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Abstract

In this thesis two aspects of electromagnetic wave interaction with nano structured ma-
terial are studied.

First, two alternative semi-analytical methods to solve the scattering problem on op-
tical nanowire antenna are introduced. In order to reduce the general three dimensional
volume integral equation describing the scattering problem to a simple semi-analytical
one dimensional integro-differential equation, both methods utilize solutions of the prob-
lem of plane wave scattering on infinite cylinder. A regularization and discretization
scheme is proposed in order to transform the integro-differential equations into solely
integral equation. This transformation enables to solve the original problem without the
necessity to impose additional boundary conditions at the nanowire edges. Numerical
evaluation of the proposed methods and their comparison with different numerically rig-
orous methods is presented for scattering cross-section calculations. Gold nanowires are
analyzed at optical and near-infrared spectral range. The introduced one-dimensional
semi-analytical methods demonstrate good agreement and superior numerical perfor-
mance in comparison with rigorous numerical methods.

Second, the radiation of a uniformly moving charge (Cherenkov radiation) inside a
general three dimensional (3D) and two dimensional (2D) periodic dielectric medium is
studied. In particular analytical expressions for the emission spectrum and for the field
distribution in the far-field zone are derived. The obtained formula for the Cherenkov
power emitted per unit length (emission spectrum) of the charge trajectory involves
the calculations of Bloch modes and corresponding group velocities at limited points
of the reciprocal space only. The analysis reveals (i) that the Cherenkov effect exists
for every charge velocity (ii) that the radiation can be suppressed if the coupling of the
current density produced by a moving charge with a Bloch mode is poor and (iii) that an
enhancement of radiated energy is possible if only the component of the group velocity
orthogonal to the trajectory of the charge is small. Additional inside in the Cherenkov
radiation process is gained from the analytical expression for the field distribution in the
far-field zone. It is shown that the far-field radiation can be calculated in a 3D photonic

crystal by a surface integral and in a 2D one by a contour integral over just a small



fraction of the first Brillouin zone. The spatial variation in the far-field intensity is due
to (i) interference of just a few Bloch eigenmodes and (ii) the topological properties of
the k-space surface (3D) or contour (2D). The obtained expressions both for the emission
spectrum and the field distribution are confirmed by comparison with rigorous numerical
calculations. The agreement in both cases is very good where the analytical expressions

are faster and much less demanding on computational resources.
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Introduction

A light wave causes charges (electrons and nuclei), the constituents of matter, to oscillate.
These charges emit secondary light waves which interfere with each other and with the
original one. By appropriate spatial averaging over the fields at atomic level the collective
response of all constituents can be derived at a macroscopic lengthscale. The macroscopic
response depends strongly on the type of material. However, to engineer materials with
properties not found in nature, one can build artificial structures out of building blocks
(“meta-atoms”) with feature sizes smaller than the wavelength of light. These artificial
structures are called metamaterials. In this case a spatial averaging over the fields at
“meta-atom” level can still be performed yielding also a macroscopic response. The ability
to design the “meta-atoms” in a largely arbitrary fashion adds a new degree of freedom
in engineering material. The potential of this approach shows promise for a wide range
of unusual physical phenomena rare or absent in nature. Examples include negative
refraction [I] 2], cloaking [3, 4, [5] and planar chiral metamaterials [6].

The fabrication of metamaterials is in themselves a challenging topic because of the
small feature sizes especially in the optical spectral range (about 10 to 100nm). In the
same time the analysis of artificial materials is a complex theoretical and computational
problem. The theoretical research in the field of metamaterials can be roughly divided
into two branches. On one hand there is the active research field concerning with the
derivation of macroscopic material parameters (in particular susceptibility and perme-
ability tensors) out of the electromagnetic properties of the single “meta~-atom” |7, 8] and
on the other hand a lot of efforts are invested in the study of light interaction with single
nano particles. Here, especially metallic (plasmonic) nano particles attract attention [9]
because they can exhibit strong resonances in the visible spectrum possessing though
feature sizes much smaller than the wavelength.

Because of their close relationship to antennas in microwave and RF regime plasmonic
particles are often called ’optical antennas’ [10]. As their counterparts in the microwave
and RF spectral regime, they are used as a bridge between propagating radiation and
localized fields. In the microwave and RF spectral regime semi-analytical models exist

[11], offering insight into interaction processes and guiding engineers in antenna design.



In the same time, for practical antenna design and optimization well established numer-
ical tools are typically used [12]. At optical frequencies however metal can no longer be
treated as perfect electric conductor. Because of this fundamental difference the semi-
analytical models used in microwave regime can not be used in the visible and near
infrared spectral regime and in the same time the demands in computational resources
increase tremendously. Irrespectively of these difficulties recent progresses in nanotech-
nology have enabled the fabrication of optical antennas (nano-antennas) [10, 3] and
opened already many exciting possibilities towards nano-antenna applications. For ex-
ample, it has been recently demonstrated that nano-antennas can enhance [14] and direct
the emission of single molecules [I5] and that they can play a key role in sensing ap-
plication [16]. Great potential in improving the efficiency of solar-cells should also be
mentioned [17].

Another class of artificial material which bears great potential in controlling the prop-
agation of light are photonic crystals. As many metamaterials they are periodic struc-
tures but with the difference that the lattice period as well as the feature sizes of the
constituents are comparable to the wavelength. In this case an averaging approach to
derive macroscopic material parameters is no longer possible. One of the most interesting
peculiarity achievable with photonic crystals is a photonic bandgap, a frequency range
where light propagation is forbidden. Back in 1972 Bykov pointed out [I8] the possibility
to realize a complete photonic band gap in a periodic medium but his work does not
attract great interest. The idea of control light by means of a periodic medium became
popular after 1987. In this year Yablonovich [19] proposed to use a three-dimensional pe-
riodic medium, which he called photonic crystal, to enhance the spontaneous emission of
atoms. In the same year it was proposed by John [20] that a disordered periodic medium
could be used to localize electromagnetic waves. Since then many interesting phenomena
were predicted. Summaries of them can be found in [21], 22]. Popular application using
predominantly the band gap of photonic crystals are for example photonic crystal fibers
[23], omnidirectional reflectors [24] 25], and high-Q cavities in defects of the crystal [26].
Not only the band gap attract interest but also the effect of the nontrivial dispersion
relation in non-forbidden frequency ranges on the emission and diffraction of light. The
combination of anisotropy and spatial dispersion leads to many peculiar effects including

superprism |27], and self-collimating phenomena [28] as well as self-guiding [29].



Organization

The focus of the work presented in this thesis, is the theoretical study of the peculiari-
ties of electromagnetic wave propagation in nano structured materials. Two distinct goals
should be achieved. One of them was to develop a semi-analytical approach to the prob-
lem of light interacting with plasmonic nano wire antennas in the optical spectral range.
And the other was to derive simple analytical formulas for both the emission spectrum
and the electric field distribution due to an uniformly moving charge inside a photonic
crystal.

The dissertation is organized in three parts. The first part (chapters 1 to 4) provides
an introduction to the basic theoretical concepts required for the subsequent parts. Part
two and three contain the main results of this work. In particular, in part two (chapter 5)
light scattering on plasmonic nano wires and in part three (chapters 6 to 8) Cherenkov
radiation in photonic crystals is analyzed.

The fundamental basics of electromagnetism in macroscopic media are presented and
discussed in chapter 1. In chapter 2, Maxwell’s equations are formally solved by means
of a Green’s function approach. It is also discussed how one can deal in an appropriate
manner with the arising singularities. In the subsequent chapter 3, the self-consistent
volume integral equation which determines the electric field in scattering problems is
derived and the scattering cross section is defined. Additionally the problem of plane wave
scattering on infinitely long cylinders is formally solved. In chapter 4, electrodynamics
in periodic dielectric media is discussed. The main result of this chapter is the general
solution for the electric field inside two and three-dimensional photonic crystals due to
currents both in time and frequency domain.

Chapter 5 presents the derivation of two alternative simple one dimensional integral
equations for the case of nanowire antennas, starting from the original three dimensional
volume integral equation presented in chapter 3 using the solution for plane wave scat-
tering problems on infinite cylinders also presented in chapter 3. The resulting integral
equations are solved by means of a method of moments approach and are compared
with each other as well as with rigorous numerical tools with respect to computational
demands and accuracy.

Chapter 6 presents the introduction to the subsequent two chapters dealing with
Cherenkov radiation in photonic crystals. In chapter 7 an exact expression for the emis-
sion spectrum is derived starting from the general solution in frequency domain presented
in chapter 4. The influence of topological properties of the dispersion relation on the

emitted power is discussed. As example the emission spectra of moving electrons with



different velocities in a 2D photonic crystal are calculated and compared with rigorous
numerical calculation. The starting point for chapter 8 is the general solution in time do-
main presented in chapter 4. An approximate electric field solution in time domain valid
in the far field regime is derived by means of a stationary phase approximation. Main
features of the field and their relation to topological properties of the band structure are
discussed. The obtained results are confirmed by comparison with rigorous numerical

calculations for a 2D photonic crystal case.
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1 Macroscopic Electromagnetism

The goal of the present chapter is to introduce the fundamental sets of equations and
physical ideas used in the subsequent chapters.

First, Mazwell’s equations in macroscopic media both in time and frequency domain
are reviewed and supplemented with constitutive relations relating the electromagnetic
field to the response of the medium. In section the electric response of macroscopic
media is traced back to forced dipole oscillations of bounded electrons. Next, Poynting’s
theorem and its interpretation as continuity equation describing energy conservation is
derived and briefly discussed. This chapter is finalized with the derivation of vector wave
equation in frequency domain, the vector Helmholtz equation, and the physical boundary
conditions the electromagnetic field at the interfaces between different media has to
obey. For more details the reader is referred to textbooks covering classic electromagnetic

theory [1], 2] 3].

1.1 Maxwell’'s Equations in Macroscopic Media

Since this thesis deals with macroscopic media, the electromagnetic fields of interest
are spatial averages over the microscopic fields at atomic level associated with discrete
charges. These averaged fields are considered as piecewise continuous functions of space
and are governed by the macroscopic Mazwell’s equations. In differential form and SI

units they are given by [

V x E(r,f) —aBg’t), (1.1)
V x H(r, ) aDa(z’” i), (1.2)
V -D(r,t) = p(r,t), (1.3)
V-B(r,t) =0, (1.4)

where E denotes the electric field, D the electric displacement, H the magnetic field and
B the magnetic induction. The fields are generated by the current density j and charge



density p associated with free charges which are connected by the continuity equation

V-j+ % =0 (1.5)
implicitly included in Maxwell’s equations. In order to reference these equations later on
we name them according to their experimental heritage, Faraday’s law , generalized
Ampere’s law (1.2)), and Coulomb’s law (L.3)). The add on ’generalized’ in Ampere’s law
is due to the first term on the right hand side of (1.2), namely the displacement current,
which was introduced by Maxwell based on theoretical considerations. The last equation
(1.4)) merely states the experimental fact that there are no magnetic charges. Neglecting

the magnetic response (magnetization) of the medium, the electric displacement D and

the magnetic field H are given by [I]

D=E+P, (1.6)
B

H-—, 1.7
m (1)

where P denotes the electric polarization (average electric dipole moment per unit vol-

ume), €p the permittivity, and pg the permeability of free space.

1.1.1 Time-Harmonic Fields

The time dependence of the electromagnetic field (E, H) governed by Maxwell’s equations
(1.1)-(1.4) can be separated from the space dependent part by imposing a sinusoidal time

variation e~ The real monochromatic electric field can then be written as

E(r,t) =R {E(r)e*i“’t} = (E(r)e*iwt + E*(r)ei“’t) : (1.8)

N —

where R {.} denotes the real part of the quantity in brackets and E* the complex conju-
gate of E. Similarly expressions (1.8 hold for all the other fields in Maxwell’s equations.

Substituting (1.6)) and (1.7) for D and B in (1.1)-(1.4) one yields Maxwell’s equations

10



in frequency domain governing the complex amplitudes

V x E(r) = iwpuoH(r), (1.9)

V x H(r) = —iw[cB(r) + P(r)] + j(r), (1.10)

V. E@r) = A VP (1.11)
€0

V. H(r) = 0. (1.12)

Obviously, the complex field amplitudes depend on the angular frequency w, i.e. E(r) =
E(r,w), however, this dependence is usually not explicitly written in this work. The
transition from a time-domain differential equation governing f(r, ) to the corresponding
one for the complex amplitudes f(r,w) can be performed by substituting f(r,t¢) with
f(r,w) and 0 f(r,t) with —iwf(r,w).

1.1.2 Spectral Representation of Time-Dependent Fields

The spectrum E(r,w) of an arbitrary time-dependent field E(r,t) is defined by the

Fourier transform -

E(r,w):/_ E(r, t)e™dt. (1.13)

o0

Since E(r,t) is a real valued field the spectrum fulfills

A~

E*(r,w) = E(r, —w). (1.14)

Substituting and for D and B and applying the Fourier transform (1.13)
to Maxwell’s equations in time domain (L.I)-(1.4) one yields Maxwell’s equations for
the spectral components. The resulting set of equations is of the form (1.9)-(1.12), with
complex amplitudes replaced by the spectra. Once the solution for E(r,w) has been

determined, the time-dependent field is calculated by inverse Fourier transform as

~

E(r, 1) 1/OOE(r,w)efwfdw. (1.15)

:% .

1.2 Constitutive Relations

The macroscopic Maxwell equations (1.1)-(1.4) together with (1.6) and (1.7) are not

sufficient by themselves. They must be supplemented with constitutive relations which
relate the response of the medium, in our case described solely by the macroscopic

polarization P, to the electromagnetic field. For weak fields the polarization P depends

11



linearly on the electric field E [I]. The most general form of such a linear dependence

can be written as
o0
P(r,t) = /d?’r'/ dt' o (r — v/t — B, 1), (1.16)
—0

where the response function 7 denotes the electric susceptibility tensor. Tensor quan-
tities in this thesis will be marked by a left-right arrow above a bold character. For an
isotropic medium the susceptibility tensor ? reduces to the unit tensor times the scalar
electric susceptibility y. Assuming further a local response, that is the polarization at

position r depends solely on the field at this position, equation ([1.16]) reduces to

P(r,t) = /_Oo dt' eox(r,t —t")E(r,t') (1.17)

(o]

which can be transformed into a relation in frequency domain
P(r,w) = eox(r,w)E(r,w) (1.18)

using the inverse Fourier transform (L.15)). Due to the form of the constitutive equation
, media with a frequency dependent susceptibility y are called time dispersive.

Causality enforces that the susceptibility x(r,¢ — ¢’) has to be zero for t' > ¢ because
the electric field applied in the future can not influence the present polarization. If one
views the integrand x(r,w)e™ ™! with ¢’ = 0 of the inverse Fourier transform as an
analytic function of w defined on the complex plane, the Fourier integral can be calculated
by means of the residue theorem [4]. For ¢ < 0 the contour has to be (i) closed in the
upper half space for which &(w) > 0 because otherwise the contour integral does not
exist, and (ii) should not enclose any pole of the integrand for the integral to vanish as
required by causality. Thus, necessary requirements for every reasonable physical model
are (i) x(r, —w) = x*(r,w) so that x(r,?) € R and (ii) that x(r,w) has poles only in the
lower half space.

Substituting in we can define the relative dielectric permittivity €,(r,w)
by

D(r,w) = eger(r,w)E(r,w)
=e€p [l + x(r,w)] E(r,w). (1.19)

12



1.2.1 The Dipole Oscillator Model

By treating atoms or molecules, the constituents of a macroscopic media, as classical
dipole oscillators forced by the electric field one can derive the frequency dependence of
the relative dielectric constant €,(w) or equivalently the susceptibility x(w) [5].

If one considers an electron bounded to the nucleus by attractive Coulomb force a
light wave interacting with the system enforces oscillations of the electron around its
equilibrium position. Damping also takes place due to energy loss by collision processes.
Ignoring the motion of the much heavier nucleus the displacement x of the electron with
mass m. and charge e is governed by an equation of motion of the form

d?*x dx
Me g + MeY—r + meng = —cE, (1.20)

with 7 denoting the damping rate, wg the resonance frequency and E the electric field

of the light wave. Assuming a monochromatic light wave of angular frequency w, that is

E = Ege ™!, the amplitude xq of the displacement x = xge~™? is given by

1
Xp = — s E. (1.21)
Me Wi — W — iYW

The displacement of the electron from its equilibrium position produces a time varying
dipole moment p = —ex. Taking into account that a medium consists of N atoms per
unit volume the macroscopic polarization P (dipole moment per unit volume) is given

in frequency domain by

Ne? 1
P-—" )
Me Wy — wW* — 1YW

In general there exists different bound electron oscillators (different parameters), forced
oscillators of other types like vibration of charged ions, or even free electron oscillators
if wg = 0. Inspecting one can see that the magnitude of P is small unless the
frequency is close to the resonance frequency wy. If we assume that the medium of interest
has n different forced oscillators with parameters {w{,v,} with resonance frequencies in
the spectral range of interest, and additionally some non-resonant ones which can be

comprehended in a non-resonant background term the electric displacement D can be

13



written as

Ne? 1
D = ¢E + Pbackground + m Z E

e — (wg)Q—wZ—i%w

= ¢pe B (1.23)

Then the relative dielectric constant is given by

62
er(W) = €00 + N Z 5 (1.24)

where €5 =1+ Xbackground-

1.3 Conservation of Energy: Poynting's Theorem

For a single charge ¢ the rate of doing work by external electromagnetic fields E and B
is qv-E, where v is the velocity of the charge. The magnetic field does no work, since the
magnetic force is perpendicular to the velocity. If there exists a continuous distribution
of charge and current density, the total rate of doing work by the fields in a volume
V is fvj - Ed3r. If the scalar product of E with the generalized Ampere’s law 1} is
subtracted from the scalar product of H with Faraday’s law the following equation

is obtained:

—-H- ——-E-— —j-E. (1.25)

Integrating both sides over the volume V' and applying Gauss’s theorem which is given

for a regular vector field a by [4]

/d3rV~a:§£ d*ra-n (1.26)
%4 oV

where n denotes the unit surface normal to the bounding surface OV of volume V pointing

outwards, equation ([1.25) becomes in integral form

/ (ExH)-ﬁdQT:—/jEd?’fr—/H~8—B+E~8—Dd3r. (1.27)
ov v v Ot ot
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By using equations (1.6 and (1.7)) one can substitute

oD 10 1/ 0E oP
E'—t—m(E'D)ﬁ(WP—EE) (1.28)
and 5 5
B o 2
Y. T (1.:29)

in (1.27) yielding Poynting’s theorem in the form

10 9
ExH) nd’r+-— E-D H 3
/av( X )ndr+28t V( + po | ])dr

:—/j-Ed?’r—l/ g. % _p.9E) 5, (1.30)
v 2 Jy ot ot

If the medium within the volume V' is linear and nondispersive the second integral on
the right hand side of (|1.30]) vanishes. By defining the Poynting vector

S=ExH (1.31)
and the energy flux density

(E-D + po [H|*) (1.32)

N | —

u =

Poynting’s theorem ([1.30]) for linear nondispersive media can be cast into the form of a

differential continuity equation or conservation law

ou .
VSt =-jE (1.33)

which states that the time rate of change of electromagnetic energy within a certain
volume plus the energy flowing out through the boundary surface of the volume per unit
time is equal to the negative of the total work done by the fields on the sources within

the volume. This is the statement of conservation of energy.

Poynting’s Theorem for Harmonic Fields

Assuming a harmonic time dependence e~™? the time domain fields E(r,t) and j(r,t)

can be expressed according to equation (1.8)) in terms of their corrresponding complex

15



amplitudes E(r), j(r) which leads to the scalar product

j(r,t)-E(r,t) = %% {j*(r) -E(r) +j(r) - E(r)e_%‘*’t} : (1.34)

The time average of these product is thus given by

1

((r. 1) - E(r. 1)) = SR {j"(r) - E(r)}. (1.35)

Therefore in the volume integral %fvj* - Ed3r instead of fvj - Ed3r should
be used where its real part gives the time-averaged rate of work done by the fields in
the volume V. Following the steps which leads to equation , but using frequency
domain Maxwell’s equations and instead of the time domain ones, yields

1 1 1
_/ (Ex H*) -adr=—-= / - Edr — —m/ (eoer [E]® — po [H|?) d3r. (1.36)
2 ov 2 1% 2 1%
Taking the real part of ([1.36) and introducing the time averaged Poynting vector
1 *
(S) 25%{E><H } (1.37)

one obtains Poynting’s theorem for harmonic fields

/ (S) -nd’r = —1/ R{* E} &+ 1cueo/ S{e} |E]* dPr (1.38)
ov 2 %4 2

v

where the second term on the right hand side vanishes for lossless dielectrics.

1.4 Vector Helmholtz Equation

Taking the curl of Faraday’s law (1.9) and using Ampere’s law (1.10)) to substitute the
curl on the right hand side of the resulting equation one obtains the inhomogeneous

vector Helmholtz equation
V x V x E(r) — K*E(r) = iwpp [j(r) — iwP(r)], (1.39)

with the free space wave number k% = w?eguo. By substituting (1.18)) for P this can be

expressed entirely in terms of E and the source current density j as

V x V x E(r) — E%e,(r, w)BE(r) = iwuj(r). (1.40)
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Figure 1.1: The pillbox volume with radius a and thickness 9 used to derive the boundary
conditions (1.51))-(1.54) for the electromagnetic field between two different

media in region 1 and region 2.

Likewise one can derive the vector Helmholtz equation for the magnetic field H by taking
the curl of Ampere’s law ([1.10)) and using (1.9 which yields

V x V x H(r) — K*H(r) = V x [j(r) — iwP(r)]
=V X [j(r) — iwepx(r,w)E(r)] . (1.41)

If the medium is homogeneous, that is 0 x=0, this simplifies to
V x V x H(r) — ke (w)H(r) = V x j(r) (1.42)

In a source-free and homogeneous region equations ((1.40) and (1.42) can be reduced

to the homogeneous vector Helmholtz equations

V2E(r) + ke, (w)E(r) = 0 (1.43)
VZ*H(r) + ke, (w)H(r) = 0. (1.44)

by using the vector identity
VxVxa=V(V-a)—Va (1.45)

and the divergence-free nature of E and H fields (Maxwell’s equations ((1.11)) and (1.12})).
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1.5 Boundary Conditions

Maxwell’s equations — have been written in differential form. They must be
supplemented with boundary and initial conditions. The boundary conditions can be de-
rived from the integral form of Maxwell’s equations. By integrating Maxwell’s equations
in differential form (1.I)-(L.4) over an arbitrary volume V' using Gauss’s theorem (.26

and the identity
/dngXa:yg d*ri x a (1.46)
ov

which can be derived from ((1.26)) by substituting a — ¢ x a where c is a constant vector,

one obtains Maxwell’s equations in integral form

§£ dzrﬁxE:—/ #rop (1.47)
ov v ot
515 dPrix H= / d3r2D+/ d3r (1.48)
2% 14 ot |4
55 d*ria-B=0 (1.49)
ov

§1§ dQT’fl-D:/dST‘p. (1.50)
ov v

Now consider a static interface separating regions 1 and 2 and a small pillbox volume

across the boundary interface as it is shown in figure (1.1)). Then the partial derivatives

with respect to time in ([1.47)) and ([1.48)) can be pulled out of the integral and transformed

into total derivatives. Now let the volume of the pillbox approach zero in such a way
that the thickness of the ribbon side, d, goes to zero before the top and bottom areas a
shrink to a point. The field vectors E, B, D and H are assumed to be finite but may
be discontinuous across the boundary. Therefore the volume integration over the field
vectors in and approach zero because they are proportional to 6. In the
case of a perfect electric conductor where current flow takes place only on the surface,
charge and current densities are infinite and their integral over the pillbox volume gives
finite results no matter how small the volume is made. However, throughout this thesis
we are dealing with dielectrics with zero or finite conductivity so all right hand sides of
(L.47)-(L.50) approach zero for a shrinking volume. In the surface integrals on the left
the fluxes through the ribbon sides vanish in the limit 6 — 0. Therefore the following
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boundary conditions are obtained

i x [E) — By] =0 (1.51)
i x [Hy — Hy] = 0 (1.52)
fi-[By— By =0 (1.53)
fi-[Dy — Dyl =0 (1.54)

Essentially the boundary conditions state that the tangential components of E and H

and the normal components of B and D are continuous across the boundary.
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2 The Electromagnetic Field
produced by Currents: Formal

Solution

This chapter is concerned with the formal solution of the vector Helmholtz equation
(1.40) which describes the electric field generated by a given current density j.

By introducing potentials, namely the scalar potential ¢ and the vector potential A,
and the Lorenz gauge condition relating them (section , the solution of the vector
Helmholtz equation can be written in terms of A where each component of A separately
solves a simple scalar Helmholtz equation. In the subsequent section the scalar Green’s
function of the scalar Helmholtz operator is (i) derived and (ii) used to write down the
general solution of the scalar Helmholtz equation. Finally the dyadic Green’s function is
defined and used to express the solution to the original vector Helmholtz equation. This is
in general only possible if one treats the singularity of the Green’s function appropriately.
A regularization procedure well suited for this task is presented. An extensive discussion

of the presented material can be found in textbooks such as [6] or [7].

2.1 Vector and Scalar Potentials, Lorenz Gauge

In order to solve Maxwell’s equations in the presence of charges and currents one can
introduce potentials, obtaining a smaller number of second-order equations, while satis-
fying the two homogeneous Maxwell equations and identically.

Since the magnetic induction B has to be divergence free one can express it through

the curl of a vector potential A
B=VxA. (2.1)

Therefore Faraday’s law (1.9) becomes

V x [E — iwA] = 0 (2.2)
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which can be automatically fulfilled if we replace the curl free term in brackets with the
gradient of a scalar function, namely, the scalar potential ¢. Then the electric field E

expressed in terms of the introduced potentials {¢, A} is given by
E =-V¢ +iwA. (2.3)

By inserting (2.1)) and (2.3]) into Ampere’s law (1.10)) and substituting D = €pe, E which

holds for every isotropic region one obtains
V XV x A = pj — iwppeoer(—Vo + iwA) (2.4)
which can be transformed into
V2A + ke, A = —jpj — V (iwpoeoer — V - A) (2.5)

using the vector identity (1.45). The transformation A — A + V[ with an arbitrary
scalar function f does not alter B and if one transform additionally ¢ — ¢ + iwf the
electric field does not changed either. This gauge freedom can be used to choose a set of

potentials {¢, A} satisfying the Lorenz gauge condition

V- A —iwppeper¢ = 0. (2.6)
which leads to the inhomogenous vector Helmholtz equation

VZA + ke, A = —puoj (2.7)

for the vector potential A. If the solution A of (2.7)) is already obtained, the Lorenz gauge
condition (2.6)) can be used to replace ¢ in (2.3)) yielding the electric field generated by

E = iwA + —" V(V'A> (2.8)

the current density j

wWHo€o €r

Thus equations (2.7) , (2.8) and (2.1)) form a set of equations equivalent in all respects

to Maxwell’s equations.
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2.2 Solution of the Scalar Helmholtz Equation

Each individual component of equation ({2.7) has the basic structure

£H¢ = —f(I‘), (29)

where f(r,w) is a known source distribution and £z = V2 + k? the Helmholtz operator.
In this chapter it will be shown how one can solve this scalar inhomogeneous Helmholtz

equation which is a key point in finding the general solution of Maxwell’s equations.

2.2.1 The Scalar Green’s Function of Helmholtz’s Equation

The scalar Green’s function g(r,r’) of the Helmholtz operator Ly = V2 + k? is defined
as a solution of (2.9) with a single point source, i.e f(r) — d(r — r’). The function 4(r)

acting as a point source is called Dirac delta function and can be defined by [I]
J (r — r') =0 forr#r (2.10)

and
/ §(r—1') & =1. (2.11)
Vv

A point-source excitation at r’ = 0 in an unbounded medium lead to a spherical sym-
metric Green’s function g(r) = g(r) which behaves well for all radial distances r > 0

from the origin since it satisfies

2

1
2 2 2
V2g(r) + K2g(r) = 5 [rg(r)] + Kg(r) =0, (212)
which can be written as )
d 2
- = 0. 2.1
(drz—l—k)rg(r) 0 (2.13)

The general solution of the above equation is

rg(r) = Ae'*" + Be =T (2.14)
and since r # 0, one obtains
eikr e—ikr
g(r)=A + B (2.15)
r r
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The first term represents an outward-traveling and the second term an inward-traveling
spherical wave (for e~ time dependence). There are no sources at infinity and so the
inward-traveling wave is nonphysical. Therefore B has to be set to zero. The constant A
can be determined by enforcing the proper singular behavior of the Green’s function at
r = 0. Integrating L1 = —J(r) over a small but finite spherical volume Vj with radius

0 around the origin one yields

eikr eikr 1
/ V2—d3r+k2/ — == (2.16)
Vi r v T A

The second integral on the left side vanishes in the limit § — 0 because the integrand is
of the order O (r‘l) while the volume element is O (r3). By looking at the Taylor series
expansion of the exponential term around the origin

eikr 1 k2

~-—-+ik— — 2.1
_ti 5Tt (2.17)

r

one can see that the argument from above is not valid only for the first term in the

expansion. Thus the constant A can be calculated by

1 1
lim/ vii == (2.18)
6=0 Jy. A

L__ with a real constant @ > 0 a calculation in spherical coordinates

N

Substituting % —

yields

1 5 1
Ve = dr———— = —— 2.19

/\/5 V2 + a2 (62 + a2)? A (2.19)
Now taking the limit a — 0 at finite 0 and afterwards 6 — 0 the fraction on the right
side is going to 1. Therefore one can see that A = 1/4r. Restoring the dependence r — r’/

one obtains finally

. eik|rfr/\
= —— 2.20
as a particular solution of Lyg(r,r') = —0 (r — /). If desired one can add homoge-

neous solutions ¢"(r,r’) of Lyg"(r,r’) = 0 to (2.20) to satisfy some desired boundary

conditions.
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2.2.2 The General Solution and Radiation Boundary Condition

In order to obtain the general solution of (2.9) by using the scalar Green’s function (2.20))

one starts from Green’s second identity [§]

/ (0121 — V2] dPr = }15 (01 Vha — 1oVl ] - Ad?r, (2.21)
.

ov
where 11 and 9 are required to be continuous differentiable in the closed region V U0V
and having piecewise continuous second derivatives in V. n denotes the unit surface
normal pointing out of the volume V. Next one substitutes 11 = ¢ (r’) and 2 = g(r, ')
but has to take into account that g(r,r’) at the point r’ = r does not fulfill the mentioned
demands for Green’s identity. So one has to exclude the point r’ = r from the integration.
This can be achieved by excluding a spherical volume Vy with radius 0 and center r,

leading to

/ () V2 (r,v') — g(r.t)V20(x)] o
V—Vs
= ;5 [w(r')V'g(r,r') — g(r,r’)V'w(r’)] ~hd?r. (2.22)
OV +0Vs

Next one can use the inhomogeneous Helmholtz equation (2.9) as well as the definition

of the scalar Green’s function to obtain

/ glr, ') f(x') d*r — §£ [¢(r’)V’g(r,r’) —g(r, r')V'w(r’)] D2
V-V v
= yéav [W(x)V'g(r,r') — g(r,x)V'y(r')] -ad*’. (2.23)

Substituting the explicit form of the Green’s function (2.20)) and taking the limit 6 — 0
the right hand side becomes

er) e

ikd
ik@nme—ﬁﬁ R-ady — 2 lim — R-nd' -
L i O Vb(r') - hdx (2.24)
— 1111 r)-n .

where R denotes the unit vector in the direction R = r’ — r. With the surface element
d?r" = §%sin 0dfd¢ one sees that the first and the third terms vanish in the limit § — 0

because they are O(d) and in the second term the integration over the solid angle yields
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—47 since R 1) . So the right hand side of 1) for 6 — 0 gives ¢(r). By using the
explicit form of g(r,r’) (2.20) in the residual surface integral in (2.23) and taking the

limit § — 0 one yields

(r) = lim /vv g(r,v')f(r) d3r’

0—0
1 eikR

ir Jo R

lv’w(r’) — () (ik:f{ — %)1 nd?r, (2.25)

as a general solution of in the sense that no boundary conditions have been specified
on ¢ or g. Up to now the solution is not yet unique. Applying Green’s second identity
again in a similar way as above but choosing an integration volume V' in which
there are no sources, that is f(r) = 0 for every r € V, and which is bounded internally

by the surface 0V; and externally by the spherical surface 9V, yields

1 eikR
b =L §£
At Jov.1ov, I

Under the assumption that the radius of the spherical surface 0V, goes to infinity the

- nd?r (2.26)

V'h(r') — 1 (x') (zsz - E)

integration over 9V,

kR o )
yﬁ < l—w(R) - z’kw(R)] d*r' + yﬁ ey (R) d (2.27)
ov, B [OR ov.
expresses the sum of all waves traveling inwards from 9V,. Therefore the surface integral

over JV, has to vanish. The second term vanishes because of the demand that v has to

be regular at infinity, i.e. ¢p — f(6, ¢)¥. For the first term to vanish it is sufficient that

0
lim R |—=v¢(R) —iky(R)| = 0. (2.28)
' —00 OR
Together with this so called radiation boundary condition the solution (2.25)) is unique.
Later on we are interested in solutions in unbounded space and with finite source region.
In this case there is just one bounding surface at infinity on which the regular solution

has to fulfill the radiation boundary condition ([2.28)). Then the general solution ([2.25))

simplifies to

6—0

(r) = lim /V_v g(r, ) f(x') &3, (2.29)

Because this integral converges, which means that the form of the excluded volume Vj

having a length scale 0 does not alter the result in the limit 6 — 0 [6], we write from

25



now on

b(r) = /V g(r ) F) & (2.30)

but one has to understand it in the sense of (2.29).

2.3 Dyadic Green'’s function

Each component of equation (2.7) which determines the vector potential A in Lorenz
gauge fulfills an inhomogeneous scalar Helmholtz equation (2.9) where the inho-
mogenity for each component is proportional to the corresponding component of the
current density j. In chapter the general solution to the inhomogenous Helmholtz
equation for an arbitrary inhomogenity f(r) was derived. If the source is contained
in the finite volume V' and placed in infinite free space a particular solution is given by
. Thus, a particular solution for the vector potential A produced by the current

density j in free space and with finite space extent is given by
A(r) = Mo/ g(r, x)j(x’) d*r'. (2.31)
1%

Which leads, according to (2.8)), to a partial solution for the electric field

1
WEeQHOEr

1
— i (T + 5V e v) / g, ¥)j(x') dr. (2.32)
1%

E(r) = iwA(r) + VIV-A(r)]

Here ® denotes the tensor product defined by [a ® b]ij = a;b;. If the view point r is
at a source free position, that is j(r) = 0 and the current source j is at least piecewise
continuous in V', the integral in has constant borders and is well defined so the dif-
ferential operator and the integration can be interchanged yielding a particular solution

of the form

E(r) = iwpo /v <8(1‘,1"')j(r/) a3, for j(r) =0, (2.33)

with the dyadic Green’s function
— 1
G (r,r) = ( [+5Ve v) g(r, ') (2.34)

which can be calculated explicitly from the scalar Green’s function ([2.20)

kR . . 2 P2
e kR—1\+~ 3-3ikR—k*R°R®R
Gre)=1p { (1 + W) U+ I } - (23)
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From equation one can conclude that 8(1‘, r')x, the first column of 8(1",1"), is
the electric field at position r due to a point dipole with X-direction at position r’ and
a current density j = (iwpo) '%d(r — 1’), just as the second and third column are for
point dipoles with y and z orientation respectively. Thus the dyadic Green’s function is

a solution of the following Helmholtz equation
V x V x <8(1‘,1") — k‘Qﬁ(r,r/) = <T>5(r —1') (2.36)

For j(r) # O the interchange of the differential operator and integration which was

done in the step from (2.32) to (2.33) is no longer valid because the differentiation leads
to singularities 9;0;9(r,r') o |r — r’]_S which are generally not integrable. But it is
possible to split second derivatives of A in (2.32) into three terms in such a way that

each term is a convergent integral without a differential operator in front [9] (a proof is
given in appendix

82
8x¢6xj

lij = /Vg(r, v)j(r) &> = Ajj + Bij + Oy (2.37)

The separate terms are given by

82
o . N,
Ajj /V_V*J(r)axgax;g(r,r)d r (2.38)
. 0 .
Bij = j(r) yg 5.790(r, 1) (3 - 1) d*r”, (2.39)
v+ 0T
Cii = '(r')a—2 (r r') — (r)é)—2 (r r') d3r’ (2.40)
1] — . J 8:(:;3:16;‘(] ) J ax;ax; go\r, r. .

Here, gg denotes the static Green’s function

go(r,r') = lim g(r,r') = L (2.41)

k—0 4 e — 1|

and V* an arbitrary shaped principal volume containing the singular point r
By substituting (2.37) in (2.32]) one obtains finally the regularized partial solution to

the vector Helmholtz equation

E(r) = iwpug { ﬁ (r,v)j(r)d®r +
V-v=

J *[mrw—%(vWa&nr'ﬂm | LT} e
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Here ? denotes the source dyadic

1 Roh ,
?:E e (2.43)

which accounts for the depolarization of the excluded volume V* and turns out to depend

entirely on the geometry of the principal volume not on its size or position [10].
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3 Scattering of Light

Up to now we have derived the formal solution to the vector Helmholtz equation under
the assumption that the current density distribution j is known. However, if one discusses
the problem of light scattering on a material body the current density distribution is not
given but rather induced by the electric field.

In section the expression relating the induced current density and the total
electric field are derived leading to the wvolume integral equation whose self-consistent
solution is the electric field. For deeper discussions of the material presented in this
section the interested reader is referred to textbooks such as |3 [7].

Section outlines the derivation of the formal solution to plane wave scattering
on infinite long cylinders which can also be found in textbooks, for example in [IT]. This

chapter is finalized with section (3.3|) where the total scattering cross section is defined.

3.1 Volume Equivalence Theorem and The Volume

Integral Equation

The electric field Eg in free space generated by a source current density j is given by a

solution of the inhomogeneous vector Helmholtz equation (|1.40)
V xV x EO — k2E0 = iw,uoj. (3.1)

In the presence of a dielectric medium represented by a space dependent relative per-

mittivity €,(r) the same source j generates the electric field E governed by
V x V x E — E?6.(r)E = iwpuqj. (3.2)

Subtracting (3.2)) from (3.1)) one obtains

V x V x (E—Eg) — k* (e-(r)E — Eg) = 0 (3.3)
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Now it is reasonable to define the scattered electric field Eg to be the difference
E, =E — Eg (3.4)

which vanishes if there is no medium present. Substituting this definition in equation
(3.3) it can be rewritten in terms of the scattered field as
VxVxE;—kE;=k (e(r) -1 E
= iWojeq- (3.5)

Equation (3.5)) states that the electric field Eg scattered by a scatterer is generated by

the equivalent current density
Jeg = —iweg (e(r) —1)E (3.6)

which exists only in the region where ¢, # 1, that is inside the scatterer. By using the
equivalent volume current j., as a source in equation (2.42)) and taking into account (3.4

one obtains the volume integral equation

E(r) = Eo(r) + k2/ AG(1‘/)<8(r, v\ E(r')d>r

V-v*

+ /* [/{:QAe(r’)@(r,r’)E(r’) — A¢(r) (V- [Vgo(r,r')}) E(r)] a3
~Ac(r)TE®r) (3.7)

where Ae = ¢, — 1 denotes the permittivity contrast between the medium and the
background. The self-consistent solution E(r) of (3.7)) is thus the total electric field due
to scattering of the incident field Eg on the scatterer described by €,(r).

3.2 Scattering on an Infinitely Long Cylinder

A physically realizable time-harmonic electromagnetic field with complex amplitudes
(E,H) in a linear, isotropic, homogeneous, source free medium must satisfy the homo-

geneous vector Helmholtz equations as was shown in section

V2E + k?¢,E = 0 (3.8)
V?H + k*¢, H =0 (3.9)
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and must be divergence-free. Additionally E and H are connected via Maxwell’s equa-

tions ([1.9) and (1.10)

V x E =iwppH (3.10)
V x H = —iwepe, E (3.11)

If one applies the Helmholtz operator V2 + k%, on the divergence-free vector function
M=V X (cp) =—cx Vi (3.12)

with ¢ being a scalar function and c an arbitrary constant vector one obtains
VM + k26, M = V x [c (V) + kPet))] (3.13)

by applying the vector identity (1.45) twice. Therefore, M satisfies the homogeneous

vector Helmholtz equation if ¢ is a solution to the scalar wave equation
V24 + E2eqp = 0. (3.14)

Another divergence-free vector function N proportional to V x M can be defined as

V x M

N:
k

. (3.15)

It is straightforward to show that N is a solution of a homogeneous vector Helmholtz
equation as long as M is its solution too. Furthermore, the curl of N is proportional to
M

V x N = ke, M. (3.16)

Thus the vector harmonics M and N have all the required properties of an electromag-
netic field; they are divergence-free, satisfy the vector wave equation and the curl of
one of the vector harmonics is proportional to the other one. Therefore the problem of
finding solutions to the field equations reduces to the problem of finding solutions 1) of
the scalar wave equation (3.14]) which reads in cylindrical coordinates (p, ¢, 2)

10 [ o 10% 0% _
o (pa_p> Ty o e =0. (3.17)
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Considering an infinite cylinder with radius a a solution of (3.17) can be derived in closed

analytic form. The space dependent permittivity in this case is given by

e forp<a
er(r) =€-(p) = . (3.18)
1 forp>a

To simplify the discussion the cylinder region with p < a and the background region with
p > a are referred to as region I and region II, respectively. Substituting the separation

ansatz

V(p, ¢, 2) = f(p)g(d)h(z) (3.19)

in (3.17) and converting the partial derivatives to ordinary ones one obtains

1d?f 11df 114d% , 1 d>h
Bl Rt ARt AT 1 e 3.20
Fad2 " Fpap Tgder TN T TR (320

Only the term on the right hand side depends on z. To fulfill (3.20) for every z the right

hand side must be a constant. Choosing the constant to be k2, h has to solve

d’h

== —k2h. (3.21)

Substituting this back into (3.20]) one obtains

2 g2 2

pd”f pdf ldg 2\ 2

Pel  PU 289 | (12, —k2) P = 2
Fap gt gage t (e )0 =0 5:22)

Now the ¢-dependence is contained only in the third term on the left hand side of ([3.22))

and one can use the argument from above to postulate

d%g

with n € Z because g(¢) has to be periodic. With this substitution one finally obtains

oPf | df
p* a2t gt [(kpp)” —n?] f=0 (3.24)
with
k2= ke — k2. (3.25)

Equation ([3.24) is recognized as the Bessel differential equation whose linearly indepen-

dent solutions are the Bessel functions of first and second kind, J,, and Y,,, of integral
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order n [II]. Possible solutions of equations (3.21]) and (3.23|) are exponential functions.
Therefore, the solution of (3.17) can be written as

Yulp, ¢, 2) = Zn(kpp)ePe't=? (3.26)

where Z,,(k,p) is a solution of the Bessel equation ([3.24). The solution in region I must
be regular at p = 0, which means that Zfll)(kpp) has to be proportional to J,(k,p). In
region IT the solution must be an outward traveling wave regular in the limit p — oco. A
solution of Bessel’s differential equation which fulfills these requirements is given by the
Hankel function of the first kind Hr(Ll)(k p) = Jn(kyp) + iYn(k,p). Therefore Zy(LH)(kpp)
has to be proportional to Hfll)(kpp) [11].

Form the solutions of the scalar Helmholtz equation ), full wave solutions can be
generated using equations and with ¢ = z. Thus the electromagnetic field

in region I can be expanded as

i ( N >) (3.27)

gO - _* Y B (anNﬁP +erbnMg)> (3.28)

iwjto
n

and the scattered field in region II as

Z ( M 4+ a4, N )) (3.29)

k (1) (H))
Hs = - En nNn nMn .
o 3 (c +d (3.30)

n=—oo

with unknown constants {FE,, an, b, ¢p, dp}. The vector harmonics {1\/17(11)7 Ng)} and

{MgI), Ngl)} in regions I and IT are generated by wg) o Jn(kyp) and w%l) o< H,sl)(k:pp)
respectively. The total field (E(H), H(H)) in region II is given by the sum of the scattered
field (Eg, Hs) and the incident field (E;, H;). Having an explicit expression of the inci-
dent field (E;, H;) expanded in vector harmonics, physical boundary conditions
and enforced on the cylinder’s interface p = a enables the determination of the
unknown constants { Ey,, ap, by, ¢n, d,} and the scattering problem is completely solved.

An incident plane wave E; = Eoe““’f"r propagating in the direction k = —sin ExX —
cos £z, where £ is the angle between the incident wave and the positive z-axis (incident

angle), can be decomposed into two orthogonal polarizations where the one with the
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electric field polarized parallel to the zz-plane (incident plane) is given as an expansion

in vector harmonics by [11]

Bl = 3" EINY (3.31)
OILIER

alh— K N gl 32
= _Z: (3.32)

and the one with electric field polarized orthogonal to the zz-plane by

B = —i E ErmY (3.33)
(L) o ol

g - E EINy, 3.34
Z i —— o

where the vector harmonics in both cases are generated by 1/1,(11') = Jp(kpsin &)einde=kzcosé
and

o (=9)"

||7J-
E =F . 3.35
" 0 ksin{' ( )

In order to satisfy the continuity of the tangential field components (boundary condi-
tions and (1.52)) for all values of z on the cylinder’s interface, k, in the generating
functions @b,%) and w,(}f) has to be equal to the one of the incident field, that is k, =
—kcos€. Now the system of equations to determine the constants {E,, an, bn, ¢n, dn}

is complete and can in principle be solved.

3.3 The Total Scattering Cross Section

The total scattering cross section o, is defined as total time averaged radiated scattered
power divided by the norm of the time averaged incident Poynting vector, that is
b d*r - (Sscar)

o5 = T (3.36)

where the integration has to be performed over the closed surface S. n denotes the unit
normal pointing out of the surface. If one chooses the surface S to be a sphere far away
from the scattering region, one can be sure that the outward traveling scattering wave

is transverse. The electric and magnetic field in a transverse electromagnetic wave in
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vacuum are related to each other according to
. E
H=kx — 3.37
<5 (3:37)

where Zy = \/po0/€o denotes the vacuum impedance and k the unit vector in propagation
direction. If the incident light is a monochromatic plane wave it is transverse too and

the time averaged Pointing vector is given by (S) = 4R {E x H*} (see equation 1.37) so
that

_ %{gﬁSdQTﬁ- [Ef X (lA{ x E?)]}
1R {E; x (ki x E) }|

Os

(3.38)

Using the vector identity a x (b x ¢) =b(a-c) —c(a-b) and the facts that E | k as

~

well as k = n for a spherical surface at infinity equation (3.38)) reduces to

¢ d?r |Eq|

S S

o= 0 (3.39)
E;|?
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4 Principles of Photonic Crystals

The goal of this chapter is to provide the physical ideas and mathematical tools used in
the discussion of electromagnetic wave propagation in periodic dielectric media, photonic
crystals. After rewriting the vector Helmholtz equation in a way that one can identify an
Hermitian differential operator (section which enables the solution to be expanded in
eigenfunctions (so-called eigenmodes or eigenwaves), the influence of periodicity in €, on
the eigenmodes is discussed. Specifically, Bloch ’s theorem and Bloch’s form of eigenwaves
are presented in section . Based on Bloch’s theorem the existence of a band structure
and its symmetries are proven and the Brillouin zone is defined. Finally the retarded
Green’s function enabling the formal solution of the vector Helmholtz equation is derived
in section . The chapter should not be considered as a comprehensive introduction
to the theory of electromagnetic wave propagation in photonic crystals but rather as a
minimal introduction sufficient for the appreciation of the results presented in this thesis.

For more details the reader is referred to existing textbooks on the topic such as [12} [13].

4.1 The Wave Equation

The inhomogenous vector Helmholtz equation (1.40) governing the electric field gener-

ated by the current density j can be transformed by dividing through ¢, into

1 2
— VUxVXxE=2E+
er (1) c?

By defining a new field Q(r) via

iwho

m_]. (4.1)

Q(r) = Ve (r)E(r) (4.2)

equation (4.1) can be written in terms of Q as

w2 1w
(H - _2> =5 )
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with the operator H defined by

HQ = %{r) (v < (7 x %@Q)). (4.4)

The motivation for this reformulation in terms of Q is that the differential operator H
is Hermitian for real e, [12] whereas the original vector Helmholtz operator is not. An
operator L is called Hermitian if (CF,G) = (F, L£G) holds for arbitrary vector fields
F(r) and G(r). Here the inner product (.,.) of the two complex vectorial functions F
and G is defined by

(F,G) = /d37“ F(r) - G*(r), (4.5)

where G* denotes the complex conjugate of G. Using the vector identity
V-(axb)=(Vxa)-b—a-(Vxb), (4.6)

Gauss’s theorem (A.3)), and the definition of the inner product one derives

(HQ;, Q;) :/Vd?’r le (VX 3;)] 361

= 2y XQ—; x& ‘N 3y xQ—? . x&
= Kv \/_) \/_} o (V f) (V f)
(4.7)

Here the Q;’s with subscript ¢ € {0,1,2,...,00} denotes the eigenfunctions of H defined

by the eigenvalue equation

w2

HQu(r) = 5Qu(r). (1)

Imposing periodic boundary conditions on 9V (see section , the surface integral
vanishes. Applying identity (4.6) a second time one obtains

= (Qi, HQj) (4.9)

which implies that #H is an Hermitian operator. It is easy to show that (i) the eigenvalues
of an Hermitian operator are real and that (ii) its eigenfunctions constitute an orthogonal

2

complete set [4]. This has two consequences (i) w; is a real quantity for every i €

{0,1,2,...,00} and (ii) that the set of eigenfunctions Q; can be used to expand the
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solution Q of equation (4.3)). Inspecting again (4.7)) with j = ¢ which yields

2
(HQ:, Qi) = =5 (Qi. Q)

1
= / d3r =
v &

one can see that w? > 0. Therefore the eigenfrequencies w; are real. Because eigenfunc-

2

Q;

V><\/a

(4.10)

tions with eigenfrequencies w; and —w; are identical one can restrict the eigenfrequencies

to be non-negative. As long as w; # 0 it holds

2

o (Vi) Ze- (v (o La)

w

0. (4.11)

That’s why the corresponding eigenmodes are called quasi-transverse and will be labeled

by (7). Additionally there exist eigenmodes with eigenfrequencies w; = 0. They are

1
\% Q| =0 4.12
( L ) (412

and because (4.11)) is not fulfilled by these modes they are called quasi-longitudinal and
they will be labeled by (L). It is important to mention that only the set {QgT), QEL)}

(3

solutions to

is complete and so this set has to be used as the basis for an expansion.

4.2 Translational Symmetry

Being an optical analogy of crystalline solids, a periodic medium (photonic crystal) is a
space lattice built of basic blocks, “atoms”, with macroscopic dimensions. The lattice is
characterized by translational symmetry. This means that there exists a basis {a;, az, ag}
such that the structure remains invariant under translation with any vector build by an
integer linear combination of these basis vectors. If one chooses a basis {a;,as,as} in
such a way, that, if the origin of the coordinate system coincides with a lattice site, the

position vector of any other site is given by
R = l1a; + lbas + [3a3 (4.13)

where [, a = 1,2, 3 are integers, the parallelepiped spanned by the basis is called unit

cell and the basis vectors {aj, ag, a3z} primitive unit vectors.
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4.3 Periodic Functions and Reciprocal Lattices

A dielectric non-magnetic photonic crystal is described solely by its dielectric function,

which, reflecting the translation symmetry of the lattice, must be periodic
& (r+ R) = €.(r) (4.14)

for all points r in space and for all lattice translations R (4.13)). Because of its periodicity

we can expand the dielectric function in a Fourier series

er(r) =Y e(G)e'®™. (4.15)

G

where the G’s are wave-vectors with units [m~!]. The periodicity condition (4.14) re-
stricts the wave vectors G in the Fourier series. The allowed ones have to fulfill the
condition

exp(iG-R)=1 < G-R=2mn (4.16)

for all lattice vectors R and integers n. G’s which fulfill this condition are called reciprocal
lattice vectors. One defines a basis {131, 132, 133} in the space of reciprocal lattice vectors,

the so called reciprocal space by
4 b =2m0,5, @, f=1,2,3 (4.17)

where the a’s are primitive unit vectors of the real lattice and d;; the Kronecker delta
function defined by d;; = 1 and d;; = 0 for 7 # j. Condition (4.16) is fulfilled if G is
given by an integer linear combination of {61, ba, 53} Therefore the reciprocal space is
a periodic lattice too.

In summary, when the Fourier series of a lattice-periodic function €,.(r) is taken, we

only need to include terms with wave vectors that are reciprocal lattice vectors.

4.4 Translation Symmetry and Bloch’s Theorem

If the dielectric function is lattice-periodic (4.14]), the differential operator H (4.4) is also
lattice-periodic, that means
H(r+R) = H(r) (4.18)
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for all points r in space and for all lattice translations R (4.13)). For every R we can

introduce the translation operator T such that

Tr/(x) = f(r + R) (4.19)

where f(r) is an arbitrary function. Then an application of T to the eigenvalue equation

[TF) gives

TrH(r)Qi(r) = H(r + R)Qi(r + R)
H(r)Qi(r + R)

H(r)TrQi(r). (4.20)

This simply means that Tg commutes with . Thus the operators H and TR have a

common system of eigenfunctions (e.g. [14]):

w2
HQi(r) = c—éQi(r)
TrQi(r) = ¢(R)Qi(r) (4.21)

Applying two successive translations to the eigenfunction Q;(r) we get

TRTR’Qi(r) = C(R)TRIQZ(I‘) = C(R)C(R/)QZ(F)
|| (4.22)
Tr+rQi(r) = c(R+R)Qi(r)
It can be seen that the eigenvalues of the translation operator have to obey
c((R+R) =c(R)c(R) (4.23)
which is fulfilled if one chooses
¢(R) = kR, (4.24)

Up to now k can be any wave vector, i.e. any linear combination of the reciprocal
basis vectors {f)l, bo, 153} but for the eigenfunctions Q;(r) to fulfill periodic boundary

condition in each space direction

Qi(r + Noaa) = Qi(r)
= eNokda(r) (4.25)

40



with « € {1,2,3}, a set of integers N, and the lattice basis vectors a,, k must be a

reciprocal lattice vector
k = Z Mo ba (4.26)

with integer m,. Therefore
TRQi(r) = eik'RQi(I‘) (4.27)

with k being a reciprocal lattice vector, must hold for every eigenfunction Q;(r) of a

translational invariant operator. Equation (4.27)) is known as Bloch’s theorem.

4.4.1 Bloch Eigenwaves

There is another common way to formulate Bloch’s theorem: The eigenfunction Q;(r) of
a translational invariant operator, can be chosen to have the form of a plane wave times

a vector function qy(r) having the periodicity of the lattice, i.e.

Qi(r) = qi(r)e’™” (4.28)

with
ax(r + R) = qx(r) (4.29)

for all points r in space and all lattice translations R. This can be seen by substituting
(4.28)) in (4.27)

TrQi(r) = qi(r + R)e™ TR = Ry (r)elr, (4.30)

which holds if qx(r) is a lattice periodic function. Eigenfunctions of the eigenvalue prob-
lem (4.8) in the form (4.28)) are called Bloch eigenwaves, or simply, Bloch waves. They are
the eigenmodes of a periodic medium and form a complete set of orthogonal functions

which can be used to expand any solution of the eigenvalue problem (4.8) .

4.4.2 Existence of Photonic Band Structure

Imposing eigenfunctions in the Bloch form

Qun(r) = qun (r)e’™™, (4.31)
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the lattice periodic function qy,(r) is determined by the eigenvalue problem

al)]] = B @32

[(v +ik) x {(v +ik) x

1
\/ € (1)

which justifies the use of the parameter k as a label for the eigenfunctions. There could be

e(r)

many solutions for a given k which are labeled in increasing order of their corresponding
discrete eigenvalues by the index n € {1,2,..., 00}, the so called band index [12]. Because
of the lattice periodicity of qy, we can regard as an Hermitian eigenvalue problem
restricted to a single unit cell of the crystal. Each of the discrete eigenvalues is expected to
vary continuously as the wave vector varies. In this way, a family of continuous functions,
the dispersion relation, w = wy (k) is defined. The information contained in the dispersion

relation is called the photonic band structure of the photonic crystal.

4.4.3 Brillouin Zone

One important feature of Bloch waves is that different values of the wave vector k do not
necessarily lead to different eigenwaves. In fact, for an eigenwave with the wave vector

k = k' + G, where G is a reciprocal lattice vector, Bloch’s theorem (4.27)) reads

an<r + R) _ ei(k’+G).Ran(r)
_ eik/'ReiG'Ran(I‘)

= e RQu(x). (4.33)

The last equality is due to the definition of the reciprocal lattice vector G . In other
words, relation states that the eigenmode Qy,(r) satisfies Bloch’s theorem (|4.27))
for a wave vector k’. So the original label k is not unique. Therefore, every eigenmode
has a whole group of possible wave vectors, differing from one another by the vectors of
the reciprocal lattice.

It is common to choose the value of G in k = k' 4+ G to make |k’| as small as possible,
i.e. to be nearest to the origin of the reciprocal lattice. The zone given by this condition
is called the first Brillouin zone. It is evident that one can reduce any wave vector k
in the reciprocal space to a point in the first Brillouin zone, so any eigenwave can be

characterized by its reduced wave vector.
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4.4.4 Time-Reversal Symmetry

There is another useful property of photonic bands namely time reversal symmetry. The
time reversal symmetry states that any photonic band structure has inversion symmetry
even though the crystal structure does not necessarily have it.

Comparing the wave equation (4.32]) with its complex conjugate

[(v — ik) x [(V _ ik) x Lq;;n(r)” - w—%lqin(r) (4.34)

\/ € (1) ¢

taking into account that eigenfrequencies are real (section [4.1), one can see that the

er(r)

Bloch wave qy, (r) satisfies the same wave equation as qy,(r) (4.32) with exactly the

same eigenfrequency, but with the wave vector —k. It follows that

wn (k) = wn(—k) (4.35)

d—kn(r) = g, (r). (4.36)

So the band structure of the crystal has inversion symmetry even if the crystal itself
has not. Taking the complex conjugate of qy,, is equivalent to reversing the sign of time
in the Maxwell equations. So, the properties (4.35) and (4.36]) are consequences of the

time-reversal symmetry of Maxwell’s equations.

4.5 Retarded Green’s Function, Solutions of the
Wave Equation

To calculate the electric field generated by currents one has to solve the inhomogenous

vector Helmholtz equation (1.40) which can be written in the alternative form (4.3))

2
(7—[ - ‘;’—2) Q=j (4.37)

with a source
iwpto

j.
er(r)
The eigenmodes Qy,, of the operator H form a complete set due to the Hermitian nature

of H (see section [4.1)) therefore the solution to (4.37)) can be written as a superposition

j= (4.38)

of eigenmodes

Q = Z Cankn (439)
k,n
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with coefficients cy,. Using the eigenvalue equation (4.3) and the form (4.39) of Q,

equation (4.37)) reads
2 2
w w <
) cun <—Cl§n - _c2) Qin =J- (4.40)
kn

If one normalizes the eigenmodes so that

/ d37’ Qﬁ,n,(r) : an(r) = V(Sk’k(;n’n (4.41)
|4

where V' denotes the volume of the photonic crystal, one derives

2

Clepy, = m /V d*r Qg (r) - j(r) (4.42)

kn

by multiplying (4.40) with Qj, , and integrating over the volume V. Substituting (4.42)
back into (4.39) and using the vector identity (a-b)c = (a ® c) b one obtains the solution

of equation (4.37)) in the form
Q)= | &' G (). (4.43)
|4

with the dyadic Green’s function 8(1‘, r’) given by

Gr,r)= G lim Z ( 8] & B ©) (4.44)

§—0+ W — Wkn + i(S) (w + Wkn, + i(S)'

The infinitesimal positive constant 0 is introduced to assure causality in time space as
will be shown shortly. The inverse Fourier transform ({1.15) applied to the solution in
frequency domain (4.43)) yields the solution in time domain

Q(r,t) = / d3r! /OO dt' G (e, t — (', ) (4.45)
14 —00

44



g
with the dyadic Green’s function in time domain G (r,r’, 7) given by the inverse Fourier
transform of ﬁ(r, ')

1 [~ ,
?(r, v, 1) = — dw <a(r, v w)e T
2 e
— 02 * /
Y Q) © Q)
kn
o) —WwT
. lim / ¢ Tdw . (4.46)
50+ | _ oo (W — wip + 16) (W + Wiy, + 70)

In order to assure causality it is required that
Gr,r' t—t)=0 t >t (4.47)

Using the residue theorem with contours as depicted in figure (4.1]) one obtains the causal
result of the integral in (4.46))

lim
6—0

(o) —iwT ] _ 27 sin(wien7) for7>0
/ c - ien = (4.48)

oo (W= Wiy, +10) (W + Wiy + ©0) 0 for 7 <0

Therefore the retarded dyadic Green’s function in time space results in

2 ; oy
Gle 1~ )= 3 (w‘:k(t ) Quen(r) @ QL (). (4.49)
kn "

In this work we assume that the whole R? is filled by the photonic crystal. In this
case the sum over k goes over into an integration over k. This transition can be deduced
in the following way. If one considers a square volume V = L3, taking into account the
Bloch form of the modes and imposing periodic boundary condition on V for the
plane wave part exp(ik - r) = Hi:l exp(ikqrq) of the modes, it has to fulfill

exp(ikara) = exp (ikq(ra + L)) (4.50)

which restricts the wave vector k to be of the form

2Tng
ko = 4.51
- (451)

3
with n, € Z. Thus a k-space-volume of (2%) = @ belongs to every triple (n1,n2,n3)
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Figure 4.1: Contour used to perform integration ({4.48|)

so that one can make the substitution

S (2‘;)3 /Bzd?’k:... (4.52)

k

where the subscript BZ indicates that one has to integrate over the first Brillouin zone
(see section [4.4.3)). Applying this substitution in equation (4.43]) and splitting the com-
plete set of eigenmodes into quasi-transverse (7') and quasi-longitudinal (L) modes (see

section [4.1)) one derives the electric field in frequency space due to a current density

j(r,w)
E(r)Z—z’ o Eoéémz/wds /d3 :
B0 OB ) BB 0
<(w — Wkn, + 19) (W + wiy, + 90) (w1 0)? j(r' w) (4.53)

where the definition of Q (4.2) was used to express the solution in electric field modes

Egg and El(f;) which are solutions of

2
VXV x B = S B (4.54)
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and

V xEX =0 (4.55)

)~
respectively. The orthonormalization condition (4.41) in terms of Ey, and in infinite

space reads

/ Pre(r)B B = (27)% 6030,k — K) (4.56)

where o, § € {T, L}.

The solution of the wave equation in time domain

er(r) 0 X
V xV xE(r,t)+ = wE(r,t) = —p004j (4.57)

can be written by using the dyadic Green’s function (4.49) in time space as

1 t
E(r,t) = § / a3k / a3 / dt’
2m)’ e <~ Jpz o

o (1 e 0.
(sm (kak( ))EI((CZ)(r> Q El(g;z)*(r/> 4t — t/)El({?(r) ® El(i) (r’)) %J(r/, t') (4.58)

where the pre factor (t —t’) of the longitudinal modes comes into play because

lim sin (wy, (t —t'))
wWkn—0 Wkn,

=t—t. (4.59)

If one assumes further that the current source is switched on adiabatically, that means

j(r,—o0) = 0, the -integration can be carry out by parts which results in

1 t
E(r,t) = E / Bk / a3 / dt’
(2m)’ €0 5~ JBz o

(cos (wien (= )) EL () @ B () + BN (1) Efjj*(r’)) i 1), (4.60)

Equations (4.53) and (4.60) are the main results of this chapter and they form the basis

for our subsequent work.

4.6 Two-dimensional Photonic Crystals

A two-dimensional photonic crystal is periodic in a plane and continuously in the per-
pendicular direction. The eigenmodes Qy,, as well as Ey,, in such a crystal depend only

on the vector r| laying in the periodicity plane. Choosing the coordinate system in such
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a way that r) = ax +yy and r| = 22, the derivatives with respect to z have to be zero
and so the eigenvalue equation (4.37)) splits into

2
HOQY, (x)) = wl(Q'an)n(rn) (4.61)
and 2
HY Q. 1yn(r)) = %Qakun(rﬂ) (4.62)
with
y»_ 1 ( 0y 00y > L (4.63)
Ve \ 0,0, 0% ) /=)
and
HO = L (921 2) (4.64)

e(r)) e(r))

The operator #1) and H?) are both Hermitian [I12]. Therefore each of their correspond-
ing eigenfunctions {Q, xn(r|)} and {Ql(<2”)n(r“)} separately form an orthogonal complete
set. If the current density does not depend on z, one only needs the set {Ql(jl)n(r”)},
which separates into quasi-transverse (7) and quasi-longitudinal (L) modes (see section
4.1]), in the expansion of the dyadic Green’s function. Normalizing these eigenfunctions

according to
/V@) &) Ql(fu)?ga)*(rH) ‘ Ql(f;l)y) (r)) = V605011 S (4.65)

where V(%) is the 2D volume (plane) on which periodic boundary conditions are imposed
and «, f € {T, L} for transverse and longitudinal modes respectively, equation (4.43)
still describes the solution of (4.37) but with the transitions V — V& and Qy,, — Ql((2”)n
in the Green’s function ([£.44). Thus the dyadic Green’s function in this case is only 2

dimensional. The transition from finite to infinite 2D photonic crystal causes Ve

(2) . . .. .
R?2 and Zku = % fBZ d2kH ... so that the normalization condition in terms of

El({zﬂ)n(rﬂ) becomes

/d27"| E(I‘||)El((2H)TEa)*(I'H) El(f,“)é,ﬁ) (I‘”) = (27T)2 5a55<k“ — kh)&ln/ (466)
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and the electric field solutions

Blr) = =i 7 5156&2 / &k / &)

Efu)i e I R G R TDA W
_ ) w) (467
(w — Wieyn T Z5) (w + wieyn + 25) (w+ 25)

and

E(r|,t) =G GOZ/BZdlq/dq/ dt’

(cos (wryn (= ) BE o @ BE (1) + BP0 BEI () ) e 1)
(4.68)

in frequency and time domain respectively.
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Part 1l

Optical Antennas
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5 Light Scattering on Nanowire
Antennas’

5.1 Introduction

Since decades antennas are used in everyday devices in the radio and microwave spectral
range as a bridge between propagating radiation and localized fields. In this spectral
range semi-analytical models exist [1], offering insight into interaction processes and
guiding engineers in antenna design. In the same time, for practical antenna design
and optimization well established numerical tools are typically used [2]. Shifting antenna
resonances towards optical spectral range brings new challenges both from the fabrication
and the theoretical perspectives. At optical frequencies metal can no longer be treated
as perfect electric conductor and dimensions of the antenna might be as small as several
tens of nanometers [3]. Recent progresses in nanotechnology have enabled the fabrication
of optical antennas (nano-antennas) [3, 4] and opened many exciting possibilities towards
nano-antenna applications. For example, it has been recently demonstrated that nano-
antennas can enhance [5] and direct the emission of single molecules [6] and that they
can play a key role in sensing application [7]. Great potential in improving the efficiency
of solar-cells should also be mentioned [§].

Design and optimization of optical antennas are mainly done using general numeri-
cal Maxwell solvers [9], which demand huge computational resources. Therefore accu-
rate analytical and semi-analytical models predicting characteristics and performance
of nano-antenna are of great importance. There are just very few exact analytical solu-
tions available. Light scattering on spheres [10], infinite long cylinders [10] and spheroids
[11] can be derived in closed analytical form. Furthermore, one can solve the scattering
problem in the static limit, where one neglects all retardation effects. In this limit one

derives the Rayleigh approximation [10] valid only for particles very small compared

IThis chapter is based on: C. Kremers, D. N. Chigrin, Light Scattering on Nanowire Antennas:
A Semi-Analytical Approach, to appear in Photonics Nanostruct. Fundam. and Appl., March
2011
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with the wavelength. Additionally an improvement of Rayleigh’s approximation was de-
rived in [12]. In figure [5.1] the total scattering cross section (section calculated with
the original Rayleigh approximation as well as with Karam’s improvement [12] for nor-
mally incident light scattered on a typical gold nano antenna with radius of 10nm and a
length of 100nm is shown and compared with a rigorous numerical result obtained with
the discrete dipole approximation (DDA) method [13]. One can see that the resonance
frequency of both approximate methods are shifted some 100THz to lower frequencies
compared with the numerical result. So these methods do not provided results accurate
enough for practical purposes. A semi analytical solution of the light scattering prob-
lem involving a finite length nanowire with high conductivity based on introducing an
appropriate surface impedance can be used to improve these results [14].

The main goal of this chapter is to derive further improvements of the above men-
tioned semi analytical approach [14], which provides better accuracy especially in the
case of nano-antennas with small aspect ratio. In section the problem of light scat-
tering on a thin perfectly conducting wire is reviewed. Pocklington’s integral equation
is introduced and extended to the case of a nanowire of finite conductivity. We demon-
strate how one can use the knowledge of the exact solution of the problem of plane
wave scattering on an infinite cylinder in order to improve the accuracy of the surface
impedance method [14]. In Sections and new numerical method to solve the
resulting one-dimensional (1D) integral equations are introduced. The method involves
a method of moments (MoM) like discretization scheme and does not require any spe-
cific boundary conditions to be imposed at the nanowire ends. In section (5.5 numerical
calculations of scattering cross-sections for plane wave scattering on gold nanowires with
varying geometries is presented and compared with numerically rigorous discrete dipole

approximation (DDA) calculations [13].

5.2 Integral Equations of Pocklington’s Type

In infinite free space the electric field E(r) generated by a time harmonic current density

distribution j(r) (time dependence e~) enclosed in the finite volume V is given by

equation ([2.32))

E(r) = E™(r) + iwpo (? + %v ® v) /V g(r, (') & (5.1)
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Figure 5.1: Comparison of the scattering cross section for light scattering on a gold cylin-

der (radius 10nm, length 100nm, normal incidence) calculated with the ap-
proximate Rayleigh method (red), a improved retarded method [12] (blue)
and with the numerical rigorous DDA method (dashed).
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Figure 5.2: Definition of the geometrical parameters, radius a and length [, of the scat-
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tering cylinder as well as the chosen body centered coordinate system. Addi-
tionally the incident angle ¢ and the polarization basis vector Eg are depicted
in the incident plane.



=
where I denotes the three-dimensional unit tensor, ® is the tensor product defined by

(a®b);; = aibj,
eik‘|r—r'|

g(r,r') = (5.2)

47 |r — /|
is the scalar Green’s function and k = % the free space wave number. E™¢ is an electric
field due to sources not contained in V. In scattering problems the driving current density
is not controlled from the outside, but instead induced by E" which plays the role of
an incident field in this case.

In what follows we consider light scattering on a cylinder (wire) with length [ and
radius a (figure . The geometry of the problem including a body centered coordinate
system with z-axis parallel to the cylinder axis is depicted in figure The wave vector k
enclosing the incident angle £ with the positive z-axis lies in the xz-plane (incident plane).
To excite longitudinal resonances only the projection of the incident plane wave electric
field on the incident plane Eg = Eg (sin €z — cos £x) have to be taken into account. The
perpendicular polarization component can be safely ignored. Under the assumption that
the cylinder diameter is much smaller than the free space wavelength, i.e. ka < 1, the
incident electric field interacting with the cylinder can be viewed as a function depending

only on z
EinC(Z> ~ Egefikzcosf. (53)

First we briefly review the derivation of Pocklington’s equation for scattering on a thin
perfectly conducting wire [I]]. In this case in cylindrical coordinates {p, ¢, z} the induced
current density j(r) has only a z-component, shows no ¢-dependence and exists solely

on the antenna interface. Then the induced current I(z) is related to the current density

j(r) as
d(p — a)

2ma

2 a
1) = /0 a9 /0 pdp j(r). (5.5)

Using (5.4) in (5.1) and performing the p’-integration one yields for the z-component of

j(r) = 21(2) (5.4)

so that

the electric field on the cylinder surface the following integro-differential equation

inc 1 82 / o / / / /
E.(a,z) = EV(2) +1i %( k232>/édz/o Ao go(¢',z — 2)I(Z').  (5.6)

where go(¢', 2 — 2') = g(r,r’) with r = (a,0,2) and ' = (a,¢’, ') in cylindrical coordi-
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nates. While the antenna is perfectly conducting, the z-component of the total field at
the antenna surface has to vanish, F,(a,z) = 0. Applying this boundary condition to

equation (5.6) one can derive Pocklington’s integro-differential equation in the form

. LW 1 82 % / o / / / /
EY¢(2) = —i—— (1 + ——) / dz / Ao 9o (@', 2z — 2)I(Z), (5.7)
o k2022 ) | 0

L
2

which can be solved subject to the constraint that the current /(z) vanishes at the
antenna ends, that is I({/2) = I(—=1/2) = 0 [I]. In the derivation of the fact,
that the antenna is perfectly conducting, is taken into account twice, first by assuming a
special form of the induced current and second by enforcing the boundary condition
E.(a,z) =0.

A typical nano-antenna at optical frequency range possesses high, but finite conduc-
tivity. In this case the surface current approximation ({5.4) is still applicable, while the
boundary condition E,(a,z) = 0 is generally not. In order to use a Pocklington’s like
equation at this frequency range, one needs a relationship between the field E,(a, z) and
the current I(z) at the antenna interface.

Assuming a long nanowire, i.e. [ > a, it is reasonable to expect that the internal
electric field is separable similar to the solution of the equivalent problem involving an
infinite cylinder. In section the closed form solution of this problem was presented.
Considering an electrically thin wire, that is ka < 1, one can show that the z-component
of order n = 0 by far dominates the expansion of the resulting internal electric
field E. Solving the set of equations determining the constants { £y, ay, by, cn, dn} as

outlined in section one can calculate the ratios

(50 E9) e

(5.8)
EV e,
between the components (i € {z,y, z}) of the low order modes, that is
D — B, (anMg) + bnNS)) (5.9)

with small integer n, and the fundamental z-component of zeroth order (n = 0). An

expansion in kp up to linear order of these ratios are shown in table (5.1)). The items

proportional to kp can be surely neglected for small wire diameters. So the only compo-
@

nents which can possibly show significant influence on the internal field besides E;” - e,

are the z- and y-components for n = 1 but as long as |e,| > 0 and £ is not to small, these
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’ H n=20 n=1 n=>22

) — Cos ¢ cos E—I—E—(Jf‘_ sin ¢ cos & cos(2¢)—E—(J"‘_ sin(2¢)

il=u %kp 2 . = 7 o kp

2 smg(er—&—j) (er+1) _

L sin ¢ cos f—l—E—(‘)l cos ¢ cos& sin(2¢7)—|—E—‘?‘ cos(2¢)
1=y —&kp 2 = —1 0 k

28] sin(er+1) (er+1) P

[cos(2€)—er] cos gb—l—E—(Jh— (er—1)sin ¢ cosé
i=2z 1 i 0 kp 0
sin€(er+1)

Table 5.1: Ratios KE&D + E(_IQ,L) e] / (EgD e) expanded in p.

components can be neglected too. Therefore, assuming that these relations are fulfilled,

it is reasonable to expect an electric field inside the finite wire of the approximate form
E(r) = 2f(2)Jo (kop) (5.10)

where Jy (kyp) denotes the Bessel function of the first kind, k, = ky/€, — cos? { with
relative permittivity €, of the wire and f(z) an unknown z-dependent function giving the
amplitude of the internal field along the wire. A connection between the induced current

density and the internal electric field is given by means of the volume equivalence theorem

(see section equation (3.6)) by
j(r) = —iwegAe, E(r) (5.11)

with Ae, = ¢, — 1. Combining (5.10) and (5.11)) the total current through the wire can

be calculated
27 a
1) = / 4o / pdps(p.2)
0 0

Tko) gy (5.12)
I

= —iwegAe,2ma

Further comparing results of the integration in (5.12)) with (5.10)) one can derive the

following relation between the electric field and the total current at the wire interface

E.(a,z) = ZgI(z) (5.13)
with the surface impedance
. Jo(kpa )k,
Zg = ) 14
s Z27TCLW€0AETJ1(]{7/)CL) (5.14)
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Using relation (5.13) the following Pocklington like integro-differential equation for the
induced total current I, the surface impedance (SI) integro-differential equation [14], can

be obtained from equation (5.6)

Zgl(z) = E"(2) + Pl (1 + i8_2> /é dz' /27T d¢' go(¢', 2 — 2VI(Z).  (5.15)
z o k2022 ) | 0 ’

L
2

We propose a further improvement to the approximation by releasing the solely
surface current ansatz . In order to do that, we assume that the induced current
density on the right hand side of equation can be factorize similar to the internal
field (5.10). In this way substituting in equation both on the left hand side
as boundary condition as well as by using on the right hand side to rewrite the
induced current density one obtains a self-consistent integro-differential equation for the
unknown amplitude f(z)

, 2
f(2)Jo (kpa) = E°(2) + k* Ae, <1 + %%) / Br' gla, z ') f(2)Jo (k;pp/) (5.16)
1%

where g(a,z;r') = g(r,r’) with r = (a,0,2) in cylindrical coordinates. This volume
current (VC) integro-differential equation takes into account both appropriate boundary
conditions at the wire interface and an appropriate volume current distribution inside
the wire. In order to solve numerically the integro-differential equations and
one has to impose additional boundary conditions at the nano-antenna edges. A common
choice is to impose the total current I(z) to be equal to zero for z = +[/2 [14]. For a
solid wire with finite conductivity this choice is generally not justified, while the total
current can be discontinuous at the wire edges [15]. To overcome the requirement of
additional boundary condition one has to convert the integro-differential equations into

purely integral ones.

5.3 Discrete Form of the Volume Current

Integro-Differential Equation

Our goal is to discretize equation (5.16]). First we have to bring the differential opera-
tor (1 + k_Qag) inside the integral. This procedure results in singularities of the order

r—r/ ]3 which are generally not integrable over a volume. However, using the splitting
(2.37) proofed in appendix [A| we can treat this problem and obtain the regularized VC

o8



equation (}5.16)

(1+ A€ L33) E.(a, z) = E(2) + k*Ae, {/ Gsz(a, z; v E (0, 2 )d>r'
|4

—V*
)

where E.(p,2) = f(2)Jo (k,p). Here V* denotes a finite and arbitrary shaped principal

2
Gss(a, ;0 EL(p', ') — %%gg(a, z;r')EZ(a,z)] d?’r/} (5.17)

volume V* containing the singular point r = (a,0, 2), go(r,r') = limg_,o g(r,r’) is the

static scalar Green’s function, (G33 is the zz-element of the dyadic Green’s function ([2.34])

Gag(r,v') = [ 1+ ia—Z (r,r) (5.18)
33\ - k2 822 g\r, 5 .

and Lss the zz-element of the source dyadic ([2.43))

1 '~ 2)(h-2
e L @2

47 IV ‘r—r"g

(5.19)

The surface integration in has to be performed over the surface OV* enclosing the
principal volume V*, n denotes the outer surface normal.

The main advantage of the regularization scheme is (i) that all singularities
disappear and (ii) that the principal volume V* can be finite and arbitrary shaped. We
choose a cylinder with length A, radius % and center at the singular point r = (a,0, z)
as the principal volume (figure . We assume A to be small, such that both the
Bessel function Jy (k,p’) and the amplitude function f(z') are approximately constant
over V*. Taking that into account, writing the volume integrals in the regularized VC
equation in cylindrical coordinates (p, ¢, z) and collecting all terms containing
f(z) on the left and all terms containing f(z’ # z) on the right hand side, one obtains a

one-dimensional integral equation in the form

f()T =~ E"™(z) + /:2 dz/f(z/)ﬁ(}z—zll) + /2A dz’f(z/)ﬁ(‘z— Z'|), (5.20)
with
I'=Jy (kpa) {1 + A€, L3z — nin} — TNout, (5'21)
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where

Nin = 4]{32A€r/
0

v|>

™ ~ % ¢mzn ~ pmaz(a’;)
dz / d / pdp + / d¢ / pdp
¢mz‘n 0 g 0

2
<G33<07 f‘) - %%g(}((h IN‘)) } ) (522)

% T N prmaz($) 5
Nout = 4> Aey / dz / do / pp {Jo [kpp'(,0)] Gss(0.5)} (5.23)
0 min

A

2

and

£(|z — z'!) = 2/{72A67-/ pldp’ Jo (/{:pp') / d¢'Gss(a, z; 0, 2'). (5.24)
0 0

In (5.22)) the integration is performed over the principal volume V*| while in (5.23]) over
the corresponding wire slice of thickness A centered at 2 = 2’ but with excluded principal
volume V*. To calculate these two integrals a new coordinate system with its center at

the singular point has been chosen (figure (5.3))). In the new coordinate system with
cylindrical coordinates (ﬁ, 95, 2) the source dyadic 1) can be explicitly written as

(5.25)

_ . _ . ¢mm
o Sumin) (2 ﬂ)+(¢mm 2)_3/ B 1 |
: V40200 (0) + A2

2 T s
The radius vector p’ and the integration ranges in (5.22))5.23)5.25)) parametrically depend
on the nanowire radius a and the wire slice thickness A and are given by

P a ﬁcosé
@) = ~ ) 5.26
(P, ) '<0>+<ﬁsin¢>' (5.26)

pmax<¢> = —2acos (g

Omin = arccos l—?} . (5.27)

a

Taking into account that the nanowire diameter is small in comparison to the wave-

length one can further simplify the integrals in (5.22)) and (5.23)) by expanding the Green’s
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function G33 in power of k up to the linear term

NF
Gz (R) = . 2R5 + Ve +z§k

1 <3R2 R R2+R? 2 ) (5.28)
where R = 1’ —r. Using one can analytically integrate equation over zZ and p
and equation (5.23) over z. The residual integrations in (5.22), and have to
be performed numerically. The regularization scheme ensures, that the numerical
integrations are convergent. In this way I' in can be efficiently calculated once for
given radius a of the nanowire antenna, A and wavelength.

Equation (/5.20)) can be solved numerically by a method of moments (MoM). In general,
a MoM approach consists of i) expressing the unknown function in terms of a linear
combination of certain basis functions and ii) projecting the integral equation over a set

of test functions [I6]. A straightforward choice is to expand

Zfz ) (5.29)

with pulse basis functions

. 1 for |/ — 2] < 3A
B(z' — z) = (5.30)

0 otherwise

and choosing Dirac delta functions 6(2" — 2;) as test functions. f; denotes the discrete
function values f(z;) at positions z; = —%jt(i—l)A fori € {1,...,n} where z, = %.

This approach leads to the discrete approximation of equation ([5.20f) in the form

J

z]Jr— A
Emc (zi) =~ Zf]/ dz' L( |zz—z + fil Z fj/ dzlﬁ("zi—z’p,

2 j=i+1 %3
(5.31)

which can be rewritten in matrix form

(FT - ﬁ) f = Ei" (5.32)
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VEEN ) )
with the n-dimensional unit tensor I, E!" = E¥"“(z;) and the matrix elements

ZJ+% / / . .
[772dAL(|z —2]) fori#j
Mi' — Ay (533)
J
0 fori =7

Equation can be inverted numerically to yield the discrete set of values f(z;).
While the Green’s function depends on the distance between two slices |z — 2|, only the
first row My, for 7 € {1,...,n} has to be calculated. All other elements can be filled
using the rule M;; = M;_1 ;1.

Using the Green’s function expansion in the calculation of the matrix elements
My for j < QA—“ the integration over 2z’ can be done analytically. Only the integration
over the nanowire profile has to be done numerically. In the calculation of the matrix
elements M;; for j > %“ the full dyadic Green’s function have to be used and so the
complete volume integral has to be done numerically. These integrations are done over
r’-regions far from the singularity and they demonstrate good convergence. An additional
performance improvement can be achieved by expanding the Bessel function Jy for small
arguments as [17]

2?2t
Jo(x) 21— =+ at O(z9). (5.34)
Having the amplitude function f(z) calculated from the z-component of the in-
duced electric field is given by the ansatz (5.10)).
However, an internal electric field of the form (5.10|) is not divergence free as it should

be in a charge free region according to Coulomb’s law (1.11)). Assuming the internal field

to be of the more realistic form

B(x) = [(2)Jo (kop) 2+ Eylp, 2)p (5.35)

it can be made divergence less if £, solves

10 0
2 0p (pEp) + Jo (kpp) 5-f(2) = 0 (5.36)
which leads to h.p)
_ Ji(kep) O const.
Eylp.2) = =20 5 p(e) + (5.37)

Due to symmetry E,(0,z) = 0 must hold so the constant have to be set to zero. This
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Figure 5.3: Cross-section of the nanowire (big circle) and the principal volume V* (small
circle) together with the definition of the coordinate systems used to calculate
integrals in equation ([5.20)).

leads finally to the corrected internal electric field

E(r) = £(2)Jo (kyp) 2 —

- f(2)p. (5.38)

5.4 Discrete Form of the Surface Impedance

Integro-Differential Equation

In this section we present two approaches to solve the SI-IE (5.15) (i) by well known
Hallen’s approach imposing boundary conditions I (—%) =1 (%) = 0 [16] and (ii) by
adapting the regularization already discussed in section [5.3|to the case of surface currents

with the advantage that no boundary conditions have to be imposed.

5.4.1 Hallen’'s Approach

The SI-IE (5.15) can be written in the form

inc 1 82
Zs1(z) = B(2) = (14 555 ) V(). (5.39)
with V(z) defined as
V(z) = i 4 1()G (2 — ). (5.40)
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The kernel G in this definition is given by

2m
G(z—2) = / de' g*(¢', 2z — 7). (5.41)
0

The general solution of the inhomogeneous differential equation (5.39)) is the sum of the
homogenous solution V},, that is the general solution of (1 + k:*2(‘3§) Vi(2) = 0, and a
particular solution of equation (|5.39)

L

V(z) = C1e™* + Che ™ + / R F(z—2) [ZsI(z') — E"(2)] (5.42)

O]~

with constants C and Co and F'(z) being a solution of

1 0
1+ — 292 F(z) =6(z). (5.43)

A possible choice [I6] for F'(z) is given by
F(z) = ige_“”|. (5.44)

The definition of V(z) (5.40) has to be equal to the solution (5.42) of the differential
equation ((5.39) leading to

/

l

dZ I( ) [ 2’1’:;0 (Z _Z/) o ZSF(Z _ Z/>:| :Cleikz +026—ikz

N~

_/, d? F(z — 2)E"(Y).  (5.45)

2

This integral equation can be solved by the method of moments (MoM). In particular
we choose a MoM scheme with pulse basis functions (5.30) and Dirac delta functions
§(2" — z;) as test functions. This scheme was explained in more detail in section (5.3).

This kind of MoM results in the n-dimensional matrix equation
HI = V(Cl,CQ) (5.46)

where the elements of the matrix ﬁ are given by

2

M;j = / “Og(zi — ) = ZgF (% — z/)} } (5.47)
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and the j’th components of I and v are the current values and the values of the right
hand side of (5.45) at the discrete point z; of the antenna respectively. By enforcing
I = I, = 0 the constants C7 and Ca can be determined and subsequent (5.46) can be

inverted to yield the discrete current values Iy, ..., I,.

5.4.2 Regularization

As long as one excludes the singularity point from the integration range the differential

operator in (5.15)) can be applied on the integrant so (5.15) can be written as

=3 3
ZgI(z) = E°(2) + z%{ </ dz' +/ R dz’) ()L (2= 2") +
_ +2

L
2

Z"_% 1 82 Z+%
/ dz' I(Z)G(z — ') + 2922 / dz' 1(2G(z —2') p  (5.48)

with
2m
L(z—2)= / d¢' G3(¢', 2 — ). (5.49)
0

where G4; denotes the zz-componente of the dyadic Green’s function (2.34)) at the wire
interface

(2= ) = (14 52 ) 02— 2) (550

33\P k2 922 ’ '

and G is given by (p.41)). The last term in (5.48) has to be treated with care because
the singularity which arises by changing the order of integration and differentiation is

generally not integrable. However, if we substitute

8—2 e dz' 1(z)G(z —2') = 8—2 ' gla, z;v)I(2) (5.51)
822 % 822 V* g ) 9 .

with [, d3' = [*12 d2' [ gdp [*def and

z—

L/_a)g(a, zr') (5.52)

gla, z:x') =
p
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where g(a, z;1") = g(r,r’) with r = (a,0, z) and ' in cylindrical coordinates Lee’s regu-
larization (2.37)) can be used. This results in

82 Z+% a
9.2 / A2 1()G(z = #) =1 <z>§5 d*r' 5590z ') (2 1)
2
>* 2
+ / {I(z/)wg(z,r’) — I(Z)WQO(Z,I'/>}
with go = limy_,0 g. Plugging in the explicit form of ¢ (5.52) we can use the symmetries

g(z,2") = g(|z — 2/|) and g(¢') = g(—¢') to reduce the integration range and additionally

the Dirac delta function to integrate over p’. The result we get is

82 Z+% / / / A " / 1
@/2 dz [(z)g(z—z)——](z)%/o do 3

: \/(%)2 + 4a? sin? <%)
2
i / o [ a0 {1 a0 - 1) i ) |6

Substituting this regularization back in ((5.48)) we derive the regularized surface impedance

integral equation in the form

wipo 1
1 Zg+ ———=L
(Z)( s+ 27 k2

+
/ " / Neva (ol ) I(z) 0 ar il
oo [ [1c2) 33<¢,z>%82,2go<¢,z>]} (5.54)

Here, L plays the same role that the source dyadic ? 1) plays in the volume inte-
gration equation (2.42) and is given by

/ de ! ! (5.55)
\/% + 4a? sin® (¢/)

which can be expressed in terms of the complete elliptic integral of the second kind [17]

jus

E(m) = / df /1 — msin? 6. (5.56)
0
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as

2 16a°
L= . E (—A—C;> (5.57)
7|(3)"+aa
Equation (5.54) can now be discretized in the same manner as (5.20) in section

using a MoM with pulse function basis and point matching. The resulting n-dimensional

(F<T> _ i\_i’“) 1= Ei" (5.58)

matrix equation is given by

with matrix elements

= ZJ+2 dz' L(z; —2') fori#j
o Jz=3 (5.59)
0 fori=j

ro_

and

2
L= 7 + i <k24/ /das[ 3(@.2) - ,jzaa,ngwz)D (5.60)

5.5 Numerical results and discussion

In this section the semi-analytical methods developed in sections [5.3] and [5.4] are eval-
uated and compared with numerically rigorous methods. Plane wave scattering on a
gold nanowire is considered in the optical and near-infrared spectral range. The rela-
tive permittivity of gold in this spectral range can be modeled by a free electron Drude

Sommerfeld model (that is Lorenz’s model (1.24) with one pole and wy = 0)

w2
er(w) = €0 — m (5.61)
with parameters ex, = 9, w, = 1.36674 - 1010571 and vy = 7.59297 - 103 s~1 [9]. The
quantity used for comparison purposes is the total scattering cross section og as given
by equation . The derivation of explicit expressions for the VC-IE and the SI-IE
are given in appendix equation and equation (B.15) respectively.

Figure shows results of convergence checks of the proposed methods. For a typical
gold nanowire with length [ = 200nm and radius a = 10nm we calculated the spectral
positions of the first three maxima of total scattering cross section os under slanting

s

incidents (§ = %) with varying discretization A. The dashed and dotted lines represent
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Figure 5.4: Convergence of the first three resonances (from top to bottom panel) of a
gold nanowire (I = 200nm, a = 10nm) under slanting incidence (£ = ) cal-
culated with VC-IE method (solid line), SI-IE method (dashed) and Hallen’s

method (dotted).
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Figure 5.5: Scattering cross-section of a gold nanowire (I = 200nm, a = 10nm) un-
der slanting incidence ({ = %) calculated with different rigorous numeri-
cal methods as well as the proposed volume current and surface impedance
one-dimensional integral equations. In the top panel (a) the first and in the

bottom panel (b) the third resonance peak are shown.
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the solutions of the SI-IE calculated by regularization method and Hallen’s
method respectively. The solution of the VC-IE is represented by the solid
lines. We can conclude (i) that both methods solving the SI-IE converge to the same value
but the convergence of our regularization procedure is faster and (ii) that a discretization
of A = 1nm in the regularization procedures and shows a discrepancy
between their corresponding convergence values of less than 1 THz. Thus we use A =
1nm and the regularized solution for the SI-TE in all the following studies.

In figure the first (top panel) and the third (bottom panel) resonance peaks of
the cross-section spectra are shown for a gold nanowire with same parameters and in-
cidence as above (a = 10nm, [ = 200nm, § = 7). Results of both different rigorous
numerical methods and our proposed semi-analytical 1D integral equations are com-
pared. For the rigorous numerical calculations we used (i) HFSS, a commercial finite-
element frequency-domain Maxwell solver from ANSYS, (ii) an in-house implementation
of the finite-difference time-domain method (FDTD) [18] and (iii) ADDA, an open-source
software package for calculating scattering parameters using the discrete dipole approx-
imation (DDA) algorithm [I3]. The space discretization in the shown DDA and FDTD
calculations was set to 1nm. Discrepancies among the scattering cross-section spectra
calculated using different rigorous three-dimensional (3D) Maxwell solvers are compara-
ble with discrepancies of these spectra with the spectrum calculated using VC integral
equation method. The accuracy of the SI integral equation method is slightly worse but
still very reasonable. Most important are the differences in used computational resources
and execution time. The calculation of one frequency point in VC (SI) integral equation
method requires approximately 2 (1) seconds on one core of a workstation using Math-
ematica. In contrast DDA calculations requires around 8 minutes per frequency point
on the same workstation. HF'SS needs around 6 minutes per frequency point if the mesh
is optimized for one frequency only and is reused without optimization for 30 other fre-
quencies. With FDTD one gets the complete spectra in one run in around 250 minutes
on one core. In conclusion the newly proposed 1D semi-analytical methods provide a
speed-up in execution time close to 200 times compared to general 3D Maxwell solvers.
Additionally up to 100 times less RAM is required for the semi-analytical calculations.

In figure the position of the scattering cross-section maxima are shown for gold
nanowires with different aspect ratios. Radius is a = 10nm and length varies from
[ = 50nm (shown in the inset) to [ = 300nm. Normal incidence ({ = %) is considered. VC
integral equation method (full black line), ST integral equation method (dashed line) and
DDA (dotted line) are compared. As it is expected the accuracy of both semi-analytical
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Figure 5.7: Contours plot of the resonance frequencies of the nanowires with different
lengths under slanting incidence ({( = 7). Top panel radius is a = 10nm,
bottom panel a = 20nm. The full and dashed lines show the VC and SI
integral equation results, respectively. The dots are represents the numerically
rigorous DDA calculations.
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methods deteriorates with decreasing aspect ratio. However even for considerable low
aspect ratio % (I = 50nm) the first resonance peak predicted using approximate methods
represents the rigorous numerical result with a good relative accuracy (2% of the central
frequency).

In general VC integral equation method demonstrate better agreement with the DDA
calculations in comparison with the SI method (Fig. [5.5 and [.7)). This can be best seen
in figure where the resonance frequencies of increasing order (from left to right)
against the wire length are depicted for nanowires with radius a = 10nm (top panel)
and a = 20nm (bottom panel). The VC integral equation method (solid line), SI integral
equation method (dashed line) are presented. Dots represent DDA results. The brighter
(darker) curves are the resonances of even (odd) orders. All calculations are done under
slanting incidence (§ = 7). The better accuracy of the VC integral equation method can

be systematical traced back in figure especially for wires with smaller aspect ratio.

5.6 Summary

Two alternative methods to solve the scattering problem on optical nanowire antenna,
the volume current integral equation (VC-IE) method and the surface impedance in-
tegral equation (SI-IE) method are introduced. In order to reduce the general 3D vol-
ume integral equation describing the scattering problem to a simple semi-analytical 1D
integro-differential equation, both methods utilize solutions of the problem of plane wave
scattering on infinite cylinder. A regularization and discretization scheme is proposed
in order to transform integro-differential equations into solely integral equation. This
transformation enables to solve the original problem without necessity to impose addi-
tional boundary conditions at the nanowire edges. Numerical evaluation of the proposed
methods and their comparison with different numerically rigorous methods is presented
for scattering cross-section calculations. Gold nanowires are analyzed at optical and
near-infrared spectral range. The introduced one-dimensional semi-analytical methods
demonstrate good agreement and superior numerical performance in comparison with

rigorous numerical methods.
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Part |11

Cherenkov Radiation in

Periodic Dielectric Media
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6 Introduction

Back in 1934 Cherenkov reported the observation of the electromagnetic radiation pro-
duced by an electron moving in a dielectric medium at a velocity greater than the phase
velocity of light in this medium [I]. Such a radiation possesses a unique angular and
frequency spectrum and is called the Cherenkov radiation [2]. A nontrivial dispersion re-
lation of a medium leads to substantial modifications of the Cherenkov radiation. It has
been shown that an electron moving in a homogeneous medium with dispersion should
emit at any velocity [3]. Richer spatial distribution of the emitted radiation including
intensity oscillations behind the Cherenkov cone is a signature of the radiation in such
a medium [4}, 5] [6].

To understand the properties of the Cherenkov radiation one can represent the mov-
ing electron with space-time dependence of the corresponding current density j (r,t) ~
d (r — vt) as a superposition of plane waves § (r —vt) = Y, exp (ik - r — ik - vt) with
different wave vectors k and frequency k- v, where v is the electron velocity. Only plane
waves with frequency and wave vector fitting the medium dispersion w (k) can resonantly
excite electromagnetic modes in the medium, which gives the Cherenkov resonance con-
dition [7]:

wk)=k-v. (6.1)

In a homogeneous, non-dispersive medium with refractive index n, the dispersion relation
is simply given by w (k) = (¢/n) |k| and the Cherenkov condition leads to the well
known conical wave front with an aperture cos¢ = ¢/ (n|v|) and a condition on the
electron velocity |v| > ¢/n [7, 2], ¢ being the vacuum speed of light. In an inhomogeneous
medium the interplay between interference and propagation can result in an engineered
nontrivial dispersion relation w (k). For example, periodic dielectric media (photonic
crystals) [8 @] substantially modify both dispersion and diffraction of electromagnetic
waves possessing many unusual and novel optical phenomena, including modification
of emission dynamics |10, 11, 2], ultra-refraction [13, 14} 5] 16] and photon focusing
|17, 18], 19] effects.

Several studies on the modification of the radiation produced by a charged particle

moving near or inside photonic crystals are available. The modification of the Smith-
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Purcell radiation has been recently studied both theoretically and experimentally near
a surface of a two- (2D) and three-dimensional (3D) photonic crystal [20, 211, 22] 23]
24, 25]. The Cherenkov radiation generated by an electron moving inside an air pore
of a 2D photonic crystal perpendicular to the periodicity plane has been used to map
its photonic band structure in Refs. [26]. In all above mentioned reports, the theoretical
analysis of the Cherenkov effect has been done in the plane wave basis. Spatial and
spectral modifications of the Cherenkov radiation produced by an electron moving in
the periodicity plane of a 2D photonic crystal have been studied in [27] using the finite-
difference time-domain (FDTD) method [28§].

To date, there do not exist any reports on the general theory of the Cherenkov effect
in an arbitrary 3D periodic medium. In this part of the thesis such a theory is developed
providing a simple expression for the Cherenkov emission spectrum (energy loss spec-
trum) (chapter [7)) and its spatial distribution (chapter [8) both inside general 3D and 2D
photonic crystals.

The problem we face in the two subsequent chapter is defined in the following way. A
point charge ¢ (electron) moves uniformly with a velocity v in a general infinite dielectric
periodic 2D or 3D medium described by €, (r) = ¢ (r + R) with R being a vector of the
direct Bravais lattice (section . The current density describing the moving charge is
given by

j(r,t) =qvd(r—vt). (6.2)

With given current density (6.2]) the generated electric field can be expanded in terms
of eigenmodes as it was shown in section (4.5) and section (4.6) for 3D and 2D pho-
tonic crystals respectively. The expressions given there exhibit the starting point for our

discussion in this part.
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7 Emission Spectrum/!]

The goal of this chapter is to derive an analytical expression for the power emitted per
unit length of the charge trajectory. This expression is further reduced to a simple con-
tour integral (3D case) or a one-dimensional sum (2D case) over a small fraction of the
reciprocal space. As a result, to calculate the Cherenkov emission spectrum, Bloch eigen-
modes and their corresponding group velocities are required only along an integration
path (3D case) or at a discrete set of k-points (2D case), considerably reducing com-
putational demands. The integration path and the discrete set of points are defined by
the generalized Cherenkov condition. Our theory confirms that the Cherenkov radiation
does exist in a periodic medium for an arbitrary electron velocity [27]. It also predicts an
enhancement of the radiated power near the frequencies corresponding to the vanishing
component of the group velocity, which is orthogonal to the electron trajectory.

The chapter is organized as follows. In Section the general solution of Maxwell’s
equations is summarized for an arbitrary periodic medium. In Section an analytical
expression for the power radiated per unit length by a moving point charge is derived
both for 3D and 2D periodic media. In Section [7.3|we apply our approach to calculate the
Cherenkov emission spectra in the particular case of a 2D photonic crystal. Predictions
of the analytical theory are substantiated by numerically rigorous finite-difference time-
domain (FDTD) [28] calculations.

7.1 Radiated Field

The starting point for our discussion in this chapter is the general solution of Maxwell’s
equations in Fourier space with the Cherenkov current density as a source. Combin-
ing equation for 3D crystals and equation for 2D crystal by introducing the
dimensionality d € {2, 3} the electric field in frequency space generated by the Cherenkov

!This chapter is based on: C. Kremers, D. N. Chigrin and J. Kroha, "Theory of Cherenkov
radiation in periodic dielectric media: Emission spectrum”; Phys. Rev. A, 79(1)
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Figure 7.1: A sketch of a periodic medium and a point charge trajectory. Basis vectors
a; of the lattice are shown. The coordinate system is chosen with one axis
along (#) and the other perpendicular (£, ) to the charge trajectory.

source j(r’,w) is given by

E(r) = —i 1 d'k [ d*'
=it in Y [ f

D0 os W) BV B
((w - w:n +i0) (wk-|- e T k o 2'51;2 jrw). (7.1)

Here, El((? (r) and El(jl) (r) are quasi-transverse and quasi-longitudinal Bloch eigenmodes
(see sections and characterized by the band index n, the wave vector k and the
eigenfrequencies wl((? and wl(i) = 0, respectively. The k-space integration is performed
over the first Brillouin zone (BZ) of the periodic medium and the summation is carried
out over different photonic bands. The positive infinitesimal § in assures causality
in time space (see section . The limit § — 07 will be carried out later but we do not
write it in the following however keeping it in mind. The spectral current j(r,w) is the

Fourier transform of the Cherenkov current density ((6.2])

jr,w) = qv/ dt§ (r — vit) et

= qV(S(rL)/ dté (r” - ]V]t) et

dl

= qt||6(r L) exp (zw—) (7.2)

vl

Here, 1| denotes the unit vector pointing in the direction of v and r; denotes a vector

lying in the plane perpendicular to v (figure . In the last step we used the generalized
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scaling property of the Dirac delta function [29]

/ F@slg(o] dr = Y 212 (7.3)

|9/ (i)]

where x; are the roots of g(z;) = 0.

7.2 Emission Spectrum

The emitted power of the Cherenkov radiation in a dielectric medium is given by the rate
at which the moving charge does work on the surrounding electromagnetic field. For an

arbitrary current density J (r,t) in a 2D or 3D volume Vp, the time-dependent emitted
power is therefore given by (1.31)

P(t) = —/der(r,t)-E(r,t). (7.4)

Vo

The total energy U radiated by the current J (r,t) is obtained by integrating (7.4) over

all moments of time

U= /OO dt P (t). (7.5)

oo
The time integral in (7.5) can be further transformed into the integral over frequency
(see appendix |C)

U= /Ooode(w), (7.6)

with a total power radiated per frequency interval [w, w + dw] given by

P(w) = —%?R /der (r,w) -E*(r,w)| . (7.7)

Vo

To obtain the power emitted per unit length of the electron trajectory the integration
volume Vj should be chosen as a cylinder coaxial with the electron trajectory, while
the integral itself should be normalized by the cylinder length [. In the 2D case, the
volume integral is reduced to the line integral over a rectangle coaxial with the electron
trajectory and the result should be normalized to the rectangle length.

We further derive the spectral dependence of the power (dP/dl) (7.7) radiated per
unit length by the point charge (6.2)) uniformly moving in a periodic medium. Assuming

that the presence of the moving charge does not change the band structure of the peri-
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odic medium, the electromagnetic field E (r,w) surrounding the moving charge can be
expressed in the form of the Bloch eigenmode expansion . This expansion is valid for
any point r in the medium being different from, but as close as required to, the charge
trajectory. Substituting the Fourier transform of the Cherenkov current density and
the Bloch mode expansion (7.1)) in equation (7.7]) we obtain the power radiated per unit

length
dP 1 w
- - = ddl{}
dl (2m)? meo ;/BZ
(T) (L)
|- - ! + ! — (7.8)
(w — wl(m) +i5) (w —i—wl(( ) —1-25) (w +19)
with
1€) = P15 = ¢ / dry (el () -2y ¢ s
1/2
1 «a n k r
7 / dry (el () -3y ¢ st )
~1/2

where a« = T', L. We have readily performed the space integration in the transverse di-
rection | and used the Bloch theorem El(s? (r) = el((o;L) (r)exp (ik - r), where el(jl) (r)is a
lattice periodic function (section . To avoid having to deal with the “bremsstrahlung”
radiation we limit ourselves to the electron trajectories which do not cut dielectric inter-
faces in the periodic medium. Such trajectories are necessarily rationally oriented with
respect to the periodic lattice. In this case the function (el((o;l) (r”) -f”) in as well
as its complex conjugate are both one dimensional periodic functions with a period a
defined by the particular orientation of the electron trajectory. Then, Eq. can be

further simplified to (see appendix D)

= 2mq

Here k) is the component of the wave vector parallel to the electron trajectory. em(k;n)

is the m-th (m € Z) Fourier coefficient of the periodic function (el(jl) (r”) -f”) defined

e (k;n) = 2 /O dr| (efﬁff () ’fn)e_ig‘fw'- (7.11)

as
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Taking into account the expression (7.10) and the relation R {i (R[z] +iS[z])} =

—i (2], the power radiated by a moving electron per unit length is given by
dP w
- =— d%6 | k
dl d L e Z /BZ < = v >

{

2
b (k; n)’ ) - ! -
(w — wl(m) + ié) (w + wl(m) + ié)

) (ko 2% _
m” (K; )‘ l(w—kié)Q]}. (7.12)

This expression can be further integrated along the direction k) in the k-space yielding

dpP
— = a1k
dl lef'EOZ/Sdl *

{

_|_

()(k n)

2 1
’ &
(w W1(< ) + 25> (w + wl((? + i5>

D (ki 2% _
m” (K; )‘ l(wié)Q]}. (7.13)

In the 3D case, the resulting surface integral is taken over the plane S? = S and in

the 2D case over the line S' = C (see figure . Both the integration plane S and the

+

integration line C should be orthogonal to the electron trajectory and are defined by the

following relation
2
By = —+ —m. (7.14)
v
Here the integer m should be chosen in such a way that the wave vector k| stays in the

first BZ. Further, taking finally the limit § — 0" and using [30]

lim + = —70 (w + wl((:z)) : (7.15)
020"+ wy, ) + 16
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the spectral radiated power (7.13|) can be expressed in the form
dP
bl dd lk,
dl d 1 TEQ Z/Sd 1 +
T 2
{W cgnT) (k; n)‘ [5 (w - wg)) -4 (w —|—wl({?)}
2wy,

The eigenfrequencies of the Bloch modes are positive (section , so the second term

in Eq. (7.16) containing the delta function o (w + wf{?) is zero for all frequencies. The
third term in Eq. (7.16) is due to the work the current does on the longitudinal part

of the electromagnetic field. In the presence of free charges the longitudinal part of the
field corresponds to the static electric field and the work done against it results in non-
radiative energy transfer with a nonzero contribution only at zero frequency. In what
follows we will disregard this non-radiative contribution and will limit ourselves to the
radiation into propagating electromagnetic waves only. Then the spectral radiated power

is given by

2
g) (k;n)’ ) (w — wgl))

dP

— = Ak, 7.17

TN 1
n

The argument of the Dirac delta function in Eq. ((7.17) is a function of the wave vector.
This can be used to reduce further the dimensionality of the (d — 1) k-space integral. In
the 3D case, using the relation [31]

d e, fK)
V/d k F ()6 (g (K) a{d kg (7.18)

where 0V is the (d — 1) dimensional surface defined by ¢ (k) = 0, the integral over the

plane S can be converted into the contour integral

‘ 2

3D ;n)
(CZ_IZ:J) - & €0 Z /as oI ‘vkka )‘ i
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Figure 7.2: (Left) Diagram to define the integration plane S and the integration con-
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tour OS (dashed line) in Eq. (7.13][7.19). The iso-frequency surface enclosed
in the first BZ of the FCC lattice is shown for the normalized frequency
win = w inside the first bandgap of a 3D inverted opal. (Right) Diagram to
define the integration line C and the set of points {kLﬂ-} (two thick dots)
in Eqs. (7.13][7.22). The iso-frequency contour enclosed in the first BZ of a
square lattice PhC is shown for the normalized frequency wy, = w inside
the first bandgap. The plane § and the line C are defined by the relation
ky = ok = |"J7| + %”m. The choice of the coordinate system with one axis,
k|, parallel to the electron trajectory is shown.
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Figure 7.3: Diagram to illustrate the generalized Cherenkov condition . A 3D rep-
resentation of the photonic band structure (right) of the 2D PhC (left) is
shown for TE polarization. An infinite 2D square lattice of air holes in a
dielectric medium is considered. The radius of the holes is r = 0.4a, the di-
electric constant of the background medium is €, = 12. Only the first band
in the first BZ is presented. The right-hand side of Eq. defines the set
of planes for different m. Intersection of these planes with the band structure
(dashed line) determines the Bloch modes contributing to the Cherenkov ra-
diation. Here it is supposed that a point charge moves along the z-axis in the
crystal with the velocity |v| = 0.15¢.
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The contour 9S is defined by the relation (7.14) and
Wl — . (7.20)

It is an intersection of the iso-frequency surface with the plane S (Fig. [7.2Heft).
In the 2D case, the relation (7.3) can be used, where summation is taken over all
solutions of the equation f (k) = 0. Substituting (7.3) into (7.17) we obtain

2
(T)
2D . _ .
<dp> -y / an, tin)] 5k ) (7.21)
W)t g (o von )|,

where {kz J_,i} are simultaneous solutions of the equations 1) and 1) given by the
intersections of the iso-frequency contour with the line C (Fig. [7.2bright). Performing the

k-space integration, we finally obtain

ap\ 2P 2 Cg) (k;n)’2
) - Ly | —L , (7.22)

ki

where the function in brackets is calculated for the wave vectors corresponding to the
set {k J_z}

Formulas and constitute the main result of the present chapter. They give
the power radiated by the moving point charge ¢ in the spectral interval [w, w + dw] per
unit length of the trajectory for a 3D and 2D periodic medium, respectively. The radiated
power is proportional to the Fourier coefficients cg ) (k;n), which effectively describes the
local coupling strength between the current density produced by a moving electron and
the electromagnetic field at the electron location. The gradient and derivative of the
dispersion relation v = Vy Lwl({? and v = 8w1(£) /Ok, yield the component of the
group velocity, v, of the Bloch eigenmode (k;n), which is orthogonal to the electron
trajectory. The Cherenkov radiated power is proportional to the inverse of this component
of the group velocity. That means that the radiated power can be strongly enhanced not
only if the group velocity itself is small for some frequency, but also if the component
of the group velocity orthogonal to the electron trajectory becomes small. At the same
time suppression of the Cherenkov radiation is possible if for some frequency the current
density produced by a moving electron is not coupled to the corresponding Bloch mode
and the Fourier coefficients c,(g ) (k;n) is small.

Only eigenmodes with their wave vectors on the contour S (7.19) and from the set
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{k: Lﬂ'} contribute to the radiated power at a given frequency. It is important
to realize that Eqgs. and defining the contour S and the set {kJ_z} are
equivalent to the Cherenkov resonance condition (6.1). In fact, substituting in
and taking into account that the scalar product in (6.1) results in v -k = |v|k

one obtains the generalized Cherenkov condition for a periodic medium

2
wlgl) = |v|k — |v] %m. (7.23)

In the 4D (3D) (w-k)-space the right-hand side of the relation defines a hyperplane
(plane) whose intersection with the band structure, wgl), determines Bloch modes con-
tributing to the Cherenkov radiation (Fig. top). Nonzero integers m ensure that such
an intersection and consequently the Cherenkov radiation exist in a periodic medium
for an arbitrarily small electron velocity. In a homogeneous medium is m = 0 and the
Cherenkov condition reduces to its standard form wy = |v| k.

As a simple check of our theory we show in the following that the final formulas
reproduce the limit of a homogeneous medium with the dielectric constant
er. For a given frequency w, the wave vector |k| and the group velocity |V‘(i‘ are given
by |k| = (wy/&) /c and |V‘i‘ = (clky|)/ (Ve |k|) respectively, with k| = k — k|
being the component of the wave vector perpendicular to the electron trajectory. The
appropriately normalized eigenmodes are plane waves E = (1 / \/a) éexp (ik - r), where
€ is a polarization unit vector orthogonal to the wave vector k. Further, according to
the Eq. the wave vector component k|| is equal to k| = w/ |v| with m = 0 and the
coeflicient ¢ is given by ¢o = |k |/ (\/E \k|) Then in the 3D case, taking into account
that the integration contour 0S is a circle of radius |k | and performing integration in

polar coordinates with dk = |k | d¢, the radiated power ([7.19) is given by

3D 2
dpP 1 2 k
(—) - Tk |1- il , (7.24)
da ), Amey c\/€r k|

which finally yields the usual results of the Frank-Tamm theory [7]

3D
dP 2 2

(_> = L2 (1— ¢ 2). (7.25)
aj, dmege e |v|

In the 2D case Eq. (7.22)) yields

2D 2 2
<d_P> _ LT C_2 (7.26)
a ), 27eg e/ € & v
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7.3 Numerical Results

In this section the analytical results developed in the previous section are applied to
study the Cherenkov radiation in a 2D photonic crystal. An infinite 2D square lattice
of air holes in a dielectric medium is considered. The radius of the holes is r = 0.4a,
while the dielectric constant of the background medium is €, = 12. A line charge oriented
perpendicular to the periodicity plane of the crystal moves along the z-axis with a velocity
v, staying always in the space between air holes (Fig. bottom). The corresponding
current density, Eqgs. and (7.2), generates an electric field polarized in the
periodicity plane (transverse electric or TE polarization) because the Bloch modes to
which the current density can couple are polarized in this way. The first TE band for
the considered PhC is presented in the figure [7.3}top. The band structure was calculated
using the plane wave expansion method [32].

To find the power radiated by a charge moving with a given velocity v, all Bloch modes
contributing to the radiation should be determined. These modes (k;n) are given by the
solutions of relation . In what follows we restrict our analysis to the frequency
range of the first band of the considered PhC structure. In figure [7.3}top, solutions
of the Cherenkov relations are graphically illustrated for m = 0, —1, —2 (dashed
lines) and charge velocity v = 0.15¢. The spectral range of the intersections determine the
frequencies of the nonzero contribution to the Cherenkov radiated power, the Cherenkov
band. The evolution of the Cherenkov band is presented in figure [7.4] as a function of the
charge velocity.

For charge velocity v = 0.15¢, the Cherenkov spectrum is given by the intersections of
the band structure with the planes m = —1 and m = —2. The plane corresponding to
m = 0 does not intersect the band structure of the crystal (Figs. [7.3] [7.4). For smaller
charge velocities, more and more planes intersect the band structure and the Cherenkov
spectrum is built from a number of discrete sub-bands. For even smaller charge velocities
the spectral range of the first photonic band becomes densely filled with the discrete sub-
bands (Fig. [7.4).

In the long wavelength limit the periodic medium is effectively homogeneous. For
the considered PhC an effective refractive index is equal to neg = |/cef = 2.186. Conse-
quently, for m = 0 the relation imposes the condition on a minimal charge velocity
resulting in the Cherenkov radiation at small frequencies, namely vyin > ¢/neg ~ 0.457c.
For charge velocities larger than the threshold value the Cherenkov band covers the spec-

tral range from zero to the maximum frequency, which is defined by the intersection of

38



0.25
0.20
0.15
0.05

0.05 §/

Frequency [2/)]

00 01 02 03 04 05 06 07 08 09 10
Velocity [c]

0.00 ¥

LUNNLIN B N B B B N B B B BN B B B HN N B B NN B B B NN B B N B

0.25

0.20

0.15

0.05

Frequency [2/)]

0.05

0.00 ...|...|...|...|...;...|...|.
0.00 002 004 006 008 010 0.12 0.14

Velocity [c]

Figure 7.4: Cherenkov radiation band. Sub-bands defined by the intersections of the
band structure with the planes corresponding to the different m’s are shaded
in light and dark gray. Vertical lines mark the charge velocities used in the
further calculations, v = 0.15¢, v = 0.3¢ and v = 0.6¢ in the top panel and
v = 0.1c in the bottom panels, respectively.
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Figure 7.5: Cherenkov emission spectrum for the charge velocity v = 0.1c. Projections
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of the first band of the considered photonic crystal and the planes m = —1,
m = —2 and m = —3 defining the Cherenkov band on the k,-w plane are
shown (a). The Fourier coefficients, b (k;n), the orthogonal component
of the group velocity, vi, and the Cherenkov power spectrum are shown in
panels (b), (c) and (d), respectively. Vertical lines mark the edges of the
Cherenkov sub-bands. Contribution from the sub-bands corresponding to
m = —1, m = —2 and m = —3 are shown as dashed, solid and dashed-
dotted lines, respectively.



the band structure with the plane m = 0 at the first BZ boundary (Fig. .

To use further Eq. , one should calculate the Bloch modes along the charge
trajectory, their Fourier transforms and corresponding group velocities for wave vectors
belonging to the intersections defined by Eq. . The calculation of the Cherenkov
spectrum is illustrated in figure for a line charge (¢ = 1.6 x 107 ') moving with
the velocity v = 0.1c. To calculate Bloch modes and group velocities, the plane wave
expansion method [32] and the Hellmann-Feynman theorem [§] were used, respectively.
For the velocity v = 0.1c the Cherenkov spectrum consists on three sub-bands defined
by planes m = —1, m = —2 and m = —3 (Figs., , respectively. The Fourier
coefficients, cg) (k;n), (Fig. b) and the orthogonal component of the group velocity,
oY, (Fig. c) are nonzero only within the sub-bands. Both Fourier coefficients and
the orthogonal component of the group velocity approach zero at sub-band edges A, B
and C. At the edges D, E, and F only the orthogonal component of the group velocity is
zero, while the Fourier coefficients have finite nonzero value. Calculation of the Cherenkov
radiated power at the band edges A, B and C leads to the indeterminate limits of the form
0/0, which can be evaluated using I'Hopital’s rule and is equal to zero. The Cherenkov
power at the band edges D, E and F diverges and becomes infinite.

In figure the Cherenkov radiated power spectra are shown for charge velocities
v = 0.15¢, v = 0.3c and v = 0.6¢c. For charge velocities smaller than the threshold
value vyin =~ 0.457¢ the Cherenkov radiation is nonzero only within single or multiple
spectral bands. For velocities above the threshold, the radiated power is nonzero almost
everywhere within the first band, approaching asymptotically the value of the Cherenkov
radiated power in a homogeneous medium with n = neg for small frequencies. The
radiated power calculated using Eq. for v = 0.6¢ and neg = 2.186 is shown in
figure (bottom panel) as dotted line. The Cherenkov radiated power is enhanced near
the frequencies where the group velocity component orthogonal to the charge trajectory
vanishes, while the Fourier coefficients remain finite (Fig. [7.6)).

To substantiate our analytical results the direct numerical integration of the Maxwell’s
equations has been performed using rigorous finite-difference time-domain (FDTD) method
[28]. The simulated structure was a 10ax Na lattice of air holes in a homogeneous medium
with € = 12.0. The longitudinal dimension of the periodic structure was set to N = 188,
N = 376 and N = 752 lattice constants for charge velocities v = 0.15¢, v = 0.3¢ and
v = 0.6¢, respectively. The lattice was surrounded by a 2a wide layer of homogeneous
material. The simulation domain was discretized into squares with a side A = a/18 and
was surrounded by a 35-cell-wide perfectly matched layer (PML) [33]. An integration

time step was set to the 98% of the Courant value. A moving point source (6.2) was
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modeled as a current density source [28] with the Dirac delta function represented via
an appropriately normalized Kronecker delta d;;/ A2, The charge moves in the longitudi-
nal direction with the trajectory placed in the geometrical center of the crystal, exactly
between the 5th and 6th row of holes.

To calculate the radiated power the electric and magnetic fields were stored at the de-
tector and their Fourier transforms were found using discrete Fourier transform method.
The longitudinal dimension of the structure was different for different charge velocities
in order to keep the integration time at the detector and consequently the spectral res-
olution constant. The detector enclosing the crystal was situated in the close vicinity of

the crystal boundary. The total radiated power per unit length was calculated as

d

%zé%/sz(&w)ﬁ (7.27)
0

where S (z,w) = 3R {E (2,w) x H*(2,w)} is a time averaged Poynting vector, d is the

length of the detector along the trajectory and n is a unit vector orthogonal to the

detector interface.

An overall very good agreement between the results of the analytical (Fig. [7.6] solid
lines) and numerical calculations (Fig. dashed lines) is obtained. Both the spectral
range of a nonzero radiated power and its absolute value are well represented using the
FDTD method. The main difference can be traced back to Fabry-Perot-like oscillations
of the radiated power due to the finite-size effects in the FDTD calculations. In the finite
structure, the Cherenkov radiated power stays considerably enhanced near the band
edges having large but finite value. The total power oscillates around the analytical
value becoming partially suppressed or enhanced for different frequencies. To confirm
that these oscillations indeed result from the finite transverse dimension of the considered
photonic crystal, we have performed simulations for the crystal with a double thickness
(20a x 188a) for the charge velocity v = 0.15¢. Resulting radiated power spectrum is
shown in the corresponding panel in figure[7.6|as a dashed-dotted curve. One can see twice
as many oscillations as in the case of the thinner structure, which is a typical signature
of the Fabry-Perot like phenomena. The further enhancement of the radiated power in
comparison to the infinite structure can be associated with the longer interaction time
of the charge at resonance frequencies with the effectively slow Fabry-Perot modes of a

photonic crystal slab.
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7.4 Summary

In this chapter, an analytical expression for the Cherenkov power emitted per unit length
of the charge trajectory in the case of a general 3D and 2D periodic dielectric medium has
been derived. The obtained formula for the Cherenkov power involves the calculations
of Bloch modes and corresponding group velocities at limited points of the reciprocal
space only, making the application of the proposed method computationally not demand-
ing. All calculations have been performed on a desktop PC and our method requires 5
to 10 times less CPU time then FDTD method. The analysis of the Cherenkov emis-
sion spectrum in the periodic medium reveals that the Cherenkov effect indeed exists
for every electron velocity. Similar to the case of the modification of the dipole emis-
sion in a photonic crystal, the Cherenkov radiation can be suppressed if the coupling
of the current density produced by a moving electron with a Bloch mode is poor. At
the same time, an enhancement of the Cherenkov radiation is possible also if only the
component of the group velocity orthogonal to the electron trajectory is small. We have
illustrated the developed analytical method and its conclusions using a numerically rig-
orous finite-difference time-domain method in a special case of a 2D photonic crystal

and demonstrated a reasonable agreement between numerical and analytical results.
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8 Spatial Distribution]!

The goal of this chapter is to develop an analytical theory of the Cherenkov radiation
in far-field zone in order to provide a simple semi-analytical tool to study its spatial
distribution peculiarities in general 3D and 2D periodic dielectric media. To achieve
this goal we first derive an analytical expression for the electric far-field in terms of the
Bloch mode expansion. Secondly we restrict the full k-space integration in the Bloch
mode expansion of the field to a relatively simple surface (contour) integral in the first
Brillouin zone of the 3D (2D) periodic medium. Thirdly, we restrict this integral further
to a simple sum over a small number of Bloch eigenmodes. These derived formulas
allow us to identify the main contribution to the spatial peculiarities of the Cherenkov
radiation.

The chapter is organized as follows. In section an analytical expression for the
Cherenkov far-field is derived both for 3D and 2D photonic crystals. In section (8.2))
we apply the developed theory to calculate the Cherenkov far-field in the particular
case of a 2D photonic crystal. Predictions of the analytical theory are substantiated by

numerically rigorous finite-difference time-domain (FDTD) [28] calculations.

8.1 Cherenkov Radiation in the Far-Zone

Combining the general solutions (4.60) and (4.68) in time space for the 3D case and the
2D case respectively and substituting (6.2]) for the current density the Cherenkov field

can be written

gl o [ {(T) _/}
E(r,t) = (27T)d€0;/32d k:/_oodt cos |wy,, (t t)

: Egl) (r) (Egl)* (Vt') : \7) (8.1)

where d € {2,3} denotes the dimensionality of the crystal and Egl) (r) the quasi-

transverse Bloch eigenmodes (Sec. and characterized by the band index n, the

IThis chapter is based on: C. Kremers and D.N. Chigrin, “Spatial distribution of Cherenkov
radiation in periodic dielectric media”, J. Opt. A., 11(11)
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(T)

wave vector k and the eigenfrequencies w_ . The longitudinal modes do not contribute
to the radiation as was shown in the previous chapter. Therefore we skip the label (')
in the following discussion. Expressing the cosine function in Eq. as a sum of two
complex exponential functions and using Bloch’s theorem Ey,(r) = ey, (r) exp (ik - r),
where ey, (r) is a lattice periodic function (Sec. [1.4), the Cherenkov field becomes

B, 1) = —— Y1 S+ 1) (8.2)

2(2m)deg

where [t is defined as

Iy = /B . Ak /_ . dt’ exy, (r) (e, (vt') - ¥) Ex(k, 1) (8.3)

with
EL(k,t') = exp {z [k- (r—vt') + Wiy, (t—t’)}}. (8.4)

Further taking into account the symmetries of the Bloch eigenmodes, e_y,, = e}, and
W_kn = Wkn (Sec. [4.4.4), the following relation for the integrals I (8.3)) holds

t
I =1" = / 'k / dt’ e_xy (r) (€Xy, (V') - V) E4(—Kk,1').
BZ —00

Therefore the radiated field (8.2) can be exclusively expressed in terms of the real part
of the integral 7_

(27)deg

E(r,t) = — V] SR, (8.5)

To analyze further the Cherenkov field we limit ourselves to charge trajectories
which do not cut dielectric interfaces of the periodic medium. In this case “bremsstrahlung”
radiation can be neglected and the trajectories themselves are necessarily oriented ra-
tionally with respect to the periodic lattice. In this case e}, (vt') - ¥ in (8.3) is a one-
dimensional (1D) periodic function with a period a defined by the orientation of the

charge trajectory therefore one can Fourier expand it as follows
S 2m|v|
. 2
er, (vt') v = E cnm (k) exp (szt/) (8.6)

with Fourier coefficients

i = [ " (e (69) - 9) exp (—i2me) . (5.7

a
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This allows us to rewrite (8.3) in the form

00 ¢
= d /e r)c c ! .
r=> /BZd k;/_oodt kn () Cm (K) Enn (, 1) (8.8)

m=—0oo

where the function &,,,(k,t') is given by

Enm(k, ') = exp l@' (k- (r - vt/) — Wkn (t — t') + 271"|mt/>]
= exp [ifnm(k, t/)] : (8.9)

We are interested in the field far away from the trajectory of the charge. In the far-field
zone the following relation |r — vit/| > X holds for all moments of time ¢' < ¢. If this
condition is fulfilled a small variation of the wave vector k results in rapid oscillations of
the exponential function &, (k, #'). Taking into account that the function ey, (r) cum (k)
is a slowly varying function of the wave vector, the main contribution to the integral /_
in the far-field zone comes from the neighborhood of k-points where the variation of the

phase [y (k, ') is minimal. Such stationary k-points are defined by the relation

which explicitly reads as

r— vt/
t—t

Where v, (k) is the group velocity of the Bloch eigenmode. Relation (8.11) can be written

in the equivalent form

ve(k) = Viwn(k) = (8.11)

Ir — vi|®

(vell) = v) - (r = vt) = =L

(8.12)

with its right hand side being positive for all moments of time ¢’ < ¢. Taking that into
account, the integration in (8.8 can be restricted to the part of the Brillouin zone, BZ,

containing all wave vectors whose group velocities fulfill the relation
(Vg(k) =v) - (r —vt) > 0. (8.13)

Further, noting that in BZ; there does not exist any stationary points for ¢ > ¢, the
t'-integration in (8.8)) can be extended to the whole real axis without severe error. With
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a good accuracy the integral /_ can be approximated by

Z /ledd/ dt' e (1) Cm (K)Epm (k, t').

m=—0o0

Using the integral expression of the Dirac delta function

d(w) = i/ dt e, (8.14)

2T

the t’-integration can be easily performed resulting in

{ekn(r)cnm(k) exp [t (k-1 — wiyt)]d <wkn —k-v+ 27ra‘vlm) } (8.15)

Furthermore, using the integral relation ([7.18))

dy. f(p o) — a-1, f(r)
/vd 75 (g (1)) /Wd Lo

where OV is a surface defined by the equation ¢ (r) = 0, the d-dimensional integral in
(8.15) can be reduced to the (d — 1)-dimensional integral

T -1 Cken ( )Cnm(k)ex 1(k-r—w
I ~2 Z/ a1k i ] pli (k )] (8.16)

which finally gives the following expression for the Cherenkov far-field

E(r,t) = _alvl ZER{/ A1k Cion (1) Cum (k) exp [¢ (k-rwknt)]}. (8.17)

- (2m)dle vy (k) =]

The integration is performed over the part of the Brillouin zone, BZ;, defined by (8.13))
and the integration surface (3D case) or contour (2D case) Cp, is defined by the general-
ized Cherenkov condition (7.14))
2
win = kv — %m lv|, (8.18)

where m is an integer. In what follows we will refer to the integration surface (contour)
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Figure 8.1:

Frequency [a/)]

0.1 Frequency [a/\] 0.25

Diagram to illustrate the generalized Cherenkov condition. The band struc-
ture of the 2D photonic crystal (Fig: for TE (transverse electric) polar-
ization as well as the set of planes for m = 0, m = —1 and m = —2 and
the charge velocity v .= 0.15¢%x are shown. The intersections of the band
structure with the planes define the integration contours Cp, (dashed lines).
Additionally a color coded projection of the contour on the first Brillouin
zone is shown.
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as Cherenkov surface (contour).

Equation is the main result of the present section. The main goal achieved
until now is the restriction of the integration range from the whole Brillouin zone to
the solutions of the generalized Cherenkov condition in BZ; (8-13). A graphical
illustration of the Cherenkov condition (8.18) is presented in figure The band struc-
ture of an infinite square lattice photonic crystal is shown. The dielectric constant of
the background medium is ¢, = 12 and the radius of the air holes is » = 0.4a, where a
is the lattice constant (Fig. [7.3}left). The manifold of the Cherenkov wave vectors (the
integration contour C,,) is given by the intersection of the band structure, wy,, with the
set of planes f(k) = [v|kj —|v %m for different m. Here k|| is the component of the
wave vector parallel to the charge velocity. The slope of the planes is defined by the

charge velocity, being v = 0.15¢ X in this example.

8.1.1 2D Photonic Crystal

To further simplify the integral (8.16) we can parameterize the contour Cy,, by its arc

length s. Then the contour integral can be transformed into a 1D integral over s

~ 2T Sen(k(s),r)cnm(k(s))ex i[k(s) - r— wy(k(s
> [ as e S e (k) 1 - el (519)

where the wave vector k(s) belongs to the contour Cy,, defined by the generalized Cherenkov
condition (8.18)). The main contribution to the integral comes from the k-points k(s")
in whose neighborhood the phase h (s) = k(s) - r — wy,(k(s))t is stationary with respect

to the variation of s

9
oK) x| =0
(r—vt) - aaiy 0. (8.20)

The second equality holds as the derivative of the Cherenkov condition (8.18)) with respect

to the arc length s results in

(vg(k(s)) — V) g—l; ~0. (8.21)

Combining the stationary phase condition (8.20) with relation (8.21)) and taking into
account the definition of BZ; (8.13)), one can see that for stationary Bloch modes the

vector vg(k”)—v must be parallel to the vector r—vt. In other words, only the eigenmodes
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0.1 Frequency [a/\] 0.25

Figure 8.2: Group velocity contour corresponding to the integration contour C,,. The
main contribution to the Cherenkov radiation in the direction 61 (6/3) comes

from the Bloch mode(s) with group velocity (velocities) vg' (vg? and vg?).

The same color coding as in Fig. is used.

whose group velocities are pointing towards an observation direction in the coordinate
frame moving with the point (line) charge, contribute to the Cherenkov radiation in the
far-field zone.

This statement is illustrated in figure 8.2l The group velocity contour corresponding
to the integration contour C,, is shown. The color coding as in Fig. [8.1]is used, the same
color corresponds to the same frequency and consequently to the same wave vector.
Main contributions to the integral for two different observation directions are
depicted. For the direction ¢; only one Bloch mode with group velocity vg' satisfies the

stationary phase condition (vg(k”) —v) T (r — vt), while for the direction 0,3 there

V2
g

Bloch modes satisfying the stationary phase condition for forward observation directions

are two modes with group velocities vg* and vg* fulfilling the condition. There are no

characterized by angles smaller than 6.
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The integral (8.19) can be further approximated by expanding the phase h (s) near
the stationary points k(s”) = k” in a Taylor series up to quadratic order

h(s) R K 1 — (k)4 (r—vt) - L (s — s)? (8.22)

2

and extending the integration range to the whole real axis

~ 271’2 en | k , T Cnm(ky) exp {Z [ku T — wn(ky)t]}

vg(k¥) — v
00 i 21,V
/ ds exp {5 l(r —vt) - %1 (s — s”)2} . (8.23)

Here summation is taken over all possible stationary points v. The resulting 1D integral

can be evaluated analytically [30]

o0
/ dte = |1 exp {zﬂagn(b)] : (8.24)
o \V 1ol

which together with the relation

9%*k”

, k¥ k¥
(r—vt)- 5.2 = sien ((r —vt) - W) |(r — vt)|

=7 (8.25)

results in the final expression for the Cherenkov electric field in far-field zone for a 2D

medium
(k¥,r) cpm (k)
ECD) (y ¢ qlvl e ( nm
() = €0/ 2T [r — vi| < Z lvg(k¥”) — v| VKY

cexp {i[K” - T — wy (K]} exp {z Esign ((x—vt)- /6”)} }) . (8.26)

Here K" = |IC”‘ = ) 5.2 | 18 the curvature of the contour C,, at the stationary point k”.

Relation (8.25]) holds because of % 1 ‘?;712{ and (8.20)).
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8.1.2 3D Photonic Crystals

By introducing a 2D coordinate system with unit vectors 8_ and 8k > tangential to the

integration surface Cy,, the surface integral (8.16|) can be expressed as

1 %QWZ//d81dSQ g—i{l X aa_;
e, (k(s),r) cum(k(s)) . s
Ve(k(s)) — V] exp [i (k(s) n(k(s))t)]. (8.27)

where s € R?. Similar to the 2D case, the main contribution to the integral comes from
the neighborhood of k-points k(s”) = k¥ where the phase h (s) = k(s) - r — wy,(k(s))t is

stationary
ok”

aSi

with ¢ € {1 2}. Choosing a local coordinate system at the stationary point k¥ with basis

(r—vt) - =0, (8.28)

vectors ag and ak > along the main directions of the surface curvatures the following form

of the Taylor expansion of the phase h (s) can be used to evaluate the integral (8.27))

h(&1,&) =K - r —w, (kY)t

1 9*k” 92k
t3 (r—vt)- (6—5% (& —s7)% + 8—53 (&2 — 55)2> : (8.29)

Here 6851‘2 and & k2 are the main curvatures K} and KY of the integration surface Cp,.

Then extending the integration limits to the whole real plane and using integral relation
(8.24) the Cherenkov electric field in far-field zone for a 3D medium reads

oqlvl (k¥ r) cpm (kY)
E(3D)(I',t> ~ 27(60 |I' _ Vt’ Z (V ky _ V‘ /ICI/ICV
~exp {i[k” - r — w,(k")t]} exp {z [Zsign ((r —vt) - /6{)] }

- exp {z [%sign ((r —vt) - 165)] }) ., (8.30)

with the product of the main curvatures K7K5 being the Gaussian curvature of the
9’k”
o}

surface C,,, defined by the generalized Cherenkov condition (8.18]) and Ki =
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8.2 Numerical Example and Discussion

Formulas , and constitute the main result of the present work. In the
far-field zone the electric field generated by a point (line) charge uniformly moving in
a 3D (2D) periodic medium is dominated by a small number of Bloch eigenmodes of
the medium. To calculate the far-field, these Bloch modes (their wave vectors) should
be calculated as a solution of the generalized Cherenkov condition (| m In turn, the
spatial variation of the Cherenkov radiation is dominated (i) by the interference of these
Bloch modes at the observation point and (11) by the topology of the dlSpeI‘SIOIl relation
at the Cherenkov surface (contour) in Eqs ) and (8.30) [Egs. (8.17) and (8.26))].

In what follows, we apply formulas and - ) to study spat1al distribution of
the Cherenkov radiation in the 2D periodic medium depicted in figure [7.3}eft. The line
charge oriented perpendicular to the periodicity plane of the crystal moves along the
xr-axis with a velocity v = 0.15¢, staying always in the space between air holes. The
corresponding current density couples only to Bloch eigenmodes with an electric
field in the periodicity plane, TE (transverse electric) polarization. The first TE photonic
band of the considered crystal is presented in figure The band structure as well as
group velocities and Bloch eigenmodes were calculated using the plane wave expansion
method [32].

In order to calculate both the electric field and its approximation the set
of wave vectors contributing to the far-field should be calculated. This set can be found
as a numerical solution of the generalized Cherenkov condition (dashed line in Fig. [8.1).
In contrast to the homogeneous medium case, such a solution does exist for arbitrary
(arbitrary small) charge velocity as was demonstrated in the previous chapter.

Having the set of wave vectors C,,, the Bloch modes ey, and the Fourier coefficient
cnm (k) should be calculated. The Fourier coefficients ¢y, (k) give the coupling strength
between the current associated with the moving charge and the Bloch eigenmodes. As
it can be seen from the definition (8.7)) with increasing index |m/| the Fourier coefficients
become smaller, reducing the contribution of the higher frequencies to the Cherenkov
radiation in the far-field zone. Finally, the Cherenkov field can be calculated by
direct numerical integration.

To calculate the stationary phase approximation of the far-field , stationary
wave vectors k¥ should be calculated for a given observation direction r — v¢. This can
be done by parameterizing Cherenkov contour by the arc length s and looking for all
Bloch modes whose group velocities (Fig. satisfy the stationary phase condition

(vg(k”) = v) 1T (r — vt). Further the Bloch modes, the Fourier coefficient and curvature
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Figure 8.3: E,(r,t = 0) (top panel) and E,(r,t = 0) (bottom panel) components of
the Cherenkov electric field for charge velocity v = 0.15¢. The results of the
stationary phase approximation and direct numerical integration using
FDTD methods are shown.
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of the Cherenkov contour (see appendix should be calculated and summed for these
stationary points only reducing the computational demands considerably.

In figure .3 a numerical calculations of the stationary phase approximation of the
far-field is presented for v = 0.15¢. The E,(r,t = 0) and Ey(r,t = 0) components of the
electric field are shown in the upper halves of the top and bottom panels, respectively.
Only contributions from the first three sections of the Cherenkov contour corresponding
to m = 0, —1, —2 have been analyzed. In the case of a homogeneous medium, the
standard Cherenkov condition would impose a minimal charge velocity above which
Cherenkov radiation is possible vyin > ¢/neg ~ 0.457c. Here an effective refractive
index of the considered periodic medium is asymptotically equal to neg = \/€cf = 2.186.
Although the velocity of the line charge is considerable smaller than v,,;,, in the periodic
medium the non-evanescent field can be clearly seen far apart from the charge trajectory
(Fig. B.3). Another characteristic feature of the spatial distribution of the Cherenkov
radiation for v = 0.15c is a backward-pointing radiation cone [27]. The field in the
forward direction for the observation angles smaller than 6 is zero.

The zero field within the backward-pointing radiation cone should be associated with
the absence of the stationary solutions for observation directions in the cone (Fig. .
This is a direct consequence of the stationary phase approximation. In figure [8.4-top,
the stationary phase approximation of the far-field 10 lattice constants apart from the
trajectory is compared with the direct numerical integration of the integral representation
of the field . An excellent agreement between these two solutions can be seen
up to the Cherenkov cone 01, where the stationary phase approximation breaks down.
The cone angle corresponds to the fold in the group velocity contour (Fig. . The
curvature of the Cherenkov contour is zero at the corresponding wave vector and the
Taylor expansion fails to reproduce the contour accurately in the vicinity of this
point. Zero curvature leads to the diverging field (Fig. [B.4kinset). The field calculated
with Eq. is small but final in the forward directions.

To substantiate our analytical calculations a direct numerical integration of Maxwell’s
equations using rigorous finite-differences time-domain (FDTD) method [28] has been
performed. The corresponding FDTD field distributions are presented in the lower halves
of the top and bottom panels of figure 8.3} 200a x 70a lattice of holes with discretization
A = a/18 has been used for FDTD calculations. The simulation domain was surrounded
by a 3a-wide perfectly matched layer (PML). The integration time step was set to 98% of
the Courant value. In order to describe a continuous movement of the charge, the source

(6.2)) was modeled by a discrete Gaussian in z-direction with a standard deviation o = 1A
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8.4: Comparison of the integral representation of the far-field (8.17) (dashed red

line) with the stationary phase approximation (8.26]) (black solid line) (top)
and FDTD (blue solid line) (bottom) calculations. An absolute value of the
horizontal component of the electric field is shown 10 lattice constants apart
from the charge trajectory.
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and by an appropriately normalized Kronecker delta in y-direction

_ ik A — vt)?

V21 A2 b l_ 272

where y,. = 35a is the center of the crystal in vertical direction. In order to compare
directly FDTD results with the predictions of formulas and (B8.26), the static
contribution as well as the higher frequency contribution to the FDTD field have been
filtered out. An overall good agreement between the results of the analytical and direct
numerical calculations is obtained (Fig. and [8.4). The FDTD calculations follow
nicely the main characteristic of the analytically predicted field. The difference in the
absolute values between FDTD and analytical calculations (Fig. can be associated

with the residual reflections from the perfectly matched layer.

8.3 Summary

In conclusion, we have developed an analytical theory of the Cherenkov radiation in the
far-field zone. The field far apart from the charge trajectory can be calculated as a surface
(contour) integral over a small fraction of the first Brillouin Zone in a 3D (2D) dielectric
medium. We have shown that the main contribution to this integral comes from a small
and discrete number of k-points. This opens the possibility to calculate the integral
approximately, but with high accuracy. We have also shown, that the spatial variation
of the Cherenkov radiation in the far-field is due to the interference of a few Bloch
eigenmodes as well as the topological properties of the Cherenkov surface (contour). This
has been defined as a manifold of all k-points contributing to the Cherenkov radiation
for a given charge velocity. Simple formulas have been derived for the Cherenkov far-
field both in 3D and 2D cases. We have compared the developed analytical theory with
numerically rigorous FDTD calculations. A good agreement between these two methods

has been demonstrated.
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9 Conclusion

Optical Antennas

The general three dimensional volume integral equation has been reduced in two alter-
native ways to a one dimensional integro-differential equation. In both ways the exact
solution of the problem of plane wave scattering on infinite cylinder has be utilized but in
different manner. In the derivation of the surface impedance integro-differential equation
this solution is used to approximate the surface impedance of the antenna whereas the
derivation of the volume current integro-differential equation use its separable nature
and its radial dependence as ansatz for the current distribution inside the antenna. A
regularization scheme is proposed in order to transform these integro-differential equa-
tions into solely integral equation so that the necessity to impose additional boundary
conditions at the nanowire edges can be omitted. The integral equations are discretized
within a method of moments (MoM) approach. To benchmark the proposed methods
gold nanowires have been analyzed at optical and near-infrared spectral range. Both
semi-analytical methods demonstrate good agreement and superior numerical perfor-
mance in comparison with rigorous numerical methods. It has been demonstrated that
the accuracy of the volume current integral equation (VC-IE) is slightly better in com-
parison with the surface impedance integral equation (SI-IE) especially for wires with a
small aspect ratio.

Some interesting future project could involve (i) the application of the VC-IE to study
the emission dynamic of quantum system in close vicinity to the plasmonic antenna,
(ii) the study of coupled systems consisting of two or more nanoantennas and (iii) a
formulation similar to the VC-IE but based on equivalent surface currents instead of

volume currents.

Cherenkov Radiation in Photonic Crystals

Analytical expressions have been derived for the emission spectra as well as the electric
field distribution in the far-field zone for radiation due to a uniformly moving charge

(Cherenkov radiation) inside general three dimensional (3D) and two dimensional (2D)
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periodic dielectric media.

The obtained formula for the emission spectrum (Cherenkov power emitted per unit
length of the charge trajectory) involves the calculation of Bloch modes and correspond-
ing group velocities at limited points of the reciprocal space only. It has been demon-
strated that (i) the Cherenkov effect exists for every charge velocity (ii) the radiation can
be suppressed if the coupling of the moving charge with a Bloch mode is poor and (iii)
an enhancement of radiated energy is possible if the component of the group velocity
orthogonal to the charge trajectory is small. The analytical expression derived for the
field distribution has been discussed. Manifolds in k-space whose Bloch modes contribute
most to the far-field have been illustrated and an intuitive condition for the existence of
propagation in a given direction has been derived.

The derived analytical expressions have been used to calculate emission spectra and
field distributions for different charge velocities in a two dimensional square lattice pho-
tonic crystal. For comparison the same calculations have been performed with rigorous
numerical finite-difference time-domain method. Analytics and numerics have demon-
strated good agreement.

An improvement of the theory could be done by taking into account the energy loss of
the electron due to radiation. It could also be of interest to calculate Cherenkov radiation
in a three dimensional photonic crystal structure of practical use to guide experimentalist
in its observation. It is also of interest to study the potential of the Cherenkov effect to
probe existing photonic crystal structures or building charged particle detectors. The
advantage of photonic crystal Cherenkov detectors over conventional ones could be that
there is (i) a strong dependence between radiation characteristic and charge velocity and

(ii) that also slow particles could be detected.
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A Lee’'s Renormalization: Proof of

Equation (2.37)

Here we want to give a proof of the Lee splitting Eq. (2.37)) following closely the one
using classical analysis published by Lee et al. in [9).
If one exclude the arbitrary shaped finite region V* in which the singularity is located

one can change the order of integration and differentiation, so

2
Lij = Ayj I i) dr. Al
o=t gt [ gt s (A1)
Differentiating g(r,r’) once the singularity created is of the order |r — r’|72/3 which is
still integrable [? |. So we can write
9, 0
Lij = Ay — — i ()= g(r,x') . A2
ij ij o7 5%/‘/*_‘/5](1.)8%99(1"[‘) T ( )

Substituting the integrand

) ate) = 9 [ 6)ate)] = (1109 ot
J J

and applying Gauss divergence theorem

. I‘/ 3, I'/-ﬁ 27,/ )
/Vv F(r')d ygVF( )-fd (A.3)
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one yields

0 B
Iij =Ay + = li —j(r " a3
J it 0x; 51—%{/‘/*% <ax;~7(r )> g(r,r’)d°r
—¢§ J)ge,v') (%5 - 1) a2
OV *+0Vs

0 0
:A _ 1 o / _ / d3 /
1] 51_I>I(1) //*% (am;j<r )) ax;g(r7r ) r
‘ 0 L.
) (5 ) (A1)
oV~ i
where the second equality holds because (i) the same argument as above is applicable

and (ii) the integral over dVj vanishes in the limit § — 0 since the integrand is O(5~1)

while the surface element is O(6%). Next we can substitute

a ., \ O N 0 0 /
(5079) gote: ) = [ = 6] ot

v {3, [6) - 0] st}
821
) 0] Sty (A5)

and by using Gauss theorem (A.3]) a second time we yield

. 0 L
Ii; =Aij + 515 j(r')==g(r,r') (x; - n) d*r’
oV* o}

: . 0 L
L)~ 0] et ) o
ov+ i
+ li ['(r') - (r)} 8—2 (r,x') d®’
550 Jy_y, 70 T Qe ST
: 0 L
=A;; + j(r)% Fg(r, r') (%, - n) d*
av+ 9L;

02
. AN AW
g [ 100 0] gt (A0
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The last term can be rewritten as

W)= ) — S0 go(rr) b
RE ax;axgg’ J ax;axggo’ r

. , 02 / /
—j(r) /V* d3r (’“):E;.(‘)x,’i [g(r,r)—go(r,r)] (A.7)

In this form the singularities no longer occur because g and gg behave identically for
r’ — r so one needs no longer a limiting procedure in order to define the integrals.

Finally Gauss theorem can be used a third time to transform the last integral yielding
Eq. (2.37))

. 0 L
Iij = AZ']‘ —i—j(I‘)% ?go(r, I‘/) (Xj . Il) dQT/
ov+ 9T,

. / 82 / . 62 /
+ J(r )WQ(T, r) — J(F)Wgo(r, r) (A.8)
. 5OT; 5O0T;
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B Scattering Cross Section, VC-IE
and SI-IE

According to Eq. (3.39)) the total scattering cross section o is given by

d2r |E4|?
- 563—’25| (B.1)
|Emc’
where the scattered electric field Eg is generated by the induced current density j and

can be expressed as

Bu(r) = ot | &' & (r, () (B.2)

with the dyadic free space Green’s function @ 1) E™¢ denotes the incident field.
The spherical surface S lies at infinity. In the far field regime, i.e. R = |r — /| > 1, only
the order O [R_l] term of the Green’s function contributes and one can expand R for

small 7/ /r up to first order yielding

R = /(r—1)-(r—71

= \/7"2 + 72 — 2rr’ cos v

7,./ 7'/ 2
= 714/l —=2—cosa+ <—>
r r

~ T—T/COSOé

= r—t-r. (B.3)

Here, @ denotes the angle between r and r’ and ¥ the unit vector in r-direction. The
term T - r’ influences the phase in the exponential function but can be safely ignored in
the R~! terms. So the dyadic Green’s function in the far field regime is given by

eik(r—t-1’)

GrFe )= {? s r} (B.4)

A7y
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B.1 VC-IE

The induced current density needed in (B.2)) is related to the resulting internal electric
field of the VC-IE (5.38]), which can be symbolically written as E = E,(p, 2)p+E.(p, 2)z,
by the volume equivalence theorem (3.6]). Using (B.2)) with the far field Green’s function
(B.4) we derive the scattering field in spherical coordinates (r, ¢, 6)
B.(r,6,0) ~ k*Ae, {? —t® r} &' e (B, ) p (¢)) + Ba(p, #)2)
) 477'7” v P I I
(B.5)

There is neither a ¢-dependence nor a ¢-component in the induced current and thus

there are none in the scattering field either. Thus we can calculate the scattering field
without loss of generality just in the incident plane, i.e. ¢ = 0 and r = sin X + cos 0z.
The r-component (E; - 7°) has to be zero in the far zone because the field is transverse.

So the problem reduces to the calculation of the #-component

wr

+ HT _p ®f~} z} / B e (4 ) -8
1%
2 elkr 3,/ —iki-r’ NP
=k*Ae, d’r’ e Ep(p,z)(p-ﬁ)
\%4

eik:r ., PN
Ea(r,0,0) =k*Aey'— / B =T B () ) [{ I —f®f~} ,3]
Vv

Amr

+z—1t(r-2)]- 9/ &' e MR () z')) (B.6)
Vv

Here we used the vector identity (a ® b)c = a (b - ¢). By calculating the scalar products

of the coordinate unit vectors, i.e. v-0 =0, z - 6 = —sin 6 and p- 0 = cos 6 cos ¢,

reduces to

ikr

Ey(r,0,0) —k2Aep = (cos@/ &' e M E (o 2) cos ¢f
v

47r

- sin@/ &P e R B (4 z')) . (B.7)
\%4
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Substituting £, = —k,'Ji (kpp) f'(2) and E. = Jo (kyp) f(z) according to Eq. (5.38)
the first integral in (B.7) becomes

a
/ &Br' e E (Y cos ) = — _/ dz' f'(2") exp [—ik cos 02'] / pdp'Jy (kpp')
v 3 0

27
. / d¢’ cos ¢’ exp [—ik sin 0p’ cos gb/}
0
B Z,477@ kyJo (kpa) J1 (aksin®) — ksin 0.J; (kya) Jo (aksin 6)

k,, k2 cos (20) — k2 + 2k2

: / dZ' f'(2') exp [—ik cos 92’}

L
2

A
2
=Ta {%k‘a sinf + O ( 3k3)] / d2' f'(") exp [—z’k oS Gz']
1
(B.8)
and the second one
i a
/ d3r e_ik?'r,EZ(p/, 2 :/ dz' f(2') exp [—ik Ccos Qz/] / pldp’ Jo (kpp/)
Vv -4 0
27
/ d¢’ exp [—ik’ sin @p’ cos (b’}
0
2 k*a’ 2 474
=ma [1— T (1—0—2(67«—(}08 5) —008[20]) —l—(’)(a k )
1
2
/ dz' f(2') exp [—ik cos 62’} : (B.9)
1l
2

In each of the above calculations of the integrals, we performed a series expansion with
respect to small ak in the last step. A further simplification can be archived in (B.8) by
integrating the residual integral by parts yielding

/2 dZ' f'(2') exp [—i/{; cos 02’} = f(z) exp [—ik cos 2]

N~

N~

1
+ ik cos 6 / dZ' f(2") exp [—ik cos 92’] (B.10)

N~

Taking into account that the field amplitude at the ends of the wire f(—[/2) and f(l/2)
are generally very small so we can conclude that the contribution from (B.8) is of the

order O <a2k2) which we can neglect for thin wires. Likewise we can neglect the terms
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of order O (a2k2) in except the term which involves €, because |e,| could be large

for metals. So, we obtain finally

2,2 \e. sin @ ¢iFT 2.2 5
Eg(r,0,0) = _KdAesinfe (1 _ka e,«> / dZ' f(2") exp [—ik cos@z’} .

4 T 8
(B.11)

L
2

Plugging (B.11)) in (B.1) we finally obtain the total scattering cross section

2.2 ™
Ae, (1 _Ha er) / 6 sin® 0
8 0

l

2
/ dz' f(2') exp [—ik‘ Cos 92’}

L
2

2
rktat

8 |E;|?

Os

(B.12)

B.2 SI-IE

The induced current density in the surface impedance integral equation is expressed in
terms of the resulting current /(z) by Eq. (5.4) which leads under analog considerations

as explained above to the scattering field in the far zone
E; = E0 (B.13)

with

ikr /
— e olp — N
o :iwuoe { I —t® f‘} / d3,r/ e—zkr-r ](Z/)Mi .0
4mr v 2mp!

=iw i ¢ [(i : é) - (f' . 0) (r- i)} /_QZ dz'I(2") exp [—ik cos Qz/}

82y

27
. / d¢’ exp [—ika sin 6 cos gb’]
0
l

ikr 5
° sin 0.Jo (kasin ) / dz'1(2") exp [—ik‘ Cos QZ'}

=~ iwpo7

wr

N~

. l
ikr

- — Z,Wo—sinee (1 +0 [kaaQD /2 dz'I(2") exp [—ik cos Qz/} : (B.14)

47 r

]

In the last step a series expansion of Jy was performed neglecting terms of order O [lﬂQCLQ} .

Plugging (B.14)) into (B.1) we obtain the following expression for the scattering cross
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section in terms of I(2)

: 2
/ dz'I(2") exp [—ik cos 92’} : (B.15)

L
2

2,2 ™
:M/ 49 sin® 0
™ Jo
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C Derivation of Equation ([7.6)

Using the Fourier representation (1.15)) of a time dependent real function F (r, ),

— 00

F(r,t)=" {% /Oo dwF (r,w) e_i”t} (C.1)
1 [0.9]

dw (F (r,w) e L F* (r,w) eiwt) :

:E .

for the electric field E (r, t) and the current density J (r,¢) in Eq. (7.4)), the total radiated
energy (7.5) can be written in the form

(42)29%{/61%/ dt/ dw/ dQ
7 —00 —00 —00
Vo

{J (r,w) - E(r,Q) e @D L 3 (r w) - E* (r,Q) e_i(w_mt] } (C.2)

Changing the integration order and using the integral relation for the Dirac delta function

d(x) = %/_ dy 1% (C.3)

we obtain for the total radiated energy

U = i%{/ddr/Zdw/ZdQ
Vo
[J(r,w)-E(r,Q)é(w+Q)—l—J(r,w)-E*(r,Q)é(w—Q)]}. (C.4)

Further, integrating over (2 and using the symmetry of the Fourier transform of the

electric field, E (r, —w) = E* (r,w), the total radiated energy can be written as an integral

123



over frequency (|7.6)

__z Oowl dr I'CL)‘*I'CU . .
U= /0de /d J(r,w) E* (r,w) (C.5)

T
Vo

The integrand in Eq. (C.5) coincides with the time-averaged radiated power of the

monochromatic source J (r,w) (1.38]).
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D Derivation of Equation ([7.10)

Expanding a periodic function (el(f;) (TH) . f'|) in the Fourier series

oo

(el () 1) = 32 & tsmy (D-1)

m=—0oQ

with coefficients cg,?[) (k;n) defined in Eq. (7.11)), integrals ]fa) and Iéa) in 1) can be

transformed to

nY= > i on) / arye (=) (D.2)
and
- 1/2
e e 1 i(kj——2Zp)r
5= Cfo)(k;nﬁ/d?‘ie(k' ), (D.3)
p==ee ~1/2

respectively. In Eq. (D.2)), integration over r| immediately yields

]fa) =97 Z cg,?)* (k; n) ) <k| — i - 2—Wm> . (D-4)

m=—0oo

Integral in (D.3) is equal to [, if k) — |“’7| — %p = (. Otherwise it results in

D.5)
w 27 (
I =
Then, in the 1imit [ — oo, I( ) vanishes for K — ‘w—| — —p # 0, while is equal to
2m Z k n) for ky — W — —p = 0. Finally, using the function

~ 1, 2=0

S@=4 T (D6)

0, v#0
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relation (7.9) can be written in the form

1@ —on ¢ Z Z {0 (k;n) céa) (k;n) x

m=—00 p=—00
w 2T ~ w 2w

which is non-zero only for m = p yielding relation ([7.10]).
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E The Curvature of the Cherenkov

Contour

To calculate the curvature using its definition

9%k (s)

Kls) = 0s2

(E.1)

one should numerically evaluate the second derivative of the wave vector k(s) on the

Cherenkov contour. This is typically associated with a large numerical error. In what

follows we propose to use an alternative method to calculate the curvature which usually

results in smaller numerical error and involves calculations of the first derivative of the

wave vector on the contour and the second derivatives of the dispersion relation wy, (k).
Taking the derivative of with respect to s we obtain

2
vy k() ) + 25 Dy k() =0 (B.2)

The second term in (E.2) can be rewritten as

T v o) = 3 G | 2 i)

;07 Ok,
> 55 ik ) 5
(2%
T
ok ok
= (%) Hwn(k)a—s (E.3)

=M, (E.4)

where H,,, (k) is the Hessian matrix of the dispersion relation wy, (k). We can now rewrite

in the form
. (Vg (k(S)) — V) =M (E5)
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or

K |vg (k(s)) — v|sign [K - (vq (k(s) = v)] = M
with £ = ?92712‘. Finally the following expression for the curvature is obtained

M
b= N k) v
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