.7) for the objective function f =

∑23
i=1 (yi − hi(x1, x2))

2 with
[x] = [500, 2500]× [5.2, 6.7]. The accuracy is set to ε = 10−14. In Figure A.11 we plotted the
solution of this problem.
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Figure A.11: The plot of the solution for the minimization problem
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[34] Knüppel, O., Einschließungsmethoden zur Bestimmung der Nullstellen nichtlinearer
Gleichungssysteme und ihre Implementierung, Dissertation, Technische Universität
Hamburg-Harburg, 1995.

[35] Lewis, T. G., Introduction to parallel computing, Prentice-Hall, Inc, 1992 .

[36] Message Passing Interface Forum, MPI:A Message-Passing Interface Standard. 1994.

[37] Moore, R. E., Interval Analisys, Prentice-Hall, New Jersey, 1966.

[38] Moore, R. E., Intervallanalyse, Oldenbourg-Verlag, München, 1969.

[39] Moore, R. E., Methods and Applications of Interval Analisys, SIAM, Philadelphia, 1979.

[40] Moore, R. E., Hansen, E., Leclerc, A., Rigorous methods for global optimization, in
Floudas, C.A., Pardalos, P.M.(ed), Recent Advances in Global Optimization, Princeton
University Press, 1992.

[41] Neumaier, A., Interval Methods for Systems of Equations, Cambridge, Cambridge
University Press, 1990.

[42] Ortega, J. M., Matrix Theory, New York and London, Plenum Press, 1987.

[43] Rall, L. B., Lecture Notes in Computer Science, Springer-Verlag, 1981.

[44] Ratschek, H., Rokne, J., Computer methods for the range of functions, Ellis Horwood,
Chichester, 1984.

[45] Ratschek, H., Rokne, J., New Computer Methods for Global Optimization, Ellis
Horwood, Chichester, 1988.

[46] Ratschek, H., Rokne, J., Interval methods, in Horst, R.K. Pardalos, P.M.(ed), Handbook
of Global Optimization, Kluwer Academic Publishers, Dordrecht, 751-828, 1995.

[47] Ratz, D., Automatische Ergebnisverifikation bei globalen Optimierungsproblemen,
Dissertation, Universität Karlsruhe (TH), 1992.

[48] Ratz, D., Csendes, T., On the selection of subdivision directions in interval
branch-and-bound methods for global optimization, Journal of Global Optimization.

[49] Rinnoy Kan, A. H. G., Timmer, G. T., Stochastic global optimization methods, Part I:
Clustering methods, Mathematical Programming, 39, 27-56, 1987.

[50] Rinnoy Kan, A. H. G., Timmer, G. T.,Stochastic global optimization methods, Part II:
Multi level methods, Mathematical Programming, 39, 57-78, 1987.

[51] Skelboe, S., Computation of rational interval functions, BIT, 14, 87-95, 1974.

[52] Schmidt, J. W., Die Regula Falsi für Operatoren in Banachräumen, ZAMM 41, 61-63,
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