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Introduction

Free resolutions and syzygies occur already in the fundamental article ”Uber die
Theorie der algebraischen Formen” published by Hilbert in 1890. Later on during
the formalization of homological algebra in the 1950’s one studied the slightly
more general projective resolutions. This lead to striking results in commutative
algebra like the characterization of regular local noetherian rings by Auslander,
Buchsbaum and Serre.

For finite dimensional algebras and their representations the homological point
of view motivated the invention of almost split sequences - which are of central
importance nowadays - but it also produced some interesting homological conjec-
tures. Two of these, the finitistic dimension conjectures and the various no loop
conjectures, are the theme of this dissertation.

For simplicity, we will always work with a finite dimensional associative algebra
A over an algebraically closed field k. We will deal with finite dimensional right
A-modules except otherwise stated. By Morita-equivalence and by an observation
of Gabriel we can assume that A is isomorphic to k Q /I for some quiver Q with
path algebra k Q and some two-sided ideal I generated by linear combinations of
paths of length at least two.

The (little) finitistic dimension findim A of A is defined to be the supremum
of the projective dimensions of all finitely generated modules of finite projective
dimension. Similarly, the big finitistic dimension Findim A is defined allowing
arbitrary right A-modules. In 1960, Bass [2] formulated two so-called finitistic
dimension conjectures. The first one asserts that

findim A = Findim A
while the second one claims that
findim A < oo .

A counterexample to the first conjecture was first given by Zimmerman-Huisgen
in [14]. Later on Smalgp [22] gave another example showing in addition that the
difference Findim A — findim A can be arbitrarily large. We reproduce Smalg’s
example in chapter 6 thereby making some of his arguments more transparent.



The second finitistic dimension conjecture is still open and we refer to it as
the finitistic dimension conjecture. It is known for:

e algebras A where the subcategory of all modules with finite projective di-
mension is contravariantly finite in mod- A (by Auslander, Reiten [1]),

e monomial algebras (by Green, Kirkman, Kuzmanovich [10]),

e algebras where the cube of the radical is zero (by Green, Huisgen-Zimmermann
[12]),

e algebras of representation dimension at most three (by Igusa, Todorov [16]),
e some special kinds of algebras (by Wang [23] and Xi [24, 25, 26, 27]).

This conjecture is also related to many other homological conjectures (e.g.,
the Gorenstein symmetry conjecture, the Wakamatsu tilting conjecture and the
generalized Nakayama conjecture).

As our main result in that direction we construct in chapter 5 from a given alge-
bra A =k Q /I a new algebra A=k é/iwith findim A < findim A < findim A 42
such that O has neither multiple arrows nor loops. A is then called single-
arrowed and it suffices to prove the finitistic dimension conjecture for single-
arrowed algebras.

Let A =k Q /I be given with a point z in Q. Denote the corresponding simple
by S;. The strong no loop conjecture is due to Zacharia [15]. It says that
there is no loop at x provided the projective dimension pdim, S, is finite.

The conjecture is known for

e monomial algebras (by Igusa [15]),

truncated extensions of semi-simple rings (by Marmaridis, Papistas [20]),

bound quiver algebras k Q /I such that for each loop a € Q there exists an
n € Nwith o™ € I'\ (IJ + JI), where J denotes the ideal generated by the
arrows (by Green, Solberg, Zacharia [11]),

special biserial algebras (by Liu, Morin [19]),
e two point algebras with radical cube zero (by Jensen [17]).

The stronger no loop conjecture says that Ext?(S,, S,) # 0 for infinitely
many indices 7. In [11] and [19] this stronger assertion was proven for the cases
where the loop behaves as in the third case above.

Note that the existence of a loop at x just means Ext!(S,,S;) # 0. This
implies easily Ext?(S,, S;) # 0, but Ext®(S,, S,) = 0 occurs for a representation-
finite example of Happel stated in [11, Section 4].



Observe that the finitistic dimension conjecture is obviously true for represen-
tation-finite algebras, whereas the truth of the strong no loop conjecture is not
clear for these algebras. In chapter 3 we will prove it for an even bigger class of
algebras containing all representation-finite algebras. The author has published
this in [21].

To state the main result precisely we introduce for any point z in Q its neigh-
borhood A(z) = eAe. Here e is the sum of all primitive idempotents e, € A
such that z belongs to the support of the projective P, := e, A or such that there
is an arrow z — z in Q or a configuration y' <+ x = y < z with 4 pairwise
distinct points z,y,y" and z.

Recall that an algebra A is called distributive if it has a distributive lattice
of two-sided ideals and mild if it is distributive and any proper quotient A /J is
representation-finite.

Our main result reads as follows:

Theorem 1

Let A =k Q/I be a finite dimensional algebra over an algebraically closed field k.
Let x be a point in Q@ such that the corresponding simple A-module S, has finite
projective dimension. If A(x) is mild, then there is no loop at x.

Of course, it follows immediately that the strong no loop conjecture holds for
all mild algebras, in particular for all representation-finite algebras.

Corollary 2
Let A be a mild algebra over an algebraically closed field. Let S be a simple A-
module. If the projective dimension of S is finite, then Ext}(S,S) = 0.

To prove the theorem we do not look at projective resolutions. Instead, in
chapter 2, we slightly refine the K-theoretic arguments of Lenzing [18, Satz 5],
also used by Igusa in his proof of the strong no loop conjecture for monomial
algebras [15, Corollary 6.2].

Chapter 4 is devoted to show that for a representation-finite algebra A the
stronger no loop conjecture is invariant under passing to the standard form A of
A. Moreover we prove that the extensions of the simple A-modules coincide with
the extensions of the corresponding simple A-modules.
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Chapter 1

Basic notations and facts

1.1 Preliminaries

Throughout this paper, k stands for an algebraically closed field. Let Q be a finite
quiver with Qg = {1,...,n} the set of points and Q; = {ay,...,a,} the set of
arrows in Q. The starting point of an arrow «; is denoted by s(«a;) and its ending
point is e(«;). Let k Q be the path algebra of Q over k, this is the vector space
over k having as a basis W the set of all directed paths in Q. For any point ¢ in
O there is a path e; of length 0 such that Ziego e; = lgo.

The multiplication in k @ is the concatenation of paths if the starting and
ending points match. Since we work with right modules, the product of two paths
v and w with e(v) = s(w) is vw and zero otherwise. An element w € k Q is called
uniform if w = e;we; for some suitable idempotents e;, e;.

An ideal I C k Q is admissible if k Q™ ¢ I ¢ k Q12 for some m > 2. Here
k Q™™ is the k-vector space with basis W™, the set of all paths of length at least
m. The algebra k Q /I is finite dimensional and associative.

Let w1, ..., w, be pairwise distinct paths of Q from a vertex x to a vertex y,
and let A1,..., A\, € k be non-zero scalars. We call

'
p= Z)\i w;
i=1

arelation on Q if p € I while Y 7_\ A\;w; ¢ I for all proper subsets N C {1,...,r}.
In this case wi,...,w, are called the components of p. Moreover, p is called
monomial or polynomial if 7 = 1 or r > 2 respectively.

The quotient A =k Q /I is called the algebra of the bound quiver (Q, I). Let
mod- A denote the category of finite dimensional right A-modules. It is well known
that mod- A is equivalent to the category repx(Q, I) of k-linear representations of
the bound quiver (Q, I).



The radical, the top and the socle of an A-module M will be denoted by
rad M, top M and soc M. We call m € M a top element of M if m ¢ rad M.

The indecomposable projective A-modules are P, = e¢; A for i € Qy. The
simple modules are S; = P;/rad P;. For every module M € mod- A there exists a
projective module Pj; and an epimorphism 7 : Py; — M with kernel contained
in the radical of Pyy; this module is called the projective cover of M. It is unique
up to isomorphism.

A projective resolution of an A-module M is an exact sequence of projective
A-modules together with an epimorphism dy : Py — M:

st B p Bp g

.o P P

A projective resolution is called minimal if d; : P; — Imd; is a projective cover
for all 7 > 0. By Q(M) we denote the kernel of a projective cover dy : Py — M
and call it the first syzygy of M. The higher syzygies are defined inductively;
QY (M) = ker d; if d; is the i’th morphisms in a minimal projective resolution of
M.

Every k-algebra A we consider as a k-category which has the idempotents e; €
A as objects and the e; A e; as the morphism spaces. Then a finite dimensional A-
module M is a covariant k-linear functor from A to the category of k-vectorspaces
such that the sum of the dimensions of all M (e;) is finite.

The modules arising in our examples can be represented by directed graphs
of a format which is intuitively suggestive. We use the conventions from [13].
For the convenience of the reader we briefly review the construction on a simple
example.

Example 1.1.1
Let A =k Q /I be an algebra of a bound quiver (Q, I) as follows.

« B
_‘f\ TN
Qi\qm\/y

il

A generating set for the relation ideal I can be communicated by way of graphs
of the indecomposable projective right A-modules. Presenting M = e, A by way

of the directed graph:
X

a2 af

@

T



holds the following information. The right ideal e,I C k@ is generated by
a3, a?B and Aa? + By for some A € k\{0}. Moreover, top M = M/rad M = S,
rad M/rad* M = S, @ S, = rad® M and rad® M =

1.2 Calculating syzygies is worthless

Some obvious method to prove the strong no loop conjecture is detecting repeti-
tions in the sequence ©(S5),Q2(5),Q3(S), ... of syzygies of a simple A-module S.
The objective of this section is to give, for each natural number n, an example of
a finite dimensional k-algebra A, such that the sequence of syzygies of a simple
A,,-module with non-trivial self extensions becomes periodic at the 2n + 2’th step
for the first time. Since the algebras A,, are of finite representation type with
radical cube zero it appears to have no prospect of success to prove the strong
no loop conjecture by this method even for such ’simple’ algebras. This example
emerged at the investigation of projective resolutions for representation-finite al-
gebras with radical cube zero. As a result which we won’t prove here it came out
that the stronger no loop conjecture is true for such algebras.

The algebra A, is given as a bound quiver algebra. Namely, let Q,, be the
following quiver:

B2 B3 Ba Br+1
F‘ N 7 N 7T N
\/ 4 ...... n n-+1
71 Y2 3 Tn

let k be any field, and A,, = k Q,, /I,, with relation ideal I,, such that the inde-
composable projective A,-modules are given by the following graphs:

P e Phy: €n+1 P;: 1=2,...,n
N / / \
a B2 Yn Vi1
|/ AN N
o? YnBn+1 Bi+17i

Consider the A,-modules V;, W;, X given by the graphs:
Vo=Wo: a2 Vi « Bo Wi a+m

V/ I\

a? a? Y152
Vit a + 71 B2+ 72 Bytryz - Bi—1 + %‘>1< Bi Bir1
752 Vo3 e Yi—2Bi-1 Vi-15i



W] OZ+’71 2+72 34—’)/3 ....... /8]_1 +/')/J_1 /BJ+/'Y]

| > < >

Y182 Yo - Yi—2Bj-1 Vi-1B; Vi Bj+1
for i, j 727__.,
X: «o + 71 /82 + 72 /33 + 3 - 571—1 + Yn—1 ﬁn + Yn Bn-‘rl
7152 Vo33 e Yn—28n-1 Yn—10n nBnt1

These modules are indecomposable. They are pairwise not isomorphic except
Wy = Vp. An easy computation shows that Q(V;) = Vj4q for i = 0,...,n — 1;
QW) =W,_y for j=1,...,n; QV,,) = X, Q(X) = W,,. Hence Q*"2(5;) = 5;
since S1 = Vy = Wy.



Chapter 2

Lenzing’s result

Let R be a ring with 1r and mod- R the category of all finitely generated right
R-modules. Let P(R) be the full subcategory of projective R-modules and denote
by P*°(R) the full subcategory in mod- R consisting of modules of finite projective
dimension.

In this chapter we present some slight generalization of a result of Lenzing [18]
giving us a tool at hand to prove the strong no loop conjecture for some special
types of algebras. The great advantage of this tool is that we don’t have to cal-
culate any projective resolutions in order to make assertions about the projective
dimension of the simple modules in view.

Following Igusa [15] we introduce the relative K-theory groups Kj(R) resp.
K{(R) first.

2.1 The relative K-theory group Ki(R)

Definition 2.1.1

Let Ki(R) resp. K{(R) be the additive group given by generators and relations
as follows. The generators are pairs (M, f) where M € P(R) resp. M € P*(R)
and f € Endg(M). The relations are:

a) (M, f)+(M,g) = (M, f+g),

b) (M, f)+ (N,g) = (L,h) for every commutative diagram with exact rows:

0 M L N 0,
f h g
0 M L N 0



c) (M, fg) = (N,gf) for every sequence MLNS ML N,

As a main result it will turn out that in fact K;(R) and Kj(R) are both
isomorphic to the zeroth Hochschild homology group Hy(R) of R.

Lemma 2.1.2 a) (M ® N, [ (g) ‘é ]) =0 in K1(R) resp. K{(R).

) (PN + Qo) = (PoQ.| | 0 ])in K,

c¢) For (P, f) € Ki(R) there exists ry € R such that (P, f) = (R, \.,). Here
Ar : R — R is the left multiplication with r.

d) (R,A\ M) = (R, A Ay) for all r,r" € R. Moreover (R, \(ypr—yrp)) = 0 in
Ki(R).

Proof.  a) Since

23105 a )= 4]
| [o o]0

(M@M[Oszm

and

we have by 2.1.1 ¢) :
00

mmﬂM@M[ggb:WQN{g£b+W@N{2gbza

b) The claim holds by 2.1.1 b) since every exact sequence ending in a projective
module splits.

c¢) Since P is a projective R-module, there is a complement () and an isomor-
phism a: P& Q — R". Now we set

f@OQ::[“f OQ]:P@Q%PGBQ.

Hence o™ }(f @ 0g)a : R" — R™ is represented by a left multiplication with
an n X n matrix [r;]; ; having entries in R. Using 2.1.1 a,b,c) and 2.1.2 a)
we derive

(P, f) = (PoQ, f®0q) = (ana_l(f@OQ)O‘) = (R", [)‘h‘j]i,j) = (sz’\m) :
i=1
Thus r¢ = > | 7 does the job.

10



d) The claim is trivial.
O

By Hy(R) we denote the zeroth Hochschild homology group of R. It is well
known that Ho(R) = R/[R,R] is the quotient of R by the additive subgroup
[R, R] generated by all elements of the form rs — sr where r, s € R.

Definition 2.1.3
Let the trace map Tr : K1(R) — Ho(R) be defined as follows:

i) For f : R" — R", [ = (fij) we define tr(f) = > ;" fii(lg). Then

Tr(R", f) := tr(f) is the residue class of tr(f) in Ho(R).
i) For f: F — F, a: F = R" we define Tr(F, f) := Tr(R",a" ! fa).
iii) For f: P — P, P®Q ~ R" we define Tr(P, f) :=Tr(P® Q, f & 09g).

Lemma 2.1.4
Tr: Ki(R) — Ho(R) is a well defined homomorphism.

Proof. Let a : P®@Q — R™ and 8 : P ® Q" — R™ be isomorphisms. Without
loos of generality we can assume that m = n and Q = Q' since

tr(a”H(f ®0g)a) = tr(a”'(f ®0g)a @ Op)
= tr((a” D idp)(f D 0g @ 0pi) (0 @ id )

It is well known that for matrices A, B € R™*™ one has tr(AB) = tr(BA) modulo
[R, R]. Hence

tr(87H(f @ 0)B) = tr((a™'B)(B~(f € 0)B)(B™"a)) = tr(a”* (f & Og)a)
modulo [R, R].
i) Tr(P, f) + Tr(P,g) = Tr(P, f + g) holds since tr is additive.

ii) If we have a commutative diagram with exact rows:

0 P T Q 0,
f h g
0 P T Q 0

then T =P ® Q and h = f @ g. Moreover there are complements P’ and @’
witha: P& P @ Qo Q = R" For
idp
- idOP/ 4 PeQaP oQ SPoPaQaq
idg

11



we have
T f@g®0p @®0g)y=(fB0p ®gd0y) .

Now we derive

a N f®0p & 0g @ 0y )

+a N 0p@0p ®g@0g)a = a N (f®0p @ g®0g)a
«

YN f @ g®0p @ 0g )y
-

= (y@) ' (h® 0prag)(ya) -

Thus Tr(P, f) + Tr(Q, g) = Tr(T, h).

i) Let f: P—>Q,9g:Q = P,a:POP S R'and f:QdQ = R™ be
homomorphisms. Then modulo [R, R] we have:

tr(a ! (fg@0p)a) = tr(a ' (f@0)BB™ (g ®0)e)
tr(8~ (g ® 0)aa ! (f ©0)B)
tr(87 (9f @ 0¢)B)

Thus TI'(P, fg) - Tl“(Q,gf)

Theorem 2.1.5
For any ring R we have an isomorphism Tr : Ki1(R) — Hy(R).

Proof. Tr is surjective since Tr(R, \,) =T € Hy(R) for all r € R.

To show that Tr is injective let (P, f) satisfy Tr(P, f) = 0. By Lemma 2.1.2 ¢)
(P, f) = (R, A\r;), hence tr(A,,) = ry € [R, R]. Thus (P, f) = 0 in K1(R) holds by
2.1.2 d). O

2.2 Lenzing’s Theorem

Theorem 2.2.1
For any ring R the inclusion functor P(R) — P°°(R) induces an isomorphism
K1(R) = Ki(R).

Proof. Let ¢ : Ki(R) — K}(R) be the homomorphism induced by the inclusion
P(R) — P>*(R). We construct the inverse map ¢ : K{(R) — Ki(R). First of
all we define ¢ as a map from the free additive group given by generators (M, f)
with pdim M < oo to K1(R). Let

P.i0=P, 5P —... 5P % P M—0)

12



be a projective resolution of M. Given a morphism f : M — M we choose a
lifting of f to a chain map f. : P, — P,. We define (M, f) := >0 (=1) (P, fi).
First we show that ¢ is well defined.

i) If g« : P, — P, is another lifting of f, then there are maps h; : P, — Py

such that
9i = [i + hidig1 + dihi—1.
Thus
YD PLg) = D (DL fi) + (P hidigr) + (B, dihioy))
i=0 i=0
. n A n—1 ‘
= D (DUPL i)+ D (D (P hidign) = Y (=1 (Piyrs digahs)
i=0 i=0 i==1

[y

- Z(_l)i(Pi’fi) + 3 (—1)"((Pi, hidiz1) — (Pig1, dig1hs))
=0 ;
+ (=1)"(Pn, hndny1) + (Po, doh—1)

3

<
Il

n

= > (-DUPB, fi)

1=0

ii) If Q. is another projective resolution of M let a, : P — Q. be a lifting of
idps and fy @ Q4 — Pi a lifting of f. Then au fi and f.a, are liftings of f.

Actually we have P; =% Q; f4 P, 2 @, thus (P, aiifi) = (Qi, ficvi) holds for

alli=0,...,n and
SV (Pt = S (=1 (@ fiaw) -
i=0 =0

Now we have to check that the relations given in definition of K (R) are in the
kernel of .

a) Obviously f« + g« is a lifting of f + g if fi, g« : P — P, are liftings of f, g.

b) For a commutative diagram with exact rows:

0 M L N 0
f h g
0 M L N 0

13



let fi: P — Py resp. g« : Q« — @, be a lifting of f resp. g. It is well known
[8, see V.2.3] that there exist v; : Q; — P; such that

ﬁO]
[ i Q Q
is a lifting of h. Thus (L, h) = (M, ) + (N, g) by Lemma 2.1.2.

c¢) Since a lifting of a composition fg: M — M is the composition f,.g, of liftings
fs: Py = Py, gi 1 Qi — Q4 the equality

(M, fg) =Y (=1)'(B;, figi) = > _(=1)"(Qi, gifi) = ¥(N, gf)
holds.
Therefore ¢ induces a morphism ¢ : Ki(R) — K1(R). Trivially ¥ o ¢ = idg, (r)
holds, thus it remains to verify that ¢ o ¢ = id K(R)- Let
0P 2P 5. oP%P M0

be a projective resolution of M. Then

n n

(o) (M, f) = (> (=1, f2)) = Y (=1)'(P;, fi).

i=0 =0

We proceed by induction on n. For n = 0 the claim is trivial. Now let U be the
kernel of the projective cover Py — M then

0—>Pnﬂ$Pn_1—>...—>P1d4U—>0

is a projective resolution of U and there is a commutative diagram

0 U Py M 0.
f! fo f
0 U P M 0

By the induction hypothesis we have (U, f/) = Y1 (=1)Y(P;, fi) and (P, fo) =
(U, f'Y+ (M, f) by 2.1.1 b). Thus

( f POafO +Z Pzafl (¢O¢)(M7f)
holds. O

14



Definition 2.2.2
Let M € mod-R, f: M — M. An f-filtration of M is a finite filtration

M=MyDM; D...o0M,=0

by submodules with
f(Ml) CMiy1Vi=0,...,n—1.

The f-filtration has finite projective dimension if pdimp M; < oo holds for all
1=0,...,n—1.

Proposition 2.2.3
Suppose that M € P*°(R) has an f-filtration of finite projective dimension. Then
(M, f) =0 in K}(R).

Proof. We proceed by induction on n. When n = 0 the claim is trivial. If
n > 1 we consider the map f; : My — M; induced by the restriction of f, then
(M, f1) = 0 in K{(R) by induction hypothesis. Since f(M) C M; we have the

following commutative diagram with exact rows:

0 M, M M/M; ——0 .
i f 0
0 My M M/M; ——0
Thus (M, f) = (M, f1) + (M/M;,0) = 0. O

Theorem 2.2.4

Let R be a ring with 1g and e € R a primitive tdempotent. Let o € eRe be a
nilpotent element and denote by A, : eR — eR the left multiplication with o. If
eR has a \-filtration of finite projective dimension, then « is in [R, R].

Proof. By Proposition 2.2.3 (eR, )\ ) = 0 in K{(R); hence by Theorem 2.2.1
(eR,A\g) = 0 in K;1(R) and 0 = Tr(eR, A ) @ in Hp(R). That means o €
R, R]. O

Definition 2.2.5

In the sequel we shortly say a-filtration and mean a Ao-filtration as in theorem
2.2.4.

Corollary 2.2.6

Let A=k Q/I be a finite dimensional algebra, x a point in Q and o an oriented
cycle at x. If P, has an a-filtration of finite projective dimension, then « is not
a loop.

15



Proof. Consider the following commutative diagram of Z-modules with exact
rows:

0 I kQ kO] > [AA —>0.
€ € B
0 I kQ—"——=A 0

Since ¢ and € are injective, ¢| is injective too. By Theorem 2.2.4 m(a) € [A, A]
holds. Hence there is w € [k @, k Q] such that m(w) = w(«). That means o —w €
1. Since [ is generated by paths of length at least two, either a has length > 2 or
a=w € [k Q,k Q]. But the loops have length one and the elements of length one
in [k @,k Q] are linear combinations of arrows which are not loops. Therefore o
can’t be a loop in both cases. ]

16



Chapter 3

The strong no loop conjecture
is true for mild algebras

In this chapter we will use Corollary 2.2.6 as an essential tool to prove the strong
no loop conjecture for the algebras considered in Theorem 1. Our strategy is as
follows: We consider the point z with pdim, S; < oo and its mild neighborhood
A := A(x). We assume in addition that there is a loop « in x. Then we deduce a
contradiction either by showing that pdim, S; = co or by constructing a certain
o-filtration F of P, having finite projective dimension in mod- A and implying
that « is not a loop by Proposition 2.2.6. Since A(x) contains the support of
P,, these filtrations coincide for P, as a A-module and as a A(x)-module. Thus
we are dealing with a mild algebra, and we use in an essential way the deep
structure theorems about such algebras given in [3] and [5] to obtain the wanted
a-filtrations. In particular, we show that we always work in the ray-category
attached to A(x). This makes it much easier to use cleaving diagrams. But still
the construction of the appropriate a-filtrations depends on the study of several
cases and it remains a difficult technical problem. The o-filtrations are always
built in such a way that they have finite projective dimension in mod- A provided
pdim, S, < oo.

To illustrate the method by two examples we define (wy,...,wy) as the sub-
module of P, generated by elements wy,...,w; € P,.

Example 3.0.7
Let A be an algebra such that A(x) is given by the quiver

-0
X

By
Y2 B2

z——=>Y1 ——=1Y2
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and a relation ideal I such that the projective module P, is described by the
following graph:
€x

/TN

gl a B
-]
abi o< Pib2

Notice that the picture means that there are relations o? — \; 315233, af; —
A2 y17y2 € I for some \; € k\{0}. From the obvious exact sequences

0—radP, — P, — S, —0

0— (f1,71) > rad P, - S, — 0

0= (a®,7) = (a,71) = Sz — 0
we see that pdim, S, < oo leads to pdim, rad P, < oo and pdimy (81,71) < oc.
Since (81,71) = (B1) © (1) and (a?,71) = (a®) @ (y1) in this example, both

pdim, (1) and pdim,{c,~;) are finite. Then the following a-filtration F: P, D
{a,y1) D {a@?) D 0 has finite projective dimension in mod- A.

In the next example we see that this method may not work if the neighborhood
A(z) is not mild, even if the support of P, is mild.

Example 3.0.8
Let A(z) =k Q /I be given by the quiver

a B1
Q=(+_=
l,y B2 \
(=24

and by a relation ideal I such that P, is represented by

ot
ay

(&

|/

e
Here we get stuck because the uniserial module with basis {7, v} allows only
the composition series as an a-filtration. Since we do not know pdim, S, which
depends on A and not only on A(x), our method does not apply.

N,
L
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In the next section we recall some facts about ray-categories and we show how
to reduce the proof to standard algebras without penny-farthings. This case is
then analyzed in the last section.

3.1 The reduction to standard algebras

3.1.1 Ray-categories and standard algebras

We recall some well-known facts from [3], [9].

Let A:= A(x) =k Q4 /I4 be a basic distributive k-algebra. Then every space
ez Aey is a cyclic module over e, Ae, or e, Ae, and we can associate to A its ray-
category Z Its objects are the points of @4. The morphisms in X are called
rays and A (x,y) consists of the orbits 7 in ez Aey under the obvious action of the
groups of units in e, Ae, and e, Ae,. The composition of two morphisms 7 and 7
is either the orbit of the composition pv, in case this is independent of the choice
of representatives in ﬁ and 7, or else 0. We call a non-zero morphism 7 €
long if it is non-irreducible and satisfies vn = 0 = v/ for all non-isomorphisms
v, v/ € A. One crucial fact about ray-categories frequently used in this paper is
that A is mild iff 4 is so [9, see Theorem 13.17].

The ray-category is a finite category characterized by some nice properties.
For instance, given Aux = Avk # 0 in A, p = v holds. We shall refer to this
property as the cancellation law.

Given A, we construct in a natural way its linearization k(z) and obtain a
finite dimensional algebra

A= P x(A)xy)

z,y€QA

the standard form of A. In general, A and A are not isomorphic, but they are if
either A is minimal representation-infinite [5, Theorem 2] or representation-finite
with chark # 2 [9, Theorem 13.17].

Similar to A, the ray-category Z admits a description by quiver and relations.
Namely, there is a canonical full functor 7 : P Q4 — A from the path category
of 94 to A. Two paths in Q4 are interlaced if they belong to the transitive
closure of the relation given by v ~ w iff v = pv’q, w = pw'q and v/ = w' # 0,
where p and ¢ are not both identities.

A contour of A is a pair (v, w) of non-interlaced paths with ¥ = # 0. Note
that these contours are called essential contours in [3, 2.7]. Throughout this paper
we will need a special kind of contours called penny-farthings. A penny-farthing
P in Z is a contour (02, py...ps) such that the full subquiver Qp of Q4 that
supports the arrows of P has the following shape:
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Moreover, we ask the full subcategory Ap C A living on Qp to be defined by Qp
and one of the following two systems of relations

(1)0=02—p1...ps = psp1 = Pit1---PsOPL -+ PFi)s
(2)0=0>—p1...ps = pap1—PsOPL = Pit1---PsOPL---PF(i);
where f:{1,2,...,s—1} = {1,2,...,s} is some non-decreasing function (see |3,

2.7]. For penny-farthings of type (1) Ap is standard, for that of type (2) Ap is
not standard in case the characteristic is two.

A functor F : D — A between ray categories is cleaving (]9, 13.8]) iff it
satisfies the following two conditions and their duals:

a) F(p)=0iff u=0.

b) If n € D(y, z) is irreducible and F(u) : F(y) — F(2') factors through F(n)
then u factors already through 7.

The key fact about cleaving functors is that X is not representation-finite if D is
not. In this paper D will always be given by its quiver Qp, that has no oriented
cycles and some relations. Two paths between the same points give always the
same morphism, and zero relations are indicated by a dotted line. As in [9, section
13], the cleaving functor is then defined by drawing the quiver of D with relations
and by writing the morphism F(u) in A close to each arrow p.

By abuse of notation, we denote the irreducible rays of Z and the correspond-
ing arrows of Q4 by the same letter.

3.1.2 Getting rid of penny-farthings

Using the above notations let P = (02, p1 ... ps) be a penny-farthing in Z We
shall show now that x = z;. Therefore ¢ = « and P is the only penny-farthing in
A by [9, Theorem 13.12].
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Lemma 3.1.1
If there is a penny-farthing P = (02, p1 ... ps) in Z, then z1 = x.

Proof. We consider two cases:

i) x € Qp: Hence Qp has the following shape:

P1---PL
cr«r\ Z1 /F\.’E Qoz
\7 \,,//
Pl+1---Ps

But this can be the quiver of a penny-farthing only for z; = x.

ii) z ¢ Qp: Since A is the neighborhood of x, only the following cases are
possible:

a) eyAe, # 0: Since x ¢ Qp we can apply the dual of [4, Theorem 1] or
[9, Lemma 13.15] to A and we see that the following quivers occur as
subquivers of Q 4:

pP1 p1
TN TN
o C 21 Z2 resp. o C 21 z2
~_ ~___—
P2 P2
(2 o(Ca

Moreover, there can be only one arrow starting in z. This is a contra-
diction to the actual setting.

b) 3 z; — x: By applying [4, Theorem 1] or the dual of [9, Lemma 13.15]
we deduce that the following quiver occurs as a subquiver of Q:
p1

Urzl/\z2
Vl\/
P2

« | X

\—r

and there can be only one arrow ending in x contradicting the present
case.

c) Iy +x2y<+2: Ify ¢ Qp, then

p1
RN

aCZl z9
~_

‘/ P2

TN

Yy x
~__ -
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is a subquiver of Q4 leading to the same contradiction as in b).
If y € Qp, then y = 23 and the quiver

B1
ar\x/\22<p;21/\a
S J
VJ B2
y/

is a subquiver of Q4. Since x ¢ Qp, all morphisms occurring in the
following diagram

are irreducible and pairwise distinct. Therefore D is a cleaving diagram
in A. Moreover, some long morphism 1 = v/ does not occur in
D; hence D is still cleaving in A /n by [5, Lemma 3|. Since D is

of representation-infinite Euclidean type E7, A /n is representation-
infinite contradicting the mildness of A.

O

Now, we show that, provided the existence of a penny-farthing in Z, there
exists an a-filtration of P, having finite projective dimension.

Lemma 3.1.2
Let A = A(x) be mild and standard. If there is a penny-farthing in Z, then there
exists an a-filtration F of P, having finite projective dimension.

Proof. If there is a penny-farthing P in Z, then P = (a2, p1...ps) is the only

penny-farthing in A by the last lemma. Since A is standard and mild, there are
three cases for the graph of P, which can occur by [4, Theorem 1] or the dual of
[9, Lemma 13.15].

i) There exists an arrow v : ¢ — z, 7 # p1. Then s = 2, the quiver

p1
af\m/\y
k# ~_ -
‘/ p2
~
z
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ii)

is a subquiver of Q 4, and P, is represented by the following graph:

SN

Y (e} P1

Let M be a quotient of P, defined by the following exact sequence:
0— (v)® (p1,ap1) = Pr - M — 0.

Then M has S, as the only composition factor. Hence pdim, M < oo and
pdim, (p1,ap1) < co. Now, we consider the exact sequence

0= (o) = (p1, ap1) = {p1)/(a®) @ {ap1)/(a®) = 0.

But (o) 2 S, and pdim, S, < oo, hence {(ap;)/{a3) = S, has finite pro-
jective dimension in mod- A. Finally, the a-filtration P, D {a) D (a?) D
() D 0 has finite projective dimension since all filtration modules % P,
have S, and S, as the only composition factors.

In the second case there exists a point z ¢ Qp such that A(z,z) # 0. Then
s = 2, the quiver
pl

oer\l' Yy
\/k
z
b

is a subquiver of Q 4, and P, is represented

N\
><\

a? ap1

/

a3

y:

€x

«

With similar considerations as in I) we obtain that the same filtration fits.
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iii) In the last possible case we have A(x,z) = 0 for all points z ¢ Qp. Hence
P, is represented by:

eg ———> 1

ap] <——« p1p2
{
4
l v
Qapi1p2 2 <——P1P2 - Ps—1
5
v

apipa. .. ps—1 — o3

As a A-module, M := P,/{a?) has finite projective dimension since (o) has
Sz as the only composition factor. Let K be the kernel of the epimorphism
M — (a?), ey + o2, then K = (p1)/{(a®) @ (ap1)/{a?) has finite projective
dimension. Moreover, pdimy (p1), pdim, {(ap;) < co. Since

0= (ap1) — (a) 23 (a®) = 0

is exact, pdim (@) < co. Thus the same filtration as in the first two cases
fits again.

O]

Lemma 3.1.3
With above notations let A = A(x) be mild and non-standard. There exists an
a-filtration F of P, having finite projective dimension.

Proof. If A is non-standard, then A is representation-finite by [5], chark = 2
and there is a penny-farthing in Z by [9, Theorem 13.17]. Since Lemma 3.1.1
remains valid, the penny-farthing (a2,p1 ceePs)y PPt Zi = Zitl, 21 = Zs41 = X, 1S
unique. By [9, 13.14, 13.17] the difference between A and A in the composition

of the arrows shows up in the graphs of the projectives to zo, ...,z only. Thus
the graph of P, remains the same in all three cases of the proof of Lemma 3.1.2
and the filtrations constructed there still do the job. O

3.2 The proof for standard algebras without penny-
farthings

3.2.1 Some preliminaries

If there is no penny-farthing in Z, then A = A is standard by Gabriel, Roiter
[9, Theorem 13.17] and Bongartz [5, Theorem 2]. By a result of Liu, Morin [19,
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Corollary 1.3], deduced from a proposition of Green, Solberg, Zacharia [11], a
power of « is a summand of a polynomial relation in I = I,. Otherwise pdim, S,
would be infinite contradicting the choice of x. Furthermore, « is a summand of a
polynomial relation in I4 by definition of A. But 14 is generated by paths and dif-
ferences of paths in @ 4. Hence we can assume without loss of generality that there
is a relation o — 318z ... B, in I4 for some t € N and arrows 31, B2, ..., 3. Among
all relations of this type we choose one with minimal ¢. Hence (af,3182... ;)

is a contour in Z with t,7 > 2. Let y = e(1) be the ending point of 8; and
B=PB2...00

By the structure theorem for non-deep contours in [3, 6.4] the contour (o, 8132 ... 3;)
is deep, i.e. we have o/t! = 0 in A. Since A is mild, the cardinality of the set
27T of all arrows starting in x is bounded by three. Before we consider the cases
|z7| = 2 and |z 1| = 3 separately we shall prove some useful general facts.

The following trivial fact about standard algebras will be essential hereafter.

Lemma 3.2.1

Let A = A be a standard k-algebra. Consider rays v;,w; € Z \ {0} fori =
1,...,nand j = 1,...,m such that v; # v and w; # wy for l # k. If there are
Ais i € k\{0} such that 377 ) Nivi = Y701 pjwj, then n = m and there exists a
permutation m € S(n) such that v; = wyy and N\i = iz fori=1,...,n.

Proof. Since the set of non-zero rays in X forms a basis of A, it is linearly inde-
pendent and the claim follows. O

In what follows we denote by L the set of all long morphisms in Z By p we
denote some long morphism va‘y’ which exists since af # 0.

Lemma 3.2.2
Using the above notations we have:

(B1) N(apB1) =0

Proof. We assume to the contrary that (81) N (af1) # 0. Then, by Lemma 3.2.1,
there are rays v,w € A such that fiv = afiw # 0. We claim that

D := e [iw g _e
at—ll >< l
[ J [ J

is a cleaving diagram in Z It is of representation-infinite, Euclidean type As.
Since all morphisms occurring in D are not long, the long morphism p = vaty/
does not occur in D and D is still cleaving in A /u by [5, Lemma 3]. Thus Z /1

is representation-infinite contradicting the mildness of A.
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Now we show in detail, using [5, Lemma 3 d)], that D is cleaving. First of all
we assume that there is a ray p with pﬁN = a'~!. Then we get 0 # of = OzpB~ = 615,
whence ap = 8 by the cancellation law. This contradicts the fact that 5y is an
arrow. In a similar way it can be shown that pa!~! = B, pv = frw and pfiw = v
are impossible.
The following four cases are left to exclude.

t=1p = Byw: Left multiplication with « gives us alp = afjw # 0. Hence

there is a non-deep contour (a!~lp;...pp,S1wi...w;) in A. Here p =
pP1...pE resp. w = wi ... w; is a product of irreducible rays (arrows). Since
the arrow [ is in the contour, the cycle 615 and the loop «a belong to the
contour. Hence it can only be a penny-farthing by the structure theorem for
non-deep contours [3, 6.4]. But this case is excluded in the current section.

i) «

ii) Bp = v: We argue as before and deduce Blﬁp = Bv = alp = afw # 0.
Hence there is a non-deep contour (a!~1py...px, Brwi ... w;) leading again
to a contradiction.

iii) Biwp = a'~!: Since t — 1 < ¢ we have a contradiction to the minimality of ¢.

iv) vp = B: Then Brvp = Bif =af = afivp # 0. Using the cancellation law we
get o1 = Bivp a contradiction as before.

O]

Lemma 3.2.3
Ift >3 and L ¢ {a®,a?p1}, then 2By = 0.

Proof. If a?B; # 0, then
B1

D:=0e— 25050
la
a B1
O<—— 00— 0
is a cleaving diagram of Euclidian type 155 in X It is cleaving since:
i) a? = Bip # 0 contradicts the choice of ¢ > 3.
ii) afy = p1p # 0 contradicts Lemma 3.2.2.

It is also cleaving in A /n for n € L\ {a?,a%B1} # 0 contradicting the mildness
of A. O

Lemma 3.2.4
If (o) N {aBr) = 0 = (B1) N {apB), then (a2, B1) N {(aB) = 0.
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Proof. Let a?u + f1v = afiw # 0 be an element in (o2, 51) N (aB1). By Lemma
3.2.1 we can assume that u, v, w are rays and the following two cases might occur:

i)
ii)

f1v = afiw # 0: This is a contradiction since (51) N {(aB1) = 0.

a?u = afyw # 0: This is impossible because (a?) N (aB) = 0.

3.2.2 The case |zt =2

Lemma 3.2.5
If 2t = {a, 1} and L C {a3,a?B1}, then there exists an a-filtration F of P,
having finite projective dimension.

Proof. We treat two cases:

i)

ii)

afB; = 0: Then for (o) with k& > 1 only S, is possible as a composition
factor; hence pdim,(a*) < co. Thus P, D (a) D {a?) D (o) D 0 is the
wanted a-filtration.

afi # 0: Since o and o?; are the only morphisms in X which can be long,
we have t = 3, 0 # o3 € L, (aB1) =kaf = S, and (a?B1) € {ka?py, 0}.
Now we show that (a?) N {aB;) = 0. If there are rays v = vy ...v5, w €
with irreducible v;, i = 1...,s such that a’v = aBfjw # 0, then s > 0
because s = 0 would contradict the irreducibility of . Therefore v1 = « or
v = 1.

o If v; = o, then v/ = vy...v, = id since o? is long and 0 # a?v = a3v'.

Hence 0 # o® = o?v = afjw and o = Biw contradicts the minimality
of t.

o If vy = 1, then 0 # o?v = a?B1v’ = aBiw; hence 0 # afv’ = frw €
<51> N <O¢51> =0.

Since (81) N {(aB1) = 0 = (a?) N (aB1), we deduce (B1,a? aBi) = (B1,a?) @
(af1) by Lemma 3.2.4. Therefore the graph of P, has the following shape:

ex

a \(Bﬁ
o s ab
o B
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Here (f31) stands for the graph of the submodule (f;) which is not known
explicitly. Consider the module M defined by the following exact sequence:

0— (B1,a%,ap) = P, - M =0

Then pdim, M < oo since M is filtered by S, and pdim, ({81, a?) ® (afB1)) =
pdim, (81,02, aB1) < oo. Thus pdim, ((af) = S,) is finite too and the
wanted a-filtration is P, D {a) D (a?) D (a?) D 0.

O]

Lemma 3.2.6
If 2t = {a,p1},t > 3 and L ¢ {3,021}, then o?p = 0 for all rays p ¢
{ex,a,...,a!=2}. Moreover, () N (aB) = 0.

Proof. Let p € Z with a?p # 0 be written as a composition of irreducible rays
p=p1...ps. Then the following two cases are possible:

i) p = a® Since 0 # a?p = o®™* and o' = 0 we have s < ¢t — 2 and
p=0ac{esa,...,at72}.

ii) There exists a minimal 1 < i < s such that p; # a. Since 27 = {a, f1}, we
have p; = 1 and 0 # a?p = o>~ 1B1p;11 ... ps = 0 by Lemma 3.2.3.

If 0 #£ a?v = afiw, then v = o® with 0 < s < t — 2. Hence 0 = o?v = o*12 =
aBfiw and ot = Byw by cancellation law. This contradicts the minimality of
t. O

Corollary 3.2.7
Ifxt ={a,1}, t >3 and L ¢ {a3,a2p1}, then (a2, B1) N {aB) = 0.

Proof. The claim is trivial using Lemmas 3.2.2, 3.2.4 and 3.2.6. O

Proposition 3.2.8
If x* = {«, B1}, then there exists an a-filtration F of P, having finite projective
dimension.

Proof. If L C {a®,a%B1}, then the claim is the statement of Lemma 3.2.5. If
L ¢ {a?,a?B1}, then we consider the value of t:
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i) t = 2: Then the graph of P, has the following shape:

\&)
Pt

2 (ap)

N

(
(1)

~0<—29

Q

Let a subquotient M of P, be defined by the following exact sequence:
0— (B1,ap1) = P, — M — 0

Then M and (1, af1) have finite projective dimension in mod- A. By Lemma
3.2.2 we have (51, a1) = (f1) @ (af1); hence pdim, (51) and pdim, (af;) are
both finite.

Let K be the kernel of the epimorphism A, : (81) — (af1), Aa(p) = ap.
Then pdim, K < oo and for the a-filtration F we take the following: P, D
(o, B1) D <51> @ (af1) D{(af) K DK DO.

ii) t > 3: Consider the following exact sequences:
0= (a, 1) = Pp = S: =0

0 — (a2, B1,apB1) = (o, B1) = Sy = 0

Hence pdim, (o, 1) and pdim, (a2, 31,aB;1) are finite. By Corollary 3.2.7
(2, B1,apB1) = (a2, B1) @ (aB1), that means pdim, (a3;) is finite too. With
Lemma 3.2.6 it is easily seen that for 2 < k < ¢ the module (a*) is a uniserial
module with S, as the only composition factor. Hence pdim, (a*) is finite
for 2 < k <t. Thereby we have the wanted a-filtration

P, D {a,p1) D (@®) @ (af) D ®) > >...0 (") >0.

3.2.3 The case [zt =3

With previous notations 2™ = {a, 81,7}, (af, 8132 ... ;) is a contour in Z, t>2,
ot =0, 8:=Bs...5, and i = valr' is a long morphism in A.
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The a-filtrations will be constructed depending on the set £ of long morphisms
in A. The case £ C {a?,aB1,av} is treated in Lemma 3.2.17, the case £ C
{a!, a1} in 3.2.18 and the remaining case in 3.2.19.

But first, we derive some technical results.

The following well known result is straight forward and holds for arbitrary A.

Lemma 3.2.9

Let B be a full convex subcategory of A i.e. any path in A with source and target in
B lies entirely in B. The canonical restriction functor maps a projective resolution
of a simple A-module with support in B to a projective resolution in mod- B.

Lemma 3.2.10
Ifr=2andd: 2 — z is an arrow in Q4 ending in z = e(y), then § = .

Proof. Assume to the contrary that v # ¢ : 2’ — 2, then there is no arrow 1 # ¢ :
Yy — y in Qu. If there is such an arrow, then by the definition of a neighborhood
e belongs to Q4. This arrow induces an irreducible ray 81 #¢:4 — y in A and

D— e ) ° Y B1 e

is a cleaving diagram in Z /i of Euclidian type FEs.

In a similar way an arrow a, 33 # ¢ : 2’ — x in Q, leads to a cleaving diagram of
type l~)5 in A /u. Hence the full subcategory B of A supported by the points z, y
is a convex subcategory of A. Therefore the projective dimensions of S, is finite
in mod- B since it is finite in mod- A. But in B we have 27 = {a, 31}, whence we
can apply Proposition 3.2.8 together with 2.2.6 to get the contradiction that « is
not a loop. O

Lemma 3.2.11
If ay # 0, then Biv # avy # ~yw for all rays v,w € X

Proof. i) Assume that there exists a ray v € Z such that f1v = ay # 0. Then

TS

is a cleaving diagram of Euclidian type 113 in Z /.
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e For vp = o' ! or vp = 3 we have ayp = Brvp = 518 = of # 0. Thus
a!~! = yp contradicts the choice of t.

e If a!"lp = v or Bp = v, then alp = B18p = Biv = ay # 0. Then
a'~'p = 7 contradicts the irreducibility of 7.

ii) Assume that there exists a ray w = wy ... ws: 2~ 2z € Z with irreducible
w; such that yw = oy # 0.

r = 2: Since w; is an irreducible ray ending in z, ws =« by Lemma 3.2.10.
Thus we get a contradiction ywy ... ws—1 = .

r > 3: We look at the value of s. If s =1, then w = w; is a loop and

D= eV g7 o Y. o Pr °
\Lﬂl
v
(1)~ J/ - (2)
B2
A
[ ]
is a cleaving diagram in X/,u
If s > 2, then
D::ows_lowso T e @ oﬁroﬁr_lo
7%
\Lﬂl
(3) )4 (4)

is cleaving in Z/u
We still have to show that not any morphisms indicated by the dotted

lines make the diagrams commute.

(1): vp = Bifa, with p = p1...p. If p = wl = w!, then BBy =
vp = yw' = ayw!™ !t and Bify... 0 = of = ayw! 1 Bs5... B, # 0.
Therefore /=1 = yw!=1B;3 ... B, is a contradiction. If p # w!, then
one of the irreducible rays p; # w1 starts in z and

D;:opiowlo’yoaoﬁroﬁplo
.
lﬁl
° (4)

is cleaving in A /.
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(2): If ap = B1 B2, then apBs...Br = f1P2...fr = al #0 and o' =
pPBs ... 0B contradicts the minimality of ¢.

(3): If py = ws—1ws, then ywy ... ws_9py = yw = ay # 0 and a =
~Ywy . .. ws—op contradicts the irreducibility of a.

(4): If pov = Br_1Br, then B1f2... Br_gpa = f1fB2...Br = o' # 0 and
ot~ =615, .. . Br—op contradicts the minimality of .

O]

Lemma 3.2.12
Ift > 3, then ay = 0.

Proof. Assume that ay # 0, then

0l B1

D= e<—_e—>0o

la

[}
O<—0 —>0

is a cleaving diagram of Euclidian type in Z /. It is cleaving since:
i) 7p = ary or B1p = ary contradicts Lemma 3.2.11,

ii) vp = a? or B1p = a? contradicts the minimality of ¢ > 3.

Lemma 3.2.13

a) If L & {a® aBy,av}, then aBy =0 or ay = 0.
b) If %P1 # 0, then yw # afy for all w € A.
Proof. a) If af; # 0 and a7y # 0, then

is a cleaving diagram of Euclidian type Dy in Z It is still cleaving in Z /n for
ne L\ {a? abi,av} #0.
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b) Since a?B; # 0, we have ary = 0 by a). But yw = af; leads to the contradic-
tion 0 # 2B = ayw = 0.
O

Lemma 3.2.14
Ift=2or L Z {a' a?B}, then:

a) o281 =0=a%y, a®p =0 for all rays p ¢ {es,q,...,at=?}.
b) (B1) N (ay) = 0.

c) If (v) N {(B1) = 0, then () N {a?) = 0.

d) {y) N {a) =0 or ()N (ap1) =0.

e) (v) N {aB1) =0 or (v) N (B1) = 0.

f) {aBr) N{a?) =0 and (ay) N {a?) = 0.

Proof.  a) Consider the case t = 2.

i) If a?B1 # 0, then 3,81 # 0 and

v B1
oe<—0——>eo
la
61 ﬂ'r

O<———0<— 0

is a cleaving diagram of Euclidian type 55 in Z/ . The diagram is
cleaving because:

e [B1p = afy # 0 is a contradiction of Lemma 3.2.2,
e vp = af # 0 contradicts Lemma 3.2.13 b).

ii) If a®y # 0, then 3,7 # 0 and

O<———0<— 0

is a cleaving diagram in X/ w. It is cleaving since S1p = ay resp.
vp = ary contradicts Lemma 3.2.11.

In the case t > 3, a?y = 0 by Lemma 3.2.12. If t = 3, then £ € {a?,a?8;}
by assumption. If ¢ > 3, then pu = va'v' € £\ {a3,a?p;}. Hence a?B; =0
by Lemma 3.2.3 in both cases.

33



b) If v, w are rays in X such that f1v = ayw # 0, then the diagram

is a cleaving diagram in Z /1.

i) If ywp = o=t or vp = 3, then Biup = BB =al = aywp # 0. Hence
ywp = a'~! contradicts the minimality of .
i) If o' ~1p = yw or Bp = v, then 0 # f1v = Blﬁp =ayw = alp =0 by

a).

c¢) Let v,w be rays such that yv = a?w # 0. By a) we have w = oF with
0<k<t—2, that means yv = a2tk Since t is minimal, we have t =2+ k
and 0 # yv = of = 18 € (y) N (B1) = 0.

d) Let v,w,v’,w be rays in A such that yw = alv # 0 and yw' = apv’ # 0.
Then

is a cleaving diagram in A /1.

t=lyp = B!, then ywp = yw' = alvp = afv’ # 0.
) in
S

i) If wp =w' or a
Hence there is a non-deep contour (a!~tvy...vxp1...pp, B10] ... v
which can only be a penny-farthing by the structure theorem for
non-deep contours. But this case is excluded in the current section.
i) If w'p = w or B1v'p = o', then yw'p = yw = aBf1v’p = alv # 0.
Again, we have a non-deep contour (a!~lv;...vg, B1v] ... VIp1 ... Ps)
which leads to a contradiction as before.

e) Let v,w,v’,w’ be rays such that f1v = yw # 0 and af1v’ = yw’ # 0. Then

* W v_®. B prv’_ e
| <
[ ] [ ] [ ]

is a cleaving diagram in Z /1.

i) If wp = w', we get the contradiction 0 # ywp = yw' = Lrvp = afiv’ €
<ﬁ1> N <Oé,81> =0.



ii) If w'p = w, then 0 # yw'p = yw = af1v’'p = Brv € (B1) N {aBr) = 0.
iii) If vp = B, then 0 # Brvp = B15 = ywp = o' € (y) N (a?) = 0 by d).
iv) If Bp = v, then 0 # B1p = v = alp = yw € (v) N (at) = 0 by d).
v) If ot=1p = B10/, then 0 # alp = aB1v’ = yw' € (y) N {al) =0 by d).
)

vi) The case B1v'p = o~! contradicts the minimality of ¢.

f) If v, w are rays in Z such that afv = a?w # 0 resp. ayv = o?w # 0, then
w=co* with 0 < k <t—2and v = a't* resp. yv = a't*. Since t is
minimal, we get the contradiction t =1+ k < t.

O

Lemma 3.2.15
If £ & {a? aBi, v}, then {y) N {ay) = 0.

Proof. In the case t > 3, the claim is trivial since ay = 0 by 3.2.12.

Consider the case t = 2. Assume that there exist rays v, w in such that
v = ayw # 0. First of all, we deduce that w # id by Lemma 3.2.11 and v # id
since 7 is an arrow. Therefore we can write v = vy...v5, W = wy...,w, with

irreducible rays v;, w; € X Consider the value of ¢:

a) If ¢ = 1, then the diagram

Vs w1=w v 81
[ ] [ ] [ ] [ ]
al

Br

o< o
/

T
°

is a cleaving diagram of Euclidian type E7 in A /e (see [9, 10.7]).

b) If ¢ > 2, then the diagram

w2-Wg o _wi Y B1

is cleaving in A /1.
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The diagrams are cleaving because:

i) ap =~vyw # 0: Then 0 # ayw = o?p = 0 by Lemma 3.2.14 a).

ii

iii) B1p = ~yw # 0: Then 0 # ayw = af1p = 0 since af; = 0 by Lemma 3.2.13.

)
) vp = ary # 0 contradicts Lemma 3.2.11.
)
iv)

pvs = yw # 0: Then apvs = ayw # 0. If p = B1p/, then 0 = af1p'vs =
ayw # 0. If p = ~vp', then ayp'vs = ayw and w; = w = p'vs. Hence p/ = id
and vy = wy. Therefore 0 # yv = yvy ... V51w = aywy and Y1 ... V5—1 =
oy contradicting Lemma 3.2.11. If p = ap/, then 0 # ayw = a?p'vs = 0 by
Lemma 3.2.14 a).

v) Bip = ay # 0 contradicts Lemma 3.2.11.

Lemma 3.2.16
Let £L & {at,a?B1} and L & {a?, ab, ay}.

a) If (ay) = 0= (y) N (apr), then (B1,7, %) N {afr) = 0.
b) If (ay) = 0 = {(7) N (B1), then {B1,a2) N (y,ap) = 0.
c) If (apy) = 0, then (B1,7,a%) N {avy) = 0.

Proof. We only prove b); the other cases are proven analogously. Let v, v/, w,w’ €

A be such that B1v+a?v’ = yw+aBiw' # 0. That means we have rays v;, w; € Z,
numbers A;, 4; € k and integers s1,s2 > 0, ny,n2 > 1 such that

S1 ni S2 n2
D oXiBwi+ Y Ndtui=) piywi+ Y pafiw;
i=1 =1

1=s1+1 j=sa2+1

and Biv; # Brvj, P # oy, yw; # yw;, afiw; # apiw; for i # j. Without
loss of generality we can assume that all \;, ;; are non-zero, that Biv; # oz%j for
i =1,...,81, j =s1+1,...,n1 and yw; # afw; for i = 1,...,82, j = 52 +
1,...,n9. Then by Lemma 3.2.1 we have ny; = n9 and there exists a permutation
7 such that S1v; = yw.;) € (B1) N () = 0 or frv; = aBrwg) € (B1) N{aBf1) =0
by Lemma 3.2.2. Hence s; = 0. Moreover, by Lemma 3.2.14 we have o’v; =
Ywr(y € (a?) N () = 0 or &®v; = afrwy ) € (@) N (afr) = 0; this is possible for
n1 — s1 = 0 only. Hence n; = 0, contradicting the choice of n;. O

Lemma 3.2.17
If £L C {a?,aB1,an}, then there exists an a-filtration F of P, having finite pro-
jective dimension.
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Proof. Since £ C {a?,aB1,av}, p = o? is long and t = 2. Now it is easily
seen that (a?) = ka? = S,, (ay) = kay, (af1) = kap; and (a) has a k-basis
{a, a2, af31, ay}. Using Lemma 3.2.2 and 3.2.11 we conclude {£1) N {(aB;) = 0 and

() N {av) = 0= (B1) N {a).
By Lemma 3.2.14 d) {(7) N (a?) =0 or (y) N {(aB1) = 0. Thus the graph of P, has
one of the following shapes:

or €x

2= ap ay a2 =" ab

In the first case we consider the following exact sequence:

0— <a2> — (o, B1,7) — <a,51,'y>/(oz2> —0

Since (o) has k-basis {a, a2, aB1, ay) and £ C {a?, aBy, ay} we have (a, B1,7)/(a?) =
(a)/{a?) @ (B1,7)/{a?). Hence pdim,{a) < co and P, D (a) D (a?) D 0 is the
wanted filtration.

In the second case we have («, 81,7)/{a?) = (a,7)/{a?) @ (B1)/{a?). Thus
pdim, (o, y) < co. Now we consider

0 — (B1,7,ay) = (a, B1,7) = Sz — 0.

Since (B1,7,ay) = (B1,7) ® (@), we have pdim, (ay) < oo and P, D («a,7) D
(a?,a7y) D 0 is a suitable filtration. O

Lemma 3.2.18
If L C {at,a?B1}, then there exists an a-filtration F of P, having finite projective
dimension.

Proof. If t = 2, then o?f; = 0 by Lemma 3.2.14 a). Hence £ C {a?} and the
filtration exists by Lemma 3.2.17.

If t > 3, then ay = 0 by Lemma 3.2.12. From the assumption £ C {af,a?B1} it
is easily seen that (af31) = kafB; and (a?B;1) = ka?B;.

i) If By = 0, then o' is the only long morphism in Z; hence o857 = 0 and
(o), k > 1, is uniserial of finite projective dimension. Thus P, D (a) D
(@?) D> ... D (al) D0 is a suitable a-filtration.

ii) If a?B) # 0, then (aB1) = kap = S, 2 (a?B). By 3.2.2 and 3.2.13 b)
(B1) N {ap1) = 0= (v) N {afi). Therefore the graph of P, has the following
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shape:

o a?B

v

ot
Moreover, (af;) & S, is a direct summand of the module (a2, f1,7, afBi),
which has finite projective dimension. Since the modules (), (a?),..., (af)

have S, and Sy as the only composition factors, they are of finite projective
dimension. Thus P, D (a) D (a?) D ... D (a!) D 0 is a suitable a-filtration.

O]

Proposition 3.2.19

If zt = {a, 81,7}, then there exists an a-filtration F of P, having finite projective
dimension.

Proof. By lemmata 3.2.17 and 3.2.18 we can assume that £ ¢ {af,a?p;} and
L ¢ {a? apfi,ay}. Then pdimy(a¥) < oo for 2 < k <t since (a¥) has only S, as
a composition factor by 3.2.14 a). Moreover, pdim, («, 81,7) < oo since it is the
left hand term of the following exact sequence:

0— (a, B1,7) = Pr — Sz — 0.
By Lemma 3.2.13 a) only the following two cases are possible:
i) af1 = 0: Consider the following exact sequence:
0= (81,7, 02, ay) = (o, B1,7) = Sz — 0.

Then pdimy{(B1,7,a?, ay) < co. By 3.2.16 ¢) we have (B1,7v,a% ay) =
(B1,7,0%) @ (ay); hence pdim,(ay) < oo. Therefore P, O (o, f1,7) D
(@®) @ (ay) D (a3) D ... D (al) D 0 is a suitable a-filtration.

ii) ary = 0: Then pdim, (31,7, a?, aB;) < oo since we have the exact sequence

0— <Bla’y7 052,04ﬁ1> — <CY,,81,’7> — Sm — 0.
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If (v) N {afB1) = 0, then by 3.2.16 a) we have (31,7, a?, aB) = (81,7, %) @
{(af1); hence pdim (o) < oo. Therefore P, D {(a, B1,7) D (a?) @ (aBy) D
(@®) D ... D (al) D0 is a suitable a-filtration.

By Lemma 3.2.14 e) it remains to consider the case () N (1) = 0: Then
(B1,7,a%, aB) = (B1,a?) & (v,ap) by 3.2.16 b). Thus pdim, (v, af;) < occ.
Now P, D {(a, B1,7) D {a?) @ (v,aB1) D (®) D ... D (al) D 0 is a suitable
a-filtration.

O]
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Chapter 4

Reduction to standard algebras

Let A be a representation-finite, connected k-algebra with standard form A. In
this chapter we prove that the extensions of the simple A-modules coincide with
the extensions of the corresponding simple A-modules.

4.1 Coverings of k-categories

Let A be a representation-finite, connected k-algebra and let I" be the Auslander-
Reiten quiver of A. By Bretscher, Gabriel 7, 3.1] the standard form A of A is
isomorphic as k-category to the full subcategory of the projective objects in the
mesh-category k(T") [6, see 2.2, 5.1].

A functor F': A — B between k-categories is called a covering functor if the
induced maps

H A(a,y) — B(F(a),b) and H A(y,a) — B(b, F(a))
F(y)=b (y)=b
are bijective for all a € A and b € B.

Let 7 : T' — T be the universal cover of I" as defined in [6, 1.3], then 7 induces a
universal covering of mesh-categories k(m) : k(I') — k(I') [6, 2.5]. Let A C k(T') be
the full subcategory of projectives, then the restriction of k(7) to A gives a covering
G:A—A [6, 3.1]. Moreover there is another covering k(f) — ind- A which maps
y € T onto 7(y) and by restriction induces a covering F' : A — A, identifying A
with the full subcategory of the projective modules in ind- A. Applying [6, 3.2] we
get well behaved exact functors F : mod- A — mod- A and G ) : mod- A — mod- A
which ’coincide’ on the simple modules. In which sense these functors are well
behaved is summarized in the next proposition.

Proposition 4.1.1 ([6] 3.2)
Let F: A — B be a covering of k-categories. Then there exists an exact functor
F) : mod- A — mod- B with the following properties:
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a) dim M = dim F\(M) for all M € mod- A.
b) Fx\(P) is projective iff P is projective.
F\(S) is (semi-)simple iff S is (semi-)simple.
¢) F\(rad M) = rad F\(M) and F\(top M) = top F\(M) for all M € mod- A.
d) F)y is dense on the (semi-)simple modules.

As a trivial consequence of this proposition we get the following.

Corollary 4.1.2
Let F': A — B be a covering of k-categories. Then there exists an exact functor
F) : mod- A — mod- B which preserves minimal projective resolutions.

4.2 Extensions of simples are invariant under passing
to the standard form

Using the above notations we are now able to prove the main result of this chapter.

Proposition 4.2.1
Let S T be simple A- modules, then we have:

dim Ext}y (F\S, F\T) = dim Ext'(G)\S, G\T) Vi € N

Proof. Let ... — @Z — @i_1~—> cel > él — éo — S — 0 be a minimal
projective resolution in mod-A. Then by the above corollary we get minimal
projective resolutions

.%FAéi—)F)\éi_l—)...%F)\@l—>F)\©0—>F)\§—>O

.= G)\éZ — G)\@i—l — .. G)\@1 — G)\@o — G)\g—> 0
of the simple A resp. A-modules S := F)\g resp. S := GA:SV’ Set T := F;f

resp. T := GyT. It is well known that m = dim ExtA(S T') is maximal with the
property that 7™ is a direct summand of top F)\@Q;. Let top Qz @] 1 T be a
decomposition in simple modules. Since F) commutes with top, m is max1mal
such that 7™ is a direct summand of F) @, Tj = @, F’ ,\T Hence we can assume
FAT T= F,\T for j =1,. mandFAT %Tforj—m+1 ,S. SlnceF,\
and GG coincide on the sunple modules we get G ,\T G ,\T T for i=1,.

and G,\T] 2T for j =m+1,...,s, hence T" is a direct summand of top G,\QZ
and m is maximal with that property. This proves that

dim Ext’(G\S, GAT) = m = dim Ext}y (F\S, F\T) .
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As an application of this proposition we get:

Corollary 4.2.2
Let A be a representation-finite k-algebra. Then the stronger no loop conjecture
holds for A iff it holds for the standard form A of A.

Remark 4.2.3

Since A is a degeneration of A in the sense of algebraic geometry it would be
interesting to know how the strong(-er) no loop conjecture behaves under arbitrary
degenerations.
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Chapter 5

Reduction to single-arrowed
algebras

In this chapter we introduce some technique allowing us to reduce the proof of
the finitistic dimension conjecture for arbitrary algebras to single-arrowed algebras
i.e. algebras having neither multiple arrows nor loops in their quiver. It will be
discussed as well how this is useful for the stronger no loop conjecture.

5.1 Getting rid of double arrows and loops

Definition 5.1.1
Let A = kQ /I be a finite dimensional algebra. I an admissible ideal. For x,y €
Qo with o an arrow or a loop from x to y, we set

O=0Q\{ah)U{am:z =2 ,a0:2" = y}
and define an injective non-unital algebra homomorphism f : kQ — kQ by

fle:) = e, Y2€Qp;
fla) = aas;

fB) = B, VB#ae Q.

Now we can define I to be the two sided ideal in kO generated by f(I) and set
A:=kQ/I.

Lemma 5.1.2 a) I is an admissible ideal in kQO.
b) For p € I uniform there exists € € I, i,7 € {0,1} such that p = aéf(f)o/i.

Proof.  a) Let J resp. J be the ideal generated by the arrows in kQ resp. kO
then there exists ¢t > 2 such that J' C I C J2. From the definition of f it
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is clear that f(I) C J°. Now let w # 0 be a path in j2t+2, we can write
w = abw'ad for some i,j € {0,1} and w' € g By the construction we
know that each 1 in w’ must be followed by as, otherwise w would be zero.
Now we can replace each ajas in w’ by o to get a path v € kQ such that
f(v) = w'. Since the length of w’ decreases by 1 for each replacement and
there are maximal ¢ replacements possible the least possible length of v is
2t —t = t. Hence we have v € J* C I, w = abw'a) = abf(v)a] € I and

j2t+2 c j

b) Let p € I be uniform. Then there exists a set W of paths from some z to
some 2’ in Q such that P =D wew MW With Xy, # 0 for all w € W. If oy is
a right divisor of some w then it is a right divisor of all w € W since 2’ =
in this case and «a; is the single one arrow to z’. as can be a left divisor
in the same way. Hence we can assume that there are 7,7 € {0,1} and for
each w € W paths v’ € Q with w = aéw’a{. Replacing ajas in each w’ by
o gives paths v, in Q such that f(v,) =w' Vw € W. Set £ =37 i Awvuw
then we get aéf(f)a{ = A f (X pew Atw)] = 3 ew Awdh f(vw)a] =

> wew Awahw'ad =30 Apw = p.
O]

Definition 5.1.3 3
Define a covariant functor F : mod- A — mod- A. On objects M € mod- A set:

ldM(a:)v ﬁ = ai;
F(M)(B) := § M(a), B=az;
M

F(M)(z) := o)
(B), B#aa,

{M(l’), z=a;
M(z), z#a.

on morphisms ¢ : M — N :
o=
Let C:= {M € mod-A | M(ay) is bijective} be a full subcategory in mod- A.
Lemma 5.1.4 a) For £ € kQ, M € mod- A we have F(M)(f(€)) = M(€).
b) Im(F) = {N € mod-A | N(a1) =idy(,} C C.
¢) C is closed under direct summands and extensions.
Proof.  a) F(M)(f(8)) =F(M)(8) =M(B) V8 # a,
F(M)(f(a)) = F(M)(owoz) = F(M)(on)F(M)(az) = idp ) M(a) = M(a) .
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b) Let p € I be uniform, then we can write p = af(£)b with a,b € kQ, ¢ € I.

Since F(M)(f(§)) = M (&) and M (§) =0 for £ € I we compute:

F(M)(p) = F(M)(af(§)b) = (F(M)(a)(F(M)(f(E)(F (M) (D)) =0 .

Thus F(M) is a A-module.
Let N € mod- A satisfy N(a1) = idy(,). We define M € mod- A by

M(z) = N(z) for z€ Qy and
M(a) := N(a2),
M() = N(B).

Then F(M) = N and M is a A-module since for £ € I we have

The last equality it suffices to check on arrows:

N(f(a)) = N(onaz) = N(a1)N(az) = N(az) = M(a) .

For N € Clet N =X @Y be a direct sum of A-modules, that means

Mo =5 Yy |

Since N(aq) : N(xz) — N(2') is an isomorphism by definition of C, X (1)
and Y (a1) have to be isomorphisms too. Hence X,Y € C.
Let 0 — X i> N %Y — 0 be an exact sequence of A-modules with

X,Y € C. Since f,g are A-module homomorphism we get the following
commutative diagram of vector spaces:

0 0
f:v 9z
0 X(x) N(x) Y(z) —=0
X(oq) N(Ozl) Y(Oq)
0—— X (&) > N(@) 2 v () —0

By the Snake-Lemma N («q) has to be an isomorphism.
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Lemma 5.1.5 R
F :mod-A — mod- A is a full, faithful and exact functor. F induces an equiva-
lence of categories mod-A — C.

Proof. a) For a morphism ¢ : M — N we have
F(M)(a1)F () = 1dps(z) Pz = @z idnm) = F(@)eF(N) (1),
F(M)(a2)F(p)y = M(a)py = paN(a) = F(p)ar F(N)(az).
For an arrow : z — 2’ in Q not equal to ay, g we have z, 2’ # 2’. Thus
F(M)(B)F () = M(B)p = pN(B) = F(¢).F(N)(B)

and F(¢): F(M) — F(N) is a morphism of A-modules.
Let ¢’ : N — K be another morphism of A-modules. Then

F(pf)ar = (0¢')a = aiply = F(@)w F(¢)ar,
Fpg'). = (p¢): = 0200, = F(9):F(¢). V 2 # 2.
b) F is full: Let ¢ : F(M) — F(N) be a morphism in mod- A. Then
idps(z) P = F(M)(01)per = G2 F(N)(a1) = @z idy(a)

and ¢, = @, holds. Define ¢ : M — N by ¢, = ¢, for all z # 2/, then
F(p) = .

F is faithful: Let ¢ : M — N be such that F'(p) = 0, then F(¢), = 0 for all
z € Qp. Hence 0 = F(p), = ¢, for all z # 2/ and ¢ = 0.

¢) Fisdensein C: For M € C M (i) : M(z) — M (2') is an isomorphism. Define
N € mod- A by N(z):= M(2'), N(z):= M(z) for z # x.

idM(x’)> B = ai;
. M (a)TTM(B), Brx =y
vy NB) = M(B)M (1), B:z— x;
M(5), else.
idM(J:’)v B =a;
M(a) ' M(B)M (1), B:z—y;
r=y: N(B) = M(8)M(a), Bz, 2t
M(ar)~'M(B), Brx—z, 2 #ux;
\M(ﬁ) ) else.

©
Then M = N with ¢, := M(a1), ¢, := idyq,) for z # 2. And N € Im(F)
since N (1) = idy(z)-



e) F is exact: Let 0 — M AH N i> K — 0 be an exact sequence in mod- A,
that means 0 — M(z) 55 N(z) 2 K(z) — 0 is exact for all z € Qy. Hence

0= FOM)(2) "8 P(N)(2)

F@QZ F(K)(z) — 0 is exact for all z € Qy.

O

Lemma 5.1.6 a) For M := P,5 = e, A, z € Qp, M(ay) : M(z) — M(2') is

mjective.

b) The indecomposable projective A-modules Pz, z # &' form a complete rep-

resentative system of the indecomposable projective objects in C.

¢) F(P.p) = P,3 for all z # a'.

Proof.  a) For M := P,; by definition M(a;) : M(z) —3 M(z') is the right

multiplication with a; in A and M(z) resp. M (z') has the residue classes
of paths from z to = resp. z’ as a basis. Let p € kQ be uniform such that
p € ker M (o), then pay € I implies pay = o f(€)ay for suitable i € {0,1}
and € € I. Thus p = ol f(€) € I holds implying 7 = 0.

Since «; is the single arrow which ends in 2/, all paths from 2 # 2’ to 2’
have to end by «;. Hence M(aq) is surjective and an isomorphism since it
is injective by a).

Since mod- A and C are equivalent categories, they have the number of | Q |
indecomposable projective objects, hence the P, for z # 2’ are the right
number of indecomposable projectives in mod- A which are indecomposable
projective in C too.

For z # 2’/ we have M := F(P,,) is indecomposable projective in C. Since C
is closed under direct summands M is indecomposable projective in mod- A
too. For z # x, 2" we have F(S;,) = S, by definition and since F' is exact
S. 3 is the top of M. For z = 2 F'(S;5) is not the simple S; ; but it is easily
seen that it has S; 3 in the top, hence in this case S;; is the top of M.

O

Theorem 5.1.7
With above notations we have Qz(F(M)) = F(Qa(M)) for all A-modules M.
In particular: pdimy M = pdimg F'(M) and findim A < findim A.

Proof. Let 0 — Q(M) - P — M — 0 be exact with P a projective cover of M.
Since F' is exact 0 — F(Q(M)) — F(P) — F(M) — 0 is exact with projective
middle term. If F(P) is not the projective cover of F(M) we get a projective
direct summand Q # 0 of F(Q(M)) = X ® Q € mod-A. As C C mod- A is closed
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under direct summands and £ is an equivalence on C, @) induces a projective direct
summand F~1(Q) of Q(M). Hence F~1(Q) = 0 and Q = 0 a contradiction. ~ [J

Iteration of the previous construction leads to a new algebra A which arises
from A by replacing all multiple arrows and loops z; =% y; by z; —3 ) X8
for ¢ = 1,...,t. Generalization of the above results to this situation provides a
subcategory C = {M € mod-A | M (o) bijective V i = 1,...,¢} C mod- A, an
equivalence F : mod- A — C and the following result:

Theorem §.1.8
For A and A as above we have:

a) findim A < findim A < findim A + 2, and these bounds are sharp.

o« gldimA+1, |[Qo|=1;
wgmmA_{gmmA, Qo] > 1.

Proof.  a) Let M be a submodule of the radical of a projective A-module Q. As
Q(ay1) is injective and M is a submodule of @, M (c;1) has to be injective
too. Now we look at the following exact sequence:

05 NAPA M0

with P a A-projective cover of M. Since the only indecomposable pro jective
A-modules which are not in C are P, / and rad P, = =P,cCfori=1,.
there exists a module V' € C such that

NcCradPCV CP

and for i € {1,...,t} V(as1): V(z;) — V(a}) is bijective. Moreover V(c1)
is the restriction of P(a;1) to V(z;) = Ve,,. Let v = ve,y € N be right
uniform, then '

p(v) = p(v)ey € Vey =ImV ().

Hence there exists p € Ve,, C Pe;, such that

p(v) = V(air)(p) = P(aun)(p).

Now we derive

0 =v(p(v)) = (P(ai)(p)) = M(ci1)(¥(p))

and deduce that p € kery) = Im ¢ since M («;1) is injective. Hence there
exists w = we,, € Ne,, such that ¢p(w) = p and

p(N(air)(w)) = Plair)(p(w)) = V(ai)(p(w)) = ¢(v).
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As ¢ is injective we have N(«;1)(w) = v. This shows that N(ay1) is surjec-
tive. Trivially N(a;1) is injective since N is a submodule of P and P(oy1) is
injective. Hence the second syzygy of every A-module is in C and the upper
bound follows.

The sharpness of the lower bound we see for hereditary algebras. For the
«

¥ ~
upper bound set A = k ' /(a?). Then findim A = 0. For A we get the quiver
ai
Q= = £/ and the minimal projective resolution of the indecom-
a2

posable injective I,/ is 0 — P, — P — Py — I+ — 0 hence findim A = 2.

Since 0 — P,, — Py — ng — 0 is exact, we have pdim Sz; = 1 for all
1=1,...,t.
O]

Corollary 5.1.9
The finitistic dimension conjecture holds in general if it holds for all finite dimen-
sional single-arrowed algebras.

5.2

Use for the stronger no loop conjecture

Now we would like to get some analogous results for the stronger no loop con-
jecture. But the problem is that for the simple module S;, € mod- A we have
F(Szp) 2 Sz i- Hence we have to know something about the self-extensions of
F(Sza) to get information about those of S;,. Nevertheless for all other simple
A-modules S, ,, z # x, we have by Theorem 5.1.7:

dim Ext (S, a, S.4) = dim Ext%(SzA, S23)-

The equality holds since F'(S.5) = S.; and F'(P;5) = P.j3.
To solve the problem we define an analogous functor GG : mod- A — mod- A.
On objects M € mod- A we set:

day), B=ag;
G(M)(B) == q M(a), B =au;
M(B), B # a1, .

M(y)7 Z:xl;

GM)(z) = {M(z) z# 2.

On morphisms ¢ : M — N:

ey, z=2
G(@)Z o {SDZ z 75 x'.
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Define D := {M € mod- A | M(ay) is bijective}. Then we get analogous results:
Lemma 5.2.1 a) D is closed under direct summands and extensions.

b) The indecomposable injective A-modules L.z, z # 2’ form a complete repre-
sentative system of the indecomposable injective objects in D.

¢) G : mod-A — mod- A is a full, faithful and ezact functor. G induces an
equivalence of categories mod- A — D.

d) G(I,5) = I3 for all z # a'.

Now the advantage is that er x # y ie. « is not a loop, the image of Sza
under G is S, ;. Hence dim Ext}y (Sza, Sza) = dim Ext?\(Sx;\, Syy) for all i > 0.
And we can formulate the desired result.

Corollary 5.2.2
The stronger no loop conjecture holds in general if it holds for all algebras without
multiple arrows, multiple loops are allowed.

5.3 Generalization

The following generalization is due to Xi [27].

Let A be an artin algebra and e an idempotent element of A. Then eA is an
(eAe, A)-bimodule and we get functors F' := _ ®.4e €A : mod-eAe — mod- A,
H := Homyg(eA, -) : mod- A — mod- eAe.

Lemma 5.3.1 a) F is left adjoint to H and H o F' = idyod- eAe
b) H is exact and F maps projective e Ae-modules to projective A-modules.

c) If eA is projective in eAe-mod, then F is eract and H maps projective
A-modules to projective e Ae-modules.

Proof.  a) Well known.

b) Since eA € mod- A is projective H is exact. For ¢/ = €’e an idempotent
element of A let ¢’ be the complement of ¢ in eie. e =¢ +¢€’, e’ = 0.
Then we have F(¢’Ae) = e'Ae ®cae eA = ¢’ A as A-module, since ¢'A =
€(eA) = (eAe®cpceA) = € (e’ Ae@cpceADe" Ae®@cpceA) = €/ Ae®epceA.

c) F is exact since eA € mod- A is projective. For P € mod- A projective we
have Homeg.(—, H(P)) = Hom 4 (F(—), P) is an exact functor, hence H(P)
is projective e Ae-module.

O
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Proposition 5.3.2
Let e be such that eA is projective in eAe-mod. Then: findimeAe < findim A.

Proof. Set m = findim A and take M € mod-eAe of finite projective dimension.
If s :== pdim_ 4. M < m we have nothing to show hence we can assume s > m. As
the projective e Ae-modules are of the form H(P) = Pe for projective P € mod- A
we get

0— Pse— Ps_1e—---— Ple—> Pie—>M —0

as minimal projective resolution of M. Since F' is exact
0 — F(Pse) = F(Ps_1e) —» --- — F(Pie) —» F(Ppe) - F(M) =0

is exact as well and a projective resolution of F'(M) in mod- A. Since findim A = m
the kernel N of the morphism F'(P,,,—1) — F(P,,—2) has to be projective in mod- A
and leads to the exact sequence:

0— N — F(Py_1€) = -+ = F(Pie) » F(Pye) > F(M) — 0.
By applying H to the last sequence we get
0— H(N)— Pp1e— -+ — Pie— Pie—>M—0

with H(N) projective in mod-eAe. Hence s = pdim, 4, M < m a contradiction.
O
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Chapter 6

The first finitistic dimension
conjecture fails

In the first section of this chapter we present the example of Smalg [22] showing
that the first finitistic dimension conjecture fails. In the second section the fini-
tistic dimension of tensor algebras will be computed following the arguments of
Rickard.

But first we state some easy fact:

Definition 6.0.3
For a A-module M we call a subspace U C M characteristic if f(U) C U holds
for all f € Endp(M).

Remark 6.0.4
Let U C M be characteristic and a € A, then

Ua :={ualu € U}

and
Ua™' := {m € M|ma € U}

are characteristic in M.

6.1 The Smalg example

Definition 6.1.1
Let O, be the following quiver:

Pn Pn—1 P2 P1 ,8
AR 2/02\1/01\@
—nN—-1——N—4 ......
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and let I, be the ideal in kKQ generated by the following elements:

062, /827 0567 ﬁaa o1, PQ, 7_157
Ti+1Yi fO?“ T ?é yx,yc {p10>7}7i = 17"')” )
Ti+1Tq — Yi+1Yi fO’l“ T,y € {pao-aT}a L= la"'an .

Theorem 6.1.2
For A, :=kQ,, /I,, n > 1 we have

findim A,, = 1 and Findim A,, = n.

Proof. First of all we look at the graphs of the indecomposable projective A,,-
modules.

RN
RN

NG LT

pB o T

€it+1

RN

Pi+1  Oit1  Ti4l Vi=1,...,n—1.

N

Pit+1Pi

Hence the radical lengths rl P; of the projective modules P; = e; A,, are 3 except
for Py, which has radical length 2. Remark that for ¢ = 0,...,n A;-Mod embeds
into A,,-Mod.

a) First we show that findim A,, = 1. Let M be a A,,-module of finite projective
dimension. Then the last two terms

0= Qm— Qm_1— ...

of a minimal projective resolution of M induce an inclusion f of a projective
module P = @, € mod- A,, into the radical of another projective A,,-module
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@ = Q1. Since the radical length of the radical of a projective A,-module
is less than 3, P has to be a finite product of copies of Py, namely P = Fj".
As Py has non-trivial morphisms only to Py, P, and P» we can assume that
Q= F" @ P/" & P)". Hence

f:(f05f17f2):Pgnﬁpglo@P{nl®Pgn2

with Im(f;) C rad P/"™ for ¢ = 0,1,2. Inspection of the graphs of the
indecomposable projectives reveals that

fo(Py") C rad Py™ = soc Py™ ,

f2(PF) C rad? Py* = soc Py

thus
fi(soc Pg*) = fi(rad Pi") C radsoc P/ =0 for i =0,2.

Now let u # 0 be an element in the socle of Fj", then

0 # f(u) = (fo(u), fi(u), fo(u)) = (0, fi(u),0) ,

that means f; is injective on the socle of P{", hence f; : PJ* — P is an
inclusion and induces an inclusion aPJ" — «P/"'. This is possible only for

m = dimaPf" < dimaP" =m.

Since
dimrad® P NImf = 2m < 3m; = dimrad® P

there exists u € rad? P™\Imf. Hence 0 # u € rad? coker f and rlcoker f =
3. That means that the cokernel of any inclusion P — @ of finitely generated
projective Aj,-modules P and ) with the image in the radical of @) has radical
length three and can’t embed in the radical of any projective A,-module.
Therefore a minimal projective resolution of finitely generated A,-modules
has maximally the length 1, which shows that findim A,, = 1 for n > 1.

Now we show that Findim A,, = n holds. An easy observation is that for
i=1,...,n, M € mod-A; the first syzygy N := Qu,(M) of M is a A;_;-
module and the projective resolutions of N as A;- or A;_1-module coincide.
Therefore QF (M) is an Agp-module and hence projective or of infinite projec-
tive dimension as Ag-module. Therefore pdim, M < n or pdim, M = oco.
That means Findim A,, < n.

To show that Findim A, > n let for i € N, j € {0, 1}, e;; be the coordinates

of PJ(N) with e; in the 7’th place and zero otherwise. Now let ¢ : PO(N) — Pl(N)
be given by
p(eo2i—1) = €1,2i—1T1 + €1,;01 ,
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(ep2i) = €121 + €1,ip1

where 71, 01, p1 denote the related residue classes in P;. To show that ¢ is
an inclusion it suffices to verify that it is injective on the socle. But this is
clear since the coordinates ep; form a basis of the socle of PéN) and there
images under ¢ are linearly independent. An easy calculation provides that

€1,;T1x
< e1ipB |1 €N > Clmep
1,010

hence coker ¢ is annihilated by the residue classes of a and § and we get:

€1,
€1 €1.9i—1T1 + €140
X, := coker ¢ = 1,iP1 . / 1,2i—1T1 + €101 . .
er01 |1 €N e12iTi +erip1 |i€EN
€1,4T1
Therefore
1) I‘]Xl = 2,

ii) soc X; = S(()N).

Moreover X is a A := A /(«, 8)-module and we can embed X in his mini-
mal injective envelope IOEF). But since Ip4 = rad P2, we get an embedding
Y X1 — PQ(N) as Aj-module such that soc PQ(N) C Imy C rad PQ(N). This
leads to a quotient module Xs := coker which is annihilated by «, 8 and,
under the assumption

iii) X indecomposable
we deduce that

1) rl X2 = 2,

ii) soc Xp = SiN) and

iii) Xy is indecomposable.
Since soc PQ(N) C Imy we have rl Xo < rl(PQ(N)/soc PQ(N)) =2 Imy C
rad PZ(N) hence X7 is the first syzygy of X5 as A,-module. If we assume
Xy =Y @Y’ as Ap-module then X7 = Q(X3) = Q(Y)®Q(Y’) and since X3
is indecomposable we can assume Q(Y) = 0. That means Y is a projective

direct summand of Xs. Since rl X5 < 2 and all indecomposable projectives
which are annihilated by «, 8 have radical length 3, Y has to be zero.
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As an infinite dimensional indecomposable module X5 can’t have radical
length 1 hence rl X3 = 2. By construction soc X9 € add(S; @ S2), assume

Sy <y X5. Inspection of S <y X5 on the level of representations provides
that S5 has to be a direct summand of X5. This is impossible since X5 is
indecomposable of radical length 2. Therefore soc Xy = SiN).

by induction we construct an exact sequence

Proceeding

0— pV g pM) Emy I p) Ly g
with X; = coker f; such that
i) 1lX; =2,
ii) soc X; = ﬁq and
iii) X; is indecomposable.
Therefore this is a minimal projective resolution of X, and pdim X,, = n
which proves the claim.

To complete the proof we have to verify that X is indecomposable. First
of all we derive

0(7’1 + (71)_1 = ker(x — X7 + .%'01) = k€1’1 C X;.
Hence
ke C Xy, (key)n =k(e11m1), (keii)pr = k(erom) C Xy,
kel,g = (k€1727'1)’7'fl Cc X;
are characteristic in X;. Proceeding by induction we get that
kel,i, k€1,i7‘1 C X3
are characteristic in X; for all ¢ € N. Now let f be an endomorphism of X7,
then
f(kei;) Ckey;,
f(kel’ﬂ'l) C keuﬁ fOT' all 1 € N .
Hence
fleri) = e
flerim) = Nierim
for A; € k and since
0= fler2i—1T1+e1,i01) = Agi—1€12i—1T1+ N €101 = (Agi—1—Aj)e12i-171
——
—e1,2;—171

we have M\gj_1 = \; =: A for all i € N>O, therefore f = A -id and X is
indecomposable.

O]
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6.2 Finitistic dimension of tensor algebras

In this section we show that the big resp. little finitistic dimension of the tensor
algebra A ®yx B equals the sum of the corresponding finitistic dimensions of A
and B. Using this and the first example of Huisgen-Zimmermann [14] of a finite
dimensional algebra where the two dimensions do not coincide one can construct
an algebra with an arbitrary large difference between these dimensions.

Remark 6.2.1
Consider the following commutative diagram of A-modules:

Then we get the following exact sequences:

&)

307_51 o
a)0—>A1 —1> AQ@Bl[ 2—> ]BQ¢3—5>203—>0,

{ B2
o ¢2 w37 —72
b)0—>A1§02—a>1B2 — BgEBCQ[ — ]03%0.
Using this easy remark we can prove the following;:

Lemma 6.2.2
For M € Mod- A, N € Mod- B we have

pdimygop M ® N = pdimy M + pdimg N .
Proof. If one of the projective dimensions pdim M, pdim N is infinite, then the

equation holds, since an A ® B projective resolution of M ® N restricts to an
A resp. B projective resolution. Now we can assume that n = pdim N < m =
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pdim M < oc.
For n =0, let

0O—+PFPp,—+Ppa1——=P—>FB—-M-—=0
be a minimal projective resolution in Mod- A. Then
0—>P, 9N Py 1N —---—>P QN PN ->MN —0
is exact with P; ® N projective in Mod- A ® B for all i =0, ..., m. Since
P, ®N C (rad Py—1) ® N C rad(Py,—1 ® N)

the last sequence is a minimal projective resolution, hence pdim M ® N = m.
Now we proceed by induction on d = m + n.

i) If d < 2 the only non-trivial case is (m,n) = (1,1). Let
0O—-P —-FP—M—=0

resp.
0=+Q1—Qo—+N—=0

be a minimal projective resolution in Mod- A resp. Mod- B. We tensor these
two sequences to the following commutative diagram:

0—=PI Q=P Q) >MQ —=0

0——=P N —>PON-—->MxN-——0

0 0 0

Using the above remark we get the exact sequence

0P ®Q = (PheQ1)®Pi®Q) -Ph®Q —MeN =0
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which is a minimal projective resolution since
Pr@ Q1 C ((rad Py) ® Q1) @ (P @ (rad Qo)) C rad((FP ® Q1) @ (P1 ® Qo).

ii) Now we conclude from d to d + 1 for d > 2. Consider the following exact
sequence
O—=L—-P—M-—0

with P projective in Mod- A and pdim L = m — 1. Then
0+LON—-PIN—-MN—=0
is exact and we have
pdimM ® N < max{pdim P ® N,pdm LN +1} <m+n=d+1
by induction. Now we look at the related homological sequence
ExtY(P® N, —) = ExtY(L® N, -) = Ext}(M ® N, —).
Since m +n =d+ 1 > 2 we can assume m > 2. Then by induction we get
pdmPON=n<m-14+n=d=pdimL &N .

Hence
ExtY(P® N,—) =0 # Ext(L® N, —)

and pdimM @ N =d+1 .
O

Lemma 6.2.3
Let X € Mod-A ® B with pdimy X < m < oo and M € A-Mod, N € B-Mod.
Then

Tor %P (7, 5(X), M @5 N) = TorB (7, 5(X) ®4 M, N)
holds for all i € N.

Proof. The claim is a special case of [8, Theorem IX.2.8], but we will use some
arguments of the proof in the proof of the next theorem. Set A = A @y B. For
projective P € Mod- A we have the well known isomorphism

(PRaAM)®@p N=P®p(MegN)

which is functorial in P, M, N [8, see I1X.2.1]. Thus (P ®4 M) ®p — is an exact
functor and P ®4 M is projective in Mod- B. Let

o= Pp=Py—... 2P —>X—=0
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be a projective resolution in Mod- A. By restriction it becomes a projective reso-
lution in Mod- A hence Q}'(X) is projective in Mod- A and

.= PP — .. = Py = QF(X) =0
is a split-exact sequence in Mod- A. Thus
. P @AM =5 Pi1 @AM — ... 5 Pp@aM—= QN (X)®a M —0 (6.1)

is a projective resolution in Mod- B. Finally using the above isomorphism we get
the following commutative diagram of complexes:

> P oA (M @k N)>Pj 1 &0\ (MR N)—>--—PF,, @y (M @ N)—0

iz J{z J{z

o> (Pj @A M)@p N = (Pj-1 @4 M)@p N =+ — (P, ®a M) ®@p N — 0

Since Tor?(QT(X ), M ®x N) is the i’th homology group of the upper complex
and Tor? (Q7(X) ®4 M, N) of the lower one the claim follows. O

Theorem 6.2.4
Let A and B be finite dimensional algebras over an algebraically closed field k.
Then

a) Findim A ®y B = Findim A 4+ Findim B.
b) findim A ®y B = findim A + findim B.

Proof. By Lemma 6.2.2 we have Findim A ®, B > Findim A 4+ Findim B. Set
A= A& B,m = FindimA and n = Findim B. Let X € Mod-A be of finite
projective dimension. Since every A-projective resolution of X restricts to an
A-projective resolution, pdim,4 X < m holds. Since pdim, X is finite the B-
projective resolution (6.1) is finite too. Thus Q}'(X) ®4 M has finite projective
dimension in Mod- B. By Lemma 6.2.3 we have:

Tor (R (X), M @k N) = TorP(QR(X) @4 M,N) =0V i > n.

Since the simple A-modules are of type S®i T with simple modules S € A-Mod, T €
B-Mod, Tor(Q(X),V) =0 for all i > n and V € A-Mod. Hence

pdimy X = m + pdim, (Q(X) <m+n .

The proof of part b) is analogous. O
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