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Abstract 
 

 In this work a Bruker esquire6000 quadrupole ion trap mass spectrometer, originally 

equipped with a typical atmospheric pressure ion (API) source design (Apollo™), was coupled to 

a smog chamber for in situ monitoring of degradation product formation of atmospherically 

relevant volatile organic compounds (VOC), in particular aromatic hydrocarbons (AH). 

Atmospheric Pressure Photo Ionization (APPI) and Atmospheric Pressure Laser Ionization 

(APLI) were used for ion generation, with the latter being sensitive and selective towards “ring-

retaining” degradation products.  

 Comprehensive studies of the fluid dynamical behavior of the commercially available API 

source revealed that chaotic, turbulent flows prevailing in the source enclosure cause ion 

residence times exceeding one second. The conventional assembly additionally restricts the 

ionization volume for APLI and leads to an insufficient use of the ionizing laser radiation. Hence, 

the application of this type of source design was deemed inappropriate for the intended gas-phase 

sampling from atmospheric degradation product studies. Consequently, a novel API source 

design, based on a tube system, was developed. It is characterized by an essentially laminar 

sample gas stream, solely determined by the choked flow of the mass spectrometer capillary. This 

setup shows well-defined fluid dynamical behavior and high ion transmission efficiencies. For 

APLI applications the sample is irradiated along the downstream propagation of the sample gas 

flow, which entails significant increase in ionization volume and thus ionization efficiencies 

compared to common APLI assembles. As a result, the replacement of the commonly used 

exciplex laser as radiation source with a compact, significantly smaller, and more cost efficient 

diode pumped solid state laser (DPSS) became feasible. Herewith, detection limits of anthracene 

in the lower pptV range were obtained. For APPI applications a specially shaped lithium fluoride 

window was mounted onto the inlet tube assembly allowing for efficient vacuum ultra violet 

(VUV) irradiation perpendicular to the sample gas stream. Theoretical, experimental, as well as 

computational investigations in terms of the fluid dynamical behavior, ion production and ion 

transport characteristics of this “laminar-flow ion source (LFIS)” are presented. This design was 

filed as patent application in 2009.  



 A considerable part of this work is concerned with the occurrence of ion transformation 

processes (ITP) in API-MS, in particular ITPs induced by in situ generated neutral radicals. The 

significant impact of ITPs on the signal ion distribution, the loss of mass spectrometric 

information, and the consequences for data interpretation particularly with respect to unknown 

compositions is demonstrated. 

 The impact of bi-and termolecular ITPs called for an entirely redesigned APPI approach. 

Herein, VUV irradiation of the sample gas stream occurs further downstream within the transfer 

capillary of the mass spectrometer. In this way the time between the ionization step and enter into 

the collision free region is reduced by a factor of 250, whereas the analyte density is only reduced 

by a factor of four, compared to common API assemblies. This approach required opening of the 

capillary. Consequently, this new stage was thoroughly characterized in terms of fluid dynamical 

behavior and ion transmission efficiencies. Furthermore, commercially available APPI lamps did 

not allow efficient irradiation of the capillary gas flow. Therefore home-built, windowless 

miniature argon spark discharge lamps were successfully developed. The lamps are precisely 

mounted on the transfer capillary and deliver VUV radiation on a small well-defined illuminated 

area. With this new APPI approach lower detection limits of 0.1 ppbV for 2-butanone and 0.5 

ppbV for benzene were obtained. A comprehensive characterization of the lamp in terms of the 

discharge properties and the emitted VUV radiation is presented. The result of significantly 

reduced ITPs and thus preservation of mass spectrometric information is demonstrated. This 

design was filed as patent application in 2011. 

 An exemplary study on p-xylene demonstrates the capabilities of this setup for in situ 

mass spectrometric monitoring of atmospheric degradation products. 
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1.1  Atmospheric Chemistry 

 A truely fascinating characteristic of our planet is that it provides exactly the right 

conditions for living species. Temperature, pressure, the air composition, to name but a few, 

all seem to be perfectly tailored. Considering the complexity and dynamics behind the 

coherence of the atmosphere, the solar radiation, the oceans, the weather, the flora, the fauna 

and us, the human beings, the robustness of this system appears to be quite incredible. For 

instance, the emission of volatile organic compounds (VOCs) from anthropogenic and non-

anthropogenic sources to the atmosphere accounts for petagrams per year [1,2] but the 

tremendous oxidative chemistry within the tropospheric layer results in an effective 

degradation and removal. The responsible “washing agents” O2, the trace gases NOx and O3, 

the OH radical and the solar radiation provide an elaborated “machinery” in which each 

compound undergoes its own individual photochemical degradation process [1,2] (cf. 

Figure 1, left). It all seems to be well balanced. However, key words like smog or ozone hole 

have rung the alarm bells and have revealed some kind of maladjustment. The need for a more 

profound understanding of atmospheric chemical processes has been obvious ever since. 

However, when considering the enormous diversity of VOCs and their individual chemical 

fates this challenge is more likely a puzzle with an overwhelming number of pieces. 

Nevertheless, atmospheric chemists all over the world have started to find those pieces and 

bring them together. 

 Since aromatic hydrocarbons (AH), predominantly benzene, toluene and the xylene 

isomers account for up to 44 % of the total VOC emission in cities and for up to 30 % of the 

total ozone formation in urban areas, much attention has been paid to this compound class 

[3,4]. The traffic, various industrial processes and the use of organic solvents constitute the 

main sources of aromatic compounds. The initial step in the atmospheric oxidation pathway 

of AHs is the reaction with OH radicals (cf. Figure 1, right). Two feasible degradation 

mechanisms are discussed in the literature: (i) The H-atom abstraction from alkyl substituent 

groups which accounts for approximately 10 % and (ii) the OH addition to the aromatic ring 

(OH-adduct) which accounts for the remainder [1]. The latter reacts in a subsequent step with 

molecular oxygen but in spite of intensive research efforts the ensuring products from this 
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step are still poorly characterized [5]. Ring-opening is found to be a major channel and leads 

to formation of diverse saturated and unsaturated carbonyl compounds [6-8]. The interaction 

of the OH-adduct with O2 also leads to formation of ring-retaining products. For benzene and 

toluene the ring-retaining products phenol and cresol isomers are formed with yields of up to 

50 % [9,10] and 20 % [4], respectively. Nitro-phenols are also formed in significant yields 

[5]. The primary H-atom abstraction channel from the alkyl side groups also leads to the 

formation of ring-retaining products, e.g., in the case of toluene, benzaldehyde and 

benzylalcohol [5]. In addition there is growing evidence that the ring-retaining products play 

an important role with respect to secondary organic aerosol (SOA) formation [11]. These 

aerosols significantly impact on cloud formation processes and consequently impact the 

weather and the solar radiation balance. Furthermore negative health effects are related to 

SOA concentration increase.    

 It becomes clear that a complex coherence between the atmospheric chemistry and 

eventually life on earth is present. Elucidation of such mechanisms is only in its early stages 

and huge research efforts toward a better understanding are needed. 

 

 

Figure 1: (left) Atmospheric "washing machine". (right) Excerpts of the photo oxidation pathway of p-xylene. 

 

1.1.1  Laboratory studies 

 Investigations regarding atmospheric chemical processes are generally performed in 

the laboratory under well known and precisely controllable conditions. The obtained 

experimental data serve as input parameters for computational modeling, such as the Leeds 

Master Chemical Mechanism (MCM) [12,13], putting the puzzle pieces together. The 
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validated mechanism will eventually allow for reliable predictions and trends, albeit, this ideal 

situation seems to lie far in the future. Current political decisions and regulations, however, 

are based on current and obviously imperfect models. Consequently, there is a demand for 

precise, highly accurate and reliable experimental data and their interpretation. The demand 

on sophisticated analytical instrumentation becomes thus self-evident. 

 The general setup for photochemical degradation experiments consists of a transparent 

chamber being exposed to sunlight, as realized in the EUPHORE project [14], or a chamber 

which is surrounded by lamps simulating the solar radiation [15,16]. The compound of 

interest and the “washing agents” or their photo labile precursors, respectively, are inserted 

into the chamber, which is then backfilled with synthetic air. The experiment is initiated by 

the exposure to visible/near-UV light. In the case of photochemical degradation of aromatic 

hydrocarbons miscellaneous analytical tools have been used, such as differential optical 

absorption spectroscopy (DOAS) [9,17,18], Fourier transform infrared spectroscopy (FT-IR) 

[19,20], ultraviolet (UV) absorption spectroscopy [21,22], gas chromatography (GC) [4], GC 

mass spectrometry (GC-MS) [4], derivatization and diverse sampling methods with 

subsequent GC-MS [6,8,23] analysis, ion chromatography (IC) [4] and in situ monitoring 

with proton transfer mass spectrometry (PTR-MS) [24]. 

 

1.2  Mass Spectrometry 

 In 1913 J.J. Thomson laid the foundation for mass spectrometry with his work on 

“rays of positive electricity”, wherein he deduced the mass-to-charge ratio (m/z) of charged 

particles from their specific parabolic trajectories within electromagnetic fields [25]. A 

powerful analytical tool was born that with progression of the computer technology in the 

1960s has meanwhile emerged into nearly every scientific research field which requires 

molecular measurements [26-28]. However, the use of mass spectrometry, besides PTR-MS 

[24], for in situ monitoring of photochemical degradation experiments with aromatic 

hydrocarbons is not yet widely spread. 

 The basic working principle of a mass spectrometer encompasses three sections: 

(i) Ionization, (ii) mass analysis, and (iii) ion detection. Each section, in particular the first 

two, has been subject to intensive research which has consequently led to a tremendous 
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variety of instruments over the years [29-32]. A more detailed description of the mass 

analyzing principle of the quadrupole ion trap (QIT), as used in this work, will be given in the 

experimental section (cf. 3.1  Mass Spectrometer). 

1.2.1  Atmospheric Pressure Ionization (API) 

 One possible classification of the various existing ionization methods is based on the 

prevailing pressure. For a long time mass spectrometry was dominated by the classical low 

pressure ionization methods electron ionization (EI) (p < 10-4 mbar) [29] and chemical 

ionization (CI) (p ~1 mbar) [33]. With the emerging demand for hyphenation with 

chromatographic stages, such as high performance liquid chromatography mass spectrometry 

(HPLC-MS) new ionization sources and methods operating at atmospheric pressure have been 

developed [34,35], for instance electrospray ionization (ESI) [34,35], atmospheric pressure 

chemical ionization (APCI) [34], atmospheric pressure photo ionization (APPI) [36] and 

atmospheric pressure laser ionization (APLI) [37]. API benefits from higher neutral analyte 

densities within the ionization region, which in general provides more sensitive methods than 

the classical low pressure techniques.  

 

1.2.1.1  Atmospheric Pressure Laser Ionization (APLI) 
 This new API method was first introduced by Constapel et al. [37] in 2005 and 

became commercially available in 2008 [38]. The working principle is based on two photon-

one-color (1+1) resonance enhanced multi photon ionization (REMPI) processes [29] (cf. 

Figure 2). Here, a molecule is ionized via a two step mechanism: (i) resonant electronic photo 

excitation and (ii) ionization through the absorption of a second photon within the lifetime of 

the primary excited state, provided that the sum energy of the two photons (taking into 

account intermediate relaxation processes) exceeds the ionization energy (Ei) of the molecule. 

The efficiency of this process is strongly dependent on the absorption cross section of the first 

step (> 10-18 cm2 molecule -1), the lifetime of the primarily excited state (> 10-9 s) and the 

photon density (> 105 W∙cm-2). Typical Eis of organic molecules range between 8 and 10 eV, 

which means that the radiation source should provide appreciable photon densities with 

wavelengths in the ultraviolet (UV) below 310 nm (> 4eV). In common APLI applications, a 

pulsed KrF* exciplex laser, radiating at 248 nm (5 eV) with power densities of 106 W∙cm-2 is 

commonly used. Since the compound class of aromatic hydrocarbons exhibits fairly high 
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absorption cross sections at this wavelength, APLI was introduced as a very selective and 

sensitive API method. With APLI, AHs are detectable two to three orders of magnitude more 

sensitive than with all other API methods. With GC-MS a limit of detection (LOD) in the 

attomol regime has been achieved  [37,39,40]. Furthermore, APLI is compatible with direct 

infusion stages, liquid chromatography (LC) [37], as well as with atmospheric pressure gas 

chromatography [41]. Along this line, a rapid change from liquid chromatography (LC) to GC 

operation, change of ionization methods (ESI, APCI, APLI), as well as true multi-mode 

operation (ESI/APLI) was recently demonstrated with a novel multi-purpose ion source 

(MPIS) [41]. In addition, the amenable analyte range was successfully extended through 

derivatization with APLI-sensitive chromophoric molecular tags [42]. Despite the favorable 

performance of APLI, recent investigations concerning the distribution of ion acceptance 

(DIA) [43-47] and the fluid dynamic behavior [48] in typical API source enclosures revealed 

a considerable lack in overlap of the ionization volume and the neutral analyte distribution, 

and pinpointed deficiencies in ion transport into the MS. 

 

1.2.1.2  Atmospheric Pressure Photo Ionization (APPI) 
 In 2000 Robb et al. [49] and Syage et al. [50] simultaneously introduced APPI as a 

new atmospheric pressure ionization method for LC-MS. Currently two APPI stages are 

commercially available fitting nearly every mass spectrometer that is delivered with an API 

interface [29,51]. For many applications this ionization technique has become the method of 

choice in particular for low to non-polar analytes. In contrast to the APLI approach, APPI 

makes use of single photon ionization processes with wavelengths in the vacuum ultraviolet 

(VUV) below 155 nm (> 8 eV), thus omitting the selective excitation step into a resonant state 

(cf. Figure 2). Consequently, a broader analyte range is amenable to this technique, and the 

photon densities as provided by simple gas discharge lamps are sufficient. A number of VUV 

radiation sources exist, however low pressure krypton radio frequency (Kr-RF) or krypton 

direct current (Kr-DC) discharge lamps have generally been accepted as the standard radiation 

source. Both produce two distinct VUV emissions centered at 123.6 nm (10.03 eV) and 

116.5 nm (10.64 eV) in a 4:1 ratio. The reason for this preferred lamp choice is mainly argued 

with the larger than 10.6 eV Eis of the most common solvents used in liquid chromatography, 

whereas most organic molecules are amenable to photo ionization, i.e., their Eis are below 

10.6 eV [51]. However, in contrast to the UV operating conditions in APLI, where most 
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solvents are virtually transparent, in the VUV most solvents in addition to O2 and H2O exhibit 

absorption cross sections in the 10-17 cm2 molecule -1 regime [52-58]. Thus, in typical LC-

APPI measurements, the penetration depth of the radiation is less than 5 mm. The absorption 

spectra in this region are mostly structureless, indicating excited-state lifetimes far below the 

collision rate of about 109 s-1. In other words, most of the available VUV energy applied in 

APPI is directly coupled into the matrix, leading to electronic excitations and/or extensive 

photolysis of matrix compounds and, hence, in formation of primary neutral radicals. Due to 

the low penetration depth poor direct photo ionization efficiencies of analytes have been 

reported [51]. This is why current APPI LC-MS applications are mainly performed with 

reactant liquids (~5 - 10 %), in analogy to the addition of reactant gases in classical chemical 

ionization, e.g. toluene, with Eis below the VUV photon energy rendering it amenable to 

photo ionization. In this way, photons are efficiently converted into charged species. 

Subsequent ion molecule interactions such as charge transfer or protonation lead to the 

formation of charged analytes. The latter method is known as dopant assisted (DA) APPI. As 

mentioned for APLI, APPI as well, as any classical API method suffers in the same manner 

from the disadvantages entailed by the typical API source enclosure designs. 

 

1.2.1.3  Negative Ion Formation (NIF)  
 The first step in nearly all negative ion formation mechanisms is the generation of free 

electrons by photo electron emission from metal surfaces or gas phase molecules, as used in 

the APPI and APLI negative ion mode (cf. Figure 2). In the second step, at atmospheric 

pressure, the free electrons are readily thermalized via collisions with surrounding buffer 

gases down to Ekin ~ 0.02 eV. Once thermalized, the electrons are captured by molecules that 

possess positive electron affinities (Ea), forming short lived highly excited molecular radical 

anions [M]-*. This process is significantly enhanced when the electron energy is in resonance 

with a molecular electronic/vibrational state [59,60]. The fate of the intermediate state [M]-* is 

described by three feasible reaction pathways: (i) The excess energy is used for bond 

breaking, which consequently forms a negatively charged fragment [F1]- and a neutral 

fragment [F2] (electron capture dissociation-ECD), (ii) auto-detachment leads to the reverse 

of the primary capturing step, and (iii) collisions with a buffer gas take the excess energy of 

the [M]-* state to form an intact, deactivated radical anion [M]- [60]. The latter process is 

called electron capture (EC) or in the case of resonant capturing, resonant electron capture 
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(REC). In particular compound classes containing electron density withdrawing functional 

groups, such as the nitro group, are amenable to (R)EC. However, in many cases direct 

electron attachment to an analyte is hindered or even not feasible, partly due to low electron 

affinities, the discrepancy between a resonant state and the kinetic energy distribution of the 

thermal electrons, or simply due to the occurrence of competing (R)EC processes of other 

compounds, respectively. To render the negative ion mode more efficient, a secondary 

ionization method is used. In a first ionization step the abundance of thermal electrons is 

efficiently converted to charged species of a reactant gas (e.g. O2), being present in excess. 

These formed anionic species transfer charge in subsequent reactions onto the analyte. (for 

more detail see 4.3.3.2  APPI/APLI-Negative Chemical Ionization (NICI)).  

 

 

Figure 2: Fundamental processes of APLI, APPI, and NIF. A photon is denoted with hν, and [M], [M]+, [M]- and  
[M]-* denote the neutral, the cationic, the anionic and the excited anionic analyte, respectively. [F1]- and 
[F2]  represent anionic and neutral fragments and a non-bound electron is denoted with e-.  

 

1.2.1.4  Ion Transformation Processes (ITP) 
 Any kind of process that transforms the primary generated ion into another structural 

and/or charged differing species and that consequently changes the resulting ion signal 

distribution is encompassed by the term “ion transformation process (ITP)”.  

 Accordingly, the rare use of in situ MS methods for degradation product studies in 

atmospheric chemistry, as noted above (cf. 1.2  Mass Spectrometry), is due to a general major 

challenge in mass spectrometry: The fate of charged species between ionization and detection. 

Effective and unintended transformation processes of the charged species often determine the 
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ion distribution at the detection step and hence interfere in the ability of a mass spectrum to 

reflect the initial neutral composite (cf. Figure 3). These transformations are originating from 

the strongly changing chemical and physical properties of a neutral molecule with the process 

of ionization. The concentration of the newly formed charged species generally deviates from 

any thermodynamic equilibrium. Balancing back to an equilibrium situation is accompanied 

by molecular structural changes via intra- and/or intermolecular processes. Hereby, the extent 

of ITPs depends on the chemical properties of the participating compounds, the composition 

of the matrix, and the number of collisions between ionization and detection such that an API 

source enclosure should be better treated as a chemical reactor, with a great variety of species 

present at the same time, to wit: Positive ions, electrons, negative ions, neutral analyte, 

solvent molecules, neutral radicals, etc. (cf. Figure 3). It is noted that for a complete picture 

the feasible impact of heterogeneous reactions on the source enclosure walls and within the 

transfer units to the analyzer should be considered as well.  

 

 

Figure 3:  Sketch of the general challenge in mass spectrometry: Does a mass spectrum truly reflect the neutral 
composition? [M] and [M]+ denote the neutral and the cationic analyte. Matrix compounds and excited or 
dissociated matrix compounds are represented by S and S*, respectively. Non-bound electrons are denoted 
with e-. 

 

Furthermore, potential gradients along the pathway through the MS result in kinetic energy 

increase of generated ions, which in subsequent collisions enhance decomposition processes. 

This renders the correct interpretation of MS data even more complicated. However, in 

several mass spectrometry methods ITPs are desirable and purposively applied. For instance 

DA-APPI and PTR-MS make use of charge transfer to the analyte by primary generated ions. 

Furthermore, well known gas phase reactions and purposively evoked dissociation processes, 
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such as collision induced dissociation (CID), electron capture dissociation (ECD) and laser 

induced dissociation (LID) are used to provide valuable structural information. Unintended 

ITPs, however, basically evoke two crucial aspects for analytical mass spectrometry of 

unknown composites: (i) Ions are detected at significantly differing mass-to-charge ratios than 

their neutral counterpart accounts for, hence a mass spectrum is affected by “artificial” 

signals, which are produced by the analytical method itself [61]; (ii) Charge transfer reactions 

resulting in a thermodynamically controlled ion distribution are leading to loss of MS 

information in favor of a few dominant species. These two problems are particularly present 

in API-MS since collision rates of 109 s-1 are prevailing in the source region. Moreover, partly 

attributed to polarization effects [62,63], ion-molecule reactions tend to be fast, often 

exceeding the calculated gas kinetic collision rates when assuming collision cross sections of 

the corresponding neutral precursors. Considering that the typical API interface may lead to 

ion dwell times of up to seconds within the elevated pressure region [48], presumably every 

unbalanced reacting composition has reached thermodynamic equilibrium at the detection 

step. Besides tentative studies on mechanisms concerning the improvement of DA-APPI or 

APCI applications [29,64-67], ITPs are poorly discussed in analytical API-MS literature. For 

example, the impact of the neutral radical chemistry, initiated by electrical discharges (e.g. 

APCI) or radiation below 200 nm (cf. 1.2.1.2  Atmospheric Pressure Photo Ionization (APPI)) 

is basically not discussed. However, it is noted that: (i) At typical APPI and APCI-MS 

conditions significant neutral radical production occurs [53,55,68], and (ii) reactions between 

ions and neutral radicals are fast [69,70]. As an example the abundant presence of oxygenated 

aromatic hydrocarbons in API-MS was first mentioned in 1983, when Mahle et al. observed 

phenoxy type structures upon APCI of benzene [71], however, no evidence for neutral radical 

chemistry within ion source enclosures was discussed until 2005, when Frey et al. 

investigated oxidized proteins observed upon APCI [72]. They tentatively explained their 

observations in analogy to the atmospheric degradation of organic compounds with OH 

radicals. However, the extent to which neutral radical chemistry is driven in an API source, 

initiated by VUV light absorption or via electrical discharge processes, has not been 

recognized yet. Up to now, many reported but unexplained APPI/APCI mass signals are 

vaguely attributed to impurities or to reactions with closed shell molecules, such as H2O and 

O2. For example, Kauppila et al. [73] and also Robb et al. [67] observed abundant signals of 

[M+15/16/17]+ upon toluene DA-APPI. Addition of CHCl3 and H2O was reported to enhance 

these signals and revert them to base peaks. These are observations that are readily assigned 
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to ITPs with neutral radicals (for more detail see 4.3.2  Neutral Radical Induced ITP (NRITP) 

[82]).  

 Consequently, a more profound understanding of all types of ion transformation 

processes in API-MS, involving neutrals, cations, anions, electrons, neutral radicals, and also 

heterogeneous reactions on surfaces is of fundamental interest to avoid significant 

misinterpretation of MS spectra and to precisely optimize the overall performance of the 

analytical method. 
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 As mentioned in the introduction there is lack of knowledge in the atmospheric photo 

oxidation of aromatic hydrocarbons and the need for expanding and improving the analytical 

instrumentation hitherto used was highlighted. In this work a mass spectrometric system 

(quadrupole ion trap) is coupled to an atmospheric smog chamber for in situ monitoring of 

such degradation product studies. A gas phase sampling unit is continuously sampling from 

the reactor into the ionization region of an atmospheric pressure ionization source. Here, 

APLI is used to selectively ionize ring-retaining photo oxidation products and possibly 

secondary organic aerosols with high sensitivity. Furthermore, an integrated APPI setup is 

supposed to encompass also ring-opened degradation products. The use of these two photo 

ionization techniques additionally allow for (R)EC, which is particularly sensitive towards 

nitroaromatic compounds. Additionally, secondary ionization methods, in the positive (also 

termed as DA-APPI, DA-APLI) as well as in the negative mode further extend the amenable 

analyte range. 

 In a first step the usability of the commercially available API source is examined, in 

particular with respect to ionization and ion transmission efficiencies, based on distribution of 

ion acceptance (DIA) measurements and fluid dynamical calculations. Hereupon novel 

approaches in APLI and APPI with regard to source enclosure designs, radiation inlets and 

radiation sources will be introduced and characterized in detail. Special attention is paid to 

enhanced technical solutions to better control/reduce ion transformation processes. Also a 

classification and an extensive discussion on possible ITPs will be given. In consideration of 

using APPI for the anaylsis of oxidation products, the impact of neutral radical induced ITPs 

will be discussed in detail, in particular based on reaction pathways of the pyrenyl cation 

within “VUV-activated” matrices.  

 Finally an exemplary degradation study will demonstrate the capabilities and 

limitations of the novel API-MS setup and show effects and parameters that should be 

considered to obtain valuable structural as well as time dependent information on the 

occurrence of a degradation product. For more structural information, collision induced 

dissociation (CID) on selected degradation products will be performed and simultaneously 

recorded FT-IR data will provide additional qualitative as well as quantitative information on 

the sample compositions.   

2   Goals  
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3.1  Mass Spectrometer 

 All mass spectrometric measurements were performed with an esquire6000 

quadrupole ion trap from Bruker Daltonik GmbH, Bremen, Germany (cf. Figure 4, left), 

originally equipped with a typical API source design (Bruker Apollo™ source) as sketched in 

section 3.1.2  Common API Source and discussed in more detail in 4.1  Common API sources. 

The working principle of the MS is as follows (cf. Figure 4, right): Ions are generated within 

the source enclosure and are subsequently forced into the transfer capillary through electrical 

gradients, created between the spray shield and the metalized entrance of the transfer 

capillary. The capillary serves as a pressure reduction unit between the atmospheric and the 

first differentially pumped low pressure region (~4 mbar). An electrical gradient between the 

metalized end cap of the capillary and the skimmer facilitates the transfer of the ions into the 

high vacuum pressure region. Ions with a selectable m/z range are further guided by the 

following two octopoles towards an electrostatic lens that focuses the ions into the trap 

wherein they are accumulated for a certain period of time. Finally, the stored ions are 

consecutively ejected according to their m/z value and guided towards a detector unit 

consisting of a conversion dynode and an electron multiplier. The generated signal is 

digitized, normalized to the accumulation time and plotted versus the m/z value [74].  

 

 

Figure 4: (left) Photograph of the esquire6000. (right) Scheme of the different vacuum stages in the esquire6000, 
including a pressure diagram. 

3   Experimental 
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The trap is an ion storing device, consisting of two hyperbolic electrodes with their foci facing 

each other and one hyperbolic ring electrode, separating the two others (cf. Figure 5, left). The 

entrance cap has one hole, the end cap is perforated. During the accumulation and storing 

status of the QIT a radio frequency voltage of 781 kHz is applied to the ring electrode [74]. 

The entering ions are pulled into a pseudo potential well, determined by the so called “trap 

drive” setting. The periodic motion is composed of two mass dependant individual secular 

frequencies (ωr and ωz), one along the radial (r) and one along the axial (z) direction, 

respectively. The trapping efficiency is enhanced by a repelling voltage on the end cap and 

through collisional cooling with a buffer gas (helium), which is leaking into the trap resulting 

in a pressure of around 5∙10-6 mbar. It is noted that the trapping efficiency is significantly 

affected by the kinetic energy of the ions which they have gained along the upstream guiding 

potentials. Within an ideal quadrupol field the time dependent trajectory of an ion in the axial 

direction z and the radial direction r is described by the following equation of motion, 

originally derived from the Mathieu equation [75,76] 

 𝑚𝑑2𝑧;𝑟
𝑑𝑡2

= −𝑚𝛺²
4

�𝑎𝑧;𝑟 − 2𝑞𝑧;𝑟𝑐𝑜𝑠𝛺𝑡�𝑧; 𝑟  (eq 1) 

with m as the mass of the ion, t the time, Ω the radial frequency of the RF potential applied to 

the ring electrode and the dimensionless trapping parameters az;r and qz;r which are calculated 

as follows: 

 𝑎𝑧;𝑟 = −8𝑒𝑈
𝑚𝑟02𝛺2

      (eq 2) 

 𝑞𝑧;𝑟 = 4𝑒𝑉
𝑚𝑟02𝛺2

      (eq 3) 

Here the charge of the ion is denoted with e, its mass with m. U and V represent the 

amplitudes of the applied DC and RF voltage, respectively, and the size of the trap is 

represented by r0. It is noted, that for practical purposes, which will be explained later on, in 

commercially available ion traps all three electrodes are slightly truncated in order to obtain 

higher-order multipole contributions to the main quadrupolar field [74]. Consequently, the 

trapping parameters are modified; however, a mathematical treatment would exceed the scope 

of this section. The solutions of eq 1 are either (i) periodic but unstable or (ii) periodic and 

stable, where the latter describe the motion of an ion with a specific m/z value within the 

dimensions of the trap. Solutions of type (i) determine the boundaries between an unstable 
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(ejection in z- or collision with the wall in radial direction) and a stable motion. The 

characteristic values of the boundaries are described by introducing a new trapping parameter, 

βz;r, for each direction. This parameter itself is a complex function of az;r and qz;r and 

determines the exact boundary values as integers starting from zero. Commonly βz;r values are 

plotted in az and qz space to obtain the so called Mathieu stability diagram (cf. Figure 5, right). 

All ions with az and qz values (eq 2 and 3) that are encompassed by boundaries, which are 

defined through βz;r values, render stable, periodic motions within the trap. Since the 

esquire6000 is operated in the RF-only mode, that is, no DC (U = 0) potentials are applied to 

the electrodes, the trapping parameter az;r in eq 2 becomes zero and consequently the stability 

diagram is reduced to a one dimensional line along qz with the instability boundary at the 

βz = 1-intersection [74].  

 

 

Figure 5: (left) Schematic of the ion trap. (right) Mathieu stability diagram for the ideal quadrupolar field within the 
trap, generated by the main RF on the ring electrode. 

 

a) Storing mass range capability.  

 Since in eq 3 the parameter qz is inversely proportional to the mass-to-charge ratio, 

lower masses are closer to the unstable boundary than higher masses with the same charge (cf. 

Figure 5, right). In general this leads to an important consequence for the operation of ion 

traps: The existence of a lower mass cut-off (LMCO) that is the lower limit of the range of 

masses that can simultaneously be stored. Theoretically there is no upper trapping limit, since 

the inverse of the m/z in eq 3 leads to an asymptotical approach of qz → 0. However, there is 

experimental evidence that ions with m/z values of 20 - 30 times the lower cut-off mass are 
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not efficiently trapped. For the esquire6000 the lowest mass-to-charge ratio that may be stored 

in terms of software settings is m/z 15, though the actual trapping efficiency remains 

unknown. Experimental data demonstrate that the trapping efficiency below m/z 50 is 

significantly decreased. The upper software allowed limit is m/z 3000, or m/z 6000 which is 

obtained in a special extended operation mode, however, at the cost of resolution [74].  

 

b) Mass discrimination  

 The discussed confined trapping efficiencies result in significant mass discrimination, 

which has to be considered when interpreting recorded mass spectra.  

 

c) Mass analysis 

 The qz line at az = 0 is also called the operating line for the mass-selective instability 

mode, theoretically describing the actual mass analysis of the instrument (cf. Figure 5, right). 

During the mass analysis the RF amplitude is ramped and, as taken from eq 3, the qz values of 

all ions increase with increasing V. Consequently, all m/z values consecutively reach the 

instability intersection (βz/qz) and are one after another ejected in axial direction towards the 

detector unit. As for the LMCO, the qz value is inversely proportional to the mass-to-charge 

ratio; lower masses are closer to the unstable boundary than higher masses with the same 

charge and are thus ejected first. Additionally to the RF ramp, an auxiliary RF voltage is 

applied onto the end cap electrode. In combination with the earlier mentioned higher-

multipolar fields, a resonant frequency matching the secular frequency ωz of an ion near the 

unstable boundary is generated. During the main RF ramp all ions are moved towards the 

instability boundary along the qz axis with an increasing secular frequency ωz. Once this 

frequency matches the auxiliary and higher-order frequencies, the ions quickly take up energy 

on their oscillating motion, leading to a significantly enhanced ejection process [74,76]. 

 

d) Mass resolution  

 The resolving power R of the instrument may be defined as  

 𝑅 =  𝑚1
∆𝑚

      (eq 4) 
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with m1 as the mass of a singly charged ion and ∆m the FWHM of the Gaussian peak centered 

at m1. However, in ion trap mass spectrometry the mass resolution is often specified as simply 

∆m, since the peak width does not significantly vary with m/z values. The resolving power of 

a QIT is generally affected by (i) space charge, (ii) the RF ramping speed during the 

instability scan, and (iii) the kinetic energy distribution of an ion species, which is basically 

determined by the cooling efficiency of the buffer gas. For the esquire6000 a peak width in 

the range of ∆m = 0.3 – 0.6 is specified for the mass range m/z 50 - 3000. In case of the above 

mentioned extended mass range a FWHM peak width of ∆m = 5 is achieved. To account for 

space charge effects, the instrument offers a so called ion current control (ICC) function that 

automatically adjusts the accumulation time of the trap to changes in ion concentration 

[74,76,77].  

 

e) Mass accuracy  

 The mass accuracy is also affected by space charge contributions and by the kinetic 

energy distribution of an ion species [77]. The esquire6000 shows accuracy instabilities, even 

in ICC mode, of m/z ~ ± 0.3. It follows from this discussion that only the nominal is used for 

data interpretation. 

 

f) Switching positive-negative modus  

 Since the mass selection in a QIT is solely based on RF potentials, positive and 

negative ions are treated equally. Hence, this instrument offers a fast alternating modus with 

switching times of ~ 400 ms between polarities [74].  

 

g) Resonant excitation 

 As already described for the mass analysis, additionally generated RF fields are used 

to resonantly excite ions on their trajectories. Therefore, supplementary oscillating potentials, 

matching either one of the two secular frequencies (ωr and ωz) of ion motion, are applied to 

the end cap electrode. Based hereupon are the fundamental working principles of ion 

isolation, collision induced dissociation (CID) and sequential mass analysis measurements 

(Msn) [74-76].  
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h) Ion isolation 

 To isolate a narrow range of m/z values within the trap, wavebands of frequencies are 

applied to the cap electrodes, which resonantly excite and thus eject all the undesired ion 

species [74-76].  

 

i) CID 

 Following the isolation process, a small frequency band above and below the exact 

secular frequency of the isolated ion species is applied. This near-resonant excitation 

promotes the ions into higher potential regions where they gain kinetic energy. Collisions 

with buffer gas atoms lead to increasing internal energies of the ions and eventually induce 

bond breaking processes. The higher the applied RF amplitude for the near-resonant 

excitation the more kinetic energy is gained by the ion. However, the upper limit for this 

process is given by collision with the trap walls and/or ejection. The trap is capable of holding 

collisionally generated fragment ions, but only with a lower mass cut off of 27 % (by default) 

of the parent ion. Thus, for an isolated species with m/z 200 only charged fragments down to 

m/z 54 can be trapped and subsequently mass analyzed. At the significant cost of the overall 

trapping efficiency the default LMCO value can be lowered to 12 % [74]. Relating to the 

controlled CID experiments are uncontrolled collision induced dissociation processes. Those 

will inevitably occur at any point of the mass spectrometer when a charged particle gains 

enough kinetic energy inducing bond breaking after a collision. In ion trap mass spectrometry 

a critical parameter for unwanted CID is the trap drive, which determines the depth of the 

potential well with which the ions are forced to move during the accumulation status.  

 

j) Msn experiments 

 One unique feature of ion traps is their capability of performing several subsequent 

sequences of isolation and CID, also called sequential mass analysis. Hence, structural 

information is not only provided for the parent ion molecule but also for numerous 

generations of fragment ions [76]. 
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k) Duty cycle  

 The accumulation time may be varied from 0.01 ms up to 50 s and the scan speed can 

be either 800, 8100 or 26000 m/z∙s-1. Between accumulation and scan there is a cooling delay 

and between each scan there is a delay for clearing the trap, both with widths around 5 ms 

[74]. Thus for a scan speed of 8100 m/z∙s-1, a mass range of m/z 50 – 500, and an 

accumulation time of around 50 ms (strongly dependent on the available ion density) a duty 

cycle for a normal mass scan of around 115 ms results.  

 

l) Chromatogram mode 

 The esquire6000 was developed for hyphenation with chromatographic stages thus it 

offers a chromatogram mode in which over a period of time every obtained mass spectrum is 

stored. Post processing of the raw data than allows for visualization of alterations in time of 

any m/z trace. This mode is in particular helpful for monitoring degradation product studies. 

 

m) Software 

  EsquireControl version 6.1 was used as the operating software of the mass 

spectrometer and post processing of raw data was performed with DataAnalysis 3.4 program 

package, both from Bruker Daltonik GmbH, Bremen, Germany. 

 

3.1.1  Laser Systems 

 For APLI studies two OPTex exciplex lasers (Lambda Physik, Göttingen, Germany) 

radiating at 193 and 248 nm and an ATLEX300 (ATL Lasertechnik, Wermelskirchen, 

Germany) exciplex laser, also providing 248 nm radiation (cf. Figure 6), were used. 

Additionally, a wavelength of 266 nm was available (Diode pumped solid state laser (DPSS), 

FQSS 266-50, CryLas, Berlin, Germany). The working principle of an exciplex laser is based 

on electrical discharge initiated chemiluminescence within a gas mixture, containing mostly 

noble gases, halogens, or mixtures of both, along with suitable buffer gases. Frequency 

adjustable pulsed electrical high voltage discharges (1 – 200 Hz) within Ar/F2 and Kr/F2 

mixtures initiate a reaction sequence according to the following scheme: 
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 Ar (Kr) + e- → Ar+ (Kr+) + 2 e-    (rxn 1) 

 F2 + e- → F- + F     (rxn 2) 

 Ar+ (Kr+) + F- → ArF* (KrF*)    (rxn 3) 

or 

 Ar (Kr) + e- → Ar* (Kr*)     (rxn 4) 

 Ar* (Kr*) + F2 → ArF* (KrF*) + F    (rxn 5). 

The subsequently occurring fluorescence step 

 ArF* (KrF*) → Ar (Kr) + F + hν193 nm (248 nm)  (rxn 6) 

leads to immediate lasing, since the ground state of the exciplexes is repulsive; upon directly 

generating electronically excited states, very strong population inversion is obtained. Such 

systems are called super radiant, since no cavity gain for efficient lasing is required. There is 

only one high reflector at the end of the laser tube. The pulse duration is typically between 5 

and 10 ns for the OPTex lasers and 2 ns for the ATLEX system, with pulse energies in the 

range of 1 - 8 mJ. The beam profile is of rectangular shape of around 0.5 cm² generating 

power densities in the order of 106 W∙cm-2 (cf. Table 1).  

 

Table 1: Parameters of the used laser radiation sources. 

 

Figure 6: Photograph of the laser systems used. Left: FQSS 266-50 DPSS laser; 1. external 24V-power supply; 2. 
booster unit; 3. control unit; 4. laser head (can directly be attached to the source enclosure without any 
further optical devices). Right: ATLEX 300 exciplex laser; 5. vacuum pump with halogen filter; 6. exciplex 
laser unit (further optical devices required for directing the laser beam into the source enclosure); 7. gas 
cylinder of the compressed halogen/krypton gas mixture; 8. compressed helium gas cylinder. 
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The DPSS laser is based on photo excitation of Nd3+ ions within a yttrium aluminum garnet 

matrix (Nd:YAG). Electronic excitation leads into a triplet state with forbidden transition into 

the ground state. The following stimulated emission within a cavity generates laser radiation 

at 1064 nm. The fundamental is subsequently frequency quadrupled via two consecutive 

second harmonic generation (SHG) stages. The DPSS laser is operated in a fixed pulse mode 

(200 Hz) with a pulse width of 1 ns and a pulse energy of 60 µJ. A circular beam profile with 

an illuminated area of 2∙10-3 cm² and a power density of 3∙107 W∙cm-² is obtained.  

 Pulse energies were verified with a pyroelectric laser power meter (ORION PE 25-V2, 

OPHIR Optronics, Jerusalem, Israel). 

 

3.1.2  Common API Source  

 The API source (Apollo™) originally mounted on the esquire6000 is mainly designed 

for direct liquid infusion or HPLC-MS applications. The above mentioned multi-purpose ion 

source (cf. 1.2.1.1  Atmospheric Pressure Laser Ionization (APLI)) is a slightly modified 

design allowing for enhanced APLI applications and GC-hyphenation. A principal schematic 

of the setup along with the prevailing gas flows of these two API source versions is shown in 

Figure 7 (left). In LC mode the liquid is guided through a needle surrounded by a hot sheath 

gas (N2, nebulizer gas, 0.5 – 2.0 L∙min-1 flow rate), and sprayed orthogonally to the MS inlet 

into a chamber volume of around 350 cm³. The MPIS enclosure is of rectangular shape, 

whereas the Apollo™ design is essentially of oval design. Ionization occurs via APPI (Kr-RF, 

PhotoMate®, Syagen Technology, Inc., Tsutin, CA, USA) or APLI; alternatively, the VUV 

lamp can be replaced by an APCI needle. The two radiation sources are positioned as shown 

in Figure 7 (left), with the VUV lamp mounted on the back, slightly upward off axis from the 

entrance of the transfer capillary. The laser beam is guided through a quartz window, 

orthogonally to the capillary and the sprayer axes, and positioned 1 – 10 mm in front the spray 

shield. The generated ions are primarily drawn into the transfer capillary through electrical 

gradients, which are established by applying voltages onto the spray shield and the metalized 

end cap of the transfer capillary. The gas stream into the MS is choked1

                                                 
1 Choking occurs when the gas stream velocity within the capillary reaches sonic speed. At this point the gas 
throughput cannot be further increased by lowering the pressure on the low pressure side.  

 and, depending on the 

dimensions of the capillary (Øinner = 0.6 mm; l = 18 cm), accounts for Qchoked = 1.4 L∙min-1 at 
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upstream atmospheric pressure. To enhance evaporation and to prevent solvent drops from 

entering and possibly blocking the capillary, hot dry gas (0 – 10 L∙min-1) is additionally 

provided which exits through the spray shield, counter propagating the downstream direction 

of the MS flow. As mentioned above, the MPIS also features GC hyphenation with APLI-MS. 

In this case, a home-made heated transferline is mounted onto the port of the APPI lamp, and 

the end of the GC column is placed 2 – 3 cm in front of the spray shield; ionization occurs via 

APLI as shown in Figure 7 (left) [41,78]. For operation of the source liquid samples were 

delivered with a syringe pump (Model 100, kd scientific, Holliston, MA, USA) or a Hitachi 

L-7110 HPLC pump (Hitachi Ltd., Tokyo, Japan) and transferred to the gas phase by 

pneumatically assisted thermal vaporization, as described. Nitrogen as the main carrier gas 

was supplied either by a nitrogen generator (UHP LCMS 18, Domnick Hunter, Gateshead, 

Tyne & Water, UK) or by high purity (99.999 %) nitrogen from compressed gas cylinders.  

 

 

Figure 7: (left) Schematic of the Apollo/ MPIS source [48]. (right) List of the gas flows through the source enclosure. 
Red and blue arrows indicate the in- and outflows, respectively. 

 

 The ozone measurements were carried out with a Thermo Environmental 49 O3 

Analyzer (Thermo Environmental Instrument Corporation, Waltham, MA, USA), connected 

to the drain of the source enclosure.  
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3.1.3  Novel Laminar-Flow Ion Source (LFIS) 

 The laminar-flow ion source is a patented [79,80], home-built API assembly, which 

was developed within the framework of this thesis. It was first introduced in 2010 by Barnes 

et al. [48]. The source enclosure is made of a metal tube system, primarily designed for 

ambient pressure gas phase samples (cf. Figure 8). The analyte flow, which is solely 

determined by the choked flow of the transfer capillary (Qchoked = 1.4 L∙min-1), enters the 

sampling tube (Øinner = 9 mm) and is guided at an angle of 10° into the ionization tube of the 

inlet stage. A subsequent bottleneck reduces the inner diameter to Øinner = 4 mm. The 

ionization stage is extended to 20 cm and eventually ends in a conically shaped section with 

an 8° full angle and an orifice diameter of 0.8 mm, which forms a gas tight connection with 

the following 0.6 mm entrance aperture of the transfer capillary. For APLI applications the 

laser beam is guided through a quartz window, coaxially into the ion source along the 

propagation direction of the carrier gas flow. A hole on top of the ionization tube, close to the 

cone section, allows for light entry. In order to maintain laminar flow, a specially shaped 

lithium fluoride (LiF) window, in which a flute is cut to match the dimensions of the inner 

tubing surface, is used. Since the ionization tube is of modular design, i.e., the segments are o-

ring sealed (not shown in Figure 8), add-ons and variations in tubing length are possible. The 

entire assembly can be pumped to roughly 10 mbar in a few seconds by simply shutting off 

the supply gas. Additionally, thorough cleaning with solvents is easily possible. For APLI the 

surface of the tubing system is nickel-plated and the reason for this will be discussed in more 

detail in section 4.2.2.2  LFIS – APLI. Furthermore, a gauge is connected to the inlet stage to 

monitor the pressure inside the API source. 

 

 

Figure 8: Schematic of the novel laminar-flow ion source. 
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3.1.4  Novel APPI Setup 

 The principle approach of this newly developed APPI setup was first introduced in 

2010 [81] and is currently in the patenting process. Within the transfer capillary, functioning 

as a pressure reduction unit between the atmospheric pressure and the low pressure region of 

the mass spectrometer (cf. Figure 4, right), a windowless, miniature, pulsed DC-spark 

discharge VUV lamp is implemented (cf. Figure 9).  

 

 

Figure 9: Home-built APPI setup within the transfer capillary separating the atmospheric pressure region and the 
low pressure region (4 mbar) of the first differential pumping stage.  

 

Several lamp positions were used within this work. The capillary itself is 18 cm long with an 

outer diameter of Øouter = 6.5 mm and an inner diameter of Øinner = 0.6 mm. Two conical flutes 

of 8.0 mm length and 1.0 mm depth are cut into the capillary along the main axis, merging in 

a hole of 2.3 mm in diameter and 2.0 mm depth (discharge chamber). In the center of the 

discharge chamber an aperture of around 0.1 mm² is cut into the inner tube of the transfer 

capillary. Two blunted and bent cannulas, serving as electrodes and continuous discharge gas 

delivery, are inserted into the two flutes with a distance of 0.8 mm to each other, 

symmetrically placed on top of the aperture. The distance from the discharge region to the 

bulk gas flow into the MS is about 0.8 mm and the irradiated area 0.1 mm². The electrodes, a 

glass cover on top of the discharge region and the cable for the power supply are all cemented 

into a small, compact and safe design (Cement NO. 31, Sauereisen, Pittsburgh, PA, USA). A 

steady argon flow of typically 100 - 500 ml/min is supplied through the grounded electrode, 
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which also enhances cooling of the metal. The gas outlet through the opposite high voltage 

electrode is connected to the rough pump of the mass spectrometer via a needle valve and a 

bypass to a manometer, allowing for the adjustment of the pressure difference between the 

discharge chamber and the static pressure inside the transfer capillary. The high voltage (HV) 

is generated with a HPE CC400 switch-mode power supply of an OPTex exciplex laser, 

connected to a digital delay generator (Model 9650; Perkin Elmer Inc., Waltham, MA, USA) 

or a custom designed DD20_10 C-Lader (Hartlauer Präzisions Elektronik GmbH, Grassau, 

Germany). The frequency is typically set to 1.5 kHz with a trigger signal duration of 0.18 ms. 

 

3.1.4.1  Setup for Characterization of Transfer Capillaries  
 Some of the fluid dynamical and ion transmission behavior of MS transfer capillaries 

were investigated with a home-built setup consisting of a vacuum recipient (2 L total volume) 

which was rough pumped to a background pressure (p1) between 4 mbar up to atmospheric 

pressure (cf. Figure 10).  

 

 

Figure 10: Setup for fluid dynamical and ion transmission characterization of transfer capillaries. 

 

The capillaries were fed into the recipient through a gas tight port. A Faraday cup which is 

build of two sequentially located conically shaped metal sieves, connected to a Keithley 610C 
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electrometer (Cleveland, OH, USA), served as charge detector. The upstream pressure port 

(p0) of the capillary was connected to a laminar-flow ion source (cf. Figure 8). Ions were 

generated with the 248 nm OPTex laser. The gas flow was measured using either a wet meter 

TG05 (Ritter Apparatebau GmbH and Co. KG, Bochum, Germany) or a FM-360 mass 

flowmeter (Tylan Corp., Torrance, CA, USA).  

 

3.1.4.2  Characterization of the Discharge Lamp 
 All spectroscopic measurements in the range 1100 nm - 200 nm were performed with 

a high resolution fiber optic spectrometer AvaSpec-3648 (Avantes BV, Eerbeek, The 

Netherlands) connected to a broadly transparent optical fiber (ZFQ-9866, Ocean Optics, 

Dunedin, FL, USA). Scans between 200 nm and 105 nm were accomplished with an ARC 

VM-502 VUV spectrometer (Acton Reasearch Corporation, Acton, MA, USA) equipped with 

a MgF2 coated parabolic grating (1200 G∙mm-1). A 2 mm thick, optically polished LiF 

window (2045120f, Korth, Altenholz, Germany) was mounted in front of the radiation 

entrance slit and a home-built cascaded microchannel plate detector unit served as VUV 

radiation detector at the exit slit. The electrical signal was monitored with a digital multimeter 

(VA18B, Shanghai Yihua V&A Instruments CO.,LTD, Shanghai, China) and transferred at a 

rate of 2 Hz to a personal computer as time/signal data points. The actual spectrum was 

obtained in a post processed time/wavelength conversion. The scan speed was set to 0.1 nm∙s-

1. With 10 µm wide entrance and exit slits a resolution of 1.7 nm (FWHM) was obtained. The 

VUV spectrometer chamber pressure was held at 10-4 mbar with a turbo- and membrane 

pump assembly. Due to the incompatibility of sampling VUV spectra within the transfer 

capillary a special design of the miniature spark discharge lamp was used for the VUV 

spectroscopy experiments with basically identical dimensions and discharge characteristics as 

the capillary mounted lamp.  

 The temporal evolution of a single spark in the UV/VIS was investigated with a 

photodiode (SD 200-12-22-041, Advanced Photonics, Inc., Camarillo, CA, USA), which was 

operated in reversed-biased mode and connected to an oscilloscope (TDS 1012, 

Tektronix, Inc., Wilsonville, OR, USA). Visualization and data processing was done with a 

self-programmed viewer based on LabVIEW 7.1 (National Instruments, Austin, TX, USA). 

The oscilloscope was also used for time dependent voltage and current investigations of a 
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single spark event. For this purpose a high voltage probe was connected and the voltage drop 

across a known resistance (0.6 Ω) between the anode and ground was measured, respectively. 

 

3.1.3  Setup for Neutral Radical Induced ITP Studies [82] 

 The home-built ion source (cf. Figure 11) was designed for operation with gaseous 

compounds only and it was first introduced by Kersten et al. [82]. It consists of a 25 cm long 

quartz tube, with an inner diameter of 8 mm, directly attached and sealed to the transfer 

capillary of the mass spectrometer. A pyrex tube of Øinner = 4 mm, entirely opaque for VUV 

and UV light is coaxially placed in the center of the quartz tube and ends 6 cm upstream of 

the MS transfer capillary. The 193 nm (VUV) laser beam is directed 5 mm upstream of the 

glass tube and the 248 nm (UV) laser beam 5 mm downstream of the glass tube exit. In this 

way the analyte, delivered through the inner glass tube, is not exposed to the VUV radiation, 

but ionized with UV radiation. However, the VUV laser is able to produce significant 

amounts of neutral atoms and radicals upon photolysis of precursors such as O2, H2O, 

CHnCl4-n (n=0 – 2), which are delivered in a controlled fashion within the bulk gas flow 

surrounding the inner glass tube. Hence, this setup spatially separates the 2-photon UV laser 

ionization region of the analyte from the production zone of neutral radicals by 1-photon 

VUV laser photolysis. The total gas flow is held constant at 1.4 L∙min-1. This closely matches 

the experimentally determined choked flow through the transfer capillary. The mean gas flow 

velocity through the quartz reactor tube is calculated to be 46 cm∙s-1, resulting in a Reynolds 

number of Re = 210. Hence, the transport through this setup is essentially laminar, allowing 

for rather accurate calculations of the residence times and thus reaction times. Additionally, 

this setup can be pumped down to roughly 1 mbar in a few seconds simply by shutting off the 

supply gases. The gas flows are regulated either by the inbuilt flow controller of the MS 

and/or by external mass flow controllers (1179A Mass-Flo-Controller, 2000 sccm, mks 

instruments, Andover, MA, USA) connected to a 647 C Multi-Gas-Controller unit (mks 

instruments, Andover, MA, USA). Liquid compounds are transferred to the gas phase using 

stainless steel cryo-traps, in which the saturation vapor pressure of a compound at constant 

temperature is balanced with nitrogen to a total pressure of 3000 mbar. The flow controllers 

allow for an accurate delivery of the compounds to the carrier gas. The final concentration is 

calculated from the known vapor pressure at the prevailing room temperature, the mixing 

ratio after pressurizing with nitrogen and the mixing ratio within the total flow. The delivery 
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of gaseous pyrene is accomplished by equilibrating the saturation vapor of deposited solid 

pyrene on the walls in the tube system with the main gas flow. This results in a constant 

pyrene mixing ratio of max. 6 ppbV (parts per billion by volume), calculated using a pyrene 

saturation vapor pressure of 6∙10 -6 mbar at 25°C [83] and a total pressure of 970 mbar in the 

ion source. 

 

 

Figure 11: Home-built ionization setup for kinetic and mechanistic studies [82]. 

 

3.3  Photoreactor 

 The gas phase degradation experiments were performed in a 1080 L quartz glass 

reactor with 6.2 m length and an inner diameter of 0.47 m [15,16]. A turbo-molecular pump 

backed by a double-stage rotary rough pump allows for evacuation to 10-4 mbar. The chamber 

is surrounded by 32 superactinic fluorescent lamps (320 nm < λ > 480 nm) and 32 low 

pressure Hg-lamps (λmax = 254 nm) which are individually controlled. Homogeneous mixing 

of the reactants inside the reactor is ensured by three magnetically coupled Teflon fans. Both 

ends of the chamber are closed by aluminum flanges and allow for versatile connections (cf. 

Figure 12: 1). 

 

3.3.1  Procedure of Atmospheric Degradation Studies 

 For typical OH radical initiated degradation experiments around 1 ppmV (parts per 

million by volume) of the compound that was to be investigated, 2 - 5 ppmV nitricoxide (NO) 
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and 2-5 ppmV methylnitrite (CH3ONO) were injected into the photoreactor and backfilled 

with synthetic air to atmospheric pressure. Switching on the superactinic fluorescent lamps 

induced the production of OH radicals via photo dissociation of CH3ONO followed by a 

subsequent reaction cascade with O2 and NO: 

 CH3ONO + hυ (λ > 360 nm) → CH3O• + NO•    (rxn 7) 

 CH3O• + O2 → HCHO + HO2•    (rxn 8) 

 HO2• + NO• → OH• + NO2•    (rxn 9) 

The experiment was typically stopped after 30 to 40 minutes with 50 to 60 % degradation of 

the initial compound. Considering starting concentrations of around 1 ppmV, oxygenated 

products in the ppbV range were thus expected.  

 

3.3.2  FT-IR-setup 

 The reactor is equipped with a Nexus Fourier transform infrared (FT-IR) spectrometer 

(Thermo Nicolet Corp., Madison, WI, USA), using a liquid nitrogen cooled mercury-

cadmium-telluride detector. A White-type multiple-reflection system with a base length of 

5.91 m gives a total optical path length of 484.7 m at 82 traverses. The IR spectra 

encompassed the spectral range of 4000 – 700 cm-1 with a resolution of 1 cm-1 (FWHM). 

 

3.3.3  MS Sampling Unit 

 For continuous sampling into the MS, the ion trap is connected to the photoreactor as 

follows: A glass tube (Figure 12: 2) of 20 cm length with an inner diameter of 8 mm extends 

into the reactor and ends in a gate valve (Figure 12: 3) on the outside of the reactor, mounted 

on the aluminum flange. The transfer to the laminar-flow ion source (Figure 12: 6) is 

accomplished via a second glass tube (Figure 12: 5) of the same dimensions, surrounded by 

an aluminum housing, allowing for additional sheath gas flow (Figure 12: 4). The continuous 

sample flow from the reactor is determined by the already described choked flow of the MS 

transfer capillary (Qchoked = 1.4 L∙min-1). Considering the dimensions of the entire tubing 

system a sample needs roughly 0.9 s from the reactor to the entrance of the MS. The pressure 
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in the reactor is balanced to ~1000 mbar by providing a continuous flow of synthetic air 

matching the amount sampled by the MS. The resulting dilution in the chamber amounts to 

8 % after 60 min. 

 

3.3.4  MS Ionization Unit 

 The above described laminar-flow ion source (cf. 3.1.3  Novel Laminar-Flow Ion 

Source) is used for atmospheric pressure ionization. The integrated APLI setup provides an 

optical beam delivery stage that directs the laser beam of the DPSS laser (cf. 3.1.1  Laser 

Systems) coaxially into the ion source along the propagation direction of the bulk gas flow 

(Figure 12: 11). The novel APPI setup within the transfer capillary (cf. 3.1.4  Novel APPI 

Setup) additionally allows for single photon ionization (Figure 12: 9). The entire laminar-flow 

ion source (Figure 12: 6) in connection with the transfer unit from the reactor (Figure 12: 5) is 

pumped to roughly 10 mbar in a few seconds by simply shutting off the supply gas with the 

gate valve (Figure 12: 3), facilitating frequent flushing of the system. 

 

 

Figure 12: Schematic of the experimental setup used for degradation studies. 1) aluminum flange of the reactor; 
2) sampling glass tube; 3) gate valve; 4) sheath gas inlet; 5) transfer unit (glass tube, surrounded by an 
aluminum housing for sheath gas supply); 6) laminar-flow ion source; 7) port for pressure measurement; 
8) VUV radiation inlet stage; 9) transfer capillary unit with the home-built APPI setup; 10) DPSS laser; 
11) laser optics (mirrors).  
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3.4  Chemicals 

 Acetonitrile (ACN), methanol, acetone and tetrachloromethane were obtained from 

Fisher Scientific, Waltham, MA, USA. Benzene, anthracene and pyrene were purchased from 

Merck KGaA, Darmstadt, Germany. The xylene isomers (p-,m- and o-) were from Fluka, 

Buchs, Switzerland. Nitrogen oxide was from Air Liquide Deutschland GmbH, Düsseldorf, 

Germany, with a stated purity of 99.5 %. Oxygen, argon; nitrogen, helium and synthetic air 

were from Gase.de, Sulzbach, Germany, with a stated purity of 99.999 % vol. A compressed 

gas cylinder with a mixture of 17 oxygenated VOCs in synthetic air was generated in house. 

The mixing ratios ranging between 10 and 220 ppbV, were confirmed through a calibrated 

GC-MS analysis. Methylnitrite (MeONO) was synthesized as described in [84] and stored at  

-78 °C. All solvents were of analytical or chromatographic purity, all other chemicals of 

highest purity available, and were used without further purification.  

 

3.5  Computational Investigations 

 Investigations on neutral radical induced ion transformation processes were supported 

by kinetic simulations with the Chemked-I/II version 3.3 software package [85]. 

 Gaussian 03W [86] combined with the graphical user interface GaussView 4.1 [87] is 

used for potential energy calculations along the proposed reaction pathways in the section of 

neutral radical induced ion transformation processes. The reported Gibbs free energies and 

enthalpy corrected total energies are obtained from geometry optimizations and subsequent 

frequency calculations using the Density Functional Theory (DFT) with the Becke-3-

Parameter-Lee-Yang-Parr functional (B3LYP) and the 6-31++G(d,p) doubly-diffuse and 

doubly-polarized split-valence basis set. The combination of this functional and basis set type 

provides the optimal cost-to-benefit ratio with respect to CPU time [88] and has satisfactorily 

been applied to a large number of comparable reaction systems [89-92]. 

 Ion trajectory simulations were performed with the SIMION™ Version 8.0 software 

package [93] and for fluid dynamical simulations Comsol Multiphysics Version 4.0a (Comsol 

AB, Stockholm,Sweden) was used. 
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4.1  Common API sources 

 Commercially available API sources that are offered by the leading mass spectrometry 

manufacturers such as Bruker Daltonics with the Apollo™ series, Thermo Scientific with the 

Ion Max™ source or Waters with the Z-Spray™ or Xevo™ line are all similar to the basic 

design shown in Figure 7 [94,95]. The following working principle (cf. 3.1.2  Common API 

Source) holds true for all these setups: (i) Pneumatically assisted thermal vaporization of a 

liquid flow into a chamber of considerable volume, (ii) ionization within this chamber and 

(iii) presence of electrical potential gradients draw the ions into the MS. The vaporization step 

results in significant gas input, since there is an additional sheath gas assisting the formation 

of the spray and a gas stream counter propagating the direction of the MS flow to prevent 

droplets from entering the mass spectrometer (cf. Figure 7, right). The flow through the MS-

inlet, when operated with a transfer capillary as a pressure reduction stage, is considered to be 

nearly constant, as long as there is no significant pressure increase or temperature change on 

the atmospheric pressure side (cf. 4.2.3.1  Characterization of Transfer Capillaries). The least 

defined volume flow is at the drain. Its value is basically laboratory dependent, some 

instruments are left open towards the atmospheric pressure and some are connected to an 

exhaust vent installation, which is held at slightly decreased pressure (cf. Figure 7, right). 

Consequently, complex fluid dynamical and ion transmission behavior for this type of source 

design is expected.  

 

4.1.1  Distribution of Ion Acceptance (DIA) Studies 

 In 2007 Lorenz et al. [43] started in-depth investigations on the characteristic transport 

processes and basic ionization characteristics that are prevailing in this type of API assembly. 

Their approach to obtain further insight into these processes is based on spatially and 

temporally resolved APLI experiments within the Apollo™ source, the Z-Spray™ source, and 

the MPIS. Briefly, an area of 14∙14 mm², spanned by the axes of the MS sampling port and 

the vaporization stage is scanned by a focused laser beam. The recorded mass spectrometric 

signal is then plotted against the laser position (cf. Figure 13) in a two-dimensional, color 

4   Results and Discussion 
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coded diagram. The thus obtained “distribution of ion acceptance (DIA)” plots show the two-

dimensional relative distribution of the sensitivity within the source enclosure. DIA 

measurements reveal the region of the source enclosure in which ions can be produced and are 

detectable by the MS. It is noted that such a plot depicts the product of two basically 

orthogonal parameters: (i) The spatial overlap of the neutral analyte density distribution with 

the laser beam irradiated volume (affecting the ionization efficiency), and (ii) the overlap of 

the resulting ion population with the spatial distribution of ion acceptance of the MS 

(affecting the in-source detection efficiency). Both effects depend on the laser beam position 

and on the gas flow dynamics; the in-source detection efficiency is furthermore influenced by 

electrical potential gradients. Figure 13 depicts an exemplary DIA for the MPIS with common 

ion source parameter settings as used for routine LC-APLI.  

 

 

Figure 13: DIA plot obtained with common ion source parameter settings for routine LC-APLI with the MPIS [44]. 
For comparison the cross sectional dimension of an exciplex laser beam is sketched. 

 

Such a sensitivity distribution requires strong electrical fields facing toward the transfer 

capillary and voltage settings of typically -1000 V at the capillary entrance are applied. The 

projection of the two-dimensionally resolved experiments shown in Figure 13 is of ellipsoidal 

shape with a vertical extension of 14 mm, a horizontal extension of 3 mm and an area of 

35 mm². The DIA is located 3 mm in front of the spray shield, located nearly symmetrically 

around the horizontal axis of the capillary entrance [44]. DIA measurements have proven to 
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be a powerful tool for investigations on temporally and spatially resolved ionization and ion 

transmission performance of API sources [43,46,47,96].  

 One of the most important findings based on DIA data is that the region of maximum 

overlap of the ionization and in-source detection efficiency is rather confined. It follows that 

the spatial extension in which primary generated ions are detected by the MS is small 

compared to the enclosure volume. This entails two crucial aspects: (i) The ionizing unit 

(laser beam) can only be positioned in a narrow volume of the total enclosure to obtain 

optimal performance and (ii) the position of this volume is significantly affected by the 

prevailing gas flows and applied electrical potentials. It is noted that current DIA data cannot 

be directly related to the APPI setup, since an additional repelling voltage is applied to the 

housing of the VUV lamp, generating a potential gradient between the spray shield and the 

lamp. Such DIAs have not been investigated yet, but rough estimates lead to the conclusion 

that the shape, dimension and dependency on source parameters of such a sensitivity 

distribution should not significantly differ from the hitherto obtained results.  

 

4.1.2  Fluid Dynamical Behavior 

 In 2010 a computational fluid dynamic (CFD) approach, experimentally validated by 

particle image velocimetry (PIV) measurements, was introduced to gain more insight into the 

prevailing mechanisms of the common API sources [48]. The computed models fully proved 

the hypotheses hitherto solely based on DIA measurements and furthermore significantly 

extended the current knowledge base. In Figure 14 three important aspects are presented: 

(i) The velocity distribution (left), (ii) the time integrated trajectories (center) and (iii) the 

neutral analyte distribution (right). As can be seen in the velocity distribution the main gas 

drift is determined by the gas stream from the sprayer with nearly 8 m∙s-1 perpendicular to the 

MS inlet. The trajectories shown slow down to 2 m∙s-1 before they strike the enclosure bottom 

and split with a subsequent upward directed circular motion and further deceleration to less 

than 1 m∙s-1. The time integrated trajectories show analyte dwell times in the order of seconds. 

Transferring this to the neutral analyte density variation model a nearly isotropic distribution 

within the entire enclosure results. Consequently, these computed models reveal rather 

chaotic, turbulent, most probably strongly instationary flows causing long residence times 

within such a source design. This inevitably enhances uncontrollable hetero- and homogenous 
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neutral- and ion transformation processes, ion losses, memory effects, and chromatographic 

peak broadening. Time resolved mechanistic studies of unknown compositions, such as the 

intended atmospheric degradation experiments, are rendered nearly impossible, since the 

impact of the analytical method itself on the primary generated ion distribution is an 

unspecified parameter.  

 

 

Figure 14: Computational fluid dynamical calculation results (Ansys CFX-11) of (left) the velocity distribution, 
(center) time integrated trajectories and (right) the neutral analyte distribution within the geometries of a 
MPIS based on typical source settings [48]. 

 

 In typical LC-APPI measurements the penetration depth of VUV light is less than 

5 mm (cf. 1.2.1.2  Atmospheric Pressure Photo Ionization (APPI)), thus the APPI lamp is 

surrounded by a roughly calculated illuminated volume of 0.07 cm³ (considering a nearly 

spherical shape). With respect to the confined DIAs it becomes apparent why poor direct 

photo ionization efficiencies have been reported [51]. First of all, the overlap of the neutral 

analyte density and the irradiated volume is small, since prior to the ionization step an 

extensive neutral analyte distribution occurs. Secondly, the overlap of the resulting ion 

population with the spatial distribution of ion acceptance of the MS is very sensitive to ion 

source settings and changes in fluid dynamics. Consequently, the only meaningful way to 

perform efficient APPI in the present source design is via a dopant that directs the light 

energy into ionization processes. In this case, long residence times and an isotropic 

distribution of dopant ions is desirable, since subsequent chemical processes such as charge 

transfer to or protonation of the analyte are enhanced.  

 The UV laser light in APLI applications, however, is not restricted to absorbing matrix 

components along the propagation direction. Here the ionization volume is merely restricted 

to the dimensions of the conventional assembly. Together with the rather confined overlap of 
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the resulting ion population and the spatial distribution of ion acceptance of the MS the 

ineffective use of the ionizing laser radiation becomes apparent [44].  

 Furthermore, observations of significant signal variability induced by external 

“parameters” (window open, door shut) have been made with the conventional source design. 

Qualitatively, these effects are attributable to changes in the fluid dynamics, which might 

significantly shift the DIA within an experiment hence causing alternating signal intensities in 

the obtained mass spectrum.  

 In summary, thorough studies of the fluid dynamical and ion transmission behavior of 

the commercially available atmospheric pressure ionization source [48,97,98] revealed 

chaotic, turbulent flows and long residence times within the source enclosure. Uncontrollable 

hetero- and homogenous neutral- and ion transformation processes, ion losses, memory 

effects, and chromatographic peak broadening are enhanced and constitute an unspecified 

operational parameter, which may severely impact on the source performance. Thus the 

reliability of MS data recorded with these types of ion sources is in fact questionable, 

rendering mechanistic studies with unknown compounds nearly impossible. The conventional 

assembly additionally restricts the ionization volume and leads to an insufficient use of the 

ionizing laser radiation [44]. Hence, the application of this type of source design was deemed 

inappropriate for the intended gas phase sampling from atmospheric degradation product 

studies.  

 

4.1.3  H2O and O2 Background Concentrations [82] 

 Usually a factory delivered API mass spectrometer has a nitrogen generator to provide 

a continuous carrier gas supply without the need of frequently replacing compressed gas 

cylinders. In this section the permanent background concentration of water and O2, inevitably 

supplied by such a generator in varying amounts and thus being present in the Apollo™ 

source was investigated. The latter was experimentally determined by measuring the ozone 

mixing ratio as a function of added known amounts of pure oxygen to the main gas flow in 

the presence of 193 nm laser radiation. The oxygen is partly photodissociated upon 

irradiation, which results in increasing concentrations of ozone primarily due the reaction 

sequence: 
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 O2 + hν → 2 O(3P)    (rxn 10) 

 O(3P) + O2 + M → O3 + M    (rxn 11) 

 

(at low water mixing ratios the secondary photolysis of O3 results essentially in a null cycle; 

cf. reactions No 1/5/6/7 in Table 4). Plotting the measured ozone mixing ratio as a function of 

the added oxygen yields a straight line, which is extrapolated to the zero point of the ordinate 

yielding an O2 mixing ratio of 2.4%, as shown in Figure 15. This procedure merely represents 

the well known analytical method of standard additions. 

 

 

Figure 15: Standard addition method to determine the oxygen mixing ratio in the present API source. The ordinate 
intercept of (-)2.4 % represents the source background O2 mixing ratio [82].  

 

 Routine operation of API sources, e.g., frequent solvent and sample change, frequent 

opening of the source enclosure for maintenance purposes, leads to highly variable water 

mixing ratios in the source enclosure. With respect to solvent purity, the range of dissolved 

H2O varies from 100 ppm in non-polar solvents, such as heptane or hexane, up to several 

percent in more polar solvents, e.g., CH3OH or CH3CN. Here, only the water background 

concentration within the source, when all bulk gases are flowing was determined. A flow 

controller at the exhaust line of the ion source was used to maintain a constant gas flow. The 

exhaust gases were passed through a stripping coil, which was held at –78 °C, leading to a 

quantitative condensation of gas phase water. By re-weighing the mass of the coil the water 

background mixing ratio in the gas flow was determined to be roughly 100 ppmV. The water 
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as well as the oxygen mixing ratios were determined after flushing the source for 20 hours 

with heated nitrogen (350 °C), obtained from the nitrogen generator of the MS. The 

manufacturer states an initial N2 purity with less than 0.5 % oxygen present. At the time of the 

experiments, the built-in cartridge was about 11 months old. There is no information on the 

effectiveness of this cartridge with respect to reduction of other compounds such as H2O. 

 

4.2  Development of a Novel API Approach 

 The above investigations on the fluid dynamic behavior and ionization capabilities of 

the conventional API assembly pointed out the need for a more controllable system, tailored 

to gas phase sampling (in a first approach), efficient VUV ionization and the efficient use of 

the laser beam in APLI applications.  

 

4.2.1  LFIS - Preliminary Experiments 

a) Rough determination of the flow characteristics 

 Preliminary tests have been performed with tubing systems as ionization source 

enclosures that were directly mounted onto the transfer capillary. The flow within these 

systems was determined by the choked flow of the transfer capillary, no potential gradients 

for ion deflection purposes were applied and the entire bulk gas flow was delivered into the 

mass spectrometer. The dimensions of the tubes ranged from l = 50 cm down to 20 cm length, 

with inner diameters of Øinner = 4 mm up to 9 mm. The Reynolds numbers were calculated as 

follows: 

 𝑅𝑒 =  𝜌∙𝜈𝑥∙Ø𝒊𝒏𝒏𝒆𝒓
𝜒

     (eq 5) 

with ρ = 1.17 kg∙m-3 as the density of nitrogen at 293 K, νx [m∙s-1] as the averaged axial drift 

velocity (0.4 – 1.9 m∙s-1), which is determined by the tube dimension and the choked capillary 

flow (Qchoked = 1.4 L∙min-1), Øinner [m] as the tube diameter and χ = 1.76∙10-5 kg∙m-1∙s-1 as the 

dynamic viscosity of N2 at 293 K. The obtained Reynolds numbers range from Re = 249 up to 

Re = 559, well below the critical number of Recrit = 2300 [99], consequently essentially 

laminar flows prevailed in all these tubing systems. In Figure 16 [48] a computational fluid 
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dynamical model of such a tube is shown. The boundary conditions were Qchoked = 1.4 L∙min-

1, Øinner = 9 mm and a conically shaped end with 0.8 mm orifice. The solid lines represent 

stream lines, the size and direction of arrows indicate the velocity components and 

quantitative information of the prevailing velocity is given by the colored scale. The 

simulation clearly reveals an essentially laminar flow without ablation from the main stream 

or formation of turbulences close to the cone region. Ion losses are expected to occur mainly 

by diffusion to the wall.  

 

 

Figure 16: Fluid dynamical simulation of a tube with a volume flow of 1.4 L∙min-1, inner tube diameter of 9 mm and 
an 0.8 mm orifice at the segue to the transfer capillary [48].  

 

b) Ion transmission efficiencies 

 In one of the first approaches, as shown in Figure 17 (left) [48], a quartz tube of 40 cm 

length and an inner diameter of Øinner = 4 mm was connected to the capillary entrance.  

 

 

Figure 17: Preliminary test on ion transport efficiencies in a laminar flow [48]. (left) Scan of ionization positions with 
a 248 nm exciplex laser (beam collimated to 1.5 mm cross section) along a quartz tube of 40 cm length. 
(right) The obtained relative mass spectrometric signal is plotted against the laser spot distance to the 
spray shield [48]. 
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The end of the tube was sintered to approximately 0.8 mm in diameter ensuring a smooth 

transfer into the capillary. The delivery of analyte was accomplished by equilibrating the 

saturation vapor of deposited solid pyrene on the walls in the tube system with the main gas 

flow of nitrogen. An aperture plate with holes of 1.5 mm in diameter was positioned outside 

along the tube main axis. The holes were subsequently irradiated with a 248 nm laser 

radiation (100 Hz and 3.5 mJ per pulse accounting for 23 µJ per pulse within the tube). It is 

noted that the mass spectrometric signal was very sensitive to small alterations of the laser 

spot position perpendicular to the tube axis. In Figure 17 (right) the obtained signal for pyrene 

is plotted against the laser beam position. It shows that 36 % of the signal intensity remains 

even after 40 cm of transport. Simultaneous illumination of several spots with an expanded 

laser beam revealed that the recorded signal corresponds well to the sum of signal intensity 

observed individually at each position. For a rough quantification a function is fitted to the 

plot in Figure 17 (right) and the following equation is obtained: 

 𝐼 = 23.8 + 83.0 ∙ 𝑒−0.0069𝑑   (eq 6) 

with I as the relative mass spectrometric signal of pyrene in [%] and d in [mm] as the distance 

of the illuminated spot from the spray shield. For a calculated estimate of the signal strength 

generated with a coaxial laser beam that is positioned along the propagation direction of the 

bulk gas flow, an integrated form of eq 6 is required: 

 [∆𝐼]𝑑1
𝑑2 = �23.8 ∙ 𝑑 − 83.0 ∙ 𝑒

−0.0069𝑑

0.0069
�
𝑑1

𝑑2
  (eq 7). 

Considering a tube of 20 cm length which is coaxially illuminated with a laser beam of the 

same operating conditions as used for the experiment in Figure 17 , with d1 = 0 mm and 

d2 = 200 mm, an integrated relative intensity of 1.3∙104 % would be obtained. Compared to 

the maximum of 100 % (cf. Figure 17 right) with the perpendicular single spot illumination an 

at least 130-fold increase is expected for a coaxial configuration. In addition, the ionization 

efficiency is enhanced due to multiple illumination of the neutral analyte. The volume inside 

the tube can be envisioned as an infinite number of connected segments (neglecting the 

Hagen-Poiseuille flow profile), each propagating with the average drift velocity νx = 1.9 m∙s-1 

(with Øinner = 4 mm, Qchoked = 1.4 L∙min-1) towards the entrance of the capillary. With a tube 

length of l = 20 cm the dwell time of such a segment accounts for 0.1 s. Considering the laser 

repetition rate of 100 Hz one segment is illuminated ten times before entering the transfer 
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capillary. In the conventional perpendicular APLI operation mode (cf. 3.1.2  Common API 

Source), however, a neutral analyte molecule is irradiated at most only once [44]. 

 

c) Different behavior of quartz and metal tubes 

 Similar investigations on stainless steel tube systems revealed comparable results in 

terms of ion transport efficiencies. Significantly differing behavior, however, was observed 

with respect to response times, here referred to as the delay between the start of the delivery 

of ionizing radiation and recording a stable mass spectrometric signal. Perpendicular 

ionization within a metal tube system readily led to the expected response times determined 

by the average axial drift velocity νx. In contrast, the characteristics in quartz tubes were 

rendered much more difficult, since significant charging effects were observed. In this way a 

quartz tube that had not been used for a longer period of time exhibited response times of up 

to 10 minutes with a perpendicular ionization positions of d = 40 cm. Once being 

“conditioned” the response time of a tube reproducibly followed the expected average axial 

drift velocity. Furthermore, applying partially located electrostatic fields onto a quartz tube, 

e.g. touching with a finger, caused immediate collapse of the MS signal, however, after a 

certain period of time the signal recovered. No such effects have been observed with metal 

tube systems. Apparently, it is possible to induce partially located strong potential gradients 

within a quartz tube that are strong enough to significantly affect the ion transport. On the 

contrary, the equipotential surface of a metal tube ensures field-free conditions. 

 

d) Impact of the laser frequency in coaxial configuration 

 Here the setup for capillary investigations as shown in Figure 10 was used with an 

ionization tube of Øinner = 9 mm and 20 cm length. The gas flow was 1.5 L∙min-1 resulting in 

an average drift velocity of νx = 0.4 m∙s-1 and a dwell time of 0.5 s. The 248 nm laser beam 

was reduced to a circular profile of 6 mm in diameter with pulse energies of 0.7 mJ. Pyrene 

was delivered as shown in Figure 10, accounting for an estimated neutral analyte 

concentration of around 6 ppbV (cf. 3.1.3  Setup for Neutral Radical Induced ITP Studies 

[82]). Figure 18 depicts the recorded ion current, plotted as function of the laser frequency 

and the number of segment illumination. It clearly demonstrates significant enhancement of 

signal intensity due to multiple segment illumination. 
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Figure 18: Recorded ion current as function of the laser frequency and the number of segment illumination within a 
coaxial setup.  

 

e) Suggestive estimate of coaxial sensitivity 

 In an additional preliminary experiment the sensitivity of a coaxial APLI approach 

within a stainless steel tube (Øinner = 9 mm, l = 22 cm; conically shaped end with 0.8 mm 

orifice) was investigated. For this purpose anthracene was deposited in a cryo-trap and the 

saturation vapor was balanced with nitrogen to a total pressure of 3000 mbar at constant 

temperature. A flow controller allowed for an accurate delivery of the compound through a 

small glass pipette sheathed by the main carrier gas. The final concentration in the ionization 

stage was calculated from the known vapor pressure at the prevailing room temperature, the 

mixing ratio after pressurizing with nitrogen and the mixing ratio within the total flow. The 

248 nm laser beam was reduced to a circular shape of 1.5 mm in diameter and directed 

centrically along the tube. The pulse energy was 60µJ inside the tube with a repetition rate of 

100 Hz. Considering an average drift velocity of νx = 0.4 m∙s-1 (Qchoked = 1.4 L∙min-1) a 

hypothetical segment was illuminated 55 times prior to entering the transfer capillary. In this 

way a standard addition method as shown in Figure 19 (left) was performed. The extrapolated 

linear regression revealed a background anthracene concentration of 3 pptV (parts per trillion 

by volume) prevailing in the used tube system (cf. Figure 19, right). It follows that even with 

considerably smaller laser beam dimensions and pulse energies condensed aromatic 

hydrocarbon compounds are detectable in the pptV range.  
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Figure 19: (left) Standard addition method for anthracene in a coaxial APLI configuration. (right) Coaxial APLI 
mass spectrum with 3 pptV anthracene present. 

 

 In summary the preliminary experiments showed: (i) The choked flow of the pressure 

reduction stage (transfer capillary) of a MS can be used to keep up a constant laminar flow 

within ionization tubes of inner diameters ranging between Øinner = 9 mm and 4 mm, (ii) there 

is efficient ion transport over considerable distances within laminar flows at atmospheric 

pressure, (iii) metal tube systems in contrast to quartz/glass assemblies, are not exhibiting 

charge effects but show identical ion transmission behavior, (iv) the exact coaxial illumination 

along a laminar flow ionization stage significantly increases the ionization volume in contrast 

to conventional APLI, (v) the in-source detection efficiency of ions in such a setup is near 

unity, only diminished by diffusion losses, which also stands in contrast to conventional 

APLI, (vi) multiple illumination of a hypothetical infinitesimal segment, propagating with the 

average drift velocity νx along the ionization tube, significantly increases the ion formation 

efficiency and (vii) a coaxial APLI assembly allows much smaller dimensioned laser beams 

and thus considerably smaller laser setups with sensitivities of AH still in the pptV range. 

 

4.2.2  LFIS - Realization 

 Based on the preliminary experimental results a prototype of a laminar-flow ion source 

(cf. Figure 8) was constructed. Maintaining the laminar characteristic throughout the entire 

source up to the MS inlet was of primary importance. Therefore two critical parameters had to 

be resolved. First the bulk gas inlet into the ionization stage and second the transfer unit into 
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the capillary. The latter, as already indicated in the preliminary experiments, had to be of very 

sharp conical shape. For technical reasons, the utmost realizable full angle of 8°, ending in an 

aperture of 0.8 mm, was applied (cf. Figure 8). In order to prevent the propagation of any 

turbulence into the ionization stage special care had to be taken of the bulk gas inlet unit; 

however, technical reasons limited the feasible angle to 10° here (cf. Figure 8). The fairly 

wide inner diameter of Øinner = 9 mm ensures a gas inlet with an average drift velocity of 

0.4 m∙s-1. A subsequent neck reduces Øinner to 4 mm resulting in an average drift velocity of 

νx = 1.9 m∙s-1 within the ionization tube. 

 This design was first introduced in [48] and in cooperation with Bruker Daltonics 

GmbH, Bremen, a patent was filed in 2010 [79,80]. A more detailed technical description is 

given in section 3.1.3  Novel Laminar-Flow Ion Source (LFIS). A thorough fluid dynamic 

discussion based on computational modeling, the eventual APLI application as used for the 

intended atmospheric degradation product studies, and the VUV irradiation within the 

ionization stage will be given in the following three sections. 

 

4.2.2.1  LFIS - Fluid Dynamical Simulations 
a) Flow characteristic 

 Does the entire LFIS design meet the demand of maintaining the laminar flow? Does 

the realized inlet unit really provide the required smooth flow characteristics into the 

ionization tube or do generated turbulences propagate down to the cone? To shed more light 

into these issues fluid dynamical computational modeling, as for the small tube system in the 

preliminary experiments, were also performed for the designed prototype. The boundary 

conditions (dimensions and volume flow) were mapped one-to-one as listed in chapter 3.1.3  

Novel Laminar-Flow Ion Source (LFIS). The computational results are shown in Figure 20. 

The solid lines in red represent stream lines, the size and direction of arrows indicate the 

velocity components and quantitative information of the prevailing velocity is obtained by the 

colored scale. Figure 20 (a) depicts the sample flow entering the inlet tube with the expected 

average velocity of around 0.4 m∙s-1. Albeit a soft “bouncing” effect on the bottom of the laser 

radiation inlet tube, indicated by the lower, thicker stream line, this simulation clearly 

demonstrates the smooth segue into an axial stream. No ablation from the main stream and no 

turbulences occur in that region. The only drawback obviously present is the appearance of a 

fairly high dead water volume (~3 cm3) between the radiation inlet and the intersection of the 
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incoming gas flow. This is assumed to be negligible in terms of memory effects, but 

nevertheless leaves room for more improvement in further LFIS designs. Following the axial 

stream, the subsequent neck, which reduces the tubing diameter from 9 mm down to 4 mm is 

shown in a close up in Figure 20 (b). According to Venturi´s law the velocity increases, 

however, no significant dead water zone formation or laminar separation is visible at this 

point as well. The subsequent, fully developed laminar profile within the ionization tube 

becomes visible in Figure 20 (d). The color coded scale clearly reveals the expected Hagen-

Poiseuille flow profile with a peak velocity of 3.5 m∙s-1 and nearly 0 m∙s-1 on the tube walls. 

Figure 20 (c) depicts a close-up of the fluid dynamic behavior within the conically shaped 

transfer stage to the MS transfer capillary. Again, no dead water zones or turbulences are 

formed, ensuring a smooth transfer into the MS. The velocity increases at this point up to 

80 m∙s-1 (exceeding the shown color scale; deep red), following again Venturi´s law.  

 

 

Figure 20: Fluid dynamical simulation of the LFIS: (a) Inlet stage, (b) close up of the neck unit, (c) close up of the 
cone and (d) ionization stage. Boundary conditions were used as described in chapter 3.1.3  Novel Laminar-
Flow Ion Source (LFIS).  
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 In conclusion, the fluid dynamical simulations fully support the present design of the 

LFIS in terms of maintaining a laminar flow throughout the entire setup. In contrast to the 

conventional API source (cf. Figure 14) the LFIS allows for rather accurate determinations of 

parameters such as dwell times, for predictions and for fairly precise calculations due to the 

well-characterized flow. The number of poorly characterized, uncontrollable and unstable 

source parameters, which are present in the commercially available API setup (cf. 4.1  

Common API sources) are reduced to the knowledge of the pressure within the tube system, 

the volume flow (determined by the transfer capillary) and the LFIS dimensions.  

 

b) Diffusion along the flow propagation  

 The Comsol Multiphysics (Version 4.0a) software package is capable of modeling the 

spatial evolution of an initially confined analyte distribution. This approach gives valuable 

insight into the prevailing mechanisms of the LFIS and allows for qualitative as well as 

quantitative predictions concerning coaxial illumination, diffusion behavior and 

chromatographic peak broadening. Furthermore, this type of simulation enables the numerical 

treatment of possible ion chemistry, since the exact evolution of concentration and dwell 

times can be derived. The purpose of the present simulation, however, is to merely give an 

impression of the general evolution of a confined volume segment containing the analyte and 

to derive some qualitative estimates. The boundary conditions for the general fluid dynamical 

simulation were the same as described before; additionally a volume segment containing the 

analyte with a diameter of 0.5 mm and a concentration of ~5 ppbV was placed on an axial 

position of the ionization tube and the diffusion coefficient of toluene was used  

(6.98∙10-2 cm2∙s-1 [100]). Figure 21 shows a selection of frames obtained within the simulation 

run. The most apparent result is the rapid decrease of the maximum concentration by an order 

of magnitude within the first 5 ms (10-11 mol∙cm-3 to 10-12 mol∙cm-3), also illustrated in the 

plot on the right. The exponential decay continues down to 10-14 mol∙cm-3 after 70 ms. This 

demonstrates an important consequence concerning the multiple illumination of a 

hypothetical segment with a small laser beam diameter. Considering a pulse repetition rate of 

200 Hz one segment would be illuminated every 5 ms. Thus, between every laser shot the 

concentration of the formerly generated ions is decreased by at least a factor of ten, 

effectively circumventing localized ion saturation effects within the ionization volume. 

Furthermore, rough estimates concerning chromatographic peak broadening (note, that no LC 
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or GC is applied within this work) can be derived from the maximum spatial broadening. 

Assuming a ~5 cm spatial broadening that propagates with an average axial velocity of 

νx = 1.9 m∙s-1 gives a temporal broadening of ~26 ms, which is far from being the limiting 

factor in common chromatographic peak broadening. This simulation further illustrates the 

typical Hagen-Poiseuille flow profile in which the initial spot is dispersed with downstream 

propagation. 

 

 

Figure 21: (left) Simulated spatial evolution of an initially localized ion packet along the downstream propagation of 
the LFIS and (right) corresponding plot of the time dependent evolution of the maximum concentration. 

 

4.2.2.2  LFIS – APLI 
a) Choice of laser system 

 The preliminary experimental section demonstrated the excellent attainable sensitivity 

via coaxial illumination with significant smaller laser beam diameters and lower pulse 

energies than applied in conventional APLI. In general, decreasing the energy output allows 

for the use of considerably smaller and thus more convenient APLI-MS setups. As mentioned 

by Short et al. [65], “APLI is not yet widely used due to the large size, expense and 

maintenance associated with the laser system”. Accordingly, a compact diode pumped solid 

state laser was purchased in cooperation with Bruker Daltonics GmbH, Bremen. This type of 
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laser provides beam diameters of dbeam = 0.5 mm and pulse energies of Epulse = 60 µJ with 

tpulse = 1 ns pulse duration, accounting for power densities of 3∙107 W∙cm-2. The DPSS 

significantly outperforms the commonly used exciplex laser in terms of size (cf. Figure 6), 

acoustic noise level (DPSS: around 0 dB; exciplex: 70 dB [101]), maintenance and purchase 

cost (DPSS: ~ 10 k€; Exciplex: ~ 40 k€) [44]. Consequently, the implementation of such a 

laser system generally renders the technique of APLI-MS more practicable and attractive. At 

this point it is stressed that comparative experiments between the performance of a DPSS and 

an exciplex laser in the conventional perpendicular APLI-MS setup were carried out [44]. 

Here, a 0.01 µM pyrene solution in methanol was delivered in a continuous flow mode and 

both laser beams were manually signal optimized. The recorded mass spectra revealed a 

relative signal intensity of 0.9 % of the DPSS laser generated signal as compared to the signal 

obtained with the exciplex laser. The need for significant increase in ionization volume along 

the light propagation direction was pinpointed, when the use of smaller laser systems but 

comparable performance as currently obtained with exciplex lasers, is desired. Consequently, 

decreasing the size of the laser system in APLI-MS is directly related to the new laminar flow 

design.  

 

b) Laser beam expansion.  

 The power density output of the DPSS laser exceeds the exciplex laser by an order of 

magnitude when no further optical devices are used (cf. Table 1). In the first instance this 

leads to the assumption of beam expansion and hence an increase of the ionization volume 

Vionization [cm3] according to 

 𝑉𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = �𝑑𝑏𝑒𝑎𝑚
2

�
2
∙ 𝜋 ∙ 𝑙𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑢𝑏𝑒  (eq 8) 

with dbeam = beam diameter [cm] and lionization tube = length of the ionization tube [cm]. On the 

other hand, such an approach proportionally decreases the photon flux Φ [photon s-1 cm-2] 

with the exact same quadratic dependency on the diameter according to 

 Φ = 𝐸𝑝𝑢𝑙𝑠𝑒

𝑡𝑝𝑢𝑙𝑠𝑒∙�
𝑑𝑏𝑒𝑎𝑚

2 �
2
∙𝜋∙ℎ∙𝑐𝜆

    (eq 9) 

with Epulse = pulse energy [J], tpulse = pulse duration [s], h = Planck´s constant (6.626∙10-34 J∙s), 

c = velocity of light (3.0∙108 m∙s-1) and λ = wavelength [m]. In order to evaluate a reasonable 
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implementation of a beam expending unit, prior to coaxial illumination, the following 

theoretical considerations were made: The total number of ions n[M]+ generated within one 

laser pulse and transferred into the MS is described by  

 𝑛[M]+ = {[M]+} ∙ 𝑉𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛    (eq 10) 

with {[M]+} = the radical cation concentration [molecules∙cm -3]. Furthermore, the generation 

of {[M]+} within one laser pulse is in general obtained from  

 {[M]+} = {[𝑀]} − {[𝑀]} ∙ 𝑒−𝑘𝑖𝑜𝑛𝑡𝑝𝑢𝑙𝑠𝑒   (eq 11) 

with {[M]} = neutral analyte concentration within the ionization tube [molecules∙cm -3] and 

kion = first order rate constant of ion formation [s-1]. However, the change of {[M]} within one 

laser pulse is negligible, and equation 11 can approximately be reduced to 

 {[M]+} ≈ {[𝑀]} ∙ 𝑘𝑖𝑜𝑛 ∙ 𝑡𝑝𝑢𝑙𝑠𝑒    (eq 12). 

For an ideal two-photon absorption process the rate constant of ion formation kion is obtained 

from equation 13 

 𝑘𝑖𝑜𝑛 = 𝜎 ∙ Φ2 ∙ 𝜑1 ∙ 𝜑2     (eq 13) 

(σ = absorption cross section of the overall (1+1) REMPI process [cm4∙s∙molecule-2]; 

φ1,2 = quantum yield for each step of the two absorption processes [molecule∙ photon-1]). 

Equations 13 and 12 show the quadratic dependency of the ion concentration {[M]+}on the 

photon flux. Taking into account the reciprocal quadratic dependency of the photon flux Φ on 

the beam diameter dbeam, as shown in equation 9, the following proportional relation between 

the ion concentration {[M]+}and the beam diameter after one laser pulse is obtained: 

 {[M]+}~ 1
dbeam

4     (eq 14). 

Combining the quadratic dependency of Vionization on the beam diameter (equation 8) with 

equations 10 and 14 leads to the following proportional relation for the number of ions 

generated after one laser pulse: 

 𝑛[M]+~ 1
dbeam

4 ∙ dbeam
2   →  𝑛[M]+~ 1

dbeam
2   (eq 15) 
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Consequently, doubling the beam diameter would result in a four-fold ionization volume and 

ideally in a four-fold higher ion yield n[M+], but according to equation 15 the influence of the 

lower photon flux concurrently diminishes the ion yield by a factor of 16. Hence, expanding 

the laser beam for an ideal two-photon absorption process is not reasonable. In some cases, 

however, it was shown that the quadratic photon flux dependency of the ion formation is valid 

only for low power densities. Zakheim et al. [102] have reported on a detailed kinetic model 

describing feasible stimulated emission concurrently occurring at higher photon fluxes and 

thus the first electronically excited state starts being kinetically saturated. In case of kinetic 

saturation equation 13 has to be rewritten 

 𝑘𝑖𝑜𝑛 = 𝜎 ∙ Φ𝑏 ∙ 𝜑1 
𝑏 ∙ 𝜑2     (eq 16) 

with b = experimentally determined number. Consequently, the following expression for the 

proportionality between the number of ions n[M+] and the beam diameter dbeam is then obtained 

 𝑛[M]+~ 1
𝑑𝑏𝑒𝑎𝑚2∙𝑏 ∙ 𝑑𝑏𝑒𝑎𝑚

2    (eq 17). 

Apparently, the reasonable implementation of a beam expanding unit for the coaxial APLI 

depends on the exponential term b of the photon flux. In case of b = 2 the above mentioned 

ideal two-photon absorption process is obtained. For 1 < b < 2 stimulated emission and 

radiationless transition processes depleting the electronically excited state come into effect 

(cf. Figure 2). Hence, increasing the photon flux at this point concurrently induces the 

depletion of the excited molecule population. According to equation 17, an increase in dbeam 

still results in ion loss. With b = 1 the number of generated ions becomes independent of the 

beam diameter. At this point the resonant state is completely saturated; depletion processes 

from the excited to lower states and absorption from the ground to the excited state are in 

dynamic equilibrium. With 0 ≤ b < 1 the number of generated ions is proportionally 

dependent on dbeam and hence increasing the ionization volume becomes favorable. The 

spectroscopic kinetics occurring in this range of b is characterized by saturation of the 

transition from the excited state into the ionization continuum. Typically, the constant b is 

obtained from a doubly logarithmic plot of the ion signal as function of the power density. 

Combination of equations 16 and 12 leads to the following linear form 

 𝑙𝑜𝑔{[M]+} = 𝑏 ∙ 𝑙𝑜𝑔𝛷 + 𝑙𝑜𝑔�𝜎 ∙ 𝜑1 
𝑏 ∙ 𝜑2 ∙ 𝑡𝑝𝑢𝑙𝑠𝑒� (eq 18) 
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and b is simply derived from the slope of the curve. Figure 22 depicts two such plots obtained 

for the DPSS laser operated in (i) the conventional perpendicular (left) and (ii) a modified 

coaxial configuration (right), respectively.  

 

 

Figure 22: Power plot of the ion signal versus the photon flux Φ of the DPSS laser. (left) In the conventional 
perpendicular configuration with a 0.01 µM pyrene solution in methanol present, added in a continuous 
flow mode, and (right) in the modified coaxial LFIS setup with ~ 6 ppbV pyrene vapor present.  

 

For the first setup a pyrene solution in methanol (0.01 µM) was added in a continuous flow 

mode into the ion source (cf. Figure 7). In (ii) a shortened LFIS version (l = 5 cm) was 

connected to the capillary with solid pyrene deposited on the tube walls, thus providing an 

estimated analyte concentration of 6 ppbV (assuming an equilibrated state with the bulk gas – 

cf. 3.1.3  Setup for Neutral Radical Induced ITP Studies [82]). The power density was varied 

by simply changing the energy output via the laser software setting between 45 µJ and 77 µJ 

per pulse (at 200 Hz) and 35 and 60 µJ (at 10 Hz), respectively. Linear regression according 

to equation 18 resulted in (i) b = 2.09 and (ii) b = 2.02. The error bars for the photon flux were 

derived from an estimated variation in pulse energy of Epulse = ± 1.5 µJ and for the ion signal 

the standard variation of the averaged MS signal of a two minute record was used. For a more 

quantitative evaluation of b these experiments should again be performed under more precise 

conditions and with a power density range of at least one order of magnitude. Nevertheless, 

the results clearly demonstrate that the exponential term of the photon flux is well above 

b > 1, which means that in both cases the photon flux, as provided by the DPSS laser 

(~1025 photons∙cm-2∙s-1), induces a nearly ideal two-photon process with no observable 
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spectroscopic saturation effects. Consequently, according to equation 17, doubling the beam 

diameter would result in a nearly quadratic decrease in the number of ions n[M]+ generated 

after one laser pulse. Besides these theoretical considerations, experimental losses due to laser 

beam expansion have to be considered as well. These encompass pulse energy losses evoked 

by the additionally needed optical devices, and enhanced diffusional losses of already 

generated ions. The latter is due to an increased initial spatial distribution of generated ions, 

which eventually reaches the tube dimensions in an earlier point of time along the 

downstream propagation of the gas flow (cf. Figure 21). 

 In conclusion, the implementation of a beam expansion unit prior to coaxial 

illumination with the DPSS laser was demonstrated to be of minor importance, if at all.  

 

c) Interaction laser radiation → metal surface 

 The approach of coaxial illumination in the LFIS is inevitably accompanied by the 

interaction of the metal surface and the laser radiation. Even with the careful exact axial 

positioning, the beam will eventually strike the cone (cf. Figure 8) and the most obvious result 

is the formation of photoelectrons. NIF processes could definitely be enhanced (cf. 1.2.1.3  

Negative Ion Formation (NIF)), however, the positive MS mode would be adversely affected. 

Novotny et al. [103] have measured bimolecular recombination rates of some polycyclic 

aromatic hydrocarbon cations with electrons in the order of 10-6 cm3∙s-1. Consequently, it 

seemed necessary to provide an inner surface reducing the emission of photo electrons. Thus 

the entire tube system was nickel-plated since the used radiation at 266 nm corresponds to 

4.66 eV and the work function of nickel is around 5 eV [104]. However, this approach merely 

affects the single photon induced emission of electrons: electron emission from multiple 

photon absorption processes, as described by Logothetis et al. [105], may still occur. 

Furthermore, in 2010 Brockmann et al. [106] introduced time resolved current measurements 

that were performed with the setup for capillary investigations (cf. 3.1.4.1  Setup for 

Characterization of Transfer Capillaries). Herein the LFIS was connected to the transfer 

capillary with a coaxially directed laser beam. The measured current at the detection sieves 

was recorded temporally resolved for each laser pulse. As shown in Figure 23 the recorded 

signal shows an unexpected high rise shortly after the laser pulse, indicating non 

proportionally elevated ion formation within the cone and the small transfer region into the 

capillary. The subsequent decay of the slope is shaped as expected and is in full accordance 
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with the diffusional losses along the tube as shown in the perpendicular experiment in 

Figure 17.  

 

Figure 23: Time resolved current measurements using the laminar flow ion source [106]. The lower curve represents 
the evolution of the current that is induced by an ion packet, which was generated by one coaxial laser 
pulse.  

 

A first tentative explanation for the unexpected behavior is partially based on VUV 

contributions via second-harmonic generation of the initial 266 nm radiation on the metal 

surface of the cone. Such effects are well known and for example described by Chen et al. 

[107]. It follows that single photon ionization absorption cross sections of the analyte 

additionally have to be considered, which are fairly large and thus might significantly increase 

the partial ionization efficiency within the cone. Both effects, the multiple photon induced 

photo electron emission and the second-harmonic generation are competitive processes and 

have been investigated for example by Tomas et al. [108]. However, the experimental 

conditions in the literature are not comparable to the present LFIS setup, rendering 

meaningful conclusions nearly impossible. Thus, the impact of the laser radiation-/ metal 

surface interaction on APLI-MS within the laminar-flow ion source will have to be subject to 

further investigations.  

 

4.2.2.3  LFIS – APPI  
a) Implementation 

  Figure 8 shows the implementation of an APPI unit between the cone and the 

ionization tube. A schematic of the segment itself is shown in Figure 24. In the first instance, 
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special attention was focused on conserving the laminar flow conditions by cutting a flute into 

the LiF window, which exactly matched the inner tubing dimensions and thus provided a 

smooth inner surface. However, machining an optical device requires sophisticated machinery 

and skills to maintain a sufficient optical transmission of the treated surfaces. A small 

titanium hardened drill was used to grind the flute in several layers at high drill rotation speed. 

The machined window is mounted o-ring sealed; thus the entire LFIS can still be pumped 

down to 10 mbar to provide convenient repeated flushing sequences of the entire system. The 

commercially available APPI lamp as used in the conventional API setup as well as home-

built spark discharge lamps can be used for VUV radiation supply. Since the inner tubing 

diameter is 4 mm, sufficient irradiation intensity is provided throughout the entire ionization 

volume with respect to absorbing matrix components (cf. 1.2.1.2  Atmospheric Pressure 

Photo Ionization (APPI)).  

 

Figure 24: Schematic of the APPI unit of the LFIS.  

 

b) Transit time.  

 The above time resolved current measurements have also been performed with laser 

radiation directed through the LiF window of the APPI inlet stage, i.e. perpendicular to the 

gas flow. The delay between the trigger pulse and the fastest ions arriving at the detector was 

measured to be 5 ms. Thus, ions generated with VUV radiation at the designated position are 

transferred downstream to the exit of the capillary and reach nearly collision free conditions 

within 5 ms (the transfer time from the first differential pumping stage into the high vacuum 

region –cf. Figure 4, right- is assumed to be negligible). 
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4.2.3  Development of APPI on Transfer Capillaries 

 Several degradation studies were mass spectrometrically monitored, using the LFIS 

with the APPI unit as ionization source. It soon became apparent that the determined dwell 

time of 5 ms (cf. 4.2.2.3  LFIS – APPI) resulted in sufficient collisions to significantly impact 

on the ion distribution of a degradation product study up to the point of complete loss of 

reasonable mass spectrometric information. A discussion on the prevailing ITPs will be given 

in chapter 4.3  Ion Transformation Processes. Here, merely the demand of notably reducing 

the total number of collisions between the ionization and the detection step is stressed. 

Assuming the gas kinetic collision rate for standard conditions (at 298 K), around 106 

collisions occur for every ms of dwell time, hence, lowering the pressure within the ionization 

region and/or decreasing the time between VUV irradiation interaction and entering the 

collision free region was required. Consequently, moving the VUV ionization position further 

downstream was the only reasonable approach. As a first step, a VUV lamp was built into the 

first differential pumping stage located between the transfer capillary exit and the MS 

sampling skimmer (cf. Figure 4). However, the realized setup with a home-built spark 

discharge lamp as radiation source (cf. 4.2.3.3  Development of Miniature VUV Spark 

Discharge Lamps) resulted in rather poor sensitivity, owing mostly to the lower analyte 

density and more importantly due to a spatially fairly wide spread ion distribution. This 

assumption is supported by numerical ion trajectory simulation, as shown in Figure 25 (right).  

 

 

Figure 25: Results of an ion trajectory calculation for the transfer efficiency from the capillary through the skimmer 
with (left) ions being generated upstream of the capillary exit and (right) ions being generated between 
capillary exit and skimmer.  
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The latter obviously affected the sampling efficiency of the skimmer into the high vacuum 

region, as compared to the ion containing gas stream exiting the capillary (cf. Figure 25, left). 

Hence, this setup was not further considered. The feasible second approach was the 

installation of a VUV radiation source directly onto the transfer capillary. This would 

(i) preserve the transmission efficiency through the MS skimmer and (ii) lead to ionization at 

appreciable neutral analyte densities. Since the transfer capillary is completely opaque for 

radiation below 300 nm the challenge was to get optical access to the capillary gas stream. 

This approach called for an exploration of completely new research areas, which will be the 

subject of the following chapters. A detailed experimental and theoretical study concerning 

the fluid dynamical behavior of the capillary, with additional determination of ion 

transmission efficiencies will be presented. In the course of confining the neutral analyte 

distribution to the inner dimensions of the capillary, home-built miniature VUV spark 

discharge lamps will be introduced as the more appropriate radiation source in contrast to the 

commercially available large dimensioned lamps. Additionally, an in-depth characterization 

of the spark discharge VUV lamp will be presented. Finally the impact of different ionization 

positions with respect to reducing ITPs will be demonstrated.  

 

4.2.3.1  Characterization of Transfer Capillaries 
a) Comparison of original and home–made capillary 

 Prior to invasive machining it was necessary to investigate and compare the flow 

characteristics and ion transmission efficiencies of the original transfer capillary (purchase 

cost: ~1000 €) with home-made capillaries from bulk stock (Hilgenberger GmbH, Malsfeld, 

Germany; purchase cost: ~10 €). Obviously, the purchase cost did not allow such experiments 

with the original capillaries, and significant inferior performance of the home-made capillary 

would have made the proposed ionization approach useless. Therefore, the setup as sketched 

in Figure 10 was constructed to carry out appropriate experiments. Figure 26 depicts two plots 

for performance comparison. On the left, the volume flow is plotted as function of the 

background pressure in the recipient (p1), with 970 mbar at 298 K on the high pressure port 

(p0). The dimensions of both capillaries were l = 18 cm and Øinner = 0.6 mm (as stated by the 

manufacturers; with ± 0.01 mm tolerance for the inner diameter of the home-made capillary). 

Both curves overlap almost perfectly, demonstrating no significant difference in terms of the 

flow dynamical behavior. The obtained choked flow of the original capillary is slightly higher 
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than that of the home-made one (Qchoked = 1.41 and 1.37 L∙min-1), indicating small differences 

in the inner diameter of about 0.007 mm (see below).  

 

 

Figure 26: (left) Flow dynamical characterization of a home-made and an original transfer capillary. The volume flow 
is plotted as function of the varied pressure on the downstream side of the capillary, with an upstream 
stagnation pressure of 970 mbar. (right) Comparing ion transmission measurements of a home-made and 
an original transfer capillary. 

 

In Figure 26 (right) a comparison of ion transmission curves is shown. Here a 248 nm laser 

beam was directed coaxially into the LFIS with pyrene as the analyte as described before. The 

beam was reduced to 6 mm in diameter and a pulse energy of 0.7 mJ at 100 Hz repetition rate 

was applied. The current recorded at the detector sieve was plotted against the volume flow. 

Again, both curves overlap nicely. The rampant trend in both curves, once the choked flow is 

established (note that the pressure p1 is still further reduced) has not been clarified yet. This 

trend is tentatively assigned to ion mobility effects in the transfer region from the end of the 

capillary to the Faraday cup (cf. Figure 10), thus more likely an effect of the setup than of any 

fluid dynamic property within the capillary. Nevertheless, this shape was of high 

reproducibility and hence rendered the comparison of the relative ion transmission 

efficiencies possible. Furthermore, investigations on the absolute ion transmission efficiency 

of a capillary revealed exceptionally high transmission factors of up to 0.5 relative to base 

current measurements without a transfer capillary [106]. This result is in good agreement with 

the observation made by Lin and Sunner [109], who measured the current transmitted through 

glass, metal and Teflon capillaries with lengths of up to 15 m and inner diameters ranging 
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between 1 and 4 mm. However, there is hardly any literature available on the fluid dynamical 

and ion transmission behavior of MS transfer capillaries leaving much room for further 

investigations. Conclusively, the properties of the original and a home-made transfer capillary 

in terms of flow dynamics and ion transmission were demonstrated to be identical. This result 

paved the way for developing the novel APPI approach and it initiated the extended 

production of home-made capillaries in a great variety (chemically metalized end caps, 

metalized inner surfaces, flared entrance, etc.) of which many have been successfully applied 

in several types of mass spectrometers.  

 

b) Adaptability of fluid dynamic equations - laminar or turbulent  

  As mentioned above, Figure 26 (left) depicts the flow behavior with varying 

differences between the stagnation pressure p0 and recipient pressure p1. From theory (e.g., 

[99]) it is known that the choking of a flow inside a tube should occur at around p1 = 0.5∙p0. 

This is in good accordance with the observations made here. It is noted that in case of any 

turbulences occurring close the segue into the capillary the actual reference pressure p0 is 

lower. The impact of the sharp cone of the LFIS on the effective stagnation pressure is shown 

later. Figure 26 (left) furthermore shows two calculated curves, which are based on empirical 

fluid dynamic equations [99,110], developed for describing the flow behavior of large tube 

systems for the laminar  
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and the turbulent case, respectively: 
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   (eq 20). 

Here Qlaminar/turbulent denotes the volume flow in [L∙min -1], Øinner is the inner diameter in [cm] 

and l describes the length of the tube in [cm]. Apparently, the shape of the calculated 

turbulent case, with Øinner = 0.0609 cm and l = 18 cm overlaps very well with the 

experimentally determined shape. Two important conclusions are drawn from this result: 

(i) Well known empirical fluid dynamical equations are to a good approximation valid for the 

dimensions of the present MS transfer capillaries and (ii) the gas flow through a transfer 
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capillary, with operating conditions typically prevailing in the experimental setup (gas 

temperature ≈ room temperature = constant; upstream stagnation pressure p0 ≈ 1000 mbar; 

first MS pumping stage pressure of p1 ≈ 4 mbar), is characterized by a fully developed 

turbulent choked flow ranging between 0.8 and 1.4 l/min (for Øinner = 0.05 – 0.06 cm). 

According to equation 5 the turbulent characteristic is further substantiated by the calculated 

Reynolds number of Re = 3310, assuming an average drift velocity of νx = 83 m∙s-1 and an 

inner diameter of Øinner = 6∙10-4 m. This is well above the critical number of Recrit = 2300 [99], 

consequently, essentially turbulent flows prevail in these capillary systems under typical 

operating conditions. Equation 20 furthermore offers a valuable tool for determining the inner 

capillary diameter. With the experimentally established parameters (l, p0, p1 and Qchoked) Øinner 

can be fitted within ± 1 µm accuracy. In this way the inner diameters of the original and the 

home-made capillary were calculated to be Øinner = 0.612 mm and Øinner = 0.605 mm, 

respectively. The latter is in full accordance with the manufacturer tolerance declaration of 

0.6 ± 0.01 mm. 

 

c) Critical and static pressure, velocity distribution, and transit times 

 The experimental validation of the available mathematical descriptions for turbulent 

flow inside capillaries allowed the calculation of parameters such as the minimum or critical 

pressure, the static pressure, the velocity distribution along the main capillary axis and 

eventually the transit times from a certain location inside the capillary to the exit port. The 

following experimental data were required: (i) The length l [cm] of the capillary, (ii) the 

choked flow Qchoked [L∙min-1], (iii) the pressure p1 [mbar], and (iv) the upstream stagnation 

pressure p0 [mbar]. As mentioned above, the latter is fairly critical, since turbulences around 

the entrance of the capillary might result in an initial significant pressure drop. Pressure 

measurements at some distance to the capillary entrance might not properly reflect p0. 

However, due to the conically shaped coupling stage of the laminar-flow ion source such 

turbulences are very well minimized, as has been shown elsewhere [48], so that to a good 

approximation the measured pressure (cf. Figure 8) does correctly reflect p0. This 

fundamental information is first used to fit the inner diameter Øinner according to equation 20, 

until the calculated and the observed choked flow match (see above). Subsequently, the 

minimum or critical pressure pcrit [mbar], where the gas velocity reaches sonic speed, can be 

calculated as follows [99]: 
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For the dimensions of the capillaries (for Øinner = 0.05 – 0.06 cm) and the operating conditions 

used in the mass spectrometer (po ≈ 1000 mbar and p1 ≈ 4 mbar), the critical pressure ranges 

between pcrit = 180 - 220 mbar. The gas stream exits the capillary with pcrit into the 

background pressure p1 of the first differential pumping stage, with pcrit ≈ 50∙p1. The 

consequences with respect to the appearance of the resulting type of gas expansion are a topic 

of controversial discussion, if at all, and still leave much room for further research.  

 It follows that the static pressure pstatic(x) [mbar] evolution along the transfer capillary 

can be calculated according to [110]: 
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with x [cm] as the position of the capillary, relative to the entrance. The velocity distribution 

c(x) is then obtained by [110]: 

 𝑐(𝑥) = 𝑝0
𝑝𝑠𝑡𝑎𝑡𝑖𝑐(𝑥)

∙ 𝑐(0)     (eq 23) 

with c(0) as the entrance velocity [m∙s-1], which is simply derived from dividing the flow 

Qchoked by the area cross-section of the capillary (assuming the fitted diameter). Eventually, 

the residence time tres of an ion within the transfer capillary is derived from numerical 

integration over the fraction of x/c(x) = tres(x) according to 

 𝑡𝑟𝑒𝑠 = ∑ 𝑡𝑟𝑒𝑠(𝑥)
𝑥=𝐿
𝑥=𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑜𝑛    (eq 24) 

 It is noted that equations 20 - 21 hold true for air as the bulk gas at 293 K, and 

equations 22 - 24 assume isothermic conditions, i.e., the gas temperature inside the capillary, 

despite the expansion process, to be constant. This very well coincides with the experimental 

conditions of a common degradation experiment when sampling from the reactor. It is noted 

here that in separate works the isothermic condition for the gas expansion inside the capillary 

was experimentally verified. In Figure 27 typical results of calculations based on the above 

equations are shown.  
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Table 2: Calculated dwell times for ions within the capillary as function of the ionization position.  

 

Figure 27: Static pressure and velocity distribution within the transfer capillary, calculated for the following 
conditions: Øinner = 0.61 mm, Qchoked = 1.41 l∙min-1, p0 = 1003 mbar, p1 = 3 mbar;  

 

 At this point it is worth mentioning that the static pressure inside the capillary became 

measurable with opening up the capillaries (cf. Figure 9 and chapter 4.2.3.3  Development of 

Miniature VUV Spark Discharge Lamps). At several positions holes were drilled into the 

capillary body using different types of capillaries (Øinner = 0.5 – 0.6 mm). In all cases the 

measured static pressure and the calculated pressure was within ± 2 % accuracy. Additional 

time resolved current measurements, as introduced in chapter 4.2.2.3  LFIS – APPI, revealed 

dwell times of around 1.3 ms for ions being generated directly at the entrance of the transfer 

capillary, essentially at position x = 0 (cf. Table 2). These results were further strong 

experimental support for the applied equations.  

 The closest ionization position within the laminar-flow ion source (cf. 4.2.2.3  LFIS – 

APPI) revealed a minimum transit time of 5 ms and it was shown earlier that minimum transit 

times of 5 ms are also obtained with commercially available API sources [46]. Compared to 

the results in Table 2 the approach of ionizing within the capillary is thus capable of reducing 

residence times in the high collision rate region by a factor of 250. The ionization efficiency is 

expected to be fairly high since the analyte density is just reduced by a factor of four. 

 

d) Upstream pressure variation 

  It is worthwhile mentioning that the stagnation of the choked flow is only valid for a 

constant upstream pressure p0. Figure 28 (left) depicts the calculated impact of p0 on the 

choked flow rate within a range of 400 mbar up to 2000 mbar, with p1 = 4 mbar, and capillary 
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dimensions of Øinner = 0.609 mm and l = 18 cm. As can be seen, the choked flow varies within 

a range of around 0.3 L∙min-1. In the same manner, the critical pressure is plotted as a function 

of po in Figure 28 (right). A nearly linear behavior (according to equation 21: pcrit ~ po
8/7) is 

obtained, which means that variations in the upstream pressure significantly affect the 

properties of the gas stream entering the first differential pumping stage, as expected. 

Apparently, the stagnation of the choked flow and subsequently involved parameters, e.g., 

pcrit, pstatic (cf. equation 22), holds true only for changes on the low pressure side, whereas 

varying p0 does have significant impact. It follows that in terms of keeping the transmission 

properties of the subsequent ion optics (e.g., skimmer, multi poles, lenses - cf. Figure 4 right) 

constant, p0 has to be treated with special attention. In addition, variations of the static 

pressure would particularly affect the windowless design of the implemented discharge lamps, 

as will be described in detail in chapter 4.2.3.3  Development of Miniature VUV Spark 

Discharge Lamps.  

 When using the windowless spark discharge VUV lamps as ionization sources in the 

atmospheric chemistry degradation experiments, it was necessary to (i) implement a pressure 

gauge into the LFIS (cf. Figure 8), (ii) balance the pressure of the reactor (cf. 3.3.3  MS 

Sampling Unit) and (iii) ensure a constant, smooth segue of the gas stream through the cone 

into the transfer capillary.  

 

 

Figure 28: Calculated plots of (left) the choked flow and (right) the critical pressure as function of the upstream 
pressure. The low pressure side was assumed to be constant at 4 mbar, the capillary dimensions were 
Øinner = 0.609 mm and l = 18 cm.  
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4.2.3.2  First APPI on Capillary Approach 
 The first approach of irradiating the bulk gas in a capillary with light below 200 nm 

wavelength was similar to the APPI stage of the laminar-flow ion source (cf. 4.2.2.3  LFIS – 

APPI). The capillary was grinded at 15 cm (cf. Table 2) to half its diameter within a length of 

one cm. It is worth mentioning that the first capillaries were manually machined; in the course 

of the experiments a computer controlled milling machine was used. According to the LFIS 

design a LiF window of one cm diameter and three mm thickness was modified with a flute 

exactly matching the surface of the inner tube. In several subsequent drying steps both pieces 

were glued to each other with an epoxy adhesive (UHU plus endfest 300, 2-K-

Epoxidharzkleber). It is worth mentioning that despite using retail resin, no mass signals 

attributable to the adhesive have been observed. The long term impact of VUV radiation on 

the adhesive is not known, however, it is expected to turn brittle with time. In a first attempt 

the commercially available APPI lamp was used as radiation source and simply mounted onto 

the window. In this way an APPI stage within a capillary was designed, as shown in 

Figure 29.  

 

 

Figure 29: Photographs of (left) the LiF window mounted on the transfer capillary and (right) “APPI on transfer 
capillary” with the commercially available Kr-RF low pressure discharge lamp. 

 

As envisioned, this approach gave reasonable results in terms of ITP reduction corresponding 

to the calculated dwell time of 0.13 ms (cf. Table 2 and 4.2.3.4  Impact of Different Ionization 

Positions on MS Spectra). However, sensitivity was not as satisfying as expected, which was 

basically assigned to inefficient irradiation of the capillary gas flow. The APPI lamp with a 
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diameter of one cm illuminates a total area of 79 mm², however, the effectively illuminated 

gas flow area is maximal about 6 mm², hence a substantial part of the radiation is not 

available for ionization.  

 

4.2.3.3  Development of Miniature VUV Spark Discharge Lamps 
a) In general 

 Generating radiation in the vacuum ultra violet wavelength regime requires the 

excitation of neutral or ionized atoms/molecules, typically rare gas atoms, into energetically 

higher atomic/molecular states. Numerous strategies have been applied, such as multi-photon 

excitation with laser light [111], collisions with accelerated electrons/ions/particles [112-115] 

or the various electrical discharges [116-120], as used in this work. The generation of VUV 

light through electrical discharges between two electrodes is a well known process [29]. Spark 

discharges have been used as early as 1860 by Kirchhoff and Bunsen as an analytical tool for 

qualitative and later also for quantitative spectral elemental analysis, also known as spark 

optical emission spectroscopy (OES) [121]. Major advantages of this type of VUV generation 

are the operational simplicity and the possibility to design lamps in virtually any conceivable 

geometry. In the following section, three realized lamp designs as well as the development of 

adequate power supplies will be introduced. A characterization of the discharge and the 

optical emission properties will be given. Theoretical considerations concerning the discharge 

mechanisms will be based on works by Paschen [122], Loeb [123], and Druyvesteyn and 

Penning [124]. 

 

b) High voltage-power supplies 

 The energy source of electrical discharges is an adequate power supply. First attempts 

were made with high voltage DC/DC converters (E 121, EMCO High Voltage Corporation, 

Sutter Creek, CA, USA), neon power supplies (VT 12003-120, Ventex Technology Inc, 

Jupiter, Florida, USA) and flyback transformers, which were recycled from computer 

monitors. The results from these experiments supported the further development of spark 

discharge lamps for application in API mass spectrometry [125]. However, they incorporated 

serious disadvantages such as the uncontrolled discharge frequency in the lower kHz range. 

The discharge repetition rate was merely determined by self-oscillation of the transformation 
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process up to 20 kHz. As a result several lamps suffered from changes of the typical spark 

characteristics into an arc discharge (see below). This eventually led to strongly elevated 

electrode temperatures, which the lamp material could not withstand. It turned out that these 

power supplies were not designed for sustaining controlled, high frequency low impedance 

discharge pulses. In particular the electronics of the DC/DC converters were severely 

damaged due to thermal stress after several hours of operation. The first working power 

supply was realized with a switch-mode power supply (HPE CC400, Hartlauer Präzisions 

Elektronik GmbH, Grassau, Germany) that was recycled from an exciplex laser. Its actual 

purpose is to charge capacitors that generate electrical discharges for exciplex production 

(cf. 3.1.1  Laser Systems). This high voltage device is capable of providing 14 kV, with 

60 mA average current, which is adjustable via pulse width control of the trigger signal. 

Repeated lamp operation has shown an optimized trigger signal width of 0.18 ms. The 

repetition rate is adjustable in the range of 1-2000 Hz. In combination with a current back 

coupling protection module (also recycled from the exciplex laser), an opto-coupler and a 

digital delay generator a prototype of power supply was constructed. A further modification 

was necessary since with some lamps the delivered current exceeded the limit of the sparking 

regime and again the transition into an arc discharge was observed. Therefore a 60 W light 

bulb was connected in series with the entrance voltage feed as a current limiting device. Upon 

DC lamp current increase caused by the arc formation, the light bulb briefly flashes. This 

results in the limitation of the current for the switch-mode supply and subsequently 

regenerates the typical spark characteristics. In this way a power supply was constructed that 

provided sufficient voltage, appreciable, variable currents and adjustable repetition rates for 

sustained spark generation. In combination with the arcing protection system this setup met 

the demands for the development of spark discharge lamps [125].  

 Caution: This type of power supply can cause severe damage to the human health in 

terms of severe electrical shocks! 

 The final version of the capillary implemented discharge lamp (cf. 3.1.4  Novel APPI 

Setup) called for the following requirements for an adequate power supply: (i) 1500 Hz 

repetition rate, (ii) ~1000 V breakdown voltage and (iii) ~15 mA average output current. 

Based hereupon a custom high voltage circuit board (DD2010 C-Lader) was designed in 

cooperation with Hartlauer Präzisions Elektronik GmbH (cf. Figure 30, left). This device 

allows for adjustable voltages from 0 V - 1500 V DC, adjustable output currents from 0 mA -
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15 mA and a repetition rate of up to 1500 Hz, triggered by an electrical pulse (5 V - 15 V) 

from an external device.  

 

 

Figure 30: (left) Circuit diagram of the DD20_10 C-Lader power supply with (1) main switch, (2) RS232 interface, 
(3) HV-on/off switch, (4) HV active indicator, (5) HV-out connector, (6) connectors for voltage monitoring, 
(7) external/internal-trigger switch, (8) connectors for current monitoring, (9) external trigger-in 
connector. (right) Photograph of the power supply.  

 

The working principle is based on a switch-mode supply that charges two capacitors (1 pF 

each) at the HV exit. In short-circuited operation mode the charging process is limited by the 

breakdown voltage, which is determined by the characteristic lamp setup and its operating 

conditions (see below). The board requires a 24 V DC supply voltage feed. It is equipped with 

an interface via a 14 pinout connector supporting several features such as output signals for 

current or voltage regulation mode, voltage outputs (0-10 V) that are proportional to the 

average of the discharge current and voltage, voltage inputs (0-10 V) for adjusting the 

maximal output voltage and current, and an input signal for starting and stopping high voltage 

generation. Furthermore three pins are assigned to ground and two pins provide a +10 V 

reference and a +15 V voltage for external use, respectively. The HV device was built into a 

housing together with a 24 V DC supply, a cooling fan, and a home-built trigger board. The 

latter uses a NE556N timer, which generates a frequency and the pulse width adjustable 

trigger signal in the range of 1000 Hz - 2000 Hz and 0.1 ms - 0.2 ms, respectively. Optimum 

lamp performance was achieved at a trigger pulse duration of 0.18 ms. The voltage feed of the 

trigger circuit is provided by the +15 V supply voltage pin of the interface (cf. Figure 30, left). 

The output is connected to the external/internal-trigger switch (cf. Figure 30, left, 7), thus, if 

desired, an external trigger can be used via the external trigger-in plug (cf. Figure 30, left, 9) 

as well. On the other hand, the internal pulse generator may also be used for synchronization 
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of external devices, by connecting those to the external trigger-in line, but operating the 

internal trigger. This approach renders synchronization of external devices, such as time-of-

flight mass spectrometers, rather simple. The voltage feed of the DD20_10 C-Lader board is 

provided by a 24 V DC power supply (DPP 50-25, TDK-Lambda Germany GmbH, Aachen, 

Germany) and can be disconnected via the HV-on/off switch (cf. Figure 30, left, 3). The DC 

supply itself is running on the 115/230 V AC mains line (cf. Figure 30, left, 1). As soon as the 

mains switch is turned on the fan is activated. Furthermore, the interface pins for voltage and 

current monitoring of the high voltage output are connected to the plugs 6 and 8 (cf. 

Figure 30, left), which, e.g. via a multimeter, render quick control of the discharge 

characteristics rather handy. The remaining interface pins were connected to the 9-pin sub-D 

plug (RS232) mounted on the front plate as follows (numbering cf. Figure 30, left, 2): 

(1) Ground, (2) gives a +15 V pulse if unit is in current regulation mode, (3) capacitor current 

adjustment by applying a voltage between 0 and 10 V, (4) not connected, (5) gives a +15 V 

pulse if unit is in voltage regulation mode, (6) output of 10 V reference, (7) capacitor voltage 

adjustment by applying a voltage between 0 and 10 V, (8) input of a 10 V – 15 V pulse stops 

and starts generating HV, respectively, and (9) not connected. It is noted that prior to using 

pins (3) and (7) the corresponding jumpers on the circuit board have to be removed [126]. 

 Caution: This supply can cause health damage in terms of electrical shocks! 

 In conclusion a versatile, compact, cost efficient (~300 € for the DD20_10 C-Lader) 

and fairly secure power supply that is perfectly tailored to the developed miniature VUV DC 

spark discharge lamps has been designed.  

 

c) APPI with or without window 

 One of the first things to consider when designing lamps that generate radiation in the 

vacuum ultra violet is the question about the use of windows. In general the implementation 

of a VUV light source in a mass spectrometric setup is impeded by the necessity of separating 

the discharge region from the sample gas flow into the mass spectrometer. This is mainly 

done to prevent the discharge being perturbed or quenched, and when running low pressure 

discharges to sustain a stable VUV emission. In most cases MgF2 or LiF windows are used 

for physical separation. However, these windows restrict the transmission of VUV light below 

the optical cutoff (MgF2: 110 nm; LiF: 105 nm) and severely affect the transmission 
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efficiencies [127-129]. No window material with lower cutoff wavelength is available. 

Figure 31 (left) depicts transmission curves for a 5 mm and a 1 mm thick LiF window, 

derived from data by Korth Kristalle GmbH [130] and by Knop et al. [127], respectively. The 

extrapolated part of the curve for the 5 mm window clearly shows the steep decrease in 

transmission from 120 nm down to complete opaqueness at 105 nm. Region 2 marks the 

normal operating condition for the commercially available Kr-RF low pressure APPI lamp 

(116.5 and 123.6 nm). Region 1 represents hitherto measured and further expected emissions 

of the argon operated spark lamp, in which the main part of radiation is located below 

130 nm, with a not yet quantified portion below the 105 nm cutoff (OES will be discussed in 

detail further below). It is clearly seen that a significant portion of the generated radiation 

cannot be used for ionization, since it is quantitatively absorbed by the window material; in 

the case of the common APPI lamp (~1 mm window thickness) up to 40 %. Figure 31 (right) 

shows a direct comparison of operating a spark discharge lamp (design 1; cf. Figure 32, left) 

on the APPI unit of the LFIS (cf. Figure 24) without and with a window (3 mm thick; with cut 

flute). Upon irradiating a gas flow of synthetic air with 0.9 ppmV acetone present, as sampled 

from the photoreactor, a factor of 400 more intense ion signal was obtained with a 

windowless lamp.  

 

Figure 31: (left) Transmission curves of a 5 mm and a 1 mm thick LiF window. Data were derived from Korth 
Kristalle GmbH [130] and from Knop et al. [127], respectively. (right) Comparison of mass spectra 
recorded upon ionization with and without LiF window separation of the spark region of lamp design 1 
placed on the APPI unit of the LFIS. As analyte 0.9 ppmV acetone in synthetic air at 1000 mbar were used. 
The sample gas flow was delivered from the photoreactor. 



4   Results and Discussion 

 
68 

 

Note that the appearance of the two spectra is identical, only the signal intensity differs by 

orders of magnitude. This is an exceptional result. The question arises as to what caused the 

poor performance of the window equipped lamp; the strong attenuation of the VUV by the 

LiF material itself or even further transmission losses by the cut flute. Furthermore, the extent 

of penning ionization via discharge generated Ar* metastables is not known for this 

windowless operated lamp. At this point, however, further mechanistic studies were not 

considered, rather this result was interpreted from an analytical point of view. It was 

concluded that the further development of miniature spark lamps had to be accomplished 

without any window material present.  

 In addition, at medium to high pressure discharge conditions (200 mbar – 1000 mbar), 

even with the use of high purity argon (99.999%), the surface of the window is generally 

severely affected due to the presence of reactive species such as H and OH radicals, generated 

from impurities. This further decreases the VUV transmission efficiency of the window 

material. Knop et al. have found that the cutoff of LiF shifts to higher wavelengths, up to 

107 nm with increasing temperature (134 °C). In this context the heating of the gas within the 

spark chamber is significant. At common operating conditions for the lamp design 3 

(Figure 32, right; discharge chamber pressure pdischarge = 719 mbar, 1500 Hz repetition rate) a 

temperature increase of the glass cover up to 65 °C has been measured. As will be shown in 

the discussion section about the OES, exactly this emission region (104 nm - 108 nm) is of 

significant importance of the performance of an Argon discharge lamp.  

 Consequently, the conclusion was drawn to further develop windowless miniature 

spark discharge lamps. 

 

d) Balanced pressure separation  

 A novel concept for a quasi physical separation of the discharge gas flow region from 

the gas flow through the capillary was developed. The pressure pdischarge prevailing in the 

discharge lamp chamber is adjusted closely to match the measured static pressure pstatic (cf. 

chapter 4.2.3.1  Characterization of Transfer Capillaries) of the gas stream through the 

capillary. As can be seen in Figure 9 an argon flow between 0.1 and 0.5 L∙min-1 is supplied 

through the anode. The pumping speed through the cathode is then adjusted up to the point 

where the condition 
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 𝑝𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑝𝑠𝑡𝑎𝑡𝑖𝑐     (eq  25) 

is met. This setting creates a virtually separated discharge region without any attenuation of 

the VUV radiation. UV/VIS calibrated monitoring of the O2 and N2 concentrations within the 

lamp (cf. section: OES, further below) offered valuable continuous information about the gas 

composition within the discharge region and it is demonstrated that the windowless approach 

keeps impurities such as O2 below 0.2 % even with synthetic air flowing through the transfer 

capillary. Hence, the mixing of the sample and the discharge gas flow is diffusion limited. To 

some extend convection, driven by the sparking process, as described, may promote 

additional mixing, however, only to the maximum extent stated. Along this line the impact of 

the operating lamp on the main gas stream into the MS was investigated and revealed that the 

total flow increased by 4 % at most with the discharge running (with pdischarge = pstatic). In 

addition to the generation of VUV light, with the windowless approach deliberate coupling of 

the gas discharge effluent into the sample gas stream allows further ionization mechanisms to 

be evoked such as penning ionization. This is easily achieved by raising the discharge 

chamber pressure above the local sample gas flow pressure: 

 𝑝𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 > 𝑝𝑠𝑡𝑎𝑡𝑖𝑐     (eq 26). 

This highly interesting approach has not been investigated to its full extend yet. 

 

e) Lamp design 1 

 This preliminary design was used as a radiation source for the APPI unit of the LFIS, 

later referred to as the “5 ms position”. As shown in Figure 32 (left) a high voltage connector 

was modified with a 0.8 mm thick copper wire, which serves as the ground electrode, and two 

small Teflon tubes serving as gas in- and outlet lines. Sealing was accomplished by 

implementing the entire lamp corpus with two suitable rubber O-rings into the aperture of the 

VUV inlet unit (cf. Figure 24). The lamp discharge channel was positioned parallel to the 

inner tube of the laminar flow source to ensure maximum illumination. The fairly large 

electrode distance of 3 mm and the undirected argon gas flow led to a breakdown voltage, 

which could not be reached by the DD20_10 C-Lader power supply. Thus, the lamp was 

operated with the HPE CC400 supply only. The discharge stability, long life time of the 

materials, on/off-reproducibility and the high ionization efficiency when used without the 

LFIS window, created a valuable reference radiation source.  
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Figure 32:  Schematics of home-built spark discharge lamps, (left) design 1, (center) design 2, (right) design 3. 

 

f) Lamp design 2 

 This more sophisticated design was the first dedicated approach of implementing a 

windowless spark lamp onto the capillary. As can be seen in Figure 32 (center) it features a 

separate glass corpus (Øinner = 3.9 mm, Øouter = 5.0 mm and 6 mm height), which is glued onto 

the one-third grinded capillary, with an optical aperture of 0.1 mm² to the sample flow region. 

The two-stage cap was made of PVC, with the first stage matching the outer diameter and the 

second stage matching the inner diameter of the housing. It was sealed with epoxy adhesive. 

Four holes were conically drilled into the cap, receiving two Teflon tubes (Øinner = 0.8 mm 

and Øouter = 1.0 mm) for the gas supply and two tips made from glass pipettes (Øinner: tapered 

to ~0.9 mm and Øouter: tapered to 1.0 mm) for electrode insulation. Prior to threading the 

Teflon tubes they were beveled so that the tip diameter matched the hole diameter. For a 

rather gas tight sealed connection the tubes were subsequently pulled through and the beveled 

ends were cut even with the inner stage of the cap. The tips of the glass pipettes were slanted 

and inserted 4 mm deep into the lamp housing with the longer side facing the inner surface of 

the glass tube. The latter was of essential importance, since earlier attempts without the 

slanted insulation resulted in spatially instable sparking, in the extreme case with the 

discharge running along the inner surface of the glass tube. The other end of the insulation 

protruded around 4 mm out of the cap. The electrodes were made from tantalum rods that 

were grinded and slightly sharpened (Ø = 0.6 mm). The tips of the electrodes were positioned 

1 mm before the end of the longer side of the glass insulation. The tip to tip distance, i.e. the 

discharge channel, was 3 mm, and the distance between the spark region and the sample gas 

flow of the transfer capillary was 6 mm. Flutes were cut on the other end of the electrodes to 

wrap around electrical wiring that also end within the glass insulation. Subsequently, heat 
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shrinking tubes were imposed on the overlap of the glass insulations with the electrical wires 

for gas tight sealing, serving additionally as safety measure. For the final step an additional 

glass tube with the same diameters as the lamp housing was placed on top of the cap. It was 

filled with epoxy cement and additionally sealed with a heat shrinking tube imposed on both 

glass cylinders with the cap centered. The lamp chamber could be pumped below 1 mbar. The 

lamp is safe in terms of electrical shock, it showed acceptable stable spatial and temporal 

sparking and it featured high irradiation efficiency. This design was mainly used for the 

“17.5 cm lamp position” (cf. Table 2), also referred to as the “20 µs position”, which is 

spatially as close as possible to the exit port of the transfer capillary, i.e, within the first 

differential pumping stage (cf. Figure 4, right). To realize ionization at this position, the entire 

original vacuum interface of the mass spectrometer had to be reconstructed in order to provide 

the required feed throughs for lamp operation.  

 Four significant drawbacks of this design are pointed out: (i) Analogue to design 1, the 

rather large electrode distance, the undirected argon gas flow, and the fairly large volume of 

the discharge chamber make the operation amenable only to the HPE CC400 supply, (ii) after 

several hours of operation severe damage of the anode, due to electron bombardment of the 

surface was observed, (iii) significant electromagnetic perturbation of surrounding devices 

occurred without sufficient shielding, and (iv) severe wear of the used materials became 

apparent, due to exposure to VUV light, chemically reactive species and thermal stress. 

Eventually gas leakages were noticed and in one of the worst cases cracking of the glass 

insulations occurred.  

 

g) Lamp design 3 

 The final design is the technically most mature and its development considered most 

of the mentioned drawbacks of design 2. A detailed description has already been given in 

section 3.1.4  Novel APPI Setup. The essential improvements are (i) the smaller electrode 

distance (0.8 mm vs. 3 mm), (ii) the directed argon flow from the anode to the cathode, 

(iii) the significant smaller discharge volume (8.3 mm3 vs. 50 mm3), (iv) the smoother and 

more evenly shaped electrode surface, and (v) the significantly reduced distance between the 

spark gap and the sample flow region of the transfer capillary (0.8 mm vs. 6 mm). As result, 

(i) the breakdown voltage is lowered from > 1500 V to < 1000 V, (ii) a cooling effect of the 

anode occurs, (iii) a drastic reduction of anode ablation is observed, (iv) the discharge region 
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is significantly more confined, (v) the sample gas stream is more precisely and efficiently 

illuminated, (vi) the spark-to-spark stability is increased and, (vii) operation with the smaller, 

more safe (in terms of hazardous electrical shocks) and cost efficient DD20_10 C-Lader 

power supply is possible. With this setup electromagnetic perturbation of surrounding devices 

was not observed. Despite the reduced size discharge region, at least identical ionization 

efficiencies were observed, most probably resulting from the precise spatial alignment of the 

radiating spark region with the sample gas flow. The construction of this lamp type was rather 

straight forward. The flutes and holes were machined on a computer controlled milling 

machine; the cannulas were blunted, bent and on one end imposed with Teflon tubes exactly 

matching the outer diameter of the cannulas. All components (capillary, cannulas, electrical 

wiring, and the glass cover) were placed into a Teflon mold and filled up with cement 

resulting in a compact, sealed and safe design. Care had to be taken when positioning the tips 

of the electrodes, such that the protrusion into the discharge chamber was sufficient 

(~0.5 mm) but without contacting the chamber walls. Otherwise spatial spark instabilities 

arose, analogue to lamp design 2. With design 3 no wear of the used materials has been 

hitherto observed, except a slight color change of the anode.  

 

h) Operating stability tests 

 A long-term stability test over ten hours was performed with lamp design 3 on position 

“9 cm” of the transfer capillary (cf. Table 2). Typical operating conditions were applied: The 

argon flow rate was set to 0.5 L∙min-1, the repetition rate was 1500 Hz, and the discharge 

pressure was closely matched to the local static pressure. The DD20_10 C-Lader was used as 

the power supply. The sample gas was provided by the photoreactor with acetone as analyte 

(0.3 ppmV in synthetic air at 1000 mbar). The pressure in the reactor was balanced with a 

continuous flow of synthetic air matching the amount sampled. The resulting signal fall-off 

within the recorded ion chromatogram closely followed the expected signal loss solely due to 

dilution. Consequently, the lamp did not show any noticeable discharge changes that might 

have affected the ionization efficiency over these ten hours of continuous operation. 

Furthermore, several tests concerning the lamp on/off stability were performed and again, 

very good performance was observed. In conclusion, this lamp design nicely meets the 

requirements of a VUV radiation source applied in API MS, particularly with respect to 

radiation stability and reproducibility.  
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i) Determination of lower detection limits (LODs) 

 For the LOD experiments the ion trap was run in the same mode as for typical 

degradation product studies. The MS was operated in the alternating mode, with 5 ms and 

20 ms accumulation time for the positive and negative mode, respectively. One data point in 

the chromatogram was the result of 10 averaged single spectra, thus every 250 ms one data 

point for each mode was recorded. The mass range was set from m/z 15 to m/z 500. For 

ionization lamp design 3 was used on position “9 cm” of the transfer capillary and operated as 

described above. The experimental procedure for the LOD investigations was as follows: The 

lower detection limit for benzene was determined by stepwise injecting a 0.1 M solution in 

acetonitrile into the photoreactor. The LOD for 2-butanone was established by combining a 

carrier gas flow of synthetic air with a minor flow of the oxygenated gas mixture containing 

2-butanone at a mixing ratio of 96 ppbV in nitrogen. The main gas supply was accomplished 

through a mass flow controller (1179A Mass-Flo-Controller, 2000 sccm; MKS Instruments, 

Andover, MA, USA), which was connected to the sheath gas inlet of the transfer unit (cf. 

Figure 12, 4). The minor flow was connected to the entrance of the transfer unit (cf. 

Figure 12, 5) via a 10 sccm mass flow controller (1179A Mass-Flo-Controller, 10 sccm; MKS 

Instruments, Andover, MA, USA). Gas flow calibrations were performed with either a wet 

meter TG05 (Ritter Apparatebau GmbH and Co. KG, Bochum, Germany) or a home-built 

bubble counter, respectively. Both mass flow controllers were connected to a 647 C multi-

gas-controller unit (MKS Instruments). 

 The LODs for benzene ([M]+, m/z 78), and 2-butanone ([M+H]+, m/z 73) were 

estimated following the procedure described by Kaiser and Specker [131]: 

 𝑥𝐿𝑂𝐷 = 3𝜎𝑠
𝑏𝑠

      (eq 27) 

with xLOD as the lowest analyte concentration being detected with a statistical confidence of 

99.7 %, σs as the standard deviation of several measurements without analyte present and with 

bs the slope of the calibration line. The standard deviations were determined in a five minute 

run of a single ion chromatogram with no analyte present. The slopes were calculated from 

the calibration curves shown in Figure 33. LODs of 0.5 ppbV for benzene and 0.1 ppbV for 2-

butanone were obtained. Hence, the obtained lower detection limits were sufficient for the 

intended degradation studies, since degradation product mixing ratios in the upper ppbV range 

were expected.  
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Figure 33: Calibration curves for the determination of the lower limit of detection (LOD) with the novel APPI setup. 
The analytes are (left) benzene and (right) 2-butanone, respectively.  

 

It is pointed out that the optimization of the design and the operating conditions of the 

discharge lamp has not been accomplished to its full extend yet and thus even better 

performance is expected in the near future. 

 

j) Experimental sparking characteristics of design 3 with the DD20_10 C-Lader 

 The appearance of a single spark in lamp design 3 is characterized by the formation of 

several stream lines, which circular surround the electrode edges. This effect leads to the 

unexpected high brightness of the discharge. Hence, for an optimum ionizing photon flux 

yield the electrode tips should not be of very sharp shape to obtain high electrical field 

gradients as required for example in corona discharges. The present operating conditions are 

providing sufficient field strength, cover the entire aperture to the bulk gas flow of the 

capillary, and conserve the spatial and temporal spark-to-spark stability. Along this line a 

slight drawback of the circular discharge shape has been recognized. Since photons generated 

on the upper edges of the cannulas apparently have to travel a longer path to the sample gas 

flow, the probability entering the aperture is decreased; both due to the radial distribution and 

to absorption processes. A new concept for the electrode shapes offered first promising results 

in terms of directing the photon flux, and higher temporal and spatial spark-to-spark stability. 

Here, cannula tips were one-third grinded in 0.5 mm length and the sharp edges were evenly 

flattened. The electrodes were arranged exactly facing each other, with the argon gas stream 

flowing over the tips. A flat surface of several stream lines resulted between the electrodes. 
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This bright surface may carefully be aligned on top of the aperture to the capillary. However, 

this design has not been tested within a transfer capillary yet.  

 Typical operating conditions were applied for the following spark investigations: The 

radiation source was implemented on “position 9 cm” of the transfer capillary (cf. Table 2), 

with pstatic = pdischarge =719 mbar. The argon flow was set to 0.5 L∙min-1, the repetition rate was 

1500 Hz and the trigger signal duration was adjusted to 0.18 ms. Ambient air at 997 mbar 

upstream pressure was flowing through the transfer capillary. 

 Figure 34 (a) depicts several discharge cycles with the quantified temporal current and 

voltage evolution (for the experimental setup see also 3.1.4.2  Characterization of the 

Discharge Lamp). The experimentally determined breakdown potential is Vbreak = 860 V and 

the maximum pulse current is up to 2.2 A. During the spark event the cathode voltage rapidly 

drops to a minimum of 60 V at which the discharge eventually becomes unstable and stops. 

 

 

Figure 34: Spark discharge characteristics of lamp design 3 operated with the DD20_10 C-Lader. (a) Temporal 
correlation of the current and voltage evolution, illustrated by three subsequent breakdowns, (b) temporal 
correlation of the trigger signal and the potential on the cathode, (c) temporal evolution of the voltage and 
current during one spark, and (d) temporal correlation of the current and the light emission in the UV/VIS 
during one spark. 
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 Figure 34 (b) illustrates the time dependent correlation between the driving voltage of 

the cathode and the trigger signal during one spark event. As can be seen 50 µs after the 

positive slope of the trigger signal the electronic circuit of the DD20_10 C-Lader supply starts 

charging the capacitors with approximately 1.3∙107 V∙s-1. After 80 µs the voltage has reached 

the breakdown potential2

 A close up of the voltage and current curves is shown in 

 and the two capacitors discharge within 8 µs. Note, that the trigger 

signal is still high during the sparking process, which means that the switch-mode supply 

continuously recharges the capacitors. This eventually leads to additionally produced current 

than just the load of the two capacitors would generate. The discharging process, however, is 

faster than recharging, so that the overall voltage drops within 8 µs below the discharge 

threshold level. The trigger signal is still high for further 30 µs which recharges the capacitors 

to about 25 % of the breakdown voltage (~220 V). The temporal variation of the breakdown 

cycles, relative to the rising slope of the trigger signal, was measured to be within ± 0.5 µs 

accuracy, which makes this lamp a valuable tool for applications where a precisely triggered, 

pulsed radiation source is required. 

Figure 34 (c). The well 

defined starting point of the spark event is clearly discernible. The recorded current curve is 

of Gaussian shape with its maximum close to the minimum of the cathode voltage and with a 

FWHM of around 7 µs, as marked in Figure 34 (d). The latter panel also shows the temporal 

evolution of the light signal obtained for the UV/VIS region with fairly good overlap of both 

curves. Thus the FWHM duration of the light pulse is 7 µs.  

 

k) Theoretical considerations on the spark characteristics 

 As simple as sparking devices are, as complex may theoretical considerations about 

the prevailing mechanisms become. Thus the purpose of this section is a rough description 

based on some well known theoretical approaches described in the literature. The first 

fundamental work on spark mechanisms was presented by Paschen in 1889 who investigated 

the breakdown voltage Vbreak in dependency on the product of electrode distance delec and the 

discharge pressure pdischarge [122]. A typical Paschen curve for argon in a double logarithmic 

plot of Vbreak and the product of pdischarge and the electrode distance delec is shown in Figure 35, 

derived from data points given by Druyvesteyn et al. [124] for plane, parallel iron plates as 

                                                 
2 “[…] the voltage for which the initial current is increased by a very large factor […] is called the breakdown 
potential […].” [124] 
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electrodes within a static gas. The present operating conditions are marked in the plot 

suggesting a breakdown voltage of 900 V, which is in very good accordance to the 

experimentally measured Vbreak = 860 V. For simplification purposes, the present setup will 

thus be theoretically treated as an assembly of two parallel electrodes, placed within a static 

gas.  

 

Figure 35: Typical Paschen curve for argon, derived from data given by Druyvesteyn and Penning [124]. The 
sketched lines illustrate the operating conditions of lamp design 3.  

 

 First, the situation prior to the first single spark event is considered. The resistance of 

the gap is high, preventing electrons from leaving the cathode to the anode even with a 

moderately voltage applied. However, as stated by Loeb [123]:”If no electrons are produced 

there is no current”. However, there are always free electrons present in the gas due to cosmic 

rays and natural radioactivity. Any potential gradient between the electrodes immediately 

induces a small base current i0. Due to acceleration within the electrical field the electrons are 

capable of generating secondary products (ions, excited atoms and photons) on their path to 

the anode. The probability of the primary electrons to cause ionization along their travel path 

within a specific gas species is expressed by the first Townsend coefficient α [m-1], which is 

calculated as [132]: 

 𝛼 = 1
𝜆𝑒
∙ 𝑒

𝐸𝑖
𝐸𝑒     (eq 28) 

with λe = electron mean free path [m], Ei = ionization energy of the gas [eV], and Ee = average 

collision energy [eV]. Equation 28 expresses the product of the number of collisions per unit 

length and the ionization probability per collision. Ee is calculated according to [132]: 
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 𝐸𝑒 = 𝜆𝑒 ∙ 𝐸      (eq 29) 

with E = electric field [V∙m -1], which is calculated assuming a linear dependence. The 

electron mean free path is derived from [132] 

 𝜆𝑒 = 𝑘𝑏∙𝑇
𝜎𝑒𝑖∙𝑝𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒∙100

    (eq 30) 

with kb = Boltzmann constant [J∙K -1], T = temperature [K], σei = electron ionization cross 

section [m²], and pdischarge [mbar]. Once those secondary products are formed they are capable 

of liberating electrons from the cathode, due to positive ion impact, photoelectron emission, 

and partially due to the impact of metastables [124]. These secondary electrons also travel 

within the electrical field E from the cathode to the anode and generate further ions, photons, 

and metastables resulting in an avalanche establishing the self sustained base current i0 and 

eventually lead to the observed breakdown. As can be seen in Figure 34 (c), the capacitor 

charge (and the additional charge still delivered from the power supply) is injected from the 

cathode into the plasma, resulting in a rapidly increasing current and decreasing voltage. The 

latter process induces an electrical field change within a spark event, accounting 

approximately to 

 𝑑𝐸
𝑑𝑡
≈ 1.9 ∙ 1010 � 𝑉

𝑚∙𝑠
�    (eq 31). 

At around E = 7.5∙10-4 [V∙m-1] (calculated with the lowest measured voltage3

 At this point the impact of the repetitive spark operation mode (every 0.7 ms one 

breakdown event) and the continuous gas exchange of the discharge chamber is qualitatively 

implemented into the presented model. The gas flow (0.5 L∙min-1) from the anode to the 

cathode leads to approximately 50 % gas exchange in the discharge chamber (8.3 mm3) in 

between two spark events. Hence, the prevailing operating conditions provide elevated stable 

primary electron and positive ion background concentrations than naturally occurring. The 

gas flow direction, as mentioned, has significant impact on the single temporal and spatial 

spark stability. This is readily explained by the presented model, since the liberation of a new 

), newly 

liberated electrons from the cathode experience a field strength that does not lead to a 

collision energy Ee for sufficient formation of new ions, excited atoms, and/or photons. The 

discharge becomes unsustainable and stops.  

                                                 
3 Not accounted are space charge effects that might change the effective field strength experienced by an electron 
within the gap. 
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generation of electrons is enhanced by the fluid dynamical transport of ions and excited atoms 

towards the cathode. The directed flow also improves the spark-to-spark stability, as the 

impact of positive ions possibly liberates electrons from the cathode in an early stage of the 

discharge event. In accordance with this picture also a lower breakdown voltage is expected 

contrary to the model of independently occurring single spark events. Furthermore, the 

probably orders of magnitude higher background concentration of primary electrons and the 

permanent plateau potential of 220 V between the pulses (cf. Figure 34, a) raise the base 

current i0 to a much higher level. This also evokes a decrease of the breakdown voltage and an 

increase in the temporal stability of the spark ignition. However, without sufficient dilution, 

i.e., an even higher charge carrier background level, there is risk of creating a conducting gap 

with nearly no resistance, which would result in extremely high currents and eventually 

burnout the lamp. In that case all the electrons provided by the switch-mode supply would not 

be used to charge the capacitors back again but to directly migrate through the gap. This 

scenario describes the turning point from a spark into an arc discharge. Thus, dilution is a 

balancing act between preventing the accumulation of too many charge carriers but still 

providing appreciable high concentrations of primary electrons and positive ions for optimum 

lamp performance. 

 Up to now the fate of an electron on its passage to the anode has barely been 

mentioned. However, this is what keeps the discharge running in terms of the generated 

secondary products and this is what makes the discharge to a valuable VUV radiation source 

for APPI-MS applications. As described by Druyvesteyn and Penning [124] there are 

basically five processes occurring while the electrons travel within an electrical field through 

a gas of a given pressure pdischarge: (i) Elastic collisions with gas atoms/molecules, 

(ii) electronic excitation of atoms/molecules, (iii) vibrational excitation of molecules, 

(iv) ionization of atoms/molecules, and (v) gain of electron kinetic energy. The sum of all 

fractional energy contributions for each process is expressed by the electron energy balance 

equation [124]. For argon as a monatomic gas and assuming that the impact of impurities such 

as O2 and N2 are insignificant, the electron energy loss due to vibrational excitation cannot be 

present. Furthermore, it is stated [124] that in case of the prevailing discharge conditions the 

impact of elastic collisions is to a first approximation negligible. These assumptions reduce 

the balance equation to 

 1 = 𝜂 ∙ 𝐸𝑖 + 𝜂 ∙ Ee + ∑ 𝜉𝑒𝑙.𝑒𝑥𝑐; 𝑛 ∙ 𝐸𝑒𝑙.𝑒𝑥𝑐;𝑛𝑛  (eq 32) 



4   Results and Discussion 

 
80 

 

with η∙Ei and η∙Ee describing the fractions of the electron energy used for ionization and for 

the increase of the electron kinetic energy, respectively. The last term on the right side of 

equation 32 expresses the fraction of the total available energy that is lost in electronic 

excitation. Ei represents the ionization energy of argon in [eV] and Ee is calculated according 

to equations 28 and 29. η is the ionization coefficient [V-1] and describes the average number 

of ionization processes per volt potential difference passed by the electron [124] and is related 

to the Townsend coefficient in the following way 

 𝜂 = 𝛼
𝐸
      (eq 33). 

The coefficient ξel. exc; n [V-1] expresses the probability of exciting the nth electronic level and 

Eel. exc; n [eV] represents the energy of the nth electronically excited level. According to 

equation 32 the fractional contribution of each process can now be calculated and is typically 

plotted versus E∙pdischarge
-1. Experimental values of η versus the product of electrical field and 

discharge pressure in argon were taken from Druyvesteyn and Penning [124]. The ionization 

energy of argon is Ei = 15.7 [eV]; the average electron energy Ee was calculated according to 

equations 29 and 30, with an ionization cross section of σei = 3.5∙10-20 m-2 [133]. The 

contribution of electronic excitation is derived from equation 33 since the other two terms are 

determined. The resulting half-logarithmic plot is shown in Figure 36; the region of the 

discharge conditions using lamp design 3 is shaded red. As can be seen the contribution of 

electron kinetic energy increase is negligible throughout the entire breakdown.  

 

Figure 36: Mean partial electron energy contributions to the processes of ionization of the discharge gas, electronic 
excitation of the discharge gas, and kinetic energy increase of the electron stream within a discharge in 
pure argon. Highlighted is the operating region of the prevailing discharge characteristics in lamp 
design 3.  
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At the beginning of a spark event the mean fractional loss due to ionization accounts for 

around 5 %, the rest, nearly 95 %, is driving electronic excitation. The E∙pdischrage
-1 values 

decrease from 1.5 to 0.1 V∙mm-1∙mbar-1 along with the rapid voltage drop from 860 V to 60 V 

(cf. Figure 34 c). Also the fractional loss due to ionization drops to zero at the end of the spark 

and the fractional impact of electronic excitation climbs to 100 %. At this point it is again 

noteworthy that this picture can only present an estimate of the relative contributions between 

electron kinetic energy increase, ionization, and electronic excitation within the electron 

energy balance of a discharge in argon. It does not account for losses due to elastic collisions 

or the accompanied Ramsauer effect [134] at low electron energies4

Table 3

. Furthermore, impurities 

such as O2 and N2 would change the situation by means of the fractional loss due to possible 

vibrational excitation, which then needs to be taken into account. Additional impurities with 

lower ionization potentials than the energy of argon metastables (11.55 and 11.72 eV; 

cf. ) would further change the relative contribution between ionization and electronic 

excitation, since in subsequent Penning ionization reactions [124] the primary electronic 

excitation would be converted to charged species. Nevertheless, Figure 36 clearly shows that 

excitation is by far the dominating process within the discharge operating conditions of lamp 

design 3. Photons or metastables are essentially responsible for the liberation of new electrons 

from the cathode; both are the dominating energy carriers to sustain the discharge. This 

finding supports the directed flow approach, since an effective transport of metastables is thus 

ensured. The large degree of electronic excitation within the miniature spark discharge 

chamber is the explanation for the efficient generation of VUV photons. This lamp design is 

thus a very attractive alternative VUV radiation source for APPI-MS applications. 

 

l) Optical emission spectroscopy (OES) 

 It was shown that the discharge efficiently generates electronically excited species. 

Based on optical emission spectroscopic investigations this section discusses the 

determination of these species and their possible fates within a comprehensive discharge 

chemistry. Figure 37 shows optical emission spectra of the spark discharge lamp in the range 

of 105 nm to 1100 nm. Note that wavelength dependent transmission discrimination of the 

fiber optics and the LiF window, due to constraints of the experimental setup (cf. 3.1.4.2  

                                                 
4 This effect is based on the wave-particle dualism of the electron. It shows that the collision probability is a 
function of the electron energy. This probability is characterized by a maximum when the electron energy with 
its corresponding de-Broglie wavelength comes close to the dimensions of the surrounding gas species. 
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Characterization of the Discharge Lamp), are not considered. The UV/VIS spectrum in 

Figure 37 (right) pictures the emission of the discharge lamp operated as discussed before 

(pstatic = pdischarge = 719 mbar; 1500 Hz repetition rate, trigger pulse width = 0.18 ms using the 

DD20_10 C-Lader power supply; ambient air at 997 mbar as the sample gas stream through 

the transfer capillary). The spectrum is dominated by characteristic Ar I lines (argon in the 

neutral state), of which the most intense ones are listed in Table 3. The Grotriam diagram for 

Ar I [135] reveals that many of these lines between 390 and 1100 nm are precursor emissions 

for transitions in the VUV (Ar*(2[3/2]* J=1 → 1S0 = 106.7) and Ar*(2[1/2]* J=1 → 1S0 

= 104.8 nm)) and for the generation of excited argon species with forbidden transitions to the 

ground state (Ar*(2[3/2]* J=0) = 11.55 eV and Ar*(2[1/2]* J=0) 11.72 eV). In principal this 

allows for monitoring the UV/VIS light intensity as a measure of the generated VUV 

radiation and metastable formation. The spectrum further shows the emissions from 

electronically excited N2 (6 bands from 280 - 400 nm), O I (777 nm) and H I (656 nm), which 

resulted from diffusion of the sample gas flow into the discharge region. The air concentration 

within the argon atmosphere amounted to 0.8 %, which was determined by calibrating the 

relative intensity of the O I (777 nm) and Ar I (763 nm) lines with synthetic air. The broad 

continuum between 250 and 700 nm is tentatively assigned to free-free and free-bound 

transitions of the electrons.  

 

 

Figure 37: (left) VUV spectra of the spark discharge in 1000 mbar argon with 0.1, 0.5 and 1.0 % synthetic air present 
and (right) UV/VIS spectrum of the spark discharge in 719 mbar argon with 0.8% synthetic air present. 

 

The VUV spectrum at an argon pressure of 1000 mbar with 0.1 % air present (cf. Figure 37 

left) is characterized by the second excited argon dimer Ar2
*(1Σ+

u and 3Σ+
u) continuum 
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centered at 127 nm, with a line width of FWHM = 20 nm, and three lines that are assigned to 

H I (121.5 nm)/N I (119.9, 120.2 and 120.7 nm), O I (130.2, 130.4 and 130.6 nm) and 

N I (149.2 and 149.5 nm) transitions. The lines at 106.7 and 104.8 nm, as predicted from the 

UV/VIS precursor emissions, do not appear. The VUV radiation is most likely completely 

absorbed by the LiF window due to its spectral cutoff (cf. Figure 31). The absence of the 

Ar*(2[3/2]* J=1) emission to the ground state is also partially assigned to the reduced 

transmission of the window, but moreover this state is primarily reacting to form argon 

excimers Ar2
*(1Σ+

u) with argon ground state Ar(1So) atoms, as described by Millet et al. [114]: 

 Ar*(2[3/2]* J=1) + 2 Ar(1So) → Ar2
*(1Σ+

u) + Ar(1So)  (rxn 12) 

The authors further proposed a pathway to form the triplet state of the argon excimer 

Ar2
*(3Σ+

u) within the discharge chemistry: 

 Ar*(2[3/2]* J=0) + 2 Ar(1So) → Ar2
*(3Σ+

u) + Ar(1So)  (rxn 13) 

Here the metastable state Ar*(2[3/2]* J=0) at 11.55 eV reacts in a three body collision process 

with argon atoms in the ground states to generate the excited dimer. It is speculated that in the 

present setup the metastable state itself is not participating in any analyte ionizing process (in 

terms of ionizing analyte molecules within the transfer capillary), since the discharge region is 

virtually separated from the sample gas flow (see above) and thus collisions with the analyte 

are not likely to occur. However, reaction 13 turns this inactive species into a VUV radiating 

excimer, hence an active analyte ionizing species. Taking into account the relative intense 

precursor emission (~30 %, cf. Table 3) in the UV/VIS leading to this metastable state, this 

reaction appears to be very important for the total ionization efficiency of this lamp type. The 

radiative transition of both excimer states to the dissociative ground state is centered at 

127 nm. The reported lifetimes are τsinglet = 6 ns and τtriplet = 2.86 µs for Ar2
*(1Σ+

u) [136] and 

Ar2
*(3Σ+

u) [114], respectively. Due to the long lifetime of the triplet state, resonant energy 

transfer of the excimer to O I, N I and H I is enhanced, as, e.g., described for oxygen by 

Moselhy et al. [137]. The spectra in Figure 37 (left) with 0.5 and 1.0 % air in 1000 mbar 

argon clearly demonstrate the quenching effect with small amounts of impurities. The excimer 

continuum completely disappears and H I (121.5 nm), O I (130.2, 130.4 and 130.6 nm) and 

N I (113.4, 119.9, 120.2, 120.7, 124.3, 149.2 and 149.5 nm) lines are enhanced. The 

integrated spectral intensity from 105 to 155 nm remains constant, though. This result is 

supported by an investigation of the ionization efficiency regarding acetone in which O2 was 
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added stepwise to the argon atmosphere of the lamp. The MS signal stayed virtually constant 

even with up to 10 % oxygen present. Pure oxygen, however, caused a considerable decrease 

in the MS signal, apparently due to a significant change in the discharge characteristics itself.  

 

Table 3:  Observed Ar I emission lines between 200 and 1100 nm. The intensity is relative to the sum of the Ar 
I line intensities. Non precursor transitions are denoted with x. For the precursor emission lines the 
term of the lower state of that transition and its energy to the Ar ground state (1So) are listed, with 
(104.8 or 106.7 nm) and (m) indicating a radiative or metastable state, respectively. Not definable 
intensities are denoted with n.d. 

wavelength 
lit.[nm] 

[135] 

observed 
wavelength 

[nm] 

relative 
intensity 

[%] 

term of the lower excited  
Ar* state of the 

precursoremission 

Δ energy 
Ar* - Ar(1S0) 

[eV] 
394.8979 394.9 0.204 2[3/2]* J=0 11.55        (m) 

404.4418 404.4 0.240 2[3/2]* J=1 11.62        (106.7 nm) 

415.859 415.9 0.464 2[3/2]* J=0 11.55        (m) 

420.0674 420.0 0.601 2[3/2]* J=0 11.55        (m) 

425.9362 426.0-427.2 n.d. 2[1/2]* J=1 11.83        (104.8 nm) 

426.6286 426.0-427.2 n.d. 2[3/2]* J=1 11.62        (106.7 nm) 

427.2169 426.0-427.2 n.d. 2[3/2]* J=1 11.62        (106.7 nm) 

430.0101 430.1 0.266 2[3/2]* J=1 11.62        (106.7 nm) 

433.3561 433.4 n.d. 2[1/2]* J=1 11.83        (104.8 nm) 

433.5338 433.4 n.d. 2[1/2]* J=1 11.83        (104.8 nm) 

434.5168 434.7 0.308 2[1/2]* J=1 11.83        (104.8 nm) 

451.0733 451.1 0.224 2[1/2]* J=1 11.83        (104.8 nm) 

452.2323 452.2 0.201 2[1/2]* J=0 11.72        (m) 

459.6097 459.6 0.200 2[1/2]* J=1 11.83        (104.8 nm) 

516.2285 516.2 0.443 x x 

518.7746 518.7 0.473 x x 

522.1271 522.1 0.406 x x 

545.1652 545.1 0.403 x x 

549.5874 549.7 0.483 x x 

555.8702 555.9 0.468 x x 

557.2541 557.3 0.414 x x 

560.6733 560.7 0.447 x x 

565.0704 565.0 0.372 x x 

573.952 574.0 0.305 x x 

583.4263 583.4 0.265 x x 

586.031 586.0 0.265 x x 

588.8584 588.9 0.320 x x 

591.2085 591.3 0.324 x x 

592.8813 592.9 0.290 x x 

594.2669 594.3 0.272 x x 

598.7302 598.8 0.260 x x 

603.2127 603.3 0.558 x x 

605.9372 606.0 0.359 x x 
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610.5635 610.6 0.285 x x 

617.3096 617.5 0.254 x x 

621.2503 621.4 n.d. x x 

621.5938 621.4 n.d. x x 

629.6872 629.8 0.190 x x 

630.7657 630.9 0.197 x x 

636.9575 636.9 0.173 x x 

638.4717 638.6 0.183 x x 

641.6307 641.9 0.255 x x 

653.8112 653.9 0.173 x x 

660.4853 660.5 0.165 x x 

666.4051 666.5 0.159 x x 

667.7282 667.7 0.204 2[3/2]* J=1 11.62        (106.7 nm) 

675.2834 675.0-675.6 n.d. x x 

675.6163 675.0-675.6 n.d. x x 

687.1289 687.2 0.310 x x 

688.8174 688.8 0.166 x x 

693.7664 693.8 0.193 x x 

696.5431 696.6 5.111 x x 

703.0251 703.1 0.275 x x 

706.7218 706.8 n.d. 2[3/2]* J=0 11.55        (m) 

706.8736 706.8 n.d. x x 

714.7042 714.7 0.472 2[3/2]* J=0 11.55        (m) 

720.698 720.8 0.138 x x 

727.2936 727.4 1.080 2[3/2]* J=1 11.62        (106.7 nm) 

731.6005 731.5 0.129 x x 

735.3293 735.4 0.178 x x 

738.398 738.4 6.123 2[3/2]* J=1 11.62        (106.7 nm) 

750.3869 750.4 4.412 2[1/2]* J=1 11.83        (104.8 nm) 

751.4652 751.5 6.208 2[3/2]* J=1 11.62        (106.7 nm) 

763.5106 763.6 11.676 2[3/2]* J=0 11.55        (m) 

772.3761 772.4 n.d. 2[3/2]* J=0 11.55        (m) 

772.4207 772.4 n.d. 2[1/2]* J=0 11.72        (m) 

794.8176 794.9 4.176 2[1/2]* J=0 11.72        (m) 

800.6157 800.6 2.234 2[3/2]* J=1 11.62        (106.7 nm) 

801.4786 801.5 4.333 2[3/2]* J=0 11.55        (m) 

810.3693 810.4 5.053 2[3/2]* J=1 11.62        (106.7 nm) 
811.5311 811.5 10.017 2[3/2]* J=0 11.55        (m) 
826.4522 826.4 2.239 2[1/2]* J=1 11.83        (104.8 nm) 

840.821 840.9 3.990 2[1/2]* J=1 11.83        (104.8 nm) 

842.4648 842.5 4.623 2[3/2]* J=1 11.62        (106.7 nm) 

852.1442 852.2 1.558 2[1/2]* J=1 11.83        (104.8 nm) 

860.5776 860.6 0.024 x x 

866.7944 866.8 0.374 2[1/2]* J=0 11.72        (m) 

912.2967 912.3 1.429 2[3/2]* J=0 11.55        (m) 

919.4638 919.5 0.025 x x 
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922.4499 922.5 0.481 2[1/2]* J=1 11.83        (104.8 nm) 

929.1531 929.2 0.013 x x 

935.422 935.4 0.055 2[1/2]* J=1 11.83        (104.8 nm) 

965.7786 965.7 0.149 2[3/2]* J=1 11.62        (106.7 nm) 

978.4503 978.5 0.059 2[1/2]* J=1 11.83        (104.8 nm) 

1047.0054 1047.1 0.005 2[1/2]* J=0 11.72        (m) 

1047.8034 1047.8 0.005 x x 

 

m) VUV emission efficiency in comparison to the commercially available APPI lamp 

 Measurements with the commercially available krypton radio frequency (Kr-RF) lamp 

showed that the total VUV radiation (> 8.3 eV) of the home-built spark discharge lamp 

amounts to 75 % of the Kr-RF lamp emission. It is noteworthy that the radiation at 104.8 nm 

(precursor emission accounts for 13.5 %, cf. Table 3) and discrimination of wavelengths 

below 116 nm due to the LiF window of the VUV spectrometer are not considered. In the 

windowless lamp design this radiation is quantitatively available for ionization. 

 

n) VUV emission spectroscopy below 105 nm 

 As stated above, the significant drawback of the VUV spectroscopic setup was the 

need of a physical separation of the discharge from the evacuated chamber containing the 

grating and the detector (MCPs). However, as discussed in depth earlier, the LiF transmission 

efficiencies and the cutoff merely revealed parts of the actually present VUV emission. In a 

cooperation with Resonance Ltd. (Barrie, ON, Canada) spectroscopic investigations without 

the use of window material became possible. A modified diode array detector was used that is 

sensitive down to 30 nm and that allows for operation at elevated pressures. The spark setup 

in terms of electrode distance and gas flow was analogue to lamp design 3, however, built into 

a mount fitting the flange of the spectrometer. In a first attempt helium (830 mbar) was 

employed as the background gas of the spectrometer and mixtures of helium and argon were 

used for the gas flow through the electrodes. High voltage was supplied by the DD20_10 C-

Lader, operated as described before. Two VUV spectra with 1 % Ar in He and 9.5 % He in Ar 

present, respectively, are shown in Figure 38: (left) and (right). The left spectrum shows a 

broad Ar I emission which is speculated to be a combination of the unresolved 104.8 and 

106.7 nm emissions. The well known emission lines of N I, O I and H I are also present in 

significant abundance. The right spectrum clearly demonstrates that this discharge setup is 

capable of providing VUV radiation far below 100 nm. The broad emission around 65 nm is 
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assigned to strong Ar II (ionized argon) and N II transitions. The remaining part of the 

spectrum is again dominated by N I, O I and H I emissions. It is stressed that these results 

were obtained under operating conditions that are not directly compatible with APPI-MS. 

First, the impact of the helium background gas on the discharge was not known and second, 

subsequent discharge chemistry could have been more extensive, since the distance between 

grating and discharge region was about 200 mm, whereas the distance to the sample gas flow 

within the transfer capillary is less than 1 mm. The large distance in the spectroscopic setup is 

a reasonable explanation for the observed extensive impurity emissions. These issues will be 

resolved in future experiments. Nevertheless, both spectra give a fairly good impression of 

(i) the ability of the lamp to produce significant amounts of VUV radiation below 100 nm, 

(ii) the advantage of the windowless lamp design, and (iii) the potential of this type of 

discharge lamp to function as a selectable VUV radiation source by using an appropriate 

discharge gas mixture. Furthermore, the VUV emission measurements with the commercially 

available APPI lamp will be repeated using a windowless spectrometer.  

 

Figure 38: VUV measurement of a spark discharge lamp below 105 nm (in cooperation with Resonance Ltd. Barrie, 
On, Canada). The background gas of the spectrometer was helium at a pressure of 830 mbar. The gas 
composition delivered through the electrodes was (left) 1 % argon in helium and (right) 9.5 % helium in 
argon.  

 

4.2.3.4  Impact of Different Ionization Positions on MS Spectra 
 So far experiments were centered on the development and characterization of 

miniature spark discharge lamps for implementation in MS transfer capillaries. The goal was 

to significantly reduce ion transformation processes that are dependent on the total number of 

collisions, and at the same time provide high neutral analyte densities for efficient ion 
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generation. Based on degradation product studies, the following two sections will give an 

impression of the effects when shifting the ionization position further downstream along the 

capillary main axis. 

 

a) Impact on negative ion mode 

 In Figure 39 (a,b) the effect of reduced ion transit times within the capillary is 

demonstrated using the negative ion mode. A degradation experiment with p-xylene was 

repeated three times at three different ionization positions: (i) Within the laminar flow ion 

source (cf. Figure 12, 8), (ii) on position 15 cm, and (iii) on position 17.5 cm of the transfer 

capillary. The different transit times thus accounted for 5 ms, 0.13 ms and 0.02 ms, 

respectively (cf. chapter 4.2.2.3  LFIS – APPI (b) and Table 2). Figure 39 (a) shows the 

recorded mass spectra at the beginning of the experiment, with all chemicals (1 ppmV  

p-xylene, 5 ppmV MeONO, 3 ppmV NO) injected into the photoreactor. The most abundant 

peak in each spectrum is assigned to the [M-H]- of HNO3 (m/z = 62) always present due to the 

formation as a byproduct in a degradation run (see also reaction 9, page 28) 

 HO + NO2 + M → HNO3 + M    (rxn 14) 

with a termolecular rate constant of k = 2.5∙10-30 cm6∙mlecule-2∙s-1 [138]. Figure 39 (b) shows 

mass spectra after 25 min of the degradation experiment for comparision. The spectrum 

generated with the ionization position in the laminar-flow ion source (5 ms) remained 

virtually unchanged. In contrast, the spectra obtained from ionization positions within the 

transfer capillary show significantly more signals that are assigned to oxygenated products of 

the degraded p-xylene. The extensive loss of MS information along the 5 ms transit time is 

assigned to secondary ion transformation processes of the types: 

 [M]-/[M-H]- + HNO3 → [MH]/[M] + NO3
-    (rxn 15) 

 [M]-/[M-H]- + [P]+/[P+H]+ → [M]/[MH] + [P]    (rxn 16) 

 [M]-/[M-H]- + [P]+/[P+H]+ → [MP]/[MPH]    (rxn 17) 

with [M] and [P] being any chemical species present in the matrix. In reaction 14 the species 

with the lower proton affinity (HNO3) is favored and reactions 15 - 17 consider charge 

neutralization. In other words, the ion signal distribution is thermodynamically controlled 

within 5 ms and mass spectrometric information reflecting the true neutral composition is lost, 



4   Results and Discussion 
 

 
89 

 

whereas ionizing within the transfer capillary shifts the ion signal distribution towards kinetic 

control, hence more MS information is preserved. These reactions will be discussed in more 

detail in chapter 4.3.3.2  APPI/APLI-Negative Chemical Ionization (NICI). 

 

 

Figure 39: Mass spectra obtained at different ionization positions. The positions are denoted as 5 ms, 0.13 ms and 
0.02 ms referring to the transit time between the ionization position and the capillary exit. (a) Comparison 
of negative ion mass spectra at the starting point of a degradation experiment with p-xylene (1 ppmV), 
MeONO (5 ppmV) and NO (3 ppmV) in synthetic air present, (b) comparison of negative ion mass spectra 
of the same degradation experiment after 25 min of reaction time. (c) Comparison of positive ion mass 
spectra recorded at the 5 ms and 0.13 ms position, with identical p-xylene degradation composition 
present.  

 

b) Impact on positive ion mode 

 The impact on the positive ion mode upon changing the ionization position is 

demonstrated in Figure 39 (c). Both spectra were recorded at the same reaction time of one  

p-xylene degradation experiment. The spectrum recorded with ionization on the 5 ms position 

leads to the conclusion that p-xylene (m/z 106) has been quantitatively degraded. 

Consequently, the main peak appears at m/z 113, assigned to the [M+H]+ of the unsaturated 

1,4-dicarbonyl, which is one of the expected major degradation products [6]. However, the 

mass spectrum recorded at the 0.13 ms ionization position reveals that m/z 106 for p-xylene is 
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the most abundant signal. This effect is explained by the considerable proton donor 

characteristic of the ionized p-xylene, leading to the following ion transformation process: 

 [M]+ + [P] → [M-H] + [P+H]+    (rxn 18) 

with [M] as p-xylene and [P] as the 1,4-dicarbonyl. Hence, the p-xylene acts as a proton 

donor for its own degradation product. It follows that with sufficient time after the ionization 

step the relative ion distribution does not reflect the neutral composition of the sample 

anymore. Consequently, ionization on the 5 ms position suggested a much faster progress of 

the degradation reactions than in fact it was. This renders kinetic studies of degradation 

experiments, where rate constants ought to be investigated, nearly impossible with common 

API-MS methods. However, at the 0.13 ms position the molecular ion of the primary photo 

ionized 1,4-dicarbonyl became visible at m/z 112. The impact of superimposed ion chemistry 

on this signal is believed to be negligible since the concentration of other species, where 

proton transfer could play a role, are rather low. Additionally, other neutral degradation 

products would readily be titrated away by the presence of high concentrations of the  

p-xylene radical cation. Consequently, with the introduction of the novel APPI approach at 

least rough quantitative estimates5

4.3.3  ITP via Chemical Ionization

 concerning the relative concentrations of neutral 

degradation products within the sample became possible. This discussion will be extended in 

chapter . 

 It was shown that within the operating conditions of the present mass spectrometer the 

lowest possible dwell time of generated ions at elevated pressure in fact considerably reduces 

ion transformation processes. APPI on transfer capillaries in common mass spectrometers 

preserves significantly more MS information; thus the recorded ion signal distribution much 

closer reflects the neutral composition. At this point some signal fluctuations at the 20 µs 

position, especially in the alternating mode of the mass spectrometer, should be mentioned. 

This problem has not been completely understood, however, it is tentatively assigned to the 

impact of the discharge on the potential applied between the end of the capillary and the 

skimmer. It is believed that with the implementation of lamp design 3 at this position (lower 

breakdown voltage; use of the DD20_10 C-Lader as the power supply) the observed effects 

are significantly reduced. Hence, most degradation studies have not been performed with 

                                                 
5 Mass discrimination effects due to the operating conditions of the instrument and individual VUV absorption 
cross sections still interfere for true quantification. However, the variation in the latter is not as significant and 
consequently not as selective as, e.g. in APLI. 
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ionization on the position with the lowest possible transit time, but on the 0.13 ms position, 

which still gave reasonable results in terms of ITP reduction.  

 

4.3  Ion Transformation Processes (ITP) 

 So far the discussion might lead to the conclusion that ion transformation processes 

are per se undesired and need to be completely eliminated. As already mentioned in the 

introduction, this is not the case. ITPs bear the ability to provide valuable structural 

information and they are capable of significantly enhancing the mass spectrometric sensitivity 

of certain species. However, and this is the pivotal point, in order to correctly interpret a mass 

spectrum, it is necessary to know what kind of transformation processes between the 

ionization step and the detection step occurred and also to which extend. This generally 

complicates the mass spectrometric analysis of unknown samples investigated with API-MS, 

since in lieu of a reference spectrum that illustrates an ITP reduced ion signal distribution, 

these processes are difficult to determine. Four types of transformation processes that were of 

fundamental relevance within this work of mass spectrometric analysis of atmospheric 

degradation product studies will be dealt with in the following chapters.  

 

4.3.1  Unintended Collision Induced ITP 

 Fragmentation processes in mass spectrometry may be induced or enhanced by 

increasing the kinetic energy of an ion with potential gradients along the travel path. This 

results in higher collision energies, which might eventually be sufficient to overcome the 

potential activation barrier and thus induce fragmentation. The esquire6000 exhibits two 

acceleration stages that should be considered, namely (i) the transfer region from the capillary 

exit into the high vacuum section (cf. Figure 4, right) and (ii) the “trap drive” region governed 

by parameters that determine the potential well in which ions are being captured within the 

trap (cf. 3.1  Mass Spectrometer). The first case was of significance with one of the early 

20 µs-position lamp designs in which the discharge was still physically separated through a 

LiF window. The efficient guidance of ions into the high vacuum stage required optimized 

voltages on the capillary exit and the skimmer of 360 V and 0 V, respectively. With this 

maximum settable potential gradient severe fragmentation patterns of analytes were observed. 
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It is noted that commonly applied voltage differences range between 70 V and 100 V. At this 

time it is not known why the transmission efficiency of this early design required such high 

voltages. Using the same capillary, but a further upstream ionization position (laser or 5 ms 

position), the common voltages were applied for sufficient transfer, so this effect was 

unambiguously assigned to the operating conditions of this lamp type. Furthermore, with the 

introduction of the windowless approach on this outermost position this effect was not present 

anymore, merely the mentioned lack of stability in the alternating mode was observed. The 

second case, concerning the trap drive parameter, turned out to be a balancing act between 

optimized trapping efficiency and induced fragmentation processes. The applied voltages 

force the ions into a potential well, in other words they are accelerating. At this point the 

presence of helium as the buffer gas is supposed to cause collisional cooling effects; however, 

with sufficient gain of kinetic energy unintended collision induced dissociation becomes 

obvious. Figure 40 demonstrates the impact of this type of ITP.  

 

 

Figure 40: Impact of the “trap drive” parameter on induced fragmentation of ionized p-xylene.  

 

A sample of around 1 ppmV of p-xylene in synthetic air was delivered from the photoreactor 

and irradiated with the DPSS laser in coaxial configuration of the laminar-flow ion source. 

The only parameter changed was the applied trap drive, with a fixed value of “15” in the 

upper and “65” in the lower spectrum. These correspond to a small and a fairly high (but still 
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in the commonly applied range) accelerating potential, respectively. The induced 

fragmentation process with the higher trap drive value leads to virtually complete loss of the 

parent molecule at m/z 106 in favor of the tropylium cation at m/z 91 according to 

 [C8H10]+ + Ekin + He → [C7H7]+ + CH3 + He   (rxn 19) 

In order to exclude interfering mass discrimination effects (cf. 3.1  Mass Spectrometer, b) 

between m/z 91 and m/z 106, due to changes in the trapping efficiency, toluene (m/z 92) was 

added with a concentration of around 2 ppmV into the photoreactor. Once more the values 

“15” and “65” were applied as the trap drive level and again the signal of the tropylium cation 

and the p-xylene radical cation switched intensities, whereas the relative toluene signal was 

virtually unaffected. Consequently, the observed abundance of the tropylium cation at higher 

trap drive levels was unambiguously assigned to unintended CID. 

 

4.3.2  Neutral Radical Induced ITP (NRITP) [82]6

 Upon vaporizing a 100 µL∙min-1 flow of a 10 µM ACN or methanol solution of pyrene 

using the Apollo™ source (

 

Figure 7), and switching on either the 193 nm laser or the 

commercially available Kr-RF lamp, three signals in addition to the radical cation of pyrene 

([M]+, m/z = 202) at m/z = 217, 218, and 219, i.e., [M+15]+, [M+16]+, and [M+17]+ were 

detected. The chemical species leading to these signals are referred to as “oxygenated 

products” of the primary generated radical cation. Identical results were obtained when 

gaseous pyrene was delivered directly at lower ppbV mixing ratios, i.e., in the absence of 

solvents, but in the presence of around 2.4 % oxygen and ~100 ppmV water, as determined in 

4.1.3  H2O and O2 Background Concentrations [82].  

 This experimental observation is pivotal to the present work, particularly with respect 

to the investigation of oxidation pathways of aromatic hydrocarbon cations in API-MS using 

ionizing radiation below 200 nm. The speculated key radicals and atoms potentially 

responsible for the appearance of artificially produced oxygenated ions are O(3P), OH, H, and 

Cl, generated upon photolysis of O2, H2O, and chlorinated molecules, such as the solvents 

CH2Cl2, CHCl3 and CCl4, respectively (cf. 1.2.1.2  Atmospheric Pressure Photo Ionization 

(APPI)). Each of these species potentially drives a comprehensive chemistry, which can be 

                                                 
6 It is noted that most of the content of this chapter has already been published in 2009 [82]. 
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described using well known atmospheric processes. Table 4 summarizes the most relevant 

reactions that have to be considered.  

 

Table 4: Neutral radical reactions considered in the present investigation. 

No Reaction Rate constant k* 

Absorption cross 
section σ  

[cm2 molecule-1]  
193 nm/124 nm** 

1 O2  +  hν → 2 O(3P) 22.5 + 3∙10-22/~10-20 

2 H2O  +  hν → H + OH 135 + 1.8∙10-21/~10-17 

3 CHnCl4-n (n=0 – 2)  +  hν → CHnCl4-n-1(2) + Cl 6.8∙104 + 9∙10-19/~10-17 

4 MeOH + hν → MeO + H 7.5∙103 + 10-19/~10-17 

5 O3  +  hν → O(1D) + O2 3∙105 + 4∙10-19/~10-17 

6 O2  + O(3P) + N2 → O3 + N2 6.0∙10-34 +++ n.a. 

7 O(1D)  + N2 → O(3P) 2.6∙10-11 ++ n.a. 

8 O(1D)  + H2O → 2 OH 2.2∙10-10 ++ n.a. 

9 Cl + O3 → ClO + O2 1.2∙10-11 ++ n.a. 

10 Cl + O2 + N2 → ClOO + N2 2.7∙10-33 +++ n.a. 

11 ClO + O(3P) → O2 + Cl 3.8∙10-11 ++ n.a. 

12 ClOO + Cl → 2 ClO 1.2∙10-11 ++ n.a. 

13 ClOO + N2 → Cl + O2 + N2 6.2∙10-13 ++ n.a. 

14 ClOO + O(3P) → O2 + ClO 5.0∙10-11 ++ n.a. 

15 O3 + H → HO + O2 2.9∙10-11 ++ n.a. 
* T = 298.15 K; first order, second order and third order rate constants are given in units of [s-1], [cm3∙molecule-1∙s-1], 
and [cm6∙molecule-2∙s-1], and are denoted as +, ++ and +++, respectively. Photolysis rate constants are calculated 
assuming a 10 ns laser pulse of 1 mJ energy at λ = 193 nm and an irradiated area of 1 cm2. This corresponds to a 
photon density of 7.5∙10 22 photon∙cm-2∙s-1. The calculation of the rate constant for the PI lamp is not possible, due to 
the unknown photon density in the present set-up. 
** Rate constants are taken from [138] and cross sectional data are taken from [52-57,139] 
 

Since common atmospheric degradation product studies are performed in synthetic air with 

about 20 % oxygen present and furthermore a considerable concentration of water is build up 

during such an experiment, the necessity of investigating neutral radical induced ITPs became 

soon apparent. In addition, it is recalled that the expected neutral degradation products are of 

oxygenated nature as well, which might significantly interfere in MS data interpretation. In 

the following a thorough study, which is exemplarily based on the oxidation pathway of the 
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pyrene radical cation, will be given. The results are discussed in the context of the novel APPI 

approach and the typical conditions prevailing in atmospheric degradation studies.  

 For appropriate experiments a flow-tube assembly was constructed, which allowed the 

spatial separation of the neutral radical production region and the ionization region (cf. 3.1.3  

Setup for Neutral Radical Induced ITP Studies [82] and Figure 11).  

 

4.3.2.1  Evidence for Ion-Neutral Radical Chemistry 
 To demonstrate that the proposed neutral radical ion chemistry was responsible for the 

observed additional signals, the following experiment with the flow-tube assembly was 

performed. First, as shown in Figure 41 (top, a), the 248 nm laser generated a strong pyrene 

radical cation [M]+ signal recorded at m/z 202.  

 

 

Figure 41: Mass spectra recorded upon irradiation of a nitrogen carrier gas flow in the presence of ~ 6 ppbV pyrene, 
~170 ppmV CCl4, ~100 ppmV O2 , and ~ 200 ppmV H2O. Top: (a) 248 nm laser on and 193 nm laser off; (b) 
both lasers on; (c) 248 nm laser off, 193 nm laser on. Bottom: (a) 248 nm laser on and VUV lamp off; 
(b) 248 nm laser on, VUV lamp on; (c) 248 nm laser off, VUV lamp on. 

 

In a second experiment the 193 nm laser beam was switched on, resulting in a mass spectrum 

with the additional signals of [M+15]+, [M+16]+ and [M+17]+ (Figure 41, top, b), while the 

sum of the signals at m/z = 202, 217, 218, 219 remained virtually constant. Hence, the signal 
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intensity of m/z 202 decreased. Turning only the 248 nm laser off resulted in a nearly blank 

mass spectrum (Figure 41, top, c). This experiment clearly demonstrated: (i) The flow-tube 

setup allowed the spatial separation of ion and neutral radical production; (ii) neutral radical 

formation was mostly absent at a wavelength of 248 nm, and (iii) the additional signals 

generated with the 193 nm light were due to secondary products resulting from the reaction of 

neutral radicals with the radical cation. When the 193 nm laser was replaced with the Kr-RF 

lamp almost identical datasets were obtained (cf. Figure 41, bottom, a-c). It was thus 

concluded that upon APPI at 124 nm a rich neutral radical chemistry is initiated, which has a 

significant impact on the signal distribution in the resulting mass spectra.  

 The relative and absolute intensities of the mass signals of the oxidation products were 

strongly changed by variation of the O2, H2O and CHnCl4-n (n=0–2) concentrations, 

respectively, while the sum of the mass spectrometric signals remained constant. Changing 

the ionizing laser position along the quartz tube main axis, i.e., changing the reaction time, 

also strongly affected the mass signal distribution up to the complete loss of [M]+. 

Collisionally induced dissociation of any of the three additional species resulted in loss of m/z 

= 28 and 18, assigned to CO and H2O, respectively. This strongly suggested the addition of an 

oxygen atom to the radical cation in some way, which was used as justification of denoting 

the additional signals as “oxygenated” products. 

 

4.3.2.2  Oxidation of the Pyrene Radical Cation - Feasible Pathways  
 For simplification of the mechanistic studies, only the 193 nm laser in the flow tube 

setup (cf. Figure 11) was used as photolysis and at the same time ionization source and 

positioned between the exit of the glass tube and the entrance of the transfer capillary. With a 

carrier gas velocity of 46 cm∙s-1, a laser pulse repetition rate of 10 Hz, and a laser beam width 

of 1 cm within the flow direction, a spatially well defined volume (“package”) was irradiated 

by the laser light only once. This ensured that (i) the radical cation generation was the initial 

process of all subsequent reactions and (ii) generated ozone was not photolysed yielding 

O(1D)-atoms (cf. Table 4, reaction No 5), which would have rendered the further data 

interpretation much more difficult. In addition, the kinetic simulations were simplified, as 

specific neutral and ionic radical concentrations were generated as a “package” from the 

temporally and spatially well defined single laser pulse. The package traveled toward the 

sampling orifice of the mass spectrometer. It is pointed out that the selected reaction time, 
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defined by the laser position, and the initial concentrations of reactive reagents, defined by the 

total photon flux of one single laser pulse, determined the relative and absolute [M]+, 

[M+15]+, [M+16]+ and [M+17]+ signal intensities. 

 Experimental and theoretical investigations lead to two possible reaction channels 

following the ionization step of the pyrene radical cation. One favors the direct addition of 

neutral radicals, such as OH and O(3P) to the aromatic ring system. The speculated second 

path is initiated by H-abstraction from the pyrene skeleton and subsequent addition of OH, 

O(3P), or even closed shell molecules, such as H2O, to form the oxygenated products. These 

two cases are discussed in the following; all molecular structures referenced with a “#” are 

shown in Figure 42, all reactions referenced with a “No” are summarized in Table 5. 

 

 

Figure 42; Possible structures within the oxidation pathways of the pyrene radical cation. 
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Table 5: Computated ΔGR values [eV] for the examined reactions. 

No 
Reactant structure of 
the pyrene system* 

Other 
reagents 

Product structure of 
the pyrene system* 

Other 
products 

Gibbs free energy of 
reaction ΔGR [eV]** 

1 #1 O(3P) #2/ #3/ #4 --- - 2.00/ -1.58/ -1.09 

2 #1 OH #5/ #6/ #7 --- -0.78/ -1.52/ -1.04 

3 #2/ #3/ #4 --- #8/ #9/ #10 H 1.75/ 0.44/ 0.40 

4 #5/ #6/ #7 --- #11/ #12/ #13 H 1.14/ 1.69/ 1.22 

5 #5/ #6/ #7 --- #2/ #3/ #4 H 2.94/ 4.09/ 4.10 

6 #11/ #12/ #13 --- #8/ #9/ #10 H 3.56/ 2.84/ 3.28 

7 #1 --- #14/ #15/ #16 H 4.57/ 4.48/ 4.51 

8 #14/ #15/ #16 O(3P) #8/ #9/ #10 --- -4.82/ -5.62/ -5.21 

9 #14/ #15/ #16 OH #11/ #12/ #13 --- -4.22/ -4.30/ -4.33 

10 #14/ #15/ #16 H2O #17/ #18/ #19 --- -0.71/ -0.57/ -0.56 

11 #17/ #18/ #19 --- #11/ #12/ #13 H 1.13/ 0.91/ 0.87 

12 --- H + OH --- H2O -4.64 

13 --- H + O(3P) --- OH -4.16 

14 --- H + H --- H2 -4.24 

15 --- H + O3 --- OH + O2 -3.91 

16 --- H + O2 --- HO2 -1.84 

17 --- H + Cl --- HCl -4.03 

18 --- H + ClO --- HOCl -3.69 

19 --- H + ClOO --- ClO + OH -1.67 
* pyrene structures are numerated as shown in Figure 42; ** in the case of possible singlet and triplet structures only 

the most stable one is listed, as denoted in Figure 43. 
 

a) Oxidation via direct addition of O(3P) and OH 

 Pyrene is a molecule of high symmetry, belonging to the point group C1. The three 

different possible positions of an electrophilic attack are shown in structure #1. The addition 

of neutral species to the pyrene radical cation is not favorable for closed shell molecules, e.g., 

O2 or H2O, as reported earlier by Le Page et al. [70]. These results were fully confirmed 

within this work, since with 248 nm excitation virtually no other ions than [M]+, even in the 

presence of large quantities H2O and O2, were detected. However, the same authors showed 

that the addition of neutral radicals such as O(3P) or H-atoms to the ionized ring system are 

fast reactions with bimolecular rate constants on the order of k ≈ 10-11 – 10-10 cm3∙molecule-

1∙ s-1. Wood et al. [140] also observed the rapid OH-addition to ionized C60 fullerene, another 



4   Results and Discussion 
 

 
99 

 

highly condensed aromatic ring system. The performed DFT calculations fully supported this 

reaction pathway as well (cf. Figure 43, left). The addition reactions of O(3P) or OH to the 

pyrene radical cation (reaction No 1 and No 2) leading to structures #2 - #4 and #5 - #7, were 

calculated to be exergonic by ΔGR = -2.00 to -1.09 eV and -1.52 to -0.78 eV, respectively. The 

subsequent step in this reaction path is speculated to be H-atom abstraction from the 

oxygenated pyrene, e.g., by OH-radicals. OH-radicals are always present in APPI due to 

photolysis of H2O. For structures #2 - #4 transformed to structures #8 - #10, Gibbs free 

energies range from ΔGR = -4.24 to -2.89 eV (No 3 combined with No 12). So far, the analogy 

to the well described nucleophilic aromatic substitution reaction type is striking. In the cases 

of structures #5 - #7 two H-atom abstraction channels by OH-radicals are feasible (reaction 

No 4/No 5 combined with, e.g. No 12). First, according to the nucleophilic aromatic 

substitution scheme, removal of the H-atom from the carbon skeleton leads to structures #11 - 

#13 (ΔGR = -3.50 to -2.95 eV). The second channel is the H-atom abstraction from the 

hydroxyl group, yielding the same products as with O(3P)-addition to the pyrene radical 

cation (#2 - #4; ΔGR = -1.70 eV to -0.54 eV). The latter compounds can repeatedly react with 

neutral radicals, as shown before, to yield products with structures #8 - #10. The products 

from reaction No 4 (#11 - #13) can further react with neutral radicals via H-atom abstraction 

from the hydroxyl group to form the products #8 - #10 (ΔGR = -1.80 eV to -1.08 eV; No 6 

combined with No 12).  

 

 

Figure 43: (left) Reaction steps: (1) [M] → [M]+, (2) [M]+ + O → [M+O] + , (3) [M+O]+ + OH → [M -H+O]+ + H2O 
(right) Reaction steps: (1) [M] → [M]+, (2) [M]•+ + OH → [M -H]+ + H2O, (3) [M-H]+ + O → [M -H+O]+. 
∆GR = GR relative to pyrene (g). 
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Obviously, all intermediates are eventually converted to the most stable species with m/z 217. 

This trend is very well supported by experimental data. The signal at m/z 217 increases with 

increasing neutral radical concentration and/or with increasing reaction time. It is stressed that 

the neutral radical concentrations are exceeding the parent ion concentration by orders of 

magnitude.  

 

b) Oxidation via the pyrenyl cation [M-H]+ 

 The primary step in this second case is the abstraction of an H-atom from the carbon 

skeleton of the radical cation to form [M-H]+ (cf. Figure 43, right). However, the C-H bond 

dissociation enthalpy is rather high, experimentally determined to be 4.6 eV [141,142] and 

calculated to be ΔHd(C-H) = 4.93 eV, 4.84 eV and 4.88 eV for the positions 1, 2 and 3, 

respectively. Thus, reactions leading to the pyrenyl cation (#14 - #16) in its triplet state as the 

most stable conformation are rather limited.  

 In first instance it was speculated that the available maximum excess energy  

(Eexcess max), i.e., the difference of the total energy of the two absorbed photons (Etotal) and the 

ionization energy (Ei = 7.41 eV [143]), with an assumed hypothetical electron kinetic energy 

of Ekin = 0 eV, 

 𝐸𝑒𝑥𝑐𝑒𝑠𝑠 𝑚𝑎𝑥 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑖     (eq 34) 

could be sufficient to initiate uni-molecular fragmentation reactions of the types 

 [M]+ → [M-H]+ + H    (rxn 20) 

 [M]+ → [M-2H]+ + 2H/H2    (rxn 21). 

Following two-photon ionization at 248 nm (Eexcess max = 2.6 eV) this pathway was 

immediately excluded. Absorption of two 193 nm photons contributes an excess energy of 

5.4 eV to the pyrene radical cation, which appeared to be sufficiently high. However, Ling et 

al. determined the appearance energy (AE) of the pyrenyl cation [M-H]+ with time-resolved 

photo-ionization mass spectrometry (TPIS) to be 15.2 eV [142]. Hence, an effective excess 

energy of at least 7.8 eV is required for the formation of the pyrenyl cation and thus uni-

molecular decomposition after 193 nm (1+1) REMPI was excluded as well. More 

importantly, it is highly unlikely that the parent ion is generated by direct two-photon 

absorption. As discussed below, ultra-fast relaxation of the intermediately pumped S4 state 
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into the S1 manifold strongly suggests that the parent ion is carrying an excess energy far 

below the nominal (6.3 + 6.3 - Ei) eV. 

 Among the various neutral radical species typically generated in the ion source, only 

the hydroxyl radical seems to be able to abstract an H-atom of the pyrene radical cation 

carbon skeleton. Enthalpy release and the Gibbs free energy for the dissociation of the H-OH 

bond accounts for ΔHd (H-OH) = 4.96 eV (literature value: 5.11 eV [144]) and ΔGR = 4.64 eV 

(literature value: 4.83 eV [138]), respectively. The Gibbs free energy of the C-H dissociation 

reaction No 7 is calculated to be in the range of ΔGR = 4.48 eV and 4.57 eV. Once the pyrenyl 

cation is formed it shows high reactivity towards neutral radical species and even closed shell 

molecules such as H2O [70, 141, 145]. The addition of O(3P) and OH (No 8/No 9) leads to 

structures #8 - #10 and #11 - #13 with ΔGR between -5.62 eV and -4.82 eV and ΔGR in the 

range of -4.33 eV and -4.22 eV, respectively (cf. Figure 43, right). Henceforward, the 

sequence proceeds via reaction No 6 as described in the preceding section of the direct 

addition channel. The addition of H2O to the pyrenyl cation forms structures #17 - #18 with 

ΔGR between -0.71 eV and -0.56 eV. The subsequent removal of the hydroxyl H-atoms leads 

to the most stable phenoxy type species #8 - #10 (m/z = 217; No 11/No 6), again in analogy to 

the direct addition channel. Another possible route is the addition of molecular oxygen to the 

pyrenyl cation, leading to a peroxy radical (m/z = 233). This mass was recorded as minor 

signal (~0.002 % rel. abundance), when 420 ppmV H2O and 0.7 % O2 were present. However, 

this signal could also be attributed to the two-fold OH or O(3P) addition with subsequent H-

atom abstraction. If the reaction proceeds via peroxy radical intermediates then the 

corresponding signal should be rather low, as observed: (i) Very small peroxy radical 

population is formed, due to the comparably low third order rate constant(s) or simply due to 

the missing pyrenyl cation as a precursor, (ii) the subsequent reaction of forming a 

hydroperoxy radical, followed by O-OH bond cleavage in order to release an OH-radical and 

the most stable phenoxy type species #8 - #10 would lead to a rapid degradation of the peroxy 

radical cation concentration. 

 Consequently, also the pyrenyl cation reaction channel favors phenoxy-type end-

products (m/z 217) with increasing radical concentration and/or with increasing reaction time. 

 Though [M-H]+ species are far more reactive than the corresponding [M]+ precursors, 

the major reaction pathway is attributed to the direct addition of OH and O(3P). This is 

rationalized in the following manner: (i) Generation of pyrenyl cations is unlikely, mainly due 
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to the high dissociation enthalpy of the C-H bond, (ii) the corresponding reaction of the 

neutral atmospheric degradation of aromatic compounds with OH proceeds up to 90 % via the 

OH-addition channel [1], and (iii) the signal recorded at m/z = 201, attributed to [M-H]+, has 

a very low abundance. The latter argument is of course also in accord with the high reactivity 

of [M-H]+. 

 As conclusion, the OH/O(3P) radical addition channel to the charged aromatic ring 

system is much more likely to be responsible for the efficient oxidation of primarily formed 

radical cations. In the following section on kinetic simulations, the oxidation pathway via the 

pyrenyl cation is thus not considered further. 

 

4.3.2.3  Oxidation of the Pyrene Radical Cation - Kinetic Investigations 
 Further elucidation of possible oxidation mechanisms was carried out by comparison 

of experimentally recorded mass spectra with results from kinetic simulations. In these 

experiments, the 193 nm laser was running with a repetition rate of 10 Hz (see above) and 

positioned 0.5 to 1.5 cm upstream of the entrance of the MS inlet capillary (cf. Figure 11). 

Considering the flow velocity of 46 cm∙s-1, the average reaction time for a generated 

“package” up to the entrance of the MS accounted for 21 ms. The total reaction time in 

addition with the calculated 2 ms transit through the transfer capillary (cf. Table 2) thus 

amounted to 23 ms. The abundances of major signals in the recorded mass spectrum are 

summarized in Table 6. The summed peak areas of the oxygenated products account for 92% 

of the [M]+ peak area. Assuming that the addition channel is dominating, O(3P) and OH 

attack could potentially lead to primary oxygenated products with m/z = 218 and 219, 

respectively. 

 

Table 6: Major peak abundances in a mass spectrum recorded upon irradiating a flow of N2 at 
1 bar with 420 ppmV H2O, 0.7 % O2 and 6 ppbV pyrene present. 

m/z assigned structures* rel. peak area [%]** 

202 #1 100 

217 #8 - #10 70.4 

218 #2 - #4 and #11 - #13 18.0 

219 #5 - #7 3.7 
 * cf. Figure 42; ** Relative to the pyrene radical cation [M]+. 
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 Computational simulation of the resulting charged product distribution recorded after 

these 23 ms of reaction time required an estimate of the initial pyrene radical cation 

concentration according to equations 12 and 13 (see page 48). The excitation of pyrene at 

193 nm results in initial population of the S4 state which relaxes to the S1 manifold on the ps 

time-scale [146]. The S1 state has an estimated lifetime of τres ≈ 100 ns [146-151], which is 10 

times larger than the laser pulse width. Thus, the transition into the ionization region 

originates from the S1 manifold. The overall absorption cross section σ is to a good 

approximation the product of the subsequent single step absorption cross sections 

σ1,2 = 1.7∙10-17 cm2 [44] and the lifetime of the resonant state τres 

 𝜎 = 𝜎1 ∙ 𝜎2 ∙ 𝜏𝑟𝑒𝑠     (eq 35). 

The quantum yields for both absorption steps are assumed to be φ1 = φ2 = 1 molecule∙photon-1, 

the photon flux is Φ = 6.0∙1022 photon s-1 cm-2 and the laser pulse duration is tpulse = 10 ns. 

Therefore, an initial pyrene concentration of 6 ppbV leads to a calculated pyrene radical 

cation concentration of {[M]+} ≈ 1.5∙108 molecule∙cm-3 (about 5 pptV) generated within one 

laser pulse. Since the neutral radical concentrations are at least one order of magnitude higher, 

all reactions proceed in pseudo first order with respect to the charged species. It follows that 

the product peak abundance distribution relative to the abundance of [M]+ is independent of 

the initial pyrene radical cation concentration and is controlled by the concentration of the 

neutral radicals. 

 

a) Impact of O2, O(3P), and O3 on the ion distribution 

 The initial O(3P) mixing ratio is calculated as 3.1 ppbV when 0.7 % oxygen is present 

in the source enclosure. Applying a rate constant of k = 9.5∙10-11 cm3∙molecule-1 s-1 [70] for 

the reaction of O(3P) with pyrene radical cations, 16 % of the latter are converted into the 

oxygen adduct (#2 - #4) within 23 ms reaction time. Hence, the hypothetical outcome of the 

mass spectrum would exhibit two signals, [M]+ and [M+16]+, with a ratio of about 100 : 19. 

However, due to the high mixing ratio of O2 the competing ozone formation reaction (No 6, 

Table 4) is proceeding much faster, nearly quantitatively converting the entire O(3P) 

population into O3. Ozone, however, is a rather inert species in the present environment 

towards ionized aromatic species, as shown by Mendes et al. [152]. Since the laser pulse 

irradiates the spatially defined “package” only once, photolysis of ozone (No 5, Table 4) and 

thus formation of O(1D) is excluded. Taking the ozone generation reaction into account, only 
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0.3 % of the initial pyrene radical cations would be converted to the oxygen adducts #2 - #4 

within 23 ms reaction time and two peaks with ratios of [M]+ : [M+16]+ = 100 : 0.3 should 

occur in the corresponding hypothetical mass spectrum. The experimental results though do 

show a strong signal at [M+16]+ and thus reaction of O(3P) directly with primary radical 

cations cannot account for the experimentally observed ion population as shown in Table 6. 

 

b) Impact of H2O, OH, and H on the ion distribution 

 As previously mentioned, no reactivity of the pyrene radical cation towards closed 

shell molecules such as H2O was observed [70]. This is in very good agreement with the 

present experimental results. However, photodissociation of H2O with the 193 nm laser pulse 

results in H-atom and OH radical mixing ratios of 0.6 ppbV, respectively. Unfortunately, no 

rate constant for the addition reaction of OH to [M]+ is available. Atkinson et al. reported the 

rate constant for the analogue neutral reaction  

 Pyrene + OH → [Pyrene+OH]   (rxn 22) 

to be k = 5∙10-11 cm3∙molecule-1∙s-1 [153]. Frequently, the rate constants for the same type of 

reaction can rise by one or two orders of magnitude if one of the reactants is charged. For 

example, the O(3P) addition to naphthalene is approximately 90 times faster when the 

aromatic system carries a positive charge [154,155]. 

 If a rate constant of k = 1.9∙10-9 cm3∙molecule-1∙s-1
 for the OH addition reaction to the 

pyrene radical cation is assumed, a signal distribution of [M]+ : [M+OH]+ = 100 : 95 is 

calculated for a reaction time of 23 ms. Hence, a hypothetical mass spectrum would exhibit 

two signals, m/z = 202 and m/z = 219 with comparable intensities. This is in very good 

agreement with the experimental observation with respect to the signal intensity of the sum of 

the oxygenated products, i.e., [M+15]+, [M+16]+, and [M+17]+, relative to [M]+ (cf. Table 

6). The already discussed consecutive H-atom abstractions leading to the final product 

distribution are driven by reactions with O2, O3, H and OH. All of these species react with H-

atoms exergonic enough to compensate most of the positive Gibb´s free energies of 

dissociation for the C-H and O-H bond cleavages (cf. Table 5, No 12/14/15/16 compared to 

No 3/4/5/6).  
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 In conclusion, the OH addition to the pyrene radical cation is determined to be the first 

step with a rate constant estimate of k7

Figure 42

 = (1.9±0.9)∙10-9 cm3∙molecule-1∙s-1,whereas the 

subsequent H-atom abstractions are straightforward, since all of the mentioned reactants are 

present in large quantities. This reasoning is supported by experimental data: Upon increasing 

any radical concentration, the relative distribution among the oxygenated products always led 

to dominating signals at m/z = 217, corresponding with formation of the most stable phenoxy 

type product (structures #8 - #10 in ). 

 The remaining species that has to be considered in this context is the H-atom. Le Page 

et al. [70] determined the rate constant of the addition reaction [M]+ + H to form [M+H]+ as 

k = 1.4∙10-10 cm3∙molecule-1∙s-1. Thermochemical data as well support this reaction with Gibbs 

free energies of ΔGR = -1.71 eV, -2.33 eV and -1.88 eV for position 1, 2 and 3, respectively. 

Applying the above rate constant would result in a relative ratio of [M]+ : [M+H]+ = 100 : 5 

with 23 ms reaction time. The additional consideration of the isotopic ratios leads to a 

hypothetical outcome of the mass spectrum with a ratio of m/z 202 : 203 = 100 : 22; the 

experimentally observed ratio was 100 : 17. The present results are thus ambiguous. However, 

the back reaction of [M+H]+ with O3, OH and also H is exergonic. It appears to be unlikely 

that under the prevailing conditions any significant population of [M+H]+ was thus produced. 

 

c) Impact of Cl, ClO, and ClOO on the ion distribution 

 In the kinetic investigations described so far, chlorinated reactants were absent. Upon 

introducing chlorinated species, the ion chemistry became increasingly complex. The product 

analysis was thus rendered even more difficult. However, the impact of the presence of 

chlorinated species on the relative ion distribution is noteworthy. Feeding Cl-atoms, e.g., via 

photolysis of CHnCl4-n (n=0 – 2), to the reaction system as described in Table 6 had the 

following effects: 

(i) Virtually no direct Cl-adduct formation [M+Cl]+ or [M-H+Cl]+ was observed, though 

the addition reactions were calculated to be exergonic in the range of ΔGR = -0.22 eV up 

to -0.96 eV. Photolysis of 170 ppmV CCl4 resulted in about 17 ppbV Cl-atoms (single 

laser pulse at 193 nm, 10 ns, 1 mJ). One reasonable explanation for missing Cl-adducts is 

the fast competing reaction No 10 (Table 4), which rapidly traps initially formed Cl-

                                                 
7 The error accounts for ± 5 ms reaction time. 
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atoms as ClOO, which at 1 bar rapidly decomposes to recycle Cl-atoms. Thus the 

concentration of Cl becomes quasi-stationary and might be too low to react swiftly 

enough with primary radical cations. 

(ii) A ClO-adduct with the characteristic chlorine isotope pattern at masses m/z = 253/255 

was observed when O2 and Cl were present in large quantities. CID of m/z = 253 led to 

mass m/z = 218, assigned to [M+O]+. It follows that the chlorine atoms react to form the 

relatively stable ClO-radical (via reactions no10 and no12, Table 4), which then readily 

adds to the aromatic ring system.  

(iii) The presence of Cl-atoms drastically changed the relative intensity distribution among the 

oxygenated products, favoring the most stable phenoxy type species (m/z = 217) as 

observed before. Obviously, the H-abstraction reactions (No 3/4/5/6, Table 5), following 

the initial oxygen addition step, are strongly supported by the exergonic formation of HCl 

(No 17, Table 5). 

 

 The signal intensity of the sum of the oxygenated products relative to the intensity of 

the pyrene radical cation was also drastically changed, up to the complete loss of [M]+. It is 

worth mentioning that it is unlikely that chlorine atoms or any other of the Cl containing 

radical species abstract an H-atom from the carbon skeleton of [M]+ other than in the O-atom 

activated positions (cf. Figure 42 and ΔGR Table 5, No 17/18/19 compared to No7). Thus the 

previously excluded second reaction pathway via the pyrenyl cation [M-H]+ is also not 

favored in the presence of chlorine species.  

 In summary, Cl-atoms do not add directly to [M]+ nor do they abstract H-atoms at any 

appreciable rates. Nevertheless, their presence strongly promotes the oxygenation of [M]+ to 

yield [M+O-H]+ via H-abstraction after the primary oxygenation step. Note that the 

absorption cross sections of chlorinated methanes are generally two orders of magnitude 

higher than of H2O and more than four orders of magnitude higher than of O2. 

 

4.3.2.4  Consequences for Degradation Studies with APPI-MS 
 It is stressed that these results cannot be completely generalized. A summary of the 

most relevant neutral radical reactions that have to be considered when mechanistic studies 

are carried out in an API source are given in Table 4. However, this chemistry becomes 

increasingly complex when further compounds with high photodissociation rates in the VUV 
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are added in large quantities. Many radical species potentially affect the fate of primarily 

generated analyte ions and may open new ways of ion transformation processes. These 

processes become clearly visible at low primary ion concentrations (typical in the pptV range 

when the neutral analyte is present in the ppbV range) and might be much less observable 

when charged species are in excess. In this case, neutral radicals are merely titrated away and 

the remaining ion population is detected without notable transformation products present. 

Furthermore, the investigated reactions for pyrene apparently cannot be one-to-one adapted to 

other analytes since each compound has individual reaction mechanisms. For example, taking 

ozone not as the primary attacking species will probably not hold true for other analytes due 

to its large oxidizing potential and its major abundance (in the ppbV range when oxygen is 

present in the %-regime)8

Figure 44

 in typical APPI applications. Gas phase ozonolysis of double bonds 

is just one of the keywords to mention. Certainly, it is not of analytical interest to investigate 

individual reaction pathways caused by the analytical method itself and this was not the point 

of the previous section. However, it demonstrated the complexity of possible reactions, 

following the ionization step, which are typically not considered in APPI-MS applications. 

Furthermore, very good estimates can be derived concerning the analysis of samples from 

atmospheric degradation product studies with the novel APPI approach. In this way the 

constraints to which extent NRITPs can be reduced when applying the 0.13 ms ionization 

position were determinable.  depicts a kinetic simulation for the reaction of a 

primary generated ion with a neutral radical species (denoted as [NR]) according to 

 [M]+ + [NR] → [P]+     (rxn 23) 

The rate constant was assumed to be k = 2.0∙10-9 cm³∙molecule-1∙s-1, similar to the one 

obtained in the previous section. It is noted that this value is among the highest observed rate 

constants for ion molecule reactions [69]. The initial concentration of [M]+ and [NR] were 

10 pptV and 10 ppbV, respectively, which are realistic values expected for degradation 

product study conditions. After 5 ms of reaction time nearly 90 % of the initial radical cation 

population is converted into a product species, whereas the 0.13 ms position is capable of 

preserving 94 % of the primarily generated [M]+. In contrast to common APPI applications 

(minimum of 5 ms transfer time from ionization into the collision free region; cf. 4.2.2.3  

LFIS – APPI, b) the approach of ionizing on the transfer capillary virtually excludes 

interfering mass signals that are attributable to VUV-radiation initiated neutral radical ion 

                                                 
8 Note that ozone is present by a factor of 1000 in excess relative to the primary ion concentration. 
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chemistry. This result was very well experimentally supported since NRITP based mass 

signals have never been observed with the novel APPI approach, even within the presence of 

air as the bulk gas.  

 

Figure 44: Kinetic simulation of a hypothetical reaction with [M]+ + [NR] → [P]+, with a rate constant of k = 2.0∙10-9 
cm³∙molecule-1∙s-1 and with initial mixing ratios of {[M]+} = 10pptVand {[NR]} = 10ppbV. 

  

4.3.3  ITP via Chemical Ionization  

 The following chapter is concerned with ITPs in which charge of a primarily 

generated ion is transferred to a second species. Consequently, positive and negative charge 

transfer as well as protonation, deprotonation and ion clustering reactions are encompassed by 

the term “chemical ionization”. At this point a short note on the general terminology used for 

secondary ionization methods is given. In classical low pressure mass spectrometry the term 

“chemical ionization” (cf. 1.2.1  Atmospheric Pressure Ionization (API)) was used to describe 

the ion forming mechanism - ionization of analyte via a chemical reaction – but has been 

expanded to also express the prevailing primary ionization conditions. With the new ion 

sources operating at up to one bar pressure this term was extended to describe API methods, 

e.g., “atmospheric pressure chemical ionization (APCI)”, but, again, the primary ionization 

conditions (corona discharge and atmospheric pressure) are directly connected with the 

method. However, independent of the primary ionization source and the prevailing pressure at 

the ionization step, the subsequent charging of an analyte is always a chemical ionization 

process. Consequently, in the case of ionization processes following the primary ionization 
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step, the terminology of the overall procedure should include the notation of the primary 

charge producing method and separately the notation describing the charge transfer. In that 

way, instead of using “APCI”, the term should more likely be “atmospheric pressure corona 

discharge – positive chemical ionization (APCD-PICI)”, with the prevailing pressure and the 

primary charge generation method denoted in the first term and the subsequent chemical 

ionization nature, including the type of charge being transferred, in the second. Along this line 

the prefix “dopant assisted” (cf. 1.2.1.2  Atmospheric Pressure Photo Ionization (APPI)) is 

misleading since it generally describes a process in which primarily ionized species are added 

in abundance relative to the small amount of the neutral target analyte present in the sample 

flow, comparable to the addition of a reagent gas in classical CI. However, per definition the 

term “dopant” stands for the opposite case, in which a small amount of one species is added to 

a large amount of another to cause an effect. Again, the secondary process is merely a 

chemical ionization procedure, and thus in order to avoid any confusion and to correctly 

reflect the actual mechanism it should also be termed “chemical ionization”. Accordingly, the 

overall process of, e.g. dopant assisted APPI, should then be denoted as “atmospheric pressure 

photo ionization – positive ion chemical ionization (APPI-PICI)” and “atmospheric pressure 

photo ionization – negative ion chemical ionization (APPI-NICI)” for the positive and 

negative mode, respectively. In the following the suggested terminology will be adapted  

 

4.3.3.1  APPI/APLI-Positive Ion Chemical Ionization (PICI) 
 The protonation of analyte molecules through primary generated species (here via 

APPI or APLI) is the most prominent reaction belonging to this category of transformation 

processes. The example shown in section 4.2.3.4  Impact of Different Ionization Positions on 

MS Spectra, (b) demonstrated the capability of ionized p-xylene to serve as the actively 

protonating agent for its own degradation product (cf. reaction 18, page 90). Upon ionizing on 

the 5 ms APPI position the observed spectrum clearly reflected the thermodynamically 

equilibrated ion distribution (cf. Figure 39, c). A similar picture was obtained upon analyzing 

the same degradation experiment with APLI. With respect to the 100 ms transit time within 

the laminar-flow ion source (average velocity of νx = 1.9 m∙s-1 and tube length of l = 0.2 m) 

the thermodynamic response within the APLI configuration was as expected. Obviously this 

type of transformation process clearly enhances the qualitative detection of degradation 

products that are otherwise not amenable to APLI. On the other hand the observed relative ion 
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distribution mostly does not reflect the neutral composition of the sample anymore. 

Consequently, also ionization within the present APLI configuration exhibited a much faster 

progression of the degradation experiment than it really was. It follows that kinetic studies of 

degradation experiments, in which ion chemistry is “mixed” into time dependent evolution of 

the main neutral species, are rendered nearly impossible.  

 Another investigated example for APPI-PICI is the well known self protonation 

reaction of acetone according to  

 [C3H6O]+ + C3H6O → [C3H6OH]+ + C3H5O   (rxn 24). 

A 1 ppmV acetone sample in pure nitrogen was delivered from the photoreactor. APPI was 

performed on the 5 ms position with the home-built discharge lamp (cf. Figure 32, left), 

separated from the sample gas flow with the LiF window (cf. Figure 24), and on the 0.13 ms 

position with the Kr-RF lamp and the LiF window mounted on the transfer capillary as shown 

in Figure 29, respectively. As depicted in Figure 45, (right), upon ionizing on the 5 ms 

position solely the quasi-molecular [M+H]+ ion at m/z 59 is present in the obtained mass 

spectrum.  

 

Figure 45: (left) Kinetic simulation of the self-protonation reaction of acetone according to [M]+ + [M] → [M+H]+ + 
[M-H], with a rate constant of k = 3.8∙10-10 cm³∙molecule-1∙s-1 [156] and initial mixing ratios of 1 ppbV and 
1 ppmV for the radical cation and the neutral acetone, respectively. (right) Recorded mass spectra upon 
ionizing 1 ppmV acetone in pure nitrogen on the 0.13 ms (top) and 5 ms (bottom) position, respectively.  

 

In the mass spectrum recorded upon ionizing at the 0.13 ms position, however, the radical 

cation [M]+ at m/z 58 appeared with a relative abundance of [M]+ : [M+H]+ = 1 : 3. From a 

kinetical point of view this case is similar to the NRITP conditions in Figure 44, except that 
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the excess species (neutral acetone) is present in much higher concentration. The rate constant 

for this reaction was taken from MacNeil et al. [156] with  

k = 3.8∙10-10 cm3∙molecule-1∙s-1. The initial mixing ratio for neutral acetone was very precisely 

determined with 1 ppmV. The initial mixing ratio of the radical cation [M]+ was roughly 

estimated to be 1 ppbV. As explained in the preceding section, variations in the absolute 

concentration of [M]+ do not change the relative distribution between [M]+ and [M+H]+ as 

long as the concentration of the neutral analyte is present in large excess. It follows that the 

entire reaction proceeds in pseudo first order with respect to the radical cation. Furthermore 

the well known dimerization and acetylation reactions of the quasi-molecular ion and the 

radical cation of acetone, leading to m/z 117 and m/z 101, respectively, were not observed at 

the prevailing conditions [156]. The result of the kinetic simulation is depicted by Figure 45, 

(left). Within 5 ms the entire radical cation population [M]+ is transformed into the quasi-

molecular species [M+H]+, which is in good accord with the experimental data. Furthermore 

the simulation shows that after 0.13 ms the relative ion population of both species should be 

[M]+ : [M+H]+ = 1 : 3. Again this was very well supported by the experimentally obtained 

relative signal intensities as shown in Figure 45, (right, top). These results have several crucial 

consequences: (i) Chemical ionization processes at atmospheric pressure are fast and proceed 

quantitatively in common APPI configurations when the neutral species is present in large 

excess relative to the primary radical cation population, (ii) the approach of photoionizing on 

the transfer capillary is capable of preserving substantial amounts of radical cations that are 

potentially affected by chemical ionization ITPs (cf. 4.2.3.4  Impact of Different Ionization 

Positions on MS Spectra, b), however, (iii) the novel APPI method is on the limit of 

efficiently reducing ITPs based on chemical ionization, and (iv) the hypothesis of calculating 

dwell times within transfer capillaries using fluid dynamical expressions was once more 

substantiated due to the remarkable consistency between simulation and experiment.  

 

4.3.3.2  APPI/APLI-Negative Ion Chemical Ionization (NICI) 
 The negative mode of APLI and APPI-MS is driven by negative chemical ionization 

ITPs. This holds true in particular for samples from atmospheric degradation experiments 

with 20 % oxygen present. Via three body collisions the photoelectrons from ionized analyte 

molecules are readily titrated away by O2 to form the primary negative charged species O2
- 

according to  
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 O2 + e- + N2/O2 → O2
- + N2/O2    (rxn 25). 

The rate constant for this reaction was determined by Shimamori et al. to be in the range of 

1.5 - 2.0∙10-30 cm6∙molecule-2∙s-1 [157]. A kinetic simulation with 1 ppbV as the initial mixing 

ratio of thermal electrons, 20.5 % O2 and k = 1.5∙10-30 cm6∙molecule-2∙s-1 revealed that within 

0.2 µs all electrons are quantitatively attached to oxygen9

 O2
- + [M] → [M]- + O2    (rxn 26) 

. It follows that any obtained ion 

signal distribution in the negative mode emanates from the primary generated superoxide 

anion population. The electron affinity of O2 is Ea = 0.45 eV and the gas phase basicity of O2
- 

is ΔGb = 15.0 eV [138]. This principally opens up two alternative reaction pathways: 

(i) Charge transfer to species with higher electron affinities 

and (ii) deprotonation of neutral analyte molecules with lower gas phase basicity 

 O2
- + [M] → [M-H]- + HO2    (rxn 27). 

Both reactions have been observed for samples of degradation product studies. Reactions 

according to reaction 26 are of paramount importance for analytes containing nitro groups, as 

e.g. the electron affinity of 3,5-dimethylnitrobenzene was found to be Ea = 1.21 eV [158]. 

Thus degradation products of this type are in principal amenable to APPI-NICI. However, 

typical degradation experiments are performed with around 1-5 ppmV NO present (cf. 3.3.1  

Procedure of Atmospheric Degradation Studies) and additionally a fairly high concentration 

of NO2 is build up during the experiment. Moreover, generated OH radicals further oxidize 

parts of NO2 and NO to form nitric acid (HNO3), as illustrated by reaction 14 (see page 88), 

and to nitrous acid (HNO2) according to  

 NO + OH + N2/O2→ HNO2 + N2/O2    (rxn 28) 

with a rate constant of k = 1.5∙10-30 cm6∙molecule-2∙s-1 [138]. Consequently, fairly high 

background mixing ratios of HNO3, HNO2 and NO2 are always present (ppmV range) in a 

sample from a degradation experiment. The electron affinity of NO2 is Ea = 2.3 eV and the 

gas phase basicities of NO2
- and NO3

- are ΔGb = 14.5 and 13.7 eV, respectively [138]. In other 

words, these three species significantly impact the negative ion chemistry and the recorded 

ion signal distribution. The dominating reactions following the primary generation of the 

superoxide anion are thus expected to be in analogy to reactions 26 and 27, with  
                                                 
9 Note that for a complete picture also the loss due to diffusion to the walls should be considered.  
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  O2
- + NO2 → NO2

- + O2    (rxn 29) 

and  

 O2
- + HNO3 → NO3

- + HO2    (rxn 30) 

 O2
- + HNO2 → NO2

- + HO2    (rxn 31), 

respectively. According to the higher gas phase basicity of NO2
- relative to NO3

-, protonation 

subsequent to reaction 29 will occur 

 NO2
- + HNO3 → NO3

- + HNO2   (rxn 32). 

Moreover, most analyte species [M]- that have been charged shortly after the formation of the 

superoxide anion (reactions 26 and 27) will eventually be affected by charge annihilation 

according to reactions 15 - 17 (see page 88) or via charge transfer according to  

 [M]- + NO2 → NO2
- + [M]    (rxn 33) 

of which the NO2
- will subsequently be protonated according to reaction 32. As a result 

deprotonated nitric acid is speculated to dominate within the negative ion chemistry of such a 

sample. This speculation is very well supported by experimental data. With sufficient reaction 

time after the ionization step allowing the system to thermodynamically equilibrate (APLI or 

APPI on the 5 ms position) virtually no other signals than the m/z -62 and m/z -125, assigned 

to the NO3
- and the cluster [HNO3∙NO3]-, respectively, are present in the recorded mass 

spectrum (cf. Figure 39, b, 5 ms). In contrast, with a kinetically controlled ion distribution, as 

demonstrated in cf. Figure 39 (b, 0.13 ms and 0.02 ms), reactions 15 - 17 (see page 88), 32 

and 33 have not gone to completion. Equation 32 predicts an increase in the NO2
- signal (m/z -

46) with decreasing reaction time for the initiated negative ion chemistry. This is again very 

well supported by experimental data obtained when ionizing at different positions (cf. 

Figure 39, b).  
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4.4  Degradation Studies 

4.4.1  Features and limitations of the MS setup 

 So far a modified mass spectrometric system for in situ monitoring of atmospheric 

degradation studies was setup and characterized. Features, advantages, as well as limitations 

of the entire assembly, i.e., the sampling unit, APLI in laminar flow ion source, APPI on the 

transfer capillary and the ion trap analyzer are briefly summarized as follows:  

(i) The continuous gas flow from the photoreactor to the entrance of the transfer 

capillary of the MS is essentially laminar. Perturbation of the initial neutral sample 

composition via enhanced wall contact through turbulences is thus minimized. The 

time between sampling and analyzing accounts for ~0.5 s. 

(ii) Selective and sensitive detection of aromatic hydrocarbons in the pptV range with 

APLI. 

(iii) Nonselective and sensitive detection of diverse analytes in the lower ppbV range 

with windowless miniature spark discharge lamps mounted on the transfer 

capillary. 

(iv) In negative ion mode it is possible to detect nitro compounds with APPI-NICI. 

(v) Preservation of MS information due to kinetically controlled reduced ion 

transformation processes. 

(vi) MS analysis of sample composition at different stages of the progressing ion 

chemistry (different ionization positions). This allows gathering of valuable 

information on ITPs from which also valuable information on the structural and 

chemical nature of compounds may be derived. 

(vii) Quasi-simultaneous recording in the positive and the negative ion mode with a time 

resolution in the ms range. 

(viii) Performance of carefully adjusted collision induced dissociation experiments. 

(ix) The mass resolution is rather low, i.e., only nominal masses are used for reliable 

data interpretation. 

(x) Due to the nature of the trap only a limited mass range is sensitively detected. 

(xi) Exact quantitative data interpretation is rather limited, however, through the 

reduction of superimposed ion chemistry rough estimates of the relative 

composition of the neutral sample is possible. 
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4.4.2  Exemplary Degradation Study  

4.4.2.1  Blank test without p-xylene present in the reactor 
 In the following a blank test was performed, with all chemicals (2.4 ppmV NO and 

3.7 ppmV methyl nitrite) except p-xylene being injected into the photoreactor and backfill to 

1000 mbar at 27 °C. The concentrations were determined by FT-IR analysis. Switching on all 

32 superactinic fluorescent lamps started the chemical cascade initiated by the 

photodissociation of methyl nitrite according to reactions 7 – 9 (see page 28). A windowless 

miniature spark discharge lamp on the 0.13 ms position was used as the photoionizing source. 

Due to a prior experiment acetone was still present as an impurity (~3 ppbV) with the quasi-

molecular ion as the most abundant peak at the beginning of the experiment and with a 

relative abundance10

 

 of 88 % at the end. The parameters of the MS were optimized for m/z 59 

and applied for the positive as well as for the negative mode. Experience has shown that the 

resulting mass range sensitivity with these settings is between m/z ~30 – 250. Beyond these 

limits significant trapping and analyzing deficits have been observed. 

a) Signals of protonated water clusters 

 Three signals in the positive mode, m/z 37, 55 and 73, were assigned to protonated 

water clusters of the type [(H2O)nH]+ with n = 2 - 4. The intensities did not change during the 

entire blank test and the summed relative abundance accounted for approximately 12 %. The 

appearance of water clusters in this case is speculated to be due to the protonation reaction via 

the acetone radical cation: 

 (H2O)n + [C3H6O]+ → [(H2O)nH]+ + C3H5O   (rxn 34) 

 

b) Signals of NOx, HNOx and HNOx∙NOx  

 As discussed above the presence of NO entails a rich NOx and HNOx ion chemistry 

which is clearly visible in the recorded mass spectra. Prior to initiating the photochemistry, 

nitrogen oxide appeared in the positive ion mode as NO+ at m/z 30 with a relative abundance 

of 18 %. It did not appear in the negative mode due to the low electron affinity of 

                                                 
10 In the following the signal abundances [%] represent the signal strength of a m/z value relative to the most 
abundant m/z signal of the mass spectrum. 
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Ea = 0.03 eV [138]. With the start of the photodissociation process of CH3ONO, OH radicals 

partially oxidized NO to HNO2 as shown in reaction 28 (see page 112). Consequently, the 

NO+ signal decreased by 50 % during the blank test, as depicted in Figure 46.  

 

Figure 46: Blank degradation experiment with 2.4 ppmV NO and 3.7 ppmV methyl nitrite injected into the 
photoreactor and backfill to 1000 mbar with synthetic air. Shown are the obtained extracted ion 
chromatogram traces of NO+, NO2

+, NO2
- and NO3

-. “Start” and “end” denote the time where the 
superactinic fluorescent lamps were switched on and off, respectively.  

 

Nitrogen dioxide was detected at m/z ±46 in the positive (4 % rel. abundance), as well as in 

the negative mode (2.8 % rel. abundance) as NO2
+ and NO2

-, respectively. Its presence, prior 

to the start of the blank test, was partially due to impurity within the compressed NO gas 

cylinder. Parts of the NO2
- signal in the negative mode may also be explained by the presence 

of HNO2 as an impurity from prior degradation experiments (cf. reaction 28, page 112), 

however, not detectable with the FT-IR anymore. Remarkable are the significantly differing 

slopes of the nitrogen dioxide signal in the positive and negative mode (cf. Figure 46). The 

NO2
+ signal showed a steep increase during the degradation, as was expected according to 

reaction 9 (see page 28). FT-IR data supported this result as well, and a mixing ratio evolution 

from “non-detectable” up to 3 ppmV was determined. In the negative mode, however, the 

maximum signal of m/z -46 appeared after 6 minutes of degradation (7.8 % rel. abundance) 

and subsequently showed a nearly linear decrease. This effect is readily explained by parallel 

protonation (reaction 32, page 113) of NO2
- with increasing HNO3 concentration (cf. 

reaction 14, page 88). As explained before the latter species lead to the most abundant signal 

in the negative mode (m/z -62) and showed a nearly linear increase during the degradation. 
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The fairly high background concentration of nitric acid was assigned to an impurity from 

earlier experiments. In this context a signal appearing in the negative mode at m/z -93 is 

noteworthy. Its maximum relative abundance accounted for 0.2 % and strictly followed the 

shape of the NO2
- signal. CID revealed only one fragment at m/z -46. This signal was assigned 

to the cluster [HNO2∙NO2]- generated according to the ion molecule reaction 

 NO2
- + HNO2 → [HNO2∙NO2]-    (rxn 35). 

It follows that with decreasing NO2
- population, caused by protonation with nitric acid 

(reaction 32, page 113), also the concentration of this ion cluster decreased. A second cluster 

formation was observed in the positive mode at m/z 76 with a maximum relative abundance of 

6 %. It was assigned to [NO2∙NO]+, generated according to 

 NO+ + NO2 → [NO2∙NO]+    (rxn 36) 

or 

 NO + NO2
+ → [NO2∙NO]+    (rxn 37). 

The extracted ion chromatogram exactly matched the shape of the NO+ signal, which very 

well supported the above suggestion.  

 

c) Signals of Ox 

 Prior to the initiated photochemistry, the O2
- signal (m/z -32) was present with a 

relative abundance of 0.4 % and completely disappeared with the start of the degradation, 

quenched via reactions 29 – 31 (see page 113). Furthermore, O3
- at m/z -48 was visible with a 

relative abundance of 1.4 % prior to the start of the degradation. However, the presence of 

ozone was not expected in the dark. Consequently, its appearance was caused by the 

discharge lamp with VUV photodissociation of oxygen into O(3P) followed by the reaction 

with O2 (cf. Table 4, No 1 and 6). Ionization occurred through charge transfer from primary 

generated O2
- since the electron affinity of ozone exceeds (Ea = 2.1 eV [138]) the value of 

oxygen by 1.65 eV. During the degradation experiment the m/z -48 signal exponentially 

decreased to 0.1 % rel. abundance. However, a slight increase in O3 with increasing NO2 

concentration was expected according to the photostationary state relation [1] 

 [𝑂3]𝑠𝑠 = 𝑗∙[𝑁𝑂2]
𝑘∙[𝑁𝑂]

      (eq 36) 
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with k as the rate constant for the NO oxidation through ozone and j the photolysis rate of 

NO2 to yield NO and O(3P). Again, this observation was caused by the parallel negative ion 

chemistry (reaction 33, page 113), or via charge transfer form O3
- to NO2, which eventually 

quenches the generated ozone anion population.  

 

d) Signals of CH3ONO and its degradation products 

 Methyl nitrite signals appeared in the negative mode as [H2CONO]- at m/z -60 with a 

relative abundance of 89 % and exponentially dropped to 6.5 % during the experiment. Due to 

the photoinitiated degradation via reactions 7 – 9 (see page 28) the formation of formaldehyde 

was expected. Accordingly, two signals in the recorded mass spectra were observed in the 

positive mode at m/z 31 and m/z 61, assigned to the protonated monomer [H2COH]+ and the 

protonated dimer [H2CO-H-OCH2]+ of formaldehyde. The extracted ion chromatograms 

showed nearly linear increase with relative abundances of 5 and 67 %, respectively, at the end 

of the degradation. FT-IR data revealed that these mass signals represented a formaldehyde 

concentration of 2.8 ppmV.  

Table 7: Summary of observed mass signals during a blank degradation test with 2.4 ppmV NO and 
3.7 ppmV CH3ONO present in 1000 mbar synthetic air.  

m/z assigned compound max. rel. abundance [%] 

+30 NO+ 18.0 

+31 [H2COH]+ 5.3 

-32 O2
- 0.4 

+37 [(H2O)H]+ 7.0 

+46 NO2
+ 100 

-46 NO2
- 7.8 

-48 O3
- 1.4 

+55 [(H2O)2H]+ 2.2 

-60 [H2CONO]- 88.8 

+61 [H2CO-H-OCH2]+ 66.8 

-62 NO3
- 100 

+73 [(H2O)3H]+ 3.3 

+76 [NO2∙NO]+ 5.8 

-93 [HNO2∙NO2]- 0.2 
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4.4.2.2  Degradation Study with p-xylene 
 The following section is focused on the comparison of the most abundant observed 

degradation products of p-xylene in the literature [5] and their determination with the present 

setup. The APPI assembly used was a windowless miniature spark discharge lamp at the 

0.13 ms position on the transfer capillary. As chemicals 2.4 ppmV NO, 3.7 ppmV methyl 

nitrite and 0.9 ppmV p-xylene were injected into the photoreactor and then backfilled with 

synthetic air to 1001 mbar at 26 °C. The MS parameter settings were identical to the blank 

test run. At the end of the experiment (after 24 minutes) 70 % of the initial p-xylene was 

degraded.  

 As explained in the introduction, two primary OH radical initiated reaction steps of the 

atmospheric oxidation of aromatic hydrocarbons are proposed: (i) H-atom abstraction from 

present methyl groups with subsequent oxidation to the corresponding aldehydes and further 

to the carboxylic species, and (ii) OH-addition to the ring system with subsequent formation 

of the phenolic species or the initiation of a ring-opening cascade. The oxidation pathways of 

the main observed products in the literature are sketched in Figure 47. The compound names, 

the molecular weight, the observed m/z values and their recorded maximum relative 

abundances are given in Table 8.  

Table 8: Summary of the main degradation products of p-xylene as observed in literature [5], with the assigned m/z 
values and the maximum relative abundances as recorded in this work.  

structure 
# compound name molecular 

weight [Da] observed m/z max. rel. 
abundance [%] 

1 p-xylene 106 +106 100 

2 tolualaldehyde 120 +119/121 7.7/11.9 

3 p-toluic acid 136 -135 1.8 

4 4-methylnitrobenzene 137 +137/-137 1.5/1.7 

5 2,5-dimethylphenol 122 +122 7.8 

6 2,5-dimethylnitrobenzene 151 -151 1.9 

7 2,5-dimethyl-p-benzoquinone 136 -136 2.2 

8 (E,Z)-3-hexene-2,5-dione 112 +112/113 1.9/12.2 

9 2-methylbutenedial 98 +98/+99 0.5/2.7 

10 2,5-dimethylfuran 96 +96/97 0.6/2.5 

11 methylglyoxal 72 +73 2.5 

12 glyoxal 58 not observed not observed 
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The compound numbering is denoted with “#” and refers to the assigned structures in Table 8 

throughout this chapter. 

 

 

Figure 47: Schematic showing the oxidation pathways of the main observed degradation products of p-xylene as 
reported in the literature [5]. The red numbers denote the molecular weight in Dalton [Da].  

 

a) Initial step I: H-atom abstraction from methyl group 

 As depicted by Figure 47 (left), tolualaldehyde is the observed primary product after 

the H-atom abstraction step. Its molecular weight is 120 Da, however, the most abundant 

signals assigned to this compound are m/z 119 ([M+H]+) and 121 ([M-H]+) with 7.7 % and 

11.9 % relative abundance, respectively. This expected behavior is due to the instability of the 

radical cation. As confirmed through EI spectra [138], the unimolecular fragmentation with 

loss of an H-atom is the main process in a low collision environment. Furthermore CID on 

m/z 119 revealed the most abundant fragment ion at m/z 91, hence the loss of CO, which 

additionally supported its structural assignment. At atmospheric pressure, however, the [M]+ 

may be subject to H-atom abstraction similar to the acetone radical cation (cf. 4.3.3.1  

APPI/APLI-Positive Ion Chemical Ionization (PICI)). Furthermore, protonation due to the 

abundant presence of ionized p-xylene may have led to the appearance of the [M+H]+. The 
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ionization potential of tolualaldehyde is Ei = 9.33 eV [138], thus not amenable to (1+1)-

REMPI with the DPSS laser. This was very well confirmed by the absence of m/z 119 when 

the laser was used as radiation source. However, low abundance of m/z 121 was present due 

to the proposed protonation reaction through ionized p-xylene, whereas the appearance of 

m/z 119 requires the photoionization as the primary step. Tolualaldehyde is not observed in 

the negative mode, which is readily explained by its low electron affinity of Ea = 0.37 eV and 

high gas phase basicity Gb = 15.3 eV [138] of the deprotonated molecule. The evolution of the 

m/z 119 trace during the degradation experiment is depicted in Figure 48. Tolualaldehyde may 

further be oxidized to the p-toluic acid, as shown in Figure 47 (left). This product was 

observed in the negative mode as the [M-H]- at m/z -135 due to the relative low gas phase 

basicity of the deprotonated molecule (Gb = 14.5 eV). The extracted ion chromatogram is 

shown in Figure 48.  

 

 

Figure 48: Degradation of p-xylene with 2.4 ppmV NO, 3.7 ppmV methyl nitrite and 0.9 ppmV p-xylene injected into 
the photoreactor and backfill to 1001 mbar with synthetic air. Shown are the obtained extracted ion 
chromatogram traces of tolualaldehyde (#2), p-toluic acid (#3) and 4-methylnitrobenzene (#4). 
“Start” and “end” denote the time where the superactinic fluorescent lamps were switched on and off, 
respectively. 

 

It is noted that this value is identical to the gas phase basicity of NO2
-. It follows that the 

shape of the chromatogram might have been partially affected by protonation through 

generated HNO3 (see above). However, charge annihilation ITP is expected to be of minor 

importance due to the excess of NO2
- (quenching effect of HNO3) and thus the chromatogram 
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trace consequently is confirming that this species is a secondary product of the 

tolualaldehyde. The third observed compound belonging to this reaction pathway is the  

4-methylnitrobenzene, formed by the species #2 and #3 via loss of CO and CO2, respectively. 

It is observed in the presence of sufficient NO2, with a minimum critical mixing ratio of 

around 300 ppbV, as determined by Seinfeld and Pandis [1]. FT-IR analysis revealed an 

increase of nitrogen dioxide of up to 3 ppmV in the present study. Methylnitrobenzene was 

observed in the negative as well as in the positive mode at m/z ±137 with 1.5 and 1.7 % 

relative abundance, respectively. The appearance in the negative mode is readily explained by 

the electron affinity of Ea = 0.95 eV [138], ensuring sufficient charge transfer from O2
-. The 

shape of the extracted ion chromatogram again confirms #4 as a secondary product from 

tolualaldehyde (cf. Figure 48).  

 

b) Initial step II: OH-addition to the aromatic ring 

 The primary generated OH-adduct may follow two subsequent reaction pathways: 

(i) H-atom abstraction leading to degeneration of the aromaticity and (ii) O2 or NO2 addition 

to the radical position of the ring system, provided that a sufficient concentration of nitrogen 

dioxide is present (see above). The first pathway eventually leads to 2,5-dimethylphenol, 

which was clearly observed in the positive mode at m/z 122 with a maximum relative 

abundance of 7.8 %. With laser ionization a relative abundance of 9.7 % was obtained, which 

very well confirms the assignment of this peak to a ring-retaining product. Furthermore, the 

ion chromatogram trace in Figure 49 (left) shows a steep increase shortly after the 

photoinitiation of the degradation cascade, reaches a maximum after seven minutes and then 

decreases as a result of subsequent oxidation steps. The shape of the curve demonstrates that 

structure #5 is one of the first generated species along the oxidation pathway. In contrast, the 

extracted ion chromatogram for m/z -151 (2,5-dimethylnitrobenzene) shows a less steep 

increase with a plateau reached in the end of the experiment (cf. Figure 49, left), accounting 

for 1.9 % relative abundance. This behavior is readily explained by the gradual increase of 

NO2 during the degradation, as can be seen in the chromatogram trace of m/z 46 (NO2) in 

Figure 49 (right). In this context a peak at m/z -152 with 9.6 % maximum relative abundance 

is noted. This signal is proposed to be the result of superimposed ion clustering chemistry 

according to 

 p-xylene + NO2
- → [p-xylene +NO2]-   (rxn 38). 
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This assumption was supported by the match of the cluster chromatogram trace with the steep, 

virtually linear curve progression of NO2 (cf. Figure 49, right). In contrast hereto the 

occurrence of a plateau or an intermediate maximum is expected for a photoinititated 

degradation product as shown for 2,5-dimethylnitrobenzene, cf. #6 in Figure 49. In the case of 

oxygen addition to the free radical position on the ring skeleton, further intermediate states, 

such as O-O-bridged species are proposed (cf. Figure 47, right). One subsequently generated 

product is assumed to be 2,5-dimethyl-p-benzoquinone with a molecular weight of 136 Da. 

The electron affinity of this compound is Ea = 1.76 eV [138], which makes it amenable to the 

negative mode due to charge transfer. The shape of the extracted ion chromatogram at m/z -

136 is characterized by a maximum after about nine minutes of degradation time and 

subsequently decreases, indicating further oxidation (cf. Figure 49, left).  

 

 

Figure 49: Degradation of p-xylene with 2.4 ppmV NO, 3.7 ppmV methyl nitrite and 0.9 ppmV p-xylene injected into 
the photoreactor and backfill to 1001 mbar with synthetic air. Shown are the extracted ion chromatogram 
traces of (left) 2,5-dimethylphenol (#5), 2,5-dimethylnitrobenzene (#6), 2,5-dimethyl-p-
benzoquinone (#7) and (right) 2,5-dimethylnitrobenzene (#6), NO2 and the [p-xylene∙NO2]- 
cluster at m/z -152. “Start” and “end” denote the time where the superactinic fluorescent lamps were 
switched on and off, respectively. 

 

The oxygen addition step to the free radical position moreover initiates a possible reaction 

cascade via ring-opening, as sketched in Figure 47 (right). Some of the main compounds 

described in the literature [5] (cf. Figure 47, #8 - #12) will be discussed briefly in the 

following. The dominating degradation product belonging to this class was 3-hexene-2,5-

dione as E or Z isomer. As demonstrated in chapter 4.2.3.4  Impact of Different Ionization 

Positions on MS Spectra, b, this compound was subject to significant protonation through 
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ionized p-xylene. Within this experiment the radical cation at m/z 112 and the quasi-molecular 

ion at m/z 113 were observed with maximum relative abundances of 1.9 and 12.2 %, 

respectively. The chromatogram trace of m/z 112, as depicted in Figure 50, is characterized by 

a steep increase with a maximum after around seven minutes degradation time, followed by a 

decline to finally reach 50 %. This curve shape is typical for compounds formed in an early 

stage of the oxidation process (compounds #5 and #7). On the contrary, the extracted ion 

chromatogram traces of structures #9 - #11 show typical behavior of secondary formed 

degradation products with a clear induction time, mostly ending in a plateau (cf. Figure 50). 

Structure #9 represents 2-methylbutenedial with a molecular weight of 98 Da. Observed were 

the radical cation (m/z 98) and the quasi-molecular ion (m/z 99) in the positive mode with 

maximum relative abundances of 0.5 and 2.7 %, respectively. In Figure 50 the recorded 

radical cation chromatogram trace is shown.  

 

 

Figure 50: Degradation of p-xylene with 2.4 ppmV NO, 3.7 ppmV methyl nitrite and 0.9 ppmV p-xylene injected into 
the photoreactor and backfill to 1001 mbar with synthetic air. Shown are the obtained extracted ion 
chromatogram traces of (E,Z)-3-hexene-2,5-dione (#8), 2-methylbutenedial (#9), 2,5-dimethylfuran 
(#10) and methylglyoxal (#11) 

 

Structure #10 represents 2,5-dimethylfuran, assigned in the present experiments to the signals 

m/z 96 ([M]+) and m/z 97 ([M+H]+), with relative abundances of 0.6 and 2.5 %, respectively. 

Figure 50 shows the radical cation chromatogram trace of this species. Methylglyoxal, 

structure #11, is solely observed as the quasi-molecular ion at m/z = 73 with a relative 

abundance of 2.5 %. CID revealed the loss of CO and CH3 as the most important 
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fragmentation process, which excludes the possible detection of the water cluster [(H2O)3H]+ 

with the same nominal mass. #12 is the last structure shown in Figure 47 (right) representing 

the degradation compound glyoxal. In the literature [5] it is one of the most prominent 

observed species with up to 20 % of all degradation products. However, glyoxal was never 

observed in any of the present experiments, neither in the positive mode as radical cation 

(m/z 58) or quasi-molecular ion ([M+H]+), nor in the negative mode at m/z -58 or as [M-H]- 

at m/z -57. This is surprising, since the ionization energy of Ei = 10.2 eV and the electron 

affinity of Ea = 0.62 eV [138] strongly suggest that glyoxal, if present, should be detected in 

both modes. So far, also no other signal that might represent a possible ion cluster of glyoxal 

was found. Furthermore, glyoxal was not observed in FT-IR data as well, however, this might 

be due to the generally less sensitive detection method than the present API-MS setup. Hence 

the potential fate of glyoxal within the present mass spectrometric analysis is still of question.  

 This chapter demonstrated the approach of data interpretation with this API-MS setup. 

The effects and parameters that need to be considered and that are used to obtain valuable 

structural as well as time dependent information regarding a degradation product were pointed 

out.  
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a) Investigations on the commercially available API source 

 Comprehensive studies of the fluid dynamical behavior of the commercially available 

atmospheric pressure ionization source revealed that mostly chaotic, turbulent flows prevail in 

the enclosure, causing long residence times up to seconds. This inevitably leads to 

uncontrolled hetero- and homogenous neutral- and ion transformation processes, to ion losses 

and possibly memory effects. Mechanistic studies are thus rendered nearly impossible. It was 

found that the conventional assembly additionally restricts the ionization volume and leads to 

an insufficient use of the ionizing laser radiation in APLI applications. Moreover the 

performance of APPI in such a source enclosure is virtually restricted to secondary ionization 

mechanisms due to the confined range of VUV radiation. 

 

b) Development of a laminar flow ion source with a laminar sampling unit 

 Consequently, a new atmospheric pressure ionization source and sampling unit that are 

characterized by controlled, laminar flows were designed. Herein the probe from the reactor is 

directed at a 10° angle into the main tube of 20 cm length and 4 mm inner diameter, ending in 

a conically shaped outlet port that is directly connected to the transfer capillary of the mass 

spectrometer. The sampling flow accounts for 1.4 L∙min-1, determined by the choked flow of 

the capillary. For balancing the pressure of the reactor a continuous flow of synthetic air is 

provided, exactly matching the MS sampling flow. This results in dilution of merely 8 % after 

60 minutes, which is negligible within a degradation study. Fluid dynamical simulations on 

this source design substantiated the assumed laminar characteristic and additionally gave 

valuable insight into the time dependent and diffusion based spatial evolution of a generated 

confined ion packet along the propagation direction. The results of the latter supported 

preliminary experiments in which an efficient, long-distance ion transport within a laminar 

gas stream was observed. This eventually led to the development of a new APLI setup where 

the laser beam is directed coaxially along the flow direction of the gas sample into the main 

tube. Consequently, a significant increase of the ionization volume compared to the common 

APLI setup is achieved. Moreover, the laser pulse repetition rate of 200 Hz allows for 

manifold irradiation of a neutral analyte molecule before entering the MS. This approach 

establishes an APLI-MS method that allows the use of a small UV solid state laser (DPSS) as 
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radiation source with a comparable performance obtained as with an exciplex laser in current 

APLI-MS applications. The benefit is obvious: A DPSS laser significantly outperforms an 

exciplex laser in terms of size, noise level, maintenance, and purchase cost. Preliminary 

experiments showed lower detection limits for aromatic hydrocarbons in the pptV range. The 

modular design of this API source additionally allowed for the implementation of a VUV 

radiation unit that, in the first instance, made use of a specially shaped LiF window to 

maintain the laminar flow. Since the inner tube diameter accounts for 4 mm, sufficient VUV 

radiation for primary ionization of the analyte is provided. The benefits of this new source 

design are summarized as: (i) Controlled flow, (ii) high ion transmission efficiency into the 

MS, (iii) efficient irradiation of the sample (APLI and APPI), (iv) the modular design allows 

for versatile add-ons and for easy cleaning, and (v) the rather simple computed fluid dynamics 

enables superimposed kinetic calculations, which will eventually lead to valuable 

comparisons of simulation and experiment in the near future. At present, only gas phase 

samples are analyzable, however, the application of low-flow liquid nebulization stages is 

under investigation. Moreover, first approaches of implementing other ionization techniques 

such as APCI gave promising results. 

 

c) Novel APPI approach with home-built miniature spark discharge lamps 

 Experiments with the laminar flow ion source demonstrated that, even with the VUV 

radiation inlet unit at the closest possible ionization position, a thermodynamic response of 

the system in terms of ion transformation processes resulted in most cases. On the one hand 

this can be desirable, since it can significantly enhance the sensitivity towards some 

compounds. On the other hand, the more the ion distribution reaches its thermodynamic 

equilibrium the more likely this situation does not reflect the unknown composition and may 

lead to severe misinterpretation and loss of mass spectrometric information. Accordingly, a 

completely new approach for APPI was developed within this work. This approach is based 

on VUV irradiation of the analyte gas flow within the transfer capillary, which is functioning 

as a pressure reduction unit between the atmospheric pressure and the low pressure region of 

the mass spectrometer. In this way the time between ionization and entrance into the collision 

free region of the mass spectrometer was reduced by a factor of 250 (from 5 ms in the VUV 

inlet unit of the LFIS to 0.02 ms at the exit of the capillary in the first differential pumping 

stage), whereas the analyte density was merely diminished by a factor of four. However, this 
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approach required obtaining open access to the capillary gas flow. Consequently, a 

characterization with respect to the fluid dynamical behavior and ion transmission efficiencies 

was required. Along this line it was shown that well known empirical fluid dynamical 

equations, developed for large tube systems, can be applied to the small dimensions of a 

transfer capillary. For example, the calculated static pressures were confirmed to be within 

± 2 % accuracy of the experimentally observed values. The first VUV radiation inlet design 

made use of a specially shaped LiF window, mounted on the transfer capillary. As radiation 

source a commercially available Kr-RF lamp was used. The expected behavior in terms of 

reduced ion transformation processes was observed, however, sensitivity was not satisfactory, 

due to the ineffective use of the rather large radiation spot. Based on this result windowless 

miniature DC spark discharge lamps, directly mounted onto the transfer capillary, have been 

developed to provide precisely positionable ionizing radiation on a small illuminated area. 

Several different designs were introduced and the development of an appropriate high voltage 

power supply, tailored to the discharge characteristics of the lamp designs, was described. The 

type of discharge applied was characterized as a high pressure (pargon = 200 - 1000 mbar), low 

gas flow (0.1 - 0.5 L∙min-1), medium frequency (1.5 - 2.0 kHz), and medium voltage (500 –

 1500 V) DC spark with pulse currents of 2 A and pulse durations of 7 µs. The generated 

plasma is in a non-thermal and a non-equilibrium state which consequently results in mostly 

spectral line emission. The used discharge gas was argon and comprehensive experimental as 

well as theoretical investigations on the prevailing discharge chemistry and generated VUV 

radiation was given. It was shown that a separation of the discharge gas from the sample gas 

stream in the capillary is readily accomplished by adjusting the discharge pressure to the local 

static pressure. Moreover it was demonstrated that this design is fairly unique for providing 

ionizing radiation at elevated pressures even below the cutoff transmission (105 nm) of the 

commonly used LiF windows. So far, lower detection limits of 0.5 ppbV for benzene and 

0.1 ppbV for 2-butanone have been determined. An increase of the ionization efficiency by a 

factor of 400 as compared to the first approach with the commercially available APPI lamp 

mounted on the LiF window equipped capillary was achieved. However, this approach still 

leaves room for further investigations in terms of optimizing and adjusting the discharge and 

radiation characteristics with, e.g. gas mixtures, electrode shape, etc. It is expected that 

strongly decreased detection limits are realizable.  

 For the self protonation reaction of acetone and for negative ion mass spectra obtained 

from an atmospheric degradation product study it was furthermore demonstrated that this 
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novel APPI approach was capable of revealing a kinetically determined ion distribution 

resulting in valuable MS information on the neutral analyte distribution.  

 

d) Ion transformation processes 

 A comprehensive discussion was given on the occurrence of ion transformation 

processes. It was pinpointed that ITPs in general may prove valuable mass spectrometric 

information. However, and this was stressed, in order to correctly interpret a mass spectrum 

with respect to the neutral analyte distribution, it is necessary to know what kind of 

transformation processes between the ionization step and the detection step occurred and also 

to which extend. In API-MS this issue generally complicates the mass spectrometric analysis 

of unknown samples. When no reference spectrum is available illustrating an ITP reduced ion 

signal distribution, hardly any reliable analysis is possible.  

 It was demonstrated that kinetic energy increase of the travelling ions due to the 

presence of electrical field gradients along the ion transfer path to and within the analyzer (ion 

trap) can significantly impact the recorded ion distribution in terms of unintended induced 

unimolecular fragmentation processes.  

 Furthermore a comprehensive discussion was given on neutral radical induced ion 

transformation processes. Starting with the pyrene radical cation an intense experimental and 

theoretical investigation on the oxidation pathway with neutral radicals, generated through 

VUV radiation within an API source, was performed. Herein the analogy to well known 

atmospheric oxidation processes and the complex neutral radical chemistry became apparent. 

This section was thus of paramount importance since the present analytical system is 

supposed to monitor the neutral oxidation product distribution from a degradation study and 

hence superimposed ion oxidation processes would lead to significant misinterpretation. 

However, through kinetic calculations and experimental observations the occurrence of VUV 

initiated neutral radical induced ion oxidation can be excluded using ionization positions 

along the transfer capillary. It is noted that NRITPs are not only limited to APPI. Moreover 

any type of API approach using discharges at atmospheric pressure and leaving sufficient time 

between the ionization and detection step are in generally affected. In this context significant 

oxidation products can be found in the literature mass spectra as, e.g. shown by Shelley et al. 

[159], who used DART (direct analysis in real time) for ionization of ferrocene and observed 
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the oxygenated species with up to 15 % relative abundance, or as shown by Syage et al. [160], 

who recorded oxgenated products of pyrene with up to 50 % relative abundance using APCI.  

 A principal note was given on the literature terminology for the recently introduced 

types of ITPs. Herein any so called “dopant assisted” method was reduced to the terms 

positive ion chemical ionization (PICI) and negative ion chemical ionization (NICI) to more 

likely reflect the operating fundamental secondary chemical ionization mechanisms. The 

primary ionization step was suggested to be added as a prefix, as, e.g. APPI-PICI. The most 

important positive chemical ionization process is the protonation reaction. Exemplary on the 

self protonation reaction of acetone it was shown that (i) chemical ion transformation 

processes at atmospheric pressure are generally fast and proceed quantitatively in common 

APPI configurations when the neutral species is present in large excess relative to the primary 

radical cation population, (ii) the approach of photoionizing on the transfer capillary is 

capable of preserving substantial amounts of radical cations that are principally affected by 

subsequent ITPs, and (iii) the novel APPI reduces ITPs to a maximum extent. For the negative 

MS mode it was shown that at typical degradation product study conditions with 20.5 % 

oxygen present, the thermal electron capture occurs nearly quantitatively within 0.2 µs to 

form O2
-. Hence any type of NICI process, i.e., negative charge transfer or deprotonation 

consequently emanates from the primary generated superoxide anion population. A 

comprehensive discussion on the most important subsequent ion molecule reactions for 

samples from degradation studies, in particular with respect to NOx, HNOx and Ox, was given.  

 

e) Exemplary degradation study of p-xylene 

 The final chapter described the exemplary application of the novel setup for a 

degradation study of p-xylene. Therefore well known oxidation products and their detection 

within the present experiment were discussed. It was shown that the MS methods APLI, the 

novel APPI approach, APPI/APLI-PICI, APPI/APLI-NICI and CID combined with FT-IR 

data provide a powerful tool for in situ monitoring of photoinitiated atmospheric degradation 

experiments. In this way a broad range of diverse compounds can be analyzed in parallel with 

their time dependent concentration profile recorded. Furthermore, the approach of data 

interpretation with this setup was demonstrated. The effects and parameters that have to be 

considered and that can be used to obtain valuable structural as well as time dependent 

information on the occurrence of a degradation product were pointed out.  
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