
Generalized Algebraic Kernels
and Multipole Expansions

for massively parallel Vortex Particle Methods

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften
am Fachbereich Mathematik der

Bergischen Universität Wuppertal
genehmigte

Dissertation

von

Dipl.-Math. Robert Speck

Tag der mündlichen Prüfung: 1. Juli 2011

Gutachter: Prof. Dr. Rolf Krause
Prof. Dr. Dr. Thomas Lippert
Prof. Lorena Barba, PhD



Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20111103-115032-0
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20111103-115032-0]



TO THOSE WE HAVE LOST

AND TO THOSE LEFT BEHIND





Abstract – Regularized vortex particle methods offer an appealing alternative to common
mesh-based numerical methods for simulating vortex-driven fluid flows. While inherently
mesh-free and adaptive, a stable implementation using particles for discretizing the vorticity
field must provide a scheme for treating the overlap condition, which is required for conver-
gent regularized vortex particle methods. Moreover, the use of particles leads to an N -body
problem. By the means of fast, multipole-based summation techniques, the unfavorable yet
intrinsic O(N2)-complexity of these problems can be reduced to at least O(N logN). How-
ever, this approach requires a thorough and challenging analysis of the underlying regularized
smoothing kernels. We introduce a novel class of algebraic kernels, analyze its properties and
formulate a decomposition theorem, which radically simplifies the theory of multipole ex-
pansions for this case. This decomposition is of great help for the convergence analysis of
the multipole series and an in-depth error estimation of the remainder. We use these results
to implement a massively parallel Barnes-Hut tree code with O(N logN)-complexity, which
can perform complex simulations with up to 108 particles routinely. A thorough investiga-
tion shows excellent scalability up to 8192 cores on the IBM Blue Gene/P system JUGENE
at Jülich Supercomputing Centre. We demonstrate the code’s capabilities along different
numerical examples, including the dynamics of two merging vortex rings. In addition, we
extend the tree code to account for the overlap condition using the concept of remeshing, thus
providing a promising and mathematically well-grounded alternative to standard mesh-based
algorithms.

Zusammenfassung – Regularisierte Vortex-Partikel-Methoden bilden eine interessante
Alternative zu gitterbasierten numerischen Methoden zur Simulation von vortex-dominierten
Flüssigkeitsströmungen. Eine stabile Implementierung dieses intrinsisch gitterfreien und
adaptiven Ansatzes durch die Diskretisierung des Vortex-Feldes benötigt eine Schema zur
Behandlung der Überlapp-Bedingung, welche für eine konvergente regularisierte Vortex-
Partikel-Methode erforderlich ist. Desweiteren führt der Gebrauch von Partikeln zu einemN -
Körper-Problem. Schnelle, multipol-basierte Summationstechniken können die ungünstige
aber intrinsisch verankerteO(N2)-Komplexität dieser Probleme auf mindestensO(N logN)
reduzieren. Dieser Ansatz benötigt jedoch eine genaue und herausfordernde Analyse der zu-
grunde liegenden Regularisierungskerne. Wir führen eine neue Klasse algebraischer Kerne
ein, analysieren ihre Eigenschaften und leiten einen Zerlegungssatz her, welcher die Theo-
rie der Multipol-Entwicklungen für diesen Fall radikal vereinfacht. Diese Zerlegung ist von
großem Nutzen bei der Konvergenzanalyse der Multipolreihe und einer detaillierten Fehlera-
bschätzung des Restgliedes. Wir nutzen diese Ergebnisse zur Implementation eines massiv-
parallelen Barnes-Hut Tree Codes mit O(N logN)-Komplexität, welcher komplexe Simu-
lationen mit bis zu 108 Partikeln problemlos durchführen kann. Eine genaue Analyse zeigt
exzellente Skalierbarkeit auf bis zu 8192 Kernen des IBM Blue Gene/P Systems JUGENE
am Jülich Supercomputing Centre. Wir demonstrieren die Fähigkeiten des Codes anhand ver-
schiedener numerischer Beispiele, unter anderem anhand der Dynamik zweier fusionierender
Vortex-Ringe. Zusätzlich erweitern wir den Tree Code derart, dass die Überlapp-Bedingung
mit Hilfe des Remeshing-Konzepts eingehalten werden kann, so dass der Code eine vielver-
sprechende und mathematisch fundierte Alternative zu gitterbasierten Standard-Algorithmen
darstellt.
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1 Introduction

“Each rotating element of fluid (a) implies in each other element (b) of the same
fluid mass a velocity whose direction is perpendicular to the plane through (b)
and the axis of rotation of (a).”

Hermann Ludwig Ferdinand von Helmholtz, 1867 [1]

1.1 The Navier-Stokes equations

Fluid dynamics are an important topic in today’s applied sciences. The modeling of fluid
flows and their properties is an active field of research in engineering, computer science and
mathematics. From the design of airplanes to the development of massively parallel algo-
rithms and the analysis of partial differential equations, the broad field of fluid dynamics has
great influence on many different scientific disciplines.

The mathematical basis for modeling and analyzing fluid flows are the Navier-Stokes equa-
tions. Based on Newton’s second law of motion, the Navier-Stokes equations express the
conservation of momentum and mass [2, 3, 4, 5]. Although composed of molecules and
atoms, this analytical approach interprets the fluid as moving, continuous media. This prin-
ciple is known as the continuum hypothesis. In the formulation we will use at the beginning
of this work, the velocity field and pressure term describe the motion of incompressible vis-
cous fluid flows in three spatial dimensions. While inviscid fluid flows are often called ‘ideal
flows’, viscosity provides a measure for fluid friction and its properties under shear or tensile
stress. An incompressible flow has the property that the density of a fluid element moving
along its trajectory does not change in time. To some extent, this assumption is a simpli-
fication of physical reality, but it is of great help for the treatment of equations governing
fluid flows. Mathematically, this is expressed by a solenoidal velocity field, i.e. one that is
divergence-free.

An extensive and in-depth overview of fundamental laws and properties of fluids can be found
in the classical work ‘Hydrodynamics’ by Sir Horace Lamb [6]. In the following definition
we cite the Navier-Stokes equations along with some terminological prepositions.
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1.1 THE NAVIER-STOKES EQUATIONS

Definition 1.1.1 (Navier-Stokes equations)
a) For a time T ∈ (0,∞) and d ∈ N0 we identify the velocity field in d spatial dimensions

with u(x, t) : Rd × [0, T ] → Rd. Furthermore, we describe the pressure field using
p(x, t) : Rd × [0, T ]→ R.

b) The Navier-Stokes equations for incompressible viscous unsteady fluid flow in a three-
dimensional inertial frame of reference are given by

∂u

∂t
+ u · ∇u = −∇p+ ν ∆u,

∇ · u = 0.

The first equation represents the balance or conservation of momentum, while the sec-
ond represents conservation of mass. A divergence-free vector field is often called
solenoidal. The constant ν represents the kinematic viscosity.

In three spatial dimensions it is still an open problem to prove or disprove that analytical
solutions for these equations exist for all times. While in two dimensions this question of
existence for the above problem has been solved satisfactorily, in three dimensions the prob-
lem is proven to be well posed – i.e. existence of a unique solution depending continuously
on the initial data – only for short time scales [7, 8]. For an analysis of the problem, suit-
able boundary conditions have to be supplemented. For instance, a scenario with inviscid
flows, i.e. ν = 0, may require that the fluid moves tangentially to the boundary, but is not
allowed to cross it. For ν > 0, this is not sufficient as the number of derivatives of u is in-
creased from one to two. Therefore, an appropriate boundary condition for u is the so-called
‘no-slip’-condition, i.e. u ≡ 0 on solid walls at rest [3].

Since analytical solutions of the Navier-Stokes equations are only known in very rare cases
(for details see [9, 10] and references therein) the theoretical investigation of fluid flows is
based on numerical methods. Experimental setups are often expensive and hard to construct,
so that numerical simulations are the only way to shed light on many different phenomena in
fluid dynamics. They can be subjected to in-depth analysis and their results can be reproduced
easily. In contrast to experimental setups, the initial access to numerical methods is much
more easier, relying on well-grounded mathematical and algorithmic theories. The basis for
each numerical scheme is the initial question of how to discretize the continuous media. This
question is strongly coupled to the underlying variables of the equations and it may turn out
to be advantageous to rethink often used formulations, as we will see in the next section.

The Navier-Stokes equations in the above given form consist of four equations for two vari-
ables u and p, where u is composed of three scalar variables u1, u2, u3. Therefore, this set of
equations is sufficient to describe a fluid motion depending on the velocity u and the pres-
sure p completely. The variables u and p are often called ‘primitive variables’ [11, 12]. An
alternative formulation uses the so-called ‘vorticity field’ ω = ∇× u, being a ‘non-primitive
variable’. Applying the curl operator to the equation of motions of Definition 1.1.1 yields

2



1 INTRODUCTION

the so-called ‘vorticity-velocity equation’. Here, the pressure term is decoupled from the
velocity field and can be recovered using a Possion equation [13], but it does not have to
be derived explicitly. We trace the transition from Navier-Stokes equations to the vorticity-
velocity equation in the next section in detail and highlight the advantages of this alternative
formulation.

1.2 The vorticity-velocity equation

Vortex-driven flows play an important role in many different aspects of fluid dynamics and
applications. Especially for an industrial development and design of windmills or airplanes,
the influence of vortical flows have to be considered carefully. In particular, the vorticity field
and its dynamics are the basis for turbulent fluid flows. From a mathematical point of view,
the vorticity field is given by the rotation of the velocity field.

Definition 1.2.1 (Vorticity)
In three spatial dimensions the vorticity field ω is defined as the curl of the velocity field, i.e.
ω(x, t) := ∇ × u(x, t) for x ∈ R3, t ∈ [0, T ]. This representation is valid in two spatial
dimensions as well if we assume u = (u1, u2, 0)T and ω = (0, 0, ω3)T .

Comprehensive introductions in the context of vortex-driven flows can be found in [14, 15,
16]. Now, for the deduction of the vorticity-velocity equation we make use of vector calculus
identities and notations described in Appendix A. Most of the upcoming manipulations are
taken from [2, 3].

Before applying the curl operator to the Navier-Stokes equations, we use the Identities (A.4)
and (A.5) to rewrite the momentum equation of Definition 1.1.1 as

∂u

∂t
+ ω × u = −∇

(
p+

u · u
2

)
+ ν ∆u

using the vorticity field ω = ∇ × u. We now take the curl of this equation and obtain with
Equation (A.2)

∂ω

∂t
+∇× (ω × u) = ν (∇× (∆u)) .

Here we can see that the pressure term has already vanished. We rewrite the term on the
right-hand side by using Identity (A.8), which yields

∇× (∆u) = ∇× (∇(∇ · u))−∇× (∇× ω).

Since the conservation of mass of the Navier-Stokes equations requires a divergence-free
velocity field u this reduces to

∇× (∆u) = −∇× (∇× ω).

3



1.2 THE VORTICITY-VELOCITY EQUATION

With ∇ · ω = 0 by Equation (A.1), we obtain

∇× (∆u) = ∆ω.

Therefore, the curl of Laplacian of a divergence-free velocity field equals the Laplacian of
the vorticity.

For the left-hand side we make use of Equation (A.6), which yields

∇× (ω × u) = ω(∇ · u)− u(∇ · ω) + (u · ∇)ω − (ω · ∇)u.

Again, since∇ · ω = 0 by Equation (A.1) and∇ · u = 0 by Definition 1.1.1 this reduces to

∇× (ω × u) = (u · ∇)ω − (ω · ∇)u,

so that we finally obtain

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν ∆ω.

This equation is the so-called ‘vorticity-velocity equation’.

Definition 1.2.2 (Vorticity-velocity equation)
For a solenoidal velocity field u with∇ · u = 0 and vorticity field ω = ∇× u the equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω

is called vorticity-velocity equation. The first term on the right-hand side is called stretching
term, the second one diffusion term.

Remark 1.2.3
We note that in two spatial dimensions and for ν = 0 this formulation reduces to the standard
2D Euler equation

∂ω

∂t
+ (u · ∇)ω = 0,

since the stretching term vanishes if we reduce the three-dimensional problem to a two-
dimensional one, taking u = (u1, u2, 0) and ω = (0, 0, ω3). The stretching term, manipu-
lating the vorticity field in the direction of the stretching, is the driving force for turbulent
fluids. Therefore, the vorticity-velocity equation shows that turbulence can only occur in
three-dimensional flows.

The vorticity-velocity equation in the present form is the so-called ‘classical’ equation [17].
With Equation (A.7) it is possible to rewrite the vorticity-velocity equation and obtain two
alternative formulations.
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1 INTRODUCTION

Theorem 1.2.4
For a solenoidal velocity field u with ∇ · u = 0 and vorticity field ω = ∇× u the vorticity-
velocity equation reads

∂ω

∂t
+ (u · ∇)ω = (ω · ∇T )u+ ν∆ω

=
1

2
(ω · (∇+∇T ))u+ ν∆ω.

Proof. This result follows directly from Equations (A.3) and (A.7). �

The vorticity-velocity equation does not contain an explicit statement for the divergence of u
like the Navier-Stokes equations of Definition 1.1.1. However, as noted in Definition 1.2.2
and Theorem 1.2.4, a divergence-free velocity field is required for most of the manipulations
that lead to the vorticity-velocity equation.

The equation of Definition 1.2.2 is a main ingredient of vortex methods. From a practical
perspective, the reformulation of the Navier-Stokes equations in terms of vorticity field ω and
velocity field u has one important advantage: using a given vorticity field and a solenoidal
stream function as basis for the velocity, we can state an explicit and analytic form for u. To
this end, we decompose the velocity field into a solenoidal (and rotational) component uω and
a potential (and irrotational) component up. We obtain

u = uω + up,

with

∇ · uω = ∇× up = 0.

The first component accounts for the vortical part induced by the vorticity field in unbounded
space with ω = ∇× uω, and the second one can be described in terms of a potential Φ with
up = ∇Φ, accounting for adequate boundary conditions and potential flow components [13,
18]. This decomposition is called Helmholtz decomposition [3, 13].

Furthermore, assuming the existence of a divergence-free vector stream function ψ with

uω = ∇× ψ

we obtain

∆ψ = −ω.

Recalling that the Green’s function for −∆ in three-dimensional unbounded domains is de-
fined as G(x) := 1

4π|x| we get [17, 19]

ψ(x, t) = G(x) ∗ ω(x, t) =

∫
G(x− y)ω(y, t)dy

5



1.2 THE VORTICITY-VELOCITY EQUATION

with the common convolution product ‘∗’. We apply this expression to u and obtain the
following theorem. Its content bears strong similarities to the so-called ‘Biot-Savart law’ –
a well-known result in the field of electromagnetism [17, 20], coupling the analytic expres-
sion of a magnetic field to an electric current. This interesting connection between electro-
magnetism and vortex dynamics motivates the name of the kernel K used in the following
theorem.

Theorem 1.2.5 (Biot-Savart kernel)
The solenoidal field uω in three spatial dimensions can be written as

uω(x, t) = ∇× ψ(x, t) =

∫
K(x− y)× ω(y, t)dy,

where the function

K(x) := − x

4π|x|3

is called ‘Biot-Savart kernel’. We write uω := K ~ ω.

Proof. A discussion of this relation can be found in [16, 21, 22]. �

While uω is induced by the vorticity field in an unbounded space, the potential component
up fulfills the current boundary conditions but vanishes identically for an unbounded domain
with no interior boundaries. The stream function ψ is solenoidal if the velocity is assumed to
decay to zero as the boundaries of the domain extend to infinity [2, 13]. Throughout this work
we assume u ≡ uω, using unbounded domains with no interior boundaries only. Equipped
with these boundary assumptions, the vorticity-velocity equation of Definition 1.2.2 and the
Biot-Savart formulation of Theorem 1.2.5 are the main principles of vortex methods.

The transition from the classical Navier-Stokes equations to the alternative vorticity-velocity
formulation increases the number of unknowns by two, since the one-dimensional pressure
term is replaced by the three-dimensional vorticity field. However, the separation of the pres-
sure term and the connection of velocity and vorticity on an analytical level have appealing
advantages. As noted in [23], vortex dynamics are already well understood for incompressible
viscous flows. Furthermore, for vortex-dominated flows the formulation via the connection
of vorticity and velocity is a more natural representation of physical reality. In the case of
numerical simulations, boundary conditions at infinity are easier to realize for the vorticity
than for the pressure [23]. As noted in [11], the elimination of the pressure term also leads to
an increased numerical stability, removing the artificial sensitivity of numerical systems that
is induced by discretization operators.

Most numerical implementations using the classical Navier-Stokes equations rely on a mesh-
based discretization of the region of interest [24, 25]. Intriguingly, the explicit dependence

6



1 INTRODUCTION

of u on the vorticity field as stated in Theorem 1.2.5 yields an promising alternative. Us-
ing a quadrature approach, the integral in Theorem 1.2.5 can be discretized with quadrature
points. These points can be seen as particles discretizing the vorticity field. This idea yields
a fascinating field of research: the vortex particle methods. We emphasize that these parti-
cles should not be equalized with actual physical particles like molecules or atoms, but rather
with discretization nodes. However, we will see that the introduction of particles induces
many problems that heavily influence the development of a numerical method for simulating
vortex-driven flows. Besides theoretical and design issues, a major challenge is the algorith-
mic complexity of the problem. While the introducton of regularization and location process-
ing techniques ensures analytical convergence, the mutual interaction of all particles impedes
its practical use. The emergence of this principle, the so-called ‘N -body problem’, closes the
circle to the introductory citation of Helmholtz: each particle has an influence on all other
particles of the same fluid. Therefore, the usage of particles creates a strong need for fast
summation algorithms, in order to make simulations with millions of particles economically
feasible.

It is the goal of this work to formulate a fast, multipole-based summation technique for vortex
particle methods. In order to perform ‘fast summations’ in the context of vortex particle meth-
ods, we will need to analyze the exact kernels that represent the actual particle discretization.
This will be done by the introduction of a novel class of regularized algebraic smoothing
kernels, which will turn out to be very helpful for analyzing multipole expansions for vortex
particle methods. The drawback of particle regularization is the emergence of an additional
convergence requirement: the overlap condition. We will review a method to satisfy this re-
quirement and show how this technique can be implemented efficiently, even in parallel. With
stable and fast simulation algorithms at hand, the number of particles can be increased consid-
erably, exceeding the available storage on normal computers soon. This motivates the usage
of massively parallel supercomputers, posing additional challenges on the implementation of
these summation schemes.

The structure of this thesis is as follows: Chapters 2 to 4 start with a design decision based
on the result of the previous chapter. At the beginning of each of these chapters, we will
briefly weigh pros and cons of two different approaches and motivate our decision. The
consequences of this decision will determine the content of the respective chapter. At the end
of each of the three chapters, we will restate the decision, summarize the results and prepare
the choice of the following chapter.

The content of this thesis is organized as follows: In Chapter 2 we will provide a detailed
description of regularized vortex particle methods and their convergence statement. A com-
monly used location processing technique ensuring stability and its extension covering vis-
cous effects will be reviewed. The topics of Chapter 3 are the definition and extensive analysis
of a new class of algebraic smoothing kernels. A decomposition theorem will facilitate access
to the theory of multipole expansions. It will allow us to show convergence of the expansion
in a very convenient way and to derive a new explicit upper bound for the expansion re-

7



1.2 THE VORTICITY-VELOCITY EQUATION

mainder. In Chapter 4, we will apply the theoretical approach of Chapter 3 and describe a
parallel implementation of a multipole-based Barnes-Hut tree code. By means of extensive
benchmarks, we will demonstrate its capabilities on the IBM Blue Gene/P system JUGENE
at Jülich Supercomputing Centre (JSC) and show applications using a spherical vortex sheet
and two merging vortex rings. Finally, we will summarize our results and give an outlook on
further improvements in Chapter 5.
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2 Fundamentals of regularized
vortex particle methods

It is one of the great advantages of the vorticity-velocity formulation that Theorem 1.2.5 pro-
vides a straightforward way to analytically derive the velocity field u out of a known vorticity
distribution. However, for numerical applications a discretization scheme is necessary. We
have already mentioned the introduction of particles in the last chapter, but following the
classical Navier-Stokes equations, mesh-based methods are available here as well. Figure 2.1
illustrates these two fundamentally different approaches. We highlight and briefly weigh pros
and cons of both concepts in the following.

Mesh-based methods – Finite differences, elements or volumes are common mesh-based
methods, especially used in classical computational fluid dynamics [24, 25]. These methods
rely on an underlying mesh structure for the discretization of the vorticity-velocity equation
and the Poisson equation for the stream function [26, 27, 28]. The differential operators
are then translated onto the mesh, where their evaluation can be performed quickly and ac-
curately. To obtain a certian degree of adaptivity, advanced and complex methods such as
adaptive mesh refinement are commonly applied [29].

Particle-based methods – For this approach, the flow field is discretized using particles
that occupy a particular area in the region of interest, transporting quantities like volume,
velocity or vorticity. In contrast to mesh-based methods, this interpretation links particle-
based approaches directly to the underlying physics. While other methods in this context like

Figure 2.1: Discretization using mesh-based or particle-based methods?

9



2.1 DISCRETIZATION USING REGULARIZED PARTICLES

smoothed particle hydrodynamics [30, 31] focus on the original Navier-Stokes equations and
discretize the differential operators directly, the vortex particle methods rely on a discretiza-
tion of the vorticity field.

Despite undeniable advantages like a large range of fast algorithms and well-grounded mathe-
matical backgrounds, mesh-based approaches often suffer from an very inflexible handling of
the mesh structure. For resolving complex flow patterns, adaptive mesh refinement is manda-
tory. In turn, this implies not only the handling of often complicated data structures but also
has strong influence on the properties and computational efficiency of the underlying methods
and implementations. In particular, this is crucial in case of turbulent flows or boundaries at
infinity. On the other hand, particle-based methods share an intrinsic adaptivity, since com-
putational elements exists only where the corresponding fields are non-zero. Furthermore,
boundaries at infinity are automatically satisfied.

In this chapter, we review the concept of regularized vortex particles and discuss the impli-
cations arising from this approach. The goal is the formulation of a numerical particle-based
vortex method, reliably simulating dynamical vorticity-driven flows.

To this end, we will discuss in the first section how the discretization by regularized particles
leads to a numerically stable vortex particle method and to a consistent convergence result
for the inviscid case. However, it will turn out that further effort is required to control the
particle alignment and emerging field distortions. In the second section, we will review one
commonly used location processing technique, which is able to efficiently restore numerical
stability, thus ensuring convergence for longer simulation times. Furthermore, this technique
can be extended to account for viscous effects, turning the additional expenses into a tangible
advantage.

2.1 Discretization using regularized particles

A very detailed and accessible overview of particle discretization in the context of vortex
methods can be found in works by Winckelmans and Leonard [17, 32]. We review their
concept in this section. The basic idea of vortex particle methods is the discretization of the
support of the vorticity field by means of cells with size h > 0, in which the circulation is
concentrated on a single particle. Let P = {1, ..., N} ⊂ N be a set of particle indices, each
of them provided with a position xp ∈ R3 and a time-independent volume volp ∈ (0,∞),
p ∈ P . For a classical decomposition of a three-dimensional region of interest into cubic and
disjoint cells with width h, we further set volp ≡ h3 for all p ∈ P .

10



2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

2.1.1 The point vortex method

As a first and very simple approach, we choose a discretization ω̃ of the vorticity field ω as

ω̃(x, t) =
∑
p∈P

δ(x− xp(t)) · ω(xp(t), t)volp

=
∑
p∈P

δ(x− xp(t)) · αp(t).

Here, δ(x) denotes the 3D δ-function, xp(t) is the approximated trajectory resulting from a
discretized version ũ of u at time t ≥ 0 and

αp(t) := ω(xp(t), t)volp

is the so-called ‘strength vector’ of a particle p ∈ P . A detailed mathematical justification
for this approximation using singular particles can be found in [13, 33, 34] and the references
therein.

Applying this discretization to Theorem 1.2.5, we can now obtain ũ as an approximation of
the velocity field u, so that

ũ(x, t) = ∇× ψ̃(x, t) = ∇× (G(x) ∗ ω̃(x, t)) = ∇G(x)~ ω̃(x, t)

=
∑
p∈P

∇G(x− xp(t))× αp(t) =
∑
p∈P

K(x− xp(t))× αp(t).

This is the discretized version of Theorem 1.2.5 and it is the basis for the so-called ‘point
vortex method’ [13, 35]. However, examining

K(x− xp(t)) = − 1

4π

x− xp(t)
|x− xp(t)|3

,

it is obvious that the singularity of the function K may lead to numerical instabilities when
particles move towards each other. First used in 1931 by Rosenhead [36] for vortex sheet
dynamics in two spatial dimensions, this approach has been considered as non-convergent
for a long time [37]. As an alternative, the ‘vortex blob method’ or ‘regularized vortex
method’ [21] introduced particles with a finite core size σ, circumventing the singularity of
the kernel K. Ironically, this approach and its convergence framework led in turn to a conver-
gence result for the point vortex method. In 1990, Hou, Goodmann and Lowengrub [37, 38]
were able to prove convergence for the 3D vortex method without smoothing under the as-
sumption that the vorticity is smooth and has compact support. However, for particles with
distance h this result implies that the point vortex method is only of orderO(h2) (see e.g. [13]
for an overview), while a careful choice of the regularization kernel implies vortex methods
of arbitrary order.

11



2.1 DISCRETIZATION USING REGULARIZED PARTICLES

2.1.2 Smoothing kernels

The basis for the regularized vortex particle method is the choice of the regularized smoothing
kernel, which transforms point particles into ‘blobs’ with finite core size. The following
definition characterizes these kernels.

Definition 2.1.1 (Regularized smoothing kernels)
a) A function ζ : Ω → R for Ω = Rd, d = 2, 3 with ζ ∈ C∞(Ω) is called smoothing

kernel if it satisfies the normalization constraint∫
Ω

ζ(y)dy = 1.

b) A function ζσ : Ω→ R for Ω = Rd, d = 2, 3, with

ζσ(x) =
1

σ3
ζ
(x
σ

)
,

is called regularized smoothing kernel with core size σ > 0.

c) A smoothing kernel ζ = ζ(r) is of order r ∈ N0 if the following moment conditions
hold: ∫

Ω

ζ(y) yβdy = 0, for all 0 < |β| ≤ r − 1 with multi-index β,∫
Ω

|ζ(y)| |y|rdy <∞.

For details on multi-index notation we refer to Definition A.3.

Remark 2.1.2
We note that normalization constraint and moment conditions are written in Cartesian coordi-
nates as stated in [13, 39]. For three-dimensional radially symmetric smoothing kernels, i.e.
for Ω = R3 and

ζ(x) = ζ(|x|) =: ζ(ρ),

these conditions read [17]∫ ∞
0

ζ(ρ) ρ2dρ =
1

4π
,∫ ∞

0

ζ(ρ) ρ2+sdρ = 0 for all 2 ≤ s ≤ r − 1, s even,∫ ∞
0

|ζ(ρ)| ρ2+rdρ <∞.

We refer to these integral expressions as moment integrals.

12



2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

Before we analyze these definitions, we apply the regularized smoothing kernel to singular
particles, thus replacing the singular function K by a regularized function Kσ. We convolve
the δ-function in ω̃ with ζσ to obtain the method of regularized vortex particles.

Theorem 2.1.3
For a discretized vorticity field ω̃ and a regularized smoothing kernel ζσ, we obtain

ω̃σ(x, t) =
∑
p∈P

ζσ(x− xp(t)) · αp(t),

ψ̃σ(x, t) =
∑
p∈P

Gσ(x− xp(t)) · αp(t),

ũσ(x, t) =
∑
p∈P

Kσ(x− xp(t))× αp(t),

where Gσ(x) = 1/σ ·G(|x|/σ) and Kσ = K ∗ ζσ.

Proof. The deduction of these equations is straightforward [17]. The convolution of the
δ-function with ζσ yields

ω̃σ(x, t) = ω̃(x, t) ∗ ζσ(x) =
∑
p∈P

ζσ(x− xp(t)) · αp(t)

and therefore ∆ψ̃σ = −ω̃σ. Defining G(ρ) such that

−ζ(ρ) = ∆G(ρ) =
1

ρ

d2

dρ2
(ρG(ρ)) ,

we obtain

ψ̃σ(x, t) = G(x) ∗ ω̃σ(x, t) = Gσ(x) ∗ ω̃(x, t) =
∑
p∈P

Gσ(x− xp(t)) · αp(t)

with Gσ(x) = 1/σ ·G(|x|/σ). This leads to

ũσ(x, t) = ∇× ψ̃σ(x, t) =
∑
p∈P

∇Gσ(x− xp(t))× αp(t)

=
∑
p∈P

Kσ(x− xp(t))× αp(t),

and also ũσ(x, t) = K(x)~ ω̃σ(x, t) = Kσ(x)~ ω̃(x, t). �
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2.1 DISCRETIZATION USING REGULARIZED PARTICLES

Remark 2.1.4
For an actual calculation of Kσ, we note that for K = ∇G and a smoothing kernel ζ we
have [13, 17]

Kσ(x) =
x

|x|3 · f
( |x|
σ

)
with

f(ρ) =

∫ ρ

0

ζ(s) s2 ds.

Both formulas can be used to derive K directly out of a given smoothing kernel ζ .

Figuratively speaking, Theorem 2.1.3 can be seen as the discretized and regularized version
of Theorem 1.2.5. As the definition of ω̃σ shows, singular vortices are now replaced by
smeared, regularized vortex blobs with core size σ. The normalization constraint ensures
the conservation of total vorticity and can therefore be seen as a moment condition of order
zero. The other moment conditions are relevant for the conservation of higher momenta
like linear and angular momentum [13, 21, 40, 41, 42]. The moment conditions are directly
coupled to the convergence of the method, as we will see in Section 2.1.4: higher order
smoothing functions yield a faster convergence rate, depending on the choice of σ. However,
the conservation of higher momenta comes with a loss of positivity, inducing opposite signs
of the smoothed vorticity field. For positive smoothing kernels ζ we find r ≤ 2.

Many different smoothing kernels are available, each defining an individual three-dimensional
regularized vortex particle method. We cite the two most often used approaches here explic-
itly.

a) Gaussian kernels [17, 43, 44] of order r = 2:

ζ(2)(ρ) =
3

4π
exp

(
−ρ3

)
and ζ(2)(ρ) =

(
2

π

) 1
2

exp

(
−ρ

2

2

)
.

b) Algebraic kernels [32, 45] of order r = 0 and r = 2:

ζ(0)(ρ) =
3

4π

1

(ρ2 + 1)
5
2

and ζ(2)(ρ) =
15

8π

1

(ρ2 + 1)
7
2

.

Additional smoothing kernels can be found in [43, 46, 47]. Moreover, these references in-
clude schemes to create higher order (even infinite order) kernels. For a numerical compu-
tation, it is crucial that the evaluation of these kernels can be performed as fast as possible.
Here, algebraic kernels are much more convenient to use, especially in comparison to Gaus-
sian smoothing [17]. In Section 3.1, we will introduce a new method for creating algebraic
kernels of arbitrary order, extending the approach by Rosenhead [45] and Winckelmans [32].
This approach will turn out to be very suitable for rapid numerical calculations.
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

2.1.3 The equations of motion

For a preliminary numerical implementation of a regularized vortex particle method, evo-
lution equations for a time integration scheme are required. For each particle p ∈ P two
equations are necessary. The first one updates the particle position xp and the second one
satisfies the vorticity-velocity equation of Definition 1.2.2 to update the strength vector αp.

Definition 2.1.5 (Equations of motion)
The following equations are the equations of motion for regularized vortex particle methods:

a) the convection equation

dxp(t)

dt
= ũσ(xp(t), t),

b) and the stretching and diffusion equation

dαp(t)

dt
= (αp(t) · ∇) ũσ(xp(t), t) + ν ∆αp(xp(t), t).

The second equation for αp can be rewritten in two different ways [17, 35]. Initially, Defini-
tion 1.2.2 suggests the so-called ‘classical scheme’

dαp(t)

dt
= (αp(t) · ∇) ũσ(xp(t), t) + ν ∆αp(xp(t), t),

as stated in the preceding definition. Theorem 1.2.4 leads to two alternatives: first, the so-
called ‘transpose scheme’ with

dαp(t)

dt
= (αp(t) · ∇T ) ũσ(xp(t), t) + ν ∆αp(xp(t), t)

and second, the ‘mixed scheme’ with

dαp(t)

dt
=

1

2
(αp(t) · (∇+∇T )) ũσ(xp(t), t) + ν ∆αp(xp(t), t).

These schemes were identical for a three-dimensional vortex particle method if we could
guarantee ω̃σ = ∇× ũσ. However, as noted in [17], we have

∇× ũσ = ∇× (∇× ψ̃σ) = −∆ψ̃σ +∇(∇ · ψ̃σ) = ω̃σ +∇(∇ · ψ̃σ)

and since ψ̃σ is not divergence-free (in contrast to its continuous, non-regularized counter-
part ψ), we have to notice ω̃σ 6= ∇× ũσ. Even worse, the discretized vorticity field ω̃σ itself
is not divergence-free, so that it may not be a good representation of ω after some time steps.
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2.1 DISCRETIZATION USING REGULARIZED PARTICLES

The classical scheme – although not conservative in terms of total vorticity [17] – performs
rather well regarding this problem. Initial disturbances of the divergence-free constraint are
not further amplified, i.e. for the divergence of the discretized vorticity field ω̃ we have

∂(∇ · ω̃)

∂t
+∇ · (ũ(∇ · ω̃)) = 0,

as noted in [13]. The problem is common to all regularized vortex particle methods and work
is still in progress to overcome this issue. An overview of further possible approaches tackling
the violation of the divergence-free condition can be found in [13] and the references therein.
However, an extensive discussion would exceed the scope of this work, so that we will not
discuss this issue further and use the classical scheme for the time being.

The transpose and mixed schemes do not share this property, so that it seems natural to choose
the classical scheme for an integration operator. We summarize the numerical vortex particle
method in the concluding theorem.

Theorem 2.1.6
For suitable choices of initial particle positions xp(0), initial strength vectors αp(0) and a
smoothing function ζ , we obtain the following numerical scheme for a regularized vortex
particle method in three-dimensional unbounded space

ũσ(x, t) =
∑
p∈P

Kσ(x− xp(t))× αp(t),

dxp(t)

dt
= ũσ(xp(t), t),

dαp(t)

dt
= (αp(t) · ∇) ũσ(xp(t), t) + ν∆αp(xp(t), t).

Remark 2.1.7
We note that the evolution equations of αp(t) still include two differential operators, which
have to be evaluated during numerical simulations as well. While the stretching term with
its velocity derivatives can be derived analytically by differentiating the expression for ũσ,
the viscous term has to be treated separately. One naive approach is to explicitly differentiate
ω̃σ (as done in Fishelov’s method [48]), but this approach is known to be very sensitive to
irregular particle positions [49] and does not conserve total vorticity [13]. We will return to a
discussion of alternative viscous schemes in Section 2.2.3.

Computing ũσ(x) for one particle q ∈ P involves the evaluation of Kσ(xq − xp(t)) × αp(t)
for all p ∈ P . Using N = |P| particles, the amount of operations required for the direct
calculation of ũσ(x) is of order O(N2). Vortex particle methods are therefore one example
of N -body problems, limiting the usability of a naive implementation to rather low N .
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

Although an implementation of the numerical scheme from Theorem 2.1.6 is already possible,
it is mandatory to ask for the convergence properties of this approach. To this end, we state
the central convergence result for inviscid vortex methods, i.e. for ν = 0, thereby specifying,
how ‘suitable choices’ for the initial conditions and the smoothing kernel should look like.
This result has a significant impact on the design of regularized vortex particle methods.

2.1.4 Convergence for the inviscid case

The result presented in this section requires the usage of Sobolev spaces. The basic concept of
these spaces can be found in [50, 51] and is cited in Appendix B. This ingredient is typical for
convergence statements in the context of Navier-Stokes equations [7, 8] and will be necessary
for our later discussion of the convergence analysis as well.

From what we already know, we can expect that convergence for the method stated in The-
orem 2.1.6 fundamentally depends on the order of the smoothing function, its core size and
the initial conditions. The next theorem gives the precise result [33].

Theorem 2.1.8 (Convergence for the inviscid case)
Let ζ be a smoothing function of order r ≥ 2 with core size σ > 0 and

ζ ∈ Wm,∞(R3) ∩Wm,1(R3) for all m ∈ N.

We assume that for Theorem 2.1.6 the initial vorticity field ω(·, 0) is smooth enough and that
the initial particle positions x(0) are separated by a sufficiently small value h > 0. Then there
exists a time T = T (ω(·, 0)) > 0 and a constant C = C(T ) > 0 with

‖(u− ũσ)(·, t)‖Lp(R3) ≤ C σr for all t ∈ [0, T ], p ∈ (3/2,∞]

if for s, B > 0 we have h ≤ B σ1+s.

Proof. A proof of this result can be found in [13, 33]. �

Remark 2.1.9
a) The imprecise requirement of the ‘smoothness’ of the initial vorticity field ω(·, 0) is

linked to the condition h ≤ B σ1+s. For n > 0 such that hn ≤ B̃ σn+1, we require

ω(·, 0) ∈ W n+1,∞(R3) ∩W n+1,1(R3),

as the proof shows [33]. This requirement is very similar to the one on the smoothing
function and, indeed, it is because compact support for both vorticity field and smooth-
ing functions is not mandatory here. While this is typically irrelevant for the vorticity
field, requiring compact support would limit the choice of the smoothing function sub-
stantially.
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2.2 FIELD DISTORTIONS AND VISCOUS EFFECTS

b) Within the proof, the error induced by particle regularization and discretization is
clearly split up. Using the same prerequisites, the proof exploits

‖(u− ũσ)(·, t)‖Lp(R3) ≤ ‖(u− uσ)(·, t)‖Lp(R3) + ‖(uσ − ũσ)(·, t)‖Lp(R3),

where uσ has to be interpreted as a regularized yet continuous representation of u. Now,
the errors are given by

‖(u− uσ)(·, t)‖Lp(R3) ≤ C1 σ
r,

‖(uσ − ũσ)(·, t)‖Lp(R3) ≤ C2 h
mσ1−m,

with m ∈ N chosen so that ms > r. We note that the condition h ≤ B σ1+s is not
required for estimating the pure regularization error.

This convergence statement yields the basis and justification for regularized vortex particle
methods. As expected, the order of the smoothing function and its core size determine the
speed of convergence. But this is only valid if core size σ and initial inter-particle distance h
are related by the so-called ‘overlap criterion’

h ≤ B σ1+s,

as depicted in Figure 2.2. Then, there exists a time T > 0, so that the approximation quality
of ũσ with respect to the original velocity field u as stated in Theorem 2.1.8 is guaranteed only
for times t < T . After this critical, not explicitly known time T , the results of a numerical
simulation should not be trusted anymore. Of course, this clearly prohibits long-term simu-
lations and it is precisely the overlap criterion that necessitates further concepts for a stable
numerical implementation. In the next section, we analyze the meaning and impact of this
restriction and add viscous effects to the method.

2.2 Field distortions and viscous effects

For a numerical implementation of a stable version of the method proposed in Theorem 2.1.6,
two open questions have to be addressed:

a) How can one perform reliable long-term simulations?

b) How can one treat viscous effects induced by the Laplacian of the vorticity field?

In this section, we present and discuss common approaches for these issues. Since the overlap
criterion is already required for inviscid methods and has great impact on the accuracy of all
regularized vortex particle methods, we start with an analysis of this restriction and point out
possible remedies.
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

Figure 2.2: Three smoothed particles with distance h and core size σ > h: each particle
overlaps with its nearest neighbors.

2.2.1 The overlap criterion

The overlap criterion couples inter-particle distances and core sizes, forcing the smoothed
particles to overlap. Figure 2.2 depicts a very simple example: three smoothed particles with
core size σ and distance h are arranged in a way, so that the particles are able to ‘commu-
nicate’ with each other [13]. This communication process is essential for the stability and
accuracy of the method, as the Convergence Theorem shows. From the physical perspective,
a flow may tend to distort the vorticity field, either unphysically clustering particles together
or underresolving vortical structures where particles spread apart.

These phenomena can be observed easily by analyzing so-called 2D axisymmetric inviscid
vortex patches [14]. In this commonly used two-dimensional setup, the initial vorticity field
is discretized with particles located at grid points x(0) = (i h, j h) for i, j = 0, . . . ,

√
N ,

scaled to the area [−1, 1]2. Taking a radially symmetric vorticity field as initial condition, e.g.

ω(x, 0) = (1− |x|2)d for d ∈ N or
ω(x, 0) = exp(−c |x|2) for c > 0,

the vorticity is in steady state, since no diffusion takes place and the vorticity is radially
symmetric [52], so that we have ω(x, t) = ω(x, 0) for all x ∈ [−1, 1]2 and all t ∈ [0, T ]. On
the other hand, the particles move on circles, but with different speed. This effect leads to a
rapid distortion of the vorticity field. Therefore, the 2D inviscid vortex patch is a very suitable
benchmark and test case for regularized vortex particle methods, since it is very easy to set
up and its result immediately reflects the compliance with the overlap criterion of a numerical
implementation. There are various references using these setups with different strategies for
the choice of σ:

• Perlman [44] and Choquin et al. [53] tested σ = hq for q ∈ (0, 1),

• Barba et al. [54] chose σ = c
√
h with c ∈ (0.7, 0.9),

• Beale et al. [43] tried σ = c h
3
4 for e.g. c ∈ {1, 2, 2.5}.
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2.2 FIELD DISTORTIONS AND VISCOUS EFFECTS

(a) Time t = 0.0 (b) Time t = 5.0 (c) Time t = 10.0

Figure 2.3: 2D vortex patch with N = 10000 particles, zoomed into the core. Initial vortic-
ity field ω(x, 0) = exp(−12 |x|2), core size σ = h0.95 = 0.020.95. Third order
Runge-Kutta time integration from t = 0.0 to t = 10.0 with step size ∆t = 0.1.
Vorticity magnitude decreases from the center to the outer areas. The three fig-
ures depict the initial conditions, as well as the times t = 5.0 and t = 10.0,
where first severe disturbances occur, violating the initial symmetry of the vor-
ticity field.

Tests in three dimensions are often much more complicated and the relationship between h
and σ depends on case-specific geometric considerations [18, 55]. Therefore, the 2D vor-
tex patch setup is a convenient choice for demonstrating the impact of the overlap criterion.
Especially the symmetric character of the vorticity field should be conserved by a numerical
scheme.

However, as Figure 2.3 shows this is anything but granted without further efforts. For the test
case shown we use ω(x, 0) = exp(−12 |x|2) and h = 0.02, resulting in N = 10000 particles
initially located at grid points in [−1, 1]2. We use a second order 2D Gaussian smoothing
function with core size σ = h0.95 (see [44] for details). A third order Runge-Kutta integration
scheme [56] with time step ∆t = 0.1 accounts for the evolution equations. It is obvious
that after a short time the symmetry is disturbed by spurious artifacts due to the different
speed of the particles, which leads to inaccurately resolved areas of vorticity. We analyze
this example further at the end of this section. For now, we conclude that even for simple
examples the Convergence Theorem is only of theoretical value, as long as the corresponding
vortex particle algorithm does not provide a mechanism to accurately restore the vorticity
field frequently.

There are various approaches available, which claim to prevent a numerical simulation from
becoming unstable [13]. We briefly highlight three of them here: iterative circulation pro-
cessing [57], rezoning [43, 58] and remeshing [59, 60].
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

Iterative circulation processing – This technique bases on the idea of constructing an inter-
polated vorticity field on the current particle locations out of the known vorticity values. This
involves the solution of the system

Aβ = α,

where the vectors α with αp = ω(xp)volp hold the ‘old’ vorticity values and the matrix A
with elements Ap,q := ζσ(xq − xp) · volq, p, q ∈ P , represents the coefficients of the vorticity
discretization. Then, the vector β contains the interpolated vorticity values at positions xp.
However, the matrix A is of size N × N if |P| = N , so that for more than a few hundred
particles A should not be inverted directly, especially since it is severely ill-conditioned in
general [13]. As a workaround, an iterative process can be used, e.g.

βn+1 = βn + (β0 − Aβn)

with initial guess β0
p = ω(xp) and a predefined n ∈ N. However, the convergence of the iter-

ative process is slowed down by strong overlapping of particles and lacking regularity of the
vorticity field [13]. Therefore, this approach is often difficult to use in practical simulations.

Rezoning – The second method we mention here is the rezoning technique. After some time
steps this scheme restarts the particles on a regular mesh with spacing h and attaches these
new particles yq, q ∈M,|M| = M , with vorticity

ωmesh(yq) =
∑
p∈P

ζσ(yq − xp) · ωpart(xp)volp.

This approach originates from the vorticity field discretization as stated in Theorem 2.1.3,
being a hybrid location and circulation processing scheme. Overlap can be guaranteed after
restarting the simulation with the new particles, so that the Convergence Theorem holds again
for a new time interval [T, S]. However, since most of the regularized smoothing kernels do
not have compact support, a population control scheme has to be defined for the new particles,
e.g. omitting particles with |ωmesh(y)| ≤ ε for a predefined ε. Furthermore, a condition when
to perform the rezoning procedure is necessary [58], especially since it most likely introduces
unwanted diffusive errors [43], at least if it is performed with rather low order smoothing
kernels [54]. We note that this scheme is of order O(NM) and therefore as expensive as the
original vortex particle method of Theorem 2.1.6 (at least if M is of order N ). Moreover,
since the new particle locations are determined by using an underlying mesh structure, the
initial mesh-free character of these methods is not fully conserved.

Remeshing – Finally, we review a pure location processing scheme. The remeshing ap-
proach, like rezoning, introduces a regular mesh with spacing h. The simulation is restarted
after some time steps with new particles yq, q ∈ M, |M| = M , at the mesh nodes, perfectly
satisfying the overlap condition. As for rezoning, the Convergence Theorem is then applica-
ble for a new time interval [T, S]. But instead of discretizing the vorticity field, remeshing
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2.2 FIELD DISTORTIONS AND VISCOUS EFFECTS

Figure 2.4: Four particles in two dimensions are projected onto a mesh by a kernel W with
32 = 9 support nodes, yielding 21 new particles, which satisfy the overlap crite-
rion by definition.

makes use of conservative interpolation kernels W , so that we have for the particle-to-mesh
operator [52, 61]

ωmesh(yq) =
∑
p∈P

W

( |yq − xp|
h

)
· ωpart(xp).

The properties of this relation are basically the same as for the rezoning scheme: we need
to introduce a mesh structure for the restart procedure, population control is required and the
computational cost for the naive implementation is of order O(NM). Moreover, we have to
define when this scheme has to be applied (see [62] for a possible criterion). Despite these
issues, this strategy is widely used in vortex particle methods [13], yielding a mostly non-
diffusive means of ensuring the overlap condition [59]. The computational cost can even be
reduced to O(N) by choosing an interpolation kernel W with compact support, making this
scheme favorable.

The remeshing approach is schematically depicted in Figure 2.4 for four particles in two
dimensions, lacking overlap, and a kernel W with a support of 32 = 9 mesh nodes. The
overlap criterion is clearly satisfied by definition, but instead of three particles the next step
would contain 21 new particles. We examine the remeshing strategy further in the following
and explain the derivation of the interpolation kernels in more detail.

2.2.2 The remeshing strategy for accurate vortex calculations

Performing a remeshing step prunes old particles x and restarts the simulation with new
particles y located on a regular mesh. To ensure that during this procedure the characteristics
of the system being simulated are conserved, we choose the interpolation kernel W to satisfy
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

specific moment conditions. For an arbitrary test function φ (e.g. the regularized smoothing
kernel for the vorticity) in one spatial dimension we consider the error term

ε(x) := φ(x)−
∑
q∈M

W

( |yq − x|
h

)
· φ(yp).

Then the following theorem connects the moments conditions of W to the order of ε(y).

Theorem 2.2.1
If for m ∈ N an interpolation kernel W satisfies the moment conditions∑

q∈M

W

( |yq − x|
h

)
≡ 1,

∑
q∈M

(yq − x)β ·W
( |yq − x|

h

)
≡ 0 for all 1 ≤ |β| ≤ m− 1,

then for a constant C > 0 we have |ε(x)| ≤ C hm.

Proof. A deduction of these conditions can be found in [13]. �

Remark 2.2.2
These moment conditions are basically a discrete analog to the moment conditions of Defi-
nition 2.1.1 for the smoothing kernel. They express the conservation of total vorticity, linear,
angular and higher momenta as well. Their analysis is performed best in Fourier space and
we refer to [13, 59, 61] for details.

There are basically two approaches for choosing W : ‘discrete’ and ‘smooth’ interpolation.
Kernels belonging to the first type can be directly deduced from the moment conditions of
Theorem 2.2.1, yielding e.g. the linear cloud-in-cell (CIC) kernel [63, 64]

Λ1(z) =

{
1− z, 0 ≤ z ≤ 1,

0, otherwise.

Another example is the piecewise cubic kernel

Λ3(z) =


1
2
(1− z2)(2− z), 0 ≤ z < 1,

1
6
(1− z)(2− z)(3− z), 1 ≤ z < 2,

0, otherwise,

which conserves the four first momenta [59, 65]. Its deduction from the moment conditions
of Theorem 2.2.1 is reconstructed in Section 2.2.4. However, these kind of kernels do not
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(a) Time t = 0.0 (b) Time t = 5.0 (c) Time t = 10.0

Figure 2.5: Again, 2D vortex patch with initially N = 10000 particles, zoomed into the core.
Initial vorticity field ω(x, 0) = e−12|x|2 , core size σ = h0.95 = 0.020.95. Third
order Runge-Kutta time integration from t = 0.0 to t = 10.0 with step size
∆t = 0.1, remeshing every fifth time step. Vorticity magnitude decreases from
the center to the outer areas. The three figures depict the initial conditions and
times t = 5.0 and t = 10.0. The distortions of Figure 2.3 have vanished, the
initial symmetry of the vorticity field is conserved.

have continuous derivatives and higher order kernels may not be even continuous themselves.
Relaxing the condition ω̃mesh

σ (y) = ω̃part
σ (x) for y = x, we can construct kernels with smooth

derivatives by using central B-splines [60]. One widely used formula is the M ′
4-kernel [66]

M ′
4(z) =


1− 5

2
z2 + 3

2
z3, 0 ≤ z < 1,

1
2
(2− z)2(1− z), 1 ≤ z ≤ 2,

0, otherwise,

which reproduces polynomials up to order two and therefore conserves total vorticity, linear
and angular momentum. It has compact support with extension of four mesh nodes (like the
Λ3-kernel), being therefore a suitable kernel for O(N) remeshing methods. Using simple
tensor product formulas, we can use this kernel (and others as well) for remeshing in more
than one dimension, so that the M ′

4-kernel uses 4d mesh nodes in d spatial dimensions.

This kernel is widely used in other simulations – even for smoothed particle hydrodynamics,
as described in [67] – and it is common to perform remeshing every first to every tenth time
step, while population control is handled either by relative or absolute thresholds with respect
to vorticity magnitude [54, 65, 67, 68, 69]. We adopt these strategies and return to the initial
example of Figure 2.3. In Figure 2.5, the same setup as before is shown, but now with
remeshing applied every fifth time step and corresponding rigorous population control leading
to N = 9372 particles at t = 10.0, using an absolute threshold for the vorticity of 10−6. The
vorticity is perfectly resolved and no artifacts disturb the initial symmetry. In Figure 2.6, the
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Figure 2.6: Discrete L2-error norms ‖u − ũσ‖2 of the velocity, same data as Figure 2.5. No
remeshing vs. remeshing every fifth time step. N = 10000 to N = 8970 at
t = 100.0 with absolute population control threshold of 10−6 for the vorticity.

computed velocities ũσ and the analytically known expression

u(x) =
1

24|x|2 (1− e−12|x|2)

(
−x2

x1

)
are compared using the discrete L2-error norm

‖u− ũσ‖2 :=
1

|P|

(∑
p∈P

|u(xp)− ũσ(xp)|2
) 1

2

.

While the error plot for the original method behaves very unstable after t = 20.0, thereby
reflecting the resolution problems of the underlying vorticity fields, the remeshed method
remains numerically stable with an L2-error one order of magnitude smaller at the end of the
simulation. As noted in [54], most of the accuracy is lost during the first remeshing step and
until t = 18.0 the non-remeshed simulation performs slightly better. However, even for these
simple setups the remeshing scheme performs very well in the long run, preventing particle
distribution distortion and therefore conserving the required overlap between neighboring
particles.

Since the remeshing procedure makes use of an underlying mesh structure, the initial mesh-
free character of vortex particle method is somewhat compromised. There is one approach
that exploits precisely this fact: the vortex-in-cell algorithm. In the style of particle-in-cell
or cloud-in-cell methods, this scheme projects particles onto the mesh and uses fast Poisson
solvers and finite differences for computing the fields and derivatives on the mesh. After-
wards, the same interpolation kernel is used for projecting the fields back onto the particles,
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2.2 FIELD DISTORTIONS AND VISCOUS EFFECTS

which are then moved by the integrator. Since this approach has to be counted among mesh-
based methods, we will not discuss it here. For more details we refer to [13, 70].

As we have seen in this section, the overlap criterion is crucial not only for theoretical reasons,
but even for practical yet simple simulations. A location or circulation processing scheme
like remeshing is therefore mandatory. The overlap of nearby particles – i.e. the ability to
communicate – is required for viscous flows as well. In the next section, we present two
fundamentally different approaches tackling the diffusive part of vortex particles methods,
the second one eventually exploiting the remeshing approach further to directly account for
viscous effects.

2.2.3 The diffusion term

We now focus on viscous scenarios with ν > 0. In this case the diffusive term ν ∆αp or,
to simplify matters, ν∆ω necessitates a numerical treatment of the Laplacian ∆. There are
many different approaches available, e.g. particle strength exchange (PSE) [71], explicit dif-
ferentiation [48], random-walk methods [40] and vortex redistribution methods (VRM) [72].
A very comprehensive overview on viscous vortex methods can be found in [49, 54].

Firstly, we review the first two techniques, since the PSE-scheme is widely used [69, 73] and
has a consistent convergence statement [71], while the explicit differentiation approach can
be seen as modification of this method. Furthermore, some of the results derived later in
Chapter 3 can be transferred to these methods.

In short, the key concepts behind PSE are the approximation of the Laplacian using an integral
operator and the discretization of this operator using particles. For the first step, we define
the approximation of the diffusion operator by

∆σω(x) :=
1

σ2

∫
R3

ησ(y − x) · (ω(y)− ω(x))dy

with a regularized approximation kernel

ησ(x) :=
1

σ3
η
(x
σ

)
,

where we require η ∈ L1(R3) and η(x) = η(−x). This definition of the regularized ap-
proximation kernel is reminiscent of Definition 2.1.1 of smoothing kernels ζ and indeed,
approximation kernels η are often constructed by using [71]

η(x) = −2
x∇ζ(x)

|x|2 .
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

For a convergence statement we would expect to satisfy certain moment conditions for these
kernels. These conditions look very similar to the ones from Definition 2.1.1 and read∫

R3

η(y) yβdy =

{
2, if β ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)},
0, else and 1 ≤ |β| ≤ r + 1,∫

R3

|η(y)| |y|r+2dy <∞

for a multi-index β (see Definition A.3 for details on multi-index notation). Using these
moment conditions the PSE approach is conservative up to order r. The second step consists
of the numerical integration of ∆σω, i.e. the discretization of the integral with regularized
particles. We use

∆̃σω(x) :=
1

σ2

∑
q∈P ′

ησ(x− xq) · (ω(xq)− ω(x))volq

for quadrature points xq with volume volq, q ∈ P ′, which are in most cases the simulation
particles themselves.

On the other hand, explicit differentiation can be seen as a special version of PSE by choosing

η(x) = ∆ζ.

But while an explicit differentiation approach, as done by Fishelov in [48], would yield

∆ω(x) ≈ 1

σ2

∑
q∈P ′

∆ζσ(x− xq) · ω(xq)volq,

the PSE deduction states the conservative form of this approximation with

∆ω(x) ≈ 1

σ2

∑
q∈P ′

∆ζσ(x− xq) · (ω(xq)− ω(x))volq,

rendering explicit differentiation unfavorable.

Analyzing the convergence properties of approximation and regularized discretization reveals
that the overlap criterion plays a crucial role also in the PSE scheme [71]. This is not surpris-
ing, since the discretization of the integral has already been the reason for the emergence of
the overlap condition in the context of inviscid vortex particle methods, as noted in Remark
2.1.9. Of course, remeshing can be used here as well to account for distorted vorticity fields,
so that the overlap criterion poses no additional limitations to this method. We can therefore
conclude that PSE can be seen as a natural extension of inviscid regularized vortex particle
methods. The choice of the approximation kernel η can be coupled to the smoothing kernel
ζ and the convergence depends for both schemes on the particle distribution. We note that
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2.2 FIELD DISTORTIONS AND VISCOUS EFFECTS

since the calculation of ∆̃σω(xp) for one particle xp, p ∈ P , involves the summation over
M := |P ′| quadrature points, the PSE scheme requires O(NM) operations.

While the PSE scheme can directly operate on the vorticity-update term, other viscous meth-
ods require a clear distinction between the inviscid and viscous parts of the governing equa-
tions. This so-called viscous splitting approach separates the convective and diffusive effects
into two successive sub-steps [40], which can be applied independently from each other. In
more detail, these steps can be written as (see Section 2.1.3 for notation)

a) the convection equation

dxp(t)

dt
= ũσ(xp(t), t),

dαp(t)

dt
= 0,

b) the diffusion equation

dxp(t)

dt
= 0,

dαp(t)

dt
= ν ∆αp(xp(t), t).

In multi-step methods the convection process is repeated multiple times before viscous effects
are applied. With this separation at hand, an algorithm treating the viscous term can focus on
the pure diffusion equation. However, an additional error of order O(ν∆tD) is induced [13],
where ∆tD is the time step between two diffusive sub-steps.

One method exploiting viscous splitting is the so-called vortex redistribution method [72, 74,
75]. In this method, the vorticity field is updated by the redistribution of fractions of strength
between neighboring particles, i.e. for a given vorticity ωn at time step n with

ωn(x) =
∑
p∈P

ζσ(x− xp) · αnp

we obtain after the diffusion sub-step

ωn+1(x) =
∑
p∈P

∑
q∈P ′

ζσ(x− xq) · fnp,q · αnp .

The neighborhood P ′ of a particle x is initially defined as all particles y with

|x− y| ≤ Rhν := R
√
ν ∆t,
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2 FUNDAMENTALS OF REGULARIZED VORTEX PARTICLE METHODS

where R is a predefined constant (typically R =
√

12) and hν is the so-called ‘diffusion
distance’ [74]. Again, the fractions fnp,q are defined by a set of familiar moment conditions∑

q∈P ′
fnp,q = 1,

∑
q∈P ′

fnp,q · (xp − xq)β =

{
2h2

ν , if β ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)},
0, else and 1 ≤ |β| ≤ r + 1,

which are basically a discrete version of the PSE moment conditions, with a small change
for the diffusive contribution. They have to be satisfied at least up to order r = 1 to obtain
consistency of the method [54, 72]. The fractions fnp,q should be determined explicitly by
these conditions, but depending on the regularity of the particles field the neighborhood P ′
of a particle might not contain enough target particles. In this case, additional particles are
inserted to compensate for this problem.

The main drawback of this method is its dependency on a fast solution for the moment condi-
tions. Since these equations depend on the actual particle position xp, they have to be solved
for each particle and each time step to compute the new fractions. The insertion procedure
is indeed an intrinsic mesh-free approach, but on the other hand the overlap criterion is not
guaranteed to be satisfied, although it is of course still required for the inviscid part [54].
Therefore, remeshing is required again and it turns out that this fact can be even of great help:
the remeshing kernels can be rewritten so that they are able to account for viscous effects and
field distortion simultaneously.

2.2.4 Modified remeshing and viscous effects

In contrast to the original vorticity redistribution method, the following modification changes
particle locations and quantities during redistribution. If this process is done for a regular
mesh of target particles, the solution of the equation systems for the fractions becomes much
easier and can even be integrated into existing remeshing kernels. This ‘modified remesh-
ing’ approach has been introduced in [76] and we review their ideas in this section. The
basis for this approach is the observation that the moment conditions for remeshing kernels
and redistribution fractions are nearly identical. Therefore, instead of using the conditions of
Theorem 2.2.1 for constructing remeshing kernels, we use the redistribution moment condi-
tions, which vary only for β = (2, 0, 0), (0, 2, 0), (0, 0, 2), so that the resulting kernels can
satisfy both remeshing and redistribution conditions.

To clarify this approach we derive the modified Λ3-kernel, assuming a configuration in one
spatial dimension [76]. Since Λ3 extends to four mesh particles, we define

x1 := −3

2
h, x2 := −1

2
h, x3 :=

1

2
h and x4 :=

3

2
h.
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Furthermore, we consider a particle x0 with |x0| < 1
2
h and without loss of generality we

assume x0 ∈ [0, 1
2
h). We obtain

3

2
≤ |x0 − x1|

h
=
x0

h
+

3

2
< 2

and the solution W of the set of equations

4∑
j=1

W

( |x0 − xj|
h

)
= 1,

4∑
j=1

(x0 − xj) ·W
( |x0 − xj|

h

)
= 0,

4∑
j=1

(x0 − xj)2 ·W
( |x0 − xj|

h

)
= 0,

4∑
j=1

(x0 − xj)3 ·W
( |x0 − xj|

h

)
= 0

yields for z = |x0−x1|
h
∈ [3

2
, 2)

W (z) =
1

6
(1− z)(2− z)(3− z),

reproducing the correct branch of the Λ3-kernel. Replacing the third equation with

4∑
j=1

(x0 − xj)2 ·W
( |x0 − xj|

h

)
= 2ν ∆t,

we obtain

W (z) =
1

6
(1− z)(2− z)(3− z) + c2(2− z)

for

c2 =
ν ∆t

h2
.

Using x2, x3 and x4 in z we finally obtain the modified Λ3-kernel

Λ3(z, c) =


1
2
(1− z2)(2− z)− c2(2− 3z), 0 ≤ z < 1,

1
6
(1− z)(2− z)(3− z) + c2(2− z), 1 ≤ z < 2,

0, otherwise.
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(a) Time t = 4.02 (b) Time t = 5.00 (c) Time t = 6.00

Figure 2.7: Lamb-Oseen vortex with initially N = 2500 particles, located in [−0.5, 0.5]2,
core size σ = h0.95 = 0.020.95, viscosity ν = 5 · 10−4. Third order Runge-Kutta
time integration from t = 4.0 to t = 6.0 with step size ∆t = 0.01. Vorticity
magnitude decreases from the center to the outer areas. Remeshing and diffusion
performed in each time step, leading to N = 2112 particles at t = 6.0. The three
figures depict the field after the first time step, at times t = 5.0 and t = 6.0.
Initial conditions are not shown to emphasize the growth of the vorticity support.

Similarly, the M ′
4-kernel can be extended to [76]

M ′
4(z, c) =


1− 5

2
z2 + 3

2
z3 − c2(2− 9z2 + 6z3), 0 ≤ z < 1,

1
2
(2− z)2(1− z)− c2(2− z)2(1− 2z), 1 ≤ z ≤ 2,

0, otherwise.

Stability considerations in Fourier space [76] for the parameter c and the kernel M ′
4(z, c)

require

1

6
≤ c2 ≤ 1

2
,

yielding e.g. non-negativity of the kernel.

To verify this approach we simulate the so-called Lamb-Oseen vortex [77] with vorticity field

ω(x, t) =
1

4πνt
exp

(
−|x|

2

4νt

)
,

starting from an initial vortex patch in [−0.5, 0.5]2 with N = 2500 particles and h = 0.02.
Again, as for the remeshing test in Figure 2.5, we apply a third order Runge-Kutta integrator,
now from t = 4.0 to t = 6.0 with step size ∆t = 0.01. The viscosity is chosen as ν = 5·10−4.
Using the modified remeshing scheme with diffusion in every time step, we end up with
N = 2112 particles at time t = 6.0. Figure 2.7 indicates that the support of the vorticity field
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Figure 2.8: Error plot for the Lamb-Oseen vortex with initially N = 2500 particles, located
in [−0.5, 0.5]2. Core size σ = h0.95 = 0.020.95, viscosity ν = 5 × 10−4. Third
order Runge-Kutta time integration from t = 4.0 to t = 6.0 with step size ∆t =
0.01. Remeshing and diffusion performed in each time step, leading toN = 2112
particles at t = 6.0.

increases significantly, as expected. The errors of Figure 2.8 are computed by the discrete
L2-error

‖ωexact − ωcomp‖2 :=
1

|P|

(∑
p∈P

|ωexact(xp)− ωcomp(xp)|2
) 1

2

and the relative maximum error

‖ωexact − ωcomp‖∞ :=
max{|ωexact(xp)− ωcomp(xp)|, p ∈ P}

max{|ωexact(xp)|, p ∈ P}
,

respectively. The results correspond very well to those given in [49, 54]. The discrete L2-
error and the relative maximum error immediately start to grow, evening out in the range of
2·10−3 and 2·10−2, respectively. The maximum vorticity (scalar in two dimensions) decreases
according to the exact values of the Lamb-Oseen vortex and the errors of Figure 2.8.

Despite the tempting rigorous mathematical background of the PSE method, the modified
vorticity redistribution method shows its strength in the implementation. With this approach,
every inviscid algorithm which has already implemented remeshing with an interpolation
kernel W can be easily extended to handle viscous effects using a modified kernel Ŵ with-
out computational overhead. However, general convergence results are yet unknown. Only
considerations for the classical heat equation have been made so far, yielding an error of
O((v∆t)

r
2 ) in addition to the viscous splitting error [72, 76].
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2.3 Summary

In this chapter, we have seen how the vorticity-velocity equation of Definition 1.2.2 and
the Biot-Savart kernel of Theorem 1.2.5 can be used to derive a particle method simulating
vorticity-driven flows. Figure 2.9 updates the introductory choice between mesh-based and
particle-based methods in favor of the latter approach. The mathematical consequences and
implications of this decision have been the topic of this chapter.

We have seen that the introduction of regularized smoothing kernels paves the way for a con-
venient discretization and a consistent convergence analysis for the inviscid case. In contrast
to the point vortex method, higher order regularization yields a better speed of convergence,
making this approach favorable for lengthy simulations. Momenta conservation and the reg-
ularity of the underlying particle field play crucial roles for the convergence as well. The
central requirement for convergence – the overlap criterion – couples inter-particle distance
and the core radius of each particle. For long-term simulations, this has to be maintained
by a numerical implementation. Besides many other approaches, remeshing proved to be a
very effective and natural way of restoring the convergence condition. Although introducing
a mesh-like structure, the conservation properties of the interpolation kernels – again con-
trolled by moment conditions – and its simplicity make this tool the first choice for most
simulations. Moreover, we have seen that the remeshing approach can be exploited even fur-
ther to account not only for ensuring long-term reliability of the method, but also for viscous
effects by introducing modified redistribution kernels.

We combine the results of this chapter into the following algorithm, stating the workflow of
a numerical vortex particle method handling convection, stretching, diffusion, remeshing and
time integration. We choose a time T > 0, initial vorticity ω(·, 0) and initial particle locations
xp(0), p ∈ P with distances h and core sizes σ. Furthermore, a specific viscous vortex particle
method is defined by the choices of the smoothing kernel ζ , the modified interpolation kernel
Ŵ and the time integration scheme. The workflow can be written in pseudocode as depicted
in Algorithm 2.1.

With small additional modifications for the ‘←’-assignments, this algorithm yields the main
loop of a regularized vortex particle method and its subroutines COMPUTEINTERACTION and
MODREMESHING. The modified remeshing and diffusion operator of MODREMESHING can

Figure 2.9: The transition from analytic equations to particle-based methods.
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be implemented efficiently using only O(N) operations with N = |P|. In Chapter 4, one
implementation using an adaptive, particle-only approach with parallel sorting is described.
However, in COMPUTEINTERACTION the calculation of ũσ and its derivative requiresO(N2)
operations, limiting the usability to rather small numbers of N . Since all relevant kernels –
the regularized smoothing function ζσ, the stream function kernel Gσ and its derivative Kσ –
typically lack compact support, their influence even on distant particles has to be considered
carefully. Vortex particle methods are therefore an example of N -body problems dominated
by long-range interactions. We note that the same problem applies for particle strength ex-
change and rezoning if these methods are used with non-compact kernels to replace diffusion
and remeshing (see Section 2.2). Therefore, the goal of the next chapter is the formulation
of a fast summation method to replace COMPUTEINTERACTION, making simulations with
million of particles possible in a reasonable time scale.
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Algorithm 2.1 Workflow of a vortex particle method
subroutine COMPUTEINTERACTION . Compute velocities and vorticity updates

ũσ ← 0
for all p ∈ P do

for all q ∈ P do
ũσ(xp)← ũσ(xp) +Kσ(xp − xq)× αq

end for
end for
αupdate
p ← (αp · ∇)ũσ(xp)

end subroutine

subroutine MODREMESHING . Modified remeshing and diffusion
for all m ∈M do

αmesh
m ← 0

for all p ∈ P do
αmesh
m ← αmesh

m + Ŵ
(
|xmesh
m −xp|

h

)
· αp

end for
end for
αp ← αmesh

m , xp ← xmesh
m , P ←M

end subroutine

program MAIN . Main loop
while t < T do

call COMPUTEINTERACTION

for all p ∈ P do
xnew
p ← dxp

dt
= ũσ(xp)

αnew
p ← dαp

dt
= αupdate

p

end for
t← t+ ∆t
if remeshing and diffusion requested then

call MODREMESHING

end if
end while

end program
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3 Multipole expansions and a class
of algebraic kernels

We have seen in the last chapter that using the mesh-free vortex particle method results in an
N -body problems for the evaluation of ũσ and its derivatives. Despite the relentless techno-
logical advances in supercomputing performance over the past decade, solving the N -body
problem for such systems dominated by long-range interactions remains a formidable algo-
rithmic and computational challenge. The brute-force approach, in which all N2 mutual in-
teractions between particles are computed directly, inevitably becomes impractical for large
systems. However, this approach has a straightforward parallelization scheme, which al-
lows for effective distribution of the particle set across large machines. But even exploiting
fast compute nodes and distributed-memory architectures does not avert the inherentO(N2)-
complexity, making dynamic simulations with million of particles economically impractical.
Figure 3.1 illustrates two fundamentally different approaches, which aim at accelerating N -
body simulations while maintaining the mesh-free character: cutoff-based or multipole-based
methods. Again, we highlight and briefly weigh pros and cons of both concepts in the fol-
lowing.

Cutoff-based methods – Cutoff-based methods for long-range particle-particle interactions
are commonly used in molecular dynamics [78, 79, 80]. They rely on choosing a cutoff radius
ρcut, which trims the prevailing interactions to zero at ρ = ρcut, thus omitting direct particle
interactions outside a sphere with radius ρcut. Consequently, for constant radii and homo-

Figure 3.1: Computation of interactions using cutoff-based or multipole-based methods?
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geneous distributions only a constant number of particles are required for the summation.
Methods like the direct Wolf summation can be implemented and parallelized easily with
a algorithmic scaling of O(N), but they are often motivated and justified only by physical
considerations of the system of interest [80, 81].

Multipole-based methods – Two multipole-based techniques developed in the mid-1980s –
the hierarchical Barnes-Hut tree code [82] and the Fast Multipole Method (FMM) [83], with
respective algorithmic scalings of O(N logN) and O(N) – have become widely used mesh-
free means for long-range N -body simulations across a broad range of fields [84, 85, 86, 87,
88]. Both methods reduce the number of direct particle-particle interactions through the use
of so-called multipole expansions, making it possible to perform simulations with millions
of particles. The summation for each particle is computed by systematically replacing more
distant particles by multipole expansions of groups, thus reducing the standard O(N2) direct
sum to anO(N logN)- or evenO(N)-complexity at the price of a adjustable and controllable
error [89].

Both approaches preserve the mesh-free character of particle simulations. While the math-
ematical background and practical implementation of multipole-based methods are rather
complex, cutoff-based methods allow for a straightforward access. Conversely, this apparent
advantage comes at the cost of mathematical drawbacks. In many situations the convergence
analysis of cutoff-based methods is not rigorous but often based on heuristic observations or
physical considerations, which limit their application to very specific cases [81]. On the other
hand, multipole-based methods like the Barnes-Hut tree code or the Fast Multipole Method
rely on well-grounded, consistent and generic mathematical theories [83, 90, 91]. Their algo-
rithmic complexity can be easily estimated, but their implementation and parallelization on
distributed machines is not straightforward. Both multipole-based concepts share the abstract
idea of multipole expansions and have to be modified only for varying interaction kernels,
but not for different physical setups. Besides the consistent mathematical background, this
property makes multipole-based methods favorable in our case. In terms of vortex particle
methods, a rigorous mathematical analysis of multipole expansions and their convergence
properties has to start from an explicit choice of smoothing kernels.

The goal of this chapter is the adaption of the concept of multipole expansions for the case
of regularized vortex particle methods using algebraic smoothing kernels, paving the way for
rapid numerical simulations with millions of vortex particles. In terms of Algorithm 2.1 of
Section 2.3 the upcoming chapter constitutes the mathematical basis for replacing theO(N2)-
subroutine COMPUTEINTERACTION with a much faster, multipole-based equivalent.

To this end, we will introduce a novel and comprehensive class of algebraic smoothing ker-
nels, which utilizes and extends the well-known zeroth and second order algebraic kernels of
Section 2.1.2. Using the moment conditions of Definition 2.1.1, we will show how to derive
kernels of arbitrary order, each remaining within the framework of the class. A decomposition
theorem will prove to be very helpful for the analysis of the class and its members, especially
concerning their usability in the context of multipole-based methods. After a short review of
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3 MULTIPOLE EXPANSIONS AND A CLASS OF ALGEBRAIC KERNELS

the mathematics of general multipole expansion theory we will apply this formalism to our
class by means of the decomposition theorem. Starting from the stream function smoothing
kernel Gσ we will deduce a comprehensive theory of multipole expansions in the field of vor-
tex particle methods with algebraic regularization. Error estimation and convergence result
will turn out to nicely extend well-known results for common ρ−n-kernels and can even be
applied to particle strength exchange and rezoning. An extension to field derivatives, thus
covering ũσ and its derivatives, will conclude this chapter.

3.1 A class of algebraic kernels

As we have seen in the previous chapter, vortex particle methods are primarily defined by
the choice of the smoothing kernel. This function determines the vorticity discretization, the
stream function and – by applying multiple differential operators – the velocity evaluation,
as well as the vorticity update in 3D. Therefore, a complete multipole expansion theory for
given smoothing kernels allows us to apply these fast summation techniques to vortex particle
methods, since the field derivatives for the velocity and the vorticity update can be obtained
by formal differentiation of the expansion. In the following, we examine algebraic smoothing
kernels and their properties, which prove to be very helpful for the analysis of multipole
expansions of Section 3.2.

3.1.1 Definition and smoothing properties

In this section, we focus on algebraic kernels like the zeroth or second order algebraic ker-
nel of Section 2.1.2 and extend their structure to a broader class of functions. For general
treatment, we define a template and a class containing all functions of this type.

Definition 3.1.1 (Class of algebraic smoothing kernels)
For σ ≥ 0 we define the class Aσ of algebraic smoothing kernels as

Aσ :=

{
g ∈ C∞(R) : g(ρ) =

λ∑
l=0

al ρ
2l

(ρ2 + σ2)λ+ 1
2

, al ∈ R, λ ∈ N0

}
.

We refer to a member of this class as gλ ∈ Aσ if the parameter λ ∈ N0 is of interest.

A radially symmetric smoothing kernel ζ (see Definition 2.1.1) in algebraic form can then be
characterized as a member of A1, while the corresponding regularized smoothing kernel

ζσ(x) =
1

σ3
ζ

( |x|
σ

)
=:

1

σ3
ζ
(ρ
σ

)
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3.1 A CLASS OF ALGEBRAIC KERNELS

itself is a member of Aσ. The following example places the already introduced zeroth and
second order kernel into the context of Aσ.

Example 3.1.2
We choose a fixed σ > 0.

• For the zeroth order algebraic kernel and its regularized equivalent

ζ(0)(ρ) =
3

4π(ρ2 + 1)
5
2

and ζ(0)
σ (ρ) =

3σ2

4π(ρ2 + σ2)
5
2

,

we have ζ(0) ∈ A1 with λ = 2, a0 = 3
4π

, a1 = a2 = 0 and ζ(0)
σ ∈ Aσ with λ = 2,

a0 = 3σ2

4π
, a1 = a2 = 0.

• For the second order algebraic kernel

ζ(2)(ρ) =
15

8π(ρ2 + 1)
7
2

and ζ(2)
σ (ρ) =

15σ4

8π(ρ2 + σ2)
7
2

,

we have ζ(2) ∈ A1 with λ = 3, a0 = 15
8π

, a1 = a2 = a3 = 0 and ζ(2)
σ ∈ Aσ with λ = 3,

a0 = 15σ4

8π
, a1 = a2 = a3 = 0.

We note that for these smoothing kernels many coefficients al are equal to zero. In Re-
mark 2.1.2, we have seen that normalization constraint and moment conditions for a radially
symmetric smoothing kernel ζ(r) of order r ∈ N0, r even, are

I0 :=

∫ ∞
0

ζ(r)(ρ) ρ2dρ =
1

4π
,

Is :=

∫ ∞
0

ζ(r)(ρ) ρ2+sdρ = 0 for 2 ≤ s ≤ r − 1, s even,

Ir :=

∫ ∞
0

|ζ(r)(ρ) |ρ2+rdρ <∞.

We now analyze the existence of these moment integrals for algebraic functions ζ(r) ∈ A1.

Theorem 3.1.3 (Existence of moment integrals)
The integrals I0, Is, Ir of Remark 2.1.2 with r = 2k, k ∈ N0, exist for all functions gλ ∈ A1,
λ ∈ N, λ ≥ 2 with

al = 0 for all l = λ− 1− r

2
, . . . , λ.
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3 MULTIPOLE EXPANSIONS AND A CLASS OF ALGEBRAIC KERNELS

Proof. For a fixed λ ∈ N0 we choose gλ ∈ A1 with

gλ(ρ) =
λ∑
l=0

al ρ
2l

(ρ2 + 1)λ+ 1
2

.

Inserting this into I0, we obtain

I0 =

∫ ∞
0

gλ(ρ)ρ2dρ =
λ∑
l=0

al

∫ ∞
0

ρ2l+2

(ρ2 + 1)λ+ 1
2

dρ.

With Theorem C.6 this yields

I0 =
λ∑
l=0

al
Γ(l + 3

2
)Γ(λ− l − 1)

2Γ(λ+ 1
2
)

.

However, this is only true for l < λ− 1, yielding a first restriction on l.
Similarly, we have

Is =
λ∑
l=0

al
Γ(l + 3

2
)Γ(λ− l − 1− s

2
)

2Γ(λ+ 1
2
)

,

Ir ≤
λ∑
l=0

|al|
Γ(l + 3

2
)Γ(λ− l − 1− r

2
)

2Γ(λ+ 1
2
)

,

which is only valid for l < λ− 1− s
2

or l < λ− 1− r
2
, respectively. �

All algebraic functions satisfying this condition are therefore preliminary candidates for
smoothing kernels. Although this theorem only makes a statement about the existence of
the moment integrals, its proof gives us a direction for deriving explicit algebraic smooth-
ing kernels of arbitrary order r = 2k, k ∈ N0, improving e.g. the speed of convergence of
the method according to Theorem 2.1.8. We demonstrate this approach with the help of the
already known second order algebraic kernel ζ(2) and illustratively derive a new sixth order
algebraic kernel ζ(6).

Example 3.1.4
Since ζ(2) is of order two, we only have to satisfy I0 = 1

4π
and I2 <∞. From Theorem 3.1.3

we know that al = 0 for l ∈ {λ− 2, λ− 1, λ}, so that λ = 3 is required. Therefore, we have
to determine a0 from the first moment condition. With

I0 =
λ∑
l=0

al
Γ(l + 3

2
)Γ(λ− l − 1)

2Γ(λ+ 1
2
)
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3.1 A CLASS OF ALGEBRAIC KERNELS

we have

1

4π
= a0

Γ(3
2
)Γ(2)

2Γ(7
2
)

or a0 = 15
8π

. Furthermore, Ir = 2a0
15
<∞, so that we have reconstructed

ζ(2)(ρ) =
15

8π(ρ2 + 1)
7
2

.

To construct ζ(6), we note that Theorem 3.1.3 gives us al = 0 for l = λ − 4, . . . , λ, so
that λ > 4 and a0 6= 0. However, we cannot choose λ = 5 since we obtain three moment
conditions

I0 =
1

4π
,

I2 = 0,

I4 = 0

and I6 < ∞. While the latter is automatically satisfied by Theorem 3.1.3, we require λ = 7
with a0, a1, a2 ∈ R\{0} for the three moment conditions, so that we can initially define ζ(6)

using the template

ζ(6) =
a0 + a1ρ

2 + a2ρ
4

(ρ2 + 1)
15
2

.

The three moment conditions yield the following system of equationsΓ (6) Γ (3/2) Γ (5) Γ (5/2) Γ (4) Γ (7/2)
Γ (5) Γ (5/2) Γ (4) Γ (7/2) Γ (3) Γ (9/2)
Γ (4) Γ (7/2) Γ (3) Γ (9/2) Γ (2) Γ (11/2)

 ·
a0

a1

a2

 =

Γ(15/2)
2π

0
0

 .

This leads to

a0 =
11025

512π
, a1 = − 6615

128π
, a2 =

945

64π
,

and therefore

ζ(6)(ρ) =
315

512π

35− 84ρ2 + 24ρ4

(ρ2 + 1)
15
2

,

which concludes this example.

The disadvantage of the current formulation of the class Aσ is adumbrated in the proof of
Theorem 3.1.3: even linear operators applied to members of this class – like the integral
evaluation or derivatives – can already involve complicated calculations. An elegant circum-
vention of this problem is presented in the next section.
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3.1.2 A decomposition theorem

Although Theorem 3.1.3 ensures the existence of the moment integrals, for ζ being a suitable
smoothing kernel in the sense of Theorem 2.1.8, we still have to verify

ζ ∈ Wm,∞(R3) ∩Wm,1(R3) for all m ∈ N.

Here, the following result proves very helpful: the proposed decomposition formula simplifies
the handling of functions g ∈ Aσ radically.

Theorem 3.1.5 (Decomposition Theorem)
For all λ ∈ N0, ρ > 0 and gλ ∈ Aσ with σ > 0, we have

gλ(ρ) =
λ∑
l=0

a
(l)
λ−l

(ρ2 + σ2)l+
1
2

with

a(0)
ν := aν for all ν = 0, . . . , λ,

a(µ)
ν := a(µ−1)

ν − a(µ−1)
λ−(µ−1)σ

2(λ−µ+1)−2ν

(
λ− (µ− 1)

ν

)
for all ν = 0, . . . , λ− µ.

Proof. The idea of this decomposition of g := gλ is the elimination of ρ-terms in the numer-
ator. Let λ ∈ N0 and g = gλ ∈ Aσ. We write for ρ > 0

g(ρ) =
λ∑
l=0

al ρ
2l

(ρ2 + σ2)λ+ 1
2

=
λ∑
l=0

al ρ
2l

(ρ2 + σ2)λ+ 1
2

+
aλ

(ρ2 + σ2)
1
2

− aλ
λ∑
l=0

(
λ

l

)
ρ2l σ2λ−2l

(ρ2 + σ2)λ+ 1
2

,

after making use of the binomial theorem for (ρ2 + σ2)λ. This expression can be combined
into

g(ρ) =
aλ

(ρ2 + σ2)
1
2

+
λ∑
l=0

(
al − aλσ2λ−2l

(
λ

l

))
ρ2l

(ρ2 + σ2)λ+ 1
2

.

The last term is now of interest: For l = λ this formulation allows us to eliminate the ρ2λ-
term, since

aλ − aλσ2λ−2λ

(
λ

λ

)
= 0
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and therefore

g(ρ) =
aλ

(ρ2 + σ2)
1
2

+
λ−1∑
l=0

(
al − aλσ2λ−2l

(
λ

l

))
ρ2l

(ρ2 + σ2)λ+ 1
2

.

To obtain the asserted recursion formula for a(µ)
ν , we define

a
(0)
l := al for all l = 0 . . . λ,

a
(1)
l := a

(0)
l − a

(0)
λ σ2λ−2l

(
λ

l

)
for all l = 0 . . . λ− 1.

Then we get

g(0)(ρ) := g(ρ) =
a

(0)
λ

(ρ2 + σ2)
1
2

+
λ−1∑
l=0

a
(1)
l

ρ2l

(ρ2 + σ2)λ+ 1
2

=:
a

(0)
λ

(ρ2 + σ2)
1
2

+
1

ρ2 + σ2
· g(1)(ρ).

Applying the same procedure to g(1)(ρ), we obtain

g(1)(ρ) =
a

(1)
λ−1

(ρ2 + σ2)
1
2

+
λ−2∑
l=0

a
(2)
l ρ2l

(ρ2 + σ2)λ−1+ 1
2

=:
a

(1)
λ−1

(ρ2 + σ2)
1
2

+
1

ρ2 + σ2
· g(2)(ρ)

for a(2)
l := a

(1)
l − a

(1)
λ−1σ

2λ−4−2l
(
λ−1
l

)
, which eliminates the ρ2λ−2-term. We can perform this

procedure recursively until reaching

g(λ)(ρ) =
a

(λ)
0

(ρ2 + σ2)
1
2

,

which finally yields

g(ρ) =
λ∑
l=0

a
(l)
λ−l

(ρ2 + σ2)l+
1
2

.

�

This result will also ease the analysis of multipole expansions and is therefore considered the
main statement for the class Aσ of algebraic functions. To demonstrate the decomposition
procedure we return to our previous Example 3.1.4 and derive their corresponding decompo-
sitions.
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Example 3.1.6
While the zeroth and second order kernels are already decomposed by definition, we have for
the sixth order kernel

ζ(6)(ρ) =
315

512π

35− 84ρ2 + 24ρ4

(ρ2 + 1)
15
2

=:
315

512π

a0 + a1ρ
2 + a2ρ

4

(ρ2 + 1)
15
2

.

Since a3 = . . . = a7 = 0 we extract a2 6= 0 and obtain

ζ(6)(ρ) =
315

512π

a0 + a1ρ
2 + a2ρ

4

(ρ2 + 1)
15
2

=
a2

(ρ2 + 1)
11
2

+
2∑
l=0

(
al − a2

(
2

l

))
ρ2l

(ρ2 + 1)
15
2

=
315

512π

[
24

(ρ2 + 1)
11
2

+
1∑
l=0

(
al − 24

(
2

l

))
ρ2l

(ρ2 + 1)
15
2

]

=
315

512π

[
24

(ρ2 + 1)
11
2

+
11− 132ρ2

(ρ2 + 1)
15
2

]
=:

315

512π

[
24

(ρ2 + 1)
11
2

+
a

(1)
0 + a

(1)
1 ρ2

(ρ2 + 1)
15
2

]
.

Extracting now a
(1)
1 = −132 finally yields

ζ(6)(ρ) =
315

512π

[
24

(ρ2 + 1)
11
2

− 132

(ρ2 + 1)
13
2

+
143

(ρ2 + 1)
15
2

]
,

which concludes this example.

Next, we abstract the different components of the decomposition method into a new classDσ.

Definition 3.1.7 (Decomposition Class)
We define the decomposition class Dσ as

Dσ :=

{
g ∈ C∞(R) : g(ρ) =

1

(ρ2 + σ2)τ
, τ > 0

}
.

Remark 3.1.8
Using the Decomposition Theorem, we can interpret the class Dσ as extending basis of the
class Aσ, σ ≥ 0. Conversely, the proof of the Decomposition Theorem yields an extension
Āσ of Aσ. Defining

Āσ :=

{
g ∈ C∞(R) : g(ρ) =

λ∑
l=0

al ρ
2l

(ρ2 + σ2)λ+s
, al ∈ R, λ ∈ N0, s > 0

}
,

45



3.1 A CLASS OF ALGEBRAIC KERNELS

we can show that Dσ creates Āσ if we use linear combination of Dσ-functions. Therefore,
the class Āσ can be seen as the linear hull of Dσ. This is not true for Aσ, since Aσ ( Āσ. For
instance, we have

1

(ρ2 + σ2)τ
6∈ Aσ for τ 6= λ+

1

2
, λ ∈ N0.

Furthermore, we note that

1

ρn
∈ D0 for all n ∈ N,

so that a statement for members of Dσ automatically covers common ρ−n-kernels as well.

Following the Decomposition Theorem, a linear combination of functions gτσ ∈ Dσ for dif-
ferent τ = l+ 1

2
, l ∈ N0, resembles each function g ∈ Aσ, so that a statement for members of

Dσ can often be transferred to members of Aσ and Āσ. With this Theorem 3.1.5 at hand we
are now able to prove that all functions ζ(r) ∈ A1 satisfying the normalization constraint and
moment conditions are potential smoothing kernels in the sense of Theorem 2.1.8.

Theorem 3.1.9
If the moment integrals I0, Is and Ir of Remark 2.1.2 exist for a function gλ ∈ A1, λ ∈ N0,
λ ≥ 2, and r = 2k with k ∈ N0, then we have

gλ ∈ Wm,∞(R3) ∩Wm,1(R3) for all m ∈ N.

Proof. Let g := gλ ∈ A1 for λ ∈ N0, λ ≥ 2. Since g ∈ C∞(R3) we have to verify for the
β-th derivative Dβg of g

Dβg ∈ L1(R3) ∩ L∞(R3) for all |β| ≤ m ∈ N,

according to Theorem B.4 and Definition B.5.
With the Decomposition Theorem, we obtain

g(ρ) =
λ∑
l=0

bl

(ρ2 + 1)l+
1
2

=:
λ∑
l=0

bl gl(ρ)

with bl as stated in 3.1.5. Next, for multi-indices β, α and ρ = |x| we have

Dβgl(x) =
∑
|α|≤|β|

bα,l
xα

(|x|2 + 1)l+
1
2

+|α|
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for appropriate coefficients bα,l. This yields

∣∣Dβg(x)
∣∣ ≤ λ∑

l=0

∑
|α|≤|β|

|bα,l|
|x||α|

(|x|2 + 1)l+
1
2

+|α|
.

We consider ∫
R3

∣∣Dβg(x)
∣∣ dx ≤ 4π

λ∑
l=0

∑
|α|≤|β|

|bα,l|
∫ ∞

0

ρ|α|+2

(ρ2 + 1)l+
1
2

+|α|
dρ,

which exists for l ≥ 2 according to Theorem C.6, where a−1 := |α|+2 and b := l+ 1
2

+ |α|,
so that 2b > a only if l ≥ 2.
It follows

Dβg ∈ L1(R3) for all |β| ≤ m ∈ N,

so that g = gλ ∈ Wm,1(R3) for all m ∈ N if gl(ρ) ≡ 0 for l = 0, 1. This leads to

0 = b0 = a
(0)
λ = aλ,

0 = b1 = a
(0)
λ−1 − a

(0)
λ λ = aλ−1 − aλ λ,

so that we require aλ = aλ−1 = 0. This is already true by Theorem 3.1.3, since we assumed
the existence of I0, Is and Ir.
Moreover, we have

sup
x∈R3

∣∣Dβg(x)
∣∣ ≤ sup

x∈R3

λ∑
l=0

∑
|α|≤|β|

|bα,l|
|x||α|

(|x|2 + 1)l+
1
2

+|α|

and since |x||α| ≤ (|x|2 + 1)|α|, we obtain

sup
x∈R3

∣∣Dβg(x)
∣∣ ≤ sup

x∈R3

λ∑
l=0

∑
|α|≤|β|

|bα,l|
1

(|x|2 + 1)l+
1
2

=
λ∑
l=0

∑
|α|≤|β|

|bα,l| <∞.

This implies

Dβg ∈ L∞(R3) for all |β| ≤ m ∈ N

and therefore g = gλ ∈ Wm,∞(R3) for all m ∈ N. �
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Remark 3.1.10
This result motivates the definition of the class Sσ containing all suitable algebraic smoothing
kernels. For λ ∈ N, λ ≥ 2, σ ≥ 0 and r = 2k, k ∈ N0, we define the class Srσ of suitable
algebraic smoothing kernels as

Srσ :=

g ∈ C∞(R) : g(ρ) =

λ−1− r
2∑

l=0

sl ρ
2l

(ρ2 + σ2)λ+ 1
2

sl ∈ R, λ ∈ N0

 .

With Theorem 3.1.9 we can therefore conclude that all functions ζ(r) ∈ Srσ with

I0 =

∫ ∞
0

ζ(r)(ρ) ρ2dρ =
1

4π
,

Is =

∫ ∞
0

ζ(r)(ρ) ρ2+sdρ = 0 for 2 ≤ s ≤ r − 1, s even,

Ir =

∫ ∞
0

|ζ(r)(ρ) |ρ2+rdρ <∞

are smoothing kernels as needed for a convergent vortex particle method. For instance, we
have

ζ(0) ∈ S0
1 , ζ

(2) ∈ S2
1 and ζ(6) ∈ S6

1 .

3.1.3 From smoothing kernels to stream functions

Next, we can construct the kernel G for the stream function ψ. As we have seen in Theo-
rem 2.1.3, discretized and regularized vorticity and stream function are coupled by

∆ψ̃σ = −ω̃σ,
while ζ and G are connected via

−ζ(ρ) =
1

ρ

d2

dρ2
(ρG(ρ)) .

The next theorem places G into the context of the class A1. Naturally, the same result applies
to the classes Ā1 of Remark 3.1.8 and Sr1 of Remark 3.1.10 as well.

Theorem 3.1.11
For ζλ ∈ A1 with λ ∈ N, λ ≥ 2, we have Gλ′ ∈ A1 with λ′ = λ− 2.

Proof. We define λ′ := λ− 2 for λ ≥ 2 and

Gλ′(ρ) := G(ρ) :=
λ′∑
l=0

bl ρ
2l

(ρ2 + 1)λ
′+ 1

2

.
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Then

d2

dρ2
(ρG(ρ)) =

λ′∑
l=0

bl

(
ρ2l−1

2∑
i=0

cliρ
2i

)
1

(ρ2 + 1)λ
′+2+ 1

2

for adequate choices of cli, but with c0
0 = cλ

′
2 = 0, so that the powers of ρ are in the range of 1

to 2λ′ + 1. A straightforward index shift of the outer sum leads to

−ζλ(ρ) =
1

ρ

d2

dρ2
(ρG(ρ)) =

1

ρ

λ′∑
l=0

b̃l ρ
2l+1

(ρ2 + 1)λ
′+2+ 1

2

=:−
λ∑
l=0

al ρ
2l

(ρ2 + 1)λ+ 1
2

,

with appropriate coefficients b̃l and aλ = aλ−1 = 0 by the definition of λ′.
Performing the formal inverse operations of this procedure with suitable choices of the inte-
gration constants concludes the proof of this theorem. �

Remark 3.1.12
Similarly, we can show that for σ > 0 and ζλσ ∈ Aσ we again obtainGλ′

σ ∈ Aσ with λ′ = λ−2
and

Gλ′

σ (ρ) =
1

σ
Gλ′

(ρ
σ

)
.

We continue the previous Examples 3.1.4 and 3.1.6 of second and sixth order smoothing
kernels ζ(2), ζ(6) and state the corresponding stream function kernels G(2)

σ and G(6)
σ . We use

the formal inversion as stated in the proof of Theorem 3.1.11.

Example 3.1.13
a) For ζ(2) we obtain

G(2)(ρ) = −1

ρ

∫∫
ρ ζ(2)(ρ) dρ dρ =

1

4π

ρ2 + 3
2

(ρ2 + 1)
3
2

and therefore

G(2)
σ (ρ) =

1

σ
G(2)

(ρ
σ

)
=

1

8π

2ρ2 + 3σ2

(ρ2 + σ2)
3
2

.

b) For ζ(6) we obtain similarily

G(6)
σ (ρ) =

1

512π

128ρ10 + 704σ2ρ8 + 1584σ4ρ6 + 1848σ6ρ4 + 1050σ8ρ2 + 525σ10

(ρ2 + σ2)
11
2

.
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(a) Zeroth, second and sixth order algebraic smoothing
kernels
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(b) Zeroth, second and sixth order algebraic stream
function kernels

Figure 3.2: Visualization of three different algebraic smoothing kernels ζ and the correspond-
ing stream function kernels G. While the zeroth and second order functions are
strictly positive, the sixth order function has negative parts. This behavior does
not recur within the corresponding G.

c) Furthermore, the decompositions for this functions G(2)
σ and G(6)

σ in the sense of Theo-
rem 3.1.5 are given by

G(2)
σ (ρ) =

1

8π

(
2

(ρ2 + σ2)
1
2

+
σ2

(ρ2 + σ2)
3
2

)
,

G(6)
σ (ρ) =

1

512π

(
128

(ρ2 + σ2)
1
2

+
64σ2

(ρ2 + σ2)
3
2

+
48σ4

(ρ2 + σ2)
5
2

+
40σ6

(ρ2 + σ2)
7
2

− 70σ8

(ρ2 + σ2)
9
2

+
315σ10

(ρ2 + σ2)
11
2

)
.

Figure 3.2 shows the functions ζ(0), ζ(2) and ζ(6) together with their derived stream function
kernels G(0), G(2) and G(6). It is important to note that smoothing kernels ζ(r) of order r > 2
inherently take positive and negative values, since Is = 0 has to be satisfied.

In this section, we have seen that smoothing kernels ζ , regularized kernels ζσ and regular-
ized stream function kernels Gσ belong to the class Aσ or Srσ ⊂ Aσ, respectively. Therefore,
our goal is to formulate a theory of multipole expansions at least for members of Srσ. To
this end, the introduction of the component class Dσ will prove of great help, since mul-
tipole expansions rely on explicit treatment of derivatives of the underlying kernels. Since
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all upcoming operators and procedures are linear, the results can be directly transferred to
the classes Srσ ⊂ Aσ, Aσ and even Āσ. Before we deduce the expansion theory for func-
tions in Dσ, we introduce the mathematical background of general multipole expansions and
their error terms. The definitions and theorems of Appendix C are required for the focus on
rotationally invariant kernels, which will directly lead us to a theory for Dσ.

3.2 Multipole expansions in the context of algebraic
kernels

To embed the idea of multipole expansions into vortex particle methods, we focus on the
Poisson equation in the continuous, regularized form

∆ψσ = −ωσ

with ωσ = ω ∗ ζσ. The Green’s function approach then gives us

ψσ(x) = Gσ(x) ∗ ω(x) =

∫
Gσ(x− y)ω(y)dy,

where we have omitted the time dependency for brevity.

Now, to compute the effect on a particular point x of a distribution of particles and strengths
inside a discretized volume V , we choose a particular point x̂ ∈ V , which for convenience is
usually taken as the ‘center-of-charge’, and write

ψ̃σ(x) =
∑
y∈V

Gσ(x− y) · ω(y)vol(y) =
∑
y∈V

Gσ((x− x̂)− (y − x̂)) · αy

for x 6= x̂ and strength vector αy = ω(y)vol(y).
A Taylor series expansion in three dimensions of Gσ(x− y) yields

Gσ(x− y) = Gσ((x− x̂)− (y − x̂))

=
∞∑
j=0

(−1)j

j!

(
3∑

k=1

(yk − x̂k)
∂

∂zk

)j

Gσ(z)


z=x−x̂

or using multi-index notation (see Definition A.3 for details)

Gσ((x− x̂)− (y − x̂)) =
∑
|β|≥0

(−1)|β|

β!
(y − x̂)β ·DβGσ(z)

∣∣
z=x−x̂
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for y ∈ R3. We can insert this expression into ψ̃σ(x) and obtain the series expansion

ψ̃σ(x) =
∑
|β|≥0

φ(β)(x)

with φ(β)(x) as defined below. Since an exact evaluation of ψ̃σ(x) would imply an infinite
summation, any practical implementation requires a truncation of this sum, leading to some
finite error.

Definition 3.2.1 (Fundamentals of multipole expansions)
We define the analytical finite multipole expansion for ψ̃σ of order p ∈ N0 with error term ε(p)

as

ψ̃σ(x) =

p∑
|β|=0

φ(β)(x) + ε(p+1)(x)

with multi-index β and

φ(β)(x) :=
(−1)|β|

|β|! M (β) ·DβGσ(z)
∣∣
z=x−x̂,

M (β) :=
∑
y∈V

(y − x̂)β · αy,

ε(p+1)(x) :=
∑
|β|=p+1

∑
y∈V

κ(β)(x, y) · αy.

The error kernel κ(β) in integral form for |β| = p+ 1 is given by

κ(β)(x, y) =
(−1)p+1

p!
· (y − x̂)β ·

∫ 1

0

(1− t)p ·DβGσ(z(t))
∣∣
z(t)=x−x̂−t(y−x̂)

dt.

The factors M (β) ∈ R3 are called multipole moments.

This is the definition of the multipole expansion for arbitrary functions Gσ. Although being
a formal Taylor expansion, the coupling to physical multipole moments suggests the name
‘multipole expansion’, which we will use in the following sections. Writing φ(β)(x) as a
product of multipole moments M (β) and derivatives of Gσ has one important advantage:
since the multipole moments no longer depend on the particular point x but only on mem-
bers y of the cluster V , these can be precomputed, as we will see in Section 4.1.2. Equally,
the derivatives of Gσ are independent of the actual particles of V but only depend on their
common center-of-charge x̂. Their implementation can be decoupled from the computation
of multipole moments. This decomposition of φ(β)(x) yields the fundamental principle of a
multipole-based tree algorithm.
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Next, we apply this concept firstly to rotationally invariant kernels and finally to kernels

Gτ
σ ∈ Dσ,

yielding in the context of the Decomposition Theorem a comprehensive multipole expansion
theory for the class Aσ.

3.2.1 Notations for rotationally invariant kernels

In this section, we briefly review the ideas and notations of John K. Salmon [90]. The upcom-
ing notations and abbreviations will be used frequently for the error analysis. We combine
them into the following central definition.

Definition 3.2.2
We use the following notations and abbreviations for rotationally invariant kernels Gσ. For
a cluster V with particles y we denote the center-of-charge by x̂ and the distance between y
and x̂ by c := |y − x̂|. The maximum extension of V is given by b := sup{|y − x̂| : y ∈ V}.
For the current particle x the distance to x̂ is denoted by d := |x − x̂|. Furthermore, we use

f

(
ρ2

2

)
:= g(ρ) := Gσ(|x|) = Gσ(x)

g(j)(ρ) :=
ρ2j

g(ρ)

(
dj

dsj
f(s)

) ∣∣∣∣
ρ2

2

for j ∈ N0

e :=
x− x̂
d

dt := |x− x̂− t(y − x̂)|

et :=
x− x̂− t(y − x̂)

dt

µt :=
(y − x̂)et

c

Qj(t) :=

b j2c∑
m=0

(−1)j

2m(j − 2m)!m!
· g(dt)g

(j−m)(dt) · µj−2m
t

Rt :=
√

(d2
t + σ2)

vt := µt
dt
Rt

.

These notations are stated in order of their appearance.
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Following Salmon’s notation [90], we can simplify the derivatives Dβ of Gσ to

∂i1

∂zi1
Gσ(z)

∣∣
z=x−x̂ = f ′

( |x− x̂|2
2

)
(x− x̂)i1

∂i1+i2

∂zi1∂zi2
Gσ(z)

∣∣
z=x−x̂ = f ′′

( |x− x̂|2
2

)
(x− x̂)i1(x− x̂)i2 + f ′

( |x− x̂|2
2

)
δi1,i2

...

with the Kronecker-symbol δi1,i2 . For j := |β| we obtain

DβGσ(z)
∣∣
z=x−x̂ =

g(d)

dj

b j2c∑
m=0

g(j−m)(d) · T,

where T represents the sum over all permutations of m Kronecker-δik,ik+1
and j − 2m nor-

malized distances eik , so that each

T = (δi1,i2 . . . δi2m−1,i2m ei2m+1 . . . eij + . . .+ δij−2m+1,ij−2m+2
. . . δij−1,ij ei1 . . . eij−2m

)

consists of j!/(2m(j − 2m)!m!) permutations. To apply this expression to the multipole
moments in Definition 3.2.1 we finally define

M
(β)
(l) = δil+1,il+2

. . . δij−1,ij ·M (β) and

〈M (β)
(l) |e(k)〉 = M

(β)
(l) · eil−k+1

. . . eil .

Using this definition, φ(β) of Definition 3.2.1 can be rewritten as

φ(β) =
g(d)

dj

b j2c∑
m=0

(−1)j

2m(j − 2m)!m!
· 〈M (β)

(j−2m)|e(j−2m)〉 · g(j−m)(d).

We apply the same procedure to the error term ε(p+1) and obtain

ε(p+1)(x) =
∑
|β|=p+1

∑
y∈V

κ(β)(x, y) · αy =:
∑
y∈V

κ(p+1)(x, y) · αy

with κ(p+1)(x, y) =: κ(p+1) and

κ(p+1) =

∫ 1

0

(1− t)p
(
c

dt

)p+1 b p+1
2 c∑

m=0

(−1)p+1(p+ 1)

2m(p+ 1− 2m)!m!
· g(dt)g

(p+1−m)(dt) · µp+1−2m
t dt

= (p+ 1)

∫ 1

0

(1− t)p
(
c

dt

)p+1

· Qp+1(t)dt
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with Definition 3.2.2. For further details on this deduction, we refer to [90].

We have now reviewed the most important notations of multipole expansions for rotationally
invariant kernels. In order to apply this approach to a given problem, we have to specify
the kernels Gσ, since both expansion and its remainder need the explicit evaluation of the
derivatives of Gσ and therefore g(j−m)(ρ). For regularized vortex particle methods, we have
already defined the kernels of interest using the class Aσ and its component class Dσ. In
the next section, we will fully exploit the structure of these rotationally invariant kernels and
deduce an appropriate and comprehensive multipole expansion theory.

3.2.2 Multipole expansions for decomposed smoothing kernels

We recall the definition of the component class Dσ

Dσ :=

{
g ∈ C∞(R) : g(ρ) =

1

(ρ2 + σ2)τ
, τ > 0

}
.

Since all members of this class are rotationally invariant, the notations from the past section
are directly applicable for every Gτ

σ ∈ Dσ. Of course, this is also true for every Gσ ∈ Aσ,
but stating an explicit expression for the derivatives of Gσ or f , respectively, and deducing
the error terms is not straightforward. Here, the Decomposition Theorem is of great help: a
linear combination of these functions resembles every Gσ ∈ Aσ, so that the generalization of
the upcoming theory to Aσ and even Āσ is straightforward.

Now, our primary goal is to bound the error kernel κ(p+1) in terms of the multipole expansion
order p. This requires an in-depth estimation of Qp+1(t). Through the functions g(dt) and
g(p+1−m)(dt), an explicit kernel Gτ

σ ∈ Dσ and its derivatives influencesQp+1(t) substantially.
Therefore, the first step is to find an explicit statement for the derivatives of f τ (s) with

f τ
(
ρ2

2

)
= Gτ

σ(ρ)

for Gτ
σ ∈ Dσ. To this end, the following theorem expresses the derivatives in terms of the

Pochhammer symbol (τ)k of Definition C.1.

Theorem 3.2.3
For all τ > 0, s > 0, σ ≥ 0 and k ∈ N0, the k-th derivative of f τ can be written as

dk

dsk
f τ (s) = (−1)k

2k (τ)k
(2s+ σ2)τ+k

.
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Proof. We prove this result by induction over k ∈ N0.
Let τ > 0, s > 0, σ ≥ 0, then we obtain for k = 0

d0

ds0
f τ (s) = (−1)0 20 (τ)0

(2s+ σ2)τ
=

1

(2s+ σ2)τ
= f(s),

being the basis for our induction.
Assuming that for a given k ∈ N0 the expression for the derivatives is correct, we can write

dk+1

dsk+1
f τ (s) =

d

ds

(
dk

dsk
f τ (s)

)
and by using the induction hypothesis

dk+1

dsk+1
f τ (s) =

d

ds

(
(−1)k

2k (τ)k
(2s+ σ2)τ+k

)
= (−1)k 2k (τ)k

d

ds

(
1

(2s+ σ2)τ+k

)
=

(−1)k+1 2k+1

(2s+ σ2)τ+k+1
· (τ)k · (τ + k).

From Theorem C.2 we have

(τ)k · (τ + k) = (τ)k+1 ,

so that

dk+1

dsk+1
f τ (s) = (−1)k+1

2k+1 (τ)k+1

(2s+ σ2)τ+k+1
,

which proves the statement for k + 1. �

With this result we are able to rewrite and bound Qτj (t) of Definition 3.2.2 – now for the
function Gτ

σ – in terms of Gegenbauer polynomials Cτj , as they are defined in Definition C.3.
The terms Rt and vt are taken from Definition 3.2.2 as well.

Theorem 3.2.4
For all τ > 0, j ∈ N0 and t ∈ (0, 1), we have

Qτj (t) =
1

R2τ
t

·
(
dt
Rt

)j
· Cτj (vt)

and

|Qτj (t)| ≤
1

R2τ
t

·
(
dt
Rt

)j
·

(2τ)j
j!

.
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Proof. We start from Definition 3.2.2 of Qj(t) or Qτj (t), respectively, which gives us

Qτj (t) =

b j2c∑
m=0

(−1)j

2m(j − 2m)!m!
· gτ (dt)gτ,(j−m)(dt) · µj−2m

t

with

gτ (dt)g
τ,(j−m)(dt) = f τ

(
d2
t

2

)
· d

2j−2m
t

gτ (dt)

dj−m

dsj−m
f τ (s)

∣∣∣∣ d2t
2

= d2j−2m
t

dj−m

dsj−m
f τ (s)

∣∣∣∣ d2t
2

.

Theorem 3.2.3 yields

gτ (dt)g
τ,(j−m)(dt) = d2j−2m

t · (−1)j−m ·
2j−m (τ)j−m

(d2
t + σ2)τ+j−m ,

which in terms of Rt =
√

(d2
t + σ2) can be written as

gτ (dt)g
τ,(j−m)(dt) = (−1)j−m · (τ)j−m · 2m · 2j−2m · d2j−2m

t

R2j−2m+2τ
t

.

Inserting this into Qτj (t), we obtain

Qτj (t) =

b j2c∑
m=0

(−1)m · (τ)j−m
(j − 2m)!m!

· 2j−2m · µ
j−2m
t

R2τ
t

·
(
dt
Rt

)2j−2m

=
1

R2τ
t

·
(
dt
Rt

)j
·
b j2c∑
m=0

(−1)m · (τ)j−m
(j − 2m)!m!

· (2vt)j−2m

with vt = µt
dt
Rt

, so that |vt| ≤ 1. Theorem C.4 then yields

Qτj (t) =
1

R2τ
t

·
(
dt
Rt

)j
· Cτj (vt)

and therefore

|Qτj (t)| ≤
1

R2τ
t

·
(
dt
Rt

)j
· |Cτj (vt)|

≤ 1

R2τ
t

·
(
dt
Rt

)j
·

(2τ)j
j!

.

�

This bounding of Qτj (t) paves the way for an estimation of the error kernel κτ(p+1) of the
function Gτ

σ.
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Theorem 3.2.5
For all p ∈ N0 and |x− x̂| = d > c = |y − x̂|, the error kernel κτ(p+1) is bound by

|κτ(p+1)| < D2τ−1(p+ 1) · 1

(d− c)2τ
·
(

c

d− c

)p+1

,

where D2τ−1(s) is a polynomial in s of degree 2τ − 1 ∈ N0.

Proof. Using Definition 3.2.2, the error kernel κτ(p+1) of Gτ
σ is defined by

κτ(p+1) = (p+ 1)

∫ 1

0

(1− t)p
(
c

dt

)p+1

· Qτp+1(t) dt

for p ∈ N0. We apply Theorem 3.2.4 and obtain

κτ(p+1) = (p+ 1)

∫ 1

0

(1− t)p
(
c

Rt

)p+1
1

R2τ
t

· Cτp+1(vt)dt

= (p+ 1) · cp+1

dp+1+2τ
·
∫ 1

0

Cτp+1(vt) · (1− t)p
(
d

Rt

)p+1+2τ

dt.

The same theorem gives us then

|κτ(p+1)| ≤ (p+ 1) · cp+1

dp+1+2τ
·

(2τ)p+1

(p+ 1)!
·
∫ 1

0

(1− t)p
(
d

Rt

)p+1+2τ

dt

=: D2τ−1(p+ 1) · (p+ 1) · cp+1

dp+1+2τ
·
∫ 1

0

(1− t)p
(
d

Rt

)p+1+2τ

dt,

where

D2τ−1(p+ 1) :=
(2τ)p+1

(p+ 1)!
=

(p+ 2)2τ−1

Γ(2τ)

is a polynomial in p+ 1 of degree 2τ − 1 if 2τ − 1 ∈ N0.
We define

I(p+ 1) := (p+ 1)

∫ 1

0

(1− t)p
(
d

Rt

)p+1+2τ

dt.

With Definition 3.2.2 of dt we can write

d2
t = (x− x̂− t(y − x̂))T (x− x̂− t(y − x̂)) = d2 − 2(x− x̂)T (y − x̂)t+ c2t2

58
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and therefore
d2
t

d2
= 1− 2µαt+ α2t2 =: d̃2

t (µ),

µ :=
(x− x̂)T (y − x̂)

dc
,

α :=
c

d
.

We have |µ| < 1 and therefore d̃2
t (µ) > d̃2

t (1) for fixed t and α, so that

R2
t

d2
=
d2
t + σ2

d2
> d̃2

t (1) +
σ2

d2
=: d̃2

t (1) + β2.

With d2
t (1) = (1− αt)2 this yields(

d

Rt

)p+1+2τ

<
1

((1− αt)2 + β2)
p+1+2τ

2

≤ 1

(1− αt)p+1+2τ

for σ ≥ 0. We insert this estimation into I(p+ 1) and obtain with Theorem C.6

I(p+ 1) < (p+ 1)

∫ 1

0

(1− t)p
(1− αt)p+1+2τ

dt = H(1, p+ 1 + 2τ ; p+ 2;α),

since we assumed α < 1. Using Definitions C.3, C.5 and Theorems C.2, C.4 this leads to

I(p) <
∞∑
n=0

(1)n · (p+ 1 + 2τ)n
(p+ 2)n

· α
n

n!

=
∞∑
n=0

(p+ 1 + 2τ)n ·
Γ(p+ 2)

Γ(p+ 2 + n)
· αn

≤
∞∑
n=0

(p+ 1 + 2τ)n ·
Γ(p+ 2)

Γ(p+ 2)Γ(n+ 1)
· αn

=
∞∑
n=0

(p+ 1 + 2τ)n
n!

· αn

=
∞∑
n=0

C
p+1+2τ

2
n (1) · αn =

1

(1− α)p+1+2τ
.

We now return to the estimation of κτ(p+1) and insert our estimate of I(p + 1). We finally
obtain

|κτ(p+1)| ≤ D2τ−1(p+ 1) · cp+1

dp+1+2τ
· I(p+ 1)

< D2τ−1(p+ 1) · cp+1

dp+1+2τ
· 1

(1− α)p+1+2τ

= D2τ−1(p+ 1) · 1

(d− c)2τ
·
(

c

d− c

)p+1

.
�
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Remark 3.2.6
It is worth noting that the estimate

1

((1− αt)2 + β2)
p+1+2τ

2

≤ 1

(1− αt)p+1+2τ

is actually not necessary. In [92], we find an explicit formulation of the integral with β2

included. However, as this involves generalized hypergeometric functions with nontrivial
arguments, we cannot expect to find such a closed form for |κτ(p+1)| as stated in the present
result. Consequently, the estimation is decoupled from the core radius σ, which might leave
room for further optimizations.

This result can be already used to show convergence of the multipole expansion. However,
the following section shows that we can extend the convergence region significantly by incor-
porating the core radius σ.

3.2.3 Convergence of the multipole expansion

If we take Theorem 3.2.5 as a basis for convergence analysis, we can state

d > 2c⇒ lim
p→∞

κτ(p+1)(x, y) = 0.

If this relation were true in the opposite direction, then the condition d > 2c would be not
only sufficient but also necessary, limiting the convergence region of the series expansion
significantly. However, the following theorem shows that this relation cannot be reversed, i.e.
that the convergence condition can be improved further. We again adapt the following result
from [90].

Theorem 3.2.7
For all τ > 0 and y ∈ V we have

lim
p→∞

κτ(p+1)(x, y) = 0 for all x ∈ Uy

with Uy := {x : |x− x̂| >
√
|y − x̂|2 − σ2}.

Proof. We return to the estimation of κτ(p+1) in the proof of Theorem 3.2.5, stating

|κτ(p+1)| ≤ D2τ−1(p+ 1) · (p+ 1) · cp+1

dp+1+2τ
·
∫ 1

0

(1− t)p
(
d

Rt

)p+1+2τ

dt.
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To analyze this expression for increasing p, we define

K(p+ 1) := D2τ−1(p+ 1) · (p+ 1) ·
(

(1− t) · αd
Rt

)p
,

omitting terms which do not depend on p. Obviously, we have

lim
p→∞

K(p+ 1) = 0 for (1− t) · αd
Rt

< 1.

Using

d2
t

d2
= 1− 2µαt+ α2t2

we have to verify

(1− t)2α2 < 1− 2µαt+ α2t2 + β2

or α2 < 1 + β2, since |µ| < 1. This is clearly ensured, if d >
√
c2 − σ2. �

The next result detaches this statement from the actual y ∈ V . Finally, this yields a conver-
gence and error term statements for the interaction between a particle located at x and the
multipole origin x̂ of a cluster V in contrast to direct interactions between x and all members
y of V .

Theorem 3.2.8 (Convergence Theorem for multipole expansions)
The multipole expansion for Gτ

σ ∈ Dσ with

Gτ
σ(x) =

1

(|x|2 + σ2)τ

converges for all τ > 0 and all x outside a ball with radius
√
b2 − σ2, centered on x̂, with

b := sup{|y − x̂| : y ∈ V}, i.e. we have

lim
p→∞

ετ(p+1)(x) = 0 for all x ∈ U

with U := {x : |x− x̂| = d >
√
b2 − σ2}.

Furthermore, for d > b an explicit error bound on ετ(p+1) is given by

∣∣ετ(p+1)(x)
∣∣ ≤ D2τ−1(p+ 1) · M̄(0)

(d− b)2τ
·
(

b

d− b

)p+1

,

where

M̄(0) :=
∑
y∈V

|αy|,

D2τ−1(s) :=
(2τ)s
s!

.
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Proof. With c = |y − x̂| ≤ sup{|y − x̂| : y ∈ V} = b and∣∣ετ(p+1)(x)
∣∣ ≤∑

y∈V

|κτ(p)(x, y)| · |αy|

this result follows directly from Theorem 3.2.7. �

Remark 3.2.9
Besides the region of convergence, this theorem gives us the convergence rate, at least for
d > 2b. This rate decreases for increasing τ , because the degree of the polynomial D2τ−1(s)
increases. However, the speed of convergence is determined by a geometric sequence whose
basis is controlled by the ratio of cluster size and distance to this cluster. Some examples are
shown in the next section.

This Convergence Theorem already covers multipole expansions for a huge range of kernels.
While the error estimate is independent of σ, the convergence region is clearly influenced by
this parameter. Before we generalize this result further by applying it to algebraic smoothing
kernels and therefore vortex particle methods, we discuss our result and place it into the
context of other results covering similar ρ−τ -kernels.

3.2.4 Discussion and implications

Both, the convergence result and error analysis of the previous section are based on the ap-
proach of Salmon [90] and generalize the ideas therein, covering not only the (softened)
ρ−1-kernel but also all members of the classes Dσ. Since the (softened) ρ−1-kernel is a mem-
ber of Dσ with core size σ ≥ 0 and τ = 1/2 the present theory can be seen as a substantial
extension of Salmon’s concept.

However, it should be mentioned that a direct application of our theory to this particular kernel
does not reproduce the error bound of [90], which reads in our terms (see Definition 3.2.2)∣∣∣ε 1

2
,S

(p+1)(x)
∣∣∣ ≤ M̄(0)

d− b ·
(
b

d

)p+1

.

Here, the denominator of the last factor does not depend on the cluster extension b, causing a
slightly better convergence behavior in multipole order p for fixed d and b as well as a more
rapid decay of the error for fixed p and b but increasing d. The reason for this difference can
be found in the estimation of I(p + 1) in the proof of Theorem 3.2.5. Only for the particular
value τ = 1/2 we can write

∞∑
n=0

(1)n · (p+ 1 + 2τ)n
(p+ 2)n

· α
n

n!
=
∞∑
n=0

αn =
1

1− α,
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detaching α from the p-dependency. This reduction seems to be impossible for general τ > 0,
making the case τ = 1/2 a very special one, which is a well-known conclusion in the field of
Fast Multipole Methods as well [93].

Although in explicit form, the drawback of Salmon’s error bound is its non-linearity in d. For
a numerical implementation one can use error bounds as a criterion to decide whether or not
an interaction between a particle located at x and a cluster V with multipole origin x̂ and dis-
tance d is acceptable regarding its induced approximation error. If not, the cluster is rejected
and its sub-clusters are examined. These so-called ‘multipole acceptance criteria’ (MAC)
are crucial for the development of multipole-based tree codes, especially for Barnes-Hut tree
codes [82, 94, 95]. Using error bounds as MAC leads to so-called ‘data-dependent’ MAC, i.e.
criteria taking into account the actual particle and charge distribution inside a cluster and not
only its size or location [55, 95]. However, an error bound with non-linear dependence on d
cannot be rewritten explicitly in terms of d, which makes their evaluation very expensive. In
contrast to Salmon’s error bound, our result of Theorem 3.2.8 can be easily rewritten to act
as a data dependent MAC for any given user-specified error per interaction ∆ε. Demanding

|ετ(p+1)(x)| ≤ D2τ−1(p+ 1) · M̄(0)

(d− b)2τ
·
(

b

d− b

)p+1

≤ ∆ε,

we can write

d ≥ b+

(D2τ−1(p+ 1) · M̄(0) · bp+1

∆ε

) 1
p+1+2τ

,

so that for all d fulfilling this inequality the interaction between particle and multipole induces
a maximal error of ∆ε.

Furthermore, the Convergence Theorem motivates another, much simpler and faster multipole
acceptance criterion. Here, the maximum distance between multipole origin and all members
of the cluster – which is b in our notation – is compared to the distance between x and the
multipole origin x̂ – denoted d in our theory (see Definition 3.2.2 for notation). A tunable and
user-defined parameter θ controls the ratio b/d, so that the multipole expansion is accepted if
and only if

b

d
< θ.

This MAC is commonly called ‘Bmax-MAC’ and more on this topic can be found in [95] and
Section 4.1.3.

To get an impression of the behavior of the error terms∣∣ετ(p+1)(x)
∣∣ ≤ D2τ−1(p+ 1) · M̄(0)

(d− b)2τ
·
(

b

d− b

)p+1

=
(2τ)p+1

(p+ 1)!
· M̄(0)

(d− b)2τ
·
(

b

d− b

)p+1
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(a) Error terms for increasing distance d with b = 1
and p = 2.
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(b) Error terms for increasing order p with d = 4 and
b = 1.

Figure 3.3: Visualization of the error terms ε[p + 1, 1/2], ε[p + 1, 3/2] and ε[p + 1, 11/2] from
Theorem 3.2.8 for the corresponding kernels Gτ

0 . For abbreviation we define
ετ(p+1)(x) = ε[p + 1, τ ]. We choose σ = 0 and all other constants such as M̄(0)

as one. In (a), quadrupole order p = 2 reflects the common usage in Barnes-Hut
tree codes, while in (b) d = 4 is an average value for the distance to a cluster.

of Theorem 3.2.8, we visualize them for different kernels in Figure 3.3. We choose τ = 1/2,
τ = 3/2 and τ = 11/2, covering different components as they appear in the decomposition
of the regularization kernels. Furthermore, we set σ = 0, since the error estimate does not
depend on σ, so that the corresponding kernels are

G
1
2
0 (ρ) =

1

ρ
, G

3
2
0 (ρ) =

1

ρ3
and G

11
2

0 (ρ) =
1

ρ11
.

All other constants such as M̄(0) are fixed to one for the sake of simplicity. For abbreviation
we define ετ(p+1)(x) = ε[p+ 1, τ ]. The choice p = 2 reflects the common usage in tree codes,
while d = 4 is an average value for the distance to a cluster [55, 94, 95]. For increasing
τ the rate of convergence tends to be significantly better for larger d with fixed p, but with
increasing p and fixed d low numbers of τ provide a slightly better rate.

To compare our result, we cite three different approaches and error bounds and compare
them to Theorem 3.2.8. We reformulate these results to match our notation and again set all
constants to one:

a) Chowdhury and Jandhyala [96]∣∣∣ετ,CJ
(p+1)(x)

∣∣∣ ≤ 1

dτ
· (τ)p+1(

1− b
d

)τ+p+1 ·
(
b

d

)p+1

,
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(a) Comparison of error terms for increasing distance
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(b) Comparison of error terms for increasing multipole
order p with b = 1, d = 4, τ = 3

2 .

Figure 3.4: Comparison of other error terms taken from [96, 97, 98], exemplarily for G
3
2
0 .

Again, we choose σ = 0 and all other emerging constants like total charge or
cluster size as one.

b) Duan and Krasny [97]∣∣∣ετ,DK
(p+1)(x)

∣∣∣ ≤ 1

dτ
· 1

Γ(τ)
· dτ−1

dsτ−1

(
sp+τ

1− s

) ∣∣∣∣
s= b

d

,

c) Srinivasan, Mahawar and Sarin [98]∣∣∣ετ,SMS
(p+1)(x)

∣∣∣ ≤ 1

dτ
· B(

1− b
d

) · ( b
d

)p+1

,

B =

p∑
n=0

bn2 c∑
m=0

∣∣∣∣∣(τ)n−m ·
(
τ − 1

2

)
m(

3
2

)
n−m ·m!

· (2n− 4m+ 1)

∣∣∣∣∣ .
While the first error term (CJ) basically has the same shape like ours – and it is derived in a
similar way – both the second (DK) and third term (SMS) lack an explicit, closed form, so
that the numerical derivation necessary for data dependent MACs is much more expensive,
making them unfavorable in this case.

Figure 3.4 shows the comparison of the different approaches for

G
3
2
0 =

1

ρ3
.
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Here, σ = 0 and all other emerging constants like total charge or cluster size are set to one.
For p = 2 all competing error terms are inferior for d > 6, at least for this particular example.
However, with fixed distance d and increasing multipole order p, we obtain a different result.
While the CJ-error term lacks convergence at all, the other two error bounds perform better
for p > 14. Especially the DK-formula shows its strength already for small values of p. Nev-
ertheless, since there seems to be no closed form at hand for this error bound, our estimation
is still advantageous in this case. For different values of τ the observations above are roughly
the same, but with slightly different thresholds for p and d.

We can conclude that the resulting error bound of Theorem 3.2.8 is in good agreement with
already existing analyses in [96, 97, 98] for ρ−τ -kernels, but with the advantages of extend-
ing the multipole expansion theory to softened kernels and deriving an error bound in explicit
shape. In the following section, we generalize this result to the class Aσ of algebraic smooth-
ing kernels by making use of the Decomposition Theorem and extend it further to cover field
derivatives needed in vortex particle methods.

3.2.5 Application to vortex particle methods

The rate of convergence as well as the error bound for a combined smoothing kernelGσ ∈ Aσ
are determined by the linear combination of the Gτ

σ, e.g. with

Gσ(x) =
λ∑
l=0

blG
l+ 1

2
σ (x),

with adequate choices of coefficients bl. The convergence condition of Theorem 3.2.8 applies
here as well, but an explicit error bound depending only on λ and p cannot be stated in
general. The reason for this drawback is the (d− b)2l+1 term in the denominator. We have to
distinguish between

∣∣ε(p+1)(x)
∣∣ ≤ D̃2λ(p+ 1) · M̄(0)

(d− b)2λ+1
·
(

b

d− b

)p+1

for d− b < 1,

and ∣∣ε(p+1)(x)
∣∣ ≤ D̃2λ(p+ 1) · M̄(0)

(d− b) ·
(

b

d− b

)p+1

for d− b > 1,

where

D̃2λ(p+ 1) :=
λ∑
l=0

|a(l)
λ−l| · σ2l · D2l(p+ 1)

is a polynomial in p of degree 2λ.
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We continue our previous Example 3.1.13 of the second and sixth order algebraic kernelsG(2)
σ

andG(6)
σ . Applying the Decomposition Theorem to obtain explicit kernels, we can circumvent

the aforementioned drawback.

Example 3.2.10
a) The decomposition of G(2)

σ into G
1
2
σ and G

3
2
σ , as illustrated in Example 3.1.13, yields

∣∣∣ε 1
2

(p+1)(x)
∣∣∣ ≤ D0(p+ 1) · M̄(0)

d− b ·
(

b

d− b

)p+1

=
M̄(0)

d− b ·
(

b

d− b

)p+1

,∣∣∣ε 3
2

(p+1)(x)
∣∣∣ ≤ (p+ 2)(p+ 3)

2
· M̄(0)

(d− b)3
·
(

b

d− b

)p+1

,

so that the linear combination of G
1
2
σ and G

3
2
σ with b0 = 1

4π
and b1 = σ2

8π
leads to

∣∣ε(p+1)(x)
∣∣ ≤ M̄(0)

4π(d− b) ·
(

b

d− b

)p+1

·
(

1 +
(p+ 2)(p+ 3)

4
· σ2

(d− b)2

)
.

b) Furthermore, we have

G(6)
σ (ρ) =

5∑
l=0

blG
l+ 1

2
σ (ρ)

and therefore

|ε(p+1)(x)| ≤ M̄(0)

d− b ·
(

b

d− b

)p+1

·
(

128

512π
+

5∑
l=1

al
Γ(2l + 1)

l∏
j=0

(p+ 2 + j)
σ2l

(d− b)2l

)
,

where al are the coefficients of G
l+ 1

2
σ .

It is worth noting that the whole theory can also be applied to the rezoning concept described
in Section 2.2.1 and even to the particle strength exchange (PSE) scheme that has been intro-
duced in Section 2.2.3. The rezoning approach recomputes the vorticity after a few time steps
on new particle locations yq, q ∈M, |M| = M , with the well-known formula

ωmesh(yq) =
∑
p∈P

ζσ(yq − xp) · ωpart(xp)volp,

i.e. using the standard regularized smoothing kernel ζσ and the given vorticity values ωpart(xp).
Since of course ζσ ∈ Aσ, this approach can be directly implemented with a multipole-based
fast summation method, supported by the theory of this work. The computational costs in
comparison to a direct summation are then reduced from O(NM) to at least O(M logN).
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To see that even PSE can be handled by this theory, we recall the central idea of this approach.
The diffusion operator ∆ is replaced by an integral operator, which is then discretized using
particles, yielding

∆ω(x) ≈ ∆̃σω(x) =
1

σ2

∑
q∈P ′

ησ(x− xq) · (ω(xq)− ω(x))volq.

We have seen that one convenient way of defining this approximation kernel η is by means of
the smoothing kernel ζ with

η(x) := −2
∇ζ(x) · x
|x|2 .

Again, the Decomposition Theorem is of great help here.

Theorem 3.2.11
For ζλ ∈ A1 and λ ∈ N0, we obtain ηλ′ ∈ A1 with λ′ = λ+ 1.

Proof. Without loss of generality, we can restrict ourselves to ζτ ∈ D1, since following
Theorem 3.1.5 each ζσ ∈ A1 is a linear combination of functions of D1. For |x| = ρ and

ζτ (ρ) =
1

(ρ2 + 1)τ

we have

∇ζτ (x) = −x · 2τ

(|x|2 + 1)τ+1

and therefore

ητ
′
(x) = −2

∇ζτ (x) · x
|x|2 = 4τ

x · x
|x|2 · (|x|2 + 1)τ+1

=
4τ

(|x|2 + 1)τ+1
.

Therefore, ητ ′ ∈ D1 with τ ′ = τ + 1, so that a combined approximation kernel is again a
member of A1. �

This short theorem shows that even PSE can profit from the theory presented. Discretizing
the integral operator with M quadrature particles, the complexity of this method is reduced
from O(NM) to at least O(N logM). However, the multipole moments are very different
from the ones we already introduced in Definition 3.2.1. The coefficients do not only depend
on the vorticity ω(xq) and the volume volq of the quadrature points but also on the vorticity
ω(x) at the target point, which does not affect the theoretical complexity of this approach but
its implementation.
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Since we now have a closed multipole expansion theory for algebraic smoothing functions at
hand, the regularized and discretized vorticity ω̃σ and stream function ψ̃σ with

ω̃σ(x) =
∑
p∈P

ζσ(x− xp) · αp,

ψ̃σ(x) =
∑
p∈P

Gσ(x− xp) · αp

and even rezoning and PSE can be computed using a multipole-based fast summation method.
However, as we have seen in Algorithm 2.1, vortex particle methods require the evaluation of
the velocity

uσ(xp) =
∑
q∈P

∇Gσ(xp − xq)× αq

and the inviscid vorticity update

dαp
dt

= (αp · ∇) ũσ(xp).

In each of these two equations the initial regularized stream function kernel Gσ is modified
by a differential operator. Using the Decomposition Theorem, these operators are applied
to the components Gτ

σ of Gσ, as we have already seen in Theorem 3.2.11. The following
theorem shows that the general convergence criterion of Theorem 3.2.8 is not affected by
these modifications.

Theorem 3.2.12
The multipole expansions for ∇Gτ

σ and ∇2Gτ
σ with Gτ

σ ∈ Dσ converge for all τ > 0 and all
x outside a ball with radius

√
b2 − σ2, centered on x̂, with b := sup{|y − x̂| : y ∈ V}.

Proof. In this proof we use the same idea as in Theorem 3.2.5. Starting from the expression

κτ(p+1) = (p+ 1) · cp+1

dp+1+2τ
·
∫ 1

0

Cτp+1(vt) · (1− t)p
(
d

Rt

)p+1+2τ

dt,

we obtain by differentiation

∇κτ(p+1) = (p+ 1) · cp+1 ·
∫ 1

0

(1− t)p · ∇
(Cτp+1(vt)

Rp+1+2τ
t

)
dt,

where

∇
(Cτp+1(vt)

Rp+1+2τ
t

)
=− (p+ 1 + 2τ)

Rp+2+2τ
t

· Cτp+1(vt) ·
(x− x̂− t(y − x̂))

Rt

+
1

Rp+1+2τ
t

y − x̂
c
·
(

1− d2
t

R2
t

)
1

Rt

(
d

ds
Cτp+1(s)

) ∣∣∣∣
s=vt

.
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With Theorem C.4 we have∣∣∣∣∇(Cτp+1(vt)

Rp+1+2τ
t

)∣∣∣∣ ≤ 1

Rp+2+2τ
t

(
(p+ 1 + 2τ) ·

(2τ)p+1

(p+ 1)!
+ 2τ ·

(2τ + 2)p
p!

)
=

2τ

Rp+2+2τ
t

(2τ + 2)p+1

(p+ 1)!
.

Therefore, ∣∣∇κτ(p+1)

∣∣ ≤ D̃2τ+1(p+ 2) · (p+ 1) · cp+1 ·
∫ 1

0

(1− t)p 1

Rp+2+2τ
t

dt,

where

D̃2τ+1(p+ 2) := 2τ
(2τ + 2)p+1

(p+ 1)!
=

2τ

Γ(2τ + 2)
· (p+ 2)2τ+1

is a polynomial in p+ 2 of degree 2τ + 1 ∈ N0. Following the proof of 3.2.5, we obtain∣∣∇κτ(p+1)

∣∣ < D̃2τ+1(p+ 2) · 1

(d− c)2τ+1
·
(

c

d− c

)p+1

,

yielding a comparable error bound for the expansion of∇Gτ
σ. Moreover, the procedure of the

proof of Theorem 3.2.7 is directly applicable to the estimation of∇κτ(p+1), so that

lim
p→∞
∇κτ(p+1)(x, y) = 0 for all x ∈ Uy

with Uy := {x : |x− x̂| >
√
|y − x̂|2 − σ2}.

The same approach is valid for the expansion of ∇2Gτ
σ. Multiple applications of differential

formulas give ∣∣∇2κτ(p+1)

∣∣ < Ẽ(p) · 1

(d− c)2τ+2
·
(

c

d− c

)p+1

with a suitable polynomial Ẽ(p). �

Remark 3.2.13
In both cases a direct statement of an error bound for the corresponding error terms is not
preferable since the operands coupling kernel derivatives and multipole moments, i.e. cross-
product and vorticity-vector, are non-trivial. However, from an algorithmic point of view,
both expansions use only permutations of simple multipole moments

M
i1...ij
(j) =

∑
yp∈V

(yp − x̂)i1 · . . . · (yp − x̂)ij · αp,

as given by Definition 3.2.1. Having been precomputed, these moments can be used for the
derivation of stream function, velocity and vorticity update. Again, we note that this is not
valid for a multipole-based implementation of PSE.
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Common implementations of multipole-based tree codes for regularized vortex particle meth-
ods often make use of the second order Gaussian kernel and its stream function kernel [55, 99]

G(ρ) :=
1

4πρ
erf

(
ρ√
2

)
.

Two possible ways are considered: In [99] the Coulomb-potential ρ−1 is used as an approx-
imation of G(ρ) for ρ > 4, since the multipole expansion theory is well-known in that case.
This procedure requires direct interactions within the area of ρ ≤ 4, where the multipole
expansion is not valid. In [55], a full expansion of the Gaussian kernel is implemented, at
least for ρ > 5. Both approaches have the disadvantage of an expensive treatment of the
error function and their derivatives and are restricted to second-order regularization, at least
for this simple formulation. The usage of algebraic kernels in the present work has no such
drawbacks. Their implementation and calculation is simple and with the procedure presented
in Theorem 3.1.3 new kernels with arbitrary order can be derived easily.

It is worth mentioning that a first step towards a multipole expansion theory with algebraic
kernels has been presented in [100]. The theory derived there is focused on the second order
algebraic kernel and the error term is reproduced by our theory for G(2)

σ . Moreover, they
describe a generalization of a recurrence relation for the multipole expansion of this kernel,
originally proposed in [101]. With the help of the Decomposition Theorem, this relation
scheme can easily be extended to the classes Srσ, Aσ and Āσ, which is not part of our work,
though.

3.3 Summary

In this chapter, we have adapted the concept of multipole expansions for the case of regu-
larized vortex particle methods using algebraic kernels. Figure 3.5 updates the introductory
choice between cutoff-based and multipole-based methods in favor of the latter approach.
The definition and analysis of multipole expansions for algebraic kernels of arbitrary order
was the topic of this chapter.

Figure 3.5: The transition from analytic equations to multipole-based methods.
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3.3 SUMMARY

We have derived a new and comprehensive class Aσ of algebraic smoothing kernels, com-
prising and extending the well-known zeroth and second order algebraic kernels. We have
shown that within the framework of this class, kernels of arbitrary order can be derived eas-
ily. An elegant decomposition into members of a much simpler class Dσ was the basis for
an extensive analysis of Aσ and its members. Especially, this decomposition eased the ac-
cess to multipole expansion theory radically. We derived analytical error bounds and deduced
convergence conditions for arbitrary members of both classes, which turned out to nicely ex-
tend well-known results for ρ−n kernels to their regularized counterparts. This theory now
yields a reliable and mathematically well-grounded basis to apply multipole-based tree codes
to N -body problems arising from vortex particle methods with algebraic kernels of arbitrary
order.

In terms of Algorithm 2.1, we are now able to replace the expensive and dominating sub-
routine COMPUTEINTERACTION with a call to TREECODE. With this modification we are
able to reduce the complexity from O(N2) to at least O(N logN), making simulations with
millions of particles economically reasonable.

In the next chapter, we will address the implementation, analysis and application of one of
these multipole-based algorithms, namely the parallel Barnes-Hut tree code PEPC [102]. Al-
though the step from O(N2) to O(N logN) is already an important improvement, a careful
parallelization can increase usability and speed of the algorithm even further. Besides an
overview of the workflow, we will therefore highlight the parallelization strategy and its im-
pact on performance and capabilities as well.
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4 Implementation of a parallel tree
code for vortex dynamics

In the previous chapter, we have formulated the mathematical basis for multipole-based meth-
ods with algebraic kernels. The most important property of this theory for an implementation
is the separation of multipole moments and multipole expansion as stated in Definition 3.2.1.
In multipole-based algorithms, the simulation region is typically decomposed into a hierar-
chical oct-tree structure. This data structure allows for an efficient a priori computation of
the multipole moments. Starting from particle-level, the multipole moments are shifted down
the tree to root-level, equipping each node with moments up to a given order p. The tree
is then traversed to identify interacting particles and nodes, i.e. groups of distant particles.
Figure 4.1 illustrates two related implementations: the Fast Multipole Method (FMM) [83]
and the Barnes-Hut tree code [82]. Besides the mathematical motivation, both methods share
the octal decomposition scheme of the simulation region, i.e. the way of structuring the par-
ticles into boxes. Furthermore, both methods implement the precomputation of the multipole
moments in a similar way, so that the global construction of the tree-like data structure can be
seen as the common feature of both approaches. However, they differ in some fundamental
aspects, which we highlight in the following.

Barnes-Hut tree code – The Barnes-Hut tree code explicitly makes use of the multipole ex-
pansion as explained in Section 3.2. After the construction of the tree structure with fixed,

Figure 4.1: Fast summation using FMM or Barnes-Hut tree codes?
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predefined expansion order p, the multipole acceptance criterion (MAC) can be used to sys-
tematically traverse the tree and to identify the interacting particles or nodes. However, this
process is always performed for a single particle and not for a whole group of particles. For
each particle the tree is traversed, starting from root-level, until for one node the MAC is
satisfied. Therefore, one of the interacting partners always is a particle, motivating the term
‘particle-box-interaction’. This concept leads to an O(N logN)-scheme [90, 103].

FMM – While the Barnes-Hut tree code can be seen as a direct implementation of the the-
ory of multipole expansions of Section 3.2, the FMM exploits the grouping of particles even
further. Here, so-called ‘box-box-interaction’ are explicitly allowed and required. This im-
plies that not only operators for the down-shift of multipole moments are necessary, but also
operators for up-shifting as well as expansion transformations. These operators often rely on
a spherical expansion of the kernel, in contrast to the Cartesian approach of Barnes-Hut tree
codes. Furthermore, the expansion order p is commonly kept variable to allow for a rigor-
ous error-control scheme [104, 105]. The consistent use of box-box-interactions yields an
O(N)-scheme, thus minimizing the practical complexity of N -body simulations [91].

Multipole-based methods have become the standard ‘mesh-free’ means for long-range N -
body simulations across a broad range of fields [89]. Their sophisticated mathematical back-
ground allows for rigorous error estimates and convergence analyses. In contrast to the choice
of Chapter 3 – between multipole-based and cutoff-based methods – the present decision is
motivated by design aspects and not by a clear weighing of pros and cons. The theory de-
veloped in this work is valid and applicable for generic multipole-based approaches in the
context of vortex particle methods with algebraic smoothing kernels. However, we have left
out the derivation of the two additional FMM-operators, which would exceed the scope of
this work. To a certain degree, the Barnes-Hut tree code approach can be interpreted as a re-
duced FMM. This reduction comes at the costs of an additional logN -term in the theoretical
complexity, but on the other hand the difficulty of parallelization is somewhat lessened.

With an effective parallelization strategy at hand, a multipole-based method can fully exploit
the advantages of distributed-memory architectures, thus rendering a direct O(N2)-scheme
dispensable. Therefore, the goal of this chapter is a comprehensive description of one parallel
Barnes-Hut tree code for vortex particle methods, its capability and its application. The code
presented in this work bases on the parallel tree code PEPC – the Pretty Efficient Parallel
Coulomb-solver [102, 106, 107, 108] – using its parallelization strategy and data manage-
ment. In the following, the expression ‘tree code’ refers to the Barnes-Hut tree code, unless
stated otherwise.

In the first section, we describe the workflow of the parallel tree code PEPC with its adaptation
to vortex particle methods. The implementation described here has been rewritten completely
to match the requirements of regularized vortex particles. This includes a novel approach for
remeshing by parallel sorting, making this process a generic extension of tree codes. We
briefly analyze the theoretical parallel complexity of the algorithm and show scaling results
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4 IMPLEMENTATION OF A PARALLEL TREE CODE FOR VORTEX DYNAMICS

in N and P for a spherical vortex sheet. Furthermore, we test our code using a vortex ring
simulation and compare it with other vortex particle implementations.

4.1 The workflow of the parallel tree code PEPC

In [107, 108] we demonstrated the performance and scalability of the parallel tree code PEPC
– the Pretty Efficient Parallel Coulomb-solver – on the IBM Blue Gene/P system JUGENE
at Jülich Supercomputing Centre. This highly portable code was designed primarily for
mesh-free modelling of nonlinear, complex plasma systems [84, 109]. Based on the orig-
inal Warren-Salmon ‘hashed oct-tree’ scheme [110, 111] with a multipole expansion up to
p = 2, PEPC provides a flexible and fully parallelized framework for O(N logN) tree code
simulations [106]. This framework is the basis for our adaptation to vortex particle methods.

The basic workflow of the tree code is depicted in Algorithm 4.1. Its concept is as follows:
In the domain decomposition procedure, we generate octal keys out of the coordinates and
sort them in parallel. According to this sorted list we subsequently redistribute the input
particle set across the available tasks, obtaining a truly data-parallel scheme. Each process
with its new particle set can now allocate a tree structure, primarily composed of a hash table
and appropriate arrays for the tree properties. After the tree construction step the keys are
structured as an oct tree with multipole moments attached to each node. Now, due to possible
memory restrictions we subdivide the local particle set into chunks: For each particle inside
these chunks the tree traversal fills up the local tree with required non-local information.
For each pair of particle and node, the interaction are directly performed according to the
multipole expansion formula if the multipole acceptance criterion is satisfied. Here, a node
can be single particle or a cluster of particles.

Algorithm 4.1 Workflow of the parallel tree code
subroutine TREECODE . to be called from an application

call DOMAINDECOMPOSITION

call TREECONSTRUCTION

decompose local particle set into chunks 1 to K
for k = 1 to K do

call TREETRAVERSAL(k)
end for

end subroutine

In the following, we review the three essential steps

• step 1: domain decomposition,
• step 2: tree construction,
• step 3: tree traversal,
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4.1 THE WORKFLOW OF THE PARALLEL TREE CODE PEPC

of the algorithm in more detail and point out the difficulties arising from parallelization.
Afterwards, we will show one efficient way of incorporating remeshing into a parallel tree
code.

4.1.1 Domain decomposition

The initial step is the generation of 64-bit keys out of the coordinate triple of each particle
inside a simulation area A. These keys provide a simple yet powerful basis for sorting, tree
construction and traversal. They are constructed from the ‘binary interleave operation’

key = placebit +
nlev∑
j=0

8j(4 · IBIT(n3, j, 1) + 2 · IBIT(n2, j, 1) + 1 · IBIT(n1, j, 1)),

where the function IBIT(a, b, l) extracts l bits of the integer a starting from position b. The
components of the normalized coordinate vector (n1, n2, n3) are defined as

nk = (xk −min{yk : y ∈ A}) · 2nlev

L
, k = 1, 2, 3

with simulation box length L and the maximum refinement level nlev. With a 64-bit un-
signed integer data type for the keys, 21 bits per coordinate (which is nlev = 20) and an
additional place-holder bit

placebit = 23(nlev+1) = 263

are available. The necessity for such a place-holder bit becomes clear in the tree construc-
tion step and is explained in Section 4.1.2. The restriction of 21 bit per coordinate leads
to a resolution bound of approximately 2−(nlev+1) ≈ 5 × 10−7 within the unit box. Below
this threshold two distinct particles would map onto the same key. This mapping of coordi-
nates to keys yields a Morton- or Z-ordering, which is a special case of general space-filling
curves [112]. In Figures 4.2 and 4.3, we give a short example for the Z-ordering and redistri-
bution with 52 particles and 3 tasks in two spatial dimensions. After the key construction the
particles are sorted and redistributed among the tasks according to the list of keys. The sort-
ing routine is fully parallelized and contains the key load-balancing features of the algorithm.
During the simulation each particle is tagged with a work load quantity depending on the
force calculation costs. The total aggregated work load on each task controls its allocation of
particles in the following time step. This procedure is crucial: an imbalanced work load may
significantly slow down the simulation. More details on different parallel sorting approaches
in the context of PEPC can be found in [107, 113].

After the domain decomposition each task is equipped with a set of local particles, which are
disjoint except for the particles at task boundaries: here, we copy these edge particles to the
next task to avoid problems with leaf sharing throughout these boundaries.
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4 IMPLEMENTATION OF A PARALLEL TREE CODE FOR VORTEX DYNAMICS

Figure 4.2: Sample initial 2D configuration
with 52 particles and 3 tasks.

Figure 4.3: Z-ordering and redistribution of
the 52 particles on 2 tasks.

4.1.2 Tree construction

The reason for the octal key construction procedure is its usability in a parallel tree data
structure. Keys of parent or child cells can be obtained by simple bit operations that speed
up the access-time within the tree structure significantly. Simple 3-bit shift operations of the
form

GETPARENT = BSHIFT(key,−3)

derive the parent from the actual tree node. For obtaining the key of one of the potentially
eight children of a cell we store for each parent the number and position of its children in
a childbyte variable, which can subsequently be tested with IOR – the boolean OR of
pair of bits. Using BTEST(childbyte,id) we can check, whether or not the id-th child is
present. The operation

GETCHILD(id) = BSHIFT(key, 3) IOR id.

then returns the corresponding key. As a simple two-dimensional example, in Figure 4.4
the full key for the highlighted cell is 131 in quadric, 11101 in binary notation. We have
dropped the place-holder bit in the figure for clarity, but it is crucial for the implementation.
Prepending an additional bit – the place-holder bit – to the most significant bit of every key
allows us to represent all higher level nodes in the tree in the same key space [111]. Without
this scheme the key 0001 would have an undefined level between 0 and 3 since the leading
zeroes could be part of the key itself or just undefined bits.

Nevertheless, the general key construction approach has an inherent drawback. The number
of possible keys vastly exceeds the available memory, so that direct addressing is not feasible
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4.1 THE WORKFLOW OF THE PARALLEL TREE CODE PEPC

Figure 4.4: Obtaining parent and child key from node: quadric and binary notation.

and often not even possible. Therefore, a convenient way of condensing the required storage
is to use a hashing function that maps the key space onto physical addresses in memory. We
use a simple AND operation with

address = key AND (2nb − 1),

where nb is the number of bits available for the address’ space. This operation selects the
least significant nb bits of the initial 64-bit keys. In case of a collision, i.e. a mapping of two
or more keys to the same location, we use a linked list for resolving the keys. It is clear, that
a disadvantageous choice of a hash function affects the algorithm’s performance significantly
due to frequent collisions. As noted in [111], the simple AND operation performs extraordi-
narily well in this matter, which gives us a convenient yet powerful way of structuring our
data.

As a consequence, the underlying data structure for the tree consists of a hash table with
entries containing

node: hashed address of the corresponding node,
key: its original key,
link: a pointer on the next non-empty address in case of collisions,
leaves: the number of leaves in the subtree,
childcode: bit-encoded children number and positions,
next: a pointer on the next sibling’s, uncle’s, great-uncle’s, . . . key,
owner: the node’s owner, i.e. the corresponding task id.

After its allocation and setup, this hash table contains all necessary data on each task for a
tree traversal. To setup the hash table and thereby the tree structure, basically two steps are
necessary: the local tree construction and the definition of global branch nodes.

a) For the local tree construction process, all local particles are initially attached to the
root level covering the whole simulation area A. Next, this region is subdivided into
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Figure 4.5: Octal partitioning of the simula-
tion domain and allocation of 52
particles to a box, 3 tasks.

Figure 4.6: ‘Branch’ nodes covering the
simulation domain of each task,
52 particles on 3 tasks.

eight sub-cells (four in two dimensions). This is recursively repeated for each sub-cell
until each cell contains exactly one or no particles. A cell with one particle is defined
as a ‘leaf’, a cell with two or more objects constitutes a ‘twig’, while empty cells are
discarded. The creation of new leaves or twigs is done by adding the corresponding
node information to the hash table using the hash function. At the end of this substep
each task has its own local tree with incomplete twig nodes at the coarsest level, whose
children partially belong to other tasks. Figure 4.5 continues our previous example with
52 particles on 3 tasks.

b) To complete the twig nodes on the coarsest level, information from neighboring do-
mains is necessary. Therefore, each task defines its local set of ‘branch’ nodes, which
comprise the minimum number of complete twig or leaf nodes covering its entire do-
main. The collectivity of all branch nodes represents a decomposition of the whole
simulation area A at the coarsest level possible. After propagating these nodes to the
other tasks, the branch nodes act as an entry point to non-local trees, so that subse-
quently every task is capable of requesting remote information during a tree traversal.
Figure 4.6 highlights the branch level of each process within the context of our exam-
ple.

It should be mentioned here that the global branch concept is prone to serious parallelization
issues. On the one hand, the overall number of branches on each task is of order O(P ) for P
tasks. On the other hand, the ensemble of branch nodes has to be broadcasted across all tasks,
which induces a potential parallelization bottleneck. We return to this issue in Section 4.2.2.

Finally, after the branch structure is set up and made globally available, the remaining tree
structure on each task from the branches to the root level is filled up, so that a traversal may
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4.1 THE WORKFLOW OF THE PARALLEL TREE CODE PEPC

start on each task at root node. Nodes between branch and root level are called ‘fill’ nodes.
Concurrently, as we create leaf, branch and fill nodes, we calculate the multipole moments for
every node in the tree. This is a simple operation for the monopole moments, because they are
independent from the current cell’s multipole origin or center-of-charge x̂. But we are also
dealing with dipole and quadrupole moments, which are inherently linked to the multipole
origin. To avoid the summation over all nodes in the sub-tree, we have to exploit our tree
structure. One major advantage of this structure is that the difference of x̂ from one node to
its parent can be expressed by a simple shift operation [89].

To clarify this shifting procedure, we analyze the multipole moments

M
(0,0,0)
d , M

(1,0,0)
d , M

(2,0,0)
d , M

(1,1,0)
d

for given child-cells Vd with d = 0, . . . 7, adopting our previous notation of Definition 3.2.1

M
(β)
d =

∑
y∈Vd

(y − x̂Vd)β · (ω(y)vol(y)) =
∑
y∈Vd

(y − x̂Vd)β · αy.

We define their corresponding multipole origins by

x̂Vd =

∑
y∈Vd |αy| · y∑
y∈Vd |αy|

.

If x̂W denotes the origin of the parent cellW of Vd, the shift vector is simply

x̃d = (x̃d1, x̃
d
2, x̃

d
3)T = x̂W − x̂Vd .

Now, the multipole moments expressed in terms of the new origin x̂W , are

M̃
(0,0,0)
d = M

(0,0,0)
d =

∑
y∈Vd

αy,

M̃
(1,0,0)
d =

∑
y∈Vd

(y − x̃d)1 · αy = M
(1,0,0)
d − x̃d1M (0,0,0)

d ,

M̃
(2,0,0)
d =

∑
y∈Vd

(y − x̃d)2
1 · αy = M

(2,0,0)
d − 2x̃dM

(1,0,0)
d + (x̃d1)2M

(0,0,0)
d ,

M̃
(1,1,0)
d =

∑
y∈Vd

(y − x̃d)1(y − x̃d)2 · αy

= M
(2,0,0)
d − x̃d1M (0,1,0)

d − x̃d2M (1,0,0)
d + x̃d1x̃

d
2M

(0,0,0)
d .

Therefore, all moments M (β) of the parent cellW can be obtained from the moments of the
child-cells Vd and the shift vector x̃d. We get

M (0,0,0) =
7∑
d=0

M̃
(0,0,0)
d , M (1,0,0) =

7∑
d=0

M̃
(1,0,0)
d ,

M (2,0,0) =
7∑
d=0

M̃
(2,0,0)
d , M (1,1,0) =

7∑
d=0

M̃
(1,1,0)
d .
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Since each task is now equipped with a complete tree structure and accumulated multipole
moments on the nodes, the next step is the traversal of the tree for each particle to gather its
interacting nodes and to compute the multipole expansion.

4.1.3 Tree traversal

The tree traversal routine is the most important and communication intensive part of our
algorithm. The aim of this procedure is the assembly of the ‘locally essential tree’ on each
process, which contains all necessary information for the multipole expansion. Here, we use
an asynchronous requesting scheme for gathering missing non-local node properties similar
to that in [111]. Rather than performing one traversal for one particle at a time, we reduce the
algorithm’s overhead by initializing as many traversals as possible, bounded only by machine-
dependent memory constraints. A simultaneous tree traversal for a predefined set of active
particles aims at minimizing the amount of duplicated request while maximizing the available
communication bandwidth by requesting and fetching a reasonable large number of nodes per
step [110].

During the traversal the multipole acceptance criterion (MAC) is responsible for the decision
whether or not a node has to be resolved further. This test can be based on pure geometric
considerations or even include information from the nodes. Its choice influences both speed
and accuracy of a tree algorithm and has to be decided carefully. We have already introduced
two possible choices in Section 3.2.4:

a) Motivated by the convergence analysis of multipole expansions, a common choice in
tree codes is the ‘Bmax MAC’, which defines a node covering a cluster V as sufficient
if its maximal extend b is related to the distance between the current particle x and the
center-of-charge x̂ by

θ >
b

d
=

sup{|y − x̂| : y ∈ V}
|x− x̂|

with a predefined and fixed θ. Choosing θ = 1 already yields a convergent yet inaccu-
rate scheme, while θ = 0 implies an exact O(N2)-algorithm. A convenient compro-
mise between accuracy and speed is θ ∈ (0.4, 0.7).

b) The expression for the error term

|ετ(p+1)(x)| ≤ D2τ−1(p+ 1) · M̄(0)

(d− b)2τ
·
(

b

d− b

)p+1

≤ ∆ε

can be used to define a data-dependent MAC with a predefined threshold ∆ε. A node
is acceptable only if

d ≥ b+

(D2τ−1(p+ 1) · M̄(0) · bp+1

∆ε

) 1
p+1+2τ

.
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A detailed discussion of geometric and data-dependent criteria with a rigorous analysis can
be found in [95].

Algorithm 4.2 gives an overview of the full traversal routine. For each active particle with
an index between pk to pk+1 of the current chunk k the tasks start the traversal one level
below the root, following the global nodes into their own local tree or ending at a branch
node. If the MAC is not satisfied and if the node’s children are absent, we put this node onto
a request list and mark the current traversal for later processing. The functions FIRSTCHILD

and NEXTNODE use the next-attribute, which is part of each node’s hash entry. If the MAC
is satisfied for one pair of particle and node we sum up the contribution of the node directly
using the routine CONTRIBUTION. Since our tree code uses expansions up to order two, i.e.
quadrupole order, we compute with Definition 3.2.1

φ(β)(x) =
(−1)|β|

β!
M (β) ·DβGσ(z)

∣∣
z=x−x̂,

for β ∈ {(0, 0, 0), (1, 0, 0), . . . , (0, 0, 2)}. Here, the precomputed and shifted multipole mo-
ments M (β) of Section 4.1.2 become crucial. They can be directly obtained from the tree
structure without further calculations, while the derivative of Gσ(z) requires the active par-
ticle x and the current center-of-charge x̂. The latter value is again extracted out of the tree
structure.

At the end of the first part, each task can provide request lists and parts of the locally essential
tree for every active particle. In the following step, we exchange the request lists and initiate
non-blocking send and receive operations, before every task can deal with incoming requests
and returning child information. The returning data is sorted into the local tree structure for
further traversal. After finishing all active traversals, i.e. as soon as all traversals terminate at
nodes which satisfy the MAC, we finally end up with the locally essential tree for the current
set of active particles and have access to their interacting nodes.

Furthermore, we define the work load per particle by the number of its interaction partners,
assuming that the average costs for the identification of these nodes are constant over tasks.
The sum over all local particle work loads yields the work load per task, which is the basis
for a balanced domain decomposition in the following time step.

To conclude this description of the implementation, Figure 4.7 shows a simple 1D example
of a serial and parallel tree data structure [107]. The top view in this figure shows nodes
and particles as they would be organized in a sequential version of the code. Each particle
is identified as a leaf L, while all other nodes are globally available fill nodes F. A traversal
starts from root level, checks the multipole acceptance criterion and processes the whole
structure up to the leaves, if necessary. The figure below depicts the parallel version of this
structure. Leaf nodes are distributed across the tasks. For the traversal, the branch nodes B are
necessary, acting as an entry node to non-local trees during the traversal. These nodes have
to be available on every task in addition to their local trees and the global structure from root

82



4 IMPLEMENTATION OF A PARALLEL TREE CODE FOR VORTEX DYNAMICS

Algorithm 4.2 Outline of the traversal routine
subroutine TREETRAVERSAL(k)

node(pk . . . pk+1)← FIRSTCHILD(root)
force(pk . . . pk+1)← 0

while traversals active do

while particles active do
p← active particle
if MAC(p,node(p)) ok then

force(p)← force(p) + CONTRIBUTION(node(p))
node(p)← NEXTNODE(node(p))

else if MAC failed and node(p) is local then
node(p)← FIRSTCHILD(node(p))

else if MAC failed and node(p) is non-local then
put node(p) on request list, discard duplicates
mark node(p) as active traversal
node(p)← NEXTNODE(node(p))

end if
end while
mark finished traversals as inactive

while requests open do
test for incoming requests
package and ship back child multipole info

end while

while receives open do
test for returning child multipole info
create hash entries for each child

end while

end while
end subroutine
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Figure 4.7: 1D example of the tree structure. Top: particle distribution with the according
leaf nodes L and the corresponding fill nodes F as they would be organized in
a serial version of the code. Bottom: leaf nodes are distributed across the tasks
but for a consistent data structure the branch nodes B are necessary and act as
an entrance node to non-local trees during tree traversal. Furthermore, we have
indicated the interacting nodes with particles on task 1.

to the branches. Furthermore, we have indicated nodes that interact with particles on task 1.
Since only these nodes are necessary for the multipole expansion, some parts of the branch
and global structure stored in the tree of task 1 turn out to be redundant. We will discuss the
impact of this effect in Section 4.2.2.
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4.1.4 Parallel remeshing

Although not part of the standard tree routines, an optional remeshing procedure according
to Section 2.2.2 can be integrated into an existing parallel tree code, maintaining the overall
complexity of O(N logN). Without an underlying mesh structure, an implementation of
location processing techniques has the inherent problem of finding the interpolation nodes.
Since the original particles are not linked to each other, the generation of M = O(N) new
particles would require O(N2) operations. Many mesh particles may have more than one
source and it is necessary to identify these conflicting projections. This problem is a question
of finding duplicates within a given set of values without testing the whole set.

One solution may involve the use of a global mesh data structure, where each source particle
can pick its targets. Although easy to implement, many parts of this structure may remain
empty, since no source activates any targets there. This would completely compromise the
mesh-free character of vortex particle methods. The usage of sparse data structures like a hash
table can circumvent this drawback, but then a parallelized remeshing scheme has to be con-
sidered as complex as the original tree code. Local hash tables are required to maintain data
parallelism and the identification of duplicate targets across task boundaries involves non-
trivial and expensive operations. Alternatively, the original tree data structure can be used.
As presented in [55], target particles are created above current leaves, i.e. source particles,
and their strengths are determined from particles nearby by traversing the tree. This reduces
the memory requirement significantly, since the set of target particles is minimal. Neverthe-
less, one has to provide a priori storage for the targets, so that for a remeshing scheme using
k neighbors in each of the three spatial dimensions, N · k3 entries have to be reserved for
the targets. This drawback is common for mesh-free strategies, since duplicates cannot be
identified a priori in these cases. However, the number of entries has a clearly defined upper
bound and these techniques preserve the intrinsic adaptivity of particle-based methods. Both
properties are not valid for mesh- or matrix-based structures as described above.

We therefore choose a purely particle-based approach for our remeshing implementation.
However, the approach presented in [55] requires frequent and expensive tree traversals for
each target particle to identify its source particles. Our novel approach avoids these operations
by exploiting the parallel sorting algorithm within the domain decomposition. The basic idea
is depicted in Figure 4.8 for a simple one-dimensional example. In 4.8a, nine source particle
are inhomogeneously distributed and need to be interpolated onto a homogeneous set of target
particles, using only two nearest targets for simplicity. To this end, we create for each source
a local set of its targets. Conflicting projections are indicated by diagonally arranged target
particles, yielding 9 · 21 = 18 target particles. To identify and combine the duplicates, we
generate particle keys for each target and use the parallel sorting algorithm. This redistributes
the targets so that duplicates are located one after another. A simple sweep over all targets
as depicted in 4.8b then combines these duplicates to one single particle by accumulating the
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(a) Interpolation from source particles to local targets

(b) Aggregation of doublets and transformation to new source particles

Figure 4.8: Nine source particles are interpolated onto new particles located at nodes of a
uniform mesh. For clarity, the interpolation uses only the two nearest mesh par-
ticles as targets. Diagonal particles indicate doublets. These are combined by
parallel sorting to a single new source particle in the second step.

particular strengths and by erasing obsolete target particles. Finally, we define the unique
targets as new source particles.

The advantages of this approach are its simplicity and efficiency: an existing domain decom-
position algorithm with parallel sorting can be easily extended by parallel remeshing without
affecting its own theoretical complexity. Since each source particle uses only a fixed number
of targets, defined by the support of the interpolation operator, the complexity remains the
same. Furthermore, this approach yields again the minimum number of active mesh particles
without sustaining a full mesh data structure. No expensive tree traversals are required and we
can separate the remeshing process from the actual tree construction, thus avoiding needless
entries for the obsolete source particles. Moreover, the parallelization is straightforward if we
are already equipped with a parallelized sorting algorithm. The identification of duplicates
across task boundaries only requires one additional array of keys, where each task inserts its
first and last key. After broadcasting this array, each task can check for duplicates itself, even
if in rare cases these duplicates are spread across more than one task.

However, the drawback of our approach is again the possible storage overhead due to the
generation of a vast amount of duplicates. But since an a priori identification of obsolete
targets is not possible for purely particle-based techniques, the storage has to be provided
anyway, as mentioned above.

We therefore conclude that even without an underlying mesh data structure, the remeshing
approach can be integrated into the domain decomposition of a parallel tree code, maintaining
efficiently the mesh-free character and complexity of the algorithm.
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4.2 Capability analysis and challenges

The adaptation of an algorithm to massively parallel systems with thousands of tasks prompts
a multitude of challenges. In general, these differ from those which arise at scales of only
a few tasks. In the case of strong scaling at large scales, all activities that have a constant
or even a P -dependent complexity must be avoided. However, some patterns might contain
essential non-scaling actions, like collective communication, which have to be optimized or
completely redesigned.

In the first part of this section, we briefly analyze the theoretical parallel runtime complexity
of the tree code. For the upcoming scaling tests in N and P we introduce the setup of a
spherical vortex sheet, a common test for three-dimensional vortex methods. By the means
of this setup, we compare the scaling in N to a direct O(N2)-algorithm and demonstrate
parallel scaling on a massively parallel system, the IBM Blue Gene/P JUGENE at Jülich
Supercomputing Centre. Since PEPC targets strong scaling, there is unavoidably a maximal
number of tasks up to which a speedup can be gained, due to essential non-scaling elements.
In order to see how these bottlenecks might be minimized, the following sections also give
an insight in the efficiency of the communication strategy, as well as the identification of one
of the current bottlenecks: the P -dependency of the number of branch nodes.

4.2.1 Parallel runtime complexity

We have seen in the previous sections that even with active remeshing the code can be divided
into three main parts:

• step 1: domain decomposition and remeshing,
• step 2: tree construction,
• step 3: tree traversal.

For a serial tree code and a homogeneous particle distribution, the theoretical runtime com-
plexity is of order O(N logN) for N particles [89, 90, 103]. However, in very special worst
cases the complexity can grow up to O(N2). Figure 4.9 shows a setup, in which a new level
in the tree has to be created for each particle. For an algorithm with arbitrary tree depth,
this setup leads to computational costs of order O(N2) for visiting each particle (see [105]
for a similar setup in the context of an FMM implementation). Since this case is somewhat
pathological, it suffices to observe that in practice, a serial tree code scales withO(N logN).
Further complexity statements shall be interpreted in this way.

Using P tasks instead of one not only requires a lot of additional implementation effort, as we
have seen in the previous sections, but also introduces parallel overhead like the branch struc-
ture. The following paragraphs briefly analyze the impact for the three parts. We assume N
homogeneously distributed particles and P equally equipped tasks and define np := N

P
. Fur-
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Figure 4.9: Worst case setup: one particle in each upper right box of each sub-box requires
an additional level in the tree.

thermore, we omit the impact of Message Passing Interface (MPI) routines such as ALLRE-
DUCE and ALLTOALL. We refer to [114] for a detailed analysis of these costs.

Domain decomposition – The decomposition step as well as remeshing is clearly dominated
by the parallel sorting, since key construction and local interpolation require only O(N) op-
erations. The sorting routine can be divided into a local sort and permute, global partitioning
and redistribution and finally a local merge step. While local sort and permute are of order
O(np) and scale very well, the global operations needO(npP ) steps in the worst case, indicat-
ing potential bottlenecks for very large P . The final merge step is of orderO(np logP ), so that
the whole parallel sorting algorithm requires O(np + npP + np logP ) operations [113, 115].

Tree construction – As shown in [89], the construction of the tree with N particles induces
costs of O(N logN). During local tree construction, only np particles generate the initial
tree, so that we can assumeO(np log np) operations here. Smart algorithms lead to negligible
costs for the identification of the branch nodes, being the local roots of these trees. However,
these branch nodes can then be seen as the leaves for the global tree construction step. Since
we have O(P ) branches, this step requires O(P logP ) operations. Therefore, the overall
complexity for the tree construction is of order O(np log np + P logP ).

Tree traversal – For homogeneously distributed particles, each particle requires O(logN)
interactions for the multipole expansion [103]. The exact number obviously depends on the
MAC and its threshold θ, but as long as θ > 0, the number of interactions scales like logN
(see [89, 90, 103] for details). Since each task has to compute the interactions for np local
particles, the total complexity of the tree traversal is of order O(np logN).

In summary, the parallel tree code presented in Section 4.1 scales for N particles distributed
over P tasks as

O
(
N

P
(logN + P ) + P logP

)
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on average. The critical factor in the serial case – the N -dependency – can therefore be
reduced with a parallelized version. However, this is not true for the logN -dependency. In
practice, the unfavorable P -term of the parallel sorting algorithm becomes visible only for
very large values of P , potentially yielding a scaling saturation of the domain decompositions.
On the other hand, the parallelization comes for the costs of an additional parallel overhead
of order O(P logP ) – induced by the branch concept – which has a significant implication
for the scaling behavior. In the next section, we analyze these results in a practical situation
for vortex particle methods: the spherical vortex sheet.

4.2.2 Scaling in N and P

As a basis for the investigation of the scaling behavior, we choose the time evolution of a
spherical vortex sheet. A given number of N particles is initially placed on a sphere with
radius R = 1, centered at 0 (see [116] for details on homogeneous distributions on a sphere’s
surface) and attached with vorticity

ω(x) = ω(ρ, θ, ϕ) =
3

8π
sin(θ) · eϕ,

where eϕ is the ϕ-unit-vector in spherical coordinates. The volume or area of each particle is
determined by the surface of the sphere, divided by N . Figure 4.10 visualizes this setup for
N = 105 particles: (a) cuts the sphere along the (y, z)-plane and shows arrows for represent-
ing the vorticity in length and direction, (b) shows the distribution of the particles across the
tasks after the first domain decomposition step with P = 256 tasks on the IBM Blue Gene/P
system JUGENE.

For the dynamical simulation of this setup, the second order algebraic smoothing kernel

ζ(2)(ρ) =
15

8π(ρ2 + 1)
7
2

is used and expanded as described in Chapter 3. The time evolution of this setup can be
seen in Figure 4.11. Neither remeshing nor diffusion are applied in these cases. As noted
in [55], the initial conditions are the solution to the problem of flow past a sphere with unit
free-stream velocity along the z-axis. While moving downwards in z-direction, the sphere
collapses from the top and wraps into its own interior, forming a large vortex ring in the
inside. This behavior is in very good agreement with [55, 99] and we take this setup as a
basis for the scaling analysis in N and P .

Before we analyze the scalability of the code for an increasing number of tasks, the first
aspect we have to check is its scaling in N . To this end, we compare the setup for N =
1000, . . . , 32000 particles on 2 MPI tasks. Figure 4.12 shows the execution times of the
spherical vortex sheet, normalized to the case N = 1000. The runtime is an average over
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(a) Cut along the (y, z)-plane (b) Domain decomposition

Figure 4.10: Positions and vorticity ofN = 105 particles on P = 256 tasks. In (a), the sphere
is cut along the (y, z)-plane, for 2000 particles vorticity vectors are shown. Ini-
tial distribution across the tasks after the first domain decomposition step is
depicted in (b).

(a) Time t = 25.0 (b) Time t = 50.0

Figure 4.11: Time evolution of the spherical vortex sheet at times t = 25.0 and t = 50.0,
cut through (y, z)-plane. N = 105 particles, P = 256 tasks, Bmax-MAC with
θ = 0.45, h =

√
(4π)/N and σ = 0.22, second order algebraic smoothing

kernel. Third order Runge-Kutta time integration with ∆t = 0.05. Light colors
indicate larger velocity magnitudes.
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Figure 4.12: Normalized runtime for the simulation of a spherical vortex sheet with N =
1000, . . . , 32000 particles on 2 tasks, average over 15 time steps (Third order
Runge-Kutta time integration scheme with ∆ = 1). We choose σ = 2h =
2
√

(4π)/N . For comparison, theoretical linear and quadratic scalings are de-
picted. The tree code uses the Bmax-MAC with θ = 0.6.

15 steps, using a third order Runge-Kutta time integration scheme with ∆t = 1. We choose
σ = 2h = 2

√
(4π)/N . The tree code uses the Bmax-MAC with θ = 0.6. It becomes clear

that the code scales nearly as well as the linear case. The logN -term emerges for N = 32000
particles, but the practical complexity is far better than O(N2), even for the inhomogeneous
distributions during the simulation of the sphere.

We now analyze the scalability of the tree code for a fixed number of particles N , but increas-
ing numbers of tasks P (strong scaling). Due to memory restrictions, we cannot expect to use
the same number of particles for 1 to 8192 MPI tasks. That is why we divide our analysis into
three sets: N = 1 · 105, N = 1.6 · 106 and N = 2.56 · 107, i.e. np = 105 for 1, 16 and 256
tasks. We call the combined strong scaling test of these three setups ‘hybrid scaling’. This
analysis is related to a similar one for the purely Coulombian tree code PEPC-E [107, 108].
Figure 4.13 shows hybrid strong scaling results on JUGENE. As these runs show, our imple-
mentation is able to use up to 8192 MPI tasks very efficiently with adequate datasets. The
hybrid scaling behavior is very good for 1 to 4096 MPI tasks, yielding more than three orders
of magnitudes of usability and two orders of magnitude of speedup for one dataset. However,
as the number of particles per task decreases, the scaling departs from ideal linear speedup.
Furthermore, the appearance of this phenomenon is not only coupled to the ratio of particles
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Figure 4.13: Hybrid scaling on an IBM Blue Gene/P system for various number of particles
on the spherical vortex sheet, strong scaling for each dataset. Small: N = 1·105,
medium: N = 1.6 · 106, large: N = 2.56 · 107.

per tasks, but also to the number of tasks itself, i.e. the speedup flattens out earlier for higher
numbers of tasks.

To analyze the scaling in more detail, Figure 4.14 shows the timings for the larger dataset for
each of the three steps described in Section 4.1. It becomes clear that these steps behave very
differently for a large number of tasks. While the time consuming and dominant tree traversal
shows perfect strong scaling, domain decomposition and tree construction are clearly respon-
sible for the performance saturation. Since these steps do not scale at all for large numbers
of tasks or low numbers of particles per tasks, respectively, they start to dominate the total
iteration time for 8192 tasks. Both steps include collective operations: the domain decom-
position during parallel sorting, the tree construction during the branch exchange process.
Furthermore, the amount of data exchanged during these operations increases with the num-
ber of tasks. In particular, the branch structure becomes an issue at high task numbers. The
branch level, i.e. their depth in the tree relative to root and thereby the number of branches
increases during a strong scaling scenario, i.e. for a fixed problem size with variable number
of tasks. In addition, the structure of fill nodes expands as well, so that this step takes more
time. The consequences and costs arising from the branch structure are therefore responsible
for the scaling failure of the tree construction step. During the analysis of the theoretical
runtime complexity we have already seen that the overall complexity contains a problematic
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Figure 4.14: Detailed timings for the spherical vortex sheet on an IBM Blue Gene/P system
for 2.56 · 107 particles, split into the three main steps: domain decomposition,
tree construction and tree traversal.

P logP -term, and the practical scaling tests verify this issue, limiting efficient use of the code
to less than 8192 MPI tasks at the moment.

While parallel sorting and reordering of the particles during domain decomposition is a nec-
essary and inevitable part of tree codes and is already implemented very efficiently (see [113]
for details), it is more important to see how branch and global node structure affect the actual
force summation. A detailed investigation with the purely Coulombian tree code PEPC-E
and a homogeneous setup in a unit cube revealed the following interesting aspect. While the
number of branches increased significantly for increasing number of tasks, they had virtually
no impact on the actual force summation. For 16384 MPI tasks on JUGENE only 0.73% of
the whole global node structure including the non-local branches was used for at least one
interaction. This suggests that reduction of these structures may provide a promising route to
optimizing efficiency, memory consumption and scaling.

Despite the current limitations, making effective use of 8192 MPI tasks and being able to
simulate more than 2 × 108 particles the underlying Barnes-Hut tree code is highly compet-
itive among currently available tree codes. In the next section we review other algorithmic
approaches with their applications and place our tree code in the context of their capabilities.
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4.2.3 A comparative overview of other vortex codes

For numerical vortex methods many different algorithms are currently being developed. Nat-
urally, many codes are purely particle-based, but recently, the mesh-based vortex-in-cell
method has become an interesting alternative. In this section, we review some competing
codes and highlight their differences and capabilities.

Firstly, we focus on two Barnes-Hut tree codes, which are directly applied to vortex particle
methods as well. In Section 3.2.5, we have already introduced one of them [55, 99]. Here,
the Gaussian smoothing kernel is used, but the multipole expansion (or an approximation by
a simple ρ−1-potential) is applied only for distances larger than 5σ. This choice of cutoff
in this code is inherently linked to the data-dependent multipole acceptance criterion by the
user-defined relative error. Within a radius of 5σ direct interactions are used. Simulating the
spherical vortex sheet and vortex ring dynamics they require remeshing as well, exploiting the
oct-tree data structure instead of using the sorting algorithm. In [55], they show simulations
with 106 particles using up to 512 processor with very good scaling results. However, the
farfield-nearfield definition makes this approach prone to clustered distributions and therefore
O(N2)-complexity. Furthermore, the multipole expansion for exponential and error function
are expensive in terms of computational costs. The native expansion of algebraic kernels
as implemented in our work solves both issues: while easier and faster to derive during a
simulation there is no need to define a cutoff in addition to the MAC.

Another tree-based algorithm is presented in [101]. In contrast to the Gaussian kernel, the
authors make use of the zeroth order algebraic kernel and apply this method to vortex sheet
dynamics. As noted in [17], the usage of this kernel may not lead to a convergent method
in three spatial dimensions and should be applied with great care only. They use a data-
dependent MAC as well, but do not implement a scheme to ensure the overlap condition.
Their simulations run with up to 105 particles, but not in parallel. Again, by using the gener-
alized class Aσ as basis for the multipole expansion theory, our tree code does not share the
problems induced by the low order kernel, since the expansion and convergence result can be
applied to algebraic kernels of arbitrary order. Furthermore, our code is able to simulate two
orders of magnitude more particles by exploiting distributed memory systems effectively.

A similar concept to Barnes-Hut tree codes is the application of Fast Multipole Methods. One
parallel implementation in the context of vortex particle methods is reported in [117]. For 2D
Lamb-Oseen vortex simulations, the authors use the Gaussian kernel with ρ−1-approximation
in the FMM farfield and direct interactions in the nearfield. Since the FMM has an intrinsic
distinction between far- and nearfield, their approximation by ρ−1 seems to be more well-
grounded. However, the inconsistency of the approximation in the farfield remains. The code
presented in this publication scales very well up to 64 processors and is able to handle 107

particles. The authors already mention the fact that further scalings would require additional
improvements. Although not explicitly stated, we assume that instead of remeshing, radial
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basis function interpolation is applied, requiring O(N) operations per evaluation point [54].
Their results and applications are limited to two-dimensional examples.

The codes reviewed so far are all versions of pure mesh-free algorithms and their capabili-
ties in number of particles and usage of parallel architectures are more or less limited. For
algorithms dealing with more than 109 particles and thousands of processors, a fundamen-
tally different approach is commonly chosen: the vortex-in-cell (VIC) algorithm [64]. Based
on the assumption that remeshing is inherently required and performed regularly in vortex
methods, VIC codes consequently demand the presence of a mesh structure and rely on fast
Poisson solvers [118] on regular meshes for computing stream function and velocity. A com-
prehensive description of a VIC workflow can be found in [70], coupled with an FMM code
for boundary conditions. The current state-of-the-art VIC algorithm is presented in [119]. In
this publication, the code is used for simulation of aircraft wakes with periodic boundary con-
ditions. The simulation box is discretized with 2048× 1024× 786 mesh nodes and 1.6× 109

particles, showing good scalability and excellent runtimes up to 16384 processors on an IBM
Blue Gene/L system.

Despite the impressive achievements reported in this and other VIC publications, the main
drawback of these mesh-based algorithms remains: the excessive use of a mesh structure
requires a very advanced spatial adaptation concept or memory-consuming and inefficient
mesh sizes. While in tree codes the costs for tree construction and management as discussed
in Section 4.2.2 still leave room for improvement, the mesh-free character induces an intrinsic
adaptivity without the need for further efforts. Furthermore, particle-based algorithms can
handle unbound problems much more easily, while the need for an underlying mesh requires
further implications for these setups.

Next, we show another application of our tree code, which is often used in three-dimensional
vortex codes: the fusion of two vortex rings. This configuration inherently requires viscous
processes and together with remeshing this example demonstrates the capabilities of our par-
allel tree code for vortex particle methods.

4.2.4 An application: vortex ring dynamics

Vortex ring dynamics are an interesting choice to use three-dimensional vortex methods in
physical investigations. We have already seen one example of a vortex ring in Section 4.2.2.
Experimental setups of two side-by-side identical viscous vortex rings with circular vorticity
fields revealed a fundamental physical process: the fusion reconnection. Since experiments,
e.g. in water [120] or air [121], are hard to set up and investigate, only numerical simulations
are able to shed light on topological details of these types of phenomena. A very comprehen-
sive study of vortex ring dynamics using a mesh-based spectral method can be found in [122]
and we refer to this work for physical implications and interpretations of the upcoming sim-
ulation.
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Figure 4.15: The cores of two side-by-side vortex rings. Schematically, straight arrows de-
pict the tangential vorticity vectors, circular arrows indicate the movement of
the rings’ particles according to the velocity vectors.

Since the fusion process of vortex rings is a viscous process, numerical simulations require
the treatment of the diffusion term of the vorticity-velocity equation. Remeshing is mandatory
as well for these complex geometries and long timescales, so that we can conveniently use
the modified remeshing approach of [76] as presented in Section 2.2.4. For reference, we
choose the initial conditions in the style of [76, 100]. One major challenge in the numerical
simulation of vortex rings is the initial particle discretization of the toroidal geometry. We
review and use the idea given in [32]. First, we discretize a single circular segment in the
(x, y)-plane, starting from the center. These particles are attached with a vorticity vector in
z-direction. Next, these two-dimensional segments are rotated, translated and copied to form
a ring of segments with vorticity vectors along the ring tubes. Therefore, four parameters
determine the construction of a single vortex ring:

• the radius rc of each segment,
• the number nc of circles in each segment (nc = 0 for a single particle at the center),
• the number Nϕ of segments,
• and the radiusR of the complete ring, measured from the center of the ring to the center

of each segment.

Furthermore, we have to choose the vorticity distribution inside each segment. Classically,
the function

ω(x) = ω0 exp

(
−
( |x|
rc

)2
)

is used, where x is the location inside the segment. Finally, the second vortex ring is a straight
copy of the first one, with their centers separated by s. Following the setups of [32, 76], we
use Nϕ = 126 segments of radii rc = 0.4 with nc = 7 circular layers and maximum vorticity
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ω0 = 23.8 and form two rings with radii R = 1 and separation s = 3.65. Each segment has
1+4nc(nc+1) = 225 particles, so that both rings together initially haveN = 56700 particles.
By transformation, the rings are located in the (x, z)-plane with y = 0. In Figure 4.15 both
rings are schematically depicted. Here, straight arrows show the tangential vorticity vectors,
while circular arrows indicate the movement of the rings’ particles according to the velocity
vectors.

For the viscous simulation with our tree code, the second order algebraic kernel with a fixed
core size σ = 0.2 is used and evaluated with the Bmax-MAC and θ = 0.45. We apply the
modified remeshing operator, exploiting viscous splitting every two time steps with interpo-
lation size h = 0.05 and a population control threshold of |ω(x)| ≤ 0.01. The third order
Runge-Kutta time integrator uses ∆t = 0.05 and the viscosity is set to ν = 0.01.

In Figure 4.16, we show the development of the two vortex rings. In the left column, only
particles with |ω(x)| ∈ [3, 23.8] are depicted. In the right column, we show half of the parti-
cles with |ω(x)| ∈ [0, 3) to show the impact of remeshing on the simulation and the number
of particles. We start the simulation with N = 56700 particles discretizing the two vortex
rings at t = 0.0. Despite a rigorous population control, due to remeshing and diffusion the
number of particles grows to N = 883215 at t = 9.8 after 196 time steps. Starting from
the (x, z)-plane with y = 0, the rings travel in the positive y-direction and move towards the
x = 0 plane, being attracted by mutual induction. This can be seen in Figures 4.16a to 4.16b
and Figures 4.16e to 4.16f, respectively. Induced by the collision of the inner cores, vortex
bridges are formed, as depicted in Figures 4.16c to 4.16d and Figures 4.16g to 4.16h, respec-
tively. During fusion the circulation of the inner cores decreases while the circulation inside
the bridges increases rapidly. Furthermore, during this process large gradients of vorticity
appear, but they get annihilated by vortex diffusion. Eventually, the two rings are merged to
a single yet disturbed vortex ring, as Figures 4.16d and 4.16h show.

In Figure 4.17, we compare the dynamics of viscous and inviscid vortex rings. The right
column again show half of the particles with |ω(x)| ∈ [0, 3) for the viscous simulation with
ν = 0.01. To compare the behavior of the vorticity with an inviscid configuration, the left
column depict the dynamics of the same setup, but with ν = 0.0, again visualizing particles
with |ω(x)| ∈ [0, 3). Dark colors indicate high vorticity magnitudes. We can clearly see
how the diffusion process damps the vorticity field and extends its support. Moreover, in the
inviscid configuration the bridges are merged (see Figure 4.17g), but do not split apart, as
Figure 4.17h indicates. Therefore, an inviscid simulation does not lead to a single merged
vortex ring. For more on the physical details of these phenomena we refer to [32, 122].

With the ability of simulating vortex rings and their interactions, the code is capable of cov-
ering a broad field of numerical experiments, e.g. ring propagation and stability [18] or knot
configurations [32].
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(a) Time t = 0.16, 3 ≤ |ω| ≤ 23.8

(b) Time t = 3.2, 3 ≤ |ω| ≤ 23.8

(c) Time t = 6.4, 3 ≤ |ω| ≤ 23.8

(d) Time t = 9.8, 3 ≤ |ω| ≤ 23.8

(e) Time t = 0.16, added remeshing particles

(f) Time t = 3.2, added remeshing particles

(g) Time t = 6.4, added remeshing particles

(h) Time t = 9.8, added remeshing particles

Figure 4.16: Fusion of two vortex rings. Left column: particles with |ω(x)| ∈ [3, 23.8], right:
same threshold, but additionally one half of the other particles. Discretization
parameters: Nϕ = 126, nc = 7, rc = 0.4, R = 1, s = 3.65. Simulation
parameters: ω0 = 23.8, σ = 0.2, h = 0.05, ν = 0.01, ∆t = 0.05. Threshold is
|ω(x)| ≤ 0.01, Bmax-MAC uses θ = 0.45.
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(a) Time t = 0.16, viscous setup

(b) Time t = 3.2, viscous setup

(c) Time t = 6.4, viscous setup

(d) Time t = 9.8, viscous setup

(e) Time t = 0.16, inviscid setup

(f) Time t = 3.2, inviscid setup

(g) Time t = 6.4, inviscid setup

(h) Time t = 9.8, inviscid setup

Figure 4.17: Fusion of two vortex rings, one half of all particles. Left column: viscous setup
with ν = 0.01, right: inviscid setup with ν = 0.0. Discretization parameters:
Nϕ = 126, nc = 7, rc = 0.4, R = 1, s = 3.65. Simulation parameters:
ω0 = 23.8, σ = 0.2, h = 0.05, , ∆t = 0.05. Threshold is |ω(x)| ≤ 0.01,
Bmax-MAC uses θ = 0.45. Dark particles indicate high vorticity magnitude.
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4.3 Summary

In this chapter, we have described and analyzed a new implementation of a parallel Barnes-
Hut tree code for regularized vortex particle methods, based on the mathematical theory of
algebraic kernels and multipole expansions. Figure 4.18 updates the introductory choice
between FMM and Barnes-Hut tree code in favor of the latter approach. A comprehensive
description and a detailed scaling analysis of the parallel Barnes-Hut tree code PEPC and its
adaptation to regularized vortex particle methods have been the topic of this chapter.

The description of the parallelization scheme already indicated that global communication
induced by the branch concept is a crucial part of our tree code. This observation has been
verified and analyzed by benchmarking the code using a spherical vortex sheet. The branch
structure accounts for the intrinsic requirement of global information exchange in long-range
dominated problems. Here, nearest-neighbor communication patterns are not sufficient and
although the current concept and its implementation leaves room for promising improve-
ments, it provides a functional and reliable way of handling non-local information exchange
in parallel tree codes. We have seen that both theoretical complexity and practical scaling
analysis showed a P -dependency, which also has a severe impact on memory requirements.
Despite these obstacles, the parallel Barnes-Hut tree code presented in this work scales nicely
up to 4096 MPI ranks and is able to perform vortex particle simulations with millions of
elements routinely.

While particle-based codes in the literature appear to have severe problems with many-million
particle simulations on parallel architectures, the vortex code presented in this work is able to
solve problems with more than 108 particles on thousands of processors. Concerning prob-
lem size and parallelism the code therefore covers applications, where mesh-based methods
like vortex-in-cell algorithms are predominant. Using a novel and flexible remeshing ap-
proach, which exploits parallel sorting within the domain decomposition scheme, we are able
to conserve the mesh-free character of particle-based methods without affecting the overall
complexity of our tree code. With frequent remeshing, even complex problems and setups
e.g. in the broad field of vortex ring dynamics can be performed with excellent results.

In the final chapter, we will summarize the results of this work and give an outlook to future
directions in the field of multipole-based algorithms for regularized vortex particle methods.

Figure 4.18: The transition from analytic equations to Barnes-Hut tree codes.
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5 From theory to practice: a
conclusion

5.1 Summary

We have started this work with a reformulation of the classical Navier-Stokes equations. The
resulting vorticity-velocity equation and an explicit expression for the velocity field are the
basis for vortex methods. However, using this approach for a numerical simulation of vortex-
driven flows, the analytical form of the velocity field has to be discretized. In Chapters 2 to 4
we have presented one possible way to obtain a rapid numerical scheme, which is capable
of simulating complex systems such as vortex rings. The choices we have made on this way
defined the content of each of these chapters: mesh- or particle-based discretization, cutoff- or
multipole-based summation, and FMM or Barnes-Hut tree code. We recapitulate the results
of this work in the following, supported by the scheme in Figure 5.1.

Discretizing the vorticity field using particles has been the first decision and the consequences
were the topic of Chapter 2. The great advantage of particle-based schemes are the intrinsic,
efficient adaptivity and the straightforward treatment of open boundaries at infinity, while
mesh-based methods often require very complex strategies for achieving both attributes. We

Figure 5.1: From vorticity-velocity equation and Biot-Savart formulation to a tree code.
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have seen that using not only point particles but rather regularized, smeared vortex blobs
leads to a consistent convergence result (see Theorem 2.1.8). The order of the smoothing
kernels and their core size determine the speed of convergence, which abolishes the limitation
of the point particle scheme to second order convergence. However, it is well-known that
the use of regularized smoothing kernels implies a strong requirement on the underlying
particle set. The overlap criterion, especially required for long-term simulations, has to be
taken into account carefully for any practical simulation. One convenient way of restoring
a distorted particle set is given by the method of remeshing. Frequent interpolation onto
a regular particle field with predefined interparticle distances allows for accurate and well-
grounded long-term simulations. Moreover, we have seen that simple modifications of the
interpolation kernels can extend inviscid codes to treat diffusion as well. This interesting
aspect makes the remeshing approach even more appealing, since other viscous methods
often require additional efforts.

However, the remeshing concept firstly induces an underlying mesh structure, thus canceling
the advantages of particle methods. This drawback has to be considered and addressed by
a numerical implementation. Smart data structures and algorithms can prevent this, as we
have seen in Section 4.1.4. In our novel parallel remeshing approach, each source particle
creates its own local interpolation targets and by using efficient parallel sorting the duplicates
are combined and eliminated subsequently. It is a native extension to sorting-based domain
decomposition techniques and does not rely on expensive mesh structures. The resulting tar-
get particles cover only areas of interest, thus being the minimal number of particles required
for the next time step. Preserving the mesh-free character of particle methods, this new ap-
proach provides an efficient and flexible tool to ensure the overlap condition. Furthermore,
its theoretical complexity is limited by the complexity of parallel sorting.

Theoretical complexity is the reason for the second decision. The use of particles implies
an N -body problem for computing the velocity and the vorticity update, since the effect of
smoothing kernels is not limited to short-distance particles. A naive implementation with N
particles leads to a O(N2)-scheme, preventing the usability of such an implementation with
high numbers of N . In contrast to cutoff-based concepts, multipole-based approaches yield a
rigorous mathematical background and effective error control to reduce the complexity to at
leastO(N logN). To apply the concept of multipole expansions to regularized vortex particle
methods, the smoothing kernels have to be analyzed carefully. We introduced a novel class
Aσ of algebraic smoothing kernels in Definition 3.1.1. This class and the generalization of
algebraic kernels itself allows for the construction of higher order kernels, which satisfy the
requirements of the Convergence Theorem 2.1.8 (see Theorems 3.1.3 and 3.1.9).

Moreover, we have shown that each member of this class is a linear combination of much
simpler functions. The Decomposition Theorem 3.1.5 considerably simplifies the analysis of
generalized algebraic kernels by reducing the class Aσ to a component class Dσ. In particu-
lar, this reduction formed the basis for the analysis of multipole expansions in the context of
algebraic kernels. We have seen in Theorem 3.2.8 that for each function of Dσ the remainder
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of the multipole expansion can be bounded using the distance between particle and cluster
and the cluster size. As a nice consequence, this theorem also extends well-known results for
ρ−n-kernels to their regularized counterparts. Using the same linear combinations of the De-
composition Theorem, the convergence results yield a comprehensive theory for generalized
algebraic kernels. The concept of multipole expansions can now be applied to the regularized
vortex particle method on a well-grounded mathematical basis.

The central advantage for a numerical implementation of multipole expansions is the sepa-
ration of multipole moments and the actual differentiation of the kernel. The moments only
depend on the cluster and its members themselves, so that they can be precomputed. During
the expansion only the current particle and the center-of-charge of the cluster are relevant.
This clear separation yields the basis for the Barnes-Hut tree code. Being the result of the
third decision, the parallel Barnes-Hut tree code PEPC has been rewritten and adapted to
account for algebraic regularized particle systems in Chapter 4. An inevitable part of such
tree codes is a domain decomposition scheme. This is done efficiently by parallel sorting
algorithms, so that our novel remeshing implementation can be seen as a native extension
of domain decomposition, integrating nicely into existing tree codes. We have described the
parallelization strategy of the tree code and its theoretical complexity in Section 4.1. Using
a spherical vortex sheet as setup, we have shown scalability on an IBM Blue Gene/P system
up to 8192 cores, thus allowing rapid simulations with up to 108 particles. The usability of
the code has been demonstrated with a complex setup of two merging vortex rings in Sec-
tion 4.2.4.

We have started this work with a theoretical approach for treating the Navier-Stokes equa-
tions. Using regularized particles in Chapter 2, we have reviewed the main concepts of vortex
particle methods, which are required for a first and naive numerical implementation. The
introduction of a new class of algebraic kernels in Chapter 3 has paved the way for fast
multipole-based methods in the context of regularized vortex particle methods. Finally, we
have adapted a fully parallelized Barnes-Hut tree code in Chapter 4, which puts the theoretical
concepts of the preceding chapters into practice.

Finally, we highlight topics of further interest in the following, concluding section.

5.2 Outlook

The theory presented in this work satisfies its purpose of yielding a reliable basis for a fast,
accurate summation technique for regularized vortex particle methods in unbounded domains.
Using the parallel Barnes-Hut tree code PEPC as fundament, the algorithm developed here
can routinely perform vortex particle simulations with millions of elements. We conclude this
work with a short overview of three topics, which may enrich and extend theory, algorithm
and fields of application even further.
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Bounding the box – At the very beginning of this work we have restricted ourselves to
unbounded domains only. Of course, this is a severe limitation with respect to practical appli-
cations. The treatment of both inviscid and viscous boundary conditions in vortex methods is
a topic of active and versatile research (see [13] and references therein for a detailed mathe-
matical and application-oriented overview). The presence of solid boundaries has significant
impact on many facets of vortex methods: remeshing may require non-regular grids [123],
particle strength exchange can use image particles [69] or one-sided kernels [124]. On the
other hand, periodic boundary conditions play a vital role in numerical vortex simulations as
well. Using a mesh structure, vortex-in-cell (VIC) codes include this type of boundary con-
dition directly [119], while purely particle-based algorithms often make use of the so-called
Ewald summation technique [125, 126]. This technique yields an O(N logN)-scheme for
computing the potentially infinite number of contributions in periodic particle simulations.
However, in the context of Fast Multipole Methods (FMM), this complexity is still unfavor-
able. In [127, 128], this scheme is replaced with a renormalization approach, yielding O(N)
complexity. Based on the spherical multipole expansion of the ρ−1-kernel, this renormaliza-
tion fits nicely into the context of FMM implementations [105]. In principle, this approach
can be extended to ρ−n-kernels and their regularized counterparts, i.e. to the class Dσ.

Looking left and right – The method of renormalization for periodic boundaries is applica-
ble for all kernels that can be used with the FMM. This is due to the fact that the operators
required for renormalization are basically the same as required for the down-shift and transla-
tion within the FMM. To the best of our knowledge, these operators have not been investigated
for the full classDσ so far. A successful adaptation would embed the theory of the classesDσ

and Aσ into the context of FMM and renormalization simultaneously. Furthermore, it might
be interesting to extend the present theory to benefit from an efficient recurrence relation for
the coefficients of the Taylor expansion, as shown in [101]. The recursion has been already
adapted to the second order algebraic kernel [100] and we can assume that a further extension
to the class Dσ is straightforward.

Optimizing the interplay of theory and practice – Currently, the tree code is optimized for
using the second order algebraic kernel only. With the theory of Dσ at hand, the code can
be extended to compute multipole expansions for each member of Dσ. Using the Decom-
position Theorem and multiple calls of the expansion routines, this has the great advantage
that the code then covers the full classes Aσ and Āσ, including ρ−n-kernels and algebraic
kernels of arbitrary order. Especially the last consequence can be of great interest. As noted
in [49, 58], the rezoning scheme of Section 2.2.1 requires smoothing kernels ζσ of higher
order to minimize unwanted diffusive errors. Furthermore, we have seen that this procedure
requiresO(NM) operations for N source and M target particles. Since we have ζσ ∈ Aσ for
algebraic kernels, the present theory of this work gives us a very powerful tool to apply the
concept of multipole expansions to rezoning. Therefore, a tree code covering the class Dσ

can be easily extended to use efficient rezoning, thus reducing the complexity toO(M logN).
Additionally, Theorem 3.2.11 has shown that kernels ησ within the particle strength exchange
approach (see Section 2.2.3) can be chosen as members of Aσ, so that this summation can be
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accelerated using multipole expansions as well. However, the multipole moments do not co-
incide with the classical ones. More effort is required to integrate this scheme in the context
of tree codes.

The comprehensive, yet compact formulation of algebraic kernels using the class Aσ and its
component class Dσ has been developed as a powerful and elegant foundation of the theory
of multipole expansions in this work. We now see that it is also an appealing source for many
promising and challenging extensions.
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A Vector calculus notation and
identities

For clarity we state the basic operators in more detail and cite some important identities.

Definition A.1 (Vector-valued differential operators)
For vectors x ∈ Rn, u ∈ Rm, n,m ∈ N we define

a) the gradient of u as∇u with

∇u :=


∂u1
∂x1

. . . ∂u1
∂xn

... . . . ...
∂um
∂x1

. . . ∂um
∂xn

 ∈ Rm×n,

b) the divergence of u as∇ · u for m = n with

∇ · u :=
n∑
i=1

∂ui
∂xi
∈ R1,

c) the curl of u as ∇× u for m = n = 2 with

∇× u :=
∂u2

∂x1

− ∂u1

∂x2

∈ R1

and for m = n = 3 with

∇× u :=

(
∂u3

∂x2

− ∂u2

∂x3

,
∂u1

∂x3

− ∂u3

∂x1

,
∂u2

∂x1

− ∂u1

∂x2

)T
∈ R3,

and finally

d) the vector Laplacian of u as ∆u with

∆u := (∆u1, . . . ,∆um)T =

(
n∑
i=1

∂2u1

∂x2
i

, . . . ,

n∑
i=1

∂2um
∂x2

i

)T

.
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Using these elementary definitions, we obtain the following identities.

Theorem A.2 (Vector identities)
For vectors u, v ∈ R3 we have

∇ · (∇× u) = 0, (A.1)
∇× (∇(u · v)) = 0, (A.2)

u× u = 0, (A.3)
u× v = −v × u. (A.4)

Furthermore, we have

∇(u · v) = (u · ∇)v + (v · ∇)u+ u× (∇× v) + v × (∇× u), (A.5)
∇× (v × u) = v(∇ · u)− u(∇ · v) + (u · ∇)v − (v · ∇)u, (A.6)

(∇× u)× v = (∇u− (∇u)T ) · v, (A.7)
∆u = ∇(∇ · u)−∇× (∇× u), (A.8)

∇× (∇× u) = ∇(∇ · u)−∆u, (A.9)

where

(u · ∇)v =

(
3∑
i=1

ui
∂v1

∂xi
,

3∑
i=1

ui
∂v2

∂xi
,

3∑
i=1

ui
∂v3

∂xi

)T

,

v(∇ · u) =

(
v1

3∑
i=1

∂ui
∂xi

, v2

3∑
i=1

∂ui
∂xi

, v3

3∑
i=1

∂ui
∂xi

)T

.

Proof. Proofs of these identities can be found in [3, 20, 130]. �

Finally, the multi-index notation is frequently used throughout this work. The next definition
highlights its impact on vector calculus.

Definition A.3 (Multi-index notation)
A multi-index β is an n-tupel (β1, . . . , βn) with βi ∈ N0, i = 1, . . . , n. We define

a) the factorial of β as β! = β1! · . . . · βn! and

b) the norm of β as |β| = β1 + . . .+ βn.

Furthermore, for a vector x = (x1, . . . , xn) ∈ Rn we define xβ as xβ = xβ11 · . . . · xβnn .
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B Sobolev spaces

In this appendix, we review some functional analytic ideas and concepts. More on this topic
can be found in [50, 51] or in any other standard book on functional analysis. We start with
the definition of spaces of continuously differentiable functions.

Definition B.1 (Differentiable functions)
a) For a multi-index β = (β1, . . . , βd) (see Definition A.3) and x ∈ Rd we define the β-th

order partial derivative of a function f as

Dβf(x) =
∂|β|f(x)

∂xβ11 . . . ∂xβdd
.

b) For Ω ⊂ Rd the space C(Ω) consists of all real-valued functions f that are continuous
on Ω. Furthermore, for m ∈ N0 we define

Cm(Ω) := {f ∈ C(Ω) : Dβf ∈ C(Ω) for |β| ≤ m},

C∞(Ω) :=
∞⋂
m=0

Cm(Ω) = {f ∈ C(Ω) : f ∈ Cm(Ω) for all m ∈ N0}.

c) For supp(f) := {x ∈ Ω : f(x) 6= 0} we set

C∞0 (Ω) := {f ∈ C∞(Ω) : supp(f) ( Ω}.

The next step is the definition of Lebesgue spaces Lp(Ω) and their corresponding norms.
Furthermore, local integrability is covered.

Definition B.2 (Lebesgue spaces)
a) We define the Lebesgue space Lp(Ω), Ω ⊂ Rd, p ∈ [0,∞) as the space of all measur-

able functions f : Ω→ R with

||f ||Lp(Ω) :=

(∫
Ω

|f(x)|p
) 1

p

<∞.
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b) For p = ∞ the Lebesgue space L∞(Ω) is identified as the space of all measurable
functions f : Ω→ R with

||f ||L∞(Ω) := sup
x∈Ω\Ω′

|f(x)| <∞ for meas(Ω′) = 0.

c) For 1 ≤ p < ∞ we call a function f locally p-integrable, if for every x ∈ Ω there is
an open neighborhood Ω′ of x with Ω′ ⊂ Ω and f ∈ Lp(Ω′). The space of all such
functions is denoted as Lploc(Ω).

With these spaces at hand we now extend the classical definition of derivatives.

Definition B.3 (Weak derivatives)
For a non-empty set Ω ⊂ Rd and f, g ∈ L1

loc(Ω) we call g the weak β-th derivative of f if∫
Ω

f(x)Dβφ(x)dx = (−1)|β|
∫

Ω

g(x)φ(x) dx for all φ ∈ C∞0 (Ω).

The following theorem couples both classical and weak derivative.

Theorem B.4
For f ∈ Cm(Ω) and all |β| ≤ m ∈ N0 the classical derivative Dβf is also the weak β-th
derivative of f .

As a result we can use the term Dβf for the weak derivative of f as well. Now, the definition
of weak derivative leads us directly to the definition of Sobolev spaces.

Definition B.5 (Sobolev spaces)
For |β| ≤ m ∈ N0, 1 ≤ p ≤ ∞ and Ω ⊂ Rd we define the Sobolev space Wm,p(Ω) as space
of all functions f ∈ Lp(Ω), so that the weak β-th derivative Dβf exists with Dβf ∈ Lp(Ω).
The corresponding Sobolev norms are given by

||f ||Wm,p(Ω) :=

(∑
β≤m

||Dβf ||pLp(Ω)

) 1
p

for 1 ≤ p <∞,

||f ||Wm,∞(Ω) := max
|β|≤m

||Dβf ||L∞(Ω).
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C Some special functions and their
properties

We introduce some special functions and their properties. For an advanced treatment of
special functions we refer to [131, 132] and adopt the notation therein.

Definition C.1
We define for all n ∈ N0 and τ > 0

a) the Pochhammer function

(τ)n :=
n∏
k=1

(τ + k − 1) = τ · (τ + 1) · . . . · (τ + n− 1),

(τ)0 := 1,

b) and the Gamma function

Γ(τ) :=

∫ ∞
0

e−t · tτ−1dt.

The following theorem shows some basic properties and relation of both functions.

Theorem C.2
For n,m ∈ N0 and τ > 0 we have

a) (τ)n = Γ(τ + n) · Γ(τ)−1,

b) (τ)n · (τ + n) = (τ)n+1,

c) Γ(n) = (n− 1)! = Γ(n− 1) · (n− 1),

d) Γ(n+m) ≥ Γ(n) · Γ(m+ 1).

Proof. Proofs of these properties are either simple or can be found in [132]. �

113



The following definition introduces Gegenbauer polynomials by their generating relation.
These polynomials generalize the well-known Legendre polynomials, which are often used
in the context of multipole expansion theory [90].

Definition C.3 (Gegenbauer polynomials)
For n ∈ N0, x ∈ R and τ > −1

2
we define the Gegenbauer polynomials Can by their formal

generating relation

1

(1− 2xt+ t2)τ
=
∞∑
n=0

Cτn(x)tn.

Their most important properties are listed in the next theorem.

Theorem C.4
Let n ∈ N0 and τ > 0.

a) For all x ∈ R we have

Cτn(x) =

b j2c∑
k=0

(−1)k · (τ)n−k
(2x)n−2k · (n− 2k)! · k!

.

b) For |x| ≤ 1 the following inequality holds:

|Cτn(x)| ≤ Cτn(1) =
(2τ)n
n!

.

c) For all x ∈ R we have

d

dx
Cτn(x) = 2a · Cτ+1

n−1(x).

Proof. Proofs and derivations can be found in [131] and [132]. �

Next, we introduce the hypergeometric series and function, which help us solving and esti-
mating a certain type of integrals as shown in the subsequent theorem.

Definition C.5 (Hypergeometric functions)
For |z| < 1 and a, b, c > 0 we define

H(a, b; c; z) :=
∞∑
n=0

(a)n · (b)n
(c)n

· z
n

n!
.

Here H (often written as 2F1) is called a hypergeometric function, while the right-hand side
is the hypergeometric series.
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The following theorem cites two important integral expressions.

Theorem C.6
a) If |α| < 1 and b, c > 0, then∫ 1

0

tb−1(1− t)c−1(1− αt)−adt =
Γ(b+ c)

Γ(b)Γ(c)
·H(a, b; b+ c;α).

b) For 2b > a > 0 we have∫ ∞
0

ta−1(1 + t2)−bdt =
1

2

Γ
(
a
2

)
Γ
(
b− a

2

)
Γ(b)

.

Proof. These relations are taken from [92]. Proofs can be found in the references therein. �
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