Konstruktion von Tiltingbündeln auf crepanten Auflösungen von torischen 3-Calabi-Yau-Varietäten

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich C der Bergischen Universität Wuppertal vorgelegt von Martin Bender

Im Dezember 2010

Diese Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20110511-140336-7 [http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20110511-140336-7]

Inhaltsverzeichnis

Einleitung 1							
1	Torische 3-CY-Varietäten und Tiltinggarben						
	1.1	Torische Varietäten: Der lokale Ansatz	8				
	1.2	Globale Koordinaten für torische Varietäten und kohärente Garben	12				
	1.3	Crepante Auflösungen von torischen 3-Calabi-Yau-Varietäten	18				
	1.4	Tiltinggarben	22				
	1.5	Crepante Auflösungen von Faserdimension kleiner gleich 1 \ldots .	25				
2	Branenkachelungen und der Zusammenhang mit torischen 3-						
	CY-Varietäten 2						
	2.1	Branenkachelungen und der duale Köcher	28				
	2.2	Branenkachelungen und die assoziierte affine torische 3-Calabi-					
		Yau-Varietät	30				
	2.3	Moduli für A_G -Darstellungen von dim = $(1,, 1)$	36				
	2.4	Das torische Diagramm von \mathcal{M}_{θ}	41				
3	Beweis der Vermutung von Hanany et al.						
	3.1	Universelle Bündel für \mathcal{M}_{θ}	45				
	3.2	Nichtkommutative crepante Auflösungen	49				
	3.3	Ein Beispiel	51				
4	Tiltingbündel für Totalräume von Linienbündeln auf torischen						
	Varietäten 5						
	4.1	Kanonische Bündel auf projektiven torischen Flächen	59				
	4.2	Ein hinreichendes Kriterium	61				
	4.3	Eine Vermutung	66				
Literaturverzeichnis 68							

Einleitung

In der vorliegenden Arbeit betrachten wir die folgende Situation:

- $X = \operatorname{Spec}(R)$ ist eine normale, dreidimensionale Gorenstein-Varietät über dem Körper der komplexen Zahlen \mathbb{C} .
- $f:Y\to X$ ist eine Auflösung von Singularitäten mit folgenden Eigenschaften:

$$-\mathbf{R}f_*\mathcal{O}_Y=\mathcal{O}_X.$$

$$-f$$
 ist crepant, d.h. $f^*K_X = K_Y$

Zusätzlich sei X eine torische Varietät, d.h. es ist $R = \mathbb{C}[S_{\sigma}]$, wobei:

- $M = \text{Hom}(N, \mathbb{Z})$ das zu einem Gitter vom Rang 3, $N \cong \mathbb{Z}^3$, duale Gitter ist,
- $\sigma = \sum_{i=1}^{r} \mathbb{Q}_{\geq 0} \cdot v_i \subset N \otimes \mathbb{Q}$ ein von gewissen Elementen $v_1, \ldots, v_r \in N$ erzeugter Kegel ist,
- $S_{\sigma} = \sigma^{\vee} \cap M = \{ \phi \in M \mid \phi(v) \ge 0 \text{ für alle } v \in \sigma \}$ die zu σ assoziierte Halbgruppe ist,
- und $\mathbb{C}[S_{\sigma}] = \mathbb{C}[\chi^{\phi} \mid \phi \in S_{\sigma}], \chi^{\phi} \cdot \chi^{\psi} := \chi^{\phi+\psi}$, die zu S_{σ} assoziierte \mathbb{C} -Algebra ist.

Weil $S_{\sigma} \subset M$ gesättigt ist, ist X dann automatisch normal. Nach [30] oder [3, Proposition 2.2.2, (ii)] ist X genau dann eine Gorenstein-Varietät, falls ein $m_{\sigma} \in M$ existiert mit

$$m_{\sigma}(v_i) = -1$$
, für alle $i = 1, \ldots, r$.

Dies bedeutet gerade, dass die kanonische Klasse von X trivial ist [16, Proposition 4.3.]. Wir nennen eine (nicht notwendigerweise projektive) Varietät Calabi-Yau, falls ihre kanonische Klasse trivial ist. Somit ist eine affine torische Varietät genau dann Gorenstein, wenn sie Calabi-Yau ist. In diesem Fall nennen wir das konvexe Polygon $\mathcal{P}_X = \{v \in \sigma \mid m_{\sigma}(v) = -1\}$ das torische Diagramm von X. Eine Desingularisierung $f : Y \to X$ mit den obigen Eigenschaften erhalten wir dann durch eine Unterteilung des torischen Diagramms in Dreiecke mit Ecken im Gitter N und Flächeninhalt $\frac{1}{2}$. Im Allgemeinen gibt es mehrere Möglichkeiten, \mathcal{P}_X so zu unterteilen; dementsprechend existieren dann mehrere crepante Auflösungen von X.

Michel van den Bergh hat in [6, Definition 4.1 und Lemma 4.2] ein nichtkommutatives Analogon zum Begriff einer (kommutativen) crepanten Auflösung $Y \to \operatorname{Spec}(R)$ entwickelt: Unter einer *nichtkommutativen crepanten Auflösung* von R versteht man die Endomorphismenalgebra $\operatorname{End}_R(M)$ eines R-Moduls Mmit folgenden Eigenschaften:

- M ist reflexiv.
- A ist ein maximaler Cohen-Macaulay-Modul.
- $\operatorname{gldim}(A) < \infty$.

Eine Branenkachelung ist gegeben durch die Einbettung eines bipartiten Graphen G in einen kompakten 2-Torus $T = \mathbb{R}^2/\Gamma$ derart, dass die Zusammenhangskomponenten von T - G Polygone sind. Falls der Graph G wenigstens eine perfekte Paarung besitzt, kann man zu ihm ein eine affine torische, dreidimensionale Calabi-Yau-Varietät U_{σ_G} assoziieren.

Zu einer Branenkachelung G kann man auch den sogenannten dualen Köcher mit Relationen (Q, I) assoziieren. Falls G geometrisch konsistent ist, ist von Sergey Mozgovoy gezeigt worden, dass die Algebra $A_G := \mathbb{C}Q/I$ eine nichtkommutative crepante Auflösung des Koordinatenrings von U_{σ_G} ist. Außerdem ist das Zentrum von A_G isomorph zu $\mathbb{C}[U_{\sigma_G}]$.

Nathan Broomhead [10, Abschnitt 4.2.] und Daniel R. Gulotta [17, Abschnitt 6] haben gezeigt, dass man für jede affine torische 3-Calabi-Yau-Varietät X eine geometrisch konsistente Branenkachelung G finden kann, mit $X \cong U_{\sigma_G}$.

Somit gibt es für jede dreidimensionale affine torische Gorenstein-Varietät X = Spec(R) eine nichtkommutative crepante Auflösung des Koordinatenrings R.

Um eine crepante Auflösung von U_{σ_G} zu erhalten, betrachtet man nun folgendes: Sei $\underline{\alpha} = (1, \ldots, 1) \in \mathbb{Z}^{Q_0}$, $\theta \in \mathbb{Z}^{Q_0}$ $\underline{\alpha}$ -generisch und $\mathcal{M}_{\theta} = \mathcal{M}_{\theta}(A_G, \underline{\alpha})$ der Köchermodulraum der θ -semistabilen A_G -Darstellungen mit Dimensionsvektor $\underline{\alpha}$. Dann kann man \mathcal{M}_{θ} als eine crepante Auflösung von U_{σ_G} auffassen. Umgekehrt erhält man jede torische crepante Auflösung von U_{σ_G} durch Variation des Stabilitätsparamters θ [21, Theorem 15.1]. Weil θ $\underline{\alpha}$ -generisch ist, existiert ein universelles Vektorbündel $\mathcal{U}_{\theta} = \bigoplus_{i \in Q_0} \mathcal{U}_{\theta,i}, \mathcal{U}_{\theta,i} \in \operatorname{Pic}(\mathcal{M}_{\theta})$. Es folgt dann aus [6, Theorem 6.3.1], dass man eine Äquivalenz von triangulierten Kategorien gegeben hat durch

$$\mathrm{D}^{b}(\mathrm{mod}-A_{G}^{\mathrm{op}})\to\mathrm{D}^{b}(\mathrm{Coh}(\mathcal{M}_{\theta})),\quad M^{\bullet}\mapsto M^{\bullet}\otimes_{A_{G}}^{L}\mathcal{U}_{\theta}.$$

Nach einem Theorem von Alexei Bondal [8] ist dies äquivalent dazu, dass \mathcal{U}_{θ} eine *Tiltinggarbe* auf \mathcal{M}_{θ} ist, das heißt \mathcal{U}_{θ} erzeugt $D^{b}(Coh(\mathcal{M}_{\theta}))$, und es ist $Ext^{k}(\mathcal{U}_{\theta},\mathcal{U}_{\theta}) = 0$, für alle k > 0. Eine Tiltinggarbe, die die direkte Summe von Linienbündeln ist, nennen wir *Tiltingbündel*.

Wir werden sehen, wie man die \mathcal{M}_{θ} entsprechende, passende Unterteilung des torischen Diagramms von U_{σ_G} graphentheoretisch bestimmen kann. Man kann sich nun fragen, ob man Divisoren für die direkten Summanden von \mathcal{U}_{θ} ebenfalls graphentheoretisch bestimmen kann. Ein dahin zielender Algorithmus wurde in [18] von Amihay Hanany, Christopher Herzog und David Vegh vorgeschlagen.

Das Hauptergebnis dieser Arbeit ist, dass dieser Algorithmus tatsächlich Divisoren für die direkten Summanden von \mathcal{U}_{θ} liefert.

Aufbau der Arbeit und Ergebnisse

In **Kapitel 1** wiederholen wir zunächst einige grundlegende Eigenschaften von torischen Varietäten. Für ein Linienbündel $p: Y \to X$ auf einer torischen Varietät X werden wir in **Proposition** 1.1.1 sehen, wie man aus einem Fächer für X einen Fächer für Y konstruieren kann. Danach werden wir sehen, dass es für die Existenz eines Tiltingbündels auf einer torischen 3-Calabi-Yau-Varietät X mit einfach zusammenhängendem torischen Diagramm \mathcal{P}_X notwendig ist, dass \mathcal{P}_X konvex ist. (**Lemma** 1.3.7). In diesem Fall ist X dann eine (möglicherweise nur teilweise) crepante Auflösung einer affinen 3-Calabi-Yau-Varietät. Wir demonstrieren dann anhand des Falls eines suspended pinch point, wie man explizit ein Tiltingbündel auf einer crepanten Auflösung einer affinen, torischen 3-Calabi-Yau-Vareität bestimmen kann.

In Kapitel 2 werden wir zunächst definieren, was wir unter einer Branenkachelung G verstehen. Danach werden wir sehen, wie man zu einer Branenkachelung eine affine torische 3-Calabi-Yau-Varietät assoziieren kann. Wir zeigen dann, wie man das torische Diagramm dieser Varietät graphentheoretisch bestimmen kann. (Lemma 2.2.8 und Bemerkung 2.2.10). Es stellt sich dann die Frage, wie man crepante Auflösungen dieser Varietät erhält. Dazu werden wir den zu G dualen Köcher mit Relationen (Q, \mathcal{I}) und die Theorie der Köchermodulräume gemäß A.King verwenden. Außerdem werden wir G bestimmte Konsistenz-Bedingungen auferlegen. Durch die Wahl einer generischen Stabilität $\theta \in \mathbb{Z}^{Q_0}$ werden wir so eine Auflösung von Singularitäten $\mathcal{M}_{\theta} \to U_{\sigma_G}$ erhalten, die crepant ist. (**Satz** 2.3.13.) Die Varietät \mathcal{M}_{θ} ist dabei ein geometrischer Quotient, der die θ -stabilen $\mathbb{C}Q/\mathcal{I}$ -Darstellungen mit Dimensionsvektor $(1,\ldots,1) \in \mathbb{Z}^{Q_0}$ parametrisiert. Nach Ishii und Ueda ist jede crepante Auflösung der Form $\mathcal{M}_{\theta} \to U_{\sigma_G}$. Das Kapitel endet mit der Antwort auf die Frage, wie die zu der crepanten Auflösung \mathcal{M}_{θ} passende Unterteilung des torischen Diagramms von U_{σ_G} graphentheoretisch bestimmt werden kann. (**Proposition** 2.4.6).

In **Kapitel 3** beschäftigen wir uns mit einem Algorithmus von Amihay Hanany, Chistopher P. Herzog und David Vegh, der in [18, Abschnitt 5.2] vorgeschlagen wurde (zur Begriffsklärung siehe die Definitionen 2.2.1 und 2.2.9):

Algorithmus von Hanany et al. Sei $\theta \in \mathbb{Z}^{Q_0}$ eine generische Stabilität.

- Bestimme alle θ -stabilen perfekten Paarungen auf $G, I_1, \ldots, I_r \in \mathcal{A}$.
- Fixiere eine Ecke $i_0 \in Q_0$.
- Wähle für alle $i \in Q_0$ eine Wanderung in Q von i_0 nach $i, \mu_i \in \mathbb{Z}^{Q_1}$.
- Die den θ -stabilen perfekten Paarungen I_1, \ldots, I_r entsprechenden T_M invarianten Primdivisoren auf \mathcal{M}_{θ} seien mit D_1, \ldots, D_r bezeichnet. Definiere für jedes $i \in Q_0$ einen Divisor auf \mathcal{M}_{θ} durch

$$E_i := \sum_{j=1}^r \chi_{I_j}(\mu_i) \cdot D_j.$$

Sie erwarteten dabei, dass die direkte Summe der so konstruierten Linienbündel $\mathcal{O}_{\mathcal{M}_{\theta}}(E_i), i \in Q_0$, ein Tiltingbündel für $D^b(\operatorname{Coh}(\mathcal{M}_{\theta}))$ ist.

Zunächst zeigen wir in Abschnitt 3.1, dass die aus obigem Algorithmus resultierenden Linienbündel universelle Bündel für \mathcal{M}_{θ} sind (**Theorem 3.1.6**); dabei werden wir die Erkenntnisse aus Kapitel 2 und die Proposition 1.1.1 benutzen.

Von Sergey Mozgovoy wurde gezeigt, dass A_G eine nichtkommutative crepante Auflösung des Koordinatenrings von U_{σ_G} ist. Es folgt dann aus [6, Theorem 6.3.1], dass der obige Algorithmus tatsächlich ein Tiltingbündel auf \mathcal{M}_{θ} liefert.

Dies ist das Hauptresultat dieser Arbeit:

Theorem 3.2.4. Es sei G eine geometrisch konsistente Branenkachelung und $\theta \in \mathbb{Z}^{Q_0}$ eine generische Stabilität. Für ein $i \in Q_0$ sei E_i der aus dem Algorithmus von Hanany et al. resultierende Divisor auf \mathcal{M}_{θ} . Dann ist durch

$$\mathcal{L}_{\theta} := \bigoplus_{i \in Q_0} \mathcal{O}_{\mathcal{M}_{\theta}}(E_i) \in \operatorname{Coh}(\mathcal{M}_{\theta})$$

ein Tiltingbündel für $D^b(\operatorname{Coh}(\mathcal{M}_{\theta}))$ gegeben.

Wir beschließen das Kapitel mit einem Beispiel, anhand dessen wir die in den Kapiteln 2 und 3 gewonnenen Ergebnisse demonstrieren.

Sei X eine glatte torische Varietät und $p: Y \to X$ ein Linienbündel auf X. In **Kapitel 4** benutzen wir Ergebnisse aus den vorhergehenden Kapiteln, um der folgenden Frage nachzugehen:

Wann existiert ein Tiltingbündel auf Y, und wie kann man im Falle der Existenz ein solches konstruieren ?

Für den Fall, dass X eine projektive torische Fläche und $p: Y \to X$ das kanonische Bündel auf X ist, haben Lutz Hille und Markus Perling in [20] bewiesen, dass ein Tiltingbündel auf Y genau dann existiert, falls die anti-kanonische Klasse $-K_X$ numerisch effektiv ist. In diesem Falle ist dann ein Tiltingbündel auf Y durch den Pull-Back eines Tiltingbündels auf X entlang p gegeben. Weil in diesem Fall Y eine torische 3-CY-Varietät ist, finden wir mit Hilfe von Resultaten aus den Kapiteln 1 bis 3 einen alternativen Beweis. (**Satz** 4.1.1.) In Abschnitt 4.2 kehren wir zur allgemeinen Situation einer glatten torischen Varietät X und einem Linienbündel $p: Y \to X$ zurück: Wir werden ein für die Existenz eines Tiltingbündels auf Y hinreichendes Kriterium beweisen. (**Satz** 4.2.4.)

Weil es projektive torische Flächen ohne Tiltingbündel gibt (siehe [19]), kann Satz 4.1.1 nicht für den Fall, dass $p: Y \to X$ irgendein Linienbündel ist, verallgemeinert werden. Falls ein Tiltingbündel auf X existiert, vermuten wir, dass Satz 4.1.1 eine Verallgemeinerung besitzt (**Vermutung** 4.3.1), und zeigen die Gültigkeit dieser Vermutung für den Fall, dass X eine projektive Ebene oder eine Regelfläche ist.

Danksagung

An erster Stelle sei hier Sergey Mozgovoy gennant, der diese Arbeit betreut hat. Ohne seine Motivationskünste, seinen Ideenreichtum und seine Geduld mit dem Autor wäre diese Arbeit nicht fertig gestellt worden.

Danach ist sofort Markus Reineke zu nennen, der diese Arbeit mitbetreut hat, und in dessen Vorlesungen über geometrische Invariantentheorie und Darstellungstheorie der Autor viele für diese Arbeit notwendige Konzepte erlernt hat. Besonders sei an dieser Stelle auch den Kollegiaten des Graduiertenkollegs 1052 "Darstellungstheorie und Ihre Anwendungen in Mathematik und Physik" sowie allen Mitarbeitern der Arbeitsgruppe Algebra und Zahlentheorie der Bergischen Universität Wuppertal gedankt dafür, dass die letzten Jahre in Wuppertal so erbaulich gewesen sind.

Magdalena Boos hat diese Arbeit Korrektur gelesen und mich auf einige Unstimmigkeiten und viele Rechtschreibfehler aufmerksam gemacht. Dafür sei Ihr recht herzlich gedankt.

Win Nuding, Matthias Lichter und Sergey Mozgovoy haben mir bei vielen Problemen im Umgang mit I^AT_EX mit Rat und Tat zur Seite gestanden. Sie haben mir deswegen viel Mühe und Zeit erspart.

Abschließend sei hier die Deutsche Forschungsgemeinschaft (DFG) erwähnt, die mir von Februar 2008 bis Mai 2010 ein Promotionsstipendium gewährt hat, für welches Ich mich herzlichst bedanke.

Kapitel 1

Torische 3-CY-Varietäten und Tiltinggarben

Torische Varietäten werden durch konvex-geometrische Objekte, den sogenannten *Fächern* definiert. Dies sind endliche Mengen von streng konvexen Kegeln mit gewissen Eigenschaften. Die Eigenschaften dieser Varietäten können dann in Eigenschaften der die Varietät definierenden Fächer übersetzt werden. In diesem Kapitel sollen zunächst zwei verschiedene Konstruktionswege aufgezeigt werden: Der lokale Ansatz, wie man ihn zum Beispiel im Buch von William Fulton ([16]) findet und die Konstruktion von David Cox und Ian Musson einer torischen Varietät als Quotientenvarietät. Der letztere Ansatz enthält darüber hinaus eine Beschreibung der kohärenten Garben auf einer torischen Varietät, die der Beschreibung der kohärenten Garben auf einem projektivem Raum mit Hilfe des homogenen Koordinatenrings nachempfunden ist.

Sei $p: Y \to X$ ein Linienbündel auf einer torischen Varietät X, die allenfalls Quotientensingularitäten hat. Wir werden sehen, wie man einen Fächer (**Proposition** 1.1.1) und globale Koordinaten (**Lemma** 1.2.4) für Y erhält.

Danach werden wir dreidimensionale torische Varietäten betrachten, die *Calabi-Yau* sind, d.h. ihre kanonische Klasse ist trivial. Kovex-geometrisch bedeutet dies, dass der definierende Fächer einer solchen Varietät die Eigenschft hat, dass die primitiven Erzeuger seiner eindimensionalen Kegel in einer affinen Hyperebene eines dreidimensionalen Q-Vektorraums enthalten sind. Den Schnitt des Fächers mit dieser Hyperebene nennt man das *torische Diagramm*.

Eine kohärente Garbe \mathcal{G} auf einer glatten quasi-projektiven Varietät X wird Tiltinggarbe genannt, falls $\operatorname{Ext}^k(\mathcal{G},\mathcal{G}) = 0$ für alle k > 0 ist, und falls \mathcal{G} die beschränkte derivierte Kategorie der kohärenten Garben auf X, $D^b(\operatorname{Coh}(X))$, *erzeugt*, d.h. die kleinste triangulierte Unterkategorie von $D^b(\operatorname{Coh}(X))$, die \mathcal{G} enthält, ist bereits gleich $D^b(\operatorname{Coh}(X))$. Solche Garben liefern eine derivierte Äquivalenz zwischen $D^b(\operatorname{Coh}(X))$ und der beschränkten, derivierten Kategorie der Rechts-Moduln von $\operatorname{End}(\mathcal{G})$, der Algebra der Endomorphismen von \mathcal{G} . Eine Tiltinggarbe, die die direkte Summe von invertierbaren Garben ist, nennen wir *Tiltingbündel*.

Falls X eine torische 3-CY-Varietät mit einfach zusammenhängendem torischem Diagramm ist, werden wir sehen, dass die Existenz eines Tiltingbündels die

Konvexität des torischen Diagramms vorraussetzt (**Lemma** 1.3.7). In diesem Fall ist die Varietät dann eine *crepante Auflösung* einer affinen torischen 3-Calabi-Yau-Varietät. Für den Fall eines *suspended pinch point*, werden wir für alle torischen, crepanten Auflösungen ein Tiltingbündel berechnen (**Beispiel** 1.4.4).

Abschließend skizzieren wir für den Fall, dass die Faserdimension einer crepanten Auflösung höchstens gleich 1 ist, wie Kentaro Nagao mit Hilfe von Methoden von Michel van den Bergh ein Tiltingbündel auf der aufgelösten Varietät konstruiert hat.

1.1 Torische Varietäten: Der lokale Ansatz

Beweise zu den nichtbewiesenen Aussagen dieses Abschnittes findet man in [16].

Wir fixieren folgende Notationen:

- $N \cong \mathbb{Z}^n$ ein Gitter vom Rang n.
- $N_{\mathbb{Q}} = N \otimes \mathbb{Q}$ der von N erzeugte \mathbb{Q} -Vektorraum.
- $M = \operatorname{Hom}(N, \mathbb{Z})$ das zu N duale Gitter.
- $\sigma = \{\sum_{i=1}^r \lambda_i v_i \mid \lambda_i \in \mathbb{Q}_{\geq 0}\} \subset N_{\mathbb{Q}}$ der von Elementen $v_1, \ldots, v_r \in N$ erzeugte Kegel.
- $\sigma^{\vee} = \{ \phi \in M_{\mathbb{Q}} \mid \phi(v_i) \ge 0, \quad \forall i = 1, \dots, r \} \text{ der zu } \sigma \text{ duale Kegel.}$
- $\sigma^{\perp} = \{ \phi \in M_{\mathbb{Q}} \mid \phi(v) = 0 \quad \forall v \in \sigma \} \text{ der zu } \sigma \text{ orthogonale } \mathbb{Q}\text{-Vektorraum.}$
- $S_{\sigma} = \sigma^{\vee} \cap M$ die zu σ assoziierte Halbgruppe.
- $A_{\sigma} = \mathbb{C}[S_{\sigma}] := \mathbb{C}[\chi^{\phi} \mid \phi \in S_{\sigma}], \text{ mit } \chi^{\phi} \cdot \chi^{\phi'} := \chi^{\phi + \phi'}, \text{ die von } S_{\sigma} \text{ erzeugte } \mathbb{C}$ -Algebra.

Dann ist S_{σ} eine endlich erzeugte, gesättigte Halbgruppe, weswegen A_{σ} eine endlich erzeugte, normale C-Algebra ist. Es ist also durch

$$U_{\sigma} := \text{Spec } A_{\sigma}$$

eine normale affine Varietät gegeben, für die folgende Identifikationen gelten:

$$U_{\sigma} = \operatorname{Hom}_{\operatorname{Sch}}(\operatorname{pt}, U_{\sigma}) = \operatorname{Hom}_{\mathbb{C}\operatorname{-Alg}}(A_{\sigma}, \mathbb{C}) = \operatorname{Hom}_{\operatorname{sgp}}(S_{\sigma}, (\mathbb{C}, \cdot)).$$

Sei ferner σ streng konvex, d.h. es existiert ein $\phi \in \sigma^{\vee}$ mit $\sigma \cap \phi^{\perp} = \{0\}$. Dann ist $M = S_{\sigma} + \mathbb{Z}_{\geq 0} \cdot (-\phi)$ und somit hat man eine offene Einbettung

$$T_M := \operatorname{Spec} \mathbb{C}[M] = \operatorname{Spec} (A_\sigma)_{\chi^\phi} \xrightarrow{\iota} U_\sigma,$$

die einen algebraischen n-Torus T_M mit einer offenen und dichten Untervarietät von U_{σ} identifiziert. Auf dem Level von Halbgruppenmorphismen gilt für ι dann das folgende:

$$\phi \in T_M = \operatorname{Hom}_{\operatorname{Ab}}(M, (\mathbb{C}^*, \cdot)),$$

$$\iota(\phi) = \phi|_{S_{\sigma}} \in U_{\sigma}.$$

Vermöge ι operiert dann T_M auf U_{σ} als Multiplikation von Halbgruppenmorphismen, und U_{σ} wird die zu σ assoziierte affine torische Varietät genannt.

Unter einer Seite $\tau \prec \sigma$ von σ versteht man einen Unterkegel $\tau \subset \sigma$ von σ mit der Eigenschaft, dass ein $\psi \in \sigma^{\vee}$ existiert mit $\sigma \cap \psi^{\perp} = \tau$.

Ein Fächer Σ in N ist eine endliche Menge von streng konvexen Kegeln

$$\Sigma = \{ \sigma \mid \sigma \subset N_{\mathbb{Q}} \}$$

so, dass für jeden Kegel $\sigma \in \Sigma$ auch jede Seite $\tau \prec \sigma$ in Σ enthalten ist, und dass je zwei Kegel $\sigma_1, \sigma_2 \in \Sigma$ sich in einer gemeinsamen Seite schneiden. Man kann dann ein $\phi \in \sigma_1^{\vee} \cap -\sigma_2^{\vee}$ finden so, dass gilt:

$$S_{\sigma_1 \cap \sigma_2} = S_{\sigma_1} + \mathbb{Z}_{\geq 0} \cdot (-\phi) = S_{\sigma_2} + \mathbb{Z}_{\geq 0} \cdot (\phi).$$

So erhält man Identifikationen

$$(U_{\sigma_1})_{\chi^{\phi}} = U_{\sigma_1 \cap \sigma_2} = (U_{\sigma_2})_{\chi^{-\phi}},$$

mittels derer man U_{σ_1} und U_{σ_2} entlang $U_{\sigma_1} \cap U_{\sigma_2} \cong U_{\sigma_1 \cap \sigma_2}$ verkleben kann. Auf diese Weise kann eine Varietät X_{Σ} konstruiert werden, die eine offene affine Überdeckung $\{U_{\sigma} \mid \sigma \in \Sigma\}$ besitzt, und die durch die offenen Einbettungen $T_M \hookrightarrow U_{\sigma}, \ \sigma \in \Sigma$, zu einer T_M -Varietät wird.

Es gibt dann eine Bijektion zwischen den Orbiten der T_M -Aktion auf X_{Σ} und den Kegeln $\sigma \in \Sigma$:

Definiere dazu für einen Kegel $\sigma \in \Sigma$ den *ausgezeichneten Punkt von* $U_{\sigma}, x_{\sigma} : S_{\sigma} \to \mathbb{C}$, durch

$$x_{\sigma}(u) = \begin{cases} 1 & \text{falls } u \in \sigma^{\perp} \\ 0 & \text{sonst.} \end{cases}$$
(1.1)

Wir bezeichnen mit $O_{\sigma} := T_M \cdot x_{\sigma}$ den T_M -Orbit von x_{σ} und mit $V(\sigma) := \overline{O_{\sigma}} \subset X_{\Sigma}$ dessen Zariski-Abschluss in X_{Σ} . Es ist dann X_{Σ} die disjunkte Vereinigung der $O_{\sigma}, \sigma \in \Sigma$, und es gilt:

$$O_{\sigma} \cong \operatorname{Hom}(\sigma^{\perp} \cap M, \mathbb{C}^*) \cong (\mathbb{C}^*)^{n - \dim(\sigma)}, \tag{1.2}$$

$$V(\sigma) = \prod_{\sigma \prec \alpha} O_{\alpha}.$$
 (1.3)

Falls ein Gittermorphismus $\phi: N \to N'$ einen Kegel $\sigma \subset N_{\mathbb{Q}}$ in einen Kegel $\sigma' \subset N'_{\mathbb{Q}}$ abbildet, dann ist $\phi^*(S_{\sigma'}) \subset S_{\sigma}$ und es ist

$$\overline{\phi} : \operatorname{Hom}_{\operatorname{sgp}}(S_{\sigma}, (\mathbb{C}, \cdot)) \to \operatorname{Hom}_{\operatorname{sgp}}(S_{\sigma'}, (\mathbb{C}, \cdot)), \ \overline{\phi}(x) = x \circ (\phi^*|_{S_{\sigma'}})$$
(1.4)

ein Morphismus von affinen Varietäten. Bildet allgemeiner ϕ jeden Kegel σ eines Fächers Σ aus $N_{\mathbb{Q}}$ in Kegel σ' eines Fächers N' aus $N'_{\mathbb{Q}}$ ab, dann verkleben sich die Morphismen $U_{\sigma} \to U_{\sigma'}$ zu einem Morphismus $X_{\Sigma} \to X_{\Sigma'}$. Dieser Morphismus ist kompatibel mit den Torus-Aktionen und wir nennen solche Morphismen torische Morphismen.

Die T_M -invarianten Primdivisoren auf X_{Σ} sind gerade der Form $V(\tau)$, für eindimensionale Kegel $\tau \in \Sigma$. Sei

$$\Sigma(1) = \{v_1, \dots, v_t\} \subset N$$

die Menge der primitiven Erzeuger der eindimensionalen Kegel { $\tau_1 = \mathbb{Q}_{\geq 0} \cdot v_1, \ldots, \tau_t = \mathbb{Q}_{\geq 0} \cdot v_t$ }, $D_i := V(\tau_i)$ die entsprechenden T_M -invarianten Primdivisoren auf X_{Σ} , und

$$T_M$$
-Div $(X_{\Sigma}) = \bigoplus_{i=1}^t \mathbb{Z} \cdot D_i \cong \mathbb{Z}^t$ (1.5)

die Gruppe der T_M -Divisoren. Dann ist jeder Divisor rational äquivalent zu einem T_M -Divisor, d.h. die Divisorklassen der D_i erzeugen die Klassengruppe von X_{Σ} , $\operatorname{Cl}(X_{\Sigma})$:

$$\operatorname{Cl}(X_{\Sigma}) = \sum_{i=1}^{t} \mathbb{Z} \cdot [D_i].$$
(1.6)

Jedes $\phi \in M$ definiert einen Charakter $\chi^{\phi} : T_M \to \mathbb{C}^*$ und somit eine rationale Funktion auf X_{Σ} ; für den Divisor dieser rationalen Funktion gilt dann:

$$\operatorname{div}(\chi^{\phi}) = \sum_{i=1}^{t} \phi(v_i) \cdot D_i.$$
(1.7)

Demzufolge existiert eine exakte Sequenz von abelschen Gruppen

$$M \xrightarrow{\operatorname{div}} T_M \operatorname{-Div}(X_{\Sigma}) \xrightarrow{[-]} \operatorname{Cl}(X_{\Sigma}) \to 0.$$
 (1.8)

Ein T_M -Divisor $D = \sum a_i D_i$ ist genau dann Cartier, wenn für alle $\sigma \in \Sigma$ ein $\phi_{\sigma} \in M$ existiert mit

$$\operatorname{div}(\chi^{\phi_{\sigma}})|_{U_{\sigma}} = D|_{U_{\sigma}}.$$
(1.9)

In diesem Fall definiert D eine lokal freie Garbe vom Rang 1, $\mathcal{O}(D)$, die die Garbe von Schnitten von folgendem Linienbündel $p_D: X_D \to X_{\Sigma}$ ist (vergleiche dazu [28, Proposition 2.1]):

 X_D besitzt eine offene Überdeckung $\{U_\sigma\times\mathbb{C}\mid\sigma\in\Sigma\}$ und die Übergangsfunktionen sind gegeben durch

$$U_{\sigma} \times \mathbb{C} \supset U_{\sigma \cap \tau} \times \mathbb{C} \xrightarrow{g_{\sigma,\tau}} U_{\sigma \cap \tau} \times \mathbb{C} \subset U_{\tau} \times \mathbb{C},$$
$$(p,t) \mapsto (p, \chi^{m_{\tau} - m_{\sigma}}(p) \cdot t).$$
(1.10)

Falls Σ simplizial ist, d.h. falls jeder Kegel $\sigma \in \Sigma$ erzeugt ist von linear unabhängigen Vektoren, ist $X_D \cong X_{\Upsilon}$, für einen Fächer Υ in $(N \oplus \mathbb{Z})_{\mathbb{Q}}$.

Proposition 1.1.1. Sei Σ ein simplizialer Fächer in $N_{\mathbb{Q}}$, $\Sigma(1) = \{v_1, \ldots, v_t\}$ die primitiven Erzeuger der eindimensionalen Kegel in Σ , $\Sigma_{max} = \{\sigma_1, \ldots, \sigma_r\}$ die Menge der maximalen Kegel in Σ , und $D = \sum a_i D_i$ ein Cartierdivisor auf X_{Σ} . Dann ist

$$\Upsilon_{max} = \left\{ \left\langle \begin{pmatrix} v_{i_1} \\ -a_{i_1} \end{pmatrix}, \dots, \begin{pmatrix} v_{i_s} \\ -a_{i_s} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{Q}_{\geq 0}} \mid \langle v_{i_1}, \dots, v_{i_s} \rangle_{\mathbb{Q}_{\geq 0}} \in \Sigma_{max} \right\}$$

die Menge der maximalen Kegel eines Fächers Υ in $(N \oplus \mathbb{Z})_{\mathbb{Q}}$. Der von der Projektion $\pi_1 : N \oplus \mathbb{Z} \to N$ induzierte Morphismus $p : X_{\Upsilon} \to X_{\Sigma}$ ist ein Linienbündel und $\mathcal{O}(D)$ seine Garbe von Schnitten. Beweis. Wir zeigen zunächst, dass Υ ein Fächer ist. Seien dazu zunächst $\sigma, \tau \in \Sigma_{max}$ und $\sigma', \tau' \in \Upsilon_{max}$ die σ und τ entsprechenden Kegel. Weil Σ ein Fächer ist existiert ein $\phi \in S_{\sigma} \cap (-S_{\tau})$ mit $\sigma \cap \tau = \sigma \cap \phi^{\perp} = \tau \cap \phi^{\perp}$. Deswegen gilt

$$\begin{pmatrix} \phi \\ 0 \end{pmatrix} \in S_{\sigma'} \cap (-S_{\tau'}) , \ \sigma' \cap \tau' \subset \sigma' \cap \begin{pmatrix} \phi \\ 0 \end{pmatrix}^{\perp} , \ \sigma' \cap \tau' \subset \tau' \cap \begin{pmatrix} \phi \\ 0 \end{pmatrix}^{\perp}.$$
(1.11)

Um die zu (1.11) umgekehrten Inklusionen zu zeigen, benutzen wir, dass jeder Kegel in Σ ein Erzeugendensystem besitzt, das linear unabhängig ist: Seien diese im Falle von σ , τ und $\sigma \cap \tau$ gegeben durch

$$\sigma \cap \tau = \langle v_{i_1}, \dots, v_{i_r} \rangle_{\mathbb{Q}_{\geq 0}}, \ \sigma = \sigma \cap \tau + \langle v_{j_1}, \dots, v_{j_s} \rangle_{\mathbb{Q}_{\geq 0}}$$

und $\tau = \sigma \cap \tau + \langle v_{k_1}, \dots, v_{k_t} \rangle_{\mathbb{Q}_{\geq 0}},$ (1.12)

für gewisse $v_{i_n}, v_{j_n}, v_{k_n} \in \Sigma(1)$. Sei nun

$$x' = \begin{pmatrix} x \\ t \end{pmatrix} = \lambda_{i_1} \begin{pmatrix} v_{i_1} \\ -a_{i_1} \end{pmatrix} + \dots + \lambda_{i_r} \begin{pmatrix} v_{i_r} \\ -a_{i_r} \end{pmatrix} + \lambda_{j_1} \begin{pmatrix} v_{j_1} \\ -a_{j_1} \end{pmatrix} + \dots + \lambda_{j_s} \begin{pmatrix} v_{j_s} \\ -a_{j_s} \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \sigma' \cap \begin{pmatrix} \phi \\ 0 \end{pmatrix}^{\perp}.$$

Dann ist $x \in \sigma \cap \tau$, und weil das Erzeugendensystem von σ aus (1.12) linear unabhängig ist, folgt:

$$\lambda_{j_1} = \ldots = \lambda_{j_s} = 0,$$

d.h. es ist $x' \in \sigma' \cap \tau'$. Wir haben somit gezeigt, dass $\sigma' \cap \tau'$ eine Seite von σ' ist. Die verbleibende Inklusion beweist man analog, und somit schneiden sich σ' und τ' in einer gemeinsamen Seite. Falls σ' und τ' keine maximalen Kegel sind, zeigt man genau so wie oben, dass ihr Schnitt eine gemeinsame Seite ist. Somit ist Υ ein Fächer.

Als nächstes berechnen wir die lokalen Trivialisierungen von $p: X_{\Upsilon} \to X_{\Sigma}$:

Sei $\sigma \in \Sigma$. Weil *D* Cartier ist, existiert ein $m_{\sigma} \in M$ mit $m_{\sigma}(v_i) = a_i$ für alle $v_i \in \sigma(1)$ (siehe (1.7) und (1.9)). Für ein Erzeugendensystem $\{m_1, \ldots, m_s\}$ von S_{σ} ist dann

$$T = \left\{ \begin{pmatrix} m_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} m_s \\ 0 \end{pmatrix}, \begin{pmatrix} m_\sigma \\ 1 \end{pmatrix} \right\}$$
(1.13)

ein Erzeugendensystem von $S_{\sigma'}$: Zerlege dazu ein Element $m' \in S_{\sigma'}$ in

$$m' = \binom{m}{\alpha} = \binom{m - \alpha m_{\sigma}}{0} + \alpha \cdot \binom{m_{\sigma}}{1}$$

Es ist α eine nicht-negative Zahl, weil $e_{n+1} \in \sigma'$ und $m'(e_{n+1}) = \alpha$ ist. Außerdem ist für alle $v_i \in \sigma(1)$

$$(m - \alpha m_{\sigma})(v_i) = \binom{m}{\alpha} \binom{v_i}{-a_i} \ge 0$$

d.h. es ist $m - \alpha m_{\sigma} \in S_{\sigma}$, und somit erzeugt T die Halbgruppe $S_{\sigma'}$. Der von $\pi_1 : N \oplus \mathbb{Z} \to N$ induzierte Morphismus $U_{\sigma'} \to U_{\sigma}$ kommt demzufolge vom \mathbb{C} -Algebra-Morphismus

$$A_{\sigma} = \mathbb{C}[\chi^{m_1}, \dots, \chi^{m_s}] \to A_{\sigma'} = A_{\sigma} \otimes \mathbb{C}[\chi^{m_{\sigma}} \cdot z] , \ \chi^{m_i} \mapsto \chi^{m_i} \otimes 1.$$

Deswegen ist

$$U_{\sigma'} = \text{Spec} \left(A_{\sigma} \otimes \mathbb{C}[\chi^{m_{\sigma}} \cdot z] \right) \cong U_{\sigma} \times \mathbb{C},$$

und vermöge dieses Isomorphismusses ist $p: U_{\sigma'} \to U_{\sigma}$ die Projektion nach der ersten Komponente $U_{\sigma} \times \mathbb{C} \to U_{\sigma}$.

Nun zu den Übergangsfunktionen: Wir hatten gesehen, dass für $\sigma, \tau \in \Sigma_{max}$, und $\phi \in S_{\sigma} \cap (-S_{\tau})$ mit $\sigma \cap \tau = \sigma \cap \phi^{\perp} = \tau \cap \phi^{\perp}$, für die entsprechenden $\sigma', \tau' \in \Upsilon_{max}$ gilt:

$$\sigma' \cap \tau' = \sigma' \cap \begin{pmatrix} \phi \\ 0 \end{pmatrix}^{\perp} = \tau' \cap \begin{pmatrix} \phi \\ 0 \end{pmatrix}^{\perp}.$$

Deswegen hat man für die Koordinatenringe:

$$A_{\sigma'\cap\tau'} = (A_{\sigma})_{\chi^{\phi}} \otimes \mathbb{C}[\chi^{m_{\sigma}} \cdot z] = (A_{\tau})_{\chi^{-\phi}} \otimes \mathbb{C}[\chi^{m_{\tau}} \cdot z].$$

Man beachte nun, dass die rationale Funktion $\chi^{m_{\tau}-m_{\sigma}} \in \mathbb{C}(X_{\Sigma})$ wegen

 $m_{\tau}(v_i) = m_{\sigma}(v_i), \quad \text{für alle } v_i \in (\sigma \cap \tau)(1),$

eine Einheit von $A_{\sigma\cap\tau}$ ist. Die Übergangsfunktionen sind dann wie gewünscht der Form (1.10):

$$U_{\sigma} \times \mathbb{C} \supset U_{\sigma \cap \tau} \times \mathbb{C} \xrightarrow{g_{\sigma,\tau}} U_{\sigma \cap \tau} \times \mathbb{C} \subset U_{\tau} \times \mathbb{C}$$
$$(p,t) \mapsto (p, \chi^{m_{\tau} - m_{\sigma}}(p) \cdot t).$$

Bemerkung 1.1.2. Dieses Resultat findet sich auch im Buchprojekt *Toric Varieties* von David Cox, Hal Schenk und John Little ([12, Proposition 7.3.1]).

1.2 Globale Koordinaten für torische Varietäten und kohärente Garben

In diesem Abschnitt skizzieren wir die Konstruktion von torischen Varietäten als Quotientenvarietäten gemäß [11] und [26], und übernehmen die Notation aus dem vorherigen Abschnitt. Insbesondere sei $\Sigma(1) = \{v_1, \ldots, v_t\}$ die Menge der primitiven Erzeuger der eindimensionalen Kegel in einem Fächer Σ .

Definition 1.2.1. Sei $S := \mathbb{C}[x_{\rho} \mid \rho \in \Sigma(1)] = \mathbb{C}[x_1, \ldots, x_t]$. Dann ist S graduiert durch $\operatorname{Cl}(X_{\Sigma})$ vermöge des Morphismus $[-] : \mathbb{Z}^t \to \operatorname{Cl}(X_{\Sigma})$.

- Der $\operatorname{Cl}(X_{\Sigma})$ -graduierte Ring S wird der homogene Koordinatenring von X_{Σ} genannt.
- $B_{\Sigma} := (\prod_{\rho \notin \sigma(1)} x_{\rho} \mid \sigma \in \Sigma) \subset S$ wird *irrelevantes Ideal von* S genannt.

- $V_{\sigma} := \text{Spec } S[x_{\rho}^{-1} | \rho \notin \sigma(1)] \cong \{ p \in \mathbb{C}^t \mid \prod_{\rho \notin \sigma(1)} p_{\rho} \neq 0 \}, \text{ für ein } \sigma \in \Sigma.$
- $V_{\Sigma} := \bigcup_{\sigma \in \Sigma} V_{\sigma} = \mathbb{C}^t V(B_{\Sigma}) \subset \mathbb{C}^t.$

Durch Anwenden des Funktors $\operatorname{Hom}(-,\mathbb{C}^*)$ auf (1.8) erhalten wir die exakte Sequenz

$$1 \to \operatorname{Hom}(\operatorname{Cl}(X_{\Sigma}), \mathbb{C}^*) \xrightarrow{[-]_*} (\mathbb{C}^*)^t$$

Somit operiert $G_{\Sigma} := \text{Hom} (\text{Cl}(X_{\Sigma}), \mathbb{C}^*)$ auf \mathbb{C}^t vermöge $[-]_*$ wie folgt:

$$g. p = (g([D_i]) \cdot p_i)_{i \in [t]}, \qquad p \in \mathbb{C}^t, g \in G_{\Sigma}.$$

Offensichtlich ist dann für alle $\sigma \in \Sigma$ die affine Varietät V_{σ} G_{Σ} -invariant. Erzeuge nun $\Sigma(1)$ den \mathbb{Q} -Vektorraum $N_{\mathbb{Q}}$. Dann gilt:

Theorem 1.2.2. [11, Proposition 1.1, Theorem 2.1, Lemma 2.2] In der obigen Situation gilt das folgende:

- Für alle $\sigma \in \Sigma$ gilt für den Invariantenring: $\mathbb{C}[V_{\sigma}]^{G_{\Sigma}} \cong A_{\sigma}$. Somit existiert ein kategorieller Quotient $V_{\sigma} \to V_{\sigma}//G_{\Sigma} = U_{\sigma}$.
- Es existiert ein kategorieller Quotient $V_{\Sigma} \to V_{\Sigma}//G_{\Sigma} = X_{\Sigma}$.
- $V_{\Sigma} \to X_{\Sigma}$ ist genau dann ein geometrischer Quotient, falls der Fächer Σ simplizial ist, d.h. jedes $\sigma \in \Sigma$ ist erzeugt von linear unabhängigen Vektoren.
- Für alle $[D] \in \operatorname{Cl}(X_{\Sigma})$ ist $S_{[D]} \cong H^0(X_{\Sigma}, \mathcal{O}(D)).$

Beweis. Der Beweis der ersten Aussage wird für Lemma 1.2.4 benötigt werden. Sei $\sigma \in \Sigma$ und $X^{D_m} := x_1^{m_1} \cdots x_t^{m_t} \in \mathbb{C}[V_\sigma]$, d.h. die m_i sind ganze Zahlen und falls $i \in \sigma(1)$ ist, gilt: $m_i \geq 0$. D_m sei dabei der T_M -Divisor

$$D_m = m_1 D_1 + \ldots + m_t D_t.$$

Dann ist X^{D_m} genau dann G_{Σ} -invariant, falls D_m ein Hauptdivisor ist, d.h.

$$\exists k_m \in M : \operatorname{div}(\chi^{k_m}) = D_m.$$

Wegen (1.7) ist dies gleichbedeutend damit, dass für alle i = 1, ..., t gilt:

$$k_m(v_i) = m_i.$$

Somit ist durch

$$\mathbb{C}[V_{\sigma}]^{G_{\Sigma}} \to A_{\sigma}, \quad X^{D_m} \mapsto \chi^{k_m} \tag{1.14}$$

offensichtlich ein Isomorphismus von C-Algebren gegeben.

Bemerkung 1.2.3. Falls $\Sigma(1)$ einen echten Unterraum $V \subsetneq N_{\mathbb{Q}}$ erzeugt, ist $N \cong N' \oplus N''$ mit $N' := V \cap N$. Dieser Isomorphismus bildet jeden Kegel $\sigma \in \Sigma$ auf einen Kegel $\sigma' \oplus \{0\}$ ab. Die Kegel der Form σ' bilden einen Fächer Σ' in $(N')_{\mathbb{Q}}$. Es ist dann $X_{\Sigma} \cong X_{\Sigma'} \times (\mathbb{C}^*)^k$, mit $k = \operatorname{rg}(N'')$, und $\Sigma'(1)$ erzeugt den \mathbb{Q} -Vektorraum $(N')_{\mathbb{Q}}$. Mit dem Theorem 1.2.2 erhält man dann globale Koordinaten für $X_{\Sigma'}$. Zusammen mit affinen Koordinaten für die Varietät $(\mathbb{C}^*)^k$ bilden diese dann globale Koordinaten für X_{Σ} .

Gelte weiterhin, dass $\Sigma(1)$ den Q-Vektorraum $N_{\mathbb{Q}}$ erzeugt. Globale Koordinaten für Linienbündel erhält man so:

Lemma 1.2.4. Seien Σ bzw. Υ simpliziale Fächer in $N_{\mathbb{Q}}$ bzw. $(N \oplus \mathbb{Z})_{\mathbb{Q}}$ wie in Proposition 1.1.1, und $S := \mathbb{C}[x_1, \ldots, x_t]$ der homogene Koordinatenring von X_{Σ} , graduiert durch $\operatorname{Cl}(X_{\Sigma})$. Dann ist $\operatorname{Cl}(X_{\Upsilon})$ isomorph zu $\operatorname{Cl}(X_{\Sigma})$. Der homogene Koordinatenring von X_{Υ} ist $S' := \mathbb{C}[y_1, \ldots, y_t, y]$, mit der Graduierung $\operatorname{deg}(y_i) = \operatorname{deg}(x_i) \in \operatorname{Cl}(X_{\Sigma})$, für $i = 1, \ldots, t$ und $\operatorname{deg}(y) = [D]$, die Klasse des Divisors D. Außerdem liest sich die Projektion $p : X_{\Upsilon} \to X_{\Sigma}$ in globalen Koordinaten wie folgt:

$$X_{\Upsilon} \ni [u_1, \dots, u_t, u] \xrightarrow{p} [u_1, \dots, u_t] \in X_{\Sigma}$$

Beweis.Betrachte die Sequenz(1.8)aus Abschnitt 1.1. Weil diese exakt ist, ist auch durch

$$M \oplus \mathbb{Z} \xrightarrow{f'} \mathbb{Z}^t \oplus \mathbb{Z} \xrightarrow{[-]'} \operatorname{Cl}(X_{\Sigma}) \to 0$$
$$f'(\begin{pmatrix}\phi\\\alpha\end{pmatrix}) := \operatorname{div}(\chi^{\phi} \cdot z^{\alpha}), [\begin{pmatrix}D'\\\beta\end{pmatrix}]' := [D'] + \beta[D]$$

eine exakte Sequenz gegeben. Deswegen hat man folgendes:

- $\operatorname{Cl}(X_{\Sigma}) \cong \operatorname{Cl}(X_{\Upsilon}).$
- $\deg(y_i) = \deg(x_i)$, für alle $i = 1, \ldots, t$.
- $\deg(y) = [D].$

Wir können somit setzen $S' := \mathbb{C}[x_1, \ldots, x_t, y] \supset S$. Für das irrelevante Ideal von S', B_{Υ} , hat man dann, dass gilt:

$$B_{\Upsilon} = S' \cdot B_{\Sigma}.$$

Für V_{Υ} ergibt sich daraus:

$$V_{\Upsilon} = \mathbb{C}^{t+1} - V(S' \cdot B_{\Sigma}) = (\mathbb{C}^t - V(B_{\Sigma})) \times \mathbb{C} = V_{\Sigma} \times \mathbb{C}.$$

 $G_{\Upsilon} = G_{\Sigma}$ wirkt auf $V_{\Sigma} \times \mathbb{C}$ dann auf der ersten Komponente durch die G_{Σ} -Aktion auf V_{Σ} , und auf der zweiten Komponente als

$$gt := g([D]) \cdot t, \qquad g \in G_{\Sigma}, \ t \in \mathbb{C}.$$

Insbesondere ist also die Projektion $V_{\Sigma} \times \mathbb{C} \to V_{\Sigma}$ äquivariant bezüglich der G_{Σ} -Aktionen. Somit erhalten wir einen Morphismus

$$X_{\Upsilon} = (V_{\Sigma} \times \mathbb{C})/G_{\Sigma} \to V_{\Sigma}/G_{\Sigma} = X_{\Sigma}, \quad [u_1, \dots, u_t, u] \to [u_1, \dots, u_t].$$

Dieser stimmt mit dem von $\pi_1 : N \oplus \mathbb{Z} \to N$ induzierten Morphismus $p : X_{\Upsilon} \to X_{\Sigma}$ (vergleiche Proposition 1.1.1) überein: Sei $\sigma \in \Sigma$ und $\sigma' \in \Upsilon$ der geliftete Kegel. Betrachte nun den von der Projektion $V_{\sigma'} = V_{\sigma} \times \mathbb{C} \to V_{\sigma}$ induzierten Morphismus von affinen Varietäten

$$U_{\sigma'} = V_{\sigma'}/G_{\Sigma} \to V_{\sigma}/G_{\Sigma} = U_{\sigma}.$$

Dieser entspricht gerade der Inklusion von C-Algebren

$$\mathbb{C}[V_{\sigma}]^{G_{\Sigma}} \hookrightarrow \mathbb{C}[V_{\sigma} \times \mathbb{C}]^{G_{\Sigma}}, \quad x_1^{m_1} \cdots x_1^{m_t} \mapsto x_1^{m_1} \cdots x_1^{m_t}$$

Nun benutzen wir den Isomorphismus (1.14) und sehen, dass die so entstehende Inklusion von \mathbb{C} -Algebren

$$A_{\sigma} \hookrightarrow A_{\sigma'}$$

gerade dem von $\pi_1 : N \oplus \mathbb{Z} \to \mathbb{Z}$ induzierten Morphismus von \mathbb{C} -Algebren aus Proposition 1.1.1 entspricht.

Beispiel 1.2.5. (i) Betrachte den folgenden Fächer Σ in $(\mathbb{Z}^2)_{\mathbb{Q}}$ mit

$$\Sigma_{max} = \{\sigma_1, \sigma_2, \sigma_3\} \text{ und } \Sigma(1) = \{e_1, e_2, -e_1 - e_2\} \subset \mathbb{Z}^2$$

Abb. 1.2.1. Ein Fächer für \mathbb{P}^2 .

Dann berechnet man

$$[-]: \mathbb{Z}^3 \to \operatorname{Cl}(X_{\Sigma}) \cong \mathbb{Z}, \quad [-] = (1 \quad 1 \quad 1).$$

Somit ist der homogene Koordinatenring $S = \mathbb{C}[x_1, x_2, x_3]$ Z-graduiert durch

$$\deg(x_1) = \deg(x_2) = \deg(x_3) = 1$$

Das irrelevante Ideal ist $B_{\Sigma} = (x_1, x_2, x_3)$. Somit hat man $V_{\Sigma} = \mathbb{C}^3 - \{0\}$, und $G_{\Sigma} = \mathbb{C}^*$ wirkt auf V_{Σ} durch Skalierung der x_i :

$$\lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3), \qquad \lambda \in \mathbb{C}^*, (x_1, x_2, x_3) \in \mathbb{C}^3 - \{0\}$$

Es ist also $X_{\Sigma} = \mathbb{P}^2$ eine projektive Ebene. Sei $D = a_1D_1 + a_2D_2 + a_3D_3$ ein T_M -Divisor. Dann ist D stets Cartier und es ist [D] = a, wobei $a = a_1 + a_2 + a_3$ ist. Das D entsprechende Linienbündel ist $\mathcal{O}(a)$ und globale Koordinaten sind dann mit $t \in \mathbb{C}^*$:

$$\begin{array}{cccc} X_{(a)} \ni & [x_1, x_2, x_3, y] = & [t \cdot x_1, t \cdot x_2, t \cdot x_3, t^a \cdot y] \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \mathbb{P}^2 \ni & [x_1, x_2, x_3] = & [t \cdot x_1, t \cdot x_2, t \cdot x_3]. \end{array}$$

(ii) Sei nun Σ der Fächer in $(\mathbb{Z}^2)_{\mathbb{Q}}$ mit

$$\Sigma_{max} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\} \text{ und } \Sigma(1) = \{\pm e_1, \pm e_2\}.$$

Abb. 1.2.2. Ein Fächer für $\mathbb{P}^1 \times \mathbb{P}^1$.

Man berechnet dann: $[-]: \mathbb{Z}^4 \to \mathbb{Z}^2, (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \mapsto (\alpha_1 + \alpha_3, \alpha_2 + \alpha_4).$ Das irrelevante Ideal ist gegeben durch

$$B_{\Sigma} = (x_1, x_3) \cap (x_2, x_4),$$

und $G_{\Sigma} = (\mathbb{C}^*)^2$ wirkt auf $V_{\Sigma} = \{ p \in \mathbb{C}^4 \mid (p_1, p_3) \neq 0 \lor (p_2, p_4) \neq 0 \}$ wie folgt: $\mu p = (\mu_1 \cdot p_1, \mu_2 \cdot p_2, \mu_1 \cdot p_3, \mu_2 \cdot p_4), \quad \mu = (\mu_1, \mu_2) \in G_{\Sigma}, p = (p_1, p_2, p_3, p_4) \in V_{\Sigma}.$

Also ist X_{Σ} das Produkt von zwei projektiven Geraden. Eine Divisorklasse $a = (a_1, a_2) \in \mathbb{Z}^2$ entspricht dem Linienbündel $\pi_1^* \mathcal{O}(a_1) \otimes \pi_2^* \mathcal{O}(a_2)$, wobei mit π_1 bzw. π_2 die Projektionen $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ nach der ersten bzw. zweiten Komponente gemeint sind. Globale Koordinaten sind nun mit $\mu = (\mu_1, \mu_2) \in (\mathbb{C}^*)^2$:

$$\begin{array}{cccc} X_{(a)} \ni & [x_1, x_2, x_3, x_4, y] = & [\mu_1 \cdot x_1, \mu_2 \cdot x_2, \mu_1 \cdot x_3, \mu_2 \cdot x_4, \mu_1^{a_1} \mu_1^{a_2} \cdot y] \\ \downarrow & \downarrow & \downarrow \\ \mathbb{P}^1 \times \mathbb{P}^1 \ni & [x_1, x_2, x_3, x_4] = & [\mu_1 \cdot x_1, \mu_2 \cdot x_2, \mu_1 \cdot x_3, \mu_2 \cdot x_4]. \end{array}$$

Sei \mathcal{S} die Kategorie der endlich erzeugten $\operatorname{Cl}(X_{\Sigma})$ -graduierten S-Moduln. Für ein $P \in \mathcal{S}$ und $\alpha \in \operatorname{Cl}(X_{\Sigma})$ sei $P(\alpha)$ der \mathcal{S} -Modul mit der Graduierung

$$P(\alpha)_{\beta} = P_{\alpha+\beta}, \qquad \beta \in \operatorname{Cl}(X_{\Sigma}).$$

In [11] wird ein für projektive Räume wohlbekanntes Resultat verallgemeinert.

Theorem 1.2.6. [11, Proposition 3.1, Proposition 3.3, Corollary 3.6] Es existiert ein exakter, kovarianter Funktor $(-): S \to Coh(X_{\Sigma})$ mit folgenden Eigenschaften:

- Für alle $[D] \in \operatorname{Cl}(X_{\Sigma})$ ist $\widetilde{S([D])} \cong \mathcal{O}(D)$.
- Falls Σ simplizial ist, ist jede kohärente Garbe der Form M, für ein $M \in S$.
- Falls X_{Σ} glatt ist, ist $\widetilde{M} = 0$ genue dann, wenn ein $k \in \mathbb{Z}_{\geq 0}$ existient mit $B_{\Sigma}^{k}M = 0$.

Wir wollen nun an zwei Beispielen demonstrieren, wie man das Theorem 1.2.6 benutzen kann, um die Grothendieckgruppe $K_0(Coh(X))$ einer glatten torischen Varietät X zu berechnen.

Beispiel 1.2.7. Betrachte erneut Beispiel 1.2.5 (ii): Wir hatten gesehen, dass $X_{\Sigma} = \mathbb{P}^1 \times \mathbb{P}^1$. Es ist $B_{\Sigma} = \mathfrak{p}_1 \cap \mathfrak{p}_2$, wobei $\mathfrak{p}_1 = (x_1, x_3)$ und $\mathfrak{p}_2 = (x_2, x_4)$ ist. Außerdem ist $\deg(x_1) = \deg(x_3) = e_1$ und $\deg(x_2) = \deg(x_4) = e_2$. Sei $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}^2$ und betrachte die freien \mathbb{Z}^2 -graduierten Auflösungen von $S/\mathfrak{p}_1(\alpha)$ und $S/\mathfrak{p}_2(\alpha)$

$$\begin{aligned} 0 &\to S(\alpha - 2e_1) \to S(\alpha - e_1)^{\oplus 2} \to S(\alpha) \to S/\mathfrak{p}_1(\alpha) \to 0, \\ 0 &\to S(\alpha - 2e_2) \to S(\alpha - e_2)^{\oplus 2} \to S(\alpha) \to S/\mathfrak{p}_2(\alpha) \to 0. \end{aligned}$$

Nach Theorem 1.2.6 hat man dann folgende exakte Sequenzen in $\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1)$:

$$0 \to \mathcal{O}(\alpha - 2e_1) \to \mathcal{O}(\alpha - e_1)^{\oplus 2} \to \mathcal{O}(\alpha) \to 0,$$

$$0 \to \mathcal{O}(\alpha - 2e_2) \to \mathcal{O}(\alpha - e_2)^{\oplus 2} \to \mathcal{O}(\alpha) \to 0,$$

und deswegen für beliebige $\alpha \in \mathbb{Z}^2$ die folgenden Gleichungen in der Grothendieckgruppe $K_0(\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1))$:

$$2[\mathcal{O}(\alpha - e_1)] = [\mathcal{O}(\alpha - 2e_1)] + [\mathcal{O}(\alpha)], \qquad (1.15)$$

$$2[\mathcal{O}(\alpha - e_2)] = [\mathcal{O}(\alpha - 2e_2)] + [\mathcal{O}(\alpha)]. \tag{1.16}$$

Nach dem Hilbertschen Syzygiensatz besitzt jedes $M \in \mathcal{S}$ eine freie Auflösung endlicher Länge. Wegen Theorem 1.2.6 ist somit jede kohärente Garbe auf $\mathbb{P}^1 \times \mathbb{P}^1$ quasi-isomorph zu einem Komplex $\mathcal{P}^{\bullet} \in \mathbf{C}^b(\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1))$ derart, dass für alle $n \in \mathbb{Z}$ mit $\mathcal{P}^n \neq 0$ gilt, dass \mathcal{P}^n die direkte Summe von lokal freien Garben vom Rang 1 ist. Somit ist $K_0(\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1))$ erzeugt von

$$\left\{ \left[\mathcal{O}(\beta) \right] \mid \beta \in \mathbb{Z}^2 \right\}.$$

Mit Hilfe der Gleichungen (1.15) und (1.16) erhält man dann, dass $K_0(\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1))$ erzeugt ist von

$$\{[\mathcal{O}], [\mathcal{O}(e_1)], [\mathcal{O}(e_2)], [\mathcal{O}(e_1 + e_2)]\}.$$

Weil X_{Σ} glatt und projektiv ist, ist zum Beispiel nach [32] der Rang der Grothendieckgruppe gleich der Euler-Charakteristik von X_{Σ} , $\chi(X_{\Sigma})$. Nach einem Theorem von Białynicki-Birula ([7]) ist dies die Anzahl der Torus-Fixpunkte, und dies ist die Anzahl der volldimensionalen Kegel in Σ (siehe (1.2)).

Also ist $rg(K_0(Coh(\mathbb{P}^1 \times \mathbb{P}^1))) = 4$ und es folgt:

$$K_0(\operatorname{Coh}(\mathbb{P}^1 \times \mathbb{P}^1)) = \mathbb{Z}[\mathcal{O}] \oplus \mathbb{Z}[\mathcal{O}(e_1)] \oplus \mathbb{Z}[\mathcal{O}(e_2)] \oplus \mathbb{Z}[\mathcal{O}(e_1 + e_2)].$$

Analog kann man für Beispiel 1.2.5(i) zeigen:

$$K_0(\operatorname{Coh}(\mathbb{P}^2)) = \mathbb{Z}[\mathcal{O}] \oplus \mathbb{Z}[\mathcal{O}(1)] \oplus \mathbb{Z}[\mathcal{O}(2)].$$

1.3 Crepante Auflösungen von torischen 3-Calabi-Yau-Varietäten

Proposition 1.3.1. [16, Proposition 4.3.] Für eine glatte torische Varietät X_{Σ} mit irreduziblen T_M - Divisoren D_1, \ldots, D_t ist $-\sum D_i$ ein kanonischer Divisor.

Bemerkung 1.3.2. Falls X_{Σ} nicht glatt ist, ist $-\sum D_i$ dennoch ein kanonischer Divisor: Sei $\Phi \subset \Sigma$ der Unterfächer, der aus den Kegeln besteht, die von einem Teil einer Basis von N erzeugt sind. Dann ist $j : X_{\Phi} \hookrightarrow X_{\Sigma}$ der glatte Ort von X_{Σ} (vergleiche [16, 2.1]). Die irreduziblen T_M -Divisoren von X_{Φ} sind der Form

$$E_i := D_i \cap X_{\Phi}, \qquad i = 1, \dots t.$$

Weil X_{Σ} normal ist, ist $j_*(-\sum E_i)$ ein kanonischer Divisor auf X_{Σ} . Jedes $v_i \in \Sigma(1)$ ist Teil einer Basis von N, weswegen gilt: $O_{\tau_i} \subset E_i$. Daraus folgt nun:

$$j_*(-\sum E_i) = -\sum D_i.$$

Definition 1.3.3. Wir nennen eine (nicht notwendigerweise projektive) Varietät X *Calabi-Yau*, falls ihre kanonische Klasse trivial ist.

Korollar 1.3.4. Eine torische Varietät X_{Σ} ist Calabi-Yau genau dann, wenn ein $m \in M$ existiert mit $m(v_i) = -1$, für alle $v_i \in \Sigma(1)$. Insbesondere sind torische Calabi-Yau-Varietäten nicht projektiv.

Beweis. Die erste Behauptung ergibt sich aus Proposition 1.3.1 und der Gleichung (1.7). Nach [13, Proposition 5.5.6] ist X_{Σ} komplett genau dann, wenn gilt:

$$|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma = N_{\mathbb{R}}.$$

Eine torische Calabi-Yau-Varietät ist somit niemals komplett, und insbesondere niemals projektiv. $\hfill \Box$

Bemerkung 1.3.5. Falls X_{Σ} Calabi-Yau ist, ist nach Korollar 1.3.4 die Menge der primitiven Erzeuger $\Sigma(1)$ enthalten in einer affinen Hyperebene von $N_{\mathbb{Q}}$

$$H_m = \{ v \in N_{\mathbb{Q}} \mid m(v) = -1 \}, \qquad m \in M_{\mathbb{Q}}.$$

Es gibt einen Isomorphismus von Gittern $(\mathbb{Z}^n)^{\vee} \xrightarrow{\alpha} M$ mit $\alpha(-e_1^*) = m$. Es ist dann $\Sigma' := \{(\alpha^*)_{\mathbb{Q}}(\sigma) | \sigma \in \Sigma\}$ ein Fächer in $(\mathbb{Z}^n)_{\mathbb{Q}}$ so, dass α^* einen Isomorphismus $X_{\Sigma} \xrightarrow{\sim} X_{\Sigma'}$ induziert. Ferner ist $\Sigma'(1)$ enthalten in der affinen Hyperebene $\{x_1 = 1\} \subset (\mathbb{Z}^n)_{\mathbb{Q}}$.

Definition 1.3.6. Man nennt den Schnitt von $|\Sigma'|$ mit der affinen Hyperebene $\{x_1 = 1\} \subset (\mathbb{Z}^n)_{\mathbb{Q}}$ aus Bemerkung 1.3.5 das *torische Diagramm von* X_{Σ} . Dafür verwenden wir von nun an das Symbol \mathcal{P}_{Σ} .

Lemma 1.3.7. Sei X_{Σ} eine torische 3-Calabi-Yau-Varietät mit einfach zusammenhängendem torischem Diagramm $\mathcal{P}_{\Sigma} \subset \{x_1 = 1\} \subset (\mathbb{Z} \oplus \mathbb{Z}^2)_{\mathbb{R}}$. Dann gilt:

$$\operatorname{Ext}^{1}(\mathcal{O}_{X_{\Sigma}}, \mathcal{O}_{X_{\Sigma}}) = 0 \quad \Longleftrightarrow \quad \mathcal{P}_{\Sigma} \text{ ist konvex }.$$

Beweis. " \Rightarrow ": Seien $E_{\Sigma} = \{v_0, \ldots, v_r\} \subset \mathbb{Z}^2, r \geq 2$, die Ecken von \mathcal{P}_{Σ} . Die Ecken seien im entgegengesetzten Uhrzeigersinn angeordnet. Für jedes $a \in \mathbb{Z}$ existiert genau ein $b \in \{0, \ldots, r\}$ mit $a - b \in (r + 1)\mathbb{Z}$. Wir setzen dann

$$v_a := v_b \in E_{\Sigma}.$$

Kontraposition: Sei \mathcal{P}_{Σ} nicht konvex. Dann existiert eine affine Gerade in \mathbb{R}^2

$$G := \{ v \in \mathbb{R}^2 \mid \langle m, v \rangle = p \}, \quad m \in \mathbb{Z}^2, p \in \mathbb{Z},$$

derart, dass für die Ecken von \mathcal{P}_{Σ} folgendes gilt:

- Für alle $v \in E_{\Sigma}$ ist $\langle m, v \rangle \leq p$.
- Es existieren Indizes i, j mit |i j| > 1 so, dass gilt: $v_i, v_j \in G$.
- Es ist $\langle m, v_a \rangle < p$, für alle $a \in \{i 1, i + 1, j 1, j + 1\}$.

Sei nun p' < p maximal mit der Eigenschaft, dass ein $v_s \in E_\Sigma$ existiert, mit:

$$v_s \in G' := \{ v \in \mathbb{R}^2 \mid \langle m, v \rangle = p' \}.$$

Wegen $v_s, m \in \mathbb{Z}^2$ ist $p' \in \mathbb{Z}$ und wir können somit das (p', -m) entsprechende Element $\psi \in M = (\mathbb{Z}^3)^{\vee}$ betrachten. Setze nun

$$Z(\psi) := \{ w \in |\Sigma| \mid \psi(w) \ge 0 \}.$$

Nach Konstruktion gilt dann: $(1, v_i), (1, v_j) \in |\Sigma| - Z(\psi)$, und jeder stetige Weg von $(1, v_i)$ nach $(1, v_j)$ in $|\Sigma|$ trifft $Z(\psi)$. Somit ist $|\Sigma| - Z(\psi)$ nicht zusammenhängend.

Abb. 1.3.1. $(|\Sigma| - Z(\psi)) \cap \mathcal{P}_{\Sigma}$ besteht aus den beiden roten Dreiecken.

Nach [16, Abschnitt 3.4] ist für alle $k \ge 0$, $\operatorname{Ext}^1(\mathcal{O}_{X_{\Sigma}}, \mathcal{O}_{X_{\Sigma}})$ M-graduiert und es ist für ein $\phi \in M$

$$(\operatorname{Ext}^{k}(\mathcal{O}_{X_{\Sigma}}, \mathcal{O}_{X_{\Sigma}})_{\phi} \cong H^{k}_{Z(\phi)}(|\Sigma|, \mathbb{C}),$$

für alle $k \ge 0$. Man hat die folgende lange exakte Sequenz, die die Kohomologie von $|\Sigma|$ und $|\Sigma| - Z(\phi)$ mit der relativen Kohomologie von $|\Sigma|$ bezüglich $Z(\phi)$ in Verbindung bringt:

$$\dots \to H^k_{Z(\phi)}(|\Sigma|, \mathbb{C}) \to H^k(|\Sigma|, \mathbb{C}) \to H^k(|\Sigma| - Z(\phi), \mathbb{C}) \to H^k_{Z(\phi)}(|\Sigma|, \mathbb{C}) \to \dots$$

Weil mit \mathcal{P}_{Σ} auch $|\Sigma|$ einfach zusammenhängend ist, und weil wegen $Z(\psi) \neq |\Sigma|$ die nullte relative Kohomologie von $|\Sigma|$ bezüglich $Z(\psi)$ trivial ist, erhalten wir eine kurze exakte Sequenz

$$0 \to \mathbb{C} \to H^0(|\Sigma| - Z(\psi), \mathbb{C}) \to H^1_{Z(\psi)}(|\Sigma|, \mathbb{C}) \to 0.$$

Das $|\Sigma| - Z(\psi)$ nicht zusammenhängend ist, ist somit äquivalent zu

$$\operatorname{Ext}^{1}(\mathcal{O}_{X_{\Sigma}}, \mathcal{O}_{X_{\Sigma}})_{\psi} \neq 0$$

" \Leftarrow ": Diese Aussage findet man direkt in [16, 3.4]: Für alle $\phi \in M$ ist mit \mathcal{P}_{Σ} auch $|\Sigma| - Z(\phi)$ konvex, und somit gilt sogar für alle $k \geq 1$:

$$\operatorname{Ext}^k(\mathcal{O}_{X_{\Sigma}},\mathcal{O}_{X_{\Sigma}})=0.$$

Bemerkung 1.3.8. Falls man torische Diagramme betrachtet, die <u>nicht</u> einfach zusammenhängend sind, gilt obiges Lemma nicht: Sei σ der von der Standardbasis von \mathbb{Z}^3 erzeugte Kegel und X das Komplement von x_{σ} in $U_{\sigma} = \mathbb{C}^3$. X ist eine torische 3-Calabi-Yau-Varietät; ihr torisches Diagramm ist der Rand eines Dreicks und somit nicht konvex. Dennoch ist $\text{Ext}^1(\mathcal{O}_X, \mathcal{O}_X) = 0$ und es ist \mathcal{O}_X sogar eine Tiltinggarbe für $D^b(\text{Coh}(X))$.

Definition 1.3.9. Sei $f: X \to Y$ ein birationaler, projektiver Morphismus von Varietäten und sei X glatt. Dann nennt man f crepant, falls gilt: $f^*K_Y = K_X$.

Das torische Diagramm einer affinen torischen 3-Calabi-Yau-Varietät ist stets konvex und einfach zusammenhängend. Umgekehrt ist eine torische 3-Calabi-Yau-Varietät, deren torisches Diagramm einfach zusammenhängend und konvex ist, stets eine (möglicherweise nur teilweise) crepante Auflösung einer affinen torischen 3-Calabi-Yau-Varietät:

Bemerkung 1.3.10. Eine Auflösung von Singularitäten einer torischen Varietät erhält man durch eine feinstmögliche Unterteilung des Fächers Σ in einen Fächer Σ' . Der von id \in Aut_Z(N) induzierte Morphismus $X_{\Sigma'} \to X_{\Sigma}$ (vergleiche (1.4)) ist dann eine Desingularisierung (vergleiche [16, 2.3]). Desingularisierungen einer affinen torischen Calabi-Yau-Varietät enstehen somit aus Simplizialisierungen des torischen Diagramms. Weil die glatte Varietät dann ebenfalls Calabi-Yau ist, sind diese Auflösungen crepant; der Pull-Back des trivialen Linienbündels auf X_{Σ} ist das triviale Linienbündel auf $X_{\Sigma'}$.

Beispiel 1.3.11. (i) Sei U_{σ} die affine torische 3-Calabi-Yau-Varietät, deren torisches Diagramm die Eckenmenge $\{v_1 = 0, v_2 = (2, 0), v_3 = (0, 1), v_4 = (1, 1)\} \subset \mathbb{Z}^2$ hat. Dann gibt es 3 volle Triangulierungen des torischen Diagramms

Abb. 1.3.2. Die 3 Triangulierungen für einen suspended pinch point

Die X_{Σ_i} sind glatte 3-Calabi-Yau-Varietäten, weil die maximalen Kegel der Fächer Σ_i erzeugt sind von Basen für \mathbb{Z}^3 . Äquivalent dazu: Jeder 2-Simplex im torischen Diagramm hat Flächeninhalt $\frac{1}{2}$. Es ist $\operatorname{Pic}(X_{\Sigma_i}) = \mathbb{Z}^2$ und der homogene Koordinatenring $S := \mathbb{C}[x_1, x_2, x_3, x_4, x_5]$ hängt nicht von der Triangulierung ab; die Graduierung durch \mathbb{Z}^2 ist jeweils gegeben durch

$$\deg(x_1) = \binom{-1}{0}, \deg(x_2) = \binom{0}{1}, \deg(x_3) = \binom{1}{1} = -\deg(x_4), \deg(x_5) = \binom{1}{-1}.$$

Man berechnet dann $S_0 = \mathbb{C}[x_1x_2x_5, x_3x_4, x_1^2x_3x_5, x_2^2x_4x_5]$ und es ist

$$U_{\sigma} = \text{Spec } S_0 = \{y_1^2 y_2 = y_3 y_4\} \subset \mathbb{C}^4.$$

Der singuläre Ort ist die Gerade $\{y_1 = y_3 = y_4 = 0\} \subset U_{\sigma}$. Man nennt U_{σ} einen suspended pinch point.

Nun zu den Auflösungen: Es ist $B_{\Sigma_1} = (x_2x_4, x_1x_2, x_1x_3)$. Betrachte nun $\theta_1 = (-1, 1)$. Dann ist S_{θ_1} über S_0 erzeugt von $\{x_1x_2, x_2^2x_4, x_1^2x_3\}$, d.h. es ist

$$S_{\theta_1} = x_1 x_2 S_0 \oplus x_2^2 x_4 S_0 \oplus x_1^2 x_3 S_0.$$

Sei $\rho_1 \in \text{Hom}((\mathbb{C}^*)^2, \mathbb{C}^*)$ der θ_1 entsprechende Charakter von $G_{\Sigma_1} = (\mathbb{C}^*)^2$. Dann ist

$$V_{\Sigma_1} = \{x_1 x_2(p) \neq 0\} \cup \{x_2^2 x_4(p) \neq 0\} \cup \{x_1^2 x_3(p) \neq 0\} \subset \mathbb{C}^5$$

die Menge der ρ_1 -semistabilen Punkte und es ist zum Beispiel nach [25, Kapitel 6.1]

$$X_{\Sigma_1} = (\mathbb{C}^5)^{\rho_1 \text{-s.s.}} / / (\mathbb{C}^*)^2 = \operatorname{Proj} \bigoplus_{m \ge 0} S_{m\theta_1}.$$

Seien z_0, z_1, z_2 homogene Koordinaten für \mathbb{P}^2 . Man berechnet dann

$$X_{\Sigma_1} = \left\{ y \in U_{\sigma}, z_1 z_2 = z_0^2 y_2, y_4 z_0 = y_1 z_1, y_3 z_1 = z_2 y_4 \right\} \subset \mathbb{C}^4 \times \mathbb{P}^2$$

Analog findet man für Σ_2 (bzw. Σ_3) $\theta_2 = (1,2)$ (bzw. $\theta_3 = (-2,-1)$) so, dass gilt:

$$X_{\Sigma_2} = \operatorname{Proj} \bigoplus_{m \ge 0} S_{m\theta_2}$$
 bzw. $X_{\Sigma_3} = \operatorname{Proj} \bigoplus_{m \ge 0} S_{m\theta_3},$

und man berechnet

$$X_{\Sigma_2} = \left\{ y \in U_{\sigma}, z_2 y_4 = z_0 y_2, z_0 z_1 = z_2^2 y_1 \right\} \subset \mathbb{C}^4 \times \mathbb{P}^2,$$
$$X_{\Sigma_3} = \left\{ y \in U_{\sigma}, z_1 y_4 = z_0 y_1, z_2 z_0 = z_1^2 y_1 \right\} \subset \mathbb{C}^4 \times \mathbb{P}^2.$$

Aus dem Gittermorphismus id : $\mathbb{Z}^3 \to \mathbb{Z}^3$ erhält man dann 3 birationale Morphismen $X_{\Sigma_i} \xrightarrow{f_i} U_{\sigma}$, die von der Projektion $\mathbb{C}^4 \times \mathbb{P}^2 \to \mathbb{C}^4$ induziert sind. Deswegen sind die f_i projektiv und wegen $f_i^* \mathcal{O}_{U_{\sigma}} = \mathcal{O}_{X_{\Sigma_i}}$ sind sie dann crepante Auflösungen.

(ii) Betrachte das Dreieck mit den Ecken $\{(1,0), (0,1), (-1,-1)\}$. Es gibt dann genau eine Triangulierung des torischen Diagramms

Abb. 1.3.3. Das kanonische Bündel von \mathbb{P}^2 als Auflösung von $\mathbb{C}^3/\mathbb{Z}_3$

Man hat dann $U_{\sigma} = \operatorname{Spec}(\mathbb{C}[x_1, x_2, x_3]^{\mathbb{Z}_3})$, für $\mathbb{Z}_3 \hookrightarrow \operatorname{Sl}(3, \mathbb{C}), 1 \mapsto \operatorname{diag}(\xi, \xi, \xi)$, mit $\xi := e^{\frac{2\pi i}{3}}$. Nach den Propositionen 1.1.1 und 1.3.1 ist $X_{\Sigma} = \omega_{\mathbb{P}^2}$ der Totalraum des kanonischen Bündels auf \mathbb{P}^2 . Es ist also

$$X_{\Sigma} = \mathcal{O}_{\mathbb{P}^2}(-3).$$

1.4 Tiltinggarben

Definition 1.4.1. Sei X eine glatte quasi-projektive Varietät und $\mathcal{F} \in Coh(X)$ eine kohärente Garbe auf X. Dann definieren wir folgendes:

- \mathcal{F} heißt voll, falls \mathcal{F} die beschränkte, derivierte Kategorie der kohärenten Garben auf X, $D^b(\operatorname{Coh}(X))$, erzeugt, d.h. $D^b(\operatorname{Coh}(X))$ ist die kleinste volle triangulierte Unterkategorie von $D^b(\operatorname{Coh}(X))$, die \mathcal{F} enthält.
- \mathcal{F} heißt *exzeptionell*, falls für alle k > 0 gilt: $\operatorname{Ext}^{k}(\mathcal{F}, \mathcal{F}) = 0$.
- \mathcal{F} heißt *Tiltinggarbe*, falls \mathcal{F} voll und exceptionell ist.
- Eine Vektorbündel \mathcal{F} , welches eine Tiltinggarbe ist, heißt *Tiltingvektorbündel*.
- Ein Tiltingvektorbündel \mathcal{F} heißt *Tiltingbündel*, falls \mathcal{F} die direkte Summe von Linienbündeln auf X ist:

$$\mathcal{F} = \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_s, \quad \mathcal{L}_1, \ldots, \mathcal{L}_s \in \operatorname{Pic}(X).$$

Bemerkung 1.4.2. (i) Für ein Linienbündel $\mathcal{V} \in \text{Pic}(X)$ induziert die exakte Autoäquivalenz

 $(-) \otimes_{\mathcal{O}_X} \mathcal{V} : \operatorname{Coh}(X) \to \operatorname{Coh}(X)$

einen Automorphismus der Grothendieckgruppe $K_0(Coh(X))$. Außerdem ist

$$K_0(D^b(\operatorname{Coh}(X))) \to K_0(\operatorname{Coh}(X))$$

$$[\mathcal{F}^{\bullet}] \mapsto \sum_{i \in \mathbb{Z}} (-1)^i [H^i(\mathcal{F}^{\bullet})],$$

ein Isomorphismus von Gruppen. Somit ist eine kohärente Garbe $\mathcal{F} \in \operatorname{Coh}(X)$ genau dann voll, wenn $\mathcal{F} \otimes \mathcal{V} \in \operatorname{Coh}(X)$ voll ist.

(ii) Sei $\mathcal{F} = \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_s$ die direkte Summe von Linienbündeln $\mathcal{L}_1, \ldots, \mathcal{L}_s$. Man hat dann, dass für alle $k \geq 0$ gilt:

$$\operatorname{Ext}^{k}(\mathcal{L},\mathcal{L}) = \bigoplus_{1 \leq i,j \leq s} \operatorname{Ext}^{k}(\mathcal{L}_{i},\mathcal{L}_{j})$$
$$= \bigoplus_{1 \leq i,j \leq s} H^{k}(\operatorname{\mathbf{R}Hom}(\mathcal{L}_{i},\mathcal{L}_{j})) \cong \bigoplus_{1 \leq i,j \leq s} H^{k}(X,\mathcal{L}_{j} \otimes \mathcal{L}_{i}^{-1}). \quad (1.17)$$

(iii) Sei $\mathcal{F} = \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_s$ ein Tiltingbündel auf X. Dann ist wegen (i) und (ii) für alle $i = 1, \ldots, s$ die Garbe $\mathcal{L} \otimes \mathcal{L}_i^{-1}$ ebenfalls ein Tiltingbündel. Man kann somit ohne Einschränkung annehmen, dass $\mathcal{L}_1 = \mathcal{O}_X$ ist.

(iv) Aus (1.17) folgt, dass es für die Existenz eines Tilitingbündels \mathcal{F} auf X notwendig ist, dass für alle k > 0 gilt:

$$\operatorname{Ext}^{k}(\mathcal{O}_{X},\mathcal{O}_{X})=0.$$

Eine Tiltinggarbe \mathcal{F} auf einer quasi-projektiven, glatten Varietät X liefert eine derivierte Äquivalenz zwischen der Varietät X und der Endomorphismusalgebra von \mathcal{F} , $A = \operatorname{End}_{\mathcal{O}_X}(\mathcal{F})$.

Theorem 1.4.3. [8] Sei \mathcal{F} eine kohärente Garben auf einer quasi-projektiven, glatten Varietät X und sei $A := End_{\mathcal{O}_X}(\mathcal{F})$ die Algebra der Endomorphismen von \mathcal{F} . Dann ist \mathcal{F} genau dann eine Tiltinggarbe, wenn der Funktor

$$D^{b}(A\operatorname{-mod}) \to D^{b}(\operatorname{Coh}(X)),$$

$$\mathcal{P}^{\bullet} \mapsto \mathcal{P}^{\bullet} \otimes^{L} \mathcal{F}$$

eine Äquivalenz von triangulierten Kategorien ist.

Beispiel 1.4.4. Betrachte die glatten quasi-projektiven Varietäten aus Beispiel 1.3.11. (i): Wir wollen versuchen, Tiltingbündel für die X_{Σ_i} zu finden. Dazu bestimmen wir zunächst die Divisorklassen, deren zugehörige Linienbündel höhere Kohomologie haben. Wir orientieren uns dabei an [14] und [2]. Die irrelevanten Ideale sind gegeben durch:

$$B_{\Sigma_1} = (x_2 x_4, x_1 x_2, x_1 x_3), \ B_{\Sigma_2} = (x_2 x_5, x_2 x_3, x_1 x_3), \ B_{\Sigma_3} = (x_2 x_4, x_1 x_4, x_1 x_5).$$

Wir bestimmen nun die Betti-Zahlen von minimalen freien Auflösungen der Stanley-Reisner-Ideale der Simplizialkomplexe Σ_1 , Σ_2 und Σ_3 ,

$I_{\Sigma_1} =$	(x_1x_2, x_1x_4, x_2x_3)	$I_{\Sigma_2} =$	(x_1x_2, x_3x_5, x_2x_3)), $I_{\Sigma_3} = 0$	(x_1x_2, x_1x_4, x_4x_5)
------------------	----------------------------	------------------	----------------------------	-----------------------	----------------------------

I_{Σ_1}	I_{Σ_2}	I_{Σ_3}					
$\beta_{1,1} = (-1, -1, 0, 0, 0)$	$\beta_{2,1} = (-1, -1, 0, 0, 0)$	$\beta_{3,1} = (-1, -1, 0, 0, 0)$					
$\beta_{1,2} = (-1, 0, -0, -1, 0)$	$\beta_{2,2} = (0, 0, -1, 0, -1)$	$\beta_{3,2} = (-1, 0, 0, -1, 0)$					
$\beta_{1,3} = (0, -1, -1, 0, 0)$	$\beta_{2,3} = (0, -1, -1, 0, 0)$	$\beta_{3,3} = (0, 0, 0, -1, -1)$					
$\beta_{1,4} = (-1, -1, 0, -1, 0)$	$\beta_{2,4} = (-1, -1, -1, 0, 0)$	$\beta_{3,4} = (-1, -1, 0, -1, 0)$					
$\beta_{1,5} = (-1, -1, -1, 0, 0)$	$\beta_{2,5} = (0, -1, -1, 0, -1)$	$\beta_{3,5} = (-1, 0, 0, -1, -1)$					

Für eine Betti-Zahl $\beta_{i,j}$, $i = 1, 2, 3, j = 1, \dots, 5$, definieren wir den Orthanten

$$A_{i,j} := \{ x \in \mathbb{Z}^5 | \quad x_k < 0 \text{ falls } (\beta_{i,j})_k = -1, \quad x_k \ge 0 \text{ falls } (\beta_{i,j})_k = 0 \}.$$

Bezeichne $C_{i,j}$ das Bild von $A_{i,j}$ unter deg : $\mathbb{Z}^5 \to \operatorname{Pic}(X_{\Sigma_i}) = \mathbb{Z}^2$. (vgl. 1.3.11). Ein Linienbündel $\mathcal{L} \in \operatorname{Pic}(X_{\Sigma_i})$ hat genau dann nicht-triviale höhere Kohomologie, falls die \mathcal{L} entsprechende Divisorklasse $D_{\mathcal{L}}$ in einem $C_{i,j}$, $j = 1, \ldots, 5$, enthalten ist. In der nächsten Abbildung sind in Rot diese Divisorklassen dargestellt.

Abb. 1.4.1. In Rot die Divisorklassen, deren zugehörige Linienbündel nicht-triviale höhere Kohomologie haben.

Aus dieser Abbildung ist ersichtlich (siehe dazu (1.17)), dass die Vektorbündel

$$\mathcal{L}_i := \mathcal{O}_{X_{\Sigma_i}} \oplus \mathcal{O}_{X_{\Sigma_i}}(1,0) \oplus \mathcal{O}_{X_{\Sigma_i}}(1,1)$$

die Eigenschaft haben: $\operatorname{Ext}^{k}(\mathcal{L}_{i}, \mathcal{L}_{i}) = 0$, für alle k > 0. Um zu zeigen, dass \mathcal{L}_{i} ein Tiltingbündel auf $X_{\Sigma_{i}}$ ist, müssen wir noch zeigen, dass \mathcal{L}_{i} voll ist. Wir benutzen dazu ein Resultat aus [9]. Betrachte dazu die kurze exakte Sequenz

$$0 \to M \xrightarrow{\operatorname{div}} \mathbb{Z}^5 \xrightarrow{\operatorname{deg}} \operatorname{Pic}(X_{\Sigma_i}) \to 0.$$

Wir können nun den Morphismus div zu einer Abbildung $f:M_{\mathbb{R}}\to \mathbb{Z}^5$ fortsetzen durch

$$f(\lambda) = \sum_{i=1}^{3} [\lambda(v_i)] \cdot D_i,$$

wobei mit [x] der ganzzahlige Anteil einer reellen Zahl x gemeint ist. Wir erhalten somit eine Abbildung $F := \deg \circ f : M_{\mathbb{R}} \to \operatorname{Pic}(X_{\Sigma_i})$. Wegen F(M) = 0 existiert dann eine Abbildung $G : M_{\mathbb{R}}/M \to \operatorname{Pic}(X_{\Sigma_i})$. Nach [9] erzeugt das Bild dieser Abbildung $D^b(\operatorname{Coh}(X_{\Sigma_i}))$. Wir berechnen:

$$G(M_{\mathbb{R}}/M) = \{\mathcal{O}_{X_{\Sigma_{i}}}, \mathcal{O}_{X_{\Sigma_{i}}}(\pm 1, 0), \mathcal{O}_{X_{\Sigma_{i}}}(0, \pm 1), \mathcal{O}_{X_{\Sigma_{i}}}(1, 1), \mathcal{O}_{X_{\Sigma_{i}}}(-1, -1)\}.$$

Nun benutzen wir wie in Beispiel 1.2.7 das Theorem 1.2.6, um zu zeigen, dass gilt:

$$G(M_{\mathbb{R}}/M) \subset \mathcal{D}_i := \langle \mathcal{O}_{X_{\Sigma_i}}, \mathcal{O}_{X_{\Sigma_i}}(1,0), \mathcal{O}_{X_{\Sigma_i}}(1,1) \rangle \subset D^b(\operatorname{Coh}(X_{\Sigma_i})).$$

Sei i = 1. Mit $\mathfrak{p}_1 := (x_1, x_2), \mathfrak{p}_2 := (x_1, x_4)$ und $\mathfrak{p}_3 = (x_2, x_3)$ gilt dann:

$$B_{\Sigma_1} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{p}_3.$$

Für ein $\alpha \in \mathbb{Z}^2$ bezeichnen wir mit $[\alpha]$ die Klasse von $\mathcal{O}_{X_{\Sigma_1}}(\alpha)$ in der Grothendieckgruppe von $\operatorname{Coh}(X_{\Sigma_1})$. Wir erhalten nun für ein $\beta \in \mathbb{Z}^2$ aus den minimalen freien Auflösungen von $S/\mathfrak{p}_1(\beta), S/\mathfrak{p}_2(\beta)$ und $S/\mathfrak{p}_3(\beta)$ die Gleichungen:

$$[\beta] + [\beta + (-1,1)] = [\beta + (-1,0)] + [\beta + (0,1)]$$
(1.18)

$$[\beta] + [\beta + (-2, -1)] = [\beta + (-1, 0)] + [\beta + (-1, -1)]$$
(1.19)

$$[\beta] + [\beta + (1,2)] = [\beta + (0,1)] + [\beta + (1,1)]$$
(1.20)

- Aus (1.20) und $\beta = (0, -1)$ erhält man, dass $\mathcal{O}_{X_{\Sigma_1}}(0, -1) \in \mathcal{D}_1$ ist.
- Nun folgt mit $\beta = (1,0)$ und (1.19), dass $\mathcal{O}_{X_{\Sigma_1}}(-1,-1) \in \mathcal{D}_1$ ist.
- Mit $\beta = (0, -1)$ und (1.18) folgt jetzt: $\mathcal{O}_{X_{\Sigma_1}}(-1, 0) \in \mathcal{D}_1$.
- Und nun folgt aus (1.18) und $\beta = (1,0)$, dass $\mathcal{O}_{X_{\Sigma_1}}(0,1) \in \mathcal{D}_1$ ist.

Es ist also $G(M_{\mathbb{R}}/M) \subset \mathcal{D}_1$. Somit ist \mathcal{L}_1 eine volle Garbe. Für i = 2 und i = 3 verfährt man, um die Vollheit von \mathcal{L}_2 und \mathcal{L}_3 zu zeigen, analog.

1.5 Crepante Auflösungen von Faserdimension kleiner gleich 1

Von Michel van den Bergh stammt das folgende

Theorem 1.5.1. [5, Theorem A] Sei $f : X \to Y = \operatorname{Spec}(R)$ ein projektiver Morphismus zwischen quasi-projektiven Varietäten von Faserdimenison kleiner gleich 1, und sei R normal und Gorenstein. Sei ferner $\mathbf{R}f_*\mathcal{O}_X = \mathcal{O}_Y$. Dann existiert ein Vektorbündel \mathcal{E} auf X derart, dass $\mathcal{O} \oplus \mathcal{E}$ eine Tiltinggarbe auf X ist.

 \mathcal{E} konstruiert man dabei so: Wähle zunächst ein Linienbündel \mathcal{L} auf der quasi-projektiven Varietät X, das ampel ist. Bestimme ein Erzeugendensystem $\{f_1, \ldots, f_r\}$ des R-Moduls $\operatorname{Ext}^1(\mathcal{L}, \mathcal{O})$. Dann ist $f = (f_1, \ldots, f_r) \in \operatorname{Ext}^1(\mathcal{L}, \mathcal{O}^r)$. Betrachte nun die f entsprechende nicht-spaltende kurze exakte Sequenz

$$0 \to \mathcal{O}^r \to \mathcal{M} \to \mathcal{L} \to 0,$$

und setze $\mathcal{E} := \mathcal{M}$. Falls $f : X_{\Sigma'} \to X_{\Sigma}$ ein torischer Morphismus ist, der aus einer Verfeinerung von Σ ensteht, gilt : $\mathbf{R}f_*\mathcal{O}_{X_{\Sigma'}} = \mathcal{O}_{X_{\Sigma}}$ ([16, 3.5]).

Man erinnere sich an den Begriff eines torischen Morphismus (1.4) und den ausgezeichneten Punkt eines Kegels (1.1). Die folgende Aussage ist wohlbekannt.

Lemma 1.5.2. Sei $\phi : N \to N'$ ein Morphismus von Gittern und seien $\sigma \in N_{\mathbb{Q}}$, $\sigma' \in N'_{\mathbb{Q}}$ Kegel derart, dass gilt: $\phi(\sigma) \subset \sigma'$. Sei ferner $\tau' \prec \sigma'$ die kleinste Seite von σ' , die $\phi(\sigma)$ enthält.

Dann gilt für den von ϕ induzierten torischen Morphismus $\overline{\phi}: U_{\sigma} \to U_{\sigma'}$:

$$\overline{\phi}(x_{\sigma}) = x_{\tau'} \in U_{\sigma'}.$$

Insbesondere ist also: $\overline{\phi}(T_M \cdot x_{\sigma}) = T_{M'} \cdot \overline{\phi}(x_{\sigma}) = T_{M'} \cdot x_{\tau'}$.

Beweis. Es ist für ein $u \in S_{\sigma'}$

$$\overline{\phi}(x_{\sigma})(u) = (x_{\sigma} \circ \phi^*)(u) = \begin{cases} 1 & \text{falls } \phi^*(u) \in \sigma^{\perp} \\ 0 & \text{sonst} \end{cases} = \begin{cases} 1 & \text{falls } u \in \phi(\sigma)^{\perp} \\ 0 & \text{sonst} \end{cases}$$

Sei nun $\tau' \prec \sigma'$ die kleinste Seite von σ' , die $\phi(\sigma)$ enthält.

Wegen der Minimalität von τ' existiert ein $v \in \text{rel.int.}(\tau') \cap \phi(\sigma)$, wobei rel.int. (τ') das relative Innere von τ' bezeichnet. Daraus folgt nun:

$$(\sigma')^{\vee} \cap \tau'^{\perp} = (\sigma')^{\vee} \cap v^{\perp} = (\sigma')^{\vee} \cap \phi(\sigma)^{\perp},$$

und die Behauptung ist gezeigt.

Korollar 1.5.3. Sei $f : X_{\Sigma} \to U_{\sigma}$ eine crepante Auflösung einer torischen 3-Calabi-Yau-Varietät U_{σ} . Dann ist die Faserdimension von f höchstens gleich 1 genau dann, wenn das torische Diagramm von U_{σ} entweder eindimensional ist oder kein innerer Punkt von \mathcal{P}_{σ} Element des Gitters N ist.

Beweis. Es ist für alle $x \in U_{\sigma}$:

$$\dim f^{-1}(x) \le \dim f^{-1}(x_{\sigma}).$$

Somit sind wir auf der Suche nach torischen Diagrammen \mathcal{P}_{σ} mit:

$$\dim f^{-1}(x_{\sigma}) \le 1.$$

Falls \mathcal{P}_{σ} zweidimensional ist, ist x_{σ} ein Fixpunkt unter der Torusaktion. Nach dem vorhergehenden Lemma ist somit $f^{-1}(x_{\sigma})$ die Vereinigung der Orbiten O_{τ} mit $\tau \in \Sigma$ und τ ist in keiner echten Seite von σ enthalten. Bezeichne C die Menge dieser Kegel. Dann haben wir die Gleichungen:

$$\dim f^{-1}(x_{\sigma}) = \max_{\tau \in C} \{\dim O_{\tau}\} = 3 - \min_{\tau \in C} \{\dim \tau\}.$$

Also ist die Faserdimension von f genau dann kleiner gleich 1, wenn C keinen Strahl enthält. Dies ist genau dann der Fall, wenn kein innerer Punkt des torischen Diagramms von σ ein Element von N ist.

Sei nun \mathcal{P}_{σ} eindimensional, also ein Geradensegment mit Endpunkten 0 und $ne_1, n > 0$. Es ist dann $U_{\sigma} \cong U_{\sigma'} \times \mathbb{C}^*$, wobei σ' der von den Elementen $e_1, e_1 + n \cdot e_2 \in \mathbb{Z}^2$ erzeugte Kegel ist. Außerdem ist $X_{\Sigma} \cong X_{\Sigma'} \times \mathbb{C}^*$ und unter diesem Isomorphismus ist f(x,t) = (f'(x),t), für ein $f': X_{\Sigma'} \to U_{\sigma'}$. Somit ist

$$\dim f^{-1}(x_{\sigma}) = \dim f'^{-1}(x_{\sigma'}) \le 1$$

Es gibt somit 4 Typen von torischen Diagrammen \mathcal{P}_{σ} derart, dass eine crepante Auflösung von Faserdimension kleiner gleich 1 ist:

- 1. \mathcal{P}_{σ} ist ein Trapez mit den Ecken $0, n_1e_1, e_2, e_2 + n_1e_1$, mit $n_1 > n_2 > 0$.
- 2. \mathcal{P}_{σ} ist ein Dreieck mit Ecken $0, ne_1, e_2$, für ein n > 0.
- 3. \mathcal{P}_{σ} ist das Dreieck mit den Ecken $0, 2e_1, 2e_2$.
- 4. \mathcal{P}_{σ} ist ein Geradensegment mit Endpunkten $0, ne_1,$ für ein n > 0.

Für die Fälle 1 und 2 hat Kentaro Nagao explizit Tiltingbündel $\mathcal{O} \oplus \mathcal{E}$ mit Hilfe von Theorem 1.5.1 konstruiert.([27, 1.1]). Tiltingbündel für den Fall 4 kann man dann leicht mit Hilfe eines Tiltingbündels für den Fall 2 berechnen: Sei \mathcal{P}_{σ} also ein Geradensegment mit Endpunkten $0, ne_1$, für ein n > 0. Es gibt dann genau eine crepante Auflösung $f : X_{\Sigma} \to U_{\sigma}$. Sei wie im Beweis von Korollar 1.5.3 σ' der von den Elementen $e_1, e_1 + n \cdot e_2 \in \mathbb{Z}^2$ erzeugte Kegel. Dann hat man: $X_{\Sigma} \cong X_{\Sigma'} \times \mathbb{C}^*, U_{\sigma} \cong U_{\sigma'} \times \mathbb{C}^*$ und unter diesen Isomorphismen ist f(x,t) = (f'(x),t), für ein $f' : X_{\Sigma'} \to U_{\sigma'}$. Es ist weiter $\Sigma'(1) = \{v_1 = e_1, v_2 = e_1 + e_2, \dots, v_{n+1} = e_1 + ne_2\}$. Seien D_1, \dots, D_{n+1} die Torus-invarianten Primdivisoren auf $X_{\Sigma'}$. Definiere nun n-1 Divisoren

$$G_{1} = D_{n+1},$$

$$G_{2} = D_{n} + 2D_{n+1},$$

$$G_{3} = D_{n-1} + 2D_{n} + 3D_{n+1},$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$G_{n-1} = D_{3} + 2D_{4} + \dots + (n-1)D_{n+1}.$$

Bezeichne die entsprechenden Linienbündel mit $\mathcal{L}_1, \ldots, \mathcal{L}_{n-1}$ und setze

$$\mathcal{L} = \mathcal{O} \oplus \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_{n-1}.$$

Betrachte $X_{\Upsilon} = X_{\Sigma'} \times \mathbb{C}$. Dann ist X_{Υ} die crepante Auflösung der affinen Varietät vom Typ 2(n). Sei $p : X_{\Upsilon} \to X_{\Sigma'}$ die Projektion nach der ersten Komponente. Es folgt dann aus der Arbeit von Nagao ([27]), dass

$$p^*\mathcal{L} = \mathcal{O}_{X_{\Upsilon}} \oplus p^*\mathcal{L}_1 \oplus \ldots \oplus p^*\mathcal{L}_{n-1}$$

ein Tiltingbündel für X_{Υ} ist. Dies ist äquivalent dazu, dass \mathcal{L} ein Tiltingbündel für $X_{\Sigma'}$ ist. Sei nun $q: X_{\Sigma} \cong X_{\Sigma'} \times \mathbb{C}^* \to X_{\Sigma'}$.

Dann ist durch $q^*\mathcal{L}$ ein Tiltingbündel auf X_{Σ} gegeben.

Kapitel 2

Branenkachelungen und der Zusammenhang mit torischen 3-CY-Varietäten

In diesem Kapitel werden wir den Begriff einer *Branenkachelung* einführen. Dabei handelt es sich um einen bipartiten Graphen G auf einem kompakten 2-Torus T. Wir werden darüber hinaus fordern, dass die Flächen von G Polygone sind, weswegen wir mit Hilfe von G die simpliziale Homologie des Torusses berechnen können.

Dann werden wir sehen, wie man unter Verwendung der perfekten Paarungen auf G eine affine torische 3-CY-Varietät U_{σ_G} konstruieren kann. Dabei wird $H_1(T) = \mathbb{Z}^2$ implizieren, dass U_{σ_G} dreidimensional ist; die Tatsache, dass perfekte Paarungen in die Konstruktion von U_{σ_G} involviert sind, wird dieser Varietät die Calabi-Yau-Eigenschaft verleihen. Wir werden auch sehen, wie man das torische Diagramm \mathcal{P}_{σ_G} graphentheoretisch bestimmen kann. (Lemma 2.2.8 und Bemerkung 2.2.10.)

Es stellt sich dann die Frage, wie man crepante Auflösungen dieser Varietät erhält. Dazu werden wir den zu G dualen Köcher mit Relationen (Q, \mathcal{I}) und die Theorie der Köchermodulräume gemäß A.King verwenden. Außerdem werden wir G bestimmte Konsistenz-Bedingungen auferlegen. Durch die Wahl einer generischen Stabilität $\theta \in \mathbb{Z}^{Q_0}$ werden wir so eine Auflösung von Singularitäten $\mathcal{M}_{\theta} \to U_{\sigma_G}$ erhalten, die crepant ist. (Satz 2.3.13.) Die Varietät \mathcal{M}_{θ} ist dabei ein geometrischer Quotient, der die θ -stabilen $\mathbb{C}Q/\mathcal{I}$ -Darstellungen mit Dimensionsvektor $(1, \ldots, 1) \in \mathbb{Z}^{Q_0}$ parametrisiert. Nach Ishii und Ueda ist jede crepante Auflösung der Form $\mathcal{M}_{\theta} \to U_{\sigma_G}$.

Das Kapitel endet mit der Antwort auf die Frage, wie das torische Diagramm von \mathcal{M}_{θ} graphentheoretisch bestimmt werden kann. (**Proposition** 2.4.6.)

2.1 Branenkachelungen und der duale Köcher

Definition 2.1.1. Man nennt einen Graphen $G = (G_0, G_1)$ mit Ecken G_0 und Kanten G_1 bipartit, falls es eine Zerlegung $G_0 = G_0^+ \sqcup G_0^-$ in weiße Ecken G_0^+

und schwarze Ecken G_0^- gibt so, dass für alle $g \in G_1$ genau ein Paar $(i_+, i_-) \in G_0^+ \times G_0^-$ existiert mit $i_+, i_- \in g$.

Definition 2.1.2. Sei $\{\alpha, \beta\} \subset \mathbb{R}^2$ linear unabhängig und $\Gamma := \alpha \cdot \mathbb{Z} + \beta \cdot \mathbb{Z}$.

Einen bipartiten Graphen $G = (G_0^{\pm}, G_1)$ zusammen mit einer Einbettung in einen kompakten 2-Torus $T_{\Gamma} := \mathbb{R}^2/\Gamma$, $\iota : G \hookrightarrow T_{\Gamma}$, nennt man eine Branenkachelung, falls die Zusammenhangskomponenten von $T_{\Gamma} - G$ Polygone sind.

Die Zusammenhangskomponenten von $T_{\Gamma} - G$ nennen wir die *Flächen* von G und verwenden dafür das Symbol G_2 .

Bemerkung 2.1.3. Sei $G = (G_0^{\pm}, G_1)$ eine Branenkachelung mit einer Einbettung $\iota : G \hookrightarrow T_{\Gamma}$ für ein Gitter $\Gamma = \alpha \mathbb{Z} + \beta \mathbb{Z}$. Betrachte die universelle Überlagerung $\pi : \mathbb{R}^2 \to T_{\Gamma}$. Dann ist $\pi^{-1}(G)$ ein planarer, bipartiter unendlicher Graph, der periodisch bezüglich des von α und β aufgespannten Paralellogramms ist.

Beispiel 2.1.4. Sei $\Gamma = e_1\mathbb{Z} + e_2\mathbb{Z}$ und G ein Graph mit 2 Ecken, 4 Kanten und der folgenden Einbettung $\iota : G \hookrightarrow T_{\Gamma}$

Abb. 2.1.1. Eine Branenkachelung mit 2 Flächen; Fundamentalmaschen des Torus T_{Γ} sind durch die gestrichelten Linien gekennzeichnet.

Es ist dann $G_2 = \{F_1, F_2\}, G_1 = \{g_1, g_2, g_3, g_4\}, G_0^- = \{\bullet\} \text{ und } G_0^+ = \{\bullet\}.$

Definition 2.1.5. Sei $Q = (Q_0, Q_1)$ ein Köcher mit Pfadalgebra $\mathbb{C}Q$ und sei $a = a_1 \cdots a_n \in \mathbb{C}Q$ ein Zykel in Q. Für ein $u \in Q_1$ definieren wir dann die formelle Ableitung

$$\frac{\partial a}{\partial u} := \begin{cases} a_{i+1} \cdots a_n \cdot a_1 \cdots a_{i-1} & \text{falls } u = a_i \text{ für ein } i = 1, \dots, n \\ 0 & \text{sonst }. \end{cases}$$

Definition 2.1.6. Sei $G = (G_0^{\pm}, G_1, G_2)$ eine Branenkachelung. Wir definieren einen periodischen Köcher $Q = (Q_0, Q_1)$ mit Relationen $\mathcal{I} \subset \mathbb{C}Q$ wie folgt: Als Graph ist Q der zu G duale Graph. Sei nun $\alpha \in Q_1 = G_1$. Dann ist α der Schnitt von 2 Flächen $F, F' \in Q_0 = G_2$. Orientiere α so, dass die weiße Ecke rechts liegt. Jetzt zu den Relationen. Sei dazu $g \in G_0 = Q_2$ und $\omega_{(g)} \in \mathbb{C}Q$ der Zykel in Q, den man erhält, wenn man g umkreist. Setze

$$W = \sum_{g \in G_0^+} \omega_{(g)} - \sum_{g \in G_0^-} \omega_{(g)}$$

Dann definieren wir

$$\mathcal{I} := \left(\frac{\partial W}{\partial a} \mid a \in Q_1\right) \subset \mathbb{C}Q \text{ und } A_G := \mathbb{C}Q/\mathcal{I} .$$

Beispiel 2.1.7. Betrachte die Branenkachelung aus dem Beispiel 2.1.4. Die nächste Abbildung zeigt den zugehörigen periodischen Köcher.

Abb. 2.1.2. In Rot der zu Abb. 3.1.1 periodische Köcher.

Wir haben dann den Köcher Q mit

$$Q_0 = \{F_1, F_2\}$$
 und $Q_1 = \{g_1, g_3 : F_1 \to F_2, g_2, g_4 : F_2 \to F_1\}.$

Des weiteren ist $W = g_4 g_3 g_2 g_1 - g_2 g_3 g_4 g_1$ und wir berechnen

 $\mathcal{I} = (g_4 g_3 g_2 - g_2 g_3 g_4, g_1 g_4 g_3 - g_3 g_4 g_1, g_2 g_1 g_4 - g_4 g_1 g_2, g_3 g_2 g_1 - g_1 g_2 g_3) \; .$

2.2 Branenkachelungen und die assoziierte affine torische 3-Calabi-Yau-Varietät

Betrachte nun den folgenden Komplex von freien abelschen Gruppen mit den Basen Q_2,Q_1 und Q_0

$$0 \to \mathbb{Z}^{Q_2} \xrightarrow{d_2} \mathbb{Z}^{Q_1} \xrightarrow{d_1} \mathbb{Z}^{Q_0} \to 0,$$

$$d_2(F) := \sum_{g \in F} g, \text{ für } F \in Q_2, \text{ und } d_1(g) := s(g) - t(g), \text{ für } g \in Q_1.$$

Die Kohomologie dieses Komplexes ist die simpliziale Homologie von $T_{\Gamma}.$ Also ist

$$\operatorname{Kern}(d_2) = H_2(T_{\Gamma}) = \mathbb{Z} , \ \frac{\operatorname{Kern}(d_1)}{\operatorname{Im}(d_2)} = H_1(T_{\Gamma}) = \mathbb{Z}^2 , \ \operatorname{Cokern}(d_1) = H_0(T_{\Gamma}) = \mathbb{Z}.$$

Den dazu dualen Komplex bezeichnen wir mit

$$\mathbb{Z}_{Q_0} \xrightarrow{d_1^*} \mathbb{Z}_{Q_1} \xrightarrow{d_2^*} \mathbb{Z}_{Q_2}.$$

Definition 2.2.1. Sei $I \subset Q_1$. Dann definieren wir ein $\chi_I \in \mathbb{Z}_{Q_1}$ durch

$$\chi_I(g) := \begin{cases} 1 & \text{falls } g \in I \\ 0 & \text{sonst} \end{cases}$$

Definition 2.2.2. Eine Teilmenge $I \subset Q_1$ heißt *perfekte Paarung auf G*, wenn für alle $F \in Q_2$ gilt:

$$\chi_I(d_2(F)) = 1$$

Wir bezeichnen die Menge aller perfekten Paarungen auf G mit A. Wir setzen

$$\Lambda := \mathbb{Z}^{Q_1} / (d_2(F) - d_2(F') \mid F, F' \in Q_2).$$

Für eine perfekte Paarung $I \subset Q_1$ faktorisiert dann $\chi_I : \mathbb{Z}^{Q_1} \to \mathbb{Z}$ über Λ in ein $x_I : \Lambda \to \mathbb{Z}$.

Bemerkung 2.2.3. Definition 2.2.2 stimmt mit der klassischen Definition einer perfekten Paarung überein. Eine Teilmenge $I \subset Q_1 = G_1$ ist eine perfekte Paarung im Sinne von Definition 2.2.2 genau dann, wenn für jede Ecke $i \in G_0$ genau ein $g \in I$ existiert mit $i \in g$.

Lemma 2.2.4. [31, Lemma 3.3] Λ ist frei, falls wenigstens eine perfekte Paarung auf G existiert.

Sei, wenn nichts anderes gesagt wird, G stets derart, dass wenigstens eine perfekte Paarung existiert.

Sei M := Kern(d). Dann gilt folgendes:

Korollar 2.2.5. M ist eine freie abelsche Gruppe vom Rang 3.

Beweis. Die Freiheit von M = Kern(d) folgt unmittelbar aus der Freiheit von Λ . Nun gilt einerseits wegen $H_1(T_{\Gamma}) = \mathbb{Z}^2$:

rang Λ/M = rang Im (d_1) = # Q_1 - rang Ker (d_1) = # Q_1 - 2 - rang Im (d_2) .

Andererseits hat man

rang
$$\Lambda$$
 = rang cokern (d_2) + 1 = # Q_1 + 1 - rang Im (d_2) .

Somit folgt, dass rang M = 3 ist.

Definition 2.2.6. Setze B := Im(d). Wir erhalten damit eine kurze, exakte Sequenz von freien abelschen Gruppen

$$0 \to M \xrightarrow{\iota} \Lambda \xrightarrow{d} B \to 0.$$

Das zu M duale Gitter bezeichne N. Die zu ι duale Abbildung sei $\iota^* : \Lambda^{\vee} \to N$. Für ein $I \in \mathcal{A}$ setzen wir $v_I := \iota^* x_I \in N$. Wir definieren dann einen Kegel in $N_{\mathbb{R}}$ durch

$$\sigma_G := \sum_{I \in \mathcal{A}} \mathbb{Q}_{\geq 0} \cdot v_I \subset N_{\mathbb{Q}} \; .$$

So erhalten wir eine dreidimensionale affine torische Varietät U_{σ_G} mit einem offenen und dichten Torus $T_M \subset U_{\sigma_G}$.

Lemma 2.2.7. σ_G definiert eine affine torische 3-CY-Varietät U_{σ_G} .

Beweis. Sei $F\in Q_2$ beliebig und $\pi:\mathbb{Z}^{Q_1}\to\Lambda$ die kanonische Projektion. Dann ist wegen der Definition von Λ

$$\omega_{\Lambda} := \pi(d_2(F)) \in \Lambda$$

unabhängig von der Wahl von $F \in Q_2$ und es ist ferner $\omega_{\Lambda} \in M$, weil gilt:

$$d(\omega_{\Lambda}) = d_1 d_2(F) = 0$$

Weiterhin hat man

$$v_I(\omega_\Lambda) = x_I(\pi(d_2(F))) = \chi_I(d_2(F)) = 1$$
,

weil $I \in \mathcal{A}$ ist. Somit sind alle v_I enthalten in der affinen Hyperebene von $N_{\mathbb{Q}}$

$$H_{\omega_{\Lambda}} := \{ v \in N_{\mathbb{Q}} \mid v(\omega_{\Lambda}) = 1 \} ,$$

weswegen U_{σ_G} eine affine torische 3-CY-Varietät ist.

Sei $f : \mathbb{Z}^{Q_2} \to \mathbb{Z}$ definiert durch f(F) = 1, für alle $F \in Q_2$. Das folgende kommutative Diagramm zeigt alle in diesem Abschnitt definierten Gruppen:

Das folgende Lemma und die daran anschließende Bemerkung 2.2.10 ermöglicht einen graphentheoretischen Weg zur Bestimmung des torischen Diagramms \mathcal{P}_{σ_G} .

Lemma 2.2.8. Fixiere eine perfekte Paarung $I_0 \in \mathcal{A}$. Dann ist für jede perfekte Paarung $I \in \mathcal{A}$, $\chi_I - \chi_{I_0} \in \text{Kern } d_2^*$, also ein 1-Cozykel. Das torische Diagramm von σ_G kann dann mit der konvexen Hülle der Kohomologieklassen $\overline{\chi_I - \chi_{I_0}} \in$ $H^1(T_{\Gamma}, \mathbb{Z}), I \in \mathcal{A}$, identifiziert werden.

Beweis. Wie folgt definieren wir einen Morphismus von Gruppen

$$\alpha: \frac{\operatorname{Kern} d_2^*}{\operatorname{Im} d_1^*} \to N:$$

Sei $x \in \text{Kern } d_2^*$ ein 1-Cozykel. Dann existiert wegen der Definition von Λ genau ein $x' \in \Lambda^{\vee}$ mit $x = \pi^*(x')$. Wir setzen nun:

$$\alpha(\overline{x}) := \iota^*(x').$$

Weil $\iota:M\to\Lambda$ ein Kern von $d:\Lambda\to B$ ist folgt, dass α wohldefiniert und injektiv ist.

Betrachte nun $\omega_{\Lambda} \in M$ aus Lemma 2.2.7. Man überprüft ohne weiteres, dass

$$0 \to H^1(T_{\Gamma}, \mathbb{Z}) \xrightarrow{\alpha} N \xrightarrow{\omega_{\Lambda}} \mathbb{Z} \to 0$$
(2.1)

eine kurze exakte Sequenz ist. Sei nun $I_0 \in \mathcal{A}$ beliebig. Dann hat man für alle $I \in \mathcal{A}$ die Gleichung $\alpha(\overline{\chi_I}) = \iota^*(x_I) = v_I$. Somit ist

$$v_I = \alpha(\overline{\chi_I - \chi_{I_0}}) + v_{I_0}.$$

Aquivalent dazu ist: Der Morphismus von freien abelschen Gruppen

$$H^1(T_{\Gamma},\mathbb{Z})\oplus\mathbb{Z}\xrightarrow{\sim} N, \ (\overline{x},y)\mapsto\alpha(\overline{x})+y\cdot v_{I_0},$$

bildet für jedes $I \in \mathcal{A}$, $(\overline{\chi_I - \chi_{I_0}}, 1)$ auf v_I ab. Dieser Morphismus ist wegen der Exaktheit von (2.1) ein Isomorphismus, weswegen die Behauptung folgt. \Box

Definition 2.2.9. Sei Q ein Köcher, $x \in \mathbb{Z}^{Q_1}$ mit $d_1(x) = i - j$. Dann nennen wir x eine Wanderung von i nach j, falls x eine Zerlegung $x = x_1 + \ldots + x_k$ besitzt mit folgenden Eigenschaften:

- Für alle $r = 1, \ldots, k$ ist entweder $x_r \in Q_1$ oder $-x_r \in Q_1$.
- Für alle r = 1, ..., k 1 ist $t(x_r) = s(x_{r+1})$.

Bemerkung 2.2.10. Wir können $G = (G_0, G_1, G_2)$ ebenfalls als einen Köcher mit Flächen auffassen: Für eine Kante $a \in G_1 = Q_1$ sei s(a) stets der weiße Stein. Identifiziere G_0 mit Q_2 und G_2 mit Q_0 . Betrachte nun das Diagramm

wobei die vertikalen Pfeile die Standardisomorphismen sind. Das Diagramm $\left(2.2\right)$ ist kommutativ mit

$$h_2(i) = \sum_{a \in i} a$$
 und $h_1(a) = s(a) - t(a).$

Es ist also $h_2(i)$ die geschlossene Wanderung in G entlang der Fläche $i \in G_2 = Q_0$. Die Homologie des oberen Komplexes ist also die simpliziale Homologie von T_{Γ} . Insbesondere gilt nun:

$$\frac{\operatorname{Kern} h_1}{\operatorname{Im} h_2} = H_1(T_{\Gamma}) = \pi_1(T_{\Gamma}).$$

Wie in Lemma 2.2.8 fixiere man nun ein $I_0 \in \mathcal{A}$, und $f_I^* = \chi_I - \chi_{I_0} \in \mathbb{Z}_{Q_1}$ sei der 1-Kozykel für eine perfekte Paarung *I*. Sei nun $f_I = I - I_0 \in \mathbb{Z}^{G_1}$ das f_I^* entsprechende Element aus \mathbb{Z}^{G_1} . Dann ist $f_I \in \operatorname{Kern} h_1$, also die Summe von geschlossenen Wanderungen in *G*. Wegen der Kommutativität des Diagramms (2.2) haben wir einen Isomorphismus von freien abelschen Gruppen vom Rang zwei

$$H^1(T_{\Gamma}, \mathbb{Z}) \to \pi_1(T_{\Gamma}), \quad f^* + \operatorname{Im} d_1^* \mapsto f + \operatorname{Im} h_2.$$

Mit dem Lemma 2.2.8 folgt nun, dass das torische Diagramm von U_{σ_G} mit der konvexen Hülle der Homotopieklassen

$$\{(I - I_0) + \operatorname{Im} h_2 \mid I \in \mathcal{A}\} \subset \pi_1(T_{\Gamma}) \cong \mathbb{Z}^2$$

identifiziert werden kann. Das sich so ergebende Verfahren zur Bestimmung des torischen Diagramms wurde zum Beispiel in [15, Abschnitt 2.2] von Sebastian Franco und David Vegh vorgeschlagen. Dieses Verfahren wird *fast forward algorithm* gennant und anhand des nächsten Beispiels demonstriert.

Beispiel 2.2.11. Betrachte die Branenkachelung aus Beispiel 2.1.4. Dann ist

$$\mathcal{A} = \{I_i := \{g_i\} \mid i = 1, 2, 3, 4\}$$

die Menge der perfekten Paarungen. Für die Sequen
z $\mathbb{Z}^2 \xrightarrow{d_2} \mathbb{Z}^4 \xrightarrow{d_1} \mathbb{Z}^2$ haben wir

$$d_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ und } d_1 = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix}.$$

Somit ist $\Lambda = \mathbb{Z}^{Q_1} = \mathbb{Z}^4$, $B = \mathbb{Z}$ und wir berechnen für $0 \to M \xrightarrow{\iota} \Lambda \xrightarrow{d} B \to 0$

$$\iota = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ und } d = \begin{pmatrix} 1 & -1 & 1 & -1 \end{pmatrix}.$$

In diesem Fall ist σ_G der von den Zeilen von ι erzeugte Kegel in $N_{\mathbb{R}}$. Das torische Diagramm kann man nun entweder durch scharfes Hinschauen oder wie wir im folgenden mit Hilfe des *fast forward* Algorithmus bestimmen: Es ist $\Gamma = e_1\mathbb{Z} + e_2\mathbb{Z}$. Mit $\overline{e_1}$ und $\overline{e_2}$ seien die Homotopieklassen der entsprechenden geschlossenen Wege in T_{Γ} bezeichnet. Die Fundamentalgruppe von T_{Γ} ist dann die von $\overline{e_1}$ und $\overline{e_2}$ erzeugte freie abelsche Gruppe. Fixiere $I_1 \in \mathcal{A}$ und sei $f_i^* =$ $\chi_{I_i} - \chi_{I_1} \in \text{Kern } d_2^*$. Dann hat man in $\pi_1(T_{\Gamma})$ die Gleichungen:

$$\overline{f_1} = 0,$$

$$\overline{f_2} = \overline{g_2 - g_1} = -\overline{e_1},$$

$$\overline{f_3} = \overline{g_3 - g_1} = -\overline{e_1} - \overline{e_2},$$

$$\overline{f_4} = \overline{g_4 - g_1} = -\overline{e_2}.$$

Das torische Diagramm ist also ein Quadrat von Kantenlänge 1:

Abb. 2.2.1. Ein torisches Diagramm für U_{σ_G} .

Man berechnet dann: $U_{\sigma_G} = \{x_1x_2 - x_3x_4 = 0\} \subset \mathbb{C}^4$. Diese Varietät nennt man die nicht-aufgelöste *conifold*.

Definition 2.2.12. Man nennt eine Branenkachelung G nicht ausgeartet, wenn jede Kante von G Element einer perfekten Paarung ist

Definition 2.2.13. Eine Branenkachelung G heißt geometrisch konsistent, falls eine Abbildung $R: Q_1 \to (0, 1)$ existiert, mit

$$\sum_{a \in F} R(a) = 2 \text{ für alle } F \in Q_2,$$
$$\sum_{i \in a} (1 - R(a)) = 2 \text{ für alle } i \in Q_0.$$

Bemerkung 2.2.14. Geometrisch konsistente Branenkachelungen sind nichtausgeartet nach dem Birkhoff-von Neumann-Theorem. Ab jetzt werden wir lediglich geometrisch konsistente Branenkachelungen betrachten.

Sei V eine affine, torische 3-Calabi-Yau-Varietät. Es gibt dann einen Algorithmus von Daniel R. Gulotta [17, Abschnitt 6] zur Bestimmung einer Branenkachelung G, mit $V \cong U_{\sigma_G}$.

Theorem 2.2.15. [10, Abschnitt 3.4.] Für jede affine torische 3-CY-Varietät V existiert eine geometrisch konsistente Branenkachelung G so, dass gilt:

$$V \cong U_{\sigma_G}$$

Bemerkung 2.2.16. Sei \mathcal{P} ein Dreieck mit Ecken $p_1, p_2, p_3 \in \mathbb{Z}^2$. Betrachte die kurze exakte Sequenz von abelschen Gruppen

$$0 \to \mathbb{Z}^3 \xrightarrow{\alpha} \mathbb{Z}^3 \xrightarrow{\text{Cokern}\,\alpha} S \to 0, \quad \alpha(m) = (\langle m, \begin{pmatrix} 1\\ p_i \end{pmatrix} \rangle)_{i \in [3]}. \tag{2.3}$$

Es ist S eine endliche abelsche Gruppe. Wegen Cokern $\alpha(1, 1, 1) = 0$ erhält man dann durch Anwenden von Hom $(-, \mathbb{C}^*)$ auf (2.3) eine Einbettung

$$E: S \hookrightarrow \mathrm{Sl}(3, \mathbb{C}).$$

Aus den Abschnitten 1.2 und 1.3 wissen wir, dass eine affine torische 3-CY-Varietät X mit Klassengruppe S und torischem Diagramm \mathcal{P} existiert: X ist der geometrische Quotient für die von E induzierte S-Aktion auf \mathbb{C}^3 .

Andererseits kann man zu der Einbettung E einen Köcher mit Relationen (Q, \mathcal{I}) assoziieren, den sogenannten *McKay-Köcher*. Es gibt dann eine Einbettung

$$t: Q \to T_{\Gamma}$$

von Q in einen kompakten 2-Torus T_{Γ} derart, dass der zu Q duale Graph Gzusammen mit t eine geometrisch konsistente Branenkachelung ist, und dass (Q, \mathcal{I}) der zu G duale Köcher mit Relationen im Sinne von Definition 2.1.6 ist.

Die zu G assoziierte affine torische 3-CY-Varietät U_{σ_G} ist dann isomorph zu X. Für Details siehe man [24, Abschnitt 5.2].

Definition 2.2.17. Sei $\Lambda^+ \subset \Lambda$ die von $\{\pi(a) \mid a \in Q_1\}$ erzeugte Halbgruppe. Der Morphismus $d : \Lambda \to B$ versieht dann $\mathbb{C}[\Lambda^+]$ mit einer *B*-Graduierung. Definiere nun einen Kegel in $\Lambda_{\mathbb{Q}}$ durch

$$P := \left\{ \sum a_i \lambda_i \mid a_i \in \mathbb{Q}_{\geq 0}, \quad \lambda_i \in \Lambda^+ \text{ für alle i} \right\}.$$

Lemma 2.2.18. [10, Lemma 2.3.4] Die Halbgruppe $P^{\vee} \cap \Lambda^{\vee}$ ist erzeugt von den Elementen $x_I, I \in \mathcal{A}$ (Definition 2.2.2). Darüber hinaus sind die x_I gerade die primitiven Erzeuger der Strahlen von P^{\vee} .

Bemerkung 2.2.19. (i): Eine direkte Folgerung ist somit:

$$P \cap M = \{ m \in M \mid \langle \iota(m), x_I \rangle \ge 0 \ \forall I \in \mathcal{A} \}$$

= $\{ m \in M \mid \langle m, v_I \rangle \ge 0 \ \forall I \in \mathcal{A} \} = \sigma_G^{\vee} \cap M$

(ii) : Im allgemeinen ist Λ^+ nicht gesättigt. Die Sättigung von Λ^+ ist $P \cap \Lambda$: Als Schnitt eines Kegels mit einem Gitter ist $P \cap \Lambda$ gesättigt. Weil für alle Pfeile $a \in Q_1$ gilt, dass $\pi(a) \in P \cap \Lambda$ ist, hat man außerdem, dass $P \cap \Lambda$ die Halbgruppe Λ^+ erzeugt.

Sei nun $M^+ = M \cap \Lambda^+$. Dann hat man folgendes Resultat:

Lemma 2.2.20. [24, Corolllary 3.6.] Die Halbgruppe M^+ ist gesättigt. Insbesondere ist deswegen $M^+ = P \cap M$, und $\mathbb{C}[M^+] = \mathbb{C}[\Lambda^+]_0$ ist isomorph zum Koordinatenring von U_{σ_G} .

Lemma 2.2.21. [10, Lemma 4.3.1.] Das Zentrum der Pfadalgebra $\mathbb{C}Q/\mathcal{I}$ ist isomorph zu $\mathbb{C}[M^+]$.

Somit ist also das Zentrum von A_G isomorph zum Koordinatenring von U_{σ_G} .

2.3 Moduli für A_G -Darstellungen von dim = (1, ..., 1)

Sei $\underline{\alpha} = (1, \ldots, 1) \in \mathbb{Z}^{Q_0}$. Dann gilt für die $\mathbb{C}Q$ -Moduln von Dimension $\underline{\alpha}$:

$$\operatorname{Mod}(\mathbb{C}Q,\underline{\alpha}) = \mathbb{C}^{Q_1} = \operatorname{Spec} \mathbb{C}[(\mathbb{Z}_{\geq 0})^{Q_1}] = \operatorname{Hom}_{\operatorname{sgp}}((\mathbb{Z}_{\geq 0})^{Q_1}, (\mathbb{C}, \cdot)).$$

Sei $\operatorname{Mod}(A_G, \underline{\alpha}) \subset \operatorname{Mod}(\mathbb{C}Q, \underline{\alpha})$ die Untervarietät derjenigen Moduln, die die vom Superpotential W induzierten Relationen erfüllen. Sei $a \in Q_1$. Dann ist a der Schnitt von zwei Flächen F_a^+ und F_a^- . Es existieren dann zwei Wege in Q, $r_a, s_a \in (\mathbb{Z}_{\geq 0})^{Q_1}$, derart, dass gilt:

$$d_2(F_a^+) = a + r_a, \, d_2(F_a^-) = a + s_a \text{ und } \frac{\partial W}{a} = r_a - s_a \;.$$
 (2.4)

Mit dieser Notation ist der Koordinatenring von $Mod(A_G, \underline{\alpha})$ gegeben durch

$$R_G := \mathbb{C}[(\mathbb{Z}_{\geq 0})^{Q_1}] / (\chi^{r_a} - \chi^{s_a} \mid a \in Q_1) .$$

Der Morphismus $\pi : \mathbb{Z}^{Q_1} \to \Lambda$ induziert einen Epimorphismus von \mathbb{C} -Algebren

$$\mathbb{C}[(\mathbb{Z}_{\geq 0})^{Q_1}] \to \mathbb{C}[\Lambda^+] , \qquad (2.5)$$

der wegen $r_a - s_a \in \text{Kern}(\pi)$ (siehe (2.4)) über R_G faktorisiert. Es existiert somit ein Epimorphismus von \mathbb{C} -Algebren $R_G \to \mathbb{C}[\Lambda^+]$. Dazu ist äquivalent: Es existiert eine abgeschlossene Einbettung von affinen Varietäten

Spec
$$\mathbb{C}[\Lambda^+] \hookrightarrow \operatorname{Mod}(A_G, \underline{\alpha})$$
.

Man hat dann das folgende Resultat:

Proposition 2.3.1. [24, Proposition 4.2] Spec $\mathbb{C}[\Lambda^+]$ ist eine irreduzible Komponente von $Mod(A_G, \underline{\alpha})$.

Der algebraische Torus $(\mathbb{C}^*)^{Q_0}$ operiert auf $Mod(A_G, \underline{\alpha})$ durch Basiswechsel:

$$(tx)_a := t_i^{-1} \cdot x_a \cdot t_j, \qquad x \in \operatorname{Mod}(A_G, \underline{\alpha}), t \in (\mathbb{C}^*)^{Q_1}, a : i \to j \in Q_1.$$

Die Bahnen dieser Wirkung sind die Isomorphieklassen der A_G -Darstellungen von Dimension $\underline{\alpha}$. Der diagonale Torus $\mathbb{C}^* \subset (\mathbb{C}^*)^{Q_0}$ operiert trivial. Somit hat ein Punkt $x \in \operatorname{Mod}(A_G, \underline{\alpha})$ niemals endlichen Stabilisator, weswegen die Menge der $(\mathbb{C}^*)^{Q_0}$ -stabilen Punkte leer ist. Wir betrachten deshalb die induzierte Wirkung von

$$T_B = \operatorname{Hom}(B, \mathbb{C}^*) = (\mathbb{C}^*)^{Q_0} / \mathbb{C}^*$$

auf $Mod(A_G, \underline{\alpha})$, deren Bahnen dann ebenfalls die Isomorphieklassen der A_G -Darstellungen von Dimension $\underline{\alpha}$ sind.

Definition 2.3.2. Sei $\theta \in B$, d.h. es ist $\langle \theta, \underline{\alpha} \rangle = 0$. Wir nennen ein $x \in Mod(A_G, \underline{\alpha}) \theta$ -stabil (bzw. θ -semistabil), falls für jeden echten Untermodul $y \subset x$ gilt:

$$\langle \theta, \underline{\dim}(y) \rangle > 0. \text{ (bzw. } \langle \theta, \underline{\dim}(y) \rangle \ge 0).$$

Definition 2.3.3. Ein $\theta \in B$ heißt $\underline{\alpha}$ -generisch, falls für alle $0 < \beta < \underline{\alpha}$ gilt:

$$\langle \theta, \beta \rangle \neq 0.$$

Bemerkung 2.3.4. Von nun an bedeutet generisch stets $\underline{\alpha}$ -generisch. Falls $\theta \in B$ generisch ist, ist jedes θ -semistabile $x \in Mod(A_G, \underline{\alpha})$ auch θ -stabil.

Proposition 2.3.5. [23, Proposition 3.1] Set $\theta \in B$, $\chi_{\theta} : T_B \to \mathbb{C}^*$ der θ entsprechende Charakter, $x \in \text{Spec } R_G$ und $M_x \in Mod(A_G, \underline{\alpha})$ der x entsprechende A_G -Modul. Dann ist $x \chi_{\theta}$ -semistabil (bzw. χ_{θ} -stabil) genau dann, wenn $M_x \theta$ -semistabil (bzw. θ -stabil) ist.

Definition 2.3.6. Für eine Stabilität $\theta \in B$ definieren wir den Köchermodulraum der θ -semistabilen A_G -Darstellungen von Dimension $\underline{\alpha}$ als den GIT-Quotienten

$$\mathcal{M}_{\theta} := (\operatorname{Spec} R_G) / /_{\theta} T_B = \operatorname{Proj} \bigoplus_{j \ge 0} (R_G)_{j \cdot \theta}.$$

Proposition 2.3.7. [24, Proposition 4.4] Falls $\theta \in B$ generisch ist, gilt:

$$\mathcal{M}_{\theta} = (\operatorname{Spec} \mathbb{C}[\Lambda^+])/_{\theta} T_B.$$

Die Normalisierung von \mathcal{M}_{θ} ist dann gegeben durch

$$\overline{\mathcal{M}_{\theta}} = (\operatorname{Spec} \mathbb{C}[P \cap \Lambda])/_{\theta} T_B.$$

Falls $\theta \in B$ generisch ist, haben Akira Ishii und Kazushi Ueda [21, Proposition 5.1] gezeigt, dass \mathcal{M}_{θ} glatt ist. Insbesondere ist \mathcal{M}_{θ} dann normal, weswegen gilt: $\mathcal{M}_{\theta} = \overline{\mathcal{M}_{\theta}}$. Ab sofort seien alle Stabilitäten $\theta \in B$ generisch. Dann hat man eine Auflösung von Singularitäten

$$\mathcal{M}_{\theta} = \operatorname{Proj} \bigoplus_{j \ge 0} (R_G)_{j \cdot \theta} \xrightarrow{f(\theta)} \overline{\mathcal{M}_0} = \operatorname{Spec} \mathbb{C}[P \cap \Lambda]_0 = \operatorname{Spec} \mathbb{C}[M^+] = U_{\sigma_G} .$$

Wir werden sehen, dass diese Auflösung crepant ist, in dem wir zeigen, dass \mathcal{M}_{θ} eine torische 3-CY-Varietät ist.

Lemma 2.3.8. Sei $\sigma = P^{\vee}$ und $V_{\theta} \subset U_{\sigma} = \operatorname{Spec} \mathbb{C}[P \cap \Lambda]$ die Menge der χ_{θ} stabilen Punkte. Für eine Seite $\tau \prec \sigma$ sei $x_{\tau} \in U_{\sigma}$ der ausgezeichnete Punkt. Definiere

$$\Sigma(\theta) := \{ \tau \prec \sigma \mid O_{\tau} = T_{\Lambda} \cdot x_{\tau} \text{ ist } \chi_{\theta} \text{-stabil} \}.$$

Dann ist $\Sigma(\theta)$ ein Fächer in $\Lambda^{\vee} \otimes \mathbb{Q}$ und V_{θ} die zu $\Sigma(\theta)$ assoziierte T_{Λ} -torische Varietät.

Beweis. Sei $\tau \prec \sigma$ eine Seite und $x_{\tau} : P \cap \Lambda \to \mathbb{C}$ der ausgezeichnete Punkt. Dann ist x_{τ} genau dann χ_{θ} -stabil, wenn ein j > 0 und ein $\lambda \in P \cap \Lambda$ existiert mit $d(\lambda) = j\theta$ und

$$0
eq \chi^{\lambda}(x_{ au}) = x_{ au}(\lambda)$$
 .

Letzteres bedeutet gerade, dass $\lambda \in \tau^{\perp}$ ist. Somit ist x_{τ} genau dann χ_{θ} -stabil, wenn gilt:

$$\exists j > 0 : d^{-1}(\{j\theta\}) \cap \tau^{\perp} \neq \emptyset .$$

Mit x_{τ} ist dann auch für alle $t \in T_{\Lambda}$ der Punkt $tx_{\tau} \chi_{\theta}$ -stabil, weil gilt:

$$\chi^{\lambda}(tx_{\tau}) = tx_{\tau}(\lambda) = t(\lambda) \cdot x_{\tau}(\lambda)$$

Somit ist

$$V_{ heta} = igcup_{\substack{ au \prec \sigma \ x_{ au}\chi_{ heta} ext{-stabil}}} O_{ au} \; .$$

Seien nun τ_1 und τ_2 Seiten von σ mit χ_{θ} -stabilen ausgezeichneten Punkten. Dann ist wegen $\tau_1^{\perp} \subset (\tau_1 \cap \tau_2)^{\perp}$ auch der ausgezeichnete Punkt von $\tau_1 \cap \tau_2$ χ_{θ} -stabil. Somit ist $\Sigma(\theta)$ ein Fächer und man hat

$$V_{\theta} = \bigcup_{\substack{\tau \prec \sigma \\ x_{\tau} \chi_{\theta} - \text{stabil}}} U_{\tau} = X_{\Sigma(\theta)}.$$

Unmittelbar aus dem Lemma 2.2.18 folgt nun:

Korollar 2.3.9. In der Situation des obigen Lemmas ist

 $\Sigma(\theta)(1) = \{ x_I \mid I \in \mathcal{A} \text{ und der ausgezeichnete Punkt von } \mathbb{Q}_{>0} \cdot x_I \text{ ist } \chi_{\theta} \text{-stabil} \}.$

Beweis. Nach Lemma 2.2.18 sind die $x_I, I \in \mathcal{A}$, die primitiven Erzeuger der Strahlen von σ .

Man erinnere sich daran, dass für eine Seite $\tau \prec \sigma$ der Torus T_B auf der T_{Λ} torische Varietät U_{τ} vermöge des Morphismus $d : \Lambda \to B$ operiert.

Lemma 2.3.10. Sei $\tau \prec \sigma$. Dann hat man für den Invariantenring:

$$\mathbb{C}[\tau^{\vee} \cap \Lambda]^{T_B} \cong \mathbb{C}[\iota^*(\tau)^{\vee} \cap M].$$

Somit ist ein kategorieller Quotient für die T_B -Wirkung auf U_{τ} gegeben durch:

$$U_{\tau} = \operatorname{Hom}_{\operatorname{sgp}}(\tau^{\vee} \cap \Lambda, \mathbb{C}) \xrightarrow{\psi} U_{\iota^{*}(\tau)} = \operatorname{Hom}_{\operatorname{sgp}}(\iota^{*}(\tau)^{\vee} \cap M, \mathbb{C}),$$
$$x \mapsto x \circ \iota.$$
(2.6)

Beweis. Ein $\chi^{\lambda} \in \mathbb{C}[\tau^{\vee} \cap \Lambda]$ ist T_B -invariant genau dann, wenn gilt: $d(\lambda) = 0$. Somit hat man, dass folgendes gilt:

$$\mathbb{C}[\tau^{\vee} \cap \Lambda]^{T_B} \cong \mathbb{C}[\tau^{\vee} \cap \iota(M)]$$

Weil für alle $m \in M, \mu \in \tau$ gilt:

$$\langle \iota(m), \mu \rangle = \langle m, \iota^*(\mu) \rangle, \qquad (2.7)$$

ist das folgende ein wohldefinierter Morphismus von Halbgruppen:

$$\iota^*(\tau)^{\vee} \cap M \to \tau^{\vee} \cap \iota(M),$$
$$m \mapsto \iota(m).$$

Dieser Morphismus ist wegen der Injektivität von ι ebenfalls injektiv. Der Morphismus ist surjektiv aufgrund von (2.7), weswegen er ein Isomorphismus ist. Somit folgt die erste Aussage des Lemmas. Für die Aussage (2.6) beachte man, dass ψ induziert ist vom \mathbb{C} -Algebramorphismus

$$\mathbb{C}[\iota^*(\tau)^{\vee} \cap M] \hookrightarrow \mathbb{C}[\tau^{\vee} \cap \Lambda], \quad \chi^m \to \chi^{\iota(m)}.$$

Für eine generische Stabilität $\theta \in B$ sind alle χ_{θ} -semistabilen Punkte auch χ_{θ} -stabil. Somit haben wir einen geometrischen Quotienten

$$\bigcup_{\tau \in \Sigma(\theta)} U_{\tau} = X_{\Sigma(\theta)} \xrightarrow{\psi} \mathcal{M}_{\theta} = \bigcup_{\tau \in \Sigma(\theta)} U_{\iota^*(\tau)}.$$

Definition 2.3.11. Wir bezeichnen mit

$$\Omega(\theta) := \{\iota^*(\tau) \mid \tau \in \Sigma(\theta)\}$$

die Menge der mit ι^* nach $N_{\mathbb{Q}}$ projezierten Kegel aus $\Sigma(\theta)$.

Lemma 2.3.12. Es gelten folgende Aussagen:

1. $\Omega(\theta)$ ist ein Fächer in $N_{\mathbb{Q}}$.

- 2. Die Zuordnung $\Sigma(\theta) \xrightarrow{\iota^*} \Omega(\theta)$ ist eine Bijektion.
- 3. Für alle $\tau \in \Sigma(\theta)$ ist dim $(\tau) = \dim(\iota^*(\tau))$.

Beweis. 1. Seien $\iota^*(\tau)$, $\iota^*(\tau') \in \Omega(\theta)$. Weil \mathcal{M}_{θ} separiert ist, ist $U_{\iota^*(\tau)} \cap U_{\iota^*(\tau')}$ affin und nach [16, Kapitel 1] ist dies äquivalent dazu, dass sich $\iota^*(\tau)$ und $\iota^*(\tau')$ in einer gemeinsamen Seite schneiden. Um zu zeigen, dass $\Omega(\theta)$ ein Fächer ist, genügt es somit zu zeigen, dass die Seiten eines Kegels $\iota^*(\tau)$ genau der Form $\iota^*(\alpha)$, für eine Seite α von τ sind: Falls $\alpha \prec \tau$ ist, verwendet man obiges Separiertheitsargument mit $\alpha = \tau'$ und erhält: $\iota^*(\alpha) \prec \iota^*(\tau)$ ist eine Seite. Sei umgekehrt $\rho = \iota^*(\tau) \cap m^{\perp}, m \in (\iota^*(\tau))^{\vee}$, eine Seite von $\iota^*(\tau)$. Dann ist $\iota(m) \in \tau^{\vee}$, weswegen $\alpha := \tau \cap \iota(m)^{\perp}$ eine Seite von τ ist. Nun gilt: $\iota^*(\alpha) = \rho$.

2. Seien $\tau, \tau' \in \Sigma(\theta)$ mit $\iota^*(\tau) = \iota^*(\tau')$ und seien x_τ und $x_{\tau'}$ die ausgezeichneten Punkte. Man hat dann $\psi(x_\tau) = x_\tau \circ \iota = x_{\iota^*(\tau)}$ beziehungsweise $\psi(x_{\tau'}) = x_{\tau'} \circ \iota = x_{\iota^*(\tau')}$ (vgl. (2.6)). Also ist $\psi(x_\tau) = \psi(x_{\tau'})$. Weil $(\mathcal{M}_{\theta}, \psi)$ ein geometrischer Quotient ist, ist dies gleichbedeutend mit: $T_B x_\tau = T_B x_{\tau'}$. Also existiert ein $g \in T_B$ mit $gx_\tau = x_{\tau'}$. Ein solches $g \in T_B$ existiert genau dann, wenn gilt: $\tau^{\perp} = (\tau')^{\perp}$, und dies ist äquivalent zu: $\tau = \tau'$.

3. Für einen Kegel $\tau \in \Sigma(\theta)$ ist der ausgezeichnete Punkt $x_{\tau} \chi_{\theta}$ -stabil. Insbesondere ist der Stabilisator von x_{τ} endlich. Für diesen gilt:

$$(T_B)_{x_{\tau}} = \{ g \in T_B \mid gx_{\tau} = x_{\tau} \} = \{ g \in T_B \mid g(d(\tau^{\perp} \cap \Lambda)) = 1 \}$$

Somit ist der Stabilisator von x_{τ} genau dann endlich, wenn gilt: $d(\tau^{\perp}) = B_{\mathbb{Q}}$. Dies ist äquivalent zu:

$$\tau^{\perp} + \iota(M_{\mathbb{Q}}) = \Lambda_{\mathbb{Q}}.$$
(2.8)

Man beachte jetzt, dass ι einen Isomorphismus von \mathbb{Q} -Vektorräumen $\tau^{\perp} \cap M_{\mathbb{Q}} \simeq (\iota^*(\tau))^{\perp}$ induziert, und das wegen (2.8) gilt:

$$\dim(\Lambda_{\mathbb{Q}}) = \dim(\tau^{\perp}) + \dim(M_{\mathbb{Q}}) - \dim(\tau^{\perp} \cap \iota(M_{\mathbb{Q}})).$$

Insgesamt erhalten wir nun die Gleichung

$$\dim(\tau) = \dim(\Lambda_{\mathbb{Q}}) - \dim(\tau^{\perp}) = \dim(M_{\mathbb{Q}}) - \dim(\iota^*(\tau)^{\perp}) = \dim(\iota^*(\tau)).$$

Satz 2.3.13. Es gelten folgende Aussagen:

- 1. \mathcal{M}_{θ} ist die zum Fächer $\Omega(\theta)$ assoziierte T_M -torische Varietät.
- 2. Der Morphismus $\psi: V_{\theta} \to \mathcal{M}_{\theta}$ ist der von

 $\iota^*:\Lambda^\vee\to N,\quad \Sigma(\theta)\to \Omega(\theta)$

 $induzier te\ torische\ Morphismus.$

3. \mathcal{M}_{θ} ist eine Calabi-Yau-Varietät, weswegen durch

$$\mathcal{M}_{\theta} \xrightarrow{f(\theta)} U_{\sigma_G}$$

eine crepante Auflösung von U_{σ_G} gegeben ist.

Beweis. 1. Es folgt aus den Lemmata 2.3.8, 2.3.10 und 2.3.12, dass gilt:

$$\mathcal{M}_{\theta} = X_{\Omega(\theta)}.$$

2. Man siehe dazu (1.4) aus Abschnitt 1.1. Die Aussage folgt dann aus (2.6) und weil $\Omega(\theta)$ ein Fächer ist.

3. Die primitiven Erzeuger der eindimensionalen Kegel in $\Omega(\theta)$ sind diejenigen $\iota^*(x_I) = v_I \in N, I \in \mathcal{A}$, für die der ausgezeichnete Punkt von $\mathbb{Q}_{\geq 0} \cdot x_I \chi_{\theta}$ stabil ist. Wir hatten in Lemma 2.2.7 gesehen, dass alle v_I in einer affinen Hyperebene von $N_{\mathbb{Q}}$ enthalten sind, weswegen \mathcal{M}_{θ} eine Calabi-Yau-Varietät ist. Der Morphismus $f(\theta)$ ist der von id : $N \to N, \Omega(\theta) \to \sigma_G$ induzierte torische Morphismus und somit eine crepante Auflösung. (siehe Bemerkung 1.3.10.)

Durch Variation des Stabilitätsparamters $\theta \in B$ erhält man jede crepante Auflösung von U_{σ_G} :

Theorem 2.3.14. [21, Theorem 15.1] Jede crepante Auflösung von U_{σ_G} ist der Form

$$\mathcal{M}_{\theta} \xrightarrow{f(\theta)} U_{\sigma_G},$$

für eine generische Stabilität $\theta \in B$.

2.4 Das torische Diagramm von \mathcal{M}_{θ}

Im vorherigen Abschnitt hatten wir gesehen, dass man für eine generische Stabilität $\theta \in B$ den Köchermodulraum der θ -semistabilen A_G -Darstellungen von dim = (1,...,1), \mathcal{M}_{θ} , als eine crepante Auflösung von U_{σ_G} auffassen kann. Wir wollen uns nun überlegen, wie man dass torische Diagramm der torischen 3-CY-Varietät $\mathcal{M}_{\theta} = X_{\Omega(\theta)}$ graphentheoretisch bestimmen kann.

Definition 2.4.1. Sei $I \in \mathcal{A}$ eine perfekte Paarung und $\theta \in B$ eine generische Stabilität. Wir nennen $I \ \theta$ -stabil, falls der von $x_I \in \Lambda^{\vee}$ erzeugte Strahl τ_I ein Element von $\Sigma(\theta)$ ist.

Bemerkung 2.4.2. Im allgemeinen existieren perfekte Paarungen $I, J \in \mathcal{A}$ mit $I \neq J$ und $v_I = v_J$. Dann können I und J nicht beide θ -stabil sein: Nach Lemma 2.3.12, 2., liefert ι^* eine Bijektion zwischen $\Sigma(\theta)$ und $\Omega(\theta)$. Somit existiert für jedes $v \in \Omega(\theta)(1)$ genau eine perfekte Paarung I mit $v = v_I$.

Lemma 2.4.3. Genau dann ist I θ -stabil, wenn die durch

$$y_I(a) := \begin{cases} 1 & falls \ a \in Q_1 - I \\ 0 & falls \ a \in I \end{cases}$$

definierte A_G -Darstellung $y_I \theta$ -stabil ist.

Beweis. Es ist I θ -stabil genau dann, wenn der ausgezeichnete Punkt von τ_I χ_{θ} -stabil ist. Dieser Punkt entspricht gerade der A_G -Darstellung y_I , denn:

Sei $a \in Q_1$. Dann gilt für den ausgezeichneten Punkt $x_{\tau_I} \in \operatorname{Hom}_{\operatorname{sgp}}(\tau_I^{\vee} \cap \Lambda, \mathbb{C})$:

$$x_{\tau_I}(\pi(a)) = \begin{cases} 1 & \text{falls } x_I(\pi(a)) = 0\\ 0 & \text{falls } x_I(\pi(a)) = 1 \end{cases} = y_I(a).$$

Mit Proposition 2.3.5 folgt nun die Behauptung.

Proposition 2.4.4. [10, Proposition 6.5] Sei G geometrisch konsistent und $I \in \mathcal{A}$ eine perfekte Paarung auf G. Dann sind die folgenden Aussagen äquivalent:

- $\mathbb{Q}_{>0} \cdot v_I$ ist eine Seite von σ_G .
- Für alle $J \in \mathcal{A}$ mit $J \neq I$ ist $v_J \neq v_I$.
- y_I ist eine einfache A_G -Darstellung.

Bemerkung 2.4.5. Eine perfekte Paarung $I \in \mathcal{A}$, die eine Vorraussetzung aus Proposition 2.4.4 erfüllt, nennt man eine *extremale perfekte Paarung*. Weil dann y_I eine einfache A_G -Darstellung ist, ist y_I stabil bezüglich jeder generischen Stabilität $\theta \in B$.

Seien nun $I, J \in \mathcal{A}$ zwei θ -stabile perfekte Paarungen. Dann sind $v_I, v_J \in N$ primitive Erzeuger von Strahlen im Fächer von \mathcal{M}_{θ} , entsprechen also zwei Gitterpunkten im torischen Diagramm von \mathcal{M}_{θ} , die wir mit p_I, p_J bezeichnen. p_I und p_J sind genau dann durch eine Kante im torischen Diagramm verbunden, wenn der von x_I und x_J erzeugte Kegel $\alpha = \alpha_{(I,J)}$ eine Seite von P^{\vee} ist und die Eigenschaft hat, dass sein ausgezeichneter Punkt χ_{θ} -stabil ist. Genau so, wie im Beweis des letzten Lemmas zeigt man, dass dieser Punkt dann der θ -stabilen A_G -Darstellung definiert durch

$$y_{\alpha}(a) := \begin{cases} 1 & \text{falls } a \in Q_1 - (I \cup J) \\ 0 & \text{falls } a \in I \cup J \end{cases}$$

entspricht. Dies beweist alternativ folgendes Resultat aus [24, Abschnitt 4]

Proposition 2.4.6. Seien I und J zwei θ -stabile perfekte Paarungen. Genau dann gibt es eine Kante im torischen Diagramm von \mathcal{M}_{θ} zwischen den Punkten p_I und p_J , wenn die $\mathbb{C}Q$ -Darstellung definiert durch

$$y_{\alpha}(a) := \begin{cases} 1 & falls \ a \in Q_1 - (I \cup J) \\ 0 & falls \ a \in I \cup J \end{cases}$$

eine θ -stabile A_G -Darstellung ist.

Bemerkung 2.4.7. (i): Die $\mathbb{C}Q$ -Darstellung y_{α} erfüllt stets die vom Superpotential W induzierten Relationen und ist somit eine A_G -Darstellung, denn:

Sei $g \in Q_1$ und $\frac{\partial W}{\partial g} = r_g - s_g$ die g entsprechende Relation. Wir unterscheiden zwei Fälle. Sei zunächst $g \in I \cap J$. Dann gilt:

$$\prod_{a \in r_g} y_\alpha(a) = \prod_{a \in s_g} y_\alpha(a) = 1 \; .$$

Falls g nicht enthalten ist in $I \cap J$, hat man, dass gilt:

$$\prod_{a \in r_g} y_{\alpha}(a) = \prod_{a \in s_g} y_{\alpha}(a) = 0 .$$

Also ist y_{α} tatsächlich eine A_G -Darstellung.

(ii): Es sind y_I und y_J stets A_G -Unterdarstellungen von y_{α} . Somit folgt, dass falls $y_{\alpha} \theta$ -stabil ist, ebenso y_I und $y_J \theta$ -stabil sind.

Beispiel 2.4.8. Betrachten wir nun die Branenkachelung aus dem Beispiel 2.1.4. Dann ist $Q_0 = \{F_1, F_2\},$

$$Q_1 = \{g_1, g_3 : F_1 \to F_2, g_2, g_4 : F_2 \to F_1\},\$$

und jede $\mathbb{C}Q$ -Darstellung von <u>dim</u> = (1,1) erfüllt die vom Superpotential W induzierten Relationen, weswegen gilt:

$$Mod(A_G, (1, 1)) = \mathbb{C}^4.$$

Bis auf Skalierung mit einer positiven ganzen Zahl gibt es zwei generische Stabilitäten $\theta_1 = (-1, 1)$ und $\theta_2 = (1, -1)$. Ein $p \in \mathbb{C}^4$ ist dann θ_1 -stabil (bzw. θ_2 -stabil) genau dann, wenn $p_1 \neq 0$ oder $p_3 \neq 0$ (bzw. $p_2 \neq 0$ oder $p_4 \neq 0$) ist. $\mathbb{C}^* = T_B$ operiert auf \mathbb{C}^4 dann mit den Gewichten

$$d = (1 -1 1 -1).$$

Zum Beispiel mit dem Lemma 1.2.3 über globale Koordinaten für Linienbündel auf torischen Varietäten sieht man dann, dass sowohl \mathcal{M}_{θ_1} als auch \mathcal{M}_{θ_2} isomorph zum Totalraum des \mathbb{P}^1 -Vektorbündels $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ sind: Die Faserungen sind dabei die Projektionen

$$\mathcal{M}_{\theta_1} \to \mathbb{P}^1 , [p_1, p_2, p_3, p_4] \mapsto [p_1 : p_3] ,$$

$$\mathcal{M}_{\theta_2} \to \mathbb{P}^1 , [p_1, p_2, p_3, p_4] \mapsto [p_2 : p_4] .$$

Nun zu den torischen Diagrammen. Wir hatten in Beispiel 2.2.11 gesehen, dass das torische Diagramm von U_{σ_G} ein Quadrat von Kantenlänge 1 ist. Eine crepante Auflösung erhält man also durch das Hinzufügen einer Diagonale. Für jede perfekte Paarung I ist y_I einfach, weswegen jede perfekte Paarung bezüglich jeder Stabilität stabil ist. Für die wie folgt definierten A_G -Darstellungen

$$p(a) := \begin{cases} 1 & \text{falls } a \in Q_1 - (I_2 \cup I_4) \\ 0 & \text{falls } a \in I_2 \cup I_4 \end{cases}$$
$$q(a) := \begin{cases} 1 & \text{falls } a \in Q_1 - (I_1 \cup I_3) \\ 0 & \text{falls } a \in I_1 \cup I_3 \end{cases}$$

gilt nun, dass $p \theta_1$ -stabil und $q \theta_2$ -stabil ist.

Abb. 2.4.1. Links das torische Diagramm von \mathcal{M}_{θ_2} und rechts das von \mathcal{M}_{θ_1}

Kapitel 3

Beweis der Vermutung von Hanany et al.

Wir haben nun gesehen, wie man Branenkachelungen benutzen kann, um crepante Auflösungen von affinen 3-CY-Varietäten zu konstruieren. In diesem Kapitel werden wir zeigen, wie man ein Tiltingbündel für $D^b(Coh(\mathcal{M}_{\theta}))$ graphentheoretisch bestimmen kann. Ein dahin zielender Algorithmus wurde von Amihay Hanany, Chistopher P. Herzog und David Vegh in [18, Abschnitt 5.2] vorgeschlagen. Dieser Algorithmus liest sich mit unseren Notationen wie folgt:

Algorithmus von Hanany et al. Sei $\theta \in B$ eine generische Stabilität.

- Bestimme alle θ -stabilen perfekten Paarungen auf $G, I_1, \ldots, I_r \in \mathcal{A}$.
- Fixiere eine Ecke $i_0 \in Q_0$.
- Wähle für alle $i \in Q_0$ eine Wanderung in Q von i_0 nach $i, \mu_i \in \mathbb{Z}^{Q_1}$.
- Die den θ -stabilen perfekten Paarungen I_1, \ldots, I_r entsprechenden T_M -Primdivisoren auf \mathcal{M}_{θ} seien mit D_1, \ldots, D_r bezeichnet. Definiere für jedes $i \in Q_0$ einen Divisor auf \mathcal{M}_{θ} durch

$$E_i := \sum_{j=1}^r \chi_{I_j}(\mu_i) \cdot D_j$$

Sie erwarteten dabei, dass die direkte Summe der so konstruierten Linienbündel $\mathcal{O}_{\mathcal{M}_{\theta}}(E_i), i \in Q_0$, ein Tiltingbündel für $D^b(\operatorname{Coh}(\mathcal{M}_{\theta})$ ist.

Köchermodulräume sind häufig mit sogenannten *universellen Bündeln* versehen, z.B. falls die Komponenten des Dimensionsvektors zueinander teilerfremd sind, also insbesondere, falls all diese gleich 1 sind. Man kann nun erwarten, dass sich T_M -Divisoren für die universellen Linienbündel auf \mathcal{M}_{θ} graphentheoretisch beschreiben lassen. Zunächst zeigen wir in Abschnitt 3.1, dass die aus dem Algorithmus von Hanany et al. resultierenden Linienbündel universelle Bündel für \mathcal{M}_{θ} sind (**Theorem 3.1.6**).

Manchmal ist die direkte Summe aller universellen Bündel auf einem Köchermodulraum eine Tiltinggarbe (siehe dazu z.B. [1]). So auch im Falle einer crepanten Auflösung $\mathcal{M}_{\theta} \to U_{\sigma_G}$, wobei G eine geometrisch konsistente Branenkachelung ist: Es wurde von Sergey Mozgovoy gezeigt, dass die Algebra A_G eine *nichtkommutative crepante Auflösung* des Koordinatenrings von U_{σ_G} ist. Zusammen mit Resultaten von Michel van den Bergh aus [6] führt dies dann zum Beweis der Vermutung von Hanany et al. (**Theorem 3.2.4**).

Zum Schluss betrachten wir als Beispiel den Fall, dass U_{σ_G} eine *orbifold* vom Typ $\frac{1}{8}(1,3,4)$ ist: Wir finden für jede Triangulierung des torischen Diagramms eine generische Stabilität θ derart, dass $\mathcal{M}_{\theta} \to U_{\sigma_G}$ eine crepante Auflösung ist. Danach konstruieren wir für jedes solche \mathcal{M}_{θ} ein Tiltingbündel mit Hilfe des Algorithmusses von Hanany et al.

3.1 Universelle Bündel für \mathcal{M}_{θ}

In diesem Abschnitt werden wir zeigen, wie man universelle Bündel graphentheoretisch konstruieren kann. Der dabei resultierende Algorithmus wurde von Hanany et al. [18] für die Bestimmung eines Tiltingbündels vorgeschlagen.

Wie in Kapitel 2 sei für ein $\theta \in B$ mit \mathcal{M}_{θ} der Köchermodulraum der θ -semistabilen A_G -Darstellungen von Dimension $\underline{\alpha} = (1, \ldots, 1)$ bezeichnet.

Definition 3.1.1. Eine durch Q_0 indizierte Menge von Linienbündeln

$$\{\pi_i: \mathcal{V}_i \to \mathcal{M}_\theta \mid i \in Q_0\}$$

zusammen mit einer durch Q_1 indizierten Menge von Vektorbündelmorphismen

$$\{g_a: \mathcal{V}_i \to \mathcal{V}_j \mid a: i \to j\}$$

nennt man *universelle Bündel* genau dann, wenn für alle $[x] \in \mathcal{M}_{\theta}$ die A_G -Darstellung mit Dimensionsvektor $\underline{\alpha} = (1, \ldots, 1)$

$$\{\pi_i^{-1}([x]), g_a|_{\pi_i^{-1}([x])} \colon \mathbb{C} \to \mathbb{C} \mid i \in Q_0, a \in Q_1\}$$

isomorph zu M_x , der x entsprechenden A_G -Darstellung, ist.

Proposition 3.1.2. Falls θ generisch ist, existieren universelle Bündel für \mathcal{M}_{θ} .

Beweis. Wie kopieren den Beweis von Alastair King aus [23, Proposition 5.3]:

Für alle $i \in Q_0$ betrachten wir die trivialen Linienbündel $V_{\theta} \times \mathbb{C}_i \to V_{\theta}$, mit $\mathbb{C}_i := \mathbb{C}$. Fixiere nun eine Ecke $i_0 \in Q_0$. Für ein $i \in Q_0$ ist dann $h_i := i_0 - i \in B$. Wir setzen nun die T_B -Wirkung auf V_{θ} vermöge des Charakters $\chi^{h_i} : T_B \to \mathbb{C}^*$ auf $V_{\theta} \times \mathbb{C}_i$ fort, d.h. es ist

$$\phi(x,p) := (\phi x, \chi^{h_i}(\phi) \cdot p), \quad (x,p) \in V_\theta \times \mathbb{C}_i, \phi \in T_B.$$
(3.1)

Die Projektion nach der ersten Komponente $\operatorname{pr}_1 : V_\theta \times \mathbb{C}_i \to V_\theta$ ist dann T_B -äquivariant, weswegen wir das folgende kommutative Diagramm haben:

Wir haben somit eine durch Q_0 indizierte Familie von Linienbündeln auf \mathcal{M}_{θ}

$$\{p_i: \mathcal{V}_{\theta,i} \to \mathcal{M}_{\theta} \mid i \in Q_0\}$$

Sei nun $a: i \to j \in Q_1$. Man erinnere sich daran, dass für generisches θ gilt:

 $V_{\theta} \subset \operatorname{Spec} \mathbb{C}[\Lambda^+].$

Somit können wir ein $x \in V_{\theta}$ als Halbgruppenmorphismus von $(\Lambda^+, +)$ nach (\mathbb{C}, \cdot) auffassen und erhalten einen Morphismus von Varietäten

$$h_a: V_\theta \times \mathbb{C}_i \to V_\theta \times \mathbb{C}_j, \quad (x, p) \mapsto (x, x(\pi(a)) \cdot p).$$

Dann ist h_a äquivariant bezüglich der beiden T_B -Aktionen: Beachte zunächst, dass gilt:

$$d(\pi(a)) = d_1(a) = i - j = (i_0 - j) - (i_0 - i) = h_j - h_i.$$

Nun hat man für alle $(x, p) \in V_{\theta} \times \mathbb{C}_i$ und $\phi \in T_B$ die Gleichungen

$$\begin{split} \phi(h_a(x,p)) &= \phi(x, x(\pi(a)) \cdot p) \\ &= (\phi x, \chi^{h_j}(\phi) \cdot x(\pi(a)) \cdot p) \\ &= (\phi x, \phi(h_j) \cdot x(\pi(a)) \cdot p) \\ &= (\phi x, \phi(d(\pi(a))) \cdot \phi(h_i) \cdot x(\pi(a)) \cdot p) \\ &= (\phi x, \chi^{h_i}(\phi) \cdot (\phi x)(\pi(a)) \cdot p) \\ &= h_a(\phi(x,p)), \end{split}$$

welche die T_B -Äquivarianz von h_a zeigen. Wir erhalten deswegen ein kommutatives Diagramm von Varietäten

Wegen der Kommutativität des unteren Dreiecks sind die g_a Morphismen von Vektorbündeln. Sei nun $\psi(x) \in \mathcal{M}_{\theta}$ die Isomorphieklasse einer A_G -Darstellung $x \in V_{\theta}$. Dann ist für jedes $i \in Q_0$:

$$p_i^{-1}(\psi(x)) \cong \mathbb{C}_i,$$

und unter diesen Identifikationen ist für ein $a: i \to j \in Q_1$:

$$g_a|_{p_i^{-1}(\psi(x))} \colon \mathbb{C}_i \to \mathbb{C}_j, \quad p \mapsto x(\pi(a)) \cdot p.$$

Die so definierte A_G -Darstellung von Dimension $\underline{\alpha} = (1, \ldots, 1) \in \mathbb{Z}^{Q_0}$,

$$\{\mathbb{C}_k \ , \ g_a|_{p_i^{-1}(\psi(x))} \ | \ k \in Q_0, \ a: i \to j \in Q_1\},\$$

stimmt mit M_x , der x entsprechenden A_G -Darstellung, überein. Somit sind durch

$$\{p_i: \mathcal{V}_{\theta,i} \to \mathcal{M}_{\theta} \mid i \in Q_0\}$$
 und $\{g_a: \mathcal{V}_{\theta,i} \to \mathcal{V}_{\theta,j} \mid a: i \to j\}$

universelle Bündel für \mathcal{M}_{θ} gegeben.

Sei nun $\sigma = P^{\vee} \subset \Lambda^{\vee} \otimes \mathbb{Q}$ wie in Kapitel 2. Wir hatten gesehen (siehe Definition 2.3.11, Lemma 2.3.12, Korollar 2.3.13), dass $\mathcal{M}_{\theta} = X_{\Omega(\theta)}$ ist, mit

$$\Omega(\theta) = \{ \iota^*(\tau) \subset N_{\mathbb{Q}} \mid \tau \prec \sigma , T_{\Lambda} x_{\tau} \text{ ist } \chi_{\theta} \text{-stabil} \}.$$

Für ein $i \in Q_0$ werden wir nun einen Fächer $\Upsilon(\theta, i)$ in $(N \oplus \mathbb{Z})_{\mathbb{Q}}$ konstruieren mit $\mathcal{V}_{\theta,i} = X_{\Upsilon(\theta,i)}$. Die Projektion p_i wird dann der von der Projektion $N \oplus \mathbb{Z} \to N$ induzierte torische Morphismus sein.

Sei dazu zunächst $\sigma' = \sigma \times \mathbb{Q}_{\geq 0} \subset (\Lambda^{\vee} \oplus \mathbb{Z}) \otimes \mathbb{Q}$. Dann ist $V_{\theta} \times \mathbb{C} \subset U_{\sigma} \times \mathbb{C} = U_{\sigma'}$ eine Untervarietät und die T_B -Wirkung (3.1) lässt sich zu einer T_B -Wirkung auf $U_{\sigma'}$ fortsetzen. Es gilt dann:

$$V_{\theta} \times \mathbb{C} = U_{\sigma'}^{\chi_{\theta} - st.} = \{ p \in U_{\sigma'} \mid p \text{ ist } \chi_{\theta} \text{-stabil} \}.$$

 $V_{\theta} \times \mathbb{C}_i$ ist eine normale torische Varietät, die durch den Fächer $S(\theta)$ beschrieben wird, dessen maximale Kegel gegeben sind durch

$$S(\theta)_{\max} := \{ \tau \times \mathbb{Q}_{\geq 0} \subset (\Lambda^{\vee} \oplus \mathbb{Z}) \otimes \mathbb{Q} \mid \tau \in \Sigma(\theta)_{\max} \} .$$

Wir werden nun für ein $\tau \times \mathbb{Q}_{\geq 0} \in S(\theta)_{\max}$ den Ring der T_B -invarianten regulären Funktionen auf $U_{\tau \times \mathbb{Q}_{\geq 0}}$ bestimmen. Die Spektren dieser Ringe bilden dann eine $T_{M \oplus \mathbb{Z}}$ -invariante, offene affine Überdeckung für die $T_{M \oplus \mathbb{Z}}$ -torische Varietät $\mathcal{V}_{\theta,i}$. Wähle ein $\lambda_i \in \Lambda$ mit $d(\lambda_i) = h_i$ und betrachte die kurze exakte Sequenz von abelschen Gruppen

$$0 \to M \oplus \mathbb{Z} \xrightarrow{\iota_i} \Lambda \oplus \mathbb{Z} \xrightarrow{d_i} B \to 0,$$
$$\iota_i := \begin{pmatrix} \iota & -\lambda_i \\ 0 & 1 \end{pmatrix},$$
$$d_i = \begin{pmatrix} d & h_i \end{pmatrix}.$$

Die von d_i induzierte T_B -Wirkung auf $V_{\theta} \times \mathbb{C}_i$ stimmt mit der T_B -Wirkung (3.1) überein und man hat das folgende Lemma, dass man genau so wie Lemma 2.3.10 beweist.

Lemma 3.1.3. Sei $\tau' := \tau \times \mathbb{Q}_{\geq 0} \prec \sigma'$. Dann hat man für den Ring der T_B -invarianten regulären Funktionen auf $U_{\tau'}$

$$\mathbb{C}[\tau'^{\vee} \cap \Lambda \oplus \mathbb{Z}]^{T_B} \cong \mathbb{C}[\iota_i^*(\tau')^{\vee} \cap M \oplus \mathbb{Z}],$$

und somit einen kategoriellen Quotienten für die T_B -Aktion auf $U_{\tau'}$ gegeben durch

 $U_{\tau'} = \operatorname{Hom}_{\operatorname{sgp}}((\tau')^{\vee} \cap \Lambda \oplus \mathbb{Z}, \mathbb{C}) \xrightarrow{\psi'} \operatorname{Hom}_{\operatorname{sgp}}(\iota_i^*(\tau')^{\vee} \cap M \oplus \mathbb{Z}, \mathbb{C}),$ $x \mapsto x \circ \iota_i.$

Definition 3.1.4. Wir bezeichnen mit

$$\Upsilon(\theta, i) := \{\iota_i^*(\tau') \mid \tau' \in S(\theta)\}$$

die Menge der mit ι_i^* nach $(N \oplus \mathbb{Z})_{\mathbb{Q}}$ projezierten Kegel aus $S(\theta)$.

Lemma 3.1.5. Es gelten folgende Aussagen:

- Für jeden Punkt i des Köchers Q ist $\Upsilon(\theta, i)$ ein Fächer in $(N \oplus \mathbb{Z})_{\mathbb{Q}}$.
- $\mathcal{V}_{\theta,i}$ ist die zu $\Upsilon(\theta,i)$ assoziierte $T_{M\oplus\mathbb{Z}}$ -torische Varietät.
- Der Morphismus $\psi' : V_{\theta} \times \mathbb{C}_i \to \mathcal{V}_{\theta,i}$ ist der von $\iota_i^* : \Lambda^{\vee} \oplus \mathbb{Z} \to N \oplus \mathbb{Z}$ induzierte torische Morphismus.
- Der Morphismus $p_i : \mathcal{V}_{\theta,i} \to \mathcal{M}_{\theta}$ ist von der Projektion $N \oplus \mathbb{Z} \to N$, $\tau' \mapsto \tau$ induziert.

Beweis. Wir haben einen geometrischen Quotienten

$$V_{\theta} \times \mathbb{C}_{i} = \bigcup_{\tau' \in S(\theta)} U_{\tau'} \xrightarrow{\psi'} \bigcup_{\tau' \in S(\theta)} U_{\iota_{i}^{*}(\tau')} = \mathcal{V}_{\theta,i}.$$

Es folgt exakt wie in Lemma 2.3.12, dass gilt: $\Upsilon(\theta, i)$ ist ein Fächer, $\mathcal{V}_{\theta,i} = X_{\Upsilon(\theta,i)}$ und ψ' ist von ι_i^* induziert. Für die letzte Aussage beachte man, dass das kommutative Diagramm von abelschen Gruppen

$$\begin{array}{c} \Lambda^{\vee} \oplus \mathbb{Z} \xrightarrow{\iota_i^*} N \oplus \mathbb{Z} \\ \pi_1 \\ \downarrow \\ \Lambda^{\vee} \xrightarrow{\iota^*} N \end{array}$$

das folgende kommutative Diagramm von torischen Varietäten induziert:

Mit diesen Vorbereitungen sind wir nun in der Lage zu beweisen, dass der Algorithmus von Hanany et al. universelle Bündel für \mathcal{M}_{θ} liefert:

Theorem 3.1.6. Scien $I_1, \ldots, I_r \in \mathcal{A}$ die θ -stabilen perfekten Paarungen auf G und D_1, \ldots, D_r die entsprechendden T_M -invarianten Primdivisoren auf der torischen Varietät \mathcal{M}_{θ} . Fixiere eine Ecke $i_0 \in Q_0$. Für alle Ecken $i \in Q_0$ existiert dann ein $\mu_i \in \mathbb{Z}^{Q_1}$ mit $d_1(\mu_i) = i_0 - i$. Definiere nun für alle $i \in Q_0$ einen Divisor

$$E_i := \sum_{j=1}^r \chi_{I_j}(\mu_i) \cdot D_j.$$

Dann ist die E_i entsprechende invertierbare Garbe $\mathcal{L}_{\theta,i}$ die Schnittgarbe des universellen Bündels zum Punkt $i \in Q_0$

$$p_i: \mathcal{V}_{\theta,i} \to \mathcal{M}_{\theta}.$$

Beweis. Um einen Divisor für das Linienbündel $\mathcal{V}_{\theta,i} \xrightarrow{p_i} \mathcal{M}_{\theta}$ zu finden, müssen wir gemäß Proposition 1.1.1 lediglich die primitiven Erzeuger der eindimensionalen Kegel in $\Upsilon(\theta, i)$ bestimmen. Für den Fächer von $V_{\theta} \times \mathbb{C}$ gilt:

$$S(\theta)(1) := \{ \begin{pmatrix} x_I \\ 0 \end{pmatrix} | \ I \ \theta \text{-stabile perfekte Paarung} \} \cup \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$$

Mit dem letzten Lemma erhalten wir dann, dass die primitiven Erzeuger der eindimensionalen Kegel für den Fächer von $\mathcal{V}_{\theta,i}$ gegeben sind durch

$$\Upsilon(\theta, i)(1) = \iota_i^*(S(\theta)(1)).$$

Bezeichne mit λ_i^* das λ_i entsprechende Element aus Λ^{\vee} . Wir berechnen dann:

$$\iota_i^* \begin{pmatrix} x_I \\ 0 \end{pmatrix} = \begin{pmatrix} \iota^* & 0 \\ -\lambda_i^* & 1 \end{pmatrix} \begin{pmatrix} x_I \\ 0 \end{pmatrix} = \begin{pmatrix} \iota^*(x_I) \\ -x_I(\lambda_i) \end{pmatrix} = \begin{pmatrix} v_I \\ -x_I(\lambda_i) \end{pmatrix},$$

für die θ -stabilen perfekten Paarungen $I \in \mathcal{A}$, und

$$\iota_i^* \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \iota^* & 0\\-\lambda_i^* & 1 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

Für ein $\mu_i \in \mathbb{Z}^{Q_1}$ mit $\pi(\mu_i) = \lambda_i$ gilt außerdem

$$x_I(\lambda_i) = \chi_I(\mu_i),$$

und die Aussage folgt nun aus Proposition 1.1.1.

3.2 Nichtkommutative crepante Auflösungen

Der Begriff einer *nichtkommutativen crepanten Auflösung* geht auf Michel van den Bergh zurück. Mit Hilfe von Resultaten aus [6] und [24] werden wir dann sehen, dass der Algorithmus von Hanany et al. tatsächlich ein Tiltingbündel auf \mathcal{M}_{θ} definiert.

Definition 3.2.1. Sei X = Spec(R) normal und Gorenstein. Eine *R*-Algebra $A = \text{End}_R(M)$ wird *nichtkommutative crepante Auflösung* genannt, falls gilt:

- M ist ein reflexiver R-Modul.
- Die globale Dimension von A ist endlich.
- A ist ein maximaler Cohen-Macaulay-Modul.

Proposition 3.2.2. [24, Proposition 3.13.] Set $R = Z(A_G)$ der Koordinatenring der zu einer geometrisch konsistenten Branenkachelung G zugeordneten affinen torischen 3-CY-Varietät. Dann ist R normal und Gorenstein, und A_G ist eine nichtkommutative crepante Auflösung von R.

Eine direkte Konsequenz aus [6, Theorem 6.3.1] ist nun das

Theorem 3.2.3. Sei $\theta \in B$ generisch und $\mathcal{L}_{\theta} := \bigoplus_{i \in Q_0} \mathcal{L}_{\theta,i}$ die direkte Summe aller universellen Linienbündel. Dann gibt es eine Äquivalenz von derivierten Kategorien

$$\Psi: D^{b}(\text{mod} - (A_{G}^{\text{op}})) \to D^{b}(\text{Coh}(\mathcal{M}_{\theta})),$$
$$\Psi(M^{\bullet}) = M^{\bullet} \otimes_{A_{G}}^{L} \mathcal{L}_{\theta}.$$

Nun folgt die Vermutung von Hanany, Herzog und Vegh:

Theorem 3.2.4. Sei G geometrisch konsistent und $\theta \in B$ generisch. Dann ist die direkte Summe der Linienbündel aus Theorem 3.1.6

$$\mathcal{L}_{ heta} := igoplus_{i \in Q_0} \mathcal{L}_{ heta, i}$$

ein Tiltingbündel für $D^b(Coh(\mathcal{M}_{\theta}))$.

Beweis. Zunächst beachte man, dass für den A_G^{op} -Modul A_G gilt:

$$\Psi(A_G) = A_G \otimes^L_{A_G} \mathcal{L}_\theta = \mathcal{L}_\theta.$$

Weil A_G ein projektiver A_G^{op} -Modul ist, gilt für alle k > 0:

$$\operatorname{Ext}^{k}(A_{G}, A_{G}) = H^{k}\mathbf{R}\operatorname{Hom}(A_{G}, A_{G}) = 0.$$

Weil Ψ eine derivierte Äquivalenz ist, folgt nun für alle k > 0:

$$\operatorname{Ext}^{k}(\mathcal{L}_{\theta}, \mathcal{L}_{\theta}) = \operatorname{Ext}^{k}(\Psi(A_{G}), \Psi(A_{G}))$$
$$= H^{k}\mathbf{R}\operatorname{Hom}(\Psi(A_{G}), \Psi(A_{G}))$$
$$= H^{k}\mathbf{R}\operatorname{Hom}(A_{G}, A_{G})$$
$$= \operatorname{Ext}^{k}(A_{G}, A_{G})$$
$$= 0$$

 A_G erzeugt $D^b (\text{mod} - (A_G^{\text{op}}))$. Weil Ψ eine derivierte Äquivalenz ist, erzeugt deswegen $\Psi(A_G) = \mathcal{L}_{\theta}$ die beschränkte derivierte Kategorie der kohärenten Garben auf $\mathcal{M}_{\theta}, D^b (\text{Coh}(\mathcal{M}_{\theta}))$.

Somit ist durch \mathcal{L}_{θ} ein Tiltingbündel für $D^{b}(\operatorname{Coh}(\mathcal{M}_{\theta}))$ gegeben.

3.3 Ein Beispiel

Die gewonnenen Erkenntnisse wollen wir nun anhand eines Beispiels demonstrieren: die affine 3-CY-Varietät X soll ein geometrischer Quotient $\mathbb{C}^3/\mathbb{Z}_8$ sein, für die \mathbb{Z}_8 -Aktion auf \mathbb{C}^3 vom Typ $\frac{1}{8}(1,3,4)$.

Wie in Bemerkung 2.2.16 erwähnt, gibt es dann einen direkten Weg, eine geometrisch konsistente Branenkachelung G, mit $U_{\sigma_G} \cong X$, zu finden ([24, Abschnitt 5.2]).

Betrachte dazu die folgende Branenkachelung G mit 8 Flächen, 32 Kanten und 16 Ecken auf dem 2-Torus $T_{\Gamma} = \mathbb{R}^2/\Gamma$ mit $\Gamma = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z}$:

Abb. 3.3.1. Eine Branenkachelung für eine 3-*orbifold* vom Typ $\frac{1}{8}(1,3,4)$; In Blau eine Fundamentalmasche für T_{Γ} .

Der zu G duale periodische Köcher ist dann der folgenden Form:

Abb. 3.3.2. Der periodische Köcher für die Branenkachelung G.

Der duale Köcher mit Relationen (Q, I) ist der *McKay-Köcher* für die Einbettung $a: \mathbb{Z}_{a} \hookrightarrow Sl(3 \mathbb{C})$

$$\rho: \mathbb{Z}_8 \hookrightarrow \mathfrak{SI}(5, \mathbb{C}),$$
$$m + 8\mathbb{Z} \mapsto \operatorname{diag}(\zeta^m, \zeta^{3m}, \zeta^{4m}), \quad \zeta := e^{\frac{\pi i}{4}}.$$
(3.2)

 $W = \gamma_A \beta_A \alpha_A + \gamma_B \beta_B \alpha_B + \gamma_C \beta_C \alpha_C + \gamma_D \beta_D \alpha_D$ $+ \gamma_E \beta_E \alpha_E + \gamma_F \beta_F \alpha_F + \gamma_G \beta_G \alpha_G + \gamma_H \beta_H \alpha_H$ $- \beta_E \gamma_B \alpha_A - \beta_F \gamma_C \alpha_B - \beta_G \gamma_D \alpha_C - \beta_H \gamma_E \alpha_D$ $- \beta_A \gamma_F \alpha_E - \beta_B \gamma_G \alpha_F - \beta_C \gamma_H \alpha_G - \beta_D \gamma_A \alpha_H$

Abb. 3.3.3. Der aus G resultierende Köcher Q mit Relationen $I = \partial W$

Es gibt dann 33 perfekte Paarungen, die in der folgenden Tabelle zusammen mit zugehörigen Koordinaten für das torische Diagramm dargestellt sind.

$I_0 = \{\alpha_A, \alpha_B, \alpha_C, \alpha_D, \alpha_E, \alpha_F, \alpha_G, \alpha_H\}$	(0, 0)
$I_1 = \{\beta_A, \alpha_B, \alpha_C, \alpha_D, \beta_E, \alpha_F, \alpha_G, \alpha_H\}$	(1, 0)
$I_2 = \{\alpha_A, \beta_B, \alpha_C, \alpha_D, \alpha_E, \beta_F, \alpha_G, \alpha_H\}$	(1, 0)
$I_3 = \{\alpha_A, \alpha_B, \beta_C, \alpha_D, \alpha_E, \alpha_F, \beta_G, \alpha_H\}$	(1, 0)
$I_4 = \{\alpha_A, \alpha_B, \alpha_C, \beta_D, \alpha_E, \alpha_F, \alpha_G, \beta_H\}$	(1, 0)
$I_5 = \{\alpha_A, \alpha_B, \beta_C, \beta_D, \alpha_E, \alpha_F, \beta_G, \beta_H\}$	(2, 0)
$I_6 = \{\alpha_A, \beta_B, \alpha_C, \beta_D, \alpha_E, \beta_F, \alpha_G, \beta_H\}$	(2, 0)
$I_7 = \{\beta_A, \alpha_B, \alpha_C, \beta_D, \beta_E, \alpha_F, \alpha_G, \beta_H\}$	(2, 0)
$I_8 = \{\alpha_A, \beta_B, \beta_C, \alpha_D, \alpha_E, \beta_F, \beta_G, \alpha_H\}$	(2, 0)
$I_9 = \{\beta_A, \alpha_B, \beta_C, \alpha_D, \beta_E, \alpha_F, \beta_G, \alpha_H\}$	(2, 0)
$I_{10} = \{\beta_A, \beta_B, \alpha_C, \alpha_D, \beta_E, \beta_F, \alpha_G, \alpha_H\}$	(2, 0)
$I_{11} = \{\alpha_A, \beta_B, \beta_C, \beta_D, \alpha_E, \beta_F, \beta_G, \beta_H\}$	(3, 0)
$I_{12} = \{\beta_A, \beta_B, \beta_C, \alpha_D, \beta_E, \beta_F, \beta_G, \alpha_H\}$	(3,0)
$I_{13} = \{\beta_A, \beta_B, \alpha_C, \beta_D, \beta_E, \beta_F, \alpha_G, \beta_H\}$	(3,0)
$I_{14} = \{\beta_A, \alpha_B, \beta_C, \beta_D, \beta_E, \alpha_F, \beta_G, \beta_H\}$	(3,0)
$I_{15} = \{\beta_A, \beta_B, \beta_C, \beta_D, \beta_E, \beta_F, \beta_G, \beta_H\}$	(4, 0)
$I_{16} = \{\gamma_A, \gamma_B, \gamma_C, \gamma_D, \gamma_E, \gamma_F, \gamma_G, \gamma_H\}$	(-1,2)
$I_{17} = \{\beta_A, \alpha_F, \alpha_G, \alpha_H, \gamma_B, \gamma_C, \gamma_D, \gamma_E\}$	(0, 1)
$I_{18} = \{\beta_B, \alpha_A, \alpha_G, \alpha_H, \gamma_C, \gamma_D, \gamma_E, \gamma_F\}$	(0, 1)
$I_{19} = \{\beta_C, \alpha_A, \alpha_B, \alpha_H, \gamma_D, \gamma_E, \gamma_F, \gamma_G\}$	(0, 1)
$I_{20} = \{\beta_D, \alpha_A, \alpha_B, \alpha_C, \gamma_E, \gamma_F, \gamma_G, \gamma_H\}$	(0, 1)
$I_{21} = \{\beta_E, \alpha_B, \alpha_C, \alpha_D, \gamma_A, \gamma_F, \gamma_G, \gamma_H\}$	(0, 1)
$I_{22} = \{\beta_F, \alpha_C, \alpha_D, \alpha_E, \gamma_A, \gamma_B, \gamma_G, \gamma_H\}$	(0, 1)
$I_{23} = \{\beta_G, \alpha_D, \alpha_E, \alpha_F, \gamma_A, \gamma_B, \gamma_C, \gamma_H\}$	(0,1)
$I_{24} = \{\beta_H, \alpha_E, \alpha_F, \alpha_G, \gamma_A, \gamma_B, \gamma_C, \gamma_D\}$	(0, 1)
$I_{25} = \{\alpha_C, \beta_A, \beta_D, \beta_F, \gamma_B, \gamma_E, \gamma_G, \gamma_H\}$	(1, 1)
$I_{26} = \{\alpha_D, \beta_B, \beta_E, \beta_G, \gamma_A, \gamma_C, \gamma_F, \gamma_H\}$	(1, 1)
$I_{27} = \{\alpha_E, \beta_C, \beta_F, \beta_H, \gamma_A, \gamma_B, \gamma_D, \gamma_G\}$	(1, 1)
$I_{28} = \{\alpha_G, \beta_B, \beta_E, \beta_H, \gamma_A, \gamma_C, \gamma_D, \gamma_F\}$	(1, 1)
$I_{29} = \{\alpha_F, \beta_A, \beta_D, \beta_G, \gamma_B, \gamma_C, \gamma_E, \gamma_H\}$	(1, 1)
$I_{30} = \{\alpha_A, \beta_B, \beta_D, \beta_G, \gamma_C, \gamma_E, \gamma_F, \gamma_H\}$	(1, 1)
$I_{31} = \{\alpha_H, \beta_A, \beta_C, \beta_F, \gamma_B, \gamma_E, \gamma_D, \gamma_G\}$	(1, 1)
$I_{32} = \{\alpha_B, \beta_C, \beta_E, \beta_H, \gamma_A, \gamma_D, \gamma_F, \gamma_G\}$	(1,1)

 Tab. 3.3.1. Links die perfekten Paarungen auf G und rechts die jeweiligen Koordinaten im torischen Diagramm

Bei dieser Branenkachelung empfiehlt es sich, das torische Diagramm mit Hilfe des *fast forward* Algorithmus zu bestimmen (siehe Lemma 2.2.8 und Bemerkung 2.2.10). Dabei wurde die perfekte Paarung I_0 fixiert; die Koordinaten sind bezüglich der Z-Basis von $\pi_1(T_{\Gamma})$, $\{[\alpha_1], [\alpha_2]\}$, angegeben: Für eine perfekte Paarung $I_j, j \in \{0, \ldots, 32\}$, zeigt die rechte Spalte in obiger Tabelle also

$$\overline{I_j - I_0} \in \mathbb{Z}[\alpha_1] \oplus \mathbb{Z}[\alpha_2] = \pi_1(T_{\Gamma}),$$

die Homotopieklasse der Summe geschlossener Wanderungen in G, $I_j - I_0 \in \mathbb{Z}^{G_1}$. Die nächste Abbildung zeigt die geschlossene Wanderung $I_{27} - I_0 \in \mathbb{Z}^{G_1}$. Ihre Klasse in $\pi_1(T_{\Gamma})$ ist $[\alpha_1] + [\alpha_2] = (1, 1)$.

Abb. 3.3.4. In Gelb die geschlossene Wanderung $I_{27} - I_0 \in \mathbb{Z}^{G_1}$ und in Blau eine Fundamentalmasche von T_{Γ} .

Ein torisches Diagramm für U_{σ_G} ist somit durch das Dreieck mit den Ecken (0,0), (4,0) und (-1,2) gegeben:

Abb. 3.3.5. Ein torisches Diagramm für U_{σ_G} .

Wir haben dann eine kurze exakte Sequenz von abelschen Gruppen

$$0 \to \mathbb{Z}^3 \xrightarrow{\begin{pmatrix} 1 & 0 & 0 \\ 1 & 4 & 0 \\ 1 & -1 & 2 \end{pmatrix}} \mathbb{Z}^3 \xrightarrow{(1 & 3 & 4)} \mathbb{Z}_8 \to 0.$$

Somit ist \mathbb{Z}_8 die Klassengruppe von U_{σ_G} , und wie gewünscht gilt:

$$U_{\sigma_G} = \operatorname{Spec} \, \mathbb{C}[x_1, x_2, x_3]^{\mathbb{Z}_8},$$

wobei die \mathbb{Z}_8 -Wirkung auf $\mathbb{C}[x_1, x_2, x_3]$ die von ρ (vgl. (3.2)) induzierte ist. Es gibt 6 volle Triangulierungen des torischen Diagramms. Die folgende Tabelle zeigt 6 unterschiedliche generische Stabilitäten und die zugehörigen stabilen perfekten Paarungen.

$$\begin{array}{c|c} \theta = (1,1,1,1,1,1,1,-7) & I_2, I_8, I_{11}, I_{22}, I_{27} \\ -\theta = (-1,-1,-1,-1,-1,-1,-1,7) & I_1, I_7, I_{14}, I_{21}, I_{32} \\ \varepsilon = (-3,7,4,1,-3,-3,-3,-3) & I_3, I_5, I_{11}, I_{23}, I_{26} \\ \vartheta = (3,3,-4,3,3,-7,3,-1) & I_1, I_7, I_{13}, I_{20}, I_{25} \\ \mu = (7,-1,-1,7,-2,-15,7,-2) & I_4, I_7, I_{13}, I_{20}, I_{25} \\ \eta = (-1,10,-2,-2,-1,10,-1,13) & I_3, I_8, I_{12}, I_{23}, I_{31} \end{array}$$

Tab. 3.3.2. Generische Stabilitäten für die crepanten Auflösungen von U_{σ_G} .

Dabei sei bemerkt, dass die A_G -Darstellungen, die den *externen* perfekten Paarungen I_0, I_{15} und I_{16} entsprechen, keine trivialen Unterdarstellungen besitzen, und somit stabil bezüglich jeder Stabilität sind.(vergleiche auch N.Broomheads Resultat Proposition 2.4.4). Sie sind deswegen nicht in der Tabelle aufgelistet.

Die 6 unterschiedlichen generischen Stabilitäten sind so gewählt, dass sie die 6 unterschiedlichen Triangulierungen des torischen Diagramms ergeben; jede andere generische Stabilität ergibt dann eines dieser 6 torischen Diagramme.

Abb. 3.3.6. Die 6 Triangulierungen des torischen Diagramms

Wir wollen nun den Algorithmus von Hanany et al. anwenden, um Tiltingbündel für die crepanten Auflösungen von U_{σ_G} zu bestimmen. Wir fixieren dazu die Ecke $0 \in Q_0$ und wählen Wanderungen w_j in Q zu jeder anderen Ecke $j \in Q_0$.

$$\begin{array}{c} w_0: 0 \rightarrow 0 = \text{triviale Wanderung} \\ w_1: 0 \rightarrow 1 = \beta_G^{-1} \\ w_2: 0 \rightarrow 2 = \beta_G^{-1} \beta_H^{-1} \\ w_3: 0 \rightarrow 3 = \alpha_F^{-1} \\ w_4: 0 \rightarrow 4 = \gamma_G \\ w_5: 0 \rightarrow 5 = \alpha_C \\ w_6: 0 \rightarrow 6 = \beta_E \beta_F \\ w_7: 0 \rightarrow 7 = \beta_F \end{array}$$

Sei $\mathfrak{b} \in \mathbb{Z}^{Q_1}$ eine generische Stabilität. Die T_M -invarianten Primdivisoren von $\mathcal{M}_{\mathfrak{b}}$ sind dann die Abschlüsse derjenigen T_M -Orbiten, die durch die eindimensionalen Kegel im Fächer von $\mathcal{M}_{\mathfrak{b}}$ indiziert sind. Sie können also durch die Gitterpunkte im torischen Diagramm nummeriert werden. Wir werden nun die folgende Nummerierung benutzen:

 $\begin{array}{c} (0,0) \leftrightarrow D_{0,\mathfrak{b}} \\ (1,0) \leftrightarrow D_{1,\mathfrak{b}} \\ (2,0) \leftrightarrow D_{2,\mathfrak{b}} \\ (3,0) \leftrightarrow D_{3,\mathfrak{b}} \\ (4,0) \leftrightarrow D_{4,\mathfrak{b}} \\ (0,1) \leftrightarrow D_{5,\mathfrak{b}} \\ (1,1) \leftrightarrow D_{6,\mathfrak{b}} \\ (-1,2) \leftrightarrow D_{7,\mathfrak{b}} \end{array}$

Der Algorithmus von Hanany et al. ergibt dann für die verschiedenen crepanten Auflösungen von U_{σ_G} die folgenden Divisoren. Die direkte Summe der entsprechenden Linienbündel ist dann ein Tiltingbündel.

$$\begin{aligned} T_{1,\theta} &= -D_{2,\theta} - D_{3,\theta} - D_{4,\theta} \\ T_{2,\theta} &= -D_{2,\theta} - 2 \cdot D_{3,\theta} - 2 \cdot D_{4,\theta} - D_{6,\theta} \\ T_{3,\theta} &= -D_{0,\theta} \\ T_{4,\theta} &= D_{5,\theta} + D_{6,\theta} + D_{7,\theta} \\ T_{5,\theta} &= D_{0,\theta} + D_{1,\theta} + D_{5,\theta} \\ T_{6,\theta} &= D_{1,\theta} + D_{2,\theta} + D_{3,\theta} + 2 \cdot D_{4,\theta} + D_{5,\theta} + D_{6,\theta} \\ T_{7,\theta} &= D_{1,\theta} + D_{2,\theta} + D_{3,\theta} + D_{4,\theta} + D_{5,\theta} + D_{6,\theta} \end{aligned}$$

Somit ist $\mathcal{L}_{\theta} := \mathcal{O}_{\mathcal{M}_{\theta}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{\theta}}(T_{i,\theta}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{\theta})$ ein Tiltingbündel.

$$\begin{split} T_{1,-\theta} &= -D_{3,-\theta} - D_{4,-\theta} \\ T_{2,-\theta} &= -D_{2,-\theta} - 2 \cdot D_{3,-\theta} - 2 \cdot D_{4,-\theta} - D_{6,-\theta} \\ T_{3,-\theta} &= -D_{0,-\theta} - D_{1,-\theta} - D_{2,-\theta} - D_{3,-\theta} - D_{4,-\theta} \\ T_{4,-\theta} &= D_{5,-\theta} + D_{6,-\theta} + D_{7,-\theta} \\ T_{5,-\theta} &= D_{0,-\theta} + D_{1,-\theta} + D_{2,-\theta} + D_{5,-\theta} \\ T_{6,-\theta} &= D_{1,-\theta} + D_{2,-\theta} + D_{3,-\theta} + \cdot D_{4,-\theta} + D_{5,-\theta} + D_{6,-\theta} \\ T_{7,-\theta} &= D_{4,-\theta} \end{split}$$

Somit ist $\mathcal{L}_{-\theta} := \mathcal{O}_{\mathcal{M}_{-\theta}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{-\theta}}(T_{i,-\theta}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{-\theta})$ ein Tiltingbündel.

$$\begin{array}{|c|c|c|c|c|} \hline T_{1,\varepsilon} = -D_{1,\varepsilon} - D_{2,\varepsilon} - D_{3,\varepsilon} - D_{4,\varepsilon} \\ T_{2,\varepsilon} = -D_{1,\varepsilon} - 2 \cdot D_{2,\varepsilon} - 2 \cdot D_{3,\varepsilon} - 2 \cdot D_{4,\varepsilon} \\ T_{3,\varepsilon} = -D_{0,\varepsilon} - D_{1,\varepsilon} - D_{2,\varepsilon} - D_{5,\varepsilon} \\ T_{4,\varepsilon} = D_{7,\varepsilon} \\ T_{5,\varepsilon} = D_{0,\varepsilon} \\ T_{6,\varepsilon} = D_{3,\varepsilon} + 2 \cdot D_{4,\varepsilon} + D_{6,\varepsilon} \\ T_{7,\varepsilon} = D_{3,\varepsilon} + D_{4,\varepsilon} \end{array}$$

Somit ist $\mathcal{L}_{\varepsilon} := \mathcal{O}_{\mathcal{M}_{\varepsilon}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{\varepsilon}}(T_{i,\varepsilon}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{\varepsilon})$ ein Tiltingbündel.

$$\begin{array}{c} T_{1,\vartheta} = -D_{4,\vartheta} \\ T_{2,\vartheta} = -D_{2,\vartheta} - D_{3,\vartheta} - 2 \cdot D_{4,\vartheta} \\ T_{3,\vartheta} = -D_{0,\vartheta} - D_{1,\vartheta} - D_{2,\vartheta} \\ T_{4,\vartheta} = D_{5,\vartheta} + D_{6,\vartheta} + D_{7,\vartheta} \\ T_{5,\vartheta} = D_{0,\vartheta} + D_{1,\vartheta} + D_{2,\vartheta} + D_{3,\vartheta} + D_{5,\vartheta} + D_{6,\vartheta} \\ T_{6,\vartheta} = D_{1,\vartheta} + D_{2,\vartheta} + 2 \cdot D_{3,\vartheta} + 2 \cdot D_{4,\vartheta} + D_{6,\vartheta} \\ T_{7,\vartheta} = D_{3,\vartheta} + D_{4,\vartheta} + D_{6,\vartheta} \end{array}$$

Somit ist $\mathcal{L}_{\vartheta} := \mathcal{O}_{\mathcal{M}_{\vartheta}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{\vartheta}}(T_{i,\vartheta}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{\vartheta})$ ein Tiltingbündel.

$$\begin{split} T_{1,\mu} &= -D_{4,\mu} \\ T_{2,\mu} &= -D_{1,\mu} - D_{2,\mu} - D_{3,\mu} - 2 \cdot D_{4,\mu} \\ T_{3,\mu} &= -D_{0,\mu} - D_{1,\mu} - D_{2,\mu} \\ T_{4,\mu} &= D_{5,\mu} + D_{6,\mu} + D_{7,\mu} \\ T_{5,\mu} &= D_{0,\mu} + D_{1,\mu} + D_{2,\mu} + D_{3,\mu} + D_{5,\mu} + D_{6,\mu} \\ T_{6,\mu} &= D_{2,\mu} + 2 \cdot D_{3,\mu} + 2 \cdot D_{4,\mu} + D_{6,\mu} \\ T_{7,\mu} &= D_{3,\mu} + D_{4,\mu} + D_{6,\mu} \end{split}$$

Somit ist $\mathcal{L}_{\mu} := \mathcal{O}_{\mathcal{M}_{\mu}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{\mu}}(T_{i,\mu}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{\mu})$ ein Tiltingbündel.

$$T_{1,\eta} = -D_{1,\eta} - D_{2,\eta} - D_{3,\eta} - D_{4,\eta} - D_{5,\eta}$$

$$T_{2,\eta} = -D_{1,\eta} - D_{2,\eta} - D_{3,\eta} - 2 \cdot D_{4,\eta} - D_{5,\eta}$$

$$T_{3,\eta} = -D_{0,\eta} - D_{1,\eta} - D_{5,\eta}$$

$$T_{4,\eta} = D_{6,\eta} + D_{7,\eta}$$

$$T_{5,\eta} = D_{0,\eta}$$

$$T_{6,\eta} = D_{2,\eta} + 2 \cdot D_{3,\eta} + 2 \cdot D_{4,\eta} + D_{6,\eta}$$

$$T_{7,\eta} = D_{2,\eta} + D_{3,\eta} + D_{4,\eta} + D_{6,\eta}$$

Somit ist $\mathcal{L}_{\eta} := \mathcal{O}_{\mathcal{M}_{\eta}} \oplus \bigoplus_{i=1}^{7} \mathcal{O}_{\mathcal{M}_{\eta}}(T_{i,\eta}) \in D^{b}(\operatorname{Coh} \mathcal{M}_{\eta})$ ein Tiltingbündel.

Kapitel 4

Tiltingbündel für Totalräume von Linienbündeln auf torischen Varietäten

Sei X eine glatte torische Varietät und $p: Y \to X$ ein Linienbündel auf X. Wir wollen in diesem Kapitel der Frage nachgehen, wann ein Tiltingbündel auf Y existiert. Für den Fall, dass X eine projektive torische Fläche und p: $Y \to X$ das kanonische Bündel auf X ist, haben Lutz Hille und Markus Perling in [20] bewiesen, dass ein Tiltingbündel auf Y genau dann existiert, falls die anti-kanonische Klasse $-K_X$ numerisch effektiv ist. Weil in diesem Fall Y eine torische 3-CY-Varietät ist, finden wir mit Hilfe von Resultaten aus den Kapiteln 1 bis 3 einen alternativen Beweis. (**Satz** 4.1.1.)

In Abschnitt 4.2 kehren wir zur allgemeinen Situation einer glatten torischen Varietät X und einem Linienbündel $p: Y \to X$ zurück: Wir werden ein für die Existenz eines Tiltingbündels auf Y hinreichendes Kriterium beweisen. (Satz 4.2.4.)

Weil es projektive torische Flächen ohne Tiltingbündel gibt (siehe [19]), kann Satz 4.1.1 nicht für den Fall, dass $p: Y \to X$ irgendein Linienbündel ist, verallgemeinert werden. Falls ein Tiltingbündel auf X existiert, vermuten wir, dass Satz 4.1.1 eine Verallgemeinerung besitzt (**Vermutung** 4.3.1.)

4.1 Kanonische Bündel auf projektiven torischen Flächen

Sei $X = X_{\Sigma}$ eine projektive torische Fläche. Dann gilt folgendes (siehe [16]):

 Σ ist ein Fächer in einem zweidimensionalen Gitter N. Die primitiven Erzeuger der eindimensionalen Kegel $\Sigma(1) = \{v_1, \ldots, v_t\}$ seien im entgegengesetzten Uhrzeigersinn angeordnet. Wir setzen $v_0 := v_t$ und $v_{t+1} := v_1$. Weil X projektiv ist, gilt:

$$|\Sigma| = N_{\mathbb{Q}}.$$

Weil X glatt ist, ist für alle $i = 1, \ldots, t$:

$$\det(v_i|v_{i+1}) = \pm 1.$$

Es gibt dann für alle $i = 1, \ldots, t$ eindeutig bestimmte ganze Zahlen a_i mit

$$v_{i-1} + a_i v_i + v_{i+1} = 0. (4.1)$$

Wenn $D_i \subset X$ der v_i entsprechende Torus-invariante Primdivisor ist, dann ist a_i seine Selbstschnittzahl D_i^2 und man hat für alle $i, j = 1, \ldots, t$

$$D_i. D_j = \begin{cases} 1 & \text{falls } |i-j| = 1\\ 0 & \text{falls } |i-j| > 1 \end{cases}$$

Somit ist wegen Proposition 1.3.1 für alle $i = 1, \ldots, t$

$$-K_X. D_i = \sum_{j=1}^t D_j. D_i = a_i + 2, \qquad (4.2)$$

weswegen die anti-kanonische Klasse von X genau dann numerisch effektiv ist, wenn für alle $i = 1, \ldots, t$ gilt:

$$a_i \geq -2.$$

Wegen den Propositionen 1.1.1 und 1.3.1 wissen wir, dass die Totalräume kanonischer Bündel auf projektiven torischen Flächen 3-Calabi-Yau-Varietäten sind. Aus Lemma 1.3.7 und den Theoremen 3.2.4 und 2.2.15 ergibt sich nun der

Satz 4.1.1. Sei $p: Y \to X$ das kanonische Bündel einer projektiven torischen Fläche X. Dann existiert ein Tiltingbündel auf Y genau dann, wenn die antikanonische Klasse von X, $-K_X$, numerisch effektiv ist.

Beweis. Das torische Diagramm von Y, \mathcal{P} , ist einfach zusammenhängend. Wegen Lemma 1.3.7 existiert auf Y kein Tiltingbündel, wenn \mathcal{P} nicht konvex ist. Sei umgekehrt \mathcal{P} konvex. Dann ist Y eine crepante Auflösung einer affinen torischen 3-CY-Varietät V. Nach Theorem 2.2.15 wissen wir, dass eine geometrisch konsistente Branenkachelung G existiert, mit $V \cong U_{\sigma_G}$. Außerdem existiert nach Theorem 2.3.14 eine generische Stabilität $\theta \in B$ mit $\mathcal{M}_{\theta} \cong Y$. Mit Theorem 3.2.4 erhalten wir dann ein Tiltingbündel auf Y. Somit ist die Konvexität von \mathcal{P} äquivalent zur Existenz eines Tiltingbündels auf Y.

Aus (4.1) ergibt sich für alle i = 1, ..., t, mit $a_i \neq 0$, die Gleichung

$$v_i = (\frac{-1}{a_i}) \cdot v_{i-1} + (\frac{-1}{a_i}) \cdot v_{i-1}$$

Somit ist \mathcal{P} genau dann nicht konvex, wenn ein $i = 1, \ldots, t$ existiert mit:

$$a_i < -2.$$

Wegen (4.2) ist dies dann und nur dann der Fall, wenn $-K_X$ nicht numerisch effektiv ist.

Satz 4.1.1 ist bereits mit anderen Methoden von Lutz Hille und Markus Perling bewiesen worden:

Definition 4.1.2. [20] Sei X eine projektive torische Fläche und ω_X das kanonische Bündel. Eine unendliche Folge von Linienbündeln $\{\mathcal{L}_i\}_{i\in\mathbb{Z}} \subset \operatorname{Pic}(X)$ heißt zyklische streng exzeptionelle Folge von Periode n > 0, falls folgendes gilt:

- Für alle $i \in \mathbb{Z}$ ist $\mathcal{L}_{i-n} = \mathcal{L}_i \otimes \omega_X$.
- Für alle $i \in \mathbb{Z}$ ist $\bigoplus_{j=i}^{i+n} \mathcal{L}_j$ ein Tiltingbündel auf X.

Theorem 4.1.3. [20, Theorem 8.5 und 8.6] Sei X eine projektive torische Fläche. Dann existiert eine zyklische streng exzeptionelle Folge $\{\mathcal{L}\}_{i\in\mathbb{Z}}$ auf X genau dann, wenn die antikanonische Klasse $-K_X$ numerisch effektiv ist. Bis auf Isomorphie gibt es 16 solche Flächen.

In [20] wird ferner bemerkt, dass in diesem Fall dann durch Zurückziehen von

$$\bigoplus_{j=i+1}^{i+n} \mathcal{L}_j$$

entlang der Projektion $p: \omega_X \to X$ ein Tiltingbündel auf ω_X gegeben ist.

4.2 Ein hinreichendes Kriterium

Lemma 4.2.1. Sei X_{Σ} glatt und $p: X_{\Upsilon} \to X_{\Sigma}$ wie in Proposition 1.1.1 das Linienbündel mit zugehörigem Cartierdivisor $D = \sum a_i D_i$. Dann induziert der Pull-Back $p^* : \operatorname{Coh}(X_{\Sigma}) \to \operatorname{Coh}(X_{\Upsilon})$ einen Isomorphismus zwischen den Grothendieckgruppen

$$K_0(p^*): K_0(\operatorname{Coh}(X_{\Sigma})) \to K_0(\operatorname{Coh}(X_{\Upsilon})), \quad K_0(p^*)[\mathcal{F}] := [p^*\mathcal{F}].$$

Beweis. Weil p flach ist, ist $p^* : \operatorname{Coh}(X_{\Sigma}) \to \operatorname{Coh}(X_{\Upsilon})$ ein exakter Funktor. Somit ist $K_0(p^*)$ ein wohldefinierter Morphismus von Gruppen.

Zunächst zeigen wir die Surjektivität von $K_0(p^*)$: Sei dazu $\mathcal{G} \in \operatorname{Coh}(X_{\Upsilon})$. Nach Theorem 1.2.6 und dem Syzygiensatz von David Hilbert existiert dann eine exakte Sequenz in $\operatorname{Coh}(X_{\Upsilon})$

$$0 \to \mathcal{H}^{(n)} \to \mathcal{H}^{(n-1)} \to \ldots \to \mathcal{H}^{(0)} \to \mathcal{G} \to 0,$$

wobei die $\mathcal{H}^{(k)}$ der Form

$$\mathcal{H}^{(k)} = \bigoplus_{i=1}^{r_k} \mathcal{O}_{X_{\Upsilon}}(F_{i,k}) , F_{i,k} \in T\text{-}\mathrm{Div}(X_{\Upsilon})$$

sind. Wir erhalten daraus in der Grothendieckgruppe die Gleichung

$$[\mathcal{G}] = \sum_{\substack{0 \le k \le n \\ 1 \le j \le r_k}} (-1)^k [\mathcal{O}_{X_{\Upsilon}}(F_{j,k})].$$

Weil X_{Σ} glatt ist, ist ebenso X_{Υ} glatt, und jeder Divisor ein Cartierdivisor. Also sind alle $\mathcal{H}^{(k)}$ direkte Summen von Linienbündeln.

Wir zeigen nun, dass jedes Linienbündel auf X_{Υ} der Pull-Back eines Linienbündels auf X_{Σ} ist:

Sei $\mathcal{L} = \mathcal{O}_{X_{\Sigma}}(E) \in \operatorname{Pic}(X_{\Sigma})$, mit einem Divisor $E = \beta_1 D_1 + \ldots + \beta_t D_t$. Für jedes $\sigma \in \Sigma$ existiert dann ein $m_{\sigma} \in M$ mit $m_{\sigma}(v_i) = \beta_i$, für alle $v_i \in \sigma(1)$. Der Morphismus $p : X_{\Upsilon} \to X_{\Sigma}$ ist der von der Projektion nach der ersten Komponente $\pi_1 : N \oplus \mathbb{Z} \to N$ induzierte torische Morphismus.

Für den $p^* \mathcal{O}_{X_{\Sigma}}(E)$ beschreibende Divisor $p^* E$ gilt dann:

$$p^*E|_{p^{-1}(U_{\sigma})} = p^*\operatorname{div}(\chi^{m_{\sigma}})|_{p^{-1}(U_{\sigma})}$$

= $\operatorname{div}(\chi^{m_{\sigma}\circ\pi_1})|_{p^{-1}(U_{\sigma})}$
= $\sum_{v_i\in\sigma(1)} (m_{\sigma}\circ\pi_1) {v_i \choose -a_i} D'_i + (m_{\sigma}\circ\pi_1) {0 \choose 1} D'_{t+1}$
= $\sum_{v_i\in\sigma(1)} m_{\sigma}(v_i) D'_i,$

wobei $D'_j, j = 1, \ldots, t$, (bzw. D'_{t+1}) den Abschluss des Orbits, der dem von $\binom{v_j}{-a_j} \in \Upsilon(1), j = 1, \ldots, t$, (bzw. $\binom{0}{1} \in \Upsilon(1)$) erzeugten Strahl entspricht, bezeichnet. Es ist also:

$$p^*E = p^*(\beta_1 D_1 + \ldots + \beta_t D_t) = \beta_1 D'_1 + \ldots + \beta_t D'_t.$$

Nach Lemma 1.2.4 ist jeder Divisor auf X_{Υ} rational äquivalent zu einem Divisor $\gamma_1 D'_1 + \ldots + \gamma_t D'_t$, weil $D'_{t+1} - p^*D$ ein Hauptdivisor ist. Somit ist jedes Linienbündel auf X_{Υ} der Pull-Back eines Linienbündels auf X_{Σ} . Insbesondere ist mit $\mathcal{O}_{X_{\Upsilon}}(F_{i,k}) = p^* \mathcal{O}_{X_{\Sigma}}(R_{i,k})$:

$$[\mathcal{G}] = K_0(p^*) (\sum_{\substack{0 \le k \le n \\ 1 \le j \le r_k}} (-1)^k [\mathcal{O}_{X_{\Sigma}}(R_{j,k})]) \in \operatorname{Im} K_0(p^*).$$

Nun zur Injektivität von $K_0(p^*)$: Zunächst sei bemerkt, dass für eine kohärente Garbe $\mathcal{F} \in \operatorname{Coh}(X_{\Sigma})$ gilt:

$$p^*\mathcal{F} = 0 \iff \mathcal{F} = 0$$
:

Es ist $p^*\mathcal{F} = 0$ genau dann, wenn für alle $x \in X_{\Upsilon}$ gilt:

$$(p^*\mathcal{F})_x \cong \mathcal{F}_{p(x)} \otimes_{\mathcal{O}_{X_{\Sigma}, p(x)}} \mathcal{O}_{X_{\Upsilon}, x} = 0$$

Weil p flach ist, ist dies aquivalent dazu, dass für alle $x \in X_{\Upsilon}$ gilt: $\mathcal{F}_{p(x)} = 0$. Weil p surjektiv ist, folgt dann: $\mathcal{F}_y = 0$, für alle $y \in X_{\Sigma}$. Und dies ist gleichbedeutend damit, dass $\mathcal{F} = 0$ ist.

Weil p flach und surjektiv ist, ist

$$0 \to \mathcal{L}_1 \to \mathcal{L}_2 \to \mathcal{L}_3 \to 0, \quad \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3 \in \operatorname{Pic}(X_{\Sigma}),$$

genau dann eine kurze exakte Sequenz, wenn

$$0 \to p^* \mathcal{L}_1 \to p^* \mathcal{L}_2 \to p^* \mathcal{L}_3 \to 0, \quad p^* \mathcal{L}_1, p^* \mathcal{L}_2, p^* \mathcal{L}_3 \in \operatorname{Pic}(X_{\Upsilon}),$$

eine kurze exakte Sequenz ist. Wir hatten oben gesehen, dass wegen der Glattheit von X_{Σ} die Grothendieckgruppen von den Linienbündeln erzeugt sind und dass jedes Linienbündel auf X_{Υ} der Pull-Back eines Linienbündels auf X_{Σ} ist. Somit ist $K_0(p^*)$ injektiv.

Für die Kohomologie eines Linienbündels $p^*\mathcal{L}, \mathcal{L} \in \operatorname{Pic}(X_{\Sigma})$, hat man folgendes:

Lemma 4.2.2. Sei wie in Proposition 1.1.1 $p : X_{\Upsilon} \to X_{\Sigma}$ ein Linienbündel mit zugehörigem Cartierdivisor $D = a_1D_1 + \ldots + a_tD_t$. Dann gilt für alle $\mathcal{L} \in \text{Pic}(X_{\Sigma})$ und $k \geq 0$:

$$H^{k}(X_{\Upsilon}, p^{*}\mathcal{L}) = \bigoplus_{n \ge 0} H^{k}(X_{\Sigma}, \mathcal{L} \otimes \mathcal{O}(-nD)).$$

Beweis. Wir haben die offenen affinen Überdeckungen für X_{Σ} und X_{Υ}

$$\mathcal{V} = \{U_{\sigma_1}, \dots, U_{\sigma_k} \mid \sigma_i \in \Sigma_{max}\} \text{ und } \mathcal{V}' = \{U_{\sigma'_1}, \dots, U_{\sigma'_k} \mid \sigma'_i \in \Upsilon_{max}\},\$$

wobei $\sigma'_i \in \Upsilon_{\max}$ der geliftete Kegel von $\sigma_i \in \Sigma_{\max}$ ist (vgl. Proposition 1.1.1.)

• $\mathrm{H}^{k}(X_{\Upsilon}, p^{*}\mathcal{L})$ ist die k-te Kohomologie des Čech-Komplexes $(\mathcal{C}^{r}(\mathcal{V}', p^{*}\mathcal{L}))_{r \geq 0}$:

$$\mathcal{C}^{r}(\mathcal{V}',p^{*}\mathcal{L}) = \bigoplus_{1 \leq i_{0} \leq \dots i_{r} \leq k} \mathrm{H}^{0}(U_{\sigma_{i_{0}}'} \cap \dots \cap U_{\sigma_{i_{r}}'},p^{*}\mathcal{L}) \text{ und}$$

• $\mathrm{H}^{k}(X_{\Sigma}, \mathcal{L} \otimes \mathcal{O}(-nD))$ ist die k-te Kohomologie des Čech-Komplexes $(\mathcal{C}^{r}(\mathcal{V}, \mathcal{L} \otimes \mathcal{O}(-nD)))_{r \geq 0}$:

$$\mathcal{C}^{r}(\mathcal{V},\mathcal{L}\otimes\mathcal{O}(-nD))=\bigoplus_{1\leq i_{0}\leq\ldots i_{r}\leq k}\mathrm{H}^{0}(U_{\sigma_{i_{0}}}\cap\ldots\cap U_{\sigma_{i_{r}}},\mathcal{L}\otimes\mathcal{O}(-nD)).$$

Sei $E = k_1 D_1 + \ldots + k_t D_t$ ein Divisor für \mathcal{L} . Dann ist $E' = k_1 D'_1 + \ldots + k_t D'_t$ ein Divisor für $p^* \mathcal{L}$ und es ist nach [16, Kapitel 3]

$$\mathrm{H}^{0}(U_{\sigma_{i_{0}}^{\prime}}\cap\ldots\cap U_{\sigma_{i_{r}}^{\prime}},p^{*}\mathcal{L})=\bigoplus_{(m,n)\in P_{i_{0}},\ldots,i_{r}}\mathbb{C}\cdot\chi^{(m,n)}$$
(4.3)

der $\mathbb{C}\text{-}\mathrm{Vektorraum}$ mit einer Basis indiziert durch

$$P_{i_0,\dots,i_r} = \left\{ \binom{m}{n} \in M \oplus \mathbb{Z} | n \ge 0, \ \binom{m}{n} \binom{v_i}{-a_i} \ge -k_i \ \forall v_i \in (\sigma_{i_0} \cap \dots \cap \sigma_{i_r})(1) \right\}$$
$$= \left\{ \binom{m}{n} \in M \oplus \mathbb{Z} | n \ge 0, \ m(v_i) \ge -(k_i - na_i) \ \forall v_i \in (\sigma_{i_0} \cap \dots \cap \sigma_{i_r})(1) \right\}$$

wobei $\sigma_{i_0} := \pi_1(\sigma'_{i_0}), \ldots, \sigma_{i_r} := \pi_1(\sigma'_{i_r}) \in \Sigma_{max}$ ist (vgl. Proposition 1.1.1). Definiere nun für ein $n \ge 0$

$$P_{i_0,\ldots,i_r,n} := P_{i_0,\ldots,i_r} \cap M \oplus \{n\}$$

Dann haben wir analog zu (4.3) aus [16, Kapitel 3] die Formel

$$\mathrm{H}^{0}(U_{\sigma_{i_{0}}}\cap\ldots\cap U_{\sigma_{i_{r}}},\mathcal{L}\otimes\mathcal{O}(-nD))=\bigoplus_{(m,n)\in P_{i_{0}},\ldots,i_{r},n}\mathbb{C}\cdot\chi^{(m,n)}.$$

Insgesamt erhalten wir die Gleichung

$$\bigoplus_{n\geq 0} \mathrm{H}^{0}(U_{\sigma_{i_{0}}}\cap\ldots\cap U_{\sigma_{i_{r}}},\mathcal{L}\otimes\mathcal{O}(-nD)) = \mathrm{H}^{0}(U_{\sigma_{i_{0}}}\cap\ldots\cap U_{\sigma_{i_{r}}},p^{*}\mathcal{L}).$$

Für den Čech-Komplex erhält man somit eine Graduierung

$$\mathcal{C}^{r}(\mathcal{V}',p^{*}\mathcal{L}) = \bigoplus_{n \geq 0} \mathcal{C}^{r}(\mathcal{V},\mathcal{L} \otimes \mathcal{O}(-nD)),$$

die von den Čech-Differentialen respektiert wird.

Bemerkung 4.2.3. Alternativ kann man Lemma 4.2.2 wie folgt beweisen: Zunächst hat man für ein Linienbündel $\mathcal{L} \in \text{Pic}(X_{\Sigma})$ die Formel:

$$p_*p^*\mathcal{L} = \bigoplus_{n \ge 0} \mathcal{L} \otimes \mathcal{O}(-nD).$$
(4.4)

Sei $T = k_1 D_1 + \ldots + k_t D_t$ ein Divisor für \mathcal{L} . Dann ist $T' = k_1 D'_1 + \ldots + k_t D'_t$ ein Divisor für $p^* \mathcal{L}$. Sei ferner $\sigma' \in \Upsilon_{max}$ und $\sigma = \pi_1(\sigma') \in \Sigma_{max}$ wie im Beweis von Lemma 4.2.2. Dann existiert ein $m_{\sigma} \in M$ mit $m_{\sigma}(v_i) = k_i$, für alle $v_i \in \sigma(1)$. Wegen $p^{-1}(U_{\sigma}) = U_{\sigma'}$ haben wir dann die Gleichung

$$\begin{split} \mathrm{H}^{0}(U_{\sigma}, p_{*}p^{*}\mathcal{L}) &= \mathrm{H}^{0}(U_{\sigma'}, p^{*}\mathcal{L}) \\ &= \{f \in \mathbb{C}(X_{\Upsilon}) \mid \mathrm{div}(f) + T'|_{U_{\sigma'}} \geq 0\} \\ &= \langle \chi^{(m,n)} \in \mathbb{C}[M \oplus \mathbb{Z}] \mid \mathrm{div}(\chi^{(m,n)}) + \mathrm{div}(\chi^{(m_{\sigma},0)})|_{U_{\sigma'}} \geq 0 \rangle_{\mathbb{C}} \\ &= \langle \chi^{(m,n)} \in \mathbb{C}[M \oplus \mathbb{Z}] \mid \chi^{(m+m_{\sigma},n)} \in A_{\sigma'} \rangle_{\mathbb{C}} \\ &= \langle \chi^{(m,n)} \mid n \geq 0, \binom{m+m_{\sigma}}{n} \binom{v_{i}}{-a_{i}} \geq 0 \ \forall \ v_{i} \in \sigma(1) \rangle_{\mathbb{C}} \\ &= \bigoplus_{n \geq 0} \langle \chi^{(m,n)} \mid m(v_{i}) \geq -(k_{i} - na_{i}) \ \forall \ v_{i} \in \sigma(1) \rangle_{\mathbb{C}} \\ &= \bigoplus_{n \geq 0} \{g \in \mathbb{C}(X_{\Sigma}) \mid \mathrm{div}(g) + (T - nD)|_{U_{\sigma}} \geq 0 \} \\ &= \bigoplus_{n \geq 0} \mathrm{H}^{0}(U_{\sigma}, \mathcal{L} \otimes \mathcal{O}(-nD)). \end{split}$$

Das zeigt (4.4). Daraus folgt nun Lemma 4.2.2: Es ist

$$\begin{aligned} \mathrm{H}^{k}(X_{\Upsilon}, p^{*}\mathcal{L}) &= \mathrm{Ext}^{k}(p^{*}\mathcal{O}_{X_{\Sigma}}, p^{*}\mathcal{L}) \\ &\cong \mathrm{Ext}^{k}(\mathcal{O}_{X_{\Sigma}}, p_{*}p^{*}\mathcal{L}) \\ &= \bigoplus_{n \geq 0} \mathrm{Ext}^{k}(\mathcal{O}_{X_{\Sigma}}, \mathcal{L} \otimes \mathcal{O}(-nD)) \\ &= \bigoplus_{n \geq 0} \mathrm{H}^{k}(X_{\Sigma}, \mathcal{L} \otimes \mathcal{O}(-nD)). \end{aligned}$$

Eine direkte Konsequenz aus den Lemmata 4.2.1 und 4.2.2 ist nun der

Satz 4.2.4. Sei X eine glatte torische Varietät, D ein Divisor auf X und sei $p: Y \to X$ das D entsprechende Linienbündel. Ein Tiltingbündel auf Y existiert genau dann, wenn die folgenden beiden Bedingungen erfüllt sind:

- Es existiert ein Tiltingbündel $\mathcal{L} = \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_n$ auf X.
- Für alle i, j = 1, ..., n und k > 0 gilt:

$$\bigoplus_{t\geq 0} H^k(X, \mathcal{L}_i^{-1} \otimes \mathcal{L}_j \otimes \mathcal{O}_X(-tD)) = 0.$$

In diesem Fall ist dann $p^*\mathcal{L}$ ein Tiltingbündel auf Y.

Beweis. Sei $\mathcal{L}' = \mathcal{L}'_1 \oplus \ldots \oplus \mathcal{L}'_n$ die direkte Summe von Linienbündeln $\mathcal{L}'_i \in$ Pic(Y). Wir hatten in Lemma 4.2.1 gesehen, dass jedes Linienbündel auf Y der Pull-Back eines Linienbündels auf X entlang p ist. Somit existieren für alle $i = 1, \ldots, n$ Linienbündel $\mathcal{L}_i \in \text{Pic}(X)$ mit $p^*\mathcal{L}_i = \mathcal{L}'_i$. Wegen Lemma 4.2.2 haben wir dann für alle $k \geq 0$

$$\operatorname{Ext}^{k}(\mathcal{L}', \mathcal{L}') = \operatorname{Ext}^{k}(p^{*}\mathcal{L}, p^{*}\mathcal{L})$$

$$= \bigoplus_{i,j=1,\dots,n} \operatorname{Ext}^{k}(p^{*}\mathcal{L}_{i}, p^{*}\mathcal{L}_{j})$$

$$= \bigoplus_{i,j=1,\dots,n} H^{k}(Y, p^{*}(\mathcal{L}_{i}^{-1} \otimes \mathcal{L}_{j}))$$

$$= \bigoplus_{i,j=1,\dots,n} \bigoplus_{t>0} H^{k}(X, \mathcal{L}_{i}^{-1} \otimes \mathcal{L}_{j} \otimes \mathcal{O}_{X}(-tD))$$

Nach Lemma 4.2.1 ist $\mathcal{L}' \in \operatorname{Coh} Y$ genau dann voll, wenn $\mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_n \in \operatorname{Coh}(X)$ voll ist.

Somit folgt die Aussage des Satzes.

Beispiel 4.2.5. (i) Sei $X = \mathbb{P}^n$. Dann ist nach Beilinson [4]

$$\mathcal{L}^{(n)} := \bigoplus_{i=0}^{n} \mathcal{O}_{\mathbb{P}^{n}}(i) \in \operatorname{Coh}(\mathbb{P}^{n})$$

ein Tilitingbündel auf der torischen Varietät X. Eine invertierbare Garbe $\mathcal{O}_{\mathbb{P}^n}(\alpha)$, $\alpha \in \mathbb{Z}$, hat genau dann nicht-triviale höhere Kohomologie, wenn gilt:

$$\alpha \le -(n+1). \tag{4.5}$$

Sei nun $p_a : Y_a \to \mathbb{P}^n$ das Linienbündel, dass die Garbe von Schnitten $\mathcal{O}(a)$ hat. Dann ist wegen (4.5) und Satz 4.2.4 der Pull-Back $p_a^* \mathcal{L}^{(n)}$ genau dann ein Tiltingbündel auf Y_a , falls gilt:

$$-a \ge 0. \tag{4.6}$$

Zu (4.6) aquivalent ist: Die Divisorklasse von $\mathcal{O}_{\mathbb{P}^n}(-a)$ ist numerisch effektiv.

Falls a > 0 ist, existiert kein Tiltingbündel auf Y_a : Wegen (4.5) und Lemma 4.2.2 gilt:

$$\begin{split} &\bigoplus_{k>0} \operatorname{Ext}^{k}(\mathcal{O}_{Y_{a}}, \mathcal{O}_{Y_{a}}) \\ &= \bigoplus_{k>0} \operatorname{Ext}^{k}(p_{a}^{*}\mathcal{O}_{\mathbb{P}^{n}}, p_{a}^{*}\mathcal{O}_{\mathbb{P}^{n}}) \\ &= \bigoplus_{k>0} H^{k}(Y_{a}, p_{a}^{*}\mathcal{O}_{\mathbb{P}^{n}}) \\ &= \bigoplus_{k>0} \bigoplus_{t\geq 0} H^{k}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(-ta)) \\ &\neq 0. \end{split}$$

4.3 Eine Vermutung

Die Motivation für die folgende Vermutung kommt von Satz 4.2.4 und den Ergebnissen von Markus Perling über azyklische Linienbündel auf torischen Varietäten in [29].

Vermutung 4.3.1. Sei X eine projektive, glatte torische Fläche mit einem Tiltingbündel $\mathcal{L} \in Coh(X)$, sei $p: Y \to X$ ein Linienbündel auf X und D ein Divisor für dieses Linienbündel. Dann ist $p^*\mathcal{L}$ ein Tiltingbündel auf Y genau dann, wenn -D numerisch effektiv ist.

Wir zeigen nun, dass Vermutung 4.3.1 für alle X mit rang $Pic(X) \leq 2$ wahr ist.

- Falls Pic(X) = Z ist, ist X isomorph zu einer projektiven Ebene. Beispiel 4.2.5 (i) zeigt, dass die Vermutung 4.3.1 für X = P² richtig ist.
- Falls die Picardzahl von X gleich zwei ist, ist X zu einer Regelfläche \mathbb{F}_a isomorph.

Sei $a \in \mathbb{Z}_{\geq 0}$ und $\mathbb{F}_a = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(a))$ die zugehörige Regelfläche. Die primitiven Erzeuger der eindimensionalen Kegel in einem Fächer für \mathbb{F}_a sind gegeben durch

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ a \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \in \mathbb{Z}^2.$$

Wir haben dann die kurze exakte Sequenz (1.8) von abelschen Gruppen

$$0 \to M \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & a \\ 0 & -1 \end{pmatrix}} T_M - \operatorname{Div}(\mathbb{F}_a) \xrightarrow{\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & -a & 1 & 0 \end{pmatrix}} \operatorname{Pic}(\mathbb{F}_a) \to 0$$

Sei $\mathcal{L} = \mathcal{O}(a_1, a_2) \in \operatorname{Pic}(\mathbb{F}_a) = \mathbb{Z}[D_4] \oplus \mathbb{Z}[D_1]$. Wir benutzen nun die in Beispiel 1.4.4 vorgestellte Methode zur Bestimmung der azyklischen Linienbündel auf \mathbb{F}_a :

Es ist $\mathrm{H}^{2}(\mathbb{F}_{a},\mathcal{L})\neq 0$ genau dann, wenn (a_{1},a_{2}) enthalten ist in

$$\binom{-2}{-2+a} + \mathbb{Z}_{\geq 0} \cdot \binom{-1}{a} + \mathbb{Z}_{\geq 0} \cdot \binom{0}{-1},$$

Kapitel 4. Tiltingbündel für Totalräume von Linienbündeln auf torischen Varietäten

und $\mathrm{H}^{1}(\mathbb{F}_{a},\mathcal{L})\neq 0$ gilt genau dann, wenn (a_{1},a_{2}) enthalten ist in

$$\binom{-2}{a} + \mathbb{Z}_{\geq 0} \cdot \binom{-1}{0} + \mathbb{Z}_{\geq 0} \cdot \binom{0}{1} \bigcup \binom{0}{-2} + \mathbb{Z}_{\geq 0} \cdot \binom{0}{-1} + \mathbb{Z}_{\geq 0} \cdot \binom{1}{0}.$$

Sei D_i der v_i entsprechende Torus-invariante Prim
divisor. Die Selbstschnittzahlen der D_i sind dann gegeben durch

 $(D_1^2, D_2^2, D_3^2, D_4^2) = (0, -a, 0, a).$

Für den Kegel der numerisch effektiven Divisorklassen berechnen wir dann

$$\mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \subset \operatorname{Pic}(\mathbb{F}_a).$$

Definiere $\mathcal{T} := \mathcal{O} \oplus \mathcal{O}(1,0) \oplus \mathcal{O}(0,1) \oplus \mathcal{O}(1,1) \in \operatorname{Coh}(\mathbb{F}_a)$. Dann ist für alle k > 0

$$\operatorname{Ext}^{k}(\mathcal{T},\mathcal{T}) = \bigoplus_{i,j=\pm 1} \operatorname{H}^{k}(\mathbb{F}_{a},\mathcal{O}(i,j)) = 0.$$

Mit der in Beispiel 1.4.4 vorgestellten Methode können wir zeigen, dass \mathcal{T} eine volle Garbe ist. Somit ist $\mathcal{T} \in \operatorname{Coh}(\mathbb{F}_a)$ eine Tiltingbündel auf \mathbb{F}_a . Die nächste Abbildung behandelt den Fall a = 2.

Abb. 4.3.1. In Gelb die \mathcal{T} definierenden Divisorklassen, in Blau die Divisorklassen, deren zugehörige Linienbündel nicht-triviale höhere Kohomologie haben, und in Rot der Kegel der numerisch effektiven Divisorklassen.

Für ein Linienbündel $p: Y \to \mathbb{F}_a$ gilt nun wie in 4.3.1 vermutet:

 $p^*\mathcal{T}$ ist genau dann ein Tiltingbündel auf Y, wenn die dem Linienbündel $p: Y \to \mathbb{F}_a$ entsprechende Divisorklasse [D] die Eigenschaft hat, dass -[D] numerisch effektiv ist.

Literaturverzeichnis

- Klaus Altmann und Lutz Hille. Strong Exceptional Sequences Provided by Quivers. Algebras and Representation Theory 2 (1999), no.1, 1-17.
- [2] Paul Aspinwall. D-Branes on 3-Calabi-Yau Varieties. preprint. arXiv:0806.2612
- [3] Victor V. Batyrev. Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties. Journal of Algebraic Geoemtry 3 (1994), no.3, 493-535.
- [4] Alexander Beilinson. Coherent Sheaves on Pⁿ and Problems of Linear Algebra. Functional Analysis and its Applications 12 (1978), 214-216.
- [5] Michel van den Bergh. Threedimensional flops and non-commutative Rings. Duke Mathematical Journal 122 (2004), 423-455.
- [6] Michel van den Bergh. Non-commutative crepant Resolutions. The legacy of Niels Henrik Abel, Springer-Verlag, Berlin (2004), 749-770.
- [7] Andrzej Białynicki-Birula. Some Theorems on Actions of Algebraic Groups. Annals of Mathematics (2) 98 (1973), 480-497.
- [8] Alexei I. Bondal. Representations of Associative Algebras and Coherent Sheaves. Math. UdSSR Izvestiya 34 (1990), 23-42.
- [9] Alexei I. Bondal. Derived Categories of Toric Varieties. Mathematisches Forschungsinstitut Oberwolfach, Report No.5 (2006), 284-286.
- [10] Nathan Broomhead. Dimer Models and Calabi-Yau-Algebras. preprint. ar-Xiv:0901.4662, PhD Thesis.
- [11] David A. Cox. The Homogenous Coordinate Ring of a Toric Variety. Journal of Algebraic Geometry 4 (1995), 17-50.
- [12] David Cox, Hal Schenk und John Little. Toric Varieties. Buchprojekt. http://www.cs.amherst.edu/~dac/toric.html
- [13] Vladimir I. Danilov. The Geometry of Toric Varieties. Russian Mathematical Surveys (2) 33 (1978), 97-154.
- [14] David Eisenbud, Mircea Mustață und Mike Stillman. Cohomolgy on Toric Varieties and Local Cohomology with monomial Supports. Journal of Symbolc Computation 29 (2000), 583-600.
- [15] Sebastian Franco und David Vegh. Moduli Spaces of Gauge Theories from Dimer Models: Proof of the Correspondence. Journal of High Energy Physics. 0611 (2006), 054.
- [16] William Fulton. Introduction to Toric Varieties. Princeton University Press, Princeton, 1993.
- [17] Daniel R. Gulotta. Properly ordered Dimers, R-charges, and an efficient inverse Algorithm. preprint. arXiv:0807.3012
- [18] Amihay Hanany, Christopher P. Herzog und David Vegh. Brane tilings and exceptional Collections. Journal of High Energy Physics. 0607 (2006), 001.
- [19] Lutz Hille und Markus Perling. A Counterexample to King's Conjecture. Compositio Mathematica (6) 142 (2006), 1507-1521.
- [20] Lutz Hille und Markus Perling. Exceptional Sequences of Invertible Sheaves on Rational Surfaces. preprint. arXiv:0810.1936v2
- [21] Akira Ishii und Kazushi Ueda. On Moduli Spaces of Quiver Representations associated to Dimer Models. preprint. arXiv:0710.1898v2
- [22] Akira Ishii und Kazushi Ueda. Dimer Models and the special McKay Correspondence. preprint. arXiv:0905.0059v1
- [23] Alastair D. King. Moduli of Representations of finite-dimensional Algebras, Quarterly Journal of Mathematics, Oxford Series (2) 45 (1994), 180, 515-530.
- [24] Sergey Mozgovoy. Crepant Resolutions and Brane tilings I: Toric realization. preprint. arXiv:0908.3475v2
- [25] Shigeru Mukai. An Introduction to Invariants and Moduli. Cambridge Studies in Advanced Mathematics 81, Cambridge University Press, 2003.
- [26] Ian Musson. Differential Operators on Toric Varieties. Journal of Pure and Applied Algebra 95 (1994), 303-315.
- [27] Kentaro Nagao. Derived Categories of small toric Calabi-Yau 3-folds and Curve Counting invariants. preprint. arXiv:0809.2994v3
- [28] Tadao Oda. Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete 15, Springer-Verlag (1988).
- [29] Markus Perling. Divisorial Cohomology Vanishing on Toric Varieties. preprint. arXiv:0711.4836v2
- [30] Miles Reid. Decomposition of toric morphisms. Arithmetic and Geometry, papers dedicated to I.R. Shafarevich. Birkhäuser (1983), Vol. II, 395-418.
- [31] Markus Reineke und Sergey Mozgovoy. On the noncommutative Donaldson-Thomas invariants arising from Brane tilings. Advances in Mathematics 223 (2010), 1521-1544.
- [32] Parameswaran Sankaran. K-Theory of smooth complete Toric Varieties and related Spaces. preprint. arXiv:0707.1566