
Generalized Kähler metrics on
complex spaces

and a supplement to a Theorem of
Fornæss and Narasimhan

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

eingereicht am Fachbereich Mathematik
der Bergischen Universität-GHS Wuppertal

von Dipl.-Math. Anca Popa-Fischer
geboren am 8. Juli 1971 in Sighişoara/Schäßburg, Rumänien
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Chapter 1

Introduction

Singularities do occur immediately, even if one wants to study complex manifolds only.

For example when considering fibers of holomorphic maps X −→ Y between complex
manifolds, the objects we obtain are in general analytic sets with singularities.

Or if considering quotients of complex manifolds, e. g. for the group

G :=

{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
the orbit space C2/G is isomorphic to the affine surface F in C3 given by z2

3 − z1z2

which is not a topological manifold around 0 ∈ F .

These remarks show that complex manifolds cannot be studied successfully without
studying more general objects such as complex spaces (with singularities).

In the study of complex spaces analytic convexity is of fundamental importance; it
establishes a link between geometrical and analytical properties of sets.

Analytic convexity was introduced in complex analysis by E. E. Levi by discovering
(around 1910) that the (smooth) boundary of a domain of holomorphy in Cn is not
arbitrary, but satisfies a certain condition of pseudoconvexity.

A systematic treatment of complex spaces involves the analysis of punctual, local and
global properties.

In passing from the punctual to the local point of view the concept of coherent sheaves
plays a decisive role. The coherence of the structure sheaf gives rise to an interplay
between algebra and geometry. So, for example, the (punctual) algebraic notion of
analytic algebras corresponds to the (local) geometric objects germs of complex spaces.

For the step from local to global one can apply cohomology theory. The global theory is
particularly well developed for two classes of complex spaces that can be characterized
in terms of topological or function-theoretic “completeness”, namely the compact spaces
and the Stein spaces.

Stein spaces are exactly the 1-complete complex spaces and the strongly plurisubhar-
monic functions, which are in close relation to the Stein spaces, are exactly the 1-convex
functions.
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2 CHAPTER 1. INTRODUCTION

q-complete spaces generalize the Stein spaces, as q-convex functions do with the strongly
plurisubharmonic ones.

The q-convex with corners functions on a complex space introduced by Diederich and
Fornæss play an important role in q-convexity theory.

The concept of q-convexity developed by Andreotti and Grauert in 1962 generalizes the
concept of pseudoconvexity.

This dissertation deals, roughly speaking, with analytic convexity and q-convexity on
complex spaces.

The results are structured into two parts: one concerning compact spaces, proper mod-
ifications and generalized Kähler metrics (chapters 3 and 4) and the other concerning
q-complete spaces and q-plurisubharmonic functions (chapter 5).

There is less relation between the two parts, but they are both in close relation to me!

Concerning the first part: on complex spaces there is a kind of surgery called proper
modifications. Roughly speaking one replaces a nowhere dense closed complex subspace
A of Y by another complex space B in such a way that X := (Y \ A) ∪ B becomes
a complex space endowed with a proper holomorphic map π : X −→ Y which maps
X \ B biholomorphically onto Y \ A. Classical is the blowing-up of points: e. g. one
replaces 0 ∈ Cn by the projective space Pn−1 of all line directions at 0. This procedure
can be generalized: every closed complex subspace A can be blown-up in a natural way
along A.

By a theorem of Hironaka and Chow proper modifications are not too far away from
blowing-ups: they are always dominated by a locally finite sequence of blowing-ups.

But although proper modifications modify the geometry of the space only along a rare
analytic set it is enough to “disturb” important analytic properties.

So, for example, Moishezon [Mo1] proved by a counterexample that for a surjective,
proper modification π : X −→ Y between complex spaces such that Y has a Kähler
metric it doesn’t follow necessarily that X is also Kähler.

Among the compact complex manifolds the Kähler manifolds enjoy a number of re-
markable properties. Kähler spaces were first introduced by Grauert [Gr] and their
study was continued by Moishezon [Mo1]. It is known that the definition of Moishezon
of a Kähler metric coincides with that one of Grauert in the case of normal spaces.

The counterexample of Moishezon gives naturally rise to the question whether one can
prove in that context general results about X. Other stated the question is: how far is
X from being Kähler.

In chapter 3 we prove that X possesses a so called generalized Kähler metric (Theorem
3.1.6) by using a method from the article of M. Coltoiu and M. Mihalache [Co-Mi] and
a smooth-glueing technique from Demailly [Dem].

The notion of generalized Kähler metrics that we introduce (Definition 3.1.5) differs
only a little from the definition of Moishezon we use for Kähler metrics: we admit −∞
as value for the system of defining functions. More precisely it is:
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Definition 3.1.5 We say that the reduced compact complex space X has a generalized
Kähler metric if there exists a covering of X with open sets (Ui)i such that on each set Ui
there exists a function ϕi : Ui −→ [−∞,∞), ϕi 6≡ −∞ on each irreducible component of
Ui, which is strongly plurisubharmonic, regular of class C∞ outside the set {ϕi = −∞}
and such that on each nonempty intersection Ui ∩Uj we have (locally) the compatibility
condition ϕi = ϕj + Re fij for some holomorphic function fij

The precise theorem is the following:

Theorem 3.1.6 Let X and Y be two reduced, compact, complex spaces (with singular-
ities) and p : X −→ Y a surjective, holomorphic map, which is a proper modification.
Suppose that Y is Kähler. Then X has a generalized Kähler metric.

In chapter 4 we generalize this theorem to proper maps by using Theorem 3.1.6 as a
special case in its proof. More exactly, the result is the following:

Theorem 4.1.1 Let p : X −→ Y be a holomorphic and surjective map between two
reduced, compact, complex spaces with singularities and with the property that p sends
each irreducible component CX of X (surjective) onto an irreducible component CY of
Y of the same dimension, dimCX = dimCY .
If Y is Kähler, then X has a generalized Kähler metric.

Concerning the second part: it contains a generalization of a theorem of Fornæss and
Narasimhan ([F-N] Theorem 5.3.1.) which asserts that on each complex space we
have equality between the class of plurisubharmonic functions and that one of weakly
plurisubharmonic functions (see section 5.1). This result is evident for complex mani-
folds but totally non-trivial for complex spaces. The proof of Fornæss and Narasimhan
uses among other results also a local maximum theorem of H. Rossi (Ann. of Math. 72,
1-11, 1960) which cannot be generalized so easy (if ever) to the q-convex case.

To generalize to complex spaces a certain object in complex analysis already defined
by a local condition in open sets in Cn in a biholomorphic manner one has the choice
between the following two possibilities:

(i) to define it as the trace, by means of local embeddings, of the analogue object in
open sets in Cn

(ii) to ask that for each holomorphic map f : U −→ X with U ⊂ Cq open set (for
some fixed q) the “pull-back” to U of the object by means of the map f is such
an object in U .

It is well known that the resulting objects are not necessarily the same in the two
methods if X has singularities.

Chapter 5 deals with the equivalence of this two defining methods for the case of the
q-plurisubharmonic functions in the sense of Fujita [Fu] on complex spaces of finite
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dimension. We obtain so a generalization of the result of Fornæss and Narasimhan, but
only in the case of continuous functions (Theorem 5.3.14). Our proof is by induction
over the dimension of the space and is based on a new proof for the result of Fornæss
and Narasimhan (i. e. the case q = 1) (see section 5.2).

At the same time we obtain a generalization of a result of Siu, namely we show that
every q-complete subspace with corners of a complex space admits a q-complete with
corners neighbourhood.

I want to express my warmest thanks to Prof. M. Colţoiu and to Prof. K. Diederich
for their very helpful discussions and advices during the whole time of preparing my
dissertation.

I thank Prof. Colţoiu for suggesting me the problems treated here. This dissertation
was written at the University of Wuppertal. I thank the University of Wuppertal and
especially Prof. Diederich for this opportunity and for providing me a nice and proper
atmosphere to work.

To all my friends who were near me I am grateful.

Especially to my parents and to Bert Fischer, who answered me all questions concerning
LATEX.



Chapter 2

Preliminaries

2.1 Introduction to q-convexity

Throughout this work all complex spaces are assumed to be reduced and with countable
topology, unless it is otherwise stated. The main definitions concerning complex spaces
we will use are those from [Ka].

Definition 2.1.1 A holomorphic map between two complex spaces ϕ : X −→ Y is
called an embedding if there is a closed subspace i : Y ′ ↪→ Y and a factorisation

X Y

Y ′

//
ϕ

��
??????????

ϕ′

?�

OO� � � � � � �
i

where ϕ′ is biholomorphic.

ϕ is called immersion at x ∈ X if there are open neighbourhoods U of x in X and V of
ϕ(x) in Y such that ϕ|U : U −→ V is an embedding (i.e. it is locally an embedding).

ϕ is called an immersion if it is an immersion at every point.

Let X be a complex space (with singularities). A function θ : X −→ R is called smooth
(of class C∞) if we can find for every point x ∈ X an open neighbourhood U of x and a
holomorphic embedding i : U ↪→ G, where G is an open subset in some euclidian space
C
n (such a i is called a “local chart”), such that there exists on G a function of class
C∞, f ∈ C∞(G), with the property that f ◦ i = θ|U .

We denote by PSH(X) and call them plurisubharmonic functions those upper semi-
continuous functions ϕ : X −→ [−∞,∞) such that for every x ∈ X there exists a local
embedding i : U ↪→ Ũ ⊂ Cn, where U is a neighbourhood of x and Ũ is an open subset
of Cn, and there exists a plurisubharmonic function ϕ̃ on the euclidian open subset Ũ
such that ϕ̃ ◦ i = ϕ.

5
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SPSH(X) stands for the strongly plurisubharmonic functions on X, i.e. those PSH-
functions for which we have: for every θ ∈ C∞0 (X,R) (i.e. smooth and with compact
support), there exists ε0 > 0 such that ϕ+ εθ ∈ PSH(X), for 0 ≤ ε ≤ ε0.

Example If f : X −→ C is holomorphic on X then |f |, |f |2, log(1 + |f |2) and log |f |
are plurisubharmonic functions on X (the last function is indeed pluriharmonic on the
set {f 6= 0}). Furthermore log(1 + |z|2) is strongly plurisubharmonic on Cn.

Remark 2.1.2

(i) If f : Z −→ X is a holomorphic map between complex spaces and ϕ ∈ PSH(X)
then ϕ ◦ f ∈ PSH(Z).

(ii) If ϕ : X −→ R is plurisubharmonic and g : R −→ R is convex and increasing
then g ◦ ϕ is plurisubharmonic.

Definition 2.1.3 For a function ϕ ∈ C2(U,R), where U is an open subset of some
euclidian space Cn, we define the Levi form L(ϕ) of ϕ as the hermitian form

L(ϕ) =
n∑

i,j=1

∂2ϕ

∂zi∂z̄j
dzidz̄j

Remark 2.1.4

(i) The Levi form of ϕ at the point x ∈ U , calculated in ψ, η ∈ Cn is then the complex
number given by the expression

L(ϕ, x)(ψ, η) =
n∑

i,j=1

∂2ϕ

∂zi∂z̄j
(x)ψiη̄j

(ii) A real-valued C2-function ϕ : U −→ R, where U is an open set in Cn, is plurisub-
harmonic (resp. strongly plurisubharmonic) if and only if its Levi form is positive-
semidefinite (resp. positive definite), that is that for each x ∈ U and for every
ψ ∈ Cn the inequality L(ϕ, x)(ψ, ψ) ≥ 0 (resp. > 0 on Cn \ {0}) holds. This is
equivalent to the fact that the Levi-form of the plurisubharmonic (resp. strongly
plurisubharmonic) function ϕ has exactly n non-negative (resp. n positive) eigen-
values.

If we require the Levi-form of a C2-function to have at each point a certain number
of positive eigenvalues, we get the notions of q-convex functions (see [A-G]). More
precisely, we have the following definitions:

Definition 2.1.5 A function ϕ ∈ C∞(U,R), where U is an open subset of Cn is called
q-convex (q ∈ N, 1 ≤ q ≤ n) if its Levi form L(ϕ) has at least n− q + 1 positive (> 0)
eigenvalues at every point of U .
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Example Let U be an open subset in a complex number space Cn and ϕ a smooth
strongly plurisubharmonic function on U . The function ψ ∈ C∞(U,R) defined by
ψ := ϕ · (1 + |f2|2 + . . . + |fq|2)α is q-convex, where α ∈ R and f2, . . . , fq, (2 ≤ q ≤ n)
are holomorphic functions on U .

Remark 2.1.6

(i) The 1-convex functions on open euclidian subsets are exactly the smooth strongly
plurisubharmonic ones.

(ii) The above notion of q-convex functions is easily generalized to complex spaces by
using local embeddings (see [A-G]). The precise definition is the following:

Definition 2.1.7 Let X be a complex space and consider a function ϕ ∈ C∞(X,R). ϕ
is called a q-convex function (q ∈ N) if for any point x ∈ X there exists a local chart
i : U −→ Ũ ⊂ Cn and a function ϕ̃ ∈ C∞(Ũ ,R) with the property that ϕ̃ ◦ i = ϕ|U and

that the Levi form of ϕ̃ has at least n− q + 1 positive eigenvalues at any point of Ũ .

Remark 2.1.8 It can be checked that the existence of ϕ̃ does not depend on the local
embedding chosen.

A continuous function ϕ : X −→ R is called an exhaustion function for the space X if
the sublevel sets {ϕ ≤ c} := {x ∈ X | ϕ(x) ≤ c} are compact for every c ∈ R.

Definition 2.1.9 A complex space X is called q-convex if there exists a compact set K
in X and a smooth exhaustion function f : X −→ R which is q-convex on X \K.
If it is possible to choose K = ∅, then X is called q-complete.

Remark 2.1.10

(i) The 1-complete spaces are exactly the Stein spaces.

(ii) By a result of Narasimhan (see [RN]) it holds that any 1-convex space X is a
proper modification of a Stein space at a finite set, i.e. there exists a Stein
space Z, a finite set A := {z1, . . . , zp} ⊂ Z and a proper (i.e. inverse images of
compact sets are still compact), holomorphic, surjective map f : X −→ Z such
that f|X\f−1(A)

: X \ f−1(A) −→ Z \ A is biholomorphic and that OZ ' f∗OX .

The (analytic) set f−1(A) is called the exceptional set of X; it is the maximal
compact analytic set of positive dimension in X. If the exceptional set is empty
it means that X is 1-complete.

Examples

(i) If U ⊂ Cn is a Stein open subset and if we consider the analytic subset given by
A = {x ∈ U | f1(x) = . . . = fk(x) = 0} where f1, . . . , fk ∈ O(U), then U \ A is
k-complete.
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More generally, if U ⊂ Cn is q-complete then U \A is (q+k−1)-complete. Indeed,
if we fix a q-convex exhaustion function % for U , then the function ϕ given by

ϕ = %+
1

(
∑k

i=1 |fi|2)k

is (q + k − 1)-convex on U \ A and exhausts U \ A.

(ii) Consider a linear subspace L ⊂ Pn of codimension q in some complex projective
space Pn. Then Pn \ L is q-complete.

Indeed, if L is given by L = {(z0 : . . . : zn) | z0 = . . . = zq−1 = 0} then we obtain
a q-convex exhaustion function for Pn \ L by putting:

ϕ : Pn \ L −→ R

ϕ(z) =
|z0|2 + . . . . . .+ |zn|2

|z0|2 + . . .+ |zq−1|2

An important tool in complex analysis are the q-convex functions with corners, as they
were introduced by Diederich and Fornæss in [D-F.1] and [D-F.2].

Definition 2.1.11 On a complex space X a continuous real valued function f is called
q-convex with corners if for any point x ∈ X there exists an open neighbourhood U of x
and finitely many q-convex functions f1, . . . , fp on U such that f|U = max{f1, . . . , fp}.

The following definition is also given in [D-F.1] and [D-F.2].

Definition 2.1.12 A complex space X is called q-convex with corners if there is a
continuous exhaustion function f on X which is q-convex with corners outside a compact
set K ⊂ X.

If it is possible to choose K = ∅, then X is called q-complete with corners.

Remark 2.1.13 The class of the q-convex functions with corners on a complex space
X will be denoted by Fq(X).

We list in what follows some examples of q-complete spaces which are provided in [MP]:
Expl.(i) and [Co-Di] Expl.(iii).

Examples

(i) If X is a Stein manifold and A ⊂ X is a complex subvariety which is at every
point of codimension ≤ q in X, then X ′ = X \ A is q-complete with corners.

By using the smoothing result for q-convex functions with corners from [D-F.1]
one obtains from the above example the following one:

(ii) Let X and A be as above and suppose that X is of pure dimension n. Then X ′

is q̃-complete (in the smooth sense, i.e. without corners) with q̃ = n − [n
q
] + 1

(where [·] means the integral part).

This example is relevant if q ≤ n
2
.

(iii) Let X be a normal Stein space of pure dimension n ≥ 2 and A ⊂ X a closed
complex analytic subvariety without isolated points. Then X \ A is (n − 1)-
complete (being the union of (n− 1) open Stein subspaces!).
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2.2 The tangent space on complex spaces with sin-

gularities

In what follows we refer to the book of G. Fischer [Fi]. We need the underneath notions
and results for the proof of our Theorem 4.1.1.

We will denote by O(X) the set of holomorphic functions (they are indeed functions
in the case of reduced spaces!) on X, by OX,x for a given point x ∈ X we will denote
the set of germs in X of holomorphic functions defined in a neighbourhood of x, by
Sing(X) the (analytic) set of singular points and by Reg(X) := X \ Sing(X) the set of
regular points.

mX,x will stand for the maximal ideal of the algebra OX,x.
Let now X be a complex space and x ∈ X be a point. The following definition is
analogue to the complex manifold-case:

Definition 2.2.1 A C-linear map δx : OX,x −→ C is called a tangent vector to X at x
(also called a derivation of OX,x) if it satisfies one of the following equivalent conditions:

(i) δx(f · g) = g(x) · δx(f) + f(x) · δx(g) , ∀f, g ∈ OX,x

(ii) δx(m
2
X,x) = 0 and δx(C · 1) = 0

Remark 2.2.2 These are indeed equivalent conditions:

(i)⇒ (ii) If f, g ∈ mX,x then f(x) = g(x) = 0 and by (i) it follows that δx(f · g) = 0.
Because δx(1) = δx(1 · 1) = δx(1) + δx(1) we have that δx(1) = 0 so δx(C · 1) = 0.

(ii)⇒ (i) We use the decomposition OX,x = C ⊕ mX,x which is true for all complex
spaces, by definition. So, for an arbitrary germ f ∈ OX,x we have that f = f(x)+f̄
and now a short computation gives the desired equality:

δx(f · g) = δx((f(x) + f̄) · (g(x) + ḡ)) = δx(f(x) · g(x)) + δx(f̄ · ḡ)+

+g(x)δx(f̄) + f(x)δx(ḡ) = g(x) · δx(f) + f(x) · δx(g)

Remark 2.2.3 It is obvious that TxX, the set of all tangent vectors to X at x, is a
C-vector space. It is called the tangent space of X at x.

Now, if ϕ : X −→ Y is a holomorphic map, x ∈ X and y ∈ Y are points with ϕ(x) = y
and if ϕ̃x : OY,y −→ OX,x denotes the canonical morphism (in the case of reduced spaces
it is given by composition with ϕ), then the map

Txϕ : TxX −→ TyY

given by
δx 7→ δx ◦ ϕ̃x

is a morphism of C-vector spaces, called the Jacobian map of ϕ at x.
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Remark 2.2.4 For every tangent vector δx to X at x we have the induced C-linear
map

mX,x/m
2
X,x −→ C

Thus for every x ∈ X we get a map

TxX −→ (mX,x/m
2
X,x)

∗,

where (·)∗ represents the dual space. This map turns out to be an isomorphism of
C-vector spaces.

The description of the tangent space by means of local coordinates is the following:

Consider first an open subset U ⊂ Cn and denote by z1, . . . , zn the coordinate functions.
We then have (being in an euclidian space!) the following tangent vectors:

∂

∂zi
(x) : OU,x −→ C

f 7→ ∂F

∂zi
(x) =:

∂f

∂zi
(x)

where F represents the germ f ∈ OU,x in some neighbourhood of x.

It is known that the map
C
n −→ TxU = TxC

n

given by

(s1, . . . , sn) 7→ s1
∂

∂z1

(x) + . . .+ sn
∂

∂zn
(x)

is an isomorphism of C-vector spaces.

Consider now the case when X is a closed complex subspace of U with the canonical
injection i : X ↪→ U and defined by a coherent ideal sheaf J ⊂ OU .

We then have at each point x ∈ X an exact sequence

0 −→ Jx −→ OU,x −→ OX,x −→ 0

This implies that Txi : TxX −→ TxU is injective and that its image is equal to

{δx ∈ TxU | δx(Jx) = 0}

This means in local coordinates that TxX is isomorphic to the set:

{(s1, . . . , sn) ∈ Cn | s1
∂f

∂z1

(x) + . . .+ sn
∂f

∂zn
(x) = 0 , ∀f ∈ Jx}

Remark 2.2.5 The dimension of the tangent space at a point is always finite. But
whereas in the case of connected manifolds this number is the same for all points, this
is no more true for complex spaces. In the singular points of a complex space this
number is always bigger than the dimension of the tangent space at the regular points
in a small neighbourhood. More precisely, it holds:
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Proposition 2.2.6 For every point x of a complex space X we have that dimC TxX =
embdimxX, where embdimxX denotes the embedding dimension of X at x, that means
the minimal m ∈ N such that there exists an open neighbourhood U of x in X together
with an embedding U −→ C

m.

Remark 2.2.7 It is clear that the embedding dimension at a singular point x is (strictly)
greater than the dimension of the regular points in a small neighbourhood of x.

Proposition 2.2.8 Let ϕ : X −→ Y be a holomorphic map, x ∈ X and y = ϕ(x).
Then ϕ is an immersion at x if and only if the Jacobian map Txϕ : TxX −→ TyY is
injective.

We want to point out that we considered so far only tangent vectors at a point of a
complex space. But if one wants for instance to define vector fields and differential
forms the punctual tangent vector spaces have to be glued together to a space TX. In
case of a manifold it is well known that this is a vector bundle over X, π : TX −→ X.
In the singular case this cannot be a vector bundle (for example because of Proposition
2.2.6). It turns out to be a linear fiber space over X, π : TX −→ X.

Definition 2.2.9 A linear space over a complex space S (or simply, a linear fiber
space) is a complex space L together with a holomorphic map ϕ : L −→ S and with
compositions

+ : L×S L −→ L

and
• : C× L −→ L

such that the module axioms hold.

Remark 2.2.10 ×S denotes the fiber product in the category of complex spaces over
S, i.e. for given holomorphic maps ϕ : L −→ S and ϕ′ : L′ −→ S between complex
spaces the fiber product of L and L′ over S is a complex space L ×S L′ together with
holomorphic maps π : L×S L′ −→ L and π′ : L×S L′ −→ L′ such that ϕ ◦ π = ϕ′ ◦ π′
and such that the following universal property holds:
Given any complex space X together with holomorphic maps ψ : X −→ L and ψ′ :
X −→ L′ such that ϕ◦ψ = ϕ′◦ψ′, there is a unique holomorphic map % : X −→ L×SL′
such that the following diagram commutes:

X

L×S L′ L

L′ S

''OOOOOOOOOOOOOOOOOOOOOOOOO

ψ

��

%

��
/////////////////////////

ψ′
//

π

��
� �
� �
� �
� �
�

π′

��
� �
� �
� �
� �
� �

ϕ

//
ϕ′
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Remark that the universal property implies the uniqueness up to isomorphisms of the
fiber product.

Remark 2.2.11 L ×S L′ is a closed subspace of L × L′. As a set it is given by
L×S L′ = {(l, l′) ∈ L× L′ | ϕ(l) = ϕ′(l′)}.

Definition 2.2.12 Let (L,+, •) and (L′,+′, •′) be linear spaces over S. A holomorphic
map ξ : L −→ L′ over S (i.e. such that ϕ′ ◦ ξ = ϕ) is called a morphism (of linear
spaces over S) if the diagrams

L×S L L′ ×S L′

L L′

//
ξ×Sξ

��

+

��

+′

//
ξ

and
C× L C× L′

L L′

//
Id×ξ

��
� �
� �
� �
� �
� �
�

•

��
� �
� �
� �
� �
� �
�

•′

//
ξ

commute.

We shall now define a change of base for linear fiber spaces. If ψ : S ′ −→ S is a
holomorphic map and L is a linear space over S, then we define

ψ∗L := L×S S ′

The compositions in L induce compositions in ψ∗L and ψ∗L becomes a linear space
over S ′.

Now, for the construction of the space TX one simply takes for the underlying set the
disjoint union

⋃
x∈X

TxX.

In order to define a complex structure on TX consider first the case when

X ↪→ W ⊂ Cn

is a closed complex subspace of an open subset W of Cn defined by a coherent ideal
sheaf J ⊂ OW which is generated by f1, . . . , fr ∈ OW (W ).

If (z1, . . . , zn, s1, . . . , sn) are coordinates in W × Cn one defines the space

TX ↪→ W × Cn

as the closed complex subspace defined by

f1, . . . , fr and s1
∂fν
∂z1

+ . . .+ sn
∂fν
∂zn

∀ν = 1, . . . , r.
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Remark that fν and ∂fν
∂zi

are considered here as holomorphic functions on W × Cn by
means of the canonical projection map W × Cn −→ W .

Considering TX as a subspace in X ×Cn it is then defined by the sheaf of linear forms
on X × Cn given by:

fν,1 · s1 + . . .+ fν,n · sn for ν = 1, . . . , r

where fν,µ ∈ OX(X) denotes here the residue class of ∂fν
∂zµ
∈ OW (W ).

The projection of X × Cn onto the first component induces the canonical map π :
TX −→ X. Hence TX is a linear space over X.

The coordinate description of TxX immediately implies that TxX = (TX)x is the fiber
of π in x, for all x ∈ X.

Now it is easy to show that this construction does not depend on the choices made.
Hence, for an arbitrary complex space X the local pieces (i.e. where X is locally
embedded in a complex number space) may be glued together in the usual way of
glueing complex spaces (see for instance [Ka] E.31.m) to obtain the so called tangent
space of X, denoted by TX, which is a linear space over X.

Remark 2.2.13 We want to point out that by this canonical construction of a complex
structure on TX one gets a complex structure which is in general not reduced, even if
X was reduced!

We want to define also a morphism of tangent spaces,

Tϕ : TX −→ ϕ∗TY

for a given holomorphic map ϕ : X −→ Y .

The problem being local with respect to X and Y we may suppose that we have a
commutative diagram of the form:

C
n

C
m

U V

X Y

?�

OO� � � � � � �

//
Φ ?�

OO� � � � � � �

?�

OO� � � � � � �

//
ϕ ?�

OO� � � � � � �

where U and V are open euclidian sets.

We may further assume that the ideal J ⊂ OU of X is generated by f1, . . . , fk ∈ OU(U)
and the ideal I ⊂ OV of Y is generated by g1, . . . , gl ∈ OV (V ).
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In order to define Tϕ we also consider the following diagram:

TU Φ∗TV TV

U × Cn U × Cm V × Cm

TX ϕ∗TY TY

//
TΦ

//
Φ×Id

?�

OO

//
Tϕ ?�

OO

//
ϕ×Id ?�

OO

where TΦ is the classical Jacobian map defined by:

(u, s1 . . . , sn) 7→ (u,
n∑
r=1

∂Φ1

∂zr
· sr, . . . ,

n∑
r=1

∂Φm

∂zr
· sr)

and we have to show that TΦ admits a restriction Tϕ.

But we now know that TY ↪→ V × Cm is the subspace generated by

g1, . . . , gl and t1
∂gλ
∂w1

+ . . .+ tm
∂gλ
∂wm

∀λ = 1, . . . , l

where (w1, . . . , wm) are the coordinates in V and (t1, . . . , tm) are the coordinates in Cm.

Consequently ϕ∗TY ↪→ U × Cm is the subspace generated by

f1, . . . , fk and t1
∂gλ
∂w1

◦ Φ + . . .+ tm
∂gλ
∂wm

◦ Φ ∀λ = 1, . . . , l. (2.1)

We apply in what follows a criterion for the existence of the restriction of a map χ :=
(|χ|, χ0) : S −→ T between complex spaces (see for instance [Ka] 31.9):

If A ↪→ S and B ↪→ T are complex subspaces generated by the ideal sheafs J resp. I
then the restriction χ̃ : A −→ B of χ exists if and only if χ∗I ⊂ J , where the germ of
the inverse image sheaf χ∗I is given by (χ∗I)s = χ0

s(Iχ(s)) · OS,s.
In our case we have to substitute in (2.1)

tν = s1
∂Φν

∂z1

+ . . .+ sn
∂Φν

∂zn

By computation we obtain then

s1
∂(gλ ◦ Φ)

∂z1

+ . . .+ sn
∂(gλ ◦ Φ)

∂zn
(2.2)

Since ϕ is the restriction of Φ it follows that the function gλ ◦ Φ is a section in J over
U . This implies that (2.2) is a section in the ideal sheaf defining TX ↪→ U × Cn if we
shrink U sufficiently. But this means that there is a restriction Tϕ : TX → ϕ∗TY of
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TΦ. It is called the Jacobian map of ϕ and we have the property that (Tϕ)x = Txϕ for
each point x ∈ X.

Let ϕ : X → Y be a holomorphic map and define

T (X/Y ) := kerTϕ ↪→ TX

It is called the tangent space of ϕ (or the tangent space of X over Y ). Geometrically,
T (X/Y ) consists of all tangent vectors “in the fiber direction”.
More precisely, this is justified by the following remark:

Remark 2.2.14 Given a holomorphic map ϕ : X → Y and q ∈ Y denote by Xq the
fiber of ϕ over q, that is the inverse image through ϕ of the simple point ({q},C).
Denote by i : Xq ↪→ X the canonical injection. It then holds that T (Xq) = i∗T (X/Y ).

Indeed, since the question is local and with the same notations as above it follows from
the definition of Tϕ that T (X/Y ) ↪→ U ×Cn is the complex subspace generated by the
following holomorphic functions on U × Cn:

f1, . . . , fk
∂fλ
∂z1

s1 + · · ·+ ∂fλ
∂zn

sn, λ = 1, . . . , k

∂Φν

∂z1

s1 + · · ·+ ∂Φν

∂zn
sn, ν = 1, . . . ,m

 (2.3)

We may assume without loss of generality that q = 0 ∈ V . It then follows that Xq ↪→ U
is the subspace generated by f1, . . . , fk and Φ1, . . . ,Φm. Consequently T (Xq) ↪→ U×Cn
is generated by f1, . . . , fk, Φ1, . . . ,Φm and (2.3). The remark is verified by observing
that i∗T (X/Y ) ↪→ T (X/Y ) is just the subspace generated by the residue classes of
Φ1, . . . ,Φm.

We have listed the above notions and properties about tangent spaces because we will
need them in the proof of our Theorem 4.1.1. More precisely we will need the following
lemma:

Lemma 2.2.15 For any holomorphic map ϕ : X → Y the set

Sing0(ϕ) := {x ∈ X | corankx ϕ > 0}

is analytic. Here corankx ϕ := dimC Tx(X/Y ) = dimC TxXϕ(x).

This lemma follows at once from the next lemma if we recall the defining ideal sheaf of
TXϕ(x). We introduce first the following.
Let F be a coherent OX-module and x ∈ X. Then F(x) := Fx/(mX,xFx) = Fx⊗OX,x C
is a finite dimensional C-vector space.

We call corankxF := dimCF(x) the corank of F at x and introduce the set A0(F) :=
{x ∈ X | corankxF > 0} = {x ∈ X | Fx 6= mX,xFx}. We then have the following
lemma:
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Lemma 2.2.16 For any coherent OX-module F the subset A0(F) ⊂ X is analytic.

Proof. It is a local question, so we can assume the existence of an exact sequence

OlX
α−→ OkX −→ F −→ 0

This yields immediately by tensoring with ⊗OX,xC the following exact sequence:

C
l α(x)−→ C

k −→ F(x) −→ 0 for all x ∈ X.

Consequently A0(F) = {x ∈ X | rankα(x) < k} and since α is given by a holomor-
phic (k × l)-matrix on X, the subset A0(F) ⊂ X is the common set of zeros of all
subdeterminants of order k, so it is analytic. �

2.3 The linear space associated to a coherent ideal

sheaf. The projective space associated to a cone

2.3.1 The analytic inverse image of a sheaf and the blowing-up

We want to introduce the analytic inverse image of a coherent analytic sheaf. We will
need it for the blowing-up in the proof of our Theorem 3.1.6.

Let ϕ : X → Y be a holomorphic map between two complex spaces and let F be an
OX-module. First we have to introduce the direct image and the topological inverse
image.

The presheaf on Y given by V 7→ F(ϕ−1(V )) for each V open in Y is a sheaf. We
denote it by ϕ∗F and call it the direct image of F . It is a ϕ∗OX-module.

Remark 2.3.1 Remember that by definition a holomorphic map ϕ is a pair (|ϕ|, ϕ0)
where |ϕ| : |X| −→ |Y | is a continuous map between the underlying topological spaces
and ϕ0 : OY −→ |ϕ|∗OX is a morphism of sheaves of algebras on Y , which induces a
morphism ϕ0

p : OY,ϕ(p) −→ OX,p on the stalks. We will denote |ϕ| also by ϕ.

Now, if G is an OY -module we denote by ϕ−1G the topological inverse image of G, which
is a sheaf on X uniquely determined by the property (ϕ−1G)p = Gϕ(p) for all p ∈ X.
ϕ−1G is a ϕ−1OY -module.

We have seen that ϕ∗F is a ϕ∗OX-module. But via the morphism ϕ0 : OY −→ ϕ∗OX
it is also an OY -module.

The morphism ϕ0 induces a morphism ϕ0# : ϕ−1OY −→ OX with (ϕ0#)p = ϕ0
p for

p ∈ X. Hence OX may be considered as a ϕ−1OY -module.

If G is an OY -module, we define the analytic inverse image ϕ∗G = ϕ−1G ⊗ϕ−1OY OX
which is an OX-module.

Remark 2.3.2 For any OX-module F and any OY -module G there is a canonical
isomorphism HomX(ϕ∗G,F) −→ HomY (G, ϕ∗F).
By substituting F = ϕ∗G and G = ϕ∗F one obtains canonical morphisms G −→
ϕ∗(ϕ

∗G) and ϕ∗(ϕ∗F) −→ F .

We recall some properties of ϕ∗ and ϕ∗:
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(i) ϕ∗ is left exact

(ii) ϕ∗ is right exact

(iii) ϕ∗OkY = OkX

(iv) In general ϕ∗ is not right exact and ϕ∗ is not left exact.

In Chapter 3 we make use of the blowing-up of a complex space along a certain subspace
(called the center of the blowing-up). In complex analysis the method of blowing-up was
introduced by Hopf as a “σ-Prozess”. The general existence theorem is the following:

Theorem 2.3.3 Let Y be a complex space together with a closed complex subspace A ↪→
Y . Then there exists a complex space Y ∗ together with a holomorphic map π : Y ∗ −→ Y
with the following properties:

(i) π is proper

(ii) A∗ := π−1(A) ↪→ Y ∗ is a hypersurface (that is, its defining coherent ideal sheaf J ∗
has the property that for every p ∈ Y ∗ there exists a non-zero divisor a ∈ OY ∗,p
such that J ∗p = a · OY ∗,p)

(iii) π is universal with respect to (ii), i.e. for any holomorphic map τ : Y ′ −→ Y such
that A′ := τ−1(A) ↪→ Y ′ is a hypersurface there is a unique holomorphic map
ϕ : Y ′ −→ Y ∗ such that the following diagram commutes:

Y ′ Y ∗

Y

//
ϕ

��
??????????

τ

��
� �
� �
� �
� �

π

(iv) The restriction of π

π|Y ∗\A∗Y
∗ \ A∗ −→ Y \ A

is biholomorphic

(v) If Y is a manifold and A is a submanifold then Y ∗ is a manifold.

For a complete proof of the above theorem see [Fi], p. 162.

We indicate here the explicite construction of the blowing-up with help of the projective
space associated to coherent ideal sheaves, as far as we need it in the proof of our
Theorem 3.1.6.
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2.3.2 The linear space associated to a coherent sheaf

Let J be a coherent ideal sheaf on a complex space Y . Then there exists locally an
exact sequence of the form

OpW
h−→ OqW

α−→ JW −→ 0

where h is given by a holomorphic matrix of type q × p on W . The transposed matrix
gives rise to “dual” morphisms h∗ = h∗W : W × Cq −→ W × Cp. The linear space
kerh∗W doesn’t depend on the choice of the exact sequence, in the sense that they are
isomorphic for different choices, so we can define it globally.

Indeed, if we have two exact sequences on W , this gives rise to a commutative diagram
of the form

Op
′

W Oq
′

W
JW 0

OpW OqW JW 0

//
h′

��
� �
� �
� �
� �

α1

//
α′

��
� �
� �
� �
� �

α2

//

��
� �
� �
� �
� �
�

Id

//
h

//
α

//

that is, one proves easily the existence of the OW -linear maps α1 and α2. For instance
let a ∈ Oq

′

W and consider Id ◦α′(a) which belongs to JW . Now α being surjective we
have at least one point b ∈ OqW with α(b) = Id ◦α′(a). This allows us to define a linear
map α2. The map α2 is of course not necessarily unique.

Having now α2 one defines similarly a linear map α1 making the diagram commutative.

Because the construction of α1 and α2 is not unique we have to investigate what happens
if we have two pairs of linear maps (α1, α2) and (α′1, α

′
2) making the respective above

diagram commutative. It is easy to see that the pairs are homotopic, that means that
we obtain the existence of a linear map s : Oq′ −→ Op such that h ◦ s = α2 − α′2,
because of the fact that α2(a)− α′2(a) ∈ kerα = Imh.

It holds that the dual maps α∗2, α′∗2 coincide on kerh∗; this follows at once from α∗2−α′
∗
2 =

s∗ ◦ h∗.
In order to show that kerh∗ ' kerh′∗ we first consider the analogous commutative
diagram

Op
′

W Oq
′

W

OpW OqW

//
h′

//
h

OO� � � � � � � �
β1

OO� � � � � � � �
β2

and also the following commutative diagram

OpW OqW

OpW OqW

//
h

��
� �
� �
� �
� �

α1◦β1

��
� �
� �
� �
� �

α2◦β2

//
h
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But having also the trivial commutative diagram

OpW OqW JW 0

OpW OqW JW 0

//
h

��
� �
� �
� �
� �

Id

//
α

��
� �
� �
� �
� �

Id

//

��
� �
� �
� �
� �
�

Id

//
h

//
α

//

we obtain by the considerations above that

(α2 ◦ β2)∗ = β∗2 ◦ α∗2 = Id∗ on kerh∗

In an analogous way it follows that we have also

(β2 ◦ α2)∗ = α∗2 ◦ β∗2 = Id∗ on kerh′∗

That means that α∗2 is an isomorphism between kerh∗ and kerh′∗.

The construction of the linear space kerh∗ being independent of the choices made, we
can glue them together to obtain a linear space over Y , denoted by V (J ), defined locally
as V (J )|W := kerh∗W . We have also a canonical projection map π1 : V (J ) −→ Y .

We remark that V (J )|W ↪→ W ×Cq being a linear subspace with respect to the second
component it is in particular a cone over W , that means it is a subspace invariant to
the scalar multiplication. More precisely it means that we have a commutative diagram

C×W × Cq W × Cq

C× V (J )|W V (J )|W

//
µ

?�

OO

//
µ′ ?�

OO

where µ(t, y, z1, . . . , zq) = (y, tz1, . . . , tzq) and µ′ = µ|C×V (J )|W

2.3.3 The projective space associated to a cone

Now let V (J ) ↪→ Y ×Cq be a cone over Y . Then it is given locally (on U) as a complex
subspace by the common zeros of homogeneous polynomials

H1, . . . , Hr ∈ OY (U)[z1, . . . , zq]

where (z1, . . . , zq) are the coordinates on Cq (see [Fi], p. 45, Prop. 1.2.).

For each % ∈ {1, . . . , r} and ν ∈ {1, . . . , q} there exists on {zν 6= 0} a unique polynomial

H%,ν(x1, . . . , x̂ν , . . . , xq) ∈ OY (U)[x1, . . . , x̂ν , . . . , xq]

such that
H%(z1, . . . , zq) = zkνH%,ν(

z1

zν
, . . . ,

zν−1

zν
,
zν+1

zν
, . . . ,

zq
zν

)
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where k is the degree of H%. Via the biholomorphism

ϕν : Cq−1 −→ Ṽν := {(z1 : . . . : zq) | zν 6= 0} ⊂ Pq−1(C)

(x1, . . . , x̂ν , . . . , xq) 7→ (x1 : . . . : xν−1 : 1 : xν+1 : . . . : xq)

we can consider H1,ν , . . . , Hr,ν as holomorphic functions on U×Ṽν . Let then Jν ⊂ OU×Ṽν
denote the ideal sheaf generated by H1,ν , . . . , Hr,ν . One verifies that Jν = Jµ on
U × (Ṽν ∩ Ṽµ) and so it gives rise to an ideal sheaf JU ⊂ OU×Pq−1(C).

Indeed, we have on U × Ṽν that

H%,ν =
1

zkν
·H%

and respectively, on U × Ṽµ
H%,µ =

1

zkµ
·H%

But then we have the relations

H%,ν =

(
zµ
zν

)k
·H%,µ

and H%,µ =

(
zν
zµ

)k
·H%,ν

which hold on U × (Ṽν ∩ Ṽµ), where zν
zµ
6= 0 and zµ

zν
6= 0. This means actually that the

respective generators generate the same ideal sheaf Jν = Jµ on U × (Ṽν ∩ Ṽµ), so they
give rise to a well defined ideal sheaf JU ⊂ OU×Pq−1(C).

By covering Y with open sets of this type we get a coherent ideal sheaf J ⊂ OY×Pq−1(C)

independent of all choices made. The closed subspace (which is in general not reduced)
corresponding to this ideal sheaf J ,

P(V (J )) ↪→ Y × Pq−1(C)

is called the projective variety over Y associated to the cone V (J ), or the projective
variety associated to the ideal sheaf J ⊂ OY denoted also by P(J ).

Remark 2.3.4 We have also a canonical projection map ξ : P(J ) −→ Y .

The blowing-up with center (A, (OY /J )|A) is now given by the following closed subspace
in P(J )

Y ∗ := closP(J )(P(J )\ξ−1(A))

and the map π : Y ∗ −→ Y is given by π := ξ|Y ∗ .



Chapter 3

Proper modifications and
generalized Kähler metrics

3.1 Definitions and main result

First we would like to recall some well-known definitions.

Definition 3.1.1 An analytic set A in a reduced complex space X is called rare (or
thin) if it does not contain any irreducible component of X. In case that X is reduced
and irreducible this means that A is nowhere dense.

Definition 3.1.2 A holomorphic map p between two complex spaces Xand Y is called
a proper modification if it is proper and there exists a rare analytic set A in Y such that
p−1(A) is rare in X and such that p|X\p−1(A)

: X\p−1(A) −→ Y \A is biholomorphic.

Definition 3.1.3 A reduced compact complex space Y is called Kähler (in the sense
of Moishezon) if there exists a covering (Vi)i∈I of Y with open sets such that there
exists for each index i a strongly plurisubharmonic function λi : Vi −→ R which is
regular of class C∞ and such that on each nonempty intersection Vi ∩ Vj we have the
pluriharmonic compatibility condition: λi − λj = Re gij, locally on Vi ∩ Vj for some
holomorphic function gij.

We say that two such collections (Vi, λi)i∈I and (Wj, ψj)j∈J define the same Kähler
metric on Y if each λi−ψj is pluriharmonic (i.e. is locally the real part of a holomorphic
function) on Vi ∩Wj 6= ∅.

Remark 3.1.4 In the case of complex manifolds such a collection (Ui, λi)i∈I defines
indeed a metric on Y , by endowing Y with the (1, 1)-form given locally (on each open
set Ui) by ∂∂̄λi.

Example

(i) It is known that complex projective algebraic spaces are Kähler (in particular the
Grassmann manifolds are).

21
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(ii) It can be shown that Hopf surfaces are not Kähler.
The Hopf surface is given by the quotient (C2 \ {0})/G, where G is the free cyclic
group G := {z 7→ 2jz | j ∈ Z} of automorphisms of C2 \ {0}. It is a compact
manifold (actually it is homeomorphic with S1 × S3).

We want to generalize the above concept of Kähler metrics.

Definition 3.1.5 We say that the reduced compact complex space X has a generalized
Kähler metric if there exists a covering of X with open sets (Ui)i such that on each set Ui
there exists a function ϕi : Ui −→ [−∞,∞), ϕi 6≡ −∞ on each irreducible component of
Ui, which is strongly plurisubharmonic, regular of class C∞ outside the set {ϕi = −∞}
and such that on each nonempty intersection Ui ∩Uj we have (locally) the compatibility
condition ϕi = ϕj + Re fij for some holomorphic function fij.

In this chapter we prove the following theorem:

Theorem 3.1.6 Let X and Y be two reduced, compact, complex spaces (with singular-
ities) and p : X −→ Y a surjective, holomorphic map, which is a proper modification.
Suppose that Y is Kähler. Then X has a generalized Kähler metric.

It is known by an example of Moishezon [Mo1] (see also [Bi]) that it does not follow in
general from the hypothesis of our theorem that X is then also Kähler. So the question
arises natural of how “far” X is from being Kähler, that is: what general assertion one
can prove in the above context about X.

In Chapter 4 we will generalize our theorem to the following weaker hypothesis, by
using in its proof Theorem 3.1.6 as a special case:

Theorem 4.1.1 Let p : X −→ Y be a holomorphic and surjective map between two
reduced, compact, complex spaces with singularities and with the property that p sends
each irreducible component CX of X (surjective) onto an irreducible component CY of
Y of the same dimension, dimCX = dimCY .
If Y is Kähler, then X has a generalized Kähler metric.

We start now with the proof of Theorem 3.1.6.

Proof. Consider the covering of Y given by Definition 3.1.3 and the covering of X given
by Ui := p−1(Vi), i ∈ I and on each Ui the function ϕ̃i = λi ◦ p. Then it follows
at once that ϕ̃i ∈ C∞(Ui) and that ϕ̃i is plurisubharmonic on Ui, but not necessarily
strongly plurisubharmonic. The idea in what follows is to modify in a first step ϕ̃i such
that they become strongly plurisubharmonic. But then we destroy the “pluriharmonic
compatibility condition”, that is ϕ̃i − ϕ̃j = Re(gij ◦ p) locally on Ui ∩ Uj. In a second
step we get also this condition back.
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3.2 First step: Strong plurisubharmonicity

To modify ϕ̃ such that they become strongly plurisubharmonic we use a technique from
an article of Colţoiu-Mihalache [Co-Mi]. We look at the following commutative diagram
given by Chow’s lemma (see for instance [Hi] and [Mo2] or [Fi],p.171):

Y ∗ X

Y

//
F

��
??????????

π

��
� �
� �
� �
� �

p (3.1)

More precisely, given p and so implicitly the rare analytic set A, the lemma of Chow
says that there exists a coherent ideal J on Y , with supp(OY /J ) = A and such that
denoting by π : Y ∗ −→ Y the blowing-up of Y with center (A, (OY /J )|A) it follows the
existence of a holomorphic, proper and surjective map F making the above diagram
commutative. The ideal J is called the ideal of Hironaka, it is not necessary the
Nullstellenideal, so the resulting complex space is not necessarily reduced (for more
details about the blowing-up see below and/or Section 2.3 )

Without loss of generality we can suppose that the open sets of the covering of Y given
by the definition of the Kähler metric are all Stein open sets. Fix now for the moment
an arbitrary Stein open set Vj of the finite covering (Vi)i∈I of Y . Vj being Stein it
follows from Cartan’s Theorem A that each fiber Jy, for y ∈ Vj, is generated by global
sections in J (Vj).

But because the sets Vj are relatively compact there exists a finite number of sections
f1,j, . . . , fs,j ∈ J (Vj) which generate each fiber Jy for y ∈ Vj. Then we have the
following equality for the zero sets:

N(Vj,J ) =
⋂

f∈{f1,j ,...,fs,j}

N(Vj, f)

In other words there exist sections f1,j, . . . , fs,j ∈ Γ(Vj,J ) generating each fiber of J
such that

A ∩ Vj = {x ∈ Vj | f1,j(x) = . . . = fs,j(x) = 0}
Then it follows for the map

fj := (f1,j, . . . , fs,j) : Vj −→ C
s

that we have:
f−1
j (0) = (A ∩ Vj, (OY /J )|A∩Vj)

Now consider the function
ψj : Vj −→ [−∞,∞)

given by

ψj = λj + log(
s∑

k=1

|fk,j|2)
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It is clear that ψj is strongly plurisubharmonic on Vj, {ψj = −∞} = A ∩ Vj and that
ψj |Vj\A

∈ C∞(Vj\A). Considering now the composed function ψj◦p we have that ψj◦p is

plurisubharmonic on Uj = p−1(Vj), C∞ on Uj\p−1(A) and {ψj◦p = −∞} = p−1(A)∩Uj.
We will see below that ψj ◦ p are even strongly plurisubharmonic. But unfortunately
the pluriharmonic-compatibility condition is no longer satisfied.

With the same proof as in the article of Colţoiu and Mihalache it follows that ψj ◦ p is
strongly plurisubharmonic. We recall the ideas from there. We use the following lemma
which is true for all reduced complex spaces (not necessarily compact). For a proof see
[Co-Mi], [Bo-Na] or our Appendix, Proposition 6.0.1.

Lemma 3.2.1 Let X and Y be complex spaces and p : X −→ Y a proper, holomorphic,
surjective map. Let Φ : Y −→ [−∞,∞) be an upper semicontinuous function such that
Φ ◦ p is (strongly) plurisubharmonic on X. Then Φ is (strongly) plurisubharmonic on
Y .

Using the diagram (3.1), we can conclude with help of this lemma that, in order to show
that ψj ◦ p is strongly plurisubharmonic, it is enough to prove that ψj ◦π = (ψj ◦ p) ◦F
is strongly plurisubharmonic on π−1(Vj).

In order to do this we need the explicit description of the analytic blowing-up. Let
m ⊂ OCs denote the maximal ideal of the origin in Cs. One has then an exact sequence
(the syzygy-theorem) of the form:

O( s2)
Cs

α−→ Os
Cs

β−→m −→ 0

where β is given by multiplication with the coordinates (z1, . . . , zs) of Cs and α is given
by the s×

(
s
2

)
matrix:

z2 z3 z4 · · · zs 0 0 · · · 0 · · · · · · 0 · · · · · · 0
−z1 0 0 · · · 0 z3 z4 · · · zs · · · · · · 0 · · · · · · 0

0 −z1 0 · · · 0 −z2 0 · · · 0 · · · · · · 0 · · · · · · 0
0 0 −z1 · · · 0 0 −z2 · · · 0 · · · · · · 0 · · · · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... zj
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... −zi

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 · · · · · · 0 · · · · · · zs
0 0 0 · · · −z1 0 0 · · · −z2 · · · · · · 0 · · · · · · −zs−1


Via the analytic inverse image (see Section 2.3) this gives rise to an exact sequence on
Vj

O( s2)
Vj

f∗j α−→ OsVj
f∗j β−→J|Vj −→ 0

(recall that f ∗j m = J|Vj ).
Let P(J ) denote the projective space over Y associated to the coherent ideal sheaf J .
We recall the construction of P(J ) in two steps (for more details see Section 2.3).
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The linear space associated to a coherent sheaf J being a coherent sheaf on Y
there exists locally an exact sequence of the form

OmW
η−→OsW −→ J|W −→ 0

where η is given by a holomorphic matrix of type s×m on W . The transposed matrix
gives rise to a morphism ψW : W × Cs −→ W × Cm. The linear space kerψW doesn’t
depend on the choice of the exact sequence, in the sense that they are isomorphic for
different choices, so we can define it globally.

Then V (J ) defined locally as V (J )|W := kerψW is called the linear space over Y
associated to J and we have a canonical projection map π1 : V (J ) −→ Y .

We remark that V (J )|W ↪→ W × Cs is a cone over W .

In our case, Y being compact we can cover it with a finite number of such open sets W
and by taking the maximum of the dimensions of s = sW , again denoted by s, we can
say that V (J ) is a cone over Y , V (J )|W ↪→ W × Cs .

The projective space associated to a cone V (J )|W ↪→ W × Cs being a cone it
is given as a complex subspace locally (on U) by the common zeros of homogeneous
polynomials (see [Fi], p.45). In our case there are

(
s
2

)
homogeneous linear equations

given by the matrix f ∗j α on U = Vj:

G1, . . . , G( s2) ∈ OY (U)[z1, . . . , zs]

where (z1, . . . , zs) are the coordinates on Cs.

For each % ∈ {1, . . . ,
(
s
2

)
} and ν ∈ {1, . . . , s} there exists on {zν 6= 0} a unique polyno-

mial
G%,ν(x1, . . . , x̂ν , . . . xs) ∈ OY (U)[x1, . . . , x̂ν , . . . xs]

such that
G% = zνG%,ν(

z1

zν
, . . . ,

zν−1

zν
,
zν+1

zν
, . . . ,

zs
zν

)

(remember that the degree of G% is 1). Via the biholomorphism

ϕν : Cs−1 −→ Ṽν := {(z1 : . . . : zs) | zν 6= 0} ⊂ Ps−1(C)

(x1, . . . , x̂ν , . . . , xs) 7→ (x1 : . . . : xν−1 : 1 : xν+1 : . . . : xs)

we can consider G1,ν , . . . , G( s2),ν as holomorphic functions on U × Ṽν . Let then Jν ⊂
OU×Ṽν denote the ideal sheaf generated by G1,ν , . . . , G( s2),ν . Because Jν = Jµ on

U × (Ṽν ∩ Ṽµ) it gives rise to an ideal sheaf JU ⊂ OU×Ps−1(C).

By covering Y with open sets of this type we get a coherent ideal sheaf J ⊂ OY×Ps−1(C),
independent of all choices made. The closed subspace corresponding to the ideal sheaf
J , denoted P(V (J )),

P(V (J ))|W ↪→ W × Ps−1(C)
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is called the projective variety over Y associated to the cone V (J ), or the projective
variety associated to the ideal sheaf J ⊂ OY , denoted also by P(J ).

Remember that we obtained also a canonical projection map ξ : P(J ) −→ Y .

The blowing-up with center (A, (OY /J )|A) is now given by the closed subspace in P(J ),

Y ∗ := closP(J )(P(J )\ξ−1(A))

together with the map π := ξ|Y ∗ : Y ∗ −→ Y .

So we have the commutative diagram

Y ∗ P(J )

Y

� � //
i

��
?????????????

π

��
� �
� �
� �
� �
�

ξ

Returning to our problem, J|Vj being equal with f ∗j m on Vj we also have the diagram

V ∗j P(f ∗j m)

Vj

� � //
i

��
?????????????

π|V ∗
j

��
� �
� �
� �
� �
�

ξ

(Remark that it holds that V ∗j = π−1(Vj)).

Therefore because of Lemma 3.2.1 it remains for us to prove that

ψj ◦ ξ : P(f ∗j m) −→ [−∞,∞)

is strongly plurisubharmonic.

But in this form the advantage is that for the closed subspace

P(f ∗j m) ↪→ Vj × Ps−1(C)

we can give the defining equations explicitly. They are

fk,j(y)zm − fm,j(y)zk = 0, ∀ 1 ≤ m < k ≤ s

where (z1 : . . . : zs) are the homogeneous coordinates on Ps−1(C).

Let
Vj × Ṽν := {(y, z) ∈ Vj × Ps−1(C) | zν 6= 0} for ν ∈ {1, . . . , s}

and
αν : Vj × Ṽν −→ Vj × Cs−1



3.3. SECOND STEP: PLURIHARMONIC COMPATIBILITY 27

be the biholomorphic map given by

αν(y, z) = (y,
z1

zν
, . . . ,

zν−1

zν
,
zν+1

zν
, . . . ,

zs
zν

) , (αν = Id×ϕ−1
ν )

and define
τ jν : Vj × Cs−1 −→ [−∞,∞)

given by

τ jν (y, t1, . . . , ts−1) = λj(y) + log |fν,j(y)|2 + log(1 +
s−1∑
k=1

|tk|2)

where (t1, . . . , ts−1) denote the coordinates on Cs−1.

It is then clear that τ jν is strongly plurisubharmonic on Vj × Cs−1 and because αν is
biholomorphic it follows that τ jν ◦ αν is strongly plurisubharmonic on Vj × Ṽν . But on
(Vj × Ṽν) ∩ ξ−1(Vj) we have that

τ jν ◦ αν = ψj ◦ ξ

so that finally it follows that ψj ◦ ξ is strongly plurisubharmonic on ξ−1(Vj). So we
obtained also that ψj ◦ π is strongly plurisubharmonic on V ∗j . As already seen above
this means that ψj ◦ p is strongly plurisubharmonic on Uj.

As a conclusion of the first step of the proof we obtained the following properties
for ψj ◦ p : it is strongly plurisubharmonic on Uj, regular of class C∞ on Uj\p−1(A),
{ψj ◦ p = −∞} = p−1(A) ∩ Uj, but we have destroyed the pluriharmonic-compatibility
condition, because now

ψj ◦ p = λj ◦ p+ log(
s∑

k=1

|fk,j ◦ p|2)

the last term being a “perturbation factor”.

3.3 Second step: Pluriharmonic compatibility

In order to obtain on X a collection of strongly plurisubharmonic functions with the
pluriharmonic compatibility condition we proceed as follows.

Let
aj := |f1,j|2 + . . .+ |fs,j|2 on Vj

and
ak := |f1,k|2 + . . .+ |fl,k|2 on Vk.

Consider now a relatively compact subcover of Y with open subsets V ′j ⊂ Vj, ∀j ∈ I.
Then the quotient

aj
ak

=
|f1,j|2 + . . .+ |fs,j|2

|f1,k|2 + . . .+ |fl,k|2
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remains bounded (upper and lower) on (V ′j ∩ V ′k)\A. The problem is only in small
neighbourhoods of A in (V ′j ∩ V ′k)\A. But we know that on Vj ∩ Vk the sections in
J (Vj ∩Vk) are generated by (f1,j, . . . , fs,j)|Vj∩Vk and also by (f1,k, . . . , fl,k)|Vj∩Vk because

the respective germs generate Jy for all y ∈ Vj∩Vk and Vj∩Vk is Stein. So the following
holds:

∀ m ∈ {1, . . . , s} , fm,j =
l∑

t=1

gm,tft,k with gm,t ∈ O(Vj ∩ Vk)

So on V ′j ∩ V ′k we have the inequalities

|fm,j| ≤
l∑

t=1

|gm,t||ft,k| ≤ C
l∑

t=1

|ft,k|

(In the following estimates C denotes a generic constant.) From here we obtain

|fm,j|2 ≤ C(
l∑

t=1

|ft,k|)2 = C(
l∑

t=1

|ft,k|2 + 2
∑
t<n

|ft,k||fn,k|)

But because of

2
∑
t<n

|ft,k||fn,k| ≤ (l − 1)
l∑

t=1

|ft,k|2

it finally follows that

|fm,j|2 ≤ C
l∑

t=1

|ft,k|2 , ∀m = 1, . . . , s

which implies that
aj
ak
≤ C on (V ′j ∩ V ′k)\A.

The lower boundedness of
aj
ak

follows of course from the analogue upper boundedness

of
ak
aj

. So now we know that log aj − log ak is bounded on (V ′j ∩ V ′k)\A.

In what follows we apply a glueing technique of Demailly [Dem] for a collection of
certain functions, which has the advantage that the glueing result is of class C∞.

More precisely, we can suppose from the begining, without loss of generality, that the
open sets V ′j are isomorphic with analytic sets in open balls B(0, rj) ⊂ CNj .

Let Φj : V ′j −→ B(0, rj) denote the chart and we can assume that 0 ∈ Φj(V
′
j ). Consider

for each j the functions

vj : V ′j −→ [−∞,∞)

given by

vj(z) = log aj(z)− 1

r2
j − |Φj(z)|2

=: log aj(z)− θj(z)



3.3. SECOND STEP: PLURIHARMONIC COMPATIBILITY 29

One sees at once that θj ∈ C∞(V ′j ) and θj(z) −→ +∞ for z −→ ∂V ′j , z ∈ V ′j , so that
we have vj ∈ C∞(V ′j \A) and vj(z) −→ −∞ for z −→ ∂V ′j , z ∈ V ′j (we have also that
vj(z) = −∞ for z ∈ A ∩ V ′j ).
In order to get a C∞ -glueing of the functions vi on Y \A, to overcome the fact that the
function max(vi)i is only continuous, we proceed as follows:

Let % : R −→ R be a function of class C∞ with % ≥ 0, supp % ⊂ [−1
2
, 1

2
] and with∫

R
%(u)du = 1 and let m denote the function

m : Rq −→ R

given by

m(t1, . . . , tq) =

∫
Rq

max{t1 + u1, . . . , tq + uq}
∏

1≤n≤q

%(un)dun

(in our case q will be the number of open sets of the finite covering (V ′j )j of Y ).

It is clear that m is increasing in each variable , that it is convex and of class C∞ and
that the following property holds:

m(t1, . . . , t̂j, . . . , tq) = m(t1, . . . , tj, . . . , tq) (3.2)

whenever
tj < max{t1, . . . , tj−1, tj+1, . . . , tq} − 2

(where ·̂ denotes as usual that the respective variable is missing).

Let now v denote the function on Y given by

v(z) = m(v1(z), . . . , vq(z))

We then have that v ∈ C∞(Y \A). However, written in this form we have to ignore
the vi’s for which z 6∈ V ′i . This can be done because of the following: the maximum is
taken over the vi’s with z ∈ V ′i , so for different positions of z we have a different number
of functions over which we take the maximum. But we have that vi(z) −→ −∞, for
z −→ ∂V ′i , z ∈ V ′i , i.e. the values of vi(z) with z near the boundary of V ′i doesn’t play
an effective role in the maximum. This fact together with (3.2) shows that v is globally
well defined.
At the same time it allows us to choose a covering (V ′′j )j of Y , V ′′j ⊂⊂ Wj ⊂⊂ V ′j such
that already each vj(z) for z ∈ V ′j \ V ′′j does not play an effective role in the maximum,
in particular m(v1|W1

(z), . . . , vq|Wq
(z)) = m(v1(z), . . . , vq(z)) for each z ∈ Y . We will

need the covering (Wj)j in what follows.

Remark first that we have {z ∈ Y | v(z) = −∞} = A.

The listed properties of the function m imply that m(η1, . . . , ηq) is still plurisubharmonic
if η1, . . . , ηq are plurisubharmonic. Because of the special form of m it follows that it
also preserves the strongly plurisubharmonicity.

Indeed, we have to check that for any strongly plurisubharmonic functions (such that
the composition makes sense) η1, . . . , ηq and for each θ ∈ C∞0 there exists ε0 > 0 such
that m(η) + εθ is plurisubharmonic ∀ 0 ≤ ε ≤ ε0.
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But this follows at once from:

m(η) + εθ = m(η) +

∫
Rq

εθ
∏

1≤n≤q

%(un)dun =

=

∫
Rq

max(η1 + u1 + εθ, . . . , ηq + uq + εθ)
∏

1≤n≤q

%(un)dun = m(η + εθ)

Now consider on Vj, for each index j, the function

Mλj + v|Vj

We will show that if M is a sufficiently big constant then

ϕj = (Mλj + v) ◦ p|p−1(Vj)

is strongly plurisubharmonic on p−1(Vj).

To do this consider first the function Mλj−θi on Vj∩Wi. Because θi and its derivatives
are bounded on Wi and λj is strongly plurisubharmonic on Vj it follows that there exists
a constant M such that Mλj − θi is strongly plurisubharmonic on Vj ∩Wi.

Now look on p−1(Vj) at

ϕj = (Mλj ◦ p+ v ◦ p)|p−1(Vj)
=

= Mλj ◦ p+

∫
Rq

max(log a1 ◦ p− θ1 ◦ p+u1, . . . , log aq ◦ p− θq ◦ p+uq)
∏

1≤n≤q

%(un)dun =

=

∫
Rq

max(Mλj◦p+log a1◦p−θ1◦p+u1, . . . ,Mλj◦p+log aq◦p−θq◦p+uq)
∏

1≤n≤q

%(un)dun

(where Mλj ◦ p+ log ai ◦ p− θi ◦ p is defined on p−1(Vj ∩Wi) respectively).

We have shown in the first step that

ψj ◦ p = λj ◦ p+ log(
s∑

k=1

|fk,j|2) ◦ p = λj ◦ p+ log aj ◦ p

is strongly plurisubharmonic on Uj := p−1(Vj)

What concerns λj it was important only that λj was strongly plurisubharmonic on
Vj. So we can replace it by any other strongly plurisubharmonic function, for example
on Vj ∩Wi by Mλj − θi, to obtain by the same type of argumentation the analogue
conclusion, that

Mλj ◦ p+ log ai ◦ p− θi ◦ p

is strongly plurisubharmonic on p−1(Vj ∩Wi),∀ j, ∀ i.
So, it follows finally from the above listed properties of m that the function ϕj is strongly
plurisubharmonic on Uj := p−1(Vj).
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In conclusion, we obtained a covering

(Uj := p−1(Vj))j∈I

of X and on each open set Uj a strongly plurisubharmonic function

ϕj : Uj −→ [−∞,∞)

with the property that ϕ is regular of class C∞ outside the rare set {x ∈ Uj | ϕj(x) =
−∞} = Uj ∩ p−1(A).

This collection of functions satisfies also the desired pluriharmonic-compatibility con-
dition, that is, we have on each non-empty intersection Ui ∩ Uj locally that:

ϕi = Mλi◦p+v◦p|p−1(Vi)∩p−1(Vj)
= Mλj◦p+M Re(fij◦p)+v◦p|p−1(Vi)∩p−1(Vj)

= ϕj+Re gij

with gij holomorphic. This completes the proof of our Theorem 3.1.6. �



Chapter 4

Proper maps and generalized
Kähler metrics

4.1 General setup

Now we can extend our result to the following more general context:

Theorem 4.1.1 Let p : X −→ Y be a holomorphic and surjective map between two
reduced, compact, complex spaces with singularities and with the property that p sends
each irreducible component CX of X (surjective) onto an irreducible component CY of
Y of the same dimension, dimCX = dimCY .
If Y is Kähler, then X has a generalized Kähler metric.

Remark 4.1.2

(i) In general we only know that the image of an irreducible component of X is
contained in an irreducible component of Y

(ii) In the context of the above theorem it follows that dimX = dimY

(iii) X being compact and p continuous it follows that p is automatically proper

(iv) The hypothesis of the above theorem concerning the irreducible components of X
and Y is satisfied for example in the following special cases:

(a) X and Y are irreducible (and therefore pure dimensional) and dimX =
dimY

(b) X and Y are pure dimensional with dimX = dimY and they have the same
number of irreducible components

The idea of the proof is to reduce this problem to the now known context of a proper
modification between compact complex spaces, where the “base” space is Kähler. This
is possible with help of the following “Stein factorization theorem” (see for instance [Fi]
p.70, Th.1.24).

32
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Theorem 4.1.3 Let p : X −→ Y be a proper holomorphic map. Then there is a
commutative diagram

X

Y Z
��
� �
� �
� �
�

p

��
?????????

σ

oo
τ

of complex spaces and holomorphic maps with the following properties:

(i) τ is finite

(ii) σ is proper, surjective, has connected fibers and the canonical map σ0 : OZ −→
σ∗OX is an isomorphism.

Remark 4.1.4 In our context we have also the following supplementary properties:

(i) Z is compact (because X is compact and σ is continuous and surjective; or because
Y is compact and τ is proper)

(ii) τ is surjective (because p and σ are surjective)

(iii) Z is reduced

Indeed, if there would exist an open set V ⊂ Z such that OZ(V ) contains a
nilpotent element, then because of OZ(V ) ' OX(σ−1(V )) it would follow that
OX(σ−1(V )) contains nilpotent elements, which is a contradiction to the fact that
X is reduced

(iv) τ being finite and surjective it follows also that dimY = dimZ, so that dimX =
dimZ

(v) Y being Kähler and τ being finite it follows that Z is also Kähler (see for instance
[Bi] or [VV] or see our Appendix, Proposition 6.0.2).

Our goal is to show that σ is a proper modification. For this we need some additional
short lemmas concerning the images and inverse images through σ and τ of rare analytic
sets and of the irreducible components.

4.2 Images and inverse images of analytic sets

Lemma 4.2.1 For every holomorphic, proper and surjective map f : X −→ Y between
two complex spaces it holds that for each irreducible component CY of Y there exists an
irreducible component CX of X with f(CX) = CY .
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Remark that we will apply this lemma to the maps σ and τ .

Proof. Assume the contrary is true. Because f is surjective there would exist at least
2 components CX1 and CX2 such that f(CX1) ∪ f(CX2) = f(CX1 ∪ CX2) = CY and
with the property that f(CX1) 6= CY 6= f(CX2). But f being proper, f(CX1) and
f(CX2) are analytic sets different from CY with the union equal to CY . This would be
a contradiction to the irreducibility of CY . �

Remark that this lemma also implies that X has at least the same number of irreducible
components as Y .

Lemma 4.2.2 With the notations and with the hypothesis of Theorem 4.1.1 and The-
orem 4.1.3 it holds that each irreducible component CX of X goes (surjective) onto an
irreducible component CZ of Z.

Proof. By Reductio ad absurdum, we assume the existence of a component CX such

that σ(CX) =: B
6=
↪→ CZ is a rare analytic subset in CZ . Because there exists by our

hypothesis on p a component CY such that p(CX) = CY , that is such that τσ(CX) = CY
i.e. τ(B) = CY it would follow that we have the following two surjective and finite
mappings (B is closed in CZ !):

B � CY

CZ � CY

from where we can deduce that (see for instance [Ka] E.49.p) dimB = dimCY and
dimCZ = dimCY so, it follows that dimB = dimCZ . But CZ is reduced and irre-
ducible and B is a closed, proper analytic subset, so dimB < dimCZ , which comes in
contradiction to the above deduced fact. So the Lemma 4.2.2 is proved. �

Lemma 4.2.3 With the notations and with the hypothesis of Theorem 4.1.1 and The-
orem 4.1.3 it holds that each irreducible component CZ of Z goes (surjective) through τ
onto an irreducible component CY of Y .

Proof. Again by contradiction, if there exists a component CZ with τ(CZ) =: C
6=
↪→ CY

consider an irreducible component CX of X with σ(CX) = CZ . Then it follows that

p(CX) = τσ(CX) = τ(CZ) =: C
6=
↪→ CY which comes in contradiction to our hypothesis

on p. �

Remark 4.2.4 So σ as well as τ fulfil the same condition as p does by hypothesis.

Lemma 4.2.5 Let % : X ′ −→ Y ′ be a surjective, holomorphic map between two re-
duced complex spaces such that each irreducible component of X ′ is mapped through %
(surjective) onto an irreducible component of Y ′. Let A ↪→ Y ′ be a rare analytic subset.
Then %−1(A) ↪→ X ′ is also rare.

Proof. Suppose for the moment that X ′ is an irreducible, reduced complex space. If,
by contradiction, we suppose that the inverse image of A is not rare we then have that
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%−1(A) = X ′. But this means also that %(X ′) ⊂ A 6= Y ′, which is a contradiction with
the fact that % is surjective.

Consider now the general case, i.e. X ′ is no longer supposed to be irreducible. But
A ↪→ Y ′ is rare if and only if A contains no irreducible component of Y ′. This is
equivalent with the fact that A∩CY ′ is rare in CY ′ for every irreducible component CY ′
of Y ′. So, we have that for every CY ′ , %−1(A ∩ CY ′) is rare in CX′ , for each CX′ with
%(CX′) = CY ′ . But this means that %−1(A) is rare in X ′. �

Lemma 4.2.6 Let % : X ′ −→ Y ′ be a surjective, holomorphic and proper map between
two reduced complex spaces of the same finite dimension, dimX ′ = dimY ′, such that
each irreducible component CX′ of X ′ is mapped through % (surjective) onto an irre-
ducible component CY ′ of Y ′. Let A ↪→ X ′ be a rare analytic subset. Then %(A) ↪→ Y ′

is also rare.

Proof. Suppose again for the moment that X ′ and Y ′ are irreducible (reduced) complex
spaces. If, by contradiction, we suppose that the image of A is not rare we then have
that %(A) = Y ′ = %(X ′) so %|A : A −→ Y ′ is surjective, holomorphic and proper and
because X ′ is reduced and A is rare we have dimA < dimX ′ = dimY ′. We want to
show that it follows from the surjectivity of %|A that dimA ≥ dimY ′ which will lead to
a contradiction.

For this it is enough to consider the case when A is irreducible. Indeed, else applying
Lemma 4.2.1 we obtain the existence of an irreducible component A1 of A with %(A1) =
Y ′. We work further with A1 instead of A (we have dimA ≥ dimA1 ≥ dimY ′).

By repeatedly replacing A by Sing(A) we can also assume that %(A) = Y ′ and that
%(SingA) 6= Y ′. Indeed, this process has to end after finitely many steps because
otherwise we would have a contradiction by the existence of a sequence of surjective
maps (all being restrictions of %)

A� Y ′

SingA� Y ′

Sing(SingA)� Y ′

Sing(. . . Sing(A))� Y ′

where at each step the dimension of the domains of definitions is by one lower. But
remember that A has finite dimension, so we would get once a surjective map with an
empty defining space.

So we are now in the situation of having a surjective map

A� Y ′

with A irreducible and reduced and such that

SingA 6� Y ′.

Consider now the following map between two manifolds given by the restriction of %:

M = A\%−1(Sing Y ′ ∪ %(SingA))� Y ′\(Sing Y ′ ∪ %(SingA))

Now we use the following theorem of Sard:
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Theorem 4.2.7 (Sard) Let M and N be real manifolds of dimensions m resp. n and
let ϕ ∈ Ck(M,N), where k ≥ max(m−n+ 1, 1). Then the set Cϕ of critical values of ϕ
is locally of measure zero in N , i.e. β(Cϕ ∩ V ) is a set of measure zero in Rn for every
local chart β : V −→ R

n of N .

Remark 4.2.8 A value b ∈ ϕ(M) is called critical value if the fiber Mb := ϕ−1(b)
contains at least one point where ϕ is not a submersion.

Applying this theorem to our map above we obtain the existence of a point in the
connected manifold M (remember that A is irreducible!), say a ∈ M , where % is a
submersion, so in particular it is a point where dimA = dimAa = dimM ≥ dimY ′

holds (Aa denotes the germ of A at a). That was our goal to prove in order to get a
contradiction, so the special case where X ′ and Y ′ are irreducible is proved.

For the general case the argument is now again very easy. Indeed, by using the previous
special case we have the following: A ↪→ X ′ is rare if and only if A ∩ CX′ is rare for
all irreducible components CX′ of X ′. But then from the previous case we have that
%(A ∩ CX′) = %(A) ∩ CY ′ is rare in CY ′ , this being equivalent to the fact that %(A) is
rare in Y ′. �

Remark 4.2.9 Another proof for this lemma can be obtained at once with the help of
a Corollary from [Fi] ,p.141.

4.3 Proof of Theorem 4.1.1

Now we have all preliminaries to start proving that σ is a proper modification. As we
have seen above this is enough in order to prove Theorem 4.1.1.

Using the lemmas from Section 4.2 and the fact that X and Z are reduced we see that

Sing(Z) ↪→ Z

Sing(X) ↪→ X

σ(Sing(X)) ↪→ Z

σ−1(Sing(Z)) ↪→ X

and

σ−1(σ(Sing(X))) ↪→ X

are all rare analytic sets.

Consider now D = SingZ ∪ σ(SingX), D ↪→ Z which is a rare analytic set in Z. Con-
sider also the surjective map σ|X\σ−1(D)

: X\σ−1(D) −→ Z\D given by the restriction

of σ to X \σ−1(D). For each irreducible component CX of X we then have a surjective
map between two connected manifolds

σ|CX\σ−1(D)
: CX\σ−1(D) −→ CZ\D
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where CZ is chosen such that σ(CX) = CZ , in particular by our hypothesis we then have
that dimCX = dimCZ . Applying Sard’s Theorem 4.2.7 it follows that there exists a
regular point a ∈ CX\σ−1(D) where σ is a submersion, that is a point a where the linear
tangent map of σ , Ta(σ|CX\σ−1(D)

) is surjective. Because of the same finite dimension

of the spaces it follows that the linear tangent map Ta(σ|CX\σ−1(D)
) is in fact bijective,

that is the determinant of the Jacobian matrix is nonvanishing, det Jσ|
CX\σ−1(D)

(a) 6= 0.

But this tells us that the set

{x ∈ CX\σ−1(D) | det Jσ(x) = 0}

is a rare analytic set in CX\σ−1(D). This being true for all irreducible components CX
of X it follows that

B := {x ∈ X\σ−1(D) | det Jσ(x) = 0}

is a rare analytic set in X\σ−1(D). Note that we do not know whether B is analytic
in X.

We want to prove the existence of a rare analytic set C in X such that B ⊂ C, (where B
denotes the closure of B in X). In fact we will find C such that C ∩ (X \σ−1(D)) = B.
Because σ−1(D) is rare it follows at once that C is rare in X.

To find C we make use of some known notions and results about the tangent space and
the tangent map for complex spaces with singularities. For a complete description we
refer to [Fi]. A short introduction was given in Section 2.2.

It follows from Lemma 2.2.15 that the set

C := Sing0(σ) := {x ∈ X | corankx σ > 0}

is analytic. That means that the set

C = {x ∈ X | dim kerTxσ > 0} = {x ∈ X | Txσ is not injective}

is analytic in X.

Moreover because C ∩ (X \ σ−1(D)) = B, this set is also rare as noticed above.

Let A := D ∪ σ(C) which is rare in Z and consider the surjective map

σ|X\σ−1(A)
: X \ σ−1(A) −→ Z \ A

We have for all x ∈ X \ σ−1(A) that x ∈ Reg(X) and x /∈ C. Therefore x /∈ B, so that
det Jσ(x) 6= 0 for each x ∈ X \ σ−1(A).

But this means that σ is locally biholomorphic in X \ σ−1(A). Because σ|X\σ−1(A)
has

connected fibers it follows that σ|X\σ−1(A)
is injective, so we deduce finally that the map

σ|X\σ−1(A)
: X \ σ−1(A) −→ Z \ A

is biholomorphic, which proves the fact that σ : X −→ Z is a proper modification.

As we mentioned above this is enough to conclude as desired that X has a generalized
Kähler metric. So the proof of Theorem 4.1.1 is now complete. �



Chapter 5

A supplement to a Theorem of
Fornæss and Narasimhan

Fornæss and Narasimhan proved (in [F-N], Theorem 5.3.1) that for any complex space
X the identity WPSH(X) = PSH(X) holds, where WPSH(X) denotes the weakly
plurisubharmonic functions on X and PSH(X) denotes, as usual, the plurisubharmonic
functions on X.

Of course, for the case when X has no singularities, i.e. X is a complex manifold, this
identity is trivial. But for the singular case the inclusion WPSH(X) ⊆ PSH(X) is no
more trivial.

In this chapter we give another proof for this identity (Theorem 5.2.2) but for continuous
functions only, which is shorter and easier and which has the advantage that it can be
generalized to q-plurisubharmonic functions (Theorem 5.3.14) as they were introduced
by Hunt and Murray in [H-M](see also [Fu]).

In the same time we obtain also a generalization of a theorem of Siu ([Siu]), namely we
show (Theorem 5.3.16) that every q-complete subspace with corners of a complex space
X admits a q-complete with corners neighbourhood in X. This result will be needed
in the proof of our Theorem 5.3.14.

5.1 Some definitions and needed results

We will denote by WPSH(X) the class of weakly plurisubharmonic functions on X,
as they were introduced in [F-N], i.e. the class of upper semicontinuous functions
ϕ : X −→ [−∞,∞) such that for any holomorphic function f : ∆ −→ X, where ∆
denotes the unit disc in C, the composition ϕ ◦ f is subharmonic on ∆.

SWPSH(X) stands for the strongly weakly plurisubharmonic functions on X, i.e. those
WPSH(X)- functions for which we have: for every θ ∈ C∞0 (X,R) (i.e. smooth and with
compact support) there exists ε0 > 0 such that ϕ+ εθ is in WPSH(X) for 0 ≤ ε ≤ ε0.

In the alternative proof of Fornæss-Narasimhan’s Theorem we will use an extension
theorem of Richberg, which can be found in [R], Satz 3.3:

38
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Theorem 5.1.1 (Richberg) Let X be a complex space and Y a closed complex sub-
space of X. Then for every function ψ on Y which is continuous (resp. smooth) and
strongly plurisubharmonic, there exist a neighbourhood V of Y in X and a function
ψ̃ on V which is continuous (resp. smooth), strongly plurisubharmonic and such that
ψ̃|Y = ψ.

We shall also need a theorem due to M. Colţoiu in [MC.1].

Theorem 5.1.2 (M. Colţoiu) Let X be a complex space which admits a strongly
plurisubharmonic exhaustion function ϕ : X −→ [−∞,∞). Then X is 1-convex.

Remark 5.1.3 If in the above theorem ϕ is supposed to be real-valued, as remarked in
[MC.1] it follows easily from the Maximum Principle that the exceptional set of X (i.e.
the maximal compact analytic subset) is empty, hence X is Stein. This is a theorem of
Fornæss-Narasimhan, Theorem 6.1 in [F-N].

The following result is due to M. Peternell (Lemma 5 in [MP]; see also [Dem]). For this
we need first the following:

Definition 5.1.4 Let X be a manifold. A function v : X −→ [−∞,∞) is called
almost plurisubharmonic if it can be written locally as a sum of a plurisubharmonic and
a smooth function.

If X is a complex space we require that v can be locally extended as an almost plurisub-
harmonic function in the ambient space of an embedding.

Theorem 5.1.5 (M. Peternell) If Y is a closed analytic subset in a complex space X
then there exists an almost plurisubharmonic function v on X such that v ∈ C∞(X\Y )
and Y = {x ∈ X | v(x) = −∞}.

The next needed result is due to Siu ([Siu]):

Theorem 5.1.6 Let Y be a closed Stein subspace in a complex space X. Then Y has
a Stein open neighbourhood in X.

5.2 Another proof of Fornæss-Narasimhan’s Theo-

rem

First of all we prove a lemma which shows the interplay between SWPSH- and SPSH-
functions on a complex space under certain conditions.

Lemma 5.2.1 Let Ω be an open subset of a reduced Stein space X with dimX < +∞
and such that Ω admits a SWPSH- exhaustion function ϕ : Ω −→ R. Then Ω is Stein.
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Proof. We may assume, without loss of generality that ϕ > 0.

The proof is by induction on n = dimX.

If n = 0 then X has only isolated points and it is therefore a manifold, so there is
nothing to prove.

Suppose now that the lemma is true for all complex spaces Y with dimY ≤ n− 1 and
let dimX = n.
Consider Y = Sing(X), the singular locus of X. We have dimY ≤ n − 1 and by the
induction hypothesis, since ϕ|Y ∩Ω

∈ SWPSH(Y ∩Ω) is an exhaustion function for Y ∩Ω,
it therefore follows that Y ∩ Ω is Stein. So Y ∩ Ω admits a smooth, SPSH-exhaustion
function, which we shall denote by ψ1 (the smoothness condition, at least the continuity
will be necessary for applying Richberg’s extension theorem).

Now Theorem 5.1.1 yields a SPSH and smooth extension of ψ1 to an open neighbour-
hood V of Y ∩ Ω in Ω, denoted by ψ̃ : V −→ R. By shrinking V , if necessary, we can
suppose that ψ̃ is defined in a neighbourhood of V (the closure being in Ω) and that
{x ∈ V | ψ̃(x) < c} is relatively compact in V for all real numbers c.

But Y being a closed analytic subset of a Stein space X there exists f1, . . . , fm ∈ O(X)
such that Y = {x ∈ X | f1(x) = . . . = fm(x) = 0}. If we define p := log(|f1|2 + . . . +
|fm|2) then we have also that Y = {x ∈ X | p(x) = −∞}.
Let now χ : (0,∞) −→ R be a smooth, convex, rapidly increasing function (to be made
precise later) and define:

ψ =

{
max(ψ̃, χ ◦ ϕ+ p) on V
χ ◦ ϕ+ p on Ω\V

We choose χ such that :

(i) χ ◦ ϕ+ p > ψ̃ on ∂V (the border being considered in Ω)

(ii) ψ is an exhaustion function of Ω.

These two conditions can be achieved for a suitable choice of χ, for example in the
following way:

Consider a sufficiently small open neighbourhood W of Y ∩ Ω in Ω such that W ⊂ V
and such that ψ̃ > χ ◦ ϕ+ p on W . This last condition can be fulfilled because p takes
the value −∞ exactly on Y and ψ̃ is real and continuous on V ⊃ Y ∩ Ω.

Consider now a strictly increasing sequence of non-negative numbers (cn)n with c0 = 0
and lim

n→∞
cn = +∞ and consider the relatively compact sets given by

Ai := {x ∈ Ω | ci ≤ ϕ(x) < ci+1}, i ∈ N

We have that Ai ∩ ∂V ∩ Y = ∅ so that ψ̃ − p is bounded from above on Ai ∩ ∂V by a
positive constant Mi. So the condition we impose on χ in order to obtain condition (i)
is to have:

χ(x) > Mi for x ∈ [ci, ci+1), i ∈ N
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Now in order to find conditions for χ such that ψ is an exhaustion function for Ω we
remark that it is enough to find conditions for χ such that χ ◦ ϕ + p is an exhaustion
function on Ω \W because on V ⊃ W the function ψ̃ is already an exhaustion function
and we have chosen W such that ψ̃ > χ ◦ ϕ+ p on W . In order to do this it is enough
to require to χ to satisfy the following condition (observe that in particular it follows
that χ(x) ≥ x ∀x ∈ R):

χ|[ci,ci+1)
≥ ci+1 + Li

where the constants Li > 0 are chosen such that |p| < Li on Ai \W .

Indeed, with this condition imposed on χ we have that for all i the following inequality
holds on Ai \W :

χ ◦ ϕ+ p > ci+1 (5.1)

because on Ai \W we have χ ◦ ϕ ≥ ci+1 +Li > ci+1 − p. Remark that then (5.1) holds
also on Ak \W for all k ≥ i, because (ci)i increases. But this implies that

{x ∈ Ω \W | χ ◦ ϕ+ p < ci+1} ⊂
i−1⋃
j=0

(Aj \W )

which is relatively compact in Ω (and also in Ω \W ). But this means that χ ◦ ϕ+ p is
an exhaustion function for Ω \W .

So all we need in order to satisfy our conditions (i) and (ii) is the existence of a convex,
smooth and strictly increasing function χ : (0,∞) −→ R which satisfies

χ|[ci,ci+1)
≥ ki := max(Mi, ci+1 + Li)

(in particular we have lim
i→∞

ki = +∞). But this is a well known fact.

Now, to finish the proof of our Lemma 5.2.1 we observe that by the definition of ψ and
condition (i) one obviously has that ψ ∈ PSH(Ω). If now τ > 0 is a smooth strongly
plurisubharmonic function on X then ψ + τ|Ω ∈ SPSH(Ω) and it is exhaustive.

By Theorem 5.1.2, Ω is Stein and the proof of our Lemma 5.2.1 is complete. �

Now we are ready to give a new proof of Fornæss-Narasimhan’s Theorem for the case
of continuous functions:

Theorem 5.2.2 On any complex space X it holds: any continuous WPSH(X)- func-
tion is also a PSH(X)- function.

Proof. The problem being locally we may assume that X is a closed analytic subset in
some Stein open subset U of Cn.

Let ϕ ∈ WPSH(X) be continuous. Consider X̃ := X × C which is Stein and

Ω := {(z, w) ∈ X̃ | ϕ(z) + log |w| < 0}.

We notice that Ω is itself Stein. Indeed, to see this choose g > 0 a smooth, SPSH,
exhaustion function for X × C and define

h(z, w) = g(z, w)− 1

ϕ(z) + log |w|
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which is a SWPSH(Ω)-exhaustion function for Ω. By Lemma 5.2.1 Ω is Stein. We have
Ω ⊂ X × C ⊂ U × C ⊂ Cn+1. Consider now an open set W in Cn+1 with the property
that W ∩ (X × C) = Ω. By Siu’s Theorem 5.1.6 applied for the situation Ω ⊂ W , it
follows that there exists V an open Stein set in Cn+1 with V ∩ (X×C) = Ω. Since V is
Stein it follows that − log δw is plurisubharmonic on V , where δw denotes the boundary
distance of V in the w-direction (see [G-R]). From the definition of Ω = V ∩ (X × C)
it follows that − log δw|X = ϕ and so we have the required plurisubharmonic extension
of ϕ. �

5.3 A generalization to the q-convex case

To generalize Fornæss-Narasimhan’s Theorem to the q-plurisubharmonic case (but for
continuous functions only) we will follow the general ideas of the proof in Section 5.2.
But first of all we will give the precise definitions of q-plurisubharmonic (in notation
q-PSH) and weakly q-plurisubharmonic (in notation q-WPSH) functions on complex
spaces. We recall the definitions for open sets in Cn.

Definition 5.3.1 (see for instance [Fu]) An upper semicontinuous function ϕ : D −→
[−∞,∞), where D ⊂ C

n is an open subset, is called subpluriharmonic if for every
relatively compact subset G ⊂⊂ D and for every pluriharmonic function u defined on a
neighbourhood of G such that ϕ|∂G ≤ u|∂G we have also ϕ ≤ u on G.

Definition 5.3.2 ([H-M]) A function defined on D ⊂ Cn and with values in [−∞,∞)
is called q-plurisubharmonic (1 ≤ q ≤ n) in D if it is upper semicontinuous and if it is
subpluriharmonic on the intersection of every q-dimensional complex plane with D.

Remark 5.3.3

(i) n-plurisubharmonic means subpluriharmonic

(ii) 1-plurisubharmonic means plurisubharmonic

(iii) If a function is q-plurisubharmonic, it also is q′-plurisubharmonic, for every q′ ≥ q

(iv) If ϕ : D −→ [−∞,∞) is q-plurisubharmonic, where D is open in Cn, and if
f : D′ −→ D is a holomorphic map defined on the open set D′ in Cm then ϕ ◦ f
is q-plurisubharmonic on D′, for every q ≤ min(n,m)

(v) A real valued C2-function defined on an open set D in Cn is q-plurisubharmonic
(1 ≤ q ≤ n) if and only if the Levi form of ϕ has at least n− q + 1 non-negative
eigenvalues at every point of D.

Now we define the q-plurisubharmonic functions on an arbitrary complex space.
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Definition 5.3.4 Let X be a complex space and ϕ : X −→ [−∞,∞) be an upper
semicontinuous function on X. Then ϕ is called q-plurisubharmonic on X if for every
point x ∈ X there exists a local embedding i : U ↪→ Ũ ⊂ Cn, where U is a neighbourhood
of x, Ũ an open subset of Cn, and there exists ϕ̃ a q-plurisubharmonic function on Ũ
such that ϕ̃ ◦ i = ϕ.

Remark 5.3.5 If we suppose that ϕ is continuous we don’t require in the above defini-
tion that ϕ̃ shall be continuous; it is in general assumed to be only upper semicontinuous.

We also define the weakly q-plurisubharmonic functions on complex spaces as follows:

Definition 5.3.6 Let X be a complex space and let ϕ : X −→ [−∞,∞) be an upper
semicontinuous function. Then ϕ is called weakly q-plurisubharmonic on X if for every
holomorphic function f : G −→ X, where G is open in Cq, it follows that ϕ ◦ f is
subpluriharmonic on G.

Remark 5.3.7 It is known (see a remark in [KM]) that on a complex manifold the two
classes q-WPSH and q-PSH coincide. What is not obvious is the inclusion q-WPSH ⊆
q-PSH for the singular case.

We may define the q-SPSH and q-SWPSH functions on a complex space X in a
similar way as it was done in Section 5.1 or in Section 2.1.

More precisely one has:

Definition 5.3.8 We will say that a q-PSH (q-WPSHresp.) function ϕ : X −→
[−∞,∞) is a q-SPSH function (q-SWPSH resp.) if for every θ ∈ C∞0 (X,R) there ex-
ists ε0 > 0 such that if 0 ≤ ε ≤ ε0 then ϕ+εθ is in q-PSH(X) (in q-WPSH(X)resp.).

We remind that we have denoted (see Section 2.1) by Fq(X) the set of the q-convex
functions with corners on X. Theorem 5.1.1 which was needed in Section 5.2 has to be
replaced in the q-convex case by the following:

Lemma 5.3.9 ([MC.3]) Let X be a complex space, A ⊂ X a closed analytic sub-
set, f ∈ Fq(A) and η > 0 a continuous function on A. Then there exists an open
neighbourhood V of A in X and f̃ ∈ Fq(V ) such that |f̃ − f | < η on A.

We will need also the following approximation result due to Bungart [B] :

Theorem 5.3.10 (Bungart) Let X be a complex manifold and ϕ : X −→ R a contin-
uous q-SPSH(X) function. Then for any continuous function η : X −→ (0,∞) there
exists a function ϕ̃ ∈ Fq(X) such that |ϕ̃− ϕ| < η on X.

Remark 5.3.11 In fact Bungart proved this result only when X is an open subset of
some euclidian space Cn. But as Matsumoto ([KM]) remarked, this result still holds
when X is any complex manifold. For the sake of completeness we give here a proof for
the manifold case using Bungart’s theorem.
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Proof. Fix three locally finite open coverings (Ui)i∈N, (Vi)i∈N, (Wi)i∈N of X such that
Ui ⊂⊂ Vi ⊂⊂ Wi ⊂⊂ X for all i ∈ N and such that each Wi is the domain of a
biholomorphic map i : Wi −→ W̃i, W̃i being an open set in Cni .

Consider for each index i ∈ N a function θi ∈ C∞0 (X,R) such that θi ≡ −1 on ∂Vi,
θi ≡ 1 on U i and θi ≡ 0 on X \Wi.

Let now εi > 0 be small enough such that 2εiθi ≤ η and such that ϕ + εiθi is still
q-SPSH.

Now because V i is contained in Wi ' W̃i, we can apply Bungart’s theorem in order to
get for all i ∈ N a q-convex with corners function ϕi ∈ Fq(Wi) with the property that

|ϕ(x) + εiθi(x)− ϕi(x)| < min(εi,
η(x)

2
)

on a neighbourhood of V i.

It follows that we have ϕi < ϕ on ∂Vi and ϕi > ϕ on U i. Therefore we may define
ϕ̃ : X −→ R by ϕ̃(x) := max{ϕi(x) | x ∈ Vi}. Clearly ϕ̃ ∈ Fq(X), ϕ ≤ ϕ̃ and ϕ̃ < ϕ+η
as desired. �

We shall use also the following result due to Fujita (Theorem 1 in [Fu]):

Theorem 5.3.12 (Fujita) Let D be an open subset of Cn which is q-complete with
corners, let w ∈ Cn, ||w|| = 1 and denote by δw the boundary distance function of D
along the w-direction. Then − log δw is q-plurisubharmonic on D.

Remark 5.3.13 In fact Fujita proves this result for “pseudoconvex domains of order
(n−q)”, but by Bungart’s approximation result (Theorem 5.3.10 above) this assumption
is equivalent to q-complete with corners.

We can state now our main result of this chapter:

Theorem 5.3.14 If X is a complex space and ϕ a continuous q-WPSH function on
X then it is also a q-PSH function on X.

(Remember that the local extensions are not required to be continuous.)

In order to prove it we give first two other results.

Lemma 5.3.15 Let X be a reduced complex space of finite dimension for which there
exists a continuous exhaustion function ϕ : X −→ R which is in q-SWPSH(X). Then
there exists a q-convex function with corners ψ : X −→ R, exhausting X.

Proof. We may assume that ϕ > 0. In the regular case, i.e. if X is a complex manifold
this lemma is a direct consequence of Bungart’s approximation theorem. In the singular
case the proof is by induction on n = dim(X).

The case n = 0 is obvious. Now suppose that Lemma 5.3.15 holds for all complex
spaces Y with dimY ≤ n− 1 and let dimX = n.
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Consider Y = Sing(X), the singular locus of X. Because dimY ≤ n − 1 and ϕ|Y
satisfies the conditions of our Lemma we conclude that there exists an exhaustion
function ψ1 : Y −→ R which is q-convex with corners. By Lemma 5.3.9 we can find a
neighbourhood V of Y in X and ψ̃1 ∈ Fq(V ) such that |ψ̃1 − ψ1| < 1 on Y .

By shrinking V if necessary, we can suppose that ψ̃1 is defined on a neighbourhood of
V and and that {x ∈ V | ψ̃1(x) < c} is relatively compact in V , for all real numbers c.

By Peternell’s Theorem there exists an almost plurisubharmonic function θ : X →
[−∞,∞) such that θ|Reg(X)

is smooth and such that Y = Sing(X) = {x ∈ X | θ(x) =
−∞}.

Now let χ : [0,∞) −→ R+ be a continuous, convex, increasing function which is linear
on segments. This means that there is a division 0 = a0 < a1 < . . . < an < . . . of
[0,∞) such that the restriction of χ to each [ai, ai+1] is linear. Therefore on [ai, ai+1],
χ(t) = Ait+Bi with Ai > 0 and the convexity of χ gives that Ai+1 ≥ Ai.
If χ is as above and it increases rapidly at infinity then clearly (χ ◦ ϕ + θ)|Reg(X)

is
in q-SPSH(Reg(X)). This can be seen as follows: take a locally finite open covering
(Uj)j∈N, Uj ⊂⊂ X, of X such that for each j on a neighbourhood of U j one has
θ = θ1,j + θ2,j with θ1,j smooth and θ2,j plurisubharmonic. Then if the constants Ai > 0
in the definition of χ are chosen large enough, we have that for all j ∈ N, χ ◦ ϕ+ θ1,j is
q-SWPSH on Uj.
Therefore we can find χ as above such that (χ◦ϕ+θ)|Reg(X)

is in q-SPSH(Reg(X)) = q-
SWPSH(Reg(X)).
Also if χ increases rapidly we may assume that (χ ◦ϕ+ θ)|∂V > ψ̃1|∂V and that (χ ◦ϕ+
θ)|X\V exhausts X \ V (see also the proof of our Lemma 5.2.1).

By Bungart’s approximation theorem there is a function u : Reg(X) −→ R which is
q-convex with corners and such that:

(i) |u− (χ ◦ ϕ+ θ)| < 1 on Reg(X)

(ii) u|∂V > ψ̃1|∂V

We define now ψ : X −→ R as follows:

ψ =


max(ψ̃1, u) on V \Y
ψ̃1 on Y
u on X\V

Then clearly ψ is an exhaustion function on X and ψ is q-convex with corners. Thus
our lemma is proved. �

The next theorem (a generalization of Siu’s theorem 5.1.6) will also be needed.

Theorem 5.3.16 Let S be a closed analytic subset of a complex space X and assume
that S is q-complete with corners. Then there exists an open neighbourhood V of S in
X such that V is q-complete with corners.
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Proof. Since S ⊂ X is a closed complex subspace there exists by Peternell’s Theorem
an almost plurisubharmonic function λ on X such that S = {x ∈ X | λ(x) = −∞} and
such that λ|X\S ∈ C∞(X \ S).

Denote by ψ : S −→ R a positive, q-convex exhaustion function with corners. Applying
Lemma 5.3.9 we deduce that there exists a q-convex function with corners, ψ̃, in a
neighbourhood U of S such that |ψ̃ − ψ| < 1 on S. We can assume that ψ̃ > 0.

We may suppose again, by eventually shrinking U , that ψ̃ is defined on a neighbourhood
of U and that ψ̃ exhausts U .

Consider again χ a continuous, convex, increasing, real function defined on [0,∞) which
is linear on segments such that:

(i) if V = {x ∈ U | χ ◦ ψ̃(x) + λ(x) < 0}, then ∂V ∩ ∂U = ∅
and that

(ii) the function ϕ := max(− 1
χ◦ψ̃+λ

, ψ̃) defined on V is q-convex with corners.

The choice of χ satisfying (ii) is possible as in Lemma 5.3.15. We can also realize
condition (i) by choosing a sequence of real numbers (λn)n ↘ −∞ such that {x ∈
U | ψ̃(x) < n and λ(x) < λn} is relatively compact in U and requiring that χ :
[0,∞) −→ R satisfies additionally χ|[n−1,n)

≥ −λn ∀n ∈ N.

Then it follows that the set V = {x ∈ U | χ◦ψ̃(x)+λ(x) < 0} is an open q-complete with
corners neighbourhood of S (ϕ being the exhaustion function) and therefore Theorem
5.3.16 is proved. �

We are now in a position to prove Theorem 5.3.14.

Proof. The problem being locally, we can assume, without loss of generality, that X
is a closed analytic subset in a Stein open subset U ⊂ Cn. Let ϕ ∈ q-WPSH(X) be
continuous.

We have X × C ⊂ U × C ⊂ Cn+1 and consider Ω ⊂ X × C the open set given by:

Ω = {(z, w) ∈ X × C | |w| < e−ϕ(z)}

On Ω there exists a continuous q-SWPSH exhaustion function. Indeed, denote by
s : X × C −→ R a smooth, SPSH(X × C), positive exhaustion function and consider

s(z, w)− 1

ϕ(z) + log |w|
: Ω −→ R

This function has the desired properties, so that for Ω we can apply Lemma 5.3.15 and
we get so a q-convex with corners exhaustion function ψ : Ω −→ R. But this means
that Ω is q-complete with corners.

Consider now an open set W in Cn+1 with the property that W ∩ (X ×C) = Ω. Then
Theorem 5.3.16 can be applied for the situation Ω ⊂ W . We conclude the existence of
an open set Ω̃ ⊂ Cn+1 which is q-complete with corners and for which Ω̃∩ (X×C) = Ω
holds.
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Now it is enough to consider δw the distance to the boundary of Ω̃ along the w-direction.
By Theorem 5.3.12 this is a q-PSH(Ω̃) function (not necessary continuous). But by
the definition of Ω, it follows that − log δw|X = ϕ and so we have the desired conclusion

that ϕ is a q-PSH(X) function. �
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Appendix

In the proof of our Theorems 3.1.6 and 4.1.1 we used the following two known results
for which we want to give here proofs (see [Co-Mi], Prop. 2.1 resp. [VV] ,Thm. 1).

Proposition 6.0.1 Let X, Y be complex spaces and p : X −→ Y a proper, surjective,
holomorphic map. Let Φ : Y −→ [−∞,∞) be an upper semicontinuous function such
that Φ ◦ p is plurisubharmonic (respectively strongly plurisubharmonic) on X. Then Φ
is plurisubharmonic (respectively strongly plurisubharmonic) on Y .

Proposition 6.0.2 Let f : X −→ Y be a finite, holomorphic map between compact
complex spaces. If Y is Kähler, then X is Kähler too.

Proof of Proposition 6.0.1. Because on each complex space the equality WPSH(X) =
PSH(X) between weakly plurisubharmonic and plurisubharmonic functions holds (also
for non-continuous functions see [F-N]!) we have to show that the composition Φ ◦ f is
subharmonic on W for each holomorphic map f : W −→ Y , where W is an open set in
the complex plane C.

In what follows we make some reductions to the problem:

1) We show first that it is enough to consider the case when Y is a domain in C.

For this consider the set

Z := {(w, x) ∈ W ×X | f(w) = p(x)}

It is endowed with a natural structure of a complex space, being the inverse image of
the diagonal in Y × Y under the holomorphic map f × p : W × X −→ Y × Y . The
structure on Z is such that the projections onto the two factors induce holomorphic
maps πX : Z −→ X and πW : Z −→ W verifying p ◦ πX = f ◦ πW , i.e. we have a

48
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commutative diagram of the form

W ×X

Z X

W Y

?�

OO� � � � � � �

//
πX

��
� �
� �
� �
�

πW

��
� �
� �
� �
�

p

//
f

Since p is surjective it follows by the definition of Z that πW is also surjective. But
from our hypothesis that Φ ◦ p is plurisubharmonic (the strongly plurisubharmonic
case will be considered at the end) it follows that (Φ ◦ f) ◦ πW = (Φ ◦ p) ◦ πX is also
plurisubharmonic. Remember that we want to show that Φ ◦ f is subharmonic. But
Φ ◦ f being upper semicontinuous and πW being holomorphic, proper and surjective it
follows that if Φ ◦ f plays the role of Φ and πW that one of p it is indeed enough to
consider the case when Y = W is a domain in C.

2) Now in this case, p being proper, we have that for any irreducible component CX of
X it follows that p|CX is constant or that p(CX) = Y , because the only analytic subsets
in C are those of dimension 0 (i.e. the points) or the whole plane.

The map p being surjective, that means that it is enough to assume thatX is irreducible;
we don’t loose generality.

3) The last reduction is to show that it is enough to prove the subharmonicity of Φ
outside a discrete set of points in C.

Indeed, the result we will use and which will be proved later is the following (see [Gr-Re])

Lemma 6.0.3 Let D be a domain in C and z0 ∈ D be an arbitrary point. Suppose we
have given a function s defined and subharmonic in D\{z0} and which is bounded from
above on a neighbourhood of z0.

Then there exists a unique subharmonic extension of s to D, that one given by

s̃(z) =

 s(z) for z 6= z0

lim sup
w−→z0
(w 6=z0)

s(w) for z = z0

Now it remains to prove that for an irreducible complex space X and Y an open subset
in C, the function Φ as given in Proposition 6.0.1, is subharmonic outside a discrete set
of points in C.

To prove this we use the fact that the fibers of p (which are analytic sets) have all (pure)
codimension 1 (see [Ka] 48.3geo and remember that X is irreducible and p surjective).

Consider now an arbitrary point y0 ∈ Y and x0 ∈ p−1(y0) and a neighbourhood Ṽ of x0

in X which goes surjective through p on a neighbourhood W̃ of y0 in C. We can also
suppose that Ṽ is embedded as an analytic subset in some complex euclidian set V̂ .

We can apply then, for instance, the following (see [Gu], vol II, chap. G, thm. 4, p. 75)
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Theorem 6.0.4 If Ũ is the germ at the origin of an analytic set in Cr then codim Ũ
is the largest integer k for which there is a k-dimensional linear subspace L̃ through the
origin in Cr with Ũ ∩ L̃ = 0.

In our situation (eventually shrinking the neighbourhoods) we get the existence of a
linear complex subspace L̃ in Cr of maximal dimension with respect to the property
that L̃ ∩ (p|Ṽ )−1(y0) = {x0}.

But then, again because of Theorem 6.0.4, we obtain that the complex subspace L̃∩ Ṽ
of Ṽ has (at least) dimension 1. In conclusion we got the existence of a subspace L of
dimension 1 in Ṽ such that L∩ p−1(y0) = {x0}. So p|L is not constant, so it is an open
map between complex spaces of dimension 1.

But this implies that p|L is a local isomorphism outside a discrete set of points with
discrete image. It is then clear that because Φ ◦ p is subharmonic on L we have that Φ
is subharmonic in a neighbourhood of y0 in Y outside a discrete set of points. But y0

being arbitrary and subharmonicity being a local problem, this is enough to conclude
the proof, that is we have that Φ is subharmonic on Y outside a discrete set of points
and thus also on Y .

The strongly plurisubharmonic case follows at once from the definition of the strongly
plurisubharmonicity and the plurisubharmonic case proved above. �

Proof of Lemma 6.0.3. Because s is supposed to be bounded from above in a neigh-
bourhood of z0 we have that lim sup

z−→z0
s(z) < +∞, so s̃ is well defined, i.e. it has values

in [−∞,∞).

Of course s̃ is upper semicontinuous, by definition.

If by contradiction, we suppose that s̃ is not subharmonic on D this means that we can
find an open set W in D, z0 ∈ W and a harmonic function h on W such that s̃ + h is
not constant and takes its maximum m only in z0 because on D\{z0} s̃ is subharmonic.

Consider a disc K0 := {z ∈ C | |z − z0| ≤ d0} contained in W . We then have on ∂K0

that s̃(z) + h(z) < m. But s̃ + h being upper semicontinuous on W we can find ε > 0
such that s̃(z) + h(z) < m− ε on ∂K0 .

Now consider the annulus Rd := {z ∈ W | d < |z − z0| < d0}, where 0 < d < d0, and
the harmonic function given by

hd(z) :=
ε

ln d
d0

· ln

((
d

d0

)m
ε

· |z − z0|
d

)

It is clear that

hd(z) =

{
m for |z − z0| = d
m− ε for |z − z0| = d0

so that s̃(z) + h(z) ≤ hd(z) on ∂Rd and because z0 6∈ Rd and s̃ + h is subharmonic on
D \ {z0} it follows that we have the inequality s̃(z) + h(z) ≤ hd(z) for all z ∈ Rd.
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But on K0 \ {z0} the function hd converges uniformly on compact subsets to m − ε,
for d → 0, so that we have on K0 \ {z0} that s̃(z) + h(z) ≤ m− ε holds. This implies
that s̃(z0) + h(z0) ≤ m− ε. But this last inequality is not compatible with the equality
s̃(z0)+h(z0) = m. Getting a contradiction it follows that the assumption we made that
s̃ is not subharmonic is false.

In order to show that s̃ is the unique subharmonic extension of s we apply the following
fact: for each plurisubharmonic function f : X −→ [−∞,∞) on an irreducible complex
space X, and for every point x0 ∈ X the equality

lim sup
x−→xo
(x6=x0)

f(x) = f(x0)

holds.

Indeed, we have the following sequence of inequalities:

f(x0) ≤ lim sup
x−→x0
(x6=x0)

f(x) ≤ f(x0)

the first inequality being justified by the Maximum principle for plurisubharmonic func-
tions (remember that we work on an irreducible space) and the last one is given by the
upper semicontinuity of f .

With this the lemma is proved. �

Proof of Proposition 6.0.2. In what follows we adapt for our situation the proof of
Theorem 1, p. 254 given in [VV].
In our situation – that one of a finite mapping between compact spaces – we can choose
two finite coverings (Uj)j∈J of X and (Vi)i∈I of Y with the following properties:

(i) On each open set Vi there exists a strongly plurisubharmonic function ψi : Vi −→
R such that (Vi, ψi) defines a Kähler metric on Y .

(ii) Every set Uj is a connected component of some f−1(Vi).

(iii) On each open set Uj there exists a smooth, strongly plurisubharmonic function
ϕj : Uj −→ (0,∞). (This can be achieved since each complex space has a neigh-
bourhood base of Stein open sets.)

We now define a function
δ : J −→ I

by
δ(j) = i

where i is such that Uj is a connected component of f−1(Vi).
Consider a shrinking with compact sets (Ki)i∈I of the covering (Vi)i∈I , that is: each
set Ki is compact, Ki ⊂ Vi and

⋃
i∈I Ki = Y . We can also suppose that if we denote

by K̃j the connected component of the compact set f−1(Kδ(j)) which is included in Uj,
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we have also
⋃
j∈J K̃j = X. Choose now functions %i ∈ C∞0 (Vi), %i ≥ 0, %i = 1 on a

neighbourhood of Ki.

Then consider for each index j ∈ J the real function defined on X by

θj :=

{
(%δ(j) ◦ f)2 on Uj
0 on X \ Uj.

It follows that the function θjϕj is C∞ on X with compact support in Uj.

Define then for any collection ε = (εj)j∈J of positive numbers the following smooth
functions:

ϕε : X −→ (0,∞)

given by

ϕε(x) :=
∑
j∈J

εjθj(x)ϕj(x)

Define then on Uk the function

pk(x) := pk,ε(x) := ψδ(k) ◦ f(x) + ϕε(x) for k ∈ J.

One sees at once that pk ∈ C∞(Uk,R) and that pl − pk = (ψδ(l) − ψδ(k)) ◦ f , so pl − pk
is pluriharmonic on Ul ∩ Uk.
We want to prove that each pk is strongly plurisubharmonic on an open set Wk with
the property that supp θk ⊃ Wk ⊃ K̃k. Because (Wk)k∈J is then a covering of X we
will get the collection (Wk, pk)k∈J which defines a Kähler metric on X.

Because strongly plurisubharmonicity is a local property it is enough to show that pk
is strongly plurisubharmonic in a neighbourhood of each point x0 ∈ supp θk.

So, fix an arbitrary point x0 ∈ supp θk and choose sufficiently small neighbourhoods
U ′x0
⊂⊂ U ′′x0

of x0, i.e. with the property that U ′′x0
⊂
⋂
l∈Jx0

Ul where Jx0 := {l ∈ J | x0 ∈
supp θl}.
We can also suppose that we have two neighbourhoods V ′f(x0) ⊂⊂ V ′′f(x0) of f(x0) such

that f(U ′x0
) ⊂ V ′f(x0) ⊂

⋂
l∈If(x0)

Vl, where If(x0) = {i ∈ I | f(x0) ∈ Vi}, and that

Ũx0 ⊂ Cn, Ṽf(x0) ⊂ Cm are open euclidian sets such that U ′′x0
⊂ Ũx0 and V ′′f(x0) ⊂ Ṽf(x0)

are embedded closed analytic subsets such that f|U′′x0

extends as a holomorphic function

to f̃Ũx0
. Thus we have the following commutative diagram

Ũx0
Ṽf(x0)

U ′′x0
V ′′f(x0)

//

f̃Ũx0

?�

OO� � � � � � � �

//

f|
U′′x0

?�

OO� � � � � � � �

Without loss of generality we can also assume (by eventually shrinking U ′′x0
resp. V ′′f(x0))

that each function ϕl|
U′′x0

where l ∈ Jx0 extends as a strongly plurisubharmonic function
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to the open subset Ũx0 in Cn, and that %δ(l)|V ′′
f(x0)

extends as a smooth function resp.

ψδ(l)|V ′′
f(x0)

extends as a strongly plurisubharmonic function to the open set Ṽf(x0) in Cm.

These considerations show us that it is enough to consider the case when U ′′x0
and V ′′f(x0)

are euclidian open sets of dimension n resp. m. We will suppose this in what follows.

Then we can find for each index j ∈ Jx0 and k ∈ J positive constants Aδ(k), Bj,
Cj, Dj such that for each x ∈ U ′x0

, y = f(x), for each η ∈ Cn and for each vector
ξ = (ξ1, . . . , ξm) given by ξs = ∂fs(x) · η, for s = 1, . . . ,m (where ∂fs(x) denotes as

usual the vector

(
∂fs
∂z1

(x), . . . ,
∂fs
∂zn

(x)

)
) the following inequalities hold:

(i) L(ψδ(k), y)ξ ≥ Aδ(k)‖ξ‖2

(ii) L(ϕj, x)η ≥ Bj‖η‖2

(iii) |ϕj(x) · L(%δ(j), y)ξ| ≤ Cj‖ξ‖2

(iv) |Re((∂%δ(j)(y)ξ) · (∂ϕj(x)η))| ≤ Dj‖ξ‖ · ‖η‖

where ‖ · ‖ denotes the euclidean norm and L(·, ·) denotes the Levi form.

For the existence of Aδ(k) and Bj one uses the strongly plurisubharmonicity of ψδ(k) and
of ϕj and the fact that U ′x0

and V ′f(x0) are relatively compact.

The Levi form of pk gives by computation:

L(pk, x)η = L(ψδ(k), y)ξ

+
∑
j∈J

2εjϕj(x)
(∣∣∂%δ(j)(y)ξ

∣∣2 + %δ(j)(y)L(%δ(j), y)ξ
)

+
∑
j∈J

εj%δ(j)
2(y)L(ϕj, x)η +

∑
j∈J

4εj%δ(j)(y) Re
(

(∂%δ(j)(y)ξ)(∂ϕj(x)η)
)

We can estimate it in the following way:

L(pk, x)η ≥ A‖ξ‖2 +B‖η‖2 − C‖ξ‖2 − 2D‖ξ‖ · ‖η‖

where we have denoted

A = Aδ(k)

B =
∑
j∈J

εjBj%
2
δ(j)(y)

C =
∑
j∈J

2εjCj%δ(j)(y)

D =
∑
j∈J

2εjDj%δ(j)(y)

If we will prove that we have
(A− C)B > D2 (6.1)
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then it will follow that L(pk, x)η is positive unless η = 0, which would complete the
proof.

In order to prove (6.1) choose δ1 > 0 small enough such that C ≤ A/2 for each
0 ≤ εj ≤ δ1, which is possible because A does not depend on ε. By using the Schwarz
inequality one obtains for 0 ≤ εj ≤ δ1 that

(A− C)B ≥ A

2

∑
j∈J

εjBj%
2
δ(j)(y) ≥ Ã

(∑
j∈J

√
εjBj%δ(j)(y)

)2

where Ã is a constant. But because
√
εjBj ≥ εj

√
Bj/δ1, by suitable choice of δ1 > 0

one obtains Ã2
√
Bj/δ1 > 2Dj and so the desired inequality (6.1).

Hence the proof is complete. X turns out to be indeed Kähler. �
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